Maternal Knowledge on Routine Childhood Immunization: A Community Based Cross-sectional Study in Rural Area of Mon State, Myanmar

Aung Zaw Htike¹, San San Myint Aung² and Win Myint Oo³*

¹Department of Public Health, Ministry of Health and Sports, Myanmar.
²Myanmar Maternal and Child Welfare Association, Myanmar.
³Faculty of Medicine, SEGi University, Malaysia.

Authors' contributions
All authors designed the study, searched the literatures, took part in data collection and management, performed the statistical analysis and interpreted the results of data analysis. Author AZH wrote the protocol. Author WMO prepared the first draft of the manuscript. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/AJRID/2020/v3i230121
Editor(s): Dr. Jamal Hussaini, Assistant Professor, Department of Medical Microbiology, Universiti Teknologi MARA, Malaysia.
Reviewers: Vinodkumar Mugada, Vignan Institute of Pharmaceutical Technology, India.
Alexandrina Cardoso, Escola Superior de Enfermagem do Porto, Portugal.
Complete Peer review History: http://www.sdiarticle4.com/review-history/54326

Received 24 November 2019
Accepted 29 January 2020
Published 03 February 2020

Original Research Article

ABSTRACT

Aims: To determine the knowledge on routine childhood immunization and the factors associated with it among mothers in rural area of Mon State, Myanmar during 2017.
Study Design: A community based cross-sectional study.
Place and Duration of Study: Rural area of Mon State, Myanmar, between June and August 2017.
Methodology: We included 302 mothers who had 18 to 23 months old children using multistage random sampling. Face-to-face interview was applied in data collection. Chi-square test and multivariate logistic regression analysis were utilized in data analysis.
Results: More than three fourths of mothers (76.2%) had good knowledge level on routine childhood immunization. There was a significant association between maternal knowledge and immunization status of their children (p<0.001). Logistic regression showed that the husband’s occupation was significantly associated with maternal knowledge (p=0.02).

*Corresponding author: E-mail: drwinuch@gmail.com;
Conclusion: Majority of mothers have good knowledge on routine childhood immunization. However, health education campaign should be intensified to improve their knowledge level, especially among mothers whose husbands are blue-collar workers.

Keywords: Childhood immunization; EPI; immunization status; maternal knowledge; Mon; Myanmar.

1. INTRODUCTION

Immunization is an effective and useful tool in prevention and control of communicable diseases. It could even eradicate the infectious diseases. Therefore, the Expanded Programme on Immunization (EPI) was developed by WHO in 1974. Although it has prevented millions of deaths and disabilities, inequitable accessibility remains a big issue in many countries [1-3].

In Myanmar, EPI has been established since 1978. At the beginning, only BCG (Bacillus Calmette-Guerin), DPT (Diphtheria-Pertussis-Tetanus) and TT (Tetanus Toxoid) vaccines were included. In 1987, Measles and OPV (oral polio vaccines) were introduced into the EPI programme. HepB (Hepatitis B), Pentavalent [DPT-HepB-Hib (Haemophilus influenza b)], MR (Measles-Rubella), IPV (Inactivated Polio Vaccine) and PCV (Pneumococcal Vaccine) vaccines were incorporated in 2003, 2014, 2015, 2015 and 2016, respectively [4-6].

However, immunization coverage is still not sufficient enough. National coverage on BCG, 3rd dose of Pentavalent, 3rd dose of OPV and 1st dose of Measles vaccines in 2015 were 87.8%, 62.3%, 67% and 77.1%, respectively. In Mon State, the coverage of these vaccines were 95.4%, 68.7%, 75.3% and 84.4%, respectively and 2.3% of children did not receive any vaccine in 2015 [7].

About 70% of Myanmar people are living in rural area [6,7] and maternal knowledge is found to have significant relationship with immunization status of their children [8-12]. Therefore, this study is conducted to determine the knowledge on routine childhood immunization and the factors associated with it among mothers in rural area of Mon State, Myanmar during 2017.

