Phytolith Content In Larix Gmelinii Forest Soils And Its Relations With Soil Properties

Bing Wang (wangbing@imau.edu.cn)
Inner Mongolia Agricultural University

Meng Meng
Inner Mongolia Agricultural University

Qiuliang Zhang
Inner Mongolia Agricultural University

Research Article

Keywords: Larix gmelinii, Daxing’anling, Phytolith, Soil chemistry

DOI: https://doi.org/10.21203/rs.3.rs-794510/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Aims

Phytolith occluded carbon (PhytOC) has become one of the important mechanisms of long-term carbon sequestration in soil. Ecosystems with higher latitude in the northern hemisphere are expected to face the largest loss of soil carbon due to global warming. The contributions of phytoliths storage in soil layers of cold temperate forest need to be studied in depth.

Methods

We examined soil phytolith contents and other soil physicochemical properties of *Larix gmelinii* forest soils in Daxing’anling. ANOVA was employed to analyze differences in the quantitative characteristics of phytoliths. Bivariate correlation, regression analysis, principal component analysis and redundancy analysis were employed to analyze the relations between soil phytolith and soil properties.

Results

The phytolith in *Larix gmelinii* forest soil was mainly in elongate shape with a mean content of 19.1 g kg\(^{-1}\). The phytolith had a stronger correlation with phosphorus rather than potassium and nitrogen and had no correlation with soil water content, and the dominant factors were Na, Mg and K content. Soil phytolith storage in the cold temperate zone (41.0 t ha\(^{-1}\)) was significantly higher than that in the tropical and subtropical zone.

Conclusions

Phytolith is an important way for long-term sequestration of soil organic carbon. Soil phytolith storage is affected by soil physicochemical properties and climate. However, the acid-base level of soil is more important for phytolith preservation. The effects of hydrothermal conditions on the yield and stability of phytoliths on a large spatial scale need to be studied in future.

1. Introduction

In recent decades, greenhouse gases (GHGs) mediated global warming and climate change have become one of the major global environmental issues (Prajapati 2016; Rajendiran et al. 2012). Terrestrial carbon sequestration is fundamental to global carbon cycle and being utilized to cope with CO\(_2\) increases (Rajendiran et al. 2012). As an important component of terrestrial ecosystem, forest plays a key role in slowing down CO\(_2\) concentration rising and maintaining carbon balance (Bonan 2008; Fang et al. 2006; Fang et al. 2001; Goodale et al. 2002; Korner 2003; Pan et al. 2011; Parr et al. 2010; Song et al. 2013a;
Yang et al. 2018). Forest soil has the largest carbon pool in all terrestrial ecosystems (Jin et al. 2000), which is 2 ~ 3 times of terrestrial vegetation carbon pool. A great impact will be observed on atmospheric CO₂ concentration, which then potentially be fed back on climate change, even small changes occur in forest soil carbon pool (Heimann and Reichstein 2008; Kirschbaum 2004). Therefore, characteristics of soil carbon pool are an important prerequisite for understanding the mechanism of carbon cycles in terrestrial ecosystems (Qiao et al. 2014).

Considering global warming, it is urgent to find a long-term carbon sequestration way to reduce atmospheric CO₂ concentration. Terrestrial biogeochemical carbon sequestration is estimated to counteract about 30% of the total anthropogenic CO₂ emissions (Law and Harmon 2011) and thus believed to be a promising way (Parr et al. 2010; Song et al. 2012a). Phytolith, also known as plant opal, is a hydrated silica (SiO₂·nH₂O) mineral (Parr and Sullivan 2011; Piperno 1988), which is the monosilicic acid (H₄SiO₄) absorbed by plants from soil solution (Epstein 1994; Hodson 2016; Wilding 1967), and precipitates in the form of amorphous silicon inside cells and cell walls of plant bodies through transpiration (Ma 2003; Neumann 2003; Wang and Lv 1993). Phytoliths are formed in plants, and the content of phytoliths in soil depends on the amount of biological litter, which is the main way for soil to accumulate phytoliths (Han et al. 2018). However, the distribution of phytoliths in different regions is different due to the differences of vegetation, hydrology, climate, geology and other environmental conditions. Due to the fact that phytoliths are abundant, durable and distinctive, it is used to deduce historic vegetation patterns and human uses across the fields of archeology, paleoethnobotany, paleoecology and historical ecology, particularly at sites with poor preservation of larger plant-derived samples (Alexandre et al. 2012; Hart 2016; Piperno 2006; Rashid et al. 2019).

During the formation process of phytoliths in plants, approximately 0.1% ~ 6% organic carbon could be occluded within phytoliths to form phytolith-occluded carbon (PhytOC) (Jones and Milne 1963; Parr and Sullivan 2011; Zuo and Lü 2011). When plants die or fall, PhytOC will accumulate in soil or sediment (Bartoli 1983). Due to the strong resistance of phytoliths to decomposition, PhytOC is more stable than other fractions of organic carbon in soil and even preserved for thousands of years (Parr and Sullivan 2005; Piperno 1985; Strömberg 2004; Wilding 1967; Yang et al. 2015; Yang et al. 2018; Zuo et al. 2017). It has been shown that soil PhytOC contributes to 15%~37% of annual accumulation rate of global stable soil carbon (88 kg CO₂ha⁻¹ yr⁻¹) and accounts for 82% of the total carbon (Alexandre et al. 2012) in about 2000-year-old soils (Parr and Sullivan 2005), which has become one of the important mechanisms of long-term carbon sequestration in soil (Yang et al. 2018). This long-term form of biogeochemical carbon sequestration is believed to have great potential in reducing atmospheric CO₂ content and mitigating greenhouse effects (Piperno 2002; Wu and Wang 2009). However, Santos and Alexandre (2017) advances that PhytOC in phytolith cavities would participate only to a limited extent in long-term atmospheric CO₂ sequestration, and phytOC fluxes must be quantified to accurately estimate the flux of atmospheric CO₂ sequestered by soil phytoliths. As the PhytOC should be rapidly oxidized when phytoliths start to dissolve and cavities become open, after phytolith deposition in litter, soil or sediment. Therefore, the potential of carbon sequestration in phytoliths has become a hot topic in biogeochemical
carbon sequestration research (Li et al. 2013b; Parr and Sullivan 2011; Parr et al. 2010; Song et al.
2012a).

