Chargino Production via Z^0-Boson Decay in a Strong Electromagnetic Field

Alexander Kurilin**

Moscow Technological Institute on leave from Moscow State Open Pedagogical University, Moscow 119334, Russia

(Received 23 November 2015)

In the framework of MSSM the probability of Z^0-boson decay to charginos in a strong electromagnetic field, $Z^0 \rightarrow \chi^+\chi^-$, is analyzed. The method of calculations employs exact solutions of relativistic wave equations for charginos in a crossed electromagnetic field. Analytic expression for the decay width $\Gamma(Z^0 \rightarrow \chi^+\chi^-)$ is obtained at an arbitrary value of the parameter $\kappa = e m_Z^2 \sqrt{(F_{\mu\nu}q^\nu)^2}$, which characterizes the external-field strength $F_{\mu\nu}$ and Z^0-boson momentum q^ν. The process $Z^0 \rightarrow \chi^+\chi^-$ is forbidden in a vacuum for the case of relatively heavy charginos: $M_{\chi^+} > m_Z/2$. However, in an intense electromagnetic background this reaction could take place in the region of superstrong fields ($\kappa > 1$).

PACS: 13.38.Dg, 13.40.Hq, 14.80.Nb

DOI: 10.1088/0256-307X/33/3/031301

Minimal supersymmetric extension of the standard model (MSSM)[1] is a neat solution of the famous hierarchy problem[2] and it predicts a number of new particles to be discovered. In this large family of hypothetical ‘superparticles’ there are charginos χ_1^\pm, χ_2^\pm which arise as a mixture of winos \tilde{W}^\pm, the spin-1/2 superpartners of the gauge W^\pm bosons, and Higgsinos \tilde{H}^\pm, the fermion superpartners of the two scalar Higgs fields which break spontaneously the electroweak symmetry. Vacuum expectation values v_1 and v_2 of the two Higgs fields can be characterized by the angle β which is defined as usual by the ratio: $\tan \beta = v_2/v_1$. Chargino masses can be expressed in terms of the fundamental supersymmetry (SUSY) parameters M_2 and μ,

$$M_{\chi^\pm}^2 = \frac{1}{2}(\mu^2 + M_2^2 + 2m_W^2 \mp \Delta),$$

where m_W is the W-boson mass and the quantity Δ determines the difference between the squares of chargino masses ($M_{\chi^2} > M_{\chi^1}$),

$$\Delta = M_{\chi^2}^2 - M_{\chi^1}^2 = [(\mu^2 + M_2^2 + 2m_W^2) - 4(\mu M_2 - m_W^2 \sin 2\beta)^2]^{1/2}.$$ (2)

For the sake of simplicity in present calculations it is assumed that the Higgs mass parameter μ and the $SU(2)$ gaugino masses M_2 arising in the Lagrangian of MSSM with other soft SUSY-breaking terms are real.

In the leading order of perturbation theory the matrix element of Z^0-boson decay to a pair of the lighter charginos, χ_1^\pm, is given by

$$S_{fi} = i \int d^4x \bar{\chi}_1(x,p)\gamma^\mu(g_{\nu 1} + \gamma^\nu g_{A1}) \cdot \chi_1^\pm(x,p')Z_{\mu\nu}(x,q),$$ (3)

where the vertex of Z^0-boson and χ_1^\pm-chargino couplings can be described by the two constants

$$g_{\nu 1} = \frac{g}{8 \cos \theta_W}(2 - 8 \cos^2 \theta_W - \cos 2\phi_R - \cos 2\phi_L),$$ (4)

$$g_{A1} = \frac{g}{8 \cos \theta_W}(\cos 2\phi_R - \cos 2\phi_L).$$ (5)

The two angles ϕ_R and ϕ_L define the relationship among charginos, winos and Higgsinos, and can be computed from

$$\cos 2\phi_R = \frac{\mu^2 - M_2^2 - 2m_W^2 \cos 2\beta}{\Delta},$$ (6)

$$\cos 2\phi_L = \frac{\mu^2 - M_2^2 + 2m_W^2 \cos 2\beta}{\Delta},$$ (7)

where the Weinberg angle θ_W determines the usual relationship between W-boson and Z-boson masses: $\cos \theta_W = m_W/m_Z$.

