The Eulerian Distribution on Involutions is Indeed Unimodal

Victor J. W. Guo1 and Jiang Zeng2

Institut Camille Jordan, Université Claude Bernard (Lyon I)
F-69622, Villeurbanne Cedex, France
1guo@math.univ-lyon1.fr, \textcolor{blue}{http://math.univ-lyon1.fr/~guo}
2zeng@math.univ-lyon1.fr, \textcolor{blue}{http://math.univ-lyon1.fr/~zeng}

Abstract. Let $I_{n,k}$ (resp. $J_{n,k}$) be the number of involutions (resp. fixed-point free involutions) of $\{1, \ldots, n\}$ with k descents. Motivated by Brenti’s conjecture which states that the sequence $I_{n,0}, I_{n,1}, \ldots, I_{n,n-1}$ is log-concave, we prove that the two sequences $I_{n,k}$ and $J_{n,k}$ are unimodal in k, for all n. Furthermore, we conjecture that there are nonnegative integers $a_{n,k}$ such that
\[
\sum_{k=0}^{n-1} I_{n,k} t^k = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} a_{n,k} t^k (1 + t)^{n-2k-1}.
\]
This statement is stronger than the unimodality of $I_{n,k}$ but is also interesting in its own right.

Keywords: involutions, descent number, unimodality, Eulerian polynomial
AMS Subject Classifications (2000): Primary 05A15; Secondary 05A20.

1 Introduction

A sequence a_0, a_1, \ldots, a_n of real numbers is said to be unimodal if for some $0 \leq j \leq n$ we have $a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n$, and is said to be log-concave if $a_i^2 \geq a_{i-1} a_{i+1}$ for all $1 \leq i \leq n-1$. Clearly a log-concave sequence of positive terms is unimodal. The reader is referred to Stanley’s survey \cite{Stanley} for the surprisingly rich variety of methods to show that a sequence is log-concave or unimodal. As noticed by Brenti \cite{Brenti}, even though log-concave and unimodality have one-line definitions, to prove the unimodality or log-concavity of a sequence can sometimes be a very difficult task requiring the use of intricate combinatorial constructions or of refined mathematical tools.

Let \mathfrak{S}_n be the set of all permutations of $[n] := \{1, \ldots, n\}$. We say that a permutation $\pi = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ has a descent at i ($1 \leq i \leq n-1$) if $a_i > a_{i+1}$. The number of descents of π is called its descent number and is denoted by $d(\pi)$. A statistic on \mathfrak{S}_n is said to be Eulerian, if it is equidistributed with the descent number statistic. Recall that the polynomial
\[
A_n(t) = \sum_{\pi \in \mathfrak{S}_n} t^{1+d(\pi)} = \sum_{k=1}^{n} A(n,k) t^k
\]
is called an Eulerian polynomial. It is well-known that the Eulerian numbers $A(n,k)$ ($1 \leq k \leq n$) form a unimodal sequence, of which several proofs have been published: such
as the analytical one by showing that the polynomial $A_n(t)$ has only real zeros \cite[p. 294]{3}, by induction based on the recurrence relation of $A(n, k)$ (see \cite[9]{9}), or by combinatorial techniques (see \cite[11]{11}).

Let I_n be the set of all involutions in \mathfrak{S}_n and J_n the set of all fixed-point free involutions in \mathfrak{S}_n. Define

$$I_n(t) = \sum_{\pi \in I_n} t^{d(\pi)} = \sum_{k=0}^{n-1} I_{n,k} t^k,$$

$$J_n(t) = \sum_{\pi \in J_n} t^{d(\pi)} = \sum_{k=0}^{n-1} J_{n,k} t^k.$$

The first values of these polynomials are given in Table 1.

n	$I_n(t)$	$J_n(t)$
1	1	0
2	$1 + t$	t
3	$1 + 2t + t^2$	0
4	$1 + 4t + 4t^2 + t^3$	$t + t^2 + t^4$
5	$1 + 6t + 12t^2 + 6t^3 + t^4$	0
6	$1 + 9t + 28t^2 + 28t^3 + 9t^4 + t^5$	$t + 3t^2 + 7t^3 + 3t^4 + t^5$

As one may notice from Table 1 that the coefficients of $I_n(t)$ and $J_n(t)$ are symmetric and unimodal for $1 \leq n \leq 6$. Actually, the symmetries had been conjectured by Dumont and were first proved by Strehl \cite[12]{12}. Recently, Brenti (see \cite{5}) conjectured that the coefficients of the polynomial $I_n(t)$ are log-concave and Dukes \cite{5} has obtained some partial results on the unimodality of the coefficients of $I_n(t)$ and $J_{2n}(t)$. Note that, in contrast to Eulerian polynomials $A_n(t)$, the polynomials $I_n(t)$ and $J_{2n}(t)$ may have non-real zeros.

