Numerical Radius Inequalities Involving Commutators of G_1 Operators

Mojtaba Bakherad1 · Fuad Kittaneh2

Received: 30 December 2016 / Accepted: 6 September 2017 / Published online: 13 September 2017
© Springer International Publishing AG 2017

Abstract We prove numerical radius inequalities involving commutators of G_1 operators and certain analytic functions. Among other inequalities, it is shown that if A and X are bounded linear operators on a complex Hilbert space, then

$$w(f(A)X + X \bar{f}(A)) \leq \frac{2}{d_A^2} w(X - AXA^*),$$

where A is a G_1 operator with $\sigma(A) \subset \mathbb{D}$ and f is analytic on the unit disk \mathbb{D} such that $\text{Re}(f) > 0$ and $f(0) = 1$.

Keywords G_1 operator · Numerical radius · Commutator · Analytic function

Mathematics Subject Classification Primary 47A12; Secondary 15A60 · 30E20 · 47A30 · 47B15 · 47B20

Communicated by Daniel Aron Alpay.

Fuad Kittaneh
fkitt@ju.edu.jo

Mojtaba Bakherad
mojtaba.bakherad@yahoo.com; bakherad@member.ams.org

1 Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
2 Department of Mathematics, The University of Jordan, Amman, Jordan
1 Introduction

Let \mathcal{H} be a complex Hilbert space and $\mathbb{B}(\mathcal{H})$ denote the \mathbb{C}^\ast-algebra of all bounded linear operators on \mathcal{H} with the identity I. In the case when $\dim \mathcal{H} = n$, we identify $\mathbb{B}(\mathcal{H})$ with the matrix algebra \mathbb{M}_n of all $n \times n$ matrices having entries in the complex field. The numerical radius of $A \in \mathbb{B}(\mathcal{H})$ is defined by

$$w(A) := \sup \{ |\langle Ax, x \rangle| : x \in \mathcal{H}, \|x\| = 1 \}.$$

It is well known that $w(\cdot)$ defines a norm on $\mathbb{B}(\mathcal{H})$, which is equivalent to the usual operator norm $\| \cdot \|$. In fact, for any $A \in \mathbb{B}(\mathcal{H})$, $\frac{1}{2} \|A\| \leq w(A) \leq \|A\|$ (see [9, p. 9]). If $A^2 = 0$, then equality holds in the first inequality, and if A is normal, then equality holds in the second inequality. For further information about numerical radius inequalities, we refer the reader to [1–3,12,16,17] and references therein.

An operator $A \in \mathbb{B}(\mathcal{H})$ is called a G_1 operator if the growth condition

$$\| (z - A)^{-1} \| = \frac{1}{\text{dist}(z, \sigma(A))}$$

holds for all z not in the spectrum $\sigma(A)$ of A, where $\text{dist}(z, \sigma(A))$ denotes the distance between z and $\sigma(A)$. For simplicity, if z is a complex number, we write z instead of zI. It is known that hyponormal (in particular, normal) operators are G_1 operators (see, e.g., [15]). Let $A \in \mathbb{B}(\mathcal{H})$ and f be a function which is analytic on an open neighborhood Ω of $\sigma(A)$ in the complex plane. Then $f(A)$ denotes the operator defined on \mathcal{H} by the Riesz–Dunford integral as

$$f(A) = \frac{1}{2\pi i} \int_C f(z)(z - A)^{-1} dz,$$

where C is a positively oriented simple closed rectifiable contour surrounding $\sigma(A)$ in Ω (see e.g., [8, p. 568]). The spectral mapping theorem asserts that $\sigma(f(A)) = f(\sigma(A))$. Throughout this note, $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$ denotes the unit disk, $\partial \mathbb{D}$ stands for the boundary of \mathbb{D} and $d_A = \text{dist}(\partial \mathbb{D}, \sigma(A))$. In addition, we denote

$$\mathfrak{A} = \{ f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic, } \Re(f) > 0 \text{ and } f(0) = 1 \}.$$

The Sylvester type equations $AXB \pm X = C$ have been investigated in matrix theory (see [4]). Several perturbation bounds for the norms of sums or differences of operators have been presented in the literature by employing some integral representations of certain functions. See [5,13,14] and references therein.

