A basic study on artificial aging in Mg-10Al$_{12}$Si+1Pb alloy

Bunyamin Cicek1 , Tuna Aydogmus1 and Yavuz Sun2

1 Hitit University, Turkey
2 Karabuk University, Turkey
E-mail: cicekbunyamin78@gmail.com

Keywords: Magnesium, Artificial aging, In-situ casting, Composite, Hardness

Abstract

In this study, research has been made on the aging of metal matrix composite materials produced by the in situ casting system. Mg matrix composite material was produced by the in situ casting system. In this study, 90%Mg + 10% Al$_{12}$Si (wt) ingot casting was performed for alloy formation and 1% Pb was added as an alloying element to the melted structure. This study aims to examine the effect of the artificial aging (AA) process on hardness and microstructure after alloying and composite of Mg metal. The in situ casting system was used in the casting of Mg alloy under the Ar gas atmosphere. The material after required casting homogenization process; for the AA process, they were embedded in a powder graphite filled vessel and kept at 350 °C for 1 h and then quenched (with 25 °C water). Later; after quenching, the materials were kept at 150 °C for 2, 4, 12, 16 and 24 h and aged samples were obtained. Microstructure images were obtained from the samples by scanning electron microscope (SEM) and light optical microscope (LOM) and then the hardness values of the micro hardness device were measured. Grain structure because of AA heat treatment; showed changes according to un-aging material. The hardness value is directly proportional to the increasing aging time of the materials applied to the AA process; it was found that the levels increased approximately to 45% (86HV to 125HV) compared to the un-aging material and passed to the fixing phase.

1. Introduction

In this study, the production of a composite material and the artificial aging (AA) process are introduced to the literature with the experimental results. The term composite material is used primarily for new materials formed by using two or more materials together [1–3]. It is also used to indicate new types of materials with different properties than the materials in which they occur [4]. The high properties of composites make it preferred in many industrial applications [2, 5]. Composites are being used frequently in every field with developing technology and with different joining and production methods [6, 7]. Different geometric types of reinforcing materials are preferred to make the insufficient properties of the metal-based matrix material more acceptable [8]. Forms of silicon [9], carbon [10], boron [11] and other elements [12] such as fiber [10], particle [13], and platelets [14] are used as reinforcement material. The strength, abrasion resistance, corrosion and hardness properties of the new material obtained by combining the metal matrix and reinforcing material in this way are much better than the conventional materials [8]. Therefore, such materials can be used efficiently in the biomaterials [15], automotive [9], aerospace [16, 17] and nuclear industries [18]. The production methods of composites, which are used as the needs of many sectors, also include special applications [4]. In these applications, production methods such as casting [19], partial melting [20], hand lay-up [21] and layered-plate [22] are used. The casting method, which is one of the main production systems, is divided into subheadings [4, 19, 23]. In all casting methods, new chemical compounds and new phases are formed with the effect of alloying elements added to the structure [2]. The new phases, which are not present in the base metal and in the added materials, are formed by chemical reaction just before the casting process [24]. As a result, a metal-based reinforced composite material is produced.
Aging process in materials is divided into two basic groups. The aging process is known as natural aging (NA) [25, 26]. It is known that precipitate, particles, intermetallic, phase, etc structures within the metal matrix can be distributed homogeneously and heterogeneously because of temperature/time process [27]. Completion or continuation of this formation under ambient conditions without adding any natural process is called NA [28]. When the aging process is accelerated by increasing the temperature at certain rates, this process is called AA [29]. At the end of both processes, a new microstructure is formed in which residual stresses decrease and the microstructure changes [25]. Thus, a new material is obtained, which changes some properties. In addition; it greatly influences the morphology, size and density number of the main strengthening phases formed during AA [30]. GP zones, \(\beta' \), \(\beta'' \) phase, etc as well as their precipitation value contribution to the alloy [25]. As a result of the literature; Mg alloys such as Mg-RE [27], Mg–8Li–3Al–2Zn–0.5Y [28], ZK60 [31], Mg–3Sn–1Al [32], Mg–3Sn–2Zn–1Al [32] and Mg–Gd [26] were aged by AA method and aging/property correlation was investigated.

