Short Communication

Comparative distribution of bacterial contaminants of packaged and unpackaged polyherbal products sold in Nnewi, Nigeria

Udeogu, C. V., Agbakoba, N. R., and Chukwuma, G. O.

Medical Microbiology Unit, Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi, Anambra State, Nigeria

Correspondence to: chidozie.udeogu@yahoo.com

Abstract:

Background: The use of herbal medicine continues to remain popular despite advances in orthodox medicine largely as a result of affordability and availability. However, contaminated and potentially toxic polyherbal preparations remain a public health challenge despite regulations instituted by concerned agencies in Nigeria. The objective of this study was to determine and compare the bacterial contaminants of different polyherbal products sold in Nnewi, Nigeria.

Methodology: This study evaluated the bacteriological profile of 22 packaged and 22 unpackaged polyherbal preparations sold in Nnewi, Nigeria. The samples were collected from different herbal medicine shops in Nnewi by simple random sampling and were assayed for comparative bacterial loads with chromogenic media and their total viable counts evaluated following standard method for microbial load analysis.

Results: Bacterial contaminants were isolated from 9 of 22 (40.9%) packaged polyherbal samples while 13 of 22 (59.1%) samples were bacteriologically sterile. For the unpackaged polyherbal, bacterial contaminants were isolated from 18 of 22 (81.8%) samples while 4 of 22 (18.2%) were bacteriologically sterile (OR 0.1538, \(p=0.0122 \)). The most frequently isolated bacterial contaminant in the packaged polyherbal samples was *Enterococcus faecalis* with 33.3% (6/18) while *Salmonella* sp was the least frequently isolated with 5.6% (1/18). For the unpackaged polyherbals, the most frequently isolated bacterial contaminant was *Staphylococcus aureus* with 25% (7/28) while *Salmonella* sp and *E. faecalis* were the least frequently isolated with 10.7% (3/28) each. The median total viable count of the packaged group of the polyherbal products was 1.48x10^6 CFU/ml, while the median total viable count for unpackaged group of polyherbals was 1.95x10^6 CFU/ml.

Conclusion: This study shows that many polyherbal products sold in Nnewi are potentially contaminated with bacterial agents. It is therefore imperative that herbal medicine practitioners be enlightened on hygienic ways of preventing microbial contamination during polyherbal production.

Keywords: Bacterial contaminants, herbal products, Nnewi, Nigeria

Received January 21, 2020; Revised May 14, 2020; Accepted May 17, 2020

Copyright 2020 AJCEM Open Access. This article is licensed and distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided credit is given to the original author(s) and the source.

Contexte: L’utilisation de la phytothérapie continue de rester populaire malgré les progrès de la médecine orthodoxe en grande partie en raison de l’abordabilité et de la disponibilité. Cependant, les préparations à base de plantes contaminées et potentiellement toxiques restent un problème de santé publique malgré les réglementations mises en place par les agences concernées au Nigeria. L’objectif de cette étude était de déterminer et de comparer les...
Bacterial contaminations of polyherbal products

Afr. J. Clin. Exper. Microbiol. 2020; 21: 354-359

Mots-clés: Contaminants bactériens, produits à base de plantes, Nnewi, Nigéria

Introduction:

Herbal medicine is a medication made from herbs and has long been used as a source of alternative medicines in developed, developing and underdeveloped countries. Throughout the ages, humans have turned to herbal medicine for healing. All societies have folk medicine traditions that include the use of plants and plant products. Many licensed drugs used today in conventional medicine originated from herbal products.

The World Health Organization (WHO) estimates that about 4 billion or at least 80% of the world’s population use herbal preparations for some aspects of primary health care (10). In Nigeria, herbal therapy remains a popular alternative in many traditional communities where orthodox medicine is not affordable (2). Herbal medicine practitioners in Nigeria use various herbal preparations to treat various types of ailments including diarrhoea, urinary tract infections, typhoid fever and skin diseases (8). Unfortunately, many of these herbal medicine practitioners do not follow hygienic procedures in preventing microbial contaminants during production of their polyherbal products. The study is designed to comparatively evaluate bacteriological contaminants of packaged and unpackaged polyherbals sold in Nnewi, Nigeria.

