A systematic approach for testing expression of human full-length proteins in cell-free expression systems
Claudia Langlais†1, Birgit Guilleaume†2, Nadja Wermke2, Tina Scheuermann2, Lars Ebert2, Joshua LaBaer3 and Bernhard Korn*4

Address: 1MRC Toxicology Unit, Protein Profiling Group, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK, 2German Ressource Center, Im Neuenheimer Feld 515, D-69120 Heidelberg, Germany, 3Institute of Proteomics, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02129, USA and 4German Cancer Research Center, Genomics & Proteomics Core Facilities, Im Neuenheimer Feld 515, D-69120 Heidelberg, Germany

Email: Claudia Langlais - cl40@leicester.ac.uk; Birgit Guilleaume - bguilleaume@web.de; Nadja Wermke - n.wermke@dkfz.de; Tina Scheuermann - t.scheuermann@dkfz.de; Lars Ebert - l.ebert@dkfz.de; Joshua LaBaer - josh@hms.harvard.edu; Bernhard Korn* - b.korn@dkfz.de
* Corresponding author †Equal contributors

Abstract
Background: The growing field of proteomics and systems biology is resulting in an ever increasing demand for purified recombinant proteins for structural and functional studies. Here, we show a systematic approach to successfully express a full-length protein of interest by using cell-free and cell-based expression systems.

Results: In a pre-screen, we evaluated the expression of 960 human full-length open reading frames in Escherichia coli (in vivo and in vitro). After analysing the protein expression rate and solubility, we chose a subset of 87 plasmids yielding no protein product in E. coli in vivo. These targets were subjected to a more detailed analysis comparing a prokaryotic cell-free E. coli system with an eukaryotic wheat germ system. In addition, we determined the expression rate, yield and solubility of those proteins. After sequence optimisation for the E. coli in vitro system and generating linear templates for wheat germ expression, the success rate of cell-free protein expression reached 93%.

Conclusion: We have demonstrated that protein expression in cell-free systems is an appropriate technology for the successful expression of soluble full-length proteins. In our study, wheat germ expression using a two compartment system is the method of choice as it shows high solubility and high protein yield.

Background
With the sequencing of the human genome completed and with mRNA/cDNA identification rapidly progressing, many potential novel genes have been discovered and attention has turned to the function and structure of the predicted proteins [1-4]. In order to study these novel gene products, sufficient amounts of protein generally obtained through recombinant protein expression are required. The (high-throughput) expression and characterisation of unknown and poorly characterised human proteins is a main objective of recombinant proteomic studies today.
Escherichia coli is the most commonly used prokaryotic expression system for the high-level production of recombinant proteins in vivo [5] and has already been used successfully in high-throughput protein expression and purification studies [4,6]. The use of E. coli has many advantages, including the ease of growth and manipulation of the organism and the availability of many different vectors and host strains that have been developed over the years. However, the use of E. coli also has limitations, such as the aggregation of protein in insoluble inclusion bodies, problems with the expression of gene products toxic to the physiology of the host cell or proteolytic degradation of proteins in the cytoplasm [7]. In light of these difficulties, cell-free expression systems are becoming increasingly popular [8-14]. The in vitro systems have several advantages, including rapid protein synthesis [15], the possibility to express toxic gene products [16] and constructs that otherwise would be proteolytically degraded. Furthermore, it is possible to express proteins with up to 10 putative transmembrane domains as reported recently [17]. The compatibility with PCR-generated templates as well as plasmids allows the in vitro expression reaction with E. coli extract to be optimised using silent mutations within PCR products [18]. These sequence optimisations reduce unfavourable secondary structures in mRNA and thus improve the success rate of translation and protein expression. In contrast, for cell-free protein expression with wheat germ lysate sequence optimisation is not necessary because of the eukaryotic nature of this source.

For protein expression analyses, a comprehensive cDNA collection is available at the German Ressource Center (RZPD). The full-length open reading frames (ORFs) are cloned into an entry vector by utilizing the Gateway® cloning technology (Invitrogen). Untranslated regions are excluded and only the open reading frame is cloned into the selected vector, either with or without a stop codon. For protein expression, the open reading frame can be moved into any desired expression vector by homologous recombination. Thus, a protein can be expressed with or without a tag and the tag itself can easily be selected and altered by choosing the appropriate destination vector.

The aim of this study was to evaluate alternatives to protein expression in E. coli in vivo especially for those ORFs yielding no protein in this system. Therefore we investigated protein expression in two different in vitro systems: E. coli and wheat germ extract. The performance of these systems was analysed and optimised in respect to expression rate, protein yield and solubility. Altogether, we tested the expression of 960 human full-length proteins in vivo and in vitro using standardised conditions.

