Novel Approaches and Challenges of Discovery of Exosite Modulators of a Disintegrin and Metalloprotease 10

Dmitriy Minond1,2*

1 Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States, 2 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States

A disintegrin and metalloproteinase 10 is an important target for multiple therapeutic areas, however, despite drug discovery efforts by both industry and academia no compounds have reached the clinic so far. The lack of enzyme and substrate selectivity of developmental drugs is believed to be a main obstacle to the success. In this review, we will focus on novel approaches and associated challenges in discovery of ADAM10 selective modulators that can overcome shortcomings of previous generations of compounds and be translated into the clinic.

Keywords: ADAM10, drug discovery, exosite, inhibitors, glycosylation

INTRODUCTION

A disintegrin and metalloproteinase 10 (ADAM10) is member of a large group of human and non-human zinc-dependent enzymes (reviewed in Cerda-Costa and Gomis-Ruth, 2014). Structurally it belongs to the adamalysin family (Figure 1A, ADAM and ADAMTS enzymes). ADAM10 is a cell surface enzyme that sheds a wide variety of cell surface proteins (Dreymueller et al., 2015; Kuhn et al., 2016; Camodeca et al., 2019; Scharfenberg et al., 2019) with importance in the progression of cancer, inflammation and immune response, suggesting that ADAM10 can be an important target for therapy.

ADAM10 is comprised of several domains, namely signal sequence, prodomain, metalloproteinase domain, disintegrin domain, cysteine-rich domain, stalk region, transmembrane domain, and cytoplasmic tail (Figure 1B), which are common for adamalysins (Takeda, 2009, 2016). ADAM10's most closely related adamalysin is ADAM17 with which it shares overall 24% amino acid sequence homology (as analyzed by Clustal Omega alignment tool). Despite low sequence homology ADAM10 and ADAM17 have a broadly overlapping and ever growing substrate repertoire, possibly due to the lack of well-defined cleavage site primary sequence specificity (Caescu et al., 2009).

Functions of ADAM10 in any particular disease or normal physiological scenario are defined by the substrates that it cleaves; however, it is not well-known if ADAM10 and ADAM17 cleave the same substrates in the same setting. Therefore, inhibitors selective for ADAM10 can help differentiate its role in various scenarios.

Ability to cleave multiple substrates further complicates studies of ADAM10’s role and, therefore, its validation as a target for any particular disease. ADAM10 cleaves receptors and receptor ligands such as cytokines, chemokines, cell adhesion molecules to name a few (Caescu et al., 2009; Pruessmeyer and Ludwig, 2009; Dreymueller et al., 2015; Saftig and Lichtenthaler, 2015; Moss and Minond, 2017; Wetzel et al., 2017). An ADAM10 selective inhibitor that binds to a
zinc of an active site will prevent proteolysis of all ADAM10 substrates. Given that ADAM10 substrates can counteract each other's biological effect (e.g., pro- and anti-inflammatory cytokines), a substrate-specific inhibitor of ADAM10 can be useful.

This notion led to the deeper exploration of regulatory mechanisms governing recognition and interaction between ADAM10 and ADAM17 and their substrates by several groups, including ours. These studies led to the realization that ADAM10 and ADAM17 may have multiple levels or ways of regulation of substrate recognition and processing that are outside of their active sites. Among the regulatory mechanisms known so far are trafficking of ADAMs (Lorenzen et al., 2016; Matthews et al., 2017; Seipold et al., 2018), interactions with other proteins (Koo et al., 2020), cellular membrane re-arrangement (Reiss and Bhakdi, 2017), ADAMs non-catalytic domains (Willems et al., 2010; Tape et al., 2011; Stawikowska et al., 2013; Seegar et al., 2017), topology of ADAM substrates (Stawikowska et al., 2013), enzyme (Chavaroche et al., 2014), and substrate glycosylation (Minond et al., 2012). As demonstrated by several groups these regulatory mechanisms can be targeted for a modulator discovery (Tape et al., 2011; Minond et al., 2012; Madoux et al., 2016; Seegar et al., 2017).

There has been a significant effort dedicated to the discovery of modulators of ADAM10 activity for multiple indications such as rheumatoid arthritis (RA) (Moss et al., 2008a), cancer (Moss et al., 2008b; Crawford et al., 2009; Saha et al., 2019), immune and neurodegenerative disorders (Wetzel et al., 2017). It is important to note, that for some indications (e.g., Alzheimer's disease) molecules that induce or potentiate ADAM10 activity are thought to be needed, whereas for the majority of other indications (e.g., cancer, inflammation) the inhibitors of activity are sought after.

