End-to-End Automatic Speech Recognition: Its Impact on the Workflow for Documenting Yolóxóchitl Mixtec

Jonathan D. Amith1 Jiatong Shi2 Rey Castillo García3
1Department of Anthropology, Gettysburg College, Gettysburg, Pennsylvania
2The Johns Hopkins University, Baltimore, Maryland
3Secretaría de Educación Pública, Estado de Guerrero, Mexico
(jonamith@gmail.com, jiatong_shi@jhu.edu, reyyoloxochitl@gmail.com)

Abstract

This paper describes three open access Yolóxóchitl Mixtec corpora and presents the results and implications of end-to-end automatic speech recognition for endangered language documentation. Two issues are addressed. First, the advantage for ASR accuracy of targeting informational (BPE) units in addition to, or in substitution of, linguistic units (word, morpheme, morae) and then using ROVER for system combination. BPE units consistently outperform linguistic units although the best results are obtained by system combination of different BPE targets. Second, a case is made that for endangered language documentation, ASR contributions should be evaluated according to extrinsic criteria (e.g., positive impact on downstream tasks) and not simply intrinsic metrics (e.g., CER and WER). The extrinsic metric chosen is the level of reduction in the human effort needed to produce high-quality transcriptions for permanent archiving.

1 Introduction: Endangered language documentation history and context

Endangered language (EL) documentation emerged as a field of linguistic activity in the 1990s, as reflected in several seminal moments. In 1991 the Linguistic Society of America held a symposium entitled “Endangered Languages and their Preservation”; in 1992 Hale et al. (1992) published a seminal article on endangered languages in *Language*, the LSA’s flagship journal. In 1998, Himmelmann (1998) argued for the development of documentary linguistics as an endeavor separate from and complementary to descriptive linguistics. By the early years of the present millennium, infrastructure efforts were being developed: metadata standards and best practices for archiving (Bird and Simons, 2003); tools for lexicography and corpus developments such as Shoebox, Transcriber (Barras et al., 1998), and ELAN (Wittenburg et al., 2006), and financial support for endangered language documentation (the Volkswagen Foundation, the NSF Documenting Endangered Language Program, and the SOAS Endangered Language Documentation Programme). Recent retrospectives on the impact of Hale et al. (1992) and Himmelmann (1998) have been published by Seifart et al. (2018) and McDonnell et al. (2018). Within the last decade, the National Science Foundation supported a series of three workshops, under the acronym AARDVARC (Automatically Annotated Repository of Digital Audio and Video Resources Community) to bring together field linguists working on endangered languages and computational linguists working on automatic annotation—particularly automatic speech recognition (ASR)—to address the impact of what has been called the "transcription bottleneck" (Whalen and Damir, 2012). Interest in applying machine learning to endangered language documentation is also manifested in four biennial workshops on this topic, the first in 2014 (Good et al., 2021). Finally, articles directly referencing ASR of endangered languages have become increasingly common over the last five years (Adams et al., 2018, 2020; Čavar et al., 2016; Foley et al., 2018, 2019; Gupta and Boulianne, 2020; Jimerson and Prud’hommeaux, 2018; Jimerson et al., 2018; Michaud et al., 2018; Mitra et al., 2016; Shi et al., 2021).

This article continues work on Yolóxóchitl Mixtec ASR (Mitra et al., 2016; Shi et al., 2021). The most recent efforts (2020 and 2021) have adopted the ESPNet toolkit for end-to-end automatic speech recognition (E2E ASR). This approach has proven to be very efficient in terms of time needed to develop the ASR recipe (Shi et al., 2021) and in yielding ASR hypotheses of an accuracy capable of significantly reducing the extent of human effort needed to finalize accurate transcribed audio for permanent archiving as here demonstrated. Section 2 discusses the Yolóxóchitl Mixtec corpora,
and Section 3 explores the general goals of EL documentation. Section 4 reviews the E2E ASR and corresponding results using ESPNet. The conclusion is offered in Section 5.

2 Yoloxóchitl Mixtec: Corpus characteristics and development

2.1 The language

Much work on computer-assisted EL documentation is closely related to work on low-resource languages, for the obvious reason that most ELs have limited resources, be they time-coded transcriptions, interlinearized texts, or corpora in parallel translation. The resources for Yoloxóchitl Mixtec, the language targeted in this present study, are, however, relatively abundant by EL standards (119.32 hours over three corpora), the result of over a decade of linguistic and anthropological research by Amith and Castillo García (2020).

Yoloxóchitl Mixtec (henceforth YM), an endangered Mixtecan language spoken in the municipality of San Luis Acatlán, Guerrero, Mexico, is one of some 50 languages in the Mixtec language family, which is within the larger unit, Otomanguean, that Suárez (1983) considers a hyper-family or stock. Mixtec languages (spoken in Oaxaca, Guerrero, and Puebla) are highly varied, the result of approximately 2,000 years of diversification. YM is spoken in four communities: Yoloxóchitl, Cuanacaxtitlan, Arroyo Cumiapa, and Buena Vista. Mutual intelligibility among the four communities is high despite differences in phonology, morphology, and syntax. All villages have a simple common segmental inventory but apparently significant though still undocumented variation in tonal phonology; only Cuanacaxtitlan manifests tone sandhi. YM (referring only to the Mixtec of the community of Yoloxóchitl [16.81602, -98.68597]) manifests 28 distinct tonal patterns on 1,451 to-date identified bimoraic lexical stems. The tonal patterns carry a significant functional load regarding the lexicon and inflection (Palancar et al., 2016). For example, 24 distinct tonal patterns on the bimoraic segmental sequence [nama] yield 30 words (including five homophones). The three principal aspectual forms (irrealis, incomplete, and complete) are almost invariably marked by a tonal variation on the first mora of the verbal stem (1 or 3 for the irrealis, 4 for the incomplete, and 13 for the complete); in addition 14 on the initial mora almost always indicates negation of the irrealis1). In a not-significant number of cases, suppletive stems exist, generally manifesting variation in a stem-initial consonant and often the stem-initial vowel.

The ample tonal inventory of YMC presents obstacles to native speaker literacy and an ASR system learning to convert an acoustic signal to text. It also complicates the construction of a language lexicon for HMM-based systems, a lexicon that is not required in E2E ASR. The phonological and morphological differences between YMC and the Mixtec of the three other YM communities create challenges for transcription and, by extension, for applying YMC ASR to speech recordings from these other villages. To accomplish this, it will be necessary first to learn the phonology and morphology of these variants and then use this as input into a transfer learning scenario. Intralanguage variation among distinct communities (see Hildebrandt et al., 2017b and other articles in Hildebrandt et al., 2017a) is an additional factor that can negatively impact computer-assisted EL documentation efforts in both intra- and intercommunity contexts.

2.2 The three corpora

YMC-Exp: The corpus originally available to develop E2E ASR, here titled YMC-Exp (Expert transcription), comprises 98.99 hours of time-coded transcription divided as follows for initial ASR development: Training: 92.46 hours (52,763 utterances); Validation: 4.01 hours (2,470 utterances); and Test: 2.52 hours (1,577 utterances).

The size of this initial YM corpus (505 files, 32 speakers, 98.99 hours) sets it apart from other ASR initiatives for endangered languages (Adams et al., 2018; Čavar et al., 2016; Jimerson et al., 2018; Jimerson and Prud’hommeaux, 2018). This ample size has yielded lower character (CER) and word (WER) error rates than would usually occur with truly low-resource EL documentation projects.

Amith and Castillo García recorded the corpus at a 48KHz sampling rate and 16-bits (usually with a Marantz PMD 671 recorder, Shure SM-10a dynamic headset mics, and separate channels for each speaker). The entire corpus was transcribed by Castillo, a native speaker linguist (García, 2007).

YMC-FB: A second YMC corpus (YMC-FB; for ‘field botany’) was developed during ethno-
botanical fieldwork. Kenia Velasco Gutiérrez (a Spanish-speaking botanist) and Esteban Guadalupe Sierra (a native speaker from Yoloxóchitl) led 105 days of fieldwork that yielded 888 distinct plant collections. A total of 584 recordings were made in all four YM communities; only 452 were in Yoloxóchitl, and of these, 435, totaling 15.17 hours with only three speakers, were used as a second test case for E2E ASR. Recordings were done outdoors at the plant collection site with a Zoom H4n hand-held digital recorder. The Zoom H4n internal mic was used; recordings were 48KHz, 16-bit, a single channel with one speaker talking after another (no overlap). Each recording has a short introduction by Velasco describing, in Spanish, the plant being collected. This Spanish section has not been factored into the duration of the YMC-FB corpus, nor has it been evaluated for character and word error rates at this time (pending future implementation of a multilingual model). The processing of the 435 recordings falls into two groups.

