Comparison of detector performance in small 6 MV and 6 MV FFF beams using a Versa HD accelerator

Paula Monasor Denia*, María del Carmen Castellet García, Carla Manjón García, Juan David Quirós Higuera, Noelia de Marco Blancas, Jorge Bonaque Alandi, Xavier Jordi Juan Senabre, Agustín Santos Serra, Juan López-Tarjuelo

Servicio de Radiofísica y Protección Radiológica, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, España

* paula.monasor@gmail.com

Abstract

1. Background & purpose

Investigate the applicability of a series of detectors in small field dosimetry and the possible differences between their responses to FF and FFF beams. This work extends upon the series of detectors used by other authors to also include metal-oxide-semiconductor field-effect transistors (MOSFETs) detectors and radiochromic film. We also included a later correction of output factors (OFs) recommended by the recently published IAEA´s code of practice TRS 483 on dosimetry of small static fields used in external beam radiotherapy.

2. Materials & methods

The OFs, profiles, and PDDs of 6 MV and 6 MV FFF beams were measured with 11 different detectors using field sizes between 0.6 × 0.6 cm² and 10 × 10 cm².

3. Results

The OFs of the FFF beams were lower than those of the FF beams for field sizes larger than 3 × 3 cm² but higher for field sizes smaller than 3 × 3 cm². After applying the IAEA´s TRS 483 corrections, the final OFs were compatible with our initial results when considering uncertainties involved. Small-volume detectors are preferable for measuring the penumbra of these small fields where this attribute is higher in the crossline direction than in the inline direction. The R¹₀₀ of equivalent-quality FFF beams was higher compared to the corresponding flattened beams.

4. Conclusions

We observed no difference for the dose responses between 6 MV and 6 MV FFF beams for any of the detectors. OF results, profiles and PDDs were clearly consistent with the previously published literature regarding the Versa HD linac. Correcting our first OFs, taken as ratio of detector charges, with the IAEA´s TRS 483 corrections to obtain the final OFs, did not make the former significantly different.
Introduction

With technological advances there has been an increase in the use of techniques such as static and dynamic intensity-modulated radiotherapy, volumetric modulated arc therapy, and stereotactic cranial and extra-cranial radiotherapy, as well as the use of flattening filter-free (FFF) beams [1–3]. These techniques have the common characteristic of using fields and small segments to maximally optimise patient treatments by varying the fluence without requiring homogeneous flat beams.

Recent studies based on measurements [4–6] and Monte Carlo simulations [7,8] for Elekta linacs [9–12] show the characteristics and advantages of FFF beams over flattening filter (FF) beams, including the highest dose rates, reduced head scattering, less leakage, and smaller out-of-field doses, among others. Thus, non-standard FFF beams with small fields have become the object of interest and study.

Small fields are characterised by loss of lateral charged-particle equilibrium [13–18]. Moreover, the perturbation correction factors for these particles are difficult to calculate [15]. This results in deviations from Bragg-Gray cavity theory and a lack of balance in the detectors because these have a finite size. Some authors separate these perturbation factors into those caused by volume effects and those due to the difference between the density of the detector and water [19–21].

Numerous authors have evaluated these perturbation factors for diodes, diamond detectors, and ionisation chambers (ICs) for small fields using the Monte Carlo method [21–27]. There are also numerous experimental studies on the response of these detectors [13, 14, 18, 21, 28, 29], but few of these include FFF beams because they are more commonly used for CyberKnife applications [22, 28, 30]. The International Atomic Energy Agency (IAEA) code of practice TRS 483, published at the end of 2017 by the time we were preparing this manuscript, collects all these perturbation factors [18].

This study aimed to investigate the applicability of a series of detectors in small field dosimetry and the possible differences between their responses to FF and FFF beams in order to increase the data available to users regarding their characterisation. In this regard, readers should consider the diverse range of equipment used by medical physics services: although these are limited, staff managing them may need additional references to compare their measurements.

In the case of output factors (OFs), we have extended the range of detectors used to include metal-oxide-semiconductor field-effect transistors (MOSFETs) and radiochromic film. First, in the absence of a clear consensus regarding small field OF determination, they were obtained directly as a ratio of detector charge readouts, also considering a daisy-chaining approach [31]. However, with the publication of the corrections recommended by IAEA’s code of practice TRS 483 to derive output factors as quotients of absorbed doses [18], we have been able to investigate the agreement between both sets of data. It should not be overlooked that the selection of data among these kinds of sets as an input for planning therapy systems has been posing a critical decision for medical physicists involved in clinical calculations.

Materials and methods

We used a Versa HD linear accelerator (Elekta, Stockholm, Sweden) equipped with 6 MV and 6 MV FFF energy beams and an Agility head (Elekta, Stockholm, Sweden) with a multileaf collimator (MLC) with 160 leaves of 5-mm thick interdigitation-capable tungsten projected into the isocenter. The sheets move at a maximum speed of 3.5 cm/s and the MLC does not have a backup jaw. Its dose rate at 6 MV can reach 600 UM/min and this reaches up to 1400 UM/min with the 6 MV FFF beam. The remaining geometric and dosimetric properties of the Versa
HD accelerator are described elsewhere [32–35]. The beam quality for the 6 MV beam is a tissue phantom ratio (TPR)\(_{20/10}\) of 0.684 and the TPR\(_{20/10}\) for the 6 MV FFF beam is 0.674. The accelerator was calibrated to administer 1 cGy/MU at a 10-cm depth in water, for a 10 \(\times\) 10 cm\(^2\) field, and at a source-to-surface distance of 90 cm.

To compare the detectors, OF measurements, profiles (inline and crossline), and percentage depth dose (PDD) measurements for fields between 0.6 \(\times\) 0.6 cm\(^2\) and 10 \(\times\) 10 cm\(^2\) were taken. The following detectors (whose main characteristics can be found in Table 1), were used: Gafchromic EBT3 radiochromic film (Ashland Advanced Materials, Bridgewater, USA), TN-502RDM-H reinforced mobile microMOSFET (Best Medical, Ottawa, Canada), electron field detector (EFD; Scanditronix Medical AB, Uppsala, Sweden), stereotactic field detector (SFD; Scanditronix Wellhofer AB, Uppsala, Sweden), photon field detector (PFD-3G; IBA Dosimetry AB, Uppsala, Sweden), microDiamond diamond detector (PTW, Freiburg, Germany), PinPoint 3D IC (PTW, Freiburg, Germany), Semiflex 3D IC (PTW, Freiburg, Germany), CC13-S IC (IBA Dosimetry, Germany), FC65-G Farmer IC (IBA Dosimetry, Germany), and a PPC40 IC (IBA Dosimetry, Germany).

