On the expected number of different records in a random sample

Marco Ferrante* and Nadia Frigo
Dipartimento di Matematica
Università degli Studi di Padova
via Trieste, 63
35121 Padova, Italy
e-mail: ferrante@math.unipd.it and nadia.frigo@gmail.com

May 2, 2014

Abstract

Given a discrete distribution, an interesting problem is to determine the minimum size of a random sample drawn from this distribution, in order to observe a given number of different records. This problem is related with many applied problems, like the Heaps’ Law in linguistics and the classical Coupon-collector’s problem. In this note we are able to compute theoretically the expected size of such a sample and

*corresponding author
we provide an approximation strategy in the case of the Mandelbrot
distribution.

1 Introduction

Let us consider a text written in a natural language: the Heaps’ law is an
empirical law which describes the portion of the vocabulary which is used
in the given text. This law can be described by the following formula

\[R_m(n) = Kn^\beta \]

where \(R_m(n) \) is the number of different words present in a text consisting
of \(n \) words and taken from a vocabulary of \(m \) words, while \(K \) and \(\beta \) are
free parameters determined empirically. In order to obtain a formal deriva-
tion of this empirical law, van Leijenhorst and van der Weide in [4] have
considered the average growth in the number of records, when elements are
drawn randomly from some statistical distribution that can assume exactly
\(m \) different values. The exact computation of the average number of records
in a sample of size \(n \), \(\mathbb{E}[R_m(n)] \), can be easily obtained using the following
approach. Let \(S = \{1, 2, \ldots, m\} \) be the support of the given distribution,
define \(X = m - R_m(n) \) the number of values in \(S \) not observed and denote
by \(A_i \) the event that the record \(i \) is not observed. It is immediate to see
that \(\mathbb{P}[A_i] = (1 - p_i)^n \), \(X = \sum_{i=1}^{m} 1_{A_i} \) and therefore that

\[\mathbb{E}[R_m(n)] = m - \mathbb{E}[X] = m - \sum_{i=1}^{m} (1 - p_i)^n. \quad (1) \]
Assuming now that the elements are drawn randomly from the Mandelbrot distribution, van Leijenhorst and van der Weide obtain that the Heaps’ law is asymptotically true as n and m goes to infinity and $n << m^{\theta - 1}$, where θ is one of the parameters of the Mandelbrot distribution (see [4] for the details).

A slightly different problem is as follows: assume that we are interested in the minimum number $X_m(k)$ of elements that we have to draw randomly from a given statistical distribution in order to obtain k different records. This is clearly strictly related to the previous problem and at first sight one expects that the technical difficulties would be similar. However, this is not the case: in this note we will prove that the computation of the expectation of $X_m(k)$ is more complicated and, even if related to other results in the Coupons collector’s problem, it is to the best of our knowledge original. The formula that we obtain is computationally hard and we are able to perform the exact computation in the environment R (see [1]) just for distributions with a support of small cardinality. Our plan for the future is to study further this problem in order to simplify our formula, at least in some case of interest. By now we propose an approximation procedure in the special case of the Mandelbrot distribution, widely used in the application, making use of the asymptotic results proven in [4] in order to derive the Heaps’ law.

The paper is organized as follows: in the second chapter we will derive the expected number of elements that we have to draw from a given statis-
tical distribution in order to obtain k different records and we will present some additional results related to this one. In the third chapter we will compute this value in the case of the Mandelbrot distribution. Due to the computational effort requires to compute this expectation, we present the exact value just for $k \leq 8$. After comparing our formula with the results obtained in [4], using the exact values when m is small, and the values obtained by simulation for greater values of m, we use their asymptotic results to propose an approximation to our formula.

