SignalGP-Lite: Event Driven Genetic Programming Library for Large-Scale Artificial Life Applications

Matthew Andres Moreno¹, Santiago Rodriguez Papa¹, Alexander Lalejini², and Charles Ofria¹

1 Michigan State University 2 University of Michigan

Abstract

Event-driven genetic programming representations have been shown to outperform traditional imperative representations on interaction-intensive problems. The event-driven approach organizes genome content into modules that are triggered in response to environmental signals, simplifying simulation design and implementation. Existing work developing event-driven genetic programming methodology has largely used the SignalGP library, which caters to traditional program synthesis applications. The SignalGP-Lite library enables larger-scale artificial life experiments with streamlined agents by reducing control flow overhead and trading run-time flexibility for better performance due to compile-time configuration. Here, we report benchmarking experiments that show an 8x to 30x speedup. We also report solution quality equivalent to SignalGP on two benchmark problems originally developed to test the ability of evolved programs to respond to a large number of signals and to modulate signal response based on context.

Summary

SignalGP is an existing event-driven genetic programming C++ library well-suited for interaction-heavy program synthesis problems. SignalGP was instrumental in introducing the event-driven genetic programming paradigm where program modules are triggered in response to signals from the environment.

Unlike the traditional imperative genetic programming paradigm, where a single chain of execution directly manages every aspect of the program, event-driven genetic programs trigger event handlers (i.e., program modules) in response to signals that are generated internally, externally from other agents, or externally from the environment. Event-driven representation outperforms traditional imperative genetic programming on interaction intensive problems where the programs must handle inputs from the environment or other organisms, as is the case in some traditional genetic programming contexts and many artificial life simulations.

SignalGP-Lite is a C++ library for event-driven genetic programming. In comparison to SignalGP, which is intended for general event-driven genetic programming, SignalGP-Lite is tailored for use in artificial life experiments.

Here, we present the compute time and solution quality comparison of SignalGP-Lite and SignalGP on some scenarios where the original implementation has the edge.

In “Execution Speed Benchmarking,” we report compute times for both SignalGP and SignalGP-Lite using synthetic benchmarks—benchmarks that designed with reproducibility and accuracy in mind, but that might not reflect real-world problems. In “Test Problem Benchmarking,” we compare solution quality of SignalGP and SignalGP-Lite on synthetic genetic programming problems designed to test responsivity and plasticity.
Statement of need

Despite being able to simulate evolution with much faster generational turnover than is possible in biological experiments (Ofria & Wilke, 2004), the scale of artificial life populations is profoundly limited by available computational resources (Matthew A. Moreno, 2020). Large population sizes are essential to studying fundamental evolutionary phenomena such as ecologies, the transition to multicellularity, and rare events. In conjunction with parallel and distributed computing, computational efficiency is crucial to achieving larger-scale artificial life situations.

SignalGP-Lite is the first implementation of SignalGP accessible to the general public. Its simplified API is complemented by extensive documentation, continuous integration tests, and benchmarks that measure both real-world workloads as well as individual instructions. In comparison to SignalGP—which was designed to target generic genetic programming problems—SignalGP-Lite fills a niche for interaction-heavy genetic programming applications that can tolerate less runtime configuration flexibility, and pared-back control flow. SignalGP-Lite is designed with artificial life experiments in mind, where simulation parameters need not change during execution and a more rudimentary approach to control flow can often be tolerated.

The library has enabled order-of-magnitude scale-up of existing artificial life experiments studying the evolution of multicellularity; we anticipate it will also enable novel work in other artificial life and genetic programming contexts.

Execution Speed Benchmarking

We performed a set of microbenchmarks—a type of synthetic benchmark that measures individual functions—to quantify the effectiveness of SignalGP-Lite’s optimizations in accelerating evaluation of event-driven genetic programs.

Hardware caching size profoundly affects memory access time, which is key to computational performance (Skadron et al., 1999). In order to determine the relative performance of SignalGP and SignalGP-Lite at different cache levels, we benchmarked over different orders of magnitude of memory load by varying the number of virtual CPUs (agent counts) between from 1 and 32768 (Supplementary Table 1).

We performed five microbenchmark experiments, reported below, to isolate how specific aspects of the library design influenced performance. Analysis below focuses on wall time speedup. However, supplementary Figure 6 shows raw wall-clock timings for these experiments.

control

The control involves importing the library to benchmark, initializing agents, and then measuring the execution time of an empty loop. This experiment verifies the validity of our benchmarking process. The 1x wall speedup (Figure 3) confirms that further results are not inadvertently skewed by our experimental apparatus.

nop

A program consisting of 100 nop instructions is randomly generated. None of these instructions advance the pRNG engine. This benchmarks the instruction directly, as it is the only call measured inside the benchmarking loop. With this approach, the relative performance
impact of SignalGP-Lite’s byte-code interpreter can be compared to SignalGP’s lambda-based instructions.

We observe an 8x to 30x speedup under SignalGP-Lite (Figure 3). The greatest speedup occurred at a relatively light memory footprint of 1024 agents.

arithmetic

A program consisting of 100 randomly-chosen arithmetic instructions (add, subtract, multiply, and divide) is generated. This measures the performance impact of SignalGP-Lite’s fixed-length array registers compared to SignalGP’s variable-length vector registers. This compile-time optimization streamlines register access at the cost of the ability to change the number of registers on the fly. Since our aim is to only measure the performance effect of this optimization, no `nop` instructions are present in the generated program.

Figure 3 shows that incorporating this trade-off increases speedup to 20x to 50x. The greatest speedup increase occurred at a relatively light memory footprint of 1024 agents.

complete

The complete benchmark adds control flow instructions to the prior benchmarks’ instruction set. Bitwise and logical operators, comparison instructions, and RNG operations, are also included. From this complete instruction set, a 100-instruction program is randomly generated.

The main goal of this benchmark is to determine the performance impact of omitting a function stack and implementing inner loops and conditionals in terms of jump instructions instead of nested code blocks.

SignalGP-Lite’s stripped-down control flow model increases speedup to 30x to 55x compared to vanilla SignalGP (Figure 3). The greatest speedup occurred at a light memory footprint of 32 agents.

sans_regulation

Regulation operations allow SignalGP and SignalGP-Lite programs to adjust which program modules are expressed in response to environmental signals. Since this invalidates tag-match caches (which help lower the performance impact of tag-matching), we wanted to measure timings without regulation enabled.

This benchmark measures the complete instruction set with regulation-related instructions excluded.

As shown on Figure 3, this yields a 35x to 47x speed-up with respect to SignalGP. The greatest speedup occurred at a light memory footprint of 32 agents. From this, we can conclude that SignalGP-Lite offers performance improvements even on simulations that do not heavily depend on regulation.

Test Problem Benchmarking

In order to viably serve as a specialized alternative to the original SignalGP for certain artificial life applications, SignalGP-Lite must match SignalGP’s performance on benchmarks measuring responsivity and plasticity (the ability of organisms to adapt to changes in their environment). To verify SignalGP-Lite’s aptitude on these tests, we replicated two canonical SignalGP experiments, reported below (Lalejini et al., 2021; Lalejini & Ofria, 2018).
Changing Environment Problem

The Changing Environment Problem dispatched $K = 2, 4, 8,$ or 16 mutually-exclusive environmental signals with randomly generated labels. Organisms were tasked to respond to each signal with a unique response instruction (Lalejini & Ofria, 2018).