Results
Comparison of in vivo and in vitro Escherichia coli expressions
We used 960 randomly selected fully sequence-verified human open reading frames with a broad range of expected molecular weights (from less than 8 kDa up to 134 kDa, average of 35 kDa), different predicted subcellular localisations and biochemical functions including membrane proteins. The ORFs were cloned into an expression vector (pDEST17-D18), for production of proteins with an N-terminal 6xHis-tag. Identical constructs were used for protein expression in vitro and also for transformation of bacteria and expression in vivo. Protein expression was analysed by western blotting using an anti-His antibody.

In E. coli in vivo 629 out of 960 proteins, and in vitro 456 out of 960 proteins were successfully expressed. Protein expression in bacteria was unsuccessful either because clones were generated, which did not show protein expression (233 samples) or the transformation failed completely (98 samples). Considering the overlap of both expression systems, 206 full open reading frames yielded no protein product in vivo and in vitro. In contrast, 331 targets were expressed in vivo and in vitro with an average molecular weight of 33 kDa. Among these, 57 clones showed an expression rate of 4, 86 clones of 3 and 7 clones of 2. Furthermore, 424 targets expressed in either system with an average molecular weight of 32 kDa.

Optimisation of E. coli expression in vitro
We next examined the effect of sequence optimisation on protein expression rate and protein yield by selecting randomly 87 out of the 960 ORFs (Figure 1, Table 1) where protein expression had been unsuccessful in vivo or where transformation had failed in BL21(DE3)pLysS. Three kinds of linear PCR templates were generated (Figure 2): (i) a C-terminal wild type with C-terminal 6xHis-tag (ii) a C-terminal mutant with C-terminal 6xHis-tag and inserted silent mutation at the N-terminus (iii) a N-terminal wild type with N-terminal 6xHis-tag and no attachment sites (att-sites); For the C- and N-terminal wild type template the ORF is identical to the original ORF in the plasmid DNA.

Influence of sequence optimisation on protein expression rate
Of these 87 samples, 37 samples (43%) were successfully expressed in vitro using the original plasmid DNA. After sequence optimisation, we increased the success rate of protein expression up to 74 samples (85%) in the cell-free E. coli system (Figure 3, 4).

When analysing the results of those samples which had previously not shown expression in vitro (50 samples), we
Table 1: Subset of 87 clones tested in *E. coli in vitro* and in wheat germ expression. ORF Nr.: Clone identifier; RZPD Clone ID: Available clones at RZPD GmbH; Hit Acc. Nr.: Best BLAST hit of DNA sequence. Molecular weight was calculated by translation of the DNA sequence. Expression/solubility were assigned values from 0 (no expression/no protein detectable in the supernatant) to 4 (very strong band/protein band in the supernatant is stronger than in the pellet). The column 'yielded by' is indicated as follows: WG C: wheat germ C-terminal, WG: wheat germ, C- and N-terminal, WG N: wheat germ, N-terminal, RTS CW: *E. coli in vitro* C-terminal wildtype, RTS CM: *E. coli in vitro* C-terminal mutant, RTS NW: *E. coli in vitro* N-terminal wildtype, RTS Pl: *E. coli in vitro* original plasmid.