The method of calculations in this work is based on the crossed-field model, which was successfully applied in our previous investigations dealing with W^\pm and Z^0-bosons decays[3,4] and with SUSY processes in background electromagnetic fields[5,6]. The main idea of this approach is to describe interactions with an external electromagnetic background by choosing specific wave functions $\chi^\pm(x,p)$ and $\chi^\mp(x,p')$ for charginos χ^\pm, which are exact solutions of the Dirac equation in a crossed electromagnetic field. This method makes it possible to take into account the non-perturbative interactions with the electromagnetic background and to obtain results for new reactions which are forbidden in a vacuum (for a review see, for example, Ref.[7] and references therein).

The processes of chargino production via W^\pm and Z^0-bosons decays in a vacuum have been considered by many researchers.[8] However, present experimental limits on chargino masses[9] evidence that the reaction $Z^0 \rightarrow \chi^\mp\chi^\pm$ is forbidden under usual conditions and it inspires us to study the impact of strong electromagnetic fields on the decays mentioned above. The wave

** Corresponding author. Email: kurilin@mail.ru

© 2016 Chinese Physical Society and IOP Publishing Ltd

031301-1
functions for charginos in a background electromagnetic field, in which case the field-strength tensor \(F_{\mu \nu} \) obeys the conditions
\[
F_{\mu \nu} F^{\mu \nu} = F_{\mu \nu} \tilde{F}^{\mu \nu} = 0. \tag{8}
\]
The explicit form of the wave functions is rather cumbersome and it can be found, for example, in Refs. [4,10]. Substituting the chargino wave functions into Eq. (3) for the S-matrix element and performing integration of \(|S_{fi}|^2 \) over the phase space we can obtain the decay width of Z-boson into a pair of the lighter charginos \(\chi_1^\pm \),
\[
\Gamma(Z^0 \to \chi_1^+ \chi_1^-) = \frac{G_F m_Z^3 c_1 (1 + \delta_1)}{96\sqrt{2}\pi^2} \int_0^\infty du \frac{2\rho^2/3}{[u(1-u)]^{1/3}} \left[1 - 2u + 2u^2 + (1 - \rho_1)\lambda_1 \right] \Phi_1(z_1) \tag{9}
\]
This equation concerning the process of chargino production in a crossed electromagnetic field is expressed in terms of the Airy functions \(\Phi(z) \) and \(\Phi_1(z) \), which have the well-known integral representations
\[
\Phi(z) = \int_0^\infty \cos(zt + \frac{t^3}{3}) dt, \tag{10a}
\]
\[
\Phi_1(z) = \int_0^\infty \Phi(t) dt, \quad \Phi'(z) = \frac{d\Phi(z)}{dz}. \tag{10b}
\]
These functions depend on the argument
\[
z_1 = \frac{\lambda_1 - u(1-u)}{[xu(1-u)]^{2/3}}, \tag{11}
\]
which characterizes the electromagnetic-field-strength \(F_{\mu \nu} \) and Z-boson momentum \(q_0 \) through the following invariant parameter
\[
\kappa = \frac{e}{m_Z} \sqrt{-\langle F_{\mu \nu} q_\nu \rangle^2}. \tag{12}
\]
The other dimensionless parameters in Eq. (9) \(\lambda_1, \rho_1 \) and \(\delta_1 \) are associated with chargino masses (Eq. (1)) and the coupling constants (Eqs. (4) and (5)),
\[
\lambda_1 = \left(\frac{M_{\chi_1}}{m_Z} \right)^2, \quad c_1 = (\cos 2\phi_R + \cos 2\phi_L + 8 \cos^2 \theta_W - 2)^2, \quad \rho_1 = \frac{1 - \delta_1}{1 + \delta_1}, \quad \delta_1 = \left(\frac{\cos 2\phi_R - \cos 2\phi_L}{\cos 2\phi_R + \cos 2\phi_L + 8 \cos^2 \theta_W - 2} \right)^2. \tag{13}
\]
Let us now consider asymptotic estimates of the Z-boson partial decay width \(\Gamma(Z^0 \to \chi_1^+ \chi_1^-) \) in a crossed electromagnetic field at various values of the parameter \(\kappa \) (Eq. (12)). In the domain of relatively weak fields the \(Z^0 \)-boson decay width into a pair of lighter charginos can be described by
\[
\Gamma(Z^0 \to \chi_1^+ \chi_1^-) = G_F m_Z^3 c_1 (1 + \delta_1) \lambda_1 (5\rho_1 + 1 + 8\lambda_1 (1 - \rho_1) 64\pi \sqrt{(4\lambda_1 - 1)\lambda_1 + 1} \times \kappa \exp \left[-\frac{(4\lambda_1 - 1)^{3/2}}{3\pi} \right]. \tag{15}
\]
We can see that the decay rate is exponentially suppressed at weak fields which is typical for processes forbidden in a vacuum. For numerical calculations presented in the following we employ the following parameters
\[
\tan \beta = 5, \quad M_2 = 200 \text{ GeV}, \quad \mu = 250 \text{ GeV}.
\]
This choice corresponds to chargino masses \(M_{\chi_1} = 158 \text{ GeV} \) and \(M_{\chi_2} = 301 \text{ GeV} \), which can be easily obtained from Eqs. (1) and (2). In the area of relatively small values of the field-strength parameter \(\kappa \) the partial decay width \(\Gamma(Z^0 \to \chi_1^+ \chi_1^-) \) into lighter charginos grows monotonously reaching the value \(\Gamma_{\chi_1} \approx 7 \text{ MeV} \) at \(\kappa = 3 \). The exact results of calculations are displayed in Fig. 1 for the region \(\kappa \leq 3 \), where the probability of \(Z^0 \)-boson decay into a pair of heavier charginos \(Z^0 \to \chi_2^+ \chi_2^- \) is negligibly small due to the large mass differences between \(\chi_2^\pm \) and \(\chi_1^\pm \). However in strong fields the \(Z^0 \)-boson decays into heavier charginos \(\chi_2^\pm \) become sizable and should be taken into account.

