Elgot Algebras

Jiří Adámek1,⋆, Stefan Milius1, and Jiří Velebil2, ⋆

1 Institute of Theoretical Computer Science, Technical University, Braunschweig, Germany
{adamek,milius}@iti.cs.tu-bs.de
2 Faculty of Electrical Engineering, Technical University, Prague, Czech Republic
velebil@math.feld.cvut.cz

If you are not part of the solution, you are part of the problem.
Eldridge Cleaver, speech in San Francisco, 1968

Abstract. Denotational semantics can be based on algebras with additional structure (order, metric, etc.) which makes it possible to interpret recursive specifications. It was the idea of Calvin Elgot not to use additional structure and to base denotational semantics on iterative theories, i.e., theories in which abstract recursive specifications are required to have unique solutions. Later Bloom and Ésik studied iteration theories and iteration algebras in which a specified solution has to obey certain axioms. In this paper we propose so-called Elgot algebras. An Elgot algebra is an algebra with a specified solution for every system of flat recursive equations. That specification satisfies two simple and well motivated axioms: functoriality (stating that solutions are stable under renaming of recursion variables) and compositionality (stating how to perform simultaneous recursion). These two axioms stem canonically from Elgot’s iterative theories: We prove that the category of Elgot algebras is the Eilenberg–Moore category of the monad given by a free iterative theory.

1 Introduction

This paper whose extended abstract was presented at the conference MFPS XXI, see [AMV3], studies Elgot algebras, a new notion of algebra useful for application in the semantics of recursive computations. In programming, functions are often specified by a recursive applicative program scheme such as

\[\begin{align*}
\varphi(x) & \approx F(x, \varphi(Gx)) \\
\psi(x) & \approx F(\varphi(Gx), GGx)
\end{align*} \]

(1.1)

where \(F \) and \(G \) are given functions and \(\varphi \) and \(\psi \) are recursively defined in terms of the given ones by (1.1). We are interested in the semantics of such schemes. Actually, one has to distinguish between uninterpreted and interpreted semantics. In the uninterpreted semantics the givens are not functions but merely function symbols from a signature \(\Sigma \). In the present paper we prepare a basis for the interpreted semantics in which a program scheme comes together with a suitable \(\Sigma \)-algebra \(A \), which gives an interpretation to all the given function symbols. The actual application of Elgot algebras to semantics will be dealt with in [MM]. By “suitable algebra” we mean, of course, one in which recursive program schemes can be given a semantics. For example, for the recursive program scheme (1.1) we are only interested in those \(\Sigma \)-algebras \(A \) in which the program scheme (1.1) has a solution, i.e., we can canonically obtain new operations \(\varphi^A \) and \(\psi^A \) on \(A \) so that the formal equations (1.1) become valid identities. The question we address is:

What \(\Sigma \)-algebras are suitable for semantics? (1.2)

Several answers have been proposed in the literature. One well-known approach is to work with complete posets (CPO) in lieu of sets, see e.g., [GTWW]. Here algebras have an additional CPO

⋆ The first and the third author acknowledge the support of the Grant Agency of the Czech Republic under the Grant No. 201/02/0148.
structure making all operations continuous. Another approach works with complete metric spaces, see e.g. [ARu]. Here we have an additional complete metric making all operations contracting. In both of these approaches one imposes extra structure on the algebra in a way that makes it possible to obtain the semantics of a recursive computation as a join (or limit, respectively) of finite approximations.

It was the idea of Calvin Elgot to try and work in a purely algebraic setting avoiding extra structure like order or metric. In [El] he introduced iterative theories which are algebraic theories in which certain systems of recursive equations have unique solutions. Later Evelyn Nelson [N] and Jerzy Tiuryn [T] studied iterative algebras, which are algebras for a signature Σ with unique solutions of recursive equations. While avoiding extra structure, these are still not the unifying concept one would hope for, since they do not subsume continuous algebras—least fixed points are typically not unique.

However, analyzing all the above types of algebras we find an interesting common feature which make continuous, metrizable and iterative algebras fit for use in semantics of recursive program schemes: these algebras allow for an interpretation of infinite Σ-trees. Let us make this more precise. For a given signature Σ consider the algebra $T_\Sigma X$ of all (finite and infinite) Σ-trees over X, i.e., rooted ordered trees where inner nodes are labelled by n-ary operation symbols from Σ, and leaves are labelled by constants or elements from X. The algebra $T_\Sigma X$ is the free continuous Σ-algebra on X and also the free metrizable Σ-algebra on X. Consequently, for any continuous or metrizable algebra A we obtain a canonical map $T_\Sigma A \longrightarrow A$ which provides for any Σ-tree over A its result of computation in A. It is then easy to give semantics to recursive program schemes in A. For example, for (1.1) one can simply take the tree unfolding which yields the infinite trees

$$\varphi^\dagger(x) = \frac{F}{x} \frac{F}{Gx} \frac{Gx}{GGx} \frac{GGx}{\cdots}$$

$$\psi^\dagger(x) = \frac{F}{x} \frac{F}{Gx} \frac{Gx}{GGx} \frac{GGx}{\cdots}$$

and then for any argument $x \in A$ compute these infinite trees in A.

Actually, we do not need to be able to compute all infinite trees: all recursive program schemes unfold to algebraic trees, see [C] (we mention these in the Summary shortly). Another important subclass are rational trees, which are obtained as all solutions of guarded finitary recursive equations. They were characterized in [G] as those Σ-trees having up to isomorphism finitely many subtrees only. We denote by

$$R_\Sigma X$$

the subalgebra of all rational trees in $T_\Sigma X$. With this in mind, we can restate problem (1.2) more formally:

What Σ-algebras have a suitable computation of all trees?
Or all rational trees? (1.3)

This means, one further step more formally: what is the largest category of Σ-algebras in which $T_\Sigma X$, or $R_\Sigma X$, respectively, act as free algebras on X? The answer in case of $T_\Sigma X$ is: complete Elgot algebras. These are Σ-algebras A with an additional operation “dagger” assigning to every system e of recursive equations in A a solution e^\dagger. Two (surprisingly simple) axioms are put on $(-)^\dagger$ which stem from the internal structure of $T_\Sigma X$: the functor T_Σ given by $X \longrightarrow T_\Sigma X$ is part of a monad in Set, and this is the free completely iterative theory on Σ, as proved in [EBT].
We will prove that the monadic algebras of this monad (i.e., the Eilenberg–Moore category of T) is precisely the category of complete Elgot algebras. Basic examples: continuous algebras or metrizable algebras are Elgot algebras. Analogously, the largest category of Σ-algebras in which each $R_\Sigma X$ acts as a free algebra are Elgot algebras. They are defined precisely as the complete Elgot algebras, except that the systems e of recursive equations considered there are required to be finite. For example, every iterative algebra is an Elgot algebra.

Related Work: Solutions of recursive equations are a fundamental part of a number of models of computation, e.g., iterative theories of C. Elgot [El], iteration theories of S. Bloom and Z. Ésik [BÉ], traced monoidal categories of A. Joyal, R. Street and D. Verity [JSV], fixed-point theories for domains, see S. Eilenberg [Ei] or G. Plotkin [P], etc. In some of these models the assignment of a solution e^\dagger to a given type of recursive equation e is unique (e.g., in iterative theories every ideal system has a unique solution, or in domains given by a complete metric space there are unique solutions of fixed-point equations, see [ARu]). The operation $e \mapsto e^\dagger$ then satisfies a number of equational properties. In other models, e.g., in iteration theories or in the traced cartesian categories, see [Ha], a specific choice of a solution of equational properties. In other models, e.g., in iteration theories [AAMV] and iteration theories of Zoltan Ésik [É] are another one. Unfortunately, the number of axioms (seven) and their complexity make the question of the relationship of that notion to Elgot algebras a nontrivial one. We intend to study this question in the future.

The approach of the present paper is more elementary in asking for solutions $e \mapsto e^\dagger$ in a concrete algebra A. Here we work with flat equations e in A, i.e., morphisms of the form $e : X \to HX + A$, but flatness is just a technical restriction: in future research we will prove that more general non-flat equations obtain solutions “automatically”. The fact that we work with a fixed algebra A (and let only X and e vary) is partly responsible for the simplicity of our axioms in comparison to the work on theories (where A varies as well), see e.g. [BÉ] or [SP1]. Iterative algebras of Evelyn Nelson [N] and Jerzy Tiuryn [T], where solutions e^\dagger are required to be unique, are a similar approach. And iteration algebras of Zoltan Ésik [É] are another one. Unfortunately, the number of axioms (seven) and their complexity make the question of the relationship of that notion to Elgot algebras a nontrivial one. We intend to study this question in the future.

We work with two variations: Elgot algebras, related to $R_\Sigma X$, where the function $(-)^\dagger$ assigns a solution only to finitary flat recursive systems, and complete Elgot algebras, related to $T_\Sigma X$, where the function $(-)^\dagger$ assigns solutions to all flat recursive systems. This is related to our previous research [AAMV1,AMV2] in which we proved that every finitary endofunctor H generates a free iterative monad R, and a free completely iterative monad T. In the present paper we then study the Eilenberg–Moore categories of the monads R and T. Here H is an endofunctor of a category satisfying some rather mild conditions (not only Set): this generality does not make the proofs any more complex, and later we use other categories than Set (see Summary).

2 Iterative Algebras and CIAs

Assumption 2.1. Throughout the paper H denotes an endofunctor of a category A having binary coproducts. We denote by $\text{inl} : A \to A + B$ and $\text{inr} : B \to A + B$ the corresponding injections. At some stage we assume that A is locally finitely presentable and that H is finitary, i.e., preserves filtered colimits, but we then make these assumptions explicitly.

Recall that an object X is called *finitely presentable* iff the hom-functor $A(X, -) : A \to \text{Set}$ is finitary. (In Set, these are precisely the finite sets. In equational classes of algebras these are precisely the finitely presentable algebras in the usual sense.) Recall further that a category A is called *locally finitely presentable* if it has colimits and a small collection of finitely presentable objects whose closure under filtered colimits is all of A, see [AR].

Definition 2.2. Let $\alpha : HA \to A$ be an H-algebra. By a flat equation morphism in A we understand a morphism $e : X \to HX + A$ in A. We call e finitary provided that X is finitely
presentable. A solution of e is a morphism $e^\dagger : X \rightarrow A$ such that the square

\[
\begin{array}{ccc}
X & \xrightarrow{e^\dagger} & A \\
\downarrow e & & \downarrow \alpha \cdot A \\
HX + A & \xrightarrow{He^\dagger + A} & HA + A
\end{array}
\]

commutes.

If every finitary flat equation morphism has a unique solution, then A is said to be an iterative algebra. And A is called a completely iterative algebra (CIA) if every flat equation morphism has a unique solution.

Remark 2.3. Iterative algebras of polynomial endofunctors of Set were introduced and studied by Evelyn Nelson [N]. She proved that the algebras $R_S X$ of rational Σ-trees on X form free iterative algebras, and that the theory obtained from them is a free iterative theory of Calvin Elgot [El]. We have recently studied iterative algebras in a much more general setting; working with a finitary endofunctor of a locally finitely presentable category. Completely iterative algebras were studied by Stefan Milius in [M].

