Incidence and Risk Factors for 28 Days Hospital Readmission: A Retrospective Study from Oman

Maitha Al Sibani1, Juhaina Salim Al-Maqbali2, Zainab Yusuf3 and Abdullah Mohammed Al Alawi1,4*

1Internal Medicine Training Program, Oman Medical Specialty Board, Muscat, Oman
2Department of Pharmacy, Sultan Qaboos University Hospital, Muscat, Oman
3College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
4Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman

ABSTRACT

Objectives: We sought to evaluate the incidence of 28-day hospital readmission in a tertiary hospital in Oman and identify potential factors associated with increased risk of hospital readmission. Methods: We conducted a retrospective study of all adult patients (≥ 18 years) admitted under the care of the General Internal Medicine unit from 1 June to 31 December 2020 at Sultan Qaboos University Hospital. elective admissions and COVID-19 infection-related admission were excluded from the study. Results: There were 200 patients admitted during the study period. The mean age was 58.6±19.3 years, and 106 (53.0%) patients were males. Forty-eight (24.0%) patients had unplanned readmission within 28-days after discharge from the hospital. Patients with 28 days unplanned readmission were older (66.6 vs. 56.0 years, \(p < 0.001 \)) and had a longer length of hospital stay (6.0 vs. 4.0 days, \(p < 0.001 \)). Also, hypertension (77.1% vs. 55.3%, \(p = 0.007 \)), diabetes mellitus (64.6% vs. 48.0%, \(p = 0.045 \)), and comorbidity (≥ 3 comorbidities, [43.8% vs. 23.8%, \(p = 0.005 \)]) were more prevalent in the unplanned readmission group. Patients with poor functional status (43.7% vs. 26.3%, \(p < 0.001 \)), requiring feeding tube (25.0% vs. 5.3%, \(p < 0.001 \)), and with polypharmacy (75.0% vs. 50.0%, \(p = 0.003 \)) were at increased risk of readmission. Conclusions: 28-day hospital readmission is prevalent in our health care setting. Old age, polypharmacy, comorbidities, and poor functional status were associated with an increased risk of hospital readmission. Therefore, evidence-based interventions must be implemented in our health care system to minimize the risk of hospital readmission.

Hospital readmission is a frequent health issue associated with increased healthcare costs. In the USA, it has been estimated that the annual cost of 30-day hospital readmission ranges from $17.4 to $44 billion. Several preventable and unpreventable risk factors are associated with increased hospital readmission, including dementia, which is considered a poor outcome and accounts for 25–27% of the readmission in elderly patients. Also, heart failure accounts for 18–24% of readmissions, followed by respiratory failure (13.1%) and renal failure (8.9%). Other factors include the length of hospital stay, polypharmacy (≥ 5 medications), the decline in the functional status, and lack of appropriate transition of care. In addition, lack of patient education and poor understanding of medical issues are also associated with increased risk for hospital readmission. Another unpreventable factor for hospital readmission is the disease progression itself.

The 28-day hospital readmission has numerous financial implications on the health care system, and it is linked with increased short- and long-term mortality regardless of the severity of the patients’ underlying diseases. It is associated with 39% mortality compared to 12% in patients with no readmission episodes. Hospital readmission is an indicator of the quality of a health care system. In the Middle Eastern region, expanding population has overstrained health care resources, including increased pressure on hospital beds. As a result, early and poorly planned hospital discharges might worsen the situation by increasing unplanned hospital readmissions. However, studies on hospital readmission from the Middle Eastern region are sparse. Therefore, the study aims to evaluate the incidence of 28-
day hospital readmission in a tertiary hospital in Oman and identify potential factors associated with increased risk of hospital readmission.

