Patterns of care for people presenting to Australian general practice with musculoskeletal complaints based on routinely collected data: protocol for an observational cohort study using the Population Level Analysis and Reporting (POLAR) database

Romi Haas, Ljoudmila Busija, Alexandra Gorelik, Denise A O’Connor, Christopher Pearce, Danielle Mazza, Rachelle Buchbinder

ABSTRACT

Introduction General practice is integral to the Australian healthcare system. Outcome Health’s POPulation Level Analysis and Reporting (POLAR) database uses de-identified electronic health records to analyse general practice data in Australia. Previous studies using routinely collected health data for research have not consistently reported the codes and algorithms used to describe the population, exposures, interventions and outcomes in sufficient detail to allow replication. This paper reports a study protocol investigating patterns of care for people presenting with musculoskeletal conditions to general practice in Victoria, Australia. Its focus is on the systematic approach used to classify and select eligible records from the POLAR database to facilitate replication. This will be useful for other researchers using routinely collected health data for research.

Methods and analysis This is a retrospective cohort study. Patient-related data will be obtained through electronic health records from a subset of general practices across three primary health networks (PHN) in southeastern Victoria. Data for patients with a low back, neck, shoulder and/or knee condition as reasons for GP consultations, referrals and prescriptions are not mandated by the source electronic medical records. It is possible not all patterns of care for the study cohort will be directly attributable to a musculoskeletal condition as reasons for GP consultations, referrals and prescriptions are not mandated by the source electronic medical records.

Strengths and limitations of this study

- This is the first study to our knowledge to report the codes and algorithms used to classify, select and merge eligible records from the POPulation Level Analysis and Reporting (POLAR) database into a patient-centred database to facilitate analysis of general practice patterns of care.
- The systematic approach used in this study can be adapted by other researchers using routinely collected health data for research purposes.
- This study will extend previous research that has assessed the representativeness of POLAR data to general practitioner (GP) care across the wider Australian population.
- These data are likely to underestimate actual allied health visits as some of these do not require a GP referral in Australia; some prescriptions for pain relief are available without a prescription so these data will also be underestimated.

INTRODUCTION

General practice plays an essential role in providing primary healthcare to the population. In Australia 86% of the population visits a general practitioner (GP) multiple times and 16975, respectively. Study findings will be reported to Outcome Health, participating PHNs, disseminated in academic journals and presented in conferences.

To cite: Haas R, Busija L, Gorelik A, et al. Patterns of care for people presenting to Australian general practice with musculoskeletal complaints based on routinely collected data: protocol for an observational cohort study using the Population Level Analysis and Reporting (POLAR) database. BMJ Open 2021;11:e055528. doi:10.1136/bmjopen-2021-055528
a year, and nearly 20% of these consultations are for a musculoskeletal condition. These conditions account for 23% of the years lived with disability in Australia and are also a major cause of disability worldwide. Until 2016, the BEACH (Bbettering the Evaluation and Care of Health) programme provided the most comprehensive data on clinical activities of Australian general practice. The programme identified a number of activities that represent low-value care for people with musculoskeletal conditions including an over-reliance on imaging, prescription of opioids and unnecessary referrals to specialist care. However, in-depth exploration of these activities within the BEACH programme is limited by its cross-sectional design, and these data are no longer being collected.

Technological advancements have facilitated the extraction of de-identified patient information from general practice clinical information systems. The advantage of these data sets for research purposes are that they are longitudinal and can therefore be used to establish sequences of events at the patient level and to examine changes in GP management over time. Both the Medicine Insight and the POPulation Level Analysis and Reporting (POLAR) databases are examples of longitudinal general practice data sets within Australia. Unlike POLAR, the Medicine Insight programme does not currently include referrals provided by GPs to other healthcare providers. These data may provide important insights into how well GPs are playing their role as gatekeepers of the Australian healthcare system.

While using routinely collected data for research purposes offers considerable opportunities to improve healthcare, there are several challenges to be overcome. Differences in patient information management and data extraction tools result in variability in both the information captured and ways in which this information is coded. In particular, the way in which text values (diagnoses, examination findings, test results and medications) are transformed to codes can be a source of variation within and between studies. Previous studies have highlighted how code selection affects the reported prevalence and precision of results. Studies conducted using routinely collected health data should therefore be reported with sufficient detail and clarity to allow replication. However, a systematic evaluation of a random sample of 124 publications using routinely collected health data has demonstrated inadequate reporting of the methods used. For example, in 44 studies where definitions of codes or classification algorithms were deemed necessary to describe the population, exposures or interventions and outcomes, only 9 (20.5%) reported all three items adequately. The REporting of studies Conducted using Observational Routinely Collected Data (RECORD) guidelines, published in 2015, were developed to assist in this process and to ensure that readers can assess the internal and external validity of the findings of these studies.

The POLAR database draws data from every consultation occurring for millions of patients in approximately 30% of general practices across southeastern Victoria, an area that comprises more than half of Victoria’s population. Inclusion is based on practice consent so this volume is increasing exponentially as more practices consent to add their data and as more consultations occur over time. Unlike in other countries, coding is not embedded in the clinical process and needs to be conducted specifically for research purposes. Data are provided to research users in a relational database that organises data into files that can be merged based on common data fields. Identifying and selecting relevant records and merging separate files into a patient-centred database for analysis is a complex task that could potentially yield variable results depending on the methods used.

Previous studies have used the POLAR database to investigate patterns of antimicrobial prescribing for children, to examine characteristics of patients presenting to an after-hours clinic, to estimate GP recording of cardiovascular risk factors and to describe characteristics of pathology test ordering in general practice. However, these studies have not reported the methods used to classify and select eligible records or the processes used to merge data files into a patient-centred database for analysis.

