Accurate analytical solution of the circular sector oscillation by the modified harmonic balance method

Nadia M Farea¹, Mohra Zayed² and Gamal M Ismail³,⁴

Abstract
This paper aims to solve the nonlinear differential equation of the circular sector oscillator analytically via the modified harmonic balance method (MHBM). To assess the reliability and the precision of the present method, we have compared the obtained results with the global residue harmonic balance method, Akbari–Ganji’s method, and numerical Runge–Kutta method which reveals that the MHBM is more reliable than others methods.

Keywords
modified harmonic balance method, circular sector oscillator, nonlinear equation, analytical solutions

Introduction
Most oscillation systems used in engineering, biochemical, physical, and mechanical problems are generally revealed mathematically by nonlinear differential equations. Nonlinear differential equations are very important modern mathematics and are the basis for solving complex problems in many branches of sciences. In general, studying nonlinear oscillation differential equations that obtain exact solutions faces many difficulties. A few nonlinear systems of differential equations can be solved explicitly, and numerical methods, especially the Runge–Kutta method of the fourth order, are frequently used to calculate approximate solutions. Perturbation methods¹–⁴ were the first analytical and approximate methods to achieve approximate analytical solutions for nonlinear differential equations (NDEs). Recently, several methods have been introduced and developed to obtain approximate solutions for (NDEs) due to their complexity and the difficulty of solving them through traditional perturbation techniques. For example, variational iteration method,⁵ homotopy perturbation method,⁶ max-min approach,⁷–⁹ global residue harmonic balance method (GRHBM) for obtaining higher-order approximate solutions,¹⁰–¹² modified homotopy perturbation method,¹³–¹⁵ energy balance method,¹⁶,¹⁷ Hamiltonian approach,¹⁸–²⁰ iteration perturbation technique,²¹ coupled homotopy-variational approach,²²–²⁴ frequency-amplitude formulation,²⁵,²⁶ multiple scales technique,²⁷ parameter expansion method,²⁸ averaging method,²⁹ iteration method,³⁰ and Laplace variational iteration method.³¹

The harmonic balance method (HBM) is one of the main techniques for obtaining approximate analytical solutions to NDEs describing oscillatory systems.¹⁴,³²–³⁴ In recent decades, some researchers have studied the behavior of the circular sector oscillator generally modeled using NDEs. For example, Shaban et al.,¹³ investigated the numerical behavior of the nonlinear system using the modified homotopy perturbation method (HBM). To obtain the approximated solution with high accuracy, Hadi et al.,³⁵ considered Akbari–Ganji’s method (AGM) for solving this nonlinear oscillator. Moreover, Lu et al.,¹¹ used the GRHBM to obtain higher-order approximate solutions and compared it with the MHPM, AGM, and Runge–Kutta method while Pakar et al.,³⁶ used variational approach (VA).

¹Department of Mathematics, Faculty of Science, Education and Arts, Sana’a University, Sana’a, Yemen
²Mathematics Department, College of Science, King Khalid University, Abha, Saudi Arabia
³Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
⁴Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia

Corresponding author:
Gamal M Ismail, Department of Mathematics, Faculty of Science, Sohag University, Sohag 82324, Egypt.
Email: gamalm2010@yahoo.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
This paper extended the modified HBM up to second order to obtain the approximate analytical solutions for strongly nonlinear conservative systems. Comparing the approximate frequencies obtained with its numerical frequencies reveals that this method is effective and convenient for solving these analytical problems. Finally, an illustrative example demonstrates the validity and applicability of the method, which is further discussed in detail. The MHBM is suggested as a useful approach that can be easily extended to other strongly nonlinear oscillators.

Basic concept of the proposed method

We consider the governing differential equation in the following form

\[\ddot{\theta} + \theta + \varepsilon f \left(\theta, \dot{\theta} \right) = 0 \]

with the initial conditions

\[\theta(0) = A, \quad \dot{\theta}(0) = 0 \]

where \(\theta \) is the angular displacement, \(f(\theta, \dot{\theta}) \) is an odd nonlinear function, and \(\varepsilon \) is a constant parameter.

