Isolation and screening of phosphate solubilising fungi from Okra rhizosphere soil and their effect on the growth of Okra plant

Abelmoschous esculentus L.)

Lal Sahab Yadav¹* Vinodkumar Kushwaha¹ and Ashish Jain²

¹Department of Botany, Smt. C.H.M. College, Ulhasnagar-421003, Thane, Maharashtra, India
²Department of Microbiology, Smt. C.H.M. College, Ulhasnagar-421003, Thane, Maharashtra, India

*Corresponding Author: lalsahabdal@gmail.com [Accepted: 30 May 2020]

Abstract: Soil microbiota plays an important role in enhances the available nutrients in the soil for plants. In this study twenty-two filamentous fungi were isolated from the Okra rhizosphere soil. Based on primary screening for phosphate solubilizing potential on solid Pikovskaya’s medium ten isolates were selected for quantitative estimation in liquid medium amended with Tricalcium phosphate (TCP) and Rock Phosphate (RP). *Aspergillus niger* strain (AMB) solubilized maximum TCP & RP and release 295.1 & 221.8 µg ml⁻¹ inorganic-P, while *Aspergillus japonicas* released maximum P in liquid media amended with TCP (298.5 µg ml⁻¹). The other tested isolates *Penicillium* sp., two strains of *Trichoderma viride* and *Chaetomium globosum* released a significant amount of P in liquid media from 0.5% TCP&RP after ten days. Furthermore, the application of selected phosphate solubilizers in the form of consortium and in a combination of the recommended dose of fertilizers resulted good growth of Okra plants in compare to recommended dose of chemical fertilizers. This fungal consortium may serve as very good phosphate solubilizers and can be used as a biofertilizer.

Keywords: Phosphate solubilizers - Rhizosphere fungi - Biofertilizers - Fungal consortium.

[Cite as: Yadav LS & Jain A (2020) Isolation and screening of phosphate solubilising fungi from Okra rhizosphere soil and their effect on the growth of Okra plant *Abelmoschous esculentus* L.). *Tropical Plant Research* 7(2): 277–284]

INTRODUCTION

Okra (*Abelmoschus esculentus* L. Moench) commonly known as Bhindi or Lady’s finger belongs to the family Malvaceae is one of the main vegetables grown extensively throughout India. For good yield plants need balance and a sufficient dose of fertilizers (Rathava *et al.* 2018). The cultivation of Okra in and around the suburban part of Mumbai is mostly limited near the railway track lands. The soil is highly polluted and less fertile, but rich in phosphorus content due to several chemical industries located near the track. The rhizosphere soil of Okra plant has shown a varied group of microorganisms such as *Aspergillus* sp., *Penicillium* sp., *Fusarium* sp., etc. some of which have been reported potent phosphate-solubilizers and growth promoters (Prajapati *et al.* 2013).

Phosphorus is one of the important plant macronutrients that plays a major role in several physiological processes & metabolism and contribute in the growth and yield of crop plants. The majority of soils rich in insoluble inorganic phosphates, which are of no use to plants unless they are solubilized. Plants can absorb Phosphorus from soil solution in the form of phosphate anions. However, phosphate anions are very reactive and may be immobilized through precipitation with several cations and very quickly become crystalline. The crystalline P is insoluble and unavailable to plants. Phosphate solubilizing micro-organisms convert these insoluble phosphates into soluble form through the biochemical processes of acidification, chelation and exchange reaction (Starkanova *et al.* 1999, Narsian & Patel 2000, Reyes *et al.* 2002).

Many phosphate solubilizing bacteria, fungi and actinomycetes have been isolated from tropical as well as temperate soil (Gaur 1990, Chabot *et al.* 1993, Khalil 1995, Vassileva *et al.* 1998, Subba Rao 1999, Trivedi &
Pandey 2007, Pandey et al. 2008, Singh et al. 2011, Kasana et al. 2017). Fungi are important components of soil microbiota in all types of soil and colonize the rhizosphere region of plant. Rhizosphere microflora helps to plants in many way, they increase the fertility level of soil resulted in high yield of crops (Kundu et al. 2009, Prajapati et al. 2013). Several rhizosphere soil fungi like genus Aspergillus and Pencillim have been reported as good phosphate solubilizers (Asea & Kucey 1988, Gaur 1990, Vassilev et al. 1996, Narsian & Patel 2000, Pandey et al. 2008, Padmavathi & Usha 2012). These fungi have the potential to be used as biofertilizers. The objective of this study is to isolate potent phosphate solubilizers and make fungal consortium which can be served as biofertilizer to increase agricultural yields.

