Recombination Signal in *Mycobacterium tuberculosis* Stems from Reference-guided Assemblies and Alignment Artefacts

Maxime Godfroid*, Tal Dagan, and Anne Kupczok*

Genomic Microbiology Group, Institute of General Microbiology, Kiel University, Kiel, Germany

*Corresponding authors: E-mails: mgodfroid@ifam.uni-kiel.de; akupczok@ifam.uni-kiel.de.

Accepted: July 10, 2018

Abstract

DNA acquisition via genetic recombination is considered advantageous as it has the potential to bring together beneficial mutations that emerge independently within a population. Furthermore, recombination is considered to contribute to the maintenance of genome stability by purging slightly deleterious mutations. The prevalence of recombination differs among prokaryotic species and depends on the accessibility of DNA transfer mechanisms. An exceptional example is the human pathogen *Mycobacterium tuberculosis* (MTB) where no clear transfer mechanisms have been so far characterized and the presence of recombination is questioned. Here, we analyze completely assembled MTB genomes in search for evidence of recombination. We find that putative recombination events are enriched in strains reconstructed by reference-guided assembly and in regions with unreliable alignments. In addition, assembly and alignment artefacts introduce phylogenetic signals that are conflicting the established MTB phylogeny. Our results reveal that the so far reported recombination events in MTB are likely to stem from methodological artefacts. We conclude that no reliable signal of recombination is observed in the currently available MTB genomes. Moreover, our study demonstrates the limitations of reference-guided genome assembly for phylogenetic reconstructions. Rigorously *de novo* assembled genomes of high quality are mandatory in order to distinguish true evolutionary signal from noise, in particular for low diversity species such as MTB.

Key words: phylogeny, recombination, *Mycobacterium tuberculosis*, comparative genomics, assembly, alignment.

Introduction

The acquisition of foreign DNA by lateral transfer is widespread among prokaryotes (Gogarten and Townsend 2005; Vos and Didelot 2009). Genetic recombination within a species allows for the combination of beneficial mutations that arose independently and can thereby accelerate the process of adaptation (Fisher 1930; Muller 1932). Furthermore, recombination allows species to escape Muller’s ratchet (Muller 1964) by decreasing the accumulation of slightly deleterious mutations in the population (Takeuchi et al. 2014). In the absence of recombination, species adaptation is considered slower due to clonal interference, that is, competition between independently emerging genotypes (Hill and Robertson 1966). For example, experimental evolution studies of prokaryotic organisms showed that adaptation is slower when recombination is genetically hindered (Baltrus et al. 2008; Perron et al. 2012).

The human pathogen *Mycobacterium tuberculosis* (MTB), the causative agent of tuberculosis, is devoid of known lateral transfer mechanisms. Lateral transfer mechanisms were only observed in close relatives of MTB, for example, in the sister group *Mycobacterium canetti* (Boritsch et al. 2016) and in other mycobacteria (Mortimer and Pepperell 2014). It is also thought that lateral gene transfer (LGT) events occurred in the branch leading to the ancestor of MTB, for example, in a region with high similarity to a plasmid from distant *Mycoplasma* (Supply et al. 2013). Hence, this property might have been lost in MTB. MTB genomes are extremely conserved, which results in a low intraspecies genetic diversity. Clonal evolution of MTB is an established fact in the community (Gagneux 2013; Coscolla and Gagneux 2014; Niemann et al. 2016), nonetheless, whole-genome evolutionary reconstruction indicated the presence of recombination footprints in MTB (Namouchi et al. 2012). The results of the latter study were suggested to stem from genome assembly artefacts (Bryant 2014). Other attempts to detect recombination (Liu et al. 2006; Karboul et al. 2008; Phelan et al. 2016) identified highly repetitive regions as recombination targets. However, those events can be traced back to intragenome recombination (Boritsch 2014) or they lack an experimental validation. A systematic study for intergenome recombination is still lacking.
The first complete genome of MTB was determined 20 years ago (Cole et al. 1998). These days, there are two major approaches to genome assembly using high-throughput sequencing; raw reads are either assembled de novo, or by reference-guided assembly using a closely related reference (Tatusova et al. 2014). Most analyses in MTB were conducted without assembly of novel isolates; instead, variants of sequenced isolates have been inferred by aligning the raw reads against a reference. Those analyses contributed to the understanding of drug-resistance mutations (Zhang et al. 2013; Cohen et al. 2015; Gygli et al. 2017) and transmission networks during epidemics (Merker et al. 2015; Manson et al. 2017). The availability of sequenced isolates for numerous MTB strains provides an unprecedented resolution for evolutionary analyses of this species. Here, we exploit completely sequenced MTB genomes to systematically test the presence of recombination in MTB.

