A contribution to the knowledge of jumping spiders from Thailand (Aranei: Salticidae)

R.R. Seyfulina¹, G.N. Azarkina²*, V.M. Kartsev³
R.P. Сейфулин¹, Г.Н. Азаркина²*, В.М. Карцев³

¹ Prioksko-Terrasniy State Biosphere Reserve, Danji, Moscow Area 142200, Russia. E-mail: r-seyfulina@yandex.ru
² Laboratory of Systematics of Invertebrate Animals, Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Frunze street 11, Novosibirsk 630091, Russia.
³ Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia.

* Corresponding author

ABSTRACT. Jumping spiders of 10 species collected from Satun, Sukhothai and Kanchanaburi Provinces of Thailand are studied. Six species are reported from the country for the first time: Evarcha bulbosa Zabka, 1985, Phintella vittata (C.L. Koch, 1846), Phintelloides versicolor (C.L. Koch, 1846), and Portia labiata (Thorell, 1887). Two of them are new to the fauna of Indo-China (Hololatys digitatus Zhou, Irfan et Peng, 2017 and Menemerus nigli Wesołowska et Freudenschuss, 2012). Three species — M. brachygnathus (Thorell, 1887), Plexippus paykulli (Audouin, 1826) and P. setipes Karsch, 1879 — have the southernmost limit of their distribution in Thailand. One species — Stenaelurillus abramovi Logunov, 2008 — has a southernmost limit of its range. Photos of living specimens for eight species, as well as drawings of the copulatory organs for H. digitatus and M. nigli are provided.

How to cite this article: Seyfulina R.R., Azarkina G.N., Kartsev V.M. 2020. A contribution to the knowledge of jumping spiders from Thailand (Aranei: Salticidae) // Arthropoda Selecta. Vol.29. No.1. P.87–96. doi: 10.15298/arthesel.29.1.07

KEY WORDS: Araneae, Arachnida, fauna, Oriental Region, Tarutao National Park.

INTRODUCTION

Salticidae represent the most speciose and genus reach spider family, with more than 6000 species and around 650 genera being described from all over the world [WSC, 2020]. The world knowledge of jumping spiders is hardly exhaustive as far as their faunal inventory concerns. Many countries of the Oriental Region still have short lists of the recorded salticids, far from a completion. Thus, 48 species of the jumping spiders have been reported from Thailand, which is a surprisingly low number compared to neighbouring Vietnam (126 sp.) or Malaysia (278 sp.) [Metzner, 2020].

The first data about Thai representatives of the family were published by Giebel [1863], with all the species described by him being considered nomina dubia by Roewer in 1955 [Azarkina, 2019]. Simon [1886] reported on two species from Thailand: Telemonia hasselti (Thorell, 1878) (described as Viciria scoparia) from Chantaboun [=Chanthaburi] and Hylus diardi (Walckenaer, 1837) from Tung Yai (Turiggsia in Simon [1886]) located on the seashore near Chantaboun. Almost a century later, few new species and findings were made by Wanless [1980, 1984] and

REALME. Изучены пауки-скачунчики 10 видов, собранных в Таиланде в провинциях Сатун, Сукхотай, Канчанабури. Шесть видов отмечены впервые в стране: Evarcha bulbosa Zabka, 1985, P. vittata (C.L. Koch, 1846), Phintelloides versicolor (C.L. Koch, 1846) и Portia labiata (Thorell, 1887). Два из них новые для фауны Индонезии: Hololatys digitatus Zhou, Irfan et Peng, 2017 и Menemerus nigli Wesołowska et Freudenschuss, 2012. Для трёх видов — M. brachygnathus (Thorell, 1887), Plexippus paykulli (Audouin, 1826) и P. setipes Karsch, 1879 — отмечены самые южные точки распространения в Таиланде, для Stenaelurillus abramovi Logunov, 2008 — самая южная точка ареала. Приводятся фотографии живых особей для восьми видов, для H. digitatus и M. nigli приводятся рисунки копулятивных органов.

