The genera *Muellerina* Bassiouni, 1965 and *Thaerocythere* Hazel, 1967 from the Neogene of Northwest Europe

A. M. WOOD1 & R. C. WHATLEY2

1 Centre for Quaternary Studies, School of Natural and Environmental Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.

2 Institute of Earth Studies, University of Wales, Aberystwyth, Dyfed SY23 3DB, UK.

ABSTRACT – Twenty one species of the genera *Muellerina* and *Thaerocythere* are considered. Of these, 11 species, including the type species of both genera, have been described previously. Two species are left in open nomenclature due to inadequate numbers but eight are described as new. These species are: *Muellerina latimarginata* (Speyer, 1863), *M. abyssicola* (Sars, 1866), *M. lacunosa* (Jones, 1857), *M. praebysticola* Uffenorde, 1981, *M. parvipunctata* Uffenorde, 1981, *Thaerocythere crenulata* (Sars, 1866), *T. hoptonensis* (Brady, Crosskey & Robertson, 1874), *T. mayburyae* Cronin, 1991, *T. oedichilus* (Brady, 1878), *T. trachypra* (Jones, 1857), *T. trapezia* (Brady, 1878), and the new species *M. dolabrata*, *M. metabysticola*, *M. orygyma*, *M. pliconica*, *T. biforis*, *T. praecrenulata*, *T. verniculata*, *T. woutersi* and *T. wittei*. The phylogenetic relationships of these northwestern European species are considered. *J. Micropalaeontology*. 16(1): 1–18, May, 1997.

INTRODUCTION

The type material of Jones (1857, 1870), Jones & Sherborn (1887, 1889), Brady, Crosskey & Robertson (1874) and Horne & Kerr (1989), which are presently deposited at the British (Natural History) and Hancock museums, have recently been re-examined. In the light of a recent study by Liebau (1991) and the subsequent re-examination of northwestern European *Muellerina* and *Thaerocythere* species, the present authors have attempted to unravel both the taxonomic and evolutionary problems that presently surround the Plio–Pleistocene species of these genera. The biostratigraphical and ecosтратigraphical implications arising from this will be published elsewhere (Wood & Whatley, in press; Wilkinson et al., in press).

PREVIOUS WORK

The most significant contributions, in the context of the present study, are undoubtedly those of Wouters (1979), Uffenorde (1980–1990), Liebau (1991) and Cronin (1991). The investigation of adductor muscle scar patterns and carapace characteristics of *Muellerina* by Wouters (1979) suggested a tendency towards subdivision within the former and changes in the outline and ornamentation of the valves. He suggested that a gradual change in the composition (grouping *sensu* Wouters, 1979, p. 225) of the muscle scars could be seen through time. However, the evolution of the Muellerinids within the southern North Sea basin was justly considered by Uffenorde (1986) to be much more complicated and not just a simple case of muscle scar subdivision or the abatement of reticulation (Uffenorde, 1980, 1986). Investigations into the phylogenetical behaviour of sculptural components (macrocirectulation) in Tertiary to Recent trachylebrids and hemicytherids (Liebau, 1977, 1978, 1991) has led to the taxonomical revision of "Quadracythere-like hemicytherids" in which Liebau (1991) erected a number of new *Thaerocythere* subgenera and species. Similarly, Cronin (1991) has described a number of new *Muellerina* and *Thaerocythere* species from the Pliocene/Pleistocene of Tjörnes, Iceland.

LITHOSTRATIGRAPHY, BIOSTRATIGRAPHY AND BIOCHRONOLOGY OF NORTHWESTERN EUROPEAN NEOGENE DEPOSITS

The lithostratigraphical, biostratigraphical and biochronological framework for the British and Dutch Neogene successions have recently been reviewed by Wood et al. (1994). In the same paper, a number of new ostracod-based ecozones were erected on the basis of palaeoclimatic-related changes in the generic composition of Upper Miocene and Pliocene ostracod assemblages. The extent of this new ecozonation and previous foraminiferal and palynological biostratigraphical schemes are presented in Figs 1 and 2.

MATERIAL

Four Dutch Geological Survey boreholes, Altena VI 49E83, Nieuwkuik 45C190, Klundert 43H63 and Cuyck 46A147, comprising comparative sections of the Breda and Oosterhout formations, were examined for ostracods. Figure 3 shows the location of the boreholes in relation to the disposition of major structures within the Netherlands. The sampling intervals and lithologies of Dutch boreholes 43H63 and 46A147 are presented in Fig. 4.

Marine ostracod assemblages from three East Anglian formations were analysed: the Coraline Crag Formation at Sutton Knoll (TM 304440) and Raydon Hall (TM 43265017 – British Geological Survey borehole), the Red Crag Formation at Walton Cliff (TM 26732352), Buckanaye Farm (TM 356424) and Neutral Farm (TM 372811) and the Norwich Crag Formation (Chillesford Sand Member) at Chillesford Church Pit (TM 38285230). The regional disposition of sampled localities and specific sampling horizons are given in Figs 5 and 6.

SYSTEMATIC DESCRIPTIONS

List of abbreviations: ALVF = Adult left valve, female; ARV-M = Adult right valve, male; ACp = Adult carapace; A-n =
Fig. 1. Lithostratigraphy and biostratigraphy of the Dutch, Belgium and Icelandic Neogene successions (adapted after Wood et al., 1994).

Pollen stages	Age Ma	Lithostratigraphy and biostratigraphy units in East Anglia
Pleistocene		
Hoxnian	0.4	Bacton Mbr, Mundesley Mbr, West Runton Mbr
Anglian	0.7	Cromer Forest Bed Formation
Cromerian (S.S.)	0.7	
Beestonian	? 1.6	Runton Mbr, Paston Mbr, Seringham Mbr, Sidesstrand Mbr
Pastonian		
Pliocene		
Base Pliocene	? 2.0	Westleton Bed Mbr, East Barents Mbr, Chellesford Clay Mbr
(Pre Pastonian-a)		
Antian/Bramertonian		
Thurian	2.4	Chillesford Sand Mbr
Late Ludhonian	2.4	Thorpness Mbr
E (?) Ludhonian	3.2	Sizewell Mbr
Pre Ludhonian	3.4	Red Crag Formation
Waltonian	3.4	
Eocene	3.6	Coralline Crag Formation
		London Clay

Fig. 2. Lithostratigraphy and biostratigraphy of the East Anglian Pliocene succession (adapted after Wood et al., 1994).
Muellerina and Thaerocythere

Fig. 3. Location of the four Dutch boreholes under investigation and their relationship to major structural feature (after Wood et al., 1994).

juvenile stage. Type material is either deposited in the Department of Palaeontology, Natural History Museum or the British Geological Survey, for which the catalogue number prefixes are OS and MPK, respectively. Other material is deposited in the Adrian Wood collection in the Micropalaeontology Museum, Institute of Earth Studies, Aberystwyth with catalogues numbers AMW/PL/0 no.

Class Ostracoda Latrielle, 1806
Order Podocopida Müller, 1894
Suborder Podocopida Sars, 1866
Superfamily Cytheracea Baird, 1850
Family Hemicytheridae Puri, 1953
Subfamily Hemicytherinae Puri, 1953
Genus Muellerina Bassiouni, 1965

Type species. Cythere latimarginata Speyer, 1863.

Emend. Diagnosis. Carapace subovate to elongate/subquadrate, with thick, generally smooth, marginal rims imparting a truncated aspect to the end margins in dorsal view. Anterior and posterior margins may be denticulated. Dorsal and ventral margins converging posteriorly. Upper part of posterior margin straight or weakly concave, lower part convex, together forming weak posteroventral caudal process. Dimorphic, males proportionally more elongate, less inflated in dorsal view. Ornament pitted/reticulate with a single concentric row of fossae inside the marginal rim and subcentral tubercle. Maximum length below mid height, greatest height at or just anterior of anterior cardinal angle, maximum width at sub-central tubercle.

Row of four adductor muscle scars, middle two may be subdivided; two frontal scars, ventral scar may be bilobate. Hinge holamphidont with short thick teeth. Narrow anterior and posterior vestibula may be present; marginal pore canals sinuous/straight, simple, 20–30 anteriorly; 10–14 posteriorly.

Remarks. The re-examination of adductor muscle scar patterns in Muellerina, using a quite separate database of Upper Miocene to Recent species from northwestern Europe, clearly supports the original conclusions of Wouters (1979). Using composite counts for muscle scar groups 1/2 and 3/4 our results confirm the progressive division of median scars from the Miocene to the Recent. The adductor muscle scar pattern of 200 adult specimens, belonging to six species, were analysed from Neogene sites in France, England and The Netherlands. The relative percentage of the three adductor muscle scar groupings, through time, are represented in Fig. 7.

