Abstract. Tumors of the abdominal cavity, such as colorectal, pancreatic and ovarian cancer, frequently metastasize into the peritoneum. Large numbers of metastatic nodules hinder curative surgical resection, necessitating lavage with hyperthermic intraperitoneal chemotherapy (HIPEC). However, HIPEC not only causes severe side effects but also has limited therapeutic efficacy in various instances. At the same time, the age of immunotherapies such as biological agents, checkpoint-inhibitors or immune-cell therapies, increasingly emphasizes the critical role of anticancer immunity in targeting malignancies. The present study investigated the ability of three types of long-lived reactive species (oxidants) to inactivate cancer cells and potentially complement current HIPEC regimens, as well as to increase tumor cell expression of danger signals that stimulate innate immunity. The human abdominal cancer cell lines HT-29, Panc-01 and SK-OV-3 were exposed to different concentrations of hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite (ONOO−). Metabolic activity was measured, as well as determination of cell death and danger signal expression levels via flow cytometry and detection of intracellular oxidation via high-content microscopy. Oxidation of tumor decreased intracellular levels of the antioxidant glutathione and induced oxidation in mitochondria, accompanied by a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non-malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro-immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat-shock protein (HSP70 and HSP90. CRT expression was greatest following HOCl and ONOO− treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.

Introduction

Several types of tumor can metastasize on or into the peritoneum (1). Rates of <30% have been reported (2), making peritoneal carcinomatosis (PC) a burden for patients and healthcare systems alike. Pancreatic carcinoma often is diagnosed late and shows aggressive growth and metastasization in the peritoneum, limiting effective therapies (3,4). Similarly, colorectal and ovarian carcinoma display widespread localization in the abdominal cavity, which allows open field metastasization and generation of PC before diagnosis (5-7). Curative treatment is rarely achievable. For palliation, systemic chemotherapy is of low efficacy and causes strong side effects (8). The combination of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC; peritoneal lavage with heated liquids containing chemotherapeutic agents) has similar limitations (9). For HIPEC, life expectancy and quality of life in patients with PC are low (10). Alternative treatments, such as laser-induced oxidation of peritoneal cancer, may prolong survival but have been shown to be impractical and cause severe side effects (11).

Reactive oxygen species (ROS) are increasingly recognized as critical agents in anticancer therapy (12-15). For instance, certain types of nanoparticle (such as metal oxides, carbon nanotubes and silver nanoparticles) promote stress of the endoplasmic reticulum and mitochondria, accompanying a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non-malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro-immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat-shock protein (HSP70 and HSP90. CRT expression was greatest following HOCl and ONOO− treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.

Introduction

Several types of tumor can metastasize on or into the peritoneum (1). Rates of <30% have been reported (2), making peritoneal carcinomatosis (PC) a burden for patients and healthcare systems alike. Pancreatic carcinoma often is diagnosed late and shows aggressive growth and metastasization in the peritoneum, limiting effective therapies (3,4). Similarly, colorectal and ovarian carcinoma display widespread localization in the abdominal cavity, which allows open field metastasization and generation of PC before diagnosis (5-7). Curative treatment is rarely achievable. For palliation, systemic chemotherapy is of low efficacy and causes strong side effects (8). The combination of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC; peritoneal lavage with heated liquids containing chemotherapeutic agents) has similar limitations (9). For HIPEC, life expectancy and quality of life in patients with PC are low (10). Alternative treatments, such as laser-induced oxidation of peritoneal cancer, may prolong survival but have been shown to be impractical and cause severe side effects (11).

Reactive oxygen species (ROS) are increasingly recognized as critical agents in anticancer therapy (12-15). For instance, certain types of nanoparticle (such as metal oxides, carbon nanotubes and silver nanoparticles) promote stress of the endoplasmic reticulum and mitochondria, accompanying a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non-malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro-immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat-shock protein (HSP70 and HSP90. CRT expression was greatest following HOCl and ONOO− treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.