The content of phytolith closely relates to the accumulated silicon in plants. In general, silicon content is
the highest in gramineae, followed by conifer and deciduous broadleaf. Therefore, for PhytOC
sequestration, previous work mainly focused on bamboo (Parr et al. 2010) and crops, i.e. sugarcane (Parr
et al. 2009), millet (Zuo and Lü 2011), wheat (Parr and Sullivan 2011) and rice (Li et al. 2013b), in which
their reported PhytOC production fluxes ranged from 0.04 to 0.71 t CO₂ha⁻¹ yr⁻¹ (Yang et al., 2018). While
few studies focus on the production fluxes, distributions and storage processes of phytoliths and PhytOC
in forest ecosystems, despite great advances in estimating production fluxes of PhytOC for some
terrestrial ecosystems (e.g. grasslands, wetlands, and croplands) (Li et al. 2013a; Song et al. 2012a; Song
et al. 2013b). Meanwhile, the production fluxes of phytolith or PhytOC in the above-ground vegetation of
various forest types have gained more concerns. Ecosystems with higher latitude in the northern
hemisphere have the highest density and storage of soil organic carbon (Scharlemann et al. 2014), and
are expected to face the largest loss of soil carbon due to global warming (Kirill et al. 2004), and may
become a hot spot of CO₂ flux in the biosphere. Whereas the contributions of phytoliths and PhytOC to
carbon storage in soil layers of cold temperate forest have not been studied in depth.

Daxing’anling, located in Northeast China, is the largest primary forest area with the only cold temperate
coniferous forest in China, which is also one of the most sensitive regions in response to global climate
change. Where Larix gmelinii is the dominant tree species with Betula platyphylla as the associated
species. Accordingly, the forest ecosystem of Daxing’anling plays an irreplaceable role in cold temperate
forest carbon sequestration. We hypothesized phytolith distribution to be controlled by vegetation and to
be influenced by environmental conditions. To test our hypothesis, we used samples from Larix gmelinii
soils, (i) to examine the phytoliths content in Larix gmelinii forest soil. (ii) to observe the morphotypes of
phytoliths in Larix gmelinii forest soil; (iii) to discuss the effects of soil physicochemical indexes on
phytoliths preservation in the cold-temperate forest soil, such as pH and nutrients. This work will offer a
scientific reference for the global long-term carbon sequestration practices such as afforestation and
management.

2. Materials And Methods

2.1. Study area

The study area covers an area of 11,000 hm² with a forest coverage rate of 75%, which is located in
Chaocha Forest Farm of Genhe Forestry Bureau, Inner Mongolia Autonomous Region, China
(50°49’-50°51’N, 121°30’-121°31’E). The altitude varies from 810 m to 1100 m in this area. It belongs to
the semi-humid climate zone in the cold temperate zone, with a freezing period of 6 ~ 7 months. Most of
the rainfall is concentrated in July and August with annual precipitation of 438 ~ 530 mm. The main soil
type in this area is brown coniferous forest soil with large areas of permafrost distributed. There is also a
lot of gravel in soil below 30 cm. Larix gmelinii is the dominant tree species. The main understory plants
are *Rhododendron simsii*, *Ledum palustre*, *Betula fruticose*, *Vaccinium vitis-idaea*, *Pyrola incarnata*, *Maianthemum bifolium*, *Deyeuxia langsdorffii*.

2.2. Soil sampling and analysis

2.2.1. Soil sampling

Field investigation and soil sampling were conducted during July and August of 2017. Based on the typical plot survey method, 28 sampling sites were selected within the area of 5km×5km. Soil samples were collected from the profiles of 0–10, 10–20, 20–40 and 40–60 cm depth layer at each site. About 1 kg of soil was collected in each layer. To minimize sampling errors due to soil heterogeneity, three samples in the same layer were mixed as a mixture soil sample for further analysis. The soil samples were air-dried after being taken to the laboratory, then passed through a 2-mm sieve for soil properties determination and passed through a 0.15-mm sieve for phytolith extraction.

2.2.2. Soil properties determination

Soil water content (SWC) and bulk density (BD) were determined by the oven drying method. Soil pH was determined using a pH meter with a soil/water mass ratio of 1:5 (w/v). Soil organic matter content was determined by potassium dichromate oxidation spectrophotometry method (HJ 615–2011); total phosphorus (TP) was determined by acid dissolution spectrophotometry method (Pierzynski 2009); ammonium nitrogen (NH$_4^+$-N), available potassium (AK) and available phosphorus (AP) were determined by combined extraction colorimetry method (NY/T 1849–2010); Mineral element contents in soils were determined by XRF analyzers (BRUKER S8 TIGER SERIES 2, Germany).

