Analysis of a 3D chaotic system

Gheorghe Tigan *, Dumitru Opriş †

Abstract

A 3D nonlinear chaotic system, called the $T$ system, is analyzed in this paper. Horseshoe chaos is investigated via the heteroclinic Shilnikov method constructing a heteroclinic connections between the saddle equilibrium points of the system. Partially numerical computations are carried out to support the analytical results.

1 Introduction

One of the first examples of continuous dynamical system of dimension three, whose numerical simulations display the property of sensitivity to initial conditions, is the Lorenz system [5]:

$$\begin{align*}
\dot{x} &= a(y - x), \\
\dot{y} &= cx - y - xz, \\
\dot{z} &= -bz + xy,
\end{align*}$$

where $a$, $b$, $c$ are positive real parameters. Physical realization of the Lorenz system is the Rayleigh-Benard experiment. The system was derived from the hydrodynamical Navier-Stokes equations to create a dynamical model for meteorology.

Trying to transform the Lorenz system from a stable state to a chaotic one (concept known as anticontrol of chaos or chaotification, [4]), Chen in [3] introduces a 3D polynomial system (of type Lorenz) known as the Chen system. Vanecek and Celikovsky in [19], characterize a generalized Lorenz system by a condition on its linear part matrix $J = (a_{ij})$: $a_{12}a_{21} > 0$. Lü in [6] observes that while the classical Lorenz system belongs to this class, the Chen system satisfies a dual condition $a_{12}a_{21} < 0$, (systems that satisfy such a condition are called dual systems to the Lorenz system) and introduces a new system that bridges the gap between the Chen system and Lorenz system, satisfying $a_{12}a_{21} = 0$. A nonlinear system arising from a nuclear spin generator and compared with the Lorenz system is studied in [12]. Nonlinear dynamics is met in many areas from Ecology [16] to Physics [7].

From the point of view of the potential applications, systems with sensitivity to the initial conditions can be used in secure communications [1], [15]. Of the pioneering papers which proposed to use the chaotic systems in communications are the papers of Pecora and Carroll [10], [11]. Consequently, an appropriate chaotic system can be chosen from a catalogue of chaotic systems to optimize some desirable factors, idea suggested in [15].

These some ideas led us to study a new 3D polynomial differential system given by:

$$\begin{align*}
\dot{x} &= a(y - x), \\
\dot{y} &= (c - a)x - axz, \\
\dot{z} &= -bz + xy,
\end{align*}$$

[1] Department of Mathematics, "Politehnica" University of Timisoara, P-ta Victoriei, Nr.2, 300006, Timisoara, Timis, Romania, email: gheorghe.tigan@mat.upt.ro
[2] Department of Mathematics, West University of Timisoara, B-dul V. Parvan, Nr. 4, 300223, Timisoara, Timis, Romania, email: opris@math.uvt.ro
with \( a, b, c \) real parameters and \( a \neq 0 \). Call it the \( T \) system. Some results regarding the \( T \) system are already presented in \([17]\) and \([18]\). Compared with the Lü system introduced in \([6]\), the system \( T \) allows a larger possibility in choosing the parameters of the system and, therefore, it displays a more complex dynamics.

The paper is organized as follows. In the second Section we give some details of the equilibria. In Section 3, we pay attention to the chaos in the system \( T \) and, using a method of type Shilnikov, we prove that the system displays \"horseshoe\" chaos. This implies that the system possesses a strange chaotic attractor. Not any strange dynamics is chaotic as it is pointed out, for example, in \([8]\), where is presented a scenario for a 2-dimensional dynamic system to possesses strange nonchaotic behavior.

2 The equilibrium points of the system \( T \)

Straightforward computations lead us to the following result:

**Proposition 2.1.** If \( \frac{b}{a}(c-a) > 0 \), the system \( T \) possesses three equilibrium isolated points:

\[
O(0,0,0), E_1(\sqrt{\frac{b}{a}(c-a)}, \sqrt{\frac{b}{a}(c-a)}, \frac{ac-b}{a}), E_2(-\sqrt{\frac{b}{a}(c-a)}, -\sqrt{\frac{b}{a}(c-a)}, \frac{ac-b}{a}),
\]

and for \( b \neq 0, \frac{b}{a}(c-a) \leq 0 \) it has only one isolated equilibrium point, \( O(0,0,0) \).

