KNOWLEDGE, AWARENESS AND PERCEPTIONS OF CORONAVIRUS DISEASE 2019 (COVID-19) IN A COHORT OF INDIAN DENTAL PROFESSIONALS: A QUESTIONNAIRE-BASED STUDY

Niraj Kinariwala1a*, Lakshman Perera Samaranayake2b, Irosha Rukmali Perera3c, Zeal Patel4d

1Department of Conservative Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, India
2Department of Oral Biosciences, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
3Preventive Oral Health Unit, National Dental Hospital (Teaching), Colombo, Sri Lanka
4Department of Community Dentistry / Public Health Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, India

aBDS, MDS, PhD, Associate Professor; e-mail: niraj@ksd.ac.in; ORCIDiD: https://orcid.org/0000-0002-9038-2035
bDSc, DDS (Glas), FRCPath, FDSRCS(Edin), FRACDS, FDS RCPS (Glas), FHKCPath, FCDSHK, Professor Emeritus; e-mail: lakshman@hku.hk; ORCIDiD: https://orcid.org/0000-0002-9122-336X
cBDS, MDS, Dental Public Health Specialist; e-mail: irosha_rukmali@yahoo.com; ORCIDiD: https://orcid.org/0000-0002-8250-0169
dBDS, MDS, PhD, Associate Professor; e-mail: zeal_86@yahoo.com; ORCIDiD: https://orcid.org/0000-0001-6571-4002

ABSTRACT

Objectives COVID-19 is an unprecedented global public health emergency currently impacting heavily on India. The objective of this study was to assess the knowledge, awareness, perceptions of Indian dentists on COVID-19.

Methods A cross-sectional, on-line questionnaire-based study was conducted amongst 403 Indian dentists in solo, and group practices as well as academics. The self-administered questionnaire assessed 1) knowledge/awareness of factors related to COVID-19 patient identification and symptomatology, 2) knowledge/awareness of COVID-19 transmission and 3) perceptions of COVID-19 history taking procedure. Statistical analyses were conducted using Statistical Package for Social Sciences for Windows, version 21.0 (IBM Corp., Armonk, NY, USA). Frequency distributions and logistic regression analyses were used.

Results Indian dentists demonstrated an overall modest level of knowledge on identification of patients with COVID-19. Moreover, they had a high level of awareness of the COVID-19 transmission means, and the generally accepted procedural perceptions on patient history taking. However, there were some gaps in specific aspects of knowledge and perceptions. Those who were aged ≥ 30-years had a significantly higher level of knowledge of patient identification means than those who were < 30-years (OR=1.78:1.12-2.83); p=0.01. Moreover, specialized dentists were significantly more knowledgeable of COVID-19 transmission means than general dentists (OR=1.89:1.22-2.93; p=0.004).

Conclusion Our findings demonstrate identifiable gaps in knowledge/awareness and perceptions of COVID-19 in Indian dental professionals. These gaps should be fulfilled, at the earliest, due to the rising burden of COVID-19 in India, to ensure safe dental care delivery.

KEYWORDS

COVID-19; Knowledge; Awareness; Perceptions; Indian Dentists.