The decay width for the process \(Z^0 \to \chi_2^+ \chi_2^- \) can be obtained from Eq. (9) by formal substitutions \(\lambda_1 \to \lambda_2, \quad c_1 \to c_2, \quad \rho_1 \to \rho_2 \) and \(\delta_1 \to \delta_2 \),
\[
\lambda_2 = \left(\frac{M_{\chi_2}}{m_Z} \right)^2, \quad c_2 = (\cos 2\phi_R + \cos 2\phi_L - 8 \cos^2 \theta_W + 2)^2, \quad \rho_2 = \frac{1 - \delta_2}{1 + \delta_2}, \quad \delta_2 = \left(\frac{\cos 2\phi_R - \cos 2\phi_L}{\cos 2\phi_R + \cos 2\phi_L - 8 \cos^2 \theta_W + 2} \right)^2. \tag{16}
\]
In the domain \(\kappa \gg 10 \) the partial decay widths of \(Z^0 \)-boson into charginos \(\chi_i^\pm, i = 1, 2 \) can be estimated by
\[
\Gamma(Z^0 \to \chi_i^+ \chi_i^-) = G_F m_Z^3 c_1 (1 + \delta_i) \quad \frac{15\Gamma^4(2/3)}{14\pi^2} \left(3\kappa \right)^{2/3} \left(3\kappa \right)^{-2/3} + \frac{3\Gamma^4(1/3)}{110\pi^2} \left(3\kappa \right)^{-2/3} + \frac{9\Gamma^4(2/3)}{104\pi^2} \left(3\kappa \right)^{-4/3}. \tag{17}
\]
Now we can analyze chargino contribution to the total decay width of \(Z^0 \)-boson in a background electromagnetic field. In the standard model the \(Z^0 \)-boson
decay width Γ_Z into quarks and leptons in a strong electromagnetic field depends on the background field-strength parameter κ: $\Gamma_Z = \Gamma_{\text{tot}}(\kappa)$ and it was previously calculated in our study.[4] Relying on these studies it is possible to obtain branching ratios of Z^0-boson decay into charginos $B(Z^0 \to \chi^+\chi^-) = \Gamma(Z^0 \to \chi^+\chi^-)/\Gamma_{\text{tot}}(\kappa)$ in a background electromagnetic field. Numerical calculations based on Eq. (9) are presented in Fig. 2. We can see that the processes of chargino production can be significant in strong fields and it can give a sizable contribution to the total decay width of Z^0-boson. In superstrong fields the branching ratio of decays into lighter charginos $B(Z^0 \to \chi^+_1\chi^-_1)$ is about 16% while the branching ratio of decays into heavier ones $B(Z^0 \to \chi^+_2\chi^-_2)$ can reach the values of about 8%. It is worth mentioning that the main contribution to the total decay width of Z^0-boson in the domain $\kappa > 10$ comes from the processes associated with heavy quarks. The leptonic decay mode $Z^0 \to \ell^+\ell^-$ in this region has a branching ratio of about 4%.[5]

