Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis

Bibhuti B. Mishra1, Rustin R. Lovewell1, Andrew J. Olive1, Guoliang Zhang2, Wenfei Wang2, Eliseo Eugenin3, Clare M. Smith1, Jia Yao Phuah1, Jarukit E. Long1, Michelle L. Dubuke4, Samantha G. Palace1, Jon D. Goguen1, Richard E. Baker1, Subhalaxmi Nambi1, Rabinarayan Mishra5, Matthew G. Booty1, Christina E. Baer1, Scott A. Shaffer4, Veronique Dartois3, Beth A. McCormick1, Xinchun Chen2,6* and Christopher M. Sassetti1*

Nitric oxide contributes to protection from tuberculosis. It is generally assumed that this protection is due to direct inhibition of Mycobacterium tuberculosis growth, which prevents subsequent pathological inflammation. In contrast, we report that nitric oxide primarily protects mice by repressing an interleukin-12/15-lipoxygenase-dependent neutrophil recruitment cascade that promotes bacterial replication. Using M. tuberculosis mutants as indicators of the pathogen’s environment, we inferred that granulocytic inflammation generates a nutrient-replete niche that supports M. tuberculosis growth. Parallel clinical studies indicate that a similar inflammatory pathway promotes tuberculosis in patients. The human 12/15-lipoxygenase orthologue, ALOX12, is expressed in cavitary tuberculosis lesions; the abundance of its products correlates with the number of airway neutrophils and bacterial burden and a genetic polymorphism that increases ALOX12 expression is associated with tuberculosis risk. These data suggest that M. tuberculosis exploits neutrophilic inflammation to preferentially replicate at sites of tissue damage that promote contagion.

Despite the ability of Mycobacterium tuberculosis (Mtbd) to sustain a persistent infection that can last for decades, most individuals remain asymptomatic because their immune response effectively contains the pathogen. Only a fraction of those infected with Mtbd will develop the progressive inflammatory disease, tuberculosis (TB). In these individuals, continual bacterial replication and progressive necrosis produce cavitary lesions contiguous with the airway, which allow bacteria to exit the host and infect others1. All infected individuals mount a robust immune response to the pathogen, but the immune mechanisms that differentiate protection from disease remain unclear. Protective immunity to TB requires T cell-derived interferon γ (IFN-γ), which induces the expression of nitric oxide synthase 2 (Nos2), required for generating nitric oxide (NO) in macrophages. Animals lacking either of these factors suffer from severe TB disease characterized by high bacterial loads and granulocytic inflammation2. This correlation between neutrophils, Mtb burden and pathology is a common feature of both animal models and human TB (refs 3–5). Because NO can kill Mtb in axenic culture, most models of protective immunity posit that this mediator primarily acts by inhibiting bacterial replication, which limits subsequent inflammatory tissue damage. However, NO also inhibits inflammation by repressing the Caspase-dependent processing of pro-interleukin (IL)-1β, and this activity prevents persistent neutrophil recruitment2. We sought to quantify the individual contribution of these two distinct activities of NO.

The primary protective role of NO is anti-inflammatory. Upon infection with Mtbd, mice deficient for inducible NO generation—either due to genetic deletion of the Nos2 gene6 or chemical inhibition with aminoguanidine (AG)7—suffer from high bacterial burdens, weight loss and progressive granulocyte accumulation that correlates with increased IL-1α and IL-1β (Supplementary Fig. 1a–e). The granulocytes that accumulate in the lungs and spleens of Nos2−/− animals were predominantly CD11bhi, Gr1hi, Ly-6C hi and Ly-6G hi and had the nuclear morphology of neutrophils (Fig. 1a and Supplementary Fig. 1f–i). A smaller proportion of Gr1int myeloid cells with more heterogeneous cytological appearances were also present, as shown in other susceptible mice8–10. Bone marrow chimaeric mice were created to identify the source of protective NO and determine if this compound’s cell-intrinsic antimicrobial activity is responsible for inhibiting disease. Haemato poetic reconstitution of irradiated Nos2−/− mice with wild-type, but not Nos2-deficient, bone marrow cells inhibited all metrics of disease (weight loss, neutrophil influx and bacterial replication; Fig. 1b and Supplementary Fig. 2a). To determine if the loss of Nos2 diminished the cell-autonomous antimicrobial capacity of the macrophage, wild-type recipients were reconstituted with a 1:1 mixture of bone marrow cells from congenically marked wild-type or mutant mice lacking either Nos2 or the IFN-γ receptor (Ifngr). After a month of infection, chimaerism of the CD11bhi myeloid compartment was maintained, indicating that both genotypes populated the lung and that no obvious differences in cell death were apparent (Supplementary Fig. 2b,c). At
Figure 1 | Anti-inflammatory activity of Nos2 protects mice from TB disease. a, CD11b⁻ and Ly-6-Ghi (insets in top panels), Ly-6C⁻ and Ly-6-Ghi (insets in bottom panels) neutrophils accumulate in the lungs of Mtb-infected Nos2⁻/⁻ mice (gated on singlet/live cells). b, Bone marrow chimeraic mice were infected with Mtb (notation indicates bone marrow donor genotype → recipient genotype) and lung neutrophils, percentage weight loss and total bacterial burden in the lungs and spleen (expressed in colony-forming units, c.f.u.) were assessed 4 weeks after infection. Values are presented as mean ± s.d. *P < 0.05, **P < 0.01, one-way ANOVA with Tukey’s multiple comparison test. c, Schematic for generation of mixed bone marrow chimeraic mice. d, C.f.u. levels were determined in purified haematopoietic cells of indicated genotypes. *P < 0.01, two-way ANOVA with Bonferroni multiple comparison test. e, Mtb infected Nos2⁻/⁻ mice were treated with gemcitabine (gem), either alone or in combination with IL-1Rn. After 4 weeks of infection, the indicated metrics of disease were quantified. Values (mean ± s.d.) are pooled from two independent experiments. **P < 0.01, one-way ANOVA with Tukey’s multiple comparison test. f, CXCR2 surface expression was determined in CD45+ lung leukocytes (top panel) and mean fluorescence intensity (MFI) of CXCR2 in CD45+ CD11b⁻ Ly-6-Ghi F4-80⁻ neutrophils (bottom panel) obtained at 4 weeks post infection. Data are shown as mean ± s.d. g, CXCR1/2 signalling was blocked in infected Nos2⁻/⁻ mice with SCH-527123 and the number of neutrophils and c.f.u. in the lung were determined after 4 weeks of infection. Values are presented as mean ± s.d. *P < 0.05, two-tailed unpaired t-test with Welch’s correction. h, Bacterial load in the lungs (mean ± s.d.) of anti-Ly-6-G- or isotype-treated animals were determined by c.f.u. assay after 14 days of neutrophil depletion. All mice were infected via the aerosol route. **P < 0.001, one-way ANOVA with Tukey’s multiple comparison test. i, Bacterial burden (mean ± s.d.) in the lungs of C3HeB/FeJ mice was determined in the lungs of anti-Ly-6-G- or isotype-treated animals after 14 days of neutrophil depletion. **P < 0.01, two-tailed unpaired t-test with Welch’s correction. All data shown are representative of at least two independent experiments except in g and i (performed only once).

