Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase

Martin Schuster1,4, Steffi Treitschke1,2,4, Sreedhar Kilaru1, Justin Molloy3, Nicholas J Harmer1 and Gero Steinberg1,*

1Department of Biosciences, University of Exeter, Exeter, UK. 2Personalisierte Tumortherapie, Fraunhofer ITEM-R, Regensburg, Germany and 3MRC National Institute for Medical Research, Mill Hill, London, UK

Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen *Ustilago maydis*. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.

The EMBO Journal (2012) 31, 214–227. doi:10.1038/emboj.2011.361; Published online 25 October 2011

Subject Categories: membranes & transport; cell & tissue architecture

Keywords: cytoskeleton; membrane trafficking; molecular motors; plant pathogen

Introduction

In eukaryotes, the cytoskeleton provides filamentous tracks for intracellular motility of cargo, including organelles and vesicles. Membrane trafficking along the secretory pathway is based on filamentous actin (F-actin) and microtubules (MTs; Allan and Schroer, 1999). These filaments are used by membrane transporters, including the ubiquitous MT-based kinesin-1 and the F-actin-dependent myosin-5 to deliver their cargo to polar sites of exocytosis (Vale, 2003). It is generally assumed that both cytoskeletal systems have complementary roles, with MTs and kinesin motors supporting long-range motility, whereas actin and myosin-5 are involved in short-range movement near the plasma membrane (Langford, 1995). In addition to these well-understood motors, eukaryotic cells contain numerous unconventional myosins, which share a myosin-motor domain (MMD) but are thought to have more stationary functions rather than travelling along the actin filament (Woolner and Bement, 2009). Among these motors are the fungal-specific class 17 myosins, which are virulence factors that are required for successful infection of host plants by fungal intruders (Madrid et al, 2003; Weber et al, 2006; Werner et al, 2007). Fungal class 17 myosins consist of a N-terminal MMD fused to a chitin synthase (CHS) region that contains several transmembrane domains by which myosin-17 is thought to bind secretory vesicles (Fujiwara et al, 1997; Weber et al, 2006). After fusion of these vesicles with the plasma membrane, the CHS region gets exposed and participates in the formation of the fungal cell wall (Munro and Gow, 2001). An intact cell wall protects the fungus from defence reactions of the plant, and it has been shown that fungi are not able to infect their host without myosin-17 in plant and human pathogens (Madrid et al, 2003; Liu et al, 2004; Weber et al, 2006; Werner et al, 2007; Treitschke et al, 2010). Polar localization of myosin-17 in *Aspergillus nidulans*, *Wangiella dermatitides* and *Ustilago maydis* depends on F-actin (Takekita et al, 2005; Abramczyk et al, 2009; Treitschke et al, 2010) and fungal myosin-17 binds actin in vitro (Takekita et al, 2005). However, the motor domain of Mcs1, the myosin-17 in the corn pathogen *U. maydis* (Weber et al, 2006), is not required for its motility (Treitschke et al, 2010). Instead, anterograde transport of Mcs1 depends upon both MTs and F-actin (Treitschke et al, 2010). These results suggest that F-actin and MTs cooperate in CHS delivery and that the myosin-17 MMD has other roles in secretion.

In this study we focus on two questions: (1) what is the delivery mechanism for CHSs and (2) what is the precise role of the myosin-17 MMD in CHS secretion? We found that the default behaviour of Mcs1-bound membranes is bi-directional motility, which is supported by myosin-5, kinesin-1 and dynein. Most vesicles have a short residence time at the plasma membrane, and only ~15% become docked for several seconds and fuse with the plasma membrane. Apical and lateral secretion of Mcs1 requires its MMD, and our data argue that it serves to capture vesicles at sites of exocytosis by tethering them to cortical actin. Thus, an actin/myosin-5 and an MT/kinesin-1 pathway deliver Mcs1 to the growth region, where its myosin-17 MMD breaks the symmetry of bi-directional transport and fosters polarized exocytosis.

Results

F-actin/myosin-5 and MTs/kinesin-1 provide independent routes for CHS secretion

As a first step towards understanding the role of the cytoskeleton in polarized secretion in *U. maydis*, we set out to
visualize MTs and F-actin in live cells. Haploid cells of \textit{U. maydis} grow as yeasts that form a daughter bud at one pole (Figure 1A). We used a modified Lifeact-GFP fusion protein (Riedl et al., 2008) to visualize F-actin in yeast-like cells of \textit{U. maydis}. Expression of Lifeact-GFP specifically labelled actin patches, which are sites of endocytosis (Kaksonen et al., 2003), and decorated F-actin cables (Figure 1B, F-actin). These cables were located at the cell periphery and formed a connection between mother cell and the growing daughter cell (Figure 1B, red arrowheads). In contrast, GFP-stubulin-labelled MTs were located more centrally and reached far into the growth region (Figure 1B; Supplementary Movie S1; Steinberg et al., 2001). To investigate the relationship between the cytoskeletal filament systems, we co-expressed Lifeact-GFP and mCherry-stubulin. We found that both filament systems are spatially separated (Figure 1C, filled arrowhead: F-actin cable; open arrowhead: MT). Disrupting F-actin by Latrunculin \textit{A} treatment did not affect the MTs and disruption of MTs with the fungal-specific MT inhibitor Benomyl (Fuchs et al., 2005) did not disturb the F-actin organization (Supplementary Figure S1). These data suggest that F-actin and MTs function as independent tracks for polar delivery of secretory vesicles.

Filamentous fungi contain four classes of myosins (Steinberg, 2007). Out of these, class V myosin is a good candidate for vesicular transport. Previous work has shown that myosin-5 (Myo5) is involved in polarized hyphal growth in \textit{U. maydis}, suggesting that it delivers secretory vesicles (Weber et al., 2003; Schuchardt et al., 2005). We tested the role of Myo5 and MTs in polarized growth by measuring the polarity index, which we define here as the ratio of cell length to cell width. MTs extending far into the growing daughter cell (Figure 1B, red arrowheads). These cables were located at the cell periphery and formed a connection between mother cell and the growing daughter cell (Figure 1B, red arrowheads). In contrast, GFP-stubulin-labelled MTs were located more centrally and reached far into the growth region (Figure 1B; Supplementary Movie S1; Steinberg et al., 2001). To investigate the relationship between the cytoskeletal filament systems, we co-expressed Lifeact-GFP and mCherry-stubulin. We found that both filament systems are spatially separated (Figure 1C, filled arrowhead: F-actin cable; open arrowhead: MT). Disrupting F-actin by Latrunculin \textit{A} treatment did not affect the MTs and disruption of MTs with the fungal-specific MT inhibitor Benomyl (Fuchs et al., 2005) did not disturb the F-actin organization (Supplementary Figure S1). These data suggest that F-actin and MTs function as independent tracks for polar delivery of secretory vesicles.
polar asymmetry. Kinesin-1 is a ubiquitous membrane transporter that utilizes MTs to support polarized growth in *U. maydis* (Lehmler et al., 1997; Schuchardt et al., 2005). When either kinesin-1 was deleted or MTs were disrupted by Benomyl, cells became thicker, indicated by a reduced polarity index (Figure 1D, Benomyl and ΔKin1). We generated a double mutant in which kinesin-1 was depleted and myo5 deleted (strain AB33ΔMyo5Δkin1; Table I). Again, polarized growth was strongly affected (Figure 1E, ΔMyo5ΔKin1) and the polarity index dropped to 〜1.6 (Figure 1D, ΔMyo5ΔKin1). These results suggested that F-actin/myo5-5 and MTs/kinesin-1 participate in polarized secretion of factors that help shaping the cell. Morphogenesis of fungal cells depends on the extracellular cell wall, which receives its strength from chitin, a β-(1→4)-linked polymer of N-acetylglucosamine that is produced by secreted CHSs (Ruiz-Herrera et al., 2002).