This manuscript presents a protocol for a study investigating patterns of GP care for people with a low back, neck, shoulder and/or knee condition in Victoria, Australia. It describes the methods used to classify and select eligible records from the POLAR database and how relational data files will be merged into a patient-centred database. This systematic approach will guide future research by enabling researchers interested in using routinely collected health data, and the POLAR database in particular, to answer other clinically relevant questions about general practice care. Study findings will advance existing knowledge about GP care for people with these musculoskeletal conditions and whether it conforms to best evidence-based practice. Differences in care across different musculoskeletal complaints may also inform tailored interventions to improve care and ultimately reduce the burden of disease associated with these musculoskeletal complaints.

Objectives

The aim of this study will be to examine GP patterns of care for people with low back, neck, shoulder and knee conditions. Specific objectives will be to:

1. Describe and compare the management (number, type and timing of imaging tests and procedure requests, prescriptions for pain relief and referrals to other health providers) provided by GPs to people with low back, neck, shoulder and knee conditions.
2. Describe the prevalence of comorbidities among specific musculoskeletal diagnoses within this cohort.
3. Examine the association between management types and patient-related and practice-related variables.
4. Examine the longitudinal changes in GP management for these conditions between 2014 and 2018 inclusive.
METHODS

Study design
A retrospective cohort study using general practice health records from Victoria, Australia.

Data source
This study will use data from Outcome Health’s POLAR database.9 The database structure is based on eight relational files, each containing de-identified practice, provider and/or patient codes (figure 1). These common fields allow merging of the data files so that databases can be configured for specific research purposes. Data are extracted from two different clinical information systems, covering 90% of included general practices. All data are extracted using the Hummingbird data extraction tool.9

Setting
The POLAR database contains de-identified patient-related data from all electronic medical records of consenting general practices within the primary health networks (PHNs) of Eastern Melbourne, South Eastern Melbourne and Gippsland within Victoria, Australia. Our study will include data collected over five calendar years from 1 January 2014 until 31 December 2018 relating to all patients with an eligible musculoskeletal condition and who received at least one face-to-face GP consultation. Follow-up will be from the time of the initial recorded diagnosis to 31 December 2018. Data analyses will be completed by the end of 2021.

Participants
The study cohort will include people diagnosed during 2014–2018 inclusive with a low back, neck, shoulder and/or knee condition, limited to age 45 years and over except for low back which will be limited to age 18 years and over. The differing age restrictions were chosen because the prevalence of most musculoskeletal conditions increases markedly after the age of 45 except for low back pain which increases after the age of 18.18 Eligibility criteria are presented in table 1. We excluded traumatic diagnoses and conditions typically primarily managed by a specialist (eg, inflammatory and autoimmune rheumatic diseases). Patients with an eligible diagnosis and age will also have received at least one GP face-to-face consultation during the study dates. The musculoskeletal diagnosis will not have to occur during a GP consultation since an eligible diagnosis could result from consultation with other healthcare providers.

Variables
Preparatory work to classify and select eligible records has been completed as part of the protocol process. In circumstances where Outcome Health has previously coded data (eg, diagnosis records), we used this coding to select eligible records that fitted our inclusion criteria. In circumstances where there was no coding (eg, imaging tests), we coded the data into categories and then selected eligible records. Outcome Health’s approach to coding used clinical natural language processing to automatically code structured narrative text within the electronic medical record followed by a manual process for quality checking and correction.20 For example, this allowed the free-text items ‘back pain’, ‘low back pain’ and ‘lumbar pain’ to all sit under the same diagnostic code. Where possible, coding was conducted using a standardised classification system. For example, diagnoses are coded using SNOMED CT-AU terminology21 and prescriptions are coded according to the Anatomical Therapeutic Chemical (ATC) classification system.22 In cases where

Figure 1 Database structure. ATC, Anatomical Therapeutic Chemical; PHN, primary health networks.
there is no standardised classification system available (eg, providers and referrals), Outcome Health used a similar process to code these variables into relevant categories (eg, type of healthcare provider). Clinical natural language processing conducted by Outcome Health has previously demonstrated accurate coding of over 95% of the narrative text to SNOMED CT-AU terms in a sample of approximately 57 000 diagnosis records.20 Our approaches to coding and/or selecting eligible records for each variable are described in detail below.

Provider records
Healthcare providers other than a GP may be nested within a general practice. To limit all diagnoses, consultations, referrals and prescriptions to those made only by GPs we used coding within the provider type field conducted by Outcome Health. This is coded by Outcome Health according to the professional background of the healthcare provider delivering the service (eg, GP, nurse).

Diagnoses records
All SNOMED CT-AU diagnosis-related terms used during 2014–2018 were searched by two study authors (RH and RB) to select eligible low back, neck, shoulder and knee conditions. We included all patients with an eligible musculoskeletal diagnosis during 2014–2018 regardless of whether they had a prior musculoskeletal diagnosis. Included SNOMED diagnosis terms are presented in table 2. Sacral conditions were included as part of low back conditions. The following SNOMED terms were excluded as these conditions were deemed to be indicative of traumatic injury or conditions that are not managed primarily by GPs: fracture (except lumbar and tibial plateau fractures), dislocation, synovectomies/synovitis and cauda equina syndrome. Knee ligamentous and meniscal tears were included as these are likely due to degeneration in the 45 years and over age group.23 Lesions were excluded as these could involve a wound, ulcer or tumour and are not musculoskeletal conditions. General musculoskeletal terms such as spray or osteoarthritis (where the site was not specified) were also excluded as these could not be attributed to a specific body region. We included relevant surgical or procedural musculoskeletal terms as GPs are involved in referral and follow-up for these conditions.

