Visible spectroscopy of 2003 UB$_{313}$: Evidence for N$_2$ ice on the surface of the largest TNO?

J. Licandro1,2, W.M. Grundy3, N. Pinilla-Alonso4, and P. Leisy1

licandro@ing.iac.es

Received ____________; accepted ____________

1Isaac Newton Group, P.O.Box 321, E-38700, Santa Cruz de La Palma, Tenerife, Spain.

2Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E38205, La Laguna, Tenerife, Spain.

3Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001-4470.

4Fundación Galileo Galilei & Telescopio Nazionale Galileo, P.O.Box 565, E-38700, S/C de La Palma, Tenerife, Spain.
ABSTRACT

The recent discovery of two large trans-Neptunian objects (TNOs) 2003 UB$_{313}$ and 2005 FY$_9$, with surface properties similar to those of Pluto, provides an exciting new laboratory for the study of processes considered for Pluto and Triton: volatile mixing and transport; atmospheric freeze-out and escape, ice chemistry, and nitrogen phase transitions.

We studied the surface composition of TNO 2003 UB$_{313}$, the first known TNO larger than Pluto.

We report a visible spectrum covering the 0.35-0.95µm spectral range, obtained with the 4.2m William Herschel Telescope at “El Roque de los Muchachos” Observatory (La Palma, Spain).

The visible spectrum of this TNO presents very prominent absorptions bands formed in solid CH$_4$. At wavelengths shorter than 0.6 µm the spectrum is almost featureless and slightly red (S'=4%). The icy-CH$_4$ bands are significantly stronger than those of Pluto and slightly weaker than those observed in the spectrum of another giant TNO, 2005 FY$_9$, implying that methane is more abundant on its surface than in Pluto’s and close to that of the surface of 2005 FY$_9$. A shift of 15 ±3 Å relative to the position of the bands of the spectrum of laboratory CH$_4$ ice is observed in the bands at larger wavelengths (e.g. around 0.89 µm), but not at shorter wavelengths (the band around 0.73 µm is not shifted) this may be evidence for a vertical compositional gradient. Purer methane could have condensed first while 2003 UB$_{313}$ moved towards aphelion during the last 200 years, and as the atmosphere gradually collapsed, the composition became more nitrogen-rich as the last, most volatile components condensed, and CH$_4$ diluted in N$_2$ is present in the outer surface layers.
1. Introduction

The trans-Neptunian region is populated by icy bodies (TNOs), remnant planetesimals from the early solar system formation stages (Edgeworth (1949); Kuiper (1951)). TNOs are the source of the short period comets (Fernández (1980)) and are probably the most pristine objects in the Solar System. The low temperatures in this region (∼40K), implies that ices trapped at formation should be preserved and can provide key information on the composition and early conditions of the pre-solar nebula.

The recent discovery of three very bright TNOs, 2003 EL_{61} (Ortiz et al. (2005)), 2003 UB_{313} and 2005 FY_{9} (Brown et al. (2005a), (2005b)) provides an excellent opportunity to obtain spectra of TNOs with sufficient S/N to obtain reliable mineralogical information of their surfaces.

The spectra of three of the four largest members of the trans-neptunian belt, 2003 UB_{313}, Pluto, and 2005 FY_{9} are dominated by strong methane ice absorption bands (Cruikshank et al. (1993), Brown et al. (2005a), Licandro et al. (2006)) Pluto also presents weak but unambiguous signatures of CO and N_{2}-ice (e.g. Cruikshank (1998)). These bands are also detected in the spectrum of Neptune’s satellite Triton (Cruikshank et al. (1993)), a possibly captured ex-TNO. The presence of frozen methane on the surfaces of Pluto, Triton, 2005 UB313 and 2005 FY_{9} argues that the process suggested by Spencer et al. ((1997)) in which surface methane is replenished from the interior, may be ubiquitous in large trans-neptunian objects. 2005 FY_{9} and 2003 UB_{313} provide an exciting new laboratory for the study of processes considered for Pluto and Triton: volatile mixing and transport; atmospheric freeze-out and escape, ice chemistry, and nitrogen phase transitions. In particular the abundance of volatiles like CO and N_{2} is important to determine the possible presence of a bound atmosphere and constrain the formation conditions.