The OFs were measured with 9 different detectors for field sizes between 0.6 \(\times\) 0.6 cm\(^2\) and 10 \(\times\) 10 cm\(^2\) at a 10-cm depth on the PTW BeamScan water phantom (PTW, Freiburg, Germany) under isocentric conditions (source-to-surface distance = 90 cm) and with the DOSE 1 electrometer (IBA Dosimetry, Germany). The TRUFIX system from PTW was used to place the microDiamond detector and the diodes at their effective points with the axis of symmetry parallel to the radiation beam. The ICs were also placed using the TRUFIX system at their geometric centres with their axes of symmetry perpendicular to the radiation beam and parallel to the movement of the leaves. The microMOSFETs and radiochromic films were centred (visually) in the luminous field and perpendicular to the radiation beam following the TRS 483 recommendations [18].

The OFs were measured with radiochromic film by placing pieces of the film between blocks of plastic water (CIRS, Norfolk, VA, USA) at a depth of 10 cm. They were then scanned, processed, and analysed with the web application for radiochromic film dosimetry found at http://www.Radiochromic.com (Radiochromic S.L., Girona, Spain). The OFs were calculated as the average of five 200 MU measurements, corrected for the pressure and temperature for each IC. The measurements presented were normalised to 3 \(\times\) 3 cm\(^2\) of the OF (the smallest field in which the lateral charged-particle equilibrium was sufficient for both energies).

A ‘reference detector’ — the average of the most suitable detectors for each field size — was considered for each field size. This was obtained by comparing our results with the available literature published on the different detectors and with the recommendations for use provided

| Table 1. Characteristics of the different detectors. |
|---------------------------------|-----------------|----------------|
| **Type** | **Active volume (mm\(^3\))** | **Material** |
| FC65-G Air ionisation chamber | 650 | Graphite and Aluminium |
| CC13-S Air ionisation chamber | 130 | PEEK and C:552 |
| Semiflex 3D Air ionisation chamber | 70 | PMMA, Graphite and Aluminium |
| PinPoint Air ionisation chamber | 16 | PMMA, Graphite and Aluminium |
| MicroDiamond Synthetic diamond | 0.004 | Diamond |
| SFD Unshielded diode | 0.017 | Silicon |
| EFD Unshielded diode | 0.188 | Silicon |
| MOSFET Metal oxide semiconductor field effect transistor | 2 \(\cdot\) 10\(^{-5}\) | SiO\(_2\) and Silicon |
| EBT3 Radiochromic film | N/A | Active layer based on diacetylene monomers with polyester coating |

https://doi.org/10.1371/journal.pone.0213253.t001
by the manufacturers. The differences between the OFs obtained with the different detectors and those from the reference detectors were calculated.

Parallel to this study, we performed the OFs corrections recommended in the TRS 483 for four of the detectors used in this work. In addition to this we obtained an estimate for OFs with CC13-S results, given that CC13-S and CC13 are built in a close way and the code of practice only reports corrections for the latter model.

The TRS 483 denotes the output correction factor with $k_{Q_{\text{clin}}/Q_{\text{meas}}}$ and states that it be applied to the OFs in the following way:

$$OF_{Q_{\text{clin}}/Q_{\text{meas}}} = \frac{M_{Q_{\text{clin}}}}{M_{Q_{\text{meas}}}} k_{Q_{\text{clin}}/Q_{\text{meas}}}$$

being $\frac{M_{Q_{\text{clin}}}}{M_{Q_{\text{meas}}}}$ the ratio of detector readings in water (corrected for influence quantities) in the clinical field f_{clin} with beam quality Q_{clin} and in the machine specific reference field f_{msr} with beam quality Q_{msr}. It should be noted here that TRS 483 uses the symbol $\Omega_{Q_{\text{clin}}/Q_{\text{meas}}}$ instead of $OF_{Q_{\text{clin}}/Q_{\text{meas}}}$, but we keep this last because it is more familiar to the readership.

Our OFs are presented in this case normalized to 10 x 10 cm2 in order to apply the correction factors of TRS 483, for field sizes between 0.6 x 0.6 cm2 and 4 x 4 cm2 at a 10-cm depth too.

Along with OFs, we present the experimental uncertainty associated to the ratio of detector readings and also its combination to the uncertainty given in Table 37 of TRS 483 for $k_{Q_{\text{clin}}/Q_{\text{meas}}}$ to get the uncertainty for OFs.

Moreover, the most critical field OFs (0.6 x 0.6 cm2 and 1 x 1 cm2) were also studied by means of daisy chaining [36] in 2 x 2 cm2, 3 x 3 cm2, and 4 x 4 cm2. In this situation OFs are obtained as:

$$OF_{Q_{\text{clin}}/Q_{\text{meas}}} = \frac{M_{Q_{\text{clin}}}}{M_{Q_{\text{meas}}}} k_{Q_{\text{clin}}/Q_{\text{meas}}} k_{Q_{\text{meas}}/Q_{\text{int}}} = OF_{Q_{\text{clin}}/Q_{\text{meas}}} OF_{Q_{\text{meas}}/Q_{\text{int}}} k_{Q_{\text{meas}}/Q_{\text{int}}}$$

where int denotes the intermediate square field used for daisy chaining.

