Recent progress in carbon-based materials for supercapacitor electrodes: a review

Yifan Wang1, Lin Zhang2, Haoqing Hou3,*, Wenhui Xu4, Gaigai Duan1,*, Shuijian He1, Kunming Liu5, and Shaohua Jiang1,*

1 Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
2 MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
4 School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
5 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

ABSTRACT

Increased energy consumption stimulates the development of various energy types. As a result, the storage of these different types of energy becomes a key issue. Supercapacitors, as one important energy storage device, have gained much attention and owned a wide range of applications by taking advantages of micro-size, lightweight, high power density and long cycle life. From this perspective, numerous studies, especially on electrode materials, have been reported and great progress in the advancement in both the fundamental and applied fields of supercapacitor has been achieved. Herein, a review of recent progress in carbon materials for supercapacitor electrodes is presented. First, the two mechanisms of supercapacitors are briefly introduced. Then, research on carbon-based material electrodes for supercapacitor in recent years is summarized, including different dimensional carbon-based materials and biomass-derived carbon materials. The characteristics and fabrication methods of these materials and their performance as capacitor electrodes are discussed. On the basis of these materials, many supercapacitor devices have been developed. Therefore, in the third part, the supercapacitor devices based on these carbon materials are summarized. A brief overview of two types of conventional supercapacitor according to the charge storage mechanism is compiled, including their development process, the merits or withdraws, and the principle of expanding the potential range. Additionally, another fast-developed capacitor, hybrid ion capacitors as a good compromise between battery and supercapacitor are also discussed. Finally, the future aspects and challenges on the carbon-based materials as supercapacitor electrodes are proposed.
Introduction

Increased energy consumption along with the progress in the economic development brought severe pollution which was a serious threat to human health and environment security. The paradox between the dependence on energy of human being and the combustion of fossil fuels motivates the development of utilization of various energies, such as solar energy, wind energy, tidal energy, and nuclear energy. Therefore, the storage of different types of energy became a key issue [1–4]. To evaluate the most relevant storage solution, it is necessary to consider the lifetime, reliability, storage capacity, cost, and environmental impact. Implementing the efficient and economic energy storage in the power infrastructure can bring great benefits to the power industry and human beings. Energy as a state variable is typically categorized into chemical, electrical, mechanical, radiant, thermal, nuclear, or relativistic. Both short-term storage (only a few hours) and long-term storage (a few months) are essential in most applications. According to the final energy, there are electric energy storage and non-electric energy storage. Electric energy storage systems accept and return the stored energy as electric power, although they may store the energy in another form. Supercapacitor and battery, as two main electric energy storage systems, have been widely applied in different fields ranging from portable electric devices to smart grid [5–7]. Compared with battery, supercapacitor possesses high power density and long cycle life (>100000 cycles) which ensure the fast charging/discharging speed and almost no maintenance charge [8–10].

The comparison of specific power vs. specific energy among different energy storage systems is presented in the Ragone plot (Fig. 1) [11]. It clearly shows that supercapacitor plays an important role in terms of high specific power and relatively high specific energy. With the advantages of micro-size and lightweight, supercapacitor can be used as power supplies for various portable electric devices like smart phone, notebook, etc. In hybrid electric vehicles, supercapacitor can meet the requirements of high power output for the short-term acceleration and high capacity for temporary energy storage equipment during braking, which save energy and avoid batteries suffering high frequency fast charge/discharge cycles [2, 8]. In this case, supercapacitor is acting as a bridge for power/energy difference between high power output (capacitor) and high energy storage (batteries) and has the potential to play an important role in future large-scale hybrid energy systems.

Generally, energy density and power density are two important parameters to measure the performance of energy storage devices, which can be calculated by Eq. (1) and (2), respectively [8, 11, 12]:

\[
E_d = \frac{1}{2} CV^2
\]

\[
P_d = \frac{V^2}{4R_s}
\]

where \(E_d\) and \(P_d\) are energy density and power density, respectively, \(C\) is capacitance, \(V\) is operating voltage window, and \(R_s\) is the equivalent series resistance (ERS) of two electrodes. According to these two equations, \(C\), \(V\), and \(R_s\) are three key factors affecting \(E_d\) and \(P_d\). In supercapacitor, the capacitance largely depends on the electrode material, while the voltage is influenced by both electrode and electrolyte. However, ERS has more influence factors, such as the inner resistance of electrode and electrolyte, the resistance during charge transfer, and the
contact of electrode materials with collectors, etc. Hence, for the best performance of supercapacitor, it must simultaneously possess a high capacitance, a high voltage, and a low resistance.

Among all factors, electrode materials play the most important role in determining the performance of supercapacitor. Normally, the selection of electrode materials is based on different mechanisms of charge storage. For supercapacitor, the mechanism can be divided into two types, i.e., electric double-layer capacitors (EDLCs) and pseudo-capacitors [13]. Thus, the electrode materials of supercapacitor can be categorized into three types [1, 14]: (1) carbon materials, (2) conductive polymers, and (3) metal oxides/hydroxides. Among them, carbon-based materials are the most widely studied and applied for industrialization of batteries and capacitors. Carbon-based materials have the following advantages [1, 13, 15]: (1) abundance, (2) relatively low-cost, (3) easy for manufacturing, (4) non-toxicity, (5) higher specific surface area, (6) good mechanical property, (7) good electronic conductivity, (8) high chemical stability, and (9) wide working temperature range.

In the past decade, many reviews on capacitor electrode materials have been published [1, 3, 8, 12, 16]. These articles mainly reviewed the carbon-based materials on the structure design properties and applications of individual classification of carbon electrodes, such as CNTs, graphene, and C/metal oxides. As the development of modern electronics, supercapacitor devices are highly demanded. Therefore, it is necessary to deeply understand and thoroughly summarize the recent progress and development of carbon-based materials for supercapacitor electrodes and devices. There are mainly three parts in this review as shown in Fig. 2: (1) the mechanism of two types of conventional supercapacitors; (2) a brief introduction of recent research on carbon materials for supercapacitor electrodes, including carbon-based materials in different dimensions; and (3) applications of carbon-based material in supercapacitor devices in recent years. Finally, challenges and future perspectives are provided based on the present development of carbon-based materials for supercapacitor electrodes and devices.

Figure 2 The overview picture of the content of the article.

Mechanism of supercapacitors

Electric double-layer capacitors

The concept and model of EDL were first built by von Helmholz who thoroughly investigated colloidal suspension in 1853 [17]. This model described that two layers of electrically opposite charges formed at electrode/electrolyte interface and were divided in one atomic distance, which was quite similar to that of traditional capacitor. Then, this simple EDL model was modified by Gouy and Chapman [18, 19]. The Gouy–Chapman model treated both cations and anions as a continuous distribution in electrolyte, which formed diffuse layer under thermal motion drive. In consideration of ions which were not rigidly attached to the surface, the amount of the distribution of opposite ionic charges in the electrolyte surrounding the charged solid was equal. The thickness of the diffuse layer was partially depended on the kinetic energy of the ions. However, this model led to an over estimation of EDL capacitance, because the capacitance that appeared along two different separated charges was inversely proportional to the distance between them; hence, a huge capacitance value would be obtained when point charge ions came close to the electrode surface. Later, the Gouy–Chapman model was further modified by Stern by combining Helmholz model with Gouy–Chapman model [20]. He recognized two regions for charges distribution—the stern layer and the diffuse layer. In the Stern layer, charges (usually hydrated) were very
strongly absorbed on the electrode, which consisted of specifically absorbed charges (SACs) and non-specifically absorbed countercharges (nSACs). While the IHP and OHP represented SACs and nSACs, respectively. The EDL models demonstrate that charges are stored at the electrode/electrolyte interface through electrostatic adsorption, while no charge transfer occurs within electrode/electrolyte interfaces during charge/discharge processes. Benefiting from the physical electrostatic processes, the charge/discharge processes of EDLCs complete rapidly, which can respond to potential changes immediately. The capacitance of EDLCs electrode can be calculated by the following equation [8]:

\[C = \frac{\varepsilon_r \varepsilon_0}{d} A \]

where \(\varepsilon_r \) and \(\varepsilon_0 \) are relative permittivity and permittivity in vacuum, \(A \) is the effective contact area between electrode and electrolyte, and \(d \) is the thickness of EDL. The development of the above three modeling mechanisms for EDL was reviewed by Zhang and Zhao, as illustrated in Fig. 3 [8].

Pseudo-capacitors

In contrast to EDL, pseudo-capacitance is driven by the thermodynamic factor and attributed to charges acceptance (\(\Delta q \)) and changes in potential (\(\Delta U \)) [8]. The main electrochemical signature is that pseudocapacitors electrode materials has Faraday process, i.e., redox reaction, during the charge/discharge processes, which means valence state changes with charge/discharge processes [21, 22].

The mechanisms of charge storage in pseudo-capacitors are illustrated in Fig. 4 [23]. Under-potential deposition is a process in which the atoms are adsorbed on noble metals with an electrodeposition potential less negative than that of equilibrium potential for cation reduction. Redox pseudo-capacitance arises from redox reactions. These reactions are accompanied by cations being adsorbed on the surface of the electrode material, resulting in reversible and rapid charge transfer at the electrolyte/electrode interface [11]. Pseudo-capacitance can also deliver from cations insertion/extraction in tunnels or layers of crystalline materials. The crystal can remain electrically neutral during insertion/extraction. In some way, the intercalation pseudo-capacitance can be considered as “transitional” behavior between Li-ion battery and supercapacitor [24]. The pseudo-capacitance electrode can perform a very higher capacitance than EDL electrodes do; however, they suffer from poor electrical conductivity and cycling stability.

![Figure 3](https://example.com/fig3.png)
Figure 3 Models of EDLCs: a the Helmholtz model, b the Gouy–Chapman model, and c the Stern model, where \(\Psi_0 \) is electrode potential, \(\Psi \) is potential at electrode/electrolyte interface, \(d \) is Helmholtz distance, IHP and OHP are abbreviation of inner and outer Helmholtz plane, respectively. [8] (©The Royal Society of Chemistry 2009).
Carbon materials

Carbon materials come from a wide range of sources. Variety of natural materials, such as coal, crude oil, or biomass, can be used as precursor of carbon-based materials. When they come to nanoscale, their properties change greatly. With regard to carbon materials, different dimensions of carbon nanostructure give carbon-based materials different properties, such as light, heat, and electricity. Therefore, this section will be discussed according to various carbon nanostructures with different dimensions.

