Determination of the neutrino mass hierarchy with a new statistical method

L. Stanco, S. Dusini, and M. Tenti

1 INFN, Sezione di Padova, 35131 Padova, Italy
2 INFN-CNAF, 40127 Bologna, Italy

(Dated: February 17, 2017)

Nowadays neutrino physics is undergoing a change of perspective: the discovery period is almost over and the phase of precise measurements is starting. Despite the limited statistics collected for some variables, the three–flavor oscillation neutrino framework is strengthening well. In this framework a new method has been developed to determine the neutrino mass ordering, one of the still unknown and most relevant parameters. The method is applied to the 2015 results of the NOvA experiment for $\nu_\mu \rightarrow \nu_e$ appearance, including its systematic errors. A substantial gain in significance is obtained compared to the traditional $\Delta \chi^2$ approach. Perspectives are provided for future results obtainable by NOvA with larger exposures. Assuming the number of the 2015 ν_e observed events scales with the exposure, an increase in only a factor three would exclude the inverted hierarchy at more than 95% C.L. over the full range of the CP violating phase. The preliminary 2016 NOvA measurement on $\nu_\mu \rightarrow \nu_e$ appearance has also been analyzed.

I. INTRODUCTION

The unfolding of neutrino physics is a long and pivotal history spanning the past 80 years. Over that period of time the interplay of theoretical hypotheses and experimental facts was one of the most fruitful to make progress in particle physics. The achievements of the past two decades brought out a coherent picture within the Standard Model or some minor extensions of it, namely the mixing of three neutrino flavour–states, ν_e, ν_μ and ν_τ, with three ν_1, ν_2 and ν_3 mass eigenstates. After determining the absolute masses of neutrinos, their Majorana/Dirac nature, the existence and the magnitude of the leptonic CP violation, the (standard) three–neutrino model will be completely settled. However, the first two questions will probably take some time to be answered, while the third one is a matter of debates and experimental proposals.

Actually, in the three–neutrino framework an unknown parameter is closely tied to the masses and the CP violating phase, δ_{CP}: the neutrino mass ordering of the neutrino mass eigenstates. Namely, it is still largely unconstrained the sign of $\Delta m_{31}^2 = m_3^2 - m_1^2$, the difference of the squared masses of ν_3 and ν_1. Its knowledge is of utmost importance to provide inputs for future studies and experimental proposals, to finally clarify whether we need new projects at all, and to constrain analyses in other fields such as cosmology and astrophysics.

The mass ordering (MO) is usually identified as normal hierarchy (NH) when $\Delta m_{31}^2 > 0$ or inverted hierarchy (IH) in the opposite case. All the methods developed so far for establishing whether MO is normal or inverted are based on χ^2 evaluation. Given the current uncertainties of the oscillation parameters [1] from few percents to more than 10%, the computation of the difference of the χ^2 best fits for NH and IH is performed [2]. These analyses use the test statistic

$$\Delta \chi^2_{min} = \chi^2_{min}(IH) - \chi^2_{min}(NH),$$

where the two minima are evaluated spanning the uncertainties of the three-neutrino oscillation parameters, namely Δm_{21}^2, $\pm \Delta m_{31}^2$, θ_{12}, θ_{23}, θ_{13} and δ_{CP}. θ_{ij} ($i, j = 1, 2, 3$) are the mixing angles in the standard parameterization and $\Delta m_{21}^2 = m_2^2 - m_1^2$. The statistical significance in terms of standard deviations is computed as $\sqrt{\Delta \chi^2}$. The limits of such procedures are well known [3]. In particular, the significance corresponds only to the median expectation and does not consider the intrinsic statistical fluctuations. Thus, errors of type I and II [4] should be taken into account when comparing the probability density functions of each χ^2_{min}. As a consequence the corrected significance is lower and more σ’s are needed to reach a robust observation. Despite these caveats no alternative test statistic has been outlined so far.

Broader discussions on the $\Delta \chi^2$ test statistic and the way to approach analyses on the mass hierarchy can be found in section 3 of [5] and references therein. The MO evaluation should be performed with a change of perspective: the achievement should focus on the rejection of the wrong hierarchy rather than the observation of the true one. Therefore, it is mandatory to introduce new test statistics that allow this approach to distinguish between NH and IH. Moreover, it is important to work out a comprehensive handling of all future measurements on MO. As an alternative, the use of only one experiment is mainly due to the lack of confidence in the 3-neutrino framework and/or in the cross-correlation of the systematic errors among different experiments. The first concern should be targeted with specific experiments and it should not affect the extraction of the oscillation parameters. The second concern about the systematic errors should not avoid using one experiment as pivot and then adding information from the other ones.

This paper aims to introduce a new method that can be extensively applied to single or multiple measurements of the neutrino mass ordering. For the time being it has been applied to the results from the NOvA experiment on $\nu_\mu \rightarrow \nu_e$ appearance, in 2015 [6] and 2016 [7]. In the following sections the NOvA environment is recalled, its
II. THE NOVA ENVIRONMENT

The predicted number of NOvA ν_e oscillated events for an exposure of 2.74×10^{20} protons-on-target (p.o.t.) is about 5 and 3 in the NH and IH hypotheses, respectively, whereas a little less than 1 event is expected from the background (2015 NOvA conditions [6]). The number of oscillated events is highly dependent on δ_{CP}, and to a lesser extent on θ_{23} and θ_{13}. Dependences on Δm^2_{21}, Δm^2_{31} and θ_{12} are minor and therefore are neglected in this study. This behaviour (of the number of expected ν_e events) has been checked and reproduced in detail by the authors using the GLoBES package [8], although it is commonly known [9].

