Inconsistency of χ^2 test for sparse categorical data under multinomial sampling

Pavel Samusenko

Faculty of Fundamental Sciences, Vilniaus Gedimino Technical University
Saulėtekio 11, LT-10223 Vilnius
E-mail: pavels.vgtu@gmail.com

Abstract. Simple conditions for the inconsistency of Pearson’s χ^2 test in case of very sparse categorical data are given. The conditions illustrate the phenomenon of “reversed consistency”: the greater deviation from the null hypothesis the less power of the test.

Keywords: χ^2 test, categorical data, inconsistency, sparse contingency table.

1 Introduction

Statistical inference problems caused by sparsity of contingency tables are widely discussed in the literature. According to a rule of thumb, expected (under the null hypothesis) frequencies in a contingency table is required to exceed 5 in the majority of its cells [6]. If this condition is violated, the χ^2 approximation of Pearson’s χ^2 test statistic may be inaccurate and the contingency table is said to be sparse.

There is a vast literature dealing with approximation problems resulting from the sparsity, see, e.g., [1, 7, 8, 2, 3] and references therein). In this paper, it is shown that, for very sparse categorical data, the χ^2 test can become completely uninformative (inconsistent) and hence there is no sense to approximate or adjust its distribution. For the likelihood ratio test, analogous results are presented in [4] and [5].

In the next section we introduce notation, present some background and specify a sparsity condition. The inconsistency of Pearson’s χ^2 test is proved in Section 3. A simple example and simulation results provided in the last section illustrate the inconsistency and “reversed consistency” phenomena for a finite sample.

2 Notation and background

Let y_j denote an observed frequency of the category $j \in J = J_n := \{1, \ldots, n\}$ in a sample of N iid observations. Hence $Y := (y_1, \ldots, y_n) \sim \text{Multinomial}_n(N, P)$ where $P := (p_1, \ldots, p_n) \in \mathcal{P}$,

$$\mathcal{P} := \left\{ q \in \mathbb{R}^n : q_j \geq 0, j = 1, \ldots, n, \sum_{i=1}^{n} q_i = 1 \right\}.$$

Let us assume that a simple hypothesis

H_0: $P = P_0$ versus H_1: $P \neq P_0$
is to be tested on the basis of the observed frequencies Y with a given $P_0 = (p_0^1, \ldots, p_0^n) \in \mathcal{P}_+ := \{ q \in \mathcal{P}, q_i > 0, \forall i \}$.

We consider very sparse categorical data (contingency tables). Here it means that $n = n(N), \quad N = o(n), \quad P = P(N), \quad P_0 = P_0(N) \quad (N \to \infty)$.

We shall also use additional (technical) conditions related to the sparseness, see Proposition 1.

Pearson’s χ^2 statistic

$$e\chi^2 := \sum_{j \in J} \frac{(y_j - Np_j^0)^2}{Np_j^0} = \sum_{j \in J} \frac{y_j^2}{Np_j^0} - N.$$ (1)

Using moment generation function one can find the means

$$E\chi^2 = (N - 1) \sum_{j \in J} p_j^2 + \sum_{j \in J} \frac{p_j}{p_0 j} - N, \quad E_0\chi^2 = n - 1,$$ (2)

and the variances

$$D\chi^2 = \frac{1}{N} \sum_{j \in J} \frac{p_j}{(p_0 j)^2} + 6 \left(1 - \frac{1}{N}\right) \sum_{j \in J} \left(\frac{p_j}{p_0 j}\right)^2$$

$$+ 4N \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \sum_{j \in J} \frac{(p_j)^3}{(p_0 j)^2}$$

$$- \frac{1}{N} \left(\sum_{j \in J} p_j \right)^2 - \left(1 - \frac{1}{N}\right) \left(\sum_{j \in J} \frac{p_j}{p_0 j} \right) \left(\sum_{i \in J} \left(\frac{p_i}{p_0 i}\right)^2 \right)$$

$$- \left(4N - 6\right) \left(1 - \frac{1}{N}\right) \left(\sum_{j \in J} \frac{(p_j)^2}{p_0 j} \right)^2,$$ (3)

$$D_0\chi^2 = \frac{1}{N} \sum_{j \in J} \frac{1}{p_0 j} - \frac{n^2}{N} + 2(n - 1) \left(1 - \frac{1}{N}\right)$$ (4)

of the χ^2 statistic. Here and in the sequel $E, D,$ and P ($E_0, D_0,$ and P_0) denote, respectively, the expectation, the variance, and the probability for $Y \sim \text{Multinomial}_n(N, P)$ (respectively, $Y \sim \text{Multinomial}_n(N, P_0)$).

