Intraocular lens power calculation formula in congenital cataracts: Are we using the correct formula for pediatric eyes?

Savleen Kaur, Jaspreet Sukhija, Jagat Ram

The major challenge these days in pediatric cataract surgery is not the technique of surgery or intraocular lens (IOL) used but the postoperative refractive error. Amblyopia occurring due to postoperative refractive error which the child has; destroys the benefit obtained by a near-perfect and timely surgery. Even if we settle the debate as to what should be the ideal postoperative target refraction, there is a postoperative surprise that is not explained by our conventional insights of an accurate power calculation in children. The role of IOL power calculation formulae in affecting the postoperative refractive error should not be underestimated. Therefore, which age-appropriate formula is to be used for children is unclear. This review is an update on major IOL power calculation formulae used in pediatric eyes. We have tried to define why we should not be using these formulae for adults and review the literature in this regard.

Key words: Biometry, intraocular lens power, pediatric cataract

Intraocular lens (IOL) implantation for all ages is being largely endorsed by pediatric ophthalmologists throughout the globe. With advances in surgical techniques and instrumentation, primary IOL implantation is now largely being accepted in infants as well.[1-3]

The major challenge after a well-done pediatric cataract surgery is the postoperative refractive error. This refractive error depends largely on the power of the IOL and the postoperative target refraction. Since an inaccuracy in the power calculation might result in a permanent visual disability, it is crucial to obtain an accurate IOL power. Ocular biometry is the single most important factor influencing the precision of IOL power in children. Biometry is, in turn, affected by measurement errors in children and IOL calculation formulae. Examination under anesthesia precludes the cooperation needed for the examination. Even after an accurate measurement, the type of ultrasound used[5] (immersion vs. contact), the velocity of ultrasound used,[6] the keratometry method, as well as the site of IOL implanted, can all affect the IOL power calculation largely [Table 1].

The IOL power calculation formulae (IOLCF) also are a source of variability in power determination and have a very crucial role in this regard. Various IOL formulas have been designed for adult eyes but presently there are no formulae for the pediatric eye. There are some inherent difficulties in the pediatric eye making IOL power calculation difficult. We cannot use the adult formulas in pediatric eyes because of their shorter axial lengths, higher keratometry, and smaller anterior chamber depths. The IOLCF designed for adults only has been tested for accuracy in children.[7-18] There is no consensus as to which is the best formula for children.

In this article, we review the literature on the accuracy of adult IOL prediction formulae when used for pediatric IOL power calculations.

History of IOL calculation formulas

IOLCF have been evolving since their inception in 1967.[19] The modern formulae are based on the equation given by Fyodorov. It is based on axial length, keratometry, vertex distance, effective lens position, and desired refraction postoperatively. These formulae are often classified based on their derivation into theoretical, regression, or both. Regression formulae are empirically derived from normative data on adult eyes using corneal power and axial length to derive the IOL power. The SRK formula was formulated by Sanders, Retzlaff, and Kraff based on a large number of postoperative results in adults. It is the most widely used formula and along with its modifications, is now in use for decades. Examples of regression formulae include SRK I and SRK II.

In the original formulae, the anterior chamber depth was presumed constant as the IOLs were designed for the anterior chamber. The SRK II formula was thus modified to include the anterior chamber depth and axial length while formulating the A constant derived by the manufacturer.

Theoretical formulas on the other hand work on theoretical principles using geometrics on a schematic or reduced eye. SRK
There are a lot of reasons why we should not use the adult formulae in children, measurement errors, postoperative target refraction, and different biometry. In addition, dense cataract and dense vitreous may reduce ultrasound transmission. Pediatric eyes are shorter hence require high-powered IOLs. In short eyes, an error of 1 mm in axial length can introduce an error up to 3.75 D in the IOL power.\cite{23} Children are often uncooperative for examination and hence there is an inaccuracy in axial length and keratometry measurements due to the supine position used to obtain these. The target refraction is not emmetropic as in adults.\cite{8} Measurement errors prevail as the instruments are designed for adult eyes with a fixed velocity, which is less than in the eyes with cataracts resulting in an error of up to 0.25 D.\cite{24} Office measurements in children are more accurate than those taken under anesthesia and hence measurement errors confound the results due to lack of fixation in children.\cite{9} Most importantly, errors arise because of the different biometry in children and assumptions made in the IOLCF. Their biometrics are not only different than an adult but also different than an anatomically normal (noncataractous) pediatric eye. It is reasonable to argue that pediatric eyes are not "small adult eyes" and hence the adult regression formulae for shorter eyes should not be used.\cite{23} Regression formulae when derived had very few short eyes and they were based on adult biometrics. On the other hand, theoretical formulae are based on adult schematic eye and hence should perform better being based on optical principles.\cite{10} These formulae could be theoretically extrapolated better in children by proportionately downsizing the variables to pediatric dimensions. The problem in this context is that the differences of the pediatric dimensions for a cataractous eye versus a normal eye are not clearly elucidated. The anterior segment to posterior segment ratio of an infant is large. The capsular bag also contracts and causes changes in effective lens position. Current IOLCF do not take into account the variable site of IOL implantation, shallow anterior chamber, dynamic vitreous pressure, and the postoperative capsular contraction in children. Higher the lens power; more are the changes in refraction by the displacement of the lens position.\cite{19} The anterior chamber depth in the formulae is either assumed from the manufacturer’s A constant or calculated in theoretical formulae based on axial length and biometry.