- 257 recordings (8.36 hours) were first transcribed by a novice trainee (Esteban Guadalupe) as part of transcription training. They were corrected in a separate ELAN tier by Castillo García and then the acoustic signals were processed by E2E ASR trained on the YMC-Exp corpus. The ASR CER and WER were obtained by comparing the ASR hypotheses to Castillo’s transcriptions; Guadalupe’s skill level (also measured in CER and WER) was obtained by comparing his transcription to that of Castillo. The results are discussed in Table 9 of Shi et al. (2021).

- 178 recordings (6.81 hours) were processed by E2E ASR, then corrected by Castillo. This set was not used to teach or evaluate novice trainee transcription skills but only to determine CER and WER for E2E ASR with the YMC-FB corpus.

No training or validation sets were created from this YMC-FB corpus, which for this present paper was used solely to test E2E ASR efficiency using the recipe developed from YMC-Exp corpus. CER and WER scores for YMC-FB were only produced after Castillo used the ELAN interface to correct the ASR hypotheses for this corpus (see Appendix A for an example ASR output).

YMC-VN: The final corpus is a set of 24 narratives made to provide background information and off-camera voice for a documentary video. The recordings involved some speakers not represented in the YMC-Exp corpus. All recordings (5.16 hours) were made at 44.1kHz, 16-bit with a boom-held microphone and a Tascam portable digital recorder in a hotel room. This environment may have introduced reverb or other effects that might have negatively affected ASR CER and WER.

Accessibility: All three corpora (119.32 hours) are available at the OpenSLR data portal (Amith and Castillo García, 2020)

3 Goals and challenges of corpora-based endangered language documentation

3.1 Overview

The oft-cited Boasian trilogy of grammar, dictionaries, and texts is a common foundation for EL documentation. Good (2018, p. 14) parallels this classic conception with a “Himmelmannian” trilogy of recordings, metadata, and annotations (see Himmelmann 2018). For the purpose of the definition proposed here, EL documentation is considered to be based on the Boasian trilogy of (1) corpus, (2) lexicon (in the sense of dictionary), and (3) grammar. In turn, each element in the trilogy is molded by a series of expectations and best practices. An audio corpus, for example, would best be presented interlinearized with (a) lines corresponding to the transcription (often in a practical orthography or IPA transcription), (b) morphological segmentation (often called a ‘parse’), (c) parallel glossing of each morpheme, (d) a free translation into a target, often colonial language, and (e) metadata about recording conditions and participants. This is effectively the Himmelmannian trilogy referenced by Good. A dictionary should contain certain minimum fields (e.g., part of speech, etymology, illustrative sentences). Grammatical descriptions (books and articles) are more openly defined (e.g., a reference vs. a pedagogical grammar) and may treat only parts of the language (e.g., verb morphology).

In a best-case scenario, these three elements of the Boasian trilogy are interdependent. Corpus-based lexicography clearly requires ample interlinearized transcriptions (IGT) of natural speech that can be used to (a) develop concordances mapped to lemmas (not word forms); (b) enrich a dictionary by finding lemmas in the corpus that are absent from an extant set of dictionary headwords; and (c) discover patterns in the corpus suggestive of
multiword lemmas (e.g., $kw^3-na^3a^4$ followed by i^3ni^2 (lit., ‘darken heart’ but meaning ‘to faint’). A grammar will inform decisions about morphological segmentation used in the IGT as well as part-of-speech tags and other glosses. And a grammar itself would benefit greatly from a large set of annotated natural speech recordings not simply to provide examples of particular structures but to facilitate a statistical analysis of speech patterns (e.g., for YMC, the relative frequency of complete verbs marked solely by tone vs. those marked by the prefix ni^1). This integration of elements into one “hypertextual” documentation effort is proposed by Musgrave and Thieberger (2021), who note the importance of spontaneous text (i.e., corpora, which they separate into two elements, media, and text) and comment that “all examples [in the dictionary and grammar] should come from the spontaneous text and should be viewed in context” (p. 6).

Documentation of YMC has proceeded on the assumption that the hypertextual integration suggested by Musgrave and Thieberger is central to effective endangered language documentation based on natural speech and that textual transcription of multimedia recordings of natural speech is, therefore, the foundation for a dictionary and grammar based on actual language use. End-to-end ASR is used to rapidly increase corpus size while offering the opportunity to target certain genres (such as expert conversations on the nomenclature, classification, and use of local flora and fauna; ritual discourse; material cultural production; techniques for fishing and hunting) that are of ethnographic interest but are often insufficiently covered in EL documentation projects that struggle to produce large and varied corpora. With the human effort-reducing advances in ASR for YMC presented in this paper, such extensive targeted recording of endangered cultural knowledge can now easily be included in the documentation effort.

The present paper focuses on end-to-end automatic speech recognition using the ESPNet toolkit (Guo et al., 2020; Shi et al., 2021; Watanabe et al., 2020, 2017, 2018). The basic goal is simple: To develop computational tools that reduce the amount of human effort required to produce accurate transcriptions in time-coded interlinearized format that will serve a wide range of potential stakeholders, from native and heritage speakers to specialized academics in institutions of higher learning, in the present and future generations. The evaluation metric, therefore, is not intrinsic (e.g., reduced CER and WER) but rather extrinsic: the impact of ASR on the downstream task of creating a large and varied corpus of Yoloxóchitl Mixtec.

3.2 Challenges to ASR of endangered languages

ASR for endangered languages is made difficult not simply because of limited resources for training a robust system but by a series of factors briefly discussed in this section.

Recording conditions: Noisy environments, including overlapping speech, reverberation in indoor recordings, natural sounds in outdoor recordings, less than optimal microphone placement (e.g., a boom mic in video recordings), and failure to separately mike speakers for multichannel recordings all negatively impact the accuracy of ASR output. Also to the point, field recordings are seldom made with an eye to seeding a corpus in ways that would specifically benefit ASR results (e.g., recording a large number of speakers for shorter durations, rather than fewer speakers for longer times). To date, then, processing a corpus through ASR techniques of any nature (HMM, end-to-end) has been more of an afterthought than planned at project beginning. Development of a corpus from the beginning with an eye to subsequent ASR potential would be immensely helpful to these computational efforts. It could, perhaps should, be increasingly considered in the initial project design. Indeed, just as funding agencies such as NSF require that projects address data management issues, it might be worth considering the suggested inclusion of how to make documentation materials more amenable to ASR and NLP processing as machine learning technologies are getting more robust.

Colonization of language: Endangered languages do not die, to paraphrase Dorian (1978), with their “boots on.” Rather, in the colonized situation in which most ELs are immersed, there are multiple phonological, morphological, and syntactic influences from a dominant language. The incidence of a colonial language in native language recordings runs a gamut from multilingual situations (e.g., each speaker using a distinct language, as often occurs in elicitation sessions: “How would you translate ___ into Mixtec?”), to code-switching and borrowing or relexification in the speech of
single individuals. In some languages (e.g., Nahuatl), a single word may easily combine stems from both native and colonial languages. Preliminary, though not quantified, CER analysis for YMC ASR suggests that “Spanish-origin” words provoke a significantly higher error rate than the YMC lexicon uninfluenced by Spanish. It is also not clear that a multilingual phone recognition system is the solution to character errors (such as ASR hypothesis ‘cereso’ for Spanish ‘cerezto’) that may derive from an orthographic system, such as that for Spanish, that is not designed, as many EL orthographies are, for consistency. Phonological shifts in borrowed terms also preclude the simple application of lexical tools to correct misspellings (as ‘agustu’ for the Spanish month ‘agosto’).

Orthographic conventions: The practical deep orthography developed by Amith and Castillo marks off boundaries of affixes (with a hyphen) and clitics (with an = sign). Tones are indicated by superscript numbers, from 1 low to 4 high, with five common rising and falling tones. Stem-final elided tones are enclosed in parentheses (e.g., underlying form be⁴ᵃ,³e(³)=²; house=1sgPoss, ‘my house’; surface form be⁴ᵃ,³). Tone-based inflectional morphology is not separated in any YMC transcriptions.