Introduction

Several types of tumor can metastasize on or into the peritoneum (1). Rates of <30% have been reported (2), making peritoneal carcinomatosis (PC) a burden for patients and healthcare systems alike. Pancreatic carcinoma often is diagnosed late and shows aggressive growth and metastasization in the peritoneum, limiting effective therapies (3,4). Similarly, colorectal and ovarian carcinoma display widespread localization in the abdominal cavity, which allows open field metastasization and generation of PC before diagnosis (5-7). Curative treatment is rarely achievable. For palliation, systemic chemotherapy is of low efficacy and causes strong side effects (8). The combination of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC; peritoneal lavage with heated liquids containing chemotherapeutic agents) has similar limitations (9). For HIPEC, life expectancy and quality of life in patients with PC are low (10). Alternative treatments, such as laser-induced oxidation of peritoneal cancer, may prolong survival but have been shown to be impractical and cause severe side effects (11).

Reactive oxygen species (ROS) are increasingly recognized as critical agents in anticancer therapy (12-15). For instance, certain types of nanoparticle (such as metal oxides, carbon nanotubes and silver nanoparticles) promote stress of the endoplasmic reticulum and mitochondria, accompanying a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non-malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro-immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat-shock protein (HSP70 and HSP90. CRT expression was greatest following HOCl and ONOO− treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.

Introduction

Several types of tumor can metastasize on or into the peritoneum (1). Rates of <30% have been reported (2), making peritoneal carcinomatosis (PC) a burden for patients and healthcare systems alike. Pancreatic carcinoma often is diagnosed late and shows aggressive growth and metastasization in the peritoneum, limiting effective therapies (3,4). Similarly, colorectal and ovarian carcinoma display widespread localization in the abdominal cavity, which allows open field metastasization and generation of PC before diagnosis (5-7). Curative treatment is rarely achievable. For palliation, systemic chemotherapy is of low efficacy and causes strong side effects (8). The combination of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC; peritoneal lavage with heated liquids containing chemotherapeutic agents) has similar limitations (9). For HIPEC, life expectancy and quality of life in patients with PC are low (10). Alternative treatments, such as laser-induced oxidation of peritoneal cancer, may prolong survival but have been shown to be impractical and cause severe side effects (11).

Reactive oxygen species (ROS) are increasingly recognized as critical agents in anticancer therapy (12-15). For instance, certain types of nanoparticle (such as metal oxides, carbon nanotubes and silver nanoparticles) promote stress of the endoplasmic reticulum and mitochondria, accompanying a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non-malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro-immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat-shock protein (HSP70 and HSP90. CRT expression was greatest following HOCl and ONOO− treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.

Introduction

Several types of tumor can metastasize on or into the peritoneum (1). Rates of <30% have been reported (2), making peritoneal carcinomatosis (PC) a burden for patients and healthcare systems alike. Pancreatic carcinoma often is diagnosed late and shows aggressive growth and metastasization in the peritoneum, limiting effective therapies (3,4). Similarly, colorectal and ovarian carcinoma display widespread localization in the abdominal cavity, which allows open field metastasization and generation of PC before diagnosis (5-7). Curative treatment is rarely achievable. For palliation, systemic chemotherapy is of low efficacy and causes strong side effects (8). The combination of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC; peritoneal lavage with heated liquids containing chemotherapeutic agents) has similar limitations (9). For HIPEC, life expectancy and quality of life in patients with PC are low (10). Alternative treatments, such as laser-induced oxidation of peritoneal cancer, may prolong survival but have been shown to be impractical and cause severe side effects (11).

Reactive oxygen species (ROS) are increasingly recognized as critical agents in anticancer therapy (12-15). For instance, certain types of nanoparticle (such as metal oxides, carbon nanotubes and silver nanoparticles) promote stress of the endoplasmic reticulum and mitochondria, accompanying a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non-malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro-immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat-shock protein (HSP70 and HSP90. CRT expression was greatest following HOCl and ONOO− treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.
species (ROS/RNS) simultaneously (23-25). This is not only toxic to tumor cells but also promotes their immunogenicity via an increase in danger signals (26-28). Specific pattern recognition receptors (PRRs) are sensed by evolutionary preserved structures, such as pathogen- and damage-associated molecular patterns [including ATP, heat-shock proteins, endoplasmic reticulum chaperon calreticulin (CRT)]. Innate immune cells are thus able to initiate quick and early responses against infection or extensive cell death in tissue. These mechanisms emphasize the important role of immunogenic cell death (ICD) in initiating an anti-tumor immune response (29-31).

