High-Voltage β-Ga₂O₃ Schottky Diode with Argon-Implanted Edge Termination

Yangyang Gao†, Ang Li†, Qian Feng*, Zhuangzhuang Hu, Zhaqing Feng, Ke Zhang, Xiaoli Lu, Chunfu Zhang, Hong Zhou, Wenxiang Mu, Zhitai Jia, Jincheng Zhang* and Yue Hao

Abstract

The edge-terminated Au/Ni/β-Ga₂O₃ Schottky barrier diodes were fabricated by using argon implantation to form the high-resistivity layers at the periphery of the anode contacts. With the implantation energy of 50 keV and dose of 5 × 10¹⁴ cm⁻² and 1 × 10¹⁶ cm⁻², the reverse breakdown voltage increases from 209 to 252 and 451 V (the maximum up to 550 V) and the Baliga figure-of-merit (Vᵦ²/Rᵦ) also increases from 25.7 to 30.2 and 61.6 MW cm⁻², about 17.5% and 140% enhancement, respectively. According to the 2D simulation, the electric fields at the junction corner are smoothed out after argon implantation and the position of the maximum breakdown electric field, 5.05 MV/cm, changes from the anode corner at the interface to the overlap corner just under the implantation region. The temperature dependence of the forward characteristics was also investigated.

Keywords: β-Ga₂O₃ Schottky diode, Argon implantation, Edge termination

Background

Development of high-power devices using ultra-wide-bandgap semiconductor materials such as Ga₂O₃, AlN, diamond, etc. is accelerating in recent years. The bandgap of β-Ga₂O₃ is as large as 4.8–4.9 eV and the breakdown field of β-Ga₂O₃ is estimated to be 8 MV/cm, about three times larger than that of 4H-SiC and GaN. The Baliga’s figure of merit, 3400, is at least ten times larger than that of 4H-SiC and four times larger than that of GaN [1]. Furthermore, the large single crystal and low-cost β-Ga₂O₃ substrate can be fabricated with melt-growth methods such as floating-zone (FZ) [2] and edge-defined film-fed growth (EFG) [3, 4]. The electron density can be controlled over a wide range from 10¹⁶ to 10¹⁹ cm⁻³ by doping with Sn, Si, or Ge [5–7]. These excellent properties make β-Ga₂O₃ ideal for low loss, high-voltage switching and high-power applications, including high-breakdown voltage Schottky barrier diode (SBD) and metal-oxide-semiconductor field-effect transistor (MOSFET) [8–12]. Schottky barrier diodes possess the advantages of fast switching speed and low forward voltage drop in comparison with p-n junction diode, which can decrease the power loss and improve the efficiency of power supplies.

Although large breakdown voltages of 1016 V, 2300 V, and 1600 V have been obtained in β-Ga₂O₃ Schottky barrier diodes without edge termination, they are all about 34%, 8%, and 10% of the ideal value [10, 13, 14]. To relieve the electric field crowding effect and fully realize the voltage potential of β-Ga₂O₃, suitable edge terminations must be designed. There are a number of edge termination techniques to increase the device breakdown voltage such as field plates, floating metal rings, trench MOS structure, implanted guard rings, and junction termination extension (JTE) [12, 15–17]. However, implanted guard rings and JTE structure are not applicable to Ga₂O₃ Schottky diode due to the lack of p-type doping. H. Matsunami and B. J. Baliga put forward an edge termination structure, using argon implantation to form a high-resistivity amorphous layer at the edges of anode, to reduce the electric field crowding [18–22], which is a simple technique with no multi-photolithography or deep trench etching steps required, and it is widely used in SiC and GaN rectifiers to smooth out the electric field distribution around the rectifying contact periphery [15, 23, 24].

In this paper, the vertical edge-terminated β-Ga₂O₃ Schottky diodes were fabricated with argon implantation at the edges of Schottky contacts. The capacitance–
voltage (C–V) and temperature-dependent current density-voltage (J-V) characteristics were recorded using Keithley 4200 semiconductor characterization system and the electric field distribution was also analyzed.