This time point, leukocytes were isolated from the lung, the wild-type and mutant cells were separated, and the bacterial burden in each subpopulation was quantified. The relative proportion of Ly-6-G- positive and -negative cells recovered from each set of chimaeric animals varied to some degree, but the purified cells were found to be an accurate representation of the populations found in the lung.
processes are important for the control of CD11b+Ly-6Ghigh lung leukocytes of wild-type C57BL/6 (WT) or an antimicrobial defect in the (Fig. 2f,g). It is possible that diffusible NO might partially complement of (Supplementary Fig. 2d,e).

Ifngr−/− cells harboured significantly more bacteria than wild type, and no difference in bacterial burden was observed between wild-type and Nos2−/− cells, although both Ifngr−/− and Nos2−/− chimaeric mice had a relatively higher bacterial load in their lungs than the wild type (Fig. 1c,d and Supplementary Fig. 2f,g). It is possible that diffusible NO might partially complement an antimicrobial defect in the Nos2−/− cells. However, the greater effect of Ifngr deletion indicates that IFN-γ-dependent antimicrobial processes are important for the control of Mtb replication and that these processes are largely independent of Nos2.

Because we were unable to detect a cell-autonomous antimicrobial function for Nos2, we hypothesized that the IL-1-modulating anti-inflammatory activity of NO might be responsible for protection. IL-1 plays a complex role in TB. This cytokine is produced early in infection, when it promotes antibacterial activity in macrophages and is essential for the establishment of immunity. Later, upon onset of adaptive immunity, IL-1 production is suppressed by NO, and over-production of this cytokine can promote neutrophil influx and disease. Thus, to specifically assess the importance of the ability of NO to prevent IL-1-dependent neutrophil recruitment, we allowed the infection to progress for two weeks before inhibiting IL-1 signalling with the IL-1 receptor antagonist (IL-1Rn) and/or depleting granulocytic precursors with the cytosine analogue gemcitabine. Gemcitabine treatment reduced the number of lung neutrophils, histopathological disease and wasting observed in Mtb-infected Nos2−/− mice and the co-administration of IL-1Rn accentuated this effect (Fig. 1e). These treatments specifically affected the accumulation of neutrophils in the Nos2−/− animals, as the.
To further investigate the relationship between neutrophils and bacterial replication, we employed more specific reagents to inhibit the accumulation of these cells. CXCR2 signalling promotes neutrophil recruitment to the lungs of Mtib-infected mice\(^1\). We confirmed that lung-infiltrating neutrophils expressed CXCR2 and that Nos2\(^{-/-}\) mice recruited more CXCR2\(^+\) cells (Fig. 1f). Like gemcitabine and IL-1Rn, pharmacological inhibition of CXCR2 reduced the number of neutrophils and bacteria in the lungs of Nos2\(^{-/-}\) animals (Fig. 1g). The same effect was observed upon administration of the

numbers of other leukocytes were not altered (Supplementary Fig. 3a). Remarkably, the anti-inflammatory activity of these treatments also restored control of bacterial replication. In this experiment, the number of neutrophils in the tissue correlated with bacterial burden and weight loss, and combination therapy returned these metrics to a level comparable with wild-type C57BL/6 mice (Fig. 1e and Supplementary Fig. 3b). This observation suggested that sustained neutrophil recruitment might be the primary cause of both failed anti-mycobacterial immunity and tissue damage in Nos2\(^{-/-}\) mice.

To further investigate the relationship between neutrophils and bacterial replication, we employed more specific reagents to inhibit the accumulation of these cells. CXCR2 signalling promotes neutrophil recruitment to the lungs of Mtib-infected mice\(^1\). We confirmed that lung-infiltrating neutrophils expressed CXCR2 and that Nos2\(^{-/-}\) mice recruited more CXCR2\(^+\) cells (Fig. 1f). Like gemcitabine and IL-1Rn, pharmacological inhibition of CXCR2 reduced the number of neutrophils and bacteria in the lungs of Nos2\(^{-/-}\) animals (Fig. 1g). The same effect was observed upon administration of the

numbers of other leukocytes were not altered (Supplementary Fig. 3a). Remarkably, the anti-inflammatory activity of these treatments also restored control of bacterial replication. In this experiment, the number of neutrophils in the tissue correlated with bacterial burden and weight loss, and combination therapy returned these metrics to a level comparable with wild-type C57BL/6 mice (Fig. 1e and Supplementary Fig. 3b). This observation suggested that sustained neutrophil recruitment might be the primary cause of both failed anti-mycobacterial immunity and tissue damage in Nos2\(^{-/-}\) mice.

To further investigate the relationship between neutrophils and bacterial replication, we employed more specific reagents to inhibit the accumulation of these cells. CXCR2 signalling promotes neutrophil recruitment to the lungs of Mtib-infected mice\(^1\). We confirmed that lung-infiltrating neutrophils expressed CXCR2 and that Nos2\(^{-/-}\) mice recruited more CXCR2\(^+\) cells (Fig. 1f). Like gemcitabine and IL-1Rn, pharmacological inhibition of CXCR2 reduced the number of neutrophils and bacteria in the lungs of Nos2\(^{-/-}\) animals (Fig. 1g). The same effect was observed upon administration of the
Table 1 | Distribution of alleles and genotypes for two ALOX12 SNPs between tuberculosis patients (TB) and healthy controls (HC).

SNP ID	Trait	No.	Allele (frequency (%))	Allelic comparison
			Del 1,027 (54.5)	
			G 859 (45.5)	
rs3840880	TB	943	1,119 (59.9)	11.38 0.0007 0.001 1.25 1.098-1.422
	HC	934	749 (40.1)	
rs9904779	TB	943	925 (49.0)	9.89 0.0017 0.027 0.814 0.716-0.925
	HC	934	1,012 (54.2)	

The genotypes of SNP rs3840880 and rs9904779, which are located at the promoter region of the ALOX12 gene, were determined using the Massarray platform in TB patients (n = 943) and healthy controls (n = 1046). The Hardy-Weinberg equilibrium for ALOX12 SNP distribution was analysed in cases and healthy controls. The Pearson χ² test was used to compare allelic frequencies of SNPs. The unconditional logistic regression adjusted by gender and age was performed to calculate the odds ratios (ORs), 95% confidence intervals (CIs) and corresponding P values with Bonferroni correction. "*" Compares the difference in allele frequency between TB cases and healthy controls. "P" value adjusted by Bonferroni correction for multiple tests.