2 The expected value of $X_m(k)$

Let us denote by $S = \{1, \ldots, m\}$ the support of a given discrete distribution, by $p = (p_1, \ldots, p_m)$ its discrete density and let us assume that the elements are drawn randomly from this distribution in sequence. The random variables in the sample will be independent and the realization of each of these will be equal to k with probability p_k. Since we are interested here in the number of drawn one needs in order to obtain k different realization of the given distribution, let us define the following set of random variables: X_1 will denote the (random) number of drawn that we need in order to have the first record (which is trivially equal to 1), X_2 will be the number of additional drawn that we need to obtain the second record and so on let us define, for every $i \leq m$, by X_i the number of drawn needed to go from the $i - 1$-th to the i-th different record in the sample. From this description we
obtain that the random number \(X_m(k) \) of drawn that we need to obtain \(k \) different records is equal to \(X_1 + \ldots + X_k \) and that \(P[X_m(k) < +\infty] = 1 \). We also define the following set of random variables: let \(Z_1 \) be the type of the first record observed, \(Z_2 \) the type of the second different record and so on until \(Z_k \) the type of the \(k \)-th record observed in the sample.

Remark 1 The problem that we have described above is very close to the classical Coupons collector’s problem, which is usually formalized in a similar way. In that case the random variables \(X_i \) denotes the number of coupons that we have to buy in order to go from the \(i-1 \)-th to the \(i \)-th different type of coupons in our collection and \(X_m(m) \) represents the random number of coupons that we have to collect in order to complete the collection. The first results, due to De Moivre, Laplace and Euler (see [3] for a comprehensive introduction on this topic), deal with the case of constant probabilities \(p_k \equiv \frac{1}{m} \), while the first results on the unequal case have to be ascribed to Von Schelling (see [5]).

In the case of a uniform distribution, i.e. when \(p_k \equiv 1/m \) for any \(k \in \{1, \ldots, m\} \), it is immediate to see that the random variable \(X_i \), for \(i \in \{2, \ldots, m\} \), has a geometric law with parameter \((m-i)/m \). The expected number of drawn that we need in order to obtain \(k \) different records will be therefore

\[
E[X_m(k)] = 1 + m/(m-1) + m/(m-2) + \ldots + m/(m-k+1) \quad (2)
\]
When the probabilities \(p_k \) are unequal, the Coupons collector’s problem fails to be useful. Indeed, in the literature it is considered just the problem to complete the collection, i.e. in our case to observe all the \(m \) records. This result, first proven by Von Schelling in [5], can be obtained in a simple and elegant way if we look at this problem from a slightly different point of view (see e.g. [2]). Let us define the following set of random variables: \(Y_1 \) will denote the (random) number of items that we need to collect to obtain the first coupon of type 1, \(Y_2 \) the number of items that we need to collect to get the first coupon of type 2, and so on for the others coupons. In this setting, the waiting time to complete the collection is given by the random variable \(Y = \max\{Y_1, \ldots, Y_m\} \). In order to compute its expected value, one can use the Maximum-Minimums identity (see [2], p.345), obtaining

\[
\mathbb{E}[Y] = \sum_i \mathbb{E}[Y_i] - \sum_{i<j} \mathbb{E}[\min(Y_i, Y_j)] + \sum_{i<j<k} \mathbb{E}[\min(Y_i, Y_j, Y_k)] + \ldots + (-1)^{m+1} \mathbb{E}[\min(Y_1, Y_2, \ldots, Y_m)].
\]

Since the random variables \(\min(Y_{i_1}, Y_{i_2}, \ldots, Y_{i_k}) \) have a geometric law with parameter \(p_{i_1} + p_{i_2} + \ldots + p_{i_k} \), one gets the formula

\[
\mathbb{E}[Y] = \sum_i \frac{1}{p_i} - \sum_{i<j} \frac{1}{p_i + p_j} + \sum_{i<j<k} \frac{1}{p_i + p_j + p_k} + \ldots + (-1)^{m+1} \frac{1}{p_1 + \ldots + p_m}.
\]

(3)

In order to compute \(\mathbb{E}[X_{m}(k)] \) for any \(k \leq m \), this elegant approach is no more useful. Therefore we have to go back to the first setting and try to compute directly the expected value of the random variables \(X_1, X_2, \ldots, X_k \).

