The Effects of Calcium Supplementation on Blood Lead Levels and Short-term Memory of Chronically Exposed Children: A Clinical Trial Study

Sri Sofyani1*, Arlinda Sari Wahyun2, Kusnandi Rusmi3, Aznan Lelo4

1Department of Child Health, Medical School, Haji Adam Malik Hospital, Universitas Sumatera Utara, Medan, Indonesia; 2Department of Community Medicine, Medical School, Universitas Sumatera Utara, Medan, Indonesia; 3Department of Child Health, Medical School, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung, Indonesia; 4Department of Pharmacology Medical School, Universitas Sumatera Utara, Medan, Indonesia

Abstract

AIM: The purpose of this study is to determine the effects of calcium supplementation to decrease blood lead levels (BLLs) of children at high risk for chronic lead poisoning and to determine its effects on short-term memory.

MATERIALS AND METHODS: Children aged 8–12 years lived in the highest traffic density in Medan randomly included in this quasi-experimental study, divided into two groups (control and supplementation group received tablet contain four hundred milligrams oral calcium twice daily for 3 months). Samples for BLLs were collected before and after 3 months of supplementation, and short-term memory measurements are carried out by picture and forward digital span test. Descriptive statistics were calculated at baseline and 3 months; comparison between before and after treatment was assessed with t-tests, p < 0.05 considered statistically significant.

RESULTS: BLLs samples, who are exposed to lead for >6 months were ranging between 0.4–12 µg/dL. Median BLLs in supplementation group before treatment was 2.1 µg/dL and after treatment was 0.01 µg/dL (p < 0.01); difference between median in BLLs after treatment in supplementation group was 2.090 µg/dL (p = 0.004). Score memory picture in the supplementation group before treatment was 61.4 ± 24.83 and after treatment was 76.21 ± 15.97 (p<0.01). Score memory digital span in the supplementation group before treatment was 5 (3–7) and after treatment was 7 (5–7) (p < 0.01).

CONCLUSION: Three months of oral calcium supplementation 400 mg twice daily for high-risk chronic lead poisoning children reduced BLLs significantly and improved their short-term memory.

Introduction

Lead is a naturally occurring metal, found throughout the environment. High levels of lead have entered the environment through human activities such as mining, industrial processes, and burning fuels [1]. Lead is used in hundreds of products, for example, as an additive in gasoline, in the production of batteries, as an additive in some paints, in solder, in making stained glass and crystal, for ammunition, in ceramic glazes, and in some cosmetics and traditional medicines. Drinking water delivered through lead pipes or pipes joined with lead solder may contain lead. Dust and soil are also a final resting place for the airborne lead from gasoline and dust from paint [2].

Children are most likely to be exposed to lead from automobile fumes and from ingestion of flakes and dust from decaying lead-based paint [3]. Lead in dust and soil can re-contaminate cleaned houses and contribute to elevated blood lead concentrations in children who play on bare, contaminated soil [4].

After it enters the body, lead is distributed to organs such as the kidneys, liver, and bones. The body stores lead in the teeth and bones, where it accumulates over time [5]. Lead poisoning is a serious child health [6]. This affects children’s brain development and their measurable level of intelligence (IQ) [7], [8]. The highest risk children are the very young (including fetuses) because their central nervous systems are still developing and the impoverished [9]. Undernourished children are more susceptible to lead because their bodies absorb more lead if other nutrients, such as calcium, are lacking [10], [11], [12]. Even blood lead levels (BLLs) that are around 10 µg/dL, once thought to be a safe level, may lead to decreased IQ in children, behavioral difficulties, and learning problems [13], [14], [15], [16], [17].

In Indonesia, children who live in urban areas with higher traffic density have a higher risk of lead poisoning [18], [19]. Our data indicate that Indonesian children living in an urban area are at increased risk for BLLs above the actual acceptable limit [20]. The increasing number of industries in Indonesia has been associated with rising heavy metal pollution in several
areas such as in Jakarta and Medan [21], [22], [23], [24]. Research conducted in the city of Medan and Yogyakarta found that there is an apparent link between the increases of the intensity of a motor vehicle with the air lead levels in these two cities [25]. In Medan, air lead levels are highest at terminal Amblas, that is, 32.67 µg/m³, then at Pinang Baris and at Jalan Brigjend Katamso at the time of observation from 13.00 to 14.00 is 23 ug/m³ [26]. While the air lead level threshold based on Government Regulation on air pollution control is 2 µg/m³, this indicates that the air lead levels far above the city of Medan threshold value [27].