Therefore, we speculated that the morphological phenotype

| Table I: Genotype of strains and plasmids used in this study |
|------------------|------------------|------------------|------------------|
| **AB33G** | a2 PnbarbW2 PnbarbE1 bleR/potetGFPTub1 |
| **AB33GLact** | a2 PnbarbW2 PnbarbE1 bleR/poGLifeact |
| **AB33GAct_ChTub1** | a2 PnbarbW2 PnbarbE1, bleR/poGLifeact/pHoChTub1 |
| **AB33Kin1** | a2 PnbarbW2 PnbarbE1 Δkin1::hygR bleR |
| **AB33AΔMyo5** | a2 PnbarbW2 PnbarbE1 Δmyo5::hygR bleR |
| **AB33AΔMyo5Δkin1** | a2 PnbarbW2 PnbarbE1 Δmyo5::hygR Δkin1::bleR |
| **FB1 Mcs1G1** | a1 b1, Pmcs1-mcs1-1×3egfp bleR |
| **FB1 Chs5G1** | a1 b1, Pchs5-chs5-3×egfp bleR |
| **FB1 Chs6G3** | a1 b1, Pchs6-chs6-3×egfp bleR |
| **SG200G1 Mcs1_mChSso1** | a1 mfa2 b2W2 BE Amc1::hygR bleR/pntMcs1::pomChSSO1 |
| **SG200G1 Mcs1** | a1 mfa2 b2W2 BE Amc1::hygR bleR/pntMcs1 |
| **AB3SΔn2** | a1 PnbarbW2 PnbarbE1, Pdpn2-dyn2mC1 Mcs1-mcs1-3×egfp bleR hygR natR |
| **AB33AΔkin1 G1 Mcs1** | a2 PnbarbW2 PnbarbE1 Δkin1 blkR hygR/pnMcs1 |
| **AB33 Mcs1G1 mChTub1** | a2 PnbarbW2 PnbarbE1 Mcs1-mcs1-3×egfp blkR hygR/poChTub1 |
| **AB33 Mcs1G1** | a2 PnbarbW2 PnbarbE1 Mcs1-mcs1-3×egfp blkR hygR/P |
| **R** | crg-kin3G105E, cbxBO/Δcbx |
| **AB33AΔkin3 mChRab5A** | a2 PnbarbW2 PnbarbE1 Δkin3 blkR natR/pHoChRab5A/pnMcs1 |
| **G1 Mcs1** | a2 PnbarbW2 PnbarbE1 Pmyo5-5 3×egfp-my50, bleR, hygR |
| **AB33 Mcs1G1_mCh_Myo5** | a2 PnbarbW2 PnbarbE1 Mcs1-mcs1-3×egfp Pmyo5-5 |
| **AB33G1** | a2 PnbarbW2 PnbarbE1 Mcs1-mcs1-3×egfp Pmyo5-5 |
| **AB33G1** | 3×mCherry-my50 bleR hygR |
| **AB33G1 3×mCherry-mcs1 blkR, hygR, natR** | FB2ΔMyc50 G1 Mcs1 |
| **AB33 Mcs1G1 R** | a2 PnbarbW2 PnbarbE1 Mcs1-mcs1-3×egfp bleR hygR/pgrcMyc50G105E |
| **AB33 Mcs1G1 mChSso1** | a2 PnbarbW2 PnbarbE1 Mcs1-mcs1-3×egfp bleR hygR/pgrcMyc50G105E/pomChSSO1 |
| **AB33G1 mChTub1** | a2 PnbarbW2 PnbarbE1, Pdpn2-dyn2mC1 Mcs1-mcs1-3×egfp blkR, hygR |
| **AB33 Mcs1G1** | a2 PnbarbW2 PnbarbE1 Mcs1-mcs1-3×egfp blkR hygR/P |
| **R** | crg-kin1ΔG105E, cbxBO/Δcbx |
| **SG200G1 Mcs1 ΔMM** | a1 mfa2 b2W2 BE Amc1::hygR bleR/pnt3GAMMM |
| **SG200G1 Mcs1 ΔG105E** | a1 mfa2 b2W2 BE Amc1::hygR bleR/pnt3GAMMM |
| **SG200G1 Mcs1 ΔG105E mChSso1** | a1 mfa2 b2W2 BE Amc1::hygR bleR/pnt3GAMMM/pomChSSO1 |
| **SG200G1 Mcs1ΔG105E mChSso1** | a1 mfa2 b2W2 BE Amc1::hygR bleR/pnt3GAMMM/pomChSSO1 |
| **SG200G1 Mcs1 ΔMM mChSso1** | a1 mfa2 b2W2 BE Amc1::hygR bleR/pnt3GAMMM/pomChSSO1 |
| **POTEGFPTub1** | Potet-egfp-ABP410-17modified, cbxR |
| **pOGLifeact** | Potet-mCherry-tub1, hygR |
| **pHoChTub1** | Potet-mCherry-tub1, natR |
| **p3pGcs1** | Pmcs1-3×egfp-mcs1 cbxR |
| **pNercR1** | Pmcs1-3×egfp-mcs1 cbxR |
| **pNercR1** | Pmcs1-3×egfp-mcs1 cbxR |
| **nCrgR1** | Pmcs1-3×egfp-mcs1 cbxR |
| **pChTub1** | Pmcs1-3×egfp-mcs1 cbxR |
| **pChRab5A** | Pmcs1-3×egfp-mcs1 cbxR |
| **pChRab5A** | Pmcs1-3×egfp-mcs1 cbxR |
| **pCrgR1** | Pmcs1-3×egfp-mcs1 cbxR |
| **pCrgR1** | Pmcs1-3×egfp-mcs1 cbxR |
| **pCrgR1** | Pmcs1-3×egfp-mcs1 cbxR |
| **pET15b Mcs1ΔMM** | P7lac-6His- Mcs1-ΔMM |
| **pET15b Mcs1ΔG105E** | P7lac-6His- Mcs1-ΔG105E |

* a, b, mating type loci; P, promoter; -, fusion; Δ, deletion; hygR, hygromycin resistance; blkR, bleomycin resistance; natR, nourseothricin resistance; cbxR, carboxin resistance; crg, conditional arabinose-induced promoter; tetR, constitutive promoter; “a,” temperature-sensitive allele; /, ectopically integrated; E1, W2, genes of the b mating type locus; egfp, enhanced green fluorescent protein; mCherry, monomeric red fluorescent protein; sox1, a syntaxin-like plasma membrane protein; mcs1, myosin-chitin synthase 1; kin1ΔG105E, rigor allele of kinesin1; kin1ΔG105E, rigor allele of kinesin1; rigR, small endosomal Rab5-like GTPase; tub1, tubulin; Myo5, class V myosin; HA, hemagglutinin epitope tag; mcs1ΔMM, rigor allele of mcs1; mcs1ΔG105E, first 927 amino acids of mcs1; mcs1ΔG105E, rigor allele of mcs1; M1, motor domain; cbxBO, constitutive cbx expression in Escherichia coli; ABP410-17modified, amino acids 1–17 of actin-binding protein 140 from *S. cerevisiae*, modified for use in filamentous fungi.*
of motor mutants and drug-treated cells was due to defects in CHS secretion. *U. maydis* contains eight CHSs, and a subset of these localize to the growth region (Figure 2A and B; Weber et al., 2006). We performed fluorescent recovery after photo-bleaching (FRAP) experiments (Figure 2C) and monitored the recovery of triple-green fluorescent protein-tagged CHSs in the presence of inhibitors of the cytoskeleton. Indeed, we found that secretion of all tested CHSs depended on MTs and on F-actin (Figure 2D).