Methods/Experimental

The drift layer with the thickness of 10 μm was obtained from high-quality Sn-doped (100)-oriented β-Ga2O3 bulk substrate by mechanical exfoliation. The β-Ga2O3 bulk was grown by EFG technique with 4 N pure Ga2O3 powder as the starting material. Excellent crystal quality and smooth surface were confirmed by high resolution x-ray diffraction (HRXRD) and atomic force microscope (AFM) measurements, as presented in Fig. 1a, b. The full width at half-maximum (FWHM) and root mean square (RMS) were estimated to be 37.4 arcsec and 0.203 nm, respectively. Figure 1c shows the distribution of β-Ga2O3 substrate sheet resistance with the thickness of 10 μm by a four-point probe measurement. Using carrier concentration of $(1.3 \pm 0.04) \times 10^{17}$ cm$^{-3}$ and sheet resistance of (563 ± 18.5)Ω/□, the electron mobility is calculated to be $85.3\sim95.2$ cm2/Vs by $\mu_n = 1/(R_{\text{Sheet}} \times n \times q \times t)$, where μ_n, R_{Sheet}, n, q, and t are the electron mobility, the sheet resistance, the electron concentration, electron charge, and the thickness of β-Ga2O3 substrate, similar to the reported results [25]. Argon ion implantation with an energy of 50 keV, the dose of 2.5×10^{14} cm$^{-2}$, and high temperature annealing at 950 °C for 60 min in N2 atmosphere were first

Figure 1

- **a** XRD rocking curve and **b** AFM image of the β-Ga2O3 drift layer mechanically exfoliated from (100) β-Ga2O3 substrate
- **c** Measured sheet resistance of 10 mm × 10 mm β-Ga2O3 substrate
performed on the back side, followed by E-beam evaporation of a Ti/Au (20 nm/100 nm) ohmic metal stack and rapid thermal annealing at 600 °C for 60 s in N₂ ambient. Then the 2-μm-thick photoresist was used as the mask for argon implantation at room temperature with an energy of 50 keV and the dose of 5 × 10¹⁴ cm⁻² (sample B) and 1 × 10¹⁶ cm⁻² (sample C), respectively. In order to repair the implantation damage and reduce the leakage current under reverse bias, the implanted samples were subjected to a rapid thermal annealing at 400 °C for 60 s under N₂ ambient [13, 26]. Finally, the circular Schottky anode electrodes with diameter of 100 μm were fabricated on the front side by standard photolithographic patterning, evaporation of Ni/Au (30 nm/200 nm) stack, and lift-off. The reference device without argon implantation was also fabricated (sample A). Figure 2a depicts cross-section TEM of fabricated-Ga₂O₃ Schottky diode with argon-implanted edge termination. An almost surface amorphous β-Ga₂O₃ layer was created in the implantation region. The actual photograph of the terminated β-Ga₂O₃ Schottky diode is shown in Fig. 2b. Figure 2c represents the measurement setup of forward current–voltage (I–V) characteristics of the β-Ga₂O₃ SBD, while the measurement voltage ranges between 0 and 3 V and the step is 10 mV. Figure 2d depicts the measurement setup of reverse current–voltage (I–V) characteristics of β-Ga₂O₃ Schottky rectifiers to obtain the breakdown voltage, while the measurement voltage ranges between 0 and −500 V and the step is −1 V.

Results and discussion

Figure 3 shows the experimental 1/C² versus V characteristics of three SBD samples at room temperature. The effective carrier concentration N_d-N_a of β-Ga₂O₃ drift layer and built-in potential (eV_BI) are extracted to be (1.3 ± 0.04) × 10¹⁷ cm⁻³ and (1.30 ± 0.08) eV, respectively. According to the following equations, the Schottky barrier height φ_B_CV is calculated to be (1.32 ± 0.08) eV.

\[
\frac{1}{C^2} = \frac{2}{qeA^2(N_d-N_a)(V_{BI}-V)}
\]

(1)

\[
e\phi_b = eV_{BI} + (E_c-E_F)-e\Delta\phi
\]

(2)