The definition of an elevated concentration of lead in the blood, according to the Centers for Disease Control and Prevention (CDC 1991), is 10 µg/dl [28]. However, evidence indicating that some health effects can occur below this threshold is accumulating [29], [30]. Recent analyses suggest that health effects may become apparent at concentrations of <5 µg/dl and, indeed, that no evidence exists for a threshold, even at 1 µg/dl [31]. For the purpose of this study, the concentration of blood-lead incurring the lowest population risk was considered to be 0–1 µg/dl, in the absence of scientific consensus and pending further investigation. The measurement of blood-lead concentration in pre-industrial humans has shown that the contribution of natural sources of lead to human exposure is small; Flegal and Smith have estimated that pre-industrial humans had blood-lead concentrations of only 0.016 µg/dl [32].

From several previous studies, it is known that the administration of calcium in some cases can reduce BLLs [33], [34].

Given the health problems posed by lead in children quite dangerous as described by previous researchers, it is considered very necessary to find a way to prevent the effects of chronic lead exposure in children. Given the lead continuously removed by the exhaust of motor vehicles, leaded gasoline usage and industrial pollution [35] and also leaded paint in the city of Medan [36], it can be absorbed by the body through the skin and breathing, plus the nature of the accumulation of lead that has been absorbed in the body, it is necessary to obtain a way to prevent elevated levels of lead or to drop lead levels in the blood.

The treatment options for children with BLL <45 µg/dL are limited because chelation therapy is generally not indicated, but Calcium (Ca) and lead (Pb) interactions are well documented [37]. Studies have shown that calcium is one ingredient that can lower BLLs of children [33], [38], [39], [40], but the results were different, some did not find any benefit, some did; therefore, the role of calcium at reducing BLLs needs to be investigated.

The purpose of this study was to determine the effect of calcium supplementation on short-term memory of elementary school children who go to school in areas exposed to lead over a long period of time and determine whether BLLs affect a child’s short-term memory.

Research Methodology

Study design and population

This quasi-experimental design of a randomized clinical trial was conducted in school children (aged 8–12 years old, at the stage of concrete operational based on Piaget’s Cognitive Theory). The study subjects were at high risk of lead pollution in the city of Medan, who is domiciled and doing activities (school) in overcrowded vehicles. The exclusion criteria were children with kidney failure, abnormalities of brain dysfunction, history of allergies, or resigned after being given an explanation.

Measures

Subjects were divided into two groups using simple random sampling; one group as control (n = 25) and another group (n = 35) were treated by giving calcium supplements at a dose of 2 × 400 mg daily for 3 months. Venous blood was collected from each child using vacutainer as much as ± 6 cc, before and after 3 months of treatment. The content of lead in blood (mg/dL) was measured in duplicate samples by atomic absorption spectrophotometry using a PerkinElmer spectrophotometer. A coefficient of variation <5% was reached before the analysis of actual samples. Digit Span Memory Test Online was used to assess short time memory. Study staff measured children anthropometry and administered feeding and demographic questionnaires before treatment was started. Children’s weight was measured in light clothing using a Seca scale. Height was measured using a Seca Stable Stadiometer for mobile height measurement.

Sampling process

Blood sampling to assess BLLs was carried out during school hours after approved by the Principal. A prior meeting had been held with students’ parents who attended school in grades 4, 5, and 6 aged 8–12 years old. Parents and children who met the inclusion and exclusion criteria were explained about the research that would be conducted and requested approval. Parents and children are also asked to fill in the prepared questionnaire.

Staff from the Pramita Clinical Laboratory, Medan, who came to the school, carried out blood sampling. The National Medical Laboratory Accreditation Committee, accredited by ISO 15189:
2012, has accredited this Pramita Clinical Laboratory. Laboratory staff came to school to collect student venous blood samples.

There were 62 children who fulfill the inclusion and exclusion criteria and were willing to take part in this study, but only 60 people get permission from their parents. Randomization was done to allocate the respondents into the supplementation and the control group. Among these 60 children who took the Digit Span Memory Task Online test for short-term memory examinations and then the blood samples were taken before and after the intervention, 57 children were remains (three children were dropped due to fear when taking blood samples). Hence, a total of 57 children were included in this study, which was divided into 35 in the intervention group and 22 in the control group.

