The road from one hole to the stripe phase

Fan Yang\(^1\) and Su-peng Kou\(^{1,2}\)

\(^1\)Center for Advanced Study, Tsinghua University, Beijing, 100084, China
\(^2\)Department of Physics, Beijing Normal University, Beijing, 100874, China

Abstract

In this paper, it is shown how a single stripe and a stripe phase grow from individual holes in low doping regime. In an effective low-energy description of the t-J model, i.e., the phase string model, a hole doped into the spin ordered phase will induce a dipolar distortion in the background [Phys. Rev. B\textbf{67}, 115103 (2003)]. We analyze the hole-dipole configurations with lowest energy under a dipole-dipole interaction and show that these holes tend to arrange themselves into a regular polygon. Such a stable polygon configuration will turn into a stripe as the number hole-dipoles becomes thermodynamically large and eventually a uniform stripe state can be formed, which constitutes an energetically competitive phase at low doping. We also briefly discuss the effect of Zn impurities on individual hole-dipoles and stripes.

PACS numbers: 71.27+a, 71.10-w

I. INTRODUCTION

The stripe phenomenon is one of many interesting and novel properties observed in high-\(T_c\) cuprate superconductors. Static stripes were first experimentally found in La\(_{1.48}\)Sr\(_{0.12}\)Nd\(_{0.4}\)CuO\(_4\) by neutron scattering, where narrow elastic magnetic superlattice peaks located at \((\pi(1 \pm 2x), \pi, 0)\) and charge-order peaks at \((4\pi(1 \pm x), 0, 0)\) are clearly identified at doping concentration \(x = 0.118\). This result is interpreted as that the dopant-induced holes collect in domain walls that separate antiferromagnetic (AF) antiphase domains. This picture is also supported by the x-ray diffraction experiment. In La\(_{2−x}\)Sr\(_x\)CuO\(_4\) compounds, people have also tried to use dynamical stripes to explain the observation by the inelastic neutron scattering, where narrow magnetic peaks at the AF wave vectors, \((\pi(1 \pm \varepsilon), \pi, 0)\) and \((\pi, \pi(1 \pm \varepsilon), 0)\) with \(\varepsilon \sim 2x\) at low energies were found. Somewhat similar incommensurate dynamic magnetic fluctuations were also reported in YBCO compounds. Nuclear quadruple resonance (NQR), muon spin resonance, and magnetic susceptibility measurements all verify the evidence of stripe in La\(_{2−x}\)Sr\(_x\)CuO\(_4\). Stripes have also been observed in the oxygen-doped La\(_2\)CuO\(_4\) using nuclear magnetic resonance (NMR) techniques. These experimental results suggest that the stripe instability may be extensively present in the cuprates as a competing order, which contributes to the complexity of the phase diagram.

The existence of the stripes in a strongly correlated electron system was actually first predicted by Zaanen and Gunnarsson before the experimental discovery. They found the stripe mean-field solution in a two-band Hubbard model, in which holes doped into the parent antiferromagnet generally tend to arrange themselves into straight lines aligned parallel to each other, i.e., the charged stripes. Since the experimental discovery of the static stripes in the cuprates, theoretical investigations of the stripe and stripe-related physics have been conducted very intensively in the high-\(T_c\) field. Numerical studies of the t-J model by the DMRG present conflicting conclusions as to the existence of stripe phases in its ground state, which might be caused by the strong finite-size effects. Recent theoretical developments in the stripe physics have been reviewed in Refs.\(^{11} \text{–}^{15}\).

So far the most of theoretical studies on the origin of the stripes in the cuprates are either based on phenomenological theories or focused on the static ones at the mean-field level. To truly understand the microscopic origin of the stripe phase and its competitive relation with the homogeneous phases (including superconductivity), one needs to know when a stripe can be melt and be broken into pieces, namely, what it is made of, and when it can become stable against various kinds of fluctuational effects.

Recently, it has been shown\(^{15} \text{–}^{19}\) that there exists a more stable elementary object, known as a hole dipole, in the low-doping spin ordered phase described by the t-J model. Such a charge \(+e\) entity can be regarded as a dipole composed of a charged vortex (centered at a spinless holon) and a neutral antivortex which is self-trapped in real space. Due to the so-called phase string effect, an infinite (logarithmic divergent) energy is needed if one is to “destroy” such a composite by separating two poles of the dipole infinitely far away.

On the other hand, since each hole dipole is self-trapped in real space, its kinetic energy is suppressed. Thus the potential energy (from impurities, for instance) and the dipole-dipole interaction between two holes will become dominant. In the absence of disorder or impurities and without considering the long-range Coulomb repulsion, an inhomogeneous instability has been found in such a system and in particular various stripe instabilities were suggested to occur. In other words, if a stripe does form in this system, hole-dipoles described above will become
the elementary building blocks. Consequently the fluctuations and dynamics of stripes as well as the melting of them may be understood and mathematically described from a new angle based on the hole-dipoles.

In this paper, we shall follow up the stripe instability pointed out in Ref.19 and demonstrate mathematically how a stable stripe can grow from individual hole-dipoles by starting with only a few of them. We find that these finite number of hole-dipoles generally form a regular polygon with a minimized potential energy, which is stable against the perturbations. With the increase of the hole number, the polygon eventually evolves into a stripe and then stripes as the hole concentration becomes finite in the thermodynamic limit, which result in the stripe phase. We further consider the Zn impurity effects on both hole dipoles and stripes and predict that stripes can be easily destroyed in the presence of random zins.