A total of 100 replicate populations of 100 individuals were evolved for up to 10,000 generations. Elite selection was used to choose the best-fit individual; roulette selection was used for the other 99. Figure 1 shows the number of generations elapsed before a full solution was found. SignalGP-Lite evolved full solutions to each problem within 3,500 updates in all 100 tested replicates.

In the $K=16$ case, we achieved a superior 100% signal reproduction rate compared to an average of 32% on the original SignalGP implementation (Lalejini & Ofria 2018 Figure 2). We suspect this improvement occurred due to differences in how mutation, tag matching, and program initialization were performed, rather than an intrinsic difference between the libraries.

Contextual Signal Problem

The Contextual Signal Problem assesses the ability of evolving programs to maintain memory of previously encountered signals. In previous work, this problem was used to demonstrate an important use case of regulation instructions. To solve this problem, programs must remember an initial signal (i.e., its “context”) in order to respond appropriately to a second signal (Lalejini et al., 2021).

We assigned each possible unordered input signal pair a unique response to then be performed by the organism. We tested with 16 input signal pairs and 4 output responses. Table 2 in Lalejini et al. (2021) enumerates these sequences and responses.

A total of 20 replicates were evolved for up to 10,000 generations using a 16-way lexicase selection scheme (Spector, 2012), with each of the input signal pairs serving as a test case. To evaluate each test case, programs were sent the first signal of each test case and given 128 virtual CPU cycles to process it. After this, their internal running modules were killed and the second signal was sent. After another 128 virtual CPU cycles, their response was recorded. In order to save resources and computing time, as soon as a replicate evolved a fully-correct solution, their evolution was halted. We excluded RNG operations from the instruction set to ensure that solutions were not reached by chance. Figure 2 shows the number of generations elapsed before a full solution was found.

SignalGP-Lite evolved full solutions in half as many generations compared to SignalGP when regulation was enabled. Moreover, fewer replicates failed to reach a full solution in 10000 generations under SignalGP-Lite. With regulation disabled, however, the performance of both libraries was similar. These results mean that SignalGP-Lite is a valid alternative to SignalGP when it comes to artificial life applications.

Projects Using the Software

SignalGP-Lite is used in DISHTINY, a digital framework for studying organism multicelularity (Matthew Andres Moreno & Ofria, 2019).
Figures

Figure 1: Number of generations elapsed before a perfect solution was observed on the Changing Environment problem. All replicates found a perfect solution.

Figure 2: Number of generations elapsed before a perfect solution was observed on the Contextual Signal problem. Replicates that did not find a solution are on a dashed line at 10,000 generations.
Figure 3: Benchmarking results of 20 replicates shown as a times-speedup of wall time. “Library” refers to the set of instructions tested (see Benchmarking Results section).

Acknowledgements

This research was supported in part by NSF grants DEB-1655715 and DBI-0939454 as well as by Michigan State University through the computational resources provided by the Institute for Cyber-Enabled Research. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1424871, and by the Michigan State University BEACON Center Luminaries program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

Lalejini, A., Moreno, M. A., & Ofria, C. (2021). Tag-based regulation of modules in genetic programming improves context-dependent problem solving. Genetic Programming and Evolvable Machines. https://doi.org/10.1007/s10710-021-09406-8

Lalejini, A., & Ofria, C. (2018). Evolving event-driven programs with SignalGP. Proceedings of the Genetic and Evolutionary Computation Conference, 1135–1142.

Moreno, Matthew A. (2020). Profiling foundations for scalable digital evolution methods. OSF. https://doi.org/10.17605/OSF.IO/TCJFY

Moreno, Matthew Andres, & Ofria, C. (2019). Toward open-ended fraternal transitions in individuality. Artificial Life, 25(2), 117–133.
Ofria, C., & Wilke, C. O. (2004). Avida: A software platform for research in computational evolutionary biology. *Artificial Life, 10*(2), 191–229.

Skadron, K., Ahuja, P. S., Martonosi, M., & Clark, D. W. (1999). Branch prediction, instruction-window size, and cache size: Performance trade-offs and simulation techniques. *IEEE Transactions on Computers, 48*(11), 1260–1281.

Spector, L. (2012). Assessment of problem modality by differential performance of lexicase selection in genetic programming: A preliminary report. *Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation*, 401–408.
Supplementary Material

All benchmarks reported in this section were performed using Google Benchmark version 1.5.2-1.

Figure 4: Maximum fitness wrt. updates, with standard deviation confidence intervals. This is because, due to large number of datapoints, computing 95% CI takes a non-insignificant amount of time.
Figure 5: Filtered maximum fitness wrt. updates, with 95% confidence intervals. Data has been filtered logarithmically.

Figure 6: Wall time benchmarking results of 20 replicates. The x-axis represents different agent counts. Supplementary Table 1 shows raw benchmark data.

Table 1: Raw benchmark timings, also available as a CSV file in the supplement repository.

Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
arithmetic	vanilla	760.19	749.88	1
arithmetic	vanilla	768.35	754.18	1
arithmetic	vanilla	768.87	755.16	1
arithmetic	vanilla	757.27	748.97	1
arithmetic	vanilla	759.50	746.07	1
arithmetic	vanilla	759.35	747.11	1
arithmetic	vanilla	759.50	746.07	1
arithmetic	vanilla	752.69	751.92	1
arithmetic	vanilla	741.52	741.52	1
arithmetic	vanilla	745.24	745.22	1
arithmetic	vanilla	740.75	740.74	1
arithmetic	vanilla	747.54	747.54	1
arithmetic	vanilla	745.73	745.74	1
arithmetic	vanilla	742.21	742.22	1
arithmetic	vanilla	741.18	741.17	1
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
-------------	----------------	-----------------	----------------	------------
arithmetic	vanilla	742.07	742.07	1
arithmetic	vanilla	746.56	746.56	1
arithmetic	vanilla	738.83	738.82	1
arithmetic	vanilla	776.20	776.18	1
arithmetic	vanilla	764.06	764.04	1
arithmetic	vanilla	769.96	769.93	1
arithmetic	vanilla	760.74	760.74	1
arithmetic	vanilla	761.06	761.06	1
arithmetic	vanilla	773.91	773.91	1
arithmetic	vanilla	779.18	779.18	1
arithmetic	vanilla	743.94	743.94	1
arithmetic	vanilla	748.39	748.39	1
arithmetic	vanilla	763.53	763.52	1
arithmetic	vanilla	750.32	750.30	1
arithmetic	vanilla	741.52	741.51	1
arithmetic	vanilla	773.12	773.12	1
arithmetic	vanilla	747.61	747.61	1
arithmetic	vanilla	750.60	750.60	1
arithmetic	vanilla	758.21	758.20	1
arithmetic	vanilla	756.08	756.07	1
arithmetic	vanilla	760.37	760.35	1
arithmetic	vanilla	765.80	765.78	1
arithmetic	vanilla	760.50	760.50	1
arithmetic	vanilla	760.77	760.43	1
arithmetic	vanilla	758.77	758.76	1
arithmetic	vanilla	765.48	765.48	1
arithmetic	vanilla	784.83	784.83	1
arithmetic	vanilla	765.47	765.48	1
arithmetic	vanilla	755.47	755.47	1
arithmetic	vanilla	781.90	781.89	1
arithmetic	vanilla	753.27	753.24	1
arithmetic	vanilla	751.04	751.03	1
arithmetic	vanilla	751.33	751.26	1
arithmetic	vanilla	749.13	749.13	1
arithmetic	vanilla	751.68	751.68	1
arithmetic	vanilla	799.42	799.34	32
arithmetic	vanilla	792.84	792.83	32
arithmetic	vanilla	807.18	807.17	32
arithmetic	vanilla	780.16	780.15	32
arithmetic	vanilla	777.25	777.25	32
arithmetic	vanilla	757.24	757.23	32
arithmetic	vanilla	801.78	801.72	32
arithmetic	vanilla	801.99	801.99	32
arithmetic	vanilla	771.23	771.23	32
arithmetic	vanilla	789.31	789.21	32
arithmetic	vanilla	813.77	810.35	32
arithmetic	vanilla	790.63	787.39	32
arithmetic	vanilla	773.45	772.57	32
arithmetic	vanilla	775.79	775.80	32
arithmetic	vanilla	769.40	769.40	32
arithmetic	vanilla	797.99	791.57	32
arithmetic	vanilla	779.22	779.22	32
arithmetic	vanilla	789.42	789.38	32
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
------------	----------------	-----------------	----------------	------------
arithmetic	vanilla	851.14	839.15	32
arithmetic	vanilla	822.59	807.25	32
arithmetic	vanilla	827.15	812.93	32
arithmetic	vanilla	815.08	798.61	32
arithmetic	vanilla	827.47	811.93	32
arithmetic	vanilla	810.20	799.03	32
arithmetic	vanilla	799.69	797.19	32
arithmetic	vanilla	790.41	790.37	32
arithmetic	vanilla	797.15	797.11	32
arithmetic	vanilla	813.77	813.63	32
arithmetic	vanilla	841.25	841.21	32
arithmetic	vanilla	835.91	832.54	32
arithmetic	vanilla	834.34	828.55	32
arithmetic	vanilla	822.83	818.04	32
arithmetic	vanilla	817.66	813.09	32
arithmetic	vanilla	815.65	810.53	32
arithmetic	vanilla	823.80	815.10	32
arithmetic	vanilla	787.88	787.65	32
arithmetic	vanilla	782.20	782.20	32
arithmetic	vanilla	781.27	781.28	32
arithmetic	vanilla	788.72	788.72	32
arithmetic	vanilla	810.90	810.91	32
arithmetic	vanilla	818.32	818.30	32
arithmetic	vanilla	787.87	787.86	32
arithmetic	vanilla	802.66	802.60	32
arithmetic	vanilla	809.53	809.54	32
arithmetic	vanilla	815.69	815.70	32
arithmetic	vanilla	802.44	802.44	32
arithmetic	vanilla	831.92	831.90	32
arithmetic	vanilla	815.76	815.24	32
arithmetic	vanilla	798.05	798.04	32
arithmetic	vanilla	801.61	801.61	32
arithmetic	vanilla	1609.17	1609.12	1024
arithmetic	vanilla	1690.62	1690.05	1024
arithmetic	vanilla	1611.38	1609.01	1024
arithmetic	vanilla	1671.34	1670.96	1024
arithmetic	vanilla	1737.05	1730.47	1024
arithmetic	vanilla	1766.97	1766.91	1024
arithmetic	vanilla	1588.26	1588.24	1024
arithmetic	vanilla	1682.21	1680.91	1024
arithmetic	vanilla	1643.24	1643.23	1024
arithmetic	vanilla	1703.66	1703.64	1024
arithmetic	vanilla	1665.91	1665.91	1024
arithmetic	vanilla	1658.93	1653.53	1024
arithmetic	vanilla	1623.61	1616.73	1024
arithmetic	vanilla	1653.10	1653.05	1024
arithmetic	vanilla	1644.47	1644.47	1024
arithmetic	vanilla	1682.15	1682.15	1024
arithmetic	vanilla	1719.64	1719.64	1024
arithmetic	vanilla	1681.78	1681.57	1024
arithmetic	vanilla	1613.64	1613.57	1024
arithmetic	vanilla	1609.36	1608.98	1024
arithmetic	vanilla	1656.75	1656.65	1024
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
--------------	----------------	------------------	-----------------	------------
arithmetic	vanilla	1681.59	1681.59	1024
arithmetic	vanilla	1710.99	1710.96	1024
arithmetic	vanilla	1669.02	1669.02	1024
arithmetic	vanilla	1638.71	1638.70	1024
arithmetic	vanilla	1691.14	1691.14	1024
arithmetic	vanilla	1728.32	1728.32	1024
arithmetic	vanilla	1661.15	1661.14	1024
arithmetic	vanilla	1622.40	1622.31	1024
arithmetic	vanilla	1648.83	1648.83	1024
arithmetic	vanilla	1627.84	1625.57	1024
arithmetic	vanilla	1707.33	1707.30	1024
arithmetic	vanilla	1660.42	1658.64	1024
arithmetic	vanilla	1616.96	1616.91	1024
arithmetic	vanilla	1633.51	1633.49	1024
arithmetic	vanilla	1594.59	1594.57	1024
arithmetic	vanilla	1615.70	1615.70	1024
arithmetic	vanilla	1668.26	1668.26	1024
arithmetic	vanilla	1659.44	1659.43	1024
arithmetic	vanilla	1609.23	1609.21	1024
