The nature of proximate damped Lyman alpha systems.⋆

Sara L. Ellison1, J. Xavier Prochaska2, Joseph Hennawi3, Sebastian Lopez4, Christopher Usher1, Arthur M. Wolfe5, David M. Russell6, Chris R. Benn7

1 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 1A1, Canada.
2 Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
3 Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411, USA
4 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
5 Department of Physics, and Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424, USA
6 Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam, Netherlands
7 Isaac Newton Group, Apartado 321, E-38700 Santa Cruz de La Palma, Spain

19 April 2010

ABSTRACT

We present high resolution echelle spectra of 7 proximate damped Lyman alpha (PDLA) systems whose relative velocity separation from the background quasar is $\Delta V < 3000$ km s$^{-1}$. Combining our sample with a further 9 PDLAs from the literature we compare the chemical properties of the proximate systems with a control sample of intervening DLAs. The PDLAs are usually excluded from statistical studies of absorption selected galaxies and this sample constitutes the first systematic study of their chemical and ionization properties. Taken at face value, the sample of 16 PDLAs exhibits a wide range of metallicities, ranging from $Z \sim 1/3 Z_\odot$ down to $Z \sim 1/1000 Z_\odot$, including the DLA with the lowest N(SiII)/N(HI) yet reported in the literature. However, some of these abundances may require ionization corrections. We find several pieces of evidence that indicate enhanced ionization and the presence of a hard ionizing spectrum in PDLAs which lead to properties that contrast with the intervening DLAs, particularly when the N(HI) is low. The abundances of Zn, Si and S in PDLAs with log N(HI) > 21, where ionization corrections are minimized, are systematically higher than the intervening population by a factor of around 3. We also find possible evidence for a higher fraction of NV absorbers amongst the PDLAs, although the statistics are still modest. 6/7 of our echelle sample show high ionization species (SiIV, CIV, OVI or NV) offset by >100 km s$^{-1}$ from the main low ion absorption. We analyse fine-structure transitions of CII∗ and SiII∗ to constrain the PDLA distance from the QSO. Lower limits range from tens of kpc up to >160 kpc for the most stringent limit. We conclude that (at least some) PDLAs do exhibit different characteristics relative to the intervening population out to 3000 km s$^{-1}$ (and possibly beyond). Nonetheless, the PDLAs appear distinct from lower column density associated systems and the inferred QSO-absorber separations mean they are unlikely to be associated with the QSO host. No trends with ΔV are found, although this requires a larger sample with better emission redshifts to confirm. We speculate that the PDLAs preferentially sample more massive galaxies in more highly clustered regions of the high redshift universe.

Key words:
Ellison et al.

Petitjean 2000; D’Odorico et al. 2004; Fechner & Richter 2009). The associated population of absorbers appears to extend out to at least 10,000 km s\(^{-1}\) (Petitjean et al. 1994; Richards et al. 1999; Wild et al. 2008; Tytler et al. 2009).

Although \(z_{\text{abs}} \sim z_{\text{em}}\) Ly\(\alpha\) forest, CIV, MgII and Lyman limit systems have been well-researched in the last 20 years, the same is not true of the proximate damped Lyman alpha systems (DLAs). This is partly a historical bias. DLAs are excellent tools for characterising the high redshift galaxy population. Knowing that associated systems may be connected with the QSO or its host galaxy, statistical samples of DLAs have therefore excluded these potentially special systems (e.g. Wolfe et al. 1995; Ellison et al. 2001; Prochaska, Herbert-Fort & Wolfe 2005; Jorgenson et al. 2006; Noterdaeme et al. 2009). Furthermore, the chemical abundances of intervening DLAs can be determined fairly easily because their gas is predominantly neutral. Proximity to a QSO could invalidate that assumption and lead to erroneous abundance determinations, unless photoionisation modelling is used. However, it is for exactly these reasons that the study of proximate DLAs (PDLAs) is interesting. PDLAs provide a potential probe of galaxies clustered around (or associated with) QSOs, and even provide insight into the interplay between ionizing radiation and the ISM.

One of the difficulties in studying the proximate DLAs is the small redshift path for each line of sight, which means that PDLAs are very rare. For example, assuming the same number density as intervening systems at \(z = 3\), \(~ 100\) QSOs would need to be surveyed to find just one PDLA. A second challenge is constructing a sample of PDLAs selected with a homogeneous QSO-absorber velocity offset (\(\Delta V\)) criterion. Since the derived emission redshift of a QSO depends critically on the emission lines used (e.g. Gaskell 1982; Tytler & Fan 1992), the value can be uncertain by over 1000 km s\(^{-1}\) (\(~ 3\) Mpc proper at \(z = 3\)). The first systematic study of PDLAs was conducted with the Complete Optical and Radio Absorption Line System (CORALS) Survey data by Ellison et al. (2002) who found a factor of 4 excess in the number density of PDLAs in their radio-selected sample. Russell, Ellison & Benn (2006) extended this work to identify 33 PDLAs in the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3) and confirmed the PDLA excess, independent of radio loudness, at 3\(\sigma\) significance. In the largest PDLA survey conducted so far, Prochaska, Hennawi & Herbert-Fort (2008) use the SDSS DR5 to identify 108 PDLAs with \(\Delta V < 3000\) km s\(^{-1}\). In addition to its larger size, this work re-calculated the QSO redshifts in order to obtain improved estimates of \(\Delta V\). Prochaska et al. (2008b) found that PDLAs outnumber the intervening DLAs at \(z \sim 3\) by a factor of 2, but found no statistically significant excess at \(z < 2.5\) or \(z > 3.5\).

In addition to the PDLA number density, Prochaska et al. (2008b) investigated whether their H\(\text{i}\) column density distribution function differed from the intervening DLAs. They found marginal evidence for an excess of high \(N(\text{H}\text{i})\) PDLAs. Previously, Tytler (1982) had found no excess for the slightly lower \(N(\text{H}\text{i})\) Lyman limit systems but with a much larger sample Prochaska, O'Meara & Worseck (2010) find a deficit. Apart from their incidence and \(N(\text{H}\text{i})\) distribution, few studies of PDLAs exist to assess whether or not they are consistent with the intervening population. In particular, PDLAs are rarely targeted for echelle spectroscopy, so little is known about their chemical enrichment. Nonetheless, a small number of PDLAs have appeared in chemical abundance studies (see Table 7 for those that meet our criteria) and they do not appear to have strikingly different properties to the intervening DLAs (Lu et al. 1996; Akerman et al. 2005; Rix et al. 2007). The range of metallicities, \(\alpha\) element enhancements and dust depletions are all consistent with the range seen amongst intervening DLAs. Rix et al. (2007) also found negligible ionization corrections were necessary for the PDLA in their study, as is usually the case for other DLAs. It has therefore usually been concluded that the PDLAs do not constitute a distinct population from the intervening systems (e.g. Möller et al. 1998).

In this work, we present echelle spectra for seven PDLAs (Section 2), determine improved emission redshifts (Section 3) and measure column densities for a range of metal line species (Section 4). We supplement our sample with other PDLAs critically selected from the literature to form a sample of 16 proximate absorbers (Section 5). Ionization properties and metal abundances of PDLAs are compared to the intervening systems in Sections 6 and 7. Finally, we use measurements of CII* and upper limits to SiIII* to constrain the distance between the PDLA and the background QSO (Section 8).

Unless otherwise stated, we assume \(\Omega_M = 0.3\), \(\Omega_{\Lambda} = 0.7\) and \(H_0 = 70\) km s\(^{-1}\) Mpc\(^{-1}\).

2 SAMPLE, OBSERVATIONS AND DATA REDUCTION

Proximate DLAs for this study were mostly selected from the SDSS DR5 catalogue of Prochaska, Hennawi & Herbert-Fort (2008). These are J014049.18–083942.5, J014214.74+002324.3, J111310.3+604420, J124020.9+145535.6, J160413.9+395121.9 and J232115.48+142131.5. For simplicity we hereafter refer to these QSOs by their SDSS names in the form Jhmm.ddmm. One additional non-SDSS QSO is also in the sample: Q0151+048 (UM144). SDSS magnitudes are given in Table 1 for all QSOs except Q0151+048 where we have taken the R-band magnitude from the APM plate measurements. Our target selection was based on relatively bright QSOs with absorbers whose velocity offset was found to be \(\Delta V < 3000\) km s\(^{-1}\) by Prochaska et al. (2008b), and with positions accessible during our scheduled observing runs. The \(\Delta V\) cut-off is somewhat arbitrary and it should be stressed that it is unlikely that these velocities correspond to distances inferred from the Hubble expansion \((d = v/H(z))\) if the proximate absorbers are linked either to the host galaxy or associated with its gravitational potential. In the former case, the velocities may reflect outflows or internal motions. In the latter scenario, the \(\Delta V\) distribution would be indicative of peculiar motions. We provide empirical evidence that the value of \(\Delta V\) does not correspond to a Hubble distance by showing that a number of the PDLAs have negative velocities relative to the QSO (Section 6) and that elemental trends do not correlate with \(\Delta V\) (Section 7).

Observations were obtained with either the UV-Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT) or with the High Resolution Echelle Spectrograph (HIRES) on the Keck telescope.

2.1 UVES data acquisition and reduction

UVES is a dual-arm echelle spectrograph with a grating cross disperser. There are four different cross dispersers available and two dichroics (DIC1 and DIC2), which split the incident beam between the blue and red arms. The central wavelengths are governed by the 2.1 UVES data acquisition and reduction

\[\text{2.1 UVES data acquisition and reduction} \]

UVES is a dual-arm echelle spectrograph with a grating cross disperser. There are four different cross dispersers available and two dichroics (DIC1 and DIC2), which split the incident beam between the blue and red arms. The central wavelengths are governed by the grating angles and are adjusted to allow the desired spectral coverage to fall on the 3 CCDs (one in the blue arm and two in the red).
We combined two of UVES’s ‘standard’ settings (DIC1 346+580 and DIC2 437+860) in order to obtain spectral coverage over approximately 3050 – 9700 Å. Integration times are given in Table 1. Observations of a ThAr lamp for wavelength calibration followed each exposure. The CCDs were binned 2x2 and a 1 arcsecond slit was used, resulting in nominal resolutions of R=41,000 and 39,000 in the blue and red arms, respectively. We observed J0140–0839, J0142+0023 and J2321+1421 on the nights of 2007 October 2-3 with UVES in visitor mode. The seeing ranged between 0.6 and 1.0 arcsec.

The spectra were extracted and reduced using the UVES pipeline. The extracted spectra from each exposure were converted to a common vacuum-heliocentric wavelength scale. Where multiple exposures in a given setting were obtained, or where there is spectral overlap between settings, the data were combined, weighting by the inverse of the flux variances. Table 1 lists the typical S/N ratios for each target in the final combined spectrum (where there is some wavelength overlap between settings). The spectrum was normalized by fitting a smooth continuum through unabsorbed parts of the data using the Starlink DIPSO package.

2.2 HIRES data acquisition and reduction

J1240+1455 and J1604+3951 were observed with the Keck/HIRES spectrometer (Vogt 1994) using the upgraded CCD mosaic on 2007 April 27–28, J1131+6044 and Q0151+048 were also observed with HIRES on 2006 December 25 and 2006 August 17 respectively. The first two quasars, which have PDLAs at HIRES on 2006 December 25 and 2006 August 17 respectively.

The nature of proximate DLAs

The first two quasars, which have PDLAs at HIRES on 2006 December 25 and 2006 August 17 respectively.

We illustrate the effects of the blaze. The disadvantage is that since damped Lyα troughs extend over multiple orders, HIRES spectra do not lend themselves easily to Lyα fitting. We discuss this further below.

