Força de preensão manual como instrumento de avaliação do risco de desnutrição e inflamação em pacientes em hemodiálise

Handgrip strength as an instrument for assessing the risk of malnutrition and inflammation in hemodialysis patients

Resumo

Introdução: Estabelecer quais parâmetros utilizar para diagnóstico de desnutrição em pacientes em hemodiálise (HD) é um desafio na prática clínica. A força de preensão manual (FPM) tem-se destacado como um método de avaliação do estado nutricional. Assim, o objetivo deste estudo foi determinar o ponto de corte da FPM na avaliação do risco de desnutrição e inflamação de pacientes em HD e sua associação com outros parâmetros.

Métodos: Estudo realizado em unidades de hemodiálise na cidade de Curitiba, Brasil. Ponto de corte da força de preensão manual obtido através da curva ROC, usando como referência o escore de desnutrição e inflamação (MIS). A relação (Odds ratio) entre as variáveis “MIS” e “FPM” com as demais variáveis do estudo foi verificada por meio de análise multivariada (regressão logística).

Resultados: Foram avaliados 238 pacientes (132 homens), entre 18 e 87 anos (mediana = 59). Ponto de corte da FPM para diagnóstico de desnutrição e inflamação de acordo com a referência utilizada: < 14,5 kg para mulheres e < 23,5 kg para homens. Pacientes desnutridos conforme critérios da FPM eram mais velhos (OR = 0,958), com menor circunferência do braço (OR = 1,328) e maior pontuação no MIS (OR = 0,85).

Conclusão: A FPM foi correlacionada de forma significativa com outros parâmetros de avaliação nutricional. Esses resultados sugerem que a FPM é um instrumento de triagem válido para identificar risco de desnutrição e inflamação em pacientes em hemodiálise.

Descritores: Dinamômetro de Força Muscular; Força Muscular; Avaliação Nutricional; Desnutrição; Diálise Renal.

Abstract

Abstract: Abstract Introduction: Establishing which parameters to use for diagnosing malnutrition in Hemodialysis (HD) patients is a challenge in clinical practice. The handgrip strength (HGS) has stood out as a method of assessing nutritional status. Thus, the aim of this study was to determine the cut-off point for HGS in the assessment of the risk of malnutrition and inflammation in HD patients, and its association with other parameters. Methods: Study carried out in hemodialysis units in the city of Curitiba, Brazil. We obtained the cut-off point of the HGS through the ROC curve, using the malnutrition and inflammation score (MIS) as a reference. We checked the relationship (Odds ratio) between the variables “MIS” and “HGS” with the other study variables using the multivariate analysis (logistic regression). Results: We assessed 238 patients (132 men), between 18 and 87 years of age (median = 59). The HGS cut-off point for diagnosing malnutrition and inflammation according to the reference used was <14.5 kg for women, and <23.5 kg for men. According to the HGS criteria, malnourished patients were older (OR = 0,958), with lower arm circumference (OR = 1.328) and higher scores in the malnutrition and inflammation score (OR = 0,85). Conclusion: HGS was significantly correlated with other nutritional assessment parameters. These results suggest that HGS is a valid screening tool to identify the risk of malnutrition and inflammation in hemodialysis patients.

Keywords: Muscle Strength Dynamometer; Muscle Strength; Nutrition Assessment; Malnutrition; Renal Dialysis.
INTRODUÇÃO

A desnutrição energético-proteica (PEW) é comum em pacientes com doença renal crônica (DRC), especialmente naqueles que realizam hemodiálise crônica (HD), sendo um importante fator de predição de morbidade e mortalidade dessa população. Apesar de a ingestão alimentar inadequada contribuir para essa condição, existem outras características da síndrome que não podem ser explicadas apenas pela anorexia, como a inflação presente nesta população.

O escore de desnutrição-inflamação (MIS) foi desenvolvido a partir da Avaliação Subjetiva Global (ASG) e da consideração da estreita relação entre desnutrição e inflamação entre pacientes em diálise. Além disso, maiores pontuações no MIS têm sido relacionadas a maior risco de morte e hospitalizações em pacientes em HD.

Apesar dessas vantagens, uma das limitações do MIS é a baixa praticidade para o acompanhamento dos pacientes em diálise, já que utiliza parâmetros subjetivos, o que requer experiência do avaliador, e depende de dados que podem não estar disponíveis em certo momento.

