Citrus Fruit Sector Chimeras as a Genetic Resource for Cultivar Improvement

Kim D. Bowman and Frederick G. Gmitter, Jr.
Citrus Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 700 Experiment Station Road, Lake Alfred, FL 33850

Gloria A. Moore
Fruit Crops Department, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL 32611

Russell L. Rouseff
Citrus Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 700 Experiment Station Road, Lake Alfred, FL 33850

Abstract. Citrus fruit with sector chimeras were collected in commercial packinghouses and from the field. Chimeric fruit from eight cultivars of sweet oranges [Citrus sinensis (L.) Osbeck], grapefruit (C. paradisi Macf.), tangelo (C. paradisi x C. reticulate Blanco), and tangors (C. reticulate x C. sinensis) were found at a frequency of 0.009% to 0.271%. Tetraploid plants obtained from one type of sector mutant (termed gigas) and albino plants obtained from another type of sector mutant confirmed that some genetic mutations observed in fruit rind can be recovered in nucellar seedlings. The gigas chimeras were identified as a source of citrus tetraploids. Several types of potentially useful sector mutants with altered rind color were observed, and plants were produced from some mutant sectors by developed seed or culture of aborted ovules. HPLC analysis of rind tissues from sectors of one chimeric fruit revealed substantial quantitative and qualitative differences in pigment composition. Propagation of plants from mutant sectors may yield cultivars with improved fruit color, altered maturation date, and reduced disease or mite susceptibility and may eventually lead to breeding of seedless triploid hybrids.

The phenomenon of fruit sector chimera, or fruit sectoring, has been observed among several citrus cultivars and is considered to be a negative attribute by growers, packers, and consumers. Lindgren and Sinclair (1941) reported that 0.1% to 0.2% of the fruit from ‘Valencia’ and navel oranges (C. sinensis), lemon [C. limon (L.) Burro. f.], and grapefruit (C. paradisi) had ridging or rind sectors. No thorough investigation of the phenomenon in citrus has been reported. Cyanide application during flower bud formation was found to increase the frequency of ridged sectors (Sinclair and Lindgren, 1943), and Lorsban (chlorpyrifos) may have a similar effect (M.L. Arpaia, personal communication). The effect of environmental factors on the production of citrus fruit chimeras is unknown.

Most important sweet orange and grapefruit scion cultivars are not the result of sexual hybridization in breeding programs, while many of the common cultivars have been produced by chance somatic mutations in previously existing selections (Hodgson, 1967; Mendel, 1981; Stewart et al., 1975). These facts, as well as the severe constraints on sexual hybridization in citrus (Frost and Soost, 1968; Soost and Cameron, 1975), have fueled interest in the generation and/or identification of potentially useful sector mutants for development of new cultivars (Hearn, 1986; Hensz, 1981; Russo et al., 1981).

Although there is little direct evidence, citrus fruit sector chimeras may be manifestations of genetic mutations or of somatic segregation (Cameron and Frost, 1968; Frost, 1943; Shamel, 1943; Toxopeus, 1933). If such mutations could be recovered, they would provide a valuable source of genetic variants for citrus breeding programs. Iwamasa et al. (1977) reported that plants grown from seeds that were produced within a yellow rind sector of ‘Fukuhara’ orange bore fruit with entirely yellow rinds. Plants produced from seeds within the normal orange sector of the same fruit bore normal, entirely orange fruit. This is the only instance where a fruit sector chimera in citrus has been reported to yield genetically altered plants.

The objectives of our study were to determine the kinds and frequencies of fruit sector chimeras in some common citrus cultivars and to evaluate the potential usefulness of these chimeras as a source of genetic mutations. We report here: 1) data on fruit sector chimera frequency in eight citrus cultivars, 2) the identification of several kinds of potentially useful sector mutants, 3) HPLC characterization of rind pigment composition for one dark-orange-sectored fruit, 4) evidence that one common type of fruit sector chimera with thickened rind (gigas) is the result of polyploidization, 5) that tetraploid seedlings may be easily recovered from gigas sectors, and 6) that some red sector mutants produce albino seedlings.

