Research and existing problems of pour point depressant/viscosity reducer for crude oil production

F S Zhang¹, G L Liu, X N Li, Z Y Zhu and H M Su

Oilfield Chemistry Key Laboratory, CNPC (Research Institute of Petroleum Exploration and Development, PetroChina), Beijing, China.

¹ E-mail: zhfsh@petrochina.com.cn

Abstract. The composition and structure of pour point depressant/viscosity reducer for pipeline transportation and its application effect in long-distance pipeline transportation in China as well as the application effect of oil-soluble viscosity reducer and water-soluble viscosity reducer for wellbore lift in low-viscosity and high-viscosity heavy oil wells in China are introduced. The main technical problems existing in the study of viscosity reducer for heavy oil formations drive are presented.

1. Introduction
The production process of crude oil mainly includes formation drive, wellbore lift and pipeline transportation. According to its viscosity, crude oil can be divided into conventional crude oil, heavy oil, extra heavy oil and super extra heavy oil [1].

Chinese conventional crude oil generally has high wax content [2], pour point and viscosity, and poor fluidity. Because of higher colloid asphaltene content, heavy oil, extra heavy oil and super extra heavy oil generally have higher viscosity and poor fluidity. In order to improve the fluidity of crude oil and ensure safe production, thermal method is mainly adopted in the production process to consume a large amount of energy, and the use of pour point depressant/viscosity reducer to improve the fluidity of crude oil is an effective way to save energy and reduce consumption [3].

After years of arduous work, Scientists worldwide have made great progress in the research of pour point depressants and viscosity reducers [3-7], a series of which were developed and proved to be suitable for the pipeline transportation and wellbore lift of crude oil. Pour point depressants and viscosity reducers have been widely used in pipelines and wellbores [8-13], and moreover brought forth substantial economic and social benefits.

In reservoir conditions, for conventional crude oil, its fluidity is generally good, which poses little problem to formation drive, water flooding is used. In comparison, for heavy oil, extra heavy oil and bitumen, because its fluidity is poor, thermal technology is mainly used to solve the difficulties of formation drive. For normal heavy oil, water flooding is used, but the oil recovery of water flooding is only 5-25%, the main reasons is the higher viscosity of normal heavy oil, so the study of viscosity reducer for normal heavy oil has great significance to improve oil recovery of its water flooding.

2. Pour point depressant/viscosity reducer for pipeline transportation
The pipeline transportation of conventional crude oil mainly adopts the method of pour point depressant/viscosity reducer combined heating, while the pipeline transportation of heavy oil, extra heavy oil and super extra heavy oil mainly adopts the heating method.
2.1. The nature of china's conventional crude oil

China's onshore crude oil pipeline has a length of over 23,400 kilometers [14]. Crude oil is mainly transported through pipelines, with the proportion of pipeline transportation reaching over 80%. The nature of crude oil transported by some pipelines is shown in Table 1.

Table 1. The nature of crude oil transported by some pipelines in China.

Pipeline	Pipeline length /km	Wax /%	Resin-asphaltene /%
Luning	652.6	20.60	23.70
Zhongluo	290.1	24.59	6.81
Pulin	241.9	21.4	8.0
Weijing	226.4	30.8	9.90
Donghuang	251.1	18.3	21.6
Donglin	171.3	19.1	20.8

2.2. Composition of pour point depressant/viscosity reducer of crude oil in china

The main components of pour point depressant/viscosity reducer include ethylene-acrylate copolymer, ethylene-vinyl acetate-sodium allylsulfonate copolymer, vinyl acetate-acrylate-maleic anhydride copolymer and its derivatives, acrylic higher alcohols ester copolymer, ethylene-acrylate copolymer, as shown in Table 2.

Table 2. The Composition Structure of Pour Point Depressant/Viscosity Reducer.

