Pharmacological Approaches to Diabetic Gastroparesis
A systematic review of randomised clinical trials

Mohammad Z. Asha1 and Sundos F. H. Khalil2

ABSTRACT: Pharmacological interventions of diabetic gastroparesis (DG) constitute an essential element of a patient's management. This article aimed to systematically review the available pharmacological approaches of DG, including their efficacy and safety. A total of 24 randomised clinical trials (RCTs) that investigated the efficacy and/or safety of medications targeting DG symptoms were identified using several online databases. Their results revealed that metoclopramide was the only approved drug for accelerating gastric emptying and improving disease symptoms. However, this medication may have several adverse effects on the cardiovascular and nervous systems, which might be resolved with a new intranasal preparation. Acceptable alternatives are oral domperidone for patients without cardiovascular risk factors or intravenous erythromycin for hospitalised patients. Preliminary data indicated that relamorelin and prucalopride are novel candidates that have proven to be effective and safe. Future RCTs should be conducted based on unified guidelines using universal diagnostic modalities to reveal reliable and comprehensive outcomes.

Keywords: Gastroparesis; Diabetes Mellitus; Diabetes Complications; Randomized Controlled Trial; Metoclopramide; Domperidone; Relamorelin.
observed in several publications where females had higher prevalence rates than males.8,10,12 Poorly-controlled diabetes, higher glycosylated haemoglobin (HbA1c), long duration of diabetes and the presence of comorbidities have been consistently reported as independent risk factors of DG.8,10 Similarly, in an epidemiological study involving 8,657 individuals in Australia, patients with poor glycocaemic control had increased prevalence of upper and lower gastrointestinal symptoms.12 Additionally, the probability of developing DG symptoms increased with advanced age, with a mean age of onset at approximately 34 years.5

The diagnosis of DG may remain elusive until the development of complications. To avoid this delay, a precise medical history of the timing of symptoms (i.e. vomiting and satiety) in relation to meals, diet history, symptom progression and diabetes control should be carefully assessed. Severity of DG symptoms is evaluated using the Gastroparesis Cardinal Symptom Index (GCSI), which can be utilised to rate changes in symptoms in clinical studies either by the patient or the physician on a scale ranging from zero (no symptoms) to six (very severe symptoms).13 Furthermore, gastric obstruction can be excluded using abdominal radiography, computed tomography and magnetic resonance imaging scans. Consequently, a DG diagnosis is confirmed by means of three main diagnostic tests. The first method is gastric emptying scintigraphy (GES), which is a non-invasive method employing a radio-labelled solid meal (mostly using 99mTc-sulfur) followed by scanning the stomach at one, two and four hours after the meal.14 The second method is the stable isotope breath test (gastric emptying breath test [GEBT]). After ingestion of meals with 13C-labelled substrates, such as octanoic acid and \textit{Spirulina platensis}, the isotope is absorbed in the small intestine and metabolised to 13carbon dioxide and exhaled through the lungs. Finally, a recent diagnostic modality is a swallowed wireless motility capsule wherein a specialised sensor is used to measure pressure, temperature and pH.15

GE in patients with DG is challenging in terms of treatment. This is particularly evident because optimum glycaemic control should be achieved in poorly-controlled diabetic patients. Dietary modifications, such as replacing solid food with a soft and liquid diet, are required. Several pharmacologic options are available although the efficacy and safety of these medications vary. Usually, patients with mild to moderate symptoms are managed by prokinetics and antiemetics. However, disease burden in patients experiencing severe symptoms is difficult to manage. Therefore, it is necessary to determine the most appropriate therapeutic options bearing in mind the prevention of potential gastrointestinal complications in DG patients including gastroesophageal reflux disease, bacterial and fungal infections of the gastrointestinal tract and intestinal dysmotility. In this context, this article aimed to systematically review the available approaches for the pharmacotherapy of DG, including their efficacy and safety and emphasising their roles in patients with different disease severities.

Methods

Based on the guidelines provided by the Preferred Reporting Items for Systematic reviews and Meta-analyses statement, this systematic review was conducted on investigated medications of diabetic patients with DG.16 In the context of DG, a medication's efficacy targets the severity of symptoms and/or GE while safety deals with the reported adverse events (AEs) in the groups under investigation.

MEDLINE® (National Library of Medicine, Bethesda, Maryland, USA), EMBASE (Elsevier, Amsterdam, Netherlands), Cochrane Library (Wiley, Hoboken, New Jersey, USA) and Google Scholar (Google LLC, Menlo Park, California, USA) databases were used to search for randomised clinical trials (RCTs) that assessed the efficacy and/or safety of medications used for the management of DG. Although the last search was performed until April 2019, there was no time limit set for the included trials. The search strategy used specific keywords based on a Patient/Problem, Intervention, Comparison and Outcome strategy, utilising relevant subject headings and Boolean Operators. These databases were searched with the terms “diabetes” or “diabetic,” “gastroparesis” or a combination of the two, “prokinetics” or “prokinetic;” “metoclopramide” or “domperidone” or “erythromycin” or “cisapride” or “bethanecol” or “tegaserod,” “Motilin agonist” or “ghrelin agonist” or “5-HT4 agonist” (5-hydroxytryptamine receptor 4) and “antiemetic” or “phenothiazine” or “serotonin 5-HT3 Receptor Antagonist” or “anti-histamine”. Only RCTs with the following characteristics were included in this review: (1) DG had to be diagnosed based on the exclusion of gastrointestinal obstruction; (2) studies should have allocated at least two groups for comparing the outcomes of a single medication versus placebo or another medication; (3) the allocated patients may be adults or children with T1DM or T2DM; (4) the study should be published in a peer-reviewed journal and written in English; (5) the primary outcomes of the RCT should include changes in the scores of the severity of symptoms (as indicated by the GCSI scale, visual analogue scores, etc.) in addition to changes in GE (assessed by ultrasounds, GES, GEBT or the swallowed wireless motility capsule); (6) all changes should have been initially measured at
baseline and reassessed during the course of the study after the administration of medication(s); (7) the AEs should have been assessed in patients in accordance with the physical examination or patient self-reported data; and (8) changes in GE as retrieved from GEBT may be reported as gastric half-emptying time (T½).

Studies recruiting a population or subpopulation of healthy individuals or presenting comorbidities with serious conditions rather than diabetes were excluded. Additionally, studies were ineligible if they were non-randomised prospective investigations, retrospective studies, narrative reviews, systematic reviews and meta-analyses.

Finally, a comprehensive search for on-going clinical trials for each medication in ClinicalTrials.gov (https://clinicaltrials.gov/) was performed. A medication was considered novel when its relevant phase 2 RCT was published in 2010 or later.

Two authors independently screened the titles and abstracts obtained by the database search process. Additionally, the reference lists of the identified RCTs were screened for additional eligible studies. The obtained publications were uploaded to EndNote, Version X7 (Clarivate Analytics, Philadelphia, USA) and all duplicate publications were omitted. Decisions regarding the included studies were approached via consensus and any disagreement was resolved via discussion. All data were extracted into a specifically-designed Excel spreadsheet, Version 2016 (Microsoft Inc., Redmond, Washington, USA), that included: 1) study data (name of the first author, year of publication, study design, study duration and country); 2) patients’ data (gender, total sample size, age, type of diabetes, glycaemic indicators [e.g. HbA1c] and baseline parameters used to confirm DG symptoms); 3) study groups and interventions (medication(s) used and/or placebo, dosage and methods and duration of administration); 4) the efficacy of medication(s) (changes in severity scores and/or GE in relation to other groups and baseline values when appropriate); and 5) the safety of medication(s) (reported AEs following drug administration).

