Processing of exposure results for composite material with the choice of their optimal composition

A Bulgakov\(^*\), V Afonin\(^2\), I Erofeeva\(^2\) and V Fedortsov\(^2\)

\(^1\)Southwest State University, Russia
\(^2\)Ogarev Mordovia State University, Russia

\(^*\) natalybredikhin@yandex.ru

Abstract. The article presents the results of processing a number of compositions of composite materials sustained under cyclic temperature changes, as well as changes in humidity and positive temperatures. A method is proposed for determining the optimal composition of materials, taking into account changes in such characteristics as hardness, modulus of deformation of the material and the elastic modulus of the material during exposure.

1. Introduction

At the present stage of studying concretes, composite concretes and composite materials in general, higher attention is paid to their optimization, the study of their characteristics, the dependence of various properties on operating conditions.

Questions of studying the properties and characteristics of composite materials and concretes are widely covered. The problems of modeling the problems of exposing materials in adverse operating conditions are considered. Experiments are conducted to study the properties of building materials, cement and polymer composites [1-30].

Various methods and algorithms for processing experimental data are used, for example, methods of experiment planning [9, 11-14], regression analysis [25-27], decision-making theory [28-33], optimization [11, 12, 15, 19, 20, 22, 23, 28, 29, 30]. To varying degrees, they are used to analyze the results of exposure of composite materials in adverse conditions [7, 9-11, 13, 14, 27]. Various goals are set. In particular, an important task is to determine the composition of composites, the characteristics of which are most resistant to operational impacts. First of all, it is the hardness of the material, then the modulus of elasticity of the corresponding character. In this paper, they are chosen – the hardness (T), the material's modulus of deformation (Ed), and the equilibrium elastic modulus (Eee). As a result of the tests, their absolute changes were recorded during the following time periods: 0 (indicators of control samples), 15, 30 and 45 days. The task is to select the tested composites of the composition that is least susceptible to adverse operational effects by any criteria. A multi-criteria and multidimensional optimization problem arise. This problem is considered and justified by numerical simulation experiments.
2. Materials and methods

The problem statement consists in the optimal choice of those compositions of composite materials, in which their properties – hardness, modulus of deformation and equilibrium modulus of elasticity change at least during the exposure time. The materials were aged under the influence of positive and negative temperatures, and under the influence of high humidity and variable temperatures.

Thermocyclic tests of samples (composites) were carried out in laboratory conditions in the climate chamber of VIAM (all-Russian research Institute of aviation materials) in two stages. At the first stage, a batch of samples was tested with 15 thermocycles, and at the next stage, the second batch of samples was tested with 13 thermocycles. One 24-hour thermal cycle includes four thermal states. Tests of samples under cyclic influence of positive and negative temperatures included the following operations: cooling of samples from room temperature (+23°C) to –50°C – about an hour (50 – 55 min); exposure of samples at a temperature of –50°C – 9 h; natural heating of samples to room temperature (+23°C) with the camera off – at least 5 h; exposure of samples at room temperature (+23°C) – 9 hours [27].

Tests of samples at high humidity (98%) and varying positive temperatures included other parameters: heating of samples from room temperature (+23°C) to +60°C – about 5 minutes; exposure of samples at a temperature of +60°C – 9 hours; natural cooling of samples to room temperature (+23°C) with the camera off – at least 5 hours; exposure of samples at room temperature (+23°C) – 9 hours [27]. Experimental data of the conducted tests are given in table 1, table 2, where A1, A2, ..., B1, B2 – designations of the studied composites.

Table 1. The results of thermo-cyclic testing.

Composition (Alternative)	Duration tests, day	Hardness (T), [MPa]	Module Deformations (Ed), [MPa]	Equilibrium modulus of elasticity (Eee), [MPa]
A1	0	4010.17	9291.38	144975.95
	15	2037.07	3354.78	38384.05
	30	1701.21	2606.26	37544.48
	45	1349.36	1822.47	36664.94
A2	0	7016.08	214592.64	285239.47
	15	3629.11	7971.14	97274.28
	30	2982.76	6072.11	86090.54
	45	2166.32	3674.32	71976.34
A4	0	5476.90	147693.86	183037.86
	15	3966.10	9102.56	103947.96
	30	3643.01	80613.86	89938.26
	45	3194.28	66153.45	70480.34
A5	0	9746.86	354170.95	417368.27
	15	3786.73	85008.56	91850.16
	30	3273.56	69346.72	81875.07
	45	2488.71	45393.31	66619.05
A9	0	7488.59	250219.85	286890.30
	15	1228.19	15722.21	17726.83
	30	1743.69	28292.49	39728.65
	45	2811.52	54330.94	85303.85
A10	0	3503.34	75640.22	111334.81
	15	2728.51	51977.25	63513.81
	30	2641.86	49571.33	65824.93
	45	2441.90	44019.21	71158.28
A11	0	2472.17	44833.37	64208.59
	15	2451.66	44358.11	61429.77
	30	2199.48	38246.00	52036.89
	45	1465.86	20465.32	24712.15
Table 2. The results of tests under cyclic impact high humidity and positive temperatures.

