Local characterization of polyhedral spaces

Nina Lebedeva and Anton Petrunin

Abstract
We show that a compact length space is polyhedral if a small spherical neighborhood of any point is conic.

1 Introduction

In this note we characterize polyhedral spaces as the spaces where every point has a conic neighborhood. Namely, we prove the following theorem; see Section 2 for all necessary definitions.

1.1. Theorem. A compact length space X is polyhedral if and only if a neighborhood of each point $x \in X$ admits an open isometric embedding to Euclidean cone which sends x to the tip of the cone.

Note that we do not make any assumption on the dimension of the space. If the dimension is finite then the statement admits a simpler proof by induction; this proof is indicated in the last section.

A priori, it might be not clear why the space in the theorem is even homeomorphic to a simplicial complex. This becomes wrong if you remove word “isometric” from the formulation. For example, there are closed 4-dimensional topological manifold which does not admit any triangulation, see [2, 1.6].

The Theorem 1.1 is applied in [4], where it is used to show that an Alexandrov space with the maximal number of extremal points is a quotient of \mathbb{R}^n by a cocompact properly discontinuous isometric action.

About the proof. In the first approximation, the proof can be described as following. We cover X by finite number of spherical conic neighborhood and consider its nerve, say \mathcal{N}. Then we map \mathcal{N} barycentrically back to X. If we could show that the image of this map cover whole X that would nearly finish the proof. Uninformatively we did not manage to show this statement and have make a walk around; this is the only subtle point in the proof.

Acknowledgment. We would first like to thank Arseniy Akopyan, Vitali Kapovitch, Alexander Lytchak and Dmitri Panov for their help.

2 Definitions

In this section we give the definition of polyhedral space of arbitrary dimension. It seems that these spaces were first considered by Milka in [5]; our definitions are equivalent but shorter.
Metric spaces. The distance between points \(x \) and \(y \) in a metric space \(X \) will be denoted as \(|x - y|\) or \(|x - y|_X\). Open \(\varepsilon \)-ball centered at \(x \) will be denoted as \(B(x, \varepsilon) \); i.e.,
\[
B(x, \varepsilon) = \{ y \in X \mid |x - y| < \varepsilon \}.
\]
If \(B = B(x, \varepsilon) \) and \(\lambda > 0 \) we use notation \(\lambda \cdot B \) as a shortcut for \(B(x, \lambda \cdot \varepsilon) \).

A metric space is called length space if the distance between any two points coincides with the infimum of lengths of curves connecting these points.

A minimizing geodesic between points \(x \) and \(y \) will be denoted by \([xy]\).

Polyhedral spaces. A length space is called polyhedral space if it admits a finite triangulation such that each simplex is (globally) isometric to a simplex in Euclidean space.\(^1\)

Cones and homotheties. Let \(\Sigma \) be a metric space with diameter at most \(\pi \). Consider the topological cone \(K = [0, \infty) \times \Sigma / \sim \) where \((0, x) \sim (0, y)\) for every \(x, y \in \Sigma \). Let us equip \(K \) with the metric defined by the rule of cosines; i.e., for any \(a, b \in [0, r) \) and \(x, y \in \Sigma \) we have
\[
|(a, x) - (b, y)|_K^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos |x - y|_\Sigma.
\]
The obtained space \(K \) will be called Euclidean cone over \(\Sigma \). All the pairs of the type \((0, x)\) correspond to one point in \(K \) which will be called the tip of the cone. A metric space which can be obtained in this way is called Euclidean cone. Equivalently, Euclidean cone can be defined as a metric space \(X \) which admits a one parameter family of homotheties \(m_\lambda : X \to X \) for \(\lambda \geq 0 \) such that for any fixed \(x, y \in X \) there are real numbers \(\zeta, \eta \) and \(\vartheta \) such that \(\zeta, \vartheta \geq 0 \), \(\eta^2 \leq \zeta \cdot \vartheta \) and
\[
|m_\lambda(x) - m_\mu(y)|_X^2 = \zeta \cdot \lambda^2 + 2 \cdot \eta \cdot \lambda \cdot \mu + \vartheta \cdot \mu^2.
\]
for any \(\lambda, \mu \geq 0 \). The point \(m^0(x) \) is the tip of the cone; it is the same point for any \(x \in X \).