Mg metal and alloys used in this study is preferred by increasing day by day in applications where lightness is essential [12]. Mg metal; with its low-density property, is used actively from the automotive industry [24] to aerospace applications [16]. Today, reducing the kg/fuel ratio in the automotive industry has increased environmental protection [24]. In this words; Mg, which can show the same level of strength as steel, reduces the fixed weight level of vehicles and reduces the appearance of carbon footprint [12, 24, 33]. There is an increasing trend in the use of Mg in the industry every year [24]. This rate increases by 12%–15% every year since the 2000s [12]. However, due to the low advantages of pure Mg metal such as low resilience and tensile strength, the use of this metal as a composite has become more important [4, 34–36].

Finally, as it is known; the type, size and ratio of reinforcement added to the structure in metal matrix composite materials affect all the properties of the composite material [4]. For example, it is known that mechanical values increase when ceramic-based reinforcing products are homogeneously present in the matrix [37]. In Mg metal, Al and/or Si reinforcement generally forms Mg\(_2\)Si and Mg\(_{17}\)Al\(_{12}\) intermetallic in the structure of the composite material [12, 38–40]. These compounds give the whole structure different properties [12, 38]. Intermetallic compounds (specially Mg\(_2\)Si) are preferred in phase type due to their high melting temperature [41], low density [42], high hardness [40] and low thermal expansion coefficient [43].

It is found in the literature that other elements added to Mg improve corrosion resistance and hardness values [11, 12, 34, 38, 40, 44–51]. However, the limited use of Pb addition is remarkable during the studies are examined. In our previous studies, it was found that different amounts of Pb (0.2%, 0.5%, and 1%) were added to Mg metal and phase ratios in the structure changed [12, 34, 38]. In addition, as is known, the use of heavy metals such as Pb has been limited by many international health organizations [52–54]. The amount we used in our study was determined based on these limitations. The aim of this study is to observe the basic changes of aging (\(\%90 \) Mg–(\(\%10 \) Al\(_{12}\)Si) + (\%1) Pb (short name Mg10AS1Pb) alloy produced by in situ casting system in addition to our studies in literature [12, 34, 38]. In our previous studies [12, 38], Mg10AS1Pb alloy, which gave the best results corrosive (%1 Pb), was examined in terms of AA process. In this study, the quantities of the phases in the structure of the composite material produced are discussed. With these effects, phase changes occurred in the structure of the composite material applied AA and an increase for hardness was determined.

2. Experimental sections

2.1. Materials preparations
In this study, 90% Mg (A) metal and 10% Al\(_{12}\)Si (B) ingot alloy (wt) were used as starting point material for composite production. The A + B structure melted in a special Ar atmosphere controlled furnace (figure 1) at approximately 750 \(^\circ\)C was transferred to the mold by in situ casting method. It produced stainless steel material by CNC machining method and it about 300 \(^\circ\)C at the time of casting (figure 2). The basic casting errors that may occur by heating the mold are prevented. At this stage, obtaining a particle reinforced composite material is completed. Pb was re-melted in 1% ratio to Mg–Al–Si master alloy produced with A and B structures. The final products were subjected to homogenization heat treatment at 400 \(^\circ\)C for 4 h under atmospheric control. The samples were freely cooled to room temperature without being removed from the furnace.