Since the award of the Nobel Prize for Physiology or Medicine in 2018 for immune-checkpoint therapies, there has been an increasing awareness of combination of conventional treatment modalities with immunotherapy (32). For PC treatment, standard therapy includes the intraperitoneal administration of chemotherapeutics that directly reach tumor lesions but cannot stimulate immunity via danger signals derived from targeted cancer cells (33,34). This limitation may be overcome by using liquids supplemented with ROS to not only generate cytotoxic responses in tumor cells but also render them more immunogenic by promoting the expression of danger signals (35). To this end, the present study compared three types of ROS, hydrogen peroxide (H₂O₂), hypochlorous acid (HOCl) and ONOO⁻. To investigate their ability to inactivate cancer cells and promote expression of markers associated with ICD (31).

Materials and methods

Cell culture. A total of three human abdominal cancer cell lines (HT-29 colorectal, Panc-01 pancreatic and SK-OV-3 ovarian cancer cells), as well as non-malignant HaCaT keratinocytes, were used. The HT-29 and Panc-01 cells were cultured in DMEM (Gibco; Thermo Fisher Scientific, Inc.), while SK-OV-3 and HaCaT cells were cultured in RPMI-1640 medium (PAN Biotech GmbH). Both media were supplemented with 10% fetal bovine serum, 2% penicillin-streptomycin and 1% glutamine (all Sigma-Aldrich; Merck KGaA). Cells were cultured at 37°C, 5% CO₂ and 95% humidity in a cell culture incubator (Binder GmbH). Subculturing was performed 2-3 times/week. In order to determine the cell count for downstream experiments at high precision, cells were stained with PI (Sigma-Aldrich; Merck KGaA) for 5 min at room temperature, and absolute counts were obtained using acoustic focusing. The outer rim of each plate was filled with double-distilled water to prevent surplus evaporation in the edge wells.

Oxidant treatment. H₂O₂ (Alfa Aesar; Thermo Fisher Scientific, Inc.), HOCl and ONOO⁻ (both Carl Roth GmbH & Co.) were diluted in PBS to obtain concentrations between 10 mM and 0.1 µM. Cell culture medium was removed and 250 µl (per 1x10⁵ cells in 24-well plates) or 25 µl (per 1x10⁴ cells in 96-well plates) individual oxidant-containing liquid was added to cells. After 2 h of incubation at 37°C, 1,750 (for 24-well plates) or 175 µl culture medium (for 96-well plates) was added to the cells to restore preferred culture conditions with fully supplied nutrients. The cells were allowed to culture for 22 h prior to further downstream processing.

Metabolic activity. The total metabolic activity per well was analyzed based on cell capability to metabolize 7-hydroxy-3 H-phenoxyazin-3-on-10-oxid (resazurin; Alfa Aesar; Thermo Fisher Scientific, Inc.) to fluorescent resorufin. Resazurin was added to wells at a final concentration of 100 µM and incubated for 2 h at 37°C before fluorescence was quantified using a multimode plate reader (F200; Tecan Group Ltd.). The measurement was taken at λex 535 and λem 590 nm.

Flow cytometry. Flow cytometry was performed to investigate cell death and analyze surface marker expression levels. For the collection of cells, cell culture supernatant and detached cells (obtained using accutase; BioLegend, Inc.) were transferred to v-bottom 96-well plates (Eppendorf) after centrifugation at 500 x g for 5 min at room temperature. The plate was washed with PBS (PAN Biotech GmbH) before one of the following mixes was added to the wells: i) DAPI (BioLegend, Inc.) and ONOO⁻; or ii) DAPI, anti-CRT monoclonal antibodies conjugated with phycoerythrin (Enzo Life Sciences, Inc.; cat. no. ADI-SPA-601PE-F), anti-heat-shock protein (HSP)70 monoclonal antibodies conjugated with Alexa Fluor®(AF)594 and anti-HSP90 monoclonal antibodies conjugated with AF 700 (both Novus Biologicals LLC; cat. nos. NBP1-77456AF594 and NB100-1972AF700, respectively). The staining was performed for 30 min at 37°C using 20 ng antibodies per test and DAPI and caspase-3/7 reagent at a final concentration of 1 µM. Subsequently, the cells were washed twice and analyzed using a CytoFLEX S (Beckman Coulter, Inc.) four-laser flow cytometer. The excitation wavelength and bandpass filters for collecting fluorescence emission were λex 405 nm/λem 450-450 nm and λex 488 nm/λem 520-40 nm, respectively, for master mix i); and λex 405 nm/λem 450-455 nm, λex 561 nm/λem 585-42 nm, λex 561 nm/λem 650 nm/λem 610-20 nm and λex 638 nm/λem 712-25 nm for master mix ii). Forward and side-scatter were also analyzed. Gating and quantification of cell numbers and fluorescence intensities was performed using Kaluza 2.1.1 analysis software (Beckman Coulter, Inc.).