There are several selective inhibitors of ADAM10 that are available to the researchers, including LT4 (ADAM10 \(IC_{50} = 40 \text{ nM} \), ADAM17 \(IC_{50} = 1500 \text{ nM} \); Zocchi et al., 2016), INCB8765 (Incyte Corporation, ADAM10 \(IC_{50} = 97 \text{ nM} \), ADAM17 \(IC_{50} = 2045 \text{ nM} \); Zhou et al., 2006), GI 254023X (Glaxo, ADAM10 \(IC_{50} = 53.5 \text{ nM} \), ADAM17 \(IC_{50} = 541 \text{ nM} \); Ludwig et al., 2005), and ADAM10 prodomain (Biozyme Inc., ADAM10 \(IC_{50} = 48 \text{ nM} \), ADAM17 \(IC_{50} > 10 \text{ \mu M} \); Moss et al., 2007). LT4, INCB8765 and GI254023X are small molecules containing hydroxamate moieties and, therefore, likely to inhibit ADAM10 via a Zn-binding mechanism (Yiotakis and Dive, 2008) (Figure 2). ADAM10 prodomain is a competitive inhibitor of ADAM10, but it is unknown whether it binds the active site Zn. While Zn-binding inhibitors can exhibit a degree of selectivity between closely related ADAM family members, they ultimately cannot selectively inhibit shedding of substrates. There is evidence that toxicity has been caused by off-target side effects (Dekkers et al., 1999; Newton et al., 2001; Moss and Bartsch, 2004) due to a Zn-binding mechanism of inhibition which results in broad spectrum inhibition of multiple Zn metalloproteases. Additionally, ADAM10 has been shown to cleave > 70 cell surface proteins; therefore, indiscriminate inhibition of shedding of these proteins can affect multiple biological processes (reviewed in Dreymueller et al., 2015; Wetzel et al., 2017).

As shown by global knockout studies, ADAM10 (Hartmann et al., 2002) is vital for development, homeostasis and repair, which makes global inhibition of all functions of this enzyme non-feasible as a therapeutic approach. However, tissue-specific partial knockout studies of ADAM10 (Chalaris et al., 2010) demonstrated the lack of overall toxicity suggesting that local pharmacological partial inhibition of ADAM10 can be used.

Our group has discovered a new class of selective ADAM10 inhibitors that act via a non-Zn-binding mechanism (Madoux et al., 2016) and potentially bind outside of an active site (Figure 2). This non-Zn-binding mechanism of inhibition proved to be the key for ensuring selectivity of these molecules toward other Zn metalloproteinases. Additionally, the lead compound CID 3117694 from this new chemotype exhibits a unique substrate selectivity profile (Madoux et al., 2016) not observed with Zn-binding inhibitors of ADAM10, which should help avoid the off-target side effects described for Zn-binding inhibitors of ADAM10. For example, inhibition of shedding of amyloid precursor protein (APP) by ADAM10 (Fahrenholz, 2007) could lead to amyloid plaque formation in CNS. Additionally, many of Zn-binding inhibitors of metalloproteinases caused a dose-limiting toxicity known as Musculo-Skeletal Syndrome (MSS) (Overall and Lopez-Otin, 2002).

Search of PubChem database for biological activity of CID 3117694 revealed that it was inactive in 524 bioassays and active only against 3 targets with ADAM10 being a top target (PubChem AID 743338). Second target was hERG – CID 3117694 protected hERG from pro-arrhythmic agents (PubChem AID 1511, no EC\(_50\) value reported). Third target was DNA polymerase \(\beta \) (PubChem AID 485314) where CID3117694 exhibited IC\(_{50}\) value of 79 \(\mu M \). It was inactive against adrenergic (ADRB2), muscarinic (CHR1M) and opioid receptors (OPRK1, OPRM1, and OPRD1) which are used for drug candidate safety screens (Bowes et al., 2012). These data suggest that CID 3117694 is a non-promiscuous compound which should translate into low off-target in vivo toxicity. This also suggests that inhibition of ADAM10 via a non-Zn-binding mechanism could be an effective strategy for therapy with fewer side effects due to enzyme and substrate selectivity superior to Zn-binding inhibitors.

In the review presented herein we will discuss approaches and challenges of rational design and discovery of enzyme- and substrate-selective modulators of ADAM10.

ARTICLE

As mentioned above, there are multiple considerations and challenges in the development of small molecule therapy targeting ADAM10. Firstly, ADAM10 modulators need to be able to avoid affecting ADAM17 (and other metzincins) with which they share multiple common substrates (Caescu et al., 2009). Additionally, since ADAM10 sheds multiple substrates, depending on the particular therapeutic indication, its modulators might need to be substrate-selective. ADAM17 selective inhibitors of ADAM10 have been reported (Figure 2 and Table 1). All ADAM10 substrates interact with a catalytic zinc
atom of an ADAM10’s active site, therefore, modulators acting via zinc-binding affect proteolysis of all ADAM10 substrates. All ADAM10 substrates interact with substrate secondary binding sites (exosites), however, it is conceivable that there are different sub-sets of substrates that interact with different exosites or sub-sets of exosites, which would determine a specificity of substrate-exosite interactions. Understanding which structural features of ADAM10 and its substrates determine and enable substrate-exosite interactions would then aid in the design of substrate-selective inhibitors.

What Is Known About ADAM10 Exosites?