Every morning before starting the lesson, subjects chewed/swallowed the supplement caplet. At home, children chewed their supplements every day at dinner time after sunset in front of their parents. On school holidays, their parents give the morning and evening supplements. Likewise, if the child was not present at school because of illness or for other reasons, supplementation is done at home in the presence of his parents. The distribution of supplements was done at school 3 times (once a month) in a meeting between the authors, homerooms, and parents. At the meeting, a discussion was held on the implementation of given supplementation.

Examination of lead levels in the blood and a second memory test was carried out after 3 months (90 days) of supplementation.

Results

Study population

The result showed that the percentage of the respondent's gender was 56% for male and 44% for female. More than half of the participants were well-nourished and with family income below the minimum wages (Table 1).

Overall feeding patterns

The overall dietary patterns of respondents in both groups were almost the same. Not all respondents in their daily lives eat nutritious food in accordance with balanced food guidelines. There were 29.2% of respondents who did not consume milk; eggs and vegetable protein are the most consumed sources of protein. Most of the respondents were snacking on the roadside, that is, on street vendors who were around the school with their wheelbarrows. There is no canteen in the school. The habit of handwashing with soap was carried out by 77.9% of respondents. Respondents also carried out bad habits such as biting nails, pencils, or eating objects other than food.

Headaches were one of the symptoms that annoy respondents when studying at school and at home, although not all respondents often experience them (headaches were experienced by 29.82% of respondents) (Tables 2 and 3).

Statistical analysis

Descriptive statistics were calculated for the total sample at two visits (baseline, and 3 months). Means, standard deviations, and medians and ranges were used to summarize continuous variables and proportions for categorical variables. The comparison between two treatments was assessed by Student's t-tests. Ordinal data when the assumptions of the t-test are not meet were assessed by Mann–Whitney U test. Statistical significance was defined as p < 0.05.

Ethics

The study was conducted in Private Elementary Schools Al-Wasliyah Timbang Dell, Jalan Pertahanan, District Medan Amplas, Medan, Province of Sumatera Utara. Assent was obtained from the participated subjects with consent from their parents/guardians. The study was conducted after obtaining approval from the Health Research Ethical Committee of Medical School, Universitas Sumatera Utara.

Short-term memory scores

After all the blood samples were taken, in the following week, the short-term memory test was started. Short-term memory testing was done
Using a digit span memory test online (https://www.memorylosstest.com/free-working-memory-test-online/) (respondents are asked to retype forward sequences of numbers that appear on the laptop screen, but none of them received response times below 0.9 s.

The memory picture score of the group that received supplementation before supplementation was 61.4 ± 24.83, while in the control group, it was 55.7 ± 22.58. There were no statistically significant differences between the score of the two groups’ memory picture before supplementation (p = 0.292). (Tables 5 and 6)

At the initial examination, there were four children who performed well for accuracy in remembering the images that appeared on the laptop screen, but none of them received response times below 0.9 s.

Variables	Memory picture score	p	
Before	After		
Supplementation group	61.4 ± 24.83	76.21 ± 15.97	<0.01
Control group	55.7 ± 22.58	55.91 ± 22.58	0.41

Data are abnormally distributed. **Unpaired t-test.**

There was an increase in memory picture scores that were statistically significant in the group that received calcium supplementation (p < 0.01).

There was a statistically significant increase in the memory digital span score in the intervention group after receiving supplementation for 3 months (p < 0.01) (Table 7).

Variables	Memory digital span	p	
Before	After		
Supplementation group	5 (3 – 7)	7 (5 – 7)	<0.01
Control group	6 (4 – 7)	6 (4 – 7)	0.057

Data are not normally distributed.

BLLs

BLLs of the participant were ranging between 0.4 and 12 µg/dL with a median of 2.106 µg/dL. Samples with BLLs above 10 µg/dL are girls. There was no significant difference between the BLLs of boys and girls.

