OPTIMIZATION OF PROFILE AND MATERIAL OF ABRASIVE WATER JET NOZZLE

Anand Bala Selwin K P a, Ramachandran S b

a Master degree student, Mechanical Engineering Department, Sathyabama University, Chennai, India

b Research Head, Faculty of Mechanical Engineering Department, Sathyabama University, Chennai, India

ABSTRACT

The objective of this work is to study the behaviour of the abrasive water jet nozzle with different profiles and materials. Taguchi-Grey relational analysis optimization technique is used to optimize the value with different material and different profiles. Initially the 3D models of the nozzle are modelled with different profiles by changing the tapered inlet angle of the nozzle. The different profile models are analysed with different materials and the results are optimized. The optimized results would give the better result taking wear and machining behaviour of the nozzle.

INTRODUCTION

Abrasive water jet machining is the process of cutting materials with good finish on the machined surface unconventionally. This process can be implemented in broad range of industries where both hard and brittle materials can be machined effectively using this process [2]. The problem associated with these high speed jet nozzles are wear along the nozzle walls [11]. The wear at the wall of the nozzle is mainly due to the complex function of particle impact and wall properties [3]. Also these complex phenomenons include the geometry of the nozzle and other operating parameters [4]. Jukti et al [5] has done major experiment on this abrasive water jet machining process and said that experiments in future had to be done with various ceramic materials.

The main objective of the work is to study the wear in the nozzle walls with different profile and materials. Junkar et al [6] has concluded from his work that an explicit Finite
Element Analysis can be used for understanding the influences of process parameters on it. The nozzle materials vary differently which depends on the operating pressure and nozzle design [7] and hence there are not large materials available for selection of nozzle material. Ye et al [8] in his paper had concluded that the internal shape of nozzle which is critical to the acceleration of abrasive particles and to the wear of the nozzle. The work also states that the optimized inlet angle can lead to less erosion along the walls. Deepak et al [9] has experimented on abrasive water jet machining technique and concluded that increasing the inlet pressure makes an increase in skin friction coefficient.

By taking these aspects into consideration to improve wear resistance and machining process, nozzle geometry and nozzle materials are taken as parameters. The optimized result gives the perfect result to improve the wear and machining behaviour of the nozzle.

EXPERIMENTS AND METHODS

The 3D model of the nozzle is modelled using the Catia V5 R20 software. The basic dimensions taken for modelling the nozzle are

Diameter - 1mm

Length - 20mm

Cylindrical Tube Length - 6mm

Four models of the nozzle is modelled using four different inlet angles respectively. The four different inlet angles used are 50°, 60°, 70°, 80°.
In the selection process of the materials the main aspects considered are the wear properties of the material. The ability to withstand high pressure within the nozzle and the ability to withstand the abrasive particles striking the walls during the machining process are the main factor considered for selecting the material. The temperature does not affect the material selection as the whole of the process takes place approximately within the room temperature. The materials that are selected also do not react to the water as water is the carrier of abrasive particles. Based on these aspects, the major materials to be considered in this experiment are

- Hardened Steel (HS)
- Silicon Carbide (SiC)
- Titanium Carbide (TiC)
- Tungsten Carbide (WC)

For four different inlet angles and four different materials, the finite element analysis is done using the Ansys 14 software for a constant load. By performing the finite element analysis on the nozzle the total deformation on the nozzle and the maximum stress induced
along the walls of the nozzle can be numerically obtained. Though the numerical analysis
doesn’t give perfect result when compared to practically made experimental results, it gives
proper idea to the perfect results and helps to save cost and valuable time.

The constant load that is used in this project work is 3.5E5 Pa pressure which is
assumed to be acting along the cylindrical tube of the abrasive water jet nozzle.

For the four different materials and four different inlet angles the orthogonal array will
be 2^4, which is total number of 16 experiments.

The analysis is done and the total deformation and the stress values are noted in the
experimental design tabulation for further optimization process.

![Fig 2: Total Deformation result for 60° inlet angle and Hardened steel material](image)

![Fig 3: Stress result for 60° inlet angle and Hardened steel material](image)
Table 1: Parameters level used in the experiment

Variables	Levels			
Inlet Angle (deg)	1	2	3	4
	50	60	70	80
Materials	HS	SiC	TiC	WC

Table 2: Experimental design with observed results

Trial	Inlet angle (deg)	Material	Deformation (m) ×10^9	Stress (pa) ×10^5
1	50	HS	2.7003	8.8971
2	50	SiC	1.2621	9.4299
3	50	TiC	1.3223	9.2638
4	50	WC	0.9689	8.8581
5	60	HS	2.911	9.3033
6	60	SiC	1.3652	9.7185
7	60	TiC	1.4291	9.5809
8	60	WC	0.9992	9.2765
9	70	HS	2.6866	8.5684
10	70	SiC	1.2532	9.105
11	70	TiC	1.3143	8.9388
12	70	WC	0.9222	8.5282
13	80	HS	2.6338	8.8344
14	80	SiC	1.2245	9.3776
15	80	TiC	1.2862	9.2091
16	80	WC	0.9042	8.794
The optimization process to be used is the Taguchi-Grey relational method as there is more than one response in the experimental design.

The S/N ratio for the observed results are found out using the formula

\[Y_{ij} = -10\log(y^2) \]

which is the formula for smaller the better

Since the deformation and stress values have to be minimised, the approach that is used in this particular experiment is smaller the better for both the responses.