Anti-Ly-6G antibody, 1A8, which depleted Gr1hi neutrophils (Fig. 1h and Supplementary Fig. 3c,d). We conclude that the primary protective function of NO in this model was to restrict the accumulation of neutrophils, and its direct antimicrobial activity played a relatively minor role. To extend the observations beyond the Nos2−/− mouse model, we investigated the role of neutrophils in the susceptible C3HeB/FeJ mouse. These animals develop inflammatory TB lesions due to increased macrophage necrosis and accumulate a large number of neutrophils in their lungs and spleen, relative to C57BL/6 mice. As observed in Nos2−/− animals, 1A8 administration depleted Gr1hi neutrophils and reduced lung bacterial burden in C3HeB/FeJ mice (Fig. 1i). We hypothesized that neutrophil influx promoted bacterial replication in multiple models of TB susceptibility.

Neutrophils create growth-permissive environment

The ability of neutrophil influx to increase the burden of Mtb suggested that this generally antimicrobial immune response was paradoxically creating a growth-permissive environment for Mtb. To investigate whether a change in the leukocytes encountered by Mtb could contribute to these environmental alterations, mice were infected with fluorescent Mtb that could be quantified by flow cytometry. We found that the loss of Nos2 altered the distribution of bacteria between myeloid populations. In both lung and spleen, the primary reservoir of Mtb changed from CD11b+Ly-6G+ neutrophils to CD11b+Ly-6Ghi neutrophils in inflammatory TB lesions (Fig. 2c,d). As a result, we hypothesized that neutrophil-rich lesions might represent a relatively benign niche for Mtb. To understand how growth in association with neutrophils altered the bacterial environment, we profiled the behaviour of a bacterial mutant library in mice that develop histioctic (C57BL/6) and granulocytic (Nos2−/−) lesions. To assess the impact of altered host cell association and not simply the loss of NO per se, we also included the C3HeB/FeJ mouse strain in which neutrophil depletion reduces bacterial burden (Fig. 1i). Each mouse was infected with a saturated library of ~50,000 independent Mtb transposon mutants, in which every non-essential gene is disrupted by insertional transposon mutagenesis (MtbΔKan_HF1295 strain). The gene distribution of bacteria between myeloid populations.

IL-1-dependent 12/15-LOX promotes TB disease

We hypothesized that the pathological neutrophil recruitment cascade that is derepressed in Nos2−/− mice might be a more general mechanism promoting TB susceptibility in some individuals. Because previous work found that neutrophil influx into the lungs of Nos2−/− mice required NLRP3 inflammasome-dependent IL-1 production, we sought to define the inflammatory pathway downstream of IL-1 that is responsible for disease in these animals. To do this, we profiled the expression of a panel of proinflammatory mediators in animals that were lacking either Nlrp3 or Ilr1. This panel focused on tumour-necrosis factor (TNF) as a known inflammatory cytokine regulated by IL-1 and the cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, which produce potent inflammation-modulating eicosanoids (Supplementary Fig. 5a). To eliminate the contribution of differential...
Increased expression and activity of 12-LOX are associated with active TB in humans. a, b, ALOX12-promoter luciferase reporter plasmids carrying different alleles at rs3840880 or rs9904779 were transfected into HeLa cells. After 48 h, the indicated luciferase activities were quantified. F/R value indicates the ratio of Firefly/Renilla luciferase. Values shown as mean ± s.d. **P** < 0.01, one-way ANOVA with Tukey’s multiple comparison test.

c, Concentrations of 12-HETE in the plasma of healthy controls. HC (n = 10), latent TB infection (LTBI) (n = 10), pulmonary tuberculosis (TB) (n = 20) and subjects suffering from non-TB lung disease, (non-TB) (n = 20) were determined by ELISA. d, 12-HETE levels in the plasma of active TB patients were determined by ELISA at the indicated time points after initiation of anti-TB chemotherapy. *m* represents months of antibiotic treatment. e, 12-HETE levels were significantly correlated with neutrophil counts in the BALF of patients with pulmonary TB, at the time of diagnosis (n = 42). The differences among groups were compared using one-way ANOVA followed by Tukey’s multiple comparison test. *P* < 0.05, **P** < 0.01. Pearson’s correlation coefficient *r* and *P* value of correlation (P) are indicated.

Bacterial replication in these mice, we used an auxotrophic strain of Mtb that is unable to replicate during infection, but remains viable and promotes an inflammatory reaction. As expected, deletion of either Nlrp3 or Il1r1 abolished neutrophil recruitment to the lungs of infected animals, even when Nos2 was inhibited (Fig. 3a). Of the eicosanoid-biosynthetic enzymes that we profiled, only the expression of Alox15, which encodes the 12/15-lipoxygenase (12/15-LOX) enzyme, correlated with neutrophil influx (Fig. 3b and Supplementary Fig. 5b). Alox15 mRNA levels were significantly increased upon Nos2 inhibition, and this induction depended upon both Nlrp3 and the Il1r1. Alox15 protein was predominately associated with the leukocytic infiltrate in mouse lung and was particularly abundant in the context of Nos2 inhibition (Fig. 3c).

Consistent with these observations, Alox15−/− mice recruited very few neutrophils to their lungs upon Mtb infection, when compared to wild-type controls. Even Nos2 inhibition did not promote neutrophil recruitment in Alox15−/− animals (Fig. 3d,e). In contrast, deletion of Alox5, which encodes 5-lipoxygenase (5-LOX), had no effect on neutrophil recruitment (Supplementary Fig. 6a). Similarly, mice lacking the leukotriene B4 receptor 1 (Ltb4r1−−), which governs neutrophil chemotaxis in response to 5-LOX-derived LTB4 (ref. 30), had a relatively minor impairment in neutrophil influx when compared to Alox15 deletion (Supplementary Fig. 6b). As we observed with neutrophil depletion in Nos2−/− mice, the reduction in lung neutrophils in Alox15−/− mice correlated with a reversal in weight loss, improvement of histopathological disease and restoration of bacterial control after Nos2 inhibition (Fig. 3d,e). Neither neutrophil depletion or Alox15 deletion significantly affected colony forming unit (c.f.u.) numbers in Nos2-deficient animals, probably because relatively few neutrophils infiltrate the lung in this situation. Pharmacological blockade of 12/15-LOX (ref. 31) had a qualitatively similar effect as genetic deletion of Alox15, ruling out unappreciated developmental effects of the Alox15 mutation (Supplementary Fig. 6c). By these metrics of disease, Alox15−/− mice were essentially resistant to the exacerbated TB disease caused by Nos2 inhibition (Fig. 3d). Reconstitution of wild-type mice with Alox15−/− (but not Alox5−/−) bone marrow reduced neutrophil influx into the lung. Although the effect of Alox15 deletion on neutrophil numbers and c.f.u. was less robust in these chimaeric animals than in intact Alox15−/− animals, these data support an important role for haematopoietically-derived 12/15-LOX in neutrophil recruitment (Fig. 3f and Supplementary Fig. 6b).