In Fig. 1 the number of predicted oscillated $\nu_\mu \rightarrow \nu_e$ events plus the expected background is shown in the horizontal axis versus δ_{CP} in the vertical axis (the two continuous lines for the IH and NH hypotheses, respectively). Normalization is given by the 2015 NOvA analysis (LID case) [10], while the neutrino oscillation parameters are taken by the best fit values of the global fit (GF) (column 3 of table 1 in [11]). The computation has been performed with the GLoBES package. The two concentric areas for 16 representative values of δ_{CP} spanning its range correspond to the 1 σ and 2 σ contours due to the (correlated) θ_{23}, θ_{13} uncertainties (see text for more explanations). The 1 σ and 2 σ uncertainties on θ_{23}, θ_{13} are given by the GF.

In Fig. 2 the number of predicted oscillated $\nu_\mu \rightarrow \nu_e$ events plus the expected background is shown in the horizontal axis as function of δ_{CP} (vertical axis), normalized to the 2015 NOvA expectation [10] and taking the best fit values by the global fit (GF) [11]. The signal part of the predicted number of events suffers from the (correlated) uncertainties on θ_{23} and θ_{13}. For each δ_{CP} value the predicted number of events is thus spread out due to the possible variations of θ_{23}, θ_{13}. If the estimations of the θ_{23}, θ_{13} uncertainties at 1 σ and 2 σ levels are taken from the GF, the corresponding spreads on the number of the predicted events are shown as parallelograms for 16 representative values of δ_{CP} spanning its entire range. In each parallelogram the leftmost and rightmost vertices correspond to the coherent contributions of the uncertainties (positive correlation), $[−\delta \theta_{23}, −\delta \theta_{13}]$ and $[+\delta \theta_{23}, +\delta \theta_{13}]$, while the other two vertices correspond to the countercontributions (negative correlation) $[−\delta \theta_{23}, +\delta \theta_{13}]$ and $[+\delta \theta_{23}, −\delta \theta_{13}]$. These choices are dictated by the almost linear correlations between θ_{23}, θ_{13} and the $\nu_\mu \rightarrow \nu_e$ appearance probability, in the NOvA conditions and around the best fit solutions of θ_{23}, θ_{13}. The heights of the parallelograms are in arbitrary units to ensure a clear vision.

Looking at the patterns in Fig. 1 a conclusion is straightforward: no discrimination between IH and NH can be achieved if the χ^2 minimization is performed in the full range of δ_{CP}. In such a kind of fit several similar solutions with $\chi^2 \lesssim 1$ are possible for different values of δ_{CP}. For example, $\chi^2_{min}(\text{NH})$ for $\delta_{CP} = 0.5 \pi$ is close to $\chi^2_{min}(\text{IH})$ for $\delta_{CP} = 1.5 \pi$. In other words, it is always possible to find at least a couple of $\chi^2_{min}(\text{NH})$, $\chi^2_{min}(\text{IH})$ so that $\Delta \chi^2_{min}$ is very close to zero, i.e. IH and NH are indistinguishable. A better discrimination between NH and IH could be obtained if minimization is performed assuming a single value of δ_{CP}. However, the result on MO would be then closely tied to δ_{CP}. Moreover, even computing $\Delta \chi^2_{min}(\delta_{CP})$ only a mild indication for NH is obtained, as it is shown below.

2015 NOvA appearance result is two-fold since two different analyses were done. The primary selection technique (LID) found 6 events, while the secondary one (LEM) found 11 events. Throughout the paper 8 events have also been considered, as a kind of test bench.
choice is dictated by the rather low probability to observe 11 events compared to the NH expectation (5% at $\delta CP = 0$), while 8 events have a mild, more acceptable probability (26%). 6 events stand on the median expectation of NH at $\delta CP = 0$. Using the GLoBES simulation χ^2 minimizations were made over θ_{23}, θ_{13}, as function of δCP and for 6, 8 and 11 observed events, to extract $\Delta \chi^2_{min}(\delta CP) = \chi^2_{min}(IH; \delta CP) - \chi^2_{min}(NH; \delta CP)$. In Fig. 2 the equivalent number of standard deviations as function of δCP is shown. The significances fairly reproduce what can be extracted by 2015 NOVAt results even though the procedure is rather different (no systematic errors, different uncertainties on θ_{23} and θ_{13} etc.) \[11\]. After integrating in δCP the $\Delta \chi^2_{min} = \chi^2_{min}(IH) - \chi^2_{min}(NH)$ was also computed. For 6, 8 and 11 events small significances are obtained: 0.17, 0.82 and 1.20, respectively. There is no doubt that an evaluation in terms of a best fit for $\Delta \chi^2$ over the full range of δCP gives marginal results. This leads to the conclusion drawn in \[11\]: the sensitivity to the mass hierarchy is currently null.

Considering what has been highlighted so far a more sophisticated test statistic should be introduced.

