Introduction

Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRRs) operating in the innate immunity, which also encompass RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs). PRRs share the ability to recognize relatively conserved microbial components, which are generally referred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), as well as endogenous danger signals commonly known as damage-associated molecular patterns (DAMPs). Common TLR-activating MAMPs include viral and bacterial nucleic acids (which can signal through TLR3 or TLR9), flagellin (a TLR5 agonist), as well as lipopolysaccharide (LPS), lipoteichoic acid, and mannan (which signal through TLR2 or TLR4). Endogenous nucleic acids and the nuclear non-histone protein high mobility group box 1 (HGMB1) are prototypic TLR-activating DAMPs.

Toll was initially identified and characterized for its anti-fungal activity in Drosophila melanogaster, and TLRs are evolutionarily conserved from Caenorhabditis elegans through mammals. Thus far, 13 TLRs have been identified in mammals (TLR1–TLR13), 10 of which are encoded in the human genome (TLR1–TLR10). Notably, human TLR11 is a pseudogene, and human cells lack Tlr12 and Tlr13. TLRs are type I integral membrane glycoproteins characterized by an extracellular domain with a leucine-rich-repeat (LRR) motif and a cytoplasmic signaling domain, which is homologous to the interleukin 1 receptor (IL1R) and is classified as the Toll/IL-1R homology (TIR) domain. TLRs either reside in the plasma membrane (TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10) or in endosomal membranes (TLR3, TLR7, TLR8, and TLR9). As a family, TLRs are expressed by multiple immune cells, including macrophages, dendritic cells (DCs), B cells, and natural killer (NK) cells, as well as by non-immune cells including epithelial cells, fibroblasts and malignant cells. Thus, besides controlling the activation, maturation and immunological functions of immune cells (notably cytokine secretion), TLR signaling can influence tumor metabolism, proliferation and dissemination.

Several TLR ligands demonstrated potential therapeutic efficacy against malignant disorders. Imiquimod, also called Aldara® (imiquimod 5% cream as commercialized by 3M Pharmaceuticals) or R-837, is a TLR7 agonist that is approved by the US Food and Drug Administration (FDA) for the treatment of actinic keratosis, external genital/perianal warts (condylomata acuminata), and superficial basal cell carcinoma. The structure of imiquimod is similar to an attenuated form of M. tuberculosis (BCG), which is immunologically related to M. tuberculosis. It was initially used as a vaccine against tuberculosis, but it is now FDA-approved for the treatment of non-invasive transitional cell carcinoma of the bladder. Although the mechanism of action of BCG...
is not entirely understood, TLR2, TLR4, and TLR9 have all been implicated in the host response to this TLR agonist.93 Finally, monophosphoryl lipid A (MPL) is a derivative of Salmonella minnesota LPS that is employed as an adjuvant in Cervarix84,85—a prophylactic vaccine against human papillomavirus (HPV) type 16 and 18, which are strongly associated with cervical carcinoma.86 In this setting, MPL, which mostly signals through TLR2 and TLR4, forms part of so-called “Adjuvant System 04” (AS04), together with aluminum salt.14,87

Here, we discuss recent preclinical and clinical progress on the development of TLR agonists for cancer therapy.

Update on the development of TLR agonists for cancer therapy

Completed clinical studies

Since the publication of the latest Trial Watch dealing with this topic (September 2015),88 various clinical trials investigating the safety and therapeutic profile of TLR agonists in cancer patients have been completed. Only three of these studies, however, reported results to the National Library of Medicine accessible at https://clinicaltrials.gov/ or https://www.ncbi.nlm.nih.gov/pubmed/. The remaining studies have been presented during national or international meetings in the form of oral or written abstracts.

Levy and colleagues (Stanford University, Stanford, CA, USA) in collaboration with the National Cancer Institute (NCI) investigated the side effects and the dose-limiting toxicity of ipilimumab, an anti-CTLA-4 monoclonal antibody, in combination with the TLR9 agonist SD-10189 and radiation therapy90 in patients with recurrent low-grade B-cell lymphoma (NCT02254772). These results were first presented as a poster at the American Society of Clinical Oncology (ASCO) in 201591 and have been featured in several peer-reviewed journal articles.92,93 In this Phase II study, nine participants received intratumoral injections of 10 mg ipilimumab on day 2 of week 1 and 1 mg/week of SD-101 for up to 5 weeks. On days 1 and 2 of the study, participants underwent local radiation therapy. The safety and tolerability of the treatment was assessed over the course of 10 weeks. Tumor response to the treatment and lesion growth were evaluated over the course of 2 years. Of the nine participants included in the study, one experienced at least one serious adverse event (AE). All participants experienced other Grade 3 AEs including fatigue, fever, gastrointestinal disorders or chills. Of the nine participants, seven completed the study. Six out of the seven patients (85.7%) had progressive disease (PD), developing new lesions or significant increases to existing lesion sites. Only one participant had stable disease (SD). The results from this study suggest that combining the intratumoral administration of ipilimumab with SD-101 and radiation at these dose levels does not constitute a promising therapeutic option.

Novartis Pharmaceuticals (Arlington Heights, Illinois, USA) tested the safety, tolerability and efficacy of the investigational drug, LFX453, against placebo in treating the pre-cancerous HPV-induced external genital warts (EGWs) in circumcised men in parallel with an additional open label arm using Aldara94,95 (NCT02482428). In this Phase II study, 88 participants were randomized and separated across five treatment interventions. Of the two experimental arms, one received LFX453 0.1% nanomedicinal cream (NMC) and the other LFX453 0.15% liquid crystal cream (LCC). The placebo comparator arms received vehicle. Across these groups, treatment was applied twice daily for up to 12 weeks. Aldara96 was applied 3 times per week for a maximum of 16 weeks to participants in the final active comparator arm. The treatment efficacy in clearing warts was assessed for up to 14 weeks and the safety and tolerability were assessed for up to 30 weeks. Participants were also evaluated as to whether they had a clearance rate of at least 75% reduction in counts of EGWs by the end of treatment (EOT) at weeks 12 or 16. Between the groups that received NMC (n = 24), LCC (n = 22), combined vehicle (n = 20) and Aldara97 (n = 22), only one individual (4.16%) from the NMC group had complete clearance of disease at week 14. By week 30, 3 participants from the NMC group (12.5%), 5 from the LCC group (22.7%), 3 from the vehicle to NMC group (30%), 2 from the vehicle to LCC group (20%) and the 10 participants given Aldara98 (45.5%) experienced AEs only. Two subjects from the NMC group (8.3%), 1 from the LCC group (4.5%), none from the combined vehicle group and 3 from the Aldara group (13.6%) had a partial clearance rate of at least 75% reduction in EGWs. These results support the potential efficacy LFX453 NMC after further testing and refinement.88

Griffiths et al. (Roswell Park Cancer Institute, Buffalo, NY, USA) investigated the safety and therapeutic efficacy of treating myelodysplastic syndrome or acute myeloid leukemia with a DEC-205/NY-ESO-1 fusion protein (CDX-1401)96,97 with an adjuvant, Hiltonol99,100,101 with standard decitabine-based chemotherapy99 (NCT01834248). In this Phase I study, organized into 4 cycles of chemotherapy and 5 vaccinations, 9 participants receiving 20 mg/m²/day decitabine i.v. per 5 days were treated with s.c. and i.d. injections of CDX-1401 along with Hiltonol99,100 s.c. on days 14 and 15 of cycle 1 and day 15 on cycles 2–4. Treatment was repeated every 28 days for a total of 4 cycles as long as there was no disease progression or unacceptable toxicity. Any incidence of toxicity over the course of a 30-day period following the last dose of the study treatment was assessed according to the NCI Common Terminology Criteria for Adverse Events. Immune and molecular responses were monitored for up to 16 weeks. Patients were followed at days 30, 60, 90 and 180 to evaluate their response to the treatment. The most frequent AEs, which were attributed to chemotherapy or the underlying hematological malignancy, included cytopenia (Grade 3/4), elevated liver enzymes (Grade 3), fatigue (Grade 2), edema (Grade 2/3) and diarrhea (Grade 1/2). Patients also developed localized skin reactions to the vaccine. Only 7 participants completed the study, 2 of whom experienced SAEs. In 6 out of 7 (85.7%) and in 4 out of 7 (57.1%) patients, NY-ESO-1-specific CD4+ and CD8+ T-lymphocytes, respectively, could be documented. NY-ESO-1-expressing myeloid cells isolated from patients at different time points during chemotherapy were able to activate a cytotoxic response from autologous NY-ESO-1-specific lymphocytes. These data indicate that Hiltonol99-adjuvanted vaccinations against NY-ESO-1 can drive an antigen-specific immune response, highlighting the therapeutic potential of
antigen-specific immunotherapies combined with potent TLR agonists.

