An automated eye disease recognition system from visual content of facial image using machine learning techniques

Ashrafi AKRAM1*, Rameswar DEBNATH 1

1Computer Science and Engineering Discipline, Science Engineering and Technology School, Khulna University, Khulna-9208, Bangladesh.

ORCID ID(ASHRAFI AKRAM): 0000-0002-8064-5495, ORCID ID(Dr. RAMESWAR DEBNATH): 0000-0002-1214-6133

Received: 201 • Accepted/Published Online: 201 • Final Version: 201

Abstract: Many eye diseases like cataracts, trachoma, corneal ulcer, etc. can cause vision problem. Progression of these eye diseases can only be prevented if they are recognized accurately at the early stage. Visually observable symptoms differ a lot among these eye diseases. However, a wide variety of symptoms is necessary to analyze for the accurate detection of eye diseases. In this paper, we propose a novel approach to provide an automated eye disease recognition system using visually observable symptoms applying digital image processing techniques and machine learning techniques such as deep convolution neural network (DCNN) and support vector machine (SVM). We apply principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) methods for better feature selection. The proposed system automatically divides the facial components from the frontal facial image and extract the eye part. The proposed method analysis and classify seven eye diseases such as cataracts, trachoma, conjunctivitis, corneal ulcer, ectropion, periorbital cellulitis and bitot spot of vitamin A deficiency. From the experimental results, we see that DCNN model outperforms SVM models. We also compare our method with some other existing methods. Our method shows improved accuracy than other methods. The average accuracy rate of our DCNN model is 98.79% with sensitivity 97% and specificity 99%.

Key words: Deep Convolution Neural Network, Support Vector Machine, Principal Component Analysis, t-Distributed Stochastic Neighbor Embedding, Automated Eye Disease Recognition.

1. Introduction

Eye diseases can lead to partial or even complete absence of vision if they are left unobserved at the initial period. Early detection of these eye diseases can prevent vision impairment [1]. In recent years, digital image processing and machine learning techniques are widely used for automatic disease detection, diagnosis, and clinical decision-making procedure to achieve the optimum and most accurate results [2, 3]. Machine learning algorithms have been used for several challenging tasks, such as brain tumor segmentation with magnetic resonance (MR) imaging [4], age-related eye diseases [5], eye tumor detection [6], skin disease detection [7], an automated diabetic retinopathy [8], etc. Digital image processing and machine learning techniques are also being applied in eye diseases recognition [5, 6, 8–10]. It can potentially able to detect the abnormal changes in cells, sclera, cornea, iris, pupil and blood vessel. Many eye diseases such as cataracts, trachoma, corneal ulcer, conjunctivitis, ectropion, etc., can be detected by observing visual symptoms. Most of the people delay to take

*Correspondence: ashrafiku16@gmail.com
the correct steps to restore their eye diseases problems. Expert eye doctors are able to identify by observing eyes visual symptoms but they are not available in many remote areas in worldwide. Thus researchers are interested to develop an automated intelligent system that can provide detection and segmentation of eye region, and classification of eye diseases.

Several approaches for eye diseases recognition are found in the literature. Among them, machine learning techniques outperform other methods. Kamil Dimililer et al. [6] proposed eye tumor recognition system of the different iris tumors detection using back propagation neural networks (BPNN). For the experiments, they used only 100 images dataset (50 normal images and 50 abnormal images) where 30 images for training and 70 images for testing. The recognition rate is 95%.

Rishab Gargeya et al. [8] proposed a diagnostic tool using deep learning algorithm for automated diabetic retinopathy detection. The proposed algorithm processed color fundus images and categorized them as no retinopathy or generating abnormality sub-region of diabetic retinopathy. They tested the model using 5-fold cross-validation on local dataset of 75137 color fundus images. The accuracy rate is 97% accuracy with sensitivity 94% and specificity 98%. Kuan Wang et al. [9] proposed a machine vision based algorithm for visually observable symptoms on faces using semi-supervised anomaly detection. The proposed system is focused on detecting and classifying ill faces into multiple categories where only two eye diseases can be recognized. The accuracy rate is 76.6% with sensitivity 81%, for ill face detection.

