Hydroxide exchange membrane fuel cells offer possibility of adopting platinum-group-metal-free catalysts to negotiate sluggish oxygen reduction reaction. Unfortunately, the ultrafast hydrogen oxidation reaction (HOR) on platinum decreases at least two orders of magnitude by switching the electrolytes from acid to base, causing high platinum-group-metal loadings. Here we show that a nickel-molybdenum nanoalloy with tetragonal MoNi$_4$ phase can catalyze the HOR efficiently in alkaline electrolytes. The catalyst exhibits a high apparent exchange current density of 3.41 milliamperes per square centimeter and operates very stable, which is 1.4 times higher than that of state-of-the-art Pt/C catalyst. With this catalyst, we further demonstrate the capability to tolerate carbon monoxide poisoning. Marked HOR activity was also observed on similarly designed WN$_4$ catalyst. We attribute this remarkable HOR reactivity to an alloy effect that enables optimum adsorption of hydrogen on nickel and hydroxy on molybdenum (tungsten), which synergistically promotes the Volmer reaction.
Over the past few years, market penetration by hydrogen fuel cell vehicles has begun owing to the tremendously advanced proton exchange membrane fuel cell (PEMFC) technologies. Nevertheless, considerable market barriers still exist because current PEMFCs rely highly on platinum (Pt)-based catalysts that drive the sluggish cathode oxygen reduction reaction (ORR) at low pHs, which raises poor cost competitiveness. Alternatively, hydroxide exchange membrane fuel cells (HEMFCs) give critical merits over PEMFCs, which permit the adoption of Pt group metal (PGM)-free catalysts to negotiate the formidable ORR, leading to substantial cost reduction. Unfortunately, the anode hydrogen oxidation reaction (HOR) activity on PGM catalysts (e.g., Pt, Ir, and Pd) is about to three orders of magnitude slower in alkali than in acidic electrolytes. This consequently causes higher PGM loadings at the anode that could largely offset the reduced cost from the use of PGM-free cathodes. As a result, the development of durable PGM-free catalytic materials with high intrinsic HOR activity in alkali is important to the eventual success of HEMFC technology. Recent advances in the design of alkaline HOR catalysts and related mechanistic understanding have primarily focused on PGMs and their alloys. Numerous PGMs, such as Pt, palladium (Pd), iridium (Ir), ruthenium (Ru), and rhodium (Rh) have been studied for HOR in alkaline electrolytes, among which Pt and Ir are particularly active and stable. Moreover, alloying PGMs with other metals can enable performance enhancements resulting from the modified surface structures; typical examples include PtNi, PtRu, Pt-coated Cu, body-centered cubic PdCu, and others. In the quest to understand why the HOR reactivity in alkaline media is significantly slower than that in acid on PGMs, there has been extensive debate over whether such sluggish HOR kinetics in alkali is determined by hydrogen binding energy (HBE) or OH binding energy (OHBE)/oxophilicity, leading to a conclusive mechanistic relevance has somewhat hampered success in designing better-performing HOR catalysts from PGMs. With regard to cost-effective HEMFC anode, replacement of the PGMs with PGM-free catalysts—for example, nickel (Ni), PtNi, Ni2Ni, NiCo/C, Ni/Co/C, NiMo/C, and Cr-decorated Ni—has been intensively proposed. However, the HOR activity and durability of these Ni-based catalysts are ordinary. To our best knowledge, although numerous efforts have been devoted to developing PGM-free catalysts for alkaline HOR since 1960, no catalyst with activity superior to commercial Pt/C has been reported, which severely limits their practical adoption in HEMFCs.

Herein, we report an important development in totally PGM-free HEMFC anode by using bimetallic MoNi4 alloy as a catalyst, which enables the HOR catalysis in alkaline electrolytes highly efficient. The nanostructured MoNi4 catalyst yields a geometric exchange current density of 3.41 mA cm⁻² toward the HOR, which is 1.4 times higher than that of commercial Pt/C catalyst and compares superior to previously reported PGM-free catalysts measured in alkali. At 50 mV, a geometric kinetic current density of 33.8 mA cm⁻² is obtained for MoNi4 catalyst, which represents 105- and 2.8-fold increase as compared to the freshly synthesized Ni and commercial Pt/C catalyst, respectively. This alloy catalyst also shows impressive tolerance against surface poisoning by impurity carbon monoxide (CO) in hydrogen fuel. We find that the HOR activity does not degrade obviously after 20 h of operation. The high reactivity is obtained by the optimized Ni–molybdenum (Mo) alloy nanostructure and surface that offer synergistic optimization for the adsorption of hydrogen on Ni and hydroxyl on adjacent Mo (tungsten (W)). Similarly designed WNi4 alloy also demonstrates marked HOR activity in alkaline environments. Our results thus suggest a promising alloy design strategy for producing active and durable HOR catalysts for low-cost HEMFC anodes.