The results of a large portion of the clinical studies completed between 2016 and 2018 have not been publically posted on https://clinicaltrials.gov/ and have not been published in the peer-reviewed literature. Most of these studies, however, have been presented at annual meetings, and only abstracts or preliminary results are publically available. Although momentarily this precludes obtaining robust insights into the progress and versatility of TLR agonists for cancer therapy, an introduction to the aims and designs of these studies enables understanding of the current and future directions of these immunotherapeutic agents.

GlaxoSmithKline (Berlin, Germany) investigated the safety, tolerability, pharmacokinetic and pharmacodynamic profile of GSK1795091, a TLR4 agonist, in 42 healthy subjects (NCT02798978). This three-armed randomized, double-blinded, placebo-controlled Phase I study was split into two parts. Part 1 assessed the safety of ascending single doses (starting at 7 ng) of GSK1795091 i.v., while Part 2 was a parallel evaluation of two cohorts that received the drug as in Part 1 but at different time points during the trial. In Part 1, participants were given either the drug or placebo on day 1 administered as an i.v. bolus for 2 to 5 min, followed by an i.v. bolus of 10 mL saline. In Part 2, cohort 1 received an i.v. injection of GSK1795091 on day 1 and a dose on day 8, one week later. Cohort 2 received an i.v. injection of the drug on day 1 and a second dose on day 15. The measures for determining the safety of the drug include the number of AEs, oral body temperature, blood pressure and respiratory rate assessed for up to 11 weeks. In assessing the pharmacokinetics and pharmacodynamics of GSK1795091, measures included the maximum observed drug concentration (C_{max}), the time occurrence of C_{max}, the terminal half-life, immune cell and plasma cytokine phenotype, the white blood cell count and the clearance of GSK1795091 in Parts 1 and 2 for up to 144 hours. These results will determine the future of clinical trials in which GSK1795091 will be administered together with immunomodulators in patients with cancer.

Fox et al. (LSU Stanley S. Scott Cancer Center, New Orleans, LA, USA) in collaboration with the NCI and Mayo Clinic hypothesized that a DRibble-based vaccine could induce an immune response against tumor-associated antigens (TAAAs) in patients afflicted with Stage III non-small cell lung carcinoma (NSCLC) and that cyclophosphamide plus a HPV vaccine combined with the Dribble-based vaccine alone, with the Dribble-based vaccine plus Aldara® or with the Dribble-based vaccine plus colony stimulating factor 2 (CSF2; best known as GM-CSF) could have therapeutic effects (NCT01909752). DRibbles are tumor cell-derived defective ribosomal products and short-lived proteins packed within autophagosomes. To each of the three arms of this randomized Phase II study, cyclophosphamide 300 mg/m² was administered as a single dose 3 days prior to vaccination along with a 0.5 mL i.m. injection of the HPV vaccine at the time of the first and third Dribble-based vaccinations. In the first arm of 12 participants, the Dribble-based vaccine was administered every three weeks for 43 weeks. The second arm received the same vaccine and, in addition, applied one 250 mg packet of Aldara (containing 12.5 mg of imiquimod) to a 4 × 5 cm outlined area of skin (including the vaccine site) daily starting at week 4 (with the second Dribble-based vaccine) and for four days following each vaccine cycle. The third arm received the Dribble-based vaccine and was administered GM-CSF 50 μg/day via a CADD-MSTM 3 Ambulatory infusion pump starting at week 4. The goals of the study were to determine which treatment combination elicited the greatest antibody response in a 95-day time frame, and to evaluate safety within a 43-week period, progression-free survival (PFS), and the correlation between PFS and immune responses within a 2-year period. Preliminary results showed that compared to vaccination alone or vaccination plus GM-CSF, vaccination plus imiquimod significantly increased the number of antibody responses. This study was presented at the 31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC) 2016.

In collaboration with Oncovir, Britten and colleagues (Medical University of South Carolina, Charleston, SC, USA) tested the safety and tolerability of Hiltonol® in combination with a DC-based vaccine to patients with locally advanced unresectable pancreatic ductal adenocarcinoma (NCT01677962). Alongside, investigators aimed at elucidating whether combining DCs with Hiltonol® could serve as a therapeutic vaccine against the disease. In this Phase I study, 12 participants received i.t. injections on day 0 and day 14, followed by standard of care procedures for the remainder of the study. AEs were monitored until day 56 (the last day of treatment). Peereboom and collaborators (Cleveland Clinic, Cleveland, OH, USA) investigated the therapeutic profile of SL-701, a peptide-based vaccine, adjuvanted with imiquimod plus GM-CSF (Stage 1), or with Hiltonol® and bevacizumab, an FDA-approved monoclonal antibody specific for vascular endothelial growth factor A (VEGFA) in Stage 2, in patients with relapsed/refractory HLA-A2+ glioblastoma (GBM) (NCT02078648). Primary objectives were safety, tolerability, investigator assessed objective response rate (ORR), and 12-month OS rate. Alongside, SL-701-specific CDB++ T-cell frequency was monitored by flow cytometry. At reporting, 74 patients were treated, most frequent AEs related to treatment being fatigue (22%) and injection site reaction (18%). Amongst 46 patients enrolled in Stage 1, 1 partial response (PR) and 15 instances of SD were documented. Amongst 28 patients, enrolled in Stage 2, 2 CRs, 4 PRs and 19 instances of SDs were seen. OS at 12 months was 43% in Stage 2 and 37% in Stage 1. These data suggest that adjuvanted SL-701, alone or combined with bevacizumab is well tolerated and mediates clinically relevant antitumor activity.

Additional studies completed between 2016 and 2018 include NCT01957878, NCT02266147 and NCT02404389. To the best of our knowledge, the results of these studies have not yet been communicated to the public.