III. THE NEW TEST STATISTIC

A new test statistic q is defined, following a Bayesian approach developed in a frequentist way. For each hypothesis IH or NH one considers the Poisson distributions $f_{MO}(n_i; \mu_{MO}|\delta CP)$, where n_i is the random variable and $\mu_{MO}(\delta CP)$ is the predicted mean (signal plus background) as function of δCP. MO standing for IH or NH. Dependencies on the oscillation parameters, in particular θ_{23}, θ_{13}, are not explicitly shown, even though they are included in the analysis. For a specific n the left and right cumulative functions of f_{IH} and f_{NH} are computed and their ratios are evaluated. The ratios are similar to the CLs test statistic used for the Higgs discovery \[12\]. Since for the ν_e appearance at NOVAt the expectation is symmetric towards IH and NH (less events are expected for IH than for NH for the ν_e appearance in the ν_μ beam, opposite case holding for the ν_μ beam and the ν_e appearance), the ratios q_{MO} are defined either for the IH or the NH case:

$$q_{IH}(n; \delta CP) = \frac{\sum_{n_{\ell}, n_{\ell} \geq n} f_{IH}(n_{\ell}; \mu_{IH}|\delta CP)}{\sum_{n_{\ell}, n_{\ell} \geq n} f_{NH}(n_{\ell}; (NH); \mu_{NH}|\delta CP)};$$

$$q_{NH}(n; \delta CP) = \frac{\sum_{n_{\ell}, n_{\ell} \leq n} f_{NH}(n_{\ell}; NH; \mu_{NH}|\delta CP)}{\sum_{n_{\ell}, n_{\ell} \leq n} f_{IH}(n_{\ell}; IH; \mu_{IH}|\delta CP)}.$$ \(\text{Eq} (2)\) \(\text{Eq} (3)\)

q_{IH} and q_{NH} are functions of the random variable n \[13\] and therefore they are themselves two discretized random variables defined in the $[0, 1]$ interval. As n goes to zero q_{IH} goes to one, while when n increases q_{IH} asymptotically tends to zero. q_{NH} behaves the other way around towards n. For illustration purpose the behaviours of f_{MO} and q_{MO} are shown in Fig. 3 for a typical case ($n = 8$).

The probability mass functions of q_{MO}, $F_{MO}(q_{MO})$, were computed via toy Monte Carlo simulations based on

\[f_{IH} \text{ (test of IH against NH)} \lor f_{NH} \text{ (test of NH against IH)}\]. Selecting the observed data n_D, the number of observed events either in real data or in Monte Carlo simulation, $P_{MO}(q_{MO})$ probabilities are used to evaluate the corresponding p-values, p_{MO} \[14\]:

$$p_{IH}(n_D; \delta CP) = \sum_{q_{IH} \leq q_{IH}(n_D)} P_{IH}(q_{IH}; \delta CP),$$

$$p_{NH}(n_D; \delta CP) = \sum_{q_{NH} \leq q_{NH}(n_D)} P_{NH}(q_{NH}; \delta CP).$$

Finally, the significance is computed from the p_{MO}-values with the one-sided option. It corresponds to 0 sigma ($Z = 0$) when $p_{MO} = 50\%$ that equalizes the IH and NH probabilities. Within that choice Z is defined as $Z = \Phi^{-1}(1 - p_{MO})$, where Φ^{-1} is the quantile (inverse of the cumulative distribution) of the standard Gaussian and Z is the number of standard deviations. In the appendix the technical aspects of the new method are illustrated for a simplified case taking into account only the statistical errors. A detailed comparison with $\Delta \chi^2_{min}$ results can be found too.

The dependences on θ_{23} and θ_{13} enter in the prediction of the mean μ_{MO}. Their uncertainties, as well as the systematic errors evaluated for the experimental data, let fluctuate the prediction of the median number of events. These errors have been taken into account using two approaches: A) convolution of the Poisson distributions.
with assumed Gaussian distributions \[\mathcal{N} \] for the uncertainties on \(\theta_{23}, \theta_{13} \) (central values and standard deviations being given by the GF) and the systematic errors on signal and background (as provided by NOvA); B) evaluation of the error bands overlaying the significance, choosing a \(\pm \sigma \) variation of the mixing angles and the systematic errors. Although results will be provided for both errors’ treatments our primary choice is A for the systematic errors. Although results will be provided for both errors’ treatments our primary choice is A for the systematic errors.

In such a case the probability distributions of \(\theta_{23}, \theta_{13} \) are treated as a posterior information and used as prior for the next calculation. Then the initial Poisson distribution \(f_{\text{MO}} \) becomes:

\[
 f_{\text{MO}}(n_i; \mu_{\text{MO}}|\delta_{\text{CP}}) = \int Poi_{\text{MO}}(n_i; \mu_{\text{MO}}(\theta'_{23}, \theta'_{13})) | \delta_{\text{CP}} \cdot G(\theta'_{23}, \theta'_{13}; \theta_{23}, \theta_{13}, \sigma_{\theta_{23}}, \sigma_{\theta_{13}}) \, d\theta'_{23} \, d\theta'_{13}.
\]

where \(Poi \) stands for the Poisson function and \(G(\theta'_{23}, \theta'_{13}) \) is the double Gaussian distribution centered to the best fit values \(\theta_{23}, \theta_{13} \).

