Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine

L Zhang¹, W L Zhuge¹, J Peng², S J Liu¹ and Y J Zhang¹

¹State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
²Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

E-mail: yjzhang@tsinghua.edu.cn

Abstract. In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (W_R and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β_6, the exit tip radius R_{6t} and hub radius R_{6h} for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency η_{ts}, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency η_{ts} are analyzed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value of r is at 0.5 to 0.6.

1. Introduction

In recent years, the automotive industry has made great progress in improving the engine efficiency. Current produced gasoline engines are working with a top efficiency of 30%-36%, while diesel engines already achieve about 40%-47%. In the internal-combustion engine, more than half of the fuel energy is wasted in the form of heat. Organic rankine cycle (ORC) is identified as a favorable approach for the recuperation of waste heat [1-3]. The most critical component of the ORC system is the turbine, therefore its feasibility needs to be evaluated by performing the preliminary design of a radial turbine for the best system resulting from the thermodynamic cycle optimization [4].
In general, the method proposed by Whitfield and Baines [5] is adopted for the preliminary design. In this design procedure for the turbine blade trailing edge geometry, three main parameters need to be determined: relative exit flow angle β_6, the exit tip radius R_{6t}, and hub radius R_{6h}. According to this method, β_6 is designed to minimize the relative Mach number at the shroud radius. Under the assumption of zero discharge swirl and ideal gas model, the optimal value of β_6 is set to about -55 degrees. With the relative exit flow angle fixed, the exit velocity triangle is complete once the magnitude of a velocity vector has been derived. The convenient method to fix the exit velocity triangle is to set the relative velocity ratio $W_R = W_{3s}/W_2$ to a value based on the test data or experience to ensure a good expansion through the rotor. Then the radius ratio r_3/r_2 is given by a simple function related to W_R, β_6, and relative inlet flow angle β_4. Finally, the appropriate value of hub to shroud radius ratio γ relies on the experience and the results of testing.

The design procedure shows that when choosing the turbine blade trailing edge geometric parameters, the main purpose is to maximize the rotor efficiency. Two kinds of loss need to be considered; one is the internal passage loss, the other is the exit kinetic energy loss. In the method proposed by Whitfield and Baines, two assumptions (ideal gas and zero discharge swirl) and two experience values (W_R and γ) are used to get the blade trailing edge geometry. Relative exit flow angle β_6 is designed to minimize the relative Mach number with the purpose of decreasing the internal passage loss as much as possible, and with the relative velocity vector W_6 fixed, the assumption of zero discharge swirl can minimize the exit kinetic energy. Hence, β_6 is a compromise to be made between a low relative Mach number to reduce the internal passage loss, and a low absolute Mach number to reduce the exit kinetic energy loss. What’s more, two experience values (W_R and γ) have the same effect.

The method above is established based on the experience and results of testing, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters. And then, the real gas effects of the organic fluid must be taken into consideration when designing the ORC turbine [6-8]. It means that most of the empirical values employed in the procedure using air a kind of ideal gas as working fluid, are not available for the high-expansion ratio typical of ORC turbines. What’s more, the assumption of zero discharge swirl is the best choice in consideration of fixed relative velocity vector W_3 to reduce the absolute Mach number. If the exit velocity triangle is determined to minimize the exit kinetic energy and W_3 can be adjusted for this purpose, the zero discharge swirl assumption is no longer the best choice.

In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency η_{ts}. The rotor exit velocity triangle analysis is carried out to derive the mathematical optimal solution for minimizing the exit velocity. And then with consideration of organic working fluid R123, the influence of exit geometry parameters on the turbine efficiency performance is analyzed and the suitable ranges of these parameters are given. In the end, the blade trailing edge geometric parameters of an existing turbine are optimized using the method above.

2. The equation of mathematical optimal solution

Figure 1 below shows the rotor exit velocity triangle at the Root-Mean-Square radius. The exit absolute velocity can be determined by three variables, the exit blade speed U_6, the exit relative speed W_6, and the exit flow angle β_6. Along the exit radius height, each radius value has a unique velocity triangle figure. The selected standard radius should reflect the average status of the velocity triangle. In this procedure, the Root-Mean-Square radius is selected as the standard one. Parameters influencing these three variables are listed below:

- Exit blade speed U_6: the exit Root-Mean-Square radius R_{RMS}, the rotating speed N;
- Exit relative speed W_6: the exit volume flow rate Q_6, the exit tip radius R_{6t}, and hub radius R_{6h}, the exit flow angle β_6;
- Exit flow angle β_6: the exit blade angle β_{6b} and incident angle i_6;
The velocity triangle in Figure 1 shows that given the exit blade speed U_6 and flow angle β_6, the minimum value of exit absolute velocity C_6 exists in the solution that C_6 is perpendicular to W_6, as the red dotted line illustrates. That also means if the rotating speed N and exit flow angle β_6 are known, the minimum value of C_6 is already determined. The way to achieve this value is to adjust the value of W_6. W_6 is mainly determined by the exit volume flow rate Q_6 and exit area A_6 (the function of exit tip radius R_{6t} and hub radius R_{6h}).

The main purpose is to find out the mathematical optimal solution of exit absolute velocity, so the inlet conditions are kept constant, especially the rotor inlet radius R_4, which can be used as a standard to determine other radii. Two dimensionless parameters are defined to substitute for the exit tip radius R_{6t} and hub radius R_{6h}, they are defined as:

$$\tau = \frac{R_{RMS}}{R_4}$$ \hspace{1cm} (1)

$$\gamma = \frac{R_{6h}}{R_{6t}}$$ \hspace{1cm} (2)

Where $R_{RMS} = \sqrt{\frac{1}{2}(R_{6t}^2 + R_{6h}^2)}$ is the exit RMS radius.

When the condition that C_6 is perpendicular to W_6 is satisfied, equations (3)-(4) are set up. Then the mathematical optimal solution can be derived, given τ, N and β_6, the minimum value of C_6 is:

$$C_6 = U_6 \cdot \cos \beta_6$$ \hspace{1cm} (3)

$$C_6 = \frac{C_{e6}}{\sin \beta_6}$$ \hspace{1cm} (4)

Where $U_6 = \alpha R_{RMS} = \frac{\pi R_4}{30} N \tau$ and $C_{e6} = \frac{Q_6}{A_6} = \frac{Q_6}{\pi (R_{6t}^2 - R_{6h}^2)}$.

To eliminate C_6 in equations (3)-(4), and using parameters τ, γ and R_4 to substitute for R_{RMS}, R_{6t} and R_{6h}, then an equation concluding τ, γ, β_6 is achieved, as equation (5) shows:

$$\frac{1 + \gamma^2}{1 - \gamma^2} = Z \tau^3 \sin 2\beta_6$$ \hspace{1cm} (5)

Where $Z = \frac{\pi^2 R_4^3 N}{30 Q_6}$ is a new defined parameter.
When designing a turbine, the specific speed \(N_s \) and specific diameter \(D_s \) are significant parameters to be considered firstly, they are described as:

\[
N_s = \frac{\omega \sqrt{Q_6}}{\Delta h_0^{3/4}}
\]

(6)

\[
D_s = \frac{D \Delta h_0^{1/4}}{\sqrt{Q_6}}
\]

(7)

Where \(D \) is a representative diameter, conventionally taken to be the rotor inlet diameter \(D_i \).

Combining equations (6)-(7) to eliminate the total enthalpy drop \(\Delta h_0 \), it is found that the parameter \(Z \) is a simple function of \(N_s \) and \(D_s \),

\[
Z = \frac{1}{8} \pi N_s D_s^3
\]

(8)

Until now, the equation containing turbine blade trailing edge geometric parameters is achieved (equation 5), and the parameter \(Z \) is derived to be the combination of \(N_s \) and \(D_s \) (equation 8). The equation (5) can be used for the design procedure as well as the parametric optimization. In the design procedure, given the specific speed \(N_s \) and based on the experience relation \(N_s D_s = 2 \), parameter \(Z \) can be determined. Then, the three exit geometry parameters have the certain relation according to equation (5). Given two of them, the third parameter can be calculated. In the parametric optimization procedure, all of the parameters are known already, if the exit kinetic energy loss is large, the exit geometry parameters can be modified based on equation (5).

3. Influence of blade trailing edge dimensionless geometric parameters on the turbine efficiency

In this section, based on an existing turbine, large amount of cases are calculated to discuss influence of exit geometry parameters on the turbine efficiency performance using the commercial software Concepts NREC. The turbine efficiency \(\eta_t \) contour map is shown below in Figure 2. In each efficiency contour map, \(N \) and \(\beta_{60} \) are given, and the efficiency is the function of \(\tau \) and \(\gamma \). In the efficiency contour maps below, the horizontal ordinate represents \(\tau \), and the Y-axis represents \(\gamma \).