Materials and method:

Collection of polyherbal samples

A total of 44 samples of liquid formulations of the polyherbals produced in Nigeria were purchased from 16 different herbal shops and trade-medical hawkers, who were selected by simple random sampling within Nnewi town. The samples of the packaged polyherbal preparations (n=22) were purchased while samples of the unpackaged extemporaneous polyherbal preparations (n=22) were collected in polythene bags that are used to dispense products to customers by the herbal medicine practitioners. All samples were labeled and immediately transported to the Faculty of Health Science Laboratory of the Nnamdi Azikiwe University, Okofia, Nnewi.

Estimation of total viable count of bacteria

A tenfold dilution of each sample of polyherbal was achieved by adding 1ml of each sample to 9ml of sterile normal saline in the first test tube of a row of 10 sterile tubes. One (1) ml from the first tubes on each row was then transferred to the 2nd test tube after proper mixing continuing up to the 10th tube where one (1) ml of the mixture was discarded to achieve a 1/101 to 1/1010 dilutions. One (1) ml of the dilution from each test tube was then transferred into a sterile Petri dish and molten nutrient agar was added, the constituents were well mixed and incubated aerobically at 37°C for 24 hours. The number of colonies on each plate was counted and the mean for each sample was established and recorded as the mean colony forming units (CFU) per ml.

Isolation and identification of bacterial contaminants in the polyherbal preparations.

The isolation and identification of the bacterial agents was done by culture on two commercial chromogenic media; CHROMagar™ Orientation and HARDYCHROM™ SS NPRO agar, which have been validated to have positive and negative predictive values of 99.3% and 100% respectively for the isolation and identification of the bacterial organisms such as Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Proteus sp, Salmonella sp, Citrobacter sp, Serratia marcescens, Providencia sp, Acinetobacter sp, and...
Pseudomonas aeruginosa which are common contaminants in polyherbal preparations (1,5). The media were prepared according to the manufacturer’s instructions.

Briefly, labeled individual samples of both the packaged and unpackaged herbals were well mixed to ensure complete homogenization before culture. A loopful of each of the samples was streaked on the prepared agar plates using sterile wire loop. Incubation was done aerobically at 37ºC for 24 hours. A sterile non-inoculated plate was also placed in the incubator for quality control during incubation (3). Plates were read after 24 hours and bacteria were identified by their peculiar and different colony colours and chromogenic attributes using the colour charts as a guide (7), in determining the bacterial isolates (1). The identification parameters of bacterial colonies on the media based on colour are; Klebsiella sp colonies appeared metallic blue, Enterococcus faecalis colonies as red, Proteus mirabilis colonies as clear and brown halo, and Salmonella spp as pink.

Analysis of data

The data were presented in frequency tables and statistical analysis performed with IBM SPSS 20.0 version. Chi square test was used to measure association of bacterial contamination with packed and unpackaged polyherbals, and p value less than 0.05 was considered to be statistically significant.

Results:

The frequency of distribution of bacterial contaminants in the packaged and unpackaged polyherbal samples is shown in Table 1.

Data obtained from this study showed that bacterial agents such as K. pneumoniae, E. faecalis, S. aureus, E. coli, P. mirabilis and Salmonella sp were isolated at varying frequencies in both groups of polyherbals. These

Table 1: Frequency distribution of bacterial isolates in packaged and unpackaged polyherbal samples

No of polyherbals/bacterial isolates	Packaged (%) (n=22)	Unpackaged (%) (n=22)	X²	p
No bacteria isolate	13 (59.1)	4 (18.8)	7.8	0.01*
No positive for bacterial isolate	9 (40.9)	18 (81.2)		
Klebsiella pneumonia	2 (11.1)	5 (17.9)		
Enterococcus faecalis	6 (33.3)	3 (10.7)		
Staphylococcus aureus	3 (16.7)	7 (25)		
Escherichia coli	3 (16.7)	5 (17.9)		
Proteus sp	3 (16.7)	5 (17.9)		
Salmonella sp	1 (5.6)	3 (10.7)		
Total isolates	**18 (100)**	**28 (100)**		