BLLs before supplementation in the supplemented group, min-max was 2.1–9 µg/dL with a median of 2.1 µg/dL. While BLLs before supplementation in the control group min-max were 0.4–12 µg/dL. There were no significant differences in the BLLs of the control group and intervention group before the intervention (p = 0.582). After 3 months of calcium supplementation, a decrease in BLLs in the group receiving calcium supplementation was found statistically significant (p < 0.01) (Table 8).

Variables	Blood lead level (µg/dL)	p	
Before	After		
Supplementation group	2.106 (0.4 – 12)	2.04 (0.4 – 12)	<0.01
Control group	2.04 (0.4 – 12)	2.02 (0.41 – 12.1)	0.231

Data are abnormally distributed.

Table 2: Dietary patterns and behavior of the subjects

Characteristics	Supplementation group (n = 35)	Control group (n = 22)	
Drink milk n (%)	Yes	25 (71.43)	15 (69.18)
	No	10 (28.57)	7 (30.82)
Frequently eat vegetable n (%)	Yes	32 (91.43)	18 (81.82)
	No	3 (8.57)	4 (18.18)
Frequently eat tofu, n (%)	Yes	22 (62.86)	14 (63.64)
	No	13 (37.14)	8 (36.36)
Frequently eat eggs, n (%)	Yes	30 (85.70)	18 (81.8)
	No	5 (14.30)	4 (18.2)
Roadside snacks, n (%)	Yes	30 (85.71)	21 (95.45)
	No	5 (14.29)	4 (4.55)
Hand washing, n (%)	Yes	28 (80.00)	16 (72.73)
	No	6 (17.14)	4 (18.18)
Soap	Yes	1 (2.86)	0.45 (9.09)
Eat other objects than food, n (%)	Yes	13 (37.14)	13 (59.09)
	No	22 (62.86)	9 (40.90)
Eat canned food, n (%)	Yes	18 (51.43)	11 (50)
	No	17 (48.57)	11 (50)
Nail biting, n (%)	Yes	2 (5.71)	9 (40.91)
	No	33 (94.29)	13 (59.09)
Frequent headaches, n (%)	Yes	14 (40)	3 (13.64)
	No	21 (60)	19 (86.36)

Table 3: House’ of the subjects

Characteristics	Supplementation group (n = 35)	Control group (n = 22)	
Residency, n (%)	Inside and outside	17 (48.6)	14 (63.6)
	No	2 (5.7)	1 (4.5)
No	Yes	33 (94.3)	21 (36.4)
No	No	2 (5.7)	1 (4.5)
Water source, n (%)	Yes	3 (8.57)	0.45 (9.09)
	No	32 (91.43)	18 (81.82)
No	Yes	13 (37.14)	8 (36.36)
The road that is not crowded road	Yes	18 (51.43)	11 (50)
	No	33 (94.29)	13 (59.09)
The highway that is not crowded road	Yes	30 (85.71)	21 (95.45)
	No	5 (14.29)	4 (4.55)
Hand washing, n (%)	Yes	28 (80.00)	16 (72.73)
	No	6 (17.14)	4 (18.18)
Breakfast, n (%)	Yes	1 (2.86)	0.45 (9.09)
	No	33 (94.29)	13 (59.09)
Frequency headaches, n (%)	Yes	14 (40)	3 (13.64)
	No	21 (60)	19 (86.36)

Table 4: Short-term memory scores and initial blood lead levels

Variables	Scores
Memory picture (%)	64 (4 – 100)
Memory picture (second)**	1519.61 ± 287.96
Memory digital span*	5 (3 – 7)
Blood lead level (µg/dL)	2.106 (0.4 – 12)

Data are abnormally distributed by median (min-max). **Data are normally distributed by mean ± SD.**

Table 5: Blood lead levels, memory picture, and digital span memory based on gender

Variables	Male (n=32)	Female (n=25)	p
Blood lead level	2.104 (0.4 – 10)	2.015 (0.4 – 12)	0.872**
Memory picture (%)	63.84 ± 18.55	52.52 ± 26.31	0.11**
Memory digital span	5 (3 – 7)	5 (3 – 7)	0.047**

Data are abnormally distributed.

Table 6: Memory picture scores before and after supplementation

Variables	Memory score	p	
Before	After		
Supplementation group	6 (4 – 7)	7 (5 – 7)	<0.01
Control group	6 (4 – 7)	6 (4 – 7)	0.057

Data are not normally distributed.