In the case of unequal probabilities, the law of the random variables \(X_i \)’s
is no more so simple and, in order to compute their expected values, we have first to compute their conditional expected values given the types of the preceding $i - 1$-th different records obtained. To simplify the notation, let us define $p(i_1, \ldots, i_k) = 1 - p_{i_1} - \ldots - p_{i_k}$ for $k \leq m$ and different indexes i_1, i_2, \ldots, i_k. The main result of this section is the following proposition:

Proposition 2 For any $k \in \{2, \ldots, m\}$, the expected value of X_k is equal to

$$E[X_k] = \sum_{i_1 \neq i_2 \neq \ldots \neq i_{k-1} = 1}^{m} \frac{p_{i_1} \cdots p_{i_{k-1}}}{p(i_1)p(i_1, i_2) \cdots p(i_1, \ldots, i_{k-1})}$$

(4)

and therefore

$$E[X_m(k)] = \sum_{s=1}^{k} E[X_s] = 1 + \sum_{i_1 = 1}^{m} \frac{p_{i_1}}{p(i_1)} + \sum_{i_1 \neq i_2 = 1}^{m} \frac{p_{i_1}p_{i_2}}{p(i_1)p(i_1, i_2)} + \ldots$$

$$+ \sum_{i_1 \neq i_2 \neq \ldots \neq i_{k-1} = 1}^{m} \frac{p_{i_1} \cdots p_{i_{k-1}}}{p(i_1)p(i_1, i_2) \cdots p(i_1, \ldots, i_{k-1})}$$

(5)

Remark 3 When $k = m$, expression (5) represent an alternative computation of the expected number of coupons needed to complete a collection. The expressions (3) and (5) are different and a direct combinatorial proof of their equivalence seems by no means trivial. From a computational point of view, the second formula is heavier with respect to the first one. In any case both of them are not computable for large values of k.

Proof of Proposition 2 In order to compute the expected value of the variable X_k, we shall conditioned this with respect to the variables Z_1, \ldots, Z_{k-1}, where Z_i, for $i = 1, \ldots, m$, denotes the type of the i-th different record observed. Let us start by evaluating $E[X_2]$: we have immediately that
$X_2|Z_1 = i$ has a (conditioned) geometric law with parameter $1 - p_i = p(i)$. We immediately obtain that

$$E[X_2] = E[E[X_2|Z_1]] = \sum_{i=1}^{m} E[X_2|Z_1 = i]P[Z_1 = i] = \sum_{i=1}^{m} \frac{p_i}{p(i)}.$$

Let us now take $k \in \{3, \ldots, m\}$: it is easy to see that

$$E[X_k] = E[E[X_k|Z_1, Z_2, \ldots, Z_{k-1}]] = \sum_{i_1 \neq i_2 \neq \cdots \neq i_{k-1} = 1}^{m} E[X_k|Z_1 = i_1, Z_2 = i_2, \cdots, Z_{k-1} = i_{k-1}] P[Z_1 = i_1, \ldots, Z_{k-1} = i_{k-1}].$$

(Note that $P[Z_i = Z_j] = 0$ for any $i \neq j$.) The conditional law of $X_k|Z_1 = i_1, \ldots, Z_{k-1} = i_{k-1}$, for $i_1 \neq i_2 \neq \cdots \neq i_{k-1}$, is that of a geometric random variable with parameter $p(i_1, \ldots, i_{k-1})$ and its conditional expected value is equal to $p(i_1, \ldots, i_{k-1})^{-1}$. By the multiplication rule, we get

$$P[Z_1 = i_1, \ldots, Z_{k-1} = i_{k-1}] = P[Z_1 = i_1]P[Z_2 = i_2|Z_1 = i_1] \times \cdots \times P[Z_{k-1} = i_{k-1}|Z_1 = i_1, \ldots, Z_{k-2} = i_{k-2}]$$

