Development of International Standard on Nano Aerosol Generation for Inhalation Toxicology Study

Kangho Ahn1, David Ensor2, Monita Shama3, Michele Ostraat2, Jeremy Ramsden4, Jun Kanno5, Mahmoud Ghazikhansari6, Ruben Lazos7, Mary Guumian6, Flemming R. Cassee8, Wim H. De Jong9, Kisoo Jeon10, and Il Je Yu11

1Department of Mechanical Engineering, Hanyang University, Ansan, Korea
2RTI International, North Carolina, USA
3PETA International Science Consortium Ltd., London, UK
4University of Buckingham, Buckingham, UK
5Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Japan
6Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
7Centro National de Metrologia, Mexico
8Toxicology and Biochemistry Section National Institute for Occupational Health, University of the Witwatersrand, Johannesburg, South Africa
9National Institute for Public Health and the Environment, Bilthoven, Netherlands
10HCTm CO., LTD., Icheon, Korea
11Institute of Nano Products Safety Research, Hoseo University, Asan, Korea

Abstract

Development ISO TR 19601: Aerosol generation for NOAA (nano-objects and their aggregates and agglomerates) air exposure studies is completed recently. The technical report (TR) reviews methods for generating aerosols of NOAA for in vivo and in vitro inhalation studies. The goals of this technical report is to aid in selecting appropriate NOAA aerosol generator to perform a planned toxicology design. The TR describes how to approach air exposure study design after considering workplace exposure scenario with providing a flow chart to select a proper NOAA generator for aimed study. The TR presents variety of NOAA generator currently used, and describes the principles of operation, advantage at limitation of the NOAA generators. This TR will assist investigators on NOAA inhalation toxicity testing how to design inhalation exposure study with selection of proper generators. This mini-review summarizes contents of the technical report and provides the current status of science in NOAA aerosol generation.

Keywords: Aerosol generation; Inhalation study; NOAA; ISO; Nanoparticle

Introduction

Inhalation is a main route of exposure to aerosolized nanomaterials. New term, nano-objects and their aggregates and agglomerates (NOAA), is frequently used instead of nanomaterials. The NOAA include nano-objects with one, two, are three dimensions in the nanoscale from approximately 1-100 nm which might be spheres, fibers, tubes and others as primary structures. NOAA consists of individual primary structures in the nanoscale and larger than 100 nm with aggregated or agglomerated structure [1]. The toxicity of nanomaterials has been frequently tested based on the OECD test guidelines (TG). Currently acute, subacute and subchronic inhalation test guidelines are under revision. OECD TG 403 [2], is an acute inhalation toxicity test guidelines to obtain LC50. OECD TG 436 [3], is a new acute toxic class method. OECD TG 412 [4], is a repeated dose inhalation toxicity TG for 14-28 day study. OECD TG 413 [5], is a subchronic inhalation toxicity TG. Recently these test guidelines are being revised to accommodate traditional chemical exposure as well as nanomaterial exposure, because existing inhalation TGs are not sufficient to satisfy nanomaterial inhalation toxicity testing. Along with OECD test guideline revision activities, ISO TC 229 (International Organization for standardization technical committee 229-Nanotechnologies) initiated a standard for aerosol generation for NOAA from 2014. This TR complements the activities of the Organization for Economic Cooperation and Development (OECD) working party on manufactured nanomaterials (WPMN) and relevant documents. This TR assists scientists to choose appropriate aerosol generator for their target NOAAs to be tested. This standard ISO TR (technical report) 19601 provides a status of science in producing aerosols of NOAA for inhalation study. Appropriate generation of NOAA aerosols determines a successful inhalation toxicity tests which cost a lot of resources and time.

The TR deals with three critical aspects to consider when designing and conducting nanomaterial inhalation toxicity study: 1) uniform and reproducible nano-objects generation that is relevant to realistic exposures 2) thorough characterization of nanomaterials throughout the duration of testing including starting and generated materials and 3) use of occupational exposure limits (OEL) and reference concentrations (RfC) for dosimetry.
Scope of Standard

The technical report reviews methods for producing aerosols of NOAA for *in vivo* and *in vitro* exposure studies. The purpose of the document is to aid in selecting an appropriate aerosol generator to fulfill a proposed toxicology study design. The document describes characteristics of aerosol generation methods, including their advantages and limitations. This TR does not provide guidance for aerosol generation of specific nano-objects.