Table 7: Digital span memory scores before and after supplementation

Variables	Memory digital span	p	
Before	After		
Supplementation group	5 (3 – 7)	7 (5 – 7)	<0.01
Control group	6 (4 – 7)	6 (4 – 7)	0.057

Data are not normally distributed.

A series of images will appear on the laptop screen during the test. When an image appears repeatedly, the respondent was asked to press the space bar on the laptop keyboard.

The performance was defined as good if obtained 90%+ accuracy. Good response time in choosing the right image is <900 ms (0.9 s).

In the initial examination, the picture memory values score was 64 (4 – 100) (median [min-max]) while the memory picture response time value was 1519.61 ± 287.96 (mean ± SD). Digital span memory values were 5 (3 – 7) (median [min-max]) (Table 4).
Statistically, a significant relationship was found between the changes in sample BLLs and memory picture scores (moderate correlation) and digital span memory (weak correlation) and digital span memory (weak correlation). However, the changes in BLLs were found not significantly related to memory picture (time) (Table 9).

Table 9: Correlation of the changes of the blood lead levels with short-term memory scores

Variables	Changes in blood lead levels	
	R	p
Memory picture	-0.516	0.000
Memory picture (second)	0.251	0.06
Memory digital span	-0.386	0.003

Discussion

Lead can affect the brain in various areas, including the cerebral cortex, cerebellum, and hippocampus [7], [41], [42]. In this research, increase short-term memory function is found when the lead levels in blood decrease after 3 months of calcium supplementation. Since short-term memory score is a vital component of one’s IQ score; therefore, the increase of short-term memory will enhance the IQ score [43], [44], [45], [46]. The results of this study are in accordance with the prior findings, in which exposure to lead can reduce children’s IQ and impaired their learning ability.

Evidence showed that dietary calcium decreases gastrointestinal lead absorption and thereby will reduce lead toxicity [11], [47]. A large amount of experimental data supports the hypothesis of calcium supplementation potential roles in lead poisoning treatment. Ca-binding proteins have a high affinity for Pb [48]. Studies showed that increasing BLL is found in rodents with calcium-deficient diet compare with those with calcium-sufficient diet [49]. Studies using an isotope of Stable Pb in adults with Ca supplementation showed a decrease of Pb absorption [50], [51], [52], [53]. Some studies showed that there is a correlation of increasing dietary Ca with the decrease of gastrointestinal lead absorption and BLL, while some studies showed no correlation [4], [12], [50], [54]. Lanphear et al. found a correlation between BLL and Ca intake in a cohort study of 12- to 24-month old children with 900 mg Ca per day.

A 9-month experimental study showed that there is no benefit toward baby of Pb poisoning, given Ca glycerophosphate supplement (188 mg/L vs. 465 mg/L) as the treatment of it. BLL increased 2.4 µg/dL in the un-supplemented and 2 µg/dL in the supplemented group. Interestingly, there was no effect of supplementation on urinary Ca excretion or iron status [33].

The published data of the potential role of Ca supplementation in the treatment of mild to moderate children lead poisoning are limited. A single uncontrolled study examined the potential effects of Ca-supplementation on a Ca-deficient and lead-poisoned population in China. The source of lead exposure in this group was from leaded gasoline usage and industrial pollution. Shen et al. provided a total daily intake of 800 mg Ca (the recommended dietary daily allowance for this age group) to 35 of 49- to 70-month-old children and to those having 300 mg/day of pre-treatment Ca intake. The decrease of 10 µg/dL in BLL was observed in 2 months, although lead exposure was presumably ongoing and changed [55].

In our study using 800 mg/day calcium supplementation, we found the difference of 2.09 µg/dL between the median of BLLs before and after 3 months of follow-up in a Ca supplemented children, p < 0.01, significantly different (min 2.09 and max 8.99 µg/dL). Therefore, we conclude that a total of 800 mg supplementation will not cause toxicity. Although there will be adverse events caused by it, such as myocard infarct, constipation, colorectal neoplasms, and kidney stone [56]. Short-term memory score, along with decreasing levels of lead in blood, is found to increase and according to statistical calculations, the increase is meaningful. From this study, it can be seen that if BLLs have not or are not at a toxic level, short-term memory scores can be better if BLLs are lowered by giving calcium supplements. This situation can occur in children whose daily calcium intake is low, as experienced by respondents in this study.