Muellerina latimarginata (Speyer, 1863)
(Pl. 1, fig. 1)

1863 Cythere latimarginata Speyer: 22, pl. 3, figs 3a–e. non 1874 Cythere latimarginata Speyer; Brady, Crosskey & Robertson: 163, pl. 16, fig. 6 (=Cythere abyssicola G.O. Sars, 1865).
1918 Cythereis latimarginata (Speyer); Kuiper: 41, pl. 2, fig. 14.
1965 Muellerina latimarginata (Speyer); Bassiouni: 510, pl. 1, figs 2a–c.
1981 Muellerina latimarginata latimarginata (Speyer); Uffe-norde: 161, pl. 3, figs 7 & 10; pl. 7, fig. 4.

Diagnosis. Carapace small, subrectangular, symmetrical about median line. Anterior broadly rounded, posterior somewhat truncated. Surface with moderately large pits/fossae and two delicate ribs. The first parallel to the ventral margins, terminating in a weak posteroventral swelling, the second is angled from the subcentral tubercle towards the posterior cardinal angle. In dorsal view carapace is tapered in front of posterior marginal rim. Ventral frontal muscle scar is often bilobate.

Material. East Anglia, 2V; The Netherlands, 3 CP, 11 V.

Dimensions.

Cat. No.	Site	Length	Height	
ALV-F	AMW/PL/016	43H/63(175)	0.70	0.31
RV ?A-3	AMW/PL/017	43H/63(176)	0.50	0.18

Distribution. Upper Oligocene of North West Germany (Uf-fenorde, 1981) and Belgium (Kuiper, 1918). Most common in the Miocene of Belgium, Germany and the Netherlands (Wouters, 1979). Rare in the Lower Pliocene of the Netherlands (FB benthonic foraminifera zone, see Doppert, 1975, 1980) and the Coralline Crag Formation of East Anglia, England.

Remarks. Jones & Sherborn (1887) described a single specimen of Muellerina latimarginata from the Coralline Crag Formation at Sutton Knoll (TM 304 440). It appears, however, that this specimen is now missing from the collections of the Natural History Museum.

Muellerina abyssicola (Sars, 1866)
(Pl. 1, figs 2 & 3)

1866 Cythere abyssicola sp. nov. Sars: 43.
1874 Cythere latimarginata Speyer; Brady, Crosskey & Robertson: 163, pl. 16, fig. 6 (non Speyer, 1863).
Fig. 4. Lithology and sampled horizons of the Dutch boreholes Klundert 43H63 and Cucyk 46A147.
1965 *Muellerina abyssicola* (Sars); Bassiouni: 510, pl. 1, figs 3–6.
1969 *Murrayina latimarginata* (Speyer); Yassini: 84, pl. 24, fig. 5; pl. 39, figs 15 & 16 (non Speyer, 1863).

Diagnosis (adapted after Athersuch et al., 1989). Carapace subovate; dorsal and ventral margins slightly sinuous, anterior and posterior margins rounded. Marginal rims very broad. Ornament coarsely pitted/reticulated, quadrate fossae inside the marginal rim, and rounded to subquadrate fossae elsewhere.

Material. In excess of 2000 specimens.

Dimensions.

Cat. No.	Site	Length	Height	
ALV-F	AMW/PL/018	1962,160(8)	0.78	0.45
ARV-M	AMW/PL/019	1962,160(10)	0.76	0.40

Remarks. Although both carapace shape and disposition of fossae are quite dissimilar, *M. abyssicola* (Sars) was commonly placed in synonymy with *M. latimarginata* (Speyer) by 19th century authors. However, comparisons with its proposed Pliocene ancestor *Muellerina metaabyssicola* sp. nov. reveal that a number of ornamental features have been retained. These include the posteromedian plication connecting posterodorsal and subcentral tubercles which, although not as salient as in *M. metaabyssicola* sp. nov. is very obvious. The mid-dorsally positioned compressed 'S' shaped node–ridge–node structure is also retained. In dorsal view, both species are listricly truncated submarginally at the posterior.

Distribution. *M. abyssicola* has been recorded from the Pleistocene (Devensian) of southwest Norway (Lord, 1980), Bay of Biscay (Yassini, 1969; Peypouquet, 1971) and the Hoxnian of Denmark and northern Germany (Bassiouni, 1965). Its present distribution on the northeast Atlantic shelf, as recorded by Wood & Whatley (1994), is from the Bay of Biscay north to the Barents Sea.
Fig. 6. Lithology and sampled horizons of East Anglian Pliocene sites (adapted after Wood et al., 1992).

Muellerina lacunosa (Jones, 1857)

(Pl. 1, figs 4–6)

1857 *Cythere lacunosa* Jones; 31, pl. 3, figs 5a–b

1870 *Cythere sublacunosa* Jones; 156 (nom. nov. pro *Cythere lacunosa* Jones, 1857; *non Cytherina lacunosa* Reuss, 1850).

1889 *Cythere sublacunosa* Jones & Sherborn; 27.

1979 *Muellerina lacunosa* (Jones); Wouters: 228–229, pl. 2, fig. 2b (*non* pl. 2, figs 2a & 2c = *Muellerina orygyma* sp. nov.).

1980 *Murrayina lacunosa* (Jones); Wilkinson: pl. 2, fig. 14 (*non* pl. 2, fig. 12 = *Muellerina plicenica* sp. nov.).

non 1979 *Muellerina lacunosa* (Jones); Horne & Kerr, pl. 2, fig. d (= *Muellerina plicenica* sp. nov.).

Diagnosis. A species of *Muellerina* with numerous, though rarely coalesced, subcircular fossae set within an undulose network of muri, concentrically arranged around a well developed sub-central tubercle. Weakly developed posteroventral and posterdorsal tubercles. Indistinct, plicate, ridge runs from the subcentral tubercle posterdorsally. In dorsal view, convex to straight truncation submarginal to the posterior. Marginal radial pore canals numerous, 14–16 anteriorly, 4–6 posteriorly, straight/sinuous.

Material. East Anglia, 19CP, 160V; the Netherlands, 5CP, 115V.

Dimensions.

Cat. No.	Site	Length	Height
ALV-F	AMW/PL/020 OSC1 OR7a	0.76	0.4
ARV-M	AMW/PL/021 OSC1 OR12	0.89	0.44
ALV-M	AMW/PL/022 OSC1 OR12	0.84	0.45
ARV-F	AMW/PL/023 OSC1 OR15	0.81	0.45

Distribution. Pliocene; Kattendijk and Lillo formations, Belgium; FB zone (Doppert, 1980) of the Oosterhout Formation, Holland; Coraline Crag Formation, Waltonian, Butleyan and Newbournian stages of the Red Crag Formation, East Anglia, UK.

Remarks. *Muellerina lacunosa* (Jones) bears a strong resemblance to its nominated ancestor *M. parvipunctata* Uffenorde (1981) and also to *Muellerina orygyma* sp. nov. However, *M. lacunosa* can be easily distinguished from *M. orygyma* sp. nov. as the ornament of the former is constructed from a dense network of large fossae and also comprises two posterior tubercles. *M. parvipunctata* although similar in outline has an ornament dominated by a strong, posteriorly bifurcate, ventromarginal ridge and rather small cellate fossae.

Muellerina parvipunctata Uffenorde, 1981

Distribution. Upper Miocene; Reinbekium and Gramium of northwest Germany.

Remarks. This species is similar in outline to *M. lacunosa* (see remarks) but appears to be restricted both stratigraphically and geographically to the Upper Miocene of northwest Germany where it can occur with both *M. praeabyssicola* Uffenorde, 1981 and *Muellerina latimarginata* morphotype 1 Uffenorde (1981, p.165).

Muellerina praeabyssicola Uffenorde, 1981

Distribution. Upper Miocene of northern Germany.

Remarks. The earliest species of the *M. praeabyssicola*-*M. metabyssicola*-*M. abyssicola* lineage, restricted to the Upper Miocene of Germany. *M. praeabyssicola* can be distinguished from *M. metabyssicola* as the latter is compressed and possesses two conspicuous midodorsal tubercles, however, both possess the shallow ‘S’-shape plication in the dorsomedian region.

Muellerina dolabrata sp. nov.