Figure 2 The role of the cytoskeleton in polar delivery of CHSs. (A) Localization of CHS5 in a yeast-like cell. Most of the CHS is concentrated at the growth region. Images are contrast inverted. Bar represents micrometers. (B) Polar localization of CHS5_G3, CHS6_G3 and MCS1_G3. The enzymes are located at the cell periphery, indicating that they get secreted into the plasma membrane where they participate in the formation of the cell-shaping extracellular cell wall. Images are contrast inverted. Bar represents micrometers. (C) Image series showing recovery of G3Mcs1 signals after photo-bleaching at the growth region. Pre: prior to photo-bleaching, 0: immediately after the bleach, 15′: 15 min after photo-bleaching. Bar represents micrometers. (D) Bar chart showing recovery of apical fluorescence of CHS5_G3, CHS6_G3 and MCS1_G3 in cells treated with the solvent DMSO (control), the F-actin inhibitor Latrunculin A (LatA) or the MT inhibitor Benomyl (Ben). Note that CHS5 and MCS1 show a similar recovery behaviour, suggesting that they use similar delivery pathways. Statistical significance was tested using an unpaired t-test with Welch’s correction. Single asterisk indicates statistical significance to control at P<0.05, double asterisks indicate statistical significance to control at P<0.01, and triple asterisks indicate statistical significance to control at P<0.0001. All bars are given as mean ± s.e.m., sample size n is indicated.

Mcs1-carrying secretory vesicles move bi-directionally

Filamentous fungi contain a unique type of CHS that contain an MMD at their N-terminus (Fujiwara et al., 1997) and are therefore also considered to be a class V CHS (Munro and Gow, 2001) as well as class 17 myosin (Hodge and Cope, 2000). The *U. maydis* myosin-17 (Mcs1; Weber et al., 2006) shares this domain organization (Figure 3A). Anterograde transport and subsequent insertion of the enzyme into the plasma membrane exposes the CHS region to the cell surface, which supports cell wall extension and plant infection (Treitschke et al., 2010). Previous work has shown that MTs and F-actin are involved in delivery of the Mcs1 (Treitschke et al., 2010). To visualize the delivery process, we fused a triple-green fluorescent protein to the N-terminus of the *mcs1* gene and expressed it under its own promoter in a *mcs1*-null mutant. The resulting fusion protein G3Mcs1 was functional and rescued pathogenicity defects of *mcs1*-null mutants (Treitschke et al., 2010). In yeast-like cells that co-express a fusion of mCherry and the Sso1-like syntaxin (Treitschke et al., 2010), the G3Mcs1-fusion protein concentrated in the plasma membrane of growing buds and along the lateral parts of the elongated mother cell (Figure 3B; Supplementary Figure S2). In addition, single G3Mcs1 spots were found below the plasma membrane in the apical cortex, where they often remained stationary for several seconds (Supplementary Figure S2, right image series). In order to better visualize G3Mcs1 motility, we photo-bleached the bud region using a 405-nm laser pulse (Figure 3C). We found individual G3Mcs1 signals rapidly moving in the darkened area (Figure 3C; Supplementary Movie S2) in a bi-directional fashion. Again, G3Mcs1 signals were seen that frequently paused near the cell cortex (Figure 3C, image series). This was best visible in kymographs, where movement of fluorescent particles appears as a series of diagonal lines, whereas stationary signals appear as vertical lines (arrowhead in Figure 3D). However, pausing only rarely led to membrane insertion (Figure 3E; Supplementary Movie S3) and ~85% of the signals returned to the cell centre without being exocytosed (Figure 3F; Supplementary Movie S4). We confirmed this result by FRAP experiments that demonstrated that Mcs1 secretion mainly occurred at the growth region, and, to a lower extent, along the sides of the bud and the mother cell (Figure 3G and H). G3Mcs1 inserted into the plasma membrane remained stationary, even when the cortical F-actin was disrupted by the inhibitor Latrunculin A (Supplementary Figure S3), suggesting that secreted CHSs are anchored in the cell wall.

In *U. maydis*, MTs support bi-directional motility of early endosomes (EEs; Wedlich-Söldner et al., 2000; Schuster et al., 2011b) and we considered it possible that G3Mcs1 travels in these organelles. To test this, we observed G3Mcs1 in cells in which EE motility was abolished by (1) deleting the EE motor kinesin-3 (2) expressing a kinesin-3 mutant protein that rigorously binds the organelles to the MTs (Kin3^{302P}, Wedlich-Söldner et al., 2002b). In the absence of EE motility, G3Mcs1 still concentrated at the growth region (Supplementary Figure S4A and B) and was normally secreted, as indicated by FRAP experiments (Supplementary Figure S4C, control versus ΔKin3 and Kin3^{302P}; ANOVA testing: not significantly different, P=0.670). Furthermore, G3Mcs1 moved at a mean velocity of 1.5μm/s (anterograde and retrograde not different, P=0.6084), which was clearly slower than the rate of motor mutants and drug-treated cells was due to defects in CHS secretion. *U. maydis* contains eight CHSs, and a subset of these localize to the growth region (Figure 2A and B; Weber et al., 2006). We performed fluorescent recovery after photo-bleaching (FRAP) experiments (Figure 2C) and monitored the recovery of triple-green fluorescent protein-tagged CHSs in the presence of inhibitors of the cytoskeleton. Indeed, we found that secretion of all tested CHSs depended on MTs and on F-actin (Figure 2D).
of 1.9–2.2 μm/s previously reported for EE motility (Wedlich-Soldner et al., 2002b; Schuster et al., 2011a). We therefore considered it most likely that moving G3Mcs1 signals are not located in EEs but indeed represent secretory CHS-containing vesicles (CSVs).

Vesicle motility depends on kinesin-1 and dynein

It was reported that in hyphal cells of *U. maydis*, long-range motility of G3Mcs1 depends mainly on MTs (Treitschke et al., 2010), and the results described above confirm a role of MTs in secretion. In yeast-like cells, bi-directional long-range motility of G3Mcs1-carrying vesicles could be observed (Figure 4A, arrowheads). This motility occurred along mCherry-labelled MTs (Supplementary Figure S5; Supplementary Movie S5) and was significantly impaired when MTs were disrupted by Benomyl (Figure 4B and C), suggesting that MTs support G3Mcs1 motility. In yeast-like cells, MTs have a uniform orientation with plus-ends directed towards the cell poles and minus-ends towards the mother-bud constriction (Straube et al., 2003).