2.2.3. Phytolith extraction and determination

The air-dried soil (< 0.15 mm) was used to extract phytolith. The modified wet air oxidation method and heavy liquid flotation method were used for separation and extraction of phytolith from soil (Li et al. 2013a; Parr 2002; Zuo et al. 2014). In brief, after organic matter was completely removed, the samples were separated by heavy liquid flotation and centrifugation method using ZnBr$_2$ (specific gravity of 2.35) as the heavy liquid to obtain pure phytolith samples.

2.3. Data calculation and statistics

Soil phytolith content and phytolith storage were calculated as follows (Huang et al. 2014; Li et al. 2019; Zuo et al. 2014):

Soil phytolith content (g kg$^{-1}$) = phytolith weight (g)/soil weight (kg) (1)

Soil phytolith storage (t ha$^{-1}$) = Σ [soil phytolith content (g kg$^{-1}$) × bulk density (g cm$^{-3}$) × soil depth(cm)/10] (2)

Phytolith translocation indices were used to determine the phytolith translocation rate in natural soil profiles. The total translocation rate (T_r) and translocation distance (T_d) were calculated as follows (Liu
et al. 2019):

\[T_r = \frac{A_0}{A_0 + A + B + C} \] (3)

\[T_d = \frac{B}{A_0 + A + B + C} \] (4)

Where, \(A_0, A, B \) and \(C \) are phytolith content in 0–10 cm, 10–20 cm, 20–40 cm, 40–60 cm soil layer, respectively. The phytolith translocation increases from surface humic horizon to lower layers of soil profile as \(T_r \) increases. The larger the \(T_r \) value is, the weaker the soil preservation is (Liu et al. 2019). \(T_r < 18\% \) indicates phytoliths better preserved in soil; by contrast, \(T_r > 30\% \) indicates phytolith poorly preserved, and \(18\% < T_r < 30\% \) represents an intermediate translocation rate. \(T_d < 4\% \) indicates that the translocation distance of phytoliths within soil profile is relatively low, whereas \(T_d > 12\% \) represents a greater translocation distance, and \(4\% < T_d < 12\% \) represents an intermediate translocation rate to the C horizon.

ANOVA was employed to analyze differences in the quantitative characteristics of phytoliths. Bivariate correlation and regression analysis were used to analyze the relations between soil phytolith and soil properties for \(Larix gmelinii \) forest. Principal component analysis (PCA) was used for characterization of soil samples according to their properties and phytolith contents. Partial redundancy analysis (Partial RDA) can distinguish the individual interpretation rate and its interactions of variables, which was employed to analyze contributions of grouped environmental variables to phytolith contents and was expressed by Venn diagram. Correlations between soil phytolith and selected soil properties were also examined by multiple regressions.

3. Results

3.1. Descriptive statistics of soil properties

Descriptive statistics of selected soil properties were summarized in Table 1. There were significant differences in SOC, TP and SWC between 0–10 cm soil layer and other layers \((p < 0.01) \), and significant differences in \(\text{NH}_4^+ \)-N, AK and pH among 0–10 cm, 10–20 cm and other soil layers \((p < 0.05) \). The factors of SOC, \(\text{NH}_4^+ \)-N, TP and SWC presented decreasing trends with soil depth, while BD and pH increased with soil depth.
Table 1

Statistical summary for soil nutrients contents

Soil depth	SOC (g kg\(^{-1}\))	TP (mg kg\(^{-1}\))	NH\(_4^+\)-N (mg kg\(^{-1}\))	AP (mg kg\(^{-1}\))	AK (mg kg\(^{-1}\))	pH	SWC (%)	BD (g cm\(^{-3}\))
0–10 cm	142.2 ± 59.5a	968.3 ± 252.1a	25.2 ± 12.3a	20.4 ± 18.9a	147.9 ± 69.4a	5.3 ± 0.4a	29.1 ± 10.2a	-
10–20 cm	31.1 ± 24.0b	607.4 ± 193.8b	19.5 ± 9.2b	16.4 ± 8.9a	97.7 ± 54.8b	5.6 ± 0.4b	13.5 ± 8.6b	1.0 ± 0.1a
20–40 cm	16.1 ± 11.3b	659.1 ± 311.5b	13.4 ± 6.8c	16.06 ± 31.3a	61.8 ± 36.1c	5.8 ± 0.3c	11.6 ± 6.3b	1.1 ± 0.1b
40–60 cm	13.4 ± 8.2b	629.4 ± 204.3b	13.4 ± 4.7c	21.4 ± 13.0a	40.3 ± 32.1c	5.8 ± 0.3bc	-	-
0–60 cm	53.4 ± 63.6	720.3 ± 287.8	17.9 ± 9.9	17.9 ± 12.8	89.1 ± 63.4	5.6 ± 0.4	18.4	1.1 ± 0.1

Note: Different lower letters indicate significant differences among different soil layers (P < 0.05). The same below.

For mineral elements (Table 2), there was a significant difference in Fe between 0–10 cm and 20–40 cm soil layers (p < 0.05). Other mineral elements (Na, Mg, Al, K, Ca) showed significant differences between 0–10 cm soil layer and other layers (p < 0.01).