As reported in \([17]\), we have:

**Theorem 2.1.** For \( b \neq 0 \) the following statements are true:

a) If \( (a > 0, b > 0, c \leq a) \), then \( O(0,0,0) \) is asymptotically stable ,

b) If \( (b < 0) \) or \( (a < 0) \) or \( (a > 0, c > a) \), then \( O(0,0,0) \) is unstable.

**Theorem 2.2.** If \( (a+b > 0, ab(c-a) > 0, b(2a^2 + bc - ac) > 0) \), the equilibrium points 

\( E_{1,2}(\pm\sqrt{\frac{b}{a}(c-a)}, \pm\sqrt{\frac{b}{a}(c-a)}, \frac{ac-b}{a}) \)

are asymptotically stable.

3 Chaos in the \( T \) system via the heteroclinic Shilnikov method

Computing the Lyapunov exponents with the software Dynamics \([9]\) for the parameter vector \((a,b,c) = (2.1,0.6,30)\) and the initial conditions \((0.1,-0.3,0.2)\), we get that \( \lambda_1 = 0.37 > 0, \lambda_2 = 0.00 \) and \( \lambda_3 = -3.07 \). So the system \( T \) displays chaotic characteristics.

In the following, using the Shilnikov heteroclinic method, we show that the system \( T \) presents chaos of \textit{horseshoe} type. We will employ the following result:

**Theorem 3.1.** \([14,21]\) If a 3D given system \( \dot{x} = F(x) \) has two equilibrium points \( E_1, E_2 \), of type saddle-focus, i.e. the eigenvalues of the Jacobi matrix associated to the system in these points are \( \gamma_k \in \mathbb{R} \) and \( \alpha_k \pm i \beta_k \in \mathbb{C}, k = 1,2 \), such that

\[
\alpha_1 \alpha_2 > 0 \quad \text{or} \quad \gamma_1 \gamma_2 > 0
\]

and \( (\text{the Shilnikov inequality}) \)

\[
|\gamma_k| > |\alpha_k|, k = 1,2,
\]

and if the system has a heteroclinic orbit connecting the equilibrium points \( E_1 \) and \( E_2 \), then the Poincaré map defined on a transversal section of the flow in a neighborhood of the heteroclinic orbit presents chaos of horseshoe type.
We will show that our system $T$ given by
\[
\dot{x} = a(y - x), \quad \dot{y} = (c - a)x - axz, \quad \dot{z} = -bz + xy,
\]
fulfills the conditions from the above theorem. The equilibrium points of the system $T$ are:
\[
E_{1,2}(\pm \sqrt{b/(a(c - a))}, \pm \sqrt{b/(a(c - a))}, \pm ax),
\]
for $b/(a(c - a)) > 0$. The characteristic polynomial associated to the Jacobi matrix of the system $T$ in these points is:
\[
f(\lambda) = \lambda^3 + \lambda^2(a + b) + bc\lambda + 2ab(c - a) = 0
\]
Denoting $\lambda = \mu - (a + b)/3$, (6) leads to:
\[
\mu^3 + p\mu + q = 0, \tag{7}
\]
where
\[
p = bc - \frac{1}{3}a^2 - \frac{2}{3}ab - \frac{1}{3}b^2 \tag{8}
\]
and
\[
q = \frac{2}{27}a^3 - \frac{16}{9}a^2b + \frac{2}{9}ab^2 + \frac{2}{27}b^3 + \frac{5}{3}bca - \frac{1}{3}b^2c. \tag{9}
\]
Denote $\Delta = (\frac{q}{2})^2 + (\frac{p}{3})^3$. Then, if $\Delta > 0$, Eq. (7) has a negative solution, $\alpha_1$, together with a pair of complex solutions, $\alpha_2 \pm i\alpha_3$, where
\[
\alpha_1 = 3\sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}} + 3\sqrt[3]{-\frac{q}{2} - \sqrt{\Delta}},
\]
\[
\alpha_2 = -\frac{1}{2} \left(3\sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}} + 3\sqrt[3]{-\frac{q}{2} - \sqrt{\Delta}}\right),
\]
\[
\alpha_3 = \frac{\sqrt{3}}{2} \left(3\sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}} - 3\sqrt[3]{-\frac{q}{2} - \sqrt{\Delta}}\right).
\]
So, if $\Delta > 0$, the three roots of Eq. (6) are:
\[
\lambda_1 = -\frac{a + b}{3} + \alpha_1, \quad \lambda_2 = -\frac{a + b}{3} + \alpha_2 + i\alpha_3, \quad \lambda_3 = -\frac{a + b}{3} + \alpha_2 - i\alpha_3, \tag{10}
\]
with $\lambda_1 < 0$. From the first two Eqs. of (5) one gets
\[
y = x + \frac{\dot{x}}{a},
\]
\[
z = -\frac{y - (c-a)x}{a} = -\frac{\dot{x} + ax}{ax},
\]
and using the last Eq. of (5) we get
\[
\frac{d}{dt} \left(\frac{\ddot{x} + ax}{x}\right) + b\frac{\ddot{x} + ax}{x} + a^2x^2 + ax\dot{x} - ab(c - a) = 0,
\]
or, equivalently
\[
x\dddot{x} + (a + b)x\ddot{x} - \dot{x}\ddot{x} - ax^2 + 2abx + a^2x^3 + ax^3 - ab(c - a)x^2 = 0. \tag{11}
\]
We observe that if $x(t)$ is determined, then we can find $y(t), z(t)$. Therefore, we have to find a function $\phi(t)$ such that $x(t) = \phi(t)$ to satisfy Eq. (11) and $\phi(t) \to -\sqrt{b/(a(c - a))}$ for $t \to +\infty$. 