Once the family of homotheties is fixed, we can abbreviate \(\lambda \cdot x \) for \(m^\lambda(x) \).

Conic neighborhoods.

2.1. Definition. Let \(X \) be a metric space, \(x \in X \) and \(U \) a neighborhood of \(x \). We say that \(U \) is a conic neighborhood of \(x \) if \(U \) admits an open distance preserving embedding \(\iota : U \to K_x \) into Euclidean cone \(K_x \) which sends \(x \) to the tip of the cone.

If \(x \) has a conic neighborhood then the cone \(K_x \) as in the definition will be called the cone at \(x \). Note that in this case \(K_x \) is unique up to an isometry which sends the tip to the tip. In particular, any conic neighborhood \(U \) of \(x \) admits an open distance preserving embedding \(\iota_U : U \to K_x \) which sends \(x \) to the tip of \(K_x \). Moreover, it is easy to arrange that these embeddings commute with inclusions; i.e., if \(U \) and \(V \) are two conic neighborhoods of \(x \) and \(U \supset V \) then the restriction of \(\iota_U \) to \(V \) coincides with \(\iota_V \). The later justifies that we omit index \(U \) for the embedding \(\iota : U \to K_x \).

\(^1\)Note that according to our definition, the polyhedral space has to be compact.
Assume $x \in X$ has a conic neighborhood and K_x is the cone at x. Given a geodesic $[xy]$ in X, choose a point $\bar{y} \in [xy]$ sufficiently close to x and set

$$\log[xy] = \frac{|x - y|_X}{|x - \bar{y}|_X}, \epsilon(\bar{y}) \in K_x.$$

Note that $\log[xy]$ does not depend on the choice of \bar{y}.

\section{Preliminary statements}

\subsection{Definition.}
Let X be a metric space and $[px_1],[px_2], \ldots,[px_m]$ are geodesics in X. We say that a neighborhood U of p splits in the direction of the geodesics $[px_1], [px_2], \ldots, [px_k]$ if there is an open distance preserving map i from U to the product space $E \times K'$, such that E is a Euclidean space and the inclusion $i(U \cap [px_i]) \subset E \times \{\epsilon'\}$ holds for a fixed $\epsilon' \in K'$ and any i.

\subsection{Lemma.}
Let X be a metric space and $p \in X$, $B_i = B(x_i,r_i)$, $i \in \{1, \ldots, k\}$ are conic neighborhoods of x_i. Assume $p \in B_i$ for each i. Then any conic neighborhood of p splits in the direction of $[px_1], \ldots, [px_k]$.

In the proof we will use the following statement; its proof is left to the reader.

\subsection{Proposition.}
Assume K is a metric space which admits cone structures with different tips x_1, \ldots, x_k. Then K is isometric to the product space $E \times K'$, where E is a Euclidean space and K' is a cone with tip ϵ' and $x_i \in \epsilon' \times E$ for each i.

\textit{Proof of Lemma 3.2.} Fix sufficiently small $\epsilon > 0$. For each point x_i, consider point $x'_i \in [px_i]$ such that $|p - x'_i| = \epsilon |p - x_i|$. Since ϵ is sufficiently small, we can assume that x'_i lies in the conic neighborhood of p.

Note that for the right choice of parameters close to 1, the composition of homotheties with centers at x_i and p produce a homothety with center at x'_i and these are defined in a fixed conic neighborhood of p. These homotheties can be extended to the cone K_p at p and taking their compositions we get the homotheties for all values of parameters with the centers at $x'_i = \log[px'_i] \in K_p$. It remains to apply Proposition 3.3. \hfill \square

From the Lemma 3.2, we get the following corollary.

