The prevalence of ataxia telangiectasia mutated (ATM) variants in patients with breast cancer patients: a systematic review and meta-analysis

Masoumeh Moslemi1, Maryam Vafaei2, Pouria Khani3, Marzieh Soheili4, Reza Nedaeinia5, Mostafa Manian6,7, Yousef Moradi8,9* and Ehsan Sohrabi1*

Abstract
Breast cancer is the most common cancer in women, and its high mortality has become one of the biggest health problems globally. Several studies have reported an association between breast cancer and ATM gene variants. This study aimed to demonstrate and analyze the relationship between ATM gene polymorphisms and breast cancer prevalence rate. A systematic literature review was undertaken using the following databases: Medline (PubMed), Web of sciences, Scopus, EMBASE, Cochrane, Ovid, and CINHAL to retrieve all cross-sectional studies between January 1990 and January 2020, which had reported the frequency of ATM variants in patients with breast cancer. A random-effects model was applied to calculate the pooled prevalence with a 95% confidence interval. The pooled prevalence of ATM variants in patients with breast cancer was 7% (95% CI: 5−8%). Also, the pooled estimate based on type of variants was 6% (95% CI: 4−8%; I square: 94%; P: 0.00) for total variants, 0% (95% CI: 0−1%; I square: 0%; P: 0.59) for deletion variants, 12% (95% CI: 7−18%; I square: 99%; P: 0.00) for substitution variants, and 2% (95% CI: 4−9%; I square: 67%; P: 0.08) for insertion variants. This meta-analysis showed that there is a significant relationship between ATM variants in breast cancer patients. Further studies are required to determine which of the variants of the ATM gene are associated with BRCA mutations.

Keywords: ATM variants, Breast cancer, Prevalence, BRCA, Meta-analysis

Introduction
Breast cancer is a global health problem and has the highest worldwide incidence among women. Approximately 1.7 million patients have diagnosed with breast cancer annually [1]. Furthermore, breast cancer is a significant cause of cancer-related death in women [2, 3]. The high rate of cancer progression and metastasis are two unsolved problems associated with this high mortality rate [4]. Breast cancer is a complex disorder; its etiology has not been entirely explained. Like other cancers, genetic factors have an essential role in the familial and sporadic forms of breast cancer [4]. Twin studies indicate that the heritability of breast cancer is between 27 and 31% [5, 6]. Three genetic factors are involved in breast cancer progression: high penetrance genetic mutations such as those in the BRCA1 and BRCA2 genes [7–9], intermediate penetrance variants such as those in ATM, BARD1, PALB2, and CHECK2
genes [10], and low-penetrance variants such as SNPs. The first and second mutation groups explain approximately 22% of breast cancer risk. Still, it seems that a complex interaction between low penetrance susceptibility genes and environmental factors is vital for the development and progression of breast cancer [10–13].

DNA repair systems protect the genome against mutagens and have an essential role in cell cycle regulation. Different gene mutations in these systems can increase the risk of cancer development [11, 14]. Ataxia telangiectasia mutated (ATM) is a protein kinase enzyme with a crucial role in the DNA repair system, especially in DNA double-strand repair. This gene is located on chromosome 11q 22–23 and includes 66 exons [15]. ATM acts as an intracellular sensor that becomes active in response to DNA double-strand break and then phosphorylates many downstream tumor suppressor genes such as BRCA1, p53, chk2, and chk1 [16]. Thus, it is a strong candidate for mutation in cancer multistage development [17]. ATM biallelic mutation causes an autosomal recessive disease known as Ataxia-Telangiectasia [18]. Ataxia Telangiectasia was described in 1926 and is characterized by telangiectasia, cerebellar Ataxia, neurological abnormalities, immunological deficiency, hypersensitivity to ionizing radiation (IR), and predisposition to cancer [19]. Truncated mutations in the ATM gene inhibit its expression and cause Ataxia Telangiectasia; however, missense mutations change its function and are common in cancers [20, 21]. It was reported that ATM gene expression decreased in breast cancer tissues and cells compared to controls [22]. Various studies show that classic A-T heterozygote women have a 4-fold increased risk for breast cancer [23–25]. Some studies have reported an association of ATM gene mutations with breast cancer, and some have evaluated the prevalence of this gene variant in breast cancer. Still, the exact prevalence of ATM mutations in breast cancer is unclear, and there is no systematic review on the prevalence of ATM variants in breast cancer. We aimed to undertake a systematic review and meta-analysis of the prevalence of ATM variants in breast cancer from different countries. The association of these variants with the BRCA status of patients, and the prevalence of other variants in the ATM gene.