\( \phi(t) \to \sqrt{\frac{b}{a}}(c - a) \) for \( t \to -\infty \) or, inversely \( \phi(t) \to -\sqrt{\frac{b}{a}}(c - a) \) for \( t \to +\infty \), \( \phi(t) \to -\sqrt{\frac{b}{a}}(c - a) \) for \( t \to -\infty \).

We can define, without losing the generality, that the direction from \( E_1 \) to \( E_2 \) corresponds to \( t \to \infty \), and from \( E_2 \) to \( E_1 \) corresponds to \( t \to -\infty \).

Consider \( \phi(t) \) of the following form \( \phi(t) = -x_0 + \sum_{n=1}^{\infty} a_n e^{\alpha n t} \), with \( \alpha \) real number and \( x_0 = \sqrt{\frac{b}{a}}(c - a) \).

Identifying the coefficients of \( e^{\alpha n t} \) in (11) we get:

\[
x_0 \left[ \alpha^3 + \alpha^2 (a + b) + bca + 2ab(c - a) \right] a_1 = 0, \tag{12}
\]

\[
a_2 = \frac{1}{f(2\alpha) x_0} (\alpha^2 b + ab\alpha - ab(c - a) + 6a^2 x_0^2 + 3\alpha ax_0^2) a_1^2, \tag{13}
\]

\[
a_3 = -\frac{1}{f(3\alpha) x_0} (4a^2 x_0 a_1^3 + 3\alpha ax_0 a_1^2) + \]

\[
+ \frac{1}{f(3\alpha) x_0} \left[ 3\alpha^3 + \alpha^2 a + 5\alpha^2 b + 3\alpha c - 2abc - 2\alpha x + 2a^2 b + 12a^2 x_0^2 + 9\alpha ax_0^2 \right] a_1 a_2, \tag{14}
\]

and for \( n \geq 4 \)

\[
a_n = \frac{1}{f(n\alpha) x_0} (a^2 a_{ijpq} + ab_{ijpq}) + \frac{1}{f(n\alpha) x_0} \sum_{i+j=n} \alpha^3 \left( j^3 - ij^2 \right) a_i a_j + \]

\[
+ \frac{1}{f(n\alpha) x_0} \sum_{i+j=n} \left[ \alpha^2 \left( (a + b) j^2 - ija \right) + ab\alpha j - ab(c - a) + 6a^2 x_0^2 + 3\alpha ax_0^2 \right] a_i a_j, \tag{15}
\]

where

\[
f(n\alpha) = (n\alpha)^3 + (n\alpha)^2 (a + b) + bcn\alpha + 2ab(c - a), \tag{16}
\]

\[
a_{ijpq} = -4x_0 \sum_{i+j+p+q=n} a_i a_j a_p a_q, \tag{17}
\]

\[
b_{ijpq} = -3\alpha x_0 \sum_{i+j+p+q=n} pa_i a_j a_p a_q + \alpha \sum_{i+j+p+q=n} pa_i a_j a_p a_q, \tag{18}
\]

with \( i, j, p, q \geq 1 \).

