Induction of Beige-Like Adipocytes in 3T3-L1 Cells

Hiroki ASANO1), Yohei KANAMORI1), Satoshi HIGURASHI2), Takayuki NARA2), Ken KATO2), Tohru MATSUI1) and Masayuki FUNABA1)*

1)Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
2)Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Kawagoe 350–1165, Japan

(Received 21 July 2013/Accepted 5 September 2013/Published online in J-STAGE 20 September 2013)

ABSTRACT. There are two types of brown adipocytes: classical brown adipocytes that form the brown fat depots and beige adipocytes that emerge in the white fat depots. Beige adipocytes have a low level of uncoupling protein 1 (Ucp1) expression in the basal state, but Ucp1 expression is increased in response to β adrenergic receptor activation. The present study explored the factors responsible for the differentiation of 3T3-L1 white preadipocytes to beige adipocytes. Significant expression of Ucp1 was not detected under any tested conditions in the absence of isoproterenol (Iso), an agonist of β adrenergic receptor. Iso-induced Ucp1 expression was significantly higher in the cells treated with a mixture of triiodothyronine (T3) and 3-isobutyl-1-methylxanthine (IBMX) for days 0–8 than in the control cells. Chronic IBMX treatment was indispensable for the enhanced Iso-induced Ucp1 expression, and treatment with additional rosiglitazone (Rosi) for days 0–8 further increased the Ucp1 expression. Recently, genes were identified that are predominantly expressed in beige adipocytes, which were induced from stromal vascular cells in white fat depots. However, the expression levels of the beige adipocyte-selective genes in the adipocytes induced by the mixture of T3, IBMX and Rosi did not differ from those in the control adipocytes. The present study indicates that 3T3-L1 cells can differentiate to beige-like adipocytes by prolonged treatment with the mixture of T3, IBMX and Rosi and that the gene expression profile of the adipocytes is distinct from those previously induced from white fat depots.

KEY WORDS: adipocyte, beige adipocyte, cell culture, cellular differentiation, Ucp1.

doi: 10.1292/jvms.13-0359; J. Vet. Med. Sci. 76(1): 57–64, 2014

There are two major types of adipocytes in mammals: white and brown. White adipocytes are specialized for the storage of excess energy [31]. In contrast, brown adipocytes dissipate chemical energy in the form of heat as a reaction against cold exposure or excess feeding [1, 4, 14, 20, 21, 38]. This thermogenic function of brown adipocytes results from the expression of a series of genes related to a high mitochondrial content and elevated cellular respiration that is largely uncoupled from ATP synthesis [35]. This uncoupling occurs through mitochondrial uncoupling protein 1 (Ucp1), a mammalian brown adipocyte-specific protein that promotes proton leak across the inner mitochondrial membrane [4, 13].

There are at least 2 origins of Ucp1-positive adipocytes in mice: brown adipocytes consisting of the classical brown fat depots, which are located in the interscapular region, and beige adipocytes residing in white fat depots. Both cell types up-regulate Ucp1 expression in response to β adrenergic receptor activation [3, 28, 37, 46]. However, beige adipocytes resemble white adipocytes in having extremely low basal expression of Ucp1, whereas classical brown adipocytes constitutively express Ucp1 [46]. In accordance with the differential regulation of Ucp1 expression, a distinct commitment/differentiation process is suggested between classical brown adipocytes and beige adipocytes in mice; classical brown adipocytes are derived from Myf-5-positive myoblast precursors, whereas beige adipocytes arise from non-Myf-5 lineage cells [36]. Certain studies have explored the cell origin of beige adipocytes and showed a direct conversion from white adipocytes [16], differentiation from beige pre-adipocytes located in white fat depots [46], commitment/differentiation from Sca1+/CD45−/Mac1− stem cells [33] and commitment/differentiation from Pdgfrα+/CD34−/Sca1+ stellate-like cells, which can be bipotentially differentiated into white adipocytes and beige adipocytes [18]. Thus, beige adipocytes may be induced from multiple types of cells.