Materials and methods
All approaches used in this study were in agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA), and the protocol had been registered in the International Prospective Register of Systematic Reviews (PROSPERO), under the registration number of CRD42018114400.

Search terms and complex search syntax
Medline (PubMed), Web of sciences, Scopus, EMBASE, Cochrane, Ovid, and CINHAL databases were searched to evaluate the prevalence of ataxia telangiectasia mutated (ATM) variants in breast cancer. In current study “breast carcinoma”, “breast tumor”, “breast neoplasm”, “breast neoplasms”, “breast cancer”, “breast cancers”, “breast tumors”, “mammary cancer”, “mammary cancers”, “breast carcinomas”, “mammary carcinoma”, “mammary carcinomas”, “ataxia telangiectasia mutated”, “ataxia telangiectasia mutated proteins”, “Ataxia Telangiectasia Mutated Proteins”, “ATM”, “mutation”, “mutations”, “variant” and “variants” keywords were searched in all mentioned databases. All reference lists of primary articles were manually reevaluated by two individuals (MM, ES) separately to avoid missing any papers. First, the authors reviewed the titles and abstracts to select the appropriate articles. The results of the primary search were reviewed, and some articles were eliminated in this step. After reviewing the entire text of the selected articles, the inclusion and exclusion criteria were set by two researchers separately (MM and ES) (Fig. 1).

Eligibility criteria
Articles were included in the current study using the following criteria: (1) evaluation of the epidemiological aspects of ATM variants in patients with breast cancer; (2) only full-text articles; (3) Cross-sectional studies. Case reports, reviews, animal studies, and cohort studies were excluded. The authors resolved all disputes during the data collection, compilation, and data analysis. The exclusion criteria for this study were unrelated studies, duplicate data, and the studies that have not answered the outcome questions, have not assessed the available data, and have not had a cross-sectional design.

Data extraction
The first author’s name, publication date, sample size, country, type of variant, prevalence, BRCA status were extracted from all studies and statically analyzed. A data extraction form was created based on our group discussion and piloted according to 10 different studies types, then was modified and used by the data extractor. All processes from systematic search to final data extraction were undertaken independently by two researchers (Kappa statistic for agreement for quality assessment: 0.75). Both authors assessed any
controversy, and, in case of dispute, the data was evaluated by the third author (YM).

Risk of bias
Two of the authors (MM and ES) performed a qualitative evaluation of the studies based on the Newcastle-Ottawa Quality Assessment Scale (NOS) was performed by two of the authors (MM and ES). This scale is designed to evaluate the qualitative evaluation of observational studies. According to NOS, each study was examined by six items in three groups; selection, comparability, and exposure. Stars were given to each item, and the maximum score is 9. The external discussion method was used in case of differences in the score given to the published reports. Finally, the papers were categorized as low, moderate, and high risk. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist was also completed for all articles.
Statistical analysis
The DerSimonian-Liard random-effect model was used to pool the prevalence of ATM in patients with breast cancer (and 95% confidence interval estimation) using the Metaprop command in Stata 14. Cochran Q and I2 tests were used to investigate the heterogeneity and variance between studies. The Q statistic tells us whether there is statistically significant heterogeneity among the studies or not. I2 determines the amount of heterogeneity quantitatively. The range of I2 is from 0 to 100. In this study, we categorized it into three levels; low (25%), moderate (50%), and high (75%). The funnel diagram, 'Egger's test, and graphs were used to evaluate publication bias. In the Egger regression model, the ratio of the effect size on the standard error, which is the standard index (z-score), is taken as the dependent variable and predicts its value over the standard error inverse (1/SE). Subgroup analyses were performed to examine any confounding factors that may influence the prevalence of the disease. Subgroup analyses were performed for BRCA status, countries, and variants of ATM. We used P-value to decide on the statistical hypothesis test results. All two-way statistical tests were considered as \(\alpha = 0.05 \).

