Analysis of prescription medication rules of traditional Chinese medicine for bradyarrhythmia treatment based on data mining

XuJie Wang, PhDa,b,c, Xuexue Zhang, PhDa, Jiaxi Li, MMd, Biaoyan Hu, PhDa, Jiwei Zhang, MDa, Wantong Zhang, PhDa,b,c, Weiliang Weng, BDa,b,c, Qiuyan Li, MDa,b,c,*

Abstract

Background: Multiple studies have revealed that Traditional Chinese Medicine (TCM) prescriptions can provide protective effect on the cardiovascular system, increase the heart rate and relieve the symptoms of patients with bradyarrhythmia. In China, the TCM treatment of bradyarrhythmia is very common, which is also an effective complementary therapy. In order to further understand the application of Chinese medicines in bradyarrhythmia, we analyzed the medication rules of TCM prescriptions for bradyarrhythmia by data mining methods based on previous clinical studies.

Methods: We searched studies reporting the clinical effect of TCM on bradyarrhythmia in the PubMed and Chinese databases China National Knowledge Infrastructure database, and estimated publication bias by risk of bias tools ROB 2. Descriptive analysis, hierarchical clustering analysis and association rule analysis based on Apriori algorithm were carried out by Microsoft Excel, SPSS Modeler, SPSS Statistics and Rstudio, respectively. Association rules, co-occurrence and clustering among Chinese medicines were found.

Results: A total of 48 studies were included in our study. Among the total 99 kinds of Chinese medicines, 22 high-frequency herbs were included. Four new prescriptions were obtained by hierarchical cluster analysis. 81 association rules were found based on association rule analysis, and a core prescription was intuitively based on the grouping matrix of the top 15 association rules (based on confidence level), of which Guizhi, Zhigancao, Wuweizi, Chuanxiong, Danshen, Dongguai, Huangqi, Maidong, Danshen, Rougui were the most strongly correlated herbs and in the core position.

Conclusion: In this study, data mining strategy was applied to explore the TCM prescription for the treatment of bradyarrhythmia, and high-frequency herbs and core prescription were found. The core prescription was in line with the treatment ideas of TCM for bradyarrhythmia, which could intervene the disease from different aspects and adjust the patient’s Qi, blood, Yin and Yang, so as to achieve the purpose of treatment.

Abbreviation: TCM = traditional Chinese medicine.

Keywords: bradyarrhythmia, bradycardia, Chinese medicine, data mining, prescription medication rules

1. Introduction

Bradyarrhythmia is a common clinical arrhythmia. It is usually attributed to physiological conditions (e.g., well trained athletes), drug toxicity, genetic mutations, concurrent issues, or advanced age.[1,2] Pathological changes that cause bradyarrhythmia are usually located in the sinus node, atrioventricular nodal tissue, atrial tissue, and the specialized conduction system.[3] It can be further classified as sinus node dysfunction or sick sinus syndrome, atrioventricular block, and conduction tissue disease, depending on the location of the disease.[4] Severe symptomatic bradyarrhythmia can lead to syncpe and symptoms of heart failure, which can even be life-threatening.

The incidence of bradyarrhythmias is high in the elderly population, and a large cohort study has found that the incidence of bradyarrhythmias increases with age regardless of gender.[5]

1 XJ, XZ, and JL contributed equally to this work.

This study was supported by National Natural Science Foundation of China (Grant no. 82004352), the Fundamental Research Funds for the Central public welfare research institutes (Grant no. ZZ15-XY-PT-06), the fourth National Medicine Master’s Inheritance Studio Construction Project of the State Administration of Traditional Chinese Medicine (Weng Wei-liang Academic Succession Studio), and Beijing Traditional Chinese Medicine’s Succession “3+3” Project (Weng Wei-liang Academic Succession Workstation).

All authors consent to publish.

The authors have no conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are publicly available.

Supplemental Digital Content is available for this article.

* Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 2 NIMFA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China, 3 National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China, 4 Taiyuan University of Chinese Medicine, Taiyuan, China, 5 Peking University, Beijing, China.

* Correspondence: Qiuyan Li, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, e-mails: liqiuyan1968@sohu.com.

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Wang X, Zhang X, Li J, Hu B, Zhang J, Zhang W, Weng W, Li Q. Analysis of prescription medication rules of traditional Chinese medicine for bradyarrhythmia treatment based on data mining. Medicine 2022;101:44(e31436).