Materials and Methods

Data on frequency of fruit chimeras were collected at two commercial packinghouses near Lake Alfred, Fla., between Dec. 1988 and Apr. 1989 for eight cultivars: ‘Pineapple’, ‘Hamlin’, and ‘Valencia’ sweet oranges; ‘Marsh’ and ‘Redblush’ grapefruit; ‘Orlando’ tangelo; and ‘Temple’ and ‘Murcott’ tangors. Graders at citrus packinghouses separate fresh fruit into four quality categories: number 1, number 2, eliminations for juice production, and culls for discard (Soule and Grierson, 1986).
Chimeric fruit for the frequency study were collected from elimi-
nations and number 2 conveyors after preliminary observa-
tions indicated that most sectored fruit would be sorted into these
categories by packinghouse operations. The few chimeric fruit
that may have been sorted into number 1 and cull categories were
not sampled in this study. Eliminations and number 2 fruit were
combined during packinghouse operations for some cul-
tivars; thus, separate data for the two categories could not be
obtained. The total number of fruit sampled for each cultivar
included fruit of all categories and was estimated to the nearest
1000 from packinghouse records and sample counts. All fruit
with chimeric sectors were counted from the two grades during the
sampling period and classified according to type of sector
change. Some chimeric fruit with unusual sector changes were
obtained from other sources during 1982, and 1988 through 1990.

Selected chimeric fruit were further characterized by dissec-
tion, calorimetry, refractometry, titration, and/or HPLC analy-
sis. Rind, flesh, and juice color were determined with a HunterLab
Citrus Calorimeter Model P25 (HunterLab, Reston, Va.) (Redd
et al., 1986). Juice soluble solids content and acidity were
determined by refractometry and titration, respectively, using stan-
dard procedures (Redd et al., 1986).

Peel samples from one dark-orange-sectored ‘Hamlin’ fruit
were prepared for chromatographic analysis: Eight disks (1.6
cm in diameter) were cut from both the normal and dark orange
(a deeper color appearing to have more orange pigmentation)
sectors of the fruit peel using a cork borer and then stored at
– 10°C until analysis. After thawing, the disks were washed with
hexane to remove the cuticular wax, finely minced using a scal-
pel, and macerated in 20 ml of methanol (MeOH) using a Tek-
mar Tissumizer (Tekmar Co., Cincinnati). The suspension was
allowed to settle and the supernatant saved. The residue was
resuspended in 10 ml of MeOH with the Tissumizer, allowed to
settle, and the supernatant added to the original MeOH ex-
tract. The residue was washed once more with 10 ml of MeOH
as above. The combined MeOH extract was centrifuged and
euluted through a C-18 Sep-Pak (Waters Associates, Milford,
Mass.) that had been conditioned with MeOH. Carotenoids were
euluted from the Sep-Pak using a mixture of 50 methylene chlo-
ride : 50 acetonitrile (v/v). The solvent was removed under
vacuum using a rotary evaporator, redissolved with 1.8 ml of
50 methylene chloride :50 acetonitrile, and transferred to an
amber vial.

Chromatographic analysis was completed under the following
conditions: The solvent gradient was generated using a Perkin-
Elmer (Norwalk, Conn.) Model 410 quaternary gradient pump.
Carotenoids were separated using an Analytichem (Harbor City,
Calif.) 5-µm C-18 column, 4.6 mm id. × 25 cm. Chromat-
ographic and spectral data were obtained from a Waters Assoc-
iates Model 990 + photodiode array detector. Injection was
accomplished using a Hewlett Packard (Palo Alto, Calif.) 1050
autosampler. Flow rate was 1.0 ml·min⁻¹, and injection volume
was 50 µl. Solvent composition varied with time as indicated in
Table 1. Initial solvent conditions were established with a 2-
min gradient and a 15-min equilibrium delay before the next
injection.

Seeds were extracted from beneath mutant and normal rind
sectors of some fruit and were planted in soilless potting mix.
Aborted seeds or undeveloped ovules were excised from beneath
mutant and normal rind sectors, surface sterilized (1% solution
of sodium hypochlorite), and placed on MT basal medium (Mu-
rashige and Tucker, 1969) supplemented with 500 mg malt ex-
tract/liter in vitro (Starrantino and Russo, 1980). A small
percentage of the cultured explants from most fruit produced viable embryos. Embryos that germinated were transferred to
soilless potting mix. Ploidy levels of seedlings from gigs-sec-
tored fruit were determined by counting chromosomes in root
tip or young leaf cells stained as described by Gmitter et al.
(1990).