TNO 2005 UB_{313} is the largest known object in the trans-neptunian belt, with a surface albedo higher than that of Pluto (2400+/−100 km or a size ∼5% larger than Pluto, and p_V=86 ±7 %, Brown et al. (2006)). Discovered near aphelion at 97.50 AU, it will take some 2 centuries to
reach its perihelion at 38.2 AU. This huge variation in heliocentric distance causes large seasonal temperature variations that should affect the sublimation and recondensation of its surface volatiles.

In this paper we present visible spectroscopy of 2005 UB\textsubscript{313} and compare it with spectra of Pluto and 2005 FY\textsubscript{9} (Licandro et al. (2006)) in order to derive mineralogical information from its surface.

2. Observations

We observed 2003 UB\textsubscript{313} on 2005 October 20.03 UT with the 4.2m William Herschel telescope (WHT) at the “Roque de los Muchachos Observatory” (ORM, Canary Islands, Spain), under photometric conditions. The TNO had heliocentric distance 95.94 AU, geocentric distance 96.90 AU and phase angle 0.2\degree.

The visible spectrum (0.35-0.95 \textmu m) was obtained using the low resolution gratings (R300B in the blue arm, with a dispersion of 0.86\AA/pixel, and the R158R with a dispersion of 1.63 \AA/pixel) of the double-armed spectrograph ISIS at WHT, and a 2” wide slit oriented at the parallactic angle to minimize the spectral effects of atmospheric dispersion. The tracking was at the TNO proper motion. Six 600s spectra were obtained by shifting the object by 10” in the slit to better correct the fringing. Calibration and extraction of the spectra were done using IRAF and following standard procedures (Massey et al. (1992)). The six spectra of the TNO were averaged. The reflectance spectrum was obtained by dividing the spectrum of the TNO by the spectrum of the G2 star Landolt (SA) 93-101 (Landolt (1992)) obtained the same night just before and after the observation of the TNO at a similar airmass.

The final reflectance spectrum, normalized at 0.6 \textmu m is plotted in Fig. 1 together with spectra of TNOs Pluto and 2005 FY\textsubscript{9}. The spectrum of 2003 UB\textsubscript{313} presents all the methane ice
absorption bands in this wavelength range reported by Grundy et al. ((2002)), even the weaker ones, and a slightly red slope, and it is very similar to the spectrum of Pluto and 2005 FY$_9$.

3. Discussion

The depth of the CH$_4$ ice absorption bands depends on its abundance, texture, and/or the thickness of the methane-rich surface layer. Licandro et al. ((2006)) noted that the near-infrared spectrum of TNO 2005 FY$_9$ is very similar to the near-infrared spectrum of 2003 UB$_{313}$ reported by Brown et al. ((2005c)). The infrared bands in the spectrum of 2005 FY$_9$ are deeper than the same bands in Pluto’s spectrum (Licandro et al. (2006)), which suggest that either the abundance of methane ice on the surface of 2005 FY$_9$ is larger than on Pluto’s surface, and/or the size of methane ice grains (or the thickness of the methane-rich surface layer) is larger than that in Pluto’s surface. Unfortunately the low spectral resolution of the near-infrared spectrum of 2005 FY$_9$, and the S/N of the near-infrared spectrum of 2003 UB$_{313}$, do not permit accurate measurements of band depths and central wavelengths of the CH$_4$ bands. Licandro et al. ((2006)) also reported that the prominent bands at 0.73μm and 0.89μm are ~6 and ~3 times deeper respectively in the spectrum of 2005 FY$_9$ than in Pluto’s spectrum, while bands in the near infrared spectrum are only <2 times deeper, concluding that light reflected from 2005 FY$_9$ samples larger mean optical path lengths in CH$_4$ ice than light from Pluto does.