To date there has been only one structural study of ADAM10 ectodomain (Seegar et al., 2017) and only exosites that are described therein are in the catalytic domain. Comparison of the S1’ site of ADAM10 and ADAM17 revealed that ADAM10 S1’ site is deeper and more hydrophobic (Seegar et al., 2017), which explains the previously reported preference for bulky hydrophobic residues (Caescu et al., 2009). In contrast, ADAM17 prefers smaller, non-aromatic hydrophobic residues (Caescu et al., 2009; Tucher et al., 2014).

Existing selective inhibitors of ADAM10 can provide additional insights into the ADAM10 secondary substrate binding sites. Differences in S1’ pocket allowed the development ADAM10 selective inhibitor LT4 (referred to as compound 3 in Camodeca et al., 2016) (ADAM10 IC$_{50}$ = 40 nM, ADAM17 IC$_{50}$ = 1500 nM; Camodeca et al., 2016; Zocchi et al., 2016). Molecular homology modeling using ADAM17 crystal structure as a template suggested that the hydroxamate moiety coordinates zinc of an active site, while 4-(4-cyano-2-methylphenyl) piperazinyl group interacted with residues in the S1’ tunnel.

To the best of our knowledge, there are no structural or modeling studies of interactions between ADAM10 and GI254023X, INC8765 or ADAM10 (Moss et al., 2007). However,
TABLE 1 | Biochemical selectivity testing of ADAMs inhibitors against a panel of zinc metalloproteinases.

Compound	MMP1	MMP2	MMP8	MMP9	MMP14	ADAM10	ADAM17
LT4^a	346	5.4	NT	24	100	0.04	1.5
CID3117694^b	>100	>100	NT	>100	>100	1.1	>100
GI254023X^c	0.125	0.0021^a	NT	0.0051	0.088	0.027	0.86
INCB8765^d	>5.0	>5.0	NT	>5.0	>5.0	0.097	2.05
ADAM10 pro-domain^e	NT	NT	NT	NT	NT	0.048	>10.0

Synthetic substrates were used for all assays. All results are IC₅₀, µM. Bold numbers indicate the potency against the main target. NT, not tested; ^afrom Camodeca et al. (2016); ^bfrom Madoux et al. (2016); ^cfrom Zhou et al. (2006); ^dfrom Moss et al. (2007). |
Glycosylated and non-glycosylated TNFα-based ADAM10 substrates are differentially inhibited by Zn-binding and non-Zn-binding inhibitors. Structures of (A) glycosylated and (B) non-glycosylated fluorogenic substrates. Fluorophore (Edans) and quencher (Dabcyl) are shown attached to glutamic acid (E) and lysine (K), respectively. (C) Proteolysis of both glycosylated and non-glycosylated substrates is inhibited equipotently by a Zn-binder marimastat, but not a non-Zn-binder CID3117694 (D). Reproduced from Madoux et al. (2016) under Creative Commons License (https://creativecommons.org/licenses/by/4.0/).

TABLE 2 | Summary of testing of ADAM10 selective inhibitors with various cell-based ADAM10 and synthetic substrates.

Target	Cell line	Glycosylation type	Position	[C] tested, µM	CID3117694, %inhibition (IC₅₀, µM)	GI254023X, %inhibition
TNFα non-glycosylated^a	N/A	None	N/A	0.01–100	18 (>100)	100
TNFα glycosylated^a	N/A	Gal-GalNAc	S₄	0.01–100	100 (1.1)	100
HER2^a	BT474	GlcNAc	Multiple	10	0	100
CXCL16^a	A549	Gal-GalNAc	Multiple	10	80	100
Syndecan-4^a	A549	Heparan Sulfate	S₃₉, S₆₁, S₆₃	10	0	100

NT, not tested. ^aMadoux et al. (2016).

could be modulating its proteolysis (Goth et al., 2015). Additionally, an N-linked glycan on Asn⁵⁵ of the IL-6R 302 residues away from the cleavage site, was identified as a protease regulatory exosite, whose deletion caused increased shedding of the IL-6R (Riethmueller et al., 2017). This suggests that even glycosylation far away from proteolytic site can be targeted for drug discovery. IL-6R was shown to be important in cancer (Deng et al., 2019; He et al., 2019; Weng et al., 2019; Yousefi et al., 2019) and RA (Ahmed et al., 2017) suggesting that ADAM10-mediated cleavage of IL-6R can be targeted for drug discovery for both indications. However, glycosylation profile of IL-6R in both cancer and RA is unknown.