Pour point depressant	Chemical structure
EVA	Ethylene-acrylate copolymer
EMS [15]	A compounded system composed of EVA, vinyl acetate-acrylate-maleic anhydride copolymer and its derivatives, and surfactant
F21 [16]	Ethylene-vinyl acetate-sodium allylsulfonate copolymer
BEM [3]	A compounded system of EVA and acrylic higher alcohols ester copolymer
GY [17]	A compounded system of EVA and other polymers
CE [18]	EVA and its modifiers
PAE [19]	Acrylic higher alcohols ester polymer

2.3. The application of pour point depressant/viscosity reducer for pipeline transportation

On the basis of the study on the pour point-depress mechanism [20], the BEM pour point depressant developed has good adaptability and modification effect on Chinese crude oil, and has been applied in a number of pipelines such as Luning, Zhongluo, Pulin and Weijing, as shown in Table 3.

Table 3 shows that BEM pour point depressant/viscosity reducer has better pour point-depressing and viscosity-reducing effect. At the dosage of 50mg/kg, the range of pour point depression is greater than 10℃, and the viscosity reducing rate is greater than 80%. After the use of pour point depressant for the pipeline, it saves a lot of fuel oil, reduces the cost of oil transportation, and obtains huge economic and social benefits. In addition, the safety and strain capacity of pipeline operation can be improved after adding agent.
Table 3. Modification Effect of BEM Pour Point Depressant/Viscosity Reducer on Crude Oil Transportation of Some Pipelines in China

Pipeline	Additive dosage /mg/kg	Pour point /℃	Pour point depression range /℃	Viscosity/mPa.s 30℃	Viscosity reducing rate /%	
Luning	40	24	5	935	300	68
Zhongluo	50	33	13	1172	60	95
Pulin	50	33	15	763	19	98
Weijing	50	37	23	1720	119	93
Donghuang	50	17	4	396	334	16
Donglin	50	23	3	408	314	23

3. Viscosity reducer for wellbore lift

According to the characteristics of heavy oil in China and the viscosity-reducing mechanism [20], oil-soluble viscosity reducer and water-soluble viscosity reducer are developed and applied in the lifting process of heavy oil wellbore.

3.1. The application of oil-based viscosity reducer in wellbore lift of heavy oil

Oil-soluble viscosity reducer is composed of high-molecular polymer and surfactant containing strong polar groups. The polar groups in the molecule with strong polarity can form hydrogen bonds with the polar groups of colloidal bituminous molecules in heavy oil, which has a good viscosity-reducing effect for heavy oil, and it is suitable for the production of heavy oil with low water content and low viscosity.

The oil in Block 104-5 of Jidong oilfield belongs to low viscosity heavy oil, and the viscosity-reducing effect of oil-soluble viscosity reducer on heavy oil in Block 104-5 is shown in Table 4.

Table 4. Viscosity-reducing Effect of Oil-soluble Viscosity Reducer on Heavy Oil in Block 104-5 of Jidong Oilfield (40℃, 300mg/kg).

Well No.	Gao 14	106-5	104-5	109-6	109-7	
Viscosity/mPa.s	Before adding	1130	5500	1600	910	1230
	After adding	270	1100	680	490	650
Viscosity reduction rate /%	76	80	57	46	47	

Table 4 shows that the viscosity reduction rate of oil-based viscosity reducer for heavy oil in Block 104-5 of Jidong is 40-80% at the dosage of 300mg/kg.

It is very difficult to exploit the Block 104-5 at the initial stage of production, and good results have been achieved after the application of oil-based viscosity reducer, as shown in Table 5.

Table 5. The Viscosity-reducing Effect of Oil-based Viscosity Reducer on Heavy Oil in Block 104-5 of Jidong Oilfield.

Well No.	Oil production efficiency /%	Daily oil production /tons		
	Before adding	After adding	Before adding	After adding
104-6	40	94	3.7	4.4
109-6	43	96	5.5	8.3
111-6	97	98	8.4	9.5
111-7	96	97	10.4	10.7
Table 5 shows that after the application of oil-based viscosity reducer in Block 104-5, both the oil production efficiency and daily oil production increase, and the daily production of this block increases from the original 20 tons to 230 tons, with obvious effect.