Finally, the target refraction for all pediatric IOL power calculations is not emmetropia as in adult eyes that may affect the results of the same IOLCF.\cite{14,28} Postoperative refraction has a 27% chance of causing an error in IOL power calculation.\cite{27} Axial elongation and decrease in corneal curvature in all children bring about a myopic shift, which affects the refractive state and hence the IOL power that we choose. Even the presence of cataracts and their surgical removal influence the dioptic power of the eye.\cite{28} The errors obtained in a pediatric eye in the predicted error may be very large and are reported to range up to 14.3 D by different formulae\cite{11} with mean errors reported around 1.06.\cite{12} Only 21% of the patients fell into the acceptable clinical error of 0.5 D and 34.4% into ±1D in a study previously published.\cite{12} Furthermore, the axial length and the keratometry affect the prediction errors by all formulae.\cite{13} This variability increases as the axial length decreases below 19 mm. By SRK II, there is an error of 2.5 D/mm of axial length but it is not constant at all axial lengths. The general tendency is a lesser error in eyes with longer axial length and larger keratometry.\cite{7,14} Where the eye is smaller than 20 mm, the prediction error could be up to 2.63 D, which is an amblyogenic factor in itself.\cite{19} This sensitivity to changes in axial length is increased in children up to an error of 4 to 14 D per mm of axial length and is not even uniform with all IOLCF.\cite{19}
Which formula is the least inaccurate?

So, which is the best adult formula to be used for a child? Since all formulas give erroneous results in children, the question should be: which is the least inaccurate IOLCF when used in children. Postoperative results after pediatric cataract surgery using different formulas have shown extreme variability in refraction. Adult formulas have been tested in very few extremely short eyes <20 mm. The accuracy of five formulae (SRK, SRK-II, SRK/T, Holladay I, and Hoffer Q) was compared in 206 children and all were found unsatisfactory by Mezer et al. and equivalent in another study. Nihilani et al. got an accuracy of 43% within 0.5 D by all formulae. The results of the study by Andreo et al. revealed little difference between SRK II, SRK/T, Holladay I, and Hoffer Q formula in eyes of all axial lengths. The two most commonly used formulae SRK/T and SRK-ll were found to be equal in predicting errors in 101 pediatric eyes. All formulae behaved equally in another study. The SRK-T has shown greater accuracy when the mean predicted error was compared in some studies and was found not to be as accurate in others. In the short adult eyes also the Holladay 2 and Hoffer Q showed equivalent results, although it is not fair to extrapolate these results in pediatric eyes.

The infant aphakia treatment study, which is the largest trial on pediatric intraocular lens implantation found that the Holladay I and the SRK/T gave the minimum possible errors. Overall, SRK/T was found to give the minimum average prediction error (0.3 D) and Hoffer Q the highest error (2.3 D). They also stated that half of the patients would have a refractive error up to 1 D with SRK/T as well as Holladay I. SRK II tends to undercorrect the power in pediatric eyes. They concluded that the SRK/T and Holladay I yield good results in infants and they preferred Holladay I. Hoffer Q is reported as the most accurate in very few studies and also reported to be the worst in some study. Study by Nihilani et al. was the first to report the best prediction error with Hoffer Q for short pediatric eyes. However, their better predictability from Hoffer Q compared with all formulae was equal and not statistically significant. Hoffer Q was also likely to overcorrect when the error exceeds 0.5 D because of a greater number of short eyes in their cohort. However overcorrection in children is not advisable at all. Similar results were seen in the study by Neely et al. where they found that there was a tendency for the Hoffer Q formula to overestimate the IOL power significantly in pediatric eyes. As age, axial length and diameter of the cornea decreased, the accuracy of the Hoffer Q formula went down.

