Multidimensional four-wave mixing signals detected by quantum squeezed light

Konstantin Dorfman, Shengshuai Liu, Yanbo Lou, Tianxiang Wei, Jietai Jing, Frank Schlauwin, and Shaul Mukamel

*State Key Laboratory of Precision Spectroscopy, Joint Institute of Advanced Science and Technology, School of Physics and Electronic Science, East China Normal University, Shanghai 200622, China; †CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China; ‡Department of Physics, Zhejiang University, Hangzhou 310027, China; §Collaborative Innovation Center of Extreme Optics, Shaxi University, Taiyuan 030006, China; ¶Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany; †The Hamburg Centre for Ultrafast Imaging, Hamburg D-22761, Germany; ‡Chemistry Department, University of California, Irvine, CA 92697-2025; and †Physics and Astronomy Department, University of California, Irvine, CA 92697-2025

Edited by Gregory S. Engel, University of Chicago, Chicago, IL, and accepted by Editorial Board Member Peter J. Rossky July 3, 2021 (received for review March 23, 2021)

Four-wave mixing (FWM) of optical fields has been extensively used in quantum information processing, sensing, and memories. It also forms a basis for nonlinear spectroscopies such as transient grating, stimulated Raman, and photon echo where phase matching is used to select desired components of the third-order response of matter. Here we report an experimental study of the two-dimensional quantum noise intensity difference spectra of a pair of squeezed beams generated by FWM in hot Rb vapor. The measurement reveals details of the $\chi^{(3)}$ susceptibility dressed by the strong pump field which induces an AC Stark shift, with higher spectral resolution compared to classical measurements of probe and conjugate beam intensities. We demonstrate how quantum correlations of squeezed light can be utilized as a spectroscopic tool which unlike their classical counterparts are robust to external noise.

Quantum light and its statistics (1–13) provide powerful tools for the study of properties of matter that are hard to retrieve with classical light. Novel spectroscopic and sensing techniques based on quantum light sources (14) can reveal information about complex material systems that is not accessible by simply varying the frequencies or time delays of classical light pulses (15, 16). The state of quantum light provides most valuable control parameters. The matter response imprinted in the quantum light statistics can be retrieved by measuring higher-order correlation functions of the photon number. Spectroscopic measurements with entangled photons provide a unique observation window for the material response by accessing as well as controlling excitation distributions and transport processes (17), and the charge density in diffraction imaging (18, 19). Apart from their novel matter information, quantum light measurements have higher signal-to-noise ratio (20), and allow to shift optical measurements to desired frequency regimes where optical equipment is more readily available (21).

Here we focus on a class of quantum spectroscopy measurements of the multimode correlated squeezed light generated by four-wave mixing (FWM) (4, 22–27). Squeezed light can be broadly defined as a state of light whose quadrature amplitudes of the electric and magnetic fields are squeezed, that is, whose quantum uncertainty in one quadrature is smaller than that of a coherent state, typical for lasers. Fig. L4 shows the standard FWM setup used for squeezed light generation, which become a powerful spectroscopic tool. After an FWM process, the probe (blue line) and conjugate (yellow line) beams are multimode squeezed and they can be detected by, for example, a classical intensity measurement. Following the approach outlined in ref. 28, we have calculated the probe and conjugate transmitted intensities,

$$\langle \hat{N}_{pr} \rangle \simeq G(\hat{N}_0), \quad \langle \hat{N}_c \rangle \simeq (G - 1)(\hat{N}_0),$$

where $G(-\omega_{pr}, -\omega_c; 2\omega_{pu}) = \cosh^2[\hat{\chi}^{(3)}(-\omega_{pr}, -\omega_c; 2\omega_{pu})]$ is the FWM gain governed by a third-order susceptibility $\hat{\chi}^{(3)}$ dressed by the strong pump field (see Materials and Methods), and $\langle \hat{N}_0 \rangle = |\alpha|^2$ is the average photon number of the input probe beam. Rather than detecting classical field intensities, one can measure quantum fluctuations of the relative squeezing spectra defined by

