ABSTRACT
In developing and developed countries, cancer is a significant health problem in people. Cancer becomes the second greatest cause of death in humans after cardiovascular disease. However, significant advancements in modern cancer therapies have a beneficial impact on survival, chemotherapy and radiation therapy. Plants fulfill our basic needs to continue life and provide natural products that help to cure disease. The medicinal plants are readily available and have no toxicity as compared to modern drugs. Phytochemicals act on metabolic pathways and inhibit tumor growth, the development of cancerous cells, and replication by different mechanisms. Apigenin’s chemopreventive and anticancer activities have been demonstrating in numerous studies. Apigenin is a polyphenolic compound isolated from the Curcuma longa plant. EGCG, a polyphenol in black, white, and green tea is a chemo-preventive effect against many cancers by targeting multiple pathways. Normal cell growth and cell proliferation are closely regulated processes. The JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway controls gene expression during different processes, including proliferation, initiation, and apoptosis. The transcription factors are associated with the growth of cancer cells and control a cellular function in the disease. Mitogen-activated protein kinase (MAPK) is a class of serine and threonine kinase that affects the immunological system, kidney, urinary tract, gastrointestinal organs, neurologic and psychological changes [2].

INTRODUCTION
Hippocrates, a Greek physician, was the first to name cancer, combining the Greek words “carcinoma” and “cancer.” The term “karakinos” is used for a tumor. Cancer comes to be the second most significant source of death in humans after cardiovascular disease. In both developed and developing countries, cancer is an unusual common health complication. Every year, an estimated 10.9 million new cancer cases, 6.7 million deaths, and 24.6 million human living with different types of cancer globally [1]. Because of late observation and low treatment effectiveness, cancer has developed resistance to the chemotherapeutic drug and unsatisfactory treatment. Radiation therapy or chemotherapy causes side effects like sickness, exhaustion, hair loss, vomiting, depression. It also affects the immunological system, kidney, urinary tract, gastrointestinal organs, neurologic and psychological changes [2].

Plants fulfill our basic needs to continue life and provide natural products that help in curing disease. In the traditional system like Ayurveda, Unani plants are used as medicines for primary health care and provide many novel compounds used for preventing and curative treatment to modern science [3]. In addition, researchers in developing countries have discovered plant species with anticancer properties that have been used in herbal medicine. Moreover, medicinal plants are less expensive than current drugs and have no toxic effect [4].

Compounds isolated from plants play a different role in cancer medication; for example, Epipodophyllotoxin, camptothecin, combretastatin, taxol and vinca alkaloids. Vindesine (VDS) and vinorelbine (VRLB) are vinca alkaloids that are semi-synthetic analogs. The vinblastine, vincristine, and vinca alkaloids are chemotherapy drugs, were isolated from Catharanthus roseus [5].

Natural phytochemicals used as cancer chemoinhibitory and therapeutic substance
Phytochemicals are active compounds isolated from various medicinal plants that have been found to have chemotherapeutic effects on cancer cell lines. Phytochemicals act on metabolic pathways and inhibit tumor growth, cancer cell development, and replication through various mechanisms [6].

Apigenin
Apigenin is a flavonoid compound that naturally originates in many plants and helps suppress Hela cells multiplication. Apigenin has chemo-preventive and anti-cancerous properties. The ERK/AP-1/COX-2 pathway was inhibited by apigenin, which inhibited COX-2 activity in PMA-induced breast cancer cells. Apigenin suppresses Helicobacter pylori-induced inflammation. It promotes IKB expression in gastric cancer cells while suppressing COX-2 and NF-κB activity [7]. In prostate cancer cells of human, apigenin decreased the activity of NF-κB and its responsive genes. Apigenin inhibited the PGE2 level in colon cancer cells. Apigenin disrupts the leptin/leptin receptor pathway in a non-small cell lung cancer cell line, resulting in cell death [8].

Berberine
Berberine is a plant-derived alkaloid with anticancer and chemo-preventive properties. Clinical experiments for different disorders, including skin, intestine, breast, and oral cancers, are ongoing. BERBERINE inhibits several signaling cascades in colon cancer cells, including STAT3 and MMP2/MMP-9 [9]. COX and mTDR (mammalian target of rapamycin) pathways blocked by berberine. The various functions of berberine are arresting the cell cycle, inducing the apoptosis pathway, inhibiting the NF-κB pathway, and repressed COX-2 expression at the mRNA and protein level in colon cancer cells (HT-29). Berberine targets NF-κB/COX-2 and activates the apoptosis pathway in oral cancer cells [10]. In melanoma cells, berberine induces the expression of AMPK and inhibiting the ERK signaling pathways and COX-2 expression [11].

