Abstract

P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the en/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (en^{Del1.5}) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the en^{Del1.5} chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2]^l, a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailled/invected chromatin domain. Chromatin structure may also play a role in homing.

Introduction

P-element mediated transformation has been used to generate transgenic Drosophila for about 30 years [1]. In large-scale screens, P-element based vectors have been used for mutagenesis and for enhancer-detection [2–6]. In these cases, P-element vectors were found to insert in the genome in a relatively nonselective manner, with the exception of some hotspots for insertion. However, in a few specific cases, when particular fragments of regulatory DNA are included in a P-element vector, they dramatically alter the insertional specificity of that vector. The first case of this was described by Hama, Ali, and Kornberg in 1990 [7]; regulatory DNA from the engrailled (en) gene, when included in a P-element vector (P[en]), caused P[en] to insert in the vicinity of the en gene at a high frequency. They named this phenomenon P-element homing. Since that time, regulatory DNA fragments from the linolette gene, bithorax complex, and the even-skipped gene have been found to mediate homing [8–10]. For homing mediated by en, bithorax, and eveDNA, insertions are not site-specific but are regional; that is, they occur in the vicinity of the endogenous gene but can be distributed over a large genomic region. For homing by P[en], insertions occur over about a 300 kb region, including en, inv and flanking genes [7,11,12].

The segmentation gene en exists in a gene complex with the related gene invected (inv). en and inv encode homeodomain-containing proteins, are co-expressed, and share regulatory DNA [13]. en and inv are regulated by the Polycomb group genes (PcG) [14]. In tissue culture cells and embryos, H3K27me3, the distinctive PcG chromatin modification, covers a 100kb region that includes en and inv, but not flanking genes [15]. In chromatin immunoprecipitation experiments in tissue culture cells and adults, there are three regions of en/in that associate with PcG proteins, one just upstream on the en promoter, one coincident with an inv promoter, and one 6 kb upstream of inv [15,16]. These fragments of DNA act as Polycomb group response elements (PREs) in transgenic Drosophila [17–19]. The PRE located upstream of the en gene is a complex element, including 2 minimal PREs [18,20]. We have been using P-element homing by en DNA as a tool for our experiments for about 20 years. For example, we used a homing P-element to insert a mosquito en cDNA onto an en mutant chromosome to show it can substitute for the Drosophila en protein coding region [11]. More recently, we used P[en] homing to generate a large number of P[en] insertions near en and study the long-range action and promoter specificity of en enhancers [12]. Here we took two experimental approaches in order to further understand the mechanism of P[en] homing: 1) we dissected the en homing fragment and 2) we deleted the homing fragment from the genome, and asked whether homing could still occur. Our data show that the minimal fragment of DNA that can mediate homing is 1.6kb. Since we could not get a smaller fragment of DNA to mediate homing, we suggest that homing is not caused by a single protein or protein complex. Second, we found that homing still occurs, albeit at a reduced frequency, into genomic DNA that lacks the majority of the homing fragment. Therefore, homing is...
not solely dependent on interactions between the genomic and P[en] homing fragments. Our data suggest that homing is mediated by multiple protein-protein interactions between proteins bound to the homing fragment in P[en] and proteins bound to multiple regions of the en/inv genes. Since homing occurs in the germ line, we suggest that the en/inv genomic region is bound by many regulatory proteins and has a specific chromatin structure in germ cells.