Physiologically calcium level is determined by the levels of Vitamin D in the blood [57]. The relationship of serum Vitamin D and whole-blood lead is possibly influenced by growth and/or calcium homeostasis in some children and adults. Low dietary intake of Vitamin D and calcium are known risk factors for high bone lead levels. Optimal Vitamin D status is known to have beneficial health effects and Vitamin D supplements are commonly used. It has been suggested that Vitamin D supplementation may increase blood lead in children and adults with previous lead exposure. In fact, high-dose Vitamin D3 supplementation and the concomitant increased serum 25D did not result in increased whole-blood lead concentration [58].

Socioeconomic status has also received attention, is there any effect on lead exposure in children [59], [60]. The Third National Health and Nutrition Examination Survey (NHANES III) from 1991 to 1998 examined the BLLs of American children [12]. The results showed that 21% of children residing in the city compared to 5.8% of children on the outskirts of the city had BLLs that were equal to or more than the maximum allowed by the CDC which was 10 µg/dL. When paying attention to the child’s family income, it turned out that 16.3% of children with a low family income had BLLs of g 10 µg/dL, while in middle-income...
families, there were 5.4% and only 4.0% of families with high income [50]. In this study, more than half of participants came from families with income below the UMR (i.e., 51.4% in the supplemented group and 54.5% in the control group) and children with BLLs above the median value were from low-income families.

Some of the things that could be a weakness in this study were, the researchers did not measure the calcium levels and blood Vitamin D levels of the respondents before and after administration of calcium, the adequacy of respondents’ calcium intake was only seen from interviewing daily intake using a questionnaire alone and not calculating more precisely how much calcium intake is consumed by respondents daily. This study also does not use large population samples so that BLLs cannot be grouped in a particular grouping and no respondents have toxic lead levels so that they cannot see more clearly how many lead levels can go down with calcium.

Conclusion

We demonstrated that the blood leads levels of Al Washliyah Elementary School children who are exposed to lead for a long time (school and their home are located in areas with high levels of air lead) ranging from 0.4 to 12 g/dL, with a median of 2101 g/dL. Providing calcium 2 × 400 mg supplements for 3 months can reduce the BLLs of the Al Washliyah Elementary School children, who are 8–12 years of age, have BLL between 0.4 and 12 µg/dL. After 3 months of calcium supplementation, we found a decrease in BLLs in the supplemented group, which was statistically significant (p < 0.01). The median decrease in BLLs in the supplementation group was 2.09 µg/dl (min the decrease was 2.09 µg/dL and the maximum decrease was 8.99 µg/dL).

Our finding of the providing calcium 2 × 400 mg supplements for 3 months can improve the short-term memory of elementary school children exposed to lead for a long time and the BLLs affect a child’s short-term memory.

Prevention must be carried out in preventing brain development and behavioral disorders related to exposure to lead; by reducing BLLs in each individual to the most minimal point is very necessary. For children exposed to lead, intake of calcium has to be sufficient as the recommended amount according to his/her age. For children who are at risk, it is also recommended to check the short-term memory and examine their BLLs is carried out on all children who are chronically exposed to lead.

Acknowledgments

We thank the school principal, Mr. Rozali, all of the teachers at Al Washliyah Timbang Deli Private Elementary School, our residents, and co-assistant study staff at Haji Adam Malik Hospital for their support of this study. We thank the families and children who participated in this study.