Results

Synthesis and characterization of Ni–Mo/W. We designed HOR catalysts on the basis of Ni and Mo (W) because they were thought to be essential elements of hydrogenase enzymes and because Ni-based compounds have been observed to mediate the HOR catalysis in alkali with mild rates. First, we synthesized the sheet-like Mo (W)-doped Ni(OH)2 precursors through microwave heating of Ni(NO3)2·6H2O and (NH4)6Mo7O24·4H2O (or (NH4)10W12O41·6H2O) in a NH2·H2O/ethylen glycol/H2O mixture at 200 °C (Fig. 1a and Supplementary Figs. 1 and 2). The resultant green powders were then annealed in hydrogen/argon (H2/Ar; 5:95) atmosphere at 400 °C to produce Mo–Ni alloy (or 500 °C for W–Ni alloy; Fig. 1a). Our microwave reactor equipped with an automatic arm enables us to gain multigram-scale Mo–Ni alloys in one batch (insets in Fig. 1b, e), implying a potentially large-scale use. Both two obtained alloys reveal similar morphologies when imaged by scanning electron microscopy (SEM) (Fig. 1b, e). More slit-like pores that were generated by aggregation of nanosheets during annealing process are seen for Mo–Ni alloy (Fig. 1b). Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images with corresponding fast FT analyses demonstrate the formation of tetragonal MoNi4 and WNi4 crystalline phases (Fig. 1d, g, insets). The major peak at ~2.2 Å for NiO reference, indicating the metallic Ni and commercial Pt/C have been reported, which severely limits their practical adoption in HEMFCs.

Herein, we report an important development in totally PGM-free HEMFC anode by using bimetallic MoNi4 alloy as a catalyst, which enables the HOR catalysis in alkaline electrolytes highly efficient. The nanostructured MoNi4 catalyst yields a geometric exchange current density of 3.41 mA cm⁻² toward the HOR, which is 1.4 times higher than that of commercial Pt/C catalyst and compares superior to previously reported PGM-free catalysts measured in alkali. At 50 mV, a geometric kinetic current density of 33.8 mA cm⁻² is obtained for MoNi4 catalyst, which represents 105- and 2.8-fold increase as compared to the freshly synthesized Ni and commercial Pt/C catalyst, respectively. This alloy catalyst also shows impressive tolerance against surface poisoning by impurity carbon monoxide (CO) in hydrogen fuel. We find that the HOR activity does not degrade obviously after 20 h of operation. The high reactivity is obtained by the optimized Ni–molybdenum (Mo) alloy nanostructure and surface that offer synergistic optimization for the adsorption of hydrogen on Ni and hydroxyl on adjacent Mo (tungsten (W)). Similarly designed WNi4 alloy also demonstrates marked HOR activity in alkaline environments. Our results thus suggest a promising alloy design strategy for producing active and durable HOR catalysts for low-cost HEMFC anodes.

Results

Synthesis and characterization of Ni–Mo/W. We designed HOR catalysts on the basis of Ni and Mo (W) because they were thought to be essential elements of hydrogenase enzymes and because Ni-based compounds have been observed to mediate the HOR catalysis in alkali with mild rates. First, we synthesized the sheet-like Mo (W)-doped Ni(OH)2 precursors through microwave heating of Ni(NO3)2·6H2O and (NH4)6Mo7O24·4H2O (or (NH4)10W12O41·6H2O) in a NH2·H2O/ethylen glycol/H2O mixture at 200 °C (Fig. 1a and Supplementary Figs. 1 and 2). The resultant green powders were then annealed in hydrogen/argon (H2/Ar; 5:95) atmosphere at 400 °C to produce Mo–Ni alloy (or 500 °C for W–Ni alloy; Fig. 1a). Our microwave reactor equipped with an automatic arm enables us to gain multigram-scale Mo–Ni alloys in one batch (insets in Fig. 1b, e), implying a potentially large-scale use. Both two obtained alloys reveal similar morphologies when imaged by scanning electron microscopy (SEM) (Fig. 1b, e). More slit-like pores that were generated by aggregation of nanosheets during annealing process are seen for Mo–Ni alloy (Fig. 1b). Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images with corresponding fast FT analyses demonstrate the formation of tetragonal MoNi4 and WNi4 crystalline phases (Fig. 1d, g, insets). The major peak at ~2.2 Å for NiO reference, indicating the metallic Ni and commercial Pt/C have been reported, which severely limits their practical adoption in HEMFCs.

