EXACT STANDARD MODEL STRUCTURES FROM INTERSECTING BRANES

C. KOKORELIS
Departamento de Física Teórica C-XI and Instituto de Física Teórica C-XVI
Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
E-mail: C.Kokorelis@uam.es

I discuss two types of non-supersymmetric string model constructions that give at low energy exactly the Standard model (SM) with no additional matter/and or gauge group factors. The construction is based on D6 branes intersecting at angles in a compactification of type IIA theory on a decomposable orientifolded T^6 torus. The first type is based on five and six stack SM-like constructions at the string scale while, the other construction is based on a four stack GUT left-right symmetric structure centered around the Pati-Salam $SU(4)_C \times SU(2)_L \times SU(2)_R$ gauge group. All classes of models exhibit important phenomenological properties including a stable proton and sizes of neutrino masses in consistency with neutrino oscillation experiments. The models are non-SUSY, but amazingly, they allow the existence of supersymmetric particles!

1. Introduction

One of most difficult tasks that string theory has to phase today is the construction of non-SUSY vacua with exactly the observable SM gauge group and interactions at low energies of order M_Z. The latter had become possible only recently, as vacua with exactly the SM at low energy have been constructed either from D6 branes intersecting over $^1^2$ an orientifolded T^6 torus $^3^4^5^6^7$ or from intersecting D5 branes on an orientifold of $T^2 \times T^4 / Z_N$ $^8^9$. For constructions of SUSY vacua b see 10. In this talk, we will focused on the four stack GUT constructions of 4 as well the the five and six stack SM constructions of $^6^7$.

aIn the absence of a dynamical mechanism that can select a particular string vacuum.

bIn the context of intersecting branes.
2. Five Stack SM’s

The models start with five stacks of D6 branes making a \(U(3) \times U(2) \times U(1)_c \times U(1)_d \times U(1)_e \) group structure at the string scale. The models are constructed as a deformation of the four stack models of around the QCD intersection numbers \(I_{ab} = 2, I_{ac} = 3 \). The SM spectrum is localized in the intersections as in table (1). The solution to the RR tadpole cancellation conditions

\[
\sum_a N_a n_a^1 n_a^2 n_a^3 = 16, \\
\sum_a N_a m_a^1 m_a^2 n_a^3 = 0, \\
\sum_a N_a m_a^1 n_a^2 m_a^3 = 0, \\
\sum_a N_a n_a^1 m_a^2 m_a^3 = 0.
\] (1)

that guarantee the absence of non-abelian gauge anomalies is given in table 1.a. The choice of tadpole solutions of table 1.a satisfy all tadpole equations in (1) but the first, the latter giving

\[
\frac{9n_a^2}{\beta^1} + 2\frac{n_a^1}{\beta^2} + \frac{n_a^2}{\beta^1} + \frac{n_a^2}{\beta^1} + N_D \frac{2}{\beta^1 \beta^2} = 16.
\] (2)

*Effectively an \(SU(3) \times SU(2) \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_d \times U(1)_e \), as each \(U(N_i) \) will give rise to an \(SU(N_i) \) charged under the associated \(U(1) \) gauge group factor that appears in the decomposition \(SU(N_a) \times U(1)_a \).
The mixed anomalies of the $U(1)$’s with the non-abelian gauge groups are cancelled through a generalized Green-Schwarz mechanism \(^3\) that makes massive the $U(1)$’s coupled to the RR fields B^i_2, $i = 1, 2, 3$.

\[
B_2^1 \wedge \left(\frac{-2\hat{e} \beta^1}{\beta^2} \right) F^b, \quad B_2^3 \wedge \left(\frac{e \beta^2}{\beta^3} \right) (9 F^a + 2 F^d + F^c),
\]

\[
B_2^3 \wedge \left(\frac{3\hat{e} n^2_a F^a + n^1_b F^b + n^1_c F^c - \hat{e} n^2_d F^d - \hat{e} n^2_e F^e}{2\beta^3} \right). \quad (3)
\]

In an orthogonal basis, the rest of the $U(1)$’s, are the SM hypercharge

\[
(3n^2_a + 3n^2_d + 3n^2_e) \neq 0, \quad Q^l = n^1_c (Q_a - 3Q_d - 3Q_e) - \frac{3\hat{e} \beta^2 (n^2_a + n^2_d + n^2_e)}{2\beta^3} Q_c. \quad (4)
\]

only when (4) satisfies the condition,

\[
n^1_c = \frac{\hat{e} \beta^2}{2\beta^3} (n^2_a + n^2_d + n^2_e), \quad (5)
\]

as well the

\[
U(1)^{(5)} = \left(-\frac{3}{29} + \frac{3}{28} \right) F^a - \frac{1}{29} F^d + \frac{1}{28} F^e. \quad (6)
\]

The latter $U(1)$ may be broken by demanding that the open string sector ac respects $N = 1$ SUSY, giving us a constraint on the tadpole parameter $n^2_e = 0$ as well allowing the presence of uR. Also the presence of (6) gives the constraint $n^2_e = (-28/9)n^2_a$. In a similar way we can treat the construction of higher order deformation, with only SM at low energy of order M_Z, involving the six-stack \(^7\) structure of table (2) as well the Pati-Salam GUTS \(^4\) of table (3).