Example 2.4. Consider algebras in Set with one binary operation $*$, i.e., the functor is $HX = X \times X$. A flat equation morphism e in an algebra A assigns to every variable x either a flat term $y * z$ (y and z are variables) or an element of A. A solution $e^\dagger : X \rightarrow A$ assigns to $x \in X$ either the same element as e, in case $e(x) \in A$, or the result of $e^\dagger(y) * e^\dagger(z)$, in case $e(x) = y * z$. For example, the following recursive equation $x \approx x * x$, represented by the obvious morphism $e : \{ x \} \rightarrow \{ x \} \times \{ x \} + A$, has as solution e^\dagger an element $a = e^\dagger(x)$ which is idempotent. Consequently, every iterative algebra has a unique idempotent. If A is even completely iterative, then it has, for each sequence a_0, a_1, a_2, \ldots of elements, a unique interpretation of $a_0 * (a_1 * (a_2 \cdots)))$, i.e., a unique sequence b_0, b_1, b_2, \ldots with $b_0 = a_0 * b_1, b_1 = a_1 * b_2, \ldots$ etc. In fact, we consider here the equations $x_n \approx a_n * x_{n+1}$ ($n \in \mathbb{N}$).

Iterative algebras have unique solutions of many non-flat equations because we can flatten them. For example the following recursive equations

\[
x_1 \approx (x_2 * a) * b \quad x_2 \approx x_1 * b
\]

are not flat. But they can be easily flattened to obtain a system

\[
x_1 \approx z_1 + z_2 \\
x_2 \approx x_1 * z_2 \\
z_1 \approx x_2 * z_3 \\
z_2 \approx b \\
z_3 \approx a
\]

represented by a morphism $e : X \rightarrow X \times X + A$, where $X = \{ x_1, x_2, z_1, z_2, z_3 \}$. Its solution is a map $e^\dagger : X \rightarrow A$ yielding a pair of elements $s = e^\dagger(x_1)$ and $t = e^\dagger(x_2)$ satisfying $s = (t * a) * b$ and $t = s * a$.

Example 2.5. Iterative Σ-algebras. For every finitary signature $\Sigma = (\Sigma_n)_{n \in \mathbb{N}}$ we can identify Σ-algebras with algebras of the polynomial endofunctor H_Σ of Set defined on objects X by

\[
H_\Sigma X = \Sigma_0 + \Sigma_1 \times X + \Sigma_2 \times X \times X + \ldots
\]
A Σ-term which has the form $\sigma(x_1,\ldots,x_k)$ for some $\sigma \in \Sigma_k$ and for variables x_1,\ldots,x_k from X is called flat. Then a flat equation morphism $e : X \rightarrow H_\Sigma X + A$ in an algebra A represents a system

$$x \approx t_x$$

of recursive equations, one for every variable $x \in X$, where each t_x is either a flat term in X, or an element of A. A solution e^1 assigns to every variable x with $t_x = a$, $a \in A$, the element a, and if $t_x = \sigma(x_1,\ldots,x_k)$ then $e^1(x) = \sigma_A(e^1(x_1),\ldots,e^1(x_k))$.

Observe that every iterative Σ-algebra A has, for every $\sigma \in \Sigma_k$, a unique idempotent (i.e., a unique element $a \in A$ with $\sigma(a,\ldots,a) = a$). In fact, consider the flat equation $x \approx \sigma(x,\ldots,x)$. More generally, every Σ-polynomial has a unique idempotent in A. For example, for a polynomial of depth 2, $\sigma(\tau_1,\ldots,\tau_k)$, where $\sigma \in \Sigma_k$ and $\tau_1,\ldots,\tau_k \in \Sigma_n$ consider the recursive equations

$$x_0 \approx \sigma(x_1, x_2,\ldots, x_k)$$

$$x_i \approx \tau_i(x_0, x_1,\ldots, x_k) \quad (i = 1,\ldots,k).$$

An example of an iterative Σ-algebra is the algebra T_Σ of all (finite and infinite) Σ-trees. Also the subalgebra R_Σ^X of T_Σ of all rational Σ-trees is iterative, see [N].

Example 2.6. In particular, for unary algebras ($H = \text{Id}$), an algebra $\alpha : A \rightarrow A$ is iterative iff α^k has a unique fixed point ($k \geq 1$), see [AMV2]. And A is a CIA iff, moreover, there exists no infinite sequence $(a_n)_{n \in \mathbb{N}}$ in A with $\alpha a_{n+1} = a_n$, see [M].

Remark 2.7. In [AMV2] we have proved that for every finitary functor H of a locally finitely presentable category A a free iterative algebra RY exists on every object Y. Furthermore, we have given a canonical construction of RY as a colimit of all coalgebras $X \rightarrow HX + Y$ carried by finitely presentable objects, in other words, for every object Y of A, RY is a colimit of all finitary flat equations in Y. For example, for a polynomial functor H_Σ of Set the free iterative algebra on a set Y is the algebra $R_\Sigma Y$ of all rational Σ-trees over Y. In general, we call the monad \mathbb{R} of free iterative algebras the rational monad generated by H. We have proved in [AMV2] that the rational monad \mathbb{R} is a free iterative monad on H.

Example 2.8. Completely metrizable algebras. Complete metric spaces are well-known to be a suitable basis for semantics. The first categorical treatment of complete metric spaces for semantics is due to P. America and J. Rutten [ARu]. Let

$$\text{CMS}$$

denote the category of all complete metric spaces (i.e., such that every Cauchy sequence has a limit) with metrics in the interval $[0,1]$. The morphisms are nonexpanding maps $f : (X, d_X) \rightarrow (Y, d_Y)$, i.e., the inequality $d_Y(f(x), f(x')) \leq d_X(x, x')$ holds for all x, x' in X.

Given complete metric spaces X and Y, the hom-set $\text{CMS}(X,Y)$ carries the pointwise metric $d_{X,Y}$ defined as follows:

$$d_{X,Y}(f,g) = \sup_{x \in X} d_Y(f(x), g(x)).$$

America and Rutten call a functor $H : \text{CMS} \rightarrow \text{CMS}$ contracting if there exists a constant $\varepsilon < 1$ such that for arbitrary morphisms $f,g : X \rightarrow Y$ we have

$$d_{H X, H Y}(Hf, Hg) \leq \varepsilon \cdot d_{X,Y}(f,g).$$

Lemma 2.9. If $H : \text{CMS} \rightarrow \text{CMS}$ is a contracting functor, then every nonempty H-algebra is a CIA.

Proof. Let $\alpha : HA \rightarrow A$ be a nonempty H-algebra. Choose an element a of A. For every equation morphism $e : X \rightarrow HX + A$ define a sequence e_n^1 in $\text{CMS}(X, A)$ as follows:
1. $e_0^\dagger = \text{const}_a$, the constant function of value a.

2. Given e_n^\dagger then e_{n+1}^\dagger is defined as follows (compare (2.1)):

$$
\begin{array}{c}
 X \\
 \downarrow \quad \qu
Elgot Algebras 7

(where \(d'\) is the maximum metric) which is a contracting functor with \(\varepsilon = \frac{1}{2}\). Since coproducts of \(\frac{1}{2}\)-contracting liftings are \(\frac{1}{2}\)-contracting liftings of coproducts, we conclude that every polynomial endofunctor has a contracting lifting to \(\text{CMS}\).

Let us call an \(H\)-algebra \(\alpha : HA \to A\) completely metrizable if there exists a complete metric, \(d\), on \(A\) such that \(\alpha\) is a nonexpanding map from \(H'(A, d)\) to \((A, d)\).

Corollary 2.11. Every completely metrizable algebra \(A\) is a CIA.

In fact, to every equation morphism \(e : X \to HX + A\) assign the unique solution of \(e : (X, d_0) \to H'(X, d_0) + (A, d)\), where \(d_0\) is the discrete metric \((d_0(x, x') = 1\) iff \(x \neq x')\).

Remark 2.12. Stefan Milius [M] proved that for any endofunctor \(H\) of \(A\) a final coalgebra \(TY\) of \(H(-) + Y\) is a free CIA on \(Y\), and conversely. Furthermore, assuming that the free CIAs exist, it follows that the monad \(T\) of free CIAs is a free completely iterative monad on \(H\). This generalizes and extends the classical result of [EBT] since for a polynomial functor \(H_\Sigma\) of \(\text{Set}\) the free completely iterative algebra on a set \(Y\) is the algebra \(T\Sigma Y\) of all \(\Sigma\)-trees over \(Y\).

Remark 2.13. We are going to prove two properties of iterative algebras and CIA’s: the functoriality and compositionality for solutions. We will use two “operations” on equation morphisms. One, \(\cdot\), is just change of parameter names: given a flat equation morphism \(e : X \to HX + Y\) and a morphism \(h : Y \to Z\) we obtain the following equation morphism

\[
h \cdot e \equiv X \xrightarrow{e} HX + Y \xrightarrow{HX+h} HX + Z.
\]

The other operation \(\circ\) combines two flat equation morphisms

\[
e : X \to HX + Y \quad \text{and} \quad f : Y \to HY + A
\]

into the single flat equation morphism \(f \circ e : X + Y \to H(X + Y) + A\) in a canonical way: put \(\text{can} = [H\text{inl}, H\text{inr}] : HX + HY \to H(X + Y)\) and define

\[
f \circ e \equiv X+Y \xrightarrow{[e,\text{can}]} HX+Y \xrightarrow{HX+HY+A} H(X+Y)+A,
\]

(2.3)

2.14. Functoriality. This states that solutions are invariant under renaming of variables, provided, of course, that the right-hand sides of equations are renamed accordingly. Formally, observe that every flat equation morphism is a coalgebra of the endofunctor \(H(-) + A\). Given two such coalgebras \(e\) and \(f\), a renaming of the variables (or morphism of equations) is a morphism \(h : X \to Y\) which forms a coalgebra homomorphism:

\[
\begin{array}{ccc}
X & \xrightarrow{e} & HX + A \\
\downarrow h & & \downarrow Hh + A \\
Y & \xrightarrow{f} & HY + A
\end{array}
\]

(2.4)

Definition 2.15. Let \(A\) be an algebra with a choice \(e \mapsto e^\dagger\) of solutions, for all flat equation morphisms \(e\) in \(A\). We say that the choice is functorial provided that

\[
e^\dagger = f^\dagger \cdot h
\]

(2.5)

holds for all equation morphisms \(h : e \to f\). In other words: \((-)^\dagger\) is a functor from the category of all flat equation morphisms in the algebra \(A\) into the comma-category of the object \(A\).