Thus, bi-directional motility within the photo-bleached buds indicated the participation of opposing motor systems (Figure 4B, MT orientation indicated with arrows). The best candidate for retrograde transport is cytoplasmic dynein, and we therefore investigated G3Mcs1 motility in temperature-sensitive dynein mutants (Wedlich-Soldner et al., 2002a). Indeed, we found that motility of G3Mcs1-bound vesicles was significantly impaired in these mutants (Figure 4C, Dyn2Δ). G3Mcs1 still concentrated at the growth region, but formed apical cytoplasmic clusters (Figure 4D–F), suggesting that under normal conditions, dynein removes the excess of delivered CSVs. To address the mechanism of anterograde motility, we tested the role of the putative membrane transporter kinesin-1 in G3Mcs1 motility. Deletion of kin1 significantly reduced CSV motility (Figure 4C; Supplementary Movie S6) and drastically reduced Mcs1 accumulation at the growth region (Figure 4D–F). To confirm a direct role of kinesin-1 in delivery of CSVs, we expressed a mutant allele of kinesin-1 (Kin1(K208R)) that, in previous work, has been shown to participate in formation of the extracellular cell wall (Treitschke et al., 2010). Myosin-17 motors are therefore also considered to be class V CHSs. (B) Localization of G3Mcs1 (Mcs1) in yeast-like cells that co-express a syntaxin-like plasma membrane protein (Sso1) fused to mCherry. Note few G3Mcs1 signals in the plasma membrane of the mother cell (arrowhead). Bar represents micrometers. (C) Motility of G3Mcs1 (green) in a photo-bleached bud (bleach). G3Mcs1 travels to the apex where it often rests for several seconds (image series). Cell edge is given in blue. Time is given in seconds; bar represents micrometers. See also Supplementary Movie S2. (D) Kymograph showing bi-directional motility of G3Mcs1 in a bud that was photo-bleached (bleached). Signals often pause before they move back to the cell centre (left). Note that an anterograde signal splits in two after reaching the apical region (arrowhead). Time is given in seconds; distance is given in micrometers. The image was contrast inverted. (E) Image series showing pausing and subsequent insertion of a G3Mcs1 signal (green) into the plasma membrane, labelled with the syntaxin-like Sso1 fused to mCherry (red). After long pausing, G3Mcs1-bound vesicle gets in close proximity and eventually fuses with the plasma membrane (arrowheads). Time is given in seconds; bar represents micrometers. See also Supplementary Movie S3. (F) Bar chart showing the behaviour of Mcs1-carrying vesicles at the growing bud. Most vesicles reach the plasma membrane and turn around (cortical turning). Some signals are turning without contact with the plasma membrane (cytoplasmic turning). A minority gets inserted into the plasma membrane (membrane insertion). Total observation time is 1089.8 s. Sample size *n* is given. See also Supplementary Movie S4. (G) Image series showing recovery of G3Mcs1 signals after photo-bleaching at the growing region (upper image series) and in the mother cell (lower image series). The plasma membrane is labelled by the syntaxin mCherry-Sso1 (red). Pre: prior to photo-bleaching, 0': immediately after the bleach, 5': 5 min after photo-bleaching. Bar represents micrometers. (H) Bar chart showing the recovery of G3Mcs1 signals in the plasma membrane after local photo-bleaching. Statistical significance was tested using an unpaired t-test with Welch’s correction. Double asterisks indicate statistical significance to control at *P*<0.01 and triple asterisks indicate significance to control at *P*<0.0001. All bars are given as mean ± s.e.m., sample size *n* is indicated.
to bind rigorously to MTs (Straube et al., 2006). In the presence of Kin1rigor, CSV motility was almost abolished (Figure 4C; Supplementary Movie S6), and immobile G3Mcs1 particles were arranged in a pearl-string-like fashion along invisible tracks, which were most likely MTs (Figure 4D and G). Indeed, the G3Mcs1 'pearl-strings' disappeared when MTs were disrupted by Benomyl. This suggests that the Kin1rigor protein anchored the G3Mcs1-carrying vesicles to the MTs due to a physical interaction of kinesin-1 and the vesicles. Taken together, these data imply that long-range bi-directional motility of CSVs is based on MTs and is facilitated by the opposing motors dynein and kinesin-1.

Mcs1 motility involves F-actin and myosin-5

Deletion of kinesin-1 did not fully inhibit anterograde CSV motility (Figure 4C; Supplementary Movie S6), and immobile G3Mcs1 particles were arranged in a pearl-string-like fashion along invisible tracks, which were most likely MTs (Figure 4D and G). Indeed, the G3Mcs1 ‘pearl-strings’ disappeared when MTs were disrupted by Benomyl. This suggests that the Kin1rigor protein anchored the G3Mcs1-carrying vesicles to the MTs due to a physical interaction of kinesin-1 and the vesicles. Taken together, these data imply that long-range bi-directional motility of CSVs is based on MTs and is facilitated by the opposing motors dynein and kinesin-1.

Deletion of kinesin-1 did not fully inhibit anterograde CSV motility (Figure 4C; Supplementary Movie S6), and immobile G3Mcs1 particles were arranged in a pearl-string-like fashion along invisible tracks, which were most likely MTs (Figure 4D and G). Indeed, the G3Mcs1 ‘pearl-strings’ disappeared when MTs were disrupted by Benomyl. This suggests that the Kin1rigor protein anchored the G3Mcs1-carrying vesicles to the MTs due to a physical interaction of kinesin-1 and the vesicles. Taken together, these data imply that long-range bi-directional motility of CSVs is based on MTs and is facilitated by the opposing motors dynein and kinesin-1.

Mcs1 motility involves F-actin and myosin-5

Deletion of kinesin-1 did not fully inhibit anterograde CSV motility (Figure 4C; Supplementary Movie S6), and immobile G3Mcs1 particles were arranged in a pearl-string-like fashion along invisible tracks, which were most likely MTs (Figure 4D and G). Indeed, the G3Mcs1 ‘pearl-strings’ disappeared when MTs were disrupted by Benomyl. This suggests that the Kin1rigor protein anchored the G3Mcs1-carrying vesicles to the MTs due to a physical interaction of kinesin-1 and the vesicles. Taken together, these data imply that long-range bi-directional motility of CSVs is based on MTs and is facilitated by the opposing motors dynein and kinesin-1.
Figure 5 The role of F-actin and myosin-5 in motility of Mcs1-bound vesicles. (A) Kymographs showing motility of G3Mcs1 in photo-bleached buds of kin1Δ-null mutant cells treated with the solvent DMSO or the F-actin inhibitor Latrunculin A (LatA). Note that disruption of F-actin abolishes almost all residual motility. Time is given in seconds; distance is given in micrometers. The image was contrast inverted. MT orientation is indicated in red. (B) Kymograph showing motility of G3Myo5. Note that the endogenous copy of myo5 was tagged with triple-GFP. All signals move towards the growth region (indicated with arrow and ‘Tip’). Time is given in seconds; distance is given in micrometers. The image was contrast inverted. See also Supplementary Movies S8 and S9. (C) Bar chart showing the velocity of G3Myo5 motility. (D) Co-localization of G3Mcs1 and mCherry-Myo5 in photo-bleached buds (bleach) of cells treated with 200 μM CCCP. Anterograde moving signals immobilize within the bud due to the reduction of ATP. Many stationary signals co-localize with fluorescent myosin-5. Bar represents micrometers. For co-localization of mCh3Mcs1 and G3Myo5, see also Supplementary Movie S10. (E) G3Mcs1 in growing buds of control cells (control), in a myo5Δ-null mutant (Δmyo5) and a mutant expressing a myo5 rigor allele (M5Rigor). Bars represent micrometers. Images were contrast inverted. (F) Bar chart showing G3Mcs1 motility in control cells (control), in a myo5Δ-null mutant (Δmyo5) and in a mutant expressing a myo5 rigor allele (M5Rigor). Statistical significance was tested using an unpaired t-test with Welch’s correction. Single asterisk indicates statistical significance to control at P<0.05 and triple asterisks indicate significance to control at P<0.0001. All bars are given as mean ± s.e.m., sample size n is indicated. (G) G3Mcs1 signals (green) at the periphery of a mutant expressing a myo5 rigor allele and the syntaxin-like Sso1 fused to mCherry (red). Bar represents micrometers. (H) Kymograph of G3Mcs1 signals at the periphery of a mutant expressing a myo5 rigor allele. Time is given in seconds; distance is given in micrometers. Image was contrast inverted. See also Supplementary Movie S11.
of Kin1rigor and dynein no longer concentrated at MT plus-ends, but instead was anchored as immobile dots along the central MTs (Figure 6A and B). However, expression of Kin1rigor had no effect on motility or localization of G3Dyn2 in control cells and in mutants expressing Kin1rigor (Figure 6C and D). This argues against a strong binding of myosin-5 to kinesin-1 delivered vesicle and instead suggests that two populations of vesicles exist, one travelling along F-actin, the other moving along MTs.

