Gold type codes of higher relative dimension

Chunlei Liu∗†

Abstract

Let m, d, e, k be fixed positive integers such that

$$e = (m, d) = (m, 2d), \quad 2 \leq k \leq \frac{m + e}{2e}.$$

Let s be a fixed maximum-length binary sequence of length $2^m - 1$. Let $(s_1, s_2, \cdots, s_{k-1})$ be a system of circular decimations of s whose decimation factors are respectively

$$2^d + 1, 2^{2d} + 1, \cdots, 2^{(k-1)d} + 1,$$

or respectively

$$2^d + 1, 2^{3d} + 1, \cdots, 2^{(2k-3)d} + 1,$$

or respectively

$$2^{(m-e)d} + 1, 2^{(m-3e)d} + 1, \cdots, 2^{(m-3e-k)d} + 1.$$

Then s_1, \cdots, s_{k-1} are maximum-length binary sequences of length $2^m - 1$. Let C be the \mathbb{F}_2-vector space generated by all circular shifts of s, s_1, \cdots, s_{k-1}. Then C has an \mathbb{F}_{2^m}-vector space structure, and is of dimension k over \mathbb{F}_{2^m}. When $k = 2$, C is the Gold code. So we regard C as a Gold type code of relative dimension k. The DC component distribution of C is explicitly calculated out in the present paper.

Key phrases: Gold code, cyclic code, alternating form

MSC: 94B15, 11T71.

1 INTRODUCTION

Let q be a prime power, and C an $[n, k]$-linear code over \mathbb{F}_q. The weight of a codeword $c = (c_0, c_1, \cdots, c_{n-1})$ of C is defined to be

$$\text{wt}(c) = \# \{ 0 \leq i \leq n-1 \mid c_i \neq 0 \}.$$

For each $i = 0, 1, \cdots, n$, define

$$A_i = \# \{ c \in C \mid \text{wt}(c) = i \}.$$

∗Dept. of math., Shanghai Jiao Tong Univ., Sahanghai 200240, China, clliu@sjtu.edu.cn.
†Dengbi Technologies Cooperation Limited., Yichun 336099, China, 714232747@qq.com.
The sequence \((A_0, A_1, \cdots, A_n)\) is called the weight distribution of \(\mathcal{C}\). Given a linear code \(\mathcal{C}\), it is challenging to determine its weight distribution. The weight distribution of Gold codes was determined by Gold [G66]. The weight distribution of Kasami codes was determined by Kasami [K66]. The weight enumerators of Gold type and Kasami type codes of higher relative dimension were determined by Berlekamp [Ber] and Kasami [K71]. The weight distribution of the \(p\)-ary analogue of Gold codes was determined by Trachtenberg [Tr]. The weight distribution of the circular decimation of the \(p\)-ary analogue of Gold codes with decimation factor 2 was determined by Feng-Luo [FL]. The weight distribution of the \(p\)-ary analogue of Gold type codes of relative dimension 3 was determined by Zhou-Ding-Luo-Zhang [ZDLZ]. The weight distribution of the circular decimation with decimation factor 2 of the \(p\)-ary analogue of Gold type codes of relative dimension 3 was determined by Zheng-Wang-Hu-Zeng [ZWHZ]. The weight distribution of (the \(p\)-ary analogue of) Kasami type codes of maximum relative dimension was determined by Li-Hu-Feng-Ge [LHFG]. The weight distribution of the \(p\)-ary analogue of Gold type codes of higher relative dimension was determined by Schmidt [Sch]. The weight distribution of some other classes of cyclic codes was determined in the papers [AL], [BEW], [BMC], [BMC10], [BMY], [DE], [DLMZ], [DY], [FE], [FM], [KL], [LF], [LHFG], [LN], [LYL], [LTW], [MCE], [MCG], [MO], [MR], [MY], [MZLF], [RP], [SC], [VE], [WTQYX], [XI], [XII2], [YCD], [YXDL] and [ZHJYC].

Let \(m, d, e, k\) be fixed positive integers such that

\[e = (m, d) = (m, 2d), \quad 2 \leq k \leq \frac{m + e}{2e}. \]

Let \(s\) be a fixed maximum-length binary sequence of length \(2^m - 1\). Let \((s_1, s_2, \cdots, s_{k-1})\) be a system of circular decimations of \(s\) whose decimation factors are respectively

\[2^d + 1, 2^{2d} + 1, \cdots, 2^{(k-1)d} + 1, \]

or respectively

\[2^d + 1, 2^{3d} + 1, \cdots, 2^{(2k-3)d} + 1, \]

or respectively

\[2^d + 1, 2^{(m+2e)d} + 1, \cdots, 2^{(m+2e-k)d} + 1. \]

