Does good governance moderate the financial development-CO$_2$ emissions relationship?

Anis Omri
(Corresponding author)
Department of Economics, Faculty of Economics and Management of Nabeul, University of Carthage,
Tunisia
Email: elomriani@gmail.com

Montassar Kahia
Department of Finance and Economics, College of Business and Economics, Qassim University, P.O.Box:
6640, Buraiddah: 51452, Saudi Arabia.
LAREQUAD & FSEGT, University of Tunis El-Manar, Tunis, Tunisia

Bassem Kahouli
University of Ha'il, Community College, Management Information System Department, Ha'il, PO Box
2440, Saudi Arabia.
University of Sousse, Higher Institute of Finance and Taxation, Street January 18, 1952 - Sousse
4000, Tunisia

Abstract

This inquiry contributes to the previous literature by analyzing the empirical linkage between the development of the financial sector and carbon emissions in the presence of good governance. Specifically, we examine the ability of good governance in moderating the negative effect of financial development on environmental quality in the case of Saudi Arabia over the period 1996-2016. Different indicators of financial development and governance quality are included in the analysis. Using Dynamic Ordinary Least Squares (DOLS) estimator, we find that (i) an unconditional effect of the three indicators of financial development on increasing carbon emissions in the most models; (ii) the conditional impact of the indicators of governance quality increases carbon emissions in the most models; (iii) the interactions between the indicators of governance and the indicators of financial development are negative and statistically significant only in the models pertaining to political and institutional governance, meaning that the development of financial sector reduces carbon emissions if it is accompanied by good institutional and political governance.

Keywords: Good governance; Financial sector; CO$_2$ emissions.
1. Introduction

Environmental change, which has attracted the attention of policymakers, environmentalists as well as international organizations, has become a global concern over the past two decades. The result of massive energy pollution is climate variation and the global warming health of living beings ultimately affected by energy sources (Alzard et al., 2019; Danish and Ulucak, 2020). In 1992, the UNFCCC (Framework Convention on Climate Change) was created as a result of the unprecedented rise in global temperatures and its adverse climate effects. In 1997, the UNFCCC established the Kyoto Protocol and, in 2015, the Paris Agreement. Both were mainly aimed at mitigating global warming by curbing GHG emissions. The Paris Convention sets a limit of 2 °C over pre-industrial temperature. The recent report published by the IPCC states that global temperatures rise by an average of 1.5 °C, which has been considered to be quite high (Masson-Delmotte et al., 2018). So rapid measures to moderate CO2 emissions from the major states of polluting pollution have become necessary. A few weeks before the COP 21, Saudi Arabia, the world’s top oil producer and 10th largest global emitter of fossil CO2 announced its climate commitment. The Saudi Government promises a major decrease of 130 million tons of CO2 emissions by 2030 by year (Kingdom of Saudi Arabia, 2015). Besides, the Environmental Curve Kuznets Curve (EKC) offers a great deal of current literature on the determinants of environmental degradation. Although the EKC itself provides a reversed link between various environmental quality indicators and economic growth, recent works have expanded the model to include further environmental quality determinants. The EKC empirical evaluation has recognized that, in a reduced model, revenue serves as a proxy for too many other variables (e.g., economic structure, level of economic activity, etc.), resulting in an omitted variables bias (Bali Swain et al., 2020). This awareness has brought about efforts to expand the model by incorporating pertinent variables related to economic structure, energy markets, trade openness, etc. In this contribution, we try to examine the influence of governance quality and financial development on carbon emissions in the case of Saudi Arabia's country. The positioning of this article is justified by five literary strands: (i) the main reasons behind focusing on Saudi Arabia Country, (ii) the impact of financial development on carbon emissions, (iii) The relevance of governance quality in improving environmental quality, and (iv) the impact of governance quality on financial development. These concepts are discussed below in more detail.

First, We could focus on the Saudi economy based on different characteristics and motivations. Saudi Arabia ranks as the eighth largest emissions of CO2 worldwide (Omri et al., 2019; Alkhathtlan and Javid, 2015). This makes reducing carbon dioxide emissions in the country harder, as the production process depends largely on fossil fuels. In this sense, we will attempt to
determine the influence of both governance quality and financial development on national environmental improvement.

Second, the links between financial development and carbon emissions are investigated in a broad literature. Several researchers, including Jun et al. (2018), Wang et al. (2019), Gokmenoglu and Sadeghieh (2019), Kayani et al. (2020), have indicated that financial development has a direct and indirect impact on carbon emissions. Previous studies show that financial development drives growth and improves energy needs automatically (Gunasekaran et al., 2014). Moreover, the associations among financial sector, energy use, and environmental quality are discussed in different schools. One argument that financial development lowers carbon emissions through the consumption of energy efficient technology (Tamazian and Rao, 2010; Shahzad et al., 2017; Charfeddine and Kahia, 2019). The second thought school (Ito, 2017) indicates that financial development is increasing CO2 emissions as follows. Firstly, the companies listed on the stock market can receive low rate financing and invest this in projects like machinery purchases or in investment in projects that eventually increase carbon emissions investment (Kayani et al., 2020). Secondly, if any economy has a high financial development; consequently, it gives the opportunity to attract FDI (foreign direct investment) and augments CO2 emissions, unfortunately. Finally, the financial intermediation process has grown. Consumers can easily obtain loans for the purchase of high carbon emissions items like coolers, washing machines, cars and air conditioning (Cai et al. 2019).

Third, the relationship between governance quality and environmental quality was defined and explained by many theories (Mineur, 2007; Bosselmann et al., 2008; Hope, 2009; Samimi et al. 2012, Kaufman et al., 2006). In general, the World Governance Indicators (WGI) define the concept of governance as the institutions and traditions through which the authority in the state is implemented. This contains the process of selecting, monitors, and superseding governments; the government's ability to effectively implement and formulate respect and good policies for the institutions governing their social and economic interactions (Omri and Ben Mabrouk, 2020). In this sense, while worldwide governments are still seeking solutions to promote sustainable development, the value of good governance1 as a key instrument for achieving this goal has recently become popular with policymakers and academics (e.g., Bos and Gupta, 2019). In fact, the previous empirical literature has an interest in good governance as a key factor in achieving the goals of sustainable development. For instance, Samimi et al. (2012) investigate the effect of good governance on environmental degradation through using three governance proxies (i.e.,

