Draft Genome Sequence of *Thermodesulfovibrio aggregans* TGE-P1T, an Obligately Anaerobic, Thermophilic, Sulfate-Reducing Bacterium in the Phylum *Nitrospirae*

Norihisa Matsuura, Akiko Ohashi, Dieter M. Tournoussse, Yuji Sekiguchi

Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

We report a high-quality draft genome sequence of the type strain (TGE-P1T) of *Thermodesulfovibrio aggregans*, an obligately anaerobic, thermophilic, sulfate-reducing bacterium in the phylum *Nitrospirae*. The genome comprises 2.00 Mb in 16 contigs (3 scaffolds), has a G+C content of 34.5%, and contains 1,998 predicted protein-encoding genes.
ermes nov., and Thermodesulfovibrio islandicus sp. nov., two thermo-
philic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst
Appl Microbiol 22:559–564. http://dx.doi.org/10.1016/S0723
-2020/9380009-5.

4. Henry EA, Devereux R, Maki JS, Gilmour CR, Woese CR, Mandelco L,
Schauder R, Remsen CC, Mitchell R. 1994. Characterization of a new
thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowsto-
nii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesul-
fo bacterium commune and their origins deep within the bacterial domain.
Arch Microbiol 161:62–69. http://dx.doi.org/10.1007/BF00248894.

5. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer
for Illumina sequence data. Bioinformatics 30:2114–2120. http://
dx.doi.org/10.1093/bioinformatics/btu170.

6. Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads
to improve genome assemblies. Bioinformatics 27:2957–2963. http://
dx.doi.org/10.1093/bioinformatics/btr507.

7. Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. 2014.
NextClip: an analysis and read preparation tool for Nextera Long mate
pair libraries. Bioinformatics 30:566–568. http://dx.doi.org/10.1093/
 bioinformatics/btu702.

8. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov
AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV,
Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012.
SPAdes: a new genome assembly algorithm and its applications to single-
cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/
cmb.2012.0021.

9. Gao S, Sung W-K, Nagarajan N. 2011. Opera: reconstructing optimal
genomic scaffolds with high-throughput paired-end sequences. J Comput
Biol 18:1681–1691. http://dx.doi.org/10.1089/cmb.2011.0170.

10. Sekiguchi Y, Ohashi A, Parks DH, Yamauchi T, Tyson GW, Hugenholtz
P. 2015. First genomic insights into members of a candidate bacterial
phylum responsible for wastewater bulking. PeerJ 3:e740.

11. Kosugi S, Hirakawa H, Tabata S. 2015. GMcloser: closing gaps in assem-
blies accurately with a likelihood-based selection of contig or long-read
alignments. Bioinformatics 31:3733–3741. http://dx.doi.org/10.1093/
bioinformatics/btv465.

12. Boetzer M, Pirovano W. 2012. Toward almost closed genomes with Gap-
Filler. Genome Biol 13:R56. http://dx.doi.org/10.1186/gb-2012-13-6-r56.

13. Huntermann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D,
Palaniappan K, Szeto E, Pillay M, Chen I-MA, Pati A, Nielsen T,
Markowitz VM, Kyrpides NC. 2015. The standard operating procedure
of the DOE-JGI microbial genome annotation pipeline (MGAP v.4).
Stand Genomic Sci 10:86. http://dx.doi.org/10.1186/s40793-015-0077-y.

14. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW.
2015. CheckM: assessing the quality of microbial genomes recovered from
isolates, single cells, and metagenomes. Genome Res 25:1043–1055. http://
dx.doi.org/10.1101/gr.186072.114.