2. MATERIALS AND METHODS

2.1 Study Design

The present study used cross-sectional study design.

2.2 Area and Participants of the Study

This study was done in rural area of Mon State during 2017 (from June to August). Participants were mothers of 18-23 months old children and living in Mon State continuously for at least two years.

2.3 Sample Size Determination and Sampling

Epi Info version 7 software was used in sample size calculation where an estimated proportion of mothers who had good knowledge on routine childhood immunization was assumed to be 75% [8,9,13], confidence level 95% and confidence limit (precision) 5%. So minimum sample size requirement was 288 mothers who had 18 to 23 months old child.

Multistage random sampling procedure was applied in selecting the samples. In Mon State, there were two districts namely Mawlamyine and Thaton. Two out of six townships were selected from Mawlamyine district and one township out of four from Thaton district by using simple random sampling method. Then two village tracts were selected from each selected townships by simple random sampling. After that, participants were selected proportional to size of mothers who had 18-23 months old child from each village tract by using simple random sampling procedure.

2.4 Data Collection and Analysis

Face-to-face interview was applied using an interviewer administered questionnaire to collect the data. Epi-data version 3.1 statistical software was used for data entry and validation, and STATA version 11.0 statistical package for data analysis. Chi-square test and multivariate logistic regression analysis with backward deletion strategy were utilized.

2.5 Main Variables of the Study

Maternal knowledge on routine childhood immunization (i.e., EPI) was assessed using a
questionnaire which consisted of 24 items. One point (score) was given to each correct answer and zero to incorrect or don’t know response. Therefore, total knowledge scores ranged from 0 to 24. Finally maternal knowledge was divided into good and poor categories based on total knowledge scores of a respondent. A cut-off point used in this study was 80% of the highest possible total knowledge scores (i.e., 19 out of 24). If total knowledge scores of a mother was lower than 19 (i.e., 0 to 18), her knowledge on routine childhood immunization was considered as poor. Otherwise, she was assigned into a group of good knowledge level.

Parental characteristics such as age, education and occupation (of both mothers and fathers), and attributes of children such as age, sex, birth order and place of birth were considered as possible independent variables. Those variables whose p value was ≤ 0.25 in univariate analysis were selected as candidate variables for multivariate analysis.

Maternal occupation was categorized into housewife and others that meant a respondent had any kind of job for earning. Husbands of the respondents were grouped into white-collar and blue-collar based on their occupation. A white-collar worker was defined as a worker who performed a professional, administrative, managerial, or office work either in private or public sector. Otherwise he was considered as a blue-collar worker. So in this study, fathers working as labourers in an agricultural sector or fishermen or any other manual/unskilled workers were included in blue-collar category.

Immunization status of a child was regarded as complete in the present study if a particular child had been completed all doses of vaccines as scheduled in EPI, Myanmar (a single dose of BCG, (3 doses of DTP-HepB-Hib, OPV, PCV), and two doses of Measles) at the time of data collection. The information on status of immunization had been obtained from vaccination card and/or immunization registers kept in a respective health centre.

2.6 Validation of Questionnaires on Maternal Knowledge

The structured questionnaire to determine maternal knowledge on routine childhood immunization was developed by researchers and was prepared in Myanmar language. The questionnaire was checked by experts from University of Public Health, Yangon and from Department of Public Health. Final version was established after necessary revision has been made based on their opinion and suggestions. Then pre-test was done in neighbouring township (n=30 mothers). Internal consistency or reliability was checked using Cronbach’s alpha. The coefficient of Cronbach’s alpha for questionnaire was 0.88.

3. RESULTS

Altogether 302 mothers who had 18 to 23 months old children were included. Their mean age (sd = standard deviation) and range were 32.2 (6.5) and 19-48 years, respectively. Their socio-demographic features including knowledge on EPI are shown in Table 1. Mean knowledge scores (sd) and range were 20.3 (3.3) and 4-24. The main source of information on childhood immunization for mothers was health staff. More than 90% of mothers (275 out of 302 or 91.1%) reported that they received the information concerning with childhood immunization from local health staff.

