How wildfires increase sensitivity of Amazon forests to droughts

Renan Le Roux, Fabien Wagner, Lilian Blanc, Julie Bededer, Valery Gond, Hélène Dessard, Beatriz Funatzu, Clément Bourgoin, Guillaume Cornu, Bruno Herault, Frédérique Montfort, Plinio Sist, Agnes Begue, Vincent Dubreuil, François Laurent, François Messner, Ali Fadhil Hasan and Damien Arvor

1. Introduction

Understanding complex interactions between climate and the functioning of Amazonian forest ecosystems is crucial for assessing the role of tropical forests in regulating global to regional biogeochemical exchanges with the atmosphere [1].

From a climate perspective, vegetation cover directly influences climate variables. The forest’s canopy structure creates intense latent heat fluxes and roughness properties that slow the warming of air and ensure efficient storage of precipitation and release of water into the atmosphere as evapotranspiration (ca. two-thirds of precipitation received by mature forests), even in the dry season [2, 3]. Since forest evapotranspiration represents one-third to more than half of total precipitation in the Brazilian Amazon [4, 5], tropical forests have been conceptualized as pumps that recycle and spread moisture from the oceans [4] and from evapotranspiration. The spatial and temporal climate variability in the Amazon is related mainly to global mechanisms (e.g. displacement of the Intertropical Convergence Zone and the South Atlantic Convergence Zone, El Niño Southern Oscillation) or geographic conditions (e.g. Andes mountains). However, vegetation phenology also plays a crucial and complex role in the timing of dry-and rainy-season transitions [6, 7] with a strong climate feedback [8] (e.g. to regulate moisture, energy and gas exchanges between the surface and the atmosphere).

From a vegetation perspective, the functioning and distribution of forest ecosystems also depend on climate drivers [9]. The phenology of Amazon
tropical forests is characterized by greening during the dry season due to net leaf-flushing (i.e. more new leaves appear than old leaves fall) and an increase in canopy chlorophyll content [10, 11]. During the late rainy season, photosynthetic activity decreases due to senescence, litterfall and the development of epi- phylls on mature leaves [12]. This apparently homo- geneous situation across the Amazon conceals high spatiotemporal variability related to two main climate factors that influence tropical forest phenology: precipitation and solar radiation [13]. Tropical forests with no limitations on water availability (i.e. at least ca. 2000 mm of annual precipitation [14]) experience rapid leaf-flushing during the dry season in response to an increase in photosynthetically active radiation. This is presumably due to the ability of deeply rooted trees to access soil water during the dry season [15]. Conversely, leaf-flushing in drier tropical forests is influenced by precipitation at the end of the dry sea- son. Extending this gradient to savannas and pastures, a positive relationship with precipitation suggests that photosynthetic activity (i.e. higher leaf-area index (LAI) and enhanced vegetation index (EVI)) increases during the rainy season and decreases during the dry season [12, 16, 17]. Rather than a clear delineation between water- and light-limited forests, the distribution of phenological patterns follows a northwest-to-southeast moisture gradient related to dry-season length and intensity [18, 19]. Wagner et al [20] mapped this gradient and indicated that spatial patterns of the climate influence the leaf growing sea- son in the Amazon.

For several decades, the Amazon rainforest has been under human pressure, mainly due to agri- cultural expansion and the resulting, well-known massive deforestation. Permanent land-use change to produce commodities is the main driver of defor- estation in the tropics [21]. To date, most studies have focused on reporting the extent, causes and impacts of deforestation on ecosystems and climate change. Consequently, studies have reported worrying predictions of changes in mean annual precipi- tation [3, 22, 23], an increase in extreme droughts [24] or precipitation events [25], and changes in the beginning and end dates of the rainy season [26, 27]. Beyond deforestation, recent studies also mention the severe degradation of the Amazon rainforest due to fire, timber logging and forest fragmentation [28]. Forest degradation represents 69% of current global carbon losses in tropical forests [29] and areas of degraded forests may exceed deforested areas in certain years [30]. The frequency, nature and intensi- ty of disturbances generate high variability in the structure, floristic composition and functioning of degraded forests over time [31], which can influence climate-vegetation interactions. As reported in many studies, phenology can be a relevant proxy for studying these climate-vegetation interactions. For example, Koltunov et al [32] revealed that even low forest degradation (5%-10% of canopy dam- age) due to selective logging can alter forest pheno- logy, because it dries the canopy and decreases greening. Fires are the major and ultimate stage of forest degradation in the Amazon [33, 34], especially due to increased tree mortality [35–37].