The depths of the CH$_4$ bands at 0.73μm and 0.89μm in the spectrum of 2003 UB$_{313}$ are also greater than the same bands in the spectrum of Pluto (see Fig. 2), but slightly weaker than those in the spectrum of 2005 FY$_9$. The 0.73μm and 0.89μm bands are 1.9 and 1.1 times deeper, respectively, in the spectrum of 2005 FY$_9$ than in the spectrum of 2003 UB$_{313}$. We conclude that light reflected from 2003 UB313 requires mean optical path lengths in CH$_4$ ice somewhere between the values for Pluto and for 2005 FY9. Compared with Pluto, larger grain sizes on the surface of 2003 UB$_{313}$ and 2005 FY$_9$ would accomplish this, as would higher CH$_4$ concentrations.
dissolved in nitrogen ice. Broader geographic distribution of CH$_4$ ice on 2003 UB$_{313}$ and 2005 FY$_9$ could contribute as well, since Pluto’s CH$_4$ ice is inhomogeneously distributed (Grundy & Buie (2001)). Also the grain size and concentration of CH$_4$ seems to be larger in 2005 FY$_9$ than in 2003 UB$_{313}$.

In order to illustrate and give support to the previous discussion, spectra of methane ice grains of different size were produced using the one-dimensional geometrical-optics formulation by Shkuratov et al. (1999) and the optical constants of CH$_4$ ice from Grundy et al. (2002), and compared with the spectra of 2003 UB$_{313}$, 2005 FY$_9$, and Pluto around the 0.73 and 0.89 µm spectral bands (see Fig. 2). With this comparison we do not pretend to produce mineralogical models of the surface of these TNOs. The 0.73 µm band of 2003 UB$_{313}$, 2005 FY$_9$ and Pluto are closely reproduced using 1.5, 4.5, and 0.5cm grains, respectively. The 0.89µm band of 2003 UB$_{313}$, 2005 FY$_9$ and Pluto is better fitted with 1.5, 2.5 and 0.5cm grains respectively. As expected, larger grains are needed to reproduce the bands observed in the spectrum of 2005 FY$_9$ than in the spectrum of 2003 UB$_{313}$ and both are larger than the grains used to reproduce the spectrum of Pluto. In the case of 2005 FY$_9$, smaller grains are needed to reproduce the 0.89µm band than the 0.73µm band. Licandro et al. (2006) found that the weaker CH$_4$ bands at shorter wavelengths require very large path lengths in CH$_4$ ice, since absorption by those bands is much weaker than the stronger, near-infrared bands, which require relatively little CH$_4$ to produce deep absorption bands. Consequently, the shorter wavelengths are particularly sensitive to regions having the most abundant CH$_4$ ice. Different grain sizes are not used to reproduce the 0.73µm and 0.89µm bands observed in the spectrum of 2003 UB$_{313}$, but notice that the fit of the 0.89µm band is not as good as that of the 0.73µm one. In particular, the center of the 0.89µm band is clearly shifter to shorter wavelengths relative to the modeled pure CH$_4$ ice spectrum.

The shift of the CH$_4$ ice absorption bands relative to the wavelengths of pure methane ice absorption bands is another very important property as can be indicative of dilution of CH$_4$ in
N\textsubscript{2} ice. Pluto’s CH\textsubscript{4} bands are seen to be partially shifted to shorter wavelengths relative to the wavelengths of pure methane ice absorption bands, indicating that at least some of the methane ice on Pluto’s surface is diluted in N\textsubscript{2} (Quirico et al. (1997), Schmitt et al. (1998), Douté et al. (1999)).

Central wavelengths of the two deeper methane ice bands in the visible spectrum of 2003 UB\textsubscript{313} were obtained by fitting a gaussian around the bands, and are presented in Table 1. While the \(3\nu_{1} + 4\nu_{4}\) band is centered at 7296 Å, very close to the laboratory data, the \(2\nu_{1} + \nu_{3} + 2\nu_{4}\) is at 8881 Å shifted by 16 Å from the position of pure methane ice. To verify the wavelength calibration of the spectrum, we measured the position of the bright sky lines, and the uncertainties are smaller than 1 Å. As the method used to determine the central wavelengths by fitting gaussians depends on the spectral region considered around the minimum, we also obtained the shifts by an auto-correlation against the model spectrum of pure CH\textsubscript{4} in the spectral regions shown in Fig. 2. Shifts of -1 and 15 ± 3 Å were obtained in the case of 2003 UB\textsubscript{313} for the 0.73 and 0.89 \(\mu\)m bands respectively, while shifts of 2 and 5 ± 5 were obtained for 2005 FY\textsubscript{9}.

