Site-Selective Synthesis of Janus-type Metal-Organic Framework Composites.
Sudarat Yadnum, Jérome Roche, Eric Lebraud, Philippe Négrier, Patrick Garrigue, Darren Bradshaw, Chompunuch Warakulwit, Jumras Limtrakul, Alexander Kuhn

To cite this version:
Sudarat Yadnum, Jérome Roche, Eric Lebraud, Philippe Négrier, Patrick Garrigue, et al.. Site-Selective Synthesis of Janus-type Metal-Organic Framework Composites.. Angewandte Chemie International Edition, Wiley-VCH Verlag, 2014, 53 (15), pp.4001-4005. 10.1002/anie.201400581. hal-00977090

HAL Id: hal-00977090
https://hal.archives-ouvertes.fr/hal-00977090
Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Site-Selective Synthesis of Janus-type Metal-Organic Framework Composites**

Sudarat Yadnum, Jérôme Roche, Eric Lebraud, Philippe Négrier, Patrick Garrigue, Darren Bradshaw,* Chompunuch Warakulwit, Jumras Limtrakul, and Alexander Kuhn*

Abstract: Herein, bipolar electrochemistry is applied in a straightforward way to the site selective in situ synthesis of metal organic framework (MOF) structures, which have attracted tremendous interest in recent years because of their significant application potential, ranging from sensing to gas storage and catalysis. The novelty of the presented work is that the deposit can be intentionally confined to a defined area of a substrate without using masks or templates. The intrinsic site selectivity of bipolar electrochemistry makes it a method of choice to generate, in a highly controlled way, hybrid particles that may have different functionalities combined on the same particle. The wireless nature of electrodeposition allows the potential for mass production of such Janus type objects.

Microporous metal organic frameworks (MOFs) assem

blyed by coordination bonds between metal ions and organic ligands** are of enormous importance for their applications in catalysis, gas separation, storage, drug delivery, and sensing.** For MOFs to reach their full potential in these and other applications, it is necessary to process or directly prepare them in suitable application specific configurations,** such as thin films and supported membranes,** capsules,** and composites.** Often this involves MOF deposition, which is typically a bottom up process, occurring preferentially at an appropriately functionalized surface** obtained with a chemical or physical mask.** Using these methods in combination with liquid based epitaxy,** reactive seeding, or electrochemistry, high quality oriented MOF thin films and crystal arrays with micron sized features have been prepared.** Although significant progress has been made, challenges remain in the development of fast, inexpensive, and scalable fabrication processes, not only to facilitate MOF integration in real functional devices, but for the spatio selective preparation of MOF based structures. In particular, there are currently no satisfactory methods for the site selective deposition of MOFs onto 3 dimensional substrates, thus forming Janus type architectures; this is currently limited to MOF@MOF type structures, where a close lattice match between the two frameworks is required for efficient epitaxial growth of one MOF crystal onto or around another.** There are, however, significant benefits to developing such a strategy for MOF composites when one considers the strong con
currence between the inherent porosity and tuneable physical properties of MOFs with the applications of Janus structures in catalysis, drug delivery, optoelectronics, and biomedical imaging.** Herein, we report for the first time the successful application of indirect bipolar electrodeposition (IBED) for the wireless and selective deposition of prototypical MOFs onto metallic wires and particles to prepare Janus type composite materials in a facile manner under mild conditions.

