Review

Innovations and Patent Trends in the Development of USFDA Approved Protein Kinase Inhibitors in the Last Two Decades

Mohd. Imran 1, *, Syed Mohammed Basheeruddin Asdaq 2, *, Shah Alam Khan 3, Dhanalekshmi Unnikrishnan Meenakshi 4, Abdulkhakeem S. Alamri 5, Walaa F. Alsanie 4, 5, Majid Alhomrani 4, 5, Yahya Mohzari 6, Ahmed Alrashed 7, Mohammed Almotairi 8, Eman H. Alkhaldi 9, Abeer K. Alorabi 10, Ahmed Subeh Alsharri 11, Mohammad Tauseef 12, Abida 1, Saleh I. Alaqel 1, Ozair Alam 13 and Md. Afroz Bakht 14

Citation: Imran, M.; Asdaq, S.M.B.; Khan, S.A.; Meenakshi, D.U.; Alamri, A.S.; Alsanie, W.F.; Alhomrani, M.; Mohzari, Y.; Alrashed, A.; Almotairi, M.; et al. Innovations and Patent Trends in the Development of USFDA Approved Protein Kinase Inhibitors in the Last Two Decades. Pharmaceuticals 2021, 14, 710. https://doi.org/10.3390/ph14080710

Academic Editors: Mary J. Meegan and Niamh O’Boyle

Received: 17 June 2021
Accepted: 19 July 2021
Published: 22 July 2021

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract: Protein kinase inhibitors (PKIs) are important therapeutic agents. As of 31 May 2021, the United States Food and Drug Administration (USFDA) has approved 70 PKIs. Most of the PKIs are employed to treat cancer and inflammatory diseases. Imatinib was the first PKI approved by USFDA in 2001. This review summarizes the compound patents and the essential polymorph patents of the PKIs approved by the USFDA from 2001 to 31 May 2021. The dates on the generic drug availability of the PKIs in the USA market have also been forecasted. It is expected that 19 and 48 PKIs will be genericized by 2025 and 2030, respectively, due to their compound patent expiry. This may reduce the financial toxicity associated with the existing PKIs. There are nearly 535 reported patents. However, the USFDA approved PKIs target only about 10–15% of the total said PKs. As a result, there are still a large number of unexplored PKs. As the field advances during the next 20 years, one can anticipate that PKIs with many scaffolds, chemotypes, and pharmacophores will be developed.
1. Introduction

Protein kinases (PKs) are ubiquitous intracellular and cell surface enzymatic proteins that selectively catalyzes phosphate group’s relocation from ATP, GTP, and other phosphate donors to protein substrates [1]. The PKs mainly catalyze the relocation of a γ-phosphate group of ATP to the oxygen atom of the -OH group of threonine, serine, and tyrosine residues in peptides/polypeptides, thereby making a conformational variation from an inactive to an active form [1,2]. They constitute an extensive family of structurally related enzymes that are known to be implicated in almost all the signal transduction activities, frequently with cascades of phosphorylation proceedings taking place within the cell [3]. The signal transduction involves the reversible phosphorylation of proteins that helps to regulate mature proteins by altering their structure and function [4,5]. To date, nearly 535 human PKs have been identified [6], wherein more than 478 belong to a superfamily whose catalytic domains are sequentially interrelated. These PKs are additionally categorized into groups, families, and subfamilies established on their biochemical activities. The main two classifications are Serine/threonine PKs and Tyrosine-specific PKs [5]. The seven significant groups with the description of families, subfamilies, and functions are listed in Table 1.

TKs form a distinct group, which phosphorylates proteins on tyrosine, whereas others phosphorylate serine and threonine residues. In addition to this category, there are atypical kinases, which are not related to any sequence resemblance to characteristic kinases but are well recognized for their enzymatic activity similar to specific kinases. Some kinases are believed to lack the catalytic domain for effective phosphorylation and are called pseudokinases. Still, they are distributed across all kinase families, indicating that an absence of catalysis is not a formal barricade to the evolution of unique or irreplaceable biological functions [7].

S. No.	Kinase	Families	Subfamilies	Functions
1	AGC	DMPK: Gek, ROCK, CRIK	PKA, PKG, PKC, DMPK, NDR, AKT, SGK, RSK, PKN, GRK, PDK1, RSK1, RSK2, MAST	They are implicated in various cellular activities and are prospective targets to treat cancer, inflammation, viral infections, obesity, diabetes, and neurological disorders [8]
2	CAMK	Calcium/calmodulin-dependent protein kinase- CAMK1, Unique VACA-MKL, PK, DAPK, MLCK, TRIO, CASK, CAMKL2, PHK, DCAMKL, MAPKAPK, CAMKL, TSK, PIM, TRB1, Unique STK33, PKD, RAD53	MAPKAPK: MNK, MAPKAPK1, MAPKAPK2, MAPKAPK3, JNK CAMK1: AMPK, BRSK, MELK, MARK, QIK, NUK, NIMK, SNRK, PASK, CHK1, LKB1, HUNK	They are implicated in the phosphorylation of transcription factors and the control of gene expression. They also control the life cycle of the cell [9]
3	CK1	Casein kinase I, TTBK, VRK	-	They are involved in the phosphorylation of significant govern-
Pharmaceuticals 2021, 14, 710

PKs perform a significant function in signal transduction and control of most cellular processes, including cell growth, differentiation, proliferation, angiogenesis, apoptosis, cytoskeletal arrangement, regulation of metabolic reactions, membrane transport, and motility, etc. [6]. Non-catalytic functions of PKs are also essential and include the allosteric effect, subcellular targeting, the scaffolding of protein complexes, competition for protein interactions, and DNA binding [15]. Because PKs regulate most fundamental biological processes, any dysregulation, genetic alteration, and abrupt change in kinase function are typically linked with pathological conditions such as cancer, immunologic, neurological, cardiovascular, and metabolic disorders [3,5]. Hence, manipulation of PKs signaling pathways, regulation, and inhibition constitutes important clinical targets for pharmacological intervention and thus for the identification and development of Protein Kinase Inhibitors (PKIs) to manage and treat several chronic diseases [4,6,16]. Over the past two decades, approximately 1/5th-1/3rd drug discovery programs worldwide have targeted PKs for the drug development of various illnesses.

Kinase mutation frequency is much less, and thus targeting kinases could be helpful in life-saving therapies especially for cancer. A well-known example is receptor tyrosine kinase ALK where gene fusion between EML4 and ALK occurs only in 5% of NSCLC
patients and therefore many patients responded to the kinome therapy effectively. Identification of additional effective kinome targets will therefore represent an Achilles heel in a subset of cancer. The use of bioinformatics tools in predicting the likelihood that a given mutation will alter the function of a kinase will be essential in pinpointing cancer-associated kinases [17].

There are about 175 kinase drugs under clinical trials and newer targets are also under evaluation including AKT, Aurora kinases, CHEK1, and CDK1. However, most of the drugs under investigation are well known for targeting EGFR, VEGFR, PI3K, and mTOR [18]. Even though CAMK, CK1, or AGC kinases groups are well-known and evidenced as the primary targets for cancer, there are no investigational drugs that target these kinases are enrolled. So far only 8% of the entire kinome has been effectively "drugged" and a quarter of human kinases are vastly understudied [19]. A wide-ranging scoring system to rank and prioritize clinically relevant kinase targets of different solid tumor cancers from The Cancer Genome Atlas (TCGA) has been developed [19].

Successful applications and deep insights into the ever-diversifying therapeutic space occupied by kinase targets are also explored. For effective target validation and to avoid complicating off-target mediated response it is essential to achieve the desired selectivity while targeting kinases, though it is still an ongoing challenge. The application of large-scale omics data has been modernized to combine multiple parameters to evaluate the protein’s potential as a drug target or biomarker [19].

In recent years, intricately selective kinase chemical probes have been generated by the exploitation of unique pockets using molecular modeling and bioinformatics, prioritizing the ligand-efficient leads and novel chemotypes and the extensive use of kinome-wide profiling [20].

Chemical proteomics and broad kinome profiling of compound libraries have been implemented as an efficient method to lead to discovery, analyzing targets, and optimization [21]. Results revealed that unknown targets for established drugs presented a viewpoint on the "druggable" kinome, emphasized non-kinase off-targets, and recommended for potential therapeutic applications. A database of the cellular targets of 243 clinical kinase inhibitors has been made available using kinobead technology [21].

The ongoing research will undoubtedly pave the way for a better understanding of molecular pathways that will further unravel the role of PKs in pathogenesis. As of now, the majority of the USFDA-approved PKIs are Protein Tyrosine Kinase inhibitors (PTKIs) followed by protein-serine/threonine PKIs. Most of these drugs are clinically used to treat solid (breast, lung, colon) and non-solid tumors (leukemia). Some PKIs are also effective in treating non-malignant diseases, including myelofibrosis, rheumatoid arthritis, glaucoma, ulcerative colitis, pulmonary fibrosis, etc. [22,23].

2. USFDA Approved Protein Kinase Inhibitors

In 2001, the USFDA approved the marketing of the first clinical PKI, imatinib. Since then, the USFDA has approved about 70 PKIs for clinical use (Table 2) (Figure 1). The data provided in Table 2 have been obtained from USFDA’s Orange Book website (https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm?resetfields=1 (accessed on 31 May 2021) using the drug’s name.