ORF Nr	RZPDCloneID	Hit Acc No	Gene symbol	Mw in kDa	Best expr. rate	Yielded by	Best solubility
264	RZPD0834B052	NM_001677	ATP1B1	36	4	RTS NW	3
400	RZPD0834D022	NM_002573	PAFAH1B3	27	4	WG, RTS CM NW	4
433	NM_000318	PXMP3	32	4	WG, RTS CW CM NW	4	
464	RZPD0834F012	NM_006793	PRDX3	29	4	WG C, RTS CM	4
505	NM_003187	TAF9	30	4	WG	3	
531	NM_012222	MUTYH	23	4	WG	3	
562	RZPD0834B043	NM_000757	CDK4	35	4	RTS CM NW Pl	3
571	RZPD0834B083	NM_003182	TAC1	13	4	WG C, RTS CW CM	4
616	RZPD0834D033	NM_000550	TYRPI	61	3	RTS Pl	2
636	NM_000612	IGF2	22	4	WG C, RTS CW CM	4	
637	RZPD0834E013	NM_015646	RAP1B	22	4	WG, RTS CW CM NW	4
639	NM_002512	NME2	14	4	WG N, RTS NW	3	
690	RZPD0834F123	NM_006923	SD2F	23	4	WG C, RTS CW CM	4
694	RZPD0834G023	NM_020470	YIF1	32	4	WG N	3
728	RZPD0834E0511	NM_000434	NEU1	46	4	RTS NW	2
741	RZPD0834H073	NM_002799	PSMB7	30	4	WG C	4
772	RZPD0834C0311	NM_002804	PSMC3	46	4	WG N, RTS CM	4
777	RZPD0834C0411	NM_003908	EIF2S2	39	4	WG	4
831	NM_004394	DAP	12	3	WG	4	
832	NM_002966	SI00A10	12	4	WG, RTS CM NW	4	
833	RZPD0834A124	NM_017503	SURF2	30	4	WG C	4
840	RZPD0834B024	NM_005499	UBA2	72	3	WG C	4
842	NM_005942	MOC5I	24	4	WG N, RTS CM	3	
855	NM_002134	HMOX2	36	4	RTS NW	4	
861	RZPD0834C034	NM_006370	VT11B	27	4	WG N, RTS NW Pl	3
868	RZPD0834C084	NM_005892	FMNL1	53	4	WG, RTS CM NW	3
873	RZPD0834C104	NM_007363	NONO	55	4	WG C	3
881	NM_002622	PFDN1	15	4	WG C	4	
898	RZPD0834D114	NM_006117	PEC1	21	4	WG N, RTS CW	4
901	RZPD0834E024	NM_031263	HNRPK	51	4	RTS CW NW	4
904	NM_004401	DFFA	13	4	WG N	4	
906	NM_006693	CPSF4	31	4	WG C, RTS CM	4	
915	RZPD0834F024	MS5654	TBP	38	4	WG N, RTS NW Pl	3
918	NM_001484	WARS	54	3	WG N	4	
921	RZPD0834F064	NM_004309	ARHGDI1	23	4	RTS CM NW	3
924	RZPD0834F094	NM_002861	PCYT2	44	4	WG C	4
930	RZPD0834G014	NM_001551	IGBP1	40	4	WG, RTS Pl	4
932	RZPD0834G034	NM_002070	GNAI2	41	4	WG C, RTS NW Pl	4
935	NM_00104835	PAK4	64	2	WG C	3	
936	RZPD0834G064	NM_002074	GNBI	38	3	RTS NW	3
939	RZPD0834G074	NM_006321	ARIH2	58	3	WG C, RTS Pl	4
940	RZPD0834G084	NM_013296	GPSM2	55	2	WG C	4
943	RZPD0834G114	NM_001863	COX6B1	11	4	WG, RTS CW CM Pl	4
Table 1: Subset of 87 clones tested in *E. coli* in vitro and in wheat germ expression. ORF Nr.: Clone identifier; RZPD Clone ID: Available clones at RZPD GmbH; Hit Ac. Nr.: Best BLAST hit of DNA sequence. Molecular weight was calculated by translation of the DNA sequence. Expression/solubility were assigned values from 0 (no expression/no protein detectable in the supernatant) to 4 (very strong band/protein band in the supernatant is stronger than in the pellet). The column 'yielded by' is indicated as follows: WG C: wheat germ C-terminal, WG: wheat germ, C- and N-terminal, WG N: wheat germ, N-terminal, RTS CW: *E. coli* in vitro C-terminal wildtype, RTS CM: *E. coli* in vitro C-terminal mutant, RTS NW: *E. coli* in vitro N-terminal wildtype, RTS Pl: *E. coli* in vitro original plasmid. (Continued)

ORF Nr.	Clone identifier				
NM_004537	NAP1L1	46	4	WG	
RZPDdo834H014	NM_152925	RBM12	59	4	WG C
RZPDdo834H034	NM_001017957	OS-9	70	4	WG C
NM_007317	KIF22	74	0		
NM_206900	RTN2	52	4	WG C	
NM_018074	FLJ10374	37	4	WG; RTS CW CM	
NM_001512	GSTA4	26	4	WG	
RZPDdo834A015	NM_001647	APOD	22	4	WG C; RTS CM
NM_001643	APOA2	12	4	WG N	
NM_007261	CMRF-35H	25	4	WG; RTS CM NW	
RZPDdo834H106	NM_001425	EMP3	19	4	WG
RZPDdo834A035	NM_014876	KIAA0063	24	4	WG
NM_002816	PSMID12	53	4	WG C	
RZPDdo834B115	NM_198216	SNRPB	25	4	WG C; RTS CM
RZPDdo834H0711	NM_006841	SLC38A3	56	4	WG; RTS NW
RZPDdo834C025	NM_004047	ATP6V0B	22	3	WG C
RZPDdo834C035	NM_003145	SSR2	21	4	WG C; RTS CM
NM_000984	RPL23A	18	3	WG	
RZPDdo834D025	NM_014860	SUPT7L	47	4	WG
RZPDdo834D035	NM_198120	EBAG9	25	4	WG C
RZPDdo834F075	NM_013300	HSU79274	31	4	WG C
RZPDdo834G095	NM_001778	CD48	28	4	RTS NW
RZPDdo834G105	NM_019111	HLA-DRA	29	4	RTS CM
RZPDdo834H085	NM_004233	CD83	23	4	WG; RTS CM
RZPDdo834H095	NM_007024	PL6	39	2	WG N
RZPDdo834H0221	NM_003490	SYN3	64	2	WG
RZPDdo834A046	NM_006841	SLC38A3	56	4	WG N; RTS NW
RZPDdo834F0511	NM_001436	FBL	34	4	WG C
RZPDdo834G0511	NM_004343	CALR	49	4	WG C
RZPDdo834A046	NM_00513	RECB1	63	3	WG C; RTS CM
RZPDdo834H0221	NM_018127	ELAC2	93	0	
RZPDdo834H0421	NM_015072	TTLL5	92	0	
RZPDdo834E1121	NM_021932	RIC8	17	4	WG; RTS PI
RZPDdo834H0621	NM_014149	HSPC049	78	2	RTS CM NW
RZPDdo834F1121	NM_003263	TLR1	91	4	RTS CM NW
RZPDdo834G0821	NM_001040428	SPPA7	65	4	RTS CM NW
RZPDdo834H0721	NM_014585	SLC40A1	63	0	
RZPDdo834E0821	NM_013277	RACGAP1	71	4	RTS CM
found that following sequence optimisation 37 (74%) proteins were expressed.