arithmetic	vanilla	1671.21	1670.36	1024
arithmetic	vanilla	1625.10	1625.09	1024
arithmetic	vanilla	1631.90	1631.87	1024
arithmetic	vanilla	1608.69	1608.69	1024
arithmetic	vanilla	1622.32	1617.40	1024
arithmetic	vanilla	1632.61	1627.07	1024
arithmetic	vanilla	1580.68	1580.00	1024
arithmetic	vanilla	1686.28	1686.28	1024
arithmetic	vanilla	1673.45	1646.51	1024
arithmetic	vanilla	1650.37	1613.36	1024
arithmetic	vanilla	1787.28	1778.42	32768
arithmetic	vanilla	1745.06	1712.71	32768
arithmetic	vanilla	1814.96	1782.09	32768
arithmetic	vanilla	1940.58	1939.85	32768
arithmetic	vanilla	1669.27	1669.23	32768
arithmetic	vanilla	1701.11	1700.71	32768
arithmetic	vanilla	1619.67	1619.66	32768
arithmetic	vanilla	1601.34	1601.34	32768
arithmetic	vanilla	1615.92	1615.92	32768
arithmetic	vanilla	1704.98	1704.84	32768
arithmetic	vanilla	1679.23	1679.16	32768
arithmetic	vanilla	1642.93	1642.89	32768
arithmetic	vanilla	1614.52	1614.52	32768
arithmetic	vanilla	1627.87	1627.83	32768
arithmetic	vanilla	1679.48	1679.47	32768
arithmetic	vanilla	1626.59	1626.58	32768
arithmetic	vanilla	1687.02	1686.90	32768
arithmetic	vanilla	1679.43	1679.43	32768
arithmetic	vanilla	1640.85	1640.81	32768
arithmetic	vanilla	1729.68	1728.72	32768
arithmetic	vanilla	1714.43	1714.40	32768
arithmetic	vanilla	1621.67	1621.66	32768
arithmetic	vanilla	1595.25	1595.25	32768
arithmetic	vanilla	1631.16	1631.16	32768
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
arithmetic	vanilla	1652.02	1651.99	32768
arithmetic	vanilla	1617.54	1617.50	32768
arithmetic	vanilla	1704.85	1702.74	32768
arithmetic	vanilla	1703.76	1693.17	32768
arithmetic	vanilla	1754.77	1754.34	32768
arithmetic	vanilla	1678.26	1639.86	32768
arithmetic	vanilla	1662.27	1634.36	32768
arithmetic	vanilla	1655.22	1629.15	32768
arithmetic	vanilla	1665.78	1636.26	32768
arithmetic	vanilla	1680.62	1648.38	32768
arithmetic	vanilla	1752.40	1728.71	32768
arithmetic	vanilla	1669.39	1669.34	32768
arithmetic	vanilla	1676.24	1672.00	32768
arithmetic	vanilla	1634.84	1634.81	32768
arithmetic	vanilla	1687.72	1687.67	32768
arithmetic	vanilla	1650.51	1650.42	32768
arithmetic	vanilla	1668.15	1668.15	32768
arithmetic	vanilla	1658.72	1658.60	32768
arithmetic	vanilla	1647.36	1647.37	32768
arithmetic	vanilla	1638.67	1638.59	32768
arithmetic	vanilla	1688.80	1688.80	32768
arithmetic	vanilla	1634.55	1634.56	32768
arithmetic	vanilla	1727.82	1727.69	32768
arithmetic	vanilla	1636.13	1636.13	32768
arithmetic	vanilla	1661.66	1661.57	32768
arithmetic	vanilla	1712.89	1691.95	32768
complete	vanilla	22792.39	22759.79	1
complete	vanilla	23203.62	23118.27	1
complete	vanilla	24437.95	24188.15	1
complete	vanilla	24410.70	24330.48	1
complete	vanilla	24124.18	24020.80	1
complete	vanilla	24155.33	23968.30	1
complete	vanilla	24780.18	24444.83	1
complete	vanilla	25548.30	25401.63	1
complete	vanilla	23486.37	23340.78	1
complete	vanilla	23760.35	23582.12	1
complete	vanilla	24136.77	23936.80	1
complete	vanilla	25552.98	25415.72	1
complete	vanilla	25193.67	24936.47	1
complete	vanilla	24901.96	24608.72	1
complete	vanilla	23956.94	23732.90	1
complete	vanilla	25029.21	24858.61	1
complete	vanilla	24957.04	24856.43	1
complete	vanilla	24399.10	24123.83	1
complete	vanilla	24196.05	23899.29	1
complete	vanilla	25542.33	25512.70	1
complete	vanilla	35583.70	35111.39	32
complete	vanilla	31072.12	30814.79	32
complete	vanilla	34756.04	34397.74	32
complete	vanilla	32993.73	32660.28	32
complete	vanilla	29274.59	29038.10	32
complete	vanilla	30905.56	30728.66	32
complete	vanilla	31759.00	31520.90	32
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
complete	vanilla	33703.31	33402.32	32
complete	vanilla	30585.90	30258.02	32
complete	vanilla	34651.71	34358.01	32
complete	vanilla	33578.90	33394.27	32
complete	vanilla	32262.49	32103.10	32
complete	vanilla	31068.13	30884.80	32
complete	vanilla	35098.88	34734.12	32
complete	vanilla	31326.04	31265.81	32
complete	vanilla	29679.55	29667.76	32
complete	vanilla	34160.38	33780.28	32
complete	vanilla	32381.72	32345.97	32
complete	vanilla	31777.50	31541.14	32
complete	vanilla	31529.37	31491.00	32
complete	vanilla	30595.67	30589.46	1024
complete	vanilla	29877.09	29468.47	1024
complete	vanilla	34749.25	34318.38	1024
complete	vanilla	32068.20	31617.81	1024
complete	vanilla	30824.03	30821.11	1024
complete	vanilla	30170.31	30089.37	1024
complete	vanilla	29264.82	29198.94	1024
complete	vanilla	30249.13	30214.93	1024
complete	vanilla	30166.86	30166.83	1024
complete	vanilla	31835.44	31834.66	1024
complete	vanilla	33134.30	33134.29	1024
complete	vanilla	32381.86	32343.31	1024
complete	vanilla	30340.41	30079.61	1024
complete	vanilla	32355.06	32126.01	1024
complete	vanilla	34694.44	34191.56	1024
complete	vanilla	36885.53	36467.55	1024
complete	vanilla	35027.90	34789.83	1024
complete	vanilla	33587.63	33326.76	1024
complete	vanilla	37003.57	36587.17	1024
complete	vanilla	32903.23	32439.15	1024
complete	vanilla	40668.84	40668.25	32768
complete	vanilla	37402.74	37402.17	32768
complete	vanilla	46248.95	46196.18	32768
complete	vanilla	40634.62	39885.51	32768
complete	vanilla	39601.10	38905.12	32768
complete	vanilla	38538.96	37783.22	32768
complete	vanilla	38794.17	38218.78	32768
complete	vanilla	38254.81	37851.93	32768
complete	vanilla	36349.80	36349.75	32768
complete	vanilla	37353.11	37353.03	32768
complete	vanilla	37442.02	36854.76	32768
complete	vanilla	37787.89	37014.78	32768
complete	vanilla	38519.35	37777.28	32768
complete	vanilla	37983.14	37299.06	32768
complete	vanilla	39508.65	38880.46	32768
complete	vanilla	38163.34	37575.59	32768
complete	vanilla	37972.43	37299.13	32768
complete	vanilla	41130.09	40588.81	32768
complete	vanilla	38845.03	38391.07	32768