1. INTRODUCTION

The pandemic of coronavirus disease 2019 (COVID-19) that originated in Wuhan, China, in December 2019 has become a major public health challenge for the global community. The disease, caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted livelihoods...
of a substantive proportion of the global community including dentists. Thus, clinical dental practices, academic dental establishments, and similar private and government funded organisations have either closed or curtailed their professional work due, either to the fear of contracting the infection, and/or the widespread lockdowns initiated by the local, and regional authorities. In India, the first case of COVID-19 was reported on 30th January, 2020, and at the time of writing on 1st October 2020 the patient numbers have risen to over 6,400,000 with 100,000 recorded deaths. First country wide citizen lockdown in India was implemented on 25th March, 2020, and since then the dental practitioners have been instructed by the authorities to carry out only emergency treatment of patients that obviate aerosol production. As in other regions of the World, front line health care workers in India appear to be disproportionately impacted by COVID-19 and dentists, in particular, are likely to be exposed to SARS-CoV-2[1,2]. This is mainly due to their work in close proximity to the patients, and the intrinsic nature of dentistry entailing high-speed instrumentation, and the likelihood of aerosolizing saliva and virus-laden aerosols in inadequately ventilated clinical settings[2]. There are anecdotal reports of dentists expressing fears on the post-pandemic dental practice and their professional future, but the extent to which these perceptions are based, as well as their clinical knowledge of COVID-19 is unclear. Such information on the knowledge and perceptions of dentists is needed, on a wider scale, not only to identify existing knowledge gaps but also to articulate optimal measures to prevent COVID-19 transmission in the dental clinic. Additionally, if the disease were to sporadically erupt in local or regional pockets from time to time, and/or the so called second wave of the disease were to transpire then dentists could play an important role in early detection of the disease, for which their knowledge of COVID-19 would be critical, in particular for identification and appropriate referral of patients. We are unaware of any studies in the literature on the knowledge and perceptions of dental health professionals of India. Therefore, the aims of this study were to assess knowledge and awareness of COVID-19 in a cross section of dental professionals in India.

2. MATERIALS AND METHODS

A questionnaire-based, cross-sectional study was conducted amongst Indian dentists in the single-handed practices, group practices, and academics, irrespective of their specialization. The questionnaire was developed in English to assess the respondents’ knowledge, awareness and perceptions of COVID-19.

Table 1. Socio-demographic profile of the responding dentists.

Attribute	Number	%
Gender		
Male	201	49.9
Female	202	50.1
Age group		
<30 years	143	35.5
30-40 years	197	48.9
1-50 years	46	11.4
>50 years	17	4.2
Professional qualifications		
BDS*	225	55.8
MDS	178	44.2
Specialization		
Not specialized-General Practitioner	227	56.3
Endodontist	68	16.9
Prosthodontist	30	7.4
Periodontist	23	5.7
Orthodontist	19	4.7
Paedodontist	14	3.5
Oral & Maxillofacial Surgeon	14	3.5
Oral Radiologist	8	2.0
Practice Type		
Private Solo Practice	242	60.0
Private Group Practice	87	21.6
Academic	74	18.4
Use of Arogya Setu Mobile Application		
No	153	38.0
Yes	250	62.0
CPE/Webinar Programme participation on management of patients during COVID-19 pandemic		
No	71	17.6
Yes	332	83.4

* includes 32 dental postgraduate trainees.
The questionnaire was compiled using the data garnered on 1st May, 2020, from the websites of the World Health Organization (WHO), US Centre for Disease Control and Prevention (CDC), the Ministry of Health and Family Welfare of the Government of India, and the Dental Council of India (DCI). First, a pilot survey of the questionnaire was conducted amongst randomly selected 20 dentists, and once their response was received, ambiguities in the questionnaire, if any, were rectified prior to the final mass circulation. Participants were assured of the confidentiality of their responses. The pilot-tested dentists were not included in the final study. The survey was conducted online amongst members of a large facebook group entitled Endohaveli, a diverse group of dental professionals with over 52,000 members across the globe. The questionnaire comprised four major components, i) Socio-demographic and personal profile, ii) knowledge/awareness of factors related to COVID-19 patient risk stratification, iii) knowledge/awareness of prevention and control of COVID-19 transmission, and iv) perceptions of COVID-19 risk assessment, and patient history taking. Once the responses were received, the individual components were scored for the foregoing four major components, as follows. The respondents were dichotomized according to their age as <30 years vs ≥ 30-years, while the dental specialties were segregated into two groups as general dental practitioners vs specialists (which included all dental specialties). The scores were dichotomized as ‘good’ and ‘better’ for knowledge/awareness components, and ‘less optimal’ and ‘optimal’ for perception component (Fig.1). Univariate associations were assessed for dichotomized outcomes of knowledge and perception components using selected socio-demographic and personal attributes as

Table 2. Related factors of knowledge/awareness of COVID-19 patient risk stratification, among Indian dentists.
Factor

Gender
Male
Female
Age group
<30-years
≥ 30-years
Qualifications
BDS only
Specialized
COVID-19 CDE/Webinar participation
No
Yes
Using Arogya Setu mobile application
No
Yes

*Significance, p<0.05.

