Polyphenols contents, heavy metals analysis and in vitro antibacterial activity of extracts from *Cladanthus arabicus* and *Bubonium imbricatum* of Moroccan Origin

Abdellah Aghraza, Ambrogina Albergamob, Qada Benameuerc,d, Andrea Salvob, Mustapha Larhsinia, Mohamed Markouka, Teresa Gervasiib and Nicola Ciceroa

aLaboratory of Biotechnology, Protection and Valorisation of Plant Resources (URAC35 Association Unit), Cadi Ayyad University, Marrakesh, Morocco; bDepartment of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy; cNursing Department Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University, Mostaganem, Algeria; dEcole Nationale Supérieure Vétérinaire d’El-Harrach, Laboratoire de Recherche «Santé et Production Animale», Algiers, Algeria

ABSTRACT

Aim of this study was to evaluate polyphenols and major and trace elements of *Cladanthus arabicus* and *Bubonium imbricatum*, along with their in vitro antibacterial activity against six multidrug resistant *Enterobacteriaceae* (*Escherichia coli* S33/16, *E. coli* S34/16, *Proteus mirabilis* S32/16, *Klebsiella pneumoniae* S12/16, *Enterobacter cloacae* S5/16, and *Salmonella* sp S12/14). UV spectrophotometry, ultra-high-performance liquid chromatography coupled to mass spectrometry and inductively coupled plasma mass spectrometry were used to evaluate total polyphenol content, quali-quantitative profile of single polyphenols and inorganic elements of the extract. The antibacterial activity was investigated by standard methods. Twelve polyphenols were identified in both plants and these were more concentrated in *B. imbricatum* than *C. arabicus* extracts. High levels of minerals, essential trace elements and tolerable levels of heavy metals (Cd, As and Pb) were found. Furthermore, the extracts showed also a strong in vitro antibacterial activity, particularly versus *E. coli* S33/16 (MIC, 0.125 mg ml⁻¹).

ARTICLE HISTORY

Received 13 November 2018
Accepted 17 January 2019

KEYWORDS

Bubonium imbricatum; *Cladanthus arabicus*; antimicrobials; enterobacteria; polyphenols; major and trace elements; heavy metals

CONTACT Teresa Gervasi t.gervasi@unime.it

Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2019.1573424.

© 2019 Informa UK Limited, trading as Taylor & Francis Group
1. Introduction

Nowadays the development of health products from natural sources, that have demonstrated to exert beneficial effects for human and animal health, is a widely explored field (Tropea et al. 2013; Alesci et al. 2015; Certo et al., 2017; Costa et al., 2017; Gervasi et al. 2018). The benefic effects of plants may come from their essential oils (Aghraz et al. 2018; Bennameur et al. 2018; Pluchtová et al. 2018), as well as from several bioactive compounds, such as and polyphenols whose presence represent a distinctive character of several plant species belonging to Compositae (Caprioli et al. 2017; Venditti et al. 2015).

Consequently, the chemical characterization of medicinal plants becomes necessary for studying the potential presence of bioactive compounds and for assessing their toxicity related to potential environmental pollution (Pejin et al 2012; Naccari et al. 2015; Cicero et al. 2017; Graci et al. 2017; Cammilleri et al. 2018).

Cladanthus arabicus (L.) Cass. belonging to the genus Cladanthus (family Compositae) is a medicinal plant commonly used for its anti-icteric properties, antifeedant activity and as an ornamental plant.

Bubonium imbricatum (Cav.) DC., syn. Asteriscus imbricatus (Cav.), a species considered a member of the genus Asteriscus (family Compositae), is an endemic plant whose presence is restricted to certain areas.

Essential oils from these two plants from Morocco have been already characterized for the chemical composition, together with various bioactivities (Aghraz et al. 2016; Aghraz et al. 2017). Therefore, the aim of this study was to elucidate the chemical composition and the antibacterial activity of the aerial parts, yet not investigated, of Moroccan B. imbricatum and C. arabicus. To this purpose, the total phenol contents, along with the determination of single polyphenols, and the major and trace element profiles were determined. Additionally, the in vitro antibacterial activity against multidrug resistant Enterobacteriaceae was evaluated. In this age, in fact, multidrug resistance patterns bacteria are difficult to treat and may even be untreatable with conventional antibiotics, for these reason the search for new antimicrobial agents is essential for preventing the post antibiotic era (Gervasi et al. 2014a, 2014b).

