Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above

Tamara Villaverde1,2, Lisa Pokorny2*, Sanna Olsson2, Mario Rincón-Barrado1, Matthew G. Johnson4,5, Elliot M. Gardner6, Norman J. Wickett5,7, Julià Molero8, Ricarda Riina1† and Isabel Sanmartín1†

1Real Jardín Botánico (RJB-CSIC), Plaza de Murilllo 2, 28014 Madrid, Spain; 2Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK; 3Department of Forest Ecology and Genetics, INIA Forest Research Centre (INIA-CIFOR), Ctra. de la Coruña km. 7.5, 28040 Madrid, Spain; 4Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409-43131, USA; 5Department of Plant Science and Conservation, Chicago Botanical Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA; 6The Morton Arboretum, 4100 Illinois 53, Lisle, IL 60532 USA; 7Program in Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, Evanston, IL 60208 USA; 8Laboratori de Botànica, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain

Abstract

Reconstructing phylogenetic relationships at the micro- and macroevolutionary levels within the same tree is problematic because of the need to use different data types and analytical frameworks. We test the power of target enrichment to provide phylogenetic resolution based on DNA sequences from above species to within populations, using a large herbarium sampling and Euphorbia balsamifera (Euphorbiaceae) as a case study.

- Target enrichment with custom probes was combined with genome skimming (Hyb-Seq) to sequence 431 low-copy nuclear genes and partial plastome DNA. We used supermatrix, multispecies-coalescent approaches, and Bayesian dating to estimate phylogenetic relationships and divergence times.

- *Euphorbia balsamifera*, with a disjunct Rand Flora-type distribution at opposite sides of Africa, comprises three well-supported subspecies: western Sahelian *sepium* is sister to eastern African-southern Arabian *adenensis* and Macaronesian-southwest Moroccan *balsamifera*. Lineage divergence times support Late Miocene to Pleistocene diversification and climate-driven vicariance to explain the Rand Flora pattern.

- We show that probes designed using genomic resources from taxa not directly related to the focal group are effective in providing phylogenetic resolution at deep and shallow evolutionary levels. Low capture efficiency in herbarium samples increased the proportion of missing data but did not bias estimation of phylogenetic relationships or branch lengths.

Introduction

Evolutionary biologists, in their efforts to determine which factors govern biodiversity dynamics, have used two approaches that differ primarily in the time frame in which they operate: microevolutionary processes (genetic drift, mutation, migration) act mostly on individuals within populations (recent time), while macroevolutionary processes (speciation, extinction, dispersal) focus on diversification at and above species level in relation to environments and over longer timescales (Benton, 1995; Reznick & Ricklefs, 2009). Species experience population size changes and range shifts in response to climatic oscillations, structuring their gene pools across their geographic ranges; these processes are often addressed through population-genetic or demographic studies (Hewitt, 2000, 2004; Davis & Shaw, 2001; Parmesan, 2006). However, over longer timescales (hundreds of thousands to millions of yr), the signature of these microevolutionary processes can become saturated, in which case phylogenies addressing the order and timing of diversification events provide more information on the evolutionary fate of lineages (Svenning et al., 2015). Although micro- and macroevolution operate over different geographic and temporal scales, stochastic processes have been shown to leave their imprint on deep phylogenetic histories (Oliver, 2013).

Bridging the micro- and macroevolutionary scales is difficult because the types of molecular data, sampling schemes, and phylogenetic models that are often employed differ when analysing population and species-level relationships. Microevolutionary studies typically use multiple individuals per population and rely on repeated DNA or polymorphic molecular markers (e.g. simple
sequence repeat, amplified fragment length polymorphism), as they, in comparison to DNA sequence data, provide more variability at the population level and can be used to detect recent admixture (Guichoux et al., 2011). Yet these types of markers are not readily analysable using the standard molecular substitution models employed in phylogenetics based on DNA sequences (e.g. Tavaré, 1986); instead, approximate models (e.g. Luo et al., 2007) or still debated statistical models are employed (Hobolt et al., 2008; Wu & Drummond, 2011). Conversely, macroevolutionary studies often rely on DNA sequences from only one individual per species, but the use of a single or few genetic regions is usually not enough to obtain well-resolved and supported phylogenies (e.g. Pelser et al., 2007). Furthermore, these analyses are limited to parts of the genome that may contain conflicting signals, leading to spurious phylogenetic relationships (Shen et al., 2017).

High-throughput sequencing (HTS) provides an avenue for bridging the micro- and macroevolutionary gap in phylogenetics by scaling up the number of loci and individuals within populations and across species that can be sequenced at a reasonable cost (Barrett et al., 2016). Target sequencing has gained popularity in recent years because, unlike whole-genome sequencing (WGS), which requires fresh material (but see Dentinger et al., 2016), this technique can work with both fresh and old museum material (e.g. Lemmon & Lemmon, 2013; Barrett et al., 2016) and generally demands less complex bioinformatics (e.g. Fér & Schmickl, 2018). Reduced representation techniques such as restriction site-associated DNA sequencing (RADseq, Baird et al., 2008) or genotype-by-sequencing (Elshire et al., 2011) work well for population-level analysis and do not require a reference genome. Yet, their outputs are single nucleotide polymorphisms (SNPs) or small reads from anonymous loci, which make assessment of gene orthology challenging in the case of deep divergences (e.g. Rubin et al., 2012; although see Hipp et al., 2018). A modification of target sequencing, Hyb-Seq, that is, hybrid enrichment with genome skimming (Weitemier et al., 2014), is promising for nonmodel organisms because it generates thousands of DNA sequences from low or single-copy nuclear genes (LCNGs), combining exon capture with genome skimming of intronic and intergenic regions, flanking the targeted exon regions. Hyb-Seq also generates highly repetitive DNA from organellar genomes as a by-product; the latter is important to detect reticulate evolution and introgression.

Here, we examine the efficiency of Hyb-Seq to provide phylogenetic resolution at deep and shallow evolutionary levels using fine-scale within-population sampling from both silica-dried tissue and old herbarium material to solve multilevel relationships. Fragmented DNA from museum samples can lead to a potential bias in phylogenomic analyses (Sayyari et al., 2017); however, only few studies have tested this effect within species based on a limited number of herbarium samples (e.g. Hart et al., 2016). As a case study, we use Euphorbia balsamifera Aiton (the sweet tabaiba, Euphorbiaceae; Fig. 1), a taxon exhibiting a deep intraspecific divergence (c. 3.8 million yr ago (Ma); Peirson et al., 2013; Pokorny et al., 2015) and a disjunct distribution spanning thousands of kilometres on opposite sides of Africa, the so-called Rand Flora pattern (Christ, 1892; Andrus et al., 2004; Sanmartin et al., 2010). In this biogeographic pattern, unrelated plant lineages show similar disjunct distributions with sister taxa in distinctly located regions along African continental margins and adjacent islands, such as Macaronesia-northwest Africa, western Africa mountains, Horn of Africa-South Arabia, eastern Africa and southern Africa. Euphorbia balsamifera is a diploid species that belongs to section Balsamis Webb & Berthelot within subgenus A thy malus Neck. ex Rchb. Its current taxonomy (see Supporting Information Notes S1) recognizes two subspecies: balsamifera, distributed in all major islands in the Canaries, the northwestern Atlantic coast of Africa and western Sahel; and adenensis (Deflers) P.R.O. Bally, occurring in eastern Africa, southern Arabia and the Socotra Archipelago (Govaerts et al., 2000; Peirson et al., 2013). There is a third taxon, ssp. sepi um N.E.Br. (Molero et al., 2002), currently synonymized under ssp. balsamifera, which has been applied to all the populations of western Sahel and whose taxonomic status and phylogenetic position have never been addressed using molecular data (Bruyns et al., 2011; Peirson et al., 2013). Difficulties in obtaining fresh material from remote and now politically unstable countries across eastern Africa and the Middle East have restricted phylogenetic studies of Euphorbia from those areas to multicopy DNA regions like nuclear internal transcriber spacers (ITS) and plastid markers (Bruyns et al., 2011; Peirson et al., 2013; Fig. S1); these might be easily Sanger-sequenced from herbarium specimens.

