Optimal generation of Fock states in a weakly nonlinear oscillator

B Khani, J M Gambetta, F Motzoi and F K Wilhelm

Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

E-mail: fwilhelm@iqc.ca

Received 16 October 2009
Accepted for publication 23 October 2009
Published 14 December 2009
Online at stacks.iop.org/PhysScr/T137/014021

Abstract

We apply optimal control theory to determine the shortest time in which an energy eigenstate of a weakly anharmonic oscillator can be created under the practical constraint of linear driving. We show that the optimal pulses are beatings of mostly the transition frequencies for the transitions up to the desired state and the next leakage level. The time of the shortest possible pulse for a given nonlinearity scales with the nonlinearity parameter \(\delta \) as a power law \(\delta^{-\alpha} \) with \(\alpha \approx 0.73 \pm 0.029 \). This is a qualitative improvement relative to the value \(\alpha = 1 \) suggested by a simple Landau–Zener argument.

PACS numbers: 02.30.Yy, 05.45.-a, 03.67.-Lx, 85.25.Cp

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Physics is fundamentally quantum. On the other hand, in practice, many objects and processes appear to follow the laws of classical physics. This includes objects coupled to large baths with many degrees of freedom, hence suffering from decoherence. Furthermore, in objects of large mass, quantum phenomena occur at an unobservably short de Broglie wavelength [1]. Harmonic oscillators, on the other hand, even if they are only weakly damped and have low mass and thus must be in the quantum regime, may appear close to classical. These linear systems are semiclassical, meaning that in their ground state and thermal equilibrium state, as well as in any states created from these by an arbitrary linear drive, they correspond to the classical limit small quantum fluctuations, essentially following Ehrenfest’s theorem. The smallness of these fluctuations and their competition with thermal fluctuations makes it hard to verify the quantum nature of these systems. A way out is to add an extra nonlinear ingredient to create a non-classical state, such as a Fock state (an energy eigenstate of the oscillator) or a squeezed state (a state with quantum fluctuations in one variable below the standard quantum limit). Examples include coupling the oscillator to a nonlinear object such as a qubit [2–7]. In this work, we focus on a different approach, which is exploiting a small nonlinearity of the oscillator potential. These nonlinearities occur, e.g. in nanomechanical systems [8, 9], Josephson circuits [10–14], optics [15–17], ion traps [18, 19] and molecules [20]. These systems that are rather large in size on an atomic scale are in particular important in this context, because this would enable to show the quantum character of center-of-mass variables of meso- and macroscopic objects. Also, Fock states are useful for the demonstration of short-range quantum communication on a chip.

The plan of the paper is as follows: we are first going to define our nonlinear oscillator Hamiltonian and outline the difficulty of creating Fock states in this system, as well as the GRAPE method used to find optimized ways to prepare these Fock states. We will then present optimized pulses, identifying a beating structure that can easily be connected to the energy spectrum. We finally discuss the intrinsic speed limits for Fock state preparation.

2. Setting and approach

2.1. Hamiltonian

We study a weakly nonlinear oscillator, the Duffing oscillator, with Hamiltonian

\[
H = \frac{p^2}{2m} + \frac{m \omega_0^2}{2} x^2 + \delta \frac{m^2 \omega_0^2}{3 \hbar} x^4, \quad \delta > 0.
\]
where \(x\) and \(p\) are coordinate and momentum, respectively, where \(\omega_0\) is the resonance frequency in the limit \(\delta \rightarrow 0\). Even though we focus on the hard case, \(\delta > 0\), we expect similar conclusions to hold for the soft case. This Hamiltonian can be made dimensionless with raising and lowering operators analogous to the harmonic oscillator [21]. It then reads

\[
H = \hbar \omega_0 \left(a^\dagger a + \frac{1}{2} \right) + \frac{\hbar \delta}{12} (a^4 + a^\dagger a^2). \tag{2}
\]

By expanding the nonlinearity and ordering its terms, we can split the Hamiltonian as \(H = H_0(\hat{n}) + V\) into a term \(H_0\) that contains only the number operator \(\hat{n} = a^\dagger a\) that will dominate perturbation theory for small \(\delta/\hbar \omega_0 \ll 1\) and corresponds to the rotating wave approximation, and a term \(V\) that goes beyond that approximation. We find

\[
H_0(\hat{n}) = \hbar \omega_0 \left(\hat{n} + \frac{1}{2} \right) + \frac{\hbar \delta}{4} (2 \hat{n}^2 + 2 \hat{n} + 1). \tag{3}
\]

\[
V = \frac{\delta}{12} (a^4 + 6 a^2 + 4 a^3 a^2 + 6 a^2 + a^4). \tag{4}
\]