Curcumin
Curcumin is a polyphenolic compound originate from the Curcuma longa plant [1, 7-bis [4-hydroxy-3-methoxyphenyl]-1E,
Kaempferol is a flavonoid with antitumor, antioxidant, and chemopreventive enzyme properties. Kaempferol is widely found in various plants, such as onions, Brussels sprouts, broccoli, red carrot, grapefruit, tea, apples, and Brussels sprouts. It has been used in various cancers, phytochemicals activate the mechanism of the apoptosis pathway. Kaempferol is a flavonoid with anitcancer properties, also capacity to cause apoptosis in cancer cells. Kaempferol effectively induced PARP cleavage, accompanied by a reduction in Bcl2 protein expression and multiplied in Bax protein expression. As an aryl hydrocarbon receptor (AhR) blocker, kaempferol inhibits the P33K-Akt pathway, which may be helpful in the treatment of esophageal cancer.

Quercetin is a flavonoid. It is found in licorice leaves and fruits that have anti-cancer, anti-inflammatory, and polyphenol properties. Quercetin has anti-estrogenic effects, which slow down metastasis of breast cancer cells [24]. Quercetin controls cancerous cell development by stimulating tumor suppressor genes, initiating apoptosis pathways, and slowing down angiogenesis. Quercetin inhibited proliferation, reduced PGE2 levels, and increased apoptosis in HCA-7 human colon cancer cells during colon carcinogenesis [25].

Resveratrol is a polyphenolic molecule, found in grapes, peanuts, red wine, dark berries, and other plants [26]. Many research studies conducted over the previous decade have appeared that resveratrol can hinder or delay the enlargement of disorders like cancer. It has chemoprevention capacity against many stages of cancers, such as beginning, development and progression. Resveratrol caused COX-2 intranuclear aggregation in breast cancer cells and allowed COX2 with Ser15-phosphorylated p53. In colon epithelial cells (HT-29), resveratrol suppressed the synthesis of Prostaglandin E2 (PGE2) by inhibiting COX-2 enzyme activity [27]. Resveratrol inhibits NF-kB function, blocks tumor necrosis factor, increases COX-2 activity and increases the immunoregulatory cytokines in liver cells. Resveratrol suppresses the development of breast cancer by inhibiting IkB kinase/NF-kB signaling and induces the expression of COX-2. Resveratrol also activates the tumor suppressor gene p53 [28].

Ursolic acid is a natural triterpenoid compound found in plants, being investigated as a cancer treatment agent. Ursolic acid stops cancer from spreading by blocking many signaling pathways [29]. For example, ursolic acid downregulates COX-2 activity and cleaved poly (ADP-ribose)-polymerase, which activates the apoptosis pathway in liver cancer cells (HepG2). In addition, ursolic acid inhibits cellular growth, increases apoptosis, and stops the cell cycle in gastric cancer cells [31].

Molecular-level attack for natural chemo-inhibitory substances Apoptosis

The two most general types of cell death are necrosis and apoptosis. External damage, the disappearing of the plasma membrane or its biochemical supports causes necrosis or cell death. Uncontrollable cell development and decreased apoptosis are a marker of cancer. Programmed cell death via apoptosis cascade is necessary for the proper development of multicellular organisms. The morphological and biochemical changes in the apoptosis pathway are chromatin condensation, inter nucleosomal DNA fragmentation, the origination of apoptotic bodies, and cell shrinkage [32]. Apoptosis can destroy genetically modified, pre-cancerous, or cancerous cells. Several
natural plant compounds were originally developed as antiviral or anti-inflammatory agents. Still, as our perception of cancer mechanisms improves, the antitumor properties of different phytochemicals are becoming more commonly accepted and used [33]. In various cancer cells, EGCG can increase the apoptosis pathway and inhibit the cell cycle. These effects of EGCG in cell lines were in millimolar and micromolar concentrations [34]. Quercetin prevents cellular proliferation by inducing the intrinsic pathway of apoptosis in different cancer. It enhanced the activity of the pro-apoptotic Bcl-2 class of proteins and triggered caspase-9 and caspase-3 but not caspase-8 [35]. Red wine contains resveratrol, which is an antioxidant. It also decreased the activity of the antiproliferative protein Bcl-2 while increasing the pro-apoptotic Bcl-2 class. The Bcl-2 class contains Bid, Bax, Bad, and Bak proteins. In BGC-803 cancer cells, ursoic acid promotes DNA fragmentation, upregulating caspase-3, 8, and 9 and downregulating Bcl-2 expression [fig. 1] [36].