Preclinical and translational advances

A considerable body of preclinical and translational findings on the use of TLR agonists for cancer therapy has been disseminated since the publication of the latest Trial Watch dealing with this topic (source https://www.ncbi.nlm.nih.gov/pubmed/). Among
these studies, we found of particular interest the work of: (1) Molgora and colleagues (Humanitas Clinical and Research Center, Rozzano, Italy), who demonstrated that interleukin-1 receptor 8 (IL1R8, also known as TIR8 or SIGIRR), which is known to impair the signal transduction cascades elicited by several TLRs as well as by various interleukin receptors, negatively regulates the activity of NK cells as an immunosuppressive checkpoint; (2) Lou and co-authors (Institute for Molecular Bioscience. The University of Queensland, Brisbane, Australia), who showed that SLP adaptor and CSK interacting membrane protein (SCIMP), a transmembrane adaptor protein, facilitates TLR4 signaling upon direct binding to its TIR domain; (3) Acharya and collaborators (Benaroya Research Institute, Seattle, Washington, USA), who reported a new regulatory circuitry of B cell activation that involves the integrin-dependent recruitment of microtubule-associated proteins 1 light chain 3 (MAP1LC3, best known as LC3) to TLR-containing endosomes; (4) Combes et al. (Aix Marseille Université, Marseille, France), who reported that lysosomal associated membrane protein family member 5 (LAMP5, also known as BAD-LAMP) negatively regulates TLR9-driven type I interferon (IFN) production in the tumor microenvironment by plasmacytoid DCs (pDC); (5) New and colleagues (University of Oxford, Oxford, United Kingdom), who demonstrated that the sensitivity of hematologic cancers to histone deacetylase (HDAC) inhibitors is influenced by myeloid differentiation 88 (MYD88), a transducer of TLR signaling; and (6) Zhang and collaborators (The University of Tokyo, Tokyo, Japan), who harnessed crystallography to identify two different ligand-binding sites that regulate TLR7, (7) Okazaki et al. (USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA), who suggested that the TLR7 rs3853839 G/G variant may constitute a positive prognostic factor as it is associated with a PFS benefit for patients with metastatic colorectal carcinoma (CRC) treated with cetuximab-based chemotherapy; (8) Takeda et al. (Hokkaido University Graduate School of Medicine, Sapporo, Japan), who demonstrated that the combination of a TLR3 agonist (ARNAX) and a PD-L1-specific immune checkpoint blocker and a TAA-derived vaccine may be used to overcome resistance to PD-1-targeting therapies, at least in mice; (9) Caronni and colleagues (International Centre for Genetic Engineering and Biotechnology, Trieste, Italy), who found that lactic acid blocks the ability of DCs to produce type I IFN in response to TLR3 and STING agonists in a mouse model of lung cancer, confirming previous reports on the major influence of local metabolism on the immune functions of the tumor microenvironment; (10) Dooduijn and collaborators (Leiden University Medical Center Leiden, The Netherlands), who showed that TLR7/TLR8 agonism, compared to TLR3 and TLR9 agonism, drives an NK cell-dependent immune response that can eradicate tumors that have escaped immunosurveillance following MHC Class I downregulation, which is in line with data from other groups demonstrating the ability of TLR7 ligands to trigger NK cell-dependent tumor control; (11) Klein and co-authors (University Hospital Essen, Essen, Germany), who showed that mice lacking TLR3, TLR7 and TLR9 are able to reject syngeneic wild-type malignant cells upon the activation of a tumor-targeting immune response involving both CD4+ and CD8+ T lymphocytes, suggesting that endosomal TLRs may operate as part of immunological checkpoints, at least in some settings; (12) Rashedi et al. (University of Toronto, Toronto, Canada), who demonstrated that mesenchymal stromal cells recruit T_{REG} cells upon TLR3 or TLR4 activation, as a consequence of Notch signaling modulation and Delta-like 1 (DL1) upregulation; (13) Hotz et al. (University of Fribourg, Fribourg, Switzerland), who demonstrated that the sequential administration of polyribosinosinic polyribocytidylic acid (poly I:C, a TLR3 agonist) and R848 (a TLR7 agonist) 24 hours apart activates both MYD88-dependent and -independent pathways that culminate with a DC-driven, NK cell, and CTL-dependent antitumor immune response; (14) Le Noci and collaborators (Università degli Studi di Milano, Milan, Italy), who reported that combining a nebulized anti-MDSC antibody (RB6-8C5) with aerosolized CpG oligodeoxynucleotides (which operate as TLR9 agonists) and polyI:C results in the downregulation of multiple immunosuppressive molecules, including interleukin 10 (IL10); ultimately resulting in the activation of tumor-infiltrating NK cells that mediate robust therapeutic responses against lung metastases from syngeneic melanoma; (15) Müller and colleagues (University of Oslo, Oslo, Norway), who found that interferon gamma (IFNG, best known as IFN-γ) synergizes with various TLR agonists to trigger nitric oxide and pro-inflammatory cytokine production by M1 macrophages, coupled with robust anticancer activity; (16) Camargo and co-workers (University of Campinas, São Paulo, Brazil), who showed that BCG and imiquimod suppress chemical bladder tumorigenesis, while decreasing markers of proliferation (Ki67) and increasing markers of cell death (TUNEL), autophagy and as well as (17) Kim et al. (University of Minnesota, Minneapolis, MN, USA), who found enhanced tumor-targeting CTL activity following administration of nanoparticles containing mixed TLR7/TLR8 agonists.

This large amount of preclinical and translation literature corroborates the notion that TLR agonism is a promising strategy for the development of combinatorial anticancer regimens based on the reactivation of immunosurveillance.

Recently initiated clinical trials

Since the submission of the latest Trial Watch dealing with this topic (September 2015), no less than 66 clinical studies involving the administration of TLR agonists to cancer patients have been initiated (source http://clinicaltrials.gov/). The majority of these trials involve the FDA-approved molecules imiquimod (17 studies) and BCG (11 studies), as well as the hitherto experimental TLR3 agonist Hiltonol®, a particular formulation of polyI:C that includes carboxymethylcellulose and poly-L-lysine as stabilizing agents, and the TLR9 agonist SD-101 (9 studies) (Table 1).

In particular, imiquimod is being tested (1) in combination with neoadjuvant sonidegib followed by surgery or imiquimod for the treatment of basal cell carcinoma (NCT03534947); (2) in combination with curative surgery as compared to surgery alone in patients with basal cell carcinoma (NCT02242929); (3) in combination with 5-fluorouracil for the treatment of squamous cell carcinoma (NCT03770406); (4) in combination with pembrolizumab, an FDA-approved immune checkpoint blocker specific for PD-1, in patients with melanoma (NCT03276832); (5) compared to 5-fluorouracil-based
chemotherapy or observation for the treatment of anal carcinoma (NCT02059499); (6) as a standalone immunotherapeutic agent or following large loop excision of the transformation zone (LEEP) in patients with cervical intraepithelial neoplasms (CINs) (NCT02917746); (7) in combination with a DNA-based vaccine, GX-188E (NCT03206138); (8) in combination with 5-fluorouracil for the treatment of patients with high-grade cervical intraepithelial neoplasia (NCT03196180); (9) in combination with conization of the uterine cervix based on loop electro surgical excision procedure (LEEP) as compared to LEEP alone for patients with CIN (NCT03233412); (10) as standalone therapy or in combination with a nonavalent HPV-specific vaccine for patients with CINs (NCT02864147); (11) as a single agent compared to LLETZ for patients with CINs (NCT02669459); (12) in combination with a DNA vaccine, VGX-3100,171–174 for patients with HPV-16 and/or HPV-18-related high grade squamous intraepithelial lesion (HSIL) of the vulva (NCT03180684); (13) in combination with doxycycline for the treatment of cutaneous T cell lymphoma (NCT03116659); (14) in combination with a peptide vaccine, iVAC-L-CLL01,175,176 and the immunomodulatory agent lenalidomide177–180 in patients with chronic lymphocytic lymphoma (NCT02802943); (15) combined with a DRibble-based vaccine181 and DC-activated cytokine-induced killer (DC/CIK) cells and GM-CSF in NSCLC patients (NCT03057340); (16) as adjuvant therapy for patients with anal HPV lesions (NCT03289260); and (17) in combination with DPV-001.

Table 1. Clinical trials recently started to investigate the therapeutic profile of TLR agonists in cancer patients.

Molecule	Indication(s)	Phase	Status	Route	Notes	
Ampligen™	Colorectal carcinoma	I	Recruiting	Intravenous	In combination with celecoxib and recombinant interferon-α2b for patients with metastatic disease to the liver	NCT03403634
BCG	Bladder carcinoma	I	Recruiting	Intravesical	In combination with pembrolizumab	NCT02549833
DUK-CPG-001	Urological tumors	II	Recruiting	Intravesical	In combination with pembrolizumab	NCT02544880
G100	Melanoma	II	Recruiting	Intravesical In combination with cyclophosphamide, IL-2 and a melanoma-specific vaccine	NCT00477906	
Hiltonoll™	Colorectal carcinoma	I	Recruiting	Intramuscular	In combination with pembrolizumab	NCT02834052
Breast carcinoma	Breast cancer	I	Recruiting	Intramuscular	In combination with a peptide vaccine and pembrolizumab	NCT02826434
Gynecological tumors	Gynecological tumors	I	Recruiting	Intramuscular	In combination with a CA 125 monoclonal antibody	NCT03162562
Lung cancer	Lung cancer	I	Recruiting	Subcutaneous	In combination with pembrolizumab and chemotherapy	NCT03300817
Solid tumors	Solid tumors	I	Recruiting	Subcutaneous In combination with pembrolizumab and chemotherapy	NCT02721043	
Multiple myeloma	Multiple myeloma	I	Recruiting	Subcutaneous In combination with pembrolizumab and chemotherapy	NCT02544880	
Acute myeloid leukemia	Acute myeloid leukemia	I	Recruiting	Subcutaneous In combination with pembrolizumab and chemotherapy	NCT03358719	
Glioma	Glioma	I	Recruiting	Intramuscular	Followed by radical prostatectomy	NCT03262103

(Continued)
another DRibble-based vaccine,107,182–184 in patients with advanced prostate carcinoma (NCT02234921).