MATERIALS AND METHODS

Study sites and sampling

In the present study, soil samples were collected from the surface to 10 cm depth from Okra field near the railway track lands in the area around Kalyan, Thane- Mumbai during the 2018. The samples were placed in sterile plastic containers and stored at room temperature for further study. Four soil samples were collected from four different places and designated as AMB, UNR, KYN and DOV (Table 1). 1 g of soil sample was taken for the isolation of fungi by serial dilution method (Waksman 1916). Samples were serially diluted up to 10^{-7} and 0.2 ml suspension was used as inoculums, pour plate technique applied for the isolation of fungi on three different culture media: malt extract agar, corn meal agar and potato dextrose agar. To avoid bacterial growth 1ppm solution of streptomycin added in media. The plates were incubated at room temperature. The growing fungal colonies on different media having different morphological features were transferred on fresh PDA plates, purified and transferred onto potato dextrose agar slants for detailed study. Pure isolates were identified based on morphotaxonomy with the help of standard literature (Barnett 1960, Rapper & Fennell 1965, Ellis 1971, 1976, Von Arx 1974, Barron 1977, Pitt 1979, Carmichael et al. 1980, Gams et al. 1980, Kirk et al. 2008).

S.N.	Name of Isolates	Sample AMB	Sample UNR	Sample KYN	Sample DOV
1	Aspergillus niger Tieghem	✓	✓	✓	✓
2	Aspergillus terius Thom & Raper	✓	✓	✓	✓
3	Aspergillus aculeatus Iizuka	-	✓	-	-
4	Aspergillus japonicas var. japonicus Saito	✓	-	-	-
5	Aspergillus flavus Link	-	✓	✓	✓
6	Aspergillus wentii Wehmer,	-	-	-	✓
7	Emericella nidulans (Eidam) Vuill	-	-	-	-
8	Penicillium citrinum Thom	✓	-	✓	-
9	Penicillium chrysogenum	-	-	-	-
10	Penicillium restrictum J.C. Gilman & E.V. Abbott	✓	✓	✓	✓
11	Penicillium sp.	✓	✓	✓	✓
12	Pacelomyces variotti Bainier	-	-	-	-
13	Trichoderma viride Pers	✓	✓	✓	✓
14	Trichoderma harzianum Rifai	-	-	-	-
15	Trichoderma sp.	✓	-	-	-
16	Chaetomium globosum Kunze	✓	-	-	✓
17	Syncphalastrum sp.	-	✓	-	-
18	Rhizopus microsporus (Cohn) Schipper & Stalpers.	✓	-	✓	✓
19	Rhizoctonia sp.	✓	-	-	-
20	Chladosporium chladosporoides (Fresen.) G.A. de Vries.	-	✓	✓	✓
21	Fusarium oxysporum E.F. Sm. & Swingle	✓	-	-	-
22	Fusarium solani (Mart.) Saccardo	-	-	✓	-

Screening for Phosphate solubilizing ability

All pure and identified isolates of four soil samples were screened for their phosphate solubilizing activity on solid Pikovskaya’s medium (Hi-media) by spot inoculation on the culture plate. Plates were incubated at room temperature for seven days (Pikovskaya 1948). A clear transparent zone around the colony indicated phosphate solubilization. After the primary screening, the positive isolates were selected for detailed study. The positive isolates were inoculated separately in the centre onto the solid Pikovskaya’s medium and incubated at room temperature. Photograph of culture plates were taken and the Phosphate solubilization index was calculated using the following formula (Edi-Premono et al. 1996):

\[
\text{Phosphate solubilization index} = \frac{\text{Area of Zone}}{\text{Area of Colony}} \times 100
\]
Quantitative estimation of phosphate solubilisation in broth culture

Pikovskaya’s broth medium (pH 7.2) was prepared; 100 ml media dispensed in 250 ml conical flasks for quantitative estimation of phosphate. Insoluble phosphate in the form of TCP & Rock Phosphate (500 mg) were added separately to each flask and was then sterilized at 15 lb pressure for 20 min. Ten-day-old culture grown on PDA medium was used as an inoculum source and 1.0 ml of spore suspension of the isolates was inoculated in triplicate. An un-inoculated flask containing 100 ml media was maintained as a control. Flasks were kept on a rotary shaker at 140rpm and room temperature for seven days. After incubation, the contents of each flask were filtered through Whatman filter paper grade 42. Water-soluble phosphorus was measured using the chlorostanous- reduced molybdophosphoric acid blue method (Jackson 1973).