A força de preensão manual (FPM) tem-se destacado como um método de avaliação do estado nutricional e viável na prática clínica. Ainda, por ser um teste de medição da força muscular voluntária, está fortemente correlacionado à massa corporal, tornando possível identificar pacientes que tiveram redução significativa do estado nutricional antes da ocorrência de qualquer alteração. No entanto, poucos estudos avaliaram a FPM como parâmetro de avaliação nutricional em pacientes hemodialisados e utilizaram diferentes metodologias de aferição.

Material e Métodos

Participants

Trata-se de um estudo transversal realizado em quatro clínicas de HD (Pró-Renal Brasil) na cidade de Curitiba, PR, Brasil. Os pacientes considerados elegíveis tinham idade superior a 18 anos, de ambos os sexos, estavam em programa de HD havia pelo menos três meses e não tinham limitação física ou cognitiva para a realização da medida da FPM. Os pacientes realizavam três sessões de HD na semana, com duração de três a quatro horas cada uma, no período entre agosto de 2016 a julho de 2017. Os dados clínicos, demográficos e laboratoriais foram coletados do prontuário eletrônico (Dialsist® 2017). O estudo foi aprovado pelo Comitê de Ética em Pesquisa em seres humanos do Instituto Paranaense de Otorrinolaringologia e todos os participantes assinaram o Termo de Consentimento Livre e Esclarecido.

Força de Preensão Manual (FPM)

A FPM foi mensurada através de dinamômetro com display digital com avaliação de força aferida por quilogramas força (máximo de 90 kg). Para aplicação do teste, o participante permaneceu em posição ortostática, com os cotovelos flexionados em ângulo de 90 graus, sem local de apoio no momento da aferição. As medidas foram obtidas após a segunda sessão de HD da semana, no membro superior contrário ao do acesso vascular/cateter, sendo realizadas três medidas e considerado o valor máximo das três.

Escore de Desnutrição-Inflamação (Malnutrition-Inflammation Score – MIS)

O MIS foi aplicado conforme a recomendação de Kalantar-Zadeh et al., que utilizam sete componentes da ASG original adicionando o número de anos de terapia de diálise, índice de massa corporal (IMC), nível sérico de albumina e capacidade total de ligação do ferro. Valores séricos de albumina e capacidade total de ligação do ferro foram obtidos do prontuário eletrônico (Dialsist® 2017) referentes ao mês da avaliação. Para cada um dos dez componentes do MIS, foi escolhido um nível de gravidade, que poderia ser de 0 (normal) a 3 (gravemente anormal). A soma de todos esses componentes poderia variar de 0 (normal) a 30 (severamente desnutrido).
Para aferição da circunferência do braço (CB), utilizou-se uma fita métrica inelástica, considerando-se o ponto médio entre o acrômio e o olecrano, estando o cotovelo flexionado a 90º, no braço contrário ao da fístula ou cateter. A aferição da CB ocorreu antes da sessão de hemodiálise, uma vez que não há consenso sobre o melhor momento para a medida. Os resultados e as adequações da CB foram analisados de acordo com Frisancho.

ANÁLISE ESTATÍSTICA

Inicialmente, os dados foram descritos considerando a média, o desvio-padrão, mínimo, máximo e quartis para as variáveis quantitativas e tabelas de frequência para as variáveis qualitativas. A comparação entre os grupos de interesse com as variáveis contínuas, com distribuição normal, foi feita pelo teste t de Student, pareado ou não pareado, e as variáveis sem distribuição normal pelo teste não paramétrico de Mann-Whitney (ou teste de Wilcoxon). A associação entre variáveis qualitativas foi feita com o teste qui-quadrado ou o Teste Exato de Fisher.

A correlação de Spearman foi realizada para avaliar a relação entre o MIS e outros parâmetros nutricionais. Uma correlação foi considerada fraca quando os valores variaram de 0 a 0,29; moderada, de 0,3 a 0,69; e forte, de 0,7 a 1,0.

A relação (Odds ratio) entre as variáveis MIS e FPM com as demais variáveis do estudo foram verificadas por meio de uma análise multivariada (regressão logística). A variável MIS foi dicotomizada pelo ponto de corte de 5, já estabelecido por outros autores; já o ponto de corte da variável FPM foi obtido por meio da curva ROC, usando como referência as classes de MIS. As variáveis com nível de significância de até 20%, nas análises univariadas, entraram na seleção de variáveis da regressão logística.