1 The perception of good governance consists of the opportunity to organize and create SDGs-related organizations (Güney, 2017) and the assurance of non-State, State actors, the civil society and private sector participation in decision making, accountability and the rule of law at all level, promoting transparency, and allowing effective human, natural, financial, and economic resources management for fairly sustainable development (Hallegatte et al., 2011; Omri and Ben Mabrouk, 2020).
control of corruption, regulatory quality, and government effectiveness for a panel of 21 economies in the MENA (the Middle East and North Africa) region during the period 2002-2007. Their results sustain a positive impact on environmental quality regarding government effectiveness. Expressly, good governance adversely affects the deterioration of the environment. Costantini and Monni (2008) analyze the effect on sustainable development of human development and quality governance, as assessed by the rule of law. The positive relationship among them is confirmed in their findings. Recently, Omri and Ben Mabrouk (2020) show that good governance can be successful in rebalancing social, environmental, and economic components of sustainable developments for a panel of 20 economies in the MENA (Middle East and North Africa) region during the period 1996-2014. In a study of 58 selected economies covering the period 1996-2011 by Bali Swain et al. (2020), it was confirmed that the degree of governance’s impact relies essentially on the level of economic development, the pollutant type and the category of governance measure.

Fourth, a growing number of researchers have recently explored the effect of good governance on financial development. For instance, a study by Sayilir et al. (2018) analyzing the link between financial development and governance for countries listed in FDIWEF using the structural equation modeling approach finds that there exists a positive link between governance and financial development. Karikari (2010) showed a positive association between good governance and financial development for a panel of 37 SSA (Sub-Saharan African) countries during the period 1996-2008. In a study of 19 selected emerging economies covering the period 2001-2014 by Omri (2020), it was found that good governance significantly improves the probably weak effect of financial development affecting both informal and formal entrepreneurship. In a panel data analysis of 53 companies from India and 53 companies from GCC (Gulf Corporation Council) countries covering the period from 1996 to 2016 by Al-ahdal et al. (2020), it was shown in general that good governance practices have a significant and positive impact on firms’ financial performance. Likewise, Braune et al. (2020) confirmed that the adoption of good governance practices very significantly and favourably influences the financial performances of industrial companies.

By integrating these four strands of studies, this research contributes to the previous literature in the following ways. First, the prevailing literature currently on the subject has focused mainly either on the nexus between governance and environment (Costantini and Monni, 2008; Samimi et al., 2012; Omri and Ben Mabrouk, 2020) or financial development-environment linkage (Jun et al., 2018; Gokmenoglu and Sadeghieh, 2019; Kayani et al., 2020; Shahzad et al., 2017; Charfeddine and Kahia, 2019) without recognizing how macro-level governance conditions can develop the financial sector to improve environmental quality. In this
study, we try to demonstrate how good governance moderates the negative impact of financial
development on environmental quality. To the best of our knowledge, no empirical research took
account of the combined effects of these variables (i.e., governance and financial development)
on environmental quality, particularly in Saudi Arabia. As already stated, we consider that Saudi
Arabia provides an important context for researching such interaction because improving
environmental quality is central to the development and growth of its economy. Second, in some
studies, governance measures are being proposed without distinguishing between governance
forms and the different ways in which they are conducted. Thus, we consider as mentioned by
Omri and Ben Mabrouk (2020), three categories and six measures of good governance, namely
institutional governance (rule of low & control of corruption); economic governance (regulatory
quality & government effectiveness); political governance (political stability & voice and
accountability) in attempt to provide room for robust analyses. The investigation by the
governance category permits us to comprehend which category is the best to achieve the aimed
complementarity.

The remainder of the article is structured as follows. The next section explains the used
methodology and data. Section 3 presents and discusses the main results. The last Section
concludes and provides some policy implications.

2. Data and methodology

2.1. Variables and data description

Using a time-series data for Saudi Arabia with datasets obtained from the World
Development Indicators (WDI), the International Monetary Fund (IMF), and the World
Governance Indicators (WGI) over the 1996–2016 period, this research examines how
governance quality promotes financial development to reduce CO2 emissions. The choice of the
starting period is based on the availability of data on the indicators of governance. Table 1
summarizes the description and source of variables.

2.1.1. Dependent variable

An emission of carbon dioxide is the release of this gas into the earth's atmosphere,
regardless of the source. Carbon dioxide (CO2) is the second most important greenhouse gas in
the atmosphere after water vapour. 97% of CO2 emissions into the atmosphere are of natural
origin and 3% of anthropogenic origin, i.e. resulting from human activities (Raupach et al., 2013).
Following Omri (2013), Ben Youssef et al. (2016), Kahia et al. (2019), we use per capita CO2
emissions in metric tons as a measure of environmental degradation. The data on this indicator is
collected from the WDI online database.

2.1.2. Independent variables
As mentioned in the first section, two independent variables are included in the analysis as determinants of CO\textsubscript{2} emissions:

- **Financial development (FiD):** Following Vithessonthi and Kumarasinghe (2016), Bokpin (2017), Omri et al. (2019), we used three measures of financial development in this study, namely financial development index (FDI), domestic credit to the private sector as % of GDP (DCPS), and private credit by deposit money banks and other financial institutions as % of GDP (PCFI). The data on these indicators is collected from the WDI and IMF online databases. Based on the existing literature, we expect a negative impact of financial development on environmental quality (e.g., Boutabba, 2014; Bokpin, 2017; Adams and Klobodu, 2018; Omri and Belhadj, 2020).

- **Governance quality (Gov):** The governance quality variable is included in the model as a policy variable, which complements financial development to reduce CO\textsubscript{2} emissions. Six measures of governance quality are included in the analysis as determinants of CO\textsubscript{2} emissions, namely voice & accountability (V&A), political stability (PS), government effectiveness (GE), regulatory quality (RQ), rule of law (RL), and control of corruption (CC). Following Omri (2020), these indicators are grouped into three classes: political governance includes voice & accountability and political stability, economic governance includes government effectiveness and regulatory quality, and institutional governance includes control of corruption and rule of law. The data on these indicators is collected from the WGI online database. Good governance is expected to lessen carbon emissions (Tamazian and Rao, 2010; Abid, 2016; Omri and Belhadj, 2020).

