DETERMINATION OF REFRACTIVITY GRADIENT AND MODIFIED REFRACTIVITY GRADIENT FOR CROSS RIVER STATE

Kalu, Constance1+
Idorenyn Markson2
Enyenihi, Henry Johnson3

1Department of Electrical/Electronic and Computer Engineering, University of Uyo, Akwa Ibom, Nigeria
2Department of Mechanical Engineering, University of Uyo, Akwa Ibom, Nigeria
3Department of Electrical/Electronic Engineering, Akwa Ibom State University Mkpai Enin, Akwa Ibom State, Nigeria.

ABSTRACT

In this paper, determination of refractivity gradient and modified refractivity gradient for Cross River state was carried out. The year 2013 Radiosonde meteorological data from Nigerian Meteorological Agency (NIMET) was used. Refractivity, modified refractivity, refractivity gradient and modified refractivity gradient were computed. The results showed that in the year 2013, Cross River state had maximum modified refractivity gradient (dM/dz) of 114.9 (M-units/Km) and it occurred in December whereas the minimum modified refractivity gradient (dM/dz) on 81.9 (M-units/Km) and it occurred in October. Also, in the year 2013, the maximum refractivity gradient (dN/dz) was -42.1 (N-units/Km) and it occurred in December whereas the minimum refractivity gradient (dN/dz) was -75.1 (N-units/Km) and it occurred in October. The standard refractivity gradient of -39 N-units and standard modified refractivity gradient of 118 M-units occurred in December at altitude of 103 meters. In all the months the atmospheric condition was in the normal state except in the month of October where superrefraction occurred.

Contribution/Originality: This study is one of very few studies which have investigated the modified refractivity gradient for Cross River state. Available related studies on Cross River State were mainly on refractivity gradient.

1. INTRODUCTION

Studies on atmospheric parameters are very essential in the wireless industry as the parameters have great impact on radio waves as they propagate through the atmosphere. Especially, radio refractivity which is a function of temperature pressure and relative humidity determines the extent to which radio signal path can be bent as it propagates through the atmosphere (Gao et al., 2008; Grabner et al., 2012; Hurter and Maier, 2013; Akinwumi et al., 2015; Series, 2015; Wang et al., 2017). The value of radio refractivity varies with altitude and hence, the gradient of the radio refractivity in the atmosphere is also required in wireless network design.

Importantly, the refractivity gradient is used to determine the nature and degree of curvature of the radio signal path in the atmosphere. Under normal atmospheric conditions radio waves tend to bend downwards towards the earth whereas for subrefraction condition radio waves bend upwards away from the earth (Sim, 2002; Usman et al., 2015; Bruin, 2016). In the case of superrefraction radio waves tend to bend downwards to the earth more than normal. Trapping occurs when the propagation path is bent downwards to such extent that it exceeds the
curvature of the earth (Sim, 2002; Branson, 2008; Bhattacharjea, 2014; Bruin, 2016; Manjula et al., 2016). The visual representation of the different refractive conditions is given in Figure while the values of refractivity gradient and modified refractivity gradient for each of the different atmospheric conditions are listed in Table 1.

![Figure 1](image-url)
Figure 1. Visual representation of the different refractive conditions
Source: Bruin (2016) and Merrill (2008).

Condition	N-gradient (N/Km)	M-gradient (M/Km)
Subrefraction	0<dN/dz	157<dM/dz
Normal−	-79<dN/dz<0	79<dM/dz≤157
Standard	dN/dz = -79	dM/dz =118
Superrefraction	-157<dN/dz< -79	0<dM/dz≤79
Trapping	dN/dz <-157	dM/dz<0

Table 1. Refractivity gradients and modified refractivity gradient under different conditions
Source: Bruin (2016) and Merrill (2008).

In this paper, the refractivity gradient and modified refractivity gradient for Cross River state in Nigeria are studied and the atmospheric conditions are identified based on the refractivity values for the various months in the year 2013. The study is based on the Radiosonde meteorological data from Nigerian Meteorological Agency (NIMET).