(Pl. 1, figs 10 & 11)

Derivation of name. Latin, *dolabratus* = shaped like an axe. With reference to the ‘axe head’ shape of the carapace in lateral view.

Diagnosis. A species characterized by its axe head shaped carapace in lateral view. Almost symmetrical about the median height line. Anterior marginal reticulate with fine radial ridges. Reticulation composed of 15–18 large, circular/subovate, occasionally linked, cellate fossae with normal pores proximal to muri. Additional, scattered normal pores, common. Postero-dorsal and posteroventral tubercles present, the latter more strongly so.
Muellerina and Thaerocythere

Fig. 7. Percentage variations in muellerinid adductor muscle scar groups (after Wouters, 1979) from the Upper Miocene to Recent of northwestern Europe.

Type locality and horizon. Coralline Crag Formation, BGS borehole OSC1; sample level OR7a, near Orford, Suffolk, East Anglia, UK.

Material. East Anglia, 11CP, 15V; the Netherlands, 11CP, 80V.

Dimensions of types.

Cat. No.	Site	Length	Height
Holotype ARV-F	MPK9768 OSC1 OR7a	0.67	0.37
Paratype ALV-F	MPK9769 OSC1 OR14	0.65	0.37
Paratype ALV-M	MPK9770 OSC1 OR14	0.63	0.36
Paratype ARV-M	MPK9771 OSC1 OR14	0.62	0.33

Distribution. Upper Miocene; FC1 zone and Lower Pliocene FB zone Oosterhout Formation, the Netherlands. Pliocene; Coralline Crag Formation, Sutton Knoll and BGS borehole OSC1, Orford, Suffolk, UK.

Description. Carapace subquadrate, dorsal margin convex, ventral sinuous. Anterior margin broadly round, posterior somewhat truncated. In dorsal view the outline is sinuous but truncated in front of the posterior marginal rim. Maximum length well below mid height. Eye tubercles conical, more weakly developed in males. Anterior rim possesses four to seven fine, transverse, arcuate/sinuous riblets. Ornament consists of 15–17 subcircular/ovate cellate fossae, occasionally linked below a sturdy subcentral tubercle. Single, delicate, rib angled from the posteromedian region to the subcentral tubercle. Sensillum pores simple, small, intermural or peripheral on the solum. Avestibulate, inner lamalla broad, marginal pore canals simple straight, 24–26 anteriorly, nine posteriorly, 17 orally.

Remarks. Although much larger, both the outline of the carapace and the disposition of reticulation of this species are praebayssicola Uffenorde–M. abyssicola (Sars) lineage.

Diagnosis. Carapace elongate, subquadrate/trapeziform. Dorsal margin concave with prominent raised anterior cardinal angle, ventral concave. Listric truncation of posterior in dorsal view. Conspicuous subcentral, posterodorsal and posteroventral tubercles. Two further tubercles positioned in the dorsomedian and posteromedian regions connected by a conspicuous, sinuous, carinate ridge. Second, finer, carina connecting subcentral and posterodorsal tubercles.

Type locality and horizon. Coralline Crag Formation, BGS borehole OSC1: OR7a, near Orford, Suffolk, East Anglia, UK.

Material. East Anglia, 19V; the Netherlands, 5CP, 14V.

Dimensions of types.

Cat. No.	Site	Length	Height
Holotype ARV-F	MPK9772 OSC1 OR7a	0.77	0.41
Paratype LV A-1 MPK9773 OSC1 OR15	0.68	0.37	

Distribution. Lower Pliocene; FB zone, Oosterhout Formation, the Netherlands; mid-Pliocene; Coralline Crag Formation, Orford and Sutton Knoll, East Anglia, UK.

Description. Carapace elongate subquadrate/ovate to trapeziform. Dorsal margin of LV concave, raised anterior cardinal angle, RV sinuous. Ventral margin, in both LV and RV, convex. Anterior margin rounded. In dorsal view, posterior listrically truncated. Maximum length just below the mid height. Margin rims broad, rounded in dorsal view. Conspicuous eye tubercle situated just beneath anterior cardinal angle. Coarsely reticulate with rounded/subovate fossae, quadrate submarginally. Fossae and muri suppressed with respect to marginal reticulum. Plicate ventromarginal ridge terminates in the posteroventral region in the form of an alate swelling. Posterodorsal tubercle more weakly developed. Arcuate, ridge, forming an inter-connection between tubercles situated behind mid-point on the dorsal margin and below the anterior cardinal angle. Avestibulate, moderately broad inner lamalla, marginal pore canals, straight, numerous; 24 anteriorly, 11 orally and nine posteriorly.

Remarks. Although much larger, both the outline of the carapace and the disposition of reticulation of this species are praebayssicola Uffenorde–M. abyssicola (Sars) lineage.

Diagnosis. Carapace elongate, subquadrate/trapeziform. Dorsal margin concave with prominent raised anterior cardinal angle, ventral concave. Listric truncation of posterior in dorsal view. Conspicuous subcentral, posterodorsal and posteroventral tubercles. Two further tubercles positioned in the dorsomedian and posteromedian regions connected by a conspicuous, sinuous, carinate ridge. Second, finer, carina connecting subcentral and posterodorsal tubercles.

Type locality and horizon. Coralline Crag Formation, BGS borehole OSC1: OR7a, near Orford, Suffolk, East Anglia, UK.

Material. East Anglia, 11CP, 15V; the Netherlands, 11CP, 80V.

Dimensions of types.

Cat. No.	Site	Length	Height
Holotype ARV-F	MPK9768 OSC1 OR7a	0.67	0.37
Paratype ALV-F	MPK9769 OSC1 OR14	0.65	0.37
Paratype ALV-M	MPK9770 OSC1 OR14	0.63	0.36
Paratype ARV-M	MPK9771 OSC1 OR14	0.62	0.33

Distribution. Upper Miocene; FC1 zone and Lower Pliocene FB zone Oosterhout Formation, the Netherlands. Pliocene; Coralline Crag Formation, Sutton Knoll and BGS borehole OSC1, Orford, Suffolk, UK.

Description. Carapace subquadrate, dorsal margin convex, ventral sinuous. Anterior margin broadly round, posterior somewhat truncated. In dorsal view the outline is sinuous but truncated in front of the posterior marginal rim. Maximum length well below mid height. Eye tubercles conical, more weakly developed in males. Anterior rim possesses four to seven fine, transverse, arcuate/sinuous riblets. Ornament consists of 15–17 subcircular/ovate cellate fossae, occasionally linked below a sturdy subcentral tubercle. Single, delicate, rib angled from the posteromedian region to the subcentral tubercle. Sensillum pores simple, small, intermural or peripheral on the solum. Avestibulate, inner lamalla broad, marginal pore canals simple straight, 24–26 anteriorly, nine posteriorly, 17 orally.
similiar to those of *Muellerina praebyssicola* and *M. abyssicola*. However, the posterior tubercles of *Muellerina praebyssicola* are greatly inflated and dorsomedian swellings weaker. Although retaining the 'S-shaped dorsomedian structure in the form of an insubstantial, raised, murus; the ornament of *M. abyssicola* is conservative by comparison.

A fourth species, described by C. A. Maybury (pers. comm.) from the Redonian (Upper Pliocene) of northwest France, may also be a member of the 'abyssicola' lineage.

Muellerina orygyma sp. nov. (Pl. 1, figs 12 & 13; Pl. 2, fig. 1)

?1878 Cythare latimarginata Speyer; Brady: 389–390, pl. 64, figs 8a–d (non Speyer, 1863).

1979 *Muellerina lacunosa* (Jones); Wouters: 228–229, pl. 2, figs 2a and 2c (non Jones, 1857) (non pl. 2, fig. 2b = *Muellerina lacunosa* (Jones)).

Derivation of name. Greek; *orygymus* = moat-like trench. Pertaining to the ring of fossae encircling the raised subcentral tubercle.

Description. *Muellerina* with a well developed pattern of open reticulation characterized by a concentration of fossae anterodorsally and in a chain around the central tubercle. Numerous, small simple pores. Inflated in front of the posterior marginal rim.

Type locality. Klandert 43H/63 borehole, 256.50–259 m; FC1 zone, Oosterhout Formation, Upper Miocene, the Netherlands.

Material. The Netherlands, 21CP, 361V.

Dimensions of types.