Then \(s_1, \cdots, s_{k-1}\) are maximum-length binary sequences of length \(2^m - 1\). Let \(\mathcal{C}\) be the \(\mathbb{F}_2\)-vector space generated by all circular shifts of \(s, s_1, \cdots, s_{k-1}\). If \(d = e = 1\), then \(\mathcal{C}\) is the code studied by Berlekamp [Ber] and Kasami [K71]. Let \(\{\overrightarrow{a}\}\) be the system

\[Q_{\overrightarrow{a}}(x) = \text{Tr}_{\mathbb{F}_2^m / \mathbb{F}_2^n}(a_0 x) + \sum_{j=1}^{k-1} \text{Tr}_{\mathbb{F}_2^m / \mathbb{F}_2^n}(a_j x^{2^j + 1}), \quad \overrightarrow{a} \in \mathbb{F}_2^k, \]

or the system

\[Q_{\overrightarrow{a}}(x) = \text{Tr}_{\mathbb{F}_2^m / \mathbb{F}_2^n}(a_0 x) + \sum_{j=1}^{k-1} \text{Tr}_{\mathbb{F}_2^m / \mathbb{F}_2^n}(a_j x^{2^{(2j-1)} + 1}), \quad \overrightarrow{a} \in \mathbb{F}_2^k, \]
or the system
\[Q_a(x) = \text{Tr}_{\mathbb{F}_{2^m}/\mathbb{F}_2} (a_0 x) + \sum_{j=1}^{k-1} \text{Tr}_{\mathbb{F}_{2^m}/\mathbb{F}_2} (a_j x^{2^j - 1} + 1), \ a \in \mathbb{F}_{2^m}^k. \]

Then
\[C = \{ c_{\alpha} \mid \alpha \in \mathbb{F}_{2^m}^k \}, \]
where \(c_{\alpha} = (\text{Tr}_{\mathbb{F}_{2^m}/\mathbb{F}_2} (Q_a(\pi^i)))_{i=0}^{2^m - 2} \) with \(\pi \) being a primitive element of \(\mathbb{F}_{2^m} \). The correspondence \(\alpha \mapsto c_{\alpha} \) defines an \(\mathbb{F}_{2^m} \)-vector space structure on \(C \), and \(C \) is of dimension \(k \) over \(\mathbb{F}_{2^m} \). When \(k = 2 \), \(C \) is the Gold code. So we call \(C \) a Gold type code of relative dimension \(k \).

One can prove the following.

Theorem 1.1 If \(c \in C \) is nonzero, then
\[\text{DC}(c) \in \{-1, -1 + \pm 2 \frac{m-e}{2} i^j \varepsilon \mid j = 0, 1, 2, \ldots, k - 2\}, \]
where
\[\text{DC}(c) = 2^m - 1 - 2\text{wt}(c) = \sum_{i=0}^{2^m - 2} (-1)^i \]
is the DC component of \(c = (c_0, c_1, \ldots, c_{2^m-2}) \in C \).

The present paper is concerned with the frequencies
\[\alpha_{r,\varepsilon} = \# \{ 0 \neq c \in C \mid \text{DC}(c) = -1 + \varepsilon 2^{m-\frac{m-e}{2}} \}, \ r = 0, 2, 4, \ldots, \frac{m-e}{e}. \tag{1} \]

The main result of the present paper is the following.

Theorem 1.2 For each \(j = 0, 1, \ldots, k - 2 \), and for each \(\varepsilon = \pm 1 \), we have
\[\alpha_{m-e-2i,\varepsilon} = \frac{1}{2} (2^{m-e-2i} + \varepsilon 2^{m-\frac{m-e}{2}}) \sum_{j=i}^{k-2} (1^{j-i} 4^k i^{(j-i)} \left(\frac{m-e}{2} \right) i^{4^j} (m-2^j) - 1), \]
where \(\left(\frac{i}{j} \right)_q \) is a Gaussian binomial coefficient.

From the above theorem one can deduce the following.

Theorem 1.3 We have
\[\# \{ c \in C \mid \text{DC}(c) = -1 \} \]
\[= 2^{mk} - 1 - \sum_{u=0}^{k-2} (-1)^u 2^{-e(u+1)^2} (2^{m(k-u)} - 2^m \prod_{j=0}^{u-1} (2^{m-2^j+1})) \]
\[\approx 2^{mk} (1 - \sum_{u=0}^{k-2} (-1)^u 2^{-e(u+1)^2}). \]

If \(d = e = 1 \), then the weight enumerator of \(C \) is determined by Berlekamp [Ber] and Kasami [K71]. However, some extra calculations are needed to explicitly write out the coefficients of the weight enumerators in [Ber,K71].
2 ENTERING BILINEAR FORMS I

In this section we shall prove Theorem 1.1.