A normalidade das variáveis foi avaliada com o teste de Shapiro-Wilk. Todos os testes foram avaliados considerando o nível de significância de 5%.

RESULTADOS

O estudo incluiu 132 homens (56%), com idade entre 18 e 87 anos (mediana = 59 anos) e tempo de HD variando de seis meses a 17 anos (mediana = 25 meses); 113 pacientes (47%) tinham mais que 60 anos de idade.

As causas da DRC foram: diabetes mellitus (35%), hipertensão (28%), glomerulonefrite crônica (11%), doença renal policística (2%), mieloma múltiplo (10%) e outras causas (14%).

A Tabela 1 mostra as principais características dos pacientes, com os resultados estratificados por sexo.

Total (n = 238)	Homens (n = 132)	Mulheres (n = 106)	p para comparação entre gêneros	
Idade, anosb	59 (18;87)	61,5 (18;87)	55 (20;85)	< 0,001
18-39 anos (%)	26 (10,9)	11 (8,3)	15 (14,1)	0,022
40-59 anos (%)	99 (41,6)	48 (36,4)	51 (48,1)	0,896
≥60 anos (%)	113 (47,5)	73 (55,3)	40 (37,8)	0,896
Parâmetros nutricionais				
Altura, cm (média ± DP)c	162,85 ± 10,09	168,16 ± 7,79	156,24 ± 8,63	< 0,001
IMC, kg/m²	24,94 (22,22;28,64)	24,84 (22,21;28,33)	25,15 (22,27;30,08)	0,38
CB, cm	28,5 (25,5;32)	28,5 (26,31)	28 (25,32)	0,896
% Adequação CB	91,44 (83,61;102,52)	89,96 (81,25;98,29)	93,48 (84,4;108,90)	0,016
Albumina sérica, g/dL	4,37 (4,07;4,64)	4,44 (4,10;6,64)	4,26 (4,01;4,61)	0,034
FPM, kg	20,5 (15,7;28,4)	26,6 (20,10;30,92)	15,9 (13;19,60)	< 0,001
Função renal				
Kt/V (média ± DP)c	1,39 ± 0,43	1,31 ± 0,4	1,49 ± 0,46	0,001
Tempo em diálise, meses	25 (13;34)	24 (12,5;48)	25 (13;60)	0,356
Hemoglobina, g/dL	11,4 (10,2;12,5)	11,6 (10,35;12,8)	10,8 (9,8;12,4)	0,067

IMC, índice de massa corporal; CB, circunferência do braço; FPM, força de preensão manual

a Valores apresentados em mediana (1º quartil; 3º quartil) - Teste Mann-Whitney (nível de significância de 5%)
b Valores absolutos e frequência relativa para as variáveis categóricas - Teste qui-quadrado (nível de significância de 5%)
c Valores apresentados em média ± DP - Teste t de Student (nível de significância de 5%)

Tabela 1. Características antropométricas e demográficas dos participantes
Os valores médios e de mediana de altura e FPM, respectivamente, foram maiores nos homens do que nas mulheres \((P < 0,001)\). Em relação à adequação da diálise, homens tinham pior adequação de diálise do que mulheres \((P < 0,001)\); porém, ambos dentro da recomendação.

Na Tabela 2, estão demonstradas as correlações moderadamente negativas do MIS com FPM e albumina, e fracas correlações negativas do MIS com IMC, CB, de forma significativa \((p < 0,05)\).

Com a intenção de determinar o melhor ponto de corte da FPM capaz de identificar pacientes com maior risco de desnutrição-inflamação, foi realizada a análise da curva ROC. A área sob a curva ROC para FPM como preditor de MIS foi de 73% \((IC 95% = 64\% \text{ a } 85\%)\) para homens e 61% \((IC 95% = 49\% \text{ a } 74\%)\) para mulheres. O melhor ponto de corte encontrado para FPM de homens foi de 23,5 kg \((\text{sensibilidade} = 70\%; \text{especificidade} = 70\%\)) e 14,5 kg para mulheres \((\text{sensibilidade} = 70\%; \text{especificidade} = 50\%)\).

A prevalência estimada de desnutrição baseada nessas pontos de corte foi de 36% em mulheres e de 39% em homens. Por MIS, a desnutrição foi de 28% para as mulheres e 21% para os homens.

