كيف يتجنّب المحار العملاق أشعة الشمس الحارقة؟

Susann Rossbach١, Sebastian Overmans٢, Ram C. Subedi٢ و Carlos M. Duarte١

١مركز أبحاث البحر الأحمر (RSRC)، جامعة الملك عبد الله للعلوم والتقنية (KAUST)، ديناسة، المملكة العربية السعودية. ٢جامعة الملك عبد الله للعلوم والتقنية (KAUST)، مختبر الضوئيات، قسم الحاسبات والعلوم الكهربائية والرياضية والهندسة (CEMSE) والتقنية بالمدينة، المملكة العربية السعودية.

يعتبر سمك المحار العملاق، كما يُوجب اسمه، من بين أكبر أنواع المحار الموجودة على وجه الأرض. فهي حيوانات بحرية معروفة بالألوان، وتعيش بين ثنايا الشعاب المرجانية. ويحضّ المحار العملاق على الدموع والعوين من كائنات دقيقة موجودة داخل ثناياه؛ تحديدًا في الجزء الأحمر بين أصداقه. إذا استطاع هذه الكائنات الحيوانية للجهرية؛ أنها والطحالب الجهرية الصغيرة، أن تستخدم ضوء الشمس وثاني أكسيد الكربون لإنتاج الطعام، الذي يشاركه مع الحار، ويفضل هذا التعاون يصبح المحار قادرًا على النمو بهذا الحجم الكبير! وفي النهاية، يمنح سمك المحار الطحالب الجهرية بعض العناصر الغذائية. فلهم أن عملية إنتاج الطعام لدى هذه الكائنات مشروطة بال تعرض لضوء الشمس، فإن التعرض لحارة الشمس الحرارية، يؤدي بهذه الكائنات إلى الإصابة بضرر شديد، مما يمكن أن يحدث لبعض النباتات، خاصة إذا كان على سماك المحار، والطحالب الجهرية داخلها أيضًا، أن يطول من ألوانه الخالية الزاهية، التي تعمل بمثابة حماية طبيعية من أشعة الشمس، وتعد وسيلة فقالةً للحماية من حيوانات من أشعة الشمس الزائدة، ومن التعرض لحروق الشمس.
الحار العلائق وأصدقائه الصغار

عندما يسمع الناس كلمة "الشعاب الوردية"، يتبعون إلى أذهانهم حيوانات العلائق البحرية. رغم وجود الكثير من الحيوانات الحية الضخمة والصغيرة التي تعيش وسط هذه الشعاب الوردية، مثل سمك الحار العلائق، الذي يعد منتشرًا في منطقة الشعاب الوردية الاستوائية في الأحيتان المحيطية، فلا يقتصر سمك الحار الصغير على كونه حسن الظهر، بل يعد كذلك مهماً أيضًا في الشعاب الوردية. فهو يعيش على سبيل المثال في التلال الأزرق الكثير من الأسماك، ويتناول بعض الأخطبوط والنباتات على الطرق الخارجي من أصدقاءه، بل يصل الأمر إلى أن أخطبوط (مثل سمكة الجميري الصغير) تعش داخله [1].

يمكن للحار الصغير أن يصبح كبيرًا جدًا، كما يوحى اسمه. إذ يُمكن أن يزيد طوله عن مترتين، أي أكبر حتى من حوض السقيف المفتوح بحمض منزلق! يعتقد العلماء أن أحد الأسباب التي جعلت من سمك الحار الصغير ضخماً بهذا الحجم، أنه يحصل على مساعدات من الكائنات الحية الأخرى، وهذه الكائنات العالقة هي الطحالب الوردية وحيجة الخفية، التي تعيش على الطرق الخارجي من جسم سمكة الحار، الذي يُسمى الرداء الخارجي (الشكل A). تستطيع هذه الطحالب الوردية القيام بطريقة النباتات، التي تمتلك في استخداماتها للطاقة القادمة من الشمس والكربون الموجود لإنتاج الطعام. وتتشكل هذه الكائنات الوردية التي تعيش داخل سمك الحار العلائق، كمياً كبيرًا من الغذاء عبر عملية البذء الضوئي، لتغذية أنفسها ومشاركة بعض الدفاية مع سمك الحار العلائق. في القابل، يعمل سمك الحار العلائق على حماية الطحالب الوردية من الحيوانات الحية التي تؤكلها، ويعمل أيضًا على إمداد الطحالب الوردية ببعض العناصر الغذائية كالنتروجدن، ويشكل هذه العلاقة "تكافل متبادل للغة"، وربما تكون قد سمع بها من قبل، وذلك لأن هذه العلاقة قائمة بين الشعاب الوردية والطحالب الوردية، إذ يعتمد سمك الحار العلائق اعتمادًا كبيرًا على الغذاء الذي توفره له هذه الكائنات الوردية التي تكافل معه. يقتصر العلماء أن هذه الكائنات الوردية في نباتة من السمك الصغير.

