Review

Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi

Xiaohan Wang, Yuying Li, Xuping Zhang, Daowan Lai and Ligang Zhou *

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; wangxiaohan99@126.com (X.W.); yyylimail@163.com (Y.L.); zhangxuping5@163.com (X.Z.); dwlai@cau.edu.cn (D.L.)

* Correspondence: lgzhou@cau.edu.cn; Tel.: +86-10-6273-1199

Received: 4 October 2017; Accepted: 15 November 2017; Published: 23 November 2017

Abstract: Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs), are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan–Xaa, proline–Xaa, non-tryptophan–non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.

Keywords: cyclic dipeptides; 2,5-diketopiperazines; epipolythiodioxopiperazines; fungi; biological activities; occurrence; applications

1. Introduction

Cyclodipeptides (or cyclic dipeptides) are usually called 2,5-diketopiperazines (2,5-DKPs) or dioxopiperazines, and result from the condensation of two amino acids such as tryptophan, proline, alanine, histidine, leucine, isoleucine, phenylalanine, serine, and tyrosine [1]. They are the smallest cyclopeptides, and are distributed in many organisms including fungi, bacteria, plants and animals [1–3]. Since the first report in 1924, a large number of bioactive cyclodipeptides has been discovered to show cytotoxic, antitumor, antiviral, antifungal, antibacterial, antiprion, antioxidant, antihyperglycemic as well as biofilm and glycosidase inhibitory activities [2–4]. Some cyclodipeptides (e.g., tryprostatin A (103), tryprostatin B (104), FR106969 (590), and phenylahistin (392)) showed their potential applications [1].

Among the organisms, fungi have been considered as the most important sources of novel and bioactive cyclodipeptides. More and more cyclodipeptides with interesting biological activities have been isolated and characterized from fungi. However, no detailed and comprehensive summary of the fungal cyclodipeptides on their occurrence, structures and biological activities has been reported though chemistry and biology of the cyclodipeptides from either all organisms or a certain class of cyclodipeptides have been documented [3,5,6]. In this review, we aim to describe the diversity of chemical structures and biological activities of the fungal cyclodipeptides and their analogs. A total of 635 fungal cyclodipeptides have been discussed and reviewed with literature covered up to July 2017. According to their biosynthetic origins and structural characters, these cyclodipeptides are classified as tryptophan–proline, tryptophan–tryptophan, tryptophan–Xaa (Xaa is indicated as an
unspecified amino acid), proline–Xaa, non-tryptophan–non-proline, and thio analogs. Some special cyclodipeptides (e.g., gunnilactams A–C (378–380)), which did not belong to 2,5-DKPs, were also included in the group of non-tryptophan-non-proline analogs.

2. Tryptophan–Proline Cyclodipeptides

Tryptophan and proline are simultaneously incorporated into the cyclodipeptides in fungi. The proline residue adopts a cis-conformation about the Xaa–Pro tertiary amide bond and hence makes the Xaa–Pro sequence prone to cyclodipeptide formation. The tryptophan-proline cyclo(L-Trp–L-Pro) core was derived from condensation of tryptophan and proline residues, and this was often further modified by heterocyclization and isoprenyl addition [6]. The occurrence and biological activities of the tryptophan-proline cyclodipeptides from fungi are listed in Table 1, and their structures are provided in Figure 1.

About 116 tryptophan-proline cyclodipeptides have been isolated from fungi so far. They are mainly distributed in the genera Aspergillus and Penicillium, and are also distributed in other genera such as Alternaria, Paecilomyces, and Pseudallescheria.

(+)-Austamide (4) and (+)-deoxyisoaustamide (28) were isolated from the maize meal cultures of the toxigenic fungus Aspergillus ustus, and (+)-austamide (4) caused acute toxicosis in day-old ducklings [7].

Fumitremorgin C (40) and its derivatives (38, 39) were identified in Aspergillus fumigatus from the holothurian Stichopus alternata. They displayed significant cytotoxic activity against MOLT-4 (human acute lymphoblastic leukemia cells), A-549 (human lung adenocarcinoma epithelial cells), and HL-60 (human promyelocytic leukemia cells), which speculated that this cytotoxic activity may be linked to hydroxyl groups in the side chains of the molecules [8]. Demethoxyfumitremorgin C (26) from marine-derived Aspergillus fumigatus showed inhibitory activity in the mouse cell cycle against tsFT210, and also inhibited tumor cell cycle arrest at G2/M with a minimum inhibitory concentration (MIC) value of 0.45 µM [9].

18-Oxotryprostatin A (77) was isolated from the marine-derived fungus Aspergillus sydowi and found to exhibit weak cytotoxic activity against A-549 cells with a median inhibitory concentration (IC50) value of 1.28 µM [10]. This compound was also obtained from the endophytic fungus Aspergillus fumigatus from Melia azedarach to display plant growth inhibitory activity [11].

Spirotryprostatins (87–94) were isolated from Aspergillus fumigatus. These compounds showed cytotoxic activity by inhibiting mammalian cell cycle at G2/M phase [8,12,13].

Stephacidin B (98) was isolated from Aspergillus ochraceus. This compound exhibited potent cytotoxic activity against LNCaP (a testosterone-dependent prostate cancer cell line), with IC50 values from 91 to 621 nM [14].

Both tryprostatins A (103) and B (104), which are prenylated, were isolated from the fermentation broth of the marine-derived fungus Aspergillus fumigatus [15]. Tryprostatin A (103) was an inhibitor of the multidrug-resistance breast cancer protein (BCRP) that mediated resistance to chemotherapeutics in breast cancer treatment [16], whereas tryprostatin B (104) was a mammalian cell-cycle inhibitor, attractive as a potential anticancer agent [17]. Furthermore, tryprostatin A (103) exhibited inhibitory activity on the elongation of lettuce shoots [11].
Table 1. Fungal tryptophan-proline cyclodipeptide analogs and their biological activities.

Name	Fungus and Its Origin	Biological Activity	Ref.
Aspergamide A (1)	Aspergillus ochraceus	-	[5]
Aspergamide B (2)	Aspergillus ochraceus	-	[5]
Aspergilazine A (3)	Marine-derived Aspergillus taichungensis ZHN-7-07	Weak activity against influenza A (H1N1) virus	[18]
(+)-Austamide (4)	Aspergillus ustus	Acute toxicosis in day-old ducklings	[7]
6-epi-Avrainvillamide (5)	Aspergillus taichungensis	-	[19]
Brevianamide E (6)	Deep sea derived Aspergillus versicolor CXCTD-06-6a	Moderate radical scavenging activity against DPPH	[20]
Brevianamide F = Cyclo(L-Trp–L-Pro) (7)	Endophytic Aspergillus fumigatus	-	[21]
	Endophytic Aspergillus fumigatus from Melia azedarach	Plant growth inhibitory activity	[11]
	Marine-derived Aspergillus taichungensis ZHN-7-07	-	[18]
	Marine-derived Penicillium vinaceum	Antimicrobial activity	[22]
	Marine-derived Pseudallescheria sp. isolated from the surface of the drift wood	Antibacterial activity against Staphylococcus aureus	[23]
Brevianamide J (8)	Aspergillus versicolor	-	[24]
Brevianamide K (9)	Deep sea derived Aspergillus versicolor CXCTD-06-6a	Moderate radical scavenging activity against DPPH	[20]
	Aspergillus versicolor from the sediment collected from the Bohai Sea of China	-	[25]
	Aspergillus versicolor from the marine brown alga Sargassum thunbergii	-	[26]
Brevianamide Q (10)	Deep sea derived Aspergillus versicolor CXCTD-06-6a	Moderate radical scavenging activity against DPPH	[20]
Brevianamide R (11)	Deep sea derived Aspergillus versicolor CXCTD-06-6a	Moderate radical scavenging activity against DPPH	[20]
Brevianamide S (12)	Marine-derived Aspergillus versicolor from the sediment collected from the Bohai Sea of China	Selective antibacterial activity	[25]
Brevianamide T (13)	Marine-derived Aspergillus versicolor from the sediment collected from the Bohai Sea of China	-	[25]
Brevianamide U (14)	Marine-derived Aspergillus versicolor from the sediment collected from the Bohai Sea of China	-	[25]
Name	Fungus and Its Origin	Biological Activity	Ref.
-----------------------------	--	--	------
Brevianamide V (15)	Marine-derived *Aspergillus versicolor* from the sediment collected from the Bohai Sea of China	-	[25]
Brevianamide W (16)	Deep sea derived *Aspergillus versicolor* CXCTD-06-6a	Moderate radical scavenging activity against DPPH	[20]
5-Chlorosclerotiamide (17)	Deep sea derived *Aspergillus westerdijkiae*	-	[28]
Cyclo(D-Trp–L-Pro) (18)	Marine-derived *Penicillium vinaceum*	Antimicrobial activity	[22]
Cyclo(N'-benzyl-Trp–Pro) (19)	Endophytic *Aspergillus tamari* from *Ficus carica*	-	[29]
Cyclo(N'-prenyl-L-Trp–L-Pro) (20)	Endophytic *Aspergillus fumigatus*	Inhibitory activity at G2/M-phase of the mammalian cell cycle	[11]
Cycloprostatin A (21)	Endophytic *Aspergillus fumigatus* from *Melia azedarach*	*Aspergillus fumigatus*	[30]
Cycloprostatin B (22)	Endophytic *Aspergillus fumigatus* from *Melia azedarach*	Inhibitory activity at G2/M-phase of the mammalian cell cycle	[11]
Cycloprostatin C (23)	*Aspergillus fumigatus*	Inhibitory activity at G2/M-phase of the mammalian cell cycle	[30]
Cycloprostatin D (24)	*Aspergillus fumigatus*	Inhibitory activity at G2/M-phase of the mammalian cell cycle	[30]
12,13-Dehydroprolyltryptophanyldiketopiperazine (25)	*Penicillium piscarium*	-	[31]
Demethoxyfumitremorgin C (26)	*Aspergillus fumigatus*	Cytotoxic activity	[9]
Deoxybrevianamide E (27)	Marine-derived *Aspergillus versicolor* from the sediment collected from the Bohai Sea of China	-	[25]
Table 1. Cont.

Name	Fungus and Its Origin	Biological Activity	Ref.
(+)-Deoxyisoaustamide (28)	Aspergillus ustus	-	[7]
Dihydrocarneamide A (29)	Marine-derived Paecilomyces variotii	Weak cytotoxic activity	[33]
8,9-Dihydroxyfumitremorgin C = 12,13-Dihydroxyfumitremorgin C (30)	Endophytic Aspergillus fumigatus	-	[21]
rel-(8S,19S)-19,20-Dihydro-9,20-dihydroxy-8-methoxy-9,18-di-epi-fumitremorgin C (31)	Endophytic Aspergillus fumigatus	-	[21]
rel-(8S,19S)-19,20-Dihydroxy-9,20-trihydroxy-8-methoxy-9-epi-fumitremorgin C (32)	Endophytic Aspergillus fumigatus	-	[21]
(35S,8S,9S,18S)-8,9-Dihydroxy-spirophyroprostatin A (33)	Endophytic Aspergillus fumigatus	-	[21]
9L-C-2C,3-Dimethylbut-3-enyl)brevianamide Q (34)	Aspergillus versicolor from the marine brown alga Sargassum thunbergii	-	[26]
(-)-Enamide (35)	Marine-derived Aspergillus versicolor	-	[36]
Fumitremorgin A (36)	Marine sediment-derived Penicillium brefeldianum SD-273	-	[37]
Fumitremorgin B (37)	Endophytic Aspergillus tamari from Ficus carica	-	[29]
	Endophytic Aspergillus fumigatus from Melia azedarach	Plant shoot elongation inhibitory activity	[11]
	Aspergillus fumigatus	-	[6]
	Endophytic Alternaria sp. FL25 from Ficus carica	Antiphytopathogenic fungal activity	[38]
Derivative of fumitremorgin B (24R) (38)	Aspergillus fumigatus	Cytotoxic activity	[8]
Derivative of fumitremorgin B (245) (39)	Aspergillus fumigatus	Cytotoxic activity	[8]
Fumitremorgin C (40)	Endophytic Aspergillus fumigatus	-	[21]
	Marine-derived Aspergillus sydowi from a driftwood sample	-	[10]
	Endophytic Aspergillus tamari from Ficus carica	-	[29]
	Marine-derived Aspergillus sp.	Cytotoxic activity	[34]
	Marine-derived Pseudallescheria sp. from the surface of driftwood	Antibacterial activity against Staphylococcus aureus	[23]
	Endophytic Alternaria sp. FL25 from Ficus carica	Antiphytopathogenic fungal activity	[38]
	Endophytic Aspergillus fumigatus from Melia azedarach	Plant shoot elongation inhibitory activity	[11]
Table 1. Cont.

Name	Fungus and Its Origin	Biological Activity	Ref.
rel-(8R)-9-Hydroxy-8-methoxy-18-epi-fumitremorgin C (41)	Endophytic Aspergillus fumigatus	-	[21]
12β-Hydroxy-13α-methoxyverruculogen TR-2 (42)	Endophytic Aspergillus fumigatus from Melia azedarach	Plant shoot elongation inhibitory activity	[11]
N-Hydroxy-6-epi-stephacidin (43)	Aspergillus taichangensis	-	[19]
21-Hydroxystephacidin A (44)	Marine-derived Aspergillus ostianus	-	[39]
12β-Hydroxyverruculogen TR-2 (45)	Endophytic Aspergillus fumigatus from Melia azedarach	-	[11]
24-Hydroxyverruculogen (46)	Marine sediment-derived Penicillium brefaldanum SD-273	-	[37]
26-Hydroxyverruculogen (47)	Marine sediment-derived Penicillium brefaldanum SD-273	-	[37]
6-Methoxyspirotryprostatin B (48)	Marine-derived Aspergillus sydowi from a driftwood sample	Weak cytotoxicity against HL-60 cells and A-549 cells	[10]
	Endophytic Aspergillus fumigatus from Melia azedarach	Inhibition on elongation of lettuce shoots	[11]
	Endophytic Aspergillus fumigatus from the stem of Erythrophloeum fardii	-	[40]
Notoamide A (49)	Marine-derived Aspergillus sp.	Moderate cytotoxicity on Hela and L1210 cells	[32]
Notoamide B (50)	Marine-derived Aspergillus sp.	Moderate cytotoxicity on Hela and L1210 cells	[32]
(-)-Notoamide B (51)	Aspergillus protuberis MF297-2	-	[32]
(+)-Notoamide B (52)	Aspergillus versicolor NRRL 35600	-	[41]
iso-Notoamide B (53)	Marine-derived Paecilomyces variotii	Weak cytotoxic activity	[33]
Notoamide C (54)	Marine-derived Aspergillus sp.	-	[32]
3-epi-Notoamide C (55)	Marine-derived Aspergillus sp.	-	[42]
Notoamide D (56)	Marine-derived Aspergillus sp.	-	[32]
Notoamide E (57)	Aspergillus versicolor NRRL 35600	-	[43]
Notoamide E₂ (58)	Marine-derived Aspergillus sp.	-	[42]
Notoamide E₃ (59)	Marine-derived Aspergillus sp.	-	[42]
Notoamide F (60)	Marine-derived Aspergillus sp.	-	[44]
	Marine-derived Aspergillus ostianus	-	[39]
Notoamide G (61)	Marine-derived Aspergillus sp.	-	[44]
Notoamide H (62)	Marine-derived Aspergillus sp.	-	[44]
Notoamide I (63)	Marine-derived Aspergillus sp.	Weak cytotoxicity on HeLa cells	[44]
Notoamide J (64)	Marine-derived Aspergillus sp.	-	[44]
Notoamide K (65)	Marine-derived Aspergillus sp.	-	[44]
Notoamide L (66)	Marine-derived Aspergillus sp.	-	[45]
Notoamide M (67)	Marine-derived Aspergillus sp.	-	[45]
Notoamide N (68)	Marine-derived Aspergillus sp.	-	[45]
Name	Fungus and Its Origin	Biological Activity	Ref.
-----------------------	--	--	------
Notoamide O (69)	Marine-derived Aspergillus sp.	-	[46]
Notoamide P (70)	Marine-derived Aspergillus sp.	-	[46]
Notoamide Q (71)	Marine-derived Aspergillus sp.	-	[46]
Notoamide R (72)	Aspergillus ostionus	-	[39]
Notoamide S (73)	Aspergillus amoenus	-	[47]
Notoamide T (74)	Marine-derived Aspergillus sp.	-	[48]
6-epi-Notoamide T (75)	Marine-derived Aspergillus sp.	-	[48]
13-Oxofumitremargin B (76)	Endophytic Aspergillus tamari from Ficus carica	-	[29]
18-Oxotryptopstatin A (77)	Marine-derived Aspergillus sydowi from a driftwood sample	Weak cytotoxicity against A-549 cells	[10]
	Endophytic Aspergillus fumigatus	-	[21]
13-Oxoverruculogen (78)	Aspergillus fumigatus	Moderate cytotoxic activity on four cancer cell lines	[8]
Piscarinine A (79)	Penicillium piscarium VKM F-691	Cytotoxic and antimicrobial activities	[49]
Piscarinine B (80)	Penicillium piscarium VKM F-691	Cytotoxic and antimicrobial activities	[49]
13-O-Prenyl-26-hydroxyverruculogen (81)	Marine sediment-derived Penicillium brefeldianum SD-273	Lethal activity against brine shrimp	[37]
Sclerotiamide (82)	Aspergillus sclerotiorum	Antiinsectan activity against the earworm Helicoverpa zea	[50]
10-epi-Sclerotiamide (83)	Deep-sea-derived Aspergillus westerdijkiae	-	[28]
Speramide A (84)	Freshwater-derived Aspergillus ochraceus KM007	Moderate activity against Pseudomonas aeruginosa	[51]
Speramide B (85)	Freshwater-derived Aspergillus ochraceus KM007	-	[51]
Spiro[5H,10H-dipyrrrolo-[1,2-a:1′2′-d]pyrazine-2(3H),2′-\[2H]-indol]-3′,5,10(1′H) trione (86)	Endophytic Aspergillus fumigatus from the stem of Erythrophloeum fordii	-	[40]
Spirotrypstatin A (87)	Aspergillus fumigatus	Inhibitory activity on mammalian cell cycle at G2/M phase	[12]
	Endophytic Aspergillus fumigatus from Melia azedarach	The elongation of lettuce shoots inhibitory activity	[11]
	Marine-derived Aspergillus sydowi from a driftwood sample	-	[10]
Spirotrypstatin B (88)	Aspergillus fumigatus	Inhibitory activity on mammalian cell cycle at G2/M phase	[12]
Table 1. Cont.

Name	Fungus and Its Origin	Biological Activity	Ref.
Spirotryprostatin C (89)	Holothurian-derived *Aspergillus fumigatus* from *Stichopus japonicus*	Cytotoxic activity	[8]
Spirotryprostatin D (90)	Holothurian-derived *Aspergillus fumigatus* from *Stichopus japonicus*	Cytotoxic activity	[8]
Spirotryprostatin E (91)	Holothurian-derived *Aspergillus fumigatus* from *Stichopus japonicus*	Cytotoxic activity	[8]
Spirotryprostatin F (92)	Marine-derived *Aspergillus fumigatus* from soft coral *Sinularia* sp.	Stimulating action on the growth of sprout roots of soy, buckwheat and corn	[52]
Spirotryprostatin Fa (93)	Plant endophytic *Penicillium brevisporum* from the rhizome of *Pinellia ternata*	Cytotoxic activity against HepG2 and MDA-MB-231 cells	[13]
Spirotryprostatin K (94)	Endophytic *Aspergillus fumigatus* from the stem of *Erythrophloeum fordii*	-	[40]
(-)-Stephacidin A (95)	*Aspergillus amoenus* (formerly *A. versicolor*) NRRL 35600	-	[41]
(+)-Stephacidin A (96)	*Aspergillus protuberus* MF297-2	-	[32]
6-epi-Stephacidin A (97)	*Aspergillus taihungensis*	-	[19]
Stephacidin B (98)	*Aspergillus ochraceus*	Cytotoxic activity	[14]
Taichunamide C (99)	*Aspergillus taihungensis* (IBT 19404)	-	[53]
Taichunamide E (100)	*Aspergillus taihungensis* (IBT 19404)	-	[53]
Taichunamide F (101)	*Aspergillus taihungensis* (IBT 19404)	-	[53]
Taichunamide G (102)	*Aspergillus taihungensis* (IBT 19404)	-	[53]
Tryprostatin A (103)	Endophytic *Aspergillus fumigatus* from *Melia azedarach*	Inhibitory activities on elongation of lettuce shoots, and on multidrug-resistance protein	[11,16]
Tryprostatin B (104)	Endophytic *Aspergillus tamari* from *Ficus carica*	-	[29]
Tryprostatin B (104)	Endophytic *Aspergillus fumigatus*	-	[21]
Tryprostatin B (104)	Endophytic *Aspergillus tamari* from *Ficus carica*	-	[29]
Verruculogen (105)	Endophytic *Aspergillus fumigatus* from *Melia azedarach*	The elongation of lettuce shoots inhibitory activity	[11]
Verruculogen TR-2 = TR-2 (106)	Endophytic *Aspergillus fumigatus* from *Melia azedarach*	Inhibitory activity on elongation of lettuce shoots	[11]
Verruculogen (105)	Marine sediment-derived fungus *Penicillium brevisporum* SD-273	-	[37]
Table 1. Cont.

Name	Fungus and Its Origin	Biological Activity	Ref.
Versicamide A (107)	Marine-derived *Aspergillus versicolor*	-	[36]
Versicamide B (108)	Marine-derived *Aspergillus versicolor*	-	[36]
Versicamide C (109)	Marine-derived *Aspergillus versicolor*	-	[36]
Versicamide D (110)	Marine-derived *Aspergillus versicolor*	-	[36]
Versicamide E (111)	Marine-derived *Aspergillus versicolor*	-	[36]
Versicamide F (112)	Marine-derived *Aspergillus versicolor*	-	[36]
Versicamide G (113)	Marine-derived *Aspergillus versicolor*	-	[36]
(−)-Versicolamide B (114)	*Aspergillus* sp.	-	[45]
(+)-Versicolamide B (115)	*Aspergillus versicolor* NRRL 35600	-	[41]
(−)-Versicolamide C (116)	*Aspergillus taichungensis*	-	[19]

Figure 1. Cont.
3. Tryptophan–Tryptophan Cyclodipeptides

The ditryptophan cyclodipeptides, which have two tryptophan units, are widely distributed in filamentous fungi, especially in the genera *Penicillium* and *Aspergillus*. Their occurrence and biological activities are listed in Table 2, and the structures are provided in Figure 2.

Amauromine (117) from *Amauroascus* sp. [54] was identical with nigrifortine (117) from *Penicillium nigricans*. It is a diannulated DKP analog which shows hypotensive vasodilating activity [55]. This compound was later isolated from *Auxarthron reticulatum*, and identified as a selective cannabinoid CB1 receptor antagonist [56].

Epiamauromine (120) and N-methylepiamauromine (127) were isolated from the sclerotia of *Aspergillus ochraceus*. They caused moderate reduction in weight gain against the corn earworm *Helicoverpa zea* [57].

Fellutanines A–D (121, 123–125), the analogs of cyclo(L-Trp–D-Trp), were isolated from the cultures of *Penicillium fellutanum*. Among them, only fellutanine D (125) was diannulated and displayed cytotoxic activity against K-562 (human myeloid leukemia cells), L-929 (mouse fibroblastic cell), and HeLa (human epitheloid cervix carcinoma cells) with IC\(_{50}\) values of 9.5, 11.6 and 19.7 \(\mu\)g/mL, respectively [58].

Novoamauromine (128) was obtained from *Aspergillus novofumitatus* CBS117520. This compound had inhibitory activity on the cell proliferation of A549, HeLa, LNCap (human prostate carcinoma cells) [59].

Okaramines A–U (129–149) have been isolated from *Aspergillus aculeatus* [60], *Aspergillus taichungensis* [61], and *Penicillium simplicissimum* [62–65]. Structure–activity studies indicated the
importance of the azetidine and azocine rings to okaramine insecticidal activity [66]. The action of okaramine B (130) on silkworm larval neurons using patch-clamp electrophysiology revealed that this compound activated the L-glutamate-gated chloride channel (GluCl) [67].

Table 2. Fungal tryptophan-tryptophan cyclodipeptide analogs and their biological activities.