Marketed Active Ingredient (Proprietary Name, Applicant)	Approved Dosage Form (Strength)	Approval Date (Marketing Status)	Primary Target	Approved Indication
Imatinib mesylate (Gleevec, Novartis Pharmaceuticals)	Tablet	18 April 2003 (Prescription)	BCR-Abl	Many cancer types, including CML, Ph-
Drug Name	Formulation	Approval Date	Indication	
---------------------------------	--	---------------	--	
Gefitinib	Capsule (50 and 100 mg of imatinib free base)	10 May 2001	ALL, CEL, and GISTs	
(Iressa, AstraZeneca Pharmaceuticals)	Tablet (250 mg)	13 July 2015	EGFR NSCLC	
	Tablet (250 mg)	5 May 2003		
Erlotinib hydrochloride	Tablet (25, 100, and 150 mg of erlotinib free base)	18 November 2004	EGFR Metastatic NSCLC and pancreatic cancer	
(Tarceva, OSI Pharmaceuticals)				
Sorafenib tosylate	Tablet (200 mg of sorafenib free base)	20 December 2005	VEGFR/BRAF HCC, RCC, and DTC	
(Nexavar, Bayer Healthcare Pharmaceuticals)				
Sunitinib malate	Capsule (12.5, 25, 37.5, and 50 mg of sunitinib free base)	26 January 2006	VEGFR/PDGFR GIST, RCC, and pNET	
(Sutent, CP Pharmaceuticals International)				
Dasatinib	Tablet (20, 50, 70, 80, 100, and 140 mg)	28 June 2006	BCR-Abl/ABL2 Ph-CML	
(Sprycel, Bristol Myers Squibb)				
Lapatinib ditosylate	Tablet (250 mg of lapatinib free base)	13 March 2007	HER-1/HER-2/EGFR Breast cancer	
(Tykerb, Novartis Pharmaceuticals)				
Temsirolimus	IV Solution (25 mg/mL)	30 May 2007	FKBP12/mTOR ARCC	
(Torisel, PF Prism CV)				
Everolimus	Tablet (2.5 mg, 5 mg, 7.5 mg, and 10 mg)		FKBPI2/mTOR pNET and RCC	
(Afinitor, Zortress, AfinitorDisperz, Novartis Pharmaceutical)				
Nilotinib hydrochloride	Capsule (50, 150, and 200 mg of nilotinib base)	29 October 2007	BCR-Abl Ph-CML	
(Tasigna, Novartis Pharmaceuticals)				
Drug Name	Formulation	Marketed Date	VEGFR/PDGFR	RCC and STS
---------------------------------	--------------------------------------	---------------	-------------	-------------
Pazopanib hydrochloride	Tablet (200, and 400 mg of pazopanib base)	19 October 2009 (200 mg tablet, Prescription) (400 mg tablet has been discontinued)	VEGFR/PDGFR	RCC and STS
Vandetanib	Tablet (100 mg and 300 mg)	6 April 2011 (Prescription)	VEGFR/EGFR	MTC
Vemurafenib	Tablet (240 mg)	17 August 2011 (Prescription)	B-Raf	Melanoma with BRAF V600E mutation
Crizotinib	Capsule (200 mg and 250 mg)	26 August 2011 (Prescription)	ALK/HGFR	NSCLC
Ruxolitinib phosphate	Tablet (5 mg, 10 mg, 15 mg, 20 mg, and 25 mg of ruxolitinib free base)	16 November 2011 (Prescription)	JAK1/2/3 and Tyk2 Myelofibrosis and polycythemia vera	
Axitinib	Tablet (1 mg and 5 mg)	27 January 2012 (Prescription)	VEGFR/PDGFR	RCC
Bosutinib monohydrate	Tablet (100 mg, 400 mg, and 500 mg of bosutinib free base)	4 September 2012 (100 and 500 mg) (27 October 2017 (400 mg) (All are prescription products)	BCR-Abl	Ph+CML
Regorafenib	Tablet (40 mg)	27 September 2012 (Prescription)	VEGFR/TIE	Colorectal cancer, GIST, HCC, RCC and STS
Tofacitinib citrate	Solution (1 mg/mL of tofacitinib free base)	25 September 2020 (Prescription)		Rheumatoid arthritis, psoriatic arthritis, ulcerative colitis, and juvenile idiopathic arthritis
Cabozantinib S-malate	Capsule (20 mg and 80 mg of cabozantinib free base)	29 November 2012 (Prescription)	RET	MTC, RCC, and HCC
	Tablet	25 April 2016		
Drug Name	Formulation	Date	Indications	
------------------------------	------------------------------------	---------------------	--	
Trametinib dimethyl sulfoxide	Tablet (0.5 mg, 1 mg and 2 mg)	29 May 2013	Metastatic melanoma, NSCLC, and ATC	
Dabrafenib mesylate	Capsule (50 mg and 75 mg of dabrafenib free base)	29 May 2013 (Prescription)	B-Raf	
Afatinib dimaleate	Tablet (20 mg, 30 mg, and 40 mg of afatinib free base)	12 July 2013 (Prescription)	EGFR/HER2/HER4 NSCLC	
Ibrutinib	Capsule (70 mg and 140 mg)	13 November 2013	BTK	
	Tablet (140 mg, 280 mg, 420 mg, and 560 mg)	16 February 2018	MCL, CLL, SLL, and MZL	
Ceritinib	Tablet (150 mg)	18 March 2019	ALK	
	Capsule (150 mg)	29 April 2014	NSCLC	
Idelalisib	Tablet (100 mg and 150 mg)	23 July 2014 (Prescription)	PI3Ks	
Nintedanib esylate	Capsule (100 mg and 150 mg of nintedanib free base)	15 October 2014 (Prescription)	IPF, ILDs, and SSc-ILD	
Palbociclib	Capsule (75 mg, 100 mg, and 125 mg)	3 February 2015 (Prescription)	CDK4/6 Breast cancer	
Lenvatinib mesylate	Capsule (4 mg and 10 mg of lenvatinib free base)	13 February 2015 (Prescription)	VEGFR/RET Thyroid cancer, RCC, HCC, and endometrial carcinoma	

(All are prescription products)
Drug Name	Formulation	Date Approved	Prescription	Indication
Cobimetinib fumarate	Tablet	10 November 2015	Prescription	MEK1/2, Melanoma
Osimertinib mesylate	Tablet	13 November 2015	Prescription	EGFR, NSCLC
Alectinib hydrochloride	Capsule	11 December 2015	Prescription	ALK/RET, NSCLC
Ribociclib succinate	Tablet	13 March 2017	CDK4/6	Breast cancer
Brigatinib	Tablet	28 April 2017	ALK	NSCLC
Midostaurin	Capsule	28 April 2017	Flt3	AML, MCL, and systemic mastocytosis
Neratinib maleate	Tablet	17 July 2017	EGFR/HER2	Breast cancer
Copanlisib dihydrochloride	Powder	14 September 2017	PI3K-α/β/δ	FL and Non-Hodgkin Lymphoma
Abemaciclib	Tablet	28 September 2017	CDK4/6	Breast cancer
Acalabrutinib	Capsule	31 October 2017	BTK	MCL, CLL, SLL, and urothelial carcinoma
Netarsudil mesylate	Solution/Drops	18 December 2017	ROCK1/2	Open-angle glaucoma or ocular hypertension
Baricitinib	Tablet	8 October 2019	JAK1/2/3 and Tyk	Rheumatoid arthritis
Binimetinib	Tablet	27 June 2018	MEK1/2	Melanoma with a BRAF V600 mutation
Dacomitinib	Tablet	27 September 2018	EGFR/HER1	NSCLC
Drug Name	Formulation	Dose	Date	Indication
-----------	-------------	------	------	------------
(Vizimpro, Pfizer)	(15 mg, 30 mg, and 45 mg)	(Prescription)	June 2021	B-Raf, Melanoma
Encorafenib (Braftovi, Array Biopharma)	Capsule (50 mg, and 75 mg)	(50 mg capsules have been discontinued)	June 2018	Syk, ITP
Fostamatinib disodium (Tubeless, Rigel Pharmaceuticals)	Tablet (100 mg, and 150 mg of fostamatinib free base)	(Prescription)	April 2018	PI3K-δ/PI3K-γ, CLL, SLL, FL, and hematological malignancies
Duvelisib (Copiktra, Secura Bio)	Capsule (15 mg, and 25 mg)	(Prescription)	September 2018	CL, SLL, FL, and hematological malignancies
Gilteritinib fumarate (Xospata, Astellas Pharma)	Tablet (40 mg of gilteritinib free base)	(Prescription)	November 2018	Flt3, AML
Larotrectinib sulfate (Vitrakvi, Bayer Healthcare Pharmaceulticals)	Capsule (25 mg, and 100 mg of larotrectinib free base)	(Prescription)	November 2018	TRK, Solid tumors
Lorlatinib (Lorbrena, Pfizer)	Tablet (25 mg, and 100 mg)	(Prescription)	November 2018	ALK, NSCLC
Entrectinib (Rozlytrek, Genentech)	Capsule (100 mg and 200 mg)	(Prescription)	August 2019	TRK-A, TRK-B, and TRK-C, NSCLC and solid tumors
Upadacitinib (Rinvoq, Abbvie)	Extended-release tablet (15 mg)	(Prescription)	August 2019	JAK, Rheumatoid arthritis
Alpelisib (Piqray, Novartis Pharmaceuticals)	Tablet (50 mg, 100 mg, and 200 mg)	(Prescription)	May 2019	PI3K, Breast cancer
Erdafitinib (Balversa, Janssen Biotech)	Tablet (3 mg, 4 mg, and 5 mg)	(Prescription)	April 2019	FGFR1/2/3/4, Metastatic urothelial carcinoma (mUC)
Pexidartinib hydrochloride (Turalio, Daiichi Sankyo)	Capsule (200 mg of pexidartinib free base)	(Prescription)	August 2019	CSFIR/KIT/Fli3, TGCT
Fedratinib hydrochloride (Inrebi, Impact Bio-medicines)	Capsule (100 mg of fedratinib free base)	(Prescription)	August 2019	JAK2, Myelofibrosis
Zanubrutinib (Brukinsa, Beigene)	Capsule (80 mg)	(Prescription)	November 2019	BTK, MCL, CLL, WM, and SLL
Avapritinib (Ayvakit, Blueprint Medicines)	Tablet (100 mg, 200 mg, and 300 mg)	(Prescription)	January 2020	PDGFRA/KIT, GIST
Drug Name	Formulation	Date of Approval	Indications	
-----------------------------------	------------------------------------	------------------	---	
Selumetinib sulfate (Koselugo, Astra‐zeneca Pharmaceuticals)	Capsule (10 mg and 25 mg of selumetinib free base)	10 April 2020 (Prescription)	MAPK/MEK 1,2 Neurofibromatosis type 1 (NF1)	
Pemigatinib (Pemazyre, Incyte)	Tablet (4.5 mg, 9 mg, and 135 mg)	17 April 2020 (Prescription)	FGFR1-3 Cholangiocarcinoma	
Tucatinib (Tukysa, Seagen)	Tablet (50 mg and 150 mg)	17 April 2020 (Prescription)	HER2 Breast cancer	
Capmatinib hydrochloride (Tabrecta, Novartis Pharmaceutical)	Tablet (150 mg and 200 mg of capmatinib free base)	6 May 2020 (Prescription)	MET NSCLC	
Selpercatinib (Revelmo, Loxo Oncology)	Capsule (40 mg and 80 mg)	8 May 2020 (Prescription)	RET/VEGFR NSCLC and MTC	
Ripretinib (Qinlock, Deciphera Pharmaceuticals)	Tablet (50 mg)	15 May 2020 (Prescription)	PDGFRA/KIT GIST	
Pralsetinib (Gavreto, Blueprint Medicines)	Capsule (100 mg)	4 September 2020 (Prescription)	RET NSCLC and MTC	
Trilaciclib dihydrochloride (Cosela; G1 Therapeutics Inc.)	Powder for IV injection (300 mg of Trilaciclib free base per vial)	12 February 2021 (Prescription)	CDK4 ES-SCLC	
Tepotinib hydrochloride monohydrate (Tepmetko; EMD Serono Inc.)	Tablet (225 mg of Tepotinib free base)	3 February 2021 (Prescription)	MET NSCLC	
Umbralisib tosylate (Ukonig; TG Therapeutics)	Tablet (200 mg of Umbralisib free base)	5 February 2021 (Prescription)	PI3Kα and CK1ε MZL, and FL	
Tivozanib hydrochloride monohydrate (Fotivda; Aveo Pharmaceuticals)	Capsule (0.89 mg and 1.34 mg of tivozanib free base)	10 March 2021 (Prescription)	VEGFR/PDGFR RCC	
Infgratinitib (Truseltiq; QED Therapeutics)	Capsule (25 and 100 mg)	28 May 2021 (Prescription)	FGFR Cholangiocarcinoma	