Table 2

Statistical summary for mineral elements (unit: g kg\(^{-1}\))

Soil depth	Na	Mg	Al	K	Ca	Fe
0–10 cm	8.9 ± 3.0a	5.4 ± 1.8a	60.9 ± 11.1a	16.6 ± 3.3a	12.1 ± 5.7a	35.7 ± 8.4a
10–20 cm	14.1 ± 3.7b	7.8 ± 1.8b	74.1 ± 7.4b	19.9 ± 1.7b	7.9 ± 2.1b	37.1 ± 7.0ab
20–40 cm	15.6 ± 3.7b	9.0 ± 1.8bc	77.3 ± 5.8b	20.7 ± 2.5b	7.1 ± 1.4b	39.9 ± 8.4b
40–60 cm	14.8 ± 3.7b	9.6 ± 1.8c	78.9 ± 6.9b	20.7 ± 1.7b	7.9 ± 1.4b	39.9 ± 7.0ab
0–60 cm	13.4 ± 4.5	7.8 ± 2.4	73.1 ± 10.6	19.1 ± 2.5	9.3 ± 3.6	37.8 ± 7.7

3.2. Phytolith morphology

Generally, the phytolith shapes in different plant species are different, usually including one-dimensional, two-dimensional and three-dimensional directions (Wang and Lv 1993). According to relevant researches
(An 2016; Solomonova et al. 2019; Wen et al. 2018), eight types of phytoliths were recorded in *Larix gmelinii* forest soils including dendritic-elongate, papillate-elongate, board-elongate, smooth-elongate, square, rectangle, fan-reed and short point with the dominant shape of elongate phytoliths, which reflected cold climate characteristics in this area (Fig. 1).

3.3. Vertical characteristics

Phytolith contents showed a broad variation in *Larix gmelinii* forest soil (Fig. 2). The mean phytolith content was 19.1 g kg$^{-1}$ with a variation coefficient of 71.62%. Phytolith contents in soil profiles ranked as 10–20 cm > 0–10 cm > 20–40 cm > 40–60 cm, showing a trend of increasing first and then decreasing. The variance analysis and multiple comparisons showed that the phytolith contents in layer of 10–20 cm were significantly higher than those in layers of 20–40 cm and 40-60cm ($p < 0.05$).

The substantial differences of T_r values were observed among sampling sites in *Larix gmelinii* forest. T_r ranged mainly from 7.0–54.9% with an average of 28.8%, indicating an intermediate translocation rate of phytolith in soils. Meanwhile, T_d ranged mainly from 6.8–40.7% with a mean of 21.6%, meaning a greater translocation distance.

3.4. Impacting factors

3.4.1. Relations between soil phytolith and basic physicochemical indexes and nutrients

The PCA indicated relations between soil phytolith and basic physicochemical indexes, nutrients (Fig. 3). The first principal component (PC1) explained by SOC and BD, showed relatively high loadings (32.0%) of phytolith. The second principal component (PC2) also showed relatively high loadings (18.3%) and was mainly explained by pH, SWC and AP. The PC1 positively correlated with SOC, phytolith, TP, AP, AK, SWC, TP and NH$_4^+$-N, and negatively correlated with pH and BD. The PC2 positively correlated with phytolith, BD, TP, AP and AK, and negatively correlated with pH, NH$_4^+$-N and SWC. According to the variables ordination in PCA diagrams, it appears that phytolith tends to associate to SOC, TP, AK, AP and NH$_4^+$-N rather than SWC, pH and BD. It is likely that the soil samples have closer relations with pH and BD. There was a negative correlation between phytolith and pH and BD, which suggested that pH and BD increasing can result in a loss of soil phytolith. In contrast, SOC, AP, AK, TP and NH$_4^+$-N favored the phytolith preservation in soil. At the same time, it can be seen that phytolith had a stronger correlation with phosphorus nutrients than potassium and nitrogen nutrients; and SWC is not the limiting factor of phytolith.
3.4.2. Relations between soil phytolith and mineral elements

Soil phytolith content was significantly negatively correlated with Na, Mg, Al and Fe contents ($p < 0.05$) (Fig. 4). Na and Mg showed a significant correlation with phytolith at the 0.001 level. Significant correlations between phytolith and Al, Fe was found at the 0.05 level. Whereas no significant correlation was found between soil phytolith and K, Ca.

3.4.3. Relations between soil phytolith and soil properties

Soil basic physicochemical properties, nutrients and mineral elements accounted for 75.5% of soil phytolith variations in *Larix gmelini* forest (Fig. 5). Mineral elements ($c + e + f + g$) had the greatest influence on phytoliths (69.6%), and soil nutrients ($b + d + e + g$) had the least influence on phytoliths (40.1%). The individual interpretation rate of each grouped soil factor to phytoliths was in the order of nutrients (8.4%) $>$ basic physicochemical properties (5.9%) $>$ mineral elements (1.2%). On the aspects of interaction effect, the interaction of the three factors (g) had the greatest impact on phytolith, which can explain 35.6% variation. The interaction between basic physicochemical properties and mineral elements (f) also showed an important effect on phytoliths with an explanation rate of 28.3%. On the aspects of common influence, the interpretation rate of basic physicochemical properties and nutrients to phytolith was the highest (74.3%); the interpretation rate of basic physicochemical properties and mineral elements to phytolith was the lowest (67.1%).

(PC—basic physicochemical properties including SWC, BD and the pH; NI—nutrient indexes including AK, AP, TP, NH$_4^+$-N and SOC; ME—mineral elements including Na, K, Ca, Mg, Fe, Al. a, b, c indicate the individual interpretation rate of PC, NI, ME to phytoliths; d, e, f indicate the interactive interpretation rate of PC and NI, NI and ME, PC and ME to phytoliths; g indicate the interactive interpretation rate of PC, NI and ME to phytoliths.)

