Postoperative Outcomes in Surgical COVID-19 Patients: A Multicenter Cohort Study

François Carrier (francois.martin.carrier@umontreal.ca)
Centre Hospitalier de l’Université de Montréal

Éva Amzallag
Centre de recherche du CHUM

Vincent Lecluyse
Hôpital du Sacré-Cœur de Montréal

Geneviève Côté
Centre Hospitalier Universitaire Sainte-Justine

Étienne Couture
Institut Universitaire de Cardiologie et de Pneumologie de Quebec

Frédérick D’Aragon
Centre Hospitalier Universitaire de Sherbrooke

Stanislas Kandelman
McGill University Health Centre

Alexis Turgeon
Centre Hospitalier Universitaire de Québec

Alain Deschamps
Montreal Heart Institute

Roy Nitulescu
Centre de recherche du CHUM

Codjo Djade
Centre de recherche du CHUM

Martin Girard
Centre Hospitalier de l’Université de Montréal

Pierre Beaulieu
Centre Hospitalier de l’Université de Montréal

Philippe Richebé
Hôpital Maisonneuve-Rosemont

Research Article
Abstract

Background

Data on postoperative outcomes of the COVID-19 patient population is limited. We described COVID-19 patients who underwent a surgery and the pandemic impact on surgical activities.

Methods

We conducted a multicenter cohort study between March 13 and June 19 2020. We included COVID-19 patients who underwent surgery in nine centres of the Province of Québec, the Canadian province most afflicted by the pandemic. We also included suspected COVID-19 (subsequently confirmed not to have COVID-19) patients and patients who had recovered from it. We collected data on baseline characteristics, postoperative complications and overall surgical activities performed in participating centres. Our primary outcome was 30-day mortality.

Results

We included 44 COVID-19 patients, 18 suspected patients, and 18 patients who had recovered from COVID-19 at time of surgery. Among the 44 COVID-19 patients, 31 surgeries (71%) were urgent and 16 (36%) were major. In these patients, pulmonary complications were frequent (25%) and 30-day mortality was 15.9%. This mortality was higher in patients with symptoms (23.1%) compared to those without symptoms (5.6%), although not statistically significant (p = 0.118). Of the total 22 616 cases performed among participating centres during the study period, only 0.19% had COVID-19 at the time of surgery. Fewer procedures were performed during the study period compared to the same period in 2019 (44 486 cases).

Conclusion

In this study, postoperative 30-day mortality in COVID-19 patients undergoing surgery was 15.9%. Although few surgeries were performed on COVID-19 patients, the pandemic impact on surgical activity volume was important.

Trial registration

ClinicalTrials.gov Identifier: NCT04458337

Background

The world is experiencing a pandemic on a scale that has not been seen for many decades. Estimates of overall mortality for patients with COVID-19 (Coronavirus Disease 2019) are variable and have been reported to be between less than 1% and 7%.[1-4] Although resource utilization, such as hospitalization,
and intensive care unit (ICU) admission, is well documented in COVID-19 patients, data on their surgical needs and outcomes remain limited.[1-8]

Although viral pneumonia is mostly a medical condition, infected patients may require surgery.[7-10] To provide anesthetic and surgical care to COVID-19 patients, healthcare workers have to reorganize surgical platforms, personal protective equipment protocols, and in-hospital patient trajectories to prevent viral spread to healthcare workers and other patients.[11-15] Documenting the needs for, and variety of, surgical procedures in this population is paramount in order to estimate the accrued risk for the patients.

Postoperative outcomes in SARS-CoV-2 infected patients have been previously reported.[7,8,16] These data suggested an overall postoperative 30-day mortality between 19% and 24% with more than half having postoperative pulmonary complications. These data came mostly from Europe and the Middle East and did not report the overall impact on surgical care. The surgical needs and postoperative outcomes of COVID-19 patients, as well as the impact of the pandemic on overall access to surgical care in a Canadian setting have yet to be fully evaluated.