Zero-dimensional carbon material

Zero-dimensional (0-D) carbon materials refer to sphere-shaped carbon particles with an aspect ratio of ~ 1. 0-D carbon materials mainly include activated carbon (AC), carbon nanosphere, and mesoporous carbon. 0-D carbon materials possess a very large specific surface area (hundreds to thousands m² g⁻¹) with tunable pore size and distribution, which are critical factors that govern the performance of supercapacitor.

An ideal pore structure should have the feature of hierarchical pore structure, which contains macropores (> 50 nm) for infiltration of electrolyte, mesopores (2–50 nm) as the place for ion transport, and micropores (< 2 nm) for charge storage [25]. Migration of ions in micropores depends on the size of the solvated molecules and pore diameter [26]. In other words, when the size of the solvent molecules and solvated ions is smaller than the pore size, it is difficult for ions to break the energy barrier and access to the pores [27]. Hence, although the increase of micropores can increase the specific surface area, it does not necessarily contribute to the increase of specific capacitance \(C_s \). On the contrary, mesoporous is more conducive to the rapid transfer of ions, resulting in the improvement of electrochemical properties [28, 29]. In addition, the pore size distribution is another thing needed to be taken into account. Pore structure with a narrow distribution can reduce the ion transport length, which improves the electrode kinetics [25]. Thus, the optimal performance is based on a reasonable pore size and distribution.

Normally, 0-D carbon materials are produced from carbon-rich precursors by either physical (thermal) activation at high temperature (700–1200 °C) with \(\text{H}_2\text{O}, \text{CO}_2 \) and air, or chemical activation with a lower temperature (600–800 °C) with \(\text{H}_3\text{PO}_4, \text{KOH}, \text{ZnCl}_2 \),

![Figure 4 Schematics of charge storage in pseudo-capacitors: a underpotential deposition, b redox reactions, c ion insertion/extraction [23] (© American Chemical Society 2018).](image-url)
etc. [30]. Previous reports showed that AC employed as electrode exhibited specific capacitance of 100–300 F g\(^{-1}\) [31–35]. In addition, carbon nanosphere can be synthesized by the template method or the hydrothermal method. Yang et al. [36] prepared carbon nanosphere by using F108 (PEO_{132}–PPO_{50}–PEO_{132}) as the structure direct agent. After carbonization and KOH activation, the products presented the highest specific capacitance of \(\sim 147\) F g\(^{-1}\) in 6 M KOH electrolytes and 97.5% capacitance retention over 10,000 cycles. Li et al. [37] fabricated carbon nanospheres by hydrothermal method with the highest specific capacitance of 207 F g\(^{-1}\) at a current density of 0.5 A g\(^{-1}\) in 1 M Na\(_2\)SO\(_4\) electrolyte, and high rate capability (181 F g\(^{-1}\) at a current density of 10 A g\(^{-1}\)). Moreover, a series of studies have reported the preparations of carbon microspheres from glucose or glucose derivatives as supercapacitor electrodes. These microspheres have a specific capacitance of 200–400 F g\(^{-1}\) in aqueous electrolyte [38–41].

One-dimensional carbon material

0-D carbon nanoparticles, especially AC, have been widely used as electrode materials, where electrons are delivered either via hopping through trap states of adjacent nanoparticles or via diffusive movement within the extended states, which is slowed by the (de)trapping processes [42–44]. The limited continuity among carbon nanoparticles is not beneficial to the improvement of electrical conductivity, so as to reduce the power density. Compared with 0-D carbon nanoparticles, one-dimensional (1-D) carbon materials are promising candidates for supercapacitor electrodes due to their long 1-D nanostructure, which helps forming a consecutive network for the charge transport [12].

Carbon nanotubes (CNTs), the most typical 1-D carbon material, exhibited a much higher conductivity than AC. CNTs can be categorized to single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) and can be produced by arc-discharge method, chemical vapor deposition (CVD), pyrolysis of hydrocarbons, and pulsed laser vaporization [3, 13, 45]. Since its discovery, CNTs have received great attention for their potential applications in energy storage [46, 47]. Previous research reported that pure CNTs possessed specific capacitance in a range of 20–100 F g\(^{-1}\) in aqueous electrolyte [48–52]. The limited capacitance may be ascribed to the hydrophobic property and the limited specific surface area. After surface treatment by acid or base, the specific capacitance of CNTs still remains around 100 F g\(^{-1}\) [3]. In addition, it was proved that entangled CNTs did not perform as well as aligned CNTs in fast ions transfer, due to the irregular porosity and the high entanglement [53].

Carbon nanofibers (CNFs) are another typical 1-D carbon material which can be prepared by chemical vapor methods [54–57] or simple electrospun technology [58–61]. Like other carbon materials, the pore size distribution and pore volume of CNFs can be activated by physical or chemical methods [59, 62–65]. Recently, a large number of researches on CNFs as electrode materials by the electrospinning technology have been reported. Jiang et al. [66] prepared a CNF electrode followed by ZnCl\(_2\) activation. The as-prepared CNFs material exhibited the highest specific capacitance of 214 F g\(^{-1}\) at 1.0 A g\(^{-1}\) in acidic electrolyte and showed excellent cycling stability in alkaline electrolyte (97.3% after 60,000 cycles). Liu et al. [67] developed a facile and green method for the preparation of CNF from the perylene diimide derivative. This CNF showed a specific capacitance of 192 F g\(^{-1}\) at the current density of 1 A g\(^{-1}\) in 2 M H\(_2\)SO\(_4\) electrolyte. Interestingly, the specific capacitance increased with the cycling test, reaching 226 F g\(^{-1}\) after 1000 cycles at 4 A g\(^{-1}\).

In nature, a lot of fibrous biomass, including cotton, flax, ramie, wood, have been utilized as precursors for the preparation of 1-D carbon electrodes. Cellulose is the most basic component of these biomasses [68]. Due to abundant carbon reserve, rich active chemical groups, excellent mechanical property, and high specific surface area, cellulose becomes currently the most widely studied and used fiber-like material in energy storage systems [16, 69–71]. So far, a series of research on cellulose-derived CNFs as electrode materials have been reported. These CNFs were obtained by electrospinning technology and owned a specific capacitance in a range of 150–280 F g\(^{-1}\) in aqueous electrolyte [72–77]. Also, Han et al. [78] used cellulose nanocrystals (CNCs) to develop a nanofiber composite by combining electrospinning technology and in situ polymerization. Figure 5 illustrates the synthesis routine of this composite. By taking advantage of intermolecular esterification cross-linking, the composite membrane presented excellent mechanical strength and thermal stability.
The supercapacitor assembled by as-prepared materials showed a specific capacitance of 155.5 F g\(^{-1}\) in 2 M H\(_2\)SO\(_4\) electrolyte and a high capacitance retention of 92, 90, and 89% after long-life cycles under flat, bending, and twisting form, respectively.

Two-dimensional carbon material

Graphene, a typical two-dimensional (2-D) carbon material, is a one-atom-thick 2-D mono layer consisted of sp\(^2\)-hybrid carbon. As shown in Fig. 6, graphene is considered as the basic constituent material of carbon materials in other dimensions which can be twisted into 0-D carbon nanocages (fullerenes), rolled into 1-D carbon nanotubes or stacked into three-dimensional (3-D) graphite [79]. Owing to this unique structural feature, graphene owns a series of intrinsic virtues in both chemical and physical aspects, such as strong mechanical strength (\(\sim 1\) TPa), excellent mass and heat transfer capability, extremely high light transmittance (\(\sim 97\%\)), and large surface area (2675 m\(^2\) g\(^{-1}\)), which may match or even exceed that of single-walled or multi-walled carbon nanotubes [80]. Several approaches have been utilized to prepare graphene, including CVD, mechanical stripping, solvent spalling, and reduction of graphene oxide (GO) [80, 81].

Excellent electric conductivity ensures that graphene can be used in energy storage devices [81]. Ruoff’s group [82] first explored graphene-based supercapacitor system utilizing chemically modified graphene. As shown in Fig. 7, although GO sheets could disperse in water evenly, the graphene agglomerated into particles with a size of approximately 15–25 \(\mu\)m in diameter during reduction progress. Due to the relatively high specific surface area, the graphene electrode still remained a specific capacitance of 135 F g\(^{-1}\) in KOH electrolyte. However, the aggregation of GO sheets is irreversible [83]. Thus, improving the dispersion of GO sheets in solution is the key issue to convert GO sheets to graphene sheets by solution reduction method. To avoid severe stacking of GO sheets, Chen’s group [84] prepared graphene sheets by gas-based hydrazine reduction. A maximum specific capacitance of 205 F g\(^{-1}\) in aqueous electrolyte was obtained.

The dispersion of GO sheets is not the only factor which affects the performance of supercapacitor based on graphene. The interlayer distance of graphene is another factor which has influence on the performance of supercapacitor. Lin et al. [85]
prepared the interlayer distance-enlarged graphene by intercalation of hexadecyl trimethyl ammonium bromide and ionic liquids. It was found that the interlayer distance increased from 0.41 to 2.51 nm, resulting in the improvement of specific capacitance (43–141 F g⁻¹). In addition, Romano et al. [86]...
developed a wet-jet milling (WJM) method to peel single/few-layered graphene from graphite, possessing an industrial-scaled production rate (0.5 kg/Day).

Recently, Taniya et al. [87] have prepared few-layered graphene by carbonizing peanut shell and activating with KOH. The as-prepared carbon nanosheets owned a high specific surface area of 2070 m² g⁻¹ and a high specific capacitance of 186 F g⁻¹ in 1 M H₂SO₄ electrolyte. Gao et al. [88] prepared two different types of 2-D carbon nanosheets from cornstalk by simple carbonization. The cornstalk pith-derived and cornstalk skin-derived nanosheets were named as P-carbon and S-carbon, respectively. It was found that P-carbon possessed a graphene-like nanosheets structure, while S-carbon showed a thicker planar morphology. The pore size distribution demonstrated that mesopores of P-carbon and S-carbon were concentrated on 2.12 and 12.24 nm, respectively. Thus, P-carbon exhibited a better specific surface area (805.17–332.07 m² g⁻¹) and a superior specific capacitance (116–69 F g⁻¹ in 6 M KOH electrolyte).

It is worth noting that graphdiyne (GDY) is a series of brand new 2-D carbon materials formed by the connection of sp and sp² hybrid carbon (Fig. 8) [89]. The existence of sp hybrid carbon gives graphene a completely different structure from other carbon materials, resulting in totally different properties. For example, sp and sp² hybrid carbon enable GDY to exhibit high chemical activity and stable physical properties. Under external stimulation, the activity of c-c triple bond may expand the chemical properties of carbon materials (light, magnet, and electricity).