Results

Identifying a minimal homing fragment

In previous experiments, we found that a 2.6 kb DNA fragment, extending from −2.4 kb to +188 bp was sufficient to mediate homing to the vicinity of the en/inv region of the genome at a frequency of 5% (7 out of 131 insertions; [21]) (Construct P[en3R], Fig. 1, called P[en1] in [21]). Since that time, whenever this en fragment was included in a P-element vector we localized the P-insertions in the genome. In 2002, we studied the pairing-sensitive silencing properties of the 2.6kb fragment, and generated 43 lines, using mini-white as the reporter gene to recognize transgenic flies [17]. Insertions into the vicinity of en/inv region occurred at a frequency of 4.6% (2/43; Table 1). In another study, we generated 21 lines using P[en3] (Fig. 1), and obtained two insertions in the vicinity of en/inv (a frequency of 10%; [18]). In P[en3], the reporter gene used to recognize transgenic flies is mini-white. Notably, flies that contained P[en3] inserted 6kb upstream of en (P[en3]-en) had white eyes (Fig. 2). This line was recovered fortuitously; when using inverse PCR to localize the site of a P[en3] insertion, we identified two insertions in one transgenic fly, one on chromosome 3R, and the other at en (P[en3]-en). The white eye color of P[en3]-en is due to the repression of mini-white by the PREs in the 2.6kb fragment, since deletion of both PREs by Cre recombinase and Flp recombinase to generate P[en3Δboth] gives flies with colored eyes (Fig. 2; no eye color was seen when either one of the PREs was present). In contrast, flies with P[en3] inserted into tou, the gene just upstream of en, have light orange eyes (not shown). Using constructs similar to P[en3], but with different reporter genes (an en-lacZ fusion protein, construct F in [22]; the mosquito en cDNA [11]) we know that insertions into the inv intron and just downstream of the en transcription unit give flies with colored eyes. Nevertheless, because mini-white silencing by the PREs would lead us to miss insertions in the vicinity of the en promoter, the homing frequency obtained in experiments using P[en3]:mini-white vectors is probably an underestimation of the true homing frequency.

Experiments designed to test PRE activity lead us to use the vector pUZ [23]. In this vector, the mini-white promoter is

Construct	Line*	Positionb	Gene*	Locationb	Reference
P[en3R]	2A	−751 bp	en	7416139	17
P[walter]	4A	−87 kb	tou	7492660	17
P[walter]	4A	−86 kb	tou	7501690	This study
P[en3]	en	−6 kb	en	7421628	18
P[en3R]	1A	−472 bp	en	7415760	This study
P[en3R]	11A	−72 kb	inv	7487611	This study
P[en3R]	+52kb	+52 kb	inv	7363188	12
P[en3R]	−87kb	−87 kb	tou	7502613	12

*Line names

†The number of kilobases or base pairs upstream (negative numbers) or downstream (positive numbers) of the major en transcription start site (at 7415388) [33].

‡Closest gene.

§Nucleotide insertion site (genome version R5.1, FlyBase).

doi:10.1371/journal.pone.0030437.t001

Figure 1. P-constructs used in homing experiments. Arrow shows the direction and start of transcription. L, loxP site. F, FRT site. P[en3R] is from [21] (called P[en1] in that study). P[en3] and P[en3Δboth] are from [18].

doi:10.1371/journal.pone.0030437.g001

Figure 2. PREs silence mini-white expression in P[en3]-en eyes. Eyes of 5-day old male flies are shown. w; P[en3]-en/+ (left) and w; P[en3Δboth]-en/+ (right).

doi:10.1371/journal.pone.0030437.g002
to polytene chromosomes, or inverse PCR, and never recovered an insertion near the en gene. Also, in this study, P[enHSP5] and P[enHSP7] contain the 181-bp fragment and we did not obtain any inserts of these two constructs into the vicinity of en/inv. Thus we conclude that the 181-bp fragment is not sufficient for homing to en.

Data from a 1994 study [20] led us to test the ability of the fragments in P[enHSP4] and P[enHSP5] to home. In that study, one P-insertion from a pCaSpeR construct with sequences extending from −1184 to −944 bp was localized to polytene band 48A on salivary chromosomes, out of 4 insertion events (its exact location was never determined and the line was lost many years ago). Second, we obtained an insertion of a pCaSpeR construct containing sequence −1944 to −1166 bp into E(Pc), out of a total of 13 insertion events. Both P[enHSP4] and P[enHSP5] contain the fragment extending from −1184 to −944 bp. Out of 89 lines obtained, none was inserted in the vicinity of en. P[enHSP4] contains the sequences −1944 to −1166 bp. We did not obtain any insertions into en in the 32 lines recovered. Thus, our results suggest that if these fragments cause homing, it is at a very low frequency.