Remote-sensing data are a key tool to under- stand spatial variations in phenology over large areas [38]. Remote-sensing time series of vegetation indices have long been used to monitor vegetation pheno- logy. Among the many remote-sensing data avail- able, vegetation indices based on Moderate Res- olution Imaging Spectroradiometer (MODIS) are widely used to monitor phenological cycles of forests [39, 40]. The MODIS EVI measures canopy green- ness, a composite property of canopy structure [41] and it is so far one of the primary data source for studies of the greening phenomenon [42]. It is not subject to saturation in high-LAI canopies [43] unlike the normalized difference vegetation index. The high temporal resolution of these products makes it possible to study phenological cycles of forests and relate them to environmental conditions. A common issue with this product is the processing and inter- pretation of vegetation-index time series to moni- tor fine-scale seasonal and interannual changes in evergreen forest phenology. Morton et al [42] sug- gested that the greening observed during the dry sea- son [12] resulted from seasonal changes in near-infrared reflectance, which are artifacts of variations in Sun-sensor geometry. Other studies indicated that a seasonal pattern of EVI from photosynthetic activ- ity remained after removing atmospheric contamin- ation and considering Sun-sensor geometry effects [44]. To address this issue, Lyapustin et al [45] intro- duced Multi-Angle Implementation of Atmospheric Correction (MAIAC) to increase the performance of daily MODIS observations. Based on MAIAC, recent studies confirmed the original results that indicated dry-season greening of Amazonian forests. This was also confirmed by Doughty et al [11], who found a dry-season increase in solar-induced chlorophyll fluorescence (another proxy for photosynthetic activ- ity) using TROPOMI data. The most recent results highlight that EVI is not strongly correlated with LAI or biomass, but rather with leaf-flushing [46], which may explain why greening does not appear in independent LiDAR observations that indicate no change in canopy properties during the dry season.

The phenology of Amazonian forests remains a complex subject, especially in relation to climate vari- ations. The complex interrelationships between cli- mate and vegetation should be considered due to the intense human pressures that impact Amazon ecosys- tems. Degradation must be incorporated in studies that focus on forest functioning. Currently, effects of degradation on forest phenology-climate interactions remain poorly documented [47]. In this study, we
relied on the fact that Forests Disturbed by Wildfires [48] (FDW), as defined by Barlow et al [48] currently represent large areas in Amazonia and play a crucial role by releasing large amounts of carbon in the atmosphere [49]. We focused on these forest (FDW) to highlight the importance of differences in functioning between mature forests and highly degraded forest.

2. Study area, data and methods

2.1. Study area
The study focused on eastern and southern portions of the Amazon biome in three Brazilian states: Pará, Mato Grosso and Rondônia (figure 1). These states are representative of the ‘arc of deforestation’, with several hotspots of historic and ongoing deforestation and degradation. Forest landscapes are thus a mosaic of forests in different states of degradation. The classification used in this study to separate forest and non-forest areas is the PRODES deforestation product [50]. PRODES is a product created by INPE (Brazil’s National Institute for Space Research) to monitor deforestation in Brazil. It is a combination of automated satellite images processing and expert interpretations. The result is an annual map at 30 m resolution of forest/non forest. In this paper forests disturbed by wildfires refer as in Barlow et al [48] to forests that have been disturbed by understory fire but not deforested according to PRODES deforestation product presented above.

2.2. Data and preprocessing

2.2.1. Mapping mature and FDW
Mature forests are considered here according to Clark’s [51] definition, as primary or secondary forests that have developed the structures and species normally associated with old primary forest of that type that have sufficiently accumulated to act as a forest ecosystem distinct from any younger age class. For this purpose, a forest pixel is considered as mature forest was an non-deforested according to PRODES data, and an undisturbed forest according to Mattricardi et al [30] and the Global Fire Atlas (figure 2). To avoid integrating the effects of borders and isolated small forest patches, riparian forests and swamp forests into the mature forest class, all pixels less than 5 km from other land uses (e.g. agriculture, water bodies) were excluded based on the Mapbiomas landcover map at 30 m spatial resolution [52].

Fire is often the ultimate stage of degradation before potential deforestation [31, 33, 34], FDW are often the most degraded forests. Burned area were extracted from the The Global Fire Atlas [53] dataset (2001–2016). It provides burned area, based on the Global Fire Atlas algorithm and from MODIS Collection 6 MCD64A1 burned area. The cumulative burned area observed over the study period was
Figure 2. Workflow of preprocessing and mapping mature forest and FDW.

Table 1. Classification of mature and FDW in the study area based on PRODES data.

Forest class	Surface (in km²)	Percentage
Total forest class	1233 215	100
Mature forest	656 011	53
FDW	99 014	8

used. A MAIAC (ca. 1 km²) forest pixel was considered burned if it experienced a fire at least once and with at least 80% forest cover according to the latest version of the PRODES deforestation product (figure 1). Based on this classification, mature and FDW in the study area represented 53% and 8% of the pixels, respectively (table 1).