Transferrin receptor (TfR) is shed by either ADAM10 or ADAM17 (Kaup et al., 2002). O-linked carbohydrate four residues away from the scissile bond (Table 3) serves to protect the TfR from proteolytic cleavage, and without this protection, the TfR is more susceptible to cleavage (Rutledge and Enns, 1996). Soluble TfR (sTfR) is used as a diagnostic test for iron deficiency anemia in rheumatoid arthritis and other diseases (Pavai et al., 2007; Berlin et al., 2011). Concentration of sTfR and, therefore, the test results, depend on glycosylation status of TfR. It is conceivable that increase of sTfR in the serum of patients could be due to the change in the glycosylation of TfR. TfR importance in cancer and RA has been demonstrated (Pavai et al., 2007; Shen
Accession	Substrate	Cleavage site	Known glycosylation position	Closest distance from scissile bond, #residues	Glyco type in normalcy	Role in cancer	Glyco type in cancer	Role in RA	Glyco type in RA
P35070	Pro-betacellulin	CVWA31/32DGN'S	N34	3	N-linked (GlcNAc)	Feldinger et al., 2014	Not found	Harada et al., 2015	Not found
P01375	pro-TNFα	LAQA76/77VRSS	S60	4	O-linked (GalNAc)	Kondo et al., 1994; Janes et al., 2006; Miyazawa et al., 2008; Malekshah et al., 2012	O-linked (GalNAc) (Takakura-Yamamoto et al., 1996)	Jini et al., 2019	Not found
P02786	Transferrin receptor	TECER102~LAGT*E	T104, N251, N317, N727	4	O-linked (GalNAc)	Shen et al., 2018	O-linked (GalNAc) (Rutledge and Enns, 1996)	Pavai et al., 2007	Not found
A0N0L5	IL6-R	T5SLPVQ367~DS*S*SV	S360, S363, N55, N63, N221, N390	2	O-linked (GalNAc)	Deng et al., 2019; He et al., 2019; Weng et al., 2019; Yousell et al., 2019	Not found	Ahmed et al., 2017	Not found
P05087	APP	*YEVHHQK587~LVFFA	N442, N451, T551, T652, T655, S658, S667, V681	6	N-linked (GlcNAc)	Wozniak and Ludwig, 2018; Wu et al., 2020	Not found	Kuroda et al., 2019	Not found
O14944	Pro-epiregulin	DNPR59,60VAQV	N47	12	N-linked (GlcNAc)	Wang et al., 2019	Not found	Harada et al., 2015	Not found
Q99075	pro-HB-EGF	RKVR124,134DLQOE	T37, S38, T44, T47, T75, T85	13	O-linked (GalNAc)	Branco et al., 2019; Gelfo et al., 2019; Moore et al., 2019; Finn et al., 2020	O-linked (GalNAc) (Davis-Fleischer et al., 2001)	Kuo et al., 2019	Not found
P01135	pro-TGFα	VAAA79,80VSH	N35	14	N-linked (GlcNAc)	Yu et al., 2018; Poteet et al., 2019	Not found	Hallbeck et al., 2005	Not found
P04626	EGFR2	AEQR46,646ASP	N58, N124, N187, N259, N292, N325, N371, N629	17	N-linked (GlcNAc)	Landi and Cappuzzo, 2013; Inghotson et al., 2016; Crisoe et al., 2017	Not found	Hallbeck et al., 2005; Shchelyansky et al., 2017	Not found
P15514	pro-Amphiregulin	IVDD100,101SVRV;	N30, N113, N119	18	N-linked (GlcNAc)	Olveras-Ferreras et al., 2012; Rexer et al., 2013	Not found	Nakamura et al., 2008; Yamane et al., 2008; Liu et al., 2014	Not found
P06734	CD23	EEYA61~RN*VSQVSKN	N63	2	N-linked (GlcNAc)	Kwon et al., 2012	Not found	Rambert et al., 2009; Kuzin et al., 2016	Not found
et al., 2018), however, its glycosylation profile is known only for cancer (Rutledge and Enns, 1996).

Amyloid precursor protein (APP) has been studied mostly in the context of Alzheimer’s disease (AD), however, recent reports show its importance in cancer (Wozniak and Ludwig, 2018; Wu et al., 2020) and RA (Kuroda et al., 2019). While APP is glycosylated in multiple positions (Halim et al., 2011), the closest residue to the ADAM cleavage site Y681EVHHQ\textsubscript{687}~LVFFAED is Y681 (Table 3). Peptides with glycosylated Y681 were increased in CSF of AD patients (n = 6) versus non-AD patients (Wu et al., 2020) suggesting that this glycosylation could be specific to AD disease state. It is not known whether APP is glycosylated at Y681 in cancer and RA patients.

From Table 3 it’s quite clear that substrate- and disease-specific glycosylation data necessary to target each substrate need to be obtained in order to begin a rational design or discovery of ADAM10 substrate-selective inhibitors.

Lack of Structural Information Represents a Challenge in Using Glycosylation for Targeting

In order to be able to target a specific glyco moiety on an ADAM10 substrate there needs to be a clear understanding of what this moiety is. It would be an understatement to say that protein glycosylation is complex. It is well known that glycosylation of the same protein may differ in normalcy vs. disease [e.g., neurodegeneration (Moll et al., 2019), autoimmune disease (Li et al., 2019), type 2 diabetes, inflammatory bowel disease, or colorectal cancer (Dotz and Wuhrer, 2019)]. Additionally, glycosylation may differ based on the stage of the disease (Regan et al., 2019), age and sex of the patient (Dotz and Wuhrer, 2019), type of disease etc. Therefore, as an example, information of glycosylation of target protein available for breast cancer should not be used for diabetes. To characterize a glyco moiety present on the specific target a significant amount of a protein is required, therefore, it needs to be either expressed or isolated from disease-specific cells. Recombinant proteins are typically produced in bacteria or insect cells due to higher yield. However, because glycosylation machinery is significantly different in humans this approach is not suitable for human disease-specific analysis. This suggests that a target protein needs to be isolated and characterized for glycosylation in the specific disease scenario using either patient cells or established cell lines. This presents a challenge given that microgram to milligram quantities of protein are needed for glycomic characterization and patient cells are usually a rare commodity.

