Synthesis and Reactivity of Four- and Five-Coordinate Low-Spin Cobalt(II) PCP Pincer Complexes and Some Nickel(II) Analogues

Sathiyamoorthy Murugesan,† Berthold Stöger,‡ Maria Deus Carvalho,§ Liliana P. Ferreira,¶ Ernst Pittenauer,† Günter Allmaier,† Luis F. Veiros,§ and Karl Kirchner*†

†Institute of Applied Synthetic Chemistry and ‡Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
§Centro de Química e Bioquímica/DQB and ¶Centro de Física da Matéria Condensada, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
¶Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal

Supporting Information

ABSTRACT: Anhydrous CoCl₃ or [NiCl₃(DME)] reacts with the ligand PCPMe-Pr (1) in the presence of nBuLi afford the 15e and 16e square planar complexes [Co(PCPMe-Pr)Cl₂] (2) and [Ni(PCPMe-Pr)Cl] (3), respectively. Complex 2 is a paramagnetic d⁷ low-spin complex, which is a useful precursor for a series of Co(I), Co(II), and Co(III) PCP complexes. Complex 2 reacts readily with CO and pyridine to afford the five-coordinate square-pyramidal 17e complexes [Co(PCPMe-Pr)(CO)Cl] (4) and [Co(PCPMe-Pr)(py)Cl] (5), respectively, while in the presence of Ag⁺ and CO the cationic complex [Co(PCPMe-Pr)(CO)₂]⁺ (6) is afforded. The effective magnetic moments µ_eff of all Co(II) complexes were derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements and are in the range 1.9 to 2.4 µ_B. This is consistent with a d⁷ low-spin configuration with some degree of spin–orbit coupling. Oxidation of 2 with CuCl₂ affords the paramagnetic Co(III) PCP complex [Co(PCPMe-Pr)Cl₂] (7), while the synthesis of the diamagnetic Co(I) complex [Co(PCPMe-Pr)(CO)₂] (8) was achieved by stirring 2 in toluene with K₂CO₃ in the presence of CO. Finally, the cationic 16e Ni(II) PCP complex [Ni(PCPMe-Pr)(CO)]⁺ (10) was observed in the presence of AgSbF₆ in the presence of CO. The reactivity of CO addition to Co(I), Co(II), and Ni(II) PCP square planar complexes of the type [M(PCPMe-Pr)(CO)]⁺ (n = +1, 0) was investigated by DFT calculations, showing that formation of the Co species, 6 and 8, is thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is unfavorable in this case. X-ray structures of most complexes are provided and discussed. A structural feature of interest is that the apical CO ligand in the range 1.9 to 2.4 μₜ. The DFT-calculted value is 172°, clearly showing that this is not a packing but an electronic effect.

INTRODUCTION

One of the ways of modifying and controlling the properties of transition metal complexes is the use of appropriate ligand systems such as pincer ligands, i.e., tridentate ligands that are coordinated in meridional fashion. Usually consisting of a central aromatic backbone tethered to two two-electron donor groups by different spacers, this class of tridentate ligands has found numerous applications in various areas of chemistry, including catalysis, due to their combination of stability, activity, and variability.¹ We are currently focusing on the synthesis and reactivity of transition metal PNP and PCP pincer complexes where the pincer ligands contain amine (NH and NR) linkers between the aromatic ring and the phosphine moieties.² These types of PNP and PCP ligands are readily available via condensation reactions between various 2,6-diaminopyridines and 1,3-diaminobenzenes and electrophilic chlorophosphines R₃PCl. These ligands can be designed in modular fashion and are thus very versatile ligand platforms. This has resulted in the preparation of a series of square planar group 10 metal PCP complexes,³ as well as numerous iron⁴ and molybdenum PNP systems.⁵

Currently we are focusing on the chemistry of nonprecious metal PCP pincer complexes in particular with the metals cobalt, nickel, and molybdenum. Surprisingly, as cobalt is concerned only a few PCP pincer complexes featuring a direct cobalt–carbon single bond have been reported in the literature. An overview of cobalt PCP pincer systems (A–E), mostly

Received: July 30, 2014
Published: October 9, 2014
based on the Co(I)/Co(III) oxidation states, is depicted in Scheme 1.6−10 It has to be noted that several related cobalt complexes containing anionic pincer-type PNP, PSiP, NCN, and NNN frameworks are described.11−19

Scheme 1. Overview of Co PCP Complexes Reported in the Literature

Here we report on the synthesis, characterization, and reactivity of a series of new cobalt PCP pincer complexes in oxidation states +I, +II, and +III based on the d7 low-spin Co(II) complex [Co(PCPMe-iPr)Cl] where the PiPr2 moieties of the PCP ligand are connected to the benzene ring via NMe linkers. For comparison, the syntheses of some analogous low-spin d8 Ni(II) PCP complexes are also reported.