Table 2 shows the characteristics of the respondents’ husbands such as age, education and occupation. Their mean age (sd = standard deviation) and range were 34.4 (7.1) and 20-57 years, respectively.

Characteristics of the children including their immunization status and place of delivery are shown in Table 3. Complete immunization coverage among them was 83.1%.

Table 4 reveals the relationship between maternal knowledge on EPI and socio-demographic characteristics of them as well as their husbands. Only their husbands’ occupation was found to have significant association (p=0.018).

The association between maternal knowledge on EPI and characteristics of their children is shown in Table 5. No significant association has been detected. However, there was a positive and significant association between maternal knowledge on EPI and immunization status of their children (Table 5).

Although the variables, namely age and education of respondents, age and occupation of their husbands, and characteristics of their children such as sex and place of delivery were chosen to be included in model building (i.e.,
multivariate analysis), husband’s occupation alone was included in the final model (Table 6). Based on the results of multivariate logistic regression analysis, maternal knowledge on EPI was significantly influenced by her husband’s occupation ($p = 0.02$). If her husband had a white-collar job, maternal knowledge on EPI was two times higher than that of their counterparts whose husbands were engaged in blue-collar job.

Table 1. Characteristics of the respondents including their knowledge on EPI

Variables	Frequency (n=302)	Percent
Age-group (Years)		
19 – 24	40	13.3
25 – 39	219	72.5
> 39	43	14.2
Education		
Low (No formal education)	33	10.9
Middle (Primary and Middle school level)	212	70.2
High (High school and University)	57	18.9
Occupation		
Housewives	195	64.6
Others (Having any kind of job for earning)	107	35.4
Knowledge level		
Poor	72	23.8
Good	230	76.2

Table 2. Characteristics of the respondents’ husbands

Variables	Frequency (n=302)	Percent
Age-group (Years)		
20 – 24	22	7.3
25 – 39	208	68.9
> 39	72	23.8
Education		
Low (No formal education)	61	20.2
Middle (Primary and Middle school level)	192	63.6
High (High school and University)	49	16.2
Occupation		
Blue-collar workers	214	70.9
White-collar workers	88	29.1

Table 3. Characteristics of the children including their immunization status

Variables	Frequency (n=302)	Percent
Age-group (Months)		
18 – 20	159	52.7
21 - 23	143	47.3
Sex		
Male	147	48.7
Female	155	51.3
Birth order		
First	114	37.8
Second	88	29.1
Third and above	100	33.1
Place of birth		
Home	127	42.1
Health centre (Hospital or Clinic)	175	57.9
Immunization status		
Complete	251	83.1
Incomplete	51	16.9
Table 4. Maternal knowledge according to characteristics of them and their husbands

Variables	Maternal Knowledge	Total	p-value*	
	Good	Poor		
Age-group				
19 – 24	34 (85.0%)	6 (15.0%)	40	0.098
25 – 39	168 (76.7%)	51 (23.3%)	219	
> 39	28 (65.1%)	15 (34.9%)	43	
Education			0.169	
Low	21 (63.6%)	12 (36.4%)	33	
Middle	163 (76.9%)	49 (23.1%)	212	
High	46 (80.7%)	11 (19.3%)	57	
Occupation			0.886	
Housewives	148 (75.9%)	47 (24.1%)	195	
Others	82 (76.6%)	25 (23.4%)	107	
Age-group			0.152	
20 – 24	20 (90.9%)	2 (9.1%)	22	
25 – 39	159 (76.4%)	49 (23.6%)	208	
> 39	51 (70.8%)	21 (29.2%)	72	
Education			0.398	
Low	46 (75.4%)	15 (24.6%)	61	
Middle	143 (74.5%)	49 (25.5%)	192	
High	41 (83.7%)	8 (16.3%)	49	
Occupation			0.018	
Blue collar	155 (72.4%)	59 (27.6%)	214	
White collar	75 (85.2%)	13 (14.8%)	88	