Bipolar electrochemistry (BE) with micrometer sized objects was first described by Fleischmann et al.** When a conducting object is exposed to an electric field established between two electrodes in a solution, a positive and negative polarization occurs between the two opposite sides of the object where redox reactions can occur, if the polarization is strong enough.** This concept has been explored in the context of various fields, including analytical chemistry, chemical motion, electronics, and materials science.** Whereas BE is usually limited to deposits obtained from electroactive precursors,** we have recently reported that insulating materials, including metal oxides and electrophoretic paints, can be generated from non electroactive pre
cursors.** This IBED technique exploits an electrochemically triggered local pH change around the conducting objects, leading to controlled polymerization or precipitation of an insulating deposit, thus significantly extending the diversity of materials that can be prepared. The IBED approach is used in the present work to wirelessly generate reactive metal ions locally on the surface of metallic substrates that can...
subsequently react with ligand species in solution to form extended coordination based network structures. Although MOFs have previously been electrochemically prepared by anodic dissolution24 and cathodic electroreduction of base equivalents for ligand deprotonation,25 IBED is qualitatively distinct, as it permits wireless selective deposition of MOFs at one end or hemisphere of a substrate where polarization simultaneously generates the metal ions required for framework growth and acts as a simple virtual mask without the need to chemically or physically block areas where deposition is not desired.

To demonstrate the application of IBED to MOFs, we initially selected the chemically and thermally stable tetrahedrally coordinated Zn imidazolate network $[\text{Zn(2 MeIm)}_2]\text{ZIF 8}$ (2 MeIm = 2 methylimidazole),26 due to its reliable synthesis in a range of solvents under mild conditions.27 We employed a metallic Zn wire as both a metal source and substrate for selective deposition. To carry out these reactions, one has to consider that in BE the polarization voltage generated between the two sides of an object with respect to the surrounding solution is proportional to the external electric field (E) and the length of the object (l):

$$\Delta V = E \times l$$

In a first order approximation, ΔV must be at least equal to the difference between the formal potentials of the two involved redox couples. In the present case, oxidation of Zn metal occurs at the positively polarized side of a zinc wire (Figure 1a), based on the following redox couple:

$$\text{Zn}^{2+} (\text{aq}) + 2e^- \rightarrow \text{Zn}(s); \quad E^0 = 0.76 \text{ V vs. NHE}$$

At the opposite side of the wire, protons are simultaneously reduced:

$$2\text{H}^+ (\text{aq}) + 2e^- \rightarrow \text{H}_2 (g); \quad E^0 = 0 \text{ V vs. NHE}$$

such that, under standard conditions, the combination of these two redox couples leads, from a thermodynamic point of view, to a spontaneous reaction between both redox couples. However, variable overpotentials from potential drops at the electrodes and in the solution, as well as slow kinetics, also need to be considered, and especially changes in pH will equally impact the potential difference. To experimentally estimate the potential difference required to drive the two redox reactions simultaneously at both ends of the wire with sufficiently high kinetics, cyclic voltammetry has been used (Figure S11).

The electrochemical cell for ZIF 8 synthesis was composed of two electrodes, and a 1 cm Zn wire was placed at the center between two Nafion membranes that are present to avoid parasitic reactions of the ligand at the feeder electrodes (Figure 1b). The two electrodes are separated by 3.5 cm, and when applying a potential difference of 5 V between them, one can calculate (based on [Eq. 1]), that a potential drop of 1.4 V should occur between the two ends of the Zn wire; according to the CV shown in Figure S11 in the Supporting Information, this is sufficient to overcome possible overpotentials and induce the required redox reactions at the opposite ends of the wire.

The Zn2+ ions produced at the positively polarized side of the wire undergo a chemical reaction with the 2 MeIm linker group (Scheme 1). In a control experiment where a Zn wire was left in an aqueous solution of the ligand for three days without applying a potential (Figure 2a), almost no spontaneous reaction occurs, with only a few small deposits located at random positions along the wire. However, when applying the electric field, ZIF 8 is generated as a crystalline deposit exclusively at the positively polarized end of the wire (Figure 2b).

The SEM images of the IBED synthesized ZIF 8 samples using different potentials, electrodeposition times, and concentrations of 2 MeIm are shown in Figure 2. In contrast to previous reports where no ZIF 8 deposition occurred on “wired” Zn anodes,26 we clearly observe the formation of surface bound ZIF 8 crystals as a consequence of the
Electrodeposition time also affects the amount and morphology of the product (Figure 2 g, j), and as expected, the amount of product and crystal size increases and morphology becomes better defined with increasing reaction time. Recent reports based on studies performed in situ on early stage ZIF 8 growth using SAXS[30] and time resolved static light scattering[31] indicate that nucleation is a slow continuous process, whereas crystal growth is more rapid. However the growth mechanism of coordination based materials under the synthesis conditions present around bipolar electrodes is complex[32] and local effects such as pH and concentration gradients certainly play an important role.