\(H_0\) can be re-parameterized to a simpler form using \(\omega = \omega_0 + \delta\), while dropping a constant energy shift

\[
H_0 = \hbar \left[\omega \hat{n} + \frac{1}{2} \delta \hat{n}(\hat{n} - 1) \right], \tag{5}
\]

where \(\omega\) is the frequency of the \(|0\rangle \leftrightarrow |1\rangle\) transition. \(H\) can be diagonalized straightforwardly and its eigenstates \(|n\rangle\), \(n = 0, 1, 2, \ldots\) are close to the harmonic oscillator eigenstates, see figure 1. Its eigenenergies are given by the polynomial deriving from equation (5), \(E_n \approx H_0(n)\). We can note that for small \(\delta\), the energy splittings between adjacent levels are only slightly different from each other. Denoting the transition frequencies as \(\omega_{ij} = (E_i - E_j)/\hbar\), this means that \(\omega_{n+1,n} = \omega + \delta n\) only has a weak \(n\) dependence by \(\delta \ll \omega\).

In the most common physical situation, external driving is given by

\[
H_e(t) = F(t)x = \hbar f(t)(a + a^\dagger) \tag{6}
\]

corresponding to current drive in the Josephson case, a laser field in the ion trap case and an external force in the nanomechanical case. Here, \(f(t)\) is proportional to the force \(F\) [21]. Given that the eigenstates are almost harmonic oscillator eigenstates, this drive predominantly, in the sense of an approximate selection rule, couples adjacent levels, \(n\) and \(n + 1\).

This setting outlines two difficulties in the task of preparing Fock states starting from the ground state using a straightforward application of \(H_e\). Firstly, there is no direct transition from the ground state to any state higher than \([1]\) unless \(\delta\) is large enough to make the eigenstate corrections due to \(V\), equation (4), significant. Secondly, even for preparing the first-excited state, the approximate Liouvillian degeneracy (i.e. the weak \(n\)-dependence of \(\omega_{n+1,n}\)), prohibits short pulses: a short resonant \(\pi\)-pulse of length \(t_\pi\) has, by the energy–time uncertainty principle of Fourier transform, a bandwidth of \(\omega_\pi \simeq \pi / t_\pi\). If \(\omega_\pi\) becomes comparable to the small parameter \(|\omega_{n+1,n} - \omega_{n,n-1}| = \delta\), a pulse applied to \(\omega_{n,n+1}\) will have a significant Fourier component at \(\omega_{n,n+1}\). Hence, driving the transition from \(n - 1\) to \(n\) will inevitably also drive \(n\) to \(n + 1\) inducing leakage to the next higher state \(n + 1\). This could be overcome by a very long \(\pi\)-pulse that keeps \(\omega_\pi\) small, however, in a realistic setting, this will compete with energy relaxation back to the ground state at a rate \(T_1\), effectively limiting \(\omega_\pi \gg 1/T_1\).

2.2. GRAPE

Given this conundrum, we resort to optimal control to find a way to prepare higher Fock states. We use the GRAPE algorithm [22]. This is an open-loop optimal control approach. The algorithm is: given an initial state \(|\psi_i\rangle\), a target state \(|\psi_f\rangle\) and a time period for the state transfer \(T\), such that \(|\psi(0)\rangle = |\psi_i\rangle\) and \(|\psi(T)\rangle = |\psi_f\rangle\). The search starts from an initial guess for the controls, which for us is always taken to be a constant-envelope resonant \(\pi\)-pulse with frequency \(\omega_0\), i.e. \(f(t) = \Omega_0 \cos \omega_0 t\). \(\Omega_0\) turns out to be the Rabi frequency of the \(0 \leftrightarrow 1\) transition. The time \(T\) is sliced into \(N\) intervals of length \(\delta t = T/N\) with \(N\) between 101 and 401 and pulse amplitudes are assumed to be constant across the intervals. As a performance index, we use

\[
\Phi = \langle |\psi_i\rangle |\psi_f\rangle \langle |\psi_f\rangle |\psi_i\rangle. \tag{7}
\]

If \(f_i\) designates the value of the control field \(f\) in equation (6) in time step \(i\), it can be shown that

\[
\frac{\partial \Phi}{\partial f_i} = -i \delta t \langle \lambda_j [a + a^\dagger, \rho_j] \rangle. \tag{8}
\]

Here, \(\rho_j\) is the projector on the state in time step \(j\) and we see the structure of equation (6). Here \(\lambda_j = |\psi_j\rangle \langle \psi_j|\) is the projector on the back-propagated target state

\[
|\psi_j\rangle = U_{N}^\dagger \cdots U_{j+1}^\dagger |\psi_f\rangle. \tag{9}
\]

Here, \(U_i\) is the propagator for the Schrödinger equation across time step \(j\). The gradient equation (8) can be very efficiently calculated this way and used for a gradient search for a locally optimal set of values \(f_i\) describing the desired pulse shape. We temporarily increased the gradient by a factor of two for each time the pulse was found to be in an undesired local optimum.

