Automatic Optimization of Hardware Accelerators for Image Processing

Oliver Reiche, Konrad Häublein, Marc Reichenbach, Frank Hannig, Jürgen Teich, and Dietmar Fey
Department of Computer Science
Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
Email: {oliver.reiche, konrad.haublein, marc.reichenbach, hannig, teich, dietmar.fey}@cs.fau.de

Abstract—In the domain of image processing, often real-time constraints are required. In particular, in safety-critical applications, such as X-ray computed tomography in medical imaging or advanced driver assistance systems in the automotive domain, timing is of utmost importance. A common approach to maintain real-time capabilities of compute-intensive applications is to offload those computations to dedicated accelerator hardware, such as Field Programmable Gate Arrays (FPGAs). Programming such architectures is a challenging task, with respect to the typical FPGA-specific design criteria: Achievable overall algorithm latency and resource usage of FPGA primitives (BRAM, FF, LUT, and DSP). High-Level Synthesis (HLS) dramatically simplifies this task by enabling the description of algorithms in well-known higher languages (C/C++) and its automatic synthesis that can be accomplished by HLS tools. However, algorithm developers still need expert knowledge about the target architecture, in order to achieve satisfying results. Therefore, in previous work, we have shown that elevating the description of image algorithms to an even higher abstraction level, by using a Domain-Specific Language (DSL), can significantly cut down the complexity for designing such algorithms for FPGAs. To give the developer even more control over the common trade-off, latency vs. resource usage, we will present an automatic optimization process where these criteria are analyzed and fed back to the DSL compiler, in order to generate code that is closer to the desired design specifications. Finally, we generate code for stereo block matching algorithms and compare it with handwritten implementations to quantify the quality of our results.

I. INTRODUCTION AND RELATED WORK

Real-time image processing is an important task in many application domains. For example autonomous driving or process control need embedded devices for their calculation devices to meet area and energy constraints. Therefore, the traditional way, that an image sensor just captures image data and transfers it to a processing system is not feasible. Rather, the data has to be processed where the information is acquired, which means in or near the image sensor. This leads to a new class of devices, called smart cameras. IEEE describes such smart sensor as follows “A transducer that provides functions beyond those necessary for generating a correct representation of a sensed or controlled quantity. This functionality typically implies the integration of the transducer into applications in a networked environment.” [1]

One of the first smart cameras was developed by the group of Wolf [2]. They used a Trimedia CPU for image preprocessing tasks. To achieve higher frame rates, they proposed to heavily use SIMD1 instructions. Other approaches, described in [3], use Digital Signal Processors (DSPs) to achieve a very high computing power. To further increase performance, they build a scalable system that consists of up to 10 DSPs for parallel processing.

1SIMD: Single Instruction, Multiple Data, according to M. Flynn’s taxonomy

Even more customized architectures have been developed. For example, in [4], a dedicated integrated circuit was developed to speed up image processing within smart cameras. A good survey of smart camera approaches is provided in [5].

With the emerging technology of FPGAs, these devices have been quickly used for the design of smart camera systems. One big advantage is the number of parallel processing units, which can be instantiated in FPGAs as 1D or 2D arrays, since image processing algorithms are in general well parallelizable [6]. Therefore many new architectures were created on the basis of FPGAs in the past years. While the individual components (e.g., DSP, CPU, FPGA) are well known, a complete design flow how to use this architectures, especially in the domain of image processing is still an open question. Also the combination of such devices to utilize the architectural peculiarities, as described in [7], known as heterogeneous systems, is not completely solved now.

It is well known that application-specific hard- and software will give the highest performance and/or lowest resource utilization. On the other hand, application-specific development is a time consuming and error prone task. Therefore, other approaches were created to describe image processing algorithms in a more abstract way and to perform an automatic derivation.

Schmid et al. proposed in [8] a pipeline design for range image preprocessing on FPGAs. Here, several filters for compensating sensor deficiencies (e.g., noise and pixel defects) were designed by using the HLS framework PARO [9] and evaluated in an experimental setup, consisting of a Microsoft Kinect and Xilinx Virtex-6 LX240T FPGA. Whereas we consider stereo cameras, the authors in [8] mainly focus on different sensor technologies, such as structured light and Time-of-Flight (ToF).

