Potential of food crop waste as one of beef cattle feed sources to support meat self-sufficiency in Gorontalo District during the new normal period

Surya* and A Y Fadwiwati
Agricultural Technology Research Center Gorontalo - Ministry of Agriculture, Gorontalo
*E-mail: aku.uyha@yahoo.com

Abstract. This study aims to determine the potential of food crop waste as one of beef cattle feed sources to support meat self-sufficiency in the Gorontalo District during the new normal period. This research is a descriptive study using primary and secondary data. The data obtained is then calculated for the analysis of livestock performance to see the growth rate of beef production and the analysis of the concentration index for agricultural waste feed production in the Gorontalo District. The results obtained indicate that the growth rate of beef production in the Gorontalo District is \(\ln(y) = 13.50 + 0.12 \ t \) so that the growth rate increases by 12%. Furthermore, the FPCI value in the Gorontalo District is still in the low category in 12 Sub-Districts, the medium category in 4 Sub-Districts, and the high category in 3 Sub-Districts. This shows that the availability of beef cattle feed is not fully fulfilled if it only relies on existing food crop waste even though there is a growth in meat production in the Gorontalo District.

1. Introduction
Beef cattle is one of the ruminant livestock in Gorontalo Province which is mostly maintained and developed in Gorontalo District. The population of beef cattle in Gorontalo District has always increased every year. The number of beef cattle in 2019 is 92,774 heads [1]. This shows an increase in the number of beef cattle population from previous years, so that its development is very supportive of the economy and becomes an opportunity for people in Gorontalo District to develop a beef cattle business. The existence of beef cattle in Gorontalo District is considered to have a big contribution as a supplier of beef cattle to support beef self-sufficiency in Gorontalo Province. Government efforts to encourage the growth of meat self-sufficiency [2], of course there will be some challenges [3]. The graph of beef cattle population growth certainly needs to be balanced with the availability of feed which plays an important role in determining the sustainability of beef cattle farming to support meat self-sufficiency [4].

Waste is the residual waste from a production process. Agricultural waste is divided into two groups, namely post-harvest waste and industrial waste from processing [5]. Food crop waste is produced from commodities that are cultivated and have great potential as beef cattle feed. Post-harvest agricultural waste originating from food crop waste in the form of rice straw, corn, and soybeans is an easy and inexpensive alternative for beef cattle breeders in utilizing their waste products as animal feed.
Beef cattle business is mostly cultivated through the fattening model and the mother child model [6]. The ability of beef cattle to convert feed derived from agricultural waste into components needed for growth and reproduction in beef cattle [7]. The development of beef cattle business needs to be supported by various factors, one of which is feed. The availability of agricultural waste originating from food crop waste products is influenced by cropping patterns and the area of harvest of food crops in an area [8].

Utilization of food crop waste such as rice, corn, and soybeans has potential as beef cattle feed. Based on the description above, the authors will identify and analyze the potential of food crop waste as one of beef cattle feed sources to support meat self-sufficiency in the Gorontalo District during the New Normal period.

2. Material and Methods
This research was conducted in all sub-districts in Gorontalo District in January-July 2020.

2.1. Material
This research is a descriptive study where the data used in this study are primary data and secondary data. The variables observed were beef production and harvested area for food crops such as rice, maize and soybeans in 19 Sub-Districts in Gorontalo District.

2.2. Methods
Analysis of the performance of beef cattle in the last 3 years for Gorontalo District (2017 - 2019) by calculating the growth rate of beef production. The development model for the growth rate of beef production uses a simple linear regression model in the form of the equation [9].

\[
\ln (y) = a + bt
\]

Information:
- \(y \) = Livestock performance, namely the amount of beef production
- \(a \) = Constant
- \(b \) = Direction coefficient
- \(t \) = Period of year

The Feed Production Concentration Index (FPCI) provides an overview of the production concentration of each food crop waste based on dry matter production in Gorontalo District. The calculation of FPCI uses the conversion value for food crop waste [10] as follows:

Table 1. The conversion value of food crop waste production in rice, corn and soybeans

