Simplex Complex Forms for Two-Sided Quaternion Linear Canonical Transform

To cite this article: Mawardi Bahri 2019 J. Phys.: Conf. Ser. 1180 012013

View the article online for updates and enhancements.

You may also like

- The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations
 Eckhard Hitzer
- Duality Property for Linear Canonical Transform
 Mawardi Bahri, Moh. Ivan Azis and Amir Kamal Amir
- Kinematical modeling of circular and elliptical polarization of the polarized light via screw transformation
 Zehra Özdemir
Simplex Complex Forms for Two-Sided Quaternion Linear Canonical Transform

Mawardi Bahri
Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia
E-mail: mawardibahri@gmail.com

Abstract. The two-sided quaternion linear canonical transform is a general form of the two-sided quaternion Fourier transform. Based on simplex complex forms of the two-sided quaternion Fourier transform we derive in detail the simplex complex forms of the two-sided quaternion linear canonical transform. Finally, a consequence of the generalized simplex complex forms is also presented.

1. Introduction
It is well known that the quaternion Fourier transform is general form of the traditional Fourier transform. There are many works devoted to the development of theories and applications of the quaternion Fourier transform [2, 3, 4, 6, 10, 11, 12, 18, 22]. According to the non-commutative property of quaternion multiplication, there are three kinds of the two-dimensional quaternion Fourier transform. They are so-called a left-sided quaternion Fourier transform, a right-sided quaternion Fourier transform, and a two-sided quaternion Fourier transform, respectively.

The two-sided quaternion linear canonical transform is generalization of the two-sided the quaternion Fourier transform. It also can be regarded as generalized form of the the traditional linear canonical transform [5, 13, 23]. Some results in the linear canonical transform domain have been extended in the quaternion linear canonical transform domain. For instance, in [21, 24], the authors established component-wise uncertainty principle. More results can be found in [7, 8, 9, 20, 22, 25] and the references therein. In the present paper, we establish simplex complex forms of two-sided quaternion linear canonical transform based on simplex complex forms the two-sided quaternion Fourier transform. We also present a consequence of the proposed simplex complex forms.

2. Preliminaries
In the following we provide definitions and some basic properties of the quaternions which will be needed later (for more details, see [1]).

2.1. Quaternions
We will be working with real quaternions. Let \(\mathbb{H} \) denotes of the set of real quaternions. Its elements can be written in the following form

\[
\mathbb{H} = \{ q = q_0 + i q_1 + j q_2 + k q_3 ; q_0, q_1, q_2, q_3 \in \mathbb{R} \},
\]
which the imaginary units i, j and k fulfill the following rules:

\[\begin{align*}
 ij &= -ji = k, & jk &= -kj = i,
 ki &= -ik = j, & i^2 &= j^2 = k^2 = ijk = -1.
\end{align*} \]

(1)

For a quaternion $q = q_0 + iq_1 + jq_2 + kq_3 \in \mathbb{H}$, q_0 is simply called scalar part of q denoted by $\text{Sc}(q)$ and $q = iq_1 + jq_2 + kq_3$ is called vector part of q denoted $\text{Vec}(q)$.

Let $p, q \in \mathbb{H}$ and p, q be their vector parts, respectively. Based on equation (1) we obtain the multiplication of two quaternions qp as

\[qp = q_0p_0 - q \cdot p + q_0p + p_0q + q \times p, \]

(2)

where

\[q \cdot p = q_1p_1 + q_2p_2 + q_3p_3, \]

\[q \times p = i(q_2p_3 - q_3p_2) + j(q_3p_1 - q_1p_3) + k(q_1p_2 - q_2p_1). \]

Analogously to the complex case, a quaternionic conjugation \overline{q} is given by

\[\overline{q} = q_0 - iq_1 - jq_2 - kq_3, \]

(3)

which leads to the anti-involution, that is,

\[qp = \overline{p}\overline{q}. \]

With the help of (3) we get the norm or modulus of $q \in \mathbb{H}$ as

\[|q| = \sqrt{q\overline{q}} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}. \]

(4)

One can easily verify that

\[|qp| = |q||p| \quad \text{and} \quad |q + p| \leq |q| + |p|, \quad \forall p, q \in \mathbb{H}. \]

(5)