BCG is being investigated in clinical settings: (1) in combination with rapamycin185 for bladder carcinoma (NCT02753309); (2) in combination with pembrolizumab186,187 for the treatment of bladder carcinoma (NCT02808143); (3) following re-resection as compared to BCG with no re-resection188 for the treatment of bladder carcinoma (NCT03266900); (4) in combination with durvalumab189–191 for the treatment of bladder carcinoma (NCT03317158); (5) in combination with atezolizumab192–194 for the treatment of bladder carcinoma (NCT02792192); (6) in combination with ALT-803, an IL-15 superagonist195 for the treatment of bladder carcinoma (NCT02138734); (7) in a multicenter trial of BCG in combination with ALT-803195,196 for treatment of BCG-unresponsive, high-risk, non-muscle invasive bladder carcinoma (NCT03022825); (8) as nivolumab or nivolumab/BMS-986205 (an investigational IDO1 inhibitor) alone or in combination with BCG197–199 for the treatment of BCG-unresponsive, high-risk, non-muscle invasive bladder carcinoma (NCT03519256); (9) different strains of BCG200,201 for the treatment of bladder carcinoma (NCT03091660); (10) in combination with pembrolizumab202,203 for the treatment of urological tumors (NCT03345134); and (11) in combination with cyclophosphamide, IL-2, and a melanoma-specific vaccine204 for the treatment of melanoma171 (NCT00477906).

Additionally, Hiltonol* is being evaluated: (1) in combination with pembrolizumab in patients with CRC (NCT02834052); (2) in combination with PVX-410, a peptide vaccine,168,205,206 and pembrolizumab or durvalumab, a PD-L1-targeting immune checkpoint blocker,207 in patients with breast carcinoma (NCT02826434; NCT03362060); (3) in combination with oregovomab, a CA-125-targeting monoclonal antibody,208 for the treatment of recurrent, advanced ovarian carcinoma (NCT03162562); (4) in combination with CDX-1401, guadecitabine and atezolizumab, another PD-L1-targeting immune checkpoint blocker,209–211 in patients with recurrent ovarian, fallopian tube, or primary peritoneal cancer (NCT03206047); (5) combined with a peptide vaccine specific for mucin 1 (MUC1) for the prevention of lung cancer in current and former smokers who are at high risk (NCT03300817); (6) in combination with a neoantigen vaccine, NEO-PV-01,131,212 pembrolizumab and chemotherapy for patients with lung cancer (NCT03380871); (7) in combination with PGV001, a peptide vaccine,213 for the treatment of non-hematologic malignancies in the adjuvant setting (NCT02721043); (8) in

Table 1. (Continued).

Molecular weight	Indication(s)	Phase	Status	Route	Notes	Ref.
Imiquimod	Basal cell carcinoma	II	Not yet recruiting	Topical	In combination with a neoantigen vaccine for surgery	NCT03345134
	III	Active, not recruiting	Topical	Combined with surgery	NCT02721043	
Squamous cell carcinoma	II	Not yet recruiting	Topical	In combination with pembrolizumab	NCT02242929	
Melanoma	II	Recruiting	Topical	In combination with pembrolizumab	NCT02721043	
	III	Recruiting	Topical	Compared to pembrolizumab or observation	NCT02721043	
Anal carcinoma	III	Recruiting	Topical	In combination with a DNA-based vaccine	NCT02721043	
	III	Recruiting	Topical	In combination with sunitinib and observation	NCT02721043	
Cervical intraepithelial lesions	n.a	Recruiting	Topical	Alone or upon tumor resection	NCT02721043	
	I	Not yet recruiting	Topical	In combination with Pembrolizumab	NCT02721043	
Genital warts	II	Recruiting	Topical	In combination with pembrolizumab	NCT02721043	
Cutaneous T cell lymphoma	II	Recruiting	Topical	In combination with pembrolizumab	NCT02721043	
Chronic lymphocytic lymphoma	II	Recruiting	Topical	In combination with pembrolizumab	NCT02721043	
	III	Recruiting	Topical	In combination with pembrolizumab	NCT02721043	
NSCLC	III	Not yet recruiting	Topical	In combination with pembrolizumab	NCT02721043	
Prostate carcinoma	I	Recruiting	Topical	Combined with pembrolizumab	NCT02721043	
Motolimod	Solid tumors	I	Recruiting	Topical	In combination with pembrolizumab	NCT02721043
	II	Recruiting	Topical	In combination with pembrolizumab	NCT02721043	
	III	Recruiting	Topical	In combination with pembrolizumab	NCT02721043	
SD-101	Lymphoma	I	Not yet recruiting	Intratumoral	In combination with pembrolizumab	NCT02721043
	I	Terminated	Intratumoral	In combination with pembrolizumab	NCT02721043	
	I	Terminated	Intratumoral	In combination with pembrolizumab	NCT02721043	
Advanced malignancies	I/Ib	Terminated	Intratumoral	In combination with pembrolizumab	NCT02721043	
Solid tumors	II/Ib	Recruiting	Intratumoral	In combination with pembrolizumab	NCT02721043	
Follicular lymphoma	II/Ib	Recruiting	Intratumoral	In combination with pembrolizumab	NCT02721043	
Advanced solid tumors & lymphoma	II/Ib	Recruiting	Intratumoral	In combination with pembrolizumab	NCT02721043	
Prostate carcinoma	II	Suspected	Intratumoral	In combination with pembrolizumab and RT	NCT02721043	

107,182–184 in patients with advanced prostate carcinoma (NCT02234921).
combination with bevacizumab and a peptide vaccine for patients with recurrent glioblastoma (NCT02754362); (9) in combination with NEO-PV-01 and nivolumab, another PD-1-specific immune checkpoint blocker, in patients with melanoma, lung cancer, and bladder cancer (NCT02897765); (10) in combination with durvalumab and tremelimumab, a CTLA-4-targeting immune checkpoint blocker, for the treatment of advanced, measurable, biopsy-accessible cancers (NCT02643303); (11) in conjunction with a combination of the following agents- NEO-PV-01, APX005M, ipilimumab, and nivolumab for the treatment of advanced melanoma (NCT03597282); (12) in combination with MUC1- and influenza-specific vaccines along with taladafil, an inhibitor of phosphodiesterase 5 (PDE5) in patients with head and neck squamous cell carcinoma (NCT02544480); (13) in combination with CDX-1401 and pembrolizumab in patients with previously treated, advanced solid tumor (NCT02661100); (14) in combination with a peptide vaccine, GL-0817 and cyclophosphamide to prevent the recurrence of squamous cell carcinoma of the oral cavity (NCT02873819); (15) in combination with PVX-41 and durvalumab with or without lenalidomide in patients with multiple myeloma (NCT02886065); (16) in combination with DEC-205/NEW-ESO-1 fusion protein CDX-1401, decitabine, and nivolumab for the treatment of myelodysplastic syndrome or acute myeloid leukemia (NCT03358719); (17) in combination with GBM6-AD, a cancer cell-based vaccine, in patients with Grade II glioma (NCT02549833); (18) in combination with varilumab and a peptide vaccine, IMAl950 in patients with low-grade glioma (NCT02924038); (19) in combination with H3.3K27M, a peptide vaccine, in children with newly diagnosed diffuse intrinsic pontine glioma and other newly diagnosed HLA-A2+ H3.3K27M positive gliomas (NCT02960230); and (20) as standalone therapy for prostate carcinoma in the neoadjuvant setting (NCT03262103).

Furthermore, SD-101 is being studied in clinical trials: (1) in combination with an anti-OX40 antibody, BMS-986178, and RT for the treatment of lymphoma (NCT03410901); (2) in combination with RT after allogeneic hematopoietic cell transplant for the treatment of lymphoma (NCT01745354); (3) in combination with an anti-IL-10 agent for the treatment of advanced malignancies (NCT02731742); (4) in combination with pembrolizumab for the treatment of solid tumors (NCT02521870); (5) in combination with ibrutinib and RT for the treatment of follicular lymphoma (NCT02927964); (6) in combination with epacadostat, an inhibitor of indoleamine 2,3-dioxygenase-1, and RT for the treatment of advanced solid tumors and lymphoma (NCT03232384); (7) in combination with ipilimumab and RT for the treatment of lymphoma (NCT02254772); (8) in combination with RT and pembrolizumab for the treatment of prostate carcinoma (NCT03007732).

