Abstract

Results are presented on the identification of the unstable nuclei ^8Be and ^9B and the Hoyle state (HS) in the relativistic dissociation of the isotopes ^9Be, ^{10}B, ^{11}C, ^{12}C, and ^{16}O in a nuclear track emulsion (NTE). The main motivation for the study is the prospect of using these states in the search for more complex unstable states that decay with their participation. The possibilities of the NTE method for studying the contribution of multiple ensembles of the lightest He and H nuclei to the fragmentation of relativistic nuclei are described in brief. It is shown that to identify relativistic decays ^8Be and ^9B and HS in NTE, it is sufficient to determine the invariant mass as a function of angles in pairs and triples of He and H fragments in the approximation of conservation of momentum per nucleon of the parent nucleus. The formation of HS in the dissociation $^{16}\text{O} \rightarrow 4\alpha$ is observed. According to the criteria established in this way, the contribution of the unstable states to the relativistic fragmentation of ^{28}Si and ^{197}Au nuclei was estimated. Promising applications of the NTE method in the study of nuclear fragmentation are discussed.

1 Introduction

The generation of ensembles consisting of several He and H nuclei is possible in the peripheral dissociation of relativistic nuclei. Potentially, an in-depth study of their features can shed light on topical issues in few-body nuclear physics. The focus of theoretical developments is the possibility of the existence of states with a pronounced α-condensate and nuclear-molecular structure. In turn, the findings of the corresponding laboratory searches could be involved in the development of multi-body scenarios of nuclear astrophysics.

Being flexible and inexpensive, the method of nuclear track emulsion (NTE) meets the corresponding experimental challenges at least at the search stage. In the NTE layers longitudinally exposed to relativistic nuclei tracks of fragments can be observed exhaustively, and their direction determined with the best resolution. Determination of the invariant mass of the relativistic fragment groups in the approximation of conservation of the velocity of the initial nucleus makes it possible to project the angular correlations of fragments on the energy scale of nuclear physics. Thus, on the basis of the relativistic-invariant approach, a new and at the same time visual paradigm of the experimental study of ensembles of the lightest nuclei just above the coupling threshold appears. It is possible both to use the results obtained within the framework of the NTE method when planning experiments of high complexity and a variety of the most modern detectors, and to apply on a large-scale the method itself leaning on the achievements of computerized microscopy. In this context, a brief overview of the application of NTE to unstable ^8Be and ^9B nuclei and the search for heavier states associated with them will be given below.

Technological and analytical foundations of the NTE method as applied to relativistic particles were developed in the initial period when fundamental discoveries in high-energy physics were made in the study of cosmic rays. These achievements are fully presented in the classic book by Powell et al. [1] along with photographs of characteristic events. Its last chapter is devoted to the discovery of relativistic nuclei in cosmic radiation.
Tracks of relativistic nuclei of cosmic origin and nuclear stars created by them were found in NTE stacks irradiated in stratosphere at the end of the 40s [2]. To describe the cross section for interaction of these nuclei with nuclei of the NTE composition, a geometric overlap formula was proposed, later called the Bradt–Peters formula. Among others, stars were observed containing few relativistic α particles near the directions of parent nucleus tracks. Defined as peripheral, such interactions clearly indicated the α-particle clustering of the final state. This aspect of the nuclear structure is studied in depth in low-energy nuclear reactions by precision spectroscopic methods.

In the 1970s, exposures of NTE stacks to few GeV per nucleon light nuclei started at the JINR Synchrophasotron and Bevalac LBL, and in the 1990s, medium and heavy ones on AGS (BNL) and SPS (CERN) at significantly higher energy values. With a resolution of about 0.5 μm the NTE method provided exclusive observations of tracks from the heaviest relativistic nuclei down to singly charged particles and slow fragments of target nuclei. The search for stars along primary tracks made it possible to make an overview of types of interaction without sampling. The results obtained from the 1970s to the present by this method, as well as the corresponding data files, remain unique in terms of the composition of relativistic fragmentation, and the exposed NTE layers can be used for targeted studies.

Features of light nuclei appeared in the study of the relativistic fragmentation cone (for example, [3]). These include the universal formation of pairs of α particles with extremely small opening angles, of the order of few mrad. Such narrow “forks” correspond to decays of the unstable 8Be nucleus. They indicate the principal possibility of studying α-clustering in a relativistic approach starting from the 8Be decay energy.

Until now, the complete detection of ensembles of the lightest relativistic fragments has been demonstrated only by the NTE method. However, it does not provide the momentum analysis. This limitation can be compensated for by using information on the fragmentation of relativistic nuclei obtained from magnetic spectrometers (for example, [4, 5]). In the context of this article, it is worth noting the availability of data obtained in 1990s on an exclusive study of the fragmentation of relativistic oxygen nuclei on protons using the JINR hydrogen bubble chamber placed in a magnetic field [6].

Experiments in beams of fast-moving nuclei devoted to the nuclear structure both show the advantages of detection and make it possible to include radioactive isotopes, including exotic ones, among the ones studied. Information about the structure of ground states and peripheral interactions of nuclei is extracted from momentum distributions of relativistic fragments with charges close to the initial nucleus (for example, [7–9]). The formation of the relativistic 7Be* fragment (\(8B \rightarrow 7Be + γ\)) [10] in the only-bound excitation has been proved [11]. Investigations of nuclear excitations with registration together with a fragment of one proton or neutron or a pair of protons or neutrons require a transition to the region of hundreds of MeV per nucleon (for example, [12] and recent [13]). Then the primary beam and charged fragments, which are quite different in magnetic rigidity, can be separated.