To determine which eicosanoids correlated with 12/15-LOX-dependent neutrophil recruitment, we quantified the levels of relevant lipid mediators in Alox15−/− and wild-type animals in the presence or absence of Nos2 inhibitor. No significant alterations in COX products were observed between these cohorts. The abundance of both the 5-LOX product (LTB4) and the 12/15-LOX product (12-hydroxyeicosatetraenoic acid (12-HETE)) correlated with the degree of inflammation (Supplementary Fig. 7). As both of these products are produced by inflammatory leukocytes, we concluded that LOX products are markers of neutrophil influx. However, our genetic data specifically implicated 12/15-LOX products as the primary drivers of inflammation. 12/15-LOX produces 12-hydroperoxyeicosatetraenoic acid (12-HpETE) and 12-HETE, which could be responsible for...
pro-inflammatory effects either by acting directly on neutrophils or through conversion into more potent chemotactic mediators.

To verify that 12/15-LOX products could contribute to neutrophil recruitment during infection, we supplemented Alox15−/− mice with 12-HETE. This treatment restored neutrophil numbers in the bronchoalveolar lavage (BAL) to wild-type levels (Fig. 3g). The opposing effects of Nos2 and Alox15 were manifested predominantly in the airway, and modulation of these mediators had only a modest effect on the number of neutrophils remaining in the lung after lavage and no significant effect on the number of CD11b+/Ly-6G+ neutrophil precursors in the bone marrow (Fig. 3g). 12-HETE supplementation of both wild-type and Alox15−/− mice increased the total number of lung neutrophils, and the numbers of these cells correlated with bacterial burden throughout this experiment (Supplementary Fig. 6c). Thus, a single 12-15-LOX product was sufficient to promote neutrophil recruitment to the lung.

12-LOX activity is associated with human TB

To understand if the inflammatory pathway delineated in Nos2−/− mice represents a mechanism of TB susceptibility in natural populations, we investigated whether polymorphisms in orthologous genes were associated with human TB. Significant differences in eicosanoid pathways exist between mice and humans. For example, the 12- and 15-LOX activities possessed by murine 12/15-LOX are expressed by separate human proteins. To account for these differences, a total of 112 single nucleotide polymorphisms (SNPs) in six eicosanoid-modifying genes (Supplementary Table 3) were genotyped in a cohort of TB patients and healthy controls. These SNPs were prioritized based on their minor allele frequency (>10%) and their position in 5′ or 3′ untranslated regions that could alter gene expression.

Polymorphic alleles of the leukotriene A4 hydrolase (LTA4H) gene have previously been associated with TB susceptibility. In general support of these findings, our diseased group was enriched for the minor alleles of two LTA4H SNPs. However, these associations did not reach statistical significance after multiple testing correction (Supplementary Table 4). Similarly, no significant association was found for SNPs in genes encoding COX-1 (PTGS1), COX-2 (PTGS2) or 15-LOX1 (ALOX15). In contrast, among 12 SNPs in the 5-LOX gene (ALOX5), one was significantly associated with TB. More notably, two SNPs (rs3840880 and rs9904779) in the myeloid/platelet-expressed 12-LOX (ALOX12) gene, which produces 12-HETE in humans, were associated with TB (Table 1).

Both rs3840880 and rs9904779 are located in the promoter region of the ALOX12 gene. Using a luciferase reporter system, the TB-associated allele of rs3840880 produced significantly higher transcriptional activity than its allelic variant, indicating a direct effect of this polymorphism on ALOX12 expression. No significant difference in transcription was observed between allelic variants at position rs9904779 (Fig. 4a–b). These results provided genetic evidence that increased ALOX12 expression could promote TB.

To further investigate whether human 12-LOX activity correlates with inflammatory TB, we assessed the concentration of its product, 12-HETE, in relation to disease, bacterial burden and neutrophil infiltration. The 12-HETE concentration in peripheral blood of TB patients was significantly higher than in healthy cohorts (HC) or patients with non-TB lung diseases (Fig. 4c). Plasma 12-HETE levels decreased significantly over the first three months of TB chemotherapy (Fig. 4d), mirroring the clearance of bacteria. Moreover, in bronchoalveolar lavage fluid (BALF) of TB patients, the level of 12-HETE correlated positively with the abundance of neutrophils (Fig. 4e). This association was similar to that observed previously for IL-1β and neutrophils in the BALF of TB patients.

The association between 12-LOX and granulocytic inflammation was further investigated in human cavitary TB lesions using quantitative immunohistochemistry. These lesions consist of an acellular necrotic centre (caseum), which is sequentially surrounded by a myeloid-cell-rich region (‘macrophage rim’) and a fibrotic capsule. Quantification of multiple lesions indicated that inflammatory markers, such as TNF-α and myeloperoxidase (MPO) expressing neutrophils, were found in the region adjacent to the caseum (Fig. 5a–g). This region encompassed both the cellular and fibrotic outer edge of the cavity and the macrophage rim. Consistent with the pro-inflammatory role played by its murine orthologue, we...
found that human 12-LOX expression was concentrated in this TNF-α and MPO-rich region of the cavitary granuloma (Fig. 5h), which was previously defined as an inflammatory region. Collectively, these clinical and histopathological observations indicate that ALOX12 expression and 12-HETE levels correlate with TB disease, the burden of bacteria and the recruitment of neutrophils. As a result, it is currently unclear if the neutrophils in other subspecies are functionally similar to those found in Mtb intracellular growth (Fig. 1d). In contrast, the basis for susceptibility Nos2−/− mice was not related to a cell-autonomous antimicrobial defect. Instead, the primary role of NO was anti-inflammatory, and the lack of Nos2 increased susceptibility by providing a growth-permissive milieu for the pathogen in association with neutrophils. Because NO cannot account for the observed antimicrobial activity of IFN-γ signalling, other effector mechanisms induced by this cytokine must be responsible for the ability of IFN-γ to control the replication of Mtb.