3 REDSHIFTS

Accurate emission and absorption redshifts are required in order to define a sample of PDLAs lying within a given velocity range

ΔV of the QSO. Typical limiting values of ΔV adopted in the literature, when defining samples of associated absorbers, are <3000 to <6000 km/s. ΔV is calculated as:

\[\Delta V = \frac{R^2 - 1}{R^2 + 1} \]

where \(c \) is the speed of light and

\[R = \frac{1 + z_{\text{abs}}}{1 + z_{\text{em}}} \]

where \(z_{\text{abs}} \) and \(z_{\text{em}} \) are the absorption and emission redshifts respectively. It is well known that the determination of QSO emission redshift is sensitive to the choice of emission lines (e.g. Gaskell 1982; Tyler & Fan 1992), where [OIII] λλ4959, 5007 is usually considered one of the most reliable indicators of systemic velocity. The SDSS composite spectrum of vanden Berk et al. (2001) shows that narrow forbidden lines may only be shifted by ± tens of km s\(^{-1}\), but the commonly used Lyα, CIV and CIII\(^{+}\) lines may be offset by many hundred km s\(^{-1}\). The majority of the PDLAs used in this study (see Section 2) are selected from the SDSS DR5 survey of Prochaska et al. (2008b), and we adopt their re-derived emission redshifts. For the QSOs not in the sample of Prochaska et al. (2008b) we derive emission redshifts in an identical way. The technique first calculates line centres of all significantly detected emission lines as described by Hennawi et al. (2006) and applies the known systematic shifts of each species as tabulated by Shen et al. (2007) and Richards et al. (2002). The high ionization lines such as CIV and SiIV give the poorest estimate of \(z_{\text{em}} \), with a redshift error of ~ 700 km s\(^{-1}\). From the SDSS spectra, our best estimates of systemic redshift are derived from the MgII emission line which gives \(z_{\text{em}} \) accurate to ~ 270 km s\(^{-1}\), based on the distribution of MgII-[OIII] offsets given in Richards et al. (2002). Emission redshift errors in Table 2 are based on the distributions of line shifts given in Table 7 of Shen et al. (2007). For future studies, it would be desirable to obtain infra-red (IR) spectra of these targets to obtain redshifts directly from the Balmer and forbidden [OIII] lines (e.g. Rix et al. 2007), the latter of which yields accuracies of less than 50 km s\(^{-1}\). Recently Hennawi et al. (2009) have obtained an IR spectrum for one of our sightlines: J1240+1455 and for this object we adopt the emission redshift determined from the [OIII] line (\(z_{\text{em}} = 3.1092 \)). This value is larger by 160 km s\(^{-1}\) than the value derived from the SDSS spectrum (\(z_{\text{em}} = 3.1070 \)) and is now larger than the absorption redshift.

Having made our best estimate of the emission redshifts of the QSOs in our sample, a value of the absorption redshift must also be obtained. The velocity spread of metal species in DLAs can extend over several hundred km s\(^{-1}\), but a common vacuum-heliocentric wavelength scale. Where multiple exposures in a given setting were obtained, or where there is spectral overlap between settings. The spectrum was normalized by fitting a smooth continuum through unabsorbed parts of the data using the Starlink DIPSO package.

4 COLUMN DENSITY MEASUREMENTS

For the 3 targets with UVES data, H\(_{1}\) column densities were derived by fitting damped profiles to the Ly\(\alpha \) absorption in the normalized spectra using the DIPSO software package. Continuum

2 http://star-www.rl.ac.uk/star/docs/sun50.hx/sun50.html
3 http://www.ucolick.org/~xavier/IDL

\(\Delta V \) of the QSO. Typical limiting values of \(\Delta V \) adopted in the literature, when defining samples of associated absorbers, are <3000 to <6000 km/s. \(\Delta V \) is calculated as:

\[\Delta V = \frac{R^2 - 1}{R^2 + 1} \]

where \(c \) is the speed of light and

\[R = \frac{1 + z_{\text{abs}}}{1 + z_{\text{em}}} \]

where \(z_{\text{abs}} \) and \(z_{\text{em}} \) are the absorption and emission redshifts respectively. It is well known that the determination of QSO emission redshift is sensitive to the choice of emission lines (e.g. Gaskell 1982; Tyler & Fan 1992), where [OIII] λλ4959, 5007 is usually considered one of the most reliable indicators of systemic velocity. The SDSS composite spectrum of vanden Berk et al. (2001) shows that narrow forbidden lines may only be shifted by ± tens of km s\(^{-1}\), but the commonly used Ly\(\alpha \), CIV and CIII\(^{+}\) lines may be offset by many hundred km s\(^{-1}\). The majority of the PDLAs used in this study (see Section 2) are selected from the SDSS DR5 survey of Prochaska et al. (2008b), and we adopt their re-derived emission redshifts. For the QSOs not in the sample of Prochaska et al. (2008b) we derive emission redshifts in an identical way. The technique first calculates line centres of all significantly detected emission lines as described by Hennawi et al. (2006) and applies the known systematic shifts of each species as tabulated by Shen et al. (2007) and Richards et al. (2002). The high ionization lines such as CIV and SiIV give the poorest estimate of \(z_{\text{em}} \), with a redshift error of ~ 700 km s\(^{-1}\). From the SDSS spectra, our best estimates of systemic redshift are derived from the MgII emission line which yields \(z_{\text{em}} \) accurate to ~ 270 km s\(^{-1}\), based on the distribution of MgII-[OIII] offsets given in Richards et al. (2002). Emission redshift errors in Table 2 are based on the distributions of line shifts given in Table 7 of Shen et al. (2007). For future studies, it would be desirable to obtain infra-red (IR) spectra of these targets to obtain redshifts directly from the Balmer and forbidden [OIII] lines (e.g. Rix et al. 2007), the latter of which yields accuracies of less than 50 km s\(^{-1}\). Recently Hennawi et al. (2009) have obtained an IR spectrum for one of our sightlines: J1240+1455 and for this object we adopt the emission redshift determined from the [OIII] line (\(z_{\text{em}} = 3.1092 \)). This value is larger by 160 km s\(^{-1}\) than the value derived from the SDSS spectrum (\(z_{\text{em}} = 3.1070 \)) and is now larger than the absorption redshift.

Having made our best estimate of the emission redshifts of the QSOs in our sample, a value of the absorption redshift must also be obtained. The velocity spread of metal species in DLAs can extend over several hundred km s\(^{-1}\) (e.g. Prochaska et al. 2008a) and the redshift of the best fitting Ly\(\alpha \) line can be offset from the metals. In Table 2 we give the absorption redshifts of our sample determined from both the Ly\(\alpha \) line and the strongest metal component (\(z_{\text{abs}}^{\text{Ly} \alpha} \) and \(z_{\text{abs}}^{\text{metal}} \) respectively). It can be seen that the resulting difference in ΔV is much smaller than the typical error associated with the emission redshift determination. Since the Ly\(\alpha \) redshift is the value most easily recovered from the literature, we adopt that as our fiducial measure of \(z_{\text{abs}} \).
Table 1. Target list and observing journal. The instrument set-up for HIRES refers to the echelle/cross-disperser angles. The S/N is given as a representative value of the final combined spectra of both settings.

QSO	r mag (SDSS)	z_{em}	z_{abs}	$\log N(\text{HI})$ (cm$^{-2}$)	Instrument	Instrument set-up	Exposure time (s)	S/N pix$^{-1}$
J0140−0839	17.7	3.7156	3.6960	20.75±0.15	UVES	346+580	6000	30−50
J0142+0023	18.3	3.3734	3.34765	20.38±0.05	UVES	346+580	6000	30−50
Q0151+048	17.5	1.9225	1.9342	20.34±0.02	HIRES	0/1.250	9000	15−20
J1131+6044	17.7	2.9096	2.8754	20.50±0.15	HIRES	0/1.680	7200	15−20
J1240+1455	18.9	3.1092	3.1078	21.3±0.2	HIRES	−0.110/0.557	5400	5−8
J1604+3951	18.1	3.1542	3.1633	21.75±0.2	HIRES	−0.110/0.557	10300	10−15
J2321+1421	18.3	2.5539	2.5731	20.70±0.05	UVES	346+580	3000	10−30

Table 2. PDLA redshifts and relative velocities

QSO	$\log N(\text{HI})$ (cm$^{-2}$)	z_{em}	$z_{\text{abs} \text{HI}}$	$z_{\text{abs} Z}$	ΔV_{HI} (km s$^{-1}$)	ΔV_{Z} (km s$^{-1}$)
J0140−0839	20.75±0.15	3.7156±0.012	3.6960	3.6960±0.012	1250	1211
J0142+0023	20.38±0.05	3.3734±0.008	3.34765	3.3476±0.008	1772	1769
Q0151+048	20.34±0.02	1.9225±0.003	1.9342	1.9342±0.003	−1199	−1208
J1131+6044	20.50±0.15	2.9096±0.009	2.8754	2.8756±0.009	2424	2412
J1240+1455	21.3±0.2	3.1092±0.005	3.1078	3.1080±0.005	102	85
J1604+3951	21.75±0.2	3.1542±0.007	3.1633	3.1671±0.007	−656	−930
J2321+1421	20.70±0.05	2.5539±0.006	2.5731	2.5731±0.006	−1616	−1618

Figure 1. Fits to the Lyα profiles for the three PDLAs in our sample observed with UVES. Column densities and uncertainties are given in Table 1. Adjustment and H$_i$ fitting were carried out iteratively, due to proximity of the absorption line to the strong Lyα emission of the QSO itself. The H$_i$ column densities derived from the UVES data are all in good agreement with those derived from the SDSS spectra published in Prochaska et al. (2008b). Figure 1 shows the Lyα fits to the PDLAs. For 2/3 of the UVES targets we were able to check our Lyα fits against an independent fit of Lyβ (for J0142+0023 Lyβ is blended with strong Lyα at a lower redshift). In both cases the Lyα and Lyβ column densities agree to within the errors quoted in Tables 1 and 2.

For the 4 HIRES targets where DLA fitting is hampered by the order-by-order normalization in XIDL, we adopt the HI column density derived from the SDSS spectrum (Prochaska et al. 2008b). As described above, the fits to the UVES spectra demonstrate that the SDSS values agree with the higher resolution spectra fits to within the errors. For Q0151+048, the H$_i$ column density was measured from an X-shooter spectrum by Zafar et al. (in preparation), which agrees with the value of Møller et al. (1998) to within 0.02 dex.

Metal column densities were mostly derived by fitting Voigt profiles with the VPFIT package\(^4\). The fitting of Voigt profiles is particularly useful in distinguishing contamination from blended absorption features and simultaneously fitting multiple transitions of a given species. In a few cases (noted below), usually when the line was too weak, or the S/N too low for a convincing Voigt profile decomposition, the apparent optical depth method (AODM, e.g. Savage & Sembach 1991) was applied. In general, the kinetic absorption model parameterized by redshifts and b-values (Doppler widths) for multiple components was derived independently for each species. Again, exceptions to this are noted below, \(^4\) http://www.ast.cam.ac.uk/~rfc/vpfit.html
usually in cases where the lines are weak or blending is suspected. Tables 2 and 3 list the adopted column density for low and high ionization species respectively.

The calculation of upper limits depends on an assumption of the number of pixels over which a line should be detected. For a line of given FWHM in Å, the observed frame n sigma equivalent width (EW) detection limit is given by

$$EW = \frac{n \times FWHM}{S/N}$$

where S/N is the signal-to-noise per pixel. In order to determine the appropriate value of the FWHM, we take the b-value of the strongest component of a detected species for a given line of sight (this is usually a transition of SiII or FeII) and apply the correction $FWHM = b \times 2 \sqrt{N}$, before converting from km s$^{-1}$ into Å. A single value of the FWHM is used for all low ions, CII$^+$ and AlIII limits in a given sightline. Typical b-values are 4–8 km s$^{-1}$. If the strongest component is unresolved, a FWHM corresponding to the instrumental resolution is adopted, i.e. the FWHM that appears in Eqn 3 is the maximum of either the strongest component or the instrumental resolution. Had we assumed that the lines were unresolved rather than adopting true line widths, the upper limits would have been under-estimated by 0.2–0.3 dex. For CIV, SiIV and NV we assume a broader profile and adopt a single value of $b = 10$ km s$^{-1}$. Upper limits in this paper are quoted at 3σ significance.

For species where only saturated lines are detected, lower limit column densities have been derived by applying the AODM to the observed line with the lowest oscillator strength (f value). Column densities are converted to abundances by adopting the solar scale of Asplund et al. (2005), with the exception of argon for which we adopt the solar scale of Asplund et al. (2005). Following the standard procedure in DLA abundances, we assume that the singly ionized species dominate the total column densities (i.e. for element X, $N(X) = N(X^+)$) and we do not apply ionization corrections. Even though this assumption may not hold in some of the PDLAs in our sample (we discuss ionization in Section 6), it is nonetheless of interest to apply this common practice to the PDLAs to assess its impact. Exceptions to this approximation are three-fold for the elements we are able to measure abundances at extremely low levels of enrichment. For example, Akerman et al. (2005) and Pettini et al. (2008) discuss how carbon abundances at low metallicity might provide clues into the yields of early stellar populations. The unsaturated CII $\lambda 1334$ yields [C/O] = -0.29 supporting the idea of an upturn in C/O ratios at low (O/H) (Pettini et al. 2008). The non-detection of N also sets a very low upper limit to N/O: [N/O] < -1.43.