METHODS

In this retrospective study, we included all adult patients (≥ 18 years) admitted under the care of the General Internal Medicine Unit from 1 June to 31 December 2020 at Sultan Qaboos University Hospital (SQUH). We excluded patients with elective admissions and patients admitted with COVID-19 infection. We collected the following data from the index admission: age, sex, comorbidities, diagnosis, length of hospital stay, information on the functional status, information related to medications (number, reconciliation), information related to transfer of care upon discharge, and data related to readmission within 28 days after hospital discharge. We classify the functional status of patients into full independence status (able to carry out activities of daily living without the need for assistance), partial dependence status (can feed, limited mobility at home, and needs assistance with some activities of daily living and personal care), and complete dependence status (bed-bound and need assistance with feeding and all personal care needs).

Hospital readmission rates reported in previous studies ranged between 11% and 24%. Assuming the readmission rate in our health care setting is 15%, then a sample size of 196 patients to study hospital readmission is needed (with a margin error of 5% and 95% CI).

Continuous variables were expressed as mean±SD for normally distributed data or median (interquartile range (IQR)) for non-normally distributed data. We used the Shapiro-Wilk test to assess normality. Differences between the two groups (readmission versus no readmission) were compared using the Student’s t-test for normally distributed variables or Wilcoxon rank-sum for not normally distributed variables. Categorical variables were reported as numbers and percentages, and differences between the two groups were compared using the chi-squared test or Fisher’s exact as appropriate. Two-sided p-values < 0.05 were considered statistically significant. Statistical calculations were performed using the Stata software (StataCorp. 2021. Stata Statistical Software: Release 17. College Station, TX: StataCorp LLC.).

The study was approved by the Medical Research Ethics Committee (MREC) of the College of Medicine and Health Sciences at Sultan Qaboos University (REF. NO. SQU-EC/ 645/2021 MREC #2656).

RESULTS

There were 200 patients admitted during the study period. Clinical characteristics, diagnosis, medications history, and readmission status are summarized in Table 1. The mean age was 58.6±19.3, and 106 (53.0%) patients were males. Also, 56 (28.0%) patients had ≥ 3 comorbidities. There were 43 (21.5%) patients who required full assistance for care (complete dependence). On average, patients took five medications (IQR: 2–7), and polypharmacy was common among the patients (n = 112, 56.0%). Most patients (n = 175, 87.5%) had a care plan summary upon discharge from the hospital. Diseases of the circulatory system were the most common class of diagnoses among the hospitalized cohort [Table 2]. The most common diagnoses were as follows: heart failure (n = 37, 18.5%), pneumonia (n = 27, 13.5%), stroke (n = 25, 12.5%), and urinary tract infection (n = 18, 9.5%).

Out of the total, 48 (24.0%) patients had unplanned readmission within 28 days after discharge from the hospital. Patients with 28-days unplanned readmission were older (66.6 vs. 56.0 years, p < 0.001) and had a longer length of hospital stay (6.0 vs. 4.0 days, p < 0.001). Also, hypertension (77.1% vs. 55.3%, p = 0.007), diabetes mellitus (64.6% vs. 48.0%, p = 0.045), and ≥ 3 comorbidities (43.8% vs. 23.8%, p = 0.005) were more prevalent in the unplanned readmission group. Patients with poor functional status (43.7% vs. 26.3%, p < 0.001), requiring feeding tube (25.0% vs. 5.3%, p < 0.001), and with polypharmacy (75.0% vs. 50.0%, p = 0.003) were at increased risk of readmission. Diseases of the respiratory system category (22.9% vs. 10.5%, p = 0.029) were common in the unplanned readmission group.

DISCUSSION

This study is one of the few studies from the Middle East region studying hospital readmission. It shows that unplanned hospital readmission rates were high in a tertiary care setting.
Table 1: Patient’s characteristics, functional independence status, comorbidity profile, and medications history classified according to unplanned readmission status.

