A mystery of black-hole gravitational resonances

Shahar Hod

The Ruppin Academic Center, Emeq Hefer 40250, Israel
The Hadassah Academic College, Jerusalem 91010, Israel
E-mail: shaharhod@gmail.com

Received June 9, 2016
Revised August 12, 2016
Accepted August 19, 2016
Published August 30, 2016

Abstract. More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with $\Im \omega/T_{\text{BH}} \gg 1$ (here ω and T_{BH} are respectively the characteristic quasinormal resonant frequency of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).

Keywords: astrophysical black holes, GR black holes, gravitational waves / theory, gravity

ArXiv ePrint: 1602.05730
1 The black-hole quasinormal mystery

One of the earliest and most influential works on the quasinormal resonance spectra of black holes is Detweiler’s “Black holes and gravitational waves. III. The resonant frequencies of rotating holes” [1]. In this famous paper,\(^1\) he derived the characteristic resonance equation

\[
\frac{\Gamma(2i\delta)\Gamma(1+2i\delta)\Gamma(1/2-s-i\hat{\omega}-i\delta)\Gamma(1/2-s-i\hat{\omega}+i\delta)}{\Gamma(-2i\delta)\Gamma(1-2i\delta)\Gamma(1/2-s+i\hat{\omega}+i\delta)\Gamma(1/2-s+i\hat{\omega}-i\delta)} = (-i\hat{\omega}\tau)^{2i\delta} \frac{\Gamma(1/2+i\hat{\omega}+i\delta-4i\varpi/\tau)}{\Gamma(1/2+i\hat{\omega}-i\delta-4i\varpi/\tau)}
\]

for the quasinormal frequencies of near-extremal (rapidly-rotating) Kerr black holes. Here\(^2,3\)

\[
\tau \equiv 8\pi MT_{BH}; \quad \varpi \equiv M(\omega - m\Omega_H); \quad \hat{\omega} \equiv 2\omega r_+ \quad (1.2)
\]

where

\[
T_{BH} = \frac{r_+ - r_-}{8\pi Mr_+}; \quad \Omega_H = \frac{a}{2Mr_+} \quad (1.3)
\]

are the Bekenstein-Hawking temperature and the angular velocity of the rotating Kerr black hole, respectively. The parameters \(\{s, m\}\) are the spin-weight and azimuthal harmonic index of the field mode [2], and \(\delta\) is closely related to the angular-eigenvalue of the angular Teukolsky equation [2].\(^4\)

Detweiler’s resonance equation (1.1) is based on the earlier analyzes of Teukolsky and Press [2] and Starobinsky and Churilov [3, 4] who studied the scattering of massless spin-s perturbation fields in the rotating Kerr black-hole spacetime in the double limit \(a/M \to 1\) (\(T_{BH} \to 0\)) and \(\omega \to m\Omega_H\). These limits correspond to [see eq. (1.2)]

\[
\tau \to 0 \quad \text{and} \quad \varpi \to 0 \quad (1.4)
\]

The rather complicated resonance equation (1.1) can be solved \textit{analytically} in two distinct regimes:

(1) In his original analysis [1], Detweiler studied the regime

\[
\frac{\varpi}{\tau} \gg 1 \quad \text{with} \quad \delta^2 > 0 \quad (1.5)
\]

\(^1\)To date, this paper [1] has been cited more than 130 times.

\(^2\)We use natural units in which \(G = c = \hbar = 1\).

\(^3\)Here \(M, a \equiv J/M\), and \(r_\pm = M + (M^2 - a^2)\) are the mass, angular momentum per unit mass, and horizon radii of the rotating Kerr black hole, respectively.

\(^4\)See [2] for details [see, in particular, equations (2.7) and (6.3) of [2]].
and obtained the black-hole eigenfrequencies
\[\varpi_n = -\frac{e^{\theta/2\delta}}{4m} (\cos \phi + i \sin \phi) \times e^{-\pi n/\delta}, \]
(1.6)
where the integer \(n \) is the resonance parameter of the mode, and
\[re^{i\theta} \equiv \left[\frac{\Gamma(2i\delta)}{\Gamma(-2i\delta)} \right]^{1/2} \frac{\Gamma(1/2 + s - im - i\delta)\Gamma(1/2 - s - im - i\delta)}{\Gamma(1/2 + s - im + i\delta)\Gamma(1/2 - s - im + i\delta)}; \quad \phi \equiv -\frac{1}{2\delta} \ln r. \]
(1.7)

(2) On the other hand, in [5] (see also [6–13]) we have analyzed the regime
\[\frac{\varpi}{\tau} = O(1), \]
(1.8)
and obtained the characteristic relation [5]
\[\Im \varpi_n = -2\pi T_{\text{BH}}(n + \frac{1}{2} + \Im \delta) \]
(1.9)
for the \textit{slowly} damped quasinormal resonances of the rapidly-rotating (near-extremal, \(T_{\text{BH}} \rightarrow 0 \)) Kerr black holes.