2.1.2. Control variables

In addition to these two independent variables, other determinants of CO\textsubscript{2} emissions are included in the model, namely, GDP per capita (GDP), squared GDP per capita (GDP2), energy consumption (EnC), and trade openness (TO). GDP per capita is expressed in constant 2010 US$, energy consumption or use is expressed in kg of oil equivalent per $1,000 GDP (constant 2011 PPP), and trade openness is defined as the sum of exports and imports of goods and services measured as a share of gross domestic product. The data on these indicators is collected from the WDI online database. It is expected that these variables increase the level of CO\textsubscript{2} emissions (Soytas et al., 2007; Halicioglu, 2009; Omri et al., 2015; Ben Youssef et al., 2016; Kalayci and Hayaloglu, 2019).
Table 1
Definition and source of the used data.

Variables	Definition	Source
CO₂ emissions per capita (Cₚₑ)	CO₂ emissions (metric tons per capita)	WDI
Financial development (FD)	Financial development index	IMF
	Domestic credit to private sector as % of GDP	WDI
	Private credit by deposit money banks and other financial institutions as % of GDP	WDI
Voice and accountability (V&A)	Measured as to what extent do citizens really participate in the choice of their rulers, whether through the extent of their freedom of expression, of association, or that of the media?	WGI
Political stability (PS)	Measures the perception of the probability that the government could be destabilized, overthrown either by unconstitutional means or by violence (political violence or terrorism).	WGI
Government effectiveness (GE)	Measures the quality of public services, civil servants, and their degree of independence from political pressures; quality of public policies, both in their definition and in their application, but also the effective responsibility of the government with regard to these public policies.	WGI
Regulation quality (RQ)	Measures the government's capacity to formulate and enforce appropriate policies and regulations that promote private sector development.	WGI
Rule of law (RL)	Measured as to what extent do citizens trust and respect the rules set by society; and, in particular, the quality of the social contract, across the police and the courts, but also the rate of crime and violence.	WGI
Control of corruption (CC)	Measured as whether and to what extent public power is exercised for private gain including both small and large forms of corruption, as well as how the state has been "captured" by elites and private interests.	WGI
GDP per capita (GDP)	GDP per capita (constant 2010 US$)	WDI
Trade Openness	Trade is the sum of exports and imports of goods and services measured as a share of gross domestic product.	WDI
Energy Consumption	Energy use (kg of oil equivalent) per $1,000 GDP (constant 2011 PPP)	WDI

2.2. Econometric model and estimation procedures

Based on the above-discussed arguments, we propose the following model to examine the influence of various aspects of financial development and governance quality, among other control variables, on CO₂ emissions in Saudi Arabia over the period 1996-2016.
To investigate the joint impact of governance quality and financial development on reducing CO₂ emissions, we rewrite Eq. (1) as follows:

\[CO_t = \alpha_0 + \alpha_1 FD_t + \alpha_2 \text{Gov}_t + \alpha_3 \text{FD} \times \text{Gov}_t + \alpha_4 \text{GDP}_t + \alpha_5 \text{EC}_t + \alpha_6 T_t + \varepsilon_{it} \]
(2)

where the subscript \(t \) \((t = 1, \ldots, 21)\) is the time period considered in this study (26 years), \(CO \) is CO₂ emissions per capita, \(FD \) is the indicators of financial development, \(\text{Gov} \) indicates the three categories of governance quality, \(\text{Gov} \times \text{FD} \) is the interaction between the indicators of governance quality and the indicators of financial development, \(X \) is the vector of control variables, including GDP per capita and trade openness, \(\alpha_0 \) is a constant, \(j \) is the number of control variables, \(\varepsilon \) is the error term. Hence, we expect that the indicators of financial development positively influence CO₂ emissions; however, governance quality mitigates CO₂ emissions. Regarding the interaction terms, we expect that good governance complements financial development to reduce CO₂ emissions.

Before estimating Eq. (2), we first check the stationary properties of our series. We then test the long-run equilibrium linkages among variables using the Johansen’s cointegration test. Finally, we estimate the long-term relationships by means the DOLS estimator, which take care of endogeneity bias by taking the leads and lags of the first-differenced regressors.

2.2.1. Unit Root Tests

Our analytical approach starts with stationary checking of the variables. First of all, checking the stationary of the series under consideration has been carried out in three different types of root-test units: the KPSS test (Kwiatkowski et al. 1992); the PP test (Phillips and Perron 1988), and the ADF test (Dickey and Fuller 1981, the Augmented Dickey Fuller). The root unit tests are performed to analyze the integration order in the considered variables. For time series cointegration models, this is a prerequisite. If the variables are cointegrated of one order (I (1)), it can be inferred that at their first difference, the variables evaluated are stationary, indicating that the groups of variables are long term cointegrated. Specifically, the ADF test results in a specification of the first differences of the variable against the lagged differences and series lagged once, with the optional time trend and constant conditions as follows:

\[\Delta X_t = b_0 + b_1 t + \theta X_{t-1} + \sum a_i \Delta Y_{t-i+1} + \xi_t \]
(3)

where \(\Delta \) the operator of first difference, \(b_0 \) is an intercept symbol, \(b_1 t \) represents a linear trend of time, \(i \) refers to the number of lagged terms in first difference and refers \(\xi_t \) to the error term. The null assumption is that \(\theta = 0 \). If the coefficient differs considerably from zero, the hypothetical of
containing a unit root is not accepted. The ADF approach is performed to the first differences when the test on the level series fails to reject. Rejecting the null assumption signify that the series is integrated in order one (i.e., I (1)). The ADF test was generalized by Phillips and Perron (PP) in 1988 as follows:

\[X_t = a_0 + a_t X_{t-1} + b_s (t - T/2) + \tau_t \]

where T refers to the number of observations, \(\tau_t \) refers to the error term with \(E(\tau_t) = 0 \), however there is no prerequisite for both homogenous or serially uncorrelated concept of disturbance term.

Regarding the KPSS test (Kwiatkowski et al. 1992), the idea is based on the view that the time-series around a deterministic trend is stationary and is measured as sum of a random walk, stationary random error and deterministic trend. It is based on the following model:

\[X_t = d_t + r_t + \mu_t \]

\[r_t = r_{t-1} + \eta_t \]

where \(d_t \) comprises deterministic model parts such as deterministic trend or intercept, \(r_t \) refers to a random walk and \(\mu_t, \eta_t \) represent the disturbance terms. The KPSS test is founded on the LM test, which assumes that the random walk has a null variance. The statistic of the KPSS test is specified as follows:

\[LM = \sum_{t=1}^{T} k_t^2 / \hat{\sigma}_\mu^2 \]

where \(k_t = \sum_{t=1}^{T} \hat{\mu}_t \) and \(\hat{\sigma}_\mu^2 \) refers to the variance estimation of the disturbance term \(\mu_t \) in Eq.(5). A simulation derived critical values that are described in Kwiatkowski et al. (1992). The findings of unit root tests are shown in Table 3.

