Screening Cucumber Plant Introduction Accession Lines for Resistance against Cucumber Strain of Papaya ringspot virus (PRSV)

A.T. Owolabi, C.O. Nwachukwu and S. Odok
Department of Botany, University of Calabar, PMB 1115, Calabar, Nigeria

Corresponding Author: A.T. Owolabi, Department of Botany, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria

ABSTRACT

Cucumber is a popular fruit vegetable widely cultivated in Odukpani and Akamkpa local government areas of Cross River State, Nigeria, supplying the consumption needs of the nearby metropolitan Calabar City dwellers. However, its cultivation is threatened by infection by Papaya ringspot virus watermelon strain (PRSV-W). This study provides the result of screen house evaluation of USDA Plant Introduction (PI) accessions lines of cucumber for resistance to a Nigerian cucumber strain of PRSV-W. The response of the lines showed a spectrum of reactions to the virus strain from the extremely susceptible ones, that could not withstand the virus infection to the immune that were uninfected by the virus. Out of the 187 accession lines screened, 22 immune lines (PI 391570, PI 419010, PI 419017, PI 432873, PI 432877, PI 432878, PI 432895, PI 489752, PI 137845, PI 211979, PI 211984, PI 605924, PI 606010, PI 227207, PI 390253, PI 223437, PI 118279, PI 422200, PI 525152, PI 406473, PI 390952 and PI 357867) were identified. Besides, 17 others (PI 118807, PI 163217, PI 165509, PI 175121, PI 177364, PI 179263, PI 212985, PI 215589, PI 217644, PI 220791, PI 224517, PI 249562, PI 267746, PI 271326, PI 344384, PI 358813 and PI 358814) showed high tolerant and eight others were moderately tolerant to the virus. The remaining 140 PI lines were very susceptible to the virus. The identification of completely immune and highly tolerant PI accession cucumber lines in this study points the availability at the USDA germ plasm collections of potential materials that could be included in breeding programs to develop high resistant varieties of cucumber to PRSV-W.

Key words: Cucumber accession lines, Papaya ringspot virus (PRSV-W), susceptible, tolerant, immune

INTRODUCTION

Cucumis sativus L. (Cucurbitaceae), commonly known as cucumber, is believed to have originated in India (Renner et al., 2007), where a great many varieties have been observed and has now been introduced to other parts of the world. It is cultivated for its fruits which are eaten fresh or used in the preparation of sandwiches and salads. It is also reported to be a rich source of phytonutrients such as vitamins B1, C, K and essential minerals (Abiodun and Adeleke, 2010). Cucumber varieties have also been reported to provide valuable antioxidant, anti-inflammatory and anti-cancer substances in the diet (Lee et al., 2010; Kumar et al., 2010; Nema et al., 2011).

Papaya ringspot virus (PRSV), previously described as Watermelon mosaic virus-1 (WMV-1), (Purcifull et al., 1984) is a potyvirus transmitted by a number of aphid species in a style-borne
manner (Gonsalves and Ishii, 1980) and considered a major production constraint to papaya and cucurbit production worldwide (Gonsalves et al., 2010; Mohammed et al., 2012). Two biotypes are recognized, the papaya infecting biotype (PRSV-P) which infects papaya and cucurbits and the PRSV-W that infects only cucurbits (Tripathi et al., 2008). PRSV-W which has been reported to as a major limiting factor for watermelon production worldwide (Guner et al., 2002; Strange et al., 2002), has been found to be transmitted in a stylet-borne manner by 24 aphid species in 15 genera with Myzus persicae, Aulacorthum solani, Aphis craccivora and Macrosiphum euphorbiae as natural vectors (Purcifull et al., 1984). Reports of the occurrence of PRSV in cucurbits from Africa abound. The PRSV-P has been reported on Cucurbita pepo in Egypt (Omar et al., 2011), on C. maxima in Sudan (Mohammed et al., 2012), in Carica papaya in Nigeria (Taylor, 2001) and Cote d'Ivoire Diallo et al. (2007) while the PRSV-W biotype has been reported in cucumber in Nigeria (Owolabi et al., 2008).

From the review of literature, resistant accessions have been identified in several crop germ plasm against viruses of economic significance. These include cowpea (Bashir et al., 2002), okra (Rashid et al., 2002), soybean (Arif and Hassan, 2002), watermelon (Strange et al., 2002; Guner, 2004), bottlegourd (Ling and Levi, 2007), urbean (Ashafaq et al., 2007), cotton (Ahmad et al., 2010) and potato (Ahmad et al., 2011; Batool et al., 2011). Others include mungbean (Iqbal et al., 2011; Mondol et al., 2013), tomato (Imran et al., 2012; Osei et al., 2012) and chilli pepper (Ashafaq et al., 2014).