The transcription strategy for YMC was unusual in that the practical orthography was a deep, underlying system that represented segmental morpheme boundaries and showed elided tones in parentheses. The original plans of Amith and Castillo were to use the transcribed audio as primary data for a corpus-based dictionary. A deep orthography facilitates discovery (without recourse to a morphological analyzer) of lemmas that may be altered in surface pronunciations by the effect of person-marking enclitics and certain common verbal prefixes (see Shi et al., 2021, §2.3).

Only after documentation (recording and time-coded transcriptions) was well advanced did work begin on a finite state transducer for the YMC corpus. this was made possible by collaboration with another NSF-DEL sponsored project.³ The code was written by Jason Lilley in consultation with Amith and Castillo. As the FOMA FST was being built, FST output was repeatedly checked against expectations based on the morphological grammar until no discrepancies were noted. The FST, however, only generates surface forms consistent with Castillo’s grammar. If speakers varied, for example, in the extent of vowel harmonization or regressive nasalization, the FST would yield only one surface form, that suggested by Castillo to be the most common. For example, underlying be⁴ᵃ,³=an⁴ (house=3sgFem; ‘her house’) surfaces as be³ᵃ⁴ even though for some speakers nasalization spreads to the stem initial vowel. Note, then, that the surface forms in the YMC-Exp corpus are based on FST generation from an underlying transcription as input and not from the direct transcription of the acoustic signal. It is occasionally the case that different speakers might extend vowel harmonization or nasalization leftward to different degrees. This could increase the CER and WER for ASR of surface forms, given that the reference for evaluation is not directly derived from the acoustic signal while the ASR hypothesis is so derived.

In an evaluation across the YMC-Exp development and test sets (total 6.53 hours) of the relative accuracy of ASR when using underlying versus surface orthography, it was found that training on underlying orthography produced slightly greater accuracy than training on surface forms: Underlying = 7.7/16.0 [CER/WER] compared to Surface = 7.8/16.5 [CER/WER] (Shi et al., 2021, see Table 4). The decision to use underlying representations in ASR training has, however, several more important advantages. First, for native speakers, the process of learning a deep practical orthography means that one learns segmental morphology as one learns to write. For the purposes of YMC language documentation, the ability of a neural network to directly learn segmental morphology as part of ASR training has resulted in a YMC ASR output across all three corpora with affixes and clitics separated and stem-final elided tones marked in parentheses. Semi- or un-supervised morphological learning as a separate NLP task is unnecessary when ASR training and testing was successfully carried out on a corpus with basic morphological segmentation. As the example in Appendix A demonstrates, ASR output includes basic segmentation at the morphological level.

³For example ka³ⁿ⁴ to have faith (irrealis); ka³ⁿ⁴ to not have faith (neg. irrealis); ka³ⁿ⁴ to have faith (incomplete); ka³ⁿ⁴ to have faith (complete). For now, the tonal inflection on the first mora is not parsed out from stems such as ka³ⁿ⁴; see also fn. 1.
³³Award #1360670 (Christian DiCanio, PI; Understanding Prosody and Tone Interactions through Documentation of Two Endangered Languages).
Corpus	Intrinsic	Extrinsic	
	CER	WER	Correction Time
Reference	/	/	40 (estimated avg.)
Exp	7.6	14.7	(not measured)
FB	8.9	18.4	8.76
VN	6.1	15.8	10.28

Table 1: Intrinsic metrics vs. extrinsic metrics: Intrinsic metrics are based on Row I in Table 2. The extrinsic reference is the transcription time of an unaided human. The correction time for ASR output is measured in hours.

3.3 Intrinsic metrics: CER, WER, and consistency in transcriptions used as reference:

Although both CER and WER reference “error rate” in regards to character and word, respectively, the question of the accuracy of the reference itself is rarely explored (but cf. Saon et al., 2017). For YMC, only one speaker, Castillo García, is capable of accurate transcription, which in YMC is the sole gold standard for ASR training, validation, and testing. Thus there is a consistency to the transcription used as a reference.

In comparison, for Highland Puebla Nahuat (another language that the present team is exploring), the situation is distinct. Three native speaker experts have worked with Amith on transcription for over six years, but the reference for ASR development are native-speaker transcriptions carefully proofed by Amith, a process that both corrected simple errors and applied a single standard implemented by one researcher. When all three native speaker experts were asked to transcribe the same 90 minutes or recordings, and the results were compared, there was not an insignificant level of variation (9%).

The aforementioned scenario suggests the impact on ASR intrinsic metrics of variation in transcriptions across multiple annotators, or even inconsistencies of one skilled annotator in the context of incipient writing systems. This affects not only ASR output but also the evaluation of ASR accuracy via character and word error rates. It may be that rather than character and word error rate, it would be advisable to consider the character and word discrepancy rate a change in terminology that perhaps better communicates the idea that the differences between REF and HYP are often as much a matter of opinion as fact. The nature and value of utilizing intrinsic metrics (e.g., CER and WER) for evaluating ASR effectiveness for endangered language documentation merits rethinking.

An additional factor that has emerged in the YMC corpora, which contains very rapid speech, is what may be called “hypercorrection”. This is not uncommon and may occur with lenited forms (e.g., writing ndiu̯1 ku̯4 chi̯4 when close examination of the acoustic signal reveals that the speaker used the fully acceptable lenited form n̂diu̯1 k̂u̯4 ĉhi̯4) or when certain function words are reduced, at times effectively disappearing from the acoustic signal though not from the mind of a fluent speaker transcriber. In both cases, ASR “errors” might represent a more accurate representation of the acoustic signal than the transcription of even the most highly capable native speakers.

The above discussion also brings into question what it means to achieve human parity via an ASR system. Parity could perhaps best be considered as not based on CER and WER alone but on whether ASR output achieves a lower error rate in these two measurements as compared to what another skilled human transcriber might achieve.

3.4 Extrinsic metrics: Reduction of human effort as a goal for automatic speech recognition

Given the nature of EL documentation, which requires high levels of accuracy if the corpus is to be easily used for future linguistic research, it is essential that ASR-generated hypotheses be reviewed by an expert human annotator before permanent archiving. Certainly, audio can be archived with metadata alone or with unchecked ASR transcriptions (see Michaud et al., 2018, §4.3 and 4.4), but the workflow envisioned for YMC is to use ASR to reduce human effort while the archived corpus of audio and text maintains results equivalent to those that would be obtained by careful, and labor-intensive, expert transcription.

CER and WER were measured for YMC corpora with training sets of 10, 20, 50, and 92 hours. The CER/WER were as follows: 19.5/39.2 (10 hrs.), 12.7/26.2 (20 hrs.), 10.2/24.9 (50 hrs.), and 7.7/16.1 (92 hrs.); Table 5 in Shi et al. (2021). Measurement of human effort reduction suggests that with a corpus of 30–50 hours, even for a relatively challenging language such as YMC, E2E ASR can achieve the level of accuracy that allows a reduction of human effort by > 75 percent (e.g., from 40 to 10 hours, approximately).
Table 2: ASR results for different models with different units

Model	Unit	CER	WER						
	Exp(dev)	Exp(test)	FB	VN	Exp(dev)	Exp(test)	FB	VN	
A	Morae	9.5	9.4	12.8	9.9	19.2	19.2	23.8	21.8
B	Morpheme	10.2	10.0	13.9	10.9	20.0	20.0	24.8	23.1
C	Word	12.0	11.9	14.0	11.4	19.3	19.3	21.2	20.2
D	BPE150	7.7	7.6	9.5	6.8	16.1	16.1	19.6	17.3
E	BPE500	7.6	7.7	9.3	6.6	15.8	16.0	19.1	16.7
F	BPE1000	7.9	7.7	9.8	6.8	16.1	15.9	19.5	16.9
G	BPE1500	7.9	7.8	10.1	6.9	16.3	16.1	19.8	16.9
H	ROVER (A-C)	9.2	9.2	12.5	9.4	21.8	22.0	27.0	23.6
I	ROVER(D-G)	7.5	7.6	8.9	6.1	14.6	14.7	18.4	15.8
J	ROVER(A-G)	7.4	7.4	9.0	6.1	14.4	14.8	18.6	15.9

Table 2: ASR results for different models with different units

Starting from the acoustic signal, Castillo García, a native speaker linguist, requires approximately 40 hours to transcribe 1 hour of YMC audio. Starting from initial ASR hypotheses incorporated into ELAN, this is reduced by approximately 75 percent to about 10 hours of effort to produce one finalized hour of time-coded transcription with marked segmentation of affixes and enclitics.