In this paper we will prove that for $n \geq 1$, the two sequences $I_{n,0}, I_{n,1}, \ldots, I_{n,n-1}$ and $J_{2n,1}, J_{2n,2}, \ldots, J_{2n,2n-1}$ are unimodal. Our starting point is the known generating functions of polynomials $I_n(t)$ and $J_n(t)$:

$$\sum_{n=0}^{\infty} I_n(t) \frac{u^n}{(1-t)^{n+1}} = \sum_{r=0}^{\infty} \frac{t^r}{(1-u)^{r+1}(1-u^2)^{r(r+1)/2}}, \quad (1.1)$$

$$\sum_{n=0}^{\infty} J_n(t) \frac{u^n}{(1-t)^{n+1}} = \sum_{r=0}^{\infty} \frac{t^r}{(1-u^2)^{r(r+1)/2}}, \quad (1.2)$$

which have been obtained by Désarménien and Foata \cite{4} and Gessel and Reutenauer \cite{8} using different methods. We first derive linear recurrence formulas for $I_{n,k}$ and $J_{2n,k}$ in the next section and then prove the unimodality by induction in Section 3. We end this paper with further conjectures beyond the unimodality of the two sequences $I_{n,k}$ and $J_{2n,k}$.
2 Linear recurrence formulas for \(I_{n,k} \) and \(J_{2n,k} \)

Since the recurrence formula for the numbers \(I_{n,k} \) is a little more complicated than \(J_{2n,k} \), we shall first prove it for the latter.

Theorem 2.1. For \(n \geq 2 \) and \(k \geq 0 \), the numbers \(J_{2n,k} \) satisfy the following recurrence formula:

\[
2nJ_{2n,k} = [k(k+1) + 2n - 2]J_{2n-2,k} + 2[(k-1)(2n-k-1) + 1]J_{2n-2,k-1} + [(2n-k)(2n-k+1) + 2n-2]J_{2n-2,k-2}.
\]

(2.1)

Here and in what follows \(J_{2n,k} = 0 \) if \(k < 0 \).

Proof. Equating the coefficients of \(u^{2n} \) in (1.2), we obtain

\[
\frac{J_{2n}(t)}{(1 - t)^{2n+1}} = \sum_{r=0}^{\infty} \frac{r(r+1)/2 + n - 1}{n} t^n.
\]

(2.2)

Since

\[
\left(\frac{r(r+1)/2 + n - 1}{n}\right) = \frac{r(r-1)/2 + r + n - 1}{n} \left(\frac{r(r+1)/2 + n - 2}{n - 1}\right),
\]

it follows from (2.2) that

\[
\frac{J_{2n}(t)}{(1 - t)^{2n+1}} = \frac{t^2}{2n} \left(\frac{J_{2n-2}(t)}{(1 - t)^{2n-1}}\right)'' + \frac{t}{n} \left(\frac{J_{2n-2}(t)}{(1 - t)^{2n-1}}\right)' + \frac{n-1}{n} \frac{J_{2n-2}(t)}{(1 - t)^{2n-1}},
\]

or

\[
J_{2n}(t) = \frac{t^2(1 - t)^2}{2n} J''_{2n-2}(t) + \left[\frac{(2n-1)t^2(1 - t)}{n} + \frac{t(1 - t)^2}{n}\right] J'_{2n-2}(t)
\]

\[
+ \left[\frac{(2n-1)t^2}{n} + \frac{(n-1)(1 - t)^2}{n}\right] J_{2n-2}(t)
\]

\[
= \frac{t^4 - 2t^3 + t^2}{2n} J''_{2n-2}(t) + \left[\frac{(2 - 2n)t^3}{n} + \frac{(2n - 3)t^2}{n} + \frac{t}{n}\right] J'_{2n-2}(t)
\]

\[
+ \left[\frac{(2n - 2)t^2 + t}{n} + \frac{n-1}{n}\right] J_{2n-2}(t).
\]