Note that
\[1 + DC(\bar{a}) = \sum_{x \in \mathbb{F}_{2m}} (-1)^{\text{Tr}_{\mathbb{F}_{2} / \mathbb{F}_{2}}(Q_{\bar{a}}(x))}. \]

(2)

It is well-known that
\[\sum_{x \in \mathbb{F}_{2m}} (-1)^{\text{Tr}_{\mathbb{F}_{2} / \mathbb{F}_{2}}(Q_{\bar{a}}(x))} = \begin{cases} 0, & 2 \nmid \text{rk}(Q_{\bar{a}}), \\ \pm 2^{m-e^{\text{rk}(Q_{\bar{a}})}/2}, & 2 | \text{rk}(Q_{\bar{a}}). \end{cases} \quad \] (3)

Let
\[B_{\bar{a}}(x, y) = Q_{\bar{a}}(x + y) - Q_{\bar{a}}(x) - Q_{\bar{a}}(y). \]

Then \{B_{\bar{a}}\} is either the system
\[B_{\bar{a}}(x, y) = \sum_{j=1}^{k-1} \text{Tr}_{\mathbb{F}_{2m} / \mathbb{F}_{2}}(a_{j}(x y^{2^{(2j-1)d}} + x^{2^{(2j-1)d}} y)), \bar{a} \in \mathbb{F}_{2m}^{k}, \]

(4)

or the system
\[B_{\bar{a}}(x, y) = \sum_{j=1}^{k-1} \text{Tr}_{\mathbb{F}_{2m} / \mathbb{F}_{2}}(a_{j}(x y^{2^{(2j-1)d}} + x^{2^{(2j-1)d}} y)), \bar{a} \in \mathbb{F}_{2m}^{k}, \]

(5)

or the system
\[B_{\bar{a}}(x, y) = \sum_{j=1}^{k-1} \text{Tr}_{\mathbb{F}_{2m} / \mathbb{F}_{2}}(a_{j}(x y^{2^{(2j-1)d}} + x^{2^{(2j-1)d}} y)), \bar{a} \in \mathbb{F}_{2m}^{k}. \]

(6)

It is well-known that
\[\text{rk}(B_{\bar{a}}) = \begin{cases} \text{rk}(Q_{\bar{a}}), & 2 \nmid \text{rk}(Q_{\bar{a}}), \\ \text{rk}(Q_{\bar{a}}) - 1, & 2 | \text{rk}(Q_{\bar{a}}). \end{cases} \]

(7)

We now prove Theorem 1.1. By (2), (3) and (7), it suffices to prove the following.

Theorem 2.1 If \((a_{1}, \cdots, a_{k-1}) \neq 0\), then
\[\text{rk}(B_{\bar{a}}) \geq m - \frac{e}{e} - 2(k - 2). \]

Proof. Suppose that \((a_{1}, \cdots, a_{k-1}) \neq 0\). It suffices to show that
\[\dim_{\mathbb{F}_{2}} \text{Rad}(B_{\bar{a}}) \leq 2(k - 1), \]

where
\[\text{Rad}(B_{\bar{a}}) = \{ x \in \mathbb{F}_{2m} \mid B_{\bar{a}}(x, y) = 0, \forall y \in \mathbb{F}_{2m} \}. \]
Without loss of generality, we assume that \(\{B_d\} \) is the system (4). Then

\[
\text{Rad}(B_d) = \{ x \in F_{2^m} \mid \sum_{j=1}^{k-1} (a_j^2 x^{2j} + a_j x^{2j}) x^{-j} = 0 \}
\]

\[
= \{ x \in F_{2^m} \mid \sum_{j=1}^{k-1} (a_j^{2(k-1)-d} x^{2(k-1)-d} + a_j^{2(k-1)-d} x^{2(k-1)+d}) = 0 \}.
\]

Note that

\[
\{ x \in F_{2^{m(d/e)}} \mid \sum_{j=1}^{k-1} (a_j^{2(k-1)-d} x^{2(k-1)-d} + a_j^{2(k-1)-d} x^{2(k-1)+d}) = 0 \}
\]

is a subspace of \(F_{2^{m(d/e)}} \) over \(F_{2^d} \) of dimension \(\leq 2(k-1) \). As \((m, d) = e \), a basis of \(F_{2^m} \) over \(F_{2^e} \) is also a basis of \(F_{2^{m(d/e)}} \) over \(F_{2^d} \). It follows that

\[
\dim_{F_{2^e}} \text{Rad}(B_d) \leq 2(k-1).
\]

The theorem is proved. □

3 ENTERING BILINEAR EQUATIONS II

In this section we shall reduce Theorem 1.2 to the following.

Theorem 3.1 We have, for \(0 \leq i \leq k-2 \),

\[
\beta_{m-e}^{m-2i} = \sum_{j=i}^{k-2} (-1)^{j-i} 2^{(j-i)(j-i-1)} \binom{j}{i} \left(\frac{m-e}{2} \right) 4^e (2^{m(k-1-j)} - 1),
\]

where

\[
\beta_r = 2^{-m} \# \{ \vec{a} \in F_{2^m} \mid \text{rk}(\text{B}_d) = r, \ (a_1, \ldots, a_{k-1}) \neq 0 \}.
\]

It suffices to prove the following.

