PRIMALITY TESTS FOR $2^k n - 1$ USING ELLIPTIC CURVES

YU TSUMURA

Abstract. We propose some primality tests for $2^k n - 1$, where k, $n \in \mathbb{Z}$, $k \geq 2$ and n odd. There are several tests depending on how big n is. These tests are proved using properties of elliptic curves. Essentially, the new primality tests are the elliptic curve version of the Lucas-Lehmer-Riesel primality test.

1. Note

An anonymous referee suggested that Benedict H. Gross already proved the same result about a primality test for Mersenne primes using elliptic curve in [4].

2. Introduction.

There are mainly two types of primality tests. One of them applies to any integer and the other applies only to a special form of integer. Usually the latter is faster than the former because of its additional information. Among them, the Lucas-Lehmer primality test for Mersenne numbers $M_k = 2^k - 1$ is very fast. The test uses a sequence S_i defined by $S_0 = 4$ and $S_{i+1} = S_i^2 - 2$ for $i \geq 1$. The primality test is that M_k is prime if and only if M_k divides S_{k-2}. For a proof, see for example [2]. Also see [1] and [8] for applications of the Lucas sequence for other primality tests. There is also a generalization of this test called the Lucas-Lehmer-Riesel test which applies to integers of the form $2^k n - 1$ with $n < 2^k$ (see [6] and [5]). This test also uses the sequence S_i defined by the above recursion but with a different initial value S_0 depending k and n.

In this paper we give several primality tests for integers of the form $2^k n - 1$ using elliptic curves. When n is relatively small as in the Lucas-Lehmer-Riesel test, the primality test can be regarded as an analogue of the Lucas-Lehmer-Riesel test. The new test also uses a sequence defined by recursion. For the initial value, we need to take a proper elliptic curve and a point on it. This corresponds to the choice of an
initial value in the Lucas-Lehmer-Reisel test. However, when the new test applies to Mersenne numbers $2^k - 1$, there exist an elliptic curve and a point on it which are independent of k.

Now let us define the sequence. Let $p \equiv 3 \pmod{4}$ be a prime number and let E be an elliptic curve defined by $y^2 = x^3 - mx$ for some integer $m \not\equiv 0 \pmod{p}$. Fix a point $Q = (x, y) \in E(\mathbb{F}_p)$ and denote $2^i Q = (x_i, y_i)$ for $i \geq 0$. On this curve, multiplication of a point by 2 is described as

\[
2(x, y) = \left(\frac{x^4 + 2mx^2 + m^2}{4(x^3 - mx)}, yR(x)\right) = \left(\frac{x^2 + m}{2y}, yR(x)\right)
\]

for some rational function $R(x)$. (See Example 2.5, page 52 in [7].)

Let us define a sequence S_i. Let $S_0 = x$ and $S_i = 4(x_{i-1}^3 - mx_{i-1})$ for $i \geq 1$, that is, S_i is the denominator of $2^i Q$ when $i \geq 1$. Alternatively, we could omit a constant 4 in the definition of S_i. We refer to this sequence as the sequence S_i with the initial value $Q = (x, y)$, or with the initial value x. Note that S_i depends only on x and i. (S_i also depends on m. However, it will be clear from the context which m is used.)

3. Group structure of $E(\mathbb{F}_p)$.

First, we analyze the structure of the group $E(\mathbb{F}_p)$, where E is an elliptic curve defined by $y^2 = x^3 - mx$ for some integer $m \not\equiv 0 \pmod{p}$ and $p \equiv 3 \pmod{4}$ is a prime number. Assume $p + 1 = 2^k n$, where $k \in \mathbb{Z}$, $k \geq 2$ and n is an odd integer.

Theorem 3.1. In this context, $\#E(\mathbb{F}_p) = p + 1$.

Proof. See Theorem 4.23, page 115 in [7].

Theorem 3.2. In this context, $E(\mathbb{F}_p) \cong \mathbb{Z}_{2^k n}$ or $\mathbb{Z}_2 \oplus \mathbb{Z}_{2^{k-1} n}$ depending on whether m is a non-quadratic residue or a quadratic residue modulo p.