Influence of sequence optimisation on protein yield
To assess the protein expression yield of PCR products after sequence optimisation, we evaluated 37 samples that had previously expressed protein in vitro from original plasmid DNA. Protein yield was determined by analysis of protein bands on western blots. Bands were given marks from 0 (no expression) to 4 (very strong). Here, we discovered that 65% of expressions (24 samples) showed an improvement in the protein yield compared to expressions using original plasmid DNA and another 19% showed similar protein yields. A smaller amount of protein was expressed in only 6 cases (16%) using the optimised PCR products. Among these were 3 samples which did not express protein at all. In summary, after analysis of 87 expressions in vitro with optimised PCR-products, 16 samples (18%) revealed no protein product in vivo or in vitro in the E. coli systems (Table 2).

Wheat germ expression in vitro
The aim of this experiment was to elucidate whether the wheat germ system would show an increase in the success rate and protein yield of the 87 selected open reading frames compared to the optimised in vitro expressions in E. coli. Two wild type PCR constructs were made for each open reading frame, one for production of a protein with a C-terminal 6xHis-tag and another for a protein with a N-terminal 6xHis-tag (Figure 5). A total of 75 proteins could be expressed in wheat germ lysate with either a C- or a N-terminal 6xHis-tag (86%, Figure 3). Out of the 16 open reading frames which were not expressed in the E. coli systems, 10 were now successfully expressed using wheat germ lysate (Table 2). However, 6 open reading frames did not express in the wheat germ system, but were previously successfully expressed in vitro in E. coli (Table 2). On average, based on western blotting analyses, the protein yield was higher in the wheat germ compared to expressions in the E. coli in vitro system, for identical human ORFs.

Figure 1
Scheme of the experimental strategy. Successful protein expression is indicated by +, unsuccessful protein expression by -. The figure shows the flow of experiments from plasmid DNA to in vitro and in vivo expression in E. coli and wheat germ systems. 960 full-length ORFs in pDest17-D18 were used as starting material. 37 proteins were successfully expressed in vitro using optimised linear PCR products (74+/13−). In vivo expression resulted in 50−. The overall success rate in vitro was 65% with 24+ and 22−. 87 targets were expressed in vitro using linear PCR products (75+/12−). In vivo expression yielded 85% with 50+ and 15−. 10 targets were successfully expressed in the wheat germ system (86%, Figure 3). Therefore, 16 samples (18%) revealed no protein product in vivo or in vitro in the E. coli systems (Table 2).
Table 2: Proteins not expressing in *E. coli in vitro* or in wheat germ or in both systems. Molecular weight was calculated by translation of the DNA sequence. Localization information was taken from the Uniprot database. Domain information was retrieved from the Pfam database: cc: coiled coil, tms: transmembrane segment, sp signal peptide. Empty fields correspond to no assignment in the database.

Hit Acc. No.	Gene symbol	Mw in kDa	Localization	Domains	Expression in *E. coli in vitro*	Expression in wheat germ
NM_007317	KIF22	74	nuclear	1cc,	no	no
NM_015723	PNPLA8	89	membrane	no	no	no
NM_020748	KIAA1287	135	n/a	no	no	no
NM_018127	ELAC2	93	nuclear	no	no	no
NM_015072	TTLL5	92	n/a	3cc,	no	no
NM_014585	SLC40A1	63	membrane	10tms	no	no
NM_020470	YIF1A	32	membrane	5tms	no	yes
NM_004394	DAP	12	secreted	no	yes	yes
NM_00104835	PAK4	64	n/a	no	yes	yes
NM_013296	GPSM2	55	n/a	no	yes	yes
NM_006812	OS-9	70	n/a	1cc, sp	no	yes
NM_014860	SUPT7L	47	n/a	1cc,	no	yes
NM_003908	EIF252	39	nuclear	no	yes	yes
NM_001322	RARH2	58	nucleus	2cc,	no	yes
NM_002816	PSMD12	53	cytosol	1cc,	no	yes
NM_000984	RPL23A	18	cytosol	no	yes	yes
NM_002134	HMOX2	36	microsomal	1cc,	yes	no
NM_018099	MLSTD1	60	intracellular	2tms	yes	no
NM_013227	RACGAP1	71	intracellular	1cc,	yes	no
NM_003263	TLR1	91	membrane	1sp,1tms	yes	yes
NM_032292	FLJ20203	91	n/a	1cc,	no	yes
NM_014149	HSPC049	78	n/a	1cc,	yes	yes
Influence of tag position on protein expression in vitro