2. Results and discussion

2.1. Total phenolic content and single polyphenols

Aerial parts of B. imbricatum were characterized by a higher total phenolic content (33.74 µg gallic acid equivalent (GAE) mg\(^{-1}\)), thus reflecting the presence of single polyphenols at higher concentrations, when compared to C. arabicus (14.89 µg GAE mg\(^{-1}\)) (Table 1).

Indeed, concerning the analysis of single polyphenols, both plants showed a similar qualitative polyphenol profile characterized by phenolic acids, such as protocatechuic acid, p-hydroxybenzoic acid, vanillic acid and p-coumaric acid, and flavonoids, such as apigenin, vanillin, apigenin-7-O-glucoside, diosmetin, and luteolin. Nonetheless, most of these compounds were found at significantly higher levels in the B. imbricatum extract (\(p < 0.05\), Table 1). Overall, aerial parts from B. imbricatum had caffeic and
ferulic acids (7.50 and 7.35 mg kg$^{-1}$) as the most abundant phenolic compounds (Table 1). Conversely, in the *C. arabicus* extract, caffeic and protocatechuic acids were found at the highest concentrations (4.88 and 4.72 mg kg$^{-1}$, respectively) (Table 1).

2.2. Inorganic elements in the aerial parts of *C. arabicus* and *B. imbricatum*

The amounts of major and trace elements, including heavy metals, in the aerial parts of *C. arabicus* and *B. imbricatum* were determined using ICP-MS, one of the most sensitive analytical techniques for the rapid and reliable determination of inorganic elements (Albergamo et al. 2017; Mottese et al. 2018; Bua et al. 2016; Di Bella et al. 2015). Almost all the investigated elements were found at significantly higher levels in *B. imbricatum* than *C. arabicus* ($p < 0.05$). However, Na, Mg, K, and Ca were found at the highest concentrations, comprised between 6000 and 65,000 mg kg$^{-1}$ (Table 2). Conversely, the element characterized by the lowest amounts was Cu, being 19.95 mg kg$^{-1}$ and 12.04 mg kg$^{-1}$ in *B. imbricatum* and *C. arabicus* respectively ($p < 0.05$). The significantly elevated concentrations of such minerals in both samples may reflect the high mineralization degree of the soils where the plants grow, and also the age of the plants (Namwiba 2007). As reordered for major and essential trace elements, also heavy metals were demonstrated to be generally more concentrated in *B. imbricatum* than *C. arabicus* ($p < 0.05$). Specifically, Cr and Pb were the metals found at the highest levels (1931 and 515 μg kg$^{-1}$, $p < 0.05$) in both plants, followed by Cd (103 and 1024 μg kg$^{-1}$, $p < 0.05$). However, As, Pb and Cd did not exceeded the maximum permissible levels, fixed respectively at 1.0, 10 and 0.5 mg kg$^{-1}$, for consumed medicinal herbs (WHO 1998; European pharmacopeia 2008). These results confirm the safety of both plants in terms of toxic heavy metals.

Table 1. Formula, retention time, theoretical, measured mass and concentrations (mg kg$^{-1}$, dw) of the main polyphenol compounds identified in the extracts from *C. arabicus* and *B. imbricatum* by UHPLC-MS and total phenolic contents (μg GAE mg$^{-1}$, dw) revealed in the extracts from *C. arabicus* and *B. imbricatum* by UV spectrophotometry.

Phenolic compounds	Formula	Theoretical mass [M-H]	Measured mass [M-H]	mm	min.	Concentrations mg kg$^{-1}$ (ppm)	
4-hydroxybenzoic acid	C$_7$H$_6$O$_3$	137.024	137.023	−0.021	13.51	1.51 ± 0.28	2.60 ± 0.35
Tyrosol	C$_6$H$_10$O$_2$	137.060	137.059	−0.146	3.23	—	0.11 ± 0.007
Vanillin	C$_8$H$_6$O$_4$	151.040	151.038	−0.371	17.43	1.46 ± 0.35	2.16 ± 0.44
Protocatechuic acid	C$_7$H$_6$O$_4$	153.019	153.017	−0.515	10.32	4.71 ± 0.35	4.42 ± 0.78
p-Coumaric acid	C$_8$H$_6$O$_3$	163.040	163.038	−0.301	18.51	0.54 ± 0.06	0.75 ± 0.07
Vanillic acid*	C$_8$H$_8$O$_4$	167.034	167.033	0.105	14.40	1.46 ± 0.35	2.16 ± 0.44
Gallic acid	C$_7$H$_6$O$_3$	169.014	169.013	0.020	7.48	0.60 ± 0.08	—
Caffeic acid*	C$_9$H$_8$O$_4$	179.034	179.034	0.805	16.24	4.88 ± 0.42	7.49 ± 0.96
Ferulic acid*	C$_{10}$H$_{10}$O$_4$	193.050	193.050	0.635	19.06	1.77 ± 0.19	7.35 ± 1.13
Apigenin-7-glucoside	C$_{21}$H$_{20}$O$_{10}$	431.09872	431.09854	1.112	20.87	0.58 ± 0.04	0.92 ± 0.06
Apigenin*	C$_{15}$H$_{10}$O$_5$	269.045	269.045	−0.150	23.86	0.10 ± 0.001	2.47 ± 0.41
Luteolin*	C$_{15}$H$_{10}$O$_6$	285.040	285.040	1.206	23.00	0.24 ± 0.005	0.72 ± 0.003
Diosmetin*	C$_{16}$H$_{12}$O$_6$	299.056	299.056	0.985	24.04	0.14 ± 0.002	0.75 ± 0.004
Total phenolic content (μg GAE mg$^{-1}$)						14.89 ± 2.17	33.74 ± 4.28