Characteristics	Total cohort N = 200	No-readmission n = 152	Readmission n = 48	p-value
Age, mean ± SD, years	58.6 (19.3)	56.0 (19.8)	66.6 (15.1)	< 0.001
Male	106 (53.0)	83 (54.6)	23 (47.9)	0.418
Length of hospital stay (IQR), days	4.0 (3–7)	4.0 (2–6)	6.0 (4–10)	< 0.001
Comorbidities				
Hypertension	121 (60.5)	84 (55.3)	37 (77.1)	0.007
Diabetes mellitus	104 (52.0)	73 (48.0)	31 (64.6)	0.045
Stroke	34 (17.0)	24 (15.8)	10 (20.8)	0.417
Other neurological diseases	15 (7.5)	11 (7.2)	4 (8.3)	0.760
Chronic heart failure	27 (13.5)	17 (11.2)	10 (20.8)	0.088
End-stage kidney disease	5 (2.5)	3 (2.0)	2 (4.2)	0.595
Dementia	7 (3.5)	3 (2.0)	4 (8.3)	0.058
Chronic liver disease	7 (3.5)	3 (2.0)	4 (8.3)	0.058
Chronic pulmonary disease	16 (8.0)	11 (7.2)	5 (10.4)	0.542
Comorbidities (≥ 3 Comorbidities)	56 (28.0)	35 (23.0)	21 (43.8)	0.005
Functional independence				
Fully independent	139 (69.5)	112 (73.7)	27 (56.3)	< 0.001
Partially dependent	18 (9.0)	17 (11.2)	1 (2.1)	< 0.001
Complete dependence	43 (21.5)	23 (15.1)	20 (41.7)	< 0.001
Tracheostomy	8 (4.0)	4 (2.6)	4 (8.3)	0.096
Feeding tube	20 (10.0)	8 (5.3)	12 (25.0)	< 0.001
Medications				
Number of medications	5.0 (2–7)	4.5 (1–7)	5.0 (4.5–7)	0.0233
Polypharmacy (≥ 5 medications)	112 (56.0)	76 (50.0)	36 (75.0)	0.003
Change in medications	114 (57.0)	87 (57.2)	27 (56.3)	0.904
Care plan summary	175 (87.5)	135 (88.8)	40 (83.3)	0.317

IQR: interquartile range.

Table 2: Patient’s category of diagnosis and the most common diagnosis and the readmission status.

Characteristics	Total cohort N = 200	No-readmission n = 152	Readmission n = 48	p-value
Classification of Primary diagnosis of hospitalization according to ICD-10				
Diseases of the circulatory system	67 (33.50)	49 (32.2)	18 (37.5)	0.500
Diseases of the respiratory system	27 (13.50)	16 (10.5)	11 (22.9)	0.029
Endocrine diseases	21 (10.50)	18 (11.8)	3 (6.3)	0.418
Diseases of the digestive system	18 (9.00)	14 (9.2)	4 (8.3)	1.000
Diseases of the genitourinary system	18 (9.00)	14 (9.2)	4 (8.3)	1.000
Diseases of the nervous system	12 (6.00)	9 (5.9)	3 (6.3)	1.000
Mental and behavioral disorders	9 (4.50)	9 (5.9)	0 (0.0)	0.118
Blood disorders	8 (4.00)	6 (3.9)	2 (4.2)	1.000
Infectious diseases	2 (1.00)	2 (1.3)	0 (0.0)	1.000
Others	18 (9.00)	15 (9.9)	3 (6.3)	0.571
The most common diagnoses				
Heart failure	37 (18.5)	27 (17.8)	10 (20.8)	0.633
Pneumonia	27 (13.5)	16 (10.5)	11 (22.9)	0.029
Stroke	25 (12.5)	18 (11.8)	7 (14.6)	0.617
Urinary tract infection	18 (9.0)	14 (9.2)	4 (8.3)	1.000
Others	93 (46.5)	77 (50.7)	16 (33.3)	
this study identified several factors significantly associated with an increased 28-day readmission rate, including old age, length of hospital stay, hypertension, diabetes mellitus, the presence of ≥ 3 comorbidities, poor functional status, need for a feeding tube, polypharmacy, and patients diagnosed with respiratory system diseases.