Herein, we report an important development in totally PGM-free HEMFC anode by using bimetallic MoNi4 alloy as a catalyst, which enables the HOR catalysis in alkaline electrolytes highly efficient. The nanostructured MoNi4 catalyst yields a geometric exchange current density of 3.41 mA cm⁻² toward the HOR, which is 1.4 times higher than that of commercial Pt/C catalyst and compares superior to previously reported PGM-free catalysts measured in alkali. At 50 mV, a geometric kinetic current density of 33.8 mA cm⁻² is obtained for MoNi4 catalyst, which represents 105- and 2.8-fold increase as compared to the freshly synthesized Ni and commercial Pt/C catalyst, respectively. This alloy catalyst also shows impressive tolerance against surface poisoning by impurity carbon monoxide (CO) in hydrogen fuel. We find that the HOR activity does not degrade obviously after 20 h of operation. The high reactivity is obtained by the optimized Ni–molybdenum (Mo) alloy nanostructure and surface that offer synergistic optimization for the adsorption of hydrogen on Ni and hydroxyl on adjacent Mo (tungsten (W)). Similarly designed WNi4 alloy also demonstrates marked HOR activity in alkaline environments. Our results thus suggest a promising alloy design strategy for producing active and durable HOR catalysts for low-cost HEMFC anodes.
Fig. 1 Synthesis and physical characterization of MoNi₄ and WNi₄ alloys. a Schematic illustration of the synthesis of MoNi₄ and WNi₄ alloys. b, e SEM images of MoNi₄ and WNi₄ alloys, respectively. Scale bars, 200 nm. Insets in b, e are photographs of MoNi₄ (2.2 g) and WNi₄ (4.0 g) alloys synthesized in one batch. c, f STEM images of MoNi₄ and WNi₄ alloys, respectively. Scale bars, 200 nm c and 50 nm f. d, g Atomic-resolution HAADF-STEM images of typical MoNi₄ and WNi₄ particles, respectively. Scale bars, 2 nm. Insets in d, g show corresponding FFT patterns. The white arrows denote atomic steps. h XRD patterns of MoNi₄, WNi₄, and freshly synthesized Ni. Insets give corresponding crystal structures. i STEM-EDX elemental mappings of MoNi₄ and WNi₄ alloys. Scale bars, 500 nm (up) and 100 nm (down).
indicates the damped coordination structure of Ni. In addition, the Ni K-edge EXAFS fittings show that the first-shell Ni–Mo(W) coordination numbers (CNs) decrease from Ni (~10.5) to MoNi4 (~8.8) and WNi4 (~8.6), respectively. (Fig. 2c, Supplementary Fig. 9, and Supplementary Table 2). The lower CN could be attributed to the rich surface steps on our alloyed catalysts (Fig. 1d, g), which may increase the active sites that modulate the adsorption capability. The FT curves at Mo K and W L3 edges in Fig. 2d show predominant peaks at ~2.2 Å, corresponding to Mo–Ni and W–Ni bonds (Supplementary Figs. 10 and 11), respectively. The results from EXAFS wavelet transform (Fig. 2e) —a powerful technique that can discriminate the backscattering atoms41—exhibit only one intensity maximum at ~8.0 Å−1 in R space that corresponds to Mo–Ni and W–Ni bonds in MoNi4 and WNi4 alloys. By contrast, wavelet transform analysis of Mo foil and W powder references give higher intensity maximum (Fig. 2e), suggesting that Mo/W atoms are forming structures in which their first coordination shell is formed only by Ni atoms and no local Mo and W metals generate in the prepared alloys, in agreement with the results in Fig. 2d. In addition, the X-ray photoelectron spectroscopy (XPS) analyses indicate a superior surface passivation resistance of our alloyed catalysts as compared to single Ni (Supplementary Fig. 12). Together, we conclude that alloying Ni with Mo(W) cerates clear compositional and structural modulations, which we expect to benefit the HOR catalysis in alkaline electrolytes.

Electrocatalytic HOR in alkaline electrolytes. We now examine the electrocatalytic activity of the MoNi4 and WNi4 catalysts toward HOR in H2-saturated 0.1 M KOH electrolyte in a three-electrode setup; with reference measurements of freshly synthesized Ni, Ni foil, and NiO for MoNi4, WNi4, and freshly synthesized Ni by EXAFS spectra curve fitting. The CN of bulk Ni (Ni foil) is 12. (d) Fourier transforms of k3-weighted EXAFS spectra of Mo K-edge (up) and W L3-edge (down), respectively. (e) Corresponding wavelet transforms of k3-weighted EXAFS spectra of Mo K-edge (up) and W L3-edge (down), respectively.
onset potential for yielding HOR current as low as 0 V versus the reversible hydrogen electrode (RHE), indicating their remarkable energetics for HOR in alkali. By contrast, the freshly synthesized Ni catalyst affects only negligible HOR activity. The two PGM-free HOR alloy catalysts can reach the diffusion-limiting current in the potential region >0.05 V, while a mixed kinetic-diffusion control region happens between 0 to 0.05 V. Figure 3a also reveals that the MoNi4 catalyst even outperforms the state-of-the-art Pt/C catalyst from the kinetic to the diffusion-limiting regions. The half-wave potential for MoNi4 catalyst at 1600 r.p.m. is mere 14 mV, which is ~5 mV lower than that of the Pt/C catalyst, further evidencing excellent HOR activity of the MoNi4 catalyst.