Results
Study characteristics
The searches retrieved a total of 1101 original-research articles, the titles of which were examined by two independent reviewers. Forty-eight articles were excluded because they were not related to the topic of study. Eight hundred and sixty-three studies were excluded because of the unavailability of the full text. After all, they did not evaluate the data available for the sample selection because they contained duplicate data from an included research or did not have a cross-sectional design (Fig. 1). Finally, the remaining 24 articles were retained for analysis (Table 1).

Quantities results
The overall pooled prevalence of ATM in patients with breast cancer was 7% (95% CI: 6–9%; I square: 93%; P: 0.00) (Fig. 2).

The prevalence of different ATM variants in studies
We classify ATM variants into four groups: All variants, deletion, insertion and substitution variants. The effect range of this study was between 0.05 and 0.08. The prevalence of substitution variants was higher than other variants. Deletion and insertion were seen rarely in Breast cancer according to this study. The pooled estimate based on type of variants was 0% (95% CI: 0–1%; I square: 0%; P: 0.59), 2% (95% CI: 4–9%; I square: 67%; P: 0.08), 12% (95% CI: 7–18%; I square: 99%; P: 0.00) and 6% (95% CI: 4–8%; I square: 94%; P: 0.00) for deletion, insertion, substitution variants and total, respectively (Table 2).

The prevalence of ATM in patients with breast cancer in the world by BRCA status
The studies were divided into positive, negative, and not determined groups based on BRCA mutations. Positive groups had BRACA1/2 mutations, and negative groups do not. Some studies did not determine the status of BRCA mutations, and we classify these data as an undetermined group. The pooled prevalence of ATM in patients with breast cancer in several BRCA status was 7% (95% CI: 5–8%; I square: 97%; P: 0.00). The pooled estimate based on type of variants was 3% (95% CI: 2–4%; I square: 85%; P: 0.00), 11% (95% CI: 7–15%; I square: 99%; P: 0.00) and 12% (95% CI: 6–18%; I square: 98%; P: 0.00) for negative, positive, and not determined, respectively (Table 2). It appears that the prevalence of ATM variants in the BRCA positive group was more than negative.

The prevalence of ATM in patients with breast cancer in the world by countries
The pooled prevalence of ATM in patients with breast cancer in several continent was 7% (95% CI: 5–8%; I square: 98%; P: 0.00), 5% (95% CI: 1–11%; I square: 80%; P: 0.01) and 9% (95% CI: 4–14%; I square: 96%; P: 0.00) for European, Asian and American population, respectively (Table 2).

Publication bias
The results of ‘Egger’s test showed no publication bias in the pooled prevalence of ATM in patients with breast cancer (coefficient = 0.098, P = 0.98). Also, the funnel plot is reported in Fig. 3.

Meta-regression
Meta-regression results on the heterogeneity of studies showed that the sample size and mean age of study participants had no significant effect on the prevalence of ATM in patients with breast cancer.

Discussion
ATM is an essential protein that protects the genome from the effects of genotoxic agents, such as ionizing radiation. This protein can detect DNA double-strand breaks and directly or indirectly activate many other proteins that are important in the DNA repair system [47]. According to these studies, there is an association
between ATM variants and breast cancer risk. In the current study, the prevalence of ATM variants in breast cancer patients was evaluated. Our results showed significant differences among countries. ATM variants were highest in breast cancer patients from the USA, but these variants were not involved in the prevalence of patients from northern Europe (Finland, Denmark, and Sweden.)