Proof. By Theorem 3.1 we have $\#E(\mathbb{F}_p) = p + 1 = 2^k n$. Hence $E(\mathbb{F}_p) \cong \mathbb{Z}_{2^\alpha n_1} \oplus \mathbb{Z}_{2^\beta n_2}$ for some $n_1, n_2, \alpha, \beta \in \mathbb{Z}$ with $\alpha \leq \beta$ and $\alpha + \beta = k$ and $n_1 | n_2$ and $n_1 n_2 = n$. However, in general, $2^\alpha n_1$ must divide $p - 1$ by the group structure of elliptic curves. (See Theorem 4.3 and 4.4, page 98 in [7].) Note that $\gcd(\#E(\mathbb{F}_p), p - 1) = \gcd(p + 1, p - 1) = 2$. Therefore $n_1 = 1$ and $n_2 = n$.

If m is a quadratic non-residue (with Jacobi notation, $(\frac{m}{p}) = -1$), then only one root of $x^3 - mx$ is in \mathbb{F}_p. Hence $E[2] \not\subset E(\mathbb{F}_p)$. Therefore $\alpha = 0$ and $E(\mathbb{F}_p) \cong \mathbb{Z}_{2^n}$.

If $(\frac{m}{p}) = 1$, then $\sqrt{m} \in \mathbb{F}_p$. Hence all the roots of $x^3 - mx$ are in \mathbb{F}_p. Hence $E[2] \subset E(\mathbb{F}_p)$. So $\alpha \geq 1$. Since $p - 1 \equiv 2 \pmod{p}$ and $2^\alpha | p - 1$, we have $\alpha = 1$. Therefore $E(\mathbb{F}_p) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_{2^{k-1}}$.

□

The next theorem is essential to choose an initial value.

Theorem 3.3. Let $p \equiv 3 \pmod{4}$ be prime and let E be an elliptic curve defined by $y^2 = x^3 - mx$ for some integer m. Assume $p+1 = 2^k$ for some integer m. Assume p is not so small. More precisely, assume p satisfies

$$\lambda \sqrt{p} > (p^{1/4} + 1)^2.$$

Let E be a curve defined by $y^2 = x^3 - mx$, where m is a quadratic non-residue modulo p. Then p is prime if and only if there exists a point $Q = (x, y)$ on E such that

$$\gcd(S_i, p) = 1$$

for $i = 1, 2, \ldots, k - 1$ and

$$S_k \equiv 0 \pmod{p},$$

4. **Primality test for $p = 2^kn-1$ when n is small.**

Using Theorem 3.3 we give primality tests for integers of the form $p = 2^kn-1$, where $k, n \in \mathbb{Z}$, $k \geq 2$ and n is an odd integer. There are two primality tests. We distinguish them by the relative size of n when compared with 2^k. First, let us discuss the case when n is relatively small.

Theorem 4.1. Fix $\lambda > 1$. Suppose $p = 2^kn-1$ with $k \geq 2$ and an odd integer $n \leq \sqrt{p}/\lambda$. Assume p is not so small. More precisely, assume p satisfies $\lambda \sqrt{p} > (p^{1/4} + 1)^2$. Let E be a curve defined by $y^2 = x^3 - mx$, where m is a quadratic non-residue modulo p. Then p is prime if and only if there exists a point $Q = (x, y)$ on E such that

$$\gcd(S_i, p) = 1$$

for $i = 1, 2, \ldots, k - 1$ and

$$S_k \equiv 0 \pmod{p},$$
where \(S_i \) is a sequence with the initial value \(S_0 = x \).

Proof. Suppose \(p \) is prime. Then by Theorem 3.2, \(E(\mathbb{F}_p) \cong \mathbb{Z}_{2^k} \). Then \(E(\mathbb{F}_p) \) has a point \(Q = (x, y) \) of order \(2^k \). Hence \(S_i \), with the initial value this \(x \), satisfies the conditions of the theorem since \(S_i \) is the denominator of \(2^i Q \).

