Magnetic Exchange Interactions in Binuclear and Tetranuclear Iron(III) Complexes Described by Spin-Flip DFT and Heisenberg Effective Hamiltonians: Supplemental Information

Saikiran Kotaru, Sven Kähler, Maristella Alessio, and Anna I. Krylov
Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482

Contents

1. Multiple-center molecular magnets: Mayhall’s approach 2
2. Structures of mononuclear Fe(III) systems 9
3. Natural orbitals in mononuclear Fe(III) systems 10
4. Natural orbitals in binuclear Fe(III) systems 13
5. Magneto-structural correlations 16

References 17

Relevant Cartesian coordinates 20
1. MULTIPLE-CENTER MOLECULAR MAGNETS: MAYHALL’S APPROACH

For strongly correlated systems that are well described by the Heisenberg model, Mayhall and Head-Gordon proposed to parameterize the Heisenberg-Dirac-van Vleck (HDvV) Hamiltonian using single spin-flip (1SF) methods in which a single spin-flipping excitation operator from the highest spin state generates a manifold of adjacent spin states\[^1\ 2\]. For systems with two radical centers, the Landé interval rule can be used to obtain the J parameter from a 1SF calculation using energies alone. For systems with multiple radical centers, J parameters can be obtained by fitting of energy levels. However, without considering the wave functions it is difficult to judge whether the fit correctly represents the underlying interactions. Mayhall and Head-Gordon introduced an effective Hamiltonian-based approach to parameterize the HDvV spin Hamiltonian for systems with an arbitrary number of radical centers and unpaired electrons using energies and wave functions from 1SF calculations.

Effective Hamiltonian theory provides an effective tool to parameterize phenomenological models like the HDvV Hamiltonian by mapping states of the \textit{ab initio} electronic Hamiltonian onto the states of the model Hamiltonian. To do so, one computes a set of energies and the corresponding eigenfunctions of the many-body electronic Hamiltonian, which correspond to electronic states whose properties the model is to capture. The effective Hamiltonian is then defined such that the computed electronic states are mapped onto the states of a model Hamiltonian that have the same energies as the full Hamiltonian. Via this connection between the model states and electronic wave functions, matrix elements of the effective Hamiltonian can be interpreted as the interactions between effective local spins.

The HDvV Hamiltonian describes the low-energy part of the spectrum under the assumption that the respective states are dominated by the neutral configurations. For a system with M radical centers, one computes the M lowest energy 1SF excitations starting from the reference state with maximum spin projection S at each site thus an overall spin projection of $S \times M$. By localizing all partially occupied molecular orbitals and transforming the excited-state solution vectors to this local orbital basis, one can verify that the obtained solutions are predominantly neutral and assign each partially occupied orbital to a specific radical site.

If the 1SF states are indeed not ionic, the flipped spin of that state is located at a specific radical site, which can be interpreted as a local $S-1$ spin. Determinants of the partially occupied orbitals at that site I are used to define a local $S-1$ spin function $|\Psi_I^{S-1}\rangle$. If the
M lowest energy SF excitations each result in a local SF at a different radical site, one obtains a local $S - 1$ spin functions at each site. The $|\Psi^{S-1}\rangle$ functions are then used as the basis for representing the effective Hamiltonian. Following the approach of des Cloizeaux3, the local spin functions are orthonormalized to form the orthonormalized spin functions $|\tilde{\Psi}_I^{ON}\rangle$. One then defines the effective Hamiltonian via the spectral representation:

$$\hat{H}^{\text{eff}} = \sum_I |\tilde{\Psi}_I^{ON}\rangle E_I \langle \tilde{\Psi}_I^{ON}|,$$ \hspace{1cm} (1)

where E_I refers to the energy of the single SF excitation that resulted in $(S - 1)$ spin at site I. Each of these states thus maps onto one specific vector of model spin states in which all but one site have maximum spin projection S and one site has the projection $(S - 1)$. By this construction, the energy differences between two 1SF excited states result from the coupling between their local spin functions and the off-diagonal matrix elements of the effective Hamiltonian represented in the basis of local spin functions provide the exchange coupling parameters J_{IJ} for the HDvV Hamiltonian.

Fig. S1: Flowchart of the protocol. H^{HDvV} is the Heisenberg-Dirac-van Vleck Hamiltonian and $|\tilde{\Psi}_I^{ON}\rangle$ are the local spin functions.

FIG. S1: Flowchart of the computational protocol we apply to compute J couplings of tetranuclear iron (III) compounds. The first step requires a simple 1SF calculation from the high-spin reference state. The next step is parameterization of the HDvV Hamiltonian, as prescribed by Mayhall and Head-Gordon2; it requires eigenstates and energies, and provides all J-values. Mayhall’s approach is implemented as a post-processing Python script (available within the ezMagnet module 4). The script reads the raw data from the Q-Chem output (energies and projected eigenvectors) and provides the J-values. Therefore, two separate calculations need to be performed: 1) 1SF calculation using Q-Chem and 2) construct the effective Hamiltonian by executing the Python script in which Mayhall’s approach of Ref. 2 is implemented. For additional details about Mayhall’s approach, see Refs. 1 2 and ezMagnet.
The following example illustrates the assignment of exchange parameters J_{AB} from the effective Hamiltonian for the (Fe)$_4$ YAYPOD complex. The section of the Q-Chem input below contains the keywords used to compute the four lowest energy SF-TDDFT states and request the partially occupied orbitals of the respective eigenvectors to be localized; the molecular geometry is given in Section 5. Any ionic determinants, i.e. those that move charges between radical centers, are projected out and only the neutral determinant coefficients are kept.

$comment
Spin-flip calculation for building effective spin models
$end

$rem
BASIS = 6-31G(d,p)
CIS_N_ROOTS = 4 [Sets the number of CI-Singles (CIS) roots]
EXCHANGE = LRC-wPBEh
WANG_ZIEGLER_KERNEL = TRUE [non-collinear exchange-correlation kernel SF-DFT]
MEM_TOTAL 230000 [Sets the total memory in megabyte]
SCF_MAX_CYCLES = 500 [the maximum number of SCF iterations permitted]
MAX_CIS_CYCLES = 150 [Maximum number of CIS iterative cycles allowed]
SPIN_FLIP = 1 [spin flip dft used]
SCF_CONVERGENCE = 7 [decreased criterion for convergence]
SCF_ALGORITHM = diis_gdm
$end

$development
1sf_heis_projection 1 [Requests eigenvectors projected onto local orbitals]
$end

The combined weight of the neutral coefficients for each eigenvector is listed, which can be used as an additional check for the assumptions that ionic configurations can be neglected. The weights for our example YAYPOD complex is printed below

\[
\begin{bmatrix}
9.731619E-01 & 9.803481E-01 & 9.845902E-01 & 9.986758E-01 \\
\end{bmatrix}
\]

as well as the energies in Hartrees

\[
\begin{bmatrix}
-4.902195E-03 & -3.549901E-03 & -2.509316E-03 & -1.136423E-03 \\
\end{bmatrix}
\]

and the projected eigenvector coefficients

\[
\begin{bmatrix}
-2.357448E-01 & -1.451038E-01 & 2.445182E-01 & 2.432505E-01 \\
-2.560876E-01 & -1.563791E-01 & 2.499574E-01 & 2.444646E-01 \\
-1.726807E-01 & 2.247644E-01 & -2.558274E-01 & 2.249857E-01 \\
\end{bmatrix}
\]
In addition to the projected vectors, the calculation lists for each of the neutral determinants which radical center the localization procedure has assigned it to. For our example this list reads

```
2 2 3 2 2 0 2 0 1 3 1 3 1 0 0 3 3 1 0 1
```