*Compounds found at statistically different concentrations ($p < 0.05$).
Table 2. a) Major, essential trace element and b) heavy metals composition of *B. imbricatum* (B.I.) and *C. arabicus* (C.A.) revealed by ICP-MS.

	Na$^{(23)}$	Mg$^{(24)}$	K$^{(39)}$	Ca$^{(44)}$	Mn$^{(55)}$	Fe$^{(56)}$	Cu$^{(63)}$	Zn$^{(66)}$	Se$^{(82)}$
B. I.	64,208 ± 598	9250 ± 285	26,695 ± 379	57541 ± 791	67.43 ± 11.31	1489 ± 57	19.95 ± 2.35	65.38 ± 20.12	381 ± 25
C. A.	30,491 ± 832	6954 ± 193	39,387 ± 428	21,554 ± 682	112 ± 15.26	492 ± 38	12.04 ± 1.09	49.79 ± 13.56	116 ± 32

b)	Cr$^{(52)}$	Co$^{(59)}$	Ni$^{(60)}$	As$^{(75)}$	Cd$^{(111)}$	Pb$^{(208)}$
B. I.	1931 ± 235	379 ± 153	540 ± 175	507 ± 187	103 ± 35	1182 ± 239
C. A.	515 ± 123	144 ± 67	362 ± 123	319 ± 144	1024 ± 78	1312 ± 110

Elements found at statistically different concentrations ($p \leq 0.05$). Levels of major and trace essential elements are expressed as mg kg$^{-1}$, dw; whereas contents of Se and heavy metals as µg kg$^{-1}$, dw.
2.3. Antibacterial activity of B. imbricatum and C. arabicus extracts

The results for antibacterial activity of the two extracts, evaluated with disc diffusion assay and Minimal Inhibitory Concentration (MIC) are reported in Table 3. The antibacterial activity of extracts stopped the growth of most of the tested MDR Enterobacteriaceae by forming significant inhibition zones (inhibition zone ≥ 10 mm).

C. arabicus extract showed the highest inhibition against Escherichia coli (S34/16), whereas Proteus mirabilis found to be the most sensitive to the extract from B. imbricatum. The inhibition zone was respectively 13.5 ± 0.17 mm and 14 ± 0.22 mm. From literature research, substances forming inhibition diameters in the range between 9 and 13, are considered moderately active, instead if these are larger than 14 mm are considered very active (Mothana and Lindequist 2005).

Aligianis et al. (2001) classified the antibacterial activity of plants extracts on their minimal inhibitory concentrations indicating a strong activity when the MIC is up to 0.5 mg ml⁻¹, moderate activity with a MIC between 0.6 and 1.5 mg ml⁻¹ or weak activity if the MIC is above 1.6 mg ml⁻¹. The MIC results showed that both extracts exhibited significant antibacterial activities against all the tested Enterobacteriaceae, being between 0.25 mg ml⁻¹ and 0.125 mg ml⁻¹. E. coli was the most sensitive bacteria to B. imbricatum extract and E. coli, Klebsiella pneumoniae and P. mirabilis to C. arabicus extract. The activity of plants extracts could be related to the effect of bioactive compounds (phenolic acids and flavonoids) (Rubio-Moraga et al. 2013), and this is in good agreement with previous studies in which flavonoids and phenolic acids have been associated with high antibacterial activities (Hossain et al. 2014). Moreover, caffeic acid, that has been revealed as the main compound in B. imbricatum extract, was shown to possess a wide range of biological properties, particularly antimicrobial activity (Matejczyk et al. 2018). Despite the few amounts revealed in the extracts, other polyphenols could be responsible for the antibacterial activity of the aerial parts from such plants, such as apigenin, vanillin, p-hydroxybenzoic and protocatechuic acids (Stojković et al. 2013).