4.2 [NII] $\lambda 6583$, log N(Hi) = 20.38

Selected metal lines are shown in Figure 2. Two lines of SiII (λ 1304 and λ 1526) are detected, although they are approaching saturation. N(SiII) was obtained separately for the two transitions with VPFIT and found to be in excellent agreement. AII λ 1670 follows the velocity structure of the other low ions. There is weak absorption at AIII λ 1862 at a similar velocity, although gas in a different ionization state need not necessarily trace the neutral gas. A comparison with AIII λ 1854 could confirm the detection, but unfortunately this line is blended, so the detection of the λ 1862 line remains uncertain. We therefore calculate N(AIII) from AIII λ 1862 and take this as an upper limit. SiII λ 1259, although weak, is statistically a 5σ detection. Absorption is detected from both SiIV and CIV. Absorption is present in a similar velocity range as the low ions, but with additional components present at negative velocities from -150 to 0 km s$^{-1}$. There is a significantly detected feature at the expected velocity of ArI λ 1048, but additional absorption to the red alerts us to the possibility of contamination. The identification of this line as ArI λ 1048 could be confirmed by the simultaneous detection of ArI λ 1066, but this line is blended with Lyα. Assum-
Figure 2. Selected metal line transitions in the PDLA towards J0140−0839. The lower solid (red) line shows the error array. When fits have been derived using VPFIT, those fits are overlaid in green. b-values for this absorber range from 2 – 8 km s$^{-1}$. Velocities are plotted relative to $z_{\text{abs}}=3.6966$.

4.3 Q0151+048, log N(H i) = 20.34

Selected metal lines for the PDLA towards Q0151+048 are shown in Figures 4 and 5. As described by Møller et al. (1998) and Fynbo et al. (1999, 2000), Q0151+048 has a close, but fainter, companion, Q0151+048B, which is separated by 3.27 arcsec ($\sim 27.5 h^{-1}$ kpc). Møller et al. (1998) give the redshift of Q0151+048 to be $z_{\text{em}}=1.922 \pm 0.003$ and a slightly higher value for Q0151+048B of $z_{\text{em}}=1.937 \pm 0.005$. As shown by Zafar et al. (in preparation) Q0151+048B shows no DLA absorption, despite its relatively small transverse separation. Using the same technique described in Section 3, we re-evaluate the redshift of Q0151+048 and Q0151+048B from X-shooter spectra kindly provided by Johan Fynbo and Tayyaba Zafar. We determine $z_{\text{em}}=1.9225 \pm 0.003$ for Q0151+048 and $z_{\text{em}}=1.9237 \pm 0.003$ for Q0151+048B, where both redshifts are based on the Mg II line. However, we caution that the spectrum of Q0151+048B is affected by a lot of structure in the continuum shape which may compromise the accuracy of the redshift (the quoted error only accounts for known systematic offsets of emission lines from the systemic value). Interestingly, the PDLA studied by Rix et al. (2007) towards Q2343−415 also has a nearby QSO companion (Q2343+125) separated by 680 h^{-1} kpc and -100 km s$^{-1}$.

N(FeII) is derived from a simultaneous VPFIT of FeII λ 1608 and FeII λ 1610. Similarly, N(SiII) is determined by simultaneously fitting the lines at λ 1304 and 1526 Å. The NI column density was determined from a simultaneous fit of NI λ 1199 and NI λ 1200. CII* is detected, but its low optical depth precludes an accurate Voigt profile fit; its column density is derived from the AODM. By combining N(CII*) with N(H i) it is possible to determine the cooling rate, l_c, which Wolfe et al. (2008) have recently shown to be bi-modal. We calculate a cooling rate log $l_c=-26.86$ which qualifies this PDLA as a ‘high cool’ (i.e. high cooling rate) system. Such systems typically have higher metallicities, dust-to-gas ratios and velocity spreads than the low cooling rate DLAs. However, the PDLA towards Q0151+048 has a relatively narrow velocity structure and apparently low metallicity ([S/H]=−2.03). Either this PDLA is rather unusual amongst the ‘high cool’ population, or the column densities may be affected by ionization. However, it should be noted that it lies towards the lower end of the l_c distribution for high cool systems. The low N(H i) of this system make the latter possibility a likely explanation and we present more evidence for ionization in low N(H i) PDLAs in Section 6.

Both CIV and SiIV are very strong and may be partly saturated. The velocity structure is simple and coincides with that of the low ions, see Figure 4 which is usually not the case for intervening DLAs. AODM and VPFIT give consistent lower limits for CIV. N(SiIV) is derived from the λ 1402 line due to mild saturation in the bluer member of the doublet. In Section 6 we discuss...
the relative contributions of SiII and SiIV in this PDLA and the implications of coincident velocity structure.

Although no NV is found at the redshift of the main absorber, there is NV offset by \(\sim -825 \text{ km s}^{-1} \). This velocity corresponds to a redshift that is well offset into the Ly\(\alpha \) wing, see Figure 5 and does not appear to be associated with high column density HI. The NV is well-fit in VPFIT (Figure 5) so there is no evidence for partial coverage in the current data. The NV is accompanied by weak CIV, but no SiIV (OVI is not covered by the spectra). Weidinger et al. (2005) also find orphaned NV near approximate Ly\(\alpha \) limit system with even larger velocity offset. Fechner & Richter (2009) give the line of sight number density of intervening NV absorbers to be \(\text{dN/d}z = 1.16 \). For a \(\Delta z = 0.01 \pm 0.02 \) (which corresponds to \(\pm \sim 1000 \text{ km s}^{-1} \) at \(z = 2 \)) there is a 0.2% random chance that an intervening NV system lies this close to a PDLA. We discuss the offset NV further in Section 9.

4.4 J1131+6044, \(\log N(\text{HI}) = 20.50 \)

Selected metal line transitions for the PDLA towards J1131+6044 are shown in Figure 6. The SiII column density is determined solely from the \(\lambda 1526 \) line, due to saturation of SiII \(\lambda 1260 \), blending of the SiII \(\lambda 1304 \) line and no coverage of SiII \(\lambda 1808 \). Similarly, the only detected FeII line is at \(\lambda = 1608 \text{ Å} \). Fixing the velocity structure to match that of the SiII fit produces an excellent fit. Of the NI triplet, only the bluest transition at \(\lambda = 1199 \text{ Å} \) is unblended. We determine \(N(\text{NI}) \) using both the fixed component model derived from SiII and using a free fit. The former produces a relatively poor fit (but does not indicate Ly\(\alpha \) blending) to the data and yields \(N(\text{NI}) = 13.87 \pm 0.09 \). The latter yields a slightly lower \(N(\text{NI}) = 13.76 \pm 0.08 \). We adopt an intermediate value of 13.8 \(\pm 0.15 \).

There is a weak (5 \(\sigma \)) feature at the expected position of ArI 1048 whose column density can be determined from the AODM. Ideally, detection of ArI \(\lambda 1066 \) is required to confirm that this is not contamination by weak Ly\(\alpha \). However, since ArI \(\lambda 1066 \) is not detected to confirm the identification, we take the conservative approach and use the AODM-derived column density as a limit.

Although this PDLA has a relatively high \(\Delta V \) (\(\sim 2400 \text{ km s}^{-1} \)) it still demonstrates some interesting properties, most notably in its high ionization lines. At \(v \sim 0 \) the CIV and SiIV absorption is relatively weak. The SiIV \(\lambda \lambda 1393, 1402 \) doublet is fitted simultaneously. The CIV \(\lambda 1548 \) line is blended with extended negative velocity gas (see below and Figure 7) so \(N(\text{CIV}) \) is determined solely...
from CIV λ 1550. There is no NV at $v = 0$ but we are not able to determine whether or not OVI is present due to the blending in at least one of the doublet components. However, the kinematic similarity between absorption at the expected wavelength of OVI λ 1031 and CIV λ 1550 is suggestive (Figure 7). We do find highly offset absorption of strong CIV and OVI (but no NV) at $v \sim -750$ km s$^{-1}$. Since we can not estimate the total OVI column density due to blending, no value is given in Table 4. The CIV extends approximately from -500 to -1150 km s$^{-1}$. We can not confirm the full extent of the OVI in velocity space due to various Lyα blends, see Figure 7. The metal column densities in this extended component are not included in the values in Table 4.

4.5 J1240+1455, log N(HI) = 21.3

Selected metal lines are shown for the PDLA towards J1240+1455 in Figure 8. This PDLA was studied by Hennawi et al. (2009) using the original SDSS spectrum. Like several other PDLAs (Møller & Warren 1993; Møller et al. 1998; Leibundgut & Robertson 1999; Ellison et al. 2002) this absorber has Lyα emission superimposed in the DLA trough. After extensive modelling, Hennawi et al. (2009) concluded that the Lyα emission, is likely to be associated with the QSO, and not the PDLA itself.

This is a relatively faint QSO and the HIRES spectrum exhibits a low S/N. Nonetheless, we are able to detect a number of metal lines due to the high N(HI) (see Figure 8). For example, all three lines in the SII $\lambda\lambda\lambda$ 1250, 1253, 1259 triplet are detected and are fitted simultaneously. We check for saturation by additionally calculating the AODM column densities, which yield the same column density in each triplet. Due to the low S/N, we determine N(FeII, SiII) in three different ways: using a fixed component VPFIT model based on the component structure of SII, a model where the component structure can vary and finally the AODM. All give very consistent answers, so we adopt that of the fixed component VPFIT model. Since the optical depths in the line centres of the SiII and FeII lines are less than in the demonstrably unsaturated SII lines, saturation does not seem to be an issue. The Fe and Cr abundances are both low in this system (e.g. relative to Zn), indicating that dust depletion may be significant. Strong, broad NV absorption is detected, offset by ~ -120 km s$^{-1}$ from the strongest low ion component. Only the weaker NV λ 1242 line is fitted, although even this may be partly affected by saturation. We therefore conservatively quote the fit as a lower limit in Table 4. CIV and SiIV are both heavily saturated and CII* is blended.

5 There are two weakly detected features in this approximate velocity range that could be NV λ 1238. However, NV λ 1242 is not detected at these extended velocities, so these identifications can not be confirmed with the present data.
The nature of proximate DLAs

4.6 J1604+3951, log N(H\textsc{i}) = 21.75

The PDLA towards J1604+3951 exhibits two main components in the low ionization gas separated by about 250 km s\(^{-1}\), see Figure 9. However, the strongest transitions, such as CII \(\lambda\) 1334 and AlII \(\lambda\) 1670 show almost continuous absorption over 600 km s\(^{-1}\). Singly and multiply ionized species exhibit quite similar velocity structure, e.g. SiII and SiIV (Figure 10). In the alpha elements (Si and S) the redder component is stronger, but in Fe-peak (Fe and Ni) the blue component is stronger. The absorption structure of ZnII is more akin to Si and S than Fe and Ni, even though it is often considered to track the Fe-peak. We return to this point below.

SII \(\lambda\) 1250 and \(\lambda\) 1253 are fitted simultaneously and we apply the same model for SiII \(\lambda\) 1808. FeII \(\lambda\) 1608 is saturated in several components and yields a lower limit of \(N(\text{FeII}) > 15.15\). Fortunately, FeII \(\lambda\) 1611 is detected, albeit with low optical depth. We try both a fixed (tied to the SII structure) and free velocity model; both give a consistent answer of \(N(\text{FeII}) = 15.35 \pm 0.03\). The AODM gives a slightly higher value of \(N(\text{FeII}) = 15.45 \pm 0.2\). We adopt an intermediate value of \(N(\text{FeII}) = 15.4 \pm 0.15\). CII* \(\lambda\) 1335 is saturated at \(v \sim 0\) km s\(^{-1}\) and the negative velocity component is blended with CII \(\lambda\) 1334. We therefore quote a lower limit that is very conservative since it does not (cannot) account for the negative velocity gas. Saturation and blending mean that the lower limit for CII \(\lambda\) 1334 is similarly conservative. As for FeII, we attempt three different approaches for Zn, all give consistent values, so an average is taken.

ArI \(\lambda\) 1048 is blended, as are the weaker components of ArI \(\lambda\) 1066. However, the strongest velocity component of ArI \(\lambda\) 1066 appears clean. Whilst it is therefore not possible to report a total \(N(\text{ArI})\), we fit the ArI \(\lambda\) 1066 line with the same velocity structure as SiII to derive \(N(\text{ArI}) = 14.45\) for the \(v = 0\) complex. The SiII column density for these components is 15.96, yielding \([\text{Ar/Fe}] = -0.40\).

Figure 10 shows absorption from the more highly ionized species. CIV and SiIV are particularly strong. Due to the wide velocity structure, CIV is self-blended. The limit for \(N(\text{CIV})\) is therefore derived from the blue (negative velocity) component of CIV \(\lambda\) 1548. NV is detected, but the poor continuum determination makes fitting Voigt profiles challenging. A simultaneous fit to NV \(\lambda\) 1238 plus NV \(\lambda\) 1242 from \(v = -100\) to 250 km s\(^{-1}\) yields \(N(\text{NV}) = 14.14 \pm 0.02\) (the error does not include errors in the continuum). There appears to be further NV at \(-400\) km s\(^{-1}\), where CIV and SiIV are also seen, but not the low ionization species. Fits to this blue component are hampered by the poor continuum placement and possible blending from other lines and not accounted for in the column density quoted in Table 4.