\subsection{Corollary.}
Let X be a compact length space and $x \in X$. Suppose $B = B(x,r)$ is a conic neighborhood of x which splits in the direction of $[px_1], \ldots, [px_k]$ and $\iota : B \hookrightarrow E \times K'$ be the corresponding embedding. Then the image $\iota(B)$ is a ball of radius r with a center $(\iota(x), \epsilon')$.

In particular, for any point $q \in B$ such that $|q - p|_X = \rho$ and $\iota(q) \in E \times \{\epsilon'\}$ the ball $B(q,r - \rho)$ is a conic neighborhood of q.

3
3.5. Lemma. Let $B_i = B(x_i, r_i), i \in \{0, \ldots, k\}$ be balls in the metric space X. Assume each B_i forms a conic neighborhood of x_i and $x_i \in B_j$ if $i \leq j$. Then X contains a subset Q which contains all x_i and is isometric to a convex polyhedron.

Moreover the geodesics in Q do not bifurcate; i.e., if geodesic $\gamma: [a, b] \to X$ lies in Q and an other geodesics $\gamma': [a, b] \to X$ coincides with γ on some interval then $\gamma' = \gamma$.

Proof. To construct $Q = Q_k$ we apply induction on k and use the cone structures on B_i with the tip at x_i consequently.

The base $k = 0$ is trivial.

By the induction hypothesis, there is a set Q_{k-1} containing all x_0, \ldots, x_{k-1}.

Note that B_k is strongly convex; i.e., any minimizing geodesic with ends in B_k lies completely in B_k. In particular $Q_{k-1} \cap B_k$ is convex. Since $x_i \in B_k$ for all $i < k$, we may assume that $Q_{k-1} \subset B_k$.

Note that the homothety m^λ_k with center x_k and $\lambda \leq 1$ is defined for all points in B_k. Set

$$Q_k = \{ m^\lambda_k(x) \mid x \in Q_{k-1} \text{ and } \lambda \leq 1 \}.$$

Since Q_{k-1} is isometric to a convex polytope, so is Q_k.

To show that the geodesic $\gamma: [a, b] \to X$ in Q can not bifurcate, it is sufficient to show that if $a < c < b$ then a neighborhood of $p = \gamma(c)$ splits in the direction of γ.

Without loss of generality, we may assume that p lies in the intersection $\bigcap_i B_i$; if this is not the case, we can move p in this intersection applying a composition of the homotheties m^λ_k for $\lambda_k \geq 1$ and chop the interval around c to keep γ in Q.

It remains to apply Lemma 3.2. \qed

4 The proof

The proof of Theorem 1.1 is based on the following lemma; its proof is generously left to the reader.

4.1. Lemma. Assume a length space X is covered by finite number of sets such that each finite intersection of these sets is isometric to a convex polytope. Then X is a polyhedral space.

Proof of Theorem 1.1. We need to show the “if” part; the “only if” part is trivial.

Fix a finite cover of X by open balls $B_i = B(x_i, r_i), i \in \{0, \ldots, n\}$ such that for each i, the ball $4 \cdot B_i$ is a conic neighborhood of x_i.

Given $i \in \{0, \ldots, n\}$ and $z \in X$ set

$$f_i(z) = |x_i - z|^2_X - r_i^2.$$

Clearly $f_i(z) < 0$ if and only if $z \in B_i$. Set

$$f(z) = \min_i \{f_i(z)\}.$$

4
It follows that \(f(z) < 0 \) for any \(z \in X \).

Consider Voronoi domains \(V_i \) for the functions \(f_i \); i.e.,
\[
V_i = \{ z \in X \mid f_i(z) \leq f_j(z) \text{ for all } j \}.
\]

From above we get that \(V_i \subset B_i \) for each \(i \).

Given a subset \(\sigma \subset \{0, \ldots, n\} \) set
\[
V_\sigma = \bigcap_{i \in \sigma} V_i.
\]

Note that \(V_{(j)} = V_j \) for any \(i \in \{0, \ldots, n\} \).