complete	vanilla	37005.04	37005.05	32768
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
nop	vanilla	303.52	301.90	1
nop	vanilla	328.01	327.21	1
nop	vanilla	314.50	312.63	1
nop	vanilla	313.99	309.94	1
nop	vanilla	310.24	306.25	1
nop	vanilla	312.32	308.06	1
nop	vanilla	309.92	305.78	1
nop	vanilla	311.39	307.72	1
nop	vanilla	311.69	307.99	1
nop	vanilla	310.43	305.72	1
nop	vanilla	310.99	305.76	1
nop	vanilla	310.44	306.11	1
nop	vanilla	308.91	304.43	1
nop	vanilla	318.68	314.04	1
nop	vanilla	312.30	307.24	1
nop	vanilla	310.81	307.19	1
nop	vanilla	312.34	307.74	1
nop	vanilla	313.65	308.08	1
nop	vanilla	310.85	305.64	1
nop	vanilla	309.23	305.25	1
nop	vanilla	330.75	326.61	32
nop	vanilla	332.66	328.22	32
nop	vanilla	332.90	327.83	32
nop	vanilla	333.40	329.06	32
nop	vanilla	333.46	327.44	32
nop	vanilla	334.44	328.47	32
nop	vanilla	332.10	329.81	32
nop	vanilla	326.89	326.89	32
nop	vanilla	325.05	325.05	32
nop	vanilla	327.66	327.66	32
nop	vanilla	328.53	327.30	32
nop	vanilla	328.30	328.30	32
nop	vanilla	328.44	328.44	32
nop	vanilla	329.51	329.51	32
nop	vanilla	324.31	324.30	32
nop	vanilla	330.28	330.27	32
nop	vanilla	330.20	330.20	32
nop	vanilla	326.90	326.89	32
nop	vanilla	336.34	336.34	32
nop	vanilla	348.24	348.21	32
nop	vanilla	961.18	961.13	1024
nop	vanilla	932.15	932.13	1024
nop	vanilla	985.26	985.26	1024
nop	vanilla	957.85	957.84	1024
nop	vanilla	942.41	928.07	1024
nop	vanilla	906.35	890.08	1024
nop	vanilla	888.76	884.23	1024
nop	vanilla	940.81	940.79	1024
nop	vanilla	859.19	859.19	1024
nop	vanilla	837.66	837.66	1024
nop	vanilla	848.95	848.95	1024
nop	vanilla	845.00	844.98	1024
nop	vanilla	895.59	895.57	1024
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
--------------	----------------	-----------------	----------------	------------
nop	vanilla	851.09	851.07	1024
nop	vanilla	858.08	858.08	1024
nop	vanilla	849.78	849.78	1024
nop	vanilla	867.20	867.20	1024
nop	vanilla	904.93	904.90	1024
nop	vanilla	807.05	806.04	1024
nop	vanilla	971.06	967.02	1024
nop	vanilla	1112.17	1111.97	32768
nop	vanilla	1082.29	1082.27	32768
nop	vanilla	1107.78	1107.65	32768
nop	vanilla	1056.07	1056.07	32768
nop	vanilla	1070.70	1070.69	32768
nop	vanilla	1070.97	1070.95	32768
nop	vanilla	1034.78	1034.74	32768
nop	vanilla	1062.35	1062.35	32768
nop	vanilla	1001.25	997.63	32768
nop	vanilla	1004.38	1004.36	32768
nop	vanilla	1042.76	1042.76	32768
nop	vanilla	973.33	973.20	32768
nop	vanilla	1021.51	1021.51	32768
nop	vanilla	1004.24	1004.24	32768
nop	vanilla	1129.32	1129.27	32768
nop	vanilla	1071.88	1071.88	32768
nop	vanilla	1044.98	1044.98	32768
nop	vanilla	1075.35	1075.33	32768
nop	vanilla	998.79	998.76	32768
nop	vanilla	970.16	970.16	32768
sans_regulation	vanilla	23738.83	23687.11	1
sans_regulation	vanilla	29138.34	28867.22	1
sans_regulation	vanilla	23012.36	23011.81	1
sans_regulation	vanilla	22879.23	22879.28	1
sans_regulation	vanilla	21606.44	21606.06	1
sans_regulation	vanilla	24315.65	24189.47	1
sans_regulation	vanilla	24290.39	24256.59	1
sans_regulation	vanilla	22075.37	22074.20	1
sans_regulation	vanilla	24206.39	24205.97	1
sans_regulation	vanilla	23650.88	23650.94	1
sans_regulation	vanilla	21503.51	21503.29	1
sans_regulation	vanilla	22603.93	22556.04	1
sans_regulation	vanilla	22832.25	22832.31	1
sans_regulation	vanilla	21128.39	21128.38	1
sans_regulation	vanilla	21393.67	21393.72	1
sans_regulation	vanilla	23769.54	23769.58	1
sans_regulation	vanilla	21918.97	21918.47	1
sans_regulation	vanilla	21961.28	21960.96	1
sans_regulation	vanilla	24999.87	24999.54	1
sans_regulation	vanilla	22841.80	22807.61	1
sans_regulation	vanilla	30745.11	30744.65	32
sans_regulation	vanilla	30997.85	30997.52	32
sans_regulation	vanilla	26773.27	26772.85	32
sans_regulation	vanilla	26852.47	26780.96	32
sans_regulation	vanilla	28659.17	28658.56	32
sans_regulation	vanilla	28455.67	28433.84	32
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
--------------	----------------	-----------------	----------------	------------
sans_regulation vanilla	30140.91	30125.24	32	
sans_regulation vanilla	31165.90	31114.38	32	
sans_regulation vanilla	31729.55	31530.98	32	
sans_regulation vanilla	27850.57	27517.93	32	
sans_regulation vanilla	27863.73	27490.69	32	
sans_regulation vanilla	29210.21	28824.14	32	
sans_regulation vanilla	31009.49	30626.25	32	
sans_regulation vanilla	31467.94	30930.42	32	
sans_regulation vanilla	31278.67	31062.19	32	
sans_regulation vanilla	27853.75	27853.73	32	
sans_regulation vanilla	27778.20	27775.60	32	
sans_regulation vanilla	32296.03	32295.63	32	
sans_regulation vanilla	31422.35	31360.82	32	
sans_regulation vanilla	28538.44	28536.98	32	
sans_regulation vanilla	30988.46	30987.94	1024	
sans_regulation vanilla	30206.44	30206.39	1024	
sans_regulation vanilla	31261.62	31258.95	1024	
sans_regulation vanilla	30122.97	30122.03	1024	
sans_regulation vanilla	35259.54	35259.21	1024	
sans_regulation vanilla	30799.63	30796.55	1024	
sans_regulation vanilla	29496.77	29495.44	1024	
sans_regulation vanilla	31268.15	31266.79	1024	
sans_regulation vanilla	32659.25	32658.48	1024	
sans_regulation vanilla	29186.15	29185.87	1024	
sans_regulation vanilla	31275.83	31275.84	1024	
sans_regulation vanilla	27903.06	27902.45	1024	
sans_regulation vanilla	32888.62	32887.92	1024	
sans_regulation vanilla	29790.59	29788.20	1024	
sans_regulation vanilla	33735.68	33735.26	1024	
sans_regulation vanilla	35663.13	35650.50	1024	
sans_regulation vanilla	30951.49	30758.96	1024	
sans_regulation vanilla	34846.64	34189.19	1024	
sans_regulation vanilla	33492.69	32931.72	1024	
sans_regulation vanilla	32136.12	31705.89	1024	
sans_regulation vanilla	36815.20	36814.18	32768	
sans_regulation vanilla	37040.28	37040.17	32768	