(2.3)

Equating the coefficients of \(t^n \) in (2.3) yields

\[
J_{2n,k} = \frac{(k-2)(k-3)}{2n} J_{2n-2,k-2} - \frac{(k-1)(k-2)}{n} J_{2n-2,k-1} + \frac{k(k-1)}{2n} J_{2n-2,k}
\]

\[
+ \frac{(2 - 2n)(k-2)}{n} J_{2n-2,k-2} + \frac{(2n - 3)(k-1)}{n} J_{2n-2,k-1} + \frac{k}{n} J_{2n-2,k}
\]

\[
+ (2n - 2) J_{2n-2,k-2} + \frac{1}{n} J_{2n-2,k-1} + \frac{n-1}{n} J_{2n-2,k}.
\]

After simplification, we obtain (2.1).
Theorem 2.2. For \(n \geq 3 \) and \(k \geq 0 \), the numbers \(I_{n,k} \) satisfy the following recurrence formula:

\[
nI_{n,k} = (k+1)I_{n-1,k} + (n-k)I_{n-1,k-1} + [(k+1)^2 + n - 2]I_{n-2,k} + [2k(n-k-1) - n + 3]I_{n-2,k-1} + [(n-k)^2 + n - 2]I_{n-2,k-2}.
\] (2.4)

Here and in what follows \(I_{n,k} = 0 \) if \(k < 0 \).

Proof. Extracting the coefficients of \(u^{2n} \) in (1.1), we obtain

\[
\frac{I_n(t)}{(1-t)^{n+1}} = \sum_{r=0}^{\infty} t^r \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{r(r+1)/2 + k - 1}{k} \binom{r + n - 2k}{n - 2k}.
\] (2.5)

Let

\[
T(n,k) := \binom{x+k-1}{k} \binom{y-2k}{n-2k},
\]

and

\[
s(n) := \sum_{k=0}^{\lfloor n/2 \rfloor} T(n,k).
\]

Applying Zeilberger’s algorithm, the Maple package \texttt{ZeilbergerRecurrence(T,n,k,s,0..n)} gives

\[
(2x + y + n + 1)s(n) + (y + 1)s(n + 1) - (n + 2)s(n + 2) = 0
\]

i.e.,

\[
s(n) = \frac{y + 1}{n} s(n - 1) + \frac{2x + y + n - 1}{n} s(n - 2).
\] (2.6)

When \(x = r(r+1)/2 \) and \(y = r \), we get

\[
s(n) = \frac{r + 1}{n} s(n - 1) + \frac{r(r - 1) + 3r + n - 1}{n} s(n - 2).
\] (2.7)

Now, from (2.6) and (2.7) it follows that

\[
\frac{nI_n(t)}{(1-t)^{n+1}} = t \left(\frac{I_{n-1}(t)}{(1-t)^n} \right)' + \frac{I_{n-1}(t)}{(1-t)^n} + t^2 \left(\frac{I_{n-2}(t)}{(1-t)^{n-1}} \right)'' + 3t \left(\frac{I_{n-2}(t)}{(1-t)^{n-1}} \right)'
\]

\[
+ (n-1) \frac{I_{n-2}(t)}{(1-t)^{n-1}},
\]

or

\[
nI_n(t) = (t - t^2)I'_{n-1}(t) + [1 + (n-1)t]I_{n-1}(t) + t^2(1-t)^2I''_{n-2}(t)
\]

\[
+ t(1-t)[3 + (2n-5)t]I'_{n-2}(t) + (n-1)[1 + t + (n-2)t^2]I_{n-2}(t).
\] (2.8)
Comparing the coefficients of \(t^k \) in both sides of (2.8), we obtain
\[
nI_{n,k} = kI_{n-1,k} - (k-1)I_{n-1,k-1} + I_{n-1,k} + (n-1)I_{n-1,k-1} - 2(k-1)(k-2)I_{n-2,k-1} + (k-2)(k-3)I_{n-2,k-2} + 3kI_{n-2,k} + (2n-8)(k-1)I_{n-2,k-1} - (2n-5)(k-2)I_{n-2,k-2} + (n-1)I_{n-2,k} + (n-1)(n-2)I_{n-2,k-2},
\]
which, after simplification, equals the right-hand side of (2.4). □