2.2.2. Cointegration Tests

A co-integration association between the underlying variables must be checked before estimating the long-term models and after verifying that the Kwiatkowski et al. (1992), Augmented Dickey and Fuller (1981) and Phillips and Perron (1988) unit root tests confirmed the stationarity of the considered series. The co-integration method allows a stable long-term relationship, including delay and exogenous variables, to be formed between two nonstationary series. Regardless of the selected test, it is only necessary for long non-stationary variables. The cointegration analysis therefore allows the real correlation between two variables to be clearly defined by looking for the presence of a cointegration vector and, if necessary, by removing its influence (Omri et al., 2019). In testing cointegration between variables, we have employed co-integration of Johansen (1988), which takes two statistical tests into consideration: the maximum eigenvalue and the trace statistics. Both may be
performed to classify the existing number of cointegrating vectors, but they do not necessarily mean
the same number of vectors. While using the cointegartion test of Johansen (1988), if the results of the
two statistical tests are different, in our context the outcome of the maximum eigenvalue test is
favored to the trace statistic, because of the advantage of distinct testing on each eigenvalue. Formally,
this technique depends on the link between the matrix rank and its eigenvalues (i.e., characteristic
roots). Considering Z_t as a vector of n variables that are individually integrated of order one (I(1)), and
suppose that Z_t can be specified by the following VAR (Vector Autoregression):

$$ Z_t = C_1 Z_{t-1} + \ldots + C_p Z_{t-p} + \zeta_t $$ \hspace{1cm} (7)

The VAR model can be rewritten as:

$$ \Delta Z_t = \Pi Z_{t-1} + \sum \Gamma \Delta Z_{t-1} + \xi_t $$ \hspace{1cm} (8)

Where $\Pi = \sum C_j - I$, $\Gamma_j = -\sum C_j$. When the matrix of coefficients Π is presented as restrained
rank ($r < k$), there exist matrices α_{kxr} and β_{kxr} each with r as rank such that $\Pi = \alpha \beta'$ and $\beta' Z_t$ is
stationary. The cointegration relation number is defined by r, and each column of represents the
cointegrating vector β. We use two statistics to determine the number of eigenvalues that are not
distinct from a unit, the trace test and the maximum eigenvalues test:

$$ \lambda_{\text{trace}} (r) = -T \sum \ln (1 - \lambda_i) $$ \hspace{1cm} (9)

$$ \lambda_{\text{max}} (r, r+1) = -T \ln (1 - \lambda_{r+1}) $$ \hspace{1cm} (10)

Where λ_i represent the assessed value of eigenvalue derived from the estimation of the Π matrix, r is
the number of cointegrating vectors and T represents the number of observation. The findings of the
Johansen’s (1988) cointegartion test of are exposed in Table 4.

2.2.3. Long-Run Estimates

If all variables are co-integrated, the long-term coefficient estimates of the explanatory
variables require to be calculated. The outcome elasticities in the long-term are assessed by means of
dOLS (Dynamic OLS) procedures. The benefit of using these estimators is that the endogeneity
problems in serial correlations in error and regressors are often removed in a very successful manner
and so the series have asymptotic properties as well (Omri et al., 2019). The DOLS estimator removes
the problem of correlation among explanatory series. The specification for DOLS estimator (Stock and
Watson, 1993) is identified as follows:

$$ Y_t = \beta + \beta X + \sum_{j=q}^{p} d_j \Delta X_{t-j} + u_t $$ \hspace{1cm} (1)
where Y_t, X_t, β, p, q represent the dependent variable, the matrix of independent series, the cointegrating vector (The long-term impact of a fluctuation in X on Y), lag length and lead length, respectively. The lag and lead terms used in DOLS specification are structured to distinguish its stochastic error term from all previous innovations in stochastic regressors. Table 5 reports the results of long-run estimates.

3. Empirical Analysis

Table 2 displays summary statistics and correlations between the investigated proxies. During the sample time, Table 2 demonstrates, for instance, that the per capita CO$_2$ emissions variation is between 10.49 and 20.40 metric tons per capita; GDP per capita varies between 16696.41 US$ and 21399 US$; the variation for FD proxies are between 0.23 and 0.55 for FD index, between 20.79% and 58.11% of GDP for DCPS and between 45.35% and 68.36% of GDP for PCFI; the governance quality variables range from -1.90, -0.65, -0.37, -0.30, -0.15 and -0.30 to -1.32, 0.22, 0.26, 0.16, 0.33 and 0.23 for V&A, PS, GE, RQ, RL and CC, respectively; the energy consumption ranges from 104.48 to 148.90 kg of oil equivalent energy use, and trade openness varies from 56.08% to 96.10 % of GDP. Besides, the table shows that FDI series has the highest correlation with CO2 per capita, while PCFI variable has the lowest one.

Before running the cointegration relationships, we first the stationary of the used variables using two unit root tests, namely ADF (Dickey and Fuller 1981, the Augmented Dickey Fuller) and PP (Phillips and Perron 1988) tests. Table 3 reports the results of these tests at levels and first difference. The table shows that all our investigated variables are integrated at order one (I(1)), which gives rise to the opportunity of cointegration associations between the considered series. We can therefore use the cointegration test of Johansen (1988) to verify the long-run equilibrium between the underlying proxies in the three approximate models. Table 4 reports the results of this test that shows that all models do not reject the hypothesis of cointegration. The examined indicators are, therefore, cointegrated so that the long-term parameters can be estimates in the following step.

Table 5 reports the results of the DOLS long-run estimator related to the empirical linkages between the indicators of financial development, the indicators of governance quality and CO$_2$ emissions. The following are the main findings. First, in the most estimated models, the indicators of financial development have positive impacts on increasing CO$_2$ emissions, ranging from 0.73 to 329 percent for the models pertaining to financial development index, from 0.79 to 316 percent for the models pertaining to domestic credit to private sector (DCPS), and from 0.089 to 0.240 percent for the models pertaining to private credit by deposit money banks and other financial institutions (PCFI). These results indicate that an increase in financial
development leads to deteriorating environmental quality. Shahbaz and Lean (2012) explain the positive impact of financial development on environmental degradation by the fact that the development of financial sector encourages savings and investment and then economic growth, which, in turn, increases CO$_2$ emissions. Gök (2020) also argue that financial development increases carbon emissions via the channels of industrialization and energy consumption, which generally increases industrial pollution and the level of greenhouse gas emissions. The positive effect of financial development on increasing CO$_2$ emissions is in line with Zhang (2011) who find that financial development appears to be an important driver of increasing per capita CO$_2$ emissions in China. In the same spirit, Gök (2020) conducts a meta-regression analysis on the relationship between financial development and carbon emissions. Its findings reveal that the effects of financial development on carbon emissions depend on the used indicator of financial development, on the employed estimation technique, on the included countries or region in the analysis. To reduce carbon emission, the author suggests to proliferating renewable energy use as a green trading policy.