Anum A. Salam et al. [10] proposed a system to recognize glaucoma from digital fundus image using a hybrid feature set. This proposed methodology is a combination of structural (cup to disc ratio) and non-structural (texture and intensity) features to improve the accuracy of automated analysis of glaucoma. They evaluated their proposed system with two local datasets. One dataset consists of 50 fundus images (15 glaucoma and 35 healthy images) and other is comprised of 100 fundus images (26 glaucoma and 74 healthy eye images). The accuracy rate is 97% with specificity 98% and sensitivity 92%. Melih Gunay et al. [11] proposed an automated diagnosing system of Adenoviral conjunctivitis using the facial picture of the illness face. They measured the vascularization and intensity of redness in pink eyes after segmenting the sclera regions of eye images to diagnose conjunctivitis with only 30 images (18 healthy and 12 adenoviral conjunctivitis eye images). The average accuracy rate is 96%.

Most of the existing works present recognition results on one or two eye diseases. But there still lack of research on recognition of some other important eye diseases. The main pitfall in this area is lack of benchmark and publically available visual content based eye disease dataset for many diseases. In this paper, we aim to develop a standard dataset with many samples as well as many eye diseases. We develop our dataset with seven diseases and the dataset contain 1753 images. These datasets can be made available free of cost to researchers of other institutions. We develop our system for recognition of seven eye diseases using CNN and SVM because, in general, CNN and SVM outperform other machine learning techniques for many recognition tasks.

The proposed method segments the facial components using a digital image processing technique. Then we detect eye region automatically and these features are applied to DCNN and SVM model. We also apply PCA and t-SNE for feature selection and then classification is done using SVM based on the radial basis function (RBF) kernel. In existing system authors experimented their methods with few number of eye diseases. In this paper we choose seven eye diseases such as cataracts, trachoma, corneal ulcer, conjunctivitis, ectropion, periorbital cellulitis, and bitot spot of vitamin A deficiency. From the experimental result, we obtain 98.79% average accuracy with sensitivity 97% and specificity 99% by the proposed DCNN model for seven diseases. When SVM model is considered, the SVM, PCA-SVM, t-SNE-SVM achieve average accuracy rate of 91.70%,
96.13%, 80.45% with sensitivity 90.5%, 93.5%, 12.5% and specificity 94.13%, 98.87%, 87.37%, respectively. We also compare our method with some existing methods. We compare our method with the method in [9] for diseases like Peri orbital Cellulitis and Corneal Ulcer. The method average recognition rate is 76.6%. We also experiment our method for adenoviral conjunctivitis recognition with the method in [11]. The method average accuracy rate of 96%. Overall our method achieve better accuracy than others. We get the recognition rate of our method is 98.79% with sensitivity 97% and specificity 99%.

Rest of the paper is organized as follows. In Section 2, we describe our proposed methodology. Section 3 shows, the experimental and quantitative analysis of the results obtained from the algorithms. Finally, Section 4 concludes the paper.

2. Proposed methodology

In this paper, an automated eye disease recognition system is designed using various machine learning techniques. In our eye disease recognition system, human eye part is obtained from the facial image automatically. The first stage is capturing of images. This procedure is acquired by digital camera. Initially, the original image has been loaded as an input image and then the method detects the face from the input image by our algorithm. Our method scales the facial images 500×500 pixels. Then the method segments the various facial components. Once the eye part is segmented from the face part, we apply that eye parts of the image for learning. The phases of the proposed method are shown in below Figure 1.

![Figure 1. Proposed methodology.](image)

2.1. Facial features detection

Facial feature points are generally obtained from facial components such as eye, nose, jaw, mouth, etc. In our proposed system, the facial feature point’s detection involves three steps: step 1: localizing face in the image; step 2: detecting facial feature points of each face component; and step 3: segmenting facial component. We apply the method for face detection that uses the histogram of oriented gradient (HOG) to construct feature vector and linear SVM classifier for detection proposed in [12]. We use HOG based feature selection techniques because it outperforms other existing feature selection technique for human detection [12]. The linear SVM is used as a baseline classifier for face or non-face classification for its simplicity and higher speed.

The HOG descriptor technique computes occurrences of histogram gradient orientation in a small spatial region of an image referred to as “cell” [12, 13]. The image is partitioned into cells of size $N \times N$ pixels. Then
it evaluates the vectors that represent histograms of orientated gradients of each cell in the detection window. Gradient vector for x and y direction is calculated by Equation (1) and (2) respectively. In these equations, \(L \) is a pixel intensity (grayscale) function for \((x, y)\) direction in an image \(I \). Then the gradients are used to calculate gradient magnitude \(M_{x,y} \) and the gradient orientation \(\theta_{x,y} \) by Equations (3) and (4) respectively.

\[
gx = \frac{\partial I}{\partial x} = L(x, y + 1) - L(x, y - 1) \tag{1}
\]
\[
gy = \frac{\partial I}{\partial y} = L(x + 1, y) - L(x - 1, y) \tag{2}
\]
\[
M_{x,y} = (gx^2 + gy^2)^{\frac{1}{2}} \tag{3}
\]
\[
\theta_{x,y} = \tan^{-1}\left(\frac{gx}{gy}\right) \tag{4}
\]

The orientation of all pixels is computed and accumulated in M-bins histogram of orientations over \(N \times N \) spatial cells. Then all the achieved histograms are concatenated into unique histogram vectors in order to construct the final features vector. Finally the feature vectors are given to a linear SVM to classify face or non-face. The SVM will be discussed in Section 2.2.2.