In order to can be implemented on the computer, we put the sums (17) and (18) in the following forms:

\[
a_{ijpq} = -4x_0 \sum_{i=1}^{n-2} a_i \left( \sum_{j=1}^{n-i-1} a_j a_{n-i-j} \right) + \sum_{i=1}^{n-3} a_i \left( \sum_{j=1}^{n-i-1} a_j \left( \sum_{p=1}^{n-i-j-1} a_p a_{n-i-j-p} \right) \right), \tag{19}
\]

\[
b_{ijpq} = -3\alpha x_0 \sum_{i=1}^{n-2} a_i \left( \sum_{j=1}^{n-i-1} (n - i - j) a_j a_{n-i-j} \right) + \]

\[
+ \alpha \sum_{i=1}^{n-3} a_i \left( \sum_{j=1}^{n-i-1} a_j \left( \sum_{p=1}^{n-i-j-1} p a_p a_{n-i-j-p} \right) \right). \tag{20}
\]
Assume \( a_1 \neq 0 \). If not, we observe inductively that all coefficients \( a_n, n \geq 2 \), are zero. Hence, from (12), we get

\[
\alpha^3 + \alpha^2(a + b) + bca + 2abc(c - a) = 0
\]  
(21)

that is \( \alpha \) is the negative root of characteristic polynomial (9). Because Eq. (9) has a single negative solution for \( \Delta > 0 \), we get that

\[
f(n\alpha) = (n\alpha)^3 + (n\alpha)^2(a + b) + bca + 2abc(c - a) \neq 0, n > 1.
\]  
(22)

Consequently, the coefficients \( a_n \) are completely determined by \( a, b, c, \alpha \) and \( a_1 \), and they are of the following form:

\[
a_n = g(n)a_1^n, n > 1
\]  
(23)

where the terms \( g(n) \) are known functions. So the corresponding branch of the heteroclinic orbit for \( t > 0 \) is determined. In a similar manner, consider the case \( t < 0 \) and \( \phi(t) = x_0 + \sum_{n=1}^{\infty} a_ne^{-\beta t} \), with \( \beta \) real, and find \( \beta = \alpha \) and \( b_n = -a_n, n > 0 \). Consequently, the heteroclinic orbit \( \phi(t) \) is given by:

\[
\phi(t) = \begin{cases} 
-x_0 + \sum_{n=1}^{\infty} a_n e^{\alpha t} & \text{for } t > 0 \\
0 & \text{for } t = 0 \\
x_0 - \sum_{n=1}^{\infty} a_n e^{-\alpha t} & \text{for } t < 0
\end{cases}
\]  
(24)

Following a method presented in [21] one can show that \( \phi(t) \) is uniformly convergent. So we have the following result that characterizes the chaos in the system \( T \):

**Theorem 3.2.** If \( \Delta > 0 \) and \( \alpha_1 + \alpha_2 < -\frac{2(a+b)}{3} \), then the system \( T \) has a heteroclinic orbit given by (24), which connects the equilibrium points \( E_1, E_2 \), so the chaos is of horseshoe type.

Let us partially illustrate the particular case \( a = 2.1, b = 0.6, c = 30 \). Then \( \lambda_1 = \alpha = -3.429, \lambda_2 = 0.364-4.513i, \lambda_3 = 0.364+4.513i, \Delta = 911.69 > 0, x_0 = 2.8234 \). Observe that the equilibrium points \( E_1, E_2 \) are saddle-focus. Imposing that \( \phi(t) \) to be at least continue, from \( \phi(0-) = \phi(0+) = 0 \), we find the equation

\[
-x_0 + a_1 + a_2 + \ldots + a_n = 0, n > 1.
\]  
(25)

Solving this equation, we observe that the first coefficient is \( a_1 = 3.051 \) for any \( n > 10 \).