In 1996, the association of Ataxia–telangiectasia gene (ATM) mutation heterozygosity with breast cancer risk was reported from New York. This study reported that 6.6% of breast cancer patients in the USA had this ATM variant [46]. So, it can be concluded that there is a high prevalence of ATM variants in the United States. This issue is consistent with our results. Different studies on the ATM variants and the prevalence of breast cancer have been undertaken in northern Europe. Most studies reported that there was no association between common variants in the ATM gene and breast cancer susceptibility in patients from Sweden, Finland, and Denmark [47, 48]. Therefore, these studies are consistent with our findings.

There are several variants of the ATM gene reported in different populations [49]. In our study, ATM variants were classified into three groups: deletion variants, insertion variants, and substitution variants. Deletions and insertions were reported in few cases. The incidence of substitution variants was more common than other

Authors	Years	Sample size	Country	Type	Prevalence %	BRCA status
de Souza Timoteo et al. [26]	2018	157	Brazil	All	10.53	Not determined
Prodosmo et al. [27]	2016	496	Italy	All	1.41	Negative
Broeks et al. [28]	2000	82	Amsterdam	All	8.54	Negative
Broeks et al. [29]	2008	443	Netherlands	Substitution	51	Positive
				Deletion	0.41	Positive
				Insertion	0.53	Positive
				All	24.15	Positive
Szabo et al. [30]	2004	961	France	Substitution	0.83	Negative
Atencio et al. [31]	2001	45	New York	All	6.67	Not determined
Aloraif et al. [32]	2015	104	Ireland	All	4.81	Negative
Fostira et al. [33]	2018	102	Greece	All	1.96	Positive
Birrell et al. [34]	2005	32	Australia	Substitution	25	Not determined
Lindeman et al. [35]	2004	495	Australia	Substitution	1.41	Negative
Brunet et al. [36]	2008	43	Spain	Deletion	2.33	Negative

For the full table, please refer to the original document.
Study	Prevalence with 95% CI	Weight (%)
Ana Rafaela de Souza Timoteo, 2018	0.11 [0.03, 0.24]	1.11
Andrea Prodosmo, 2018	0.01 [0.00, 0.02]	5.81
Annegien Brooks (1), 2008	0.22 [0.17, 0.27]	3.68
Annegien Brooks (1), 2000	0.04 [0.00, 0.08]	4.31
Annegien Brooks (2), 2000	0.09 [0.02, 0.15]	3.23
Annegien Brooks (2), 2008	0.26 [0.20, 0.32]	3.15
Csilla I. Szabo, 2004	0.01 [0.00, 0.01]	5.91
David P. Atencio, 2001	0.07 [0.01, 0.14]	2.68
Fatima Aloraifi, 2015	0.05 [0.01, 0.09]	4.29
Florentia Fostira, 2018	0.02 [0.01, 0.05]	5.10
Geoff W. Birrell, 2005	0.25 [0.10, 0.40]	0.96
Geoffrey J. Lindeman, 2004	0.01 [0.00, 0.01]	5.91
J Brunet and et al (1), 2008	0.30 [0.17, 0.44]	1.12
J Brunet and et al (2), 2008	0.05 [0.02, 0.11]	3.12
JANA SOUKUPOVA (1), 2008	0.02 [0.00, 0.04]	5.41
JANA SOUKUPOVA (2), 2008	0.01 [0.01, 0.02]	5.76
Jorgen H. Olsen, 2001	0.01 [0.01, 0.02]	5.80
Laura La Paglia, 2009	0.03 [0.00, 0.06]	4.84
Pedro Pinto, 2016	0.05 [0.02, 0.12]	2.83
Saundra S. Buys, 2017	0.12 [0.08, 0.15]	4.61
Stefan S. Bozhanov (1), 2010	0.08 [0.03, 0.12]	4.17
Stefan S. Bozhanov (2), 2010	0.06 [0.02, 0.10]	4.39
Thilo Do rk (1), 2001	0.27 [0.20, 0.33]	3.14
Thilo Do rk (2), 2001	0.02 [0.00, 0.04]	5.44
Thomas A. Buchholz (1), 2004	0.38 [0.28, 0.48]	1.81
Thomas A. Buchholz (2), 2004	0.29 [0.18, 0.41]	1.43