The cultivation of C. sativus has become a thriving business in Odukpani and Akamkpa local government areas of Cross River State, Nigeria, providing jobs for the local folks and meeting the consumption needs of the nearby metropolitan Calabar city dwellers. However, all the local varieties available for cultivation are susceptible to a PRSV-W strain isolated from cucumber in which it elicited mosaic, leaf malformation, rugosity, conspicuous green vein-banding and stunting (Owolabi et al., 2008).

Several approaches have been adopted for the management or control of virus diseases of plants. These include cross protection (Gonsalves, 2004; Zhou and Zhou, 2012), interference with vector activities (Murphy et al., 2009), obtaining virus-free plant materials through meristem culture (Shiragi et al., 2008; El Far and Ashoub, 2009), thermotherapy (Arif et al., 2005; Panattoni et al., 2013), coat protein mediated resistance (Bendahmane et al., 2007; Srivastava and Raj, 2008; Mehta et al., 2013) and the use of transgenic lines (Yu et al., 2011).

Although, some of these approaches may make valuable contributions to virus disease management in specific favourable situations, they sometimes are of little practical benefits. Planting resistant varieties, in many cases, appears to offer a more practical option in controlling plant virus diseases. The aim of the present study was to evaluate 187 accession lines of C. sativus with a view to identifying resistant lines that could provide genetic material for breeding resistance against PRSV-W in Nigeria.

MATERIALS AND METHODS

Source of accession lines: A total of 187 accession lines of C. sativus var. sativus, [except C. sativus var. hardwickii (PI 215589)], were sourced from the United States Department of Agriculture, Agriculture Research Station (USDA-ARS), Iowa State University Regional Plant Introduction Station and certified virus-free by Plant Germ plasm Quarantine Centre, Beltville,
Maryland (USA). The accessions lines had their origin from Africa, Asia, Europe and the Americas (33 countries in all). Countries with most accessions included India with 40, China 25, Turkey 17, Japan 16 and Iran 13. Other had less than 10 or fewer.

PRSV virus isolate: The PRSV-W strain used in the study was that described by Owolabi *et al.* (2008) and maintained on *Cucumeropsis manni* (Naudin) in the screen house.

Planting and inoculation procedure: Five seeds of each of the accession lines were sown in 20×16 cm polyethylene bags containing heat-sterilized garden soil. The cotyledonary leaves (8-day old seedlings), pre-dusted with 600-mesh carborundum were mechanically inoculated with the PRSV strain in 0.03 mM Na$_2$HSO$_4$, pH 8.00 inoculation buffer. Leaf to buffer ratio was 1:5 (1 g infected leaf to 5 mL of buffer). Three buffer-inoculated seedlings of each accession line served as controls.

The inoculated seedlings were promptly rinsed with water, kept in an insect-proof screen house at 27±°C in the University’s Botanical Garden and left for symptom development for over a period of 21 days. Plants that did not show symptoms of infection were back-indexed on *C. manni* that had been reported to be readily susceptible to the virus (Owolabi *et al.*, 2008) to check for latent infection.

Disease rating/determination of degree of susceptibility to PRSV: The germ plasm accession lines were evaluated against their response to the virus on a scale of 0-4 according to Bashir *et al.* (2002) with some modifications on the basis of viral symptoms where, 0 = immune (inoculated plants did not show symptoms and no virus recovered after back-indexing), 1 = highly tolerant (inoculated plant showed mild mottle and no apparent reduction in plant growth), 2 = moderately tolerant (inoculated plant showed mosaic, green vein-banding, leaves not malformed and no apparent reduction in leaf size), 3 = susceptible (stunting of inoculated plants, leaf malformed and accompanied by reduction in leaf size) and 4 = highly susceptible (apical necrosis leading growth cessation).

RESULTS

Reaction of accession lines to PRSV: The reaction of the cucumber accession lines to PRSV inoculation showed a spectrum of responses from complete lack of symptom induction to severe disease reactions (Fig. 1a-i and Table 1) and in some cases, growth cessation occasioned by shoot tip necrosis and eventual death of inoculated seedlings. Some of the symptoms observed included severe leaf malformation and reduction in leaf size (Fig. 1a-e), rugosity (blistering), (Fig. 1f) mosaic and green-vein banding and (Fig. 1h) no symptom at all (Fig. 1i).