The methodological quality of the included RCTs was assessed using the Cochrane’s Risk of Bias Tool. The domains assessed in each trial included performance bias, selection bias, detection bias, attrition bias and other biases. The results of the assessment process were either reported as “low risk”, “high risk” or “unclear”. Trials were labelled “unclear” when no data were available in the RCT about the domain under investigation. All data were entered and graphically presented using RevMan, Version 5.3 (Cochrane, London, England).

Results

A total of 854 publications were initially obtained in the specified databases by using the relevant keywords. Four studies were additionally identified from Google search (Google LLC). Following the removal of 18 duplicate publications, the titles and abstracts of 840 studies were screened and 809 were excluded. The full-text versions of the remaining 31 articles were thoroughly checked for eligibility. Nonetheless, seven articles were excluded due to the inclusion of healthy individuals, inclusion of patients with idiopathic gastroparesis, inclusion of patients with diabetes but without signs/symptoms of gastroparesis or a separate trial which included a population subset of an already included study. Finally, a total of 24 RCTs were included in this qualitative review [Figure 1].

A total of 2,309 patients, of which the majority (65.22%) were female, were included in all studies which were published between 1982 and 2017. Only one RCT recruited paediatric patients; adults were included in the remaining investigations. Studies were conducted in European countries, at multiple sites in Europe and the USA or only in the USA. Patients were diagnosed with T1DM exclusively in nine studies, only T2DM in one study and both types in the remaining trials [Table 1].

Figure 2 shows the summary of risk of bias assessment. Random sequence generation was generated by a computer software in eight trials and an Interactive Voice Response System was used in four trials. Since the method of randomisation...
Pharmacological Approaches to Diabetic Gastroparesis
A systematic review of randomised clinical trials

Table 1: Summary of the included randomised clinical trials investigating the efficacy and/or safety of medications targeting diabetic gastroparesis symptoms

Author and year of study	Study duration	Country	Gender	Age in years	Diabetic indicators	Gastroparesis indicators
Barton et al (2014)	4 weeks	USA	Male	18–60	HbA1c: ≤11.3%	• GCIS-DD score: 1.68 ± 0.38; GE was confirmed by 13C-GEBT at baseline
Braden et al (2002)	12 months	Germany	Male	56–72	HbA1c: 7.1–8.2%	• GE T½ >170 min
Camilleri et al (2017)	3 months	USA	Male	20–76	HbA1c: 5.2–11.0%	• DG Symptom Severity daily e-diaries (to report vomiting frequency, GE and other symptom scores)
Desautels et al (1995)	NA	USA	Male	26–70	HbA1c: 6.7–12.9%	• History of previous GES
Ejkjaer et al (2009)	10 months	Denmark	Male	46–56	HbA1c: 9.5 ± 2.2%	• GCIS scores: 3.0 ± 0.9 (moderate to severe DG); ≥39% retention 4 hours following a radio-labelled solid meal.
Ejkjaer et al (2010)	17 months	Denmark	Male	18–80	HbA1c: 6.6–10.9%	• GCIS scores: 3.4–4 (moderate to severe DG)
Ejkjaer et al (2013)	13 months	18 centres in different countries	Male	20–70	HbA1c: 6.5–10.2%	• GCIS-DD score: 3.3 ± 0.8 (moderate-to-severe DG)
Erbas et al (1993)	9 weeks	Turkey	Male	19–68	HbA1c: ≥2.6	• GMBT T½ ≥150 min
Franzese et al (2002)	8 weeks	Italy	Male	6–16.9	Insulin dependence for a mean of 5 years	• N/A
Hellström et al (2016)	4 weeks	USA	Male	18–70	N/A	• A positive history of at least 3 months of DG symptoms
Lehmann et al (2003)	7 months	Switzerland	Male	28–63	HbA1c: 8.0 ± 1.3%	• N/A
Lembo et al (2016)	14 months	USA	Male	18–75	HbA1c: ≤11%	• GCIS-DD score ≥2.6
McCallum et al (1983)	3 weeks	USA	Male	21–67	HbA1c: 7.7 ± 1.7%	• Gastric T½ ≥79 min by 13C-GEBT
McCallum et al (2007)	12 weeks	USA	Male	18–70	HbA1c: 7.7 ± 2%	• N/A
McCallum et al (2013)	22 months	USA	Male	42–66	HbA1c: 7.8 ± 1.5%	• GCIS score: 3.4 ± 0.7 (moderate to severe DG)
Murray et al (2005)	N/A	UK	Male	36–63	HbA1c: ≤11%	• The Michigan Neuropathy Screening Instrument score: 5 ± 2.6 (mild neuropathy)
Parkman et al (2014)	6 weeks	USA (in 6 centres)	Male	18–82	N/A	• Gastric T½ above the normal limits for both breath test and scintigraphy
Parkman et al (2015)	4 weeks	USA	Male	18–75	N/A	• Patients' self-reported data (mean DG symptoms 2.5 years)
Patterson et al (1999)	4 weeks	USA	Male	19–69	N/A	• composite TSS score: 2.38 ± 0.69
Ricci et al (1985)	6 weeks	USA	Male	24–73	Insulin dependence for 12.5 years	• N/A
Shin et al (2013)	6 months	USA	Male	31–65	HbA1c: ≤11.3%	• Objective documentation of delayed GE by a radionuclide solid meal
Shin et al (2013)	3 months	USA	Male	36–60	HbA1c: 7.2 ± 0.4%	• Gastric T½: 4.9 ± 1.3 by 13C-GEBT
Silvers et al (1998)	4 weeks	USA	Male	19–76	N/A	• Baseline composite NVPF score: 1.73 ± 0.39
Snape et al (1982)	6 weeks	USA	Male	21–49	Insulin dependence for 16.2 ± 2.4 years	• GCIS-DD score: 2.74 ± 0.48

N/A = not available; GCIS-DD = The Gastroparesis Cardinal Symptom Index-Daily Diary; GE = gastric emptying; 13C-GEBT = 13C-spirulina gastric emptying breath test; T½ = half-emptying time; HbA1C = glyco- sylated haemoglobin; DG = diabetic gastroparesis; min = minutes; GES = gastric emptying scintigraphy; GMBT = gastric motility breath test; TSS = total symptom score; NVPF = nausea, vomiting, fullness, and pain

Mean TSS score range: 21.3–23.4 (indicating moderate to severe symptoms)
was inexplicitly mentioned in the remaining RCTs, they were assessed as "unclear". Participants’ allocation was concealed from the investigators in ten trials, while selection bias was apparent in one trial, owing to the randomisation using an incomplete block method. The method of concealment was unclear in the remaining trials. Both performance and detection biases were evident in a trial conducted by Silvers et al. since the investigators were not blinded to the patients receiving the intervention. Intention-to-treat analysis was performed in eight trials in order to investigate the efficacy of interventions following withdrawal of a number of participants. Patients’ withdrawal had not affected the comparability between groups as explored by statistical analyses in the remaining trials [Table 2].

TRADITIONAL MEDICATIONS

Dopamine D2 receptor antagonists

Metoclopramide has dual actions on the brainstem and peripheral nerves as a dopamine D2 receptor antagonist and serotonin (i.e. 5-HT4) receptor agonist. The main effects on the gastrointestinal tract are exerted by increasing antral contraction by releasing acetylcholine from enteric neurons. In DG patients, early trials indicated significant improvements in the scores of nausea, fullness and bloating after three weeks of metoclopramide oral administration as compared to the placebo. In addition, GE improved significantly and consistently in all trials of oral regimens assessed by GES. Therefore, it was the sole drug approved by the Food and Drug Administration (FDA) for the treatment of DG. Rather than oral administration, in terms of improving GCSI scores, more recent RCTs have shown superior efficacy of nasal spray preparations. However, some AEs were reported in other trials, particularly in comparative ones which were conducted for more than four weeks. These AEs include anxiety, depression, somnolence, headache and leg cramps. Furthermore, there are some concerns about the development of tardive dyskinesia with the chronic use of metoclopramide. Diabetes itself may be independently associated with the risk of tardive dyskinesia. Therefore, this medication received a 'black box warning' from the FDA. Collectively, recommendations indicate the use of metoclopramide for no longer than 12 weeks.