Neutrophil depletion can extend the survival of Mtb-susceptible mouse strains other than Nos2−/− mice, but the relative contributions of neutrophil-mediated tissue damage versus the amplification of bacterial replication have not been determined in these models. As a result, it is currently unclear if the neutrophils in other mouse models are functionally similar to those found in Nos2−/− mice. Indeed, Ly-6G+ granulocytes are now understood to encompass a variety of subsets that serve both phagocytic and immunomodulatory roles. Further functional characterization of the neutrophils that promote Mtb replication in Nos2−/− and other mouse strains could provide additional markers of susceptibility to be investigated in clinical cohorts. Although other intracellular pathogens transiently infect neutrophils during the establishment of infection or use these cells as a primary replication site, the preferential growth of Mtb in neutrophil-rich lesions is most reminiscent of Salmonella enterica subspecies Typhimurium. This pathogen thrives at sites of inflammation by using oxidized by-products of neutrophil activation as substrates for anaerobic respiration. Our global phenotypic analysis of bacterial mutants showed no indication of altered usage of analogous trimethylamine-N-oxide (TMAO) or nitrate reductases in Nos2−/− mice (Supplementary Table 1 and 2). Instead, Mtb appears to exploit the increased accessibility of nutrients in granulocyte-rich lesions (Supplementary Fig. 9). We speculate that the inferred abundance of nutrients is due to the cell death observed in advanced TB lesions, which are rich in the lipid carbon substrates preferred by Mtb and are likely to contain iron sources such as haem that Mtb can acquire without mycobactin. A remarkable similarity between these two pathogens is the common reliance on inflammation for efficient transmission, for Salmonella via the generation of bacteria-rich inflammatory diarrhoea, and for Mtb via the generation of cavitary lesions that facilitate the production of infectious aerosols. Enhancement of transmission provides strong selection for these pathogens to thrive at sites of intense inflammation that would be lethal to other microbes.

Methods

Mice. C57BL/6 (stock no. 000664), Nos2−/− (B6.129P2-Nos2tm1Evj/J, stock no. 002609), Alox15−/− (B6.129S2-Alox15tm1Flt1/J, stock no. 004155), C3H/HeJ (stock no. 00658), B6.SJL−/− (B6.129S4−/−), C57BL/6 (stock no. 000664), and B6.129S2−/− (B6.129S2−/−) mice were from The Jackson Laboratory. Mice were housed under specific pathogen-free conditions and in accordance with the University of Massachusetts (UMASS) Medical School, IACUC guidelines. All mouse strains used in this study were of C57BL/6 background unless otherwise indicated.

Mouse infection. The wild-type strain of M. tuberculosis (Mtb) used in these studies was PDDM-positive H37Rv. Bacteria were cultured in 7H9 medium containing OADC enrichment (Becton Dickinson). Bacteria expressing yellow fluorescent protein (mYFP) were generated by transformation of H37Rv with plasmid pVM261, which constitutively expresses mYFP under the control of the hsp60 promoter. For infections, mycobacteria were suspended in phosphate-buffered saline (PBS)–Tween 20 (0.05%). Clumps were dissociated by sonication and ~200 c.f.u. were delivered via the respiratory route using an aerosol generation device (Glas-Col) or 1 x 10^6 c.f.u. by the intravenous route. Mouse infections with the streptomycin auxotrophic strain of M. tuberculosis, 18b, were carried out as described previously.

Immunohistochemistry (IHC). Lung tissues were fixed in 10% buffered formalin and embedded in paraffin. Five-micrometre-thick sections were stained with haematoxylin and eosin (H&E). All staining was done by the Diabetes and Endocrinology Research Center histopathology core facility at the University of Massachusetts Medical School. IHC for 12/15-LOX in the lung sections was done by staining the lung sections with 15-LO antibody clone H-235 (sc-32940). Lung sections from Alox15−/− mice were used as negative control for these staining.

Drug treatment of animals. Aminoguanidine treatment. Mice were supplied with drinking water containing 2.5% aminoguanidine hemisulfate (CAS no. 996-19-0, Sigma) 7 days before Mtb infection. Water was replaced every week.

Gemcitabine treatment. Nos2−/− mice were treated with gemcitabine hydrochloride (cat. no. G6423, Sigma-Aldrich) via intraperitoneal route, 10 days post Mtb infection. Gemcitabine treatment was repeated every three days until the 25th day post infection in a total of four doses of 100 mg per kg per mouse.

Anakinra treatment. IL-1Rn (Kinereit) was given at 25 mg kg−1 via Alzet osmotic pumps, implanted in each animal subcutaneously near the trunk.

12/15-LOX inhibitors. Baicalein (cat. no. 1761), from TOCRIS, was given to Nos2−/− mice at a dose of 25 mg kg−1 through Alzet osmotic pumps from 2 days to 28 days post infection.

12-HETE treatment. 12-HETE (Cayman Chemicals) was administered to mice via Alzet osmotic mini pumps (50 µg kg−1) for four weeks, starting on the day of infection.

CXC2R inhibitor. CXC2R1 antagonist SCH527123 (cat. no. CS-0609, ChemScence) was administered to animals via Alzet osmotic mini pumps at a dose of 5 mg kg−1, for four weeks, beginning one day after infection.

Neutrophil depletion. Anti-Ly-6G depleting antibody, clone 1A8 (BioXcell), was administered as described by Nandi and co-workers, and 200 µg of 1A8 or isotype control (clone 2A3, BioXcell) antibody was administered to animals via intraperitoneal injection starting 10 days post-infection and then every other day for 11 days. Ly-6G+ neutrophil depletion was verified by fluorescence-activated cell sorting (FACS) analysis of CD11b+Gr-1−Ly-6C− cell populations, and animals were euthanized at day 24 of infection to determine bacterial burden and cytokines in the lungs.