Cat. No.	Site	Length	Height	
Holotype ALV-F	OS14185	43H/63(178)	0.75	0.43
Paratype ARV-F	OS14186	43H/63(178)	0.78	0.42
Paratype ALV-M	OS14187	43H/63(177)	0.75	0.41
Paratype ARV-M	OS14188	43H/63(177)	0.77	0.41

Distribution. Upper Miocene (FC zone) and Lower Pliocene (FB zone), Oosterhout Formation, the Netherlands. Pliocene, Coralline Crag Formation at Sutton Knoll and Orford, Suffolk, UK.

Description. Carapace, robust, elongate/subrectangular. Dorsal and ventral margins sinuous. Anterior broadly rounded; posterior somewhat truncated. In dorsal view the outline is inflated with the maximum width behind mid-length. Moderately well developed eye tubercle present just below the anterior cardinal angle. Ornament coarsely pitted/reticulate, fossae inside marginal rim rectangular. Rounded/subovate fossae surround the subcentral tubercle while a discrete cluster occur anterodorsally of this tubercle. Secondary, fine, puncta especially in

juveniles. Weak, longitudinal, plicate muri, arising from the subcentral tubercle terminating posterodorsally. Very narrow anterior vestibulum, posterior avestibulate, ventral frontal muscle scar bilobate, inner lamella moderately broad. Marginal pore canals simple, straight/sinuous, 27 anteriorly, 14 posteriorly and at least four orally.

Remarks. *Muellerina orygyma* sp. nov. occurs most commonly in association with *M. lacunosa* (Jones) in the early Pliocene successions of the Netherlands. *Muellerina orygyma* sp. nov. can be distinguished from the latter species by both its swollen mediodorsal region and reduced posterior tubercles, however, it is apparent that intermediate forms also exist between the two end member species; this being especially prevalent within eczone B, mid Pliocene (Wood et al., 1994).

Muellerina plicenica sp. nov. (Pl. 2, figs 2 & 4)

1980 *Murrayina lacunosa* (Jones); Wilkinson: pl. 2, fig. 13 (non Jones, 1857).

1989 *Muellerina lacunosa* (Jones): Horne & Kerr: pl. 2, fig. d (non Jones, 1857).

1989 *Muellerina* sp. cf. *M. lacunosa* (Jones); Fourniguet et al.: pl. 1, fig. 19.

Derivation of name. Named for the epoch in which it is most commonly found.

Diagnosis. Carapace elongate, subovate. Heavily denticulated, lipped, extension of the anterior margin. Fossae, cellate, irregularly disposed. Posterior dominated by three tubercles situated in the posterodorsal, posteroverntal (this swelling continues anteriorly as a strong plicate ridge) and posterooromedian fields, interconnected with expanded, undulose, sinuous muri.

Type locality and horizon. Klandert 43H/63 borehole, 219-221.5, FB zone, Oosterhout Formation, Pliocene, the Netherlands.

Material. East Anglia, 5CP, 11V; the Netherlands, 3CP, 24V.

Dimensions of types.

Cat. No.	Site	Length	Height	
Holotype ARV-M	OS14189	43H/63(163)	0.76	0.32
Paratype ALV-F	OS14190	43H/63(163)	0.70	0.34
Paratype ALV-M	OS14191	43H/63(163)	0.76	0.33
Paratype ARV-F	OS14192	43H/63(170)	0.73	0.32

Distribution. Pliocene; FB and FA2 zones, Oosterhout Formation, the Netherlands. Coralline Crag Formation at Orford and Sutton Knoll, East Anglia. Redonian (Upper Pliocene) of the St Erth Beds, Cornwall and northwest France. ?Pliocene/Pleistocene; Knocknasillage Member, Co. Wexford, Ireland.

Description. Carapace elongate/subovate, dorsal and ventral margins sinuous. Anterior margin compressed. In dorsal view,

Explanation of Plate 1

Figs 1a–c. *Muellerina latimarginata* (Speyer, 1863): fig. 1a, AMW/PL/016 LV-F, ext. lat. (875); fig. 1b, AMW/PL/016, int. lat. (x69); fig. 1c, AMW/PL/019, detail of central muscle scars (x292). Figs 2–3. *Muellerina abyssicola* (Sars, 1866): fig. 2, AMW/RNA/016 LV-F, ext. lat. (x64); fig. 3, AMW/RNA/019 RV-M, ext. lat. (x65). Figs 4–6. *Muellerina lacunosa* (Jones, 1857): fig. 4, AMW/PL/023 RV-F, ext. lat. (x61); fig. 5, AMW/PL/022 LV-M, ext. lat. (x57); fig. 6, AMW/PL/020 LV-F, int. lat. (x66). Figs 7–9. *Muellerina dolabrata* sp. nov.: fig. 7, Holotype MPK9768 LV-F, ext. lat. (x77); fig. 8, Paratype MPK9770 LV-M, ext. lat. (x83); fig. 9a, Paratype MPK9769 LV-F, ext. lat. (x80); fig. 9b, Paratype MPK9769, detail of central muscle scars (x384). Figs 10–11. *Muellerina metabysicola* sp. nov.: fig. 10, Paratype MPK9773 LVA-1, ext. lat. (x71); fig. 11a, Holotype MPK9772 RV-F, ext. lat. (x63); fig. 11b, Holotype MPK9772, int. lat. (x65). Figs 12–13. *Muellerina orygyma* sp. nov.: fig. 12, Holotype OS14185 LV-F, ext. lat. (x62); fig. 13, Paratype OS14186 RV-F, ext. lat. (x64).
liskic truncated in front of posterior margin. Maximum height at or just in front of anterior cardinal angle. Triangular eye tubercle situated in front of the anterior cardinal angle. Anterior margin consists of an outer denticulated lip, broad marginal rim at or just in front of anterior cardinal angle. Triangular eye with elongate: pits, parallel with margin, occasionally connected to form a sinuous depression. This area is separated from a single concentric row of amorphous fossae by a delicate excavate rib. Posterior margin broad, with five subcircular depressions, lipped, denticulated posteromedianly. Ornament, tuberculate, prominent dorsomedian, posteroventral and posterodorsal swellings. The latter structure tapers anteriorly to form a plicate ridge terminating in the ventromedian field. Dorsal tubercles inter-connected via an excavated rib. Scattered, subcircular, cellate fossae clustered posterodorsally. Sensillum pores common, intramural and simple. Avestibulate, inner lamella moderately broad, marginal pore canals simple, straight; 24 anteriorly, 20 orally and 13 posteriorly.

Remarks. As with species of the ‘abyssicola’ lineage, M. pliocenica sp. nov. possesses a liskic truncation of the posterior margin in dorsal view, dorsomedian ridge/bar and posterior tubercles. Aside from M. latimarina (Speyer), which has a range from the Oligocene to mid-Pliocene, this species has the longest recorded range; uppermost Miocene, Holland to Upper Pliocene, St. Erth Beds, Cornwall (c. 2.1–1.8 Ma, Jenkins and Houghton, 1987). It has also been recorded from younger, Pleistocene age, deposits of Co. Wexford although there are indications of reworking (Horne & Kerr, 1989, p. 74).

Family Thaerocytheridae Hazel, 1967
Subfamily Thaerocytherinae Hazel, 1967
Genus Thaerocythere Hazel, 1967

Type species: Cythereis crenulata Sars, 1866.

Emend. Diagnosis. Carapace elongate subovate/quadrate to trapeziform, thick shelled. Dimorphic, males proportionally more elongate, generally depressed. Ornament coarse to delicate reticulate, usually with prominent sub-central, posteroventral and postero-dorsal tubercles, latter extends backwards as a generally robust, submarginal rib approximately two-thirds length of carapace. Moderately wide posterior and anterior marginal rims. Single, reticulate, concentric submarginal furrow commonly developed.

Four adductor muscle scars, middle two somewhat elongate, two frontal scars in oblique row. Hinge strong holamphidont. Avestibulate, marginal pore canals numerous and straight, 25–45 anteriorly, 12–21 posteriorly. Moderately strong anterior selvage.

Remarks. Two subgenera Thaerocythere (Thaerocythere), T. (Notopleura) and a questioned third have been erected by Liebau (1991) using sculpture mapping of the mesh (or cell) patterns, pore cones and muscle scars. It is clear from Liebau’s work that a number of the Tertiary thaerocytherid species, especially those outside of the European realm, have no or only questionable affiliations with these new subgenera; most notably are T. sagittata Liebau, 1991; T. mayburyae Cronin, 1991; T. woutersi sp. nov.; T. ruespelsensis (Uffenorde, 1981); T. schmidtiae (Malkin, 1953) and T. carolinensis Hazel, 1977. Without creating a number of new monospecific subgenera, which the present authors feel would only cause additional complications, difficulties in assigning species to the subgenera level cannot be overcome. We have, therefore, refrained from using the new subgenera with respect to this genus.