Remark. The recurrence formula (2.6) can also be proved by hand as follows. It is easy to see that the generating function of \(s(n) \) is
\[
\sum_{n=0}^{\infty} s(n)u^n = (1 - u^2)^{-x}(1-u)^{-y-1}. \tag{2.9}
\]
Differentiating (2.9) with respect to \(u \) implies that
\[
\sum_{n=0}^{\infty} ns(n)u^{n-1} = \left(\frac{2ux}{1-u^2} + \frac{y+1}{1-u} \right)(1-u^2)^{-x}(1-u)^{-y-1},
\]
consequently,
\[
(1-u^2)\sum_{n=0}^{\infty} ns(n)u^{n-1} = [(2x+y+1)u + y+1](1-u^2)^{-x}(1-u)^{-y-1}
= [(2x+y+1)u + y+1]\sum_{n=0}^{\infty} s(n)u^n. \tag{2.10}
\]
Comparing the coefficients of \(u^{n+1} \) in both sides of (2.10), we obtain
\[
(n+2)s(n+2) - ns(n) = (2x+y+1)s(n) + (y+1)s(n+1),
\]
which is equivalent to (2.6).

Note that the right-hand side of (2.1) (resp. (2.4)) is invariant under the substitution \(k \to 2n - k \) (resp. \(k \to n - 1 - k \)), provided that the sequence \(I_{n-1,k} \) (resp. \(J_{2n-2,k} \)) is symmetric. Thus, by induction we derive immediately the symmetry properties of \(J_{2n,k} \) and \(I_{n,k} \) (see [4,8,12]).

Corollary 2.3. For \(n, k \in \mathbb{N} \), we have
\[
I_{n,k} = I_{n,n-1-k}, \quad J_{2n,k} = J_{2n,2n-k}.
\]

It would be interesting to find a combinatorial proof of the recurrence formulas (2.1) and (2.4), since such a proof could hopefully lead to a combinatorial proof of the unimodality of these two sequences.
3 Unimodality of the sequences $I_{n,k}$ and $J_{2n,k}$

The following observation is crucial in our inductive proof of the unimodality of the sequences $I_{n,k}$ ($0 \leq k \leq n - 1$) and $J_{2n,k}$ ($1 \leq k \leq 2n - 1$).

Lemma 3.1. Let x_0, x_1, \ldots, x_n and a_0, a_1, \ldots, a_n be real numbers such that $x_0 \geq x_1 \geq \cdots \geq x_n \geq 0$ and $a_0 + a_1 + \cdots + a_k \geq 0$ for all $k = 0, 1, \ldots, n$. Then

$$\sum_{i=0}^{n} a_i x_i \geq 0.$$

Indeed, the above inequality follows from the identity:

$$\sum_{i=0}^{n} a_i x_i = \sum_{k=0}^{n} (x_k - x_{k+1})(a_0 + a_1 + \cdots + a_k),$$

where $x_{n+1} = 0$.

Theorem 3.2. The sequence $J_{2n,1}, J_{2n,2}, \ldots, J_{2n,2n-1}$ is unimodal.

Proof. By the symmetry of $J_{2n,k}$, it is enough to show that $J_{2n,k} \geq J_{2n,k-1}$ for all $2 \leq k \leq n$. We proceed by induction on n. Clearly, the $n = 2$ case is obvious. Suppose the sequence $J_{2n-2,k}$ is unimodal in k. By Theorem 2.1 one has

$$2n(J_{2n,k} - J_{2n,k-1}) = A_0 J_{2n-2,k} + A_1 J_{2n-2,k-1} + A_2 J_{2n-2,k-2} + A_3 J_{2n-2,k-3},$$

(3.1)

where

$$A_0 = k^2 + k + 2n - 2, \quad A_1 = 4nk - 3k^2 - 6n + k + 6,$$

$$A_2 = 3k^2 + 4n^2 - 8nk - 5k + 12n - 4, \quad A_3 = 3k - k^2 + 4nk - 4n^2 - 8n.$$

We have the following two cases:

- If $2 \leq k \leq n - 1$, then

$$J_{2n-2,k} \geq J_{2n-2,k-1} \geq J_{2n-2,k-2} \geq J_{2n-2,k-3}$$

by the induction hypothesis, and clearly

$$A_0 \geq 0, \quad A_0 + A_1 = 2(k-1)(2n-k) + 4 \geq 0,$$

$$A_0 + A_1 + A_2 = (2n-k)^2 - 3k + 8n \geq 0, \quad A_0 + A_1 + A_2 + A_3 = 0.$$

Therefore, by Lemma 3.1 we have

$$J_{2n,k} - J_{2n,k-1} \geq 0.$$
• If \(k = n \), then
\[
J_{2n-2,n-1} \geq J_{2n-2,n} = J_{2n-2,n-2} \geq J_{2n-2,n-3}
\]
by symmetry and the induction hypothesis. In this case, we have \(A_1 = (n-2)(n-3) \geq 0 \) and thus the corresponding condition of Lemma 3.1 is satisfied. Therefore, we have
\[
J_{2n,n} - J_{2n,n-1} \geq 0.
\]
This completes the proof.

Theorem 3.3. The sequence \(I_{n,0}, I_{n,1}, \ldots, I_{n,n-1} \) is unimodal.

Proof. By the symmetry of \(I_{n,k} \), it suffices to show that \(I_{n,k} \geq I_{n,k-1} \) for all \(1 \leq k \leq (n-1)/2 \). From Table 1, it is clear that the sequences \(I_{n,k} \) are unimodal in \(k \) for \(1 \leq n \leq 6 \).

Now suppose \(n \geq 7 \) and the sequences \(I_{n-1,k} \) and \(I_{n-2,k} \) are unimodal in \(k \). Replacing \(k \) by \(k - 1 \) in (2.4), we obtain
\[
nI_{n,k-1} = kI_{n-1,k-1} + (n - k + 1)I_{n-1,k-2} + (k^2 + n - 2)I_{n-2,k-1}
+ 2(k - 1)(n - k) - n + 3[I_{n-2,k-2} + [(n - k + 1)^2 + n - 2]I_{n-2,k-3}.
\]
(3.2)
Combining (2.4) and (3.2) yields
\[
n(I_{n,k} - I_{n,k-1}) = B_0I_{n-1,k} + B_1I_{n-1,k-1} + B_2I_{n-1,k-2}
+ C_0I_{n-2,k} + C_1I_{n-2,k-1} + C_2I_{n-2,k-2} + C_3I_{n-2,k-3},
\]
where
\[
B_0 = k + 1, \quad B_1 = n - 2k, \quad B_2 = -(n - k + 1),
C_0 = (k + 1)^2 + n - 2, \quad C_1 = 2nk - 3k^2 - 2k - 2n + 5,
C_2 = n^2 - 4nk + 3k^2 + 4n - 2k - 5, \quad C_3 = -(n - k + 1)^2 - n + 2.
\]
Notice that \(I_{n-1,k} \geq I_{n-1,k-1} \geq I_{n-1,k-2} \) for \(1 \leq k \leq (n-1)/2 \). By Lemma 3.1 we have
\[
B_0I_{n-1,k} + B_1I_{n-1,k-1} + B_2I_{n-1,k-2} \geq 0.
\]
(3.4)
It remains to show that
\[
C_0I_{n-2,k} + C_1I_{n-2,k-1} + C_2I_{n-2,k-2} + C_3I_{n-2,k-3} \geq 0, \quad \forall 1 \leq k \leq (n-1)/2.
\]
(3.5)
We need to consider the following two cases:

• If \(1 \leq k \leq (n-2)/2 \), then
\[
I_{n-2,k} \geq I_{n-2,k-1} \geq I_{n-2,k-2} \geq I_{n-2,k-3}
\]
by the induction hypothesis, and
\[
C_0 = (k + 1)^2 + n - 2 \geq 0, \quad C_0 + C_1 = (2k - 1)(n - k - 1) + k + 3 \geq 0,
C_0 + C_1 + C_2 = (n - k + 1)^2 + n - 2 \geq 0, \quad C_0 + C_1 + C_2 + C_3 = 0.
\]
If \(k = (n - 1)/2 \), then by symmetry and the induction hypothesis,
\[
I_{n-2,k-1} \geq I_{n-2,k} = I_{n-2,k-2} \geq I_{n-2,k-3}.
\]
In this case, we have \(C_1 = (n - 3)(n - 7)/4 \geq 0 \) for \(n \geq 7 \).