To address this, we conducted a multicenter observational cohort study in the Province of Québec, the Canadian province most afflicted by the pandemic. Our primary objective was to describe the perioperative characteristics of patients infected by SARS-CoV-2 who underwent surgery and their postoperative outcomes. Our secondary objectives were to explore the effect of the presence of symptoms on outcomes, describe the impact of the SARS-CoV-2 pandemic on overall surgical care and describe the characteristics and outcomes of suspected COVID-19 (who subsequently tested negative) patients and patients who had recovered from COVID-19 and underwent surgery during the same observation period. We hypothesized that the number COVID-19 patients undergoing surgery would be small, but mortality higher among those with symptoms, that the impact of the pandemic on surgical care would be important and that postoperative outcomes would be comparable between COVID-19 and suspected patients.

Methods

Design and setting

After Research Ethics Board approval from all centres, we conducted a multicenter observational cohort study in nine university hospitals in the Province of Québec from March 13, 2020, to June 19, 2020. This report follows STROBE guidelines for reporting observational studies.[17]

Study participants

We included patients undergoing surgery who tested positive for SARS-CoV-2 preoperatively. We defined positive SARS-CoV-2 infection by any positive Polymerase Chain Reaction (PCR) test (from either an oronasopharyngeal swab or an endotracheal aspirate) either before surgery or within 72 hours after
surgery, and defined being symptomatic (as determined by the treating clinicians) by the presence of any patient-reported COVID-19-related symptoms (fever, respiratory distress, etc).

We also included patients undergoing surgery during the same period who were suspected of having COVID-19 (but subsequently tested negative) and patients who had recovered from COVID-19. We defined suspected patients by the presence of the same COVID-19-related symptoms with unknown SARS-CoV-2 infection status at time of surgery (but later confirmed negative for SARS-CoV-2) that prompted the operating room team to take specific COVID-19-related precautions. We defined recovery as a patient who previously had had a positive PCR test and had then two negative PCR tests for SARS-CoV-2 before surgery (or one negative test performed at least 14 days before the surgery and the absence of symptoms at time of surgery). Patients were identified through the electronic medical data system or the operating room database at each site.

Exposure variables

To address our primary objective, we first reported data on COVID-19 patients. To address our secondary objectives, we used the presence of COVID-19-related symptoms as an exposure variable and reported stratified data based on this variable for COVID-19 patients. To address another secondary objective, we used the COVID-19 disease status (confirmed, suspected, or recovered) as an exposure variable.

Covariables

We collected baseline characteristics of the COVID-19 presentation such as the presence of symptoms at time of surgery, number of days since first symptoms or diagnosis, preoperative need for oxygen or invasive mechanical ventilation, and received treatments (e.g., antiviral agents, steroids, antibiotics). We also recorded demographic characteristics, baseline co-morbidities, type of surgery, urgency of surgery, baseline laboratory values, preoperative Sequential Organ Failure Assessment (SOFA) score and intraoperative variables.

Outcomes

Our primary outcome was 30-day survival after surgery. Our secondary outcomes were the postoperative occurrence of respiratory complications (atelectasis, pneumonia, Acute Respiratory Distress Syndrome [ARDS], and pulmonary aspiration), non-pulmonary infectious complications, acute kidney injury, thrombotic-associated complications (pulmonary embolism, myocardial infarction, stroke and cardiac arrest), hospital length of stay, 30-day mechanical ventilation-free days, 30-day organ dysfunction-free days, and any new ICU admission during the index admission. The endpoints we examined regarding the overall impact on surgical care were the number of cases done during the inclusion period; the duration of the procedures; the required time to allow for operating room preparation, cleaning, and patient extubation; and other post-anesthesia care procedures. We collected similar data in all sites during a comparable period of observation (i.e., same dates) of the preceding year.

Data measurement
We classified procedures into the following categories: neurosurgical (head and spine), cardiac, thoracic, major vascular (intrathoracic and/or intra-abdominal), non-vascular abdominal (laparotomy or laparoscopy), urogenital (urology and/or gynecology), non-spine orthopedic, peripheral vascular, otolaryngology-head-neck and other. Major surgery was defined as any neurosurgical, cardiac, thoracic, major vascular or non-vascular abdominal surgery; it was also sub-divided according to surgical approach (minimally invasive or invasive). Urgency of surgery was defined as needing to be performed within 24 hours as requested by surgeons.