Lemma 2.16. In every CIA the assignment \((-)^\dagger\) is functorial.
Proof. For each morphism h of equations the diagram

\[
\begin{align*}
 & X
 \downarrow^h
 \downarrow^e
 \downarrow^f
 \downarrow^{f^\dagger} \\
 HX + A
 \downarrow^{Hh + A}
 \downarrow^{Hf + A}
 \downarrow^{H(f^\dagger h) + A} \\
 \downarrow^{[\alpha, A]}
 \downarrow^{H(f^\dagger) + A}
 \downarrow^{HA + A}
 & A
\end{align*}
\]

commutes. Thus, $f^\dagger \cdot h$ is a solution of e. Uniqueness of solutions now implies the desired result.

Remark. The same holds for every iterative algebra, except that there we restrict X and Y in Definition 2.15 to finitely presentable objects.

2.17. Compositionality. This tells us how to perform simultaneous recursion: given an equation morphism f in A with a variable object Y, we can combine it with any equation morphism e in Y with a variable object X to obtain the equation morphism $f \bullet e$ in A of Remark 2.13. The compositionality decrees that the left-hand component of $(f \bullet e)^\dagger$ is just the solution of $f^\dagger \bullet e$, i.e., in lieu of solving f and e simultaneously we first solve f, plug in the solution in e and solve the resulting equation morphism.

Definition 2.18. Let A be an algebra with a choice $e \mapsto e^\dagger$ of solutions, for all flat equation morphisms e in A. We say that the choice is compositional if for each pair $e : X \longrightarrow HY + A$ of flat equation morphisms the equation below holds.

\[
(f^\dagger \bullet e)^\dagger = (f \bullet e)^\dagger \cdot \text{inl} \tag{2.6}
\]

Remark 2.19. Notice that the coproduct injection $\text{inr} : Y \longrightarrow X + Y$ is a morphism of equations from f to $f \bullet e$. Functoriality then implies that $f^\dagger = (f \bullet e)^\dagger \cdot \text{inr}$. Thus, in the presence of functoriality, the compositionality is equivalent to

\[
(f \bullet e)^\dagger = [(f^\dagger \bullet e)^\dagger, f^\dagger] \tag{2.7}
\]

Lemma 2.20. In every CIA the assignment $(-)^\dagger$ is compositional.

Proof. Denote by

\[
r = (f^\dagger \bullet e)^\dagger : X \longrightarrow A
\]

the solution of $f^\dagger \bullet e$. It is sufficient to prove that

\[
(f \bullet e)^\dagger = [r, f^\dagger] : X + Y \longrightarrow A.
\]

That is, by the uniqueness of solutions, that the following square

\[
\begin{align*}
 & X + Y
 \downarrow^{[r, f^\dagger]}
 \downarrow^{[\alpha, A]}
 \downarrow^{H[\alpha, A]}
 \downarrow^{H[\alpha, A]}
 \downarrow^{HA + A} \\
 & HX + Y
 \downarrow^{Hf + A}
 \downarrow^{H[f^\dagger, f^\dagger] + A}
 \downarrow^{HA + A}
 \downarrow^{[\alpha, A]}
 \downarrow^{HA + A}
\end{align*}
\]

(2.8)
commutes. This is clear for the right-hand components (with domain Y):

$$\alpha, A \cdot ([Hr, Hf^\dagger] + A) \cdot \text{inr} \cdot f = [\alpha, A] \cdot (Hf^\dagger + A) \cdot f = f^\dagger$$

because f^\dagger solves f. For the left-hand components (with domain X) use the commutativity of the square defining $r = (f^\dagger \cdot e)^\dagger$:

\[
\begin{array}{c}
 X \xrightarrow{\alpha, A} A \\
 HX + Y \xrightarrow{[\alpha, A]} \\
 HX + A \xrightarrow{Hr + A} HA + A
\end{array}
\]

(2.9)

We now only need to show that the passages from $HX + Y$ to A in the above squares (2.8) and (2.9) are equal. The left-hand components are, in both cases, $\alpha \cdot Hr : HX \rightarrow A$. For the right-hand components use $f^\dagger = [\alpha, A] \cdot (Hf^\dagger + A) \cdot f$.

Remark 2.21. The same holds for every iterative algebra, except that here we restrict X and Y in Definition 2.18 to finitely presentable objects.

Remark 2.22. As mentioned in the Introduction, our two axioms, functoriality and compositionality, are not new as ideas of axiomatizing recursion—we believe however, that their concrete form is new, and their motivation strengthened by the results below.

Functoriality corresponds precisely to the “functorial dagger implication” of S. Bloom and Z. Ésik [BÉ], 5.3.3, which states that for every object p of an iterative theory the formation $f \mapsto f^\dagger$ of solutions for ideal morphisms $f : m \rightarrow m + p$ is a functor. And the compositionality resembles the “left pairing identity” of [BÉ], 5.3.1, which for $f : n \rightarrow n + m + p$ and $g : m \rightarrow n + m + p$ states that

$$[f, g]^\dagger = [f^\dagger, [h^\dagger, \text{id}_p], h^\dagger],$$

where

$$h \equiv m \xrightarrow{g} n + m + p \xrightarrow{[f^\dagger, \text{id}_{m+p}]} m + p.$$

This identity corresponds also to the Bekić-Scott identity, see e.g. [Mo], 2.1.

3 Elgot Algebras

Definition 3.1. Let H be an endofunctor of a category with finite coproducts. An Elgot algebra is an H-algebra $\alpha : HA \rightarrow A$ together with a function $(-)^\dagger$ which to every finitary flat equation morphism

$$e : X \rightarrow HX + A \quad (X \text{ finitely presentable})$$

assigns a solution $e^\dagger : X \rightarrow A$ in such a way that the functoriality (2.5) and the compositionality (2.6) are satisfied.

By a complete Elgot algebra we analogously understand an H-algebra together with a function $(-)^\dagger$ assigning to every flat equation e a solution e^\dagger so that functoriality and compositionality are satisfied.

Example 3.2. Every join semilattice A is an Elgot algebra. More precisely: consider the polynomial endofunctor $HX = X \times X$ of Set (expressing one binary operation). Then for every join semilattice A there is a “canonical” structure of an Elgot algebra on A obtained as follows: the algebra RA of all rational binary trees on A has an interpretation on A given by the function $\alpha : RA \rightarrow A$ forming, for every rational binary tree t the join of all the (finitely many!) labels of leaves of t in A. Now given a finitary flat equation morphism $e : X \rightarrow X \times X + A$, it has a unique solution $e^\dagger : X \rightarrow RA$ in the free iterative algebra RA, and composed with α this yields a structure $e \mapsto \alpha \cdot e^\dagger$ of an Elgot algebra on A. See Example 4.9 for a proof.
Remark 3.3. In contrast, no nontrivial join semilattice is iterative. In fact, in an iterative join
semilattice there must be a unique solution of the formal equation \(x \approx x \lor x \).

Example 3.4. Continuous algebras on cpos are complete Elgot algebras. Let us work here in the
category
\[
\text{CPO}
\]
of all \(\omega \)-complete posets, i.e., posets having joins of increasing \(\omega \)-chains; morphisms are the con-
tinuous functions, i.e., functions preserving joins of \(\omega \)-chains. A functor \(H : \text{CPO} \to \text{CPO} \) is
called locally continuous provided that for arbitrary CPOs, \(X \) and \(Y \), the derived function from
\(\text{CPO}(X, Y) \) to \(\text{CPO}(HX, HY) \) is continuous (i.e., \(H(\bigsqcup f_n) = \bigsqcup H f_n \) holds for all increasing \(\omega \-
sequences \(f_n : X \to Y \)). For example, every polynomial endofunctor \(X \mapsto \bigsqcup \Sigma_n \times X^n \) of \(\text{CPO} \)
(where \(\Sigma_n \) are cpos) is locally continuous.

Observe that the category \(\text{CPO} \) has coproducts: they are the disjoint unions with elements of
different summands incompatible.

Proposition 3.5. Let \(H : \text{CPO} \to \text{CPO} \) be a locally continuous functor and let \(\alpha : HA \to A \) be
an \(H \)-algebra with a least element \(\bot \in A \). Then \((A, \alpha, (\cdots) \uparrow) \) is a complete Elgot algebra w.r.t. the
assignment of the least solution \(e \uparrow \) to every flat equation morphism \(e \).

Remark. Notice that the least solution of \(e : X \to HX + A \) refers to the elementwise order of
the hom-set \(\text{CPO}(X, A) \). We can actually prove a concrete formula for \(e \uparrow \) as a join of the \(\omega \)-chain

\[
e \uparrow = \bigsqcup_{n \in \omega} e_n \uparrow
\]
of “approximations”: \(e_0 \uparrow \) is the constant function to \(\bot \), the least element of \(A \), and given \(e_n \uparrow \), then
\(e_{n+1} \uparrow \) is defined by the commutativity of (2.2).

Proof. (1) Since \(e_0 \uparrow \) is the least element of \(\text{CPO}(X, A) \), we have \(e_0 \uparrow \subseteq e_1 \uparrow \). Since \(H \), being locally
continuous, is locally order-preserving, it follows by easy induction that the chain \((e_n \uparrow) \) is increasing
in \(\text{CPO}(X, A) \). Consequently, the join \(e \uparrow = \bigsqcup e_n \uparrow \) exists. The commutative diagrams (2.2) yield the
diagram (2.1) showing that \(e \uparrow \) is in fact a solution of \(e \).

(2) \(e \uparrow \) is the smallest solution. In fact, given a solution \(e \)
we prove \(e_n \uparrow \subseteq e \uparrow \) by induction on \(n \), then \(e_0 \uparrow \subseteq e \uparrow \). The case \(n = 0 \) is clear. Given \(e_n \uparrow \subseteq e \uparrow \), then
\(He_n \uparrow \subseteq He \uparrow \) (due to the local continuity of \(H \)) which implies

\[
e_{n+1} \uparrow = [\alpha, A] \cdot (He_n \uparrow + A) \cdot e \subseteq [\alpha, A] \cdot (He \uparrow + A) \cdot e = e \uparrow.
\]

(3) The assignment \(e \mapsto e \uparrow \) is functorial. In fact, let

\[
\begin{array}{ccc}
X & \xrightarrow{e} & A \\
\downarrow h & & \downarrow [\alpha, A] \\
HX + A & \xrightarrow{He \uparrow + A} & HA + A
\end{array}
\]

be a coalgebra homomorphism. It is easy to see by induction that

\[
e_n \uparrow = f_n \uparrow \cdot h \quad \text{(for all } n \geq 0),
\]
Elgot Algebras

thus, \(e^\dagger = f^\dagger \cdot h \).