Like complex numbers, based on the conjugate (3) and the modulus of q, we get the inverse of $q \in \mathbb{H} \setminus \{0\}$ as

\[q^{-1} = \frac{\overline{q}}{|q|^2}. \]

In quaternionic notation, we may define an inner product for quaternion-valued functions $f, g : \mathbb{R}^2 \rightarrow \mathbb{H}$ as follows:

\[(f, g) = \int_{\mathbb{R}^2} f(x)\overline{g(x)} \, dx, \]

(6)

provided that the integral exists. Here $dx = dx_1dx_2$ and $x \in \mathbb{R}^2$. The symmetric real scalar part is defined by

\[(f, g) = \frac{1}{2}[(f, g) + (g, f)] = \int_{\mathbb{R}^2} \text{Sc}(f(x)\overline{g(x)}) \, dx. \]

(7)

In particular, for $f = g$, we obtain the $L^2(\mathbb{R}^2; \mathbb{H})$-norm

\[\|f\| = \sqrt{(f, f)} = \left(\int_{\mathbb{R}^2} |f(x)|^2 \, dx \right)^{1/2}. \]

(8)

A quaternion module $L^2(\mathbb{R}^2; \mathbb{H})$ is then defined as

\[L^2(\mathbb{R}^2; \mathbb{H}) = \{ f : \mathbb{R}^2 \rightarrow \mathbb{H}, \|f\| < \infty \}. \]

(9)
2.2. Split Quaternion and Properties
In this section we discuss the basic formulas of split quaternion (see [11]), which will be used to derive the useful results in the next section.

Definition 2.1. For two quaternion square roots \(\mu, \nu\) such that \(\mu^2 = \nu^2 = -1\), we may express a quaternion \(q\) as

\[
q = q_+ + q_- = \frac{1}{2}(q \pm \mu \nu).
\]

(10)

Especially, when \(\mu = \nu\), then any quaternion \(q\) may be split up into the commuting and anticommuting parts with respect with \(\mu\), i.e,

\[
\mu q_- = q_- \mu, \quad \mu q_+ = -q_+ \mu.
\]

(11)

It is easily proved the commuting and anticommuting parts satisfy the interesting properties:

\[
\mu^2 = \mu_+^2 + \mu_-^2 = -1, \quad \mu_+ \mu_- + \mu_- \mu_+ = 0.
\]

(12)

We derive from the above equation that

\[
q_\pm e^{i\mu \theta} = e^{\mp i\theta} q_\pm,
\]

(13)

where

\[
\cos \theta = \frac{q_0}{|q|}, \quad \sin \theta = \frac{\sqrt{q_1^2 + q_2^2 + q_3^2}}{|q|}.
\]

(14)

Especially, taking \(\mu = i\) and \(\nu = j\) equation (10) becomes

\[
q = q_+ + q_- = \frac{1}{2}(q \pm ij).
\]

(15)

Applying the above identity yields

\[
q_\pm = \{(q_0 \pm q_3) + i(q_1 \mp q_2)\} \frac{1 \pm k}{2} = \frac{1 \pm k}{2}\{(q_0 \pm q_3) + j(q_2 \mp q_1)\}.
\]

(16)

This leads to the following modulus identity

\[
|q|^2 = |q_-|^2 + |q_+|^2.
\]

(17)

Furthermore, one can obtain

\[
\text{Sc}(p_+ q_-) = 0.
\]

3. Simplex Complex Forms for Quaternion Linear Canonical Transform
In [14, 15, 16, 17, 19], Hitzer has been introduced the simplex complex forms for the two-sided quaternion Fourier transform (QFT). Following his idea, it is possible to extend the simplex complex forms in the two-sided quaternion linear canonical transform (QLCT) domains. For clarity we introduce the following QLCT definition.
Definition 3.1 (QLCT definition). Let be $A_1 = (a_1, b_1, c_1, d_1)$ and $A_2 = (a_2, b_2, c_2, d_2)$ be real matrix parameters satisfying $\det(A_1) = \det(A_2) = 1$. The two-sided QLCTs of a quaternion signal $f \in L^1(\mathbb{R}^2; \mathbb{H})$ is given by

$$L_{A_1, A_2}^\mathbb{H}\{f\}(\omega) = \int_{\mathbb{R}^2} K_{A_1}(x_1, \omega_1)f(x_1, x_2, \omega_2) \, dx,$$