Speculatively speaking, the expression profile of glycosylating/deglycosylating enzymes could be used as a possible alternative to the glycomic characterization of target proteins. Glycosylation of ADAM10 substrates depends on the repertoire of glycosylating/deglycosylating enzymes expressed in any particular disease and tissue. As an example, an expression profile of 210 glycosyltransferase (GT) genes from 1893 cancer patients correlated well with six cancer types (Ashkani and Naidoo, 2016). Also, it correlated with clinical classification of breast cancer sub-types.

As another example, increased levels of α-2,3-sialyltransferase-1 and neuraminidase-3 in monocytes of RA patients were found to correlate with disease activity score (DAS28) (Liou and Jang, 2019) resulting in increased sialylation. It stands to reason that GT expression profile is different in various tissues and disease states, therefore, knowledge of GT expression profile could help in identifying possible glycosylation changes in the disease state. It needs to be mentioned, however, that this approach has not been experimentally tested.

Are There Other Forms of ADAM10 Regulation Affecting Substrate Specificity?

As mentioned in Seegar et al. (2017), disintegrin/cysteine-rich domain blocks access of protein substrates to the S1’ and S2’ pockets, resulting in auto-inhibition. Binding of 8C7 F\textsubscript{ab} antibody to the disintegrin/cysteine-rich domain rendered ADAM10 active suggesting that disintegrin/cysteine-rich domain might contain an exosite (or exosites) which could be used by substrates to gain access to the active site. In the original report, 8C7 F\textsubscript{ab} antibody was able to inhibit ADAM10-mediated ephrin cleavage, Eph activity and Eph-dependent cell behavior (Atapattu et al., 2012). This suggests that non-catalytic domains (NCDs) participate in substrate recognition and processing and, therefore, can be targeted for drug discovery.

PRACTICAL CONSIDERATIONS FOR TARGETING DISEASE-SPECIFIC GLYCOSYLATION AND NON-CATALYTIC DOMAINS

Drug discovery targeting exosites presents unique challenges. While established methodologies can be used, need to focus on previously unexplored target class introduces a new "twist" which, in some cases, may lead to an unsurmountable technical difficulty. Here we discuss how targeting glycosylation and NCDs affects applicability of established methods of drug discovery.

Compound Screening

Once the type and position of glycosylation of target protein is known, the researchers needs to choose an assay format for a modulator discovery. Two main approaches to drug discovery are based on either purified target (i.e., biochemical assay) or target expressed in the cells of interest (i.e., cell-based assay). Depending on a therapeutic area, activators or inhibitors of ADAM10 activity might be needed. For example, for Alzheimer's disease the activators or potentiators of ADAM10 activity might be useful to increase non-amyloidogenic processing of APP thus decreasing amyloid plaque formation in CNS (Bandyopadhyay et al., 2007; Fahrenholz, 2007; Lichtenthaler, 2011; Postina, 2012; Manzine et al., 2019). Both biochemical and cell-based approaches have their inherent problems and advantages. Biochemical assays for ADAM10 modulators almost universally utilize synthetic fluorogenic substrates. These substrates need to be glycosylated.
using either chemical or chemoenzymatic approaches (Marschall et al., 2019) that are not straightforward and expensive. The synthetic substrates are significantly shorter than the native ones and typically consist of 10–15 amino acid residues. This potentially results in the lack of interactions between such a substrate with non-catalytic domains (NCDs) of ADAM10. We previously reported an effect of NCDs of ADAM10 most closely related metzincin, ADAM17, on proteolysis of TNFα-based synthetic substrates. NCDs did not directly bind the substrates used in the study but affected the binding nevertheless, most likely because of steric hindrance (Stawikowska et al., 2013). Additionally, fluorophore and quencher can interfere with binding of substrate to ADAM10. Finally, fluorogenic substrates are subject to fluorescent artifact (Marschall et al., 2019) due to intrinsically fluorescent compounds present in high-throughput screening (HTS) libraries.