We measured survival at 30 days (within hospital or later after discharge if data available) and censored patients at last visit seen alive or at 30 days if still alive. We used existing definitions for postoperative pulmonary complications outcome.[18] Non-pulmonary infectious complications were defined as any infection that needed antibiotics for > 72 hours. Acute kidney injury was defined by the creatinine difference of the KDIGO-AKI criteria.[19] We defined thrombotic-related complications as reported by the treating physicians including pulmonary embolism, myocardial infarction, stroke or cardiac arrest. Mechanical ventilation was defined as the need for mechanical support (non-invasive or invasive). Organ dysfunction was defined as the need for vasopressors, mechanical ventilation and the use of renal replacement therapy after surgery. The 30-day freedom from adverse outcomes included any day without the corresponding outcome.[20]

Data sources and management

Data was either collected prospectively by the clinical and the research team or retrospectively collected the days following surgery. Data was entered at each site into a centralized electronic database following a manual of standard operating procedures. Outcomes were adjudicated by a physician at each site. The surgical impact data was extracted as aggregate data from operating room administrative systems at each centre.

Statistical analyses

We included a convenience sample of eligible patients who underwent surgery during the observation period. Due to the limited sample size, the analyses we reported are primarily descriptive. We reported continuous variables as mean (standard deviations (SD)) or median [interquartile range [IQR]] for skewed distributions) and categorical variables as proportions. We reported 30-day survival using Kaplan-Meier estimates with 95% confidence intervals (CI) stratified by subgroups. To compare symptomatic COVID-19 patients to asymptomatic ones, and COVID-19 patients to suspected ones and those who had recovered, we performed log-rank tests. Finally, we conducted a post hoc sensitivity analysis by removing patients for which a tracheotomy was the surgical procedure performed, since they may have a different postoperative trajectory. All analyses were performed with R statistical software (R Core Team, version 4.0.2).

Results
Baseline and surgical characteristics are reported in Table 1 for COVID-19 patients and in table S2 for other patients, while surgical specialties are reported in table S1 for all included patients.

COVID-19 patients

Forty-four patients (42 with a preoperative positive PCR test) with COVID-19 underwent a surgical procedure between March 13, 2020, and June 19, 2020. Among these 44 patients with COVID-19, 26 patients were symptomatic at time of surgery with 18 being asymptomatic carriers. Demographics and surgical characteristics were similar between these groups, except for preoperative treatments and respiratory support (table 1). In these patients, 71% of surgeries were urgent, 36% were major ones and 64% were performed under general anesthesia; these characteristics seemed to be similar between symptomatic and asymptomatic patients (table 1). Complications were relatively rare, with the exception of pulmonary complications (25%) and new ICU admissions (27%). These complications seemed to be higher in symptomatic COVID-19 patients (table 2). The overall 30-day mortality was 15.9% in these patients (table 2). This mortality was numerically higher in symptomatic patients (23.1% in symptomatic patients and 5.6% in asymptomatic patients), although the observed difference between strata was not significant (P = 0.12) (table 2 and figure 1). As a sensitivity analysis, we excluded six COVID-19 patients who had a tracheotomy as a surgical procedure. In this subgroup of 38 patients, 2 were under invasive mechanical ventilation at surgery and 5 died within 30 days after surgery (13.2 %) (not shown in tables).

Impact on surgical care

During this 3-month long first wave of the pandemic, the total number of surgical procedures decreased by 50% as compared to the same time period in 2019 (22 616 cases in 2020 compared to 44 486 cases in 2019; Table 3). Of these 22 616 surgical cases, only 44 (0.19%) had COVID-19.

COVID-19 suspected patients and patients who had recovered from COVID-19

We included 18 suspected patients and 18 patients who had recovered from COVID-19 (tables S2 and S3). Suspected patients had an incidence of pulmonary complications and new ICU admissions close to symptomatic COVID-19 patients, but seemed to have a slightly lower 30-day mortality (16.7% versus 23.1%) (table S3). Patients who had recovered from COVID-19 seemed to be comparable to asymptomatic patients regarding their complications profile (tables S2 and S3). The observed difference in survival between COVID-19, suspected and patients who had recovered was not statistically significant (P = 0.55, figure S1).

Discussion

This study provides data on surgeries performed in COVID-19 patients and their postoperative outcomes in the Canadian province most afflicted by the pandemic. We observed an important postoperative 30-day mortality of 15.9% in patients undergoing surgery with COVID-19, potentially from symptomatic patients.
although we could not conclude. We observed a 50% relative reduction in overall surgical activities during the pandemic in most university hospitals of the province of Quebec.