Table 3. Demographic data and Related factors of knowledge/awareness of COVID-19 transmission among Indian dentists.
Factor

Gender
Male
Female
Age group
<30-years
≥ 30-years
Qualifications
BDS only
Specialized
COVID-19 CPD/Webinar participation
No
Yes
Using Arogya Setu mobile application
No
Yes
predictor variables. For perceptions on COVID-19 risk assessment and eliciting patient history, dichotomized knowledge scores were included as additional predictor variables. Moreover, a multiple logistic regression model was fitted to assess the independent associations of predictor variables with the knowledge/awareness and perception outcomes, and Odds ratio (OR), 95% confidence intervals (CI), and p-values were calculated. In the unconditional binary logistic regression analysis, enter option was used and p <0.05 was used as the criterion for retention in the model. Hosmer–Lemeshow goodness of fit test was used to assess the fitness of model. Statistical analyses were conducted using Statistical Package for Social Sciences (SPSS) for Windows, version 21.0 (IBM Corp., Armonk, NY, USA). The study was approved by the Research Unit, Karnavati School of Dentistry, Karnavati University, India, according to principles of the Helsinki Declaration.

3. RESULTS

In total, 403 responses were collected online from a total of 1,200 randomly selected participants, yielding a response rate of 33.6%. Further analysis revealed that a cross-section of dentists from all parts of India had participated in the study, indicating a representative all-Indian response.

3.1. Demographic data
Almost one half (48.9%) of the participants were between 30-40 years of age, and approximately a third (35.5%) were younger than 30 years. The gender of the participants was almost equally split between females (50.1%), and males (49.9%). Except for a single missing response, all the participants mentioned their nationality as Indian. Approximately one half (55.8%) of the responding dentists had only a Bachelor of Dental Surgery (BDS) degree, and the remainder (44.2%) were qualified with a Master’s degree (MDS), whilst a majority of the respondents (56.3%) were general dental practitioners. Endodontists were the predominant group of specialists (16.9%) followed by prosthodontists (7.4%) and orthodontists (4.7%). The majority of general and specialized dentists, 60% were engaged in single-handed private practices, while 21.6% were in group private practices, and another 18.4% were working in academia. Furthermore, 62% of participants had used the Arogya Setu mobile application and 83.4% participants had participated in CPE/Webinars on COVID-19 (Table 1).

3.2. Participants’ knowledge and awareness of symptomatology of COVID-19.
An overwhelming majority of participants (90.3%) answered correctly that the incubation period of COVID-19 can be up to 21 days (Fig. 1).

Table 4. Related factors of perceptions of Indian dentists on eliciting COVID-19 risk related history from patients.

Factor	Unadjusted Odds Ratio (95% CI)	p-value	Adjusted Odds Ratio (95% CI)	p-value
Gender				
Male	1			
Female	1.32(0.86-2.04)	0.20	1.21(0.77-1.90)	0.41*
Age group				
< 30-years	1			
≥30 years	0.63(0.40-0.97)	0.04	0.63(0.39-1.00)	0.05
Qualifications				
BDS only	1			
Specialized	1.02(0.66-1.58)	0.92	1.04(0.66-1.64)	0.85
COVID-19 CDE/Webinar participation				
No	1			
Yes	1.07(0.61-1.89)	0.82	1.28(0.70-2.38)	0.42
Using Arogya Setu mobile application				
No	1			
Yes	0.63(0.41-0.98)	0.04	0.64(0.41-1.01)	0.06
Knowledge on COVID-19 patient risk stratification				
Good	1			
Better	0.62(0.39-0.99)	0.04	0.77(0.59-1.01)	0.61
Knowledge on COVID-19 transmission				
Good	1			
Better	1.01(0.64-1.58)	0.98	0.96(0.60-1.54)	0.88

*Significance, p<0.05.
All participants were aware of the elevated threat posed by COVID-19 to older individuals, and those with chronic diseases, although 9.7% were unaware of the possible mortality risk of the disease for younger individuals. Approximately, some three quarters of the participants (77.7%) were aware of acute loss of smell and taste could be an early symptom of the disease, and a just over one-half (58.8%) were aware of the full spectrum of COVID-19 symptoms.