Name	Fungus and its Origin	Biological Activity	Ref.
Amauromine = Nigriforine (117)	Amauroascus sp.	Hypotensive vasodilating activity	[54]
	Penicillium nigricans	-	[55]
	Auxarthron reticulatum	Selective cannabinoid CB1 receptor antagonist	[56]
Amauromine B (118)	Aspergillus terreus 3.05358	Inhibitory activity on α-glucosidase	[68]
Cyclo(L-Trp-L-Trp) (119)	Endophytic Aspergillus niger from the liverwort Heteroscyphus tener	-	[69]
Epiamauromine (120)	Aspergillus ochraceus	Moderate reduction in weight gain activity against the corn earworm	[57]
Fellutanine A (121)	Penicillium fellutanum	-	[58]
	Marine sponge-derived Novosartorya glabra KUFA 0702	-	[70]
Fellutanine A 2'S,3'S-epoxide (122)	Marine sponge-derived Novosartorya glabra KUFA 0702	-	[70]
Fellutanine B (123)	Penicillium fellutanum	-	[58]
Fellutanine C (124)	Penicillium fellutanum	-	[58]
Fellutanine D (125)	Penicillium fellutanum	Cytotoxic activity	[58]
Gypsetin (126)	Nannizzia gypsea var. incurvata	Inhibitory activity on acyl-CoA:cholesterol acyltransferase	[71]
N-Methylepiamauromine (127)	Aspergillus ochraceus	Moderate reduction in weight gain activity against the corn earworm	[57]
Novoamauromine (128)	Aspergillus noreofumigatus	Inhibitory activity on the cell proliferation of A549, Hela, and LNCap cells	[59]
Okaramine A (129)	Penicillium simplicissimum AK-40	Insecticidal activity	[62]
Okaramine B (130)	Penicillium simplicissimum AK-40	Insecticidal activity	[62]
Okaramine C (131)	Penicillium simplicissimum	-	[65]
Okaramine D (132)	Penicillium simplicissimum	Oral insecticidal activity against silkworms	[72]
Okaramine E (133)	Penicillium simplicissimum	-	[63]
Okaramine F (134)	Penicillium simplicissimum	-	[63]
Okaramine G (135)	Penicillium simplicissimum	Insecticidal activity	[75]
Okaramine H (136)	Aspergillus acauleatus	-	[60]
Okaramine I (137)	Aspergillus acauleatus	-	[60]
Okaramine J (138)	Penicillium simplicissimum	-	[64]
Okaramine K (139)	Penicillium simplicissimum	-	[64]
Okaramine L (140)	Penicillium simplicissimum	-	[64]
Okaramine M (141)	Penicillium simplicissimum	-	[64]
Okaramine N (142)	Penicillium simplicissimum	-	[65]
Okaramine O (143)	Penicillium simplicissimum	-	[65]
Okaramine P (144)	Penicillium simplicissimum	-	[65]
Okaramine Q (145)	Penicillium simplicissimum	-	[65]
Okaramine R (146)	Penicillium simplicissimum	-	[65]
Okaramine S (147)	Aspergillus taichungensis ZHN-7-07	Cytotoxic activity against HL-60 cells with IC₅₀ value of 0.78 µM	[61]
Okaramine T (148)	Aspergillus taichungensis ZHN-7-07	-	[61]
Okaramine U (149)	Aspergillus taichungensis ZHN-7-07	-	[61]

Note: IC₅₀, median inhibitory concentration.
Figure 2. Cont.
was also named rugulosuvine B (234). Both brevicompanines E (165) and H (168) inhibited lipopolysaccharide (LPS)-induced nitric oxide production in BV2 microglial cells. Further studies showed that brevicompanine E (165) reduced lipopolysaccharide-induced production of pro-inflammatory cytokines and enzymes in microglia by inhibiting activation of activator protein-1 and nuclear factor κB and, hence, may be potentially useful for modulating neuroinflammation [78].

Cycloechinulin (190) was isolated from the sclerotia of Aspergillus ochraceus, and it showed moderate insecticidal activity against the lepidopteran crop pest Helicoverpa zea [57].

Echinulin (206) is one of the simplest classes of isoprenylated tryptophan cyclodipeptides. It was toxic to rabbits, producing a significant degree of damage to lung and liver [79].

Fructigenes A (211) and B (212) are annulated derivatives of cyclo(L-Trp–L-Phe) (187), and were isolated from Penicillium fructigenum. Only fructigene A (211) inhibited growth of Avena coleoptiles and L-5178Y (mouse lymphoma cells), and was subsequently found to have more potent anti-inflammatory activity than indomethacin in the mouse ear edema model [80]. Fructigene A (211) was also named rugulosuvine B (211) in Penicillium rugulosum, and showed potent anti-inflammatory and antitumor activities in vitro [81].

Neoechinulin A (234) had scavenging, neurotrophic factor-like and antiapoptotic activities. The protective properties of neoechinulin A (234) against SIN-1-induced neuronal cell death suggested that neoechinulin A (234) could protect against neuronal cell death in neurodegenerative diseases [82].
The valine analog polanrazine A (250) was isolated from the blackleg fungus *Phoma lingam* (teleomorph: *Leptosphaeria maculans*). This compound was toxic to canola (*Brassica napus* and *B. rapa*) [83].

Rubrumlines A–O (267–281) were isolated from the marine-derived fungus *Eurotium rubrum*. Among them, rubrumlines D (270), F (272), G (273), J (276), M (279), N (280), and O (281) showed inhibitory activity against influenza A/WSN/33 virus. Further analysis of the structure–activity relationship revealed that the analogs with an isoprenyl unit in indole ring displayed stronger cytotoxic effects than those linked by an oxygenated isoprenyl unit. Neoechinulin B (235) was also isolated from *Eurotium rubrum*. This compound was efficient in inhibiting influenza A/WSN/33 virus propagation even after the fifth passage. In addition, it exerted potent inhibition against H1N1 virus infected in MDCK cells, and was able to inhibit a panel of influenza virus strains including amantadine- and oseltamivir-resistant clinical isolates. The high potency and broad-spectrum activities against influenza viruses with less drug resistance made neoechinulin B (235) a new lead for the development of potential inhibitor of influenza viruses [84].

The prenylated pyranoindole derivatives talathermophilins A (284) and B (285) were isolated from a thermophilic fungus *Talaromyces thermophilus* strain YM1-3. Both talathermophilins A (284) and B (285) showed nematicidal activity toward the worms of the free-living nematode *Panagrellus redivivus* [85].

Variecolorins A–L (293–304) were isolated from halotolerant fungus *Aspergillus variecolor* [80], and variecolorins M–O (305–307) from deep ocean sediment-derived fungus *Penicillium griseofulvum* [86]. They all showed weak radical scavenging activity against DPPH [86,87].

Table 3. Fungal tryptophan-Xaa cyclodipeptide analogs and their biological activities.

Name	Fungus and its Origin	Biological Activity	Ref.
Acyl aszonalenin (150)	*Aspergillus flavipes* from sediments collected in the Jilantai salt field of China	Substance P inhibitory activity	[88]
Alkaloid E-7 (151)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Mangrove-derived *Eurotium rubrum* from Hibiscus tiliaceus	Cytotoxic activity	[89]
	Marine-derived *Eurotium rubrum* MPUC136	Inhibitory activity against melanin synthesis	[90]
Arestrictin A (152)	*Aspergillus restrictus*	-	[91]
Arestrictin B (153)	*Aspergillus restrictus*	-	[91]
	Aspergillus penicilloides	-	[91]
Asperazine (154)	Marine-derived *Aspergillus niger* from the liverwort *Heteroscyphus tener*	Cytotoxic activity	[92]
	Endophytic *Aspergillus niger* from *Heteroscyphus tener*	Weak cytotoxic activity	[69]
	Endophytic *Aspergillus* sp. KJ-9 from *Melia azedarach*	Antifungal and antibacterial activity	[93]
	Plant fungal pathogen *Pestalotiopsis thae*	Inhibitory effect on HIV-1 replication in C8166 cells	[94]
Asperazine A (155)	Endophytic *Aspergillus niger* from the liverwort *Heteroscyphus tener*	Weak cytotoxic activity	[92]
Aspertryptanthrin A (156)	Endophytic *Aspergillus* sp. from the stem bark of *Melia azedarach*	-	[74]
Aspertryptanthrin B (157)	Endophytic *Aspergillus* sp. from the stem bark of *Melia azedarach*	-	[74]
Table 3. Cont.

Name	Fungus and its Origin	Biological Activity	Ref.
Aspertrypanthin C (158)	Endophytic Aspergillus sp. from the stem bark of *Melia azedarach*	-	[74]
Benzodiazepinedione (159)	Aspergillus flavipes	-	[88]
Brevicompanine A (160)	*Penicillium brevicompactum*	Acceleration of the root growth of the lettuce seedlings	[95]
Brevicompanine B (161)	*Penicillium brevicompactum*	Inhibitory activity against the malaria parasite *Plasmodium falciparum* 3D7	[96]
allo-Brevicompanine B (162)	Deep ocean sediment derived fungus *Penicillium sp.*	-	[77]
Brevicompanine C (163)	*Penicillium brevi-compactum*	Acceleration of the root growth of the lettuce seedlings	[75]
Brevicompanine D (164)	Deep ocean sediment derived *Penicillium sp.*	-	[77]
Brevicompanine E (165)	Deep ocean sediment derived *Penicillium sp.*	Inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglial cells	[77,78]
Brevicompanine F (166)	Deep ocean sediment derived *Penicillium sp.*	-	[77]
Brevicompanine G (167)	Deep ocean sediment derived *Penicillium sp.*	-	[77]
Brevicompanine H (168)	Deep ocean sediment derived *Penicillium sp.*	Inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglial cells	[77]
Citreoindole (169)	*Penicillium citreoindolides*	Cytotoxicity against HeLa cells	[97]
Cristatin A (170)	*Aspergillus fischeri*	-	[91]
Cristatumin A (171)	Mangrove-derived endophytic *Eurotium cristatum EN-220*	Antibacterial activity against *Escherichia coli* and *Staphylococcus aureus*	[98]
Cristatumin B (172)	Mangrove-derived endophytic *Eurotium cristatum EN-220*	Moderate lethal activity against brine shrimp	[98]
Cristatumin C (173)	Mangrove-derived endophytic *Eurotium cristatum EN-220*	-	[98]
Cristatumin E (174)	Algal-derived *Eurotium herbariorum HT-2	Cytotoxic activity on K562 tumor cell line and antibacterial activity on *Enterobacter aerogenes* and *Escherichia coli*	[99]
Cristatumin F (175)	*Eurotium cristatum* isolated from Fuzhuan brick tea	Modest radical scavenging activity against DPPH radicals, and marginal attenuation of 3T3L1 pre-adipocytes	[100]
Cryptoechinuline C (176)	Marine-derived *Eurotium rubrum*	-	[84]
Cryptoechinuline D (177)	Mangrove rhizosphere soil-derived *Aspergillus effusus H-1	Cytotoxic activity	[101]
	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tilaceus*	Radical scavenging activity against DPPH	[102]
Table 3. Cont.

Name	Fungus and its Origin	Biological Activity	Ref.
Cryptoechinuline G (178)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against 1,1'-diphenyl-1-picrylhydrazyl (DPPH)	[87]
	Marine-derived *Eurotium rubrum* MPUC136	Inhibitory activity against melanin synthesis	[90]
	Mangrove-derived *Eurotium rubrum* from *Hibiscus tiliaceus*	-	[89]
Cyclo(i-Trp–L-Ala) (179)	Marine-derived *Aspergillus* sp.	Weak antiviral effects	[84]
	Eurotium rubrum MA-150 obtained from mangrove-derived rhizospheric soil	Modest lethal activity on brine shrimp	[104]
Cyclo(Trp–Gly) (180)	Thermophilic *Talaromyces thermophilus* YM3-4 collected in Tengchong hot spring, Yunnan of China	-	[105]
Cyclo(i-Trp–dehydro-His) (181)	Endophytic *Penicillium* sp. HS-3 from the stems of *Huperzia serrata*	-	[106]
Cyclo(i-Trp–D-Ile) (182)	*Penicillium brevi-compactum*	Acceleration of root growth of lettuce seedlings	[75]
Cyclo(i-Trp–D-Leu) (183)	*Penicillium brevi-compactum*	Acceleration of root growth of lettuce seedlings	[75]
Cyclo(N-methyl-Trp–Leu) (184)	Endophytic *Aspergillus tamari* from *Ficus carica*	-	[29]
Cyclo(i-Trp–D-N-methyl-Leu) (185)	*Aspergillus fassus*	-	[107]
Cyclo(i-Trp–D-Phe) (186)	Endophytic *Aspergillus niger* from the liverwort *Heteroscyphus tener*	-	[69]
Cyclo(i-Trp–D-Phe) (187)	*Aspergillus sydowii*	-	[108]
Cyclo(Trp–Tyr) (188)	Terrestrial *Aspergillus oryzae*	-	[109]
Cyclo(i-N-isopropyl-Trp–D-Val) (189)	An unidentified marine derived fungus M-3 from laver (*Porphyra yezoensis*) with MIC 0.36 µM	Antifungal activity against the rice pathogen *Pyricularia oryzae*	[110]
Cycloechinulin (190)	*Aspergillus ochraceus*	Insecticidal activity against the lepidopteran crop pest *Helicoverpa zea*	[57]
ent-Cycloechinulin (191)	*Aspergillus novofumigatus* CBS117520	Antifungal activity against *Aspergillus fumigatus*, *A. Niger*, *Candida albicans*, and *Cryptococcus neoformans*	[59]
Dehydroechinulin (192)	*Eurotium cristatum* isolated from Fuzhuan brick tea	-	[100]
	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tiliaceus*	-	[102]
	Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Lethal activity on brine shrimp	[104]
	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisae* collected in Changbaishan Mountain of China	-	[111]
Name	Fungus and its Origin	Biological Activity	Ref.
------	----------------------	---------------------	------
Dehydrovariecolorin L (193)	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tilaceus*	-	[102]
12-Demethyl-12-oxo-eurotechinulin B (194)	Mangrove-derived *Eurotium rubrum* from *Hibiscus tilaceus*	Cytotoxic activity	[89]
Dichotocepin B (195)	*Dichotomomyces cejpii* FS110	-	[112]
Dichotocepin C (196)	*Dichotomomyces cejpii* FS110	-	[112]
Didehydroechinulin = Didehydroechinulin B (197)	Deep ocean sediment-derived *Penicillium griseofulvum*	-	[86]
Dihydrocryptoechinulin D (198)	Mangrove rhizosphere soil-derived *Aspergillus effusus* H1-1	Cytotoxic activity	[101]
Dihydroneochinulin B (199)	Mangrove rhizosphere soil-derived *Aspergillus effusus* H1-1	Cytotoxic activity against P388 cells	[114]
3,12-Dihydroroquefortine (200)	Permafrost sediment derived *Penicillium aurantiogriecium*	-	[115]
7,9-Dihydroxy-3-(1H-indol-1-ylmethyl)-8-methoxy-2,3,11,11a-tetrahydro-6H-pyrazino[1,2-b]isoquinoline-1,4-dione (201)	Terrestrial *Aspergillus oryzae*	-	[109]
Dihydroxyisoechinulin A (202)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
11,14-Dihydroxyneoechinulin E (203)	Mushroom *Psilocbe merdaria* from suburban district of Haikou of China	-	[116]
Dipodazine (204)	*Penicillium dipodomgis*	-	[117]
Ditryptophenaline (205)	*Aspergillus flavus*	-	[118]
	Aspergillus flavus	Weak substance-P inhibitor activity	[119]
	Marine-derived *Aspergillus flavus* C-F-3	-	[120]

Table 3. Cont.
Name	Fungus and its Origin	Biological Activity	Ref.
Echinulin (206)	Halotolerant *Aspergillus variecolor* from sediments collected in the	-	[87]
	Jilantai salt field of China	-	
	Aspergillus chevalieri in rabbits	Toxic activity to rabbits by producing a significant degree of damage to lung and liver	[79]
	Soil-derived *Chaetomium globosum*	-	[121]
	Eurotium cristatum isolated from Fuzhuan brick tea	-	[100]
	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of	-	[102]
	Hibiscus tilaeus	-	
	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
	Marine-derived *Eurotium rubrum* MPUC136	Inhibitory activity against melanin synthesis	[90]
	Deep ocean sediment-derived *Penicillium griseofulvum*	-	[86]
	Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Modest lethal activity on brine shrimp	[104]
Effusin A (207)	Mangrove rhizosphere soil-derived *Aspergillus effuses*	-	[114]
	H1-1	-	
Epoxyisoechinulin A (208)	Marine-derived *Aspergillus ruber* from a crinoid *Himerometra	-	[122]
	magnapinna	-	
Eurocristatine (209)	Sponge-associated *Eurotium cristatum* KUFC 7356	-	[123]
Eurotechinulin B (210)	Mangrove-derived *Eurotium rubrum* from *Hibiscus tilaeus*	-	[89]
Fructigenine A =	*Penicillium fructigenum*	Inhibitory activity on the growth of *Avena coleoptiles* and L-5178Y cells	[80]
Rugulosvine B (211)	*Penicillium rugulosum*	Moderate cytotoxic activity	[81]
	Deep ocean sediment derived *Penicillium sp.*	-	[77]
	Penicillium verrucosum var. *cyclopium*	-	[124]
	Penicillium fructigenum	-	[80]
Gliocladin C (213)	*Gliocladium roseum* PS-N132	Significant cytotoxicity against murine P388 lymphocytic leukemia cells	[125]
Glioperazine C (214)	*Bionectra bysicola* F120	-	[126]
Haenamindole (215)	Marine-derived *Penicillium sp.* KCB12F005	-	[127]
3-((1-Hydroxy-3-(2-methylbut-	Sponge-derived *Aspergillus sp.* from the Mediterranean sponge *Tethya	Antibacteria activity on a few marine-derived *Vibrio* species	[128]
3-en-2-yl)-2-oxoindilin-	auranthium	-	
3-yl)methyl]-1-methyl-3,4-		-	
dihydronbenzo[1,4]		-	
diazepine-2,5-dione (216)		-	
16-Hydroxyroquefortine C (217)	*Penicillium sp.* HS-3 from the stems of *Huperzia serrata*	-	[106]
14-Hydroxyterezine D (218)	Marine-derived *Aspergillus sydowi* from a driftwood sample	Weak cytotoxic activity against A-549 cells	[10]
Name	Fungus and its Origin	Biological Activity	Ref.
------	-----------------------	---------------------	------
(E)-3-(1H-Imidazole-4-yimethylene)-6-((1H-indol-3-yl)methyl)-2,5-piperazinediolen (219)	Antarctic soil-derived *Penicillium* sp. SCSIO 05705	-	[129]
3-[(1H-Indol-3-yl)methyl]-6-benzylpiperazine-2,5-dione (220)	Marine-derived *Aspergillus flavus* C-F-3	-	[120]
(35, 11aS)-3-[(1H-Indol-3-yl)methyl]-7,9-dihydroxy-8-methoxy-2,3,11,11a-tetrahydro-6H-pyrazino[1,2-b]isoquinoline-1,4-dione (221)	Algicocolus *Aspergillus flavus*	Weak cytotoxicity against HL-60 cells	[130]
Isoechinulin A (222)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tiliaceus*	-	[102]
	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladonia grisea* collected in Changbaishan Mountain of China	Modest lethal activity on brine shrimp	[111]
	Marine-derived *Eurotium rubrum*	Inhibitory activity against influenza A/WSN/33 virus	[84]
Isoechinulin B (223)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Marine-derived *Eurotium rubrum* MPUC136	Inhibitory activity against melanin synthesis	[90]
	Marine-derived *Eurotium rubrum*	-	[84]
	Mangrove-derived *Eurotium rubrum* from *Hibiscus tiliaceus*	-	[89]
	Deep ocean sediment-derived *Penicillium griseofulvum*	-	[86]
Isoechinulin C (224)	Marine-derived *Eurotium rubrum* MPUC136	-	[90]
Isoechinulin D (225)	Marine-derived *Eurotium rubrum* MPUC136	-	[90]
Isopenilline A (226)	Antarctic soil-derived *Penicillium* sp. SCSIO 05705	-	[129]
7-Isopentenylcryptoechinulin D (227)	Mangrove-derived *Eurotium rubrum* from *Hibiscus tiliaceus*	-	[89]
Leptosin S (228)	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[131]
Lumpidin (229)	*Penicillium nordicum*	-	[132]
3-Methyl-6-([(1-(3-methyl-2-butenyl)-1H-indol-3-yl)methyl]-2,5-piperazinediion (230)	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
7-O-Methylvariecolortide A (231)	Mangrove derived endophytic *Eurotium rubrum* from the inner tissue of the stems of *Hibiscus tiliaceus*	-	[133]
	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladonia grisea* collected in Changbaishan Mountain of China	Inhibitory activity on caspase-3	[111]
Name	Fungus and its Origin	Biological Activity	Ref.
--	--	--	-------
(+)-(R)-7-O-Methylvariecolortide A (232)	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China	-	[111]
(−)-(S)-7-O-Methylvariecolortide A (233)	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China	-	[111]
Aspergillus spp.	Scavenging, neurotrophic factor-like and antiapoptotic activities		[82]
Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH		[87]
Marine-derived *Aspergillus* spp.	Ultraviolet-A (320-390 nm) protecting activity with IC₅₀ value of 170 μM.		[103]
Marine mudflat sediment derived *Chaetomium cristatum* collected at Suncheon Bay of Korea	Radical-scavenging activity against DPPH with IC₅₀ value of 24 μM.		[134]
Eurotium cristatum from Fuzhuan brick tea			[100]
Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tiliae*			[102]
Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Modest brine shrimp lethal activity		[104]
Marine-derived *Eurotium rubrum* MPUC136			[90]
Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China			[111]
Deep ocean sediment-derived *Penicillium griseofulvum*			[86]
Mushroom *Psilocybe merdaria* from suburban district of Haikou of China			[116]
Marine-derived *Eurotium rubrum*			[84]
Mangrove rhizosphere soil-derived *Aspergillus effuses* H1-1			[101]
Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH		[87]
Marine-derived *Eurotium rubrum*	Inhibition against H₃N₁ virus infected in MDCK cells, and a panel of influenza virus strains		[84]
Deep ocean sediment-derived *Penicillium griseofulvum*			[86]
Neoechinulin C (236)	Marine-derived *Eurotium rubrum*	Inhibitory activity against influenza A/WSN/33 virus	[84]
Neoechinulin D (237)	*Aspergillus amstelodami*		[135]
Name	Fungus and its Origin	Biological Activity	Ref.
--------------	--	--	-----------
Neoechinulin E (238)	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tilicues*	DPPH radical scavenging activity	[102]
	Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Lethal activity on brine shrimp	[104]
Neosartin A (239)	Marine-derived *Neosartorya pseudofischeri* from the inner tissue of starfish *Acanthaster planci*	-	[136]
Neosartin B (240)	Marine-derived *Neosartorya pseudofischeri* from the inner tissue of starfish *Acanthaster planci*	-	[136]
Oidioperazine B (241)	Antarctic psychrophilic fungus *Oidiodendron truncatum*	-	[137]
Oidioperazine C (242)	Antarctic psychrophilic fungus *Oidiodendron truncatum*	-	[137]
Oidioperazine D (243)	Antarctic psychrophilic fungus *Oidiodendron truncatum*	-	[137]
Penilline A (244)	Antarctic soil-derived *Penicillium* sp. SCSIO 05705	-	[129]
Penilline B (245)	Antarctic soil-derived *Penicillium* sp. SCSIO 05705	-	[129]
Penilloid A (246)	Antarctic soil-derived *Penicillium* sp. SCSIO 05705	-	[129]
Pestalazine A (247)	Plant pathogen *Pestalotiopsis theae*	Inhibitory activity on HIV-1 replication in C8166 cells	[94]
Pestalazine B (248)	Plant pathogen *Pestalotiopsis theae*	-	[94]
Protubonine A (254)	Plant pathogen *Phoma lingam*	Moderate and selective phytotoxicity by causing necrotic and chlorotic lesions	[138]
Protubonine B (255)	Plant pathogen *Phoma lingam*	-	[138]
Preechinulin (253)	Halotolerant *Aspergillus varicolor* from sediments collected in the Jilantai salt field of China	-	[87]
	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tilicues*	-	[102]
	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
	Deep ocean sediment-derived *Penicillium griseofulvum*	-	[86]
Protubonine A (254)	Marine-derived *Aspergillus* sp. SF-5044 from an intertidal sediment sample	-	[139]
Protubonine B (255)	Marine-derived *Aspergillus* sp. SF-5044 from an intertidal sediment sample	-	[139]
Rhinocladin A (256)	Endophytic *Rhinocladiella* sp. lgt-3 from *Tripterygium wilfordii*	Weak inhibitory activity on monoamine oxidase	[140]
Rhinocladin B (257)	Endophytic *Rhinocladiella* sp. lgt-3 from *Tripterygium wilfordii*	Weak inhibitory activity on monoamine oxidase	[140]
Table 3. Cont.