IV. RESULTS

The \(q_{\text{MO}} \) estimators were applied to the \(\nu_\mu \rightarrow \nu_e \) appearance 2015 NOvA result first. Selecting IH as truth

The \(p \)-value probabilities and their significances are shown for \(q_{\text{H}} \) in Fig. 4, top and bottom, respectively. Results were obtained as function of \(\delta_{\text{CP}} \) and for three cases: 6, 8 and 11 observed events. The \(p \)-values correspond to the probability to exclude IH against NH, with the oscillation parameter set given by GF. For \(n_D = 8 \) the significances average around 1.5 \(\sigma \), with a slightly higher significance for \(\delta_{\text{CP}} \) in \([0, \pi]\). The systematic errors have not been included, while the uncertainties on \(\theta_{23}, \theta_{13} \) have been treated as nuisances (approach A). Overall, when \(n_D = 8 \) the new method provides an increase in 0.5 \(\sigma \) compared to the \(\Delta \chi^2_{\text{min}} \) method. The increase is not constant depending on \(n_D \) and \(\delta_{\text{CP}} \): the improvement of the new method in terms of standard deviations strongly increases in “favorable” regions of \(\delta_{\text{CP}} \) and with \(n_D \).

The situation improves considerably if for NOvA a factor three in exposure \((8.22 \times 10^{20} \text{ p.o.t.}) \) is taken into account, assuming the same 2015 efficiency of the signal and the same level of background rejection. Compared to the \(\Delta \chi^2_{\text{min}} \) method a much larger increase in significance is obtained. In the top picture of Fig. 5 the significance of IH against NH hypothesis is reported (A being used for the treatment of \(\theta_{23}, \theta_{13} \) uncertainties). The 3 \(\sigma \) level is reached in the 0.2 \(\pi \) < \(\delta_{\text{CP}} \) < 0.7 \(\pi \) interval for \(8 \times 3 = 24 \) events. If 26 events are observed the IH hypothesis is rejected by more than 95% C.L. in the full range of \(\delta_{\text{CP}} \) (dashed line in the bottom picture of Fig. 5). Note that the 5 \(\sigma \) level could also be attained, at least in a limited region of \(\delta_{\text{CP}} \), when 33 events are observed (still in the 2015 NOvA conditions). However, if NH were true, the probability to observe 33 events would be very low (about one per mill for the best fit values of table 1 in [1]), so indicating a tension with the 3-neutrino oscillation framework.

One should mention the decrease in significance by adding the \(\theta_{23}, \theta_{13} \) uncertainties. Actually, in the partial Bayesian approach where a posterior is computed from the \(\theta_{23}, \theta_{13} \) priors the effect of their uncertainties is rather small. For the 2015 NOvA analysis on \(2.74 \times 10^{20} \text{ p.o.t.} \) it goes from an almost null decrease in significance to a decrease of 0.03 \(\sigma \) for observations of 6 and 11 events, respectively. The loss reaches 0.1 - 0.2 \(\sigma \) when the exposure is increased by three times, i.e. \(8.22 \times 10^{20} \text{ p.o.t.} \) still analyzed as in 2015.

The effect of adding the systematic errors with the approach B is shown in the bottom picture of Fig. 5 for the \(n_D = 26 \) case. Including 11% for background expectation and 17.6% for the signal expectation (as evaluated for the NH case and the 2015 primary selection by NOvA [6]) the variation of the significance is \(\pm 0.5 \sigma \). Instead, a loss of 0.3 – 0.4 \(\sigma \) is obtained when all the errors are treated as nuisances (approach A), as reported in the same picture (dotted line).

A full frequentist approach, that is B, has also been considered for \(\theta_{23}, \theta_{13} \). In this case the uncertainties on \(\theta_{23}, \theta_{13} \) correspond to bandwidths around the me-
The median curves of the 95% C.L., including +1σ should be observed, the new method would reject IH at due to 1σ the left), respectively. For illustrative purposes the effect of the systematic errors (approach B) is depicted when the exposure increases. The repetition of the experiment can be achieved in the full range of δCP. The effect of the systematic errors would lower the significance by about 0.5σ, still sufficient to reach a firm conclusion. If about one third of events (i.e. about 10) would be observed, the NH hypothesis could be disapproved at 95% C.L. for δCP > π. If instead about 20 events would be collected no conclusion would be possible on IH and NH over the full range of δCP. Note that 16 events correspond to the expected averaged median of the fMO distributions, either for IH or NH. Note also that the systematic errors reduce the gap between IH and NH expectations, pointing to the necessity of lowering them as the exposure increases.

Finally, the minimum number of events that NOvA should observe to exclude IH at 95% C.L. is computed, for a total exposure of 8.22 × 10^{20} p.o.t. analyzed as in 2015. This is reported in Fig. 7 together with the maximum number of events to exclude NH (dotted curve on the left), respectively. For illustrative purposes the effect due to 1σ systematic errors (approach B) is depicted for the IH exclusion region. The median curves of the fMO probability densities are also drawn. If ≥ 29 events should be observed, the new method would reject IH at 95% C.L., including +1σ of systematic error, in the full range of δCP.

V. DISCUSSION

Following the initial observation by NOvA in 2015 that mildly favours NH and considering, for example, a three-time increase in exposure, the new method based on the estimator qMO would be able to disfavor IH by up to 3–4 σ depending on the δCP value. If the 2015 NOvA result, i.e. 8–11 observed events, should be confirmed using 8.22×10^{20} p.o.t. and about 30 events be found with the unchanged 2015 analysis, IH could be rejected in the 3ν framework. The effect of the systematic errors would lower the significance by about 0.5σ, still sufficient to reach a firm conclusion. If about one third of events (i.e. about 10) would be observed, the NH hypothesis could be disapproved at 95% C.L. for δCP > π. If instead about 16 events would be collected no conclusion would be possible on IH and NH over the full range of δCP. Note that 16 events correspond to the expected averaged median of the fMO distributions, either for IH or NH. Note also that the systematic errors reduce the gap between IH and NH expectations, pointing to the necessity of lowering them as the exposure increases.