■ RESULTS AND DISCUSSION

Treatment of anhydrous CoCl2 or [NiCl2(DME)] (DME = 1,2-dimethoxyethane) with the ligand PCPMe-iPr (1) in the presence of nBuLi in THF affords the 15e and 16e complexes [Co(PCPMe-iPr)Cl] (2) and [Ni(PCPMe-iPr)Cl] (3) in 96% and 97% isolated yields, respectively (Scheme 2). The Co(II) complex displays large paramagnetic shifted and very broad 1H NMR signals, which were thus not very informative. 13C{1H} and 31P{1H} NMR could not be detected at all. The magnetic moment of \(\mu_{\text{eff}} = 2.3(1) \mu_B \) was derived from the temperature dependence of the inverse molar magnetic susceptibility, which is well described by a Curie law above 10 K (one unpaired electron). This value is higher than the one expected for the spin-only approximation and is explained by a spin−orbit coupling contribution, being consistent with a low-spin square planar complex.20 DFT calculations21 reveal that the corresponding high-spin Co(II) complex with \(S = 3/2 \), which adopts a pseudotetrahedral geometry, is 19.5 kcal/mol less stable22 than the square planar low-spin state with \(S = 1/2 \) and was not observed experimentally (Figure 1). Solution equilibria between square planar low-spin and tetrahedral high-spin species, which are also accompanied by color changes, were observed for the related Co(II) pincer-type complexes [Co(PNP)Cl], where PNP are anionic disilylamido PNP ligands \([\text{N(SiMe}_2\text{CH}_2\text{PPh}_2)_2]^-\) and \([\text{N-}\text{(SiMe}_2\text{CH}_2\text{PPh}_2)_2]^-\).11,12d The Ni(II) complex, as expected, is diamagnetic and was fully characterized by NMR spectroscopy and elemental analysis.

The solid-state structures of these complexes were determined by X-ray diffraction, and representations of the molecules are presented in Figures 2 and 3. Selected metrical parameters for 2 and 3 are given in Table 1 and in the figure captions, respectively. It has to be noted that structurally

Figure 1. Optimized B3LYP geometries of the low-spin (left) and high-spin (right) isomers [Co(PCPMe-iPr)Cl] (2). Hydrogen atoms are omitted for clarity.

Figure 2. Structural view of [Co(PCPMe-iPr)Cl] (2) showing 50% thermal ellipsoids (H atoms and a second independent complex are omitted for clarity).

Figure 3. Structural view of [Ni(PCPMe-iPr)Cl] (3) showing 50% thermal ellipsoids (H atoms and three other independent complexes are omitted for clarity). Selected bond lengths (Å) and bond angles (deg): Ni1−P1 2.1811(5), Ni1−P2 2.1800(5), Ni1−Cl1 1.915(2), Ni1−Cl1 1.785(2), P1−Ni1−P2 165.70(2), Cl1−Ni1−Cl1 175.30(7).
characterized square planar complexes of Co(II)-Cl are rare, generally requiring strong-field ligands. The molecular structures of all these compounds show the metal in a typical slightly distorted square planar conformation with the PCP ligands coordinated to the metal center in a tridentate meridional mode. In both complexes the C1−Co−Cl1 angles deviate slightly from linearity, being 171.40(9)° and 175.30(7)°, respectively. The P(1)−Co−P2 angles are 167.00(3)° and 159.06(1)°, respectively.

Complex 2 reacts readily with the simple ligands CO and pyridine to afford the five-coordinate square-pyramidal complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5) in 94% and 95% isolated yields, respectively (Scheme 3). These complexes are paramagnetic, and 1H NMR spectra gave rise to broad and featureless signals and were not very informative. 13C{1H} and 31P{1H} NMR signals could again not be detected at all. The magnetic properties of 4 and 5 were studied by SQUID magnetometry. The cobalt effective magnetic moments extracted from a Curie law fitting to inverse molar susceptibility data were 2.0(1) and 2.4(1) μB, respectively, consistent with a low-spin d7 center (one unpaired electron), again with some degree of second-order spin−orbit coupling. Moreover, the CO ligand in 4 gives rise to a strong absorption at 1948 cm−1, indicating strong π-back-bonding from the metal center (cf. 2143 cm−1 in free CO). This is also in accordance with the fact that the CO ligand is not removable under vacuum at 25 °C within several days. Complex 3, on the other hand, does not react with CO or pyridine to give five-coordinate 18e complexes but maintains its square planar geometry.