Name	Fungus and its Origin	Biological Activity	Ref.
Roquefortine C = Roquefortine (258)	Permafrost sediment derived *Penicillium aurantiogriseum*	-	[115]
	Penicillium roqueforti from soil	-	[141]
	Endophytic *Penicillium* sp. HS-3 from the stems of *Huperzia serrata*	-	[106]
Roquefortine E (259)	*Gymnoascus reessii*	Weak cytotoxic activity to mammalian cells	[142]
Roquefortine F (260)	Marine-derived *Penicillium* sp.	-	[143]
Roquefortine G (261)	Marine-derived *Penicillium* sp.	-	[143]
Roquefortine H (262)	Deep ocean sediment-derived *Penicillium* sp.	-	[144]
Roquefortine I (263)	Deep ocean sediment-derived *Penicillium* sp.	-	[144]
Rubrumazine A (264)	Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Modest brine shrimp lethal activity	[104]
Rubrumazine B (265)	Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Brine shrimp lethal activity	[104]
Rubrumazine C (266)	Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Modest brine shrimp lethal activity	[104]
Rubrumline A (267)	Marine-derived *Eurotium rubrum*	-	[84]
Rubrumline B (268)	Marine-derived *Eurotium rubrum*	-	[84]
Rubrumline C (269)	Marine-derived *Eurotium rubrum*	-	[84]
Rubrumline D (270)	Marine-derived *Eurotium rubrum*	Inhibitory activity against influenza A/WSN/33 virus	[84]
Rubrumline E (271)	Marine-derived *Eurotium rubrum*	-	[90]
Rubrumline F (272)	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
Rubrumline G (273)	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
Rubrumline H (274)	Marine-derived *Eurotium rubrum*	-	[84]
Rubrumline I (275)	Marine-derived *Eurotium rubrum*	-	[84]
Rubrumline J (276)	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
Rubrumline K (277)	Marine-derived *Eurotium rubrum*	-	[84]
Rubrumline L (278)	Marine-derived *Eurotium rubrum*	-	[84]
Rubrumline M (279)	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
Rubrumline N (280)	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
Rubrumline O (281)	Marine-derived *Eurotium rubrum*	Weak antiviral effect	[84]
Rugulosuvine A (282)	*Penicillium rugulosum*	Moderate cytotoxic activity	[81]
SF5280-415 (283)	Marine-derived *Aspergillus* sp. SF-5280	-	[145]
Talathermophilin A (284)	Thermophilic *Talaromyces thermophilus* YM1-3	Nematicidal toxicity	[85]
	Thermophilic *Talaromyces thermophilus* YM3-4 collected in Tengchong hot spring, Yunnan of China	-	[105]

Name	Fungus and its Origin	Biological Activity	Ref.
Talathermophilin B (285)	Thermophilic *Talaromyces thermophilus* YM1-3	Nematicidal toxicity	[85]
	Thermophilic *Talaromyces thermophilus* YM3-4 collected in Tengchong hot spring, Yunnan of China	-	[105]
Talathermophilin C (286)	Thermophilic *Talaromyces thermophilus* YM3-4 collected in Tengchong hot spring, Yunnan of China	-	[105]
Talathermophilin D (287)	Thermophilic *Talaromyces thermophilus* YM3-4 collected in Tengchong hot spring, Yunnan of China	-	[105]
Talathermophilin E (288)	Thermophilic *Talaromyces thermophilus* YM3-4 collected in Tengchong hot spring, Yunnan of China	-	[105]
Tardioxopiperazine A (289)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	-	[87]
	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China	-	[111]
	Microascus tardifaciens	Moderate inhibition on con A and LPS mediated T cell proliferation	[146]
	Deep ocean sediment-derived *Penicillium griseofulvum*	-	[86]
Tardioxopiperaine B (290)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	-	[87]
	Microascus tardifaciens	Weak inhibition on con A and LPS mediated T cell proliferation	[146]
Terezine D (291)	Marine-derived *Aspergillus sydowi* from a driftwood sample	-	[10]
Tryhistatin (292)	Endophytic fungus *Penicillium* sp. HS-3 from the stems of *Huperzia serrata*	-	[106]
Variecolorin A (293)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
Variecolorin B (294)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
Variecolorin C (295)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
Variecolorin D (296)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
Name	Fungus and its Origin	Biological Activity	Ref.
---------------	-----------------------------------	---	-------
Variecolorin E (297)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Eurotium rubrum MA-150 obtained from mangrove-derived rhizospheric soil	Modest lethal activity on brine shrimp	[104]
Variecolorin F (298)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
Variecolorin G (299)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Mangrove-derived *Eurotium rubrum* from *Hibiscus tiliaceus*	Cytotoxic activity	[89]
	Eurotium rubrum MA-150 obtained from mangrove-derived rhizospheric soil	Modest lethal activity on brine shrimp	[104]
Variecolorin H (300)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Deep ocean sediment-derived fungus *Penicillium griseofulvum*	-	[86]
Variecolorin I (301)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
Variecolorin J (302)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Mangrove-derived *Eurotium rubrum* from *Hibiscus tiliaceus*	-	[89]
Variecolorin K (303)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
Variecolorin L (304)	Halotolerant *Aspergillus variecolor* from sediments collected in the Jilantai salt field of China	Weak radical scavenging activity against DPPH	[87]
	Mangrove-derived *Eurotium rubrum* from the inner tissue of stems of *Hibiscus tiliaceus*	-	[102]
	Mangrove rhizosphere soil-derived *Eurotium rubrum* MA-150	Modest lethal activity on brine shrimp	[104]
Variecolorin M (305)	Deep ocean sediment-derived *Penicillium griseofulvum*	Weak radical scavenging activity against DPPH	[86]
Variecolorin N (306)	Deep ocean sediment-derived *Penicillium griseofulvum*	Weak radical scavenging activity against DPPH	[86]
Variecolorin O (307)	*Eurotium cristatum* isolated from Fuzhuan brick tea	-	[100]
	Deep ocean sediment-derived *Penicillium griseofulvum*	Weak radical scavenging activity against DPPH	[86]
Variecolortide A (308)	Halotolerant fungus *Aspergillus variecolor* B-17	Weak cytotoxic and antioxidant activities	[147]
Variecolortide B (309)	Halotolerant *Aspergillus variecolor* B-17	Weak cytotoxic and antioxidant activities	[147]
Table 3. Cont.

Name	Fungus and its Origin	Biological Activity	Ref.
(−)-(S)-Variecolortide B (310)	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China	-	[111]
(+)-(R)-Variecolortide B (311)	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China	-	[111]
Variecolortide C (312)	Halotolerant fungus *Aspergillus variecolor* B-17	Weak cytotoxic and antioxidant activities	[147]
(−)-(S)-Variecolortide C (313)	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China	-	[111]
(+)-(R)-Variecolortide C (314)	Lichen-derived *Eurotium* sp. No. 17-11-8-1 from *Cladina grisea* collected in Changbaishan Mountain of China	-	[111]
WIN 64745 (315)	*Aspergillus* sp. SC319	-	[148]
WIN 64821 (316)	*Aspergillus* sp. SC319	-	[148]

Note: IC$_{50}$, median inhibitory concentration; MIC, minimum inhibitory concentration.

![Figure 3. Cont.](image-url)
Figure 3. Cont.
with human monocyte culture for 24 h, suggesting its potential as a lead structure for the future development of anti-inflammatory compounds [152].

Aspergillus flavus sp. is considered as an inhibitor of monocyte chemotactic protein-1 (CCL2)-induced chemotaxis and was 10- to 20-fold more active than the nonchlorinated from maculosin-1 (337), were host-specific fungal phytotoxins produced by Alternaria alternata on spotted knapweed (Centaurea maculosa) to show their potential as the bioherbicides [149].

The dechlorinated cyclodipeptide, cyclo(13,15-dichloro-L-Pro–L-Tyr) (338), isolated from the fungus Leptoxyphium sp. is considered as an inhibitor of monocyte chemotactic protein-1 (CCL2)-induced chemotaxis and was 10- to 20-fold more active than the nonchlorinated from maculosin-1 (337). In addition, no cellular toxicity was observed when cyclo(13,15-dichloro-L-Pro–L-Tyr) (338) at 100 μM was in contact with human monocyte culture for 24 h, suggesting its potential as a lead structure for the future development of anti-inflammatory compounds [152].

Table 4. Proline-Xaa cyclodipeptide analogs and their biological activities.

Name	Fungus and its Origin	Biological Activity	Ref.
Amoenamide A (317)	Aspergillus amoenus NRRL 35600	-	[153]
	Alternaria alternata	-	[149]
Cyclo(L-Pro–L-Ala) (318)	Phytopathogenic Colletotrichum gloesporoides	Inhibition of aflatoxin production in Aspergillus flavus	[150,151]

5. Proline–Xaa Cyclodipeptides

Except Trp–Pro cyclodipeptides, other proline containing cyclodipeptides (Pro–Xaa) are also abundantly distributed in fungi. Their occurrence and biological activities are shown in Table 4, and their structures are provided in Figure 4.

Cyclo(L-Pro–L-Ala) (318) was isolated from Alternaria alternata [149] and the phytopathogenic fungus Colletotrichum gloesporoides [150]. This compound inhibited aflatoxin production in aflatoxigenic fungi without affecting fungal growth. Further investigation on the mode of action suggested that this cyclodipeptide inhibited aflatoxin biosynthesis by affecting glutathione S-transferase (GST) function in Aspergillus flavus to show its potency as the biocontrol agent [151].

Cyclo(L-Pro–L-Phe) (334) and cyclo(L-Pro–L-Tyr) (337), which were also called maculosin-2 (334) and maculosin-1 (337), were host-specific fungal phytotoxins produced by Alternaria alternata on spotted knapweed (Centaurea maculosa) to show their potential as the bioherbicides [149].

Figure 3. Structures of the tryptophan-Xaa cyclodipeptide analogs isolated from fungi.
Name	Fungus and its Origin	Biological Activity	Ref.	
Cyclo\((\text{trans})-4\text{-hydroxy}-\text{l-Pro}–\text{l-Ala}\) (319)	Endophytic *Alternaria alternata* from grapevine	Antifungal activity on *Plasmopara viticola*	[154]	
Cyclo\((\text{l-Pro}–\text{l-Gly})\) (320)	Phytopathogenic *Colletotrichum gloeosporoides*	-	[150]	
Cyclo\((2\text{-hydroxy-Pro}–\text{Gly})\) (321)	*Simplicillium* sp. YZ-11	-	[155]	
Cyclo\((\text{l-Pro}–\text{l-Ile})\) (322)	Endophytic fungus *Alternaria tenuissima* from the bark of *Erythrophleum fordii*	-	[156]	
Cyclo\((\text{l-Pro}–\text{D-Leu})\) (323)	Marine-derived *Chromocleista* sp. from a deep-water sediment sample collected in the Gulf of Mexico	-	[158]	
Cyclo\((\text{l-Pro}–\text{l-Leu})\) (324)	Endophytic *Aspergillus fumigatus*	Weak inhibitory activity of β-glucuronidase release	[21]	
Cyclo\((\text{l-Pro}–\text{l-Leu})\) (325)	*Alternaria alternata*	-	[149]	
Cyclo\((4\text{-hydroxy-R-Pro}–\text{S-Leu}) = \text{Cyclo(cis-4-hydroxy-D-Pro}–\text{l-Leu)}\) (326)	Marine-sponge derived yeast *Aurobasidium pullulans* at Okinawa of Japan	-	[159]	
Cyclo\((\text{trans}-4\text{-hydroxy-l-Pro}–\text{l-Leu})\) (327)	Endophytic *Alternaria alternata* from grapevine	Antifungal activity on *Plasmopara viticola*	[154]	
Cyclo\((\text{D-Pro}–\text{D-Phe})\) (328)	Endophytic *Alternaria tenuissima* from the bark of *Erythrophleum fordii*	-	[156]	
Cyclo\((\text{D-Pro}–\text{D-Phe})\) (329)	*Alternaria alternata*	-	[149]	
Cyclo\((6,7\text{-en-Pro}–\text{l-Phe})\) (330)	Marine-derived *Chromocleista* sp. from a deep-water sediment sample collected in the Gulf of Mexico	-	[158]	
Cyclo\((4\text{-Hydroxy-R-Pro}–\text{S-Phe}) = \text{Cyclo(cis-4-Hydroxy-D-Pro}–\text{l-Phe)}\) (331)	Marine-sponge derived yeast *Aurobasidium pullulans* at Okinawa of Japan	-	[159]	
Cyclo\((\text{D-6-Hydroxy-Pro}–\text{l-Phe}) = \text{Cyclo(d-6-Hyp}–\text{l-Phe)}\) (332)	Marine-derived *Chromocleista* sp. from a deep-water sediment sample collected in the Gulf of Mexico	-	[158]	
Cyclo\((6\text{-Hydroxy-l-Pro}–\text{l-Phe}) = \text{Cyclo(l-6-Hyp}–\text{l-Phe)}\) (333)	Marine-derived *Chromocleista* sp. from a deep-water sediment sample collected in the Gulf of Mexico	-	[158]	
				[162]
Table 4. Cont.

Name	Fungus and its Origin	Biological Activity	Ref.
Cyclo(L-Pro–L-Phe) = Maculosin-2 (334)	Alternaria alternata from spotted knapweed (Centaurea maculosa)	Phytotoxic activity	[149,163]
Cyclo(trans-4-hydroxy-L-Pro–L-Phe) (335)	Endophytic Alternaria alternata from grapevine	Antifungal activity on Plasmopara viticola	[154]
Cyclo(L-Pro–L-Pro) (336)	Alternaria alternata from spotted knapweed (Centaurea maculosa)	Phytotoxic activity	[149,163]
Cyclo(L-Pro–L-Tyr) = Maculosin-1 (337)	Marine-derived Chromocleista sp. from a deep-water sediment sample collected in the Gulf of Mexico	Inhibitory activity on CCL2-induced chemotaxis	[158]
Cyclo(13,15-dichloro-L-Pro–L-Tyr) (338)	Leptoxiphyllum sp.	Inhibitory activity on β-glucosidase	[152]
Cyclo(L-Pro–D-Val) (339)	Alternaria alternata	-	[149]
Cyclo(D-Pro–L-Val) (340)	Aspergillus sp. F70609	Inhibitory activity on β-glucosidase	[165]
Cyclo(D-Pro–L-Val) (341)	Marine-derived Chromocleista sp. from a deep-water sediment sample collected in the Gulf of Mexico	Phytotoxic and antibiotic activities	[150]
(R)-2-[[2-(Furan-2-yl)-oxoethyl-octahydropyrrolo[1,2-c]pyranine-1,4-dione (342)	Edible and medicinal Armillaria mellea	-	[167]
Macrophominol (343)	Phytopathogenic Macrophomina phaseolina	-	[168]
Taichunamide A (344)	Aspergillus taiwagensis (IBT 19404)	-	[53]
Taichunamide B (345)	Aspergillus taiwagensis (IBT 19404)	-	[53]
Endophytic *Alternaria tenuissima* from the bark of *Erythrophleum fordii* - [156]

Cyclo(D-Pro–L-Val) (340)

Aspergillus sp. F70609

Inhibitory activity on β-glucosidase [165]

Cyclo(L-Pro–L-Val) (341)

Marine-derived Chromocleista sp. from a deep-water sediment sample collected in the Gulf of Mexico - [158]

Phytopathogenic Colletotrichum gloesporoides Phytotoxic and antibiotic activities [150]

Phytopathogenic Fusarium oxysporum - [166]

Marine-derived Penicillium bilaii - [161]

Rhizoctonia solani - [157]

(R)-2-(2-(Furan-2-yl)-oxoethyl-octahydropyrrolo[1,2-\(a\)]pyranine-1,4-dione (342)

Edible and medicinal Armillaria mellea - [167]

Macrophominol (343)

Phytopathogenic Macrophomina phaseolina - [168]

Taichunamide A (344) *Aspergillus taichungensis* (IBT 19404) - [53]

Taichunamide B (345) *Aspergillus taichungensis* (IBT 19404) - [53]

Figure 4. Cont.
Figure 4. Structures of the proline-Xaa cyclodipeptide analogs isolated from fungi.
6. Non-Tryptophan–Non-Proline Cyclodipeptides

Non-tryptophan–non-proline cyclodipeptides mean neither tryptophan nor proline is incorporated into this group of cyclodipeptides in the fungi. Their occurrence and biological activities are shown in Table 5, and the structures are provided in Figure 5.

3-Acetamino-6-isobutyl-2,5-dioxopiperazine (346) and 3-isopropyl-6-isobutyl-2,5-dioxopiperazine (383), belonging to the aliphatic isoleucine cyclodipeptide, were isolated from *Cordyceps sinensis*. Only 3-acetamino-6-isobutyl-2,5-dioxopiperazine (346) had cytotoxic activity against L-929, A375, and HeLa cells [169].

Azonazine (350) was isolated from a Hawaiian marine sediment-derived fungus *Aspergillus insulicola*, and exhibited anti-inflammatory activity by inhibiting NF-κB luciferase (IC$_{50}$, 8.37 µM) and nitrate production (IC$_{50}$, 13.7 µM) [170].

Cyclo(L-Phe–L-Phe) (357) originally isolated from *Penicillium nigricans* was also isolated from a marine mangrove endophytic fungus [171], and exhibited good anthelmintic activity against *Hymenolepis nata* and *Schistosoma mansoni* in mice [172].

Cyclic phenylalanyl serine cyclo(Phe–Ser) (358) was isolated from the insect pathogenic fungus *Verticillium hemipterigenum*. It exhibited concentration-dependent atypical intestinal absorption in the small intestine of rats, which consisted of passive transport, carrier-mediated absorptive transport by PEPT1, and carrier-mediated excretive transport. It also exhibited weak inhibition of several cancer cell lines and selected microorganisms [173,174].

The tyrosine analog cyclo(L-Tyr–L-Tyr) (360) isolated from the culture broth of *Cordyceps sinensis* reversibly blocked voltage-dependent L-type calcium channels [169].

Diatretol (365) from the fungus *Clitocybe diatreta* exhibited a weak antibacterial activity. A single-crystal X-ray analysis showed that diatretol (365) has a nearly planar boat conformation in the solid state [175].

Dimerumic acid (368) has been isolated from the fungus *Monascus anka*, traditionally used for fermentation of food, and shown to be an antioxidant with hepatoprotective actions against chemically induced liver injuries [176], as well as protecting against oxidative stress-induced cytotoxicity in the isolated rat hepatocytes [177].

Gliocladride (374) isolated from marine fungus *Gliocladium* sp. showed a cytotoxic effect with an IC$_{50}$ value of 3.86 mg/mL against human A375-S2 melanoma cell line [178].

Gliocladrides A (375) and B (376) as well as deoxymycelianamide (363) were isolated from the marine fungus *Gliocadium* sp. to show cytotoxic activity against the three cell lines (HL-60, U937 and T47D) with IC$_{50}$ values 11.6–52.8 µg/mL, while deoxymycelianamide (363) showed the strongest cytotoxic activity against U937 cell line with an IC$_{50}$ value of 0.8 µg/mL [179].

Golmaenone (377) from the culture broth of the marine-derived fungus *Aspergillus* sp. exhibited a significant radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and showed UV-A (320–390 nm) protecting activity which was more active than oxybenzone currently used as a sunscreen [103].

The marine-derived fungus *Aspergillus* sp. yielded mactanamide (366) containing an R-2,6-dihydroxyphenylalanine, which showed fungistatic activity to *Candida albicans* at nontoxic concentration [180].

Three siderophores NBR16716A (388), NBR16716B (389), and NBR16716C (390) were isolated from the fungus *Perisporiopsis melioloides* Mer-f16716. Compounds NBR16716A (388) and NBR16716B (389) inhibited the growth of human prostate cancer DU-145 cells in the coculture with human prostate stromal cells (PrSCs) more strongly than that of DU-145 cells alone. Furthermore, both compounds showed antitumor effect against xenograft models of DU-145 cells and PrSCs in vivo [181].

Phenylahistin (392) from the culture broth of *Aspergillus ustus* NSC-F038 exhibited a strong growth inhibition on various tumor cell lines for its microtubule binding function to show its potency as the tubulin depolymerizing agent [182].
Table 5. Non-tryptophan–non-proline cyclodipeptide analogs and their biological activities.

Name	Fungus and its Origin	Biological Activity	Ref.
3-Acetamino-6-isobutyl-2,5-dioxopiperazine-2,5-dione (346)	Cordyceps sinensis	Cytotoxic activity	[169]
Alternarizine A (347)	Endophytic Alternaria alternata from the root of Ceratostigma griffithii	-	[183]
Alternarizine B (348)	Endophytic Alternaria alternata from the root of Ceratostigma griffithii	-	[183]
Aurantiamine (349)	Penicillium aurantiogriseum var. aurantiogriseum	-	[184]
Azonazine (350)	Aspergillus insulicola	Anti-inflammatory activity	[170]
(SS)-6-Benzyl-3-isopropyl-1-methylpiperazine-2,5-dione (351)	Entomogenous Paecilomyces tenuipes	Moderate cytotoxicity against prostate cancer cells 22RV1 and DU-145	[185]
Cordycepedipeptide A (352)	Cordyceps sinensis	Cytotoxic activity	[169]
Cyclo(Gly–Phe) (353)	Unidentified fungus from Kandelia candel leaf	-	[186]
Cyclo(Leu–Leu) (354)	Unidentified fungus from Kandelia candel leaf	-	[186]
Cyclo(Leu–Tyr) (355)	Unidentified fungus from Kandelia candel leaf	-	[186]
Cyclo(L-Leu–L-Val) (356)	Endophytic Aspergillus fumigatus from the stem of Erythrophleum fordii	-	[187]
Cyclo(L-Phe–L-Phe) (357)	Penicillium nigricans	Anthelmintic activity against Hymenolepis nana and Schistosoma mansoni in mice	[171,172]
Endophytic Epicoccum nigrum from Lysidice rhadostegia	-	[188]	
Cyclo(Phe–Ser) (358)	Endophytic Alternaria sp. FL25 from Ficus carica	Antiphytopathic fungal activity	[38]
Insect pathogenic Verticillium hemipterigenum	Cytotoxic and antimicrobial activity	[173,174]	
Cyclo(L-Phe–N-methyl-L-Tyr) (359)	Geotrichum candidum	Inhibitory activity against Penicillium glabrum	[169]
Cyclo(L-Tyr–L-Tyr) (360)	Cordyceps sinensis	-	[169]
Cyclopentin (361)	Penicillium verrucosum var. cyclopium	-	[124]
Cycloperonol (362)	Penicillium verrucosum var. cyclopium	-	[124]
Mangrove endophytic Penicillium selerotorum from Bruguiera gymnorrhiza	-	[190]	
Deoxymycelianamide (363)	Marine-derived Gliocladium sp.	Strong cytotoxic activity	[179]
Desferricoeprogen (364)	Mud dauber wasp-derived Talaromyces sp. CMB-W045	-	[191]
Diattelrot (365)	Citrobacter diversus	Weak antibacterial activity	[175]
(6S)-3-(1,3-Dihydroxypropyl)-6-(2-methylpropyl)piperazine-2,5-dione (366)	Plant endophytic Trichosporum sp. from the seeds of Trigonella foenum-graecum	Antileishmanial activity against Leishmania donovani with IC50 value of 96.3 μg/mL	[192]
(6S)-3-(1,3-Dihydroxypropyl)-6-(2-methylpropyl)piperazine-2,5-dione (367)	Plant endophytic Trichosporum sp. from the seeds of Trigonella foenum-graecum	Antileishmanial activity against Leishmania donovani with IC50 value of 82.5 μg/mL	[192]
Monascus anka	Antioxidant activity	[176,177]	
Dimerumic acid (368)	Monascus anka	Antioxidant activity by inhibition on lipid peroxidation and heme protein-mediated oxidation	[193]
Diphenylalazine A (369)	Epicoccum nigrum colonizing on Cordyceps sinensis	Inhibitory effects on HIV-1 replication in C8166 cells	[194]
Diphenylalazine B (370)	Epicoccum nigrum colonizing on Cordyceps sinensis	-	[194]
Diphenylalazine C (371)	Tin mine tailings-derived Schizothallum commune	Weak antibacterial and cytotoxic activities	[195]
Eleutherazine B (372)	Mud dauber wasp-derived Talaromyces sp. CMB-W045	-	[191]
Fusasperazine C (373)	Endophytic Fusarium sp. from Vigna arenaria	-	[196]
Gliocladrine (374)	Marine-derived Gliocladium sp.	Cytotoxic activity	[178]
Gliocladrine A (375)	Marine-derived Gliocladium sp.	Moderate cytotoxic activity	[179]
Gliocladrine B (376)	Marine-derived Gliocladium sp.	Moderate cytotoxic activity	[179]
Table 5. Cont.

Name	Fungus and its Origin	Biological Activity	Ref.
Golmaenone (377)	Marine-derived *Aspergillus* sp.	Radical scavenging activity against DPPH, UV-A protecting activity	[103]
	Marine mudflat sediment derived	Radical scavenging activity against DPPH with IC$_{50}$ value of 20 µM	[134]
Guanilactam A (378)	Entomogenous *Paecilomyces* gunnii	Cytotoxic activity against human prostate cancer C42B cells	[197]
Guanilactam B (379)	Entomogenous *Paecilomyces* gunnii	-	[197]
Guanilactam C (380)	Entomogenous *Paecilomyces* gunnii	-	[197]
14-Hydroxy-cyclopeptine (381)	*Aspergillus* sp. SCSIOW2	Inhibition of nitric oxide production with IC$_{50}$ value of 40.3 µg/mL in a lipopolysaccharide and recombinant mouse interferon-γ-activated macrophage-like cell line	[198]
Hypocreasin (382)	Hypocrea spp.	-	[199]
3-Isopropyl-6-isobutyl-2,5-dioxopiperazine (383)	*Cordyceps sinensis*	-	[169]
JBIR-74 (384)	Marine-derived *Aspergillus* sp. JS14 from the unidentified marine sponge	-	[200]
JBIR-75 (385)	Marine-derived *Aspergillus* sp. JS14 from the unidentified marine sponge	-	[200]
Maetanamide (386)	Marine-derived *Aspergillus* sp.	Fungistatic activity to *Candida albicans*	[180]
MFC1001H (387)	*Podospora australis*	-	[201]
NBR16716A (388)	*Perisporiopsis* melioides Mer-f16716	Cytotoxic activity	[181]
NBR16716B (389)	*Perisporiopsis* melioides Mer-f16716	Cytotoxic activity	[181]
NBR16716C. (390)	*Perisporiopsis* melioides Mer-f16716	-	[181]
Penicillvinacine (391)	Marine-derived *Penicillium vinaceum*	Antimigratory activity	[22]
Phenylahistin (392)	*Aspergillus* ustus NSC-F038	Growth inhibition of various tumor cell lines	[182]
PJ147 (393)	Marine-derived *Gliocladium* sp. YUP08 from soil	Cytotoxic activity on A375-S2, Hela, P588, A-549, HL-60, and BEL-7420 cell lines	[202,203]
PJ157 (394)	Marine-derived *Gliocladium* sp. YUP08 from soil	-	[202]
Pne-aurantiamine (395)	Marine-derived *Aspergillus* aculeatus CRI22-03 from the sponge *Styliida* flabelliformis	-	[204]
Spirobrocazine C (396)	Mangrove-derived *Penicillium broc* MA-231 from *Avicennia marina*	Moderate cytotoxic and antibacterial activities	[205]
Talarazine A (397)	Mud dauber wasp-derived *Talaromyces* sp. CMB-W045	-	[191]
Talarazine B (398)	Mud dauber wasp-derived *Talaromyces* sp. CMB-W045	-	[191]
Talarazine C (399)	Mud dauber wasp-derived *Talaromyces* sp. CMB-W045	-	[191]
Talarazine D (400)	Mud dauber wasp-derived *Talaromyces* sp. CMB-W045	-	[191]
Talarazine E (401)	Mud dauber wasp-derived *Talaromyces* sp. CMB-W045	-	[191]
Terrerione A (402)	Marine-derived *Penicillium vinaceum*	Antimigratory activity	[22]
Wasperrigamida A (403)	*Aspergillus* sp. CMB-W031	-	[206]

Note: IC$_{50}$, median inhibitory concentration.
Figure 5. Cont.
Figure 5. Cont.
7. Thio-Cyclodipeptides

The thio-cyclodipeptides are 2,5-diketopiperazines containing thio functionality in bridged or open form, and their occurrence and activities have been reviewed in 2006 and 2014 [1,207]. According to the positions of the sulfur linkages, we divide thio cyclodipeptides into four subgroups: 1,4-bridged epipolythioxopiperazines (ETPs), derivatives with sulfur-bridge outside 2,5-DKP ring, nonbridged dimethylthio derivatives, and other sulfur-containing cyclodipeptides. About 232 thio-cyclodipeptides have been isolated from fungi.