It is relevant to outline that with the method here introduced and the treatments of the uncertainties on θ_{23}, θ_{13} and the systematic errors, a robust result can be achieved in the full range of δCP only if a moderate fluctuation, i.e. statistically acceptable, occurs. This conclusion sounds strange but it is consistent with the performed analysis. The repetition of the experiment (equivalent to collecting several samples of exposure data set) will not automatically overtake the previous result. Instead, a positive outcome can be reached when a favorable fluctuation is found. That is detailed in the appendix in a quantitative way.
Moreover, even though statistical fluctuations are present and actually used in the analysis, once a result on MO is obtained (within the defined C.L., which corresponds to the correct coverage by construction) then the next experiment cannot reach the opposite conclusion, as long as both experiments handled their analyses properly. Further, note that there is no assurance to gain more information by the second experiment, for example whether less fluctuations occur. This is an intrinsic property of the statistical behaviour of the physical process and the used estimators.

It is worth to look at the just released preliminary new results by the NOvA collaboration [7]. In its update NOvA analyzed \(6.05 \times 10^{20}\) p.o.t., a factor 2.2 increase of the 2015 exposure. For the \(\nu_\mu \rightarrow \nu_\tau\) appearance channel 33 events were found, including background. However, the background level was enhanced (a factor 4.5) against an increase in a factor 2.5 for the signal efficiency. By scaling these number to the 2015 analysis and exposure the 33 events in 2016 corresponds to about 6 events in 2015. That is around the median expectation without an even moderate fluctuation. Anyhow, applying our new method, the increase in exposure from 2015 to 2016 allows us to obtain a first important result: the inverted hierarchy can be excluded at 95% C.L. in the \(\delta_{CP}\) interval \([0.10 \pi, 0.77 \pi]\) (Fig. 8). We outline that the latter result is achieved including the current \(\theta_{23}, \theta_{13}\) uncertainties, and not fitting to their best values.

Comparison of the results for the \(q_{MO}\) estimator applied to the 2015 and 2016 NOvA analyses suggests the need to carefully evaluate the contributions of signal and background to the final sample. For studies on MO some figures-of-merit may be more valuable than others, e.g. those used for the parameter oscillation analyses. In particular the purity level may be more relevant than the efficiency on the signal. Moreover, a partition of the data samples may be envisaged. Without entering in too much technical discussion the issue on blind analyses has to be considered too.

To complete the discussion, it is worthwhile to note that the foreseen NOvA run with anti-neutrinos will certainly contribute to disentangle IH and NH, as well as adding information from the T2K experiment [16]. Besides, the JUNO [17] measurement of MO in vacuum becomes very relevant since it will not depend on \(\delta_{CP}\). The possible atmospheric measurements as foreseen by PINGU [18] and ARCA/ORCA [19] would contribute as well. We plan to extend our new method here described to all these frameworks. However, it should be clearly stated that if in the next future NOvA makes observations in line with its 2015 analysis then the inverted hierarchy will be rejected at 95% C.L. in the full range of \(\delta_{CP}\) using the analysis reported in this paper. Although no technical conclusion on the normal hierarchy could be possible, the logical conclusion would still be drawn since the two hypotheses are opposite in the three-neutrino oscillation scenario.

Appendix

The appendix describes some characteristics of the new test statistic comparing them to the \(\Delta \chi^2_{\text{min}}\) method. The framework of the 2015 NOvA analysis has been consid-

![FIG. 7. (color online) The minimum (IH exclusion, on the right) and the maximum (NH exclusion, on the left) number of events to be observed by NOvA for an exposure of \(8.22 \times 10^{20}\) p.o.t. analyzed as in 2015, are reported as function of \(\delta_{CP}\) to exclude one of the two mass ordering at 95% C.L.. The central line inside the double-band on the right delimits the exclusion region for IH, while the dotted line on the left delimits the exclusion region for the NH hypothesis. The double-band corresponds to add \(\pm 1\) \(\sigma\) systematic errors with approach B on the expected signal and background (shown only for the IH exclusion case). The two central thick lines correspond to the median of the \(f_{IH}\) (left) and \(f_{NH}\) (right) probability densities, obtained by the convolution of the Poisson event distribution and the Gaussian distributions for \(\theta_{23}\), \(\theta_{13}\) uncertainties.