In this phylogenomic study, the first within Euphorbiaceae, we designed probes to capture 431 orthologous low-copy nuclear loci (c. 709 kbp) using a significant amount of herbarium material. Our specific aims were to test the utility of probes based on genomic resources from taxa not directly related to the focal group in providing phylogenetic resolution from within populations and species (E. balsamifera) to above-species level (within section Balsamis and subgenus A thy malus); to assess the effect of extensive use of highly degraded DNA from herbarium material on capture success and potential bias in phylogenomic inference at different evolutionary scales; to test the ability of our probes to obtain off-target chloroplast sequences; and to test the monophyly of E. balsamifera ssp. sepi um and its phylogenetic relationship within E. balsamifera and estimate lineage divergence times.

Materials and Methods

Sampling

We started with 165 samples, of which 121 were successfully amplified (Table S1). In the final dataset, Euphorbia balsamifera s.l. is represented by 40 populations (i.e. localities; Table S1, Fig. 1g,h). Seven populations of the Canarian ssp. balsamifera included at least eight individuals, and one (Telde, IS462) came from a single individual. Also several populations were represented by a single individual: ssp. balsamifera from W Africa (three), ssp. adenensis (19) and ssp. sepi um (10). Our dataset also included at least one sample from other representatives within section Balsamis (E. larica Boiss., E. mastrahensis Ghaz. and E. noxia Pax), and subgenus A thy malus (E. antso Denis, sect.
Fig. 1 Morphology and geographic distribution of *Euphorbia balsamifera*. (a) *Euphorbia balsamifera* ssp. *balsamifera* from the coast of Western Sahara. (b) Cyathium of ssp. *balsamifera* from Tenerife (Canary Islands). (c) *Euphorbia balsamifera* ssp. *sepium* from inland populations in Western Sahara near the border with Mauritania. (d) Fruit and long narrow leaves typical of ssp. *sepium*. (e) Specimen of *E. balsamifera* ssp. *adenensis* from Oman. (f) Cyathium and apical leaves of ssp. *adenensis*. (g, h) Geographic distribution of *Euphorbia balsamifera* in the Canary Islands, North Africa, and Arabian Peninsula based on herbarium specimens: ssp. *balsamifera* (circles), ssp. *sepium* (triangles), and ssp. *adenensis* (diamonds); (h) Detailed distribution of ssp. *balsamifera* in the Canary Islands. Fuchsia, green and orange symbols represent sampled DNA specimens of each taxon included in the phylogeny shown in Fig. 3(a), whereas grey symbols (all shapes) represent herbarium records without genomic data. Photos by: (a–d) R. Riina; (e, f) J. J. Morawetz.
As genomic resources for the design of probes, we used the transcriptomes of two *Euphorbia* species from subgenera *Chamaesyce* and *Euula* (RHAU and PXYR, *E. mesembryanthemifolia* Jacq, and *E. pekinensis* Rupr., respectively) – available through the 1KP initiative (www.onekp.com/public_data.html) and *Ricinus communis* L. (Euphorbiaceae) as the reference genome (v0.1, available at www.phytozone.net; Chan et al., 2010) to estimate intron/exon boundaries. MARKERMINER v.1.0 (Chamala et al., 2015) was employed to identify LCNGs’ orthologous loci, which were used to develop the gene target probes. Probes were designed for 431 orthologous LCNGs (Table S2) ranging from 639 to 6774 bp with at least one exonic fragment per LCNGs longer than 500 bp, representing a total length of c. 709 kbp. Arbor Biosciences (Ann Arbor, Michigan, USA) manufactured a target enrichment kit with in-solution biotinylated probes. The 120-mer probes (20,002 total baits) were tiled at $2 \times$ density for the sequences of the two *Euphorbia* transcriptomes and $1.5 \times$ for the sequences of *R. communis*.

Genomic DNA (extraction protocols in Methods S1) from silica-dried samples and recent herbarium collections, which had fragment sizes > 550 bp, were sonicated to a target fragment size of 550 bp using a Covaris E220 Focused-ultrasonicator (Woburn, MA, USA). The remaining samples for which the average fragment size was < 550 bp were not sonicated and thus resulted in libraries with insert size < 550 bp. Sequencing libraries were prepared using the Illumina TruSeq Nano HT DNA Kit (Illumina Inc., San Diego, CA, USA). Indexed samples were pooled in approximately equal quantities (typically 16–22 samples per equimolar 1000 ng pool, when possible). Each pool was enriched using the custom baits kit following the manufacturer’s protocol, at 60–65°C for 16–24 h. Pooling of samples was phylogenetically informed; we avoided including in the same pool intra- and interspecific sampling, for example, other taxa and *E. balsamifera* specimens, to prevent a large number of baits being sequenced by ingroup samples. Enriched products were PCR-amplified for 14 cycles and purified using the QIAquick PCR purification kit (Qiagen). All sequencing took place on an Illumina MiSeq at The Field Museum of Natural History (Chicago, IL, USA). The 96 silica-dried samples (five pools) were sequenced on two 2×300 bp runs (600 cycle v3). The 48 herbarium samples (two pools) were sequenced on one 2×75 bp (150 cycle v3) run; as a result of low enrichment, these pools were re-enriched following the myBaits® protocol using previously enriched product as the input. The double-enriched products were then sequenced on another 2×75 bp run. To ensure recovery of chloroplast sequences, we added 10% unenriched library to all sequencing runs. Further details can be found in Methods S1.

Data processing and phylogenetic analysis of targeted nuclear loci

Demultiplexed sequences were quality-filtered using TRIMMOMATIC (Bolger et al., 2014) to remove adapter sequences. We also removed poorly aligned regions from alignments using TRIMAL v.1.2 (removing all columns with gaps in > 50% of the sequences or with a similarity score < 0.001, unless this removes > 40% of the columns in the original alignment; Capella-Gutiérrez et al., 2009). The HybPiper pipeline (v.1.0; Johnson et al., 2016) was used to assemble loci. Summary statistics were obtained using SAMTOOLS v.1.8 (Li et al., 2009). Orthologous sequences from 428 nuclear loci containing only exons were aligned using MAFFT v.7.222 (Katoh & Standley, 2013). We evaluated gene capture success as the percentage of summed captured length of all target loci per individual divided by the summed mean length of all reference loci. We considered an alignment to be poor quality if the aligned pairwise identity was < 65.5% and the percentage of identical sites was < 15% (Table S3). This resulted in 132 loci removed from the final dataset and subsequent analyses. Therefore, the final dataset included exons from 296 loci (486 878 bp, 121 samples).

