Eu charge and atomic dynamics in Eu$_3$Pd$_{20}$Ge$_6$ investigated by 151Eu Mössbauer effect

Satoshi Tsutsui 1, Yoshio Kobayashi 2, Yasuhiro Kobayashi 3,4, Satoshi Higashitaniguchi 3,4, Yoshitaka Yoda 1,4, Makoto Seto 3,4, and Toshiro Takabatake 5

1 Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
2 Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0298, Japan
3 Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan
4 CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
5 Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8530, Japan

E-mail: satoshi@spring8.or.jp

Abstract. We investigated the Eu charge and atomic dynamics in Eu$_3$Pd$_{20}$Ge$_6$ by conventional 151Eu Mössbauer spectroscopy and 151Eu nuclear resonant inelastic scattering. The results of 151Eu Mössbauer spectroscopy indicate the presence of the Eu valence fluctuation both at the 4a and 8c site with different frequency. The 151Eu nuclear resonant inelastic scattering spectra differ from the previous results of filled skutterudites.

1. Introduction
Much attention to the potential of thermoelectric materials has been paid in cage-structured compounds. One of the reasons is the expectation of the presence of an Einstein-like phonon mode to reduce thermal conductivity. On the other hand, the cage-structured compounds are also interesting because of the aspects of strongly correlated electronic systems in rare-earth and actinide compounds. The compounds into whose cage a rare-earth atom is inserted provide the opportunity for the hybridization between f-electrons and conduction electrons, because rare-earth ions are surrounded by many conduction electrons.

The series of R$_3$Pd$_{20}$X$_6$ (R: rare-earth and actinide, X: Si or Ge) compounds is one of the interesting cage structured compounds. Since the crystal structure contains a $Fm\overline{3}m$ symmetry, this series of compounds has two non-equivalent rare-earth sites: the 4a and 8c sites. The rare-earth ions at the 4a site are surrounded by six Ge atoms and twelve Pd atoms and those at the 8c site are surrounded by sixteen Pd atoms. Among the Pd atoms surrounding the rare-earth atoms, sixteen Pd atoms occupying at the 48 h site are shared by rare-earth atoms at both sites.

Eu$_3$Pd$_{20}$Ge$_6$ is a valence fluctuating compound [1]. The deviation of the linear correlation of the lattice constant from the line estimated by lanthanide contraction in the series of R$_3$Pd$_{20}$Ge$_6$ suggests that the Eu valence state is no longer a pure Eu$^{3+}$ one. In addition, the deviation of the magnetic
susceptibility from the calculation for both free Eu$^{3+}$ and Eu$^{2+}$ suggests that the Eu valence state is fluctuating. These facts infer that Eu$_3$Pd$_{20}$Ge$_6$ is a valence fluctuating compound. We have carried out 151Eu Mössbauer spectroscopy to investigate the Eu valence states in this compound from the microscopic point of view. The obtained spectrum at room temperature demonstrates that the Eu valence states are different between two crystallographic Eu sites.

Eu$_3$Pd$_{20}$Ge$_6$ also shows lower thermal conductivity than some heavy fermion or valence fluctuating compounds [1-3]. This behaviour is characteristic of cage-structured compounds such as filled skutterudites and type-I clathrates [4-6]. However, the reduction of the thermal conductivity in Eu$_3$Pd$_{20}$Ge$_6$ is smaller than those of filled skutterudites and type-I clathrates. In addition, the reduction mechanism associated with an Einstein-like phonon mode was denied [1]. We have carried out 151Eu nuclear resonant inelastic scattering, a useful tool to investigate the Eu atomic dynamics in the Eu materials. The obtained spectra are completely different from those at the rare-earth sites in hexaborides and filled skutterudites by nuclear resonant inelastic scattering [9-15].

2. Experimental Results and Discussion

2.1. 151Eu Mössbauer spectroscopy

151Eu Mössbauer measurements in the conventional way were carried out at Wako branch of RIKEN in Japan. The source used is 100 mCi of 151SmF$_3$. The Doppler velocity was calibrated by 57Fe Mössbauer spectroscopy of α-Fe at 295 K. The measured sample was crushed into powder from polycrystalline ingot of Eu$_3$Pd$_{20}$Ge$_6$.