Therefore, alternative medications with high efficacy and safety have been studied. Domperidone is another dopamine D2 receptor antagonist which is effective against nausea and vomiting with a better safety profile than metoclopramide. Patterson et al. showed that domperidone was associated with less frequent central AEs compared to metoclopramide. Similarly, domperidone ameliorated nausea and early satiety compared to placebo in adults and cisapride in children with DG. It can be initially administered three times daily at a dose of 10 mg, which is increased to 20 mg at bedtime. Early prospective investigations conducted almost three decades ago revealed that DG symptoms improved significantly after six months or one year of treatment. Additionally, it improved the quality of life of patients in a subsequent retrospective analysis. However, domperidone may be associated with a risk of cardiac arrhythmia and may cause QT prolongation. Therefore, recommendations based on a moderate level of evidence indicate performing a baseline electrocardiogram and a cessation of treatment if the corrected QT is more than 470 and 450 ms in males and females, respectively. Moreover, a follow-up electrocardiogram along the course of treatment is advised.

Ghrelin and ghrelin receptor agonists

Early studies have shown favourable implications of ghrelin in the treatment of gastroparesis as it modulates energy homeostasis and gastrointestinal motility. This was evident in ten patients with DG using a test meal of rice pudding where ghrelin infusion caused a significant increase in GE independent of cardiovagal tone. However, the therapeutic effects of ghrelin were limited by its relative plasma instability and short half-life. Thus, several synthetic ghrelin analogues were investigated for their clinical potential.

TZP-101 (i.e. ulimorelin) is a macrocyclic ghrelin receptor analogue which has been investigated in patients with DG in a phase 1 trial in Denmark. TZP-101
Pharmacological Approaches to Diabetic Gastroparesis
A systematic review of randomised clinical trials

Table 2: The outcomes of randomised clinical trials investigating traditional and novel medications for the treatment of diabetic gastroparesis

Author and year of study	Study groups and INT	Efficacy on gastroparesis symptoms	Efficacy on GE	Safety
Dopamine D2 receptor antagonist				
Snape et al. (2014)	Metoclopramide (10 mg orally, four times per day) Placebo (two 3-week treatment INT with a 1-week washout period before cross-over)	No significant changes observed in abdominal pain or bloating	Using GES, a 24% increase in GEs rate (P < 0.01) was reported 3 weeks after treatment versus 5% increase in placebo	N/A
McCallum et al. (1983)	Metoclopramide (10 mg orally, four times per day) Placebo (for 3 weeks)	A significant improvement of fullness and nausea (P < 0.05) in the INT versus placebo (assessed using grading diary sheets)	GE improved in the INT group compared to baseline values (P < 0.05; assessed by GES scintigraphy) but not to placebo	Restlessness, amenorrhea, headache, constipation and leg cramps were noted in the metoclopramide group
Ricci et al. (1985)	Metoclopramide (10 mg orally, four times per day) Placebo	Significant improvement of fullness, bloating, nausea and anorexia when compared to placebo (P < 0.05)	GE improved significantly (isotope retention was 91% at baseline and 78.6% after metoclopramide administration)	Mild symptoms ignore, such as sedation, headache and mild hand tremors were noted in metoclopramide-receiving patients
Parkman et al. (2014)	Metoclopramide (10 mg orally, four times per day) Metoclopramide (10 mg nasal spray, four times per day; n = 35) Metoclopramide (20 mg nasal spray, four times per day; n = 36)	Using TSS scores, CFB was significantly improved in the 20 mg nasal spray group compared to the oral group (P = 0.026)		
Parkman et al. (2015)	Metoclopramide (10 mg nasal spray, four times per day; n = 95) Metoclopramide (14 mg nasal spray, four times per day; n = 95) Placebo (n = 95)	GSDD scores did not improve significantly in the INT groups as compared to placebo		
Patterson et al. (1999)	The following regimens were given for 4 weeks: Metoclopramide (one 10 mg tablet plus one placebo tablet were taken four times per day) Domperidone (two 10 mg tablets were taken four times per day)	No significant differences between groups in improving symptoms (improved by 41.1% with domperidone and 38.9% with metoclopramide)		
Silver et al. (1998)	Domperidone 20 mg (four times per day; n = 105) Placebo (n = 103)	Significant improvements were noted in the domperidone group for total symptoms (P = 0.011), nausea (P = 0.024) and early satiety (P = 0.004) compared to placebo		
Franze et al. (2002)	Domperidone (0.9 mg/kg three times per day; n = 14) Cisapride (0.8 mg/kg three times per day; n = 14)	Significant improvements in the TSS in both groups (P < 0.001) each compared to baseline	Ultrasonography revealed significant shortening of GE time in the domperidone group compared to baseline (P < 0.01).	
Erbas et al. (1993)	The following regimens were given for 3 weeks, then 3 weeks washout and 3 weeks cross-over: Metoclopramide (10 mg orally, three times per day) Erythromycin (250 mg orally, three times per day)	The total score of gastrointestinal symptoms significantly improved after erythromycin (0–5) compared to post-metoclopramide therapy (0–11; P < 0.05)	Gastric T½ improved significantly in both INT groups at 60 and 90 min after meal	Two patients reported sedation, leg cramps and weakness, while one patient reported drowsiness and palpitation with use of metoclopramide
Ghrelin receptor agonist				
Murray et al. (2005)	The patients received either ghrelin (5 pmol/kg/min) or saline on two different occasions	No significant differences between ghrelin and saline in the incidence of bloating, nausea and hunger during infusion as assessed by VAS and gastric T½	Significant improvement of GE (from 30% to 43%) as assessed by ultrasound	
Ejskjaer et al. (2009)	A cross-over administration of different doses of TZP-101 infusions (80, 160, 320, or 600 μg/kg) Placebo	No significant differences between the INT and placebo groups in the intensity of post-meal symptoms and postprandial fullness	Gastric T½ (20%; P = 0.043) and latency times were significantly reduced compared to placebo	
Ejskjaer et al. (2010)	A 4-day consecutive regimen of intravenous infusion of ulinomirin at a dosage of: 20 μg/kg (n = 8); 40 μg/kg (n = 17); 80 μg/kg (n = 13); 160 μg/kg (n = 6); 330 μg/kg (n = 6); 600 μg/kg (n = 7); Placebo (n = 19)	In the group receiving ulinomirin 80 μg/kg, the severity of GCSI loss of appetite and vomiting scores was significantly improved (P = 0.015 and 0.006, respectively)	No difference in gastric T½ among groups	The frequency and severity of AEs were comparable between the INT and placebo group
Ejskjaer et al. (2013)	The following regimens were given once daily (oral capsules before breakfast) for 28 days: TZP-102 10 mg (n = 22); TZP-102 20 mg (n = 21); TZP-102 40 mg (n = 23); placebo (n = 26)	All doses (combined) caused a significant decline of the GCSI total score compared to placebo	No significant differences in GMBT T½ between INT groups and the placebo group	

INT = interventions; GE = gastric emptying; GES = gastric emptying scintigraphy; N/A = not available; TSS = total symptom score; CFB = change from baseline; CNS = central nervous system; min = minutes; VAS = visual analogue score; AEs = adverse events; GCSI = Gastroparesis Cardinal Symptoms Index; GSA = Gastroparesis Symptom Assessment; GMBT = gastric motility breath test; GSDD = gastrointestinal symptoms daily diary; CFB = change from baseline; GE/BB = gastric emptying/breath test; SC = subcutaneous; DD = daily diary; NVP = nausea, vomiting, fullness and pain.
Table 2 (contd.): The outcomes of randomised clinical trials investigating traditional and novel medications for the treatment of diabetic gastroparesis.23-25,40,46

