ANTIOXIDANT AND ANTI-MICROBIAL ACTIVITY STUDY OF SYNTHESIZED COPPER, NICKEL AND ZINC METALS SCHIFF BASE DERIVATIVE OF SALICYLALDEHYDE

J. Panda¹*, L. Adhikari¹, A.Pal¹, S.S. Rout¹, S. Pattanaik¹ and P. Pradhan²

¹School of Pharmaceutical Sciences, Siksha ‘O’Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
²IMS and SUM Hospital, Siksha ‘O’Anusandhan (Deemed to be University), Bhubaneswar.
*E-mail: sovanpattnaik@soa.ac.in

ABSTRACT
Organometallic compounds conjugates play a vital role in new drug discovery, in which Schiff base is useful as a ligand in consideration with different metals. Schiff base mostly encouraged due to its versatile activity due to the presence of a unique Imine (C=N) group. An attempt has been taken to synthesize a Schiff base by using salicylaldehyde and ethylene diamine which further design for the incorporation of salts of Cu, Ni and Zn metals separately. The ligand and its metal complexes have been carried out several characterization studies like elemental analysis, molar conductance, UV, IR and H¹NMR. DPPH antioxidant potential and antimicrobial effect against four species Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus have been done with the ligand and all its metal complexes. The result revealed that metal incorporation in the Schiff base ligand enhanced the antioxidant potential as well as remarkable antimicrobial effect.

Keywords: Organometallic, Schiff Base, DPPH, Metal Complexes, Antioxidant.

INTRODUCTION
In recent years, there has been a considerable effort towards the preparation of new materials containing polyfunctional units (ligands) capable of binding the metal ions. Imine (C=N) Schiff base compounds are possessing broad-spectrum activity¹ and metal conjugates of its (Schiff base) derivatives exhibited remarkable biological activity including antioxidant, antitumor, antibacterial and antiviral activity.¹ The metal incorporation always plays an important role in a different physiological process. Good numbers of organic compounds not only bearing organic mode of action but also activated as well as a biotransformed form of action due to conjugation of metals through metabolism. Schiff base derivatives play an important role in various disease conditions. Multidentate ligands are the substance containing at least two donor atoms often separated by atom-to-atom chains. Since carbon has a greater tendency to form chains, it is often used to link the donor atoms, for instance by an alkylene chain to form chelating ligand. A metal complex MₓLₓAᵧ (where M = Metal, L = Multidentate ligand, A = Monodetate ligand) is formed when its coordination is substituted i.e n= px + y. Where p = denticity of the chelating ligand.³ The donor atom in the ligand is the atoms with a high electron-donating ability such as N, O, S etc. Metals (Copper, Nickel and Zinc) incorporation in Schiff base has been previously attempted and successfully established as potential as an antibacterial and analgesic activity.⁴ Transition metal complexes coordinated to tetradentate Schiff base have been studied mainly because of their ease of preparation, flexibility and versatility in term of chemical properties, geometry, coordination sites and cause of substitution. Complexes of Schiff base ligand have been studied for another cause that is for their dioxide intake and oxidative catalysis.⁵ In the present study, an attempt has been made to evaluate the antioxidant activity of the metal complexes of Schiff bases derivatives and compared them with standard compounds. The evaluation of antioxidant activities has been done with a series of in-vitro models. The characterization of the structure was done.
through CHN elemental analysis, UV, FTIR, Molar conductance, and 1HNMR study. The coordination of the metal to ligands (1:1 or 1:2) in this study also lean on different parameters such as PH, temperature, reagent medium, etc.

EXPERIMENTAL

Materials and Instrumentation
The chemicals and solvents used were of A.R. grade. By using capillaries, melting points were determined followed by apparatus from SISCO. The compound purity was determined through thin layer chromatography (TLC). JASCO FTIR 410 spectrophotometer was used to determine IR spectra (Ker, cm⁻¹). 1H NMR (CDCl₃) on a Bruker DPX 300-MHz spectrometer in which internal standard TMS was being used. UV spectrum measurements were carried out by Jasvo V-600. C, H and N analysis was performed by Euro EA (Italy) analyzer.

