Risk Factors for Readmission in the Patients with COVID-19 Admitted to Hospital

Mohammad Nematshahi
Sabzevar University of Medical Sciences

Mahboubeh Neamatshahi
Sabzevar University of Medical Sciences

fahimeh attarian (✉ attarian581@gmail.com)
Iran University of Medical Sciences https://orcid.org/0000-0001-9752-0480

Faeze Rahimi
Sabzevar University of Medical Sciences

Davood Soroosh
Sabzevar University of Medical Sciences

Research note

Keywords: COVID-19, Readmission, Creatinine, Diabetes, Prediction

DOI: https://doi.org/10.21203/rs.3.rs-646002/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: COVID-19 has been introduced by the World Health Organization as a health emergency worldwide. Although more than 5% of the patients with COVID-19 require hospitalization, there are still no clear guidelines on patients’ discharge time and factors influencing post-discharge outcomes. This study aimed to determine risk factors for readmission in the patients with COVID-19 admitted to hospital. In this prospective study, 416 discharged patients with a minimum follow-up of one month and the need for readmission were recorded. Evaluated characteristics included age, gender, CT scan, RT-PCR test and treatment modalities. After describing the data, any relationship between the patients’ characteristics and readmission was assessed and predictive factors of readmission risk were estimated using regression model. The data were analyzed through STATA and P value less than of 0.05 was considered significant.

Results: Regarding readmission, 51 patients were readmitted during the study period. The median follow-up time was 20 days (IQR: 7-120) and the mean follow-up time was 61±11.2 days. The mean duration of first hospitalization was 5.5 days and the rate of readmission of the patients between 30 and 60 days after discharge was 7.6% and 8.1%, respectively. The median age of these patients was 67 years (IQR: 53-78). About 65% of readmitted patients had underlying disease. The difference in readmission time was based on blood creatinine level and lung involvement. The odds ratio of readmission in the patients with abnormal creatinine levels (higher and equal to 1.2 mg/dl) and diabetes was equal to 2.15 and 3.43, respectively. Also, the odds ratio of readmission in the patients with basal lung involvement was 4.16. The highest readmission rate was 30 days after discharge. Age over 60 years, underlying disease especially diabetes, high creatinine level and lung involvement were the most important predictors of readmission in the patients with COVID-19.

Introduction: Coronavirus Disease 2019 (COVID-19) was declared by the World Health Organization (WHO) as a global health emergency on January 30, 2020 (1, 2). There is currently a high prevalence of COVID-19 in the human population, as a consequent rising demand for hospitalization (3), however, the pathogenicity and severity of the disease are not high and most people recover following COVID-19 (4), but in 5% of cases, hospitalization is essential to keep on the treatment process. Old age and underlying disease are the most important factors related to the need for hospitalization (5). Therefore, in most societies due to the aging population and high prevalence of diabetes and hypertension, there is an increase in demand for hospital beds and over-hospitalization (6, 7). The clear guidelines for the management of the patients with COVID-19 and the time of discharge have not yet been determined based on clinical evidence (3, 8). Physicians may be cautious and the patient may be hospitalized for long periods of time unnecessarily, or conversely, with early discharge, the patient may be readmitted or have unwanted complications or a worsening prognosis (9, 10). According to the Centers for Disease Control and Prevention (CDC), up to 9% of the patients with COVID-19 may be readmitted to the same hospital within 2 months of discharge (9), so it is important to pay attention to the clinical aspects of readmission in these patients (11–14).

Mostly male gender, old age and the presence of underlying disease or history of malignancy are associated with poor prognosis and readmission in this group of patients (11, 12, 15). Paying too much attention to COVID-19 pandemic has caused deception to pay attention to other serious diseases such as neoplasms or cardiovascular diseases, which leads to increased mortality in populations and based on the experience of previous respiratory pandemics, the effective use of hospital beds should be an essential goal in the pandemic (4, 16–18). Therefore, identifying the reasons for readmission and the characteristics of the patients at risk for readmission can lead to better decision-making and management at discharge or more accurate clinical follow-up after discharge. The
present study aimed to determine the risk factors for readmission in the patients with COVID-19 admitted to the hospital.