This facial landmark extraction method is based on an ensemble of regression trees proposed in [14]. Thus, in this technique, each stage regressor in the cascaded shape regression framework is based on the ensemble of regression trees [14]. The ensemble of regression trees can be used to regress the position of facial landmarks. Each regressor in the cascade makes its predictions based on features such as pixels intensity values extracted from the face image [14]. The features used in each regressor in the cascade returns a shape vector which is used to update the current shape of estimate at each stage. The processes can be formulated as follows:

\[
S_{t+1} = S_t + r_t(\phi_t(I, S_t)) \tag{5}
\]

where \(r_t \) is a regressor at stage \(t \), \(I \) is an input image and \(S_t \) is the currently estimated shape vector. It will update \(S_t \) stage by stage where \(\phi_t(I, S_t) \) is a function that referred to as shape-index feature which depend on the current estimate of \(S_t \).

In [14], Vahid Kazemi et al. used 194 landmarks to detect facial components on the face image. In our methodology, we use 68 landmarks to detect facial components because 68 landmarks are sufficient for detecting main components of face \(^1\). By this method, facial components such as jaw, right eye, left eye, mouth, nose, left eyebrow and right eyebrow can be accessed through facial landmarks 0 to 17, 37 to 42, 43 to 48, 49 to 68, 28 to 36, 18 to 22 and 23 to 27 respectively as shown in Figure 2. This technique helps to detect the facial components for determining the specific region of the face. Once the area of facial components is detected after the facial landmark extraction process, the system extracts the ROI from the face image shown in Figure 3.

\(^1\)Official Dlib Library [online]. Website http://dlib.net/. [Accessed 10 September 2018].
2.1.1. Eye extraction

The main goal of facial features detection is to segment the facial components, in particular for eye region extraction and segmentation. We detect and locate the position of eyes using a facial landmark detector [14]. Then it converts the facial landmarks \((x_{(l,i)}, y_{(l,i)})\)-coordinates (where \(l\) is an index of the landmark), which specify where the 68 landmarks are. Each eye part contains six landmarks, starting at the left corner of the eye shown in Figure 4. For each of the eye regions, we determine the starting and ending index values to extract \((x, y)\)-coordinates. Using these indexes we extract eye regions and scaled to the resolution of 70 × 70 pixels. Then the segmented eye parts are used as training samples for CNN and SVM, so that the system automatically recognize eye diseases for specific categories.

2.2. Classifiers

Our automatic eye disease recognition consists of several steps: facial feature extraction, ROI (region of interest) and feature learning. In this section, we describe our proposed machine learning methods such as deep convolution neural network (DCNN) and support vector machine (SVM) to classify several eye disease.
2.2.1. DCNN classifier

A deep convolution neural network (DCNN) is a multi-layer neural network that is performed as a deep supervised learning method [15]. DCNN has been achieved excellent performances on image recognition tasks for the last few years [7, 8, 16, 17]. It can perform both feature extraction and image classification tasks [15]. The CNN architecture composition of two parts: i) convolutional layer and max-pool layer act as a hierarchical feature extractor. This feature extractor maps the input image intensities to feature vector; ii) fully connected layer performs as a classifier where the extracted features are classified. It is followed by soft-max activation function, as they have only one output neuron for every class. Due to DCNN’s excellent performances, we have proposed a method for feature extraction and disease recognition from eye images that uses DCNN. We have built a custom architecture for our DCNN model inspired by earlier works in [16, 17] for recognition tasks using CNN. We mainly explore six convolution layer, six leaky ReLU, three max-pooling, three fully connected layers, and five dropout layer. The first convolution layer receives \(70 \times 70 \times 3\) (height \(\times\) width \(\times\) three input channels) = 14700 input neurons that is associated with each pixel in the image. The values associated with each image’s data matrix is normalized and fed to the hidden layer to get their classification. The CNN-based architecture is presented in Figure 5. Table 1 shows the descriptions of the proposed CNN architecture. As shown in Figure 5, each layer of convolution and max-pooling are composed of multiple 2D planes which are called feature mapping. Each feature map consists of multiple independent neurons which receive inputs from a small region in the previous layer. All the neurons of each feature map use the same kernel and connecting weights. Each neuron of the convolution layer extracts the features from input images. The higher level features can be obtained by using these extracted features from the subsequent layers. As the feature propagates to the highest layer, the dimension of each feature map layer reduces the feature size from the previous feature size that depends on the size of the convolutional and max-pooling layer. For better classification accuracy the number of features usually increased to select or map suitable features.