Recent findings that adult humans have functional brown adipocytes [6, 26, 32, 43, 45] have triggered a focus on brown adipocyte activation as a novel therapeutic treatment for obesity [5]. In fact, the activation of human brown adipocytes is responsible for energy expenditure during acute cold exposure [29]. Comprehensive profiles of gene expression indicate a similar pattern between human brown adipocytes and mouse beige adipocytes but not mouse classical brown adipocytes, suggesting that human brown adipocytes have compatible characteristics to mouse beige adipocytes [37, 46]. In mice, increases in the number of beige adipocytes in the white fat depots are associated with protection against diet-induced obesity and metabolic dysfunction, including insulin resistance in mice [34, 44]. Therefore, clarification of the factors affecting the development of beige adipocytes is a prerequisite to basic information on beige adipocyte-me-
MATERIALS AND METHODS

exogenous gene transfer in 3T3-L1 white preadipocytes. The present study investigated the conditions to induce beige adipocytes without exogenous gene transfer in 3T3-L1 white preadipocytes.

MATERIALS AND METHODS

Materials: The following reagents were purchased from Sigma (St. Louis, MO, U.S.A.): dexamethasone (Dex), 3-isobutyl-1-methylxanthine (IBMX), insulin (Ins), triiodothyronine (T3), rosiglitazone (Rosi) and isoproterenol (Iso).

Cell culture: The 3T3-L1 preadipocytes were cultured as described previously [40]. The standard protocol of differentiation in 3T3-L1 cells [39] was treated as the control: two days after reaching confluence (day 0), the cells were cultured in DMEM with 10% FBS and antibiotics (growth medium) in the presence of differentiation inducers (Dex (0.25 µM), IBMX (0.5 mM) and Ins (10 µg/ml)) for 2 days, followed by culture in growth medium supplemented with Ins (5 µg/ml). According to the protocol, 3T3-L1 cells are differentiated to white adipocytes on day 8 [41]. In addition to the control protocol, Rosi (1 µM) for 5 to 7 days induced Ucp1 expression in stromal vascular cells isolated from white fat depots [28, 30]. Treatment with T3 (50 nM) enhanced norepinephrine-induced Ucp1 expression in primary brown adipocytes [22]. In addition, T3 is frequently used during brown adipocyte differentiation at concentrations of 1–250 nM [12, 15, 19, 28, 42].

Real-time RT-quantitative PCR: RNA isolation and real-time RT-quantitative PCR (qPCR) were performed as described previously [2, 11, 25]. The oligonucleotide primers for RT-qPCR are presented in Table 1. The Ct value was determined, and the abundance of gene transcripts was analyzed using the ∆∆Ct method, using TATA-binding protein (Tbp) as the normalization gene [8].

Statistical analyses: The data are expressed as the mean ± SEM. The data on gene expression were log-transformed to provide an approximation of a normal distribution before analysis. The differences between the groups were examined by ANOVA. *P* < 0.05 was considered to be significant.

RESULTS

The 3T3-L1 preadipocytes were differentiated by treatments with Rosi and T3 in addition to the reagents used in the control protocol for differentiation to white adipocytes [39]. Oil red O staining on day 8 showed that the 3T3-L1 cells were efficiently differentiated to adipocytes, irrespective of the treatment (Fig. 1A). Expression of aP2, a fatty-acid binding protein expressed in adipocytes, was comparable among groups, which was verified by RT-qPCR analyses (Fig. 1B) [47].

We also examined expression level of transcription factors related to adipogenesis [41]. The expression level of Ppary2 in treatments D and E was significantly lower than that in treatment B (Fig. 2A). Compared to the control treatment A, the gene transcript levels of Cebpa were lower in treatments C, B and E (Fig. 2B). The expression level of Cebpf was comparable among treatments (Fig. 2C).

Ucp1 expression is restricted in brown/beige adipocytes in mammals [4, 13]. The expression of Ucp1 was not reproducibly detected in any cells without β adrenergic activation (data not shown). In contrast, significant Ucp1 expression was detected in all the cells treated with Iso (Fig. 3). Treatment with the mixture of T3, IBMX and Rosi (treatment E) enhanced Iso-induced Ucp1 expression; the expression in treatment D, which was not reproducibly detected in any cells without β adrenergic activation (data not shown), was ~8-fold higher than that in the control treatment A (*P* = 0.003). The prolonged IBMX treatment was essential for the increased expression of Ucp1 in response to Iso treatment; the expression in treatment D,