Disease rating: Five categories of accessions lines were identified based on the criteria earlier defined. These were the immune lines, the highly tolerant, the moderately tolerant, the susceptible and the highly susceptible lines. The results showed that a significant number of the accession lines, 128 out of the 187, belonged to the susceptible category, representing about 68.45% of the total accession lines screened (Table 2) while, 22 (about 11.76%) were adjudged immune.
Fig. 1(a-i): Symptoms elicited in some accession lines of *Cucumis sativus* var. *sativus* to inoculation with Nigerian cucumber isolate of *Papaya ringspot virus*, (a) (PI 137856, Iran), (b) (PI 285607, Poland), (c) (PI 176523, Turkey), (d) (PI 169395, Turkey), (e) (PI 271327, India) showing various forms of leaf malformations, (f) (PI 483342, China) showing rugosity while, (g) (PI 220338, Afghanistan), (h) (PI 432891, China) exhibited mosaic and green-vein banding and (i) Shows healthy control.

Out of the 22 immune lines eight (PI 391570, PI 419010, PI 419017, PI 432873, PI 432877, PI 432878, PI 432895 and PI 489752) were of Chinese origin, three (PI 137845, PI 211979 and PI 211984) from Iran, two each from India (PI 605924 and PI 606010) and Japan (PI 227207 and PI 390253) and one each from Afghanistan (PI 223437), Brazil (PI 118279), Czech Republic (PI 422200), Egypt (PI 525152), Netherlands (PI 406473), Russia Federation (PI 390952) and Yugoslavia (Slovenia) (PI 357867).
Table 1: Accession lines, countries of origin and reactions to Nigerian cucumber strain of Payaya rinspot virus countries of origin