Methods And Materials

In this prospective study, a cohort of 508 patients admitted with a diagnosis of COVID-19 in Vasei hospital was studied between March 1, 2019 and May 20, 2020. Vasei hospital is located in Sabzevar city in the west of Khorasan Razavi province. all patients were admitted to this hospital with a definite or clinical diagnosis of COVID-19. Informed consent form was obtained from all patients. Of the total cohort, 34.78%, 75.49%, 100% of the patients were hospitalized by the end of the first month, second month, end of the first trimester from the beginning of the pandemic. COVID-19 was assessed by Polymerase chain reaction (PCR) and imaging finding. In this study, 92 patients (18.18%) who died during hospitalization were excluded from the study and 416 patients (81%) were recovered, discharged and followed up for at least 6 months after discharge to assess the rate of readmission. Assessed characteristics include age, gender, biochemical findings, CT scan and RT-PCR test results, and underlying disease such as diabetes, hypertension and pregnancy or other underlying diseases, and length of hospital stay. Readmission was evaluated as the main dependent outcome and the risk of readmission for each of the related factors was estimated at a time interval of 3 to 180 days after discharge using regression model (20). The data were analyzed through STATA and P value less than of 0.05 was considered significant.

Results

In this study, 416 patients were followed, the median and mean follow-up of discharged patients were 20 days (IQR: 7-120) and 61 ± 11.2 days. Fifty-one discharged patients \ were readmitted, of which 13 patients (25%) one week after discharge (readmission rate = 3.1%) and 32 patients (62%) up to 30 days after discharge (readmission rate = 7.6%) and 34 patients (66%) up to 60 days after discharge (readmission rate = 8.1%) and the rest of the patients (readmission rate = 12.25%) up to 40 weeks after discharge were readmitted.

The age of readmitted patients were range from 29 to 94 years old (median = 67, IQR: 53–78), and mean age was 65 ± 15.42, however the median age of the recovered patients was 58 (IQR: 42–68), with mean age 56 ± 18.2 years old (p < 0.001). Regarding gender, there was no significant difference among readmitted patients (Table 1).

35% of readmitted patients had underlying disease. The results showed that there was a significant relationship between underlying disease and readmission (p < 0.001). It is important to note that none of the pregnant women were readmitted (Table 1).

Of the total readmitted patients, 31 patients (64.5%) had a negative PCR result, although 84.3% of readmitted patients had abnormal chest imaging results in the first hospitalization. Also, the mean blood creatinine level in the patients who were readmitted was significantly higher than patients without readmission (p < 0.001). The median duration of hospitalization for the first time was 5 days (IQR: 3–9) in readmitted patients and 4 days (IQR: 3–6) in other discharged patients (p < 0.001). There was no significant difference between readmitted and discharged patients in respect of the others assessed characters (Table 1).
Table 1
Clinical, biochemical and therapeutic characteristics of the recovered and readmitted patient

Variable	Total Number	Non-readmitted, 365(87.7)	Readmitted, 51(12.2)	P value
Gender (n = 416)				
Male	228(54.0)	203 55.6	25 49.0	0.78*
Female	188(45.0)	162 44.4	26 51.0	
PCR (n = 368)				
Negative	227 (61.6)	169 61.2	31 64.6	0.19*
Positive	141(38.4)	124 38.8	17 35.4	
Comorbidity (n = 416)				<0.001**
No	224(53.8)	206 56.4	18 35.3	
Diabetes	42(10.1)	29 8.0	13 25.5	
Hypertension	61(14.7)	55 15.0	6 11.7	
Others	83(20.0)	69 18.9	14 27.4	
Pregnancy	6(0.14)	6 1.64	0 0	
Dry Cough (n = 416)				
No	154(37.0)	131 35.9	23 45.1	0.20*
Yes	262(63.0)	234 64.1	28 54.9	
Fever (n = 416)				
No	162(38.9)	137 37.5	25 49.0	0.11*
Yes	254(61.1)	228 62.4	26 51.0	
CT- Result (n = 416)				
Normal	87(20.9)	79 21.7	8 15.7	0.32*
Abnormal	329(79.1)	286 78.3	43 84.3	
Lymph-degree (n = 398)				
Lymphocytosis > 3000	22(05.5)	17 4.9	5 9.8	0.34*
Normal 1100–3000	219(55.0)	193 55.6	26 51.0	
Lymphopenia < 1100	157(39.5)	137 39.5	20 39.2	
HR-degree (n = 410)				
Tachycardia > 100	144(35.1)	121 33.7	23 45.1	0.12**
Normal 60–100	256(62.4)	230 64.0	26 51.0	
Bradycardia < 60	10(02.4)	8 2.2	2 3.9	
D-dimer (n = 416)				
No	85(19.7)	78 21.4	7 13.7	0.20*
Yes	331(80.3)	287 78.6	44 86.3	
Age (year)				
≤ 60	226(54.3)	205 56.2	21 42.1	0.04*
> 60	190(45.7)	160 43.8	30 58.9	