All 296 exon matrices were concatenated into a supermatrix and a phylogenetic tree was built by maximum likelihood (ML) after automatic model selection using ModelFinder (Kalyaanamoorthy et al., 2017) in IQ-TREE v.1.4.2 (Nguyen et al., 2015) (1000 ultrafast bootstraps `--bb`, `--m TEST`) and RAxML v.8.2.9 using the gtrcat model with 200 fast bootstraps followed by slow ML optimization (default `--fa` search; Stamatakis, 2014). Alternatively, we used methods that implement the multispecies coalescent models (MSC), where individual genes are allowed to evolve within the species tree under independent tree topologies to account for gene tree discordance. In particular, we used ASTRAL-II v.2.4.7.7 (Mirarab & Warnow, 2015) with default parameters to estimate a species tree from the individual gene trees by maximizing the number of quartet trees (sets of four species) shared between gene trees and the species tree (Chou et al., 2015; Mirarab & Warnow, 2015). This method is not based on parameter estimation and thus is efficient with large-genome datasets; besides it can generate species trees that are statistically consistent with the MSC model. New alignments and ML phylogenies were created for each of the 296 exon matrices with Practical Alignment using SATé and Transitivity (PASTA; Mirarab et al., 2015). We ran PASTA with default parameters and different options for alignment: MAFFT or MUSCLE (Edgar, 2004); merging: OPAL (Wheeler & Kececioglu, 2007) or MUSCLE; and ML tree estimation: FASTTREE (Price et al., 2010) or RAxML. The resulting ML trees were used to infer the coalescence-based species phylogeny in ASTRAL II with local posterior probabilities estimated to provide support for relationships. Because of concerns with the effect of alignment trimming on phylogenetic estimation (Tan et al., 2015), we ran our analyses with and without trimmed sites.

Additionally, we used SVDQUARTETS to infer a species tree under the coalescent framework (Chifman & Kubatko, 2014, 2015). Unlike ASTRAL-II, SVDQUARTETS does not require a priori
inference of individual gene trees. Instead, quartet trees are evaluated using an algebraic approximation (i.e. the expected rank of the flattened rate matrix under MSC) and combined into a species tree using a supertree approach. Originally designed for SNPs, SDVQUARTETS has been shown to perform well on multilocus datasets even though it violates the assumption that sites are independent (Chifman & Kubatko, 2015). We used the concatenated 296-exon supermatrix as input with the option evaluating 100 000 random quartets or all possible quartets if fewer than 100 000. Clade support was assessed by running 100 bootstrap replicates, using the MSC model. The analysis was performed in Paup* 4.0a146 (Swofford, 2002). Both ASTRAL-II and SDVQUARTETS were run with samples unassigned (‘blind’) or assigned to the lineages identified in the ‘blind’ analyses: *sepium*, *adenensis*, and within *balsamifera* (Western Sahara, Gran Canaria, East Tenerife, West Tenerife, and La Gomera).

To explore the effect of more than one single copy per locus, we used HybPiper scripts to generate a list of potential paralogues for each sample and locus (Table S4). If a gene is identified as a parologue in several samples, that gene is a candidate for potential duplication and paralogy; if only in one sample, it is probably a different allele; if a sample contains multiple paralogues, that sample is a potential polyploid. Thus, we ran different analyses in ASTRAL-II by sequentially removing loci with paralogues in at least one sample, two or more samples, or > 10 samples, and compared the resulting topologies with the full dataset. We also evaluated gene tree–species tree discordance by computing the level of support/conflict provided by each of the 296 gene trees used in the analyses for bipartitions shown in the ASTRAL-II species tree, as well as for other alternative bipartitions. We followed the procedure described in Smith *et al.* (2015) and used Matt Johnson’s scripts (https://github.com/mossmatters/MPyTONotebooks/blob/master/PhyParts_PieCharts.ipynb) to visualize the results. This procedure allowed us to evaluate how many genes support or conflict with individual bipartitions within the species tree, that is, if there is a dominant tree topology in the gene trees or, if there is conflict, whether this stems from an alternative tree topology or from many low-frequency alternative gene topologies or lack of support for conflicting bipartitions (Smith *et al.*, 2015).

Finally, we also analysed introns and supercontig (exon + intron) matrices generated by HybPiper. As before, we considered an alignment to be poor quality if the percentages of identical sites were < 40% and < 25%, respectively. This resulted in matrices of 15 out of 404 introns and 112 out of 424 supercontigs (Tables S5, S6). Phylogenetic trees using concatenated introns (97 samples, 16 817 bp) and supercontigs (117 samples, 347 878 bp) matrices were analysed with IQ-TREE, with same settings as earlier.

Data processing and phylogenetic analysis of chloroplast (skinned) data

To compare the nuclear and plastid phylogenetic signals, we recovered plastid DNA using the annotated plastome of *R. communis* (NC_016736) and transferring its annotations to a draft plastome of *Euphorbia esula* (Horvath *et al.*, 2018), if similarity was 95% between the two plastomes, using the transfer annotations function in Geneious v.9.1.7 (http://www.geneious.com, Kearse *et al.*, 2012). Subsequently, we extracted coding sequence (CDS) regions from each gene (86 exons in total) and used HybPiper with the default parameters to extract exons sequences. We only included 10 samples of the three subspecies (ssp. *balsamifera*, *adenensis* and *sepium*). For ssp. *balsamifera*, samples were merged by island (i.e. Gran Canaria, Tenerife and La Gomera); for the other subspecies, samples were merged by country (Table S7). Admittedly, this strategy was not optimal but it was motivated by the low coverage recovered by sample (Table S8). Also, our main interest with this analysis was to test if the plastid genome supported the same clades, corresponding to the three subspecies, recovered in all the analyses of nuclear loci.

We obtained 66 exon matrices that were aligned with MAFFT and corrected manually following a similarity criterion (Simmons, 2004). Then, they were concatenated into a supermatrix (63 133 bp) that included only seven samples because the sequence length in three samples did not reach 5% of the total length in the concatenated matrix. The latter was analysed with RAxML applying gtrcat and 200 fast bootstraps followed by slow ML optimization (default ‘–fa’ search).

Divergence time estimation

Divergence times were estimated in BEAST v.1.8 (Drummond & Rambaut, 2007) using the nuclear exon supermatrix (296 loci). Analyses were run in a reduced dataset that included all the target species, and two samples for each of the three clades (subspecies) within *E. balsamifera* (Methods S1). The dataset was run unpartitioned under the best-fitting substitution model estimated in IQ-TREE (GTR+I). A birth–death process with incomplete taxon sampling (Stadler, 2009) was used as the tree-growth prior. We forced the monophyly of some clades to conform to accepted phylogenetic relationships among the *Athymalus* taxa (Peirson *et al.*, 2013; Methods S1). We did the same for ssp. *balsamifera*, *sepium* and *adenensis*, as these taxa were recovered as monophyletic groups in all phylogenomic analyses of the nuclear and plastid plast (see later). We estimated divergence times under the strict clock (SC) model and two Bayesian relaxed clocks: the uncorrelated lognormal clock (UCLD; Drummond *et al.*, 2003) and a random local clock (RLC; Drummond & Suchard, 2010). Final analyses comprised Markov chain Monte Carlo (MCMC) searches run for 400 million generations, with samples logged every 40 000th generation. The root node and the next basal node – that is, the divergence from the rest of the tree of *E. antio* and *E. hadramautica*, respectively – were constrained using two secondary calibration points from Horn *et al.* (2014). They were assigned normal distribution priors (Ho & Phillips, 2009) spanning the mean and 95% highest posterior density (HPD) intervals in the original studies: 24.56 ± 5 Ma for *E. antio* and 18.21 ± 4 Ma for *E. hadramautica*. TRACER v.1.6 (Rambaut *et al.*, 2014) was used to verify MCMC stationarity and adequate effective sampling densities (ESS > 200) for all parameters. TreeAnnotator v.1.8.0 (http://beast.bio.ed.ac.uk/treea
nnotator) and FigTree v.1.4.2 (Rambaut, 2009) were used, respectively, to generate and visualize the resulting maximum clade credibility (MCC) tree.