where $\omega \in \mathbb{R}^2$ and the kernels $K_{A_1}(x_1, \omega_1)$ and $K_{A_2}(x_2, \omega_2)$ are defined by

$$K_{A_1}(x_1, \omega_1) = \begin{cases} \frac{1}{\sqrt{2\pi b_1}} e^{\frac{i}{2}x_1^2} e^{\frac{i}{2}x_1\omega_1 + \frac{i}{2}x_1\omega_1^3 - \frac{i}{2}} & \text{for } b_1 \neq 0 \\ \frac{1}{\sqrt{2\pi a_1}} e^{i(a_1\omega_1)} & \text{for } b_1 = 0, \end{cases}$$

and

$$K_{A_2}(x_2, \omega_2) = \begin{cases} \frac{1}{\sqrt{2\pi a_2}} e^{\frac{i}{2}x_2^2} e^{\frac{i}{2}x_2\omega_2 + \frac{i}{2}x_2\omega_2^3 - \frac{i}{2}} & \text{for } b_2 \neq 0 \\ \frac{1}{\sqrt{2\pi b_2}} e^{i(b_2\omega_2)} & \text{for } b_2 = 0. \end{cases}$$

From the definition mentioned above, it is easily seen that, when $b_1b_2 = 0$ and $b_1 = b_2 = 0$, the QLCT of a signal is essentially a quaternion chirp multiplication. Therefore, in this article we always suppose $b_1b_2 \neq 0$. More specifically, with $A_1 = A_2 = (a_i, b_i, c_i, d_i) = (0, 1, -1, 0)$ for $i = 1, 2$, we get the following relation

$$L_{A_1, A_2}^\mathbb{H}\{f\}(\omega) = \int_{\mathbb{R}^2} e^{-i\omega_1 x_1} f(x_1, x_2, \omega_2) e^{-i\omega_2 x_2} \frac{e^{-i\omega_1^{\frac{1}{2}}}}{\sqrt{2\pi}} \frac{e^{-i\omega_2^{\frac{1}{2}}}}{\sqrt{2\pi}} \, dx = \frac{e^{-i\omega_1^{\frac{1}{2}}}}{\sqrt{2\pi}} F_q\{f\}(\omega) e^{-i\omega_2^{\frac{1}{2}}},$$

where in this case $F_q\{f\}$ is the two-sided quaternion Fourier transform defined by (see, for example, [3, 6, 15])

$$F_q\{f\}(\omega) = \int_{\mathbb{R}^2} e^{-i\omega_1 x_1} f(x_1, x_2) e^{-i\omega_2 x_2} \, dx.$$

As a consequence of above definition, we now obtain the following important theorem, which is the main result of the present section.

Theorem 3.1. If the quaternion function $f \in L^2(\mathbb{R}^2; \mathbb{H})$, then the QLCT of f_\pm has the simplex complex forms

$$L_{A_1, A_2}^\mathbb{H}\{f_\pm\} = \frac{1}{\sqrt{2\pi b_2}} \int_{\mathbb{R}^2} f_\pm e^{\frac{1}{2}x_1^2} e^{\frac{1}{2}x_1\omega_1 + \frac{1}{2}x_1\omega_1^3 - \frac{i}{2}} \, dx,$$

and

$$L_{A_1, A_2}^\mathbb{H}\{f_\pm\} = \frac{1}{\sqrt{2\pi b_2}} \int_{\mathbb{R}^2} f_\pm e^{\frac{1}{2}x_1^2} e^{\frac{1}{2}x_1\omega_1 + \frac{1}{2}x_1\omega_1^3 - \frac{i}{2}} \, dx,$$
Proof. An easy computation gives

\[
L_{A_1,A_2}^B\{f_\pm\} = \int_{\mathbb{R}^2} \frac{1}{\sqrt{2\pi b_1}} e^{i\frac{1}{2}\left(\frac{a_1}{b_1} x_1^2 - \frac{b_1}{a_1} x_1 \omega_1 + \frac{a_1}{b_1} \omega_1^2 - \frac{\pi}{2}\right)} f_\pm(x) \frac{1}{\sqrt{2\pi b_2}} e^{i\frac{1}{2}\left(\frac{a_2}{b_2} x_2^2 + \frac{a_2}{b_2} x_2 \omega_2 + \frac{a_2}{b_2} \omega_2^2 - \frac{\pi}{2}\right)} dx
\]