Results and Discussion

Fruit sector chimeras were readily recovered in the packing-
house from all eight citrus cultivars examined. Frequencies of
chimeric fruit in all cultivars were low (Table 2), as would be
expected of mutations, and similar to those previously reported
(Lindgren and Sinclair, 1941). However, a much larger volume
of fruit was examined at the packinghouse than possible in or-
chard studies. A total of 2742 chimeric fruit were recovered
from packinghouses during the 1988-89 frequency study. Chi-
meric fruit from number 2 and eliminations categories were
collected separately for the cultivars Orlando, Pineapple, Red-
blush, and Murcott. More chimeras were recovered from the
eliminations (858) than from the number 2 grade (678). How-
ever, the types of chimeras recovered from the two categories
were similar (data not presented), and both appear to be sources
of potentially valuable mutations.

The three sweet orange cultivars had considerably greater
frequencies of chimeric fruit (0.082% to 0.197%) than were
found in the two grapefruit cultivars (0.017% and 0.041%). The
mandarin hybrids were most variable, with the greatest (‘Or-
lando’), the mean (‘Temple’), and the lowest (‘Murcott’) fre-
frequencies of fruit sector chimeras among all cultivars examined.

Frequency of chimeric fruit obtained from four packinghouse
samples of ‘Hamlin’ fruit (eliminations category only) were 145
in 399,000; 142 in 360,000; 98 in 220,000; and 82 in 211,000;
representing 0.036%, 0.039%, 0.045%, and 0.039%, respec-
tively. The first three of these samples were from fruit harvested
in one grove and the fourth sample was from a second grove.
The similar chimera frequencies in all four samples prompt the
question of whether chimera frequency may be determined by
genotype.

Many different types of sector mutations were observed in
chimeric citrus fruit (Figs. 1–5). Alterations in sector rind color
were most common. Black, brown, green, yellow, white, dark
red, and dark orange mutant sectors were observed. Some rind
color changes may be of potential value for cultivar improve-
ment if plants can be obtained that produce nonchimeric fruit
of the mutant phenotype. Dark red grapefruit and dark orange
sweet orange or tangelo fruit are highly valued; a mutant pro-
ducing darker fruit, but otherwise identical to the original cul-
tivar, would be of major value. Fruit were found with dark red
or orange rind sectors in five of the seven cultivars examined.

Table 1. Solvent composition for HPLC analysis of citrus fruit rind.

Time (min)	Methanol	Acetonitrile	Hexane	Methylene chloride	Gradient form
0–10	15	74	4	7	Linear
10–15	10	77	6	7	Linear
15–35	5	65	10	20	Linear
35–45	5	50	10	35	Linear
45–47	0	0	20	80	Linear
47–65	0	0	20	80	Linear
65–67	15	74	4	7	Linear

J. Amer. Soc. Hort. Sci. 116(5):888-893. 1991.
that have red or orange rind (Figs. 1 and 2; Table 2). Several
dark-orange-sector of ‘Hamlin’ fruit were recovered from other
samples not included in Table 2. Rind, flesh, and juice color
values of several chimeric fruit clearly demonstrate the degree
of some sector color differences. Flesh and juice color were
darker in dark-rinded sectors of some ‘Redblush’ chimeric fruit
(Table 3). The effect on juice color is probably of more signif-
cance to the Florida citrus industry than rind color because of
the large portion of the production that is used for juice. How-
ever, we believe that at least some of the mutations restricted
to the rind in the chimeric fruit may influence flesh and juice
color if they can be recovered in nonchimeric plants (see dis-
cussion of histogenic layers below).

Table 2. Number and frequency of total fruit sector chimeras from eight citrus cultivars.

Cultivar	Estimated sample size (thousands)	Chimeric fruit (%)	Fruit with chimeric sectors (no.)				
			Red/orange	Green	Other*	Total	
Orlando tangelo	139	0.271	62	1	1	313	377
Valencia orange	337	0.197	102	19	61	482	664
Pineapple orange	430	0.167	108	12	16	584	720
Temple tangor	181	0.110	21	6	34	139	200
Hamlin orange	399	0.082	111	0	16	200	327
Redblush grapefruit	161	0.041	8	6	7	45	66
Marsh grapefruit	117	0.017	6	0	0	14	20
Murcott tangor	519	0.009	2	0	3	41	46

*Gigas = sectors with raised, thickened rind.
*Other = black, brown, yellow, or white sectors, as well as depressed rind or other sector changes.
'Hamlin' is an early maturing sweet orange cultivar widely planted in Florida but, when grown there, typically lacks the more desirable dark orange peel usually associated with sweet orange. Flesh and juice color in 'Hamlin' fruit are particularly poor and substantially limit the value of the cultivar for juice production. The wide and unusually dark orange sector found on one 'Hamlin' fruit (Fig. 2) appeared to be a favorable mutation and was examined further.