Received: 15 August 2022 / Received in final form: 29 September 2022 / Accepted: 30 September 2022

http://dx.doi.org/10.1097/MD.0000000000031436
With the acceleration of the aging process of the global population, the aging population base will continue to grow, and the number of patients with bradyarrhythmias will continue to increase. Therefore, bradyarrhythmia has received more attention around the world. The United States, Europe, China and other places are continuously updating their clinical guidelines or expert consensus for bradyarrhythmia, bringing new methods and strategies for the treatment of bradyarrhythmia.

Clinical treatment of bradyarrhythmia mainly includes two types: drug therapy and pacing therapy. Pharmacotherapy is indicated for acute management due to drug toxicity, while pacemaker implantation is the essential therapy for the treatment of irreversible symptomatic bradyarrhythmias. In recent years, the use of pacemaker implantation has continued to grow worldwide. However, postoperative complications such as infection and heart failure, high cost and lifelong follow-up need are also the reasons why many people refuse or cannot afford pacemaker implantation. Such populations are at greater risk for severe complications and other accidents, and there is an urgent need to find alternatives for them.

Traditional Chinese medicine (TCM) has a long history of treating bradyarrhythmias, which began in the Han dynasty in China (more than 2000 years ago). TCM has unique treatment advantages. It can be based on the development characteristics of the disease and from the concept of holism, to carry out syndrome differentiation and treatment, so as to adjust the Qi, blood, Yin and Yang inside and outside the human body, and achieve the therapeutic effect. For the pathogenesis of bradyarrhythmia, TCM theory is mostly considered to be due to blood stasis after Qi, Yang and Yin deficiency. Such populations are derived from screening the reference lists of included randomized controlled trials and previous meta-analysis studies. We aimed to comprehensively investigate the high-level clinical studies of Chinese medicine in the treating of bradyarrhythmias, so only randomized controlled trials in which TCM treatment shows exact therapeutic effect were included. In addition, included studies need to meet clinical diagnostic criteria for bradyarrhythmias. For the intervention methods, we hope to obtain all forms of herbal treatment: “bradyarrhythmia,” “bradycardia,” “sick sinus syndrome,” “sinus node dysfunction,” “atrioventricular block,” “traditional Chinese medicine,” “Chinese medicine,” “herbal medicine,” “randomized controlled trial,” and “clinical trial.” Additional studies were derived from screening the reference lists of included randomized controlled trials and previous meta-analysis studies.

3. Material and Method

3.1. Clinical data sources and selection criteria

Systematically searched Pubmed (Medline) and Chinese databases China National Knowledge Internet database to identify randomized studies of TCM for bradyarrhythmia published from January 2000 to January 2022, with no language restriction. The full search strategy was employed combinations of medical subject headings terms and text words around “bradyarrhythmia,” “bradycardia,” “sick sinus syndrome," “sinus node dysfunction,” “atrioventricular block,” “traditional Chinese medicine,” “Chinese medicine,” “herbal medicine,” “randomized controlled trial,” and “clinical trial.” Additional studies were derived from screening the reference lists of included randomized controlled trials and previous meta-analysis studies.

3.1.1. Inclusion criteria. We aimed to comprehensively investigate the high-level clinical studies of Chinese medicine in the treating of bradyarrhythmias, so only randomized controlled trials in which TCM treatment shows exact therapeutic effect were included. In addition, included studies need to meet clinical diagnostic criteria for bradyarrhythmias. For the intervention methods, we hope to obtain all forms of herbal treatment: China’s National Medical Products Administration (NMPA)-approved patent Chinese medicine, classical formulas, self-designed formulas, single herb, and TCM-derived products.

Special note: For the same prescription appearing in different studies, we only included it once.

3.1.2. Exclusion criteria. Non-clinical studies: reviews and animal experiments. Non-randomized studies: retrospective studies, prospective studies, cohort studies, case-control studies, observational clinical trials or case reports. Non-oral decoction...
therapies: acupuncture, massage, moxibustion, external Chinese medicine, cupping, ear-point embedding beans, physical therapies, etc.

3.2. Quality assessment

For the included studies, the Revised Cochrane risk-of-bias tool for randomized trials[30] was used to assess the risk of bias, including bias arising from the randomization process, bias due to deviations from intended interventions, bias due to missing outcome data, bias in measurement of the outcome, and bias in selection of the reported result. In this way, all articles selected for inclusion in the study were graded under the categories of low, some concerns, or high risk of bias.