Conversely, cell-based assays are more pathophysiologically relevant than biochemical assays. The target protein is present in the native form containing all possible exosites in a more complex cellular environment. Since mostly immortalized cell lines are used for HTS as a proxy for a disease model, the presence of correct glycosylation form in the right position needs to be experimentally confirmed before utilizing a particular cell line. Detection of an ADAM10 activity modulation event in cell-based assays is another potential challenge. Detection of shedding of ADAM10 target is usually dependent on an antibody-based technology (e.g., western blot, ELISA, AlphaLiSA). Western blot and ELISA are not amenable to HTS leaving only AlphaLiSA (or its variation, AlphaScreen) as an enabling technology for the assay development. A main consideration with using AlphaLiSA is an availability of an assay kit for a specific target. If a kit for the target of interest is not commercially available, then researchers can attempt to develop their own AlphaLiSA assay using commercially available antibodies that will need to be conjugated to the AlphaLiSA beads. The cell-based assay using AlphaLiSA will need to be developed using "addition-only" format (i.e., no supernatant transferring) meaning that ADAM10 target will need to be detected in the supernatant in the presence of live cells. In our group we were able to develop and use such an assay to discover compounds increasing soluble APPα of live cells. In our group we were able to develop and use such an assay to discover compounds increasing soluble APPα of live cells. In our group we were able to develop and use such an assay to discover compounds increasing soluble APPα of live cells (Wang et al., 2014) suggesting feasibility of this approach.

Overall, the choice of the approach should be based on the availability of substrate structural information and technical resources, however, it needs to be mentioned that at this stage both are sorely lacking.

Computer-Aided Drug Design and Discovery

Another approach to target glycosylation for ADAM10 modulator discovery can be based on virtual methods such as computer modeling and/or virtual screening. Either approach requires a pre-existing knowledge of an interaction site between a ligand and a target. In the case of ADAM10, such information is not available. This suggests a need for making a working virtual model by either docking a glycosylated substrate or other known exosite ligand (e.g., CID3117694). Once such a model is available, a medicinal chemist can use interactions between ADAM10 exosite and ligand revealed as a result of modeling effort to design a small molecule. Alternatively, a virtual screening can be performed using de novo model and publicly available virtual compound libraries (e.g., https://zinc.docking.org) to generate hits, which will need to be confirmed in ADAM10 assay.

CONCLUSION

Recent publications by different research groups independently demonstrated that glycosylation can affect ADAM10-mediated proteolysis. Research conducted in our group in the last 9 years has demonstrated that it is possible to target glycosylation of ADAM10 and ADAM17 for enzyme- and substrate-selective inhibitor discovery. This suggests that proteolysis of specific ADAM10 substrates involved in various diseases can be targeted using information about their glycosylation and non-catalytic domains differences.

AUTHOR CONTRIBUTIONS

DM envisioned and wrote the manuscript.

FUNDING

This work was supported the National Institutes of Health (AR066676 to DM).

REFERENCES

Abel, S., Hundhausen, C., Mentlein, R., Schulte, A., Berkhout, T. A., Broadway, N., et al. (2004). The transmembrane CXC chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. *J Immunol.* 172, 6362–6372. doi: 10.4049/jimmunol.172.10.6362

Ahmed, S., Hussain, S., Ammar, A., Jahan, S., Khalig, S., and Kaul, H. (2017). Interleukin 6 Receptor (IL6-R) Gene Polymorphisms Underlie Susceptibility to Rheumatoid Arthritis. *Clin Lab.* 63, 1365–1369. doi: 10.7754/Clin.Lab.2017.170216

Ashkani, J., and Naidoo, K. J. (2016). Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes. *Sci Rep.* 6, 26451. doi: 10.1038/srep26451

Atapattu, L., Saha, N., Llerena, C., Vail, M. E., Scott, A. M., Nikolov, D. B., et al. (2012). Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. *J Cell Sci.* 125(Pt 24), 6084–6093. doi: 10.1242/jcs.112631

Bandyopadhyay, S., Goldstein, L. E., Lahiri, D. K., and Rogers, J. T. (2007). Role of the APP non-amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer's disease. *Curr Med Chem.* 14, 2848–2864. doi: 10.2174/092986707782360606
Berlin, T., Meyer, A., Rotman-Pikselny, P., Natur, A., and Levy, V. (2011). Soluble transferrin receptor as a diagnostic laboratory test for detection of iron deficiency anemia in acute illness of hospitalized patients. Isr Med Assoc J. 13, 96–98.

Bernfield, M., Kokenyesi, R., Kato, M., Hinke, M. T., Spring, J., Gallo, R. L., et al. (1992). Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 8, 365–393. doi: 10.1146/annurev.cb.8.110192.002053

Bostrom, J., Yu, S. F., Kan, D., Appleton, B. A., Lee, C. V., Billeci, K., et al. (2009). Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science. 323, 1610–1614. doi: 10.1126/science.1165480

Bowes, J., Brown, A. J., Hamon, J., Jarolimek, W., Sridhar, A., Waldron, G., et al. (2012). Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov. 11, 909–922. doi: 10.1038/nrd3845

Deng, S., Wang, A., Chen, X., Du, Q., Wu, Y., Chen, G., et al. (2019). HBD Inhibits the Development of Colitis-Associated Cancer in Mice via the IL-6R/STAT3 Signaling Pathway. Int J Mol Sci 20, 1069. doi: 10.3390/ijms20051069

Deymuller, D., Uhlig, S., and Ludwig, A. (2015). ADAM-family metalloproteases in lung inflammation: potential therapeutic targets. Am J Phys Lung Cell Mol Physiol. 368, L523–L543. doi: 10.1152/ajplung.00294.2014