Preparation of fungal consortium of Phosphate solubilizers

Based on phosphate solubilizing potential of isolates, some of isolates were shortlisted for their further use as biofertilizers. The shortlisted isolates were grown on agricultural waste (Ground nut shell) separately. Mass multiplication of isolates on agricultural waste was done in plastic bags. Sterilized agricultural waste 1kg inoculated with 5ml of spore suspension of respective isolates and kept for incubation at RT, once mycelium of fungus colonized the substrate at this stage appropriate amount of colonized organic waste used as biofertilizer. Okra was selected for trial for fungal phosphate solubilizers consortium to assess their effect on growth in pots. Surface sterilized seeds were shown in pots filled with soil and amended consortium @5%. The other treatments were also planned for a comparative study like one set kept as control; next treatment were recommended dose of chemical fertilizers and soil amended with compost and fungal phosphate solubilizers consortium @5%. All treatments were set in triplicates. After germination and thirty days of growth the physical parameters of plants were recorded.

RESULTS

Isolation and Identification of Fungi

In total 42 isolates were obtained during isolation of fungi from Okra rhizosphere soil samples collected from four different localities. Based on morphological identification, they belong to 21 species under 11 genera (Table 1). The taxa isolated from the soil samples are listed in table 1. The most common genus was Aspergillus with six species, which were found in soil samples of all four localities (AMB, UNR, KYN and DOV). Aspergillus niger was more dominant species. Penicillium sp. and Trichoderma viride were also commonly found in all samples. The highest number of fungal isolates obtained from AMB, while the lowest number was from UNR. Two known pathogenic genus viz., Rhizoctonia sp. and Fusarium also obtained from rhizosphere soil sample of AMB.

Screening

Screening of all isolates for their P solubilising ability on solid Pikovskaya’s media revealed that among 42 isolates 24 isolates (Table 2) were found to be P solubilizers and they were marked (+,++,++++) their potential. The phosphate solubilizing isolates obtained from different samples are given in table 2. The maximum number of P solubilizers were obtained from sample AMB and DOV (8 isolates from each) while four isolates were showed P solubilization potential from sample UNR & KYN.

S.N.	Name of Isolates	Sample AMB	Sample UNR	Sample KYN	Sample DOV
1	Aspergillus niger Tieghem	+++	+	++	+++
2	Aspergillus terios Thom & Raper	-	-	-	-
3	Aspergillus aculiatus Iizuka	-	++	++	-
4	Aspergillus japonicas var. japonicus Saito	+++	-	-	-
5	Aspergillus flavus Link	-	-	-	++
6	Aspergillus wentii Wehmer, Emericella nidulans (Eidam) Vuill	-	-	-	-
7	Penicillium citrinum Thom	++	-	+++	-
8	Penicillium chryosogenum	-	-	-	++
9	Penicillium restrictum J.C. Gilman & E.V. Abbott	-	-	-	-
10	Penicillium sp.	-	-	-	++
11	Pacelomyces variotii Bainier	-	-	-	-
The fungal consortium (mixed culture of all five isolates) was tested on Okra plant against other treatment like *Aspergillus niger*.

Effect of Phosphate solubilizers on test plat Okra

Based on quantitative estimation of phosphate solubilized by isolates, five best isolates viz., *Aspergillus niger* strain AMB, *Aspergillus japonicas*, *Penicillium sp.*, *Trichoderma viride* strain UNR and *Chaetomium globosum* were selected for making fungal consortium for application as biofertilizer for cultivation of Okra. The fungal consortium (mixed culture of all five isolates) was tested on Okra plant against other treatment like...
recommended dose of chemical fertilizer and Chemical Fertilizer with fungal consortium in pots (Table 4). The effect of consortium and other treatments on Okra plants in terms of height, number of nodes, fresh weight of plant and dry weight of plants were recorded in triplicate after thirty days of showing, test of significance calculated and given in table 5. Pots supplemented with fungal consortium@5% and Chemical fertilizers showed the maximum response in all attributes at the end of 30 days. It was observed that pots supplemented with fungal consortium showed very good response in compare to control and chemical fertilizers.