![FIG. 8. (color online) The exclusion of the inverted hierarchy as obtained by the new statistical method applied to the recent release by NOvA in 2016 [7]. Uncertainties on \(\theta_{23}\), \(\theta_{13}\) were included by convolution (approach A). For comparison the dot-dashed line corresponds to the \(\Delta \chi^2\) result. The horizontal dashed line indicates the 95% C.L.. IH is rejected at 95% C.L. in the \(\delta_{CP}\) interval \([0.10 \pi, 0.77 \pi]\). The minimum (IH exclusion, on the right) and the maximum (NH exclusion, on the left) number of events to be observed by NOvA for an exposure of \(8.22 \times 10^{20}\) p.o.t. analyzed as in 2015, are reported as function of \(\delta_{CP}\) to exclude one of the two mass ordering at 95% C.L.. The central line inside the double-band on the right delimits the exclusion region for IH, while the dotted line on the left delimits the exclusion region for the NH hypothesis. The double-band corresponds to add \(\pm 1\) \(\sigma\) systematic errors with approach B on the expected signal and background (shown only for the IH exclusion case). The two central thick lines correspond to the median of the \(f_{IH}\) (left) and \(f_{NH}\) (right) probability densities, obtained by the convolution of the Poisson event distribution and the Gaussian distributions for \(\theta_{23}\), \(\theta_{13}\) uncertainties.](image-url)
number of IH events, \(n \) and the Global Fit (GF) best fit values for the other option of NH in the 2015 NOvA analysis, with \(\delta \) above the 0 \(\sigma \) such a case of course there is no sensitivity to distinguish the number of events expected for IH and observed for NH. In this simplified case the new test statistic \(q \) is defined, for each generic \(n \), as

\[
q(n) = \frac{\sum_{n_i \geq n} Poi_{\mu_{IH}}(n_i; n_{IH})}{\sum_{n_j \geq n} Poi_{\mu_{NH}}(n_j; n_{NH})},
\]

where \(Poi \) indicates the Poisson distributions with means \(\mu_{IH} = n_{IH} \) and \(\mu_{NH} = n_{NH} \). Computing \(q(n) \) for any \(n \) and weighting them with the distribution one wants to consider. For simplicity only the statistical fluctuations are taken into account, neglecting the uncertainties of the oscillation parameters \(\theta_{23}, \theta_{13} \) and the systematic errors of the measurements for the expected signal and background number of events.

1. The standard \(\chi^2 \) method

We define as \(n_{NH} (n_{IH}) \) the number of predicted events in the NH (IH) hypotheses for the \(\nu_\mu \rightarrow \nu_e \) appearance at NOvA, for some hypothetical running conditions and a specified value of \(\delta_{CP} \). Defining the variable \(d = n_{NH} - n_{IH} \) the \(\chi^2 \) is computed as \(\chi^2 = d^2/(n_{NH} + n_{IH}) \). Its probability \(P(\chi^2; 1) \) for 1 d.o.f. is subsequently evaluated. The probability \(P \) can be associated to the equivalent number \(Z \) of standard deviations. Choosing the one-sided option \(Z \) is computed as \(Z = \Phi^{-1}(1 - P) \), where \(\Phi^{-1} \) is the quantile of the standard Gaussian distribution.

The number \(Z \) of sigmas is plotted in Fig. 9 as function of variables \(n_{NH} \) and \(n_{IH} \). From the plot one estimates that e.g. when \(n_{IH} = 10 \) are predicted in the IH hypothesis then \(n_{NH} \) in the NH hypothesis should be larger than 20 events to get a significance of 3 \(\sigma \).

![Distribution for \(\chi^2 \)](image)

FIG. 9. (color online) The number \(Z \) of sigmas (as defined in the text) is drawn as function of \(n_{NH} \) and \(n_{IH} \), the predicted numbers of events in the NH and IH hypotheses, respectively.

The situation is better illustrated if isolines for given significances are computed. This is shown in Fig. 10 for the \(\chi^2 \) (top) and for the new method based on the \(q_{MO} \) estimator (bottom). For example from the top picture, if 10 events are expected for IH (horizontal axis), 28 should be observed to reject IH (vertical axis) at 3 \(\sigma \) level. The dotted lines for 0 sigma correspond to the same number of events expected for IH and observed for NH. In such a case of course there is no sensitivity to distinguish IH/NH.

![Distribution for \(q_{MO} \)](image)

FIG. 10. (color online) Using the same variables of the previous figure (\(n_{IH} \) on the horizontal axis and \(n_{NH} \) on the vertical one) the isolines for \(n \sigma \) significances are drawn. For example in the top picture the line of \(\sigma = 3 \) corresponds to the combinations of \((n_{IH}, n_{NH}) \) that would give more than 3 \(\sigma \) significance. The top picture shows isolines for the \(\chi^2 \) method, while in the bottom one isolines from the new method are drawn. The dotted lines on the bisector correspond to zero significance being \(n_{NH} = n_{IH} \). The dashed-red lines immediately above 0 \(\sigma \) indicate the median of the predicted number of NH events, with the 2015 NOvA conditions, \(\delta_{CP} = 1.5 \pi \) and the other oscillation parameters given by the best fit of GF.

2. The new estimator \(q_{MO} \)

In this simplified case the new test statistic \(q \) is defined, for each generic \(n \), as

\[
q(n) = \frac{\sum_{n_i \geq n} Poi_{\mu_{IH}}(n_i; n_{IH})}{\sum_{n_j \geq n} Poi_{\mu_{NH}}(n_j; n_{NH})},
\]

where \(Poi \) indicates the Poisson distributions with means \(\mu_{IH} = n_{IH} \) and \(\mu_{NH} = n_{NH} \). Computing \(q(n) \) for any \(n \) and weighting them with the distribution one wants...
to test, e.g. $Poi(IH)$, the probability mass function $P_{IH}(q(n); n_{IH})$ is obtained. That is the probability distribution of q under the hypothesis that IH is the truth:

$$P_{IH}(q(n); n_{IH}) = Poi_{IH}(n; n_{IH}) \quad (A.2)$$

Finally, to extract a significance for a given n_{NH} a p-value is computed:

$$p(n_{NH}; n_{IH}) = \sum_{n \geq n_{NH}} P_{IH}(q(n)). \quad (A.3)$$

The p-value thus obtained, as function of n_{IH} and n_{NH}, is then transformed into a significance by evaluating the number of standard deviations in the same way done for the χ^2 probability.