However, in the case of light nuclei, the role of channels with only He and H fragments is a key one, at least as regards the fact that the 8Be and 9B isotopes, whose presence in the cone of fragmentation is very likely, are unstable ones. For example, according to the NTE data 11C dissociation channels containing only He and H make up 80% of events with the primary charge remaining in the fragmentation cone. Being part of the fragmentation pattern, reconstruction of 8Be and 9B is necessary for the subsequent searches of unstable states decaying with their participation.

Collimation of relativistic fragments produced in a peripheral collision allows for detecting all of them all at once in a small solid angle that is of obvious value. However, electronic experiments in this direction have encountered difficulties due to the quadratic dependence of ionization on the charges, the extremely small angular divergence of relativistic fragments, and often an approximate coincidence in magnetic rigidity with the beam nuclei. For instance, in the experiment devoted to the dissociation 12C → 3α at 2.1 A GeV, it was not possible to identify the 8Be decays, and the bulk of the energy spectrum of α triples was reconstructed by simulation [14]. It seems that the main problem is that an increase in the degree of dissociation of the projectile leads to a rapid decrease in the ionization signal in the detectors and, apparently to unacceptably increasing requirements for their operating range. A magnetic spectrometer with a time-projection chamber with a wide sensitivity range is being developed at the GSI [15]. The experiment aims at studying the isotopic composition and fragmentation mechanisms of 1 A GeV heavy nuclei. As regards the topic of clustering, the possibility of reconstructing the dissociation 12C → 8Be + α is worth considering.

Since the early 2000s the NTE method was applied in the BECQUEREL experiment at the JINR Nuclotron to study, in the relativistic approach, the composition of light fragmentation of several stable and radioactive nuclei (reviewed in [16–18]). For this experiment the Slavich Company (Pereslavl Zalessky, Russia) has resumed production of NTE layers with a thickness from 50 to 200 μm on a glass base. NTE samples were tested with a whole variety of ionization tracks. At present, the production of layers with a thickness of 500 μm without a substrate is being mastered, which will allow for continuing the application of the technique, which was considered almost lost.
So, known and previously unobserved structural features of the isotopes 7Be, $^8, ^{10, 11}$B, $^{10, 11}$C, and $^{12, 14}$N are revealed in the dissociation channel probabilities. Decays 9B \rightarrow 8Be + p are identified in the dissociation 10B, 10C, and 11C. Earlier, dozens of 9B decays were identified in the fragmentation of 200–400 A MeV 12C nuclei in a water target, when tracks were reconstructed in transversely placed NTE films [19]. Apparently, the absence of a stable state of the 9B nucleus does not prevent its virtual presence in the structure of these nuclei. Their synthesis could occur through the 9B + p resonance along the chain 7Be(3He,p)9B(p, γ)10C(e^+, ν)11B. As a result, 9B is “imprinted” in the formed nuclei, which is manifest in relativistic dissociation. In the 7Be fragmentation, 6Be \rightarrow α + 2p decays are identified. However, the 8Be signal was not detected in the 10C dissociation.

With further advancement along the border of proton stability, the possibility of effective study of the multiple final states of He and H remains. At the same time, such an approach is limited by the impossibility of isotopic identification of fragments heavier than He whose contribution rapidly increases with increasing mass number of the nucleus under study. Their identification is possible in experiments with magnetic analysis.

Next, the problems of unstable states and the results of their searches in the relativistic dissociation of several light nuclei in NTE will be summarized. Being interesting with respect to the structure of the studied nuclei, these observations allow one to address the question of their universality, including their manifestation in the dissociation of medium and heavy nuclei, where it becomes possible to search for increasingly complex unstable states. As a first step, an analysis of NTE exposed in BNL to 14.5 A GeV 28Si and 10.7 A GeV 197Au nuclei is presented.

2 Problems of unstable states

The identification of the relativistic 8Be and 9B decays in NTE pointed out the possibility of identifying the unstable state of the triple of α particles, called the Hoyle state (HS) in the relativistic dissociation 12C \rightarrow 3α [20] and then 16O \rightarrow 4α [21]. The solution to this problem allows HS to be used as a “tool” for searching for exotic components in the nuclear structure and complex unstable states decaying with its participation. It is worth studying the possibility of extracting information about the size of HS based on the distributions of the total transverse momentum of α-triples.

HS is the second (and first α-unbound) O_{π}^+ excitation of the 12C nucleus [11]. The discovery history and research status of this short-lived state of three real α particles are discussed in a review [22]. 12C synthesis is possible through two unstable states 3α \rightarrow α 8Be \rightarrow 12C (O_{π}^+ or HS) \rightarrow 12C. In the 3α-process, HS manifests itself as an unstable nucleus, albeit of an unusual nuclear-molecular structure.

The nucleus 8Be is an indispensable product of the decay of HS and 9B. The decay energy of 8Be is 91.8 keV, and the width is 5.57 ± 0.25 eV [11]. The isolation of HS among 12C excitations, the extremely small values of the energy above the 3α threshold (378 keV) and the decay width (9.3 ± 0.9 eV) indicate similarity with the 8Be nucleus [11]. The 9B ground state is 185.1 keV higher than the threshold 8Be + p and its width is 0.54 ± 0.21 keV [11]. A comparison of these parameters suggests that the significance of HS to nuclear physics is not limited to the role of the unusual excitation of the 12C nucleus. HS is manifest in nuclear reactions as the universal object similar to 8Be and 9B [23–25].