Inhalation Study Considerations

In designing an inhalation study for NOAA, an actual workplace exposure scenario should be considered, because the health risk of workers is evaluated by inhalation toxicity study. Appropriate NOAA aerosol generation should reflect actual workplace NOAA exposure and emissions in terms of mass or number concentration, particle size, shape and size distribution, frequency and duration of exposure, and handling and manufacturing conditions. Various methods of NOAA from powder form and suspension in liquid media to solid state materials could be used to generate NOAA aerosols. The NOAA aerosol generation should be in line with existing inhalation testing guidelines such as OECD TG 403, 436, 412, 413 and guidance document (GD) 39 (OECD, 2009) or relevant national or international guidelines. Newly revised OECD TGs for nanomaterials describe that MMAD (mass median aerodynamic diameter) is up to 2 micrometer with a geometric standard deviation (GSD) up to 3. In addition, this TR recommends to consider GHS (Globally harmonized system of classification and labelling of chemicals) categorization when an inhalation study might be used for hazard evaluation, classification and labelling.

Considerations in Selection of Proper Generators

When conducting guideline based study, the standardized testing guidelines such as OECD, EPA OPPTS or EU. The study should be conducted following guidelines including number of animals, duration of exposure, observation period, and test material characterization. Studies driven by research hypothesis are more flexible than test guideline based studies. The basic scheme of study consideration is described in the Table 1. The physicochemical characterization of the pristine or manufactured nanomaterial is important before generation of a NOAA aerosol. Because nanomaterial are manufactured by various synthetic procedures that impart those unique properties designed for specific applications, the nanomaterial could have a complex structure including impurities and different surface properties. The physicochemical properties nanomaterial influence toxicity of nanomaterials. Useful physicochemical properties nanomaterial include, but not limited to particle size, size distribution, shape, aggregation/agglomeration, surface characteristics, crystalline structure, dustiness, composition and purity. NOAA exposure information on use or handling and manufacturing in terms of particle mass, concentration, number, size, dispersion or shape is very important in designing the inhalation study. Particle shape and concentration similar to workplace exposure should be determined for NOAA inhalation study. Exposure characteristics including duration and frequency of exposure, worker activities, NOAA manufacturing handling and release or emission scenarios would be very useful in designing an inhalation study. Two types of inhalation exposure chambers, whole-body and nose-only are widely used. Nose-only exposure is a principle method of exposure recommended in the OECD TGs, reduces skin and oral exposure potential and consumes less quantity of test nanomaterials, while whole-body is more relevant to human exposure and causes less pain. NOAA particle should be characterized by real-time and off-line monitoring devices. Real-time monitoring of particle size and number including DMAS (differential mobility analyzing system) and ELPI (electrical low pressure impactor) will give particle size distribution and particle number concentration in real-time. Off-line filter sampling can be used to determine mass concentration of NOAA. In addition, off-line filter or EM grid sampling can be prepared for transmission electron microscope (TEM) observation for size and shape of NOAA and analyzed for composition by EDX (energy dispersive X-ray analyzer). The filter sampling can be further analyzed for chemical composition. The stability of NOAA aerosol concentration in inhalation chamber during exposure period should be monitored regularly according to test guidelines or test protocols. OECD TG recommends to concentration deviates within 20% during exposure period.

Step	Considerations
Selection of study	Guideline based study : strictly recommended to follow TG
	Hazard identification research
Characterization of physicochemical properties of NOAA considered for study	Size and size distribution
	Aggregation/agglomeration
	Surface characteristics: area and charge
	Crystalline structure
	Electrical properties
	Dustiness
	Composition and purity
Exposure information on possible use or handling and manufacturing	Simulating actual exposure situation in workplace
	Depending on particle shape and concentration
Table 1: Basic scheme in selection of proper generators (summarized form of TR 19601).

NOAA Aerosol Generators

NOAA aerosol generators have several modes of generation: dry dissemination, wet dissemination, phase change, chemical reaction and liquid phase filtration/dispersion. The generation techniques, principle of operation, advantage and disadvantages are summarized in the Table 2.