In this paper, we present some upper bounds for the numerical radii of the commutators and elementary operators of the form $f(A)X \pm X f(A)$, $(A)X f(B) - f(B)X f(A)$ and $f(A)X f(B) + 2X + f(B)X f(A)$, where $A, B, X \in \mathbb{B}(\mathcal{H})$ and $f \in \mathfrak{A}$.
2 Main Results

To prove our first result, the following lemma concerning numerical radius inequalities and an equality is required.

Lemma 2.1 [10, 11] Let $A, B, X, Y \in \mathbb{B}(\mathcal{H})$. Then

(a) $w(A^*XA) \leq \|A\|^2 w(X)$.

(b) $w(AX \pm XA^*) \leq 2\|A\| w(X)$.

(c) $w(A^*XB \pm B^*YA) \leq 2\|A\|\|B\| w\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right)$.

(d) $w\left(\begin{bmatrix} 0 & AXB^* \\ BYA^* & 0 \end{bmatrix}\right) \leq \max\{|\|A\|^2, |\|B\|^2\} w\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right)$.

(e) $w\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \leq \frac{w(X+Y)+w(X-Y)}{2}$.

(f) $w\left(\begin{bmatrix} 0 & X \\ e^{i\theta}X & 0 \end{bmatrix}\right) = w(X)$ for $\theta \in \mathbb{R}$.

Proof: Since all parts, except part (d), have been shown in [10, 11], we prove only part (d). If we take $C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ and $S = \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}$, then $CSC^* = \begin{bmatrix} 0 & AXB^* \\ BYA^* & 0 \end{bmatrix}$. Now, using part (a), we have

$$w\left(\begin{bmatrix} 0 & AXB^* \\ BYA^* & 0 \end{bmatrix}\right) = w(CSC^*)$$

$$\leq \|C\|^2 w(S)$$

$$= \max\{|\|A\|^2, |\|B\|^2\} w\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right),$$

as required. \qed

Now, we are in position to demonstrate the main results of this section by using some ideas from [13, 14].

Theorem 2.2 Let $A \in \mathbb{B}(\mathcal{H})$ be a G_1 operator with $\sigma(A) \subset D$ and $f \in \mathfrak{A}$. Then for every $X \in \mathbb{B}(\mathcal{H})$, we have

$$w(f(A)X + X\tilde{f}(A)) \leq \frac{2}{d_A^2} w(X - AXA^*)$$

and

$$w(f(A)X - X\tilde{f}(A)) \leq \frac{4}{d_A^2} \|A\| w(X).$$
Proof Using the Herglotz representation theorem (see e.g., [7, p.21]), we have
\[
 f(z) = \int_0^{2\pi} \frac{e^{i\alpha} + z}{e^{i\alpha} - z} d\mu(\alpha) + i \text{Im} f(0) = \int_0^{2\pi} \frac{e^{i\alpha} + z}{e^{i\alpha} - z} d\mu(\alpha),
\]
where \(\mu \) is a positive Borel measure on the interval \([0, 2\pi]\) with finite total mass \(\int_0^{2\pi} d\mu(\alpha) = f(0) = 1 \). Hence,
\[
 \bar{f}(z) = \int_0^{2\pi} \frac{e^{i\alpha} + z}{e^{i\alpha} - z} d\mu(\alpha) = \int_0^{2\pi} \frac{e^{-i\alpha} + \bar{z}}{e^{-i\alpha} - \bar{z}} d\mu(\alpha),
\]
where \(\bar{f} \) is the conjugate function of \(f \). So,
\[
 f(A)X + X\bar{f}(A) = \int_0^{2\pi} \left[\left(e^{i\alpha} + A \right) \left(e^{i\alpha} - A \right)^{-1} X \\
 + X \left(e^{-i\alpha} + A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right] d\mu(\alpha)
 = \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left[\left(e^{i\alpha} + A \right) X \left(e^{-i\alpha} - A^* \right) \\
 + \left(e^{i\alpha} - A \right) X \left(e^{-i\alpha} + A^* \right) \right] \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha)
 = 2 \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(X - AXA^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha).
\]
Hence,
\[
 w(f(A)X + X\bar{f}(A))
 = w \left(\int_0^{2\pi} \left[\left(e^{i\alpha} + A \right) \left(e^{i\alpha} - A \right)^{-1} X \\
 + X \left(e^{-i\alpha} + A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right] d\mu(\alpha) \right)
 = 2 w \left(\int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(X - AXA^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha) \right)
 \leq 2 \int_0^{2\pi} w \left(\left(e^{i\alpha} - A \right)^{-1} \left(X - AXA^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right) d\mu(\alpha)
 \text{(since } w(\cdot) \text{ is a norm)}
 \leq 2 \int_0^{2\pi} \left\| \left(e^{i\alpha} - A \right)^{-1} \right\|^2 w \left(X - AXA^* \right) d\mu(\alpha)
 \text{(by Lemma 2.1(a)).}
Since A is a G_1 operator, it follows that