Using experienced clinicians, Outcome Health has further categorised SNOMED diagnoses into overarching groups and used key chronic disease groups as a qualifier.9 For example, free text such as ‘low back pain’ or ‘angina’ could be qualified as a chronic disease if present for 6 months or more. We used these chronic disease groups to identify eligible comorbid diagnoses for our study cohort as follows: chronic cardiovascular disease, chronic obstructive pulmonary disease, chronic musculoskeletal conditions, cancer, opioid addiction, dementia, diabetes, depression/anxiety and obesity. Obesity was identified using SNOMED terms as it was not coded as a chronic disease category in the POLAR database. We included previous chronic musculoskeletal conditions so that these could be investigated as a potential predictor of different management patterns.

Table 1 Eligibility criteria

Patient population	Patient management																																											
Diagnoses	**Provider**	**Patient**	**Practice**	**Activity**	**Referrals**	**Prescriptions**	**Imaging tests and procedures**																																					
Low back Knee Shoulder Neck	Diagnosed by a general practitioner	Aged ≥18 years for low back conditions	Aged ≥45 years for all other diagnoses	Patient activity 2014–2018	Face-to-face	Surgical specialists	Non-surgical specialists	Allied health providers, eg, psychologist	Simple analgesics	Anti-inflammatory	Chondroitin	Glucosamine	Topical products	Opioids	Neuromodulators	Lumbar plain radiograph	Lumbar CT	Lumbar MRI	Lumbar injection	Knee plain radiograph	Knee CT	Knee MRI	Knee ultrasound	Knee injection	Shoulder plain radiograph	Shoulder ultrasound	Shoulder MRI	Shoulder injection	Shoulder hydrodilatation	Cervical plain radiograph	Cervical CT	Cervical MRI	Cervical injection											
Exclude: Trauma Systemic inflammatory arthritis																																												

CT, Computed Tomography; MRI, Magnetic Resonance Imaging.
Table 2 Included SNOMED terms

Low back diagnoses	Knee diagnoses	Spinal diagnoses	Neck diagnoses
Arthritis of spine	Acute meniscal tear, medial	Acromioclavicular joint structure	Cervical arthritis
Arthropy of spinal facet joint	Anterior knee pain	Adhesive capsulitis of shoulder	Cervical arthrodesis
Back problem	Arthritis of knee	Arthrosis of acromioclavicular joint	Cervical disc disorder
Backache	Arthrosis of knee	Arthrosis of shoulder	Cervical kyphosis
Bone structure of coccyx	Arthritic lateral patellar release	Arthropathy of shoulder	Cervical laminectomy
Bone structure of L5	Arthritic meniscopathy	Arthrosopic acomioplasty	Cervical myelopathy
Bone structure of sacrum	Arthroscopic procedure	Arthroscopic shoulder decompression	Cervical nerve root compression
Chondrolysis of spine	Arthroscopy of knee	Arthroscopy of shoulder	Cervical radiculopathy
Chronic back pain	Arthroscopy of knee with lateral meniscectomy	Burials of shoulder	Cervical rib
Chronic lower back pain	Arthroscopy of knee with medial meniscectomy	Calcific tendinitis	Cervical spinal fusion by anterior technique
Compression fracture	Arthrotomy of knee	Calcific tendinitis	Cervical spine degenereation
Compression fractures of vertebra column	Aspiration of knee joint	Capsulitis	Cervical spine structure
Compression of lumbar nerve root	Both knees	Contusion of shoulder region	Cervical decompression laminectomy
Constriction of scoliosis	Bursits of knee	Detachment of the glenoid labrum and/or capsule of the shoulder joint	Cervical spondylosis
Crush fracture of lumbar vertebra	Calcium pyrophosphate deposition disease	Entire lenden of supraspinatus muscle	Chronic neck pain
CT of lumbar region	Chondrocalcinosis	Full thickness rotator cuff tear	CT of cervical spine
CT of lumbar spine	Chondromyalgia of patella	Impingement syndrome of shoulder region	Degeneration of cervical intervertebral disc
Curvature of spine	Complete tear, knee, medial collateral ligament	Infammation of rotator cuff tendon	Diffuse cervical spondylosis
Decompression laminectomy	Contusion of knee	Injury of glenoid labrum of shoulder joint	Excision of cervical intervertebral disc
Decompression of lumbar spine	Disrtection of patellar tendinous joint	Injury of shoulder region	Injury of cervical spine
Degeneration of intervertebral disc	Finding of tear meniscus	Mri of shoulder	Kyphoscoliosis deformity of spine
Degeneration of lumbar intervertebral disc	Fracture of tibial plateau	Osteolysis of acromioclavicular joint	Kyphosis deformity of spine
Diagnostic radiography of coccyx	Haemarthrosis of knee	Osteolysis of shoulder	Mri of neck
Disclitis	Inflammation of bursa of patella	Painful arc syndrome	Mri of cervical spine
Discogenic pain	Injury of anterior cruciate ligament	Radiography of shoulder	Neck injury
Disorder of joint of spine	Injury of knee	Repair of musculotendinous cuff of shoulder	Neck pain
Disorder of vertebra	Knee joint – varus deformity	Repair of shoulder	Neck sprain
Exploration of spine	Knee joint effusion	Rotator cuff impingement syndrome	Neck structure
Facet joint pain	Knee joint valgus deformity	Repair of rotator cuff syndrome	Pain in cervical spine
Fracture of body of vertebra	Knee locking	Rupture of tendon of biceps	Prolapsed cervical intervertebral disc
Fracture of lumbar spine	Knee pain	Rupture of tendon of biceps, long head	Radiography of cervical spine
Fracture of sacrum	Knee region structure	Shoulder pain	Spinal stenosis in cervical region
Fracture of vertebral column	Knee stiffness	Shoulder reconstruction	Stiff neck
Instability of back	Loose body in knee	Shoulder region structure	Strain of neck muscle
Instability of coccyx	Mri of knee	Shoulder strain	Strain of tendon of neck
Intervertebral disc prolapse	Occipital neuralgia	Shoulder tendinitis	Tendinoarthritis of shoulder
L4/L5 disc	Osteolysis of cervical intervertebral disc	Sprain of acromioclavicular ligament	Whiplash injury to neck
L5/S1 disc	Osteolysis of proximal tuba	Sprain of shoulder	
Laminectomy	Osteolysis of glabella	Structure of left shoulder region	
Lumbosacral pain	Patellar instability	Structure of right shoulder region	
Lumbosacral spondylisis	Patellar maltracking	Structure of retinaculum of muscles and tendons	
Lumbosacral spondylisis without myelopathy	Patellar tendinitis	Subacromial bursitis	
Lumbosacral strain	Patelloectomy	Subdeltid bursitis	
Lumbosacral radiculopathy	Patellofemoral osteoarthrits	Subluxation of acromioclavicular joint	
Mri of spine	Patellofemoral sepsis syndrome	Supercapital bursitis	
Manipulation of spine	Prepatellar bursitis	Suprascapular bursitis	
Mri of lumbar spine	Problem knee	Supraspinatus tear	
Neck root compression syndrome	Radiological examination of knee	Total shoulder replacement	
Nerve root disorder	Repair of anterior cruciate ligament of knee joint	US shoulder region	
Operative procedure on spinal structure	Repair of knee collateral ligaments		
Osteoarthrits of lumbar spine	Repair of knee cruciate ligaments		
Pain in lumbar spine	Repair of meniscus		
Pain in the coccyx	Repair of patellar tendon		
Prolapsed lumbar intervertebral disc	Replacement of total knee joint		
Radiography of spine	Rupture of anterior cruciate ligament		
Sacral back pain	Rupture of collateral ligaments		
Sacroiliac arthrosis	Rupture of rotator cuff		
Sacroiliac joint inflamed	Subluxation of patellar tendon		
Sacroiliac joint pain	Suprapatellar bursitis		
Scoliosis deformity of spine	Swollen knee		
Scoliosis of lumbar spine	Synovial cyst of knee		
Sphen of back muscles	Synovial cyst of popliteal space		
Spinal arthrits defroma	Tearing of lateral meniscus of knee		
Spinal arthrosis	Tearing of medial meniscus of knee		
Spinal claudication	Tear of meniscus of knee		
Spinal injury	Total knee replacement		
Spinal stenosis	Total replacement of left knee joint		
Spinal stenosis of lumbar region	Total replacement of right knee joint		
Spondylitis	Traumatic rupture of patellar tendon		
Spondylopathies	Unstable knee		
Spondylopathies without myelopathy	Vagi of lumbarosacral spine		