II. THE MODEL

A. The phase-string model

We start with the two-dimensional t-J model. At half-filling, it turns into the Heisenberg model with a good description of the magnetic properties in the cuprates. The Marsh all sign rule is found16 in the ground state of such a model, where the flips of two antiparallel spins at opposite sublattice sites are always accompanied by a sign change in the ground-state wave function: \(\uparrow\downarrow \rightarrow (-1) \downarrow\uparrow\). Upon doping, however, this Marshall sign rule will get frustrated by the motion of the doped holes. When a hole hops from site to site, a sequence of ± signs will be left behind which cannot be repaired by spin-flip processes and is called phase-string15.

The phase-string theory is developed to accurately handle the phase-string effect in the t-J model. This theory is based on a new kind of slave-particle formula in which electron operator reads15

\[c_{i\sigma} = h_{i\sigma}^\dagger b_{i\sigma} (-\sigma) e^{i\hat{\phi}_{i\sigma}}, \]

(1)

where \(h_{i\sigma}^\dagger \) is a bosonic “holon” creation operator and \(b_{i\sigma} \) is a bosonic “spinon” annihilation operator, satisfying the following no double occupancy constraint

\[h_{i\sigma}^\dagger h_{i\sigma} + \sum_{\sigma} b_{i\sigma}^\dagger b_{i\sigma} = 1. \]

(2)

Here the nonlocal phase factor \(e^{i\hat{\phi}_{i\sigma}} \) precisely keeps the track of the singular part of the phase string effect as well as the fermionic statistics of the electron operator, as defined by

\[e^{i\hat{\phi}_{i\sigma}} = e^{\Phi_{i\sigma}^h - \sigma \Phi_{i\sigma}^b}, \]

(3)

with

\[\Phi_{i\sigma}^h = \sum_{i \neq j} \text{Im} \ln(z_i - z_j) \left(\sum_{\alpha} \alpha n_{\alpha i\sigma}^b - 1 \right), \]

(4)

and

\[\Phi_{i\sigma}^b = \sum_{i \neq j} \text{Im} \ln(z_i - z_j) n_{i\sigma}^b. \]

(5)

The effective phase-string model of the t-J Hamiltonian is given by

\[H_{\text{eff}} = -t_h \sum_{(ij)} \left[(e^{iA_{ij}^h}) h_{i\sigma}^\dagger h_{j\sigma} + H.c. \right] - J_s \sum_{(ij)} \left[(e^{i\sigma A_{ij}^b}) b_{i\sigma}^\dagger b_{j\sigma - \sigma}^\dagger + H.c. \right], \]

(6)

with \(t_h \sim t, J_s \sim J \). The most important and unique structure of the phase-string theory is a mutual dual relation in (6): For holons, a spinon simply behaves like a \(\pm \pi \) flux-tube and for spinons, a holon also behaves like a \(\pi \) flux-tube, which are described by the lattice gauge fields \(A_{ij}^h \) and \(A_{ij}^b \) as follows:

\[\sum_C A_{ij}^h = \frac{1}{2} \sum_{\sigma, l \in C} (\sigma n_{i\sigma}^l), \]

(7)

and

\[\sum_C A_{ij}^b = \frac{1}{2} \sum_{l \in C} n_{i\sigma}^l, \]

(8)

for a closed path \(C \) with \(n_{i\sigma}^l \) and \(n_{i\sigma}^h \) denoting spinon and holon number operators, respectively.
B. Holes as dipoles

In the phase-string theory, the spin-flip operator is defined as

$$S_i^+ = (-1)^i b_i^\dagger b_i \exp \left[i \Phi^h_i\right],$$ \hspace{1cm} (9)

with

$$\Phi^h_i = \sum_{i \neq j} \text{Im} \ln (z_i - z_j) n_j^h.$$ \hspace{1cm} (10)

In the AF spin ordered phase, the spinons are Bose condensed, i.e., $< b_{i\sigma} > \neq 0$, with the spins lying in the xy plane. The polarization direction of the spin ordering is determined by $\langle S_i^+ \rangle = (-1)^i < b_i^\dagger \rangle < b_i \rangle \exp \left[i \Phi^h_i\right]$. From this, we can see that besides the sign $(-1)^i$, which reflects the staggered AF order, there is an additional phase $\exp \left[i \Phi^h_i\right]$ introduced by holons, which represents a twist of the spins with respect to each holon. Namely, each time when one circles around a holon once, a 2π rotation is found in the direction of the spin ordering. The resulting spin configuration is called a meron (spin vortex) [Fig.2 of Ref.19]. A meron costs an energy which is logarithmically dependent on the size of the system. And for two holons, the induced spin twists are in the same way such that there exists a repulsive interaction between them. In order to remove such an unphysical energy divergence, an antimeron should be induced19 near every holon-meron to cancel out the spin twists at large distance. An antimeron is defined by:

$$b_{i\sigma} \to \tilde{b}_{i\sigma} \exp \left[i \frac{\sigma}{2} \vartheta^k_i\right],$$ \hspace{1cm} (11)

where $\vartheta^k_i = \text{Im} (z_i - z^O_k)$. Here z^O_k denotes the coordinate of the center of an antimeron labelled by k. As a result

$$\langle S_i^+ \rangle \to (-1)^i \langle \tilde{b}_i^\dagger \rangle \langle \tilde{b}_i \rangle \exp \left[i \Phi^h_i - i \vartheta^k_i\right].$$ \hspace{1cm} (12)