Mode of generation	Generation techniques	Principle of operation	Nanomaterials	Advantage	Limitation	References
Dry dissemination	Wright dust feeder	The dry powder is packed into the cylinder during preparation. The cylinder rotates while descending, which allows the compacted powder to be scraped by a knife and transported along the blade into a central tube. Compressed air introduced and suspends the powder forming an aerosol.	CNTs	- small amount of material required for generation	- unstable concentration	Ellinger-Ziegelbauer and Pauluhn [9] Shvedova et al. [10]
			TiO₂	- small, simple and compact structure	- feeder also cannot be used for every kind of dust	Bermudez et al. [11] Ellinger-Ziegelbauer and Pauluhn [9] Ma-Hock et al. [12] Ma-Hock et al. [13] Ma-Hock et al. [14] Myojo et al. [15]
	Brush type aerosol generator	Using kinetic energy from the metal bristles on a rotating circular wire brush dislodges and disperses the powder	CNTs Graphene Al₂O₃ CuO ZnO	- possible to use the test material as it is manufactured	- possible triboelectric charging may occur from friction while brushing off materials from a pellet	
	Small scale powder disperser (SSPD)	Generator consists of a gas ejector and a turntable that has a spiral groove filled with powder to provide a steady source of particles to rotating turntable. Reduced pressure, generated by compressed air in an ejector, vacuums the powder from the groove	SiO₂	- possible to use the test material as it is manufactured	- unstable concentration, which is affected by shape or cohesiveness of the particle when vacuuming the particle loaded groove	Baron et al. [16] Scabilloni et al. [17]
Method	Description	Characteristics	Notes			
-------------------------------	---	--	--			
Fluidized bed aerosol generator	Particles are dispersed by fluidizing small beads by using high-pressure air. The particles tested clings to the surface of beads. The motion of the beads assists in dispersing the powder. The impact between beads breaks up test powder agglomerates into fine particles.	CNTs - small, simple and compact structure, - possible to use the test material itself	Fujitani et al. [18]			
Acoustic dry aerosol generator elutriator (ADAGE)	Disperses the test particles by acoustic energy from aggregates/ agglomerates into deaggregated/ deagglomerated particles depending on the frequency and amplitude of energy applied.	CNTs - generates a stable aerosol, - suitable for less cohesive powder such as silica (SiO2), - possible to use the test material itself	Baron et al. [16], Chen et al. [19], McKinney et al. [20], Porter et al. [21]			
Vilnius aerosol generator	The generator consists of a small compartment with free rotating vanes and a vibrating bottom dispenses a powder and generates a dry powder aerosol. The disperser uses a combination of inlet air jets, a vibrating membrane and an air-driven stirring turbine to break up and aerosolize the powder.	Aluminum, Nanopowder, Lunar dust - possible to use the test material as it is manufactured, - suitable to generate an aerosol for small volumes of powder, - simple structure, - possible to generate large amount (1 mg/m³ to 2 500 mg/m³) of test aerosol for a long time (0.5 h to 6 h)	Lam et al. [22], Hussain et al. [23]			
Rotating drum generator	The test particles carried up the side of the drum then dropped, simulating the pouring of a powder aerosolize the particle by the falling motion of powder within a rotating drum.	Bentonite, barium sulfate, talc, - possible to use the test material itself, - small, compact and easy to use, - concentration of the generated aerosol is unstable and affected by shape or cohesiveness of the particles	Breum [24], Schneider and Jensen [25]			
Method	Generator/atomizer	Aerosol generation mechanism	Advantages	Disadvantages		
------------------------	---	---	---	---		
Wet dissemination	Atomizer/nebulizer	Droplet generated by air pressure or ultrasonic vibration were dried after evaporation. The ultrasonic nebulizer having an electronic oscillator to generate a high frequency signal, that causes the mechanical ultrasonic vibration of a piezoelectric crystal and generates droplets.	- relatively weak mechanisms for dispersing an agglomerate - unsuitable for generating aerosols from fibrous material - differences in concentration of aerosol generated over time	Morimoto et al. [26] Shvedova et al. [27] Pauluhn [28] Eydner et al. [23] Grassian et al. [30] Morimoto et al. [31] Herzog et al. [32] Kim et al. [33] Yu et al. [34] Han et al. [35]		
Electrostatic assist axial atomizer	The generator disperses the test particles by ultrasonic energy and applied electric fields. The concentration is adjusted by altering the solution concentration and flow rate	CNTs	- particles suspended or dispersed in liquid can be generated as aerosols - small, compact and easy to use	- particles may form from impurities in a solvent such as deionized (DI) water - possible to change the properties of nano-objects such as CNTs by contact with a liquid - concentration of aerosol can also increase over time as the liquid evaporates - difficult to generate particles when the particles are not well or uniformly dispersed	Kim et al. [36]	
Phase change	Evaporation/condensation generator	Contact-heater generates particles of pure material by thermal energy. The concentration is adjusted by altering the temperature of the heater and the flow rate	CNTs	- effective dispersing of CNT by using ultrasonic energy - possibility of damage of the test substance by ultrasonic and introduction impurities such as biological agents from the DI water	Sung et al. [37] Jung et al. [38] Sung et al. [39] Ji et al. [40] Ji et al. [41]	
Spark generator	Creating sparks by supply a high voltage into an electrode bar, that is made of bulk material generates	Ag, Au	- simple and stable method of generating metal nanoparticles - produced nanoparticles can be completely contamination free - can obtain high concentrated and non-aggregated nanoparticles	- difficult to generate materials with high melting temperature and low evaporation rate	Bitterle et al. [42] Takenaka et al. [43]	
nano-objects from the surface of the electrode bar (bulk material).