Activity records

Activity records are coded in POLAR according to the type of consultation provided (eg, Telehealth, visit, telephone). Each time a note is recorded in the narrative section it is coded by the electronic medical record (EMR) and this is extracted by POLAR. We used this coding to select eligible patients who had at least one ‘Activity type’ relating to a face-to-face consultation (ie, encounter,
vascular disease).26 condition (eg, aspirin for secondary prevention of cardio-

These were excluded on the basis that suppressants (eg, dextromethorphan) and expectorants (eg, guaifenesin). We excluded the following preparations of medications. We excluded the following opioid analgesics such as: morphine, oxycodone, tapentadol, hydrocodone, hydrocodone/paracetamol, paracetamol, pregabalin, gabapentinoids, and opioids; defined as 150 MME per day; and (iii) combination opioid analgesics.25 Medicines in the combination opioid category were categorised based on the strongest medicine present, either as a weak combination opioid or as a strong combination opioid.

To ensure we included all potentially eligible medication names, we searched by both ATC category and by medication name from the prescription file during 2014–2018. The medication names we included are presented in table 3. We included oral, topical and injectable preparations of medications. We excluded the following prescriptions: aspirin, decongestants (eg, pseudoephedrine), antihistamines (eg, doxylamine), opioid cough suppressants (eg, dextromethorphan) and expectorants (eg, guaifenesin). These were excluded on the basis that they were likely to have been prescribed for another condition (eg, aspirin for secondary prevention of cardiovascular disease).26

Imaging records
The test data file within POLAR contains radiology and pathology tests requested by the GP. At the time of data extract, coding of the test data file had not been completed for specific imaging tests by Outcome Health and there were too many records to scan manually. We therefore exported all radiology test names during 2014–2018 inclusive and used an inductive coding process to select the following eligible imaging tests: plain radiographs, CT and MRI scans of the lumbar and cervical spine; plain radiographs, CT, MRI and ultrasounds of the knee; and plain radiographs, MRI scans and ultrasounds of the shoulder. We also included lumbar spine, knee, shoulder and cervical spine injections and shoulder hydrodilatation as eligible radiology procedures.

To code eligible imaging records, we first used the string match command in Stata to select all test names for each eligible anatomical region (ie, low back, neck, shoulder and knee). Within each region, we then iteratively coded all imaging records into subgroups according to the type of imaging test (eg, ultrasound). This process involved developing string match terms to identify each type of eligible radiology test or procedure within the sample, reviewing the uncoded test names (subgrouped as ‘other’) and manually coding additional terms until the remaining test names could not be classified into any further subgroups. We also developed string match terms to identify bilateral tests of the shoulder and knee. The initial string match terms used to code each body region and eligible imaging test or procedure are presented in online supplemental appendix 1.