Define

$$\phi^k_i = \Phi^h_i - \vartheta^k_i = \text{Im} \ln \left(\frac{z_i - z_k/2}{z_i + z_k/2}\right)$$ \hspace{1cm} (13)

to describe the spin twist, with $z_k \equiv e^k_x + ie^k_y$. Here the meron and anti-meron are centered at $\pm \frac{\mathbf{e}_k}{2}$, respectively. At $|\mathbf{r}_i| >> |\mathbf{e}_k|$, one obtains a dipolar twist

$$\phi^k_i \simeq \frac{(\hat{z} \times \mathbf{e}_k) \cdot \mathbf{r}_i}{|\mathbf{r}_i|^2}. $$ \hspace{1cm} (14)

The energy cost of such a dipole configuration is given as the following19

$$\mathcal{E}_k^d \simeq \frac{J_s \rho_s^2 a^2}{4} \int d^2r \frac{|\mathbf{e}_k|^2}{|\mathbf{r} - \mathbf{e}_k/2|^2 |\mathbf{r} + \mathbf{e}_k/2|^2} \simeq q^2 \text{ln} \frac{|\mathbf{e}_k + a|}{a}, \hspace{1cm} q^2 = \pi J_s \rho_s^2 a^2,$$ \hspace{1cm} (15)

which is finite. In the above, $\rho_s^2 a^2 = \langle \mathbf{b}^+ \rangle^2$ (a is the lattice constant). This meron-antimeron spin configuration is called a hole-dipole18,19. The displacement connecting the centers of a meron and an antimeron can be defined as the dipole moment here. The dipole moment is determined by the two dimensional Coulomb gas theory by a standard KT renormalization group (RG) method18,19. Near half filling $x \to 0$ we estimate the centers of a meron and an antimeron as the lattice constant $|\langle |\mathbf{e}_k| \rangle | = r_0 \sim a$.

At the end of this part, we note that in somewhat different contexts, the concept of hole dipoles has been also suggested by different authors through different approaches. It is raised in references20,21 that the doped holes introduce a local ferromagnetic exchange coupling between their neighboring Cu$^{2+}$, which brings frustration to the background antiferromagnetism. The frustrating bond acts like a magnetic dipole. From this picture, they studied the suppression of antiferromagnetic correlations by the hole-dipoles, and the magnetic phase diagram was obtained. It is also pointed out in reference22 that the doped holes in the form of hole-spin-polaron interact with each other
FIG. 1: The variables in formula (16) is shown. For two dipoles indexed by \(k \) and \(k' \), \(r_{kk'} \) denotes the distance between their centers, \(e_k \) and \(e_{k'} \) denote their moments, and \(\varphi_k \) and \(\varphi_{k'} \) denote the angles between their moments and the line which connects their centers.

through dipolar potential. It is just the excitation of these spin-polarons that forms the stripe\(^{23,24}\). In reference\(^{25}\), an analogy was given between the doped holes in the AF background with the He\(^3\) impurity in the liquid He\(^4\). As a result, it is also found that the mobile-hole creates a long-range dipolar spin-backflow. And in reference\(^{26}\), the interaction between the holes is more carefully considered, including the long-range Coulomb interaction, the dipolar potential, and the short-range attraction. The competing of these interactions leads to the complicated phase diagram, which includes the diagonal stripe.

III. OPTIMAL CONFIGURATIONS FOR MULTI-HOLE-DIPOLES

A hole-dipole is self-localized\(^{19}\) in space with the suppression of its kinetic energy. If there is an impurity, such a hole-dipole can be easily trapped around, whose effect will be discussed in Sec. IV. In this section, we shall consider the impurity-free case, in which the hole dipole can be located anywhere in real space due to the translational symmetry. For multi-number hole-dipoles, the dipole-dipole interaction will determine the spatial configuration of them. In the following we start with the case of two hole-dipoles first.

A. Energy-minimal configuration for two hole-dipoles

For two dipoles well separated from each other, the interaction energy is given by\(^{19}\)

\[
V_{kk'}^{d-d} \approx -\frac{2q^2}{|r_{kk'}|^2} \left[e_k \cdot e_{k'} - \frac{2(e_k \cdot r_{kk'})(e_{k'} \cdot r_{kk'})}{|r_{kk'}|^2} \right] \approx -\frac{2q^2}{|r_{kk'}|^2} r_0^2 \cos (\varphi_k + \varphi_{k'}),
\]

in which the size of the dipoles is fixed by \(r_0 \). The alignments of two dipoles are shown in Fig.1.