From the turbine efficiency contour maps in figure 2, several results can be achieved. First of all, the exit blade angle has the biggest influence on the turbine efficiency contour map. It determined the turbine efficiency contour map type and maximum value of the turbine efficiency. From -20 degree to -60 degree, the cosine value changing from 0.94 to 0.5, the maximum efficiency increases from 78% to 87%; however the high efficiency regions become a long and narrow region (see figure 2 c, f, i), which indicates that when the exit blade angle becomes bigger, the efficiency is more sensitive to exit tip and hub radius. From equation (3), it is known that exit blade angle is an independent parameter, and the changing of exit blade angle from -20 to -60 degree leads to about 47% decreasing of the cosine value of this angle, which means almost 47% decreasing of exit absolute velocity. Hence, it is reasonable that the exit blade angle has big influence on the efficiency contour map.

Secondly, the rotating speed have little influence on the efficiency contour map. From the contour maps on each column, the rotating speed changing from 31,000 to 39,000 rpm, it shows that the maximum efficiencies are almost the same, the efficiency distributions have limited difference. This result indicates that in different rotating speed there almost exits the same high efficiency region, which means the rotating speed has no influence on the optimal combination of \(\tau \) and \(\gamma \).

Finally, the exit geometry parameters \(\gamma \) and \(\tau \), which determine the exit hub and shroud radius, are discussed. From the efficiency contour maps, it is shown that large \(\gamma \) value and small \(\tau \) value always lead to low efficiency, which is in the top left corner of the maps, the main reason of this result is the increasing of internal flow passage loss. In general, there exits high efficiency in all these rotating speed and exit blade angle combination when the value of \(\gamma \) is at 0.3 to 0.4, and the value of \(\tau \) is at 0.5
to 0.6. The suitable ranges get from the efficiency contour maps are the compromise to be made between a low relative Mach number to reduce the internal passage loss, and a low absolute Mach number to reduce the exit kinetic energy loss. And these ranges will also be regarded as the recommended working ranges of the equation derived in section 2.

![Efficiency Contour Maps](image)

Figure 2. Turbine efficiency η_{ts} contour map in different rotating speed N and exit blade angle β_6 combination (The figure above gives 9 combinations of N and β_6. The rotating speed of first row is 31,000 rpm, and the second and third row are 35,000 and 39,000 rpm. The exit blade angle of first column is -20 degree, and the second and third column are -40 and -60 degree.)

4. **Parametric optimization based on the mathematical optimal solution**

In this section, an original turbine performance parameters are shown in table 1. Based on the system requirement, the original turbine using R123 as working fluid is designed, and after some preliminary optimizations, such as the adjustment of inlet incident angle to the common best range, the value of which is set to -22 degree. The performance of the turbine and loss distribution are achieved. The turbine efficiency η_{ts} is 80.4%, but the exit kinetic energy loss accounts for 11.7% of the total loss 19.6%, which is much too large. Then the relation of mathematical optimal solution achieved in section 2 is used to give an instruction on the parametric optimization procedure. The results in table 1 are obtained from the Concepts NREC software, Rital module.
Table 1. Performance parameters of original and modified cases.

Parameters	Original case	Modified case
β_{th} (degree)	-45.0	-55.0
β_6 (degree)	-32.5	-45.8
α_6 (degree)	54.8	43.8
τ	0.550	0.525
γ	0.42	0.33
C_6 (m/s)	77.0	60.4
Exit kinetic energy loss (%)	11.7	7.0
η_t / η_{in} (%)	92.1 / 80.4	90.6 / 83.6
Output power (kW)	20.5	21.3

The original geometry and the dimensionless parameters are list in table 1. According to equation (3), the minimum value of C_6 is 76.6m/s, which is almost the same with original case result 77m/s. The original case is already working on the place near the mathematical optimal solution with relative flow angle β_6 fixed, the potential to reduce the exit kinetic energy loss is to increase the value of β_6. Hence, the optimal solution is to improve the exit blade angle β_6 and reduce parameter τ. However, τ cannot make a big reduction because of the blade stress limitation. Based on the optimal ranges in section 3, the values selected are that β_6 is set to -55 degree and τ is set to 0.525. And then, γ can be calculated through equation (5). The value of γ is 0.33. In the end, the exit tip and hub radius can also be calculated by inlet radius R_4, τ and γ. The performance parameters of the modified turbine is also shown in table 1.