Dreyer, J. M., and Cummings, R. D. (1992). Presence of O-linked oligosaccharide on a threonine residue in the human transferrin receptor. Glycobiology. 2, 345–353. doi: 10.1093/glycob/2.4.345

Dotz, V., and Wuhrer, M. (2019). N-glycome signatures in human plasma: associations with physiology and major diseases. FEBS Lett. 593, 2966–2976. doi: 10.1002/1873-3468.13598

Eberst, C., Ultsch, M., Dubnovitsky, A., Abrahamson, L., and Hard, T. (2010). Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci U S A. 107, 15039–15044. doi: 10.1073/pnas.1005025107

Fahrenholz, F. (2007). Alpha-secretase as a therapeutic target. Curr Alzheim Res. 4, 412–417. doi: 10.2174/156720507781788837

Feldinger, K., Generali, D., Kramer-Marek, G., Giesen, M., Ng, T. B., Wong, J. H., et al. (2014). ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer. Oncotarget. 5, 6633–6646. doi: 10.18632/oncotarget.1953

Finn, K. J., Martin, S. E., and Settleman, J. (2020). A Single-Step, High-Dose Selection Scheme Reveals Distinct Mechanisms of Acquired Resistance to Oncogenic Kinase Inhibition in Cancer Cells. Cancer Res. 80, 79–90. doi: 10.1158/0008-5472.CAN-19-0729

Franklin, M. C., Carey, K. D., Vajdos, F. F., Leahy, D. J., de Vos, A. M., and Slwikowski, M. X. (2004). Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 5, 317–328. doi: 10.1016/s1535-6108(04)00083-2

Gelfo, V., Pontis, F., Mazzeschi, M., Sagari, M., Mazzarini, M., Solmi, R., et al. (2019). Glucocorticoid Receptor Modulates EGFR Feedback upon Acquisition of Resistance to Monoclonal Antibodies. J Clin Med. 8, 600. doi: 10.3390/jcm8050600

Goth, C. K., Halim, A., Khetarpal, S. A., Rader, D. J., Clausen, H., and Scholldager, K. T. (2015). A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proc Natl Acad Sci U S A. 112, 14623–14628. doi: 10.1073/pnas.151175112

Hallbeck, A. L., Walz, T. M., Brieheim, K., and Wasteson, A. (2005). TGF-alpha and ErbB2 production in synovial joint tissue: increased expression in arthritic joints. Scand J Rheumatol. 34, 204–211. doi: 10.1080/03009740510017715

Harada, M., Kamimura, D., Arima, Y., Koshaka, H., Nakatouji, Y., Nishida, M., et al. (2015). Temporal expression of growth factors triggered by epiregulin regulates inflammation development. Am J Transl Res. 7, 1069. doi: 10.3390/ijms20021503

Hayes, G. R., Enns, C. A., and Lucas, J. J. (1992). Identification of the O-linked glycosylation site of the human transferrin receptor. J Biol Chem. 267, 7202–7215. doi: 10.1074/jbc.267.11.7207

He, B., Pan, B., Pan, Y., Sun, H., Xu, T., Qin, J., et al. (2019). IL-4/IL-4R and IL-6/IL-6R genetic variations and gastric cancer risk in the Chinese population. Am J Transl Res. 11, 3698–3706.
Lichtenthaler, S. F. (2011). Alpha-secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. *J Neurochem.* 116, 10–21. doi: 10.1111/j.1471-4169.2010.07838.x

Liu, M. B., and Jiang, S. S. (2019). Alpha-2,3-Sialyltransferase-1 and neuraminidase-1 from monocytes in patients with rheumatoid arthritis correlate with disease activity measures: A pilot study. *J Clin Med Sci.* 3, 179–185. doi: 10.1097/JCMS.0000000000000027

Liu, F. L., Wu, C. C., and Chang, D. M. (2014). TACE-dependent amphiregulin release is induced by IL-1beta and promotes cell invasion in fibroblast-like synoviocytes in rheumatoid arthritis. *Rheumatology* (Oxford) 53, 260–269. doi: 10.1093/rheumatology/ket350

Lorenzen, I., Lokau, J., Korpy, Y., Oldefest, M., Flynn, C. M., Kunzel, U., et al. (2016). Control of ADAM17 activity by regulation of its cellular localisation. *Sci Rep.* 6, 35067. doi: 10.1038/srep35067

Ludwig, A., Hundhausen, C., Lambert, M. H., Broadway, N., Andrews, R. C., Bickett, D. M., et al. (2005). Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. *Comb Chem High Throughput Screen.* 8, 161–171. doi: 10.2174/13820703532587488

Madoux, F., Dreymuller, D., Pettiloud, J. P., Santos, R., Becker-Pauly, C., Ludwig, A., et al. (2016). Discovery of an enzyme and substrate selective inhibitor of ADAM15 using an exosite-binding glycosylated substrate. *Sci Rep.* 6, 11. doi: 10.1038/s41598-016-0013-4