We found the 28-days readmission rate was high (n = 48, 24.0%), which is on the higher side of the previously reported readmission rate (11% to 24%).20–24 Different hospital settings could explain the differences in the readmission rate in the previous studies, the use of different definitions of readmission (within 28 days, 30 days, or 90 days, etc.), different patients’ clinical profiles (e.g., oncology patients were excluded from some studies, variable sociodemographic profiles of patients), variable post-discharge health care-and follow-up processes (e.g., availability of early follow-up clinics).24,25

Similar to other studies, the readmitted patients in our cohort were older. Old age is associated with poor health, increased comorbidities, polypharmacy, and reduced functional dependence.3,26,27 Continuity of care interventions, multidisciplinary team approach, medication reconciliation, and a proper transition of care are associated with reduced risk of hospital readmission in old patients.1,28,29

Our study found that a longer length of hospital stay and the presence of ≥ 3 comorbidities were associated with an increased risk of hospital readmission, which is similar to previous studies finding.4,8,30 Longer hospital stay is usually related to patient’s complex medical issues due to comorbidities and lack of social support.31,32 Improving discharge planning, patients and family education, management of comorbidity by targeting the high-risk group, and follow-up arrangements might reduce hospital readmission in patients with a high burden of comorbidities.33–35

Polypharmacy, defined as the use of ≥ 5 medications regularly, was associated with an increased risk of hospital readmission in our cohort. This finding is similar to other studies’ findings, which concluded that poor compliance with medications is linked to the increase in the number of medications patients are getting, increasing the likelihood of adverse drug reactions.9,20,23,36 Additionally, a large-scale cohort study of intensive care unit survivors revealed that polypharmacy is an independent risk factor for hospital readmission.37 A study from the Middle East region showed that lack of patient education is associated with poor compliance to treatment of acute coronary syndrome. Therefore, it was associated with more cardiovascular events and readmissions within one year.38 Old patients with anticipated low health literacy require specialized education during admission and upon discharge to encourage treatment satisfaction and medication adherence. Moreover, medications reconciliation is highly recommended upon discharge,39 along with an early follow-up review to minimize the risk of readmission associated with polypharmacy.36

Among the readmitted patients, 22.9% had a pneumonia diagnosis, which is in line with another study that showed a similar range of readmission (17%–29%).40–42 Patients with multiple comorbidities, including heart failure, chronic obstructive pulmonary disease, diabetes mellitus, and malignancy, are at an increased risk of hospital readmission due to pneumonia.42,43 We believe that careful assessment of the antibiotic treatment, the need for feeding tubes, and annual influenza and pneumococcal vaccinations are the top preventable measures for preventing pneumonia.40,44 Likewise, providing a management plan of the patient’s comorbidities to control their disease significantly reduces the readmission rate.45

Our hospital readmission rate was high, and we have identified several factors associated with an increased risk of unplanned hospital readmission. Implementing a hospital readmission reduction program based on evidence-based approaches is vital to improve the quality of delivered health services and minimize the wastage of healthcare resources associated with unplanned hospital readmission.2–4 Also, the hospital readmission rate should be included as a key performance indicator for all hospital admission services to monitor performance and guide hospital managers on the need to take the necessary intervention.

Evidence-based interventions that have been shown to reduce unplanned hospital readmission include patient education, medication reconciliation, discharge planning, multidisciplinary team approach, scheduling follow-up appointments/telephone calls, and post-discharge home visits.46,47

This study provides important data for health care system managers and stakeholders about the incidence of early hospital discharge in a tertiary hospital in the Middle East, where the
expanding population has overstrained the health care resources. Also, the study provides important insight into the depth of readmission rate and factors associated with increased readmission rate. Overall, this new insight can be used as a base for healthcare planners to intervene to minimize the readmission rate. In addition, it provides evidence-based solutions based on previous medical literature in similar health settings. Also, it represents a starting point to conduct more research work, including interventional trials to explore further solutions appropriate for our health care setting.