Na Tabela 3 está demonstrada a associação das variáveis idade, CB, MIS e FPM, com o estado nutricional segundo classificação do MIS e da FPM.
Os homens classificados com desnutrição pela MIS eram mais velhos, com menor CB e menor força, de forma significativa \((p \leq 0,05)\). O mesmo ocorreu com homens classificados com desnutrição pela FPM, eram mais velhos e com menor CB, significativamente \((p < 0,05)\). Tanto os homens quanto as mulheres desnutridos conforme FPM apresentaram maiores escores de MIS. Entre as mulheres, as demais variáveis não se comportaram dessa forma e não apresentaram significância estatística.

Nas Tabelas 4 e 5 estão demonstrados os resultados da regressão linear entre MIS e FPM, respectivamente, com as variáveis que foram significativas após serem confrontadas no modelo estatístico.

Nota-se na Tabela 4 que a presença de FPM \(\geq 23,6\) kg para os homens e \(\geq 14,5\) kg para as mulheres foi significativamente associada à redução da razão de chance de desnutrição, principalmente em homens. O aumento do peso e da ureia sérica pré-dialise também foram associados a menor OR de desnutrição.

Com relação à presença de desnutrição segundo critérios da FPM (Tabela 5), idade avançada e maior pontuação de MIS foram associadas à desnutrição; já o aumento da CB foi associado à menor probabilidade de desnutrição.

DISCUSSÃO

Encontramos que os homens tinham maiores medianas de FPM que as mulheres, o que corrobora com resultados de outros estudos, tanto em indivíduos saudáveis\(^{12,20}\) como também em indivíduos em HD\(^{3,8,10,11,21}\). A diferença de FPM entre homens e mulheres é relacionada principalmente à diferença na composição corporal, sendo que os homens geralmente apresentam maior quantidade de massa muscular, o que reflete diretamente em maior força muscular\(^{11,22}\).

Essa variação na FPM ficou evidente ao analisar os resultados da curva ROC que indicaram diferentes pontos de corte para cada gênero. O valor de FPM com a melhor compensação entre sensibilidade e especificidade foi de 23,5 kg em homens e 14,5 kg em mulheres. Garcia e col. sugeriram pontos de corte maiores (< 18 kg para mulheres e < 28,5 kg para homens), utilizando a mesma metodologia deste estudo. O valor de 23,4 kg proposto para mulheres por Silva et al.\(^1\) foi semelhante ao estabelecido para homens no presente estudo e maior do que o encontrado para mulheres. Outros trabalhos estabeleceram pontos de corte de FPM menores que os encontrados neste estudo, para cada gênero, porém utilizaram diferentes padrões de referências que não o MIS\(^3,8,23\). Ao comparar os resultados do presente estudo com os de outros autores, fica evidente que, além da diferença de métodos, considerar a característica do método utilizado como padrão de referência é de suma importância, uma vez que a MIS tem caráter subjetivo, podendo ter interferência da experiência do avaliador e não se correlaciona diretamente com a massa corporal do indivíduo.

Tabela 4. Fatores associados à desnutrição pelo MIS, segundo valores de Odds Ratio (OR), intervalo de confiança (IC) de 95%

Parâmetros nutricionais	Total	Homens (MIS > 5)	Mulheres (MIS > 5)			
	Odds Ratio (95% CI)	\(p\)	Odds Ratio (95% CI)	\(p\)	Odds Ratio (95% CI)	\(p\)
Peso	0,968 (0,945-0,991)	0,008	-	-	-	
Ureia	0,988 (0,978-0,997)	0,014	0,974 (0,959-0,990)	< 0,001	-	-
FPM*	0,295 (0,156-0,559)	< 0,001	0,175 (0,064-0,477)	< 0,001	0,382 (0,159-0,916)	0,031

*FPM: força de preensão manual

Tabela 5. Fatores associados à desnutrição pela FPM, segundo valores de Odds Ratio (OR), intervalo de confiança (IC) de 95%

Parâmetros nutricionais	Total	Homens (FPM < 23,5)	Mulheres (FPM < 14,5)			
	Odds Ratio (95% CI)	\(p\)	Odds Ratio (95% CI)	\(p\)	Odds Ratio (95% CI)	\(p\)
Idade	0,958 (0,936-0,980)	< 0,001	0,961 (0,929-0,995)	0,023	-	-
CB	1,328 (1,033-1,707)	0,027	1,129 (1,012-1,259)	0,029	-	-
MIS	0,85 (0,765-0,944)	0,002	0,823 (0,704-0,963)	0,015	0,382 (0,159-0,916)	0,031