Conversely, suppose there exists \(Q \) which satisfies the conditions. Assume \(p \) is composite and let \(r \) be a prime divisor such that \(r \leq \sqrt{p} \). Then we have \(\gcd(S_i, r) = 1 \) for \(i = 1, 2, \ldots, k-1 \) and \(S_k \equiv 0 \pmod{r} \). Hence in the reduction \(E(\mathbb{F}_r) \), \(Q \) has an order \(\geq 2^k \). Using the condition on \(n \), we have

\[
\lambda \sqrt{p} \leq p/n < 2^k \leq \#E(\mathbb{F}_r) \leq (\sqrt{r} + 1)^2 \leq (p^{1/4} + 1)^2
\]

Here the third inequality is by Hasse’s Theorem. However, we assumed that this does not happen. Therefore \(p \) is prime.

\[\square\]

To make Theorem 4.1 into a primality test, we need to find a point \(Q \) in the theorem. To this end we use Theorem 3.3. Let us first state the algorithm.

Algorithm. Let \(p \) be an integer of the form \(p = 2^k n - 1 \) with \(k \geq 2 \) and \(p, n \) satisfy the conditions of Theorem 4.1. To check whether \(p \) is prime, do the following steps.

1. Take \(x \in \mathbb{Z} \) such that \(\left(\frac{x}{p} \right) = -1 \) and find \(y \) such that \(\left(\frac{x^3 - y^2}{p} \right) = 1 \). Let \(m = (x^3 - y^2)/x \mod p \). Then \(Q' = (x, y) \) lies on the curve \(E : y^2 = x^3 - mx \), where \(m \not\equiv 0 \pmod{p} \). The following calculation is done in \(E(\mathbb{Z}_p) \). Let \(Q = nQ' \). If \(Q = \infty \), then \(p \) is composite. If not, go to Step 2.

2. Let \(S_i \) be the sequence with the initial value \(Q \). Calculate \(S_i \) for \(i = 1, 2, \ldots, k-1 \). If \(\gcd(S_i, p) > 1 \) for some \(i, 1 \leq i \leq k-1 \), then \(p \) is composite. If \(\gcd(S_i, p) = 1 \) for \(i = 1, 2, \ldots, k-1 \), then go to Step 3.

3. If \(S_k \equiv 0 \pmod{p} \), then \(p \) is prime. If not, \(p \) is composite.

Let us check why this algorithm works. In Step 1, we find an elliptic curve \(E : y^2 = x^3 - mx \) and a point \(Q \) on \(E \) whose \(x \)-coordinate is a quadratic non-residue. We have \(\left(\frac{m}{p} \right) = \left(\frac{(x^3 - y^2)/x}{p} \right) = \left(\frac{x}{p} \right) \left(\frac{x^3 - y^2}{p} \right) = -1 \cdot 1 = -1 \). Hence if \(p \) is prime, then \(Q' \) has order divisible by \(2^k \) by Theorem 3.3. So the order of \(Q' \) is \(2^k d \), where \(d|n \). Hence \(Q = nQ' \) has order \(2^k \). Therefore if Step 1 concludes that \(p \) is composite, then \(p \) is really composite. Step 2 and Step 3 check if \(Q \) has order \(2^k \). So if Step 2 or Step 3 concludes that \(p \) is composite, then \(p \) is really composite.
If the algorithm concludes \(p \) is prime, then \(S_1 \) satisfies the conditions of Theorem 4.1. Therefore \(p \) is really prime.

Remark 4.2. Since we know both coordinates of \(Q \), we can calculate \(nQ \) quickly.

Remark 4.3. Suppose this test concludes that \(p \) is composite because \(\gcd(S_i, p) > 1 \) for some \(i, 1 \leq i \leq k - 1 \) in Step 2. Then \(\gcd(S_i, p) \) might be a proper divisor of \(p \) though it might be \(p \) itself. This is the basic idea of the primality testing using elliptic curves proposed by Goldwasser and Kilian (see [3]).

5. Primality test for Mersenne numbers.

Let us apply the above algorithm for Mersenne numbers \(M_k = 2^k - 1 \). That is, we take \(n = 1 \) and suppose \(k \geq 3 \). In this case we do not have to choose the initial value and the elliptic curve as in Step 1. Note that since \(n = 1 \), the algorithm contains no elliptic curve calculation. Since \(S_i \) can be calculated using only the \(x \)-coordinate, we do not need to find \(y \). Actually, we can take \(E : y^2 = x^3 - 3x \) and a point \(Q \) with the \(x \)-coordinate \(-1\). Let us check this. Suppose \(M_k \) is prime. Since \(M_k \equiv 3 \pmod{4} \), we have \(\left(\frac{3}{M_k} \right) = -\left(\frac{M_k}{3} \right) = -1 \) by the quadratic reciprocity law. Hence we can take \(m = 3 \). Next, since \(M_k \equiv -1 \pmod{8} \), we have \(\left(\frac{(-1)^3 - 3(-1)}{M_k} \right) = \left(\frac{2}{M_k} \right) = 1 \). Hence \(\sqrt{2} \in \mathbb{F}_{M_k} \). Therefore \(Q = (-1, \sqrt{2}) \in E(\mathbb{F}_{M_k}) \).