2.2. Artificial aging process
After the casting process and homogenization heat treatment, AA heat treatment was applied to the materials. The steps of the AA process as a special process and the temperature flow regime are given in figure 3. The AA treatment, aging temperatures, and aging times were determined from similar studies [26–28, 31, 32]. In this study, Mg10AS1Pb material that is produced as a special alloy has been used to analyze the effects of aging. Samples prepared in certain dimensions (5 mm \(\times \) 5 mm \(\times \) 15 mm) were kept in steel box and powder graphite (in order to stop contact with oxygen and 100 micron particle size) at 350 \(^\circ\)C for 1 h and the first step of
AA process was completed. Mg is a very high oxygen affinity element [36]. Here, protection methods are used to reduce the effect of oxidation on Mg. In the AA process carried out in an atmosphere-controlled furnace, Ar gas was used as a preservative and in addition the samples taken into powder graphite. Powder graphite was used in this study as a separate protection security in order to avoid any negative effects despite Ar gas control. Powder graphite is already used as a simple oxidation inhibitor in homogenizing processes after casting [55]. The AA application graph and Mg-Al-Si triple phase diagram [43] shown in figure 3(b) show that the temperature level of 350 °C remains below the solidification temperature of the alloy. In the second step of the AA process, the samples were allowed to cool down in water at a temperature of 25 °C, thus passing the quenching step. Then, in the third step, the samples were aged again in steel box and powder graphite at 150 °C for 5 different time periods between 0–24 h and then air cooled (Aging 1; 150 °C–2 h, Aging 2; 150 °C–4 h, Aging 3; 150 °C–12 h, Aging 4; 150 °C–16 h, Aging 5; 150 °C–24 h). As a result, AA process was completed according to the graph given in figure 3(b). Hardness monitoring was made at each stage of aging and since the hardness increase continued, after 4 h, it was directly switched to 12 h.

2.3. Experiments and characteristics
Grinding with different grade silicon carbide (SiC) grit papers and polishing process with 3 μm and 1 μm diamond suspensions were applied for microstructure analysis. Firstly light optical microscope (LOM) (with
Leica) and secondly Carl Zeiss Scanning Electron Microscope (SEM) equipped with EDX-MAP was used to examine the microstructure of alloy composite. In addition, the hardness values of the specimens were measured by performing five successful experiments from each sample under 1 kg load on Vickers micro hardness device (Qness). Then, the approximate phase amount was calculated by basic area/percentage measurement method in order to determine the phases in the structure over the obtained microstructure images. While applying this method, microstructure was transferred to Image-J program, different structures were marked, and a simple area/percentage calculation was made. This calculation method was applied to at least 3 microstructure pictures taken with LOM and an average phase amounts were determined.

3. Results and discussions

Samples produced by in situ casting system were subjected to hardness measurement and microstructure analysis after AA stages. As a result of these experiments, microstructure photographs shown in figure 4 were first taken with LOM for microstructure investigations. Phases, α-Mg, Mg17Al12 and Mg2Si, which are likely to occur in triple alloys consisting of Mg-Al-Si elements, have been determined by considering the auxiliary studies and shown on the images [12, 38, 40]. With increasing aging time, changes occurred in percentages of the phases in the structure and these changes can be observed through microstructures. For the un-aging sample, the image shown in figure 4(a) shows the as-casting microstructure of the material. Mg-Al binary alloys [12, 38] Mg17Al12 intermetallic phase in this image is partially visible in the grain boundaries. The rate of increase of this phase in post-aging processes was followed during this study. As reported by Chen et al gradual temperature changes trigger phase changes within the structure and dispersion changes [43]. In another study, Wanyu et al proved that phase ratios of a similar alloy changed as a result of AA [25]. Based on references and images, the ratios/types of phases changed with increasing time because of AA in this study.

In addition to the images obtained by LOM, SEM images were taken from the samples and EDX-MAP analyzes were performed. SEM images are detailed in appendix A. It is seen in the SEM images that; because of AA, phase ratios and structures have been changed. It is clearly observed that the ratio of α-Mg structure decreases and the ratio of Mg17Al12 intermetallic phase increases in the structures shown in appendix A. Mg2Si particles showed slight increase in microstructure and their geometric shape changed. The EDX analyzes performed to see the chemical composition of the phases in the structure are given in figure 5. Figure 5 shows the
elemental ratios of the respective phases. The Mg, Al and Si element ratios of Mg$_2$Si, α-Mg and Mg$_{17}$Al$_{12}$ phases in the structure showed a consistent result. In addition, EDX analysis shows the presence of Pb element. In each point analysis, appendix A can be examined for the presence of Pb and in this examination, it can be seen that the element Pb is distributed throughout the structure.