With the help of (16) we immediately obtain

\[
L_{A_1,A_2}^H\{f_\pm\} = \int_{\mathbb{R}^2} \frac{1}{\sqrt{2\pi b_1}} e^{i\frac{1}{2}\left(\frac{a_1}{b_1} x_1^2 - \frac{b_1}{a_1} x_1 \omega_1 + \frac{a_1}{b_1} \omega_1^2 - \frac{\pi}{2}\right)} f_\pm(x) \frac{1}{\sqrt{2\pi b_2}} e^{i\frac{1}{2}\left(\frac{a_2}{b_2} x_2^2 - \frac{b_2}{a_2} x_2 \omega_2 + \frac{a_2}{b_2} \omega_2^2 - \frac{\pi}{2}\right)} dx
\]

On the other hand,

\[
L_{A_1,A_2}^H\{f_\pm\}(\omega) = \int_{\mathbb{R}^2} \frac{1}{\sqrt{2\pi b_1}} \frac{1}{\sqrt{2\pi b_1}} \{(f_0 \pm f_3) + i(f_1 \mp f_2)\} \frac{1}{\sqrt{2\pi b_2}} e^{i\frac{1}{2}\left(\frac{a_1}{b_1} x_1^2 - \frac{b_1}{a_1} x_1 \omega_1 + \frac{a_1}{b_1} \omega_1^2 - \frac{\pi}{2}\right)} dx
\]

This gives the desired result. □

It is obvious that equation (23) can be rewritten in the form

\[
L_{A_1,A_2}^H\{f_-\}
\]
\[
= \frac{1}{2\pi b_0} \int_{\mathbb{R}^2} \frac{1}{\sqrt{2\pi b_1}} f(x) e^{i \frac{1}{2} \left(\left(\frac{d_1}{b_2} x_1^2 - \frac{d_2}{a_2} x_2 x_0 + \frac{d_3}{a_3} x_3^2 - \frac{d_4}{a_4} \right) x_1 \omega_1 + \left(\frac{d_5}{b_8} x_1^2 - \frac{d_6}{a_6} x_2 x_0 + \frac{d_7}{a_7} x_3^2 - \frac{d_8}{a_8} \right) x_2 \omega_2 \right)} \, dx,
\]

and
\[
L_{A_1,A_2}^H \{ f_+ \} = \frac{1}{2\pi} \int_{\mathbb{R}^2} f_+ e^{i x_0 \omega_1} \, dx, \quad L_{A_1,A_2}^H \{ f_- \} = \frac{1}{2\pi} \int_{\mathbb{R}^2} f_- e^{i x_0 \omega_2} \, dx.
\]

In particular, when \(A_1 = A_2 = (a_i, b_i, c_i, d_i) = (0, 1, -1, 0) \) for \(i = 1, 2 \), equations (25) and (26) above will reduce to
\[
L_{A_1,A_2}^H \{ f_- \} = \frac{e^{-i \pi}}{2\pi} \int_{\mathbb{R}^2} f_- e^{i x_0 \omega} \, dx, \quad L_{A_1,A_2}^H \{ f_+ \} = \frac{1}{2\pi} \int_{\mathbb{R}^2} f_+ e^{i x_0 \omega} \, dx.
\]

An application of (17) to split \(f = f_- + f_+ \) we easily obtain the modulus identities for the QLCT, that is,
\[
|L_{A_1,A_2}^H \{ f \}(\omega)|^2 = |L_{A_1,A_2}^H \{ f_- \}(\omega)|^2 + |L_{A_1,A_2}^H \{ f_+ \}(\omega)|^2.
\]

References

[1] Bülow T 1999, Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images (Ph.D. thesis, University of Kiel, Germany)

[2] Bahri M, Ashino R and Vaillancourt R 2014 Continuous quaternion Fourier and Wavelet transforms, Int. J. Wavelets Multiresolut Inf. Process. 12 (4) 21 pages

[3] Bahri M, Lawi A, Aris N, Saleh A F and Nur M 2013 Relationships between convolution and correlation for Fourier transform and quaternion Fourier transform, Int. Journal of Math. Analysis 7 (43) 2101–09