Composition (Alternative)	Duration tests, day	Hardness (T), MPa	Module deformations (Ed), MPa	Equilibrium modulus of elasticity (Eee), MPa
A1	0	4010.17	92914.38	144975.95
	15	4308.81	103122.15	128411.95
	30	4188.12	98968.91	131254.64
	45	4058.15	94496.20	134316.00
A2	0	7016.08	214592.64	285239.47
	15	4926.15	129501.89	165838.56
	30	5604.37	156282.45	192936.22
	45	6590.88	195236.00	232351.00
B3	0	2065.24	34205.20	61323.24
	15	3492.44	75571.86	100653.67
	30	3432.16	73535.70	101391.15
	45	3356.80	70990.50	102313.00
B4	0	9746.86	354170.95	417368.27
	15	5577.39	151786.84	202344.36
	30	8217.58	289799.12	355544.23
	45	12705.90	524420.00	615984.00
B5	0	4089.57	95300.69	111239.79
	15	8337.79	236655.80	327340.94
	30	10339.26	171126.11	451548.63
	45	14342.20	625891.00	699694.00
B6	0	1187.85	14949.93	32376.75
	15	7496.49	236655.80	269806.53
	30	5633.02	171126.11	199181.37
	45	1207.29	15493.10	31446.60
B7	0	7488.59	250219.85	286890.30
	15	3119.91	63500.34	97528.19
	30	3092.42	63674.97	96429.32
	45	3013.89	64173.90	93289.70

As can be seen from the tables 1 and 2, the properties (T, Ed, Eee) of the compositions change relative to their control values during the exposure time. Their relative changes are of interest. In this regard, the values of the tables should be converted to relative values, relative to the control values, relative to the values in the row with the indication zero (0 – the duration of the test). This will allow you to compare the properties of materials with different ranges of changes in a particular property. These two selves may differ by several orders of magnitude.

Table 3. The results of tests under cyclic impact high humidity and positive temperatures.

Composition (Alternative)	Duration tests, day	Hardness (T)	Module deformations (Ed)	Equilibrium modulus of elasticity (Eee)
A1	0	1.000000	1.000000	1.000000
	15	1.074471	1.109862	0.885747
	30	1.044375	1.065162	0.905355
	45	1.011965	1.017024	0.926471
A2	0	1.000000	1.000000	1.000000
	15	0.702123	0.603478	0.581401
	30	0.798789	0.728275	0.676401
	45	6590.88	195236.00	0.814582
For an explanation, see table 3, which summarizes the relative values for the first two compounds (A1, A2) from table 2.

Regardless of the purpose of a particular composite, the natural requirement is primarily the immutability of its properties. In this case, the relative values of the properties will be equal to one. At the same time, the actual state of things may not meet the requirement that the property indicators remain unchanged during the exposure time under the specified operating conditions. For comparison of the desired requirement of immutability of properties and their actual changes in figure 1, figure 2 charts are presented in relative units.

Figure 1. A property is invariant for the tests.
Figure 2. The property depends on the test.

As shown in tables 1 and 2, relative changes in properties may exceed the level of the control sample property during the test. In this regard, it is proposed to calculate the area under the polyline curve (figure 3, figure 4) and compare it with the area of the rectangle \(S_{\text{rect}} \) with a height equal to one. In the case of figure 1, \(S_{\text{rect}} \) is equal to 45 square units.

Figure 3. Monotonous decrease of the property value.
Figure 4. Non-monotonic change in the values of the properties.

When the values of the controlled property (for example, hardness) of the composite are monotonously reduced, one of the criteria for determining the best composition can be the ratio of \(S_{\text{polygon}} / S_{\text{rect}} \) areas, which will tend to zero in the ideal case. If there is a non-monotonic change in the
value of the controlled property (figure 4), the area of the polygon S_{polygon} may differ little from the area of the rectangle for the composite property with the unchanged nature of the change from the test time. However, the given area ratio can be taken as a criterion in the problem of determining the optimal composition. In [15], a two-criteria optimization problem was considered, and the criteria used to determine the preferred composition of composites were described. Here we propose an addition to the criteria for searching for the optimal composition of a number of composites that have been tested under test operating conditions. For the first criterion, we use the $S_{\text{polygon}} / S_{\text{rect}}$ area ratio.