Under the interaction\(^{10}\), two dipoles will adjust their dipole moment directions to arrive at the lowest energy. It is easy to see that the condition to minimize their potential energy at a fixed distance is

\[
\varphi_k + \varphi_{k'} = 0, \text{ modulo } 2\pi,
\]
which results in an attractive potential energy,

\[V_{12}^d = -\frac{2q^2 r_0^2}{|\mathbf{r}_{kk'}|^2} \tag{18} \]

Two dipoles will then move closer and closer until reach a least distance \(2r_0 = 2|e_{k'}|\), determined essentially by the size of the dipoles. When the distance between two dipoles are near 2\(r_0\), the potential described by (16) usually is no longer correct. However, we shall use the formula (16) approximately at \(|\mathbf{r}_{kk'}| \gtrsim 2r_0 \) and take the positions of the dipoles as continuous variables by ignoring the discrete lattice sites in the following considerations of \(n\)-dipole case. Then the problem is reduced to a mathematical one to search for the optimum configuration for the \(n\)-dipoles which interact with each other through (16), under the constraint that the distance between any two dipoles should be no less than twice of the average dipole moment \(2|e_{k'}| = 2r_0\).

B. Three and four hole-dipoles

Now let us consider three dipoles case. In Fig. 2, three hole-dipoles are marked by 1, 2, and 3, respectively. Suppose the first and second dipoles are located at \((\pm h, 0)\), with the angles between their dipole moments and the line connecting them to be \(\pm \varphi\). Then we want to find out what is the optimal location for the third dipole. From Fig. 2, it is easy to see that for the dipoles marked by 1 and 3, one has

\[\varphi - \theta_1 = \theta_3, \tag{19} \]

and for 2 and 3, one has

\[\varphi - \theta_2 = \theta_1 + \theta_2 - \theta_3. \tag{20} \]

Then one finds

\[\varphi = \theta_2 + \theta_1. \tag{21} \]

Defining the coordinate of the third dipole by \((x, y)\), we get

\[\varphi = \arctan\left(\frac{y}{x+h}\right) + \arctan\left(\frac{y}{-x+h}\right), \tag{22} \]

and thus

\[\tan \varphi = \tan \left[\arctan\left(\frac{y}{x+h}\right) + \arctan\left(\frac{y}{-x+h}\right) \right] \]

\[= \frac{-2hy}{x^2 + y^2 - h^2}. \tag{23} \]
FIG. 3: For two dipoles 1 and 2 with their centers fixed at \((\pm h, 0)\) and the angles between their moments and the line connecting their centers to be \(\phi\), the track of the center of dipole 3 to optimize the direction of its moment is a circle which passes the former two dipoles, centering at \(0, -h \cdot \cot \phi\), with the radius \(h \cdot \csc \phi\). The directions of the three dipoles are along the tangent of the circle.

\[x^2 + (y + \frac{h}{\tan \phi})^2 = \frac{h^2}{\sin^2 \phi}. \]
(24)

FIG. 4: When the dipole 4 is added, it should make an optimum configuration with any two dipoles. As a result, it locates on the same circle mentioned in Fig. 3.

such that

From (24), we can see that the track of \((x, y)\) is just a circle passing through dipole 1 and 2, centered at \((0, -h/\tan \phi)\) with a radius \(R = h/\sin \phi\). From the knowledge of geometry, it is easy to see that the moments of these three dipoles will all point along the tangents of the circle, as shown in Fig. 3.

Then the energy-minimal configuration for three hole-dipoles is obtained as an equilateral triangle. The minimal
interaction energy for three hole-dipoles is

\[V_{d-d}^{d-d} \sim -3 \cdot 2q^2 \frac{r_0^2}{|r_{kk'}|^2} \]

\[= -2q^2 \frac{r_0^2}{R^2}, \]

(25)

with \(|r_{kk'}| = \sqrt{3}R\) and \(R\) is radius of the circle crossing three dipoles.

When the fourth hole-dipole is added, it should first make up an optimal configuration with the dipole 1 and 2, and thus is located on a circle as discussed above. Then by further making up an optimal configuration with the dipole 1 and 3, it will also be located on an another circle passing through the dipole 1 and 3. Since the dipole 3 is already on a circle determined by 1 and 2, with its dipole moment along the tangent, the circle determined by the dipole 1 and 3 is the same as that determined by the dipole 1 and 2, and so is the one determined by dipole 2 and 3.

The same argument is applicable to \(n\) dipoles. So the optimal configuration for \(n\) dipoles under the potential (16) will be always on a circle, with each dipole moment along the tangent of the circle and the proportional spacing for each dipole. Such configuration is just a regular polygon with \(n\) edges. To low energy the radius of the circle \(R\) will shrink until the length of every edge is equal to the minimum \(2r_0\),

\[R \simeq \frac{2r_0}{2 \sin \frac{\pi}{n}}. \]

(26)

The minimal interaction energy for \(n\) hole-dipoles (\(n\) is a odd number) is

\[V_{n-d}^{d-d} \sim -2q^2 r_0^2 \sum_{kk'} \frac{1}{|r_{kk'}|^2} \]

\[= -2q^2 r_0^2 \cdot n \cdot 2 \cdot \sum_{k=1}^{\frac{n-1}{2}} \frac{1}{|r_k|^2}, \]

(27)

with

\[|r_k| = 2R \sin \left(\frac{\pi}{n} k \right) = 2r_0 \frac{\sin \left(\frac{2\pi}{n} k \right)}{\sin \frac{\pi}{n}}. \]

(28)

If \(n\) is even number, the minimal interaction energy is

\[V_{n-d}^{d-d} \sim -2q^2 r_0^2 n \left[2 \cdot \sum_{k=1}^{\frac{n-1}{2}} \frac{1}{|r_k|^2} + \frac{1}{2} \left(\frac{1}{(2R)^2} \right) \right]. \]

(29)

Numerical simulations for up to \(n = 30\) dipoles also show that for these interacting dipoles, the optimized configurations with minimized total energy are always regular polygons as discussed above.