(4) We prove the compositionality. Let

\[
e : X \rightarrow HX + Y \quad \text{and} \quad f : Y \rightarrow HY + A
\]

be given. We shall show that the equality

\[
(f \bullet e)^\dagger \cdot \text{inl} = (f^\dagger \bullet e)^\dagger
\]

holds. It suffices to prove, by induction on \(n \), that the following two inequalities

\[
(f \bullet e)^n_{\text{inl}} \subseteq (f^\dagger \bullet e)^\dagger \tag{3.1}
\]

\[
(f^\dagger \bullet e)^n_{\text{inl}} \subseteq (f \bullet e)^\dagger_{\text{inl}} \tag{3.2}
\]

hold. Observe first that \(\text{inr} : (Y, f) \rightarrow (X + Y, f \bullet e) \) is a coalgebra homomorphism. Thus, the equation \((f \bullet e)^\dagger \cdot \text{inr} = f^\dagger \) holds by functoriality. For the induction step for (3.1) consider the following diagram:

In order to prove the desired inequality in the upper triangle, we use the fact that the outward square commutes by definition of \((\cdot)^\dagger\). The three middle parts clearly behave as indicated (for the triangle use the induction hypothesis (3.1) and \((f \bullet e)^n_{\text{inl}} \subseteq (f^\dagger \bullet e)^\dagger_{\text{inl}} = f^\dagger\)). And the lowest part commutes when extended by \([\alpha, A]\): In fact, for the left-hand component with domain \(HX\) this is trivial; for the right-hand component with domain \(Y\) use \(f^\dagger = [\alpha, A] \cdot (Hf^\dagger + A) \cdot f\), see (2.1).
For the induction step for (3.2) consider the following diagram

\[
\begin{array}{ccc}
X & \xrightarrow{(f^\dagger \bullet e)_{n+1}} & A \\
\downarrow \text{inl} & & \downarrow \text{id} \\
HX + Y & \xrightarrow{HX + f} & X + A \\
\downarrow \text{can} + A & & \downarrow \text{id} \\
HX + HY + A & \xrightarrow{\text{can} + A} & H(X + Y) + A \\
\downarrow \text{can} + A & & \downarrow \text{id} \\
HX + A & \xrightarrow{H(f^\dagger \bullet e)_{n+1}} & HA + A \\
\end{array}
\]

The outer square commutes by definition of \((f^\dagger \bullet e)_{n+1}\). The three middle parts behave as indicated (for the inequality use the induction hypothesis), and the lowest part commutes when extended by \([\alpha, A]\) as before. Thus, we obtain the desired inequality in the upper triangle.

Remark 3.6. Many set functors \(H\) have a lifting to locally continuous endofunctors \(H'\) of CPO. That is, for the forgetful functor \(U : \text{CPO} \to \text{Set}\) the following square commutes. For example, every polynomial functor \(H\Sigma\) has such a lifting. Let us call an \(H\)-algebra \(\alpha : HA \to A\) CPO-enrichable if there exists a CPO-ordering \(\sqsubseteq\) with a least element on the set \(A\) such that \(\alpha\) is a continuous function from \(H'(A, \sqsubseteq)\) to \((A, \sqsubseteq)\).

Corollary 3.7. Every CPO-enrichable \(H\)-algebra \(A\) in Set is a complete Elgot algebra.

In fact, to every equation morphism \(e : X \to HX + A\) assign the least solution of \(e : (X, \leq) \to H'(X, \leq) + (A, \sqsubseteq)\) where \(\leq\) is the discrete ordering of \(X\) \((x \leq y\) iff \(x = y\)).

Example 3.8. Unary algebras. Let \(H = \text{Id}\) as an endofunctor of Set. Given an \(H\)-algebra \(\alpha : A \to A\), if \(\alpha\) has no fixed point, then \(A\) carries no structure of an Elgot algebra: consider the equation \(x \approx \alpha(x)\).

Conversely, every fixed point \(a_0\) of \(\alpha\) yields a flat cpo structure with a least element \(a_0\) on \(A\), i.e., \(x \leq y\) iff \(x = y\) or \(x = a_0\). Thus, \(A\) is a complete Elgot algebra since it is CPO-enrichable. Notice that for every flat equation morphism \(e : X \to X + A\) the least solutions \(e^\dagger\) operates as follows: for a variable \(x\) we have

\[
e^\dagger(x) = \begin{cases}
\alpha^k(a) & \text{if there is a sequence } x = x_0, x_1, \ldots, x_k \text{ in } X \text{ that fulfills } e(x_0) = x_1, \ldots, e(x_{k-1}) = x_k \text{ and } e(x_k) = a \\
\alpha^0(a_0) & \text{else.}
\end{cases}
\]
Remark 3.9. For unary algebras, Example 3.8 describes all existing Elgot algebras. In fact, let \((A, \alpha, (-)^t)\) be an Elgot algebra and let \(a_0\) be the chosen solution of \(x \approx \alpha(x)\) (i.e., of \(\text{inl}: 1 \rightarrow 1 + A\)). Then for every flat equation morphism \(e : X \rightarrow X + A\) the chosen solution sends a variable \(x \in X\) to one of the above values \(\alpha^t(a)\) or \(a_0\). To prove this denote by \(Y \subseteq X\) the set of all variables for which the “else” case holds above (i.e., no sequence \(x = x_0, \ldots, x_k\) in \(X\) fulfills \(e(x_i) = x_{i+1}\), for \(i = 0, \ldots, k - 1\), and \(e(x_k) \in A\)). Apply functoriality to the morphism \(h\) from \(e\) to \(1 + e : 1 + X \rightarrow 1 + X + A\) defined by \(h(y) \in 1\) for \(y \in Y\) and \(h(x) = x \in X\) else. In fact, the chosen solution of the unique element of \(1 + X\) must be \(a_0\) by functoriality (consider the left-hand coproduct injection from the flat equation morphism \(\text{inl}: 1 \rightarrow 1 + A\) to \(1 + e\)).

Example 3.10. Every complete lattice \(A\) is a complete Elgot algebra of \(HX = \times X\). Analogously to Example 3.2 we have a function \(\alpha : TA \rightarrow A\) assigning to every binary tree \(t\) in \(TA\) the join of all labels of leaves of \(t\) in \(A\). Now for every flat equation morphism \(e\) in \(A\) we have its unique solution \(e^\dagger\) in \(TA\) and this yields a structure \(e \mapsto \alpha \cdot e^\dagger\) of a complete Elgot algebra. See Example 5.8 for a proof.

4 The Eilenberg-Moore Category of the Monad \(\mathbb{R}\)

We prove now that the category of all Elgot algebras and solution-preserving morphisms, defined as expected, is the category \(\mathcal{A}^{\mathbb{R}}\) of Eilenberg-Moore algebras of the rational monad \(\mathbb{R}\) of \(H\), see Remark 2.7.

Throughout this section \(H\) denotes a finitary endofunctor of a locally finitely presentable category \(\mathcal{A}\). We denote by \(\mathcal{A}_{fp}\) a small full subcategory representing all finitely presentable objects of \(\mathcal{A}\). Recall the operations \(\bullet\) and \(\mathbf{\cdot}\) from Remark 2.13.

Definition 4.1. Let \((A, \alpha, (-)^t)\), and \((B, \beta, (-)^t)\) be Elgot algebras. We say that a morphism \(h : A \rightarrow B\) in \(\mathcal{A}\) preserves solutions provided that for every finitary flat equation morphism \(e : X \rightarrow HX + A\) we have the following equation

\[
X \xrightarrow{e^\dagger} A \xrightarrow{h} B \equiv X \xrightarrow{(h \bullet e)^\dagger} B. \tag{4.1}
\]

Lemma 4.2. Every solution-preserving morphism between Elgot algebras is a homomorphism of \(H\)-algebras, i.e., we have \(h \cdot \alpha = \beta \cdot Hh\).

Proof. Let \(\mathcal{A}_{fp}/A\) be the comma-category of all arrows \(q : X \rightarrow A\) with \(X\) in \(\mathcal{A}_{fp}\). Since \(\mathcal{A}\) is locally finitely presentable, \(\mathcal{A}\) is a filtered colimit of the canonical diagram \(D_A : \mathcal{A}_{fp}/A \rightarrow \mathcal{A}\) given by \((q : X \rightarrow A) \mapsto X\).

Now \(\mathcal{A}_{fp}\) is a generator of \(\mathcal{A}\), thus, in order to prove the lemma it is sufficient to prove that for every morphism \(p : Z \rightarrow HA\) with \(Z\) in \(\mathcal{A}_{fp}\) we have

\[
h \cdot \alpha \cdot p = \beta \cdot Hh \cdot p. \tag{4.2}
\]

Since \(H\) is finitary, it preserves the above colimit \(D_A\). This implies, since \(\mathcal{A}(Z, -)\) preserves filtered colimits, that \(p\) has a factorization

\[
\begin{array}{ccc}
Z & \xrightarrow{p} & HA \\
\downarrow{s} & & \downarrow{Hq} \\
HX & \xrightarrow{Hr} & HX
\end{array}
\]

for some \(q : X \rightarrow A\) in \(\mathcal{A}_{fp}/A\) and some \(s\). For the following equation morphism

\[
e \equiv Z + X \xrightarrow{s+X} HX + X \xrightarrow{Hr+q} H(Z + X) + A
\]
we have a commutative square

\[
\begin{array}{ccc}
Z + X & \xrightarrow{\varepsilon^\dagger} & A \\
\downarrow s + X & & \downarrow [\alpha, A] \\
H X + X & \xrightarrow{\text{inr} + q} & HA + A \\
\downarrow H \varepsilon^\dagger + A & & \downarrow H B + B \\
H(Z + X) + A & \xrightarrow{\text{inr} + q} & HB + B \\
\end{array}
\]

Consequently, \(e^\dagger \cdot \text{inr} = q \), and this implies \(e^\dagger \cdot \text{inl} = \alpha \cdot H(e^\dagger \cdot \text{inr}) \cdot s = \alpha \cdot p \). Since \(h \) preserves solutions, we have \(h \cdot e^\dagger = (h \cdot e)^\dagger \) and therefore

\[
(h \cdot e)^\dagger = [h \cdot \alpha \cdot p, h \cdot q].
\] (4.3)

On the other hand, consider the following diagram

\[
\begin{array}{ccc}
Z + X & \xrightarrow{(h \cdot e)^\dagger} & B \\
\downarrow s + X & & \downarrow [\beta, B] \\
H X + X & \xrightarrow{\text{inr} + q} & HA + B \\
\downarrow H \varepsilon^\dagger + A & & \downarrow H B + B \\
H(Z + X) + A & \xrightarrow{\text{inr} + q} & HB + B \\
\end{array}
\]

It commutes: the outer shape commutes since \((h \cdot e)^\dagger \) is a solution. For the lower triangle use equation (4.3), and the remaining triangles are trivial. Thus, the upper right-hand part commutes:

\[
(h \cdot e)^\dagger = [\beta \cdot H h \cdot p, h \cdot q].
\] (4.4)

Now the left-hand components of (4.3) and (4.4) establish the desired equality (4.2).

Example 4.3. The converse of Lemma 4.2 is true for iterative algebras, as proved in [AMV], but for Elgot algebras in general it is false. In fact, consider the unary algebra \(\text{id} : A \rightarrow A \), where \(A = \{0, 1\} \). This is an Elgot algebra with the solution structure \((-)^\dagger \) given by the fixed point \(0 \in A \), see Example 3.8.

