Case Report

Isolated Femoral Muscle and Bone Metastases Rarely Encountered in Testicular Seminoma

Serkan Degirmencioglu¹ and Burcu Degirmencioglu²

¹ Şehit Alpay Karaoğlanoğlu Str. Zafer Gökşin, Oncology Center, 20100 Denizli, Turkey
² Nuclear Medicine Department of Denizli State Hospital, Denizli, Turkey

Correspondence should be addressed to Serkan Degirmencioglu; drserkandeg@hotmail.com

Received 7 March 2013; Accepted 12 April 2013

1. Introduction

Seminomas account for more than half of testicular tumors. Radiotherapy after orchiectomy and radical lymph node resection is the basis for the treatment in stage I seminomas [1]. Relapses presenting as isolated muscle and bone metastases have been rarely reported in the literature. Bone metastasis in patients with seminomas frequently presents with thoracolumbar spine involvement. Fluoro-18 (F-18) fluorodeoxyglucose (FDG) positron emission tomography (PET) usually detects residual tumor after chemotherapy [2, 3]. FDG-PET is also recommended for initial staging. F-18 FDG uptake is higher in seminomas compared to nonseminomatous testicular tumors [2]. Herein we report a patient with isolated muscle and bone metastases in the right femur on a PET–computed tomography (CT) scan 20 months after therapy. Following confirmation of the metastasis via biopsy, chemotherapy was administered.

2. Case Report

A 62-year-old male patient underwent biopsy 20 months ago due to swelling in his right testicle. He was diagnosed with a seminoma and underwent right orchiectomy and radical lymph node resection. The pathologic examination of the surgical specimen revealed a stage I seminoma. After receiving radiotherapy (24 Gy) to the para-aortic region, the patient declined chemotherapy. After 20 months of surgery, the patient, who was out of follow-up, was admitted to our polyclinic with pain, loss of motion, and swelling in his right leg. On physical examination, a 3.5 × 4 cm mass was detected in the distal part of the right femur beginning from the subcutaneous region and fixed to the bone. A magnetic resonance imaging (MRI) of the right femur revealed a loss in the normal bone signal in the distal metaphyseal-diaphyseal region of the femur, and the soft tissues showed uptake of contrast media around the bone in the postcontrast series, reaching up to 3.5 cm at the widest portion. The lactate dehydrogenase level of the patient was 479 IU/L (normal range, 125–243 IU/L), whereas the alpha-fetoprotein (AFP) and beta human chorionic gonadotrophin (HCG) levels, hemogram, and other biochemical analyses were within normal ranges. A PET–CT was performed to eliminate other likely metastases prior to surgery. The PET–CT of the patient revealed a hypermetabolic lesion beginning from the medial part of the right femur and extending to the tibial margin. The lesion extended over the intermuscular tissue in this region and invaded the muscular tissue, as well as the bone tissue, and bone marrow in the distal diaphysis of the femur (Maximum Standardized Uptake Value [SUVmax] = 16.1;
Figure 1: Hypermetabolic lesion, which begins from the middle part of the right femur and invaded the muscular tissue, as well as the bone tissue and bone marrow in the distal diaphysis of the femur, is observed on the PET (a) and fusion (b) images of the patient (SUVmax = 16.1).

Figure 2: Seminoma infiltration that shows solid growth pattern (×40, H&E).

Following surgery, radiotherapy is applied to the retroperitoneal area, particularly in stage I-II seminomas. Distant metastases were detected in 20% of such patients [2, 3], as in the present case. Relapses occur in 30% of patients within 2 years after orchietomy [11]. The most common sites of metastases are the liver and lungs. More rarely, brain and bone metastases can also occur [12]. Cremerius et al. [3] reported a metastasis rate of 87% in 50 testicular tumors via PET; however, PET eliminated the metastases by 94% compared with CT. FDG-PET is superior to CT in the detection of metastases [13]. Testicular tumors spread through lymph nodes. In particular, the para-aortic chain, supradiaphragmatic nodes, and mediastinal and supraclavicular nodes are involved [12]. The lymphadenopathy that is detected by CT may consist only of reactive cells. The false positivity rate of CT in such patients is greater than 40% [14]. Therefore, PET-CT was preferred in the present case.