Serial no.	Country of origin	State	Plant introduction number	Reaction to virus	Backindexing
1	Afghanistan		135345	LM, RLS, GC	
2	Badak		211728	ST, LM, Ru, RLS	
3	Nanga		212599	ST, LM, GVB, Ru	
4	Kabul		207476	ST, Mo, GVB	
5	Herat		220790	ST, GVB, RLS, GC	
6	Kondo		220338	ST, RLS, GVB	
7	Kabul		220791	Mot	
8	Pakti		221440	GVB, Chl	
9	Pakti		222099	ST, RLS, Mot	
10	Badak		223437	NS, VNR	
11	Brazil	San paulo	118279	NS, VNR	
12	San paulo		267745	ST, GVB, Ru	
13	China	Beijing	103049	Mo, LM	
14	Shaanxi		257987	ST, Mo, GVB	
15	Shaanxi		391570	NS, VNR	
16	Shaanxi		391573	ST, LM	
17			419009	ST, LM, Mo	
18			419010	NS, VNR	
19			419017	NS, VNR	
20			432855	LM, GVB	
21			432858	ST, LM, Mo	
22			432860	LM, Mot	
23			432867	ST, LM, Mo, RLS	
24			432868	LM, Mo	
25			432871	RLS, Ru, ST	
26			432873	NS, VNR	
27			432877	NS, VNR	
28			432878	NS, VNR	
29			432886	Mo, ST	
30			432891	LM, Mo, GVB, Ru	
31			432892	Mo, ST, RLS, GVB	
32			432894	RLS, ST, GVB	
33			432895	NS, VNR	
34			436848	RLS, GVB, ST	
35			483342	Mo, Ru, LM	
36			489752	NS, VNR	
37	Czech republic		504816	RLS, Mot, ST	
38			422181	LM, Mot, ST	
39			422184	LM, Mot, ST	
40			422200	NS, VNR	
41	Egypt		288238	LM, De, Ru	
42			525152	NS, VNR	
43			525153	GVB, Mot, ST	
44	Ethiopia	Shewa	193497	LM, RLS, Mo, ST	
45	France		264227	LM, Ru, ST	
46	Hungary		288966	LM, RLS, De	
47	India	Tamil nadu	164284	Mo, LM, ST, GVB	
48	Karnataka		164734	LM, RLS, ST	
49	Uttar prad		165509	Mo	
50	Uttar prad		175111	LM, ST, RLS, Mot	
51	Uttar prad		175121	Mot	
52	Rajasthan		179678	LM, RLS, ST, Mo	
53	Gujarat		183056	Mot	
54	Madhya prad		183445	Mot, LM	
55	Assam		197085	Mo, LM, ST	
56	Assam		197086	GVB, LM, Mo, Ru	
57	Assam		197087	Mo	
58	Assam		197088	Mot, GVB	
59	Maharashtra		212985	Mot	
Serial no.	Country of origin	Plant introduction number	Reaction to virus	Backindexing	
-----------	-------------------	--------------------------	-------------------	--------------	
60	Uttar prad	215589	Mot		
61	New delhi	217644	Mo		
62	Maharashtra	267746	Mo		
63	Maharashtra	271326	Mot		
64	Maharashtra	271327	LM, GVB, Mo		
65	Maharashtra	271328	Mo, GVB, ST		
66	Gujarat	288332	Mo, LM, ST		
67	Kerala	370019	LM, Mo, RSL,		
68	Madhya prad	504564	LM, GVB		
69	Rajasthan	605811	Mo, LM, RLS, GVB		
70	Rajasthan	605913	LM, Mot		
71	Rajasthan	605914	GVB, Mo, ST, LM		
72	Madhya prad	605915	Mo, LM, ST		
73	Rajasthan	605918	Mot, LM, ST		
74	Rajasthan	605919	Mot, LM, RLS		
75	Rajasthan	605922	Mo, LM, ST, GVB		
76	India		NS	VNR	
77	Madhya prad	606010	NS	VNR	
78	Madhya prad	606011	LM, Mot, GVB		
79	-	606016	LM, Mot		
80	-	606024	LM, Ru		
81	-	606032	Mot, GVB		
82	-	606033	LM, ST		
83	-	606046	ST, Ru		
84	Uttar prad	606050	ST, Ru		
85	-	606051	GVB, ST, RLS		
86	Iran	-	GVB, LM, ST		
87	Fars	137839	Mo, LM, ST		
88	Mazandaran	137845	NS	VNR	
89	Yazd	137846	Mo, GVB, LM, ST		
90	Fars	137856	Mo, GVB, LM, ST		
91	Zanjan	211962	GVB, LM, ST, RLS		
92	West azerbai	211979	NS	VNR	
93	West azerbai	211984	NS	VNR	
94	Mazandaran	211985	Mo, GVB, GC		
95	Kerman	226510	Mo, GVB, GC		
96	Khuzestan	227013	Mo, LM, GC		
97	-	296387	Mo, RLS, ST		
98	West azerbai	344438	Mo, RLS, GVB, ST		
99	Teheran	344442	LM, RLS, ST		
100	Iraq	-	Mot		
101	Israel	-	RLS, LM, ST, Ru	VNR	
102	Japan	-	227207	NS	
103	-	279467	Mo, LM, ST	VNR	
104	-	390243	Mo, ST, Ru		
105	-	390248	Mot, LM		
106	-	390251	Mot, LM, ST		
107	-	390253	NS	VNR	
108	-	390257	Mo, GBV, ST		
109	-	390264	Mot, LM		
110	Japan	-	400270	LM, GVB, LM, Ru	
111	-	432852	LM, GVB		
112	-	432865	Mo, LM, Ru		
113	-	451970	Mo, ST, Ru		
114	-	532521	Mot, LM		
115	-	532522	Mo, GVB, ST, Ru		
116	-	532523	Mot, LM		
117	-	532524	Mot, GVB, LM		
118	Kenya	-	385967	Mo, GVB, ST	
Serial no.	Country of origin	State	Plant introduction number	Reaction to virus	Backindexing
-----------	-------------------	-------	---------------------------	-------------------	--------------
119	Lebanon	-	181755	Mo, RLS, ST	
120	Malaysia	Kuala lumpur	358813	Mot	
121		Kuala lumpur	358814	Mot	
122	Netherlands	-	255937	GVB, RLS, LM, ST	
123		-	275410	Mo, LM, ST	
124		-	372889	GC	
125		-	406473	NS	VNR
126	Pakistan	Punjab	163217	Mot	
127		Punjab	258147	Mo, Ru, LM, ST	
128		North western	269480	Mo, LM, ST	
129			330628	Mo, Ru, LM, ST	
130	Philippines	Luzon	188907	Mot	
131			426169	Mot, LM	
132			426170	Mot, LM	
133	Poland	Warszawa	285607	Ru, LM, ST LM,	
134		Warszawa	369717	Ru, RSL, GC	
135	Russia fed	-	263079	Mo, Ru, ST	
136		-	390952	NS	VNR
137	South korea	Seoul	484340	LM, RLS, GVB, ST	
138		Seoul	483399	GVB, Ru, ST	
139		Inch	508452	Mot, LM, ST	
140		Inch	508455	Mot, GVB	
141		Inch	508456	Mo, LM, RLS, ST	
142		Inch	508457	Mo, Ru, LM	
143		Inch	508458	Mo, ST	
144		Inch	508459	Mot, ST	
145	Sweden	-	205995	Mot, ST	
146	Taiwan	-	321008	GVB, Ru, ST	
147		-	321009	Mot, Ru	
148		-	321011	Mo, LM, RLS	
149	Thailand	-	248561	Mot, GC	
150		-	248562	Mot	
151	Turkey	-	109484	LM, RLS, ST	
152		Icel	167223	LEY, ST, RLS	
153	Canakkale	-	169351	Mo, LM, ST	
154	Canakkale	-	169392	Mo, LM, ST	
155	Bursa	-	169395	GVB, LM, LEN	
156	Gumushane	-	171613	Mo, GVB, LM, ST	
157	Urfa	-	174166	Mo, LM, RLS, ST	
158	Nigde	-	175689	GC	
159	Kayseri	-	176519	Mo, LM, GVB, RLS	
160	Afyon	-	176523	GVB, LM, RLS, ST	
161	Bilecik	-	176525	Mo, LM, RLS, ST	
162	Samsun	-	176950	Mo, GVB, LM, ST	
163	Cankiri	-	178886	LEN, GVB, Ru	
164	Sirt	-	179263	Mot	
165	Balikesir	-	182192	Mo, LM, ST	
166	Kayseri	-	204568	CL, GC	
167	Trabzon	-	344384	Mot	
168	United kingdom	#VALUE!	274902	Ru, RLS, GC	
169	United states	Ohio	209064	Mot, Ru, GVB, LM,	
170		Ohio	209068	LEY, LM, GVB, ST	
171		Ohio	209069	LM, ST	
172	Sou	-	234517	Mot	
173	Hawaii	-	414158	Mo, GVB, LM	
174	†USSR (Former soviet union)	-	351140	LM, ST	
175	Uzbekistan	-	540415	GVB, Ru, ST	
176		-	540416	GVB, LM, RLS, Ru	
177	†Yugoslavia	-	357839	Mot, LM, ST	
Table 1: Continue