3.3. Data mining

3.3.1. Standardization of data. In this study, all translations (Chinese-English) were mainly in accordance with the “WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region”[31] and “International Standard Chinese-English Basic Nomenclature of Chinese Medicine.”[32] Chinese medicines were standardized with reference to the Chinese Pharmacopoeia 2020 edition[33] and unified as the official name.

3.3.2. Data analysis. All data were converted into transactional data, and the frequency of occurrence of each herb was subsequently calculated by an Excel pivot table,[34] into transactional data, and the frequency of occurrence of each item on the right hand side (RHS) and Y represents the consent level is the con-...
into the overall scatter diagram of all rules, with X axis as the support degree, Y axis as the confidence level, and the color of each association rule is determined by its lift value (Fig. 5). In this study, we found out the high-frequency of occurrence items in prescriptions based on mining association rules among herbs and filtered the top 15 rules based on the confidence level (Table 3).

With respect to grouped sets of items, we used association network graph based on color or size visualization to achieve the visualization of herbs compatibility relations (Fig. 6). These features are presented intuitively based on a grouping matrix of 15 association rules. This figure provides a clear representation of association rules and avoids cluttered presentation. It could be seen that Guizhi, Zhigancao, Wuweizi, Chuanxiong, Danshen, Danggui, Huangqi, Maidong, Dangshen, Rougui were the most strongly correlated herbs and in the core position.

5. Discussion

In recent years, with Professor Tu Youyou becoming the first Nobel Prize winner in Physiology or Medicine in China, TCM has attracted more and more attention from the international community.[84] In March 2022, a meeting report[85] released by the World Health Organization (WHO) also indicated that TCM was both safe and beneficial when combined with conventional antiviral medicine for coronavirus disease 2019.[86,87] Traditional, complementary, and integrative medicine can make important contributions to health management, disease prevention, and treatment of major diseases. Like artemisinin, extracted from Chinese herb Qinghao (Artemisiae Annuae Herba), Chinese medicines and its derivatives are generally inexpensive, while having a good therapeutic effect. Therefore, TCM treatment of bradyarrhythmia requires in-depth mining and analysis, which can benefit patients with bradyarrhythmia and allow such population to have more treatment options.

The nature and function of Chinese medicine formed the fundamental basis for analyzing Chinese herbs as well as its clinical applications. In this study, a variety of statistical methods were used to perform a holistic analysis of Chinese medicines in prescriptions for the treatment of bradyarrhythmia. Through descriptive statistical analysis of TCM data in prescriptions for the treatment of bradyarrhythmia, we found high-frequency Chinese medicines in TCM prescriptions, of which Danshen, Danggui, Chuanxiong, Honghua, and Taoren were commonly used in clinical practice for activating blood and resolving stasis, Huangqi, Zhigancao, Renshen, Dangshen, and Taizishen were commonly used in clinical practice for tonifying Qi, Fuzi, Guizhi, Hongshen, Yinyanghuo, Rougui, Xixin, and Mahuang were commonly used in clinical practice for warming Yang, Maidong, Wuweizi, Dihuang, Shanzhuyu were commonly used in clinical practice for nourishing Yin, and Gansong is a herb for moving Qi.

The application of hierarchical cluster analysis allowed us to find four potential TCM prescriptions for the treatment of...
Study (year)	Study design	Inclusion criteria	Formula name	Herbs
Sun et al., 2020[36]	RCT	Bradyarrhythmia	Ginseng deer restorative decoction	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Ma et al., 2020[37]	RCT	Bradyarrhythmia	Fuxin capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Zou, 2020[38]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Cao et al., 2019[39]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Fang et al., 2019[40]	RCT	Bradyarrhythmia	Shenglv decoction	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Zhu, 2019[41]	RCT	Bradyarrhythmia	Shenglv decoction	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Xu et al., 2019[42]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Shao et al., 2019[43]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Fan et al., 2018[44]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Sun et al., 2018[45]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Xu et al., 2018[46]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Wei et al., 2018[47]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Zhang et al., 2018[48]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Zhang et al., 2017[49]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Ge et al., 2017[50]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Li et al., 2017[51]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Li et al., 2017[52]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Liu, 2015[53]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Lin et al., 2015[54]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Liu et al., 2014[55]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Bai et al., 2014[56]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Wu et al., 2014[57]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Zhou et al., 2014[58]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Liu et al., 2018[59]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Liu et al., 2018[60]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Liu et al., 2017[61]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Peng et al., 2012[62]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Ren et al., 2012[63]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Bai et al., 2011[64]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Zhang et al., 2011[65]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Guo, 2011[66]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Li et al., 2011[67]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Ma et al., 2010[68]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Li, 2008[69]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Wang et al., 2008[70]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Wang et al., 2007[71]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao
Deng, 2006[72]	RCT	Bradyarrhythmia	Fumai capsule	Fu, Rougui, Sangi, Huanglian, Sangi, Mudanpi, Danshen, Gansong, Zhigancao