Cell cycle

Cell growth and proliferation are tightly controlled processes in normal cells, and cell cycle dysregulation can result in unregulated cell proliferation and contribute to the malignant phenotype of tumor cells [37]. Cancer cells lack cell cycle regulation. Cell cycle checkpoints regulate cell growth, differentiation of cells, DNA replication, and apoptosis. Many phytochemicals have been occurring to hinder cancer cell development by controlling cell cycle proteins. Additionally, cell cycle checkpoints G1/S and G2/M are essential targets in cell cycle regulation [38].

Curcumin caused G2/M and G1/S phase in HOS cells to prevent D1 cyclin, cdc2, and cyclin B1 downregulation. Quercetin arrests G2/M by upregulating p73, p21 and waf1 while downregulating cyclin B1 in a human cancer cell line. Resveratrol promotes cell cycle inhibition and aggregation of cells in the G0-G1 phase in Pancreatic cancer cells. Resveratrol arrests cell cycle in G2-M and S phases and degradation in pancreatic cancer cells [39]. Apigenin prevents the enlargement of leukemia cells by allowing them to join the G2/M phase (myeloid HL60 cells) and the G0/G1 phase (non-myeloid HL60 cells, erythroid TF1 cells). In multiple myeloma cells, isothiocyanates promote cell cycle prevention in the G2/M phase and phosphorylation of conserved serine residue in the histone H3 [40].

JAK-STAT pathway

The JAK-STAT (Janus kinase, signal transducer, and activator of transcription) pathway controls gene expression during initiation, enlargement, migration, and apoptosis [41]. STAT proteins were originally identified as cytoplasmic transcription factors, only translocated to the nucleus upon Jak-mediated phosphorylation and dimerization. When extracellular growth factors and cytokines interact, they generate homodimers or heterodimers that move to the nucleus of the cell and regulate genes [42]. The anti-apoptotic and proliferative properties of STAT3 in cancer cells have been connected to a poor prognosis. Stat3 dysregulation has been connected to increased breast cancer cell enlargement, survival, and metastasis. In myeloma, the Bcl-xL and Mcl-1 are anti-apoptotic proteins that were overexpressed in myeloma cells where integral Stat3 activity was promoted by Interleukins [43]. By reducing VEGF and Stat3 activation, epigallocatechin gallate reduces gastric cancer origination and angiogenesis. In hypopharynx carcinoma and breast cancer cells in human, epigallocatechin gallate slows down Stat3 stimulation [44]. Cu (2+) oxidized LDL-induced endothelial apoptosis was reduced by quercetin through the Jak2-Stat3 pathways. *In vitro* treatment of activated T cells with quercetin inhibited IL-12-induced tyrosine phosphorylation of Jak2, Tyk2, Stat3, and Stat9, which results in IL-12-induced T cell proliferation and Th1 differentiation [fig. 3] [45].

MAPK pathway

Mitogen-activated protein kinase (MAPK) is particular to serine/threonine kinases that include JNK, ERK (extracellular regulated kinase), and p38. They control several processes like cell development and enlargement of cells by transferring cell signals to the nucleus. Transmitting cell signals to the nucleus affects gene expression that controls cell processes like cell development, differentiation, and multiplication [46]. The epidermal growth factor receptor (EGFR), estrogen receptor (ER), and tumor necrosis factor-alpha (TNF) are the most considerable downstream effectors. Components of MAPK pathways, for example, PI3K, Ras, and Akt, are mutated in human cancer. Raf-mediated chemotherapeutic drug resistance induces paclitaxel in breast cancer cells. B-Raf has been occurring to evolve in cancer such as thyroid and breast cancer. Curcumin down regulates EZH2 by activating three important members of the mitogen-activated protein kinase (MAPK) pathway: c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 kinase [47]. Ursoic acid suppresses the EGFR/MAPK pathway, slows down the enlargement of colon cancer cells, and activates the apoptosis pathway. In osteosarcoma cells, ursoic acid activates the MAP kinase pathway, inducing caspase-dependent apoptosis, significantly inhibited by ERK1/2 inhibitor treatment [fig. 3] [48].