No.	Types of waste	Fresh	Dry matter
1.	Rice	11,89	5,96
2.	Corn	9,74	6,00
3.	Soybeans	4,34	2,79

Furthermore, calculations are carried out to calculate the Feed Production Concentration Index (FPCI) using the following formula [11]:

\[
\text{FPCI} = \frac{\text{Production of Food Crop Waste in each Sub-District of Gorontalo District}}{\text{Average Production of Food Crop Waste in Gorontalo District}}
\]

The criteria used for the Feed Production Concentration Index (FPCI) are high production categories > 2, medium > 1 - 2 and low <1.
3. Results and Discussion

3.1. Animal Performance

Beef cattle performance analysis by calculating the growth rate of meat production. The relationship between the year period and the amount of meat production can be seen in Figure 1 as follows:

![Figure 1. The growth rate of beef production in Gorontalo District](image)

Based on Figure 1 above, it can be seen that the increase in the amount of beef production follows the livestock diversity equation, namely \(\ln(y) = 13.50 + 0.12t \) so that the growth rate increases by 12%. This shows that the amount of beef production each year increases from the first year to the last year (2017-2019). The fulfillment of national meat consumption needs is obtained from beef/buffalo, goat/lamb, pork, poultry and other livestock [12]. Especially for beef, it contributes 23% to the national meat demand and is expected to continue to increase in line with population growth.

3.2. Feed Production Concentration Index (FPCI)

The harvested area for food crops (Ha) such as rice, corn, and soybeans in Gorontalo District can be seen as follows:

No.	Sub-District	Harvested area (Ha)	Total (Ha)		
		Rice	Corn	Soybean	
1.	Asparaga	605	1.202	-	1.807
2.	Batudaa	-	1.457	-	1.457
3.	Batudaa Pantai	-	557	-	557
4.	Bilato	-	1.252	-	1.252
5.	Biluhu	-	405	-	405
6.	Boliyohuto	1.089	839	-	1.928
7.	Bongomeme	-	5.082	-	5.082
8.	Dungaliyo	340	1.047	-	1.387
9.	Limboto	1.092	1.508	-	2.600
10.	Limboto Barat	1.228	1.787	-	3.015
11.	Mootilango	1.788	2.332	-	4.120
12.	Pulabala	-	9.304	-	9.304
13.	Tabongo	1.202	980	-	2.182
14.	Telaga	277	472	-	749
Based on the data above, it shows that the harvested area for maize is higher than the harvested area for other food crops. This shows that people in Gorontalo District use more of their land for the agricultural sector in terms of corn crops. So that the provision of feed for livestock is dominated by corn straw. That the beef cattle business system can be integrated with feed sources [13]. The availability of feed sources can be integrated between land resources and locally generated waste [14]. This is reinforced by the climate, topography, agroecosystem and ecology that Indonesia has so that it can provide feed for beef cattle [15].

Forage for livestock consists of natural forages such as field grass and forage agricultural waste originating from food crop waste such as rice straw, corn, soybeans, and beans [16]. The availability of agricultural waste originating from food crop waste greatly affects the pattern of food crops in the area [17].

Furthermore, from the harvested area of food crop, we can know the dry matter weight of each type of agricultural waste produced from the agricultural sector based on the dry matter conversion rate [10] for each food crop variety as shown in the following table:

Table 3. Production of dry matter food crops (Ha) in Gorontalo District

No.	Sub-District	Production of dry matter (Ton/Ha)	Total		
		Rice	Corn	Soybean	
1.	Asparaga	3.605,80	7.212,00	-	10.817,80
2.	Batudaa	-	8.742,00	-	8.742,00
3.	Batudaa Pantai	-	3.342,00	-	3.342,00
4.	Bilato	-	7.512,00	-	7.512,00
5.	Biluhu	-	2.430,00	-	2.430,00
6.	Boliyohuto	6.490,44	5.034,00	-	11.524,44
7.	Bongomeme	-	30.492,00	-	30.492,00
8.	Dungaliyo	2.026,40	6.282,00	-	8.308,00
9.	Limboto	6.508,32	9.048,00	-	15.556,32
10.	Limboto Barat	7.318,88	10.722,00	-	18.040,88
11.	Moootilango	10.656,48	13.992,00	-	24.648,48
12.	Pulabala	-	55.824,00	-	55.824,00
13.	Tabongo	7.163,92	5.880,00	-	13.043,92
14.	Telaga	1.650,92	2.832,00	-	4.482,92
15.	Telaga Biru	1.335,04	7.176,00	-	8.511,04
16.	Telaga Jaya	268,20	372,00	-	640,20
17.	Tibawa	6.567,92	26.106,00	-	32.673,92
18.	Tilango	-	1.386,00	287,90	1.413,90
19.	Tolangohula	10.823,36	4.680,00	55,80	15.559,16
	Amount	64.415,68	209.064,00	83,70	273.563,38

Source: Processed data, 2020.
In Table 3 above, it can be seen that the dry matter is mostly obtained from Pulubala Sub-District while the least dry matter is in Telaga Jaya Sub-District. The dry matter value shows that the amount of harvest production in each Sub-District in Gorontalo District is different. This is also due to the variable harvest area in each Sub-District so that the dry matter yield for each food crop variety is also different. The feed given to beef cattle must match the nutritional needs of the beef cattle [6]. The need for one adult cow is 2.28 tonnes BK/year or 6.25 kg BK/day and stated that the consumption requirement is 3-4% based on the body weight of beef cattle [18].

By-products and crop waste are the key to a sustainable livestock-agriculture integration system [19]. Feeding beef cattle is carried out twice a day. Forage or agricultural waste such as straw is given to beef cattle twice a day in the morning and evening as much as 30-40 kg/head/day [20].

For the amount of dry matter for food crops above, then we can then find out the value of the Feed Production Concentration Index (FPCI). FPCI provides an overview of the production concentration of each food crop waste based on dry matter production in each region (Sub-District) in Gorontalo District. The criteria used were high > 2, medium > 1-2, and low 0-1 production categories. FPCI is the production of food crop waste in each district divided by the average production of food crop waste in Gorontalo District. The following can be seen in Table 4 below:

Table 4. Value of Feed Production Concentration Index (FPCI) in Gorontalo District

No.	Sub-District	FPCI	Category
1.	Asparaga	0.75	Low
2.	Batudaa	0.61	Low
3.	Batudaa Pantai	0.23	Low
4.	Bilato	0.52	Low
5.	Biluhu	0.17	Low
6.	Boliyohuto	0.80	Low
7.	Bongomeme	2.12	High
8.	Dungaliyo	0.58	Low
9.	Limboto	1.08	Medium
10.	Limboto Barat	1.25	Medium
11.	Mootilango	1.71	Medium
12.	Pulabala	3.88	High
13.	Tabongo	0.91	Low
14.	Telaga	0.31	Low
15.	Telaga Biru	0.59	Low
16.	Telaga Jaya	0.04	Low
17.	Tibawa	2.27	High
18.	Tilango	0.10	Low
19.	Tolangohula	1.08	Medium

Source: Processed data, 2020.

From Table 4 above, it shows that the value of the concentration of forage production in Gorontalo District is still low on average in 12 Sub-Districts, medium category in 4 Sub-Districts, and high category in 3 Sub-Districts. This shows that the availability of beef cattle feed is not fully fulfilled if it only relies on food crop waste in Gorontalo District. The agricultural and agro-industrial waste has considerable potential as a source of ruminant animal feed [21].

Agricultural waste is commonly used as an alternative for beef cattle feed because beef cattle are able to convert crude fiber content into content that is useful for body weight growth and reproduction.
Food crop waste as an alternative for beef cattle feed is one of the solutions in overcoming the availability of feed [22].

4. Conclusion
The growth rate of beef production in Gorontalo District is \(\text{In (y)} = 13.50 + 0.12t \) so that the growth rate increases by 12%. Furthermore, the average FPCI score in Gorontalo District is still in the low category in 12 Sub-Districts, the medium category in 4 Sub-Districts, and the high category in 3 Sub-Districts. This shows that the availability of beef cattle feed is not fully fulfilled if it only relies on existing food crop waste even though there is a growth in meat production in Gorontalo District.