7.1. 1,4-Bridged Epiplythiodioxopiperazine Analogs

The sulfur-bridged cyclodipeptides are a class of metabolites mainly dominated by the epipolythiodioxopiperazines (ETPs) [1]. The toxicity of ETPs is due to the presence of a sulfide bridge, which can inactivate proteins via reaction with thiol groups and by generation of reactive oxygen species by redox cycling [5]. The ETPs are known for their cytotoxic effect on cancer cell lines, and it has been shown mechanistically that ETPs were transcriptional antagonists that block the interaction...
of the p300/CBP coactivator with the hypoxia-inducible transcription factor HIF-1α by a zinc ejection mechanism, which resulted in rapid down regulation of hypoxia-inducible genes critical for cancer progression [208]. The occurrence and biological activities of 1,4-bridged epiplythiodioxopiperazine analogs from fungi are shown in Table 6, and their structures are provided in Figure 6.

The dimeric ETP chaetocin (420) was isolated from the fungus Chaetomium minutum, and, in addition to its antibacterial and cytostatic activity, was reported to have inhibitory activity against lysine-specific histone methyltransferases (HMTs), which are key enzymes in the epigenetic control of gene expression [209]. Chaetocins B (421) and C (422) from a Chaetomium sp. fermentation broth were potent inhibitors of Staphylococcus aureus, and exhibited potent cytotoxic activity against HeLa cells with IC$_{50}$ values of 0.03 and 0.02 µg/mL, respectively [210].

Chaetocochins B (423) and C (424), which were isolated from Chaetomium cochliodes, showed cytotoxic activity to the cells of Bre-04 (breast cancer cells), Lu-04 (big cell lung cells), and N-04 (glioma cells) [211].

Three ETPs deoxyapoaranotin (432), acetylaranotin (408) and acetylapoaranotin (407) were isolated from Aspergillus sp. KMD 901 found in the marine sediment obtained from the East Sea of Korea. They had directly cytotoxic and apoptosis inducing effects toward HCT116 colon cancer cell lines [212].

Emethallicins A–F (444–449) were obtained from Emericella heterothallica. These compounds all displayed inhibitory activity on histamine release from mast cells [213–215].

The best known ETP was the small lipid-soluble gliotoxin (461), which exerted toxic effects on phagocytic cells and T-lymphocytes at low concentrations in vitro. This compound was the first ETP to be obtained from fungi. It has been isolated from a variety of fungi including species in the genera of Penicillium, Aspergillus, Gliocladium, Thermoascus, and Candida [2]. High levels of gliotoxin (461) were produced by Aspergillus fumigatus in vivo, and it appeared to be a virulence factor associated with invasive aspergillosis of immunocompromised patients [216]. Gliotoxin (461) was also a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo [217].

Two bridged disulfides epicoccin T (450) and rostratin A (493) were isolated from the endophytic fungus Epicoccum nigrum obtained from the leaves of Lysidice rhodostegia. However, they did not show detectable cytotoxic activities toward six tumor cell lines in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [188]. In contrast, the rostratins A–D (493–496), which were extracted from Exserohilum rostratum, were found to be modestly cytotoxic against human colon carcinoma HCT-116 [218]. Similarly, the unsaturated analogs epicorazines A (452), B (453), and C (454) isolated from the culture broth of the basidiomycete Stereum hirsutum HKI 0195 were highly cytotoxic against HeLa cells and also exhibited antiproliferative effects against several mouse fibroblast and cancer cell lines [219].

The antifungal macrolide MPC1001 (438) possessing an ETP ring was isolated from the fungus Cladorrhinum sp. KY4922, which was found in a soil sample collected in Indonesia. It possessed antiproliferative activity against the human prostate cancer cell line (DU145) with an IC$_{50}$ of 9.3 nM, and had antibacterial activity against Gram-positive bacteria [220].

Secoemestrin D (500) was obtained from the endophytic fungus Emericella sp. AST0036 isolated from a healthy leaf tissue of Astragalus lentiginosus. This compound showed cytotoxic activity with IC$_{50}$ values ranging from 0.06 to 0.24 µM on tumor cell lines [221].

Verticillin A (515) was obtained from Gliocladium roseum derived from submerged wood. It showed antinematodal activity against Panagrellus redivivus and Caenorhabditis elegans, and cytotoxic activity against HeLa cells with an IC$_{50}$ value of 0.2 µg/mL [222]. Verticillins B (516) and C (517) were isolated from Verticillium sp. [223]. Verticillin D (518), which was isolated from Bionectria byssicola [222] and Gliocladium catenulatum [224], showed antibacterial activity against Staphylococcus aureus. Verticillins E (519) and F (520) from Gliocladium catenulatum showed antibacterial activity [224]. Verticillin G (521) from Bionectria byssicola showed antibacterial activity against Staphylococcus aureus including methicillin-resistant and quinolone-resistant varieties with minimum inhibitory concentrations (MICs) of 3–10 µg/mL [225].
Table 6. Fungal 1,4-bridged epiplythiodioxopiperazine analogs and their biological activities.

Name	Fungus and its Origin	Biological Activity	Ref.
3822-A (404)	Stereum hirsutum HKI 0195		[219]
A26771A (405)	Penicillium turbatum	Antiviral and antibacterial activity	[226]
A26771 C (406)	Penicillium turbatum	Antiviral and antibacterial activity	[226]
Acetylapoaranotin (407)	Marine-derived Aspergillus sp.	Directly cytotoxic and apoptosis inducing effects on HCT116 colon cancer cell lines	[212]
Acetylaranotin (408)	Marine-derived Aspergillus sp.	Directly cytotoxic and apoptosis inducing effects on HCT116 colon cancer cell lines	[212]
Apoaranotin (409)	Arachniotus aureus		[227]
Aranotin (410)	Arachniotus aureus		[227]
Bionectin A (411)	Bionectra byssicola F120	Anti-MRSA activity	[228]
Bionectin B (412)	Bionectra byssicola F120	Anti-MRSA activity	[228]
Brocazine A (413)	Endophytic Penicillium brocae	Cytotoxic activity	[229]
Brocazine B (414)	Endophytic Penicillium brocae	Cytotoxic activity	[229]
Brocazine C (415)	Endophytic Penicillium brocae	Cytotoxic activity	[229]
Brocazine D (416)	Endophytic Penicillium brocae	Cytotoxic activity	[229]
Brocazine E (417)	Endophytic Penicillium brocae	Cytotoxic activity	[229]
Brocazine F (418)	Endophytic Penicillium brocae	Cytotoxic activity	[229]
Brocazine G (419)	Marine-derived Penicillium broce	Cytotoxicity against both sensitive and cisplatin-resistant human ovarian cancer cells and strong antimicrobial activity on pathogenic Staphylococcus aureus	[205]
Chaetocin = Chaetocin A (420)	Chaetomium minutum	Antibacterial, cytostatic, inhibitory activity on lysine-specific histone methyltransferases	[209]
Chaetocin B (421)	Chaetomium sp.	Cytotoxic activity	[210]
Chaetocin C (422)	Chaetomium sp.	Cytotoxic activity	[210]
Chaetocochin B (423)	Chaetomium cochlades	Cytotoxic activity	[211]
Chaetocochin C (424)	Chaetomium cochlades	Cytotoxic activity	[211]
Chetomin (425)	Marine mudflat sediment derived Chaetomium crista	Radical-scavenging activity against DPPH with an IC50 value of 15 µM	[134]
Chetoseminudin A (426)	Chaetomium globosum	Antibacterial activity	[230]
Chetocin A (427)	Chaetomium sp.	Cytotoxic activity	[210]
Chetocin B (428)	Antarctic psychrophilic fungus Oidiodendron truncatum	Cytotoxic activity	[137]
Chetocin C (429)	Antarctic psychrophilic fungus Oidiodendron truncatum	Cytotoxic activity	[137]
Cristazine (430)	Mudflat-sediment-derived Chaetomium crista	Radical-scavenging activity, cytotoxic activity against human cervical carcinoma (HeLa) cells	[134]
Dehydrogliotoxin (431)	Gliocladium flavofuscum	Antibacterial activity	[232]
Deoxyapoaranotin (432)	Marine-derived Aspergillus sp.	Directly cytotoxic and apoptosis inducing effects on HCT116 colon cancer cell lines	[212]
11'-Deoxyverticillin A (433)	Gliocladium roseum from submerged wood	Antinematodal activity	[222]
11,11'-Dihydroxychaetocin (434)	Verticillium tenuum	Antibacterial and antimitotic activities	[234]
Name	Fungus and its Origin	Biological Activity	Ref.
------	----------------------	---------------------	------
Dithiosilvatin (435)	Aspergillus silicaticus	-	[235]
Emestrin (436)	Cladorrhinum sp. KY4922	Antiproliferative activity	[236]
Emestrin B (437)	Emericella striata	Antifungal activity	[237]
Emestrin C = MPC1001 (438)	Podospora australis	Antifungal activity	[201]
Emestrin D = MPC1001D (439)	Podospora australis	Antifungal activity	[201]
Emestrin E (440)	Podospora australis	Antifungal activity	[201]
Emestrin F (441)	Armillaria tabescens	Antifungal activity	[238]
Emestrin G (442)	Armillaria tabescens	-	[238]
Emetrin (443)	Cladorrhinum sp. KY4922	Antiproliferative activity	[201]
Emestrin B (444)	Emericella heterothallica	Inhibitory activity on histamine release from mast cells	[213]
Emestrin C (445)	Emericella heterothallica	Inhibitory activity on histamine release from mast cells	[214]
Emestrin D (446)	Emericella heterothallica	Inhibitory activity on histamine release from mast cells	[214]
Emestrin E (447)	Emericella heterothallica	Inhibitory activity on histamine release from mast cells	[214]
Emestrin F (448)	Emericella heterothallica	Inhibitory activity on histamine release from mast cells	[215]
Epicoccin T (450)	Endophytic fungus Epicoccum nigrum from the leaves Lysidice rhodostegia	Weak antibacterial and cytotoxic activities	[195]
Epicoccin U (451)	Epicoccum purpurascens	-	[240]
Epicoccin A (452)	Capnodium sp. from palm leaf litter collected in Quetzalito, Guatemala	-	[239]
Epicoccin B (453)	Epicoccum purpurascens	-	[240]
Epicoccin C (454)	Marine-derived Penicillium broac MA-231 from the mangrove plant Avicennia marina	Cytotoxic activity	[241]
Epicorazine T (455)	Marine-derived Phoma sp. OUCMDZ-1847 from the mangrove plant Kandelia candel	Cytotoxic activity against HeLa cells and antiproliferative effects against several mouse fibroblast and cancer cell lines	[219]
Basidiomycete Stereum hirsutum HK1 0195	Antibacterial and cytotoxic activities	[242]	
Epicorazine B (456)	Marine-derived Phoma sp. OUCMDZ-1847 from the mangrove plant Kandelia candel	Cytotoxic activity	[241]
Basidiomycete Stereum hirsutum HK1 0195	Antibacterial and cytotoxic activities	[242]	
Basidiomycete Stereum hirsutum HK1 0195	Cytotoxic activity against HeLa cells and antiproliferative effects against several mouse fibroblast and cancer cell lines	[219]	
Name	Fungus and its Origin	Biological Activity	Ref.
-----------------	---	--------------------------------------	---------------
Gliocladin A	*Gliocladium roseum* from submerged wood	Antinematodal activity	[222]
Gliocladin B	*Gliocladium roseum* from submerged wood	Antinematodal activity	[222]
Gliocladin C	*Gliocladium roseum* from submerged wood	Antinematodal activity	[222]
Gliocladin D	*Gliocladium roseum* from submerged wood	Antinematodal activity	[222]
Gliocladin E	*Gliocladium roseum* from submerged wood	Antinematodal activity	[222]
Glionitrin A	Coculture of the fungus *Aspergillus fumigatus* KMC-901 and the bacterium *Sphingomonas* sp. KMK-001	Antibacterial and cytotoxic activities	[243]
Glionitrin B	*Gliocladium flavofuscum*	-	[232]
Glionitrin C	Deep-sea derived *Aspergillus* sp. SCSIO Ind09F01	Anti-tuberculosis and cytotoxic activities	[35]
Hyalodendrin	Marine-derived *Asteromycetes cruciatus* 763 from an unidentified decaying green alga	-	[244]
Hyalodendrin-S1	Unidentified fungus NRRL 3888	-	[245]
Hyalodendrin-S2	*Hyalodendron* sp.	-	[246]
Leptosin A	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[247]
Leptosin B	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[247]
Leptosin C	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[247]
Leptosin D	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[247]
Leptosin E	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[247]
Leptosin F	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[247]
Leptosin G	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[248]
Leptosin H	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[248]
Leptosin I	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[249]
Leptosin J	*Leptosphaeria* sp. from a marine alga	Cytotoxicity	[249]
Leptosin K	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[250]
Leptosin K1	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[250]
Leptosin K2	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[250]
Leptosin M	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells; Inhibition on two protein kinases, PTK and CaMKIII, and human topoisomerase II	[251]
Leptosin M1	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[251]
Leptosin N	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[251]
Leptosin N1	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[251]
Melinacidin II	*Acrotalagus cinnabarinus* var. *melinacidinus*	Antibacterial activity	[252]
Melinacidin III	*Acrotalagus cinnabarinus* var. *melinacidinus*	Antibacterial activity	[252]
Melinacidin IV	*Acrotalagus cinnabarinus* var. *melinacidinus*	Antibacterial activity	[252]
Antarctic psychrophilic fungus Oidiodendron truncatum	*Acrotalagus cinnabarinus* var. *melinacidinus*	Antibacterial activity	[252]
MPC1001B	*Cladorrhinum* sp. KY4922	Antiproliferative activity	[236]
MPC1001C	*Cladorrhinum* sp. KY4922	Antiproliferative activity	[236]
MPC1001E	*Cladorrhinum* sp. KY4922	Antiproliferative activity	[236]
Name	Fungus and its Origin	Biological Activity	Ref.
---------------------------------------	--	--	-------------
Phomalirazine (490)	Leptosphaeria maculans	Phytotoxic activity	[253]
Phomazine C (491)	Marine-derived Phoma sp. OUCMIDZ-1847 from the mangrove plant *Kandelia candel*	-	[241]
Plectosphaerioic acid C (492)	Marine-derived *Plectosphaerella cucumerina*	Inhibition of indoleamine 2,3-dioxygenase	[254]
Rostratin A (493)	Endophytic *Epicoccum nigrum* from the leaves *Lysidice rhodostegia*	-	[188]
Rostratin B (494)	*Exserohilum rostratum*	Moderate cytotoxicity	[218]
Rostratin C (495)	*Exserohilum rostratum*	Moderate cytotoxicity	[218]
Rostratin D (496)	*Exserohilum rostratum*	Moderate cytotoxicity	[218]
Sch52900 (497)	*Gliocladium roseum* from submerged wood	Antinematodal activity	[222]
Sch52901 (498)	*Gliocladium roseum* from submerged wood	Antinematodal activity	[222]
Secoemestrin C (499)	*Emericella foveolata*	-	[255]
Secoemestrin D (500)	Endophytic fungus *Emericella* sp. AST0636 from healthy leaf tissue of *Astragalus lentiginosus*	Cytotoxic activity	[221]
Sirodesmin A (501)	*Sirodesmium diversum*	Antiviral activity	[256]
Sirodesmin B (502)	*Leptosphaeria maculans*	Phytotoxic activity	[257]
Sirodesmin C (503)	*Sirodesmium diversum*	Antiviral activity	[256]
Sirodesmin G = Sirodesmin PL (504)	*Leptosphaeria maculans*	Phytotoxic activity	[257]
Sirodesmin H (505)	*Leptosphaeria maculans*	Phytotoxic activity	[257]
Sirodesmin I = Sporidesmin (506)	*Pithomyces chartarum*	Immunoregulatory activity	[259,260]
Sirodesmin J (507)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[264]
Sirodesmin K (508)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[265]
Sirodesmin L (509)	*Penicillium terlikowskii*	-	[263]
Sporidesmin A = Sporidesmin (506)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[265]
Sporidesmin B (507)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[265]
Sporidesmin C (508)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[265]
Sporidesmin D (509)	*Penicillium terlikowskii*	-	[263]
Sporidesmin G (510)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[265]
Sporidesmin H (511)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[265]
Sporidesmin J (512)	*Pithomyces chartarum*	Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities	[265]
T988 A (513)	*Tilachidium sp.*	Cytotoxic activity	[266]
T988 C (514)	*Tilachidium sp.*	Cytotoxic activity	[266]
Verticillin A (515)	*Gliocladium roseum* from submerged wood	Antinematodal and cytotoxic activities	[222]
Verticillin B (516)	*Verticillium sp.*	-	[223]
Verticillin C (517)	*Verticillium sp.*	-	[223]
Verticillin D (518)	*Bionectria typica*	Antibacterial activity	[225]
Verticillin E (519)	*Gliocladium catenulatum*	Antibacterial activity	[224]
Verticillin F (520)	*Gliocladium catenulatum*	Antibacterial activity	[224]
Verticillin G (521)	*Bionectria typica*	Antibacterial activity	[223]

Note: IC₅₀, median inhibitory concentration.
Endophytic fungus *Emericella* sp. AST0036 from healthy leaf tissue of *Astragalus lentiginosus* Cytotoxic activity [221]

Sirodesmin A (501) *Sirodesmium diversum* Antiviral activity [256]

Sirodesmin B (502) *Leptosphaeria maculans* Phytotoxic activity [257,258]

Sirodesmin C (503) *Leptosphaeria maculans* Phytotoxic activity [257] Sirodesmin G = Sirodesmin PL (504) *Leptosphaeria maculans* Phytotoxic activity [257,258] Antiviral activity [256]

Sirodesmin H (505) *Leptosphaeria maculans* Phytotoxic activity [257] Antiviral activity [256]

Sporidesmin A = Sporidesmin (506) *Pithomyces chartarum* Immunoregulatory activity [259,260] Delitschia corticola Antibacterial and antifungal activities [261]

Sporidesmin B (507) *Pithomyces chartarum* - [259]

Sporidesmin C (508) *Pithomyces chartarum* - [262]

Sporidesmin E (509) *Penicillium terlikowskii* - [263]

Sporidesmin G (5010) *Pithomyces chartarum* Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities [264]

Sporidesmin H (5011) *Pithomyces chartarum* Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities [265]

Sporidesmin J (5012) *Pithomyces chartarum* Antiproliferative, cytotoxic, immunomodulatory, antiviral, antibacterial, antifungal activities [265]

T988 A (5013) *Tilachidium* sp. Cytotoxic activity [266]

Antarctic psychrophilic fungus *Oidiodendron truncatum* Cytotoxic activity [211]

T988 C (5014) *Tilachidium* sp. Cytotoxic activity [266]

Verticillium A (5015) *Gliocladium roseum* from submerged wood Antinematodal and cytotoxic activities [222]

Verticillium sp. - [223]

Verticillium B (5016) *Verticillium* sp. - [223]

Verticillium C (5017) *Verticillium* sp. - [223]

Verticillium D (5018) *Bionectria byssicola* Antibacterial activity [225]

Gliocladium catenulatum Antibacterial activity [224]

Verticillium E (5019) *Gliocladium catenulatum* Antibacterial activity [224]

Verticillium F (5020) *Gliocladium catenulatum* Antibacterial activity [224]

Verticillium G (5021) *Bionectria byssicola* Antibacterial activity [225]

Note: IC50, median inhibitory concentration.

Figure 6. Cont.
Figure 6. Cont.
Figure 6. Cont.
7.2. Analogs with Sulfur-Bridge outside 2,5-DKP Ring

There are a group of sulfur-bridged cyclodipeptides where the sulfur linkage is outside the 2,5-diketopiperazine ring. The occurrence and biological activities of fungal analogs with sulfur-bridges outside 2,5-DKP ring are shown in Table 7, and their structures are provided in Figure 7.

Both aspirochlorine (524) and tetrathiaaspirochlorine (551) were isolated from Aspergillus flavus and were potent antifungals that inhibited azole-resistant Candida albicans [107]. Aspirochlorine (524) was a rather potent and selective inhibitor of fungal protein synthesis that did not inhibit bacterial or mammalian protein synthesis [267].

Epicoccins are diannulated 2,5-DKPs containing mono- or bis-cross ring sulfide/disulfide bridges. Epicoccins A–F (528–533) have been isolated from the solid-substrate fermentation culture of the Cordyceps-colonizing fungus Epicoccum nigrum [194,268]. Epicoccin A (528) showed modest antimicrobial activity against Bacillus subtilis [268].

The dimeric 2,5-DKPs vertihemiptellides A (553) and B (554) were isolated from the insect pathogenic fungus Verticillium hemipterigenum, and exhibited growth inhibitory activity against Mycobacterium tuberculosis H37Ra, and also showed moderate cytotoxic activity [174].
Table 7. Fungal analogs with sulfur-bridge outside 2,5-DKP ring and their biological activities.

Name	Fungus and Its Origin	Biological Activity	Ref.
Adametizine A = N-methyl pretrichoderminamide B (522)	Marine sponge-derived Penicillium admetzioides AS-53	Lethal activity against brine shrimp and antibacterial activity	[269]
Adametizine B = Pretrichoderminamide C (523)	Marine sponge-derived Penicillium admetzioides AS-53	-	[269]
Aspirochlorine (524)	Aspergillus flavus	Antifungal activity on azole-resistant Candida albicans	[107]
Chlorotriothiobrevamide (525)	Trichoderma cf. brevicompactum	Cytotoxic effects against Jurkat cells with IC₅₀ values of 16 µM	[270]
DC1149B (526)	Trichoderma cf. brevicompactum	Cytotoxic effect against Jurkat cells with IC₅₀ values of 5.1 µM	[270,271]
Epicoccin A (528)	Cordyceps-colonizing Epicoccum nigrum from	Moderate antimicrobial activity	[268]
	Epicoccum nigrum	-	[188]
Epicoccin B (529)	Cordyceps-colonizing Epicoccum nigrum from	-	[188]
	Epicoccum nigrum	Endophytic Epicoccum nigrum from Lipidic rhodostega	-
Epicoccin C (530)	Cordyceps-colonizing Epicoccum nigrum from	-	[188]
	Epicoccum nigrum	Endophytic Epicoccum nigrum from Lipidic rhodostega	-
Epicoccin D (531)	Cordyceps-colonizing Epicoccum nigrum from	-	[188]
	Epicoccum nigrum	Endophytic Epicoccum nigrum from Lipidic rhodostega	-
Epicoccin E (532)	Cordyceps-colonizing Epicoccum nigrum from	-	[194]
	Epicoccum nigrum	Endophytic Epicoccum nigrum from Lipidic rhodostega	-
Epicoccin F (533)	Cordyceps-colonizing Epicoccum nigrum from	-	[194]
	Epicoccum nigrum	Endophytic Epicoccum nigrum from Lipidic rhodostega	-
Epicoccin G (535)	Endophytic Epicoccum nigrum from Lipidic rhodostega	-	[188]
Epicoccin H (536)	Endophytic Epicoccum nigrum from Lipidic rhodostega	-	[188]
Epicoccin I (537)	Endophytic Epicoccum nigrum from Lipidic rhodostega	-	[188]
Epicoccin J (538)	Endophytic Epicoccum nigrum from Lipidic rhodostega	-	[188]
Epicoccin K (539)	Endophytic Epicoccum nigrum from the leaves of Lipidic rhodostega	-	[188]
Epicoccin L (540)	Endophytic Epicoccum nigrum from Lipidic rhodostega	-	[188]
Epicoccin M (541)	Endophytic Epicoccum nigrum from Lipidic rhodostega	-	[188]
Gliovirin (542)	Trichoderma cf. brevicompactum	-	[270,271]
Iododithiobrevamide (543)	Trichoderma cf. brevicompactum	-	[271]
Outovirin A (544)	Endophytic Penicillium raciborski from	-	[272]
	Rhododendron tomentosum		
Outovirin B (545)	Endophytic Penicillium raciborski from	-	[272]
	Rhododendron tomentosum		
Outovirin C (546)	Endophytic Penicillium raciborski from	Antifungal activity	[272]
	Rhododendron tomentosum		
Penicisulfuranol A (547)	Mangrove-derived Penicillium janthinellum HDN13-309 from the roots of Sonneratia caseolaris	Cytotoxic activity on the cell lines HeLa and HL-60	[273]
Penicisulfuranol B (548)	Mangrove-derived Penicillium janthinellum HDN13-309 from the roots of Sonneratia caseolaris	Cytotoxic activity on the cell lines HeLa and HL-60	[273]
Penicisulfuranol C (549)	Mangrove-derived Penicillium janthinellum HDN13-309 from the roots of Sonneratia caseolaris	Cytotoxic activity on the cell lines HeLa and HL-60	[273]
Table 7.

Name	Fungus and Its Origin	Biological Activity	Ref.	
Pretrichodermamide A (550)	*Trichoderma cf. brevicompactum*	Activity against *Mycobacterium tuberculosis* H37Ra with an MIC value of 12.5 µg/mL	[274]	
	Trichoderma sp. BCC 5926	-		
Tetrathioaspirochlorine (551)	*Aspergillus flavus*	Antifungal activity on azole-resistant *Candida albicans*	[107]	
Trithioaspirochlorine (552)	*Aspergillus flavus*	-	[107]	
Vertihemiptellide A (553)	Insect pathogenic *Verticillium hemipterigenum* BBC 1449	Inhibitory activity against *Mycobacterium tuberculosis* H37Ra, moderate cytotoxic activity	[174]	
Vertihemiptellide B (554)	Insect pathogenic *Verticillium hemipterigenum* BBC 1449	Inhibitory activity against *Mycobacterium tuberculosis* H37Ra, moderate cytotoxic activity	[174]	

Note: IC$_{50}$, median inhibitory concentration; MIC, minimum inhibitory concentration.
Figure 7. Cont.
Dichotomomyces (LPS)-induced inflammation in macrophages and improved survival in sepsis, and it should be a

[76x343](IC

Plectosphaerella cucumerina

Bacillus subtilis

cells with an IC

inhibitory activity on the spore germination and germ-tube elongation of

Magnarporate oryzae

600

have its potency as the anti-inflammatory inhibitor [281].

inhibitory activity against the platelet activating factor (PAF)-induced rabbit platelet aggregation to

from three marine-derived fungi

their sulfur-bridge 2,5-DKP parents. They had a related biosynthetic pathway [275]. The occurrence and

372

methicillin-resistant and multidrug-resistant

sp. L-8 [113]. Bis-

N

-norgliovictin (570) was first isolated from

Gliocladium virens [233]. It was also isolated from three marine-derived fungi Aspergillus fumigatus [278], Neosartorya pseudosidcheri [136], and

Dichotomomyces sp. L-8 [113]. Bis-N-norgliovictin (570) significantly inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages and improved survival in sepsis, and it should be a therapeutic candidate for the treatment of sepsis and other inflammatory diseases [279].