The solid-state structures of 4 and 5 were determined by single-crystal X-ray diffraction. Structural diagrams are depicted in Figures 4 and 5 with selected bond distances given in Table 1.

Table 1. Selected Bond Distances (Å) and Angles (deg) for the Co(II) PCP Complexes [Co(PCPMe-iPr)Cl] (2), [Co(PCPMe-iPr)(CO)Cl] (4), [Co(PCPMe-iPr)(py)Cl] (5), and [Co(PCPMe-iPr)(CO)2]SbF6 (6)

	2	4	5	6
Co1−C1	1.919(2)	1.950(1)	1.946(1)	1.953(2)
Co1−P1	2.192(1)	2.2066(4)	2.2206(3)	2.2270(6)
Co1−P2	2.184(1)	2.2134(4)	2.2057(4)	2.2154(6)
Co1−Cl1	2.234(1)	2.2743(4)	2.3103(4)	
Co1−C21	1.800(1)	1.821(2)		
Co1−C22	1.833(2)			
Co1−N3	2.1417(8)			
P1−Co1−P2	167.00(3)	159.06(1)	158.44(1)	162.32(2)
C1−Co1−Cl	171.40(9)	151.49(3)	166.89(3)	
Co1−C21−O1	170.0(1)	176.6(3)		
Co1−C22−O2	176.7(2)			
C1−Co1−N3	96.28(3)			
C1−Co1−C21	143.62(8)			
C1−Co1−C22	123.0(1)			
C21−Co1−C22	93.3(1)			

Figure 4. (a) Structural view of [Co(PCPMe-iPr)(CO)Cl] (4) showing 50% thermal ellipsoids (H atoms omitted for clarity). (b) Inner part of 4 showing the square pyramidal structure as well as the significant bending of the apical CO ligand.

Scheme 3. Synthesis of Co(I), Co(II), and Co(III) PCP Complexes Based on [Co(PCPMe-iPr)Cl] (2)
that this is not a packing but an electronic effect. Similar structural peculiarities have been observed for square pyramidal Fe(0) complexes of the type \([\text{Fe}(\text{PNP-tBu})(\text{CO})_2]\) (PNP = N,N′-bis(di-tert-butylphosphinomethyl)pyridine), where this issue has been discussed in detail.23 The bending of the apical CO ligand in 4 may also be rationalized by the theoretical investigations of Hoffmann on five-coordinate metal nitrosyl complexes.24

The electronic structures of complexes 2 and 4 were evaluated by DFT calculations. Representations of the frontier molecular orbitals and spin density plots are presented in Figure 6. The electronic structures correspond to low-spin Co(II) complexes with the SOMO centered in the \(d_{z^2}\) orbital of the metal. The spin density plots confirm this view of the electronic structure with practically all the unpaired spin located on the cobalt center. There is an important participation of the PCP ligand in the second occupied molecular orbital of each complex, but no significant unpaired spin density is observed in the ligands.

Under a CO atmosphere in the presence of 1 equiv of AgSbF₆, complex 2 reacts readily to give the cationic dicarbonyl complex \([\text{Co}(\text{PCPMe-iPr})(\text{CO})_2]^+\) (6) in 93% yield (Scheme 3). This complex exhibits an effective magnetic moment of 1.9(1) \(\mu_B\) in agreement with a \(d^7\) low-spin electron configuration. Complex 6 exhibits two bands at 2013 and 2046 cm\(^{-1}\) in the IR spectrum for the mutually cis CO ligands assignable to the symmetric and asymmetric CO stretching frequencies, respectively.

Moreover, complex 6 was also investigated by means of ESI-MS in the positive ion mode in a CH₃CN solution. Under so-called "soft ionization" conditions, only one signal was observed at \(m/z\) 454,2, which corresponds to the mono CO fragment \([\text{Co}(\text{PCPMe-iPr})(\text{CO})]^+\) (\([M - \text{CO}]^+\)). This clearly suggests that one CO ligand in 6 is labile. An X-ray structure of 6 is shown in Figure 7, with selected bond distances and angles provided in Table 1. In contrast to complexes 4 and 5, the overall geometry of 6 about the cobalt center is better described as distorted trigonal bipyramidal. The two carbonyl ligands and the benzene carbon C1 define the equatorial plane with bond angles of 93.3(1)°, 143.6(1)°, and 123.0(1)° for C21−Co1−C22, C1−Co1−C21, and C1−Co1−C22, respectively.