Oligonucleotide	5′-primer	3′-primer	GenBank accession number
Ucp1	5′-ACTGCCACACCTCCAGTCATT-3′	3′-CTTTGCCTCACTCAGGATTGG-3′	NM_024406
Pparγ2	5′-CTGACTGCTACCTCGAATGTCG-3′	3′-AGGCTGAGCTTCAGCTCCCG-3′	NM_011977
Ear2	5′-GCTGGGAATCTCTGGAACCTG-3′	3′-GCTCTGGAACCTGTAATTTCT-3′	NM_008904
Slc27a1	5′-TGGTTATGGTGAAACTCTG-3′	3′-CTGTGTCAACCATGGTAATTCTT-3′	NM_133249
Cidea	5′-TTCTTGACACAGGCTGTTTCC-3′	3′-TGTGGAACTCTCTGGAACTGC-3′	NM_024406
C/ebpα	5′-CAAAGGATGATTCGGCTCAG-3′	3′-AAGCTGAATATATGCCTGCTTTC-3′	NM_011146
Pgc1f	5′-GGGCTGCAAGACCTCAGCTCAG-3′	3′-AAGCTGAATATATGCCTGCTTTC-3′	NM_009360
C/ebpβ	5′-CCAATGACTTCTATGACCTCCTTA-3′	3′-GCCTTGAAAGGTTATCTTG-3′	NM_011977
aP2	5′-AACGTTGAGGAGACCTCACAAC-3′	3′-GAGGCCAGTTGTGATGACTAAGAC-3′	NM_024406
Tee1	5′-CAACCAGCCCTAAGTTCACGTA-3′	3′-TGAGGCAAGGCTTAGAGGACAA-3′	NM_007895
Ear2	5′-CGCTGGGAATCTCTGGAACCTG-3′	3′-GCTCTGGAACCTGTAATTTCT-3′	NM_008904
Pgc1f	5′-CTGACTGCTACCTCGAATGTCG-3′	3′-AGGCTGAGCTTCAGCTCCCG-3′	NM_011977
Ucp1	5′-ACTGCCACACCTCCAGTCATT-3′	3′-CTTTGCCTCACTCAGGATTGG-3′	NM_009360
which lacked the IBMX used in treatment E, was not different from that in the control treatment A. Ucp1 expression in treatment C, which is devoid of Rosi unlike treatment E, was still higher than that in the control treatment A \((P=0.04) \), although the extent of the induction in treatment C was smaller than that in treatment E \((P=0.03) \).

The expression of genes that are predominantly expressed in brown fat depots compared with white fat depots [35]...
was next examined (Fig. 4). The expression levels of
Pgc1α,
Pgc1β,
Cited1
and
Ear2
were comparable among treatments, whereas the expression of
Cidea
was higher in the cells of treatments C (P=0.02) and E (P=0.04) than in treatment A.

Wu et al. [46] identified genes expressed selectively in beige adipocytes, but not brown adipocytes and white adipocytes, including
CD137,
Slc27a1,
Ear2,
Tbx1 and
Tmem26.
Among these genes, significant expression of
CD137,
Tbx1 and
Tmem26 was not detected in the 3T3-L1 cells, irrespective of the treatment (data not shown). The expression level of
Slc27a1
was not higher in treatments B-E than in treatment A (Fig. 5A); rather, it was significantly lower in treatments C (P=0.004), D (P=0.005) and E (P=0.001) than in the control treatment A. The expression level of
Ear2
was higher in treatment B (P=0.04) than in the control treatment A (Fig. 5B). However, the expression was lower in treatments C (P=0.001) and D (P=0.03). Sharp et al. [37] independently identified the beige adipocyte-selective gene in cells following prolonged treatment with
T3 and
Rosi; they revealed
Cited1
as a novel beige adipocyte marker. The gene transcript level of
Cited1
in treatment D was significantly higher than that in the other treatments (Fig. 5C).

DISCUSSION

The present results indicate that 3T3-L1 adipocytes treated with
T3,
Rosi and
IBMX
express higher
Ucp1 in response to β adrenergic activation. Basal expression of
Ucp1
in beige adipocytes is as low as that in white adipocytes, whereas
Ucp1 expression is enhanced in response to β adrenergic activation [46]. Significant expression of
Ucp1 was also detected in the control 3T3-L1 adipocytes (treatment A) when the cells were treated with
Iso; the result is consistent with that by Mottillo and Granneman [24]. Thus, the control 3T3-L1 adipocytes meet the definition of beige adipocytes by Wu et al. [46]. It is possible that the differences between white adipocytes and beige adipocytes are not discrete, but continuous. Our results suggest that 3T3-L1 cells chronically treated with the mixture of
T3,
Rosi and
IBMX
are closer to mature beige adipocytes.

