Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases

Katja Gemperlein¹, Demian Dietrich², Michael Kohlstedt², Gregor Zipf³, Hubert S. Bernauer³, Christoph Wittmann², Silke C. Wenzel⁴ & Rolf Müller¹,⁴

Long-chain polyunsaturated fatty acids (LC-PUFAs), particularly the omega-3 LC-PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), have been associated with beneficial health effects. Consequently, sustainable sources have to be developed to meet the increasing demand for these PUFAs. Here, we demonstrate the design and construction of artificial PUFA biosynthetic gene clusters (BGCs) encoding polyketide synthase-like PUFA synthases from myxobacteria adapted for the oleaginous yeast Yarrowia lipolytica. Genomic integration and heterologous expression of unmodified or hybrid PUFA BGCs yielded different yeast strains with specific LC-PUFA production profiles at promising yield and thus valuable for the biotechnological production of distinct PUFAs. Nutrient screening revealed a strong enhancement of PUFA production, when cells were phosphate limited. This represents, to the best of our knowledge, highest concentration of DHA (16.8 %) in total fatty acids among all published PUFA-producing Y. lipolytica strains.

¹Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland and Helmholtz Centre for Infection Research, Saarbrücken, Germany. ²Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany. ³ATG:biosynthetics GmbH, Merzhausen, Germany. ⁴Department of Pharmacy, Saarland University, Saarbrücken, Germany. Correspondence and requests for materials should be addressed to R.M. (email: Rolf.Mueller@helmholtz-hips.de)
Application of the hemiascomycetous yeast *Yarrowia lipolytica* has awakened a strong industrial interest due to its capacity to grow efficiently on hydrophobic substrates (e.g., alkanes, fatty acids, and oils) as a sole carbon source and to produce high amounts of organic acids, especially citric acid. Developments of genetic and cellular tools have contributed to the establishment of *Y. lipolytica* as an amenable host for heterologous protein production. Due to its non-pathogenic nature, several processes based on *Y. lipolytica* were categorized as generally recognized as safe (GRAS). *Yarrowia lipolytica* is classified among the oleaginous yeasts because of its ability to accumulate large amounts of lipids (up to 50% of its cell dry weight). The crucial difference between oleaginous and non-oleaginous yeasts becomes evident during cultivation under nitrogen-limiting conditions: the carbon flux in non-oleaginous yeasts is directed into synthesis of various polysaccharides, whereas in oleaginous yeasts, it is preferentially channeled towards lipid biosynthesis, leading to an accumulation of triacylglycerols within discrete intracellular lipid bodies.

Obviously, *Y. lipolytica* is a promising host strain for recombinant production of long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3), which have beneficial effects on health by lowering triglyceride concentrations and blood pressure. As already demonstrated in a previous study, the expression of a bifunctional Δ12/13 desaturase from *Fusarium moniliforme* in *Y. lipolytica* yielded α-linolenic acid (18:3, n-3), a precursor of EPA and DHA, at a concentration of 28.1% of total fatty acids (TFAs). Production of 20.2% γ-linolenic acid (GLA, 18:3, n-6) of TFAs was achieved by overexpressing Δ9 and Δ12 desaturases from *Mortierella alpina*. A *Y. lipolytica* strain that produces EPA at 56.6% of TFAs was generated by DuPont (USA). These production levels were reached by overexpression of 30 copies of different, codon-optimized genes (20 desaturase genes, eight elongase genes, and two cholinephosphotransferase genes) combined with disruption of four genes, including a gene encoding a peroxisomal biogenesis factor and two genes involved in the lipid metabolism, in the yeast genome. Similarly, DuPont (USA) engineered a *Y. lipolytica* strain capable of producing 18.3% n-3 docosapentaenoic acid (DPA, 22:5) of TFAs starting from EPA with an introduced C20/22 elongase gene and 5.6% DHA of TFAs proceeding from n-3 DPA with an introduced Δ4 desaturase gene.

All these examples are based on the biotransformation of endogenously supplied fatty acids using enzymes from the aerobic PUFA biosynthetic pathways, which employ saturated fatty acids synthesized by the native fatty acid synthase as substrates. In contrast, iteratively acting, multifunctional polyketide synthase (PKS)-like PUFA synthases as found in myxobacteria enable de novo LC-PUFA biosynthesis from acyl-CoA precursors in a multistep process. These multienzyme complexes are encoded by PUFA (*pfa*) biosynthetic gene clusters (BGCs). The main PUFA produced by the myxobacterium *Aetherobacter fasciculatus* (SBSr002) represents DHA, whereas arachidonic acid (AA, 20:4, n-6) is the predominant PUFA in the myxobacterium *Minicystis rosea* (SNa008). In this study, synthetic biology techniques were applied to establish heterologous expression systems for myxobacterial PUFA synthases in the evolutionary unrelated host *Y. lipolytica*. Artificial pfa BGCs encoding a PUFA synthase plus a 4′-phosphopantetheinyl transferase (PPTase) from *A. fasciculatus* (SBSr002) or *M. rosea* (SNa008) were redesigned and holistically optimized for *Y....

Fig. 1 De novo polyunsaturated fatty acid (PUFA) biosynthesis in myxobacteria by iteratively acting, multifunctional PUFA synthases. **a**. The starter unit acetyl-CoA (R = H) is consecutively elongated with the extender unit malonyl-CoA by several rounds of decarboxylative Claisen condensations, resulting in the extension of the fatty acyl chain by two carbons per cycle. After each round of elongation, the β-keto group is either fully reduced by ketoreduction, dehydration plus enoylreduction, or only reduced by ketoreduction and dehydration, giving rise to the trans double bond, which is then isomerized to synthesize an acyl chain bearing methylene-interrupted cis double bonds. After reaching its final length, the fatty acyl chain is presumably used for acylation of the 2-position of 1-acylglycerol-3-phosphate. KS, ketosynthase of Pfa2 and Pfa3; AT, acyltransferase of Pfa2 and Pfa3; ACP, acyl carrier protein of Pfa2; KR, ketoreductase of Pfa2; DH, dehydratase of Pfa2 and Pfa3; DH1, dehydratase/isomerase of Pfa3; ER, enoylreductase of Pfa1; AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase of Pfa3. **b**. Structures of the main PUFAs produced by the myxobacteria *Aetherobacter fasciculatus* (SBSr002) and *Minicystis rosea* (SNa008).
lipolytica, including codon bias adaptation, followed by synthesis and assembly of the respective DNA building blocks. Moreover, diverse hybrid pfa BGCs were constructed from these two pathways. Chromosomal integration of the synthetic BGCs yielded transgenic Y. lipolytica strains that specifically produce LC-PUFAs, such as AA, EPA, DPA, and DHA.