3. Numerical results

We have analyzed this setting in a number of cases. In all cases, the initial state was chosen to be the ground state, $|\psi_i\rangle = |0\rangle$ and the first-, second- and third-excited states were chosen as final states, $|\psi_f\rangle = |n = 1, 2, 3\rangle$. We have truncated the energy spectrum at $n = 10$ levels and verified that changing the number of levels did not lead to a discernible change in the pulse. In figure 2, we show optimized pulses that display clear beating behavior. This beating becomes more complex as we go to higher states. More clearly, this structure can be analyzed by its Fourier transform, as shown in figure 3. We observe a cluster of close discrete lines, confirming the observation that the pulses are beating. The predominant frequencies in the $|0\rangle \rightarrow |2\rangle$ transition are $\omega_{10} = 1.12$, the slightly higher $\omega_{21} = 1.24$ and $\omega_{32} = 1.36$, with additional sidebands. Analyzing more transitions, we see the same picture, where a transition from $|0\rangle$ to $|n\rangle$ contains frequencies $\omega_{m+1,n}$ for $0 \leq m \leq n$.

This structure can be understood as follows: due to the oscillator selection rule, the ladder of states needs to be climbed sequentially, it is not possible to go from $|n\rangle$ to $|n + k\rangle$ for any $k > 1$, explaining the frequencies ω_{10} through $\omega_{8,n-1}$ for a transition $0 \rightarrow n$ that correspond to driving π-pulses on those respective transitions. Due to the bandwidth issue discussed in section 2.1, this also drives the transition to level $n + 1$, it is also necessary to drive the leakage transition leading out of $|n\rangle$, i.e. at $\omega_{n,n+1}$. A similar effect is seen in quantum gates for three-state systems [23–25].

The state dynamics during the pulse can be seen in figure 4. This analysis confirms the picture of sequential occupation of Fock states, climbing an energy ladder, with some intermediate leakage to higher states that corrects itself in the end. Next to these long-scale Rabi dynamics, there is a fast modulation on the scale of the average driving frequency typical for strong driving where the counter-rotating component of the drive that is not part of standard Rabi physics [21] becomes important. At the end of the pulse, populations of $|1\rangle$ and $|3\rangle$ are brought back to $|2\rangle$.

4. Discussion

As mentioned in the introduction, nonlinearity is a resource for the creation of Fock states. At very short pulse durations t_e, state transfer pulses must scale with a constant area, i.e. their amplitudes will scale as $1/t_e$. Thus, if the pulse is too short the driving amplitude will be so high that the δ-term in the Hamiltonian can be neglected and Fock state preparation will not be possible. We have numerically investigated the gate fidelity as a function of pulse duration and found the error to
be roughly exponentially growing at short times (see figure 5). We now investigate the minimal time to reach a fidelity of 0.99999% for pulses $|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |2\rangle$ (figure 6). We see that this minimal time is a power law of the nonlinearity parameter δ; $t_{\text{min}} \propto \delta^n$ with $\alpha_{01} = -0.73 \pm 0.029$ and $\alpha_{12} = -0.90 \pm 0.031$.

As a reference, we can construct the corresponding power law for non-optimized, single frequency Rabi pulses, starting from the $|0\rangle \rightarrow |1\rangle$ transfer. Transforming to the frame rotating with the driving frequency, the effect of the pulse on the unwanted $|1\rangle \rightarrow |2\rangle$ transition is to switch a transition matrix element on and off. This matrix element has to be compared to the detuning between the transition $|\alpha_{21} - \alpha_{10}| \simeq \delta$. In order to create a Rabi pulse of fixed area π, the maximal amplitude of the transition matrix elements scales as $1/t_g$, and its rate of change thus scales as $1/t_g^2$. In order to not occupy the $|2\rangle$-state at the end of the pulse, the dynamics of the $|1\rangle \leftrightarrow |2\rangle$ transition must be fully adiabatic [24], i.e. following a standard result from the Landau–Zener theory [26–28], we demand $1/t_g^2 \ll \delta^2$ leading to a minimal gate time of $t_g \propto 1/\delta$. We would not expect this scaling law to change for the $0 \rightarrow 2$ transition, which is ultimately a sequence of two transitions of length $1/t_g$, only a different prefactor.

Thus, we can conclude that our optimal pulses qualitatively extend the limits of Fock state preparation by changing the minimal time to a softer power law, from $1/\delta$ to $1/\delta^{0.73 \pm 0.029}$. One can conclude that this is due to quantum interference in the higher levels. The difference is made possible by temporarily occupying higher states and depopulating them in the course of the pulse. It needs to be remarked that our pulses qualitatively differ from quantum gate pulses, i.e. rotations of the full basis instead of changing state [23, 24], where a $1/\delta$ scaling of the minimal time is found. This suggests that state preparation, which is less constrained, can use quantum interference more efficiently. A related paper has been posted recently [29] that looks at preparation of $|1\rangle$ exclusively and finds different envelopes, probably due to additional constraints.