Thaerocythere crenulata (Sars, 1866)

(Pl. 2, fig. 5)

1866 Cythereis crenulata Sars: 39.
1889 ?Cythere crenulata (Sars); Brady & Norman: 158, pl. 15, figs 5 & 6.
1941 Cythereis (Eucythereis) crenulata Sars; Elofson: 60.
1967 Thaerocythere crenulata (Sars); Hazel: 25, pl. 4, figs 2–5, 8; pl. 9, fig. 4.
1991 Thaerocythere (Thaerocythere) crenulata (Sars); Liebau: 149.

Diagnosis. Carapace subquadrate in lateral view. Anterior denticulated, broad to obliquely rounded, posterior somewhat truncated. Subdued reticulation, fossae minutely pappilate. Short submarginal dorsal rib, both ends terminate in knobs. In dorsal view posterior compressed. Margin wide, radial pore canals simple, straight; selvage moderately developed.

Material. In excess of 2000 specimens.

Dimensions.

Cat. No.	Site	Length	Height
ALV-M	AMW/PL/001	0.74	0.44
ARV-F	AMW/PL/002	0.75	0.47

Distribution. Recent; Pan Arctic and amphiatlantic species. Commonly encountered on the shelf of the northeast Atlantic between the Bay of Biscay and Greenland (Cronin et al., 1992). Hazel (1968) indicated the presence of late glacial specimens, at depth, between Capes Hatters and Cod. Holocene; Bay of Biscay (Peyrouquet, 1971, 1973).

Remarks. Only this cryophilic, amphiatlantic type species and Thaerocythere hoptonensis (Brady et al., 1874) have been recorded from the Recent. Also see Thaerocythere praecrenulata sp. nov for remarks.

Explanation of Plate 2

Fig. 1. Muellerina orygyma sp. nov.: fig. 1a, Paratype OS14186 RV-F, int. lat. (÷65); fig. 1b, Paratype OS14186, detail of central muscle cars (÷260). Figs 2–4. Muellerina pliocenica sp. nov.: fig. 2, Holotype OS14189 RV-M, ext. lat. (÷61); fig. 3, Paratype OS14191 LV-M, ext. lat. (÷61); fig. 4a, Paratype OS14192 RV-F, int. lat. (÷69); fig. 4b, Paratype OS14192, detail of central muscle scar (÷336). Fig. 5a–b. Thaerocythere crenulata (Sars, 1866): fig. 5a, AMW/RNA/002 RV-F, int. lat. (÷66); fig 5b, AMW/RNA/002, ext. lat. (÷66). Figs 6–8. Thaerocythere hoptonensis (Brady et al., 1874): fig. 6, Holotype 2.04.21 CplLV-F, ext. lat. (÷57); fig. 7, Holotype 2.04.21 CprR-F, ext. lat. (÷57); fig. 8a, AMW/PL/026 LV-M, ext. lat. (÷70); fig 8b, AMW/PL/026, int. lat. (÷70). Fig. 9. Thaerocythere mayburyae Cronin, 1991, AMW/PL/004 RV-M, ext. lat. (÷66). Figs 10–11. Thaerocythere oedichilus (Brady, 1878): fig. 10a, AMW/PL/007 RV-F, ext. lat. (÷70); fig. 10b, AMW/PL/007, int. lat. (÷70); fig. 11, AMW/PL/008 LV-M, ext. lat. (÷67). Fig. 12. Thaerocythere trapezia (Brady, 1878), AMW/PL/011 LV-M, ext. lat. (÷63).
Thaerocythere hoptonensis (Brady, Crosskey & Robertson, 1874)
(Pl. 2, figs 6–8)
1874 *Cythere hoptonensis* nov. sp. Brady, Crosskey and Robertson: 168, pl. 14, figs 4–6.
1982 *Quadracythere hoptonensis* (Brady et al.); Liebau: 233.
1991 *Thaerocythere (Notopleura) hoptonensis* (Brady et al.); Liebau: 153.
1991 *Thaerocythere (Notopleura) hoptanica* n. sp. Liebau; 152–153, pls 80–82; pl. 92, fig. 5.

Diagnosis. Elongate, subovate in lateral view; dorsal margin obliquely convex, ventral sinusous. Ornament consists of subovate fossae, marginally subquadrate; radial muri raised with respect to concentric component; pore-conulii common, situated on micropapillate solum where they are proximal to the muri, also present in subconcentric row mid-way between centre and margin (most common above mid-height) were they may be depressed. Well developed anterodorsal and short posterodorsal ridges, latter angled between posterior cardinal angle and subcentral tubercle.

Dimensions of types.

Cat. No	Site	Length	Height
Holotype CpALV-F	Hopton Cliff	0.87	0.48
Holotype CpARV-F	AMW/PL/026 Neutral Farm	0.72	0.40
ALV-M	AMW/PL/027 Neutral Farm	0.72	0.40
ARV-M	AMW/PL/027 Neutral Farm	0.72	0.40

Distribution. Pliocene; Chillesford Sand Member, Norwich Crag Formation at Chillesford Church Pit, East Anglia, UK; *Tapes, Mactra* and *Serripes* zones, Tjörnes, Iceland. Upper Pliocene (Redolian); St Erth Beds, Cornwall, UK. *Pliocene/Pleistocene; Knocknasiloge Member, County Wexford, Ireland.*

Remarks. This species has been identified in the Hopton Cliff faunal slide of Brady et al. (1874), where it is described as *Cythere macropora* Bosquet (non Bosquet, 1852). A cryptophilic species which first appeared in the Tapes Zone of Tjörnes (c. 3.40–3.15 Ma, Cronin, 1991). Clearly allied with *Thaerocythere sp.* A from the Coralline Crag Formation of East Anglia (see remarks).

Thaerocythere oedichilus (Brady, 1878)
(Pl. 2, figs 10 & 11)
1878 *Cythere oedichilus* nov. sp. Brady: 388, figs 1a–1d.
1967 *Thaerocythere? oedichilus* (Brady); Hazel: 25 and 26.
1991 *Thaerocythere (Thaerocythere) oedichilus* (Brady, 1879 [sic]); Liebau: 158, pl. 90, figs 1–4.

Diagnosis. Carapace, robust, subquadrate. Anterior obliquely rounded with broad denticulated marginal rim; posterior, angular, subtruncate. Dorsal margin weakly convex, ventral sinusous, converging posteriorly. Reticulation intricate, labyrinthine network of elongate/ovate cellate fossae. Muri inflated and raised either side of overgrown subcentral tubercle. Subventral ridge with alate posteroventral termination. Simple intermural and conjunctive pores common.

Material. East Anglia, 39V; the Netherlands, 22CP, 50V.

Dimensions.

Cat. No	Site	Length	Height
ALV-F	AMW/PL/006	0.68	0.41
ARV-F	AMW/PL/007	0.71	0.41
ARV-M	AMW/PL/008	0.71	0.39

Distribution. ?Miocene; ?Antwerp and Edgam sands, Belgium; FCl zone, Oosterhout Formation, the Netherlands. Pliocene; Duerne and Lillo formations of Belgium; FB and FA2 zones, Oosterhout Formation; Coralline Crag Formation at Orford and Sutton Knoll, UK; Waltonian stage Red Crag Formation, Walton-on-the-Naze, UK and Butley stage Red Crag Formation, Crag Farm, Suffolk, UK.

Remarks. On the basis of macroreticulation Liebau (1991) placed this species and both *T. crenulata* and *T. sagittata* Liebau, 1991 within *Thaerocythere (Thaerocythere)* Liebau, 1991. The outline of this species resembles *T. crenulata* in many respects although its ornament is markedly different.

Thaerocythere trachypora (Jones, 1857)
(Pl. 3, fig. 1)
1857 *Cythere trachypora* Jones; 26, pl. 3, figs 9a & 9b (non Jones, 1857).
1899 *Thaerocythere* sp. Horne & Kerr: pl. 2, fig. c.
1991 *Thaerocythere mayburyae* n. sp. Cronin: 777, pl. 10, figs 1–7.

Diagnosis. (after Cronin, 1991, p. 777). Carapace thick, subquadrate; surface characterized by well developed anterior marginal ridge, ventral and marginal ridges connected by a short oblique posterodorsal ridge; dorsomedian ridge variably developed. Subcentral tubercle very large, smooth to weakly pitted.