(note that, even though the random variables in the sample are independent, the random variables Z_i are not independent). From its definition we have that

$$P[Z_1 = i_1] = p_{i_1},$$

while a simple computation gives for any $s = 2, \ldots, k - 1$, that

$$P[Z_s = i_s|Z_1 = i_1, \ldots, Z_{s-1} = i_{s-1}] = \frac{p_{i_s}}{1 - p_{i_1} - \cdots - p_{i_{s-1}}}$$
if $i_1 \neq i_2 \neq \cdots \neq i_{k-1}$ and zero otherwise. Recalling the compact notation

$$p(i_1, \ldots, i_k) = 1 - p_{i_1} - \ldots - p_{i_k},$$

we then get

$$E[X_k] = \sum_{i_1 \neq i_2 \neq \cdots \neq i_{k-1}=1}^{m} \frac{p_{i_1}p_{i_2} \cdots p_{i_{k-1}}}{p(i_1)p(i_2) \cdots p(i_1, i_2, \ldots, i_{k-1})}$$

and the proof is complete.

Remark 4 In the case of a uniform distribution, i.e. when $p_i \equiv 1/m$ for any $i \in S$, we have

$$p_{i_1}p_{i_2} \cdots p_{i_{k-1}} \frac{1}{p(i_1)p(i_1, i_2) \cdots p(i_1, i_2, \ldots, i_{k-1})} = \frac{1}{(m-1)(m-2) \cdots (m-k+1)}.$$

It is therefore immediate to prove that the expression (4) coincides in this case with (3).

3 Approximation of the expected value

The exact formula we obtained in the previous section is nice, but it is tremendously heavy to compute as soon as the cardinality of the support of the distribution becomes larger then 10. The number of all possible ordered choices of indexes sets involved in (5) increases very fast with k leading to objects hard to handle with a personal computer. For this reason it would be important to be able to approximate this formula, at least in some case of interest, even if its complicated structure may suggest that it could be quite difficult in general. In this section we shall consider the case of the Mandelbrot distribution, which is commonly used in the Heaps’
law and other practical problems. Applying the results proved in [4], we present here a possible strategy to approximate the expectation of $X_m(k)$ and present some numerical approximation in order to test our procedure.

Let us consider $R_m(n)$ and $X_m(k)$: these two random variables are strictly related, since $[R_m(n) > k] = [X_m(k) < n]$, for $k \leq n \leq m$. However, we have seen that the computation of their expected values is quite different. With an abuse of notation, we could say that the two functions $n \mapsto \mathbb{E}[R_m(n)]$ and $k \mapsto \mathbb{E}[X_m(k)]$ represent one the “inverse” of the other. In order to confirm this statement, let us consider the case studied in [4], i.e. let us assume to sample from the Mandelbrot distribution. Fixed three parameters $m \in \mathbb{N}$, $\theta \in [1, 2]$ and $c \geq 0$, we shall assume that $S = \{1, \ldots, m\}$ and

$$p_i = a_m(c + i)^{-\theta}, \quad a_m = \left(\sum_{i=1}^{m} (c + i)^{-\theta}\right)^{-1}. \tag{6}$$

We implement both the expressions (1) and (5) using the environment R (see [1]). We set the parameters of the Mandelbrot distribution to be $c = 0.30$ and $\theta = 1.75$. Using (5), we compute the expected number $\mathbb{E}[X_m(k)]$ of elements we have to draw randomly from a Mandelbrot distribution in order to obtain k different records, for three levels of m, being m the vocabulary size, i.e the maximum size of different words. In brackets we show the expected number of different words in a random selection of exactly $E[X_m(k)]$ elements, computed using (1). Results are collected in Table(1). We see that the number of different words we expect in a text size of dimension $E[X_m(k)]$ is close to the value of k and this supports our statement about
the connection between $\mathbb{E}[R_m(n)]$ and $\mathbb{E}[X_m(k)]$. As underlined before, we can compute these expectations only for small values of k.