Fig. 2 a TEM image of sample C and b photograph of the terminated β-Ga₂O₃ Schottky diode c the measurement setup of forward current and d reverse current-voltage (I-V) characteristics of the β-Ga₂O₃ SBD to obtain the breakdown voltage
\[E_c - E_f = kT \ln \left(\frac{N_c}{N_d - N_a} \right) \]
\[e\Delta \phi = \left\{ \frac{e}{4\pi\varepsilon} \left[\frac{2eV_{bi}(N_d - N_a)}{\varepsilon} \right]^{1/2} \right\}^{1/2} \]

where \(A \), \(q \), and \(\varepsilon \) are Schottky contact area, electron charge, and permittivity of \(\beta\)-Ga\(_2\)O\(_3\). \(E_c \), \(E_f \), \(e\Delta \phi \), \(k \), \(T \), and \(N_c \) are the conduction band minimum, Fermi level, potential barrier lowering caused by the image force, Boltzmann constant, absolute temperature in K, and effective density of states of the conduction band, respectively.

Figure 4a represents the forward current density-voltage (J-V) characteristics of the \(\beta\)-Ga\(_2\)O\(_3\) SBD. Under the forward bias, the argon implantation has no significant effect on the electrical characteristics. The threshold voltage is determined to be 0.91 V, 0.92 V, and 0.95 V for three samples, the \(I_{on}/I_{off} \) ratios are all larger than 10\(^9\) at room temperature and by fitting the linear region, the specific on-resistances \(R_{on} \) are 1.7, 2.1 and 3.3 m\(\Omega\) cm\(^2\), and forward current densities at 2 V are 857, 699, and 621 A/cm\(^2\) for three samples, respectively, as shown in Fig. 4a inset. The current densities are higher and the specific on-resistances are lower than or comparable to the reported values for the higher conductivity and carrier density in the drift layer [12, 13, 26–30].

In order to investigate the effects of argon implantation on the temperature dependence of the forward characteristics, the forward J-V measurements of sample C are conducted from 300 to 423 K, as shown in Fig. 4b. The ideal factor \(n \) and Schottky barrier height \(\phi_b \) are determined to be 1.06 and 1.22 eV at room temperature, lower than the \(\phi_{b,CV} \) of \((1.32 \pm 0.08)\) eV, according to the thermionic emission (TE) model [31, 32]. With the temperature increasing, the \(n \) decreases from 1.06 to 1.02 and the barrier height reduces slightly but is almost constant at 1.21 \(\pm 0.01 \) eV over the temperature range, which is contrary to the barrier height decrease of an ideal Schottky diode with temperature increase but has been observed in fabricated \(\beta\)-Ga\(_2\)O\(_3\) SBD [26]. Using the equation \(\ln(J_s/T^2) = \ln(A^*) - q\phi_b/kT \), the barrier height \(\phi_b \) and the effective Richardson constant \(A^* \) are
determined to be 1.22 eV and 48.5 A/cm² K² for sample C from the slope and the y-axis intercept of the linear region of the plot, as shown in Fig. 4c. Furthermore, the extracted A* values for tens of devices on the three samples are between 24 and 58 A/cm² K², consistent with the previous experiment results and theoretical value, 24–58 A/cm² K², with the effective electron mass $m^* = 0.23–0.34 m_0$ of β-Ga$_2$O$_3$ [33–37].

Figure 5a depicts the reverse J-V characteristics of the samples. After argon implantation, the breakdown voltage increases from 209 to 252 and 451 V and the Baliga figure-of-merit (V_{BR}^2/R_{on}) for three samples are approximately 25.7, 30.2, and 61.6 MW cm⁻², respectively. During implantation, some defects may be introduced and lead to the significant and undesirable increase in leakage current, which was also reported in SiC and GaN Schottky diode devices [18–20]. Although the thermal annealing was conducted after argon implantation, there are still slightly larger leakage currents for samples B and C. Therefore, the investigation detail of the post annealing temperature and duration on the forward and reverse electrical characteristics should be addressed in the following paper.