We also consider the approximate analytical solution to equation (1), which is in the following form

\[\theta(t) = A(\rho \cos(\omega t) + \nu \cos(3\omega t) + \ldots), \]

where \(A, \rho, \nu, \ldots \) are constants, \(\omega = \frac{2\pi}{T} \) is the frequency of the nonlinear oscillator, and \(T \) is the period. If \(\rho = \frac{1}{\omega^2} \) and the initial phase \((\omega_0 t) = 0 \), the solution of equation (3) readily satisfies the given in equation (1).

Inserting equation (3) into equation (1) and using the Fourier series to expand the function \(f(\theta, \dot{\theta}) \), we finally can obtain the following

\[A(\rho(1 - \omega^2)\cos(\omega_0 t) + \nu(1 - 9\omega^2)\cos(3\omega_0 t) + \ldots) \]

Comparing the coefficients of equation (4), we can obtain the following equations

\[\rho(1 - \omega^2) = -\varepsilon F_1, \quad \nu(1 - 9\omega^2) = -\varepsilon F_3, \ldots \]

With the first equation, \(\omega \) is eliminated from equation (5). Therefore, equation (5) takes the following form

\[\rho \omega^2 = \rho + F_1, \quad 8\nu \rho = \rho F_3 - 9\nu F_1 \ldots \]

By substituting \(\rho = (1 - \nu - \ldots) \), and simplifying, the second equation of equation (6) takes the following form

\[\nu = G(\omega, \varepsilon, A, \ldots) \]

where \(G \) exclude respectively the linear terms of \(\nu \)

Finally, we can obtain the value of \(\nu, \ldots \) and the approximate angular frequency \(\omega \) by solving equation (7) using a numerical technique.

Application of the modified harmonic balance method

In current work, we will consider the following nonlinear differential equation of the circular sector oscillator,\(^{13} \) which are widely used in many physical and engineering applications such as car spaces, the base of structures, and many other swing systems.

\[\left(\frac{3}{2} R^2 - \frac{4}{3} \sin(\alpha) \right) \ddot{\theta} + R \left(\frac{2R \sin(\alpha)}{3\alpha} \sin(\theta) \right) \dot{\theta}^2 + \left(\frac{2 \sin(\alpha)}{3\alpha} g \right) \sin(\theta) = 0, \]

\[\theta(0) = A, \quad \dot{\theta}(0) = 0 \]

\(^{1447}\) Farea et al.
Replacing the relatively accurate approximations: \(\cos \theta \approx \left(1 - \frac{\theta^2}{2} \right) \), \(\sin \theta \approx \theta - \frac{\theta^3}{6} \), and \(k = 2 \frac{\sin \alpha}{3\alpha} \), into equation (8), the governing equation becomes

\[
\left(\frac{3}{2} R^2 - 2kR \left(1 - \frac{\theta^2}{2} \right) \right) \ddot{\theta} + kR^2 \left(\theta - \frac{\theta^3}{6} \right) \dot{\theta}^2 + \frac{gk}{3} \left(\theta - \frac{\theta^3}{6} \right) = 0
\]

(9)

where \(\theta(t) \) denotes the angular displacement, \(R \) represents the semicircular radius, \(\alpha \) indicates the semicircular angle, \(g \) gravity acceleration, \(\dot{\theta} \) and \(\ddot{\theta} \) are the first and second differentiation with respect to \(t \), respectively. As illustrated in Figure 1 (see Ref. 13). The modified HBM was employed to obtain the approximate solution of equation (8).