The status of the following clinical trials discussed in our previous Trial Watches dealing with TLR agonists, has changed during the last 35 months: NCT02501473, NCT02320305, NCT02180698, NCT02134925, NCT02149225, NCT02281682, NCT02454634, NCT02242929, NCT02293707, NCT02015104, NCT02035657, NCT01926496, NCT02061449, NCT01970358, and NCT02077868, which are now listed as “Active, not recruiting”; NCT02432378, NCT02427581, NCT02334735, NCT02394132, NCT02431559, NCT02521870, NCT02452697 and NCT02059499, which are currently listed as “Recruiting participants”; NCT02385188, which is listed as “Enrolling by invitation”; NCT02326168, NCT02333474, NCT02404389, NCT02482428, NCT02254772, NCT02266147, NCT01957878, NCT02078648, NCT01909752, and NCT01 920191, which are listed as “Completed”; NCT02202044, NCT02510950, NCT02413827, NCT02332889, NCT02329171, NCT01907271, and NCT01984892, which have been “Terminated”; as well as NCT02495636, which has been “Withdrawn” (source http://clinicaltrials.gov).

Concluding remarks

During the last 35 months (September 2015 – August 2018), more than 60 clinical trials have been initiated to investigate the potential therapeutic efficacy of TLR agonists in patients with cancer (Table 1). These metrics are notable for a decrease in the rate of initiation of clinical trials testing TLR agonists as immunotherapeutics for cancer as compared to the previous 15 months (May 2014 – August 2015), during which approximately 50 clinical trials were initiated. Although it is difficult to attribute such a decrease to one or more specific factors, we suspect that the extraordinary clinical achievement of other immunotherapeutics including immune checkpoint blockers and CAR-expressing T cells may have caused some refocusing in the attention of oncologists and pharmaceutical companies to investigate the ongoing role of TLR agonists. Currently available preclinical and clinical data strongly suggest that successful anticancer immunotherapy in a large fraction of patients requires combinatorial approaches. In this setting, TLR agonists present an opportunity to boost the immune response in patients in an effort to contribute to better clinical outcomes.

Acknowledgments

M. Smith would like to acknowledge funding from the American Society for Blood and Marrow Transplantation (ASBMT) New Investigator Award, the Burroughs Wellcome Fund Postdoctoral Enrichment Program, and the Damon Runyon Physician-Scientist Award. LG is supported by an intramural startup from the Department of Radiation Oncology of Weill Cornell Medical College (New York, US), and by donations from Sotio a.s. (Prague, Czech Republic), Phosplatin LLC (New York, US) and the Luke Heller TECPR2 Foundation (Boston, US).

Abbreviations

AE adverse event
AS04 Adjuvant System 04
ASCO American Society of Clinical Oncology
BCG bacillus Calmette-Guérin
CIN cervical intraepithelial neoplasm
cRC colorectal carcinoma
CTL cytotoxic T-lymphocyte
DAMP damage-associated molecular pattern
DC dendritic cell
References

1. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21:317–337. doi:10.1093/intimm/dxp017.

2. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi:10.1016/j.cell.2006.02.015.

3. Fucikova J, Moserova I, Urbanova L, Benu L, Kepp O, Cremer I, Saller C, Strnad P, Kroemer G, Galluzzi L, et al. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Front Immunol. 2015;6:402. doi:10.3389/fimmu.2015.00402.

4. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi:10.3389/fimmu.2015.00588.

5. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi:10.1038/nri2017.

6. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–305. doi:10.1126/science.1071059.

7. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–837. doi:10.1038/nri2873.

8. Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59:583–594. doi:10.1001/jhep.2013.03.033.

9. Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13:780–788. doi:10.1038/nrm3479.

10. Vacchelli E, Ma Y, Baracco EE, Zitvogel L, Kroemer G. Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: formyl peptide receptor-1. Oncoimmunology. 2016;5:e1118600. doi:10.1080/2162402X.2015.1118600.

11. Garg AD, More S, Rufo N, Mee O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6:e1386829. doi:10.2147/oncoimmunology.187682.

12. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol. 2000;165:3541–3544.

13. Dw S, Opitz B, Lamping N, Ks M, Zahringer U, Ub G, Schumann RR. Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids. J Immunol. 2000;165:2683–2693.

14. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007;316:1628–1632. doi:10.1126/science.1138963.

15. Hobebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crotaz K, Sovath S, Shamal L, Hartung T, Zahringer U, et al. CD36 is a sensor of diacylglycerols. Nature. 2005;433:523–527. doi:10.1038/nature03523.

16. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–1103. doi:10.1038/35074106.

17. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protopilament formation and bacterial motility. Nat Immunol. 2003;4:1247–1253. doi:10.1038/ni1011.

18. Lu J, Ps D. The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Sci Signal. 2012;5:pe11.

19. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335:859–864. doi:10.1126/science.1215584.

20. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, et al. A Toll-like receptor recognizes bacterial flagellin. Nature. 2000;408:740–745. doi:10.1038/35047123.

21. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–1531. doi:10.1126/science.1093616.

22. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Breiteneder H, Pichlmeier U, Breiteneder H, Pichlmeier U, et al. Toll-like receptors and their role in innate immune defense. J Immunol. 2001;165:3541–3544.

23. Shima T, Akira S, Takeda K, Hoshino K, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2002;418:196–199. doi:10.1038/35074106.

24. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of bacterial lipopolysaccharide by Toll-like receptor 4. Nature. 2001;413:732–736. doi:10.1038/35099560.

25. Fucikova J, Moserova I, Urbanova L, Benu L, Kepp O, Cremer I, Saller C, Strnad P, Kroemer G, Galluzzi L, et al. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Front Immunol. 2015;6:402. doi:10.3389/fimmu.2015.00402.

26. Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi:10.3389/fimmu.2015.00588.

27. Shi Z, Cai Z, Yu J, Zhang T, Smeds E, Zhao S, Smeds E, Zhang Q, Wang F, Zhao C, Fu S, et al. Toll-like receptor 11 (TLR11) prevents Salmonella infection and signaling. Oncoimmunology. 2017;6:e1386829. doi:10.2147/oncoimmunology.187682.

28. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–736. doi:10.1038/35099560.

29. Choe J, Kelker MS, Wilson IA. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science. 2005;309:581–585. doi:10.1126/science.1115253.

30. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science. 2008;320:379–381. doi:10.1126/science.1155406.

31. Shi Z, Cai Z, Yu J, Zhang T, Zhao S, Smeds E, Zhang Q, Wang F, Zhao C, Fu S, et al. Toll-like receptor 11 (TLR11) prevents Salmonella penetration into the murine Peyer patches. J Biol Chem. 2012;287:43417–43423. doi:10.1074/jbc.M112.411009.

32. Oldenburg M, Kruger A, Fersl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science. 2012;337:1111–1115. doi:10.1126/science.1220363.
Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, 2012

Loser K, Vogl T, Voskort M, Lueken A, Kupas V, Nacken W, 2014

Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995;270:1804–1806.

Gomez-Gomez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 2000;5:1003–1011.

Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A. 2005;102:9577–9582. doi:10.1073/pnas.0502272102.

Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell. 1985;42:791–798.

Anderson KV, Jurgens G, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell. 1985;42:779–789.

Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511. doi:10.1038/nri1391.

Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004;430:257–263. doi:10.1038/nature02761.

Hoffmann JA. The immune response of Drosophila. Nature. 2003;426:33–38. doi:10.1038/nature02021.

Janeway CA Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. doi:10.1146/annurev.immunol.20.030900.084359.

Lemaître B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–983.

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunol. 2011;34:637–650. doi:10.1016/j.immuni.2011.05.006.

Lauw FN, Caffrey DR, Golenbock DT. Of mice and man: TLR11 (finally) finds profilin. Trends Immunol. 2005;26:509–511. doi:10.1016/j.it.2005.08.006.