2. METHODOLOGY

Atmospheric radio refractivity consists of the wet (N_{wet}) and the dry (N_{dry}) components and the two components are determined from primary radioclimatic parameters, namely; temperature, pressure and relative humidity as follows (Agbo et al., 2013; Akinwumi et al., 2015; Louf et al., 2016):

\[
N = N_{dry} + N_{wet} = \frac{7.96}{T} \left(P + 4810 \left(\frac{e}{T} \right) \right) \tag{1}
\]

where absolute temperature, T is in Kelvin; the atmospheric pressure, p is in hPa and the water vapour pressure e is computed as follows:

\[
e = 6.112 \left(\frac{H}{1000} \right) \exp \left(\frac{17.27 \left(\frac{T}{T+248.1} \right)^3}{T} \right) \tag{3}
\]

Where the relative humidity, H is in % and the atmospheric temperature, t is in Celsius, Then, the modified refractivity, M is given as:

\[
M = N + \frac{e}{7.96(1000)^2} = \frac{7.96}{T} \left(P + 4810 \left(\frac{e}{T} \right) \right) + \frac{e}{7.96(1000)^2} \approx N + 0.157 \left(\frac{e}{T} \right) \tag{4}
\]
Where
N is radio refractivity (dimensionless quantity in N-units).
M is Modified refractivity (dimensionless quantity in M-units).
z is Geometric height or the altitude (m)
Re is Radius of the earth (m).

Refractivity gradient, \(\frac{dN}{dz} \) is computed from the refractivity \(N_2 \) at altitude \(z_2 \) and refractivity \(N_1 \) at altitude \(z_1 \) as follows;

\[
\frac{dN}{dz} = \frac{N_2 - N_1}{z_2 - z_1}
\]

where
\(N, N_2 \) and \(N_1 \) are radio refractivity (dimensionless quantity in N-units).
\(z, z_2 \) and \(z_1 \) are Geometric height or the altitude (Km)

In most cases, \(z_1 \) is the surface level value, of 0 Km and \(N_1 \) is the surface refractivity denoted as \(N_s \). In that case,

\[
\frac{dN}{dz} = \frac{N_2 - N_s}{z_2}
\]

Similarly, modified refractivity gradient, \(\frac{dM}{dz} \) is computed from the refractivity \(M_2 \) at altitude \(z_2 \) and refractivity \(M_1 \) at altitude \(z_1 \) as follows;

\[
\frac{dM}{dz} = \frac{M_2 - M_1}{z_2 - z_1}
\]

where
\(M, M_2 \) and \(M_1 \) are radio refractivity (dimensionless quantity in M-units).
\(z, z_2 \) and \(z_1 \) are Geometric height or the altitude (Km)

In most cases, \(z_1 \) is the surface level value, of 0 Km and \(M_1 \) is the surface refractivity denoted as \(M_s \). In that case,

\[
\frac{dM}{dz} = \frac{M_2 - M_s}{z_2}
\]

3. RESULTS AND DISCUSSION

The vertical profile of the meteorological data for the month of January 2013 along with the computed refractivity, modified refractivity, refractivity gradient and modified refractivity gradient are given in Table 1. Similar tables for the months of October and December are given in Table 2 and Table 3 respectively.
Table 1. January 2013: The vertical profile of the meteorological data with the computed refractivity, modified refractivity, refractivity gradient and modified refractivity gradient