Then \(\text{const}_1 : A \rightarrow A \) is a homomorphism of unary algebras that does not preserve solutions. Indeed, consider the following equation morphism

\[
e : \{x\} \rightarrow \{x\} + A, \quad x \mapsto x.
\]

We have \(e^\dagger(x) = 0 \), and thus \(1 = \text{const}_1 \cdot e^\dagger(x) \neq (\text{const}_1 \cdot e)^\dagger(x) = e^\dagger(x) = 0 \).

Notation 4.4. We denote by

\[
\text{Alg}^\dagger H
\]

the category of all Elgot algebras and solution-preserving morphisms.

Remark 4.5. For the two operations \(\cdot \) and \(\bullet \) from Remark 2.13 we list some obvious properties that these operations have for all \(e : X \rightarrow HX + Y, f : Y \rightarrow HY + Z, s : Z \rightarrow Z' \) and \(t : Z' \rightarrow Z'' \):

\[
e \cdot \text{inr} = q, \quad e \cdot \text{inl} = \alpha \cdot H(e \cdot \text{inr}) \cdot s = \alpha \cdot p.
\]
1. \(id_Y \cdot e = e \). This is trivial.

2. \(t \cdot (s \cdot e) = (t \cdot s) \cdot e \).

 See the following diagram

\[
\begin{array}{ccc}
X & \overset{e}{\longrightarrow} & HX + Y \\
\downarrow^{HX+s} & & \downarrow^{HX+t} \\
HX + t.s & \longrightarrow & HX + Y''
\end{array}
\]

3. \(s \cdot (f \cdot e) = (s \cdot f) \cdot e \).

 See the following diagram

\[
\begin{array}{ccc}
X + Y & \overset{[e,inl]}{\longrightarrow} & HX + Y \\
\downarrow^{HX+s \cdot f} & & \downarrow^{H(X+Y)+s} \\
HX + HY + Z & \longrightarrow & H(X + Y) + Z'
\end{array}
\]

Proposition 4.6. A free iterative algebra on \(Y \) is a free Elgot algebra on \(Y \).

Proof. (1) We first recall the construction of the free iterative algebra \(RY \) on \(Y \) presented in [AMV2]. For the functor \(H(\cdot) + Y \) denote by \(Eq_Y \) the full subcategory of \(\text{Coalg}(H(\cdot) + Y) \) given by all coalgebras with a finitely presentable carrier, i.e., finitary flat equation morphisms \(e : X \longrightarrow HX + Y \). The inclusion functor \(Eq_Y : Eq_Y \longrightarrow \text{Coalg}(H(\cdot) + Y) \) is an essentially small filtered diagram. Put

\[RY = \text{colim} \ Eq_Y. \]

More precisely, form a colimit of the above diagram \(Eq_Y \). This is a coalgebra \(RY \) with the following coalgebra structure

\[i : RY \longrightarrow HRY + Y \]

and with colimit injections

\[e^+: (X,e) \longrightarrow (RY,i) \text{ for all } e : X \longrightarrow HX + Y \text{ in } Eq_Y. \]

Notice that this colimit is preserved by the forgetful functor \(\text{Coalg}(H(\cdot) + Y) \longrightarrow A \) since \(H \) is finitary.

The coalgebra structure \(i : RY \longrightarrow HRY + Y \) is an isomorphism; its inverse gives an \(H \)-algebra structure

\[\rho_Y : HRY \longrightarrow RY \]

and a morphism

\[\eta_Y : Y \longrightarrow RY. \]

And we proved that the algebra \((RY, \rho_Y) \) is a free iterative \(H \)-algebra on \(Y \) with the universal arrow \(\eta_Y \).

Recall further from [AMV2] that the unique solution

\[e^+: X \longrightarrow RY \]

for every finitary flat equation morphism \(e : X \longrightarrow HX + RY \) is obtained as follows. There exists a factorization

\[\begin{array}{ccc}
X & \overset{e}{\longrightarrow} & HX + RY \\
\downarrow^{e_0} & & \downarrow^{HX+g^2} \\
HX + Z & \longrightarrow & HX + Z
\end{array} \]
with \(g : Z \to HZ + Y \) in \(\text{EQ}_Y \). Define

\[
e^\dagger \equiv X \xrightarrow{\text{inl}} X + Z \xrightarrow{(g \bullet e_0)^\dagger} RY
\]

This defines \((-)^\dagger\) from \((-)^\ddagger\). Conversely, it is trivial to see that the equality

\[
e^\dagger = (\eta_Y \bullet e)^\ddagger \quad (4.6)
\]

holds for every \(e : X \to HX + Y \) in \(\text{EQ}_Y \). Finally, the universal arrow \(\eta_Y \) has for any finitely presentable object \(Y \) the form \(\eta_Y = \text{inr}^\ddagger \) (for \(\text{inr} : Y \to HY + Y \)).

(2) We are prepared to prove the Proposition. Suppose that \((A, \alpha, (-)^\dagger)\) is an Elgot algebra and let \(m : Y \to A \) be a morphism. We are to prove that there exists a unique solution-preserving \(h : RY \to A \) with \(h \cdot \eta_Y = m \).

In order to show the existence, we define a morphism \(h : RY \to A \) by commutativity of the following triangles

\[
\begin{array}{c}
RY \\
\downarrow^{e^\dagger} \\
X
\end{array} \xrightarrow{h} \begin{array}{c}
A \\
\downarrow^{(m \bullet e)^\dagger}
\end{array}
\]

for all \(e : X \to HX + Y \) in \(\text{EQ}_Y \). In fact, \(h \) is well-defined, since for any coalgebra homomorphism \(k : (X, e) \to (Z, g) \) in \(\text{EQ}_Y \) we have a coalgebra homomorphism \(k : (X, m \bullet e) \to (Z, m \bullet g) \).

Thus,

\[
(m \bullet e)^\dagger \cdot k = (m \bullet g)^\dagger
\]

by functoriality, which shows that we obtain a cocone for the diagram \(\text{Eq}_Y \). For \(e = \text{inr} : Y \to HY + Y \), \(Y \) finitely presentable, we have \(e^\dagger = \eta_Y \), thus,

\[
h \cdot \eta_Y = (m \bullet \text{inr})^\dagger = [\alpha, A] \cdot (H(m \bullet \text{inr})^\dagger + A) \cdot (m \bullet \text{inr}) \quad \text{(Since \(\eta_Y = \text{inr}^\ddagger \))}
\]

\[
= [\alpha, A] \cdot (H(m \bullet \text{inr})^\dagger + A) \cdot (HY + m) \cdot \text{inr} \quad \text{(By (2.1))}
\]

\[
= m.
\]

For arbitrary objects \(Y \) the equation \(h \cdot \eta_Y = m \) follows easily.

Let us show that \(h \) preserves solutions. We have

\[
h \cdot e^\dagger = h \cdot (g \bullet e_0)^\dagger \cdot \text{inl} \quad \text{(Definition of \(e^\dagger \))}
\]

\[
= (m \bullet (g \bullet e_0))^\dagger \cdot \text{inl} \quad \text{(Definition of \(h \))}
\]

\[
= ((m \bullet g)^\dagger \bullet e_0)^\dagger \quad \text{(Compositionality)}
\]

\[
= ((h \cdot g)^\dagger \bullet e_0)^\dagger \quad \text{(Definition of \(h \))}
\]

\[
= (h \bullet (g^\dagger \bullet e_0))^\dagger \quad \text{(By 4.5(2))}
\]

\[
= (h \bullet e)^\dagger \quad \text{(By (4.5) and the definition of \(\bullet \))}
\]

Concerning the uniqueness, suppose that \(h \) with \(h \cdot \eta_Y = m \) preserves solutions, then we have

\[
h \cdot e^\ddagger = h \cdot (\eta_Y \bullet e)^\dagger \quad \text{(By (4.6))}
\]

\[
= (h \bullet (\eta_Y \bullet h))^\dagger \quad \text{((h preserves solutions)}
\]

\[
= ((h \cdot \eta_Y)^\dagger \bullet e)^\dagger \quad \text{(By 4.5(2))}
\]

\[
= (m \bullet e)^\dagger
\]

which determines \(h \) uniquely.
Theorem 4.7. The category \(\text{Alg}^\dagger H \) of Elgot algebras is isomorphic to the Eilenberg-Moore category \(A^R \) of \(\mathbb{R} \)-algebras for the rational monad \(\mathbb{R} \) of \(H \).

Remark 4.8. The shortest proof we know is based on Beck’s Theorem. But it is not very intuitive. A slightly more technical (and much more illuminating) proof has the following sketch: Denote for any object \(Y \) by \((RY, \rho_Y, (-)^\dagger)\) a free Elgot algebra on \(Y \) with a universal arrow \(\eta_Y : Y \to RY \).

1. For every \(\mathbb{R} \)-algebra \(\alpha_0 : RA \to A \) we have an “underlying” \(H \)-algebra

\[
\alpha \equiv HA \xrightarrow{H\eta_A} HRA \xrightarrow{\rho_A} RA \xrightarrow{\alpha_0} A,
\]

and the following formula for solving equations: given a finitary flat equation morphism \(e : X \to HX + A \) put

\[
e^\dagger \equiv X \xrightarrow{(\eta_A \bullet \bullet^\dagger)} RA \xrightarrow{\alpha_0} A.
\]

It is not difficult to see that this formula indeed yields a choice of solutions satisfying functoriality and compositionality.

2. Conversely, given an Elgot algebra \(\alpha : HA \to A \), define \(\alpha_0 : RA \to A \) as the unique solution-preserving morphism such that \(\alpha_0 \cdot \eta_A = \text{id} \). It is easy to see that \(\alpha_0 \) satisfies the two axioms of an Eilenberg-Moore algebra.

3. It is necessary to prove that the above passages extend to the level of morphisms and they form functors which are inverse to each other.

Proof (Theorem 4.7). By Proposition 4.6 the natural forgetful functor \(U : \text{Alg}^\dagger H \to A \) has a left adjoint \(\gamma \mapsto Y \xrightarrow{\gamma} RY \). Thus, the monad obtained by this adjunction is \(\mathbb{R} \). We prove that the comparison functor \(K : \text{Alg}^\dagger H \to A^R \) is an isomorphism, using Beck’s theorem (see [ML], Theorem 1 in VI.7). Thus, we must prove that \(U \) creates coequalizers of \(U \)-split pairs. Let \((A, \alpha, (-)^\dagger) \) and \((B, \beta, (-)^\dagger) \) be Elgot algebras, and \(f, g : A \to B \) be solution-preserving morphisms with a splitting

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow g & & \downarrow c \\
\downarrow t & & \downarrow s \\
& C & \\
\end{array}
\]

in \(A \) (where \(cs = \text{id} \), \(ft = \text{id} \) and \(gt = sc \)). Since \(c \) is, then, an absolute coequalizer of \(f \) and \(g \), \(c \) is a coequalizer in \(\text{Alg} H \) for a unique \(H \)-algebra structure \(\gamma : HC \to C \). In fact, the forgetful functor \(\text{Alg} H \to A \) creates every colimit that \(H \) preserves.