We then studied the HOR polarization curves on our MoNi4 and WNi4 catalysts as a function of the rotation rate, where the...
plateau current density grows with increasing rotation rate due to the promoted mass transport (Fig. 3b, c). The Koutecky–Levich plots constructed at 25 mV show a linear relationship between the inverse of overall current density and the square root of the rotation rate, which yield calculated slopes of 4.60 cm² mA⁻¹ s⁻¹/2 for MoNi₄ (inset in Fig. 3b) and 4.32 cm² mA⁻¹ s⁻¹/2 for WNi₄ (inset in Fig. 3c), reasonably matching with the theoretical value of 4.87 cm² mA⁻¹ s⁻¹/2 for the two-electron HOR process. We further used Koutecky–Levich equation to calculate the kinetic current density (j₀). At 50 mV, a geometric j₀ of 33.8 mA cm⁻² was obtained for MoNi₄ catalyst, which represents 105- and 2.8-fold increase compared with those of freshly synthesized Ni and commercial Pt/C catalysts (Fig. 3d).

Next, we extracted the exchange current density (j₀) on studied catalysts from linear fitting of micropolarization regions (−5 to 5 mV; Supplementary Fig. 16). The MoNi₄ catalyst shows a geometric j₀ of 3.41 mA cm⁻², far higher than 0.19 mA cm⁻² for the freshly synthesized Ni and 2.47 mA cm⁻² for the Pt/C catalyst (Fig. 3d and Supplementary Table 3). The geometric j₀ on WNi₄ catalyst is 1.87 mA cm⁻², which is slightly lower than that of Pt/C catalyst. These values are in good agreement with the fitting results of Butler–Volmer equation in the Tafel regions (Fig. 3c; see “Methods” for details). Intrinsic HOR activities of studied catalysts were further compared by the electrochemical active surface (ECAS)-normalized j₀ (for details see “Methods” and Supplementary Figs. 17 and 18). The MoNi₄ and WNi₄ catalysts deliver very high ECAS-normalized j₀ of 0.065 and 0.068 mA cm⁻², respectively, which, to the best of our knowledge, has not been achieved by any other PGM-free catalysts in alkaline electrolytes, including various Ni-based compounds synthesized by other methods (Supplementary Fig. 19 and Supplementary Table 4).

In addition, we probed the activation energy (Ea) of the HOR on studied catalysts via plotting geometric j₀ with the inverse of temperature (Fig. 3f). It has been found that a linear relationship between 283 and 313 K follows the Arrhenius behavior, from which Ea values of 18.59, 27.42, and 20.07 kJ mol⁻¹ were obtained for the MoNi₄, WNi₄, and Pt/C catalysts (Fig. 3f and Supplementary Figs. 20 and 21), respectively. We note that the Ea of 20.07 kJ mol⁻¹ measured for Pt/C catalyst matches reasonably with 23 kJ mol⁻¹ for Pt(110) reported previously. The considerably smaller Ea values achieved for MoNi₄ catalyst suggest marked kinetics for HOR in alkaline environments, even outperforming the Pt/C benchmark. Moreover, we conducted a series of control experiments and disclosed that the Mo(W) to Ni ratio and the annealing temperature are critical to the HOR activity (Supplementary Figs. 22 and 25). These experiments show that Mo–Ni and W–Ni alloys with Mo(W) to Ni ratios of 1:4 obtained by annealing at 400 and 500°C, respectively, would lead to the best HOR performances. We further note that our MoNi₄ sheets outperform conventional MoNi₄ nanoparticles for HOR owing to the porous structure that offers rich active sites (Supplementary Fig. 26).

The results above demonstrate exceptional HOR catalysis in alkaline electrolytes on MoNi₄ and WNi₄ catalysts, from which the reactivity of MoNi₄ even exceeds that of Pt/C benchmark. Besides activity, another very important factor for future PEMFC anode applications is electrochemical and operating stabilities. We therefore conducted aggressive long-term stability measurements on the MoNi₄ and WNi₄ catalysts (Fig. 4). First, we performed accelerated stability tests by applying linear potential scans between 0.05 and 0.15 V at 100 mV s⁻¹ in H₂-saturated 0.1 M KOH electrolytes at room temperature. At 50 mV overpotential, the HOR current density for MoNi₄ catalyst shows a small loss of 0.25 mA cm⁻² after 2000 cycles (Fig. 4a), versus a loss of 0.41 mA cm⁻² for WNi₄ catalyst (Fig. 4b). Second, the studied catalysts were deposited onto carbon papers (catalyst loading: 2 mg cm⁻²) and assessed the operational stability by means of chronoamperometry (j−t). Figure 4c shows that the current density at 60 mV is stable without noticeable decay during a 20 h continuous test for MoNi₄ catalyst, whereas no HOR current was generated in Ar-saturated 0.1 M KOH at the same overpotential (Supplementary Fig. 27). Multiple “post-mortem” characterizations display that the morphology and structure of MoNi₄ catalyst are well maintained (Supplementary Figs. 28–30). By contrast, Pt/C catalyst undergoes a marked degradation, which retains a mere 57% of its original current density after 20 h operation. This large drop could be ascribed to the gradual agglomeration of Pt nanoparticles during the stability test (Supplementary Fig. 31). The WNi₄ catalyst also shows degradation, but at a much slower manner in comparison to the Pt/C catalyst (Fig. 4c and Supplementary Figs. 28, 29, 32). These results thus suggest that our MoNi₄ and WNi₄ catalysts have stability much better than the commercial Pt/C catalyst.