$$\left\| \left(e^{i\alpha} - A \right)^{-1} \right\| = \frac{1}{\text{dist}(e^{i\alpha}, \sigma(A))} \leq \frac{1}{\text{dist}(\partial \mathbb{D}, \sigma(A))} = \frac{1}{d_A},$$

and so

$$w \left(f(A)X + X \tilde{f}(A) \right) \leq \left(\frac{2}{d_A^2} \int_0^{2\pi} d\mu(\alpha) \right) w(X - AXA^*)$$

$$= \left(\frac{2}{d_A^2} f(0) \right) w(X - AXA^*)$$

$$= \frac{2}{d_A^2} w(X - AXA^*).$$

This proves the first inequality.

Similarly, it follows from the equations

$$f(A)X - X \tilde{f}(A) = \int_0^{2\pi} \left[\left(e^{i\alpha} + A \right) \left(e^{i\alpha} - A \right)^{-1} X
- X \left(e^{-i\alpha} + A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right] d\mu(\alpha)$$

$$= \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left[\left(e^{i\alpha} + A \right) X \left(e^{-i\alpha} - A^* \right)
- \left(e^{i\alpha} - A \right) X \left(e^{-i\alpha} + A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right] d\mu(\alpha)$$

$$= 2 \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(e^{-i\alpha} AX - e^{i\alpha}XA^* \right)
\times \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha)$$

$$= 2 \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(\left(e^{-i\alpha} A \right) X
- X \left(e^{-i\alpha} A^* \right) \left(e^{i\alpha} - A^* \right)^{-1} \right) d\mu(\alpha)$$

that

$$w(f(A)X - X \tilde{f}(A))$$

$$= 2w \left(\int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(\left(e^{-i\alpha} A \right) X - X \left(e^{-i\alpha} A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right) d\mu(\alpha) \right)$$

$$\leq 2 \int_0^{2\pi} w \left(\left(e^{i\alpha} - A \right)^{-1} \left(\left(e^{-i\alpha} A \right) X - X \left(e^{-i\alpha} A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right) d\mu(\alpha) \right)$$

(since $w(\cdot)$ is a norm)
\begin{equation}
\leq 2 \int_{0}^{2\pi} \left\| (e^{i\alpha} - A)^{-1} \right\|^2 w \left(\left(e^{-i\alpha} A \right) X - X \left(e^{-i\alpha} A \right)^{*} \right) d\mu(\alpha)
\end{equation}
(by Lemma 2.1 (a))

\begin{equation}
\leq 4 \int_{0}^{2\pi} \left\| (e^{i\alpha} - A)^{-1} \right\|^2 \| e^{-i\alpha} A \| w(X) d\mu(\alpha)
\end{equation}
(by Lemma 2.1 (b))

\begin{equation}
\leq \frac{4}{d_A^2} \| A \| w(X) \int_{0}^{2\pi} d\mu(\alpha)
\end{equation}

\begin{equation}
\leq \frac{4}{d_A^2} \| A \| w(X).
\end{equation}

This proves the second inequality and completes the proof of the theorem. \qed

If we take \(X = I \) in Theorem 2.2, we get the following result. Observe that \(\bar{f}(A) = (f(A))^* \).

Corollary 2.3 Let \(A \in \mathcal{B}(\mathcal{H}) \) be a \(G_1 \) operator with \(\sigma(A) \subset \mathbb{D} \) and \(f \in \mathfrak{A} \). Then

\begin{equation}
\| \text{Re}(f(A)) \| \leq \frac{1}{d_A^2} \| I - AA^* \|
\end{equation}

and

\begin{equation}
\| \text{Im}(f(A)) \| \leq \frac{2}{d_A^2} \| A \|.
\end{equation}