Quantitative high-content imaging. In order to determine cytosolic glutathione (GSH) levels and mitochondrial redox status, cells were stained with 2 µM GSH detection probe (Kerafast, Inc.) or 1 µM mitotracker orange (MTO; Thermo Fisher Scientific, Inc.) for 90 min at 37°C. Following exposure to oxidants, as aforementioned, cells were imaged using a high content imaging device (Operetta CLS; PerkinElmer, Inc.). The digital phase contrast (DPC) channel (pseudo-cytosolic signal), as well as the fluorescence channels for bound (λex 390-420/λem 500-550 nm) or unbound GSH tracer or MTO (λex 460-790/λem 570-650 nm), were imaged. The experimental setup, as well as the software-based quantification algorithms, were generated using Harmony high-content imaging and analysis software 4.9 (PerkinElmer, Inc.). For segmentation, cells were detected via DPC signal and the fluorescence of both GSH tracer or MTO channels was quantified. For algorithm-driven quantification, ≥1x10⁴ individual cells in...
50 single images were quantified per treatment condition. The intracellular GSH levels were calculated according to the formula: GSH level = mean fluorescence intensity (MFI) of bound GSH tracer / MFI of unbound GSH tracer.

Graphing and statistical analysis. Statistical analysis and graphing was performed using Prism 8.4 (GraphPad Software, Inc.). For statistical comparison between groups and controls, two-way analysis of variance with Dunnett's post hoc test was used. All experiments were performed ≥2 times. P<0.05 was considered to indicate a statistically significant difference.

Results

ROS decreases metabolic activity and viability in a dose-dependent manner. The present study aimed to identify the effect of different types of ROS on the viability and immunogenic properties of abdominal cancer cells. Colorectal (HT-29), pancreatic (Panc-01) and ovarian (SK-OV-3) cancer cells were exposed to either H$_2$O$_2$, HOCl or ONOO$^-$ at different doses. Following 2 h treatment with these ROS, cells were cultured and analyzed 24 h post-treatment (Fig. 1A). Compared with untreated control cells, oxidant concentrations between 0.1 µM and 100 µM did not significantly decrease the percentage of metabolically active tumor cells in the three cancer cell lines tested. HOCl exhibited the most substantial effects (Fig. 1B-D).

At concentrations ≥100 µM, H$_2$O$_2$ showed the lowest capability in decreasing the percentage of metabolically active tumor cells in the three cancer cell lines tested. HOCl and ONOO$^-$ exhibited the most substantial effects (Fig. 1B-D).

In order to investigate the effect of oxidants in non-malignant cells, HaCaT keratinocytes were used as a control cell line. Similar to the tumor cells, a decrease in metabolic activity was observed at concentrations ≥10 µM for HOCl and ONOO$^-$, and ≥100 µM for H$_2$O$_2$ (Fig. 2A). In Panc-01 cells, a significant decrease in the number of viable cells was observed at ≥10 µM ONOO$^-$, ≥100 µM for HOCl and ≥1 mM for H$_2$O$_2$ (Fig. 2B). Similar effects were also observed in SK-OV-3 cells; the number of viable cells significantly decreased at concentrations ≥1 mM H$_2$O$_2$ and ONOO$^-$, and 10 µM HOCl (Fig. 2C). Analysis of early and late apoptotic and necrotic cells (Fig. 2D, H and L) demonstrated the greatest extent of cell death occurred in HT-29 cells treated with HOCl (Fig. 2E-G). The fraction of necrotic cells remained small in all groups, except for HOCl-treated HT-29 and SK-OV-3 cells, and ONOO$^-$-treated Panc-01 cells at higher concentrations (Fig. 2I-K). In most experimental conditions, the fraction of late apoptotic cells was the largest of the dead cell populations. All oxidants induced notable toxicity in Panc-01 cells at high concentrations, while concentrations ≤10 µM did not have a significant effect (Fig. 2I-K). HOCl-treated cells (10 mM) were not detectable (data not shown). SK-OV-3 cells exhibited notably elevated apoptotic cell death in all oxidative regimens (except for 1 mM HOCl with more necrotic cells); however, ONOO$^-$ at concentrations ≥1 mM failed to generate single-cell data because of aberrant toxicity (Fig. 2M-O).