References

1. Papanikolaou NC, Hatzidaki EG, Belivianis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit. 2005;11(10):RA329-36. PMid:16192916
2. World Health Organization. Childhood Lead Poisoning. WHP Press; 2010.
3. Committee on Measuring Lead in Critical Population. Measuring Lead Exposure in Infant, Children and other Sensitive Populations. Washington, DC: United States National Academy Press; 1993. https://doi.org/10.17226/2232
4. Lanphear BP, Hornung R, Ho M, Howard CR, Eberly S, Knauf K. Environmental lead exposure during early childhood. J Pediatr. 2002;140(1):40–7. https://doi.org/10.1067/mpd.2002.120513 PMid:11815762
5. Sauk JJ, Somerman MJ. Physiology of bone: Mineral compartment proteins as candidates for environmental perturbation by lead. Environ Health Perspect. 1991;91:9-16. https://doi.org/10.1289/ehp.91919 PMid:2040255
6. Audesirk, G. Effects of lead exposure on the physiology of neurons. Prog Neurobiol. 1985;24(3):199-231.
7. Bughurst PA, McMichael AJ, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ, et al. Environmental exposure to lead and children's intelligence at the age of seven years. The port pirie cohort study. N Engl J Med. 1992;327(18):1279-84. https://doi.org/10.1056/nejm199210293271805 PMid:1383818
8. Hornung RW, Lanphear BP, Dietrich KN. Age of greatest susceptibility to childhood lead exposure: A new statistical approach. Environ Health Perspect. 2009;117(8):1099-12. https://doi.org/10.1289/ehp.0800426 PMid:19672413
9. Bijoor AR, Sudha S, Venkatesh T. Neurochemical and neurobehavioral effects of low lead exposure on the developing brain. Ind J Clin Biochem. 2012;27(2):147-51. https://doi.org/10.1007/s12291-012-0190-2 PMid:23543765
10. Mahaffey KR. Nutritional factors and susceptibility to lead toxicity. Environ Health Perspect. 1974;7:107. PMid:4831135
11. Ahamed M, Siddiqui MK. Environmental lead toxicity and nutritional factors. Clin Nutr. 2007;26(4):400-8. PMid:17498981
12. Mahaffey KR, Gartside PS, Glueck CJ. Blood lead levels and dietary calcium intake in 1-to 11-year-old children: The second national health and nutrition examination survey. Pediatrics.
Blood lead levels and risk factors for lead poisoning are significant considerations in public health. For instance, a study by Girsang (2010) highlighted the relationship between lead concentrations in ambient air and health outcomes. Similarly, Suyitno, Vistha, Khasanah, and Murtinah (2007) explored absorption rates of lead in children. Hasan (2006) examined the correlation between lead poisoning and children's developmental status.

A deeper understanding of lead exposure is crucial. Grandjean (2014) underscored the neurobehavioral effects of even low-dose lead exposure. Bellinger and Schwart (2008) discussed strategies for comparing the contributions of environmental chemicals and other risk factors to neurodevelopment of children. Edward L. highlighted the impact of heavy metal contamination on water quality and its implications on human health.

Intestinal calcium and lead absorption were studied by Fullmer (2010), marking calcium's potential role in reducing lead absorption. Ballew and Bowman (2008) recommended calcium supplementation for childhood lead poisoning. Heinz (2001) assessed lead exposure in schoolchildren, emphasizing the importance of early detection.

Sargent et al. (2009) conducted randomized trials of calcium glycerophosphate to mitigate infant lead absorption, offering critical insights into the effectiveness of nutritional strategies in reducing lead exposure. Keller (2011) explored the impact of dietary calcium and lead absorption, identifying potential interactions.

Environmental factors, such as pollution, can significantly influence lead levels. Santi (2011) analyzed lead levels in car exhaust emissions, while Nawrot and Stlaessen (2006) investigated low-level environmental lead exposure, demonstrating its silent impact on public health.

Addressing lead poisoning requires comprehensive strategies. Suherni (1991) contributed to the understanding of lead poisoning in Indonesia. Santi and Suherni (2010) emphasized the need for poisoning strategies in Indonesia. Santi and Suherni (2011) continued their research, advocating for integrated approaches to lead poisoning prevention.

Understanding the developmental implications of lead exposure is essential. Grandjean and Landrigan (2014) provided insights into the neurobehavioral effects of lead exposure, demonstrating its influence on cognitive development. Grandjean and Landrigan (2014) further emphasized the importance of early intervention in mitigating lead's impact on children.

Lead exposure is also a significant factor in developmental toxicity. Grandjean (2009) highlighted the neurobehavioral effects of even low-dose lead exposure, underscoring the need for continued research into early intervention strategies. Grandjean (2011) further emphasized the importance of early intervention in mitigating lead's impact on children.

Understanding the developmental implications of lead exposure is essential. Grandjean and Landrigan (2014) provided insights into the neurobehavioral effects of lead exposure, demonstrating its influence on cognitive development. Grandjean and Landrigan (2014) further emphasized the importance of early intervention in mitigating lead's impact on children.