3. Experimental

See Supplementary materials for chemicals and standards, plant materials, total polyphenol content, single polyphenol analysis, elemental analysis, evaluation of antibacterial activity of plant extracts and statistical analysis.
4. Conclusion

The aerial parts of *B. imbricatum* and *C. arabicus* were thoroughly analyzed for total polyphenol contents, single polyphenols, major and trace elements, including heavy metals, and antibacterial activity. Both plants were characterized by relevant amounts of single polyphenols, significant levels of major and trace essential metals, and demonstrated a good safety in terms of toxic heavy metals. Additionally, *in vitro* antibacterial activity against a collection of MDR *Enterobacteriaceae*, that may be explained by the presence of certain polyphenols, was reported. Obtained results should encourage further *in vivo* studies for the development of phytoterapeutic products.

Acknowledgements

The authors are very grateful to the program Erasmus + under Grant No.: 2015-1-IT02-KA107-014704 and to CNRST (Centre National de Recherche Scientifique et Technique, Morocco) for financial support.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Andrea Salvo http://orcid.org/0000-0002-0519-5084

Nicola Cicero http://orcid.org/0000-0002-8055-1915

References

Aghraz A, Benameur Q, Gervasi T, Ait Dra L, Ben-Mahdi MH, Larhsini M, Markouk M, Cicero N. 2018. Antibacterial activity of *Cladanthus arabicus* and *Bubonium imbricatum* essential oils alone and in combination with conventional antibiotics against Enterobacteriaceae isolates. Lett Appl Microbiol. 67(2):175–182.

Aghraz A, Jürgen W, Erich S, Aitdra L, Aitsidibrahim M, Tabanca N, Abbas A, Hassani L, Markouk M, Leopold J, et al. 2016. Chemical composition, antioxidant, antimicrobial and insecticidal activities of essential oil from a Moroccan endemic plant: *Bubonium imbricatum*. Nat Prod Comm. 11:1717–1720.

Aghraz A, Wanner J, Schmidt E, Aitdra L, Aitsidibrahim M, Tabanca N, Ali A, Nafis A, Hassani L, Markouk M, et al. 2017. Chemical composition, *in vitro* antioxidant, antimicrobial and insecticidal activities of essential oil from *Cladanthus arabicus*. J Essent Oil-Bearing Plants. 20(3):601–609.

Albergamo A, Rotondo A, Salvo A, Pellizzeri V, Bua DG, Maggio A, Cicero N, Dugo G. 2017. Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat Prod Res. 31(9):990–999.

Alesci A, Salvo A, Lauriano ER, Gervasi T, Palombieri D, Bruno M, Pergolizzi S, Cicero N. 2015. Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in *Carassius auratus*. Nat Prod Res. 29(12):1122–1126.

Aligiannis N, Kalpotzakis E, Mitaku S, Chinou IB. 2001. Composition and antimicrobial activity of the essential oils of two *Origanum* species. J Agric Food Chem. 40:4168–4170.
Benameur Q, Gervasi T, Pellizzeri V, Pluchtová M, Tali-Maama H, Assaous F, Guettou B, Rahal K, Grulová D, Dugo G, et al. 2018. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat Prod Res.

Bua DG, Annuario G, Albergamo A, Cicero N, Dugo G. 2016. Assessment of the heavy metal content in aromatic spices by inductively coupled plasma-mass spectrometry. Food Addit Contam. 8:1–7.

Cammilleri G, Vazzana M, Arizza V, Giunta F, Vella A, Lo Dico G, Giaccone V, Gifòtè SV, Giangrosso G, Cicero N, Ferrantelli V. 2018. Mercury in fish products: what’s the best for consumers between bluefin tuna and yellowfin tuna? Nat Prod Res. 32(4):457–462.

Certo G, Costa R, D’Angelo V, Russo M, Albergamo A, Dugo G, Germanò MP. 2017. Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus. Nat Prod Res. 31(24):2850–2856.

Cicero N, Naccari C, Cammilleri G, Giangrosso G, Cicero A, Gervasi T, Tropea A, Albergamo A, Ferrantelli V. 2017. Monitoring of neonicotinoid pesticides in beekeeping. Nat Prod Res. 31(11):1258–1262.