The q test statistic is optimal [12] in the sense that it maximizes the probability of rejecting a false hypothesis, at a given confidence level, and conversely minimizes the probability of making a false discovery, at a given discovery confidence level. Comparing the two plots in Fig. 10 it is evident that q_{MO} is more powerful than the χ^2 method. This intuitively originates from the fact that the χ^2 makes use of only a representative point of the distribution while the q_{MO} makes use of the full information of the underlined distribution. Then for example, instead of the 28 events needed from the χ^2 to get a 3 σ significance when 10 IH events are predicted, only 20 are required for the q_{MO} test.

However, until now the probability to observe a certain number n_{NH} has not been considered. For example, the probability to observe $n_{NH} = 20$ when 10 events are predicted for IH should be looked at. To take it into account one checks when the expectation line of NH (dashed-red line immediately above the 0 σ line) intersects the isolines. From the bottom plot (q_{MO} test) of Fig. 10 the intersection with the 3 σ isoline occurs at about 90 events. Instead, the χ^2 test does not show any intersection in the displayed range, suggesting it will occur at rather larger n_{IH}, i.e. at a rather large exposure of the experiment. It can be computed that $n_{IH} = 90$ corresponds to an increase in a factor 17 of the 2015 NOvA exposure and a factor 3 in exposure of the 2016 NOvA analysis. Thus, in principle, the q_{MO} estimator will be able to distinguish IH from NH at 3 σ level for an increase in the above factors, at least for $\delta_{CP} = 1.5 \pi$. However, this is a simplified case since all the error sources are neglected. What matter here is the relative success rate of q_{MO} against χ^2.

One notes that the isolines tend to approach the NH prediction for both methods. This is true for all the δ_{CP} values. The tendency is slow for the χ^2 method, whilst is more pronounced for the new method. Focussing on the $\delta_{CP} = 1.5 \pi$ condition, for a large number of events, i.e. for a large data sample (of the order of 2×10^{21} p.o.t. for the 2016 NOvA analysis), there could be, in principle, the possibility to distinguish NH from IH with a significance greater than 99% C.L. even with the χ^2 method.

When the q_{MO} estimator is used about a factor two less is needed to get the 3 σ separation. This corresponds to a net gain in exposure of q_{MO} against χ^2. Such gaining factor has been quantified for each value of δ_{CP} (Fig. 11). The average improvement is slightly above two. Its small increase in the δ_{CP} central region is due to the closer expectations of IH and NH (see Fig. 1) where the new test statistic works even better.

This is an ideal situation that does not take into account the uncertainties on the oscillation parameters nor the systematic errors. Even though the gain is not destroyed when errors are included in the analysis, it may take a lengthy period to collect a sufficient number of events. In fact, considering the uncertainties in Fig. 1 the evolutions of the number of events for the two options, IH and NH, almost overlap. In practice, with the current knowledge of θ_{23}, θ_{13}, and the current level of the systematic errors, there is no chance to distinguish between IH and NH in the full range of δ_{CP} neither with χ^2 nor with the q_{MO} new method just by increasing the statistical data sample.

Nevertheless, the improvement factor considerably increases when our next new idea on the treatment of the data fluctuations is applied, as reported in the next section.

3. Including the statistical fluctuation

Let us look at the zoomed region of n_{IH} in the current region of interest, $n_{IH} < 30$. From Fig. 12 it is evident that even q_{MO} results are far from the median expectation of NH in this data range. Thus we tried to apply the idea to allow some fluctuation of the data, mildly away from the median. One assumes a favorable probability fluctuation around the true median (i.e. NH) before repeating the whole computation.

When a probability fluctuation at 32% is assumed for n_{NH} (approximately $n_{NH} = \mu_{NH} + \sqrt{\sigma_{NH}}$), the updated

![FIG. 11. (color online) The improvement factor between the \chi^2 and the q_{MO} methods to reject IH at 3 \sigma level is shown as function of \delta_{CP}. The 2015 NOvA analysis conditions have been considered for the IH/NH expectations, while the oscillation parameters are given by best values of the global fit.](image)
isolines are drawn in Fig. 13 for the χ^2 (top) and the q_{MO} (bottom) methods. Comparing plots of Fig. 12 and Fig. 13 some improvement is qualitatively evident for the χ^2 method, and a larger one for the q_{MO}.

FIG. 12. (color online) Same as Fig. 10 in a restricted range of the IH number of events. The top picture shows isolines for the χ^2 method, while in the bottom one isolines for the new method are drawn. The dotted lines on the bisector correspond to zero significance being $n_{NH} = n_{IH}$. The dashed-red lines immediately above 0 σ indicate the median of the predicted number of NH events, with the 2015 NOvA conditions, $\delta_{CP} = 1.5\pi$ and the other oscillation parameters given by the best fit of the GF.

FIG. 13. (color online) Isolines as in the previous figure but including a 32% probability fluctuation on the number of NH events.

FIG. 14. (color online) Isolines as in the previous figures but including a 10% probability fluctuation on the number of NH events.