Myosin-17 transiently binds to F-actin but does not display motility

The results described so far strongly indicated that kinesin-1 and myosin-5 cooperate in CSV delivery. Mcs1 itself consists of a class 17 MMD fused to a CHS region (Weber et al., 2006). It was previously reported that the MMD has no role in long-range motility of the CSV to which it is bound (Treitschke et al., 2010), and we confirmed these results in yeast-like cells (Supplementary Figure S6). This raises the question of whether the MMD is able to bind to and move along F-actin. The MMD of Mcs1 shares only 22\% sequence identity with Myo5 from *U. maydis* and 24\% sequence identity with chicken myosin-2, suggesting that it might not function as a moving myosin-motor head. Nevertheless, it contained all functionally important regions, including (1) the nucleotide-binding regions GXXXXGTK/S (amino acid 108–115), LEAXGN (amino acid 151–157) and VNPY (amino acid 46–49); (2) the switch II region and relay helix that transmits motion from the catalytic site to the ‘converter region’ (amino acid 377–412); and (3) a less well-conserved light chain binding region (amino acid 629–695), suggesting that there is a canonical lever arm structure. We generated a comparative model of the MMD of Mcs1 that was based on published crystal structures of chicken smooth muscle myosin, chicken myosin-5a, squid muscle myosin and *Dictyostelium discoideum* myosin II (see Materials and methods). This revealed that Mcs1, despite its low sequence conservation, adopts a myosin-head domain fold (Figure 7A; Supplementary Movie S12). These results demonstrate that all the vital parts of an MMD are present in Mcs1.

We next asked whether the MMD of Mcs1 is able to interact with F-actin. To analyse this, we expressed recombinant 6×His-tagged motor protein including parts of the neck region (His-Mcs1HN, amino acid 1–827) in an *in vitro* transcription–translation system. The Mcs1HN protein co-sedimented with F-actin in the absence of ATP (Figure 7B, + ATP, S: supernatant). This suggests that the myosin-17 MMD behaves like other myosins that bind and release from F-actin in an ATP-dependent manner. However, the truncated MMD protein showed a tendency to aggregate (Treitschke et al., 2010), which made this assay less reliable. We therefore set out to obtain additional evidence for F-actin interaction using full-length Mcs1 protein. Due to the transmembrane domains in the C-terminal CHS domain, full-length Mcs1 is membrane bound, and hence co-sedimentation assays are unsuitable. Therefore, we visualized the interaction of Mcs1 with F-actin in a microscopic approach using *in vitro* binding assays and total internal reflection fluorescence microscopy. In these experiments, F-actin was immobilized on the surface of cover slips and partially purified and salt-stripped G3Mcs1-bound membranes were added. In the presence of 3 mM ATP, G3Mcs1 transientsly bound to F-actin (Figure 7C–E, control, + ATP). However, no motility was detected (Figure 7F; Supplementary Movie S13). Instead, G3Mcs1 membranes remained bound to F-actin for ~7 s (7.1 ± 5.7 s, n = 164; ranging from ~2–18 s; Figure 7F and G). The number of G3Mcs1 signals interacting with actin filaments increased when ATP was depleted by apyrase treatment (Figure 7C and D, no ATP). In contrast, almost no F-actin decoration was...
found when the MMD was deleted (Figure 7C and D, ΔMM, noATP). These results confirmed that the myosin-17 MMD of Mcs1 reversibly binds to F-actin in an ATP-dependent manner. However, no directed motility of the myosin-17 was observed.

Myosin-17 tethers Mcs1-carrying vesicles at the apical growth region

CSVs normally paused at the growth region before they either returned to the cell centre or fused with the plasma membrane (see above; Figure 8A, control, red arrow). In control
Figure 8 The MMD of Mcs1 controls apical residence time of Mcs1-bound vesicles. (A) Kymographs showing motility of G3Mcs1 (control) and G3Mcs1^{AMM} (AMM) in photo-bleached buds. In both strains, arriving vesicles pause (red arrows). Time is given in seconds; distance is given in micrometers. The images were contrast inverted. (B) Graph showing the apical residence time for G3Mcs1 (control), the MMD truncated G3Mcs1^{AMM} (AMM) and a rigorously binding mutant protein G3Mcs1^{rigor} (rigor). Statistical significance was tested using an unpaired t-test with Welch’s correction. Single asterisk indicates statistical significance to control at P<0.05 and double asterisks indicate statistical significance to control at P<0.001. All bars are given as mean ± s.e.m., sample size n is indicated. (C) Images of G3Mcs1 in buds in control cells and cells expressing a fluorescent mcs1 rigor protein (rigor). In control cells, G3Mcs1 (left panel, green) localizes predominantly in the plasma membrane (mChSso1, red). In mutants, G3Mcs1^{rigor} is also concentrated at the cortical cytoplasm (left panel, rigor). This localization is best visible in false-coloured images, where signal intensities are represented by colours (right panels). Bar represents micrometers. (D) Graph showing average signal intensity profiles for cells expressing either G3Mcs1 (control) or G3Mcs1^{rigor} (rigor). Statistical significance was tested using an unpaired t-test with Welch’s correction. Asterisks indicate statistical significance to control at P<0.05. All bars are given as mean ± s.e.m., sample size n is indicated. (E) Bar chart showing the behaviour of Mcs1-carrying vesicles at the growing bud in mutants that lack the myosin-17 MMD. Most vesicles turn around (‘cortical turning’ and ‘cytoplasmic turning’). Only few signals were inserted into the plasma membrane (membrane insertion). Control values are indicated with dotted red lines (see Figure 3F). Note that compared with control cells, the secretion rate in AMM cells is reduced by ~40%. Sample size n is given. (G) Bar chart showing the recovery of G3Mcs1^{AMM} (AMM) and G3Mcs1^{rigor} (rigor) signals in the plasma membrane after local photo-bleaching. Statistical significance was tested using an unpaired t-test with Welch’s correction. Single asterisk indicates statistical significance to control (see Figure 3H and dotted red lines) at P<0.05, double asterisks indicate statistical significance to control at P<0.001, and triple asterisks indicate statistical significance to control at P<0.0001. All bars are given as mean ± s.e.m., sample size n is indicated. Note that tightly binding of G3Mcs1^{rigor} to cortical actin increases secretion, suggesting that Mcs1 tethers vesicles at the plasma membrane rather than transporting them along cortical actin.