Figure 5 and figure 6 show the construction to determine the criteria K_i, H_i, $i = 1, 2, 3$.

![Figure 5. To determine the H_i criterion.](image)

![Figure 6. To determine the K_i criterion.](image)

The criterion S, which takes into account the area ratio, is formed in the form $S_i = S_{\text{polygon}} / S_{\text{rect}}$. Another criterion, the J_i criterion, is defined as the sum of the specified criteria, i.e.

$$J_i = S_i + K_i + H_i, \quad i = 1, 2, 3.$$

(1)

It is obvious that for a composite whose properties change slightly during the exposure period, the entered criteria will tend to zero. However, the number of exposure points is not limited (within reasonable limits). These ratios will be determined for each composite composition, in particular in accordance with table 1 and table 2. There will be seven for each exposure point, i.e. 28 for each controlled property.

Thus, as in the decision-making theory [24, 25], we accept composite compositions (A1, A2,...) as alternatives, and S_i, K_i, H_i, J_i ($i = 1, 2, 3$) as criteria. However, the criteria values should be defined for each property. The following tables are compiled in accordance with ELECTRA methods:

- table of values for criteria and alternatives,
- table of ratings for the values of each criterion,
- table matrix of the estimates.

In this case, the task of selecting the composition is to determine the optimal sum of ratings from the rating matrix. The size of the rating matrix is set based on possible changes in each controlled property of the composites. The estimation matrix is formed taking into account monotony and arbitrary changes in a particular property during the exposure period. Summation of scores based on the rating matrix is based on comparison of the values of the rating matrix and criteria for a predetermined value. The value of this value is defined as a half digit of significant digits in the data array. For the data shown in tables 1 and 2, it is equal to 0.005. The comparison is performed based on the absolute value of the nearest values of the rating matrix with the values of the calculated criteria.
cyclic algorithm is used with a nesting value equal to three-the number of criteria (controlled properties of composites), the exposure points, and the number of alternative samples.

There are various ways to choose the optimal compositions [4, 7, 12, 15, 19, 21–24, 28, 30]. Here we propose a developed heuristic approach for processing experimental data in order to select the optimal composition of test-tested composites.

3. Results

Taking into account the fact that the selected criteria should be minimized, then the formation of estimates for the criteria will be arranged in descending order. The size of the matrix of possible criteria values should be assumed to be greater than the number of alternatives – the number of compositions. This will allow you to divide the estimates in a wider range, which, in turn, will almost eliminate the coincidence of the sum of estimates for alternatives. In the conducted experiments, the size of the matrix with estimates is assumed to be equal to twice the size of the number of alternatives.

Table 4 shows a matrix of estimates of composites exposed during cyclic temperature tests.

Table 4. The final matrix of the evaluations for cyclic temperature testing.

Alternatives	Total score	T	Ed	Eee	
		S	K	H	J
		S	K	H	J
128 A10	13	11	11	14	14
124 A11	14	13	14	11	14
105 A4	11	10	9	10	10
74 A1	8	6	6	4	5
73 A2	8	6	7	4	8
70 A5	7	5	5	3	3
59 A9	5	4	3	2	2

In table 4, the alternatives are the teams ranked by total points. Experimental data are taken from table 1. As can be seen, the optimal composition of the composite corresponds to A10, which more than the rest meets the conditions for optimal selection among a given number of samples that have been tested at a temperature change for 45 days. For visual control of the relative change in the hardness of the first group of composites, a diagram is shown in figure 7, which shows that the performed ranking

![Figure 7. Relative change in the hardness of composites (A1, A2, A4, A5, A9, A10, A11).](image)
of samples (table 4) is consistent with the nature of the change in the hardness of each composition (alternative) during the test time.

A similar table (table 5) is provided for optimal selection of composites that have been maintained in conditions of high humidity and positive temperatures.

Table 5. Final rating matrix for composite exposure in conditions of high humidity and positive temperatures.

Total score	Alternatives	The studied properties of the composites: T, Ed, Eee							
		T	Ed	Eee					
		S	K	H	J	S	K	H	J
98	A1	5	2	3	14	14	2	1	14
97	B6	14	14	14	1	1	2	14	14
66	B5	9	6	10	2	2	2	8	9
51	B7	3	1	2	2	1	2	9	12
49	B3	6	3	5	3	3	4	4	5
45	A2	4	2	3	3	4	3	4	4
44	B4	4	2	3	2	2	6	7	3

According to the results of table 5, we conclude that the most preferred composite is A1 when tested in conditions of high humidity and positive temperatures.