During the coding process, there were numerous test names that did not definitively identify a type of imaging test (eg, ‘right knee’). We labelled these as ‘unspecified’. We plan to classify these as plain radiographs in our analysis. This is because plain radiograph was deemed to be the default radiology modality in the EMR software. The subgroups of imaging records inductively developed for each eligible body region are presented in table 4. Our subgroup coding (excluding test names labelled as ‘unspecified’ and ‘other’) accounted for 96.0%, 95.8%, 95.2% and 96.6% of the identified low back (n=180 630), neck (n=192 844), shoulder (n=236 803) and knee (n=235 123) imaging test names, respectively. Test names indicating more than one imaging test were classified separately. We excluded imaging tests of soft tissues of the neck and test names indicating a combined neck image with the head, larynx, thyroid and/or abdomen (unless it specifically stated cervical spine) as we deemed these investigations were most likely not requested for a musculoskeletal condition. We also excluded test names with the following terms as these were not deemed to indicate an imaging test or procedure: ‘report’, ‘findings’, ‘cancel’, ‘results’, ‘letter’.

Data access and cleaning
Outcome Health provided the research team with access to all POLAR database records since inception (1997). Data quality checks will be performed to label data as ‘acceptable’ for analysis using a similar process to that conducted by an established general practice database in the UK.27
Table 3 Included medication names

Simple analgesics (N02BE*)	Non-steroidal anti-inflammatories (M01A*)	Chondroitin and/or glucosamine (M01AX*)	Topical products for joint and muscular pain (M02A*)	Opioids (N02A*)	Gabapentinoids (N03AX*)
[Caffeine, Paracetamol]	Celecoxib	[Borate, Chondroitin, Glucosamine, Manganese]	Benzydamine, Benzydamine hydrochloride	Weak single opioids	Gabapentin Pregabalin
Paracetamol	Diclofenac	[Chondroitin, Copper, Glucosamine, Manganese, Zinc Sulphate]	[Cajuput oil, Camphor, Capsicum, Eucalyptus oil, Hydroxybenzoate, Mentha X Piperita, Menthol, Methy1 salicylate, Pinus, Turpentine oil]	Codeine, Codeine phosphate	Codeine phosphate hemihydrate
Paracetamol combinations	Diclofenac potassium	[Chondroitin, Dimethyl Sulphone, Glucosamine]	[Cajuput oil, Camphor, Clove, Menthol (Tiger Balm)]	Codeine phosphate	Dextropropoxyphene
[Ibuprofen, Paracetamol]	Diclofenac sodium	Glucosamine	[Camphor, Mercuria, Eucalyptus oil, Methyl salicylate]	Codeine phosphate	Dextropropoxyphene napsylate
	Diclofenac sodium, Misoprostol	[Glucosamine, Chondroitin]	[Camphor, Eucalyptus oil, Mentha X Piperita, Menthol, Methyl salicylate, Pinus, Turpentine oil]	Codeine phosphate, Ibuprofen	Tramadol
	Etoricoxib	Glucosamine hydrochloride	[Camphor, Eucalyptus oil, Methyl salicylate]	Codeine phosphate, Ibuprofen	Tramadol hydrochloride
	Flurbiprofen	Glucosamine hydrochloride	[Camphor, Eucalyptus oil, Menthol, Methyl salicylate]	Codeine phosphate, Ibuprofen	Combination weak opioid
	Flurbiprofen llysine	Glucosamine hydrochloride, Chondroitin sulphate	[Camphor, Eucalyptus oil, Methyl salicylate]	Aspirin, Codeine phosphate	[Codeine, Codeine phosphate, Ibuprofen]
	Indomethacin	Glucosamine hydrochloride, Chondroitin sulphate	[Camphor, Eucalyptus oil, Methyl salicylate]	Codeine phosphate	[Codeine phosphate, Paracetamol]
	Ketoprofen	Glucosamine hydrochloride	[Camphor, Eucalyptus oil, Methyl salicylate]	Codeine phosphate	[Codeine phosphate, Paracetamol]
	Ketorolac	Glucosamine hydrochloride, Chondroitin sulphate	[Camphor, Eucalyptus oil, Methyl salicylate]	Codeine phosphate	[Codeine phosphate, hemihydrate, Ibuprofen]
	Ketorolac trometamol	Glucosamine, Calcium, Vitamin D, Minerals	[Camphor, Eucalyptus oil, Methyl salicylate]	Codeine phosphate	[Dextropropoxyphene, Paracetamol]
	Lumiracoxib	[Glucosamine hydrochloride, Chondroitin sulphate]	[Camphor, Eucalyptus oil, Methyl salicylate]	Codeine phosphate	[Dextropropoxyphene, Paracetamol]
	Melfenamic acid	[Calcium glutonate, Manganese ascorbate]	[Camphor, Eucalyptus oil, Methyl salicylate]	Codeine phosphate	[Tramadol, Paracetamol]
	Meloxicam	Glucosamine hydrochloride, Glucosamine sulphate, Glycine, Fructose, Bioflavonoids	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	[Tramadol hydrochloride, Paracetamol]
	Naproxen	Glucosamine hydrochloride, Glucosamine sulphate, Calcium ascorbate, Vitamin K, Boron	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	Naproxen sodium	Glucosamine hydrochloride, Glucosamine sulphate, Calcium, Vitamin D, Vitamin K	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	[Naproxen, Esomeprazole]	Glucosamine hydrochloride, Glucosamine sulphate, Calcium, Vitamin D, Vitamin K	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	Parecoxib	Glucosamine hydrochloride, Calcium, Vitamin D, Vitamin K	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	Parecoxib sodium	Glucosamine hydrochloride, Calcium, Vitamin D, Vitamin K	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	Piroxicam	Glucosamine hydrochloride, Calcium, Vitamin D, Vitamin K	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	Rofecoxib	Glucosamine hydrochloride, Calcium, Vitamin D, Vitamin K	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	Sulindac	Glucosamine, Calcium, Vitamin D, Minerals	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	
	Tiaprofenic acid	[Calcium glutonate, Manganese ascorbate]	[Camphor, Eucalyptus oil, Methyl salicylate]	[Tramadol, Paracetamol]	

*Anatomic and Therapeutic Classifications (ATC) category.