The 151Eu Mössbauer spectrum of Eu$_3$Pd$_{20}$Ge$_6$ at 295 K is shown in Fig. 1. The spectrum consists of three components in spite of two Eu crystallographic sites in this compound. The isomer shift of one component around 0 mm/sec corresponds to a trivalent state, that of a second component around -10 mm/sec to a divalent state and that of the third component to an intermediate valence state. Since the previous magnetic susceptibility measurement suggests that Eu$_3$Pd$_{20}$Ge$_6$ is a valence fluctuating compound, Eu valence fluctuations are possibly observed in both crystallographic sites. Under this assumption, the spectrum of the one site consists of that with the intermediate valence state and the
spectrum of the other site consists of that with both the divalent and trivalent states. In this case, the spectral weight of the one to the other is $1 : 2$, consistent with the volume fraction of Eu sites expected from the crystallographic point of view. Therefore, the former component shows the spectrum at the 4a site and the latter one shows that at the 8c site. In addition, since the spectral weight of these components shows no temperature dependence [16], this spectral assignment is not inconsistent with the number of the crystallographic sites.

Significant difference of the valence state is observed between 151Eu Mössbauer spectroscopy and Eu L$_3$-edge X-ray absorption spectroscopy. No components of the intermediate valence state, which corresponds to the component of the 4a site, are observed in the X-ray absorption spectroscopy [16]. Since the time window of the X-ray absorption spectroscopy is shorter than that of the 151Eu Mössbauer spectroscopy, this is direct evidence that the Eu valence at least at the 4a site of Eu$_3$Pd$_{20}$Ge$_6$ is fluctuating with a frequency matching the time window of the 151Eu Mössbauer spectroscopy, hence several hundreds MHz.

2.2. 151Eu Nuclear Resonant Inelastic Scattering

151Eu nuclear resonant inelastic scattering experiments were carried out at BL09XU of SPring-8 in Japan. The high resolution monochromator is the nested-type one which consists of Si(4 2 2) and Si(12 8 8) reflections. The resolution of this optics is 1.5 meV at the 151Eu Mössbauer resonance of 21.5 keV. The 203 bunches operation of SPring-8, whose interval is 23.6 nsec, is chosen for this experiment. The used detector is a multi-element avalanche photo-diode detector.

The nuclear resonant inelastic scattering spectrum of Eu$_3$Pd$_{20}$Ge$_6$ at 300 K is shown in Fig. 2. This differs from the spectra of other cage-structured compounds [9-15]. In the previous works of the single-site cage-structured compounds, the spectra at the inserted atomic sites (guest sites) consist of a sharp excitation, indicating the presence of Einstein-like modes. However, the spectra obtained in the present work contain much larger contribution to the acoustic modes than the other cage-structured compounds. Although it has been believed that the Einstein-like modes reduce the thermal conductivity in most of cage structured compounds, the present result agrees with the proposed reduction mechanism without any Einstein-like modes in Ref. 1.

Concerning the correlation of the Eu valence fluctuation and atomic motion, a significant temperature dependence of the average force constant is found in the present work. The average force constants obtained by the Lipkin’s sum rule [17] are 115.7 and 100.7 N/m at 300 and 6 K, respectively. Since the Eu valence state obtained by both 151Eu Mössbauer spectroscopy and Eu L$_3$-edge XAS are

Figure 2. 151Eu nuclear resonant inelastic scattering spectra of Eu$_3$Pd$_{20}$Ge$_6$ at 6 and 300 K.
different between 300 and 6 K, the reduction of the force constant may correlates with the change of the Eu valence [16].