Table 3: S/N ratios for the responses

Trail	Deformation	Stress
1	173.372	-118.985
2	177.393	-119.490
3	177.57	-119.336
4	180.274	-118.947
5	170.718	-119.372
6	177.297	-119.752
7	176.899	-119.628
8	180.01	-119.348
9	171.414	-119.658
10	178.041	-119.186
11	177.62	-119.026
12	180.705	-118.617
13	171.588	-118.924
14	178.237	-118.442
15	177.815	-119.284
16	180.877	-118.884

The next step is to find out the normalised S/N ratio for the above S/N ratio. The formula for normalised S/N ratio for smaller the better is
\[X_{ij} = \frac{(\max Y_{ij} - Y_{ij})}{(\max Y_{ij} - \min Y_{ij})} \]

Table 4: Normalised S/N ratio for the responses

Trail	Deformation	Stress
1	0.935	0.324
2	0.343	0.769
3	0.325	0.6334
4	0.059	0.291
5	1	0.665
6	0.352	1
7	0.392	0.890
8	0.085	0.644
9	0.931	0.036
10	0.279	0.501
11	0.320	0.360
12	0.0169	0
13	0.914	0.270
14	0.259	0.727
15	0.301	0.588
16	0	0.23

The next step is to find out the grey relational grade, which helps in indicating the relational degree between the sequences of the response. The grey relational coefficient can be calculated using the formula

\[GC_{ij} = \frac{(\Delta_{min} + \Psi \Delta_{max})}{(\Delta_{ij} + \Psi \Delta_{max})} \]
After calculating the grey relational coefficients, the grey relational grade value is calculated by calculating the average value of the grey relational coefficient of both the responses. Grey relational grade gives the relational degree between the sequences.

Table 5: Grey relational coefficient and Grey relational grade

Trial	Grey coefficient (deformation)	Grey coefficient (stress)	Grey relational grade G_i
1	0.897	0.597	0.768
2	0.603	0.812	0.707
3	0.597	0.732	0.665
4	0.515	0.585	0.55
5	1	0.749	0.875
6	0.607	1	0.804
7	0.622	0.9	0.761
8	0.522	0.737	0.629
9	0.935	0.509	0.722
10	0.581	0.667	0.624
11	0.595	0.609	0.602
12	0.504	0.5	0.502
13	0.921	0.578	0.749
14	0.574	0.785	0.679
15	0.589	0.708	0.648
16	0.5	0.566	0.533

RESULTS AND DISCUSSION

Grey relational grade gives the relational degree between the sequences. After calculating the entire grey relational grade, a response table is created by providing the grey relational grade for each level of the variable.
Table 6: Response table for Grey relational grade

Variables	Level 1	Level 2	Level 3	Level 4
Angle	0.684	0.767	0.6425	0.652
Material	0.790	0.704	0.669	0.583

The above response table gives the value of the grey relational grade for each variables in every level.

![Grey Relational Grade](image)

Fig: 4 Grey Relational Grade

CONCLUSION

The Taguchi grey relational analysis optimizes the result to be 70° tapered inlet angle and tungsten carbide material. From the experiment the change in wear properties by changing the profile of the nozzle and by changing the material is found out.

The optimised inlet angle and proper selection of material can reduce the wear along the walls of the nozzle. The nano abrasive particles with the nanotechnology can be used for abrasive particles to reduce erosion along the walls of the nozzle and future work can be done in the process of using nano particles for abrasives.
REFERENCE

1. Umang Anand, Joseph Katz, “Prevention of nozzle wear in abrasive water suspension jets (awsj) using porous lubricated nozzles”, Journal Of Tribology, 2003
2. Bharanitharan P, “Design and analysis of nozzle in ajm process using computational fluid dynamics”, Star journal, 2015
3. Mostafa G, Kwak Yong Kil, Ahn Jung Hwan, “Computational fluid analysis of abrasive water jet cutting head”, Journal of Mechanical Science and Technology 24 (2010) 249–252
4. Saurabh Verma, Mishra S K, Moulick S K, “CFD analysis of nozzle in abrasive water suspension jet machining”, International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974, 2015
5. Jukti Prasad Padhy, Kanhu Charan Nayak, “Optimization and effect of controlling parameters on ajm using taguchi technique”, Int. Journal of Engineering Research and Applications, ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014
6. Junkar M, Jurisevic B, Fajdiga M, Grah M, “Finite element analysis of single-particle impact in abrasive water jet machining”, International Journal of Impact Engineering 32 (2006) 1095–1112
7. Wright D, Wolgamott J, Zink G, “Water jet nozzle material types”, 2003 WJTA American Water jet Conference August 17-19, 2003
8. Ye J, Kovacevic R, “Turbulent solid-liquid flow through the nozzle of premixed abrasive water jet cutting system”, Proc Instn Mech Engrs Vol 213, 1999
9. Deepak D, Anjaiah D, Vasudeva Karanth K, Yagnesh Sharma N, “CFD simulation of flow in an abrasivewater suspension jet: the effect of inlet operating pressure and volume fraction on skin friction and exit kinetic energy”, Advances in Mechanical Engineering Volume 2012, Article ID 186430, 2012
10. Rajeev Kumar, Gurdeep Singh Deol, Kalra C S, Vijay Sharma, “Analysis on performance of different parameters during abrasive jet machining by taguchi method”, International Journal of Emerging Research in Management &Technology ISSN: 2278-9359 (Volume-3, Issue-8), August 2014
11. Conn, “A review of the 10th international symposium of jet cutting technology”, International Journal of water jet technology, pg 135-149, 1991.