الطحالب الوردية (MICROALGAE)

تستطع هذه الكائنات الوردية، وحيجة الخفية، أن تُوفر الكربون من الضوء، كما تفعل النباتات على سطح الأرض، وعلى ذلك عاملًا محوريًا في عملية البناء البشري.

الرداء الخارجي للحار (MANTLE)

هو النايك الخارجي ذو السريع النقي من جسم الحار. يتميز الرداء الخارجي للحار الوردي باللهب الزهرة الساطعة، مع إضاءة مظلل من اللون الأزرق، والأحمر، والقرمزي.

التكافل متبادل للغة (MUTUALISTIC SYMBIOSIS)

هو تفاعل بين نوعين أو أكثر من الكائنات الحية، يحقق من كل كائن حي بطريقة ما.
العلاقة التكافلية. بجانب الطاقة الإضافية المقدمة لسمك الحار، هي أحد الأسباب التي تفسر سبب بلوغ سماك الحار العملاق هذا الحجم الكبير [2].

لحار العملاق قد يصاب بضرارة شمس.

تتحاج الطحالب الجيرية للتكافل مع سماك الحار الضخم إلى كمية كافية من الضوء، كي تتمكن من إنتاج الغذاء، وبذلك عبء عملية البناء الضوئي تتأثر في النتائج. لذلك على سماك الحار العملاق أن يعيش في البيئة الضحلة، التي تكون قريبة من سطح البحر. تقوم أحياء الشمس من اجتراف مياه الحبيبات والوصول إليه. لكن، من شأن البقاء في الشمس دون استخدام حماية كالظل أو أي شيء أن يعرض الحار إلى مخاطر تبرئات من الزمن، وذلك على حساب ما يحصل للنبات، وهذا لأن ضوء الشمس تتألف من ألوان مختلفة من الضوء، قد شاهد ضوء فضفاض في ألوان الرائحة من قبل، إذ تتكون ألوان بداية من اللون البنفسجي موزونًا بالأزرق والأحمر والأصفر والبرتقالي والأحمر. يعتمد ضوء على مستوى طاقة الضوء الأرق أكثر نشاطًا من الضوء الأحمر. وسيتم الضوء ذو الطاقة الأعلى بالنسبة للفصلي الأعلى من ألوان الضوء القزحية في حقيقة الأمر، لتعرض الطاقة الفضفاضة بمقدار كبير من الطاقة، يمكن أن يسبب في ضرر، أو ربما يصل الأمر إلى قتل خلايا الحيوانات والنباتات [3]. ولذلك فإن شعاع الضوء بالتنفس يتسبب في قتل خلايا الحيوانات والنباتات، ونتيجة للضوء القزحية، ينخفض الضوء القزحية إذا ظل شعاع الضوء الباهت. ومع ذلك، يمكن أن يحدث شيء نفسه لسمك الحار العملاق، لأنه يبقى في التفاحة نفسها دائمًا، ولا يستطيع أصلي والاحتفالي في الظل. ولحسن الحظ، طورت هذه الحيوانات طريقة بارزة جدًا للبراعة لحماية أنفسها من الأشعة الضارة.

كيف يحمي سماك الحوار العملاق نفسه من أشعة الشمس الحارقة؟

يحتوي سماك الحوار العملاق على خلايا صغيرة تُعرف بالخلايا الصغيرة الفضفاضة (الشكل 1B)، يُعرف باسم "الخلايا الصغيرة" منطقيًا، لأن الأعلاف يعتقدون أن الخلايا الصغيرة أحد الأسباب التي تجعل سماك الحوار العملاق مفتوحًا للألوان الخالية، مع وجود الأغطية للذلول وظاها الباهت من الألوان، والأحمر والأخضر، والدنك.

ويوجد داخل الخلايا الصغيرة الضرارة، أجسام صغيرة مترابطة بعضها فوق بعض. وهذه الأحلاف مصنوعة من البهر الناعم، مما يجعلها تبدو كمكروبًا صغيرة. فعندما تستطغ الأشعة الفضفاضية على هذه الخلايا، ينعكس بعضًا من القمر بواسطة هذه
للرايا الصغيرة الشبيهة بالألواح [4] (الشكل 2). لا تستطيع أشعة الشمس فوق البنفسجية التناكسة أن تصل إلى خليط الحثار أو خليط الطحالب البحرية أو أن تُلحق بها ضررًا: وذلك لأنها أزاحت بعيدًا قبل أن تصل إليها، ويرجع الفضل في ذلك إلى هذه العملية، وتترك الخلية في نهاية الطاف في صورة ضوء أزرق أقل نشاطًا.