Theorem 3.2 For each \(r = 0, 2, \cdots, \frac{m-e}{e} \),

\[
\alpha_{r,e} = \frac{1}{2} (2^r + \epsilon 2^\frac{r}{2}) \beta_r,
\]

Proof. By (1), (2), (3), (7), and (8),

\[
2^{m-\frac{r}{2}} (\alpha_{r,1} - \alpha_{r,-1})
\]

\[
= \sum_{rk(B_d)=r} \sum_{x \in F_{2^m}} (-1)^{\text{Tr}_{F_{2^e}}/F_2 (Q_d(x))}
\]

\[
= 2^{-m} \sum_{c \in F_{2^m}} \sum_{rk(B_d)=r} \sum_{x \in F_{2^m}} (-1)^{\text{Tr}_{F_{2^e}}/F_2 (\text{Tr}_{F_{2^m}/F_{2^e}}(cx) + Q_d(x))}
\]

\[
= 2^{-m} \sum_{rk(B_d)=r} \sum_{x \in F_{2^m}} (-1)^{\text{Tr}_{F_{2^e}}/F_2 (Q_d(x))} \sum_{c \in F_{2^m}} (-1)^{\text{Tr}_{F_{2^m}/F_2} (cx)}
\]

\[
= 2^m \beta_r.
\]
Similarly,

\[
2^{2m-er}(\alpha_{r,1} + \alpha_{r,-1}) = \sum_{\text{rk}(B_{\vec{d}})=r} x \in \mathbb{F}_{2m} (-1)^{\text{Tr}_{2e}/2} (Q_{\vec{a}}(x))^2
\]

\[
= 2^{-m} \sum_{c \in \mathbb{F}_{2m}} \sum_{\text{rk}(B_{\vec{d}})=r} x \in \mathbb{F}_{2m} (-1)^{\text{Tr}_{2e}/2} (\text{Tr}_{2m/e}(cx) + Q_{\vec{a}}(x))^2
\]

\[
= 2^{-m} \sum_{\text{rk}(B_{\vec{d}})=r} x, y \in \mathbb{F}_{2m} (-1)^{\text{Tr}_{2e}/2} (Q_{\vec{a}}(x) + Q_{\vec{a}}(y)) \sum_{c \in \mathbb{F}_{2m}} (-1)^{\text{Tr}_{2m/e}(c(x+y))}
\]

\[
= 2^{2m} \beta_r.
\]

The theorem is proved.

4 ASSOCIATION SCHEME THEORETIC APPROACH

In this section we shall use the following theorem of Delarte-Goethals to prove Theorem 3.1.

Theorem 4.1 (DG) Let \(M \) be an odd number, \(X \) the space of alternating bilinear forms on an \(M \)-dimension vector space over \(\mathbb{F}_q \), \(Y \) a subspace of \(X \), and

\[
d(Y) = \min \{ \text{rk}(y) \mid 0 \neq y \in Y \}.
\]

Then

\[
|Y| \leq q^{M(M-d(Y)+1)/2}.
\]

Moreover, if the equality holds, then, for \(i \leq (M-1-d(Y))/2 \),

\[
\# \{ y \in Y \mid \text{rk}(y) = M - 1 - 2i \} = \frac{(M-1-d(Y))/2}{2^i} q^{(j-i)(j-i-1)/2} q^{(M-1)/j} (q^{M(M-d(Y)+1-2j)/2} - 1).
\]

We now the above theorem to prove Theorem 3.1.

Let \(X \) be the space of alternating \(\mathbb{F}_{2e} \)-bilinear forms on \(\mathbb{F}_{2m} \). Fix a system \(\{ B_{\vec{a}} \} \). Set

\[
Y = \{ B_{\vec{a}} \mid \vec{a} \in \mathbb{F}_2^k, a_0 = 0 \}.
\]

By Theorem 2.1

\[
d(Y) \geq \frac{m-e}{e} - 2(k-2).
\]

By Delsarte-Goethals' theorem,

\[
|Y| \leq 2^m(\frac{m+e}{m})^{-d(Y)/2} \leq 2^m(k-1).
\]

As \(|Y| = 2^m(k-1) \), we arrive at

\[
|Y| = 2^m(\frac{m+e}{m})^{-d(Y)/2} = 2^m(k-1),
\]
In particular, \(d(Y) = \frac{m-e}{e} - 2(k-2) \). Applying Delsarte-Goethals’ theorem one more time, we have, for \(0 \leq i \leq k-2 \),

\[
\# \{ \vec{a} \in \mathbb{F}_{2m}^k \mid \text{rk}(B_{\vec{a}}) = \frac{m-e}{e} - 2i, a_0 = 0 \} = \sum_{j=i}^{k-2} (-1)^{i-j} 2^{e(j-i)(j-i-1)} \binom{j}{i} \binom{m-e}{j} 4^e \left(2^m(k-1-j) - 1 \right).
\]

Theorem 3.1 is proved.