with labels 0-3 indicating one of the four radical centers. The projected eigenvectors are then sorted according to the radical center and the vectors are orthonormalized to yield the orthonormalized projected eigenvectors \tilde{b}. A determinant-wise effective Hamiltonian $\tilde{H}_{\text{det}}^{\text{eff}}$ is constructed
as an intermediate for defining local spin functions. The determinant-wise effective Hamiltonian is defined via the spectral representation

\[H^{\text{eff}}_{\text{det}} = \sum_i^M \tilde{b}_i E_i \tilde{b}_i^T, \]

where \(\tilde{b}_i \) are the orthonormalized projected eigenvector and the \(E_i \) are the energies of the excitation localized at radical center \(i \). The resulting effective Hamiltonian matrix then reads

\[
\begin{bmatrix}
-2.001038E-01 & -1.966752E-01 & -1.964967E-01 & -2.021006E-01 & -2.054433E-01 \\
-1.304710E-05 & -7.746025E-04 & -1.062858E-03 & -5.464950E-04 \\
6.060696E-03 & 1.471196E-03 & 2.626110E-03 \\
-4.62224E-03 & -2.15807E-03 & -2.43947E-03 \\
-3.018491E-03 & 1.177874E-03 & -8.698211E-04
\end{bmatrix}
\]
Each of the 5 × 5 sub-block matrices that describe effective interactions within a specific radical site is then diagonalized. Since only one SF excited state is located on each site and the matrix is thus rank deficient each diagonal block only yields one non-zero eigenvalue. The
resulting eigenvectors of this block-diagonalization are a linear combination of local SF excited determinants that can be interpreted a local spin function. Only the local spin functions that correspond to non-zero eigenvalues are kept and all others projected out. The remaining eigenvectors are orthonormalized yet again to restore orthonormality after the projection. The final effective Hamiltonian is then constructed from the spectral representation in the basis of the orthonormalized local spin functions $|\tilde{\Psi}^{ON}_I\rangle$ as defined in equation [1]. The resulting effective Hamiltonian matrix is printed below:

$$
\begin{bmatrix}
-1.001885E+00 & 2.152256E-05 & 6.327713E-04 & 1.040924E-03 \\
2.152256E-05 & -1.002200E+00 & 1.335355E-03 & 6.852854E-04 \\
6.327713E-04 & 1.335355E-03 & -1.001802E+00 & 4.339833E-05 \\
1.040924E-03 & 6.852854E-04 & 4.339833E-05 & -1.001665E+00
\end{bmatrix}
$$

The exchange coupling parameters are then obtained from the off-diagonal matrix element that corresponds to the pair of radical sites via

$$J_{AB} = -\frac{H_{AB}^{\text{off}}}{2\sqrt{S_A S_B}}. \quad (3)$$
2. STRUCTURES OF MONONUCLEAR Fe(III) SYSTEMS

FIG. S2: Model mononuclear Fe (III) systems: [Fe(Cl)$_6$]$^{3-}$ (left), a monomer unit built from ABIZOA complex (center), and [Fe(CN)$_6$]$^{3-}$ (right).
3. NATURAL ORBITALS IN MONONUCLEAR Fe(III) SYSTEMS

FIG. S3: Frontier α and β natural orbitals of the lowest hextet (left) and quartet state (right) in [Fe(Cl)$_6$]$^{3-}$ with their occupations.
FIG. S4: Frontier α and β natural orbitals of the lowest hextet (left) and quartet state (right) in ABI-m with their occupations.
FIG. S5: Frontier α and β natural orbitals of the lowest hextet (left) and quartet state (right) in $\text{[Fe(CN)$_6$]}^{3-}$ with their occupations.
4. NATURAL ORBITALS IN BINUCLEAR Fe(III) SYSTEMS

FIG. S6: Frontier α and β natural orbitals of the lowest $S = 4$ state in complex 2 with their occupations.
FIG. S7: Frontier α and β natural orbitals of the lowest $S = 4$ state in complex 7 with their occupations.
FIG. S8: Frontier α and β natural orbitals of the lowest $S = 4$ state in complex 12 with their occupations.
5. MAGNETO-STRUCTURAL CORRELATIONS

TABLE S1: Structural (from experiments of Refs. [5 20]) and magnetic data of this work (LRC-ωPBEh/6-31G(d,p)) for the 16 complexes under study.

Complex	J (cm$^{-1}$)	Fe–Fe (Å)	Fe-O-Fe (°)
1	-7.1	3.34	103.8
2	-16.6	3.17	104.4
3	-15.7	3.09	102.7
4	-20.4	3.20	107.3
5	-106.8	3.45	151.6
6	-91.9	3.45	143.7
7	-100.7	3.62	180.0
8	-105.4	3.20	125.5
9	-109.8	3.11	119.8
10	-124.7	3.15	123.6
11	-123.1	3.11	121.4
12	-119.4	3.15	123.9
13a	-10.9	3.10	102.6
14a	-11.3	3.10	102.0
15a,b	-43.5	3.40	127.9
16a,b	-40.6	3.40	133.2

a Average J values, average Fe–Fe distances, and average Fe-O-Fe bond angles. b Only dominant wing-body exchange interaction is considered.

FIG. S9: Left: Plot of the Fe–Fe distance vs the exchange interactions (J) for the 16 complexes under study. Right: Plot of the (Fe-O-Fe) bond angle vs the exchange interactions (J) for the 16 complexes under study.
[1] N. J. Mayhall and M. Head-Gordon, Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required, J. Chem. Phys. 141, 134111 (2014).
[2] N. J. Mayhall and M. Head-Gordon, Computational quantum chemistry for multiple-site Heisenberg spin couplings made simple: Still only one spin-flip required, J. Phys. Chem. Lett. 6, 1982 (2015).
[3] J. des Cloizeaux, Extension d’une formule de lagrange à des problèmes de valeurs propres, Nucl. Phys. 20, 321 (1960).
[4] M. Alessio and A. I. Krylov, Equation-of-motion coupled-cluster protocol for calculating magnetic properties: Theory and applications to single-molecule magnets, J. Chem. Theory Comput. 17, 4225 (2021).
[5] Y. Yahsi, H. Kara, L. Sorace, and O. Buyukgungor, Mono- and dinuclear Fe(III) complexes with the N$_2$O$_2$ donor 5-chlorosalicylideneimine ligands; synthesis, x-ray structural characterization and magnetic properties, Inorg. Chim. Acta 366, 191 (2011).
[6] F. Banse, V. Balland, C. Philouze, E. Riviere, L. Tchertanova, and J.-J. Girerd, Mono- and dinuclear Fe(III) complexes with the tridentate N-ethyl-N-(2-aminoethyl)salicylaldiminato ligand. X-ray structures, magnetic and spectroscopic properties, Inorg. Chim. Acta 353, 223 (2003).
[7] N. Bouslimani, N. Clément, G. Rogez, P. Turek, M. Bernard, S. Dagorne, D. Martel, H. N. Cong, and R. Welter, Synthesis and magnetic properties of new mono- and binuclear iron complexes with salicyloylhydrazono dithiolane ligand, Inorg. Chem. 47, 7623 (2008).
[8] E.-Q. Gao, L.-H. Yin, J.-K. Tang, P. Cheng, D.-Z. Liao, Z.-H. Jiang, and S.-P. Yan, Synthesis, crystal structure and magnetic properties of a new dialkoxo-bridged diiron(III) complex, Polyhedron 20, 669 (2001).
[9] F. E. Mabbs, V. N. McLachlan, D. McFadden, and A. T. McPhail, Magnetic properties and crystal and molecular structure of μ-oxo-bis[bis-(2-methyl-8-hydroxyquinolinato)iron(III)]-chloroform, J. Chem. Soc., Dalton Trans., 2016 (1973).
[10] A. Jozwiuk, A. L. Ingram, D. R. Powell, B. Moubaraki, N. F. Chilton, K. S. Murray, and R. P. Houser, Redox and acid-base properties of asymmetric non-heme (hydr)oxo-bridged diiron complexes, Dalton Trans. 43, 9740 (2014).
[11] J. W. Shin, S. R. Rowthu, J. E. Lee, H. I. Lee, and K. S. Min, Syntheses, structures and magnetic
properties of dinuclear oxo-bridged iron(III) complexes, Polyhedron 33, 25 (2012).