For the profiles and PDDs, we used the PTW TRUFIX system, placing the ICs parallel to the radiation beam for the profiles and in the perpendicular direction for the PDDs. The detectors and diodes were oriented with the axis parallel to the beam so that their sensitive volume was perpendicular to it, both for the profiles and for the PDDs. Both the crossline and inline profiles, were measured for 6 MV and 6 MV FFF beams and for field sizes between 0.6 x 0.6 cm2 and 10 x 10 cm2 at 5 different depths (16, 50, 100, 200, and 300 mm) in the PTW BeamSscan water phantom (PTW, Freiburg, Germany) under isocentric conditions (source-to-surface distance = 90 cm) and with the PTW MEPHYSTO mc2 acquisition system (PTW, Freiburg, Germany). The acquisition mode was continuous with a speed of 2 mm/s and a resolution of 0.5 mm. The field size, penumbra size, flatness, and symmetry were also recorded.

The PDDs were measured with the same equipment and methods as the profiles, from a depth of 30 cm. For the PDDs, the depth of the dose maximum and that of 50% of the absorbed dose (R_{100} and R_{50}) values, normalised to the maximum dose distance (d_{max}) are presented. For the analysis, we used the PTW Analize software (PTW, Freiburg, Germany) for averaging, interpolation, and smoothing of the curves. In the same way as for the OFs, a ‘reference detector’ was marked for the profiles and PDDs based on our results, previous publications, and
recommendations for use, which in our opinion, represents the most appropriate detector for each measurement at each field size.

Results

Outputs factors

The bottom of Tables 2 and 3 show the differences between the detectors with respect to the OF references (shaded entries). As shown by these results, some ICs are not suitable for use with certain field sizes. In other words, where the detector’s active volume is the same or a greater order of magnitude than the size of the OF to be measured. For example, the FC65-G camera is not suitable for measuring the OF of $0.6 \times 0.6 \text{ cm}^2$, as shown by its 70% difference with respect to the reference OF.

Tables 2 and 3 show that the microMOSFETs and diodes behave properly for all field sizes; the microDiamond detector responded well in fields up to $7 \times 7 \text{ cm}^2$, beyond which it started to underestimate the OF. The PinPoint, Semiflex 3D, CC13-S, and FC65-G ICs underestimated for the smallest fields (0.6×0.6 and $1 \times 1 \text{ cm}^2$) because they have a higher active volume. However, as reported in both Table 2 and 3, these ICs are ideal for dose measurements from larger fields, except for the PinPoint IC which underestimates the OF from $7 \times 7 \text{ cm}^2$ because of the central electrode effect.

The reference OFs for each field size correctly correspond with the OFs obtained with the EBT3 radiochromic film, with deviations of less than 3% for both the FF and FFF beams for all
field sizes. There was no significant difference (less than 3% for all suitable detectors at each field size) in the dose responses between 6 MV and 6MV FFF beams for any of the detectors. As already demonstrated for the Versa HD by other authors [37], the OFs of FFF beams were lower than the FF beams for field sizes larger than $3 \times 3 \text{cm}^2$, but higher for field sizes smaller than $3 \times 3 \text{cm}^2$.

Finally, in the top of Tables 4 and 5 we show the ratio of detector readings measured directly and also with the daisy chaining in $4 \times 4 \text{cm}^2$, $3 \times 3 \text{cm}^2$ and $2 \times 2 \text{cm}^2$ along with their corresponding uncertainties. This ratio of detector charges is what was considered as the OF before the TRS 483 publication; nevertheless this code of practice emphasizes that it is not the OF, straightforwardly defined as a quotient of absorbed doses, because the $k_{Q_{\text{clin}}/Q_{\text{msr}}}$ is mitted or unknown. In the bottom of these tables we present the corrected OFs taking the $k_{Q_{\text{clin}}/Q_{\text{msr}}}$ from table 26 of TRS 483 along with their uncertainties.

The Tables 4 and 5 show that the uncertainty of the EFD associated with the lack of reproducibility of its reading is about 4 times greater than that of the microDiamond and SFD for 6 MV, and slightly lower for 6 FFF MV. EFD also had an infra-response for $0.6 \times 0.6 \text{cm}^2$ with both energies.

The process of correcting with TRS 483 $k_{Q_{\text{clin}}/Q_{\text{msr}}}$ convert dissimilar reading ratios to similar OFs in the case of microDiamond and SFD. Furthermore, final OFs are all compatible with every other when measurement uncertainty is taken into account, for both energies.

The daisy chaining procedure increases the experimental uncertainty by relying on more electrometer readings and seems to result in close reading ratios for microDiamond and SFD, but at the end did not lead to close OFs.

All these results are also shown in a more visual way in Figs 1–8.

Table 3. Output factors for different detectors depending on field size for 6 MV FFF beams.

Field size (cm2)	0.6 x 0.6	1 x 1	2 x 2	3 x 3	4 x 4	5 x 5	7 x 7	10 x 10
FC65-G	0.138	0.369	0.788	1.000	1.059	1.090	1.134	1.181
CC13-S	0.339	0.704	0.940	1.000	1.034	1.061	1.104	1.144
Semiflex 3D	0.409	0.744	0.943	1.000	1.034	1.061	1.104	1.149
PinPoint	0.468	0.766	0.945	1.000	1.036	1.063	1.102	1.145
MicroDiamond	0.572	0.819	0.952	1.000	1.031	1.058	1.099	1.144
SFD	0.586	0.813	0.949	1.000	1.038	1.066	1.114	1.180
EFD	0.566	0.817	0.953	1.000	1.033	1.060	1.104	1.165
MOSFET	0.555	0.790	0.951	1.000	1.027	1.061	1.115	1.166
EBT3	0.483	0.776	0.947	1.000	1.046	1.068	1.113	1.164

Reference Output Factor	0.570	0.810	0.945	1.000	1.034	1.061	1.114	1.163
FC65-G	-75.8	-54.4	-16.6	0.0	2.4	2.7	1.8	1.5
CC13-S	-40.5	-13.1	-0.5	0.0	0.0	0.0	-0.9	-1.6
Semiflex 3D	-28.2	-8.1	-0.2	0.0	0.0	0.0	-0.9	-1.2
PinPoint	-17.9	-5.4	0.0	0.0	0.2	0.2	-1.1	-1.5
MicroDiamond	0.4	1.1	0.7	0.0	-0.3	-0.3	-1.3	-1.6
SFD	2.8	0.4	0.4	0.0	0.4	0.5	0.0	1.5
EFD	-0.7	0.9	0.8	0.0	-0.1	-0.1	-0.9	0.2
MOSFET	-2.6	-2.5	0.6	0.0	-0.7	0.0	0.1	0.3
EBT3	-15.3	-4.2	0.2	0.0	1.2	0.7	-0.1	0.1

The shaded squares highlight the detectors used as a reference for each field size. The bottom of the table shows the difference (expressed as a percentage) between detector responses for each field size with respect to the chosen reference detector.

https://doi.org/10.1371/journal.pone.0213253.t003
Table 4. Ratio of detector readings for different detectors depending on the field size for 6 MV beams (top of the table) and output factors with TRS 483 correction (bottom of the table).