In this study we did find one sub-fragment that mediates homing. P[enHSP2] contains a 1.6kb fragment that includes the two PREs. Two out of 37 insertions of this construct were at en (5%). The homing frequency of P[enHSP2] is not significantly different from that obtained with P[enHSP1] (P = 0.2967 by a Fisher’s exact test). Therefore, we consider the 1.6kb fragment to be the minimal homing fragment.

Homing occurs in flies that lack the genomic homing fragment

We generated a 1.5kb genomic deletion that removes both PREs upstream of the en transcription start site (Fig. 4A, B), en41.3kb. These flies are both viable and fertile, and have a loss-of-function wing phenotype similar to that of en4530, which contains a smaller deletion in the same region [18]. P[enHSP1] was injected into en41.3kb homozygous embryos; two insertions (out of 102) were in the en/inv chromosomal region; one insertion was into the en promoter, and one was in the inv promoter (Table 2, Fig. 4C). The frequency of homing into en41.3kb flies was reduced as compared to wild-type (2% vs. 15%; P = 0.0041 by a Fisher’s exact test), however, it is notable that it occurred at all, given that majority of the fragment required for P-element homing was deleted from the endogenous en gene in these flies.

As an additional test as to whether homing could occur onto en41.3kb, we mobilized P(en3R)-87kb, an insertion in the tou gene on a CyO chromosome with P(A2,3) transposase [24] and screened for transposition off the CyO chromosome onto the en41.3kb chromosome. Of 16 transposition events, two occurred into the vicinity of en/inv; one 1.2kb downstream of the inv promoter, and another insertion 20kb upstream of tou (a homing frequency of 12.5%) (Table 2). Mobilization of P(en3R)+22kb, inserted in inv on a CyO chromosome also generated an insertion on en41.3kb near en/inv, upstream of CG9003 (out of 4 transposition events, Table 2, Fig. 4C). As a control we mobilized P(en3R)-87kb with P(A2,3) transposase in a wild-type 2nd chromosome background and obtained one insertion into the tou gene and another insertion 55 bases upstream of the en transcription start site (2/21 transposition events, a frequency of 9.5%, Table 1; Fig. 4C). In another experiment we mobilized a different P(en3R) insertion in tou to generate 34 transposition events in a wild-type 2nd chromosome background and 6 were in the vicinity of en/inv (17%). Thus, by P-element mobilization, the frequency of homing is similar onto a wild-type and en41.3kb chromosome.

P-elements are known to transpose locally, and, in one study, it was reported that there was also preferential transposition of P-elements to a corresponding region of the homologous chromosome [25]. Therefore we wondered whether the high frequency of transposition events obtained from P(en3R) inserted into tou and inv were the result of local transposition or representative of homing to the en/inv region. Of note, CyO does not disrupt homolog pairing in the vicinity of en/inv, thus, local transposition was a distinct

![Figure 3. P[enHSP] constructs used to dissect the homing fragment.](image-url)
We tested whether there is preferential transposition to a corresponding region of the homologous chromosome in the vicinity of en/inv using a P[walter] element inserted in tou (Table 1). P[walter]-48A contains a modified mini-white gene used to detect gene conversion events [26] and does not contain a PRE. Thus, by analogy with P[en3]D both, mini-white would not be expected to be silenced if P[walter] is inserted in the vicinity of en/inv. We looked for transposition of P[walter]-48A off a wild-type chromosome onto either a CyO or a chromosome carrying the marker Sp, but wild type for the en/inv region. 52 P[walter] transposition events were found, and only one was near en, inserted in tou, a frequency of 1.9% (1/52). This is much lower than rates obtained by transposition of P[en3R] onto either a wild-type (8/55) or en1.5 chromosomes (3/20) (P = 0.0126 by a Fisher’s exact test compared to wild-type; P = 0.0516 compared to en1.5). We suggest that the high rate of insertion into the en/inv region via transposition from P[en3R] inserted in tou or inv is largely the result of homing and not local transposition.