Pediatric IOL calculator uses computerized software for IOL power calculation that is calculated from pediatric aphakic models. It is a modification of the SRK II formula using the Holladay algorithm and predicts the refraction of a growing child with operated cataract and IOL. The pediatric IOL calculator was compared with the SRK II in 31 pediatric eyes and found comparable. The mean prediction error was 1.14 D with the calculator, which could predict within ±0.5 D in 46.67% of eyes. For aphakic children often uncooperative for biometry, formulae using aphakic refraction have been formulated. These formulae, namely, Hug’s and Khan’s formulas were compared with biometry-based formulae also for secondary intraocular lens implantation. Although these methods can give you a fair idea of the IOL power to be implanted; they are advantageous only in a setting where obtaining biometry is difficult.

Since all IOLCF have been regarded to give suboptimal accuracy, no clear-cut guidelines have been laid so far. It is fair to say that any formula used will give accurate results in 45%–50% of the patients only. It may be justifiable to continue using an appropriate combination of two single constant formulae and choosing the lowest power in children. Of course, the error should be expected with any new generation formula. SRK/T and Holladay seem to be the most popular IOLCF so far used successfully in pediatric eyes.

Age and IOL power calculation formula

The variability in refractive outcomes after various IOLCF is particularly obvious in children younger than 2 years of age. Many studies have tested the accuracy of different IOLCF in a wide age group of children from less than 2 years to 8 years and even up to 18 years. One of these studies used the SRK/T formula in all eyes less than 2 years as a standard guideline and hence the other formulae were clinically never tested in this age group. The acceptance of IOL implantation in less than 2 years has gradually increased and these young children need the most precise IOL power due to the largest anticipated myopic shift. These eyes undergo a rapid elongation of the eye. Hence, the prediction errors have been reported to be maximum in this age group that has the smallest axial lengths. The different axial lengths and corneal curvatures make the predictability difficult and inaccurate. The operative technique with vitrectomy does not seem to affect the refractive outcome. Studies show that there is a trend toward larger prediction errors in axial lengths less than 22 mm in youngest children. Most of these studies were underpowered to separately look for the results of different formulae in children less than 2 years of age. Kekunnaya et al. studied the predictability of desired postoperative refraction in children less than 2 years. They used SRK-ll, SRK/T, Holladay I, and Hoffer Q in 128 eyes of 84 children and found the SRK II to show the minimum predicted error (2.27 ± 1.69 D) with an accuracy of 50%. This error is also very large in clinical terms while considering postoperative amblyopia. Within the age group of 2 years; however, age was found not to influence the absolute prediction error with any formulae. The accuracy of Hoffer Q in this age group was conflicting between the two studies. As hypothesized by Kekunnaya et al., the surgical factor used in the Hoffer Q formula may be difficult to compute in these small eyes compounded by the inaccuracy of effective lens position. In another study with a relatively small sample size, where eight formulae were studied, it was seen that in patients younger than 2 years old or with AL ≤ 21 mm, SRK/T formulas were relatively accurate, whereas Barrett and Haigis formulas were better in patients older than 2 or with AL > 21 mm. They found out that the mean absolute prediction errors were similar using third-generation and fourth-generation formulas. Again the A constant used in all of these studies is derived from adults. In a recent study, a significant negative correlation between the age of the patient and predictive error of the SRK/T formula was found. Overall, all IOL power calculation formulae tend to be variable in children, especially in children <2 years, with AL < 19 mm and K reading > 46.5 D. In addition, age at the time of surgery significantly contributes to the refractive surprise using all formulae. SRK/T and Holladay I formulae give better results in children aged less than 2 years.

Lacunae

A lot of studies analyzing the accuracy of IOLCF have been retrospective with small numbers. Studies describing the use of the latest fourth-generation formulae in pediatric eyes are lacking. Barrett Universal II formula as a reasonable and reliable option in a single study has been reported. Different surgeons and their different techniques could affect the predicted error post-cataract surgery and many comparisons in the studies were not randomized and were merely a consecutive series of patients. Now that even smaller children are undergoing
IOL implantation, the prediction errors are increasing we are in a
dire need of an IOL power calculation formula for children.