Overall, SARS-CoV-2 infected patients did not undergo many surgeries during this pandemic wave (< 0.2% of surgical cases). This observation is probably a combination of limited surgical needs in this population and a restriction to surgical care imposed on them until they recover from their infection. As such, they required mostly urgent minor surgery, although 36% of them required a major surgery. Twenty-five percent of the patients suffered from a pulmonary complications, which is lower than other reported incidences.[7, 8] Similar to another cohort of COVID-19 surgical patients, we observed a small incidence of thromboembolic complications (4.5%) for a population of patients undergoing mostly urgent surgeries.

Our observed 30-day mortality of 15.9% seemed to be lower than the 19.5% to 23.9% reported ones in other cohort studies. [7, 8, 16] However, our Kaplan-Meir 30-day survival probability confidence interval in COVID-19 patients was wide (from 0.74 to 0.96), suggesting that our mortality was likely not significantly different from other ones. The potential discrepancy might be explained by random variation, different patient selection for surgery or different overall perioperative care. One group compared postoperative outcomes in 41 COVID-19 patients to 82 non-COVID-19 patients matched by surgical disease.[8] They observed a higher proportion of complications and mortality in COVID-19 patients, but non-COVID-19 patients had a better preoperative respiratory function, did not need any mechanical ventilation and were not in septic shock at time of surgery.[7, 8] We observed a relatively comparable mortality between suspected patients (16.7%) and symptomatic COVID-19 patients (23.1%), which suggests that the observed postoperative mortality may be secondary to the presence of an active infectious process at surgery or being explained by false negative COVID-19 results in suspected patients.[21]

Surgical care should not be overlooked during a pandemic. Even though mobilizing surgical ward and operating room resources to care for SARS-CoV-2 infected patients, population's surgical needs have to be fulfilled.[15, 22-24] Compared to the previous year, more than 22,000 patients over 9 hospitals in the province of Quebec did not receive timely surgical care during our period of observation. In one centre (centre #1), 8 out of 420 patients hospitalized for COVID-19 needed surgery (data not reported previously), while 3500 surgical cases were cancelled during this period. In the greater Toronto area hospitals, all surgical activities were reduced by as much as 37 to 70% for both inpatient and outpatient surgeries during the SARS pandemic in April 2003.[24] During the first wave of the COVID-19 pandemic, we observed a reduction in surgical activity of 50% over 3 months in 9 participating centres, although the impact is probably beyond what we observed. Thus, a significant backlog of surgeries will have to be undertaken while the health system is still stressed by the pandemic.[25] Real-time system utilization indicators should be further developed and applied during a pandemic to help adapt surgical elective programs within system overwhelming prevention strategies.[26] Allocating care to COVID-19 patients is paramount, but this should not be done at the price of over restricting care in surgical patients to ensure proportional resource allocation across all population subgroups.
Our study has limitations. Its main limitation is the small sample size. While this highlights the limited number of surgeries performed in this population, it precluded any quantitative analysis on determinants of poor postoperative outcomes. We did not have the power to quantitatively measure association with either the presence of symptoms in COVID-19 or the presence of an active infection compared to our controls. Also, our comparators are biased, since “suspected” patients were by definition sick patients and “patients who had recovered” were fit enough patients to undergo an elective surgical procedure. Since we included patients tested positive for SARS-CoV-2, we could have missed untested patients, especially asymptomatic ones. However, this was probably limited since all patients having compatible symptoms or any risk factor for SARS-CoV-2 based on Québec Public Health Agency guidelines were tested prior to surgery. Our observations must therefore be interpreted as descriptive and exploratory. On the other hand, we included patients from many centers, providing relative generalizable results.

Conclusion

Despite these limitations, we were able to draw a perspective of the surgical care during the current pandemic in Québec, Canada’s hardest hit province with almost half of the national COVID-19 cases. Our findings suggest that the moderately high postoperative mortality reported in other cohort studies is probably variable across samples, that such a high mortality may possibly be associated to the presence of any active infection at surgery and that the pandemic had important effects on the overall conduct of surgical care despite limited utilization of surgical resources by COVID-19 patients.