According to their widths, 8Be, 9B, and HS can be full participants of relativistic fragmentation. The products of their decay are formed during runs from several thousand (8Be and HS) to several tens (9B) of atomic sizes, i.e., over a time many orders of magnitude longer than the time of the appearance of other fragments. Due to the lowest decay energy, 8Be, 9B, and HS should manifest themselves as pairs and triples of relativistic fragments of He and H with the smallest opening angles, which distinguishes the latter from other fragmentation products.

8Be and HS are considered as the simplest states of the α-particle Bose–Einstein condensate [26, 27]. The excited state O_{π}^+ of the 16O nucleus at 15.1 MeV (or 660 keV over the 4α threshold) is considered as a 4α-condensate. Its decay could go in the sequence 16O(O_{π}^+) \rightarrow 12C(O_{π}^+) \rightarrow 8Be(O_{π}^+) \rightarrow 2α. Research in this direction is actively under way [23–25]. However, the contribution of 4α ensembles above 1 MeV is dominant. The possibility of more complex α-condensate states up to 10α-particle one with the decay energy of about 4.5 MeV above the 10α-threshold is assumed, which leads to unprecedented experimental requirements including parent nucleus energy growth.

In addition, the 9B and HS can serve as bases in the nuclear molecules 9Bp, 9Bα, and HSp. Like α-condensate states, unstable states involving protons can correspond to excitations having electromagnetic decay widths. The ratio of the probabilities of 13N decays on the 9Bp and HSp channels is of interest. Excitation of the 13N* at 15.1 MeV having a width of 0.86 ± 0.12 keV [11] can serve as a candidate for this state. An effective source for such studies is the 14N nucleus. In this regard, the analysis of 14N dissociation via the 3He + H channel is resumed [16].

Several isotopes have excited states with widths of the order of few eV or lifetimes of several fsec located above the separation thresholds no higher than about 1 MeV of the α particle and the stable residue heavier than He [11]. When such states are formed in the fragmentation, the decay products will also have minimal opening angles. They will be an even more convenient subject of research than αp states.
In this regard, it is planned to analyze the mirror channels 11C (11B) → 7Be (7Li) + α. We have NTE for such an analysis for 10B, 16O, 22Ne, 24Mg, 28Si nuclei.

On the whole, the topic of studying unstable states seems unusually intriguing, and the NTE method is an adequate way to search for them in the peripheral interactions of relativistic nuclei. Questions may be raised about the contribution to the fragmentation of decays from more highly excited states with widths up to 100 keV which would also have ranges significantly exceeding the characteristic sizes of nuclei. However, the answers are outside the resolution of the NTE method.

3 Capabilities of NTE method

Stacks to be exposed are assembled from NTE layers of size up to 10×20 cm2 of a thickness of 200 μm on a glass base and 550 μm without it. If a beam is directed parallel to a layer plane, then tracks of all relativistic fragments remain long enough in one layer for the three-dimensional reconstruction of their emission angles. The base provides “stiffness” of the tracks, and its absence allows for longer tracking, including transitions to adjacent layers. Factors for obtaining significant event statistics are the stack thickness and the total solid angle of detection. NTE contains in similar concentrations of atoms AgBr and CNO and 3 times more H ones. In terms of hydrogen density, the NTE material is close to the liquid hydrogen target. This feature makes it possible to compare under the same conditions break-ups of projectile nuclei, both as a result of diffraction or electromagnetic dissociation on a heavy target nucleus, and as a result of collisions with protons.

Searching nuclear interactions in NTE without sampling (or the “following the track” method) provides a fairly uniform detection efficiency of all possible types of interactions and allows one to determine the mean free path for a certain type of interaction. This method is implemented in tracking the beam tracks of the nuclei under study from the point of entry into the NTE layer to the interaction or to the exit of the track from the layer. Being time consuming, it provides the best viewing quality and consistency. Statistics of several hundreds of peripheral interactions with certain configurations of relativistic fragments is achievable with transverse scanning.

Relativistic fragments are concentrated in the cone $\sin \theta_{fr} = p_{fr} / p_0$, where $p_{fr} = 0.2$ GeV/c is the measure of the nucleon Fermi momentum in the projectile nucleus, and p_0 is its momentum per nucleon. The charges of relativistic fragments $Z_{fr} = 1$ and 2, the most important ones in the unstable state problem, are determined visually due to the apparent difference in ionization. The charges $Z_{fr} \geq 3$ are determined from the density of discontinuities or the electron track density. The condition for selection of peripheral interactions is the preservation by relativistic fragments of the projectile nucleus charge Z_{pr}, that is, $Z_{fr} = \sum Z_{fr}$. These interactions are a few percent of the inelastic ones.

With a measuring base of 1 mm, the resolution for tracks of relativistic fragments is no worse than 10^{-3} rad. The transverse momentum P_T of a fragment with a mass number A_{fr} is defined as $P_T \approx m_A \beta_A c$, where P is the total momentum, and βc is the velocity. The $P\beta c$ value is extracted from the average Coulomb scattering angle in NTE estimated from the track displacements at 2–5 cm lengths. To achieve the required accuracy it is necessary to measure the displacements in at least 100 points. The total momentum can be measured up to 2–50 GeV/c. An energy of 10 A GeV is the limit for identifying the He fragments.