Figure 4. Characterization of and homing to the en1.5 chromosome. (A) Thin line represents DNA upstream and including the transcription start site (TSS) of en. PRE1 and PRE2 are depicted by rectangular boxes. The primers used for PCR reactions are indicated. The extent of the en1.5 deletion is indicated by the dashed line. (B) PCR reactions using wild type (WT) or en1.5 DNA (M) and the following primer sets (1) 1F and 1R (2) 2F and 2R (3) 3F and 1R (4) 4F and 3R. The M PCR product from primer set 1 was sequenced and shows that 1462 bases are deleted in en1.5. (C) Homing frequency onto wild type and en1.5 chromosomes. Homing frequency is the number of insertions near the en/inv region/the total number of transgenic lines. ND, not done.
Are there other preferred targets for \(P\{en\}\) constructs?

To address the question of whether constructs containing the homing fragment have additional preferred targets, we analyzed the insertion sites of all 40 \(P\{en\{HSP1\}\}\) insertions generated by injection into \(en^{11.5}\) embryos that mapped to chromosome 2 (Table 3). We reasoned that the \(en^{11.5}\) chromosome should not alter the chromatin structure of areas outside the \(en/inv\) region of the chromosome. In this experiment, 40 of 102 \(P\{en\{HSP1\}\}\) insertions were on chromosome 2, including one at the \(en\) and one at the \(inv\) promoter (Table 3). We recovered four insertions into \(lola\), a hotspot for \(P\)-element insertions, two into \(bus\), another \(P\)-element hotspot, showing that \(P\{en\{HSP1\}\}\) behaves like other \(P\)-elements with respect to \(P\)-element hotspots [3]. In addition, we obtained two insertions into the gene \(Vha16-1\) (Table 3). \(Vha16-1\) is not a reported hotspot for \(P\)-element insertions although there are 29 \(P\)-element inserts in this vicinity recorded in FlyBase. From these data we conclude that \(P\{en\{HSP1\}\}/\), aside from its homing to \(en/inv\) region, behaves like most other \(P\)-elements in its target site selection.

It has been suggested that \(P\)-elements that contain PREs insert in the genome near \(P\)g-regulated genes (reviewed in [27]). Therefore, we examined if any of the \(P\{en\{HSP1\}\}\) insertion sites were in \(P\)g targets. For \(P\)g targets we used the class I high confidence target genes from Schwartz et al., 2010 [28]. Insertions of \(P\{en\{HSP1\}\}\) were found in 6 \(P\)g target genes: \(CR33987\), \(apterous\), \(teashirt\), \(dachshund\), \(en\), and \(inv\). Notably, these genes are not hotspots for \(P\)-element insertions.

It was recently reported that Polycomb-target genes are cold spots for \(P\)-elements and other transposons [4]. In that study, the sites of 18,214 unselected \(P\{E\gamma 2\}\) insertions were determined [4]. Of these 18,214 insertions, only 156 were into class I high-confidence \(P\)g targets, including 62 in \(apt\), and 20 in \(esg\), both \(P\)-element hotspots. There are no \(P\{E\gamma 2\}\) insertions into \(en\), \(inv\), or \(dachshund\). The number of \(P\{en\{HSP1\}\}\) insertions in \(P\)g targets (6/102) is significantly different than the number of \(P\{E\gamma 2\}\) (156/18,214) (\(P<0.0001\), chi-square test). Thus, our data is consistent with a model that \(P\)-elements that contain PREs have an increased frequency of insertion into \(P\)g-regulated genes.

Discussion

A 1.6kb fragment of \(en\) DNA can mediate homing

Our previous results indicated that a 2.6 kb fragment of \(en\) DNA, extending from –2.4 kb upstream through +188bp of the \(en\) transcription unit could mediate \(P\)-element homing to the \(en/inv\) domain [21]. Here we show that a 1.6kb fragment that extends from –2.0 kb through –0.4 kb is sufficient for homing. We had hoped to identify a small fragment of \(en\) DNA that could mediate homing, but this was not the case. Thus we suggest that homing is mediated by a complex array of proteins and/or chromatin structure.

Construct	Line\(^a\)	Position\(^b\)	Location\(^c\)
\(P\{en3R\}\)	inv	+52 kb	7363188
\(P\{en3R\}\)	\(en\)	–216 bp	7415604
\(P\{en3R\}\)	CG9005	–105 kb	7520040
\(P\{en\{HSP1\}\}\)	inv	+52 kb	7363272
\(P\{en\{HSP1\}\}\)	\(en\)	–26 bp	7415414

\(^a\)Lines are the named by the closest gene. All lines were generated for this study.

