We show effects of the event-by-event fluctuation of the initial conditions (IC) in hydrodynamic description of high-energy nuclear collisions on some observables. Such IC produce not only fluctuations in observables but, due to their bumpy structure, several non-trivial effects appear. They enhance production of isotropically distributed high-p_T particles, making v_2 smaller there. Also, they reduce v_2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious. They may also produce the so-called ridge effect in the two large-p_T particle correlation.

PACS numbers: 25.75.-q, 24.10.Nz, 24.60.-k, 25.75.Ld

1. Introduction

Hydrodynamics is one of the main tools for studying the collective flow in high-energy nuclear collisions. In this approach, it is assumed that, after a complex process involving microscopic collisions of nuclear constituents, at a certain early instant a hot and dense matter is formed, which would be in local thermal equilibrium. After this instant, the system would expand hydrodynamically, following the well known set of differential equations.

The initial conditions (IC) for the hydrodynamic expansion are usually parametrized as smooth distributions of thermodynamic quantities and four-velocity. However, since our systems are small, important event-by-event
fluctuations are expected in the IC of the real collisions. Moreover, each set of IC should presents strongly inhomogeneous structure. Our purpose here is to discuss some of the effects caused by such fluctuating and bumpy IC on observables.

2. Event-by-event fluctuating hydrodynamics

The main tool for our study is called NeXSPheRIO. It is a junction of two computational codes: NeXus and SPheRIO. The NeXus code [1] is used to compute the IC. It is a microscopic model based on the Regge-Gribov theory and, once a pair of incident nuclei and their incident energy are chosen, it can produce, in the event-by-event basis, detailed space distributions of energy-momentum tensor, baryon-number, strangeness and charge densities, at a given initial time $\tau = \sqrt{t^2 - z^2} \sim 1$ fm. We show in Fig.1 an example of such a fluctuating event, produced by NeXus event generator, for central Au + Au collision at 200 A GeV. As seen, the energy-density distribution is highly irregular and in a transverse plane (left panel) it presents several high-density blobs, whereas in a longitudinal plane (right panel) it presents a baton-like structure. When averaged over many events, these bumps disappear completely giving smooth IC, as those commonly used in hydro calculations. However, this bumpy structure gives important effects as we will show below. The SPheRIO code [2, 3], based on Smoothed Particle Hydrodynamics (SPH) algorithm [4], is well suited to computing the evolution of such systems, so complex as the one shown in Fig.1.

Fig. 1. Fluctuating IC, produced by NEXUS generator, for the most central Au+Au collisions at 200 A GeV. Left: Energy density distribution is plotted in the $\eta = 0$ plane. Right: Corresponding plot in the $x = 2$ fm plane.
3. Effects of bumpy and fluctuating IC

In a previous paper [5], we discussed some effects of the bumpy structure of IC, as shown in Fig. 1, on p_T spectra and v_2 coefficient. The main consequence of baton structure is a violent and cylindrically isotropic expansion of the batons, which produces additional isotropic high-p_T particles.

3.1. Transverse-momentum spectra

As clearly shown in Fig. 2, this implies that high-p_T part of the p_T spectrum becomes enhanced as compared with the smooth averaged IC case, making it more concave and closer to data.

![Graph](image)

Fig. 2. Charged-particle p_T distributions (including those from resonance decays) computed in two different ways. The solid line indicates result for fluctuating IC, whereas the dotted line the one for the averaged IC. Data points [6] are also plotted for comparison.

3.2. p_T dependence of $\langle v_2 \rangle$

As for the anisotropy of the transverse flow, we illustrate in Fig. 3 that the elliptic-flow coefficient v_2 suffers reduction as we go to high-p_T region, due to the additional high-p_T isotropic component included now. The result is closer to the available data.

3.3. η dependence of $\langle v_2 \rangle$

As for the η dependence of v_2, we know that the average matter density decreases as $|\eta|$ increases as reflected in the η distribution of charged particles, so the isotropic expansion effect of the batons becomes more efficacious there and, therefore, v_2 suffers a considerable reduction in those regions.

1 In that paper, we have considered only the transverse structure of IC and, then called it granular, but all the discussions remain valid replacing granular by baton there.
Fig. 3. p_T dependence of $\langle v_2 \rangle$ in the centrality window and η interval as indicated, compared with data [7]. The solid line indicates result for fluctuating IC, whereas the dotted one that for the averaged IC. The curves are averages over PHOBOS centrality sub-intervals with freeze-out temperatures as indicated.