Results

Design of a synthetic BGC encoding a DHA-type PUFA synthase. The establishment of heterologous expression platforms for recombinant LC-PUFA production using the DPA/DHA-type pfa BGC from *A. fasciculatus* (SBSr002) in earlier studies, served as proof of principle and paved the way for the development of a phylogenetically more distant host organism, exhibiting several advantageous attributes. In this context, the oleaginous yeast *Y. lipolytica* was focused on as expression host of choice, since, in contrast to the myxobacterial LC-PUFA producers, it features GRAS designation, fast growth characteristics, accessibility for contrast to the myxobacterial LC-PUFA producers, it features GRAS designation, fast growth characteristics, accessibility for genetic manipulation, and ability to accumulate large amounts of lipids. For the heterologous expression of the pfa BGC encoding the DPA/DHA-type PUFA synthase plus a PPTase from *A. fasciculatus* (SBSr002), the oleaginous yeast *Y. lipolytica* synthetic versions of the three pfa genes and ppt were created (→ BGC version C1_V1; Fig. 2a). Each coding sequence is flanked by the strong hybrid hp4d promoter and the LIP2 terminator for *Y. lipolytica* to construct single transcription units. Furthermore, non-coding sequences were attached, connecting each transcription unit by 200 bp intergenic linkers. During sequence modulation processes, the myxobacterial genes were subjected to the algorithms of the proprietary evOMAG software by ATG:biosynthetics. The software applies concepts of genetic evolutionary algorithms to generate sequences that take predefined multivariate sequence parameter values like codon usage frequencies, RNA secondary structures, and sequence motifs into account. Degeneracy of the genetic code allows for the substitution of synonymous codons by silent mutations to modulate the functional sequence without altering the native amino acid sequence for formal functional biodesigns. The sequence of BGC C1_V1 was designed with the intention to improve the expression by altering the translational elongation profile. An artificial codon usage table was generated from *Y. lipolytica* genome reference data by excluding codons below a predefined fraction threshold and subsequent normalization of the codon table. Afterwards, each codon position was varied iteratively according to the artificial codon table until the course of the local codon adaptation index was smoothed, and all predetermined scoring requirements were fulfilled (details of the sequence design can be found in Supplementary Note 1, Supplementary Figs. 1, 3, 6, 7, and 9–11, and Supplementary Tables 1, 4–8, 14–19). For practical reasons, the 20.2 kb BGC was dissected into smaller DNA fragments, which were supplied by gene synthesis companies. Consequently, sequence requirements for pathway assembly from the synthetic DNA building blocks and for future interchangeability of inter- and intragenic regions were specified and implemented by insertion of unique restriction enzyme sites at any required position within the sequence (Fig. 2a). In parallel, interfering restriction sites had to be eliminated from the sequences.

Random genomic integration of the artificial pfa BGC. The synthetic pathway C1_V1 encoding PUFA synthases plus a PPTase from *A. fasciculatus* was reconstituted by assembly of the respective DNA building blocks. For the final expression construct, a plasmid backbone was constructed on the basis of the *Y. lipolytica* shuttle vector pNIA1312 to enable random integration of typically one copy of the transgenes into the genome of *Y. lipolytica*. The yeast

Fig. 2 Artificial pfa biosynthetic gene clusters encoding myxobacterial PUFA synthases for LC-PUFA production in *Yarrowia lipolytica* Po1h. a. Synthetic pfa BGC (20.2 kb) version C1_V1 or C1_V2 comprising genes pfa1, pfa2, and pfa3 encoding the DPA/DHA-type PUFA synthase plus gene ppt encoding the 4′-phosphopantetheinyl transferase (PPTase) from *Aetherobacter fasciculatus* (SBSr002) adapted for the oleaginous yeast *Yarrowia lipolytica*. b. Synthetic pfa BGC (21.1 kb) version C3 or C3_mod 5’ comprising genes pfa1, pfa2, and pfa3 encoding the AA/DTA-type PUFA synthase plus gene ppt encoding the PPTase from *Mycosporis rosea* (SBNa008) adapted for *Y. lipolytica*. c. LC-PUFAs produced by *Y. lipolytica* Po1h::A4 (harboring synthetic pfa BGC version C1_V1), *Y. lipolytica* Po1h::A7 (harboring synthetic pfa BGC version C1_V2), *Y. lipolytica* Po1h::Mr1 (harboring synthetic pfa BGC version C3), and *Y. lipolytica* Po1h::Mr2 (harboring synthetic pfa BGC version C3_mod 5’). Each coding sequence of all clusters is flanked by the strong hybrid hp4d promoter and the LIP2 terminator. Unique restriction enzyme sites are present at specific positions for pathway assembly and for interchangeability of inter- and intragenic regions. ER, enoylreductase; KS1+KS2, ketosynthases; AT1+AT2, acyltransferases; ACP, acyl carrier protein; KR, ketoreductase; DH1+DH4, polyketide synthase (PKS)-like dehydrogenases; CLF, chain length factor; DH2 +DH3, FabA-like dehydrogenases/isomerases; AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase. Cultivations were carried out in 10 mL YNBG medium plus 50 mM potassium phosphate buffer pH 6.8 at 28 °C and 200 rpm for 168 h. The indicated values are means and s.d. of three biological replicates, presented on a logarithmic scale. Source data are provided as a Source Data file. ETRA, eicosatrienoic acid; AA, arachidonic acid; DTRA, docosatetraenoic acid; DTA, docosatetraenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; TTA, tetracosatetraenoic acid.
cassette (DNA sequence devoid of bacterial sequences) of the resulting plasmid pAf2 was liberated via hydrolysis by a restriction endonuclease and transferred into Y. lipolytica Po1h. In an initial screening, 38 transformants of Y. lipolytica Po1h::Af2 were cultivated in triplicates and their fatty acid methyl esters (FAMEs) were isolated by direct transferfermentation as well as analyzed by gas chromatography-mass spectrometry (GC-MS). Eleven clones were shown to produce DHA, with transgenic strain Y. lipolytica Po1h:: Af2 clone C as the best producer. It was re-cultivated in triplicates in 10 mL YNBG medium (heterologous LC-PUFA production was superior in minimal YNBG medium compared to rich, complex YPD medium) at 28 °C for 168 h, and the FAMEs were isolated and analyzed. DHA was produced at a concentration of 71.4 mg L⁻¹ or 9.5% of TFAs and 9.8 mg g⁻¹ CDW, and also some minor amounts of n-6 DPA and n-3 DPA were produced (Fig. 2c). Shotgun genome sequencing of Y. lipolytica Po1h::Af2 clone C revealed the hypothetical gene YALI0_C05907g as integration site for construct pAf2. These results were a proof of concept for the heterologous expression of artificial pfa BGCs in Y. lipolytica and served as basis for further engineering of the LC-PUFA expression platform.