* Pearson χ2, ** Fisher's exact, *** t-test
| Variable | Total Number | Non-readmitted, 365(87.7) | Readmitted, 51(12.2) | P value | |
|---|---|---|---|---|---|
| | N | Mean(CI %95) | N | Mean(CI %95) | P value |
| Quantitative variables | N | | N | | |
| Systolic blood pressure (mmHg) | 415 | 119.8 (117.6, 122.0) | 51 | 117.3 (112.6, 122.0) | 0.42 |
| Diastolic blood pressure (mmHg) | 416 | 73.8 (72.6,75.1) | 51 | 74.2 (71.3, 77.2) | 0.80 |
| SPO2 | 407 | 89.3 (88.4, 90.2) | 51 | 88.2 (86.3, 90.1) | 0.40 |
| Creatinine (mg/dl) | 372 | 1.1 (1.1, 1.2) | 46 | 1.5 (1.2, 1.9) | <0.001 |
| Hospitalization (day) | 415 | 5.2 (4.7, 5.7) | 51 | 7.0 (5.5, 8.5) | <0.001 |
| ICU (day) | 52 | 4 (2.75, 5.24) | 9 | 3.4 (0.36, 7.25) | 0.72 |
| Mechanical ventilation (day) | 11 | 1.6 (0.75, 2.7) | 2 | 1 (1, 1) | 0.53 |

* Pearson χ², ** Fisher's exact, *** t-test

Most readmitted patients (82.3%) who had positive PCR and abnormal creatinine levels (82%) were admitted to the hospital up to 30 days after discharge. There was no difference in the time of readmission of the patients based on age, underlying disease or history of hospitalization in ICU. However, 84.3% of readmitted patients had a history of abnormal CT scan. In general, the time of readmission was related to the results of CT scan and involvement site of the lung (Table 2).
Table 2
Comparison of readmission time of patients based on clinical and laboratory characteristics and CT scan