Table 2: Summary statistics and correlations (1996-2016).

	CO	FDI	DCPS	PCFI	V&A	PS	GE	RQ	RL	CC	GDP	EC	T
Mean	16.68	0.44	36.74	52.21	-1.71	-0.30	-0.10	0.01	0.08	-0.07	19546.97	124.16	77.61
Standard deviation	2.43	0.09	9.75	6.94	0.15	0.26	0.19	0.13	0.09	0.15	1279.99	12.49	11.39
Min	10.49	0.23	20.79	45.35	-1.90	-0.65	-0.37	-0.30	-0.15	-0.30	16696.41	104.48	56.08
Max	20.40	0.55	58.11	68.36	-1.32	0.22	0.26	0.16	0.33	0.23	21399.10	148.90	96.10

	CO	FDI	DCPS	PCFI	V&A	PS	GE	RQ	RL	CC	GDP	EC	T
FDI	0.812	1											
DCPS	0.673	0.802	1										
PCFI	-0.093	0.003	0.503	1									
V&A	-0.562	-0.554	-0.510	-0.008	1								
PS	-0.709	-0.734	-0.603	0.070	0.255	1							
GE	0.558	0.517	0.780	0.391	-0.597	-0.369	1						
RQ	0.673	0.775	0.530	-0.079	-0.351	-0.410	0.194	1					
RL	0.317	0.448	0.608	0.388	-0.341	-0.344	0.694	0.243	1				
CC	0.403	0.321	0.611	0.472	-0.398	-0.070	0.647	0.338	0.505	1			
GDP	0.661	0.654	0.702	0.030	-0.542	-0.618	0.750	0.272	0.576	0.208	1		
EC	0.690	0.568	0.372	-0.151	-0.685	-0.344	0.373	0.643	0.240	0.426	0.248	1	
T	0.509	0.576	0.140	-0.674	-0.376	-0.527	0.028	0.546	-0.094	-0.1257	0.263	0.551	1

Table 3: Results of unit root tests.
Variables	ADF	PP		
	Level	1st difference	Level	1st difference
lnCO	-2.281	-4.370*	-2.417	-6.001*
FDI	-6.772*	-4.996*	-2.098	-5.251*
lnDCPS	-3.079**	-8.195*	-3.047**	-8.180*
lnPCFI	-2.485	-5.709*	-2.479	-5.709*
V&A	-1.449	-5.596*	-1.449	-5.593*
PS	-1.783	-7.039*	-1.783	-7.035*
GE	-5.367*	-4.367*	-3.894*	-5.087*
RQ	-1.020	-6.636*	-1.020	-6.634*
RL	-2.993**	-7.891*	-3.029**	-8.176*
lnGDP	-1.182	-3.362**	-1.182	-3.304**
lnEC	-1.689	-5.837*	-1.632	-5.893*
lnT	-0.016	-5.817*	-0.344	-12.761*

Note: * and ** indicate significance at 1% and 5% levels, respectively.

Table 4

Results of Johansen’s cointegration test.

Models	Number of cointegrating equations	Model A: FDI	Model B: DCPS	Model C: PCFI			
	Trace test	Max-Eigen statistic	Trace test	Max-Eigen statistic	Trace test	Max-Eigen statistic	
V&A	None	161.862*	62.329*	94.300*	77.213*	202.109*	113.922*
	At most 1	100.462*	42.037*	66.500*	46.215*	88.922*	72.502*
	At most 2	59.101*	29.483*	37.374*	26.428*	47.811*	29.483*
	At most 3	29.279**	16.109	18.228	14.781	23.057	20.094
	At most 4	14.338	7.362	12.116	9.726	14.344	10.078
	At most 5	5.220	5.220	0.478	0.478	8.171	8.171
PS	None	139.376*	51.368*	150.729*	92.072*	125.820*	54.029*
	At most 1	89.814*	25.027	103.443*	51.760*	72.190*	32.366*
	At most 2	51.463**	21.268	44.560*	28.049*	39.224*	19.446
	At most 3	27.299	16.342	26.093**	17.222	20.115	15.613
	At most 4	11.237	6.372	11.099	6.304	12.562	9.460
	At most 5	5.003	5.003	2.116	2.116	7.359	7.359
GE	None	1260.272*	614.853*	352.991*	172.094*	284.347*	91.220*
	At most 1	657.466*	539.038*	165.294*	94.649*	127.920*	56.480*
	At most 2	139.303*	71.814*	97.448*	50.160*	88.631*	31.376*
	At most 3	78.796*	50.313*	90.552*	44.611*	44.273*	18.428
	At most 4	26.594*	17.715**	22.008**	19.982	19.904	11.726
	At most 5	6.768	6.768	9.283	9.287	7.374	7.374
RQ	None	228.714*	67.231*	134.237*	67.390*	181.237*	99.273*
	At most 1	170.683*	61.194*	165.338*	39.462*	107.338*	46.682*
	At most 2	109.381*	40.240*	99.761*	22.873**	36.761*	29.099**
	At most 3	66.148*	34.870**	18.093	11.323	20.093	16.827
	At most 4	30.250**	20.656	10.227	7.004	15.227	11.366
	At most 5	8.328	8.328	3.239	3.239	9.730	9.730
RL	None	188.267*	62.478*	122.533*	70.719*	99.248	49.279
	At most 1	96.337*	48.236*	54.269*	40.704*	50.289*	33.548*
	At most 2	55.822*	26.572**	31.229*	19.238	28.770*	17.380
	At most 3	39.600**	18.365	17.088	12.929	21.384	13.349
	At most 4	14.026	10.832	10.762	7.440	13.334	9.936
	At most 5	6.103	6.103	4.233	4.233	7.649	7.649
CC	None	104.358*	30.927*	139.049*	79.839*	144.884*	62.726*
	At most 1	42.467*	25.703**	87.924*	51.325*	67.228*	39.193*
	At most 2	29.026*	21.826	48.510*	33.114*	35.226*	22.099
	At most 3	18.379	14.056	30.882**	24.922	29.067**	16.551
	At most 4	10.277	6.680	17.489	12.284	13.368	9.926
	At most 5	4.336	4.336	9.297	9.297	6.672	96.672

Note: * and ** indicate the rejection of the null hypothesis at 1% and 5% level of significance, respectively.