\(^b\)The number of kilobases or base pairs upstream (negative numbers) or downstream (positive numbers) of the major \(en\) transcription start site (at 7415388) [35].

\(^c\)Nucleotide insertion site (genome version R5.1).

\(^d\)Nearest gene(s).

Construct	Location\(^b\)	Gene\(^c\)
5A	2L:109235	Sam-S
f-14-3	2L:11057544	Samuel
f-11	2L:11173008	Vm2E
16A	2L:12011113	Rho5, CG6734
m-55-L	2L:12539996	bun*
m-58	2L:12540005	bun*
4E	2L:14234118	sml35A
f-29V	2L:14405054	noc
m-55-S	2L:14997589	mol
f-89	2L:16485712	dac
f-14-1	2L:16685386	gri*
f-28-1	2L:20382385	CG16798
10A	2L:20972144	CG42238
2B	2L:21618794	CG2201
4D	2L:21828581	tsb
2A	2L:22019207	CR33987
6A	2L:5108441	Misp-300
30f1	2L:5981758	elf-4A
14C	2L:8416598	Akap200
m-98	2R:12468461	Cadk
m-69	2R:12744379	Dek
2C	2R:1632293	ap
f-23	2R:18100371	arr-2
m-31	2R:19757865	ken
m-53-L	2R:20289791	silk
12A	2R:20857342	CG3776
f-28-2	2R:221423	Gprk1
m-47	2R:2516935	Vha16-1
m-45	2R:2519424	Vha16-1
m-74	2R:2839867	mim
f-58	2R:2993199	esn
14E	2R:4061646	CG14757
15C	2R:6421820	lola*
14B	2R:6422854	lola*
3A	2R:6429207	lola*
15A	2R:6429232	lola*
inv	2R:7363272	inv
en	2R:7415414	en
6B	2R:7779622	Etalpha48D
f-12	2R:8481109	Amph
PcG proteins are thought to mediate long-range chromatin interactions at the Bithorax complex [29], between the Bithorax and Antennapedia complexes [30], and also between PcG targets on the same chromosome arm [31]. We note that one study suggests that the interactions at the Bithorax complex are not mediated by PREs, but by closely associated insulator elements [32]. Biochemical studies show that PcG protein complexes can interact in vitro [33]. Our results suggest that PREs play a role in P[en] homing: 1) deletion of the 181-bp PRE in the transgene decreases the homing frequency and 2) P[enHSP70] insertions occur in PcG-regulated genes at a higher frequency than P[EY2] insertions. We note that both the eve and Bithorax homing fragments are thought to be insulator elements [9,10]. The en homing fragment is located just upstream of the en promoter and we consider it unlikely that it is an insulator. However, the insulator proteins GAGA Factor, CTCF, and Mdg4 are associated with this DNA in embryos [15]. Therefore, it is possible that the homing fragment has some of the same properties as insulators.

In our previous study [21], we found that embryonic lacZ expression from P[en3R] (called P[en1W] in that study) occurred in stripes at a much higher frequency than with the enhancer trap P[lacW]. Our hypothesis was that P[en3R] caused selective insertion of P[en3R], not just to en/inv, but also to many genes expressed in stripes. We know now that both the en promoter and en PREs (or sequences closely associated with them) mediate interactions with distant enhancers [12,10]. Thus, one reason for the enriched number of lacZ stripe patterns with P[en3R] could be its ability to work with distant enhancers. In support of this, when P[en3R] is inserted up to 140 kb and 5 transcription units away from the nearest en stripe enhancer (either upstream or downstream), P[en3R]-encoded lacZ is still expressed in en-like stripes [12]. In contrast, when P[lacW] is inserted about 45 kb upstream of the nearest en stripe enhancer, into tou, the gene adjacent to en, P[lacW]-encoded lacZ is not expressed in stripes [12]. In fact, the PREs in P[en3] facilitate long-distance interactions with enhancers in many different regions of the genome [18]. We suggest that the high percentage of striped lacZ expression from P[en3R] insertions is due both to the ability of the en promoter and PREs to act with distant enhancers and also to increased insertion into PcG-regulated genes, many of which are developmental regulators and expressed in stripes.