Considering the relative abundances produces some clues to the difference in the velocity structure of the low ions. The column densities for the two main velocity components at \(-240\) and 0 km s\(^{-1}\) are given in Table 5. Also tabulated are the relative abundances of some key elemental ratios. Both components have \([\text{S/Fe}]\) ratios consistent with the solar value, as expected from studies of Galactic stars (Chen et al. 2002). Similarly, the \([\text{S/Zn}]\) ratio is...
consistent with mild α element enhancement in both components (where S and Zn are both undepleted and therefore a useful combination for this assessment, e.g. Nissen et al. 2004). However, whereas the blue component has a solar [Zn/Fe] ratio, the gas at $v \sim 0$ km s$^{-1}$ has a very high value: [Zn/Fe]=0.75. These results are strongly indicative of depletion patterns varying within the galaxy.

There is a possible detection of SiII* λ 1264. Although excited transitions of Si and Fe have been previously reported in DLAs associated with GRBs (e.g. Prochaska, Chen & Bloom 2006; Vreeswijk et al. 2007), this is the first possible detection in a QSO (P)DLA. The fit gives N(SiII*)=12.6±0.1. Although this column density is 16 times larger than the 3σ upper limit derived for the absorber PKS 1443+27 (Howk et al. 2005), the N(H i) of the PDLA is also almost 10 times higher. Unfortunately, the saturation of the CII* transition precludes an estimate of the warm neutral medium fraction in this absorber.

4.7 J2321+1421, log N(H i) = 20.70

The PDLA towards J2321+1421 has a relatively simple velocity structure with most of the absorption centred within ± 40 km s$^{-1}$ of $z_{abs} = 2.5731$, see Figure III. N(FeII) is determined from a simultaneous fit to FeII λ 1608 and FeII λ 2374, both of which are unsaturated. SiII λ 1808 is a marginal detection, whereas SiII λ 1304 and SiII λ 1526 are mildly saturated. Nonetheless, combining the 3 transitions we are able to constrain the total SiII column density. The region of spectrum around the strongest CrII line at $\lambda_0=2056$ Å is relatively noisy, so we derive an upper limit from the non-detection of CrII λ 2062. There is minor blending of Ni with Lyα forest lines but simultaneous fitting of the triplet gives a consistent fit. There is weak (6σ) absorption at approximately the expected position of AlIII λ 1854; N(AlIII)=12.2 is determined from the AODM. However, this is inconsistent with the non-detection of AlIII 1862 for which we derive a 3σ limit of N(AlIII)<11.9. Given the weakness of the 1854 Å line and the possibility of contamination we give 12.2 as a conservative upper limit. CIV and SiIV are detected, but offset by -100 km s$^{-1}$ from the strongest low ion absorption, but coincident with much weaker column density components e.g. in AlII and FeII (see Figure III). The spectral region around the ArI doublet is fairly noisy. ArI λ 1066 is not detected, but there is a 5σ feature at the expected velocity of ArI λ 1048. However, the S/N at this wavelength is only around 2 per pixel, so we consider this unreliable and therefore conservatively adopt the upper limit from ArI λ 1066.
The nature of proximate DLAs

Figure 10. High ionization metal line transitions in the PDLA towards J1604+3951. The lower solid (red) line shows the error array. When fits have been derived using VPFIT, those fits are overlaid in green. \(b \)-values for this absorber range from 3 – 25 km s\(^{-1}\) for the high ionization species. Velocities are plotted relative to \(z_{\text{abs}} = 3.1670 \). The red component of CIV 1548 is blended with the blue component of CIV 1550. The upper row shows some of the low ions (repeated from Figure 9) for comparison.

QSO	log \(N(\text{FeII}) \)	log \(N(\text{CII}) \)	log \(N(\text{SiII}) \)	log \(N(\text{OII}) \)	log \(N(\text{ZnII}) \)	log \(N(\text{CrII}) \)	log \(N(\text{NI}) \)	log \(N(\text{AlIII}) \)	\(N(\text{ArI}) \)	
J0140−0839	<12.73	14.13±0.08	<13.33	14.69±0.01	blend	<12.39	<12.38	11.82±0.04	<12.82	
J0142+0023	13.7±0.1	...	14.15±0.03	13.28±0.06	>15.01	<11.50	<12.17	blend	12.73±0.01	<12.57
Q0151+048	13.70±0.01	>14.43	14.01±0.05	<13.47	>14.84	<11.81	<12.45	13.06±0.05	12.57±0.05	...
J1131+6044	13.76±0.03	>14.55	14.49±0.13	<13.29	>14.82	13.8±0.15	...	<12.52
J1240+1455	14.60±0.03	sat/blend	15.93±0.03	15.56±0.02	>15.24	12.90±0.07	<13.02	blend	>13.56	...
J1604+3951	15.40±0.15	>15.28	16.09±0.02	15.70±0.02	blend	13.0±0.1	>14.00	yes/blend
J2321+1421	14.18±0.03	>14.68	14.45±0.04	<13.60	>15.10	<11.84	<12.57	13.6±0.03	12.99±0.02	<13.33

Table 3. Column densities (in cm\(^{-2}\)) of low ionization species.

QSO	log \(N(\text{CIV}) \)	log \(N(\text{SiIV}) \)	log \(N(\text{NV}) \)	log \(N(\text{OVI}) \)	log \(N(\text{AlIII}) \)	\(N(\text{CII}^*) \)
J0140−0839	<12.18	<12.20	<12.96	blend	<11.52	<12.41
J0142+0023	14.25±0.01	13.73±0.01	<12.29	blend	<12.4	
Q0151+048	>14.50	13.75±0.01	<12.66	...	12.3±0.1	13.0±0.2
J1131+6044	13.85±0.05	13.33±0.02	<12.68	yes/blend	...	<12.51
J1240+1455	>15.13	>14.31	>14.86	...	blend	blend
J1604+3951	>15.05	>14.74	14.14±0.02	blend	13.44±0.02	>14.30
J2321+1421	13.81±0.05	13.37±0.01	<12.62	blend	<12.2	<12.55

Table 4. Column densities (in cm\(^{-2}\)) of high ionization and excited species.
5 ADDITIONAL PROXIMATE AND INTERVENING DLAS FROM THE LITERATURE

Although the study presented here represents the first systematic study of a sample of PDLAs, a small number of proximate systems have been included in literature studies of intervening absorbers. In this section, we search the literature for PDLAs that meet our \(\Delta V \) selection criterion and with measured metal column densities that can be used to enlarge our sample. We also describe the compilation of a comparison sample of intervening DLAs with which the PDLAs can be compared.

5.1 PDLAs in the literature

We searched for additional PDLAs with known abundances by trawling the catalogue of Dessauges-Zavadsky et al. (in prep.). Emission redshifts were taken from the references given in Dessauges-Zavadsky et al. (in prep); if no emission redshift was present in the referenced paper, we used SIMBAD. Due to the numerous different techniques and inherent uncertainties in emission redshift determination, a first cut was made for literature DLAs with \(\Delta V < 5000 \text{ km s}^{-1} \), of which there are 15 in the Dessauges-Zavadsky catalogue. We obtained literature spectra for 14/15 of

\[
\begin{array}{ccccccccccc}
\text{QSO} & \log \text{N(HI)} & [\text{C/H}] & [\text{N/H}] & [\text{O/H}] & [\text{Si/H}] & [\text{S/H}] & [\text{Fe/H}] & [\text{Zn/H}] & [\text{Cr/H}] & [\text{Ar/H}] \\
\hline
\text{J0140-0839} & 20.75 \pm 0.05 & -3.01 & -4.15 & -2.72 & -2.75 & -2.58 & -3.47 & ... & -1.99 & -2.33 \\
\text{J0142+0023} & 20.38 \pm 0.05 & ... & ... & -2.03 & -1.74 & -2.26 & -2.13 & -1.49 & -1.84 & -2.21 \\
\text{Q0151+048} & 20.34 \pm 0.02 & > -2.30 & -3.06 & -2.16 & -1.84 & -2.03 & -2.09 & -1.14 & -1.52 & ... \\
\text{J1131+0644} & 20.50 \pm 0.15 & > -2.34 & -2.48 & -2.34 & -1.52 & -2.37 & -2.19 & ... & ... & -2.38 \\
\text{J1240+1455} & 21.3 \pm 0.2 & ... & ... & > -2.72 & -0.88 & -0.90 & -2.15 & -1.01 & -1.91 & ... \\
\text{J1604+3951} & 21.75 \pm 0.2 & > -2.86 & ... & ... & -1.17 & -1.21 & -1.80 & -1.36 & ... & ... \\
\text{J2321+1421} & 20.70 \pm 0.05 & > -2.41 & -2.84 & > -2.26 & -1.76 & -2.26 & -1.97 & -1.47 & -1.76 & -1.77 \\
\end{array}
\]
The nature of proximate DLAs

Figure 5. Highly offset NV and CIV in the PDLA towards Q0151+048. The lower solid (red) line shows the error array. When fits have been derived using VPFIT, those fits are overlaid in green. Velocities are plotted relative to \(z_{\text{abs}} = 1.9342 \).

	Blue cpt. \(\nu \sim -240\, \text{km s}^{-1} \)	Red cpt. \(\nu \sim 0\, \text{km s}^{-1} \)
N(ZnII)	12.43	12.88
N(FeII)	15.27	14.97
N(SIII)	15.50	15.96
N(SII)	15.16	15.55
[Zn/Fe]	0.00	+0.75
[S/Si]	0.01	−0.06
[S/Zn]	0.18	0.12

Table 5. Column densities (cm\(^{-2}\)) and abundance ratios in two components in PDLA J1604+3951

Figure 6. Selected metal line transitions in the PDLA towards J1131−6044. The lower solid (red) line shows the error array. \(b \)-values for this absorber range from 2 – 8 km s\(^{-1}\) for the low ionization species and 2 – 10 km s\(^{-1}\) for the higher ionization species. When fits have been derived using VPFIT, those fits are overlaid in green. Velocities are plotted relative to \(z_{\text{abs}} = 2.87562 \).

with redshift and positive and negative changes are present in approximately equal number. Only one QSO’s redshift changes by \(> 1000 \, \text{km s}^{-1} \), name Q0425–5214 (CTS 436) whose redshift is obtained from the Ly\(\alpha \) line (Maza et al. 1995). Not only is this line a poor indicator of systemic redshift, but the spectrum is of very low dispersion (30Å resolution) are reported as being accurate to only \(\pm 0.02 \). We discard absorbers with \(\Delta V > 3000 \, \text{km s}^{-1} \). To complement the abundances determined for our new data sample (Section 4 column densities for literature PDLAs with \(\Delta V < 3000 \, \text{km s}^{-1} \) are taken from Dessauges-Zavadsky et al. (in prep.) and combined with our new echelle sample. The final PDLA sample therefore contains 7+9 (new plus literature respectively) PDLAs.

In addition to the column densities available in the literature (Table 8) we determine the column density of SII towards J2340−00 from the extant HIRES spectrum. All 3 transitions in the SII triplet at \(\lambda \lambda \lambda \) 1250, 1253, 1259 Å are well detected. We determine the column densities using the AODM and find that all 3 lines yield values in excellent agreement.

6 We were unable to locate a suitable spectrum for the re-measurement of the emission redshift of Q0201+365.
Table 7. Candidate PDLAs taken from the literature. Redshifts without error bars are taken from Prochaska, Hennawi & Herbert-Fort (2008). The final column indicates whether the absorber is included in our PDLA sample, which requires that the new be \(\Delta V < 3000 \text{ km s}^{-1} \).

Table 8. Column densities (in cm\(^{-2}\)) for final literature PDLA sample. References: 1: Akerman et al. (2005); 2: Lu et al. (1996); 3: Centurion et al. (2003); 4: Noterdaeme et al. (2008); 5: P. Noterdaeme private communication; 6: Dessauges-Zavadsky et al. (2007); 7: Srianand et al. (2005); 8: Herbert-Fort et al. (2006); 9: Prochaska et al. (2001); 10: Prochaska et al. (2003b); 11: Rix et al. (2007); 12: Prochaska et al. (2007b); 13: this work.

5.2 DLA comparison sample

To compare the PDLAs with intervening DLAs we used the sample of Dessauges-Zavadsky et al. (in prep.). In order to circumvent the large uncertainties in \(\Delta V \) incurred through \(z_{\text{em}} \) measurements, we impose a lower limit of 10,000 km s\(^{-1}\) which yields a sample of 180 intervening DLAs with \(\log N(\text{H}i) \geq 20.3 \) from the Dessauges-Zavadsky catalogue. We adopt the column density measurements compiled by Dessauges-Zavadsky et al., and convert to abundances using the same solar scale that was applied to the PDLAs (Asplund et al. 2005). In Sections 6 and 7, we compare the properties of the PDLAs with the DLAs in order to gain insight into whether they represent similar populations and what the effect of QSO proximity is.