Figure 5. Structural view of \([\text{Co}(\text{PCPMe-iPr})(\text{py})\text{Cl}]\) (5) showing 50% thermal ellipsoids (H atoms are omitted for clarity).

Figure 6. (a) DFT-computed frontier orbitals (d-splitting) and (b) spin density for \([\text{Co}(\text{PCPMe-iPr})\text{Cl}]\) (2) (left) and for \([\text{Co}(\text{PCPMe-iPr})(\text{CO})\text{Cl}]\) (4) (right).
significant distortion is also observed in the axial phosphine ligands, where the P1–Co1–P2 bond angle of 162.32(2)° is contracted toward the benzene ring. The CO ligands exhibit some bending with Co1–C21–O1 and Co1–C22–O2 angles of 176.6(3)° and 176.7(2)°, respectively, and is thus not as pronounced as in complex 4, where the Co1–C21–O1 angle is only 170.0(1)°.

The metal–ligand bond lengths are generally sensitive to spin state. With respect to low-spin Co(II), a typical Co(II)–C(sp2) bond distance is 1.994(3) Å, as in the low-spin square spin state. With respect to low-spin Co(II), a typical Co(II)–C(sp2) bond distance of 1.70.0(1) Å. Accordingly, both Co1 and Co−P bond distances are generally consistent with the low-spin nature of these complexes.

Oxidation of 2 with CuCl2 cleanly affords the paramagnetic five-coordinate Co(III) PCP complex [Co(PCPMe–iPr)Cl2] (7) in 93% isolated yield (Scheme 3). The solution magnetic moment of 3.1 μB (Evans method) is consistent with a d6 intermediate spin system, corresponding to two unpaired electrons, and is within the observed range of other five-coordinate Co(III) complexes known. This complex displays a large paramagnetic shifted 1H NMR spectrum. At room temperature the line widths are relatively narrow in this particular case, and thus, some ligand resonances could be assigned on the basis of integration. 13C{1H} and 31P{1H} NMR signals could not be detected at all. A structural view of this complex is shown in Figure 8, with selected bond distances and angles reported in the caption. The molecular structure shows the metal in a distorted square pyramidal conformation, which is not uncommon for five-coordinate Co(III) complexes.

Scheme 4. Synthesis of [Co(PCPMe–iPr)(CH2CN)3]2+ (9)

The synthesis of the Co(I) complex [Co(PCPMe–iPr)(CO)2] (8) was achieved by stirring 2 in toluene with stoichiometric amounts of the strong reducing agent KC8 in the presence of carbon monoxide (Scheme 3). This compound was obtained in 90% isolated yield as an air-sensitive but thermally stable yellow solid. The identity of this complex was unequivocally established by 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Complex 8 exhibits two bands at 1906 and 1963 cm⁻¹ in the IR spectrum for the mutually cis CO ligands assignable to the symmetric and asymmetric CO stretching frequencies, respectively. For comparison, the IR spectrum of the related Co(I) complex [Co(PCP-Ph)(CO)]10 (PCP-Ph = 1,3-bis(diphenylphosphinomethyl)benzene) shows two bands, at 1929 and 1982 cm⁻¹, slightly shifted to higher wave numbers, indicating that PCP–iPr is a stronger donor than PCP–Ph. In the cationic Co(II) complex [Co(PCPMe–iPr)(CO)3]+ (6) these bands were found at 2013 and 2046 cm⁻¹. The shift of the CO bands to even higher wave numbers is consistent with the more electron-rich Co(I) center in 8. In the 31P{1H} NMR spectrum the CO ligand gives rise to a low-field resonance as a poorly resolved triplet centered at 207.6 ppm. In the 13C{1H} NMR spectrum a singlet at 170.7 ppm is observed.