Figure 5b, c presents the distribution of breakdown voltages of β-Ga$_2$O$_3$ Schottky rectifiers with and without argon implantation. The ideal plane parallel breakdown voltages of these devices are determined as 553–598 V, using the critical electrical field of 5.1–5.3 MV/cm [11, 39]. The breakdown voltage without argon implantation is about 110–310 V, which is around the 50% of the ideal values. However, with argon-implantation dose of 5×10^{14} cm⁻², the breakdown voltage increases to 150–350 V, not much larger than the reference device, while with the dose of 1×10^{16} cm⁻², the breakdown voltage increases to 450–500 V.

Fig. 5 a. The reverse J-V characteristics of the β-Ga$_2$O$_3$ samples at room temperature. b and c. Distribution of breakdown voltages of β-Ga$_2$O$_3$ SBDs with and without argon implantation.
voltage is approaching the ideal values. In this work, the maximum breakdown voltage of 550 V can be obtained. In addition, the electric field distribution at the breakdown voltage was simulated. For simplification, a single midgap acceptor level was added with the implantation depth of 50 nm determined by the TRIM simulation and the incomplete ionization model was also considered [38], as shown in Fig. 6. Obviously, the high-resistivity layer effectively smooths out electric field at the junction corners and enhances the breakdown voltage greatly in

![Diagram](image)

Fig. 6 Simulation of the electric field distribution at breakdown voltage of samples A−C (a, c, e), the magnified image of selected regions in dashed box (b, d, f, g), the simulated electric field vs the position along the dashed line in (b, d, f) for three samples, Au/Ni/β-Ga2O3 interface for sample A, 50 nm below the interface for samples B and C, respectively. The maximum field is 5.05 MV/cm.
comparison with the reference sample. The maximum electric fields at breakdown voltage are all about 5.05 MV/cm, similar to the reported results [11, 39], while the position changes from the anode corner at the interface to the overlap corner just under the implantation region, as indicated in Fig. 6d, e.

Conclusions
Vertical Au/Ni/β-Ga2O3 Schottky barrier diodes with edge termination formed by argon implantation were fabricated on β-Ga2O3 drift layer mechanically exfoliated from high-quality (100)-oriented β-Ga2O3 bulk substrate. Compared with the control device, the specific on-resistances (\(R_{on}\)) increases from 1.7 to 2.1 and 3.3 mΩ cm² and the breakdown voltage increases from 209 to 252 and 451 V for implantation dose of 5 × 10^{14} cm⁻² and 1 × 10^{16} cm⁻², respectively, with a larger reverse leakage current. The maximum electric field at breakdown voltage is about 5.05 MV/cm, much larger than that of SiC and GaN.

Abbreviations
AFM: Atomic force microscope; EFG: Edge-defined film-fed growth; FWHM: The full width at half-maximum; FZ: Floating-zone; HRXRD: High resolution x-ray diffraction; JTE: Junction termination extension; MOSFET: Metal-oxide-semiconductor field-effect transistor; RMS: Root mean square; SBD: Schottky barrier diode; TE: Thermionic emission

Acknowledgments
This work was supported by the National ey R&D Program of China (No.2018YFB0406504) and the National Natural Science Foundation of China (NSFC) under Grant Nos.61774116, 61334002. This work was also supported by the 111 Project (B12026).

Availability of Data and Materials
The datasets supporting the conclusions of this article are included within the article.

Authors’ Contributions
QF and JZ. proposed the research work. YG carried out the simulation, analyze the experiment results, and wrote the paper. AL fabricated and investigated the characteristics of the device. ZF and ZJ prepared the XRD and SEM. WM and ZJ provided the (100)-oriented Ga2O3 single crystals grown by MOVPE on (101)-oriented substrates, ECS. J. Solid State Sci Technol 6:Q3040–Q3044

Conclusions
Vertical Au/Ni/β-Ga2O3 Schottky barrier diodes with edge termination formed by argon implantation were fabricated on β-Ga2O3 drift layer mechanically exfoliated from high-quality (100)-oriented β-Ga2O3 bulk substrate. Compared with the control device, the specific on-resistances (\(R_{on}\)) increases from 1.7 to 2.1 and 3.3 mΩ cm² and the breakdown voltage increases from 209 to 252 and 451 V for implantation dose of 5 × 10^{14} cm⁻² and 1 × 10^{16} cm⁻², respectively, with a larger reverse leakage current. The maximum electric field at breakdown voltage is about 5.05 MV/cm, much larger than that of SiC and GaN.