[12] R. E. Norman, R. C. Holz, S. Menage, L. Que, J. J. Zhang, and C. J. O'Connor, Structures and properties of dibridged (μ-oxo)diiron(III) complexes. Effects of the Fe-O-Fe angle, Inorg. Chem. 29, 4629 (1990).

[13] J. R. Hartman, R. L. Rardin, P. Chaudhuri, K. Pohl, K. Wieghardt, B. Nuber, J. Weiss, G. C. Papaefthymiou, R. B. Frankel, and S. J. Lippard, Synthesis and characterization of (μ-hydroxo)bis(μ-acetato)diiron(II) and (μ-oxo)bis(μ-acetato)diiron(III) 1,4,7-trimethyl-1,4,7-triazacyclononane complexes as models for binuclear iron centers in biology; properties of the mixed valence diiron(II,III) species, J. Am. Chem. Soc. 109, 7387 (1987).

[14] W. H. Armstrong, A. Spool, G. C. Papaefthymiou, R. B. Frankel, and S. J. Lippard, Assembly and characterization of an accurate model for the diiron center in hemerythrin, J. Am. Chem. Soc. 106, 3653 (1984).

[15] W. Ghattas, Z. Serhan, N. E. Bakkali-Taheri, M. Réglier, M. Kodera, Y. Hitomi, and A. J. Simaan, Synthesis and characterization of a binuclear iron(III) complex bridged by 1-aminocyclopropane-1-carboxylic acid. Ethylene production in the presence of hydrogen peroxide, Inorg. Chem. 48, 3910 (2009).

[16] J. B. Vincent, J. C. Huffman, G. Christou, Q. Li, M. A. Nanny, D. N. Hendrickson, R. H. Fong, and R. H. Fish, Modeling the dinuclear sites of iron biomolecules: synthesis and properties of Fe₂O(OAc)₂Cl₂(bipy)₂ and its use as an alkane activation catalyst, J. Am. Chem. Soc. 110, 6898 (1988).

[17] A. Cornia, L. Gregoli, C. Danieli, A. Caneschi, R. Sessoli, L. Sorace, A.-L. Barra, and W. Wernsdorfer, Slow quantum relaxation in a tetrairon(III) single-molecule magnet, Inorg. Chim. Acta 361, 3481 (2008).

[18] C. Schlegel, E. Burzurí, F. Luis, F. Moro, M. Manoli, E. K. Brechin, M. Murrie, and J. van Slageren, Magnetic properties of two new Fe₄ single-molecule magnets in the solid state and in frozen solution, Chem. Eur. J. 16, 10178 (2010).

[19] J. K. McCusker, J. B. Vincent, E. A. Schmitt, M. L. Mino, K. Shin, D. K. Coggin, P. M. Hagen, J. C. Huffman, G. Christou, and D. N. Hendrickson, Molecular spin frustration in the [Fe₈O₂]₈⁺ core: synthesis, structure, and magnetochemistry of tetranuclear iron-oxo complex [Fe₄O₂(O₂CR)₇(bpy)₂](ClO₄) (R = Me, Ph), J. Am. Chem. Soc. 113, 3012 (1991).

[20] P. Chaudhuri, M. Winter, P. Fleischhauer, W. Haase, U. Flörke, and H. J. Haupt, Synthesis,
structure and magnetism of a tetranuclear Fe(III) complex containing an $[\text{Fe}_4(\mu_3-O)_2]^{8+}$ core, Inorg. Chim. Acta \textbf{212}, 241 (1993).
$comment
Mononuclear [Fe(C16)]3-
Nuclear Repulsion Energy = 1225.87573647 hartrees
$end

$molecule
-3 6
Fe 7.9990000 0.0000000 0.0000000
Cl 8.4542230 -0.0867750 2.3466300
Cl 6.2891580 1.6202820 0.4101720
Cl 6.3995100 -1.7566430 0.2466030
Cl 7.5437770 0.0867750 -2.3466300
Cl 9.7088420 -1.6202820 -0.4101720
Cl 9.5984900 1.7566430 -0.2466030
$end

$comment
Mononuclear [Fe(CN6)]3-
Nuclear Repulsion Energy = 918.53715700 hartrees
$end

$molecule
-3 6
Fe 7.9990000 0.0000000 0.0000000
Cl 8.4542230 -0.0867750 2.3466300
Cl 6.2891580 1.6202820 0.4101720
Cl 6.3995100 -1.7566430 0.2466030
Cl 7.5437770 0.0867750 -2.3466300
Cl 9.7088420 -1.6202820 -0.4101720
Cl 9.5984900 1.7566430 -0.2466030
$end

$comment
Mononuclear ABI-m
Nuclear Repulsion Energy = 3757.36986576 hartrees
$end

$molecule
0 6
O 0.0889923 -0.4542899 -1.5130300
C -0.7540485 -0.3777152 -2.6105235
H -1.1192011 0.6680888 -2.7024958
H -0.1199328 -0.5483976 -3.5085264
Fe -0.2037531 -1.7030953 0.0357681
N -0.4369491 -3.2517367 -1.2717061
N -0.3062356 -2.9013332 1.5839169
N -2.2279851 -1.7408506 0.0954634
N 1.7456780 -2.0541891 0.1480624
O -0.0017983 -0.1698386 1.1326195
N -1.0630873 -3.1299327 -2.3121113
N -1.6968562 -3.0002627 -3.3456193
N -3.8683536 -3.1253945 0.8528112
H -4.3406848 -3.9368091 1.3124064
N 3.3289137 -3.3832510 1.0351028
H 3.7808280 -4.1247413 1.6150442
C -1.5090700 -3.7245400 1.4767507
H -1.8279698 -4.0635343 2.4885234
H -1.3439687 -4.6181015 0.8390981
C -2.5559455 -2.8535800 0.8270518
C -3.4309710 -1.2914090 -0.3436939
C -3.7613722 -0.2514483 -1.2086316
H -3.0237744 0.4276987 -1.5878035
C -5.1128286 -0.1307023 -1.6069905
H -5.4032426 0.6473030 -2.2978605
C -6.0953245 -1.0326892 -1.1364558
H -7.1227773 -0.9481135 -1.4661129
C -5.7451691 -2.0619072 -0.2571035
H -6.4755203 -2.7828301 0.0942053
C -4.4111736 -2.1623131 0.1065255
C 0.9737044 -3.5970785 1.8872303
H 0.9118514 -4.6682252 1.6060417
H 1.2683186 -3.5589306 2.9611649
C 2.0406563 -2.9955907 1.0565779
C 2.8938533 -1.8735843 -0.5432577
C 3.1479633 -1.1709411 -1.7245039
H 2.4031499 -0.5629628 -2.2104570
C 4.4176788 -1.3367334 -2.3226669
H 4.6434896 -0.8410186 -3.2574240
C 5.3921236 -2.1781023 -1.7372446
H 6.3507337 -2.3205096 -2.2199091
C 5.1116160 -2.8704904 -0.5508098
H 5.8271816 -3.5579218 -0.1161968
C 3.8497366 -2.7045404 0.0037186
C 0.3171561 -0.6457357 2.4097353
H 1.4051839 -0.8358483 2.4874648
H 0.0552686 0.1224664 3.1715015
C -0.5031620 -1.8908061 2.6738960
H -1.5531655 -1.5209258 2.6981165
H -0.3311532 -2.3034043 3.6948406
H -1.5615461 -1.0735269 -2.5172842

$end
$comment
Complex 1: ELISAU structure
Nuclear Repulsion Energy = 12055.75290518 hartrees
$end