6 IONIZATION

The proximity of PDLAs to their background QSO naturally leads to the question of whether they are strongly affected by the quasar’s intense ionizing radiation. Thus far, there are conflicting indications in the literature for studies of individual systems. Rix et al. (2007), in their detailed study of a single PDLA towards Q2343–BX415, concluded that ionization corrections were small. Nonetheless, they identify absorption from highly ionized species such as NV which are relatively rarely detected in intervening absorbers and require high energy photons if produced via photoionization. One of the PDLAs in our sample (J1240+1455) has previously been reported to exhibit NV in the low resolution SDSS spectrum (Hennawi et al. 2009) which we confirm in our echelle spectra (see Section 4.3). Fox et al. (2009) find that ~13% of intervening systems also exhibit NV and do not find any increase in its incidence in PDLAs with relative velocities 500< \(\Delta V \) < 5000 km s\(^{-1}\) relative to the intervening systems at \(\Delta V \geq 5000 \) km s\(^{-1}\). In a general survey of NV at all \(N(\text{H}i) \) column densities, Fechner & Richter (2009) do find a proximate excess, a conflict which appears to be linked to the velocity range used (see discussion below). Finally, Ly\(\alpha\) emission in the DLA trough has been found for several PDLAs (Möller et al. 1993; Möller et al. 1998; Leibundgut & Robertson 1999; Ellison et al. 2002; Hennawi et al. 2009), a feature which is much rarer amongst the intervening DLA population. In this section, we assess various indications of ionization in the sample of 16 PDLAs, paying special attention to elements which might indicate ionization by a hard radiation source, as might be expected from the proximity to the QSO.

6.1 Aluminium

A natural probe of the level of ionization in a DLA is to compare column densities of different ionization states of a given element. The relative column densities depend on the ionization potentials, the shape of the ionizing spectrum and the density of the gas (or equivalently, the ionization parameter). The ratio of AlIII/AlII is
The nature of proximate DLAs

15

Figure 7. CIV, OVI and NV coverage in the PDLA towards J1131+6044 over an extended velocity scale. The lower solid (red) line shows the error array. OVI is detected at $v \sim -750$ km s$^{-1}$ and CIV is present from -1150 to approximately -500 km s$^{-1}$. There is no definitive detection of NV. Velocities are plotted relative to $z_{abs} = 2.87562$.

sometimes used as a crude estimate of ionization, although SiIII is often substituted for AlIII which saturates quickly. Vladilo et al. (2001) showed a broad anti-correlation of AlIII/AlII with N(Hi) supporting the idea that this ratio traces the amount of ionized gas. In Figure 12 we show AlIII/AlII and AlIII/SiII for our PDLA and comparison DLA sample, where the latter ratio is corrected for the solar value of (Si/Al). There is no obvious difference between the DLA and PDLA ratios, certainly there is no indication of elevated amounts of AlIII at a given N(Hi) in PDLAs relative to DLAs. In fact, several PDLAs appear to have fairly low AlIII/SiII. However, as discussed by Howk & Sembach (1999) AlIII may actually be a fairly poor tracer of ionized gas in intervening absorbers and may even originate from a different region in the absorber (Vladilo et al. 2001). Moreover, the behaviour of AlIII/AlII is very sensitive to the shape of the ionizing spectrum. Vladilo et al. (2001) use Cloudy photoionization models to demonstrate that for a hard (QSO) ionizing spectrum the observed AlIII/AlII is essentially flat as a function of N(Hi), for a given ionization parameter ($\log U$).

Therefore, whilst adopting a stellar ionizing spectrum seems to naturally reproduce the trend of decreasing AlIII/AlII with increasing N(Hi) for a given ionization parameter, assuming a hard spectrum requires the log U to decrease at higher N(Hi) to produce the same anti-correlation (see also Vladilo et al. 2003). It requires a very intense power law spectrum ($\log U \gtrsim -1$) in order to achieve N(AlIII) > N(AlII), so the relatively low ratios of AlIII/SiII observed in Figure 12 do not rule out proximity to a hard ionizing source. In fact, a hard ionizing spectrum may actually be the reason for the lower AlIII/SiII ratios at $\log N$(Hi) < 21 in the PDLAs compared to intervening DLAs. The stellar ionizing models of Vladilo et al. (2001) generally predict higher AlIII/AlII at low N(Hi) for soft spectra relative to QSO-like radiation.

6.2 Silicon

Next, we consider the relative abundances of SiII and SiIV. SiII is detected in all 7 PDLAs in our sample. There are 4 SiIV detections, two lower limits (from saturated lines) and one upper limit from a non-detection. For the two PDLAs with $\log N$(Hi) < 20.4 (Q0151+048 and J0142+0023) we find that $\log [N$(SiIV)/N(SiII)]= -0.26 and -0.42 respectively. Such high fractions of SiIV are relatively rare in intervening DLAs. The other PDLAs where SiIV has a detection or upper limit have SiIV/SiII fractions less than 10%. In cases where intervening DLAs exhibit SiV, it is usually observed in a different velocity structure from SiII (Wolfe & Prochaska 2000), which can be obtained if the ionizing spectrum is relatively soft (Howk & Sembach 1999). This is indeed the case for the PDLAs towards J2321+1421 and J0142+0023 where the
bulk of the Si IV is offset from the SiII. However, for 3/6 of the PDLAs in our sample where we detect Si IV, it traces the structure of the SiII (Q0151+048, J1131+6044, J1604+3951). This is unusual; one explanation could be the presence of a hard spectrum (and/or high ionization parameter). For the final PDLA where Si IV is detected (J1240+1455) the Si IV is so strongly saturated we have no information on its velocity structure. Interestingly, the coincident (or not) velocity structure of Si IV with SiII is independent of the ΔV of the PDLA. For example, J2321+1421 has the smallest velocity separation (-1616 km s$^{-1}$) with little or no Si IV coinciding with SiII, yet the largest ΔV PDLA (J1131+6044, 2424 km s$^{-1}$) has very similar velocity structure in the two ions.

6.3 Alpha elements

S, Si, Ar and O are all alpha capture elements that are produced predominantly in massive stars. Their shared nucleosynthetic origin leads to approximately solar abundance ratios of these elements in Galactic stars (e.g. Chen et al. 2002). Departures from solar ratios in DLAs can occur when one or both of the alpha elements in question is depleted from the gas phase onto dust, or if there is significant ionization. OI is an ideal ‘anchoring’ to study alpha elements since oxygen is both relatively undepleted (Savage & Sembach 1991) and OI requires a negligible ionization correction. Unfortunately, the most accessible OI transition ($\lambda_0 = 1302$ Å) is usually strongly saturated. We have only one PDLA in our sample with a well-constrained column density of OI; the other absorbers yield only lower limits.

We have detections or meaningful limits for S and Si for all the PDLAs in our sample. Like O, S is largely undepleted in the Galactic ISM, but Si is mildly refractory. Super-solar ratios of [S/II] may therefore be observed if dust is present. In Figure 13 we plot [S/II] versus N(H) for the sample of 7 new PDLAs plus systems taken from the literature (see Table 3). PDLAs are colour-coded by their relative velocities (see Table 3). cyan for $\Delta V < 500$ km s$^{-1}$, green for $500 < \Delta V < 1500$ km s$^{-1}$ and red for $\Delta V > 1500$ km s$^{-1}$. The low values of [S/II] can not be easily explained by dust depletion or nucleosynthesis and may be caused by ionization by a hard radiation source.

Figure 13. [S/II] as a function of log N(H) for intervening DLAs (open points, $\Delta V > 10000$ km s$^{-1}$) and PDLAs (filled coloured points) from the new data presented here and taken from the literature (see Table 3). PDLAs are colour coded by their relative velocities (see Table 3). We have one new argon detection at 1259 for the limiting column density, adopting the b-value and redshift of the strongest component in the fit to one of the low ions (either SiII or FeII). A visual inspection of the calculated limits overlaid on the data indicate that they are reasonable estimates.

Argon is relatively rarely measured in DLAs, mostly due frequent blending of the rest-frame far UV lines of ArI at $\lambda = 1048, 1066$ Å. However, the abundance of ArI is very sensitive to ionization, because its ratio of photoionization to recombination rates are typically one order of magnitude higher than for HI (Sofia & Jenkins 1998). Interestingly for our study, Vladilo et al. (2003) have used Cloudy modelling to demonstrate that the fraction of ArI is sensitive to the adopted radiation field. Low ratios of Ar relative to other elements are expected when the radiation field is hard, whereas the models predict solar ratios when the ionizing spectrum is soft. Two of our limits on [Ar/Si] are not deep enough to be very meaningful: [Ar/Si] < -0.42, -0.01 towards J0140−0839 and J2321+1421 respectively. The two other limits are very sub-solar: [Ar/Si] < -0.86, -0.47 towards J1131−6044 and J0142+0023 respectively. We have one new argon detection towards J1604+3951), although we can only derive its ratio with silicon for the principal component: [Ar/Si] = -0.40. Sub-solar ratios of [Ar/Si] are therefore apparently common in the PDLAs and further support significant ionization by a hard radiation field.

6.4 Nitrogen

The most highly ionized species available for study in our sample is NV (in all cases OVI is blended). Fox et al. (2009) find a 13.5% NV detection rate in DLAs compared with 13.3% in PDLAs out to 5000 km s$^{-1}$ from the QSO. This result may seem surprising given the ionization radiation from the nearby QSO. Indeed, Fechner & Richter (2009) find a high NV incidence rate amongst $\Delta V < 5000$ km s$^{-1}$ absorbers with $13 < \log N$(H) < 17.0. Fox et al. (2009) suggest that the consistency in NV detection rates between DLAs and PDLAs may be due to the fairly large velocity interval over which they include a DLA in their proximate sample. In our sample, 2/7 (J1240+1455 and J1604+3951) of the PDLAs exhibit NV absorption.
at a similar velocity to the low ions – tentative evidence that NV is more common in PDLAs, although better statistics are required to confirm this. Notably, the PDLA towards J1240+1455 exhibits one of the largest N(NV) yet reported in the literature (Fox et al. 2009). The two NV detections in our sample occur in PDLAs with small ΔV, high N(H\text{i}) and relatively high metallicity (Z ∼ 1/10Z⊙). Rix et al. (2007) also detected NV in the N(H\text{i})=20.98 PDLA towards Q2343–BX415, which also has a fairly low velocity separation (ΔV ∼ 22 km s⁻¹) and high metallicity (Z ∼ 1/5Z⊙). However, J2321+1421 which has the largest negative velocity in our sample (∼ −1600 km s⁻¹) does not exhibit NV. The detection rate of NV would therefore increase if we limited our statistics to lower ΔV, supporting the explanation of Fox et al. for the lack of NV excess in their proximate sample. The higher incidence of NV out to 5000 km s⁻¹ seen by Fechner & Richter (2009) may be associated with the lower N(H\text{i}) column densities of their sample.

7 ABUNDANCES

7.1 Metallicity

Figure 14 shows Fe and Si abundances as a function of redshift for DLAs and PDLAs whose redshifts are z_{abs} > 1.8. Our sample includes PDLAs that are amongst the most metal-poor and the most metal-rich for their redshift. The PDLA towards J0140–0839 has the lowest metallicity ever detected in a high N(H\text{i}) absorber (see Section 4.1 for further discussion), although there may be an upward correction of up to a few tenths of a dex to be made for ionization. The results in Figure 14 ostensibly support the conclusion of Rix et al. (2007) that PDLAs exhibit metallicities that span the distribution of intervening DLAs. However, in Section 6 it is argued that the low N(H\text{i}) systems are likely to have significant ionization corrections. We therefore re-assess the PDLA metallicities as a function of N(H\text{i}).

PDLAs with log N(H\text{i}) > 21 probably have negligible ionization corrections and Figure 15 shows that these PDLAs have quite high [Si, S/H]. The Zn abundances are also distributed towards the upper end of the intervening DLA distribution. [Fe/H] shows more scatter and its sensitivity to dust depletion makes it harder to interpret. At lower N(H\text{i}), all but one of the PDLAs have Si and S abundances that are below the median. This intriguing observation could be interpreted as a difference in the provenance of the low and high N(H\text{i}) PDLAs. Alternatively, (and perhaps more likely) it could indicate that the PDLAs (or at least a subset thereof) have intrinsically higher metallicities, but whose abundance determinations are affected by ionization at low N(H\text{i}).

7.2 Dust depletion indicators

In Figure 16 we plot the [Zn/Fe] ratio (as an indicator of depletion) as a function of [Zn/H] for the PDLA and DLA samples. The median [Zn/Fe] for our literature sample (when both Zn and Fe are measured) is [Zn/Fe] ∼ +0.4. J1240+1455 appears to have particularly high depletion, although at Z ∼ 1/10Z⊙, it is also one of the more metal-rich absorbers. The PDLA towards J1240+1455 has a high N(H\text{i}) so the high [Zn/Fe] ratio is unlikely to be caused by ionization. J1604+3951 shows clear signs of different levels of depletion between two velocity components with high [Zn/Fe] in one component but not the other (see Section 4.6). Overall, there is no obvious difference between the dust depletion in the PDLAs and the intervening systems.