Therefore, by Lemma 3.1 the inequality (3.5) holds. It follows from (3.3)–(3.5) that
\[
I_{n,k} - I_{n,k-1} \geq 0, \quad \forall 1 \leq k \leq (n - 1)/2.
\]
This completes the proof. \(\Box \)

4 Further remarks and open problems

Since \(I_{n,k} = I_{n,n-1-k} \), we can rewrite \(I_n(t) \) as follows:
\[
I_n(t) = \sum_{k=0}^{n-1} I_{n,k} t^k = \begin{cases}
\sum_{k=0}^{n/2-1} I_{n,k} t^k (1 + t^{n-2k-1}), & \text{if } n \text{ is even}, \\
I_{n,(n-1)/2} t^{(n-1)/2} + \sum_{k=0}^{(n-3)/2} I_{n,k} t^k (1 + t^{n-2k-1}), & \text{if } n \text{ is odd}.
\end{cases}
\]

Applying the well-known formula
\[
x^n + y^n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} (xy)^j (x+y)^{n-2j},
\]
we obtain
\[
I_n(t) = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} a_{n,k} t^k (1 + t)^{n-2k-1}, \tag{4.1}
\]
where
\[
a_{n,k} = \begin{cases}
\sum_{j=0}^{k} (-1)^{k-j} \frac{n-2j-1}{n-k-j-1} \binom{n-k-j-1}{k-j} I_{n,j}, & \text{if } 2k + 1 < n, \\
I_{n,k} + \sum_{j=0}^{k-1} (-1)^{k-j} \frac{n-2j-1}{n-k-j-1} \binom{n-k-j-1}{k-j} I_{n,j}, & \text{if } 2k + 1 = n.
\end{cases}
\]

The first values of \(a_{n,k} \) are given in Table 2 which seems to suggest the following conjecture.

Conjecture 4.1. For \(n \geq 1 \) and \(k \geq 0 \), the coefficients \(a_{n,k} \) are nonnegative integers.
Table 2: Values of $a_{n,k}$ for $n \leq 16$ and $0 \leq k \leq \lfloor (n-1)/2 \rfloor$.

$k \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	1	2	4	6	9	12	16	20	25	30	36	42	49				
2	2	6	18	39	79	141	239	379	579	849	1211	1680					
3	0	18	78	272	722	1716	3626	7160	13206	23263							
4	20	124	668	2560	8360	23536	59824	139457									
5	32	700	44376														
6	440	5480															
7	2176	44376															

Since the coefficients of $t^k(1 + t)^{n-2k-1}$ are symmetric and unimodal with center of symmetry at $(n-1)/2$, Conjecture 4.1 is stronger than the fact that the coefficients of $I_n(t)$ are symmetric and unimodal. A more interesting question is to give a combinatorial interpretation of $a_{n,k}$. Note that the Eulerian polynomials can be written as

$$A_n(t) = \sum_{k=1}^{\lfloor(n+1)/2\rfloor} c_{n,k} t^k (1 + t)^{n-2k+1},$$

where $c_{n,k}$ is the number of increasing binary trees on $[n]$ with k leaves and no vertices having left children only (see [11, 16, 17]).

We now proceed to derive a recurrence relation for $a_{n,k}$. Set $x = x(t) = t/(1 + t)^2$ and

$$P_n(x) = \sum_{k=0}^{\lfloor(n-1)/2\rfloor} a_{n,k} x^k.$$

Then we can rewrite (4.1) as

$$I_n(t) = (1 + t)^{n-1} P_n(x). \quad (4.2)$$

Differentiating (4.2) with respect to t we get

$$I'_n(t) = (n - 1)(1 + t)^{n-2} P_n(x) + (1 + t)^{n-1} P'_n(x) x'(t), \quad (4.3)$$

$$I''_n(t) = (n - 1)(n - 2)(1 + t)^{n-3} P_n(x) + 2(n - 1)(1 + t)^{n-2} P'_n(x) x'(t) + (1 + t)^{n-1} P''_n(x) x'(t)^2 + (1 + t)^{n-1} P'_n(x) x''(t), \quad (4.4)$$