These totals are derived from measurements with the FB and VN corpora, the two corpora for which ASR provided the initial transcription, and Castillo subsequently corrected the output, keeping track of the time he spent. For the first corpus, Castillo required 58.20 hours to correct 6.65 hours of audio (from 173 of the 178 files that had not been first transcribed by a speaker trainee). This yields 8.76 hours of effort per hour of recording. The 5.16 hours (in 24 files) of the VN corpus required 53.07 hours to correct, a ratio of 10.28 hours of effort to finalize 1 hour of speech. Over the entire set of 197 files (11.81 hours), human effort was 111.27 hours, or 9.42 hours to correct 1 hour of audio. Given that the ASR system was trained on an underlying orthography, the final result of < 10 hours of human effort per hour of audio is a transcribed and partially parsed corpus. Table 3 presents an analysis of two lines of a recording that was first processed by E2E ASR and corrected by Castillo García. A fuller presentation and analysis are offered in the Appendix. This focus on extrinsic metrics reflects the realization that the ultimate goal of computational systems is not to achieve the lowest CER and WER but to help documentation initiatives more efficiently produce results that will benefit future stakeholders.

4 End-to-end ASR experiments

4.1 Experiment settings

Recently, E2E ASR has reached comparable or better performances than conventional Hidden-Markov-Model-based ASR (Graves and Jaitly, 2014; Chiu et al., 2018; Pham et al., 2019; Karita et al., 2019a; Shi et al., 2021). In practice, E2E ASR systems are less affected by linguistic constraints and are generally easier to train. The benefits of such systems are reflected in the recent trends of using end-to-end ASR for EL documentation (Adams et al., 2020; Thai et al., 2020; Matsuura et al., 2020; Hjortnaes et al., 2020; Shi et al., 2021).

In developing E2E ASR recipes for YMC, we have adopted transformer and conformer-based encoder-decoder networks with hybrid CTC/attention training (Karita et al., 2019b; Watanabe et al., 2017). We used the YMC-Exp (train-split) for training and other YMC corpora for evaluation. The hyper-parameters for the training and decoding follow Shi et al. (2021). Seven systems with different modeling units are examined in the experiments. Four systems employ the byte-pair encoding (BPE) method trained from unigram language models (Kudo and Richardson, 2018), with transcription alphabets limited to the 150, 500, 1000, and 1500 most frequent byte-pairs in the training set. The other three ASR systems adopt linguistic units, including word, morpheme, and mora. The YM word is defined as a stem with all prefixes (such as completive ni³-, causative sa⁴-, and iterative nda³-) separated from the stem by a hyphen; and all enclitics (particularly person markers for subjects, objects, and possessors, such as =yu³, 1sg; =un⁴, 2sg; =un⁴, 3sgFem; =o³, 1plIncl; as well as =lu³, augmentive). Many vowel-initial enclitics have alternative vowels, and many encl-
As clear from the preceding discussion and illustrated in Table 2, in addition to training on the word unit, the YMC E2E ASR system was trained on six additional linguistic and informational sub-word units. ROVER was then used to produce composite systems in which the outputs of all seven systems were combined in three distinct manners. In all cases, ROVER combinations improved the result of any individual system, including the averages for either of the two types of units: linguistic and informational.

ASR	yo3o4 xi1k121 ba42 ndi4 ba1a3=e2 ku3nu3mi2 tu3tun4 kwi3so(3)=e4 mi4i4 ti1 ba42 ko14o3 yo3o4 kwa11an1 yo4i xa14ku1u1
Exp	yo3o4 xi1k121 ba42 ndi4 ba1a3=e2 ku3nu3mi2 tu3tun4 kwi3so(3)=e4 mi4i4 ti1 ba42 ko14o3 yo3o4 kwa11an1 ji4in(4)=e4 xa14ku1u1

Note: ASR missed the word ji4in(4) (‘with’, comitative) and as a result wrote the 1plInclusive as an independent pronoun and not an enclitic.

ASR	i1ta(2)=e2 ndi4 tan121 i4ta2 tio\textsuperscript{o2} yuku4 ya1 ba1li4 coco\textsuperscript{nu14u4 nu4u4 sa3kan4 i3in4
Exp	i1ta(2)=e2 ndi4 tan121 i3in4 i4ta2 tio\textsuperscript{o2} yuku4 ya1 ba1li4 ko\textsuperscript{ko13} nu14u4 nu4u4 sa3kan4 i3in4

Note: ASR suggested Spanish ‘coco’ coconut for Mixtec ko\textsuperscript{ko15} (‘to be abundant[plants]’)

Table 3: Comparison of ASR and Expert transcription of two lines of recording (See Appendix A for full text).

	ASR	Exp
	yo3o4 xi1k121 ba42 ndi4 ba1a3=e2 ku3nu3mi2 tu3tun4 kwi3so(3)=e4 mi4i4 ti1 ba42 ko14o3 yo3o4 kwa11an1 yo4i xa14ku1u1	i1ta(2)=e2 ndi4 tan121 i4ta2 tio\textsuperscript{o2} yuku4 ya1 ba1li4 coco\textsuperscript{nu14u4 nu4u4 sa3kan4 i3in4

4.2 Experimental results

Experimental results are presented in two subsections. The first addresses the performance of end-to-end ASR across three corpora, each with slightly different recording systems and content. As clear from the preceding discussion and illustrated in Table 2, in addition to training on the word unit, the YMC E2E ASR system was trained on six additional linguistic and informational sub-word units. ROVER was then used to produce composite systems in which the outputs of all seven systems were combined in three distinct manners. In all cases, ROVER combinations improved the result of any individual system, including the averages for either of the two types of units: linguistic and informational.

ASR and ROVER across three YMC corpora:

As evident in Table 2, across all corpora, informational units (BPE) are more efficient than linguistic units (word, morpheme, morae) in regards to ASR accuracy. The average CER/WER for linguistic units (rows A-C) was 10.4/19.5 (Exp[Test]), 13.6/23.3 (FB), and 10.7/21.7 (VN). The corresponding figures for the BPE units (rows D-G) were 7.7/16.0 (Exp[Test]), 9.7/19.5 (FB), and 6.8/16.8 (VN). In terms of percentage differences between the two types of units, the numbers are not insignificant. In regards to CER, performance improved from linguistic to informational units by 26.0, 28.7, and 36.4 percent across the Exp(Test), FB, and VN corpora. In regards to WER, performance improved by 17.9, 16.3, and 22.6 percent across the same three corpora.

The experiments also addressed two remaining questions: (1) does unweighted ROVER combination improve the accuracy of ASR results; (2) does adding linguistic unit performance to the ROVER "voting pool" improve results over a combination of only BPE units. In regards to the first question: ROVER always improves results over any individual system (compare row H to rows A, B, and C, and row I to rows D, E, F, and G). The second question is addressed by comparing rows I (ROVER applied only to the four BPE results) to J (adding the ASR results for the three linguistic units into the combination). In only one of the six cases (CER of Exp[Test]) does including word, morpheme, and morae lower the error rate from the results of a simple combination of the four BPE results (in this case from 7.6 [row I] to 7.4 [row J]). In one case, there is no change (CER for the VN corpus) and in four cases, including linguistic units slightly worsens the score from the combination of BPE units alone (row I with

\(^4\) Those interested in the recordings and associated ELAN files may visit Amith and Castillo García (2020).
The implication of the preceding is that ASR using linguistic units yields significantly lower accuracy than ASR that uses informational (BPE) units. Combining the former with the latter in an unweighted ROVER system in most cases does not improve results. Whether a weighted combinatory system would do better is a question that will need to be explored.

5 Conclusion

A fundamental element of endangered language documentation is the creation of an extensive corpus of audio recordings accompanied by time-coded annotations in interlinear format. In the best of cases, such annotations include an accurate transcription aligned with morphological segmentation, glossing, and free translations. The degree to which such corpus creation is facilitated is the extrinsic metric by which ASR contributions to EL documentation should be considered. The project here discussed suggests a path to creating such corpora using end-to-end ASR technology to build up the resources (30–50 hours) necessary to train an ASR system with perhaps a 6–10 percent CER. Once this threshold is reached, it is unlikely that further improvement will significantly reduce the human effort needed to check the ASR output for accuracy. Indeed, even if there are no "errors" in the ASR output, confirmation of this through careful revision of the recording of the transcription would probably still take 3–4 hours. The effort reduction of 75 percent documented here for YMC is, therefore, approaching what may be considered the minimum amount of time to proofread transcription of natural speech in an endangered language.