Overall

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 93.04\%$, $H^2 = 14.36$

Test of $\theta = 0$; $Q(25) = 359.10$, $p = 0.00$

Test of $\theta = 0$: $z = 8.81$, $p = 0.00$

Random-effects DerSimonian-Laird model

Fig. 2 The pooled prevalence of ATM in patients with breast cancer
variants. Most of the studies indicated the prevalence of the A-T substitution variant in the ATM gene [50, 51]. Another study reported that regardless of the common A-T mutation, substitution and especially missense mutations are the most common ATM variants in breast cancer patients.

Furthermore, a frameshift deletion in exon 28 of the ATM gene was reported in this article in one breast cancer patient (among 192 patients) that produce a truncated protein [52]. Another study reported one deletion 1563delAG and one insertion 2572insT in ATM gene among 190 breast cancer patients [53]. It seems that deletion and insertion in ATM genes are infrequent in breast cancer patients. There is little literature about the association of these variants, with breast cancer patients. There is little literature about the association of these variants with breast cancer disease. We classified our data into BRCA positive and BRCA negative groups for identifying the association of ATM variants with BRCA1/2 mutation in breast cancer patients. The results showed that ATM variants in the BRCA positive group are more common. In some studies, the ATM mutation (causing Ataxia Telangiectasia) was reported as a risk factor for breast cancer patients who did not have a BRCA1/2 mutation. These studies suggested that ATM is as crucial as BRCA2 in breast cancer [54, 55]. Another study indicated that ATM mutations and BRCA1 mutations are associated with breast cancer patients [56].

Our results may support this latter study and suggest that there is a cumulative effect of ATM and BRCA1 mutations that increase the risk of breast cancer incidence. Overall it seems that the prevalence of ATM variants is more common in the USA than in other countries. Among different variants, substitutions are the most common, and there is an association between ATM variants and BRCA mutations in breast cancer incidence.

Abbreviations

ATM: Ataxia telangiectasia mutated; IR: Radiation; PRISMA: Reviews and meta-analyses statement; PROSPERO: Prospective register of systematic reviews; ATM: Ataxia telangiectasia mutated.

Acknowledgements

We would like to express our gratitude to Gordon A. Ferns at Brighton and Sussex Medical School for reviewing and improving the text.

Authors’ contributions

Conceptualization: YM, ES, and MM. Data curation: YM and MS. Investigation: YM, ES, and MM. Writing-original draft: YM, PK, and MV. Writing-review and editing: MM, MM, and RN. Analysis and/or interpretation of data: YM. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Table 2

The subgroup analysis of the prevalence of ATM variants in patients with breast cancer based on ATM variants, BRCA status, and continents

Variables	Subgroups	Pooled prevalence (% 95 CI)	Heterogeneity assessment
ATM variant	All	6% (4–8%)	
	Deletion	0% (0–1%)	94
	Insertion	2% (4–9%)	0
	Substitution	12% (7–18%)	67
BRCA status	Positive	11% (7–15%)	99
	Negative	3% (2–4%)	85
	Not determined	12% (6–18%)	98
Continents (population)	American	9% (4–14%)	96
	Asian	5% (1–11%)	80
	European	7% (5–8%)	98

Fig. 3 The funnel plot of pooled prevalence of ATM in patients with breast cancer.
Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
For this type of study, formal consent is not required.

Competing interests
The authors declare no conflict of interest.

Author details
1 Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences Tehran (IUMS), Tehran, Iran. 2 Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Tehran, Iran. 3 Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. 4 Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. 5 Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. 6 Department of Medical Laboratory Science, Faculty of Medicine, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. 7 Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. 8 Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran. 9 Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.