Serial no.	Country of origin	State	Plant introduction number	Reaction to virus	Backindexing
178	Slovania		357857	Ru, LM, ST	
179			357867	NS	VNR
180			368557	Ru, ST, GC	
181			368559	Mo, RLS, ST	
182			379283	Mo, GVB, LM, ST	
183			379279	Mot, Ru, RLS	
184	Zambia		500360	Mot, VC, LM, RLS	
185			500361	Mot, LM, ST	
186	Zimbabwe		482463	Mot, Ru, ST	
187			482464		

GC: Growth cessation, LM: Leaf malformation, RLS: Reduced leaf size, Ru: Rugosity, GVB: Green vein-banding, Mo: Mosaic, Mot: Mottle, Chl: Chlorosis, NS: No symptoms, De: Defoliation, VC: Veinal chlorosis, LEY: Leaf edge yellowing, LEN: Leaf edge necrosis and VNR: Virus not recovered, †Some of the countries like USSR and Yugoslavia have ceased to exist as a result of political restructuring

Table 2: Grouping of cucumber germ plasm accession lines tested against Nigerian cucumber strain of Papaya ringspot virus

Disease* rating	Plant introduction accession lines falling under each category
0	PI 118279, PI 137845, PI 211979, PI 211984, PI 223437, PI 227207, PI 391570, PI 357867, PI 390252, PI 390952, PI 406473, PI 419010, PI 419017, PI 422900, PI 432873, PI 432877, PI 432878, PI 432895, PI 489752, PI 525152, PI 605924, PI 606010.
1	PI 118807, PI 163217, PI 165509, PI 175121, PI 177364, PI 179263, PI 212985, PI 215589, PI 217644, PI 220791, PI 234517, PI 249562, PI 267746, PI 271326, PI 344384, PI 358813, PI 358814.
2	PI 183056, PI 183445, PI 197087, PI 197088, PI 221440, PI 321009, PI 508455, PI 606032.
3	PI 103049, PI 109484, PI 137839, PI 137846, PI 164284, PI 164734, PI 167223, PI 169351, PI 169392, PI 169395, PI 169786, PI 181755, PI 182192, PI 193497, PI 197085, PI 197086, PI 209064, PI 209068, PI 209069, PI 211728, PI 211962, PI 212599, PI 220909, PI 220999, PI 223838, PI 255937, PI 257987, PI 258147, PI 263079, PI 263087, PI 263092, PI 263093, PI 264227, PI 267745, PI 269480, PI 271327, PI 271328, PI 275410, PI 279467, PI 285607, PI 288238, PI 288996, PI 292012, PI 296387, PI 321008, PI 321011, PI 330628, PI 344438, PI 344442, PI 351140, PI 357839, PI 357857, PI 368559, PI 370019, PI 379279, PI 385567, PI 385867, PI 390243, PI 390248, PI 390251, PI 390257, PI 390264, PI 391573, PI 400270, PI 414158, PI 419099, PI 422181, PI 422184, PI 426169, PI 426170, PI 432852, PI 432855, PI 432858, PI 432865, PI 432867, PI 432868, PI 432869, PI 432871, PI 432886, PI 432887, PI 432888, PI 432892, PI 432894, PI 432895, PI 432896, PI 432897, PI 432898, PI 432899, PI 432900, PI 432901, PI 432902, PI 432903, PI 432904, PI 432905, PI 432906, PI 432907, PI 432908, PI 432909, PI 432910, PI 432911, PI 432912, PI 432913, PI 432914, PI 432915, PI 432916, PI 432917, PI 432918, PI 432919, PI 432920, PI 432921, PI 432922, PI 432923, PI 525254, PI 540415, PI 540416, PI 605911, PI 605913, PI 605914, PI 605919, PI 605918, PI 605922, PI 606011, PI 606016, PI 606024, PI 606033, PI 606046, PI 606050, PI 606051, PI 606067.
4	PI 135345, PI 175689, PI 204568, PI 211985, PI 220790, PI 226510, PI 227013, PI 249561, PI 274902, PI 368557, PI 369717, PI 372893. (12)

