Research

Difference in end-tidal CO₂ between asphyxia cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest in the prehospital setting

Štefek Grmec, Katja Lah and Ksenija Tušek-Bunc

Center of Emergency Medicine, Prehospital Unit Maribor, Maribor, Slovenia

Correspondence: Katja Lah, katkalah@email.si

Abstract

Introduction There has been increased interest in the use of capnometry in recent years. During cardiopulmonary resuscitation (CPR), the partial pressure of end-tidal carbon dioxide (PetCO₂) correlates with cardiac output and, consequently, it has a prognostic value in CPR. This study was undertaken to compare the initial PetCO₂ and the PetCO₂ after 1 min during CPR in asphyxial cardiac arrest versus primary cardiac arrest.

Methods The prospective observational study included two groups of patients: cardiac arrest due to asphyxia with initial rhythm asystole or pulseless electrical activity, and cardiac arrest due to acute myocardial infarction or malignant arrhythmias with initial rhythm ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT). The PetCO₂ was measured for both groups immediately after intubation and then repeatedly every minute, both for patients with and without return of spontaneous circulation (ROSC).

Results We analyzed 44 patients with asphyxial cardiac arrest and 141 patients with primary cardiac arrest. The first group showed no significant difference in the initial value of the PetCO₂, even when we compared those with and without ROSC. There was a significant difference in the PetCO₂ after 1 min of CPR between those patients with ROSC and those without ROSC. The mean value for all patients was significantly higher in the group with asphyxial arrest. In the group with VF/VT arrest there was a significant difference in the initial PetCO₂ between patients without and with ROSC. In all patients with ROSC the initial PetCO₂ was higher than 10 mmHg.

Conclusions The initial PetCO₂ is significantly higher in asphyxial arrest than in VT/VF cardiac arrest. Regarding asphyxial arrest there is also no difference in values of initial PetCO₂ between patients with and without ROSC. On the contrary, there is a significant difference in values of the initial PetCO₂ in the VF/VT cardiac arrest between patients with and without ROSC. This difference could prove to be useful as one of the methods in prehospital diagnostic procedures and attendance of cardiac arrest. For this reason we should always include other clinical and laboratory tests.

Keywords asphyxial cardiac arrest, end-tidal CO₂, prognosis

Introduction

Monitoring of end-tidal CO₂ has become a standard in the prehospital setting to ensure proper placement and function of the endotracheal tube and to help monitor the adequacy of ventilation [1]. In addition, it has been noted that cardiac arrest causes an abrupt fall in end-tidal CO₂ levels to values...
near zero [2,3]. During cardiac arrest the partial pressure of end-tidal carbon dioxide (PetCO₂) falls to very low levels, reflecting the very low cardiac output achieved with cardiopulmonary resuscitation (CPR). It has been shown that the PetCO₂ achieved during advanced cardiac life support reliably predicts an outcome of cardiac arrest [2–12]. Higher levels of the PetCO₂ indicate better cardiac output, higher coronary perfusion pressure and a greater likelihood of successful resuscitation [13,14]. After the onset of cardiac arrest caused by ventricular fibrillation (VF), the PetCO₂ abruptly decreases to nearly zero and then begins to increase after the onset of effective CPR. Further increase is detected upon return of spontaneous circulation (ROSC) to normal or above-normal levels [2,3,9,12].

In an experimental animal model of asphyxial arrest during CPR, PetCO₂ levels were initially high (after the onset of arrest), then decreased to subnormal levels and then increased again to near-normal levels [15,16]. During a respiratory arrest, the cardiac output of pulmonary blood flow continues for some period of time prior to cardiacstandstill. The CO₂ produced in the tissue during this period will continue to be delivered to the lungs, thereby increasing alveolar CO₂ (two-compartment hydraulic model of CO₂ kinetics). However, it is also important to recognize that it is not only the cessation of cardiac output alone that causes the fall of PetCO₂, but the cessation in conjunction with the washout of alveolar gas. This means that, in the absence of alveolar gas washout, CO₂ will remain in the lungs and probably that, as alveolar oxygen is being utilized, more CO₂ will be delivered.