Author and year of study	Study groups and INT	Efficacy on gastroparesis symptoms	Efficacy on GE	Safety
McCallum et al.25 (2013)	The following regimens were given once per day (oral capsules) for 12 weeks: TZP-102 10 mg (n = 69); TZP-102 20 mg (n = 66); Placebo (n = 66)	GSDD improved significantly in all groups, but no difference was reported versus placebo (CFB: -1.1 versus 0.98 for INT groups and placebo groups)	No statistical difference in CFB of GERT among all groups	AEs occurred in 57%, 58% and 67% in the 10 mg, 20 mg and placebo groups, respectively without remarkable differences
Shin et al. 29 (2013)	Relamorelin 100 μg SC once per day (n = 5); Patients crossed-over with a 7-day washout period; Placebo (n = 5)	Relamorelin significantly reduced GCSI-DD (P = 0.014) and NVFP (P = 0.041) scores compared to placebo	GE was significantly accelerated in eight patients relative to the placebo (P = 0.005)	No serious AEs were reported; Only hunger was almost significant with relamorelin use (P = 0.063)
Shin et al. 30 (2013)	A single dose of relamorelin 100 μg SC (n = 5); Patients crossed-over with a 7-day washout period; Placebo (n = 5)	Since it was a single-dose study, it was not powered to investigate DG	Gastric T½ of solids, but not liquids, reduced by relamorelin versus placebo (P = 0.011)	Relamorelin led to a large GE acceleration
Lembo et al.31 (2016)	Relamorelin 10 μg once per day (n = 67); Relamorelin 10 μg twice per day (n = 68); Placebo (n = 69)	The twice-daily regimen reduced vomiting severity and frequency by 60% compared to placebo, while it had no effects on abdominal pain and satiety	Significant improvement of GE (P < 0.03) with twice-daily regimen	In the INT group ≥5% of patients experienced headache and worsening of glycaemic control
Camilleri et al. 32 (2017)	The following SC injections were given twice per day: Relamorelin 100 μg (n = 82); Relamorelin 30 μg (n = 109); Relamorelin 10 μg (n = 98); Placebo (n = 104)	Relamorelin reduced the frequency of vomiting by 75% compared to baseline, but not compared to placebo	GE was significantly accelerated in the 10 and 30 μg groups by 12% (P < 0.05) compared to placebo after 12 weeks	In the INT group, 14.5% of patients experienced dose-related deteriorations of glycaemic control; this was resolved by drug dosage adjustments

Motilin receptor agonist

Author and year of study	Study groups and INT	Efficacy on gastroparesis symptoms	Efficacy on GE	Safety
Desautes et al. 24 (1995)	Erythromycin base 250 mg	N/A	Significant improvements of GE were reported between erythromycin groups and placebo (P = 0.0007)	Diarrhea was reported in one patient in the erythromycin 1000 mg group
McCallum et al. 25 (2007)	The following regimens were given for 12 weeks twice per day: Mitemcinal 5 mg (n = 131); Mitemcinal 10 mg (n = 130); Placebo (n = 131)	No significant effects were noted over 12 weeks among groups	N/A	Severe AEs were reported in 18.8%, 15.9% and 20.0% of patients in the placebo, mitemcinal 5 mg, and mitemcinal 10 mg groups, respectively
Barton et al.34 (2014)	The following regimens were given once per day for 4 weeks: Camical 10 mg (n = 18); Camical 50 mg (n = 18); Camical 125 mg (n = 22); Placebo (n = 21)	The most significant improvements occurred at 2–4 weeks for fullness and satiety for 10 mg (53%) and 50 mg (65%) groups	GEBT T½ decreased significantly with increasing dose (P < 0.05) as assessed by swallowed wireless motility capsule	There were similar frequencies of AEs among different groups (urinary tract and gastrointestinal symptoms)
Hellstrom et al.36 (2016)	Each patient participated in three single oral INT (out of four INT) with a 7-day washout period in-between. The groups were: Camical 50 mg; Camical 125 mg; Placebo	No symptomatic improvement was observed	GEBT T½ decreased by 65% (P < 0.05) by 125 mg camical compared to placebo	Headache, vomiting and decreased blood glucose were reported in a similar frequency in all groups

5-HT4 receptor agonist

Author and year of study	Study groups and INT	Efficacy on gastroparesis symptoms	Efficacy on GE	Safety
Braden et al. 27 (2002)	Given thrice per day: Cisapride 10 mg (n = 9); Placebo (n = 10)	N/A	GEBT T½ decreased significantly in the INT group after 12 months compared to baseline (P = 0.03); the placebo group showed no changes from baseline	N/A
Lehmann et al. 28 (2003)	The following treatments were given for 3 months, then 4 weeks washout and 3 months cross-over: Cisapride 20 mg twice per day; Placebo	N/A	GE improved significantly at 120 min in the INT group (P = 0.025), while gastric T½ did not differ between the INT and placebo groups (P = 0.09)	No serious AE; Patients with prolonged QTc were excluded at the initial recruitment phase

INT = interventions; GE = gastric emptying; GES = gastric emptying scintigraphy; NA = not available; TSS = total symptom score; CFB = change from baseline; CNS = central nervous system; min = minutes; VAS = visual analogue score; AEs = adverse events; GCSI = Gastroparesis Cardinal Symptoms Index; GSA = Gastroparesis Symptoms Assessment; GMBT = gastric motility breath test; GSDD = gastroparesis symptoms daily diary; CFB = change from baseline; GEBT = gastric emptying breath test; SC = subcutaneous; DD = daily diary; NVFP = nausea, vomiting, fullness and pain.

infusion (given at 80, 160, 320, or 600 μg/kg in a cross-over manner) caused 20% reduction in gastric T½ of solids compared to a placebo; however, no apparent effects were noted on postprandial symptoms.28 A phase 2 trial conducted by the same team revealed that the infusion of 80 μg/kg TZP-101 caused a significant reduction in severity of several symptoms including vomiting, loss of appetite and reduction of the GCSI scores (25% versus 8% among patients allocated to placebo), although no differences were reported in gastric T½.29
Consequently, TZP-102 was developed as an oral preparation. A phase 2a trial was performed in 2013 to assess the impact of a 28-day TZP-102 regimen for doses ranging between 10 and 40 mg versus a placebo. Ejskjaer et al. found that all doses (combined) significantly alleviated DG symptoms, but with no remarkable effects on GE indices.32 Similarly, a phase 2b trial, which administered TZP-102-CL-G003 and TZP-102-CL-G004 for 12 weeks, emphasised the lack of improving effects on the Gastroparesis Symptom Daily Diary scores as well as GE analysis compared to a placebo.41 In addition, the investigations of TZP-102-CL-G004 were terminated at an early stage due to lack of efficacy in DG patients.

Motilin receptor agonists

Erythromycin has been well-established for its prokinetic action since its introduction six decades ago.37 Its motilin agonistic action promotes peristaltic movement and enhances GE through the induction of phase III contractions of the migrating motor complex. Thus, it increases gastric antral contraction. Early studies revealed that acute intravenous and chronic oral administration for four weeks led to a significant reduction in the total symptom score in DG patients, which may be superior to the effect of metoclopramide.38 Desautels et al. reported significant GE acceleration via a single dose of 250 mg with no apparent side effects in diabetic patients.39 However, subsequent studies have shown that erythromycin was associated with tachyphylaxis, whereby its prokinetic effect may be lost after 48 hours of treatment.40 In addition, its venous administration may be associated with serious AEs such as ventricular arrhythmia and can interact with other medications due to inhibition of cytochrome P450 C3A4.61,62

Additional medications without antibiotic activities and avoiding the previously-mentioned AEs need to be developed. Mitemcinal is another motilin agonist which has been tested in a 12-week double-blind RCT.46 Although there was evidence of GE improvements in patients with non-delayed GE, the results showed no significant differences in the symptoms of DG.