In order to support the microstructure images given in figure 4 and appendix A, the approximate percentage values calculated with the Image-J program are graphed in figure 6. Among these phases, the ratio of α-Mg phase, known as matrix phase, decreased after AA due to increasing aging time. The ratio of Mg$_{17}$Al$_{12}$ phase, which is an intermetallic phase, which gives rise to a fragmented distribution at the grain boundaries, has increased. In the Mg$_2$Si phase, which included the structure in the composite material group, particle size changes occurred due to the increasing aging time, but a slight increase in the rate of presence occurred [25, 30, 43].

After the microstructure examination of the materials subjected to AA heat treatment, their hardness was taken in the micro hardness device and the values obtained are shown in figure 7. Due to the change for phases seen in microstructure analysis, the amount of hardness increased. According to the results of Image-J program in appendix A and figure 6, Mg$_{17}$Al$_{12}$ phase ratio increased in the structure. The rate of presence of α-Mg phase, which

![Figure 4. Microstructures for different aging times. (a) Un-aging, (b) 2 h, (c) 4 h, (d) 12 h, (e) 16 h, (f) 24 h.](image)

![Figure 5. Un-aging specimen EDX analyses.](image)
is the main phase in the structure, decreased. Therefore, the proportional increase of Mg_{17}Al_{12} phase increased the bulking hardness of the samples. It has been found in similar studies that the increase of the intermetallic phase in the structure increases with the hardness value. Jiashi Miao et al reported that the majority of Mg_{17}Al_{12} precipitates in Mg-7Al-2Sn + Ag alloy increase the hardening as a result of aging [56]. In addition, Jung et al by the effect of Sn element added to AZ91 Mg alloy, formation of Mg_{17}Al_{12} phase increased and hardness value increased by 50% [57]. Su Mi Jo et al reported that the intermetallic phases of Mg_{17}Al_{12} and Mg_{2}Sn increase in the structure of Mg-8Al-2Sn-1Zn alloy and that hardness and yield strength can give higher values [58]. Based on similar studies, the numerical ratio of Mg_{17}Al_{12} phase increased by 40% (19.19 to 26.26) and so hardness value increased by 45% (86 to 125) because of AA in this study. In addition, the Mg_{2}Si phase, which acts as a particle in the structure, changed its distribution with increasing aging time and showing a slight increase in its ratio. The Mg_{2}Si phase has a high

Figure 6. Calculated (with Image-J program) phase rates for different aging.

Figure 7. Hardness graph and fixing-line.
hardness structure [59] and gives more hardness than many steel types [60]. It also has high melting temperature [41] and low density [42]. It has been found in the literature that it shows a high level of hardness of 700 HV [59] and 1050 HV [12]. The slight increase of this phase also resulted in an increase in bulking hardness (figure 8) in aged samples. If we look at the hardness results in another aspect; in the AA process, hardness value increase was realized as 2–3 units in 12 h, 16 h and 24 h experiments. Therefore, it can be said that an aging fixing line has been formed in the range of 12–24 h (at look; figure 7-Fixing line). Finally, an analysis covering all phases is shown in the Vickers indentation given in figure 8. Therefore, the increase in the intermetallic phases in the structure increased in terms of bulking hardness. As a general and basic result of the study, because of AA in Mg10AS1Pb alloy, phase ratios in the structure have changed and hence the hardness value has increased.

4. Conclusions

The effects of the artificial aging (AA) process in an alloy of Mg metal with commonly used elements were compiled in this study.