3 Inconsistency

In this section the inconsistency of the χ^2 statistic is derived under additional conditions related to and quite natural for (very) sparse categorical data.

Definition 1. Let $T_N := T(S_N)$ be a statistic of a sample S_N with N being the sample size. A test (criterion) based on the statistic T_N is said to be consistent for testing H_0 versus H_1 if there exists a sequence c_N such that

$$P_0\{T_N > c_N\} + P\{T_N < c_N\} \to 0, \quad N \to \infty.$$

Otherwise, the test is called inconsistent.
Inconsistency of χ^2 test for sparse categorical data

Proposition 1. Suppose that

$$\Delta_N := \mathbb{E}_N \chi^2 - \mathbb{E}_0 \chi^2 = \sum_{j \in J} p_j^2 + (N-1) \sum_{j \in J} p_j^2 - N - (n-1) < 0, \quad (5)$$

and the asymptotic relation

$$\rho_N^2 := \frac{\Delta_N^2}{D_N^2} \to \infty \quad (N \to \infty) \quad (6)$$

is valid with $D_N := \sqrt{D_0 \chi^2} + \sqrt{D \chi^2}$. Then the χ^2 test is inconsistent.

On the other hand, the test based on the statistic $T_N := |\chi^2 - (n-1)|$ is consistent with $c_N = |\Delta_N|/2$ provided (6) holds.

Proof. The Tchebysev’s inequality implies

$$\mathbb{P}_0 \{ \chi^2 \leq \mathbb{E}_0 \chi^2 - 2\sqrt{D_0 \chi^2} \} \leq 1/4, \quad (7)$$

$$\mathbb{P} \{ \chi^2 \geq \mathbb{E} \chi^2 + 2\sqrt{D \chi^2} \} \leq 1/4. \quad (8)$$

Consequently,

$$\mathbb{P}_0 \{ \chi^2 > c_N \} + \mathbb{P} \{ \chi^2 < c_N \} \geq \mathbb{P}_0 \{ \chi^2 > \max(c_N, c_{0N}) \} + \mathbb{P} \{ \chi^2 < \min(c_N, c_{1N}) \} \quad (9)$$

where $c_{0N} := \mathbb{E}_0 \chi^2 - 2\sqrt{D_0 \chi^2}$ and $c_{1N} := \mathbb{E} \chi^2 + 2\sqrt{D \chi^2}$. Since, in view of (5) and (6),

$$c_{1N} - c_{0N} = \Delta_N + 2(\sqrt{D_0 \chi^2} + \sqrt{D \chi^2}) < 0$$

for all sufficiently large N, we then get $c_{0N} \geq c_{1N}$ and hence either $\max(c_N, c_{0N}) = c_{0N}$ or $\min(c_N, c_{1N}) = c_{1N}$. From (7), (8) and (9) we derive inconsistency of χ^2 test:

$$\mathbb{P}_0 \{ \chi^2 > c_N \} + \mathbb{P} \{ \chi^2 < c_N \} \geq \max \{ \mathbb{P}_0 \{ \chi^2 > c_{0N} \}, \mathbb{P} \{ \chi^2 < c_{1N} \} \} \geq 3/4.$$

The consistency of T_N follows from (2) and the Tchebysev inequality:

$$\mathbb{P}_0 \{ T_N > |\Delta_N|/2 \} + \mathbb{P} \{ T_N < |\Delta_N|/2 \} \leq \mathbb{P}_0 \{ T_N^2 > \Delta_N^2/4 \} + \mathbb{P} \{ |\chi^2 - \mathbb{E} \chi^2 | > |\Delta_N|/2 \} \leq 4 \frac{\mathbb{E}_0 T_N^2 + D \chi^2}{\Delta_N^2} \frac{4}{\rho_N^2} \to 0 \quad (N \to \infty)$$

due to (6).

Proposition 1 shows that (5) is the key condition which determines the inconsistency of χ^2 test. When P_0 is the uniform distribution, $\Delta \geq 0$ for any P and hence, for any P, condition (5) is not satisfied. In the next section we present a simple example when conditions (5) and (6) are fulfilled.

Liet. mat. rink. LMD darbai, 52:327–331, 2011.
Remark 1. By definition (5)
\[\Delta N = \sum_{j \in J} \frac{p_j - p_j^0}{p_j^0} + (N - 1) \sum_{j \in J} \frac{(p_j - p_j^0)^2}{p_j^0}. \] (10)
Since the second term in this expression is nonnegative the requirement \(\Delta < 0 \) implies that the absolute value of the first term in (10) should dominate second one.