CB, circunferência do braço; MIS, escore de desnutrição e inflamação
Sendo assim, sugere-se que os pontos de corte propostos para diagnóstico de desnutrição sejam utilizados e comparados na população de pacientes adultos e idosos que realizam HD três vezes por semana e considerando a metodologia e a característica do padrão de referência utilizado, já que não existe padrão ouro de avaliação nutricional em pacientes em HD. Além disso, são necessários estudos capazes de propor pontos de corte de FPM de acordo com outras categorias que não só o gênero.

Neste estudo, a prevalência estimada de desnutrição foi maior pelos critérios de FPM do que do MIS, para ambos os sexos. Além disso, verificou-se que a FPM foi inversamente correlacionada com MIS e albumina, assim como observado por outros autores. Esses achados fornecem apoio ao uso da FPM como uma ferramenta simples de triagem nutricional em pacientes que realizam HD. Ainda, trabalhos apontam que a desnutrição causa maior fadiga muscular, capaz de alterar a contração e relaxamento muscular, contribuindo para menor FPM. Apesar de o MIS ser uma ferramenta de triagem nutricional abrangente e que foi desenvolvida especificamente para pacientes renais, depende de exames laboratoriais muitas vezes indisponíveis no momento da avaliação.

Em pacientes com DRC são encontrados maiores níveis de biomarcadores inflamatórios, como protéina C reativa e interleucina 6, os quais tem sido associados a menor FPM e maior MIS. Com relação à albumina, ainda não se pode afirmar a sua utilidade para detectar precocemente alterações no estado nutricional. Ainda que a albumina seja considerada no MIS e correlacionada com FPM, seus baixos valores têm sido discutidos na população de pacientes renais em diálise, uma vez que pode estar mais relacionada à inflamação do que ao estado nutricional.

A FPM foi a principal variável observada associada à desnutrição, principalmente entre os homens (OR = 0,175; p = 0,001). Utilizando o modelo de regressão logística, Silva et al. também investigaram a validade da FPM como um instrumento de identificação de desnutrição por meio da correlação com o MIS e encontraram que cada desvio-padrão inferior da FPM foi significativamente associado ao aumento de duas vezes nas probabilidades de um MIS ≥ 6, entre homens (odds ratio = 2,25, p < 0,001) e mulheres (odds ratio = 2,53, p < 0,001).

No presente estudo, homens com maior FPM tinham 5,7 vezes menos razão de chance de apresentarem desnutrição (MIS ≥ 5), o que pode estar associado ao fato de que os homens apresentaram maior força muscular do que as mulheres.

O aumento da ureia sérica pré-diálise foi outra variável associada à menor razão de chance de desnutrição (OR = 0,988; p = 0,014), corroborando com a descrição em outros trabalhos de que baixos níveis séricos de ureia em pacientes em diálise podem refletir ingestão deficiente de proteínas, de massa muscular esquelética e estar relacionados a maior risco de morte.

Nos homens, a idade foi uma das variáveis significativamente associadas à desnutrição, por ambos os critérios avaliados; homens desnutridos apresentaram idade média maior que 65 anos. Além disso, nota-se que, a cada ano de vida, os homens aumentam em 5% a razão de chance de desnutrição (OR = 0,961; p = 0,023). Essa influência da idade no desfecho desnutrição está relacionada a diversos fatores, mas especialmente àqueles ligados à redução de massa magra e de força muscular decorrentes dos vários distúrbios metabólicos, hormonais e nutricionais da própria DRC, contribuindo para o quadro de sarcopenia, cada vez mais prevalente na população idosa. No trabalho de Sampaio e colaboradores também foi possível observar que o aumento da idade refletiu no aumento do MIS. Qureshi e colaboradores observaram que os pacientes idosos eram frequentemente mais desnutridos do que os mais jovens, de acordo com ASG, além de terem menor FPM, semelhante a este estudo. Outros estudos também encontraram correlações negativas entre FPM e idade.