* p-values are based on Chi-square test results. **Respondents; ***Husbands

Table 5. Maternal knowledge on EPI according to characteristics of their children

Variables	Maternal knowledge	Total	p-value*
	Good	Poor	
Age-group			0.571
18 – 20	119 (74.8%)	40 (25.2%)	159
21 – 23	111 (77.6%)	32 (22.4%)	143
Sex			0.181
Male	107 (72.8%)	40 (27.2%)	147
Female	123 (79.4%)	32 (20.6%)	155
Birth order			0.283
First	88 (77.2%)	26 (22.8%)	114
Second	71 (80.7%)	17 (19.3%)	88
Third and above	71 (71.0%)	29 (29.0%)	100
Place of birth			0.196
Home	92 (72.4%)	35 (27.6%)	127
Health centre	138 (78.9%)	37 (21.1%)	275
Immunization status			< 0.001
Complete	205 (89.1%)	46 (63.9%)	251
Incomplete	25 (10.9%)	26 (36.1%)	51

* p-values are based on Chi-square test results. **The percentage shown is column percent

4. DISCUSSION

In this study more than three quarters of mothers (76.2%) had good knowledge on routine childhood immunization. Various findings had been reported by similar studies done in Lithuania (63.6%) [10], India (93.3% and 58%) [14,15], Malaysia (>50%) [16], Iraq (66.2%) [17], Nigeria (59%) [18] and Ethiopia (71.2%) [8]. The differences in socioeconomic status among study populations and place of study whether urban or rural would explain these findings. Besides, use of different questionnaires and/or different cut-off points to classify maternal knowledge into good and poor might be responsible.
Table 6. Results of univariate and multivariate logistic regression analyses

Variables	Univariate Analysis		Multivariate Analysis	
	OR _{crude} (95%CI)	p-value	OR _{adj} (95%CI)	p-value
Characteristics of mothers				
Age-group⁽¹⁾				
19 – 24	1.00			
25 – 39	0.58 (0.23, 1.46)	0.249		
> 39	0.33 (0.11, 0.96)	0.042		
Education⁽¹⁾				
Low	1.00			
Middle	1.90 (0.87, 4.14)	0.106		
High	2.39 (0.91, 6.29)	0.078		
Occupation⁽²⁾				
Housewives	1.00			
Others	1.04 (0.60, 1.81)	0.886		
Characteristics of fathers				
Age-group⁽¹⁾				
20 – 24	1.00			
25 – 39	0.32 (0.07, 1.44)	0.138		
> 39	0.24 (0.05, 1.13)	0.072		
Education⁽²⁾				
Low	1.00			
Middle	0.95 (0.49, 1.85)	0.884		
High	1.67 (0.64, 4.35)	0.292		
Occupation⁽¹⁾				
Blue-collar	1.00		1.00	
White-collar	2.20 (1.13, 4.25)	0.020	2.20 (1.13, 4.25)	0.020
Characteristics of children				
Age-group⁽²⁾				
18 – 20	1.00			
21 - 23	1.17 (0.68, 1.98)	0.572		
Sex⁽¹⁾				
Female	1.44 (0.84, 2.45)	0.182		
Male	1.00			
Birth order⁽²⁾				
First	1.00			
Second	1.23 (0.62, 2.45)	0.548		
Third and above	0.72 (0.39, 1.34)	0.302		
Place of birth⁽¹⁾				
Home	1.0			
Health centre	1.42 (0.83, 2.42)	0.197		

⁽¹⁾ Not included in the final model although it has been selected as a candidate variable in multivariate analysis;
⁽²⁾ Not included in multivariate analysis

Majority of respondents (91.1%) said that they received information concerning with knowledge on routine immunization from local health personnel in the present study. Previous studies done in different countries also reported that the main source of information was either health staff [10,13,19] or health centre [20,21].