sans_regulation vanilla	36282.99	36282.96	32768	
sans_regulation vanilla	38338.96	38337.87	32768	
sans_regulation vanilla	35984.65	35983.68	32768	
sans_regulation vanilla	35774.73	35774.66	32768	
sans_regulation vanilla	36623.65	36623.81	32768	
sans_regulation vanilla	34905.90	34904.35	32768	
sans_regulation vanilla	33155.05	33155.13	32768	
sans_regulation vanilla	36185.56	36184.49	32768	
sans_regulation vanilla	35980.15	35968.70	32768	
sans_regulation vanilla	35395.24	35395.27	32768	
sans_regulation vanilla	35854.08	35669.65	32768	
sans_regulation vanilla	37071.69	36384.46	32768	
sans_regulation vanilla	37510.02	36879.27	32768	
sans_regulation vanilla	36601.63	36601.42	32768	
sans_regulation vanilla	36582.21	36580.73	32768	
sans_regulation vanilla	36695.07	36695.07	32768	
sans_regulation vanilla	35868.59	35867.27	32768	
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
------------------	----------------	-----------------	----------------	------------
sans_regulation	vanilla	35831.21	35830.75	32768
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	1024
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
control	vanilla	0.00	0.00	32768
arithmetic	lite	37.26	36.94	1
arithmetic	lite	36.40	36.40	1
arithmetic	lite	36.07	36.07	1
arithmetic	lite	35.99	35.99	1
arithmetic	lite	36.26	36.26	1
arithmetic	lite	36.76	36.73	1
arithmetic	lite	36.77	36.77	1
arithmetic	lite	36.34	36.34	1
arithmetic	lite	36.18	36.18	1
arithmetic	lite	36.05	36.05	1
arithmetic	lite	36.25	36.25	1
arithmetic	lite	36.48	36.48	1
arithmetic	lite	35.84	35.84	1
arithmetic	lite	36.44	36.44	1
arithmetic	lite	36.25	36.25	1
arithmetic	lite	36.15	36.15	1
arithmetic	lite	36.12	36.12	1
arithmetic	lite	36.32	36.32	1
arithmetic	lite	36.30	36.30	1
arithmetic	lite	36.05	36.05	1
arithmetic	lite	36.00	36.00	1
arithmetic	lite	35.95	35.95	1
arithmetic	lite	35.98	35.98	1
arithmetic	lite	36.10	36.10	1
arithmetic	lite	36.29	36.29	1
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
------------	----------------	-----------------	----------------	------------
arithmetic	lite	36.18	36.18	1
arithmetic	lite	36.03	36.03	1
arithmetic	lite	35.97	35.96	1
arithmetic	lite	36.28	36.28	1
arithmetic	lite	36.18	36.18	1
arithmetic	lite	35.90	35.90	1
arithmetic	lite	36.09	36.09	1
arithmetic	lite	36.35	36.35	1
arithmetic	lite	35.98	35.98	1
arithmetic	lite	35.88	35.88	1
arithmetic	lite	35.90	35.90	1
arithmetic	lite	36.32	36.32	1
arithmetic	lite	36.97	36.62	1
arithmetic	lite	37.05	36.63	1
arithmetic	lite	37.25	36.58	1
arithmetic	lite	36.59	36.10	1
arithmetic	lite	36.75	36.23	1
arithmetic	lite	36.32	36.18	1
arithmetic	lite	35.98	35.98	1
arithmetic	lite	36.02	36.02	1
arithmetic	lite	36.06	36.06	1
arithmetic	lite	35.94	35.94	1
arithmetic	lite	36.60	36.60	1
arithmetic	lite	35.73	35.73	1
arithmetic	lite	36.41	36.41	1
arithmetic	lite	32.42	32.42	32
arithmetic	lite	32.56	32.56	32
arithmetic	lite	33.26	33.26	32
arithmetic	lite	32.74	32.74	32
arithmetic	lite	32.57	32.57	32
arithmetic	lite	32.49	32.49	32
arithmetic	lite	32.51	32.51	32
arithmetic	lite	32.73	32.73	32
arithmetic	lite	32.68	32.68	32
arithmetic	lite	32.69	32.69	32
arithmetic	lite	32.73	32.73	32
arithmetic	lite	32.69	32.69	32
arithmetic	lite	32.65	32.65	32
arithmetic	lite	32.78	32.78	32
arithmetic	lite	33.58	33.58	32
arithmetic	lite	33.83	33.83	32
arithmetic	lite	33.18	33.18	32
arithmetic	lite	32.96	32.96	32
arithmetic	lite	34.01	34.01	32
arithmetic	lite	32.99	32.99	32
arithmetic	lite	32.74	32.74	32
arithmetic	lite	33.47	33.47	32
arithmetic	lite	33.22	33.22	32
arithmetic	lite	32.39	32.39	32
arithmetic	lite	32.52	32.52	32
arithmetic	lite	32.57	32.57	32
arithmetic	lite	32.56	32.56	32
arithmetic	lite	32.48	32.48	32
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
-----------	----------------	-----------------	----------------	------------
arithmetic	lite	32.74	32.74	32
arithmetic	lite	32.64	32.64	32
arithmetic	lite	32.69	32.69	32
arithmetic	lite	33.21	33.21	32
arithmetic	lite	32.98	32.98	32
arithmetic	lite	32.60	32.60	32
arithmetic	lite	32.64	32.64	32
arithmetic	lite	32.49	32.49	32
arithmetic	lite	32.53	32.53	32
arithmetic	lite	32.78	32.78	32
arithmetic	lite	32.92	32.92	32
arithmetic	lite	32.49	32.49	32
arithmetic	lite	32.57	32.57	32
arithmetic	lite	32.59	32.59	32
arithmetic	lite	32.67	32.67	32
arithmetic	lite	32.78	32.77	32
arithmetic	lite	32.47	32.47	32
arithmetic	lite	32.58	32.57	32
arithmetic	lite	32.44	32.44	32
arithmetic	lite	32.58	32.58	32
arithmetic	lite	32.61	32.60	32
arithmetic	lite	32.84	32.84	1024
arithmetic	lite	32.52	32.52	1024
arithmetic	lite	33.35	33.35	1024
arithmetic	lite	32.62	32.62	1024
arithmetic	lite	32.91	32.91	1024
arithmetic	lite	32.91	32.91	1024
arithmetic	lite	33.28	33.28	1024
arithmetic	lite	33.32	33.32	1024
arithmetic	lite	33.13	33.13	1024
arithmetic	lite	34.21	34.21	1024
arithmetic	lite	33.92	33.92	1024
arithmetic	lite	34.18	34.18	1024
arithmetic	lite	34.92	34.92	1024
arithmetic	lite	34.45	34.45	1024
arithmetic	lite	33.67	33.67	1024
arithmetic	lite	33.54	33.54	1024
arithmetic	lite	33.39	33.39	1024
arithmetic	lite	33.65	33.65	1024
arithmetic	lite	33.99	33.99	1024
arithmetic	lite	33.51	33.51	1024
arithmetic	lite	33.94	33.94	1024
arithmetic	lite	34.04	34.04	1024
arithmetic	lite	32.59	32.59	1024
arithmetic	lite	33.38	33.38	1024
arithmetic	lite	32.87	32.87	1024
arithmetic	lite	33.95	33.95	1024
arithmetic	lite	33.13	33.13	1024
arithmetic	lite	33.81	33.81	1024
arithmetic	lite	33.73	33.73	1024
arithmetic	lite	33.93	33.93	1024
arithmetic	lite	33.84	33.84	1024
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
------------	----------------	-----------------	----------------	------------