Dehydroxybisdethiobis(methylthio)gliotoxin (577) has been isolated from the broth of a marine-derived fungus Pseudallescheria sp. and exhibited weak antibacterial activity against methicillin-resistant and multdrug-resistant Staphylococcus aureus with MIC values of 31.2 µg/mL [280].

Ent-epicoccin G (582) from the endophytic fungus Epicoccum nigrum showed potent in vitro activity (IC₅₀, 3.07 µM) against the release of β-glucuronidase in rat polymorphonuclear leukocytes induced by platelet-activating factor [188].

The bis(methylthio)-2,5-DKP FR106969 (590) isolated from Penicillium citrinum showed high inhibitory activity against the platelet activating factor (PAF)-induced rabbit platelet aggregation to have its potency as the anti-inflammatory inhibitor [281].

The indole derivatives glioclads A (594) and B (595) as well as glioperazine (597) have been obtained from a marine-derived fungus Gliocladium roseum PS-N132 isolated from the sea hare Aplysia qkurodai. All three 2,5-DKP's exhibited cytotoxicity against murine P388 lymphocytic leukemia cells [125].

Both haematocin (600) and mycoediketopiperazine (607) were dimethylthio 2,5-DKPs. Haematocin (600) was isolated from the phytopathogenic fungus Nectria haematococca and had inhibitory activity on the spore germination and germ-tube elongation of Magnaporthe oryzae [282]. Mycoediketopiperazine (607) from the fungus Papularia sp. exhibited potent cytotoxic activity on KB cells with an IC₅₀ value of 120 µg/mL [283].

Plectosphaeroid acids A (620) and B (621) were obtained from marine-derived fungus Plectosphaerella cucumerina. They were inhibitors of indoeamine 2,3-dioxygenase (IDO), which existed

Figure 7. Structures of the analogs with sulfur-bridge outside 2,5-DKP ring isolated from fungi.

7.3. Nonbridged Methylthio-Containing Cyclodipeptide Analogs

Nonbridged methylthio-containing analogs were often isolated from fungi as co-metabolites with their sulfur-bridge 2,5-DKP parents. They had a related biosynthetic pathway [275]. The occurrence and biological activities of this group of fungal metabolites are shown in Table 8, and their corresponding structures are provided in Figure 8.

Alternarosin A (555) from Alternaria raphanin, a halotolerant marine fungus obtained from the sediment of the Hongdao sea salt field, showed very weak antimicrobial activity against Escherichia coli, Bacillus subtilis, and Candida albicans with MIC values ranging from 200 to 400 µM [276].

Three 2,5-DKPs, bilains A–C (558–560) and cis-bis(methylthio)silvatin (480) were isolated from the marine-derived fungus Penicillium bilaii collected in Tasmania. However, only cis-bis(methylthio)silvatin (569) showed weak cytotoxicity against NS-1 cells [161]. Both cis-bis(methylthio)silvatin (569) and its enantiomer Sch 54794 (524) were previously isolated from the fungus Fusarium chlamydosporum OUPS-N124 obtained from the marine alga Carpopeltis affinis. They exhibited weak cytotoxic activity against P388 lymphocytic leukemia cells [277].

Bis-N-norgliovictin (570) was first isolated from Gliocladium virens [233]. It was also isolated from three marine-derived fungi Aspergillus fumigatus [278], Neosartorya pseudosidcheri [136], and

Dichotomomyces sp. L-8 [113]. Bis-N-norgliovictin (570) significantly inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages and improved survival in sepsis, and it should be a therapeutic candidate for the treatment of sepsis and other inflammatory diseases [279].

Dehydroxybisdethiobis(methylthio)gliotoxin (577) has been isolated from the broth of a marine-derived fungus Pseudallescheria sp. and exhibited weak antibacterial activity against methicillin-resistant and multdrug-resistant Staphylococcus aureus with MIC values of 31.2 µg/mL [280].

Ent-epicoccin G (582) from the endophytic fungus Epicoccum nigrum showed potent in vitro activity (IC₅₀, 3.07 µM) against the release of β-glucuronidase in rat polymorphonuclear leukocytes induced by platelet-activating factor [188].

The bis(methylthio)-2,5-DKP FR106969 (590) isolated from Penicillium citrinum showed high inhibitory activity against the platelet activating factor (PAF)-induced rabbit platelet aggregation to have its potency as the anti-inflammatory inhibitor [281].

The indole derivatives glioclads A (594) and B (595) as well as glioperazine (597) have been obtained from a marine-derived fungus Gliocladium roseum PS-N132 isolated from the sea hare Aplysia qkurodai. All three 2,5-DKP's exhibited cytotoxicity against murine P388 lymphocytic leukemia cells [125].

Both haematocin (600) and mycoediketopiperazine (607) were dimethylthio 2,5-DKPs. Haematocin (600) was isolated from the phytopathogenic fungus Nectria haematococca and had inhibitory activity on the spore germination and germ-tube elongation of Magnaporthe oryzae [282]. Mycoediketopiperazine (607) from the fungus Papularia sp. exhibited potent cytotoxic activity on KB cells with an IC₅₀ value of 120 µg/mL [283].

Plectosphaeroid acids A (620) and B (621) were obtained from marine-derived fungus Plectosphaerella cucumerina. They were inhibitors of indoeamine 2,3-dioxygenase (IDO), which existed
in primary tumor cells. IDO has been considered as an important molecular target for cancer therapy [254].

Table 8. Nonbridged methylthio-containing cyclodipeptide analogs from fungi and their biological activities.

Name	Fungus and its Origin	Biological Activity	Ref.
Alternarosin A (555)	Marine-derived Alternaria raphani	Weak antimicrobial activity	[276]
Asteroxepin (556)	Aspergillus terreus	-	[284]
(Z)-6-Benzylidene-3-hydroxymethyl-1,4-dimethyl-3-methylsulfanyl-piperazine-2,5-dione (557)	Marine-derived unidentified strain CRIF2 of the order Pleosporales	Weak cytotoxic activity	[285]
Bilain A (558)	Marine-derived Penicillium bilaii	-	[161]
Bilain B (559)	Marine-derived Penicillium bilaii	-	[161]
Bilain C (560)	Marine-derived Penicillium bilaii	-	[161]
Bionectin C (561)	Bionectra byssicola F120	Anti-MRSA activity	[228]
Bisdethiobis(methylsulfanyl) acetylapoaranotin (562)	Aspergillus terreus BCC 4651	-	[286]
Bisdethiobis(methylsulfanyl) acetylaranotin = Bisdethiodi(methylthio)-acetylaranotin (563)	Aspergillus terreus BCC 4651	-	[286]
Bisdethiobis(methylsulfanyl) apoparanotin = Bisdethiodi(methylthio)-acetylaparanotin (564)	Aspergillus terreus BCC 4651	Weak antimiycobacterial activity	[286]
Bisdethiobis(methylsulfanyl) aranotin (565)	Aspergillus terreus BCC 4651	-	[286]
Bis-(N)-norgliovictin (566)	Moderate trypanocidal activity	[287]	
Endophytic Colletotrichum gloeosporioides from Viguiera robusta	Specific inhibitor of the platelet activating factor and antibacterial activity	[196]	
Marine-derived fungus Pseudallescheria sp.	Antibacterial activity	[280]	
Bisethiobis(methylthio) glyotoxin (566)	Inhibitory activity against Mycobacterium tuberculosis H37Ra; moderate cytotoxic activity	[174]	
(3R,6R)-Bisdethiobis(methylthio)-hyalodendrin (568)	Weak cytotoxic activity	[285]	
Cofycep-colonizing fungus Isaria farinosa	-	[288]	
cis-Bis(methylthio)silvatin = cis-Bisdethiodi(methylthio) silvatin (569)	Fusarium chlamydosporum from the marine alga Carpophelis affinis	Weak cytotoxic activity against P388 lymphocytic leukemia cells	[277]
Marine-derived Penicillium bilaii	Weak cytotoxicity against NS-1 cells	[161]	
Plant endophytic Penicillium sp.	Antibacterial activity against Staphylococcus aureus with an MIC value of 43.4 µg/mL	[289]	
Bis-N-norgliovictin (570)	Gliscladium virens	-	[233]
Marine-derived Aspergillus fumigatus	-	[278]	
Marine-derived fungus Neosartorya pseudofischeri	-	[136]	
Marine-derived Dichotomomyces sp. L-8	Inhibitory activity on LPS-induced inflammation in macrophages	[279]	
Chaetocochin A (571)	Chaetomium cochliodes	Cytotoxic activity	[211]
Chetoseminudin B (572)	Nectria inventa	Trypanocidal activity in the whole cell assay of Trypanosoma brucei	[287]
Chetoseminudin C (573)	Antarcthic psychrophilic fungus Oidiodendron truncatum	-	[137]
	Chaetomium seminudum	-	[231]
Name	Fungus and its Origin	Biological Activity	Ref.
------	----------------------	---------------------	------
Chetoseminudin E (574)	Endophytic fungus Chaetomium sp. 88194	-	[290]
Chetracin D (575)	Antarctic psychrophilic fungus Oidiodendron truncatum	Cytotoxic activity	[137]
Colletopiperazine (576)	Endophytic Colletotrichum gloeosporioides from Viguiera robusta	-	[196]
Dehydroxybisdehydrobis(methylthio)gliotoxin (577)	Marine-derived Pseudallescheria sp.	Antibacterial activity	[280]
Dethio-tetra(methylthio)chetomin (578)	Chaetomium cochliodes	Cytotoxic activity	[211]
Dehydroxybisdethiobis(methylthio)gliotoxin (579)	Marine-derived Aspergillus sydowi from a driftwood sample	Inhibitory activity against HIV-1 replication in C8166 cells	[10]
Epicoccin G (581)	Endophytic Epicoccum nigrum	Inhibitory activity against the release of β-glucuronidase in rat polymorphonuclear leukocytes induced by platelet-activating factor	[188]
Epicoccin H (583)	Endophytic Epicoccum nigrum	Inhibitory activity against HIV-1 replication in C8166 cells	[194]
Epicoccin J (584)	Endophytic Epicoccum nigrum	-	[188]
Epicoccin K (585)	Endophytic Epicoccum nigrum	-	[188]
Epicoccin L (586)	Endophytic Epicoccum nigrum	-	[188]
Eminestrin H (587)	Endophytic Epicoccum nigrum	-	[201]
Eminestrin I (588)	Endophytic Epicoccum nigrum	-	[201]
Eminestrin K (589)	Endophytic Epicoccum nigrum	-	[201]
FR106969 (590)	Penicillium citrinum	Inhibitory activity against PAF-induced rabbit platelet aggregation	[281]
Fusaperazine A (591)	Fusarium chlamydosporum OUPS-N124 from the marine alga Carpopeltis affinis	Weak cytotoxic activity	[277]
Fusaperazine B (592)	Fusarium chlamydosporum OUPS-N124 from the marine alga Carpopeltis affinis	-	[277]
Fusaperazine E (593)	Endophytic Penicillium crustosum from Viguiera robusta	-	[196]
Gliocladin A (594)	Gliocladium roseum PS-N132	Cytotoxicity against murine P388 lymphocytic leukemia cells	[125]
Gliocladin B (595)	Gliocladium roseum PS-N132	Cytotoxicity against murine P388 lymphocytic leukemia cells	[125]
Glionitrin B (596)	Coculture of the fungus Aspergillus fumigatus KMC-901 and the bacterium Sphingomonas sp. KMK-001	Suppression of DU145 cell invasion	[291]
Glioperazine (597)	Gliocladium roseum PS-N132	Cytotoxic activity	[125]
Glioperazine B (598)	Gliocladium roseum PS-N132	-	[126]
Glovicnin = (−)-Glovinic = A26771E (599)	Marine-derived Asteromycetes cruciatus from an unidentified decaying green alga	-	[244]
Haematocin (600)	Phytopathogenic Nectria haematococca	Antifungal activity by inhibiting spore-germination and germ-tube elongation	[282]
3-[(4-Hydroxyphenyl)-methyl]-1,4-dimethyl-3,6-bis(methylthio)-2,5-piperazinedione (601)	Fusarium chlamydosporum OUPS-N124 from the marine alga Carpopeltis affinis	-	[277]
Leptosin O (602)	Leptosphaeria sp. from a marine alga	Cytotoxicity on P388 cells	[131]
Name	Fungus and its Origin	Biological Activity	Ref.
------	-----------------------	---------------------	------
Leptosin P	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[131]
Leptosin Q	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[131]
Leptosin R	*Leptosphaeria* sp. from a marine alga	Cytotoxicity on P388 cells	[131]
MPC1001F	Cladophrinum sp. KY4922	Antifungal activity	-
Mycoediketopiperazine	*Papularia* sp.	Cytotoxicity on KB cells	[283]
1$^\text{N}$-Norgliovictin	Marine-derived *Asteromyces cruciatus* 763 from an unidentified decaying green alga	-	[244]
Odisoperazine A	Antarctic psychrophilic fungus *Oidiopodum truncatum*	-	[137]
Penicibrocazine A	Marine-derived *Penicillium brocae* MA-231 from the mangrove plant *Avicennia marina*	-	[293]
Penicibrocazine B	Marine-derived *Penicillium brocae* MA-231 from the mangrove plant *Avicennia marina*	Antimicrobial activity	[293]
Penicibrocazine C	Marine-derived *Penicillium brocae* MA-231 from the mangrove plant *Avicennia marina*	Antimicrobial activity	[293]
Penicibrocazine D	Marine-derived *Penicillium brocae* MA-231 from the mangrove plant *Avicennia marina*	Antimicrobial activity	[293]
Penicibrocazine E	Marine-derived *Penicillium brocae* MA-231 from the mangrove plant *Avicennia marina*	Antimicrobial activity	[293]
Penicisulfuranol D	Mangrove-derived *Penicillium janthinellum* HDN13-309 from the roots of *Sonneratia caseolaris*	-	[273]
Penicisulfuranol E	Mangrove-derived *Penicillium janthinellum* HDN13-309 from the roots of *Sonneratia caseolaris*	-	[273]
Penicisulfuranol F	Mangrove-derived *Penicillium janthinellum* HDN13-309 from the roots of *Sonneratia caseolaris*	-	[273]
Phomazine A	Marine-derived *Phoma* sp. OUCMDZ-1847 from the mangrove plant *Kandelia candel*	-	[241]
Phomazine B	Marine-derived *Phoma* sp. OUCMDZ-1847 from the mangrove plant *Kandelia candel*	Cytotoxic activity	[241]
Plectosphaeroic acid A	Marine-derived *Plectosphaerella cucumerina*	Inhibition of indoleamine 2,3-dioxygenase	[254]
Plectosphaeroic acid B	Marine-derived *Plectosphaerella cucumerina*	Inhibition of indoleamine 2,3-dioxygenase	[254]
Polanrazine B	Plant pathogen *Phoma lingam*	Phytotoxic activity	[138]
Polanrazine C	Plant pathogen *Phoma lingam*	Moderate and selective phytotoxicity by causing necrotic and chlorotic lesions	[138]
Polanrazine D	Plant pathogen *Phoma lingam*	-	[138]
Pseudellone D	Marine-derived *Pseudallescheria ellipsoidea* P4-2-3 associated with the soft coral *Lobophytum crassum*	-	[294]
Sch 54794	*Fusarium chlamydosporum* OUPS-N124 from the marine alga *Carpopeltis affinis*	Weak cytotoxic activity against P388 lymphoblastic leukemia cells	[277]
Sch 54796	*Fusarium chlamydosporum* OUPS-N124 from the marine alga *Carpopeltis affinis*	-	[277]
Spirobrocazine A	Mangrove-derived *Penicillium brocae* MA-231 from *Avicennia marina*	Moderate antibacterial activity	[205]
Name	Fungus and its Origin	Biological Activity	Ref.
-----------------------------	-----------------------	---------------------	------
Spirobrocazine B (629)	Mangrove-derived Penicillium brocæ MA-231 from Avicennia marina	-	[205]
Sporidesmin D (630)	Pithomyces chartarum	-	[295]
Sporidesmin F (631)	Pithomyces chartarum	-	[296]
T988 B (632)	Tilachidium sp.	Cytotoxic activity	[225]
	Antarctic psychrophilic fungus Oidiodendron truncatum	-	[211]

Note: MIC, minimum inhibitory concentration.
Figure 8. Cont.
Figure 8. Cont.
Figure 8. Cont.
7.4. Other Sulfur-Containing Cyclodipeptide Analogs

Other sulfur-containing cyclodipeptide analogs included MPC1001G (633), silvathione (634) and taichunamide D (635) with their structures shown in Figure 9. MPC1001G (633) was isolated from Cladorrhinum sp. KY4922 [236], silvathione (634) from Aspergillus silvaticus [235], and taichunamide D (635) from Aspergillus taichungensis IBT 19404 [53]. Their biological activities have not been reported.

8. Conclusions and Future Perspectives

A large number of cyclodipeptides have been identified in fungi, and many have received attention not only as challenging synthetic targets but also because some of these compounds displayed diverse and interesting biological activities. Since then, interest has increased in the biosynthesis, genetics, total synthesis, biological activities, and medicinal properties of this class of natural products. Some cyclodipeptides such as tryprostatins A (103) and B (104), cyclo(L-Pro–L-Ala) (318), cyclo(L-Pro–L-Phe)
(334), cyclo(L-Pro–L-Tyr) (337), phenylahistin (392), and FR106969 (590) have displayed their potential applications in agriculture and medicinal industry [16,17,149,151,182,281].

The fungal cyclodipeptides are mainly distributed in the genera of Aspergillus and Penicillium. However, the cyclodipeptides in the remaining genera seem to be less explored. Further identification and exploration of the cyclodipeptides from all of the fungal genera are needed. In recent years, more and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi [297–300]. These fungi inhabiting particular environments could be rich sources of biologically active cyclodipeptides that are indispensable for medicinal and agricultural applications.

The biological activities (shown in Tables 1–8) of the cyclodipeptides reported by each investigator were random and limited. Systematical screening of biological activities for each cyclodipeptide should be necessary. In most cases, the biological activities as well as the mode of action of fungal cyclodipeptides have been investigated based on in vitro studies or animal modes. Few studies have been performed at the level of clinical trials in patients. Effective research and development methods for these compounds should be explored to maximize their usefulness in the drug discovery and development processes [6]. For the diverse biological activities, the cyclodipeptides from fungi are expected to inspire medicinal chemists in their search for better agents such as antitumors, antifungals, and antibacterials than existing ones [297].

It is very important to understand biosynthetic mechanisms of the cyclodipeptides in fungi. These need to combine their biochemical and genetic approaches. More and more designed biologically active cyclodipeptides will be expected to be produced by genetic manipulation. With a good understanding of the biosynthetic pathways of bioactive cyclodipeptides, we can not only increase outputs of the beneficial cyclodipeptides but also block biosynthesis of some harmful cyclodipeptides by specific interferences [6].

Acknowledgments: This work was co-financed by the grants from the National Key R&D Program of China (2017YFD0201105), and the National Natural Science Foundation of China (31271996).

Author Contributions: Xiaohan Wang performed bibliographic research, and drafted and corrected the manuscript. Yuying Li and Xuping Zhang retrieved literature, participated in the discussions and supported manuscript corrections. Daowan Lai reviewed the manuscript and helped to revise it. Ligang Zhou conceived the idea, designed the review structure, supervised manuscript drafting, and revised the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.; Wang, P.; Ma, H.; Zhu, W. Developments around the bioactive diketopiperazines: A patent review. Expert Opin. Ther. Pat. 2013, 23, 1415–1433. [CrossRef] [PubMed]
2. Welch, T.R.; Williams, R.M. Epidithiodioxopiperazines. Occurrence, synthesis and biogenesis. Nat. Prod. Rep. 2014, 31, 1376–1404. [CrossRef] [PubMed]
3. Witiak, D.T.; Wei, Y. Dioxopiperazines: Chemistry and biology. Prog. Drug Res. 1990, 35, 249–363. [PubMed]
4. De Carvalho, M.P.; Abraham, W.-R. Antimicrobial and biofilm inhibiting diketopiperazines. Curr. Med. Chem. 2012, 19, 3564–3577. [CrossRef] [PubMed]
5. Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716. [CrossRef] [PubMed]
6. Ma, Y.-M.; Liang, X.-A.; Kong, Y.; Jia, B. Structural diversity and biological activities of indole diketopipezazine alkaloids from fungi. J. Agric. Food Chem. 2016, 64, 6659–6671. [CrossRef] [PubMed]
7. Steyn, P.S. The structures of five diketopiperazines from Aspergillus ustus. Tetrahedron 1973, 29, 107–120. [CrossRef]
8. Wang, F.; Fang, Y.; Zhu, T.; Zhang, M.; Lin, A.; Gu, Q.; Zhu, W. Seven new prenylated indole diketopiperazine alkaloids from holothurian-derived fungus Aspergillus fumigatus. Tetrahedron 2008, 64, 7986–7991. [CrossRef]
9. Cui, C.B.; Kakeya, H.; Okada, G.; Onose, R.; Osada, H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 1996, 49, 527–533. [CrossRef] [PubMed]
10. Zhang, M.; Wang, W.-L.; Fang, Y.-C.; Zhu, T.-J.; Gu, Q.-Q.; Zhu, W.-M. Cytotoxic alkaloids and antibiotic nordammarance triterpenoids from the marine-derived fungus Aspergillus sydowii. J. Nat. Prod. 2008, 71, 985–989. [CrossRef] [PubMed]

11. Zhang, Q.; Wang, S.-Q.; Tang, H.-Y.; Li, X.-J.; Zhang, L.; Xiao, J.; Gao, Y.-Q.; Zhang, A.-L.; Gao, J.-M. Potential allelopathic indole diketopiperazines produced by the plant endophytic Aspergillus fumigatus using the one strain-many compounds method. J. Agric. Food Chem. 2013, 61, 11447–11452. [CrossRef] [PubMed]

12. Cui, C.-B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprotatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 1996, 52, 12651–12666. [CrossRef]

13. Gao, N.; Shang, Z.-C.; Yu, P.; Luo, J.; Jian, K.-L.; Kong, L.-Y.; Yang, M.-H. Alkaloids from the endophytic fungus Penicillium brevicompactum and their cytotoxic activities. Chin. Chem. Lett. 2017, 28, 1194–1199. [CrossRef]

14. Zhao, S.; Smith, K.S.; Deveau, A.M.; Dieckhaus, C.M.; Johnson, M.A.; Macdonald, T.L.; Cook, J.M. Biological activity of the tryprostatins and their diasteromers on human carcinoma cell lines. J. Med. Chem. 2002, 45, 1559–1562. [CrossRef] [PubMed]

15. Cui, C.B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. II. Physico-chemical properties and structures. J. Antibiot. 1996, 49, 534–540. [CrossRef] [PubMed]

16. Woehlecke, H.; Osada, H.; Herrmann, A.; Lage, H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int. J. Cancer 2003, 107, 721–728. [CrossRef] [PubMed]

17. Zhao, S.; Smith, K.S.; Deveau, A.M.; Dieckhaus, C.M.; Johnson, M.A.; Macdonald, T.L.; Cook, J.M. Biological activity of the tryprostatins and their diasteromers on human carcinoma cell lines. J. Med. Chem. 2002, 45, 1559–1562. [CrossRef] [PubMed]

18. Cai, S.; Kong, X.; Wang, W.; Zhou, H.; Zhu, T.; Li, D.; Gu, Q. Aspergilagine A, a diketopiperazine dimer with a rare N-1 to C-6 linkage, from a marine-derived fungus Aspergillus taichungensis. Tetrahedron Lett. 2012, 53, 2615–2617. [CrossRef]

19. Cai, S.; Luan, Y.; Kong, X.; Zhu, T.; Gu, Q.; Li, D. Isolation and photoinduced conversion of 6-epi-stephacidins from Aspergillus taichungensis. Org. Lett. 2013, 15, 2168–2171. [CrossRef] [PubMed]

20. Kong, X.; Cai, S.; Zhu, T.; Gu, Q.; Li, D.; Luan, Y. Secondary metabolites of a deep sea derived fungus Aspergillus versicolor CXCTD-06-6a and their bioactivity. J. Ocean Univ. China 2014, 13, 691–695. [CrossRef]

21. Liu, Y.-X.; Ma, S.-G.; Wang, X.-J.; Zhao, N.; Qu, J.; Yu, S.-S.; Dai, J.-G.; Wang, Y.-H.; Si, Y.-K. Diketopiperazine alkaloids produced by the endophytic fungus Aspergillus fumigatus from the stem of Erythrophloeum fordii Oliv. Helv. Chim. Acta 2012, 95, 1401–1408. [CrossRef]

22. Asiri, I.A.M.; Badr, J.M.; Youssef, D.T.A. Penicillinacin, antimigratory diketopiperazine alkaloid from the marine-derived fungus Penicillium vinaceum. Phytochem. Lett. 2015, 13, 53–58. [CrossRef]

23. Zhang, D.; Noviendri, D.; Nursid, M.; Yang, X.; Son, B.W. 12,13-Dihydroxyfumitremorgin C, and brevianamide F, antibacterial diketopiperazine alkaloids from the marine-derived fungus Pseudallescheria sp. Nat. Prod. Sci. 2007, 13, 251–254.