C. Stability of the regular polygon configuration

In this part we will show the stability of the regular polygon configuration for hole-dipoles. For a regular polygon configuration, the distance between two nearest dipoles has reached the minimal \(2r_0\). But the distances between other pairs of dipoles have not arrived at their minimum. Mathematically, it should be proved that the configuration is stable against perturbations.

1. Perturbation for changing the direction of a dipole moment

First we change the direction of a dipole moment from its original direction \(\varphi_0\) to \(\varphi_0 + \delta \varphi\). The change of the total energy for \(n\) hole-dipoles (\(n\) is an odd number) is

\[\Delta V_{n-d}^{d-d} \simeq -2q^2 \sum_k \frac{r_0^2}{|r_k|^2} \left[\cos (\varphi_0 + \delta \varphi + \varphi_{k'}) - \cos (\varphi_0 + \varphi_{k'}) \right] \]

\[\simeq (q^2 \sum_k \frac{r_0^2}{|r_k|^2}) (\delta \varphi)^2, \]

(30)
FIG. 5: When more dipoles are added, they should all locate on the circle mentioned in Fig.3 and Fig.4. Here $n = 6$ is displayed.

FIG. 6: The optimum configuration for n dipoles. Their centers form a regular polygon. The moment of each dipole is directed along the bisector of each external angle. Here $n = 6$ is displayed.

with $|\mathbf{r}_k|$ defined by (28). On the other hand, if n is even number, the energy difference is

$$
\Delta V^{d-d} \sim q^2 r_0^2 \left[2 \sum_{k=1}^{\frac{n}{2}-1} \frac{1}{|\mathbf{r}_k|^2} + \frac{1}{2} \left(\frac{1}{2R}\right)^2 \right] (\delta \phi)^2 > 0.
$$

(31)

When more hole-dipoles change the directions of their moments simultaneously, the energy cost is simply the sum of all the positive energy cost by every change.

So the regular polygon configuration is stable against changing the directions of the dipole moments $\Delta V^{d-d} > 0$.
FIG. 7: A perturbation is imposed to the optimum configuration, i.e, the regular polygon. Here \(n = 4 \) is displayed. Each dipole has a perturbation in the position and direction \((\delta x_i, \delta y_i, \delta \theta_i)\). The dipole 0 and dipole 1 are fixed at the origin point and on the x axis respectively, as the total potential has global SO(2) invariance.

2. Perturbation for changing the positions of the centers of the dipoles

Next we change the positions of the centers of the dipoles. In Fig. 7, the case of \(n = 4 \) is shown as an example. The position and direction of each dipole are marked in Fig. 7. Here 2\(r_0 \) is set to be 1 for convenience. The dipole 0 and dipole 1 are fixed at the origin point and on the x axis respectively. Each dipole has a perturbation in the position and direction \((\delta x_i, \delta y_i, \delta \theta_i)\). After this perturbation, we can expand the potential up to first order. Taking dipole 1 and dipole 2 as an example, we have

\[
V_{12} = -\frac{V_0 \cos(\varphi_1 + \varphi_2)}{r_{12}^2},
\]

among which

\[
V_0 = 2 q_1^2 r_0^2.
\]

For the numerator, we have

\[
\varphi_1 + \varphi_2 = 0 + \delta \theta_1 + \delta \theta_2 - 2 \delta \theta_{12}.
\]

In the above equation, \(\delta \theta_1 \) and \(\delta \theta_2 \) denotes the changes in the directions of the moments of dipole 1 and dipole 2, while \(\delta \theta_{12} \) denotes the change in the direction of line connecting dipole 1 and dipole 2,

\[
\delta \theta_{12} = \delta(x_1 - x_2)/1 = \delta x_1 - \delta x_2.
\]

Thus the change in the numerator is zero to the first order of the perturbation. For the denominator, we have

\[
r_{12}^2 = (\delta x_1 - \delta x_2)^2 + (1 + \delta y_2)^2 = 1 + 2 \delta y_2 + o(\delta x_1^2, \delta x_2^2, \delta x_1 \delta x_2).
\]

As a result, up to the first order perturbation, the potential becomes:

\[
V_{12} = \frac{-V_0}{1 + 2 \delta y_2} = -V_0 + 2 V_0 \delta y_2 + o(\delta y_2^2).
\]
In the same way, we expanded the potential among other dipoles, and obtained the following expansion of the total potential up to the first order perturbation,

$$\delta V_{\text{tot}}^{d-d} = \delta (V_{01} + V_{12} + V_{23} + V_{02} + V_{03} + V_{13})$$

$$= \frac{5}{2} V_0 (\delta x_1 + \delta x_2 - \delta x_3 + \delta y_2 + \delta y_3). \quad (38)$$