number of different words	$m = 5$	$m = 8$	$m = 10$
$k = 2$	2.80 (1.97)	2.63 (2.00)	2.57 (2.01)
$k = 3$	6.08 (2.87)	5.17 (2.95)	4.93 (2.97)
$k = 4$	12.42 (3.76)	9.01 (3.90)	8.31 (3.92)
$k = 5$	28.46 (4.59)	14.81 (4.84)	13.04 (4.88)
$k = 6$	-	23.95 (5.77)	19.68 (5.84)
$k = 7$	-	39.96 (6.69)	29.21 (6.80)
$k = 8$	-	77.77 (7.55)	43.66 (7.74)

Table 1: Expected text size in order to have k different words taken from a vocabulary of size m

At the same time, since $\mathbb{E}[R_m(n)] \leq m$, it is clear that our statement that $n \mapsto \mathbb{E}[R_m(n)]$ and $k \mapsto \mathbb{E}[X_m(k)]$ represent one the “inverse” of the other could be valid just for values of k small with respect to m. This idea arises also from Table 1, but in order to confirm this we shall compare the two functions for larger values of m. Since our formula is not computable for values larger then 10, we shall perform a simulation to obtain its approximated values. In Figure 1 we compare the values of the two functions for $m = 100$ and for values of k ranging from 1 to m. Again, we suppose the elements are drawn from a Mandelbrot distribution with the same value of
c and θ. The two functions are close up to $k = 90$, while for larger values of k the distance between the two values increases. Thanks to these results, we propose the following approximation strategy: the main result proven in [4] is that

$$\mathbb{E}[R_m(n)] \sim \alpha n^\beta$$

when $n, m \to \infty$ with validity region $n << m^{\theta-1}$, where $\beta = \theta^{-1}$ and $\alpha = a_{\infty}^2 \Gamma(1-\beta)$, where $a_{\infty} = \lim_{m \to \infty} a_m$ (see the expression (6)). Assuming that for values of $n << m^{\theta-1}$, $n \mapsto \mathbb{E}[R_m(n)]$ and $k \mapsto \mathbb{E}[X_m(k)]$ could represent one the “inverse” of the other, we get

$$\mathbb{E}[X_m(k)] \sim \left(\frac{k}{\alpha}\right)^\theta$$

with validity region $k << \tau$, where τ is the approximated value of k for which $\mathbb{E}[X_m(k)] = m^{\theta-1}$. In order to test our approximation scheme, we shall take the same value of the constants as before, $m = 500$, $k = 1, \ldots, 60$. Figure (2) shows the results: we obtain a very good correspondence between the simulated values and the approximation curve in the range of applicability $k << 25$.

References

[1] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.
[2] Sheldon Ross. *A first course in probability*. Prentice Hall, New York, 7th edition edition, 2005.

[3] Wolfgang Stadje. The collector’s problem with group drawings. *Adv. in Appl. Probab.*, 22(4):866–882, 1990.

[4] D. C. van Leijenhorst and Th. P. van der Weide. A formal derivation of heaps’ law. *Information Sciences*, 170(2-4):263–272, 2005.

[5] Hermann von Schelling. Coupon collecting for unequal probabilities. *Amer. Math. Monthly*, 61:306–311, 1954.
Figure 1: Comparison between $\mathbb{E}[X_m(k)]$ (filled red circles) and $\mathbb{E}[R_m(n)]$ (solid black circles) for $m = 100$ and $k = 1, \ldots, 100$ (main figure). Zoom: comparison between $\mathbb{E}[X_m(k)]$ (solid red line) and $\mathbb{E}[R_m(n)]$ (dashed black line) for $k = 1, \ldots, 80$ (sx) and $k = 81, \ldots, 100$ (dx).
Figure 2: Comparison between $E[X_m(k)]$ (filled black circles) and $(k/\alpha)^\theta$ (solid red line) for $m = 500$ and $k = 1, \ldots, 60$