2.2.2. Vegetation data
In our study, we used the EVI from Aqua and Terra satellites, processed with MAIAC. MAIAC data are processed with advanced cloud detection and aerosol-surface retrieval, which improves the accuracy of satellite-based surface reflectance over tropical vegetation by 3–10 fold compared to that of standard MODIS products. MAIAC observations are based on MODIS Collection 6 Level 1B (calibrated and geometrically corrected) observations, which removed the main effects of sensor calibration degradation in earlier collections. We used observations from the Aqua and Terra satellites collected from 2001 to 2018 at 1 km spatial resolution. We used the same dataset as Wagner et al [20]: a time series of mean EVI in which interannual monthly mean EVI were filtered using a Fourier transform.

2.2.3. Precipitation and solar radiation data and preprocessing
Precipitation measurements were obtained from The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data. This product combines 0.05° high-spatial-resolution satellite imagery and in-situ station data, providing near-global (50°N–50°S; all longitudes) gridded daily precipitation estimates [54]. We used Version 2 data from 2001 to 2018, at a spatial resolution of 0.05° latitude × 0.05° longitude. Paca et al [23] observed good agreement between CHIRPS data and ground station observations over the Amazon basin, while Espinoza et al [22] observed very good agreement between trends of climate indexes derived from CHIRPS and the interpolated HYBAM observed precipitation (HOP) dataset. Monthly mean precipitation was calculated for 2001–2018.

Solar radiation data were obtained from The National Solar Radiation Database [55] available at 0.4° spatial resolution, from 2005 to 2015, produced by the National Renewable Energy Laboratory. We used monthly mean global irradiance on a horizontal surface (W m⁻²). Monthly mean over the 2005–2015 period was used here.

Temperature was obtained from a monthly global climate dataset (CRU TS4.04) available at 0.5° spatial resolution, from 1901 to 2019, produced by the
Climate Research Unit (CRU) at the University of East Anglia, United Kingdom [56]. Monthly mean over the 2001–2018 period was used here.

3. Method

3.1. Mapping climatic area

We used the Köppen climate classification [57] to represent differences and in EVI profiles of FDW and mature forests as a function of climatic conditions. The Köppen classification divides terrestrial climates into five major classes (A, B, C, D and E). Temperature defines four of the classes (A, C, D and E, as B is reserved for arid climates). These classes are divided into subclasses, which are designated with additional letters representing precipitations. To assess the climatic conditions of the study period, we calculated the Köppen classification for each MAIAC pixel for each year. Then, according to the method of Dubreuil et al [58], the most frequent subclass per pixel during the 2001–2018 period was assigned to the pixel. Then we compare to a reference map produced by Rubel and Kottek [59] to highlight spatial shift of climate area in the last decades.

3.2. EVI greening modeling

For each Köppen subclass, we averaged monthly EVI data for FDW and mature forests. To avoid temporal shifts due to geographical variations in the beginning and end of the rainy season, each pixel started in the rainiest month. We used the same methods as Wagner et al [60], which in our study consisted of fitting linear regression models to the main increase in EVI as a function of two climate variables: monthly precipitation (P) and solar radiation (SR):

$$EVI_{mat} = f(P, SR)$$

$$EVI_{deg} = f(P, SR).$$

The consideration of the lag between the increase in climate parameters and the EVI was done in two steps. In the first step, the best model is selected for the whole study site with an lag of 0, 1, 2 and 3 months. In a second step, the best model per pixel is selected using lags of 0, 1, 2 and 3 months, selecting only pixels where the correlation between precipitation and solar radiation is less than 0.2 per lag, thus limiting artificial correlations between climate variables. All modeling details can be found in Wagner et al [60].

For each pixel, the model provided four R2 results that represented the contribution of each climate parameter to the main increase in EVI for each type of forest: precipitation for mature forest, solar radiation for mature forest, precipitation for FDW and solar radiation for FDW. Moreover, the coefficients of rain or radiation are necessarily positive in the model, so it limits a little the compensation effect that we could have with the correlation between variables.

3.3. Extreme event: the 2015 drought

The average profiles over several years helped us to understand forest phenology/climate relationships during ‘normal’ climate years. However, the climate of the Amazon has high interannual variability due to larger-scale conditions, specifically El Niño and La Niña phenomena. Several intense droughts occurred during the study period; we focus on one of the most recent, which was caused by a strong El Niño event in 2015. To assess impacts of this type of event on the greening of mature and FDW, we calculated monthly EVI anomalies (i.e. differences) from the mean EVI of mature forests from 2001 to 2018, for each Köppen subclass.

4. Results

4.1. Climate classification

The study area had only one climate class (A, warm), which was subdivided into three subclasses defined by their precipitation patterns: Af (no dry season), Am (short dry season) and Aw (winter dry season) (figure 3). These three subclasses were the same in the past decades (1951–2000) (figure 3), but their spatial distribution had changed. The Af subclass (no dry season) was the smallest and was limited to a few areas in the north of Pará. The Aw subclass dominated the entire southern and eastern portion of the study area. This change in Köppen subclasses in this region was previously observed by Dubreuil et al [58].