*Dis ease rating: 0: Immune, 1: Highly tolerant, 2: Moderately tolerant, 3: Susceptible and 4: Highly susceptible

The results also showed that 12 (PI 135345, PI 175689, PI 204568, PI 211985, PI 220790, PI 226510, PI 227013, PI 249561, PI 274902, PI 368557 and PI 372893) were highly susceptible to the virus as they suffered from growth cessation of the apical bud. The remaining 25 (about 13.37%) were found to be tolerant (both moderate and highly).

DISCUSSION

Cucumis sativus is an important fruit vegetative in Cross River, Nigeria. All available varieties under cultivation are readily susceptible to the PRSV-W strain, with concomitant poor growth. In this study, 187 USAD-ARS Plant Introductions of C. sativus var. sativus were screened against PRSV-W isolate from Nigeria for possible discovery of varieties that could provide materials for resistance breeding programme.

The results of this investigation showed a varying degree of reactions to the cucumber isolate of PRSV-W among Cucumis sativus var. sativus germ plasm collection from the USDA-ARS. A preponderance (about 67.02%) of the accession lines was susceptible to the virus. Similar observations have been made with respect to some cucurbits screened against viruses of economic
importance. Strange et al. (2002) found that a greater majority of 1248 accession lines of watermelon were susceptible to PRSV-W. The report of Ling and Levi (2007) also showed that 90 (47.37%) of the 190 screened were susceptible to the Florida strain of ZYMV and Kousik et al. (2009) did not detect resistance to *Squash yellowing vein virus* (SqVYV) among PIs 218 watermelon accession lines obtained from USDA germplasm collection as all were susceptible to the virus with varying degree of reactions.

Germ plasm collections have become veritable sources of genetic materials for possible breeding programmes against plant viruses. The result of this study demonstrated that no fewer than 22 were completely immune to the PRSV-W strain. These were PI 391570, PI 419010, PI 419017, PI 432873, PI 432877, PI 432878, PI 432895 and PI 489752 of Chinese origin, three (PI 137845, PI 211979 and PI 211984) from Iran, two each from India (PI 605924 and PI 606010), Japan (PI 227207 and PI 390253) and one each from Afghanistan (PI 223437), Brazil (PI 118279), Czech Republic (PI 422200), Egypt (PI 525152), Netherlands (PI 406473), Russia Federation (PI 390952) and Yugoslavia (Slovania) (PI 357867). Completely immune and moderately resistance PI accession lines have been detected among some cucurbit germ plasm sourced from USDA. Strange et al. (2002) reported the existence of PRSV-W resistance in eight PI accessions: three accessions from South Africa (PI 244017, PI 244018 and PI 244019), in three accessions from Zimbabwe (PI 482342, PI 482318 and PI 482379), one accession from Botswana (PI 485583) and one accession from Nigeria (PI 595203) in watermelon germ plasm collection from the USDA. Ling and Levi (2007) also found that of the 190 *Lagenaria siceraria* PIs screened, 30 were completely immune to the Florida strain of ZYMV while Kousik et al. (2009) reported the existence of moderate resistance in two *C. colocynthis* (PI 386015 and PI 386024), a *Praecitrullus fistulosus* (PI 381749) and two *C. lanatus* var. *lanatus* PIs (PI 482266 and PI 392291 to *Squash vein yellowing virus* (SqVYV). On the other hand, Habib et al. (2007) reported that none of 254 lines of mungbean was found to be resistant to MYMV while 247 lines were highly susceptible to the virus.

The USDA watermelon and other cucurbit germ plasm collections have been extensively screened for resistance to PRSV-W and ZYMV. This is the first report of screening cucumber accessions line for resistance against PRSV-W.