Our study is limited by its retrospective nature. It is from a single center for which we have not evaluated the relationship between the financial and quality of health care and hospital readmission. Also, we have not assessed the relationship between readmission and important factors such as patients’ socioeconomic status.

CONCLUSION

28-day hospital readmission is prevalent in our health care setting. Old age, polypharmacy, comorbidities poor functional status were associated with an increased risk of hospital readmission. Therefore, we recommend adopting evidence-based interventions to minimize the risk of hospital readmission. These evidence-based interventions include comprehensive discharge planning for high-risk patients, medication reconciliation, multidisciplinary management of patients with comorbidities, post-discharge follow-up, and appropriate transfer of care upon discharge.

Disclosure
The authors declared no conflicts of interest. No funding was received for this study.

REFERENCES

1. Facchinietti G, D’Angelo D, Piredda M, Petitti T, Matarese M, Oliveti A, et al. Continuity of care interventions for preventing hospital readmission of older people with chronic diseases: a meta-analysis. Int J Nurs Stud 2020 Jan;101:103396.
2. Jenkins SF. Defragmenting care. Ann Intern Med 2010 Dec;153(11):757-758.
3. krames_dec_final.pdf. [cited 2021 Oct 17]. Available from: https://www.bu.edu/fammed/projected/publications/news/krames_dec_final.pdf.
4. Jenkins SF, Williams MV; Coleman EA. Rehospitalizations among patients in the medicare fee-for-service program. N Engl J Med 2009 Apr;360(14):1414-1428.
5. Sakata N, Okumura Y, Fushimi K, Nakanishi M, Ogawa A. Dementia and risk of 30-day readmission in older adults after discharge from acute care hospitals. J Am Geriatr Soc 2018 May;66(5):871-878.
6. Atora S, Patel P, Laawwala S, Patel N, Patel NJ, Thakore K, et al. Etiologies, trends, and predictors of 30-day readmission in patients with heart failure. Am J Cardiol 2017 Mar;119(5):760-769.
7. Morandi A, Belleri G, Vasilevskis EE, Turco R, Guerini F, Torpilises T, et al. Predictors of rehospitalization among elderly patients admitted to a rehabilitation hospital: the role of polypharmacy, functional status, and length of stay. J Am Med Dir Assoc 2013 Oct;14(10):761-767.
8. Glans M, Kragh Ekstam A, Jakobsson U, Bondesson A, Midlov P. Risk factors for hospital readmission in older adults within 30 days of discharge - a comparative retrospective study. BMC Geriatr 2020 Nov;20(1):467.
9. Fabbietti P, Di Stefano G, Moresi R, Cassetta L, Di Rosa M, Fimognarri F, et al. Impact of potentially inappropriate medications and polypharmacy on 3-month readmission among older patients discharged from acute care hospital: a prospective study. Aging Clin Exp Res 2018 Aug;30(8):977-984.
10. Hospital Readmissions Reduction Program (HRRP) | CMS. [cited 2021 Dec 27]. Available from: https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.
11. Arundel C, Lam PH, Khosla R, Blackman MR, Fonarow GC, Morgan C, et al. Association of 30-day all-cause readmission with long-term outcomes in hospitalized older medicare beneficiaries with heart failure. Am J Med 2016 Nov;129(11):1178-1184.
12. Lum HD, Studenski SA, Degenholtz HB, Hardy SE. Early hospital readmission is a predictor of one-year mortality in community-dwelling older Medicare beneficiaries. J Gen Intern Med 2012 Nov;27(11):1467-1474.
13. Robinson T, Kerse N. Medical readmissions amongst older New Zealanders: a descriptive analysis. N Z Med J 2012 Dec;125(1367):24-34.
14. Podulka J, Barrett M, Jiang HJ, Steiner C. 30-day readmissions following hospitalizations for chronic vs. acute conditions, 2008: statistical brief #127. in: healthcare cost and utilization project (HUCP) statistical briefs, rockville (MD): agency for healthcare research and quality (US); 2006 [cited 2021 Dec 27]. Available from: http://www.nchsr.nlm.nih.gov/books/NBK92612/.
15. Axon RN, Williams MV. Hospital readmission as an accountability measure. JAMA 2011 Feb;305(5):504-505.
16. Berenson J, Shih A. Higher readmissions at safety-net hospitals and potential policy solutions. Issue Brief (Commonw Fund) 2012 Dec;34(1):1-6.
17. Zakaria A, Faint CA, Kazkaz S. Readmission rate reduction strategies in general hospital setting. Aging Male 2020 Dec;25(5):1237-1240.
18. Ahmed A, AlBuraidan D, ALMuqbil B, ALJohi W, Alanazi W, ALRashed B. Readmissions and emergency department visits after bariatric surgery at Saudi Arabian hospital; the rates, reasons, and risk factors. Obes Facts 2017;10(5):432-443.
19. Meeraalam ZA, Khan AO. Reasons for unplanned pediatric readmissions at a referral eye center in the Middle East. J AAP 2016 Aug;202(4):362-364.
20. McLean R, Mendis K, Canalese J. A ten-year retrospective study of unplanned hospital readmissions to a regional Australian hospital. Aust Health Rev 2008 Aug;32(3):537-547.
21. Considine J, Fox K, Plunkett D, Mcner M, O Reilly M, Darzins P. Factors associated with unplanned readmissions in a major Australian health service. Aust Health Rev 2019 Feb;43(1):1-9.
22. Considine J, Berry D, Newnham E, Jiang M, Fox K, Plunkett D, et al. Factors associated with unplanned readmissions within 1 day of acute care discharge: a retrospective cohort study. BMC Health Serv Res 2018 Sep;18(1):713.
23. Mudge AM, Shakhovskoy R, Karrasch A. Quality of transitions in older medical patients with frequent readmissions: opportunities for improvement. Eur J Intern Med 2013 Dec;24(8):779-83.