4.2. EVI profile

EVI differed as a function of the climate subclass and state of the forest (mature or burned) (figure 4). In all locations, greening of mature forests correlated more with solar radiation than that of FDW; conversely, greening of FDW correlated more with precipitation. In areas with year-round precipitation (Af), the profiles of FDW and mature forests had similar curves, with higher EVI for mature forests. Solar radiation correlated (R$^2 = 0.80$ (mature) $R^2 = 0.66$ (degraded)) more with greening than precipitation did (R$^2 = 0.05$ (mature) $R^2 = 0.12$ (degraded)). EVI peaked soon after the month of maximum solar radiation. For the climate with a more distinct dry season (Am), mean EVI was higher than that of the Af climate. For mature forests, EVI also peaked soon after the month of maximum solar radiation, while FDW reached their maximum in the middle of the rainy season, with an increase correlated with an increase in precipitation. These results were confirmed by model results, in which the relationship with solar radiation remained strong for mature forests ($R^2 = 0.60$), while the greening of FDW depended on both precipitation ($R^2 = 0.38$) and radiation ($R^2 = 0.41$). Forests had the largest differences in profiles in the Aw climate, in which the dry season and solar radiation are more intense. The EVI time series of FDW followed that of precipitation ($R^2 = 0.72$), with EVI
Figure 3. Dominant Köppen climate subclasses in the study area from Af (no dry season), Am (short dry season) and Aw (longer dry season in winter). Left panel represents dominant classes for 1951–2000 period (extracted from Rubel and Kottek [59]). Right panel represents the dominant classes for the studied period (2001–2018).

Figure 4. EVI profiles associated with precipitation and solar radiation in FDW and mature forests in the three Köppen climate subclasses (Af, Am and Aw). Month 1 is the rainiest.
decreasing sharply in the middle of the dry season, when solar radiation had little influence on greening ($R^2 = 0.10$). Greening of mature forests was also correlated with precipitation ($R^2 = 0.57$), with a much smaller decrease during the dry season, and also depended on solar radiation ($R^2 = 0.27$). Greening resumed as soon as precipitation increased again, to reach the maximum EVI observed in the three climate subclasses.

4.3. Impact of the 2015 drought on EVI
The monthly EVI and precipitation anomalies for 2015 highlighted the effects of drought on mature and FDW. During that specific year, areas in the Af climate had alternating positive and negative precipitation anomalies at the beginning of the year (months 1–7), and then a succession of negative anomalies in the second half of the year (months 8–12) (figure 5). The same pattern occurred for the Am climate, with much larger negative anomalies at the end of the year (months 10–12). For the Aw climate, precipitation anomalies were negative in all months except for the middle of the year (months 4–8). EVI anomalies varied among the climate subclasses. For the Af climate, when precipitation anomalies were the most negative, both mature and FDW experienced roughly similar negative EVI anomalies. These anomalies differed little (<5%) from the 2001–2018 mean. For the Am climate in 2015, FDW had small positive anomalies, with values similar to their long-term mean. In the second half of the year, however, FDW had large negative anomalies (>10%), while mature forests had anomalies less than 5%. These anomalies were larger for the Aw climate, with negative anomalies greater than 15% for several consecutive months for FDW.

5. Discussion and conclusion
We observed differences between natural and FDW. The EVI of FDW tended to be lower than that of mature forests which is similar to results observed by Wang and Zhang [61] on temperate forests. They also demonstrated a shift in start and end of growing season in forest after wildfires. In this study, the maximum and minimum EVIs shifted in time in the eastern and southern portions of the deforestation arc, where the climate is drier (subclasses Am and Aw). In these areas, the greening of forests affected by fire is correlated more to precipitation. The longer and more intense the dry season, the more this aspect intensifies, which could indicate that FDW are becoming more dependent on water for leaf greening. Since EVI can be a proxy for forest functioning and productivity in the Amazon rainforest [62], our results show that understory fires reduce greening and gross primary production. These results are consistent with model predictions of Longo et al [63] which showed that degradation modifies the functioning of Amazon ecosystems. D’Amato et al [64]
showed that reducing tree density could compensate for a lack of water resources by increasing water sharing. However, our results indicate that FDW Amazonian forests do not seem to benefit from this decrease in density. This difference could be because the study of D’Amato et al [64] focused on temperate forests, in which competition for water might be stronger and the reduction in density is chosen and controlled, rather than the result of fire.