Field size (cm²)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.880	0.848	0.805	0.675	0.441	0.003	0.003	0.003	0.002	0.003
SFD	0.863	0.828	0.782	0.653	0.431	0.010	0.010	0.009	0.008	0.006
EFD	0.862	0.830	0.788	0.656	0.418	0.062	0.060	0.057	0.046	0.029
PinPoint				0.799						0.006
CC13-S	0.879				0.009					

Field size (cm²)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.674	0.440	0.007	0.005	0.007					
SFD	0.665	0.439	0.010	0.007	0.007					
EFD	0.669	0.427	0.045	0.028	0.028					

Field size (cm²)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.669	0.437	0.005	0.004	0.007					
SFD	0.667	0.440	0.009	0.007	0.007					
EFD	0.664	0.424	0.045	0.028	0.028					

Field size (cm²)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.880	0.848	0.803	0.664	0.429	0.006	0.007	0.007	0.007	0.007
SFD	0.885	0.852	0.807	0.665	0.430	0.012	0.012	0.011	0.010	0.008
EFD	0.874	0.843	0.800	0.658	0.415	0.063	0.061	0.059	0.047	0.029
PinPoint				0.802						0.009
CC13-S	0.880				0.011					

Field size (cm²)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.663	0.426	0.012	0.009	0.007					
SFD	0.660	0.424	0.014	0.010	0.007					
EFD	0.662	0.416	0.046	0.028	0.028					

Field size (cm²)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.662	0.425	0.011	0.008	0.007					
SFD	0.660	0.423	0.013	0.010	0.007					
EFD	0.660	0.415	0.046	0.028	0.028					

Field size (cm²)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.663	0.426	0.011	0.009	0.007					
SFD	0.660	0.424	0.013	0.010	0.007					
EFD	0.659	0.414	0.046	0.028	0.028					

The right side of the table shows the uncertainty associated with the process. Uncertainties for CC13-S are estimates because TRS 483 only reports data on CC13.

https://doi.org/10.1371/journal.pone.0213253.t004

Profiles

Fig 9 shows the in-plane profiles at a 100-cm depth for the 0.6 × 0.6 cm², 3 × 3 cm², and 5 × 5 cm² fields for the 6 MV and 6 MV FFF beams with the Semiflex 3D IC and the microDiamond detector which clearly shows that the penumbra is best characterised by the detector with the
Table 5. Ratio of detector readings for different detectors depending on the field size for 6 FFF MV beams (top of the table) and output factors with TRS 483 correction (bottom of the table).

Field size (cm2)	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6	4 x 4	3 x 3	2 x 2	1 x 1	0.6 x 0.6
Detector										
MicroDiamond	0.902	0.873	0.832	0.714	0.498	0.002	0.002	0.002	0.003	0.001
SFD	0.870	0.848	0.803	0.682	0.490	0.012	0.004	0.003	0.008	0.008
EFD	0.892	0.863	0.822	0.703	0.484	0.046	0.020	0.019	0.015	0.010
PinPoint	0.903	0.002	0.002	0.003	0.001	0.002	0.003	0.003	0.004	0.002
CC13-S	0.825	0.006								

- **Ratio of detector charge readings**

MicroDiamond	0.714	0.497								
SFD	0.707	0.508								
EFD	0.676	0.464								

- **Output factor with TRS 483 correction**

MicroDiamond	0.902	0.873	0.830	0.702	0.482	0.004	0.005	0.005	0.011	0.002
SFD	0.892	0.873	0.829	0.695	0.485	0.014	0.005	0.004	0.010	0.011
EFD	0.904	0.877	0.835	0.705	0.478	0.047	0.020	0.020	0.015	0.010
PinPoint	0.904	0.828								0.009

The right side of the table shows the uncertainty associated with the process. Uncertainties for CC13-S are estimates because TRS 483 only reports data on CC13.

https://doi.org/10.1371/journal.pone.0213253.t005
lowest active volume. For the profiles, the values for the field size, penumbra (average of the left and right penumbra), flatness ('unflatness' for the FFF beams), and symmetry for all the field sizes at a 100-mm depth are presented in Tables 6 and 7. The shaded entries in the tables also indicate the reference detector used to make the comparisons and calculate the deviations for each field size.

These tables show that the symmetry values for the FF beams are practically equal to those for the FFF beam (within the 100–102.58% range), except for the 0.6 × 0.6 cm² field size, for all the detectors. The flatness ('unflatness' for the FFF beams) shows the same behaviour, within the 100–103.18% range for the FF beam and 1.029–1.232% range for the 'unflatness' of the FFF beams.

Regarding the penumbra, for both energies and field sizes, the average penumbra in the crossline was greater than in the in-plane at around 1–1.5 mm. The Semiflex 3D IC overestimated both the field size and the penumbra for the smaller field sizes (0.6 × 0.6 cm² and 1 × 1 cm²) compared to the other detectors. For the other field sizes (from 2 × 2 cm² to 10 × 10 cm²)
cm²), the field size measurements were within 1% of the difference with respect to each field-size reference (shaded entries in Tables 6 and 7), for both the FF and FFF beams. Finally, the Semiflex 3D IC still overestimated the penumbra for these fields size.

Percentage depth dose

As shown in Table 8, some values for the FFF beam are a little higher than for the FF beam, both for R_{100} and R_{50}. The maximum difference reached was 1.5 mm for R_{100}, even though the quality of the FFF beam was matched to be the equivalent of the corresponding flattened beams, as specified in the Elekta customer acceptance test [38].