5-hydroxytryptamine receptor 4 agonists

Cisapride is a traditional non-selective 5-HT4 receptor agonist which causes increased muscular contraction through cholinergic pathways. Two RCTs have shown that the chronic use of this medication (for at least seven months) reduces GE time in patients with DG with no remarkable effects on their glycaemic control.30,31 However, both trials excluded patients with prolonged QTc at the initial recruitment. Given that cisapride administration can activate the Human ether-a-go-go-related gene (hERG) potassium channels and may consequently lead to QT prolongation, ventricular arrhythmias and syncope, it has been withdrawn from the market in several countries.63 Similarly, the use of tegaserod (another 5-HT4 agonist) has been suspended since 2007 owing to its association with ischaemic cardiovascular events.64

NOVEL AND INVESTIGATIONAL MEDICATIONS

Ghrelin and ghrelin receptor agonists

RM-131 (i.e. relamorelin), the most recently investigated member of the ghrelin analogue family, has provided promising outcomes. Initially, Shin et al. tested the efficacy of subcutaneous injections of RM-131 in 10 patients with T1DM in a double-blind,
cross-over, placebo-controlled RCT and assessed the symptoms of DG using the GCSI score and GE using scintigraphy. Results revealed that gastric T½ was significantly accelerated at one and two hours after meals compared to a placebo along with significant improvements in the average symptoms scores. Similar results were reported by Shin et al. in an RCT conducted among female patients with T2DM. More recent data from placebo-controlled RCTs indicated that subcutaneous injection of RM-131 twice daily had the most remarkable impact on reducing the frequency and severity of DG symptoms besides GE acceleration. Additionally, these regimens were safe and well-tolerated in all trials. Phase 3 clinical trials are on-going concerning this novel medication [Table 3].

Motilin receptor agonists
Camical (i.e. GSK962040) is a novel small-molecule motilin agonist which causes GE acceleration in healthy individuals. The pharmacokinetic characteristics of camical in the latter populations were similar to those in patients with T1DM, causing a significant reduction of gastric T½ (65% improvement) following a single dose of up to 125 mg compared to a placebo (52 versus 147 minutes; \(P < 0.05\)) despite a lack of remarkable symptomatic improvements. However, in a double-blind, phase 2 RCT, Barton et al. found a significant amelioration of fullness and early satiety after camical administration (10 and 50 mg) for four weeks.

5-hydroxytryptamine receptor 4 agonists
There are multiple on-going investigations concerning new 5-HT4 receptor agonists that exert beneficial outcomes on the gastrointestinal tract without prominent AEs on cardiac muscle. However, these trials are either performed on patients with idiopathic gastroparesis or their outcomes have not been published yet. Revexepride is a specific agonist that has been tested in an RCT on diabetic and non-diabetic patients with gastroparesis. There were no significant improvements in GCSI scores, GE or quality of life of patients allocated to the intervention group versus a placebo. Prucalopride is a selective 5-HT4 agonist which significantly reduced GEBT T½ compared to a placebo \((P < 0.050)\) as well as GCSI scores of bloating/distension \((P < 0.001)\), nausea/vomiting \((P = 0.010)\) and fullness \((P < 0.001)\) when it was given at a dose of 2 mg once a day for four weeks. A phase 2 trial in DG patients was completed with no reported results so far [Table 3]. Likewise, velusetrag, which has been proven for its GE-accelerating effects in patients with constipation, is being investigated in patients with gastroparesis.

Discussion
DG is a relatively common complication among diabetic patients. Nevertheless, there is no consensus on the optimal management approach. Hence, several medications have been tested to relieve the symptoms in individuals with an established health burden. The current article aimed to review the best level of evidence, namely RCTs, which tested the efficacy and safety of medications targeting DG. Results showed multiple safety concerns of the currently used drugs. While metoclopramide is the only FDA-approved drug, other traditional drugs have been withdrawn from the markets of several countries owing to risky complications, mostly cardiovascular, in diabetic patients. Current efforts are aimed at developing novel medications and/or new safe preparations of traditional drugs.

Metoclopramide can interfere with emesis through its action on the central nervous system and increase gut motility via its prokinetic effect. Due to the risk of AEs such as tardive dyskinesia, it has been traditionally prescribed at the lowest effective dose for short periods of time. The novel intranasal preparation is seemingly more practical due to the intolerability of oral medications in DG patients with severe nausea and vomiting. For those who are unable to use metoclopramide, domperidone has recently been granted FDA’s expanded access investigational new drug application in adults with gastroparesis. This drug should be prescribed to manage severe symptoms in patients whom the potential benefits of the medication may justify its potential risks. Although the impact on the central nervous system is not apparent, domperidone still has cardiovascular risks owing to its tendency of causing a prolonged QTc interval. Seemingly, intravenous erythromycin is warranted in hospitalised patients who need intravenous therapy as they are continually monitored for any AEs.

Recent trials showed promising effects of the novel ghrelin receptor agonist relamorelin, the motilin receptor agonist camical and the 5-HT4 agonist prucalopride. Subcutaneous relamorelin has been effective and safe in healthy individuals and in DG patients has been shown to accelerate GE and induce antral contraction. The most effective doses are 10 and 20 µg while the on-going RCTs use the smaller dose to assess its efficacy in managing gastroparesis symptoms. Camical can be considered an attractive candidate for the treatment of DG as it showed GE acceleration in a dose-dependent manner in healthy and diabetic patients at a minimum dose of 125 mg. Owing to small sample sizes and its administration at a...
single dose, the conducted RCTs failed to demonstrate significant effects on DG symptoms. As such, further trials are warranted giving due consideration to using multiple-dose regimens and recruiting larger samples. Prucalopride is approved in many countries for the treatment of chronic constipation and its preliminary favourable actions on patients with gastroparesis may be attributable to its high affinity to 5-HT4 receptors with no effects on hERG channels.\(^{50,72}\)

The efficacy of prokinetics in diabetic patients may be affected by other factors which can decrease GE. For instance, the patient’s diabetologist should be consulted regarding the use of GLP-1 analogues such as liraglutide and exenatide as well as incretin-based drugs (e.g. pramlintide) as they may interfere with GE.\(^{73,74}\) Furthermore, while there is no confirmative evidence of the relationship between long-term improved glycaemic control, the symptoms of DG and the rates of GE, studies have shown that acute hyperglycaemia can slow GE in diabetic patients.\(^{75,76}\) It is worth noting that a diet rich in both fibre and fat can delay GE. As such, the main essence of dietary interventions should be consuming small and frequent meals which are low in fat and fibre.\(^{50,77}\) Additionally, a recent RCT has indicated the significance of small-particle size diets in reducing the severity of key symptoms of DG including postprandial fullness, nausea/vomiting and bloating.\(^{78}\)

Ethnic-based differences in disease presentation have been reported in a retrospective analysis of adult patients in the National Institutes of Health Gastroparesis Consortium registries, where non-Hispanic blacks with DG had more severe symptoms (nausea/vomiting) and more frequent hospitalisation rates compared to non-Hispanic whites.\(^{79}\) The increased severity of DG symptoms in non-whites was also reported in other cross-sectional studies.\(^{80,81}\) Additionally, Hispanics were more likely to develop gastroparesis secondary to diabetes than non-Hispanic whites who experienced idiopathic gastroparesis.\(^{79}\) Therefore, domperidone treatment and peripherally inserted catheters were less used in Hispanics compared to non-Hispanic whites. Nonetheless, the therapeutic effects based on racial differences were not exclusively investigated in RCTs. Studies employing a large proportion of white patients of Caucasian heritage (>80%) showed acceptable efficacy and safety outcomes after using ulimorelin, relamorelin and domperidone.\(^{29,41,45}\)