On the basis of such a concept we built a hypothesis maintaining that the initial PetCO₂ should be higher in an asphyxial arrest model than in a VF/pulseless ventricular tachycardia (VT) cardiac arrest model. In the asphyxial cardiac arrest model there should also be no difference in patients with and without ROSC regarding the initial PetCO₂, since the initial PetCO₂ in this case reflects CO₂ cumulated in the alveolar compartment. This would suggest that the initial values of end-tidal carbon dioxide in asphyxial arrest do not have a prognostic value for ROSC as they do in VF/VT cardiac arrest.

If our results confirm both hypotheses, then this difference could be helpful in determining the mechanism of arrest in the prehospital setting.

Methods

This prospective observational study was conducted at the Center of Emergency Medicine, Maribor. The study included two groups of patients. The first group represented patients who suffered from heart arrest due to asphyxia. The causes of asphyxia included a foreign body in the airway, aspiration, suicide by hanging, drowning, edema or tumor of the airway, intoxication and acute asthma attack. The definitive cause of arrest has been confirmed in the hospital with further diagnostic and/or pathological report (autopsy). The initial rhythm was either asystole or pulseless electrical activity (all patients from this group with VT/VF as the initial rhythm were excluded). Patients with severe hypothermia (core temperature < 30°C) were also excluded.

The second group included the patients with primary cardiac arrest (acute myocardial infarction or malignant arrhythmias). The initial rhythm was VF/VT (all patients from this group presenting with asystole or pulseless electrical activity were excluded). The definitive diagnosis (cause of arrest) was confirmed in the hospital (further diagnostic and/or pathological/autopsy report). The inclusion/exclusion criteria for asphyxia and VF/VT group are presented in Table 1.

Table 1
Inclusion/exclusion criteria for the asphyxia group and the ventricular fibrillation/pulseless ventricular tachycardia (VF/VT) group of patients
VF/VT group
VF/VT initial rhythm
Age > 18 years
Core temperature > 30°C
Confirmed acute myocardial infarction and/or primary VF/VT (electrocardiogram, enzymes, autopsy, electrophysiological investigation)
Excluded patients with successful defibrillation in the first cycle
Excluded patients with acute myocardial infarction with asystole and pulseless electrical activity as the initial rhythm
Asphyxia group
Asystole and pulseless electrical activity as the initial rhythm
Excluded patients with VF/VT as the initial rhythm
Age > 18 years
Core temperature > 30°C
Excluded acute myocardial infarction as cause of arrest (clinical investigations and/or autopsy)
Etiology:
solid foreign body in the airway
aspiration
edema or tumor of the upper airway
hanging (excluded vasculatory or others causes of arrest – clinical investigations or autopsy)
Acute asthma attack (excluded cardiac causes of arrest)
Drowning (excluded cardiac causes of arrest)
Intoxications (excluded others causes of death – autopsy and/or added investigations in hospital)

The resuscitation procedures were performed by an emergency team (emergency medical doctor and two emergency
medical technicians or register nurses) in accordance with the International Liaison Committee on Resuscitation and European Resuscitation Council guidelines [17–19]. We used a manual technique to perform CPR. Pharmacologic interventions in individual patients were in accordance with the standards and guidelines of the International Liaison Committee on Resuscitation/European Resuscitation Council.

For management of VF or pulseless VT, direct-current countershocks were delivered by means of conventional techniques. PetCO₂ measurements were made by infrared sidestream capnometer (BCI Capnocheck Model 20600A1; BCI International Waukesha, WI, USA). Measurements for both groups were made immediately after intubation (first measurement) and then repeatedly every minute continuously. Endotracheal intubations were performed after two initial breaths with a valved bag at the beginning of CPR. Further ventilation was performed by mechanical ventilator (6–8 ml/kg at 10–12 breaths/min; Medumat Standard Weinmann, Namburg, Germany). The CO₂ cuvette was located in a connector between the mechanical ventilator and the endotracheal tube (it was applied to the endotracheal tube before intubation). Two patients were not intubated by the orotracheal technique because of complete obstruction of the upper airway, visualized by laryngoscopy. In these two cases cricotireideotomy was performed using the traceoquick method (Tracheoquick Emergency Coniostomy Set; Willy Rüsch AG, Kernen, Germany). The procedure was performed in accordance with the instructions of the manufacturer, and both patients were successfully resuscitated and ventilated by mechanical ventilator.