$$x'(t) = \frac{1 - t}{(1 + t)^3}, \quad x''(t) = \frac{2t - 4}{(1 + t)^4}. \quad (4.5)$$
Substituting (4.2)–(4.5) into (2.8), we obtain
\[
n(1+t)^{n-1}P_n(x)
\]
\[
= [1 + (2n - 2)t + t^2](1 + t)^{n-3}P_{n-1}(x) + t(1 - t)^2(1 + t)^{n-5}P'_{n-1}(x)
\]
\[
+ [-t^2 + 14t + 1](1 - t)^2 + (1 + 6t - 18t^2 + 6t^3 + t^4)n + 4t^2n^2](1 + t)^{n-5}P_{n-2}(x)
\]
\[
+ [3t(t^2 - 4t + 1)(1 - t)^2 + 4t^2(1 - t)^2n](1 + t)^{n-7}P'_{n-2}(x)
\]
\[
+ t^2(1 - t)^4(1 + t)^{n-9}P''_{n-2}(x).
\]
(4.6)

Dividing the two sides of (4.6) by \((1 + t)^{n-1}\) and noticing that \(t/(1 + t)^2 = x\), after a little manipulation we get
\[
nP_n(x) = [1 + (2n - 4)x]P_{n-1}(x) + (x - 4x^2)P'_{n-1}(x)
\]
\[
+ [(n - 1) + (2n - 8)x + 4(n - 3)(n - 4)x^2]P_{n-2}(x)
\]
\[
+ [3x + (4n - 30)x^2 + (72 - 16n)x^3]P'_{n-2}(x) + (x^2 - 8x^3 + 16x^4)P''_{n-2}(x).
\]

Extracting the coefficients of \(x^k\) yields
\[
na_{n,k} = a_{n-1,k} + (2n - 4)a_{n-1,k-1} + ka_{n-1,k} - 4(k - 1)a_{n-1,k-1}
\]
\[
+ (n - 1)a_{n-2,k} + (2n - 8)a_{n-2,k-1} + 4(n - 3)(n - 4)a_{n-2,k-2}
\]
\[
+ 3ka_{n-2,k} + (4n - 30)(k - 1)a_{n-2,k-1} + (72 - 16n)(k - 2)a_{n-2,k-2}
\]
\[
+ k(k - 1)a_{n-2,k} - 8(k - 1)(k - 2)a_{n-2,k-1} + 16(k - 2)(k - 3)a_{n-2,k-2}.
\]

After simplification, we obtain the following recurrence formula for \(a_{n,k}\).

Theorem 4.2. For \(n \geq 3\) and \(k \geq 0\), there holds
\[
na_{n,k} = (k + 1)a_{n-1,k} + (2n - 4k)a_{n-1,k-1} + [k(k + 2) + n - 1]a_{n-2,k}
\]
\[
+ [(k - 1)(4n - 8k - 14) + 2n - 8]a_{n-2,k-1} + 4(n - 2k)(n - 2k + 1)a_{n-2,k-2},
\]
(4.7)

where \(a_{n,k} = 0\) if \(k < 0\) or \(k > (n - 1)/2\).

Note that, if \(n \geq 2k + 3\), then
\[
(k - 1)(4n - 8k - 14) + 2n - 8 > 0
\]
for any \(k \geq 1\),

and so are the other coefficients in (4.7). Therefore, Conjecture 4.1 would be proved if one can show that \(a_{2n+1,n} \geq 0\) and \(a_{2n+2,n} \geq 0\).
Finally, from (4.1) it is easy to see that
\[
a_{2n+1,n} = (-1)^n I_{2n+1}(-1) = \sum_{k=0}^{2n} (-1)^{n-k} I_{2n+1,k},
\]
\[
a_{2n+2,n} = (-1)^n I'_{2n+2}(-1) = \sum_{k=1}^{2n+1} (-1)^{n+1-k} k I_{2n+2,k}.
\]
Thus, Conjecture 4.1 is equivalent to the \textit{nonnegativity} of the above two alternating sums.