Site-specific genomic integration of the artificial pfa BGC. Gene expression in eukaryotes is a complex process regulated at multiple levels. Transcription of transgenes is not only influenced by recombinant promoters and regulatory DNA elements but also by the spatial positioning of the transgenes within the genome. In the course of the present study, locus YALI0_C05907g has emerged as an integration site that enables a good expression of recombinant pfa BGCs. Therefore, plasmid pKG2-PIS, allowing for site-specific integration of the pfa BGC into locus YALI0_C05907g via double crossover, was constructed. The backbone of the plasmid pAf2 was exchanged for plasmid pKG2-PIS, and the yeast cassette of the resulting plasmid pAf4 was liberated via hydrolysis by restriction endonucleases and transferred into Y. lipolytica Po1h. After genotypic verification, transgenic strain Y. lipolytica Po1h::Af4 was cultivated in triplicates as described above, followed by isolation and analysis of the FAMEs. As expected, PUFAs production was achieved at a similar level (even slightly higher) as observed for Y. lipolytica Po1h::Af2 clone C: DHA was detected at a concentration of 86.1 mg L⁻¹ or 10.5% of TFAs and 12.8 mg g⁻¹ CDW, and n-6 DPA plus n-3 DPA in some minor amounts were also detected (Fig. 2c and Supplementary Table 9).

Besides the sequence design for BGC C1_V1, we aimed at testing the effect of an alternative gene optimization approach, a codon harmonization resembling strategy, on recombinant LC-PUFA production in Y. lipolytica. Therefore, BGC version C1_V2, encoding PUFAs synthases plus a PPTase from A. fasciculatus, was designed. The constructional sequence design and the assembly of the building blocks were performed analogous to BGC C1_V1 (details of the sequence design can be found in Supplementary Note 1). Interestingly, Y. lipolytica Po1h::Ap7, containing BGC C1_V2, produces DHA, n-6 DPA, and n-3 DPA in comparable amounts as Y. lipolytica Po1h::Af4 (Supplementary Table 9).

Design of a synthetic BGC encoding a DTA-type PUFA synthase. In addition to the artificial pfa BGCs encoding the DPA/DHA-type PUFA synthase from A. fasciculatus, the pfa BGCs encoding PUFAs synthases plus a PPTase originating from M. rosea (SBNa008) was designed for heterologous expression in the oleaginous yeast Y. lipolytica. The constructional and functional sequence design of the resulting 21.1 kb pfa BGC C3 (Fig. 2b) was performed analogous to the design of BGC C1_V1 (details of the sequence design can be found in Supplementary Note 1, Supplementary Figs. 2, 4, and 8, and Supplementary Tables 1 and 2). Six building blocks containing the three pfa coding sequences as well as the ppt coding sequence flanked by hp4d promoters and LIP2 terminators, plus intergenic linker sequences were synthesized, assembled, and finally cloned into plasmid pKG2-PIS. The yeast cassette of the resulting plasmid pMr1 was transferred into Y. lipolytica Po1h and clones with correct integration of the transgenes into the preferred integration site (YAL10_C05907g) were identified. After three independent cultivations of strain Y. lipolytica Po1h::Mr1 as described above, the FAMEs were isolated and analyzed. The transgenic strain produces mainly n-6 LC-PUFAs, such as AA (8.0 mg L⁻¹), n-6 docosatetraenoic acid (DTA, 22:4) (9.9 mg L⁻¹), and n-6 tetra-cosatetraenoic acid (TTA, 24:4) (6.1 mg L⁻¹) (Fig. 2c and Supplementary Table 9). Calculations of the opening energies within the translation initiation sites of genes pfa1, pfa2, pfa3, and ppt of BGC C3 revealed the potential for improvement of the ribosomal access to the translational initiation region on the mRNA level. Consequently, the 5′-coding regions of all four genes were redesigned (all details of the sequence design can be found in the Supplementary Note 1, Supplementary Fig. 5, and Supplementary Tables 2 and 3). DNA fragments carrying the calculated silent mutations in the 5′-coding sequences of the genes were synthesized, and the 5′-coding regions of all the genes of BGC C3 were exchanged for the newly adapted sequences, yielding BGC C3_mod 5′. After transfer of the yeast cassette of the generated plasmid pMr2 into the preferred integration site (YAL10_C05907g) in the genome of Y. lipolytica Po1h, strain Y. lipolytica Po1h::Mr2 was cultivated in triplicates as described above. Subsequently, the FAMEs were isolated and analyzed. Compared to strain Y. lipolytica Po1h::Mr1, LC-PUFA production yields could be indeed increased by 22% using Y. lipolytica Po1h::Mr2 (10.9 mg L⁻¹ AA, 12.5 mg L⁻¹ n-6 DTA, and 8.1 mg L⁻¹ n-6 TTA; Fig. 2c and Supplementary Table 9). The product specificity of the PUFAs synthase from M. rosea differs widely from that of A. fasciculatus with respect to chain length as well as the number and position of double bonds of the produced LC-PUFAs, although the structure of both pfa BGCs is very similar (Fig. 2). The most obvious difference between these two multienzyme complexes is the presence of a PKS-type DH domain (DH4) in Pfa3 from M. rosea, which is absent in the homologous protein from A. fasciculatus.

Heterologous expression of hybrid pfa BGCs. The factors determining the nature of the produced LC-PUFAs within the (myxo)bacterial PUFA synthases have not yet been elucidated. The production of hybrid PUFA synthases or of PUFA synthases with functional knockouts of domains can contribute to the dissection of the molecular basis of the specificity of PUFA synthase-catalyzed reactions. Consequently, several versions of chimeric pfa BGCs were constructed by using the artificial DPA/DHA- and AA/DTA-type pfa BGCs. The yeast cassettes of the resulting plasmids described below were transferred into Y. lipolytica Po1h and clones with correct integration of the transgenes into the preferred integration site (YAL10_C05907g) were identified. After cultivation of the generated Y. lipolytica strains in triplicates as described above, the FAMEs were isolated and analyzed.