To assess the influence of either N- or C-terminal tag positions on expression rate, the 87 open reading frames were evaluated in both in vitro expression systems, *E. coli* and wheat germ (Figure 6). In the *E. coli* in vitro system, protein expressions using optimised PCR products were evaluated. Here, 52 (60%) N-terminal tagged wild type PCR products expressed protein compared to only 30 (34%) with C-terminal wild type PCR products (Figure 4). With the C-terminal mutant product 51 (59%) proteins were expressed. In the wheat germ system, 65 were expressed using the N-terminal wild type construct (75%) and 67 with the C-terminal tag (78%) (Figure 5).

In summary, 81 out of 87 open reading frames were expressed in both in vitro systems, corresponding to a success rate of 93%. Only 6 ORFs yielded no protein in any of the systems tested (Table 2).

Comparison of solubility of proteins expressed in *E. coli* in vivo, in vitro and in wheat germ system

For solubility studies, the lysis supernatant of those targets revealing expression was analysed by western blot. 483 proteins, expressed in *E. coli* in vivo, were tested and 193 proteins were soluble (40%). For *E. coli* expressions in vitro (with original plasmid DNA), 388 were analysed and 185 proteins were soluble (48%). In the wheat germ sys-

Figure 5

Wheat germ expression in vitro. Presented are western blots of 8 targets expressed with C-terminal (left) and N-terminal (right) 6xHis-tag. ORF Nr.: clone identifier. GUS: glucuronidase is the positive control. Successful protein expression was defined for values 2 – 4 and unsuccessful protein expression for values of 0 and 1. Bands of the expected size are marked with a +.

Figure 6

Influence of tag on in vitro expression. We compared 87 targets expressed in *E. coli* in vitro and in wheat germ. C-term. wt: C-terminal wild type; C-term. mutant: C-terminal mutant; N-term. wt: N-terminal wild type.
First, we analysed the protein expression rate in the two of the 87 proteins that were not expressed in reduced unfavourable secondary structures [18,20]. Outlems and proposes optimised sequences with potentially software, which predicts possible sequence-related prob-

To solve this problem, we made use of the ProteoExpert

We then focused on a subset of 87 targets which had yielded no protein in *E. coli in vivo*. These targets expressed with the cell-free wheat germ and *E. coli* protocol yielded very different protein expression rates. In wheat germ 86% of the targets were expressed and in cell-free *E. coli* only 43%. One of the reasons for unsuccessful *in vitro* protein expression in *E. coli* may be the presence of secondary structures in mRNA, which may inhibit translation [19]. To solve this problem, we made use of the ProteoExpert software, which predicts possible sequence-related problems and proposes optimised sequences with potentially reduced unfavourable secondary structures [18,20]. Out of the 87 proteins that were not expressed in *E. coli in vivo*, 37 were expressed in *in vitro* using the wild type sequence. Another set of 37 human proteins could be rescued by sequence optimisation and using linear templates for *in vitro* expression. Therefore, the overall success rate of *in vivo* negative clones was 85%. This result clearly demonstrates that sequence optimisation is necessary to improve protein synthesis in the *E. coli in vitro* system.

Furthermore, we analysed the influence of tag position on protein expression rate. We found no difference between C- or N-terminal tag in the wheat germ system. However, considering the cell-free *E. coli* system, 60% successful expression was obtained with the N-terminal wild type PCR product in contrast to only 34% with the C-terminal one. In this context it is important to realize that this 60% expression with the N-terminal tag matches with the 59% obtained with the C-terminal mutant. Obviously, modifying the sequence by adding a sequence optimised peptide tag also avoids expression problems associated with the initiation of translation.

After analysis of the 87 optimised expressions *in vitro*, 6 samples remained that were not expressed *in vivo* or *in vitro* (Table 2). This corresponds to a protein expression success rate of 93%. Regarding those proteins, which could not be expressed in either system, it is striking that the molecular mass of all of these targets is higher than 63 kDa with an average molecular weight of 91 kDa. Two membrane associated proteins belong to the unsuccessful targets: PNPLA8 (89 kDa) and SLC40A1 (63 kDa), the latter with more than 10 transmembrane domains. Furthermore, a DNA binding protein KIF22 (74 kDa) of the Kinesin family, involved in spindle formation, ELAC2 (93 kDa) an endonuclease, TITL5 (92 kDa), a tubulin tyrosin ligase-like protein and KIAA1287 (135 kDa), a hypothetical protein with one transmembrane domain, are among the non-expressing targets. At this point it is unclear whether these human proteins are functionally expressed in any of the systems. Therefore, we can not speculate about the interference between the protein function and the different expression systems.