The molecular structure of 8 was determined by X-ray crystallography. A structural view is depicted in Figure 9, with selected bond distances and angles reported in the caption. This complex adopts basically a distorted square pyramidal geometry with C1–Co1–C21 and C1–Co1–C22 angles of 99.94(8)° and 154.76(7)°, respectively. The P1–Co1–P1 angle is comparatively small, being 147.69(2)° (cf 167.0°, 159.1°, 158.4°, and 162.3° in 2, 4, 5, and 6, respectively).
The addition of CO to the 15e and 16e complexes [Co(PCPMe-iPr)(CO)]⁺ (n = +1, 0) and [Ni(PCPMe-iPr)(CO)]⁺ was also studied by means of DFT calculations, showing that the reaction is exergonic by −6.4 and by −9.3 kcal/mol for the cationic and the neutral Co complexes, respectively, while it is endergonic by 6.5 kcal/mol in the case of [Ni(PCPMe-iPr)(CO)]⁺ (10) (Scheme 6).²⁷ This indicates that four-coordiante Co complexes are able to add a fifth ligand, forming either square pyramidal or trigonal bipyramidal complexes, while Ni(II) typically remains in the 16e configuration. This, of course, may also have significant implications in catalysis with respect to substrate binding and activation.

CONCLUSION

We have shown here that a PCP pincer ligand based on 1,3-diaminobenzene acts as versatile supporting scaffold in cobalt chemistry. The PCP moiety provides access to a range of Co complexes in formal oxidation states +I, +II, and +III by utilizing the 15e square planar d⁷ complex [Co(PCPMe-iPr)Cl] (2) as synthetic precursor. In contrast to the analogous Ni(II) complex [Ni(PCPMe-iPr)Cl] (3), 2 is able to form stable pentacoordinate square pyramidal or trigonal bipyramidal 17e complexes. For instance, 2 readily adds CO and pyridine to afford the five-coordinate square pyramidal complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5), respectively, while in the presence of Ag⁺ and Co the cationic bipyramidal complex [Co(PCPMe-iPr)(CO)₂]⁺ (6) is formed. The effective magnetic moments μ_eff of all Co(II) complexes derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements are in the range 1.9 to 2.4 μ_B. This is consistent with a d⁷ low-spin configuration with a contribution from the second-order spin–orbit coupling. Oxidation of 2 with CuCl₂ yields the Co(III) PCP complex [Co(PCPMe-iPr)Cl₃] (7), while the synthesis of the Co(I) complex [Co(PCPMe-iPr)(CO)₂] (8) was achieved by reducing 2 with KC₈ in the presence of CO. Complex 7 exhibits a solution magnetic moment of 3.1 μ_B which is consistent with a d⁶ intermediate spin system. The tendency of Co(I), Co(II), and Ni(II) PCP complexes of the type [M(PCPMe-iPr)(CO)]⁺ (n = +1, 0) to add CO was investigated by DFT calculations, showing that the Co species readily form the five-coordinate complexes 6 and 8, which are thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is thermodynamically unfavorable in this case. X-ray structures of most complexes are provided and

Scheme 5. Synthesis of [Ni(PCPMe-iPr)(CO)]⁺ (10)

![Scheme 5](image1)

Scheme 6. Free Energies (kcal/mol) Calculated for the Addition of CO to the 15e and 16e Square Planar Complexes [Co(PCPMe-iPr)(CO)]⁺ (n = +1, 0) and [Ni(PCPMe-iPr)(CO)]⁺

![Scheme 6](image2)
discussed. A structural feature of interest is that the CO ligand in 4 deviates significantly from linearity with a Co–C–O angle of 170.0(1)°. The DFT-calculated value is 172°, clearly showing that this is not a packing but an electronic effect.

EXPERIMENTAL SECTION

All manipulations were performed under an inert atmosphere of argon by using Schlenk techniques or in a MBraun inert-gas glovebox. The solvents were purified according to standard procedures.23 The deuterated solvents were purchased from Aldrich and dried over 4 Å molecular sieves. [NiCl2(DME)]29 and potassium graphite (KC8)30 were prepared according to the literature.1H, 13C{1H}, and 31P{1H} NMR spectra were referenced internally to residual protio-solvent and solvent resonances, respectively, and are reported relative to tetramethylsiline (δ = 0 ppm). 31P{1H} NMR spectra were referenced externally to H3PO4 (85%) (δ = 0 ppm). Magnetoization measurements as a function of temperature were performed on powder samples using a SQUID magnetometer (Quantum Design MPMS). The curves were obtained at 0.1 T for powder samples using a SQUID magnetometer (Quantum Design MPMS). The curves were obtained at 0.1 T for powder samples using a SQUID magnetometer (Quantum Design MPMS).