Recently, Yang et al. [14, 15] have used numerical techniques to compute the quasinormal resonances of rapidly-rotating Kerr black holes. They have found numerically [14, 15] that the slowly damped quasinormal resonances of these near-extremal black holes are described extremely well by the analytical formula (1.9) of [5–13]. On the other hand, in their numerical study, Yang et al. [14, 15] have found no trace of the black-hole quasinormal resonances (1.6) predicted by Detweiler. This discrepancy between the \textit{analytical} prediction (1.6) of [1] and the \textit{numerical} results of [14, 15] is the essence of the black-hole quasinormal mystery.

Most recently, Zimmerman et al. [16] have claimed that the discrepancy between Detweiler’s \textit{analytical} prediction (1.6) and their \textit{numerical} results [14–16] stems from the fact that his resonance equation (1.1) is not valid in the regime (1.5). In particular, they have claimed that the standard matching procedure used in [2–4] to match the near-horizon
\[x \equiv \frac{r - r_+}{r_+} \ll 1 \]
(1.10)
solution [see equation (A9) of [2]]
\[R = 2F_1(-i\omega + s + 1/2 + i\delta, -i\omega + s + 1/2 - i\delta; 1 + s - 4i\omega/\tau; -x/\tau) \]
(1.11)
of the Teukolsky radial equation with the far-region \(x \gg \max(\varpi, \tau) \) solution [see equation (A5) of [2]] of the Teukolsky radial equation is invalid in the regime (1.5) studied by Detweiler. Since Detweiler’s analysis is based on the matching procedure of [2–4], Zimmerman et al. have claimed that Detweiler’s analysis is also invalid in the regime (1.5).

2 The mystery is still unsolved

In this paper we would like to point out that the assertion made in ref. [16] is actually erroneous. In particular, we shall show below that the matching procedure of [2–4] is valid in the overlap region
\[\max(\varpi, \tau) \ll x \ll 1. \]
(2.1)
In their matching procedure, Teukolsky and Press [2] (see also [3, 4]) use the identity [see eq. 15.3.7 of [17]]

\[R = \frac{\Gamma(1+s-4i\varpi/\tau)\Gamma(2i\delta)}{\Gamma(-i\hat{\omega}+s+1/2+i\delta+i\hat{\omega}+i\delta-4i\varpi/\tau)} \left(\frac{x}{\tau} \right)^{\hat{\omega}s-1/2+i\delta} \times \binom{2}{1} \sum_{1}^{2} \binom{-i\hat{\omega}+s+1/2-i\delta}{-i\hat{\omega}+1/2-i\delta+4i\varpi/\tau;1-2i\delta,-\tau/x} + (\delta \to -\delta) \]

(2.2)

for the near-horizon hypergeometric function (1.11) [The notation \((\delta \to -\delta)\) in (2.2) means “replace \(\delta\) by \(-\delta\) in the preceding term.”]. In order to perform the matching procedure, Teukolsky and Press [2] (see also [3, 4]) take the limit

\[\binom{2}{1} \sum_{1}^{2} \binom{-i\hat{\omega}+s+1/2-i\delta}{-i\hat{\omega}+1/2-i\delta+4i\varpi/\tau;1-2i\delta,-\tau/x} \to 1 \]

(2.3)

for the hypergeometric functions that appear in the expression (2.2) of the radial eigenfunction \(R\).

In ref. [16] Zimmerman et al. have recently claimed that the limit (2.3) used in [2–4] is invalid in the regime (1.5) studied by Detweiler. To support their claim, they plot (see figure 3 of [16]) the hypergeometric functions of (2.2) in the regime \(\varpi x = 250\).

(2.4)

Not surprisingly, Zimmerman et al. found that, in the regime (2.4), the asymptotic behavior (2.3) used in the matching procedure of [2–4] is not valid. They then concluded that the matching procedure of [2] is not valid in the regime (1.5) studied by Detweiler.