Another approach is taken by the HIPA2 framework [10] to generate code for FPGA HLS. HIPA2 is a publicly available
framework2 for the automatic code generation of image processing algorithms for Graphics Processing Unit (GPU) accelerators. Starting from a C++ embedded DSL, HIPAcc delivers tailored code variants for different target architectures, significantly improving the programmer’s productivity \cite{ref11}. Recently, HIPAcc was extended to also be able to generate C++ code for the C-based HLS tool Vivado HLS \cite{ref12}, even capable of handling complex multiresolution applications \cite{ref13}. The design flow of the approach is depicted in Figure 1.

In this paper we present a new extension for automatic optimization, considering given FPGA-specific constraints, to an existing image processing framework. Furthermore, a comparison between a handwritten application-specific architecture development and the utilization of an image processing framework for FPGA targets for smart cameras is made. To make a fair comparison, we are choosing block matching algorithms for the calculation of 3D images from stereo camera systems. Those algorithms are discussed in Section II. In Section III we present the framework and its new extension for automatic optimization. Finally, we evaluate the results of the optimization process and compare our generated HLS code with highly efficient handwritten implementations in Section IV.

II. BLOCK MATCHING FOR STEREO CAMERAS

One of the biggest challenges in stereo vision is finding correspondences in pairs of stereo images. This way, the distances of objects in a captured scene can be calculated and saved in a depth or disparity map. Along many techniques solving this issue, stereo block matching is widely used, due to its straightforward procedure. In stereo block matching one image must be defined as reference image, while the other gets determined as target image. It is assumed that each object within a local region of the reference image can be found along the common epipolar line in the target as illustrated in Figure 2.

A local region is defined as a squared block or window with a static pixel range (e.g. 3×3). The search for correspondences gets further limited by setting of the maximum disparity, illustrated by rectangular block in the target image of Figure 2. Evaluating how similar the reference block is to a sub window block of target image is done by a cost function, which ranks each compared sub window. Common cost functions are Sum of Absolute Differences (SAD) and the Census difference, which are explained in Figure 3.

Lower ranked sub window blocks indicate a closer match to the reference block. Therefore, after each sub window of the target window was compared, the lowest cost function value must be found. For the closest match the found distance d correlates with the distance of the viewed object. High values of d indicate low distance from the image view to the object. This entire process needs to be repeated for every pixel of the reference image.

III. CODE GENERATION FOR FPGAS

A. Heterogeneous Image Processing Acceleration Framework

The HIPAcc framework consists of a DSL for image processing that is embedded into C++ and a source-to-source compiler. Exploiting the compiler, image filter descriptions written in DSL code can be translated into multiple target languages such as Compute Unified Device Architecture (CUDA), Open Computing Language (OpenCL), Renderscript as used on Android, and C++ code that can be further processed by Vivado HLS \cite{ref12}. In the following, we will use the Gaussian blur filter as an example to briefly describe properties of the DSL and show how code generation is accomplished.

1) Domain-Specific Language: Embedded DSL code is written by using C++ template classes provided by the HIPAcc framework. The most essential C++ template classes for writing 2D image processing DSL codes are: (a) an \texttt{Image}, which represents the data storage for pixel values; (b) an \texttt{IterationSpace} defining the Region of Interest (ROI) for operating on the output image; (c) an \texttt{Accessor} defining the ROI of the input image and enabling filtering modes (e.g., nearest neighbor, bilinear interpolation, etc.) on mismatch of input and output region sizes; (d) a \texttt{Kernel} specifying the compute function executed by multiple threads, each spawned for a single iteration space point; (e) a \texttt{Domain}, which defines the iteration space of a sliding window within each kernel; and (f) a \texttt{Mask}, which is a more specific version of the \texttt{Domain}, additionally providing filter coefficients for that window. Image accesses within the kernel description are accomplished by providing relative coordinates. To avoid out-of-bound accesses, kernels can further be instructed to implement a certain boundary handling (e.g., clamp, mirror, repeat) by specifying an instance of the class \texttt{BoundaryCondition}.