The a : b ratio (a standard measure of the amount of red and orange color in citrus fruit) of the dark orange peel sector on the 'Hamlin' chimera was exactly double that of the normal part of the fruit (Table 3). The peel tissue of the mutant sector contained a higher concentration of carotenoids than the normal sector, as shown by the larger chromatographic peaks (Fig. 6). Because carotenoids may be identified by their characteristic visible absorption spectra, the spectra of the five major peaks in the sample from the mutant sector were compared with the corresponding peaks from the normal section of the fruit (Fig. 6, inserts). The absorbance maxima for the five peaks were 462, 450, 454, 458, and 462 nm, respectively. Absorption maxima for peaks 3–5 from the normal peel matched very well with the same peaks for the mutant sector. However, there were appreciable differences in both amounts and kinds of pigments found in the first 10 min of samples from the two sections of the fruit. Peaks 1 and 2 from the mutant sector were found in this region and do not have a good match in the normal section. Although the major differences in the carotenoids of this chimera appear to be quantitative rather than qualitative, the chromatogram indicates the presence of some very polar carotenoids (early peaks) in the mutant sector that do not appear in the normal section. The dark coloration of the chimeric sector was primarily due to a greater concentration of carotenoids rather than from carotenoids of different spectral properties. However, the contribution to improved color of some apparently unique polar carotenoids in the mutant sector is uncertain.

Fruit with green rind sectors were found from each of the cultivars examined except 'Marsh' (Table 2). A green sector may result from a mutation that disrupts or delays the maturation process. A later-ripening selection of an early cultivar would allow a longer harvesting season and could be of substantial value. Rind color was more green in the mutant sector of one chimeric navel orange fruit discovered on the tree by chance in 1988. However, flesh color, juice color, and brix : acid ratio were essentially the same for both sections of this fruit (Table 3). At the same time, a sample of normal (nonchimeric) fruit from this navel tree yielded values of a/b = 0.43 (sd = 0.03) for rind color, a/b = 0.20 (sd = 0.03) for flesh color, citrus redness (CR) = 35.4 for juice color, and 20.0 for brix : acid ratio. These results suggest that the entire chimeric fruit (not just the green sector) was less mature than the normal fruit.

Another common mutation resulted in a sector with thicker rind than normal, termed gigas by us. These mutations were found among all of the cultivars examined (Table 2, Figs. 3 and 4). At least some gigas sectors appear to be cytochimeras. Seedlings recovered from gigas sectors of one 'Orlando' and three 'Valencia' chimeric fruit were tetraploid (2n = 4x = 36). No viable seeds were found in normal sectors of these fruit, but seedlings obtained from normal sectors of other gigas-chimeric 'Valencia' and 'Orlando' fruit were diploid (2n = 2x = 18). Ploidy level of young seedlings from 'Valencia' gigas chimeras usually and easily could be ascertained visually: Tetraploids had darker green, thicker leaves and stouter stems and frequently had the first two leaves fused together at the base. For polyembryonic cultivars (e.g., 'Orlando' and 'Valencia'), tetraploid seedlings were expected to be of nucellar origin (nonzygotic)

![Fig. 5. Clean sector on a grapefruit with severe rind damage of unknown origin. (Photo courtesy of W. Grierson)](image)

Table 3. Internal and external characteristics of mutant and normal sectors of four chimeric citrus fruit. a,b

Type of citrus (date recovered; Fig. no.)	Color of sector	Rind color a/b	Flesh color a/b	Juice color (CR)	Brix : acid ratio
Navel orange 1 (Dec. 1988)	Green	−0.07 (0.18)	0.08 (0.04)	26.5	11.7
	Normal	0.41 (0.13)	0.15 (0.07)	29.8	11.6
Hamlin 12 (Nov. 1989; Fig. 2)	Dark orange	0.74 (0.03)	ND	ND	ND
	Normal	0.37 (0.05)	ND	ND	ND
Redblush grapefruit 2 (Dec. 1988; Fig. 1)	Dark red	0.72 (0.04)	1.25 (0.14)	31.5	7.7
	Normal	0.13 (0.06)	0.77 (0.08)	17.7	7.0
Redblush grapefruit 35 (Nov. 1989)	Dark red	0.92 (0.16)	1.44 (0.32)	ND	10.0
	Normal	0.19 (0.16)	0.86 (0.20)	ND	10.5