Since \(J_{2n,k} = J_{2n,2n-k}\), in the same manner as \(I_{n}(t)\) we obtain
\[
J_{2n}(t) = \sum_{k=1}^{n} b_{2n,k} t^k (1 + t)^{2n-2k},
\]
where
\[
b_{2n,k} = \begin{cases}
\sum_{j=1}^{k} (-1)^{k-j} \frac{2n-2j}{2n-k-j} \binom{2n-k-j}{k-j} J_{2n,j}, & \text{if } k < n, \\
J_{2n,k} + \sum_{j=1}^{k-1} (-1)^{k-j} \frac{2n-2j}{2n-k-j} \binom{2n-k-j}{k-j} J_{2n,j}, & \text{if } k = n.
\end{cases}
\]

Now, it follows from (2.2) that
\[
J_{2n,k} = \sum_{i=0}^{k} (-1)^{k-i} \binom{2n+1}{k-i} \left(i(i+1)/2 + n - 1 \right)
\]
is a polynomial in \(n\) of degree \(d := k(k+1)/2 - 1\) with leading coefficient \(1/d!\), and so is \(b_{2n,k}\). Thus, we have \(\lim_{n \to +\infty} b_{2n,k} = +\infty\) for any fixed \(k > 1\).

The first values of \(b_{2n,k}\) are given in Table 3, which seems to suggest

\textbf{Conjecture 4.3.} For \(n \geq 9\) and \(k \geq 1\), the coefficients \(b_{2n,k}\) are nonnegative integers.

Similarly to the proof of Theorem 4.2, we can prove the following result.

\textbf{Theorem 4.4.} For \(n \geq 2\) and \(k \geq 1\), there holds
\[
2nb_{2n,k} = [k(k+1) + 2n-2]b_{2n-2,k-1} + [2 + 2(k-1)(4n-4k-3)]b_{2n-2,k-1}
+ 8(n-k+1)(2n-2k+1)b_{2n-2,k-2}.
\]
where \(b_{2n,k} = 0\) if \(k < 1\) or \(k > n\).

Theorem 4.4 allows us to reduce the verification of Conjecture 4.3 to the boundary case \(b_{2n,n} \geq 0\) for \(n \geq 9\).

\textbf{Acknowledgment.} The second author was supported by EC’s IHRP Programme, within Research Training Network “Algebraic Combinatorics in Europe,” grant HPRN-CT-2001-00272.
Table 3: Values of $b_{2n,k}$ for $2n \leq 24$ and $1 \leq k \leq n$.

$k \backslash 2n$	2	4	6	8	10	12	14	16	18	20	22	24
1	1	1	1	1	1	1	1	1	1	1	1	1
2	−1	−1	0	2	5	9	14	20	27	35	44	
3	3	12	36	91	201	409	728	1242	2007	3102		
4	−7	−10	91	652	2593	7902	20401	46852	98494			
5	25	219	1719	10532	50165	191439	639968					
6	−65	249	11299	422971	1284008	4376646	18747924					
7	283	6366	135545	1737905	15219292	101116704						
8	−583	33188	1372734	24412940	277963127							
9	4417	300299	16488999	367507439								
10	1791	3320211	203698690									
11		133107	36903128									
12			701785									

References

[1] P. Brändén, Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture, Electron. J. Combin. 11 (2) (2004/05), #R9.

[2] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics’93, pp. 71–89, Contemp. Math., 178, Amer. Math. Soc., Providence, RI, 1994.

[3] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht/Boston, 1974.

[4] J. Désarménien and D. Foata, Fonctions symétriques et séries hypergéométriques basiques multivariées, Bull. Soc. Math. France 113 (1985), 3–22.

[5] W. M. B. Dukes, Permutation statistics on involutions, European J. Combin., to appear.

[6] D. Foata and V. Strehl, Euler numbers and variations of permutations, Atti dei Convegni Lincei, 17 Tomo I, 1976, pp. 119–131.

[7] V. Gasharov, On the Neggers-Stanley conjecture and the Eulerian polynomials, J. Combin. Theory Ser. A 82 (1998), 134–146.

[8] I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A 64 (1993), 189–215.

[9] D. C. Kurtz, A note on concavity properties of triangular arrays of numbers, J. Combin. Theory Ser. A 13 (1972), 135–139.

[10] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989), 500–535.

[11] J. R. Stembridge, Eulerian numbers, tableaux, and the Betti numbers of a toric variety, Discrete Math. 99 (1992), 307–320.

[12] V. Strehl, Symmetric Eulerian distributions for involutions, Séminaire Lotharingien Combinatoire 1, Strasbourg 1980, Publications de l’I.R.M.A. 140/S-02, Strasbourg, 1981.