1. After AA treatment applied at 150 °C for 0–24 h (solution temperature 350 °C and quenching with 25 °C water); the proportions of Mg17Al12 and Mg5Si phases in Mg-Al-Si ternary alloys have increased.

2. Bulking hardness value of Mg alloy (occurred Mg-Al-Si + Pb) increased by about 45% with AA method applied under conditions determined by literature support (aging and solution temperatures, heating speed, holding times and aging method).

3. In this study all result determined; microstructure analysis (SEM and LOM), hardness measurement (HV), EDX-MAP elementel analysis (with SEM) and structure/phase ratio (with Image-J) results.

4. The main result of this study is to increase the hardness of this alloy by applying only AA heat treatment process.

Acknowledgments

As the authors, we would like to thank Karabuk University for providing financial support to KBU-BAP-C-11-Y-020 for the casting stages of this study. In addition, we would like to express our respect to Karabuk University, Iron and Steel Institute, Materials Research and Development Center (MARGEM), which provides support experimental studies and results.

Appendix A
Figure A1.

ORCID iDs

Bunyamin Cicek © https://orcid.org/0000-0002-6603-7178
Tuna Aydogmus © https://orcid.org/0000-0002-8736-2949
Yavuz Sun © https://orcid.org/0000-0002-7336-5591

References

[1] Avila A F and Tamma K K 1998 Analysis of laminate metal matrix composites J. Therm. Stresses 21 897–917
[2] Hashim J, Looney L and Hashimi M 1999 Metal matrix composites: production by the stir casting method J. Mater. Process. Technol. 92 1–7
[3] Singh M K, Gautam R K and Ji G 2019 Mechanical properties and corrosion behavior of copper based hybrid composites synthesized by stir casting Results in Physics 13 102319
[4] Miracle D H, Donaldson S L, Henry S D, Moosbrugger C, Anton G J, Sanders B R, Hrivnak N, Terman C, Kinson J and Muldoon K 2001 ASM Handbook: Composites 21 (OH: ASM International Materials Park) 107-119
[5] Lloyd D J 1994 Particle reinforced aluminium and magnesium matrix composites Int. Mater. Rev. 39 1–23
[6] Udupa G, Rao S S and Gangadharan K 2014 Functionally graded composite materials: an overview Procedia Materials Science 5 1291–1299
[7] Alghaithani A, Mahmoud E, Khan S and Tirth V 2018 Experimental studies on corrosion behavior of ceramic surface coating using different deposition techniques on 6082-T6 aluminium alloy Processes 6 240
[8] Fang D, Qi H and Tu S 1996 Elastic and plastic properties of metal–matrix composites: geometrical effects of particles Compat. Mater. Sci. 6 303–309
[9] Hemanth J 2009 Quartz (SiO2) reinforced chilled metal matrix composite (CMMC) for automotive applications Mater. Des. 30 323–329
[10] Qi L, Li S, Zhang T, Zhou J and Li H 2019 An analysis of the factors affecting strengthening in carbon fiber reinforced magnesium composites Compos. Struct. 209 328–336
[11] Zhao H L, Guan S and Zheng F 2007 Effects of Sr and B addition on microstructure and mechanical properties of AZ91 magnesium alloy J. Mater. Res. 22 2423–2428
[12] Çağlı B, Ahlatçı H and Sun Y 2013 Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg4Si particles Mater. Des. 50 929–935
[13] Edacherian A, Alghaithani A and Tirth V 2018 Investigations of the tribological performance of A390 alloy hybrid aluminum matrix composite Materials 11 (12) 2524
[14] Kravchenko S G, Sommer D E, Denos B R, Favaloro A J, Tow C M, Avery W B and Pipes R B 1996 Elastic and plastic properties of metal–matrix composites: geometrical effects of particles Compos. Struct. 6 303–309
[15] De Santis R, Guarino V and Ambrosio L 2019 Composite biomaterials for bone repair Bone Repair Biomaterials(Second Edition) (Amsterdam: Woodhead Publishing) 273–299
[16] Rawal S P 2001 Metal–matrix composites for space applications JOM 53 14–17
[17] Tian M and Shang C 2019 Mg-based composites for enhanced hydrogen storage performance Int. J. Hydrogen Energy 44 338–344
[18] Zamengo M and Kato Y 2017 Comparison of magnesium hydroxide/expanded graphite composites for thermal energy storage in cogeneration nuclear power plants Energy Procedia 131 119–126
[19] Tirth V, Alghaithani A and Mahmoud E R 2018 Tribological characterization of stir cast 2218 alloy-5%–alumina-titania hybrid microcomposites developed by liquid forging Mater. Express 8 475–488
[20] Cheng S, Hu W, Ma Y and Yan S 2007 Epitaxial polymer crystal growth influenced by partial melting of the fiber in the single-polymer composites Polymer 48 4264–4270
[21] Seretis G, Kozilios G, Manolakos D and Provatis D 2017 On the graphene nanoplatelets reinforcement of hand lay-up glass fabric/epoxy laminated composites Composites Part B: Engineering 118 26–32
Ji H, Peng X, Zhang X, Liu W, Wu G, Zhang L and Ding W 2019 Balance of mechanical properties of Mg-8Li-3Al-2Zn-0.5 Y alloy by solution and low-temperature aging treatment. J. Alloys Compd. 777 1375–1385