$$S_N = \text{Var}(\hat{N}_{\text{pr}} - \hat{N}_c) \langle \hat{N}_{\text{pr}} \rangle + \langle \hat{N}_c \rangle = \frac{1}{2G - 1},$$

which can be reduced to below the shot noise limit (SNL), providing a notable quantum advantage in weakly absorbing materials. To observe quantum squeezing of the probe and conjugate beams, we measure their intensity difference noise power spectrum and compare it with its corresponding SNL. The extent of quantum squeezing is given by the degree to which the intensity difference noise power is lower than SNL. As shown in Fig. 1A, the output probe and conjugate beams are sent to two silicon photodetectors (D_1 and D_2, respectively). We can then

Significance

Quantum light and its statistics provide powerful tools for the study of properties of matter that are difficult to retrieve with classical light. Novel spectroscopic and sensing techniques based on quantum light sources can reveal information about complex material systems that is not accessible by varying the frequencies or time delays of classical light pulses. Here, based on a four-wave mixing process, we report an experimental study of the 2D quantum noise spectra of two-beam intensity difference squeezing. External noise erodes the resolution of classical measurements, while quantum signals remain intact. Our results pave the way for exploiting quantum correlations of squeezed light for spectroscopic applications.

Author contributions: K.D., J.J., F.S., and S.M. designed research; K.D., S.L., Y.L., T.W., and J.J. performed research; K.D. contributed new reagents/analytic tools; K.D. analyzed data; and K.D., S.L., Y.L., T.W., J.J., F.S., and S.M. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. G.S.E. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

See online for related content such as Commentaries.

1 K.D., S.L., and Y.L. contributed equally to this work.

2 To whom correspondence should be addressed. Email: dorfman@psi.uchicago.edu or jting@phy.ecu.edu.cn.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105601118/-/DCSupplemental.

Published August 13, 2021.

PNAS 2021 Vol. 118 No. 33 e2105601118

https://doi.org/10.1073/pnas.2105601118 | 1 of 6
obtain the direct current (dc) and radio frequency (rf) components of the photocurrents. The rf components from the two ports are subtracted by using an rf subtractor (S) and then analyzed with a spectrum analyzer (SA). The subtracted result constitutes their intensity difference noise power spectrum. To obtain the corresponding SNL, we use a coherent beam with a power equal to the total power of the output beams. We then divide it into two beams with a 50:50 beam splitter and send the obtained beams into the two previously used photodetectors to get the noise power of the differential photocurrent, which gives the corresponding SNL. By scanning the pump and probe frequencies across several hundred megahertz, one can obtain a two-dimensional (2D) spectrum containing valuable matter information. While, in the standard FWM squeezed light generation scheme, the squeezing occurs between single modes at fixed frequencies, here the pump and probe frequencies scanned over the broad range ensure a multimode squeezing. While this measurement is not novel, but the spectroscopic advantage is certainly unique. By scanning the pump and probe pulse frequencies across several hundred megahertz, one obtains a 2D spectrum containing valuable matter information. In the standard FWM squeezed light generation scheme, the squeezing occurs between single modes at fixed frequencies; here, in contrast, the pump and probe frequencies scanned over the broad range ensure a multimode squeezing. A perturbative theoretical analysis provides a simple account of the squeezing measurements in SiV− color centers in diamond (29) (see SI Appendix, section S1). Note that, in contrast with techniques where the quantum light sources are directed at the material to probe its response (14), here the generation of quantum light combined with quantum detection of squeezing serves as a probe of the nonlinear response of matter.