The shaded entries in the Table 8 show the reference detector used for each field size. For the 0.6×0.6 cm² and 1×1 cm² fields the reference detector was the SFD. These measurements were not performed for the PPC40 detector because its volume is greater than these field sizes. The Semiflex 3D detector showed a maximum difference of 15% (less than 2 mm) while the maximum difference of the microDiamond was 4% (less than 0.5 mm) for both the FF and FFF beams.

For 2×2 cm² fields, in both the FF and FFF beams, the differences for the PinPoint detector were less than 3% (less than 0.5 mm) for the SFD, microDiamond, and Semiflex 3D detectors. For the rest of the field sizes, all the differences between the parameters measured with the different detectors were less than 3%, except for the R_{100} which differed by up to 10% (1.5 mm) for the detectors with the lowest active volume (SFD and microDiamond).

Discussion

Firstly, with respect to OFs determination, by the time we were commissioning our 6 MV/6 MV FFF Versa HD, the piece of literature related with this topic was still somewhat heterogeneous. To our knowledge, only Lechner et al. work [27] was sufficiently systematic by covering a wide set of detectors and by reporting a complete series of corrections. This publication was...
really useful for us to notice detector behaviour and led some of our decisions when providing input for our therapy planning system. However, we decided to use our raw estimates for OFs until an institutional response like an IAEA’s code of practice was available. As mentioned before, it has come while preparing this manuscript, so we decided to keep our first determinations, which are representative of what users traditionally did in the absence of calculations of correction factors, and also present the real OFs in the way TRS 483 establishes [18] along with their uncertainties as a basis for a novel comparison.

The major differences between the detector responses is caused by their volumes. Our homogeneous set of measurements showed that MOSFET, microDiamond, and diodes are

![Graph 1](https://doi.org/10.1371/journal.pone.0213253.g005)

Fig 5. Ratio of detector readings and output factors for the 2 × 2 cm², 3 × 3 cm² and 4 × 4 cm² fields for the 6 FFF MV beams.

![Graph 2](https://doi.org/10.1371/journal.pone.0213253.g006)

Fig 6. Ratio of detector readings and output factors for the 0.6 × 0.6 cm² and 1 × 1 cm² fields for the 6 FFF MV beams with different detectors, with daisy chaining in 4 × 4 cm² without correction and in 2 × 2 cm² with the TRS 483 correction.
good detectors for small field dosimetry and that these can be complemented with radiochromic film verification, as shown by previously published data [39, 40]. For all the detectors analysed, we found the same general trend regardless the type of filtration used.

With the section of our study related to TRS 483 correction factors we have found that applying the k_{clin}, f_{msr}, Q_{clin}, Q_{msr} to our measurements makes each set of OFs (microDiamond’s and SFD’s) compatible with the other. EFD results seem to have a worse behaviour due to the lack of reproducibility of our detector.

Another result derived from our comparison of both sets of data for OFs determination is related with the so-called daisy chaining procedure to ideally minimize OFs error along a broad range of field sizes. This method, initially investigated for mitigating different over-response of silicon detectors to field size changes by Dieterich and Sherouse [31], has been also addressed by the IAEA’s code of practice as mentioned above. However, this procedure does not always bring our ratios of detector readings closer to the true OFs calculated with the TRS 483 corrections. As a consequence, we would discourage other users from relying on daisy chaining and recommend instead use of Eq 1 (see materials and methods section) with IAEA’s code of practice factors.

Fig 7. Ratio of detector readings and OFs for the 0.6×0.6 cm2 field for the 6 FFF MV beams with different detectors. Results with daisy chaining in 4×4 cm2, 3×3 cm2, and in 2×2 cm2 are also presented.

https://doi.org/10.1371/journal.pone.0213253.g007

Fig 8. Ratio of detector readings and OFs for the 1×1 cm2 field for the 6 FFF MV beams with different detectors. Results with daisy chaining in 4×4 cm2, 3×3 cm2, and in 2×2 cm2 are also presented.

https://doi.org/10.1371/journal.pone.0213253.g008

Fig 9. In-plane profiles at a 100-cm depth for the 0.6×0.6 cm2, 3×3 cm2, and 5×5 cm2 fields for the 6 MV (left) and 6 MV FFF (right) beams with different detectors.

https://doi.org/10.1371/journal.pone.0213253.g009
Field size (cm)	Penumbra (mm)	Flatness (%)	Symmetry (%)	Field size (cm)	Penumbra (mm)	Flatness (%)	Symmetry (%)
PFD-3G	0.674	3.535	107.06	0.633	2.815	105.59	105.59
SFD	0.663	3.480	106.10	0.605	2.440	103.34	103.34
MicroDiamond	0.687	3.655	100.00	0.627	2.685	101.23	101.23
SemiFlex 3D	0.820	4.360	100.31	0.741	3.770	100.12	100.12
PFD-3G	1.049	4.100	100.04	1.012	3.310	100.03	100.03
SFD	1.056	4.070	100.00	1.026	2.755	100.00	100.00
MicroDiamond	1.060	4.260	100.07	1.023	2.940	100.79	100.79
SemiFlex 3D	1.112	5.060	100.09	1.062	4.260	100.01	100.01
PFD-3G	2.029	4.610	100.06	2.018	3.310	100.03	100.03
SFD	2.041	4.695	100.21	2.025	3.180	100.28	100.28
MicroDiamond	2.028	4.880	100.17	2.032	3.320	100.14	100.14
SemiFlex 3D	2.032	5.920	100.06	2.056	4.835	100.06	100.06
PFD-3G	3.026	4.805	100.62	3.011	3.515	100.47	100.28
SFD	3.039	4.935	100.75	3.029	3.460	101.64	101.84
MicroDiamond	3.034	5.115	100.39	3.028	3.575	100.54	100.52
SemiFlex 3D	3.042	6.265	100.66	3.055	5.140	100.72	100.57
PFD-3G	4.029	5.045	100.97	4.024	3.650	100.91	100.82
SFD	4.028	5.255	101.04	4.018	3.710	101.23	100.89
MicroDiamond	4.030	5.370	100.91	4.032	3.755	100.82	100.47
SemiFlex 3D	4.033	6.515	101.05	4.073	5.330	100.90	100.48
PFD-3G	5.024	5.225	101.27	4.997	3.780	101.08	100.55
SFD	5.030	5.445	101.91	5.030	3.965	101.50	101.12
MicroDiamond	5.034	5.500	101.01	5.040	3.940	101.23	100.57
SemiFlex 3D	5.053	6.715	101.25	5.040	5.565	101.07	100.36
PFD-3G	7.015	5.455	101.64	7.029	4.000	101.58	100.67
MicroDiamond	7.022	5.885	102.18	7.034	4.240	101.82	101.20
SemiFlex 3D	7.042	5.815	102.37	6.997	4.225	101.90	100.94
PFD-3G	10.001	5.985	102.45	9.987	4.320	101.91	100.88
MicroDiamond	10.039	6.310	103.18	10.022	4.670	102.58	100.93
SemiFlex 3D	10.037	7.610	102.40	10.087	6.335	102.00	100.82