NF-kB pathway

The transcription factors are related to cancer growth and control a different cellular cascade in the disease. NF-kB inducers include tumor necrosis factor-alpha, lipopolysaccharide, reactive oxygen species (ROS), and Interleukin beta [49]. Rel/NF-kB transcription complexes are found in an inactivated state in the cytoplasm of most cells, where they are attached to an inhibitor (IκB). Many stimuli can rapidly activate these transcription complexes from their inhibitors and allowing them to translocate to the nucleus [50]. The transcription factor NF-kB controls the expression of genes impenetrable in cancer invasion, angiogenesis, and metastasis. As an effect, inhibitors of NF-kB activity have been occurring to be helpful in cancer medication [51].

Fig. 2: Mechanisms of cell cycle prevent initiate by phytochemicals in different cancer

Fig. 3: Effect of phytochemicals on signaling pathway in different cancer

Resveratrol suppressed the NF-kB-regulated gene, inhibiting apoptosis and preventing caspase-3 activation. Tumor necrosis factor promotes phosphorylation of the NF-kB. Resveratrol inhibits
TNF-promoted phosphorylation and nuclear transfer of the NF-κB p65 subunit [52]. Curcumin inhibits the transcription factor NF-κB and slows down the phosphorylation of IKKβ alpha. NF-κB initiated the apoptosis pathway and repressed the IKK β kinase, preventing proliferation [fig. 3] [53].

CONCLUSION

Major cancer therapeutics are radiation therapy and chemotherapy, which causes severe side effects such as hepatic toxicity, nausea, vomiting, etc. Natural plant products can lower the toxicity of radiation therapy and chemotherapy. This review gives information about different phytochemicals and their anticancer activity by targeting apoptosis, cell cycle, JAK-STAT, MAPKs, and NF-κB activation in vitro research.

ACKNOWLEDGMENT

The authors are grateful to Charutar Vidyodhan Mandal (CVM) Vallabh Vidyantar, Gujarat, for providing the platform for this research work and SHODH-Scheme of Developing High-quality research Education Department, Gujarat State, for providing fund.

ABBREVIATIONS

JAK-STAT-Janus kinase–signal transducer and activator of transcription, MAPK/Mitogen-activated protein kinase, ERK-extracellular regulated kinase, JNK-c-Jun N-terminal kinases, VDS-Vinodexine, VRL–vinorelbine, NF-κB-nuclear factor-κB, AP-1-activator protein-1, AhR-aryl hydrocarbon receptor, ERK-Mitogen-activated protein kinase, ERK-ERK activator protein-1, AhR-aryl hydrocarbon receptor, EGFR-epidermal growth factor receptor, ER-estrogen receptor, TNF-tumor necrosis factor-alpha, ERK-extracellular regulated kinase, EZH2-embryonic development homolog 2, ROS-reactive oxygen species

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

The authors declared that they have no conflict of interest.