* Some drugs are multikinase inhibitors.
Figure 1. Timeline depicting the approval of the PKIs by the USFDA and their primary targets in brackets.

3. Patent Searching

The patent searching was performed using the Sci-finder database (CAS Number search, and the exact structure search of each TKI), USFDA’s Orange Book website (mentioned above), and the Drugbank’s website (https://go.drugbank.com/ (accessed on 31 May 2021)) using the drug’s name. The patents disclosing the specific TKI, its marketed active pharmaceutical ingredient, and important polymorphs from the innovative company for the first time were identified and included in this review. The patents of each TKI that claim its treatment methods, dosage forms, formulations, drug combinations, particle size, impurity, preparation process, intermediates, etc., have been excluded from this review. The expiry dates of the selected patents were calculated (20 years from the patent application filing date comprising patent term extension, if any). Sometimes, the drug’s patent term is extended up to five years based on the USPTO’s laws. Accordingly,
the expiry dates of the selected patients were also verified from the USPTO’s website. It was also observed that some TKIs were disclosed in different patents of the same patent family and had other expiry dates. In such cases, the patent that had a more extended expiry date was selected for this review because the generic launch of the drug is based on the expiry date of the drug’s patent. The legal status of the patents cited herein was obtained from the website of USPTO (https://portal.uspto.gov/pair/PublicPair (accessed on 31 May 2021)).

4. Summary of the Patents

The proprietary name, approved dosage form, approval date, and marketing status of each marketed PKI are mentioned in Table 2. The patent number, applicant/assignee, expiry date, and legal status of the cited patents of each PKI are provided in Table 3. A brief description of the PKIs and their important patents are provided below.

Table 3. Patent number, applicant/assignee, expiry date, and legal status of the cited patents.

S. No.	Drug’s Name	Patent Number	Applicant/Assignee	Expiry Date	Legal Status	Expected Date of Generic Availability in the USA *
1	Imatinib	US5521184A	Ciba Geigy	4 July 2015	Expired	Generic is available
		USRE43932E	Novartis	16 July 2019	Expired	
2	Gefitinib	US5457105A	Zeneca	19 January 2013	Expired	July 2022 due to the Orphan Drug Exclusivity
		US5770599A	Zeneca	5 May 2017	Expired	
3	Erlotinib	USRE41065E	OSI Pharmaceuticals	8 May 2019	Expired	Generic is available
		US6900221B1	OSI Pharmaceuticals	9 May 2021	Litigation	
4	Sorafenib	US7235576B1	Bayer Pharmaceuticals	12 January 2020	Expired	Generic is available
		US8877933B2	Bayer IP	24 December 2027	Patented	
5	Sunitinib	US7125905B2	Sugen Incorporation	15 August 2021	Patented	August 2021
		US6573293B2	Sugen Incorporation	15 August 2021	Patented	
6	Dasatinib	US6596746B1	Bristol-Myers Squibb	28 December 2020	Expired	Generic is available
		US7491725B2	Bristol-Myers Squibb	28 September 2026	Patented	
7	Lapatinib	US8513262B2	Glaxo Group	8 January 2019	Expired	Generic is available
		US7157466B2	Smithkline Beecham	19 November 2021	Patented	
8	Temsirolimus	USRE44768E	Wyeth	15 August 2019	Expired	Generic is available
9	Everolimus	US5665772A	Sandoz	9 March 2020	Expired	Generic is available
		US7169791B2	Novartis	4 January 2024	Patented	
10	Nilotinib	US8163904B2	Novartis	23 February 2029	Patented	February 2029
		US8415363B2	Novartis	18 January 2027	Patented	
11	Pazopanib	US7105530B2	Smithkline Beecham	19 October 2023	Patented	October 2023
		US8114885B2	Glaxosmithkline	19 December 2021	Patented	
12	Vandetanib	USRE42353E	Astrazeneca	27 June 2022	Patented	June 2022
13	Vemurafenib	US8143271B2	Plexxikon Incorporation	21 June 2026	Patented	June 2026
	Drug	Patent Number	Inventor/Company	Patent Date	Expiry Date	
---	----------	---------------	--	-------------------	--------------	
14	Crizotinib	US7858643B2	Agouron Pharmaceuticals	8 October 2029	October 2029	
		US8217057B2	Pfizer	6 November 2029		
15	Ruxolitinib	US7598257B2	Incyte Corporation	24 December 2027	June 2028	
		US8722693B2	Incyte Corporation	12 June 2028		
16	Axitinib	US6534524B1	Agouron Pharmaceuticals	29 April 2025	April 2025	
		US8791140B2	Pfizer	14 December 2030		
17	Bosutinib	USRE42376E	Wyeth	13 April 2024	April 2024	
		US7767678B2	Wyeth	23 November 2026		
18	Regorafenib	US8637553B2	Bayer Healthcare	16 February 2031	July 2032	
		US9957232B2	Bayer Healthcare	9 July 2032		
19	Tofacitinib	USRE41783E	Pfizer	8 December 2025	December 2025	
		US6965027B2	Pfizer	25 March 2023		
20	Cabozantinib	US7579473B2	Exelisix	14 August 2026	August 2026	
		US8877776B2	Exelisix	8 October 2030		
21	Ponatinib	US8114874B2	Ariad Pharmaceuticals	24 January 2027	January 2027	
		US9493470B2	Ariad Pharmaceuticals	12 December 2033		
22	Trametinib	US7378423B2	Japan Tobacco	29 May 2027	May 2027	
23	Dabrafenib	US7994185B2	Glaxo Smith Kline	20 January 2030	January 2030	
24	Afatinib	USRE43431E	Boehringer Ingelheim	13 January 2026	January 2026	
		US8426586B2	Boehringer Ingelheim	10 October 2029		
25	Ibrutinib	US8735403B2	Pharmacyclics	28 December 2026	December 2026	
		US9296753B2	Pharmacyclics	30 October 2033		
26	Ceritinib	US8039479B2	IRM	29 June 2030	June 2030	
		US9309229B2	Novartis	18 January 2032		
27	Idelalisib	USRE44638E	ICOS Corporation	5 August 2025	August 2025	
		US9469643B2	Gilead	2 September 2033		
28	Nintedanib	US6762180B1	Boehringer Ingelheim	1 October 2025	October 2025	
		US7119093B2	Boehringer Ingelheim	21 February 2024		
29	Palbociclib	USRE47739E	Warner Lambert	5 March 2027	5 March 2027	
		US1072370B2	Pfizer	8 February 2034		
30	Lenvatinib	US7253286B2	Eisai	19 October 2021	October 2021	
		US7612208B2	Eisai	19 September 2026		
---	---	---	---	---	---	
31	Cobimetinib	US7803839B2	Exelixis	10 November 2029	Patented	
		US10590102B2	Exelixis	30 June 2036	Patented	November 2029
32	Osimertinib	US8946235B2	AstraZeneca	8 August 2032	Patented	August 2032
33	Alectinib	US9126931B2	Chugai Pharmaceutical	29 May 2031	Patented	May 2031
34	Ribociclib	US8415355B2	Astex Therapeutics	19 February 2031	Patented	19 February 2031
		US9193732B2	Astex Therapeutics	9 November 2031	Patented	
35	Brigatinib	US9012462B2	Ariad Pharmaceuticals	31 July 2030	Patented	July 2030
		US10385078B2	Ariad Pharmaceuticals	10 November 2035	Patented	
36	Midostaurin	US5903330A	Ciba Geigy	21 July 2009	Expired	October 2024
		US7973031B2	Novartis	17 October 2024	Patented	
37	Neratinib	US7399865B2	Wyeth	29 December 2025	Patented	December 2025
38	Copanlisib	USRE46856E	Bayer	22 October 2029	Patented	March 2032
		US10383876B2	Bayer	29 March 2032	Patented	
39	Abemaciclib	US7855211B2	Eli Lilly	15 December 2029	Patented	December 2029
40	Acalabrutinib	US9290504B2	Merck	11 July 2032	Patented	July 2032
		US9796721B2	Acerta Pharma	1 July 2036	Patented	
41	Netarsudil	US8394826B2	Aerie Pharmaceuticals	10 November 2030	Patented	March 2034
		US9415043B2	Aerie Pharmaceuticals	14 March 2034	Patented	
42	Baricitinib	US8158616B2	Incyte Corporation	8 June 2030	Patented	June 2030
43	Binimetinib	US7777050B2	Array Biopharma	13 March 2023	Patented	June 2025 based on ODE
		US9562016B2	Array Biopharma	18 October 2033	Patented	
44	Dacomitinib	US7772243B2	Warner Lambert	26 August 2028	Patented	August 2028
45	Encorafenib	US8501758B2	IRM	4 March 2031	Patented	March 2031
46	Fostamatinib	US7449458B2	Rigel Pharmaceuticals	4 September 2026	Patented	4 September 2026
		US8163902B2	Rigel Pharmaceuticals	17 June 2026	Patented	
47	Duvelisib	US8193182B2	Intellikine	13 February 2030	Patented	February 2030
		USRE46621E	Infinity Pharmaceuticals	17 May 2032	Patented	
48	Gilteritinib	US8969336B2	Astellas Pharma	27 January 2031	Patented	January 2031
49	Larotrectinib	US9127013B2	Array Biopharma	21 October 2029	Patented	October 2029
		US10172861B2	Array Biopharma	16 November 2035	Patented	
50	Lorlatinib	US8680111B2	Pfizer	5 March 2033	Patented	March 2033
		US10420749B2	Pfizer	27 July 2036	Patented	
51	Entrectinib	US8299057B2	Nerviano Medical Sciences	1 March 2029	Patented	March 2029
No.	Name	Associated Company	Original Patent Date	Patented Date		
-----	--------------------	---------------------	----------------------	-----------------		
52	Upadacitinib	Abbvie	1 December 2030	Patented		
53	Alpelisib	Novartis	28 September 2030	September 2030		
54	Erdafitinib	Astex Therapeutics	22 May 2031	Patented		
55	Pexidartinib	Plexikon	21 November 2027	November 2027		
56	Fedratinib	Targegen	16 December 2026	December 2026		
57	Zanubrutinib	Beigene	22 April 2034	April 2034		
58	Avapritinib	Blueprint Medicines Corporation	15 October 2034	Patented		
59	Selumetinib	Array Biopharma	11 April 2024	October 2027		
60	Pemigatinib	Incyte Corporation	30 January 2035	January 2035		
61	Tucatinib	Array Biopharma	12 April 2031	Patented		
62	Capmatinib	Incyte Corporation	19 November 2027	June 2031		
63	Selpercatinib	Array Biopharma	10 October 2037	October 2037		
64	Ripretinib	Deciphera Pharmaceuticals	7 June 2032	Patented		
65	Pralsetinib	Blueprint Medicines Corporation	1 November 2036	Patented		
66	Trilaciclib	G1 Therapeutics	25 October 2031	October 2031		
67	Tepotinib	Merck	19 March 2030	Patented		
68	Umbralisib	Rhizen Pharmaceuticals	2 July 2033	Patented		
69	Tivozanib	Kirin Beer Kabushiki Kaisha	26 April 2022	Patented		
70	Infigratib	Novartis	13 December 2025	Patented		
4.1. **Imatinib Mesylate**