The shaded squares highlight the detectors used as a reference for each field size.

https://doi.org/10.1371/journal.pone.0213253.t006
Table 7. Results of the crossline and inline profile parameters for different detectors at a 100-mm depth depending on the field size for 6 MV FFF beams.

Field size (cm)	Crossline	Inline
0.6 × 0.6 cm²		
PFD-3G	0.649	0.577
SFD	0.625	0.570
MicroDiamond	0.649	0.596
SemiFlex 3D	0.742	0.682
1 × 1 cm²		
PFD-3G	1.012	1.002
SFD	1.026	0.999
MicroDiamond	1.025	0.990
SemiFlex 3D	1.053	1.032
2 × 2 cm²		
PFD-3G	1.997	2.016
SFD	2.012	2.002
MicroDiamond	2.000	2.010
SemiFlex 3D	2.000	2.037
3 × 3 cm²		
PFD-3G	3.006	3.017
SFD	3.024	3.009
MicroDiamond	3.011	3.015
SemiFlex 3D	3.008	3.023
4 × 4 cm²		
PFD-3G	4.002	4.022
SFD	4.013	3.999
MicroDiamond	4.013	4.030
SemiFlex 3D	4.015	4.058
5 × 5 cm²		
PFD-3G	5.009	5.034
SFD	5.023	5.018
MicroDiamond	5.012	5.035
SemiFlex 3D	5.025	5.061
7 × 7 cm²		
PFD-3G	6.990	7.023
MicroDiamond	7.002	7.020
SemiFlex 3D	-	-
10 × 10 cm²		
PFD-3G	9.993	10.016
MicroDiamond	10.000	10.052
SemiFlex 3D	-	-

The shaded squares highlight the detectors used as a reference for each field size.

https://doi.org/10.1371/journal.pone.0213253.t007
Table 8. Results of the parameters for different detectors depending on the field size for 6 MV and 6 MV FFF beams.

Field Size	Detector	6 MV	6 MV FFF		
	R₁₀₀(mm)	R₅₀(mm)	R₁₀₀(mm)	R₅₀(mm)	
0.6 × 0.6 cm²	SFD	10.51	116.50	11.50	113.04
	MicroDiamond	10.99	115.11	11.51	115.20
	SemiFlex 3D	12.49	130.50	11.02	126.25
1 × 1 cm²	SFD	12.52	122.69	13.51	121.55
	MicroDiamond	12.48	121.03	14.00	120.28
	SemiFlex 3D	12.98	124.50	14.50	123.03
2 × 2 cm²	SFD	14.99	127.64	15.01	128.18
	MicroDiamond	15.02	126.49	16.02	126.37
	SemiFlex 3D	15.01	126.09	15.51	126.47
	PinPoint	14.49	125.91	15.03	126.12
3 × 3 cm²	PPC40	13.90	131.30	16.50	131.90
	SFD	16.50	131.49	16.51	132.23
	MicroDiamond	15.99	130.65	16.98	130.50
	SemiFlex 3D	15.01	129.55	16.00	129.25
	PinPoint	14.50	128.82	16.48	129.28
4 × 4 cm²	PPC40	15.49	133.17	16.01	133.15
	SFD	15.52	133.65	16.52	136.04
	MicroDiamond	16.51	133.22	17.00	133.78
	SemiFlex 3D	15.01	133.06	16.48	133.31
	PinPoint	14.50	132.37	16.00	132.73
5 × 5 cm²	PPC40	14.99	136.09	16.02	135.98
	SFD	16.00	139.33	16.01	140.23
	MicroDiamond	15.54	137.29	16.99	136.67
	SemiFlex 3D	14.51	136.09	16.00	136.64
	PinPoint	15.00	135.72	15.98	135.79
7 × 7 cm²	PPC40	14.53	141.67	16.01	141.54
	MicroDiamond	16.01	142.55	17.48	142.30
	SemiFlex 3D	14.52	141.74	16.03	141.65
	PinPoint	14.48	141.78	16.01	140.97
10 × 10 cm²	PPC40	14.99	148.67	16.50	147.34
	MicroDiamond	15.51	149.33	16.99	148.05
	SemiFlex 3D	15.48	149.03	15.99	147.54

(Continued)
Secondly, with regard to profiles acquisitions, the penumbra in the crossline direction (direction of the leaves) was greater than in the jaw direction (inline) for every field size. This difference is caused by higher transmission through the rounded MLC leaves [36]. As seen in our results, high-resolution diodes and small-volume ICs and detectors help to accurately measure the penumbra in these small fields [37,41].

Finally, with respect to percentage depth doses determination, the R_{100} of equivalent-quality FFF beams was higher compared to the corresponding flattened beams. This effect was explained by Huang et al., [42] who reported that the R_{100} shift was influenced by two competing processes: the increased contribution of low-energy photons caused by removing the flattening filter (upstream R_{100} shift), and the increased number of penetrating photons resulting from the increased beam quality (downstream R_{100} shift). The combined effect of these two competing processes results in a deeper R_{100} for equivalent-quality FFF beams.

Conclusions

There were no substantial differences in the dose responses for FF and FFF beams that could have any clinically relevant consequences for any of the detectors investigated. Both the results of the OF and for the profiles and PDDs are clearly consistent with previously published data relating to the Versa HD, and thus these findings will help other professionals who are commissioning new Versa HD linacs. These data provide valuable insight into accurate beam modelling, which in turn, determines treatment outcomes and patient safety.