Figure 2 k–n show SEM images of ZIF 8 prepared with different concentrations of 2 MeIm, keeping the electro deposition time and the applied electric field constant at 60 min and 6 V, respectively. Increasing the 2 MeIm/Zn molar ratio also improves the crystal morphology and highly faceted crystals are obtained at the highest concentrations of 2 MeIm. Under these conditions, all the Zn$^{2+}$ ions produced react with the organic linker, and the excess 2 MeIm could potentially act to stabilize and/or control ZIF 8 crystal growth.[33] At lower 2 MeIm concentrations however, the Zn wire is still oxidized at the same rate, but insufficient linker is available to lock all of the metal ions into the extended ZIF structure, thus leading to the formation of other Zn containing species, including oxides and/or hydroxides, as previously observed for the aqueous synthesis of bulk ZIF 8 at low 2 MeIm/Zn ratios.[29] This is an analogous situation to using high potentials, as shown in Figure 2 f (see also Figures S1, S2, and S4).

The ZIF 8 crystals obtained by IBED were characterized by powder X ray diffraction (PXRD) (Figure 3) and infrared (IR) spectroscopy (see the Supporting Information). Figure 3 shows diffraction peak positions and relative diffraction intensities of ZIF 8 products recorded from three samples obtained from solutions containing different concentrations of 2 MeIm after applying a potential of 6 V for 60 min. The products prepared at high concentrations of 2 MeIm were assigned to sodalite (SOD) network type structures and a typical reflection pattern for the synthesized ZIF 8 corresponding to the (011), (002), (112), (022), (013), and (222) planes was observed, which is in excellent agreement with those described in the literature.[33]

Control experiments that were carried out with a zinc wire attached and electrically connected to the working electrode in a normal three electrode setup only resulted in homogenous coverage of the wire with the MOF, but never in a site selective deposition (see the Supporting Information). This clearly demonstrates that the proposed approach is unique in terms of the formation of these Janus type objects.

To illustrate the general validity of the IBED concept for site selective MOF deposition, we also investigated the
formation of HKUST 1, a commercially important micro porous framework [Cu₃(BTC)₂(H₂O)₃] (BTC = 1,3,5 benzenetricarboxylate). HKUST 1 has previously been prepared electrochemically through anodic dissolution of wired Cu electrodes and selectively deposited onto printed circuit boards. In the current work, an isotropic Cu metal bead was employed as the substrate where the wireless oxidation of copper in ethanol (Figure 4b) produces the Cu²⁺ ions necessary for the local formation of the MOF on one hemisphere only, leading to a well defined Janus type composite particle. The position and extension of the blue crystalline MOF deposit can be readily controlled by the applied external voltage owing to the change of polarization (Figure 4c,d). When the material deposited on the anodic side of this Janus object is characterized by SEM, the familiar octahedral block like crystals of HKUST 1 are observed, further confirming the successful generation of the MOF (see the Supporting Information) under these conditions. As the applied potential increases from 10 V to 20 V, the crystal size decreases in agreement with previous studies on the electrochemical deposition of HKUST 1. The deposit has been further characterized using XRD and FTIR spectroscopy (Figures S3 and S10). Control experiments exposing the copper bead to the ligand solution without applying an electric field did not result in the formation of HKUST 1, even after three days (see the Supporting Information). Furthermore, attaching the bead to the working electrode of a three electrode setup leads to a homogeneous and complete MOF coverage (see the Supporting Information), which indicates that the bipolar setup is absolutely crucial to produce the asymmetric composite particles.