It remains to show that \(C \) has a unique structure of an Elgot algebra such that

1. \(c \) preserves solutions, and
2. \(c \) is a coequalizer in \(\text{Alg}^\dagger H \).

We establish (1) and (2) in several steps.

(a) An Elgot algebra on \((C, \gamma)\). For every finitary flat equation morphism \(e : X \to HX + C \) we prove that the following morphism

\[
e^* \equiv X \xrightarrow{(\bullet \bullet)^\dagger} B \xrightarrow{c} C
\]

is a solution of \(e \). In fact, the following diagram

\[
\begin{array}{ccc}
X & \xrightarrow{(\bullet \bullet)^\dagger} & B \\
\downarrow e & & \downarrow c \\
HX + C & & HC + C \\
\downarrow \gamma & & \downarrow (\gamma, C) \\
HX + B & \xrightarrow{HB+\beta} & HB + B \\
\downarrow H(e \bullet \bullet + C) & & \downarrow H(e \bullet \bullet + C) \\
H(e \bullet \bullet + C) & \xrightarrow{\gamma, C} & HC + C
\end{array}
\]
clearly commutes.

Functoriality: any coalgebra homomorphism

\[
\begin{array}{c}
X \xrightarrow{e} HX + C \\
\downarrow h \\
Z \xrightarrow{z} HZ + C
\end{array}
\]

is, of course, a coalgebra homomorphism

\[h : (X, s \cdot e) \longrightarrow (Z, s \cdot z).\]

Thus,

\[e^* = c \cdot (s \cdot e)^\dagger = c \cdot (s \cdot z)^\dagger \cdot h = z^* \cdot h\]

by the functoriality of \((-)^\dagger\).

Let us prove compositionality: suppose we have finitary flat equation morphisms

\[e : X \longrightarrow HX + Y \quad \text{and} \quad k : Y \longrightarrow HY + C\]

Then we obtain the desired equation as follows:

\[
\begin{align*}
(k \cdot e)^* &= c \cdot (s \cdot (k \cdot e))^\dagger \\
&= c \cdot (s \cdot (c \cdot (s \cdot k)^\dagger \cdot e))^\dagger \\
&= c \cdot ((s \cdot c) \cdot ((s \cdot k)^\dagger \cdot e))^\dagger \\
&= c \cdot ((g \cdot t) \cdot ((s \cdot k)^\dagger \cdot e))^\dagger \\
&= c \cdot (g \cdot (t \cdot ((s \cdot k)^\dagger \cdot e))^\dagger \\
&= c \cdot (f \cdot (t \cdot ((s \cdot k)^\dagger \cdot e))^\dagger \\
&= c \cdot ((f \cdot t) \cdot ((s \cdot k)^\dagger \cdot e))^\dagger \\
&= c \cdot ((s \cdot k)^\dagger \cdot e) \\
&= c \cdot (s \cdot k)^\dagger \cdot \text{inl} \\
&= c \cdot ((s \cdot k)^\dagger \cdot e) \cdot \text{inl} \\
&= (k \cdot e)^\dagger \cdot \text{inl}
\end{align*}
\]

(b) The morphism \(e : B \longrightarrow C\) is solution-preserving. In fact, for any finitary flat equation morphism \(e : X \longrightarrow HX + B\)

we have the desired equation:

\[
\begin{align*}
(k \cdot e)^* &= c \cdot (s \cdot (k \cdot e))^\dagger \\
&= c \cdot ((s \cdot c) \cdot e)^\dagger \\
&= c \cdot ((g \cdot t) \cdot e)^\dagger \\
&= c \cdot (g \cdot (t \cdot e))^\dagger \\
&= c \cdot (f \cdot (t \cdot e))^\dagger \\
&= c \cdot ((f \cdot t) \cdot e)^\dagger \\
&= c \cdot (\text{id} \cdot e)^\dagger \\
&= c \cdot e^\dagger
\end{align*}
\]
(c) \((-\ast)\) is a unique structure of an Elgot algebra such that \(c\) is solution-preserving: in fact, for any such solution structure \((-\ast)\) and for any finitary flat equation morphism \(e : X \to HX + B\) we have

\[c \cdot e^\dagger = (c \cdot e)^\ast. \]

In particular, this is true for any equation morphism of the form

\[(s \cdot e') \equiv X \xrightarrow{e'} HX + C \xrightarrow{HX + s} HX + B\]

Thus, we conclude

\[e^\ast = ((c \cdot s) \cdot e)^\ast \quad (c \cdot s = id \text{ and 4.5(3)}) \]

\[= (c \cdot (s \cdot e))^\ast \quad (\text{See 4.5(2)}) \]

\[= c \cdot (s \cdot e)^\dagger \quad (c \text{ preserves solutions}) \]

(d) \(c\) is a coequalizer of \(f\) and \(g\) in \(\text{Alg}^H\). In fact, let \(h : (B, \beta, (-)^\dagger) \to (D, \delta, (-)^\ast)\) be a solution-preserving morphism with \(h \cdot f = h \cdot g\). There is a unique homomorphism \(\overline{h} : C \to D\) of \(H\)-algebras with \(\overline{h} \cdot c = h\) (because \(c\) is a coequalizer of \(f\) and \(g\) in \(\text{Alg} H\)). We prove that \(\overline{h}\) is solution-preserving. Let \(e : X \to HX + C\), be a finitary flat equation morphism. Then we have

\[\overline{h} \cdot e^\ast = \overline{h} \cdot c \cdot (s \cdot e)^\dagger \quad (\text{Definition of } (-)^\ast) \]

\[= h \cdot (s \cdot e)^\dagger \quad (h = \overline{h} \cdot c) \]

\[= (h \cdot (s \cdot e))^\dagger \quad (h \text{ preserves solutions}) \]

\[= ((h \cdot s) \cdot e)^\dagger \quad (\text{See 4.5(2)}) \]

\[= ((\overline{h} \cdot c \cdot s) \cdot e)^\dagger \quad (h = \overline{h} \cdot c) \]

\[= (\overline{h} \cdot e)^\dagger \quad (c \cdot s = id) \]

as desired. This completes the proof.

\textit{Example 4.9.} Let \(A\) be a join semilattice. Recall from Example 3.2 the function \(\alpha : RA \to A\) assigning to a rational binary tree \(t\) in \(RA\) the join of the labels of all leaves of \(t\) in \(A\). Since joins commute with joins it follows that this is the structure of an Eilenberg-Moore algebra on \(A\). Thus, \(A\) is an Elgot algebra as described in Example 3.2.

\section{Complete Elgot Algebras}

Recall our standing assumptions that \(H\) is an endofunctor of a category \(A\) with finite coproducts. Stefan Milius has established in [M] that for every object-mapping \(T\) of \(A\) the following three statements are equivalent:

(a) for every object \(Y\), \(TY\) is a final coalgebra of \(H(-) + Y\)
(b) for every object \(Y\), \(TY\) is a free completely iterative \(H\)-algebra on \(Y\), and
(c) \(T\) is the functor part of a free completely iterative monad \(T\) on \(H\).

See also [AAMV] where the monad \(T\) is described and the implication that (a) implies (c) is proved.

We are going to add another equivalent item to the above list, bringing complete Elgot algebras into the picture. The statements (a) to (c) are equivalent to

(d) for every object \(Y\), \(TY\) is a free complete Elgot algebra on \(Y\).

Furthermore, recall from [AAMV] that \(H\) is \textit{iteratable} if there exist objects \(TY\) such that one of the above equivalent statements holds. We will describe for every iterable endofunctor the category \(\text{Alg}^\dagger H\) of Eilenberg-Moore algebras—it is isomorphic to the category of complete Elgot algebras of \(H\).
Example 5.1. For a polynomial endofunctor H_{Σ} of Set the above monad is the monad T_{Σ} of all (finite and infinite) Σ-trees.

In the following result the concept of solution-preserving morphism is defined for complete Elgot algebras analogously to Definition 4.1: the equation (4.1) holds for all flat equation morphisms e. We denote by

$$\text{Alg}^{\dagger}_c H$$

the category of all complete Elgot algebras and solution-preserving morphisms.

Lemma 5.2. Every solution-preserving morphism between complete Elgot algebras is a homomorphism of H-algebras.

Proof. Let $(A, \alpha, (-)^\dagger)$ and $(B, \beta, (-)^\dagger)$ be complete Elgot algebras. Suppose that $h : A \to B$ is a solution-preserving morphism, and consider the equation morphism

$$e \equiv HA + A \xrightarrow{H\text{inr} + A} H(HA + A) + A$$

Its solution fulfills $e^\dagger = [\alpha, A] : HA + A \to A$. In fact, the following diagram

$$\begin{array}{c}
\xymatrix{
HA + A \ar[r]^{e^\dagger} & A \\
HHA + A \ar[u]^{H\text{inr} + A} \ar[r]^{H(HA + A) + h} & HHA + A \\
} \end{array}$$

commutes. Thus, $e^\dagger \cdot \text{inr} = \text{id}$, and then it follows that $e^\dagger \cdot \text{inl} = \alpha$. Since h preserves solutions we know that $h \cdot \alpha$ is the left-hand component of the solution of the following equation morphism

$$h \cdot e \equiv HA + A \xrightarrow{H\text{inr} + A} H(HA + A) + A \xrightarrow{H(HA + A) + h} H(HA + A) + B,$$

i.e., $(h \cdot e)^\dagger \cdot \text{inl} = h \cdot \alpha$. Now consider the diagram

$$\begin{array}{c}
\xymatrix{
HA + A \ar[rr]^{H\text{inr} + A} \ar[dd]_{H\text{inr} + h} & & H(HA + A) + A \ar[r]^{H(HA + A) + h} & H(HA + A) + B \\
HB + B \ar[rr]_{H\text{inr} + B} & & H(HB + B) + B \\
} \end{array}$$

which trivially commutes. Hence, $Hh + h$ is a morphism of equations from $h \cdot e$ to $H\text{inr} + B$. By a similar argument as for e^\dagger above we obtain $[\beta, B] = (H\text{inr} + B)^\dagger$. Thus, by functoriality we conclude that

$$h \cdot \alpha = (h \cdot e)^\dagger \cdot \text{inl} = [\beta, B] \cdot (Hh + h) \cdot \text{inl} = \beta \cdot Hh,$$

i.e., h is an H-algebra homomorphism.

Theorem 5.3. Let Y be an object of A. Then the following are equivalent:

1. TY is a final coalgebra of $H(-) + Y$, and
2. TY is a free complete Elgot algebra on Y.

Before proving this theorem, we need a technical lemma:

Construction 5.4. Let $(A, \alpha, (-)^\dagger)$ be a complete Elgot algebra. For every morphism $m : Y \to A$ we construct a new complete Elgot algebra on $HA + Y$ as follows:
1. The algebra structure is

\[H(HA + Y) \xrightarrow{H[\alpha,m]} HA \xrightarrow{\text{inl}} HA + Y. \]

2. The choice \((-)^\dagger\) of solutions is as follows: for every flat equation morphism \(e : X \rightarrow HX + HA + Y\) consider the flat equation morphism

\[\tau \equiv X \xrightarrow{e} HX + HA + Y \xrightarrow{HX + [\alpha,m]} HX + A, \]

and put

\[e^\dagger \equiv X \xrightarrow{e} HX + HA + Y \xrightarrow{[He^\dagger,HA]+Y} HA + Y. \]

Notice that \(e = [\alpha,m] \cdot e\).