The mass number assignment to H and He fragment tracks is possible by total momentum values derived from the average angle of Coulomb scattering. The use of this laborious method is justified in special cases for a limited number of tracks. In the case of dissociation of stable nuclei, it is often sufficient to assume the of 4He and 1H correspondence, since the established 3He and 2H contributions do not exceed 20%. This simplification is especially true in extremely narrow 8Be and 9B decays [6].

The invariant mass of a system of relativistic fragments is defined as the sum of all products of 4-momenta P_{fr}, fragments $M^{*} = \Sigma (P_1 \cdot P_2)$. Subtracting the mass of the initial nucleus or the sum of masses of fragments $Q = M^{*} - M$ is a matter of convenience. The components P_{fr} are determined in the approximation of conservation of the initial momentum per nucleon by fragments. Reconstruction by the invariant mass of decays of relativistic unstable nuclei 8Be and 9B, mastered in the BECQUEREL experiment, confirmed the validity of this approximation.

The most accurate measurements of the angles are provided with KSM-1 microscopes (Carl Zeiss, Jena) when using the coordinate method. Measurements are carried out in a Cartesian coordinate system. The NTE layer unfolds in such a way that the direction of the analyzed primary track coincides with the microscope stage axis OX with a deviation not worse than 0.1–0.2 μm per 1 mm of track length. Then the OX axis coincides with the primary track projection on the layer plane, and the OY axis on it is perpendicular to
the primary track. The OZ axis is perpendicular to the layer plane. The measurements along OX and OY are made with horizontal micro-screws, and along the OZ, the depth of the field micro-screw is used. Three coordinates are measured on the primary and secondary tracks at lengths from 1 to 4 mm in increments of 100 μm, according to a linear approximation by which the planar and dip angles are calculated. Details and illustrations of measurements on the plane of the layer and its depth have recently been published [18].

4 Relativistic decays of 8Be

In the fragmentation of relativistic nuclei in NTE intense tracks are often observed that branch into pairs of He tracks with minimal opening angles, which are attributed 8Be decays. Obviously, such a definition is inconvenient when comparing data obtained at different values of the primary energy. Universal 8Be identification by the 2α-pair invariant mass $Q_{2\alpha}$ is the first “key” to the problem of the unstable nuclear states.

The distribution $Q_{2\alpha}$ is shown in Fig. 1 for the coherent dissociation 12C \rightarrow 3α and 16O \rightarrow 4α at 3.65 A GeV. In the 12C case, measurements of polar and azimuthal angles of α-particles in 316 “white” stars made in the 1990s by the groups of Chernov (Tashkent) [29] and Gaitinov (Alma-Ata) and recently supplemented by the FIAN and JINR groups are used. In the 16O case, similar data are available for 641 “white” stars [30]. For these events, Fig. 1 presents distributions of invariant mass in the region $Q_{2\alpha}$ < 10 MeV of all 2α-pair combinations $N_{2\alpha}$ normalized to the corresponding number of “white” stars N_{ws}. In the insert these data are shown in the range $Q_{2\alpha}$ < 0.5 MeV in an enlarged form.

Although in both cases there are peaks corresponding to 8Be, however, due to the presence of “tails” caused by reflections of $(3-4)\alpha$ excitations the selection condition $Q_{2\alpha}(^8$Be) is not sufficiently defined.

The angular measurements of 9Be \rightarrow 2α at 1.2 A GeV make it possible to refine the selection condition of 8Be decays by the invariant mass $Q_{2\alpha}$ [16]. The distribution over $Q_{2\alpha}$ of 500 2α-pairs including 198 “white” ones presented in Fig. 2 indicates the limit $Q_{2\alpha}(^8$Be) < 0.2 MeV. There are two “influxes” centered on $Q_{2\alpha}$ equal to 0.6 and 3 MeV. The first reflects the 9Be excitation at 2.43 MeV [10,31], and the second one the 8Be 2^+ state [10]. The condition $Q_{2\alpha}(^8$Be) < 0.2 MeV coincides with those adopted in the electronic experiments [24–26,31].

Table 1 gives the distribution over the characteristic $Q_{2\alpha}$ intervals of the number of α pairs in “white” stars and stars containing additional tracks. The bulk of the statistics corresponds to dissociation through 8Be 0^+ and 2^+ states in a close ratio which is especially pronounced in the case of the sample with additional tracks definitely referring to neutron removal. This fact corresponds to the description of 9Be, in which the 8Be core is presented as an equal mixture of 8Be 0^+ and 2^+ states [32,33]. The question of whether the contribution of the 2.43 MeV excitation reflects the presence of the component $\alpha + \alpha + n$ or whether it is a reaction product requires theoretical consideration.