In summary, we report here for the first time the straightforward and site selective synthesis of MOF compounds by indirect bipolar electrochemistry with two representative proof of principle experiments for the asymmetric generation of MOFs on the surface of isotropic and anisotropic substrates. The characterization of the obtained compounds confirms their successful synthesis, where crystal size and morphology can be tuned in a facile manner through modulation of linker concentration, electrodeposition time, and the magnitude of the external electric field. This concept might be generalized for the synthesis of many other MOF compounds, thus allowing inexpensive and green access to this important family of microporous materials, and leading to a new generation of MOF based Janus type composites with applications in catalysis, separation, storage, and sensing.
Keywords: composites · electrochemistry · electrocrystallization · Janus particles · metal organic frameworks

[1] a) S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. 2004, 116, 2588 2590; Angew. Chem. Int. Ed. 2004, 43, 2334 2337; b) G. Féréy, Chem. Soc. Rev. 2008, 37, 191 214; c) C. Janiak, J. K. Vieth, New J. Chem. 2010, 34, 2366 2388.

[2] J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213 1214.

[3] D. Bradshaw, A. Garai, J. Huo, Chem. Soc. Rev. 2012, 41, 2344 2381.

[4] O. Shekhah, J. Liu, R. A. Fischer, C. Woll, Chem. Soc. Rev. 2011, 40, 1081 1106.

[5] R. Ameloot, F. Vermoortele, W. Vanhone, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Nat. Chem. 2011, 3, 382 387.

[6] A. Ahmed, M. Forster, R. Clowes, D. Bradshaw, P. Myers, H. Zhang, J. Mater. Chem. A 2013, 1, 1376 1386.

[7] D. Zacher, O. Shekhah, C. Woll, R. A. Fischer, Chem. Soc. Rev. 2009, 38, 1418 1429.

[8] P. Falcaro, D. Buso, A. J. Hill, C. M. Doherty, Adv. Mater. 2012, 24, 3153 3168.

[9] O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer, C. Woll, J. Am. Chem. Soc. 2007, 129, 15118 15119.

[10] Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y. M. Lee, Chem. Commun. 2011, 47, 737 739.

[11] R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580 2582.

[12] A. B. C216tard, R. Ameloot, F. Vermoortele, W. Vanhone, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580 2582.

[13] A. B. C216tard, R. Ameloot, F. Vermoortele, W. Vanhone, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580 2582.

[14] A. B. C216tard, R. Ameloot, F. Vermoortele, W. Vanhone, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580 2582.

[15] A. B. C216tard, R. Ameloot, F. Vermoortele, W. Vanhone, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580 2582.

[16] A. B. C216tard, R. Ameloot, F. Vermoortele, W. Vanhone, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580 2582.

[17] M. Li, M. Dinc243, J. Am. Chem. Soc. 2011, 133, 12926 12929.

[18] K. S. Park, Z. Ni, A. P. C244t/C216, J. Y. Choi, R. Huang, F. J. Uribe Romo, H. K. Chae, M. O. Kecie, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186 10191.

[19] a) Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 2011, 47, 2071 2073; b) J. Cravillon, S. Munzer, S. J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebecke, Chem. Mater. 2009, 21, 1410 1412.

[20] M. Li, M. Dinc243, Chem. Sci. 2014, 5, 107 111.

[21] K. Kida, M. Okita, K. Fujita, S. Tanaka, Y. Miyake, CrystEngComm 2013, 15, 1794 1801.

[22] J. Cravillon, C. A. Schr246der, R. Nayuk, J. Gummel, K. Huber, M. Wiebecke, Angew. Chem. 2011, 123, 8217 8221; Angew. Chem. Int. Ed. 2011, 50, 8067 8071.

[23] J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebecke, Chem. Mater. 2011, 23, 2130 2141.

[24] Z. Fattah, J. Roche, P. Garrigue, D. Ziga216, L. Bouffier, A. Kuhn, ChemPhysChem 2013, 14, 2089 2093.

[25] S. R. Venna, J. B. Jasinski, M. A. Carreon, Science 2010, 330, 18030 18033.

[26] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148 1150.