3.3. Participants’ knowledge and awareness of COVID-19 transmission modes

The participants knowledge and awareness of major transmission portals of COVID-19, and key features of its prevention and control were relatively high as 97.0%, 98% and 94.8% were aware of main source of infection transmission, infected body fluids as a source of infection transmission, and the crucial importance of hand-hygiene in prevention and control measures, respectively (Fig. 2). Surprisingly though, only 29.8% were aware of the 6-feet distance as the minimum physical/social distance for COVID-19 transmission prevention.

3.4. Factors related to patient history taking practices

The vast majority of the respondents (98.3%) indicated that knowing the patient’s residential area was highly important in COVID-19 risk assessment, whilst a similar proportion (93.8%) perceived the importance of knowing the patient’s travel history, prior to treatment provision. On the contrary, two thirds of the respondents (68.0%) did not wish to offer treatment to patients without the Arogya Setu mobile application. On correlating factors related to knowledge/awareness of the respondents on COVID-19 to patient risk stratification, gender and age were significantly related to the level of knowledge on COVID-19, as female dentists had higher level of knowledge (OR=1.67:1.09-2.56) compared to their male counterparts (p=0.02), whilst those aged ≥ 30-year-olds had significantly higher level of knowledge than those < 30 years (p=0.01; OR=1.78:1.12-2.83). However, specialization status, participating in COVID-19 CPD/Webinar programmes, and use of the Arogya Setu mobile application were not significantly related to knowledge/awareness of COVID-19. In terms of the factors related to awareness/knowledge of Indian dentists on SARS-CoV19 infection transmission, prevention and control, specialized dentists had a significantly higher level of knowledge/awareness on COVID-transmission than the generalists. (OR=1.89:1.22-2.93; p=0.004; Table 3). None of the other socio-demographic and personal attributes were significantly related to knowledge/awareness. As for the factors related to perceptions of COVID-19 risk, and history taking, except for a marginal significance of the age group (p=0.05), in the direction of younger dentists having better perceptions compared to older dentists, no other factors evaluated were significantly different (Table 4).

4. DISCUSSION

One of the high-risk groups susceptible to SARS-CoV2 infection is health care providers, specifically dentists, due to the nature of their work that entails aerosol production, and working in extremely close proximity to their patients. Indeed, in a recent analysis by the O*Net Bureau of Statistics of the USA, dentists were considered the highest risk group of health care workers at risk for contracting COVID-19[3].

This was borne out during the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003, with some countries reporting that up to a third infected being health care workers[4]. Hence, in order to institute appropriate professional guidelines and related public health measures, it is important to assess the knowledge and awareness, and institute clinical measures for controlling COVID-19 transmission in dentistry in a country such as India where the pandemic is ferociously spreading. To the best of our knowledge, the current study is the first to assess the latter parameters in a wide cross-section of Indian dentists. The overall response rate of 403 received out of 1200 questionnaires forwarded on-line, was 33.6% and is considered acceptable for on-line surveys[5]. The low response rate may be due to the rapid nature (conducted over three days) when the country was still under lockdown, and many dentists may have been occupied with emergency procedures or personal commitments. In terms of the response it was notable that four fifths of our respondents were in private practices, and, hence the data can be construed as more representative of the latter group.