Suppose an image \(I_{p \times q}\) where \(p\) and \(q\) are the length and width of the image. Each image of CNN is convolved with 2D kernel \(W_{m,n}^s\) where \(m\) and \(n\) represent the kernel size and \(s\) represent as a used kernel. The convolutional layer performs the mapping as follows:

\[
C_{(x,y)}^s = I_{p \times q} \ast W_{m,n}^s
\]

For each entry of \(C_{(x,y)}^s\) can be defined as shown in Equation 7

\[
C_{(x,y)}^s(i,j) = \sigma(\sum_{u=i}^{m} \sum_{v=j}^{n} I_{p \times q}(u - i)(v - j) \ast W_{m,n}^s(u,v) + b^s)
\]

where \(\sigma\) is a nonlinear function. The result passes through the leaky ReLU. Although in CNN architecture...
ReLU is the most used activation function but in our proposed architecture Leaky ReLU activation is applied to fix the problem of dying neuron during back-propagation with gradient value of 0.1. And the feature extractor with activation function leaky ReLU produced features vectors that consistently outperformed than the feature extractor with other activation functions. We build several dropout layers to reduce model overfitting. The output of the convolutional layer is a 2D vector, which flattens into a single dimensional vector that is used as an input layer with three fully connected layers. The final layer i.e., fully connected layer performs the classification followed by a softmax activation function [16]. For an input sample \(x \), weight vector \(W \) and \(K \) distinct linear functions, the softmax function can be defined for the \(i^{th} \) class as follows:

\[
P(y = i|x) = \frac{\exp(x^T w_i)}{\sum_{k=1}^{K} \exp(x^T w_k)}
\]

2.2.2. SVM classifier
Support vector machine (SVM) is a linear binary classifier proposed by Vapnik in 1995 [18]. SVM performs intelligent machine techniques for the purpose of condition monitoring and medical diagnosis using its excellent ability in the classification process. In this paper focuses on the SVM using radial basis function (RBF) kernels for solving non-linear separable classification problems [19]. Given a supervised soft-margin classification problem and a training set of \(N \) data points \(\{y_i, x_i\}_{i=1}^m \) where \(x_i \in \mathbb{R}^n \) is the \(i^{th} \) input pattern and \(y_i \in \mathbb{R} \) is the \(i^{th} \) output pattern, the SVM method aims at constructing a classifier, that is defined as follows:

\[
y(x) = \text{sign}(\sum_{i=1}^{m} \alpha_i \gamma_i k(x_i, x) + b)
\]

where \(\alpha_i \) and \(b \) are obtained from a quadratic optimization problem. Quadratic optimization problem has a trade-off parameter \(C \) which is defined by the experiment or user. In this paper we applied Gaussian radial basis function (RBF) kernel that is defined as follows:

\[
K(x_i, x) = e^{\gamma ||x_i - x||^2}
\]

where the \(\gamma \) is a parameter as a Gaussian kernel function [18]. We also apply two feature selection methods such as PCA and t-SNE. The PCA is used to reduce dimensionality by eliminating redundant information of feature
Table 1. Description of proposed DCNN architecture.