Imatinib mesylate (Figure 2) is a pyridine-pyrimidine based piperazine derivative (MF: C₂₉H₃₁N₇O·CH₄SO₃; MW: 589.7; CAS Number: 220127-57-1) [24]. US5521184A claims N-phenyl-2-pyrimidine-amine compounds, including imatinib and its pharmaceutically acceptable salts, as antitumor drugs [25]. USRE43932E (Re-issue of US7544799B2) claims the β-crystal form of imatinib mesylate as having favorable thermodynamic stability, flow properties, and low hygroscopicity that makes it a suitable active pharmaceutical ingredient (API) to be used in the tablet/capsule dosage forms [26].

![Imatinib Mesylate](image)

Figure 2. Imatinib mesylate (4-[(4-Methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[(4-(3-pyridinyl)-2-pyrimidinyl]amino]phenyl]benzamide methanesulfonate).

4.2. **Gefitinib**

Gefitinib (Figure 3) is a morpholine based quinazolinamine derivative (MF: C₂₂H₂₄ClFN₄O₃; MW: 446.9; CAS Number: 184475-35-2) [27]. US5457105A unveils quinazoline derivatives and their salts to treat neoplastic disease. This patent claims gefitinib generically [28]. US5770599A also covers quinazoline derivatives as anticancer agents. This patent claims gefitinib specifically, along with its pharmaceutically acceptable acid-addition salts [29].

![Gefitinib](image)

Figure 3. Gefitinib (N-[3-chloro-4-fluorophenyl]-7-methoxy-6-[3-(4-morpholinyl)propoxy]-4-quinazolinamine).
4.3. Erlotinib Hydrochloride

Erlotinib hydrochloride (Figure 4) is a quinazolinamine derivative (MF: C22H23N3O4.HCl; MW: 429.90; CAS Number: 183319-69-9) [30]. USRE41065E (Reissue patent of US5747498) discloses 4-(substituted phenylamino)quinazoline derivatives, which are useful in treating cancers. It also claims erlotinib hydrochloride specifically [31]. US6900221B1 provides polymorphs of erlotinib hydrochloride and processes for their selective production. It claims homogeneous thermodynamically stable crystalline polymorph of erlotinib hydrochloride (Form B), suitable for making tablet dosage forms [32].

![Figure 4. Erlotinib hydrochloride (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine hydrochloride).](image)

4.4. Sorafenib Tosylate

Sorafenib tosylate (Figure 5) is a urea-pyridine based diaryl ether derivative (MF: C21H16ClF3N4O3.C7H8O3S; MW: 637.0; CAS Number: 475207-59-1) [33]. US7235576B1 provides aryl urea derivatives for treating RAF-mediated diseases like cancer and their pharmaceutical compositions. It claims sorafenib tosylate specifically [34]. US8877933B2 discloses novel polymorphs of sorafenib tosylate, processes for its synthesis, and compositions comprising it. It claims thermodynamically stable polymorph (Form I) of sorafenib tosylate, which can provide quality dosage form concerning bioavailability and patient safety [35].

![Figure 5. Sorafenib tosylate (4-4-(4-chloro-3-(trifluoromethyl)phenyl)carbamoyl)amino)phenoxy]-N-methylpyridine-2-carboxamide 4-methylbenzenesulfonate).](image)

4.5. Sunitinib Malate

Sunitinib malate (Figure 6) is an indole based pyrrole-3-carboxamide derivative (MF: C22H27FN4O2.C4H6O5; MW: 532.6; CAS Number: 341031-54-7) [36]. US7125905B2 covers 3-pyrrolo substituted 2-indolinone compounds as PK activity modulators for treating disorders related to abnormal PK activity. It claims sunitinib malate specifically [37]. The sunitinib malate is also claimed in US6573293B2 [38].
Figure 6. Sunitinib malate (N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidine)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide (2S)-2-hydroxybutanedioic acid).

4.6. Dasatinib Monohydrate

Dasatinib monohydrate (Figure 7) is a piperazine-pyrimidine-thiazole based anilide (MF: C_{22}H_{26}ClN_{7}O_{2}S.H_{2}O; MW: 506.02; CAS Number: 863127-77-9) [39]. US6596746B1 provides cyclic compounds for use as PKIs to treat cancer. It claims dasatinib specifically [40]. US7491725B2 claims crystalline monohydrate of dasatinib and process for its preparation [41].

Figure 7. Dasatinib monohydrate (N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl]-2-methyl-4-pyrimidinyl]amino]-5-thiazole carboxamide monohydrate).

4.7. Lapatinib Ditosylate Monohydrate

Lapatinib ditosylate monohydrate (Figure 8) is a furan based quinazolinamine derivative (MF: C_{29}H_{26}ClFN_{4}O_{4}S.(C_{7}H_{8}O_{3}S)_{2}.H_{2}O; MW: 943.5; CAS Number: 388082-78-8) [42]. US8513262B2 discloses substituted heteroaromatic compounds, their synthesis, compositions, and their use in medicine as PTKIs. It claims lapatinib specifically [43]. US7157466B2 relates to quinazoline compounds, anhydrate and hydrate ditosylate salts thereof, and the process for their preparation. It claims lapatinib ditosylate monohydrate specifically. The claimed lapatinib ditosylate possesses physical stability and moisture sorption properties superior to di- HCl salt, making it suitable for developing tablet formulations [44].

Figure 8. Lapatinib ditosylate monohydrate (N-(3-chloro-4-[[3-fluorophenyl] methyl]oxy)phenyl)-6-[[[(2-methylsulfonyl)ethyl]amino]methyl]-2-furanyl]-4-quinazolinamine bis(4-methylbenzenesulfonate) monohydrate).
4.8. Temsirolimus

Temsirolimus (Figure 9) is a piperidine-tetrahydropyran based macrolide lactams (MF: C₅₆H₈₇NO₁₆; MW: 1030.30; CAS Number: 162635-04-3) [45]. USRE44768E (Reissue of US5362718) relates to hydroxy esters of rapamycin for treating T-cell leukemia/lymphoma, solid tumors, and hyperproliferative vascular disorders. It claims temsirolimus specifically [46].

![Figure 9. Temsirolimus](image)

4.9. Everolimus

Everolimus (Figure 10) is a piperidine-tetrahydropyran based macrolide lactam (MF: C₅₃H₈₃NO₁₄; MW: 958.25; CAS Number: 159351-69-6) [47]. US5665772A provides alkylated derivatives of rapamycin as immunosuppressants. It claims everolimus specifically [48].

![Figure 10. Everolimus](image)

4.10. Nilotinib Hydrochloride Monohydrate

Nilotinib hydrochloride monohydrate (Figure 11) is a pyridine-pyrimidine-imidazole-based benzanilide derivative (MF: C₂₈H₂₂F₃N₇O.HCl.H₂O; MW: 584; CAS Number:...
923288-90-8 [49]. US7169791B2 covers substituted pyrimidinyl aminobenzamides, methods of synthesis, and their compositions to treat neoplastic diseases like leukemia. It claims nilotinib and its salts [50]. US8163904B2 claims nilotinib hydrochloride monohydrate as having physicochemical properties required to develop a good dosage form [51]. US8415363B2 claims crystalline form B of nilotinib hydrochloride monohydrate having superior crystallinity and physical stability over other polymorphs [52].