3. Summary
Eu charge and atomic dynamics in Eu$_3$Pd$_{20}$Ge$_6$ were investigated by 151Eu Mössbauer spectroscopy and 151Eu NRIS. The obtained 151Eu Mössbauer spectrum at 295 K demonstrates that valence fluctuations with different frequency are realized in this compound. The 151Eu nuclear resonant inelastic scattering spectrum differs from the spectra at the guest sites in other cage-structured compounds.

Acknowledgments
The author ST appreciates Profs. H. Kobayashi and S. Sasaki and Drs. M. Mizumaki, C. Lee and T. Hasegawa for their fruitful discussion. The NRIS experiment was carried out under the approval of JASRI (Proposal No. 2006B1078). The present work is partially supported by the Grant-in-Aid for Young Scientists (No. 20740181) and for the Scientific Research (A) (18204032) from the Japan Society of Promotion of Science and the Grant-in-Aids for Scientific Research Priority Area “Skutterudite” (No. 18027017) and for Scientific Research on Innovative Area “Heavy Electrons” (No. 20102004 and 20102005) of the Ministry of Education, Culture, Science and Technology, Japan.

References
[1] Kitagawa J, Sasakawa T, Suemitsu T, Takabatake T and Ishikawa M 2002 J. Phys. Soc. Jpn. 71 1222.
[2] Bauer E 1993 Transport and Thermal Properties of f-electron Systems ed G Oomi, H. Fujii and T Fujita (New York: Plenum Press) p.133.
[3] Schneider H and Wohlleben D 1981 Z. Phys. B 44 193.
[4] Cohn J L, Nolas G S, Fessatidis V, Metcalf T H, and Slack G A 1999 Phys. Rev. Lett. 82 779.
[5] Dilley N R, Bauer E D, Maple M B, Dordevic S, Basov D N, Freibert F, Darling T W, Migliori A, Chakoumakos B C, Sales B C 2000 Phys. Rev. B 61 4608
[6] Sales B C, Mandrus D, Chakoumakos B C, Keppens V and Thompson J R 1997 Phys. Rev. B 56 15081.
[7] Nemoto Y, Yamaguchi T, Horino T, Akatsu M, Yanagisawa T, Goto T, Suzuki O, Dönni A and Komatsubara T 2003 Phys. Rev. B 68 184109.
[8] Hasegawa T, Ogita N and Udagawa M, Private Communications.
[9] Long G J, Hermann R P, Grandjean F, Alp E E, Sturhahn W, Johnson C E, Brown D E, Leupold O and Rüffer R 2005 Phys. Rev. B 71 140302.
[10] Hermann R P, Schmeika W, Leupold O, Rüffer R, Nolas G S, Grandjean F and Long G J 2005 Phys. Rev. B 72 174301.
[11] Kobayashi H, Tsutsui S, Baron A Q R and Kunii S 2005 Physica B 359-361 974.
[12] Tsutsui S, Kobayashi H, Umemura J, Yoda Y, Onodera H, Sugawara H, Kikuchi D, Sato H, Sekine C, Shirotani I, 2006 Physica B 383 142.
[13] Tsutsui S, Umemura J, Kobayashi H, Tazaki T, Nasu S, Kobayashi Y, Yoda Y, Onodera H, Sugawara H, Matsuda T D, Kikuchi D, Sato H, Sekine C and Shirotani I, 2006 Hyperfine Interact. 168 1073.
[14] Tsutsui S, Kobayashi H, Ishikawa D, Sutter J P, Baron A Q R, Hasegawa T, Ogita N, Udagawa M, Yoda Y, Onodera H, Kikuchi D, Sugawara H, Sato H, Sekine C and Shirotani I 2008 J. Phys. Soc. Jpn. 77 033601.
[15] Tsutsui S, Hasegawa T, Takasu Y, Ogita N, Udagawa M, Yoda Y and Iga F 2009 J. Phys.: Conf. Ser. 176 012033.
[16] Tsutsui S, Mizumaki M, Kobayashi Y, Kitagawa J and Takabatake T 2009 Phys. Rev. B. 80 235115
[17] Lipkin H J 1995 Phys. Rev. B 52 10073.