5 NUMBER THEORETIC APPROACH

The theorem of Delarte-Goethals we used in the last section is proved by developing the theory of association schemes. To make the present paper self-contained, we shall develop a number theoretic approach, which is similar to the approach of Berlekamp [Ber] and Kasami [K71].

Let \(V_{s,u} \) be the set of solutions \((x_1, x_2, \cdots, x_{2u}) \in \mathbb{F}_{2m}^{2u} \) of one of the systems

\[
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{2j} + x_{2i-1}x_{2i}) = 0, \quad j = 1, 2, \cdots, s, \tag{9}
\]

\[
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{2(2i-1)} + x_{2i-1}x_{2i}) = 0, \quad j = 1, 2, \cdots, s, \tag{10}
\]

and

\[
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{2(m+e-j)} + x_{2i-1}x_{2i}) = 0, \quad j = 1, 2, \cdots, s. \tag{11}
\]

In this section we shall use the following theorem to prove Theorem 3.1.

Theorem 5.1 If \(s \geq u \geq 1 \), then \(V_{s,u} = V_{u,u} \).

We now prove Theorem 5.1. We shall make repeated use of the following \(q \)-binomial formula

\[
\prod_{i=0}^{u-1} (1 + qt^i) = \sum_{i=0}^{u} \binom{i}{u} q^i t^i.
\]

By the orthogonality of characters and Theorem 5.1, we have

\[
\sum_{\vec{a} \in \mathbb{F}_{2m}^k} \left(\sum_{x,y \in \mathbb{F}_{2m}} (-1)^{\text{Tr}_{\mathbb{F}_2^e/\mathbb{F}_2}(B_{\vec{a}}(x,y))} \right)^u = 2^m |V_{u,u}|, \quad 0 \leq u \leq k-1,
\]

where \(|V_{0,0}| = 1 \). Applying the identity

\[
\sum_{x,y \in \mathbb{F}_{2m}} (-1)^{\text{Tr}_{\mathbb{F}_2^e/\mathbb{F}_2}(B_{\vec{a}}(x,y))} = 2^{m-e \cdot \text{rk}(B_{\vec{a}})},
\]

we arrive at

\[
\sum_{0 \leq u \leq k-1} \beta_u 2^u (2m-e \cdot u) = 2^m(k-1)|V_{u,u}| - 2^{2m}u, \quad 0 \leq u \leq k-1.
\]
That is,
\[\sum_{i=0}^{k-2} \beta \frac{m - e - 2i}{u} 4^{ui} = 2^{m(k-1)-(m+e)u} |V_{u,u}| - 2^{(m-e)u}, \quad 0 \leq u \leq k - 1. \]

Consider the equation
\[\sum_{i=0}^{k-2} \beta \frac{m - e - 2i}{u} \left(\begin{array}{c} 1 \\ 4^{ei} \\ \vdots \\ 4^{e(k-1)i} \end{array} \right) = \left(\begin{array}{c} 2^{m(k-1)} |V_{0,0}| - 1 \\ 2^{m(k-1)-(m+e)} |V_{1,1}| - 2^{m-e} \\ \vdots \\ 2^{-(k-1)e} |V_{k-1,k-1}| - 2^{u(m-e)} \end{array} \right). \]

Multiplying on the left by the row vector \((-1)^{k-1-i} 4^e (k-1-i) \binom{k-1}{i} \), and applying the \(q\)-binomial formula once more, we arrive at
\[\sum_{i=0}^{k-1} (-1)^{k-1-i} 4^e (k-1-i) \binom{k-1}{i} 2^{m(k-1)-(m+e)i} |V_{i,i}| = \prod_{i=0}^{k-1} (2^{(m-e)i} - 4^e). \]

Replacing \(k - 1\) with an arbitrary positive integer \(u\), we arrive at
\[\sum_{i=0}^{u} (-1)^{u-i} 4^e \binom{u-1}{i} \binom{u}{i} 2^{mu-(m+e)i} |V_{i,i}| = \prod_{i=0}^{k-1} (2^{(m-e)i} - 4^e). \]

That is,
\[\sum_{i=0}^{u} (-1)^{u-i} 4^e \binom{u-1}{i} \binom{u}{i} 2^{-(m+e)i} |V_{i,i}| = 2^{-mu} \prod_{i=0}^{k-1} (2^{(m-e)i} - 4^e). \] \hspace{1cm} (12)