Preparation of Ligands
[Synthesis of Ligand (H₂L)] Salicyaldehyde was purified by standing with powered CaCO₃ followed by distillation. To the solution, 24.4 gm (0.2mol) of purified 100 cm³, boiling 95 % ethanol was added 6.01 gm (0.2mol) ethylenediamine in a ratio 1:1 with constant stirring. Within 5 minute, a bright yellow crystalline solid was obtained (Fig.-1). The reaction mixture was cooled and filtered dried out on an adsorbent paper.

Preparation of H₂L Metal Complexes
To an ethanolic solution of the ligand-1 (H₂L), was mixed with metal ions (M) (Cupric sulphate/ acetate of Nickel/Zinc) in ethanol, in which H₂L and M ratio 1:1 followed by dropwise addition of perchloric acid (PH=6), was heated in water bath with constant stirring for 6 hrs. Then the resultant solution was kept overnight. The precipitated solid was filtered and dried in a desiccator recrystallize from acetonitrile. After 3 days, the formation of colored structure compounds was filtered, followed with methanol washing and dried in vacuum. Melting point and TLC were carried for purity to check the synthesized compounds (Fig.-2). The structure of the newly formed metal-ligand complexes were confirmed by using CHN elemental analysis, UV, FTIR, Molar conductance and 1HNMR study which depicted in Table-1 and 2. Free Radical Scavenging Activity by 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH): The antioxidant activity by DPPH was studied with spectrophotometric as per the reported literature with little modification. 0.1 mmol of DPPH solution was prepared and an aliquot of 1 ml of this solution was mixed with 3 ml of a solution of H₂L and its metal solution at different concentrations 10-50 µg/ml separately. The mixture solutions were incubated for 30 minutes in dark condition and then the absorbance was taken at 517 nm against the blank solution.

\[
\text{% DPPH Scavenging Effect} = \left(1 - \frac{A_t}{A_c}\right) \times 100
\]

Where , \(A_c\) = Absorbance control at 517 nm containing all the reagent except the test compounds
\(A_t\) = Absorbance test containing reagent with a metal-ligand complex solution

Antibacterial Activity
The antibacterial activity was screened for all synthesized metal-ligand complex against *Staphylococcus aureus*(S.a), *Enterococcus faecalis*(E.f), *Pseudomonas aeruginosa*(P.a), *Klebsiella pneumonia* (K.p) in standard agar well diffusion method.

RESULTS AND DISCUSSION
Schiff base compounds and their derivative metal complexes are air-stable, colored, organic solvent-soluble but insoluble in water. The result of the elemental analysis is satisfactory and can well be
correlated with finding value calculated as depicted molecular formula indicated to synthesized metal complexes. This metal to ligand complex reflecting 1:1 stoichiometries which were depicted in Table-1. The non-electrolyte characteristics ML were well established by the molar conductance studies. The UV spectral study of the H$_2$L exhibited two high-intensity bands lying at 364.5 and 273.5 nm assigned to transition respectively. In ML, shifting of intense sharp bands were observed CuL lying 394 and 269 nm, NiL lying 374.5 and 266 nm, ZnL lying 402 and 265 nm respectively. The remarkable shifting of absorption spectrum from H$_2$L to ML may be featured to the sharing of lone pairs of the nitrogen atoms of the H$_2$L to the metal.

In H$_2$L, an intense ligand absorption band at 1286 cm$^{-1}$ due to C-N stretching frequency assigned which is lowered by 10-95 cm$^{-1}$ in complex spectra. This may be indicated as the existence of azomethane coordination of the ligand. The tetradeinate ligand showed absorption at 3300-3394 cm$^{-1}$ which may be assigned to hydrogen-bonded O-H in-plane stretching vibration.