This project has also demonstrated the advantage of using a practical orthography that separates affixes and clitics. In a relatively isolating language such as YM, such a system is not difficult for native speakers to write nor for ASR systems to learn. It has the advantage of creating a workflow in which parsed text is the direct output of E2E ASR. The error rate evaluations across the spectrum of corpora and CER/WER also demonstrate the advantage of using subword units such as BPE and subsequent processing by ROVER for system combination (see above and Table 2). The error rates could perhaps be lowered further as the corpus increases in size, as more care is placed on recording environments, and as normalization eliminates reported errors for minor discrepancies such as in transcription of back-channel cues. But such lower error rates will probably not significantly reduce the time for final revision.

A final question concerns additional steps once CER is reduced to 6–8 percent, and additional improvements to ASR would not significantly affect the human effort needed to produce a high-quality time-coded transcription and segmentation. Four topics are suggested: (1) address issues of noise, overlapping speech, and other challenging recording situations; (2) focus on transfer learning to related languages; (3) explore the impact of "colonialization" by a dominant language; and (4) focus additional ASR-supported corpus development on producing material for documentation of endangered cultural knowledge, a facet of documentation that is often absent from endangered language documentation projects.

Acknowledgments

The authors gratefully acknowledge the following support for documenting and studying Yoloxóchitl Mixtec: National Science Foundation, Documenting Endangered Languages (DEL): Awards 1761421, 1500595, 0966462 (Amith, PI on all three; the second was a collaborative project with SRI International, Award 1500738, Andreas Kathol, PI); Endangered Language Documentation Programme: Awards MDP0201, PPG0048 (Amith, PI on both). The following support is acknowledged for documenting and studying Highland Puebla Nahuat: NSF DEL: Awards: 1401178, 0756536 (Amith, PI on both awards); National Endowment for the Humanities, Preservation and Access: PD-50031-14 (Amith, PI); Endangered Language Documentation Programme: Award MDP0272 (Amith, PI); and the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico (Gerardo Salazar, PI; Amith, co-PI). The FOMA FST for Yoloxóchitl Mixtec was built by Jason Lilley, Amith, and Castillo with support from NSF DEL Award 1360670 (Christian DiCanio, PI).

Finally, the authors thank Shinji Watanabe both for his advice and guidance and for the key role he played in bringing together a field linguist, a native speaker, and a computational linguist for this project.

References

Oliver Adams, Trevor Cohn, Graham Neubig, Hilaria Cruz, Steven Bird, and Alexis Michaud. 2018. Eval-
uating phonemic transcription of low-resource tonal languages for language documentation. In *LREC 2018 (Language Resources and Evaluation Conference)*, pages 3356–3365.

Oliver Adams, Benjamin Galliot, Guillaume Wisniewski, Nicholas Lambourne, Ben Foley, Rhasaya Sanders-Dwyer, Janet Wiles, Alexis Michaud, Séverine Guillaume, Laurent Besacier, et al. 2020. User-friendly automatic transcription of low-resource languages: Plugging ESPnet into Elpis. In *ComputEL-4: Fourth Workshop on the Use of Computational Methods in the Study of Endangered Languages*, pages 51–62.

Jonathan D. Amith and Rey Castillo García. 2020. Audio corpus of Yoloxóchitl Mixtec with accompanying time-coded transcriptions in ELAN. http://www.openslr.org/89/. Accessed: 2021-03-05.

Claude Barras, Edouard Geoffrois, Zhibiao Wu, and Mark Liberman. 1998. Transcriber: A free tool for segmenting, labeling and transcribing speech. In *First International Conference on Language Resources and Evaluation (LREC)*, pages 1373–1376.

Steven Bird and Gary Simons. 2003. Seven dimensions of portability for language documentation and description. *Language*, pages 557–582.

Malgorzata Ćavar, Damir Ćavar, and Hilaria Cruz. 2016. Endangered language documentation: Bootstrapping a Chatino speech corpus, forced aligner, ASR. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)*, pages 4004–4011.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Ekat erina G onina, et al. 2018. State-of-the-art speech recognition with sequence-to-sequence models. In *2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 4774–4778.

Nancy C Dorian. 1978. The fate of morphological complexity in language death: Evidence from East Sutherland Gaelic. *Language*, 54(3):590–609.

Jonathan G Fiscus. 1997. A post-processing system to yield reduced word error rates: Recognizer output voting error reduction (ROVER). In *1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings*, pages 347–354.

Ben Foley, Josh Arnold, Rolando Coto-Solano, Gautier Durantin, E Mark, Daan van Esch, Scott Heath, Frantisek Kratochvil, Zara Maxwell-Smith, David Nash, et al. 2018. Building speech recognition systems for language documentation: The CoEDL Endangered Language Pipeline and Inference System (ELPIS). In *The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages*.

Ben Foley, Alina Rakhi, Nicholas Lambourne, Nicholas Buckeridge, and Janet Wiles. 2019. ELPIS: An accessible speech-to-text tool. *Proc. Interspeech* 2019, pages 4624–4625.

Rey Castillo García. 2007. La fonología tonal del mixteco de Yoloxóchitl, Guerrero. Master’s thesis, Centro de Investigaciones y Estudios Superiores en Antropología Social, Mexico City, Mexico. MA thesis in Lingüística Indoamericana.

Jeff Good. 2018. Reflections on the scope of language documentation. *Reflections on Language Documentation 20 Years after Himmelmann 1998. Language Documentation & Conservation, Special Publication 15*, pages 13–21.

Jeff Good, Julia Hirschberg, and Rambow Owen, editors. 2021. *Proceedings of the Workshop on Computational Methods for Endangered Languages*, volume 1-4.

Alex Graves and Navdeep Jaitly. 2014. Towards end-to-end speech recognition with recurrent neural networks. In *International Conference on Machine Learning*, pages 1764–1772.

Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiutong Shi, et al. 2020. Recent developments on ESPNet toolkit boosted by conformer. arXiv preprint arXiv:2010.13956.

Vishwa Gupta and Gilles Boulianne. 2020. Speech transcription challenges for resource constrained indigenious language Cree. In *Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)*, pages 362–367.

Ken Hale, Michael Krauss, Lucille J Wata homigie, Akira Y Yamamoto, Colette Craig, LaVerne Masayesva Jeanne, and Nora C Eng land. 1992. Endangered languages. *Language*, 68(1):1–42.

Kristine A Hildebrandt, Carmen Jany, and Wilson Silva. 2017a. Documenting variation in endangered languages. *Language Documentation & Conservation Special Publication 14*. University of Hawai’i Press.

Kristine A Hildebrandt, Carmen Jany, and Wilson Silva. 2017b. *Introduction: Documenting variation in endangered languages*, pages 1–7. University of Hawai’i Press.

Nikolaus P Himmelmann. 1998. Documentary and descriptive linguistics. *Linguistics*, 36:161–196.

Nikolaus P Himmelmann. 2018. Meeting the transcription challenge. *Reflections on Language Documentation 20 Years after Himmelmann 1998. Language Documentation & Conservation, Special Publication 15*, pages 33–40.
Kohei Matsuura, Sei Ueno, Masato Mimura, Shinsuke Alexi Michaud, Oliver Adams, Trevor Anthony Cohn, Taku Kudo and John Richardson. 2018. SentencePiece: In
Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages, pages 31–37.

Robbie Jimerson and Emily Prud’hommeaux. 2018. ASR for documenting acutely under-resourced indigenous languages. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).

Robert Jimerson, Kruthika Simha, Ray Ptucha, and Emily Prud’hommeaux. 2018. Improving ASR output for endangered language documentation. In The 6th Int'l Workshop on Spoken Language Technologies for Under-Resourced Languages.

Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyian Jiang, Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, et al. 2019a. A comparative study on transformer vs. RNN in speech applications. In 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages 449–456.

Shigeki Karita, Nelson Enrique Yalta Soplin, Shinji Watanabe, Marc Delcroix, Atsunori Ogawa, and Tomohiro Nakatani. 2019b. Improving transformer-based end-to-end speech recognition with connectionist temporal classification and language model integration. Proc. Interspeech 2019, pages 1408–1412.

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71.