Yu S, Wan Y, Liu C and Wang J 2019 Age-hardening and age-softening in nanocrystalline Mg-Gd-Y-Zr alloy Mater. Charact. 156 109841

Arzu A, Kozak M, Takaki Y and Sato T 2016 Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy Scr. Mater. 116 82–86

Chen X, Liu L, Pan F and Qiao I 2014 Mechanical properties and electromagnetic shielding effectiveness of ZK60 magnesium alloy subjected to cold rolling and aging Mater. Res. Innovations 18 187–192

Chen Y, Jin L, Li W, Song Y and Hao L 2015 Microstructure and mechanical properties of as aged Mg–3Sn–1Al and Mg–3Sn–2Zn–1Al alloy Mater. Sci. Technol. 31 73–78

Zhao Y, Qin Q, Zhou W and Liang Y 2006 Effect of holding temperature on semisolid microstructure of Mg2Si/Al composite J. Alloys Compd. 416 143–147

Zhou Y, Qin Q, Zhou W and Liang Y 2005 Microstructure of the Ce-modified in situ Mg2Si/Al–Si–Cu composite J. Alloys Compd. 389 L1–L4

Chen J, Costan E, Van Huis M, Xu Q and Zandbergen H 2006 Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys Science 312 467–469

Kim J M, Park B K, Jun H K, Kim K T and Jung W I 2005 Microstructure and properties of Mg–Al based casting alloys modified with minor alloying elements Mater. Sci. Forum 488–489 147–150

Luo T and Yang Y 2011 Corrosion properties and corrosion evolution of as-cast AZ91 alloy with rare earth yttrium Mater. Des. 32 5043–5048

Chung Y J, Park J L, Kim N J and Shin S K 2005 Effects of alloying elements on mechanical properties of Mg–Al alloys Mater. Sci. Forum 488 845–848

Elen L, Cicek B, Koy E, Turen Y, Sun Y and Ahatlici H 2019 Effects of alloying element and cooling rate on properties of AM60 Mg alloy Mater. Res. Express 6 096511

Turan M E, Sun Y and Akaglu Y 2018 Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy J. Alloys Compd. 740 1149–1158

Fan Y, Wu G H and Zhai C Q 2007 Effect of strontium on mechanical properties and corrosion resistance of AZ91D Materials Science Forum, Trans Tech Publ 546–549 567–570

Turen Y 2013 Effect of Sn addition on microstructure, mechanical and casting properties of AZ91 alloy Mater. Des. 49 1099–1105