arithmetic	lite	33.93	33.93	1024
arithmetic	lite	34.36	34.36	1024
arithmetic	lite	33.30	33.30	1024
arithmetic	lite	33.18	33.18	1024
arithmetic	lite	33.14	33.14	1024
arithmetic	lite	33.64	33.64	1024
arithmetic	lite	33.22	33.22	1024
arithmetic	lite	33.11	33.11	1024
arithmetic	lite	32.80	32.79	1024
arithmetic	lite	32.72	32.72	1024
arithmetic	lite	33.32	33.31	1024
arithmetic	lite	33.22	33.22	1024
arithmetic	lite	32.57	32.57	1024
arithmetic	lite	32.89	32.89	1024
arithmetic	lite	33.38	33.38	1024
arithmetic	lite	33.72	33.72	1024
arithmetic	lite	33.45	33.44	1024
arithmetic	lite	33.23	33.23	1024
arithmetic	lite	33.09	33.09	1024
arithmetic	lite	74.96	74.96	32768
arithmetic	lite	77.06	77.05	32768
arithmetic	lite	71.70	71.70	32768
arithmetic	lite	74.28	74.28	32768
arithmetic	lite	79.42	79.42	32768
arithmetic	lite	89.80	89.80	32768
arithmetic	lite	83.12	83.12	32768
arithmetic	lite	82.23	82.23	32768
arithmetic	lite	84.08	84.08	32768
arithmetic	lite	76.35	76.35	32768
arithmetic	lite	82.43	82.43	32768
arithmetic	lite	92.88	92.65	32768
arithmetic	lite	80.75	80.23	32768
arithmetic	lite	83.53	83.24	32768
arithmetic	lite	87.40	87.35	32768
arithmetic	lite	84.98	84.98	32768
arithmetic	lite	85.25	85.23	32768
arithmetic	lite	80.18	80.18	32768
arithmetic	lite	74.47	74.47	32768
arithmetic	lite	74.64	74.51	32768
arithmetic	lite	73.88	73.83	32768
arithmetic	lite	80.99	80.99	32768
arithmetic	lite	80.54	80.53	32768
arithmetic	lite	71.49	71.49	32768
arithmetic	lite	74.67	74.66	32768
arithmetic	lite	73.00	72.80	32768
arithmetic	lite	78.21	76.67	32768
arithmetic	lite	80.96	80.55	32768
arithmetic	lite	78.41	77.95	32768
arithmetic	lite	81.09	80.90	32768
arithmetic	lite	84.24	84.24	32768
arithmetic	lite	80.57	80.57	32768
arithmetic	lite	82.49	82.49	32768
arithmetic	lite	87.69	87.55	32768
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
-----------	----------------	-----------------	----------------	------------
arithmetic	lite	78.81	78.47	32768
arithmetic	lite	74.21	74.18	32768
arithmetic	lite	73.34	73.32	32768
arithmetic	lite	76.17	76.16	32768
arithmetic	lite	79.14	78.89	32768
arithmetic	lite	70.46	70.46	32768
arithmetic	lite	70.57	70.54	32768
arithmetic	lite	72.08	72.08	32768
arithmetic	lite	78.32	78.32	32768
arithmetic	lite	70.07	70.07	32768
arithmetic	lite	68.57	68.57	32768
arithmetic	lite	76.20	76.20	32768
arithmetic	lite	79.14	79.13	32768
arithmetic	lite	86.78	86.59	32768
arithmetic	lite	73.84	73.82	32768
arithmetic	lite	80.13	80.11	32768
complete	lite	723.53	722.56	1
complete	lite	689.93	689.71	1
complete	lite	624.18	624.17	1
complete	lite	653.93	653.92	1
complete	lite	423.63	423.63	1
complete	lite	792.42	792.39	1
complete	lite	511.51	511.51	1
complete	lite	749.90	749.81	1
complete	lite	388.26	388.26	1
complete	lite	305.39	305.39	1
complete	lite	740.99	740.98	1
complete	lite	553.88	553.85	1
complete	lite	194.43	194.43	1
complete	lite	601.60	601.60	1
complete	lite	545.33	544.80	1
complete	lite	674.82	674.77	1
complete	lite	170.13	170.13	1
complete	lite	587.25	587.21	1
complete	lite	322.85	322.85	1
complete	lite	563.87	563.63	1
complete	lite	609.05	609.05	1
complete	lite	306.31	306.30	1
complete	lite	218.02	218.02	1
complete	lite	674.58	674.36	1
complete	lite	295.65	294.63	1
complete	lite	314.86	314.87	1
complete	lite	662.84	662.84	1
complete	lite	517.38	517.04	1
complete	lite	632.43	632.40	1
complete	lite	754.63	752.63	1
complete	lite	800.15	794.34	1
complete	lite	681.67	679.89	1
complete	lite	201.38	201.37	1
complete	lite	627.25	627.25	1
complete	lite	554.92	554.91	1
complete	lite	669.58	669.57	1
complete	lite	470.09	470.06	1
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
complete	lite	640.28	640.28	1
complete	lite	165.81	165.80	1
complete	lite	581.43	581.42	1
complete	lite	649.63	649.62	1
complete	lite	588.29	588.29	1
complete	lite	639.92	639.91	1
complete	lite	574.92	574.93	1
complete	lite	260.30	260.30	1
complete	lite	600.60	600.59	1
complete	lite	683.82	683.77	1
complete	lite	287.50	287.48	1
complete	lite	755.56	755.56	1
complete	lite	747.17	747.16	1
complete	lite	776.32	776.27	32
complete	lite	543.08	543.08	32
complete	lite	412.97	412.96	32
complete	lite	674.31	674.29	32
complete	lite	634.87	634.85	32
complete	lite	512.69	512.68	32
complete	lite	691.37	691.37	32
complete	lite	633.43	633.42	32
complete	lite	489.41	489.36	32
complete	lite	513.72	513.72	32
complete	lite	309.70	309.70	32
complete	lite	495.75	495.72	32
complete	lite	569.48	569.48	32
complete	lite	599.90	599.91	32
complete	lite	607.71	607.71	32
complete	lite	734.97	734.92	32
complete	lite	593.86	593.85	32
complete	lite	310.90	310.90	32
complete	lite	370.72	370.71	32
complete	lite	661.21	661.20	32
complete	lite	483.80	483.79	32
complete	lite	620.93	620.94	32
complete	lite	395.31	395.31	32
complete	lite	634.60	634.59	32
complete	lite	658.06	658.06	32
complete	lite	644.53	644.53	32
complete	lite	585.79	585.79	32
complete	lite	431.48	431.41	32
complete	lite	778.63	778.41	32
complete	lite	504.66	504.63	32
complete	lite	342.39	342.37	32
complete	lite	568.08	567.99	32
complete	lite	817.80	817.79	32
complete	lite	390.51	390.51	32
complete	lite	587.08	587.06	32
complete	lite	416.91	416.88	32
complete	lite	841.17	841.17	32
complete	lite	626.75	626.73	32
complete	lite	765.55	765.55	32
complete	lite	475.86	475.86	32
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
complete	lite	480.66	480.66	32
complete	lite	395.58	395.58	32
complete	lite	703.39	703.39	32
complete	lite	623.91	623.91	32
complete	lite	814.85	814.84	32
complete	lite	438.46	438.46	32
complete	lite	500.53	500.54	32
complete	lite	723.36	723.36	32
complete	lite	448.06	448.07	32
complete	lite	592.53	592.52	32