Altitude, z [m]	T [°C]	U [%]	P [hPa]	N (N-Units)	M (M-Units)	dN/dz	dM/dz
0.00	30.60	64.87	1012.86	374.03	374.03	0.00	0.00
38.40	30.15	65.60	1008.65	372.01	378.03	-52.68	104.28
65.00	29.84	66.10	1005.73	370.60	380.80	-52.77	104.19
76.70	29.70	66.33	1004.44	369.98	382.02	-52.81	104.16
100.00	29.43	66.77	1001.89	368.74	384.44	-52.88	104.08
115.10	29.25	67.05	1000.23	367.88	385.95	-53.40	103.56
153.40	28.80	67.78	996.03	365.84	389.92	-53.39	103.58
191.80	28.35	68.51	991.81	363.78	393.89	-53.41	103.55
200.00	28.26	68.67	990.91	363.34	394.74	-53.42	103.54
230.10	27.91	69.24	987.61	361.73	397.84	-53.46	103.50
268.80	27.45	69.97	983.36	359.64	401.83	-53.52	103.44
300.00	27.09	70.57	979.94	357.96	405.05	-53.56	103.40
315.30	26.91	70.86	978.26	357.13	406.62	-53.59	103.37
371.00	26.26	71.92	972.15	354.12	412.35	-53.67	103.29
400.00	25.92	72.47	968.96	352.55	415.33	-53.71	103.25
422.30	25.66	72.89	966.52	351.34	417.62	-53.74	103.22
468.10	25.12	73.76	961.49	348.85	422.32	-53.79	103.17
500.00	24.75	74.37	957.99	347.11	425.60	-53.83	103.13
504.40	24.70	74.45	957.51	346.88	426.05	-53.83	103.13
541.80	24.26	75.16	953.40	344.84	429.88	-53.87	103.09
580.10	23.81	75.89	949.20	342.76	433.81	-53.90	103.06
620.80	23.34	76.66	944.73	340.55	437.99	-53.93	103.03
663.40	22.84	77.47	940.66	338.23	442.36	-53.96	103.00

Source: for T, U and P: NiMET (2013)

The graph of atmospheric temperature, pressure and relative humidity versus altitude for the month of January 2013 is given in Figure 1. Graph of refractivity and modified refractivity versus altitude for the month of January 2013 is given in Figure 2. Also, the graph of refractivity gradient and modified refractivity gradient versus altitude for the month of January 2013 are given in Figure 3. Table 1 and Figure 1 show that in January 2013 air temperature and pressure decrease with altitude whereas the relative humidity increases with altitude. This is in line with the generally observed pattern that air temperature and pressure decrease with altitude. However, relative humidity does not generally decrease with altitude but varies depending on other atmospheric phenomena.

Figure 1. Graph of atmospheric Temperature, pressure and relative humidity versus altitude for the month of January 2013
Source: Generated by the authors using Matlab program
Figure 2 shows that refractivity decreases with altitude as such in Figure 3 the refractivity gradient is negative. On the other hand, Figure 2 shows that modified refractivity increases with altitude and in Figure three, the modified refractivity gradient is positive.

Figure 2. Graph of refractivity and modified refractivity versus altitude for the month of January 2013
Source: Generated by the authors using Mathlab program

Figure 3. Graph of refractivity gradient and modified refractivity gradient versus altitude for the month of January 2013
Source: Generated by the authors using Mathlab program
The computed vertical profile of refractivity for the twelve months in 2013 are given in Table 4 and Figure 4. Similar table and figure for the modified refractivity are given in Table 5 and Figure 5. About 23 data points were used in the analysis for each of the months where the first data point 1 is the surface level data and the data point 23

© 2018 Conscientia Beam. All Rights Reserved.
is for the highest altitude. The altitudes for the different months are not the same, that is why data point serial number is used.

Table 4. The computed vertical profile of refractivity for the twelve months in 2013

S/N	N (N-Units) Jan	N (N-Units) Feb	N (N-Units) Mar	N (N-Units) Apr	N (N-Units) May	N (N-Units) Jun	N (N-Units) Jul	N (N-Units) Aug	N (N-Units) Sep	N (N-Units) Oct	N (N-Units) Nov	N (N-Units) Dec
1	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
2	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
3	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
4	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
5	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
6	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
7	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
8	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
9	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
10	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
11	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
12	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
13	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
14	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
15	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
16	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
17	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
18	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
19	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
20	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
21	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
22	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0
23	318.9	320.3	321.7	323.1	324.6	326.0	327.1	328.5	330.0	331.5	333.0	335.0

Source: Generated by the authors using Matlab program

Figure 4. The computed vertical profile of refractivity for the twelve months in 2013