In summary, the primality test for Mersenne numbers is the following.

Algorithm for Mersenne numbers.

Let \(p = 2^k - 1, k \geq 3 \). Let \(x_0 = -1, x_{i+1} = \frac{x_i^4 + 6x_i^2 + 9}{4(x_i^2 - 3x_i)} \) modulo \(p \) for \(i \geq 0 \). Define \(S_i = x_{i-1}^3 - 3x_{i-1} \) modulo \(p \) for \(i \geq 1 \).

To check the primality, do the following steps.

1. Calculate \(S_i \) for \(i = 1, 2, \ldots, k - 1 \). If \(\gcd(S_i, p) > 1 \) for some \(i, 1 \leq i \leq k - 1 \), then \(p \) is composite. If \(\gcd(S_i, p) = 1 \) for \(i = 1, 2, \ldots, k - 1 \), then go to Step 2.

2. If \(S_k \equiv 0 \pmod{p} \), then \(p \) is prime. If not, \(p \) is composite.

Therefore, we get a primality test which is an analogue of the Lucas-Lehmer test.

Remark 5.1. Note that for Mersenne numbers, the algorithm concludes that \(p \) is composite if and only if \(\gcd(S_i, p) > 1 \) for some \(i, 1 \leq i \leq k - 1 \). Hence as mentioned above, it might find a proper divisor of \(p \) as a value of \(\gcd(S_i, p) \).
6. PRIMALITY TEST FOR $p = 2^kn - 1$ WHEN n IS LARGE.

Next, let us consider the case when n is relatively large. For this case, we assume $n = q$ is prime for simplicity.

Algorithm. Let $p = 2^k q - 1$ with $k \geq 2$ and q prime. Fix $\lambda > 1$ and assume $2^k \lambda \leq \sqrt{p}$ and $\lambda \sqrt{p} > (p^{1/4} + 1)^2$

To check if p is prime or not, do the following steps.

(1) Take $x \in \mathbb{Z}$ such that \(\left(\frac{x^3 - y^2}{p} \right) = -1 \) and find y such that \(\left(\frac{x^3 - y^2}{p} \right) \) = 1. Let $m = (x^3 - y^2)/x$ mod p. Then $Q = (x, y)$ lies on the curve $E : y^2 = x^3 - mx$. Then the following calculation is done in $E(\mathbb{Z}_p)$.

(2) If $2^k Q = \infty$, then go to Step 1 and take another y. If $2^k Q \neq \infty$, then go to Step 3.

(3) If $q(2^k Q) = \infty$, then p is prime. If not, p is composite.

Theorem 6.1. If we reach Step 3 in the above algorithm, it determines whether or not p is prime.

Proof. We have \(\frac{m}{p} = \left(\frac{x^3 - y^2}{x} \right) = \left(\frac{x}{p} \right) \left(\frac{x^3 - y^2}{p} \right) = -1 \cdot 1 = -1 \).

If p is prime, then by Theorem 3.2 we have $E(\mathbb{F}_p) \cong \mathbb{Z}_{2k_q}$. Since the x-coordinate of Q is a quadratic non-residue, the order of Q is divisible by 2^k by Theorem 3.3. By Step 2, we know that $2^k Q \neq \infty$. Hence Q has order $2^k q$. So if $2^k q Q \neq \infty$, then p is not prime.

Suppose we have $q(2^k Q) = \infty$ in Step 3 and p is composite. Let r be a prime divisor of p such that $r \leq \sqrt{p}$. Since $2^k Q \neq \infty$ and $q(2^k Q) = \infty$, Q has order divisible by q. Using the assumption on k, we have

\[
\lambda \sqrt{p} \leq p/2^k < q \leq \#E(\mathbb{F}_r) \leq (\sqrt{r} + 1)^2 \leq (p^{1/4} + 1)^2.
\]

Here the third inequality is by the Hasse’s Theorem. However, we assumed this inequality does not hold. Hence p is prime.