Thus summarizing the results obtained above we can see that external electromagnetic fields can change drastically the physics of quantum processes in a vacuum and serve as a catalyst for new phenomena and new physics. As the external-field strength increases, SUSY-decay modes of Z^0-boson could become observable, and charginos χ^{\pm}_i predicted in the framework of MSSM could be detected. Although external-field strengths necessary for direct observation of the processes $Z^0 \to \chi^+_i\chi^-_j$ are not yet available in experiments, there are promising expectations to realize similar extreme conditions in high intensity laser interactions[1] or in physics of single crystals.[12] The desired field-strength H (or E) which is necessary for such experiments is extremely high $H > 10^{20}$ Gs. Thus the key question is whether or not we could obtain similar conditions anywhere to observe these unusual physics phenomena.

References

[1] Nilles H P 1984 Phys. Rep. 110 1
Haber H E and Kane G L 1985 Phys. Rep. 117 75
Martin S P 1997 arXiv:hep-ph/9709356
[2] Witten E 1981 Nucl. Phys. B 188 513
Kaul R K and Majumdar P 1982 Nucl. Phys. B 199 36
[3] Kurilin A V 2004 Yad. Fiz. 76 2116 (in Russian)
Kurilin A V 2004 Phys. At. Nucl. 67 2095
[4] Kurilin A V 2009 Yad. Fiz. 72 1078 (in Russian)
Kurilin A V 2009 Phys. At. Nucl. 72 1034
[5] Kurilin A V 1990 Phys. Lett. B 249 455
Kurilin A V 1994 Int. J. Mod. Phys. A 9 4581
Kurilin A V and Ternov A I 1996 Phys. Lett. B 381 185
[6] Kurilin A V and Ternov A I 2000 Yad. Fiz. 63 1944 (in Russian)
Kurilin A V and Ternov A I 2000 Phys. At. Nucl. 63 1855
Kurilin A V and Ternov A I 1996 Pis’ma Zh. Eksp. Teor. Fiz. 63 305 (in Russian)
Kurilin A V and Ternov A I 1996 JETP Lett. 63 311
Kurilin A V 1994 Yad. Fiz. 57 1129 (in Russian)
Kurilin A V 1994 Phys. At. Nucl. 57 1066
[7] Borisov A V, Vshivtsev A S, Zhukovsky V Ch and Eminov P A 1997 Uspekhi Fiz. Nauk 167 241 (in Russian)
Borisov A V, Vshivtsev A S, Zhukovsky V Ch and Eminov P A 1997 Phys. Usp. 40 229
[8] Fayet P 1983 Phys. Lett. B 125 178
Fayet P 1983 Phys. Rev. Lett. B 133 363
Weinberg S 1983 Phys. Rev. Lett. 50 387
Kalinowski J and Zerwas P M 1997 Phys. Lett. B 400 112
[9] Olive K A et al 2014 Chin. Phys. C 38 090001
[10] Kurilin A V 1999 Nuovo Cimento A 112 977
[11] Piazza A Di, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
Müller S J, Keitel C H and Müller C 2014 Phys. Rev. D 90 094008
[12] Baier V N, Katkov V M and Strakhovenko V M 1998 Electromagnetic Processes at High Energies in Oriented Single Crystals (Singapore: World Scientific)