In addition to understory fires, degraded forest landscapes are much more fragmented than mature forests [65] (e.g. forest edge represent 3% of the total surface of amazon forest [66]). Nearly 20% of tropical forests lie within 100 m of a non-forest edge [67]. This edge effect reduces the amount of carbon stored at forest edges by 25% within 500 m and by up to 10% within 1500 m of the forest edge [68]. New forest edges increase canopy desiccation, tree mortality and the frequency of fire [69, 70].

This appears to be especially true during extreme events, particularly droughts, such as the one experienced in the Amazon in 2015–2016 (El Niño event). Our results seem to show that EVIs of mature forests, which are influenced less by precipitation, are associated with much smaller negative EVI anomalies than FDW, especially in drier climate subclasses (Am and Aw). McDowell and Allen [71] showed that smaller plants are the most resistant to hotter and drier conditions, while old-growth and tall forests are particularly vulnerable. We chose to focus on the 2015–2016 drought in order to have sufficient FDW data and a long enough time series of EVI. If these results are confirmed by new studies of other extreme dry events (e.g. in another tropical rainforest), the consequences may lead to changes in vegetation patterns in the Amazon. This phenomenon could be accelerated in areas of FDW, which are even more sensitive to water stress. In addition, severe droughts increase the mortality rate of trees [72]. FDW would experience higher mortality rates with the cascade effect of a decrease in canopy cover and increased sensitivity to fire, especially during severe drought due to El Niño phenomenon [73]. Our results, based on observational data, clearly show that FDW phenology is changing, and that forests are becoming more limited by water.

The Amazon is highly vulnerable to changes in land use and the climate, especially in areas where forests are most degraded [74]. An increase in the sensitivity of FDW to precipitation could accelerate ongoing processes that could result in regional climate-tipping points [75]. Climatic trends over the past few decades reveal that climates that are rainy throughout the year (Af) are limited to a few areas of the study area [58] while the Aw climate, with a more intense dry season, has dominated the southern and eastern portion of the deforestation arc over the past 20 years. In addition, precipitation tends to decrease in the southern portion of the Amazon biome, where it transitions into the Cerrado biome [76], and the consecutive-dry-day index has increased in the south and east of the Amazon [25]. We have shown that a FDW is more sensitive to variations in precipitation when in a drier climate, and due to climate change, the area of forest in a drier climate will tend to increase. Degraded forests currently represent a large proportion of the Amazon rainforest [30], which creates a strong risk of setting up a vicious cycle in these areas: an increase in fire due to more intense and frequent drought increases sensitivity to future fires [77]. Certain areas that could change from forest to savanna could be larger than those estimated by Hirota et al [78].

Forests and the climate interact at different spatial and temporal scales. For the spatial scale, forests in the Aw climate in our study were more sensitive than those in wetter climates. For the temporal scale, the EVI of FDW increased more during extreme drought. Human activities, through the release of greenhouse gases at a global scale, deforestation or forest degradation, modify the climatic characteristics of the Amazon biome [79] and will result in new precipitation distribution in future decades. Gatti et al [80] showed that the eastern Amazon tends to be a source of greenhouse gas emissions due to the combined effect of deforestation and climate change and forest degradation has become the largest process driving carbon loss [81]. One application of our results would be to map priority areas for protection and restoration by considering current human dynamics. Another application would be to consider projected climate change in the models, including changes in Köppen climate subclasses, to determine locations of future forests that may be more sensitive to dry-season conditions, droughts and fire events. Using remote-sensing data, we have shown that fire-induced forest degradation in the deforestation arc alters phenology. Specifically, FDW depend on precipitation even in regions where mature forests are not limited by water, and where greening follows solar radiation. With the predicted climate change and increase in intensity and duration of dry seasons, this alteration in the functioning of Amazonian forests raises the issue of a potential decrease in forest productivity, as well as increased sensitivity to fire. Protecting and restoring these forests could decrease these effects, which, if they occur rapidly, could result in the loss of large areas of forest and the large amounts of the carbon they could store.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.
Acknowledgments

This work was supported by (a) the French National Centre for Space Studies (CNES) through the TOSCA CASTAFIOR project (Grant Agreement 181670) and a postdoc grant, and (b) the CLIMAT AmSud program through the PRELASA project (Grant Agreement 21-337 CLIMAT-12). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). We warmly thank Juliette Berthelot for her final proofreading for grammar.