Conclusion

The increased ambiguity of IOL power calculation in children
warrants the need for precise measurements and age-appropriate
IOLCF. The current IOL power calculation formulae are
largely originated from studies in adults and hence not perfect
in children. There is presently no consensus on the best IOL
formulæ in children. The presently available formulæ may
give an error of more than 0.5 D in half of the pediatric patients.
The accuracy of the advanced formulæ in pediatric
cataract surgery is also low. There is a need for the formulation of
a separate IOL power calculation formulæ specifically designed
for children. Till the time we have such customized formulæ; a
combination of any two modern formulæ can be used.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Birch EE, Cheng C, Stager DR Jr, Felius J. Visual acuity development
after the implantation of unilateral intraocular lenses in infants and
young children. J AAPOS 2005;9:527-32.
2. Tuncer S, Gucukoglu A, Gozum N. Cataract extraction and primary
hydrophobic acrylic intraocular lens implantation in infants. J
AAPOS 2005;9:250-6.
3. Vasavada A, Chauban H. Intraocular lens implantation in infants
with congenital cataracts. J Cataract Refract Surg 1994;20:592-8.
4. Sukhija J, Kaur S, Ram J. Outcome of primary intraocular lens
implantation in infants: Complications and rates of additional
surgery. J Cataract Refract Surg 2016;42:1060-5.
5. Trivedi RH, Wilson ME. Prediction error after pediatric cataract
surgery with intraocular lens implantation: Contact versus
immersion A-scan biomicroscopy. J Cataract Refract Surg 2011;37:501-5.
6. Mehdizadeh M. Effect of axial length and keratometry
measurement error on intraocular lens implant power prediction
formulæ in pediatric patients. J AAPOS 2008;12:425.
7. Jasman AA, Shaharuddin B, Noor RA, Ismail S, Gani ZA,
Embong Z. Prediction error and accuracy of intraocular lens power
calculation in pediatric patient comparing SRK II and pediatric IOL
calculator. BMC Ophthalmol 2010;10:20.
8. Eibschtz-Tsimhoni M, Assimakou E, Arshad S, Thongprasert P,
Behera AK, Elhilali HM. Predictive value of intraocular lens
power calculation formulæ in children. Clin Ophthalmol 2016;10:1677-84.
9. Elhilali HM. Predictive value of intraocular lens power
calculation formulæ in children. Clin Ophthalmol 2016;10:1677-84.
10. O’Gallagher MK, Lagan MA, Mulholland CP, Parker M,
McGinny G, McLoone EM. Paediatric intraocular lens implants:
Accuracy of lens power calculations. Eye (Lond) 2016;30:1215-20.
11. Kekunnaya R, Gupta A, Sachdeva V, Rao HL, Vaddavalli PK,
Om Prakash V. Accuracy of intraocular lens power calculation
formulæ in children less than two years. Am J Ophthalmol 2012;154:13-9, e2.
12. Neely DE, Plager DA, Borger SM, Golub RL. Accuracy of
intraocular lens calculations in infants and children undergoing
cataract surgery. J AAPOS 2005;9:160-5.
13. VanderVeen DK, Trivedi RH, Nizam A, Lynn MJ, Lambert SR,
Infant Aphakia Treatment Study Group. Predictability of
intraocular lens power calculation formulæ in infantile eyes with
unilateral congenital cataract: Results from the infant aphakia
treatment study. Am J Ophthalmol 2013;156:1252-60, e2.
14. Eibschtz-Tsimhoni M, Tsimhoni O, Archer SM, Del Monte MA.
Effect of axial length and keratometry measurement error on
intraocular lens implant power prediction formulæ in pediatric
patients. J AAPOS 2008;12:173-6.
15. Tromans C, Haigh PM, Biswas S, Lloyd IC. Accuracy of intraocular
lens power calculation in pediatric cataract surgery. Br J
Ophthalmol 2001;85:939-41.
16. Mezer E, Rootman DS, Abdolel M, Levin AV. Early postoperative
refractive outcomes of pediatric lens implantation. J Cataract
Refract Surg 2004;30:603-10.
17. Andreo LK, Wilson ME, Saunders RA. Predictive value of