However, 6 proteins with an average molecular weight of 72 kDa were expressed in *E. coli in vitro* but not in wheat germ. Among these proteins is HMOX2 which belongs to the heme oxygenase family, an iron-containing protein with one transmembrane domain. As reported recently, iron-containing proteins require supplemented iron sources which were not added in this case [21]. Further proteins are two with transmembrane domains (MLSTD1 with two transmembrane domains and TLR1 with one). The three proteins RACGAP1, FLJ20203 and HSPC049 each contain one coiled coil domain and have molecular weights higher than 70 kDa. Obviously, the expression of proteins with molecular weights higher than 70 kDa are critical for the wheat germ system [22].

Ten proteins with an average molecular weight of 45 kDa also remain which were expressed in wheat germ but not in *E. coli in vitro*. An explanation for this can not be found in the structural domains, because a coiled coil and one transmembrane domain were not a hindrance for expression of the proteins mentioned before. Also the molecular weight is not the problem. Regarding the function of these proteins, SUP71L (transcription regulation factor), EIF2S2 (translation initiation factor) and RPL23A (rRNA binding protein) are proteins which interfere with DNA or RNA. It seems that those proteins are likely to have negative effects on their recombinant expression, when functional active in *E.coli* cells. Also proteins influencing the cell cycle like DAP (involved in cell death), KIAA1142 (has a kinase motif), PAK4 (kinase, involved in the JNK pathway), GPSM2 (a signalling modulator) and OS-9 (influences cell growth viability) seem to hamper recombinant protein expression.

Based on western blotting analyses, the protein yield in wheat germ was higher compared to expressions in the *E. coli* system.
coli in vitro. This may be due to the fact that the in vitro E. coli expression system is a batch method for protein expression, whereas the wheat germ system is based on a two-compartment system. The two chambers are separated by a semi-permeable membrane which concentrates the expressed protein in the 50 μl reaction chamber, but lets compounds required for protein synthesis such as substrates and energy components pass through into the larger feeding chamber. At the same time, potentially inhibitory by-products are diluted via diffusion across the membrane. The wheat germ system showed the highest rate of success compared to expression in E. coli in vitro or in vivo. Thus, for in vitro protein expression, specifically for toxic proteins which can not be expressed in bacteria, the wheat germ system is the method of choice.

Comparing protein solubility in E. coli bacteria and the cell-free E. coli and wheat germ systems, we found that the wheat germ system produces the highest solubility rate (97%). This was also reported previously [22]. It should be mentioned that our experimental procedure does not exclude the formation of protein aggregates. Moreover, the data show that the proteins expressed in vitro are more likely to be soluble than those expressed in vivo. However, even though the E. coli in vivo expressions showed, in a first approach, a higher success rate than in vitro, the in vitro system does have advantages. Protein expression is very fast and can be accomplished within a few hours. The expression of toxic gene products allows proteins to be expressed, which are impossible to express in bacteria. Also the use of PCR products is possible, and no clones are necessary for protein expression. However, linear DNA needs to be protected during the in vitro reactions to suppress nuclease activity. In addition, proteins are also more likely to be soluble when expressed in any of the in vitro systems used compared to expression in bacteria.

In summary, we have demonstrated that cell-free protein expression leads to the desired full-length protein with an overall success rate of up to 93%. In our study, wheat germ expression using a two compartment system is the method of choice as it shows high solubility and high protein yield.

Methods

Expression-vector construction

The genes used in this study are available from the RZPD full-ORF clone collection. Entry clones containing the genes of interest were generated by utilising the Gateway® Cloning technology (Invitrogen). All entry clones were fully sequenced in order to verify the insert within pDONR201. From the entry clone, the ORF was sub-cloned to a Gateway® destination vector (pDEST17-D18, a modification of pDEST17, Invitrogen) creating an expression clone (LR reaction), which was then transformed into DH10B bacteria. Plasmid DNA of individual clones was used for transformation of BL21 (DE3) pLysS bacteria and for protein expression in vitro as well as for protein expression in the cell-free E. coli system. The pDEST17-D18 http://www.rzpd.de destination vector was used to express selected recombinant proteins controlled by the T7 promoter with an N-terminal 6xHis-tag. Identical constructs were used for protein expression in E. coli as well as for expressions in the cell-free E. coli system. All DNA preparations were carried out by a Qiagen Biorobot 9600 using Qiawell 96 Ultra Plasmid Kits (Qiagen).

In vivo protein expression using E. coli bacteria

Competent BL21 (DE3) pLysS (Novagen) bacteria were transformed with plasmid DNA (pDEST17-D18 containing the gene of interest). The generated expression clones were cultured overnight, diluted 1:50 to a final volume of 3 ml, and incubated in 24-well plates at 30°C or 3.5 h (until the OD600 was 0.4–0.6). Expression was induced with 1 mM IPTG and bacteria cultured for a further 3.5 h at 30°C. Cells were harvested by centrifugation. A 5 μl aliquot of cell-pellet was removed and added to 45 μl of SDS sample buffer. 10 μl of the sample were then loaded onto a gel for western blotting analysis. An aliquot of the original sample was also saved for analysis of protein solubility.