(Continued)
Table 2

No.	Chinese name	Latin name*	Medicinal part	Frequency
1	Danshen	Salviae Miltiorrhizae Radix et Rhizoma	Root, Rhizome	25
2	Huangqi	Astragali Radix	Root	24
3	Fuzi	Aconiti Lateralis Radix Praeparata	Root	23
4	Zhigancao	Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle	Rhizome	23
5	Guizhi	Cinnamomi Ramulus	Branch	21
6	Maidong	Ophiopogonis Radix	Root	16
7	Danggui	Angelicae Sinensis Radix	Root	13
8	Renshen	Ginseng Radix et Rhizoma	Root, Rhizome	12
9	Wuweizi	Schisandrae Chinensis Fructus	Fruit	12
10	Dangshen	Codonopsis Radix	Root	11
11	Hongshen	Ginseng Radix et Rhizoma Rubra	Root, Rhizome	11
12	Yinyanghuo	Epimedi Follum	Leaf	11
13	Chuanxiong	Chuanxiong Rhizoma	Rhizome	8
14	Rougui	Cinnamomi Cortex	Bark	8
15	Xixin	Asari Radix et Rhizoma	Root, Rhizome	8
16	Dihuang	Rehmanniae Radix	Root	7
17	Mahuang	Ephedrae Herba	Stem	7
18	Shanzhuyu	Corni Fructus	Fruit	7
19	Gansong	Nardostachyos Radix et Rhizoma	Root, Rhizome	5
20	Honghua	Carthami Flos	Flower	5
21	Taizhishen	Pseudostellariae Radix	Root	5
22	Taoren	Persicae Semen	Seed	5

*The Latin names standardized by Chinese Pharmacopoeia (2020 edition).
Figure 3. High-frequency herbs co-occurrence diagram.

Figure 4. Hierarchical cluster analysis of high-frequency herbs.
bradyarrhythmia among high-frequency herbs. From Figure 4, it can be seen that the number of herbs in the first three prescriptions was more appropriate, while the fourth prescription only includes two herbs, Shanzhuyu and Gansong. Due to the small number of herbs, we did not consider it as a complete prescription. However, according to long-term clinical experience of TCM, we found that if the herb of prescription 4 and the herb of prescription 1 were combined into one prescription (prescription 5), the drug composition of this prescription was very close to the Chinese patent medicine “Shensong yangxin capsule (SSYX),” which has the functions of replenishing Qi and nourishing Yin, and activating blood and resolving stasis. Long-term SSYX treatment has been shown to restore calcium homeostasis and increase heart rate in the rabbit model of bradyarrhythmia by enhancing the expression of ryanodine receptor 2, sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)ATPase 2 and voltage-dependent anion-selective channel.\(^{[88,89]}\) From the analysis of the medicinal efficacy of each herb in prescription 2, its clinical effect was similar to that of the classical prescription “Zhigancao decoction” in Treatise on Cold Pathogenic and Miscellaneous Disease,\(^{[90]}\) which has the effects of nourishing Yin and blood, warming Yang and replenishing Qi. The efficacy of prescription 3 is close to that of the classical prescription “Mahuangfuzixixin Decoction” and the Chinese patent medicine “Shenxian Shengmai oral liquid (SXSM),” which has the effect of warming Yang and activating blood. Studies have shown that SXSM can affect in calcium handling and signaling, promote myocardial oxidative phosphorylation and tricarboxylic acid cycle, improve adenosine triphosphate production, and stimulate sympathetic transmission by upregulating β1-adrenoreceptor, increasing acetylcholinesterase and reducing nicotinic receptors, thus increasing heart rate.\(^{[91,92]}\)

Through association rule analysis based on Apriori algorithm, we found 81 rules, which can show the correlation of herb compatibility. Based on the definition of confidence level, we believe that the compatibility of herbal medicines with low confidence has low reference value for clinical practice, only the first 15 association rules are selected, so as to summarize the core prescription of Chinese medicines for the treatment of bradyarrhythmia. According to the theory of TCM, the core prescription has the effects of warming Yang and activating blood, replenishing Qi and nourishing Yin, which may be potentially useful in the treatment of bradyarrhythmia. Further clinical and pharmacodynamic experiments are required to validate the observation results of this study and explore the main components and mechanism of action of the core prescription.