On the other hand, the gender of the respondents was almost equally split between males and females and the latter had better knowledge of COVID-19 than their male counterparts (p<0.05). Similar gender differences in the knowledge of infections and control measures have been reported in survey of dentists in countries such as Saudi Arabia[6]. In general, older age group dentists (> 30 years) had significantly higher awareness of COVID-19 cross infection risk assessment, and measure impeding infection transmission measures in the clinic, than the younger dentists. One possible reason for this may be the greater exposure of the older dentists to continuing education courses on infection control in comparison to the younger counterparts. This said, it appeared that an overwhelming majority of dentists (83.4%) had participated in CPE/Webinar programmes on COVID-19 pandemic and dentistry, although such participation did not significantly correlate with their knowledge and perceptions of the disease. In this context, dentists with a post-graduate education also had a significant higher
level of awareness on COVID-19 transmission than the generalists. In the battle against COVID-19, the Government of India has developed the Arogya Setu (literally, bridge for disease freeness) mobile application to connect essential health services with the people of India. It is designed to keep a user informed in case he/she has crossed paths with a COVID-19 patient, and is widely used by the Indian public. Approximately two thirds of the respondents (62%) who were users of this mobile app were better prepared with modest concerns than non-users in providing patient care (p<0.05), while a majority of respondents (68%) did not wish to treat patients who were not using this application. It is now known that that SARS-CoV-2 infected person can be asymptomatic for up to 21 days, constituting a major potential source of infection[7]. Almost all of the respondents (99%) were aware of this fact as well as that the older people and those with underlying chronic medical conditions are more prone to disease complications[8]. Additionally, a large proportion (90.3%) were aware of the possible mortality risk of COVID-19 among young people. However, the knowledge of the responders in terms of the full spectrum of known symptoms of COVID-19 was relatively low (41.2%) in comparison to the foregoing. Nevertheless, it was heartening to note that over three quarters of the responders were aware that acute loss of taste (dysgeusia) and smell (anosmia) are early symptoms of the COVID-19, despite the fact that the announcement was made by the US Centers for Disease Control only in mid-April, 2020. As substantiated by our findings, it would be helpful to address this existing core knowledge gaps among Indian dentists by tailored interventions. The government of India has divided the entire country into Red Zones, Orange Zones and Green Zones implying varying levels of restrictions aimed at containing the spread of the disease, a promulgation that is revised weekly. Almost all the dentists were aware of the importance of the patients’ residential areas during history taking, possibly due to the practical utility of implementing the appropriate infection control guidelines. The COVID-19 pandemic has now spread to more than 200 countries and hence the travel history of a patient could be crucial in determining his/her risk status. In relation to the final section of the questionnaire, on patient history taking, clearly almost all of the respondents (93.9%) were aware of the critical importance of ascertaining the recent travel history of the patient. This is likely to be due to their wide and constant media exposure, as well as numerous webinars on awareness on COVID-19 directly targeting the dental professionals. Yet, recent studies suggest that early detection, hand washing, self-isolation, and household quarantine will likely be more effective than travel restrictions at mitigating this pandemic[9]. Moreover, perceptions of Indian dentists on COVID-19 patient history taking was not significantly related to socio-demographic and personal attributes except that the younger dentists had better perceptions than their older counterpart (p=0.05; Table 4). Alike other respiratory diseases, the transmission of SARS-CoV-2 occurs mainly through respiratory droplets and aerosols generated by coughing and sneezing. The analysis of the data related to the spread of the disease in China indicates that close contact increases disease transmission[10]. 97% dentists were aware of such modes of infection for COVID-19 which is quite high compared to the awareness of MERS-CoV[11]. The majority of dentists (94.8%) were aware of the importance of hand hygiene in the prevention and control of COVID-19, namely greater awareness of hand hygiene than the MERS-CoV era[12]. Social distancing is a new normal for the entire world. It is strongly recommended to maintain a minimum distance of 6 feet from others to avoid respiratory droplets[13]. Despite the Government’s disease education initiatives 29.8% dentists were not aware of the critcal importance of maintaining the 6 feet of social distancing limit (Fig. 2). Furthermore, our study implies that neither participating in continuing dental education (CDE)/Webinar programmes on COVID-19, nor using Arogya setu mobile application were significantly related to levels of knowledge/ awareness and perceptions on COVID-19 patient identification, disease transmission and history taking among Indian dentists (Tables 2,3,4). Such findings merit further investigations. The study has some limitations. First, it was a cross-sectional study that provided a quick snap-shot view and hence cause-effect relationship of knowledge, and awareness could not be ascertained. Second, the response rate, though theoretically acceptable, was low.