Remark 6.2. Since we know $Q = (x, y)$, we can use the method of successive doubling when we multiply integers. Hence it is calculated quickly.

Remark 6.3. If we cannot proceed to Step 3, then this test will not stop. However, if q is large prime, then it is likely that Q has order $2^k q$. So after doing Step 2 several times if we could not proceed to Step 3, then it is likely p is composite. Then we need to use another test to check if it is really composite. Or we should use this test after checking that p is a probably prime by another test.
There exists a similar algorithm when \(n \) is not prime. However, the number of steps in the algorithm will increase. To see what happens, let us consider the case when \(n \) is a product of two primes. Let \(n = q_1q_2 \), where \(q_1, q_2 \) are (not necessarily distinct) primes.

Algorithm. Let \(p = 2^k q_1 q_2 - 1 \), where \(k \geq 2 \) and \(q_1, q_2 \) are primes.

Fix \(\lambda > 1 \) and assume \(2^k \lambda \leq \sqrt{p} \) and \(\lambda \sqrt{p} > (p^{1/4} + 1)^2 \).

To check if \(p \) is prime or not, do the following steps.

1. Take \(x \in \mathbb{Z} \) such that \(\left(\frac{x}{p} \right) = -1 \) and find \(y \) such that \(\left(\frac{x^3 - y^2}{p} \right) = 1 \). Let \(m = (x^3 - y^2)/x \mod p \). Then \(Q = (x, y) \) lies on the curve \(E : y^2 = x^3 - mx \). Then the following calculation is done in \(E(\mathbb{Z}_p) \).

 (2) If \(2^k Q = \infty \), then go to Step 1 and take another \(y \). If \(2^k Q \neq \infty \), then go to Step 3.

 (3) If \(q_1(2^k Q) \neq \infty \) and \(q_2(2^k Q) \neq \infty \), then go to Step 4. Otherwise, go to Step 1 and take another \(y \).

 (4) If \(q_1 q_2(2^k Q) = \infty \), then \(p \) is prime. If not, \(p \) is composite.

The proof is almost the same as that of Theorem 6.1. You can replace \(q \) in the proof of Theorem 6.1 by \(q_1 q_2 \).

Remark 6.4. These tests in this section correspond to the primality tests using the factors of \(p + 1 \). (See [2]).

References

1. John Brillhart, D. H. Lehmer, and J. L. Selfridge, *New primality criteria and factorizations of \(2^m \pm 1 \)*, Math. Comp. 29 (1975), 620–647. MR MR0384673 (52 #5546)
2. Richard Crandall and Carl Pomerance, *Prime numbers*, Springer-Verlag, New York, 2001, A computational perspective. MR MR1821158 (2002a:11007)
3. Shafi Goldwasser and Joe Kilian, *Primality testing using elliptic curves*, J. ACM 46 (1999), no. 4, 450–472. MR MR1812127 (2002c:11182)
4. Benedict H. Gross, *An elliptic curve test for Mersenne primes*, J. Number Theory 110 (2005), no. 1, 114–119. MR MR2114676 (2005m:11007)
5. Dale Husemöller, *Elliptic curves*, second ed., Graduate Texts in Mathematics, vol. 111, Springer-Verlag, New York, 2004. With appendices by Otto Forster, Ruth Lawrence and Stefan Theisen. MR MR2024529 (2005a:11078)
6. Hans Riesel, *Lucasian criteria for the primality of \(N = h \cdot 2^n - 1 \)*, Math. Comp. 23 (1969), 869–875. MR MR0262163 (41 #6773)
7. Lawrence C. Washington, *Elliptic curves*, second ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2008, Number theory and cryptography. MR MR2404461 (2009b:11101)
8. Hugh C. Williams, *Édouard Lucas and primality testing*, Canadian Mathematical Society Series of Monographs and Advanced Texts, 22, John Wiley & Sons Inc., New York, 1998, A Wiley-Interscience Publication. MR MR1632793 (2000b:11139)
DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY 150 N. UNIVERSITY STREET, WEST LAFAYETTE, IN 47907-2067

E-mail address: ytsumura@math.purdue.edu