ABSENCE OF SCALAR HAIR IN SCALAR-TENSOR GRAVITY

VALERIO FARAONI

Physics Department and STAR Research Cluster, Bishop’s University, 2600 College St., Sherbrooke, Québec, Canada J1M 1Z7
E-mail: vfaraoni@ubishops.ca

THOMAS P. SOTIRIOU

SISSA, Via Bonomea 265, 34136 Trieste, Italy and INFN, Sezione di Trieste
E-mail: sotiriou@sissa.it

Stationary, asymptotically flat black holes in scalar-tensor theories of gravity are studied. It is shown that such black holes have no scalar hair and are the same as in General Relativity.

Keywords: Black holes, scalar-tensor gravity

1. Introduction

In General Relativity (GR) stationary black holes, which are the endpoint of gravitational collapse, must be axisymmetric and are described by the Kerr-Newman metric. The prototypical alternative theory of gravity is Brans-Dicke theory with (Jordan frame) action

\[S_{BD} = \int d^4x \sqrt{-\hat{g}} \left[\varphi \hat{R} - \frac{\omega_0}{\varphi} \hat{\nabla}^{\mu} \varphi \hat{\nabla}_{\mu} \varphi + L_m(\hat{g}_{\mu\nu}, \psi) \right]. \]

In 1972 Hawking showed that stationary black holes in this theory must be the Kerr-Newman black holes of GR. This result was generalized by Bekenstein to more general scalar-tensor theories, but with the additional assumption of spherical symmetry. Hawking’s result has recently been extended to general scalar-tensor theories with action

\[S_{ST} = \int d^4x \sqrt{-\hat{g}} \left[\varphi \hat{R} - \frac{\omega(\varphi)}{\varphi} \hat{\nabla}^{\mu} \varphi \hat{\nabla}_{\mu} \varphi - V(\varphi) + L_m(\hat{g}_{\mu\nu}, \psi) \right] \]

without any extra assumption of symmetry apart from stationarity. This proof is presented below.

2. The proof

To begin with, we require:
• **Asymptotic flatness:** this requires $V(\varphi_0) = 0$ and $\varphi_0 V'(\varphi_0) = 2V(\varphi_0)$, where φ_0 is the value the Brans-Dicke scalar field approaches as $r \to +\infty$ (gravitational collapse occurs on scales much smaller than the Hubble scale H_0^{-1}, so asymptotic flatness is expected to be an adequate approximation physically).

• **Stationarity:** the black hole is supposed to be the endpoint of collapse.

We map the theory to the Einstein conformal frame according to $\hat{g}_{\mu\nu} \to g_{\mu\nu} = \varphi \hat{g}_{\mu\nu}$, $\varphi \to \phi$, with $d\phi = \sqrt{\frac{2\omega(\varphi)+3}{16\pi}} \frac{d\varphi}{\varphi}$ (for $\omega \neq -3/2$). The action becomes

$$S_{ST} = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi} - \frac{1}{2} \nabla^\mu \phi \nabla_\mu \phi - U(\phi) + L_m(\hat{g}_{\mu\nu}, \psi) \right],$$

(3)

where $U(\phi) = V(\varphi)/\varphi^2$. The field equation for the scalar in vacuo in the Einstein frame is

$$\Box \phi = U'(\phi).$$

(4)

Since the conformal factor of the transformation depends only on the Brans-Dicke field φ, the Einstein frame symmetries are the same as in the Jordan frame. In particular, there exists a Killing vector ξ^μ which is timelike at infinity (stationarity). In the Einstein frame and in electrovacuum the theory is essentially GR with a minimally coupled scalar field. So, stationary, asymptotically flat black holes have to be axisymmetric and, hence, there should be a second Killing vector ζ^μ which is spacelike at infinity, provided that the stress-energy tensor for ϕ satisfies the weak energy condition. Consider, in vacuo, a 4-volume V bounded by the horizon H, two partial Cauchy hypersurfaces S_1, S_2, and a timelike 3-surface at infinity. Now multiply both sides of eq. (4) by U' and integrate over the 4-volume V, obtaining

$$\int_V d^4x \sqrt{-g} U'(\phi) \Box \phi = \int_V d^4x \sqrt{-g} U'^2(\phi).$$

(5)