T3,
IBMX
and
Rosi
are all needed for the efficient induction of
Ucp1
in response to β adrenergic receptor activation. However, whether
T3 is essential is not known, because the observed
Iso-induced
Ucp1 expression was not examined in cells treated with
IBMX
and
Rosi, but without
T3. In addition, the present results suggest that
Rosi augments the effects of
T3 and
IBMX on the
Ucp1 induction in response to
Iso treatment. The increase in
Ucp1 expression in white fat depots has been shown in mice chronically treated with
Rosi [7, 28], implying a role of
Rosi
as an enhancer of beige adipocyte induction.

We focused on
T3,
Rosi
and
IBMX in view of the following evidence: prolonged treatment with
Rosi with or without
T3 in stromal vascular cells from white fat depots resulted in
Iso-induced
Ucp1 induction [28, 30]. The overexpression of
Cebpβ enhanced cAMP-mediated
Ucp1 induction in 3T3-L1 cells [17]. Furthermore, IBMX is responsible for
Cebpβ induction during mitotic clonal expansion, i.e., days 0–2, in 3T3-L1 cells, which allows for the cells to differentiate to white adipocytes [47]; therefore, we expected up-regulation of the
Cebpβ expression in treatments C and E that were treated with the prolonged IBMX. However, the expression level of
Cebpβ was comparable among treatments A, C and E (Fig. 2C), suggesting an activity of IBMX other than the regulation of
Cebpβ expression. There are nearly 100 cyclic nucleotide phosphodiesterases that catalyze cAMP or cGMP or both [10]. The non-selective phosphodiesterase inhibitor IBMX actually increased cytosolic concentration of cAMP in 3T3-L1 cells [9] and possibly increases cGMP concentration. It was recently revealed that cGMP-dependent protein kinase I in white adipocytes acts induces beige adipocytes [23] and may be involved in the IBMX-induced development of beige adipocytes.

Expression level of
Cebpα
was lower in treatments B, C and E than in the control treatment A (Fig. 2B); the transcript level of
Cebpα reflects adipocyte differentiation [41]. The precise reason for the decreased expression is unknown, although there are at least 2 possibilities: 1) the adipocyte differentiation was partially inhibited by treatments B, C and E, although lipid accumulation was unaffected; or 2) the decreased expression is partially related to the induction of
beige (brown) adipocytes. The expression level of *C/ebpa* in beige (brown) adipocytes may be lower than that in white adipocytes. The results of the transcriptomic analyses (NCBI gene expression omnibus accession number: GSE8044), which were performed in the study by Seale et al. [35], indicated that the expression level of *C/ebpα* was lower in brown fat depots than in white fat depots.

Wu et al. [46] showed that the expression level of genes highly expressing in brown fat depots [35] was comparable between beige adipocytes and white adipocytes, although others observed higher expression of these genes in beige adipocytes [28, 30, 33]. Thus, the expression pattern of the brown fat-selective genes in 3T3-L1 cells treated with the mixture of T3, IBMX and Rosi essentially resembles that of the beige adipocytes identified by Wu et al. [46]. However, the expression pattern of beige adipocyte-selective genes was different from the results by Wu et al. [46], suggesting that the characteristics of the beige-like adipocytes induced in this study are distinct from those developed by Wu et al. [46].

Our results also suggest the distinct cell context of the T3- and Rosi-induced beige-like adipocytes from those developed by Sharp et al. [37]. *Cited1* expression was increased by prolonged treatment with T3 and Rosi (treatment D: \(P < 0.001 \)) in the 3T3-L1 cells, which was similar to the results by Sharp et al. [37]. Thus, *Cited1* is likely to be induced by the activation of Pparγ, and the expression level of *Cited1* does not reflect the development of beige-like adipocytes, at least in the 3T3-L1 cell model. In addition, the T3- and Rosi-induced *Cited* expression is blocked by co-treatment with IBMX.