The number of cases diagnosed with stage I seminoma and relapsed solely with muscle and bone metastases, as in the present case, is limited in the literature [5, 6]. Only orchietomy was applied in a case and followed up; MRI, which was performed after 22 months because of difficulty in walking, revealed spinal cord compression due to a pathologic fracture involving the 12th thoracic vertebra [5]. Orchietomy and radiotherapy were applied in another case; MRI, which was performed after 24 months because of back pain, revealed a mass involving the 10th rib [6].
In their retrospective study on 650 cases with testicular tumors, Husband and Bellamy [12] defined unusual metastases, including 6 renal, 4 adrenal gland, 4 inferior vena cava, 3 muscle, 2 splenic, 1 gastric, 1 pelvic, 1 seminal vesicle, 1 prostate, and 1 pericardial [12]. In addition, diffuse splenic metastasis was detected after 4 years via FDG-PET in a patient who had been diagnosed with stage III seminoma, and a soft tissue metastasis that led to brachial plexus neuropathy in the right upper arm of a patient was detected 6 years after orchiectomy due to a seminoma [15].

4. Conclusion

In summary, after 20 months of surgery due to a diagnosis of seminoma, the patient, who was out of follow-up, presented to our polyclinic with pain in the right leg and a right femoral mass was detected on physical examination. An isolated solitary metastasis was revealed via PET-CT, performed in order to discriminate other possible metastases. After the diagnosis was confirmed by biopsy, the patient was scheduled to receive chemotherapy.

References

[1] A. Horwich, J. Shipley, and R. Huddart, “Testicular germ-cell cancer,” The Lancet, vol. 367, no. 9512, pp. 754–765, 2006.
[2] U. Cremerius, P. J. Effert, G. Adam et al., “FDG PET for detection and therapy control of metastatic germ cell tumor,” Journal of Nuclear Medicine, vol. 39, no. 5, pp. 815–822, 1998.
[3] U. Cremerius, J. E. Wildberger, H. Borchers et al., “Does positron emission tomography using 18-fluoro-2-deoxyglucose improve clinical staging of testicular cancer? Results of a study in 50 patients,” Urology, vol. 54, no. 5, pp. 900–904, 1999.
[4] R. Choo, G. Thomas, T. Woo et al., “Long-term outcome of postorchiectomy surveillance for Stage I testicular seminoma,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 3, pp. 736–740, 2005.
[5] D. Yee, Z. Gabos, S. North, and R. B. Moore, “Malignant spinal cord compression secondary to testicular seminoma at the time of initial presentation and at relapse while on surveillance,” Canadian Urological Association Journal, vol. 1, no. 1, pp. 59–63, 2007.
[6] M. Watanabe, T. Kamai, A. Masuda et al., “A case report: testicular pure seminoma metastasized to costal bone after 2 years post-operatively,” Acta Urologica Japonica, vol. 50, no. 7, pp. 505–509, 2004.
[7] M. De Santis, C. Bokemeyer, A. Becherer et al., “Predictive impact of 2-18fluoro-2-deoxy-D-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma,” Journal of Clinical Oncology, vol. 19, no. 17, pp. 3740–3744, 2001.
[8] S. E. Hain, M. J. O’Doherty, A. R. Timothy, M. D. Leslie, S. E. Partridge, and R. A. Huddart, “Fluorodeoxyglucose PET in the initial staging of germ cell tumours,” European Journal of Nuclear Medicine, vol. 27, no. 5, pp. 590–594, 2000.
[9] K. Fizazi, A. Auperin, S. Le Moulec et al., “Stage I seminoma: can 18 fluorodeoxyglucose positron emission tomography (FDG-PET) predict occult dissemination?” in Genitourinary Cancers Symposium, 2008, Abstract no: 280.