Source: Generated by the authors using Matlab program

From Table 4 and Figure 4, the month of May has the lowest refractivity of 362.9 (N-units), whereas April has the highest surface level refractivity value of 384.6 (N-units). Similar modified refractivity values are obtained from Table 5 and Figure 5.
The computed vertical profile of refractivity gradient for the twelve months in 2013 are given in Table 6 and Figure 6. Similar table and figure for the modified refractivity gradient are given in Table 7 and Figure 7. From the results in Table 6 and Figure 6, he maximum refractivity gradient (dN/dz) = -42.1 and it occurred in December whereas the minimum refractivity gradient (dN/dz) = -75.1 and it occurred in October. Also, From the results in Table 7 and Figure 7, in the year 2013, the maximum modified refractivity gradient (dM/dz) = 114.9 and it
occurred in December whereas the minimum modified refractivity gradient \(\frac{dM}{dz} = 81.9 \) and it occurred in October.

dM/dz Jan	dM/dz Feb	dM/dz March	dM/dz Apr	dM/dz May	dM/dz Jun	dM/dz Jul	dM/dz Aug	dM/dz Sep	dM/dz Oct	dM/dz Nov	dM/dz Dec
104.3	86.9	108.7	97.3	100.1	104.0	96.2	100.2	84.9	77.6	105.9	119.7
104.2	87.0	108.8	97.3	100.2	104.0	96.3	100.2	85.1	77.7	105.9	119.6
104.2	87.3	108.8	97.4	100.3	104.0	96.4	100.3	85.4	77.8	105.9	119.3
104.1	87.4	108.8	97.4	100.3	104.0	96.5	100.3	85.3	77.9	105.9	119.3
103.6	87.6	108.5	97.1	100.1	103.7	96.4	100.1	85.4	77.2	105.6	118.5
103.6	87.9	108.7	97.3	100.4	103.9	96.6	100.3	85.9	77.3	105.7	118.3
103.5	88.2	108.7	97.4	100.4	103.9	96.7	100.3	86.0	77.5	105.7	118.2
103.5	88.7	108.8	97.5	100.6	104.0	96.9	100.5	86.4	77.7	105.8	117.9
103.5	88.8	108.9	97.6	100.9	104.1	97.1	100.6	86.8	77.7	105.9	117.7
103.4	89.2	108.9	97.7	101.0	104.1	97.2	100.7	86.9	77.9	105.9	117.6
103.4	89.7	108.9	97.8	101.2	104.2	97.4	100.8	87.2	78.1	105.9	117.3
103.4	89.7	109.0	97.9	101.3	104.3	97.5	100.9	87.6	78.2	106.0	117.1
103.3	90.2	109.0	98.0	101.4	104.3	97.7	101.0	87.8	78.4	106.0	117.0
103.3	90.5	109.1	98.1	101.5	104.3	98.0	101.1	88.0	78.5	106.0	116.7
103.2	90.7	109.1	98.1	101.6	104.4	98.0	101.2	88.6	78.7	106.0	116.6
103.2	91.1	109.2	98.3	101.7	104.4	98.2	101.3	88.3	78.9	106.1	116.4
103.1	91.6	109.2	98.4	101.8	104.5	98.5	101.4	88.7	79.6	106.1	116.1
103.1	92.0	109.3	98.6	102.1	104.6	98.8	101.6	89.1	79.9	106.2	115.9
103.1	92.4	109.3	98.7	102.3	104.7	99.1	101.7	89.4	80.5	106.2	115.6
103.1	92.9	109.4	98.9	102.4	104.7	99.4	101.9	89.8	80.9	106.2	115.4
103.0	93.3	109.5	99.0	102.6	104.8	99.7	102.1	90.1	81.4	106.3	115.1
103.0	93.7	109.5	99.1	102.7	104.9	100.0	102.2	90.5	81.9	106.3	114.9

Source: Generated by the authors using Matlab program

Figure 6. The computed vertical profile of refractivity gradient for the twelve months in 2013