To describe the execution of a Gaussian blur filter, we need to define a \texttt{Mask} and load the Gaussian coefficients, defined as

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Coefficient} & \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} & \textbf{6} & \textbf{7} & \textbf{8} \\
\hline
\textbf{Value} & 0.0625 & 0.125 & 0.125 & 0.0625 & 0.0625 & 0.125 & 0.125 & 0.0625 \\
\hline
\end{tabular}
\end{table}

2http://hipacc-lang.org
const int width = 512 , height = 512;
uchar * image = (uchar*) read_image (width , height , "input . pgm ");

// Gaussian coefficients
const float coef[3][3] = { { 0.0625 f, 0.1250 f, 0.0625 f },
 { 0.1250 f, 0.2500 f, 0.1250 f },
 { 0.0625 f, 0.1250 f, 0.0625 f } };

Mask < float > mask(coef);
Image < uchar > in(width , height);
Image < uchar > out(width , height);

// load image data
in = image;

// reading from in with clamping as boundary condition
BoundaryCondition < uchar > bound(in , mask , BOUNDARY_CLAMP);

Accessor < uchar > acc(bound);

// output image
IterationSpace < uchar > iter(out);

// define kernel
Gaussian filter(iter , acc , mask);

// execute kernel
filter.execute();

// execute kernel

class Gaussian : public Kernel < uchar > {

 void kernel() {
 // ...
 float sum = convolve(mask , HipaccSUM , [8]) -> float {
 return mask(*) * input(mask);
 };
 output() = (uchar)(sum + 0.5f);
 }
};

Listing 1. Example code for the Gaussian blur filter with kernel size 3 × 3.

Listing 2. Kernel for the Gaussian blur filter.

constants, see Listing 1 (lines 6–10). It is further necessary to create an input and an output image for storing pixel data and loading initial image data into the input image (lines 11–15). The input image is bound to an Accessor with enabled boundary handling mode clamping (lines 18–19). After defining the iteration space, the kernel can be instantiated (line 25) and executed (line 28).

The actual Kernel is implemented by deriving from the framework’s provided Kernel base class, inheriting a kernel() method. Within that method the actual kernel code is provided, see Listing 2 (lines 4–7). Because the Gaussian blur filter is a local operator that is performing standard convolution, the kernel can be described using the convolve() method. This method takes three arguments: (a) the mask for defining window size and coefficients; (b) the reduction type; and (c) a C++ lambda function describing the computational steps that should be applied in each iteration. Besides convolve(), HIPA^{CC} offers similar language constructs for local operators to handle reductions (reduce⁽⁾) and iterations (iterate⁽⁾) in general.

2) Generating Code for Vivado HLS: Considering Vivado HLS as a target for code generation involves numerous challenges to overcome. Convolution masks provided in DSL code must be translated in a more suitable version (integer arithmetic) for FPGAs and hardware accelerators. The same applies to DSL vector types that need to be wrapped into integer streaming buffers for pipelining. In particular, the buffer-wise execution model, where kernels are issued one by one, must be transformed into streaming buffers for pipelining. Hereby, a pipelined structural description is inferred from the linear execution order of kernels. Furthermore, kernel implementations need appropriate placement of Vivado HLS pragmas depending on the desired target optimization. This is mostly done by instantiating the right building blocks, encapsulated in a library [14] that is shipped with the generated code.

B. Optimization Feedback Loop

In FPGA designs, often more than just a single algorithm has to be placed on one and the same FPGA. Block matching for instance could benefit from a Gaussian blur preprocessing step to increase the likelihood for positive matches, as well as median filtering for postprocessing to eliminate salt and pepper noise. Therefore, often constraints can be defined, such as a resource limitation, in order to ensure that all algorithms fit into the available resources of an FPGA device.

Pragmas set by HIPA^{CC} influence decisively the synthesis results produced by Vivado HLS. Those are mostly affecting the achievable Initiation Interval (II)¹ and resource usage. The II directly impacts the achievable throughput of the algorithm in strong correlation with the clock frequency the synthesis was able to cope with. In fact, the overall latency of an image algorithm can be defined by: #pixels × II/clk. freq. plus the initial latency for filling the pipeline, which is negligible for larger image dimensions.

To stay within a given resource budget or to ensure certain timing constraints, in this work, we introduce an optimization feedback loop, which is exploiting the HIPA^{CC} compiler and Vivado HLS. Hereby, synthesis results are analyzed and fed back into the HIPA^{CC} compiler in order to generate a more suitable version. That feedback loop primarily considers three optimization targets: II, clock frequency, which both essentially represent the achievable throughput, and resource usage. For two of those targets, an upper limit can be defined as constraint. The third non-constrained target will serve as a variable parameter, which is iteratively modified by the optimization loop. Early results have shown that exploring different target II’s is not a practical approach. For synthesis, always the lowest possible II should be chosen. Otherwise the achievable gain in clock frequency is in most cases not able to keep up with the increased II, which leads to an overall throughput reduction.