In vitro protein expression (E. coli) using vector DNA

In vitro protein expression was carried out using pDEST17-D18 plasmid DNA containing the ORF of interest. A cell-free batch expression system (RTS 100 E. coli HY kit, Roche Diagnostics) was utilised and 50 μl reactions were prepared according to the manufacturer's instructions. In brief, the samples were incubated at 30°C for 4 hours in a thermal cycler. Green fluorescent protein was expressed as control protein. Following incubation, a 5 μl aliquot was removed and added to 45 μl of SDS sample buffer. 10 μl of sample were then loaded onto a gel for Western blotting analysis. An aliquot of the original sample was also saved for analysis of protein solubility.

In vitro protein expression (E. coli) using optimised linear PCR products

Three PCR products were created for each ORF, a C-terminal wild type, a C-terminal mutant and a N-terminal wild type product (Figure 2). Sequence-verified templates were applied for the amplification of PCR products with the Linear Template Generation Set (LTGS, Roche Diagnostics). For the C-terminal mutant template, silent mutations as proposed by ProteoExpert http://www.proteoexpert.com were introduced at the N-terminus of the sequence. PCR was performed using partially matching primers along the first 15 to 20 nucleotides of each ORF. One gene-specific sense primer containing silent mutations, one gene-specific anti-sense and one wild type primer were used to pro-
duce the first PCR product. Different primers were applied depending on whether a C- or a N-terminal 6xHis-tag was desired. The PCR products were checked on agarose gels, and the second amplification step was carried out according to the supplier’s instructions. As positive control protein, green fluorescent protein was expressed. Prior to in vitro expression, all products were verified for correct size and purity. In vitro expression was carried out according to instructions and SDS samples prepared.

In vitro protein expression (wheat germ) using linear PCR products

Specific PCR products were generated to achieve translation in wheat germ lysate. The first wild type PCR product generated for optimisation in the *E. coli in vitro* system was utilised to produce a second PCR product for the wheat germ system. Linear templates with a T7 promoter and a Kozak sequence were generated for protein expression in wheat germ lysate. In contrast to PCR products created for the *E. coli in vitro* system, these products did not contain silent mutations. The first PCR products were made using gene-specific primer pairs and the second amplification step was carried out by the RTS Wheat Germ LTGS kit (Roche Diagnostics) according to instructions. The PCR products were again checked for correct size and purity. Proteins were expressed using the RTS 100 Wheat Germ CECF kit (Roche Diagnostics, positive control: glucuronidase) and contained either a C- or an N-terminal 6xHis-tag. Samples (50 μl) were incubated at 24°C, 900 rpm for 24 h (ProteoMaster Instrument, Roche Diagnostics), SDS samples prepared for western blotting and an aliquot saved for analysis of protein solubility.

Analysis of protein solubility

An aliquot of the induced bacterial culture was mixed with a lysis reagent (Pop Culture Reagent, Novagen) and 0.1% Tween 20 and incubated for 10 min at room temperature. The sample was centrifuged at 10000 g for 20 min, the supernatant and the pellet were separated and SDS samples prepared for western blotting analysis. For the *in vitro* systems, samples were centrifuged directly and the pellet and supernatant separated. Results were expressed as values ranging from 0 (no protein detectable in the supernatant) to 4 (the protein band in the supernatant is stronger than in the pellet). Values of 0 to 1 were defined as insoluble and values of 2 to 4 as soluble protein. Values correspond to: 4 ≥ 70%; 3 > 40%; 2 > 10%; 1 < 10% solubility; 0 = unsoluble.

Western blotting

Western blotting was performed with the Criterion System (BioRad) and 10–20% gradient pre-cast gels. Samples (10 μl) were heated at 95°C for 5 min and loaded onto the gel, which was run at 200 V, 400 mA for 1 h. Following electrophoresis, gels were blotted onto PVDF membranes (Hybond P, Amersham Pharmacia) at 100 V, 1000 mA for 1 h and protein transfer checked by briefly immersing the membrane in Ponceau S solution (Sigma). Membranes were thoroughly washed in TBST (2 mM Tris/HCl, pH 7.6; 13.7 mM NaCl and 0.1% (v/v) Tween 20) and then blocked for 1 h in 5% (w/v) non-fat milk/TBST. Following another 3 × 15 min washes in TBST, membranes were incubated with the anti-His mouse antibody (Qiagen, 1:2000 in 3% (w/v) bovine serum albumin/TBST) overnight at 4°C. Following incubation with the secondary antibody (Anti-mouse IgG HRP, Southern Biotech) for 1 h, membranes were washed three times in TBST and developed with ChemiClov® (Alpha Innotech) chemiluminescent substrate for 5 min. Images were obtained using a CCD camera system (ChemiImager 5500, Alpha Innotech). Protein bands on western blots were assigned values from 0 (no expression) to 4 (very strong band). Successful protein expression was defined for values of 2 to 4 and unsuccessful expression for values of 0 and 1. The ratings reflect the relative amount of human fusion protein compared to the reference protein (positive control). 4 ≥ reference protein; 3 ≥ 50% of r. p.; 2 ≥ 10% of r. p.; no expression <1 < 10% of r. p.; 0 = no expression.