3.4.4. Dominant factor screening

Path coefficients were calculated through stepwise regression analysis (Fig. 6). Na, Mg and K were screened from soil indexes. The simple correlation coefficients of Na, Mg and phytolith were $- 0.660$ and $- 0.577$ ($p < 0.001$); the simple correlation coefficient between K and phytolith was 0.314 ($p < 0.05$), indicating these three variables played an important role on soil phytoliths in *Larix gmelinii* forest. All three factors had a negative direct effect on phytolith content followed by descending order of Na, Mg and K. Through the analysis of the indirect path coefficient, it was found that K had the greatest indirect influence on phytolith through Na, and the indirect path coefficient was 0.328.

4. Discussion
Eight types of phytoliths were recorded in *Larix gmelinii* forest soils (Fig. 1), which similar to the SEM images of epidermal cell wall phytoliths in Klein and Geis's studies (Klein and Geis 1978). Elongate was the dominant phytolith shape in *Larix gmelinii* forest soils, while the dendritic-elongate, papillate-elongate phytoliths maybe reflect that isolated phytoliths from *Larix gmelinii* forest soils not only come from the *Larix gmelinii* trees but also affected by understory grasses and shrubs.

The carbon sequestration potential of phytoliths not only depends on the encapsulating efficiency of organic matter during the formation of phytoliths (Parr and Sullivan 2011; Parr et al. 2010), but also on the phytolith yield during plant growth (Li et al. 2013a). Accordingly, the significant positive correlations between soil phytolith contents and carbon content occluded in phytolith, phytolith carbon content in soil were also found in *Larix gmelinii* forest ($p < 0.01$, Fig. 7), indicating that the phytolith content increasing would promote the carbon sequestration capacity of phytolith. Almost all of the silica in larix needles is located in the epidermal and hypodermal cell walls (Sangster et al. 2001). Therefore, the *Larix* phytoliths all seem to be cell wall types and deposited on a carbohydrate matrix, which will result in potentially high in carbon. However, the specific influence mechanism on carbon sequestration of *Larix gmelinii* remains to be studied further.

The fate of phytolith in soil is important because of its effects on agronomical nutrient resources and carbon sequestration (Nguyen et al. 2019). Under different environmental conditions, phytolith accumulation is mainly controlled by the return flux of phytolith and the stability of phytolith in soil. Phytoliths are released into the soil after plant death and decay. Phytolith accumulation occurs when phytolith input exceeds its translocation, dissolution and leaching in soil profile (Zhang et al. 2016). Therefore, phytolith content in soil is largely controlled by aboveground plant yield and forest types. Generally, different forest types are characterized as different return flux of phytoliths. The stability of phytoliths is mainly controlled by its physicochemical properties and environmental conditions (Nguyen et al. 2019). Differences in soil properties, such as soil texture (Hart and Humphreys 2003) and pH (Fraysse et al. 2009; Fraysse et al. 2008) may affect the retention and the loss of phytoliths in soil. Soil conditions, especially soil moisture and pH, can not only affect phytolith accumulation in soil due to their relations with the stability of soil phytolith (Chen et al. 2018), but also influence the bioavailability of silicon in soil, in turn, the silicon absorption from soil solution by plants (Li et al. 2014; Parr and Sullivan 2005; Yang et al. 2018). Previous studies have shown that soil with low pH and high organic matter can induce more absorption and accumulation of silicon by plants and more accumulation of phytolith carbon in plants (Song et al. 2012b). Our results showed that there was a significant positive correlation between phytolith content and SOC in *Larix gmelinii* forest soil (Fig. 3), indicating the effect of litter input on phytolith accumulation (Zhang et al. 2016). Meanwhile, the occluded effects of organic matter on phytolith may be another factor in phytolith preserving since its shield protection against the hydrolysis of silica (Nguyen et al. 2014; Parr and Sullivan 2005; Trinh et al. 2017). Furthermore, a significant negative correlation was found between soil phytolith and pH in *Larix gmelinii* forest soil ($p < 0.05$). Such strong pH dependency, a result of increasing pH deprotonation of Si–OH groups resulting in a H-bonded H$_2$O adsorption on the negatively charged Si–O$^-$ surface (Ehrlich et al. 2010), was also observed in other
studies (Fraysse et al. 2009; Li and Delvaux 2019; Nguyen et al. 2014). The pH is well understood as a crucial factor driving phytolith dissolution kinetics via protonation or deprotonation reactions (Fraysse et al. 2009; Nguyen et al. 2014; Trinh et al. 2017), which can either enhance surface resistance or make the surface more vulnerable from nucleophilic attacks (Dove and Crerar 1990). At higher pH, Si–O bonds are weakened and Si release is facilitated, thus phytoliths are more easily dissolved under alkaline conditions (Song et al. 2012a); In an acidic environment, lower pH value can reduce the nucleophilic attack of OH$^-$ on Si–O–Si bond (Dove and Crerar 1990), and make the phytolith stable for a long time (Fraysse et al. 2009; Fraysse et al. 2006; Nguyen et al. 2014). In addition, low pH may convert Al$_{ox}$ and Fe$_{ox}$ into soluble Al$^{3+}$, Fe$^{3+}$, thus preventing the dissolution of phytoliths (Bartoli and Wilding 1980; Nguyen et al. 2014; Nguyen et al. 2019; Van Bennekom et al. 1991). It has been reported that Al$^{3+}$ is preferentially adsorbed on the deprotonated sites on the surface of soil phytoliths to slow down the electron density transfer, inherently inhibiting the desilication effect (Nguyen et al. 2019). There was also a significant correlation between soil phytolith and NH$_4^+$-N and TP in Larix gmelinii forest soil. The elevated soil nutrients levels enhance the absorption of soluble silicon by plant roots and the accumulation of silicon in phytoliths (Huang et al. 2015; Zhao et al. 2016), then presenting indirect effects on promoting the formation of phytoliths in plants and the input amount of phytoliths into soils by litter. Additionally, the hydrolysis of NH$_4^+$ also results in soil acidification, which can increase the preservation of phytoliths in soil. In our studies, the mineral element contents of Na, Mg and K were dominant factors affecting phytolith content, which can neutralize soil acidity and increase pH, and then the phytolith dissolution were promoted. Oxides, such as Al$_{ox}$ and Fe$_{ox}$ have many OH$^-$, OH$_2^-$, OH$_3^+$ and other groups on their surface and possess strong adsorption capacity for of Al$^{3+}$, K$^+$ and other cations, which weakens the depressing effect of metal cations on Si release (Nguyen, et al., 2014).