The optimization feedback loop attempts to search a suitable version in two phases, as illustrated in Algorithm 1. Initially, the constraints need to be defined, as well as the target type for which a variable parameter is evaluated. In the first phase (line 4–8), that variable parameter is consecutively doubled until all constraints are met. Hereby, the upper bound for the search interval of the second phase is determined. In the second phase (line 9–18), the actual optimization takes place. The search interval is explored by applying the bisection method. Meaning in each iteration, the interval center is chosen as pivot element and represents the upper or lower interval boundary for the next iteration, depending on whether or not the constraints have been met.

¹number of clock cycles a pipelined execution needs to produce an output value, when the pipeline has already been filled
Algorithm 1 Optimization Feedback Loop

1: function OPTIMIZE(target, constraints)
2: low ← DEFAULT_LOW(target)
3: high ← low
4: repeat
5: high ← 2×high
6: GENERATE_CODE(target, high, constraints)
7: end repeat
8: while low ≠ high
9: current ← (low+high)/2
10: GENERATE_CODE(target, current, constraints)
11: end while
12: return (target, current, constraints)
13: end function

C. The Bit-Count Problem

During the comparison step within Census difference block matching, the Hamming distance needs to be evaluated. Counting bits within various data types can be accomplished fairly efficient in software with the Brian Kernighan Algorithm shown in Listing 3. The number of loop iterations exactly represents the number of set bits to count. As HIPAC++ supports the use of standard C++, software developers might tend to implement bit counting using this algorithm. Unfortunately, Vivado HLS does not cope with variable loop boundaries and is not able to successfully analyze that the maximum number of iterations solely depends on the bit width of the given data type. As a consequence, unrolling can not be applied, pipelining fails, and no II can be determined.

Listing 3. Brian Kernighan Algorithm

```c
int count = 0;
while (val)
{
    val &= val - 1;
    ++count;
}
```

Listings 4 and 5 show the Brian Kernighan Algorithm implemented in HLS C and HLS C++. The loop and unroll pragmas are used to optimize the code for synthesis.

Listing 4. Brian Kernighan Algorithm in HLS C

```c
int count = 0;
for (int i = 0; i < sizeof(val)*8; ++i) {
    #pragma HLS loop_tripcount min=0 max=sizeof(val)*8
    #pragma HLS unroll
    if (!val) break;
    ++count;
}
```

Listing 5. Generated Brian Kernighan Algorithm

```c
int count = 0;
for (int i = 0; i < sizeof(val)*8; ++i) {
    if (!val) break;
    ++count;
}
```

IV. Evaluation and Results

Our results for the stereo matching algorithms have been evaluated on the Zynq platform. The algorithms have been implemented in DSL code, which could also be used to target completely different architectures, like GPUs, without any effort. The code used for synthesis by Vivado HLS was generated with HIPAC++. To evaluate the quality of the our results, we compare it to handwritten implementations. Furthermore, we will present the results we were able to obtain by applying the optimization feedback loop.

A. Experimental Environment

Xilinx Zynq 7100 is a System on Chip (SoC), which tightly integrates an ARM Cortex-A9 dual core CPU and a Kintex FPGA. The included FPGA offers 277,400 Lookup Tables (LUTs), 554,800 flip-flops, 3,020 kB of on-chip memory (BRAM), and 2,020 DSP slices.

Xilinx Vivado HLS is a High-Level Synthesis tool specifically targeting Xilinx FPGAs. It allows design entry in C/C++ or SystemC and delivers HDL code (VHDL, Verilog, and SystemC) for synthesizable IP cores. For our experiments we are using the most recent version Vivado HLS 2014.4.