The dissipated intense band in the ML resulting bond formation involvement. The ligand shows intense absorption at 1286 cm$^{-1}$ which may be assigned to C-N stretching frequency is lowered by 3-95 cm$^{-1}$ in the spectra of the complexes which may be due to coordination of Schiff base by azomethane nitrogen. The appearance of the new band at 733-760 cm$^{-1}$ and 543-648 cm$^{-1}$ indicating the formation of M-N and M-O bonds and water molecule coordination respectively (Fig.-5). The HNMR study were evaluated in both ligands as well as their complexes by using TMS as a reference in DMSO solvent (Fig.-3 and 4). For the aromatic ring protons that showed characteristics signals in the range 6.7-7.18 ppm. This was also checked for the respective metal complexes that produced multiple signal bonds as well. The important characteristics of ML showed a signal at 10.63 ppm indicating coordination of aromatic ring resulting deprotonation. The measurement of molar conductance in DMSO at room temperature has found 10^{-3} M which also depicted in the table. The antioxidant potential was showed that metal complexes of ligand greater potential than Schiff base ligand and followed the order of inhibition ZnL>NiL>CuL> H$_2$L.
Table-1: Colour, Elemental Analysis and 1HNMR Spectral Data H_2L, CuL, NiL, ZnL

Compounds	Colour	Elemental Analysis %: Found	1HNMR		
H_2L	Bright Yellow	10.30 (10.43)	N: 6.7-6.65	M: 7.19	OH: 10.64
CuL	Greenish Transparent	8.44 (8.49)	N: 7.7-7.6	M: 8.42	-----
NiL	Reddish Yellow	8.62 (8.55)	N: 7.3-7.4	M: 8.33	-----
ZnL	Whitish Transparent	8.39 (8.45)	N: 6.8-6.7	M: 8.47	-----

Table-2: IR, Molar Conductance and Electronics Spectral Data of H_2L, CuL, NiL, ZnL

Compounds	IR Spectral Data (cm$^{-1}$)	Molar Conductance (S cm2, mol$^{-1}$)	UV Data u-u*	N-u*
H_2L	1281 1663 1550	362 272		
CuL	1190 1650 1598 735 580	6.11 389	389 270	
NiL	1282 1634 1578 748 647	7.53 371	371 259	
ZnL	1191 1644 1599 766 541	9.81 401	401 273	

Table-3: Compounds Screening of Antimicrobial Effect by Agar Diffusion Method

Compound	MF	ZI of S.a (mm) 100µg/ml	ZI of P.a (mm) 100µg/ml	ZI of K.p (mm) 100µg/ml	ZI of E.c (mm) 100µg/ml
H_2L	C$_{16}$H$_{16}$N$_2$O$_2$	10	13	14	18
CuL	C$_{16}$H$_{16}$N$_2$O$_2$Cu	17	14	15	22
NiL	C$_{16}$H$_{16}$N$_2$O$_2$Ni	13	15	18	17
ZnL	C$_{16}$H$_{16}$N$_2$O$_2$Zn	15	17	24	21
STD	Ampicillin trihydrate	26.4	25.3	26.2	25.6
Solvent	DMF	00	00	00	00

The evaluation result of antioxidant potential of all tested compound as depicted in Fig.- 6 showed that Zn and Ni coordinated complex having more effective as compared to the other Schiff base and Cu complex.
which can be compared to that of standard BHT. The order potential was as followed: BHT>ZnL>NiL>CuL>L. The ligand and synthesized new metal complexes were also evaluated for antibacterial activity for which CuL and ZnL were showed good inhibitory activity against gram negative strain *E. coli* in comparison with *H*2*L* and NiL showed in Table-3, however *H*2*L* and NiL appreciable inhibitory effect on gram-negative strain *K.pneumoniae*.20-22

CONCLUSION

The result of the above study reveals that all the metal complexes having appreciable antioxidant potential which could be the reason for its antimicrobial effect against the specific species. There is a great scope of the study for future research upon these metal complexes using this Schiff base ligand.