Layers	Layers (Type)	Feature maps and Neurons	Kernel	Number of Parameters
0	Input image	3@70 × 70	–	–
1	Convolution	256@66 × 66	5 × 5	19456
2	LeakyReLU	LeakyReLU	–	0
3	Batch normalization	Batch normalization	–	1024
4	Convolution	256@62 × 62	5 × 5	1638656
5	LeakyReLU	LeakyReLU	–	0
6	Max-Pooling	256@31 × 31	2 × 2	0
7	Batch normalization	Batch normalization	–	1024
8	Dropout	0.3	–	–
9	Convolution	128@27 × 27	5 × 5	819328
10	LeakyReLU	LeakyReLU	–	0
11	Batch normalization	Batch normalization	–	512
12	Convolution	128@23 × 23	5 × 5	409728
13	LeakyReLU	LeakyReLU	–	0
14	Max-Pooling	128@11 × 11	2 × 2	0
15	Batch normalization	Batch normalization	–	512
16	Dropout	0.2	–	–
17	Convolution	256@7 × 7	–	819456
18	LeakyReLU	LeakyReLU	–	0
19	Batch normalization	Batch normalization	–	1024
20	Convolution	256@3 × 3	5 × 5	1638656
21	LeakyReLU	LeakyReLU	–	0
22	Max-Pooling	256@1 × 1	2 × 2	0
23	Batch normalization	Batch normalization	–	1024
24	Dropout	0.3	–	–
25	Flatten	256	–	–
26	Dense	512	Sigmoid(activation)	131584
27	Batch normalization	Batch normalization	–	2048
28	Dropout	0.5	–	–
29	Dense	256	Sigmoid(activation)	131584
30	Batch normalization	Batch normalization	–	1024
31	Dropout	0.5	–	–
32	Dense	8	–	2056
33	Softmax	8	–	–
34	Classification output	Categorical Cross Entropy	–	–

vectors [20]. The PCA gives only much variation of the on dimensionality feature vector [20]. The t-SNE also reduce dimensions to a reasonable amount by minimizing the divergence between two distributions [21]. One distribution is the pairwise similarities of the input objects in original space (high dimensional) and the other distribution is the pairwise similarities of the corresponding low dimensional points in the embedding. The model utilized the grid search to select hyper parameters which were the combination in the range of C and γ.
3. Experimental results

In this section, we describe the dataset used for eye disease experimentation, present the experimental setup and results, analyze different machine learning algorithm settings, and then compare our method to other eye disease recognition techniques.

3.1. Datasets

First we develop a dataset for seven eye diseases. Images are independently collected from International Centre for Eye Health, Clinical images for symptoms on face, University of Rochester, UCSD School of Medicine and VA Medical Center, the Primary Care Dermatology Society and other different resources [22, 23]. Some sources contain full faces image with diseases. We crop the eye part and resize the images. All images are resized into 256×256. The dataset contains 1753 images. Table 2 shows the statistics of image dataset. Figure 6 shows some image samples of our dataset. The symptoms of selected eye diseases includes several visual abnormalities in the eye region, particularly blurred or clouded or yellowing lens, grey or white spot on cornea, red or bloodshot eyes, yellow or greenish-yellow coating eyes, foamy white spot in sclera, swollen eye, eyelid deformity i.e. the length of the lower eyelid is turned out from the eyes, reddish bump on the edge of an inner eyelid depending on specific disease and symptoms are different for each disease.

Images	Number of images
Corneal Ulcer	362
Ectropion	209
Cataracts	187
Conjunctivitis	249
Trachoma	122
Periorbital Cellulitis	168
Bitot spot of vitamin A deficiency	187
Healthy	269
Total images	1753

3.2. Experimental setup and results

The entire experiment has been conducted on a system with Intel® Core- i7-7700HQ, an additional GPU (NVIDIA® GeForce® GTX 1060, 6 GB GDDR5), 512 GB SSD memory, and Keras with Tensorflow on the backend. All the model’s results were implemented using OpenCV, and python. The facial landmark detector with pre-trained models, the dlib library is used to evaluate the 68 landmarks of facial structures on the face image [23]. The facial landmark extraction method use the iBUG 300-W dataset for training [23]. This dataset is comprised of 135 images with 68 landmarks including different poses, lighting conditions, subjects, etc.

We conduct comparative experiments for eye disease recognition with DCNN and SVM models on our dataset. Each sample in the original dataset is an image of size 256×256 pixels. The original eye images are too large for preprocessing efficiently. We have resized all the eye disease images into 70×70 pixels to reduce the time of training that was automatically evaluated by written script in Python, using keras, OpenCV framework.

2International Centre for Eye Health, London School of Hygiene Tropical Medicine [online]. Website www.flickr.com/communityeyehealth. [Accessed 10 August 2018].
To reduce biases in the features selection of the validation set, we perform 10-fold cross-validation technique on the dataset. In 10-fold cross-validation, the original dataset is randomly divided into ten equal size subsets. Then each time, a single subset is used as the validation set and other nine subsets are used for training with 40 epochs each. Here, 20% of the original images are reserved as a test set, and 1402 images are randomly selected from the remaining dataset for training our models at starting point. The DCNN model identify 334 images out of 351 eye images correctly. From the experimental results of DCNN model we see that the average accuracy rate is 98.79% with specificity 97% and sensitivity 99%. To evaluate the CNN model performance, several performance metrics are used such as accuracy, precision, recall, and fscore are shown Table 3. Figure 7 depicts the CNN model accuracy and loss with the number of epochs, resulting in the mean error rate of the proposed system is 3%.