Results

Experimental Scheme. We consider an FWM process based on the double-\(\Lambda\) level scheme shown in Fig. 1B. Two lower hyperfine states \(g\) (\(F=2\)) and \(s\) (\(F=3\)) are separated by 3.035 GHz, while the upper states \(e_1\) (\(F=3\)) and \(e_2\) (\(F=2\)) are separated by 361.58 MHz. At vapor temperature 113 °C, both \(g\) and \(s\) states are almost equally populated. The FWM may take place starting from either the \(g\) or \(s\) states as shown by level schemes i and ii, since the strong pump beam interacts with both \(g-e\) and \(s-e\) transitions. In diagram i, the pump first drives the \(g-e\) transition, while the probe drives the \(e-s\) transition. Another pump photon promotes the system via the \(s-e\) transition, while the conjugate beam generated by the FWM brings the system back to its ground state via \(e-g\) transition. The bookkeeping of the field–matter interactions is shown in diagram ia in SI Appendix, Fig. S1. One can describe diagram ii similarly by exchanging states \(g \leftrightarrow s\) and probing with conjugate beams. Due to the strong pump (180 mW), all four transitions, \(g-e_{1,2}\) and \(s-e_{1,2}\), show an AC Stark splitting which results in the transition frequency detunings \(\delta_{g}\) and \(\delta_{s}\) (Fig. 1C). The following two points should be noted. First, the pump should be strong enough to induce an AC Stark splitting, thus doubling the number of measured resonances. Peaks missed by classical intensity measurements clearly show up in the squeezing detection, thanks to the higher signal-to-noise ratio. Second, in the absence of losses, both intensity and squeezing measurements carry identical information associated with the FWM gain. This is no longer the case when optical losses exist. The squeezing measurement is robust to external losses.
noise added to the pump and therefore to all the output fields of the FWM process. However, classical measurements become unstable and hard to interpret under these conditions.

Experimental Results. We start with a classical measurement of the transmission intensities of the probe and conjugate beams given by Eq. 1. In standard treatments of FWM-generated squeezed light fields, all transitions are kept off-resonant with respect to matter, and \(\chi^{(3)} \) can be replaced by a frequency-independent prefactor. Here, in contrast, we are interested in resonant properties of the nonlinear response which can be measured through the probe or conjugate intensities. Fig. 2 demonstrates that, for a weak pump (100 mW), the 2D gain spectra (Eq. 1) displayed vs. one-photon detuning \(\delta_1 = \omega_{\text{pu}} - \omega_{\text{pu}}(0) \) with the reference frequency arbitrarily fixed by the experimental setup is \(\omega_{\text{pu}}(0) = 377109.2 \text{ GHz} \) and two-photon detuning \(\delta_2 = \omega_{\text{pu}} - \omega_{\text{pr}} - \omega_{\text{qg}} \) shows a total of four peaks which can be described by \(\omega_{\text{pu}} - \omega_{\text{pr}} = \omega_{\text{qg}}(\mu, \nu) \), \(\mu, \nu = \pm, p, q = 1, 2 \). Two central peaks denoted 2 and 3 correspond to the two-photon resonances corresponding to \(\mu = -, \nu = + \) with \(p = q = 1 \) and \(p = q = 2 \), respectively. Two weaker side peaks denoted as 1 and 4 correspond to \(\mu = \nu = -, p = q = 1 \) and \(\mu = \nu = +, p = q = 1 \), respectively. A similar pattern is observed for the conjugate beam in Fig. 2B. The quantum squeezing signal \(S_N \) (Eq. 2) represents the relative noise corresponding to the degree of squeezing between the probe and conjugate fields. It is defined as a ratio of the relative intensity noise to the sum of the individual beams shot noise figures. \(S_N \) is depicted on a log scale \(-10 \log(2G - 1) \) in Fig. 2C. The use of a log scale for quantum measurement (1) is natural since the noise spectra are normalized to unity for classical fields. Therefore, the noise of the quantum fields must be below one, which can be better visualized in a log scale. While the number and positions of peaks remain similar to the classical measurement, their shapes and relative intensities are different. For instance, peaks 1 and 4, which are barely visible in the gain spectra, are well pronounced in the squeezing signal. Note that the noise spectra in Fig. 2C are not identical to the classical signals of Fig. 2A and B. To make a fair comparison, we used a logarithmic scale for the \(S_N \) measurement using classical gain from Fig. 2D, which is shown in SI Appendix, Fig. S3. It contains the same number of peaks as a nonlogarithmic classical probe gain in Fig. 2D, highlighting the difference between squeezed measurement (Eq. 2) and the classical gain measurements (Eq. 1), providing a different observation window onto the susceptibility \(\chi^{(3)} \) composed of the terms given by Eq. 5 and derived in SI Appendix, section S1.