As reported by previous studies conducted in different countries [8-12,19], maternal knowledge was found to have significant relationship with immunization status of their children in this study. It means that the higher the knowledge level of mothers on routine childhood immunization the more likely their children have been immunized completely. The present study revealed that the complete immunization coverage among 18-23 months old children was 89.1% although their mothers have good knowledge on routine childhood immunization. About 11% of their children have incomplete immunization status. This might be due to any other reason (not related to maternal knowledge) such as being sick or having problem in transportation or
The present study considered father’s age, education and occupation as independent variables. However, only father’s occupation was found to have a significant association with maternal knowledge on routine childhood immunization in both univariate and multivariate analyses. Working environment (especially in white-collar jobs) might promote the father’s knowledge and then it would be disseminated or shared to his wife. Similar studies done in Iraq [17] and Turkey [22] reported that maternal knowledge on childhood vaccination was influenced by father’s occupation [22] and education [17,22].

Children’s characteristics such as age, sex, birth order and place of birth did not show any significant relationship with maternal knowledge in this study. An Indian study [14] also revealed that birth order of a child was not related to maternal knowledge on immunization whereas birth place was found to have significant effect in a study done in Iraq [17].

5. CONCLUSION

Majority of mothers have good knowledge on routine childhood immunization. However, health education campaign should be intensified to improve their knowledge level, especially among mothers whose husbands are engaged in blue-collar jobs.

CONSENT

All authors declare that written informed consent was obtained from the participants not only for participation in the study but also for publication of this research article.

ETHICAL APPROVAL

All authors declare that Institutional Technical and Ethical Review Board of the University of Public Health, Yangon, Myanmar has approved the present study with the reference number “ITERV(2017)/Research/8.”

ACKNOWLEDGEMENTS

We would like to express our thanks and gratitude to Ministry of Health and Sports, the Republic of the Union of Myanmar and University of Public Health, Yangon, Myanmar for allowing us to conduct this study. We also would like to extend our appreciation and gratefulness to all staff from State & Township Health Departments, Mon State, Myanmar, and participants of the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Keja K, Chan C, Hayden G, Henderson RH. Expanded programme on immunization. World Health Stat Q. 1988; 41(2):59-63. (PMID: 3176515)

2. World Health Organization. The expanded programme on immunization: Benefits of Immunization. [Accessed 10 November 2019] Available:https://www.who.int/immunization/programmes_systems/supply_chain/benefits_of_immunization/en/

3. World Health Organization. Regional Office for Western-Pacific. Expanded programme on immunization. [Accessed 10 November 2019] Available:https://www.who.int/westernpacific/about/how-we-work/programmes/expanded-programme-on-immunization.

4. Ministry of health and sports, Myanmar. Expanded programme on immunization: Multi-year plan 2012-2016. [Accessed 10 November 2019] Available:http://www.nationalplannings.org/sites/default/files/country_docs/Myanmar/cmyp_2012-2016_12_nov_11_.pdf.

5. Ministry of Health and Sports, Myanmar. Expanded programme on immunization:
Multi-year plan 2017-2021 (Revised January 2016).
[Accessed 10 November 2019]
Available:http://www.nationalplanningcycle s.org/sites/default/files/planning_cycle_rep ository/myanmar/myanmar_cmyp_2017-2021.pdf.

6. World Health Organization. Regional Office for South-East Asia. Expanded programme on Immunization (EPI) factsheet 2019: Myanmar. World Health Organization. Regional Office for South East Asia. [Accessed 10 November 2019]
Available:https://apps.who.int/iris/handle/10.1186/s12887-015-0345-4

7. Ministry of Health and Sports, Myanmar and ICF. Myanmar demographic and health survey 2015-2016.
[Accessed 10 November 2019]
Available:https://dhsprogram.com/pubs/pdf /FR324/FR324.pdf.