4. Conclusions

The paper considers the results of experimental studies of various ready-to-use composite materials. In contrast to the known similar studies [7, 9, 11, 13], the paper highlights the results of studies with a periodicity of 15 days: 0-15-30-45. The tests were carried out according to the requirements of climatic tests-from sub-zero temperatures to high positive values. To a certain extent, a heuristic method for solving a multi-criteria multidimensional optimization problem is proposed, which allows it to be used in experimental studies to determine the optimal composition of a number of composites under study. The authors have defined and proposed criteria for finding the optimal composition of composites that have passed test tests with the measurement of three properties of composites. At the same time, the number of properties can be quite arbitrary, according to the authors. The number of exposure points can also be arbitrary. At the same time, the authors are aware that if the results are extrapolated, they may differ to some extent from the experimental results obtained over a longer period of time, more than 45 days.

References

[1] Yatsenko E, Goltzman B, Chumakov A, Smoliy V, Holshemacher K and Bulgakov A 2019 Prospects for the use of thermal disposal products for solid municipal waste in the technology of silicate heat insulation materials Izvestiya vuzov. severo-kavkazskiy region technical science. 3, pp. 77–81. ISSN 0321-2653. DOI: 10.17213/0321-2653-2019-3-77-81

[2] Chumakov A, Yatsenko E, Golovanova S, Bulgakov A and Holshemacher K 2019 Strength and frost resistance of special road concretes materials Izvestiya vuzov. severo-kavkazskiy region technical science. 2, pp. 55–59. ISSN 0321-2653 DOI: 10.17213/0321-2653-2019-2-55-59

[3] Yatsenko E A, Goltzman B M, Bulgakov A G and Holshemacher K 2019 Ways of utilization of mining wastes containing silicates Journal of Ore-dressing 2, pp. 49–54. DOI:
[4] Krause M, Otto J, Bulgakov A and Sayfiddine D 2018 Strategic optimization of 3D-concrete-printing using the method of CONPrint3D Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC 2018). Berlin, pp. 1–7

[5] Erofeev V, Korotaev S, Bulgakov A, Tretjakov I and Rodin A 2016 Getting fired material with vitreous binder using frame technology Procedia Engineering 164 pp. 166–171. DOI: 10.1016/j.proeng.2016.11.606

[6] Bulgakov A, Erofeev V, Bogatov A, Smirnov V and Schach R 2016 Innovative production technology of binding and building composite materials on the basis of glass wastes. In Insights and Innovations in Structural Engineering, Mechanics and Computation (ed. A. Zingoni), Taylor & Francis Group, London, pp. 1583–1586. ISBN 978-1-138-02927-9. Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016), 5–7 September 2016, Cape Town, South Africa

[7] Erofeeva I V, Afonin V V, Fedortsov V A, Emelyanov D V, Podzhivotov N Yu and Zotkina M M 2016 Investigation of the behavior of cement composites in conditions of high humidity and variable positive temperatures International Journal for Computational Civil and Structural Engineering 13 No.4. Pp. 66–81

[8] Erofeev V T, Cherkasov V D, Emelyanov D V and Erofeeva I V 2017 Impact strength cement composites Academia. Architecture and construction No. 4. Pp. 89–94

[9] Afonin V V, Erofeeva I V., Zotkina M M, Emelyanov D V and Podzhivotov N Yu 2019 Reference image quality assessment of composite materials exposed to positive and negative temperatures. Bulletin of the MSU - Proceedings of Moscow State University of Civil Engineering 14 I pp. 83–93. DOI: 22227/1997-0935. 2019.83-93

[10] Parfenov A A., Sivakova O A., Gusar O A, Balakireva V V. 2019 Work and destruction of concrete in high and low temperature conditions Construction materials 3 Pp. 64–66. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-64-66

[11] Dimitrienko Yu I, Drogoilyub A N, Sokolov A P, Shpakova Yu V 2013 Method for solving the problem of optimizing the structure of dispersed-reinforced composites with restrictions on thermal and strength properties. Nauka i obrazovanie. Bauman Moscow state technical University. Electronic journal 11 Pp. 415–430. DOI: 10.7463/1113.0621065

[12] Kharitonov A M 2015 Development of methods of optimization of construction compositions of multicomponent composites Fundamental research 11 Pp. 520–523. URL: http://fundamental-research.ru/ru/article/view?id=39452