We substitute \(\tau = \omega t \) with the unknown frequency \(\omega \) in the nonlinear differential equation (9), one can obtain

\[
\left\{ \begin{array}{l}
\frac{3}{2} R^2 - 2kR \left(1 - \frac{\theta^2}{2} \right) \omega^2 \dddot{\theta} + kR^2 \left(\theta - \frac{\theta^3}{6} \right) \omega^2 \dot{\theta}^2 + \frac{gk}{3} \left(\theta - \frac{\theta^3}{6} \right) = 0,
\theta(0) = A, \quad \dot{\theta}(0) = 0.
\end{array} \right.
\]

(10)

First-order modified harmonic balance method approximation

From equation (4), the first-order analytical approximate solution can be expressed as follows

\[
\theta = A \cos (\omega_1 t)
\]

(11)

where \(\omega_1 \) is the angular frequency to be determined. By inserting equation (11) into equation (9) and considering the coefficient of \(\cos (\omega_1 t) \), we have

\[
- \frac{1}{48} A^5 k^2 R^2 \omega_1^2 - \frac{1}{8} A^3 gk + \frac{1}{4} A^3 kR^2 \omega_1^2 - \frac{3}{4} A^2 kR \omega_1^2 + Agk + 2AkR \omega_1^2 - \frac{3}{2} AR^2 \omega_1^2 = 0
\]

(12)

Finally, from equation (12), the first-order approximate angular frequency is

\[
\omega_1 = \frac{\sqrt{6} \sqrt{8gk - A^2 gk}}{\sqrt{4A^4 k^2 R^2 - 12A^2 k^2 R^2 + 36A^2 kR - 96kR + 72R^2}}
\]

(13)

Consequently, the first-order approximation for the approximate solution of equation (9) is given by equation (11) where \(\omega_1 \) is given by equation (13).

Second-order modified harmonic balance method approximation

The second-order approximation solution is assumed in the following form to improve the accuracy of the solution

\[
\theta = A(\rho \cos (\omega_2 t) + \nu \cos (3\omega_2 t))
\]

(14)

where \(\rho = 1 - \nu \). By inserting equation (14) into equation (9), and equating the coefficients of \(\cos (\omega_2 t) \) and \(\cos (3\omega_2 t) \), we have

![Figure 1. Geometric parameters of the homogeneous solid circular sector oscillator.](image-url)
Table 1. Comparison analytical solution, Akbari–Ganji’s method, and the numerical solution for $R = 15$, $A = \pi/8$, and $\alpha = 2\pi/3$.

t	Akbari–Ganji’s method35	Present method (modified harmonic balance method)	First solution	Second solution	Numerical solution
0	0.39269908	0.39269908	0.39269908	0.39269908	0.39269908
10	0.24501045	0.24407319	0.24408274	0.24512253	
20	-0.09371990	-0.08930279	-0.08927904	-0.08993096	
30	-0.36692738	-0.35508143	-0.35506580	-0.3555274	
40	-0.35162485	-0.35208280	-0.35210440	-0.35254525	
50	-0.06065639	-0.08257671	-0.08263630	-0.08307460	
60	0.26978783	0.24943545	0.24937895	0.25054818	
70	0.39135302	0.39263858	0.39264007	0.39263866	
80	0.21847002	0.23871319	0.23961867	0.25054818	
90	-0.12620233	-0.09600135	-0.09589494	-0.09675804	
100	-0.37955984	-0.35790765	-0.35792050	-0.35844921	

Table 2. Comparison analytical solution, Akbari–Ganji’s method, and the numerical Solution for $R = 15$, $A = \pi/8$, and $\alpha = \pi/2$.

t	Akbari–Ganji’s method35	Present method (modiﬁed harmonic balance method)	First solution	Second solution	Numerical solution
0	0.39269908	0.39269908	0.39269908	0.39269908	0.39269908
10	0.16964486	0.16885445	0.16887735	0.16914305	
20	-0.25944763	-0.24748960	-0.2475017	-0.24887845	
30	-0.38749464	-0.38168768	-0.38084918	-0.38187454	
40	-0.05286683	-0.08074978	-0.08084918	-0.08143699	
50	0.33172291	0.31224542	0.31216834	0.31332380	
60	0.33408668	0.34927099	0.34934062	0.34991364	
70	-0.04827707	-0.01188337	-0.01170568	-0.01205181	
80	-0.38611530	-0.35940032	-0.35940850	-0.36004875	
90	-0.26304319	-0.29746998	-0.29741627	-0.29838583	
100	0.16555209	0.10385008	0.10360515	0.10482796	