At first, the effect of the exchange of the ER domain encoded by pfa1 on the PUFA production profile was examined. Therefore, plasmid pHyb7, encoding a chimeric PUFA synthase consisting of protein Pfa1 of the DPA/DHA-type PUFA synthase from A. fasciculatus and proteins Pfa2 and Pfa3 of the AA/DTA-type PUFA synthase from M. rosea, was constructed. The LC-PUFA species produced by this hybrid PUFA synthase are highly
similar to those produced by the AA/DTA-type PUFA synthase of *M. rosea*. Obviously, the nature of the produced LC-PUFAs is not influenced by the ER domain encoded by *pfa*. Next, the effect of the exchange of the gene *pfa* or of selected catalytic domains encoded by *pfa* was evaluated. The exchange of the entire gene *pfa* from the DPA/DHA-type *pfa* BGC for gene *pfa* from the AA/DTA-type *pfa* BGC (→ plasmid pSynHybPfaPfp1; Fig. 3a) resulted in the predominant production of the LC-PUFAs EPA and n-3 DPA, which are (almost) not produced by the two native PUFA synthases (Fig. 3b). The replacement of domains KS2-CLF-AT2-DH2-DH3 from gene *pfa*3 of the DPA/DTA-type *pfa* BGC with the homologous domains from gene *pfa*3 of the AA/DTA-type *pfa* BGC plus insertion of domain DH4 from gene *pfa*3 of the AA/DTA-type *pfa* BGC led to plasmid pHyb2a (Fig. 3a). Plasmid pHyb5a was constructed by the exchange of domains DH2–DH3 from gene *pfa*3 of the DPA/DHA-type *pfa* BGC for the homologous domains from gene *pfa*3 of the AA/DTA-type *pfa* BGC plus insertion of domain DH4 from gene *pfa*3 of the AA/DTA-type *pfa* BGC (Fig. 3a). As in the case of pHyb1, *Y. lipolytica* Po1h, transconjugants carrying the hybrid *pfa* BGCs originating either from plasmid pHyb2a or from plasmid pHyb5a produced EPA and n-3 DPA as major products (Fig. 3b). Remarkably, the FabA-like DH domains DH2 and DH3 and the PKS-like DH domain DH4 seem to have a big impact on the PUFA product specificity of *P. aeruginosa*. Subsequently, the effect of the exchange of the AGPAT domain of *pfa*3 and/or the insertion of the DH4 domain was investigated. Both the exchange of the AGPAT domain from gene *pfa*3 of the DPA/DHA-type *pfa* BGC for the AGPAT domain from gene *pfa*3 of the AA/DTA-type *pfa* BGC and the insertion of domain DH4 from gene *pfa*3 of the AA/DTA-type *pfa* BGC led to plasmid pHyb6 (Fig. 3c). The resulting strain *Y. lipolytica* Po1h::Hyb6 exhibits production of its main product n-3 DPA at a concentration of 48.0 mg L\(^{-1}\) or 5.7% of TFAs and 7.0 mg g\(^{-1}\) CDW (Fig. 3d). The insertion of only domain DH4 from gene *pfa*3 of the AA/DTA-type *pfa* BGC into the DPA/DHA-type *pfa* BGC (→ plasmid pHyb6b; Fig. 3c) altered the product spectrum towards n-3 DPA and DHA as major products (Fig. 3d). However, the inactivation of the DH4 domain in plasmid pHyb6b by converting the active site histidine residue into an alanine residue (→ plasmid pHyb6b-H2270A; Fig. 3c) results in a production profile, which is again identical to that of the DPA/DHA-type PUFA synthase from *A. fasciculatus* (Figs. 2c and 3d). Hence, it can be stated that insertion of domain DH4 has a large impact on the LC-PUFA product specificity of *P. aeruginosa*.

Apart from the investigations on gene *pfa*, the effect of the exchange of either the entire gene *pfa*2 or, based on the observations made with the DH domains of *pfa*3, of the exchange of only domain DH1 was examined. Hence, gene *pfa*2 or domain DH1 from the DPA/DHA-type *pfa* BGC was exchanged for the homologous gene or domain from the AA/DTA-type *pfa* BGC. Interestingly, in both cases the product spectrum is altered towards ω-6 LC-PUFAs with n-6 DPA as the main product (Fig. 3e, f). Thus, the nature and the ratio of the produced LC-PUFAs are identical either when the complete gene has been replaced (→ plasmid pHyb8; Fig. 3e) or when only domain DH1 has been exchanged (→ plasmid pHyb9; Fig. 3e). It seems that this PKS-type DH domain is one of the domains affecting the preference of *Pfa*2 for the production of certain LC-PUFA species. Vice versa, the replacement of domain DH1 from gene *pfa*2 of the AA/DTA-type *pfa* BGC by the homologous domain from gene *pfa*2 of the DPA/DHA-type *pfa* BGC (→ plasmid pHyb15; Fig. 3g) changes the production profile towards ω-3 LC-PUFAs with n-3 DPA as the major product (Fig. 3h).

From all of these data, the conclusion can be drawn that the control of chain length and number/position of double bonds seems to require a very complex interplay of multiple functional domains with the DH domains as important interaction partners. From a biotechnological point of view, the expression of hybrid *pfa* BGCs is especially beneficial, as it exhibits the potential for the production of valuable LC-PUFAs, such as EPA and n-3 DPA, which are (almost) not produced by the two native PUFA synthases.

Optimization of DHA production by medium design. In order to improve overall productivity of PUFA in *Y. lipolytica*, different medium compositions and culture conditions were compared to investigate their impact on key performance criteria of the DHA producer *Y. lipolytica* Po1h::Af4, such as titer, productivity, and selectivity. The basic setup, using glucose together with YNB and a phosphate buffer yielded about 20 mg L\(^{-1}\) DHA, which represented about 6% of TFAs (Fig. 4). Additional analyses revealed that glycerol was particularly efficient to drive DHA biosynthesis (Fig. 4a). The DHA titer was achieved was about twice as high as compared to glucose. Surprisingly, a restriction in the availability of phosphate turned out to be important for production efficiency. On glucose as well as on glycerol, the DHA titer was significantly higher, when the phosphate buffer was replaced by MES (2-(N-morpholino)ethanesulfonic acid). Furthermore, phosphate limitation enhanced biosynthetic selectivity with regard to the total DHA content in the biomass as well as the fraction of DHA among the TFAs (Fig. 4b). A further reduction of phosphate by lower levels of YNB finally enabled the accumulation of more than 100 mg L\(^{-1}\) DHA and a high DHA content of 16.6% of TFAs (Fig. 4d). In contrast, nitrogen limitation was not necessarily required, different to the common picture. As an example, poor DHA accumulation resulted when glucose-grown cells early depleted ammonium, whereas the production was high in the presence of excess ammonium during the whole cultivation time (Supplementary Fig. 12). Generally, high-producing conditions resulted in the accumulation of citrate, which was partially re-utilized in later stages of the cultivation. Acetate, tested as an alternative carbon source, triggered an even higher selectivity of 16.8%, but yielded lower levels of biomass (Supplementary Table 10).