- produced nanoparticles can be completely contamination free and composed of one or more materials depending on requirements and the system used

Kreyling et al. [44] Diabaté et al. [45] Takenaka et al. [46]

Condensation nano-aerosols

Solid nanoparticles (called nuclei) are generated with a few nanometres diameters, then mixed with an atmosphere of vapour produced by heating a semi-volatile material.

Diethylhexyl sebacate, dioctyl phthalate

- might be the only way to make a controlled source of aerosol of appropriate particle sizes and concentration

- limited to materials with appropriate vapour pressure-temperature characteristics and stable under the applied temperatures

- coagulation with resulting particle size growth with time may limit the ability to generate high concentrations

Chen et al. [47] TSI [48]

Chemical reaction

The particle are generated by chemical reactions and thermal energy in the furnace. It is capable of generating particles with controlled composition and physical properties using various precursors.

SiO\(_2\), Ag

- simple to use, effective method for generating nanomaterials

- by-products are generated

- use of inert gas may affect inhalation tests, dilution and other gas conditioning may be required

Sayes et al. [49] Demokritou et al. [50] Ostraat et al. [51]

Liquid phase filtration/dispersion

Consists of two steps: liquid phase filtration/dispersion followed by critical point drying and direct injection of dispersed dry sample to inhalation chamber. MWCNTs in tertiary butyl alcohol suspension that was in liquid phase were filtered by fine mesh to remove aggregates/agglomerates from the sample. Subsequently, sublimation of MWCNTs in tertiary butyl alcohol suspension allows samples to dry and to be loaded into the cartridge without re-aggregation by surface tension during the drying process. The sample loaded in the cartridge was injected into the subchamber connected upstream of the main whole-body inhalation chamber

MWCNT

- highly dispersed particles without changing size and length distribution

- surface residue and modification needs to be considered

Taquahashi et al. [52]

Table 2: Principle of operation advantage and limitation of NOAA aerosol generators (modified from ISO 19601 Table 4).

Principle of Operation	Advantage
Condensation nano-aerosols	Solid nanoparticles (called nuclei) are generated with a few nanometres diameters, then mixed with an atmosphere of vapour produced by heating a semi-volatile material.
Chemical reaction	The particle are generated by chemical reactions and thermal energy in the furnace. It is capable of generating particles with controlled composition and physical properties using various precursors.
Liquid phase filtration/dispersion	Consists of two steps: liquid phase filtration/dispersion followed by critical point drying and direct injection of dispersed dry sample to inhalation chamber. MWCNTs in tertiary butyl alcohol suspension that was in liquid phase were filtered by fine mesh to remove aggregates/agglomerates from the sample. Subsequently, sublimation of MWCNTs in tertiary butyl alcohol suspension allows samples to dry and to be loaded into the cartridge without re-aggregation by surface tension during the drying process. The sample loaded in the cartridge was injected into the subchamber connected upstream of the main whole-body inhalation chamber

Experimental Integration

The NOAA aerosol generator needs to be integrated exposure method with NOAA aerosol concentration, particle properties, electrostatic charge, flow rate, gas concentrations, temperature and relative humidity. The gas stream from the aerosol generator needs to be conditioned before and monitored before introduction to the exposure system. The objective of an NOAA air exposure study is to establish a quantitative relationship between toxicological result and...
NOAA exposure in relation to nanomaterial characteristics, precise characterization of the NOAA is essential for an inhalation exposure study. Nanoparticle and nano-object composition number and mass concentrations, median and mean size and size distribution, surface area, electrical charge, surface properties, hygroscopicity and shape are important parameters for dosimetry [6].