Combined with previous studies (He 2016; Lin 2015), phytolith storages in soil from different climatic zones of China were calculated (Fig. 8). An obvious latitude trend from south to north in China was found: tropical zone (15.9 t ha$^{-1}$) < subtropical zone (21.6 t ha$^{-1}$) < cold temperate zone (41.0 t ha$^{-1}$). Phytolith contents in soil distributed in different regions are closely related to the regional geographical conditions and vegetation (Wang and Lv 1993). Theoretically, the soil is rapidly desalinated and desiliconized in the high temperature and humidity area (Alexandre et al. 1997). Thus, the biogeochemical stability of soil phytoliths in tropical areas is lower than that in subtropical areas (Zhang et al. 2017). As a result of the strong desalination and desiliconization, phytolith storage in tropical soils is lower than in subtropical soils. In addition to the effects of species and soil environment (pH, water, nutrients, etc.), climate and human activities (Parr and Sullivan 2005; Yang et al. 2016; Zhang et al. 2016; Zhao et al. 2016; Zuo et al. 2014) can also affect the stability of soil phytoliths by affecting biogeochemical activities. Comparatively, the Larix gmelinii forest is distributed in the cold temperate zone with a low temperature and weak desalination and desiliconization effects, which is beneficial to the preservation of soil phytolith (Yang et al. 2016). Phytolith mainly comes from soil silicon. Sufficient available silicon in soil can provide favorable conditions for vegetation to form phytoliths (Guo et al. 2015). As tropical soils are mostly highly weathered, where silicon supply for plants is much lower than in
other ecosystem soils. Therefore, our results showed that the phytolith content in soil from *Larix gmelinii* forest was obviously higher than those in other areas.

However, some recent studies have shown that phytoliths most probably reflect only the minor part of phytogenic silica in plants and soils (Hodson 2019; Kaczorek et al. 2019; Puppe and Leue 2018) and a combination of microscopic analyses and silicon extraction techniques should be applied in the silicon cycling examinations. Puppe et al. (2017) concluded that about 84% of small-scale and/or fragile phytogenic silicon was not quantified by the used phytolith extraction method. Analyses of small-scale and fragile phytogenic silicon structures are urgently needed in future work as they are the most important drivers of silicon cycling in terrestrial biogeoecosystems.

5. Conclusions

In conclusion, phytolith is an important way for long-term sequestration of soil organic carbon. The phytolith storage in cold temperate zone (41.0 t ha$^{-1}$) is obviously higher than in tropical and subtropical zones. Soil physicochemical properties have a certain impact on soil phytolith content in *Larix gmelinii* forest, such as soil organic carbon, pH value, nutrients and mineral elements. However, the acid-base level of soil is more important for phytolith preservation. The effects of hydrothermal conditions on the yield and stability of phytoliths on a large spatial scale need to be studied in future. The phytolith structures and the effect of silicon availability on phytoliths will allow us to fully understand phytolith dynamics.

Declarations

Acknowledgement

We are grateful for the support from Inner Mongolia Daxing'an Mountains Forest Ecosystem National Field Science Observation and Research Station. This work was financially supported by the National Key Technologies Research and Development Program of China (grant numbers 2017YFC0504003 and 2017YFC050410302); the Natural Science Foundation of Inner Mongolia, China (grant number 2018MS03049); and the Scientific Research Fund of Young Teachers in Forestry College, Inner Mongolia Agricultural University, China.