Variable	Cat	Total n%	Readmission	Log-rank test					
			3–7 days	8-30days	31-60days				
			N	Failure Function	N	Failure Function	N	Failure Function	P = 0.28
PCR (n = 48)	Negative	31(64.5)	8	0.25	16	0.51	18	0.58	
	Positive	17(35.5)	5	0.29	14	0.82	14	0.82	
Age (n = 51)	60≥	21(41.2)	4	0.19	13	0.61	14	0.66	P = 0.72
	60<	30 (58.8)	9	0.30	19	0.63	20	0.66	
Comorbidity (n = 51)	No	18 (35.2)	4	0.22	11	0.61	12	0.22	P = 0.69
	DM	13(25.5)	4	0.30	9	0.69	9	0.69	
	HTN	6 (11.8)	2	0.33	4	0.66	4	0.66	
	Others	14 (27.5)	3	0.21	8	0.57	9	0.64	
Creatinine (mg/dl)	< 1.2	16 (35.6)	3	0.18	9	0.56	18	0.58	P = 0.84
	≥ 1.2	29(64.4)	9	0.29	14	0.82	14	0.82	
History admission ICU (n = 51)	No	42(82.3)	10	0.23	26	0.61	28	0.66	P = 0.77
	Yes	9 (17.7)	3	0.33	6	0.66	6	0.66	
Mechanical Ventilation (n = 51)	No	49(96.8)	12	0.24	30	0.61	39	0.65	P = 0.20
	Yes	2(3.92)	1	0.50	2	1.0	-	-	
History of CT result (n = 51)	Normal	8 (15.7)	1	0.12	2	0.25	3	0.37	P = 0.04
	Abnormal	43 (84.3)	12	0.27	30	0.69	31	0.72	
Ground Glass Opacity (n = 43)	No	6(13.95)	2	0.33	3	0.50	3	0.50	P = 0.65
	Yes	37(86.05)	10	0.27	27	0.72	28	0.75	
Site of lesions (n = 43)	Multiple lobes	4(9.30)	3	0.75	4	1.0			P = 0.04
	Peripheral	20(46.51)	6	0.30	15	0.75	16	0.80	
	Lung bases.	14(32.56)	3	0.21	10	0.71	10	0.71	
	Peribronchovascular distribution	2(4.65)	-	-	-	-	-	-	
	Central	3(6.96)	0	0	1	0.33	1	0.33	
Bilateral	No	12(27.91)	4	0.33	4	0.33	4	0.33	P = 0.002
	Yes	31(72.09)	8	0.25	26	0.83	27	0.87	
Pleural effusion	No	39(90.7)	10	0.25	26	0.66	27	0.69	P = 0.38
	Yes	3(7.30)	1	0.33	16	0.51	16	0.51	
Discharged patients older than 60 years were 1.12 times more likely to be readmitted than other patients. Patients who had a dry cough and fever for the first time or had a positive PCR test were at lower risk of readmission ($p > 0.05$). Lung involvement and involvement site were most important factors related to readmission, so that patients with Lung involvement 1.48 times and with peribronchovascular distribution or central involvement had 4.5 times more likely to be readmitted ($p < 0.05$). Also, the odds ratio of readmission in the patients with basal lung involvement was 4.16 times greater than those with multiple lobes involvement. After controlling the effect of other variables, the odds ratio of readmission in the patients with abnormal creatinine level and diabetes was 2.15 and 3.43 times other patients. (Table 3).
Table 3
Relationship between demographic, clinical, biochemical and therapeutic characteristics and readmission of COVID-19 patients

Variable	Crude OR (95% CI)	Adjusted OR (95% CI)
Age		
60≥	1	1
> 60	1.83 (1.00, 3.31)*	1.12 (0.52, 2.47)
Gender		
Male	1	
Female	1.30 (0.72, 2.34)	
Dry Cough		
No	1	
Yes	0.68 (0.37, 1.23)	
Fever		
No	1	
Yes	0.62 (0.34, 1.12)	
Comorbidity		
No	1	
DM	5.27 (2.34, 11.89)*	3.43 (1.13, 8.37)*
HTN	1.28 (0.48, 3.39)	0.72 (0.21, 2.47)
Others	2.38 (1.13, 5.05)*	1.24 (0.46, 3.27)
D-dimer (ng/ml)		
No	1	
Yes	1.70 (0.74, 3.94)	
PCR		
No	1	
Yes	0.86 (0.46, 1.63)	
Creatinine, mg/dL		
< 1.2	1	1
≥ 1.2	2.84 (1.48, 5.43)*	2.15 (1.00, 4.59)*
Duration of Hospitalization		
< 6	1	1
≥ 6	1.93 (1.06, 3.51)*	2.00 (0.94, 4.27)
Admission to ICU		
No	1	
Yes	1.60 (0.73, 3.52)	
Ct result		
Normal	1	
Abnormal	1.48 (0.67, 3.28)	
Site of lesion(s)		
Multiple lobes	1	1
Peripheral	3.36 (1.10, 10.19)*	2.40 (0.75, 7.67)
Lung bases.	4.41 (1.38, 14.05)*	4.16 (1.23, 14.05)*
Peribronchovascular distribution	4.55 (0.72, 28.4)	4.43 (0.65, 30.51)
Variable	Crude OR (95% CI)	Adjusted OR (95% CI)
----------	--------------------------	---------------------
Central	20.5 (3.10, 135.5)*	6.15 (0.66, 56.93)

Discussion

In this prospective study, the results of clinical, laboratory and radiological examinations were used to identify the factors associated with readmission. Diabetes, abnormal blood creatinine levels, lung involvement, and duration of first-time hospitalization were the most important predictors of readmission. The readmission rate was 3.1% for one week after discharge, 7.6% for one month after discharge, and 8.6% for two months after discharge.