CO-tolerance evaluation. In fuel cells, PGM catalysts (especially Pt) at the anodes are readily poisoned by impurity gas such as CO that exists in hydrogen fuel. Such poisoning is caused by the preferential CO binding on Pt, which consequently blocks the sites for hydrogen adsorption and dissociation. Unexpectedly, we observed that the MoNi₄ catalyst shows exciting HOR activity even in the presence of 20,000 p.p.m. CO (Fig. 4d). At the same CO concentration, no HOR activity on the Pt/C catalyst was detected, suggesting complete poisoning of the sites for H₂ oxidation by CO binding (Fig. 4d). Our density functional theory (DFT) calculations exhibit a significant higher CO adsorption ability of Pt as compared to the MoNi₄ alloy (Supplementary Fig. 33), leading to the surface of Pt covered by CO and thus deactivation. Moreover, the preferable OH adsorption on MoNi₄ surface assists in the oxidation of CO adsorbed, which also explains its notable CO-tolerance property. The high CO tolerance of our MoNi₄ alloy catalyst could further affect the quest for designing advanced fuel cell anodes based on PGM-free materials.

HOR enhancement mechanism. Although Ni and Ni-based materials have been extensively studied as PGM-free HOR catalysts in alkaline electrolytes, almost all previous Ni-based HOR catalysts demonstrate a relatively low level of activity and their long-term stability is also problematic. Here, the superb HOR catalytic capability observed on our readily made MoNi₄ and WNi₄ alloys prompted us to investigate the intrinsic mechanism of the high performances, thus offering a guide for the design of more advanced HOR catalysts.

We studied the electronic structures of MoNi₄, WNi₄, and freshly synthesized Ni by using ultraviolet photoelectron spectroscopy. From the valence band spectra, we found that all these catalysts have electronic bands across the Fermi level (E_F; Fig. 5a). The peaks located between 0 and 2 eV could be ascribed to the metal d-band, which reaches the maximum at 0.28, 0.80, and 1.09 eV for freshly synthesized Ni, MoNi₄, and WNi₄, respectively. The metal d-band maximum with respect to the E_F in our MoNi₄ and WNi₄ alloys shifted far away relative to the Ni reference. According to the d-band theory, these results suggest that the filling of metal-H anti-bonding states above E_F is improved for MoNi₄ and WNi₄ catalysts, affording them a weaker adsorption energy as compared to Ni. Despite the HOR mechanism on PGMs in alkaline environments is still under debate, previous studies have proposed that the low HOR activity on Ni catalyst was caused by the too high HBE. Thus, we partially attribute the notable HOR reactivity observed on MoNi₄ and WNi₄ catalysts to the appropriately weakened HBES.
We note that OHBE, or both HBE and OHBE, are also thought to be the activity descriptor for HOR catalysis, which have recently been theoretically predicted and experimentally explored\(^9,27\), such as the study on PdCu nanocatalyst for alkaline HOR\(^9\). Considering that CO can adsorb specifically on many metal surfaces\(^10,45,46\), we thus performed CO-stripping experiments to monitor the OH binding on our catalyst surface because OH\(_{ad}\) facilitates the removal of CO\(_{ad}\)\(^21\). Results of our CO-stripping experiments shown in Fig. 5b reveal that CO-stripping peaks at 0.52 and 0.49 V for MoNi\(_4\) and WNi\(_4\) catalysts, whereas the freshly synthesized Ni exhibits negligible CO-stripping peak. Some prior works have ascribed the sluggish HOR kinetics on Pt(111) to its weak OH\(_{ad}\) binding in alkali\(^8,23,27\). Our CO-stripping results lead to the HOR rate in alkaline electrolytes; and the striking HOR activity observed on MoNi\(_4\) and WNi\(_4\) alloys could be interpreted as the optimum adsorption of hydrogen on Ni and hydroxyl on Mo(W), thus boosting the rate-limiting Volmer reaction in alkaline HOR catalysis (Supplementary Figs. 42–45).