Outra variável associada à desnutrição foi o MIS, especialmente entre as mulheres (OR = 0,382; p = 0,031), sendo que, quanto maior o MIS, maior a razão de chance de o paciente apresentar desnutrição segundo critérios da FPM. Outros autores encontraram associação significativa da FPM com MIS. Lin et al. ao avaliarem sarcopenia em pacientes em HD, verificaram que os pacientes com MIS alto (≥ 7) tiveram aumento de 6,9 vezes no risco de sarcopenia em comparação àqueles com baixo MIS, não diferenciando entre os sexos.

Nota-se que as variáveis apresentadas e que tiveram associação com desnutrição são possíveis de ser obtidas na avaliação nutricional de rotina, permitindo uma rápida identificação do risco nutricional. A FPM, bem como os pontos de corte sugeridos, destaca-se como um instrumento prático e de fácil aplicação.
Limitações

Uma das limitações metodológicas do estudo é a ausência de um padrão de referência aceitável para o MIS. Utilizou-se o valor de MIS > 5 como ponto de corte neste estudo, porém outros autores propõem diferentes pontos de corte, de acordo com a população avaliada.

Não foi possível avaliar se houve diferença de FPM entre pacientes que utilizaram braço dominante ou não, pois decidiu-se utilizar o braço sem a fistula arteriovenosa (FAV), para evitar que o paciente aplicasse a pressão máxima de aperto da mão no braço com a FAV.

Considerando que o estudo foi realizado em unidades de HD de uma única região geográfica do país, deve-se ter cautela ao generalizar os achados para populações de outras regiões. O presente estudo não avaliou os resultados propostos por diferenças na faixa etária – adultos e idosos –, apenas foi avaliada a diferença entre gêneros. Sugere-se que os próximos estudos levem em consideração a faixa etária para propor pontos de corte de MIS e FPM, uma vez que o envelhecimento acarreta alterações na composição corporal. Além disso, é de suma importância que novos trabalhos também utilizem métodos que avaliem quantidade e/ou qualidade do tecido muscular, uma vez que está diretamente relacionado à FPM.

Conclusão

O melhor ponto de corte da FPM capaz de identificar pacientes com risco de desnutrição e inflamação foi de 23,5 kg para homens e 14,5 kg para mulheres. A FPM foi associada à desnutrição, segundo classificação do MIS, de forma significativa em ambos os sexos. Os resultados sugerem que a FPM é um instrumento de triagem válido para identificar risco de desnutrição e inflamação em pacientes em HD.

Agradecimentos

Os autores são gratos aos pacientes que aceitaram contribuir para o estudo e ao estatístico Anderson P. Scorsato pelo auxílio na análise dos dados.

Construção dos Autores

Caroline Finger Sostisso: montagem do projeto e coleta de dados; tabulação, interpretação da análise estatística dos dados; revisão do texto.

Mayara Olikszechen: montagem do projeto e coleta de dados; tabulação, interpretação da análise estatística dos dados; revisão do texto.

Melissa Nihi Sato: montagem do projeto e coleta de dados; tabulação, interpretação da análise estatística dos dados; revisão do texto.

Miriam de Aguiar Souza Cruz Oliveira: montagem do projeto e coleta de dados; tabulação, interpretação da análise estatística dos dados; revisão do texto.

Scheila Karam: montagem do projeto e coleta de dados; tabulação, interpretação da análise estatística dos dados; revisão do texto.

Conflito de Interesse

Não há conflitos de interesse relacionados ao manuscrito.

Referências

1. Carrero JJ, Stenvinkel P, Cuppari L, Ikiizler TA, Kalantar-Zadeh K, Kaysen G, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr. 2013 Mar;23(2):77-90.

2. Garcia MF, Wazlawik E, Moreno YMF, Fuhr LM, González-Chica DA. Diagnostic accuracy of handgrip strength in the assessment of malnutrition in hemodialyzed patients. ESPEN J. 2013 Aug;8(4):e181-6. DOI: http://dx.doi.org/10.1016/j.j.oclme.2013.06.003

3. Silva LF, Matos CM, Lopes GB, Martins MTS, Martins MS, Arias LU, et al. Handgrip strength as a simple indicator of possible malnutrition and inflammation in men and women on maintenance hemodialysis. J Ren Nutr. 2011;21(3):235-45.