REFERENCES

1. Sudha M. Anti-cancer herbs used in Siddha system of medicine: a review. JIPPR. 2018;12:118-34.
2. Charan Dilip Kumar. Various medicinal plants used in the treatment of anticancer activity. Int J Pharm Sci. 2017;9:1424-9.
3. Sharma Deepika, Dang DCBS. Role of plants in treating cancer: a review. Int J Adv Res. 2016;4(7):901-7. doi: 10.17904/1901.699.
4. Adhikari Partha Pradip, Patra Satya Bhusan. Medicinally important plant cleome gynandra: A phytochemical and pharmacological explanation. Asian J Pharm Clin Res. 2018;11(1):21-6. doi: 10.12259/ajpcr.2017.v11i1.22037.
5. Cragg Gordon M, Newman David J. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1-2):72-9. doi: 10.1016/j.epjp.2005.05.011, PMID 16095251.
6. Balabaskar R, Rajendran Kumar A, Selvarajan S, Faridah A, Gayathri Gunalan. Potential natural products with anticancer properties and their applications. Asian J Pharm Clin Res. 2019;12:27-33. doi: 10.22159/ajpcr.2019.v12i5.32817.
7. Wang Yuan-Chuan, Huang Kai-Ming. In vitro anti-inflammatory effect of apigenin in the Helicobacter pylori-infected gastric adenocarcinoma cells. Food Chem Toxicol. 2013;53:376-83. doi: 10.1016/j.fct.2012.12.018, PMID 2326501.
8. Bruno Andreina, Siena Liboria, Gerbino Stefania, Ferraro Maria, Chanez Pascal, Giampaolo Marco, Giomark Maj, Pace Elisabetta. Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line. Eur J Cancer. 2011;47(13):2042-51. doi: 10.1016/j.ejca.2011.03.034, PMID 21550230.
9. Liu Xuan, Ji Qing, Ye Naijing, Sui Hua, Zhou Lihong, Zhu Huirong, Fan Zhonghe, Cai Jianfeng, Li Qi. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PG-2 mediated AKT2/STAT3 signaling pathway. PLOS ONE. 2015;10(5):e0123478. doi: 10.1371/journal.pone.0123478, PMID 25954974.
10. Tai WP, Luo HS. The inhibit effect of berberine on human colon cell line cox enzyme-2. ZonghShuang He Nei Ke Za Zhi. 2003;42(6):559-60, PMID 14505547.
11. Kim Hak Su, Kim Myung Jin, Kim Eun Ju, Yang Young, Lee Myeong-Sok, Lim Jong-Serk. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol. 2012;83(3):385-94. doi: 10.1016/j.bcp.2011.11.008, PMID 22120676.
12. Krishnamurti Desak Bude Guti, Wanandi Septilia Inawati, Louisa Melva. Curcumin increases the sensitivity of breast cancer cells to tamoxifen by inhibiting MR2 mRNA expression of efflux transporter MR2. Int J Appl Pharm. 2019;11:88-90. doi: 10.22159/ijap.2019.v11i6.33553.
13. Yu Siweng, Shen Guoxiang, Khor Tin Oo, Kim Jung Hwan, Kong Ah-Ng Tony. Curcumin inhibits Akt/mammalian target of rapamycin signaling pathway in breast cancer cells. J Ethnopharmacol. 2019;226:86-93. doi: 10.1016/j.jep.2019.05.011, PMID 31075112.
14. Chiu Ng, Kim Jung Hwan, Lee Eun-Young, Kim Hye-Jin, Shin Ji-Ryeong, Lee Ji-Ho. Inhibition of MRP2 MRNA expression by curcumin in breast cancer cells. J Appl Pharm Sci. 2012;2(6):138-44. doi: 10.1016/j.jap.2012.01.007, PMID 22687686.
15. Zhu Xiaowei, Shen Guoxiang, Yu Naijing, Zhu Huirong, Fan Zhonghe, Cai Jianfeng, Li Qi. Berberine inhibits Akt/mammalian target of rapamycin signaling pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(10):705-15. doi: 10.1016/j.abcbs.2012.08.003, PMID 23007254.
16. Liu Xuan, Ji Qing, Ye Naijing, Sui Hua, Zhou Lihong, Zhu Huirong, Fan Zhonghe, Cai Jianfeng, Li Qi. Berberine inhibits Akt/mammalian target of rapamycin signaling pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(10):705-15. doi: 10.1016/j.abcbs.2012.08.003, PMID 23007254.
17. Kim Jung Hwan, Lee Eun-Young, Kim Hye-Jin, Shin Ji-Ryeong, Lee Ji-Ho. Inhibition of MRP2 MRNA expression by curcumin in breast cancer cells. J Appl Pharm Sci. 2012;2(6):138-44. doi: 10.1016/j.jap.2012.01.007, PMID 22687686.
18. Zhao Xiaowei, Shen Guoxiang, Yu Naijing, Zhu Huirong, Fan Zhonghe, Cai Jianfeng, Li Qi. Berberine inhibits Akt/mammalian target of rapamycin signaling pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(10):705-15. doi: 10.1016/j.abcbs.2012.08.003, PMID 23007254.
19. Zhao Xiaowei, Shen Guoxiang, Yu Naijing, Zhu Huirong, Fan Zhonghe, Cai Jianfeng, Li Qi. Berberine inhibits Akt/mammalian target of rapamycin signaling pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(10):705-15. doi: 10.1016/j.abcbs.2012.08.003, PMID 23007254.
20. Zhao Xiaowei, Shen Guoxiang, Yu Naijing, Zhu Huirong, Fan Zhonghe, Cai Jianfeng, Li Qi. Berberine inhibits Akt/mammalian target of rapamycin signaling pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(10):705-15. doi: 10.1016/j.abcbs.2012.08.003, PMID 23007254.
reverses tamoxifen resistance in breast cancer cells. J BUON. 2015;20(3):707-13. PMID 26214621.

25. Al-Fayez Mohammad, Cai Hong, Tunstall Richard, Steward William P, Gescher Andreas J. Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemother Pharmacol. 2006;58(6):816-25. doi:10.1007/s00280-006-0228-3, PMID 16525572.