[Co(PCPMe2Pr)Cl] (2). A suspension of 2 (200 mg, 0.43 mmol) in toluene was stirred in a CO atmosphere, and the solution immediately turned from red to brown. After removal of the solvent under vacuum complex 4 was obtained as a brown solid. Yield: 94% (200 mg). Anal. Calcld for C22H37CoF6N2O2P2Sb (717.18): C, 54.75; H, 7.79; N, 5.72. Found: C, 54.75; H, 7.79; N, 5.77. IR (ATR, cm−1): 1704 (ν(C=O)), 2046 (m/z, μB). ESI-MS (m/z, μB).

[Co(PCPMe2Pr)(py)]Cl (5). To a suspension of 2 (200 mg, 0.43 mmol) in toluene (5 mL) was added excess pyridine (0.5 mL), and the mixture was stirred for 2 h. After removal of the solvent under reduced pressure, complex 5 was obtained in analytically pure form as a yellow solid. Yield: 222 mg (95%). Anal. Calcld for C25H42ClCoN3P2 (540.96): C, 55.51; H, 7.83; N, 7.77. Found: C, 55.66; H, 7.79; N, 7.82. μB = 2.4(1) μB.

[Co(PCPMe2Pr)(CO)3] (4). A suspension of 2 (200 mg, 0.216 mmol) in toluene was treated with 1.1 equiv of freshly prepared KC8 under a N2 atmosphere to 78 °C, and nBuLi (73.98 mmol, 29.6 mL of a 2.5 M solution in n-hexane) was slowly added in a dropwise fashion. The mixture was then allowed to reach room temperature and stirred for 2 h. After that, 1.1 equiv of anhydrous CoCl3 (590 mg, 2.99 mmol) was added, whereupon the solution rapidly turned deep red. After the mixture was stirred for 24 h, the solution was removed under vacuum. The resulting crude product was redissolved in CH2Cl2, insoluble materials were removed by filtration, and the solvent was evaporated under vacuum to afford the product as a red solid. Yield: 1.2 g (96%). Anal. Calcld for C4H12Cl2CoNiP2 (461.86): C, 52.01; H, 8.08; N, 6.07. Found: C, 52.15; H, 8.14; N, 6.15. μeff = 2.3(1) μB.

[Ni(PCPMe2Pr)Cl] (6). A suspension of 2 (200 mg, 0.43 mmol) in toluene was stirred in a CO atmosphere, and the solution immediately turned from red to brown. After removal of the solvent under vacuum complex 6 was obtained as a brown solid. Yield: 49% (200 mg). Anal. Calcld for C22H37NiF6N2O2P2 (706.18): C, 48.35; H, 7.49; N, 5.67. Found: C, 48.35; H, 7.49; N, 5.67. IR (ATR, cm−1): 2013 (μCO), 2046 (μCO). μB = 1.9(1)μB. ESI-MS (m/z, μB).

[Co(PCPMe2Pr)(CO)3] (7). A suspension of 2 (200 mg, 0.43 mmol) in THF was reacted with CuCl2 (64 mg, 0.47 mmol), and the mixture was stirred for 30 min. After that, the solution was evaporated, the mixture was stirred for 15 min. After that, the solution was filtered through Celite, and the solvent was removed under reduced pressure to afford a green-blue solid. Yield: 147 mg (93%). Anal. Calcld for C4H12Cl2CoNiP2 (549.98): C, 56.19; H, 5.19; N, 3.90. Found: C, 56.85; H, 5.23; N, 3.88. IR (ATR, cm−1): 2013 (μCO), 2046 (μCO). μB = 1.9(1)μB. ESI-MS (m/z, μB).
Organometallics

$\omega_{\text{CP}} = 5.9$ Hz, Ph), 31.9 (NCH$_3$), 3.14 (vt, $\gamma_{\text{CP}} = 11.8$ Hz, CH$_3$), 18.2 (C), $\beta_{\text{CP}} = 10.6$ Hz, CH$_2$), the C$_{\text{pm}}$ carbon atom was not detected. 31P(1H) NMR (δ, CD$_2$CO$_2$H 20 °C): 170.6. IR (ATR, cm$^{-1}$): 1906 (ν_{CO}), 1963 (ν_{C})