24. Li, G.-Y.; Yang, T.; Luo, Y.-G.; Chen, X.-Z.; Fang, D.-M.; Zhang, G.-L. Brevianamide J, a new indole alkaloid dimer from fungus Aspergillus versicolor. Org. Lett. 2009, 11, 3714–3717. [CrossRef] [PubMed]

25. Song, F.; Liu, X.; Guo, H.; Ren, B.; Chen, C.; Piggott, A.M.; Yu, K.; Gao, H.; Wang, Q.; Liu, M.; et al. Brevianamides with antitubercular potential from a marine-derived isolate of Aspergillus versicolor. Org. Lett. 2012, 14, 4770–4773. [CrossRef] [PubMed]

26. Miao, F.-F.; Li, X.-D.; Liu, X.-H.; Cichewicz, R.H.; Ji, N.-Y. Secondary metabolites from an algalcolous Aspergillus versicolor strain. Mar. Drugs 2012, 10, 131–139. [CrossRef] [PubMed]

27. Li, G.-Y.; Li, L.-M.; Yang, T.; Chen, X.-Z.; Fang, D.-M.; Zhang, G.-L. Four new alkaloids, brevianamides O-R, from the fungus Aspergillus versicolor. Helv. Chim. Acta 2010, 93, 2075–2080. [CrossRef]

28. Peng, J.; Zhang, X.-Y.; Tu, Z.-C.; Xu, X.-Y.; Qi, S.-H. Alkaloids from the deep-sea-derived fungus Aspergillus westerdijkiae DFFSC013. J. Nat. Prod. 2013, 76, 983–987. [CrossRef] [PubMed]

29. Ma, Y.-M.; Liang, X.-A.; Zhang, H.-C.; Liu, R. Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. J. Agric. Food Chem. 2016, 64, 3789–3793. [CrossRef] [PubMed]
30. Cui, C.-B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, cyclotryprostatins A-D produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. *Tetrahedron* **1997**, *53*, 59–72. [CrossRef]

31. Kozlovskii, A.G.; Vinokurova, N.G.; Adanin, V.M. Diketopiperazine alkaloids from the fungus *Penicillum piscarium* Westling. *Appl. Biochem. Microbiol.* **2000**, *36*, 317–321.

32. Kato, H.; Yoshida, T.; Tokue, T.; Nojiri, Y.; Hirota, H.; Ohta, T.; Williams, R.M.; Tsukamoto, S. Notoamides A-D: Prenylated indole alkaloids isolated from a marine-derived fungus, *Aspergillus* sp. *Angew. Chem. Int. Ed.* **2007**, *46*, 2254–2256. [CrossRef] [PubMed]

33. Luo, X.; Zhou, X.; Lin, X.; Qin, X.; Zhang, T.; Wang, J.; Tu, Z.; Yang, B.; Liao, S.; Tian, Y.; et al. Antituberculosis compounds from a deep-sea-derived fungus *Aspergillus* sp. SC5IO Ind09F01. *Nat. Prod. Res.* **2017**, *31*, 1598–1622. [CrossRef] [PubMed]

34. Peng, J.; Gao, H.; Li, J.; Ai, J.; Geng, M.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Prenylated indole diketopiperazines from the marine-derived fungus *Aspergillus versicolor*. *J. Org. Chem.* **2014**, *79*, 7895–7904. [CrossRef] [PubMed]

35. Luo, X.; Zhou, X.; Lin, X.; Qin, X.; Zhang, T.; Wang, J.; Tu, Z.; Yang, B.; Liao, S.; Tian, Y.; et al. Antituberculosis compounds from a deep-sea-derived fungus *Aspergillus* sp. SC5IO Ind09F01. *Nat. Prod. Res.* **2017**, *31*, 1598–1622. [CrossRef] [PubMed]

36. Peng, J.; Gao, H.; Li, J.; Ai, J.; Geng, M.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Prenylated indole diketopiperazines from the marine-derived fungus *Aspergillus versicolor*. *J. Org. Chem.* **2014**, *79*, 7895–7904. [CrossRef] [PubMed]

37. An, C.Y.; Li, X.-M.; Li, C.-S.; Xu, G.-M.; Wang, B.-G. Prenylated indolediketopiperazine peroxides and related homologues from the marine sediment-derived fungus *Penicillium breffeldianum* SD-273. *Mar. Drugs* **2014**, *12*, 746–756. [CrossRef] [PubMed]

38. Feng, C.; Ma, Y. Isolation and anti-phytopathogenic activity of secondary metabolites from *Alternaria* sp. FL25, an endophytic fungus in *Ficus carica*. *Chin. J. Appl. Environ. Biol.* **2010**, *16*, 76–78. [CrossRef]

39. Kito, K.; Ookura, R.; Kusumi, T.; Namikoshi, M.; Ooi, T. X-ray structure of two stehacidins, heptacyclic compounds from a deep-sea-derived fungus *Aspergillus ostianus*. *Heterocycles* **2009**, *78*, 2101–2106.

40. Shi, Y-S.; Zhang, Y.; Chen, X.-Z.; Zhang, N.; Liu, Y-B. Metabolites produced by the endophytic fungus *Aspergillus fumigatus* from the stem of *Erythrophloeum fordii* Oliv. *Molecules* **2015**, *20*, 10793–10799. [CrossRef] [PubMed]

41. Greshock, T.J.; Grubbs, A.W.; Jiao, P.; Wicklow, D.T.; Gloer, J.B.; Williams, R.M. Isolation, structure elucidation, and bioaemic total synthesis of versicolamide B, and the isolation of antipodal (-)-stehacidin A and (+)-notoamide B from *Aspergillus versicolor* NRRL 35600. *Angew. Chem. Int. Ed.* **2008**, *47*, 3573–3577. [CrossRef] [PubMed]

42. Tsukamoto, S.; Kato, H.; Hirota, H.; Ohta, T.; Williams, R.M. Isolation of notoamide E, a key precursor in the biosynthesis of prenylated indole alkaloids in a marine-derived fungus, *Aspergillus* sp. *J. Nat. Chem. Soc.* **2009**, *131*, 3834–3835. [CrossRef] [PubMed]

43. Finefield, J.M.; Greshock, T.J.; Sherman, D.H.; Tsukamoto, S.; Williams, R.M. Notoamide E: Biosynthetic incorporation into notoamides C and D in cultures of *Aspergillus versicolor* NRRL 35600. *Tetrahedron Lett.* **2011**, *52*, 1987–1989. [CrossRef] [PubMed]

44. Tsukamoto, S.; Kato, H.; Samizo, M.; Nojiri, Y.; Onuki, H.; Hirota, H.; Ohta, T. Notoamides F-K, prenylated indole alkaloids isolated from a marine-derived *Aspergillus* sp. *J. Nat. Prod.* **2008**, *71*, 2064–2067. [CrossRef] [PubMed]

45. Tsukamoto, S.; Kawabata, T.; Kat, H.; Greshock, T.J.; Hirota, H.; Ohta, T.; Williams, R.M. Isolation of antipodal (-)-versicolamide B and notoamides I-N from a marine-derived *Aspergillus* sp. *Org. Lett.* **2009**, *11*, 1297–1300. [CrossRef] [PubMed]

46. Tsukamoto, S.; Umaoka, H.; Yoshikawa, K.; Ikeda, T.; Hirota, H. Notoamide O, a structurally unprecedented prenylated indole alkaloid, and notoamides P-R from a marine-derived fungus, *Aspergillus* sp. *J. Nat. Prod.* **2010**, *73*, 1438–1440. [CrossRef] [PubMed]

47. Kato, H.; Nakahara, T.; Sugimoto, K.; Matsu, K.; Kagiyama, I.; Frisvad, J.C.; Sherman, D.H.; Williams, R.M.; Tsukamoto, S. Isolation of notoamide S and enantiomeric 6-epi-stehacidin A form the fungus *Aspergillus amoenus*: Biogenetic implications. *Org. Lett.* **2015**, *17*, 700–703. [CrossRef] [PubMed]
48. Kato, H.; Nakahara, T.; Yamaguchi, M.; Katagaya, I.; Finefield, J.M.; Sunderhau, J.D.; Sherman, D.H.; Williams, R.M.; Tsukamoto, S. Bioconvergence of 6-epi-notoamide T produces metabolites of unprecedented structures in a marine-derived Aspergillus sp. Tetrahedron Lett. 2015, 56, 247–251. [CrossRef] [PubMed]

49. Kozlovsky, A.; Vinokurova, N.G.; Adanin, V.M.; Grafe, U. Piscarinines, new polycyclic diketopiperazine alkaloids from Penicillium piscarium VKM F-691. Nat. Prod. Lett. 2000, 14, 333–340. [CrossRef]

50. Whyte, A.C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Sclerotiamide: A new member of the paraherquamide class with potent antinsectan activity from the sclerotia of Aspergillus sclerotiorum. J. Nat. Prod. 1996, 59, 1093–1095. [CrossRef] [PubMed]

51. Chang, Y.-W.; Yuan, C.-M.; Zhang, J.; Liu, S.; Cao, P.; Hua, H.-M.; Di, Y.-T.; Hao, X.-J. Speramides A-B, two new prenylated indole alkaloids from the freshwater-derived fungus Aspergillus ochraceus KM007. Tetrahedron Lett. 2016, 57, 4952–4955. [CrossRef]

52. Afiyatullow, S.S.; Zhuravleva, O.I.; Chaikina, E.L.; Anisimov, M.M. A new spirotryprostatin from the marine isolate of the fungus Aspergillus fumigatus. Chem. Nat. Compd. 2012, 48, 95–98. [CrossRef]

53. Kagiyama, I.; Kato, H.; Nehira, T.; Frisvad, J.C.; Sherman, D.H.; Williams, R.M.; Tsukamoto, S. Taichunamides: Prenylated indole alkaloids from Aspergillus taichungensis (IBT 19404). Angew. Chem. Int. Ed. 2016, 55, 1128–1132. [CrossRef] [PubMed]

54. Takase, S.; Kawai, Y.; Uchida, I.; Tanaka, H.; Aoki, H. Structure of amauromine, a new hypotensive vasodilator produced by Amauroascus sp. Tetrahedron 1985, 41, 3037–3048. [CrossRef]

55. Laws, I.; Mantle, P.G. Nigrifortine, a diketopiperazine metabolite of Penicillium nigricans. Phytochemistry 1985, 24, 1395–1397. [CrossRef]

56. Elsbai, M.F.; Rempel, V.; Schnakenburg, G.; Stefan, K.; Muller, C.E.; Konig, G.M. Identification of a potent and selective cannabinoid CB2 receptor antagonist from Auxarthron reticulatum. ACS Med. Chem. Lett. 2011, 2, 866–869. [CrossRef] [PubMed]

57. De Guzman, F.S.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. New diketopiperazine metabolites form the sclerotia of Aspergillus ochraceus. J. Nat. Prod. 1992, 55, 931–939. [CrossRef] [PubMed]

58. Kozlovsky, A.G.; Vinokurova, N.G.; Adanin, V.M.; Burkhardt, G.; Dahse, H.-M.; Grafe, U. New diketopiperazine alkaloids from Penicillium fellutanum. J. Nat. Prod. 2000, 63, 698–700. [CrossRef] [PubMed]

59. Ishikawa, K.; Hosoe, T.; Itabashi, T.; Wakana, D.; Takizawa, K.; Yaguchi, T.; Kawai, K. Novoauroamines and ent-cycloechinulin: Two new diketopiperazine derivatives from Aspergillus novofumigatus. Chem. Pharm. Bull. 2010, 58, 717–719. [CrossRef] [PubMed]

60. Hayashi, H.; Furutsuka, K.; Shiono, Y. Okaramines H and I, new okamine congeners, from Aspergillus aculeatus. J. Nat. Prod. 1999, 62, 315–317. [CrossRef] [PubMed]

61. Cai, S.; Sun, S.; Peng, J.; Kong, X.; Zhou, H.; Zhu, T.; Gu, Q.; Li, D. Okaramines S-U, three new indole diketopiperazine alkaloids from Aspergillus taichungensis ZHN-7-07. Tetrahedron 2015, 71, 3715–3719. [CrossRef] [PubMed]

62. Hayashi, H.; Takiuchi, K.; Murao, S. Structure and insecticidal activity of new indole alkaloids, okaramines A and B, from Penicillium simplicissimum AK-40. Agric. Biol. Chem. 1989, 53, 461–469.

63. Hayashi, H.; Asabu, M.; Murao, S.; Arai, M. New okamine congeners, okaramines D, E, and F, from Penicillium simplicissimum ATCC 90288. Biosci. Biotechnol. Biochem. 1995, 59, 246–250. [CrossRef]

64. Shiono, Y.; Akiyama, K.; Hayashi, H. New okamine congeners, okaramines J, K, L and related compounds from Penicillium simplicissimum ATCC 90288. Biosci. Biotechnol. Biochem. 1999, 63, 1910–1920. [CrossRef]

65. Shiono, Y.; Akiyama, K.; Hayashi, H. Okaramines N, O, P, Q and R, new okamine congeners, from Penicillium simplicissimum ATCC 90288. Biosci. Biotechnol. Biochem. 2000, 64, 103–110. [CrossRef] [PubMed]

66. Shiono, Y.; Akiyama, K.; Hayashi, H. Effect of the azetidine and azocine rings of okaramine B on insecticidal activity. Biosci. Biotechnol. Biochem. 2000, 64, 1519–1521. [CrossRef] [PubMed]

67. Furutani, S.; Nakatani, Y.; Miura, Y.; Ibara, M.; Kai, K.; Hayashi, H.; Matsuda, K. GluCl a target of indole alkaloid okaramines: A 25 year enigma solved. Sci. Rep. 2014, 4, 6190. [CrossRef] [PubMed]

68. Shan, W.-G.; Wu, Z.-Y.; Pang, W.-W.; Ma, L.-F.; Ying, Y.-M.; Zhan, Z.-J. α-Glucosidase inhibitors from the fungus Aspergillus terreus 3.05358. Chem. Biodivers. 2015, 12, 1718–1724. [CrossRef] [PubMed]

69. Li, X.-B.; Li, Y.-L.; Zhou, J.-C.; Yuan, H.-Q.; Wang, X.-N.; Lou, H.-X. A new diketopiperazine heterodimer from an endophytic fungus Aspergillus niger. J. Asian Nat. Prod. Res. 2015, 17, 182–187. [CrossRef] [PubMed]
70. Zin, W.W.M.; Buttachon, S.; Dethoup, T.; Fernandes, C.; Cravo, S.; Pinoto, M.M.M.; Gales, L.; Pereira, J.A.; Silva, A.M.S.; Sekeroglu, N.; et al. New cyclotetrapeptides and a new diketopiperazine derivative from the marine sponge-associated fungus *Neosartorya glabra* KUFA 0702. *Mar. Drugs* 2016, 14, 136. [CrossRef] [PubMed]

71. Shinohara, C.; Hasumi, K.; Takei, Y.; Endo, A. Gpsetin, a new inhibitor of acyl-CoA: Cholesterol acyltransferase produced by *Nannizzia gypsea* var. *incurvata* IFO 9228. I. Fermentation, isolation, physico-chemical properties and biological activity. *J. Antibiot.* 1994, 47, 163–167. [CrossRef] [PubMed]

72. Hayashi, H.; Fujiwara, T.; Murao, S.; Arai, M. Okaramine C, a new insecticidal indole alkaloid from *Penicillium simplicissimum*. *Agric. Biol. Chem.* 1991, 55, 3143–3145.

73. Hayashi, H.; Sakaguchi, A. Okaramine G, a new okaramine congener from *Penicillium simplicissimum* ATCC 90288. *Biosci. Biotechnol. Biochem.* 1998, 62, 804–806. [CrossRef] [PubMed]

74. Lhamo, S.; Wang, X.-B.; Li, T.-X.; Wang, Y.; Li, Z.-R.; Shi, Y.-M.; Yang, M.-H.; Kong, L.-Y. Three unusual indole diketopiperazine alkaloids from a terrestrial-derived endophytic fungus, *Aspergillus* sp. *Tetrahedron Lett.* 2015, 56, 2823–2826. [CrossRef] [PubMed]

75. Kimura, Y.; Sawada, A.; Kuramata, M.; Kusano, M.; Fujikoa, S.; Kawano, T.; Shimada, A. Brevicompanine C, cyclo-(D-Ile-L-Trp), and cyclo-(D-Leu-L-Trp), plant growth regulators from *Penicillium brevi-compactum*. *J. Nat. Prod.* 2005, 68, 237–239. [CrossRef] [PubMed]

76. Kimura, Y.; Tani, K.; Kojima, A.; Sotoma, G.; Okada, K.; Shimada, A. Cyclo-(L-trypophyl-L-phenylalanyl), a plant growth regulator produced by the fungus *Penicillium sp*. *Phytochemistry* 1996, 41, 665–669. [CrossRef]

77. Du, L.; Yang, X.; Zhu, T.; Wang, F.; Xiao, X.; Park, H.; Gu, Q. Diketopiperazine alkaloids from a deep ocean sediment derived fungus *Penicillium sp.* *Chem. Pharm. Bull.* 2009, 57, 873–876. [CrossRef] [PubMed]

78. Yang, X.; Du, L.; Tang, X.; Jung, S.-Y.; Zheng, B.; Soh, B.Y.; Kim, S.-Y.; Gu, Q.; Park, H. Brevicompanine E reduces lipopolysaccharide-induced production of proinflammatory cytokines and enzymes in microglia by inhibiting activation of activator protein-1 and nuclear factor-κB. *J. Neurommunol.* 2009, 216, 32–38. [CrossRef] [PubMed]

79. Ali, M.; Mohammed, N.; Alnaqeeb, M.A.; Hassan, R.A.H.; Shmad, H.S.A. Toxicity of echinulin from *Aspergillus chevalieri* in rabbits. *Toxicol. Lett.* 1989, 48, 235–241. [CrossRef]

80. Arai, K.; Kimura, K.; Mushiroda, T.; Yamamoto, Y. Structures of fructigenines A and B, new alkaloids isolated from *Penicillium fructigenum* Takeuchi. *Chem. Pharm. Bull.* 1989, 37, 2937–2939. [CrossRef]

81. Kozlovsky, A.G.; Adanin, V.M.; Dahse, H.M.; Dahse, H.M.; Grafe, U. Rugulosuvines A and B, diketopiperazine alkaloids of *Penicillium rugulosum* and *Penicillium piscarium* fungi. *Appl. Biochem. Microbiol.* 2001, 37, 253–256. [CrossRef]

82. Maruyama, K.; Ohuchi, T.; Yoshida, K.; Shibata, Y.; Sugawara, F.; Arai, T. Protective properties of neoechinulin A against SIN-1-induced neuronal cell death. *J. Biochem.* 2004, 136, 81–87. [CrossRef] [PubMed]

83. Pedras, M.S.C.; Smith, K.C.; Taylor, J.L. Production of 2,5-dioxopiperazine by a new isolate type of the blackleg fungus *Phoma lingam*. *Phytochemistry* 1998, 49, 1573–1577.

84. Chen, X.; Si, L.; Liu, D.; Proksch, P.; Zhang, L.; Zhou, D.; Lin, W. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. *Eur. J. Med. Chem.* 2015, 93, 182–195. [CrossRef] [PubMed]

85. Chu, Y.-S.; Niu, X.-M.; Wang, Y.-L.; Guo, J.-P.; Pan, W.-Z.; Huang, X.-W.; Zhang, K.-Q. Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus *Talaromyces thermophilus*. *Org. Lett.* 2010, 12, 4356–4359. [CrossRef] [PubMed]

86. Zhou, L.-N.; Zhu, T.-J.; Cai, S.-X.; Gu, Q.-Q.; Li, D.-H. Three new indole-containing diketopiperaine alkaloids from a deep ocean sediment-derived fungus, *Penicillium griseofulvum*. *Helv. Chim. Acta* 2010, 93, 1758–1763. [CrossRef]

87. Wang, W.-L.; Lu, Z.-Y.; Tao, H.-W.; Zhu, T.-J.; Fang, Y.-C.; Gu, Q.-Q.; Zhu, W.-M. Isoechinulin-type alkaloids, variecolorins A-L, from halotolerant *Aspergillus variecolor*. *J. Nat. Prod.* 2007, 70, 1558–1564. [CrossRef] [PubMed]

88. Barrow, C.; Sun, H.H. Spiroquinazoline, a novel substance P inhibitor with a new carbon skeleton, isolated from *Aspergillus flavipes*. *J. Nat. Prod.* 1994, 57, 471–476. [CrossRef] [PubMed]

89. Yan, H.-J.; Li, X.-M.; Li, C.-S.; Wang, B.-G. Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus *Eurotium rubrum*. *Helv. Chim. Acta* 2012, 95, 163–168. [CrossRef]
90. Kamauchi, H.; Kinoshita, K.; Sugita, T.; Koyama, K. Conditional changes enhanced production of bioactive metabolites of marine derived fungus Eurotium rubrum. Bioorg. Med. Chem. Lett. 2016, 26, 4911–4914. [CrossRef] [PubMed]

91. Itabashi, T.; Matsuishi, N.; Hosoe, T.; Toyazaki, N.; Udagawa, S.; Imai, T.; Adachi, M.; Kawai, K. Two new dioxopiperazine derivatives, arestrictins and A and B, isolated from Aspergillus restrictus and Aspergillus penicilloides. Chem. Pharm. Bull. 2006, 54, 1639–1641. [CrossRef] [PubMed]

92. Varoglu, M.; Corbett, T.H.; Valeriote, F.A.; Crews, P. Asperazine, a selective cyotoxic alkaloid from a sponge-derived culture of Aspergillus niger. J. Org. Chem. 1997, 62, 7078–7079. [CrossRef] [PubMed]

93. Xiao, J.; Zhang, Q.; Gao, Y.-Q.; Shi, X.-W.; Gao, J.-M. Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. Nat. Prod. Res. 2014, 28, 1388–1392. [CrossRef] [PubMed]

94. Ding, G.; Jiang, L.; Guo, L.; Chen, X.; Zhang, H.; Che, Y. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus Pestalotiopsis theae. J. Nat. Prod. 2008, 71, 1861–1865. [CrossRef] [PubMed]

95. Kusano, M.; Sotoma, G.; Koshino, H.; Uzawa, J.; Chijimatsu, M.; Fujioka, S.; Kawano, T.; Kimura, Y. Brevicompanines A and B: New plant growth regulators produced by the fungus, Penicillium brevicompactum. J. Chem. Soc. Perkin Trans. 1 1998, 17, 2823–2826. [CrossRef]

96. Sprogoe, K.; Manniche, S.; Larsen, T.O.; Christophersen, C. Janoxepin and brevicompanine B: Antiplasmodial metabolites from the fungus Aspergillus janus. Tetrahedron 2005, 61, 8718–8721. [CrossRef]

97. Matsunaga, K.; Shizuri, Y.; Yamamura, S.; Kawai, K.; Furukawa, H. Isolation and structure of citreoindole, a new metabolite of hybrid strain KO 0052 derived from Penicillium citreo-viride B. IFO 6200 and 4692. Tetrahedron Lett. 1991, 32, 6883–6884. [CrossRef]

98. Du, F.-Y.; Li, X.-M.; Li, C.-S.; Shang, Z.; Wang, B.-G. Cristatumins A-D, new indole alkaloids from the marine-derived endophytic fungus Eurotium crisatum EN-220. Bioorg. Med. Chem. Lett. 2012, 22, 4650–4653. [CrossRef] [PubMed]

99. Li, Y.; Sun, K.-L.; Wang, Y.; Fu, P.; Liu, P.-P.; Wang, C.; Zhum, W.-M. A cytotoxic pyrrolidinoindoline diketopiperazine dimer from the algal fungus Eurotium herbaarium HT-2. Chin. Chem. Lett. 2013, 24, 1049–1052. [CrossRef]

100. Zou, X.; Li, Y.; Zhang, X.; Li, Q.; Liu, Q.; Huang, Y.; Tang, T.; Zheng, S.; Wang, W.; Tang, J. A new prenylated indole diketopiperazine alkaloid from Eurotium crisatum. Molecules 2014, 19, 17839–17847. [CrossRef] [PubMed]

101. Gao, H.; Zhu, T.; Li, D.; Gu, Q.; Liu, W. Prenylated indole diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Arch. Pharm. Res. 2013, 36, 952–956. [CrossRef] [PubMed]

102. Li, D.-L.; Li, X.-M.; Li, T.-G.; Dang, H.-Y.; Wang, B.-G. Dioxopiperazine alkaloids produced by the marine mangrove derived endophytic fungus Eurotium rubrum. Helv. Chim. Acta 2008, 91, 1888–1893. [CrossRef]

103. Li, Y.; Li, X.; Kim, S.-K.; Kang, J.S.; Choi, H.D.; Rho, J.R.; Son, B.W. Golmaeone, a new diketopiperazine alkaloid form the marine-derived fungus Aspergillus sp. Chem. Pharm. Bull. 2004, 52, 375–376. [CrossRef] [PubMed]

104. Meng, L.-H.; Du, F.-Y.; Li, X.-M.; Pedpradab, P.; Xu, G.-M.; Wang, B.-G. Rubrumazines A-C, indole diketopiperazines of the isoechinulin class from Eurotium rubrum MA-150, a fungus obtained from marine-mangrove-derived rhizospheric soil. J. Nat. Prod. 2015, 78, 909–913. [CrossRef] [PubMed]

105. Guo, J.-P.; Tan, J.-L.; Wang, Y.-L.; Wu, H.-Y.; Zhang, C.-P.; Niu, X.-M.; Pan, W.-Z.; Huang, X.-W.; Zhang, K.-Q. Isolation of talathermophillin from the thermophilic fungus Talaromyces thermophilus YM3-4. J. Nat. Prod. 2011, 74, 2278–2281. [CrossRef] [PubMed]

106. Shan, W.-G.; Ying, Y.-M.; Yu, H.-N.; Liu, W.-H.; Zhan, Z.-J. Diketopiperazine alkaloids from Penicillium spp. HS-3, an endophytic fungus in Huperzia serrata. Helv. Chim. Acta 2010, 93, 772–776. [CrossRef]

107. Klausmeyer, P.; McCloud, T.G.; Tucker, K.D.; Cardellina, J.H., II; Shoemaker, R.H. Aspirochlorine class compounds from Aspergillus flavus inhibit azole-resistant Candida albicans. J. Nat. Prod. 2005, 68, 1300–1302. [CrossRef] [PubMed]

108. Kaur, A.; Raja, H.A.; Darveaux, B.A.; Chen, W.-L.; Swanson, S.M.; Pearce, C.J.; Oberlies, N.H. New diketopiperazine dimer from a filamentous fungal isolate of Aspergillus sydowi. Magn. Reson. Chem. 2015, 53, 616–619. [CrossRef] [PubMed]
109. Shaaban, M.; El-Metwally, M.M.; Nasr, H. A new diketopiperazine alkaloid from *Aspergillus oryzae*. *Nat. Prod. Res.* 2014, 28, 86–94. [CrossRef] [PubMed]