Fed-batch production process for DHA. To assess performance under industrially relevant conditions, we benchmarked the DHA producer *Y. lipolytica* Po1h::Af4 in a fed-batch process, which was operated under phosphate-limiting conditions (Fig. 5). Glucose and glycerol were tested in parallel setups as carbon source. On both substrates, the strain grew fast during the initial batch phase and reached a biomass level of about 30 g L\(^{-1}\). During this phase, DHA was not accumulated. Glycerol catabolism resulted in a slight accumulation of citrate, which was not observed in the glucose-based process. Both substrates were efficiently consumed during the first 48 h. Likely triggered by the limitation of phosphate, growth then stopped and the cells switched into a producing mode. The DHA level increased to more than 350 mg L\(^{-1}\) on glucose after 300 h. On glycerol, the final titer was slightly lower (300 mg L\(^{-1}\)). The glucose-based process was also superior with regard to the fraction of DHA formed. The DHA content gradually increased during the process and reached a final value of >10%. The imposed feed rate enabled low substrate levels during the entire feed phase, which, however, were still high enough to keep still cells in their producing mode. Citrate accumulated to some extent during the feed phase. Other by-products were not formed.

Discussion

In this project, we established expression systems for recombinant LC-PUFA production in the oleaginous yeast *Y. lipolytica* based
on myxobacterial PUFA biosynthetic machineries, employing methods of Synthetic Biology. By the usage of synthetic, codon-optimized PUFA BGCs encoding homologous PUFA synthases from two myxobacterial species, *Y. lipolytica* production strains with completely different LC-PUFA production profiles regarding chain length as well as the number and position of the double bonds could be generated. Remarkably, one of these *Y. lipolytica* strains is able to produce the valuable long-chain ω-3 fatty acid DHA at a concentration of 350 mg L\(^{-1}\) or 16.8% of TFAs under improved fermentation conditions. DHA is critical for normal development and functioning of the brain\(^{24}\) and is predominantly present in marine fish and the corresponding fish oils\(^{25}\), a non-sustainable source. The exchange of single genes or domains—especially the DH domains—between the two synthetic *pfa* BGCs...
Fig. 3 LC-PUFAs produced by Yarrowia lipolytica Po1h using chimeric PUFA synthases encoded by artificial pfa biosynthetic gene clusters. a Hybrid pfa BGCs located on plasmid pHyb1, plasmid pHyb2a, and plasmid pHyb5a. b LC-PUFAs produced by Y. lipolytica Po1h::Hyb1, Y. lipolytica Po1h::Hyb2a, and Y. lipolytica Po1h::Hyb5a. c Hybrid pfa BGCs located on plasmid pHyb6, plasmid pHyb6b, and plasmid pHyb6b-H2270A. d LC-PUFAs produced by Y. lipolytica Po1h::Hyb6, Y. lipolytica Po1h::Hyb6b, and Y. lipolytica Po1h::Hyb6b-H2270. e Hybrid pfa BGCs located on plasmid pHyb8 and plasmid pHyb9. f LC-PUFAs produced by Y. lipolytica Po1h::Hyb8 and Y. lipolytica Po1h::Hyb9. g Hybrid pfa BGCs located on plasmid pHyb15. h LC-PUFAs produced by Y. lipolytica Po1h::Hyb15. Domains from the synthetic DPA/DHA-type tetracosaheptaenoic acid docosahexaenoic acid; TTA, tetracosatetraenoic acid; TPA, tetracosapentaenoic acid; THA, tetracosahexaenoic acid; THpA, putative eicosatetraenoic acid; EPA, eicosapentaenoic acid; DTrA, docosatrienoic acid; DTA, docosatetraenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; TTA, tetracosatetraenoic acid; TPA, tetracosapentaenoic acid; THA, tetracosahexaenoic acid; THpA, putative tetracosahaheptaenoic acid.

Fig. 4 DHA production improvement in Y. lipolytica Po1h::Af4 based on an optimization of medium composition. Shake flask cultivations were carried out in triplicates. Performance parameters were determined after 200 h of cultivation. Graphs show means and s.d. Source data are provided as a Source Data file.

led to further extension of the LC-PUFA product spectrum upon heterologous expression in Y. lipolytica. In particular, a Y. lipolytica strain producing decent amounts of n-3 DPA (48 mg L$^{-1}$/5.7% of TFAs under non-optimized fermentation conditions) was created. This long-chain ω-3 fatty acid was shown to be very beneficial for human health26, but its concentration in marine fish is substantially lower than those of EPA and DHA25.

With regard to further development of the LC-PUFA production system established in this study, it will be mandatory to significantly increase the production titers of the LC-PUFAs of interest to reach a cost-effective commercial production. In order to do so, the fermentation procedure has to be further optimized in the matter of media, temperature, duration, and so on, and the amount and the productivity of the (hybrid) PUFA synthases have to be enhanced in vivo. Besides, the genomes of the transgenic Y. lipolytica strains can be modified with respect to inactivation or overexpression of genes, which are relevant for production (systems metabolic engineering). As a result, LC-PUFAs should be enriched in the triacylglycerol fraction of the cell and thus increasingly accumulated in intracellular lipid droplets. On the other hand, an adequate supply of the PUFA synthase with the substrates malonyl-CoA and NADPH can be ensured and potential PUFA-degrading reactions can be reduced.
As *Y. lipolytica* has turned out to be an especially suitable microbe for LC-PUFA production, not least because of the ability to accumulate large amounts of lipids\(^6\), industrial efforts from DuPont (USA) on the engineering of *Y. lipolytica* strains capable of producing large amounts of LC-PUFAs were also reported\(^12,13\). Contrary to the *Y. lipolytica* strains generated in this study, which employ multifunctional PUFA synthases, DuPont made use of alternatingly acting position-specific desaturases and elongases, belonging to the aerobic PUFA biosynthetic pathway. In order to ensure efficient expression of the heterologous genes in *Y. lipolytica*, integration vectors with codon-optimized coding sequences driven by strong *Y. lipolytica* promoters were constructed. In total, three copies of Δ\(^{12}\) desaturase genes, two copies of Δ\(^{6}\) desaturase genes, four copies of C\(^{16/20}\) elongase genes, five copies of Δ\(^{5}\) desaturase genes, three copies of Δ\(^{17}\) desaturase genes, three copies of C\(^{16/18}\) elongase genes, one copy of a C\(^{20/22}\) elongase gene, and one copy of a Δ\(^{4}\) desaturase gene have been integrated into the genome of DuPont’s *Y. lipolytica* strain Y3000\(^13\). Moreover, the acyl-CoA oxidase 3 gene POX3 and an endogenous Δ\(^{12}\) desaturase had to be inactivated. In addition to the fatty acids produced by the corresponding wild type, strain Y3000 synthesizes 5.6% DHA, 18.3% n-3 DPA, 9.7% C\(^{20}\) PUFAs, and 30.1% GLA of TFAs. As opposed to this, simply four biosynthetic genes encoding the DPA/DHA-type myxobacterial PUFA synthase and the PPTase from *A. fasciculatus* (SBSr002) were integrated into the genome of *Y. lipolytica* Po1h. The resulting strain *Y. lipolytica* Po1h::Af4 produces already 10.5% DHA with high selectivity (production of only 0.4% non-preferred PUFAs) under non-optimized fermentation conditions.