ВВЕДЕНИЕ

Семейство Salticidae — одно из самых спекуциозных и родообразующих семейств пауков, с более чем 6000 видами и около 650 родов, описанных из всех уголков мира [WSC, 2020]. Восточно-азиатская область пауков практически не исследовалась, и даже сейчас у нас есть очень скучные списки для большинства стран региона. В Таиланде известно только 48 видов прыгунов, что представляет собой несравненно низкую цифру по сравнению с соседними Вьетнамом (126 видов) и Малайзией (278 видов) [Metzner, 2020]. Первыми данными о представителях семейства в Таиланде были работы Гиебеля [1863], в которых все описанные им виды были признаны номинациями сомнительными [Roewer, 1955]. Симон [1886] описал два вида из Таиланда: Telemonia hasselti (Торелль, 1878) (описанный как Viciria scoparia) из Чантабуна [=Чантахабури] и Hylus diardi (Валькенаэ, 1837) из Тунг Яй (Turiggsia в Симоне [1886]) вблизи побережья Чантабуна. Почти столетие спустя, только в несколько новых видах и находках были описаны Ваннелс [1980, 1984] и

ЗАМЕЧАТЕЛЬНЫЕ СЛОВА: Araneae, Arachnida, фауна, Ориентальная область, Национальный парк Тартуао.

РЕЗЮМЕ. Изучены пауки-скачунчики 10 видов, собранных в Таиланде в провинциях Сатун, Сукхотай, Канчанабури. Шесть видов отмечены впервые в стране: Evarcha bulbosa Забка, 1985, P. vittata (C.L. Koch, 1846), Phintelloides versicolor (C.L. Koch, 1846) и Portia labiata (Thorell, 1887). Два из них новые для фауны Индонезии: Hololatys digitatus Zhou, Irfan et Peng, 2017 и Menemerus nigli Wesołowska et Freudenschuss, 2012. Для трёх видов — M. brachygnathus (Thorell, 1887), Plexippus paykulli (Audouin, 1826) и P. setipes Karsch, 1879 — приводятся фотографии живых особей для восьми видов, для H. digitatus и M. nigli приводятся рисунки копулятивных органов.
Figs 1–4. Sampling sites. 1 — Sukhotai Historical Park; 2 — Sai Yok Noi Waterfall surroundings; 3–4 — Tarutao National Park.

Prószyński [1992a]. Twelve new salticids were recently described from Thailand [Benjamin, 2004, 2010; Logunov, Hereward, 2006; Logunov, Azarkina, 2008; Prószyński, Deeleman-Reinhold, 2012; Yamasaki, Ahmad, 2013; Logunov, Marusik, 2014; Azarkina, 2019], as well as new faunistic and/or behavioral information was provided [Chotwong, Tanikawa, 2013; Grob, 2015; Logunov, 2019].

A critical survey of Salticidae from Thailand was published by Žabka & Gardzińska [2017]. They provided the latest checklist of Salticidae from Thailand subdivided into two parts: ‘Confirmed species’ (part 1) with 33 species, and ‘Species to be confirmed’ (part 2) with 13 species. Both parts provide data on a general distribution and regional records from Thailand for each listed species.

The aims of the present paper are: (1) to provide new records for the species collected during the 2014 field trip to Thailand; (2) to illustrate Holoplatsys digitatus and Menemerus nigli, the species that display an unusual distribution and are recorded far from their known ranges; (3) to provide photographs of live specimens for eight species; and (4) to compose an updated and revised checklist of the Thai jumping spiders.

Material and Methods

A total of 13 specimens of Salticidae belonging to 10 species of eight genera has been studied. Specimens have been deposited in the Institute of Systematics and Ecology of Animals SB RAS (ISEA, curator G.N. Azarkina). Each species listed below is provided with the information about its general distribution and habitat preferences. Each species recorded from Thailand for the first time is marked with an asterisk (*). For known species, only references to their original descriptions and records from Thailand are listed; full reference lists for each species can be found in WSC [2020].