$molecule
0 11
Fe 3.6679240 3.3870920 0.7226550
O 4.2880550 3.9436490 -1.0914920
O 2.0649090 4.3613300 0.9568810
N 5.6394150 2.5854990 0.9077980
N 3.5207530 2.8228110 2.7748080
Cl 2.6761840 1.4458820 0.0090800
Cl 6.9095920 0.2811050 -4.8668660
Cl -1.0249530 6.3237400 5.5169760
C 4.8318420 3.0258850 -1.9194070
C 4.5208290 3.0514690 -3.2765630
H 3.8907140 3.6607980 -3.5867710
C 5.1273760 2.1921000 -4.1711090
H 4.8946540 2.2112330 -5.0715440
C 6.0819600 1.3033900 -3.7174550
C 6.4060190 1.2337420 -2.3798090
H 7.0470360 0.6267860 -2.0884990
C 5.7730490 2.0736570 -1.4601090
C 6.2523450 2.0717920 -0.0858960
H 7.0709680 1.6635210 0.0809880
C 6.3420290 2.7219900 2.1856840
H 6.2872620 3.6467120 2.4713500
H 7.2794450 2.5120720 2.0480050
C 5.8013910 1.8292160 3.3090810
C 6.4365180 0.4376000 3.2408550
H 6.0131330 -0.1385780 3.8812710
H 7.3733970 0.5032110 3.4395200
H 6.3207940 0.0751300 2.3584580
C 6.1473250 2.4921080 4.6434140
H 5.7022050 3.3407670 4.7034180
H 7.0962170 2.6234800 4.6951000
H 5.8596670 1.9282790 5.3648170
C 4.2851220 1.6246480 3.1691930
H 4.1284820 0.9298240 2.5106170
H 3.9390000 1.3049580 4.0174780
C 2.6300800 3.2595800 3.5947470
H 2.6238080 2.8875540 4.4469570
C 1.6381320 4.2749080 3.3154620
C 0.8751210 4.7573640 4.3956650
H 1.0433100 4.4528540 5.2580610
C -0.1177770 5.6788630 4.1735630
C -0.4350250 6.1021380 2.8862280
H -1.1212730 6.7144370 2.7498980
C 0.2772480 5.6061700 1.8169450
H 0.0371320 5.8558390 0.9534450
C 1.3592610 4.7308100 2.0051800
Fe 5.3529130 5.8839430 -0.7226550
O 4.7327810 5.3273860 1.0914920
O 6.9559270 4.907050 -0.9568810
N 3.3814210 6.6855360 -0.9077980
N 5.5000830 6.4482240 -2.7748080
Cl 6.346520 7.8251530 -0.0090800
Cl 2.1112440 8.9899300 4.8668660
Cl 10.045790 2.9472950 -5.5169760
C 4.1889950 6.2451500 1.9194070
C 4.5003770 6.2195660 3.2765630
H 5.1301220 5.6102370 3.5867710
C 3.8934600 7.0789350 4.1711090
H 4.1261820 7.0598020 5.0715440
Cl 2.9388760 7.9676450 3.7174550
C 2.6148170 8.0372920 2.3798090
H 1.9738000 8.6442490 2.0884990
C 3.2477870 7.1973770 1.4601090
C 2.7684910 7.1992430 0.0858960
H 1.9498680 7.6075140 -0.0809880
C 2.6788070 6.5490450 -2.1856840
H 2.7335740 5.6243230 -2.4713500
H 1.7413910 6.7583330 -2.0480050
C 3.2194450 7.4418180 -3.3090810
C 2.5843180 8.8334350 -3.2408550
H 3.0077040 9.4096130 -3.8812710
H 1.6474390 8.7678240 -3.4395200
H 2.7000420 9.1953220 -2.3584580
C 2.8735110 6.7789270 -4.6434140
H 3.3186310 5.9302680 -4.7034180
H 1.9246190 6.6475550 -4.6985100
H 3.1611690 7.3427560 -5.3648170
C 4.7357140 7.6463870 -3.1691930
H 4.8923540 8.3412110 -2.5106170
H 5.0813600 7.9660770 -4.0174800
C 6.3907560 6.0114550 -3.5947470
H 6.3970290 6.3834810 -4.4469570
C 7.3827040 4.9961270 -3.3154620
C 8.1457150 4.5136710 -4.3956650
H 7.9775260 4.8181810 -5.2580610
C 9.1386130 3.5921720 -4.1735630
C 9.4558610 3.1688970 -2.8862280
H 10.1421090 2.5565980 -2.7498980
C 8.7435880 3.6648650 -1.8169450
Complex 2: BAZCOV structure
Nuclear Repulsion Energy = 6542.17529318 hartrees

$end

$molecule
0
11
Fe 6.1424250 0.2042960 1.4088310
Cl 7.9028810 1.4738330 2.2803370
O 6.0573340 0.9989700 -0.3754410
O 4.7532450 1.2487130 2.2242060
N 6.0651270 -1.0650990 3.0853030
N 7.6354570 -1.3401670 0.8661150
C 4.3942220 1.3563480 3.4960580
C 3.6421430 2.4819480 3.8930820
C 3.2358740 2.6303870 5.2004090
C 3.5561420 1.6799580 6.1445860
C 4.2705110 0.5824980 5.7840150
C 4.7369390 0.4024020 4.4643970
C 5.5184460 -0.7724430 4.1986150
C 6.8702170 -2.2870790 2.9756450
C 8.0638350 -1.9979400 2.1225400
C 8.7591220 -0.8948520 0.0260210
C 9.6408530 -2.0014570 -0.4850990
C 6.8470600 2.0359290 1.4088310
H 7.0095570 -1.9698000 0.4497850
H 3.4174170 3.1305750 3.2674480
H 2.7423770 3.3782070 5.4494640
H 3.2835110 1.7897040 7.0255700
H 4.4570430 -0.0668320 6.4215200
H 5.6351040 -1.3725280 4.8993130
H 6.3424540 -2.9976130 2.5779010
H 7.1558830 -2.5762170 3.8566290
H 8.6764520 -1.4189590 2.6020630
H 8.5277330 -2.8252560 1.9162340
H 9.3037560 -0.2778820 0.5408570
H 8.4039530 -0.4073270 -0.7341540
H 10.3160310 -1.6335270 -1.0594110
H 9.1101610 -2.6310900 0.9776320
H 10.0589540 -2.4460700 0.2564890
H 6.3550360 2.8597270 -0.8698330
H 7.0747850 1.8347280 -1.8102920
H 7.6490240 2.1224600 -0.3810160
Fe 4.7405750 -0.2042960 -1.4088310
Cl 2.9801190 -1.4738330 -2.2803370
O 6.1297550 -1.2487130 -2.2242060
N 4.8178730 1.0650990 -3.0853030
N 3.2475430 1.3401670 -0.8661150
C 6.4887780 -1.3563480 -3.4960580
C 7.2408570 -2.4819480 -3.8938020
C 7.6471260 -2.6303870 -5.2004090
C 7.3268580 -1.6799580 -6.1445860
C 6.6124890 -0.5824980 -5.7840150
C 6.1460610 -0.4024020 -4.4643970
C 5.3645540 0.7724430 -4.1986150
C 4.0127830 2.2870790 -2.9756450
C 2.8191650 1.9979400 -2.1225400
C 2.1238780 0.8948520 -0.0260210
C 1.2421470 2.0014570 0.4850990
C 4.0359400 -2.0359290 0.9014290
H 3.8734430 1.9698000 -0.4497850
H 7.4655830 -3.1305750 -3.2674480
H 8.1406230 -3.3782070 -5.4494640
H 7.5994890 -1.7897040 -7.0255700
H 6.4259570 0.0668320 -6.4215200
H 5.2478960 1.3725280 -4.8993130
H 4.5405460 2.9976130 -2.5779010
H 3.7271170 2.5762170 -3.8566290
H 2.2065480 1.4189590 -2.602630
H 2.3552670 2.8252650 -1.9162340
H 1.5792440 0.2778820 -0.5408570
H 2.4790470 0.4073270 0.7341540
H 0.5669690 1.6335270 1.0594110
H 1.7728390 2.6310900 0.9776320
H 0.8240460 2.4460700 -0.2564890
H 4.5279640 -2.8597270 0.8698330
H 3.8082150 -1.8347280 1.8102920
H 3.2339760 -2.1224600 0.3810160
$end