Model A: CO = f(FDI, Gov, GDP, EC, T)
Model B: CO = f(DCPS, Gov, GDP, EC, T)
Model C: CO = f(PCFI, Gov, GDP, EC, T)
Second, regarding the conditional impact of governance quality, it is clear from most of the estimated models that, as expected, good governance reduces per capita CO₂ emissions, ranging from -0.076 to -0.202 percent for the models pertaining to financial development index, from -0.091 to -0.211 percent for the models pertaining to domestic credit to private sector (DCPS), and from -0.099 to -0.210 percent for the models pertaining to private credit by deposit money banks and other financial institutions (PCFI). Panayotou (1997: p.468) claims in this context that “whether environmental quality improvements (or reduced degradation) materialize or not, when and how depends critically on government policies, social institutions and the completeness and functioning of markets.” North (1991) also argues that good governance reduces CO₂ emissions through its encouragement for the sustainable use of natural resources. The negative impact of governance quality on carbon emissions confirms the results of previous works on this relationship, such as Omri and Belhadj (2020) who examine the impact of governance quality, innovation, and FDI on four indicators of environmental degradation and their findings show that good governance negatively influences these indicators for 23 emerging economies. The authors suggest that enhancing governance quality allows mitigating carbon emissions and improves environmental quality through providing solid rules and laws that help to fight corruption. Accompanied

Third, we emphasize on the central contribution of this research, i.e., demonstrating the complementarity relationship between good governance and financial development in enhancing environmental quality. Table 5 also shows that the impact of the interaction among the indicators of governance quality and the indicators of financial development are negative and significant in most of the estimated models, except models 3, 4, 9, 10, 15, and 16 pertaining to economics governance. The negative sign of the interaction between governance and financial development indicates that good governance boosts financial sector, which, in turn, reduces CO₂ emissions, meaning that good governance could be a part of the solution to reduce emissions with financial sector development. Specifically, political and institutional governance plays a policy variable that moderates the negative impact of financial development on environmental quality. These results are in line with Girma and Shortland (2008) and Huang (2010), among others, who show that good governance and institutions foster the development of the financial sector, which, in turn, reduces CO₂ emissions and improves environmental quality (Omri et al., 2019). These results suggest that the development of financial sector improves environmental quality if it is accompanied with good political and institutional governance, such as voice and accountability, political stability, the rule of law, and control of corruption. So, steps should be taken to establish good governance and to enhance the financial sector.
Finally, regarding the control variables, we find that per capita GDP, energy consumption, and trade have positive impacts on increasing carbon emissions in most of the estimated models. Per capita GDP has a positive and significant impact on carbon emissions in all the estimated models at 1 percent level, ranging from 0.180 to 0.429 percent. Energy consumption has also a positive contribution on increasing carbon emissions in all the estimated models at 1 percent level, ranging from 0.331 to 0.611 percent. Trade openness contributes also to increase carbon emissions in most of the estimated models, ranging from 0.092 to 0.273 percent. It is clear from these results that energy consumption has the highest contribution on increasing carbon emissions in the Saudi’s economy.
Table 5
Results of long-run DOLS estimates.

Independent variables	FDI	DCPS	PCFI															
	Political governance	Economic governance	Institutional governance	Political governance	Economic governance	Institutional governance	Political governance	Economic governance	Institutional governance	Political governance	Economic governance	Institutional governance						
Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14	Model 15	Model 16	Model 17	Model 18	
V&A	0.187**	0.094	0.169**	0.218*	-0.116	0.073***	0.262*	0.193**	0.187*	0.281*	-0.161**	0.155*	0.227*	0.329*	0.189**	0.202**	0.167**	0.185**
PS	0.203*	0.180*	0.106	0.261*	0.169*	0.191*	0.326*	0.099***	0.080	0.111	0.144***	0.203*	0.197*	0.112***	0.205*	0.136*	0.161***	0.029**
RL	0.240**	0.089***	0.272*	0.121**	0.230*	0.244*	0.112***	0.238*	0.164	0.099**	0.161*	0.099***	0.180**	0.277*	0.092	0.136***	0.150**	0.191*
PS * FDI	-0.125*	-0.108**	-0.035	-0.076**	-0.202*	-0.019***	-0.106**	-0.161**	-0.191**	-0.191**	-0.086	-0.086	-0.108**	-0.108**	-0.161**	-0.161**	-0.191**	-0.191**
V&A * DCPS	-0.078**	-0.093***	0.003	0.038	-0.102**	-0.129**	-0.092**	-0.092**	-0.169*	-0.140*	-0.093**	-0.093**	-0.093**	-0.093**	-0.093**	-0.093**	-0.093**	
CC * FDI	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	
V&A * PCFI	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	-0.086***	
PS * PCFI	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	
GE * DCPS	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	-0.077	
CC * DCPS	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	
V&A * GDP	0.369**	0.404*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	0.396*	
EC	0.536*	0.491*	0.642	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	0.368*	
T	0.191**	0.186*	0.122	0.101	0.271*	0.256*	0.092***	-0.118	0.134***	-0.102	0.273*	0.199**	0.169***	-0.177**	0.196***	0.219**	0.188**	0.163**
Constant	1.067	-2.873*	9.142*	18.250*	4.798*	0.926	34.250*	-5.367*	-3.145**	-2.226***	14.267*	21.035*	5.562**	12.278*	10.002*	-8.344*	16.221*	9.266*

Note: * and ** indicate the rejection of the null hypothesis at 1% and 5% level of significance, respectively.
4. Conclusion and policy implications

The main purpose of the current study is to examine the relationship between financial sector development and carbon emissions in the presence of good governance for Saudi Arabia during the period 1996-2016. Three indicators of financial development (financial development index, domestic credit to private sector, and private credit by deposit money banks and other financial institutions) and three categories of governance quality (political governance, economic governance, and institutional governance) are included in the analysis. Necessary econometric approaches, such as unit root test, Johansen’s cointegration test, and the DOLS estimator to extract the long-run coefficients, are employed.