5. CONCLUSION

Our study has demonstrated that Indian dentists have reasonable knowledge of COVID-19, and its transmission modes, while specialist dentists were significantly better informed than the generalists. Moreover, the older age group showed modest knowledge of the disease symptoms, and this was significantly better among older female dentists compared to their younger male counterparts. As India is currently experiencing a major threat from the COVID-19 pandemic that will reverberate well into the future, assessment of the knowledge and practices of dental and medical personnel, related to the disease is critical to identify knowledge gaps and formulate and institute standardized, best practice guidelines against the COVID-19 spread. Indeed, the Government of India together with the Dental Council of India need lead this initiative by conducting further comprehensive sub-continent-wide surveys on this critically important subject.
CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
NK: composed the questionnaire, disseminated and collated the data and drafted and edited the final manuscript. LPS: conceptualized the study, wrote the original draft, vetted and approved the final draft. IP: curated and analyzed the data, performed the statistical analysis, wrote the original draft and edited the final manuscript. ZP: collated the data and also drafted and edited the final manuscript. All four authors read and approved the final version of the manuscript.

ACKNOWLEDGMENTS
We thank Dr. Rahul Bisht for his help in data collection. We also thank all the dentists who took the time in their busy schedules to complete the questionnaire.

FUNDING
This study received no funds or financial support from any profit or not-for-profit organization.

| QUESTIONNAIRE SURVEY ON COVID-19 AMONG INDIAN DENTAL PROFESSIONALS (Kinariwala et al 2020) |
Sr No	A. Demographic Data
1.	E-mail id:
2.	Your Gender Male Female
3.	Nationality Indian Any other
4.	Your speciality:
	General practitioner
	Endodontist
	Prosthodontist
	Orthodontist
	Periodontist
	Pedodontist
	Any other
5.	Your education B.D.S M.D.S. Dental student
6.	Age (in years) < 30 30-40 40-50 >50
7.	What best describes the type of practice you are in?
	Private group practice Academics Solo practice
8.	Did you attend webinars or continuing education program to manage patients during pandemic COVID-19 infection? Yes No
9.	Do you use Aarogya Setu mobile application? Yes No

B. Knowledge and beliefs on identification of COVID-19 patients

10. What is incubation period of COVID 19 infection? 1 day 2-3 days but may take up to 21 days 28 days |
11. Which are the symptoms of COVID 19 infection? (Select ALL that apply) Fever Dry cough Tiredness Nasal congestion Diarrhea Aches and pains None of the above All of the above |
12. Do you believe that patients with chronic disease are at higher risk of getting infection with COVID-19 infection? Yes No |
13. Do you believe that older population is at higher risk for COVID-19 infections? Yes No |
14. Do you believe mortality rate for young population is zero? Yes No |
C. Knowledge on transmission of COVID-19

15. Which of the following statement is TRUE?
 - ☐ Pet animals are the biggest source of infection.
 - ☐ COVID-19 spreads through droplets of saliva or discharge of the nose.
 - ☐ COVID-19 is not transmitted via surface contact.
 - ☐ Hand hygiene is not important to prevent transmission of COVID-19.