Moreover, enriched π-conjugated systems bring good theoretical conductivity and fast charge transfer [90]. These features guarantee GDY has the potential to be applied in better fabrication for high-performance electronic devices. The typical synthesis routines of GDY can be divided into dry chemical method and wet chemical method [91]. Kim et al. [92] first studied supercapacitors with the use of GDY as electrode. The GDY electrodes delivered a specific capacitance of 71.4 F g⁻¹ at a current density of 3.5 A g⁻¹ in Na₂SO₄ electrolyte. The shapes of CV curves suggested that both EDLC and faradaic reactions contributed to the overall capacitance (Fig. 9). Li’s group also studied GDY-based supercapacitor systems. GDY with various N content were obtained through the reaction between different precursors with tetrabutylammonium fluoride [93]. Interestingly, the sample without N-doping delivered a maximum specific capacitance of 250 F g⁻¹ in 7 M KOH electrolyte. XPS spectrum implied that the existence of N element increased the band gap of GDY and indicated that the N-doping strategy was effective to tune the band gap for the on-demand requirements, which may widely extend the application of GDY. In the following work, Li’s group [94] first developed a moderate and superfast method for the growth of ultrafine GDY nanochain on arbitrary substrates. The as-prepared GDY electrode was applied as the self-standing electrode with high areal capacitance of 134.2 F g⁻¹ in 7 M KOH electrolyte and robust cycle stability.

Three-dimensional carbon material

As we know, microstructures of electrode materials play an important role in performances of energy storage systems [95–98]. With increasing in dimensionality, more percentage of active surface is contacted with electrolyte, which will efficiently improve electrochemical properties of electrode materials. From this point of view, three-dimensional (3-D) structure with well-interconnected pores not only offers continuous channels to guarantee good contact with electrolyte, but also accelerates the charge transfer.

Figure 8 Illustration of graphene to graphdiyne: aromatic groups linked by linear acetylene. (graphdiyne contains both sp and sp² hybrid carbon) [89] (©The Royal Society of Chemistry 2012).
transfer by reducing the diffusion pathways [16, 98–102].

Usually, 3-D carbon materials are grown on a flexible substrate such as metal-foam or polymer substrate by CVD, hydrothermal method, or template method [103–105]. Despite that substrate can offer the electrode mechanical property that gives electrode self-standing ability, the use of substrates especially metal-foam increases the weight of devices, which hinders the improvement in the gravimetric specific energy and gravimetric specific power. Thus, 3-D carbon nanostructures without substrates are promising candidates for high-performance supercapacitor. Ciszewski et al. [106] prepared resorcinol-formaldehyde-based carbon aerogels and modified with graphene, GO and CNT, respectively. It demonstrated that the introduction of graphene-like structured mass within traditional carbon aerogel greatly enhanced specific capacitance. The specific capacitance of CNT-, graphene-, and GO-modified aerogel was 326, 227, and 244 F g$^{-1}$, respectively, in 6 M KOH electrolyte. Wang et al. [107] prepared N, O-rich carbon aerogel from polyimide gel after carbonization and activation. As a result, the sample exhibited a high capacitance of 386 F g$^{-1}$ at 1 A g$^{-1}$ in 6 M KOH electrolyte and possessed a high capacitance retention of \sim 80% (224 F g$^{-1}$) when the current density up to 100 A g$^{-1}$.

Supercapacitor

Supercapacitor can be categorized to EDLCs or pseudo-capacitors due to the mechanism or can be divided into symmetric or asymmetric supercapacitor according to the electrochemical activity of electrode materials. To evaluate the performance of
electrode materials, it is not sufficient to test the electrode. It is necessary to assemble devices with these electrode materials. In this section, we will briefly summarize the application of carbon materials in devices based on the capacitor mechanism in recent years.

Conventional supercapacitor

Electric double-layer capacitors

Although the mechanism of the EDL was recognized since the beginning of twentieth century, the first patent for electrochemical capacitors was not applied until 1954 [111]. It described an EDLC device containing two porous carbon electrodes immersed in NH₄Cl or H₂SO₄ electrolyte. The device delivered a capacitance of 6 F at 1.5 V. After that, an ELDC device with multi-cell units was developed by Rightmire at Standard Oil Company of Ohio (SOHIO) [112]. The device performed a storage capacity of 4–10 Wh per pound and could be charged to 6 V. SOHIO did not commercialize their invention, but licensed the technology to NEC, who finally marketed it to provide backup power for clock chips or CMOS. With the rapid increase in market demand, more and more studies on EDLCs have been reported. Some researches on aqueous/non-aqueous EDLCs in recent years are listed in Table 1.

It can be seen that both the aqueous and non-aqueous EDLCs are limited by the specific capacitance of the device, which is ascribed to the inherent properties of the pure carbon materials. Also, due to the finite conductivity and incomplete utilization of active sites, the specific capacitance of EDLCs has generally been limited to 100–250 F g⁻¹ [121]. In case of aqueous EDLCs, the operating voltage (∼ 1 V) is another critical factor which affects the performance of devices. The decomposition of H₂O is 1.23 V, which greatly hinders the performance of aqueous EDLCs [122]. In addition, non-aqueous EDLCs perform a slightly less specific capacitance than aqueous EDLCs because the molecular size of organic electrolytes is larger than aqueous electrolytes. Previous studies implied that the pore size of 0.4–0.7 nm was adequate to aqueous electrolytes, while the pore size of 0.8 nm was suitable for organic electrolytes [123, 124]. As a result, the commercial EDLCs electrodes can only reach an E_d in a range of 3–10 Wh kg⁻¹.

Pseudo-capacitors

The first material found to exhibit pseudo-capacitance is RuO₂ [125]. Despite the faradaic nature of the charge storage in RuO₂ thin film, the cycle voltammogram of RuO₂ showed a rectangular-like shape, which demonstrated a typical capacitive behavior. Subsequent study improved the capacitance of RuO₂ over 700 F g⁻¹ by preparing hydrous RuO₂ with porous nanoscale structure [126, 127]. Although the high cost was a barrier to the application of RuO₂, the
discovery of pseudo-capacitance expanded the approach to enhance the capacitance of electrode materials.

Typically, heteroatoms doping is one of the most common ways to introduce pseudo-capacitance to enlarge the charge capability of carbon material. It has been proved that mono, dual or multi-heteroatom doping (N, B, S, F, Cl, Si, Ti, etc.) could improve the electrochemical activity because it opened the intrinsic band gap and offered more active sites [128].

Usually, heteroatom-doped carbon materials can be synthesized in a variety of ways, such as CVD [129], pyrolysis with hetero precursor [130–132], self-doping [133–136]. These as-prepared electrode materials exhibited a specific capacitance of 150–500 F g\(^{-1}\) in aqueous/organic electrolyte. However, these methods either have complex production processes or utilize petroleum products as raw materials, which limits the industrial production. To avoid these problems, it is a wise choice to use heteroatom-rich biomass or biomass waste as raw material. Recently, Jiang et al. [137] prepared N-doped porous carbon materials (NPCMs) using the wheat straw by carbonization and activation with KCl/ZnCl\(_2\). The NPCMs delivered an excellent specific capacitance of 224 F g\(^{-1}\) in 6 M KOH electrolyte and an outstanding cycle stability (capacitance maintained 91.6% after 10,000 cycles). Cai et al. [138] reported the synthesis of N-doped carbons from Enteromorpha prolifera by hydrothermal carbonization. After optimizing parameters, the as-prepared N-doped carbon achieved a specific capacitance of 200 F g\(^{-1}\) at 1 A g\(^{-1}\) in 6 M KOH electrolyte. The symmetric device showed a good cycle stability (capacitance retention of 96% after 10,000 cycles at 10 A g\(^{-1}\)).

Hybridizing with metal oxide/metal hydroxide is another important way to increase the specific capacitance of electrode materials. Many studies on carbon metal oxide/metal hydroxide composites have been reported, such as C/MnO\(_2\) [139, 140], C/Co\(_3\)O\(_4\) [141–143], and C/CoOOH [144]. MnO\(_2\) has been considered as the most promising candidate for electrode materials due to low cost and easy manufacturing. C/MnO\(_2\) composite can be easily prepared by redox reaction between carbon and KMnO\(_4\) [145, 146], electrodeposition [147], template method [148], etc. Since the early report by Lee and Goodenough [149], C/MnO\(_2\) has attracted widespread concern and large number of research on C/MnO\(_2\) for supercapacitor electrode has been reported, including mesoporous carbon/MnO\(_2\) [150], CNT/MnO\(_2\) [151, 152], graphene/MnO\(_2\) [153, 154], CNF/MnO\(_2\) [155, 156], etc. These composites delivered a specific capacitance in a range of 270–642 F g\(^{-1}\) with a long cycle life. Besides, biomass can also be good host for preparing C/MnO\(_2\) electrode in aqueous electrolyte. He et al. [157] prepared a self-standing C/MnO\(_2\) electrode by flax-derived carbon cloth reacted with KMnO\(_4\). The specific capacitance of electrode (in terms of MnO\(_2\)) reached 684 F g\(^{-1}\) at 2