Abbreviations

SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus type 2

COVID-19: Coronavirus Disease 2019

ICU: Intensive care unit

PCR: Polymerase Chain Reaction

SOFA: Sequential Organ Failure Assessment

KDIGO-AKI: Kidney Diseases Improving Global Outcomes Acute Kidney Injury

Declarations

Ethics approval

This study was centrally approved by the “Research Ethics Board (REB) of the Centre hospitalier de l’Université de Montréal” (#19.386) that waived the need for informed consent. The study was subsequently approved by all local REB from each institution. All methods were carried out in accordance with relevant guidelines and regulations.
Consent for publication

Not applicable

Availability of data and materials:

The datasets generated and analysed during the current study are not publicly available due to legal restriction but are available from the corresponding author on reasonable written request and local REB approval. The Province of Quebec does not allow public patient data sharing. The dataset is held on a secured server at the CHUM Research Center.

Competing interest

The authors have no conflict of interest to declare.

Funding sources

This work was financially supported by the Fonds de développement du département d'anesthésiologie et de médecine de la douleur de l'Université de Montréal and by the Fondation d'Anesthésie-Réanimation du Québec. Dr Carrier and Dr D'Aragon are recipients of a career research award from the Fonds de Recherche du Québec - Santé (FRQS). Dr Turgeon is the chairholder of the Canada Research Chair in Critical Care Neurology and Trauma.

Authors’ contributions

FMC, VL, GC, EJC, FA, SK, AFT, AD, MG, PB, PR participated in developing the protocol and funding.

FMC, VL, GC, EJC, FA, SK, AFT, AD participated in data acquisition.

FMC, EA, RN, CDD participated in data curation and analysis.

All authors participated in analysis of the results, writing and reviewing of the manuscript.

Acknowledgements

We would like to thank all anesthesiologists in every centre who helped collect data, as well as students and research assistants who actively participated in activation of the study and data collection.

Word count: 2509

References

1. Guan W-J, Ni Z-Y, Hu Y, et al (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 382:1708–1720. doi: 10.1056/NEJMoa2002032
2. Wu Z, McGoogan JM (2020) Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 323:1239–1242. doi: 10.1001/jama.2020.2648

3. Arentz M, Yim E, Klaff L, et al (2020) Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. doi: 10.1001/jama.2020.4326

4. Grasselli G, Pesenti A, Cecconi M (2020) Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast During an Emergency Response. JAMA. doi: 10.1001/jama.2020.4031

5. Valiani S, Terrett L, Gebhardt C, et al (2020) Development of a framework for critical care resource allocation for the COVID-19 pandemic in Saskatchewan. Canadian Medical Association Journal 192:E1067–E1073. doi: 10.1503/cmaj.200756

6. Liang W, Liang H, Ou L, et al (2020) Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern Med 180:1081–1089. doi: 10.1001/jamainternmed.2020.2033

7. COVIDSurg Collaborative (2020) Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet 396:27–38. doi: 10.1016/S0140-6736(20)31182-X

8. Doglietto F, Vezzoli M, Gheza F, et al (2020) Factors Associated With Surgical Mortality and Complications Among Patients With and Without Coronavirus Disease 2019 (COVID-19) in Italy. JAMA Surg. doi: 10.1001/jamasurg.2020.2713

9. Arabi YM, Fowler R, Hayden FG (2020) Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med 46:315–328. doi: 10.1007/s00134-020-05943-5

10. Murthy S, Gomersall CD, Fowler RA (2020) Care for Critically Ill Patients With COVID-19. JAMA. doi: 10.1001/jama.2020.3633

11. Perioperative considerations for the 2019 novel coronavirus COVID-19. https://www.apsf.org/news-updates/perioperative-considerations-for-the-2019-novel-coronavirus-covid-19/. Accessed 25 Mar 2020

12. Velly L, Gayet E, Quintard H, et al (2020) Guidelines: Anaesthesia in the context of COVID-19 pandemic. Anaesth Crit Care Pain Med 39:395–415. doi: 10.1016/j.accpm.2020.05.012

13. Li J, Gao R, Wu G, et al (2020) Clinical characteristics of emergency surgery patients infected with coronavirus disease 2019 (COVID-19) pneumonia in Wuhan, China. Surgery 168:398–403. doi: 10.1016/j.surg.2020.05.007