ROS treatment affects metabolic activity and viability to a lesser extent in HaCaT cells than in cancer cells. Similar to the tumor cells, a decrease in metabolic activity was observed (Fig. 3A). However, this was only notable at 1 mM. Moreover, viability data from flow cytometry suggested these cells to be less sensitive to oxidative treatment compared with cancer cells; a significant decrease in the number of viable cells was observed only at concentrations ≥1 mM, except for HOCl, which also exhibited a significant effect at
100 µM (Fig. 3B). In order to identify the role of antioxidant defense, a GSH tracer was used to assess the relative amounts of GSH in the intracellular compartment (Fig. 3C). A slight but non-significant decrease in cytosolic GSH levels was observed at concentrations ≤10 µM (Fig. 3D). Among the three types of ROS investigated, H₂O₂ exhibited the weakest effect on cytosolic GSH levels in HaCaT keratinocytes.

ROS exposure is concomitant with cytosolic and mitochondrial oxidation in cancer cells. Differences in oxidant capability to induce cell death were observed. High concentrations of HOCI and ONOO⁻ exhibited the greatest toxicity and necrosis; H₂O₂ exhibited lower toxicity, and late apoptosis was observed at higher concentrations (Fig. 2). These differences indicated different underlying mechanisms for each ROS. In order to investigate this, intracellular oxidation was assessed. Cell pseudo-cytosolic DPC signal was used to segment the cell area via a software-based quantification tool (Fig. 4A) and the amount of bound and unbound GSH tracer, emitting at characteristic fluorescence emission spectra (Fig. 4B), inside the segmented cell region was quantified. Compared with untreated controls, ≥0.1 µM H₂O₂ and HOCI decreased intracellular GSH levels in HT-29 cancer
cells (Fig. 4C and D). ONOO⁻ only notably decreased GSH levels at 1 mM (Fig. 4D). In Panc-01 cells, ONOO⁻ and H₂O₂ decreased GSH levels at ≥0.1 µM, but to a lesser extent compared with HOCl at similar concentrations (Fig. 4F and G). Similar results were observed in SK-OV-3 cancer cells (Fig. 4I and J). Altogether, HOCl at low concentrations induced a notable consistent decrease in intracellular GSH levels in all three cancer cell lines, while non-malignant HaCaT keratinocytes were less affected at equimolar concentrations (Fig. 3D).

Following accumulation within the mitochondrial membrane, MTO fluorescence is increased upon oxidation via ROS (36). A notable increase in MTO fluorescence was observed with higher HOCl concentrations in all three cell lines (Fig. 4E, H and K). By contrast, both ONOO⁻ and H₂O₂ failed to induce notable mitochondrial oxidation, although a small increase was seen with H₂O₂ at higher concentrations. Among the three types of ROS compared at equimolar concentrations, HOCl showed the most potent oxidative and cytotoxic effects in the cancer cell lines investigated.

HOCl and H₂O₂ increase inflammatory surface molecule expression levels in cancer cells. In addition to cytotoxicity, the inflammatory and immune-stimulating potential of anti-cancer agents is of interest in clinical and pre-clinical research. Translocation of certain damage-associated molecular patterns (DAMPs), such as CRT (the chaperon of the endoplasmic reticulum), serves as an ‘eat-me’ signal to promote the phagocytosis of dying tumor cells, leading to the promotion of antitumor immunity (34). For HT-29 cells, the three types of ROS at concentrations ≥1 µM increased expression levels of CRT on the membranes of viable cells (Fig. 5A and B). The most effective agent was HOCl, which induced a 30-fold increase in CRT at 10 mM (Fig. 5B). In dead HT-29 cells, H₂O₂ was most effective and significantly increased CRT expression levels at concentrations ≥1 mM (Fig. 5C). Changes in CRT expression levels in treated compared with untreated cells were smaller in dead compared with viable HT-29 cells. In viable and dead Panc-01 cells, HOCl did not significantly increase CRT expression levels. By contrast, both ONOO⁻ and H₂O₂ at high concentrations promoted CRT levels, with H₂O₂ eliciting significantly elevated CRT levels, especially in dead cells (Fig. 5D-F). In viable SK-OV-3 cells, upregulation of CRT on the membrane was observed in a dose-dependent manner for all oxidative treatment regimens (Fig. 5G and H). However, this was only significant at 10 mM HOCl and ONOO⁻. In the fraction of dead SK-OV-3 cells, significant CRT upregulation was observed at H₂O₂ concentrations ≥1 mM (Fig. 5I). Danger signals, such HSP70 and HSP90 (Fig. 5J and K), notably increased in HOCl-treated HT-29 and H₂O₂-treated Panc-01 cells. In dead SK-OV-3 cells, a notable increase in HSP90 was observed with all three types of ROS.