7.3 Alpha elements

[Si/Fe] is used as an indicator of α enhancement, since both elements are measured in the majority of our sample. [Si/Fe] is usually plotted as a function of metallicity, although the results presented so far in this paper indicate that trends may also be present with N(H\text{i}) due to ionization. In Figure 17 we therefore plot [Si/Fe] as a function of both N(H\text{i}) and [Si/H]. Figure 17 shows that at low N(H\text{i}) the PDLAs have fairly typical values of [Si/Fe], with the exception of the very metal-poor PDLA towards J0140–0839 which has [Si/Fe] > 0.72. This PDLA is even more of an outlier when its [Si/Fe] is considered relative to its metallicity. Although the high [Si/Fe] ratio could be due in part to ionization corrections and/or dust, it also raises the intriguing possibility of extreme alpha element enhancement in a chemically young object. SDSS offers the opportunity to search out other rare, low metallicity DLAs in order to investigate their nucleosynthetic histories. The [O/Fe] ratio in this absorber is also high, [O/Fe] > 0.75 and OI is much less affected by ionization and dust than SII. J1131+6044 also has a relatively high value of [Si/Fe]=0.67, although Figure 17 shows that such values are not unknown in the intervening population. J1240+1455
Figure 15. Si, Fe, Zn and S abundances as a function of log \(N(\text{H}i) \) for intervening DLAs (open points, \(\Delta V > 10000 \text{ km s}^{-1} \)) and PDLAs (filled coloured points). Si and Fe are either mildly or severely depleted by dust, whereas Zn and S are largely undepleted from the gas phase and may therefore represent more reliable indicators of metallicity. PDLAs are colour coded by their relative velocities (see Table 8): cyan for \(\Delta V < 500 \text{ km s}^{-1} \), green for 500 < \(\Delta V < 1500 \text{ km s}^{-1} \) and red for \(\Delta V > 1500 \text{ km s}^{-1} \). Silicon and sulphur (and to a lesser extent, zinc) exhibit high abundances when log \(N(\text{H}i) > 21 \) (see Section 7.1).

has an extremely high [Si/Fe] that is unlikely to be due to ionization effects, given its high \(N(\text{H}i) \). However, as discussed in the previous subsection, the [Zn/Fe] indicates a large depletion fraction which could lead to an over-estimate of [Si/Fe] (Fe is much more refractory than Si). Using the undepleted ratio of [S/Zn]=0.11, the high [Si/Fe] of J1240+1455 appears to be largely due to dust. In summary, there are no clear, systematic differences in the [Si/Fe] ratios of PDLAs compared with the intervening systems, although some PDLAs do appear to have relatively high values.

8 CONSTRAINING THE DISTANCES TO PDLAS FROM FINE STRUCTURE LINES

We have emphasized in this paper that the velocity offsets (\(\Delta V \)) between the QSO and PDLAs are unlikely to be convertible into distances using Hubble’s law. To attempt to constrain the true physical distances we can model the interplay between the QSO’s radiation and the PDLA’s interstellar gas.

8.1 Distances from CII\(^*\)

In this subsection we describe the method for using C II\(^*\) to estimate the PDLA–QSO distance, as well as describing the assumptions of the model, limitations and caveats. The practical application of the method is given in Section 8.1.1.

Wolfe, Prochaska & Gawiser (2003) have used CII\(^*\) to estimate the radiation intensity, and hence the star formation rate in DLAs. The far UV radiation emitted by massive stars contributes to heating through the grain photo-electric effect, which in turn heats the gas. The heating rate, \(\Gamma \) is a function of the mean radiation intensity (\(J \)), the heating efficiency (\(\epsilon \)) and the dust to gas ratio relative to the Galactic value (\(\kappa \)): \(\Gamma \propto J \kappa \). The value of \(\epsilon \) is known from Galactic studies (e.g. Bakes & Tielens 1994), and \(\kappa \) can be inferred from ratios of refractory to undepleted elements for individual DLAs, under an assumed model for dust depletion patterns and intrinsic abundance ratios. In a plane parallel layer \(J \) is proportional to \(\psi_\star \), the star formation rate per unit area (which we henceforth refer to as simply ‘star formation rate’ for brevity). The star formation rate can therefore be determined once \(\Gamma \) is known. This is achieved by assuming that the medium is in local thermal equilibrium and that heating rate can thus be equated to the cooling rate. This latter quantity is inferred from the C II\(^*\) absorption line which measures the population of the excited \(^2P_{3/2} \) fine-structure state that spontaneously decays to the ground-state by emitting a 158\(\mu \)m photon.

For PDLAs, a second source of far UV photons potentially contributes to the heating: radiation directly from the proximate QSO. Rix et al. (2007) measured CII\(^*\) in one PDLA and by assum-
ing that all the radiation originated from the QSO placed a lower limit on the distance of the PDLA from the QSO. We follow a similar procedure here, but calculate the distance as a function of \(\psi \), to explore the range of likely values of the PDLA–QSO separation. We assume that the mean radiation intensity, \(J \), inferred from CII, has contributions from star formation and the QSO:

\[
J_{\text{TOT}} = J_{\text{SF}} + J_{\text{QSO}}. \tag{5}
\]

The radiation contribution from the QSO depends on the QSO luminosity (\(L_\nu \)) and separation (\(d \)). \(J \) is measured in ergs cm\(^{-2}\) s\(^{-1}\) sr\(^{-1}\) Hz\(^{-1}\) so that

\[
4\pi J_{\text{QSO}, \nu} = \frac{L_\nu}{4\pi d^2}. \tag{6}
\]

The CII\(^*\) analysis of Wolfe et al. (2003) yields \(J \) for a rest wavelength of 1500 Å. Combining equations 5 and 6 and solving for \(d \), we obtain

\[
d = \frac{1}{4\pi} \sqrt{\frac{L_\nu}{J_{\text{TOT}, \nu} - J_{\text{SF}, \nu}}}. \tag{7}
\]

The contribution to \(J \) from star formation depends on the geometry of the plane parallel layer (parameterised by the ratio of its radius and height, \(R/h \)), metallicity and its dust-to-gas ratio, \(k_\nu \). For \(k_\nu R \ll k_\nu h \ll 1 \) equations 18 and 19 of Wolfe et al. (2003) can be reduced and re-arranged to give

\[
J_{\text{SF}, \nu} = 8.4 \times 10^{-16} \psi_{\nu} \frac{1 + \ln(R/h)}{8\pi} \tag{8}
\]

where \(\psi_{\nu} \) is measured in units of MO yr\(^{-1}\) kpc\(^{-2}\). A fixed aspect ratio of \(R/h=20 \) is used for all calculations. Following Wolfe et al. (2003), the dust-to-gas ratio is determined from Si/Fe and metallicity from [Si/H] with an assumed intrinsic [Si/Fe]=0.2 and SMC depletion patterns. Solutions can be calculated for two cases: gas that is dominated by the cold and warm neutral media (CNM, WNM) respectively. However, using CII\(^*\) to constrain distances for the WNM solutions has two problems. First, in the WNM, the cooling is actually dominated not by the [CII] 158 μm transition, but by Ly\(\alpha\) and the recombination of electrons onto grains. Second, at the low densities implied by the WNM solutions, the dominant heating source is no longer the grain photo-electric effect, but cosmic ray heating and, to a lesser extent, heating by X-rays. In the calculations of Wolfe et al. (2003), the cosmic ray production rate is assumed to scale with the star formation rate. However, we are additionally concerned with energy sources associated with the QSO and it is unclear whether AGN produce cosmic rays and at what rate. We therefore only consider the CNM solutions, but caution that these are probably inappropriate for the PDLAs with the lowest cooling rates. A full treatment of the WNM solutions for AGN heating is beyond the scope of this paper.

The QSO luminosity at \(\lambda_0 = 1500 \) Å is determined from the SDSS spectrum, except in the case of Q0151+048. For this target, we take \(B_{1500}=17.83 \) from Fynbo et al. (2000) which converts to a flux of \(2.7 \times 10^{-27} \) ergs s\(^{-1}\) Hz\(^{-1}\) (no corrections are made for Ly\(\alpha\) emission or Ly\(\alpha\) forest absorption, since they lie outside the \(B \) filter for \(z = 1.9 \)). The luminosity and flux (in units of ergs s\(^{-1}\) Hz\(^{-1}\)) at a given frequency are related through the equation

\[
F_\nu = L_{\nu(1+z)} \times \frac{1 + z}{4\pi d_L^2}. \tag{9}
\]
The vertical dotted line indicates log ψ_*. Wolfe et al. (2003) have shown that the range of $[\text{Si}]$ (e.g. Prochaska & Wolfe 2002) and given that ionization effects can be a dominant source of ISM heating. However, the contribution of this process to the heating budget depends on the ISM density (e.g. Figure 3 in Wolfe et al., 2003), becoming more dominant at high densities. For CNM solutions, lower dust-to-gas ratios (i.e. fewer grain targets for heating) require a higher incident intensity to account for the observed $[\text{Si}]$. However, in Section 7.3 we showed that the range of $[\text{Si}]/[\text{Fe}]$ ratios of most of the PDLAs are in good agreement with intervening systems. Assuming that there is an intrinsic ‘floor’ to $[\text{Si}]/[\text{Fe}]$ whose value is approximately 0.2 (e.g. Prochaska & Wolfe, 2002) and given that ionization effects tend to lead to over-estimates of $[\text{Si}]/[\text{Fe}]$ (e.g. Dessauges-Zavadsky et al., 2003; Howk & Sembach, 1999), the measured Si/Fe ratios do not indicate significant corrections in the majority of cases.

8.1.1 Application to the data

$[\text{Si}]$ is detected in Q0151+048 and J1604+3951 and we have upper limits for J0140–0839, J1131+6044 and J2321+1421 which will yield lower distance limits for a given ψ_*. However, the $[\text{Si}]$ towards J1604+3951 is partly blended with $[\text{CII}]$ at 1334, and the unblended components are saturated, so we do not consider this PDLA further. Q0151+048 may have J_{QSO} contributions from Q0151+048B, introducing a second unknown distance. Fynbo et al. (1999) have argued that the most likely orientation of the system is that Q0151+048B is in front of Q0151+048 and the DLA causes $\text{Ly}$$\alpha$ emission on the near face of the absorber. Modelling this system completely is complicated not just by uncertainty in the geometry of the QSO pair and absorber, but also by the anisotropy of quasar radiation and hence the flux ‘seen’ by the DLA coming from Q0151+048B. However, assuming that all the flux comes from the background QSO still yields a lower limit to the distance between Q0151+048 and the PDLA (just as we determine a lower limit under the assumption that internal star formation does not contribute).

In Table 2 we list the limiting value of the PDLA–QSO distance for a star formation rate $\psi_* = 0$ and also the fiducial case of a Galactic star formation rate of $\log \psi_* = -2.4 \text{ M}_\odot \text{yr}^{-1} \text{kpc}^{-2}$ for the CNM solutions. For PDLAs with upper limits to $N([\text{CII}])$ the CNM solutions are likely to be inappropriate and they are given in the Table only for completeness. More sensitive $[\text{CII}]$ limits could definitively rule out CNM solutions entirely as is the case for J1131+6044 which only has a WN solution. The $[\text{CII}]$ analysis therefore only yields useful a distance constraint for Q0151+048 where the lower limit is 160 kpc (no star formation case), rising to just over 400 kpc for a Galactic star formation rate, a separation approximately 5 times larger than the only other PDLA in the literature has been analysed in this way (Q2343–BX415 by Rix et al., 2007). In Figure 13 we show the complete range PDLA–QSO distances as a function of star formation rate for Q0151+048. The Figure demonstrates that once star formation dominates over the QSO’s radiation, the inferred distance to the PDLA rises dramatically, essentially providing an upper limit to the likely star formation rate in the galaxy, as well limits of the distance to the QSO.