As the pump intensity is further increased to 180 mW, the AC Stark shift grows, and the four peaks described above are shifted accordingly, as seen in Fig. 2D and E. However, the squeezing spectra undergo more dramatic changes. In addition to the original four peaks 1 through 4, Fig. 2F contains four additional peaks (Table 1). This additional information is accessible only by a strong field and quantum squeezing detection, and is missed by classical detection. This arises since the quantum squeezing measurement is higher order in field–matter interactions and thus is not polluted by linear processes which may preclude the detection of weaker resonances. When optical losses are included, the signal-to-noise ratio of such higher-order correlation measurements is significantly increased. To rationalize the experimental observations of Fig. 2, we developed a microscopic theoretical model for the \(\tilde{\chi}^{(3)} \) susceptibilities, including the AC Stark shifts due to the strong pump. Here the matter response is governed by a \(\chi^{(3)} \) susceptibility dressed by a strong pump field, which is different from the standard weak-field susceptibility \(\chi^{(3)} \).

![Fig. 2](image-url) Experimental 2D spectra of the classical and quantum signals. Eq. 3 displayed vs. the one-photon \(\delta_1 = \omega_{\text{pu}} - \omega_{\text{pu}}(0) \) where \(\omega_{\text{pu}}(0) = 377,109.2 \text{ GHz} \) and two-photon \(\delta_2 = \omega_{\text{pu}} - \omega_{\text{pr}} - \omega_{\text{qg}} \) detunings (A) probe and (B) conjugate photon numbers, and (C) squeezing Eq. 4, for the weak 100-mW pump. (D–F) Same as A–C but for a strong 180-mW pump. Color lines indicate positions of the AC Stark-shifted resonances calculated using Eq. 5.

Dorman et al.
Multidimensional four-wave mixing signals detected by quantum squeezed light
https://doi.org/10.1073/pnas.2105601118
Table 1. Resonant structure of the susceptibility in Eq. 5 depicted in Fig. 2 highlighting the sign of the AC Stark shifts

Peak no.	μ_g	ν_g	λ_g	μ_s	ν_s	p	q	Diagram
1	-	-	-	-	-	1	1	iia, iib
2	+	+	-	-	-	2	2	iia, iib
3	-	-	+	+	+	1	1	ia, ib
4	+	+	+	+	+	2	2	ia, ib
5	-	-	-	+	+	2	2	iia, iib
6	+	-	-	+	1	1	1	ia
7	+	+	-	-	1	1	1	iia, iib
8	-	+	+	-	-	2	2	iia

SI Appendix, section S2. We maintain a nonperturbative treatment of the strong classical pump, while retaining the lowest-order perturbation expansion in the probe and conjugate beams. Eq. 5 reveals the resonant pattern of the susceptibility. We include optical losses during the propagating through the material cell after the FWM process described by Eqs. 6 and 7. These losses occur when the strong pump field−driven transitions $s \rightarrow e_j$ ($g \rightarrow e_j$), $j = 1, 2$ undergo a spontaneous or stimulated emission with frequency matching the probe (conjugate) field. We thus obtain, for the classical measurement (28) (see SI Appendix, section S3),

$$\langle \hat{N}_{pr} \rangle \simeq \eta_{pr} G(\hat{N}_0), \quad \langle \hat{N}_{c} \rangle \simeq \eta_{c}(G - 1)(\hat{N}_0).$$