The present study clarifies the differentiation of 3T3-L1 white preadipocytes into beige-like adipocytes. As described above, beige adipocytes could be differentiated from white
adipocytes [16], beige preadipocytes [46], Sca1+/CD45−/Mac1− stem cells [33], pluripotent stem cells [27] and Pdgfrα+/Sca1+ stellate-like cells [18]. Considering all the previous results with the present results, beige adipocytes could be developed from a variety of cells through their specific regulation. It was recently reported that a hematopoietin cocktail composed of stem cell factor, interleukin-6, fms-related tyrosine kinase 3 ligand and vascular endothelial growth factor efficiently differentiates human pluripotent stem cells to brown adipocytes [27]. Further studies are needed to pursue efficient beige adipocyte development, which would provide basic information on the differentiation of white preadipocytes to beige adipocytes.

ACKNOWLEDGMENT. This work was supported by a Grant-in-Aid for Scientific Research (23580368) from The Japan Society for the Promotion of Science.

REFERENCES

1. Almind, K., Manieri, M., Sivitz, W. I., Cinti, S. and Kahn, C. R. 2007. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc. Natl. Acad. Sci. U.S.A. 104: 2366–2371. [Medline] [CrossRef]
2. Asano, H., Yamada, T., Hashimoto, O., Umemoto, T., Sato, R., Ohwatari, S., Kanamori, Y., Terachi, T., Funaba, M. and Matsui, T. 2013. Diet-induced changes in Ucp1 expression in bovine adipose tissues. Gen. Comp. Endocrinol. 184: 87–92. [Medline] [CrossRef]
3. Barbatelli, G., Murano, I., Madsen, L., Hao, Q., Jimenez, M., Kristiansen, K., Giacobino, J. P., De Matteis, R. and Cinti, S. 2010. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298: E1244–E1253. [Medline] [CrossRef]
4. Cannon, B. and Nedergaard, J. 2004. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84: 277–359. [Medline] [CrossRef]
5. Cannon, B. and Nedergaard, J. 2012. Cell biology: Neither brown nor white. Nature 488: 286–287. [Medline] [CrossRef]
6. Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Kuo, F. C., Palmer, E. L., Tseng, Y. H., Doria, A., Kolody, G. M. and Kahn, C. R. 2009. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360: 1509–1517. [Medline] [CrossRef]
7. Distel, E., Penot, G., Cadoudal, T., Balguy, I., Durant, S. and Benelli, C. 2012. Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie 94: 1660–1667. [Medline] [CrossRef]
8. Duran, E. M., Shapshak, P., Worley, J., Minagar, A., Ziegler, F., Haliko, S., Moleon-Borodowski, I. and Haslett, P. A. 2005. Presenilin-1 detection in brain neurons and FOXP3 in peripheral blood mononuclear cells: normalizer gene selection for real time reverse transcriptase PCR using the deltadeltaCt method. Front. Biosci. 10: 2955–2965. [Medline] [CrossRef]
9. Elks, M. L. and Manganelli, V. C. 1984. Selective effects of phosphodiesterase inhibitors on different phosphodiesterases, adenosine 3′,5′-monophosphate metabolism, and lipolysis in 3T3-L1 adipocytes. Endocrinology 115: 1262–1268. [Medline] [CrossRef]
10. Francis, S. H., Houslay, M. D. and Conti, M. 2011. Phosphodiesterase inhibitors: factors that influence potency, selectivity, and action. Handb. Exp. Pharmacol. 204: 47–84. [Medline] [CrossRef]
11. Furutani, Y., Murakami, M. and Funaba, M. 2009. Differential responses to oxidative stress and calcium influx on expression of the transforming growth factor-β family in myoblasts and myotubes. Cell Biochem. Funct. 27: 578–582. [Medline] [CrossRef]
12. Garcia, B. and Obregón, M. J. 2002. Growth factor regulation of uncoupling protein-1 mRNA expression in brown adipocytes. Am. J. Physiol. Cell Physiol. 282: C105–C112. [Medline]
13. Gesta, S., Tseng, Y. H. and Kahn, C. R. 2007. Developmental origin of fat: tracking obesity to its source. Cell 131: 242–256. [Medline] [CrossRef]

14. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. and Kozak, L. P. 1998. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102: 412–420. [Medline] [CrossRef]