8. Legesse E, Dechasa W. An assessment of child immunization coverage and its determinants in Sinana District, Southeast Ethiopia. BMC Pediatrics. 2015;15:31. DOI:10.1186/s12887-015-0345-4

9. Vonasek BJ, Bajunirwe F, Jacobson LE, Twesigye L, Dahm J, Grant MJ, et al. Do maternal knowledge and attitudes towards childhood immunizations in rural uganda correlate with complete childhood vaccination? PLoS ONE. 2016;11:2:e0150131. DOI:10.1371/journal.pone.0150131

10. Šeškutė M, Tamulevičienė E, Levinienė G. Knowledge and attitudes of postpartum mothers towards immunization of their children in a Lithuanian tertiary teaching hospital. Medicina. 2018;54:2. DOI:10.3390/medicina54010002

11. Girmay A, Dadi AF. Full immunization coverage and associated factors among children aged 12-23 Months in a Hard-to-Reach Areas of Ethiopia. International Journal of Pediatrics; 2019. DOI:10.1155/2019/1924941

12. Meleko A, Geremew M, Birhanu F. Assessment of child immunization coverage and associated factors with full vaccination among children aged 12–23 months at Mitzan Aman Town, Bench Maji Zone, South west Ethiopia. International Journal of Pediatrics; 2017. DOI:10.1155/2017/7976587

13. Verulava T, Jaiani M, Lordkipanidze A, Jorbenadze R, Dangadze B. Mothers' Knowledge and attitudes towards child immunization in georgia. The Open Public Health Journal. 2019;12:232-7. DOI:10.2174/1874944501912010232

14. Mugada V, Chandrabhotla S, Kaja DS, Machara SGK. Knowledge towards childhood immunization among mothers & reasons for incomplete immunization. J App Pharm Sci. 2017;7(10):157-61.

15. Siddiqi NS, Gaikwad AK, Kuril BM, Ankushe RT, Doibale MK, Pund SB, Kumar P. Is mothers' knowledge and practice regarding childhood immunization compliant with immunization completeness? Int J Community Med Public Health. 2017;4(3):775-80.

16. Singh HKB, Badguchar VB, Yahaya RS, Rahman SA, Sami FM, Badguchar S, Govindan SN, Ansari MT. Assessment of knowledge and attitude among postnatal mothers towards childhood vaccination in Malaysia. Human Vaccines & Immunotherapeutics. 2019;15(11):2544 51. DOI:10.1080/21645515.2019.1612666

17. Al-llea OQ, Bahari MB, Salih MRM, Al-abbassi MG, Elkalmi RM, Jamshed SQ. Factors underlying inadequate parents' awareness regarding pediatrics immunization: Findings of cross-sectional study in Mosul- Iraq. BMC Pediatrics. 2014;14:29. DOI:10.1186/1471-2431-14-29

18. Oche MO, Umar AS, Ibrahim MTO, Sabitu K. An assessment of the impact of health education on maternal knowledge and practice of childhood immunization in Kware, Sokoto State. Journal of Public Health and Epidemiology. 2011;3(10):440-7.

19. Nisar N, Mirza M, Qadri MH. Knowledge, attitude and practices of mothers regarding immunization of one year old child at Mawatch Goth, Kemari Town, Karachi. Pak J Med Sci. 2010;26(1):183-6.

20. Adefolalu OA, Kanma-Okafor OJ, Balogun MR. Maternal knowledge, attitude and compliance regarding immunization of five children in Primary Health Care centres in Ikorodu Local Government Area, Lagos State. JClin Sci. 2019;16:7-14.

21. Bello K, Daniel AD. Knowledge and attitude of mothers towards childhood immunization in Bauchi Local Government, Bauchi State – Nigeria. International
Journal of Innovative Research in Social Sciences & Strategic Management

Camurdan AD. Parental vaccine knowledge and behaviors: A survey of Turkish families. East Mediterr Health J. 2018;24(5):451-8.
DOI:10.26719/2018.24.5.451

22. Kara SS, Polat M, Cura Yayla B, Bedir Demirdag T, Tapisiz A, Tezer H, Camurdan AD. Parental vaccine knowledge and behaviors: A survey of Turkish families. East Mediterr Health J. 2018;24(5):451-8.
DOI:10.26719/2018.24.5.451

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/54326