To date population divergence events within Canarian *E. balsamifera* (the best sampled in our dataset), we used a reduced exon supermatrix containing one accession of ssp. *adenensis* and all (80) accessions of ssp. *balsamifera*. All priors were set as described earlier, except for constant coalescent as tree prior. The divergence of ssp. *balsamifera* from ssp. *adenensis* was constrained with a normal distribution prior (4.5 ± 1.05 Ma) from the species-level analysis described earlier.

The raw reads were deposited in GenBank under BioProject PRJNA415769. Draft assemblies, bait sequences and full-length targets are archived in Digital-CSIC (https://digital.csic.es); BEAST xml files are provided in Methods S2.

Results

Gene-capture success

The baits designed based on genomic resources from *R. communis* and two species of *Euphorbia* belonging to subgenus other than *Athymalus* were effective in capturing the target genes across broad evolutionary scales: among sections of *Athymalus*, within section *Balsamis*, and among subspecies and populations of *balsamifera* (Table S9). The average number of reads per sample obtained was 1 036 822 and the percentage of mapped reads per sample was 48.61%, ranging from 7 to 69% (Table S10). In general, capture success was much higher for silica-dried material than for herbarium material (Table 1; Fig. 2). Average success was 73% and varied across taxa. Gene-capture success was almost complete for ssp. *balsamifera* (99%) with the exception of three herbarium samples (IS401, IS459, IS460) from southwest Morocco and Western Sahara (Table S9). Other taxa also had a relatively high gene-capture success (86%) in contrast to ssp. *adenensis* (43%) and *sepium* (45%) that were represented almost entirely by herbarium samples (Table S9). There was a significant correlation between age of herbarium material (which ranged between 3 and 126 yr) and percentage of success (*P*< 0.01; Fig. 2). However, the plot of residuals shows that this correlation does not hold for all age groups: it is not significant for specimens within the time interval 1950–2002 (*P* > 0.5).

Taxon	Silica	Herbarium	Total	Successful
Euphorbia ssp. *adenensis*	1	43	44	19 (43%)
Euphorbia ssp. *balsamifera*	81	4	85	84 (99%)
Euphorbia ssp. *sepium*	0	22	22	10 (45%)
Other taxa	11	3	14	12 (86%)
Total	93 (96%*)	72 (46%*)	165	121 (73%)

Successfully amplified samples included in the phylogenomic analyses. The two percentage values in the last row indicate the amplification success depending on the type of material used (fresh silica-dried tissue vs herbarium samples).

Phylogenetic estimation of gene tree-species tree from nuclear data

All our analyses solved evolutionary relationships within the subgenus *Athymalus* as well as within *E. balsamifera*. Maximum likelihood analysis (IQ-TREE) of the 296-exon dataset recovered a well-supported phylogeny with values of bootstrap supports (BS) of 100 for backbone and main clade relationships, except for the position of *E. noxia* (BS = 94), which is included in a phylogeny here for the first time. Within *E. balsamifera*, the three subspecies were recovered in a highly supported clade. Subspecies *sepium* was sister to ssp. *adenensis* and *balsamifera* (Fig. 3a). A clade comprising *E. masrabensis*, *E. larica* and *E. noxia* was inferred as sister to *E. balsamifera*, with *E. davyi* as sister to them. Successive sister clades are two other clades: *E. socotrina-E. scheffleri* and *E. smithii-E. matabelenis*; *E. hadranautica* is sister to the aforementioned clades (Fig. 3a), with *E. anto* at the root of the tree.

At the population level, specimens of ssp. *balsamifera* were grouped into several highly supported clades (> 95 BS) that seem to follow geographic location. Specimens from Gran Canaria and eastern Tenerife were grouped into two clades that were sister to
each other (Fig. 3a). Sequences from western Tenerife were divided into two subclades (BS = 100 and 85) embedded within a larger La Gomera clade. The three samples from southwest Morocco (IS 401) and Western Sahara (IS459, IS460) were grouped together, nested within a clade containing samples of eastern Tenerife. The clades of ssp. adenensis and sepium had substantially longer branches than the clade of ssp. balsamifera clade, and in contrast to it, they lacked clear geographic structure (Fig. 3a).

Similar tree topologies and relative branch lengths were recovered from each other (Fig. 3a). Sequences from western Tenerife were divided into two subclades (BS = 100 and 85) embedded within a larger La Gomera clade. The three samples from southwest Morocco (IS 401) and Western Sahara (IS459, IS460) were grouped together, nested within a clade containing samples of eastern Tenerife. The clades of ssp. adenensis and sepium had substantially longer branches than the ssp. balsamifera clade, and, in contrast to it, they lacked clear geographic structure (Fig. 3a).

Sensitivity analyses in ASTRAL-II (by sequentially removing paralogues from the final 296-loci dataset) recovered similar topologies (Fig. S10) to the full analysis (Fig. 3b), suggesting no significant bias in our results. Comparison of the individual gene tree topologies against the ASTRAL-II species tree (Fig. S11) reveals gene tree discordance for phylogenetic relationships between subspecies and above but gene tree discordance within subspecies of E. balsamifera (see also Fig. 4a). For the latter, the source of conflict in most nodes is a result of incongruence with other alternative, low-frequency bipartitions or lack of support for any bipartition, whereas conflict with an alternative dominant bipartition appears to be low (Fig. S11).

Finally, the phylogenetic tree obtained from the concatenated supercontig matrix – exons plus introns (Fig. S12) – was congruent with the topology of the concatenated exon matrix, supporting similar relationships among Athymalus taxa and within the E. balsamifera clade (BS = 100), although population structure within ssp. balsamifera lacked support. The phylogenetic tree obtained from the concatenated intron matrix provided little resolution (results not shown), suggesting that the level of missing data within this dataset might be responsible for the lower resolution in the supercontig vs the exon-based analyses (Figs S2, S12).

Analysis of plastid data

We recovered a low number of plastid sequences (Table S14) for E. balsamifera s.l. and none for any of the other taxa. No relationship was found between type of material and capture success: that is, the average percentage of mapped reads in silica samples was 0.09%, whereas for herbarium samples it ranged between 0.05% and 0.53%. The ML trees using the exon concatenated matrix showed strong support for the monophyly of ssp. sepium, adenensis and balsamifera (Fig. 3c).

Divergence time estimation

Divergence time estimates for major clades are shown in Table 2. MCMC runs with the SC and RLC models converged (Table S15) and gave estimates with overlapping confidence intervals (Table 2). The UCLD model provided younger age estimates (Table S15), but inspection of traces indicated poor mixing and low EES values. The mean and standard deviation parameters of the lognormal clock showed a bimodal distribution, suggesting difficulties in accommodating molecular rate variation within our mixed population/species-level large genomic dataset.