Kohei Matsuura, Sei Ueno, Masato Mimura, Shinsuke Sakai, and Tatsuya Kawahara. 2020. Speech corpus of Ainu folklore and end-to-end speech recognition for Ainu language. In Proceedings of The 12th Language Resources and Evaluation Conference, pages 2622–2628.

Bradley McDonnell, Andrea L Berez-Kroeker, and Gary Holton. 2018. Reflections on Language Documentation 20 Years after Himmelmann 1998. Language Documentation & Conservation, Special Publication 15. University of Hawai’i Press.

Alexis Michaud, Oliver Adams, Trevor Anthony Cohn, Graham Neubig, and Séverine Guillaume. 2018. Integrating automatic transcription into the language documentation workflow: Experiments with Na data and the Persephone toolkit. Language Documentation & Conservation, 12.

Vikramjit Mitra, Andreas Kathol, Jonathan D Amith, and Rey Castillo García. 2016. Automatic speech transcription for low-resource languages: The case of Yoloxóchitl Mixtec (Mexico). In Proc. Interspeech 2016, pages 3076–3080.

Simon Musgrave and Nicholas Thieberger. 2021. The language documentation quartet. In Proceedings of the Workshop on Computational Methods for Endangered Languages, volume 1, pages 6–12.

Enrique L Palancar, Jonathan D Amith, and Rey Castillo García. 2016. Verbal inflection in Yoloxóchitl Mixtec. Tone and inflection: New facts and new perspectives, pages 295–336.

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues, Markus Müller, and Alex Waibel. 2019. Very deep self-attention networks for end-to-end speech recognition. Proceedings of Interspeech 2019, pages 66–70.

George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, et al. 2017. English conversation- ional telephone speech recognition by humans and machines. Proc. Interspeech 2017, pages 132–136.

Frank Seifart, Nicholas Evans, Harald Hammarström, and Stephen C Levinson. 2018. Language documentation twenty-five years on. Language, 94(4):e324–e345.

Jiatong Shi, Jonathan D. Amith, Rey Castillo García, Esteban Guadalupe Sierra, Kevin Duh, and Shinji Watanabe. 2021. Leveraging end-to-end ASR for endangered language documentation: An empirical study on Yoloxóchitl Mixtec. arXiv preprint arXiv:2101.10877.

Jorge A Suárez. 1983. The Mesoamerican Indian languages. Cambridge University Press.

Bao Thai, Robert Jimerson, Raymond Ptucha, and Emily Prud’hommeaux. 2020. Fully convolutional ASR for less-resourced endangered languages. In Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL), pages 126–130.

Shinji Watanabe, Florian Boyer, Xuankai Chang, Pengcheng Guo, Tomoki Hayashi, Yosuke Higuchi, Takaaki Hori, Wen-Chin Huang, Hirofumi Inaguma, Naoyuki Kamo, et al. 2020. The 2020 ESPN update: New features, broadened applications, performance improvements, and future plans. arXiv preprint arXiv:2012.13006.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno, Nelson-Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, et al. 2018. ESPNet: End-to-end speech processing toolkit. Proc. Interspeech 2018, pages 2207–2211.
Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R Hershey, and Tomoki Hayashi. 2017. Hybrid CTC/attention architecture for end-to-end speech recognition. *IEEE Journal of Selected Topics in Signal Processing*, 11(8):1240–1253.

Douglas Whalen and Čavar Damir. 2012. Collaborative research: Automatically annotated repository of digital video and audio resources community (AARDVARC). https://nsf.gov/awardsearch/showAward?AWD_ID=1244713. Accessed: 2021-03-05.

Peter Wittenburg, Hennie Brugman, Albert Russel, Alex Klassmann, and Han Sloetjes. 2006. ELAN: A professional framework for multimodality research. In *5th International Conference on Language Resources and Evaluation (LREC 2006)*, pages 1556–1559.
A Analysis of ASR errors in one recording from the FB corpus

Unique identifier: 2017-12-01-b
Speakers: Constantino Teodoro Bautista and Esteban Guadalupe Sierra
Spanish: The first 13 seconds (3 segments) of the recording were of a Spanish speaker describing the plant being collected (Passiflora biflora Lam.) and have not been included below.
Note: A total 16 out of 33 segments/utterances are without ASR error. These are marked with an asterisk.
Original recording and ELAN file: Download at http://www.balsas-nahuatl.org/NLP

4*. 00:00:13.442 --> 00:00:17.105
ASR constantino teodoro bautista
Exp Constantino Teodoro Bautista.
Notes: ASR does not output caps or punctuation.

5*. 00:00:17.105 --> 00:00:19.477
ASR ya1 mi4i4 tu1 tu4 un4 ku2rra12
Exp Ya1 mi4i4 tu1 tu4 un4 ku2rra12
Notes: No errors in the ASR hypothesis.

6. 00:00:19.477 --> 00:00:23.688
ASR ta1 mas4tru2 tela ya1 i4chi1 ya3tin3 ye14e4 ku3rra42 ndi4 covalent1n yo4o4
Exp ta1 mas4tru2 Tele ya1 i4chi1 ya3tin3 ye14e4 ku3rra42 Nicu Valenti1n yo4o4.
Notes: ASR missed the proper name, Nicu Valentín (short for Nicolás Valentín) but did get the accent on Valentín, while mistaking the first name Nicu for ndi4 co[valent1n]

7*. 00:00:23.688 --> 00:00:31.086
ASR ya1 i4chi1 kwa1 an1(1)=e4 tan3 xa1 a1(1)=e4 ku3rra42 chi1 nue1 ka4chi2=na1 ya1 kwa1 an1 ni1 nu3 yo4 o4 ju1 ta1 an1=ndu1 ya1 ko4ndo3 kwi1 yo1 o4 ndi4 kui3 un3
Exp ya1 i4chi1 kwa1 an1(1)=e4 tan3 xa1 a1(1)=e4 ku3rra42 chi1 nue1 ka4chi2=na1 ya1 kwa1 an1 ni1 nu3 yo4 o4 ju1 ta1 an1=ndu1 ya1 ko4ndo3 kwi1 yo1 o4 ndi4 kui3 un3
Notes: No errors in the ASR hypothesis.

8*. 00:00:31.086 --> 00:00:37.318
ASR kwi1 yo1 o4 ndi4 kui3 un3 kwi1 a24 kwa4 chi2=na1 yo4 o4 ndi4 ya1 yo4 o4 ndi4 xa4 nu3 su1 kud1 mi4 i4 ti1 ba42 i4 yo(2)=a2 mi1 i4 bi1 xin3 tan3
Exp kwi1 yo1 o4 ndi4 kui3 un3 kwi1 a24 kwa4 chi2=na1 yo4 o4 ndi4 ya1 yo4 o4 ndi4 xa4 nu3 su1 kud1 mi4 i4 ti1 ba42 i4 yo(2)=a2 mi1 i4 bi1 xin3 tan3
Notes: The ASR hypothesis missed the inanimate enclitic after the verb su1 kud1 and as a result failed to mark the elision of the stem-final low tone as would occur before a following low-tone enclitic.

9. 00:00:37.318 --> 00:00:42.959
ASR yo3 o1 xi13 i2 ba42 ndi4 ba1 a3=e2 ku3 nu3 ni2 tu3 tun4 kwi3 so(3)=e4 mi4 i4 ti4 ba42 ko14 o3 yo3 o4 kwa1 an1 yo1 o4 xa4 ku1 u1
Exp yo3 o1 xi13 i2 ba42 ndi4 ba1 a3=e2 ku3 nu3 ni2 tu3 tun4 kwi3 so(3)=e4 mi4 i4 ti4 ba42 ko14 o3 yo3 o4 kwa1 an1 ji4 in(4)=o4 xa4 ku1 u1,
Notes: ASR missed the word ji4 in4 (’with’, comitative) and as a result wrote the 1plInclusive as an independent pronoun and not an enclitic.

10. 00:00:42.959 --> 00:00:49.142
ASR i4 ta(2)=e2 ndi4 tan4 i4 in4 i4 ta2 tio3 o2 yu3 ku4 ya1 ba4 li4 coco nu14 u3 nue3 u4 sa3 kan4 i4 in4 i4 ta(2)=e2

76
Notes: ASR suggested Spanish ‘coco’ coconut for Mixtec ko₄koʲ³ (‘to be abundant[plants]’). Note that ‘coco’ was spelled as it is in Spanish and no tones were included in the ASR output.