X²= Chi square; *statistically significant

Bacterial contaminants were isolated from 9 of 22 (40.9%) packaged polyherbal samples while 13 of 22 (59.1%) samples were bacteriologically sterile. For the unpackaged polyherbals, bacterial contaminants were isolated in 18/22 (81.8%) samples while 4/22 (18.2%) were bacteriologically sterile (OR 0.1538, p =0.0122). Of the 9 positive samples in the packaged polyherbals, a total of 18 bacterial isolates were recovered, E. faecalis was the most frequent with 33.3% (6/18), followed by S. aureus 16.7%, E. coli 16.7%, Proteus sp 16.7%, K. pneumoniae 11.1% and Salmonella sp 5.6%. Of the 18 positive samples in the unpackaged polyherbals, a total of 28 bacterial isolates were recovered, S. aureus was the most frequent with 25% (7/28), followed by K. pneumonia 17.9%, E. coli 17.9%, Proteus sp 17.9%, E. faecalis 10.7% and Salmonella sp 10.7% (Table 1).

Table 2 shows the distribution of the polyherbal products from the 16 herbal shops and trado-medical hawkers, and the bacteria isolates recovered from those positive. Table 3 shows the total viability count (TVC) for each of the packaged herbal product that cultured positive for bacteria with a mean TVC of 1.48 x 10⁶ CFU/ml, while Table 4 shows the TVC for each of the unpackaged herbal product that cultured positive for bacteria, with a mean TVC of 1.85 x 10⁶ CFU/ml.

Discussion:

Data obtained from this study showed that bacterial agents such as K. pneumoniae, E. faecalis, S. aureus, E. coli, P. mirabilis and Salmonella sp were isolated at varying frequencies in both groups of polyherbals. These
Table 2: Distribution of bacterial contaminants in polyherbals purchased at the herbal shops

Herbal shops	Polyherbals	Bacterial isolates
Dan-Ilyke	Katoka, Ruzu bitters, Yoyo bitters	No growth
Blessed Mother	Blood purifier, Super bitters	No growth
Dr Chiagozie	Nando mixture, Super bitters, Mako cleanser,	Enterococcus faecalis
	Super 7, Ruzu bitters	
Panx	Goko cleanser, dukun care, Dr Igah cleanser	E. coli, Klebsiella sp, E. faecalis, S. aureus
Fesco	Deep root, Bitterkinga	No growth
Dr Agnes	J.M.I herbal, Museya, Jalin herbal	E. faecalis, Klebsiella sp, E. coli, Proteus sp
Eze	Eze herbal mixture, new beta cleanser	E. coli, Proteus sp
Dr Benbella	Weifa body defense	No growth
Baba Oyo	Olori herbal mixture	E. faecalis, S. aureus, Proteus sp
Yemi	Anti-pile, Anti-diabetic, fibroid	E. coli, Klebsiella sp, E. faecalis, Salmonella sp
Dan Obitube	Convulsion formula, general well-being, blood	E. coli, E. faecalis
	booster, energy booster	
Titi	Fertility preparation, Laxative preparation	S. aureus, Proteus sp
Barakat	Anti-ulcer, STI preparation, Abdominal preparation	S. aureus, Proteus sp
Laide	Skin infection, menstruation prep	Proteus sp
Baba Osun	Male fertility, anti-pile, back pain	E. coli, S. aureus, Klebsiella sp, Salmonella sp
Sunny	Anti-gonorrhoea, STD preparation, anti-malaria	E. coli, Klebsiella sp

Table 3: Total Viable Counts in packaged polyherbal samples and their bacteriological safety

Packaged polyherbals	Total Viable Count (CFU/ml)	Bacteriological Safety Level (10^6)
Deep Root	No Isolate	Safe
Blood purifier	No Isolate	Safe
Jalin herbal mixture	1.5x10^6	Unsafe
J.M.I herbal mixture	3.6x10^6	Unsafe
Mako Cleanser	No Isolate	Safe
Super 7	1.4x10^6	Unsafe
Museya bitters	No Isolate	Safe
Dr Igah Bitter cleaner	0.7x10^6	Unsafe
Goko Cleanser	No Isolate	Safe
New Beta cleanser	No Isolate	Safe
Infection destroyor	1.3x10^6	Unsafe
Dr sunny Gonorhea herbal	1.8x10^6	Unsafe
Dukun Care	1.7x10^6	Unsafe
Katoka Mixture	No Isolate	Safe
Eze herbal	3.2x10^6	Unsafe
Dr Nando	No Isolate	Safe
Super bitters	No Isolate	Safe
Ruzu bitters	No Isolate	Safe
Weifa body defense	No Isolate	Safe
Bitterkinga	No Isolate	Safe
Yoyo bitters	No Isolate	Safe