24. Allaudeen N, Vidyardhi A, Maselli J, Auerbach A. Redefining readmission risk factors for general medicine patients. J Hosp Med 2011 Feb;6(2):54-60.

25. Burns R, Nichols LO. Factors predicting readmission of older general medicine patients. J Gen Intern Med 1991 Sep-Oct;6(5):389-393.

26. Basnet S, Zhang M, Lesser M, Wolf-Klein G, Qiu G, Williams M, et al. Thirty-day hospital readmission rate amongst older adults correlates with an increased number of medications, but not with Beers medications. Geriatr Gerontol Int 2018 Oct;18(10):1513-1518.

27. Hirayama A, Goto T, Faridi MK, Camargo CA Jr, Hasegawa K. Age-related differences in the rate and diagnosis of 30-day readmission after hospitalization for acute ischemic stroke. Int J Stroke 2018 Oct;13(7):717-724.

28. Dautzenberg L, Bretagne L, Koek HL, Tsokani S, Zeygiti S, Rodondi N, et al. Medication review interventions to reduce hospital readmissions in older people. J Am Geriatr Soc 2021 Jun;69(6):1646-1658.

29. Rich MW, Vinson JM, Sperry JC, Shah AS, Spinner LR, Chung MK, et al. Prevention of readmission in elderly patients with congestive heart failure: results of a prospective, randomized pilot study. J Gen Intern Med 1993 Nov;8(11):585-590.

30. Conditions with the largest number of adult hospital readmissions by payer. 2011 - statistical brief #172. [cited 2021 Dec 14]. Available from: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb172-Conditions-Readmissions-Payer.jsp.