Specimens were collected by the first author during a short fieldtrip to Thailand in November 2014. The specimens were photographed in the sampling plots and/or were taken alive to the laboratory and then photographed with the aid of digital camera Nikon D810. Then specimens were preserved with 75% alcohol. Two preserved species were photographed using digital camera Canon EOS 550D attached to Zeiss Stemi 2000-C at the ISEA. Focal planes of a single image stack were combined by using the Helicon Focus 6.3 software. All drawings were edited and assembled in Adobe Photoshop CS5. Distributional map was produced by using the online mapping software SimpleMappr [Short-house, 2010].

List of the surveyed localities in Thailand (Map) is as follows: 1 — Kanchanaburi Province, Sai Yok District, near Sai Yok Waterfall (14°14′20.5″N, 99°03′29.0″E), 8.11.2014; 2 — Sukhothai Province, Mueang Sukhothai District, Mueang Kao, Sukhothai Historical Park (17°01′N, 99°42′E), 20.11.2014; 3a — Satun Province, Mueang Satun District, Kho Tarutao Island, Tarutao National Park (6°41′39.5″N, 99°38′41.5″E), 25.11.2014; 3b — Satun Province, Mueang Satun District, Kho Tarutao Island, Tarutao National Park (6°41′38.6″N, 99°38′41.7″E), 25.11.2014; 3c — Satun Province, Mueang Satun District, Kho Tarutao Island, Tarutao National Park (6°40′55″N, 99°38′43″E), 25–26.11.2014. The site-3 is mapped as one dot (Map: 3) because all three sites are very close to each other: 3a and 3b are separated by 0.15 km, 3b and 3c by about 1.35 km. Yet, in the following species survey, a precise reference to 3a, 3b or 3c, as well as to site-1 and 2, is provided in square brackets for each species.
Map. Collecting localities: 1 — Sai Yok Noi Waterfall surroundings; 2 — Sukhothai Historical Park; 3 — Tarutao National Park. Карта. Точки сборов: 1 — окрестности водопада Сай Йок Ной; 2 — Исторический парк Сукхотай; 3 — Национальный парк Тарутао.

The site in Kanchanaburi Province (Fig. 1, Map: 1) is located in the immediate proximity to the Sai Yok Noi Waterfall. It is covered primarily by Ficus spp., and the grass undergrowth was visually examined in search for spiders.

The site in Sukhotai Province (Fig. 2, Map: 2) is situated in the Sukhothai Historical Park (Mueang Kao), which covers some 70 square kilometers. Spiders were collected mostly from trunks of the trees forming park alleys (Ficus spp., Cassia bakeriana Craib, Cocos nucifera L., etc.).

The site in Satun Province (Figs 3–4, Map: 3) is located in the Tarutao National Park on Kho Tarutao Island in the Straits of Malacca in the Andaman Sea, ca. 40 km west of the Thai shore and only 4.8 km from Ko Langkawi, which is part of Malaysia. About 90% of the island occupying 230 square kilometers is covered with the virgin evergreen rain-forest. Main tree species are Lumpho or Malacca Teak (In-|stia palembanica Miq.), Khiam (Cotylelobium melanozyon (Hook. f.) Pierre ex F. Heim), Yang Pai (Dipterocarpus costatus G. Don), Yang Sian (Dipterocarpus gracilis Blume), Daeng Kha (Eugenia spp.) and Takhian Hin (Hopea ferrea Laness.).

HABITAT. Seems to be a tammobiont: the holotype was collected from bush [Żabka, 1985], while our specimen was collected either from grass or bush.

DISTRIBUTION. An east Oriental species known from China (Hunan), Vietnam and Indonesia (Java) [Żabka, 1985; Peng, 1989; Yin et al., 2012]. Originally was described from Vietnam (the holotype) and Java (the paratype) (see Żabka [1985]); still remains known from the males only. The first record from Thailand.

Holoplatys digitatus Zhou, Irfan et Peng, 2017*
Figs 5–12.