16. Do you believe COVID-19 infection can spread through body fluids of infected persons?
 - ☐ Yes ☐ No

17. Can the disease be prevented by good hygiene practices?
 - ☐ Yes ☐ No

18. What is minimum 'social distance' advised to prevent COVID-19 spread?
 - ☐ 2 feet ☐ 4 feet ☐ 6 feet ☐ 12 feet

D. History taking practice amongst participants

19. Will you treat patients not using Aarogya Setu mobile application?
 - ☐ Yes ☐ No

20. How important is it to know patient's residential area?
 - ☐ Highly important ☐ Not important

21. Will you consider patient's travel history before treating him?
 - ☐ Yes ☐ No ☐ Maybe

E. Fears associated with best management practices

22. Have you purchased Personal Protection Equipment kits?
 - ☐ Yes ☐ No

23. Do you have accessibility to N95 masks?
 - ☐ Yes ☐ No

24. Have you treated any patients within the last month for emergency treatment?
 - ☐ Yes ☐ No

25. How confident are you about starting your dental practice again this month?
 - ☐ Highly confident ☐ Confident ☐ Hesitant ☐ Not confident at all

26. What is your biggest fear for resuming practice after the epidemic?
 - ☐ Limited availability of personal protection kits
 - ☐ Limited resources to sterilize and disinfect entire clinic and equipments
 - ☐ Risk of getting infection from the patient
 - ☐ Increased operating cost and unaffordable cost of the treatment

27. Will you ask your patient to get tested for COVID-19 before treatment?
 - ☐ Yes, all the patients for aerosol generating procedures should get themselves tested.
 - ☐ No
 - ☐ May be, only if patient is symptomatic

28. How worried are you about Medico Legal issues once you open up your dental practice?
 Rate from 1 to 5: …………… (1-Not worried, 5- extremely worried)

29. Government of India and many dental societies have proposed guidelines for dental clinics. Are you able to follow the guidelines so issued?
 Rate from 1 to 3: ……… (1- yes, 2-some guidelines only. 3- all guidelines)

30. Do you expect Government to pass a Law or singular Guideline securing Legal and Professional concerns of dentists during and after COVID-19 pandemic? Yes/ No

Thank you for your precious time and contributing to the survey.

End of survey
REFERENCES

1. More than 500 healthcare workers in Wuhan have gotten the coronavirus. Business Insider India. HYPERLINK "https://www.businessinsider.in/science/news/three-more-than-500-healthcare-workers-in-wuhan-have-gotten-the-coronavirus-one-study-found-that-29-of-infections-were-in-medical-staff/article/show/74108681.cms" https://www.businessinsider.in/science/news/three-more-than-500-healthcare-workers-in-wuhan-have-gotten-the-coronavirus-one-study-found-that-29-of-infections-were-in-medical-staff/article/show/74108681.cms (Accessed Feb 13, 2020)

2. Zemouri C, de Soet H, Crieaard W, Laheij A. A scoping review on bio-aerosols in healthcare and the dental environment. PLoS One. 2017;12(5):e0178007. doi: 10.1371/journal.pone.0178007. Full text links CrossRef PubMed Google Scholar Scopus WoS

3. Gamio L. The Workers Who Face the Greatest Coronavirus Risk. The New York Times. March 15, 2020. https://www.nytimes.com/interactive/2020/03/15/business/economy/coronavirus-risk.html

4. Samaranayake L, Peiris M. Severe acute respiratory syndrome and dentistry: a retrospective view. J Am Dent Assoc. 2004;135(9):1292-1302. doi: 10.14219/jada.archive.2004.0405. Full text links PubMed Google Scholar Scopus WoS

5. Funkhouser E, Vellala K, Baltuck C, et al. Survey methods to optimize response rate in the national dental practice-based research network. Eval Health Prof. 2017;40(3):332-358. doi: 10.15537/smj.2019.7.24304. Full text links CrossRef PubMed Google Scholar Scopus WoS

6. Ye F, Xu S, Rong Z, et al. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster. Int J Infect Dis. 2020;94:133-138. doi: 10.1016/j.ijid.2020.03.042. Full text links CrossRef PubMed Google Scholar Scopus WoS

7. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4. doi: 10.1186/s40779-020-0223-6. Full text links PubMed Google Scholar WoS