$\left[\text{Co(}3\text{P}^{\text{Me}}\text{Pr})_2\text{(CH}_3\text{CN)}_2\right]2\text{SbF}_5$(9). A suspension of 8 (200 mg, 0.43 mmol) in CH$_2$CN (5 mL) was treated with AgSbF$_5$ (274 mg, 0.80 mmol), and the mixture was stirred for 30 min. After that, the solvent was evaporated and the crude product was redissolved in CH$_2$Cl$_2$. Insoluble materials were removed by filtration, and upon removal of the solvent a brown solid was obtained. Yield: 265 mg (93%). Anal. Calc for C$_9$H$_{24}$CoF$_{12}$N$_5$Sb$_2$: C, 30.65; H, 4.69; N, 6.52. Found: C, 30.65; H, 4.69; N, 6.52. 1H NMR (δ, CD$_2$Cl$_2$ 20 °C): 7.18 (t, $\gamma_{\text{CP}} = 15.0$ Hz, 1H, Ph), 6.29 (d, $\gamma_{\text{CP}} = 10.0$ Hz, 1H, Ph), 3.18 (s, 6H, NCH$_3$), 2.90 – 3.07 (m, 4H, 4H, CH$_2$CN), 2.59 (s, 3H, CH$_2$CN), 2.27 (s, 6H, CH$_2$CN), 1.38 – 1.51 (m, 24H, CH$_2$), 13C(1H) NMR (δ, CD$_2$Cl$_2$, 20 °C): 158.2 (t, $\gamma_{\text{CP}} = 11.6$ Hz, Ph), 135.3 (CN), 131.5 (CN), 129.0 (Ph), 111.5 (d, $\gamma_{\text{CP}} = 5.6$ Hz, Ph), 104.8 (d, $\gamma_{\text{CP}} = 3.9$ Hz, Ph), 84.1 (NCH$_3$), 28.4 (CH), 18.7 (CH$_3$), 17.8 (CH$_2$), 5.4 (CH$_2$CN), 3.4 (CH$_3$CN), 31P(1H) NMR (δ, CD$_2$Cl$_2$, 20 °C): 133.2.

$\left[\text{Ni(}3\text{P}^{\text{Me}}\text{Pr})_2\text{CO})_2\text{SbF}_5\right]$(10). A suspension of 3 (100 mg, 0.217 mmol) in CH$_2$CN was treated with AgSbF$_5$ (89 mg, 0.26 mmol) under a CO atmosphere, and the mixture was stirred for 2 h. After that, the solution was filtered through Celite, and the solvent was removed under reduced pressure to afford a yellow solid. Yield: 130 mg (87%).

Gaussion 09 software package on the Phoenix Linux Cluster of the Vienna University of Technology. The optimized geometries were obtained with spin-unrestricted calculations, using the B3LYP functional.57 That functional includes a mixture of Hartree–Fock58 exchange with DFT51 exchange–correlation, given by Becke’s three-parameter functional with the Lee, Yang, and Parr correlation functional, which includes both local and nonlocal terms.

The basis set used for the geometry optimizations (basis b1) consisted of the Stuttgart/Dresden ECP (SDD) basis set60 to describe the electrons of Co and Ni and a standard 6-31G(d,p) basis set61 for all other atoms. Frequency calculations were performed to confirm the nature of the stationary points, yielding no imaginary frequency for the minima. The electronic energies (E_h) obtained at the B3LYP/b1 level of theory were converted to free energy at 298.15 K and 1 atm (G_h) by using zero-point energy and thermal energy corrections based on structural and vibrational frequency data calculated at the same level. The molecular orbitals presented in Figure 6a resulted from single point restricted open-shell calculations performed on the optimized structures.

Single-point energy calculations were performed using the M06 functional and a standard 6-311++G(d,p) basis set,41 on the geometries optimized at the B3LYP/b1 level. The M06 functional is a hybrid meta-GGA functional developed by Truhlar and Zhao,42 and it was shown to perform very well for transition metal systems, providing a good description of weak and long-range interactions.43 Solvent effects (benzene) were considered in the M06/6-311+ +G(d,p)/B3LYP/b1 energy calculations using the polarizable continuum model (PCM) initially devised by Tomasi and co-workers,44 with radii and nonelectrostatic terms of the SMD solvation model, developed by Truhlar et al.45

The free energy values presented in the text (G_h) were derived from the electronic energy values obtained at the M06/6-311+ +G(d,p)/B3LYP/b1 level, including solvent effects (E_h), according to the following expression: $G_h = E_h^{\text{soln}} + G_h - E_h^{\text{soln}}$. Three-dimensional representations of the orbitals were obtained with the program Chemcraft.60

ASSOCIATED CONTENT

Supporting Information

Complete crystallographic data, 1H, 13C(1H), and 31P(1H) NMR spectra of all diamagnetic complexes, 1H NMR spectrum of the electronic spectra (E_h), and 1H NMR spectrum of complex 7, as well as technical details in CIF format for 2, 3, 4, 6, 5, 7, and 10. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: kkirch@mail.tuwien.ac.at.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support by the Austrian Science Fund (FWF) is gratefully acknowledged (Project No. P24583-N28), and L.F.V. and L.P.F. acknowledge Fundação para a Ciência e Tecnologia, Projecto Estratégico, Pest-OE/QUI/30100/2013 and Pest-OE/FIS/UI0261/2014, respectively. The X-ray center of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal diffractometer.