Received: 28 May 2021 Accepted: 23 August 2021
Published online: 08 September 2021

References
1. da Costa Vieira RA, Biller G, Uemura G, Ruiz CA, Curado MP. Breast cancer screening in developing countries. Clinics. 2017;72(4):244–53.
2. Porter P. “Westernizing” women’s risks? Breast cancer in lower-income countries. N Engl J Med. 2008;358(3):213–6.
3. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research. Conspor- sioned Am Soc Prev Oncol. 2017;26(4):444–53.
4. Scmie M, Urbano N, Borfigio R, Duggento A, Toschi N, Schillaci O, Bonanno E. Novel insights into breast cancer progression and metastasis: a multidisciplinary opportunity to transition from biology to clinical oncology. Biochim Biophys Acta Rev Cancer. 2019;1872(1):138–48.
5. Musci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, Graff RE, Holst K, Moller S, Unger RH, et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68–76.
6. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytte A, Hemminki K. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85.
7. Mavaddat N, Peock S, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayalakhe H, Barfoot R, Spanova K, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nature Genet. 2006;38(8):873–875.
8. Yuille MA, Cognet LJ. The ataxia telangiectasia gene in familial and sporadic cancer. Recent Results in Cancer Research Fortschritte der Krebsfor- schung Progres dans les recherches sur le cancer. 1998;154:136–73.
9. Yancik R, Bonetti S, Malone KE, Dudoor DR, Suter NM, Ostrander EA, Daling JR, Concannon P. Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer. 2001;92(3):479–87.
10. Bretsky P, Haiman CA, Gilad S, Yahalom J, Grossman A, Paglin S, Van Den Berg D, Kolonel LN, Skalit R, Henderson BE. The relationship between twenty missense ATM variants and breast cancer risk: the Multietnic Cohort. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research. Conspor- sioned Am Soc Prev Oncol. 2003;12(8):733–8.
11. Angèle S, Taniere P, Hall J. What do we know about ATM protein expression in breast tissue? Bulletin du cancer. 2001;48(7):671–5.
12. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med. 1987;316(21):1289–94.
13. Olsen JH, Hahnenmann JM, Borresen-Dale AL, Brondum-Nielsen K, Hammarstrom L, Kleinerman R, Kaariainen H, Lonnqvist T, Sankila R, Seersholm N, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the northern countries. J Natl Cancer Inst. 2001;93(2):121–7.
14. Angèle S, Treilleux I, Tanière P, Martel-Planche G, Vuillaume M, Bailly C, Bremond A, Montesiano R, Hall J. Abnormal expression of the ATM and TP53 genes in sporadic breast carcinomas. Clin Cancer Res. 2000;6(9):3536–44.
15. de Souza Timoteo AR, Conçalves AEMM, Sales LR, Albuquerque BM, de Souza JES, de Moura PFC, et al. A portrait of germline mutation in Brazilian at-risk for hereditary breast cancer. Breast Cancer Res. 2018;17(2):637-46.
16. Prodosmo A, Buffone A, Mattioni M, Veuilarme M, Bailly C, Brémond A, Montesiiano R, Hall J. Abnormal expression of the ATM and TP53 genes in sporadic breast carcinomas. Clin Cancer Res. 2000;6(9):3536–44.
17. de Souza Timoteo AR, Conçalves AEMM, Sales LR, Albuquerque BM, de Souza JES, de Moura PFC, et al. A portrait of germline mutation in Brazilian at-risk for hereditary breast cancer. Breast Cancer Res. 2018;17(2):637-46.
18. Broeks A, Braaf LM, Huseinovic A, Schmidt MK, Russell NS, van Leeuwen FE, van’t Veer LJ. ATM-Heterozygous Germline Mutations Contribute to Breast Cancer–Susceptibility. Am J Hum Genet. 2000;66(2):494–500.
19. Broeks A, Braaf LM, Huseinovic A, Schmidt MK, Russell NS, van Leeuwen FE, et al. The spectrum of ATM missense variants and their contribution to contralateral breast cancer. Breast Cancer Res Treat. 2008;107(2):243-8.
20. Szabo CI, Schitte M, Broeks A, Houwling-Duistermaat JJ, Thorstensen YR, Dufour F, et al. Are ATM mutations 7271T→G and 5450T→A really high-risk breast cancer-susceptibility alleles? Cancer Res. 2004;64(3):840-3.
21. Atencio DF, Iannuzzi CM, Green S, Stock RG, Bernstein JL, Rosenberg BS. Screening breast cancer patients for ATM mutations and polymorphisms by using denaturing high-performance liquid chromatography. Environ Mol Mutagen. 2001;38(2-3):200-8.
22. Aloraft F, McDevitt T, Martiniano R, McGreevy J, McLaughlin R, Egan CM, et al. Detection of novel germline mutations for breast cancer in non-BRCA1/2 families. FEBS J. 2015;282(17):3424-37.
23. Fostira F, Saloustros E, Apostolou P, Vagena A, Kalfakakou D, Maita D, et al. Germline deleterious mutations in genes other than BRCA2 are infre- quent in male breast cancer. Breast Cancer Res Treat. 2018;169(1):105-13.