Taken together, our UPS and CO-stripping measurements, in conjunction with DFT calculations, have proposed that a synergistic interplay between HBE and OHBE likely determines the HOR rate in alkaline electrolytes; and the striking HOR reactivity observed on MoNi\(_4\) and WNi\(_4\) alloys could be ascribed to the synergistic interplay between HBE and OHBE. The simulations reveal that although these materials have stronger OHBE than Pt(111), their HBEs are unfortunately too strong (Fig. 5c), giving rise to the poor HOR activity (Supplementary Figs. 42–45).

Discussion

In conclusion, ultrahigh HOR activity in the alkaline electrolyte has been achieved on PGM-free bimetallic MoNi\(_4\) and WNi\(_4\), from which the MoNi\(_4\) exhibits exceptional apparent exchange current density that even outperforms the commercial Pt/C catalyst. We explain such high HOR rates of our catalysts by the optimized adsorption of both hydrogen and hydroxyl species owing to a synergistic effect between Ni and Mo (W). The catalysts do not show obvious deactivation over a 20-h testing period and demonstrate a good CO-tolerant property. We anticipate that further improvement in activity would be attainable by alloying other metallic elements into a single nanocatalyst. Our results reinforce the importance of alloy design concept for obtaining high-performance PGM-free HOR catalysts for future HEMFC anodes.

Methods

Synthesis of MoNi\(_4\) and WNi\(_4\) alloys. All chemicals were used as received without further purification. The MoNi\(_4\) and WNi\(_4\) alloys were synthesized through a two-step method. First, sheet-like Mo(W)-doped Ni(OH)\(_2\) precursors were created and optimized catalyst models of MoNi\(_4\)(211), WNi\(_4\)(211), Ni(111), and Pt(111) to represent the catalytic surfaces (see "Methods"; Supplementary Figs. 34–36). The DFT results show that the HBE of Ni(111) is too strong, while MoNi\(_4\)(211) gives a similar HBE with Pt(111) model (Fig. 5c–f). When comparing the OHBE of MoNi\(_4\)(211) with that of Pt(111), we observed a greatly promoted hydroxyl adsorption, which can explain the superior HOR reactivity of MoNi\(_4\) catalyst (Fig. 5c–f and Supplementary Table 3). Our computational results suggest that alloying Ni with Mo(W) not only weakens the HBE on Ni sites but also permits an enhanced OHBE on the Mo(W) sites, which substantially promote the key Volmer step (Supplementary Figs. 37–39), leading to the HOR enhancements. We also computed the HBE and OHBE of other catalysts, such as Mo, W, CoNi\(_4\), and FeNi\(_4\) for comparison (Fig. 5c and Supplementary Figs. 36 and 40), and more
synthesized by microwave heating route. Briefly, 872 mg of Ni(NO3)2·6H2O and 96 mg (NH4)6Mo7O24·4H2O or (190 mg (NH4)10W12O41·2H2O) were dispersed into 3 ml H2O in a 25 ml microwave glass vessel, followed by the addition of 1.2 ml NH3·H2O and 15 ml ethylene glycol. After stirring for 20 min, the mixture was irradiated in the microwave reactor (Monowave 450, Anton Paar) at 200 °C for 6 min with continuous magnetic stirring. After cooling to room temperature, the green powders were collected by centrifugation, washed, and dried for use. After that, the obtained Mo(W)-doped Ni(OH)2 precursors were annealed in H2/Ar (5/95) atmosphere at 400 and 500 °C for 1 h with a heating rate of 3 °C min−1 to produce MoNi4 and WNi4 alloys, respectively47.

Synthesis of CoNi4, FeNi4, Ni, Mo, and W. The CoNi4 and FeNi4 alloys were synthesized by the same method that was used for making MoNi4 alloy, while replacing the (NH4)6Mo7O24·4H2O with 218 mg Co(NO3)2·6H2O and 303 mg Fe (NO3)3·9H2O, respectively. The Ni nanopowder was synthesized through the same method for MoNi4 synthesis, but without adding (NH4)6Mo7O24·4H2O in the first step. The Mo metal was synthesized by annealing the MoO3 nanorods in H2/Ar (5/95) atmosphere at 800 °C for 2 h, in which the MoO3... nanorods were prepared according to a previous work46. The W metal was synthesized by annealing the WO3·H2O nanosheets in H2/Ar (5/95) atmosphere at 300 °C for 1 h and subsequently at 850 °C for 2 h, in which the WO3·H2O nanosheets were prepared according to the previous work49.

Characterization. SEM (Zeiss Supra 40) and TEM (Hitachi H7700) were performed to investigate the morphology of the samples. The STEM and HRTEM images, and EDX elemental mappings, were obtained on Atomic-Resolution Analytical Microscope (IEM-ARM 200F) with an acceleration voltage of 200 kV. N2 adsorption/desorption analysis was taken on an ASAP 2020 (Micromeritics, USA) at 77 K. XRD was conducted on the BL11U beamline of National Synchrotron Radiation Laboratory in Hefei (China).