To satisfy the constraint that the distances between the centers of any two dipoles should be no less than $2r_0$, we expanded the formula of their distances to the first order perturbation and have:

$$\delta x_1 \geq 0 \to r_{01} \geq 1,$$

$$\delta x_2 \geq \delta x_3 \to r_{23} \geq 1,$$

$$\delta y_2 \geq 0 \to r_{12} \geq 1,$$

$$\delta y_3 \geq 0 \to r_{03} \geq 1. \quad (39)$$

From (38) and (39), we obtained that:

$$\delta V_{\text{tot}} \geq 0, \quad (40)$$

which denotes that the change of the total potential is no less than zero up to the first order perturbation.

Our above demonstration can be easily generalized to arbitrary n. For a general n, we have

$$V_{\text{tot}} = \sum_{ij} -\frac{V_0 \cos(\varphi_i + \varphi_j)}{r_{ij}^2}. \quad (41)$$

Up to the first order perturbation, we have:

$$\delta V_{\text{tot}} = V_0 \sum_{ij} \frac{2(x_i - x_j)(\delta x_i - \delta x_j) + 2(y_i - y_j)(\delta y_i - \delta y_j)}{r_{ij}^4}. \quad (42)$$

The constraint for the least distance between any two adjacent dipoles reads:

$$\delta r_{i,i+1} = 2(x_i - x_{i+1})(\delta x_i - \delta x_{i+1}) + 2(y_i - y_{i+1})(\delta y_i - \delta y_{i+1}) \geq 0. \quad (43)$$

It can be checked that

$$\delta V_{\text{tot}} = gV_0 \sum_i \delta r_{i,i+1}, \quad (44)$$

in which

$$g = \frac{\sum_{i=2}^{n-1} \sin[\pi(i - 1)/n]/[\sin(\pi i)/n]^3}{8 \sin(\pi/n) \sin(2\pi/n)} > 0. \quad (45)$$

From (43), (44) and (45), we have

$$\delta V_{\text{tot}} \geq 0. \quad (46)$$

From (46), we know that the change of the total potential is no less than zero up to the first order perturbation for arbitrary n. When all the δx_i and δy_i are carefully chosen so that the "=" is realized in (39), (40) turns into

$$\delta V_{\text{tot}} = 0. \quad (47)$$

In such cases, we should have to check the second order perturbation in the potential energy as the first order perturbation is zero. We again gave our proof for $n = 4$ as an example.

When $\delta x_1 = \delta y_2 = \delta y_3 = 0$, and $\delta x_2 = \delta x_3 = \delta x$, the "=" is realized in (39) and hence (40). The first order perturbation of the total potential is zero, so we expanded it to the second order perturbation, and obtained

$$V_{\text{tot}} \geq \sum_{i,j} -\frac{V_0}{r_{ij}^2}$$

$$= -2V_0 - \frac{2V_0}{1 + (\delta x)^2} - \frac{V_0}{1 + (1 - \delta x)^2} - \frac{V_0}{1 + (1 + \delta x)^2}$$

$$= -5V_0 + \frac{3}{2} V_0 (\delta x)^2 + o((\delta x)^3), \quad (48$$
and therefore,
\[\delta V_{\text{tol}} \geq \frac{3}{2} V_0 (\delta x)^2 \geq 0. \]

(49)

So the change in the total potential is also no less than zero up to the second order perturbation.

In the case of \(n > 4 \), we can carry out similar expansion, and draw the same conclusion.

By the above perturbative expansion, we proved that the configuration shown in Fig. 6 is stable against local perturbation in the positions and directions of the dipole moments.

D. Energetically minimized configurations for infinite number hole-dipoles - stripes

In the above part, we have proved that \(n \) dipoles will arrange themselves to form a regular polygon to minimize the energy. And the radius of the circle \(R \) will shrink until the length of every edge is equal to the minimum \(2r_0 \).

When \(n \to \infty \), the radius of the circle \(R \) turn to diverge \(R \approx r_0 \sin \pi/n \sim \frac{\pi}{2} n \to \infty \) and a regular polygon will naturally be stretched into a line (i.e., a stripe), as shown in Fig. 8. The minimal interaction energy for a regular polygon with large number of hole-dipoles is about

\[V_{d-d}^{d-d} \sim -2q^2 r_0^2 \sum_{kk'} \frac{1}{|r_{kk'}|^2} \]
\[\approx -q^2 n \]

(50)

When a dipole leaves away from the line (a stripe), finite energy \(\Delta V_{d-d} \) will be cost

\[\Delta V_{d-d} \sim -2q^2 r_0^2 \sum_{kk'} \frac{1}{|r_{kk'}|^2} + 2q^2 r_0^2 \sum_{k} \frac{1}{|r_k|^2} \]
\[= \frac{q^2 \pi^2}{24} (\delta r)^2, \]

(51)

where \(r_k = 2kr_0 \) and \(|r_{kk'}|^2 = |2r_k|^2 + (\delta r)^2 \). Thus the line shape configuration - stripe is stable against local perturbation.