Electrode	Electrolyte	Voltage/ V	Specific capacitance/ F g\(^{-1}\)	Cycle life	References
AC//AC	6 M KOH	0.9	66.8 at 0.1A g\(^{-1}\)	93% after 1000 cycles	[113]
	2 M KCl	0.9	62.1 at 0.1A g\(^{-1}\)	94% after 1000 cycles	
	0.5 M K\(_2\)SO\(_4\)	1.7	42.8 at 0.1A g\(^{-1}\)	96% after 1000 cycles	
AC//AC	1.5 M Na\(_2\)SO\(_4\)	1.0	93.1 at 0.005 A g\(^{-1}\)	–	[114]
AC//AC	1 M Na\(_2\)SO\(_4\)	0.6	113 at 0.3 A g\(^{-1}\)	100% after 5000 cycles	[115]
S-CB//S-CB	6 M KOH	1.0	120 at 1 A g\(^{-1}\)	92.6% after 10000 cycles	[116]
CNT-MC/CNt-MC	3 M H\(_2\)SO\(_4\)	0.8	237 at 1 A g\(^{-1}\)	92% after 20000 cycles	[117]
CNF//CNF	1 M Na\(_2\)SO\(_4\)	0.8	69.3 at 50 mVs \(^{-1}\)	2000 cycles	[118]
	6 M KOH	0.8	88.1 at 50 mVs \(^{-1}\)	2000 cycles	
GnP/GnP	1 M Na\(_2\)SO\(_4\)	1.0	92 at 0.1 A g\(^{-1}\)	–	[119]
	1 M Et\(_4\)NBF\(_4\)	2.0	76 at 0.1 A g\(^{-1}\)	–	
CMK-3//CMK-3	NaClO\(_4\) in EC/DMC (1:1 vol/vol)	3.0	78 at 0.2 A g\(^{-1}\)	–	[120]
CMK-8//CMK-8	3 M H\(_2\)SO\(_4\)	3.0	66 at 0.2 A g\(^{-1}\)	–	
A g\(^{-1}\) and still retained 269 F g\(^{-1}\) at 300 A g\(^{-1}\) in 0.1 M Na\(_2\)SO\(_4\) electrolyte, indicating the outstanding electrochemical performance of the carbon cloth/MnO\(_2\). Hu’s group [158] developed wood-derived carbon/MnO\(_2\) (MnO\(_2\)/WC) electrode by electrodeposition (Fig. 11). MnO\(_2\)/WC electrode performed a maximum specific capacitance of 176.8 F g\(^{-1}\) (calculated based on the mass of MnO\(_2\)) in 1 M Na\(_2\)SO\(_4\) electrolyte. When assembled in an asymmetric device, an excellent areal capacitance of 3600 mF cm\(^{-2}\) at 1 mA cm\(^{-2}\) can be achieved, with a high energy density of 1.6 mWh cm\(^{-2}\) and a long lifetime (over 10000 cycles). These studies establish a platform for low-cost, facile, and large-scale fabrication for self-standing pseudo-capacitance electrode materials. Ni compounds such as NiO, NiCo\(_2\)S\(_4\), etc., have also received extensive attention due to their extremely high theoretical specific capacities [159–161]. Yi’s group [162] demonstrated design and simple preparation of mesoporous NiCo\(_2\)O\(_4\)@MnO\(_2\) nanoneedle arrays on a conductive nickel foam. Benefiting from the high surface area and their unique architecture, NiCo\(_2\)O\(_4\)@MnO\(_2\) composite electrodes exhibited excellent electrochemical performance. The initial specific capacitance of composite electrode was 1001 F g\(^{-1}\) at current density of 15 A g\(^{-1}\) in 3 M KOH electrolyte and maintained 736 F g\(^{-1}\) after 10000 cycles. In fact, transition metal compounds (TMCs) usually suffer severe cycle attenuation due to poor conductivity. The same group reported the synthesis of novel ternary composites, porous spherical NiO@NiMoO\(_4\)@PPy nanoarchitecture, for high-performance supercapacitor [163]. The PPy-modified composite electrode exhibited significant improvement in cycling performance with a high specific capacitance retention of 77.1% even after 30,000 cycles.

Figure 12 illustrates the correlation among factors that affect the potential range of supercapacitor. As illustrated, the available potential range is the result of synergy between the potential range of the electrode and the stable voltage range of the electrolyte [164, 165]. For electrode materials, the potential range refers to a range that guarantees electrodes perform reversible charge/discharge processes without causing electrode material decomposition. The range depends on the electrochemical activity of materials, especially for materials with a pseudo-capacitance behavior. A reference electrode (P\(_{0V}\)) can be used to determine the electrode potential ranges and is defined as the potential in which device are operated at 0 V [165–167]. P\(_{0V}\) represents the full discharge of the cathode and anode, which means that when a certain pole reaches the limit of the possible range, the voltage range is determined. Therefore, finding suitable P\(_{0V}\) is critical for adjusting the potential range [168]. Further, in aqueous system, the overpotentials for the evolution of H\(_2\) and O\(_2\) should be
taken into account during the selection of electrode for extending potential range \([169-172]\). Thus, building asymmetric supercapacitor systems to expand the operating voltage for higher performance is necessary.

Table 2 lists some typical asymmetric supercapacitors based on carbon/metal oxide or metal

Positive electrode	Negative electrode	Voltage (V)	Specific capacitance (F g\(^{-1}\))	Maximum \(E_d/\) Wh kg\(^{-1}\)@\(P_d\) (W kg\(^{-1}\))	Cycle life	References
MnO\(_2@\)SBA-C	FeOOH@SBA-C	2.0	70.9 at 0.1 A g\(^{-1}\)	39.4 500	82.7% after 5000 cycles	[176]
CNF/PEDOT/ MnO\(_2\)	PCNFs	1.6	1061 at 0.6 A g\(^{-1}\)	60.5 700	104.6% after 5000 cycles	[177]
Fe\(_2\)O\(_3@\)MnO\(_2\)	rGO/Fe\(_2\)O\(_3\)	2.3	61.3 at 1 A g\(^{-1}\)	57 333	88.9% after 10000 cycles	[178]
NiO/MnO\(_2@\)CFC	AC	1.7	–	20.87 850	92% after 1000 cycles	[179]
TiO\(_2@\)MnO\(_2\)	SWCNT	2.2	111.5 at 1 A g\(^{-1}\)	62 1000	–	[180]
CNFs/PEDOT/ MnO\(_2\)	AC	1.6	148.1 at 0.3 A g\(^{-1}\)	49.4 224.02	81.6% after 8000 cycles	[181]
DPC/Co\(_3\)O\(_4\)	AC	1.7	60.76 at 1 A g\(^{-1}\)	21.1 790	–	[182]
C/Co\(_3\)O\(_4\)	AC	1.6	99.8 at 1 A g\(^{-1}\)	35.08 630	94.2% after 5000 cycles	[183]
C/Co\(_3\)O\(_4\)	AC	1.5	446.5 at 2 A g\(^{-1}\)	68.17 549	87.92% after 10000 cycles	[184]
GLF/ NiO	GLF	1.5	152 at 1 A g\(^{-1}\)	47.6 750	83.6% after 6000 cycles	[185]
3-D Graphene/ NiO	AC	1.6	34.4 at 1 A g\(^{-1}\)	12.3 815.3	74.6% after 5000 cycles	[186]
NiO/D-rGO	Bi\(_2\)O\(_3\)	1.6	62 at 3 A g\(^{-1}\)	43.7 4799	89.5% after 5000 cycles	[187]
hydroxides (MnO₂, Co₃O₄, NiO, etc.). It can be seen that it is effective to expand the working voltage window of the device by constructing asymmetric supercapacitors, which brings an increase in both \(E_d \) and \(P_d \). However, these composites in the above reports show far less specific capacitance than the theoretical capacitance in three-electrode test. This is due to the poor electrical conductivity of metal oxides/metal hydroxides, which makes electron transport blocked, resulting in insufficiently utilizing of specific capacity during charge/discharge progress. To alleviate these problems, most researches have focused on designing metal oxide microstructures, reducing metal oxide size, or hybridizing [173–175]. The specific capacitance was increased to some value by these methods, but still less than the theoretical value. Till now, improving the specific capacitance of materials (close to the theoretical value) still challenging.

Hybrid capacitors

There are two main types of reversible electrochemical energy storage devices: secondary batteries and electrochemical capacitors (EDLCs and pseudo-capacitors). The former provides a high \(E_d \), while the latter offers a high \(P_d \) with long cycle life. For instance, commercial lithium-ion batteries (LIBs) deliver a specific \(E_d \) up to 200 Wh kg⁻¹, but with a maximum \(P_d \) being below 350 W kg⁻¹. In contrast, commercial electrochemical capacitors possess \(P_d \) reaching 10 kW kg⁻¹, but with an \(E_d \) less than 5 Wh kg⁻¹. Therefore, a new goal of next-generation electric energy storage devices is to provide high energy and high power concomitantly in a single system [188–190]. In this case, the concept of hybrid ion capacitors (HICs) was proposed and HICs are named for their structure. In HICs, two electrodes are composed of a battery material and a supercapacitor material, respectively. Figure 13 illustrates the comparison of specific energy vs. specific power for electrochemical energy storage methods, including lithium-ion capacitors (LICs) which are a representative of HICs. Benefiting from their structure, the HICs is a good compromise between the battery and the supercapacitor in terms of energy supply, offering battery-like energy with supercapacitor-like power. One important potential application of HICs is regenerative braking. Regenerative braking energy from trains, different types of vehicles represents a huge potential market. Besides, UPS, voltage sag compensation, smart grids, and energy recovery systems in industrial machinery are all worth noticing [191]. However, due to the limitations in existing energy storage technologies, this market has not been fully developed, which accelerates the research on HICs [192].

Lithium/sodium-ion capacitor

The mechanism of LIBs provides support for the construction of HICs. In LIBs, lithium ions can be inserted (extracted) into (out of) the graphite anode, which facilitates the selection of electrode materials. Table 3 lists some representative samples of various carbon-based materials employed for LICs or sodium-ion capacitors (NICs).

The majority of carbon-based materials are nongraphite structure and highly porous carbon. Since the radius of sodium ions is larger than that of lithium ions (0.102–0.076 nm), it is very difficult for sodium ions to be embedded in graphite [193, 194]. Moreover, heteroatom-doped carbon and TMCs can also be employed for the storage of Li⁺/Na⁺. Overall, the choice of electrode materials for LICs/NICs is diverse and requires more extensive research.
Other ion capacitors

LIBs and sodium-ion batteries have many shortcomings, such as limited lithium reserves, difficulty in embedding sodium ions into graphite, and the use of flammable organic electrolytes. These issues lead to research on new types of ion batteries, including K^+, Ca^{2+}, Mg^{2+}, Al^{3+}, and Zn^{2+} [205–211]. Based on these ion storage mechanisms, hybrid ion capacitors named after these cations, especially multivalent ions, have naturally attracted people’s attention. Compared with energy storage system on univalent ion, the multivalent ion-based energy storage system possesses some advantages, such as fast charge transfer kinetics and higher capacity and energy density [212]. Among these multivalent ions, Zn^{2+} and Al^{3+} have attracted intensive attention because of their small ionic radius, abundant reserves, high volumetric capacity, and the ability to use aqueous electrolytes [213]. Some HICs based on multivalent ions (MHICs) are summarized in Table 4. These HICs show excellent performance, indicating that the design of devices based on multivalent ions is effective. In addition, it is worth noting that various materials are proven to be available for constructing MHICs, whereas only a few studies on AIC, MgIC, and CaIC have been reported.

Conclusion and perspective

The scale of global market for supercapacitor reached $470 million in 2010. By 2020, the supercapacitor market is expected to be $3.5 billion, which will cover 5% of the battery market [12]. Due to the increasing market, it will further stimulate the study and development of supercapacitors. In our opinion, future research on carbon-based material as supercapacitor electrodes can be carried out in the following aspects.