XAFS measurements. The XAFS spectra (Ni K-edge, Mo K-edge, and W L3-edge) were collected at 1W1B station in Beijing Synchrotron Radiation Facility. The k3-weighted EXAFS spectra were obtained by subtracting the post-edge background from the overall absorption, followed by normalizing with respect to the edge-jump step. Next, the real (R) space is obtained by Fourier transformation of k3-weighted χ(k) data with a Hanning window (dk: 1.0 Å−1) to separate the signal contributions from different coordination shells. Least-squares curve parameter fitting was executed using the ARTEMIS module of the IFEFFIT software packages50 to study the quantitative structural parameters around the central atoms.

Electrochemical measurements. The HOR electrochemical measurements were conducted by a conventional three-electrode system on the electrochemical workstation (IM6ex, Zahner-Elektrik). An RDE with glassy carbon (PINE with a diameter of 5.00 mm and a disk area of 0.196 cm2) was applied as the working electrode. The Ag/AgCl (3.5 M KCl) electrode and carbon rod were used as reference electrode and counter electrode, respectively. The RHE calibration was performed in high-purity H2-saturated 0.1 M KOH with a Pt foil as the working electrode (ERHE = EAg/AgCl + 0.967 V).

To make working electrodes, 10 mg catalyst powders were dispersed in 920 µL ethanol with 80 µL Nafion (5 wt%), which yield a homogeneous ink by ultrasonication. Then, 10 µl catalyst ink was pipetted onto a glassy carbon electrode, resulting in a catalyst loading of ~0.5 mg cm−2. Before HOR measurements, 0.1 M KOH electrolyte was bubbled with high-purity H2 gas for 30 min. The electrodes were pre-cycled between −1.1 and −0.75 V versus Ag/AgCl with a sweep rate of 10 mV s−1 for 10 cycles to reach a stable state, then HOR polarization curves were collected with a sweep rate of 0.5 mV s−1. The electrochemical impedance spectroscopy measurement was carried out at 30 mV overpotential and an amplitude of the sinusoidal voltage of 5 mV (frequency range: 100 kHz–40 mHz). For stability test, the catalysts were loaded onto clear carbon...
DFT calculations. All the computations were performed by using the Vienna ab initio Simulation Package\(^\text{31}\) at the spin-polarized DFT level. The electronic exchange and correlation effects were described with the Perdew–Burke–Ernzerhof\(^\text{32}\) formalism within a generalized gradient approximation. The interaction between the ion cores and valence electrons was simulated by the all-electron projector-augmented wave\(^\text{33}\). The exchange correction treated for the transitional metals was based on the previous literatures, which includes the same metals as ours for reliability and comparability\(^\text{34,35}\). A kinetic cut-off energy of 500 eV was employed for the plane-wave expansion and a Gaussian electron smearing of 0.1 eV was used. The (3 × 3)-Ni(111), (3 × 3)-Mo(110), (3 × 3)-W(110), (3 × 3)-Pt(111), (11 × 1)-CuNi(111), (11 × 1)-FeNi(111), (11 × 1)-MoNi(211), and (11 × 1)-WNi(211) slabs with four layers and 15 Å vacuum layer were modeled to simulate the explored surfaces of metals and alloys. The convergence criteria for the forces and energy were 10\(^{-4}\) eV and 0.02 eV Å\(^{-1}\), respectively, with the bottom layer fixed, while other layers relaxed during geometry optimization. These convergence criteria were chosen according to the previous literatures to ensure the accuracy\(^\text{36,37}\). The 9 × 9 × 9 and 5 × 5 × 1 Monkhorst–Pack k-point grids were sampled for the bulk and slab structures, separately.

The adsorption energies of hydrogen and hydroxyl species with the explored catalysts were calculated according to \(E_{\text{ads}} = E_{\text{tot, slab}} - E_{\text{cat}} - E_{\text{H}}\) and \(E_{\text{OH,ads}} = E_{\text{OH,cat, slab}} - E_{\text{cat}} - E_{\text{OH}}\), where \(E_{\text{tot, slab}}\) and \(E_{\text{OH,cat, slab}}\) represent the energy of metals or alloys slab with the adsorbed hydrogen and hydroxyl species, while \(E_{\text{cat}}\), \(E_{\text{H}}\), and \(E_{\text{OH}}\) stand for the energies of the metals or alloys slabs, the hydrogen atoms, and hydroxyl species, respectively. A more negative \(E_{\text{ads}}\) or \(E_{\text{OH,ads}}\) indicates a larger binding energy.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