4 Example

For a given \(\beta > 1 \) and \(q_0, q \in (0, 1/2) \), set \(m = \lfloor N^\beta \rfloor, n = 2m, j_0 = m, \)
\[p_j^0 = q_0/m, \quad \forall j \leq m, \quad p_j^0 = (1 - q_0)/m, \quad \forall j > m, \]
\[p_j = q/m, \quad \forall j \leq m, \quad p_j = (1 - q)/m, \quad \forall j > m. \]
Then the conditions of Proposition 1 are fulfilled.

If \(q = 0 \), means (2) and variances (4), (3) are given by
\[E \chi^2 = \frac{N - 1}{1 - q_0} + \frac{m}{1 - q_0} - N, \quad E_0 \chi^2 = n - 1, \]
\[D_0 \chi^2 = \frac{m^2}{Nq_0(1 - q_0)} - \frac{n^2}{N} + 2(n - 1) \left(1 - \frac{1}{N} \right), \]
\[D \chi^2 = \frac{2(m - 1)}{(1 - q_0)^2} \left(1 - \frac{1}{N} \right). \]
Consequently,
\[\Delta N = -\frac{1}{2} \frac{2q_0}{1 - q_0} n + \mathcal{O}(N), \]
\[D \chi^2 = \mathcal{O}(n), \] and
\[D_{\rho} \chi^2 = \frac{n^2}{N} \left[\frac{1}{4q_0(1 - q_0)} - 1 \right] + \mathcal{O}(n). \]
Thus
\[\rho_N = -\sqrt{\frac{Nq_0}{1 - q_0} \left[1 + \mathcal{O} \left(\frac{N}{n} \right) \right]}. \]
A computer experiment illustrates the asymptotic findings in case of finite samples.
In the simulations, the number of observations \(N = 200 \), the number of cells \(n = 2m = 600 \). Two cases are considered: (a) \(q_0 = 0.2, q = 0 \) and (b) \(q_0 = 0.2, q = 0.1 \).
The number of repetitions is set to 100. The histograms of the \(\chi^2 \) statistic for the null hypothesis \(H_0 \) and the alternative \(H_1 \) are represented in Fig. 1.

The figure clearly demonstrates the inconsistency of the \(\chi^2 \) statistic. Actually, in the first case (case (a)), the phenomenon of the “reversed consistency” is observed: although the values of the \(\chi^2 \) statistic under the null hypothesis \(H_0 \) are significantly greater than its values under the alternative \(H_1 \) (the data under the alternative “fits” the null hypothesis better than the data under the null hypothesis itself) the latter is evidently separable from the former. Thus Pearson’s \(\chi^2 \) test is completely uninformative in this case.
Inconsistency of χ^2 test for sparse categorical data

Fig. 1. Histograms of the χ^2 statistic under the null hypothesis and under the alternative in case (a) $q_0 = 0.2$, $q = 0$ and in case (b) $q_0 = 0.2$, $q = 0.1$.

References

[1] A. Agresti. *Categorical Data Analysis*. Wiley & Sons, New York, 1990.

[2] A. Agresti and B.D. Hitchcock. Bayes inference for categorical data analysis. *Stat. Meth. Appl.*, 14:297–330, 2005.

[3] O. Kuss. Global goodness-of-fit tests in logistic regression with sparse data. *Stat. Med.*, 21:3789–3801, 2002.

[4] M. Radavičius and P. Samusenko. Profile statistics for sparse contingency tables. *CDAM*, 40:115–123, 2010.

[5] M. Radavičius and P. Samusenko. Profile statistics for sparse contingency tables under poisson sampling. *Austrian J. Stat.*, 40:115–123, 2010.

[6] C.R. Rao. *Linear Statistical Inference and its Applications*. John Wiley, New York, 1965.

[7] J.S. Simonoff. Smoothing categorical data. *J. Stat. Plann. Inf.*, 47:41–69, 1995.

[8] M. von Davier. Bootstraping goodness-of-fit statistics for sparse categorical data. Results of a Monte Carlo study. *Meth. Psych. Res.*, 2(2), 1997. Available from Internet: www.pabst-publishers.de/mpR.

REZIUMĖ

χ^2 testo nepagraįstumų išsklaidytiems kategoriniams duomenims polinominio ėmimo atveju

P. Samusenko

Pateiktos paprastos Pearsono χ^2 testo nepagraįstumo sąlygos labai išsklaidytų kategorinių duomenų atveju. Tos sąlygos ilustruoja „atvirkščio pagrįstumo“ reiškinį: kuo didesnis alternatyvos ir nulines hipotezės skirtumas tuo mažesnė χ^2 testo galia.

Raktiniai žodžiai: χ^2 testas, kategoriniai duomenys, nepagraįstumas, išsklaidyta dažnių lentelė.