ORCID iDs

Renan Le Roux [https://orcid.org/0000-0001-7778-1878]
Lilian Blanc [https://orcid.org/0000-0003-3605-4230]
Hélène Dessard [https://orcid.org/0000-0002-7076-5872]
Beatriz Funatzu [https://orcid.org/0000-0003-0448-1924]
Clément Bourgoin [https://orcid.org/0000-0003-4923-3035]
Guillaume Cornu [https://orcid.org/0000-0002-7523-5176]
François Laurent [https://orcid.org/0000-0002-3833-2022]

References

[1] Bonan G B 2008 Forests and climate change: forcings, feedbacks and the climate benefits of forests Science 320 1444–9
[2] Jackson R B et al 2008 Protecting climate with forests Environ. Res. Lett. 3 044006
[3] Coe M T, Brando P M, Deeg an L A, Macedo M N, Neill C and Silverio D V 2017 The forests of the Amazon and Cerrado moderate regional climate and are the key to the future Trop. Conserv. Sci. 10 1940082917720871
[4] Makarieva A M and Gorshkov V G 2007 Biotic pump of atmospheric moisture as driver of the hydrological cycle on land Hydrol. Earth Syst. Sci. 11 1013–33
[5] Satyamurty P, da Costa C P W and Manzi A O 2013 Moisture source for the Amazon Basin: a study of contrasting years Theor. Appl. Climatol. 111 195–209
[6] Fu R and Li W 2004 The influence of the land surface on the transition from dry to wet season in Amazonia Theor. Appl. Climatol. 78 97–110
[7] Wu J et al 2016 Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests Science 351 972–6
[8] Spracklen D V, Arnold S R and Taylor C M 2012 Observations of increased tropical rainfall preceded by air passage over forests Nature 489 282–5
[9] Wang J, Zhang X and Rodman K 2021 Land cover composition, climate and topography drive land surface phenology in a recently burned landscape: an application of machine learning in phenological modeling Agric. For. Meteorol. 304 108432
[10] Bi J et al 2015 Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests Environ. Res. Lett. 10 064014
[11] Doughty R, Köhler R, Frankenberger C, Magney T S, Xiao X, Qin Y, Wu X and Moore B 2019 TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest Proc. Natl Acad. Sci. 116 22933–8
[12] Huete A R, Didan K, Shimabukuro Y E, Ratana P, Saleska S R, Hutrya L R, Yang W, Nemani R R and Myneni R 2006 Amazon rainforests green-up with sunlight in dry season Geophys. Res. Lett. 33 L06405
[13] Sakai S and Kitajima K 2019 Tropical phenology: recent advances and perspectives Ecol. Res. 34 50–54
[14] Guan K et al 2015 Photosynthetic seasonality of global tropical forests constrained by hydroclimate Nat. Geosci. 8 284–9
[15] Nepstad D C et al 1994 The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures Nature 372 666–9
[16] Myneni R B et al 2007 Large seasonal swings in leaf area of Amazon rainforests Proc. Natl Acad. Sci. 104 4820–3
[17] Hilker T, Lyapustin A I, Tucker C J, Hall F G, Myneni R B, Wang Y, Bi J, de Moura Y M and Sellers P J 2014 Vegetation dynamics and rainfall sensitivity of the Amazon Proc. Natl Acad. Sci. 111 16041–6
[18] Davidson E A et al 2012 The Amazon Basin in transition Nature 481 321–8
[19] Jones M O, Kimball J S and Nemani R R 2014 Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability Environ. Res. Lett. 9 120421
[20] Wagner F et al 2017 Climate drivers of the Amazon forest greening PLoS One 12 e0180932
[21] Curtis P G, Slay C M, Harris N L, Tyukavina A and Hansen M C 2018 Classifying drivers of global forest loss Science 361 1108–11
[22] Espinoza J C, Ronchail J, Marenco J A and Segura H 2019 Contrasting North–South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017) Clim. Dyn. 52 5413–30
[23] Paca V H D M, Espinoza-Dávalos G E, Moreira D M and Comnar G 2020 Variability of trends in precipitation across the Amazon River Basin determined from the CHIRPS precipitation product and from station records Water 12 1244
[24] Lopes A V, Chiang J C H, Thompson S A and Dracup J A 2016 Trend and uncertainty in spatial-temporal patterns of hydrological droughts in the Amazon Basin Geophys. Res. Lett. 43 3307–16
[25] Funatsu B M, Le Roux B, Arvor D, Espinoza J C, Claud C, Ronchail J, Michot V and Dubreuil V 2021 Assessing precipitation extremes (1981–2018) and deep convective activity (2002–2018) in the Amazon region with CHIRPS and AMSU data Clim. Dyn. 57 1–23
[26] Arvor D, Funatsu B M, Michot V and Dubreuil V 2017 Monitoring rainfall patterns in the southern Amazon with PERSIANN-CCDR data: long-term characteristics and trends Remote Sens. 9 880
[27] Leite-Filho A T, de Sousa Pontes V Y and Costa M H 2019 Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia J. Geophys. Res. Atmos. 124 5268–81
[28] Vanuctem C, Achard F, Pekel J-F, Veilléledent G, Carboni S, Simonetti D, Gallego J, Araújo L E O C and Nasi R 2021 Long-term (1990–2019) monitoring of forest cover changes in the humid tropics Sci. Adv. 7 eabe1603
[29] Baccini C, Walker W, Carvalho L, Farina M, Sulla-Menashe D and Houghton R A 2017 Tropical forests are a net carbon source based on aboveground measurements of gain and loss Science 358 230–4
[30] Matricardi E A T, Skole D L, Costa O B, Pedlowski M A, Samek J H and Miguel E P 2020 Long-term forest degradation surpasses deforestation in the Brazilian Amazon Science 369 1578–82
[31] Bourgoin C et al 2020 UAV-based canopy textures assess changes in forest structure from long-term degradation Ecol. Indic. 115 106386