Finding and revealed that significantly more G3Mcs1^{rigor} than G3Mcs1 protein localizes beneath the apical plasma membrane (Figure 8D, AMM, red arrow), but the residence time was significantly shorter (Figure 8B, AMM; 2.9 ± 4.4 s, n = 330; Mann–Whitney test, P = 0.0366). This suggested that the MMD of Mcs1 facilitates tethering of CSVs to sites of exocytosis. To test this further, we generated a G3Mcs1-allele carrying a point mutation G113E in the P-loop of the MMD (G3Mcs1^B). Similar to the previous described Myosin-17 MMD (G3Mcs1^B), this mutant protein is expected to bind tightly to F-actin at the site of myosin-17 activity. Indeed, pull-down assays of a mutant protein carrying this point mutation confirm rigorous F-actin binding in the presence of ATP (Supplementary Figure S7). When expressed in U. maydis mcs1-null mutants, G3Mcs1^B concentrated at the growth region, but in comparison to the control protein G3Mcs1 accumulated beneath the plasma membrane near the growth region (Figure 8C, right images indicate intensity in pseudo-colours). Quantitative line-scan analysis confirmed this
dynein moves the vesicles back to the cell centre. Myosin-17 counteracts this retrograde motility by tethering vesicles to the site of exocytosis, thereby increasing their residence time and fostering exocytosis.

Discussion

MTs and F-actin provide independent routes for secretion

Live cell imaging of fluorescently labelled F-actin and MTs in *U. maydis* revealed that both filamentous systems could serve as tracks for delivery of vesicles to the growth region. Disrupting either of these filament systems did not severely affect the other and both localize in different regions in the cell. This demonstrates that F-actin and MTs form independent routes for membrane trafficking. The presence of F-actin cables in fungi and plants implies the use of myosin-5 in secretion (Woolner and Bement, 2009). Indeed, myosin-5 is required for polarized growth in *U. maydis* (Weber et al., 2003; Schuchardt et al., 2005), and we show here that myosin-5 motors continuously flow towards the growth region. This strengthens the notion that peripheral actin cables support polarized secretion. In *U. maydis*, MTs and associate motors have been shown to support bi-directional motility of EEs (Wedlich-Söldner et al., 2000; Lenz et al., 2006; Schuster et al., 2011b). However, inhibition of endosome transport did not affect cell morphology, but led to defects in cell–cell separation (Wedlich-Söldner et al., 2002b). Furthermore, polarized growth of *U. maydis* depends on the putative secretory motors myosin-5 and kinesin-1, a result that confirms previous reports in hyphal cells (Schuchardt et al., 2005). This suggests that MTs and F-actin cooperate in polarized secretion and morphogenesis. This conclusion gains further support from our photo-bleaching experiments that demonstrate that the apical recovery of CHSs depends on F-actin and MTs. The simplest explanation is that both cytoskeletal elements support growth by providing tracks for delivery of secretory vesicles.

Myosin-5 and kinesin-1 deliver a CHS to the growth region

We have shown that both kinesin-1 and myosin-5 participate in secretion of a CHS. Cooperation between myosin and kinesin motors in membrane trafficking is a common phenomenon (Brown, 1999). Most studies to date indicate that in animal cells, MTs and associated motors mediate long-range transport, whereas myosin-5 is supposed to be a short-range motor that supports motility in MT-free regions of the cell, such as the cellular cortex (Langford, 1995). In animal cells, kinesin-1 and myosin-5 directly interact (Huang et al., 1999; Stafford et al., 2000), suggesting that both motors are attached to the same vesicle. This allows individual organelles to use both MTs and F-actin, which was shown in extruded squid axoplasm (Kuznetsova et al., 1992, 1994) and melanosome motility within frog pigment cells (Gross et al., 2002). Myosin-5 and dynein also bind to the same organelles and their interplay controls organelle motility and distribution within the cell. Our results indicate that Mcs1, myosin-5, dynein and kinesin-1 cooperate in CSV delivery and secretion, which raises the possibility that these motors all co-localize on the vesicles. Indeed, the observation that rigorously binding kinesin-1 tightly anchors dynein to MTs suggests a physical interaction between these motors. However, myosin-5 was not immobilized in Kin1^{rigor} mutant cells, which argues that myosin-5 is only weakly associated with the two MT motors. This suggests that Mcs1 travels in two distinct classes of vesicles that travel along F-actin and along MTs. It is currently not clear if these are distinct populations of vesicles or whether the CSVs switch between both transport processes. Further studies are needed to provide insight into the nature of these vesicles.

Myosin-17 has a role in docking exocytic vesicles

Secretion is a directed process by which Golgi-derived vesicles are delivered to the cell periphery and exocytosed. In fungi, the cell wall is synthesized at the expanding cell pole and polarized secretion of cell wall-forming enzymes, such as CHS, is an essential requirement for tip extension during invasive growth. We show here that only 15% of the delivered CSVs become inserted into the plasma membrane. The remaining 85% fail to fuse and are recycled back towards the cell centre. While this behaviour is surprising, it is also found in animal cells (Nakata et al., 1998; Toonen et al., 2006) in which the majority of vesicles that reach the target membrane are not retained (residence time of <1 s). Successful exocytosis requires capture of the vesicles and extended tethering at the plasma membrane (>10 s) (Toonen et al., 2006; Verhage and Sorensen, 2008), which in animals involves the Sec1/Munc18-1 protein and the interaction with a t-SNARE (Toonen et al., 2006). The CSVs show a similar behaviour: the majority of the arriving vesicles pause for <2 s before dynein takes them back towards minus-ends; while some vesicles pause for >10 s. Although *U. maydis* contains a Sec1/Munc18-1 homologue (un11738, P.3.5e–85), our results suggest that filamentous fungi have developed a new retention mechanism that is based on the MMD of their myosin-CHSs. Several lines of evidence support a role of myosin-17 in vesicle docking: (1) deletion of the MMD of Mcs1 did not affect motility of CSVs, but significantly reduced the retention time and affected secretion; (2) a point mutation into the myosin-17 MMD that confers rigorous binding to actin significantly increased the CSV retention time and fostered secretion; and (3) in cell-free assays, the MMD of Mcs1 confers transient binding of CSVs but not directed motility. However, it needs to be considered that motility of myosin-17 might be very slow under *in vitro* conditions, but faster in the living cell, thereby supporting exocytosis by short-range motility near the plasma membrane. If this is the case, we would expect to see a decrease in secretion of Mcs1^{rigor}, as this mutant protein is immobile but accumulates at the growth region. However, in FRAP secretion assays, we do find a significant increase in Mcs1^{rigor} recovery after photo-bleaching. This result argues against a role as a short-range motor.

Previous work has shown that the ATPase activity and actin-binding capacity of myosin-17 is required for its function in CHS secretion (Treitschke et al., 2010). Thus, we consider it possible that myosin-17 captures CSVs by reversible binding to apical actin at the growth region. In animal cells, a similar mechanism might be supported by myosin-5. In enterochromaffin cells, vesicles pause prior to exocytosis. Silencing of myosin-5a reduced the residence time by ~25%, which impairs secretion (Desnos et al., 2007). We found a similar decrease of vesicle retention time when the myosin-17...
Conclusion

Secretion of effector proteins and cell wall-forming enzymes is essential for virulence of plant pathogenic fungi (Panstruga and Dodds, 2009; Treitschke et al, 2006; Werner et al, 2007). The knowledge of this mechanism is essential for virulence of plant pathogenic fungi (Panstruga et al, 2009; Treitschke, 2012). The secretion of effector proteins and cell wall-forming enzymes is sufficient to facilitate exocytosis.