8.2 Distance constraints from SiII^+ limits

There are a number of uncertainties and assumptions that underpin the distance calculations from $[\text{CII}]$ which affect the inferred radiation field to varying extents. These include knowledge of the gas phase (cold or warm), metallicity, dust depletion, assumed geometry and extinction law. An alternative assessment of the distance between the absorber and the radiation source can be made using the SiII fine structure lines and the ratio of $N(\text{SiII})$ to the column density.

\begin{align*}
\text{Distances between the PDLA and Q0151+048 calculated from the CII analysis. The curve shows the distance corresponding to an increasing local contribution of radiation from star formation rate, log ψ_*. The vertical dotted line indicates log $\psi_* = -2.4 \text{ M}_\odot \text{yr}^{-1} \text{kpc}^{-2}$.}
\end{align*}
of the ground state ions. In order to determine the relation between N(SiII*)/N(SiIII) and the incident radiation field, we use the publicly available code ropparo (Silva & Viegas 2002). We assume that SiII* is populated purely by UV-pumping (fluorescence) and ignore contributions from direct (IR) excitation and collisions. The results from ropparo are shown by the curve in Figure 12 as a function of the radiation field in Galactic units (G0). Upper limits for N(SiII*) are derived from SiII*λ1264 which in turn yield upper limits on G/G0, which is related to J

\[J = G \times 10^{-19} \text{ergs cm}^{-2} \text{s}^{-1} \text{Hz}^{-1}. \]

The luminosities in Table 9 are then combined with J in equation 6 to give a lower limit on the distance. These values are lower limits not just because of the non-detection of SiII*, but also because of our assumption that only UV-pumping contributes to the population of the fine structure level. The lower limits derived are typically 15 to 30 kpc, see Table 9. Although these are considerably less stringent than the CII* distances, they are fairly robust and depend on very few assumptions and input parameters. The only caveat to this analysis is that at least two of the SiII transitions from the ground state must be optically thin (Sarazin, Rybicki & Flannery 1979), which holds for all but one of our PDLA sample (which is excluded from this analysis).

In summary, we have used two methods to constrain QSO-PDLA distances. The CII* method (under the CNM assumption) gives a lower limit of 160 kpc for Q0151+048 (assuming no internal star formation), but is rather dependent on model assumptions. The SiII* model is more robust but gives less stringent limits, typically >15–30 kpc. Adding star formation to either method increases the inferred distance of the PDLA from the QSO. The distances imply that the absorbers are external to the QSO.

9 DISCUSSION

9.1 Sulphur and argon as indicators of QSO proximity

We have suggested that sub-solar ratios of [S/Fe] at low values of N(HI) may be caused by the significant under-estimate of N(S) from SII and, to a lesser extent, an over-estimate of N(S) from SiII in the presence of a hard ionizing spectrum. This result could be predicted from the photoionization models of Rix et al. (2007), who showed that the observed under-estimate of sulphur is strongly dependent on the ionization parameter, U. Most models of intervening DLAs and sub-DLAs have concluded that the value of log U is typically < -3 (e.g. Howk & Sembach 1999; Dessauges-Zavadsky et al. 2003). However, for absorbers close to a QSO, the situation can be quite different. For example, Prochaska & Hennawi (2009) find that for a hydrogen volume density of 0.1 atoms cm\(^{-3}\) the ionization parameter of one of their transverse sub-DLAs at a distance of ~100 h\(^{-1}\) kpc from the QSO is log U = -1.5. The QSOs in our sample are typically a factor of 10 brighter than the case studied by Prochaska & Hennawi (2009), so ionization parameters in the range -2 < log U < 0 are quite feasible.

Sub-solar [S/Fe] ratios may therefore be used as a signpost of a nearby hard radiation source. Two of the intervening DLAs (FBQS 2334–0908 and PSS 0133+0400) in our literature sample also have [S/Fe]< -0.5. One possible explanation could be that although they are intervening (ΔV > 10,000 km s\(^{-1}\)) systems, there is a nearby foreground QSO at a similar redshift. FBQS 2334–0908 is covered by the SDSS footprint. Although none of the objects near to FBQS 2334–0908 were targeted by the SDSS for spectroscopy, there are two point sources at separations of 27 and 105 arcseconds (208 and 809 h\(^{-1}\) kpc at z = 3 respectively) whose colours are consistent with expectations of QSOs. PSS 0133+0400 is not covered by the SDSS, but the APN catalogue shows 2 point sources with similar colours to the QSO at separations of 57 and 64 arcseconds (409 and 459 h\(^{-1}\) kpc at z = 3.7 respectively). It would be interesting to obtain spectra of these sources to determine whether or not they are indeed QSOs at the same redshift as the intervening DLAs. Indeed, some of the intervening NV absorbers identified by Fox et al. (2009) have nearby QSOs at the same redshifts (G. Worseck, private communication).

The low ratios of [Ar/Fe] (where measured) in our PDLAs are also indicative of a hard ionizing spectrum (Vladilo et al. 2003). Using a sample of 10 ArI measurements, Vladilo et al. (2003) have also found low ([Ar/Fe]< -0.5) at z\(_{abs}< 3\). At higher redshifts, the values are close to, or at, the solar level. Vladilo et al. (2003) have argued that this may be evidence for evolution in the ionizing background, which is shifting from a softer to harder shape as the redshift decreases. However, 3/7 of the z\(_{abs}< 3\) absorbers in the Vladilo et al. (2003) sample are PDLAs. A further two have velocities within 10,000 km s\(^{-1}\), leaving only two which might be considered truly intervening absorbers. At z\(_{abs}> 3\) all 3 absorbers have ΔV > 15,000 km s\(^{-1}\). Given the evidence presented in this paper that the effects of a hard ionizing spectrum are seen out to at least 3000 km s\(^{-1}\) (and previous results that indicate narrow associated absorbers may contribute out to 10,000 km s\(^{-1}\), e.g. Wild et al. 2008; Tytler et al. 2009), the apparent redshift evolution may actually arise from the inclusion of proximate systems. A larger sample of large ΔV DLAs with argon measurements is necessary to explore more fully the redshift evolution of [Ar/Fe].

9.2 NV as a tracer of high ionization gas

High ionization species such as NV and OVI might be expected to be more common in absorbers close to the QSO. Although OVI is blended in almost all of our sightlines, we have detections and upper limits of NV for all of our PDLAs. It is intriguing that the

QSO	z\(_{abs}\)	ΔV (km s\(^{-1}\))	log N(CII*) (cm\(^{-2}\))	log N(SiII*) (cm\(^{-2}\))	L\(_{1500}\) (ergs s\(^{-1}\) Hz\(^{-1}\))	\(d_{CNM}\) (kpc)	\(\psi_{abs}\) = 0	\(\log \psi_{abs} = -2.4\)
J0140–0839	3.6960	1250	<12.41	<11.48	1.08x10\(^{12}\)	>2099.0	...	>14.8
J0142+0023	3.34765	1772	...	<11.17	4.76x10\(^{11}\)	>29.8
Q0151+048	1.9342	-1199	13.0	< 11.81	2.44x10\(^{11}\)	160.5	406.0	>8.6
J1131+6044	2.8754	2424	<12.51	<11.57	5.85x10\(^{11}\)	>30.8
Q2321+1421	2.5731	-1616	<12.55	<11.78	2.27x10\(^{11}\)	>510.1	...	>14.3

Table 9. PDMA–QSO distance calculations. Solutions are given for the CII* analysis under the assumption of a CNM and for SiII* where suitable detections/limits are possible (see text for details).
two detections of NV at the same velocity as the singly ionized metal lines are towards the two highest N(H) absorbers (towards J1240+1455 and J1640+3951); both have log N(H) ≳ 21. However, both absorbers also have normal [S/Si] ratios, whereas we might expect departures from the solar ratio if the gas is partly ionized by a hard spectrum (as is seen for low N(H) PDLAs). The presence of NV in an ISM that is dominated by neutral gas indicates that the NV might be formed through an internal, localised source of ionizing radiation. In that case, the radiation from the QSO may not be responsible for the formation of the NV and the proximate nature of the DLA is mis-leading. Fox et al. (2009) found that the NV detection rate is higher for higher metallicity (inter-vening) DLAs. J1240+1455 and J1640+3951 have (undepleted) S abundances that are more than 1 dex higher than many of the other PDLAs in our sample and 3 times higher than intervening DLAs at the same N(H) and redshift. Fox et al. (2009) have suggested that active star formation could be responsible for highly ionized gas which is consistent with the high metallicities, large velocity spreads and (for J1604+3951) the very high CII\(^+\) column density. Indeed, Lehner et al. (2008) found that a pure QSO (hard) spectrum always under-produced the observed amount of NV in their study of a DLA with multi-phase gas; adding a soft stellar component significantly increased the predicted NV column density. Our own CLOUDY models indicate that even in the presence of a hard radiation field that is sufficient to produce sub-solar [S/NI] the NV/NI fraction is still only on the order of 10\%, which is consistent with the NV column density limits in our lower N(H) systems.

Both J1240+1455 and J1640+3951 show additional (and in the former case, much stronger) NV offset by several hundred km s\(^{-1}\) to the blue. A third PDLA (towards Q0151+048) shows highly offset NV (by ~825 km s\(^{-1}\)) but no NV at zero velocity; in this case, the N(H) is much lower, only log N(H) = 20.34. It is notable that every PDLA in our sample of 7 echelle spectra (with the exception of J0140–0839, which has very weak metal lines in general) has high ionization gas that is offset to negative velocities. In many cases, there is high ionization gas (such as CIV) at the redshift of the low ions but no low ions are seen to accompany the negative high ion high ion components. In some cases the velocity offset is small (e.g. CIV at ~ −100 km s\(^{-1}\) in J0142+0023). In other cases, the velocity offsets exceed ~500 km s\(^{-1}\) (e.g. Q0151+048).

We summarise these offset components in Table 10 (see Sections 4.2 to 4.7 for more detailed descriptions) listing both the \(\Delta V\) of the PDLA from the background QSO and the velocity offset of the high ions from the main low ion components. Rix et al. (2007) also found a highly ionized component (observed in NV, CIV and SiIV) offset by ~500 km s\(^{-1}\) from the PDLA towards Q2343–BX415. Weidinger et al. (2005) find NV in 2 absorbers offset from a proximate Lyman limit system by a few thousand km s\(^{-1}\). In these more extreme cases (e.g. Q0151+048) the absorption is likely to be unconnected with the proximate HI system and more akin to the associated high ionization associated systems studied by D’Odorico et al. (2004) and Fechner & Richter (2009).

For J1131+6044 and Q0151+048 where the high ion velocity offset is very high, it is likely that the absorption is arising in gas outside the PDLA. As discussed in Section 5.3 Q0151+048 has a fainter companion separated by 27.5 h\(^{-1}\) kpc and ~120 km s\(^{-1}\). Although there is no confirmed companion for J1131+6044 in the NASA Extragalactic Database (NED), the SDSS image shows a bright (\(g = 17.59\)) point-source 5.66 arcseconds to the north-west. The object has an almost identical \(g−r\) colour to J1131+6044 (0.41 and 0.38 respectively), so that this may be a binary QSO. The putative companion may contribute to the significant ionization seen in the J1131+6044 PDLA (e.g. high SiIV fraction), despite the large positive velocity offset from the QSO (2424 km s\(^{-1}\)), but see below for further discussion on the interpretation of velocities). The other 5 QSOs in our sample have no obvious bright companion within 20 arcseconds on the SDSS image. If the companion to J1131+6044 is confirmed, this would mean that 2/7 of the QSOs with PDLAs in our sample have a close companion. Q2343–BX415 also has a companion, and its PDLA also has 2 distinct velocity components in the highly ionized gas, one of which is coincident with the bulk of the low ions, and the other offset by ~500 km s\(^{-1}\).

9.3 The origin and nature of the PDLAs

The question that underpins the research of all associated absorbers is whether they are intrinsic to the QSO (host or outflow) or simply nearby in velocity space. Møller et al. (1998) examined a number of hypotheses for the nature of the PDLAs and favour a model in which the PDLAs are similar in nature to the intervening absorbers, but possibly located in a preferential environment, such as in the same overdensity as the QSO. Rix et al. (2007) suggest that the PDLA towards Q2343–BX415 (included in our literature sample) may be associated with outflowing material from the quasar host. Indirect clues to the provenance of the PDLAs may be garnered from their statistical properties. An excess of PDLAs relative to intervening systems has been confirmed by three studies (Ellison et al. 2002; Russell et al. 2006; Prochaska et al 2008b). Although Ellison et al. (2002) found an additional excess of PDLAs in their radio-selected sample relative to optically selected QSOs, Russell et al. (2006) found an equal PDLA enhancement towards radio-loud and radio-quiet QSOs. The discrepency may be due to the limited statistics of the Ellison et al. study, but a second possibility is the nature of radio sources. The CORALS sample used by Ellison et al. (2002) is comprised entirely of (rarer) flat-spectrum quasars that have compact morphologies. The sources detected at 20 cm in the Russell et al. (2006) sample will have a range of spectral indices and orientations. It would be interesting to investigate the dependence of PDLA incidence as a function of radio spectral index, as has been done extensively for CIV absorbers. There is certainly evidence that the quasar’s radiation affects the ability of a PDLA to survive. Hennawi & Prochaska (2007) have shown that the incidence of transverse DLAs in projected QSO pairs overpredicts the incidence of proximate absorbers by a factor of 4–20. These authors suggested that line-of-sight PDLAs are preferentially photo-evaporated by the QSO’s beamed radiation. A similar overabundance of transverse MgII absorbers relative to the line of sight has been seen by Bowen et al. (2006). Moreover, Prochaska et al. (2008b) show that despite the higher incidence of PDLAs relative to the intervening population, a clustering analysis indicates that they are nonetheless underabundant relative to the expected number density of galaxies near QSOs.