[4] Bahri M 2011 Quaternion algebra-valued wavelet transform Applied Mathematical Sciences 5 (71) 3531–40

[5] Bahri M, Zulfajar and Ashino R 2014 Convolution and correlation theorem for linear canonical transform and properties, Information 17 (0B) 2509–21

[6] Bahri M 2016 A modified uncertainty principle for two-sided quaternion Fourier transform, Advances in Applied Clifford Algebras 26 (2) 513–527

[7] Bahri M and Ashino R 2016 A simplified proof of uncertainty principle for quaternion linear canonical transform, Abstract and Applied Analysis Article ID 5874930 11 pages

[8] Bahri M, Rezawati and Musdalifah S 2018 A version of uncertainty principle for quaternion linear canonical transform, Abstract and Applied Analysis Article ID 8732457 7 pages

[9] Bahri M and Ashino R 2016 Logarithmic uncertainty principle for quaternion linear canonical transform, Proceedings of the 2016 International Conference on Wavelet Analysis and Pattern Recognition Jeju, South Korea, p 140–5

[10] Bahri M 2014 On two-dimensional quaternion Wigner-Ville distribution, Journal of Applied Mathematics Article ID 139471 13 pages

[11] De Bie D, De Schepper N, Ell T A, Rubrecht K and Sangwine S J 2015 Connecting spatial and frequency domains for the quaternion Fourier transform Appl. Math. Comput. 271 581-593

[12] Ell T A 1993 Quaternion-Fourier Transforms for Analysis of Two-Dimensional Linear Time-Invariant Partial Differential Systems, In Proceeding of the 32nd Conference on Decision and Control IEEE Control Systems Society p 1830–1841.

[13] Wei D, Ren Q and Li Y 2012 A convolution and correlation theorem for the linear canonical transform and its application Circuits Syst. Signal Process. 31 (1) 301-312

[14] Hitzer E 2010, Directional uncertainty principle for quaternion Fourier transform Advances in Applied Clifford Algebras 20 (2) 271-284

[15] Hitzer E 2007 Quaternion Fourier transform on quaternion fields and generalizations Advances in Applied Clifford Algebras 20 (3) 497-517

[16] Hitzer E 2017 General two-sided quaternion Fourier transform, convolution and Mustard convolution Advances in Applied Clifford Algebras 27 (1) 381-395

[17] Hitzer E and Sangwine S J 2013 The orthogonal 2D planes split of quaternions and steerable quaternion Fourier transformations, In: E. Hitzer, S.J. Sangwine (eds.) Quaternion and Clifford Fourier transforms and wavelets, Trends in Mathematics Birkhäuser, p 15-40

6
[18] Grigoryan A M and Agaian S 2015 Tensor transform-based quaternion fourier transform algorithm. *Information Sciences* **320** 62-74

[19] Hitzer E 2017 Quaternionic Wiener-Khinchine theorems and spectral representation of convolution with steerable two-sided quaternion Fourier transform *Advances in Applied Clifford Algebras* **27** (2) 1313-28.

[20] Kou K I, Ou J Y and Morais J 2016 Uncertainty principles associated with quaternionic linear canonical transform, *Mathematical Methods in the Applied Sciences* **39** (10) 2722-36.

[21] Kou K I, Ou J Y and Morais J 2013 On uncertainty principle for quaternionic linear canonical transform, *Abstract and Applied Analysis* Article ID 725952 14 pages

[22] Hu X X and Kou K I 2017 Quaternion Fourier and linear canonical inversion theorems, *Mathematical Methods in the Applied Sciences* **40** (7) 2421-2440

[23] Xu S, Feng L, Chai Y, Hu Y and Huang L 2016 The properties of generalized offset linear canonical Hilbert transform and its applications, *Int. J. Wavelets Multiresolut Inf. Process.* **14** 21 pages

[24] Zhang Y N and Li B Z 2018 Generalized Uncertainty Principles for the Two-Sided Quaternion Linear Canonical Transform *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* Calgary, AB, Canada

[25] Zhang Y N and Li B Z 2018 Novel uncertainty principles for two-sided quaternion linear canonical transform *Advances in Applied Clifford Algebras* **28** (15)