[32] Koltunov A, Ustin S L, Asner G P and Fang J 2009 Selective logging changes forest phenology in the Brazilian Amazon: evidence from MODIS image time series analysis Remote Sens. Environ. 113 2431–40

[33] Bartsi P E, Rego A C M, das Chagas Ferreira Silva F, Lopes R A S, Xaud H A M, Xaud M R, Barbosa R I and Fearnside P M 2021 Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Niño For. Ecol. Manage. 500 119652

[34] Rappaport D I, Morton D C, Longo M, Keller M, Dubayah R and dos Santos M N 2018 Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation Environ. Res. Lett. 13 065013

[35] Liu L, Samanta A, Costa M H, Ganguly S, Nemani R R and Myeni R B 2011 Widespread decline in greenness of Amazonian vegetation due to the 2010 drought Geophys. Res. Lett. 38 L07702

[36] Nepstad D C, Tolher I M, Ray D, Moutinho P and Cardinot G 2007 Mortality of large trees and lianas following experimental flooding in an Amazon forest Ecology 88 2259–69

[37] Brando P M et al 2014 Abrupt increases in Amazonian tree mortality due to drought–fire interactions Proc. Natl. Acad. Sci. USA 111 6347–52

[38] Anderson L O, Malhi Y, Aragao L E O C, Ladle R, Arazi E, Barbier N and Phillips O 2010 Remote sensing detection of droughts in Amazonian forest canopies New Phytol. 187 733–50

[39] Galvão L S, dos Santos J Jr, Roberts D A, Breuniq F M, Yooyone M and de Moura Y M 2011 On intra-annual EVI variability in the dry season of tropical forest: a case study with MODIS and hyperspectral data Remote Sens. Environ. 115 2350–9

[40] Pennecc A, Gond V and Sabatier D 2011 Tropical forest phenology in French Guiana from MODIS time series Remote Sens. Lett. 2 337–45

[41] Huete A, Didan K, van Leeuwen W, Miura T and Glenn E 2010 MODIS vegetation indices Land Remote Sensing and Global Environmental Change (Berlin: Springer) pp 579–602

[42] Morton D C, Nagol I, Carabajal C C, Rosette J, Palace M, Cook B D, Vermote E F, Harding D J and North P R J 2014 Amazon forests maintain consistent canopy structure and greenness during the dry season Nature 506 221–4

[43] Gao X, Huete A R, Ni W and Miura T 2000 Optical–biophysical relationships of vegetation spectra without background contamination Remote Sens. Environ. 74 69–20

[44] Saleska S R, Wu J, Guan K, Araujo A C, Huete A, Nobre A D and Restrepo-Coupe N 2016 Dry-season greening of Amazon forests Nature 531 E4–E5

[45] Luyapustin A, Wang Y, Lasado I, Kainh R, Korkin S, Remer L, Levy R and Reid J S 2011 Multiscale implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm J. Geophys. Res. Atmos. 116 D05211

[46] Brando P M, Goetz S J, Baccini A, Nepstad D C, Beck P S A and Christian M C 2010 Seasonal and interannual variability of climate and vegetation indices across the Amazon Proc. Natl. Acad. Sci. 107 14685–90

[47] Pinagé E R, Bell D M, Gregory M, Tran N N, Zhang W and Huete A 2020 Effects of tropical forest degradation on Amazon forest phenology IGARS 2020—2020 IEEE Int. Geoscience and Remote Symp. (IEEE) pp 4516–9

[48] Barlow J, Berenguer E, Cermonta R and França F 2020 Clarifying Amazon's burning crisis Glob. Change Biol. 26 319–21

[49] Aragão L E O C et al 2018 2018 drought-related fires counteract the decline of Amazon deforestation carbon emissions Nat. Commun. 9 1–12

[50] Valeriano D M, Mello E M K, Moreira J C, Shimabukuro Y E, Duarte V, Souza I M, Santos J R, Barbosa C C F and Souza R C M 2004 Monitoring tropical forest from space: the PRODES digital project Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 35 272–4

[51] Clark D B 1996 Abolishing virginity J. Trop. Ecol. 12 735–9

[52] Souza C and Azevedo T 2017 MapBiomas General Handbook (São Paulo: MapBiomas) pp 1–23