REFERENCES

1. Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750–3781.
2. van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759–1792.
3. Bhattacharya, P.; Han, G. Inorg. Chem. 2011, 50, 185–190.
4. Schneider, S.; Meiners, J.; Askevold, B. Eur. J. Inorg. Chem. 2012, 412–429.
5. Morales-Morales, D.; Jensen, C. M., Eds. The Chemistry of Pincer...
(25) Falvello, L.; Gerloch, M. Acta Crystallogr. B 1979, B35, 2547.
(26) Sur, S. K. J. Magn. Reson. 1989, 82, 169.
(27) Free energy values including solvent effects (PCMV model; see Computational Details).
(28) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: New York, 1988.
(29) Kermagoon, A.; Braustein, P. Organometallics 2008, 27, 88–99.
(30) Weitr, I. S.; Rabinovitch, M. J. Chem. Soc., Perkin Trans. 1 1993, 1, 117–120.
(31) Bruker computer programs: APEX2, SAINT, SADABS, and TWINABS; Bruker AXS Inc.: Madison, WI, 2012.
(32) Palatinus, L.; Chapuis, G. J. Appl. Crystalllography 2007, 40, 786–790.
(33) Petriček, V.; Dušek, M.; Palatinus, L. Z. Kristallography 2014, 239, 345–352.
(34) Spek, A. L. J. Appl. Crystalllography 2003, 36, 7–3.
(35) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Picdick, E.; Shields, G. P.; Taylor, B.; Towler, M.; van de Streek, J. J. Appl. Crystalllography 2006, 39, 453–457.
(36) Frisch, M. J.; et al. Gaussian 09 Revision A02; Gaussian, Inc.: Wallingford, CT, 2009.
(37) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200–206. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
(38) (a) Hebden, T. J.; St. John, A. J.; Gusev, D. G.; Kaminsky, W.; (b) Lian, Z.; Xu, G.; Li, X.
(39) (a) Haeusermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 78, 1211–1224. (b) Kuchtle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100, 7535–7542. (c) Leiningr, T.; Nicklass, A.; Stoll, H.; Dolg, M.; Schwedterfeg, J. P. Chem. Phys. 1996, 105, 1052–1059.
(40) (a) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639–5648. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pope, J. A. J. Chem. Phys. 1980, 72, 650–654. (c) Wachtlers, A. J. H. J. Chem. Phys. 1970, 52, 1033–1036. (d) Hay, P. J. J. Chem. Phys. 1977, 66, 4377–4384. (e) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062–1065. (f) Binning, R. C., Jr.; Curtiss, L. A. J. Comput. Chem. 1990, 12, 206. (g) McGrath, M. P.; Radom, L. J. Chem. Phys. 1991, 94, 511–516.
(41) (a) McClean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639–5648. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pope, J. A. J. Chem. Phys. 1980, 72, 650–654. (c) Wachtlers, A. J. H. J. Chem. Phys. 1970, 52, 1033–1036. (d) Hay, P. J. J. Chem. Phys. 1977, 66, 4377–4384. (e) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062–1065. (f) Binning, R. C., Jr.; Curtiss, L. A. J. Comput. Chem. 1990, 12, 2126–2126. (g) McGrath, M. P.; Radom, L. J. Chem. Phys. 1991, 94, 511–516. (h) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. Comput. Chem. 1983, 4, 294–301. (i) Frisch, M. J.; Pope, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265–3269.
(42) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.
(43) (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157–167. (b) Zhao, Y.; Truhlar, D. G. Chem. Phys. Lett. 2011, 502, 1–13.
(44) (a) Cancés, T. M.; Menucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032–3041. (b) Cossi, M.; Barone, V.; Menucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253–260. (c) Menucci, B.; Tomasi, J. J. Chem. Phys. 1997, 106, 5151–5158. (d) Tomasi, J.; Menucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3094.
(45) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378–6396.
(46) (http://www.chemcraftprog.com/).