To estimate the boundaries of assumptions in the identification of 8Be associated with attributing the mass number
A = 4 and the corresponding momentum to the He fragments, the fragmentation $^9\text{Be} \to 2\text{He} + n$ was modeled in Geant4 [34] in the framework of the QMD model [35] for 10^4 ^9Be nuclei of energy around 1.2 A GeV ($\sigma = 100$ MeV in the Gaussian distribution). A number of 466 interactions $^9\text{Be} \to 2\text{He} + n$ were obtained, including 59 pairs $^3\text{He} + ^4\text{He}$ and 4 $^3\text{He} + ^4\text{He}$. The value of the average momentum per nucleon of ^4He fragments is 1915 MeV/c at RMS 32 MeV/c. In the $Q_{2\alpha}$ distribution, approximately 2/3 of the ^9Be fragmentation events correspond to the formation of ^8Be 0^+. The average value of the relative momentum difference in the ^4He pairs at $Q_{2\alpha} (\text{Be})$ is 0.8%, and the contribution of pairs with the participation of ^3He to $Q_{2\alpha} \leq 0.2$ MeV is less than 3%. All these facts indicate the validity of the assumptions made and the sufficiency of the precision angular measurements. Moreover, modeling indicates that the inclusion of momenta to determine $Q_{2\alpha}$ would make sense if the accuracy of their measurements is of the order of tenths of a percent, while maintaining the same angular resolution. Indeed, according to the data of the hydrogen bubble chamber, there is an ^8Be peak in the distribution over the opening angle [6], and, therefore, in $Q_{2\alpha}$. The inclusion of momenta in the calculation of $Q_{2\alpha}$, the measurement accuracy of which is estimated at 1.5% at a length of 40 cm of liquid hydrogen, leads to the “scattering” of the peak. Undoubtedly, the use of momentum analysis also leads to an additional deterioration in the angular resolution. This conclusion is worth to be taken into account when planning electronic versions of such studies.

5 Relativistic decays of ^9B

The next “key” in the unstable state studies is the ^9B nucleus. When studying the coherent dissociation of the ^{10}C isotope at 1.2 A GeV, the $2\text{He} + 2\text{H}$ dissociation channel appeared as the leading one (review [15]). The statistics of the $2\text{He} + 2\text{H}$ quartets in it amounted to 186 or 82% of the observed “white” stars. The distribution over the invariant mass of $2\alpha p$ triples $Q_{2\alpha p}$ presented in Fig. 3 indicates the number of decays $N (\text{B}) = 54$ satisfying the condition $Q_{2\alpha p} (\text{B}) < 0.5$ MeV, which is 30 ± 4% of the events $2\text{He} + 2\text{H}$. According to the condition $Q_{2\alpha} (\text{Be}) < 0.2$ MeV, ^8Be decays are also identified in all these $2\alpha p$ triples and only in them. This fact indicates the dominance of the decay sequence $^9\text{B} \to ^8\text{Be} + p$ and $^8\text{Be} \to 2\alpha$. The abundant formation of ^9B nuclei in the dissociation of ^{10}C indicates its important role as the structural basis of this isotope.

The confident identification of ^8Be and ^9B based on the ^{10}C nucleonic composition allows one to turn to their contribution to the ^{10}B and ^{11}C dissociation. Angular measurements are performed in 318 events $^{10}\text{B} \to 2\text{He} + H$ at 1.0 A GeV, among which 20 decays $^9\text{B} \to ^8\text{Be} + p$ were identified that satisfy the condition $Q_{2\alpha} (\text{Be}) < 0.5$ MeV (Fig. 3). Similarly, in 154 events $^{11}\text{C} \to 2\text{He} + 2\text{H}$ at 1.2 A GeV $Q (\text{B}) = 22$ (Fig. 3) are found. Thus, in the dissociation of ^{10}C, ^{10}B and ^{11}C, the universal condition $Q_{2\alpha p} (\text{B})$ was established. In addition, when identifying $^9\text{B} \to ^8\text{Be} + p$ decays, the criterion $Q_{2\alpha} (\text{Be})$ is confirmed under the purest conditions.

6 Relativistic decays of the Hoyle state

Using the angular measurements of the “white” stars $^{12}\text{C} \to 3\alpha$ and $^{16}\text{O} \to 4\alpha$ the application of the invariant mass method can be easily extended to the identification of relativistic decays of the Hoyle state. In the latter case, HS decays can manifest themselves in the dissociation $^{16}\text{O} \to ^{16}\text{O}^* \to ^{12}\text{C}^* \to 3\alpha + \alpha$. The two distributions over the invariant mass of 3α-triples $Q_{3\alpha}$ presented in Fig. 4 show similarities. Their main parts in the region $Q_{3\alpha} < 10$ MeV, covering the $^{12}\text{C} \alpha$-particle excitations up to the nucleon separation threshold are described by the Rayleigh distribution with parameters $\sigma_{Q_{3\alpha}} (^{12}\text{C}) = 3.9 \pm 0.4$ MeV and $\sigma_{Q_{3\alpha}} (^{16}\text{O}) = 3.8 \pm 0.2$ MeV.
In both cases, distribution peaks are observed in the region $Q_{3\alpha} < 0.7\ MeV$ where the HS signal is expected. The statistics in the peaks minus the background is $N_{HS}(^{12}\text{C}) = 37$ with an average value $\langle Q_{3\alpha}\rangle (\text{RMS}) = 417 \pm 27 (165)\ \text{keV}$ and $N_{HS}(^{16}\text{O}) = 139$ with $\langle Q_{3\alpha}\rangle (\text{RMS}) = 349 \pm 14 (174)$. On this basis, the contribution of HS decay to the coherent dissociation of $^{12}\text{C} \rightarrow 3\alpha$ is $11 \pm 3\%$, and in the case of $^{16}\text{O} \rightarrow 4\alpha$, it is $22 \pm 2\%$. An increase in 3α combinations in $^{16}\text{O} \rightarrow 4\alpha$ leads to a noticeable increase in the contribution of HS decays. At the same time, the ratio of the ^{8}Be and HS yields shows an approximate constancy $N_{HS}(^{12}\text{C})/N_{^{8}\text{Be}(^{12}\text{C})} = 0.26 \pm 0.06$ and $N_{HS}(^{16}\text{O})/N_{^{8}\text{Be}(^{16}\text{O})} = 0.35 \pm 0.04$.