Material. East Anglia, 2CP, 9V.

Dimensions.

Cat. No	Site	Length	Height
LV/A-1	AMW/PL/003	0.70	0.39
ARV-M	AMW/PL/004	0.76	0.40
ALV-F	AMW/PL/005	0.74	0.43

Distribution. Pliocene; Chillesford Sand Member, Norwich Crag Formation at Chillesford Church Pit, East Anglia, UK; *Tapes, Mactra* and *Serripes* zones, Tjörnes, Iceland. Upper Pliocene (Redolian); St Erth Beds, Cornwall, UK. *Pliocene/Pleistocene; Knocknasiloge Member, County Wexford, Ireland.*

Remarks. Robust, quadrate, species of *Thaerocythere* with raised anterior cardinal angle in LV, dorsal margin sinusous with
Muellerina and Thaerocythere

conavity at mid length. Ornament composed of equally well developed radial and concentric arranged muri about solid subcentral tubercle. Muri angled, above mid-height, from posterior cardinal angle to mid height at the anterior margin. Fossae subquadrate, pore-conulc common and central on solum, intermural and conjunctive pores rare.

Material. East Anglia, 77CP, 160V; the Netherlands, 3CP, 16V.

Dimensions.

Cat. No.	Site	Length	Height
ACp-F	AMW/PL/009 OSC1/OR12	0.75	0.47
ARV-M	AMW/PL/010 OSC1/OR15	0.75	0.47

Distribution. Pliocene; Coralline Crag Formation; Waltonian, Butleyarr and Newbournian stages of the Red Crag Formation. FB, FA2 and FA1 (Pleistocene) of the Oosterhout and Maaslius formations, Holland. Oorderen Sands, Belgium (K. Wouters, pers. comm.).

Remarks. It appears likely that the rather worn specimens of *T. whatleyi* Cronin, 1991 from the Pliocene of Iceland are synonymous with this species. *T. trachypora* has retained a number of traits common to *T. vermiculata* sp. nov., notably two equally robust, anteromedian, longitudinal ridges and the general structure of both raised and depressed muri in the posterodorsal region.

Thaerocythere trapezia (Brady, 1878)

(Pl. 2, fig. 12)

1878 *Cythere trapezia* nov. sp. Brady: 391-392, pl. 66, figs 4a-d.

Diagnosis. Carapace sub-trapezoidal in lateral view, anterior obliquely rounded, margin reduced to a fine ridge. Dorsomarginal ridge moderately well developed. Reticulation composed of polygonal/quadrate, elongate quadrate at margins, fossae concentric and radial mural component equally developed. Large pore-conulc, peripheral on caperate solum. Subvertical truncation of reticulation belong posterior cardinal angle. Eye tubercle, conical and mounted on murus below anterior cardinal angle.

Material. The Netherlands, 1CP, 5V.

Dimensions.

Cat. No.	Site	Length	Height
ALV-M	AMW/PL/011 43H63(153)	0.79	0.47
ARV-M	AMW/PL/012 43H63(153)	0.79	0.43

Distribution. Pliocene; FB zone, Oosterhout Formation, the Netherlands; Luchthal (K. Wouters, pers. comm.) and Oorderen Sands, Lillo Formation, Belgium and Coralline Crag Formation at Orford, Sutton Knoll and Gedgrave (K. Wouters, pers. comm.).

Remarks. This species is a close relative of *T. vermiculata* sp. nov., a species restricted to the Miocene of the Netherlands and Belgium. Comparison of the macroreticulation reveals a number of morphological analogues, notably the trapezoidal outline and overall carapace dimensions. *T. vermiculata* sp. nov. is easily distinguish from *T. trapezia* by the presence of two, longitudinal and inflated anteromedian ridges, similar to those developed in *T. trachypora*.

Thaerocythere biformis sp. nov.

(Pl. 3, figs 2–5)

Derivation of name. Latin; *biformis* = having two forms. Pertaining to the existence of two ecophenotypic variants of this species.

Diagnosis. Trapezoidal in lateral view, fossae subovate. Pore-conulc commonly developed with apophysis, peripherally situated on micropapillate solum. Strongly developed submarginal, anteroventral and dorsal ridges, latter reclinced ‘J’-shaped. Intricate, pinched, mediadorsal nodes present.

Type locality and horizon. Klundert 43H63 borehole, 256.50–259 m, Upper Miocene, Oosterhout Formation, the Netherlands.

Material. The Netherlands, 5CP, 95V.

Dimensions of types.

Cat. No.	Site	Length	Height
Holotype	ARV-F OS14193 43H/63(178)	0.80	0.47
Paratype	ALV-F OS14194 43H/63(179)	0.75	0.43
Paratype	ALV-M OS14195 43H/63(179)	0.75	0.43
Paratype	ARV-M OS14196 43H/63(178)	0.77	0.43

Cryophilic forms

Cat. No.	Site	Length	Height
Paratype	ALV-F OS14197 43H/63(174)	0.81	0.48
Paratype	ALV-F OS14198 43H/63(174)	0.83	0.47
Paratype	ALV-M OS14199 43H/63(174)	0.82	0.50
Paratype	ALV-M OS14200 43H/63(174)	0.78	0.43

Distribution. Upper Miocene (FC1 zone) and Lower Pliocene (FB zone); Oosterhout Formation, the Netherlands. Upper Miocene; Dessel and Duerne sands, Diest Formation, Belgium (K. Wouters, pers. comm.).

Description. Heavily calcified, sub-trapezoidal in lateral view. Dorsal margin of RV straight with posterior irregularities. LV arched, ventral margin convex with convexity behind anterior margin. Anterior margin finely denticulated, obliquely rounded with broad angular margin. Posterior denticulated, subtruncated, dorsal region straight or concave, extremity below mid height. Eye tubercle heavily swollen, broadly conical and mounted on submarginal murus. Ornament composed large, irregular, subtriangular/subovate. Radial and concentric murus equally well developed.

Pore-conulc commonly developed, with apophysis, peripheral on micropapillate solum. Robust, submarginal, ridge connecting anterior cardinal angle with posteroventral region, posterior termination inflated, angular and bifurcate. Dorsal margin reinforced with irregular, lateral, ridge forming an inclined ‘U’ at the posterior cardinal angle. Two ‘pinched’ nodes developed below dorsal margin in the dorsomedian field.

Inner lamella broad, radial pore canals numerous and straight; 45 anteriorly, 6 orally, 17 posteriorly; selavage broad, well developed.

Remarks. Two ecophenotypes of *T. biformis* sp. nov. occur, both forms exhibit an exceptionally high level of reciprocity in the disposition of macroreticulation. The first, and oldest form, is predominantly found in sediments of upper Miocene age (Diest Formation, Belgium, K. Wouters pers. comm.), and the FC1 Zone, Oosterhout Formation) and is considered by Wood et al. (1994) to have existed in a subtropical environment. This thermophilic form is characterized by finely chiselled muri. The second, cryophilic, form is restricted to ecozone A (first phase Lower Pliocene cooling) of the Netherlands and is characterized by a plicate swelling of muri and ridges. The earlier, thermophilic, form of *T. biformis* sp. nov. is similar, in many respects, to *T. gramanni* Liebau, 1991 from the Reinbekium (Middle Miocene) of northern Germany. Both species possess similarities.
Plate 3
in form of posterior and dorsomedian swellings as well as in the disposition of muri and fossae, however, T. gramannii is considerable smaller though proportionally more elongate and lacks the submarginal anterior ridge.

Thaerocythere praecrenulata sp. nov.

(Pl. 3, figs 6 & 7)

Derivation of name. Latin; *praecr* = before. Pertaining to its possible ancestral links with *T. crenulata* (Sars, 1865).

Diagnosis. Carapace subquadrate in lateral view; anterior obliquely rounded, finely denticulated. Ornament composed of a first order polygonal, sub-radial, reticulation with low muri; more elongate parallel to anterior margin. Second order fabric of small sub-triangular/polygonal muri, surrounding commonly marginal pore-conuli.

Type locality and horizon. Klundert 43H/63 borehole, 239-241; FB zone. Oosterhout Formation, Upper Miocene, the Netherlands.

Material. The Netherlands, 1CP, 3V.

Dimensions of types.

Cat. No.	Site	Length	Height
Holotype ALV-?F OS14204 43H/63(171)	0.79	0.50	
Paratype ARV-?F OS14202 43H/63(171)	0.84	0.51	
Paratype RVA-1 OS14203 43H/63(171)	0.74	0.42	

Distribution. Lower Pliocene, FB zone, Oosterhout Formation, the Netherlands.