6. Conclusions

The data mining strategy was applied in this study to explore Chinese medicine prescriptions for the treatment of bradyarrhythmia, high-frequency herbs were selected, and then three potential prescriptions were found by hierarchical cluster analysis, and one core prescription was excavated by association rule analysis. The compatibility of herbal medicines in the above four prescriptions is consistent with the therapeutic strategy of TCM for bradyarrhythmia, which can intervene the disease from different aspects and adjust the Qi, blood, Yin and Yang of patients, so as to achieve the purpose of treatment. Data mining can combine a variety of statistical methods to analyze TCM clinical research data and discover more therapeutic strategies from different perspectives. However, such analysis is limited to the secondary analysis of existing literature data, and could not be deeply explored in terms of drug efficacy and mechanism of action. Therefore, the research results still need to be verified by clinical and pharmacodynamic studies.

Author contributions

Conceptualization: Xujie Wang, Wantong Zhang, Weiliang Weng, Qiuyan Li.

Data curation: Xujie Wang, Xuexue Zhang, Biaoayan Hu.

Formal analysis: Xujie Wang, Biaoayan Hu.

Methodology: Xujie Wang.

Software: Xujie Wang, Xuexue Zhang.

Supervision: Weiliang Weng, Qiuyan Li.

Visualization: Xujie Wang.

Writing – original draft: Xujie Wang, Xuexue Zhang, Jiaxi Li.
Writing – review & editing: Jiwei Zhang, Wantong Zhang, Weiliang Weng, Quyan Li.

References

[1] Vogler J, Breithardt G, Eckardt L. Bradyarrhythmias and conduction blocks. Rev Esp Cardiol (Engl Ed). 2012;65:656–67.
[2] Rezaazadeh S, Duff HJ. Genetic determinants of hereditary bradyarrhythmias: a contemporary review of a diverse group of disorders. Can J Cardiol. 2017;33:758–67.
[3] Wung SF. Bradyarrhythmias: clinical presentation, diagnosis, and management. Crit Care Nurs Clin North Am. 2016;28:297–308.
[4] Kusumoto FM, Schoenfeld MH, Barrett C, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. Circulation. 2019;140:e382–482.
[5] Jensen PN, Gronroos NN, Chen LY, et al. Incidence of and risk factors for sick sinus syndrome in the general population. J Am Coll Cardiol. 2014;64:331–8.
[6] Moazzami K, Dolmatova E, Kothari N, Mazza V, Klaholz M, Waller AH. Trends in cardiac tamponade among recipients of permanent pacemakers in the United States: from 2008 to 2012. JACC Clin Electrophysiol. 2017;3:41–6.
[7] Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42:3427–520.
[8] Chinese Society of Pacing and Electrophysiology, Chinese Society of Arrhythmias. Chinese expert consensus on the evaluation and management of patients with bradycardia and cardiac conduction delay. Chin J Cardiac Arrhythmias. 2021;25:185–211.
[9] Gitenay E, Molin F, Blais S, et al. Cardiac implantable electronic device infection: detailed analysis of cost implications. Can J Cardiol. 2018;34:1026–32.
[10] Miller MA, Neuzil P, Dukkipati SR, Reddy VY. Leadless cardiac pacemakers: back to the future. J Am Coll Cardiol. 2015;66:1179–89.
[11] Kirkfeldt RE, Johansen JB, Noehr EA, Moller M, Arnso P, Nielsen JC. Risk factors for lead complications in cardiac pacing: a population-based cohort study of 28,860 Danish patients. Heart Rhythm. 2011;8:1622–8.
[12] Wan-Tong Z, Bao-Chen Z, Zhao L, et al. Compassionate use of yuanjiang decoction, a traditional Chinese medicinal prescription, for symptomatic bradyarrhythmia. Front Pharmacol. 2022;13:764930.
[13] Tang JL, Liu BY, Ma KW. Traditional Chinese medicine. Lancet. 2008;372:1938–40.
[14] Liu J, Liu R, Peng J, Wang Y. Effects of YiQi Tongyang on HCN4 protein phosphorylation in damaged rabbit sinoatrial node cells. Evid Based Complement Alternat Med. 2016;2016:4379139.
[15] Yan D, Xu XR, Qian YL, et al. Chinese patent medicine to treat a 32-year-old man with sinus bradycardia and cardiac sinus arrests: a case report. Medicine (Baltimore). 2019;98:e15536.
[16] Liu S, Tian G, Chen J, et al. Traditional Chinese medicine for bradyarrhythmias: evidence and potential mechanisms. Front Pharmacol. 2018;9:324.
[17] Wang XJ, Zhang WT, Zhang XX, et al. Systematic review and meta-analysis of the clinical efficacy and safety of warming yang and activating blood in the treatment of bradyarrhythmias. World J Int Tradit Western Med. 2022;17:1503–9.
[18] Hu HY, Ji ZC, Yu DD, et al. Network meta-analysis of randomized controlled trials of Chinese patent medicine for bradyarrhythmia. Zhongguo Zhong Yao Za Zhi. 2020;45:1149–58.
[19] Zhang Y, Hou J, Zeng Z. Analysis of prescription medication rules of traditional Chinese medicine for diabetes treatment based on data mining. J Healthc Eng. 2022;2022:2278416.
[20] Zhang ND, Han T, Huang BK, et al. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antosteoporotic drug discovery. J Ethnopharmacol. 2016;189:61–80.
[21] Li X, Yue H, Yin J, et al. Research on optimization of process parameters of traditional Chinese medicine based on data mining technology. Comput Intell Neurosci. 2022;2022:2278416.
[22] Dai L, Lu A, Zhong LL, et al. Chinese herbal medicine for hyperlipidaemia: a review based on data mining from 1990 to 2016. Curr Vasc Pharmacol. 2017;15:520–31.
[23] Wang XJ, Zhu BC, Li QY, et al. Traditional Chinese medicine for bradyarrhythmias: a meta-analysis of 15 association rules. Front Pharmacol. 2022;13:764930.
using Chinese herbal bath therapy. Evid Based Complement Alternat Med. 2020;2020:8834772.