The band at 0.89 \(\mu\)m presents another characteristic that supports the detection of CH\textsubscript{4} diluted in N\textsubscript{2} ice. In Fig. 3 we present the spectrum around the band and the spectrum of pure CH\textsubscript{4} shifted by 15 pixels. Notice that the width of the band in the spectrum of 2003 UB\textsubscript{313} is smaller than the width of the band in the spectrum of pure CH\textsubscript{4} ice. This is what happens if the absorption is due to the monomer of CH\textsubscript{4} (Quirico & Schmitt (1997)) as in dilutions of CH\textsubscript{4} on N\textsubscript{2} at low concentrations. Brown et al. ((2005c)) measured the central wavelengths of several bands in their near-infrared spectrum of 2003 UB\textsubscript{313} and compared them to the position of pure methane at 30K and methane diluted in N\textsubscript{2} ice from Quirico & Schmitt ((1997)) laboratory measurements. They obtained a mean shift of the four better defined methane bands of 15 ± 5 Å and concluded that while a small amount of dissolved methane may be present, the band positions suggest that the majority of methane is in essentially pure form. In the case of Pluto, Rudy et al. ((2003))
reported shifts in the near-infrared that are very similar to that in the 0.89\,\mu m band. Considering the uncertainties, the shifts reported by Brown et al. (2005c) are not necessarily discrepant with our measurements. An unshifted methane band can correspond either to pure methane ice or CH$_4$ diluted in N$_2$ ice at a relatively high concentration (Quirico & Schmitt 1997).

The shift observed at larger wavelengths, but not at shorter wavelengths, observed in the spectrum of 2003 UB$_{313}$, could be evidence for a vertical compositional gradient. The weaker bands are formed on average more deeply within the surface than the cores of the stronger bands are. If the weak bands look un-shifted and the strong bands look shifted, that could indicate that purer methane condensed first, and, as the atmosphere gradually collapsed while 2003 UB$_{313}$ moved towards aphelion during the last two centuries, the composition became more nitrogen-rich as the last, most volatile components condensed. N$_2$ is much more volatile than CH$_4$ and so should survive in gaseous state to lower temperatures than CH$_4$ would as 2003 UB$_{313}$ moves away from perihelion and cools.

CO and N$_2$ ices have indisputably detected in Pluto’s spectrum (Owen et al. (1993)). The hexagonal β phase of N$_2$ ice was detected by means of its 2.15 μm absorption band and CO ice was detected by means of a pair of narrow bands at 2.35 and 1.58 μm. The spectral S/N of the spectrum of 2003 UB$_{313}$ (Brown et al. (2005c)) is not sufficient to see the CO absorptions. The N$_2$ band would also be difficult to detect, even if N$_2$ were a major component of the surface of 2003 UB$_{313}$, because the nitrogen absorption has about a factor of a thousand smaller peak absorption coefficient than that of the nearby CH$_4$ band at 2.2 μm, which dominates that spectral region. It is also possible that surface temperatures on 2003 UB$_{313}$ might be below the 35.6 K transition temperature between the warmer β phase of N$_2$ ice, and the colder, cubic α phase of N$_2$ ice, which has an extremely narrow 2.15 μm absorption, which would be unresolved in Brown et al. (2005c) data (e.g., Grundy et al. (1993)). Future, higher spectral resolution observations will put more constraints on the presence of N$_2$ and CO ice on the surface of 2003 UB$_{313}$.
A final important characteristic of the spectrum is its colour. The surface of 2003 UB$_{313}$ is slightly red. To compare with Pluto we computed the ratio of the reflectance spectrum at 0.825 and 0.590 μm as in Grundy & Fink ((1996)). The value of this ratio is 1.10, and corresponds to a spectral slope S'=4 %/1000Å. Pluto and 2005 FY$_9$ present a slightly redder spectrum, with a ratio of 1.20 and 1.21 respectively (S'=8.8 and 8.9 %/1000Å, Licandro et al. (2006)). The most accepted hypothesis to explain the red colour of Pluto is the existence of complex organics molecules (tholins) formed from simple organics by photolysis (e.g. Khare et al. (1984)). Thus tholins should be less abundant in 2003 UB$_{313}$ than in Pluto and 2005 FY$_9$.