Holoplatys digitatus Zhou et al., 2017: 2, f. 1–10.
MATERIAL. 1 ♀ (ISEA 001.8305) — [3c], under bark.
HABITAT. The species is with a flattened body, adapted to life under tree bark (Figs 5–6, 11–12).
DISTRIBUTION. Known from China (Jiangxi, Guangdong) [Zhou et al., 2017; WSC, 2020]. The first record from Thailand and Indo-China, and outside of the type locality.

Menemerus brachygnathus (Thorell, 1887)
Fig. 13.

Menemerus brachygnathus Żabka, 1985: 241, f. 293–305; Żabka, Gardzińska, 2017: 230.
MATERIAL. 1 ♀ (ISEA 001.8306) — [3b], on tree trunk; 1 ♀ (ISEA 001.8307) — [3b], on tree trunk.
HABITAT. Prefers vegetation and open surfaces such as tree trunks.
Figs 5–12. Holoplatys digitatus Zhou, Irfan et Peng, 2017: 5–6 — general appearance of living specimens, ♂; 7 — left palp, ventral view; 8 — ditto, retrolateral view; 9–12 — general appearance in alcohol, ♂, 9 — dorsal view; 10 — ventral view; 11 — lateral view; 12 — frontal view. Scale bars: 7–8 — 0.1 mm; 9–12 — 1 mm.

Рис. 5–12. Holoplatys digitatus Zhou, Irfan et Peng, 2017: 5–6 — внешний вид живого экземпляра, ♂; 7 — левая пальпа, вентрально; 8 — то же, ретролатерально; 9–12 — внешний вид в спирте, ♂, 9 — дорсально, 10 — вентрально; 11 — латерально; 12 — фронтально. Масштаб: 7–8 — 0,1 мм; 9–12 — 1 мм.

DISTRIBUTION. India throughout China (Beijing) to Japan, southward to Malaysia; reported also from Argentina [Metzner, 2020; WSC, 2020]. The southernmost locality in Thailand; previously was known from Bangkok only [Żabka, Gardzińska, 2017].

Menemerus nigli Wesołowska et Freudenschuss, 2012*
Figs 14–19.

MATERIAL. 1 ♂ (ISEA 001.8308) — [2], among ruins.

HABITAT. Found under/on stones [Wesołowska, Freudenschuss, 2012; present data], as well as on an indoor wall [Chatterjee et al., 2017]. Life coloration of the male (Fig. 14) is given herein for the first time.

DISTRIBUTION. Pakistan, India [WSC, 2020] and Thailand [present data]. The easternmost record of the species; the first record from Indo-China and Indo-Malayan sub-region. To date, the species has been unknown outside the Hindustan area: viz., India, Pakistan and Sri Lanka [WSC, 2020; Metzner, 2020]. The new locality lies about 2200 km south-eastward of the nearest known south-Asian locality.
Jumping spiders from Thailand

Figs 13–19. Menemerus brachygnathus (Thorell, 1887) (13) and Menemerus nigli Wesołowska et Freudenschuss, 2012 (14–19): 13–14 — general appearances of living specimens, ♀ ♂; 15 — left palp, vetral view; 16 — ditto, retrolateral view; 17–19 — general appearance in alcohol, 17 — frontal view; 18 — dorsal view; 19 — ventral view. Scale bars: 15–16 — 0.1 mm; 17–19 — 1 mm.

Phintella vittata (C. L. Koch, 1846)*

Plexippus vittatus C. L. Koch, 1846: 125, f. 1185.
MATERIAL. 2 ♀ ♂ (ISEA 001.8310) — [3c].
HABITAT. Occurs on bushes and low vegetation [Roy et al., 2016]. We observed specimens in grass and once on a silk threat suspending down from upper vegetation.

DISTRIBUTION. India to the Philippines and Indonesia [Metzner, 2020; WSC, 2020]. The first record from Thailand.

Phintelloides versicolor (C. L. Koch, 1846)*

Figs 20–21.