[23] Hsieh PC, Cheng CF, Wu CW, et al. Combination of acupoints in treating patients with chronic obstructive pulmonary disease: an a priori algorithm-based association rule analysis. Evid Based Complement Alternat Med. 2020;2020:8165296.

[24] Ren X, Shao XX, Li XX, et al. Identifying potential treatments of COVID-19 from traditional Chinese medicine (TCM) by using a data-driven approach. J Ehnopharmacol. 2020;258:112932.

[25] Sun JH, Sun F, Yan B, et al. Data mining and systematic pharmacology to reveal the mechanisms of traditional Chinese medicine in Mycoplasma pneumoniae pneumonia treatment. Biomed Pharmacother. 2020;125:109900.

[26] Qu S, Qiao M, Wang J, et al. Network pharmacology and data mining approach reveal the medication rule of traditional Chinese medicine in the treatment of emotional dysphoric disorder. Front Pharmacol. 2022;13:811030.

[27] Wang XJ, Li JX, Zhang XX, et al. Research status and development trend of application of traditional Chinese medicine on bradyarrhythmia based on bibliometric analysis. Modern Trad Chin Med Materia Medica – World Sci Technol. 2022;24:1515–23.

[28] Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

[29] World Health Organization Regional Office for the Western Pacific. International Standard Terminologies on Traditional Medicine in the Western Pacific Region. Manila, Philippines: World Health Organization, Western Pacific Region; 2007.

[30] World Federation of Chinese Medicine Societies. International Standard Terminology: Basic. Nomenclature of Chinese Medicine. Beijing, China: People's Medical Pub. House; 2008.

[31] National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (2020 Edition, Part I). Beijing, China: China Medical Science Press; 2020.

[32] Grech V. WASP (Write a Scientific Paper) using Excel-2: Pivot tables. Early Hum Dev. 2018;117:104–9.

[33] Franco M, Vivo JM. Cluster analysis of microarray data. Methods Mol Biol. 1991;1986:153–83.

[34] Sun XN, Zhang Y, He CY. Study on therapeutic effect of Xifan Granule in treating bradyarrhythmia. Drug Eval Res, 2020;43:2457–62.

[35] Guo JL, Niu TF, Yang XY, et al. The superiority and safety of erhuen fumai capsules versus xinbao pills for senile sinus bradyarhythmia: a randomized double-blinded clinical trial. J Tradit Chin Med. 2021;62:224–8.