**Remark 3.1.** Numerical series (24) which describes the heteroclinic orbit between \( E_1 \) and \( E_2 \), is rapidly convergent. For example, considering the first ten terms of the series, for \( t = 10 \) we get

\[
\phi(t) = -x_0 + \sum_{n=1}^{10} a_n e^{\alpha t} = -2.8234, \text{ for } t = -10, \phi(t) = x_0 - \sum_{n=1}^{10} a_n e^{-\alpha t} = 2.8234 \text{ and for } t = 0,
\]

\[
\phi(t) = -x_0 + \sum_{n=1}^{10} a_n e^{\alpha t} = 0.0000. \text{ So the equilibrium points } E_1, E_2 \text{ and } O \text{ are found with an approximation of four exact decimals because } x_0 = \sqrt{\frac{4}{3}(c-a)} = 2.8234.
\]
4 Conclusions

In this paper we investigated a new chaotic system. For some parameter vectors, the system presents the property of dependence to initial conditions which is a necessary condition for a system to be chaotic. The system possesses three equilibrium points, the origin \( O(0,0,0) \) and another two points \( E_{1,2} \). The chaos of horseshoe type was analyzed using the heteroclinic Shilnikov method, constructing a heteroclinic connection between the saddle-focus equilibrium points \( E_1 \) and \( E_2 \).

5 Acknowledgements

The work of G.T. was supported through a research fellowship offered by the Romanian Government by CNBSS and partially through a European Community Marie Curie Fellowship, in the framework of the CTS, contract number HPMT-CT-2001-00278.

The authors are grateful to Prof. M.S. El Naschie for his useful suggestions.

References

[1] G. Alvarez, S. Li, F. Montoya, G. Pastor, M. Romera, Breaking projective chaos synchronization secure communication using filtering and generalized synchronization, Chaos, Solitons and Fractals, 2005, 24:775-783.

[2] Y. Chang, G. Chen, Complex dynamics in Chen’s system, Chaos, Solitons and Fractals, 2006, 27:75-86.

[3] G. Chen, T. Ueta, Yet another chaotic attractor, Int. J. of Bif. and Chaos, 1999, 9:1465–1466.

[4] H-K Chen, C-I Lee, Anti-control of chaos in rigid motion, Chaos, Solitons and Fractals 2004, 21:957–965.

[5] E.N. Lorenz, Deterministic nonperiodic flow, J.Atmos. Sci., 1963, 20:130–141.

[6] J. Lü, G. Chen, A new chaotic attractor coined, Int. J. of Bif. and Chaos, 2002, 12(3), 659–661.

[7] M.S. El Naschie, Non-linear dynamics and infinite dimensional topology in high energy particle physics, Chaos, Solitons and Fractals, 2003, 17:591–599.

[8] M.S. El Naschie, Peano dynamics as a model for ergodic and strange nonchaotic behavior, Computers Math. Applic., 23,(1):25–33, 1992.

[9] H.E. Nusse, J.A. Yorke, Dynamics: numerical explorations (Accompanying computer program dynamics coauthored by Eric J.K.), New York, Springer, 1998.

[10] L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems, Phys Rev Lett 1990, 64(8):821-824.

[11] L.M. Pecora, T.L. Carroll, Driving systems with chaotic signals, Phys Rev A 1991, 44(4):2374-2383.

[12] P.L. Sachdev, R. Sarathy, Periodic and chaotic solutions for a nonlinear system arising from a nuclear spin generator, Chaos, Solitons and Fractals, 1994, 11:2015–2041.
[13] L.P. Shilnikov, A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl. 1965, 6:163–168.

[14] C.P. Silva, Shilnikov theorem – a tutorial, IEEE transactions. Circuits Syst. I, 1993, 40:675–682.

[15] J.C. Sprott, Some simple chaotic flows, Physical Review E, 1994, 50(2):R647–R650.

[16] S. Tang, L. Chen, Quasiperiodic solutions and chaos in a periodically forced predator-prey model with age structure for predator, International Journal of Bifurcation and Chaos, 2003, 13 (4), 973–980.

[17] G. Tigan, Analysis of a dynamical system derived from the Lorenz system, Scientific Bulletin of the Politehnica University of Timisoara, Tomul 50(64), Fascicola 1, 2005, 61–72.

[18] G. Tigan, Bifurcation and the stability in a system derived from the Lorenz system, Proceedings of "The 3-rd International Colloquium, Mathematics in Engineering and Numerical Physics", 2004, 265–272.

[19] A. Vanecek, S. Celikovsky, Control systems: From Linear Analysis to Synthesis of Chaos, Prentice-Hall London, 1996.

[20] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 1990, Springer Verlag.

[21] T. Zhou, Y. Tang, G. Chen, Chen’s attractor exists, International Journal of Bifurcation and Chaos, 2004, 14 (9), 3167–3177.