The initial (first measurement after intubation), average (mean of all values obtained during a single resuscitation effort) and final (measurement at admission to hospital or discontinued CPR) PetCO₂ was detected for both groups. We performed the same procedure for the patients with ROSC and for those without ROSC.

ROSC is defined as the return of spontaneous heartbeat or as palpable periferal arterial pulse and measurable systolic arterial pressure. As is seen from the Utstein style template, we distinguish intermittent ROSC, which is short in duration and a temporary event, from ROSC with hospitalization of a patient. In the present article, ROSC represents hospitalized patients.

The paired Student t test was used to compare initial and subsequent PetCO₂ values for each subject. For other parameters, both groups (asphyxial arrest group and VF/VT cardiac arrest group) were compared by Student’s t test and the chi-squared test. Continuous variables are described as the mean ± standard deviation. P<0.05 was considered significant.

Results
From February 1998 to October 2002 we analyzed 141 patients with primary cardiac arrest (initial rhythm VF/VT) and

44 patients with cardiac arrest due to asphyxia (initial rhythm asystole or pulseless electrical activity). The study environment, the prehospital environment and the characteristics of cardiac arrest and noncardiac arrest are displayed in Fig. 1a,b (Utstein style). The causes of asphyxial cardiac...
arrest were solid foreign body in the airway (seven cases), aspiration (seven cases), edema or tumor of the upper airway (five cases), hanging (five cases), acute asthma attack (six cases), drowning (six cases) and intoxications with respiratory arrest (eight cases). Demographic and clinical characteristics for both groups are presented in Table 2.

The values of the PetCO₂ are presented in Table 3. In the group of patients who presented with arrest due to asphyxia there was no significant difference in the initial values of PetCO₂, even when we compared those with and without ROSC (70.1 ± 15.3 mmHg versus 62.8 ± 16.2 mmHg, P=0.64). On the contrary, in the group of patients who presented with VF/VT arrest there was a significant difference in the initial values of PetCO₂ between patients without and with ROSC (8.2 ± 4.3 mmHg versus 20.3 ± 6.2 mmHg, P=0.04). In all patients with ROSC the initial PetCO₂ was higher than 10 mmHg. The values of the PetCO₂ after 1 min of CPR did not differ significantly among the two groups. In both groups significantly higher values were achieved in patients with ROSC than in those without ROSC (asphyxial arrest group, 35.8 ± 8.6 mmHg versus 19.4 ± 8.7 mmHg, P<0.05; VF/VT arrest group, 30.2 ± 8.3 mmHg versus 14.2 ± 5.2 mmHg, P<0.05). The values of the final PetCO₂ in both groups were significantly higher in patients with ROSC than in the patients without ROSC (asphyxial arrest group, 31.2 ± 8.4 mmHg versus 7.2 ± 3.3 mmHg, P<0.05; VF/VT arrest group, 28.1 ± 4.8 mmHg versus 6.2 ± 2.8 mmHg, P<0.05).

Discussion

In the present study we confirmed that the PetCO₂ was markedly elevated during the first minute of CPR in asphyxial cardiac arrest. This study therefore confirmed the results of the studies that used animal models in which cardiopulmonary arrest was induced by asphyxia. In the present study the PetCO₂ values during CPR were initially high, then decreased to subnormal levels and then increased again to near-normal levels in patients with ROSC. This pattern of PetCO₂ changes is different from the pattern observed in...
cardiac arrest caused by VF, since cardiac arrest from VF results in an abrupt cessation of cardiac output and pulmonary blood flow. Bhende and colleagues [15], Berg and colleagues [16] and von Planta and colleagues [20] concluded that, during the period of asphyxia, continued cardiac output prior to cardiac arrest permits continued delivery of CO2 to the lungs, which (in the absence of exhalation) results in higher alveolar CO2. This is reflected as increased PetCO2 when ventilation is resumed.

Understanding the physiology of CO2 production, delivery to the lungs and excretion are important in order to appropriately interpret PetCO2 monitoring during CPR. The disposition of CO2 can also be represented in a hydraulic model [21]. The large peripheral tissue compartment drains through a conduit (cardiac output) into the small central pulmonary compartment. The tissues produce CO2, which empties into the peripheral tissue compartment. Carbon dioxide then flows by gravity (cardiac output) from the higher level tissue to the lower level pulmonary compartment. Alveolar ventilation, which equals expired ventilation minus ventilation of the anatomical dead space, and the effects of high ratio ventilation/perfusion matching eliminate CO2 from the lung. In this model the cardiac output affects the distribution and total amount of CO2 in the body and can help to understand the meaning of the PetCO2 during CPR.