4. Fouque D, Kalantar-Zadeh K, Kopple J, Cao N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008 Feb;73(4):391-8.

5. Riella MC. Nutritional evaluation of patients receiving dialysis for the management of protein-energy wasting: what is old and what is new?. J Ren Nutr. 2013 May;23(3):195-8.

6. Kalantar-Zadeh K, Kopple JD, Block G, Humphreys MH. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis. 2001 Dec;38(6):1251-63.

7. Ashabi A, Tabibi H, Nozary-Heshmati B, Mahdavi-Mazdeh M, Hedayati M. Comparison of various scoring methods for the diagnosis of protein-energy wasting in hemodialysis patients. Int Urol Nephrol. 2014 May;46(5):999-1004.

8. Vogt BP, Borges MCC, Goês CR, Caramori JCT. Handgrip strength is an independent predictor of all-cause mortality in maintenance dialysis patients. Clin Nutr. 2016 Dec;35(6):1429-33.

9. Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011 Apr;30(2):135-42. DOI: http://dx.doi.org/10.1016/j.clnut.2010.09.010

10. Leal VO, Stockler-Pinto MB, Farage NE, Aranha LN, Fouque D, Anjos LA, et al. Handgrip strength and its dialysis determinants in hemodialysis patients. Nutrition. 2011 Nov/Dec;27(11-12):1125-9. DOI: http://dx.doi.org/10.1016/j.clnut.2010.12.012
11. Veramendi-Espinzoa LE, Zafra-Tanaka JH, Salazar-Saaavedra O, Basilio-Flores JE, Millones-Sánchez E, Pérez-Casquinio GA, et al. Prevalence and associated factors of hospital malnutrition in a general hospital; Perú, 2012. Nutr Hosp [Internet]. 2013 Jul/Aug; 28(3):1236-43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23889647
12. Bodziarek MB, Duarte RRP, Barbosa-Silva MC. Reference values and determinants for handgrip strength in healthy subjects. Clin Nutr. 2008 Jun;27(3):357-62.
13. Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA, et al. What is subjective global assessment of nutritional status?. J Parenter Enter Nutr. 1987 Jan/Feb;11(1):8-13.
14. World Health Organization (WHO). Global database on body mass index. Geneva: WHO; 2008.
15. Fernandes KHA, Muttoni SMP. Influência do uso de diferentes métodos antropométricos na avaliação do diagnóstico nutricional de pacientes em programa de hemodiálise. Rev Bras Nutr Clin. 2016;31(1):43-8.
16. National Kidney Foundation (NKF). K/DOQI Clinical practice guidelines for nutrition in chronic kidney disease. Am J Kidney Dis. 2000;35(6 Suppl 2):S1-140.
17. Frisancho AR. New norms of upper limb fat and muscle areas for assessment of nutritional status. Am J Clin Nutr. 1981 Nov;34(11):2540-5.
18. Ho LC, Wang HH, Peng YS, Chiang CK, Huang JW, Hung KY, et al. Clinical utility of malnutrition-inflammation-score in maintenance hemodialysis patients: focus on identifying the best cut-off point. Am J Nephrol. 2008;28(5):840-6.
19. Harvinder GS, Swee WCS, Karupaiah T, Sahathevan S, Chenna K, Ahmad G, et al. Dialysis malnutrition and inflammation-inflammation scores: Screening tools for prediction of dialysis-related protein-energy wasting in Malaysia. Asia Pac J Clin Nutr. 2016;25(1):26-33.
20. Amaral CA, Amaral TLM, Monteiro GTR, Vasconcellos MTL, Portela MC. Hand grip strength: reference values for adults and elderly people of Rio Branco, Acre, Brazil. PLoS One. 2019 Jan;14(1):e0211452.
21. Hasheminejad N, Namdari M, Mahmoodi MR, Bahrampour A, Azmandian J. Association of handgrip strength with malnutrition-inflammation score as an assessment of nutritional status in hemodialysis patients. Iran J Kidney Dis [Internet]. 2016 Jan;10(1):30-5. Available from: https://www.researchgate.net/publication/292994804_Association_of_Handgrip_Strength_With_Malnutrition-Inflammation_Score_as_an_Assessment_of_Nutritional_Status_in_Hemodialysis_Patients
22. Pinto AP, Ramos CI, Meireles MS, Cuppari L, Kamimura MA. Impact of hemodialysis session on handgrip strength. J Bras Nefrol. 2015 Oct/Dec;37(4):451-7.