CONCLUSION

The result of the present study demonstrates that there is significant genetic resistance to PRSV-W among USDA *C. sativus* var. *sativus* germ plasm collections. The twenty two accessions so identified are potential sources of genetic materials for cucumber breeding against the virus.

ACKNOWLEDGMENTS

The authors are grateful to USDA for graciously supplying the accession lines for the research.

REFERENCES

Abiodun, O.A. and R.O. Adeleke, 2010. Comparative studies on nutritional composition of four melon seeds varieties. Pak. J. Nutr., 9: 905-908.

Ahmad, S., N.A. Mahmood, F. Ashraf, K. Hayat and M. Hanif, 2010. Screening of cotton germplasm against *Cotton leaf curl virus*. Pak. J. Bot., 42: 3327-3342.

Ahmad, N., M.A. Khan, N.A. Khan, R. Binyaminand and M.A. Khan, 2011. Identification of resistance source in potato germplasm against PVX and PVY. Pak. J. Bot., 43: 2745-2749.

Arif, M. and S. Hassan, 2002. Evaluation of resistance in soybean germplasm to *Soybean mosaic* potyvirus under field conditions. J. Biol. Sci., 2: 601-604.
Arif, M., M. Ibrahim, A. Ahmad and S. Hassan, 2005. Elimination of citrus tristeza closterovirus from citrus bud-wood through thermotherapy. Pak. J. Bot., 37: 423-430.
Ashafaq, M., A. Khan, S.M. Mughal, N. Javed, T. Muktar and M. Bashir, 2007. Evaluation of urbean germplasm for resistance against Urbean leaf crinkle virus (UKCV). Pak. J. Bot., 37: 47-51.
Ashafaq, M., S. Iqbal, T. Muktar and H. Shall, 2014. Screening for resistance to Cucumber mosaic virus in chilli pepper. J. Anim Plant Sci., 24: 791-795.
Bashir, M., Z. Ahmad and A. Ghafoor, 2002. Cowpea germplasm evaluation for virus resistance under greenhouse conditions. Asian J. Plant Sci., 1: 585-587.
Batool, A., M.A. Khan, J. Farooq, S.M. Mughal and Y. Iftikhar, 2011. ELISA-based screening of potato germplasm against Potato leaf roll virus. J. Agric. Res., 49: 57-63.
Bendahmane, M., I. Chen, S. Asurmendi, A.A. Bazzini, J. Szecsi and R.N. Beachy, 2007. Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein. Virology, 366: 107-116.
Diallo, H.A., W. Monger, N. Kouassi, D.T. Yoro and P. Jones, 2007. First report of Papaya ringspot virus infecting papaya in Cote d'Ivoire. Plant Pathol., 56: 718-718.
El Far, M.M.M. and A. Ashoub, 2009. Utility of thermotherapy and meristem tip for freeing sweetpotato from viral infection. Aust. J. Basic Applied Sci., 3: 153-159.
Gonsalves, D. and M. Ishii, 1980. Purification and serology of Papaya ring spot virus. Phytopathology, 70: 1028-1032.
Gonsalves, D., 2004. Transgenic papaya in Hawaii and beyond. AgBioForum, 7: 36-40.
Gonsalves, D., S. Tripathi, J.B. Carr and J.Y. Suzuki, 2010. Papaya ring spot virus. The Plant Health Instructor.
Guner, N., E.B. Strange, T.C. Wehner and Z. Pesic-VanEsbroeck, 2002. Methods for screening watermelon for resistance to papaya ringspot virus type-W. Scientia Hortic., 94: 297-307.
Guner, N., 2004. Papaya ringspot virus watermelon strain and Zucchini yellow mosaic virus resistance in watermelon. Ph.D. Thesis, North Carolina State University, Raleigh. USA.
Habib, S., N. Shad, A. Javaid and U. Iqbal, 2007. Screening of mungbean germplasm for resistance/tolerance against yellow mosaic disease. Mycopath, 5: 89-94.
Imran, M., M.A. Khan, M. Azeem, N. Ahmed, R. Binyamin and A. Riaz, 2012. Screening of tomato germplasm for the source of resistance and its management against Tomato mosaic virus. Pak. J. Phytopathol., 24: 24-57.
Iqbal, U., S.M. Iqbal, R. Afzal, A. Jamal, M.A. Farooq and A. Zahid, 2011. Screening of mungbean germplasm against Mungbean Yellow Mosaic Virus (MYMV) under field conditions. Pak. J. Phytopathol., 23: 48-51.
Kousik, C.S., S. Adkins, W.W. Turechek and P.D. Roberts, 2009. Sources of resistance in US plant introductions to watermelon vine decline caused by squash vein yellowing virus. HortScience, 44: 256-262.
Kumar, D., S. Kumar, J. Singh, B.D. Vashistha and N. Singh, 2010. Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract. J. Young Pharm., 2: 365-368.
Lee, D.H., G.B. Iwanski and N.H. Thoenissen, 2010. Cucurbetacin: Ancient compound shedding new light on cancer treatment. Sci. World J., 10: 413-418.
Ling, K.S. and A. Levi, 2007. Sources of resistance to Zucchini yellow mosaic virus in Lagenaria siceraria germplasm. HortScience, 42: 1124-1126.
Mehta, R., T. Radhakrishnan, A. Kumar, R. Yadav and J.R. Dobaria et al., 2013. Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Indian J. Virol., 24: 205-213.