Malekshah, O. M., Lage, H., Bahrami, A. R., Afshari, J. T., and Behravan, J. (2012). PXR and NF-kappaB correlate with the inducing effects of IL-1beta and TNF-alpha on ABCG2 expression in breast cancer cell lines. *Eur J Pharm Sci.* 47, 474–480. doi: 10.1016/j.ejps.2012.06.011

Manzine, P. R., Etcheto, M., Cano, A., Busquets, O., Marcelló, E., Pelucchi, S., et al. (2019). ADAM10 in Alzheimer’s disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. *Biomed Pharmacother.* 113, 108661. doi: 10.1016/j.biopha.2019.108661

Marschall, E., Gyle, M. J., and Tallhades, J. (2019). Biological, chemical, and biochemical strategies for modifying glycopeptide antibiotics. *J Biol Chem.* 294, 18769–18783. doi: 10.1074/jbc.R119.006349

Matthews, A. L., Noy, P. J., Retay, J. S., and Tomlinson, M. G. (2017). Regulation of ADAM10 using an exosite-binding glycosylated substrate. *J Cell Sci.* 130, 333–341. doi: 10.1242/jcs.184751

Minond, D., Cudic, M., Bionda, N., Giulianotti, M., Maida, L., Houghten, R. A., et al. (2012). Discovery of novel inhibitors of a disintegrin and metalloproteinase 17 (ADAM17) using glycosylated and non-glycosylated substrates. *J Biol Chem.* 287, 36473–36487. doi: 10.1074/jbc.M112.361193

Miyazawa, M., Ito, Y., Kosaka, N., Nakuda, Y., Sakaguchi, H., Suzuki, H., et al. (2008). Role of TNF-alpha and extracellular ATP in THP-1 cell activation following allergen exposure. *Toxicol Sci.* 33, 71–83. doi: 10.1215/jts.33.3.71

Moll, T., Shaw, P. J., and Cooper-Knock, J. (2019). Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. *Brain* doi: 10.1093/brain/awz358

Moore, K. N., Bendell, J. C., LoRusso, P. M., Olszanski, A. J., Zwick-Wallach, E., and Jansen, M., et al. (2019). First-in-human study of the anti-HB-EGF antibody U-31565 in subjects with advanced solid tumors. *Invest New Drugs.* 37, 147–158. doi: 10.1007/s10637-018-0646-1

Moss, M. L., and Bartsch, J. W. (2004). Therapeutic benefits from targeting of ADAM family members. *Biochemistry.* 43, 7227–7235. doi: 10.1021/bi040677f

Moss, M. L., and Minond, D. (2017). Recent Advancements in ADAM17 Research: A Promising Target for Cancer and Inflammation. *Mediators Inflamm.* 2017, 15876837. doi: 10.1155/2017/15876837

Moss, M. L., Bomar, M., Liu, Q., Nose, H., Dempsey, P., Lenhart, P. M., et al. (2007). The ADAM10 promdomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. *J Biol Chem.* 282, 35712–35721. doi: 10.1074/jbc.M703231200

Moss, M. L., Sklair-Tavron, L., and Nudelman, R. (2008a). Insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. *Nat Clin Pract Rheumatol.* 4, 300–309. doi: 10.1038/nprheum0797

Moss, M. L., Stoeck, A., Yan, W., and Dempsey, P. J. (2008b). ADAM10 as a target for anti-cancer therapy. *Curr Pharm Biootechnol.* 9, 2–8. doi: 10.2174/138920108783497613

Nakamura, N., Shimaoa, Y., Tougan, T., Onda, H., Okuzaki, D., Zhao, H., et al. (2006). Isolation and expression profiling of genes upregulated in bone marrow-derived mononuclear cells of rheumatoid arthritis patients. *DNA Res.* 13, 169–183. doi: 10.1093/dnares/dil006

Newton, R. C., Solomon, K. A., Covington, M. B., Decicco, C. P., Nudelman, R. P., et al. (2012). Cross-suppression of EGFR ligands amphiregulin and ephiregulin and de-repression of FGFR3 signalling contribute to cetuximab resistance in wild-type KRAS tumour cells. *British journal of cancer.* 106, 1406–1414. doi: 10.1038/bjc.2012.103

Overall, C. M., and Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. *Nat Rev Cancer.* 2, 657–672. doi: 10.1038/nrc884

Pavai, S., Jayarane, S., and Sargunan, S. (2007). Soluble transferrin receptor, ferritin and soluble transferrin receptor–Ferritin index in assessment of anaemia in rheumatoid arthritis. *Med J Malaysia.* 62, 303–307. Epub 2008/06/17.
its cleavage site. *Protein Expr Purif.* 29, 217–222. doi: 10.1016/s1046-5928(03)00058-5

Zhou, B. B., Peyton, M., He, B., Liu, C., Girard, L., Caudler, E., et al. (2006). Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. *Cancer Cell.* 10, 39–50. doi: 10.1016/j.ccr.2006.05.024

Zocchi, M. R., Camodeca, C., Nuti, E., Rossello, A., Vene, R., Tosetti, F., et al. (2016). ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing. *Oncoimmunology.* 5, e1123367. doi: 10.1080/2162402X.2015.1123367

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Minond. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.