Table 3. Comparison analytical solution, Akbari–Ganji’s method, and the numerical Solution for $R = 15$, $A = \pi/8$, and $\alpha = \pi/3$.

t	Akbari–Ganji’s method35	Present method (harmonic balance method)	First solution	Second solution	Numerical solution
0	0.39269908	0.39269908	0.39269908	0.39269908	0.39269908
10	0.10762438	0.10763527	0.10765466	0.10875275	
20	-0.35104698	-0.33369537	-0.33365131	-0.33471506	
30	-0.27870234	-0.29064536	-0.29065311	-0.29201803	
40	0.20864948	0.17441506	0.17426529	0.17597552	
50	0.37789019	0.38617222	0.38621011	0.38631310	
60	-0.00330218	-0.03727757	-0.03725716	0.03769972	
70	-0.39470691	-0.36573733	-0.36563071	-0.36626688	
80	-0.18425738	-0.23776816	-0.23803414	-0.23945080	
90	0.29236833	0.23539712	0.23505998	0.23706674	
100	0.33439609	0.36680861	0.36695763	0.36732664	
\[\frac{1}{24}A^4 k R^2 \omega_2^2 \left(\frac{59}{4} v^5 - 25 v^4 + 17 v^3 - 5 v^2 - \frac{5}{4} v - \frac{1}{2} \right) + \frac{1}{4} A^2 g k \left(\frac{3}{2} v^2 + v - \frac{1}{2} \right) + 2 A k R \omega_2^2 \]

\[(-v + 1) + \frac{1}{2} A^4 k R^2 \omega_2^2 \left(-7 v^3 + \frac{11}{2} v^2 + v + \frac{1}{2} \right) + \frac{3}{2} A R^2 \nu_0^2 (v - 1) + \frac{1}{2} A^3 k R \omega_2^2 \]

\[(15v^3 - \frac{25}{2} v^2 - v - \frac{3}{2}) + A g k (v + 1) = 0 \]

\[\frac{1}{6} A^2 k R^2 \omega_2^2 \left(\frac{67}{16} v^3 + \frac{95}{16} v^4 - \frac{13}{4} v^3 + v^2 - \frac{11}{16} v + \frac{1}{16} \right) + A^2 g k \left(-\frac{1}{3} v^3 + \frac{3}{8} v^2 - \frac{1}{8} v^2 - \frac{1}{24} \right) - \frac{27}{2} A R^2 \]

\[\nu_0^2 + A^2 k R^2 \omega_2^2 \left(\frac{3}{4} v^3 - \frac{7}{2} v^2 + \frac{5}{2} v - \frac{1}{4} \right) + 18 A k R \nu_0^2 + A^2 k R \omega_2^2 \left(-12 v^3 + \frac{41}{4} v^2 - \frac{19}{4} v - \frac{1}{4} \right) + A g k v = 0 \]

After simplification, equation (15) can be appeared into another form as

![Figure 2. Comparison of the second-order analytical solution of equation (8) (—), second-order global residue harmonic balance method (— —) with the numerical solution (…).](image-url)
where

\[\omega_2 = \frac{2\sqrt{3} \sqrt{gk(-2A^2v^3 + 3A^2v^2 - 2A^2v + A^2 + 8v - 8)}}{\sqrt{A^4kR^2\Gamma_1 + A^2kR^2\Gamma_2 + A^2kR\Gamma_3 + 192kR(-v + 1) + 144R^2(v - 1)}} \]

(17)

By eliminating \(\omega_2 \) from equations (15) and (16), with the help of equation (17) and simplifying the result, we find the value of unknown constant \(v \).

Finally, the second-order analytical approximate solution of equation (8) is \(\theta = A(\rho \cos(\omega_2t) + v \cos(3\omega_2t)) \), where \(\rho \), \(v \), and \(\omega_2 \) are given respectively by equations (16)–(17).