One of the observations that supports an intrinsic origin for many associated absorbers, is their solar or super-solar metallicity (see the Introduction). We do not find any evidence for such elevated metallicities in our sample of PDLAs. The same is true of the associated MgII systems (some of which may be DLAs) studied by vanden Berk et al. (2008). Nonetheless, as discussed above, we do find that PDLAs with high HI column densities have a mean metallicity that is higher than intervening systems by around a factor of three. For example, [S/H] = −0.88 ± 0.24 for the proximate absorbers versus −1.41 ± 0.20 for those at \(\Delta V > 10,000\) km s\(^{-1}\).
Higher density for an extreme structure of galaxies clustered around quasars can be tens of Mpc. Haines et al. (2004) have found evidence also trace out other overdense structures, such as filaments whose significance of (at least the high N(H\textsc{i})) proximate DLAs are relatively high, as a population they present an interesting new selection technique for identifying the most metal-rich galaxies at high redshift. With metallicities ranging from 1/3 to 1/10 of the solar value, the high N(H\textsc{i}) PDLAs have metallicities similar to the ‘metal strong DLAs’ (MS-DLAs, Herbert-Fort et al. 2006) at \(z \sim 2 \) (Kaplan et al., in preparation). Indeed, a number of the MSDLAs are also PDLAs (Kaplan et al., in preparation). Although this is still more metal-poor than the majority of Lyman Break Galaxies (LBG) studied at this redshift, most LBG abundances are limited to fairly massive galaxies (Erb et al. 2006). Gravitational lensing permits studies of fainter galaxies. Only a handful of such objects have been studied so far, but the results indicate that galaxies with \(\sim L_\star \) luminosities at \(z \sim 2 \) to 3 have metallicities of \(Z \sim 1/2Z_\odot \) (e.g. Teplitz et al. 2000; Pettini et al. 2002; Quider et al. 2009a,b). If the PDLAs follow a similar mass-metallicity relation, then they may be only slightly less massive than these lensed LBGs. High metallicity systems present a number of interesting possibilities for studying the high redshift ISM. For example, Noterdaeme et al. (2008) have shown that molecular hydrogen is highly dependent on metallicity. High metallicities also present the opportunity to detect and study the abundances of rarely detected elements such as Ge, B, Cl and Co (Ellison, Ryan & Prochaska 2001; Prochaska et al. 2003c).

9.4 Future Work

Hennawi et al. (2006) presented a sample of close, projected QSO pairs where the background quasar exhibits optically thick Ly\(\alpha \) absorption at the redshift of the foreground quasar. It is shown that 50% of projected QSO pairs have an absorber with log \(N(H\textsc{i}) >19 \) at the redshift of the foreground QSO when the separation is < 150 kpc. This much higher incidence of transverse absorbers, relative to proximate line of sight absorbers, is suggested by Hennawi & Prochaska (2007) to be due to differential photo-evaporation by anisotropic radiation of the foreground QSO. In the future, it will be interesting to compare the chemical abundances and ionization indicators of PDLAs to transverse DLAs at a given \(N(H\textsc{i}) \) (e.g. Prochaska & Hennawi 2009) and to test fine structure distance estimates against the measurable transverse separations.

Despite their external provenance, the QSO’s radiation can apparently affect PDLAs out to at least 2500 km s\(^{-1}\) from the QSO. With a larger sample, and accurate redshifts, it will also be possible to look for trends with velocity. Ultimately, this may require the incorporation of other parameters such as QSO luminosity, including radiation from nearby companions. A campaign is currently underway to obtain IR spectra for a sample of QSOs with PDLAs.
to consistent with a large dust depletion fraction. However, in gen-
erning population (Section 7.2 and Figure 16). The PDLA towards
(J1131
ditional high ionization gas at large negative velocities of
low ratios of [Ar
i
∆
λ
Baker, J. C., Hunstead, R. W., Athreya, R. M., Barthel, P. D., de Silva, E.,
Bakes, E. L. O., & Tielens, A. G. G. M., 1994, ApJ, 427, 822
Bergeron, J., & Boisse, P., 1986, A&A, 168, 6
Asplund, M., Dow-Hygelund, C., Schaye, J., Theuns, T., 2008, ApJ, 689, 851
Akerman, C. J., Ellison, S. L., Pettini, M., Steidel, C. C. 2005, A&A, 440, 499
Asplund, M., Grevesse, N., Sauval, A. J., 2005 ASP Conference Series, 336, 25
Asplund, M., Grevesse, N., Sauval, A. J., Scott, P., 2009 ARA&A, 47, 481
Baker, J. C., Hunstead, R. W., Athreya, R. M., Barthel, P. D., de Silva, E.,
Lehnert, M. D., 2003, MNRAS, 346, 160 kpc
(vi) One of the PDLAs in our sample has very sub-solar [Fe/Zn] consistent with a large dust depletion fraction. However, in general,
the [Fe/Zn] ratios of the PDLAs are consistent with the inter-
vening population (Section 7.2 and Figure 16). The PDLA towards
J1604+3951 has very different depletion in its two main compo-
ents.

10 CONCLUSIONS
We have presented new high resolution echelle spectra for seven
proximate damped Lyman alpha systems with \(\Delta V < 3000 \text{ km s}^{-1} \).
The metal column densities derived from Voigt profile fits and the
apparent optical depth method are complemented with abundances
for a further 9 PDLAs taken from the literature. Our PDLA sam-
ple is compared to the most complete sample of intervening DLAs
currently available. Our principal conclusions are:
(i) PDLAs exhibit a range of metallicities at a given redshift, ranging from \(\sim 1/3 \) to 1/1000 of the solar value (Section 7.1 and Figure 13). One of the PDLAs in our sample exhibits the lowest N(SiII)/N(H) of any known DLA and has a value similar to the intergalactic medium at this redshift.
(ii) Based on this modest-sized sample, there is a general trend (with the exception of one fairly high velocity PDLA) for low metallicities (\(Z \sim 1/50Z_\odot \)) in PDLAs with \(N(H) < 21 \) and higher metallicities (\(Z \sim 1/10Z_\odot \)) when the HI column density is higher (Figure 15). At these high HI column densities, the metallicities of PDLAs are systematically higher than the intervening sample by a factor of around three.
(iii) At least half of the PDLAs with \(N(H) < 20.8 \) have sub-
solar ratios of [S/Fe] which can not be easily explained by known dust or nucleosynthetic trends (Section 6.3 and Figure 13). We in-
terpret the low values as resulting from ionization by a hard spec-
trum. Sub-solar values of [S/Fe] can be present even in PDLAs with \(\Delta V > 2000 \text{ km s}^{-1} \), and with no obvious trend with velocity.
(iv) In addition to the dependence of metallicity on \(N(H) \) and the sub-solar [S/Fe] ratios, other indications of enhanced/hard ion-
ization in the PDLAs which distinguish them from the intervening DLAs are: 1) a possibly higher fraction of NV absorbers (tentative based on the small number statistics of our sample), 2) higher fractions of SiIV/SiII at low \(N(H) \), 3) similar velocity structure in SiIV as SiII in 3/5 QSOs where the comparison can be made, 4) low ratios of [Ar/Si] (Section 6). (v) Most of the PDLAs (6/7) in our sample of seven have addi-
tional ionization gas at large negative velocities of \(\sim -100 \) to \(-825 \text{ km s}^{-1} \) (Section 6.2 and Table 10). The most extreme examples both have either a confirmed (Q0151+048) or tentative (J1131+6044) close companion QSO.

(vi) From analyses of the fine structure lines of SiII and CII, QSO-absorber distances at least a few tens of kpc are determined, with one case being constrained to have a separation of \(> 160 \text{ kpc} \) (Section 5).

We conclude that PDLA properties are generally consistent with an origin external to the QSO host (in contrast with, e.g. the narrow line associated systems, D’Odorico et al. 2004). However, the larger abundances (at least of high \(N(H) \) PDLAs) imply that they may not be representative of the intervening sample. We sug-
gest that the PDLAs may preferentially sample overdense environ-
ments where biased galaxy formation has assembled more massive galaxies with higher metallicities. Indeed, at low redshift, some as-
associated absorbers have been identified with small clusters of galax-
ies (e.g. Bergeron & Boisse 1986; Hamann et al. 1997a). If con-
ﬁrmed with larger samples, this means that PDLAs could be
used as probes of massive galaxies at high redshift.

PDLAs have been widely excluded from most DLA surveys. The results presented here indicate that, depending on the science objective, this is a valid approach. We have argued that PDLAs may sample a rather special population of DLAs, possibly those in proto-clusters. Although this renders the PDLAs an interesting probe of high redshift galaxies, our results reveal some of the biases that could be introduced into statistical surveys that do not impose a \(\Delta V \) limit in their DLA selection. A high priority for future work
will be the improvement of emission redshift determinations. The results presented here imply that even at fairly large relative velocities ionization may affect abundance determinations. Determining more accurate \(\Delta V \) values in larger PDLA samples will provide an empirically motivated cut-off for studies of intervening DLAs.

ACKNOWLEDGMENTS
We are grateful to the following people for sharing data that en-
abled us to re-calculate emission redshifts for quasars in the litera-
ture: Andrew Fox, Johan Fynbo, Isobel Hook, Michael Murphy,
Samantha Rix and Tayyaba Zafar, Nikola Milutinovic and Nicolas Tejos helped with the data acquisition of the HIRES and UVES data respectively. Andrew Fox, Palle Møller and Pasquier Noter-
daeme provided useful comments on a draft of the paper. DMR ac-
knowledges support from a Netherlands Organization for Scientific Research (NWO) Veni Fellowship.

REFERENCES
Aguirre, A., Dow-Hygelund, C., Schaye, J., Theuns, T., 2008, ApJ, 689, 851
Akerman, C. J., Ellison, S. L., Pettini, M., Steidel, C. C. 2005, A&A, 440, 499
Asplund, M., Grevesse, N., Sauval, A. J., 2005 ASP Conference Series, 336, 25
Asplund, M., Grevesse, N., Sauval, A. J., Scott, P., 2009 ARA&A, 47, 481
Baker, J. C., Hunstead, R. W., Athreya, R. M., Barthel, P. D., de Silva, E.,
Lehnert, M. D., Saunders, R. D. E., 2002, ApJ, 568, 592
Bakes, E. L. O., & Tielens, A. G. G. M., 1994, ApJ, 427, 922
Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nichol, R. C.,
Bamford, S. P., Budavari, T., 2006, MNRAS, 373, 469
Barr, J. M., Bremer, M. N., Baker, J. C., Lehnert, M. D., 2003, MNRAS, 346, 229
Bergeron, J., & Boissé, P., 1986, A&A, 168, 6
Tytler, D., Gleed, M., Melis, C., Chapman, A., Kirkman, D., Lubin, D., Paschos, P., Jena, T., Crotts, A. P. S., 2009, MNRAS, 392, 1539
Vanden Berk, D. E., et al. 2001, ApJ, 557, 1007
Vanden Berk, D. E., et al., 2008, ApJ, 679, 239
Vestergaard, M., 2003, ApJ, 599, 116
Vladilo, G., Centurion, M., Bonifacio, P., Howk, J. C., 2001, ApJ, 557, 1007
Vladilo, G., Centurion, M., D’Odorico, V., Peroux, C. 2003, A&A, 402, 487
Vogt, S. S. 1992, in ESO Conf. and Workshop Proc 40, High Resolution Spectroscopy with the VLT, ed. M.-H. Ulrich (Garching: ESO), 223
Vreeswijk, P., et al., 2007, A&A, 468, 83
Weidinger, M., Möllner, P., Fynbo, J. P. U., Thomsen, B., 2005, A&A, 436, 825
Weymann, R. J., Williams, R. E., Beaver, E. A., Miller, J. S., 1977, ApJ, 213, 619
Wild, V. Kauffmann, G., White, S., York, D., Lehnert, M., Heckman, T., Hall, P. B., Khare, P., Landgren, B., Schneider, D. P., vanden Berk, D., 2008, MNRAS, 388, 227
Wise, J. H., Eracleous, M., Charlton, J. C., Ganguly, R., 2004, ApJ, 613, 129
Wolfe, A. M., Lanzetta, K. M., Foltz, C. B., Chaffee, F. H., 1995, ApJ, 454, 698
Wolfe, A. M., & Prochaska, J.X., 2000, ApJ, 545, 591
Wolfe, A.M., Prochaska, J.X., & Gawiser, E., 2003, ApJ, 593, 215
Wolfe, A. M., Prochaska, J. X., Jorgenson, R. A., Rafelski, M., 2008, ApJ, 681, 881