Flow cytometry. Single-cell suspensions were prepared from BALF obtained from the mouse lungs. Lung tissue was digested with collagenase type IV/DNaseI and passed through 40 µm cell strainers to obtain single-cell suspension. Non-specific antibody binding sites were blocked by Fc-Block CD16/32 (clone 93, cat. no. 103139) and the cells were stained with anti-CD3-PE (clone 17A2, cat. no. 100205), anti-CD11b-PerCP-Cy5.5 (clone M1/70, cat. no. 128007), anti-Gr1-APC (clone 1A8, cat. no. 126705), anti-Ly-6G-FITC (clone 129/4.1, cat. no. 128007), anti-Gr1-APC (clone RB4-8C5, cat. no. 108411), anti-CXCR2/CXCR1-PE (clone SA04484, cat. no. 149303), anti-CD11c-Alexa 700 (clone N418, cat. no. 117319), anti-F4/80-PE-Cy7 (clone BM8, cat. no. 123113), anti-CD45-Pacific Blue (clone 30-F11, cat. no. 103126), anti-CD45.1-PE (clone A20, cat. no. 110707) and anti-CD45.2-FITC (clone 104, cat. no. 110804). Antibodies were purchased from Bio Legend. All analyses were performed on live cells only after staining them with fixable live/dead conjugated with eFluor780, purchased from eBioscience. For infections with fluorescent H37Rv, lung tissue was prepared as described above and stained with anti-Ly-6G-Pacific Blue (clone IA4, cat. no. 127612), anti-CD11b-AC4-Cy7 (clone M1/70, cat. no. 101226) and live/dead fixable violet and cell stain (Molecular Probes, cat. no. L-34963) and compared against lung tissue infected with non-fluorescent H37Rv. All the staining was done according to the manufacturer’s instructions. Lung or spleen cells were surface-stained for 30 min at room temperature, and fixed for 20 min at 4 °C using the Cytofix buffer (BD-Biosciences, cat. no. 554665).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Cell sorting and morphological analysis. To sort Gr-1^{−/−} and Gr-1⁺ cells, single cell suspensions were prepared from femurs of male Eddrm transgenic mice, as described above. After incubating with 5 µg ml^{−1} Fe-Block (ebiosciences) for 15 min at 4 °C, cells were stained with anti-CD11b (clone M1/70) and Gr-1 (clone RB6-8C5), as described above. A live-dead stain was used to exclude dead cells. Cells were then fixed with Cytofix (BD Biosciences). Fixed cells were further fractionated into CD11b⁺ Gr-1^{−/−} and CD11b[−] Gr-1⁺ by a FACSDirix cell sorter (BD Biosciences). Sorted cells were analysed for purity using FACS Aria, and both the Gr-1^{−/−} and Gr-1⁺ cells were obtained at >90% purity. FACS sorted cells were cytopsoted onto cytocides (Thermoscientific), stained with DAPI, and images were acquired in a Delta Vison deconvolution microscope. The images were taken with a ×60 objective, and the Delta Vision SoftWorx software was used to deconvolute the images.

Cytokine measurement and immunoblotting in tissue homogenates. Murine cytokine concentrations in culture supernatants and cell-free lung homogenates were quantified using commercial enzyme-linked immunosorbent assay (ELISA) kits (BD Opt EIA). All samples were normalized for total protein content.

Generation of bone marrow chimaera mice. B6.SJL-Ptprc^{−/−}Ptprc^{Boy} (CD45.1/Ly-5.1) mice were lethally irradiated (900–1,200 rads or 90–100 Gy) and reconstituted with a total of 10⁷ dono bone marrow cells from C57BL/6 CD45.2 or Alox15^{−/−}, Alox6^{−/−} or Nos2^{−/−} in CD45.2 background. Mice were allowed to recover for 8 weeks before performing aerosol infection with H37Rv. Approximately 85–95% reconstitution of donor bone marrow was achieved in this experiment. Surface expression of congenic markers CD45.1 and CD45.2 antigens was checked by flow cytometry before (blood) and after (infected lung) infection in each cohort.

Mixed bone marrow chimaera generation and cell sorting. Wild-type CD45.1^{−/−} mice were lethally irradiated with two doses of 600 rads. The following day, bone marrow from CD45.1^{−/−} wild-type mice and CD45.2^{−/−} knockout mice (wild-type Ifgfr^{−/−} or Nos2^{−/−}) was isolated, red blood cells were lysed using Tris-buffered ammonium chloride (ACT), and the remaining cells were stained using a haemocytometer. CD45.1^{−/−} and CD45.2^{−/−} cells were then mixed equally at a 1:1 ratio and 10⁶ cells from this mixture were injected intravenously into lethally irradiated hosts. After 5–7 days to allow mutual hematopoietic engraftment, cells were harvested in medium containing 2% FBS and triturated with a plastic pipette to facilitate single-cell sorting for treatment. For the first 4 weeks, mixed bone marrow chimaera mice were then infected by low-dose aerosol with *M. tuberculosis* H37Rv. Four weeks following infection, the lungs of chimaera mice were collected, and single-cell suspensions were made following collagenase treatment and tissue disruption. An aliquot of each suspension was saved for flow cytometry analysis of the lung population and the remaining cells were split equally and stained with either anti-CD45.1 conjugated to allophycocyanin (APC) or anti-CD45.2 conjugated to phycoerythrin (PE). Stained populations were then incubated with either anti-APC or anti-PE magnetic beads (Miltenyi) following the manufacturer’s instructions. Stained populations were then isolated using positive selection magnetic microparticles with preventative starvation treatment for the first 4 weeks. Mixed bone marrow chimaera mice were then infected by low-dose aerosol with *M. tuberculosis* H37Rv. Four weeks following infection, the lungs of chimaera mice were collected, and single-cell suspensions were made following collagenase treatment and tissue disruption. An aliquot of each suspension was saved for flow cytometry analysis of the lung population and the remaining cells were split equally and stained with either anti-CD45.1 conjugated to allophycocyanin (APC) or anti-CD45.2 conjugated to phycoerythrin (PE). Stained populations were then incubated with either anti-APC or anti-PE magnetic beads (Miltenyi) following the manufacturer’s instructions. Stained populations were then isolated using positive selection magnetic microparticles with preventative starvation treatment. Following elution of each population, purified cells were divided equally and then plated for *M. tuberculosis* on 7H10 agar or counted and stained for analysis of cellular purity. Cells from the input homogenate, flow through and the positive sort fractions were stained with fixable Live/Dead Aqua (Life Tech), anti-CD11b-PE-Cy5, anti-CD45.1 APC, anti-CD4 PerCP, Ly6G-Pacific Blue (Biolegend) and analysed on a MacsQuant flow cytometer (Miltenyi). Samples with >90% were used for subsequent analysis. After 21 days at plating, colonies were enumerated and the Mtb levels per sort cell were determined.