Materials and Methods

Data Set

We retrieved 41 closed and complete genomes of *M. tuberculosis* sensu stricto from the RefSeq database (October 27, 2016, supplementary table S1, Supplementary Material online).

Protein Families

Homologous proteins were identified by using blastp v2.5.0+ (Altschul et al. 1990) all-against-all with an e-value threshold of 1e-10. Proteins sharing at least 60% global amino acid identity as computed by needle from the EMBOSS package (Needleman and Wunsch 1970; Rice et al. 2000) were clustered into homologous families using MCL v14-137 (Enright et al. 2002) with inflation factor 2. To infer our reference phylogeny, we first computed the multiple amino acid alignment of each of the 2,650 universal single copy families using MAFFT v7.31 and the auto option (Katoh et al. 2002). Phylm v20131022 (Guindon et al. 2010) was then used to infer the tree with 100 bootstrap replicates.

Extended Set of Protein Families

The presence of protein families in unannotated regions was identified using tblastn of the amino acid sequences against the annotated pseudogenes. The criteria for retaining a significant hit are 1) e-value < 1e-5, 2) length of the hit >80% length of queried protein, and 3) alignment identity >85%.

Universal Genomic Regions

ProgressiveMauve v2.4.0 (Darling et al. 2010) identifies locally collinear blocks that are conserved and free of rearrangements. Aligning the 41 genomes using progressiveMauve identifies 18 universal blocks, that is, blocks present in all 41 genomes (termed universal genomic regions, supplementary table S2, Supplementary Material online). Universal genomic regions are realigned with MAFFT, resulting in a total alignment length of 4,951,692 nt.

Recombination Detection

Recombination is inferred for the universal genomic regions using ClonalFrameML v1.0-20 and the reference phylogeny. Recombined segments are characterized by the start and end position in the alignment and the branch in the phylogeny where the segment is introduced. We only kept recombined segments of length at least 13 nt.

Block Phylogenies

Phylogenies were estimated based on the MAFFT alignments of the universal genomic regions (supplementary table S2, Supplementary Material online). Phylogenies were inferred using phylm, the substitution model GTR+G and 100 bootstrap replicates. A region is incongruent with the reference phylogeny if its phylogeny displays a conflicting branch with bootstrap support of at least 75. We applied the HoT (Landan and Graur 2007) procedure to identify alignment positions where the alignment is unreliable. For a given multiple sequence alignment, HoT computes the forward and the reverse alignment; thereby reliable columns can be found in both alignments. The HoT score is the percentage of reliable columns and is a representation of alignment quality. The package spliitstree4 (Huson and Bryant 2006) was used to infer the splits network, using the neighbor net implementation with the uncorrectedP distances.

Results

We analyzed 41 available completely sequenced MTB genomes having an average length of 4.407 Mb and an average number of 3,997 open reading frames (ORFs; supplementary table S1, Supplementary Material online). To establish a reference phylogeny as the basis for subsequent recombination inference, protein sequences were clustered by similarity into 4,272 homologous protein families. This yielded 2,650 (62%) complete single-copy families (i.e., families present in all genomes compared) and 1,539 (36%) partial protein families (i.e., families that are absent in at least one genome). The low proportion of partial protein families in MTB supports the view of a highly conserved protein content. For comparison, the proportion of partial proteins in *Escherichia coli* is 88% (panX database, accessed January 10, 2018 [Ding et al. 2017]).

Including 1,399 pseudogenes having sequence similarity to protein family members increased the number of complete single-copy families to 3,293 (77%) and reduced the number of partial protein families to 890 (21%) (supplementary fig. S1B, Supplementary Material online). Notably, many of the partial protein families are characterized by the presence—
absence pattern in the reference strain H37Rv (NC_000962.3); 38 partial families are H37Rv-specific, whereas 112 partial families are present in all strains but H37Rv (supplementary fig. S1C, Supplementary Material online). The high proportion of variability of the reference strain H37Rv demonstrates that the level of annotation in this strain is out of the ordinary in comparison to other sequenced isolates.