Figure 9 Model of the role of motors in CHS secretion. Kinesin-1 and myosin-5 take Mcs1-bound vesicles to the growth region, with myosin-5 walking along peripheral F-actin and kinesin-1 using more central MTs. Dynein takes over and moves them back towards the cell centre. Mcs1 interferes with this process by tethering the vesicle to the cortex, which fosters subsequent exocytosis. The combined activity of these motors generates a gradient of CHS secretion (relative secretion rate indicated with numbers). It is presently not clear if the same vesicle is transported along MTs and F-actin (indicated with ‘?’).

MMD is deleted (24.5%; from 3.89 to 2.94 s). Thus, the moderate increase in CSV residence time by myosin-17 is sufficient to facilitate exocytosis.

Materials and methods

Strains and plasmids

All plasmids were generated using standard techniques or in vivo recombination in Saccharomyces cerevisiae following published protocols (Raymond et al, 1999). Genotypes of all plasmids and strains are listed in Table 1. Further details are described in the Supplementary data.

Growth conditions

All U. maydis cultures were grown overnight at 28 °C in complete medium (CM; Holliday, 1974; containing 1% (w/v) glucose), shaking at 200 revolutions per minute (r.p.m.). For induction of the Cre-promoter, cells were grown in CM-glucose medium to an OD600 = 0.5 and transferred into CM containing 1% (w/v) arabinose as sole carbon source (CM-arabinose) and incubated for the indicated times at 28 °C, shaking at 200 r.p.m. Strain AB33AMyo5SrKin1 was grown in CM containing 1% (w/v) arabinose. To repress the expression of Kin1, the cells were transferred into CM containing 1% (w/v) glucose for 12 h.

Sequence alignment and structural modelling

Sequence alignments were done using CLUSTALW (http://www.ebi.ac.uk/Tools/clustalw/index.html). Domain prediction was done at SMART server (http://smart.embl-heidelberg.de/). IQ-motif search was performed using the calmodulin target database (http://calcium.uchres.utoronto.ca/ctdb/ctdb/sequence.html). Coiled-coil regions were predicted using the Coils2 server (http://www.ch.embnet.org).

Structural modelling of Mcs1 was based on published structures of myosins in the post-rigor conformation (chicken smooth muscle myosin, PDB ID: 2MYS, Raymond et al, 1993; chicken Myo5a, 1W7J, Courouge et al, 2004; squid muscle myosin, 2OY6, Yang et al, 2007; D. discoideum myosin II, 1MMD, Fisher et al, 1995). Sequence alignment was performed using CLUSTALW, followed by manual editing. Comparative models were prepared using MODELLER version 9.2 (Sali and Blundell, 1993). The best out of 10 models was selected on the basis of the MODELLER energy function, Ramachandran plot quality and conservation of secondary structure. Images were prepared using PyMOL (Schrodinger, New York, USA).

Laser-based epifluorescence microscopy

Microscopy was done essentially as previously described (Schuster et al, 2011a, b) using 488 and 562-nm solid-state lasers for excitation of fluorescent proteins. For FRAP experiments, cells were radiated by a 75-ms light pulse using a 405-nm laser (60 mW) at 100% laser power (beam diameter 30) and subsequent image series were taken. Kymographs were generated from the acquired image series using the MetaMorph software. Quantitative analysis of fluorescent intensities, velocities and flux-rates were done in raw 14-bit images or kymographs using MetaMorph. All statistical analyses were done using the software Prism 4 (GraphPad, La Jolla, CA, USA). Further details are described in the Supplementary data.

FRAP-based secretion assays

Secretion rates of CHSs were determined by taking reference images prior to photo-bleaching with a 405-nm light pulse. Image series were taken after 5–30 min and the recovery in the periphery of the cell was analysed. Stable insertion into the plasma membrane was confirmed in kymographs. Insertion rate was either defined as the average intensity per micrometer (CHSs secretion) or as the number of inserted signals per micrometer plasma membrane (secretion of GpMcs1 and GpMcs1(1000)). Further details are described in the Supplementary data.

Inhibitor experiments

For all inhibitor experiments, logarithmically growing cells were incubated for 30 min with either Benomyl at 30 μM (stock: 10 mM in DMSO; Fluka, Milwaukee, WI, USA) or Latrunculin A at 10 μM (stock: 20 mM in DMSO; kindly provided by Karen Tenney, University of California, Santa Cruz, USA). Control cells were treated with the respective amount of the solvent DMSO. Cells were placed onto a 2% agar cushion containing the respective inhibitor and immediately observed.

Co-localization of Mcs1 and Myo5 under ATP depletion

To co-localize both proteins, cells of strain AB33 Mcs1Gp-ChpMyo5 were plated onto a 2% agar cushion containing 200 μM CCCP (carbonyl cyanide m-chlorophenyl-hydrazone; Sigma-Aldrich Ltd, Gillingham, UK). After photo-bleaching of the bud region of medium-sized budded cells, cells were incubated for 5 min and a dual image at 1000 ms exposure time was taken.
Actin co-sedimentation assay

Recombinant His-Mcs1H or His-Mcs1H^H^H^H^H was incubated with F-actin in buffer (20 mM Tris–HCl, pH 8.0, 5 mM MgCl2 and 2 μM phallolidin) following the manufacturer’s instructions (Cytokeleton, Denver, USA). This was done in the presence of either 0.5 U apyrase (Sigma-Aldrich, Taufkirchen, Germany) or 5 mM ATP, respectively. After sedimentation of F-actin by centrifugation, the supernatant and pellet fractions were analysed by western blotting using an anti-His antibodies (Sigma-Aldrich, Taufkirchen, Germany).

Single molecule assays

Biotinylated and rhodamine-phallolidin-treated actin filaments were bound to neutravidin surfaces and placed in a flowcell. Partially purified and salt-stripped chitosomes carrying G,Mcs1 or G,Mcs1^H^H^H^H were incubated for 1–2 min at room temperature. Contaminating ATP was removed by apyrase treatment. The sample was illuminated using a totally internally reflected 532 or 488 nm laser. Fluorescence was imaged using the appropriate filters and an image intensified charge-coupled device camera (PTI-IC300, Ford, West Sussex, UK). Fluorescence break-through between channels was corrected by thresholding the eGFP signal above a critical value. Movies of 1000–1500 frames, taken at 25 f.p.s., were analysed using MetaMorph. All chemicals were sourced from Sigma-Aldrich (Gillingham, Dorset, UK). Further details are described in the Supplementary data.

Supplementary data

Supplementary data are available at The EMBO Journal Online (http://www.embojournal.org).