Isolation of neutrophils from mouse bone marrow. Bone marrow cells were isolated from C57BL/6 and Nos2^{−/−} mice femurs, red blood cells were lysed using ACT, and single-cell suspension was prepared. Mouse neutrophils were prepared by negative selection using the neutrophil isolation kit from Miltenyi Biotec (cat. no. 130-097-858) according to the manufacturer’s protocol. Cytoplasmic RNA from isolated neutrophils was purified using the QiaNeasy Plus universal kit with genomic DNA eliminator solution. Individual RNA samples (100 ng each) were subjected to quantitative reverse transcription polymerase chain reaction (qRT-PCR) using the QuantiTect SYBR Green RT-PCR kit. In this method, mRNA levels for each sample were normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA levels and then expressed as a fold regulation in gene expression using the SABiosciences RT²™ Profiler PCR data analysis software. The sequences of the specific primers are as follows:

- *Lsd1*: forward: 5′-gctacctgagctggatcag-3′ and reverse: 5′-tcctcaaaacagctgtca-3′
- *Alox5*: forward: 5′-tcagcctgacgctggc-3′ and reverse: 5′-gtgctgctggatgtag-3′
- *Ptgs1 Cox1*: forward: 5′-ttccacacagctgctgcttc-3′ and reverse: 5′-tctgcgctacgagacccat-3′
- *Ptgs2 Cox2*: forward: 5′-acacatctatcagctggac-3′ and reverse: 5′-tcaaggacagttgcttc-3′
- *Alox15*: forward: 5′-gtcctccgccccgctgcttc-3′ and reverse: 5′-ggggcttcagagacccag-3′
- *Tnf*: forward: 5′-caccagaagctatgcggctc-3′ and reverse: 5′-ccacagagacgagtccttc-3′
- *Gp91phox*: forward: 5′-accttgctgctggactggaag-3′ and reverse: 5′-acagatgctgcggccg-3′

Lipid quantification by LC-MS. Lung homogenates were prepared in 50% methanol containing 0.02% bromoiodoethylene (BHT) by homogenizing the infected lung samples first in cold PBS + 0.04% BHT, followed by an equal volume of 100% chilled methanol + 0.04% BHT. The homogenates were then kept at 4 °C for 60 min, centrifuged at 4,000 r.p.m. for 20 min at 4 °C and the supernatants were filtered through 0.2 µm PTFE filters. Extracted lung homogenates were reduced to near dryness, resuspended in 1 ml of water, and applied to 3 ml, 500 mg Bond Elute C18 cartridges (Agilent Technologies) pre-conditioned with 10 ml methanol, 5 ml 100% chilled methanol, 5 ml 100% chilled ice-cold hexane and eicosanoids eluted with 5 ml methanol. Samples were then dried by nitrogen and reconstituted in 30 µl of 50% methanol for liquid chromatography–mass spectrometry (LC-MS)/MS analysis.

- Deuterium-labelled or unlabelled internal standards (listed in Supplementary Table) were added such that there was 100% ethanol and diluted to generate an 11-point standard curve. Briefly, each standard solution was added to 100 µl (10 ng) of the working internal standard solution. The final working concentrations of the standard curve ranged from 6.25 ng ml^{−1} to 10 µg ml^{−1} for each eicosanoid.

Samples were analysed on a Dionex Ultimate 3000 ultra-high performance liquid chromatography (UHPLC) apparatus (Thermo Scientific) configured to a TSQ Quantum (Thermo) triple quadrupole mass spectrometer operating in negative ion mode. Samples and calibrants were injected (10 µl) at 200 µl min^{−1} onto a 100 × 2.1 mm BEH (Waters Corporation) C18 1.7 µm UHPLC column heated at 40 °C and fitted with a guard column. A gradient of 0%–90% B was used, where phase A was 10 µM aqueous ammonium acetate (pH 5.0) and phase B was 100% acetonitrile. The gradient program was as follows: 0–4 min (20%–40%) B; 4–14 min (40%–80% B); 14–14.1 min (80%–95% B); 14.1–16 min (95% B); 16–16.1 min (95–20% B); 16.1–25 min (20% B). Eicosanoid molecular ions were analysed by scheduled single reaction monitoring (SRM) with parent to fragment ion transitions and optimized collision energies previously determined by direct infusion of eicosanoid standards (Supplementary Table 5). Transitions highlighted in bold were used for quantitative analysis while others were used for secondary confirmation.

Eicosanoids were analysed by generating extracted ion chromatograms from the quantified SRM transitions (Supplementary Table 5) and integrating the peak areas using the Xcalibur (version 3.0.63, Thermo) Quan Browser software module. Chromatograms were background-subtracted (INCOS noise) and smoothed (nine points, Gaussian) before integration. For each analyte, a standard curve was constructed over the 6.25 µg ml^{−1} to 10 µg ml^{−1} range by plotting the ratio of the peak areas of the analyte to a corresponding deuterium labelled internal standard. Exceptions to this were 11-, 8- and 9-HETE, which were expressed relative...
Plasma samples were collected and stored at 4°C. Data from study samples were processed in a similar way to the standards, and eosinonadon concentrations were determined by relation to the standard curves. All measured sample concentrations fell within the standard curve with the exception of 12-HETE and PGD2. For the latter analytics, standard curves were extrapolated 5× beyond the top point to allow a concentration estimate.

Human subjects and samples. We used a case–control cohort involving 943 pulmonary TB patients and 934 healthy controls (HC) from the Shenzhen Third People’s Hospital (previously described in refs 14,48). Diagnosis of active TB was based on clinical symptoms, chest radiographic findings, and sputum to apply for acid fast bacilli (AFB), sputum and/or BALF Mtb culture and response to anti-TB chemotherapy. Healthy controls with normal chest radiographic findings and without a clinical history of TB were recruited. Mtb-specific interferon gamma release assays (IGRA) were used to differentiate individuals with latent TB infection (LTBI) from healthy controls (HC) without infection as described previously49. All subjects were genetically unrelated members of the Chinese Han population. The ages of each group (years; mean ± s.d.) were as follows: pulmonary TB, 38.74 ± 12.33; HC, 36.64 ± 11.52. The ratio of males to females for the TB and HC groups were 799/234 and 576/358, respectively. All SNPs were in Hardy–Weinberg equilibrium in both diseased and healthy groups (P > 0.05).

Plasma samples were collected from HC (n = 10), LTBI (n = 10), Mtb culture confirmed TB (n = 20) and patients with non-TB lung diseases (non-TB, n = 10). The non-TB lung diseases group included patients with pneumonia caused by Streplococcus pneumoniae (n = 3), Mycoplasma pneumoniae (n = 2), Corynebacterium diphtheriae and Klebsiella pneumoniae (n = 3). Whole blood and plasma samples were collected and stored at −80°C. Unless otherwise indicated, all samples from patients were collected before initiation of antibiotic treatment. Aliquots of BALF samples from pulmonary TB patients (n = 42), described previously, were used to correlate 12-HETE levels and neutrophil numbers. The levels of 12-HETE in the BALF and plasma were measured with a kit from Enzo Life Sciences.