Zengin H, Turen Y, Ahatlici H and Sun Y 2018 Mechanical properties and corrosion behavior of As-Cast Mg–Zn–Zr–La (mg) magnesium alloys J. Mater. Eng. Perform. 27 389–397

Huang H, Rizwan M, Li M, Song F, Zhou S, He X, Ding R, Dai Z, Yuan Y and Cao M 2019 Comparative efficacy of organic and inorganic silicon fertilizers on antioxidant response, Cd/Pb accumulation and health risk assessment in wheat (Triticum aestivum L.) Environ. Pollut. 253 113116

Khanam R, Kumar A, Nayak A, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S and Panneerselvam P 2019 Metal (loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health Sci. Total Environ. 699 134330

Puangprasert S and Prueksasit T 2019 Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand J. Environ. Manage. 252 109601

Stefanesco D, Davis J and Destefani J 1988 Metals Handbook, Vol. 15–Casting 1988 (OH: ASM International)

Miao J, Sun W, Klarner A D and Luo A A 2018 Interface phase segregation of silver and enhanced precipitation of Mg17Al12 Phase in a Mg–Al–Sn–Ag alloy Scr. Mater. 154 192–196

Jung P, Kim Y, Cho T, Oh S, Kim T, Shon S, Kim W and Kim D H 2014 Suppression of discontinuous precipitation in AZ91 by addition of Sn Mater. Sci. Technol. 30 95–103

Jo S M, Kim S D, Kim T H, Go Y, Yang C W, You B S and Kim Y M 2018 Sequential precipitation behavior of Mg17Al12 and Mg2Sn in Mg–8Al–2Sn–12zn alloys J. Alloys Compd. 749 794–802

Kondoh K, Oginuma H and Aizawa T 2019 Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand J. Environ. Manage. 252 109601

Stefanesco D, Davis J and Destefani J 1988 Metals Handbook, Vol. 15–Casting 1988 (OH: ASM International)

Miao J, Sun W, Klarner A D and Luo A A 2018 Interface phase segregation of silver and enhanced precipitation of Mg17Al12 Phase in a Mg–Al–Sn–Ag alloy Scr. Mater. 154 192–196

Jung P, Kim Y, Cho T, Oh S, Kim T, Shon S, Kim W and Kim D H 2014 Suppression of discontinuous precipitation in AZ91 by addition of Sn Mater. Sci. Technol. 30 95–103

Jo S M, Kim S D, Kim T H, Go Y, Yang C W, You B S and Kim Y M 2018 Sequential precipitation behavior of Mg17Al12 and Mg2Sn in Mg–8Al–2Sn–12zn alloys J. Alloys Compd. 749 794–802

Kondoh K, Oginuma H and Aizawa T 2019 Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand J. Environ. Manage. 252 109601

Stefanesco D, Davis J and Destefani J 1988 Metals Handbook, Vol. 15–Casting 1988 (OH: ASM International)

Miao J, Sun W, Klarner A D and Luo A A 2018 Interface phase segregation of silver and enhanced precipitation of Mg17Al12 Phase in a Mg–Al–Sn–Ag alloy Scr. Mater. 154 192–196

Jung P, Kim Y, Cho T, Oh S, Kim T, Shon S, Kim W and Kim D H 2014 Suppression of discontinuous precipitation in AZ91 by addition of Sn Mater. Sci. Technol. 30 95–103

Jo S M, Kim S D, Kim T H, Go Y, Yang C W, You B S and Kim Y M 2018 Sequential precipitation behavior of Mg17Al12 and Mg2Sn in Mg–8Al–2Sn–12zn alloys J. Alloys Compd. 749 794–802

Kondoh K, Oginuma H and Aizawa T 2019 Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand J. Environ. Manage. 252 109601

Stefanesco D, Davis J and Destefani J 1988 Metals Handbook, Vol. 15–Casting 1988 (OH: ASM International)