In this study the rate of readmission at similar time intervals was consistent with other studies (9), in which readmission in the first week after discharge was between 2 and 4% (13, 14 22) and was reported 10% for two months after discharge (9). In the follow-up of 279 discharged patients in Rhode Island of the United States, 30 days after discharge, readmission rate was reported 6.7% (11). In a study done in Turkish study, 7.1% of discharged patients were readmitted (15). The readmission rate of 106,543 COVID-19 patients discharged from the hospital two months after discharge was 9% in the United States (9). Donnelly et al followed up 1,775 discharged patients in the United States and reported readmission in 20% of the patients two months after discharge (19). In another study, 10.3% of discharged patients were readmitted to hospital 80 days after discharge (23). However, in different findings in the Korean study, the readmission rate of the patients with COVID-19 after discharge was 4.3% (12) and in Spanish study, the readmission rate was 4.4% up to three weeks after discharge (10).

The median length of stay in hospitals for the first time was 4 days which was similar to the findings of previous studies in Iran (24, 25). A review of 52 studies estimated the median length of stay in hospitals about 5 days (26), which was similar to the median length of stay in New York hospitals performed on 5,700 patients (13). Length of stay was very different in Korean hospitals (17 days) (12). Also, in the present study, the median length of stay for readmitted and non-readmitted patients was 5 days (IQR: 3–9) and 4 days (IQR: 3–6), respectively, while in the Turkish study, the median length of stay in the patients was 4 days and 3 days, respectively (15).

In the Spanish study, the median length of stay in the readmitted patients with COVID-19 was lower than other patients (6 days vs. 9 days) (10). In a review of 7,590 patients admitted to Korean hospitals, the median length of stay was lower than other patients (10, 12), but since the median length of stay in the patients who were not readmitted was shorter than in readmission patients, most patients were likely to be discharged on time. Hospitalization of patients has some conditions which include the capacity of the medical system, the quality of care and the demand for hospital beds in the pandemic period (15, 16). Different quality of post-discharge care can also have consequences on its effective after the discharge and we should pay attention to it in analyzing the results (14, 23).

Old age and underlying disease, especially diabetes, were two important characteristics of patients who were readmitted. The odds ratio of readmission in the patients over 60 years and diabetics compared to the younger patients and free of underlying disease was 1.83 and 3.43 times higher, respectively. In a study by Jeon et al, the odds ratio of readmission in the patients over 65 years and underlying disease was 2.23 and 4.39, respectively (12). Wu and McGoogan (27) and another study (13) the odds ratio of readmission in elderly patients was higher than in other age groups. Underlying diseases, especially hypertension and diabetes, have also been confirmed in other COVID-19 studies (10, 11, 14, 15). As the response of immune cells to the corona virus decreases with age, so the virus may be able to stay in the body longer. COVID-19 and readmission complications in older patients increase
(28), however these two factors may be strong predictors of readmission in hospitalized patients (29). Highly creatinine level in hospitalized patients was another predictor of the risk of readmission in the COVID-19 patients, so that a creatinine level greater than 1.2 mg/dl, the odds ratio of readmission was 2.15 times higher than in other COVID-19 patients. Patients with a history of ICU hospitalization had higher creatinine levels (23). Findings of previous studies on other diseases also consider creatinine level as an effective factor in hospital readmission of the COVID-19 patients (32 – 30).

In this study, more than 84% of the patients who were readmitted had abnormal chest CT scans. Also, most readmitted patients (64%) had a negative PCR test and the time interval between discharge and readmission was higher in the patients with a negative test than in patients with a positive test. This finding was consistent with the findings of previous studies that introduced abnormal chest imaging results as a predictor of readmission (12, 33), making it a suitable tool for managing COVID-19 patients (34–36). Also, the possibility of a false negative result in PCR test was reported in previous studies (34).

Conclusion

In this study, the readmission rate of patients during 30 & 60 days after discharge was 7.6% and 8.1%. Age over 60 years, underlying disease especially diabetes, high creatinine level and lung involvement were the most important predictors of readmission in the patients with COVID-19.