Abbreviations
AFM: Atomic force microscope; EFG: Edge-defined film-fed growth; FWHM: The full width at half-maximum; FZ: Floating-zone; HRXRD: High resolution x-ray diffraction; JTE: Junction termination extension; MOSFET: Metal-oxide-semiconductor field-effect transistor; RMS: Root mean square; SBD: Schottky barrier diode; TE: Thermionic emission

Acknowledgments
This work was supported by the National ey R&D Program of China (No.2018YFB0406504) and the National Natural Science Foundation of China (NSFC) under Grant Nos.61774116, 61334002. This work was also supported by the 111 Project (B12026).

Availability of Data and Materials
The datasets supporting the conclusions of this article are included within the article.

Authors’ Contributions
QF and JZ. proposed the research work. YG carried out the simulation, analyze the experiment results, and wrote the paper. AL fabricated and investigated the characteristics of the device. ZF and ZJ prepared the XRD and SEM. WM and ZJ provided the (100)-oriented β-Ga2O3 bulk substrate. All authors helped to correct and polish the manuscript and read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China. 2 State Key Laboratory of Crystal Materials, Key laboratory of Functional Crystal Materials and Device, Shandong University, Jinan 250100, China.

Received: 23 August 2018 Accepted: 27 December 2018 Published online: 07 January 2019

References
1. Masataka H, Kohel S, Hisashi M, Yoshinaka K, Akinori K, Akito K, Takekazu M, Shigenobu Y (2016) Recent progress in Ga2O3 power devices. Semicond Sci Technol 31:34001
26. Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu QT, Togashi R, Murakami H, Kamagai Y, Monemar B, Kouritku A, Kuramata A, Yamakoshi S (2016) Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3(001) Schottky barrier diodes fabricated on n-Type Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett 108:133503

27. Oh S, Yang G, Kim J (2017) Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures. ECS J. Solid State Sci. Technol. 6:Q3022–Q3025

28. Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S (2013) Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett. 34:493–495

29. Mohamed M, Inmscher K, Janowitz C, Manzke Z, Fornari R (2012) Schottky barrier height Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett 101:132106

30. Ahn S, Ren F, Yuan L, Pearton SJ, Kuramata A (2017) Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3. ECS J Solid State Sci Technol 6:P68–P72

31. Tanner CM, Perng Y-C, Frewin C, Saddow SE, Chang JP (2007) Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4H-SiC. Appl Phys Lett 91:203510

32. Schroder DK (2006) Semiconductor Material and Device Characterization, 3rd ed. USA:IEEE Press, Piscataway, NJ, p 135

33. Yamaguchi K, Solid State Commun (2004) First principles study on electronic structure of β-Ga2O3 Solid state communications 131:739–744

34. Varley JB, Weber JR, Janotti A, Van de Walle CG (2010) Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett 97:142106

35. He OM, Mu WX, Dong H, Long SB, Jia ZT, Lv HB, Liu Q, Tang MH, Tao XT, Liu M (2017) Schottky barrier diode based on β-Ga2O3(100) single crystal substrate and its temperature-dependent electrical characteristics. Appl Phys Lett 110:093503

36. Ueda N, Hosono H, Waseda R, Kawazoe H (1997) Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett 71:933–935

37. Mohamed M, Janowitz C, Unger I, Manzke R, Galazka Z, Uecker R, Fornari R, Weber J, Varley J, Van de Walle C (2010) The electronic structure of β-Ga2O3. Appl Phys Lett 97:211903

38. Alok D, Baliga BJ, Koantharaman M, McClarty PK (1995) Argon implanted SiC device edge termination: modeling, analysis and experimental results. in ICSCRM’95, pp 565–568

39. Konishi K, Goto K, Murakami H, Kamagai Y, Kuramata A, Yamakoshi S, Higashiwaki Zhou M, Dong K, Cai Y, Feng Z, Gao Y, Feng Q, Zhang J, Hao Y (2017) 1-kV vertical Ga2O3 field-plated Schottky barrier diode. Appl Phys Lett 110:03506