Source: Generated by the authors using Matlab program
Table 7. The computed vertical profile of modified refractivity gradient for the twelve months in 2013

| dN/dz |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Jan | -19.1 | -49.2 | -59.7 | -56.8 | -53.0 | -60.7 | -56.8 | -72.0 | -79.4 | -51.0 | -37.3 |
| Feb | -69.9 | -48.2 | -59.6 | -56.8 | -53.0 | -60.7 | -56.8 | -71.9 | -79.3 | -51.0 | -37.4 |
| March | -69.7 | -48.2 | -59.6 | -56.7 | -52.9 | -60.6 | -56.7 | -71.6 | -79.2 | -51.0 | -37.6 |
| Apr | -69.6 | -48.2 | -59.6 | -56.6 | -52.9 | -60.5 | -56.7 | -71.6 | -79.1 | -51.0 | -37.7 |
| May | -69.3 | -48.5 | -59.8 | -56.8 | -53.2 | -60.6 | -56.9 | -71.5 | -79.8 | -51.3 | -38.5 |
| Jun | -69.0 | -48.3 | -59.7 | -56.6 | -53.1 | -60.4 | -56.7 | -71.0 | -79.6 | -51.2 | -38.7 |
| Jul | -68.7 | -48.3 | -59.6 | -56.5 | -53.1 | -60.3 | -56.6 | -71.0 | -79.4 | -51.2 | -38.7 |
| Aug | -68.2 | -48.2 | -59.4 | -56.4 | -53.0 | -60.0 | -56.5 | -70.6 | -79.3 | -51.1 | -39.1 |
| Sep | -68.1 | -48.1 | -59.4 | -56.1 | -52.9 | -59.9 | -56.3 | -70.2 | -79.2 | -51.1 | -39.2 |
| Oct | -67.7 | -48.1 | -59.3 | -56.0 | -52.9 | -59.8 | -56.3 | -70.0 | -79.1 | -51.1 | -39.4 |
| Nov | -67.3 | -48.0 | -59.1 | -55.8 | -52.8 | -59.5 | -56.2 | -69.8 | -78.9 | -51.0 | -39.7 |
| Dec | -67.3 | -47.9 | -59.1 | -55.7 | -52.7 | -59.4 | -56.0 | -69.4 | -78.7 | -51.0 | -39.8 |
| Jan | -66.8 | -48.0 | -59.0 | -55.6 | -52.7 | -59.3 | -56.0 | -69.2 | -78.6 | -51.0 | -40.0 |
| Feb | -66.5 | -47.9 | -58.9 | -55.4 | -52.6 | -59.0 | -55.9 | -69.0 | -78.5 | -50.9 | -40.3 |
| March | -66.3 | -47.8 | -58.8 | -55.3 | -52.5 | -59.0 | -55.7 | -68.3 | -78.3 | -50.9 | -40.4 |
| Apr | -65.8 | -47.8 | -58.7 | -55.3 | -52.5 | -58.7 | -55.7 | -68.6 | -78.0 | -50.9 | -40.6 |
| May | -65.4 | -47.7 | -58.5 | -55.1 | -52.5 | -58.4 | -55.6 | -68.2 | -77.4 | -50.8 | -40.8 |
| Jun | -65.0 | -47.7 | -58.4 | -54.8 | -52.4 | -58.1 | -55.4 | -67.9 | -77.0 | -50.8 | -41.1 |
| Jul | -64.5 | -47.6 | -58.2 | -54.7 | -52.3 | -57.8 | -55.3 | -67.5 | -76.5 | -50.8 | -41.3 |
| Aug | -64.1 | -47.6 | -58.1 | -54.6 | -52.2 | -57.5 | -55.1 | -67.2 | -76.1 | -50.7 | -41.6 |
| Sep | -63.7 | -47.5 | -58.0 | -54.4 | -52.1 | -57.2 | -54.9 | -66.8 | -75.6 | -50.7 | -41.8 |
| Oct | -63.3 | -47.4 | -57.8 | -54.3 | -52.1 | -56.9 | -54.7 | -66.5 | -75.1 | -50.6 | -42.1 |

Source: Generated by the authors using Matlab program

Figure 7. The computed vertical profile of modified refractivity gradient for the twelve months in 2013

Source: Generated by the authors using Matlab program

In all, from the results in Table 6 and Table 7, the standard refractivity gradient of -39 and standard modified refractivity gradient of 118 occurred in December at an altitude of 103 meters. In all the months the atmospheric condition was in the normal state except in the month of October where superrefraction occurred.
4. CONCLUSION

A study of the refractivity gradient and modified refractivity gradient for Cross River state was presented. Radiosonde meteorological data from Nigerian Meteorological Agency (NIMET) for the year 2013 was used. The vertical profile of each of the following four parameters was computed for the twelve months; refractivity, modified refractivity, refractivity gradient and modified refractivity gradient. The result showed that Cross River state is generally in the normal atmospheric condition except for the month of October where superrefraction was observed.