Limitation

One of the main limitations in the present study was small sample size which makes it hard to generalize the obtained results.

Abbreviations

Coronavirus Disease 2019 (COVID-19)

World Health Organization (WHO)

Centers for Disease Control and Prevention (CDC)

Polymerase Chain Reaction (PCR)

Intensive Care Units (ICUs)

Declarations

- **Ethics approval and consent to participate:**

 The protocol of study was approved by Sabzevar University of Medical Sciences (IR.MEDSAB.REC.1399.004) and informed consent form was obtained from all patients.

- **Consent to publish:**
Availability of data and materials:
Not applicable

Competing interests:
There are no financial conflicts of interest to disclose for any authors.

Funding:
The work was fully funded by Sabzevar University of Medical Sciences (grant number 99007, 2019 to Mohammad Nematshahi)

Authors' Contributions:
- Conceptualization; D.S. and M.N, S.A.J
- Data extraction; D.S., M.N., F.A., M. N, F.R.
- Funding acquisition; M.N.
- Investigation; M. N, D.S, F.A, M.N.
- Methodology; F.A.
- Project administration; D.S and F.A.
- Resources; M.N, D.S, Software; F.A.
- Supervision; D.S.
- Roles/Writing original draft; M.N, D.S, F.A, M.N, F.R.
- Writing - review & editing: F.A, D.S and S.A.J.

Acknowledgements:
We would like to express our sincere gratitude to all people participated in the study specially Dr Seyed Alireza Javadinia for his great advice on different steps of work.

References
1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. The Lancet. 2020;395(10223):470–3.
2. Watkins J. Preventing a covid-19 pandemic. British Medical Journal Publishing Group; 2020.
3. Liang T. Handbook of COVID-19 prevention and treatment. The First Affiliated Hospital, Zhejiang University School of Medicine Compiled According to Clinical Experience. 2020;68.
4. Al-Shamsi HO, Alhazzani W, Alhuraiji A, Coomes EA, Chemaly RF, Almuhanna M, et al. A practical approach to the management of cancer patients during the novel coronavirus disease 2019 (COVID-19) pandemic: an international collaborative group. Oncologist. 2020;25(6):e936.

5. Killerby ME, Link-Gelles R, Haight SC, Schrodт CA, England L, Gomes DJ, et al. Characteristics associated with hospitalization among patients with COVID-19—Metropolitan Atlanta, Georgia, March–April 2020. Morb Mortal Wkly Rep. 2020;69(25):790.

6. Condes E, Arribas JR. Impact of COVID-19 on Madrid hospital system. Enfermedades Infecciosas Y Microbiologia Clinica; 2020.

7. Birkmeyer JD, Barnato A, Birkmeyer N, Bessler R, Skinner J. The Impact Of The COVID-19 Pandemic On Hospital Admissions In The United States: Study examines trends in US hospital admissions during the COVID-19 pandemic. Health Aff. 2020;39(11):2010–7.

8. Li X-j, Zhang Z-w. Zong Z-y. A case of a readmitted patient who recovered from COVID-19 in Chengdu, China. Crit Care. 2020;24:1–3.

9. Lavery AM, Preston LE, Ko JY, Chevinsky JR, DeSisto CL, Pennington AF, et al. Characteristics of Hospitalized COVID-19 Patients Discharged and Experiencing Same-Hospital Readmission—United States, March–August 2020. Morb Mortal Wkly Rep. 2020;69(45):1695.

10. Parra LM, Cantero M, Morrás I, Vallejo A, Diego I, Jiménez-Tejero E, et al. Hospital readmissions of discharged patients with COVID-19. Int J Gen Med. 2020;13:1359.

11. Atalla E, Kalligeros M, Giampaolo G, Mylona EK, Shehadeh F, Mylonakis E. Readmissions among patients with COVID-19. International Journal of Clinical Practice. 2020:e13700.

12. Jeon W-H, Seon JY, Park S-Y, Oh I-H. Analysis of risk factors on readmission cases of COVID-19 in the Republic of Korea: using nationwide health claims data. International Journal of Environmental Research Public Health. 2020;17(16):5844.

13. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama. 2020.