Results and discussion

The modified harmonic balance method has been proposed and extended to obtain higher-order approximate analytical solutions and corresponding frequencies for the nonlinear circular sector oscillator differential equation. The results investigate the effects when comparing with Akbari–Ganj’s method, Global residue harmonic balance method, and the numerical solution for different values of \(R \) and \(\alpha \) as listed in Tables 1–3 and Figure 2. Tables 1–3 and Figure 2 show that approximate frequencies are better for present method than those obtained by GRHBHBM11 method and AGM. Also, to show the accuracy of the present method, the analytical solutions are compared with the numerical ones. The obtained results calculated by the MHBM were compared with the results produces by AGM, GRHBHBM, and numerical solutions, which let on that the MHBM has better accuracy with the numerical solutions than others methods as shown in Figure 2.
Conclusion

The modified harmonic balance method was presented for determining higher-order approximate solution to the nonlinear differential equation of the circular sector oscillator. The accuracy of the approximate analytical solution was verified by comparing the present results with the exact numerical solution and other analytical methods. It is obvious that the exact numerical results agree very well with the approximate periodic solutions. Tables 1–3 and Figure 2 indicate that the modified HBM has acceptable accuracy in comparison with the Runge–Kutta numerical solution than other methods. We can say that the MHBM is very strong analytical method to solve nonlinear differential equations.

Acknowledgements

M. Zayed and G. M. Ismail extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through research groups program under grant R.G.P.2/207/43.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research is funded by King Khalid University, grant number R.G.P.2/207/43.

ORCID iDs

Mohra Zayed https://orcid.org/0000-0002-3305-7340
Gamal M Ismail https://orcid.org/0000-0002-9060-4371

References

1. Nayfeh AH. Perturbation methods. New York, NY: John Wiley & Sons, 1973.
2. Minorsky N. Nonlinear oscillations. Huntington, New York: R. E. Krieger, 1974.
3. Nayfeh H and Mook DT. Nonlinear oscillations. New York: John Wiley & Sons, 1979.
4. Bogoliubov NN and Mitropolskii YA. Asymptotic methods in the theory of nonlinear oscillations. New York, NY: Gordon and Breach, 1961.
5. He JH. Variational iteration method, a kind of nonlinear analytical technique: some examples. Int J Non-Linear Mech 1999; 34: 699–708.
6. Yazdi AA. Homotopy perturbation method for nonlinear vibration analysis of functionally graded plate. J Vib Acoust 2013; 135: 021012.
7. He JH. Max-min approach to nonlinear oscillator. Int J Nonlinear Sci Numer Simul 2008; 9: 207–210.
8. Bayat M, Bayat M, Kia M, et al. Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach. Geomech Eng 2018; 16: 355–361.
9. Zeng DQ. Nonlinear oscillator with discontinuity by the max-min approach. Chaos Solitons Fractals 2009; 42: 2885–2889.
10. Mohammadian M and Shariati M. Approximate analytical solutions to a conservative oscillator using global residue harmonic balance method. Chin J Phys 2017; 55: 47–58.
11. Lu J, Ma L and Sun Y. Analysis of the nonlinear differential equation of the circular sector oscillator by the global residue harmonic balance method. Results Phys 2020; 19: 103403.
12. Ismail GM, Abul-Ez M, Farea NM, et al. Analytical approximations to nonlinear oscillation of nanoelectro-mechanical resonators. Eur Phys J Plus 2019; 134(1): 47.
13. Shaban M, Ganji DD and Alipour MM. Nonlinear fluctuation, frequency and stability analyses in free vibration of circular sector oscillation systems. Curr Appl Phys 2010; 10: 1267–1285.
14. El-Dib YO and Matoog RT. The rank upgrading technique for a harmonic restoring force of nonlinear oscillators. J Appl Comput Mech 2021; 7: 782–789.
15. Anjum N and He JH. Two modifications of the homotopy perturbation method for nonlinear oscillators. J Appl Comput Mech 2020; 6: 1420–1425.
16. Hosen MA, Ismail GM, Ahmet Y, et al. A modified energy balance method to obtain higher-order approximations to the oscillators with cubic and harmonic restoring force. J Appl Comput Mech 2020; 6: 320–331.
17. Bayat M, Shahidi M, Barari A, et al. Analytical evaluation of the nonlinear vibration of coupled oscillator systems. *Z Naturforsch A* 2011; 66a: 67–74.