14. Wong J, Goh QY, Tan Z, et al (2020) Preparing for a COVID-19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Can J Anesth/J Can Anesth 67:732–745. doi: 10.1007/s12630-020-01620-9

15. COVIDSurg Collaborative (2020) Global guidance for surgical care during the COVID-19 pandemic. Br J Surg. doi: 10.1002/bjs.11646
16. Lei S, Jiang F, Su W, et al (2020) Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine 21:100331. doi: 10.1016/j.eclinm.2020.100331

17. Elm von E, Altman DG, Egger M, et al (2008). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Journal of Clinical Epidemiology. 61(4):344–9.

18. Abbott TEF, Fowler AJ, Pelosi P, et al (2018) A systematic review and consensus definitions for standardised end-points in perioperative medicine: pulmonary complications. British Journal of Anaesthesia 120:1066–1079. doi: 10.1016/j.bja.2018.02.007

19. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter, Suppl 2:1–138. doi: 10.1038/kisup.2012.1

20. Heyland DK, Muscedere J, Drover J, et al (2011) Persistent organ dysfunction plus death: a novel, composite outcome measure for critical care trials. Crit Care 15:R98–10. doi: 10.1186/cc10110

21. Lother SA (2020) Preoperative SARS-CoV-2 screening: Can it really rule out COVID-19? Can J Anesth/J Can Anesth. 67(10):1321–6

22. Orser BA, Byrick R, Cooper R, et al (2020) Locating and repurposing anesthetic machines as intensive care unit ventilators during the COVID-19 pandemic. Can J Anesth/J Can Anesth 67:1066–1067. doi: 10.1007/s12630-020-01657-w

23. Argenzano M, Fischkoff K, Smith CR (2020) Surgery Scheduling in a Crisis. N Engl J Med 382:e87. doi: 10.1056/NEJMc2017424

24. National Advisory Committee on SARS and Public Health. Chapter 8 — Clinical and Public Health Systems Issues Arising from the Outbreak of SARS in Toronto. In Renewal of Public Health in Canada: Learning from SAS. Health Canada. October 2003. Pages 157-158. https://www.canada.ca/content/dam/phac-aspc/migration/phac-aspc/publicat/sars-sras/pdf/sars-e.pdf

25. Urbach DR, Martin D (2020) Confronting the COVID-19 surgery crisis: time for transformational change. Canadian Medical Association Journal 192:E585–E586. doi: 10.1503/cmaj.200791

26. Goldstein BA, Cerullo M, Krishnamoorthy V, Blitz J, Mureebe L, Webster W, et al. Development and Performance of a Clinical Decision Support Tool to Inform Resource Utilization for Elective Operations. JAMA Netw Open. 2020 Nov 2;3(11):e2023547–12.

Tables

Table 1. COVID-19 patients characteristics
Variables	COVID-19 patients (n = 44)	Symptomatic (n = 26)	Asymptomatic (n = 18)
Demographics			
Age (years)	59 (22)	61 (24)	58 (20)
Sex (female)	24 (55%)	13 (50%)	11 (61%)
Comorbidities			
BMI (kg·m⁻²)¹	30 (7)	29 (5)	32 (9)
Diabetes	11 (25%)	7 (27%)	4 (22%)
Hypertension	23 (52%)	13 (50%)	10 (56%)
COVID-19 symptoms and treatment at surgery			
Positive test at surgery	42 (96%)	24 (92%)	18 (100%)
Days since positive test (days)	5 [2, 19]	8 [2, 20]	3 [1, 16]
Cough	17 (39%)	17 (65%)	0 (0%)
Dyspnea	13 (30%)	13 (50%)	0 (0%)
Respiratory distress	9 (21%)	9 (35%)	0 (0%)
Fever	17 (39%)	17 (65%)	0 (0%)
Antibiotics	24 (55%)	19 (73%)	5 (28%)
Steroids	11 (25%)	9 (35%)	2 (11%)
Preoperative respiratory and organ dysfunction			
Oxygen	12 (27%)	11 (42%)	1 (6%)
Mechanical ventilation	8 (18%)	8 (31%)	0 (0%)
SOFA score²	0 [0, 3]	1 [0, 6]	0 [0, 1]
Surgical characteristics			
General anesthesia	28 (64%)	18 (69%)	10 (56%)
Urgency³	31 (71%)	19 (73%)	12 (67%)
Major surgery	16 (36%)	9 (35%)	7 (39%)
Blood loss⁴ (mL)	175 [75, 500]	150 [100, 600]	250 [50, 300]

Data is reported as mean (SD), as median [q1, q3] or as number of events (proportion in %).
1 22 missing values (12 in symptomatic and 8 in asymptomatic patients).