11. 00:00:49.142 –> 00:00:53.458
ASR la'⁴tun'⁴ni⁴⁴ y₃a(3)=e⁴ tan⁴ ti¹x₃=a² ndi⁴ ya¹ nde³=e⁴ ba⁴² tan⁴ o⁴′ra² x₄′yo¹³ ndu¹u⁴′a² ndi⁴ ya¹ kw‘i²⁴ ba₃⁴
Exp la'⁴tun'⁴ni⁴⁴ y₃a(3)=e⁴ tan⁴ ti¹x₃=a² ndi⁴ ya¹ nde³=e⁴ ba⁴² tan⁴ o⁴′ra² x₄′yo¹³ ndu¹u⁴′a² ndi⁴ ya¹ kw‘i²⁴ ba₃⁴

Notes: ASR missed tone 42, writing 43 instead. Note that the two tone patterns are alternate forms of the same word, the copula used in regards to objects.

12*. 00:00:53.458 –> 00:00:57.279
ASR tan⁴ o⁴′ra² chi'chi¹³=a² ndi⁴ ndu¹u⁴ nde³=e⁴ ku⁴′u⁴′a³ ndu¹u⁴=a³
Exp tan⁴ o⁴′ra² chi'chi¹³=a² ndi⁴ ndu¹u⁴ nde³=e⁴ ku⁴′u⁴′a³ ndu¹u⁴=a³.
Notes: No errors in the ASR hypothesis.

13*. 00:00:57.279 –> 00:01:02.728
ASR yu¹ku(1)=a¹ ndi⁴ tan⁴² i¹′in(4)=a² ni¹−xa³nda²′e⁴ tan⁴² i¹′in(4) yu¹ku¹ tun⁴ si¹³su² kan⁴ sa³kan⁴ i¹′in(4) yu¹ku(1)=a¹ tan⁴ ni⁴
Exp Yu¹ku(1)=a¹ ndi⁴ tan⁴² i¹′in(4)=a² ni¹−xa³nda²′e⁴ tan⁴² i¹′in(4) yu¹ku¹ tun⁴ si¹³su² kan⁴ sa³kan⁴ i¹′in(4) yu¹ku(1)=a¹ tan⁴ ni⁴
Notes: No errors in the ASR hypothesis.

14. 00:01:02.728 –> 00:01:06.296
ASR su¹⁴u³ y₄ xa⁴nda²′=na¹ ba⁴² ndi⁴ su¹⁴u³ ki³ti⁴ ja¹xi²⁴′=ri⁴ sa³kan⁴ i¹′in(4) yu¹ku¹ mi¹i⁴ ba(3)=e³
Exp su¹⁴u³ y₄ xa⁴nda²′=na¹ ba⁴² tan⁴ ni⁴ su¹⁴u³ ki³ti⁴ ja¹xi²⁴′=ri⁴ sa³kan⁴ i¹′in(4) yu¹ku¹ mi¹i⁴ ba(3)=e³
Notes: ASR mistakenly proposed ndi⁴ for tan⁴ ni⁴.

15*. 00:01:06.296 –> 00:01:10.981
ASR tan⁴ y₄ xa¹′nu³ su⁴kun(1)=a¹ mi¹i⁴ ti⁴ ba⁴² sa³ba³ xa⁴an⁴ ku⁴ta³′an²′e⁴′e⁴′e² ndi⁴ xa¹′nu³(3)=a² kwa¹nda³=a³′e⁴′e²′nda³a⁴ i¹′in(4)
Exp tan⁴ y₄ xa¹′nu³ su⁴kun(1)=a¹ mi¹i⁴ ti⁴ ba⁴² sa³ba³ xa⁴an⁴ ku⁴ta³′an²′e⁴′e²′ndi⁴ xa¹′nu³(3)=a² kwa¹nda³=a³′e⁴′e²′nda³a⁴ i¹′in(4)
Notes: No errors in the ASR hypothesis.

16. 00:01:10.981 –> 00:01:14.768
ASR u¹′xi¹ an² nda¹ xa¹′un¹ metro k₄a³′ mi¹i⁴ i¹′yo²′ i¹′in(4) ndo³⁰ tan³ ko¹ko¹³′=a² kwa¹nda³=a³′ ni¹nu³
Exp u¹′xi¹ an² nda¹ xa¹′un¹ metro k₄a³′ mi¹i⁴ i¹′yo²′ i¹′in(4) ndo³⁰ tan³ ko¹ko¹³′=a² kwa¹nda³=a³′ ni¹nu³.
Notes: Not only did ASR recognize the Spanish metro borrowing but wrote it according to our conventions, without tone. Note that the correct underlying form k₄a³′nda³=a³′(3)=e² (progressive of ‘to climb [e.g., a vine]’ with 3sg enclitic for inanimates =e²) surfaces as k₄a¹nda³=e² quite close to the ASR hypothesis of k₄a¹nda³=e², which exists, but as a distinct word (progressive of ‘to enter[pl]’).

17*. 00:01:14.768 –> 00:01:18.281
ASR mi¹i⁴ ba¹⁴³ xa⁴nda²′=na(1)=e¹ ndi⁴ xa¹′nu³ su⁴kun(1)=a¹
Exp mi¹i⁴ ba¹⁴³ xa⁴nda²′=na(1)=e¹ ndi⁴ xa¹′nu³ su⁴kun(1)=a¹.
Notes: No errors in the ASR hypothesis.
18*. 00:01:18.281 –> 00:01:21.487
ASR ya¹ kan⁴ kuʻu¹ kwi¹ yo¹ o⁴ ju¹ ta³ an² = ndu¹ i³ chi¹ ku'ra² chi¹ nu³ yo¹ o⁴
Exp ya¹ kan⁴ kuʻu¹ kwi¹ yo¹ o⁴ ju¹ ta³ an² = ndu¹ i³ chi¹ ku'ra² chi¹ nu³ yo¹ o⁴
Notes: No errors in the ASR hypothesis.

19*. 00:01:21.487 –> 00:01:24.658
ASR esteban guadalupe sierra
Exp Esteban Guadalupe Sierra.
Notes: ASR does not output caps or punctuation.

20. 00:01:24.658 –> 00:01:27.614
ASR ya¹ koⁿ do³ kwi¹ yo¹ o⁴ ndi¹ kwi³ so³ = ndu² ya¹
Exp ya¹ koⁿ do³ kwi¹ yo¹ o⁴ ndi¹ kwi³ so³ = ndu² ya¹
Notes: No errors in the ASR hypothesis.

21. 00:01:33.096 –> 00:01:39.611
ASR sa³ kan⁴ tan¹ xaᵃ⁽¹⁾ = e¹ ku'ra² chi¹ nu³ ya¹ ja¹ ta⁴ ku'ra² ta¹ marspele yo¹ o⁴ ndi⁴
Exp sa³ kan⁴ tan³ xaᵃ⁽¹⁾ = e¹ ku'ra² chi¹ nu³ ya¹ ja¹ ta⁴ ku'ra² ta¹ mas⁴ tru² Ṭele yo¹ o⁴ ndi⁴
Notes: ASR missed the Spanish mas⁴ tru² Tele (teacher Tele(sforo)) and hypothesized a nonsense word in Spanish (note absence of tone as would be the case for Spanish loans).

22. 00:01:39.611 –> 00:01:43.781
ASR kwi¹ yo¹ o⁴ ndi³ kwi³ un³ ba³ kwi¹ yo¹ o⁴ ndi³ kwi³ un³ ka¹ a³ ndi⁴ koi⁴ o³ u¹ bi¹ u¹ ni¹ nu¹ u⁽³⁾ = a² nā¹ a⁴ ndi⁵ i³ nda¹ i¹ ku'ra² sa³ kan⁴ ba³ ba⁴²
Exp kwi¹ yo¹ o⁴ ndi³ kwi³ un³ ba⁴² kwi¹ yo¹ o⁴ ndi³ kwi³ un³ ka¹ a³ ndi⁴ koi⁴ o³ u¹ bi¹ u¹ ni¹ nu¹ u⁽³⁾ = a² ndi⁴ i³ nda¹ i¹ ku'ra² sa³ kan⁴ ba³ ba⁴².
Notes: ASR mistook the copula ba⁴² and instead hypothesized the modal ba³. ASR also inserted a word not present in the signal, nā¹ a⁴ ("over there").