3.2. The application of water-based viscosity reducer in wellbore lift

Water-based viscosity reducer is composed of surfactant and emulsion stabilizer, which can make oil-water system into water external emulsion, with viscosity reduction rate of over 90% for heavy oil.

In the wellbore lift process, the viscosity reducer can be used alone and injected into the bottomhole to form O/W emulsion with heavy oil. Moreover, it can also be used with steam huff and puff. The viscosity-reducing effect is shown in Table 6.

Table 6. Viscosity-reducing Effect of Water-based Viscosity Reducer on Heavy Oil (water content 30%, 300mg/kg, 50℃)

Heavy oil	Viscosity /mPa.s	Viscosity reduction rate /%	
	No Adding	O/W Emulsion	
Liaohe Gaosheng	44800	59	99.98
Jidong Oilfield	20500	44	99.79
Liaohe Xinglongtai	874000	56	99.99

The application effect of water-soluble viscosity reducer in some oil wells in Wa 38 block of Xinglongtai oil production plant of Liaohe is shown in Table 7.

Table 7. HEA Application Effect in Wa 38 Block (Compared with former steam injection)

Well No.	Oil increment /ton	Increased production time /d	Water recovery rate /%
3542	1734	83.1	8.1
35430	404	25.6	77.5
3124	1476	65.8	58.5

Table 7 shows that both the continuous production days and production of Wa 38 block. According to the statistical data of 15 Wells in Wa 38 block of Xinglongtai oil production plant of Liaohe, accumulative oil increment is 35,870 tons, and the input-output ratio is 1:26.

4. Viscosity reducer for formation drive

Due to low viscosity of conventional crude oil in the formation, water flooding is mainly used as formation drive. Heavy oil formation drive methods include thermal recovery and water flooding, heavy oil with high viscosity adopts heating method, including steam huff and puff, steam flooding, combustion in-situ and SAGD(steam assisted gravity drainage).

Normal heavy oil reserves which can be developed by water flooding account for 30.1% of total heavy oil reserves and 18% of total heavy oil production. Because of high viscosity of heavy oil and serious reservoir heterogeneity, the recovery rate of water flooding of normal heavy oil is only 5-25%.

In order to improve the recovery rate of water flooding for heavy oil, domestic and foreign scholars mainly study alkali flooding, polymer flooding, surfactant flooding, combination flooding and gas flooding, etc. Indoor research has achieved certain results and some technologies have been conducted field tests. In No.3 oil production plant of Dagang oilfield in China, a small-size viscosity reducer flooding is implemented. As it is difficult for small molecule viscosity reducer to form O/W emulsion under the formation condition of low shear strength to reduce viscosity and the presence of high permeability channels, the goal of increasing oil production is not achieved.
Research shows that the key to improve water drive recovery factor of heavy oil is to enlarge swept volume, lowering the viscosity of heavy oil and increasing the viscosity of displacing fluid are the effective ways to enlarge swept volume. There is no research record about heavy oil water flooding EOR technology that can both lower heavy oil viscosity and increase displacement fluid viscosity under the formation condition of low shear strength at home and abroad. According to the theory of molecular design, macromolecular viscosity reducer can lower the viscosity of heavy oil and increase the displacement fluid viscosity under the formation condition of low shear strength. The synergistic effect of two functions can greatly improve water flooding recovery factor of heavy oil. Therefore, macromolecular viscosity reducer is one of the key replacement technology after water flooding of heavy oil, which is of great significance to improve water recovery factor of heavy oil, and it has a broad application prospect.

5. Conclusions
BEM series pour point depressant has good pour point depressing and viscosity-reducing effect on high pour point crude oil. After the application of BEM series pour point depressant on the lines of Luning and Zhongluo, great economic benefits have been achieved. Meanwhile, the operation safety and strain capacity of the pipelines have been improved.

Oil-soluble viscosity reducer has good viscosity reducing effect on heavy oil with low viscosity and is suitable for wellbore lift. Water-soluble viscosity reducer has good viscosity reducing effect on heavy oil with high viscosity and can be used for wellbore lift.