Funding: This study received no specific financial support.
Competing Interests: The authors declare that they have no competing interests.
Contributors/Acknowledgement: All authors contributed equally to the conception and design of the study.

REFERENCES

Agbo, G., O. Okoro and A. Amechi, 2013. Atmospheric refractivity over abuja, nigeria. International Research Journal of Pure and Applied Physics, 1(1): 37-45.
Akinwumi, S., T. Omotosho, A. Willoughby, J. Mandeep and M. Abdullah, 2015. Seasonal variation of surface radio refractivity and water vapour density for 48 stations in Nigeria. In Space Science and Communication (IconSpace), 2015 International Conference on. IEEE. pp: 106-110.
Bhattacharjoe, R., 2014. The effects of atmospheric refractivity in near-earth UHF channels (Doctoral Dissertation, Georgia Institute of Technology).
Branson, J., 2008. Propagation modeling for the analysis of radar systems (Doctoral Dissertation, University of London).
Bruin, E., 2016. On propagation effects in Maritime situation awareness: Modelling the impact of North Sea weather conditions on the performance of AIS and coastal radar systems (Master’s Thesis).
Gao, J., K. Brewster and M. Xue, 2008. Variation of radio refractivity with respect to moisture and temperature and influence on radar ray path. Advances in Atmospheric Sciences, 25(6): 1098-1106. Available at: https://doi.org/10.1007/s00376-008-1098-x.
Grabner, M., V. Kvicera, P. Pechac and O. Jicha, 2012. Parameters of vertical profiles of temperature humidity and refractive index of air in the lowest troposphere. In: Proc. of 9th International Symposium on Tropospheric Profiling (ISTP).
Hurter, F. and O. Maier, 2013. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground. Atmospheric Measurement Techniques, 6(11): 3083-3098. Available at: https://doi.org/10.5194/amt-6-3083-2013.
Louf, V., O. Pujol and H. Sauvageot, 2016. The seasonal and diurnal cycles of refractivity and anomalous propagation in the sahelian area from microwave radiometric profiling. Journal of Atmospheric and Oceanic Technology, 33(10): 2095-2112. Available at: https://doi.org/10.1175/jtech-d-14-00208.1.
Manjula, G., M.R. Raman, M.V. Ratnam, A. Chandrasekhar and S.V.B. Rao, 2016. Diurnal variation of ducts observed over a tropical station, Gadanki, using high-resolution GPS radiosonde observations. Radio Science, 51(4): 247-258. Available at: https://doi.org/10.1002/2015rs005814.
Merrill, I.S., 2008. 3th Edn., Radar handbook. Chapter 26 The Propagation Factor, F P, in the Radar Equation. 3rd Edn., McGraw-Hill Professional, pp: 18-39.
NiMET, 2013. Cross River State 2013 Radiosonde meteorological data, Nigerian Meteorological Agency (NiMET). Available from www.nimet.gov.ng.
Series, P., 2015. Propagation data and prediction methods required for the design of earth-space telecommunication systems. Recommendation ITU-R: 618-612. Geneva: International Telecommunications Union. pp: 16.
Sim, C.Y.D., 2002. The propagation of VHF and UHF radio waves over sea paths (Doctoral Dissertation, University of Leicester).

© 2018 Conscientia Beam. All Rights Reserved.
Usman, A.U., O.U. Okereke and E.E. Omizegba, 2015. Instantaneous GSM signal strength variation with weather and environmental factors. American Journal of Engineering Research, 4(3): 104-115.

Wang, K.-N., T. Juárez, C.O. Ao and F. Xie, 2017. Correcting negatively biased refractivity below ducts in gnss radio occultation: An optimal estimation approach towards improving planetary boundary layer (pbl) characterization. Atmospheric Measurement Techniques, 10(12): 4761-4776. Available at: https://doi.org/10.5194/amt-10-4761-2017.