Substantial advantages of LC-PUFA biosynthesis via PUFA synthases as opposed to exploitation of the aerobic pathways are the independence from endogenous fatty acids as biosynthetic precursors and the lower consumption of NAD(P)H. For instance, de novo synthesis of DHA catalyzed by PUFA synthases merely relies on 14 NADPH molecules. However, using the aerobic route in which palmitic acid (synthesized by fatty acid synthase using 14 NADPH molecules) is converted into DHA via diverse fatty acid desaturases and elongases, additionally 12 NAD(P)H molecules are consumed. Therefore, the production of LC-PUFAs using PUFA synthases described here should in the future allow for an optimized and highly efficient process towards these valuable compounds.

Methods

Sequence analysis and design of synthetic gene clusters. The sequences of the *pfu* BGCs plus the genes encoding the PPTase from *A. fasciculatus* (SBSr002) and *M. rosea* (SBNa008) were analyzed and compared to the genome sequence of *Y. lipolytica* CLIB 122\(^{27}\) retrieved from NCBI Genome RefSeq NC_006067, NC_006068, NC_006069, NC_006070, NC_006071, and NC_006072. Based on this, relevant parameters for constructional and functional sequence design were defined to generate artificial pathway versions using the evoMAG\(^8\) software.

Fig. 5 DHA production in a fed-batch process. The designed producer *Y. lipolytica* Po1h::Af4 was grown in minimal medium on either glucose or glycerol as sole carbon source. Fermentation was conducted at 28 °C, pH 5.5, and a dissolved oxygen level of 5% during the feed phase. Substrate feeding was initiated upon carbon depletion. Coefficients of variation (CVs) across biological replicates were below 5% for biomass, substrate, and citrate levels, and below 10% for PUFA and native fatty acid content. Source data are provided as a Source Data file.
package (ATGbioinformatics GmbH)15. The sequence design process included engineering of restriction sites, adaptation of the codon bias, and elimination of sequences encoding for rare codon clusters and splice signals, and introduction of hidden stop codons in unused frames. Further details on the performed sequence analyses and the design of synthetic BGs can be found in Supplementary Note 1.

Culture conditions. Escherichia coli DH10B28 and E. coli NEB 10-β (New England Biolabs) were used for cloning experiments. Escherichia coli H5996/pPC101-BAD-ghb-gal was used as a tool for overexpression of the target genes. The cultures were grown in 2YT medium (1.6% tryptone, 1% yeast extract, 0.5% NaCl), in LB medium or on LB agar (1% tryptone, 0.5% yeast extract, 0.5% NaCl (1.5% agar)) at 30–37 °C (200 rpm) overnight. Antibiotics were used at the following concentrations: 50 µg mL−1 kanamycin, 34 µg mL−1 chloramphenicol, and 6 µg mL−1 tetracycline.

Auxotrophic Y. lipolytica strain P07 (CIRM 8824) was obtained from Centre International de Ressources Microbiennes (CIRM)-Levures, Institut National de la Recherche Agronomique (INRA), AgroParisTech (Thiverval-Grignon, France). It was grown in YPD medium or on YPD agar containing 1% yeast extract, 2% peptone, and 2% glucose. Protoplasts were obtained as described in Ref. 13. Protoplasts were grown on minimal YNB-NaNO3 agar containing 0.67% yeast nitrogen base (with 75% (NH4)2SO4 and without amino acids), 1% glucose, and 1.5% agar or in minimal YNB liquid medium containing 0.67% yeast nitrogen base (with 75% (NH4)2SO4 and without amino acids), 2% (w/v) glycerol, and 30 mM potassium phosphate buffer, pH 6.8. The cultures were incubated at 28–30 °C.

Isolation of genomic DNA from Y. lipolytica. Isolation of genomic DNA from yeast cells for genome sequencing was carried out using the method of Hoffman and Winston20. In the first step, 50 mL of a culture of Y. lipolytica grown at 28 °C were harvested by centrifugation at 12,000 × g for 5 min. The supernatant was decanted, and 200 µL lysis buffer (2% (v/v) Triton X-100, 1% sodium dodecyl sulfate, 100 mM NaCl, 1 mM EDTA, and 10 mM Tris-Cl, pH 8.0) was added. The cells were vortexed for 3 min. Afterwards, 200 µL prewarmed 80 °C 10% SDS containing 0.5% RNAse A and 40 µL dimethyl sulfoxide (DMSO) were added. The cells were softened for 2 min, and the supernatant was discarded. The dried DNA was resuspended in 400 µL TE buffer plus 50 µg RNaseA. After incubation at 37 °C for 15 min, 44 µL of 4 M ammonium acetate and 1 mL ice-cold ethanol were added, and the tube was inverted to mix. Genomic DNA was precipitated at −80 °C for 30 min to increase yield. The sample was centrifuged at 21,000 × g for 2 min, and the supernatant was discarded. The pellet was washed with 700 µL of 70% ethanol, centrifuged at 21,000 × g for 1 min, and the supernatant was discarded. The dried DNA was resuspended in 50 µL of 5 mM Tris-Cl, pH 8.0.

Transformation of Y. lipolytica. Transformation of Y. lipolytica was carried out using a protocol developed by M.-T. Le Dall, modiﬁed by M. Cazaux (Laboratoire de Microbiologie de l’Alimentation au Service de la Santé (MICALIS), AgroParisTech, France; personal communication). One loopful of cells from a YPD agar plate grown at 30 °C overnight was resuspended in 1 mL TE buffer in a sterile tube. The cells were centrifuged at 10,000 × g for 1 min, and the supernatant was discarded. After resuspension in 600 µL of 0.1 M lithium acetate, pH 6.0, the cells were incubated at 80 °C for 1 h in a water bath. The cell samples were centrifuged at 85 x g for 2 min, the supernatant was discarded, and the cells were softly resuspended in 80 µL of 0.1 M lithium acetate, pH 6.0. Forty microliters of competent cells were mixed with 2.5 µL herring testes carrier DNA (10 mg mL−1 in TE buffer, denatured) and 2.5 µL linear DNA to be transformed. The samples were incubated at 28 °C for 15 min in a water bath, and 350 µL of 40% PEG 4000 in 0.1 M lithium acetate, pH 6.0 (plus 16 µL of 1 M dithiothreitol in case of plasmid pACYC_BBI-4_C1_V1 using primers LIP2+hph_overlap_fwd and LIP2+hph_overlap_rev) were added. The cell suspension was incubated at 42 °C for 1 h, and 10 µL of 1 M MgCl2 was added. The reaction was diluted and the DNA was precipitated with 1 M lithium acetate and 10 µL of 3 M NaOAc, pH 5.2 at −20 °C for 1 h. The pellet was washed with 700 µL of 70% ethanol, centrifuged at 21,000 × g for 1 min, and the supernatant was discarded. The dried DNA was resuspended in 50 µL of 10 mM Tris-Cl, pH 8.0.