Lemma 5.5. The above construction defines a complete Elgot algebra such that \([\alpha,m] : HA + Y \rightarrow A\) is a solution-preserving morphism into the original algebra.

Proof. (1) The morphism \([\alpha,m]\) is solution-preserving: In fact, for any flat equation morphism \(e : X \rightarrow HX + HA + Y\) we have the following commutative diagram

The lower left-hand part commutes since \(e^\dagger\) solves \(\tau\); the upper part is the definition of \((-)^\dagger\), the left-hand triangle is the definition of \(\tau\), and all components of the inner right-hand part are clear.

(2) The morphism \(e^\dagger\) is a solution of \(e\). In fact, the following diagram

commutes: the upper and lower part as well as the left-hand square are obvious, and so are the middle and right-hand components of the right-hand square. To see that the left-hand component commutes, we remove \(H\) and observe that the following diagram commutes:

\[X \xrightarrow{\tau^\dagger} A \]

\[\xrightarrow{\alpha,A} \]

\[HX + HA + Y \xrightarrow{[He^\dagger,HA]+Y} HA + Y \]

\[\xrightarrow{[He^\dagger,HA]+Y} HA + Y \]

\[HX + HA + Y \xrightarrow{[He^\dagger,HA]+Y} HA + Y \]

\[\xrightarrow{[He^\dagger,HA]+Y} HA + Y \]
(3) Functoriality: Suppose we have a morphism \(h : e \to f \) of equations. Then \(h : \tau \to \tau \) is also one, and we obtain the following diagram

\[
\begin{array}{ccc}
X & \xrightarrow{c} & HX + HA + Y \\
& \Downarrow h & \searrow \Downarrow [H\tau, HA] + Y \\
& & Hh + HA + Y \\
\downarrow & & \searrow \Downarrow [H\tau, HA] + Y \\
Z & \xrightarrow{f} & HZ + HA + Y \\
& \Downarrow f & \searrow \Downarrow [H\tau, HA] + Y \\
& & Hf + HA + Y \\
\end{array}
\]

It commutes: in the triangle the components with domains \(HA \) and \(Y \) are clear, for the left-hand component remove \(H \) and use the functoriality of \((-)^\dagger\), and all other parts are obvious.

(4) Compositionality: Suppose we have two equation morphisms \(f : X \to HX + Y \) and \(g : Z \to HZ + HA + Y \).

Observe that \((g^\dagger \cdot f)^\dagger\) is the following morphism

\[
\begin{array}{ccc}
X & \xrightarrow{f} & HX + Z \\
& \Downarrow g & \searrow \Downarrow [Hg, HA] + Y \\
& & HX + Z + HA + Y \\
\downarrow & & \searrow \Downarrow [Hg, HA] + Y \\
& & HA \\
\end{array}
\]

and \((g \circ f)^\dagger \cdot \text{inl}\) is the following morphism

\[
\begin{array}{ccc}
X & \xrightarrow{f} & HX + Z \\
& \Downarrow g & \searrow \Downarrow [Hg, HA] + Y \\
& & HX + Z + HA + Y \\
\downarrow & & \searrow \Downarrow [Hg, HA] + Y \\
& & HA \\
\end{array}
\]

In fact, to see that the last triangle commutes consider the components separately. The right-hand one with domain \(HA + Y \) is trivial, and for the left-hand one with domain \(HX + HZ \) it suffices to observe the following equations:

\[
\overline{g \circ f}^\dagger = ([\alpha, m] \cdot (g \circ f))^\dagger = ([\alpha, m] \cdot g^\dagger \cdot f)^\dagger = ([\alpha, m] \cdot g)^\dagger \cdot ([\alpha, m] \cdot f)^\dagger \cdot f (\text{See (2.7)})
\]

To show the desired identity of the morphisms in (5.1) and (5.2) it suffices to prove that the slanting arrows in those diagrams are equal. The last three components are clear, and for the first one the following equations are sufficient:

\[
\overline{\tau^\dagger \cdot f} = ([\alpha, m] \cdot g)^\dagger \cdot \tau \cdot f (\text{Definition of } \tau^\dagger \cdot f) \\
= ([\alpha, m] \cdot g)^\dagger \cdot f (\text{See part (1) of the proof}) \\
= [\alpha, m] \cdot (g^\dagger \cdot f) (\text{By 4.5(2)})
\]

This completes the proof.
Proof (Theorem 5.3). Statement (1) is equivalent to

(1') TY is a free CIA on Y,

see Theorems 2.8 and 2.10 of [M]. We prove now that (2) is equivalent to (1). We first observe that for a free Elgot algebra on Y, $(TY, \tau_Y, (-)^\dagger)$, with a universal arrow $\eta_Y : Y \rightarrow TY$, the morphism $[\tau_Y, \eta_Y] : HTY + Y \rightarrow TY$ is an isomorphism. In fact, by Lemma 5.5, $HTY + Y$ carries the structure of a complete Elgot algebra and $j = [\tau_Y, \eta_Y]$ is solution-preserving and fulfils $j \cdot \text{inr} = \eta_Y$.

Invoke the freeness of TY to obtain a unique solution-preserving morphism $i : TY \rightarrow HTY + Y$ such that $i \cdot \eta_Y = \text{inr}$. It follows that $j \cdot i = \text{id}$. By Lemma 5.2, i is an H-algebra homomorphism.

Thus the following square

\[
\begin{array}{ccc}
HTY + Y & \xrightarrow{j} & TY \\
H(HTY + Y) + Y & \xrightarrow{i} & HTY + Y \\
\end{array}
\]

commutes, whence $i \cdot j = \text{id}$.

Proof of (2) \Rightarrow (1). Let $(TY, \tau_Y, (-)^\dagger)$ be a free complete Elgot algebra on Y with a universal arrow $\eta_Y : Y \rightarrow TY$. Then $[\tau_Y, \eta_Y] : HTY + Y \rightarrow TY$ is an isomorphism with an inverse i. We prove that (TY, i) is a final coalgebra of $H(-) + Y$. So let $c : X \rightarrow HX + Y$ be any coalgebra, and form the flat equation morphism

\[
e \equiv X \xrightarrow{c} HX + Y \xrightarrow{HX + \eta_Y} HX + TY.
\] (5.3)

Then c^\dagger is a coalgebra homomorphism from (X, c) to (TY, i); in fact, it suffices to establish that the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{c} & HX + Y \\
\downarrow & & \downarrow \\
HX + TY & \xrightarrow{He^\dagger + TY} & HX + TY \\
\downarrow \quad \downarrow \quad & & \downarrow \quad \downarrow \\
TY & \xrightarrow{[\tau_Y, TY]} & HTY + Y \\
\downarrow \quad \downarrow \quad & & \downarrow \quad \downarrow \\
HTY + Y & \xrightarrow{HTY + \eta_Y} & HTY + Y \\
\downarrow \quad \downarrow \quad & & \downarrow \\
\end{array}
\]

commutes. The upper part is (5.3), the left-hand part commutes since c^\dagger is a solution of e, the right-hand one commutes by the naturality of η, and the lower part is obvious.

Now suppose that s is a coalgebra homomorphism from (X, c) to (TY, i). We prove that $s = c^\dagger$. Observe first that s is a morphism of equations from e to the following flat equation morphism

\[
f \equiv TY \xrightarrow{i} HTY + Y \xrightarrow{HTY + \eta_Y} HTY + TY.
\] (5.4)

In fact, the following diagram

\[
\begin{array}{ccc}
X & \xrightarrow{e} & HX + Y \\
\downarrow s & & \downarrow \text{Hs+Y} \\
TY & \xrightarrow{j} & HTY + Y \\
\end{array}
\]
commutes: the left-hand square does since s is a coalgebra homomorphism, the right-hand one by the naturality of η and the upper and lower parts are due to (5.3) and (5.4). By functoriality of $(-)^{\dagger}$ we obtain $f^\dagger \cdot s = e^\dagger$. We shall show below that $f^\dagger : TY \longrightarrow TY$ is a solution-preserving map with $f^\dagger \cdot \eta_Y = \eta_Y$. By the freeness of TY, we then conclude that $f^\dagger = id$, whence $e^\dagger = s$ as desired.

To see that $f^\dagger \cdot \eta_Y = \eta_Y$ consider the following diagram

\[
\begin{array}{c}
TY \xrightarrow{f^\dagger} HTY + Y \\
\downarrow \quad \downarrow \\
TY \xrightarrow{f^\dagger} HTY + TY
\end{array}
\]

which commutes since f^\dagger is a solution of f. Follow the right-hand component of the coproduct $HTY + Y$ to see the desired equation.

Now to complete our proof we must show that the following triangle

\[
\begin{array}{c}
X \xrightarrow{e^\dagger} (f^\dagger \cdot e)^\dagger \\
\downarrow \quad \downarrow \\
TY \xrightarrow{f^\dagger} TY
\end{array}
\]

commutes for any equation morphism $e : X \longrightarrow HX + TY$. Notice first that

\[
f^\dagger \cdot e^\dagger = (f \cdot e)^\dagger \cdot \text{inl} : X \longrightarrow TY
\]

by compositionality. Furthermore, we have an equation morphism $[e^\dagger, TY] : f \cdot e \longrightarrow f$ since the following diagram

\[
\begin{array}{c}
X + TY \xrightarrow{[\text{in}, \text{in}]} HX + TY \\
\downarrow \quad \downarrow \\
TX \xrightarrow{(e^\dagger, TY)} HTY + TY \\
\downarrow \quad \downarrow \\
TY \xrightarrow{f} HTY + TY
\end{array}
\]

commutes. By functoriality we obtain the following equality

\[
f^\dagger : [e^\dagger, TY] = (f \cdot e)^\dagger,
\]

whose left-hand component proves due to (5.6) the desired commutativity of (5.5).

(1') \Rightarrow (2). We only need to show the universal property. Suppose that $(TY, \tau_Y, (-)^{\dagger})$ is a free CIA on Y with a universal arrow $\eta_Y : Y \longrightarrow TY$. Due to the equivalence of (1) and (2), $[\tau_Y, \eta_Y]$ has an inverse i, and (TY, i) is a final coalgebra of the functor $H(-) + Y$. Now let $(A, \alpha, (-)^{\dagger})$ be a complete Elgot algebra and let $m : Y \longrightarrow A$ be a morphism of A. Solve the following equation morphism

\[
g \equiv TY \xrightarrow{i} HTY + Y \xrightarrow{HTY + m} HTY + A
\]
in \(A \) to obtain a morphism \(h = g^\dagger : TY \rightarrow A \). We first check that \(h \cdot \eta_Y = m \). In fact, the following diagram

\[
\begin{array}{c}
TY \\
\downarrow h
\end{array}
\begin{array}{c}
HTY + Y \\
\downarrow [\tau_Y, \eta_Y]
\end{array}
\begin{array}{c}
HTY + A \\
\downarrow HH + A
\end{array}
\begin{array}{c}
A \\
\uparrow [\alpha, A]
\end{array}
\]

commutes since \(h \) is a solution of \(g \). Consider the right-hand component of the coproduct \(HTY + Y \) to obtain the desired equation.