Understanding the developmental implications of lead exposure is essential. Grandjean and Landrigan (2014) provided insights into the neurobehavioral effects of lead exposure, demonstrating its influence on cognitive development. Grandjean and Landrigan (2014) further emphasized the importance of early intervention in mitigating lead's impact on children.
Sofyaniet. The Effect of Calcium Supplementation on BLLs and Short-term Memory of Chronically Exposed Children

Open Access Maced J Med Sci. 2020 Nov 07; 8(B):1144-1151.

45. Squire LR, Knowlton BJ. In: Memory WL, Saunders RC, editor. Memory, Hippocampus and Brain Systems. 1989. p. 825-37.

46. Heard MJ, Chamberlain AC. Effect of minerals and food on uptake of lead from the gastrointestinal tract in humans. Hum Toxicol. 1982;1(4):411-5. https://doi.org/10.1177/096032718200100407
PMid:7173926

47. Simon TJ. Cellular interactions between lead and calcium. Br Med Bull. 1986;42:431-4.
PMid:3308000

48. Han S, Pfizenmaier DH, Garcia E, Eguez ML, Ling M, Kemp FW, et al. Effects of lead exposure before pregnancy and dietary calcium during pregnancy on fetal development and lead accumulation. Environ Health Perspect. 2000;108(6):527-31. https://doi.org/10.1289/ehp.00108527
PMid:10856026

49. Black KC, Barbezat GO, Mann M. Effect of dietary constituents on the gastrointestinal absorption of 203 Pb in Man. Environ Res. 1983;30:182-7.

50. Ziegler EE, Edward BB, Jensen RL, Mahaffey KR, Formon SJ. Absorption and relation of lead by infants. Pediatr Res. 1978;12(1):29-34.
PMid:643372

51. Lederer LG, Bing FC. Effect of calcium and phosphorus on retention of lead by the growing organism. JAMA. 1940;114(25):2457-61. https://doi.org/10.1001/jama.1940.62810250009009

52. Bogden JD, Gertner SB, Christakos S, Kemp FW, Yang Z, Katz SR, et al. Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. J Nutr. 1992;122(7):1351-60. https://doi.org/10.1093/jn/122.7.1351
PMid:1619463

53. Quarterman J, Morrison JN, Humphries WR. The influence of high dietary calcium and phosphate on lead uptake and release. Environ Res. 1978;17(1):60-7. https://doi.org/10.1016/0013-9351(78)90061-0

54. Rosen JF, Chesney RW, Hamstra A, Mahaffey KR. Reduction in 1,25-dihydroxy vitamin D in children with increased lead absorption. N Engl J Med. 1980;302(20):1128-31. https://doi.org/10.1056/nejm198005153022006
PMid:7366636

55. Shen XM, Guo D, Zhou J, Chonghuai Y. Intervening role of calcium on lead toxicity in children: experimental study and clinical verification. Chin J Child Health. 1993;1:157.

56. Li K, Wang XF, Li DY, Chen YC, Zhao LJ, Liu XG, et al. The good, the bad, and the ugly of calcium supplementation: A review of calcium intake on human health. Clin Interv Aging. 2018;13:2443-52. https://doi.org/10.2147/cia.s157523
PMid:30568435

57. Granner DK. Hormon yang mengatur metabolisme kalsium. In: Murray RK, Granner DK, Rodwell VW, editor. Biokimia Harper. 25th ed. Jakarta: EGC; 2003. p. 253.

58. Groleau V, Herold RA, Schall JI, Wagner JL, Dougherty KA, Zemel BS, et al. A. Blood lead concentration is not altered by high dose Vitamin D supplementation in children and young adults with HIV. J Pediatr Gastroenterol Nutr. 2013;56(3):316-9. https://doi.org/10.1097/mpg.0b013e3182758c4a
PMid:2309649

59. Gould E. Childhood lead poisoning: Conservative estimates of the social and economic benefits of lead hazard control. Environ Health Perspect. 2009;117(7):1162-7. https://doi.org/10.1289/ehp.0800408
PMid:19651928

60. Pirkle JL, Brody DJ, Gunter EW, Kramer RA, Paschal DC, Fiegel KM, et al. The decline in blood lead levels in the United States: The national health and nutrition examination surveys (NHANES). JAMA. 1994;272(4):284-91. https://doi.org/10.1001/jama.1994.03520040046039
PMid:8028141