110. Byun, H.-G.; Zhang, H.; Mochizuki, M.; Adachi, K.; Shizuri, Y.; Lee, W.-J.; Kim, S.-K. Novel antifungal diketopiperazine from marine fungus. *J. Antibiot.* 2003, 56, 102–106. [CrossRef] [PubMed]

111. Chen, G.-D.; Bao, Y.-R.; Huang, Y.-F.; Hu, D.; Li, X.-X.; Guo, L.-D.; Li, J.; Yao, X.-S.; Gao, H. Three pairs of variecoloride enantiomers from *Eurotium* sp. with caspase-3 inhibitory activity. *Fitoterapia* 2014, 92, 252–259. [CrossRef] [PubMed]

112. Lin, A.-Q.; Du, L.; Fang, Y.-C.; Wang, F.-Z.; Zhu, T.-J.; Gu, Q.-Q.; Zhu, W.-M. Iso-phytoceratine, a new diketopiperazine alkaloid from marine fungus. *J. Nat. Prod.* 1994, 57, 1239–1244. [CrossRef] [PubMed]

113. Huang, L.-H.; Chen, Y.-X.; Yu, J.-C.; Yuan, J.; Li, H.-J.; Ma, W.-Z.; Watanapokasin, R.; Hu, K.-C.; Iram, N.S.; Yang, D.-P.; et al. Secondary metabolites from the marine-derived fungus *Dichotomomyces cei* sp. FS110. *Mar. Drugs* 2016, 14, 164. [CrossRef] [PubMed]

114. Usami, Y.; Li, Y.-F.; Wu, X.-B.; Niaz, S.-I.; Zhang, L.-H.; Huang, Z.-J.; Lin, Y.-C.; Li, J.; Liu, L. Effect of culture conditions on metabolites produced by the crinoid-derived fungus *Aspergillus oryzae* KCB12F005. *Bioorg. Med. Chem. Lett.* 2016, 25, 717–720. [CrossRef] [PubMed]

115. Kozlovskii, A.G.; Zhelifonova, V.P.; Adanin, V.M.; Antipova, T.V.; Szerskaia, S.M.; Ivanushkina, N.E.; Grafe, U. *Penicillium aurantiogriseum* Dierckx 1901: Producer of diketopiperazine alkaloids (roquefortine and 3,12-dihydroroquefortine), isolated from permafrost. *Appl. Biochem. Microbiol.* 2003, 39, 393–397. [CrossRef]

116. Yang, N.-N.; Ma, Q.-Y.; Huang, S.-Z.; Kong, F.-D.; Dai, H.-F.; Yu, Z.-F.; Zhao, Y.-X. Chemical study of the fungus *Psilocybe merdaria*. *J. Asian Nat. Prod. Res.* 2017, 19, 333–338. [CrossRef] [PubMed]

117. Springer, J.P.; Buchi, G.; Kobbe, B.; Demain, A.L.; Clardy, J. The structure of ditryptophenaline—A new metabolite of *Aspergillus flavus*. *Tetrahedron* 1977, 18, 2403–2406. [CrossRef]

118. Barrow, C.J.; Sedlock, D.M. 1’-(2-Phenyl-ethylene)-ditryptophenaline, a new dimeric diketoperazine from *Aspergillus flavus*. *J. Nat. Prod.* 1994, 57, 1239–1244. [CrossRef] [PubMed]

119. Gao, H.; Liu, W.; Zhu, T.; Mo, X.; Mandi, A.; Kurtan, T.; Li, J.; Gu, Q.; Li, D. Diketopiperazine alkaloids from a deep-sea-derived fungus *Dichotomomyces cei* sp. *Molecules* 2017, 22, 444. [CrossRef] [PubMed]

120. Lin, A.-Q.; Du, L.; Fang, Y.-C.; Wang, F.-Z.; Zhu, T.-J.; Gu, Q.-Q.; Zhu, W.-M. Iso-α-cyclopiazonic acid, a new natural product isolated from the marine-derived fungus *Aspergillus flavus* C-F-3. *Chem. Nat. Compl.* 2009, 45, 667–680. [CrossRef] [PubMed]

121. Kanokmedhakul, S.; Kanokmedhakul, K.; Phonkerd, N.; Soytong, K.; Kongsaeree, P.; Suksamrarn, A. Antimycobacterial anthraquinone-chromanone compound and diketopiperazine alklakoid form the fungus *Eurotium* sp. KMITL-N0802. *J. Nat. Prod.* 2013, 76, 934–937. [CrossRef] [PubMed]

122. Kozlovskii, A.G.; Zhelifonova, V.P.; Adanin, V.M.; Antipova, T.V.; Szerskaia, S.M.; Ivanushkina, N.E.; Grafe, U. *Penicillium aurantiogriseum* Dierckx 1901: Producer of diketopiperazine alkaloids (roquefortine and 3,12-dihydroroquefortine), isolated from permafrost. *Appl. Biochem. Microbiol.* 2003, 39, 393–397. [CrossRef]

123. Kozlovskii, A.G.; Zhelifonova, V.P.; Adanin, V.M.; Antipova, T.V.; Szerskaia, S.M.; Ivanushkina, N.E.; Grafe, U. *Penicillium aurantiogriseum* Dierckx 1901: Producer of diketopiperazine alkaloids (roquefortine and 3,12-dihydroroquefortine), isolated from permafrost. *Appl. Biochem. Microbiol.* 2003, 39, 393–397. [CrossRef]

124. Kozlovskii, A.G.; Zhelifonova, V.P.; Adanin, V.M.; Antipova, T.V.; Szerskaia, S.M.; Ivanushkina, N.E.; Grafe, U. *Penicillium aurantiogriseum* Dierckx 1901: Producer of diketopiperazine alkaloids (roquefortine and 3,12-dihydroroquefortine), isolated from permafrost. *Appl. Biochem. Microbiol.* 2003, 39, 393–397. [CrossRef]

125. Gomes, N.M.; Dethoup, T.; Singburaudom, N.; Gales, L.; Silva, A.M.S.; Kijjoa, A. Euroscristatine, a new diketopiperazine dimer from the marine sponge-associated fungus *Aspergillus ruber* var. *Euroides ruber*. *Mar. Drugs* 2016, 14, 164. [CrossRef] [PubMed]

126. Zhou, Y.; Debbab, A.; Wray, V.; Lin, W.; Schulz, B.; Trepors, R.; Pilec, C.; Hellio, C.; Proksch, P.; Aly, A.H. Marine bacterial inhibitors from the sponge-derived fungus *Aspergillus* sp. *Tetrahedron Lett.* 2014, 55, 2789–2792. [CrossRef]
129. Wang, J.; He, W.; Qin, X.; Wei, X.; Tian, X.; Liao, L.; Liao, S.; Yang, B.; Tu, Z.; Chen, B.; et al. Three new indolyl diketopiperazine metabolites from the Antarctic soil-derived fungus *Penicillium* sp. SCSIO 05705. *RSC Adv.* 2015, 5, 68736. [CrossRef]

130. Lin, A.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W. A new diketopiperazine alkaloid isolated from an algicolous *Aspergillus flavidus* strain. *Pharmazie* 2008, 63, 323–324. [PubMed]

131. Yamada, T.; Iwamoto, C.; Yamaguchi, N.; Minoura, K.; Hagishita, S.; Numata, A. Leptosins O-S, cytotoxic metabolites of a strain of *Leptosphaeria* sp. isolated from a marine alga. *Heterocycles* 2004, 63, 641–653. [CrossRef]

132. Larsen, T.O.; Petersen, B.O.; Duus, J.O. Lumpidin, a novel biomarker of some ochratoxin A producing *Aspergillus*. *J. Agric. Food Chem.* 2001, 49, 5081–5084. [CrossRef] [PubMed]

133. Li, D.-L.; Li, X.-M.; Proksch, P.; Wang, B.-G. 7-O-Methylvariecolortide A, a new spirocyclic diketopiperazine alkaloid from a marine mangrove derived endophytic fungus, *Europium rubrum*. *Nat. Prod. Commun.* 2010, 5, 1583–1586. [PubMed]

134. Yun, K. Cristazine, a new cytotoxic dioxopiperazine alkaloid from the mudflat-sediment-derived fungus *Chaetomium crista*um. *Chem. Pharm. Bull.* 2016, 64, 59–62. [CrossRef] [PubMed]

135. Dossena, A.; Marchelli, R.; Pochini, A. Neochinulin D, a new isoprenylated dehydrotryptophyl metabolite from *Aspergillus amstelodami*. *Experientia* 1975, 31, 1249. [CrossRef]

136. Liang, W.-L.; Le, X.; Li, H.-J.; Yang, X.-L.; Chen, J.-X.; Xu, J.; Liu, H.-L.; Wang, L.-Y.; Wang, K.-T.; Hu, K.-C.; et al. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus *N. pseudofischeri*. *Mar. Drugs* 2014, 12, 5657–5676. [CrossRef] [PubMed]

137. Li, L.; Li, D.; Luan, Y.; Gu, Q.; Zhu, T. Cytotoxic metabolites from the Antarctic psychrophilic fungus *Olsiodendron truncatum*. *J. Nat. Prod.* 2012, 75, 920–927. [CrossRef] [PubMed]

138. Pedras, M.S.C.; Biesenthal, C.J. Isolation, structure determination, and phytotoxicity of unusual dioxopiperazines form the phytopathogenic fungus *Phoma lingam*. *Phytochemistry* 2001, 58, 905–909. [PubMed]

139. Lee, S.U.; Asami, Y.; Lee, D.; Jang, J.-H.; Ahn, J.S.; Oh, H. Protuboxepins A and B and protubonines A and B from the marine-derived fungus *Aspergillus* sp. SF-5044. *J. Nat. Prod.* 2011, 74, 1284–1287. [CrossRef] [PubMed]

140. Zhang, D.-B.; Yang, Z.-D.; Xue, P.-H.; Xue, P.-H.; Zhi, K.-K.; Shi, Y.; Wang, M.-G. Two new cyclic dipeptides from *Rhinocladiella* sp. lgt-3, a fungal endophyte isolated from *Triterygium wilfordii* Hook. *Nat. Prod. Res.* 2014, 28, 1760–1764. [CrossRef] [PubMed]

141. Ohmomo, S.; Utagawa, T.; Abe, M. Identification of roquefortine C produced by *Penicillium roqueforti* sp. isolated from *Chlorella* sp. lgt-3, a fungal endophyte isolated from *Triterygium wilfordii* Hook. *Phytochemistry* 2007, 68, 2913–2919. [CrossRef] [PubMed]

142. Clark, B.; Capon, R.J.; Lacey, E.; Tennant, S.; Gill, J.H. Roquefortine E, a diketopiperazine from an Australian isolated of *Gymnoascus reessii*. *J. Nat. Prod.* 2005, 68, 1661–1664. [CrossRef] [PubMed]

143. Du, L.; Li, D.; Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. New alkaloids and diterpenes from a deep ocean sediment derived fungus *Penicillium* sp. *Tetrahedron* 2009, 65, 1033–1039. [CrossRef]

144. Du, L.; Feng, T.; Zhao, B.; Li, D.; Cai, S.; Zhu, T.; Wang, F.; Xiao, X.; Gu, Q. Alkaloids from a deep ocean sediment-derived fungus *Penicillium* sp. and their antitumor activities. *J. Antibiot.* 2010, 63, 165–170. [CrossRef] [PubMed]

145. Cho, K.-H.; Sohn, J.H.; Oh, H. Isolation and structure determination of a new diketopiperazine dimer from marine-derived fungus *Aspergillus* sp. SF-5280. *Nat. Prod. Res.* 2017, 31. [CrossRef] [PubMed]

146. Fujimoto, H.; Fujimaki, T.; Okuyama, E.; Yamazaki, M. Immunomodulatory constituents from an ascomycete, *Microascus tardifaciens*. *Chem. Pharm. Bull.* 1999, 47, 1426–1432. [CrossRef] [PubMed]

147. Wang, W.-L.; Zhu, T.-J.; Tao, H.-W.; Lu, Z.-Y.; Fang, Y.-C.; Gu, Q.-Q.; Zhu, W.-M. Three novel, structurally unique spirocyclic alkaloids from the halotolerant B-17 fungal strain of *Aspergillus variecolor*. *Chem. Biodivers.* 2007, 4, 2913–2919. [CrossRef] [PubMed]

148. Barrow, C.J.; Cai, P.; Snyder, J.K.; Sedlock, D.M.; Sun, H.H.; Cooper, R. WIN 64821, a new competitive antagonist to substance P, isolated from an *Aspergillus* species: Structure determination and solution conformation. *J. Org. Chem.* 1993, 58, 6016–6021. [CrossRef]

149. Stierle, A.C.; Cardellina, J.H., II; Strobel, G.A. Maculosin, a host-specific phytotoxin for spotted knapweed from *Alternaria alternata*. *Proc. Natl. Acad. Sci. USA* 1988, 85, 8008–8011. [CrossRef] [PubMed]
150. Trigos, A.; Reyna, S.; Gutierrez, M.L.; Sanchez, M. Diketopiperazines from cultures of the fungus Colletotrichum gloeosporioides. Nat. Prod. Lett. 1997, 11, 13–16. [CrossRef]

151. Iimura, K.; Furukawa, T.; Yamamoto, T.; Negishi, L.; Suzuki, M.; Sakuda, S. The mode of action of cyclo(L-Ala-L-Pro) in inhibiting aflatoxin production of Aspergillus flavus. Toxins 2017, 9, 219. [CrossRef] [PubMed]

152. Klausmeyer, P.; Howard, O.M.Z.; Shipley, S.M.; McCloud, T.G. An inhibitor of CCL2-induced chemotaxis from the fungus Leptosyphomyces sp. J. Nat. Prod. 2009, 72, 1369–1372. [CrossRef] [PubMed]

153. Sugimoto, K.; Sadahiro, Y.; Kagiyama, I.; Kato, H.; Sherman, D.H.; Williams, R.M.; Tsukamoto, S. Isolation of amonemamide A and five antipodal prenylated alkaldoids from Aspergillus amoenus NRRL 35600. Tetrahedron Lett. 2017, 58, 2797–2800. [CrossRef]

154. Pedras, M.S.C.; Yu, Y.; Liu, J.; Tandron-Moya, Y.A. Metabolites produced by the phytopathogenic fungus Pestalotiopsis vexinica. Phytochem. Lett. 2014, 7, 35–37. [CrossRef]

155. Park, Y.C.; Gunasekera, S.P.; Lopez, J.V.; McCarthy, P.J.; Wright, A.E. Metabolites from the marine-derived fungus Chromodelesta sp. isolated from a deep-water sediment sample collected in the Gulf of Mexico. J. Nat. Prod. 2006, 69, 580–584. [CrossRef] [PubMed]

156. Wang, Y.C.; Zhang, Y.W.; Zheng, L.H.; Bao, Y.L.; Wu, Y.; Yu, C.L.; Sun, L.G.; Zhang, Y.; Huang, Y.X.; Sun, Y.; et al. A new compound from liquid fermentation broth of Armillaria mellea and the determination of its absolute configuration. J. Asian Nat. Prod. Res. 2013, 15, 203–208. [CrossRef] [PubMed]

157. Trigos, A.; Reyna, S.; Matamoros, B. Macrophominol, a diketopiperazine from cultures of Macrophomina phaseolina. Phytochemistry 1995, 40, 1697–1698. [CrossRef]

158. Jia, J.-M.; Ma, X.-C.; Wu, C.-F.; Wu, L.-J.; Hu, G.-S. Cordycepidpeptide A, a new cycloideidepeptide from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem. Pharm. Bull. 2005, 53, 582–583. [CrossRef] [PubMed]

159. Wu, Q.-X.; Crews, M.S.; Draskovic, M.; Sohn, J.; Johnson, T.A.; Tenney, K.; Valeriote, F.A.; Yao, X.-J.; Bjeldanes, L.F.; Crews, P. Azonazine, a novel dipeptide from a Hawaiian marine sediment-derived fungus, Aspergillus insulicola. Org. Lett. 2010, 12, 4458–4461. [CrossRef] [PubMed]
171. Birkinshaw, J.H.; Mohamed, Y.S. Biochemistry of microorganisms. CXI. The production of L-phenylalanine anhydride (cis-1,3,6-dibenzyl-2,5-dioxopiperazine) by Penicillium nigricans. Biochem. J. 1962, 85, 523–527. [CrossRef] [PubMed]

172. Walchshofer, N.; Sarciron, M.E.; Garnier, F.; Delatour, P.; Petavy, A.E.; Paris, J. Anthelmintic activity of 3,6-dibenzyl-2,5-dioxopiperazine cyclo(1-Phe-1-Phe). Amino Acids 1997, 12, 41–47. [CrossRef]

173. Mizuma, T.; Narasaka, T.; Awazu, S. Concentration-dependent atypical intestinal absorption of cyclic phenylalanylserine: Small intestine acts as an interface between the body and ingested compounds. Biol. Pharm. Bull. 2003, 26, 1625–1628. [CrossRef] [PubMed]

174. Arnone, A.; Capelli, S.; Nasini, G.; Meille, S.V.; Vajna de Pava, O. Structure elucidation of diatretol—A new diketopiperazine metabolite from the fungus Clitocybe diatreta. Liebigs Ann. Chem. 1996, 11, 1875–1877. [CrossRef]

175. Aniya, Y.; Ohtani, I.I.; Higa, T.; Miyagi, C.; Gibo, H.; Shimabukuro, M.; Nakanishi, H.; Taira, J. Dimerumic acid as an antioxidant of the mold Monascus anka. Free Radic. Biol. Med. 2000, 28, 999–1004. [CrossRef]

176. Yamashiro, J.; Shirasaki, S.; Fuwa, T.; Horie, T. Dimerumic acid protected oxidative stress-induced cytotoxicity in isolated rat hepatocytes. Cell Biol. Toxicol. 2008, 24, 283–290. [CrossRef] [PubMed]

177. Yao, Y.; Tian, L.; Cao, J.-A.; Pei, Y.-H. A new piperazine-2,5-dione from marine fungus Aspergillus sp. Pharmazie 2007, 62, 478–479. [CrossRef] [PubMed]

178. Yao, Y.; Tian, L.; Li, J.; Cao, J.; Pei, Y. Cytotoxic piperazine-2,5-dione derivatives from marine fungus Gliocladium sp. Pharmazie 2009, 64, 616–618. [PubMed]

179. Lorenz, P.; Jensen, P.R.; Fenical, W. Mactanamide, a new fungistatic diketopiperazine produced by a marine fungus from an Australian mud dauber wasp-associated fungus. Chin. Chem. Lett. 2014, 25, 260–264. [CrossRef]

180. Vinokurova, N.G.; Baskunov, B.P.; Zelenkova, N.F.; Arinbasarov, M.U. The alkaloids of Aspergillus aurantiogriseus Dierckx (1901) var. aurantiogriseus VKM F-1298. Microbiology 2004, 73, 414–419. [CrossRef]

181. Kanoh, K.; Kohno, S.; Asari, T.; Harada, T.; Katada, J.; Muramatsu, M.; Kawashima, H.; Sekiya, H.; Uno, I. (−)-(−)-Phenylahistin: A new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg. Med. Chem. Lett. 1997, 7, 2847–2852. [CrossRef]

182. Guo, D.; Zhou, M.; Gu, Y.; Zhou, Y. Two new diketopiperazines and a new glucosyl sesterterpene from the fungus Alternaria alternata, an endophytic fungus from Ceratostigma griffithii. Phytochem. Lett. 2015, 14, 260–264. [CrossRef] [PubMed]

183. Kandelia candel. Biol. Pharm. Bull. 2003, 26, 1625–1628. [CrossRef] [PubMed]

184. Wang, J.; Ding, G.; Liu, J.; Wang, J.; Fang, L.; Yu, S. Secondary metabolites from the endophytic fungal Penicillium polonicum and Aspergillus fumigatus. J. Asian Nat. Prod. Res. 2013, 15, 446–452. [CrossRef] [PubMed]

185. Wang, J.-M.; Ding, G.-Z.; Fang, L.; Dai, J.-G.; Yu, S.-S.; Wang, Y.-H.; Chen, X.-G.; Ma, S.-G.; Qu, J.; Du, D. Thiodiketopiperazines produced by the endophytic fungus Epicoccum nigrum. J. Nat. Prod. 2010, 73, 1240–1249. [CrossRef] [PubMed]

186. Liu, Y.N.; Xue, J.H.; Feng, N.; Wu, P.; Liu, X.Z.; Wei, X.Y. A new cyclodipeptide from the cultures of Geotrichum candidum. Chin. Chem. Lett. 2007, 18, 1081–1083. [CrossRef] [PubMed]

187. Wang, J.; Li, J.; Wang, J.; Jiang, C.-S.; Li, G.; Guo, Y.-W. (+)-Cyclopensol, a newly occurring 7-membered 2,5-dioxopiperazine alkaloid from the fungus Penicillium sclerotiorum endogenous with the Chinese mangrove Bruguiera gymnorrhiza. J. Asian Nat. Prod. Res. 2014, 16, 542–548. [CrossRef] [PubMed]

188. Kalansuriya, P.; Quezada, M.; Esposito, B.P.; Capon, R.J. Talarazines A–E: Noncytotoxic iron (III) chelators from an Australian mud dauber wasp-associated fungus, Talaromyces sp. (CMB-W045). J. Nat. Prod. 2017, 80, 609–615. [CrossRef] [PubMed]
192. Metwaly, A.M.; Ghoneim, M.M.; Musa, A. Two new antileishmanial diketopiperazine alkaloids from the endophytic fungus Trichosporum sp. Pharm. Chem. 2015, 7, 322–327. [CrossRef]

193. Taira, J.; Miyagi, C.; Aniya, Y. Dimerumic acid as an antioxidant from the mold, Monascus anka: The inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem. Pharmacol. 2002, 63, 1019–1026. [CrossRef]

194. Guo, H.; Sun, B.; Gao, H.; Chen, X.; Liu, S.; Yao, X.; Liu, X.; Che, Y. Diketopiperazines from the Cordyceps-colonizing fungus Epicoccum nigrum. J. Nat. Prod. 2009, 72, 2115–2119. [CrossRef] [PubMed]

195. Chunyu, W.-X.; Ding, Z.-G.; Zhao, J.-Y.; Wang, Y.-X.; Han, X.-L.; Li, M.-G.; Wen, M.-L. Two new diketopiperazines from the tin mine tailings-derived fungus Schizophyllum commune YIM DT 10058. Nat. Prod. Res. 2017, 31, 1566–1572. [CrossRef] [PubMed]

196. Guimarães, D.O.; Borges, W.S.; Vieira, N.J.; De Oliveira, L.F.; Da Silva, C.H.T.P.; Lopes, N.P.; Dias, L.G.; Duran-Patron, R.; Collado, I.G.; Pupo, M.T. Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 2010, 71, 1423–1429. [CrossRef] [PubMed]

197. Zheng, Y.; Zhang, J.; Wei, L.; Shi, M.; Wang, J.; Huang, J. Gunnilactams A-C, macrocyclic tetrlactams from the mycelial culture of the entomogenous fungus Paecilomyces gurnii. J. Nat. Prod. 2017, 80, 1935–1938. [CrossRef] [PubMed]

198. Zhou, X.; Fang, P.; Tang, J.; Wu, Z.; Li, X.; Li, S.; Wang, Y.; He, Z.; Gou, D.; Yao, X.; et al. A novel cyclic dipeptide from deep marine-derived fungus Aspergillus sp. SCSIOW2. Nat. Prod. Res. 2016, 30, 52–57. [CrossRef] [PubMed]

199. Kawabata, T.; Uchida, C.; Kato, H.; Tsubata, T.; Takano, F.; Ohta, T. Melanogenesis-modulating diketopiperazine derivatives from Hypocrea spp. Heterocycles 2013, 87, 417–422. [CrossRef]

200. Takagi, M.; Motohashi, K.; Shin-ya, K. Isolation of 2 new metabolites, JBIR-74 and JBIR-75, from the mangrove-derived endophytic fungus Epicoccum nigrum. J. Nat. Prod. Res. 2016, 31, 1566–1572. [CrossRef] [PubMed]

201. Li, Y.; Yue, Q.; Krausert, N.M.; An, Z.; Gloer, J.B.; Bills, G.F. Emestrins: Anti-Cryptococcus epipolythiodioxopiperazines from Podospora australis. J. Nat. Prod. 2016, 79, 2357–2363. [CrossRef] [PubMed]

202. Huang, Y.-F.; Tian, L.; Hua, H.-M.; Pei, Y.-H. Two diketopiperazines from marine fungus Glociadum sp. YUP08. J. Asian Nat. Prod. Res. 2007, 9, 197–201. [CrossRef] [PubMed]

203. Li, X.-Z.; Chen, G.; Wang, H.-E.; Hua, H.-M.; Pei, Y.-H. Synthesis and bioactivity of diketopiperazine P147 and its derivatives from Glocladium sp. YUP08. J. Asian Nat. Prod. Res. 2014, 16, 764–769. [CrossRef] [PubMed]

204. Antia, B.S.; Aree, T.; Kasodrathat, C.; Wiyakrutta, S.; Ekpa, O.D.; Ekpe, U.J.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Itaconic acid derivatives and diketopiperazine from the marine-derived fungus Aspergillus aculeatus CR1322-03. Phytochemistry 2011, 72, 816–820. [CrossRef] [PubMed]

205. Meng, L.-H.; Wang, C.-Y.; Mandi, A.; Li, X.-M.; Hu, X.-Y.; Kassack, M.U.; Kurtan, T.; Wang, B.-G. Three diketopiperazine alkaloids with spirocyclic skeletons and one bisthiodiketopiperazine derivative from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Org. Lett. 2016, 18, 5304–5307. [CrossRef] [PubMed]

206. Quezada, M.; Shang, Z.; Kalansuriya, P.; Salim, A.A.; Lacey, E.; Capon, R.J. Wasperrgillamide A, a nitro depsii-tetrapeptide diketopiperazine from an Australian mud dauber wasp-associated Aspergillus sp. (CMB-W031). J. Nat. Prod. 2017, 80, 1912–1915. [CrossRef] [PubMed]

207. Rezanka, T.; Sobotka, M.; Spizek, J.S.; Sigler, K. Pharmacologically active sulfur-containing compounds. Anti Infect. Agents Med. Chem. 2006, 5, 187–224. [CrossRef]

208. Cook, K.M.; Hilton, S.T.; Mecinovic, J.; Motherwell, W.B.; Figg, W.D.; Schofield, C.J. Epipolythiodiketopiperazines block the interaction between hypoxia-inducible factor-1α (HIF-1α) and p300 by a zinc ejection mechanism. J. Biol. Chem. 2009, 284, 26831–26838. [CrossRef] [PubMed]

209. Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat. Chem. Biol. 2005, 1, 143–145. [CrossRef] [PubMed]

210. Saito, T.; Suzuki, Y.; Koyama, K.; Natori, S.; Itaka, Y.; Kinoshita, T. Chetracin A and chaetocins B and C, three new epipolythiodioxopiperazines form Chaetomium spp. Chem. Pharm. Bull. 1988, 36, 1942–1956. [CrossRef] [PubMed]

211. Li, G.; Li, B.; Yang, T.; Yan, J.; Liu, G.; Zhang, G. Chaetocochins A-C, epipolythiodioxopiperazines from Chaetomium cochlodioides. J. Nat. Prod. 2006, 69, 1374–1376. [CrossRef] [PubMed]
212. Choi, E.J.; Park, J.S.; Kim, Y.J.; Jung, J.H.; Lee, J.K.; Kwon, H.C.; Yang, H.O.J. Apoptosis-inducing effect of diketoprazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. *Appl. Microbiol.* 2011, 110, 304–313. [CrossRef] [PubMed]

213. Kawahara, N.; Nakajima, S.; Yamazaki, M.; Kawai, K. Studies on fungal products. Part XXIX. Structure of a novel epidithiodioxopiperazine, emethalllicin A, a potent inhibitor of histamine release, from Emericella heterothallica. *Chem. Pharm. Bull.* 1989, 37, 2592–2595. [CrossRef] [PubMed]

214. Kawahara, N.; Nozawa, K.; Yamazaki, M.; Nakajima, S.; Kawai, K. Studies on fungal products. XXXI. Structures of novel epipolythiodioxopiperazines, emethalllicins B, C, and D, potent inhibitors of histamine release, from Emericella heterothallica. *Chem. Pharm. Bull.* 1990, 38, 73–78. [CrossRef] [PubMed]

215. Kawahara, N.; Nozawa, K.; Yamazaki, M.; Nakajima, S.; Kawai, K. Studies on fungal products. Part 32. Novel epidithiodioxopiperazines, emethalllicins E and F, from Emericella heterothallica. *Heterocycles* 1990, 30, 507–515.