![Figure 11. Nilotinib hydrochloride monohydrate (4-methyl-N-[3-(4-methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl]-3-[4-(3-pyridinyl)-2-pyrimidinyl]amino]-benzamide monohydrochloride monohydrate).](image)

4.11. Pazopanib Hydrochloride

Pazopanib hydrochloride (Figure 12) is a benzenesulfonamide bearing benzimidazole-pyrimidinyl compound (MF: C₂₁H₂₃N₇O₂S.HCl; MW: 473.99; CAS Number: 635702-64-6) [53]. US7105530B2 reports pyrimidine derivatives as inhibitors of VEGFR-2 to treat disorders, including cancer, associated with inappropriate angiogenesis. It claims pazopanib and its salts [54]. US8114885B2 claims pazopanib hydrochloride precisely [55]. The claimed hydrochloride salt possesses advantageous properties like stability and solubility to develop quality dosage forms.

![Figure 12. Pazopanib Hydrochloride](image)
Figure 12. Pazopanib hydrochloride (5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methylbenzenesulfonamide monohydrochloride).

4.12. Vandetanib

Vandetanib (Figure 13) is a piperidine based 4-aminoquazinolamine derivative (MF: C_{22}H_{24}BrFN_{4}O_{2}; MW: 475.36; CAS Number: 443913-73-3) [56]. USRE42353E (Reissue of US6414148B1) provides quazoline derivatives, synthesis, and compositions to treat illness linked with angiogenesis and amplified vascular permeability. It claims vandetanib precisely [57].

Figure 13. Vandetanib (N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quazinol-4-amine).

4.13. Vemurafenib

Vemurafenib (Figure 14) is a phenylketone based pyrrolypyridine (MF: C_{23}H_{18}ClF_{2}N_{3}O_{3}S; MW: 489.9; CAS Number: 918504-65-1) [58]. US8143271B2 describes pyrrolypyridine based compounds as PTKIs to treat diseases and conditions associated with aberrant activity of PTKs. It claims vemurafenib specifically [59].

Figure 14. Vemurafenib (Propane-1-sulfonic acid {3-[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl]-2,4-difluoro-phenyl]-amide).

4.14. Crizotinib

Crizotinib (Figure 15) is a piperidine based pyrazolopyridine derivative (MF: C_{21}H_{22}Cl_{2}FN_{5}O; MW: 450.34; CAS Number: 877399-52-5) [60]. US7858643B2 describes aminopyridines and aminopyrazines having PTKI activity, methods of synthesizing and using these compounds as anticancer agents. It claims crizotinib and its salts [61]. US8217057B2 claims a crystalline form of a free base of crizotinib with improved solubility, stability, and physicochemical properties to develop solid dosage forms, such as capsules [62].
4.15. Ruxolitinib Phosphate

Ruxolitinib phosphate (Figure 16) is a pyrrolo[2,3-d]pyrimidine based pyrazole derivative (MF: C₂₁H₂₁N₆O₄P; MW: 404.36; CAS Number: 1092939-17-7) [63]. US7598257B2 provides pyrrolo[2,3-d]pyridines as JAK modulators, which are beneficial to treat immune-related disorders, skin diseases, myeloid proliferative ailments, and cancer. It claims ruxolitinib and its salts [64]. US8722693B2 claims ruxolitinib phosphate, which has improved water solubility, dissolution rate, chemical stability, long shelf life, excipients, and reproducibility compared to the free base [65].

4.16. Axitinib

Axitinib (Figure 17) is a pyridine based indazolylphenyl thioether (MF: C₂₂H₁₉N₄O₅S; MW: 386.47; CAS Number: 319460-85-0) [66]. US6534524B1 relates to indazole com-
pounds as PTKIs and their pharmaceutical compositions to treat diseases linked with undesirable angiogenesis and cellular proliferation. It claims axitinib specifically [67]. US8791140B2 claims crystalline forms of axitinib that have advantages in bioavailability, stability, manufacture ability, and suitability for bulk preparation [68].

Figure 17. Axitinib (N-methyl-2-[3-(E)-2-pyridin-2-yl-vinyl]-1H-indazol-6-ylsulfanyl]-benzamide).

4.17. Bosutinib Monohydrate

Bosutinib monohydrate (Figure 18) is a piperazine based 3-quinolinecarbonitrile derivative (MF: C_{26}H_{29}Cl_{2}N_{5}O_{3}.H_{2}O; MW: 548.46; CAS Number: 918639-08-4) [69]. USRE42376E (Reissue of US6297258B1) describes substituted 3-cyano quinoline compounds as PTKIs to treat diseases resulting from deregulation of PTKs, for example, cancer and polycystic kidney disease. It claims bosutinib [70]. US7767678B2 claims non-hygroscopic and stable crystalline bosutinib monohydrate (Form I) having good solubility that can be used to prepare different solid dosage forms [71].

Figure 18. Bosutinib monohydrate (4-{(2,4-dichloro-5-methoxyphenyl)amino}-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile monohydrate).

4.18. Regorafenib Monohydrate

Regorafenib monohydrate (Figure 19) is pyridinylphenyl urea derivative (MF: C_{21}H_{15}ClF_{4}N_{4}O_{3}.H_{2}O; MW: 500.83; CAS Number: 1019206-88-2) [72]. US8637553B2 discloses omega-carboxyaryl diphenyl urea derivatives as potent inhibitors of PDGFR, VEGFR, RAF, and p38 kinase to treat cancer, inflammatory diseases, and osteoporosis. It claims regorafenib and its salts [73]. US9957232B2 claims regorafenib monohydrate with
high stability and good physicochemical features to manufacture pharmaceutical compositions [74].

Figure 19. Regorafenib monohydrate (4-[[4-chloro-3-((trifluoromethyl)phenyl) carbamoyl]amino]-3-fluorophenoxy]-N-methylpyridine-2-carboxamide monohydrate).

4.19. Tofacitinib Citrate

Tofacitinib citrate (Figure 20) is a pyrrolo[2,3-d]pyrimidine based piperidine derivative (MF: C_{16}H_{20}N_{6}O.C_{6}H_{8}O_{7}; MW: 504.5; CAS Number: 540737-29-9) [75]. USRE41783E (Reissue of US6627754B2) provides pyrrolo[2,3-d]pyrimidines as JAK3 inhibitors to treat rheumatoid arthritis, psoriasis, cancer, and leukemia. It claims tofacitinib and its salt [76]. US6965027B2 claims a crystalline form of tofacitinib mono citrate salt with solid-state properties (solubility, stability, compressibility, etc.), which are acceptable to support tablet development [77].

Figure 20. Tofacitinib citrate ((3R,4R)-4-methyl-3-(methyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ß-oxo-1-piperidinepropanenitrile 2-hydroxy-1,2,3-propanetricarboxylate (1:1)).

4.20. Cabozantinib S-Malate

Cabozantinib S-malate (Figure 21) is a quinolinylphenyl ether derivative (MF: C_{28}H_{24}FN_{3}O_{5}.C_{4}H_{6}O_{5}; MW: 635.6; CAS Number: 1140909-48-3) [78]. US7579473B2 relates to quinazolines and quinolines as TKIs, and their pharmaceutical compositions to treat psoriasis, multiple sclerosis, and rheumatoid arthritis. It claims cabozantinib and its salts
US8877776B2 claims cabozantinib (L)-malate salt having desirable solubility and chemical/physical stability to develop a tablet/capsule dosage forms for intended use [80].

![Cabozerantinib (S)-malate](image)

Figure 21. Cabozantinib (S)-malate (N-(4-(6,7-dimethoxyquinolin-4-yl)oxy)phenyl)-N’-(4-fluorophenyl)cyclopropane-1,1-dicarboxamid (2S)-hydroxybutanedioate).

4.21. Ponatinib Hydrochloride

Ponatinib hydrochloride (Figure 22) is an imidazo[1,2-b]pyridazine based piperazine derivative (MF: C₉H₈ClF₃N₆O; MW: 569.02; CAS Number: 1114544-31-8) [81]. US8114874B2 describes imidazo[1,2-b]pyridazines as PTKIs and their pharmaceutical compositions to treat cancer and other diseases mediated by PTKs. It claims ponatinib hydrochloride specifically [82]. US9493470B2 claims stable crystalline form A of ponatinib hydrochloride that is advantageous for the commercial preparation of solid dosage forms because of its physicochemical stability compared to amorphous ponatinib hydrochloride [83].

![Ponatinib hydrochloride](image)

Figure 22. Ponatinib hydrochloride (3-(imidazo[1,2-b]pyridazin-3-yl)ethynyl)-4-methyl-N-[4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl]benzamide hydrochloride.)
4.22. Trametinib Dimethyl Sulfoxide

Trametinib dimethyl sulfoxide (Figure 23) is a pyridopyrimidine derivative (MF: C_{26}H_{23}FN_{5}O_{4}.C_{2}H_{6}OS; MW: 693.53; CAS Number: 1187431-43-1) [84]. US7378423B2 unveils pyrimidine compounds, their salts, synthetic procedures, and compositions to treat ailments caused by unwanted cell proliferation, for example, cancer. It claims trametinib dimethyl sulfoxide specifically [85].

\[
\text{Figure 23. Trametinib dimethyl sulfoxide (N-}(3-[\text{3-cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]}-6,8\text{-dimethyl-2,4,7-trioxo-1H,2H,3H,4H,6H,7H-pyrido[4,3-}d\text{-pyrimidin-1-yl}phenyl)acetamide dimethyl sulfoxide).}
\]

4.23. Dabrafenib Mesylate

Dabrafenib mesylate (Figure 24) is a pyrimidine-thiazole based diphenyl sulfonamide derivative (MF: C_{23}H_{20}F_{3}N_{5}O_{2}S_{2}.CH_{4}O_{3}S; MW: 615.68; CAS Number: 1195768-06-9) [86]. US7994185B2 provides benzene sulfonamide thiazole and oxazole compounds, their pharmaceutical compositions, processes for their preparation, and methods of using these compounds and compositions for treating cancer and melanoma. It claims dabrafenib mesylate specifically [87].

\[
\text{Figure 24. Dabrafenib mesylate (N-}[3-[\text{5-(2-amino-4-pyrimidinyl)-2-(1,1-dimethylethyl)-1,3-thiazol-4-yl]2-fluorophenyl}-2,6\text{-difluorobenzene sulfonamide mesylate).}
\]
4.24. Afatinib Dimaleate

Afatinib dimaleate (Figure 25) is a tetrahydrofuran based quinazolinamine derivative (MF: C_{32}H_{33}ClFN_{5}O_{11}; MW: 718.1; CAS Number: 850140-73-7) [88]. USRE43431E (Reissue of US7019012B2) unveils quinazoline derivatives and their physiologically acceptable salts possessing an inhibitory effect on signal transduction mediated by PTKs to treat tu-moral diseases, diseases of the lungs, and respiratory tract. It claims afatinib dimaleate precisely [89]. US8426586B2 claims crystalline afatinib dimaleate, synthesis, and its compositions. The claimed crystalline form is stable and has advantageous properties to de-velop quality dosage forms [90].