Theorem 2.4 Let \(A, B \in \mathcal{B}(\mathcal{H}) \) be \(G_1 \) operators with \(\sigma(A) \cup \sigma(B) \subset \mathbb{D} \) and \(f \in \mathfrak{A} \). Then for every \(X \in \mathcal{B}(\mathcal{H}) \), we have

\begin{equation}
w(f(A)X \bar{f}(B) - f(B)X \bar{f}(A))
\leq \frac{2}{d_A d_B} \left[2w(X) + w(AXB^* + BXA^*) + w(AXB^* - BXA^*) \right]
\end{equation}

and

\begin{equation}
w(f(A)X \bar{f}(B) + 2X + f(B)X \bar{f}(A))
\leq \frac{2}{d_A d_B} \left[2w(X) + w(AXB^* + BXA^*) + w(AXB^* - BXA^*) \right].
\end{equation}

Proof We have

\begin{equation}
f(A)X \bar{f}(B) - f(B)X \bar{f}(A)
= \int_{0}^{2\pi} \int_{0}^{2\pi} \left[(e^{i\alpha} - A)^{-1} (e^{i\alpha} + A) X (e^{-i\beta} + B^*) (e^{-i\beta} - B^*)^{-1}
- (e^{i\beta} - B)^{-1} (e^{i\beta} + B) X (e^{-i\alpha} + A^*) (e^{-i\alpha} - A^*)^{-1} \right] d\mu(\alpha) d\mu(\beta).
\end{equation}
Using the equations

\[
\left(e^{i\alpha} - A \right)^{-1} (e^{i\alpha} + A) X (e^{-i\beta} + B^*) (e^{-i\beta} - B^*)^{-1} \\
- (e^{i\beta} - B)^{-1} (e^{i\beta} + B) X (e^{-i\alpha} + A^*) (e^{-i\alpha} - A^*)^{-1} \\
= \left(e^{i\alpha} - A \right)^{-1} (e^{i\alpha} + A) X (e^{-i\beta} + B^*) (e^{-i\beta} - B^*)^{-1} + X \\
- X - (e^{i\beta} - B)^{-1} (e^{i\beta} + B) X (e^{-i\beta} + A^*) (e^{-i\beta} - A^*)^{-1} \\
= \left(e^{i\alpha} - A \right)^{-1} \left[(e^{i\alpha} + A) X (e^{-i\beta} + B^*) \right. \\
+ (e^{i\alpha} - A) X (e^{-i\beta} - B^*) \left(e^{-i\beta} - B^* \right)^{-1} \\
- (e^{i\beta} - B)^{-1} \left[(e^{i\beta} - B) X (e^{-i\alpha} - A^*) \right. \\
+ (e^{i\beta} + B) X (e^{-i\alpha} + A^*) \left(e^{-i\alpha} - A^* \right)^{-1} \\
= 2(e^{i\alpha} - A)^{-1} (e^{i\alpha} e^{-i\beta} X + AXB^*) (e^{-i\beta} - B^*)^{-1} \\
- 2(e^{i\beta} - B)^{-1} (e^{-i\alpha} e^{i\beta} X + AXA^*) (e^{-i\alpha} - A^*)^{-1},
\]

we have

\[
w(f(A)Xf(B) - f(B)Xf(A)) \\
= 2w \left(\int_0^{2\pi} \int_0^{2\pi} (e^{i\alpha} - A)^{-1} (e^{i\alpha} e^{-i\beta} X + AXB^*) (e^{-i\beta} - B^*)^{-1} \\
- (e^{i\beta} - B)^{-1} (e^{-i\alpha} e^{i\beta} X + BXA^*) (e^{-i\alpha} - A^*)^{-1} d\mu(\alpha) d\mu(\beta) \right) \\
\leq 2 \int_0^{2\pi} \int_0^{2\pi} w \left((e^{i\alpha} - A)^{-1} (e^{i\alpha} e^{-i\beta} X + AXB^*) (e^{-i\beta} - B^*)^{-1} \\
- (e^{i\beta} - B)^{-1} (e^{-i\alpha} e^{i\beta} X + BXA^*) (e^{-i\alpha} - A^*)^{-1} \right) d\mu(\alpha) d\mu(\beta) \\
\text{(since } w(\cdot) \text{ is a norm)} \\
\leq 4 \int_0^{2\pi} \int_0^{2\pi} \| (e^{i\alpha} - A)^{-1} \| \| (e^{i\beta} - B)^{-1} \| \\
\times w \left(\begin{bmatrix} 0 & e^{i\alpha} e^{-i\beta} X + AXB^* \\ e^{-i\alpha} e^{i\beta} X + BXA^* & 0 \end{bmatrix} \right) d\mu(\alpha) d\mu(\beta) \\
\text{(by Lemma 2.1 (c))} \\
\leq \frac{4}{d_A d_B} \int_0^{2\pi} \int_0^{2\pi} \left[w \left(\begin{bmatrix} 0 & e^{i\alpha} e^{-i\beta} X \\ -e^{-i\alpha} e^{i\beta} X & 0 \end{bmatrix} \right) \\
+ w \left(\begin{bmatrix} 0 & AXB^* \\ BXA^* & 0 \end{bmatrix} \right) \right] d\mu(\alpha) d\mu(\beta)
\]
we have

