Handling Idioms in Symbolic Multilingual Natural Language Generation

MICHAELLE DUBÉ, FRANÇOIS LAREAU
OLST, Université de Montréal
IDIOMS IN RULED BASES NLG

- Non-compositional MWE
 - Single unit of meaning
 - Syntactic structure
- Syntactic cohesion
- Form flexibility

Introduction

'sick'

SICK

'UNDER THE WEATHER'
1. **Donner encore sa langue au chat**
 ‘give up guessing again’, lit. ‘give again one’s tongue to the cat’

2. **Take it with a big grain of salt.**

3. **You must take whatever he says with a grain of salt.**

4. **He’s just pulling your leg.**

5. **‘LIETUVOS APELIACINIS TEISMAS’**
 ‘court of appeals of Lithuania’ lit. ‘appellate court of Lithuania’

6. **It was a pretty big bullet to bite**

- modifier
- complement
- inflection
Overview

Linguistic Realizers
Lexical Data
Implementation
Evaluation
Linguistic Realizers

Lexical Choice

SimpleNLG
RealPro
JSReal
ATML3

Output Flexibility

KPML
Open CCG
FLAUBERT
FUF/SURGE

Semantic Input

MARQUIS
FORGe
GenDR

Syntactic Input
Lexical Data

- French Lexical Network (LN_{fr})
- Grammatical classification
- Linear syntactic patterns
- Sequences of part of speech (POS)

Linguistic patterns	Example	#	%
N Prep N	TÊTE DE MULE	409	14%
N Adj	TERRE FERME	377	13%
Prep N	DE JUSTESSE	222	8%
N Prep.circ N	CORPS À CORPS	138	5%
Adj N	JOLI COEUR	100	4%
Prep Det N	DANS LE VENT	98	3%
V Det N	LEVER LE PIED	97	3%
N Prep N	ART DE LA TABLE	97	3%
Others	…	1417	49%
Total		**2919**	**100%**
Implementation

- Generic deep realizer (GenDR)
- Resource sharing
- MATE = graph transducer
- Meaning-Text theory (MTT)
- Semantics-syntax interface

Diagram:

```
  'courtiser'
    ▼
   ▼
  'Sam'  'Alex'  F subtitle
```

```
  SAM
  ▼
  LE
  ▼
  ALEX
```

SemR SSyntR
Template Lexicalization Rules

```
DSyntR

JOINDRE LES
DEUX BOUTS

⇒

JOINDRE

⇒

bouts

⇒

les
deux

SSyntR
```
\[\text{JOINDRE LES DEUX BOUTS} \quad \text{ENFONCER UNE PORTE OUVERTE} \quad \text{DANS DE BEAUX DRAPS}\]

\[
\begin{align*}
\text{V Det Num N} & \quad \Rightarrow \quad \text{V Det N Adj} \\
\text{Prep Det Adj N} & \quad \Rightarrow \quad \text{Generic}
\end{align*}
\]
Generic Tree Patterns

Partition	# tree
4 nodes	
3	2
1 + 2	1
1 + 1 + 1	1
	=4

4.01

\[
\begin{align*}
\text{\(w_0\)} & \quad \text{\(w_1\)} \\
\downarrow & \quad \downarrow \\
\text{\(w_2\)} & \quad \text{\(w_0\)} \\
\downarrow & \quad \downarrow \\
\text{\(w_3\)} & \quad \text{\(w_1\)} \\
\end{align*}
\]

4.02

\[
\begin{align*}
\text{\(w_0\)} & \quad \text{\(w_1\)} \\
\downarrow & \quad \downarrow \\
\text{\(w_2\)} & \quad \text{\(w_3\)} \\
\end{align*}
\]

4.03

\[
\begin{align*}
\text{\(w_0\)} & \quad \text{\(w_1\)} \\
\downarrow & \quad \downarrow \\
\text{\(w_2\)} & \quad \text{\(w_3\)} \\
\end{align*}
\]

4.04

\[
\begin{align*}
\text{\(w_0\)} & \quad \text{\(w_1\)} \\
\downarrow & \quad \downarrow \\
\text{\(w_2\)} & \quad \text{\(w_3\)} \\
\end{align*}
\]
Mapping Patterns

Input

\[w_0 \]
\[\downarrow \]
\[w_1 \]
\[w_2 \]
\[\downarrow \]
\[w_0 \]
\[\downarrow \]
\[w_2 \]

\[w_3 \]
\[\downarrow \]
\[w_3 \]
\[\downarrow \]
\[w_1 \]

V Det Num N

Mapping

\[joindre \]
\[\downarrow \]
\[V \]
\[\downarrow \]
\[Det \]
\[\downarrow \]
\[deux \]
\[\downarrow \]
\[Num \]
\[\downarrow \]
\[bouts \]

Output

\[joindre \]
\[\downarrow \]
\[bouts \]
\[\downarrow \]
\[les \]
\[\downarrow \]
\[deux \]
5. Evaluation

5.1 Coverage
5.2 Precision
Results: Coverage

Pattern Type	Coverage (%)	# Trees	# Idioms	Coverage Limit
Idioms	97.5%	2846	2919	
Linguistic Patterns	87.9%	452	514	
Generic Patterns	80.6%	29	36	

Graph showing the number of trees, idioms, and coverage limit over iterations.
97.8% OVERALL PRECISION

Sample	n	Judge A	Judge B	k
Sample 1	100	98		
Sample 2	100		97	
Sample 3	300	295	294	0.91

PROBLEMS / SOLUTIONS

- Pattern mapping
 - Vague linguistic pattern
 - Node inflection
- Data collection (inflection)
- LNfr precision
 - Government patterns & coreferences
6. Conclusion

Handling MWEs in MNLG
- Language independent
- Linguistic patterns
- Generic patterns

Future work
- Graph transducer
 - GREW
- Extend to English and Russian
 - LN\textsubscript{en} LN\textsubscript{ru}
2846 French Idioms

452 Linguistic Patterns

36 Generic Patterns

Linguistic Patterns

ENGLISH MWEs

RUSSIAN MWEs
Thank you

Michaëlle Dubé
michaëlle.dube@umontreal.ca
www.olst.ling.umontreal.ca