The present study discovered that we can trace the same pattern of PetCO2 changes in the asphyxial arrest as were described in the animal models in the first minute after arrest [15,16], even after a longer period of time due to the access time. The inability to measure the PetCO2 immediately after cardiac arrest was the main disability of this study.

We also concluded that the high initial values of the PetCO2 in asphyxial arrest do not have a prognostic value for the appearance of ROSC as they do in the VT/VF cardiac arrest. On the contrary, the values after 1 min of CPR and also the final values of the PetCO2 do have the prognostic value for ROSC. These data, like those from Berg and colleagues [16], suggest that the PetCO2 during the initial phase of CPR of asphyxial arrest (1 min after intubation and cardiac massage) reflects alveolar CO2 prior to CPR. In the asphyxial model, cellular respiration results in continued oxygen consumption and CO2 production. The high pressure of CO2 in the alveolar compartment is reflected in the high PetCO2 during the initial phase of CPR.

The fast decline of the high values of the PetCO2 can therefore only be interpreted by ventilation of the alveolar compartment, which then rapidly decreases the PetCO2. However, in the next phase and with the beginning of CPR we can again detect the rise of the PetCO2. This rise is achieved by successful cardiac massage, which washes the accumulated CO2 out of the peripheral compartment [11,21–23].

Key messages

- PetCO2 correlates with cardiac output and has a prognostic value for CPR
- The pattern of PetCO2 changes in asphyxia is different from the pattern of PetCO2 changes in VF/VT cardiac arrest
- Differences in the initial values of PetCO2 can be useful in differentiating between the causes of cardiac arrest
- Initial values of PetCO2 cannot be used as a prognostic factor for CPR in asphyxia arrest
- Values after 1 min of CPR in asphyxia arrest can be used as a prognostic factor for CPR

The acquaintance with this pattern of changes can be helpful in differentiation of cardiac arrest causes and in identification of mechanisms that led to cardiac arrest. This is very useful in the prehospital setting and can lead the course of action as hypoxia is a potentially reversible cause of cardiac arrest. The issue is potentially important when deciding upon the most effective sequence of resuscitation intervention. There is growing evidence that indicates positive pressure ventilation may be postponed for several minutes in instances of arrhythmia arrest whereas it might be life-saving in instances of asphyxial arrest. The emergency medical doctor can therefore be orientated with greater reassurance towards the measures that are useful in asphyxial arrest [24–27]. However, one has to be aware that the initial values of the PetCO2 in asphyxial arrest do not have the prognostic value for the outcome of CPR that they do have in VF/VT arrest [4–6,8–10].

Conclusions

The initial values of the PetCO2 in asphyxial cardiac arrest are significantly higher than in VF/VT cardiac arrest. In asphyxial arrest there is also no significant difference in initial values of the PetCO2 in patients with and without ROSC. In asphyxial arrest the initial values of the PetCO2 therefore cannot be used as a prognostic factor of outcome of CPR, as they can be used in VF/VT cardiac arrest. This difference, together with other criteria, can therefore be useful for differentiation between the causes of cardiac arrest in the prehospital setting. For standard use of this difference in the PetCO2 in the prehospital setting we suggest additional clinical research.

Competing interests

None declared.

References

1. Grmec Š: Comparison of three different methods to confirm tracheal tube placement in emergency intubation. Intensive Care Med 2002, 28:701-704.
critical care.

2. Falk JL, Rackow EC, Weil MH: End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 1988, 318:507-611.

3. Garwood AR, Omato J, Gonzalez ER, Johnson EB: End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 1987, 257:512-515.

4. Weil MH, Biser J, Trevino RP, Rackow EC: Cardiac output and end-tidal carbon dioxide. Crit Care Med 1985, 13:907-909.

5. Gallaham M, Barton C: Predictors of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 1990, 18:358-362.

6. Asplin BR, White RD: Prognostic value of end-tidal carbon dioxide pressures during out-of-hospital cardiac arrest. Ann Emerg Med 1995, 25:758-758.