Now fix \(0 \leq u \leq k - 1\), and consider the equation
\[\sum_{i=0}^{k-2} \beta \frac{m - e - 2i}{u} \left(\begin{array}{c} 1 \\ 4^{ei} \\ \vdots \\ 4^{eui} \end{array} \right) = \left(\begin{array}{c} 2^{m(k-1)} |V_{0,0}| - 1 \\ 2^{m(k-1)-(m+e)} |V_{1,1}| - 2^{m-e} \\ \vdots \\ 2^{-(k-1)e} |V_{u,u}| - 2^{u(m-e)} \end{array} \right). \]

Multiplying on the left by the row vector \((-1)^{u-i} q^e \binom{u-1}{i} \binom{u}{i} \) for \(i = 0, \ldots, k-1\), and applying the \(q\)-binomial formula as well as (12), we arrive at
\[\sum_{i=0}^{k-2} \beta \frac{m - e - 2i}{u} \prod_{0 \leq h \leq u-1} (4^{hi} - 4^{eh}) = (2^{m(k-1-u)} - 1) \prod_{0 \leq h \leq u-1} (2^{m-e} - 4^{eh}). \]

Dividing both sides by \(\prod_{0 \leq h \leq u-1} (4^{eu} - 4^{eh})\), we arrive at
\[\sum_{i=0}^{k-2} \beta \frac{m - e - 2i}{u} \binom{i}{u} 4^e = \binom{m-u}{u} 4^e (2^{m(k-1-u)} - 1). \]
Applying the \(q \)-binomial Möbius inversion formula
\[
\sum_{i=v}^{u} (-1)^{i-v} q^{(i-v)} \binom{i}{v} q^{(i)} q^{(u)} = \begin{cases}
1, & u = v, \\
0, & u \neq v,
\end{cases}
\]
we arrive at
\[
\beta_{m-2j} = \sum_{u=j}^{k-2} (-1)^{u-j} 4^e (\binom{\beta}{u}) 4^e (\binom{\beta}{j}) (2^{(k-1)-u} - 1).
\]
Theorem 3.1 is proved.

6 SYSTEMS OF BILINEAR EQUATIONS

In this section we shall prove Theorem 5.1. We begin with the following.

Theorem 6.1 The systems (9), (10), and (11) are respectively equivalent to the systems

\[
\begin{align*}
\sum_{i=1}^{u} (x_{2i-1} x_{2i}^{2d} + x_{2i-1}^{2d} x_{2i}) = 0, \\
\sum_{i=1}^{u} (\tilde{x}_{2i-1} \tilde{x}_{2i}^{2d} + \tilde{x}_{2i-1}^{2d} \tilde{x}_{2i}) = 0,
\end{align*}
\]
\(j = 1, 2, \ldots, s-1,\) \hspace{1cm} (13)

and

\[
\begin{align*}
\sum_{i=1}^{u} (x_{2i-1} \tilde{x}_{2i}^{2d} + x_{2i-1}^{2d} \tilde{x}_{2i}) = 0, \\
\sum_{i=1}^{u} (\tilde{x}_{2i-1} \tilde{x}_{2i} x_{2i}^{2d} + \tilde{x}_{2i-1} x_{2i}^{2d} \tilde{x}_{2i}) = 0,
\end{align*}
\]
\(j = 1, 2, \ldots, s-1,\) \hspace{1cm} (14)

and

\[
\begin{align*}
\sum_{i=1}^{u} (\tilde{x}_{2i-1} x_{2i}^{2d} + \tilde{x}_{2i-1}^{2d} x_{2i}) = 0, \\
\sum_{i=1}^{u} (\tilde{x}_{2i-1} \tilde{x}_{2i} x_{2i}^{2d} + \tilde{x}_{2i-1} x_{2i}^{2d} \tilde{x}_{2i}) = 0,
\end{align*}
\]
\(j = 1, 2, \ldots, s-1,\) \hspace{1cm} (15)

where \(\tilde{x}_i = x_i + x_i^{2d}, \) \(x_i + x_i^{2d}, \) and \(x_i + x_i^{2d} \) respectively.

Proof. We deal with the system (9) first. Adding \(2^d \)-th power of the \((j-1) \)-th equation to the \(j \)-th equation, we arrive at

\[
\begin{align*}
\sum_{i=1}^{u} (x_{2i-1} x_{2i}^{2d} + x_{2i-1}^{2d} x_{2i}) = 0, \\
\sum_{i=1}^{u} (x_{2i-1} x_{2i}^{2d} + x_{2i-1}^{2d} x_{2i}) = 0.
\end{align*}
\]
\(j = 2, 3, \ldots, s.\)

Adding the \((j-1) \)-th equation to the \(j \)-th equation in the above system, we arrive at the system (13).
We now deal with the system (10). Adding \(2^{2d}\)-th power of the \((j - 1)\)-th equation to the \(j\)-th equation, we arrive at

\[
\begin{cases}
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{2d} + x_{2i}^{2d}) = 0, \\
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{2(2j-1)d} + x_{2i}^{2(2j-1)d}) = 0, \\
\quad j = 2, 3, \ldots, s.
\end{cases}
\]

Adding the \((j - 1)\)-th equation to the \(j\)-th equation in the above system, we arrive at the system (14).