Plexippus versicolor C.L. Koch, 1846: 103, f. 1165.
MATERIAL. 1 ♀ (ISEA 001.8309) — [2], on tree trunk.
HABITAT. A dendrobiont, occurring mostly on tree branches and leaves [Kim, Lee, 2014]. Found on a tree trunk (Fig. 20).

DISTRIBUTION. Distributed throughout the Oriental Region and Eastern Palaearctics, from India to Japan and Indonesia. Introduced to USA (Hawaii) [Metzner, 2020; WSC, 2020]. The first record from Thailand.
Figs 20–29. General appearances of living specimens: 20–21 — Phintelloides versicolor (C. L. Koch, 1846), ♂; 22–23 — Plexippus paykulli (Audouin, 1826), ♀ and ♂; 24 — Plexippus setipes Karsch, 1879, ♂; 25–26 — Portia labiata (Thorell, 1887), immature; 27–29 — Stenaelurillus abramovi Logunov, 2008, ♂.

Рис. 20–29. Внешний вид живых экземпляров: 20–21 — Phintelloides versicolor (C. L. Koch, 1846), ♂; 22–23 — Plexippus paykulli (Audouin, 1826), ♀ и ♂; 24 — Plexippus setipes Karsch, 1879, ♂; 25–26 — Portia labiata (Thorell, 1887), неоплодотворенный; 27–29 — Stenaelurillus abramovi Logunov, 2008, ♂.
Plexippus paykulli (Audouin, 1826)
Figs 22–23.

Attus paykullii Audouin, 1826: 409, pl. 7, f. 22.

Plexippus paykulli: Zubka, Gardzińska, 2017: 232, f. 1–2, 9A.
MATERIAL: 1♂ (IG 001.8312) — [2], on tree trunk; 1♀ (IG 001.8311) — [3], on tree trunk.
HABITAT. A plant dweller, occurs on walls and other man-made constructions.

DISTRIBUTION. A widespread species of African origin tending to cosmopolitan status in the tropics, introduced to both Americas [Metzner, 2020; Nentwig et al., 2020; WSC, 2020]. In Thailand, it has been reported from many areas (see Zubka & Gardzińska [2017]; viz., Provinces Kanchanaburi, Chiang Rai, Chiang Mai, Nong Khai, Udon Thani, Khor Kaen, Nakorn Sawan, including Bangkok lying approximately 800 km away from our locality. The southernmost record from Thailand.

Plexippus setipes Karsch, 1879
Fig. 24.

Plexippus setipes Karsch, 1879: 89.

Plexippus setipes: Zubka, Gardzińska, 2017: 233, f. 5–6, 9C.
MATERIAL. 1♂ (IG 001.8313) — [2], on tree trunk.
HABITAT. A plant dweller, found on a tree trunk.

DISTRIBUTION. Distributed from South Korea to Japan, southward to Vietnam and Thailand [Logunov, Marusik, 2000; present data]. In Thailand, the species is known from the northernmost territory: Chiang Rai Province [Zubka, Gardzińska, 2017]. Our records is the second and southernmost one in Thailand.

Portia labiata (Thorell, 1887)
Figs 25–26.

MATERIAL. 1 juvenile, (IGA) — [1], on grass.
REMARKS. The not fully formed spermathecae of the collected subadult female does not allow a reliable species identification. The habitual characters, such as the white haired clypeus, allow us to consider four identification. The habitual characters, such as the white hairs (whitish and light brown in behind anterior median and outside anterior lateral eyes areas (see WSC, 2020). In Thailand, it has been reported from many areas (see Zubka & Gardzińska [2017]): viz., Provinces Kanchanaburi, Chiang Rai, Chiang Mai, Nong Khai, Udorn Thani, Khon Kaen, Nakorn Sawan, including Bangkok lying approximately 800 km away from our locality. The southernmost record from Thailand.

Portia labiata (Thorell, 1887)
Fig. 24.

Portia labiata: Thorell, 1887: 139, f. 22.