Bowie A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol. 2000;67:508–514.

Ye T, Gay NJ, Mansell A, Kobe B, Kellie S. Adaptors in toll-like receptor signaling and their potential as therapeutic targets. Curr Drug Targets. 2012;13:1360–1374.

Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells: a double-edged sword. Oncogene. 2008;27:218–224. doi:10.1038/sj.onc.1210904.

Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G. Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol. 2010;184:1630–1641. doi:10.4049.jimmunol.0902813.

Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, Han B, Huang Y, Zhang Y, Varvares MA, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014;6:1294–1311. doi:10.15252/emmm.201403918.

Krawczyk CM, Holowa T, Sun J, Blagh J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115:4742–4749. doi:10.1182/blood-2009-10-249540.

Pantel A, Teixeira A, Haddad E, Wood EG, Steinman RM, Longhi MP. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol. 2014;12:e1001759. doi:10.1371/journal.pbio.1001759.

Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–784. doi:10.4049/cr.2015.68.

Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirley KA, Reutterer B, Kernbauer E, Stockinger S, et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe. 2012;12:313–323. doi:10.1016/j.chom.2012.07.012.

Gerraerts X, Bolli E, Fendt SM, Van Ginderachter JA. Macrophage metabolism as therapeutic target for cancer,
atherosclerosis, and obesity. Front Immunol. 2017;8:289. doi:10.3389/fimmu.2017.00289.

68. Everts B, Pearce EJ. Metabolic control of dendritic cell activation and function: recent advances and clinical implications. Front Immunol. 2015;6:520.

69. Dong H, Bullock TN. Metabolic influences that regulate dendritic cell function in tumors. Front Immunol. 2014;5:24. doi:10.3389/fimmu.2014.00024.

70. Smits EI, Ponsaerts P, Berneman ZN, Van Tendeloo VF. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist. 2008;13:859–875. doi:10.1634/theoncologist.2008-0097.

71. Ridnour LA, Cheng RW, Switzer CH, Heinecke JL, Amba S, Glynn S, Young HA, Trinchieri G, Wink DA. Molecular pathways: toll-like receptors in the tumor microenvironment–poor prognosis or new therapeutic opportunity. Clin Cancer Res. 2013;19:1340–1346. doi:10.1158/1078-0432.CCR-12-0408.

72. Yu L, Wang L, Chen S. Dual character of Toll-like receptor signaling: pro-tumorigenic effects and anti-tumor functions. Biochim Biophys Acta. 2013;1835:144–154. doi:10.1016/j.bbcan.2012.10.006.

73. Veyrat M, Durand S, Classe M, Glavan TM, Oker N, Kapetanakis NI, Jiang X, Gelin A, Herman P, Casiraghi O, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget. 2016;7:82580–82593. doi:10.18632/oncota.rget.12892.

74. Karki K, Pande D, Negi R, Khanna S, Khanna HD. Correlation of serum toll like receptor 9 and 10 elements with lipid peroxidation in the patients of breast diseases. J Trace Elem Med Biol. 2015;30:11–16. doi:10.1016/j.jtemeb.2014.12.003.

75. Hotz C, Treinies M, Mottis I, Rotzer LC, Oberson A, Spagnuolo L, Perdicchio M, Spinneti T, Herbst T, Bourquin C. Reprogramming of TLR7 signaling enhances antitumor NK and cytotoxic T cell responses. Oncoimmunology. 2016;5:e1322199. doi:10.1080/2162402X.2016.1322199.

76. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med. 2007;13:552–559. doi:10.1038/nm1589.

77. Hoffman ES, Smith RE, Renaud RC Jr. From the analyst's couch: TLR-targeted therapeutics. Nat Rev Drug Discov. 2005;4:879–880. doi:10.1038/nrd1880.

78. Wiedemann GM, Jacobi SJ, Chaloupka M, Krachan A, Hamm S, Strob S, Baumgartner R, Rothenfusser S, Duewell P, Endres S, et al. A novel TLR7 agonist reverses NK cell anergy and cures mice of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncoimmunology. 2016;5:e1189051. doi:10.1080/2162402X.2016.1189051.

79. Hanna E, Abadi R, Abbas O. Immiquimod in dermatology: an overview. Int J Dermatol. 2016;55:831–841. doi:10.1111/ijd.13235.

80. Wolff L, Loipetzberger A, Gruber W, Esterbauer H, Aberger F, Frischauf AM. Immiquimod directly inhibits Hedgehog signaling by stimulating adenosine receptor/protein kinase A-mediated GLI phosphorylation. Oncogene. 2013;32:5574–5581. doi:10.1038/onc.2013.343.

81. Heldwein KA, Liang MD, Andresen TK, Thomas KE, Marty AM, Chu MP, Czerwinski D, McDonald K, Long S, Kohrt HE, Hoppe RT, Advani RH, Lowsky T, Levy R. Phase I/II study of intratumoral injection of SA-101, an immunostimulatory CpG, and intratumoral injection of ipillumumab, an anti-CTLA-4 monoclonal antibody, in combination with local radiation in low-grade B-cell lymphomas. J Clin Oncol. 2015;33:TPS8604–TPS.

82. Hammerich L, Binder A, Brody JD. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf. Mol Oncol. 2015;9:1966–1981. doi:10.1016/j.molonc.2015.10.016.

83. Ok CY, Young KH. Checkpoint inhibitors in hematological malignancies. J Hematol Oncol. 2017;10:103. doi:10.1186/s13045-017-0474-3.

84. Edwards I, Ferency A, Eron L, Baker D, Owens ML, Fox TL, Hougham AJ, Schmitt KA. Self-administered topical 5% imiquimod cream for external anogenital warts. HPV Study Group. Human Papillomavirus. Arch Dermatol. 1998;134:25–30.

85. Chen FP. Efficacy of imiquimod 5% cream for persistent human papillomavirus in genital intraepithelial neoplasia. Taiwan J Obstet Gynecol. 2013;52:473–478. doi:10.1016/j.tjog.2013.01.004.

86. Riedmann EM. CDX-1401 combined with TLR agonist: positive phase I results. Hum Vaccin Immunother. 2012;8:1742.

87. Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvalj RD, Koahan ML, Chuang E, Sanborn RE, Lutzky J, Powderly J, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. 2014;6:232ra51. doi:10.1126/scitranslmed.3008068.

88. Patchett AL, Tovar C, Corcoran LM, Lyons AB, Woods GM. The toll-like receptor ligands Hилtonol(R) (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii). Dev Comp Immunol. 2017;66:352–360. doi:10.1016/j.devimm.2017.07.004.

89. Rodriguez-Ruiz ME, Perez-Gracia JL, Rodriguez I, Alfaro C, Onate C, Perez G, Gil-Bazo I, Benito A, Inogés S, López-Diaz de Haro R, Zitvogel L, et al. Trial of immuno stimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology. 2016;5:e1088631. doi:10.1080/2162402X.2015.1088631.

90. Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, Coffman RL, Guiducci C. Intratumoral injection of a CpG oligonucleotide restores resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113:E7240–e9. doi:10.1073/pnas.1608551113.

91. Khodadoust MS, Chu MP, Czerwinski D, McDonald K, Long S, Kohrt HE, Hoppe RT, Advani RH, Lowsky T, Levy R. Phase I/II study of intratumoral injection of SD-101, an immunostimulatory CpG, and intratumoral injection of ipillumumab, an anti-CTLA-4 monoclonal antibody, in combination with local radiation in low-grade B-cell lymphomas. J Clin Oncol. 2015;33:TPS8604–TPS.

92. Khodadoust MS, Chu MP, Czerwinski D, McDonald K, Long S, Kohrt HE, Hoppe RT, Advani RH, Lowsky T, Levy R. Phase I/II study of intratumoral injection of SD-101, an immunostimulatory CpG, and intratumoral injection of ipillumumab, an anti-CTLA-4 monoclonal antibody, in combination with local radiation in low-grade B-cell lymphomas. J Clin Oncol. 2015;33:TPS8604–TPS.
acute myeloid leukemia. Oncogene. 2013;32:4331–4342. doi:10.1038/onc.2012.469.

101. Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES, Kocent J, Miller A, Roloff GW, Wong HY, Faluch BE, et al. NY-ESO-1 vaccination in combination with debulking induces anti-genotypic T lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer Res. 2018;24:1019–1029. doi:10.1158/1078-0432.CCR-17-1792.

102. Alderson MR, McGowan P, Baldridge JR, Probst P. TLR4 agonists as immunomodulatory agents. J Endotoxin Res. 2006;12:313–319. doi:10.1179/096805106X118753.

103. Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunol. 2016;5:e685. doi:10.1038/cit.2016.22.

104. Dong H, Su H, Chen L, Liu K, Hu HM, Yang W, Mou Y. Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Cancer Manag Res. 2018;10:493–501. doi:10.2147/CMAR.S155914.

105. Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Alderson MR, McGowan P, Baldridge JR, Probst P. TLR4 agonists as immunomodulatory agents. J Endotoxin Res. 2006;12:313–319. doi:10.1179/096805106X118753.
blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep. 2017;19:1874–1887. doi: 10.1016/j.celrep.2017.05.015.

132. Galluzzi L, Vanpouille-Box C, Bakhroum SF, Demaria S. Snapshot: CGAS-STING Signaling. Cell. 2018;173:276–c1. doi: 10.1016/j.cell.2018.03.013.

133. Caronni N, Simoncello F, Stafetta F, Guaraccia C, Ruiz-Moreno JS, Optiz R, Galli T, Proux-Gillardaux V, Benvenuti F. Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in lung cancer. Cancer Res. 2018;78:1685–1699. doi: 10.1158/0008-5472.CAN-17-1307.

134. Bantug GR, Galluzzi L, Kroemer G, Hess C. The spectrum of T cell metabolism in health and disease. Nat Rev Immunol. 2018;18:19–34. doi: 10.1038/nri.2017.99.

135. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107:2013–2021. doi: 10.1182/blood-2005-05-1795.

136. Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro J, Lara-Aznar E, Rodriguez-Vivas J, Liotta LA, Roncador G. Tumor-derived short chain fatty acids produced by microbial fermentation down-regulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 2015;220:1161–1169. doi: 10.1016/j.imbio.2015.06.004.

137. Hoque R, Farooq A, Ghani A, Gorelick F, Melah WZ. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014;146:1763–1774. doi: 10.1053/j.gastro.2014.03.014.

138. Doorduin EM, Sluijter M, Salvatori DC, Silvestri S, Maas S, Arens R, Osseendorp F, van der Burg SH, van Hall T. CD4(+) T Cell and myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 2018;102:56–60. doi: 10.1189/jlb.0218-034.

139. Cho JL, Lee HJ, Ko HJ, Yoon BI, Choe J, Kim KC, Hahn T-W, Han JA, Choi SS, Jung YM, et al. The TLR7 agonist imiquimod induces anti-cancer effects via autophagic cell death and enhances anti-tumoral and systemic immunity during radiotherapy for melanoma. Oncotarget. 2017;8:24932–24948. doi: 10.18632/oncotarget.15326.

140. Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial Watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6:e1363139. doi: 10.1080/2162402X.2017.1363139.

141. Lopez-Soto A, Gonzalez S, Galluzzi L. Soluble NGK2D ligands limit the efficacy of immune checkpoint blockade. Oncoimmunology. 2017;6:e146766. doi: 10.1080/2162402X.2017.1346766.

142. Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK cells. Cancer Cell. 2017;32:135–154. doi: 10.1016/j.ccell.2017.06.009.

143. Klein JC, Moses K, Zelnikovsky G, Sody S, Buer J, Lang S, Helfrich I, Dittmer U, Kirschning CJ, Brandau S. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600. doi: 10.1038/ncomms14600.

144. Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H. Interferon-gamma Synergize for Induction of Antitumor M1 Macrophages. Front Immunol. 2017;8:1383. doi: 10.3389/fimmu.2017.01383.

145. He Y, Wang N, Zhou X, Wang J, Ding Z, Chen X, Deng Y. Prognostic value of ki67 in BCG-treated non-muscle invasive bladder cancer: a meta-analysis and systematic review. BMJ Open. 2018;8:e019635. doi: 10.1136/bmjopen-2017-019635.

146. Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G. Caspases connect cell-death signaling to organismal homeostasis. Immunity. 2016;44:221–231. doi: 10.1016/j.immuni.2016.01.020.

147. Martins I, Galluzzi L, Kroemer G. Hormesis, cell death and aging. Aging (Albany NY). 2011;3:821–828. doi: 10.18632/aging.100380.

148. Rybstein MD, Bravo-San Pedro JM, Kroemer G, Galluzzi L. The autophagic network and cancer. Nat Cell Biol. 2018;20:243–251.
Itchaki G, Brown JR. Lenalidomide in the treatment of chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A. 2011;108(20):8306–8311.

Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, Lion E, Smith AJ. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther. 2015;146:120–131. doi:10.1016/j.pharmthera.2014.09.010.

Zeichner JA, Patel RV, Birge MB. Treatment of Basal cell carcinoma with curettage followed by imiquimod 3.75% cream. J Clin Aesthet Dermatol. 2011;4:39–43.

Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facchiana A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology. 2017;6: e1398878. doi:10.2147/oncotarget.89671.

Macedo R, Rochefort J, Guillot-Delost M, Tanaka K, Le Moignic E, Nakano A, Nozato C, Baiouc C, Mateo V, Carpenter AF, Tartour E, et al. Intra-cheek immunization as a novel vaccination route for therapeutic vaccines of head and neck squamous cell carcinomas using plasma virus-like particles. Oncoimmunology. 2016;5: e114363. doi:10.2147/oncotarget.89671.

Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–2088. doi:10.1016/S0140-6736(15)00239-1.

Morrow MP, Kraynyak KA, Sylvester AJ, Shen X, Amante D, Sakata L, Parker L, Yan J, Boyer J, Roh C, Humeau L, et al. Augmentation of cellular and humoral immune responses to HPV16 and HPV18 E6 and E7 antigens by VGX-3100. Mol Tumor Oncol. 2016;16:1002. doi:10.2147/mtol.2016.25.

Morrow MP, Kraynyak KA, Sylvester AJ, Dallas M, Knoblock D, Boyer JD, Yan J, Vang R, Khan AS, Humeau L, et al. Clinical and immunologic biomarkers for histologic regression of high-grade cervical dysplasia and clearance of HPV16 and HPV18 after Immunotherapy. Clin Cancer Res. 2018;24:276–294. doi:10.1158/1078-0432.CCR-17-2335.

Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, Salih HR, Rammensee H-G, Stevanovic S, Stickel JS. HLA ligandome analysis identifies the underlying specificities of spontaneous antitumor immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A. 2015;112(E6):75–80. doi:10.1073/pnas.1416389112.

Mauldin IS, Wages NA, Stowman AM, Wang E, Olson WC, Deacon DH, Smith KT, Galeassi N, Teague JE, Smolkin ME, et al. Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signaling in patients with stage IV non-small cell lung cancer. Cancer Immunol Immunother. 2016;65:1201–1212. doi:10.1007/s00262-016-1880-z.

Vo N-N, Alexia C, Allende-Vega N, Morschhauser F, Houot R, Menard C, Tarte K, Cartron G, Villalba M. NK cell activation and recovery of NK cell subsets in lymphoma patients after obinutuzumab and lenalidomide treatment. Oncoimmunology. 2018;7:e1409322. doi:10.1080/2162402X.2018.1409322.

Ray A, Tian Z, Das DS, Cooffman RL, Richardson P, Chauhan D, Anderson KC. A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib. Leukemia. 2014;28:1716–1724. doi:10.1038/leu.2014.46.

Itchaki G, Brown JR. Lenalidomide in the treatment of chronic lymphocytic leukemia. Expert Opin Investig Drugs. 2017;26:633–650. doi:10.1080/13543784.2017.1313230.

Palma M, Hansson L, Mulder TA, Adamsson L, Nasman-Glaser B, Eriksson I, Heimeransson K, Ryblom H, Mozaffari F, Svensson A, et al. Lenalidomide as immune adjuvant to a dendritic cell vaccine in chronic lymphocytic leukemia patients. Eur J Haematol. 2018;101:68–77. doi:10.1111/ejh.13065.
Davarpanah NN, Yunoo A, Trepel JB, Apolo AB. Immunotherapy: a new treatment paradigm in bladder cancer. Curr Opin Oncol. 2017; doi:10.1097/CCO.00000000000005366.