$comment
Complex 3: QOHVUF structure
Nuclear Repulsion Energy = 17862.42895125 hartrees
$end

$molecule
0 11
 Fe 7.7031670 0.0577830 4.6715320
 Fe 8.6142600 1.6093790 7.1775940
C 10.3078550 0.6459050 0.0785510
C 11.2451340 0.2422140 -0.8591510
H 12.0754760 -0.8279610 -0.5911780
H 12.6973370 -1.1160850 -1.2498600
C 11.0381470 -1.1097530 1.5393120
H 10.9637190 -1.5925990 2.3544830
C 10.3097640 -0.0459100 1.2883180
C 9.1285960 0.2802090 2.2761370
C 6.8279290 2.6501900 2.9612080
C 5.1673900 6.1157000 1.8287650
H 4.7643920 4.1619700 1.3685050
C 5.2383230 4.6907250 3.3056860
H 4.3019040 4.9741000 3.4591060
H 5.8395630 5.3556270 3.7270790
C 7.5734260 6.6933470 6.1531590
C 7.4808860 7.7841030 5.3021900
C 7.0633250 8.5851510 5.5947100
C 7.9976580 7.6986150 4.0318740
C 7.9330560 8.4458380 3.4488780
C 8.6114990 6.5366200 3.5900240
C 8.9716950 6.4891270 2.7124630
C 8.6956970 5.4490300 4.4409930
C 9.1094030 4.6495650 4.1382450
C 8.1808200 5.5044390 5.7407660
C 8.2597890 4.3107810 6.5925530
C 7.3528860 3.2326900 9.6908160
C 6.5272540 4.1192260 12.0035690
H 7.1489000 4.5783250 12.6233850
H 5.6059640 4.3598570 12.2776790
C 6.6851740 2.7577600 12.1569890
H 5.8040770 2.3683180 12.3881410
H 7.2873690 2.6010330 12.9261340
C 10.4011970 -2.2353370 10.2218530
C 10.2515710 -3.4812370 10.8437150
H 11.0143940 -4.0179080 11.0237270
C 8.9947040 -3.9245050 11.1914660
H 8.8968560 -4.7540490 11.6435440
C 7.8781300 -3.1725320 10.8846270
H 7.0142110 -3.4812370 11.1321440
C 8.0170800 -1.9709590 10.2167390
H 7.2436040 -1.4707000 9.9845640
C 9.2860870 -1.4833650 9.8794200
C 9.3959880 -0.2279660 9.1110930
C 11.5768090 2.2020920 8.2010070
Complex 4: ABIZOA structure

Nuclear Repulsion Energy = 10644.04975278 hartrees

$molecule

2 11

Fe 2.4918390 7.2964270 12.0883100
N 2.8937820 7.2085840 10.1280470
N 4.0830990 8.3563220 13.4083070
N 2.0886640 9.3407440 11.9202210
N 3.9585750 5.8688230 12.3692340
O 1.7647120 7.0176230 13.9621340
N 2.3743290 7.7208020 9.1937870
N 1.9033240 8.1601420 8.2711730
N 2.8842820 11.4004730 11.7998800
H 3.4216640 12.0652670 11.8943410
N 5.9196900 5.1544760 13.0731640
H 6.6902360 5.1587560 13.4535970
C 4.3767690 9.6551140 12.7639010
H 4.7025370 10.2884030 13.4212470
H 5.0535240 9.5448370 12.0793810
C 3.1218520 10.1398460 12.1673720
C 1.1167850 10.1484740 11.3353380
C 0.2816710 9.8727340 10.9251430
H 0.5401160 9.0173570 11.0001950
C 0.2816710 11.196180 11.283250
H 0.9132050 12.8606710 10.9067750
C 0.8776340 12.4935190 10.7012830

$end
Atom	x	y	z
H	1.2240100	13.3537180	10.6275260
C	1.6211090	11.4513110	11.2395830
C	5.3056260	7.5299400	13.6036990
H	6.0625440	7.9468430	13.1624490
H	5.5062170	7.4528380	14.5496050
C	5.0619620	6.1816980	13.0252870
C	4.1190680	4.5439230	11.9564520
C	3.2703310	3.7003560	11.2538170
H	2.4351720	3.9892880	10.9639630
C	3.7107820	2.4203210	11.0027830
H	3.1707910	1.8372040	10.5201250
C	4.9486220	1.9858150	11.4608550
H	5.2094660	1.1114360	11.2822840
C	5.7990270	2.7981700	12.1673720
H	6.6279480	2.5007480	12.4675780
C	5.3515770	4.0874090	12.4067600
C	2.5802590	7.3784010	15.0749640
H	3.1784520	6.6476880	15.3001180
H	2.0244110	7.5660050	15.8474750
C	3.3755600	8.5961180	14.7074710
H	2.7853910	9.3609940	14.6233620
H	4.0242210	8.7885460	15.4036370
Fe	0.0744590	6.0832360	13.7914570
N	-0.3274840	6.1710800	15.7517200
N	-1.5168010	5.0233420	12.4714600
N	0.4776340	4.0389200	13.9595460
N	-1.3922770	7.5108410	13.5105320
O	0.8015860	6.3620410	11.9176330
N	0.1919690	5.6588620	16.6859800
N	0.6629740	5.2195220	17.6085930
N	-0.3179840	1.9791910	14.0798870
H	-0.8553660	1.3143960	13.9854260
N	-3.3533920	8.2251880	12.8066030
H	-4.1239380	8.2209080	12.4261700
C	-1.8104710	3.7245500	13.1158660
H	-2.1362390	3.0912610	12.4585200
H	-2.4872270	3.8348270	13.8003860
C	-0.5555540	3.2398180	13.7123940
C	1.4495130	3.2311900	14.5444290
C	2.7479690	3.5069300	14.9546230
H	3.1064130	4.3623070	14.8795720
C	3.4792900	2.4733500	15.4748060
H	4.3514940	2.6330760	15.7543080
C	2.9544870	1.1880460	15.5964410
H	3.4795030	0.5189930	15.9729920
C	1.6886640	0.8861450	15.1784830
H	1.3422880	0.0259460	15.2522400
C	0.9451890	1.9283530	14.6401840
Complex 5: MHQINF structure
Nuclear Repulsion Energy = 8674.45767240 hartrees

$molecule
0 11
C 3.3668200 2.2302500 3.4757400
C 1.3207300 2.1449700 0.1893700
C 4.5516300 4.8386600 1.0780900
C 2.6550600 1.1545200 1.2364000
C 2.6798900 0.9030200 1.6902800
C 5.6422200 2.3627000 3.4436700
C 9.0069300 1.4905000 1.5600200
C 6.2845500 2.1726600 4.7171400
C 10.0649600 0.6471500 1.5640300
C 6.1412400 0.9957100 5.4094800
C 9.9667900 0.7178000 1.7353600
C 5.4177100 0.0200400 4.8544100
C 10.9563700 1.6350400 1.7513900
C 5.2330800 1.3378200 5.4716000
C 10.6892800 2.9228300 1.9217200
C 4.4322000 2.2970600 4.8453900
C 3.6746300 4.1428300 2.1211100
C 1.7598700 0.0231600 1.1071500
Complex 6: JOJGAS structure