regression and theoretical IOL formulæ in pediatric intraocular
lens implantation. J Pediatr Ophthalmol Strabismus 1997;34:240-3.
18. Moore DB, Ben Zion I, Neely DE, Plager DA, Ofner S, Sprunger DT,
et al. Accuracy of biometry in pediatric cataract extraction with
primary intraocular lens implantation. J Cataract Refract Surg
2008;34:1940-7.
19. Fedorov SN, Kolinko AI, Kolinko AI. Estimation of optical power
of the intraocular lens. Vestn Oftalmol 1967;80:27-31.
20. Retzlaff JA, Sanders DR, Kraf MC. Development of the SRK/T
intraocular lens implant power calculation formulæ. J Cataract
Refract Surg 1990;16:333-40.
21. Hoffer KJ, The Hoffer Q formula: A comparison of theoretical and
regression formulæ. J Cataract Refract Surg 1993;19:700-12; errata
1994;20:677.
22. Hoffer KJ. Clinical results using the Holladay 2 intraocular lens
power formulæ. J Cataract Refract Surg 2000;26:1233-7.
23. Hoffer KJ. Intraocular lens calculations. In: Ford JG, Karp CL, editors.
Cataract Surgery and Intraocular Lenses: A 21st-Century Perspective.
San Francisco: American Academy of Ophthalmology; 2001.
24. Hoffer KJ. Ultra-sound velocities for axial eye length measurement.
J Cataract Refract Surg 1994;20:554-62.
25. Sanders DR, Retzlaff J. Comparison of the SRK-II formulæ and
other second-generation formulæ. J Cataract Refract Surg 1988;14:136-41.
26. Holladay JT. Standardizing constants for ultrasonic biometry,
keratometry, and intraocular lens power calculations. J Cataract
Refract Surg 1997;23:1356-69.
27. Norby S. Sources of error in intraocular lens power calculation.
J Cataract Refract Surg 2008;34:268-76.
28. Awner S, Buckley EG, Devaro JM. Unilateral pseudophakia in children
under 4 years. J Pediatr Ophthalmol Strabismus 1996;33:230-6.
29. Hug T. Use of the aphakic refraction in intraocular lens (IOL) power
calculations for secondary IOLs in pediatric patients. J Pediatr
Ophthalmol Strabismus 2004;41:209-11.
30. Khan AO, AliGaeid A. Paediatric secondary intraocular lens
estimation from the aphakic refraction alone: Comparison with a
standard biometric technique. Br J Ophthalmol 2006;90:1458-60.
31. Abdel-Hafez G, Trivedi RH, Wilson ME, Bandyopadhyay D.
Comparison of aphakic refraction formulæ for secondary in-the-bag
intraocular lens power estimation in children. JAAPOS 2011;15:432-4.
32. Eibschtz-Tsimhoni M, Archer SM, Del Monte MA. Intraocular lens
power calculation in children. Surv Ophthalmol 2007;52:474-82.
33. Gupta A, Kekunnaya R, Ramappa M, Vadavalli PK. Safety profile of
primary intraocular lens implantation in children less than 2 years
of age. Br J Ophthalmol 2011;95:477-80.
34. Wilson ME Jr, Bartholomew LR, Trivedi RH. Pediatric cataract
surgery and intraocular lens implantation: Practice styles and
preferences of the 2001 ASCRS and AAPOS memberships.
J Cataract Refract Surg 2003;29:1811-20.
35. Ram J, Brar GS, Kaushik S, Sukhija J, Bandyopadhyay S, Gupta A.
Primary intraocular lens implantation in first two years of life:
Safety profile and visual results. Indian J Ophthalmol 2007;55:185-9.
36. Chang P, Lin L, Li Z, Wang L, Huang J, Zhao YE. Accuracy of
intraocular lens power calculation formulæ in pediatric cataract
patients. Graefes Arch Clin Exp Ophthalmol 2020;258:1123-31.
37. Shuaib AM, Elhusseiny AM, Hassanein DH, Zedan RH,
Elhilali HM. Predictive value of intraocular lens power calculation
formulæ in children. Clin Ophthalmol 2021;15:2527-36.
38. Li J, Liu Z, Wang R, Cheng H, Zhao J, Liu L, et al. Accuracy of
intraocular lens power calculations in paediatric eyes. Clin Exp
Ophthalmol 2020;48:301-10.
39. Kou J, Chang P, Lin L, Li Z, Fu Y, Zhao YE. Comparison of the
accuracy of IOL power calculation formulæ for power calculation
in pediatric intraocular lens implantation. J Cataract Refract Surg
2021;47:599-605.