Considerations for In vivo and In vitro Exposure Systems

During preparation of the NOAA aerosol generation system and exposure chamber, aerosol particle composition, size distribution, and purity should be measured. Stability of NOAA concentration in inhalation chamber should be ensured over exposure time period planned. Inhalation chamber and supporting equipment should be prepared in accordance with relevant test guidelines. NOAA aerosol can be deposited on chamber walls by Brownian diffusion and particle size can change due to aggregation/agglomeration. This deposition process depends on the particle size, electrostatic charge, particle number concentration and residence time. To reduce deposition losses, conductive tubing of the minimum length practical to use with the tubing diameter is selected to interface with instrumentation. All the measurement equipment should be calibrated. Recently in vitro air exposure study has been developed to reduce substantive time, cost, and animal numbers to substitute traditional in vivo study. To be predictive of human effects, in vitro air exposure study should include certain parameters in the assay design, 1) the choice of relevant cell types in a physiologically relevant configuration, 2) characterization of the test-material throughout the assay, including life cycle transformations, 3) the choice of realistic test-material concentration and form relevant to real exposures, 4) the use of context-specific dispersants and 5) the use of appropriate exposure route and duration. To compare and assess inhalation toxicity of NOAA, an ALL (air-liquid interface) cell exposure system (rather than submerged cell exposure systems) is preferred as it is more closely resembles in vivo conditions in the lungs and allows for physiologically relevant delivery of aerosolized nanoparticles to the cells [7].

Conclusions

Nanotechnology is developing rapidly and expected to affect every aspect of global industry and society. International standardization on nanotechnologies will contribute to improving quality of life, public health all environment, most of all, improving economic development. Currently, many new manufactured nanomaterials coming to market and workplace raise concerns on occupational safety and health. Inhalation is considered to be the primary route by NOAA entering the bodies of workers. Inhalation toxicity testing is a primary test in evaluating hazards of NOAA. To conduct appropriate inhalation toxicity testing, it is important to design or choose appropriate NOAA aerosol generator. This review presents NOAA aerosol generators described in the ISO TR 19601 [8]. The standard providing the status of NOAA aerosol generators, and further discuss the principles of generation the advantages and limitations of the respective NOAA generators.

Acknowledgements

The authors gratefully acknowledge to Korea Ministry of Trade, Industry & Energy.

Declaration of Interest

The authors alone are responsible for the content and writing of this paper. This research was supported by the Industrial Technology Innovation Program (1005291, Development of highly usable nanomaterial inhalation toxicity testing system in commerce) through the Korea Evaluation Institute of Industrial Technology by the Korean Ministry of Trade, Industry & Energy.