Received: 4 February 2020; Accepted: 25 August 2020; Published online: 22 September 2020.
34. Huang, Z. et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 7, 10141 (2016).
35. Lu, S., Pan, J., Huang, A., Zhuang, L. & Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).
36. Justi, E. W. & Winael, A. W. The DSK system of fuel cell electrodes. J. Electrochem. Soc. 108, 1073–1079 (1961).
37. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s⁻¹ for H₂ production. Science 333, 863–866 (2011).
38. Schüller, D., Fuller, A. L. & Gray, D. L. Nickel-molybdenum and nickel-tungsten dithioketals: hybrid models for hydrogenases and hydrodesulfurization. J. Am. Chem. Soc. 135, 4638–4642 (2013).
39. Mao, J. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 3, e1603068 (2017).
40. Yang, Y. et al. Versatile nickel–tungsten bimetals/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol. Green. Chem. 18, 3932–3939 (2016).
41. Funke, H., Scheinost, A. & Chulkalina, M. Wavelet analysis of extended x-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005).
42. Berlich, A., Liu, Y. C. & Morgner, H. Evaporation of Ni and carbon containing species onto NiO/NI as case study for metal support catalysts investigated by metastable induced electron spectroscopy (MIES). Radiat. Phys. Chem. 74, 201–209 (2005).
43. Lawniczak-Jablonska, K. & Heinonen, M. Influence of sputtering on the valence band of Mo, Ni and MoNi₅ alloy. J. Phys. F 18, 2451 (1988).
44. Chen, Z. et al. Tailoring the d-band centers enables Co₅N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem. Int. Ed. 57, 5076–5080 (2018).
45. Hori, Y. & Murata, A. Electrochemical evidence of intermediate formation of adsorbed CO in cathodic reduction of CO₂ at a nickel electrode. Electrochim. Acta 35, 1777–1780 (1990).
46. Cuesta, A. & Gutiérrez, C. Study by potential-modulated reflectance spectroscopy of the electroadsorption of CO on Ni in alkaline medium. J. Electroanal. Chem. 382, 153–159 (1993).
47. Tian, X., Zhao, P. & Sheng, W. Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 31, 1808066 (2019).
48. Li, B. et al. Phase and morphological control of MoO₃ₓ nanostuctures for efficient cancer thermagis therapy. Nanoscale 9, 11012–11016 (2017).
49. Zhang, N. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138, 8928–8935 (2016).
50. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).
51. Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).
52. Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).
53. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
54. Zhang, J. et al. Efficient hydrogen production on MoNi₄ electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017).
55. Zhuang, Z. et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 7, 10141 (2016).
56. Lu, S., Pan, J., Huang, A., Zhuang, L. & Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).
57. Justi, E. W. & Winael, A. W. The DSK system of fuel cell electrodes. J. Electrochem. Soc. 108, 1073–1079 (1961).
58. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s⁻¹ for H₂ production. Science 333, 863–866 (2011).
59. Schüller, D., Fuller, A. L. & Gray, D. L. Nickel-molybdenum and nickel-tungsten dithioketals: hybrid models for hydrogenases and hydrodesulfurization. J. Am. Chem. Soc. 135, 4638–4642 (2013).
60. Mao, J. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 3, e1603068 (2017).
61. Yang, Y. et al. Versatile nickel–tungsten bimetals/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol. Green. Chem. 18, 3932–3939 (2016).
62. Funke, H., Scheinost, A. & Chulkalina, M. Wavelet analysis of extended x-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005).
63. Berlich, A., Liu, Y. C. & Morgner, H. Evaporation of Ni and carbon containing species onto NiO/NI as case study for metal support catalysts investigated by metastable induced electron spectroscopy (MIES). Radiat. Phys. Chem. 74, 201–209 (2005).
64. Lawniczak-Jablonska, K. & Heinonen, M. Influence of sputtering on the valence band of Mo, Ni and MoNi₅ alloy. J. Phys. F 18, 2451 (1988).
65. Chen, Z. et al. Tailoring the d-band centers enables Co₅N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem. Int. Ed. 57, 5076–5080 (2018).
66. Hori, Y. & Murata, A. Electrochemical evidence of intermediate formation of adsorbed CO in cathodic reduction of CO₂ at a nickel electrode. Electrochim. Acta 35, 1777–1780 (1990).
67. Cuesta, A. & Gutiérrez, C. Study by potential-modulated reflectance spectroscopy of the electroadsorption of CO on Ni in alkaline medium. J. Electroanal. Chem. 382, 153–159 (1993).
68. Tian, X., Zhao, P. & Sheng, W. Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 31, 1808066 (2019).
69. Li, B. et al. Phase and morphological control of MoO₃ₓ nanostuctures for efficient cancer thermagis therapy. Nanoscale 9, 11012–11016 (2017).
70. Zhang, N. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138, 8928–8935 (2016).
71. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).
72. Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).
73. Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).
74. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
75. Zhang, J. et al. Efficient hydrogen production on MoNi₄ electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017).