Similarly, we have

This proves the first inequality. Similarly, we have

Using the equations

we have

(by Lemma 2.1 (e) and (f)).
\[
\begin{align*}
&\leq 2 \int_0^{2\pi} \int_0^{2\pi} w \left((e^{i\alpha} - A)^{-1}(e^{i\alpha} e^{-i\beta} X + AXB^*) (e^{-i\beta} - B^*)^{-1} \\
&\quad + (e^{i\beta} - B)^{-1}(e^{-i\alpha} e^{i\beta} X + BXA^*) (e^{-i\alpha} - A^*)^{-1} \right) d\mu(\alpha) d\mu(\beta) \\
&\leq 4 \int_0^{2\pi} \int_0^{2\pi} \left\| (e^{i\alpha} - A)^{-1} \right\| \left\| (e^{i\beta} - B)^{-1} \right\| \\
&\quad \times w \left(\begin{bmatrix} 0 & e^{i\alpha} e^{-i\beta} X + AXB^* \\ e^{-i\alpha} e^{i\beta} X + BXA^* & 0 \end{bmatrix} \right) d\mu(\alpha) d\mu(\beta) \\
&\leq \frac{4}{d_A d_B} \int_0^{2\pi} \int_0^{2\pi} \left[w \left(\begin{bmatrix} 0 & e^{i\alpha} e^{-i\beta} X + AXB^* \\ e^{-i\alpha} e^{i\beta} X + BXA^* & 0 \end{bmatrix} \right) \right] d\mu(\alpha) d\mu(\beta) \\
&\quad + \frac{4}{d_A d_B} \int_0^{2\pi} \int_0^{2\pi} \left[w \left(\begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix} \right) + w \left(\begin{bmatrix} 0 & AXB^* \\ BXA^* & 0 \end{bmatrix} \right) \right] d\mu(\alpha) d\mu(\beta) \\
&\leq \frac{2}{d_A d_B} \left[2w(X) + w \left(AXB^* + BXA^* \right) + w \left(AXB^* - BXA^* \right) \right]
\end{align*}
\]

(by Lemma 2.1 (c))

This proves the second inequality and completes the proof of the theorem. \(\Box\)

Remark 2.5 Under the assumptions of Theorem 2.4 and the hypothesis that \(X\) is self-adjoint, we have

\[
\| f(A)X \tilde{f}(B) - f(B)X \tilde{f}(A) \| \\
\leq \frac{4}{d_A d_B} \max\{ \|X\| + \|AXB^*\|, \|X\| + \|BXA^*\| \}
\]

and

\[
\| f(A)X \tilde{f}(B) + 2X + f(B)X \tilde{f}(A) \| \\
\leq \frac{4}{d_A d_B} \max\{ \|X\| + \|AXB^*\|, \|X\| + \|BXA^*\| \}.
\]

To see this, first note that if \(X\) is self-adjoint, then the operator matrix

\[
T = \begin{bmatrix}
0 & e^{i\alpha} e^{-i\beta} X + AXB^* \\
e^{-i\alpha} e^{i\beta} X + BXA^* & 0
\end{bmatrix}
\]

is self-adjoint, hence \(w(T) = \|T\|\). Moreover, \(T = M + N\), where

\[
M = \begin{bmatrix}
0 & e^{i\alpha} e^{-i\beta} X \\
e^{-i\alpha} e^{i\beta} X & 0
\end{bmatrix}, \quad N = \begin{bmatrix}
0 & AXB^* \\
BXA^* & 0
\end{bmatrix}
\]
are self-adjoint operators. Using the fact that \(\| C + D \| \leq \| |C| + |D| \| \) for any normal operators \(C \) and \(D \) (see [6]), we have

\[
\begin{align*}
\omega(T) &= \| M + N \| \leq \| |M| + |N| \| \\
&= \max\{ \| |X| \| + \| |AXB^*| \|, \| |X| \| + \| |BXA^*| \| \}.
\end{align*}
\]

Hence, we get the required inequalities by the same arguments as in the proof of Theorem 2.4.