Let \(\mathcal{N} \) be the nerve of the covering \(\{V_i\} \); i.e., \(\mathcal{N} \) is the abstract simplicial complex with \(\{0, \ldots, n\} \) as the set of vertexes and such that a subset \(\sigma \subset \{0, \ldots, n\} \) forms a simplex in \(\mathcal{N} \) if and only if \(V_\sigma \neq \emptyset \).

Let us fix a simplex \(\sigma \) in \(\mathcal{N} \). While \(\sigma \) is fixed, we may assume without loss of generality that \(\sigma = \{0, \ldots, k\} \) for some \(k \leq n \) and \(r_0 \leq r_1 \leq \ldots \leq r_k \). In particular \(2 \cdot B_i \ni x_0 \) for each \(i \leq k \).

From above \(V_\sigma \subset B_0 \). Since \(4 \cdot B_i \) is a conic neighborhood of \(x_i \) and \(2 \cdot B_i \ni x_0 \) for each \(i \in \sigma \), we can apply Lemma 3.2 for the balls \(4 \cdot B_0, \ldots, 4 \cdot B_k \). Denote by \(f: 4 \cdot B_0 \leftrightarrow E \times K \) the distance preserving embedding provided by this lemma.

We can assume that the Euclidean factor \(E \) has minimal possible dimension; i.e., the images \(f(B_0 \cap [x_0 x_i]) \) span whole \(E \). In this case the projection of \(f(V_\sigma) \) on \(E \) is a one-point set, say \{z\}. Denote by \(x_\sigma \in B_0 \) the point such that \(f(x_\sigma) = z \). Set \(r_\sigma = r_0 \) and \(B_\sigma = B(x_\sigma, r_\sigma) \). (The point \(x_\sigma \) plays the role of radical center of the collection of balls \(\{B_i\}_{i \in \sigma} \).)

According to Corollary 3.4 the ball \(3 \cdot B_\sigma \) forms a conic neighborhood of \(x_\sigma \). Clearly \(B_\sigma \ni V_\sigma \) for any simplex \(\sigma \) in \(\mathcal{N} \).

Let \(\sigma \) be a simplex of \(\mathcal{N} \) and \(\varphi, \psi \) be two faces of \(\sigma \); i.e., \(\varphi, \psi \subset \sigma \). Note that \(3 \cdot B_{\varphi} \ni x_\psi \) if \(r_\varphi \leq r_\psi \). Therefore Lemma 3.5 provides a subset, say \(Q_\sigma \), isometric to a convex polyhedron and contains all \(x_\varphi \) for \(\varphi \subset \sigma \).

It remains to show
(a) \(X = \bigcup_{\sigma} Q_\sigma \), where the union is taken for all the simplices \(\sigma \) in \(\mathcal{N} \).
(b) The intersection of arbitrary collection of \(Q_\sigma \) is isometric to a convex polytope.

Once (a) and (b) are proved, Lemma 4.1 finishes the proof.

Part (b) follows since the geodesics in \(Q_\sigma \) do not bifurcate; see Lemma 3.5.

Given \(p \in X \), set
\[
\sigma(p) = \{ i \in \{0, \ldots, n\} \mid p \in V_i \}.
\]

Note that \(\sigma(p) \) forms a simplex in \(\mathcal{N} \) and \(p \in V_{\sigma(p)} \).

Therefore \(p \in B_{\sigma(p)} \).

Recall that \(B_{\sigma(p)} \) forms a conic neighborhood of \(x_{\sigma(p)} \). If \(p \neq x_{\sigma(p)} \) then moving \(p \) away from \(x_{\sigma(p)} \) in the radial direction keeps the point in \(V_{\sigma(p)} \) till the moment it hits a new Voronoi domain, say \(V_j \) with \(j \notin \sigma(p) \). Denote this end point by \(p' \). In other words, \(p' \) is the point such that
\footnote{It also follows that \(V_i \) forms a strongly convex subset of \(X \); i.e., any minimizing geodesic in \(X \) with ends in \(V_i \) lies completely in \(V_i \) This property is not needed in our proof, but it is used in the alternative proof; see the last section.}
(i) p lies on the geodesic $[x_{\sigma(p)}p]$;
(ii) $p' \in V_i$ for any $i \in \sigma(p)$;
(iii) the distance $|x_{\sigma(p)} - p'|_X$ takes the maximal possible value.