Duplicate data and records with empty or implausible birth dates (defined as greater than 115 years of age at time of diagnosis or dated after patient management) will be excluded from analyses. We will exclude practices without any activity data during 2014–2018. We will also examine the consistency of activity, test, prescription and referral data for each practice in each eligible calendar year. If a gap in reporting from any practice is identified for 1 year or more, only data from the earliest date after which there was no gap will be included. For example, if a practice has activity data in 2014, 2017 and 2018, only data from 2017 onwards will be included. In addition, we...
Open access

will exclude activity records that represent more than one face-to-face consultation with a GP for the same patient on the same day. This is because an ‘activity’ occurs in POLAR anytime a patient record is accessed regardless of whether this was for clinical or administration purposes.

Approach to data set creation

We will use a systematic process to exclude ineligible records in order to merge data and select the study cohort (figure 2). This process will require the merging of five relational data files (patient, practice, provider, activity and diagnosis) in a specific sequence to ensure all relevant records are retained. For example, we will not limit diagnosis records to 2014–2018 until after we have selected relevant comorbidities. A patient-centred database will be prepared to examine the number and type of GP consultations, imaging test and procedure requests, prescriptions for pain relief and referrals to other health providers for our study cohort. Data that does not match our eligibility criteria (including data with missing fields) will be excluded during the merging process as unmatched records. Duplicate records, records with implausible dates or missing fields and multiple records of the same type on a single day will also be removed and reported.

Analyses

All relevant data will be extracted from the POLAR SQL database and imported into Stata V.15 (StataCorp LP) for data management and analyses. The methods in this protocol are structured according to RECORD guidelines (online supplemental appendix 2). For variables with a recognised coding system, full lists of codes used to define eligible variables are available from https://clinicalcodes.mhs.man.ac.uk/medcodes/article/174/.

Descriptive statistics will be used to summarise the study cohort including the number and type of eligible musculoskeletal conditions, patient demographics and

Table 4 Test name subgroups for low back, knee, shoulder and neck imaging tests and procedures

Low back imaging subgroups	Knee imaging subgroups	Shoulder imaging subgroups	Neck imaging subgroups
Lumbosacral plain radiograph*	Knee plain radiograph*	Shoulder plain radiograph*	Neck plain radiograph*
Lumbosacral CT*	Knee CT*	Shoulder ultrasound*	Neck CT*
Lumbosacral MRI*	Knee MRI*	Shoulder MRI*	Neck MRI*
Lumbosacral injection*	Knee injection*	Shoulder injection*	Neck injection*
Lumbosacral unspecified*	Knee unspecified*	Shoulder unspecified*	Neck unspecified*
Lumbosacral ultrasound†	Knee ultrasound*	Shoulder hydrodilatation*	Neck ultrasound†
Lumbosacral other†	Knee other†	Shoulder other†	Neck other†
Knee aspiration†	Shoulder aspiration†	Shoulder CT†	Shoulder aspiration†
Knee arthrogram†	Shoulder arthrogram†	Shoulder fluoroscopy†	

*Eligible.
†Ineligible.
‡Analyse as plain radiograph.

Figure 2 Approach to data set creation. GP, general practitioner; MSK, musculoskeletal; F2F, face-to-face.
comorbidities. These will be compared with national health survey data to assess the representativeness of the POLAR database to the wider Australian population. Eligible musculoskeletal conditions will be grouped according to body region.

Primary analysis will include analysis of each management type provided for each participant during the first year after their index diagnosis. A sensitivity analysis will be conducted including the entire follow-up period until 31 December 2018. For prescriptions, the primary analysis will include the entire follow-up period because repeated prescriptions over more than 1 year are anticipated. Descriptive statistics will also be used to summarise the number and type of GP all-cause consultations, imaging tests and procedures requested, prescriptions for pain relief and referrals to other health providers for the study cohort. Results will be stratified by affected body region. Consultations will be categorised as face-to-face or telecommunication. Imaging requests will be categorised according to the type of imaging modality or procedure and body region (eg, knee MRI). Bilateral knee and shoulder imaging requests will be counted as two imaging requests. Prescriptions will be categorised according to paracetamol, NSAIDs, glucocorticosteroids and/or chondroitin, opioids (weak single opioid, strong single opioid, weak combination opioid and strong combination opioid) and gabapentinoids. Referrals will be categorised according to surgical specialist, non-surgical specialist and allied health. Patterns and timing of management (imaging requests, prescriptions and referrals) for people with eligible low back, neck, shoulder and knee conditions will be examined and compared between each year within the 5-year study period and relative to time of diagnosis using trend analyses.

One of the limitations of the POLAR database is that it does not capture reasons for the clinical encounter or management types (imaging request, prescription or referral). To account for the subsequent uncertainty in attributing management types to a particular diagnosis for those with multiple musculoskeletal conditions, participants with eligible musculoskeletal diagnoses from multiple body regions will be analysed separately to those with eligible diagnoses in one body region. Imaging requests will be analysed relative to the date of the most recent musculoskeletal diagnosis for the same body region. For example, a shoulder ultrasound will be analysed relative to the index date of an eligible shoulder diagnosis even if the same patient was diagnosed previously with an eligible knee condition. The association between management types and patient-related and practice-related characteristics will be examined using regression analysis. Predictors will include patient gender, socioeconomic status, residential location, body region(s) affected by eligible musculoskeletal conditions and PHN of the practice with adjustment for age and time since index diagnosis. Socioeconomic status will be defined by the Index of Relative Socioeconomic Advantage and Disadvantage using 2016 Census data.