However, here we would like to stress the fact that the analytical arguments of Zimmerman et al. (and, in particular, the data presented in figure 3 of [16]) are actually irrelevant for the discussion about the validity of Detweiler’s resonance condition (1.1). In particular, we would like to emphasize the fact that the characteristic limiting behavior

\[\binom{2}{1} \sum_{1}^{2} \binom{-i\hat{\omega}+s+1/2-i\delta}{-i\hat{\omega}+1/2-i\delta+4i\varpi/\tau;1-2i\delta,-\tau/x} \to 1 \]

(2.5)

of the hypergeometric function is valid in the regime\(^6\)

\[\frac{a \cdot b \cdot z}{c} \ll 1. \]

(2.6)

Taking cognizance of the arguments \((a, b, c, z)\) of the hypergeometric functions in (2.2), one realizes that, for moderate values of the field azimuthal harmonic index \(m\), the asymptotic behavior (2.3) assumed in the matching procedure of [2–4] is valid in the regime [see eqs. (2.2) and (2.6)]

\[\max\left(1, \frac{\varpi}{\tau} \right) \times \frac{\tau}{x} \ll 1. \]

(2.7)

In particular, one finds from (2.7) that, in the regime \(\varpi/\tau \gg 1\) [see (1.5)] studied by Detweiler, the asymptotic behavior (2.3) used in [2–4] is valid for

\[\frac{\varpi}{x} \ll 1. \]

(2.8)

This is certainly not the regime plotted in figure 3 of [16] [see eq. (2.4)]. One therefore concludes that the analytical arguments raised by Zimmerman et al. (and, in particular, the

\(^6\)See equation 15.1.1 of [17].
Currently, we face a mystery which can be summarized as follows:

(1) Contrary to the claim made in [16], Detweiler’s resonance equation (1.1) is valid in the regime (1.5).

\(n \)	\(10^{-4} \)	\(10^{-5} \)	\(10^{-6} \)
2	0.972 – 0.344i	0.972 – 0.348i	0.972 – 0.349i
	0.836 – 0.003i	0.836 – 0.003i	0.836 – 0.003i
3	1.003 – 0.071i	1.005 – 0.075i	1.005 – 0.075i
	0.961 – 0.001i	0.961 – 0.002i	0.961 – 0.002i
4	0.999 – 0.012i	1.001 – 0.016i	1.001 – 0.016i
	0.991 – 0.000i	0.991 – 0.000i	0.991 – 0.000i
5	0.998 + 0.001i	1.000 – 0.003i	1.000 – 0.003i
	0.998 + 0.000i	0.998 – 0.000i	0.998 – 0.000i

Table 1. The values of the hypergeometric functions (2.2) used in the matching procedure of [2–4] for the field mode \(l = m = s = 2 \) with \(x = 0.1 \). The first row corresponds to the hypergeometric function \(_2F_1(-i\omega + s + 1/2 - i\delta, -i\omega + 1/2 - i\delta + 4i\pi \tau; 1 - 2i\delta; -\tau/x) \) in (2.2), whereas the second row corresponds to the hypergeometric function \(_2F_1(-i\omega + s + 1/2 + i\delta, -i\omega + 1/2 + i\delta + 4i\pi \tau; 1 + 2i\delta; -\tau/x) \) in (2.2). One finds that, for resonant modes with \(n \geq 3 \), these functions are described extremely well by the asymptotic behavior (2.3).

Furthermore, taking cognizance of (1.10) and (2.7), one concludes that the matching procedure of [2–4] is valid in the overlap region

\[
\max \left(1, \frac{\omega}{\tau} \right) \times \tau \ll x \ll 1. \tag{2.9}
\]

It is worth emphasizing again that Detweiler’s analysis is based on the matching procedure of [2–4]. As such, his resonance equation (1.1) for the characteristic eigen-frequencies of rapidly-rotating Kerr black holes is expected to be valid in the regime (2.9) [and not in the regime (2.4) considered in figure 3 of [16]].

In table 1 we present the hypergeometric functions (2.2) used in the matching procedure of [2–4]. We display the values of these functions for the field mode \(l = m = s = 2 \) with \(n = 2, 3, 4, 5 \) and \(x = 0.1 \) [see (1.10)]. This mode is characterized by the angular eigenvalue \(\delta = 2.051 \) [18], which yields the Detweiler resonance spectrum [see eqs. (1.6) and (1.7)]

\[
\varpi_n \simeq (0.162 - 0.035i) \times e^{-1.532n}. \tag{2.10}
\]

Inspection of the data presented in table 1 reveals that, for resonant modes with \(n \geq 3 \), the hypergeometric functions \(_2F_1 \) that appear in the expression (2.2) for the radial eigen-function \(R \) are described extremely well by the asymptotic behavior (2.3) as originally assumed in [2–4]. Our results therefore support the validity of the matching procedure used by Teukolsky and Press [2] and by Starobinsky and Churilov [3, 4].

3 Summary

Currently, we face a mystery which can be summarized as follows:

(1) Contrary to the claim made in [16], Detweiler’s resonance equation (1.1) is valid in the regime (1.5).
(2) In his original analytical study, Detweiler has shown that the resonance equation (1.1) predicts the existence of the near-extremal Kerr black-hole quasinormal resonances (1.6) in the regime (1.5).