There is a possibility of the HS emergence through the α decay of the ^0_+Be excitation of the ^{16}O nucleus. The distribution of “white” $^{16}\text{O} \rightarrow 4\alpha$ stars over the invariant mass of 4α-quartets $Q_{4\alpha}$ presented in Fig. 5 for the main part is described by the Rayleigh distribution with the parameter $\sigma_{Q_{4\alpha}} = (6.1 \pm 0.2)\ MeV$. The condition for the presence of at least one 3α-triple with $Q_{3\alpha}(\text{HS}) < 700\ \text{keV}$ in a 4α-event (αHS) shifts the distribution over $Q_{4\alpha}$ to the low-energy side, and the parameter to $\sigma_{Q_{4\alpha}} = 4.5 \pm 0.5\ MeV$ (Fig. 5). The enlarged view of the distribution over $Q_{4\alpha}$ presented in the inset in Fig. 5 indicates 9 events satisfying $Q_{4\alpha} < 1\ MeV$ and having an average value of $\langle Q_{4\alpha}\rangle (\text{RMS}) = 624 \pm 84 (252)\ \text{keV}$. Then the contribution of the decays $^{16}\text{O}(0^+_{1}) \rightarrow \alpha + \text{HS}$ is estimated to be $1.4 \pm 0.5\%$ for normalization to $N_{ws}(^{16}\text{O})$ and $7 \pm 2\%$ for normalization to $N_{HS}(^{16}\text{O})$.

Thirty-three events $^{16}\text{O} \rightarrow ^{2}\text{Be}$ are identified, which is $5 \pm 1\%$ of the “white” stars $^{16}\text{O} \rightarrow 4\alpha$. Then the statistics of coherent dissociation for the $^{16}\text{O} \rightarrow ^{2}\text{Be}$ and $^{16}\text{O} \rightarrow \alpha$HS channels has a ratio of 0.22 ± 0.02. The distribution over the invariant mass $Q_{4\alpha}$ of the events $^{16}\text{O} \rightarrow ^{2}\text{Be}$ shown in Fig. 6 indicates 2 candidates $^{16}\text{O}(0^+_{1}) \rightarrow ^{2}\text{Be}$ in the region of $Q_{4\alpha} < 1\ MeV$. Thus, the estimate of the probability ratio of the channels $^{16}\text{O}(0^+_{1}) \rightarrow ^{2}\text{Be}$ and $^{16}\text{O}(0^+_{1}) \rightarrow \alpha$HS is 0.22 ± 0.17, which is too vague.

It can be concluded that although the direct dissociation dominates in the formation of HS a search for its 4α “precursor” is possible in the relativistic dissociation of nuclei. At the same time, increasing the statistics of events $^{16}\text{O} \rightarrow 4\alpha$ in the traditional way can be considered exhausted. There remains the possibility of studying $(3–4)\alpha$-ensembles in the fragmentation of heavier nuclei.

7 Search for unstable states in the fragmentation of Si and Au nuclei

EMU collaboration data are available on 1093 interactions of ^{28}Si nuclei at $14.6\ \text{A GeV}$ [36] and 1316 ones of ^{197}Au at $10.7\ \text{A GeV}$ [37], which contains measurements of the angles of emission of relativistic fragments. Then the search for events
was conducted on the primary tracks without sampling. The number of events with the multiplicity of relativistic α particles $N_\alpha > 2$ in the Si case is 118, and Au is 843. Recently, the search for Si interactions $N_\alpha > 2$ has been resumed by scanning along the bands across the direction of entry of the primary tracks. The measurement cone is limited to 2$^\circ$. Thus, the analysis in the region of interest of small invariant masses is radically accelerated. In a relatively short time, 175 events $N_\alpha > 2$ were added to the Si statistics. The distributions over invariant masses $Q_{2\alpha}$, $Q_{2\alpha p}$, $Q_{3\alpha}$ and $Q_{4\alpha}$ in the small value regions obtained on the basis of these data are presented in Figs. 7 and 8. According to the criteria described above, the numbers of decays 8Be ($N_{^8$Be}), 9B ($N_{^9$B}) and HS (N_{HS}) are determined by them.

For the Si interactions, $N_{^8$Be} = 60 is obtained; $N_{^9$B} = 10 with $\langle Q_{2\alpha p} \rangle$ (RMS) = 273 ± 26 (103) keV; $N_{HS} = 10$ with $\langle Q_{3\alpha} \rangle$ (RMS) = 403 ± 48 (152) keV at $N_\alpha = 3(3), 4(3), 5(3)$ and 6(1). $N_{HS}/N_{^8$Be} = 0.17 ± 0.05 at $N_\alpha > 2$. 4α quartets are absent up to $Q_{4\alpha} < 2.5$ MeV

A similar analysis of Au interactions yielded $N_{^8$Be} = 160; $N_{^9$B} = 40 with $\langle Q_{2\alpha p} \rangle$ (RMS) = 328 ± 16 (116) keV; $N_{HS} = 12$ with $\langle Q_{3\alpha} \rangle$ (RMS) = 435 ± 29 (106) keV at $N_\alpha = 4(2), 6(2), 7(2), 8(2), 9(1), 11(1), 16(1)$. There is one 4$\alpha$ quartet including HS with $Q_{4\alpha} = 1$ MeV at $N_\alpha = 16$. In 11 events, 8Be pair formation is identified.