It is easy to see that such a “stripe” of charge carriers is embedded in a domain wall of the AF background. To see this, we consider a stripe along the \(\hat{x} \)-axis composed of the hole-dipoles of a size \(|e| = r_0 \) and spaced by \(l = \alpha |e| \). Far away from the \(\hat{x} \)-axis, the total spin twist summed from (14) is given by

\[\phi_i = \sum_k \phi_{ik} = \sum_k \frac{e_x y_{ik}}{r_{ik}} \]
\[\approx \frac{\pi}{\alpha} \text{sgn}(y_i), \]

(52)

when \(|y_i| \gg r_0 \sim a \). Here \(y_{ik} = y_i \) and \(x_{ik} = lk + x_i \) according to the definition. Thus a phase shift is found across the stripe with

\[\Delta \phi = \phi_{y>0} - \phi_{y<0} = 2 \cdot \frac{\pi}{\alpha} = \pi. \]

(53)

For a special case, \(\alpha = 2 \), the line becomes an antiphase domain wall

\[\Delta \phi = \phi_{y>0} - \phi_{y<0} = 2 \cdot \frac{\pi}{\alpha} = \pi. \]

(54)

Namely, a stripe composed of hole-dipoles is topologically an antiphase domain wall.

From (54), we can also understand physically the reason why the holes tend to arrange themselves into a straight line. When the hole-dipoles are distributed randomly in the AF background, each dipole induces a spin twist as described by (14), which costs additional energy. But when the hole-dipoles form a stripe, the total twist spins away from the domain wall will be cancelled out such that the spin ordering on either side of the domain wall becomes unfrustrated, just like at half-filling.

Yet there is a further advantage in the formation of the stripe, i.e., the kinetic energy of the holes can be gained. Recall that an isolated hole-dipole cannot move freely as it is self-trapped in real space. But when the hole-dipoles
FIG. 8: When \(n \to \infty \), the regular polygon shown in Fig.6 turns into a line. The distance between the centers of neighboring dipoles is \(2r_0 \).

FIG. 9: When more holes are doped to occupy a certain concentration of the lattice grid, parallel lines are formed to make the stripe phase.

arrange themselves into a straight line, the individual holes actually may move freely along the stripe such that a delocalization energy can be gained. This will correspond to a metallic stripe case.

With a further increase of doping, more stripes will be formed as shown in Fig. 9. For any two adjacent stripes, without the spin frustration inside the domain between them, they will not gain additional energy by being closer. Under a long-range Coulomb repulsion, a uniform stripe phase will be stable against a cluster formation. In this uniform stripe phase, the distances between two neighboring stripes are the same, which obviously is determined by the hole concentration. It should be noticed that the recently found "checkerboard" pattern in the LDOS by the STM in the cuprate may display a new kind of CDW order\(^{27}\). Its possibility in the framework of the above mentioned dipole picture is under further exploration when the long-range Coulomb repulsion is considered more carefully.
FIG. 10: When a hole and a Zn$^{2+}$ are doped into the AF background simultaneously, they would like to attract each other and form a Zn$^{2+}$-holon dipole. H denotes the holon, while Zn denotes the Zn$^{2+}$.

IV. THE EFFECTS OF ZN-IMPURITIES

As emphasized before, the stripe formation is intimately related to the self-localization of individual hole-dipoles. We also have mentioned that disorder or impurities in the system may have an “amplified” effect on localization.

In the following we discuss the effect of Zn impurities on hole-dipoles as well as the stripe phase. It is well known that doped Zn atoms will be present in the form of Zn$^{2+}$ with a closed-shell structure, substituting the Cu$^{2+}$ sites in the CuO$_2$ planes of the cuprates. In the t-J model, the site occupied by the Zn$^{2+}$ may be imposed by a boundary condition of an “empty” site where no electron or hole can stay there at low energy.

Let us examine how a Zn impurity and a hole-dipole will interact. Inside a hole-dipole, those spins on a loop circling the center of the antimeron will have a 2π rotation in their polarization directions. As the radius of such a loop shrinks continuously to the antimeron core, the spin polarization directions will change quickly and becomes uncertain at the core site. So a spin at the core site of the antimeron will just like a “defect” spin19, and the bonds which connect the core spin with its surrounding spins can be thus viewed to be effectively “cut off”, resulting an energy increase roughly $\sim 4J'$ (J' denotes the average superexchange energy for one bond). On the other hand, when a Zn$^{2+}$ is doped and replaces a normal Cu$^{2+}$ site, the bonds which used to connect such a Cu$^{2+}$ with its surroundings are cut off with an energy cost approximately $\sim 4J'$. But, if such a Zn$^{2+}$ is to replace the Cu$^{2+}$ sitting at the core of the antimeron of a hole-dipole, no additional superexchange energy will be cost by breaking up those four bonds connected to the impurity site. Therefore, it will be energetically favorable for a hole-dipole to be trapped by a Zn impurity. As shown in Fig.10, a Zn impurity locates at the center of the antimeron. Experimentally, there is evidence28 that doped holes are indeed trapped by the Zn impurities.