Acknowledgments

We acknowledge useful discussions with W A Coish and L Hu. This work was supported by NSERC discovery grants, quantumworks and SHARCNET. JMG was supported by CIFAR, MRI, MITACS, NSERC and DARPA.

References

[1] Leggett A J 2002 Testing the limits of quantum mechanics: motivation, state of play, prospects J. Phys.: Condens. Matter 14 R415
[2] Houck A A et al 2007 Generating single microwave photons in a circuit arXiv:cond-mat/0702648
[3] Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O’Connell A D, Wang H and Martinis J M 2008 Generation of Fock states in a superconducting quantum circuit Nature 454 310
[4] Bertet P, Auffeves A, Maioli P, Osnaghi S, Meunier T, Brune M, Raimond J M and Haroche S 2002 Direct measurement of the Wigner function of a one-photon Fock state in a cavity Phys. Rev. Lett. 89 200402
[5] Law C K and Eberly J H 1996 Arbitrary control of a quantum electromagnetic field Phys. Rev. Lett. 76 1055
[6] Blencowe M 2004 Quantum electromagnetic systems Phys. Rep. 395 159
[7] Naik A, Buo O, LuHaye M D, Armour A D, Clerk A A, Blencowe M P and Schwab K C 2006 Cooling a nanomechanical resonator with quantum backaction Nature 443 1993
[8] Cleland A N 2003 Foundations of Nanomechanics (Berlin: Springer)
[9] Kozinsky I, Postma H W Ch, Kogan O, Husain A and Roukes M L 2001 Basins of attraction of a nonlinear nanomechanical resonator Phys. Rev. Lett. 99 207201
[10] Yurke B 1987 Squeezed-state generation using a Josephson parametric amplifier J. Opt. Soc. Am. B 4 1551
[11] Siddiqi I, Vijay R, Pierre F, Wilson C M, Metcalfe M, Rigetti C, Frunzio L and Devoret M H 2004 Re-driven Josephson bifurcation amplifier for quantum measurement Phys. Rev. Lett. 93 207002
[12] Lupascu A, Saito S, Picot T, de Groot P C, Harmsen C J P M and Mooij J E 2007 Quantum non-demolition measurement of a superconducting two-level system Nat. Phys. 3 119–25
[13] Serban I and Wilhelm F K 2007 Dynamical tunneling in macroscopic systems Phys. Rev. Lett. 99 137001
[14] Dykman M I 2009 Quantum measurements with dynamically bistable systems Applications of Nonlinear Dynamics vol V (Berlin: Springer)
[15] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[16] Collett M J and Gardiner C W 1984 Squeezing of intracavity and traveling-wave light fields produced in parametric amplification Phys. Rev. A 30 1386
[17] Collett M J and Walls D F 1985 Squeezing spectra for nonlinear optical systems Phys. Rev. A 32 2887
[18] Brown L S and Gabrielse G 1986 Geonium theory: physics of a single electron or ion in a Penning trap Rev. Mod. Phys. 58 233
[19] Alheit R, Chu X Z, Hoefer M, Holzki M, Werth G and Blümel R 1997 Nonlinear collective oscillations of an ion cloud in a Paul trap Phys. Rev. A 56 4023
[20] Tesch C M and de Vivie-Riedle R 2002 Quantum computation with vibrationally excited molecules Phys. Rev. Lett. 89 157901
[21] Cohen-Tannoudji C, Diu B and Lalöe F 1992 Quantum Mechanics (Weinheim: Wiley Interscience)
[22] Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T and Glaser S J 2005 Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms J. Magn. Reson. 172 296
[23] Rebentrost P and Wilhelm F K 2009 Optimal control of a leaking qubit Phys. Rev. B 79 060507 (arXiv:0808.2680)
[24] Motzoi F, Gambetta J M, Rebentrost P and Wilhelm F K 2009 Simple pulses for elimination of leakage in weakly nonlinear qubits Phys. Rev. Lett. 103 110501
[25] Safaei S, Montangero S, Taddei F and Fazio R 2009 Optimized single-qubit gates for Josephson phase qubits Phys. Rev. B 79 064524
[26] Zener C 1932 Non-adiabatic crossing of energy levels Proc. R. Soc. A 137 696
[27] Landau L D 1932 A theory of energy transfer on collisions Z. Phys. Sowjetunion 2 46
[28] Stückelberg E C G 1932 Theory of inelastic collisions between atoms Helv. Phys. Acta 5 369
[29] Jirari H, Hekking F W J and Buisson O 2009 Optimal control of superconducting n-level quantum systems arXiv:0903.4028