Mean Total Viable Count (TVC) = 1.4845x10^6
results are similar with the findings of Esimone et al., (4) and Tatfeng et al., (9), both of whom detected bacterial agents at varying frequencies in herbals and polyherbals samples in Nigeria. The predominance of *E. faecalis* and *S. aureus* in the packaged and unpackaged herbals respectively is in consonance with the study by Esimone et al., (4) who investigated the microbiological quality of liquid herbal preparations in south-eastern Nigeria and isolated arrays of microbial contaminants including *S. aureus* and *E. faecalis* as the most predominant bacterial contaminants of herbal medicines.

The higher frequency of contamination observed in the unpackaged group of polyherbals (81.8%) and higher median total viable count (TVC) compared to those of the packaged group may be attributable to contamination due to lack of standardization and quality control, poor personnel hygiene and handling, and use of contaminated water and raw materials (4). These findings could also be due to the fact that the packaged polyherbal products are comparatively better regulated by government agencies such as the National Agency for Food and Drug Administration and Control (NAFDAC) and the State Ministries of Health who usually mandate the manufacturers of packaged polyherbals to adopt some level of good manufacturing procedure, safe handling measures during production and quality control (6).

This study shows that many polyherbal products sold in Nnewi are potentially contaminated by bacterial agents, some of which are potential pathogens of man. It is imperative that herbal medicine practitioners be enlightened on hygienic ways of preventing microbial contamination during polyherbal production.

References:

1. Berger, D., Clasen, R., Cuna, A., Knox, J., and Hardy, J. Evaluation of Novel Chromogenic medium for the isolation and differentiation of *Salmonella* and *Shigella* spp. Presented at the 111th General Meeting of American society for Microbiology, New Orleans, LA. 2011: 3601.
2. Burkill H. M. The Useful Plants of West Africa 3rd ed. London. Royal Botanical Gardens; Kew, Richmond, United Kingdom. 1997: 377.
3. Cowan, S. T., and Steel, K. J. Manual for identification of medical bacteria. Vol 2. 2nd ed.; Cambridge University Press; London. 1974: 15-47.
4. Esimone, C. O., Shah, K. F., and Ikejide, F. C. Microbial quality of herbal preparations marketed in South Eastern Nigeria. Journal of Natural Remedies. 2001: 2 (1): 42-48.
5. Filius, P., Van Netten., D., Roovers, J., Vulto, G., Gyssens, C., Verbrugh, A., and Endtz, P. Comparative evaluation of three chromogenic agars for detection and rapid identification of aerobic gram-negative bacteria in the normal intestinal microflora. Clinical Microbiology and Infection. 2003: 9 (9): 912-918.
6. National Agency for Food and Drug Administration and Control. Standard Operating Procedures (NAFDAC SOP). Determination of moisture contents. Yaba, Lagos: Central Drugs and Vaccine Control Laboratory (CDVCL); 2000: 1-2.
7. Singh, A. K., and Bhunia, A. Optical scatter patterns facilitate rapid differentiation of Enterobacteriaceae on CHROMagar™ Orientation media. Microb Biotechnol. 2016; 9 (1): 127 - 135.
8. Sofowora, A. Medicinal plants and traditional medicine in Africa. Ibadan: Spectrum books Ltd (pub); 1993: 50–195.
9. Tatfeng, M., Ollama, H., and Ojo, O. Microbial burden of some herbal antimalarial marketed at Elele, Rivers State. J Afr Trad Compl Altern Med. 2010: 7(2): 149–152.
10. World Health Organization (WHO). Regulatory situation of herbal medicines: A worldwide review. Geneva: World Health Organization, 1998.