Under the assumption of a power-law dependence on the charge of the parent nucleus Z, which determines the production of α particles, the 8Be and 9B yield nuclei grow approximately as $Z^{0.8}$. Such a behavior is close to a volume type dependence. The ratio of these yields is approximately the same. The statistics of 3α triples N_{HS} is small for estimates.

It can be concluded that in both cases, 8Be and 9B decays are identified and indications of HS formation is obtained, and in the Au case, one candidate for 4α decay of the 16O(0$^+_2$) state was found. Due to the fact that the measurements were made without sampling, they allow one to plan searches for the unstable states. A set of statistics of events $N_\alpha > 2$ will be significantly accelerated during transverse scanning.

8 Comments on longer-term objectives

The results obtained make it possible to assess the prospects of the presented approach in modern problems of nuclear physics. Among the most important of them is the verification of theoretical ideas about matter arising from the fusion of nucleons in clusters that do not have excited states up to the coupling threshold [38]. These are the lightest 4He nuclei, as well as deuterons, tritons and 3He nuclei. The evolution of the composition of the lightest isotopes is predicted at a nuclear density less than normal and a temperature of several MeV. Passing through such a phase may be necessary on the way to the synthesis of heavy nuclei. A look at the dissociation of relativistic nuclei with time reversal indirectly indicates the feasibility of such a transition.

In the parent nucleus reference system, the lightest fragment distributions over energy cover the temperature range 10^8–10^{10} K corresponding to phases from the red giant to the supernova. In the dissociation of heavy nuclei, an unprecedented variety of coherent ensembles of the lightest nuclei and nucleons is available. The observations of unstable states presented here substantiate the possibility of studying cluster...
Fig. 8 Distributions of 2α, $2\alpha p$, 3α and 4α combinations from events of fragmentation of ^{197}Au nuclei at 10.7 A GeV over the invariant masses $Q_{2\alpha}$ (a), $Q_{2\alpha p}$ (b), $Q_{3\alpha}$ (c) and $Q_{4\alpha}$ (d) in the their small value regions.

Fig. 9 Diagram of break-up of ^{12}C nucleus into three α-particles by relativistic muon.
the α-particle triples corresponds not to electromagnetic, but nuclear diffraction. Note that the 3α splitting cross section is important for geophysics, since it will allow for testing the hypothesis of helium generation in the earth’s crust by cosmic muons.

9 Conclusions

Earlier and recently obtained data on interactions of light relativistic nuclei in a nuclear track emulsion allowed one to establish the contribution in their dissociation of unstable nuclei 8Be and 9B and the Hoyle state as well as to assess the prospects of such research in relation to medium and heavy nuclei. These three states are uniformly identified by the invariant masses calculated from the measured angles of emission of He and H fragments under the assumption of conservation of the primary momentum per nucleon.

The 8Be selection in dissociation of the isotopes 9Be, 10B, 12C, and 11C is determined by the restriction on the calculated value of the invariant mass of 2α-pairs to 0.2 MeV, and the 3B $2\alpha\pi$-triple mass up to 0.5 MeV. The certainty in the 8Be and 9B identification became the basis for the search for decays from the Hoyle state in the dissociation 12C \rightarrow 3α. In the latter case, the 3α triple invariant mass is set to be limited to 0.7 MeV. The choice of these three conditions as “cut-offs from above” is sufficient, because the decay energy values of these three states are noticeably lower than the nearest excitations with the same nucleon compositions, and the reflection of more complex excitations is small for these nuclei.

Being tested in the studies of the light nuclei, a similar selection is applicable to the dissociation of heavier nuclei in a search for more complex states. In turn, the products of α-partial or proton decay of these states could be the Hoyle state or 9B, and then 8Be. A possible decay variant is the occurrence of more than one state from this trile. In any case, the initial stage of searches should be the selection of events, containing relativistic 8Be decays.

Dozens of 8Be and 9B decays are identified in the relativistic fragmentation cone of Si and Au nuclei. At the same time, the small number of 3α triples is attributable to the decay of the Hoyle state, which requires increasing statistics to the current 8Be equivalent. Then the search for the excited state 16O(0^+_{1}) will become feasible. There are no fundamental problems along this path since there are a sufficient number of earlier exposed NTE layers, with transverse scanning of which the required α ensemble statistics is achievable. This whole complex of problems, united by questions of identification of unstable states, is in the focus of the application in the BECQUEREL experiment in the present time.

It is hoped that the rapid progress in image analysis will give a whole new dimension to the use of the NTE method in the study of nuclear structure in the relativistic approach. The solution of the tasks set requires investment in modern automated microscopes and the reconstruction of NTE technology at a modern level. At the same time, such a development will be based on the classical NTE method, the foundations of which were laid seven decades ago in cosmic ray physics.