وهذا الضوء الأزرق النابع من الخلايا الصبغية الفخيرة، هو الذي يمنح سمك الحثار العملاق لونه الأزرق الساطع. كما يبدو في الشكل 1. وتمتلك الكائنات الحية الأخرى، كالحيوانات أو الكائنات البحرية الأخرى، خلايا صبغية فخيرة مسؤولة عن ألوانها الراهبة، وتستخدم هذه الحيوانات غالباً ألوانها في التمويه أو في مكافحة خصومها. ولكن، كما يبدو في الشكل 1، فإن سمك الحثار العملاق ليس مهماً في عملية التخفي هذه.

في الواقع، لا يُحيد الحثار العملاق التخفي؛ نظرًا لأن ألوانه الخليطية الخاطفة للأضواء! وعلى ذلك، لا يُحيد الحثار العملاق بعضه البعض من أجل عملية التخفي. لذا فهو لا يحتاج ألوانه الراهبة ليصبح حسناً الغموض للشراذات الحياتين. لذا السؤال الذي يطرح نفسه هو: لماذا يُحيد الحثار العملاق هذا اللون الأزرق الساطع؟ يمكننا القول إنه لا يساعد سمك الحثار على تجنب جرف الشمس فحسب، بل إنه...
حماية سمك البحار الصمحم من الشمس

أيضًا الضوء الثاني الذي تستخدمه الطحالب للجذب، في هذا يعني أن الخلايا الصبغية الفردية لا تخدم باعتبارها واقعًا فعليًا من أشعة الشمس فحسب بل إنها تساعد أيضًا الطحالب للجذب التكافلية على النمو، من خلال إعطائها لونًا الفضفاض من الضوء.

السر وراء توجيه البحار العملاقة بالألوان

في حين أن الخلايا الصبغية الفردية تظهر لونًا أزرقًا بفضل الضوء الأزرق المنبعث منها فإن الطحالب للجذب تظهر لونًا أخضر. وتستخدم معظم الكائنات الحية التي تقوم بعملية البناء الضوئي جزءًا ضئيلًا من الضوء الأخضر الذي يأتي من الشمس، لذلك فإن معظم هذه الضوء يمر متعكسًا على أجسامها في الخارج. وهذا بدورة تقومه إذا تبدو معظم الطحالب للجذب والنباتات مزينة باللون الأخضر، وبمجرد أن تبدأ معظم الخلايا الصبغية للجذب، والنباتات مزينة باللون الأخضر، ولكن الماء في هذه الألوان الزاهية الموجودة في سمك البحار العملاقة، هي نتيجة أجزاء متنوعة من الخلايا الصبغية الفردية (أزرق/ فروزي) والطحالب للجذب (أخضر/بني داكن/). وإذا كان سمك البحر يحتوي على طحالب دقيقة أكثر من الخلايا الصبغية الفردية داخل عباهه، فسُميَّ صُبح لون بني داكنًا (الشكل A)، بينما البحر الذي يحتوي على خلايا فردية أكثر من الطحالب للجذب، فهي يبدو مائلًا إلى الزرقة أو حق اللون الفروزي (الشكل B).

ومع هذا وعظامًا أيضًا إن سمك البحار العملاقة يُعد هدفًا بحثيًا ثمينًا للعلماء، بسبب العلاقة الخاصة بين وين طحالب البحرية، والطرق التي طورتها هذه الكائنات معاً لدعم وحماية بعضها البعض.
Iridocytes mediate photonic cooperation between giant clams (Tridacninae) and their photosynthetic symbionts. Front. Mar. Sci. 7:465. doi: 10.3389/fmars.2020.00465

Mقال المصدر الأصلي
Rossbach, S., Subedi, R. C., Ng, T. K., Ooi, B. S., and Duarte, C. M. 2020. Iridocytes mediate photonic cooperation between giant clams (Tridacninae) and their photosynthetic symbionts. Front. Mar. Sci. 7:465. doi: 10.3389/fmars.2020.00465

الراجع
1. Neo, M. L., Eckman, W., Vicentuan, K., Teo, S. L. M., and Todd, P. A. 2015. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181:111–23. doi: 10.1016/j.biocon.2014.11.004
2. Rossbach, S., Saderne, V., Anton, A., and Duarte, C. M. 2019. Light-dependent calcification in Red Sea giant clam Tridacna maxima. Biogeosciences 16:2635–50. doi: 10.5194/bg-16-2635-2019
3. Ravanat, J.-L., Douki, T., and Cadet, J. 2001. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B Biol. 63:88–102. doi: 10.1016/S1011-1344(01)00206-8
4. Holt, A. L., Vahidinia, S., Gagnon, Y. L., Morse, D. E., and Sweeney, A. M. 2014. Photosymbiotic giant clams are transformers of solar flux. J. R. Soc. Interface 11:20140678-20140678. doi: 10.1098/rsif.2014.0678
5. Rossbach, S., Subedi, R. C., Ng, T. K., Ooi, B. S., and Duarte, C. M. 2020. Iridocytes mediate photonic cooperation between giant clams (Tridacninae) and their photosynthetic symbionts. Front. Mar. Sci. 7:465. doi: 10.3389/fmars.2020.00465