Start with arbitrary point p and consider the recursively defined sequence $p = p_0, p_1, \ldots$ such that $p_{i+1} = p'_i$.

Note that $\sigma(p)$ forms a proper subset of $\sigma(p')$. It follows that the sequence (p_i) terminates after at most n steps; in other words $p_k = x_{\sigma(p_k)}$ for some k.

In particular $p_k \in Q_{\sigma(p_k)}$. By construction it follows that $p_i \in Q_{\sigma(p_k)}$ for each $i \leq k$. Hence $p \in Q_{\sigma(p_k)}$; i.e., (a) follows.

5 Final remarks

Finite dimensional case. Let X be a compact length space such that each point $x \in X$ admits a conic neighborhood.

Note that from Theorem 1.1, it follows in particular that dimension of X is finite. If we know a priori the dimension (topological or Hausdorff) of X is finite then one can build an easier proof using induction on the dimension which we are about to indicate.

Consider the Voronoi domains V_i as in the beginning of proof of Theorem 1.1. Note that all $V_{\{i,j\}}$ are convex and $\dim V_{\{i,j\}} < \dim X$ if $i \neq j$.

By induction hypothesis we can assume that all $V_{\{i,j\}}$ are polyhedral spaces. Cover each $V_{\{i,j\}}$ by isometric copies of convex polyhedra satisfying Lemma 4.1. Applying the cone construction with center x_i over these copies in $V_{\{i,j\}}$ for all $i \neq j$, we get a covering of X by a finite number of copies of convex polyhedra such that all their finite intersections are isometric to convex polyhedra. It remains to apply Lemma 4.1.

Spherical and hyperbolic polyhedral spaces. Analogous characterization holds for spherical and hyperbolic polyhedral spaces. One needs to use spherical and hyperbolic rules of cosine in the definition of cone; after that proof goes without any changes.

Locally compact case. One may define polyhedral space as a complete length space which admits a locally finite triangulation such that each simplex is isometric to a simplex in Euclidean space.

In this case a locally compact length space is polyhedral if every point admits a conic neighborhood. The proof is the same.

One more curvature free result. Our result is curvature free — we do not make any assumption on the curvature of X. Besides our theorem, we are aware about only one statement of that type — the polyhedral analog of Nash–Kuiper theorem. It states that any distance nonexpanding map from m-dimensional polyhedral space to the Euclidean m-space can be approximated by a piecewise distance preserving map to the Euclidean m-space. In full generality this result was proved recently by Akopyan [1], his proof is based on earlier results obtained by Zalgaller [7] and Krat [3]. Akopyan’s proof is sketched in the lecture notes of the second author [6].
References

[1] Akopyan, A. V., *A piecewise linear analogue of Nash–Kuiper theorem*, a preliminary version (in Russian) can be found on www.moebiuscontest.ru

[2] Freedman, M. H., *The topology of four-dimensional manifolds*. J. Differential Geom. 17 (1982), no. 3, 357–453.

[3] Krat, S. *Approximation problems in Length Geometry*, Thesis, 2005

[4] Nina Lebedeva, *Alexandrov spaces with maximal number of extremal points*, arXiv:1111.7253

[5] Milka, A. D. *Multidimensional spaces with polyhedral metric of nonnegative curvature*. I. (Russian) Ukrain. Geometr. Sb. Vyp. 5–6 1968 103–114.

[6] Petrunin, A.; Yashinski, A. *Folding the polyhedral spaces*.

[7] Zalgaller, V. A. *Isometric imbedding of polyhedra*. (Russian) Dokl. Akad. Nauk SSSR 123 1958 599–601.