![Afatinib Dimaleate Structure](image)

Figure 25. Afatinib dimaleate (N-[4-[(3-chloro-4-fluorophenyl)amino]-7-[[3S]-tetrahydro-3-furanyl]oxy]-6-quinazolinyl]-4-(dimethylamino)but-2-enamide dimaleate).

4.25. Ibrutinib

Ibrutinib (Figure 26) is a piperidine based pyrazolo[3,4-d]pyrimidine (MF: C_{25}H_{24}N_{6}O_{2}; MW: 440.50; CAS Number: 936563-96-1) [91]. US8735403B2 describes pyrazolo[3,4-d]pyrimidine based inhibitors of BTK, their synthesis, and compositions to treat diseases, wherein inhibition of BTK delivers therapeutic advantage to the diseased person. It claims ibrutinib specifically [92]. US9296753B2 claims stable, water-soluble, and non-hygroscopic crystalline ibrutinib that can be used to manufacture quality dosage forms [93].

![Ibrutinib Structure](image)
4.26. Ceritinib

Ceritinib (Figure 27) is a pyrimidine based phenylpiperidine derivative (MF: C_{28}H_{36}N_{5}O_{3}ClS; MW: 558.14; CAS Number: 1032900-25-6) [94]. US8039479B2 reveals pyrimidine and pyridine derivatives and their pharmaceutical compositions to treat a condition that responds to inhibition of ALK, FAK, ZAP-70, IGF-1R, or a combination thereof. It claims ceritinib specifically [95]. US9309229B2 claims a pure and stable crystalline form of ceritinib with desirable physicochemical properties to provide good dosage forms [96].

Figure 26. Ibrutinib (1-[3R]-3-[4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl]-1-piperidinyl]-2-propen-1-one).

4.27. Idelalisib

Idelalisib (Figure 28) is a purine based quinazolinone derivative (MF: C_{22}H_{18}FN_{7}O; MW: 415.42; CAS Number: 870281-82-6) [97]. USRE44638E (Reissue of US7932260B2) reports substituted quinazolinone compounds as PI3K_\gamma inhibitors to treat diseases like bone-resorption disorders, hematopoietic cancers, lymphomas, multiple myelomas, and leukemia. It claims idelalisib and its salts [98]. US9469643B2 claims a water-soluble bioavailable and stable polymorph of idelalisib (Form II) that can be used to provide quality dosage forms [99].

Figure 27. Ceritinib (5-Chloro-N4-[2-[1-methylethyl)sulfonyl]phenyl]-N2-[5-methyl-2-(1-methylethoxy)-4-(4-piperidinyl)phenyl]-2,4-pyrimidinediamine).

Figure 28. Idelalisib (5-fluoro-3-phenyl-2-{[1S]-1-(9H-purin-6-ylamino)propyl]quinazolin-4(3H)-one).
4.28. Nintedanib Esylate

Nintedanib esylate (Figure 29) is a piperazine based indole carboxylic acid derivative (MF: C_{31}H_{33}N_{5}O_{4}∙C_{2}H_{6}O_{3}S; MW: 649.76; CAS Number: 656247-18-6) [100]. US6762180B1 states indolinone derivatives as PTKIs, synthesis, and compositions to treat proliferative sicknesses. It claims nintedanib and its salts [101]. US7119093B2 claims a stable nintedanib esylate salt specifically characterized by good crystallinity and low amorphization during grinding and compression. This salt is claimed to have good physicochemical characteristics to support quality dosage forms [102].

![Figure 29. Nintedanib esylate](image)

4.29. Palbociclib

Palbociclib (Figure 30) is a pyrido[2,3-d]pyrimidine based pyridinylpiperazine derivative (MF: C_{24}H_{29}N_{7}O_{2}; MW: 447.54; CAS: 571190-30-2) [103]. USRE47739E (Reissue of US7208489B2) delivers substituted 2-amino pyridines as potent inhibitors of CDK 4, useful for treating inflammation and proliferative cell diseases such as cancer and restenosis. It claims palbociclib and its salts [104]. US10723730B2 claims a stable crystalline free base of palbociclib with larger primary particle size, reduced specific surface area, lower surface energy measurements, and physicochemical properties to formulate a good dosage form [105].

![Figure 30. Palbociclib](image)
4.30. Lenvatinib Mesylate

Lenvatinib mesylate (Figure 31) is a quinoline carboxamide derivative (MF: C21H19ClN4O4.CH4O3S; MW: 522.96; CAS Number: 857890-39-2) [106]. US7253286B2 reports nitrogen-containing aromatic derivatives and salts or hydrates thereof to treat various diseases associated with abnormal angiogenesis. It claims lenvatinib and its pharmacologically active salts [107]. US7612208B2 claims a crystalline form of lenvatinib mesylate with improved features (physical/pharmacokinetics) compared to the free-form [108].

![Figure 31. Lenvatinib mesylate (4-[3-chloro-4-(N'-cyclopropylureido)phenoxy]-7-methoxyquino-line-6-carboxamide methanesulfonate).](image)

4.31. Cobimetinib Fumarate

Cobimetinib fumarate (Figure 32) is a piperidine-azetidine based anthranilamide derivative (MF: C46H46F6I2N6O8(2C21H21F3IN3O2.C4H4O4); MW: 1178.71; CAS Number: 1369665-02-0) [109]. US7803839B2 provides azetidin-1-yl(2-(2-fluorophenylamino)cyclic)methanone derivatives as inhibitors of MEK that are useful in cancer treatment. It claims cobimetinib and its salts [110]. US10590102B2 claims a thermodynamically stable and non-hygrosopic crystalline fumarate salt (Form A) of cobimetinib with suitable properties for use in a pharmaceutical composition [111].

![Figure 32. Cobimetinib fumarate ((S)-[3,4-difluoro-2-(2-fluoro-4-iodophenylamino)phenyl][3-hydroxy-3-(piperidin-2-yl)azetidin-1-yl]methanone hemifumarate).](image)

4.32. Osimertinib Mesylate

Osimertinib mesylate (Figure 33) is a pyrimidine based indole derivative (MF: C28H33N7O2.CH4O3S; MW: 596; CAS Number: 1421373-66-1) [112]. US8946235B2 states 2-(2,4,5-substituted-anilino)pyrimidines, useful in treating a disease mediated by EGFR, for example, cancer. It claims osimertinib mesylate specifically [113].
4.33. Alectinib Hydrochloride

Alectinib hydrochloride (Figure 34) is a morpholine-piperidine based carbazole derivatives (MF: C₃₀H₃₄N₄O₂.HCl; MW: 519.08; CAS Number: 1256589-74-8) [114]. US9126931B2 relates to tetracyclic compounds as ALK inhibitors for treating a disease accompanied by an abnormality in ALK, for example, cancer, depression, and cognitive function disorder. It claims alectinib and its salts [115].

4.34. Ribociclib Succinate

Ribociclib succinate (Figure 35) is a pyridine-piperazine based pyrrolo[2,3-d]pyrimidine derivative (MF: C₂₃H₃₀N₈O.C₄H₆O₄; MW: 552.64; CAS Number: 1374639-75-4) [116]. US8415355B2 discloses pyrrolopyrimidine compounds, the process for their preparation, and their pharmaceutical compositions to treat a disease linked with CDK 4 inhibition. It claims ribociclib and its salts [117]. US9193732B2 claims succinate salt of ribociclib that has good stability, non-hygroscopicity, and good solubility. These features make this salt a suitable salt to develop the desired formulation [118].
Figure 35. Ribociclib succinate (7-cyclopentyl-N,N-dimethyl-2-[[5-(piperazin-1-yl)pyridin-2-yl]amino]-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide succinate).

4.35. Brigatinib

Brigatinib (Figure 36) is a piperazine-piperidine based pyrimidine derivative (MF: C_{29}H_{39}ClN_{7}O_{2}P; MW: 584.10; CAS Number: 1197953-54-0) [119]. US9012462B2 narrates phosphorous compounds as PTKIs and their use in treating cancers. It claims brigatinib and its salts [120]. US10385078B2 claims a stable and non-hygroscopic anhydrous crystalline form A of brigatinib suitable for pharmaceutical formulation development [121].

Figure 36. Brigatinib (5-chloro-N4-[2-(dimethylphosphoryl)phenyl]-N2-[2-methoxy-4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl]pyrimidine-2,4-diamine).

4.36. Midostaurin

Midostaurin (Figure 37) is an indolocarbazole derivative (MF: C_{35}H_{30}N_{4}O_{4}; MW: 570.65; CAS Number: 120685-11-2) [122]. US5093330A relates to staurosporine derivatives, their salts, synthesis, and compositions encompassing them to treat cancer and inflammation. It discloses midostaurin [123]. US7973031B2 claims a method for treating AML using a dosage form (a microemulsion, soft gel, or solid dispersion) of midostaurin, wherein the AML is characterized by deregulated FLT3 receptor tyrosine kinase activity [124].
4.37. Neratinib Maleate

Neratinib maleate (Figure 38) is a pyridine based 4-aminoquinoline derivative (MF: C_{30}H_{29}ClN_{6}O_{3}.C_{4}H_{4}O_{4}; MW: 673.11; CAS Number: 915942-22-2) [125]. US7399865B2 reports substituted 3-cyanoquinoline compounds and their salts as inhibitors of HER-2 and EGFR to treat cancer. It claims neratinib and its salts [126].