1. EDLCs generally possess fast charge/discharge processes with long cycle life. However, they are still limited by the relatively low specific capacitance, incomplete utilization of active sites, and relatively narrow operating voltage, which significantly affect the E_d and P_d. To obtain high E_d and high P_d, the future development of supercapacitors involves the novel design of carbon-based composite materials, e.g., carbon combined with pseudo-capacitive materials because such composite materials are beneficial to expand the operating voltage and improve the capacitance of capacitor devices. Among pseudo-capacitive materials, TMCs are often limited by their high charge transfer resistance from poor electrical conductivity and structure pulverization during cycling. Thus, the rational design in nanostructure of both carbon materials and TMCs to promote electrochemical kinetics and reduce the charge transfer resistance is still a big challenge. For example, uniform pore size distribution of porous carbon will reduce the ion transport length while suitable pore size will improve contact with electrolyte and ion migration (“Zero-dimensional carbon material” section). Also, combining TMCs with conductive polymers can simultaneously improve the electrical...
conductivity and protect TMCs from structure damage and dissolution in the electrolyte.

2. Flexible carbon-based supercapacitor devices are highly required for the expansion of the electronic product market. The fabrication to the flexible devices includes flexible packaging and the preparation of flexible electrodes.

Packaging improvements are equally important to the success of qualified flexible energy storage systems. The development of a thinner, moisture-impermeable, flexible package that prevents electrolyte from flowing out of energy storage systems will help increase its volumetric energy density and make them more compatible. Current sealing plastics based on polydimethylsiloxane (PDMS) or other stretchable elastomers can meet the requirement on mechanical properties, however, are limited by moisture permeability. The development of stretchable inorganic coatings, which can be deposited on stretchable elastomers, will help reduce the penetration of moisture into energy storage systems. Flexible electrodes based on paper, textiles, sponges, etc., can be achieved by vacuum suction filtration, printing technology, electrospinning technology, CVD, and electrochemical deposition. The stretchable electrodes can be realized by coating the electrode materials on stretchable substrates or embedding them in stretchable substrates. However, under strain, especially under severe strain, the electrochemical performance of flexible devices tends to be greatly compromised. Therefore, it is still a challenge to guarantee the electrochemical performance of flexible devices under ultimate strain.

3. Supercapacitor devices in harsh conditions such as high temperature, low temperatures, strong acid and strong base are highly required in some extreme environments. The key points for such devices will focus on the development of novel electrodes, electrolytes, separators, and binders. Compared with the normal operating temperature, at high temperatures, the electrochemical reaction is faster and the pseudo-capacitor behavior is more obvious, which puts forward the requirements for the structure stability of the electrode materials. In addition, at high temperatures, the electrode may peel off from the current collector due to the failure of the binder, resulting in performance degradation. While the wettability of the electrode material to the electrolyte will become worse at extremely cold temperatures, and the electrochemical reaction is slow or even stops. Hence, the selection and structural design of new electrode materials to meet the needs of normal operation under extreme conditions is very necessary. Additionally, molecular design to achieve high-performance electrolytes, separators, and binders could be a suitable path in the future. For example, ionic liquids and antifreeze agents could be good options for electrolytes in ultralow temperatures, while high-performance polymers such as polyimides (PI) could be the ideal candidate for separators and binders.

4. There are still challenges to the way of industrial production of novel electrode materials. (1) One factor restricting the industrialization of new materials in supercapacitors is the high cost and

Cathode	Anode	Type	Voltage (V)	Maximum E_d/Wh kg$^{-1}$@P_d	Cycle life	References
MnO$_2$	AC	ZIC	2.0	34.8 \sim 60	93.4% after 5000 cycles	[214]
Coconut shell-derived AC	Zn foil	ZIC	1.8	52.7 1725	91% after 20000 cycles	[215]
AC	Zn	ZIC	1.6	84 65	91% after 10000 cycles	[216]
AC	MoO$_2$@PPy	AIC	1.5	28 460	93% after 1800 cycles	[217]
AC	CuFe-PBA	AIC	1.0	55 F g$^{-1}$ (only provide specific capacitance)	90% after 1000 cycles	[218]
AC	Mg foil	MgIC	1.6	90 F g$^{-1}$ (only provide specific capacitance)	79% after 4500 cycles	[219]
AC	Ca foil	CaIC	3.2	92 mAh g$^{-1}$ (only provide specific capacity)	84% after 1000 cycles	[220]
energy consumption, which mainly occur during the carbonization and the activation process of the material. Therefore, it is necessary to develop new procedure to simplify the above process. (2) Blade coating is the most commonly used process for depositing electrode slurry in large-scale production. However, it is difficult to achieve electrodes with ultrathin thickness and special patterns by this process. The developing technologies, such as screen printing, 3-D printing, and inkjet printing, could be the ideal options to realize such electrodes. (3) It is still necessary to develop test standards for supercapacitors in industrial and laboratory experiments.

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (51803093 and 51903123) and Natural Science Foundation of Jiangsu Province (BK20180770 and BK20190760).

References

[1] Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. https://doi.org/10.1039/c1cs15060j
[2] Poonam Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825. https://doi.org/10.1016/j.est.2019.01.010
[3] Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4):1419–1445. https://doi.org/10.1007/s11581-019-02874-0
[4] Wu Y, Cao C (2018) The way to improve the energy density of supercapacitors: progress and perspective. Sci China Mater 61(2):1517–1526. https://doi.org/10.1007/s40843-018-9290-y
[5] Yu GH, Xie X, Pan LJ, Bao ZN, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234. https://doi.org/10.1016/j.nanoen.2012.10.006
[6] Etacheri V, Marom R, Elazar R, Salitira G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262. https://doi.org/10.1039/c1ee01598b
[7] Zhang X, Zhang H, Lin Z, Yu M, Lu X, Tong Y (2016) Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater 59(6):475–494. https://doi.org/10.1007/s40843-016-5061-1
[8] Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531. https://doi.org/10.1039/b813846j
[9] Wu S, Zhu Y (2017) Highly densified carbon electrode materials towards practical supercapacitor devices. Sci China Mater 60(1):25–38. https://doi.org/10.1007/s40843-016-5109-4
[10] Li K, Zhang J (2018) Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci China Mater 61(2):210–232. https://doi.org/10.1007/s40843-017-9154-2
[11] Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. https://doi.org/10.1038/nmat2297
[12] Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88. https://doi.org/10.1039/c2nr32040a
[13] Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
[14] Zhang L, Du W, Nautiyal A, Liu Z, Zhang X (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61(3):303–352. https://doi.org/10.1007/s40843-017-9206-4
[15] Wang H, Cui Y (2019) Nanodiamonds for energy. Carbon. Energy 1(1):13–18. https://doi.org/10.1002/csey.2.9
[16] Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen C-M (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045. https://doi.org/10.1039/c9ta04436a
[17] Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Ströme in ko¨rperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys 165(6):211–233. https://doi.org/10.1002/andp. 18531650603
[18] Guoy G (1910) Constitution of the electric charge at the surface of an electrolyte. J Physique 9:457–467
[19] Chapman DL (1913) Ll. A contribution to the theory of electrocapillarity. Lond Edinb Dublin Philos Mag J Science 25(148):475–481. https://doi.org/10.1080/14786440408634187
[20] Stern O (1924) The theory of the electrolytic double-layer. Z Elektrochem 30(508):1014–1020
[21] Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1):1–14. https://doi.org/10.1016/S0378-7753(96)02474-3

[22] Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614. https://doi.org/10.1039/C3EE44164D

[23] Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252

[24] Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abriuña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat Mater 12(6):518–522. http://dx.doi.org/10.1038/nmat3601

[25] Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62. http://dx.doi.org/10.1002/adma.200903328

[26] Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6):1303–1310. https://doi.org/10.1016/j.carbon.2005.01.001

[27] Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T (2007) Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. J Phys Chem C 111(1):227–233. https://doi.org/10.1021/jp063902g

[28] Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Electrochem Solid-State Lett 7(8):A221–A223. https://doi.org/10.1149/1.1756491

[29] Moriguchi I, Nakawara F, Yamada H, Kudo T (2005) Electrical double-layer capacitive properties of colloidal crystal-templated nanoporous carbons. In: Sayari A, Jar- oniec M (eds) Studies in surface science and catalysis, vol 156. Elsevier, Amsterdam, pp 589–594 10.1016/S0167-2991(05)80260-5

[30] Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280. https://doi.org/10.1039/C3EE43525C

[31] Jurewicz K, Vix-Guterl C, Frackowiak E, Saadallah S, Reda M, Parmentier J, Patarin J, Béguin F (2004) Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J Phys Chem Solids 65(2):287–293. https://doi.org/10.1016/j.jpcs.2003.10.024

[32] Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochim Acta 49(6):905–912. https://doi.org/10.1016/j.electacta.2003.09.043

[33] Fernández JA, Morishita T, Toyoda M, Inagaki M, Stoeckli F, Centeno TA (2008) Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J Power Sources 175(1):675–679. https://doi.org/10.1016/j.jpowsour.2007.09.042

[34] Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7(1):44562. https://doi.org/10.1038/srep44562

[35] Zhang W, Song Y, Wang Y, He S, Shang L, Ma R, Jia L, Wang H (2020) A perlynetetracarboxylic dihydride and aniline-assembled supramolecular nanomaterial with multicolor electrochemiluminescence for a highly sensitive label-free immunoassay. J Mater Chem B 8(16):3676–3682. https://doi.org/10.1039/c9tb02368b

[36] Yang XT, Liang ZG, Yuan YJ, Yang JL, Xia H (2017) Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica 66(4):8. https://doi.org/10.7498/aps.66.048101

[37] Li G, Gao XZ, Wang KY, Cheng ZJ (2018) Porous carbon nanospheres with high EDLC capacitance. Diamond Relat Mater 88:12–17. https://doi.org/10.1016/j.diamond.2018.06.010

[38] Wang J, Shen L, Ding B, Nie P, Deng H, Dou H, Zhang X (2014) Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Adv 4(15):7538–7544. https://doi.org/10.1039/C3RA44305A

[39] Guo D, Xu Chen, Fang Z, He Y, Zhong C, Yang Z, Yang K, Chen Y, Huang S (2015) Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochim Acta 176:207–214. https://doi.org/10.1016/j.electacta.2015.07.032

[40] Qu H, Zhang X, Zhan J, Sun W, Si Z, Chen H (2018) Biomass-based nitrogen-doped hollow carbon nanospheres derived directly from glucose and glucosamine: structural evolution and supercapacitor properties. ACS Sustain Chem Eng 6(6):7380–7389. https://doi.org/10.1021/acssuschemeng.7b04842