References

Abramczyk D, Park C, Szani~szlo P (2009) Cytolocalization of the class V chitin synthase in the yeast, hyphal and sclerotic morphotypes of W. (Exophiala) dermatitidis. Fungal Genet Biol 46: 28–41

Allan VJ, Schroer TA (1999) Membrane motors. Curr Opin Cell Biol 11: 476–482

Brown SS (1999) Cooperation between microtubule- and actin-based motor proteins. Ann Rev Cell Dev Biol 15: 63–80

Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23: 4527–4537

Desnos C, Huet S, Fanger I, Chaupis C, Bottiger C, Racine V, Sibarita JB, Henry JP, Darchen F (2007) Myosin va mediates docking of secretory granules at the plasma membrane. J Neurosci 27: 10636–10645

Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Raymert I (1995) X-ray structures of the myosin motor domain of Dictostelium discoideum complexed with MgADP,BeFx and MgADP,AIF. Biochemistry 34: 8960–8972

Fuchs U, Manns I, Steinberg G (2005) Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell 16: 2746–2758

Fujiwara M, Horiuchi H, Ohta A, Takagi M (1997) A novel fungal gene encoding chitin synthase with a myosin-like domain. Biochem Biophys Res Commun 236: 75–78

Gross SP, Tuma MC, Deacon SW, Serpinskaya AS, Reilein AR, Gelfand VI (2006) Interactions and regulation of molecular motors in Xenopus melanophores. J Cell Biol 175: 855–865

Hodge T, Cope MJ (2000) A myosin family tree. J Cell Sci 113 (Part 19): 3335–3354

Holliday R (1974) Ustilago maydis. In Handbook of Genetics, King RC (ed), Vol 1, pp. 575–595. New York: Plenum Press

Huang JD, Brady ST, Richards BW, Stenolen D, Resau JH, Copeland NG, Jenkins NA (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397: 267–270

Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115: 475–487

Kuznetsov SA, Langford GM, Weiss DG (1992) Actin-dependent organelle movement in squid axoplasm. Nature 356: 722–725

Kuznetsov SA, Rivera DT, Severin FF, Weiss DG, Langford GM (1994) Movement of axoplasmic organelles on actin filaments from skeletal muscle. Cell Motil Cytoskel 28: 231–242

Langford GM (1995) Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol 7: 82–88

Lehmler C, Steinberg G, Snetselaar KM, Schliwa M, Kahmann R, Bolker M (1997) Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J 16: 3464–3473

Lenz JH, Schuchardt I, Straube A, Steinberg G (2006) A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25: 2275–2286

Liu H, Kaufman S, Becker JM, Szani~szlo P (2004) W. (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot Cell 3: 40–51

Loubry S, Coudrier E (2008) Myosins in the secretory pathway: shuttlers or transporters? Cell Mol Life Sci 65: 2790–2800

Madrid MP, Di Pietro A, Roncoro MI (2003) Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 47: 257–266

Munro CA, Gow NA (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39 (Suppl 1): 41–53

Nag A, T, Terada S, Hirokawa N (1998) Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J Cell Biol 140: 659–674

Panstruga R, Dodds PN (2009) Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324: 748–750

Raymert I, Ryniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261: 50–58

Raymond CK, Pownder TA, Sexson SL (1999) A general method for plasmid construction using homologous recombination. Biotechniques 26: 134–141

Riedel J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5: 605–607

Ruiz-Herrera J, Gonzalez-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1: 247–256

Salia A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815

Acknowledgements

This work was supported by a grant from the BBSRC (BB/G00465X/1) and the DFG Graduate School 1216. The Max-Planck Institute for Terrestrial Microbiology in Marburg is acknowledged for providing equipment. We are grateful to Drs Regine Kahmann and Gunther Döhlemann, MPI Marburg, for providing laboratory space to ST. We thank Dr Uta Fuchs for providing the strains FB1 Mcs1G3, FB1 Chs5G3, Chs5G, and Ewa Bielska for providing strain AB33Kı3_mChRBa5. Professor Nick Talbot is gratefully acknowledged for discussion and Dr Magdalena Martin-Urdroz for technical help. Finally, we thank the anonymous referees for their constructive criticism that significantly improved the manuscript. In particular, we are grateful for the suggestion that chitin synthase being leaked to the cell wall by the actin/myosin-5-dependent route.

Author contributions: MS generated strains, acquired microscopic data, designed some experiments and analysed the data; ST generated plasmids and strains and performed pull-down experiments; IM performed the in vitro motility assays and helped analysing sequence data; SK generated strains; NHH did the structural modeling; GS devised the project, designed the experiments, acquired and analysed the data and wrote the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

@2012 European Molecular Biology Organization
Sasaki N, Sutoh K (1998) Structure-mutation analysis of the ATPase site of Dictyostelium discoideum myosin II. *Adv Biophys* **35**: 1–24
Schuchardt I, Assmann D, Thines E, Schuberth C, Steinberg G (2005) Myosin-V, kinesin-1, and kinesin-3 cooperate in hyphal growth of the fungus *Ustilago maydis*. *Mol Biol Cell* **16**: 5191–5201
Schuster M, Kilaru S, Ashwin P, Congping L, Severs NJ, Steinberg G (2011a) Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. *EMBO J* **30**: 652–664
Schuster M, Lipowsky R, Assmann MA, Lenz P, Steinberg G (2011b) Transient binding of dynein controls bidirectional long-range motility of early endosomes. *Proc Natl Acad Sci USA* **108**: 3618–3623
Stafford P, Brown J, Langford GM (2000) Interaction of actin- and microtubule-based motors in squid axoplasm probed with antibodies to myosin V and kinesin. *Bioll Bull* **199**: 203–205
Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkorper. *Eukaryot Cell* **6**: 351–360
Steinberg G, Wedlich-Soldner R, Brill M, Schulz I (2001) Microtubules in the fungal pathogen *Ustilago maydis* are highly dynamic and determine cell polarity. *J Cell Sci* **114**: 609–622
Straube A, Brill M, Oakley BR, Horio T, Steinberg G (2003) Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen *Ustilago maydis*. *Mol Biol Cell* **14**: 642–657
Straube A, Hause G, Fink G, Steinberg G (2006) Conventional kinesin mediates microtubule-microtubule interactions in vivo. *Mol Biol Cell* **17**: 907–916
Takeshita N, Ohta A, Horiuchi H (2005) CsmA, a class V chitin synthase with a myosin-like motor domain, is localized through direct interaction with the actin cytoskeleton in *Aspergillus nidulans*. *Mol Biol Cell* **16**: 1961–1970
Toonen RF, Wierda K, Sons MS, de Wit H, Cornelisse LN, Brussaard A, Doehlemann G, Schuster M, Steinberg G (2010) The myosin-motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for plant pathogenicity. *Plant Cell* **22**: 2476–2494
Trybus KM (2008) Myosin V from head to tail. *Cell Mol Life Sci* **65**: 1378–1389
Vale RD (2003) The molecular motor toolbox for intracellular transport. *Cell* **112**: 467–480
Verhage M, Sorensen JB (2008) Vesicle docking in regulated exocytosis. *Traffic* **9**: 1414–1424
Weber I, Assmann D, Thines E, Steinberg G (2006) Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus *Ustilago maydis*. *Plant Cell* **18**: 225–242
Weber I, Gruber C, Steinberg G (2003) A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen *Ustilago maydis*. *Plant Cell* **15**: 2826–2842
Wedlich-Soldner R, Bolker M, Kahmann R, Steinberg G (2000) A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus *Ustilago maydis*. *EMBO J* **19**: 1974–1986
Wedlich-Soldner R, Schulz I, Straube A, Steinberg G (2002a) Dynein supports motility of endoplasmic reticulum in the fungus *Ustilago maydis*. *Mol Biol Cell* **13**: 965–977
Wedlich-Soldner R, Straube A, Friedrich MW, Steinberg G (2002b) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus *Ustilago maydis*. *EMBO J* **21**: 2946–2957
Werner S, Sugui JA, Steinberg G, Deising HB (2007) A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus *Colletotrichum graminicola*. *Mol Plant Microbe Interact* **20**: 1555–1567
Woolner S, Bement WM (2009) Unconventional myosins acting unconventionally. *Trends Cell Biol* **19**: 245–252
Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, O’Neall-Hennessey E, Reshetnikova L, Szent-Gyorgyi AG, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. *Structure* **15**: 553–564

The EMBO Journal is published by Nature Publishing Group on behalf of European Molecular Biology Organization. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. [http://creativecommons.org/licenses/by-nc-sa/3.0/]