Finally we deal with the system (11). Inserting \(2^{\frac{m+n}{2}}\)-th power of the first equation to the system, we arrive at the system

\[
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{\frac{m+n}{2}} + x_{2i}^{\frac{m+n}{2}}) = 0, \quad j = 0, 1, 2, \ldots, s.
\]

Adding the \(2^{-d}\)-th power of the \((j - 1)\)-th equation to the \(j\)-th equation in the above system, we arrive at

\[
\begin{cases}
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{\frac{m+n}{2} - jd} + x_{2i}^{\frac{m+n}{2} - jd}) = 0, \\
\sum_{i=1}^{u} (x_{2i-1}x_{2i}^{\frac{m+n}{2} - (j+1)d} + x_{2i}^{\frac{m+n}{2} - (j+1)d}) = 0, \\
\quad j = 1, 2, \ldots, s.
\end{cases}
\]

Adding the \((j - 1)\)-th equation to the \(j\)-th equation in the above system, we arrive at the system (15). Theorem 6.1 is proved. ■

We now prove Theorem 5.1. If \(u = 1\), then \(V_{s,u} = V_{u,u}\) trivially. Now assume that \(u \geq 2\). Suppose that \((x_1, x_2, \ldots, x_{2u})\) belongs to \(V_{u,u}\). We are going to show that \((x_1, x_2, \ldots, x_{2u})\) belongs to \(V_{s,u}\). By induction, we may assume that \(x_{2u} \neq 0\). Then we may further assume that \(x_{2u} = 1\). By Theorem 6.1, \((\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{2u})\) is in \(V_{u-1,u}\). As \(\tilde{x}_{2u} = 0\), we see that \((\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{2u-2})\) is in \(V_{u-1,u-1}\). By induction, \((\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{2u-2})\) is in \(V_{s-1,u-1}\). As \(\tilde{x}_{2u} = 0\), we see that \((\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_{2u})\) is in \(V_{s-1,u}\). By Theorem 6.1, \((x_1, x_2, \ldots, x_{2u})\) belongs to \(V_{s,u}\). Theorem 5.1 is proved.
7 THE NUMBER OF BALANCED SEQUENCES

In this section we prove Theorem 1.3. We have

\[\# \{ c \in C \mid DC(c) = -1 \} \]

\[= 2^{mk} - 1 - \sum_{j=0}^{u-m-2} 2^{m-e-2ej} \sum_{u=j}^{k-2} (-1)^{u-j} 4^e \left(\frac{u-j}{2} \right) \left(\frac{u}{j} \right) 4^e \left(2^{m(k-1-u)} - 1 \right) \]

\[= 2^{mk} - 1 - 2^{m-e} \sum_{u=0}^{k-2} 4^{-eu} \left(\frac{m-e}{u} \right) 4^e \left(2^{m(k-1-u)} - 1 \right) \sum_{j=0}^{u} (-1)^j 4^e \left(\frac{u}{j} \right) 4^e \left(u-j \right) \]

\[= 2^{mk} - 1 - 2^{m-e} \sum_{u=0}^{k-2} 4^{-eu} \left(\frac{m-e}{u} \right) 4^e \left(2^{m(k-1-u)} - 1 \right) \prod_{j=1}^{u} (1 - 4^e j) \]

\[\approx 2^{mk} \left(1 - \sum_{u=0}^{k-2} (-1)^u 2^{-e(u+1)^2} \right). \]

Theorem 1.3 is proved.

Acknowledgement. The author thanks Kai-Uwe Schmidt for telling him the background of this subject.

References

[AL] Y. Aubry, P. Langevin, On the weights of binary irreducible cyclic codes, in Proc. Int. Conf. Cod. Cryptography, 2006, pp. 46-54.

[BMC] L. D. Baumert, R. J. McEliece, Weights of irreducible cyclic codes, Inf. Control, vol. 20, no. 2, pp. 158-175, 1972.

[BMY] L. D. Baumert, J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, DSN Progress Rep., vol. 16, pp. 128-131, 1973.

[Ber] E. R. Berlekamp, The weight enumerators for certain subcodes of the 2nd order Reed-Muller codes, Inf. Contr., 17: 485-500, 1970.

[BEW] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi Sums. New York, NY, USA: Wiley, 1997.

[BMC10] N. Boston, G. McGuire, The weight distributions of cyclic codes with two zeros and zeta functions, J. Symbol. Comput., vol. 45, no. 7, pp. 723-733, 2010.