Sequence analysis will be used to categorise sequences of management types of people with eligible musculoskeletal conditions into similar groups based on observed characteristics. This will take into account both the time since diagnosis and sequence of each management type. We will use this to identify the most frequently used combinations and sequences of management and the patient-related and practice-related variables that correlate with each management combination.

Sample size consideration

Sequence analysis will require the largest sample size of our planned analyses and will therefore form the basis of our sample size consideration. We plan to examine the following six management types: non-surgical referrals, surgical referrals, allied health referrals, opioid prescriptions, X-ray and/or ultrasound requests and MRI and/or CT scan requests. This provides a total of 720 potential sequence combinations. Based on a recommended 20–30 subjects per subgroup, we estimate a sample size of between 14 400 and 21 600 will be required to differentiate between each sequence combination or pattern of care. Recent use of the POLAR database using data from approximately 200 general practices identified 20 514 active adult patients with type 2 diabetes before July 2016. Our extract is based on 301 general practices from 2014 to 2018 and since the prevalence of diabetes is less than that of musculoskeletal conditions, we expect a sample size of more than 20 000.

Patient and public involvement

There will be no involvement of patients or the public in this study.

DISCUSSION

Explicitly reporting our systematic approach used to classify, select and merge eligible records from relational data files into a patient-centred database for analysis promotes transparency, reproducibility and completeness of the reporting of research conducted using routinely collected health data. The approach used to code eligible imaging tests from structured narrative text coded over 95% of the 845 400 cumulative imaging-related test and procedure records identified for low back, neck, shoulder and knee conditions during 2014–2018. Our code lists are available for all variables that have been previously coded by POLAR and those with a recognised coding system have been made available on the ClinicalCodes online repository. Although our coding process may only be applicable to systems that do not embed coding in the clinical process, this approach can also be adapted to examine patterns of care over time for other conditions in general practice.

The main strength of this study is that it will facilitate an overview of the care provided by GPs to the same patient(s) over time and thereby enable temporal sequences to be examined. The POLAR database
contains all patient-related activity within each practice making it representative of the included practices. Previous research has demonstrated comparable prevalence and age-gender distribution of people diagnosed with type 2 diabetes within the POLAR database to those within Australia.32 This study will add to these findings by assessing the representativeness of people with musculoskeletal conditions within the POLAR database to the wider Australian population.

Constraints within the POLAR database may potentially limit the reliability of this study’s findings although these are problems inherent in the use of any extracted data. Variability in workflows and recording behaviour introduces potential biases and the different clinical information systems used by the practices within POLAR may result in variability in the information entered. The objective of POLAR is to remove as much variability as possible by using and being transparent about the coding process. High accuracy of diagnostic coding by Outcome Health has been previously demonstrated.33 In addition, it is possible not all patterns of care for the study cohort will be directly attributable to a musculoskeletal condition because reasons for GP consultations, referrals, imaging requests and prescriptions are not mandated in the source EMRs. These data are also likely to underestimate actual allied health visits and prescriptions for pain relief as some of these do not require a GP referral and are available over-the-counter without a prescription, respectively, in Australia.

ETHICS AND DISSEMINATION
Prior approval to conduct this study was obtained from the Cabrini Human Research Ethics Committee and Monash University Human Research Ethics Committee (Reference Numbers 02-21-01-19 and 16975, respectively). We did not obtain participant consent as all data were anonymised. Outcome Health holds a standing ethics approval for its collection and custodianship of the data from the Royal Australian College of General Practice. The study findings will be reported to Outcome Health, participating PHNs, disseminated in peer-reviewed academic journals and presented in national and international conferences.

Contributors RH, D’AOC and RB conceived the study LB and AG were responsible for data coding and the statistical analysis plan. CP provided expertise in the use of the POLAR database. DM provided clinical context in managing musculoskeletal conditions within the general practice setting. All authors contributed to refining the protocol and approved the submitted protocol.

Funding This work was supported by an Arthritis Queensland, Arthritis South Australia and the Allan and Beryl Stephens Grant from Arthritis Australia (JDN). Arthritis Australia did not contribute to the conduct of this study. It is also supported by an Australian National Health and Medical Research Council (NHMRC) Programme Grant (APP1113532). DAOC is supported by a TRIP Fellowship and RB is supported by an NHMRC Investigator Fellowship (APP1194483).

Competing interests RH, D’AOC, RB and DM report grants from Arthritis Australia (not-for-profit organisation), during the conduct of the study. CP is an employee of Outcome Health, the not-for-profit organisation that developed the POLAR database and chairs the Product improvement group of the Australian Digital Health Agency. It has no relationship with the research, but has provided grant funding to Outcome Health. LB reports consultancy fees paid to Monash University from Charlie Medical University Berlin, Jesuit Social Services Victoria and Swinburne University of Technology, outside the submitted work.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Romi Haas http://orcid.org/0000-0001-9100-5509
Ljupomila Busija http://orcid.org/0000-0001-7464-9089
Alexandra Gorelik http://orcid.org/0000-0003-1032-0457
Denise A’Connor http://orcid.org/0000-0002-6836-122X
Christopher Pearce http://orcid.org/0000-0001-5371-8196
Danielle Mazza http://orcid.org/0000-0001-6158-7376
Rachelle Buchbinder http://orcid.org/0000-0002-0597-0933