Mohammed, H., A. Mangli, S. Zicca, A. El-Hussein, M. Mohammed and L. Tomassoli, 2012. First report of Papaya ringspot virus in pumpkin in Sudan. New Dis. Rep., 26: 26-26.

Mondol, M.E.A., H. Rahman, M.H. Rashid, M.A. Hossain and M.M. Islam, 2013. Screening of mungbean germplasm for resistance to Mungbean yellow mosaic virus. Int. J. Sustain. Crop Prod., 8: 11-15.

Murphy, J.F., M.D. Eubanks and J. Masiri, 2008. Reflective plastic mulch but not a resistance-inducing treatment reduced Watermelon mosaic virus incidence and yield losses in squash. Int. J. Veg. Sci., 15: 3-12.

Nema, N.K., N. Maity, B. Sarkar and P.K. Mukherjee, 2011. Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase and anti-elastase agent. Arch. Dermatol. Res., 303: 247-252.

Omar, A.F., S.A. El-Kewey, S.A. Sidaros and A.K. Shimaa, 2011. Egyptian isolates of Papaya ringspot virus form a molecularly distinct clade. J. Plant Pathol., 93: 569-576.

Osei, M.K., R. Akromah, J.N.L. Lampete and M.D. Quain, 2012. Phenotypic and molecular screening of some tomato germplasm for resistance to tomato yellow leaf curl virus disease in Ghana. Afr. J. Agric. Res., 7: 4675-4684.

Owolabi, A.T., F. Rabentein and F. Ehrig, 2008. A strain Papaya ringspot virus naturally infecting cucumber (Cucumis sativus L.) in Calabar, South Eastern Nigeria. Nig. J. Bot., 21: 97-108.

Panattoni, A., A. Luvisi and E. Triolo, 2013. Elimination of viruses in plants: Twenty years of progress. Spanish J. Agric. Res., 1: 173-188.

Purcifull, D.E., J.R. Edwardson, E. Hiebert and D. Gonsalves, 1984. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses No, 292.

Rashid, M.H., L. Yasmin, M.G. Kibria, A.K.M.S.R. Mollik and S.M.M. Hossain, 2002. Screening of okra germplasm for resistance to yellow vein mosaic virus under field conditions. Plant Pathol. J., 1: 61-62.

Renner, S.S., H. Schaefer and A. Kocyan, 2007. Phylogenetics of cucum (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol. Biol., Vol. 7. 10.1186/1471-2148-7-58

Shiragi, M.H., M.A. Baque and K.M. Nasiruddin, 2008. Eradication of Banana Bunchy Top Virus (BBTV) and Banana Mosaic Virus (BMV) from infected plant of banana cv. Amritasagar through Meristem culture. South Pac. Stud., 29: 17-41.

Srivastava, B.R. and S.K. Raj, 2008. Coat protein-mediated resistance against Indian isolate of Cucumber mosaic virus subgroup IB in Nicotiana bentamiana. J. Biol. Sci., 33: 249-257.

Strange, E.B., N. Guner, Z. Pesic-VanEsbroeck and T.C. Wehner, 2002. Screening the watermelon germplasm collection for resistance to Papaya ringspot virus type-W. Crop Sci., 42: 1324-1330.

Taylor, D.R., 2001. Virus Diseases of Carica Papaya in Africa-their Distribution, Importance and Control. In: Plant Virology in Sub-Saharan Africa, Hughes, A.J. and B.O. Odu (Eds.). International Institute of Tropical Agriculture, Ibadan, Nigeria, pp: 25-32.

Tripathi, S., J.Y. Suzuki, S.A. Ferreira and D. Gonsalves, 2008. Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol. Plant Pathol., 9: 269-280.

Yu, T.A., C.H. Chiang, H.W. Wu, C.M. Li and C.F. Yang et al., 2011. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W. Plant Cell Rep., 30: 359-371.

Zhou, C. and Y. Zhou, 2012. Strategies for viral cross protection in plants. Method Mol. Biol., 894: 69-81.