The corresponding noise figure is given by

$$S_N = 1 + \frac{2(G - 1)(G\eta_{pr} - \eta_{c})^2 - \eta_{pr}^2}{\eta_{pr} G + \eta_{c}(G - 1)}.$$

Fig. 3A shows the 2D spectra of the simulated probe gain for the strong 180-mW pump. All four peaks shown in Fig. 2D are reproduced with good agreement with experiment. The 1D segments of the spectra vs. single-photon detuning δ_1 for a given two-photon detuning $\delta_2 = -30, 0, $ and 50 MHz depicted by dashed white lines are displayed separately in Fig. 3B, C, and D, respectively, and show good agreement between theory and experiment (30). The corresponding squeezing measurement is shown in two dimensions in Fig. 3E together with 1D cross-sections depicted in Fig. 3F–H. All eight peaks are well reproduced by the theory. In addition, the quantum regime (negative noise spectra) shown in Fig. 3G indicates the correct magnitude of the noise figure in both quantum (squeezing) and classical regimes. To demonstrate the merits of quantum over classical detection, we added a random time modulation of the input probe beam intensity by utilizing a Mach–Zehnder interferometer as shown in Fig. 4. The red line shows the squeezing, while blue and yellow correspond to classical separate intensity measurements of the conjugate and probe fields, respectively. While the output fields intensity is proportional to the input intensities, the variance of the intensity difference is governed by the sum of variances of the individual classical fields, which is then governed by the sum of the probe and conjugate field intensities. Thus, the overall noise contribution from classical fields will add up. On the other hand, the variance of the photon number difference of the quantum fields is different due to nonzero covariance due to quantum correlations shared between the fields, which reduces the photon number difference below classical noise levels (23). The corresponding squeezing measurement is then governed only by the gain of the FWM. Therefore, the same noise reduction achieved by quantum measurement may not be reached by using classical measurements. This conclusion holds when squeezing is below the shot noise as shown in Fig. 4A (corresponding to the dark blue area in Fig. 2C) as well as in the opposite limit, when noise is above the shot noise level as seen in Fig. 4B. A similar effect was observed in entangled photon spectroscopy, where the spectroscopic information has been obtained in the presence of an external noise such as background.

Fig. 3. Calculated 2D probe gain spectra Eq. 3 (A) with 1D slices (red line, theory; black dots, experiment) displayed vs. δ_1 evaluated at (B) $\delta_2 = -30$ MHz, (C) $\delta_2 = 0$ MHz, and (D) $\delta_2 = 50$ MHz. (E–H) Same as A–D but for the noise figure in Eq. 4. Rb gas parameters used in simulations are taken from ref. 28. The values of the coefficient of determination (R^2) defined in SI Appendix, Eq. S22 in Fig. 3B–E, G, and H are 0.41, 0.92, 0.72, 0.85, 0.58, and 0.51, respectively (see SI Appendix, section S4).
are included, the spectra show different resonance patterns and provide a most valuable probe of the third-order response. A theoretical model provides an adequate microscopic account of the experiments. Our simulations allow to extract the actual model parameters from the AC Stark shift between the peaks corresponding to $\mu, \nu \pm \pm$. For instance, one can obtain the relative strengths of the dipole moments $|\mu_{\nu\pm}|/|\mu_{\nu0}| \approx |\mu_{\nu\pm}|/|\mu_{\nu0}| \approx \sqrt{2}$. This is consistent with the D_1 line $5^2P_{1/2} \to 5^2P_{3/2}$ transitions. Here the dipole moments expressed in multiples of $(j = 1/2, j' = 1/2) \approx 2.99 \rho e a_0$, where a_0 is Bohr radius, are given by $\mu_{\nu\pm} = -\mu_{\nu0} = -1/\sqrt{2}$, $\mu_{\nu0} = \mu_{\nu0} = \sqrt{2}/2$. We can further obtain the dephasing rate characterizing the linewidth given by $\gamma' = \gamma_0 \approx 10\gamma \approx 57.5$ MHz, $\gamma_0 \approx \Gamma$ (where Γ is the natural linewidth of the D_1 transition). Squeezed light quantum spectroscopy is robust against external noise and yields sub-shot noise signals. Quantum light generated by the FWM process serves as a useful source for quantum spectroscopy and magnetic field sensors (32), complementing spontaneous parametric down-conversion sources. Our results suggest quantum sensing applications with multiphoton correlated light sources with an unprecedented level of microscopic detail beyond classical measurements.