The use of antiemetics predominantly focuses on symptomatic management. Antihistamines (i.e. promethazine) and phenothiazines (i.e. prochlorperazine) are frequently prescribed, yet they may interact with the prokinetics particularly if the medications are metabolised through the CYP450 pathway. Serotonin 5-HT3 receptor antagonists, such as ondansetron and dolasetron, may be used in emergency settings when other therapies fail to relieve nausea; little is known about their efficacy in gastroparesis secondary to diabetes.\(^{82}\) Moreover, patients with profound nausea and vomiting may benefit from synthetic cannabinoids, including dronabinol and nabilon, although they showed variable pharmacokinetic profiles.\(^{83}\) They may be associated with a risk of hyperemesis on withdrawal and were not previously tested in DG patients.\(^{84}\)

Recently, aprepitant, a neurokinin 1 (NK-1) receptor antagonist, has shown encouraging outcomes. While it was originally used for managing chemotherapy-induced nausea and vomiting, a 4-week, double-blind multicentre trial revealed that apremitant ameliorated the severity of nausea, vomiting and all GCSI symptoms in patients with all-cause gastroparesis.\(^{85,86}\) Moreover, Fountoulakis et al. found that this medication was effective in the long-term management of severe symptoms in two cases of DG refractory to treatment with first-line medications.\(^{87}\) Currently, the efficacy of a 4-week regimen of tradipitant, another NK-1 receptor antagonist, is being investigated to manage gastroparesis.

This review provides an updated overview of the currently used medications and their therapeutic effects on patients with gastroparesis secondary to diabetes in RCTs. Other systematic reviews have summarised pharmacological and other management approaches to DG, such as nutritional support, glycaemic management, surgical techniques, intrapyloric *botulinum* toxin injection and gastric electrical stimulation.

However, the current review was subject to some limitations. The impact of antiemetics was not assessed due to a lack of relevant RCTs. Furthermore, the design of included RCTs might have impacted the results. For example, there were conflicting outcomes between phase 2a and phase 2b studies of TZP-102 which included variations in breath test methods (a 6-hour \(^{13}\)C-octanoate test and a 3-hour \(^{13}\)C-*Spirulina platensis* test, respectively).\(^{21,43}\) Therefore, unified guidelines should be implemented and carefully employed for future trials. The FDA has provided several recommendations regarding this aspect, which include conducting double-blind, placebo-controlled trials with a 2-week screening period, a 12-week treatment period and an at least 2-week withdrawal period.\(^{88}\) RCTs of longer durations should be performed for at least 12 months. Importantly, patients with diabetic and idiopathic gastroparesis should be studied in separate trials. Finally, efficacy assessment should primarily be based on the signs and symptoms of gastroparesis.
Conclusion

There is a significant unmet need for patients with DG who require effective medications to manage their symptoms with optimal levels of safety. Patients with mild to moderate symptoms are traditionally managed with metoclopramide or domperidone taking into consideration their cardiovascular consequences. In an endeavour to develop novel drugs, relamorelin, camicinal and prucalopride have shown the best outcomes; however, further investigations are required prior to approval for use in a healthcare setting. Future trials should be conducted based on unified guidelines such as those implemented by the FDA in order to enable comprehensive and reliable assessment of their outcomes.

References

1. Kempler P, Várkonyi T, Körei AE, Horváth VJ. Gastrointestinal autonomic neuropathy in diabetes. The unattended borderline between diabetology and gastroenterology. Diabetologia 2016; 59:401–3. https://doi.org/10.1007/s00125-015-3826-y.
2. Izbéki F, Rosztóczy A, Várkonyi T, Wittmann T. The clinical picture, diagnosis and therapy of gastrointestinal autonomic neuropathy. In: Kempler P, Várkonyi T, Eds. Neuropathies. A global clinical guide. Budapest, Hungary: Zafir Press-Mona Lib Kft, 2012. Pp. 131–50.
3. Boas I. [Diseases of the Stomach]. 9th ed. Leipzig, Germany: Georg Thieme, 1925.
4. Kassander P. Asymptomatic gastric retention in diabetics (gastroparesis diabeticorum). Ann Intern Med 1958; 48:797–812. https://doi.org/10.7326/0003-4819-48-4-797.
5. Krishnasamy S, Abell TL. Diabetic Gastroparesis: Principles and current trends in management. Diabetes Ther 2018; 9:1–42. https://doi.org/10.1007/s13300-018-0454-9.
6. Lacy BE, Crowell MD, Mathis C, Bauer D, Heinberg LJ. Gastroparesis: Quality of life and health care utilization. J Clin Gastroenterol 2018; 52:20–4. https://doi.org/10.1097/MCG.0000000000000728.
7. Allepo G, Calhoun P, Foster NC, Maahs DM, Shah VN, Miller KM, et al. Reported gastroparesis in adults with type 1 diabetes (T1D) from the T1D Exchange clinic registry. J Diabetes Complications 2017; 31:1669–73. https://doi.org/10.1016/j.jdicomp.2017.08.014.
8. Bharucha AE. Epidemiology and natural history of gastroparesis. Gastroenterol Clin North Am 2015; 44:9–19. https://doi.org/10.1016/j.gtc.2014.11.002.
9. Alipour Z, Khadb F, Tabib SM, Javadi H, Jafari E, Aghaghazvini L, et al. Assessment of the prevalence of diabetic gastroparesis and validation of gastric emptying scintigraphy for diagnosis. Mol Imaging Radionucl Ther 2017; 26:17–23. https://doi.org/10.4274/mirt.61587.
10. Almgobel RA, Alhussan FA, Alnasser SA, Algaffar MA. Prevalence and risk factors of gastroparesis-related symptoms among patients with type 2 diabetes. Int J Health Sci (Qassim) 2016; 10:397–404. https://doi.org/10.12816/0048734.
11. Horowitz M, Harding PE, Maddox AF, Wishart JM, Aikensmans LM, Chatterton BE, et al. Gastric and oesophageal emptying in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1989; 32:151–9. https://doi.org/10.1007/bf00265086.
12. Bytzer P, Talley NJ, Leemon M, Young LJ, Jones MP, Horowitz M. Prevalence of gastrointestinal symptoms associated with diabetes mellitus: A population-based survey of 15,000 adults. Arch Intern Med 2001; 161:1989–96. https://doi.org/10.1001/archinte.161.16.1989.
13. Revicki DA, Rentz AM, Dubois D, Kahrilas P, Stanghellini V, Talley NJ, et al. Gastrointestinal Cardinal Symptom Index (GCSI): Development and validation of a patient reported assessment of severity of gastroparesis symptoms. Qual Life Res 2004; 13:833–44. https://doi.org/10.1023/B:QURE.0000021689.86296.e4.
14. Abell TL, Camilleri M, Donohoe K, Hasler WL, Lin HC, Mauer AH, et al. Consensus recommendations for gastric emptying scintigraphy: A joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. Am J Gastroenterol 2008; 103:53–63. https://doi.org/10.1111/j.1572-0241.2007.01636.x.
15. Farmer AD, Scott SM, Hobson AR. Gastrointestinal motility revisited: The wireless motility capsule. United European Gastroenterol J 2013; 1:141–21. https://doi.org/10.1177/20506466135010161.
16. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009; 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.
17. Higgins JP, Altman DG, Gøtzsche PC, Jønsson P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343:d5928. https://doi.org/10.1136/jnnp.2012.241450.
18. Damirarasu DL, Weinbeck M. Domperidone versus metoclopramide in the treatment of diabetic gastroparesis. Am J Gastroenterol 2000; 95:316–17. https://doi.org/10.1111/j.1572-0241.2000.01721.x.
19. Heer M, Müller-Düsing W, Benes I, Weitzel M, Pirovino M, Altorfer J, et al. Diabetic gastroparesis: Treatment with domperidone—a double-blind, placebo-controlled trial. Digestion 1983; 27:214–17. https://doi.org/10.1159/000198955.
20. Richards RD, Valenzuela GA, Davenport KG, Fisher KL, McCullough RW. Objective and subjective results of a randomized, double-blind, placebo-controlled trial using cisapride to treat gastroparesis. Dig Dis Sci 1993; 38:811–16. https://doi.org/10.1007/bf01295905.
21. McCullough RW, Cynsh O; Investigative Team. Clinical trial: Effect of metoclopramide (a motilin agonist) on gastric emptying in patients with gastroparesis—a randomized, multicentre, placebo-controlled study. Aliment Pharmacol Ther 2007; 26:1211–30. https://doi.org/10.1111/j.1365-2636.2007.03461.x.
22. Tack J, Rotondo A, Meulemans A, Thielemans L, Coels M. Randomized clinical trial: A controlled pilot trial of the 5-HT4 receptor agonist revexepride in patients with symptoms suggestive of gastroparesis. Neurogastroenterol Motil 2016; 28:487–97. https://doi.org/10.1111/nmm.12736.
23. Stacher G, Schernthaner G, Francesconi M, Kopp HP, Bergmann H, Stacher-Janotta G, et al. Cisapride versus placebo for 8 weeks on glycemic control and gastric emptying in insulin-dependent diabetes: A double blind cross-over trial. J Clin Endocrinol Metab 1999; 84:2357–62. https://doi.org/10.1210/jcem.84.7.5859.
24. Wo JM, Ejikiea N, Hellström PM, Malik RA, Pezzullo JC, Shaughnessy L, et al. Randomised clinical trial of TZP-101 relieves gastroparesis associated with severe nausea and vomiting—randomised clinical study subset data. Aliment Pharmacol Ther 2007; 26:1365–2036.2010.04567.x.
25. Franzese A, Borrelli O, Corradino G, Pea P, Di Nardo G, Grandinetti AL, et al. Domperidone is more effective than cisapride in children with diabetic gastroparesis. Aliment Pharmacol Ther 2002; 16:951–7. https://doi.org/10.1046/j.1365-2636.2002.01240.x.
Pharmacological Approaches to Diabetic Gastroparesis
A systematic review of randomised clinical trials