We can rewrite this equation as

$$\int_V d^4x \sqrt{-g} \left[U''(\phi) \nabla^\mu \phi \nabla_\mu \phi + U'^2(\phi) \right] = \int_{\partial V} d^3x \sqrt{|h|} U'(\phi)n^\mu \nabla_\mu \phi,$$

(6)

where n^μ is the normal to the boundary and h is the determinant of the induced metric $h_{\mu\nu}$ on this boundary. Splitting the boundary into its constituent parts one has $\int_{r=\infty} = 0$,

$$\int_{\text{horizon}} d^3x \sqrt{|h|} U'(\phi)n^\mu \nabla_\mu \phi = 0,$$

(7)

because of the spacetime symmetries, and $\int_{S_1} = -\int_{S_2}$ if S_2 is obtained by shifting each point of S_1 along integral curves of ξ^μ, hence

$$\int_V d^4x \sqrt{-g} \left[U''(\phi) \nabla^\mu \phi \nabla_\mu \phi + U'^2(\phi) \right] = 0.$$

(8)

$U'^2 \geq 0$, $\nabla^\mu \phi$ (which is orthogonal to both ξ^μ and ζ^μ) is spacelike or zero, and with $U''(\phi) \geq 0$ being a local stability condition, one concludes that it must be $\nabla_\mu \phi \equiv 0$.
in V and $U'(\phi_0) = 0$. But for $\phi =$const., to which we have reduced, the scalar-tensor theory reduces to GR and the black hole must be described by the Kerr metric.

Metric $f(R)$ gravity, which has seen much recent attention\cite{4,5} is a special Brans-Dicke theory with parameter $\omega = 0$ and a non-trivial potential V for the Brans-Dicke field $\varphi = f'(R)$. Palatini $f(R)$ gravity, instead, corresponds to an $\omega = -3/2$ Brans-Dicke theory (again, with a potential). The case $\omega = -3/2$ was explicitly excluded in our discussion but $\omega = -3/2$ Brans-Dicke theory reduces to GR in vacuo anyway.

3. Conclusions

The proof presented above extends immediately to electro-vacuum and to any form of conformal matter with trace of the energy-momentum tensor $T = 0$. It implies that asymptotically flat black holes that are the endpoint of collapse in scalar-tensor gravity are described by the Kerr-Newman metric. The assumption of asymptotic flatness is a limitation mathematically, but one expects on physical grounds that the effect of a Friedmann-Lemaître-Robertson-Walker asymptotic structure on astrophysical collapse to be completely negligible (except for primordial black holes for which the collapse and the Hubble scales can be comparable\cite{3}).

There are certain exceptions to the proof, which include: (i) theories in which $\omega \to \infty$ somewhere outside or on the horizon; (ii) theories in which $\varphi \to \infty$ or $\varphi \to 0$ somewhere outside or on the horizon; (iii) theories in which the stress-energy tensor of the Einstein-frame scalar violates the weak energy condition.

It is likely that the majority of these exceptional theories or solutions will be unphysical (e.g., the gravitational coupling in scalar-tensor gravity is inversely proportional to φ) but interesting exceptions might exist. This issue will be addressed in future work.

Acknowledgments

We are grateful to V. Vitagliano and S. Liberati for discussions. VF acknowledges financial support by Bishop’s University and NSERC. TPS acknowledges financial support provided under the Marie Curie Career Integration Grant LIMITSOFGR-2011-TPS and the European Union’s FP7 ERC Starting Grant ”Challenging General Relativity” CGR2011TPS, grant agreement no. 306425.

References

1. S.W. Hawking, *Commun. Math. Phys.* **25**, 152 (1972).
2. S.W. Hawking, *Comm. Math. Phys.* **25**, 167 (1972).
3. A.E. Mayo and J.D. Bekenstein, *Phys. Rev. D* **54**, 5059 (1996); J.D. Bekenstein, [arXiv:gr-qc/9605050](https://arxiv.org/abs/gr-qc/9605050).
4. T.P. Sotiriou and V. Faraoni, *Phys. Rev. Lett.* **108**, 081103 (2012).

An example of a solution where $\varphi \to \infty$ on the horizon is that of Bocharova et al.\cite{8} (which is, however, unstable\cite{9}).
5. T.P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).
6. A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010).
7. T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999).
8. N. Bocharova, K. Bronnikov, and V. Melnikov, Vestn. Mosk. Univ. Fiz. Astron. 6, 706 (1970).
9. K.A. Bronnikov and Yu.N. Kireyev, Phys. Lett. A 67, 95 (1978).