The tree topology from the SC and RLC analyses (Fig. 4a) was congruent with the one recovered by the ASTRAL-II MSC tree (Fig. 3b), except that ssp. balsamifera was not recovered as
Fig. 3 Phylogenetic relationships in *Euphorbia balsamifera* and related taxa inferred from nuclear and plastid genomic data. (a) Maximum likelihood tree (296 concatenated exon loci, 121 samples, 486 878 bp) estimated in IQ-TREE, showing phylogenetic relationships within *E. balsamifera*, section *Balsamis* and subgenus *Athymalus*. Branch width and colour indicate bootstrap support (thicker/darker for higher values). Circles at the end of branches indicate percentage of missing data: black, >80%; grey, >50%; <50%, no circle; and stars indicate herbarium samples. (b) Species tree inferred with a multispecies coalescent (MSC) approach in ASTRAL-II using the 296-exon supermatrix; SVDQUARTETS obtained the same tree except for the position of *E. noxia* (dashed line, see Supporting Information Fig. S5). (c) Maximum likelihood tree obtained from 66 exon loci (63 133 bp) from the chloroplast genome. BJ, Benin; BF, Burkina Faso; DJ, Djibouti; EH, Western Sahara; GC, Gran Canaria; GO, Gomera; MA, Morocco; ML, Mali; MR, Mauritania; MG, Madagascar; NE, Niger; OM, Oman; TF, Tenerife; SA, Saudi Arabia; SN, Senegal; SO, Somalia; YE, Yemen; ZA, South Africa.
Fig. 4 Maximum clade credibility (MCC) tree showing Bayesian estimates of divergence times (a) among species in subgenus Athymalus, within Euphorbia balsamifera (ssp. sepium, adenensis, balsamifera), and among populations. Values for the strict clock and random local clock analyses are given above and below branches, respectively. Pie charts show gene tree conflict at each node relative to the ASTRAL-II species tree as estimated by phyparts (blue, proportion concordant with the shown topology; green, proportion that support the dominant alternative topology; red, proportion that support remaining alternatives; grey: unsupported (< 50% bootstrap support, BS)). (b) Expanded sampling within subspecies of E. balsamifera showing population-level relationships. Node bars represent the 95% highest posterior density intervals of the divergence time estimates in the strict clock analysis linked to nodes with posterior probabilities above 0.95. Mean ages inferred for clades in million yr. Map shows distribution of E. balsamifera sampled populations in Gran Canaria (pink squares), La Gomera (blue stars) and Tenerife (green pentagons). Yellow dashed lines indicate the split of the two major eastern/western clades. EH, Western Sahara; GC, Gran Canaria; MR, Mauritania; NE, Niger; OM, Oman; YE, Yemen.
monophyletic with RLC (Table 2). Divergence times between ssps. *sepium* and *adenensis-balsamifera* were dated in the Late Miocene (SC, 11.57 Ma, 95% HPD 7.68–15.33; RLC, 9.93 Ma; 6.63–13.30, respectively; Table 2), whereas the divergence between ssps. *balsamifera* and *adenensis* dates back to the Early Pliocene (SC, 4.93 Ma; 3.29–6.56). Divergence between *E. balsamifera* and closest relatives *masirahensis-larica-noxia-davyi* was estimated in the Mid-Miocene (15.01 Ma in SC; 13.44 RLC). Initial divergence within ssps. *sepium* was estimated as 7.69 Ma (SC) or 4.55 (RLC), while those of ssps. *adenensis* and *balsamifera* were estimated as 4.27 Ma (SC; 4.16 in RLC) and 3.45 Ma (SC), respectively (Table 2). The Beast coalescent analysis within ssps. *balsamifera* gave younger estimates for mean population divergences (Fig. 4b), but the 95% HPD credibility intervals overlap with those in Fig. 3(a). The samples from southwest Morocco/Western Sahara branched earlier (as in the *Astral-II* tree; Fig. 3b), around the Early Pleistocene (2.72 (1.25–4.16); 2.08 (0.86–3.23) Ma), with a very recent split for the Canarian samples (0.26, 0.11–0.30 Ma). The population geographic structure resembled that of the IQ-Tree (Fig. 3a) except that there was no clear split into two major eastern/western clades. Instead, East Tenerife populations appeared sister to the Gran Canaria populations, while those from West Tenerife formed a grade relative to populations from La Gomera (Fig. 3b).

Discussion

Hyb-Seq as a tool to bridge the micro- and macroevolutionary gap in phylogenomics

The advent of HTS techniques has opened new avenues to solve phylogenetic relationships within deep and shallow evolutionary radiations (Nicholls *et al.*, 2015; Stephens *et al.*, 2015; Barrett *et al.*, 2016; Gardner *et al.*, 2016; Hamilton *et al.*, 2016; Mitchell *et al.*, 2017). Our study—the first phylogenomic analysis within Euphorbiaceae—demonstrates that our probes combined with target sequencing and genome skimming (Hyb-Seq), can be applied to solve evolutionary relationships from populations to species and above within the same tree in *Euphorbia*. Even if a proportion of an individual LCNG contained low phylogenetic signal (Table S11), our combined dataset of 296 exons alone provided enough resolution to address evolutionary relationships among species within subgenus *Athymalus* and section *Balsamis*, among subspecies within *E. balsamifera*, and even among and within populations in the latter. The phylogeny inferred from the nuclear genome dataset (Fig. 3a,b) agreed with the topologies found in previous studies with Sanger sequencing (Peirson *et al.*, 2013), but with far better support towards *E. balsamifera* and its closest relatives. The fact that the output of Hyb-Seq are DNA sequences of targeted known loci instead of SNPs as in RADs allowed us to use the same molecular evolutionary models across phylogenetic levels, from intrapopulation to populations and species, thus effectively bridging the micro- and macroevolutionary gap.

One advantage of Hyb-Seq is the recovery of plastid sequences as a by-product of nuclear enrichment (e.g. Schmickl *et al.*, 2016; Croll *et al.*, 2017). At shallow phylogenetic levels, comparison of the nuclear and plastid signal is key to detecting any potential conflict attributed to ongoing gene flow and reticulate evolution. Here, even though <1% of mapped reads corresponded to plastid genes, the plastid genome data recovered was enough to support the presence of three clades (subspecies) within *E. balsamifera* s.l. in agreement with the nuclear dataset (Fig. 3). Our efforts to recover introns and intergenic regions by genome skimming was met with partial success (Table S12; Fig. S12). Johnson *et al.* (2016) found a similar result: the analysis of supercontig matrices did not provide improved resolution relative to

Table 2 Divergence times of the main clades in *Euphorbia balsamifera* and its closest relatives in Fig. 4(a) presented as the mean time to the most recent common ancestor and the 95% highest posterior density (HPD) interval obtained from the divergence time analyses performed under the strict clock and the random local clock of the 296-exon supermatrix.

Clades (Fig. 4a)	Strict clock	Random local clock		
	Mean	95% HPD	Mean	95% HPD
Root				
E. hadramautica + *E. matabelensis* + *E. smithii* + *E. socotrana* + *E. scheffleri* + *E. davyi* + *E. noxia* + *E. larica* + *E. masirahensis* + *E. balsamifera*	19.32	12.82–25.59	19.9	13.32–26.47
E. socotrana + *E. scheffleri*	22.64	13.32–26.47	24.67	19.17–25.53
E. davyi + *E. noxia* + *E. larica* + *E. masirahensis* + *E. balsamifera*	9.26	6.22–12.35	7.64	5.12–10.20
E. balsamifera				
E. davyi + *E. noxia* + *E. larica* + *E. masirahensis* + *E. balsamifera*	15.01	9.91–19.84	13.44	8.99–17.85
E. balsamifera	7.69	5.03–10.21	4.55	3.03–6.17
E. balsamifera	4.27	2.81–5.86	4.16	2.46–5.97
E. balsamifera	3.45	2.26–4.57	na	na

na, not applicable because the clade was not recovered as monophyletic.
the exon-only datasets. Nonetheless, this should not be considered a failure of our approach (partly explained by our extensive use of herbarium material) as a technique to bridge across phylogenetic levels: despite the low variability of each individual loci, the combined information from all exons provided enough signal to resolve relationships at different phylogenetic depths.