Data Availability Statement: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sets are available upon request on the website http://becquerel.jinr.ru/]

References

1. C.F. Powell, P.H. Fowler, D.H. Perkins, Study of Elementary Particles by the Photographic Method (Pergamon, London, 1959)
2. H.L. Bradt, B. Peters, Phys. Rev. 77, 54 (1950), https://doi.org/10.1103/PhysRev.77.54
3. H.H. Heckman, D.E. Greiner, P.J. Lindstrom, H. Shwe, Phys. Rev. C 17, 1735 (1978), https://doi.org/10.1103/PhysRevC.17.1735
4. L. Anderson, W. Bruckner, E. Moeller, S. Nagamiya, S. Nissen-Meyer, L. Schroeder, G. Shapiro, H. Steiner, Phys. Rev. C 28, 1224 (1983), https://doi.org/10.1103/PhysRevC.28.1224
5. A.G. Afonin, MY. Bogolyubsky et al., Nucl. Phys. A 997, 121718 (2020), https://doi.org/10.1016/j.nuclphysa.2020.121718
6. V.V. Glagolev et al., Eur. Phys. J. A 11, 285 (2001), https://doi.org/10.1007/s100500170067
7. D.L. Olson et al., Phys. Rev. C 24(1), 529 (1981), https://doi.org/10.1103/PhysRevC.24.1529
8. M.H. Smedberg et al., Phys. Lett. B 452, 1 (1999), https://doi.org/10.1016/S0370-2693(99)00245-2
9. R. Thies et al., Phys. Rev. C 93, 054601 (2016), https://doi.org/10.1103/PhysRevC.93.054601
10. D. Cortina-Gil et al., Nucl. Phys. A 720, 3 (2003), https://doi.org/10.1016/S0375-9474(03)00671-7
11. F. Azjenberg-Selove, Nucl. Phys. A 490, 1 (1988) TUNL Nuclear Data Evaluation Project: http://www.tunl.duke.edu/NuclData
12. F. Wamers et al., Phys. Rev. C 97, 034612 (2018), https://doi.org/10.1103/PhysRevC.97.034612
13. T. Aumann, Eur. Phys. J. A 55, 234 (2019), https://doi.org/10.1140/epja/i2019-12862-7
14. J. Engelage et al., Phys. Lett. B 173, 34 (1986), https://doi.org/10.1016/0370-2693(86)91225-6
15. T. Gorbinet et al., Eur. Phys. J. A 55, 11 (2019), https://doi.org/10.1140/epja/i2019-12683-8
16. P.I. Zarubin, Lecture Notes in Physics, 875, Clusters in Nuclei, vol. 3 (Springer, Berlin, 2013), p. 51. https://doi.org/10.1007/978-3-319-01077-9_3
17. D.A. Artemenkov, A.A. Zaitsev, P.I. Zarubin, Phys. Part. and Nucl. 48, 147 (2017), https://doi.org/10.1134/S106377961701002
18. D.A. Artemenkov et al., Phys. Atom. Nucl. 80, 1126 (2017), https://doi.org/10.1134/S1063778817060047
19. T. Yoshino et al., Phys. Rev. C 78, 067602 (2008), https://doi.org/10.1103/PhysRevC.78.067602
20. D.A. Artemenkov et al., Rad. Meas. 119, 199 (2018), https://doi.org/10.1016/j.radmeas.2018.11.005
21. D.A. Artemenkov et al., Springer Proc. Phys. 238, 137 (2020), https://doi.org/10.1007/978-3-030-32357-8_24
22. M. Freer, H.O.U. Fynbo, Progr. Part. Nucl. Phys. 78, 1 (2014), https://doi.org/10.1016/j.ppnp.2014.06.001
23. T. Yamada, P. Schuck, Phys. Rev. C 69, 024309 (2004), https://doi.org/10.1103/PhysRevC.69.024309
24. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Rev. Mod. Phys. 89, 011002 (2017), https://doi.org/10.1103/RevModPhys.89.011002
25. M. Barbui et al., Phys. Rev. C 98, 044601 (2018). https://doi.org/10.1103/PhysRevC.98.044601
26. R. Charity et al., Phys. Rev. C 99, 044304 (2019). https://doi.org/10.1103/PhysRevC.99.044304
27. J. Bishop et al., Phys. Rev. C 100, 034320 (2019). https://doi.org/10.1103/PhysRevC.100.034320
28. The BECQUEREL Project http://becquerel.jinr.ru/movies/movies.html
29. V.V. Belaga, A.A. Benjaza, V.V. Rusakova, D.A. Salomov, G.M. Chernov, Phys. Atom. Nucl. 58, 1905 (1995). arXiv:1109.0817
30. N.P. Andreeva et al., Phys. Atom. Nucl. 59, 102 (1996). arXiv:1109.3007
31. B.R. Fulton et al., Phys. Rev. C 70, 047602 (2004). https://doi.org/10.1103/PhysRevC.70.047602
32. Y.L. Parfenova, Ch. Leclercq-Willain, Phys. Rev. C 72, 024312 (2005). https://doi.org/10.1103/PhysRevC.72.024312
33. Y.L. Parfenova, Ch. Leclercq-Willain, Phys. Rev. C 72, 054304 (2005). https://doi.org/10.1103/PhysRevC.72.054304
34. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125
35. J. Aichelin, Phys. Rep. 202, 231 (1991). https://doi.org/10.1016/0370-1573(91)90094-3
36. M.I. Adamovich et al., Z. Phys. A 351, 311 (1995). https://doi.org/10.1007/BF01290914
37. M.I. Adamovich et al., Eur. Phys. J. A 5, 429 (1999). https://doi.org/10.1007/s100500050306
38. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010). https://doi.org/10.1103/PhysRevC.81.015803
39. J.A. Kirk, D.M. Cottrell, J.J. Lord, R.J. Piserchio, Il Nuovo Cim. XL 523, 20 (1965). https://doi.org/10.1007/BF02721042
40. P.L. Jain, K. Sengupta, G. Singh, Nucl. Phys. B 301, 517 (1988). https://doi.org/10.1016/0550-3213(88)90275-1
41. D.A. Artemenko et al., J. Phys. Conf. Ser. 675, 022022 (2016). https://doi.org/10.1088/1742-6596/675/2/022022