2 When no bilirubin was measured preoperatively, we imputed a value of 0 for the liver component of the SOFA score. 1 missing value in each subgroup.

3 Urgency was defined by the need to undergo a surgery within 24 hours.

4 12 missing values (8 in symptomatic and 4 in asymptomatic patients).

N.B. SOFA is not reported because of excessive missing values.

Abbreviations: BMI = body mass index, SOFA = Sequential Organ Function Assessment score

Table 2. Patients complications up to 30 days after surgery

Variables	COVID-19 patients (n = 44)	Symptomatic (n = 26)	Asymptomatic (n = 18)
Complications			
Pulmonary complications	11 (25%)	9 (35%)	2 (11%)
Infectious complications (non-pulmonary)	4 (9%)	1 (4%)	3 (17%)
Acute kidney injury\(^1\)	8 (18%)	4 (15%)	4 (22%)
Thromboembolic complications	2 (5%)	2 (8%)	0 (0%)
Resource utilization			
New ICU admissions	12 (27%)	10 (39%)	2 (11%)
Hospital length of stay	17 [4, 36]	22 [6, 40]	7 [3, 22]
Mechanical ventilation free days (at 30 days)	27.0 (7.4)	25.0 (9.1)	29.9 (0.3)
Organ dysfunction-free days (at 30 days)	25.2 (9.3)	22.2 (11.1)	29.6 (1.4)
Mortality			
30-day mortality	7 (15.9%)	6 (23.1%)	1 (5.6%)
Kaplan-Meir survival probability\(^2\)	0.84 [0.74, 0.96]	0.77 [0.62, 0.95]	0.94 [0.84, 1.00]

Data is reported as mean (SD), as median [q1, q3] or as number of events (proportion in %).
1 No acute kidney injury required renal replacement therapy.

2 30-day survival probability from the estimated Kaplan-Meir survival function, expressed with 95% confidence intervals.

Abbreviations: ICU = intensive care unit

Table 3. Number of surgical procedures and operating room utilization at each centre

Center	COVID-19 cases	Total number of surgical procedures\(^1\)	% of COVID-19 cases	Mean time from OR entry to exit per case\(^2\)	PACU care in the OR\(^3\)	Total number of surgical procedures	Mean time from OR entry to exit\(^2\)
	March 13 to June 19, 2020	March 13 to June 19, 2019					
1	8	3960	0.20%	02:43	Yes\(^4\)	7460	02:04
2	10	3153	0.32%	01:33	Yes	6586	01:24
3	1	2385	0.04%	NA	No	2590	NA
4	18	947	1.90%	02:53	Yes	2471	02:16
5	2	NA	NA	NA	NA	NA	NA
6	0	601	NA	04:30	Yes	540	04:19
7	1	2637	0.04%	02:45	No	5555	02:11
8	2	7948	0.03%	01:36	Yes	17847	01:54
9	2	985	0.20%	03:23	Yes	1437	03:16
TOTAL	44	22616	0.19%\(^5\)	2:11\(^6\)	–	44486	1:59\(^5\)

N.B. Cleaning and preparation data was missing for most centres. Data was produced from operating room administrative systems, thereby precluding producing any dispersion statistics.

1 Number of surgical cases includes all patients who underwent a surgical intervention, including patients with a laboratory confirmed SARS-CoV-2 infection.

2 Expressed as hours:minutes.

3 PACU care provided in the OR for all COVID-19 confirmed, suspected or high-risk patients.
4 PACU care provided in the OR for all COVID-19 confirmed or suspected and during the first 25 minutes after extubation for high-risk patients.

5 The 2 patients from centre #5 were excluded from the numerator.

6 Weighted mean.

Abbreviations: OR = operating room, PACU = Post-Anesthesia Care Unit, NA = not available