Nuclear Repulsion Energy = 11591.38628089 hartrees

$end

$molecule
0 11
Fe 9.9100950 5.2055760 12.0047640
Fe 6.8617640 3.8723210 12.9327670
O 8.6220970 4.0267640 12.5159890
O 10.8483530 4.3441480 10.5050570
C 10.2228020 3.8447730 9.4354710
C 10.5251970 2.5717800 8.9360310
H 11.1843910 2.0469030 9.3753370
C 9.8866250 2.0565650 7.8193090
H 10.1092870 1.1881370 7.5037360
C 8.9217010 2.8060050 7.1587030
H 8.4749760 2.4529910 6.3981040
C 8.6188380 4.0780430 7.6259100
H 7.9567500 4.5906370 7.1779380
C 9.2656620 4.6186420 8.7389930
C 9.0333520 6.0357690 9.1536910
H 9.8810280 6.5373210 9.0582050
H 8.3737730 6.4423770 8.5383150
N 8.5418960 6.1914820 10.5504600
H 7.7832700 5.6902850 10.6040090
C 8.1235790 7.5964810 10.7989680
H 7.1728680 7.5881220 11.0753750
$end

$comment
Complex 7: FAJQEO structure
Nuclear Repulsion Energy = 9380.72884738 hartrees
$end
Atom	X	Y	Z
C	6.9797920	1.3988840	19.4123200
N	8.5156900	2.4577930	16.6347310
C	5.6640570	2.0924330	16.9880450
C	9.2138950	0.0000000	18.1186490
C	6.4234240	-0.9066000	17.8305620
N	5.8640570	2.0924330	16.9880450
O	8.5156900	2.4577930	16.6347310
O	9.2138950	0.0000000	18.1186490
O	6.4234240	-0.9066000	17.8305620
O	7.5372540	-0.0825010	14.4931070
O	2.9801260	3.2220560	16.7108300
H	2.9150370	3.1731000	17.6838010
C	7.3502310	0.7887420	20.5447360
H	8.0377070	0.1622810	20.5193690
C	6.7275360	1.0734140	21.7586850
H	6.9906840	0.6382460	22.5377870
C	5.7183260	2.0090260	21.7876750
H	5.2922980	2.2193570	22.5867070
C	5.3498250	2.6273270	20.6172100
H	4.6632670	3.2556010	20.6172100
C	6.0050710	2.3118300	19.4358740
C	5.7413770	3.0244180	18.1512620
H	6.3731240	3.7524170	18.0497980
H	4.8479790	3.4015630	18.1693810
C	6.2848650	2.8449110	15.7831550
H	5.7328570	3.6367330	15.6835020
H	6.1629340	2.2918850	14.9949940
C	7.7287620	3.2492540	15.8973020
C	8.1917390	4.3525870	15.2504660
H	7.6117130	4.9047060	14.7775700
C	9.5590320	4.6381660	15.3102580
H	9.9048110	5.3706980	14.8536680
C	10.3944930	3.8231320	16.0531230
H	11.3057930	3.9981060	16.1183500
C	9.8264260	2.7451850	16.6963350
H	10.3787620	2.1885320	17.1964090
C	4.6036690	1.3535540	16.7470670
H	4.2795040	1.0371500	17.6040790
H	4.8189250	0.5702510	16.2180020
C	3.4472970	2.0770210	16.0513110
H	3.7347960	2.3317750	15.1598730
H	2.7057970	1.4560000	15.9552820
C	16.2522320	-1.7080340	16.8304130
C	6.89180000	-1.2030580	15.5240580
Fe	10.7741870	-0.6878370	18.7283410
N	11.4479980	-1.3988840	16.8249770
N	12.5637330	-2.0924330	19.2492520
----	---------	---------	---------
Fe	4.3705830	3.685660	13.38260
Fe	7.0943580	3.729200	15.063019
O	6.1190610	3.267287	13.643420
C	4.5708430	5.056081	15.997564
O	4.0353500	4.911880	14.811360
O	3.9643410	5.638352	16.891280
N	4.1417840	2.365589	11.634590
N	3.7393650	1.839902	14.250751
N	2.2755200	4.012009	12.788300
N	4.7552100	4.992196	11.766190
C	3.9536520	0.766626	13.480930
C	3.6803850	-0.526860	13.946074
C	3.2289270	-0.684487	15.219623
C	0.1767030	5.165599	12.861424
C	1.4463930	4.897280	13.357032
C	5.0759000	4.389847	10.594629
C	5.4322100	5.110840	9.479512
C	5.4643190	6.483466	9.589195
C	5.1222560	7.120495	10.734780
C	4.7718910	6.339267	11.795055
C	4.5270860	1.025819	12.115982
C	2.7453840	2.340035	11.104450
C	5.1137760	2.876673	10.651502
N	8.5500860	4.251124	16.690196
N	7.9064940	5.618273	14.435588
N	8.9177870	2.814613	14.366528
N	7.0807400	2.004179	16.361145
C	8.5337550	6.333791	15.424772
C	9.1540720	7.543965	15.105877
C	9.0386950	8.040447	13.850608
C	8.3934410	7.297549	12.873611
C	7.8615380	6.089201	13.200610
C	9.9975400	2.907703	15.174930
C	11.1514270	2.184884	14.921040
C	11.2155910	1.392704	13.818110
C	10.1133370	1.306915	12.983295
C	8.9939410	2.042511	13.294065
C	7.6266230	2.166631	17.557510
C	7.7663960	1.058674	18.445135
C	7.2927840	-0.182530	18.057180
C	6.7733960	-0.328554	16.777537
Complex 9: DIBXAN10 structure

Nuclear Repulsion Energy = 6561.2383334 hartrees
$molecule$

2 11

Fe 3.2695000 3.4118140 6.0884780
O 3.2695000 2.5090780 7.6450000
O 1.7524520 4.6901140 6.5349460
N 4.6845400 2.1686240 4.9554890
N 3.2695000 4.4631440 4.0793720
C 5.1579630 2.9009550 3.7705140
C 4.4818310 4.0588550 3.3745030
C 3.9783280 0.9327030 4.5686520
C 1.2816440 5.0092900 7.6450000
C 0.0614670 5.8036840 7.6450000
C 5.8484820 1.7944780 5.7582140
C 3.2695000 5.9278080 4.2857870
H 6.0603450 3.1669350 3.9601100
H 5.1527320 2.2892010 3.0320070
H 4.2385800 3.9258650 2.4540450
H 5.0951890 4.7947330 3.4402500
H 6.3127510 2.5995110 6.0043830
H 5.5699200 1.3299000 6.5502360
H 6.4343760 1.2323740 5.2459990
H 3.2695000 6.3338700 3.4066120
Fe 3.2695000 3.4118140 9.2015220
O 4.7865480 4.6901140 8.7550540
C 5.2573560 5.0092900 7.6450000
O 4.7865480 4.6901140 6.5349460
O 1.7524520 4.6901140 8.7550540
N 1.8544600 2.1686240 10.3345110
C 1.3810370 2.9009550 11.5194860
C 2.0571690 4.0588550 11.9154970
N 3.2695000 4.4631440 11.2106280
N 4.6845400 2.1686240 10.3345110
C 5.1579630 2.9009550 11.5194860
C 4.4818310 4.0588550 11.9154970
C 3.2695000 5.9278080 11.0042130
H 3.2695000 6.3338700 11.8833880
H 4.2385800 3.9258650 12.8359550
H 5.0951890 4.7947330 11.8497500
H 6.0603450 3.1669350 11.3298900
H 5.1527320 2.2892010 12.2579930
C 3.9783280 0.9327030 10.7213480
C 2.5606720 0.9327030 10.7213480
C 0.6905180 1.7944780 9.5317860
H 0.2262490 2.5995110 9.2856170
H 0.9690800 1.3299000 8.7397640
H 0.1046240 1.2323740 10.0440010
C 5.8484820 1.7944780 9.5317860
H 6.3127510 2.5995110 9.2856170
Complex 10: CACZIP structure