Description. Carapace quadrate; dorsal margin straight to slightly convex, ventral concave with convexity behind anterior margin. Anterior finely denticulated, obliquely rounded with raised cardinal angle in LV; posterior subtruncate with concavity above mid height. Maximum width submarginal to posterior. Small, well defined eye tubercle.

First and second order reticulation, sub-radial disposed, about finely punctate subcentral tubercle. Polygonal, first order fossae with low relief muri, more elongate parallel to anterior margin. Second order composed of a fine tesselation of sub-triangular/polygonal muri, surrounding commonly peripheral pore-conuli. Muri suppressed or absent at dorsal margin. Inner lamella moderately wide, avestibulate, marginal radial pore canals numerous; 12 posteriorly, nine orally and 27 anteriorly, selvage moderately developed.

Remarks. Proposed ancestor of *T. crenulata* (Sars, 1866). Size and distribution of primary macrorecticulation in both species is clearly analogous, however, the secondary tessellation of the solum in the Pleistocene/Recent species is much simplified, being finely punctate or papil late. Both species are cryophilic, *T. crenulata* is restricted, on the northeast Atlantic shelf, to the European Realm where it attains its acme within the Norwegian Province (*sensu* Wood and Whately, 1994). *T. praecrenulata* sp. nov. has, as yet, only been found in ecozone A, early Pliocene, of the Netherlands (first phase Pliocene cooling; Wood et al., in 1994), where it occurs in association with other cryophilic species; *Acanthocythereis tuberculatus* (Norman, 1865), *Palme nolla limicola* (Norman, 1865), *Elofsonella concinna* (Jones, 1857) and *Neo monoceratina tsurugaskensis* (Tabuki, 1986).

Thaerocythere vermiculata sp. nov.

(Pl. 3, figs 8 & 9)

1878 *Cythere macropora* Bosquet; Brady: 392–392, pl. 66, figs 6a–d (non pl. 67, fig. 1a–d = *Thaerocythere woutersi* sp. nov.) (non Bosquet, 1852).

Derivation of name. Latin; *vermiculata* = worm like. Pertaining to the fine anastomosing secondary microreticulation present on the solum.

Diagnosis. Elongate-ovate/subquadrate species of *Thaerocythere* characterized by a well developed dorsal lateral ridge extending from the eye backwards towards termination in front of the posterior margin at its mid-height. Reticulation consists of a network of plicate muri, in which the concentric component may be subdued. Fossae, irregular, polygonal with common pore-conul i; fine secondary reticulation of anastomosing micromuri on caper ate sola. Two sub-parallel, longitudinal, swollen muri developed in the anteromedian region, projecting from the subcentral tubercle to the anterior margin.

Type locality. Klundert 43H/63 borehole, 254–256.50 m, FCI zone, Upper Miocene, the Netherlands.

Material. The Netherlands, 33V.

Dimensions of types.

Cat. No.	Site	Length	Height
Holotype ALV-M OS14204 43H/63(177)	0.79	0.46	
Paratype ARV-M OS14205 43H/63(177)	0.79	0.43	
Paratype ALV-F OS14206 43H/63(177)	0.80	0.49	
Paratype ARV-F OS14207 43H/63(177)	0.80	0.52	

Distribution. Restricted to the FCI zone (Upper Miocene) and FB, lowest Pliocene (ecozone A) of the Netherlands. Duerne Sand, Upper Miocene, Belgium (K. Wouters, pers. comm.).

Description. Carapace subquadrate/elongate subovate, dorsal margin straight to weakly convex, cardinal angle in LV raised. Anterior denticulated, obliquely rounded; posterior subtruncate to ovate in LV, RV subtruncate. Surface strongly reticulate, irregular polygonal fossae with carinate and plicate muri, concentric component subd ued. Secondary reticulation present on sola of the fossae in the form of anastomosing micropapillae.

Explanation of Plate 3.

Fig. 1. *Thaerocythere trachypora* (Jones, 1857): fig. 1, AMW/PL/009 CplL-V-F, ext. lat. (×65). Figs 2–5. *Thaerocythere biformis* sp. nov. (figs 2–3 thermophilic form): fig. 2a, Holotype OS14193 RV-F, ext. lat. (×61); fig. 2b, Holotype OS14193, int. lat. (×63); fig. 3, Paratype OS14195 LV-M, ext. lat. (×64); (figs 4–5 cryophilic form): fig. 4, Paratype OS14197 LV-F, ext. lat. (×57); fig. 5, Paratype OS14200 RV-M, ext. lat. (×63). Figs 6–7. *Thaerocythere praecrenulata* sp. nov.: fig. 6, Paratype OS14202 RV-?F, ext. lat. (×61); fig. 7, Holotype OS14201 LV-?F, int. lat. (×64). Figs 8–9. *Thaerocythere vermiculata* sp. nov.: fig. 8a, Holotype OS14204 LV-M, ext. lat. (×63); fig. 8b, Holotype OS14204, detail of microreticulation (×323); fig. 9, Paratype OS14205 RV-M, ext. lat. (×60). Figs 10–11. *Thaerocythere woutersi* sp. nov.: fig. 10, Paratype OS14209 LV-M, ext. lat. (×60); fig. 11, Holotype OS14208 LV-F, int. lat. (×63). Figs 12–13. *Thaerocythere woutersi* sp. nov.: fig. 12, Holotype OS14212 LV-F, ext. lat. (×61), fig. 13, Paratype OS14215 RV-M, ext. lat. (×64). Figs 14. *Thaerocythere* sp. A, AMW/PL/013 RV-M, ext. lat. (×63). Fig. 15. *Thaerocythere* sp. B, AMW/PL/024 RV-F, ext. lat. (×65).
Pore-conuli peripheral on solum, with apophysis; rare, simple disconjunctive pores. Eye tubercle mounted on, carinate, murus which projects backwards in an arcuate curve towards terminus; this peripheral structure is connected posterior the overall structure of their ornament is very different.

Thaerocythere woutersi sp. nov.

(Pl. 3, fig. 11-13)

1878 Cythere macropora Bosquet; Brady: 392-392, pl. 67, figs 1a-d (non pl. 66, figs 6a-d = T. vermiculata sp. nov.) (non Bosquet, 1852).

1990 ‘Quadrectythere’ sp. Uffenorde; pl. 1, fig. 10.

Derivation of name. In honour of Dr K. Wouters for his contribution to the study of Neogene Ostracoda from Belgium.

Diagnosis. Quadrate species of Thaerocythere characterized by a serrated dorsal margin and finely sculptures reticulation comprising a basket-like ponticulate tegmen bearing disconjugate normal pores and ingrowing spines edging fossae. Pore-conuli common and proximal to muri.

Type locality and horizon. Klundert 43H63 borehole, 239–241.50 m, Lower Pliocene, Oosterhout Formation, the Netherlands.

Material. The Netherlands, 8CP, 110V.

Dimensions of types.

Cat. No.	Site	Length	Height
Holotype ALV-F OS14212 43H/63(171)	0.82	0.50	
Paratype ARV-F OS14213 43H/63(177)	0.82	0.48	
Paratype ALV-F OS14214 43H/63(173)	0.79	0.50	
Paratype ARV-M OS14215 43H/63(171)	0.78	0.48	
Paratype Cp-F OS14216 43H/63(171)	0.78	0.51	

Distribution. Upper Miocene and Lower Pliocene (ecozone A) of the Netherlands. Middle and Upper Miocene, ?Breacham and Diest formations, Belgium (Brady, 1878). Upper Miocene, parvipunctata superzone (Uffenorde, 1990, p.372), Wusterheide, northern Germany.

Description. Thick shelled, sub-trapezoidal in lateral view. Dorsal margin serrated, LV broadly concave, RV straight or slight convex. Ventral margin broadly convex. Anterior margin obliquely rounded with very fine radial muri, posterior truncate. Conspicuous eye tubercle mounted on reticulate tegman. Carapace intricate, reticulate with fine subquadrate/ovate ‘basket-like’ sculpture with both radial and concentric components comprising ponticulate tegmina bearing disconjugate normal pores and minute, ingrowing, spines edging fossae. Pore-conuli common, proximal to muri. Dorsolateral ridge terminates posteriorly in angular, wedge shaped, swelling. Weakly projecting posterior dorsal structure of cellate, cross-weaved, ribs.