26. Erbas T, Varoglu E, Erbas B, Tasteikin G, Akalin S. Comparison of metoclopramide and erythromycin in the treatment of diabetic gastroparesis. Diabetes Care 1993; 16:1511–14. https://doi.org/10.2337/diacare.16.11.1511.

27. Murray CD, Martin NM, Patterson M, Taylor SA, Ghatel MA, Kamm MA, et al. Ghrelin enhances gastric emptying in diabetic gastroparesis: A double blind, placebo controlled, crossover study. Gut 2005; 54:1693–8. https://doi.org/10.1136/gut.2005.069088.

28. Ejskjaer N, Vestergaard ET, Hellstrom PM, Gormsen LC, Madshid S, Madsen JL, et al. Ghrelin receptor agonist (TZP-101) accelerates gastric emptying in adults with diabetes and symptomatic gastroparesis. Aliment Pharmacol Ther 2009; 29:1179–87. https://doi.org/10.1111/j.1365-2036.2009.03986.x.

29. Ejskjaer N, Dimecevski G, Wo J, Hellstrom PM, Gormsen LC, Sarosiek I, et al. Safety and efficacy of ghrelin agonist TZP-101 in relieving symptoms in patients with diabetic gastroparesis: A randomized, placebo-controlled study. Neurogastroenterol Motil 2010; 22:e169–e281. https://doi.org/10.1111/j.1365-2982.2010.01519.x.

30. Braden B, Enghofer M, Schaub M, Usadel KH, Caspary WF, Lembcke B. Long-term cisapride treatment improves diabetic gastroparesis but not glycaemic control. Aliment Pharmacol Ther 2002; 16:1341–6. https://doi.org/10.1046/j.1365-2036.2002.0201257.x.

31. Lehmann R, Honegger RA, Feinle C, Fried M, Spinaz GA, Schweizer W. Glucose control is not improved by accelerating gastric emptying in patients with type 1 diabetes mellitus and gastroparesis. A pilot study with cisapride as a model drug. Exp Clin Endocrinol Diabetes 2003; 111:255–61. https://doi.org/10.1055/s-2003-41283.

32. Ejskjaer N, Wo JM, Esfandaryar T, Mazen Jamal M, Dimecevski G, Tarnow L, et al. A phase 2a, randomized, double-blind 28-day study of TZP-102 a ghrelin receptor agonist for diabetic gastroparesis. Neurogastroenterol Motil 2013; 25:e40–50. https://doi.org/10.1111/nmo.12064.

33. Parkman HP, Carlson MR, Gonyer D. Metoclopramide nasal spray is effective in symptoms of gastroparesis in diabetics compared to conventional oral tablet. Neurogastroenterol Motil 2014; 26:521–8. https://doi.org/10.1111/nmo.12296.

34. Snape WJ Jr, Battle WM, Schwartz SS, Braunstein SN, Goldstein HA, Alavi A. Metoclopramide to treat gastroparesis due to diabetes mellitus: A double-blind, controlled trial. Ann Intern Med 1982; 96:444–6. https://doi.org/10.7326/0003-4819-96-4-444.

35. McCallum RW, Ricci DA, Rakatansky H, Behar J, Rhodes JB, Salen G, et al. A multicenter placebo-controlled clinical trial of oral metoclopramide in diabetic gastroparesis. Diabetes Care 1983; 6:463–7. https://doi.org/10.2337/diacare.6.5.463.

36. Ricci DA, Saltzman MB, Meyer C, Callachan C, McCallum RW. Effect of metoclopramide in diabetic gastroparesis. J Clin Gastroenterol 1985; 7:25–32. https://doi.org/10.1097/00004836-198502000-00003.

37. Patterson D, Abell T, Rothstein R, Koch K, Barnett J. A double-blind multicenter comparison of domperidone and metoclopramide in the treatment of diabetic patients with symp-toms of gastroparesis. Am J Gastroenterol 1999; 94:1230–4. https://doi.org/10.1111/j.1572-0241.1999.00456.x.

38. Shin A, Camilleri M, Busciglio I, Burton D, Stoner E, Noonan P, et al. Randomized controlled phase Ib study of ghrelin agonist, RM-131, in type 2 diabetic women with delayed gastric emptying: Pharmacokinetics and pharmacodynamics. Diabetes Care 2013; 36:641–8. https://doi.org/10.2337/dc12-1128.

39. Lembo A, Camilleri M, McCallum R, Sastre R, Breton C, Spence S, et al. Relamorelin reduces vomiting frequency and severity and accelerates gastric emptying in adults with diabetic gastroparesis. Gastroenterology 2016; 151:87–96.e6. https://doi.org/10.1053/j.gastro.2016.03.038.

40. Camilleri M, McCallum RW, Tack J, Spence SC, Gottesdiener K, Fiedorek FT. Efficacy and safety of relamorelin in patients with symptoms of gastroparesis: A randomized, placebo-controlled study. Gastroenterology 2017; 153:1240–50.e2. https://doi.org/10.1016/j.gastro.2017.07.035.

41. McCallum RW, Lembo A, Esfandaryar T, Bhandari BR, Ejskjaer N, Cosentino C, et al. Phase 2b, randomized, double-blind 12-week studies of TZP-102, a ghrelin receptor agonist for diabetic gastroparesis. Neurogastroenterol Motil 2013; 25:e705–17. https://doi.org/10.1111/nmo.12184.

42. Parkman HP, Carlson MR, Gonyer D. Metoclopramide nasal spray reduces symptoms of gastroparesis in women, but not men, with diabetes: Results of a phase 2b randomized study. Clin Gastroenterol Hepatol 2015; 13:1256–63.e1. https://doi.org/10.1016/j.cgh.2014.12.030.