The empirical findings show that, as expected, (i) there is an unconditional impact of the three indicators of financial development on increasing CO₂ emissions in the most models; (ii) the conditional impact of the indicators of governance quality increases CO₂ emissions in the most models; (iii) the interactions between the indicators of governance quality and the indicators of financial development are negative and statistically significant only in the models pertaining to political and institutional governance, meaning that the development of financial sector improves environmental quality if it is accompanied by good political and institutional governance, such as voice and accountability, political stability, the rule of law, and control of corruption.

Based on these results, an important contribution will be made to the pace of financial growth by improving the governance quality through the strengthening of the legal or institutional system, implementation of standards and empowerment of supervision agencies as well as the creation of an effective regulatory environment to promote financial inclusion.

Regarding the environmental side, policymakers should improve their governance institutions and then enable them to work efficiently to improve environmental quality. The efficient operation of these institutions would allow for adequate legislation, rights of property and means of fighting corruption, that, if is controlled regularly, will decrease emissions and enhance environmental conditions. Moreover, continuing to improve governance would further reduce pollution, because good governance signifies increased political independence and access to information that reinforces citizens' wish to create a cleaner environment and sensitizes the public to environmental laws (Omri and Ben Mabrouk, 2020). Accordingly, public desire for improved environmental standards thus leads to the implementation of environmental legislation, reduction of environmental damage and the potential for damage to human health. Besides, ensuring environmental protection, for instance, by incorporating environmental concerns into development plans and implementing applicable environmental laws is recommended. Overall,
environmental awareness and knowledge should cover all age groups and all professions such as justice systems, senators, executives and other citizens.

Authors’ contributions
Anis Omri: Conceptualization, Formal analysis, Validation. Montassar Kahia: Data curation, Software, Writing - original draft. Bassem Kahouli: Methodology, Supervision, Writing - review & editing.

Funding
Not applicable

Data availability
The data are available upon demand by request to the corresponding author.

Compliance with ethical standards

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

References

Abid, M., 2016. Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies. Util. Policy 41, 85–94. https://doi.org/10.1016/j.jup.2016.06.009

Adams, S., Klobodu, E.K.M., Apio, A., 2018. Renewable and non-renewable energy, regime type and economic growth. Renew. Energy 125, 755–767. https://doi.org/10.1016/j.renene.2018.02.135

Al-ahdal, W.M., Alsamhi, M.H., Tabash, M.I., Farhan, N.H.S., 2020. The impact of corporate governance on financial performance of Indian and GCC listed firms: An empirical investigation. Res. Int. Bus. Financ. 51, 101083. https://doi.org/10.1016/j.ribaf.2019.101083

Alkhatlan, K., Javid, M., 2015. Carbon emissions and oil consumption in Saudi Arabia. Renew. Sust. Energ. Rev. 48, 105–111.

Alzard, M. H., Maraqqa, M. A., Chowdhury, R., Khan, Q., Albuquerque, F. D., Mauga, T. I., Aljunadi, K. N., 2019. Estimation of greenhouse gas emissions produced by road projects in Abu Dhabi, United Arab Emirates. Sustainability, 11(8), 2367.

Bali Swain, R., Kambhampati, U.S., Karimu, A., 2020. Regulation, governance and the role of the informal sector in influencing environmental quality? Ecol. Econ. 173, 106649. https://doi.org/10.1016/j.ecolecon.2020.106649

Ben Youssef, A., Hammoudeh, S., Omri, A., 2016. Simultaneity modeling analysis of the environmental Kuznets curve hypothesis. Energy Econ. 60, 266–274. https://doi.org/10.1016/j.eneco.2016.10.005
Bokpin, G.A., 2017. Foreign direct investment and environmental sustainability in Africa: The role of institutions and governance. Res. Int. Bus. Financ. 39, 239–247. https://doi.org/10.1016/j.ribaf.2016.07.038

Bos, K., Gupta, J., 2019. Stranded assets and stranded resources: implications for climate change mitigation and global sustainable development. Energy Res. Soc. Sci. 56, 101215. https://doi.org/10.1016/j.erss.2019.05.025.

Bosselmann, K. Engel, R., Taylor, P., 2008. Governance for Sustainability: Issues, Challenges, Successes, IUCN, Gland, Switzerland in collaboration with the IUCN Environmental Law Centre, Bonn, Germany.

Boutabba, M.A., 2014. The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy. Econ. Model. 40, 33–41. https://doi.org/10.1016/j.econmod.2014.03.005

Braune, E., Sahut, J.M., Teulon, F., 2020. Intangible capital, governance and financial performance. Technol. Forecast. Soc. Change 154, 119934. https://doi.org/10.1016/j.techfore.2020.119934

Cai, W., Lai, K. H., Liu, C., Wei, F., Ma, M., Jia, S., ...,Lv, L., 2019. Promoting sustainability of manufacturing industry through the lean energy-saving and emission reduction strategy. Science of The Total Environment, 665, 23-32.

Charfeddine, L., Kahia, M., 2019. Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis. Renew. Energy 139, 198–213. https://doi.org/10.1016/j.renene.2019.01.010

Cheikh, N. Ben, Zaied, Y. Ben, Chevallier, J., 2020. On the nonlinear relationship between energy use and CO2 emissions within an EKC framework: Evidence from panel smooth transition regression in the MENA region. Res. Int. Bus. Financ. 55, 101331. https://doi.org/10.1016/j.ribaf.2020.101331

Costantini, V., Monni, S., 2008. The political economy of financial development. Oxf. Econ. Pap. 60, 567–596. https://doi.org/10.1093/oep/gpm040

Girma, S., Shortland, A., 2008. The political economy of financial development. Oxf. Econ. Pap. 60, 567–596. https://doi.org/10.1093/oep/gpm040

Gök, A., 2020. The role of financial development on carbon emissions: a meta regression analysis. Environ. Sci. Pollut. Res. 27, 11618–11636. https://doi.org/10.1007/s11356-020-07641-7

Gokmenoglu, K. K., Sadeghieh, M., 2019. Financial Development, CO2 Emissions, Fossil Fuel Consumption and Economic Growth: The Case of Turkey. Strategic Planning for Energy and the Environment, 38(4), 7-28.

Gunasekaran, A., Jabbour, C.J.C., Jabbour, A.B.L.D.S., 2014. Managing organizations for sustainable development in emerging countries: an introduction. International Journal of...
Sustainable Development & World Ecology, 21(3), 195-197.