Nuclear Repulsion Energy = 7218.18459304 hartrees

$end

$molecule
0 11
Fe -2.5939820 0.6370610 5.1644460
$end
Element	X	Y	Z
Fe	-0.1275000	2.5893980	5.1743920
O	-0.8414720	0.9498110	5.1642390
O	-3.0623710	1.9356900	6.6664350
O	-3.0913840	2.0070570	3.7355990
O	-1.3336790	3.3550110	6.6440570
O	-1.3421280	3.3984790	3.7492740
N	-2.5423600	-0.9983650	6.5638710
N	-4.7424160	0.1644670	5.1379250
N	-3.2670220	-2.1447040	6.344470
N	-1.3336790	3.3550110	6.6440570
N	-1.3421280	3.3984790	3.7492740
N	1.4071800	2.1547230	6.6152570
N	0.8346180	4.5406560	5.1735630
N	1.3955750	2.1829310	3.7152930
N	2.6959510	2.5440810	6.4078500
N	2.1895490	4.6553360	5.1920040
N	2.6871260	2.5724420	3.9185560
C	-1.8734260	-1.1899610	7.7656280
C	-2.1537990	-2.4292460	8.2314120
C	-3.0338900	-2.9980230	7.3535080
C	-5.8375750	0.9171330	5.1136820
C	-6.9671110	0.1294780	5.0556660
C	-6.4979490	-1.1529670	5.0494500
C	-1.8313520	-1.0774390	2.5756960
C	-2.0830130	-2.3043930	1.9926370
C	-2.9779730	-2.9163290	2.8282720
C	1.3872780	1.4936170	7.7656280
C	2.6526490	1.4473750	8.3066260
C	3.4412030	2.1194250	7.4343160
C	0.3607410	5.7802500	5.1779140
C	1.3787330	6.6927590	5.1944900
C	2.5193260	5.9636770	5.1998770
C	1.3684300	1.5552730	2.5352920
C	2.6425090	1.5290690	1.9704670
C	3.4298990	2.1779980	2.8655680
C	-2.4141190	2.9194120	7.1096350
C	-3.0013430	3.6562010	8.2796900
C	-2.4613840	3.0149780	3.3212000
C	-3.1012440	3.8396270	2.2452130
B	-4.1376450	-2.2704820	5.0867460
B	3.0555540	3.3802900	5.1737700
H	-4.6683010	-3.2353990	5.0991780
H	3.9891250	3.5976280	5.2234980
H	-1.2830380	-0.5579870	8.0828500
H	-1.8108370	-2.8038070	9.0318240
H	-3.4215910	-3.8596660	7.4426040
H	-5.8387180	1.8666350	5.1344020
Complex 11: YUPSAE structure

Nuclear Repulsion Energy = 6285.40992966 hartrees

$molecule
4 11
Fe 5.5983160 3.5998000 1.1948770
Fe 3.6806600 1.4810050 2.4295720
O 6.4162130 3.3859960 3.0688090
O 4.9179130 1.9761080 3.9847860
O 4.0649750 4.7347320 1.9598720
O 2.5754280 3.2025400 2.6535210
O 4.7559030 2.0315970 1.1129010
N 6.5838610 5.5591480 0.9675050
H 6.5206320 6.0064620 1.7584440
N 7.4936710 3.0281450 0.3765520
H 7.7193830 2.2093900 0.7044590
N 5.2436710 4.0575330 -0.8756190
H 4.3599600 3.9329640 -1.0521840
N 2.1165290 0.6239740 1.2359650
H 1.9792130 1.1630160 0.5152820
N 2.3567710 0.6330340 3.9673090
H 2.2392250 1.2660680 4.6105110
N 4.3019330 -0.5662200 2.4322740

$end
Complex 12: VABMUG structure

Nuclear Repulsion Energy = 6256.81653582 hartrees

$molecule
0 11
Fe 16.8282870 2.8408430 5.0234490
Fe 14.0209430 1.5496990 4.4071950
Cl 18.4682590 1.3552370 5.9216050
Cl 13.6908630 0.3755480 2.3871630
O 15.5803670 4.3869540 4.2178940
C 14.4224950 4.3830990 3.7335780
O 13.6529040 3.3738960 3.6450730
C 13.8876890 5.6813800 3.2246770
O 15.9413320 3.1771340 6.7935380
C 14.7302730 2.9452880 7.1024850
O 13.8554260 2.5203090 6.3256120
C 14.3133690 3.2439130 8.5095420
O 15.8070030 1.5386520 4.3596650
N 18.0276130 3.1007320 3.2631930
C 17.9303470 2.2887280 2.1904860
C 18.7029270 2.4495910 1.0612340
C 19.6017510 3.4966390 1.0186210
C 19.7081910 4.3524630 2.1134540
C 18.9162210 4.1290750 3.2213990
C 18.9562600 4.9632330 4.4645590
C 19.778310 6.0773060 4.5817460
C 19.7095180 6.8166120 5.7626250
C 18.8559780 6.4200790 6.7542030
C 18.0874820 5.2933380 6.5821110
N 18.1187130 4.5755860 5.4495820
Complex 13: AGAQIJ structure

Nuclear Repulsion Energy = 36777.12046167 hartrees

$end

$molecule
0 21
 Fe -2.8968660 8.3643640 6.1190450
 Fe -3.4288590 10.0269600 3.5705880
 Fe -4.4285370 5.7187690 6.6525790
 Fe -0.8279450 9.5172590 8.1124500

$end
H -4.9748220 13.9974070 4.7255790
C -1.8490440 14.0255800 5.9302930
H -0.9532270 14.0746290 5.5374410
H -1.9490530 13.1757860 6.4085270
H -1.9715780 14.7687210 6.5565870
C -2.7662670 15.4277080 4.0676990
H -2.9832340 16.1726590 4.6663550
H -3.3841550 15.4289270 3.3066710
H -1.8481050 15.5286580 3.7409810
C -0.2627190 11.2530350 0.7642360
H 0.0711470 10.2926780 0.8291360
H 0.6983840 11.5542420 1.5891760
H 0.8579910 11.4162080 0.0024680
C -0.6455600 13.4373000 0.2230770
H -0.1229740 13.4425360 0.0024680
H -0.1088760 13.8159900 0.0024680
H -1.4563530 13.9735180 0.1011740
C -1.8343670 11.4497620 0.5367170
H -1.9382540 10.4844050 0.4071650
H -1.3818470 11.6171180 1.3892960
H -2.7172200 11.8748430 0.453540
C -6.9578000 11.6412830 1.6355690
C -7.7553820 11.8012750 2.9350410
H -7.1493120 12.0507540 3.6620150
H -8.1960150 10.9527560 3.1536760
H -8.4327940 12.500570 2.8180740
C -6.2852940 12.9721230 1.3090960
H -5.696470 13.2325960 2.0506300
H -6.9703640 13.6610940 1.1746090
H -5.7529140 12.8773090 0.4910650
C -7.8939900 11.2482780 0.4866240
H -8.5644640 11.9491840 0.3578110
H -8.3419060 10.4047100 0.7032850
H -7.3717700 11.1378900 0.3356020
C -4.6378980 7.1894500 0.5473280
C -3.3587570 7.3113790 0.2504680
H -3.2558990 6.5234800 0.8242000
H -2.5966990 7.3716210 0.3627470
H -3.3967850 8.1181490 0.8069270
C -5.7973520 7.0080520 0.4046970
H -5.6425030 6.2145670 0.9599220
H -5.8739400 7.7971800 0.9796630
H -6.6252050 6.8930530 0.1061100
C -4.5360060 5.9952570 1.4724560
H -5.3346400 5.9497380 2.0382910
H -3.7407940 6.0876590 2.0382910
H -4.4653080 5.1749540 0.9401800
C	-0.6088380	4.7796520	9.1703380
H	0.2929140	4.4451490	9.3598540
H	-0.8751850	5.4124850	9.8681930
H	-0.6138040	5.2292930	8.3012260
C	-2.1925090	8.1122400	11.9703970
C	-3.4263110	7.4318330	11.4267710
H	-3.1656330	6.6178610	10.9490310
H	-0.8427900	7.6735040	13.4685170
H	-1.4245890	6.3651400	12.7528940
C	-2.4525830	9.4939120	12.5552340
H	-2.9268580	10.0426140	11.8966140
H	-1.5989510	9.9196620	12.7800380
H	-2.9998750	9.4077510	13.3648750
C	2.5848370	7.8697710	10.1924450
C	2.8319660	7.0162110	11.4136920
H	3.7876330	6.8083330	11.4771110
H	2.3209450	6.1836720	11.3389220
H	2.5497030	7.5031410	12.2149430
C	3.3582200	9.1164420	10.2852290
H	3.0827540	9.6126040	11.0847520
H	3.1940560	9.6633800	9.4881730
H	4.3123700	8.9032780	10.3469200
C	3.0030470	7.0516600	8.9467670
H	2.9052420	7.5969440	8.1432950
H	2.4297890	6.2535010	8.8712570
H	3.9368100	6.7646930	9.0390580
C	-0.4236590	13.4169510	9.9476520
C	-0.0661490	12.8475100	11.3194270
H	-0.3039370	13.4969840	12.0150620
H	0.8972880	12.6665500	11.3561950
H	-0.5601850	12.0145630	11.4672400
C	0.3320960	14.7045550	9.6836120
H	0.1399160	15.0151270	8.7750180
H	1.2939660	14.5428310	9.7768900
H	0.0510880	15.3871680	10.3271790
C	-1.9215420	13.7120830	9.9029870
H	-2.1403690	14.3922350	10.5739460
H	-2.4219400	12.8904080	10.0952190
H	-2.1630610	14.0420480	9.0119130
C	2.0678030	11.7242550	5.7896360
C	3.1296730	10.6458480	6.0075310
H	3.5541140	10.7766650	6.8823180
H	3.8087420	10.7075340	5.3030130
H	2.7078260	9.7615580	5.9791530
Complex 14: DUFNUO structure