43. Silvers D, Kipnes M, Broadstone V, Patterson D, Quigley EM, McCallum R, et al. Domperidone in the management of symptoms of diabetic gastroparesis: efficacy, tolerability, and quality-of-life outcomes in a multicenter controlled trial. DOM-USA-5 Study Group. Clin Ther 1998; 20:488–53. https://doi.org/10.1016/s0149-2918(98)80054-4.

44. McCallum RW, Cynoh O; US Investigative Team. Efficacy of mitemcinal, a motilin agonist, on gastrointestinal symptoms in patients with symptoms suggesting diabetic gastropathy: A randomized, multi-center, placebo-controlled trial. Aliment Pharmacol Ther 2007; 26:107–16. https://doi.org/10.1111/j.1365-2036.2007.03346.x.

45. Sanger GJ, Furness JB. Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat Rev Gastroenterol Hepatol 2016; 13:38–48. https://doi.org/10.1038/nrgastro.2015.163.

46. Lata PF, Pigarelli DL. Chronic metoclopramide therapy for diabetic gastroparesis. Ann Pharmacother 2003; 37:122–6. https://doi.org/10.1345/aph.1C118.

47. Solmi M, Pigato G, Kane JM, Correll CU. Clinical risk factors for the development of tardive dyskinesia. J Neurol Sci 2018; 389:21–7. https://doi.org/10.1016/j.jns.2018.02.012.

48. Camilleri M. Novel diet, drugs, and gastric interventions for gastroparesis. Clin Gastroenterol Hepatol 2016; 14:1072–80. https://doi.org/10.1016/j.cgh.2015.12.033.

49. Koch KL, Stern RM, Stewart WR, Vasey MW. Gastric emptying and gastric myoelectrical activity in patients with diabetic gastroparesis: Effect of long-term domperidone treatment. Am J Gastroenterol 1989; 84:1069–75.

50. Silvers D, Kipnes M, Broadstone V, Patterson D, Quigley EM, McCallum R, et al. Domperidone in the management of symptoms of diabetic gastroparesis: efficacy, tolerability, and quality-of-life outcomes in a multicenter controlled trial. DOM-USA-5 Study Group. Clin Ther 1998; 20:488–53. https://doi.org/10.1016/s0149-2918(98)80054-4.

51. Soyan I, Sarosiek I, McCallum RW. The effect of chronic oral domperidone therapy on gastrointestinal symptoms, gastric emptying, and quality of life in patients with gastroparesis. Am J Gastroenterol 1997; 92:976–80.

52. Morris AD, Chen J, Lau E, Poh J. Domperidone-associated QT interval prolongation in non-oncologic pediatric patients: A review of the literature. Can J Hosp Pharm 2016; 69:224–30. https://doi.org/10.1211/cjhp.v69i3.1560.
55. Camilleri M, Parkman HP, Shafi MA, Abell TL, Gerson L; American College of Gastroenterology. Clinical guideline: Management of gastroparesis. Am J Gastroenterol 2013; 108:18–37. https://doi.org/10.1038/ajg.2012.373.

56. Mosincka P, Zatorski H, Storr M, Fichna J. Future treatment of constipation-associated disorders: Role of relamorelin and other ghrelin receptor agonists. J Neurogastroenterol Motil 2017; 23:171–9. https://doi.org/10.5056/jnm16187.

57. Frazier LA, Mauro LS. Erythromycin in the treatment of diabetic gastroparesis. Am J Ther 1994; 1:287–95. https://doi.org/10.1016/0952-780X(94)90004-7.

58. Richards RD, Davenport K, McCallum RW. The treatment of idiopathic and diabetic gastroparesis with acute intravenous and chronic oral erythromycin. Am J Gastroenterol 1993; 88:203–7.

59. Desautels SG, Hutson WR, Christian PE, Moore JG, Datz FL. Gastric emptying response to variable oral erythromycin dosing in diabetic gastroparesis. Dig Dis Sci 1995; 40:141–6. https://doi.org/10.1007/bf02063957.

60. Berne JD, Norwood SH, McAuley CE, Vallina VL, Villareal D, Desautels SG, Hutson WR, Christian PE, Moore JG, Datz FL. The investigation and treatment of diabetic gastroparesis. Am J Respir Crit Care Med 2014; 189:1173–80. https://doi.org/10.1164/rccm.201402-0385cl.

61. Albert RK, Schuller JI; COPD Clinical Research Network. Therapeutic trial shows benefit of prucalopride for symptom control and quality of life in patients with idiopathic gastroparesis. Gastroenterology 2016; 150:S213–4. https://doi.org/10.1016/j.gastro.2015.11.021.

62. Nakamura K, et al. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4. J Hepatol 200209000-00004.

63. Marathe CS, Rayner CK, Jones KL, Horowitz M. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care 2013; 36:1396–405. https://doi.org/10.2337/dc12-1609.

64. Homko CJ, Duffy F, Friedenberg FK, Boden G, Parkman HP. Effect of dietary fat and food consistency on gastroparesis symptoms in patients with gastroparesis. Neurogastroenterol Motil 2015; 27:501–8. https://doi.org/10.1111/nmo.12519.

65. Alqahtani F, Alshamsi F, McIntyre L, Almenawer S. Analysis of landscape genetics of diabetic gastroparesis. Diabetic Medicine 2013; 30:675–80. https://doi.org/10.1111/dme.12020.

66. Majumdar A, Parkman HP, et al. A randomized, double-blind, placebo-controlled trial. Neurogastroenterol Motil 2010; 15:151–7. https://doi.org/10.1111/j.1473-3999.2009.00935.x.

67. Hohson R, Farmer AD, Dewit OE, O'Donnell M, Hacqouis Q, Robertson D, et al. The effects of camicinal, a motilin receptor agonist, on gastro-esophageal function in healthy humans—a randomized, placebo controlled trial. Neurogastroenterol Motil 2016; 28:1705–13. https://doi.org/10.1111/nmo.13173.

68. Friedenberg FK, Kowalczyk M, Parkman HP. The influence of race on symptom severity and quality of life in gastroparesis. J Clin Gastroenterol 2013; 47:577–61. https://doi.org/10.1097/MCG.0b013e3182819aae.

69. Barrett WT, DiPersio DM, Jenkins CA, Jack M, McCain NS, Storrow AB, et al. A randomized, placebo-controlled trial of ondansetron, metoclopramide, and promethazine in adults. Am J Emerg Med 2011; 29:247–55. https://doi.org/10.1016/j.ajem.2009.09.028.

70. Badowski ME. A review of oral cannabinoids and medical marijuana for the treatment of chemotherapy-induced nausea and vomiting: A focus on pharmacokinetic variability and pharmacodynamics. Cancer Chemother Pharmacol 2017; 80:441–9. https://doi.org/10.1007/s00280-017-3387-5.
85. Zhang Y, Yang Y, Zhang Z, Fang W, Kang S, Luo Y, et al. Neurokinin-1 receptor antagonist-based triple regimens in preventing chemotherapy-induced nausea and vomiting: A network meta-analysis. J Natl Cancer Inst 2017; 109. https://doi.org/10.1093/jnci/djw217.

86. Pasricha PJ, Yates KP, Sarosiek I, McCallum RW, Abell TL, Koch KL, et al. Aprepitant has mixed effects on nausea and reduces other symptoms in patients with gastroparesis and related disorders. Gastroenterology 2018; 154:65–76.e11. https://doi.org/10.1053/j.gastro.2017.08.033.

87. Fountoulakis N, Dunn J, Thomas S, Karalliedde J. Successful management of refractory diabetic gastroparesis with long-term Aprepitant treatment. Diabet Med 2017; 34:1483–6. https://doi.org/10.1111/dme.13413.

88. US Food & Drug Administration. Gastroparesis: Clinical evaluation of drugs for treatment. From: www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm455645.pdf Accessed: Jul 2019.