Costa R, Albergamo A, Pellizzeri V, Dugo G. 2017. Phytochemical screening by LC-MS and LC-PDA of ethanolic extracts from the fruits of Kigelia africana (Lam.) Benth. Nat Prod Res. 31(12):1397–1402.

Di Bella G, Potortì AG, Lo Turco V, Bua D, Licata P, Cicero N, Dugo G. 2015. Trace elements in Thunnus thynnus from Mediterranean Sea and benefit-risk assessment for consumers. Food Addit Contam Part B 8(3):175–181.

Gervasi T, Horn N, Wegmann U, Dugo G, Narbad A, Mayer MJ. 2014a. Expression and delivery of an endolysin to combat Clostridium perfringens. Appl Microbiol Biotechnol. 98(6):2495–2505.

Gervasi T, Lo Curto R, Minniti E, Narbad A, Mayer MJ. 2014b. Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens. Lett Appl Microbiol. 59(4):355–361.

Gervasi T, Pellizzeri V, Benameur Q, Gervasi C, Santini A, Cicero N, Dugo G. 2018. Valorization of raw materials from agricultural industry for astaxanthin and β-carotene production by Xanthophyllomyces dendrorhous. Nat Prod Res. 32(13):1554–1561.

Graci S, Collura R, Cammilleri G, Buscemi MD, Giangrosso G, Principato D, Gervasi T, Cicero N, Ferrantelli V. 2017. Mercury accumulation in Mediterranean fish and cephalopods species of sicilian coasts: Correlation between pollution and the presence of anisakis parasites. Nat Prod Res. 31(10):1156–1162.

Hossain MA, Al Kalbani MSA, Al Farsi SAJ, Weli AM, Al-Riyami Q. 2014. Comparative study of total phenolics, flavonoids contents and evaluation of antioxidant and antimicrobial activities of different polarities fruits crude extracts of Datura metel L. Asian Pac J Trop Dis. 4(5):378–383.

Matejczyk M, Renata S, Aleksandra G, Włodzimierz L, Eliza H. 2018. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv Med Sci. 63(1):14–21.

Mothana RAA, Lindequeist U. 2005. Antimicrobial activity of some medicinal plants of the island Soqotra. J Ethnopharmacol. 96(1–2):177–181.

Mottese AF, Naccari C, Vadala R, Bua GD, Bartolomeo G, Rando R, Cicero N, Dugo G. 2018. Traceability of Opuntia ficus-indica L. Miller by ICP-MS multi-element profile and chemometric approach. J Sci Food Agric. 98(1):198–204.

Naccari C, Cicero N, Ferrantelli V, Giangrosso G, Vella A, Macaluso A, Naccari F, Dugo G. 2015. Toxic metals in pelagic, benthic and demersal fish species from Mediterranean FAO zone 37. Bull Environ Contam Toxicol. 95(5):567–573.
Namwiba ZBM. 2007. Characterization of elemental densities of selected herbal haemantities and antacids used in the Masai region of Kenya. PhD thesis.

Pejin B, Kien-Thai Y, Stanimirovic B, Vuckovic G, Belic D, Sabovljevic M. 2012. Heavy metal content of a medicinal moss tea for hypertension. Nat Prod Res. 26(23):2239–2242.

Přuchtová M, Gervasi T, Benameur Q, Pellizzeri V, Grulová D, Campone L, Sedláč V, Cicero N. 2018. Antimicrobial activity of two Mentha species essential oil and its dependence on different origin and chemical diversity. Nat Prod Comm. 13(8):1051–1054.

Rubio-Moraga Á, Argandoña J, Mota B, Pérez J, Verde A, Fajardo J, Gómez-Navarro J, Castillo-López R, Ahrazem O, Gómez-Gómez L. 2013. Screening for polyphenols, antioxidant and antimicrobial activities of extracts from eleven Helianthemum taxa (Cistaceae) used in folk medicine in south-eastern Spain. J. ethnopharmacol. 148(1):287–296.

Tropea A, Gervasi T, Melito MR, Lo Curto A, Lo Curto R. 2013. Does the light influence astaxanthin production in Xanthophyllomyces dendrorhous? Nat Prod Res. 27(7):647–653.

Venditti A, Maggi F, Vittori S, Papa F, Serrilli AM, Di Cecco M, Ciaschetti G, Mandrone M, Poli F, Bianco A. 2015. Antioxidant and α-glucosidase inhibitory activities of Achillea tenorii. Pharm Biol. 53(10):1505–1510.

World Health Organization (WHO). 1998. Quality control methods for medicinal plant materials. Geneva (Switzerland): WHO.