Materials and Methods

Details of the Experiment. A cavity-stabilized Ti:sapphire laser is used. A polarization beam splitter is used to divide the laser into two beams. One beam serves as the pump beam with frequency ω_{pu}. The horizontally polarized probe beam is weak (about 20 μW) and is equally divided into two by a 50/50 beam splitter. Two beams are used to construct a Mach–Zehnder interferometer, which is used to introduce intensity noise to the FWM process. A piezoelectric transducer is placed in the Mach–Zehnder interferometer to introduce intensity noise. The 48Rb vapor cell is 12 mm long and the temperature of the 48Rb vapor cell is stabilized at 113 $^\circ$C. At the center of the vapor cell, the waist of pump beam is about 80 μm, and the waist of probe beam is about 330 μm. Combined by a Glan–Laser polarizer, the pump and the probe beams are crossed in the center of the 48Rb vapor cell. The angle between the signal and pump beams is about 7 mrad. The residual pump beam after the FWM process is eliminated by a Glan–Thompson polarizer. The output probe and conjugate beam with frequency $\omega_{pr} = \omega_{pu} - \omega_{pr}$ are sent to two silicon photodetectors (D1 and D2, respectively). The detector’s transimpedance gain is 10 V/A, and quantum efficiency is 96%. After the output beams are received by the detectors, we can obtain the dc and rf components of the photocurrents. The dc components from the two ports are sent to an oscilloscope to measure the intensity gain of the system. The rf components from the two ports are subtracted from each other by using an rf 5 and then analyzed with an SA. The SA is set to a 30-kHz-resolution bandwidth and a 300-Hz video bandwidth.

Theoretical Methods. The third-order susceptibility that enters the FWM gain is derived by second-order perturbation theory with respect to probe and conjugate fields, while the pump field is treated nonperturbatively. The third-order susceptibility that enters the FWM, and thus the noise is present throughout the FWM process in all four fields involved, and yet the quantum measurement’s resolution is stable. Note that the improvement of the SNR due to quantum correlations is not universal and is only applicable for certain parameter regimes. In particular, Fig. 2F shows regions of the negative signal (highlighted by the dark blue color), where quantum correlations yield squeezing $S_N < 0$. As has been shown in the two-photon detuning dependence of SN demonstrated in earlier works (31), the region of quantum correlations results in a higher SNR for squeezing measurement, compared to regions of classical correlations $S_N > 0$. Fig. 2F shows a more general dependence with respect to both one- and two-photon detunings. Nevertheless, the correlated measurement is robust against the noise in both quantum (Fig. 4A) and classical (Fig. 4B) regions of parameters.

Discussion

We have carried out multidimensional FWM spectroscopy with squeezed light detection in hot Rb vapor. We find that quantum squeezing measurements provide additional valuable information compared to classical intensity measurements, through higher-order matter correlations. When optical losses
and \(\hat{b}_r \) can be obtained by replacing \(\hat{\omega}_{pr} \rightarrow \hat{\omega}_r \) and \(g \leftarrow s \). A summary of the resonant structure of the susceptibility is shown in Table 1.