For the inference of recombination, we reconstructed a reference phylogeny from the complete single-copy families (excluding families with pseudogenes; fig. 1). The resulting topology is concordant with the known evolutionary relationships of MTB lineages (Comas et al. 2013). Recombination was inferred from a concatenation of 18 universal genomic regions in the MTB whole-genome alignment, that is, regions that are common to all compared genomes (supplementary table S2, Supplementary Material online). Inferred recombined segments are stretches in the alignment that do not evolve in the clonal frame (Didelot and Wilson 2015). ClonalFrameML identified a total of 1,297 recombined segments. We find an unexpected high proportion of putative recombined segments that are inferred to occur in terminal branches (i.e., occurring in a single genome) (77%; 993 of 1,297). In addition, the segments are unevenly represented among the strains, where 505 (51%) of the putative recombined segments in terminal branches (993) are inferred in nine genomes that stand out due to their assembly procedure. Seven of these genomes were assembled based on a reference genome. Additionally, two of the strains were removed from the RefSeq database during the time of our study due to a high proportion of frame-shifted ORFs indicating a low-quality assembly (personal communication with NCBI; fig. 2A, supplementary table S1, Supplementary Material online). These results indicate that reference-guided assemblies are a source for bias in the inference of recombination events. We consider the nine genome assemblies noted above as problematic for phylogenetic reconstruction.

The universal genomic region alignments are highly conserved with a low proportion of gapped positions (18.55%). Notably, the recombined segments on internal branches exhibit a remarkably high proportion of gapped positions with a mean of 84% gapped positions per segment (median 100%). The high proportion of gapped positions is also observed in recombined segments reconstructed to terminal branches (mean 63%, median 100%; fig. 2B). Because of the high proportion of gaps in recombined segments, we suspect alignment errors have had an influence on the reconstruction of recombined segments. To test for this possibility, we identify alignment positions from the universal region whose alignment is unreliable (Landan and Graur 2007). In total, 682,588 of the 4,951,692 (13.79%) alignment positions are considered unreliable according to this measure. Notably, unreliably aligned positions are overrepresented in putative recombined segments in comparison to the remaining genome alignment ($P<10^{-6}$, using χ^2 test). Additionally, the proportion of unreliably aligned positions is higher for segments inferred on internal branches in comparison to the putative recombined segments inferred on external branches ($P<10^{-6}$, using χ^2 test). Our results thus demonstrate that putatively recombined segments largely overlap with genomic regions whose alignment is unreliable. This suggests that the recombination events detected in MTB genomes stem from alignment artefacts.

In summary, we identify two main sources of bias in the inference of recombination in MTB genomes. Recombination events reconstructed in terminal branches are either a sign of a recent recombination (i.e., in the isolate) or an indication for an artefact due to the genome assembly method. The enrichment of recombination events on terminal branches in reference-guided assemblies in comparison to de novo assemblies suggests that reference-guided assemblies are a cause for bias in the recombination detection. We suspect that this is caused by the assembly method that introduces reference variants into the reconstructed sequence. Consequently, all recombination events inferred to terminal branches should be considered with utmost caution. A second source of bias is alignment quality shown by the enrichment of unreliable alignment positions in regions identified as recombination. Thus, the bias introduced at the sequence and alignment level.
Artefacts in *Mycobacterium tuberculosis* recombination signal

Discussion

Here, we systematically exploit completely assembled MTB genomes to test for the presence of DNA acquisition by lateral transfer. We find that the recombination signal appears to be affected by two kinds of artefacts: Unreliable alignments and data quality. Bias in the alignment reconstruction has the potential to introduce a spurious phylogenetic signal, in particular, that of recombination. Additionally, the inclusion of problematic genome assemblies in the analysis leads to the inference of variation that cannot be attributed to biological processes rather it is likely the result of methodological artefacts. In the field of MTB research, the reference strain H37Rv is used as the model organism in most experimental studies. The genome sequence of H37Rv is also commonly used as the
reference in epidemiological studies and it has been consid-
ered to have a negligible impact on the phylogenetic signal
(Lee and Behr 2016). However, the limitations of using H37Rv
as a reference are described in the literature. H37Rv is known
to evolve in the laboratory and to accumulate genetic variants
over time (I o e r g e re ta l .2 0 1 0). Consequently, the usage of the
reference H37Rv may constrain the detection of virulence-
related loci in strains cultivated in the laboratory (O’Toole
and Gautam 2017). We demonstrate that the use of H37Rv
in reference-guided assemblies biases the phylogenetic recon-
struction towards the European lineage and leads to the er-
roneous inference of DNA acquisition.