Kadlec et al. (2017) compared target-sequencing techniques on the basis of their effectiveness for marker selection, using criteria such as gene length and variability. They concluded that approaches employing universal markers such as ultraconserved elements (Faircloth et al., 2012) or anchored hybrid enrichment (Lemmon et al., 2012) performed worse than those using a set of probes specific to the focal group. Among the latter, they preferred ‘custom-made’ scripts (Mandel et al., 2015) over automated ones (MarkerMiner, Chamala et al., 2015; Hyb-Seq, Weitemier et al., 2014) because they tend to generate longer, more variable reads. The difference lies in how phylogenetically close to the group of interest are the genomic resources employed in the design of baits. Here, we used the proteome of R. communis available in MarkerMiner (Chamala et al., 2015), in subfamily Acalyphoideae, against two Euphorbia (Euphorbioidae) transcriptomes from subgenera Chamaesyce and Esula. This probably resulted in more conserved, less variable genes (< 10%, Table S11) compared with noncoding nuclear regions such as ITS in Malphigiales (e.g. Euphorbiaceae: 45%, Horn et al., 2012; Hypericaceae: 43%, Meseguer et al., 2013). Indeed, inspection of gene tree discordance (Figs 4a, S11) suggests that most conflict stems from low resolution within each gene and nonoverlapping sample sets (i.e. missing data as a result of capture failure), rather than real conflict among gene trees. While we agree that the use of a fully annotated genome of the group (i.e. Euphorbia) is the right path to generate probes with high variability (Kadlec et al., 2017), this is often out of the reach of small laboratories, both economically and time-wise. Additionally, by selecting a relatively distant proteome, we have generated a set of baits that are effective for gene capture at macro- and microevolutionary levels within Euphorbia (Fig. 3a) and potentially across genera within the large angiosperm family Euphorbiaceae (c. 6300 species; Wurdack & Farfan-Rios, 2017). This set of baits is now available for future studies in this family.

Another advantage of target sequencing such as Hyb-Seq over alternative HTS approaches is the possibility of using material from natural history collections (‘museomics’) which, even if degraded, is crucial when working with old, rare and endangered taxa or with species coming from under-sampled and difficult-to-access regions (e.g. Staats et al., 2013; Bakker et al., 2016). In our study, this is crucial because many Rand Flora taxa occur in what are currently politically unstable countries in Africa (e.g. Somalia) and the Middle East (e.g. Yemen), limiting the possibilities of doing fieldwork to obtain fresh material. Nearly all samples of ssp. sepium and ssp. adenensis, and the nonCanarian samples of ssp. balsamifera, were obtained from herbaria (Tables 1, S9; Figs 2, 3a). Our study demonstrates that Hyb-Seq works well with old collections. Although there is a correlation between age of specimen and capture success (Fig. 2), we show that even very old specimens (IS401, 1893) and those with very low capture success (e.g. IS435, Table S9) can be placed within their (nominal) clade in the phylogenetic trees (Figs 3a, S2, S5, S8). We also show that this correlation only holds for very old and recent samples, suggesting that for other samples, additional variables such as preservation quality might be more important in capture success.

Sayyari et al. (2017) showed that highly fragmentary DNA often results in a surplus of short sequences, which might lead to spurious phylogenetic reconstructions. In particular, these incomplete genes could result in long branches for the affected lineages. In our study, we used a large number of herbarium samples, which typically yield fragmented DNA below 500 bp, resulting in shorter sequences after hybridization compared with those typically obtained from fresh material. We have addressed this issue showing that even after removing these very short sequences (< 25% target gene length) the resulting phylogenetic tree recovered the same topological relationships and similar branch length differences among the three subspecies of E. balsamifera as in the dataset including all sequences (Fig. S4). Thus, the presence of fragmentary DNA sequences might not be necessarily misleading in a phylogenomic study. Our analyses of the influence of paralogues did not reveal a significant bias in tree estimation either (Fig. S10).

Solving relationships within an ancient continental disjunct lineage

Euphorbia balsamifera represents one of the few studied intraspecific examples of the Rand Flora pattern (Pokorny et al., 2015). Our results from the phylogenomic analyses strongly support the monophyly of three subspecies within E. balsamifera: adenensis, balsamifera and sepium. Subspecies sepium, here sequenced for the first time, was recovered as sister to the clade formed by ssp. adenensis and balsamifera, the latter being congruent with the phylogeny of Peirson et al. (2013). The strongly supported reciprocal monophyly by both nuclear and chloroplast genomes, and comparatively long branch lengths subtending the three subspecies (Fig. 3), suggest the need for a taxonomic revision of their taxonomic status (R. Riina et al., unpublished).

The inferred divergence times between subspecies of E. balsamifera and with species in sect. Balsamis are older (ranging from Late Miocene to Early Pliocene) than those obtained in previous studies (Bruyns et al., 2011; Horn et al., 2014; Pokorny et al., 2015), although none of them included ssp. sepium. Aridification of North Africa linked to the formation of the Sahara Desert (Senut et al., 2009) was probably responsible for the isolation of ssp. balsamifera and adenensis during the Early to Mid-Pliocene (4.93; 3.29–6.56 Ma). The much older split of sepium in the Late Miocene (c. 11 Ma), however, predates the formation of the Sahara. This taxon has a wider distribution in North Africa and appears to be adapted to more inland xeric environments compared with ssp. adenensis and balsamifera. The Tortonian (11.6–7.2 Ma) was a period characterized by lower temperatures and wetter environments than the Pliocene, so it is possible that ecological vicariance contributed to the divergence of ssp. sepium.
Conclusions

Our study demonstrates that the baits designed for *Euphorbia* subgenus *Athymalus* using genomic and transcriptomic resources from distantly related taxa (i.e. subfamily Acalyphoideae and *Euphorbia* subgenera *Chamaesyce* and *Esula*) are able to solve phylogenetic relationships at shallow and deep levels. We show that inclusion of fragmentary gene sequences in a dataset, a typical effect of working with degraded DNA from natural history collections, does not necessarily bias phylogenomic analyses at inter- and intraspecific levels. This might be crucial for systematic studies involving large-scale spatial sampling or fieldwork in difficult-to-access regions. Finally, we have revealed that *E. balsamifera* consists of three highly supported clades (ssp. *adenensis*, *balsamifera* and *sepium*) and that estimates of divergence times and phylogeographic structure within ssp. *balsamifera* in the Canary Islands are consistent with those found in other Rand Flora taxa.

Acknowledgements

We thank the 1KP Initiative (Gane Ka-Shu Wong, transcriptomes), David Horvath (plastome, USDA-ARS), Alison Devault (bait design, Arbor Biosciences), Kevin Feldheim (The Field Museum), Alberto Herrero, Mario Mairal, and herbaria BCN, E, FT, K, and LPA for samples. Computing resources: CSIC cluster TRUENO, CIPRES Science Gateway and CSC-Finnish IT Center for Science. Funding grants: CGL2012-40129-C02-01 and CGL2015-67849-P (MINECO/FEDER) to I.S., CGL2015-73621-JIN (AEI/FEDER) to R.R., and EU-SYNTHESYS to L.P. (GB-TAF-5153). We thank several anonymous reviewers for insightful comments.

Author contributions

L.P., R.R. and I.S. conceived the study; L.P., I.S., N.J.W. and M.G.J. designed the set of probes; L.P. and E.M.G. carried out the molecular work; T.V. analysed the data with help from E.M.G., S.O., L.P., M.G.J., R.R. and I.S.; J.M. and R.R. contributed samples and taxonomic knowledge and M.R-B. processed the distribution data. T.V., R.R. and I.S. wrote the manuscript with contributions from all authors. T.V., R.R. and I.S. revised the manuscript.