Homing in en

We generated a 1.5 kb deletion of en DNA in situ, including the two PREs. Surprisingly, enA1.5 flies are homozygous viable and fertile. En expression appears normal in these flies (data not shown). We suggest that these PREs are redundant with inv PREs and that the en/inv H3K27me3 domain is not disrupted in enA1.5 flies. Interestingly, P[en] homing still occurs in enA1.5 flies. These data suggest that homing is not mediated solely by self-self interactions between the homing fragment in P[en] and the genomic homing fragment.

A model for P[en] homing

Fig. 5 shows a model for P-element homing. We suggest that P[en] homing is mediated by the interaction of multiple proteins bound to the en fragment within P[en] and proteins bound to the en genomic region, and that these interactions are facilitated by the H3K27me3 mark characteristic of PcG target genes. Note that since P[en] insertions into the en/inv target occur much more frequently than into other PcG-target genes, protein-protein interactions, specific for the en/inv region must be involved in homing. The smallest fragment that could mediate homing was 1.6 kb, a size capable of binding many proteins. This suggests that P[en] homing is not caused by a binding of a single protein or protein complex. However, it is also possible that the 1.6 kb fragment is needed to form the chromatin structure that facilitates homing. Finally, we suggest that P[en] interacts with multiple

![Figure 5. A model for P[en] homing.](image)

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e30437

Figure 5. A model for P[en]/homing. P[en] and the en/inv DNA are packaged in H3K27me3 nucleosomes (red ovals) [15]. Nucleosomes associated with tou and E(Pc) do not have the H3K27me3 mark (blue ovals) [15]. Specific proteins bound to both P[en] and en/inv DNA are represented by different colored rectangular boxes. We suggest that the en DNA in P[en] adopts the same chromatin structure and has the same proteins bound to it as in the genomic context. (P[en] is not drawn to scale). Since the inv promoter is co-regulated with en, and also has a PRE associated with it, we draw its structure as identical to the en promoter. We suggest that P-element homing occurs through specific interactions between P[en] and multiple proteins bound to the genomic en/inv region and that chromatin structure also plays a role. These interactions cause P[en] to be concentrated in the vicinity of en/inv and then transposition occurs into en/inv and genes nearby.

doi:10.1371/journal.pone.0030437.g005
proteins bound to the en/inw domain, since homing still occurs in en^{A1.5}, where the majority of the genomic homing fragment has been deleted.

P-element homing occurs in germ cells. En is not expressed in these cells. Recent results indicate that the H3K27me3 modification is present at many developmental loci in germ cells (reviewed in [34]). P-en homing suggests that, in addition to the H3K27me marks, there are specific proteins bound to en DNA in the germ cells. These proteins could be present to keep en silenced, or perhaps they are there to facilitate rapid initiation of en transcription in the embryo.

Materials and Methods

Construction of plasmids

P[enHSP] constructs were generated by inserting PCR fragments with SpeI and NotI ends into pUbB [23]. Inserts were generated by PCR with the following en primers, P[enHSP1] (-2.407 to -0.395 kb): P1-GGGGGCGGGCGGAAATCCGGTTGATATGAT; P2-CCAAAATTGGTATGTGACGACTGTGACAG; P[enHSP2] (-1.945 to -0.395 kb): P3-GGGGGCGGGCGAAGTGTTAGGGGAAAT; P2; P[enHSP3] (-2.047 to -0.579 kb): P1 and CGCACTAGGCCACGACACTTCTTC [12]; P[enHSP4] (-1.945 to -0.847 kb) P3 and GCAGACTAGGCCCTGAATTATAC; P[enHSP5] (-0.576 to -0.395 kb): P1 and GGGGGCGGGCGGATATAATG; P[enHSP6] (-2.407 to -0.579 kb): P1 and GGGGGCGGGCGGATATAATG; P[enHSP7] (-0.941 to -0.415 kb): P1 and GGGGGCGGGCGGATATAAATG and GGGAGATGTGGAGCAACATGTTGCTCCAGCG.