Authors’ contributions

CL coordinated the experiments and helped to draft the manuscript. BG drafted the manuscript. NW and TS performed the experiments. LE built the database. JL provided plasmids. BK organised funding and helped to draft the manuscript and coordinated the study. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by Roche Diagnostics GmbH. We thank Andrea Graentzdorffer, Cordula Nemetz, Kairat Madin, Manfred Watzele and Bernd Buchberger for advice and helpful discussions.

References

1. Brenner SE: A tour of structural genomics. Nature Reviews Genetics 2001, 2(10):801-809.
2. Wiemann S, Bechtel S, Bannasch D, Pepperkok R, Pouxtka A: The German cDNA network: cDNAs, functional genomics and proteomics. J Struct Funct Genomics 2003, 4(2-3):87-96.
3. Imanishi I, Itok T, Suzuki Y, O’Donovan C, Fukuchi S, Koyanagi KO, Barrero RA, Tamura T, Yamaguchi-Kabata Y, Tanino M, et al.: Integrative annotation of 21,037 human genes validated by full-length CDNA clones. Plos Biology 2004, 2(4):856-875.
4. Bussow K, Scheich C, Sievert V, Hartvig U, Schultz J, Simon B, Bork P, Lehrach H, Heinemann U: Structural genomics of human proteins – target selection and generation of a public catalogue of expression clones. Microbial Cell Factories 2005, 4:.
5. Hanning G, Makrides S: Strategies for optimising heterologous protein expression in Escherichia coli. TIBTECH 1998, 16:54-60.
6. Braun P, Hu YH, Shen BH, Halleck A, Koundinya M, Harlow E, LaBaer J: Proteome-scale purification of human proteins from bacteria. Proceedings of the National Academy of Sciences of the United States of America 2002, 99(5):2654-2659.
7. Baneyx F: Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology 1999, 10(5):411-421.
8. Madin K, Sawasaki T, Ogawara T, Endo Y: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system.
directed at ribosomes. Proc Natl Acad Sci USA 2000, 97(2):559-564.

9. Sawasaki T, Ogisawara T, Morishita R, Endo Y: A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci USA 2002, 99(23):14652-14657.

10. Sawasaki T, Seki M, Sinozaki K, Endo Y: High-throughput expression of proteins from cDNAs catalogue from Arabidopsis in wheat germ cell-free protein synthesis system. Tanpakushitsu Kakusan Koso 2002, 47(8 Suppl):1003-1008.

11. Endo Y, Sawasaki T: High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnology Advances 2003, 21(8):695-713.

12. Endo Y, Sawasaki T: Cell-free expression systems for eukaryotic protein production.Curr Opin Biotechnol 2006, 17(4):373-380.

13. Vinarov DA, Lytle BL, Peterson FC, Tyler EM, Volkman BF, Markley JL: Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nature Methods 2004, 1(2):149-153.

14. Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirozumi M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, et al.: Structural genomics projects in Japan. Nature Structural Biology 2000, 7:943-945.

15. Buss O, Kim R, Kim SH: Expression of soluble recombinant proteins in a cell-free system using a 96-well format. Journal of Biochemical and Biophysical Methods 2003, 55:233-240.

16. Renesto P, Raoult D: From genes to proteins – In vitro expression of rickettsial proteins. Rickettsiology: Present and Future Directions 2003, 990:642-652.

17. Klammt C, Lohr F, Schafer B, Haase W, Dotsch V, Ruterjans H, Glau-bitz C, Bernhard F: High level cell-free expression and specific labeling of integral membrane proteins. European Journal of Biochemistry 2004, 271(3):568-580.

18. Langlais C, Gernold N, Scheuermann T, Korn B: The Linear Template Generation set: Optimization of Protein expression in the RTS 100 HY. Biochimica 2003, 3:22-25.

19. de Smit M, J vD: Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 1990, 87(19):7668-7672.

20. Voges D, Watzke M, Nemetz C, Wizemann S, Buchberger B: Analyzing and enhancing mRNA translational efficiency in an Escherichia coli in vitro expression system. Biochemical and Biophysical Research Communications 2004, 318(2):601-614.

21. Klammt C, Lohr F, Schafer B, Haase W, Dotsch V, Ruterjans H, Glau-bitz C, Bernhard F: High level cell-free expression and specific labeling of integral membrane proteins. European Journal of Biochemistry 2004, 271(3):568-580.

22. Tyler RC, Acesti DJ, Bingman CA, Cornilouses CC, Fox BG, Frederick RO, Jean WB, Lee M, Newman CS, Peterson FC, et al.: Comparison of cell-based and cell-free protocols for producing target proteins from the Arabidopsis thaliana genome for structural studies. Proteins-Structure Function and Bioinformatics 2005, 59(3):633-643.