REFERENCES
1 Royal Australian College of General Practitioners. General practice: health of the nation. East Melbourne, Vic: RACGP, 2019.
2 Britt HMG, Henderson J, Bayram C. General practice activity in Australia 2015–16. general practice series No. 40. Sydney: Sydney University Press, 2016.
3 Rahman N, Gruber R. The burden of musculoskeletal conditions in Australia: a detailed analysis of the Australian burden of disease study 2011. Australian Institute of Health and Welfare, 2017.
4 Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet 2020;396:1204–22.
5 Britt HMG, Bayram C, Henderson J. A decade of Australian general practice activity 2006–07 to 2015–16. general practice series No. 41. Sydney: Sydney University Press, 2016.
6 Ronald KL, BC, Harrison C, Brand G. Trends in management of hip and knee osteoarthritis in general practice in Australia over an 11-year window: a nationwide cross-sectional survey. The Lancet Regional Health – Western Pacific 2021;12: https://authors.elsevier.com/sd/5266660521000961.
7 Naunton J, Harrison C, Britt H, et al. General practice management of rotator cuff related shoulder pain: a reliance on ultrasound and injection guided care. PLoS One 2020;15:e0227688.
8 Busingye D, Gianacas C, Pollack A, et al. Data resource profile: MedicinesInsight, an Australian National primary health care database. Int J Epimiol 2019;48:1741–41h.
9 Pearce C, McLeod A, Rinehart N, et al. What a comprehensive, integrated data strategy looks like: the population level analysis and reporting (polar) program. Stud Health Technol Inform 2019;264:302–7.
10 De Lusignan S, Sun B, Pearce C, et al. Coding errors in an analysis of the impact of pay-for-performance on the care for long-term
cardiovascular disease: a case study. J Innov Health Inform 2014;21:92–101.
11 Hemkens LG, Benchimol EI, Langan SM, et al. The reporting of studies using routinely collected health data was often insufficient. J Clin Epidemiol 2016;79:104–11.
12 Benchimol EI, Smeeth L, Guttmann A, et al. The reporting of studies conducted using observational Routinely-collected health data (record) statement. PLoS Med 2015;12:e1001885.
13 Healthmap. Healthdirect Australia. Available: https://studio.healthmap.com.au/#/h4f [Accessed 27 Sep 2020].
14 The State of Victoria Department of Premier and Cabinet. Population diversity in Victoria: 2016 census local government areas, 2018.
15 Yan J, Hawes L, Turner L, et al. Antimicrobial prescribing for children in primary care. J Paediatr Child Health 2019;55:64–8.
16 Turner LR, Pearce C, Borg M, et al. Characteristics of patients presenting to an after-hours clinic: results of a magnet analysis. Aust J Prim Health 2017;23:294–9.
17 Turner LR, Cicuttini F, Pearce C, et al. Cardiovascular disease screening in general practice: general practitioner recording of common risk factors. Prev Med 2017;99:282–5.
18 Sezgin G, Georgiou A, Hardie R-A, et al. Compliance with pathology testing guidelines in Australian general practice: protocol for a secondary analysis of electronic health record data. BMJ Open 2018;8:e024223.
19 Australian Institute of Health and Welfare. Musculoskeletal conditions and comorbidity in Australia. Canberra: AIHW, 2019.
20 Pearce C, McLeod A, Patrick J, et al. Coding and classifying GP data: the polar project. BMJ Health Care Inform 2019;26:e100009.
21 Cote R, Rothwell D, Palotay J. The Systematized Nomenclature of human and veterinary Medicine-SNOMED international. Northfield, IL: College of American Pathologists, 1993.
22 World Health Organization. Who collaborating centre for drug statistics methodology: ATC classification index with DDDs and guidelines for ATC classification and DDD assignment 2020. Oslo, Norway: Norwegian Institute of Public Health, 2019.
23 Hovis KK, Alizai H, Tham S-C, et al. Non-Traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the osteoarthritis initiative (OAI). Skeletal Radiol 2012;41:1435–43.
24 Buchbinder R, Underwood M, Hartvigsen J, et al. The Lancet series call to action to reduce low value care for low back pain: an update. Pain 2020;161 Suppl 1:S57–64.
25 Mathieson S, Wertheimer G, Maher CG, et al. What proportion of patients with chronic noncancer pain are prescribed an opioid medicine? systematic review and meta-regression of observational studies. J Intern Med 2020;287:458–74.
26 Ittaman SV, VanWormer JJ, Rezakalla SH. The role of aspirin in the prevention of cardiovascular disease. Clin Med Res 2014;12:147–54.
27 Herrett E, Gallagher AM, Bhaskaran K, et al. Data resource profile: clinical practice research Datalink (CPRD). Int J Epidemiol 2015;44:827–36.
28 Springate DA, Kontopantelis E, Ashcroft DM, et al. Clinical Codes: an online clinical codes Repository to improve the validity and reproducibility of research using electronic medical records. PLoS One 2014;9:e99825.
29 Australian Bureau of Statistics. Socio-economic indexes for areas (SEIFA) - technical paper 2016. cat no 20330 55001. 2018.
30 Halpin B. SADI: sequence analysis tools for Stata. Stata J 2017;17:546–72.
31 Dalmaijer ES, Nord CL, Astle DE. Statistical power for cluster analysis. arXiv preprint arXiv:200300381.
32 Imai C, Hardie R-A, Franco GS, et al. Harnessing the potential of electronic general practice pathology data in Australia: an examination of the quality use of pathology for type 2 diabetes patients. Int J Med Inform 2020;141:104189.
33 Harrison C, Brit H, Miller G, et al. Prevalence of chronic conditions in Australia. PLoS One 2013;8:e67494.