In order to get other three estimations, the proposed system uses hybrid features of SVM for recognition of seven eye diseases. We propose RBF kernel-based support vector machine [18] with three different model such as the SVM model, PCA-SVM model, and t-SNE – SVM model. We experiment our dataset with SVM, PCA-SVM, and t-SNE – SVM models. The PCA and t-SNE are used for features selection of segmented eyes from images and decreasing the feature matrix size by selecting the most important features. We compare among these models with the performances metrics such as accuracy, precision, recall, and fscore are shown in Table 4. We select the range of regularization parameter C and the value of gamma γ and apply 10-fold cross-validation technique on our dataset using SVM with RBF kernel.

The grid searching range of SVM in each parameter is $C= [2^{-2}, \ldots, 2^7]$ and $\gamma = [2^{-7}, \ldots, 2^2]$. In
Table 3. Statistical results of CNN model.

Model	Precision	Recall	Fscore	Accuracy % (Cross validation [k=10])	Average model accuracy% (Cross validation [k=10])
Bitot spot of vitamin A deficiency	1.00	0.95	0.97	99.43	
Cataracts	1.00	0.95	0.97	99.43	
Conjunctivitis	1.00	0.94	0.96	98.86	
Corneal Ulcer	0.95	1.00	0.97	98.29	
Ectropion	0.97	0.98	0.94	98.58	
Periorbital Cellulitis	1.00	0.82	0.90	98.30	
Trachoma	1.00	0.88	0.93	99.15	
Healthy Eye	0.90	1.00	0.95	98.29	

Figure 7. The training and testing CNN model accuracy and loss respectively.

All combination of SVM models tried $10 \times 10 = 100$ different combination. We have achieved best accuracy rate for $C=14.444$ and $\gamma=0.008$ in SVM, PCA-SVM, t-SNE – SVM models. These parameters are then used to train and test these three model. The SVM model without PCA is able to achieve average accuracy rate of 91.70% with sensitivity 91% and specificity 94%. The PCA-SVM model shows the accuracy rate of 96.13% with sensitivity 94% and specificity 99%. In the case of the t-SNE-SVM model that shows accuracy rate 80.78% with sensitivity 13%, and specificity 87%. The CNN model shows the highest accuracy rate among all the models based on some statistical results such as model accuracy rate, precision, recall, f-score. Specificity and sensitivity are mainly used to detect the suspected disease or disease-free in the autonomous medical diagnostic process.
Table 4. Comparison of hybrid feature classification with SVM.

Disease	SVM without PCA	SVM with PCA	SVM with t-SNE									
	Precision (P)	Recall (R)	Fscore (F)	Average accuracy (%)	Precision (P)	Recall (R)	Fscore (F)	Average accuracy (%)	Precision (P)	Recall (R)	Fscore (F)	Average accuracy (%)
Bitot spot of vitamin A deficiency	1.00	0.95	0.97	92.43	1.00	1.00	1.00	99.13	0.15	0.17	0.18	89.74
Cataracts	0.66	1.00	0.79	76.77	0.73	1.00	0.84	96.01	0.32	0.34	0.32	89.45
Conjunctivitis	0.94	0.96	0.98	93.67	1.00	1.00	1.00	97.00	0.24	0.23	0.24	85.75
Corneal Ulcer	0.97	0.94	1.00	92.72	1.00	1.00	1.00	97.15	0.37	0.45	0.41	21.93
Ectropion	0.95	0.92	0.97	93.17	1.00	1.00	1.00	97.07	0.11	0.15	0.11	88.03
Periorbital Cellulitis	1.00	0.76	0.86	92.45	1.00	0.82	0.90	98.29	0.18	0.11	0.15	90.31
Trachoma	1.00	0.71	0.83	95.67	1.00	0.75	0.86	95.15	0.27	0.18	0.23	93.16
Healthy Eye	1.00	0.96	0.98	96.72	1.00	0.96	0.98	97.21	0.17	0.13	0.16	84.04

We also compute specificity and sensitivity that are defined as follows:

\[\text{Specificity} = \frac{TN}{TN + FP} \]

\[\text{Specificity} = \frac{TP}{TP + FN} \]