P. labiata: Thorell, 1887. Based on the findings of Thorell [1887] indeed from Chantaboun [=Chanthaburi], Siam (=Thailand), and Chantaboun [=Thepong] situated on the territory of Cambodia, close to the modern Châmnar, Koh Kong Province. For Epeus tener Simon, 1887 it was said that “the species was originally described as Viciria cristata Thorell, 1887 (p. 393) from Chantaboun”. However, Thorell [1887] described V. cristata from Myanmar, not from Thailand. Furthermore, Thorell compared this species with Viciria scaparia, a junior synonym of Telamonia hasserti (Thorell, 1878), which was described by Simon [1886] indeed from Chantaboun [=Chanthaburi], Siam (cf. Simon [1886: 139] and Thorell [1887: 397]). Thus, the findings of M. paviei and E. tener in Thailand are incorrect and are to be removed from the current species list.

Further in the same work [Zubka, Gardzińska, 2017: 231] there are two records with the same species names but different authorships: Telamonia scoparia (Simon, 1886) and T. scoparia Thorell, 1887. Based on the given distribution “from Myanmar to Sulawesi” (see Zubka & Gardzińska [2017] and WSC [2020]), in the first case the authors apparently meant Telamonia hasserti. Under the second name, the authors seemed to mean Thiania bhamanensis Thorell, 1887, which was described from Myanmar and first recorded from Thailand by Chotwong & Tanikawa [2013].

Metzner [2020] lists 48 species for the territory of Thailand, of which E. tener recorded by Zubka & Gardz-
ięska [2017] is not included. This species list includes not only published data but also identified materials from various European museum collections, for which information is in free online access (e.g., many German and Swedish museums, etc.). We have found a few species erroneously placed in the latter checklist of Thai Salticidae. *Euriattus pumilio* Keyserling, 1881 (sub *Hasarius pumilio*) was described and is known from Queensland, Australia only. *Pancorius dabanis* (Hogg, 1922) was described and is known from South Annam only (part of the Vietnamese territory), while it is mistakenly reported as occurring in Thailand by WSC [2020] and Metzner [2020], and also included in the list of Indian spiders [Siliwal *et al.*, 2005]. *Portia labiata* is included in the Thai list following Song *et al.* [2002]. Yet, in the latter paper, the authors mentioned Thailand in ‘Distribution’, but gave no reference to the source of this information. Thus, our record is the first confirmed finding of the genus *Portia* in Thailand. Two species from Metzner’s list [2020], as well as two species listed by Żabka & Gardzińska [2017], should be excluded from the current checklist of Thai Salticidae until confirmation by reference to collected specimens.

Thus, with the aforementioned exceptions and newly recorded species, a verified list of Thai Salticidae currently contains 50 species from 34 genera (Table). Eleven genera are endemic to Thailand. Twenty seven