Increase the research strength of viscosity reducer for formation drive, including viscosity reducing mechanism, evaluation method and molecular structure design of viscosity reducer.

References
[1] Li Pengju, Zhangshu, He Yaoting 1990 Classification of crude oil Oil & Gas Storage and Transportation 9(1) 74-77
[2] Wangbiao 1995 Paraffin characteristics of waxy crude oils in china and the methods of paraffin removal and inhibition International Meeting on Petroleum Engineering 14-17 SPE 29954
[3] Zhang Fusheng, Wangbiao, Xie Huizhuan, et al. 1999 Synthesis of BEM-3 Flow improve and its industrial application in luming pipeline Speciality Petrochemicals 4 6-8
[4] Barasha Deka, Rohit Sharma, Arnab Mandal, at al. 2018 Synthesis and evaluation of oleic acid based polymeric additive as pour point depressant to improve flow properties of Indian waxy crude oil Journal of Petroleum Science and Engineering 170 105-111
[5] Jixiang Guo, Heyi Wang, Chaogang Chen, et al. 2010 Synthesis and evaluation of an oil-soluble viscosity reducer for heavy oil Petroleum Science 7(4) 536-540
[6] Yumin Wu, Guangdi Ni, Fei Yang, et al. 2012 Modified Maleic Anhydride Co-polymers as Pour-Point Depressants and Their Effects on Waxy Crude Oil Rheology Energy & Fuels 26(2) 995-1001
[7] T T Khidr 2011 Pour Point Depressant Additives for Waxy Gas Oil Petroleum Science and Technology 29 19-28
[8] Bai Wenhai, Zhang Xueqin, Guhong, at al 2016 Selection and pilot test of an oil based viscosity reducer Advances in Fine Petrochemicals 17(6) 32-34
[9] Qinbing, Luo Yongtao, Li Bengao, et al. 2012 The relationship between structure and performance of oil-soluble viscosity of heavy oil Chemical Engineering of Oil & Gas 41(5) 499-503
[10] Luo Yongtao, Li Bengao, Qinbing 2015 Development of oil-soluble viscosity reducer for pipeline transportation of Shengli heavy oil Petroleum Processing and Petrochemicals 46(4) 467-71
[11] Liu Wenming, Kang Fan, Luo Zhenchao, et al. 2017 High waxy crude oil pour point depressant synthesis and performance research on Halahatang oilfield Applied Chemical Industry 46(4) 641-645
[12] Jiangkang, Hou Jirui, Liu Bixin, et al. 2013 Experimental study on viscosity redution by emulsification of Fuyu heavy oil Oilfield Chemistry 30(2) 259-262
[13] Ma Yongzhong, FuYaronng, Fu Lixia, et al. 2017 Development and application of fluorocarbon oil pour point depressant Xinjiang Oil & Gas 2 83-85
[14] Zhang Jinsuo 2016 Leakage and risk control of crude oil transportation pipeline Modern Occupational Safety 7 72-74
[15] Zhang Fusheng, Wangbiao 1995 Pour point depressant/viscosity reducer of complex type for crude oil Oilfield Chemistry 12(2) 117-120
[16] Wangbiao, Cai Yongsheng, Liu Shuxia, et al. 1989 Flowbility improver for waxy crude oil--F21 pour point depressant Speciality Petrochemicals 5 3-9
[17] Dang Jinping, Shen Jialiang, Zhang Jifu 1996 The synthesis and application of GY-2 oil depressant Oil & Gas Storage and Transportation 15(12) 12-15
[18] Bi Meihua 1992 Development and application of CE crude pour point depressant Oil-Gas Field Surface Engineering 11(4) 44-46
[19] Liu Tongchun, Weiqiang, Zhang Songjiang 1993 Development and application of PAE pour point depressant Oil-Gas Field Surface Engineering 12(6) 37-39
[20] Zhang Fusheng, Wangbiao 1995 Studies on the mechanism involved in pour point depression and viscosity reduction by some pour point depressant and viscosity reducer Oilfield Chemistry 12(4) 347-352