References

1. ISO/TR 12885 (2008) Nanotechnologies. International Organization for Standardization, Health and safety practices in occupational settings relevant to nanotechnologies.
2. OECD Test Guideline (TG) 403 (2009) Acute Inhalation Toxicity. OECD, Paris.
3. OECD Test Guideline (TG) 436 (2009) Acute Inhalation Toxicity – Acute Toxic Class method. OECD, Paris.
4. OECD Test Guideline (TG) 412 (2009) Subacute Inhalation Toxicity: 28-Day study. OECD, Paris.
5. OECD Test Guideline (TG) 413 (2009) Subchronic Inhalation Toxicity: 90-Day study. OECD, Paris.
6. ISO/TR 13329 (2012) Nanomaterials. International Organization for Standardization, Preparation of material safety data sheet (MSDS).
7. Außerheide M, Scheller S, Mühle N, Halter B, Hochrainer D (2011) Analytical in vitro approach for studying cytotoxic and genotoxic effects of particulate airborne material. Anal Bioanal Chem 401: 3213-3220.
8. ISO/TR 19601 (2017) Nanotechnologies. International Organization for Standardization, Aerosol generation for air exposure studies of nano-objects and their aggregates and agglomerates (NOAA).
9. Ellinger-Ziegelaubauer H, Pauluhn J (2009) Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes (R)) relative to alpha-quartz following a single 6 h inhalation exposure of rats and a 3 months post-exposure period. Toxicology 66: 16-29.
10. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Goriely O, et al. (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295: 552-565.
11. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hest PM, et al. (2004) Pulmonary Responses of Mice, Rats, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles. Toxicol Sci 77: 347-357.
12. Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, (2009) Development of a Short-Term Inhalation Test in the Rat Using Nano-Titanium Dioxide as a Model Substance. Inhal Toxicol 21: 102-118.
13. Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, et al. (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112: 468-481.
14. Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, et al. (2013) Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10: 23.
15. Myojo T, Oyabu T, Nishi K, Kadoya C, Tanaka I, et al. (2009) Aerosol generation and measurement of multi-wall carbon nanotubes. J Nanopart Res 11: 91-99.
16. Baron PA, Deye GJ, Chen BT, Schwegler-Berry DE, Shvedova AA, et al. (2008) Aerosolization of Single-Walled Carbon Nanotubes for an Inhalation Study. Inhal Toxicol 20: 751-760.
17. Scabilloni JF, Wang L, Antonini JM, Roberts JR, Castranova V, et al. (2005) Matrix metalloproteinase induction in fibrosis and fibrotic nodule formation due to silica inhalation. Am J Physiol Lung Cell Mol Physiol 288: 709-717.
18. Fujitani Y, Furuyama A, Hirano S (2009) Generation of airborne multi-walled carbon anotubes for inhalations studies. Aerosol Sci and Technol 43: 881-890.
19. Chen BT, Schwegler-Berry D, McKinney W, Stone S, Cumpston JL, et al. (2012) Multi-walled carbon nanotubes: sampling criteria and aerosol characterization. Inhal Toxicol 24: 798-820.

20. McKinney W, Chen B, Frazer D (2009) Computer controlled multi-walled carbon nanotube inhalation exposure system. Inhal Toxicol 21: 1053-1061.

21. Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, et al. (2012) Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 7: 1179-1194.

22. Lam CW, Scully RR, Zhang Y, Renne RA, Hunter RL, et al. (2013) Toxicity of lunar dust assessed in inhalation-exposed rats. Inhal Toxicol 25: 661-678.

23. Hussain S, Grabinski C, Schaeublin N, Maurer E, Sankaran M, et al. (2013) Toxicity evaluation of engineered nanomaterials: Risk evaluation tools (phase 3 studies). Air Force Research Laboratory.

24. Brem NO (1999) The rotating drum dustiness tester: Variability in dustiness in relation to sample mass, testing time and surface adhesion. Ann occup Hyg 43: 557-566.

25. Schneider T, Jensen KA (2008) Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small. Ann Occup Hyg 52: 23-34.

26. Morimoto Y, Hirohashi M, Kobayashi N, Ogami A, Horie M, et al. (2012) Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotox 6: 766-775.

27. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, et al. (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289: 698-708.

28. Pauluhn J (2010) Subchronic 13-Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects Are Determined by Density of Agglomerate Structures, Not Fibrillar Structures. Toxicol Sci 113: 153-163.

29. Eydner F, Schaudien D, Creutzenberg O, Ernst H, Hansen T, et al. (2012) Impacts after inhalation of nano- and fine-sized titanium dioxide particles: morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index. Inhal Toxicol 24: 557-569.

30. Grassian VH, O’shaughnessy PT, Adamcakova-Dodd A, Petibonne JM, Thorne PS (2007) Inhalation Exposure Study of Titanium Dioxide Nano-objects with a Primary Particle Size of 2 to 5 nm. Environ Health Perspect 115: 397-402.

31. Morimoto Y, Oyabu T, Ogami A, Myojo T, Kuroda E, et al. (2011) Investigation of Gene Expression of MMP-2 and TIMP-2 mRNA in Rat Lung in Inhaled Nickel Oxide and Titanium Dioxide Nano-objects. Ind Health 49: 344-352.

32. Herzog F, Ciffi MJ, Piccapietra F, Behra R, Schmid O, et al. (2013) Exposure of silver-nanoparticles and silver ions to lung cells in vitro at the air–liquid interface. Part Fibre Toxicol 10: 11.