Güney, T., 2017. Governance and sustainable development: how effective is governance. J. Int. Trade Econ. Dev. 26, 316–335.

Halicioglu, F., 2009. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 37, 1156–1164.

https://doi.org/10.1016/j.enpol.2008.11.012

Hallegratte, S., Heal, G., Fay, M., Treguer, D., 2011. From growth to green growth: A framework. In: Policy Research Working Paper 5872. Washington, D.C, World Bank.

Hope, K.R., 2009. Capacity development for good governance in developing societies: Lessons from the field. Dev. Pract. 19, 79–86. https://doi.org/10.1080/09614520802576401

Huang, Y. 2010. Political institutions and financial development: An empirical study. World Development 38 (12):1667–77.

Ito, K., 2017. CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. International Economics, 151, 1-6.

Johansen, S., 1988. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control. 12, 231–254.

Jun, W., Zakaria, M., Shahzad, S., Mahmood, H. , 2018. Effect of FDI on Pollution in China: New Insights Based on Wavelet Approach. Sustainability, 10(11), 3859.

Kahia, M., Ben Jebli, M., Belloumi, M., 2019. Analysis of the impact of renewable energy consumption and economic growth on carbon dioxide emissions in 12 MENA countries. Clean Technol. Environ. Policy 21, 871–885. https://doi.org/10.1007/s10098-019-01676-2

Kalayci, C., Hayaloglu, P., 2019. The impact of economic globalization on CO2 emissions: The case of NAFTA countries. International Journal of Energy Economics and Policy, 9(1), 356-360.

Karikari, J. A. 2010. “African Economic Conference, November 2010: Governance, Financial Liberalization, and Financial Development in Sub-Saharan Africa.” https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1733322.

Kaufman, D., Kray, A., Mastruzi, M., 2006. Governance Matters V Aggregate and Individual Governance Indicators for 1996-2005. The World Bank.

Kayani, G.M., Ashfaq, S., Siddique, A., 2020. Assessment of financial development on environmental effect: Implications for sustainable development. J. Clean. Prod. 261. https://doi.org/10.1016/j.jclepro.2020.120984

Kingdom of Saudi Arabia, 2015. The Intended Nationally Determined Contribution of the Kingdom of Saudi Arabia Under the UNFCCC.

Leal, P.H., Marques, A.C., 2020. Rediscovering the EKC hypothesis for the 20 highest CO2 emitters among OECD countries by level of globalization. Int. Econ. 164, 36–47. https://doi.org/10.1016/j.inteco.2020.07.001

Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., 2018. Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of
global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to, IPCC - Sr15.

Mineur, E., 2007. Towards Sustainable Development: Indicators as a tool of local governance. Department of Political Science. Umea University, Sweden Research report. Printed by: Print & Media.

North, D.C., 1991. Institutions. J. Econ. Perspect. 5, 97–112.

Omri, A., 2013. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 40, 657–664. https://doi.org/10.1016/j.eneco.2013.09.003

Omri, A., 2020. Formal versus informal entrepreneurship in emerging economies: The roles of governance and the financial sector. J. Bus. Res. 108, 277–290. https://doi.org/10.1016/j.jbusres.2019.11.027

Omri, A., Bel Hadj, T., 2020. Foreign investment and air pollution: Do good governance and technological innovation matter? Environ. Res. 185, 109469. https://doi.org/10.1016/j.envres.2020.109469

Omri, A., Ben Mabrouk, N., 2020. Good governance for sustainable development goals: Getting ahead of the pack or falling behind? Environ. Impact Assess. Rev. 83, 106388. https://doi.org/10.1016/j.eiar.2020.106388

Omri, A., Daly, S., Rault, C., Chaibi, A., 2015. Financial development, environmental quality, trade and economic growth: What causes what in MENA countries. Energy Econ. 48, 242–252. https://doi.org/10.1016/j.eneco.2015.01.008

Omri, A., Euchi, J., Hasaballah, A.H., Al-Tit, A., 2019. Determinants of environmental sustainability: Evidence from Saudi Arabia. Sci. Total Environ. 657, 1592–1601. https://doi.org/10.1016/j.scitotenv.2018.12.111

Panayotou, T., 1997. Emerging asia: environment and natural resources. In: Emerging Asia: Changes and Challenges Manila. vol. 2 Asian Development Bank Part 4.

Phillips, Peter C.B., Perron, p., 1988. Testing for a unit root in time series regression. Biometrika 75, 335–346.

Raupach, M.R., Le Quéré, C., Peters, G.P., Canadell, J.G., 2013. Anthropogenic CO2 emissions. Nat. Clim. Chang. https://doi.org/10.1038/nclimate1910

Sayılır, Ö., Doğan, M., Soud, N.S., 2018. Financial development and governance relationships. Appl. Econ. Lett. 25, 1466–1470. https://doi.org/10.1080/13504851.2018.1430311

Shahbaz, M., Lean, H.H., 2012. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia. Energy Policy 40, 473–479. https://doi.org/10.1016/j.enpol.2011.10.050

Shahzad, S. J. H., Kumar, R. R., Zakaria, M., Hurr, M., 2017. Carbon emission, energy
consumption, trade openness and financial development in Pakistan: A revisit. Renewable and Sustainable Energy Reviews, 70, 185-192.

Soytas, U., Sari, R., Ewing, B.T., 2007. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 62, 482–489. https://doi.org/10.1016/j.ecolecon.2006.07.009

Tamazian, A., Bhaskara Rao, B., 2010. Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies. Energy Econ. 32, 137–145. https://doi.org/10.1016/j.eneco.2009.04.004

Tamazian, B.B. Rao, 2010. Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies, Energy Econ. 32 (1) 137-145.

Vithessonthi, C., Kumarasinghe, S., 2016. Financial development, international trade integration, and stock market integration: Evidence from Asia. J. Multinatl. Financ. Manag. 35, 79–92. https://doi.org/10.1016/j.mulfin.2016.03.001

Wang, S., Wang, J., Li, S., Fang, C., Feng, K., 2019. Socioeconomic driving forces and scenario simulation of CO2 emissions for a fast-developing region in China. Journal of Cleaner Production, 216, 217-229

Zhang, Y.J., 2011. The impact of financial development on carbon emissions: An empirical analysis in China. Energy Policy 39, 2197–2203. https://doi.org/10.1016/j.enpol.2011.02.026