References

1. Alexandre A, Crespin J, Sylvestre F, Sonzogni C, Hilbert DW (2012) The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool. Climate of The Past 8:307–324
2. Alexandre A, Meunier J, Colin F, Koud J (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682
3. An X (2016) Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld 25:116–127
4. Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecological Bulletins 35:469–476
5. Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878
6. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449
7. Chen C, Huang Z, Jiang P, Chen J, Wu J (2018) Belowground phytolith-occluded carbon of monopodial bamboo in China: an overlooked carbon stock. Front Plant Sci 9:1615. doi:10.3389/fpls.2018.01615
8. Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54:955–969
9. Ehrlich H, Demadis KD, Pokrovsky OS, Koutsoukos PG (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4656–4689
10. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17
11. Fang J, Brown SA, Tang Y, Nabuurs GJ, Wang X, Shen H (2006) Overestimated biomass carbon pools of the northern mid- and high latitude forests. Clim Change 74:355–368
12. Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322
13. Fraysse F, Pokrovsky OS, Schott J, Meunier J (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206
14. Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951
15. Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2008) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951
16. Goodale CL, Apps MJ, Birdsey R, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz WA, Liu S (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12:891–899
17. Guo F, Song Z, Sullivan L, Wang H, Liu X, Wang X, Li Z, Zhao Y (2015) Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Science Bulletin 60:591–597
18. Han N, Yang Y, Gao Y, Hao Z, Tian J, Yang T, Song X (2018) Determining phytolith-occluded organic carbon sequestration using an upgraded optimized extraction method: indicating for a missing carbon pool. Environ Sci Pollut Res 25:24507–24515. doi:10.1007/s11356-018-2706-7
19. Hart DM, Humphreys GS (2003) Phytolith depth functions in surface regolith materials. In: IC Roach (ed) Advances in regolith: proceedings of the CRC LEME Regional Regolith Symposia. CRC LEME, Adelaide
20. Hart TC (2016) Issues and directions in phytolith analysis. J Archaeol Sci 68:24–31
21. He S (2016) Variation and stability of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics. Zhejiang A & F University, Hangzhou
22. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292
23. Hodson MJ (2016) The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. J Archaeol Sci 68:62–69
24. Hodson MJ (2019) The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Frontiers in Earth Science 7:167
25. Huang Z, Jiang P, Chang S, Zhang Y, Ying Y (2014) Production of carbon occluded in phytolith is season-dependent in a bamboo forest in subtropical China. Plos One 9:1–6
26. Huang Z, Li Y, Jiang P, Chang SX, Song Z, Liu J, Zhou G (2015) Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils. Sci Rep 4:3602–3602
27. Jin F, Yang H, Zhao Q (2000) Advances on soil organic carbon storage and its influencing factors. Soils 32:11–17
28. Jones LHP, Milne AA (1963) Studies of silica in the oat plant. Plant Soil 18:207–220
29. Kaczorek D, Puppe D, Busse J, Sommer M (2019) Effects of phytolith distribution and characteristics on extractable silicon fractions in soils under different vegetation – An exploratory study on loess. Geoderma 356:113917
30. Kirill YK, Vladimir FK, Victor PS, Costas AV (2004) Global ecodynamics: a multidimensional analysis. Springer, Berlin
31. Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Change Biol 10:1870–1877
32. Klein RL, Geis JW (1978) Biogenic silica in the Pinaceae. Soil Sci 126:145–156
33. Korner C (2003) Carbon limitation in trees. J Ecol 91:4–17
34. Law BE, Harmon ME (2011) Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Manag 2:73–84
35. Li B, Song Z, Wang H, Li Z, Jiang P, Zhou G (2014) Lithological control on phytolith carbon sequestration in moso bamboo forests. Sci Rep 4:5262–5262
36. Li X, Vogeler I, Schwendenmann L (2019) Conversion from tussock grassland to pine forest: effect on soil phytoliths and phytolith-occluded carbon (PhytOC). J Soils Sediments 19:1260–1271
37. Li Z, Delvaux B (2019) Phytolith-rich biochar: A potential Si fertilizer in desilicated soils. GCB Bioenergy 11:1264–1282
38. Li Z, Song Z, Li B (2013a) The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Appl Geochem 37:117–124
39. Li Z, Song Z, Parr JF, Wang H (2013b) Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant Soil 370:615–623
40. Lin W (2015) Study on phytolith-occluded carbon in soil under important forest kinds. Zhejiang A & F University, Hangzhou

41. Liu L, Li D, Jie D, Liu H, Gao G, Li N (2019) Translocation of phytoliths within natural soil profiles in Northeast China. Front Plant Sci 10. doi:10.3389/fpls.2019.01254

42. Ma JF (2003) Functions of silicon in higher plants. Prog Mol Subcell Biol 33:127–147

43. Neumann D (2003) Silicon in plants. Silicon biomineralization. Prog Mol Subcell Biol 3:149–160

44. Nguyen MN, Dultz S, Guggenberger G (2014) Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths. J Plant Nutr Soil Sci 177:349–359

45. Nguyen MN, Dultz S, Meharg AA, Pham QV, Hoang AN, Dam TTN, Nguyen VT, Nguyen KM, Nguyen HX, Nguyen NT (2019) Phytolith content in Vietnamese paddy soils in relation to soil properties. Geoderma 333:200–213

46. Pan Y, Birdsey RA, Fang J, Houghton RA, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

47. Parr JF (2002) A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Rev Palaeobot Palynol 120:315–336

48. Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37:117–124

49. Parr JF, Sullivan LA (2011) Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil 342:165–171

50. Parr JF, Sullivan LA, Chen B, Ye G, Zheng W (2010) Carbon bio-sequestration within the phytoliths of economic bamboo species. Glob Change Biol 16:2661–2667

51. Parr JF, Sullivan LA, Quirk R (2009) Sugarcane phytoliths: Encapsulation and sequestration of a long-lived carbon fraction. Sugar Tech 11:17–21

52. Pierzynski GM (2009) Methods of phosphorus analysis for soils, sediments, residuals, and waters. North Carolina State University

53. Piperno DR (1985) Phytolith taphonomy and distributions in archeological sediments from Panama. J Archaeol Sci 12:247–267

54. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San Diego

55. Piperno DR (2002) Phytoliths. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers

56. Piperno DR (2006) Phytoliths: a comprehensive Guide for archaeologists and paleoecologists. AltaMira Press, New York

57. Prajapati K (2016) Carbon occlusion potential of rice phytoliths: implications for global carbon cycle and climate change mitigation. Appl Ecol Environ Res 14:265–281