[41] Yao L, Chen DM, Yan S, Lin JJ, Liu YP, Lian J, Liu YR, Lin HL, Han S (2019) A facile synthesis of nitrogen-doped porous carbon materials for high-performance supercapacitors. Chemistryselect 4(9):2726–2733. https://doi.org/10.1002/slct.201803808
Benkstein KD, Kopidakis N, van de Lagemaat J, Frank AJ (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107(31):7759–7767. https://doi.org/10.1021/jp0226811

Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108(24):8106–8118. https://doi.org/10.1021/jp0359283

Baxter JB, Aydil ES (2005) Nanowire-based dye-sensitized solar cells. Appl Phys Lett 86(5):053114. https://doi.org/10.1063/1.1861510

Pan H, Li J, Feng Y (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668. https://doi.org/10.1007/s11671-009-9508-2

Chen C, Mo M, Chen W, Pan M, Xu Z, Wang H, Li D (2018) Highly conductive nanocomposites based on cellulose nanofiber networks via NaOH treatments. Compos Sci Technol 156:103–108. https://doi.org/10.1016/j.compsctech.2017.12.029

Chen C, Wang Y, Meng T, Wu Q, Fang L, Zhao D, Zhang Y, Li D (2019) Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose 26(16):8843–8851. https://doi.org/10.1007/s10570-019-02710-8

Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han JH (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388(1–3):170–174. https://doi.org/10.1016/j.cplett.2004.02.071

Wen S, Jung M, Joo O-S, Mho S-i (2006) EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates. Curr Appl Phys 6(6):1012–1015. https://doi.org/10.1016/j.cap.2005.07.008

Xu B, Wu F, Su Y, Cao G, Chen S, Zhou Z, Yang Y (2008) Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity. Electrochim Acta 53(26):7730–7735. https://doi.org/10.1016/j.electacta.2008.05.033

Shah R, Zhang XF, Talapatra S (2009) Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 20(39):5. https://doi.org/10.1088/0957-4484/20/39/395202

Jung DW, Lee CS, Park S, Oh ES (2011) Characterization of electric double-layer capacitors with carbon nanotubes directly synthesized on a copper plate as a current collector.
[83] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

[84] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107. https://doi.org/10.1021/ip902214f

[85] Lin J-H (2018) The influence of the interlayer distance on the performance of thermally reduced graphene oxide supercapacitors. Materials 11(2):263

[86] Romano V, Martín-García B, Bellani S, Marasco L, Kumar-Panda J, Oropeza-Nuñez R, Naijali L, Del-Rio-Castillo AE, Prato M, Mantero E, Pellegrini V, D’Angelo G, Bonacorsso F (2019) Flexible graphene/carbon nanotube electrochemical double-layer capacitors with ultrahigh areal performance. ChemPlusChem 84(7):882–892. https://doi.org/10.1002/cplu.201900235

[87] Purkait T, Singh G, Singh M, Kumar D, Dey RS (2017) Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitors. Sci Rep 7(1):15239. https://doi.org/10.1038/s41598-017-15463-w

[88] Gao KZ, Niu QQ, Tang QH, Guo YQ, Wang LZ (2018) Graphene-Like 2D porous carbon nanosheets derived from cornstalk pith for energy storage materials. J Electron Mater 47(1):337–346. https://doi.org/10.1007/s11664-017-5771-7

[89] Cranford SW, Brommer DB, Buehler MJ (2012) Extended graphynes: simple scaling laws for stiffness, strength and fracture. Nanoscale 4(24):7797–7809. https://doi.org/10.1039/c2nr31644g

[90] Zuo Z, Li Y (2019) Emerging electrochemical energy applications of graphdiyne. Joule 3(4):899–903. https://doi.org/10.1016/j.joule.2019.01.016

[91] Gao X, Liu H, Wang D, Zhang J (2019) Graphdiyne: synthesis, properties, and applications. Chem Soc Rev 48(3):908–936. https://doi.org/10.1039/c8cs00773j

[92] Krishnamoorthy K, Thangavel S, Chelora Veetil J, Raju N, Venugopal G, Kim SJ (2016) Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors. Int J Hydrogen Energy 41(3):1672–1678. https://doi.org/10.1016/j.ijhydene.2015.10.118

[93] Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y, Li Y (2018) N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy 44:144–154. https://doi.org/10.1016/j.nanoen.2017.11.072

[94] Wang F, Zuo Z, Shang H, Zhao Y, Li Y (2019) Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode. ACS Appl Mater Interfaces 11(3):2599–2607. https://doi.org/10.1021/acsami.8b01383

[95] Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9(3):729–762. https://doi.org/10.1039/C5EE03109E

[96] Zhang Y, Hu Z, An Y, Guo B, An N, Liang Y, Wu H (2016) High-performance symmetric supercapacitor based on manganese oxyhydride nanosheets on carbon cloth as binder-free electrodes. J Power Sources 311:121–129. https://doi.org/10.1016/j.jpowsour.2016.02.017

[97] Wang C, Xiong Y, Wang H, Jin C, Sun Q (2017) Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J Mater Chem A 5(30):15759–15770. https://doi.org/10.1039/C7TA04178K

[98] Huang Z, Guo H, Zhang C (2019) Assembly of 2D graphene sheets and 3D carbon nanospheres into flexible composite electrodes for high-performance supercapacitors. Compos Commun 12:117–122. https://doi.org/10.1016/j.coco.2019.01.010

[99] Zhang Y, Hu Z, Liang Y, Yang Y, An N, Li Z, Wu H (2015) Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J Mater Chem A 3(29):15057–15067. https://doi.org/10.1039/C5TA02479J

[100] Liu L, Zhao H, Lei Y (2019) Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. InfoMat 1(1):74–84. https://doi.org/10.1002/inf2.12007

[101] Chen W, Luo M, Yang K, Zhou X (2020) Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: microwave absorber and porogen. Microporous Mesoporous Mater 300:110178. https://doi.org/10.1016/j.micromeso.2020.110178

[102] Chen W, Wang X, Liu C, Luo M, Yang P, Zhou X (2020) Rapid single-step synthesis of porous carbon from an agricultural waste for energy storage application. Waste Manag (Oxf) 102:330–339. https://doi.org/10.1016/j.wasman.2019.10.058

[103] Lee J, Park MS, Kim KJ (2017) Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries. J Power Sources 341:212–218. https://doi.org/10.1016/j.jpowsour.2016.12.005

[104] Funabashi H, Takeuchi S, Tsujimura S (2017) Hierarchical meso/macroporous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Sci Rep 7:9. https://doi.org/10.1038/srep45147
[105] Chen Q, Zhao Y, Huang XK, Chen N, Qu LT (2015) Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J Mater Chem A 3(13):6761–6766. https://doi.org/10.1039/c5ta00734h

[106] Ciszewski M, Szatkowska E, Koszorek A, Majka M (2017) Carbon aerogels modified with graphene oxide, graphene andCNT as symmetric supercapacitor electrodes. J Mater Sci-Mater Electron 28(6):4897–4903. https://doi.org/10.1007/s10854-016-6137-2

[107] Wang D, Fan W, Yuan SJ, Liu TX (2019) Improving hierarchical porous structure of carbon aerogels for more efficient ion transport for supercapacitors with commercial level mass loading. Electrochim Acta 323:10. https://doi.org/10.1016/j.electacta.2019.134811

[108] Jiang L, Sheng L, Fan Z (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 61(2):133–158. https://doi.org/10.1007/s40843-017-9169-4

[109] Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–726. https://doi.org/10.1016/j.carbon.2019.09.018

[110] Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120(4):2079–2086. https://doi.org/10.1021/acs.jpcc.5b11280

[111] Becker HI (1957) Low voltage electrolytic capacitor

[112] Rightmire RA (1966) Electrical energy storage apparatus

[113] Pankaj Chavhan MP, Ganguly S (2017) Charge transport in activated carbon electrodes: the behaviour of three electrolytes vis-à-vis their specific conductance. Ionics 23(8):2037–2044. https://doi.org/10.1007/s11581-017-2048-3

[114] Tey JP, Careem MA, Yarmo MA, Arof AK (2016) Durian shell-based activated carbon electrode for EDLCs. Ionics 22(7):1209–1216. https://doi.org/10.1007/s11581-016-1640-2

[115] Momodu D, Madito M, Barzegar F, Bello A, Khaleed A, Olaniyi O, Dangbegnon J, Manyala N (2017) Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J Solid State Electrochem 21(3):859–872. https://doi.org/10.1007/s10008-016-3432-z

[116] Ma X, Song X, Yu Z, Li S, Wang X, Zhao L, Zhao L, Xiao Z, Qi C, Ning G, Gao J (2019) S-doping coupled with pore-structure modulation to conducting carbon black: toward high mass loading electrical double-layer capacitor. Carbon 149:646–654. https://doi.org/10.1016/j.carbon.2019.04.110

[117] Yao Y, Ma C, Wang J, Qiao W, Ling L, Long D (2015) Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes. ACS Appl Mater Interfaces 7(8):4817–4825. https://doi.org/10.1021/ami5087374

[118] Oyedotun KO, Masikhwa TM, Lindberg S, Matic A, Johansson P, Manyala N (2019) Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibers supercapacitor electrode derived from oxygen-functionalized graphene. Chem Eng J 375:121906. https://doi.org/10.1016/j.cej.2019.121906

[119] Cetinkaya T, Dryfe RAW (2018) Electrical double layer supercapacitors based on graphene nanoplatelets electrodes in organic and aqueous electrolytes: effect of binders and scalable performance. J Power Sources 408:91–104. https://doi.org/10.1016/j.jpowsour.2018.10.072

[120] Phan TN, Gong MK, Thangavel R, Lee YS, Ko CH (2019) Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): role of mesopores and mesopore structures. J Alloys Compd 780:90–97. https://doi.org/10.1016/j.jallcom.2018.11.348

[121] Li Y, van Zijll M, Chiang S, Pan N (2011) KOH modified graphene nanosheets for supercapacitor electrodes. J Power Sources 196(14):6003–6006. https://doi.org/10.1016/j.jpowsour.2011.02.092

[122] He M, Fic K, Frckowiak E, Nováček P, Berg EJ (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9(2):623–633. https://doi.org/10.1039/C5EE02875B

[123] Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors I: relations between ion and pore dimensions. J Electrochem Soc 147(7):2486–2493. https://doi.org/10.1149/1.1393557

[124] Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12):2498–2507. https://doi.org/10.1016/j.carbon.2006.05.022

[125] Trasatti S, Buzzanca G (1971) Ruthenium dioxide. A new Electrochemical behaviour. J Electroanal Chem Interfacial Electrochem 29(2):A1–A5. https://doi.org/10.1016/S0022-0728(71)80111-0