14. Somani S, Richter F, Fuster V, De Freitas J, Naik N, Sigel K, et al. Characterization of Patients Who Return to Hospital Following Discharge from Hospitalization For COVID-19. medRxiv. 2020.

15. Uyarolu OA, BAŞARAN N, Özişık L, Dizman GT, Eroğlu İ, Şahin TK, et al. Thirty-day readmission rate of COVID-19 patients discharged from a tertiary care university hospital in Turkey: an observational, single-center study. International Journal for Quality in Health Care. 2020.

16. Battershill PM. Inuenza pandemic planning for cancer patients. Current Oncology. 2006;13(4):119.

17. Dafer RM, Osteraas ND, Biller J. Acute stroke care in the coronavirus disease 2019 pandemic. Elsevier; 2020.

18. McBride KE, Brown KG, Fisher OM, Steffens D, Yeo DA, Koh CE. Impact of the COVID-19 pandemic on surgical services: early experiences at a nominated COVID-19 centre. ANZ J Surg. 2020;90(5):663.

19. Donnelly JP, Wang XQ, Iwashyna TJ, Prescott HC. Readmission and Death After Initial Hospital Discharge Among Patients With COVID-19 in a Large Multihospital System. JAMA. 2020.

20. Osman AA, Al Daajani MM, Alsahafi AJ. Re-positive COVID-19 PCR test: could it be a reinfection? New microbes and new infections. 2020:100748.

21. Organization WH. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected, Interim guidance, 13 March 2020. 2020.
22. Wang X, Xu H, Jiang H, Wang L, Lu C, Wei X, et al. The Clinical Features and Outcomes of Discharged Coronavirus Disease 2019 Patients: A Prospective Cohort Study. QJM: An International Journal of Medicine; 2020.

23. McCarthy CP, Murphy S, Jones-O'Connor M, Olshan DS, Khambhati JR, Rehman S, et al. Early clinical and sociodemographic experience with patients hospitalized with COVID-19 at a large American healthcare system. EClinicalMedicine. 2020;26:100504.

24. Shahriarirad R, Khodamoradi Z, Erfani A, Hosseinpour H, Ranjbar K, Emami Y, et al. Epidemiological and clinical features of 2019 novel coronavirus diseases (COVID-19) in the South of Iran. BMC Infect Dis. 2020;20(1):1–12.

25. Toutkaboni MP, Askari E, Khalili N, Tabarsi P, Jamaati H, Velayati AA, et al. Demographics, laboratory parameters and outcomes of 1061 patients with coronavirus disease 2019: a report from Tehran, Iran. New Microbes and New Infections. 2020;38:100777.

26. Rees EM, Nightingale ES, Jafari Y, Waterlow NR, Clifford S, Pearson CA, et al. COVID-19 length of hospital stay: a systematic review and data synthesis. 2020.

27. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020;323(13):1239–42.

28. Wong J, Koh WC, Momin RN, Alikhan MF, Fadillah N, Naing L. Probable causes and risk factors for positive SARS-CoV-2 test in recovered patients: Evidence from Brunei Darussalam. medRxiv. 2020.

29. Zapatero A, Barba R, Marco J, Hinojosa J, Plaza S, Losa JE, et al. Predictive model of readmission to internal medicine wards. European journal of internal medicine. 2012;23(5):451–6.

30. Tamhane U, Voytas J, Aboufakher R, Maddens M. Do hemoglobin and creatinine clearance affect hospital readmission rates from a skilled nursing facility heart failure rehabilitation unit? J Am Med Dir Assoc. 2008;9(3):194–8.

31. Michtalik HJ, Yeh H-C, Campbell CY, Haq N, Park H, Clarke W, et al. Acute changes in N-terminal pro-B-type natriuretic peptide during hospitalization and risk of readmission and mortality in patients with heart failure. The American journal of cardiology. 2011;107(8):1191–5.

32. Ben-Assuli O, Padman R, Leshno M, Shabtai I. Analyzing hospital readmissions using creatinine results for patients with many visits. Procedia Computer Science. 2016;98:357–61.

33. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine; 2020.

34. Xiao AT, Tong YX, Zhang S. False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence. Journal of medical virology. 2020.

35. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;200642.

36. Li Y, Xia L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am J Roentgenol. 2020;214(6):1280–6.