1) Handwritten Implementation: In [15] stereo block matching has been realized as a generic VHDL template, which is scalable in several functional and structural parameters like image size, disparity and window block size. By utilizing special buffering techniques it was possible to implement it as streaming architecture, in order to have a direct interface to the image sensor for performing block matching in real time on HD images. For achieving high frame rates, the architecture has been pipelined. Since no specific IP core interfaces have been used, it is easy to port it to a different FPGA vendor or family and may also be base for an ASIC design. The cost functions are calculated by a Processing Element (PE). This common interface allows to switch between different cost functions easily. Depending on the designer constraints (FPGA resources, depth map accuracy) the architecture can be adapted. The minimum detection module MIN has been implemented as a pipelined binary tree. An overall architecture is shown in Figure 4. The images were taken from the Middlebury 2003 stereo datasets [16], which provide several scenes for benchmarking of stereo matching algorithms. The resulting depth maps show different matching qualities depending on the used cost function.
Running the evaluation with the optimization feedback loop greatly reduces the number of synthesis runs necessary to converge to predefined constraints. Instead of uniformly investigating the whole search space, the less promising spots are skipped rather early, whereas the most promising spot is very thoroughly explored. Figure 6 shows the results from an optimization run with the constraints II = 1 and resource usage < 6%. The optimization algorithm is varying the target clock frequency. It can be seen that there are some outliers, which are produced by the synthesis runs at the boundaries of the search space interval. The bisection method enforces synthesis runs close to the constraint (dashed line) rather quickly. Therefore, a cluster forms near that resource constraint line. However, it is not ensured that the last iteration of the run will lead to the best result. As Vivado HLS uses heuristics internally, a slightly lower target clock frequency might lead to a better result than a higher target frequency. For example, in the presented graph it was possible to achieve a clock timing of 8.121 ns by specifying the desired target clock to 12.735 ns. On the other hand, the next iteration of the optimization loop resulted in a clock timing of 9.910 ns when specifying a slightly faster timing of 12.730 ns. For that reason, a thorough exploration at the constraint boundary is very reasonable. The optimization loop keeps track of all results and reports the one with the highest achieved frequency that is still meeting all defined constraints.

C. Comparison: HIPA^{cc} vs. Handwritten HDL Code

A comparison of both algorithm types, generated with HIPA^{cc} and their handwritten equivalents, can be found in Table I. An image size of 450×375 has been chosen, whereas both implementations are kept generic enough to synthesize accelerators for other image dimensions as well. For the HIPA^{cc} generated implementation, we ran the optimization loop with the constraints II = 1 and resource usage ≤ 100%. Hereby, we wanted to avoid artifacts introduced by Vivado HLS’s internal heuristics, as described above.
Vivado HLS was able to achieve an II of 1 for both HIPAcc generated implementations. Therefore, the overall latency of those algorithms is similar compared to the handwritten performance. Regarding resource usage, the number of LUTs is slightly higher (20\%) for the Census difference and up to 74\% higher for SAD. Describing the SAD block matching algorithm in HIPAcc requires language features that are currently not available. This leads to a window size within the local operator that is considerably larger than actually necessary, which can of course be avoided in the handwritten implementation. Due to this deficiency, the achievable clock frequency for SAD is noticeably lower (33\%) compared to the Census difference (9\%). Unfortunately, the number of used flip-flops tremendously exceeds the amount of flip-flops allocated by the respective handwritten equivalent. As the exceedance is similarly large for both, the Census difference and SAD, we attribute this issue to shortcomings within Vivado HLS.

Even though the handwritten implementation is more efficient compared to the version generated by HIPAcc, code generation still gives great benefits. First of all, the productiveness is significantly increased, as the necessary lines of DSL code are less than a quarter of the handwritten implementations. Second, the developer does not need to be an FPGA expert. In fact, the DSL code is completely independent of the target architecture. Therefore, the exact same algorithm code can be used to target GPUs or other dedicated accelerators (like the Intel Phi) as well.

V. Conclusion

In this work, we have presented an optimization feedback loop coupled with a DSL compiler. In contrast to handwritten HDL code or even handwritten HLS code, DSLs offer great productivity and deliver fairly good results. Through architecture knowledge provided within the DSL compiler, it is ensured that the generated code variants are efficient target-specific implementations, even though the developer is not an architecture expert. Despite that, the most important benefit of DSLs is that not only functional portability but also performance portability is provided through those target-specific implementations. However, the most compelling argument for code generation is to easily change large parts of code by just flipping a compiler switch. Therefore, this offers the great possibility to interlock this approach with an automatic optimization loop. This optimization feedback loop can be used for rapid exploration of different code variants given predefined constraints. Therefore, this extension to the existing approach offers further control over code generation and gives developers the possibility to automatically optimize their implementations towards the desired design target without rewriting their code.