4.38. Copanlisib Dihydrochloride

Copanlisib dihydrochloride (Figure 39) is a morpholine-pyrimidine based 2,3-dihydropyrazino[1,2-c]quinazoline derivative (MF: C_{23}H_{28}N_{8}O_{4}.2HCl; MW: 553.45; CAS Number: 1402152-13-9) [127]. USRE46856E (Reissue of US8466283B2) unveils 2,3-dihydropyrazino[1,2-c]quinazoline derivatives, pharmaceutical compositions comprising them, and the use of these compounds for treating hyperproliferative and angiogenesis disorders. It claims copanlisib and its salts [128]. US10383876B2 claims copanlisib dihydrochloride salt that possesses technically advantageous properties (stability, solubility, hygroscopicity, etc.) to develop a quality pharmaceutical composition [129].
4.39. Abemaciclib

Abemaciclib (Figure 40) is a piperazine-pyridine-pyrimidine based benzimidazole derivative (MF: C_{27}H_{32}F_{2}N_{8}; MW: 506.59; CAS Number: 1231929-97-7) [130]. US7855211B2 reports piperazine-pyridine-pyrimidine based benzimidazole derivatives and salts thereof, a pharmaceutical formulation comprising them to treat cancers selected from the group colorectal cancer, breast cancer, NSCLC, prostate cancer, glioblastoma, MCL, CML, and AML. It claims abemaciclib and its salts [131].

![Abemaciclib](image_url)

Figure 40. Abemaciclib (N-[5-[(4-ethyl-1-piperazinyl)methyl]-2-pyridinyl]-5-fluoro-4-[4-fluoro-2-methyl-1-(1-methylethyl)-1H-benzimidazol-6-yl]pyrimidin-2-amine).

4.40. Acalabrutinib

Acalabrutinib (Figure 41) is a pyrrolidine-pyridine based imidazo[1,5-a]pyrazine derivative (MF: C_{26}H_{23}N_{7}O_{2}; MW: 465.51; CAS Number: 1420477-60-6) [132]. US9290504B2 provides 4-imidazopyridazin-1-yl-benzamides for the treatment of BTK mediated disorders. It claims acalabrutinib and its salts [133]. US9796721B2 claims a stable and non-hygroscopic anhydrate crystal form of acalabrutinib as having advantageous parameters for making quality pharmaceutical compositions [134].
4.41. Netarsudil Dimesylate

Netarsudil dimesylate (Figure 42) is an isoquinoline based beta-amino acid derivative (MF: C30H35N3O9S2; MW: 645.74; CAS Number: 1422144-42-0) [135]. US8394826B2 relates to isoquinoline amide and benzamide based compounds as dual inhibitors of Rho kinase and a monoamine transporter (MAT), useful in treating diseases like glaucoma and cancer. It claims netarsudil [136]. US9415043B2 claims a chemically stable and water-soluble dimesylate salt of netarsudil that can provide a quality ophthalmic solution [137].

4.42. Baricitinib

Baricitinib (Figure 43) is a pyrazole-azetidine based pyrrolo[2,3-d]pyrimidine derivative (MF: C16H17N7O2S; MW: 371.42; CAS Number: 1187594-09-7) [138]. US8158616B2 provides azetidine derivatives as JAK inhibitors, synthetic methods, and compositions encompassing them to treat inflammatory and autoimmune disorders, along with cancer. It claims baricitinib and its salts [139].

Figure 41. Acalabrutinib (4-{8-amino-3-[(2S)-1-(but-2-ynoyl)pyrrolidin-2-yl]imidazo[1,5-a]pyrazin-1-yl}-N-(pyridin-2-yl)benzamide).

Figure 42. Netarsudil dimesylate ((S)-4-(3-amino-1-(isoquinolin-6-ylamino)-1-oxopropan-2-yl)benzyl-2,4-dimethylbenzoate dimesylate).
Figure 43. Baricitinib ([1-(ethylsulfonyl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl]-1H-pyrazol-1-yl]azetidin-3-yl]acetonitrile).

4.43. Binimetinib

Binimetinib (Figure 44) is a benzimidazole derivative (MF: C{subscript:17}H{subscript:15}BrF{subscript:2}N{subscript:4}O{subscript:3}; MW: 441.2; CAS Number: 606143-89-9) [140]. US7777050B2 states alkylated (1H-Benzimidazol-5-yl)-(4-substituted-phenyl)-amine derivatives, helpful in managing sicknesses like cancer. It claims binimetinib and pharmaceutically acceptable salts thereof [141]. US9562016B2 claims a crystallized form of binimetinib with better purity and an enhanced physical characteristic, beneficial in pharmaceutical dosage form preparation [142].

Figure 44. Binimetinib (5-[(4-bromo-2-fluorophenyl)amino]-4-fluoro-N-(2-hydroxyethoxy)-1-methyl-1H-benzimidazole-6-carboxamide).

4.44. Dacomitinib Monohydrate

Dacomitinib monohydrate (Figure 45) is a piperidine based quinazolinamine derivatives (MF: C{subscript:24}H{subscript:25}ClFN{subscript:5}O{subscript:2}.H{subscript:2}O; MW: 487.95; CAS Number: 1042385-75-0) [143]. US7772243B2 unveils 4-anilino-6-substituted alkenoylamino-quinazoline compounds as TKIs to treat proliferative diseases, including cancer and restenosis endometriosis and psoriasis. It claims dacomitinib and its salts [144].
4.45. Encorafenib

Encorafenib (Figure 46) is a pyrazole based pyrimidine derivative (MF: C_{22}H_{27}ClFN_{7}O_{4}S; MW: 540; CAS Number: 1269440-17-6) [145]. US8501758B2 provides pyrazole based pyrimidine and pharmaceutical compositions comprising them to treat disorders associated with the deregulated activity of B-Raf. It claims encorafenib and its salts [146].

4.46. Fostamatinib Disodium Hexahydrate

Fostamatinib disodium hexahydrate (Figure 47), a phosphate prodrug of tamatinib, is a pyrimidine based pyrido[3,2-b][1,4]oxazine derivative (MF: C_{23}H_{24}FN_{6}Na_{2}O_{9}P \cdot 6H_{2}O; MW: 732.52; CAS Number: 914295-16-2) [147]. US7449458B2 reports prodrugs of pharmacologically active 2,4-pyrimidinediamine derivatives, intermediates thereof, the process of manufacturing them, and pharmaceutical compositions comprising them to treat diseases mediated by the activation of PTKs. It claims fostamatinib disodium hexahydrate, which has increased solubility concerning the parent phosphate prodrug [148]. US8163902B2 claims a thermodynamically stable crystalline form of fostamatinib disodium hexahydrate that is stable over a wide range of relative humidity and requires substantial heating to lose its water molecules. This property makes it a suitable API to develop the desired dosage form [149].
4.47. Duvelisib Hydrate

Duvelisib hydrate (Figure 48) is a purine based isoquinolone derivative (MF: C_{22}H_{17}ClN_{6}O.H_{2}O; MW: 434.88; CAS Number: 1201438-56-3) [150]. US8193182B2 provides isoquinolin-1(2H)-one derivatives as modulators of PI3 kinase activity and pharmaceutical compositions comprising them to treat diseases associated with PI3 kinase activity. It claims duvelisib and its salts [151]. USRE46621E (Reissue of US8809349B2) claims physically and chemically stable polymorphs of duvelisib, salt, solvate, or hydrate that do not readily decompose or change in chemical makeup or physical state for more than 60 months and are suitable to develop the desired dosage forms of the API [152].

4.48. Gilteritinib Fumarate

Gilteritinib fumarate (Figure 49) piperazine-piperidine based pyrazine carboxamide derivative (MF: (C_{29}H_{44}N_{8}O_{3})_{2}.C_{4}H_{4}O_{4}; MW: 1221.50; CAS Number: 1254053-84-3) [153]. US8969336B2 states diamino heterocyclic carboxamide derivatives as having outstanding inhibitory activity against EML4-ALK fusion proteins for use in cancer therapy. It claims gilteritinib and its salts [154]. The gilteritinib fumarate salt is stable in heat, humidity, and storage conditions.
4.49. Larotrectinib Sulfate

Larotrectinib sulfate (Figure 50) is a pyrrolidine based pyrazolo[1,5-a]pyrimidine derivative (MF: C₂₅H₂₄F₂N₆O₆S; MW: 526.51; CAS Number: 1223405-08-0) [155]. US9127013B2 relates to pyrazolo[1,5-a] pyrimidine derivatives as TRK family PTKIs that are useful to treat cancer, inflammation, and certain infectious diseases. It claims larotrectinib sulfate specifically [156]. US10172861B2 claims crystalline larotrectinib sulfate having stable physicochemical properties, which can be used to develop quality dosage forms [157].

4.50. Lorlatinib

Lorlatinib (Figure 51) is a pyrazole-pyridine based benzoxadiazacyclotetradecine derivative (MF: C₂₁H₁₉FN₆O₂; MW: 406.41; CAS Number: 1223403-58-4) [158]. US8680111B2 discloses macrocyclic compounds as inhibitors of ALK and/or EML4-ALK and their pharmaceutical composition to treat illnesses linked with the deregulation of ALK and EML4-ALK. It claims lorlatinib and its salts [159]. US10420749B2 claims crystalline polymorphs of lorlatinib having high crystallinity and purity, low hygroscopicity, and favorable dissolution and mechanical properties to develop quality pharmaceutical formulations [160].
Figure 51. Lorlatinib ((10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-15,16,17-tetrahydro-2H-4,8-methenopyrazolo[4,3-H][2,5,11]benzoxadiazacyclotetradecine-3-carbonitrile).

4.51. Entrectinib

Entrectinib (Figure 52) is a tetrahydropyran-piperazine based indazole derivative (MF: C₃₁H₃₄F₂N₆O₂; MW: 560.64; CAS Number: 1108743-60-7) [161]. US8299057B2 discloses indazole derivatives as potent PKIs that are useful in anticancer therapy. It claims entrectinib and its salts [162]. US10738037B2 claims a crystalline Form 4 of entrectinib that exhibits greater thermodynamic stability at a temperature of about 40°C than other known polymorphs and offers advantages in preparing dosage forms [163].