7. Grmec Š, Klemen P: Does the end-tidal carbon dioxide (etCO₂) concentration have prognostic value during out-of-hospital cardiac arrest. Eur J Emerg Med 2001, 8:263-269.

8. Ahrens T, Schallom L, Bettorf K, Elther S, Hutt G, O’Mara V, Logan J, George W, Marino T, Shannon W: End-tidal carbon dioxide measurements as a prognostic indicator of outcome in cardiac arrest. Am J Crit Care 2001, 10:391-398.

9. Sanders AB, Kern KB, Berg RA: Searching for a predictive rule for terminating cardiopulmonary resuscitation. Acad Emerg Med 2001, 8:664-667.

10. Levine RL, Wayne MA, Miller CC: End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest. N Engl J Med 1997, 337:301-306.

11. Wiklund L, Soderberg D, Henneberg S, Robertsson S, Stjernstrom H, Groth T: Kinetics of carbon dioxide during cardiopulmonary resuscitation. Crit Care Med 1986; 14:1015-1022.

12. Song L, Weil MH, Tang W, Sun S, Pellis T: Cardiopulmonary resuscitation in the mouse. J Appl Physiol 2002, 93:1222-1226.

13. Binder JC, Parkin WG: Non-invasive cardiac output determination: comparison of a new partial-rebreathing technique with termodilution. Anaesthesia 2001, 29:19-23.

14. Idris AH, Becker LB, Fuent RS, Wenzel V, Rush WJ, Melker R, Overman DJ: Effect of ventilation on resuscitation in an animal model of cardiac arrest. Circulation 1994, 90:3063-3069.

15. Bhende MS, Karasic DG, Karasic RB: End-tidal carbon dioxide changes during cardiopulmonary resuscitation after experimental asphyxial cardiac arrest. Am J Emerg Med 1996, 14:349-350.

16. Berg RA, Henry C, Otto CW, Sanders AB, Kern KB, Hilwig RW, Ewy GA: Initial end-tidal CO₂ us markedly elevated during cardiopulmonary resuscitation after asphyxial cardiac arrest. Pediatr Emerg Care 1996, 12:245-248.

17. Nollan T, Baskett P, Gabbatt D, Gwnnutt G, de Latorre FJ, Lockey A, Mitchell S, Soar J: Advanced Life Support Course Manual, 4th edition. London: Resuscitation Council (UK) & ERC; 2000:19-117.

18. Cummins RO, Hazinski MF, Baskett PJF, Chamberlain D, Bossaert L, Callanan V, Carli P, Gay M, Handley AJ, Jacobs A, Kerber RE, Kloceck WGI, Mason P, Montgomery WH, Morely PT, Osmond MH, Robertson C, Shuster M, Steen PA, Tibballs J, Timerman S, Zideman DA: Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care – An International Consensus on Science. Circulation 2000, 102 (Suppl I):1-376.

19. Robertson C, Steen P, Adgey J, Bossaert L, Carli P, Chamberlain D, Dick W, Ekstrom L, Hapnes SA, Holmberg S, Juchems R, Kette F, Koster R, de Latorre FJ, Lindner K, Perales N: The 1998 European Resuscitation Council Guidelines for adult advanced life support. Resuscitation 1998, 37:97-80.

20. von Planta M, Weil MH, Ganzmiri RJ, Biser J, Rackow EC: Myocardial acidosis associated with CO₂ production during cardiac arrest and resuscitation. Circulation 1989, 80:684-692.

21. Anderson CT, Breen PH: Carbon dioxide kinetics and capnography during critical care. Crit Care Med 2000, 4:207-215.

22. Kristoffersen MB, Rattenborg CC, Holaday DA: Asphyxial death: the roles of acute anoxia, hypercarbia and acidosis. Anesthesiology 1967, 28:488-497.

23. DeBehnke DJ, Hlender SJ, Dobler DW, Wickman LL, Sweart GL: The hemodynamic and arterial blood gas response to asphyxiation: a canine model of pulseless electrical activity. Resuscitation 1995, 30:169-175.

24. Sumann G, Kristmer AC, Wenzel V, Adelsmayr E, Schwarz B, Lindner KH, Maier P: Cardiopulmonary resuscitation near...