Acknowledgment

This work is supported by the German Research Foundation (DFG), as part of the Research Training Group 1773 “Heterogeneous Image Systems”.

Table I

	HIPAcc	Handwritten
	II LAT BRAM DSP FF LUT F[MHz]	II LAT BRAM DSP FF LUT F[MHz]
SAD	1 181,797 8 2 140,228 66,185 182.38	1 170,565 4 0 29,288 37,940 271.59
Census	1 180,090 8 0 54,016 23,144 289.52	1 170,561 4 0 9,978 19,247 319.18

References

[1] “IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats”, IEEE Std. 1451.2—1997, p. 1, 1998.
[2] W. Wolf, B. Ozer, and T. Lv, “Smart cameras as embedded systems”, Computer, vol. 35, no. 9, pp. 48–53, 2002.
[3] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed embedded smart cameras for surveillance applications”, Computer, vol. 39, no. 2, pp. 68–75, Feb. 2006.
[4] R. Kleihorst, A. Abbo, A. van der Avoird, M. Op de Beeck, L. Sevat, P. Wielage, R. van Veen, and H. van Herten, “Xetal: A low-power high-performance smart camera processor”, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, 2001, pp. 215–218.
[5] Y. Mustafah, A. Azman, A. Bigdeli, and B. Lovell, “An automated face recognition system for intelligence surveillance: Smart camera recognizing faces in the crowd”, in Proceedings of the First ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), Sep. 2007, pp. 147–152.
[6] T. Bräunl, S. Feyrer, W. Rapf, and M. Reinhardt, Parallel Image Processing. Springer, 2001.
[7] M. Reichenbach, R. Seidler, B. Pfundt, and D. Fey, “Fast image processing for optical metrology utilizing heterogeneous computer architectures”, Computers & Electrical Engineering, vol. 40, no. 4, pp. 1158–1170, 2014.
[8] M. Schmid, M. Blocherer, F. Hannig, and J. Teich, “Real-time range image preprocessing on FPGAs”, in Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig), (Cancun, Mexico), Dec. 9–11, 2013, 8 pp.
[9] F. Hannig, H. Ruckdeschel, H. Dutta, and J. Teich, “PARO: Synthesis of hardware accelerators for multi-dimensional dataflow-intensive applications”, in Proceedings of the Fourth International Workshop on Applied Reconfigurable Computing (ARC), (London, United Kingdom), ser. Lecture Notes in Computer Science (LNCS), vol. 4943, Springer, Mar. 26–28, 2008, pp. 287–293.
[10] R. Membarth, O. Reiche, F. Hannig, and J. Teich, “Code generation for embedded heterogeneous architectures on Android”, in Proceedings of the Conference on Design, Automation and Test in Europe (DATE), (Dresden, Germany), EDAA, Mar. 24–28, 2014, 6 pp.
[11] R. Membarth, O. Reiche, C. Schmitt, F. Hannig, J. Teich, M. Stürmer, and H. Köster, “Towards a performance-portable description of geometric multigrid algorithms using a domain-specific language”, Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3191–3201, Nov. 2014.
[12] O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J. Teich, “Code generation from a domain-specific language for C-based HLS of hardware accelerators”, in Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), (New Delhi, India), ACM, Oct. 12–17, 2014, 10 pp.
[13] M. Schmid, O. Reiche, C. Schmitt, F. Hannig, and J. Teich, “Code generation for high-level synthesis of multiresolution applications on FPGAs”, in Proceedings of the First International Workshop on FPGAs for Software Programmers (FSP), (Munich, Germany), Sep. 1, 2014, pp. 21–26, arXiv: 1408.4721 [cs.CV].
[14] M. Schmid, N. Apelt, F. Hannig, and J. Teich, “An image processing library for C-based high-level synthesis”, in Proceedings of the 24th International Conference on Field Programmable Logic and Applications (FPL), (Munich, Germany), Sep. 2–4, 2014.
[15] K. Häublein, M. Reichenbach, and D. Fey, “Fast and generic hardware architecture for stereo block matching applications on embedded systems”, in Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig), (Cancun, Mexico), 2014.
[16] D. Schuster and R. Szlinski, “High-accuracy stereo depth maps using structured light”, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), (Madison, WI, USA), vol. 1, IEEE, 2003, pp. 195–202.