216. Hof, H.; Kupfahl, C. Gliotoxin in *Aspergillus fumigatus*: An example that mycotoxins are potential virulence factors. *MycoTox Res.* 2009, 13, 123–131. [CrossRef] [PubMed]

217. Vigushin, D.M.; Mirsaidi, N.; Brooke, G.; Sun, C.; Pace, P.; Inman, L.; Moody, C.J.; Coombes, R.C. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. *Med. Oncol.* 2004, 21, 21–30. [CrossRef]

218. Tan, R.X.; Jensen, P.R.; Williams, P.G.; Fenical, W. Isolation and structure assignments of rostratins A-D, antitumor antibiotic produced by *Exserohilum rostratum*. *J. Chem. Soc. Perkin Trans.* 1993, 1374–1382. [CrossRef] [PubMed]

219. Kleinwachter, P.; Dahse, H.-M.; Luhmann, U.; Schlegel, B.; Dornberger, K. Epicorazine C, an antimicrobial metabolite from *Stereum hirsutum* HKI 0195. *J. Antibiot.* 2001, 54, 521–525. [CrossRef] [PubMed]

220. Tsumagari, N.; Nakai, R.; Onodera, H.; Hasegawa, A.; Rahayu, E.S.; Ando, K.; Yamashita, Y. MPC1001, a new diketoprazine derivative from *Exserohilum rostratum*. *J. Antibiot.* 2004, 57, 532–534. [CrossRef] [PubMed]

221. Xu, Y.; Espinosa-Artiles, P.; Liu, M.X.; Arnold, A.E.; Gunatilaka, A.A.L. Secoemestrin D, a cytotoxic epitetrathiodioxopiperazine, and emericellenes A-E, five sesterterpenoids from *Emericella* sp. AST0036, a fungal endophyte of *Astragalus lentiginosus*. *J. Nat. Prod.* 2013, 76, 2320–2336. [CrossRef] [PubMed]

222. Dong, J.-Y.; He, H.-P.; Shen, Y.-M.; Zhang, K.-Q. Nematicidal epipolythiodioxopiperazine from *Gliocladium roseum*. *J. Nat. Prod.* 2004, 67, 1374–1382. [CrossRef] [PubMed]

223. Michel, K.H.; Chaney, M.O.; Jones, N.D.; Hoehn, M.; Nagarajan, R. Epipolythiodioxopiperazine antibiotics from *Emericella* sp. KMD 901 isolated from marine sediment. *J. Chem. Soc. Perkin Trans.* 1973, 17, 1819–1825. [CrossRef] [PubMed]

224. Joshi, B.K.; Gloer, J.B.; Wicklow, D.T. New verticillin and glisoprenin analogues from *Verticillium* sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. *Appl. Microbiol.* 2014, 78, 1479–1485. [CrossRef] [PubMed]

225. Neuss, N.; Nagarajan, R.; Molloy, B.B.; Huckstep, I.L. Aranotin and related metabolites. II. Isoation, characterization, and structures of two new metabolites. *Tetrahedron Lett.* 1968, 42, 4467–4471. [CrossRef]

226. Zheng, C.J.; Kim, C.J.; Bae, K.S.; Kim, Y.H.; Kim, W.G. Bionectins A-C, epidithiodioxopiperazines with anti-MRSA activity, from *Bionectra byssicola* MA-231, an endophytic fungus derived from the marine mangrove plant *Avicennia marina*. *J. Nat. Prod.* 2017, 80, 1921–1927. [CrossRef] [PubMed]

227. Fujimoto, H.; Sumino, M.; Okuyama, E.; Ishibashi, M. Immunomodulatory constituents from an ascomycete, *Chaetomium globosum*. *J. Nat. Prod.* 2006, 69, 1816–1819. [CrossRef] [PubMed]

228. Feng, L.-H.; Li, X.-L.; Lv, C.-T.; Huang, C.-G.; Wang, B.-G. Brocazines A–F, cytotoxic bisthiodiketopiperazine derivatives from *Penicillium brocae* MA-231, an endophytic fungus derived from the marine mangrove plant *Avicennia marina*. *J. Nat. Prod.* 2014, 77, 1921–1927. [CrossRef] [PubMed]

229. Xu, G.; He, G.; Bai, H.; Yang, T.; Zhang, G.; Wu, L.; Li, G. Indole alkaloids from *Chaetomium globosum*. *J. Nat. Prod.* 2015, 78, 1479–1485. [CrossRef] [PubMed]

230. Fujiwara, H.; Sumino, M.; Okuyama, E.; Ishibashi, M. Immunomodulatory constituents from an ascomycete, *Chaetomium seminudum*. *J. Nat. Prod.* 2004, 67, 98–102. [CrossRef] [PubMed]

231. Kirby, G.W.; Rao, G.V.; Robins, D. New co-metabolites of gliotoxin in *Gliocladium virens*. *J. Chem. Soc. Perkin Trans.* 1988, 2, 301–304. [CrossRef]
234. Hauser, D.; Loosli, H.R.; Niklaus, P. Isolierung von 11α,11’-α-dihydroxychaetocin aus Verticillium tenearum. Helv. Chim. Acta 1972, 55, 2182–2187. [CrossRef] [PubMed]

235. Kawahara, N.; Nozawa, K.; Nakajima, S.; Kawai, K. Studies on fungal products. Part 13. Isolation and structures of dithiosilvatin and silvathione, novel dioxopiperazine derivatives from Aspergillus silvaticus. J. Chem. Soc. Perkin Trans. 1 1987, 1987, 2099–2101. [CrossRef]

236. Onodera, H.; Hasegawa, A.; Tsumagari, N.; Nakai, R.; Ogawa, T.; Kanda, Y. MPC1001 and its analogues: New antitumor agents from the fungus Cladorrhinum species. Org. Lett. 2004, 6, 4101–4104. [CrossRef] [PubMed]

237. Nozawa, K.; Udagawa, S.; Nakajima, S.; Kawai, K. Studies on fungal products. XIV. Emestrin B, a new epitrithiodioxopiperazine, from Enicercilla striata. Chem. Pharm. Bull. 1987, 35, 3460–3463. [CrossRef]

238. Herath, H.M.T.B.; Jacob, M.; Wilson, A.D.; Abbas, H.K.; Nanayakkara, N.P.D. New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens. Nat. Prod. Res. 2013, 27, 1562–1568. [CrossRef] [PubMed]

239. Herath, K.; Jayasuriya, H.; Zink, D.L.; Sigmund, J.; Vicente, F.; Cruz, M.; Basilio, A.; Bills, G.F.; Polishook, J.D.; Donald, R.; et al. Isolation, structure elucidation, and antibacterial activity of methiosetin, a teramic acid from a tropical sooty mold (Capnodiun sp.). J. Nat. Prod. 2012, 75, 420–424. [CrossRef] [PubMed]

240. Brown, A.E.; Finlay, R.; Ward, J.S. Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biol. Biochem. 1987, 6, 657–664. [CrossRef]

241. Kong, F.; Wang, Y.; Liu, P.; Dong, T.; Zhu, W. Thiodiketopeperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J. Nat. Prod. 2014, 77, 132–137. [CrossRef] [PubMed]

242. Al-Fatimi, M.A.A.; Julich, W.D.; Jansen, R.; Lindequist, U. Bioactive components of the traditionally used mushroom Podaxis pistillaris. Evid. Based Complement. Altern. Med. 2006, 3, 87–92. [CrossRef] [PubMed]

243. Gulder, T.; Hong, H.; Correa, J.; Egeveea, E.; Wiese, J.; Imhoff, J.; Gross, H. Isolation, structure elucidation and total synthesis of lajollamide A from the marine fungus Asteromyces cruciatus. Mar. Drugs 2012, 10, 2912–2935. [CrossRef] [PubMed]

244. Devault, R.L.; Rosenbrook, W. Novel class of diketopiperazines. J. Antibiot. 1973, 26, 532–534. [CrossRef] [PubMed]

245. Strunz, G.M.; Kakushima, M.; Stillwell, M.A. Epitetrathiodioxopiperazine with 35,65 configuration from Hyalodendron sp. Can. J. Chem. 1975, 53, 295–297. [CrossRef]

246. Takahashi, C.; Numata, A.; Ito, Y.; Matsumura, E.; Araki, H.; Kushida, K. Leptosins, antitumor metabolites of a fungus isolated from a marine alga. J. Chem. Soc. Perkin Trans. 1 1994, 13, 1859–1864. [CrossRef]

247. Takahashi, C.; Takai, Y.; Kimura, Y.; Numata, A.; Shigematsu, N.; Tanaka, H. Cytotoxic metabolites from a fungal adherent of a marine alga. Phytochemistry 1995, 38, 155–158. [CrossRef]

248. Takahashi, C.; Takai, Y.; Kimura, Y.; Numata, A.; Shigematsu, N.; Tanaka, H. Cytotoxic metabolites from a fungal adherent of a marine alga. Phytochemistry 1995, 38, 155–158. [CrossRef]

249. Takahashi, C.; Numata, A.; Matsumura, E.; Minoura, K.; Eto, H.; Shingu, T.; Ito, T.; Hasegawa, T. Leptosins I and J, cytotoxic substances produced by Leptosphaeria sp. physico-chemical properties and structures. J. Antibiot. 1994, 47, 1242–1249. [CrossRef] [PubMed]

250. Takahashi, C.; Minoura, K.; Yamada, T.; Numata, A.; Kushida, K.; Shingu, T.; Hagishita, S.; Nakai, H.; Sato, T.; Hiroshi, H. Potent cytotoxic metabolites from a Leptosphaeria species structure determination and conformational analysis. Tetrahedron 1995, 51, 3483–3498. [CrossRef]

251. Yamada, T.; Iwamoto, C.; Yamagaki, N.; Yamanouchi, T.; Minoura, K.; Yamori, T.; Uehara, Y.; Andoh, T.; Umemura, K.; Numata, A. Leptosins M-N, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga. Structure determination and biological activities. Tetrahedron 2002, 58, 479–487. [CrossRef]

252. Argoudelis, A.D.; Miszak, S.A. Melianacidins II, III and IV structural studies. J. Antibiot. 1977, 30, 468–473. [CrossRef] [PubMed]

253. Pedras, M.S.C.; Abrams, S.R.; Seguin-Swartz, G.; Quail, J.W.; Jia, Z. Phomalirazine, a novel toxin from the phytopathogenic fungus Phoma lingam. J. Am. Chem. Soc. 1989, 1, 1904–1905. [CrossRef]

254. Carr, G.; Tay, W.; Bottrell, H.; Andersen, S.K.; Mauk, A.G.; Andersen, R.J. Plectosphaerica acids A, B, and C, indoleamine 2,3-dioxygenase inhibitors produced in culture by a marine isolate of the fungus. Org. Lett. 2009, 11, 2996–2999. [CrossRef] [PubMed]
255. Ooike, M.; Nozawa, K.; Kawai, K.-I. An epitetrathiodioxopiperazine related to emestrin from Emericella foveolata. Phytochemistry 1997, 46, 123–126. [CrossRef]

256. Curtis, P.J.; Greatbanks, D.; Hesp, B.; Cameron, A.F.; Freer, A.A. Siroidesmins A, B, C, and G, antiviral epipolythiodioxopiperazine-2,5-diones of fungal origin: X-ray analysis of sirodesmin A diacetate. J. Chem. Soc. Perkin Trans. 1 1977, 2, 180–189. [CrossRef] [PubMed]

257. Mitrovic, P.M.; Orcic, D.Z.; Sakac, V.O.; Marjanovic-Jeromela, A.M.; Grahovac, N.L.; Milosevic, D.M.; Marisavljevic, D.P. Characerization of sirodesmins isolated from the phytopathogenic fungus Leptosphaeria maculans. J. Serbian Chem. Soc. 2012, 77, 1363–1379. [CrossRef]

258. Elliott, C.E.; Gardiner, D.M.; Thomas, G.; Cozijnsen, A.; Van De Wouw, A.; Howlett, B.J. Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol. Plant Pathol. 2007, 8, 791–802. [CrossRef] [PubMed]

259. Ronaldson, J.W.; Taylor, A.; White, E.P.; Abraham, R.J. Sporidesmins I, Isolation and characterization of sporidesmin and sporidesmin-B. J. Chem. Soc. 1963, 3172–3180. [CrossRef]

260. Mullbacher, A.; Waring, P.; Tiwari-Palni, U.; Eichner, R.D. Structural relationship of epipolythiodiketopiperazines and their immunomodulating activity. Mol. Immunol. 1986, 23, 231–235. [CrossRef]

261. Sun, R.; Gao, Y.; Shen, K.; Xu, Y.; Wang, C.; Liu, H.; Dong, J. Antimicrobial metabolites from the aquatic fungus Delitschia corticola. Phytochem. Lett. 2011, 4, 101–105. [CrossRef]

262. Hodges, R.; Shannon, J.S. The isolation and structure of sporidesmin C. J. Chem. Soc. 1969, 12, 1665–1668. [CrossRef]

263. Rahman, R.; Safe, S.; Taylor, A. Sporidesmins Part IX, Isolation and structure of sporidesmin E. J. Chem. Soc. C 1969, 12, 1665–1668. [CrossRef]

264. Francis, E.; Rahman, R.; Safe, S.; Taylor, A. Sporidesmins XII, Isolation and structure of sporidesmin G, a naturally-occurring 3,6-epitetrathiopiperazine-2,5-dione. J. Chem. Soc. Perkin Trans. 1 1972, 6, 470–472. [CrossRef]

265. Rahman, R.; Safe, S.; Taylor, A. Sporidesmins Part 17, Isolation of sporidesmin H and sporidesmin J. J. Chem. Soc. Perkin Trans. 1 1978, 12, 1476–1479. [CrossRef]

266. Feng, Y.J.; Blunt, J.W.; Cole, A.L.J.; Munro, M.H.G. Novel cytotoxic thiodiketopiperazine derivatives from a Tilachlidium sp. J. Nat. Prod. 2004, 67, 2090–2092. [CrossRef] [PubMed]

267. Monti, F.; Ripamonti, F.; Hawser, S.P.; Islam, K. Aspirochlorine: A highly selective and potent inhibitor of fungal protein synthesis. J. Antibiot. 1999, 52, 311–318. [CrossRef] [PubMed]

268. Zhang, Y.; Liu, S.; Che, Y.; Liu, X. Epicoccins A-D, epipolythiodioxopiperazines from a Penicillium janthinellum isolate of Penicillium raciborskii. J. Nat. Prod. 1996, 79, 180–189. [CrossRef] [PubMed]

269. Zhu, M.; Zhang, X.; Feng, H.; Dai, J.; Li, J.; Che, Q.; Gu, Q.; Zhu, T.; Li, D. Penicisulfuranols A-F, alkaloids from the mangrove endophytic fungus Penicillium janthinellum HDN13-309. J. Nat. Prod. 2017, 80, 71–75. [CrossRef] [PubMed]

270. Yamazaki, H.; Takahashi, O.; Murakami, K.; Namikoshi, M. Induced production of a new unprecedented epitetrathiodiketopiperazine, chlorotriothiodiethamamide A, by a culture of the marine-derived fungus Trichoderma cf. brevicompactum with dimethyl sulfoxide. Tetrahedron Lett. 2015, 56, 6262–6265. [CrossRef]

271. Yamazaki, H.; Rotinsulu, H.; Narita, R.; Takahashi, R.; Namikoshi, M. Induced production of halogenated epidithiodiketopiperazines by a marine-derived Trichoderma cf. brevicompactum with sodium halides. J. Nat. Prod. 2015, 78, 2319–2321. [CrossRef] [PubMed]

272. Kajula, M.; Ward, J.M.; Turpeinen, A.; Tejesvi, M.T.; Hokkanen, J.; Tolonen, A.; Hukkanen, H.; Picart, P.; Ihalainen, J.; Sahl, H.-G.; et al. Bridged epipolythiodiketopiperazines form Penicillium raciborskii, an endophytic fungus of Rhododendron tomentosum Harmaja. J. Nat. Prod. 2016, 79, 685–690. [CrossRef] [PubMed]

273. Zhu, M.; Zhang, X.; Feng, H.; Dai, J.; Li, J.; Che, Q.; Gu, Q.; Zhu, T.; Li, D. Penicisulfuranols A-F, alkaloids from the mangrove endophytic fungus Penicillium janthinellum HDN13-309. J. Nat. Prod. 2017, 80, 71–75. [CrossRef] [PubMed]

274. Seephonkai, P.; Kongsaeree, P.; Prabpai, S.; Isaka, M.; Thebtaranonth, Y. Transformation of an irregularly bridged epidithiodiketopiperazine to trichodermanamide A. Org. Lett. 2006, 8, 3073–3075. [CrossRef] [PubMed]
275. Guo, C.; Yeh, H.; Chiang, Y.; Sanchez, J.F.; Chang, S.; Bruno, K.S.; Wang, C.C.C. Biosynthesis pathway for the epipodophyllotoxins produced by sporidesmin-F. *J. Am. Chem. Soc.* **2013**, *135*, 7205–7213. [CrossRef] [PubMed]

276. Wang, W.; Wang, Y.; Tao, H.; Peng, X.; Liu, P.; Zhu, W. Cerebrosides of the halotolerant fungus *Alternaria raphani* isolated from a sea salt field. *J. Nat. Prod.* **2009**, *72*, 1695–1698. [CrossRef] [PubMed]

277. Usami, Y.; Aoki, S.; Harata, T.; Numata, A. New dioxopiperazine metabolites from a *Fusarium* species separated from a marine alga. *J. Antibiot.* **2002**, *55*, 655–659. [CrossRef] [PubMed]

278. Zhao, W.Y.; Zhu, T.J.; Han, X.X.; Fan, G.T.; Liu, H.B.; Zhu, W.M.; Gu, Q.Q. A new gliotoxin analogue from a marine-derived fungus *Aspergillus fumigatus*. *Nat. Prod. Res.* **2009**, *23*, 203–207. [CrossRef] [PubMed]

279. Song, Y.; Dou, H.; Gong, W.; Liu, X.; Yu, Z.; Li, E.; Tan, R.; Hou, Y. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. *Eur. J. Pharmacol.* **2013**, *705*, 49–60. [CrossRef] [PubMed]

280. Li, X.; Kim, S.-K.; Nam, K.W.; Kang, J.S.; Choi, H.D.; Son, B.W. A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus *Pseudallescheria*. *J. Antibiot.* **2006**, *59*, 248–250. [CrossRef] [PubMed]

281. Yoshida, K.; Okamoto, M.; Shimazaki, N.; Hemmi, K. PAF inhibitors of microbial origin. Studies on diketopiperazine derivatives. *Prog. Biochem. Pharmacol.* **1988**, *22*, 66–80. [PubMed]

282. Suzuki, Y.; Takahashi, H.; Esumi, Y.; Arie, T.; Morita, T.; Koshino, H.; Uzawa, J.; Uramoto, M.; Yamaguchi, I. Haematocin, a new antifungal diketopiperazine produced by *Nectria haematococca*. Berk. et Br. (880701a-1) causing nectria blight disease on ornamental plants. *J. Antibiot.* **2000**, *53*, 45–49. [CrossRef]

283. Fang, M.; Fang, H.; Huang, Y.; Zhao, Y. Mycoediketopiperazine, a novel fungal metabolite from a *Papularia* sp. *Tetrahedron Lett.* **2005**, *46*, 2147–2148. [CrossRef]

284. Kirby, G.W.; Robins, D.J.; Stark, W.M. Asteroxiepin, a new sulfur-containing oxepine derivative from *Aspergillus terreus*. *J. Chem. Res. S* **1986**, *8*, 302–303.

285. Prachyawarakorn, V.; Mahidol, C.; Sureram, S.; Sangpetsiripan, S.; Wiyakrutta, S.; Ruchirawat, S.; Kittakoop, P. Diketopiperazines and phthalides from a marine derived fungus of the order Pleosporales. *Planta Med.* **2008**, *74*, 69–72. [CrossRef] [PubMed]

286. Haritakun, R.; Rachtawee, P.; Komwijit, S.; Nithithanasilp, S.; Isaka, M. Highly conjugated ergostane-type steroids and aranotin-type diketopiperazines from the fungus *Aspergillus terreus* BCC 4651. *Helv. Chim. Acta* **2012**, *95*, 301–313. [CrossRef]

287. Watts, K.R.; Ratnam, J.; Ang, K.-H.; Tenney, K.; Compton, J.E.; McKerrow, J.; Crews, P. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines form two deep water marine-derived fungi. *Biorg. Med. Chem.* **2010**, *18*, 2566–2574. [CrossRef] [PubMed]

288. Zhang, Y.; Liu, S.; Liu, H.; Liu, X.; Che, Y. Cycloaspeptides F and G, cyclic pentapeptides from a cordycyces-colonizing isolate of *Isaria farinosa*. *J. Nat. Prod.* **2009**, *72*, 1364–1367. [CrossRef] [PubMed]

289. Yang, M.-H.; Li, T.-X.; Wang, Y.; Liu, R.-H.; Luo, J.; Kong, L.-Y. Antimicrobial metabolites from the plant endophytic fungus *Penicillium.* *Fitoterapia* **2017**, *116*, 72–76. [CrossRef] [PubMed]

290. Wang, F.; Tong, Q.; Ma, H.; Hu, H.; Hu, S.; Ma, W.; Xue, Y.; Liu, J.; Wang, J.; Song, H.; et al. Indole diketopiperazines from endophytic *Chaetomium* sp. SS194 induce breast cancer cell apoptotic death. *Sci. Rep.* **2015**, *5*, 9294. [CrossRef]

291. Park, H.B.; Kim, Y.-J.; Park, J.-S.; Yang, H.-O.; Lee, K.R.; Kwon, H.C. Glionitrin B, a cancer invasion inhibitory diketopiperazine produced by microbial coculture. *J. Nat. Prod.* **2011**, *74*, 2309–2311. [CrossRef] [PubMed]

292. Shin, J.; Fenical, W. Isolation of gliovictin from the marine deuteromycete *Asperomyces cruciatus*. *Phytochemistry* **1987**, *26*, 3347. [CrossRef]

293. Meng, L.-H.; Zhang, P.; Li, X.-M.; Wang, B.-G. Penicibrocazines A-E, five new sulfide diketopiperazines from the marine-derived endophytic fungus *Penicillium brocae*. *Mar. Drugs* **2015**, *13*, 276–287. [CrossRef] [PubMed]

294. Wang, K.-T.; Xu, M.-Y.; Liu, W.; Li, H.-J.; Xu, J.; Yang, D.-P.; Lan, W.-J.; Wang, L.-Y. Two additional new compounds from the marine-derived fungus *Pseudallescheria ellipsoidea* F42-3. *Molecules* **2016**, *21*, 442. [CrossRef] [PubMed]
297. Huang, R.; Zhou, X.; Xu, T.; Yang, X.; Liu, Y. Diketopiperazines form marine organisms. *Chem. Biodivers.* **2010**, *7*, 2809–2829. [CrossRef] [PubMed]

298. Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. *Mini Rev. Med. Chem.* **2011**, *11*, 159–168. [CrossRef] [PubMed]

299. Pejin, B.; Jovanovic, K.K.; Mojovic, M.; Savic, A.G. New and highly antitumor natural products from marine-derived fungi: Covering the period from 2003 to 2012. *Curr. Top. Med. Chem.* **2013**, *13*, 2745–2766. [CrossRef] [PubMed]

300. Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. *Microb. Pathog.* **2015**, *82*, 50–59. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).