Inner lamella broad, radial pore canals, numerous; especially in anteroventral quadrant, anterior 28, orally 3+., posterior 15. Selvage broad, well developed.

Remarks. Its outline in lateral view is similar to that of another Upper Miocene species T. nodoreticulata (Bassioni, 1962). Both species are characterized by a serrated dorsal margin, however, T. woutersi sp. nov. is both longer and possess a rather distinctive ornament, whereas in T. nodoreticulata the ciliation of the fossae is complete.

Thaerocythere sp. A

(Pl. 3, fig. 14)

Diagnosis. Elongate ovate in lateral view. Well developed anterodorsal marginal ridge terminating posteriorly at midheight on the sub-margin; this peripheral structure is connected.
to the subcentral tubercle via a ridge attached to the posterior cardinal angle. Muri within the dorsomedian field parallel this obliquely angled ridge.

Distribution. Coralline Crag Formation at Sutton Knoll and Orford, UK.

Type locality and horizon. Sutton Knoll, sample S3, Coralline Crag Formation, Pliocene, East Anglia, UK.

Material. East Anglia, 7V.

Dimensions.

Cat. No.	Site	Length	Height
ARV AMW/PL/013	Sutton Knoll (S4)	0.78	0.38
RV 2A-1 AMW/PL/014	Sutton Knoll (S3)	0.70	0.38
LV A-1 AMW/PL/015	Sutton Knoll (S3)	0.61	0.36

Remarks. This species has a number of morphological affinities with *T. mayburyae* Cronin, 1991 and may be a possible evolutionary precursor. Both species possess a marginal ridge, eyes mounted on reticulation and similar carapace proportions, however, in *T. sp.* A the dorsomarginal ridge is strongly developed and overhangs this periphery along most its length, muri heavily calcified.

Thaerocythere sp. B

(Pl. 3 fig. 15)

1989 *Quadrcythere* sp. 1 Maybury MS; Fourniquet et al.; pl. 2, fig. 13.

?1991 *Hermanites* sp. B Cronin; pl. 8, fig. 3.

Diagnosis. Carapace elongate subovate in lateral view; anterior obliquely rounded and minutely denticulated. Dorsal convex, ventral sinuous. Reticulation characterized by a radial pattern of muri and fossae about a robust subcentral tubercle. Prominent anterodorsal ridge. Inclined Y-structure of ridges and pores cornuli developed postero-dorsally, ventrolateral ridge terminates posteriorly in a bifurcate structure of nodes. Seven pore-cornuli arranged subconcentric mid-way between centre and margin in the dorsomedical and anterior fields. Two further pore-cornuli located below mid height, behind subcentral tubercle.

Material. East Anglia, 4V.

Dimensions.

Cat. No.	Site	Length	Height
ARV-F AMW/PL/024	OSC1/OR12	0.75	0.39
ARV-M AMW/PL/025	OSC1/OR12	0.74	0.37

Distribution. Pliocene; Coralline Crag Formation, Orford, Suffolk, UK; *Macra* Zone, Tjörnes Iceland (Cronin, 1991).

Remarks. In lateral view *T. sp. B* is clearly allied with *T. hoptonensis* (Brady et al., 1874) as both possess a very well developed, marginal, anterodorsal ridge; convex dorsal margin and pore-cornuli in the dorsal field. However, *T. hoptonensis* differs in possessing muri with a subdued concentric component, being less elongate and lacking the complex, postero-dorsal structure. *T. vermiculata* sp. nov. also possess a strong dorsolateral ridge but unlike *T. sp. B* it possesses two characteristic sub-parallel, plicate, muri in the anteromedian region.

ACKNOWLEDGEMENTS

The authors extend their thanks to Dr Leendert Witte of the Dutch Geological Survey, Professor Brian Funnell and Dr Christopher Hunt for providing material for this study. Special thanks to Dr John Whittaker of the British Museum (Natural History) and Peter Davis of the Hancock Museum for access to type material.

REFERENCES

Athersuch, J., Horne, D. J. & Whitaker, J. E. 1982. Coralline Crag Ostracoda. *Proceedings of the Geologists’ Association, 93:* 313–316.

Athersuch, J., Horne, D. J. & Whitaker, J. E. 1989. Marine and Brackish water ostracods (Superfamilies Cypridacea and Cytheracea): Keys and notes for the identification of the species. *In Kermack, D. M. & Barnes, R. S. K. (Eds), Synopsis of the British Fauna (New Series), 43, 343 pp.* 8 pls. Published for Linnean Society, London. Estuarine and Brackish-water Science Association, E. J. Brill, Leiden.

Bassiouni, M. A. 1962. Ostracoden aus dem Mittelmiozan in NW Deutschland. *Roemneria, Clausthal-Zellerfeld, 3:1-99, 9 pls.*

Bassionyi, M. A. 1965. Ueber einige Ostracoden aus dem Interglazial von Esbjerg. *Meddelelser fra dansk geologisk Forening, 15:* 507–518.

Bell, A. & Bell, R. 1872. On the English Crags and the stratigraphic divisions indicated by their Invertebrate fauna. *Proceedings of the Geologists’ Association, 2:* 185–218.

Bosquet, P. 1852. Description des Entomostracés fossiles des terrains tertiaires de la France et de la Belgique. *Mémoires de l’Académie r. des Sciences, des lettres et des beaux-arts de Belgique,* 24: 142 pp., 6 pls.

Brady, G. S. 1878. A monograph of the Ostracoda of the Antwerp Crags. *Transactions of the Geological Society of London, 10:* 379–409, pl. 62–69.

Brady, G. V., Crosskey, H. & Robertson, D. 1874. A monograph of the Post-Tertiary Entomostracae of Scotland including species from England and Ireland. *Palaeontographical Society (Monograph), 1874:* 1–232, pls 1–16.

Brady, G. S. & Norman, A. M. 1889. A monograph of the marine and freshwater Ostracoda of the North Atlantic and of Northwestern Europe. *Section 1, Podocopa. Scientific Transactions of the Royal Dublin Society, ser. 2, 4:* 63–270, pls 8–23.

Cronin, T. M. 1991. Late Neogene marine Ostracoda from Tjörnes, Iceland. *Journal of Paleontology, 65,* Chicago, 767–789.

Cronin, T. M., Briggs, W. M. Jr., Brouwers, E. M., Whatley, R. C., Wood, A. M. and Cotton, N. 1992. Modern Arctic ostracode database. *US Geological Survey Professional Paper, 91-358, 51 pp.*

Doppeit, J. W. 1975. Foraminiferenanzension von het Nederlands Onder-Kwartair en Tertiair. *In Zagwijn, W. H. & Staalduinen, van C. J. (Eds), Toelichting bij de Geologische Oversichtskarten van Nederland, 11-118, 118 pp.*

Doppeit, J. W. 1980. Lithostratigraphy and biostratigraphy of marine Neogene deposits in the Netherlands. *Mededelingen van ’s Rijks geologisch Dienst, 32:* 255–311.

Egger, J. G. 1858. Die Ostrakoden der Miocene-Schichten bei Ortenburg in Nieder-Bayern. *Neues Jahrbuch für mineralogie, Geologie und Paläontologie, 1858:* 403–443, pls 14–19.

Elofson, O. 1941. Zur Kenntnis der marinen Ostracoden Schwedens mit besonderer Berücksichtigung des Skageraks. *Zoologiska Bidrag fran Uppsala, 19:* 217–334.

Faupl, M. 1975. Die Ostrakoden des Kasseler Meeressandes (Oberoligozän) in Nordhessen. *Göttinger Arbeiten zur geologie und Paläontologie, 17:* 77 pp., 13 pls.

Fourniquet, J., Trautmann, F., Margarel, J. P., Whatley, R. C., Maybury, C. & Morzadec-Kerben, M. T. 1989. Les argiles et sables pliocéens de Saint-Jean-la-Poterie (Morbihan): Sédimentologie, micropaléontologie (foraminifères, ostracodes et palynologie). *Géologie de la France, 1–2:* 55–78, 3 pls.

Funnell, B. M. 1987. Late Pliocene and Early Pleistocene stages of East Anglia and the adjacent North Sea. *Quaternary Newsletter, 52:* 1–11.

Hamer, F. W. 1900. On a proposed new classification for the Pliocene deposits for the east of England. *Report of the British Association for the Advancement of Science, 751–753.*

Hazel, J. E. 1967. Classification and distribution of the Recent Hemicytheridae and Trachyleberididae (Ostracoda) off northeastern

Manuscript received November 1993

Manuscript accepted May 1995