Using newly available TRS 483 corrections provide more consistent sets of results for OF determination that daisy chaining procedures. Correcting our first OFs, taken as ratio of detector charges, with the IAEA’s TRS 483 corrections to obtain the final OFs, did not make the former significantly different.

Supporting information

S1 File. OFReference.xls.

(XLS)

S2 File. OFReference0.6-1.xls.

(XLS)

S3 File. Uncertainty.xlsx.

(XLSX)

Author Contributions

Conceptualization: Juan López-Tarjuelo.

Data curation: Paula Monasor Denia, María del Carmen Castellet García, Carla Manjón García, Juan David Quirós Higuera, Noelia de Marco Blancas, Jorge Bonaque Alandí, Xavier Jordi Juan Senabre, Agustín Santos Serra, Juan López-Tarjuelo.

Formal analysis: Paula Monasor Denia.

Table 8. (Continued)

| PinPoint | 14.52 | 148.95 | 16.50 | 147.27 |

The shaded squares highlight the detectors used as a reference for each field size. https://doi.org/10.1371/journal.pone.0213253.t008
Investigation: Paula Monasor Denia, María del Carmen Castellet García, Carla Manjón García, Juan David Quirós Higuéras, Noelia de Marco Blancas, Jorge Bonaque Alandí, Xavier Jordi Juan Senabre, Agustín Santos Serra, Juan López-Tarjuelo.

Methodology: Juan López-Tarjuelo.

Supervision: Juan López-Tarjuelo.

Validation: Juan López-Tarjuelo.

Visualization: Juan López-Tarjuelo.

Writing – original draft: Paula Monasor Denia.

Writing – review & editing: Paula Monasor Denia, María del Carmen Castellet García, Carla Manjón García, Juan David Quirós Higuéras, Noelia de Marco Blancas, Jorge Bonaque Alandí, Xavier Jordi Juan Senabre, Agustín Santos Serra, Juan López-Tarjuelo.

References
1. Georg D, Knöös T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys 2011; 38:1280–93. https://doi.org/10.1118/1.3554643 PMID: 21520840
2. Cozzi L, Clivio A, Bauman G, Cora S, Nicolini G, Pellegrini R, et al. Comparison of advanced irradiation techniques with photons for benign intracranial tumours. Radiother Oncol 2006; 80:269–73. https://doi.org/10.1016/j.radonc.2006.07.012 PMID: 16990315
3. Lang S, Shrestha B, Graydon S, Cavelaars F, Linsenmeier C, Hrbacek J, et al. Clinical application of flattening filter free beams for extracranial stereotactic radiotherapy. Radiother Oncol 2013; 106 (2):255–9. https://doi.org/10.1016/j.radonc.2012.12.012 PMID: 23395063
4. Hrbacek J, Lang S, Klöck S. Commissioning of photon beams of a flattening filter-free linear accelerator and the accuracy of beam modeling using an anisotropic analytical algorithm. Int J Radiat Oncol Biol Phys. 2011; 80(4):1228–37. https://doi.org/10.1016/j.ijrobp.2010.09.050 PMID: 21129855
5. Pöniisch F, Titt U, Vassiliev ON, Kry SF, Mohan R. Properties of unflattened photon beams shaped by a multileaf collimator. Med Phys. 2006; 33(6):1738–46. https://doi.org/10.1118/1.12201149 PMID: 16672081
6. Vassiliev ON, Titt U, Pöniisch F, Kry SF, Mohan R, Gillin MT. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006; 51(7):1907–17. https://doi.org/10.1088/0031-9155/51/7/019 PMID: 16552113
7. Titt U, Vassiliev ON, Pöniisch F, Dong L, Liu H, Mohan R. A flattening filter free photon treatment concept evaluation with Monte Carlo. Med Phys. 2006; 33(6):1595–602. https://doi.org/10.1118/1.2198327 PMID: 1672067
8. Vassiliev ON, Titt U, Kry SF, Pöniisch F, Gillin MT, Mohan R. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator. Med Phys. 2006; 33(4):820–27. https://doi.org/10.1118/1.2174720 PMID: 16696457
9. Kragl G, af Wetterstedt S, Knäusl B, Lind M, McCavana P, Knöös T, et al. Dosimetric characteristics of 6 and 10 MV unflattened photon beams. Radiother Oncol. 2009; 93(1):141–46. https://doi.org/10.1016/j.radonc.2009.06.008 PMID: 19592123
10. Cashmore J. The characterization of unflattened photon beams from a 6 MV linear accelerator. Phys Med Biol. 2008; 53(7):1933–46. https://doi.org/10.1088/0031-9155/53/7/009 PMID: 18364548
11. Paynter D, Weston SJ, Cosgrove V, Evans JA, Thwaites DI. A beam characterisation study of flattening filter free beams with and without matching using the Elekta Agility MLC. Radiother Oncol. 2012; 103 (1):346.
12. Dalaryd M, Kragl G, Ceberg C, Georg D, McClean B, af Wetterstedt S, et al. A Monte Carlo study of a flattening filter-free linear accelerator verified with measurements. Phys Med Biol. 2010; 55(23):7333–44. https://doi.org/10.1088/0031-9155/55/23/010 PMID: 21081829
13. Aspradakis MM, Byrne JP, Palmins H, Duane S, Conway J, Warrington AP, et al. Small field MV photon dosimetry. IPEM Report 103, York, UK: IPEM; 2010.
14. Palmins H. Small and composite field dosimetry: the problems and recent progress. Standards, applications and quality assurance in medical radiation dosimetry. Proceedings of an international symposium, Vienna, Austria: IAEA; 2011;161–80.
15. Das LJ, Ding GX, Ahnesjö A. Small fields: non equilibrium radiation dosimetry. Med Phys 2008; 35:206–15. https://doi.org/10.1118/1.2815356 PMID: 18293576

16. McKerracher C, Thwaites DI. Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 1999; 44:2143–60. PMID: 10495110

17. Das LJ, Sauer O, Ahnesjö A. WE-A-137-01: small field dosimetry. Med Phys 2013; 40:465.

18. International Atomic Energy Agency. Technical Reports Series No. 483. Dosimetry of Small Static Fields Used in External Beam Radiotherapy. An International Code of Practice for Reference and Relative Dose Determination. IAEA. Vienna, 2017.