ORCID

Tamara Villaverde [http://orcid.org/0000-0002-9236-8616]
Sanna Olsson [http://orcid.org/0000-0002-1199-4499]
Mario Rincón-Barrado [http://orcid.org/0000-0001-5571-1473]
Matthew G. Johnson [http://orcid.org/0000-0002-1958-6334]
Elliot M. Gardner [http://orcid.org/0000-0003-1133-5167]
Ricarda Riina [http://orcid.org/0000-0002-7423-899X]
Isabel Sanmartín [http://orcid.org/0000-0001-6104-9658]

References

Andrus N, Trusty J, Santos-Guerra A, Jansen RK, Francisco-Ortega J. 2004. Using molecular phylogenies to test phytogeographical links between East/South Africa-Southern Arabia and the Macaronesian islands — a review, and the case of *Viera* and *Pulicaria* section *Vieraeopsis* (Asteraceae). *Taxon* 53: 333–346.

Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. *PLoS ONE* 3: 1–7.

Balke FT, Lei D, Yu J, Mohammad S, Wei Z, van der Kerke S, Gravendeel B, Nieuwenhuis M, Staats M, Alquezar-Plana DE et al. 2016. Herbarium genomics: plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly pipeline. *Biological Journal of the Linnean Society* 117: 33–43.

Barrett CF, Bacon CD, Antonelli A, Cano Á, Hofmann T. 2016. An introduction to plant phylogenomics with a focus on palms. *Botanical Journal of the Linnean Society* 182: 254–255.

Benton M. 1995. Diversification and extinction in the history of life. *Science* 268: 52–58.

Bergsten J. 2005. A review of long-branch attraction. *Cladistics* 21: 163–193.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30: 2114–2120.

Borowiec ML. 2016. AMAS: a fast tool for alignment manipulation and computing of summary statistics. *PeerJ* 4: e1660.

Bruyns PV, Klak C, Hanáček P. 2011. Age and diversity in Old World succulent species of *Euphorbia* (Euphorbiaceae). *Taxon* 60: 1717–1733.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25: 1972–1973.
Chamala S, García N, Godden GT, Krishnakumar V, Jordan-Thaden IE, Smet RD, Baburzak WB, Soltis DE, Soltis PS. 2015. MarkerMiner 1.0: a new application for phylogenetic marker development using angiosperm transcriptomes. Applications in Plant Science 3: 1400115.

Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvits J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G et al. 2010. Draft genome sequence of the oilseed species Ricius communis. Nature Biotechnology 28: 951–956.

Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30: 3317–3324.

Chifman J, Kubatko L. 2015. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. Journal of Theoretical Biology 374: 35–47.

Chou J, Gupta A, Yaduvanshi S, Davidson R, Nute M, Mirzabar S, Warnow T. 2015. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16: S2.

Christ H. 1892. Exposé sur le rôle que joue dans le domaine de nos flores la flore dite ancienne africaine. Archives des Sciences Physiques et Naturelles Genève 369–374.

Crowd AA, Myers C, Cellinese N. 2017. Embracing discordance: phylogenomic analyses provide evidence for allopolyploidy leading to cryptic diversity in a Mediterranean Campanula (Campanulaceae) clade. Evolution 71: 913–922.

Davis MB, Shaw RG. 2001. Range shifts and adaptive responses to Quaternary climate change. Science 292: 673–679.

Dentinger BTM, Gaya E, O’Brien H, Suz LM, Lachlan R, Díaz-Valderrama JR, Koch RA, Ame MC. 2016. Tales from the crypt: genome mining from fungarium specimens improves resolution of the mushroom tree of life. Biological Journal of the Linnean Society 117: 11–32.

Drummond AJ, Pybus OG, Rambaut A, Forberg R, Rodrigo AG. 2003. Measurably evolving populations. Trends in Ecology & Evolution 18: 481–488.

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

Drummond AJ, Suchard MA. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biology 8: 114.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

Elshehry RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell DR, Barbazuk WB, Soltis DE, Soltis PS. 2015. anchored hybrid enrichment to resolve both deep and shallow relationships in nuclear loci from herbarium specimens. BMC Evolutionary Biology 16: 122.

Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.

Hewitt G. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359: 183–195.

Hipp AL, Manos PS, Gonzalez-Rodriguez A, Hahn M, Kaproth M, McVay JD, Avalos SV, Cavender-Bares J. 2018. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217: 439–452.

Ho SY, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58: 367–380.

Hobolth A, Uyenoyama MK, Wiuf C. 2008. Importance sampling for the smallest sites model. Statistical Applications in Genetics and Molecular Biology? Article 32.

Horn JW, van Ee BW, Morawetz JJ, Riina R, Steinmann VW, Berry PE, Wurdack KJ. 2012. Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Molecular Phylogenetics and Evolution 63: 305–326.

Horn JW, Xi Z, Riina R, Peirson JC, Yang Y, Dorsey BL, Berry PE, Davis CC, Wurdack KJ. 2014. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68: 3458–3504.

Hovarth DP, Patel S, Dogramaci M, Chao WS, Anderson JV, Foley ME, Scheller GL, Dorn K, Yan C, Childers A et al. 2018. Gene space and transcriptome assemblies of Leafy Spurge (Euphorbia esula) identify promoter sequences, repetitive elements, high-quality markers, and a full-length chloroplast genome. Weed Science 66: 355–367.

Johnson MG, Gardner EM, Liu Y, Medina R, Challinor J, Ash AJ, Zerega NJC. Wickett NJ. 2016. HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4: 1600016.

Kadlec M, Bellstedt DU, Le Maître NC, Pirie MD. 2017. Targeted NGS for species level phylogenomics: ‘made to measure’ or ‘one size fits all’? PeerJ 5: e3569.

Kalyaanamoorthy S, Minh BQ, Wong TK, van Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods 14: 587.

Kato K, Standley DM. 2013. MAFFT: multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.

LeGrotta AR, Emme SA, Lemmon EM. 2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology 61: 727–744.

Lemmon EM, Lemmon AR. 2013. High-throughput genomic data in systematics and phylogenetics. Annual Review of Ecology, Evolution, and Systematics 44: 99–121.

Li H, Handsaker B, Wysoker A, Fennell T, Kwan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Group. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

Liu L, Xi Z, Davis CC. 2014. Coalescent methods are robust to the simultaneous effects of long branches and incomplete lineage sorting. Molecular Biology and Evolution 31: 791–805.

Luo R, Hipp AL, Torgat B. 2007. A Bayesian model of AFLP marker evolution and phylogenetic inference. Statistical Applications in Genetics and Molecular Biology? Article 11.

Mairal M, Pokorny L, Aldosaroo JJ, Alarcón M, Sanmartín I. 2015a. Ancient vicariance and climate-driven extinction explain continental-wide disjunctions in Africa: the case of the Rand Flora genus Canarina (Campanulaceae). Molecular Ecology 24: 1335–1354.

Mairal M, Sanmartín I, Aldosaroo JJ, Csuhay V, Manolopoulosu L, Alarcón M. 2015b. Palaeo-islands as refugia and sources of genetic diversity within volcanic archipelagos: the case of the widespread endemic Canarina canariensis (Campanulaceae). Molecular Ecology 24: 3944–3963.

Mairal M, Sanmartín I, Pellissier L. 2017. Lineage-specific climatic niche drives the tempo of vicariance in the Rand Flora. Journal of Biogeography 44: 911–923.
Mandel JR, Dikow RB, Funk VA. 2015. Using phylogenomics to resolve mega-families: an example from Compositae. *Journal of Systematics and Evolution* 53: 391–402.