Species	Zoogeographic Regions (sensu Kryzhanovsky [2002])
Aelurillus thailandicus Azarkin, 2019	Endemic of Thailand
Asemonea teniipes (O. Pickard-Cambridge, 1869)	Indo-Malay Region
Bianor angulosus (Karsch, 1879)	Indo-Malay Region
Bianor balius Thorell, 1890	Indo-Malay Region
Carrhotus coronatus (Simon, 1885)	Indo-Malay Region
Chrysilla lauta Thorell, 1887	Indo-Malay Region
Cyba ocellata (Kroneberg, 1875)	Palaeotropical
Evarcha bulbosa Żabka, 1985	Indo-Malay Region
Eupoa lehtineni Logunov et Marusik, 2014	Indo-Malay Region
Eupoa pappi Logunov et Marusik, 2014	Indo-Malay Region
Eupoa pulchella Logunov et Marusik, 2014	Indo-Malay Region
Eupoa schwendingeri Logunov et Marusik, 2014	Endemic of Thailand
Eupoa thailandica Logunov et Marusik, 2014	Endemic of Thailand
Harmochirus brachiatus (Thorell, 1877)	Indo-Malay Region
Hasarius adansonii (Audouin, 1826)	Cosmopolitan
Holoplatys digitatus Zhou, Irfan et Peng, 2017	Indo-Malay Region
Hyllus diardi (Walekenaer, 1837)	Indo-Malay Region
Hyllus pudicus Thorell, 1895	Indo-Malay Region
Marengo decelemusae Benjamin, 2004	Endemic of Thailand
Menemerus hivitatus (Dufour, 1831)	Pantropical
Menemerus brachygnathus (Thorell, 1887)	East Palaearctic – Indo-Malay Region
Menemerus nigli Wesolowska et Freudenschuss, 2012	East Afrotopica – Indo-Malay Region
Mintonia ignota Logunov et Azarkin, 2008	Endemic of Thailand
Myrmaplata plataeoides (O. Pickard-Cambridge, 1869)	Indo-Malay Region
Myrmaplata turrisformis (Badcock, 1917)	Indo-Malay Region
Myrmarachne acromegalis Yamasaki et Ahmad, 2013	Indo-Malay Region
Myrmarachne melanocephala MacLeay, 1839	South-East Palaearctic – Indo-Malay Region
Nigorella petrae Prószyński, 1992	Endemic of Thailand
species are known from Indo-Malay Region (*sensu* Kryzhanovsky [2002]). Two species are cosmopolitan and two species are pantropical. One species is Palaeotropical. Two species are known from the south-east part of the Palaearctics to Indo-Malay Region. Two species are known from the East Palaearctics to Indo-Malay Region. Two species are known from the Indo-Malay to the north of Papuan Regions, and one species — from the East Afrotropics to Indo-Malay Region.

It is likely that with more collecting efforts many salticid species recorded from other countries of Indo-China, southern China and Indonesia will be found in Thailand, whereas the species that are currently treated as Thai endemics (Table) are likely to be found in the neighbouring countries. Yet, the current species list of Thai Salticidae should be increased at least by five times.

Acknowledgements. We are obliged to D.V. Logunov (Manchester, UK) for his critical comments and kind linguistic help that helped us to improve the ms. H. Metzner (Germany) is thanked for clarifying the distribution of and reference to *Portia labiata*. This work was partly supported by

the Federal Fundamental Scientific Research Programme for 2013–2020 (No. AAAA-A16-116121410121-7) for GA.

References

Azarkina G.N. 2019. A new species of *Aelurillus* Simon, 1884 (Aranei: Salticidae) from Thailand, with the first description of the male of *A. afghanus* // Arthropoda Selecta. Vol.28. No.3. P.408–416. doi: 10.15298/arthrop.28.3.05

Ali P.A., Maddison W.P., Zahid M., Butt A. 2018. New chrysilline and aelurilline jumping spiders from Pakistan (Araneae, Salticidae) // ZooKeys. Vol.783. P.1–15.

Benjamin S.P. 2004. Taxonomic revision and phylogenetic hypothesis for the jumping spider subfamily Ballininae (Araneae, Salticidae) // Zoological Journal of Linnean Society. Vol.142. P.1–82.

Benjamin S.P. 2010. Revision and cladistic analysis of the jumping spider genus *Onomastus* (Araneae: Salticidae) // Zoological Journal of Linnean Society. Vol.159. P.711–745. doi: 10.1111/j.1096-3642.2009.00580.x

Chatterjee S., Caleb J.T.D., Tyagi K., Kundu S., Kumar V. 2017. First report of *Menemerus nigli* (Araneae: Salticidae) from India // Halteres. Vol.8. P.109–111.