58. Puppe D, Höhn A, Kaczorek D, Wanner M, Wehrhan M, Sommer M (2017) How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil-plant system. Biogeosciences 14:5239–5252
59. Puppe D, Leue M (2018) Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytoogenic silica. Geoderma 330:212–220
60. Qiao N, Schaefer D, Blagodatskaya E, Zou X, Xu X, Kuzyakov Y (2014) Labile carbon retention compensates for CO2 released by priming in forest soils. Glob Change Biol 20:1943–1954
61. Rajendiran S, Coumar MV, Kundu S, Ajay, Dotaniya ML, Rao AS (2012) Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Curr Sci 103:911–920
62. Rashid I, Mir SH, Zurro D, Dar RA, Reshi ZA (2019) Phytoliths as proxies of the past. Earth Sci Rev 194:234–250
63. Sangster AG, Hodson MJ, Huang CX (2001) X-ray microanalytical studies of mineral composition in cell walls of needle tissues of American larch [Larix laricina (Du Roi) K. Koch] and European larch [L. decidua (L.) Mill.]. In: M Labrecque (ed) L’arbre 2000 The Tree, 4th International Symposium on the Tree. Isabelle Quentin Press, Montreal Botanic Garden
64. Santos GM, Alexandre A (2017) The phytolith carbon sequestration concept: fact or fiction? A comment on "Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems by Song et al. doi: 10.1016/j.earscirev.2016.04.007". Earth-Sci Rev 164: 251–255
65. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91
66. Solomonova MY, Blinnikov MS, Silantyeva MM, Speranskaja NY (2019) Influence of Moisture and Temperature Regimes on the Phytolith Assemblage Composition of Mountain Ecosystems of the Mid Latitudes: A Case Study From the Altay Mountains. Frontiers in Ecology Evolution 7:1–22
67. Song Z, Liu H, Li B, Yang X (2013a) The production of phytolith-occluded carbon in China’s forests: implications to biogeochemical carbon sequestration. Glob Change Biol 19:2907–2915
68. Song Z, Liu H, Si Y, Yin Y (2012a) The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Glob Change Biol 18:3647–3653
69. Song Z, Parr JF, Guo F (2013b) Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization. Plos One 8:1–6
70. Song Z, Wang H, Strong PJ, Li Z, Jiang P (2012b) Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration. Earth Sci Rev 115:319–331
71. Strömberg CAE (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 239–275
72. Trinh TK, Nguyen TTH, Nguyen TN, Wu TY, Meharg AA, Nguyen MN (2017) Characterization and dissolution properties of phytolith occluded phosphorus in rice straw. Soil Tillage Research 171:19–24
73. Van Bennekom AJ, Buma AGJ, Nolting RF (1991) Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica. Mar Chem 35:423–434
74. Wang Y, Lv H (1993) Researches and applications of phytoliths. Ocean Press, Beijing
75. Wen C, Lu H, Zuo X, Ge Y (2018) Advance of research on modern soil phytolith. Science China Earth Sciences 61:1169–1182. doi:10.1007/s11430-017-9220-8
76. Wilding LP (1967) Radiocarbon Dating of Biogenetic Opal. Science 156:66–67
77. Wu Y, Wang C (2009) Extended depth of focus image for phytolith analysis. J Archaeol Sci 36:2253–2257
78. Yang X, Song Z, Liu H, Bolan N, Wang H, Li Z (2015) Plant silicon content in forests of north China and its implications for phytolith carbon sequestration. Ecol Res 30:347–355
79. Yang X, Song Z, Liu H, Van Zwieten L, Song A, Li Z, Hao Q, Zhang X, Wang H (2018) Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration. Geoderma 312:36–44
80. Yang X, Song Z, Sullivan LA, Wang H, Li Z, Li Y, Zhang F (2016) Topographic control on phytolith carbon sequestration in moso bamboo (Phyllostachys pubescens) ecosystems. Carbon Manag 7:105–112
81. Zhang X, Song Z, Mcgrouther K, Li J, Li Z, Ru N, Wang H (2016) The impact of different forest types on phytolith-occluded carbon accumulation in subtropical forest soils. J Soils Sediments 16:461–466
82. Zhang X, Song Z, Zhao Z, Van Zwieten L, Li J, Liu L, Xu S, Wang H (2017) Impact of climate and lithology on soil phytolith-occluded carbon accumulation in eastern China. J Soils Sediments 17:481–490
83. Zhao Y, Song Z, Xu X, Liu H, Wu X, Li Z, Guo F, Pan W (2016) Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China. Ecol Res 31:117–123
84. Zuo X, Lü H (2011) Carbon sequestration within millet phytoliths from dry-farming of crops in China. Science Bulletin 56:3451–3456
85. Zuo X, Lü H, Gu Z (2014) Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant Soil 374:223–232
86. Zuo X, Lü H, Jiang L, Zhang J, Yang X, Huan X, He K, Wang C, Wu N (2017) Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proc Natl Acad Sci USA 114:6486–6491

Figures
Figure 1

Optical microscope images of phytoliths extracted from Larix gmelinii forest soils

Figure 2

Phytolith contents in different soil depths (Means ± SD, n=100)
Figure 3

PCA of soil phytolith and physicochemical indexes. (SOC = soil total organic carbon; SWC = soil water content; BD = bulk density; TP = total phosphorus; NH4+-N = ammonium nitrogen; AK = available potassium; AP=available phosphorus.)
Figure 4

Scatter diagram between soil phytolith and mineral elements
Figure 5

Venn diagram for soil phytolith and soil indexes
Figure 6

Path coefficients of soil phytolith in Larix gmelinii forest

Figure 7

Correlations between soil phytolith contents and carbon contents in phytolith, soil phytolith carbon contents
Figure 8

Phytolith storages in different climate zones (Means ± SD). (The tropical data was calculated from He's work (2016); and the subtropical data was calculated from Lin's work (2015).)