(3) In their recent numerical study, Zimmerman et al. have found no trace of the black-hole quasinormal resonances (1.6) predicted by Detweiler.

The main goal of the present work was to highlight the discrepancy between the analytical prediction (1.6) of Detweiler and the numerical results of Zimmerman et al. We would like to emphasize that currently we have no solution to this black-hole quasinormal mystery. We believe, however, that it is important to highlight this open problem. We hope, in particular, that the present work would encourage researchers in the fields of black-hole physics and general relativity to further explore this interesting physical problem. Hopefully, future studies of the black-hole quasinormal spectrum will shed light on this intriguing mystery.

Acknowledgments

In memory of Prof. Steven Detweiler. This research is supported by the Carmel Science Foundation. I would like to thank Yael Oren, Arbel M. Ongo, Ayelet B. Lata, and Alona B. Tea for stimulating discussions.

References

[1] S.L. Detweiler, Black Holes And Gravitational Waves. Iii. The Resonant Frequencies Of Rotating Holes, Astrophys. J. 239 (1980) 292 [arXiv:0811.3806] [SPIRE].

[2] S.A. Teukolsky and W.H. Press, Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnetic radiation, Astrophys. J. 193 (1974) 443 [arXiv:0811.3806] [SPIRE].

[3] A.A. Starobinsky, Amplification of waves during reflection from a rotating “black hole”, Zh. Eksp. Teor. Fiz. 64 (1973) 48 [Sov. Phys. JETP 37 (1973) 28].

[4] A.A. Starobinsky and S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole” Zh. Eksp. Teor. Fiz. 65 (1973) 3 [Sov. Phys. JETP 38 (1973) 1].

[5] S. Hod, Slow relaxation of rapidly rotating black holes, Phys. Rev. D 78 (2008) 084035 [arXiv:0708.2306] [arXiv:0708.2306] [SPIRE].

[6] S. Hod, Universal Bound on Dynamical Relaxation Times and Black-Hole Quasinormal Ringing, Phys. Rev. D 75 (2007) 064013 [gr-qc/0611004] [arXiv:0708.2306] [SPIRE].

[7] S. Hod, Near-Extreme Black Holes and the Universal Relaxation Bound, Class. Quant. Grav. 24 (2007) 4235 [arXiv:0705.2306] [arXiv:0705.2306] [SPIRE].

[8] S. Hod, Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation, Phys. Rev. D 80 (2009) 064004 [arXiv:0909.0314] [arXiv:0909.0314] [SPIRE].

[9] S. Hod, Resonance spectrum of near-extremal Kerr black holes in the eikonal limit, Phys. Lett. B 715 (2012) 348 [arXiv:1207.5282] [arXiv:1207.5282] [SPIRE].

[10] A. Gruzinov, Kerr quasinormal modes and Hod’s time-temperature bound, arXiv:0705.1725 [arXiv:0705.1725] [SPIRE].

[11] A. Pesci, From Unruh temperature to generalized Bousso bound, Class. Quant. Grav. 24 (2007) 6219 [arXiv:0708.3729] [arXiv:0708.3729] [SPIRE].
[12] S. Hod, Quasinormal resonances of near-extremal Kerr-Newman black holes, *Phys. Lett. B* **666** (2008) 483 [arXiv:0810.5419] [inSPIRE].

[13] S. Hod, On the branching of the quasinormal resonances of near-extremal Kerr black holes, *Eur. Phys. J. C* **75** (2015) 520 [arXiv:1510.05604] [inSPIRE].

[14] H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti and Y. Chen, Branching of quasinormal modes for nearly extremal Kerr black holes, *Phys. Rev. D* **87** (2013) 041502 [arXiv:1212.3271] [inSPIRE].

[15] H. Yang, A. Zimmerman, A. Zenginoğlu, F. Zhang, E. Berti and Y. Chen, Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown, *Phys. Rev. D* **88** (2013) 044047 [arXiv:1307.8086] [inSPIRE].

[16] A. Zimmerman, H. Yang, F. Zhang, D.A. Nichols, E. Berti and Y. Chen, Reply to “On the branching of quasinormal resonances of near-extremal Kerr black holes” by Shahar Hod, arXiv:1510.08159 [inSPIRE].

[17] M. Abramowitz and I.A. Stegun, *Handbook of Mathematical Functions*, Dover Publications, New York U.S.A. (1970).

[18] W.H. Press and S.A. Teukolsky, *Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric*, *Astrophys. J.* **185** (1973) 649 [inSPIRE].