The terms True Positives (TP), True Negative (TN), False Positives (FP), and False Negatives (FN) are vital to understanding the convenience for the evaluation of interest disease diagnosis. True positive (TP) is defined as the patient has the eye disease that successfully detected as the selected eye disease image. False positive (FP) is defined as the patient does not have the eye disease but detected as the eye disease symptoms, True negative (TN) is defined as the patient doesn’t have the eye disease and detected the healthy eye image, False negative (FN) is defined as the patient has the eye disease but unrecognized eye disease. However, Table 5 shows the specificity and sensitivity of the proposed model. The proposed CNN model obtained the highest sensitivity rate of 97% and specificity 99%. The t-SNE - SVM based model shows the lowest sensitivity rate of 13% and specificity 88%. From the result sensitivity and specificity are improved by the proposed system. Moreover, we see that the result of our methods are better than other eye disease recognition system.

Figure 8 shows the ROC curve calculated with the true positive and false positive statistical features from Table 5. The fitted ROC area (AUC) for the proposed systems are 0.99, 0.99 and 0.47 for the SVM, PCA-SVM and t-SNE-SVM based models respectively. The ROC area (AUC) estimates the overall performances of the algorithms. Results are shown that the image of eye classified diseases or healthy.

In Table 6, we show the comparison of our method with some existing methods. We get the results of other methods from [9, 11]. We apply 10-fold cross-validation technique on 1753 eye images for computing our results. Although the dataset, learning task and experimental setup are not the same as our proposed method,
Table 5. Comparison of statistical results of proposed Machine Learning Techniques.

	CNN	SVM	PCA-SVM	T-SNE-SVM
	TP	FP	Sensitivity	Specificity
Bitot spot of vitamin A deficiency	35 0 0.95 1.00	35 0 0.95 1.00	35 0 0.95 1.00	0 0 0 1.00
Cataracts	35 0 0.99 1.00	37 19 1.00 0.94	37 14 1.00 0.96	0 0 0 1.00
Conjunctivitis	47 1 1.00 0.99	50 0 0.98 1.00	50 0 1.00 0.98	0 0 0 1.00
Corneal Ulcer	74 6 1.00 0.98	74 0 1.00 1.00	74 0 1.00 0.97	74 274 1.00 0.01
Ectropion	41 4 0.98 0.99	42 0 0.88 0.91	42 0 1.00 1.00	0 0 0 1.00
Periorbital Cellulitis	27 0 0.94 1.00	25 0 0.96 0.86	27 0 0.96 1.00	0 1 0 0.99
Trachoma	21 0 0.89 1.00	17 0 0.76 0.82	18 0 0.82 1.00	0 0 0 0.99
Healthy Eye	54 6 1.00 0.98	52 0 0.71 1.00	52 0 0.75 1.00	0 2 0 1.00

Figure 8. The ROC curve (a) SVM (b) PCA-SVM (c) t-SNE-SVM calculated by the statistical data from Table 5.

it is inconvenient to compare the performance directly. But we get an assumption of improvement results by our method compared to that other methods. From the experimental results in Table 6, we see that our method shows better results than existing methods.

4. Conclusion

In this paper, we propose a visual content based eye disease recognition system from the facial image using image processing and machine learning techniques. In this paper we have developed a benchmark visual content
Table 6. Comparison of proposed method with some existing methods.

Method	Eye disease	Sample size (image type)	Accuracy (%)	Proposed CNN Method Accuracy (%)
Kuan Wang et al. [9]	Periorbital Cellulitis and Corneal Ulcer	237 (more than 20 diseases)	76.6	98.30
Melih Gunay et al. [11]	Adenoviral Conjunctivitis	30 (18 healthy and 12 adenoviral conjunctivitis)	96	98.86

based image dataset for seven eye diseases which contain 1753 image data. Our proposed system is based on an algorithm that automatically cropped the eye part from a frontal facial image. These eye parts are used for learning. We apply two learning methods for classification such as DCNN and SVM. We also apply PCA and t-SNE for feature selection and then classify by SVM. We experiment our system with seven eye diseases that are visually observable. From the experimental result we see that DCNN outperforms SVM models. Over the SVM models, PCA-SVM model shows better result than other two SVM models. We also compare the recognition accuracy of DCNN methods with some other existing methods for eye disease recognition. It is observed that our method achieve better accuracy than others. We get the recognition rate of our method is 98.79% with sensitivity 97% and specificity 99%.

Acknowledgement
This research is funded by Information and Communication Technology (ICT) division, Ministry of Posts, Telecommunications and Information Technology, Government of the People’s Republic of Bangladesh.