15. Guerra, C., Roncero, C., Porras, A., Fernández, M. and Benito, M. 1996. Triiodothyronine induces the transcription of the uncoupling protein gene and stabilizes its mRNA in fetal rat brown adipocyte primary cultures. J. Biol. Chem. 271: 2076–2081. [Medline] [CrossRef]

16. Himms-Hagen, J., Melnyk, A., Zingaretti, M. C., Ceresi, E., Barbatelli, G. and Cinti, S. 2000. Multilocular fat cells in WAT of C57BL/6J-mice derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279: C670–C681. [Medline] [CrossRef]

17. Karamanlidis, G., Karamitri, A., Docherty, K., Hazlerigg, D. G. and Lomax, M. A. 2007. CEBPβ programs white 3T3-L1 preadipocytes to a brown adipocyte pattern of gene expression. J. Biol. Chem. 282: 24660–24669. [Medline] [CrossRef]

18. Lee, Y. H., Petkova, A. P., Mottillo, E. P. and Granneman, J. G. 2012. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenergic receptor activation and high-fat feeding. Cell Metab. 15: 480–491. [Medline] [CrossRef]

19. Lee, J. Y., Takahashi, N., Yasubuchi, M., Kim, Y. I., Hashizaki, H., Kim, M. J., Sakamoto, T., Goto, T. and Kawada, T. 2012. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am. J. Physiol. Cell Physiol. 302: C463–C472. [Medline] [CrossRef]

20. Lowell, B. B., S-Susulic, V., Hamann, A., Lawitts, J. A., Himms-Hagen, J., Boyer, B. B., Koza, K. P. and Flier, J. S. 1993. Development of obesity in transgenic mice after genetic ablation of the T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. J. Biol. Chem. 268: 7153–7164. [Medline] [CrossRef]

21. Lowell, B. B. and Spiegelman, B. M. 2000. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444: 847–853. [Medline] [CrossRef]

22. Martinez de Mena, R., Scanlan, T. S. and Obregon, M. J. 2010. PRDM16 controls a brown fat/skeletal muscle switch. Nature 466: 740–742. [Medline] [CrossRef]

23. Mitsuhashi, M. M., Hoffmann, L. S., Nio-Kobayashi, J., Miyagawa, M., Tomoda, T., Yoshinuma, T., Akutsu, H., Umezawa, A., Yasuda, K., Tobe, K., You, A., Kubota, K., Saito, M. and Saeki, K. 2012. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 16: 394–406. [Medline] [CrossRef]

24. Mottillo, E. P. and Granneman, J. G. 2011. Intracellular fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J. Biol. Chem. 286: E444–E452. [Medline] [CrossRef]

25. Murakami, M., Kawachi, H., Ogawa, K., Nishino, Y. and Funahashi, K. 2009. Receptor expression modulates the specificity of transforming growth factor-β signaling pathways. Genes Cells 14: 469–482. [Medline] [CrossRef]

26. Nedergaard, J., Bengtsson, T. and Cannon, B. 2007. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293: E444–E452. [Medline] [CrossRef]

27. Nishio, M., Yoneshio, T., Nakahara, M., Suzuki, S., Saeki, K., Hasegawa, M., Kawai, Y., Akutsu, H., Umezawa, A., Yasuda, K., Tobe, K., You, A., Kubota, K., Saito, M. and Saeki, K. 2012. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 16: 394–406. [Medline] [CrossRef]

28. Ohno, H., Shinoda, K., Spiegelman, B. M. and Kajimura, S. 2012. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15: 395–404. [Medline] [CrossRef]

29. Ouellet, V., Labbé, S. M., Blondin, D. P., Phoenix, S., Guérin, B., Hama, F., Tardif, E. E., Richard, D. and Carpentier, A. C. 2012. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122: 545–552. [Medline] [CrossRef]

30. Petrovic, N., Walden, T. B., Shabalina, I. G., Timmons, J. A., Cannon, B. and Nedergaard, J. 2010. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285: 7153–7164. [Medline] [CrossRef]

31. Rosen, E. D. and Spiegelman, B. M. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444: 847–853. [Medline] [CrossRef]

32. Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K., Yoneshio, T., Nio-Kobayashi, J., Iwanaga, T., Miyagawa, M., Kameya, T., Nakada, K., Kawai, Y. and Tsujiaki, M. 2009. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58: 1526–1531. [Medline] [CrossRef]