[53] Andela G L, Morton D C and Randerson J T 2019 Global Fire Atlas with Characteristics of Individual Fires, 2003–2016 (Oak Ridge, TN: ORNL DAAC)

[54] Funk C et al 2015 The climate hazards infrared precipitation with stations—new environmental record for monitoring extremes Sci. Data 2 150066

[55] Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G and Shelby J 2018 The National solar radiation data base (NSRDB) Renew. Sustain. Energy Rev. 89 51–60

[56] Harris I C, Jones P D and Osborn T 2010 CRU TS4.0: Climatic Research Unit (CRU) Time-Series (TS) Version 4.0 of High Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901–Dec. 2019) (Centre for Environmental Data Analysis)

[57] Köppen W 1900 Versuch einer klassifikation der klimate, vorzugsweise nach ihren beziehungen zur pflanzenwelt Geogr. Z. 6 993–611

[58] Dubreuil V, Fanti K P, Planchnon O and Sant’anna Neto J L 2019 Climate change evidence in Brazil from Köppen’s climate annual types frequency Int. J. Climatol. 39 1446–56

[59] Ruel F and Kottek M 2010 Observed and projected climate shifts 1901–2010 depicted by world maps of the Köppen–Geiger climate classification Meteorol. Z. 19 135

[60] Wagner F H et al 2017 Climate drivers of the Amazon forest greening PlaS e012 e0180932

[61] Wang J and Zhang X 2020 Investigation of wildfire impacts on land surface phenology from MODIS time series in the western US forests ISPRS J. Photogramm. Remote Sens. 159 281–95

[62] Maeda E E and Galvão L S 2015 Sun-sensor geometry effects on vegetation index anomalies in the Amazon rainforest GISci. Remote Sens. 52 332–43

[63] Longo M et al 2020 Impacts of degradation on water, energy and carbon cycling of the Amazon tropical forests J. Geophys. Res. Biogeo. 125 e2020GC006577

[64] D’Amato A W, Bradford J B, Fraver S and Palik B J 2013 Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems Ecol. Appl. 23 1735–42

[65] Laurance W F et al 2011 The fate of Amazonian forest fragments: a 32-year investigation Biol. Conserv. 144 56–67

[66] Silva Junior C H L et al 2020 Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses Sci. Adv. 6 eaa2393860

[67] Brück K, Fischer R, Groeneveld J, Lehmann S, De Paula M D, Pütz S, Sexton J O, Song D and Huth A 2017 High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle Nat. Commun. 8 1–6

[68] Chaplin-Kramer R et al 2015 Degradation in carbon stocks near tropical forest edges Nat. Commun. 6 1–6

[69] Briant G, Gond V and Laurance S G W 2010 Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia Biogeosciences 13 5763–9

[70] Broadbent E N, Asner G P, Keller M, Knapp D E, Oliveira P J C and Silva J N 2008 Forest fragmentation and edge effects from deforestation and selective logging in the BrazilianAmazon Biol. Conserv. 141 1745–57

[71] McDowell N G and Allen C D 2015 Darcy’s law predicts widespread forest mortality under climate warming Nat. Clim. Change 5 470–6

[72] Phillips O L et al 2009 Drought sensitivity of humid tropical forests J. Geophys. Res. Atmos. 114 G01009

[73] Berenguer E et al 2021 Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests Proc. Natl Acad. Sci. 118 e2019377118

[74] Saatchi S et al 2021 Detecting vulnerability of humid tropical forests to multiple stressors One Earth 4 988–1003
[75] Nobre C A and De Simone Borma L 2009 'Tipping points' for
the Amazon forest Curr. Opin. Environ. Sustain. 1 28–36
[76] Debortoli N S, Dubreuil V, Funatsu B, Delahaye F, de
Oliveira C H, Rodrigues-Filho S, Saito C H and Fetter R 2015
Rainfall patterns in the southern Amazon: a chronological
perspective (1971–2010) Clim. Change 132 251–64
[77] Duffy P B, Brando P, Asner G P and Field C B 2015
Projections of future meteorological drought and wet
periods in the Amazon Proc. Natl Acad. Sci. 112 13172–7
[78] Hirota M, Holmgren M, Van Nes E H and Scheffer M 2011
Global resilience of tropical forest and savanna to critical
transitions Science 334 232–5
[79] Spracklen D V and García-Carreras L 2015 The impact of
Amazonian deforestation on Amazon Basin rainfall Geophys.
Res. Lett. 42 9546–52
[80] Gatti L V et al 2021 Amazonia as a carbon source linked to
deforestation and climate change Nature 595 388–93
[81] Qin Y et al 2021 Carbon loss from forest degradation exceeds
that from deforestation in the Brazilian Amazon Nat. Clim.
Change 11 442–8