Results for a more pronounced fluctuation are reported in Fig. 14. With a probability fluctuation at 10% the new method allows IH to be rejected at 3 σ level when the dataset corresponds to about $n = 18$. Instead, the χ^2 is still far away from the possibility to put any constraint. To be more quantitative, the gaining factors defined above have been computed for the whole δ_{CP} range. Their averages are reported in Tab. I together with their spreads due to δ_{CP}. Note that the effect of the δ_{CP} dependence becomes more relevant when the assumed probability fluctuation increases, as seen from the increase in the spreads.

TABLE I. The gaining factors of the new q_{MO} method compared to the χ^2 one, for different (positive) probability fluctuations n_{NH}. The quoted values are averaged over δ_{CP}. The spreads correspond to their maximum change in the δ_{CP} interval.

fluctuation	average	spread
no fluctuation	2.27	$+0.18,-0.12$
32% fluctuation	2.75	$+0.51,-0.19$
10% fluctuation	3.78	$+0.78,-0.39$

To conclude this is a basic demonstration that the new method works properly and is more powerful than the standard χ^2 method. More than a factor two in exposure is gained over the whole range of δ_{CP}. It becomes
more powerful (about a factor 3) when some fluctuations are observed in the data collection. It could be the only method able to provide a significant discrimination between IH and NH, for the current levels of uncertainties on the oscillation parameters θ_{23}, θ_{13} and systematic errors.

[1] F. Capozzi et al., Nucl. Phys. B 908, 218 (2016).
[2] There are many analyses for the MO determination. Some of the most relevant are: X. Qian et al., Phy. Rev. D 86 113011 (2012); S.F. Ge et al., JHEP 1305 131 (2013); M. Blennow et al., JHEP 03, 028 (2014); M.C. Gonzalez-Garcia et al., JHEP 11, 052 (2014).
[3] E. Ciuffoli et al., JHEP 1401 (2014) 095; M. Blennow, JHEP 01 (2014) 139.
[4] K.A. Olive et al. (Particle Data Group), Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.
[5] L. Stanco, Rev. in Phys. 1 (2016) 90.
[6] P. Adamson et al., Phys. Rev. Lett. 116, 151806 (2016).
[7] P. Vahle (for the NOvA collaboration), talk at Neutrino2016, London (UK), 4-9 July 2016.
[8] P. Huber, M.Lindner and W.Winter, Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333]; P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187].
[9] E.g. in M. Blennow et al., JHEP 03 (2015) 005.
[10] The normalization is taken on the set of parameters: $\Delta m_{21}^2 = 7.53 \times 10^{-5}$ eV2, $\Delta m_{31}^2 = 2.38 \times 10^{-3}$ eV2, $\theta_{12} = 0.584$, $\theta_{23} = 0.785$, $\theta_{13} = 0.149$, $\delta_{CP} = 0$. The signal (background) holds 5.2 events (0.99) for 2015 NOvA.
[11] In the NOvA proposal, Ayres DS et al. FERMILAB-DESIGN-2007-01, http://lss.fnal.gov/archive/design/fermilab-design-2007-01.pdf, and in the P. Shahan presentation at FNAL-PAC on June 26th (2016) the sensitivity to the mass hierarchy is low (less than 3 sigma even for a large exposure of 18×10^{20} ν_μ plus 18 x 10^{20} ν_τ, runs over the whole range of δ_{CP}). A more realistic evaluation can be obtained from 2015 NOvA results by looking at figure 4 of [6]: the significance on the mass hierarchy is estimated by taking the squared difference between the IH and NH levels.
[12] A.L. Read, J. Phys. G 28 (2002); G. Cowan et al., EPJC 71 1554 (2011).
[13] The two variables q_{MO} are the ratios of two cumulative functions, which by definition are random variables with uniform density probability in [0, 1]. Given the asymmetry of the Poisson distributions for IH and NH in case of the NOvA experiment, the ratios defined in equations (2) and (3) stay in [0, 1] by construction.
[14] The method does not really need the double definition of q_{IH} and q_{NH} since they are complementary. All the results can be obtained using only one expression and taking the p-value in the proper domain for either IH or NH. We defined the procedure described in the text at ease of the reader.
[15] The procedure owns an hybrid Bayesian/frequentist character, known as Cousin-Highland from: R.D. Cousins and V.L. Highland, Nucl. Instrum. Meth., A320, 33 (1992).
[16] In the NOvA proposal, Ayres DS et al. FERMILAB-DESIGN-2007-01, http://lss.fnal.gov/archive/design/fermilab-design-2007-01.pdf, and in the P. Shahan presentation at FNAL-PAC on June 26th (2016) the sensitivity to the mass hierarchy is low (less than 3 sigma even for a large exposure of 18×10^{20} ν_μ plus 18 x 10^{20} ν_τ, runs over the whole range of δ_{CP}). A more realistic evaluation can be obtained from 2015 NOvA results by looking at figure 4 of [6]: the significance on the mass hierarchy is estimated by taking the squared difference between the IH and NH levels.
[17] K. Abe et al., Phys. Rev. D 91, 072010 (2015).
[18] F. An et al., J. Phys. G 43, no. 3, 030401 (2016).
[19] M. Aartsen et al. (PINGU collaboration), Letter of Intent, arXiv:1401.2046.
[20] S. Adrián-Martínez et al. (KM3 collaboration), Jour. Phys. G 43, 084001 (2016) [arXiv:1601.07459].