Chotwong W., Tanimakawa A. 2013. Four spider species of the families Theridiidae, Araneidae, and Salticidae (Arachnida; Arane-
ae) new to Thailand // Acta Arachnologica. Vol.62. No.1. P.1–5.
Giebel C.G. 1863. Drei und zwanzig neue und einige bekannte Spinnen der Hallischen Sammlung // Zeitschrift für die Gesamten Naturwissenschaften. Bd.21. S.306–328.
Groß P. 2015. Notes on the jumping spider Sider semiglaucus (Simon, 1901) in Thailand (Araneae: Salticidae: Heliophani neae) // Peckhania. N.126. P.1–5.
Hill D.E. 2010. Sunda to Sahul: Trans-Wallacean distribution of recent salticid genera (Araneae: Salticidae) // Peckhania. Vol.80. No.1. P.1–60.
Kim S.T., Lee S.Y. 2014. Arthropoda: Arachnida: Araneae: Clunionidae, Corinnidae, Salticidae, Segestriidae. Spiders // Invertebrate Fauna of Korea. Vol.21. No.31. P.1–186.
Kryzhanovsky O.L. 2002. [Composition and Distribution of Entomofaunas of the Globe]. Moscow: KMK Scientific Press Ltd. 273 pp. [In Russian]
Logunov D.V. 2008. A new species of the genus Stenaclurillus Simon, 1885 (Araneae: Salticidae) from Vietnam // Acta Arachnologica. Vol.57. No.1. P.43–45.
Logunov D.V. 2019. Taxonomic notes on the Harmochirina Simon, 1903 from South and South-East Asia (Aranei: Salticidae) // Arthropoda Selecta. Vol.28. No.1. P.99–112. doi: 10.15298/arthesl. 28.1.08
Logunov D.V., Azarkina G.N. 2008. New species of and records for jumping spiders of the subfamily Spartaeanae (Aranei: Salticidae) // Arthropoda Selecta. Vol.16 (for 2007). No.2. P.97–114.
Logunov D.V., Azarkina G.N. 2018. Redefinition and partial revision of the genus Stenaclurillus Simon, 1886 (Arachnida, Araneae, Salticidae) // European Journal of Taxonomy. Vol.430. P.1–126. doi: 10.5852/ejt.2018.430
Logunov D.V., Hereward J. 2006. New species and synonymies in Salticidae (Araneae: Salticidae) // Bulletin of the British arachnological Society. Vol.13. Pt.8. P.281–292.
Logunov D.V., Jäger P. 2015. Spiders from Vietnam (Arachnida: Araneae: Salticidae) // Arthropoda Selecta. Vol.21. No.10. P.1999–2049.
Simon E. 1886. Arachnides recueillis par M. A. Pavie (sous chef du service des postes au Cambodia) dans le royaume de Siam, au Cambodge et en Cochinchine // Actes de la Société Linéenne de Bordeaux. T.40. P.137–166.
Shorthouse D.P. SimpleMappr, an online tool to produce publication-quality point maps. Available from: http://www.simplemappr.net [accessed 30 January 2020].
Song D.X., Zhang J.X., Peng X.J. 2017. A new spider species of the genus Eupoa (Araneae: Salticidae) from Vietnam // Genus. Vol.23. No.3. P.449–453.
World Spider Catalog. 2020. Natural History Museum Bern, online at https://wsc.nmbe.ch, version 21.0, accessed on 30 January 2020.
Yin C.M., Peng X.J., Yan H.M., Bao Y.H., Xu X., Tang G., Zhou Q.S., Liu P. 2012. Fauna Hunan: Araneae in Hunan, China. Changsha: Hunan Science and Technology Press. 1590 pp.
Zakha M. 1985. Systematic and zoogeographic study on the family Salticidae (Araneae) from Vietnam // Annalales Zoologici. T.39. No.11. S.197–245.
Zakha M., Gardzińska J. 2017. Salticidae of Thailand. part 1, genera Plexippus C.L. Koch, 1846 and Burmattus Prószyński, 1992 // Annales Zoologici. T.67. No.2. S.229–242.
Zhou G.C., Irfan M., Peng X.J. 2017. A new spider species of the genus Hololatys Simon, 1885 from the Southern China (Araneae: Salticidae) // Acta Arachnologica Sinica. Vol.26. No.1. P.1–5.

Responsible editor D.V. Logunov