Concentration of expression plasmids containing synthetic pfa BGs. For the heterologous expression of artificial PUFA biosynthetic pathways in Y. lipolytica, four building blocks containing the three pfa genes as well as gene ppa encoding the PTTase originating from A. fasciculatus (SBR002) (~synthetic BGs version C1_V1 and C1_V2) and six building blocks containing the three pfa genes as well as gene ppa encoding the PTTase originating from M. roseus (SBR0048) (~synthetic BGs version C1_V3) were designed and supplied by gene synthesis companies in the standard cloning vectors pBSK or pGEM. Each coding sequence was flanked by the strong hybrid hp4d promoter7 plus LIP2 terminator for Y. lipolytica. Moreover, non-coding sequences were attached to each gene allowing for the connection of the transcription units by 200 bp intergenic linkers. In the course of constructonal design, the unicity of each plasmid was confirmed by Southern blotting analysis. Two control plasmids containing DNA fragments corresponding to each restriction site were introduced for cloning purposes as well as for exchangeability of genes/domains and were excluded from any other unwanted position within the BGC.

A cloning plasmid with kanamycin resistance gene, p15A origin of replication, and restriction sites for assembly of the four DNA building blocks was constructed. Therefore, a multiple cloning site containing Dral, SbfI, ApaLI, Ncol, Sall, Acli, Bpnl, Fiel, Avrl, and PsmI restriction sites (0.1 kb) was amplified by using 1.5 µL of the PCR product.
PCR using overlapping primers MCS for pACYC_fwd and MCS for pACYC_rev. PCR was performed with Phusion DNA polymerase (Thermo Scientific) under standard conditions. Plasmid DNA was purified from the manufacturer’s protocol. The plasmid contained 5% DMSO and were carried out in an Eppendorf Mastercycler under the following conditions: initial denaturation for 2 min at 98 °C, 30 cycles consisting of denaturation for 15 s at 98 °C, annealing for 20 s at 72 °C, and extension for 10 s at 72 °C, and a final extension for 10 min at 72 °C. The PCR was performed with Phusion DNA polymerase (Thermo Scientific) under standard conditions according to the manufacturer’s protocol. The reactions contained 5% DMSO and were carried out in an Eppendorf Mastercycler under the following conditions: initial denaturation for 2 min at 98 °C, 20 cycles consisting of denaturation for 15 s at 98 °C, annealing for 20 s at 72 °C, and extension for 10 s at 72 °C, and a final extension for 10 min at 72 °C. For the subsequent overlap extension PCR using primers H2270a_fwd_2 and H2270a_rev, the two amplified fragments were joined for 10 min at 72 °C. The PCR was performed with Phusion DNA polymerase (Thermo Scientific) under standard conditions according to the manufacturer’s protocol. The reactions contained 5% DMSO and were carried out in an Eppendorf Mastercycler under the following conditions: initial denaturation for 2 min at 98 °C, 20 cycles consisting of denaturation for 15 s at 98 °C, annealing for 20 s at 72 °C, and extension for 10 s at 72 °C, and a final extension for 10 min at 72 °C. In order to generate plasmid pHyb5a via an active site H2270a point mutation, the DH4 and the AGPAT domain were amplified in two fragments from plasmid pHyb6 by using primers H2270a_fwd_2 and H2270a_rev. The first fragment (0.2 kb) carried the CA to GC nucleotide exchanges at the 3′ end, whereas the second fragment (2.2 kb) carried these base exchanges at the 5′ end. PCR amplification of the two fragments to be spliced was performed with Phusion DNA polymerase (Thermo Scientific) under standard conditions according to the manufacturer’s protocol. The reactions contained 5% DMSO and were carried out in an Eppendorf Mastercycler under the following conditions: initial denaturation for 2 min at 98 °C, 20 cycles consisting of denaturation for 15 s at 98 °C, annealing for 20 s at 72 °C, and extension for 10 s at 72 °C, and a final extension for 10 min at 72 °C. In order to generate plasmid pHyb6-H2270a, the DH4 and the AGPAT domain of plasmid pHyb5a were replaced by the PCR amplon via FseI and AvrII restriction sites. Plasmid pHyb7 was generated by replacing synthetic genes pfa2 and pfa3 originating from A. fuscatus with synthetic genes pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic genes pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb8. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb9. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb5b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6b. The AGPAT domain of synthetic gene pfa2 originating from A. fuscatus (SBSr002) was exchanged for the AGPAT domain of synthetic gene pfa2 originating from M. rosea (SBNa008) located on plasmid pHyb4 via FseI and AvrII restriction sites, yielding plasmid pHyb6.
at 28 °C for 168 h. Afterwards, 1 mL of the culture was subjected to FAME extraction (see below).

Medium optimization for enhanced LC-PUFA production. In a number of studies, the composition of the YNBG production medium was varied to investigate the impact of different nutrients on LC-PUFA production. The experiments included (i) a variation of the primary carbon source (glucose, glycerol, acetate), (ii) a variation of the nitrogen source (NH4Cl, (NH4)2SO4), (iii) a variation of the C/N ratio in the range of 4–55, and (iv) a variation of phosphate level by an adjustment of the YNB concentration (0.85–1.7 g L−1), and a replacement of potassium phosphate buffer by MES in a range of 50–200 mM. Cultures were grown at 28 °C in 500 mL baffled shake flasks with 50 mL medium on an orbital shaker (230 rpm).

DHA production in a fed-batch process. The production performance of the DHA producer *Y. lipolytica* Po1f::Af4 was evaluated in a fed-batch process. Fermentation was carried out in glucose and in glycerol-based medium using 1 L DASGIP bioreactors (Eppendorf, Jülich, Germany). The initial batch medium (300 mL) contained per liter: 25 g glucose or 25.6 g glycerol, 5 g (NH4)2SO4 (C/N ratio 11), 1.7 g YNB w/o amino acids, 1 g KH2PO4, 200 mmol MES (pH 5.3), and 1 mL antifoam (Antifoam 204, Sigma, Germany). The process was inoculated with exponentially growing cells from an overnight pre-culture. Feeding (600 g L−1 glucose or 600 g L−1 glycerol) was started at a rate of 1.5 mL h−1 when the substate was depleted. During the feed phase, the level of the carbon source was monitored at-line. The data were used to re-adjust the feed rate in order to avoid a limitation of the carbon source. Cultivation temperature was maintained constant at 28 °C. The pH and the pO2 level were monitored online with a pH electrode (Mettler Toledo, Gießen, Germany) and a PO2 electrode (Hannover, Hochst, Germany). The pH was kept constant at 5.5 ± 0.05 by automated addition of 6 M phosphate buffer by MES in a range of 50–200 mM. Cultures were grown at 28 °C, 200 °C – 400 °C. The mass-selective detector was operated in scan mode, scanning the mass range from m/z 40 to 700. Scan control, data acquisition, and processing were performed by MSD ChemStation and AMDIS software, version 2.69, based on the masses, fragmentation patterns, and retention times, in comparison with Supelco 37 Component FAME Mix and LC-PUFA methyl esters (all Sigma-Aldrich) as reference standards, and NIST 08 database. Absolute amounts of FAMEs were quantified by integration of the peaks using MSD ChemStation and by subsequent calculation in relation to the integral of n-3 HPA methyl ester or n-3 DPA methyl ester and to CDW.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The sequences of the synthetic PUFA BGCs version C1_V1, C1_V2, C3, and C3_mod 5′ have been deposited in the GenBank database (accession numbers MN047805, MN047806, MN047807, and MN047808). The source data underlying Figs. 2, 3, 4, and 5, Additional files 1 and 2 are provided as Source Data file. All other relevant data are available from the authors upon reasonable request.