complete	lite	1106.87	1106.88	1024
complete	lite	1086.09	1085.99	1024
complete	lite	759.23	759.23	1024
complete	lite	1110.70	1110.66	1024
complete	lite	1206.49	1206.45	1024
complete	lite	1148.69	1148.69	1024
complete	lite	1135.77	1135.76	1024
complete	lite	1105.14	1105.12	1024
complete	lite	1236.00	1235.97	1024
complete	lite	1275.01	1274.94	1024
complete	lite	1039.72	1039.72	1024
complete	lite	1237.13	1237.13	1024
complete	lite	1218.68	1218.63	1024
complete	lite	1374.46	1374.21	1024
complete	lite	1310.89	1310.89	1024
complete	lite	1154.87	1154.87	1024
complete	lite	1085.11	1084.81	1024
complete	lite	834.39	834.38	1024
complete	lite	1010.97	1010.97	1024
complete	lite	1093.91	1093.91	1024
complete	lite	1382.04	1382.02	1024
complete	lite	1127.83	1127.83	1024
complete	lite	664.25	664.25	1024
complete	lite	1327.77	1327.77	1024
complete	lite	1113.74	1113.74	1024
complete	lite	1075.13	1075.13	1024
complete	lite	1121.92	1121.92	1024
complete	lite	1310.80	1310.79	1024
complete	lite	962.52	962.51	1024
complete	lite	1052.42	1052.42	1024
complete	lite	728.25	728.25	1024
complete	lite	835.02	835.02	1024
complete	lite	1325.92	1325.92	1024
complete	lite	1077.96	1077.96	1024
complete	lite	1241.28	1240.96	1024
complete	lite	1305.93	1305.91	1024
complete	lite	1049.91	1049.88	1024
complete	lite	1219.75	1219.71	1024
complete	lite	623.50	623.50	1024
complete	lite	989.61	989.61	1024
complete	lite	1023.78	1023.78	1024
complete	lite	1184.93	1184.81	1024
complete	lite	1061.89	1061.90	1024
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
-----------	----------------	-----------------	----------------	------------
complete	lite	1069.00	1068.97	1024
complete	lite	1267.68	1267.52	1024
complete	lite	1270.25	1270.25	1024
complete	lite	1210.18	1209.93	1024
complete	lite	1068.34	1062.88	1024
complete	lite	1166.18	1159.55	1024
complete	lite	1092.61	1087.22	1024
complete	lite	1177.96	1176.74	32768
complete	lite	1176.31	1176.20	32768
complete	lite	1026.71	1026.48	32768
complete	lite	1088.54	1086.15	32768
complete	lite	1155.79	1148.56	32768
complete	lite	1105.22	1103.75	32768
complete	lite	1090.18	1089.99	32768
complete	lite	1220.37	1220.18	32768
complete	lite	1020.25	1011.71	32768
complete	lite	1200.44	1192.92	32768
complete	lite	1144.20	1144.17	32768
complete	lite	1343.69	1343.68	32768
complete	lite	995.65	995.62	32768
complete	lite	1126.91	1126.89	32768
complete	lite	1011.32	1011.29	32768
complete	lite	1090.83	1090.77	32768
complete	lite	1093.61	1093.60	32768
complete	lite	1089.13	1089.12	32768
complete	lite	1246.96	1246.91	32768
complete	lite	1078.44	1078.44	32768
complete	lite	1261.88	1261.85	32768
complete	lite	1209.66	1209.65	32768
complete	lite	1236.44	1236.40	32768
complete	lite	953.64	953.65	32768
complete	lite	1086.47	1086.46	32768
complete	lite	1039.57	1039.50	32768
complete	lite	939.09	939.08	32768
complete	lite	970.19	970.14	32768
complete	lite	1154.79	1154.76	32768
complete	lite	1159.90	1159.85	32768
complete	lite	903.69	903.69	32768
complete	lite	958.45	958.07	32768
complete	lite	1047.56	1047.51	32768
complete	lite	959.05	959.04	32768
complete	lite	969.65	969.35	32768
complete	lite	1064.84	1064.82	32768
complete	lite	1057.66	1057.58	32768
complete	lite	1295.73	1295.73	32768
complete	lite	1119.69	1119.67	32768
complete	lite	1024.96	1024.93	32768
complete	lite	1029.08	1029.04	32768
complete	lite	898.97	898.92	32768
complete	lite	1310.38	1310.36	32768
complete	lite	1023.94	1023.92	32768
complete	lite	1211.95	1211.93	32768
complete	lite	1064.84	1064.81	32768
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
complete	lite	901.60	901.60	32768
complete	lite	958.30	958.29	32768
complete	lite	1207.84	1207.82	32768
complete	lite	1329.57	1329.54	32768
nop	lite	38.11	38.11	1
nop	lite	38.12	38.12	1
nop	lite	35.60	35.60	1
nop	lite	35.52	35.52	1
nop	lite	35.61	35.60	1
nop	lite	35.56	35.56	1
nop	lite	35.59	35.59	1
nop	lite	35.55	35.55	1
nop	lite	35.60	35.60	1
nop	lite	35.56	35.56	1
nop	lite	35.55	35.55	1
nop	lite	35.59	35.59	1
nop	lite	35.65	35.65	1
nop	lite	35.55	35.55	1
nop	lite	35.59	35.59	1
nop	lite	35.60	35.60	1
nop	lite	35.70	35.70	1
nop	lite	35.89	35.79	1
nop	lite	35.82	35.82	1
nop	lite	35.85	35.85	1
nop	lite	35.84	35.84	1
nop	lite	36.20	35.91	1
nop	lite	35.81	35.79	1
nop	lite	35.75	35.74	1
nop	lite	35.67	35.67	1
nop	lite	35.60	35.60	1
nop	lite	35.59	35.59	1
nop	lite	35.61	35.61	1
nop	lite	35.57	35.57	1
nop	lite	35.58	35.58	1
nop	lite	35.60	35.60	1
nop	lite	35.56	35.56	1
nop	lite	35.56	35.56	1
nop	lite	35.59	35.59	1
nop	lite	35.62	35.58	1
nop	lite	35.59	35.59	1
nop	lite	35.59	35.59	1
nop	lite	35.56	35.56	1
nop	lite	35.52	35.52	1
nop	lite	35.56	35.56	1
nop	lite	35.53	35.53	1
nop	lite	35.57	35.57	1
nop	lite	35.66	35.65	1
nop	lite	35.80	35.80	1
nop	lite	35.73	35.73	1
nop	lite	35.83	35.83	1
nop	lite	35.56	35.56	1
nop	lite	35.59	35.59	1
Library	Implementation	Wall Nanoseconds	CPU Nanoseconds	num agents
---------	----------------	-----------------	----------------	------------
nop	lite	35.59	35.59	1
nop	lite	32.16	32.16	32
nop	lite	32.02	32.02	32
nop	lite	32.03	32.03	32
nop	lite	32.05	32.05	32
nop	lite	32.04	32.04	32
nop	lite	32.05	32.05	32
nop	lite	32.03	32.03	32
nop	lite	32.06	32.06	32
nop	lite	32.02	32.02	32
nop	lite	32.05	32.05	32
nop	lite	32.04	32.04	32
nop	lite	32.07	32.07	32
nop	lite	32.18	32.18	32
nop	lite	32.03	32.03	32
nop	lite	32.07	32.07	32
nop	lite	32.08	32.08	32
nop	lite	32.08	32.08	32
nop	lite	32.10	32.09	32
nop	lite	32.06	32.06	32
nop	lite	32.01	32.01	32
nop	lite	32.09	32.09	32
nop	lite	32.01	32.01	32
nop	lite	32.05	32.05	32
nop	lite	32.05	32.05	32
nop	lite	32.03	32.03	32
nop	lite	32.05	32.05	32
nop	lite	32.01	32.01	32
nop	lite	32.05	32.05	32