26. Bishayee Anupam. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila). 2009;2(5):490-18. doi: 10.1158/1940-6207.CAPR-08-0160, PMID 19401532.

27. Zykova Tatiana A, Zhu Feng, Zhai Xiaohong, Ma Wei-Ya, Ermakova Svetlana P, Lee Ki Won, Bode Ann M, Dong Ziang. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Molecular carcinogenesis: published in cooperation with the University of Texas M D Anderson Cancer Center. 2008;10:797-805.

28. Park, Sin Aye, Hye Kyung Na, Young Joon Suh. Resveratrol suppresses 4-hydroxyestradiol-induced transformation of human breast epithelial cells by blocking hER kinase-NF-κB signaling. Free Radical Res. 2012;8:1051-7.

29. Shanmugam Muthu K, Dai Xiaoyun, Kumar Alan Prem, Tan Benny KH, Sethi G, Sett S, Chatterjee Kn, Bishayee Anupam. Ursolic acid in cancer prevention and treatment: molecular targets, pharmacokinetics and clinical studies. Biochem Pharmacol. 2013;85(11):1579-87. doi: 10.1016/j.bcp.2013.03.006, PMID 23499879.

30. Iqbal Javed, Abou El Fadl Amr, Ahmad Riaz, Mahmood Tarik, Kamal Sobia, Ali Barkat, Khalil Ali Talha, Shah Sayed Afzal, Alam Muhammad Maqsood, Badshah Hussain. Ursolic acid a promising candidate in the therapeutics of breast cancer: current status and future implications. Biomedpharmacother. 2018;108:752-6. doi:10.1016/j.biopha.2018.06.005, PMID 30248543.

31. Zhang Yi-Ying, Deng Tao, Hu Zhi-Fang, Zhang Qiu-Ping, Zhang Jing, Jiang Hua. Mechanisms of inhibiting proliferation and inducing apoptosis of human gastric cancer cell line SGC7901 by ursolic acid. Al Zheng. 2006;25(4):432-7. PMID 16613675.

32. D’Agostini Francesco, Izzotti Alberto, Balansky Roumen M, Bennicelli Luigi, Carsiti Daniele. Modulation of apoptosis by cancer chemopreventive agents. Mutat Res. 2005;591(1-2):173-86. doi:10.1016/j.mrfmmm.2005.03.034, PMID 16137721.

33. Li-Weber Min. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett. 2013;352(2):304-12. doi:10.1016/j.canlet.2013.05.031, PMID 23438512.

34. Khan Nagma, Mukhtar Hasan. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008;269(2):269-80. doi:10.1016/j.canlet.2008.04.014, PMID 18501505.

35. Murakami Akira, Ashida Hitoshi, Terao Junji. Multitargeted signalling. Free Radical Res. 2012;8:1051-7.

36. Benny KH, Sethi Gautam, Bishayee Anupam. Ursolic acid in breast cancer: inhibition of NF-kappaB conversion into NF-kappaB2 p100 to p52. EMBO J. 2002;21(20):5375-85.

37. Zykova Tatiana A, Zhu Feng, Zhai Xiaohong, Ma Wei-Ya, Ermakova Svetlana P, Lee Ki Won, Bode Ann M, Dong Ziang. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Molecular carcinogenesis: published in cooperation with the University of Texas M D Anderson Cancer Center. 2008;10:797-805.

38. Masuda, Menyueki, Suzui Masumi, Lim Jin TE, Weinstein I Bernard. Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck breast carcinoma cells. Clinical Cancer Research. 2003;9(9):3486-91. PMID 12960141.

39. Muthian, Gladson, John J, Bright John J. Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway and T lymphocyte. J Clinical Immunology. 2004;24(5):542-52. doi: 10.1012/jci00049029235663.825, PMID 15355913.

40. Pratheekshumar Poyil, Sreekala Chakkenchath, Zhang Zhuo, Budhraja Amit, Ding Songze, Son Young-Ok, Wang Xin. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anti-Cancer Agents in Medicinal Chemistry (formerly current medicinal chemistry-anti-cancer agents) 2012;10:1159-84.

41. Garnett, Mathew J, Richard Marais Richard. Guilty as charged: B-Raf is a human oncogene. Cancer Cell. 2004;6(4):313-9. doi: 10.1016/j.jcrc.2004.09.022, PMID 15488759.

42. Wang Chunyou. Antiproliferative effect of resveratrol in pancreatic cancer cells. Phytother Res. 2010;24(11):1637-44. doi: 10.1002/ptr.3157, PMID 21031621.