Hakenberg OW. Nivolumab for the treatment of bladder cancer. Expert Opin Biol Ther. 2017;17:1309–1315. doi:10.1080/14712598.2017.1353076.

Rentsch CA, Birkhauser FD, Biot C, Gsponer JR, Bisiaux A, Wetterauer C, Lagranderie M, Marchal G, Orgeur M, Boucher C, et al. Bacillus Calmette-Guerin strain differences have an impact on clinical outcome in bladder cancer immunotherapy. Eur Urol. 2014;66:677–688. doi:e142163.

Boehm BE, Cornell JE, Wang H, Mukherjee N, Oppenheimer JS, Svetak RS. Efficacy of bacillus calmette-guerin strains for treatment of nonmuscle invasive bladder cancer: a systematic review and network meta-analysis. J Urol. 2017;198:503–510. doi:10.1016/j.juro.2017.01.086.

Carmignani I, Bianchi R, Cozzi G, Grasso A, Macchione N, Marenghi G, Melegari S, Rosso M, Tondelli E, Maggioni A. Intracavitary immunotherapy and chemotherapy for upper urinary tract cancer: current evidence. Rev Urol. 2013;15:145–153.

Rinders M, de Wit R, Boormans JL, Lolkema MJP, van der Veldt AAM. Systematic review of immune checkpoint inhibition in urological cancers. Eur Urol. 2017;72:411–423. doi:10.1016/j.euro.2017.06.012.

Schwartzentuber DJ, Lawson DH, Richards JM, Conry RM, Miller D, Whiteside TL, Nicodemus CF, Korman AJ, Morse MA, Gouin K, et al. Complimentary mechanistic insights into immune checkpoint inhibition and network meta-analysis. J Urol. 2017;198:503–510. doi:10.1016/j.juro.2017.01.086.

Galvez-Cancino F, Lopez E, Menares E, Diaz X, Flores C, Caceres P, Hidalgo S, Chovar O, Alcántara-Hernández M, Borgna V, et al. Vaccination-induced skin-resident memory CD8(+) T cells mediate strong protection against cutaneous melanoma. Oncoimmunology. 2018;7:e142163. doi:10.1080/2162402X.2018.1442163.

Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer. 2016;4:56. doi:10.1186/s40425-016-0160-y.

Kang J, Galluzzi L. PD-L1 blockade for urothelial carcinoma. Oncoimmunology. 2017;6:e1334028. doi:10.1080/2162402X.2017.1334028.

Ehlen TG, Hoskins PJ, Miller D, Whiteside TL, Nicodemus CF, Schultes BC, Swenerton KD. A pilot phase 2 study of oregovomab murine monochlonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. Int J Gynecol Cancer. 2005;15:1023–1034. doi:10.1111/j.1525-1438.2005.00483.x.

Crosby EJ, Wei J, Yang XY, Lei G, Wang T, Liu CX, Agarwal P, Korman AJ, Morse MA, Gouin K, et al. Complimentary mechanistic insights into immune checkpoint inhibition and network meta-analysis. J Urol. 2017;198:503–510. doi:10.1016/j.juro.2017.01.086.

Knepper TC, Saller J, Walko CM. Novel and expanded oncology approaches to cancer immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. 2014;20:1355–1365. doi:10.1158/1078-0432.CCR-13-1827.

Doiuto V, Migliorini D, Ranzanici G, Marianni E, Widmer V, Lobrino JA, Momjian S, Costello J, Walker PR, Okada H, et al. Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology. 2018;7:e391972. doi:10.1080/2162402X.2017.1391972.

Rampling R, Peoples S, Mulhallon PJ, James A, Al-Salhi O, Twelves CJ, McBain J, Jefferies S, Jackson A, Stewart W, et al. A cancer research UK first time in human phase I trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22:4776–4785. doi:10.1158/1078-0432.CCR-16-0506.

Doiuto V, Harfeld-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P, et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain. 2012;135:1042–1054. doi:10.1093/brainaws042.

Gnjatic S, Sawnhey NB, Bhawdaj N. Toll-like receptor agonists: are they good adjuvants? Cancer J. 2010;16:382–391. doi:10.1097/PPO.0b013e3181ea6a65.

Scutti JAB. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: from bench to clinic and vice versa (Review). Int J Oncol. 2018;52:1041–1056. doi:10.3892/ijio.2018.4283.

Crittenden M, Kohrt H, Levy R, Jones J, Camphausen K, Dicker A, Demaria S, Formenti S. Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol. 2015;25:54–64. doi:10.1016/j.semradonc.2014.07.003.

Linch SN, McNamara MJ, Redmond WL. OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol. 2015;5:534. doi:10.3389/fonc.2015.00534.

Sato–Kaneko F, Yao S, Ahmad B, Zhang SS, Hosoya T, Kameda MM, Varner JA, Pu M, Messer KS, Giuducci C, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2:e93397.

Wu X, Giobbie-Hurder A, Connolly EM, Li J, Liao X, Severgnini M, Zhou J, Rodig S, Hodi FS. Anti-CTLA-4 based therapy elicits humoral immunity to galexin-3 in patients with metastatic melanoma. Oncoimmunology. 2018;7:e1440930. doi:10.1080/2162402X.2018.1440930.

Vanpouille-Box C, Lhuillier C, Bezru J, Aranda F, Yamazaki T, Kepp O, Fukicova J, Spisek R, Demaria S, Formenti SC, et al. Trial watch: immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:e1373237. doi:10.1080/2162402X.2017.1373237.

Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010;28:4324–4332. doi:10.1200/JCO.2010.28.5793.

Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in oncology. Nat Rev Drug Discov. 2015;14:603–622. doi:10.1038/nrd4596.

Rapoport AP, Aqui NA, Stadtmann EA, Vogl DT, Xu YY, Kalos M, Cai L, Fang H-B, Weiss BM, Badros A, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. 2014;20:1355–1365. doi:10.1158/1078-0432.CCR-13-1827.

Hoos A. Development of immuno- oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–247. doi:10.1038/nrd5355.
231. Ito H, Ando T, Arioka Y, Saito K, Seishima M. Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumour effects of a Toll-like receptor 7 agonist in an established cancer model. Immunology. 2015;144:621–630. doi:10.1111/imm.12413.

232. Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer. 2017;76:167–182. doi:10.1016/j.ejca.2017.01.011.

233. Kim YH, Gratzinger D, Harrison C, Brody JD, Czerwinski DK, Ai WZ, Morales A, Abdulla F, Xing L, Navi D, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood. 2012;119:355–363. doi:10.1182/blood-2011-05-355222.

234. Stone L. Pembrolizumab effective in PD-L1-positive disease. Nat Rev Urol. 2018; doi:10.1038/s41585-018-0070-5.

235. Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology. 2012;1:894–907. doi:10.4161/onci.20931.

236. Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: toll-like receptor agonists for cancer therapy. Oncoimmunology. 2013;2:e25238. doi:10.4161/onci.25238.

237. Helminen O, Huhta H, Lehenkari PP, Saarnio J, Karttunen TJ, Kaupilla JH. Nucleic acid-sensing toll-like receptors 3, 7 and 8 in esophageal epithelium, Barrett’s esophagus, dysplasia and adenocarcinoma. Oncoimmunology. 2016;5:e1127495. doi:10.1080/2162402X.2015.1127495.

238. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432–1433. doi:10.1126/science.342.6165.1432.

239. Sadelain M, Riddell S. Therapeutic T cell engineering. Nature. 2017;545:423–431. doi:10.1038/nature22395.

240. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–1365. doi:10.1126/science.aar6711.

241. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372:2521–2532. doi:10.1056/NEJMoa1503093.

242. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–330. doi:10.1056/NEJMoa1412082.

243. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, Reed K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–133. doi:10.1056/NEJMoa1302369.

244. Poole RM. Pembrolizumab: first global approval. Drugs. 2014;74:1973–1981. doi:10.1007/s40265-014-0314-5.