The PCR-amplified fragments were cut with both SpeI and NotI and ligated into pUbB. The resulting clones were sequenced in and around the cloned PCR fragment to ensure sequence fidelity.

Transgenic lines

P[enHSP] lines were generated by injections into w^{1118} embryos by Genetic Services (Sudbury, MA, USA). For P[enHSP] inserts that mapped to chromosome 2, recombination mapping was used to determine whether they were in the vicinity of en. For P[en3R] mobilization, P[en3R]-87kb or P[en3R]+526kb CyO/Sp or en^{A1.5}; P(A2,3)99B Sb y^{99E} y^{99E} males were crossed to y^{99E} females. y^{99E} non-CyO progeny represented recombination events. All P[en3R] insertions on the second chromosome were localized by inverse PCR as described [12]. For P[en3R] mobilization, w^{en}; P[w(1)4A]Sp or CyO; P(A2,3)99B Sb y^{99E} y^{99E}/+ males were crossed to y Df(1)w/72 females and w^{en} Sp or GyO males were selected and mapped with respect to chromosome. Insertions sites on the CyO chromosome were determined by inverse PCR [12]. Insertions on the Sp chromosome were mapped via recombination mapping to determine whether they were tightly linked with en.

Generation of en^{A1.5}

en^{A1.5} was obtained in an experiment designed to recover a gene conversion event replacing wild-type en DNA (Fig. S1). It arose as the result of an imprecise excision of a P-element inserted 412 bp upstream of the major transcription start site of en. The primer sequences used to characterize the deletion are: 1F: CAGTGGGACAAATTCGATG, 1R: GCTTGTTAGGGCAGCAAT, 2F: GGAAGATGTGGAGGAAAT, 2R: GAAATCTGTGGAGCATG; 3F: TCACATGGAACAGACATCG, 3R: ATCGATTTGCAGCAGCAG, 4F: TTCAAGGTGCCATATGGCT. The en^{A1.5} deletion includes 1462 bp of genomic sequence from 7415804 to 7417265 (genome release 3.36), and it leaves 32 bp (CATGGAAGATGTGGTGAATAACATAATTTAAG) in this genomic location.

Supporting Information

Figure S1 Generation of en^{A1.5}. (A) en^{A1.5} was generated by a crossing scheme designed to obtain a gene conversion event by P-element excision [26]. The recipient chromosome was marked with Sp and contained a 42 bp P-element inserted 412 bp upstream of the en transcription start site. The donor chromosome contained a 16 kb deletion of en DNA (en^{A12B}) from ~15 kb upstream through the first intron of en (generated in our lab), and the donor P-element that contained LoxP sites and FRT sites flanking (indicated by vertical lines in the en DNA) the PREs (P[en2] from [18]). We were trying to get a gene conversion event that would put LoxP and FRT sites into the genome. We set up 400 vials of Cross 1 and 300 vials of Cross 2. From this, we obtained 2 potential deletions (en^{A1.5} and one other) and one potential gene conversion event. The 2 deletions were recovered and balanced from Cross 3 but the gene conversion event was not recovered. (B) Schematic representation of the PCR reactions used to detect the gene conversion event. L(LoxP), F(FRT). A, B are approximate primer locations. (TIF)

Acknowledgments

We thank Bill Engels for the P[w(1)4A] flies, Jeff Americo for inverse PCR on P[w(1)4A] transposition lines; Sarah DeVido for making some of the P[enHSP] constructs; and Elissa Lei, Jim Kemion, and Payal Ray for discussion and comments on the manuscript.

Author Contributions

Conceived and designed the experiments: DM JAK. Performed the experiments: YC DYK DM ALA JAK. Analyzed the data: YC DYK ALA DM JAK. Wrote the paper: JAK YC. Edited the manuscript: YC DYK ALA DM.