23. 00:01:43.781 –> 00:01:49.347
ASR ya¹ kaⁿ an² = na¹ ji⁴ in⁴ ku'u⁴ kwi¹ yo¹ o⁴ ndi³ kwi³ un³ kwi⁴ j⁽²⁾ = o⁴ tan³
Exp ya¹ kaⁿ an² = na¹ ji⁴ in⁴ ku'u⁴ kwi¹ yo¹ o⁴ ndi³ kwi³ un³ kwi⁴ j⁽²⁾ = o⁴ tan³
Notes: ASR mistook the adverbial yo¹ o⁴ ('here') as the enclitic =o⁴ (1PlIncl) and as a result also hypothesized stem final tone elision (4).

24. 00:01:49.347 –> 00:01:55.001
ASR ba¹⁴ bi⁴ xi¹ i⁴ in⁽⁴⁾ = a² ndi⁴ kwi¹ yo¹ o⁴ kwa¹ nda³ a³ nda³ a³ i³ tun⁴ ba³ tan³ kwi¹ yo¹ o⁴
Exp ba¹⁴ bi⁴ xi¹ i⁴ in⁽⁴⁾ = a² ndi⁴ kwi¹ yo¹ o⁴ kwa¹ nda³ a³ nda³ a³ i³ tun⁴ ba³ tan³ kwi¹ yo¹ o⁴
Notes: As in segment #22 above, ASR mistook the copula, here ba³, and instead hypothesized the modal ba³.

25. 00:01:55.001 –> 00:01:55.001
ASR ndi³ i⁴ ba⁴² ko¹⁴ o³ tu⁴ mi⁴ ja¹ ta⁴ = e² ya¹ kan⁴ ndi⁴ i⁴ yo² i⁴ yo² xi¹ ki⁴ = a² i⁴ in⁴ tan³
Exp ndi³ i⁴ ba⁴² ko¹⁴ o³ tu⁴ mi⁴ ja¹ ta⁴ = e² tan³ ndi⁴ i⁴ yo² i⁴ yo² xi¹ ki⁴ = a² i⁴ in⁴ tan³
Notes: ASR missed the conjunction tan³ ("and") and instead wrote ya¹ kan⁴ ("that one")

26*. 00:01:55.001 –> 00:02:00.110
ASR ya¹ ba¹ a³ = e² ndi⁴ ba¹ a³ = e² ju¹ nu³ ni² tu³ tun⁴ i⁴ xa³ = na²
Exp ya¹ ba¹ a³ = e² ndi⁴ ba¹ a³ = e² ju¹ nu³ ni² tu³ tun⁴ i⁴ xa³ = na².
Notes: No errors in the ASR hypothesis.
27*. 00:02:00.110 –> 00:02:04.380
ASR na¹kwa¹chi³ tu³ ndi⁴ chi¹ńu³ⁿi²=na¹ ka³ya²=na(1)=e¹ su¹-kwe¹kun¹=na¹ i³na² ju¹si²⁴ki²⁴ ba³=na³
Exp na¹kwa¹chi³ tu³ ndi⁴ chi¹ńu³ⁿi²=na¹ ka³ya²=na(1)=e¹ su¹-kwe¹kun¹=na¹ i³na² ju¹si²⁴ki²⁴ ba³=na³,
Notes: No errors in the ASR hypothesis.

28*. 00:02:04.380 –> 00:02:06.242
ASR a¹chi¹ kw¹yo¹o⁴ nde⁴e⁴ ba⁴³
Exp a¹chi¹ kw¹yo¹o⁴ nde⁴e⁴ ba⁴³,
Notes: No errors in the ASR hypothesis.

29*. 00:02:06.242 –> 00:02:08.865
ASR tan⁴² ka⁴²an² ta¹ ta⁴³ni² constantino yo¹⁴o⁴ ndi⁴
Exp tan⁴² ka⁴²an² ta¹ ta⁴³ni² Constantino yo¹⁴o⁴ ndi⁴
Notes: No errors in the ASR hypothesis.

30*. 00:02:08.865 –> 00:02:13.473
ASR i³ta²=e² ndi⁴ tan⁴² i³in⁴ i³ta² ya¹kan³ kw¹yo¹⁴o⁴ ya¹ i³ta² tio³o² kan⁴ sa³kan⁴ i⁴⁴in⁴ i³ta²=e² tan³
Exp i³ta²=e² ndi⁴ tan⁴² i³in⁴ i³ta², ya¹kan³, kw¹yo¹⁴o⁴ ya¹ i³ta² tio³o² kan⁴ sa³kan⁴ i⁴⁴in⁴ i³ta²=e² tan³
Notes: No errors in the ASR hypothesis, the fifth consecutive annotation without an ASR error.

31. 00:02:13.473 –> 00:02:17.927
ASR xi⁴yo¹³ a¹su³ tan⁴² i³in⁴ tio¹o³² i³in⁴(4)=a² ba⁴li⁴ ko⁴ndo³ ndu¹u⁴=a² ya¹ kw¹i²⁴ ba⁴² na⁴
Exp xi⁴yo¹³ a¹su³ tan⁴² i³in⁴ tio¹o³² i³in⁴(4)=a² ba⁴li⁴ ko⁴ndo³ ndu¹u⁴=a², ya¹ kw¹i²⁴ ba⁴² na⁴
Notes: ASR missed a word, writing tio³o³² (a word that does not exist) for tio³o² (the passion fruit, Passiflora sp.). It also miswrote ndu¹u⁴ (fruit) as ndu¹¹u⁴ a verb (‘to fall from an upright position’).

32*. 00:02:17.927 –> 00:02:21.014
ASR i⁴[i³]=a² tan⁳ na¹ chi¹chi¹³=a² ndi⁴ ya¹ nde³⁴e⁴ ba⁴²
Exp i⁴[i³]=a² tan⁳ na¹ chi¹chi¹³=a² ndi⁴ ya¹ nde³⁴e⁴ ba⁴²,
Notes: No errors in the ASR hypothesis.

33. 00:02:21.014 –> 00:02:25.181
ASR ya¹ mi⁴i⁴ bi¹xin⁴ ya³⁴tin⁴ yu³⁴u⁴ yu³⁴bi² kan⁴ ba⁴² xi⁴yo¹³(3)=a³
Exp ya¹ mi⁴i⁴ bi¹xin⁴ ya³⁴tin⁴ yu³⁴u⁴ yu³⁴bi² i³kan⁴ ba⁴² xi⁴yo¹³(3)=a³.
Notes: ASR missed the initial i³ in i³kan⁴ (‘there’). It is to be noted that kan⁴ is an alternate form of i³kan⁴.

34*. 00:02:25.181 –> 00:02:27.790
ASR ya¹ kan⁴ ba⁴² ndi¹³-kwi³so³=ndu² yo¹⁴o⁴
Exp Ya¹ kan⁴ ba⁴² ndi¹³-kwi³so³=ndu² yo¹⁴o⁴,
Notes: No errors in the ASR hypothesis.

35*. 00:02:27.790 –> 00:02:32.887
ASR tan³ ta¹ ta¹³⁴ni² fernando yo¹⁴o⁴ ndi⁴ ji⁴ni²=ra(1)=e¹ ndi⁴ ji⁴ni²=ra(1)=e¹ ya¹ sa³kan⁴ i⁴yo²(2)=a² tan³
Exp tan³ ta¹ ta¹³⁴ni² Fernando yo¹⁴o⁴ ndi⁴ ji⁴ni²=ra(1)=e¹ ndi⁴ ji⁴ni²=ra(1)=e¹ ya¹ sa³kan⁴ i⁴yo²(2)=a² tan³

79
Notes: No errors in the ASR hypothesis.

36. 00:02:32.887 –> 00:02:41.884
ASR ji14ni2=ra1 sa1a3 na3ni3=a3 tan3 ni14-ndi3-kwi3so3 ndu3-ta4chi4=ra2 ja4in(4)=a2 a1chi1 ji14ni2=ra1
nda4u(2)=e2 ba1a(3)=e3
Exp ji14ni2=ra1 sa1a3 na3ni3=a3, tan3 ni14-ndi3-kwi3so3=ndu2 ta4chi4=ra2 ja4in(4)=a2 a1chi1 ji14ni2=ra1
nda4u(2)=e2 ba1a(3)=e3.
Notes: ASR hypothesized ndu3 as a verbal prefix instead of the correct interpretation as a person-marking enclitic (1plExcl) that is attached to the preceding verb.