ACKNOWLEDGMENT

The authors are grateful to the authorities of Siksha ‘O’Anusandhan University, Bhubaneswar Odisha, India for providing the necessary facility to carry out this research work.

REFERENCES

1. B.B. Subudhi, P.K. Panda, T. Kundu, S. Sahoo and D. Pradhan, *Journal of Pharmaceutical Research*, **6**, 114(2007), DOI: 10.4103/0250-474x.43009
2. H. H. Fanny and S. H. Abdelwad, *Molecules*, **5**, 1429(2000), DOI: 10.3390/51201429
3. M. J. Tebbe and W.A. Spiyzer, *Journal Medicinal Chemistry*, **40**, 3937(1997), DOI: 10.1021/jm960718i
4. B. D. Naik and K. R. Desai, *Asian Journal Chemistry*, **16**, 1749(2004).
5. D.U. Warad, C.D. Satish, V.H. Kulkarni and C.S. Bajgur, *Indian Journal of Chemistry*, **39A**, 415 (2000).
6. A. R. Majumder, M. Dhara, L. Adhikari, G. Ghosh and S. Pattnaik, *Indian Journal of Pharmaceutical Sciences*, **81**(1), 99(2019), DOI: 10.4172/pharmaceutical-sciences.1000484
7. P. Singh and R.K.S. Dhakarey, *Rasayan Journal of Chemistry*, **2**(4), 869(2009).
8. X. Shin, Q.L.C Yang, Y. Xie, *Synthesis and Reactivity Inorganic and Metal Organic Chemistry*, **26**, 1135(1996).
9. P. Nath and S. D. Dhumwad, *Rasayan Journal of Chemistry*, **5**(2), 234(2012).
10. D. K. Baral, S.S. Rout, J. Behera, S.C. Si, P. Mohanty, *Transition Metal Chemistry*, **36**, 231(2011).
11. S. Pattanaik, J. Panda, S.S. Rout, P.K. Sahu, M. Banjee, *Rasayan Journal of Chemistry*, **04**, 136(2011).
12. S. Pattanaik, S.C. Si, S.S. Rout, P. Mohanty, *International Journal of Pharmacy and Pharmaceutical Sciences*, 10, 137(2018), DOI:10.22159/ijpps.2018v10i1.22464
13. D. M. Kar, S. K. Sahu and P.K. Misro, *Indian Drug*, 40, 261(2003).
14. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley, New York, pp. 10, (1970).
15. S. Shrivastava, A. Kumar, Y. Pandey, and S.N. Dikshit, *Asian Journal of Chemistry*, 21, 7224(2009).
16. M. T. H. Tafader, M. A. Ali, D. J. Nee, K. Azahari, S. Silong and K. A Crouse, *Transition Metal Chemistry*, 25, 456(2000).
17. S. Ali-Shehri, G. Davies, M. A. El-Sayad and A. El-Toukhy, *Inorganic Chemistry*, 29, 1198(1990).
18. L.K.W. Henri, J. Tagenine and B.M Gupta, *Indian Journal of Chemistry*, 404, 999(2001).
19. N. K. Singh and S. K. Kushawaha, *Indian Journal of Chemistry*, 39A, 1070(2000).
20. S. Pattanaik, S.C. Si, S.S. Naik, *Asian Journal of Pharmaceutical and Clinical Research*, 5(3), 168(2012).
21. M. H. El-Tabl, A. Fathy, El-Saied and M. I. Ayad, *Synthesis and Reactivity Inorganic and Metal Organic Chemistry*, 32, 1245(2002), DOI:10.1081/SIM-120014301
22. H.C. Zahid, S. I. Mohammad, S. I. Hummara, T.S. Claudiu, *Journal of Enzyme Inhibition and Medicinal Chemistry*, 17(2), 87(2002), DOI:10.1080/14756360290030734

[RJC-5477/2019]