19. Scott AJD, Kumar S, Nahum AE, Fenwick JD. Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol 2012; 57:4461–76. https://doi.org/10.1088/0031-9155/57/14/4461 PMID: 23745774

20. Fenwick JD, Kumar S, Scott AJD, Nahum AE. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields. Phys Med Biol 2013; 58:2901–23. https://doi.org/10.1088/0031-9155/58/9/2901 PMID: 23574749

21. Cranmer-Sargison G, Weston S, Evans JA, Sidhu NP, Thwaites DI. Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors. Med Phys 2011; 38:6592–602. https://doi.org/10.1118/1.3658572 PMID: 22149841

22. Pantelis E, Antypas C, Petrokokkinos L, Karaiskos P, Papagiannis P, Kozicki M, et al. Dosimetric characterization of CyberKnife radiosurgical photon beams using polymer gels. Med Phys 2008; 35:2312–20. https://doi.org/10.1118/1.2919099 PMID: 18649464

23. Pantelis E, Moutsatsos A, Zourani K, Kilby W, Antypas C, Papagiannis P, et al. On the implementation of a recently proposed dosimetric formalism to a robotic radiosurgery system. Med Phys 2010; 37:2369–79. https://doi.org/10.1118/1.3404289 PMID: 20527571

24. Francescon P, Cora S, Satariano N. Calculation of $k(Q_{clin}), Q_{msr}) (f_{clin}, f_{msr})$ for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys 2011; 38:6513–27. https://doi.org/10.1118/1.3660770 PMID: 22894414

25. Scott AJD, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys 2008; 35:4671–84. https://doi.org/10.1118/1.2975223 PMID: 18975713

26. Scott AJD, Nahum AE, Fenwick JD. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements. Med Phys 2009; 36:3132–44. https://doi.org/10.1118/1.3152866 PMID: 19673212

27. Lechner W, Palmans H, Sökner L, Grochowska P, Georg D. Detector comparison for small field output factor measurements in flattening filter free photon beams. Radiother Oncol. 2013; 109(3):356–60. https://doi.org/10.1016/j.radonc.2013.10.022 PMID: 24257020

28. Pantelis E, Moutsatsos A, Zourani K, Petrokokkinos L, Sakelliou L, Kilby W, et al. On the output factor measurements of the CyberKnife iris collimator small fields: Experimental determination of the $k(Q_{clin}), Q_{msr}) (f_{clin}, f_{msr})$ correction factors for microchamber and diode detectors. Med Phys 2012; 39:4875–85. https://doi.org/10.1118/1.4736810 PMID: 22894414

29. Ralston A, Liu P, Warrener K, McKenzie D, Suchowerska N. Small field diode correction factors derived using an air core fibre optic scintillation dosimeter and EBT2 film. Phys Med Biol 2012; 57:2587–602. https://doi.org/10.1088/0031-9155/57/9/2587 PMID: 22505592

30. Francescon P, Kilby W, Satariano N, Cora S. Monte Carlo simulated correction factors for machine specific reference field dose calibration and output factor measurement using fixed and iris collimators on the CyberKnife system. Med Phys 2012; 37:5741–58. https://doi.org/10.1007/0031-9155/57/12/3741 PMID: 22617842

31. Dieterich S, Sherouse GW. Experimental comparison of seven commercial dosimetry diodes for measurement of stereotactic radio surgery cone factors. Med Phys 2011; 38(7):4166–73. https://doi.org/10.1118/1.3592647 PMID: 21859018

32. Kragl G, af Wetterstedt S, Knäsbl S. Dosimetric characteristics of 6 and 10 MV unflattened photon beams. Radiother Oncol 2009; 93:141–6. https://doi.org/10.1016/j.radonc.2009.06.008 PMID: 19592123

33. Georg D, Kragl G, af Wetterstedt S, McCavana P, McClean B, Knöös T. Photon beam quality variations of a flattening filter free linear accelerator. Med Phys 2010; 37:49–53. https://doi.org/10.1118/1.3264617 PMID: 20175465

34. Kragl G, Baier F, Lutz S, Albrich D, Dalaryd M, Kroupa B, et al. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Med Phys 2011; 21:91–101.
35. Kragl G, Alrich D, Georg D. Radiation therapy with unflattened photon beams: dosimetric accuracy of advanced dose calculation algorithms. Radiother Oncol 2011; 100:417–23. https://doi.org/10.1016/j.radonc.2011.09.001 PMID: 21945857

36. Dieterich S, Sherouse GW. Experimental comparison of seven commercial dosimetry diodes for measurement of stereotactic radiosurgery cone factors. Med Phys 2011; 38(7):4166–73. https://doi.org/10.1118/1.3592647 PMID: 21859018

37. Narayanasamy G, Saenz D, Cruz W, Ha C.S, Papanikolaou N, Stathakis S. Commissioning an Elekta Versa HD linear accelerator. Med Phys 2016; 17(1):179–191.

38. Elekta. Elekta customer acceptance tests. ID 1503568 04. Stockholm: Elekta; 2017.

39. Gonzalez A, Vera JA, Lago JD. Small fields measurements with radiochromic films. J Med Phys 2015; 40(1):61–7.

40. Kohno R, Hirano E, Nishio T, Miyagishi T, Goka T, Kawashima M, et al. Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy. Radiol Phys Technol 2008; 1(1):55–61. https://doi.org/10.1007/s12194-007-0007-9 PMID: 20821164

41. Mukesh N. Meshram, Srimanta Pramanik, Ranjith C. P., Saravana K. Gopal and Rishabh Dobhal. Dosimetric properties of equivalent-quality flattening filter-free (FFF) and flattened photon beams of Versa HD linear accelerator. Med Phys 2016; 17(3):358–370.

42. Huang Y, Siochi RA, Bayouth JE. Dosimetric properties of beam quality-matched 6 MV unflattened photon beam. J Appl Clin Med Phys 2012; 13(4):71–81.