[36] Ma JX, Zhao W, Wu J. Efficacy of ginseng deer restorative decoction in the treatment of patients with bradyarrhythmia. J Heze Med College. 2020;32:53–5.

[37] Zou WJ. Clinical efficacy and safety of Wenshen Wenyi Decoction in the treatment of bradyarrhythmia. J Tradit Chin Med. 2020;38:83–5.

[38] Cao Y, Yang J, Liu YY, et al. Clinical efficacy of the Fumai capsule on bradyarrhythmias of the Xinshen Yangxu type. Clin J Chin Med. 2019;11:38–41.

[39] Fang YY, Liu JF, Fang SL. Clinical study on liuweimeitiyin yin combined with nursing mode of both heart and mentality for slow arrhythmia complicated with premature beat. New Chin Med. 2019;51:284–7.

[40] Zhu Y. Influence of shenlufulyu decoction combined with trimetazidine on senile bradyarrhythmia. Western J Tradit Chin Med. 2019;32:102–6.

[41] Xu YL, Zhou FF, Liu XY, et al. A clinical study of ningxin recipe in the treatment of brady arrhythmia. Tradit Chin Drug Res Clin Pharmacol. 2019;30:239–44.

[42] Shao XS, Wang Z, Zhou K. Clinical study on the treatment with Yangxun Dingji capsule for slow arrhythmia. Modern J Int Tradit Chin Medicine Western Med. 2019;28:375–378 + 382.

[43] Fan QL, Liu FM, Zhang HL, et al. Clinical study on treatment of 20 cases of bradyarrhythmia with Yiqi Wenyang and Yangxue Tongmai. Jiangsu J Tradit Chin Med. 2018;50:29–31.

[44] Sun J, Li Z, Wang L. Effect of self-made Yangxun Zhitong decoction on risk of bradyarrhythmia. Jinlin J Chin Med. 2018;38:1021–3.

[45] Xu RP, Wu JF, Zhang J, et al. Clinical observation of Yangxinishi tablet in treating bradyarrhythmia. Chin J Int Tradit Chin Medicine. 2018;16:2042–4.

[46] Wei ZZ, Gai HY, Han Y. Effect of wenshin decoction on cardiac autonomic nervous function in coronary heart disease patients with tarry arrhythmia. Guang J Tradit Chin Med Pharm. 2018;24:109–12.

[47] Zhang M, Wang J, Yu WJ, et al. Clinical efficacy of Shexiang Baoxin pills combined with Aminophylline in the treatment of sick sinus syndrome and its effect on heart rate and sinus node related indicators. Chin J Int Med Cardio-Cerebrovasc Dis. 2018;16:220–2.

[48] Zhang XX, Qiao M, Wang J, et al. Network pharmacology and data mining approach reveal the medication rule of traditional Chinese medicine in the treatment of slow arrhythmia and its effect on heart rate and sinus node related indicators. Chin J Int Med Cardio-Cerebrovasc Dis. 2018;16:220–2.

[49] Ge X, Gan SY, Li B, et al. Observation on the therapeutic effect of Wenshen Shengmai decoction combined with western medicine on sick sinus syndrome. Mod J Int Tradit Chin Western Med. 2017;26:3147–9.

[50] Ren X, Shao XX, Li XX, et al. Identifying potential treatments of COVID-19 from traditional Chinese medicine (TCM) by using a data-driven approach. J Ehnopharmacol. 2020;258:112932.

[51] Sun JH, Sun F, Yan B, et al. Data mining and systematic pharmacology to reveal the mechanisms of traditional Chinese medicine in Mycoplasma pneumoniae pneumonia treatment. Biomed Pharmacother. 2020;125:109900.

[52] Qu S, Qiao M, Wang J, et al. Network pharmacology and data mining approach reveal the medication rule of traditional Chinese medicine in the treatment of emotional dysphoric disorder. Front Pharmacol. 2022;13:811030.

[53] Zhang M, Wang J, Yu WJ, et al. Clinical efficacy of Shexiang Baoxin pills combined with Aminophylline in the treatment of sick sinus syndrome and its effect on heart rate and sinus node related indicators. Chin J Int Med Cardio-Cerebrovasc Dis. 2018;16:220–2.

[54] Wei ZZ, Gai HY, Han Y. Effect of wenshin decoction on cardiac autonomic nervous function in coronary heart disease patients with tarry arrhythmia. Guang J Tradit Chin Med Pharm. 2018;24:109–12.