association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–1093.
24. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA, Masson G, Jakobssdotti M, Thorlacius S, Helgason A, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen-receptor-positive breast cancer. Nat Genet. 2007;39(7):865–9.
25. Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16(1):35–42.
26. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2012;81:181–211.
27. Prokopcova J, Kleibl Z, Banwell CM, Pohrelch P. The role of ATM in breast cancer development. Breast Cancer Res Treatment. 2007;104(2):121–8.
28. Barkova J, Bakkenist CJ, Rajpert-De Meyts E, Stakkebaek NE, Sehested M, Lukas J, Kastan MB, Bartek J. ATM activation in normal human tissues and testicular cancer. Cell (Georgetown Tex). 2005;48(8):383–45.
29. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayalakhe H, Barfoot R, Spanova K, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nature Genet. 2006;38(8):873–875.
30. Yuliffe MA, Cognet LJ. The ataxia telangiectasia gene in familial and sporadic cancer. Recent Results in Cancer Research Fortschritte der Krebsfor- schung Progres dans les recherches sur le cancer. 1998;154:136–73.
31. Atencio DP, Iannuzzi CM, Green S, Stock RG, Bernstein JL, Rosenstein BS. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16(1):35–42.
32. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2012;81:181–211.
33. Fostira F, Saloustros E, Apostolou P, Vagena A, Kalfakakou D, Maita D, et al. Germline deleterious mutations in genes other than BRCA2 are infre- quent in male breast cancer. Breast Cancer Res Treat. 2018;169(1):105-13.

Moslemi et al. Cancer Cell Int (2021) 21:474
Page 8 of 9
34. Birrell GW, Kneebone K, Nefedov M, Nefedova E, Jartsev M, Mitsui M, et al. ATM mutations, haplotype analysis, and immunological status of Russian patients with ataxia telangiectasia. Hum Mutat. 2005;25(6):593.

35. Lindeman GJ, Hieva M, Visvader JE, Leary J, Field M, Gaff CL, et al. Frequency of the ATM IVS10-6T→G variant in Australian multiple-case breast cancer families. Breast Cancer Res. 2004;6(4):R401.

36. Brunet J, Gutiérrez-Encizue S, Torres A, Béez S, Sanjose S, Galceran J, et al. ATM germine mutations in Spanish early-onset breast cancer patients negative for BRCA1/BRCA2 mutations. Clin Genet. 2008;73(5):465–73.

37. Soukupova J, Dindr P, Kleibl Z, Pohlelch P. Contribution of mutations in ATM to breast cancer development in the Czech population. Oncol Rep. 2008;19(6):1505–10.

38. La Paglia L, Lagué A, Weber J, Champa J, Cavaciuti E, Russo A, et al. ATM germine mutations in women with familial breast cancer and a relative with haematological malignancy. Breast Cancer Res Treat. 2010;119(2):443–52.

39. Minion LE, Dolinsky JS, Chase DM, Dunlop CL, Chao EC, Monk BJ. Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2. Gynecol Oncol. 2015;137(1):86–92.

40. Pinto P, Paulo P, Santos C, Rocha P, Pinto C, Veiga I, et al. Implementation of next-generation sequencing for molecular diagnosis of hereditary breast and ovarian cancer highlights its genetic heterogeneity. Breast Cancer Res Treat. 2016;159(2):245–56.