[De] P. Delsarte, On subfield subcodes of modified reed-solomon codes, IEEE Trans. Inf. Theory, vol. 21, no. 5, pp. 575-576, 1975.

[DG] P. Delsarte, J.-M. Goethals, Alternating bilinear forms over GF(q), J. Comb. Theory (A) 19 (1): 26-50, 1975.
[DLMZ] C. Ding, Y. Liu, C. Ma, L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 8000-8006, 2011.

[DY] C. Ding, J. Yang, Hamming weights in irreducible cyclic codes, Discr. Math., vol. 313, pp. 434-446, 2013.

[FL] K. Feng, J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., vol. 14, no. 2, pp. 390-409, 2008.

[FE] T. Feng, On cyclic codes of length 2^{2r} with two zeros whose dual codes have three weights, Des. Codes Cryptogr., vol. 62, pp. 253-258, 2012.

[FM] T. Feng, K. Momihara, Evaluation of the weight distribution of a class of cyclic codes based on Index 2 Gauss sums, 2012, preprint.

[G66] R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Appl. Math. 14 (5): 980-985, 1966.

[G67] R. Gold, Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inform. Theory 13 (4): 619-621, 1967.

[G68] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inform. Theory 14 (1): 154-156, 1968.

[K66] T. Kasami, Weight distribution formula for some cyclic codes, Univ. of Illinois, Rept. R-265, 1966.

[K71] T. Kasami, Weight enumerators for several classes of subcodes of the 2nd order Reed-Muller codes, Inf. Contr., 18: 369-394, 1971.

[KL] T. Kløve, Codes for Error Detection. Hackensack, NJ, USA: World Scientific, 2007.

[LHFG] S. X. Li, S. H. Hu, T. Feng and G. Ge, The weight distribution of a class of cyclic codes related to Hermitian graphs, IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 3064-3067, 2013.

[LN] R. Lidl H. Niederreuter, Finite Fields. NewYork, NY, USA: Addision-Wesley, 1983.

[LYL] Y. Liu, H. Yan and C. Liu, A class of six-weight cyclic codes and their weight distribution, Des. Codes Cryptogr., to appear.

[LF] J. Luo K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5332-5344, Dec. 2008.

[LTW] J. Luo, Y. Tang, H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2130-2142, May 2010.

[MZLF] C. Ma, L. Zeng, Y. Liu, D. Feng, C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 397-402, Jan. 2011.

[MCE] R. J. McEliece, Irreducible cyclic codes and Gauss sums, in Part 1: Theory of Designs, Finite Geometry and Coding Theory, Math. Centre Tracts, Math. Centrum, ser. Combinatorics: NATO Advanced Study Institute Series. Amsterdam, The Netherlands: Springer, 1974, pp. 179-196.
[MCG] G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., vol. 10, no. 1, pp. 97-104, 2004.

[MO] M. Moisio, The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code, IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 843-847, Feb. 2007.

[MR] M. Moisio, K. Ranto, Kloosterman sum identities and low-weight codewords in a cyclic code with two zeros, Finite Fields Appl., vol. 13, no. 4, pp. 922-935, 2007.

[MY] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., vol. 39, pp. 251-264, 1981.

[RP] A. Rao, N. Pinnawala, A family of two-weight irreducible cyclic codes, IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2568-2570, Jun. 2010.

[SC] R. Schoof, Families of curves and weight distribution of codes, Bull. Amer. Math. Soc., vol. 32, no. 2, pp. 171-183, 1995.

[Sch] K. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory, arXiv: 1410.7184.

[Tr] H. M. Trachtenberg, On the correlation functions of maximal linear recurring sequences, Ph. D. dissertation, Univ. Southern California, Los Angeles, CA, USA, 1970.

[VE] G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4862-4869, Jul. 2012.

[WTQYX] B. Wang, C. Tang, Y. Qi, Y. Yang, M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, vol. 58, no. 12, pp. 7253C7259, Dec. 2012.

[XI12] M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., vol. 18, no. 5, pp. 933-945, 2012.

[XI] M. Xiong, The weight distributions of a class of cyclic codes II, Design Codes Cryptography, to be published.

[YXDL] J. Yang, M. Xiong, C. Ding and J. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inform. Theory, vol. 59, no. 9, pp. 5985-5993, 2013.

[YCD] J. Yuan, C. Carlet, C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 712-717, Feb. 2006.

[ZHJYC] X. Zeng, L. Hu, W. Jiang, Q. Yue, X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., vol. 16, no. 1, pp. 56-73, 2010.

[ZWHZ] D. Zheng, X. Wang, L. Hu, X. Zeng, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl. 16 (5): 933-945, 2012.

[ZDLZ] Z. Zhou, C. Ding, J. Luo, A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory 59 (10): 6674-6682, 2013.