[55] Zhang M, Wang J, Yu WJ, et al. Clinical efficacy of Shexiang Baoxin pills combined with Aminophylline in the treatment of sick sinus syndrome and its effect on heart rate and sinus node related indicators. Chin J Int Med Cardio-Cerebrovasc Dis. 2018;16:220–2.

[56] Ge X, Gan SY, Li B, et al. Observation on the therapeutic effect of Wenshen Shengmai decoction combined with western medicine on sick sinus syndrome. Mod J Int Tradit Chin Western Med. 2017;26:3147–9.

[57] Ren X, Shao XX, Li XX, et al. Identifying potential treatments of COVID-19 from traditional Chinese medicine (TCM) by using a data-driven approach. J Ehnopharmacol. 2020;258:112932.

[58] Sun JH, Sun F, Yan B, et al. Data mining and systematic pharmacology to reveal the mechanisms of traditional Chinese medicine in Mycoplasma pneumoniae pneumonia treatment. Biomed Pharmacother. 2020;125:109900.

[59] Qu S, Qiao M, Wang J, et al. Network pharmacology and data mining approach reveal the medication rule of traditional Chinese medicine in the treatment of emotional dysphoric disorder. Front Pharmacol. 2022;13:811030.

[60] Zhang M, Wang J, Yu WJ, et al. Clinical efficacy of Shexiang Baoxin pills combined with Aminophylline in the treatment of sick sinus syndrome and its effect on heart rate and sinus node related indicators. Chin J Int Med Cardio-Cerebrovasc Dis. 2018;16:220–2.

[61] Ge X, Gan SY, Li B, et al. Observation on the therapeutic effect of Wenshen Shengmai decoction combined with western medicine on sick sinus syndrome. Mod J Int Tradit Chin Western Med. 2017;26:3147–9.
[80] Zhang CH. Effect of zhigancao decoction on 63 cases of bradyarrhythmia after PCI for coronary heart disease. Modern J Int Tradit Chin Western Med. 2013;22:2227-9.

[81] Zheng K, Zhao M. Shengmai injection in treatment of slow arrhythmia. J Changchun Univ Chin Med. 2015;31:118-20.

[82] Liu JH, Chen LP, Tao YZ. Observation on therapeutic effect of Ningxinbao capsule combined with trimetazidine on senile bradyarrhythmia. Modern J Int Tradit Chin Western Med. 2014;23:172-3.

[83] Wang SL, Zhang L, Dong YR. 30 cases of bradyarrhythmia treated by shenfu injection. J Emerg Tradit Chin Med. 2011;20:1703-4.

[84] Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011;17:1217-20.

[85] Integrated Health Services, Traditional, Complementary and Integrative Medicine, World Health Organization. WHO Expert Meeting on Evaluation of Traditional Chinese Medicine in the Treatment of COVID-19. Geneva, Switzerland: WHO; 2022.

[86] Wang XJ, Li JX, Wang MR, et al. Antiviral properties of traditional Chinese medicine against coronavirus: research clues for coronavirus disease-2019. World J Tradit Chin Med. 2020;6:132-8.

[87] Wang XJ, Zhang WT, Zhang XX, et al. In the spirit of benevolence: taking action to fight against the COVID-19 pandemic. Chinese Med Culture. 2022;5:176-81.

[88] Liu Z, Huang J, Huo Y, et al. Identification of proteins implicated in the increased heart rate in shensongyangxin-treated bradycardia rabbits by iTRAQ-based quantitative proteomics. Evid Based Complement Alternat Med. 2015;2015:385953.

[89] Liu Z, Huang J, Hu R, et al. Gene expression profile of increased heart rate in shensongyangxin-treated bradycardia rabbits. Evid Based Complement Alternat Med. 2014;2014:715937.

[90] Zhang ZJ. Selected Readings from Shanghan Lun. Beijing, China: People’s Medical Pub. House; 2017.

[91] Liu ZY, Huang J, Liu NN, et al. Molecular mechanisms of increased heart rate in shenxianshengmai-treated bradycardia rabbits. Chin Med J (Engl). 2017;130:179-86.

[92] Gao J, Wang T, Yao X, et al. Clinical evidence-guided network pharmacology analysis reveals a critical contribution of β1-adrenoreceptor upregulation to bradycardia alleviation by Shenxian-Shengmai. BMC Complement Altern Med. 2019;19:357.