References

1. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218: 348–353.
2. Bellen HJ, O’Kane CJ, Wilson C, Grossniklaus U, Pearson RK, et al. (1989) P-element enhanced enhancer detection-A versatile method to study development in Drosophila. Genetics 123: 1308–1309.
3. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, et al. (2004) The BDGP gene disruption project: Progress using transposons with distinctive site specificities. Genetics 167: 761–781.
4. Bellen HJ, Levis RW, He Y, Carlson JW, Evans-Holm M, et al. (2011) The Drosophila gene disruption project: Progress using transposons with distinctive site specificities. Genetics 188: 731–743.
5. Bier E, Vaessen H, Shepherd S, Lee K, McCall K, et al. (1989) Searching for pattern and mutation in the Drosophila genome with a FlacZ vector. Genes Dev 5: 1273–1287.
6. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84: 9123–9127.
7. Hama C, Ali Z, Kornberg TB (1990) Region-specific recombination and expression are directed by portions of the Drosophila en gene promoter. Genes Dev 4: 1079–1093.
8. Taddei B, Gura YM, Jaynes JB (2009) An enhancer-promoter complex. Development 136: 3067–3075.
9. Whiteley M, Kassis JA (1997) Rescue of Drosophila en mutants with a highly divergent mosquito en gene DNA using a homing, enhancer-trapping transposon. Development 124: 1531–1541.
10. Kwon D, Mucci D, Langkais KK, Americo JL, Devido SK, et al. (2009) Enhanced-promoter communication at the Drosophila en locus. Development 136: 3067–3073.
13. Gustavson E, Goldborough AS, Ali Z, Kornberg TB (1996) The *Drosophila engrailed* and *invected* genes: Partners in regulation, expression, and function. Genetics 142: 893–906.
14. Moazed D, O'Farrell PH (1992) Maintenance of the *engrailed* expression pattern by Polycomb group genes in *Drosophila*. Development 116: 803–810.
15. Celiker SE, Dillon LA, Gerstein MB, Gunalan KC, Henikoff S, et al. (2009) Unlocking the secrets of the genome. Nature 459: 927–930.
16. Négré N, Hennequin J, Sun LV, Lavrov S, Bello M, et al. (2006) Chromosomal distribution of PcG proteins during *Drosophila* development. PLoS Biology 4(6): e170.
17. Americo J, Whiteley M, Brown JL, Fujioka M, Jaynes JB, et al. (2002) A complex array of DNA binding proteins required for pairing-sensitive silencing by a Polycomb-group response element from the *Drosophila engrailed* gene. Genetics 160: 1561–1571.
18. DeVido S, Kwon D, Brown JL, Kassis JA (2006) The role of Polycomb-group response elements in regulation of *engrailed* transcription in *Drosophila*. Development 133: 669–676.
19. Cunningham MD, Brown JL, Kassis JA (2010) Characterization of the Polycomb group response elements of the *Drosophila melanogaster invected* locus. Mol Cell Biol 30: 820–828.
20. Tower J, Kurapati R (1994) Preferential transposition of a *Drosophila* P element to the corresponding region of the homologous chromosome. Mol Gen Genet 244: 484–490.
21. Lyko R, Brenton JD, Surani MA, Paro R, et al. (1997) An imprinting element from the mouse H19 locus functions as a silencer in *Drosophila* Nat Genet 16: 171–173.
22. Robertson HM, Preston CR, Phillips RW, Johnson-Schlitz DM, Bely WK, et al. (1988) A stable genomic source of P element transposase in *Drosophila melanogaster*. Genetics 118: 461–470.
23. Li H-B, Müller M, Bahechar IA, Kyrchanova O, Ohno K, et al. (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in *Drosophila melanogaster*. Mol Cell Biol 31: 616–625.
24. Lanzuolo C, Roure V, Schuettengruber, et al. (2011) Polycomb-dependent regulatory contacts between distant Hox loci in *Drosophila*. Cell 144: 214–226.
25. Li H-B, Müller M, Bahechar IA, Kyrchanova O, Ohno K, et al. (2011) Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 7(3): e1001343.
26. Li H-B, Muller M, Bahechar IA, Kyrchanova O, Ohno K, et al. (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in *Drosophila melanogaster*. Mol Cell Biol 31: 616–625.
27. Lanzuolo C, Roure V, Schuettengruber, et al. (2011) Polycomb-dependent regulatory contacts between distant Hox loci in *Drosophila*. Cell 144: 214–226.
28. Soeller WC, Poole SJ, Kornberg T (1968) In vitro transcription of the *Drosophila engrailed* gene. Genes Dev 2: 68–81.