Fig. 4. η dependence of $\langle v_2 \rangle$ for three centrality windows. The solid lines indicate results for fluctuating IC, whereas the dotted lines the ones for the averaged IC. Data points [7] are also plotted for comparison. T_{fo} has been taken as in Fig. 3.

3.4. v_2 fluctuation

The IC fluctuation also implies a large v_2 fluctuation. In preliminary works [8] on Au+Au collisions at 130 A GeV, we showed that this actually happens. The results, with QGP included, have indeed been confirmed in recent experiments [9, 10]. More recent computations for Au+Au at 200 A GeV [11] gave similar results. In Fig. 5, we compare the latter with those data.

3.5. Ridge effect

Another effect, which is produced naturally by the longitudinal baton structure of IC, as shown in Fig. 1, is the so-called ridge phenomenon which has been experimentally seen in high-p_T nearside correlations [12]. Since batons in fluctuating IC which are close to the surface produce longitudinally
Fig. 5. $\sigma_{v_2}/\langle v_2 \rangle$ computed for Au+Au collisions at 200 AGeV, compared with data. Upper: $\sigma_{v_2}/\langle v_2 \rangle$ is given as function of the impact parameter $\langle b \rangle$ and compared with the STAR data \[9\]. Lower: the same results are expressed as function of participant nucleon number N_p and compared with the PHOBOS data, \[10\].

correlated high-p_T particles, always in the same side of the hot matter, the ridge structure naturally appears. This is shown in Fig.6, as computed with NeXSPheRIO by J. Takahashi et al. \[13\]. The ridge phenomenon has been discussed also in connection with glasma flux tubes \[14\].

4. Summary

In this paper, we presented several consequences of event-by-event fluctuating IC with baton structure, computed with NeXSPheRIO code. The main results are: 1) The baton structure of IC produces more concave p_T spectra, as compared with smooth IC; 2) It reduces $\langle v_2 \rangle$ both in the high-p_T and large-$|\eta|$ regions; 3) It also produces the ridge structure in the nearside correlations; 4) Large v_2 fluctuations occurs, in good agreement with data.

Acknowledgments

This work was partially supported by FAPESP, CNPq, FAPERJ and PRONEX. We are grateful to Jun Takahashi for providing us with Fig.6.
Fig. 6. Two high-p_T particle correlation, computed with event-by-event fluctuating IC. [13]

REFERENCES

[1] H.J. Drescher, M. Hladik, S. Ostrapchenko, T. Pierog and K. Werner, J. Phys. G25, L91 (1999); Nucl. Phys. A661, 604 (1999).
[2] C.E. Aguiar, T. Kodama, T. Osada, Y. Hama, J. Phys. G27, 75 (2001).
[3] Y. Hama, T. Kodama and O. Socolowski, Braz. J. Phys. 35, 24 (2005).
[4] L.B. Lucy, Ap. J. 82, 1013 (1977); R.A. Gingold and J.J. Monaghan, Mon. Not. R. Astr. Soc. 181, 375 (1977).
[5] R.P.G. Andrade, F. Grassi, Y. Hama, T. Kodama and W.L. Qian, Phys. Rev. Lett. 101, 112301 (2008).
[6] PHOBOS Collab., B.B. Back et al., Phys. Lett. B578, 297 (2004).
[7] PHOBOS Collab., B.B. Back et al., Phys. Rev. C72, 051901 (2005).
[8] T. Osada, C.E. Aguiar, Y. Hama, and T. Kodama, in Proc. of the VI RANP Workshop, eds. T. Kodama et al., World Scientific, Singapore (2001), pg. 174 nucl-th/0102011; C.E. Aguiar, Y. Hama, T. Kodama and T. Osada, Nucl. Phys. A698, 639c (2002).
[9] P. Sorensen [STAR Collab.], J. Phys. G34, S897 (2007).
[10] C. Loizides [PHOBOS Collab.], J. Phys. G34, S907 (2007); also B. Alver et al., nucl-ex/0702036.
[11] Y. Hama, R.P.G. Andrade, F. Grassi, W.L. Qian, T. Osada, C.E. Aguiar and T. Kodama, Phys. At. Nucl. 71, 1558 (2008).
[12] J. Putschke [STAR Collab.], J. Phys. G34, S679 (2007).
[13] J. Takahashi et al., private communication; also talk at the VIII RANP Workshop, Rio de Janeiro, 03-06/11/2008.
[14] A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Nucl. Phys. A810, 91 (2008).