[126] Long JW, Swider KE, Merzbacher CI, Rolison DR (1999) Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15(3):780–785. https://doi.org/10.1021/la980785a

[127] Dmowski W, Egami T, Swider-Lyons KE, Love CT, Rolison DR (2002) Local atomic structure and conduction
mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J Phys Chem B 106(49):12677–12683. https://doi.org/10.1021/jp026228l

[128] Cheng H, Huang Y, Shi G, Jiang L, Qu L (2017) Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc Chem Res 50(7):1663–1671. https://doi.org/10.1021/acs.accounts.7b00131

[129] John AR, Arumugam P (2015) Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode. J Power Sources 277:387–392. https://doi.org/10.1016/j.jpowsour.2014.11.151

[130] Ma W, Xie L, Dui L, Sun G, Chen J, Su F, Cao Y, Lei H, Kong Q, Chen C-M (2018) Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochim Acta 266:420–430. https://doi.org/10.1016/j.electacta.2018.02.031

[131] Lv X, Qi Z, Jiang Z, Zhou Y, Zhao W, Jiao J (2019) The microstructure and mechanical properties of silicon carbide fibers with boron nitride interphase. IOP Conf Ser Mater Sci Eng 678:012061. https://doi.org/10.1088/1757-899x/678/1/012061

[132] Chen J, Huo Y, Li S, Huang Y, Lv S (2019) Host-guest complexes of β-cyclodextrin with methyl orange/methylene blue-derived multi-heteroatom doped carbon materials for supercapacitors. Compos Commun 16:117–123. https://doi.org/10.1016/j.comcon.2019.09.007

[133] Yang PS, Ma L, Gan MY, Lei Y, Zhang XL, Jin M, Fu G (2017) Preparation and application of PANI/N-doped porous carbon under the protection of ZnO for supercapacitor electrode. J Mater Sci-Mater Electron 28(10):7333–7342. https://doi.org/10.1007/s10854-017-2400-9

[134] Wang F, Wang Y, Fang Y, Zhu J, Li X, Qi J, Wu W (2020) Synthesis of nitrogen-doped flower-like carbon microspheres from urea-formaldehyde resins for high-performance supercapacitor. J Alloys Compd 812:152109. https://doi.org/10.1016/j.jallocom.2019.152109

[135] Guo J, Wu DL, Wang T, Ma Y (2019) P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl Surf Sci 475:56–66. https://doi.org/10.1016/j.apsusc.2018.12.095

[136] He SJ, Zhang CM, Du C, Cheng CF, Chen W (2019) High-rate-performance supercapacitor based on nitrogen-doped hollow hexagonal carbon nanoprisms arrays with ultrathin wall thickness in situ fabricated on carbon cloth. J Power Sources 434:9. https://doi.org/10.1016/j.jpowsour.2019.226701

[137] Zhang S, Tian K, Cheng BH, Jiang H (2017) Preparation of N-Doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustain Chem Eng 5(8):6682–6691. https://doi.org/10.1021/acssuschemeng.7b00920

[138] Ren M, Jia Z, Tian Z, Lopez D, Cai J, Tittirci M-M, Jorge AB (2018) High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications. ChemElectroChem 5(18):2686–2693. https://doi.org/10.1002/celc.201800603

[139] Chen LF, Zhang M, Yang XD, Li WZ, Zheng J, Gan JW, Xu JL (2017) Sandwich-structured MnO2/N-Doped Carbon/MnO2 nanotubes for high-performance supercapacitors. J Power Sources 695:3339–3347. https://doi.org/10.1016/j.jpowsour.2017.04.074

[140] Yuan CZ, Zhang LH, Hou LR, Pang G, Oh WC (2014) One-step hydrothermal fabrication of strongly coupled Co3O4 nanosheets-reduced graphene oxide for electrochemical capacitors. RSC Adv 4(28):14408–14413. https://doi.org/10.1039/c4ra00762j

[141] Hassan DK, El-Safty SA, Khalil KA, Dewidar M, Abu El-Maged G (2016) Mesoporous carbon/Co3O4 hybrid as efficient electrode for methanol electrooxidation in alkaline conditions. Int J Electrochem Sci 11(10):8374–8390. https://doi.org/10.20964/2016.10.09

[142] Wang QC, Xue XX, Lei YP, Wang YC, Feng YX, Xiong X, Wang DS, Li YD (2020) Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 16(24):7. https://doi.org/10.1002/smll.202001571

[143] Zheng HJ, Tang FQ, Lim M, Rufford T, Mukherji A, Wang LZ, Lu GQ (2009) Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films. J Power Sources 193(2):930–934. https://doi.org/10.1016/j.jpowsour.2009.03.005

[144] Ren XC, Tian CJ, Zhao YC, Zhao WY, Wang CA (2015) Preparation and properties of Core-Shell C@MnO2 electrode material as supercapacitor. Rare Met Mater Eng 44:116–119

[145] Zhang ZR, Yao ZP, Meng YQ, Li DQ, Xia QX, Jiang ZH (2019) Construction of TiO2 Nanotubes/C/MnO2 composite films as a binder-free electrode for a high-performance supercapacitor. Inorg Chem 58(2):1591–1598. https://doi.org/10.1021/acs.inorgchem.8b03094

[146] Kim IT, Kouda N, Yoshimoto N, Morita M (2015) Preparation and electrochemical analysis of electrodeposited...
MnO2/C composite for advanced capacitor electrode. J Power Sources 298:123–129. https://doi.org/10.1016/j.jpowsour.2015.08.046

[148] Li Q, Lu XF, Xu H, Tong YX, Li GR (2014) Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl Mater Interfaces 6(4):2726–2733. https://doi.org/10.1021/am405271q

[149] Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223. https://doi.org/10.1006/jssc.1998.8128

[150] Sun ZS, Shen SDA, Mao DS, Lu GZ (2015) Manganese oxide/mesoporous carbon spherical composite: study on its enhanced catalytic and electrochemical performance. In: Gao Y (ed) Proceedings of the international conference on chemical, material and food engineering, vol 22. AER-advances in engineering research. Atlantis Press, Paris, pp 363–366

[151] Tang QQ, Chen MM, Yang CY, Wang WQ, Bao H, Wang GC (2015) Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl Mater Interfaces 7(28):15303–15313. https://doi.org/10.1021/acsami.5b03148

[152] Amade R, Jover E, Caglar B, Mutlu T, Bertran E (2011) Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J Power Sources 196(13):5779–5783. https://doi.org/10.1016/j.jpowsour.2011.02.029

[153] Zhang CY, Zhu EH, Wang ZX, Sun P, Ren YJ, Zhu JL, Zhu JG, Xiao DQ (2014) Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors. Nanoscale Res Lett 9:8. https://doi.org/10.1186/1556-276x-9-490

[154] Ge J, Yao H-B, Hu W, Yu X-F, Yan Y-X, Mao L-B, Li H-H, Li S-S, Yu S-H (2013) Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy 2(4):505–513. https://doi.org/10.1016/j.nanoen.2012.12.002

[155] Abdah M, Edris N, Kulandaivalu S, Rahman NA, Sulaiman Y (2018) Supercapacitor with superior electrochemical properties derived from symmetrical manganese oxide-carbon fiber coated with polypyrrole. Int J Hydrogen Energy 43(36):17328–17337. https://doi.org/10.1016/j.ijhydene.2018.07.093

[156] Wang J-G, Yang Y, Huang Z-H, Kang F (2013) Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. J Power Sources 224:86–92. https://doi.org/10.1016/j.jpowsour.2012.09.075

[157] He SJ, Chen W (2015) Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J Power Sources 294:150–158. https://doi.org/10.1016/j.jpowsour.2015.06.051

[158] Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10(2):538–545. https://doi.org/10.1039/C6EE03716J

[159] Yi T-F, Mei J, Xie Y, Luo S (2019) Hybrid porous flower-like NiO@CeO2 microspheres with improved pseudocapacitive properties. Electrochim Acta 297:593–605. https://doi.org/10.1016/j.electacta.2018.12.037

[160] Yi T-F, Pan J-J, Wei T-T, Li Y, Cao G (2020) NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today 33:100894. https://doi.org/10.1016/j.nantod.2020.100894

[161] Ouyang Y, Xia XF, Ye HT, Wang L, Jiao XY, Lei W, Hao QL (2018) Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl Mater Interfaces 10(4):3549–3561. https://doi.org/10.1021/acsami.7b16021

[162] Li Y, Pan J, Wu J, Yi T, Xie Y (2019) Mesoporous NiCo2O4 nanoneedles@MnO2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors. J Energy Chem 31:167–177. https://doi.org/10.1016/j.jechem.2018.06.009

[163] Yi T-F, Qiu L-Y, Mei J, Qi S-Y, Cui P, Luo S, Zhu Y-R, Xie Y, He Y-B (2020) Porous spherical NiO@NiMnO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull 65(7):546–556. https://doi.org/10.1016/j.scb.2020.01.011

[164] Abbas Q, Ratajczak P, Babuchowska P, Comte AL, Bélanger D, Brousse T, Béguin F (2015) Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J Electrochem Soc 162(5):A5148–A5157. https://doi.org/10.1149/2.0241505jess

[165] Dai Z, Peng C, Chae JH, Ng KC, Chen GZ (2015) Cell voltage versus electrode potential range in aqueous supercapacitors. Sci Rep 5(1):9854. https://doi.org/10.1038/srep09854

[166] Yu M, Lin D, Feng H, Zeng Y, Tong Y, Lu X (2017) Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew Chem Int Ed 56(20):5454–5459. https://doi.org/10.1002/anie.201701737
[167] Weng Z, Li F, Wang D-W, Wen L, Cheng H-M (2013) Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew Chem Int Ed 52(13):3722–3725. https://doi.org/10.1002/anie.201209259

[168] Yu M, Lu Y, Zheng H, Lu X (2018) New insights into the operating voltage of aqueous supercapacitors. Chemistry Eur J 24(15):3639–3649. https://doi.org/10.1002/chem.201704420

[169] Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48(15):4351–4361. http://dx.doi.org/10.1016/j.carbon.2010.07.049

[170] Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5(2):5842–5850. https://doi.org/10.1039/C1EE02262H

[171] Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. MRS Bull 36(7):513–522. https://doi.org/10.1557/mrs.2011.137

[172] Shimizu W, Makino S, Takahashi K, Imanishi N, Sugimoto W (2013) Development of a 4.2 V aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. J Power Sources 241:572–577. https://doi.org/10.1016/j.jpowsour.2013.05.003