The incorrect identification of lateral transfer due to errors
in the assembly and the alignment has also been observed for
viruses and eukaryotes. For example, the contribution of intra-
segmental recombination to rotavirus evolution has been
rejected due to the observation that recombined segments
occur only once and, thus, might have originated as errors
during sequencing (Woods 2015). Similarly, technical chime-
ras originating from in vitro recombination impede the detec-
tion of biological recombination between dengue virus and its
host (Peccoud 2018). Assembly errors in the analysis of mixed
species samples can result in overestimating the abundance of mixed
LGT in the focal genome (Koutsovoulos et al. 2016). Those
studies exemplify that quality control is an essential prerequi-
tsite for comparative genomics as evolutionary inference is
sensitive to the underlying data and analysis pipelines.
artefactual variants (Li 2014). Phylogenetic reconstruction from aligned reads to a reference can be improved by the use of multiple reference genomes (Bertels et al. 2014). Nonetheless, phylogenetic artefacts can already emerge at the sequencing stage. The outcome of an evolutionary analysis is greatly influenced by the usage of adequate methodology to deal with sequencing errors. Sequencing errors occur in a nonrandom manner during Illumina sequencing (Nakamura et al. 2011) and accounting for that bias improves subsequent analyses (Benjamini and Speed 2012). Sequencing errors can have a strong impact on population genetic inferences, thus, parameter estimation directly from aligned reads is more accurate than estimation from called polymorphisms (Han et al. 2014). Artefacts are especially severe for data sets of low diversity that show a small ratio of signal to noise (Johnson and Slatkin 2007).

Many pathogens exhibit little sequence diversity which complicates their evolutionary reconstruction (Achtman 2008). In MTB, we expect little amount of recombination and its detection is further impeded by the low genome diversity. Consequently, the signal of recombination in the MTB genomes is expected to be low. However, the distinction between low recombination signal and noise is challenging. Here, we present an approach to detect noise when inferring recombination in completed MTB genomes. We find a high amount of noise that exceeds the signal by far. This data set thus does not allow for an accurate inference of recombination. In order to delineate if recombination signal is low or absent, data sets of high resolution and of high quality are essential.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments

We thank Bernhard Haubold, Giddy Landan, Thomas A. Kohl, Matthias Merker, and Stefan Niemann for fruitful discussions and Tanita Wein and Christian Woehle for insightful comments on the manuscript. The study was supported by the Leibniz ScienceCampus EvoLUNG, the European Research Council (Grant No. 281357 to T.D.), and the Bioinformatics Network.

Literature Cited

Achtman M. 2008. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol. 62:53–70.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410.

Baltrus DA, Guillen K, Phillips PC. 2008. Natural transformation increases the rate of adaptation in the human pathogen *Helicobacter pylori*. Evolution 62:39–49.

Benjamini Y, Speed TP. 2012. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40(10):e72.

Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. 2014. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol. 31(5):1077–1088.

Boritsch EC. 2014. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol Microbiol. 93(5):835–852.

Boritsch EC, et al. 2016. Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A. 113(35):9876–9881.

Bryant J. 2014. Evolutionary genomics of pathogenic mycobacteria. Cambridge: PhD thesis, University of Cambridge.

Cohen KA, et al. 2015. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of *Mycobacterium tuberculosis* isolates from KwaZulu-Natal. PLoS Med. 12(9):e1001880.

Cole ST, et al. 1998. Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. Nature 393(6685):537–544.

Comas I, et al. 2013. Out-of-Africa migration and Neolithic coexpansion of *Mycobacterium tuberculosis* with modern humans. Nat Genet. 45(10):1176–1182.

Coscolla M, Gagneux S. 2014. Consequences of genomic diversity in *Mycobacterium tuberculosis*. Semin Immunol. 26(6):431–444.

Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147.

Didelez X, Wilson DJ. 2015. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 11(2):e1004041.

Ding W, Baumdicker F, Neher RA. 2017. panX: pan-genome analysis and exploration. Nucleic Acids Res. 46(1):e5.

Enright AJ, Dongen SV, Ouzounis CA. 2002. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30(7):1575–1584.

Fisher R. 1930. The genetic theory of natural selection. Oxford: Clarendon Press, p. 143.

Gagneux S. 2013. Genetic diversity in *Mycobacterium tuberculosis*. Curr Top Microbiol Immunol. 374:1–25.

Gogarten JP, Townsend JP. 2005. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol. 3(9):679–687.

Guindon S, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321.

Gygli SM, Borrell S, Trauner A, Gagneux S. 2017. Antimicrobial resistance in *Mycobacterium tuberculosis*: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 41(3):354–373.

Hari E, Sinsherrner JS, Novembre J. 2014. Characterizing bias in population genetic inferences from low-coverage sequencing data. Mol Biol Evol. 31(3):723–735.

Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Genet Res. 8(3):269–294.

Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 23(2):254–267.

loerger TR, et al. 2010. Variation among genome sequences of H37Rv strains of *Mycobacterium tuberculosis* from multiple laboratories. J Bacteriol. 192(14):3645–3653.

Johnson PLF, Slatkin M. 2007. Accounting for bias from sequencing error in population genetic estimates. Mol Biol Evol. 25(1):199–206.