31. Chopra I, Wilkins TL, Sambamoorthi U. Hospital length of stay and all-cause 30-day readmissions among high-risk Medicaid beneficiaries. J Hosp Med 2016 Apr;11(4):283-288.

32. Rachoin J-S, Aplin KS, Gandhi S, Kupersmith E, Cerceo E. Impact of length of stay on readmission in hospitalized patients. Cureus 2020 Sep;12(9):e10669.

33. Henke RM, Karaca Z, Jackson P, Marder WD, Wong HS. Discharge planning and hospital readmissions. Med Care Res Rev 2017 Jun;74(3):345-368.

34. Brunner-La Rocca H-P, Peden CJ, Soong J, Holman PA, Bogdanovskaya M, Barclay L. Reasons for readmission after hospital discharge in patients with chronic diseases-Information from an international dataset. PLoS One 2020 Jun;15(6):e023457.

35. Bhavnani SK, Dang B, Penton R, Visweswaran S, Bassler KE, Chen T, et al. How high-risk comorbidities co-occur in readmitted patients with hip fracture: big data visual analytical approach. JMIR Med Inform 2020 Oct;8(10):e13567.

36. Picker D, Heard K, Bailey TC, Martin NR, LaRossa GN, Kollef MH. The number of discharge medications predicts thirty-day hospital readmission: a cohort study. BMC Health Serv Res 2015 Jul;15:282.

37. Turnbull AJ, Donaghy E, Salisbury L, Ramsay P, Rattray J, Walsh T, et al. Polypharmacy and emergency readmission to hospital after critical illness: a population-level cohort study. Br J Anaesth 2021 Feb;126(2):415-422.

38. Al-Zakwani I, M Mahry R, Zubaid M, Alsheikh-Ali AA, Almahmeed W, Shehab A, et al. Association between education and major adverse cardiac events among patients with acute coronary syndrome in the Arabian Gulf. BMJ Glob Health 2019 Jan;4(1):e001278.

39. Al-Hashar A, Al-Zakwani I, Eriksson T, Sarakbi A, Al-Zadjali B, Al Muallih S, et al. Impact of medication reconciliation and review and counselling, on adverse drug events and healthcare resource use. Int J Clin Pharm 2018 Oct;40(5):1154-1164.

40. Lindenauer PK, Bernheim SM, Grady JN, Lin Z, Wang Y, Wang Y, et al. The performance of US hospitals as reflected in risk-standardized 30-day mortality and readmission rates for medicare beneficiaries with pneumonia. J Hosp Med 2010 Jul-Aug;5(6):E12-E18.

41. Joynt KE, Orav EJ, Jha AK. Thirty-day readmission rates for Medicare beneficiaries by race and site of care. JAMA 2011 Feb;305(7):679-681.

42. Chen LM, Jha AK, Guterman S, Ridgway AB, Orav EJ, Epstein AM. Hospital cost of care, quality of care, and readmission rates: penny wise and pound foolish? Arch Intern Med 2010 Feb;170(4):340-346.

43. Miller RD, Eng T, Kandilov AM, Cromwell J, McCall N. Readmissions due to hospital-acquired conditions (HACs): multivariate modeling and under-coding analyses. Rapid-cycle Evaluation Group; 2012.

44. De Alba I, Amin A. Pneumonia readmissions: risk factors and implications. Ochsner J 2014;14(4):649-654.

45. Kong CW, Wilkinson TM. Predicting and preventing hospital readmissions for exacerbations of COPD. ERJ Open Res 2020 May;6(2):00325-2019.

46. Hansen LO, Young RS, Hinami K, Leung A, Williams MV. Interventions to reduce 30-day rehospitalization: a systematic review. Ann Intern Med 2011 Oct;155(8):520-528.

47. Krippalani S, Theobald CN, Anctil B, Vasilievskis EE. Reducing hospital readmission rates: current strategies and future directions. Annu Rev Med 2014;65:471-485.