4. Conclusions

We present a new 0.35-9.4μm spectrum of the TNO 2003 UB$_{313}$. The spectrum is very similar to that of Pluto, with prominent CH$_4$ ice absorptions bands. At wavelengths $< 0.6\mu$m the spectrum is almost featureless and slightly red (S'=4±1%/1000Å) supporting the existence of complex organics molecules (tholins) on its surface. The visible spectrum of 2003 UB$_{313}$ is not as red as spectra of Pluto and 2005 FY$_9$ (S'=8.8 and 8.9 %/1000Å respectively), thus complex organics should be less abundant on the surface of 2003 UB$_{313}$ than on the surfaces of Pluto and 2005 FY$_9$.

The CH$_4$ ice bands in this new giant TNO are significantly stronger than those of Pluto, but weaker than those observed in the spectrum of 2005 FY$_9$ (Licandro et al. (2006)). Methane is more abundant and/or the methane ice grain particles (or the thickness of the surface ice layer) are larger on its surface than on the surface of Pluto, and less abundant or composed of smaller grains than on the surface of 2005 FY$_9$.

A 15 Å shift of the central wavelength of the 0.89μm band relative to the pure methane band observed in the laboratory is observed. This shift is indicative of the presence of methane diluted
in N\textsubscript{2}. On the other hand, the 0.73 \(\mu \text{m} \) band is not significantly shifted. This could be evidence for a vertical compositional gradient consistent with purer methane condensing first, with the composition becoming more nitrogen-rich as the last, most volatile components of the atmosphere condensed. Such a compositional gradient could also arise via the solar gardening mechanism discussed by Grundy & Stansberry ((2000)).

Acknowledgements W.M. Grundy gratefully acknowledges support from NASA Planetary Geology & Geophysics grant NNG04G172G.
REFERENCES

Brown, M. E., Trujillo, C. A., Rabinowitz, D., Marsden, B. G. 2005a, MPEC, 2005-O42.

Brown, M. E., Trujillo, C. A., Rabinowitz, D., Marsden, B., 2005b, MPEC, 2005-O41.

Brown, M. E., Trujillo, C. A., & Rabinowitz, D., 2005, ApJ, 635, L97.

Brown, M., Schaller, E., Roe, H., Rabinowitz, D. & Trujillo, C. 2006 ApJ, 643, 61.

Cruikshank, D., 1998, in Solar System Ices, B. Schmitt et al. (eds.), Kluwer, p. 655.

Cruikshank, D., Roush, T., Owem, T., Geballe, T., de Bergh, C., Schmitt, B., Brown, R., & Bartolomew, M., 1993, Science 261,742.

Douté, S., B. Schmitt, E. Quirico, T.C. Owen, D.P. Cruikshank, C. de Bergh, T.R. Geballe, and T.L. Roush 1999. Icarus 142, 421.

Edgeworth K., 1949, MNRAS 109, 600.

Fernández, J., 1980, MNRAS 192, 481.

Grundy, W.M., B. Schmitt, and E. Quirico 1993. Icarus 105, 254-258.

Grundy, W., & Fink, U., 1996, Icarus 124, 329.

Grundy, W.M. & Stansberry, J. 2000, Icarus 148, 340-346.

Grundy, W.M., and M.W. Buie 2001. Icarus 153, 248.

Grundy, W., Schmitt, B., & Quirico, E., 2002, Icarus 155, 486.

Khare, B., Sagan, C., Arakawa, E., Suits, F., Callcott, T., & Williams, M. W., 1984, Icarus, 60, 127.
Kuiper G., 1951, in Astrophysics: A Topical Symposium, ed. J.A. Hynek, New York, McGraw Hill, 357.

Landolt, A., 1992, AJ 104, 340.

Licandro, J., Pinilla-Alonso, N., Pedani, M., Oliva, E., Tozzi, G. P., Grundy, W. 2006, A&A 445, 35.

Massey, P., Valdes, F., Barnes, J., 1992, in ”A User’s Guide to Reducing Slit Spectra with IRAF”, http://iraf.noao.edu/iraf/ftp/iraf/docs/spect.ps.Z.