Nuclear Repulsion Energy = 16928.38338359 hartrees

$end

$molecule
0 21

Fe -0.1719730 10.4359500 4.4004910
Fe -0.1719730 7.3684350 4.4004910
Fe -1.9672190 11.9497340 2.4315350
C 2.0523380 10.4053140 2.3829540
C 1.2899450 9.0691890 2.2526990
O 0.2876110 8.8924310 3.2421060
C 1.1322130 11.6086820 2.0798480
O -0.0639960 11.6333110 2.8277550
C 2.6913630 10.5529380 3.7694610
O 1.7187980 10.7822580 4.7842140
C 3.1643380 10.4282910 1.3037770
C 4.3982330 9.5948090 1.5736160
O -4.2871140 6.4125580 3.5450350
C -2.7927950 6.3059320 3.4668830
O -2.1484700 7.2290700 4.0363060
C -2.1977520 5.2396760 2.7825180
C -0.8203140 5.1279440 2.5612620
O 0.0448320 5.9596240 2.9801880
C -0.2866990 3.9631710 1.7689970
C -6.1458520 11.0920730 2.1016740
C -4.6603680 10.9524090 1.8608800
O -3.9533520 11.9327640 2.2467150
C -4.1593150 9.7870350 1.2779030
C -2.8218930 9.5963100 0.9383610
O -1.9141800 10.4448100 1.1175490
C -2.3768570 8.3032860 0.3009940
C -2.1129630 15.7700870 4.4427360
C -2.0340680 14.7924340 3.2926230
O -2.1241900 13.5776530 3.6069940
C -1.8733400 15.2579830 2.0066240
Atoms	C	O	H
1.853806	5.2396760	6.0184630	
0.476380	5.1279440	6.2397200	
-0.3887780	5.9596240	6.5542670	
-0.0572460	3.9631710	7.0319870	
5.8019070	11.0920730	6.6993070	
4.3164230	10.9520730	6.9401020	
3.8153690	9.7870350	7.5230790	
2.4779470	9.5631000	7.8626210	
1.5702350	10.4481000	7.6834330	
2.0329110	8.3032860	8.4999880	
1.7690180	15.7700870	4.3582460	
1.6901230	14.7924340	5.5083580	
1.7802450	13.5776530	5.1939870	
1.5293950	15.2579830	6.7943580	
1.4235830	14.4575400	7.9277480	
1.3521370	13.1975550	7.9082100	
1.3696830	15.0882830	9.2973570	
1.1978590	9.0346480	7.4227480	
-2.2750080	8.3318200	6.4775230	
-1.9539050	12.4286490	6.5637720	
-1.2330600	11.5576220	7.6515740	
-3.6322120	11.3113320	5.0676050	
-3.5134550	9.7404800	4.8123770	
-3.8110930	11.3398650	7.5811660	
-3.0898250	10.1294390	8.3222080	
-5.3394670	9.6203390	7.9596080	
-5.2019480	9.9026710	6.4564000	
-4.5190710	8.6757250	7.0759890	
4.3869850	5.8223620	5.8544130	
4.2035840	7.3046090	5.4601290	
4.2048330	6.2008080	4.3723280	
2.4030400	4.5698860	6.3719110	
-0.5925420	4.2620230	7.7712670	
0.6534470	3.4390530	7.3717020	
-0.5963040	3.4180290	6.4757620	
6.2984820	10.5829730	7.3347380	
6.0456110	12.0186650	6.7503530	
6.0035710	10.7812070	5.8104080	
4.4255530	9.1142420	7.6990990	
1.5621790	8.4970150	9.3149590	
2.8010740	7.7746630	8.7129720	
1.4732720	7.8257230	7.8944810	
1.5550370	16.6636400	4.6504390	
2.6511640	15.7640800	4.0062070	
1.1673920	15.4937610	3.6752900	
1.4962390	16.1770660	6.9228520	
0.7890260	14.5701730	9.8535790	
Complex 15: VIVDAF structure

Nuclear Repulsion Energy = 13889.88152012 hartrees

$end
$comment
Complex 16: YAYPOD structure
Nuclear Repulsion Energy = 16376.86928265 hartrees
$end

$molecule
1 21
 Fe 9.7252780 4.4946290 1.4622260
 Fe 8.6326970 2.1230090 2.5777060
 Fe 10.9029100 4.2460180 4.4429000
 Fe 8.7831720 1.5669050 -0.6117140
 O 9.6925660 3.5165400 3.2842850
 O 9.0644950 2.8524860 0.7458340
 O 9.8332270 5.5970230 0.1275770
 O 8.2139830 1.1972590 4.1609660
 O 10.7655190 6.0877030 3.7291680
 O 7.2293520 0.7752740 0.2257130
 N 10.3140940 6.2447210 2.4370440
 N 7.4910480 0.6705960 1.6748540
 C 6.9055030 4.3997640 2.3356370
 C 5.5643110 5.0932580 2.6300450
 O 7.8050830 5.1750380 1.8743980
 O 6.9251300 3.2973700 2.6889260
 C 12.5515940 3.6048620 2.2375010
 C 13.8568030 3.0749280 1.7239220
 O 12.5417810 3.6762920 3.4053190
 O 11.7174380 3.9287110 1.2823100
 C 10.6117730 0.3074930 1.4687690
 C 12.1034400 -0.5430190 1.5636340
 O 10.2061440 0.8635970 2.3879760
 O 10.1210930 0.2257130 0.1897300
 C 10.2977380 7.4877770 2.1131950
 C 9.8822950 7.7592860 0.8145290
 C 9.7743460 9.1299190 0.5724600