N_i	(n^i_1, m^i_1)	(n^i_2, m^i_2)	(n^i_1, m^i_2)
$N_a = 3$	$(1/\beta, 0)$	$(n^a_2, e\beta^1)$	$(3, \epsilon/2)$
$N_b = 2$	$(n^a_2, -\epsilon\beta^1)$	$(1/\beta, 0)$	$(\epsilon/2, 1)$
$N_c = 1$	$(n^a_1, e\beta^1)$	$(1/\beta, 0)$	$(0, 1)$
$N_d = 1$	$(1/\beta, 0)$	$(n^a_2, 2e\beta^2)$	$(1, -\epsilon/2)$
$N_e = 1$	$(1/\beta, 0)$	$(n^a_2, e\beta^2)$	$(1, -\epsilon/2)$

Table 1.a. Tadpole solutions of D6-branes wrapping numbers. The solutions depend on five integer parameters, $n^2_a, n^2_d, n^2_e, n^1_b, n^1_c$, the NS-background β^i and the phase parameters $\epsilon = \pm 1, \bar{\epsilon} = \pm 1$.

Acknowledgments

I am grateful to the organizers of SP2002 for providing me with financial support.
Table 2. Low energy fermionic spectrum of the six stack string scale $SU(2)_C \otimes SU(2)_L \otimes U(1)_a \otimes U(1)_b \otimes U(1)_c \otimes U(1)_d \otimes U(1)_e \otimes U(1)_f$, type I D6-brane model together with its $U(1)$ charges. Note that at low energies only the SM gauge group $SU(3) \otimes SU(2)_L \otimes U(1)_Y$ survives.

Matter Fields	Intersection	Q_a	Q_b	Q_c	Q_d	Q_e	Q_f	Y
QL	(3, 2)	1	-1	0	0	0	0	1/6
Q_L	2(3, 2)	1	1	0	0	0	0	1/6
U_R	3(3, 1)	-1	0	1	0	0	0	-2/3
D_R	3(3, 1)	-1	0	-1	0	0	0	1/3
L^1	(1, 2)	0	-1	0	1	0	0	-1/2
L^2	(1, 2)	0	-1	0	0	0	0	-1/2
L^3	(1, 2)	0	-1	0	0	0	0	-1/2
N^1_R	(1, 1)	0	0	1	-1	0	0	0
E^1_R	(1, 1)	0	0	-1	-1	0	0	1
N^2_R	(1, 1)	0	0	1	-1	0	0	0
E^2_R	(1, 1)	0	0	-1	0	0	0	1
N^3_R	(1, 1)	0	0	1	0	-1	0	0
E^3_R	(1, 1)	0	0	-1	0	0	-1	1

Table 3. Fermionic spectrum of the $SU(4)_C \times SU(2)_L \times SU(2)_R$, PS-A class of models together with $U(1)$ charges.

Fields	Intersection	$SU(4)_C \times SU(2)_L \times SU(2)_R$	Q_a	Q_b	Q_c	Q_d
F_L	$I_{abc} = 3$	$3 \times (4, 2, 1)$	1	1	0	0
F_R	$I_{ac} = -3$	$3 \times (4, 1, 2)$	-1	0	1	0
X_L	$I_{bd} = -12$	$12 \times (1, 2, 1)$	0	-1	0	1
X_R	$I_{cd} = -12$	$12 \times (1, 1, 2)$	0	0	-1	-1
ω_L	I_{aa}^*	$12 \beta^2 \tilde{c} \times (6, 1, 1)$	$2\tilde{c}$	0	0	0
ω_R	I_{aa}^*	$6 \beta^2 \tilde{c} \times (10, 1, 1)$	$-2\tilde{c}$	0	0	0
s_L	I_{aa}^*	$24 \beta^2 \tilde{c} \times (1, 1, 1)$	0	0	0	$-2\tilde{c}$

References
1. R. Blumenhagen, L. Görlich, B. Körös and D. Lüst, “Magnetic Flux in Toroidal Type I Compactification”, Fortsch. Phys. 49 (2001) 591, hep-th/0010198
2. R. Blumenhagen, B. Körös and D. Lüst, “Type I Strings with F and B-flux”, JHEP 0102 (2001) 030, hep-th/0012156.
3. L.E. Ibanez, F. Marchesano, R. Rabadan, “Getting just the Standard Model at Intersecting Branes”, JHEP 0111, 002 (2001), hep-th/0105155
4. C. Kokorelis, “GUT Model Hierarchies from Intersecting Branes”, JHEP 08, 018 (2002), hep-th/0203187
5. C. Kokorelis, “Deformed Intersecting D6-Brane GUTS I”, hep-th/0209202
6. C. Kokorelis, “New Standard Model Vacua from Intersecting Branes” JHEP 09, 029 (2002), hep-th/0205147
7. C. Kokorelis, “Exact Standard Model Compactifications from Intersecting Branes”, JHEP 08, 036 (2002), hep-th/0206108
8. D. Cremades, L.E. Ibanez, F. Marchesano, “Standard Model at Intersecting D5-branes: Lowering the String Scale”, hep-th/0205074
9. C. Kokorelis, “Exact Standard model Structures from Intersecting D5-Branes”, hep-th/0207234
10. M. Cveti, G. Shiu, A. M. Uranga, “Chiral Four-Dimensional N=1 Supersymmetric Type IIA Orientifolds from Intersecting D6-Branes”, Nucl.Phys. B615 (2001) 3, hep-th/0107166; M. Cveti, G. Shiu, A. M. Uranga, “Three-Family Supersymmetric Standard-like Models from Intersecting Brane Worlds”, Phys. Rev. Lett. 87 (2001) 201801, hep-th/0107143