According to the above discussions, a large number of Zn impurities will not favor the stripe formation, for they tend to trap hole-dipoles around themselves. The random distribution of the Zn leads to the random distribution of the hole-dipoles. If the Zn concentration is very low, then a stripe is expected to be easily pinned by a Zn, and be bent in order to pass several zics, as shown in Fig.11. From the transport measurements29 and also from the muon-spin-relaxation (μSR) measurements30, it is found that a small amount of Zn impurities are effective for the pinning. So we predict that Zn impurities are very effective in destroying a stripe phase at low doping.

V. CONCLUSION

In this paper, it is shown that in the framework of the phase-string model, each hole doped into a spin ordered phase at low doping will act as a dipole which is self-trapped in real space. With the suppression of the kinetic energy, the dipole-dipole interaction between hole-dipoles will dominate the low-energy physics in the absence of disorder or impurities. We demonstrated in detail how a few hole-dipoles collapse into a stable configuration of the regular polygon, which turns into a stripe (stripes) in thermodynamic limit. Consequently, we found that at a finite
FIG. 11: A stripe in the presence of the Zn$^{2+}$. The stripe has to pass the Zn$^{2+}$, and so is pinned.

concentration of holes at low doping, a uniform stripe phase is highly competitive. The effects of impurities are also discussed. When a Zn$^{2+}$ is doped into the system, it generally tends to trap a hole around itself to form a Zn$^{2+}$-holon dipole. As a result, the stripe will be pinned near the Zn$^{2+}$ site. Further more, we predicted that a finite concentration of zincons can easily kill a uniform stripe phase.

Acknowledgments

We acknowledge stimulating discussions with Z. Y. Weng. This work is partially supported by NSFC grant no. 90103021, no. 10247002, and no. 10204004. S. P. Kou acknowledges the support from Beijing Normal University.

* Electronic address: fyang@castu.tsinghua.edu.cn

1 J.M.Tranquada, et al, Nature.375, 561(1995); J.M.Tranquada, et al, Phys. Rev. B 54,7489(1996).
2 Bianconi, Phys. Rev. B 54, 12018; M.V. Zimmermann, et al, Europhys. Lett. 41, 629 (1998)
3 S-W. Cheong, et al, Phys. Rev. Lett. 67, 1791(1991); T.E.Mason, et al, Phys. Rev. Lett. 68, 1414(1992); K.Yamada, et al, Phys. Rev. Lett. 75, 1626(1995).
4 P. Dai, et al, Phys. Rev. Lett. 80,1738(1998).
5 F.C. Chou, et al, Phys. Rev. Lett. 71, 2323(1993).
6. F. Borsa, et al, Phys. Rev. B 52, 7334 (1995).
7 J.H. Cho, Phys. Rev. Lett. 70, 222(1993).
8 B. W. Statt, Phys. Rev. B 52, 15575 (1995); N. J. Curro, et al, Phys. Rev. Lett. 85, 642(2000).
9 J.Zaanen, O.Gunnarsson, Phys. Rev. B 40, 7391(1989).
10 S.R. White and D.J. Scalapino, Phys. Rev. Lett. 80, 1272 (1998); 81, 3227 (1998); 84, 3201 (2000); C.S. Hellberg and E. Manousakis, Phys. Rev. Lett. 83, 132 (1999); 84, 3022 (2000).
11 J.Zaanen, Nature 403, 714(2000); Science 286, 251(1999).
12 G. Kotliar and J. Liu, Phys. Rev. B. 38, 5142 (1988).
13 D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).
14 Shraiman and E. D. Siggia, Phys. Rev. Lett. 62, 1564 (1989); 61, 467 (1988), C. Jayaprakash et al., Phys. Rev. B 40, 2610 (1989); D. Yoshioka, J. Phys. Soc. Jpn. 58, 1516 (1989); C. L. Kane et al., Phys. Rev. B 41, 1563 (1990).
15 Z. Y. Weng, et al, Phys. Rev. B. 55, 3894(1997)
16 W. Marshall, Proc. R. Soc. London Ser. A 232, 48 (1955).
17 Z. Y. Weng, et al, Phys. Rev. B. 59, 8943(1999).
18 Su-Peng Kou and Zheng-Yu Weng, Phys. Rev. Lett. 90, 157003(2003)
S. P. Kou and Z.Y. Weng, Phys. Rev. B 67, 115103 (2003).

A. Aharony, et al, Phys. Rev. Lett. 60, 1330 (1988).

A. Cherepanov, et al, arXiv:cond-mat/9808235.

J.R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Rev. B 39, 11663 (1989); D.M. Frenkel and W. Hanke, Phys. Rev. B 42, 6711 (1990).

A. Aharony, et al, Phys. Rev. Lett. 60, 1330 (1988).

A. Cherepanov, et al, arXiv:cond-mat/9808235.

J.R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Rev. B 39, 11663 (1989); D.M. Frenkel and W. Hanke, Phys. Rev. B 42, 6711 (1990).

A. Cherepanov, et al, arXiv:cond-mat/9808235.

J.R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Rev. B 39, 11663 (1989); D.M. Frenkel and W. Hanke, Phys. Rev. B 42, 6711 (1990).

A. Cherepanov, et al, arXiv:cond-mat/9808235.

J.R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Rev. B 39, 11663 (1989); D.M. Frenkel and W. Hanke, Phys. Rev. B 42, 6711 (1990).

A. Cherepanov, et al, arXiv:cond-mat/9808235.