[13] Erofeeva I V, Fedortsov V A, Emelyanov D V, Podzhivotov N Yu, Moiseev V V, Kremcheyev A N 2018 Studies of the influence of cyclically acting negative and positive temperatures on the damping properties of cement composites CHEMICAL BULLETIN 1 3 Pp. 42–51

[14] Erofeeva I V, Fedortsov V A., Afonin V V, Emelyanov D V, Podzhivotov N Yu, Moiseev V V, Kremcheyev A N 2018 Studies of the influence of increased humidity and variable elevated temperatures on the damping properties of cement composites CHEMICAL BULLETIN 1, No. 3. Pp. 62–71

[15] Afonin V V, Erofeeva I V, Fedortsov V A, Emelyanov D V, Podzhivotov N Yu 2018 Heuristic approach to solving two-criterion problem of optimization of composite materials. Bulletin of the MSU Proceedings of Moscow State University of Civil Engineering 13 (11):1357–1366. DOI: 10.22227/1997-0935.2018.11.1357-1366

[16] Lesnov V V, Erofeev V T, Afonin V V. 2018 Investigation of strength properties of filled plasticized cement matrices intended for frame composites Regional architecture and construction 4 (37). Pp. 71–79

[17] Bulgakov B I, Alexandrova O V 2017 Mathematical modeling influence of raw materials components on the strength of high-quality fine-grained concrete during compression Bulletin of the MSU. 9 (108) Pp. 999–1008
[18] Soldatenko L V 2009 Introduction to mathematical modeling of construction and technological tasks Orenburg: GOU OSU 161 p
[19] Garkina I A, Danilov A M and Korolev E V 2010 Mathematical and computer science modeling in the synthesis of building composites: state and prospects Regional architecture and construction 2 Pp. 9–13
[20] Merkulov D A, Korotaev S A and Erofeev V T 2017 Optimization of the granulometric composition of quartz-filled polyester composites BST: Bulletin of construction equipment 5 (993). Pp. 31–33
[21] Yezersky V A, Kuznetsova N In, Bessonov I V and Seleznev A D 2018 Multi-Criteria comparative analysis in assessing the quality of cement composites using waste CPBP Construction and reconstruction 3 (77). Pp. 89–97
[22] Sorokin D S and Danilov A M 2014 Optimization of structure and properties of composite materials Modern scientific research and innovation 5 Part 1 URL: http://web.snauka.ru/issues/ 2014/05/34828
[23] Safronov V N and Kugaevskaya S A 1914 Optimization of the properties of cement composites in various technological methods of preparation of cyclic activation of the closing water Bulletin of the Tomsk state University of architecture and construction 1 (42). Pp. 85–99
[24] Stashkov S I. 2019 Dissertation for the degree of candidate of technical Sciences / Perm 212 p.
[25] Shakhova L D, Chernositov E S, Shchelokov L S and Denisova J V. A 2019 Study of factors affecting the fluidity of cement Bulletin of BSTU 11. Pp. 8–16. DOI:10.34031/2071-7318-2019-4-11-8-16
[26] Shakhova L D, Chernositov E S, Shchelokov L S and Denisova J V. A 2019 Study of factors affecting the fluidity of cement Bulletin of BSTU 11. Pp. 8–16. DOI:10.34031/2071-7318-2019-4-11-8-16
[27] Erofeeva I V 2018 Dissertation for the degree of candidate of technical Sciences / Penza 318 p.
[28] Yang S Y, Girivasan V, Singh N R, Tansel I N and Kropas-Hughes C V 2003 Selection of optimal material and operating conditions in composite manufacturing. Part II: complexity, representation of characteristics and decision making International Journal of Machine Tools & Manufacture 43 175–184
[29] Li Xianhong, Yu Haibin and Mingzhe Y 2012 Modeling and Optimization of Cement Raw Materials Blending Process Mathematical Problems in Engineering Pp. 1–31. DOI:10.1155/2012/392197
[30] Nitza M G, Hildelix L, Mauricio C R and Suarez O M 2012 Optimal Cement Mixtures Containing Mineral Admixtures under Multiple and Conflicting Criteria Advances in Civil Engineering DOI: https://doi.org/10.1155/2018/3780810
[31] Kini R L 1981 Decision-Making under many criteria: preferences and substitutions Moscow: Radio and communications 560 p.
[32] Larichev O I. 2002 Theory and methods of decision-making 392 p.
[33] Berdoudi S, Hebhoub H and Djebien R 2017 Valorization and recycling of quarries waste as an addition in cement Journal of Applied Engineering Science 15 2, 420, 122–127. DOI: 10.5937/jaes15-12743