Figure 1. Phosphate solubilizing activity of isolates at room temperature: A. Aspergillus niger strain (AMB); B. Aspergillus niger strain (DOV); C. Aspergillus japonicas; D. Penicillium citrinum; E. Penicillium sp. Strain (AMB); F. Trichoderma viride strain (AMB); G. Trichoderma viride strain (UNR); H. Chaetomium globosum; I. Syncephalustrum sp.

Table 5. Effect of phosphate solubilising fungal consortium on growth of Okara Plant after 30 days of showing.

Treatments	Height of plant (cm)	No. of node per plant	Fresh weight per plant (gm)	Dry weight per plant (gm)
Control	14.6	3.6	8.3	3.3
Chemical Fertilizers	19.0	5.2	30.27	10.9
Soil amended with fungal consortium@5%	17.8	5.6	30.2	10.0
Chemical fertilizers+ fungal consortium @ 5%	22.01	6.1	36.78	12.0

F-test Sig. Sig. Sig. Non-sign
SE 0.60 0.16 2.2 -
CD@5% 3.72 3.5 3.0 -
Potential use of fungi as phosphate solubilizers has been observed in many studies. Among soil fungi, some species of Aspergillus and Penicillium are widely reported phosphate solubilizers.

REFERENCES

Ahmad N & Jha KK (1968) Solubilization of rock phosphate by microorganism isolated from Bihar soil. *Journal of General and Applied Microbiology* 14: 89–95.

Asea PEA & Kucey RMN (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. *Soil Biology and Biochemistry* 20: 459–464.

Barnett HL (1960) *Illustrated genera of imperfect fungi. 2nd edition*. Burgess Publishing Company, Minneapolis, MN, 233 p.

Barron GL (1977) *The genera of hyphomycetes from soil*. Robert E. Krieger Publishing Company, Huntington, NY, 542.

Carmichael JW & Bryce KW, Conners IL & Sigler L (1980) *Genera of hyphomycetes*. Edmonton. University of Alberta Press.

Chabot R, Antoun H & Cescas MP (1993) Stimulation of growth of maize and lettuce by inorganic phosphorus solubilising microorganisms. *Canadian Journal of Microbiology* 39: 941–947.

Das AC (1963) Utilization of insoluble phosphate by soil fungi. *Journal of the Indian Society of Soil Science* 11: 195–207.

Edi-Premeno M, Moawad AM & Vlek PLG (1996) Effect of phosphate solubilising *Pseudomonas putida* on the growth of maize and its survival in the rhizosphere. *Indonesian Journal of Crop Science* 11: 13–23.

Ellis MB (1971) *Dematiaceous hyphomycetes*. Commonwealth Mycological Institute, Kew, 276 p.

Ellis MB (1976) *More dematiaceous hyphomycetes*. Commonwealth Mycological Institute, Kew, pp. 45–87.

ACKNOWLEDGMENTS

Authors are very much thankful to Head of Botany Department and Principal of Smt. CHM College for providing required chemicals and laboratory for this research work. Thanks to our T.Y B.Sc. students for assistance.
Gams W, Domsh KH & Anderson TH (1980) **Compendium of soil fungi.** Academic Press, London, 874 p.

Gaur AC (1990) *Phosphate solubilizing microorganisms as biofertilizer.* Omega Scientific Publishers, New Delhi, 225 p.

Jackson ML (1973) *Soil chemical analysis.* Prentice- Hall of India, New Delhi, pp. 65–76.

Kasana RC, Panwar NR, Burman U, Pandey CB & Kumar P (2017) Isolation and Identification of two Potassium Solubilizing Fungi from Arid Soil. *International Journal of Current Microbiology and Applied Sciences* 6(3): 1752–1762.

Khalil S (1995) Direct application of phosphate rock and appropriate technology fertilizers in Pakistan. In: Dahanayake K, *et al.* (eds) *Direct application of phosphate rock and appropriate technology fertilizers in Asia: what hinders acceptance and growth.* Institute of Fundamental Studies, Kandy, Sri Lanka, pp. 231–236.