Meseguer AS, Aldasoro JJ, Sammartin I. 2013. Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John’s wort (*Hypericum*). *Molecular Phylogenetics and Evolution* 67: 379–403.

Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T. 2015. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. *Journal of Computational Biology* 22: 377–386.

Mirarab S, Warnow T. 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. *Bioinformatics* 31: i44–i52.

Mitchell N, Lewis PO, Lemmon EM, Lemmon AR, Holsinger KE. 2017.

Molero J, Garnatje T, Rovira A, Garcia-Jacas N, Susanna A. 2002. "Karyological evolution and molecular phylogeny in Macaronesian dendroid spurge (Euphorbia subsect. Pachycladae)." *Plant Systematics and Evolution* 231: 109–132.

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015.

Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T. 2015. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. *Journal of Computational Biology* 22: 377–386.

Mitchell N, Lewis PO, Lemmon EM, Lemmon AR, Holsinger KE. 2017.

Molero J, Garnatje T, Rovira A, Garcia-Jacas N, Susanna A. 2002. "Karyological evolution and molecular phylogeny in Macaronesian dendroid spurge (Euphorbia subsect. Pachycladae)." *Plant Systematics and Evolution* 231: 109–132.

Oliver JC. 2013.

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution* 32: 268–274.

Nicholls JA, Pennington RT, Koenen EJM, Hughes CE, Hearn J, Bunnefeld L, Rambaut A. 2009.

Price MN, Dehal PS, Arkin AP. 2010.

Pelser PB, Nordenstam B, Kadereit JW, Watson LE. 2007.

Rubin BER, Ree RH, Moreau CS. 2012.

Reznick DN, Ricklefs RE. 2009.

Rambaut A, Suchard MA, Xie W, Drummond AJ. 2014. Tracer. *MCMC Trace analysis tool version v1.6.* [WWW document] URL http://beojis.bio.ed.ac.uk/software/tracer/ [accessed 1 April 2017].

Reznick DN, Riclefs RE. 2009. Darwin’s bridge between microevolution and macroevolution. *Nature* 457: 837–842.

Rubin BER, Ree RH, Moreau CS. 2012. Inferring phylogenies from RAD sequence data. *PLoS ONE* 5: e9490.

Rambaut A. 2009. FigTree version 1.4.2. [WWW document] URL http://tree.bio.ed.ac.uk [accessed 5 April 2017].

Rambaut A, Suchard MA, Xie W, Drummond AJ. 2014. Tracer. *MCMC Trace analysis tool version v1.6.* [WWW document] URL http://beojis.bio.ed.ac.uk/sof tware/tracer/ [accessed 1 April 2017].

Sengning J-C, Eisnerhards WL, Normand S, Ordonez A, Sandel B. 2015. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. *Annual Review of Ecology, Evolution, and Systematics* 46: 551–572.

Swofford DL. 2002. *PAUP*: phylogenetic analysis using parsimony and other methods. v.4.0a147. Sunderland, MA, USA: Sinauer.

Tan G, Muffato M, Ledergerber C, Herrero J, Goldman N, Gil M, Dessicoz M. 2015. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. *Systematic Biology* 64: 778–791.

Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. *Lectures on Mathematics in the Life Sciences* 17: 57–86.

Thiv M, Thulin M, Hjertson M, Kropl M, Linder HP. 2010. Evidence for a vicariant origin of Macaronesian–Estrese/Arabian disjunctions in *Cannabina* Roth (Plantaginaceae). *Molecular Phylogenetics and Evolution* 54: 607–616.

Vilatova FJ, López J, Álvarez J, Rodríguez-Riaño T, Ortega-Olivencia A. 2016. Scrophularia arguta, a widespread annual plant in the Canary Islands: a single recent colonization event or a more complex phylogeographic pattern? *Ecology and Evolution* 6: 4258–4273.

Watson LE, Schmickl R, McDonnell A, Liston A. 2014. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. *Applications in Plant Sciences* 2: 1400042.

Weinmann K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A. 2014. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. *Applications in Plant Sciences* 2: 1400042.

Wheeler TJ, eccecojugl J. 2007. Multiple alignment by aligning alignments. *Bioinformatics* 23: i559–i568.

Wu C-H, Drummond AJ. 2011. Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. *Genetics* 188: 151–164.

Wurdack KJ, Farfan-Rios W. 2017. *Incadendron* a new genus of Euphorbiaceae tribe Hippomelanaceae from the sub-Andean cordilleras of Ecuador and Peru. *PhytoKeys* 85: 69–86.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information at the end of the article.

Fig. S1 RAxML consensus tree based on ITS sequences of *Euphorbia balsamifera* and related taxa in subgenus *Athyrus*.

Fig. S2 RAxML consensus tree using the same dataset as in Fig. 3 (a) (296 exon matrices concatenated, 121 samples, 486 878 bp).
Fig. S3 RAxML consensus tree of 18 selected exons from the ones used in previous analyses, with sequences < 25% target gene length removed.

Fig. S4 ASTRAL-II tree obtained from individual RAxML consensus tree of the 18 shortest exons.

Fig. S5 SVDQUARTETS analysis (gene tree) using the same dataset as in Fig. 3(a) (296 exon matrices concatenated, 121 samples, 486 878 bp).

Fig. S6 SVDQUARTETS analysis (species tree) using the same dataset as in Fig. 3(a) (296 exon matrices concatenated, 121 samples, 486 878 bp).

Fig. S7 Cartoon phylogenies of Euphorbia balsamifera and relatives obtained in RAxML with different aligners, mergers, and tree estimation algorithms.

Fig. S8 ASTRAL-II species tree with samples assigned to the lineages identified in Fig. 3(b).

Fig. S9 Cartoon phylogenies from different analyses in IQ-TREE, removing NW African samples of ssp. balsamifera (southwest Morocco and Western Sahara).

Fig. S10 Sensitivity analysis of the effect of paralogs in ASTRAL-II tree estimation.

Fig. S11 ASTRAL-II species tree with pie charts showing gene tree conflict at each node as estimated by phyparts (https://bitbucket.org/blackrim/phyparts).

Fig. S12 RAxML phylogenetic tree obtained from the nuclear concatenated supercontig matrix (exons and introns).

Table S1 Taxon sampling, DNA accession number and voucher information

Table S2 List of 431 LCNGs targeted genes used in this study

Table S3 Information about the 428 exons from the 431 targeted genes obtained in this study

Table S4 Number of sequences found by HybPiper in each loci by sample

Table S5 Information about the nuclear introns used in the analyses (Fig. S8)

Table S6 Information about the nuclear supercontigs used in the analyses (Fig. S8)

Table S7 Sets of merged samples of Euphorbia balsamifera (ssp. adenensis, balsamifera, sepium) in the analysis of the chloroplast data

Table S8 Total and average number of mapped reads per sample used in the chloroplast phylogenetic analysis

Table S9 Capture success for each exon and sample

Table S10 Total and average number of mapped reads per sample used in the nuclear exon phylogenetic analysis

Table S11 Summary statistics of loci used in the nuclear exon phylogenetic analysis

Table S12 Summary statistics of loci used in the nuclear intron phylogenetic analysis

Table S13 Summary statistics of loci used in the nuclear supercontig phylogenetic analysis

Table S14 Information about the exons used in the chloroplast analyses

Table S15 Sensitivity analysis exploring the effects of different molecular clock models in BEAST: strict clock, random local clock and uncorrelated lognormal clock (UCLD)

Methods S1 Extended materials and methods.

Methods S2 XML files used for the divergence time estimation analyses under a Bayesian framework in BEAST.

Notes S1 Notes about the taxonomy of Euphorbia balsamifera.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.