18. Ismail GM and Cvetičanin L. Higher order Hamiltonian approach for solving doubly clamped beam type N/MEMS subjected to the van der Waals attraction. *Chin J Phys* 2021; 72: 69–77.

19. Bayat M, Pakar I and Cvetičanin L. Nonlinear vibration of stringer shell by means of extended Hamiltonian approach. *Archive Appl Mech* 2014; 84: 43–50.

20. Hieu DV, Hoa NT, Duy LQ, et al. Nonlinear vibration of an electrostatically actuated functionally graded microbeam under longitudinal magnetic field. *J Appl Comput Mech* 2021; 7: 1537–1549.

21. Ismail GM and El-Naggar AM. Analytical solution of strongly nonlinear duffing oscillators. *Alex Eng J* 2016; 55: 1581–1585.

22. Ismail GM, Abul-Ez M, Zayed M, et al. Analytical accurate solutions of nonlinear oscillator systems via coupled homotopy-variational approach. *Alex Eng J* 2022; 61: 5051–5058.

23. Akbarzade M and Farshidianfar A. Nonlinear dynamic analysis of an elastically restrained cantilever tapered beam. *J Appl Mech Tech Phys* 2017; 58: 556–565.

24. Abdur Razzak M and Alam MS. An analytical coupled technique for solving nonlinear large amplitude oscillation of a conservative system with inertia and static non-linearity. *Springer Plus* 2016; 5: 456–464.

25. He JH, Hou WF, Qie N, et al. Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. *Facta Univ Ser Mech Eng* 2021; 19: 199–208.

26. He JH, Anjum N and Skrzypacz PS. A variational principle for a nonlinear oscillator arising in the microelectromechanical system. *J Appl Comput Mech* 2021; 7: 78–83.

27. He JH, Moatimid GM and Zekry MH. Forced nonlinear oscillator in a fractal space. *Facta Univ Ser Mech Eng* 2022; 20: 1–20.

28. Sedighi HM, Shirazi KH, Noghrehadabi AR, et al. Asymptotic investigation of buckled beam nonlinear vibration. *Iranian J Sci Technol Trans Mech Eng* 2012; 36: 107–116.

29. Sedighi HM and Shirazi KH. Bifurcation analysis in hunting dynamical behavior in a railway bogie: using novel exact equivalent functions for discontinuous nonlinearities. *Sci Iran* 2012; 19: 1493–2150.

30. Hoang T, Duhamel D, Foret G, et al. Frequency dependent iteration method for forced nonlinear oscillators. *Appl Math Model* 2017; 42: 441–448.

31. Anjum N, He JH, He CH, et al. A brief review on the asymptotic methods for the periodic behaviour of microelectromechanical systems. *J Appl Comput Mech* 2022; 8: 1120–1140.

32. Molla HD, Abdur Razzak Md and Alam MS. Harmonic balance method for solving a large-amplitude oscillation of a conservative system with inertia and static non-linearity. *Results Phys* 2016; 6: 238–242.

33. Belendez A, Mendez DI, Belendez T, et al. Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable. *J Sound Vib* 2008; 314: 775–782.

34. Hosen MA, Chowdhury MSH, Ismail GM, et al. A modified harmonic balance method to obtain higher-order approximations to strongly nonlinear oscillators. *J Interdiscip Math* 2020; 23: 1325–1345.

35. Hadi M, Soheil TL, Mohammad Z, et al. Investigation on nonlinear equation of the circular sector oscillator by Akbari-Ganji’s method. *J Taibah Univ Sci* 2017; 11: 1110–1121.

36. Pakar I, Bayat M and Bayat M. Nonlinear vibration of thin circular sector cylinder: an analytical approach. *Steel Compos Struct* 2014; 17: 133–143.