8. Livingston E, Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA. 2020;323(14):1335. doi: 10.1001/jama.2020.4344. CrossRef Google Scholar

9. Ibrahim NK, Alwafi HA, Sangoof SO, et al. Cross-infection and infection control in dentistry: Knowledge, attitude and practice of patients attended dental clinics in King Abdulaziz University Hospital, Jeddah, Saudi Arabia. Infect Public Health. 2017;10(4):438-445. doi: 10.1016/j.jiph.2016.06.002. Full text links CrossRef PubMed Google Scholar Scopus WoS

10. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-1207. doi: 10.1056/NEJMoai2001316. Full text links PubMed Google Scholar Scopus WoS

11. Bettinetti M, Bugli K. Cross-infection and infection control in dentistry: Knowledge, attitude and practice of patients attended dental clinics in King Abdulaziz University Hospital, Jeddah, Saudi Arabia. Infect Public Health. 2017;10(4):438-445. doi: 10.1016/j.jiph.2016.06.002. Full text links CrossRef PubMed Google Scholar Scopus WoS

12. Alfahan A, Alhabib S, Abdulmajeed I, et al. In the era of corona virus: health care professionals’ knowledge, attitudes, and practice of hand hygiene in Saudi primary care centers: a cross-sectional study. J Community Hosp Intern Med Perspect. 2016;6(4):32151. doi:10.3402/jchimp.v6.32151. Full text links CrossRef PubMed Google Scholar Scopus WoS

13. Zemouri C, de Soet H, Crielaard W, Laheij A. A scoping review on bio-aerosols in healthcare and the dental environment. PLoS One. 2017;12(5):e0178007. doi: 10.1371/journal.pone.0178007. Full text links CrossRef PubMed Google Scholar Scopus WoS

14. Kinariwala N, Samaranayake LP, Perera I, Patel Z. Concerns and cross-infection practices of dentists regarding MERS-CoV. A cross-sectional study. J Community Hosp Intern Med Perspect. 2016;6(4):32151. doi:10.3402/jchimp.v6.32151. Full text links CrossRef PubMed Google Scholar Scopus WoS

15. Gaffar BO, El Tantawi M, Al-Ansari AA, et al. Knowledge and practice of hand hygiene in Saudi primary care centers: a cross-sectional study. J Community Hosp Intern Med Perspect. 2016;6(4):32151. doi:10.3402/jchimp.v6.32151. Full text links CrossRef PubMed Google Scholar Scopus WoS

16. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4. doi: 10.1186/s40779-020-0223-6. Full text links PubMed Google Scholar WoS

Niraj KINARIWALA
BDS, MDS, PhD, Associate Professor
Department of Conservative Dentistry
Karnavati School of Dentistry
Karnavati University
Gandhinagar, India

CV

Dr. Niraj Kinariwala is an Associate Professor at the Karnavati University, India. He is a microendodontist and one of the pioneers in field of Guided Endodontics. He is a researcher and eminent speaker. He is Editor and co-Author of the book Guided Endodontics from Springer publishing house. He has published many articles in national and international journals. He has been a guest speaker at ConsAsia 2018, AEDC Dubai 2019 and APDC 2020.
Questions

1. What is the incubation period of COVID-19?
 - a. 1 day;
 - b. 2-3 days but may take up to 21 days;
 - c. 29 days;
 - d. 30 days.

2. What is the minimum social distance to prevent transmission of COVID-19?
 - a. 2 feet;
 - b. 4 feet;
 - c. 6 feet;
 - d. 12 feet.

3. Which of the following statements is true?
 - a. Pet animals are the biggest source of infection;
 - b. Covid-19 spreads through droplets of saliva or discharge of the nose;
 - c. Covid-19 is not transmitted via surface contact;
 - d. Hand hygiene is not important to prevent transmission of Covid-19.

4. Which of the following is not a symptom of Covid-19?
 - a. Loss of appetite;
 - b. Loss of taste and smell;
 - c. Fever;
 - d. Dry cough.