References
[1] Ackland P, Resnikoff S, Bourne R. World blindness and visual impairment: despite many successes, the problem is growing. Community Eye Health Journal 2017; 30 (100): 71-73.
[2] Wiemer J, Schubert F, Granzow M, Ragg T, Fieres J et al. Informatics united: exemplary studies combining medical informatics, neuro informatics and bioinformatics. Methods Inf Med 2003; 42 (2): 126-33.
[3] Wan J, Wang D, Hoi SCH, Pengcheng W, Jianke ZHU et al. Deep learning for content-based image retrieval: A comprehensive study. MM ’14: Proceedings of the 22nd ACM International Conference on Multimedia 2014; Orlando. pp. 157-166.
[4] Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 2013; 58 (13):R97–R129. doi: 10.1088/0031-9155/58/13/R97.
[5] Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Transactions on Biomedical Engineering 2015; 62: 2693-2701. doi: 10.1109/TBME.2015.2444389.
[6] Dimiliiler K, Ever YK, Ratemi H. Intelligent eye tumour detection system. Procedia Computer Science 2016; 102 (C): 325–332. doi: 10.1016/j.procs.2016.09.408.
[7] Esteva A, Kuprel B, Novoa RA, KO J, Swetter SM et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542 (7639): 115–118. doi: 10.1038/nature21056.
[8] Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017; 124 (7): 962-969. doi: 10.1016/j.ophtha.2017.02.008.
[9] Wang K, Luo J. Detecting visually observable disease symptoms from faces. EURASIP Journal on Bioinformatics and Systems Biology 2016; 13. doi: 10.1186/s13637-016-0048-7.

[10] Salam AA, Khalil T, Akram MU, ameel A, Basit I. Automated detection of glaucoma using structural and non-structural features, SpringerPlus 2016; 5 (1): 1519. doi: 10.1186/s40064-016-3175-4.

[11] Gunay M, Goceri E, Danisman T. Automated detection of adenoviral conjunctivitis disease from facial images using machine learning. In: 2015 IEEE 14th International Conference on Machine Learning and Applications 2015; Miami, FL, USA. pp. 1204-1209. doi: 10.1109/ICMLA.2015.232.

[12] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005; San Diego, CA, USA. doi: 10.1109/CVPR.2005.177.

[13] Carcagni P, Coco MD, Leo M, Distante C. Facial expression recognition and histograms of oriented gradients: A comprehensive study. SpringerPlus 2015; 4 (1): 645. doi: 10.1186/s40064-015-1427-3.

[14] Kazemi V, Sullivan J. One millisecond face alignment with an ensemble of regression trees, In: 2014 IEEE Conference on Computer Vision and Pattern Recognition 2014; Columbus, OH, USA. pp. 1867-1874. doi: 10.1109/CVPR.2014.241.

[15] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006; 313 (5786): 504-7. doi: 10.1126/science.1127647.

[16] Alom MZ, Sidike P, Hasan M, Taha TM, Asari VK. Handwritten bangla character recognition using the state-of-art deep convolution neural network. Computational Intelligence and Neuroscience 2018; doi: 10.1155/2018/6747098.

[17] Jeon, WS, Rhee SY. Plant leaf recognition using a convolution neural network. International Journal of Fuzzy Logic and Intelligent Systems 2017; 17(1): 26-34. doi:10.5391/IJFIS.2017.17.1.26

[18] Cortes C, Vapnik V. Support-Vector Networks. Machine learning (1995); 20 (3): 273-297. doi: 10.1023/A:102627411411.

[19] Rajkumar N, Jaganathan P. A new RBF kernel based learning method applied to multiclass dermatology diseases classification. In: 2013 IEEE Conference on Information & Communication Technologies 2013; Thuckalay, Tamil Nadu, India. pp. 551-556. doi: 10.1109/CICT.2013.6558156.

[20] Moore B. Principal component analysis in linear systems: controllability, Observability, and Model Reduction. In: IEEE Transactions on Automatic Control 1981; 26(1): 17-32. doi: 10.1109/TAC.1981.1102568.

[21] Maaten LVD, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research 2008; 9(Nov): 2579-2605.

[22] Sagonas C, Tzimiropoulos G, Zafeiriou S, Pantic M. A semi-automatic methodology for facial landmark annotation. In: CVPRW ’13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops; Washington, DC, USA; pp. 896-903. doi: 10.1109/CVPRW.2013.132.

[23] Sagonasa C, Antonakosa E, Tzimiropoulosb G, Zafeiriou S, Pantic M. 300 faces In-the-wild challenge: Database and results. Image and Vision Computing 2016; 47:3-18. doi: 10.1016/j.imavis.2016.01.002.