Comparing the two case, it is found that the exit kinetic energy loss can be reduced largely from 11.7% to 7%, and the exit relative angle plus exit absolute angle is almost equal to 90 degree. The results indicate that the relation of mathematical optimal solution is a good method for selecting the exit tip and hub radius, aiming at minimizing the exit kinetic energy loss. However, the total-to-total efficiency drops from 92.1% to 90.6%, which also indicates that the exit geometry has an influence on the rotor internal passage loss. The internal passage loss cannot be considered in this optimal solution, so even the theoretical solution shows that bigger β_6 and smaller τ are good choice, this may also lead to the bigger internal passage loss, and finally the total-to-static efficiency may drop because this trade-off relationship. The only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters.

Based on the equation (3), given designed rotating speed, the mathematical optimal exit absolute velocity monotonically decreases as parameter τ decreases and the exit relative flow angle β_6 increases theoretically; hence, the first and best choice to decrease the exit absolute velocity should be to decrease τ and increase β_6. However, two important factors limit the changing ranges of τ and β_6: rotor passage loss and rotor blade stress, especially the rotor passage loss. It is the fact that when selected the extreme values of τ and β_6, although the exit kinetic energy loss can be reduced vastly, total-to-total efficiency will also decrease dramatically. In the end, this trade-off relationship will lead to the largely dropping of the total-to-static efficiency not increasing. From the results in section 3, there exits high efficiency in all these rotating speed and exit blade angle combination when the value of γ is at 0.3 to 0.4, and the value of τ is at 0.5 to 0.6. Thus, this method can be recommended to be used when τ and β_6 are in this optimal ranges. And the parametric optimization can only be effective in this limited range.

5. Conclusions
In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency $\eta _{ts}$, and the blade trailing edge geometric parameters for a small scale ORC turbine are optimized according to the equations derived based on the mathematical optimal solution for minimizing the exit kinetic energy.

Firstly, the equations containing the dimensionless parameters τ, γ, N_s, D_s and exit blade angle β_6 are derived in section 2. And then, the total-to-static efficiency performance analysis with consideration of organic fluid R123 is discussed in section 3. The results show that the exit blade angle has the biggest influence on the turbine efficiency contour map, it determined the turbine efficiency contour map type and maximum value of the turbine efficiency; the rotating speed has almost no influence on the efficiency counter map, especially on the optimal combination of τ and γ; there exists high efficiency in all these rotating speed and exit blade angle combination when the value of γ is at 0.3 to 0.4, and the value of τ is at 0.5 to 0.6. The optimal ranges get from the efficiency contour map will also be regarded as the recommended working range of the equations derived in section 2. The results above can be used as basis and instruction for preliminary design and optimization of turbine blade trailing edge geometric parameters.

In the end, the method is used to modify the exit kinetic energy loss of an existing turbine from 11.7% to 7%, and the exit relative angle plus exit absolute angle is almost equal to 90 degree. The improvement of the modified case can be a good proof, which indicates that the equations is an appropriate method for blade trailing edge geometric parameters optimization. However, the internal passage loss increases from 7.9% to 9.4%, which indicates that this relation cannot consider any passage loss, so it cannot reflect to the change of total-to-total efficiency in theory. The only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters. Hence, this method can only be used in limited range of γ, τ and β, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value of τ is at 0.5 to 0.6.

Acknowledgments
The authors would like to thank the National Basic Research Program of China (2011CB707204) for the support.

References
[1] Boretti A A 2012 Journal of Energy Resources Technology 134(2) 022203
[2] Ho Teng, G R and C C 2007 Waste heat recovery of heavy-duty diesel engines by organic Rankine cycle Part II: Working fluids for WHR-ORC SAE international
[3] Ringler J, Seifert M, Guyotot V and Hübner W 2009 SAE International Journal of Engines 2(1) 67-76
[4] Lang W 2013 Journal of Engineering for Gas Turbines and Power 135(4) 042313
[5] Whitfield A and Baines N C 1990 Design of Radial Turbomachines (Harlow, England: Longman Scientific and Technical)
[6] Harinck J, Colonna P, et al. 2010 Journal of Turbomachinery 132(1) 011001
[7] Colonna P, Harinck J, et al. 2008 Journal of Propulsion and Power 24(2) 282-294
[8] Eric W and Lemmon R S 2006 J. Chem. Eng. Data 51 785-850