Note that the discrepancy in the linewidth broadening in simulations in Fig. 3 compared to experimental results of Fig. 2 is caused by a simplified model which does not take into account inhomogeneous broadening. The input/output relations for the field operator in the presence of the optical losses accumulated during the propagation after FWM (28) are given by

\[
\hat{a}_r \rightarrow \sqrt{1 - \eta} \hat{a}_r + \sqrt{\eta} \hat{b}_r,
\]

where \(\eta = \cos(\hat{\omega}_s^2) + \hat{c} \) and \(\hat{c} \) the noise corresponding susceptibility of the losses due to the spontaneous/ stimulated emission is given by

\[
\chi^{(1)}_{\hat{x}_{j}} = B_{r} \sum_{j=1}^{m} \frac{\mu_{m}^{r} \mu_{m}^{r} \mu_{m}^{r} \mu_{m}^{r} \mu_{m}^{r}}{Z^{2} \eta},
\]

where \(m = s \) for \(r = pr \) and \(m = g \) for \(r = c \) and \(\hat{b}_r \) is a normalization function that depends on the propagation length inside the vapor cell and other experimental parameters. In simulations shown in Fig. 3, both \(A_r \) and \(B_r \) are used as fitting parameters. Spectra of the noise are shown in SI Appendix, Fig. S4.

Data Availability. The data that support the plots within this paper are available at Open Science Framework: https://osf.io/Skt96/.

ACKNOWLEDGMENTS. K.D. gratefully acknowledges support from the National Science Foundation of China (Grant 11934011). The Zijiang Endowed Young Scholar Fund, East China Normal University, and the Overseas Expertise Introduction Project for Discipline Innovation (111 Project, B12024). J.J. gratefully acknowledges support from Innovation Program of Shanghai Municipal Education Commission (Grant 2021-01-07-00-08-E00100), the National Natural Science Foundation of China (Grants 11874155, 91436211, and 11374104), Basic Research Project of Shanghai Science and Technology Commission (Grant 20JC1416100), Natural Science Foundation of Shanghai (Grant 17ZR1442900), Minhang Leading Talents (Grant 201971), Program of Scientific and Technological Innovation Center of Shanghai (Grant 17JC040401), National Basic Research Program of China (Grant 2016YFA0302103), Shanghai Municipal Science and Technology Major Project (2019SHZDZX01), and the 111 Project (B12024). F.S. acknowledges support from the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG), EXC 2056, Project 390715994. S.M. gratefully acknowledges the support of the NSF through Grant CHE-1953045.

1. V. Boyer, A. M. Marino, R. C. Pooser, P. D. Lett. Entangled images from four-wave mixing. Science 321, 544–547 (2008).
2. A. M. Marino et al. Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett. 101, 093602 (2008).
3. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, P. D. Lett. Low-noise amplification of a continuous-variable quantum state. Phys. Rev. Lett. 103, 010501 (2009).
4. X. Pan et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor. Phys. Rev. Lett. 123, 070506 (2019).
5. S. Liu, Y. Lou, J. Jing. Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier. Phys. Rev. Lett. 123, 113602 (2019).
6. K. Zhang et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes. Phys. Rev. Lett. 124, 090501 (2020).
7. S. Li et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement. Phys. Rev. Lett. 124, 083605 (2020).
8. S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).
9. R. C. Pooser, B. Lawrie. Plasmonic trace sensing below the photon shot noise limit. ACS Photonics 3, 8–13 (2016).
10. J. Jing et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90, 167903 (2003).
11. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
12. J.-W. Pan et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012).
13. S. L. Braunstein, P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).
14. S. Mukamel et al., Roadmap on quantum light spectroscopy. Mol. Opt. Phys. 53, 072002 (2020).
15. K. E. Dorfman, F. Schlawin, S. Mukamel. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, 045008 (2016).
16. F. Schlawin, K. E. Dorfman, S. Mukamel. Entangled two-photon absorption spectroscopy. Acc. Chem. Res. 51, 2207–2214 (2018).
17. F. Schlawin, K. E. Dorfman, B. P. Fingerhut, S. Mukamel. Suppression of population transport and control of excitation distributions by entangled photons. Nat. Commun. 4, 1782 (2013).