Kirk PM, Cannon PF, Minter DW & Stalpers JA (2008) *Ainsworth and Bisby’s dictionary of the fungi,* 10th edition. CABI Publishing, Wallingford, Oxfordshire.

Kundu BS, Nehra K & Yadav R (2009) Diversity of phosphate solubilizing bacteria in rhizosphere of chickpea, mustard and wheat grown in different regions of Haryana. *Indian Journal of Microbiology* 49: 120–127.

Narsian V & Patel HH (2000) Aspergillus aculeatus as rock phosphate solubilizers. *Soil Biology and Biochemistry* 32: 559–565.

Padmavathi T & Usha S (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of *Piper betel* in Karnataka, India. *Turk Journal of Biology* 36: 25–35.

Pandey A, Das N, Kumar B, Rinu K & Trivedi P (2008) Phosphate solubilization by *Penicillium* spp. isolated from soil samples of Indian Himalayan region. *World Journal of Microbiology & Biotechnology* 24: 97–102.

Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with the vital activity of some microbial species. *Microbiologiya* 17: 362–370.

Pitt JI (1979) *The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces.* Academic Press, London.

Pradhan N & Shukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. *African Journal of Biotechnology* 5: 850–854.

Prajapati, K, Sharma, MC & Modi HA (2013) Growth promoting effect of potassium-solubilizing microorganisms on Abelmoscus esculentus. *International Journal of Agriculture Science* 3(1): 181–188.

Rapper KB & Fennell DI (1965) *The Aspergillus.* Williams & Wilkins Company, Baltimore, MD.

Rathava SN, Verma P, Pawar Y & Limbachiya TB (2018) Influence of fertilizer levels and biofertilizers on yield and economics of okra (*Abelmoschus esculentus* L. Moench) CV. GAO-5. *International Journal of Chemical Studies* 6(2): 1117–1120.

Reyes I, Bernier L & Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. *Microbial Ecology* 44: 39–48.

Sapatekar HG, Rasal PH & Patil PL (2003) Occurrence of phosphate solubilizing fungi in black soils of Maharashtra. *Journal of Maharashtra Agricultural Universities* 28: 164–165.

Sethi RP & Subba-Rao NS (1968) Solubilization of tricalcium phosphates and calcium phosphate by soil fungi. *Journal of General and Applied Microbiology* 14: 329–331.

Singh SM, Yadav LS, Singh SK, Singh P, Singh PN & Rasik R (2011) Phosphate solubilising ability of two *Aspergillus niger* strains. *Polar Research* 30: 7283. [DOI: 10.3402/polar.v30i0.7283]

Starkanoga G, Vorisek K, Mikanova O & Randova D (1999) P solubilisation activity of Rhizobium species strains. *Rostlinna Vyroba* 45: 403–406.

Subba Rao NS (1999) *Soil microbiology.* Science Publishers, Enfield, NH.

Trivedi P & Pandey A (2007) Low temperature phosphate solubilization and plant growth promotion by psychrotrophic bacteria, isolated from Indian Himalayan region. *Research Journal of Microbiology* 2: 454–461.

Vassilev N, Fenice M & Federici F (1996) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variable P16. *Biotechnology Techniques* 10: 585–588.

Vassileva M, Azcon R, Barea JM & Vassilev N (1998) Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. *Journal of Biotechnology* 63: 67–72.

Verma A & Ekka A (2015) Isolation, Screening and Assessment of Phosphate Solubilizing Efficiency of Some Fungal Isolates of Raipur, Chhattisgarh. *IOSR Journal of Environmental Science, Toxicology and Food Science* 6(3): 63–67.
Von Arx JA (1974) The genera of fungi sporulating in pure culture. J. Cramer, Lehre, Germany.
Waksman SA (1916) Do fungi live and produce mycelium in the soil? Science New Series 44: 320–322.
Zayed, G & Abdel-Motaal H (2005) Bio-production of compost with low pH and high soluble phosphorus from sugar cane bagasse enriched with rock phosphate. World Journal of Microbiology and Biotechnology 21: 747–752.
Zhang Y, Chen FS, Wu XQ, Luan FG, Zhang LP & Fang XM (2018) Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS ONE 13(7): e0199625. [DOI: 10.1371/journal.pone.0199625]