Received: 12 March 2019 Accepted: 14 August 2019
Published online: 06 September 2019

References

1. Madzak, C., Gaillardin, C. & Beckerich, J. M. Heterologous protein expression and secretion in the non-conventional yeast *Yarrwia lipolytica*: a review. *J. Biotechnol.* 109, 63–81 (2004).

2. Nicuad, J. M. et al. Protein expression and secretion in the yeast *Yarrwia lipolytica*. *FEMS Yeast Res.* 21, 371–379 (2002).

3. Madzak, C., Treton, B. & Blanchin-Roland, S. Strong hybrid promoters and integrative expression vectors for the production of heterologous proteins in the yeast *Yarrwia lipolytica*. *J. Mol. Microbiol. Biotechnol.* 2, 207–216 (2000).

4. Madzak, C. New tools for heterologous protein production in the yeast *Yarrwia lipolytica*. *Current Opinion. Microbiol.* 7, 453–479 (2003).

5. Chevalier, M. et al. *Yarrowia lipolytica*: safety assessment of an oleaginous yeast with a great industrial potential. *Crit. Rev. Microbiol.* 40, 187–206 (2014).

6. Papanikolau, S., Chevalot, I., Komaitis, M., Marc, I. & Aggelis, G. Single cell oil production by *Yarrwia lipolytica* growing on an industrial derivative of animal fat in batch cultures. *Appl. Microbiol. Biotechnol.* 58, 308–312 (2002).

7. Beopoulos, A. et al. *Yarrwia lipolytica* as a model for bio-oil production. *Prog. Lipid Res.* 48, 375–387 (2009).

8. Ratledge, C. Fatty acid biosynthesis in microorganisms used for single cell oil production. *Biochimie* 86, 807–815 (2004).

9. Innes, J. K. & Calder, P. C. The differential effects of eicosapentaenoic acid and docosahexaenoic acid on cardiometabolic risk factors. A Systematic review. *Int. J. Mol. Microbiol. Biol.* 381–387 (2009).

10. Madume, H. G. et al. Identification of bifunctional D12/w3 fatty acid desaturases for improving the ratio of w3 to w6 fatty acids in microbes and plants. *Proc. Natl Acad. Sci. USA* 103, 9446–9451 (2006).

11. Zheng, L. T. et al. Co-expression of heterologous desaturase genes in *Yarrowia lipolytica* for the production of *ω*-3 PUFAs. *Appl. Microbiol. Biotechnol.* 72, 277–282 (2010).

12. Madume, H. G. et al. Docosahexaenoic acid producing strains of *Yarrowia lipolytica*. *US patent* 7,550,286 (2009).

13. Gemperlein, K., Rachid, S., Garcia, R. O., Wenzel, S. C. & Müller, R. Polyunsaturated fatty acid biosynthesis in myxobacteria. Different PUFA synthases and their product diversity. *Chem. Sci.* 5, 1733–1741 (2014).

14. Yoshida, K. et al. Bacterial long-chain polyunsaturated fatty acids. Their biosynthetic genes, functions, and practical use. *Mar. Drugs* 14, https://doi.org/10.3390/md14050094 (2016).

Analysis of FAMES by GC-MS. GC-MS was carried out on an Agilent 6890N gas chromatograph (Agilent Technologies) equipped with a 7683B split/splitless injector and an autosampler (Agilent Technologies) and coupled to a 5973 electron impact mass-selective detector (Agilent Technologies). Helium was used as the carrier gas at a flow rate of 1 mL min−1. A measure of 0.2–5 µL of the sample were injected in split mode (split ratio, 10:1). The analytical column was a (5% phenyl)-methylpolysiloxane capillary column (Agilent J&W DB-5HT; 30 m × 0.25 mm i.d. × 0.1 µm film thickness, maximum temperature 400 °C, Agilent Technologies). The column temperature was kept at 130 °C for 2.5 min, increased to 240 °C at a rate of 5 °C min−1, then ramped to 300 °C at 30 °C min−1, and held at 300 °C for 5 min. Other temperatures were as follows: inlet, 275 °C; GC-MS transfer line, 280 °C; ion source, 230 °C; and quadrupole, 150 °C. The mass-selective detector was operated in scan mode, scanning the mass range from m/z 40 to 700. Scan control, data acquisition, and processing were performed by MSD ChemStation and AMDIS software, version 2.69, based on the masses, fragmentation patterns, and retention times, in comparison with Supelco 37 Component FAME Mix and LC-PUFA methyl esters (all Sigma-Aldrich) as reference standards, and NIST 08 database. Absolute amounts of FAMEs were quantified by integration of the peaks using MSD ChemStation and by subsequent calculation in relation to the integral of n-3 HPA methyl ester or n-3 DPA methyl ester and to CDW.
Acknowledgements
We thank Nestor Zabaranzny for analyses of Illumina sequence data, Catherine Madzak for plasmid pDNA1312, and Isabelle Kocker for support during medium development. This work was generously supported by a grant from the European Union (grant no. C/4-4-FRE-11/2008), by a grant from the Federal Ministry of Economic Affairs and Energy (grant no. 03SHWB0665), and by grants from the Federal Ministry of Education and Research (grant nos. 031B0346A and 031B0346B).

Author contributions
K.G. performed all cloning experiments in the laboratory and analyzed the GC-MS data from strain evaluation. K.G., G.Z., H.S.B. and S.C.W. designed the artificial DNA sequences. G.Z. and H.S.B. performed the codon adaptation. D.D. and M.K. conducted medium development and fed-batch production of DHA, including all analytics. K.G., C.W., S.C.W. and R.M. designed the study. K.G., D.D., M.K., G.Z., H.S.B., C.W., S.C.W. and R.M. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-12025-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://www.nature.com/reprintsandpermissions/

Peer review information: Nature Communications thanks Martin Grüniger and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license and are indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019