If we take \(X = I \) in Theorem 2.4, we get the following result.

Corollary 2.6 Let \(A, B \in \mathcal{B}(\mathcal{H}) \) be \(G_1 \) operators with \(\sigma(A) \cup \sigma(B) \subset \mathbb{D} \) and \(f \in \mathfrak{A} \). Then

\[
\| \text{Im}(f(A) \overline{f}(B)) \| \leq \frac{2}{d_A d_B} \left(1 + \| A B^* \| \right)
\]

and

\[
\| \text{Re}(f(A) \overline{f}(B)) + I \| \leq \frac{2}{d_A d_B} \left(1 + \| A B^* \| \right).
\]

Remark 2.7 If instead of applying Lemma 2.1 (c) we use Lemma 2.1 (d) and (f) in the proof Theorem 2.4, we obtain the related inequalities

\[
\begin{align*}
\omega(f(A) X \overline{f}(B) - f(B) X \overline{f}(A)) &\leq \frac{4}{d_A d_B} \left[1 + \max\{ \| A \|^2, \| B \|^2 \} \right] \omega(X) \\
\omega(f(A) X \overline{f}(B) + 2X + f(B) X \overline{f}(A)) &\leq \frac{4}{d_A d_B} \left[1 + \max\{ \| A \|^2, \| B \|^2 \} \right] \omega(X).
\end{align*}
\]

Acknowledgements The first author would like to thank the Tusi Mathematical Research Group (TMRG).

References

1. Abu-Omar, A., Kittaneh, F.: Estimates for the numerical radius and the spectral radius of the Frobenius companion matrix and bounds for the zeros of polynomials. Ann. Func. Anal. 5(1), 56–62 (2014)
2. Abu-Omar, A., Kittaneh, F.: Numerical radius inequalities for products of Hilbert space operators. J. Oper. Theory 72(2), 521–527 (2014)
3. Abu-Omar, A., Kittaneh, F.: Notes on some spectral radius and numerical radius inequalities. Stud. Math. 227(2), 97–109 (2015)
4. Bao, L., Lin, Y., Wei, Y.: Krylov subspace methods for the generalized Sylvester equation. Appl. Math. Comput. 175(1), 557–573 (2006)
5. Bhatia, R., Sinha, K.B.: Derivations, derivatives and chain rules. Linear Algebra Appl. 302/303, 231–244 (1999)
6. Bourin, J.C.: Matrix subadditivity inequalities and block-matrices. Int. J. Math. 20(6), 679–691 (2009)
7. Donoghue, W.F.: Monotone Matrix Functions and Analytic Continuation. Springer, New York (1974)
8. Dunford, N., Schwartz, J.: Linear Operators I. Interscience, New York (1958)
9. Gustafson, K.E., Rao, D.K.M.: Numerical Range, The Field of Values of Linear Operators and Matrices. Springer, New York (1997)
10. Hirzallah, O., Kittaneh, F., Shebrawi, Kh: Numerical radius inequalities for commutators of Hilbert space operators. Numer. Funct. Anal. Optim. 32(7), 739–749 (2011)
11. Hirzallah, O., Kittaneh, F., Shebrawi, Kh: Numerical radius inequalities for certain 2×2 operator matrices. Integral Equ. Oper. Theory 71(1), 129–147 (2011)
12. Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 158(1), 11–17 (2003)
13. Kittaneh, F.: Norm inequalities for commutators of G_1 operators. Complex Anal. Oper. Theory 10(1), 109–114 (2016)
14. Kittaneh, F., Moslehian, M.S., Sababheh, M.: Unitarily invariant norm inequalities for elementary operators involving G_1 operators. Linear Algebra Appl. 513, 84–95 (2017)
15. Putnam, C.R.: Operators satisfying a G_1 condition. Pac. J. Math. 84, 413–426 (1979)
16. Sheikholeslami, A., Moslehian, M.S., Shebrawi, K.: Inequalities for generalized Euclidean operator radius via Young’s inequality. J. Math. Anal. Appl. 445(2), 1516–1529 (2017)
17. Yamazaki, T.: On upper and lower bounds of the numerical radius and an equality condition. Stud. Math. 178, 83–89 (2007)