The inducible nitric oxide synthase locus confers protection in immune-competent mice. "Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis. Model.Mech. 8, 1141–1153 (2015).

Maiello, P., Sun, T., Via, L. E. & Flynn, J. L. Granzyme B-expressing macrophages and dendritic cells are cell-autonomous immunity. Nat. Immunol. 8, 1141–1153 (2007).

Mattila, J. T., Maiello, P., Sun, T.,Via, L. E. & Flynn, J. L. Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomologus macaques. Cell. Microbiol. 17, 1085–1097 (2015).

Berry, M. P. R. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

Yang, Q. et al. The inductive nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect. Immun. 69, 7711–7717 (2001).

Flynn, J. L., Scanga, C. A., Tanaka, K. E. & Chan, J. Effects of aminoquinidine on latent murine tuberculosis. J. Immunol. 160, 1796–1803 (1998).

Tsiganov, E. N. et al. Gr-1+/−CD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J. Immunol. 192, 4718–4727 (2014).

Knaul, J. K. et al. Lung-residing myeloid-derived suppressors display dual functionality in murine tuberculosis. Am. J. Respir. Crit. Care Med. 190, 1053–1066 (2014).

Obregon-Henao, A., Henao-Tamayo, M., Orme, I. M. & Ordway, D. J. Gr1+CD11b+ myeloid-derived suppressor cells in Mycobacterium tuberculosis infection. PLoS ONE 8, e60669 (2013).

MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

Jayaraman, P. et al. IL-1β promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation. J. Immunol. 190, 4196–4204 (2013).
13. Fremond, C. M. et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179, 1178–1189 (2007).

14. Zhang, G. et al. Allelic-specific induction of IL-1β expression by C/EBPβ and PU.1 contributes to increased tuberculosis susceptibility. PLoS Pathogens 10, e1004246 (2014).

15. Nauwelaers, G. et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J. Clin. Invest. 124, 1268–1282 (2014).

16. Irwin, S. M. et al. Presence of multiple lesion types with vastly different microenvironments in C3H/BeJ/Fc mice following aerosol infection with Mycobacterium tuberculosis. Dis. Model. Mech. 8, 591–602 (2015).

17. Padgett, E. L. & Pruet, S. B. Rat, mouse and human neutrophils stimulated by a variety of activating agents produce much less nitrite than rodent macrophages. Immunology 84, 135–141 (1995).

18. Denis, M. Human neutrophils, activated with cytokines or not, do not kill virulent Mycobacterium tuberculosis. J. Infect. Dis. 163, 199–920 (1991).

19. Long, J. E. et al. Identifying essential genes in Mycobacterium tuberculosis by global phenotypic profiling. Methods Mol. Biol. 1279, 79–95 (2015).

20. Padilla-Benavides, T., Long, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A novel P(18)-type MrnA-transporting ATPase is required for secreted protein metalation in mycobacteria. J. Biol. Chem. 288, 11334–11347 (2013).

21. Nambu, S. et al. The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe 17, 829–837 (2015).

22. Darwin, K. H., Ehr, S., Gutierrez-Ramos, J.-C., Weich, N. & Nathan, C. F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302, 1963–1966 (2003).

23. Cambier, C. J. et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505, 218–222 (2014).

24. Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).

25. Forreellad, M. A. Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 94, 170–177 (2014).

26. Kendall, S. L. et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 65, 684–699 (2007).

27. Marrero, J., Rhee, K. Y., Schnappinger, D., Pethe, K. & Ehrt, S. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for assembly of the virulence-conferring siderophore mycobactin. J. Biol. Chem. 288, 21714–21728 (2013).

28. Nandi, B. & Behar, S. M. Regulation of neutrophils by interferon-gamma modulates susceptibility to Mycobacterium tuberculosis infection. J. Immunol. 189, 1189 (2007).

29. Wang, J. et al. Nitric oxide prevents a pathogen-permissive destructive neutrophilic inflammation in tuberculosis. J. Infect. Dis. 159, 1178–1183 (1989).

30. Pravica, V. et al. LTB4 mediates acute lung injury induced by lipopolysaccharide. J. Immunol. 162, 3797–3805 (1999).

31. Van Leyen, K. et al. Baicalein and 12/15-lipoxygenase in the ischemic brain. J. Neuroimmunol. 101, 1–8 (1999).

32. Herron, M. J. et al. Intracellular parasitism by the human granulocytic ehrlichiosis bacterium through the P-selectin ligand, PSGL-1. Science 288, 1653–1656 (2000).

33. Mrsny, R. J. et al. Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J. Biol. Chem. 288, 21714–21728 (2013).

34. Kim, M.-J. et al. Casaseon of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2, 258–274 (2010).

35. Bhowmick, R. et al. The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe 17, 829–837 (2015).

36. Chen, X. et al. Diagnosis of active tuberculosis in China using an in-house gamma interferon enzyme-linked immunosorbent assay. Clin. Vaccine Immunol. 16, 879–884 (2009).

37. Khan, Y. Q., Cai, Y. Y., Zhang, X., Lee, Y. T. & Opas, M. Adaptive correction technique for 3D reconstruction of fluorescence microscopy images. Microsc. Res. Tech. 71, 146–157 (2008).

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (81525016, 81501714 and 81500004 to X.C.), the National Institutes of Health (NIH; AI064282 and AI10774 to C.M.S., AI120556 to R.R.L., AI003749 to S.G.P. and MH096625 to E.E.) and the Arnold and Mabel Beckman Foundation (to A.J.O.). The authors thank C. Moss for providing technical help. S.M. Behar for critical review of the manuscript and the UMSM Department of Animal Medicine for Animal Care.

Author contributions

B.R.M. and C.M.S. conceived and designed the study. B.R.M., R.R.L. and A.I.O. performed most experiments. G.Z., W.W. and X.C. designed and performed the SNP study in Chinese cohorts. E.E. and V.D. designed and performed the IHC study of the lung biopsies to E.E.) and the Arnold and Mabel Beckman Foundation (to A.J.O.). The authors thank C. Moss for providing technical help. S.M. Behar for critical review of the manuscript and the UMSM Department of Animal Medicine for Animal Care.

Additional information

Supplementary information is available for this paper.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to X.C. and C.M.S.

How to cite this article: Mishra, B. B. et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2, 17072 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Competing interests

The authors declare no competing financial interests.