a = a standard measure of the amount of red and orange color in citrus fruit (Redd et al., 1986);
b = Brix = total corrected Brix (Redd et al., 1986); CR = citrus redness by Hunter colorimeter (Ting and Rouseff, 1986); ND = no data. Numbers in parentheses represent SD.
and the result of somatic doubling (autotetraploids). This expectation was corroborated by identical isozyme banding patterns in diploid trees and tetraploid seedlings (data not shown). Gigas fruit sector chimeras appear to be an easily accessible source of autotetraploids for many, if not all, polyembryonic citrus genotypes. Tetraploids of commercially important cultivars are of significant interest because of their potential use as parents in breeding for seedless triploid selections (Soost and Cameron, 1968, 1980). Seedlings from gigas sectors of monoembryonic cultivars (e.g., 'Temple') likely would be zygotic and, perhaps, triploid, although this has not yet been confirmed experimentally.

Chimeric fruit with sectors appearing to have different susceptibility to rind damage caused by pests or diseases were also recovered. These made up a substantial proportion of the chimeric sectors classified as black or brown. In most cases, it appeared that normal fruit had very little damage and the mutant sectors of the fruit rind were more susceptible than normal. However, chimeric fruit with sectors distinguished by clear differences for some types of rind damage have been previously observed (W. Grierson, personal communication) (Fig. 5). Mutations of this type are of interest as a potential source of cultivars with increased resistance to pests or diseases. Greater success in finding potentially resistant mutant sectors might be obtained by searching among fruit from orchards grown with minimal pest and disease control and destined for processing.

The basis of some fruit sector chimeras may be somatic segregation, because occasionally two adjacent, contrasting sectors (twin sectors) were observed, such as dark red and light yellow sectors on normal slightly pink 'Redblush' grapefruit rind (Fig. 1). In two samples of chimeric fruit (data on several cultivars combined), 12 of 150 (8%) and 13 of 150 (8%) had peel sectors that lined up with septa inside the fruit. In other cases, sector chimeras may result from spontaneous polyploidization or other genetic mutations. Albino plants were obtained from the dark red rind sector of two 'Redblush' chimeric fruit, while plants obtained from the normal part of the same fruit were green (Fig. 7). All seedlings obtained from some similar red-sectored 'Redblush' chimeras appear normal in vegetative growth but may possess less deleterious genetic mutations.

Chimeric sectors of the fruit rind were more susceptible than normal. In two samples of chimeric fruit (data for several cultivars combined), 19 of 131 (15%) and 22 of 120 (18%) had peel sectors that lined up with septa inside the fruit. It is unclear whether this characteristic will have any bearing on type of chimera (mericlinal or sectorial) or likelihood of mutant recovery. We have obtained tetraploid seedlings from both aligned and unaligned gigas chimeras.

We have demonstrated the value of gigas fruit sector chimeras as a source of autotetraploid seedlings from commercial polyembryonic citrus cultivars. The reports of increased gigas sector formation following cyanide fumigation (Sinclair and Lindgren, 1943) and Lorsban application (M.L. Arpaia, personal communication) suggest that this phenomenon may be manipulated to maximize polyploid recovery. Tetraploids are of significant value as parents in breeding triploid seedless hybrids (Soost and Cameron, 1968, 1980). Observation of several other types of sector mutants that appear to be superior to the normal genotype points out the potential usefulness of this resource. Mutant oranges and mandarins with dark orange rind would greatly enhance visual appeal of fresh fruit from many citrus cultivars and might reduce the need for ethylene degreening (McComack and Wardowski, 1977) and application of dye for consumer acceptance (Kaplan, 1986). Selections with increased flesh and juice color or altered maturity date could significantly improve marketability of Florida citrus. Finally, pest- and disease-resistant sector chimeras may have potential for the production of selections that yield high-quality fruit without pesticide application.
Cameron, J.W. and H.B. Frost. 1968. Genetics, breeding, and nucellar embryony, p. 325-370. In: W. Reuther, L.D. Batchelor, and H.J. Webber (eds.). The citrus industry. vol. 2. Univ. of California Press, Berkeley.

Frost, H.B. 1943. Genetics and breeding, p. 870–888. In: H.J. Webber and L.D. Batchelor (eds.). The citrus industry. vol. 1. Univ. of California Press, Berkeley.