Next let us show that \(h \) is a solution-preserving morphism. That is, we show that for any equation morphism \(e : X \rightarrow RX + TY \) the triangle

\[
\begin{array}{c}
X \\
\downarrow e^\dagger
\end{array}
\begin{array}{c}
TY \\
\downarrow h
\end{array}
\begin{array}{c}
A \\
\uparrow (h \cdot e)^\dagger
\end{array}
\]

commutes. Since \(h = g^\dagger \),

\[
(h \cdot e)^\dagger = (g \bullet e)^\dagger \cdot \mathrm{inl} : X \rightarrow A
\]

due to compositionality of \((-)\dagger\). Moreover, \([e^\dagger, TY]\) is an equation morphism from \(g \bullet e \) to \(g \). In fact, consider the following commutative diagram

which is analogous to Diagram (5.7). By the functoriality of \((-)\dagger\) we obtain the equation

\[
g^\dagger \cdot [e^\dagger, TY] = (g \bullet e)^\dagger
\]

whose left-hand component is due to (5.9) the desired (5.8). Thus, \(h \) is solution-preserving.

To show uniqueness suppose that \(h : TY \rightarrow A \) is any solution-preserving morphism with \(h \cdot \eta_Y = m \). Observe that we have \(g = h \bullet f \), where \(f \) is the equation morphism of (5.4). Since \(h \) preserves solutions we have

\[
g^\dagger = (h \bullet f)^\dagger = h \cdot f^\dagger.
\]

To complete the proof it suffices to show that \(f^\dagger = \mathrm{id} \). This can be done with precisely the same argument as in the first part of the proof of Theorem 5.3. One shows that \(f^\dagger : TY \rightarrow TY \) is a solution-preserving morphism such that \(f^\dagger \cdot \eta_Y = \eta_Y \). From the universal property of the free CIA \(TY \) it follows that \(f^\dagger = \mathrm{id} \), see also Proposition 2.3 in [M].

Corollary 5.6. For any endofunctor \(H : A \rightarrow A \) the following are equivalent:

1. \(H \) is iterable, i.e., there exist final coalgebras of all functors \(H(-) + Y \)
2. there exist free completely iterative \(H \)-algebras on every object \(Y \)
3. there exist free complete Elgot algebras on every object \(Y \).
Adámek, Milius, Velebil

Proof. See [M], Corollary 2.11 for (1) ⇔ (2). The equivalence (2) ⇔ (3) follows from Theorem 5.3.

Theorem 5.7. If H is an iterable functor, then the category $\text{Alg}_{\text{iter}}^\dagger H$ of complete Elgot algebras is isomorphic to the Eilenberg–Moore category A^T of monadic T-algebras (for the free completely iterative monad T of H).

Proof. By Corollary 5.6, the natural forgetful functor $U : \text{Alg}_{\text{iter}}^\dagger H \to A$ has a left adjoint $Y \mapsto TY$. Thus, the monad obtained by this adjunction is T. To prove that the comparison functor $K : \text{Alg}_{\text{iter}}^\dagger H \to A^T$ is an isomorphism use Beck’s Theorem. In fact, the argument that U creates coequalizers of U-split pairs is entirely analogous to that of Theorem 4.7.

Example 5.8. Let A be a complete lattice. Recall from Example 3.10 the function $\alpha : TA \to A$ assigning to every binary tree t in TA the join of all labels of leaves of t in A. Since joins commute with joins it follows that $\alpha : TA \to A$ is the structure of an Eilenberg-Moore algebra on A. Thus, A is a complete Elgot algebra as described in Example 3.10.

6 Summary and Future Work

The concept of Elgot algebra introduced in our paper formalizes algebras in which finitary flat equation morphisms have solutions satisfying two simple axioms: one for change of parameters and one for simultaneous recursion. And, analogously, complete Elgot algebras are algebras in which flat equation morphisms (not necessarily finitary) have solutions subject to the same two axioms.

Such algebras can be used for interpreted semantics of recursive program schemes such as (1.1). In view of the simplicity of the two axioms we consider this is a success. Moreover, the structure of Elgot algebras is provided canonically by Elgot’s iterative theories: Elgot algebras are the monadic algebras of the free iterative theory (as described by Calvin Elgot et al. for signatures in [EBT] and by the authors in [AMV1, AMV2] for general endofunctors). And complete Elgot algebras are the monadic algebras of the free completely iterative monad of Calvin Elgot et al. [EBT] (generalized by Stefan Milius in [M]).

For the important “in-between” variant of algebraic trees of Bruno Courcelle [C], i.e., precisely all trees obtained by tree unfoldings of recursive program schemes, no abstract treatment has been presented so far. The present authors are planning to work in a setting in which abstract algebraic trees can be treated. The basic category is, however, not Set, but $\text{Fin}(\text{Set})$, the category of all finitary endofunctors of Set. This category is locally finitely presentable, and that was one reason for presenting our theory in such general categories, not only in Set.

The function $e \mapsto e^!$ which is part of an Elgot algebra extends canonically from the above flat equation morphisms e to a much broader class of “rational” equation morphisms—another topic of our planned future research. In that sense one gets close to iteration algebras of Zoltan Ésitk [É]. The relationship of the latter to Elgot algebras needs further investigation.

Finally, this paper can be considered as part of a program proposed by Lawrence Moss to rework the theory of recursive program schemes and their semantics using coalgebraic methods. We believe that our paper contributed by presenting a “suitable” notion of algebra of a functor which can be used for interpreted semantics or recursive program schemes. We do not have the space to treat this semantics in our paper. This is the topic of the forthcoming paper [MM], where basic results of a categorical theory of recursive program schemes are presented. In that paper the authors introduce a general notion of recursive program scheme (rps), and they prove that any guarded rps has a unique “uninterpreted” solution in the final coalgebra of the functor describing the given operations. Furthermore, it is proved that an interpreted solution can be given to a recursive program scheme in any complete Elgot algebra, and that this solution is unique in case of a CIA. Finally, the fundamental result that every interpreted solution factors through an uninterpreted one is proved. As applications one obtains the classical theory using continuous algebras or completely metrizable ones as interpretations. New applications include, for example, recursively defined operations satisfying extra conditions like commutativity, or applications in non-well founded sets or measure spaces.
We admit that the whole program is at this point still at a beginning phase and so far has not yet produced many new results in semantics that go beyond what can be done with the well-established classical methods. However, we strongly believe that our approach deepens the understanding of the mechanisms at work in algebraic semantics, with categorical results of great conceptual clarity. We hope that this will eventually lead to new insights and results for the semantics of recursive computations.

References

[AAMV] P. Aczel, J. Adámek, S. Milius and J. Velebil, Infinite Trees and Completely Iterative Theories: A Coalgebraic View, Theoret. Comput. Sci. 300 (2003), 1–45.

[AMV] J. Adámek, S. Milius and J. Velebil, Free iterative theories: a coalgebraic view, Math. Structures Comput. Sci. 13 (2003), 259–320.

[AMV2] J. Adámek, S. Milius and J. Velebil, From Iterative Algebras to Iterative Theories, Electron. Notes Theor. Comput. Sci. 106 (2004), 3–24, full version is available from http://www.iti.cs.tu-bs.de/~milius/.

[AMV3] J. Adámek, S. Milius and J. Velebil, Elgot Algebras (Extended Abstract), to appear in Electron. Notes Theor. Comput. Sci.

[AR] J. Adámek and J. Rosický, Locally presentable and accessible categories, Cambridge University Press, 1994.

[ARu] P. America and J. Rutten, Solving Reflexive Domain Equations in a Category of Complete Metric Spaces, in: Proc. 3rd Workshop on the Mathematical Foundations of Programming Language Semantics, M. Main, A. Melton, M. Miskove and D. Schmidt, eds., Springer-Verlag, LNCS 298, 254–288.

[BÉ] S. L. Bloom and Z. Ésik, Iteration Theories: The Equational Logic of Iterative Processes, EATCS Monograph Series on Theoretical Computer Science, Springer-Verlag, 1993.

[C] B. Courcelle, Fundamental properties of infinite trees, Theoret. Comput. Sci. 25 (1983), no. 2, 95–169.

[E] S. Eilenberg, The category C. Unpublished manuscript.

[El] C. C. Elgot, Monadic Computation and Iterative Algebraic Theories, in: Logic Colloquium ’73 (eds: H. E. Rose and J. C. Shepherdson), North-Holland Publishers, Amsterdam, 1975.

[EBT] C. C. Elgot, S. L. Bloom and R. Tindell, On the Algebraic Structure of Rooted Trees, J. Comput. System Sci. 16 (1978), 361–399.

[É] Z. Ésik, Algebras of iteration theories, J. Comput. System Sci. 27 (1983), 291–303.

[G] S. Ginali, Regular trees and the free iterative theory, J. Comput. System Sci. 18 (1979), 228–242.

[GTWW] J. Goguen, J. Thatcher, E. Wagner and J. Wright, Initial algebra semantics and continuous algebras, J. ACM 24 (1977), 68–95.

[Ha] M. Hasegawa, Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi, Proc. 3rd International Conference on Typed Lambda Calculi and Applications, Springer LNCS 1210, 199–213, 1997.

[JSV] A. Joyal, R. Street and D. Verity, Traced Monoidal Categories, Math. Proc. Cambridge Philos. Soc. 119 (3), 447–468.

[ML] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, 2nd edition, 1998.

[M] S. Milius, Completely Iterative Algebras and Completely Iterative Monads, accepted for publication in Inform. and Comput.

[MM] S. Milius and L. Moss, The Category Theoretic Solution of Recursive Program Schemes, extended abstract to appear in Lecture Notes in Comput. Sci., full version available from http://www.iti.cs.tu-bs.de/~milius/

[Mo] L. S. Moss, Recursion and corecursion have the same equational logic, Theoret. Comput. Sci. 294 (2003), 233–267.

[N] E. Nelson, Iterative Algebras, Theoret. Comput. Science 25 (1983), 67–94.

[P] G. Plotkin, Domains, The “Pisa” notes, available from http://www.dcs.ed.ac.uk/home/gdp/, 1983.

[SP1] A. Simpson and G. Plotkin, Complete Axioms for Categorical Fixed-point Operators, Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer Science 2000, 30–41.

[SP2] M. B. Smyth and G. Plotkin, The Category-Theoretic Solution of Recursive Domain Equations, SIAM J. Comp. 11 (4), 1982, 761–783.

[T] J. Tiuryn, Unique Fixed Points vs. Least Fixed Points, Theoret. Comput. Sci. 12 (1980), 229–254.