Discussion

In order to investigate ROS as a putative supplement to lavage treatment of PC, the present study assessed toxicity and immune-relevant surface marker expression levels in three human abdominal cancer cell lines (HT-29, Panc-01 and SK-OV-3) following exposure to H₂O₂, HOCl or ONOO⁻. Cancer cells were more sensitive to ROS-induced toxicity compared with non-malignant HaCaT keratinocytes and exhibited increased levels of immuno-relevant surface markers. At
The three types of ROS notably decreased the viability and metabolic activity in all three cancer cell lines, especially at concentrations ≥100 µM. Mechanistically, ROS may act via direct oxidation of intracellular proteins or nucleic acids, which promotes regulated cell death and senescence (37‑39), as well as through ROS/reactive nitrogen species-redox signaling events that drive apoptosis via downstream signaling (40‑42).

At higher ROS concentrations, tumor cells were rendered inactivate but were not eliminated completely. This has previously been observed in H₂O₂-treated colorectal cancer cells (43), and similar effects have been detected in cells with functional ATM enzymes exposed to ONOO⁻ (44), as well as HOCl in diabetes and liver disease (45). Here, HOCl and ONOO⁻ were slightly more effective than H₂O₂ in decreasing the number of viable cancer cells, indicating different mechanisms of action for these molecules. It was previously shown...
that knockdown of the ROS-generating enzymes NADPH oxidase 1 (NOX1) and dual oxidase 1 in cancer cells prevents apoptosis following exposure to H₂O₂ (46). By contrast, knockdown of both NOX1 and inducible nitric oxide synthase...
is required to abrogate HOCI-mediated apoptosis (47). These results suggest an underlying self-amplification mechanism of intracellular and membrane-generated ROS that contributes to ROS-induced cancer cell death. Moreover, ONOO· and H2O2 have been implicated in PI3K/Akt-mediated activation of the nuclear factor erythroid 2-related factor 2 pathway and microtubule-associated protein 1A/1B-light chain 3, indicating a role of antioxidant defense and autophagy in ROS-mediated cell death (48,49). HOCI is also produced endogenously by activated neutrophils via myeloperoxidase during inflammation to promote anti-microbial effects (50). In addition, HOCI promotes tumor cell death via several mechanisms, such as the enhancement of antigen presentation and uptake, as well as the induction of an anti-tumor response driven by cytotoxic T cells (51).

The oxidation of cancer cells was here demonstrated by decreased intracellular levels of the antioxidant GSH. The availability of GSH provides information on the cellular antioxidant defense capacity and is associated with redox signaling processes (52). In the present study, non-malignant HaCaT keratinocytes showed the lowest overall decrease in GSH and the highest viability when exposed to different types of ROS at equimolar concentrations compared with the cancer cell lines tested. This may be because cancer cells naturally exhibit high levels of endogenous oxidative stress, which leads to increased susceptibility to ROS-induced cell death (14,53). The greatest decrease in intracellular GSH levels was observed following the administration of HOCI and H2O2, compared with ONOO·. This may be explained by the lower affinity of the latter to GSH, the generation of S-nitroglutathione and the high affinity between ONOO· and CO2 in reactions at high-rate constants (54,55). Here, ONOO· was also shown to have the lowest capacity to oxidize mitochondria. These findings are consistent with a previous study (46) that suggested HOCI to be of particular importance in the induction of cell death due to its ability of auto-propagating ROS formation through mitochondria.