Frost, H.B. and R.K. Soost. 1968. Seed reproduction: Development of gametes and embryos, p. 290–324. In: W. Reuther, L.D. Batchelor, and H.J. Webber (eds.). The citrus industry. vol. 2. Univ. of California Press, Berkeley.

Gmitter, F. G., Jr., X.B. Ling, and X.X. Deng. 1990. Induction of triploid Citrus plants from endosperm calli in vitro. Theor. Appl. Genet. 80:785-790.

Hearn, C.J. 1986. Development of seedless grapefruit cultivars through budwood irradiation. J. Amer. Soc. Hort. Sci. 111:304-306.

Hensz, R.A. 1981. Bud mutations in citrus cultivars in Texas. Proc. Intl. Soc. Citriculture Tokyo. 1:89-91.

Hodgson, R.W. 1967. Horticultural varieties of citrus, p. 431-591. In: W. Reuther, L.D. Batchelor, and H.J. Webber (eds.). The citrus industry. vol. 1. Univ. of California Press, Berkeley.

Iwamasa, M., M. Nishiura, N. Okudai, and D. Ishiuchi. 1977. Characteristics due to chimeras and their stability in citrus cultivars. Proc. Intl. Soc. Citriculture Orlando. 2:571-574.

Kaplan, H.J. 1986. Washing, waxing, and color-adding, p. 379-395. In: W.F. Wardowski, S. Nagy, and W. Grierson (eds.). Fresh citrus fruits. AVI, Westport, Conn.

Lindgren, D.L. and W.B. Sinclair. 1941. The ridging of citrus fruits as influenced by fumigation of citrus trees with HCN. J. Econ. Entomol. 34(3):477.

McCornack, A.A. and W.F. Wardowski. 1977. Degreening Florida citrus fruit: Procedures and physiology. Proc. Intl. Soc. Citriculture. Orlando. 1:211-215.

Mendel, K. 1981. Bud mutations in citrus and their potential commercial value. Proc. Intl. Soc. Citriculture Tokyo, 1:86-89.

Murashige, T. and D.P.H. Tucker. 1969. Growth factor requirements of citrus tissue culture. Proc. First Intl. Citrus Symp. 3:1155-1161.

Redd, J. B., C.M. Hendrix, Jr., and D.L. Hendrix. 1986. Quality control manual for citrus processing plants. vol. 1. Regulation, citrus methodology, microbiology, conversion charts, tables, other. Interstate, Safety Harbor, Fla.

Russo, F., B. Donini, and A. Starrantino. 1981. Mutagenesis applied for citrus improvement. Proc. Intl. Soc. Citriculture, Tokyo. 1:68-70.

Shamel, A.D. 1943. Bud variation and bud selection, p. 915-952. In: H.J. Webber and L.D. Batchelor (eds.). The citrus industry. vol. 1. Univ. of California Press, Berkeley.

Sinclair, W.B. and D.L. Lindgren. 1943. Ridges and sectors induced in the rind of citrus fruits by fumigation with hydrocyanic acid. Plant Physiol. 18:99-106.

Soost, R.K. and J.W. Cameron. 1968. Tree and fruit characters of citrus triploid crosses. Hilgardia 31:569-579.

Soost, R.K. and J.W. Cameron. 1975. Citrus. p. 507-540. In: J. Janick and J.N. Moore (eds.). Advances in fruit breeding. Purdue Univ. Press, West Lafayette, Ind.

Soost, R.K. and J.W. Cameron. 1980. ‘Oroblanco’, a triploid pummelo-grapefruit hybrid. HortScience 15:667-669.

Soule, J. and W. Grierson. 1986. Maturity and grade standards, p. 23-48. In: W.F. Wardowski, S. Nagy, and W. Grierson (eds.). Fresh citrus fruits. AVI, Westport, Conn.

Starrantino, A. and F. Russo. 1980. Seedlings from undeveloped ovules of ripe fruits of polyembryonic citrus cultivars. HorticScience 15:296-297.

Stewart, I., G.D. Bridges, A.P. Pieringer, and T.A. Wheaton. 1975. ‘Rohde Red Valencia’, an orange selection with improved juice color. Proc. Fla. State Hort. Soc. 88:17-19.

Ting, S.V. and R.L. Rouseff. 1986. Citrus fruits and their products: Analysis and technology. Marcel Dekker, New York.

Toxopeus, H.J. 1933. Some cases of bud variation in Citrus observed on Java. Genetics 15:241-252.