33. Kim JS, Peters TM, O’shaughnessy PT, Adamcakova-Dodd A, Thorne PS (2013) Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials. Toxicol In Vitro 27: 164-173.

34. Yu LE, Balasubramaniam KS, Yung LYL, Hartono D, Ong CN, et al. (2007) Translocation and effects of gold nano-objects after inhalation exposure in rats. NanoTox 1: 235-242.

35. Han SG, Lee JS, Ahn K, Kim YS, Kim JK, et al. (2014) Size-dependent clearance of gold nanoparticles from lungs of Sprague-Dawley rats after short-term inhalation exposure. Arch Toxicol 89: 1083-1094.

36. Kim JS, Sung JH, Song KS, Lee JH, Kim SM, et al. (2012) Persistent DNA damage measured by comet assay of Sprague Dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTs) generated by new MWCNT aerosol generation system. Toxicol Sci 128: 439-448.

37. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, et al. (2008) Lung Function Changes in Sprague-Dawley Rats After Prolonged Inhalation Exposure to Silver Nano-objects. Inhal Toxicol 20: 567-574.

38. Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, et al. (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108: 452-461.

39. Jung JH, Oh HC, Ji JH, Kim SS (2007) In-situ gold nanoparticle generation using a small-sized ceramic heater with a local heating area. Materials Science Forum 544: 1001-1004.

40. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, et al. (2007) Twenty-eight-day inhalation toxicity study of silver nano-objects in Sprague-Dawley rats. Inhal Toxicol 19: 857-871.

41. Ji JH, Jung JH, Yu JJ, Kim SS (2007) Long-term stability characteristics of metal nanoparticle generator using a small ceramic heater for inhalation toxicity studies. Inhal Toxicol 19: 745-751.

42. Bitterle E, Karg E, Schroeppeel A, Kreiling WG, Tippe A, et al. (2006) Dose-controlled exposure of A549 epithelial cells at the air–liquid interface to airborne ultrafine carbonaceous particles. Chemosphere 65: 1784-1790.

43. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, et al. (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109: 547-551.

44. Kreiling WG, Biswas P, Messing M, Gibson N, Geiser M, et al. (2011) Generation and characterization of stable, highly concentrated titanium dioxide nano-object aerosols for rodent inhalation studies. J Nanopart Res 13: 511-524.

45. Diabaté S, Weiss C, Mühlhoft S, Paur HR, Niedetzky, et al. (2009) Biological effects in human lung cells exposed to platinum nanoparticle aerosol. European Aerosol Conference, Karlsruhe, Germany.

46. Takenaka S, Karg E, Kreiling WG, Lentner B, Möller W, et al. (2006) Distribution Pattern of Inhaled Ultrafine Gold Particles in the Rat Lung. Inhal Toxicol 18: 733-740.

47. Chen BT, Fletcher RA, Cheng YS (2011) Calibration of Aerosol Instrumentation. In Kulkarni P, Baron PA, Willeke K (edn). Aerosol Measurement, Principles, Techniques, and Applications. John Wiley and Sons, Hoboken, NJ: 21-449-379.

48. TSI Incorporated (2016) http://www.tsi.com/Condensation-Monomodisperse-Aerosol-Generator-3475/

49. Sayes CM, Reed KL, Glover KP, Ostraat ML, Swain KA, Ostraat ML, et al. (2010) Changing the dose metric for inhalation toxicity studies: Short-term study in rats with engineered aerosolized amorphous silica nano-objects. Inhal Toxicol 22: 348-354.

50. Demokritou P, Büchel R, Molina RM, Deloïd GM, Brain JD, et al. (2010) Development and characterization of a versatile engineered nanomaterial generation system (VENGES) suitable for toxicological studies. Inhal Toxicol 22: 107-116.

51. Ostraat ML, Swain KA, Krajewski JJ (2008) SiO2 nanoparticle reactor for occupational health and safety studies. J Occup Environ Hyg 5: 390-398.

52. Taqquhashi Y, Ogawa Y, Takagi A, Tsuji M, Morita K, et al. (2013) Improved dispersion method of multi-wall carbon nanotube for inhalation toxicity studies of experimental animals. J Toxicol Sci 38: 619-628.