One of the critical hallmarks of antitumor immune responses is the induction of ICD via increased danger signals (such as DAMPs), including the chaperon of the endoplasmic reticulum, CRT, on the tumor cell membrane (34,56). CRT can act as a danger and ‘eat-me’ signal when recognized by innate immune cells, such as dendritic cells (57). Other DAMPs include HSP70 and HSP90 as markers for cellular stress, leading to their upregulation and translocation to the cell membrane (58). ICD is associated with the upregulation of these molecules, as previously shown using antitumor agents tested for their immunogenicity in mice (34). In the present study, all types of ROS tested increased the levels of CRT on tumor cells. Specific responses, however, were dependent on the cell type and oxidant. HOCI, and to a lesser extent ONOO·, gave promising results in at least two of the three tumor cell lines investigated by enhancing the presentation of pro-immunogenic molecules on their membrane. Exposure to these ROS results in the formation of DAMPs, which promote antitumor immunity (59,60), although the present study did not directly investigate the immunological consequences. Increased CRT levels were also observed in dead tumor cells following treatment with high concentrations of H2O2. H2O2 was previously found to promote a pro-immunogenic phenotype in murine colorectal cancer cells in vitro, as well as in mice with PC (37); this was concomitant with enhanced immune infiltration and activation. Moreover, ROS are capable of shaping activation profiles in human melanoma cells (37,61,62). ICD was previously observed with photodynamic therapy, which generates singlet oxygen to promote cellular oxidation (63,64), supporting the findings of mitochondrial oxidation and decreased cellular GSH levels in the present study. A previous report noted that ONOO· affects major histocompatibility complex-I recognition by T lymphocytes (65).

The present study identified HOCI as the most promising candidate in terms of toxicity and induction of immunogenic danger molecules (such as CRT) in cancer cells. HOCI was previously shown to enhance the immunogenicity of colorectal cancer cells in vivo, prevent distant metastasis of human melanoma cells, and alter antigen-presenting machinery and the cross-priming of tumor material (66-70). This makes HOCI a promising candidate as an adjuvant in peritoneal cancer therapy outside the current vaccination strategies against ovarian cancer employed with this type of ROS (71).

Treatment with H2O2, HOCI and ONOO· led to intracellular oxidation and notable toxicity in all abdominal cancer cell lines tested. Non-malignant HaCaT keratinocytes were less affected compared with cancer cells, suggesting a degree of specificity to the ROS-induced cell death. Treatment of cancer cells with these ROS also led to an upregulation of molecules associated with activation of immune cells. HOCI was the most promising therapeutic candidate, as it exhibited the greatest ability to inactivate cancer cells and upregulate danger molecules known to promote antitumor immunity. Future studies may extend this concept to provide novel therapeutic avenues in the treatment of PC.

Acknowledgements

The authors would like to thank Felix Niessner (Leibniz Institute for Plasma Science and Technology, INP Greifswald) for technical support.

Funding

The present study was funded by the German Federal Ministry of Education and Research (grant nos. 03Z22DN11 and 03Z22Dd1) and Gerhard-Domagk Foundation (Greifswald, Germany).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

EF and SB designed the study. LM performed the experiments. EF, LM and SB confirm the authenticity of all the raw data. EF, LM, MBS and SB analyzed the data, prepared the figures and wrote and reviewed the manuscript. EF, LM, MBS and SB read and approved the final manuscript.
The authors declare they have no competing interests.

References

1. Dakwar GR, Shariati M, Willaert W, Ceelen W, De Smedt SC and Remaut K: Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis-mission possible? Adv Drug Deliv Rev 108: 13-24, 2017.
2. Piso P and Arnold D: Multimodal treatment approaches for peritoneal carcinosis in colorectal cancer. Disch Arztebl Int 108: 802-808, 2011.
3. Oettel H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zülke C, Fahlke J, Arning MB, et al: Adjuvant chemotheraphy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. Jama 310: 1473-1481, 2013.
4. Esposito I, Kleeff J, Bergmann F, Reiser C, Herpel E, Friess H, Schirrmeister H and Böhmer M: Most pancreatic cancer resections are R1 resections. Ann Surg Oncol 15: 1651-1660, 2008.
5. Shida D, Tsukamoto S, Ochiai H and Kanetsu Y: Long-term outcomes after R0 resection of synchronous peritoneal metastasis after colorectal surgery without cytoreductive surgery or hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol 25: 173-178, 2018.
6. Tentes AA, Pallas N, Karamveri C, Kyziridis D and Hristakis C: Cytoreduction and HIPEC for peritoneal carcinomatosis of pancreatic cancer. J BUON 23: 482-487, 2018.
7. Jayson GC, Kohn EC, Kitchener HC and Ledermann JA: Ovarian cancer. Lancet 384: 1376-1388, 2014.
8. Pelz JO, Chua TC, Esquivel J, Stojadinovic A, Doerfer J, Arning MB, et al: Calreticulin exposure dictates the immunogenic phenotype of antigen-presenting cells. Sci Rep 9: 634, 2019.
40. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M and Törnér J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84, 2007.

41. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y and Dong W: ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016: 4350963, 2016.

42. Yu F-X and Guan K-L: The hippo pathway: Regulators and regulations. Genes Dev 27: 355-371, 2013.

43. Freund E, Liedtke KR, Miebach L, Wende K, Heidecke A, Kaushik NK, Choi EH, Partecke LI and Bekeschus S: Identification of two kinase inhibitors with synergistic toxicity with low-dose hydrogen peroxide in colorectal cancer cells. Cancers (Basel) 12: 122, 2020.

44. Bagheri M, Nair RR, Singh KK and Saini DK: ATM-ROS-iNOS in vitro. Cancers (Basel) 12: 122, 2020.

45. Kaushik NK, Choi EH, Partecke LI and Bekeschus S: Plasma-derived reactive species shape a differentiate progression and treatment resistance. J Cell Biol 217: 2291-2298, 2018.

46. Weyemi U, Redon CE, Parekh PR, Dupuy C and Bonner WM: A complex secretory program orchestrated by the inflammasome. Biochimie 103: 14-22, 2014.

47. Yu FX and Guan KL: The hippo pathway: Regulators and regulations. Oxid Med Cell Longev 2017: 482160, 2017

48. Bauer G: Central signaling elements of intercellular reactive oxygen/nitrogen species-dependent induction of apoptosis in malignant cells. Anticancer Res 37: 499-513, 2017.

49. Navarro-Yepes J, Burns M, Anandan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis M and Franco R: Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxid Redox Signal 21: 66-85, 2014.

50. Speckmann B, Steinbrenner H, Grune T and Klötzer L: Peroxynitrite: From interception to signaling. Arch Biochem Biophys 595: 153-160, 2016.

51. Perkins A, Tudorica DA, Amieva MR, Remington SJ and Guillemin K: Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol 17: e3000395, 2019.

52. Vandenberk L, Belmans J, Van Woensel M, Riva M and Vanhee C: HOCl oxidation-NOXs and DUOXs as putative targets for cancer therapy. Anticancer Agents Med Chem 13: 502-514, 2013.

53. Bauer G: Central signaling elements of intercellular reactive oxygen/nitrogen species-dependent induction of apoptosis in malignant cells. Anticancer Res 37: 499-513, 2017.

54. Navarro-Yepes J, Burns M, Anandan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis M and Franco R: Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxid Redox Signal 21: 66-85, 2014.

55. Speckmann B, Steinbrenner H, Grune T and Klötzer L: Peroxynitrite: From interception to signaling. Arch Biochem Biophys 595: 153-160, 2016.

56. Perkins A, Tudorica DA, Amieva MR, Remington SJ and Guillemin K: Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol 17: e3000395, 2019.

57. Vandenberk L, Belmans J, Van Woensel M, Riva M and Vanhee C: HOCl oxidation-NOXs and DUOXs as putative targets for cancer therapy. Anticancer Agents Med Chem 13: 502-514, 2013.

58. Bauer G: Central signaling elements of intercellular reactive oxygen/nitrogen species-dependent induction of apoptosis in malignant cells. Anticancer Res 37: 499-513, 2017.

59. Navarro-Yepes J, Burns M, Anandan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis M and Franco R: Oxidative stress, redox signaling, and autophagy: Cell death versus survival. Antioxid Redox Signal 21: 66-85, 2014.

60. Speckmann B, Steinbrenner H, Grune T and Klötzer L: Peroxynitrite: From interception to signaling. Arch Biochem Biophys 595: 153-160, 2016.

61. Liedtke KR, Freund E, Hackbartha C, Heidecke CD, Partecke LI and Bekeschus S: A myeloid and lymphoid infiltrate in murine pancreatic tumors exposed to plasma-treated medium. Clin Plas Med 11: 10-17, 2018.

62. Freund E, Moritz J, Stope M, Seebauer C, Schmidt A and Bekeschus S: A myeloid and lymphoid infiltrate in murine pancreatic tumors exposed to plasma-treated medium. Clin Plas Med 11: 10-17, 2018.

63. Liedtke KR, Freund E, Hackbartha C, Heidecke CD, Partecke LI and Bekeschus S: A myeloid and lymphoid infiltrate in murine pancreatic tumors exposed to plasma-treated medium. Clin Plas Med 11: 10-17, 2018.