5. References
[1] Badan Pusat Statistik Kabupaten Gorontalo 2020 Kabupaten Gorontalo dalam angka 2020 CV Rivaldi, Limboto Pp 184
[2] Manalu R 2020 Inovasi 16(1) 42-50
[3] Ashari, Nyak I and Sri N 2012 Analisis Kebijakan Pertanian 10(2) 181-98
[4] Ahmad S N, Siswansyah D D and Swastika D K S 2004 J. Pengkajian dan Pengembangan Teknologi Pertanian 7(2) 155-170
[5] Agustono B, Mirni L, Anwar M and Muhammad T E P 2017 J. Medik Veteriner 1(1) 12-22
[6] Mayangsari D, Prasetyo E and Mukson 2014 J. Ilmu Pertanian dan Peternakan 2(2) 1-7
[7] Samadi, Yunasri U and Mira D 2010 J. Agripet. 10(2) 45-53
[8] Syamsu J A, Lily A S, Mudikdjo H, Sunarso, Sutrisno M 2008 Analisis development diamond dan potensi wilayah pengembangan peternakan yang berwawasan lingkungan di Kabupaten Majalengka Laporan artikel Fakultas Peternakan, Universitas Padjadjaran
[9] Syamsu J A 2012 Bahan kuliah analisis sumber daya pakan dan wilayah (Makassar : Program Magister Sains Ilmu dan Teknologi Peternakan Universitas Hasanuddin)
[10] Syamsu J A 2006 Analisis potensi limbah tanaman pangan sebagai sumber pakan ternak ruminansia di Sulawesi Selatan Disertasi (Bogor : Institut Pertanian Bogor)
[11] Sarwani M 2008 Teknologi budidaya sapi potong (Bogor : Balai Besar Pengkajian dan Pengembangan Teknologi Pertanian, Badan Penelitian dan Pengembangan Pertanian)
[12] Mayulu H, Sunarso, Sutrisno C I and Sumarsono 2010 J. Litbang Pertanian 29(1) 34-41
[13] Mulyo I T, Marzuki S and Santoso S I 2012. Agriculture J. 1(2) 266-77
[14] Rusdiana S, Adiati U and Hutasoit R 2016 J. Sosial Ekonomi dan Kebijakan Pertanian Agrikonoimika 5(1) 137-49
[15] Atmiyati 2006 Daya dukung hijauan pakan terhadap pengembangan ternak di Kabupaten Sembas Temu Teknis Nasional Tenaga Fungsional Pertanian 96-100.
[16] Febrina D and Liana M 2008 J. Peternakan 5(1) 28-37
[17] Tillman A D, Reksohadiprodjo S, Prawirokusumo S, Hartadi H and Lebdosoekokojo S 1991 Ilmu makanan ternak dasar (Yogyakarta: Gadjah Mada University Press)
[18] Prawiradiputra B R 2009 Masalah adakah peluang pengembangan integrasi tanaman dengan ternak di Indonesia (Bogor : Balai Penelitian Ternak)
[19] Arfa’i and Dirghahayu E 2007 Analisis potensi pengembangan ternak sapi potong melalui pendekatan ketersediaan lahan dan sumberdaya peternakan Di Kabupaten Padan Pariaman Sumatera Barat Laporan Penelitian Dosen Muda (Padang : Fakultas Peternakan Universitas Andalas)
[20] Rouf A A 2010 Potensi limbah pertanian sebagai pakan sapi di Provinsi Gorontalo (Gorontalo : Balai Pengkajian Teknologi Pertanian Gorontalo)
[21] Wahyono D E, Hardianto R, Anam C, Wijono D B, Purwanto T and Malik M 2003 Strategi pemanfaatan limbah pertanian dan agroindustri untuk pembuatan pakan lengkap ruminansia (Bogor : Pusat Penelitian dan Pengembangan Peternakan Badan Penelitian dan Pengembangan Pertanian)

6