Ortiz, J.L., Bambery, R., Helin, E., Pravdo, S., Hicks, M., Lawrence, K., Kervin, P., Matson, R., Sanchez, S., Stoss, R., Nomen, J., Aceituno, F. J., Santos-Sanz, P., Williams, G. V., 2005, MPEC, 2005-O36.

Owen, T., Roush, T., Cruikshank, D., Elliot, J., Young, L., de Bergh, C., Schmitt, B., Geballe, T., Brown, T., & Bartolomew, M., 1993, Science 261,745.

Quirico, E., and B. Schmitt 1997. Icarus 127, 354.

Rudy, R., Venturini, C., Lynch, D., Mazuk, S., Puetter, R., Brad-Perry, R. 2003, PASP 115, 484.

Schmitt, B., E. Quirico, F. Trotta, and W.M. Grundy 1998. In Solar System Ices, B. Schmitt et al. (eds.), Kluwer Academic Publishers.

Shkuratov, Y., Starukhina, L., Hoffmann, H., & Arnold, G., 1999, Icarus 137, 235.

Spencer, J., Stansberry, J., Trafton, L., Young, E., Binzel, R., & Croft, S., 1997, in Pluto and Charon, A. Stern and D., Tholen (eds.), U. Arizona Press, p. 435.

This manuscript was prepared with the AAS \LaTeX macros v5.2.
Fig. 1.— Reflectance spectra of 2003 UB$_{313}$ obtained on 2005 October 20.03 UT, normalized at 0.6μm. The spectrum of Pluto (Grundy & Fink (1996)) and the spectrum 2005 FY$_{9}$ (Licandro et al. (2006)), both shifted vertically, are plotted for comparison. Open circles are the relative reflectance derived from $BVRI$ photometry reported by Brown et al. ((2005c)). The spectrum of 2003 UB$_{313}$ is very similar to that of Pluto and 2005 FY$_{9}$, and reveals important features: (1) the slope of the continuum in the visible range is slightly red, but less so than those of Pluto and 2005 FY$_{9}$, indicative of the presence of complex organics; (2) there are several CH$_{4}$ ice absorption bands; (3) The methane ice absorption bands in the spectrum of 2003 UB$_{313}$ are deeper than the same bands in Pluto’s spectrum but slightly weaker than the same bands in the spectrum of 2005 FY$_{9}$.
Fig. 2.— Reflectance spectra of TNOs 2003 UB$_{313}$, 2005 FY$_9$, and Pluto shifted vertically, in the two wavelength regions of the most prominent CH$_4$ ice absorption bands. *UpperFigure*: (A) is the spectrum of 2003 UB$_{313}$ and overplotted (dashed lines) is the spectrum of pure methane ice grains of 1.5 cm diameter; (B) is the spectrum of 2005 FY$_9$ and overplotted (dashed lines) the spectrum of pure methane ice grains of 4.5 cm diameter; (C) is the spectrum of Pluto and overplotted (dashed lines) the spectrum of pure methane ice grains of 500 μm diameter; vertical dashed lines indicate the central position of pure methane ice bands (Grundy et al. (2002)). *LowerFigure*: (A) same as in upper figure; (B) is the spectrum of 2005 FY$_9$ and overplotted (dashed lines) the spectrum of pure methane ice grains of 2.5 cm diameter; (C) as in upper figure; vertical dashed lines as in upper figure.
Table 1: Position of the prominent methane lines in the spectra of 2005 UB$_{313}$, 2005 FY$_9$, and Pluto. Laboratory data from Grundy et al. (2002), Pluto data (with uncertainties \sim10Å) from Grundy & Fink (1996), 2005 FY$_9$ data (with uncertainties \sim4Å) from Licandro et al. (2006).

Band	Methane (Å)	2005 UB$_{313}$ (Å)	2005 FY$_9$ (Å)	Pluto (Å)
$3\nu_1 + 4\nu_4$	7299	7296	7296	7290
$2\nu_1 + \nu_3 + 2\nu_4$	8897	8881	8891	8885

Fig. 3.— Reflectance spectrum of TNOs 2003 UB$_{313}$ (solid line) and the spectrum of pure methane ice grains of 1.5 cm diameter shifted by 15 Å (dashed line).