33. Schulz, T. J., Huang, T. L., Tran, T. T., Zhang, H., Townsend, K. L., Schadrach, J. L., Cerletti, M., McDougall, L. E., Giorgadze, N., Tchkonia, T., Schrier, D., Fainb, D., Kirkland, J. L., Wagers, A. J. and Tseng, Y. H. 2011. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl. Acad. Sci. U.S.A. 108: 143–148. [Medline] [CrossRef]

34. Seale, P., Conroe, H. M., Estall, J., Kajimura, S., Frontini, A., Ishibashi, J., Cohen, P., Cinti, S. and Spiegelman, B. M. 2011. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121: 96–105. [Medline] [CrossRef]

35. Seale, P., Kajimura, S., Yang, W., Chin, S., Rohas, L. M., Uldry, M., Tavernier, G., Langin, D. and Spiegelman, B. M. 2007. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6: 38–54. [Medline] [CrossRef]

36. Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Seimè, A., Devarakonda, S., Conroe, H. M., Erdjument-Bromage, H., Tempst, P., Rudnicki, M. A., Beier, D. R. and Spiegelman, B. M. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961–967. [Medline] [CrossRef]

37. Sharp, L. Z., Shinoda, K., Ohno, H., Scheel, D. W., Tomoda, E., Ruiz, L., Hu, H., Wang, L., Pavlova, Z., Gilsanz, V. and Kajimura, S. 2012. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7: e49452. [Medline] [CrossRef]

38. Spiegelman, B. M. and Flier, J. S. 2001. Obesity and the regulation of energy balance. Cell 104: 531–543. [Medline] [CrossRef]

39. Student, A. K., Hsu, R. Y. and Lane, M. D. 1980. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J. Biol. Chem. 255: 4745–4750. [Medline] [CrossRef]

40. Suenaga, M., Matsui, T. and Funahama, M. 2010. BMP inhibition with dorsomorphin limits adipogenic potential of preadipocytes. J. Vet. Med. Sci. 72: 373–377. [Medline] [CrossRef]
41. Tang, Q. Q. and Lane, M. D. 2012. Adipogenesis: from stem cell to adipocyte. *Annu. Rev. Biochem.* **81**: 715–736. [Medline] [CrossRef]

42. Tseng, Y. H., Kokkotou, E., Schulz, T. J., Huang, T. L., Win- nay, J. N., Taniguchi, C. M., Tran, T. T., Suzuki, R., Espinoza, D. O., Yamamoto, Y., Ahrens, M. J., Dudley, A. T., Norris, A. W., Kulkarni, R. N. and Kahn, C. R. 2008. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. *Nature* **454**: 1000–1004. [Medline] [CrossRef]

43. van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., Drossaerts, J. M., Kemerink, G. J., Bouvy, N. D., Schrauwen, P. and Teule, G. J. 2009. Cold-activated brown adipose tissue in healthy men. *N. Engl. J. Med.* **360**: 1500–1508. [Medline] [CrossRef]

44. Vegiopoulos, A., Müller-Decker, K., Strzoda, D., Schmitt, I., Chichelnitskiy, E., Ostertag, A., Berriel Diaz, M., Rozman, J., Hrabe de Angelis, M., Nüsing, R. M., Meyer, C. W., Wahl, W., Klingenspor, M. and Herzig, S. 2010. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. *Science* **328**: 1158–1161. [Medline] [CrossRef]

45. Virtanen, K. A., Lidell, M. E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., Laine, J., Savisto, N. J., Enerbäck, S. and Nuutila, P. 2009. Functional brown adipose tissue in healthy adults. *N. Engl. J. Med.* **360**: 1518–1525. [Medline] [CrossRef]

46. Wu, J., Boström, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A. H., Khandekar, M., Virtanen, K. A., Nuutila, P., Schaart, G., Huang, K., Tu, H., van Marken Lichtenbelt, W. D., Hoeks, J., Enerbäck, S., Schrauwen, P. and Spiegelman, B. M. 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. *Cell* **150**: 366–376. [Medline] [CrossRef]

47. Yeh, W. C., Cao, Z., Classon, M. and McKnight, S. L. 1995. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. *Genes Dev.* **9**: 168–181. [Medline] [CrossRef]