نُنشر على الإنترنت بتاريخ: 17 أكتوبر 2022

حرره: Felix Rossbach

مرشدو العلوم: (2022) The Sparkling Tan: How Giant Clams Avoid Sunburns. Front. Young Minds 9:608617. doi: 10.3389/frym.2021.608617-ar

Mُترجم ومقتبس من: (2021) The Sparkling Tan: How Giant Clams Avoid Sunburns. Front. Young Minds 9:608617. doi: 10.3389/frym.2021.608617
إقرار تضارب للصالح: يعلن المؤلفون أن البحث قد أجري في غياب أي علاقات تجارية أو مالية
يمكن تفسيرها على أنها تضارب محتمل في الصالح.

.ROSSBACH, OVERMANS, SUBEDI and DUARTE 2022 © 2021 © COPYRIGHT
هذا مقال متوفر الوصول يتم توزيعه بموجب شروط ترخيص النشر الإبداعية
يسمح بالاستخدام أو التوزيع (Creative Commons Attribution License (CC BY)) أو الاستنتاج في منتدات أخرى، شريطة أن يكون المؤلف (المؤلفون) الأصلي أو مالك (مالك) حقوق النشر مقيّدًا وأن يتم الرجوع إلى النشر الأصلي في هذه المجلة وفقًا للممارسات الأكاديمية القبلة. لا يسمح بأي استخدام أو توزيع أو إعادة إنتاج لا يتوقف مع هذه الشروط.

المراجع الصغار

العمر: 14. FABIÁN
عمال صغيرة السن يتم باستكشاف الفضاء والثقافات المتعلقة بمستقبل مستدام. يستطيع
تطوير مهارات النجاح في التصميم والتصنيع الرقمي، وآملًا في استخدام هذه المهارات في
تطوير أشياء استكشاف الفضاء في المستقبل. كما أن قياسات قارئ، يُمكن ويستمتع بركوب
الدراجات والغوص والرحلة والتمثيل والإسهام في بناء العالم.

SUSANN ROSSBACH
تعمل سوزان باحثة في المجال البيولوجي، حيث تُريد أن تُقيم كيف تتبلور الجوانب البحرية
مثل الحيوانات والنباتات والأشكال المائية. كما أنها مهتمة بحوزة خاصة
بمعرفة كيف يمكنها البقاء على قيد الحياة في الظروف الفرعية لحياتها. تُحب الغوص
والمشوار عالم ما تحت البحيرة ومشاركة الدراسات التي تعلمنا والصور التي تلتقطها تحت
للأبهام مع الآخرين.

SEBASTIAN OVERMANS
أحد علماء الأحياء الذي درس مجموعة متنوعة من الكائنات الحية، بدءًا من طيور الخفاشيف
ووصلًا إلى الشعاب المحيطية في البحر. يعمل الآن بحر في منطقة البحر الأحمر،
حيث يبحث في كيفية تفاعل البيئة أو الأشياء فوق البنفسجية مع الحيوانات، وكيف يُؤثر على صحة
الكائنات الحية مثل الطحالب البحرية والشعاب المحيطية والبحار العميق.

RAM C. SUBEDI
طالب في مرحلة الدكتوراة في مختبر علم الضوء بجامعة الملك عبد الله للعلوم والتقنية في قسم
البنسبة البشرية. وهو حاصل على درجة البكالوريوس في العلوم في جامعة جورجيا بولايات
التحدة الأمريكية. وحاصل أيضًا على ماجستير في العلوم في خاصة فيزرونا، وكالورونو
تخصص فيزياء وإحصاء من جامعة تربورون، نيويورك، في عام 2011 و2007 على التوالي.

CARLOS M. DUARTE
باحث في المجال البيولوجي، يريد أن يُسهم جيدًا عالياً لإعداد ينتمي إلى الأيدي على الحياة البحرية، وهذا بعد ما
يقرب من أربعة أعوام من توثيقه لدى تأثير الضغوط البشرية على الحياة البحرية. يجب الكلاب
وسيرتבו بوجودهم بعيدًا في عرض البحر، كما يُؤدي القراءة، وممارسة السباحة، والغطس، والتشاق، والشاي، واللبن مع حفيدة أوليفير.

النسخة العربية مقدمة من

جامعة الملك عبدالله للعلوم والتقنية

King Abdullah University of Science and Technology