41. Dörk T, Bendix R, Brenner M, Rades D, Klopper K, Nicke M, Skawran B, Hector A, Yamini P, Steinmann D, et al. Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res. 2001;61(20):7608.

42. Buchholz TA, Weil MM, Ashorn CL, Strom EA, Sigurdson A, Bondy M, et al. A Ser49Cys variant in the ataxia telangiectasia, mutated gene, that is more common in patients with breast carcinoma compared with population controls. Cancer Interdisc J Am Cancer Soc. 2004;100(7):1345–51.

43. Bozhanov SS, Angelova SG, Krasteva ME, Markov TL, Christova SL, Gavrilov IG, et al. Alterations in p53, BRCA1, ATM, PIK3CA, and HER2 genes and their effect in modifying clinicopathological characteristics and overall survival of Bulgarian patients with breast cancer. J Cancer Res Clin Oncol. 2010;136(11):1657–69.

44. Dörk T, Bendix R, Brenner M, Rades D, Klopper K, Nicke M, Skawran B, Hector A, Yamini P, Steinmann D, et al. Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res. 2001;61(20):7608.

45. Buchholz TA, Weil MM, Ashorn CL, Strom EA, Sigurdson A, Bondy M, et al. A Ser49Cys variant in the ataxia telangiectasia, mutated gene, that is more common in patients with breast carcinoma compared with population controls. Cancer Interdisc J Am Cancer Soc. 2004;100(7):1345–51.

46. Savitsky KB-SA, Gilad S, Rotman G, Zhu Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995.

47. Prasanna Athma RR, Michael S. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. 1996.

48. Milne RL. Variants in the ATMgene and breast cancer susceptibility. Genome Med. 2009;1(1):12.

49. Tommiska J, Jansen L, Kilpiävaa O, Edvardsen H, Kristensen V, Tamminen A, Attomäki K, Blomqvist C, Børresen-Dale A-L, Nevanlinna H. ATM variants and cancer risk in breast cancer patients from Southern Finland. BMC Cancer. 2006;6:209.

50. Bernstein JL, Bernstein L, Thompson WE, Lynch CF, Malone KE, Teitelbaum SL, Olsen JH, Anton-Culver H, Boice JD, Rosenstein BS, et al. ATM variants 7271T > G and IVS10-6T > G among women with unilateral and bilateral breast cancer. Br J Cancer. 2003;89(8):1513–6.

51. Fukunaga H, Taki Y, Prise KM. Diversity of ATM gene variants: a population-based genome data analysis for precision medicine. Hum Genomics. 2019;13(1):38.

52. Golgdar DE, Healey S, Dowty JG, Da Silva L, Chen X, Spurdle AB, Terry MB, Daly MJ, Buys SM, Southey MC, et al. Rare variants in the ATMgene and risk of breast cancer. Breast Cancer Res. 2011;13(4):R73.

53. Annengren Broeks LMB, Angelina Huseinovic MK, Schmidt Nicola S, Russell FE, van Leeuwen F, Hoeghovorst LV jan. T Veer: The spectrum of ATM missense variants and their contribution to contralateral breast cancer. Breast Cancer Res Treatment. 2007;107.

54. Thorstensen YR, Roxas A, Kross J, Jenkins MA, Yu KM, Bachrich T, Muhr D, Wayne TL, Chu G, Davis RW et al. Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res. 2003;63(12):3325.

55. Moran O, Nikitina D, Royer R, Poll A, Metcalle K, Narod SA, Akbari MR, Kotsopoulos J. Revisiting breast cancer patients who previously tested negative for BRCA mutations using a 12-gene panel. Breast Cancer Res Treat. 2017;161(1):135–42.

56. Hamdi Y, Soucy P, Kuchenbaeker KB, Pastinen T, Driot A, Lemaçon A, Adlard J, Attomäki K, Andruilis IL, Arason A, et al. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q2.23. Breast Cancer Res Treatment. 2017;161(1):117–134.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.