[173] Li Y, Xu ZY, Wang DW, Zhao J, Zhang HH (2017) Snowflake-like core-shell alpha-MnO2@delta-MnO2 for high performance asymmetric supercapacitor. Electrochim Acta 251:344–354. https://doi.org/10.1016/j.electacta.2017.08.146

[174] Patil UM, Sohn JS, Kulkarni SB, Park HG, Jung Y, Gurav KV, Kim JH, Jun SC (2014) A facile synthesis of hierarchical alpha-MnO2 nanoﬁbers on 3D-graphene foam for supercapacitor application. Mater Lett 119:135–139. https://doi.org/10.1016/j.matlet.2013.12.105

[175] Yang S, Liu Y, Hao Y, Yang X, Goddard WA III, Zhang XL, Cao B (2018) Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci 5(4):1700659. https://doi.org/10.1002/advs.201700659

[176] Chen Y, Jing C, Fu X, Shen M, Cao T, Huo W, Liu X, Yao H-C, Zhang Y, Yao KX (2020) In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor. Appl Surf Sci 503:144123. https://doi.org/10.1016/j.apsusc.2019.144123

[177] Mohd Abdah MAA, Azman NHH, Kulandaivalu S, Abdul Rahman N, Abdullah AH, Sulaiman Y (2019) Potential-static deposition of poly(3, 4-ethylenedioxythiophene) and manganese oxide on porous functionalised carbon fibers as an advanced electrode for asymmetric supercapacitor. J Power Sources 444:227324. https://doi.org/10.1016/j.jpowsour.2019.227324

[178] Chen LF, Huang J, Zeng R, Xiong YS, Wei JC, Yuan K, Chen YW (2020) Regulating voltage window and energy density of aqueous asymmetric supercapacitors by pinecone-like hollow Fe2O3/MnO2 nano-heterostructure. Adv Mater Interfaces. https://doi.org/10.1002/admi.201901729

[179] Zheng YY, Zhang XD, Tian YR, Zhang HP, Guo QP, Zhang YD, Luo JJ, Li ZY (2019) MnO2 nanoparticle improved cyclic stability of carbon fiber cloth supported NiO battery-type supercapacitor materials by microwave solid-state method. J Electrochem Soc 166(16):A3972–A3979. https://doi.org/10.1149/2.0201916jes

[180] Kolathodi MS, Palci M, Natarajan TS, Singh G (2019) MnO2 encapsulated electrospun TiO2 nanofibers as electrodes for asymmetric supercapacitors. Nanotechnology. https://doi.org/10.1088/1361-6528/ab5d64

[181] Mohd Abdah MAA, Azman NHH, Kulandaivalu S, Sulaiman Y (2019) Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide/activated carbon with superior electrochemical performance. Sci Rep 9(1):16782. https://doi.org/10.1038/s41598-019-53421-w

[182] Li S, Yang K, Ye P, Ma K, Zhang Z, Huang Q (2020) Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl Surf Sci 503:144090. https://doi.org/10.1016/j.apsusc.2019.144090

[183] Xiao SF, Huang JX, Lin C, Xie A, Lin BZ, He LW, Sun DY (2020) Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro/mesoporous hierarchy in Co3O4/C composite for asymmetric supercapacitors. Microporous Mesoporous Mater 291:8. https://doi.org/10.1016/j.micromeso.2019.109709

[184] Yin Q, He L, Lian J, Sun J, Xiao S, Luo J, Sun D, Xie A, Lin B (2019) The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon 155:147–154. https://doi.org/10.1016/j.carbon.2019.08.060

[185] He CG, Jiang YL, Zhang XF, Cui X, Yang YK (2020) A simple glucose-blowing approach to graphene-like foam/NiO composites for asymmetric supercapacitors. Energy Technol 9:15–20. https://doi.org/10.1002/ente.201900923

[186] Zhang ZF, Su XR, Zhu YY, Chen ZH, Fang ZB, Luo XJ (2019) Porous multishelled NiO hollow microspheres encapsulated within three-dimensional graphene as flexible freestanding electrodes for high-performance
supercapacitors. Nanoscale 11(34):16071–16079. https://doi.org/10.1039/c9nr05117a

[187] Paliwal MK, Meher SK (2019) Hierarchically organized ultrathin NiO nanofibers/highly defective-rGO heteronanocomposite: an advanced electrode material for asymmetric supercapacitors. Adv Mater Interfaces 6(20):1900889. https://doi.org/10.1002/admi.201900889

[188] Choi N-S, Chen Z, Freunberger SA, Ji X, Sun Y-K, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10004. https://doi.org/10.1002/anie.201201429

[189] Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210. https://doi.org/10.1126/science.1249625

[190] Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790. https://doi.org/10.1039/C4CS0266K

[191] Aravindan V, Gnanaraj J, Lee Y-S, Madhavi S (2014) Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev 114(23):11619–11635. https://doi.org/10.1021/cr5000915

[192] Ding J, Hu W, Paek E, Mitlin D (2018) Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev 118(14):6457–6498. https://doi.org/10.1021/acs.chemrev.8b00116

[193] Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811. https://doi.org/10.1149/1.1379565

[194] Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 28–30:1172–1175. https://doi.org/10.1016/0167-2738(88)90351-7

[195] Khotenko V, Raymundo-Piñero E, Béguin F (2008) High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources 177(2):643–651. https://doi.org/10.1016/j.jpowsour.2007.11.101

[196] Han X, Han P, Yao J, Zhang S, Cao X, Xiong J, Zhang J, Cui G (2016) Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high-performance lithium ion capacitors. Electrochim Acta 196:603–610. https://doi.org/10.1016/j.electacta.2016.02.185

[197] Jayaraman S, Jain A, Ulaganathan M, Edison E, Srinivasan MP, Balasubramanian R, Aravindan V, Madhavi S (2017) Li-ion vs. Na-ion capacitors: a performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chem Eng J 316:506–513. https://doi.org/10.1016/j.cej.2017.01.108

[198] Liu M, Zhang Z, Dou M, Li Z, Wang F (2019) Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon 151:28–35. https://doi.org/10.1016/j.carbon.2019.05.065

[199] Li ZY, Chen GR, Deng J, Li D, Yan TT, An ZX, Shi LY, Zhang DS (2019) Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustain Chem Eng 7(18):15394–15403. https://doi.org/10.1021/acs.suschemeng.9b02849

[200] Yun YS, Cho SY, Kim H, Jin H-J, Kang K (2015) Ultrathin hollow carbon nanospheres for pseudocapacitive sodium-ion storage. ChemElectroChem 2(3):359–365. https://doi.org/10.1002/celc.201402359

[201] Ding J, Li Z, Cui K, Boyer S, Karpuzov D, Mitlin D (2016) Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23:129–137. https://doi.org/10.1016/j.nanoen.2016.03.014

[202] Wang H, Mitlin D, Ding J, Li Z, Cui K (2016) Excellent energy–power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater Chem A 4(14):5149–5158. https://doi.org/10.1039/C6TA01392A

[203] Liu Z, Zhang X, Huang D, Gao B, Ni C, Wang L, Ren Y, Wang J, Gou H, Wang G (2020) Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chem Eng J 379:122418. https://doi.org/10.1016/j.cej.2019.122418

[204] Chojnacka A, Pan X, Jeżowski P, Béguin F (2019) High performance hybrid sodium-ion capacitor with tin phosphide used as battery-type negative electrode. Energy Storage Materials 22:200–206. https://doi.org/10.1016/j.ensm.2019.07.016

[205] Chu J, Yu Q, Yang D, Xing L, Lao C-Y, Wang M, Han K, Liu Z, Zhang L, Du W, Xi K, Bao Y, Wang W (2018) Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell “nano-crisps” for high-performance potassium-ion batteries. Appl Mater Today 13:344–351. https://doi.org/10.1016/j.apmt.2018.10.004

[206] Jian ZL, Luo W, Ji XL (2015) Carbon Electrodes for K-Ion Batteries. J Am Chem Soc 137(36):11566–11569. https://doi.org/10.1021/jacs.5b06809

[207] Singh N, Arthur TS, Ling C, Matsui M, Mizuno F (2013) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49(2):149–151. https://doi.org/10.1039/c2cc34673g
[208] Wang M, Jiang CL, Zhang SQ, Song XH, Tang YB, Cheng HM (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry 10(6):667–672. https://doi.org/10.1038/s41557-018-0045-4

[209] Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47(47):12610–12612. https://doi.org/10.1039/c1cc15779e

[210] Xu CJ, Li BH, Du HD, Kang FY (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 51(4):933–935. https://doi.org/10.1002/anie.201106307

[211] Chen M, Chen J, Zhou W, Xu J, Wong C-P (2019) High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J Mater Chem A 7(46):26524–26532. https://doi.org/10.1039/C9TA10944G

[212] Xu C, Chen Y, Shi S, Li J, Kang F, Su D (2015) Secondary batteries with multivalent ions for energy storage. Sci Rep 5(1):14120. https://doi.org/10.1038/srep14120

[213] Dong L, Yang W, Yang W, Li Y, Wu W, Wang G (2019) Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J Mater Chem A 7(23):13810–13832. https://doi.org/10.1039/C9TA02678A

[214] Ma X, Cheng J, Dong L, Liu W, Mou J, Zhao L, Wang J, Ren D, Wu J, Xu C, Kang F (2019) Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater 20:335–342. https://doi.org/10.1016/j.ensm.2018.10.020

[215] Wang H, Wang M, Tang Y (2018) A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater 13:1–7. https://doi.org/10.1016/j.ensm.2017.12.022

[216] Dong L, Ma X, Li Y, Zhao L, Liu W, Cheng J, Xu C, Li B, Yang Q-H, Kang F (2018) Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater 13:96–102. https://doi.org/10.1016/j.ensm.2018.01.003

[217] Wang F, Liu Z, Wang X, Yuan X, Wu X, Zhu Y, Fu L, Wu Y (2016) A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance. J Mater Chem A 4(14):5115–5123. https://doi.org/10.1039/C6TA01398H

[218] Li Z, Xiang K, Xing WT, Carter WC, Chiang YM (2015) Reversible aluminum-ion intercalation in prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv Energy Mater 5(5):6. https://doi.org/10.1002/aenm.201401410

[219] Yoo HD, Shterenberg I, Gofer Y, Doe RE, Fischer CC, Ceder G, Aurbach D (2014) A magnesium-activated carbon hybrid capacitor. J Electrochem Soc 161(3):A410–A415. https://doi.org/10.1149/2.08240jes

[220] Wu N, Yao W, Song X, Zhang G, Chen B, Yang J, Tang Y (2019) A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature. Adv Energy Mater 9(16):1803865. https://doi.org/10.1002/aenm.201803865

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.