Figure 52. Entrectinib (N-[5-(3,5-difluorobenzyl)-1H-indazol-3-yl]-4-(4-methylpiperazin-1-yl)-2-(tetrahydro-2H-pyran-4-ylamino)benzamide).

4.52. Upadacitinib Hemihydrate

Upadacitinib hemihydrate (Figure 53) is an imidazo[1,2-a]pyrrolo[2,3-c]pyrazine based pyrrolidine derivative (MF: C₁₇H₁₉F₃N₆O.½H₂O; MW: 389.38; CAS Number: 1310726-60-3) [164]. USRE47221E (Reissue of US8426411B2) describes tricyclic compounds that inhibit JAK family kinase activity for treating diseases, including rheumatoid arthritis, multiple sclerosis, and psoriasis. It claims upadacitinib [165]. US9951080B2 claims physicochemically stable crystalline hemihydrate of upadacitinib having solid-state properties to develop quality pharmaceutical dosage forms [166].
Upadacitinib hemihydrate ((3S,4R)-3-Ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-c]pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide hydrate (2:1)).

4.53. Alpelisib

Alpelisib (Figure 54) is a pyridine-thiazole based pyrrolidine derivative (MF: C_{19}H_{22}F_{3}N_{5}O_{2}S; MW: 441.47; CAS Number: 1217486-61-7) [167]. US8227462B2 unveils pyrrolidine-1,2-dicarboxamide derivatives for the treatment of illnesses ameliorated by inhibition of PI3Ks. It claims alpelisib in a free form and its salts [168].

Erdafitinib (Figure 55) is a pyrazole based quinoxaline derivative (MF: C_{25}H_{30}N_{6}O_{2}; MW: 446.56; CAS Number: 1346242-81-6) [169]. US8895601B2 relates to pyrazole based quinoxaline derivatives and their pharmaceutical compositions to treat diseases like cancer. It claims erdafitinib and its salts [170].
Figure 55. Erdafitinib (N-(3,5-dimethoxyphenyl)-3-(1-methyl-1H-pyrazol-4-yl)-N-[2-[(propan-2-yl)amino]ethyl]quinoxalin-6-amine).

4.55. Pexidartinib Hydrochloride

Pexidartinib hydrochloride (Figure 56) is a pyrrolo[2,3-b]pyridine based pyridine derivative (MF: C20H15ClF3N5.HCl; MW: 454.28; CAS Number: 1029044-16-3) [171]. US9169250B2 provides fused azacyclic compounds as dual inhibitors of c-FMS and c-KIT to treat diseases that arise due to deregulation of c-FMS and c-KIT. It claims pexidartinib hydrochloride [172]. US9802932B2 claims a stable crystalline form of pexidartinib hydrochloride having attributes for developing a quality pharmaceutical composition [173].

Figure 56. Pexidartinib hydrochloride (5-[[5-Chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl]-N-[[6-(trifluoromethyl)pyridin-3-yl]methyl]pyridin-2-amine monohydrochloride).

4.56. Fedratinib Dihydrochloride Monohydrate

Fedratinib dihydrochloride monohydrate (Figure 57) is a pyrrolidine-pyrimidine based benzenesulfonamide derivative (MF: C27H36N6O3S.2HCl.H2O; MW: 615.62; CAS Number: 1374744-69-0) [174]. US7528143B2 unveils biaryl m-pyrimidine compounds as an inhibitor of the JAK family and their pharmaceutical compositions to treat diseases mediated by modulation of JAK activity. It claims fedratinib and its salts [175].
Figure 57. Fedratinib dihydrochloride monohydrate (N-tert-butyl-3-[[5-methyl-2-[(4-[2-(pyrroli-
din-1-yl)ethoxy]phenyl]amino]pyrimidin-4-yl]amino]benzene-1-sulfonamide dihydrochloride monohydrate).

4.57. Zanubrutinib

Zanubrutinib (Figure 58) is a piperidine based pyrazolo[1,5-a]pyrimidine derivative (MF: C27H29N5O3; MW: 471.56; CAS Number: 1691249-45-2) [176]. US9447106B2 states substituted pyrazolo[1,5-a]pyrimidines as BTK modulators and used these compounds to treat diseases intervened by BTK. It claims zanubrutinibas and its salts [177].

Figure 58. Zanubrutinib ((S)-7-(1-Acryloypiperidin-4-yl)-2-(4-phenoxyphenyl)-4,5,6,7-tetrahydro-
pyrazolo[1,5-a]pyrimidine-3-carboxamide).

4.58. Avapritinib

Avapritinib (Figure 59) is a pyrazole-piperazine-pyrimidine based pyrrolo[2,1-f][1,2,4]triazine derivative (MF: C26H27FN10; MW: 498.57; CAS Number: 1703793-34-3) [178]. US9944651B2 refers to piperazine-based pyrrolo[2,1-f][1,2,4]triazine derivatives for treating conditions like mastocytosis and mast cell diseases by modifying the activity of KIT. It claims avapritinib and its salts [179].
Figure 59. Avapritinib ((S)-1-(4-fluorophenyl)-1-(2-(4-(6-(1-methyl-1H-pyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4-yl)piperazin-yl)pyrimidin-5-yl)ethan-1-amine).

4.59. Selumetinib Sulfate

Selumetinib sulfate (Figure 60) is a benzimidazole derivative (MF: C_{17}H_{17}BrClFN_{4}O_{7}S; MW: 555.76; CAS Number: 943332-08-9) [180]. US7425637B2 reports N3-alkylated benzimidazole compounds that inhibit MEK and are helpful to treat cancer and inflammation. It claims selumetinib and its salts [181]. US9156795B2 claims a stable crystalline hydrogen sulfate salt of selumetinib with enhanced solubility and bioavailability, making it a suitable API to develop desired pharmaceutical dosage forms [182].

Figure 60. Selumetinib sulfate (5-[(4-bromo-2-chlorophenyl)amino]-4-fluoro-6-[(2-hydroxyethoxy)carbamoyl]-1-methyl-1H-benzimidazol-3-ium hydrogen sulfate).

4.60. Pemigatinib

Pemigatinib (Figure 61) is a morpholine based pyrrolo[3,2′,5,6]pyrido[4,3-d]pyrimidine derivative (MF: C_{24}H_{27}F_{2}N_{5}O_{4}; MW: 487.5; CAS Number: 1513857-77-6) [183]. US9611267B2 relates to tricyclic compounds as inhibitors of FGFR, useful in ailments facilitated by FGFR malfunctioning like cancer. It claims pemigatinib and its salts [184].
4.61. Tucatinib

Tucatinib (Figure 62) is a quinazoline-oxazoline based triazolo[1,5-a]pyridine derivative (MF: C_{26}H_{24}N_{8}O_{2}; MW: 480.52; CAS Number: 937263-43-9) [185]. US8648087B2 discloses N4-phenyl-quinazoline-4-amine derivatives as TKIs to treat cancer and inflammation. It claims tucatinib [186].

4.62. Capmatinib Dihydrochloride Monohydrate

Capmatinib dihydrochloride monohydrate (Figure 63) is an imidazo[1,2-b][1,2,4]triazine based quinoline derivative (MF: C_{23}H_{21}Cl_{2}FN_{6}O_{2}; MW: 503.36; CAS Number: 1865733-40-9) [187]. US7767675B2 reveals imidazotriazines and imidazopyrimidines as MET inhibitors and their pharmaceutical compositions useful in cancer treatment. It claims capmatinib and its salts [188]. US8420645B2 claims a stable capmatinib dihydrochloride monohydrate with pharmaceutical attributes to manufacture quality pharmaceutical formulations [189].

Figure 61. Pemigatinib (3-(2,6-difluoro-3,5-dimethoxyphenyl)-1-ethyl-8-(morpholin-4-ylmethyl)-1,3,4,7-tetrahydro-2H-pyrrolo[3',2':5,6]pyrido[4,3-d]pyrimidin-2-one).

Figure 62. Tucatinib (N6-(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)-N4-(3-methyl-4-[[1,2,4]triazolo[1,5-a]pyridin-7-yloxy]phenyl)quinazoline-4,6-diamine).

Figure 63. Capmatinib Dihydrochloride Monohydrate
4.63. Selpercatinib

Selpercatinib (Figure 64) is a pyridine-diazabicycloheptane based pyrazolo[1,5-α]pyridine derivative (MF: C₉H₇N₉O₃; MW: 525.61; CAS Number: 2152628-33-4) [190]. US10112942B2 uncovers pyrazolo[1,5-α]pyridines as RET inhibitors, useful to treat RET-associated diseases. It claims selpercatinib and its salts [191]. US10584124B2 claims a stable crystalline polymorph of selpercatinib that is useful for developing pharmaceutical formulations [192].

4.64. Ripretinib

Ripretinib (Figure 65) is a naphthyridine based phenylurea derivative (MF: C₉H₇BrFN₃O₂; MW: 510.36; CAS Number: 1442472-39-0) [193]. US8461179B1 uncovers dihydronaphthyridine derivatives that inhibit c-KIT and that have utility to treat GIST, mast cell leukemia, or mastocytosis. It claims ripretinib and its salts [194].
4.65. Pralsetinib

Pralsetinib (Figure 66) is a pyridine-pyrimidine based pyrazole derivative (MF: C_{27}H_{32}FN_9O_2; MW: 533.61; CAS Number: 2097132-94-8) [195]. US10030005B2 discloses pyrazole-based RET inhibitors and their pharmaceutical compositions to treat a condition mediated by aberrant RET activity, e.g., cancer. It claims pralsetinib [196].

4.66. Trilaciclib Dihydrochloride

Trilaciclib dihydrochloride (Figure 67) is a piperazine-pyridine based pyrazino[1′,2′:1,5]pyrrole derivative (MF: C_{24}H_{30}N_8O.2HCl; MW: 519.48; CAS Number: 1977495-97-8) [197]. US8598186B2 reveals tricyclic compounds as CDK inhibitors, which have utility in the treatment of disorders intervened by CDK malfunction like cancer. It claims trilaciclib and its salts [198].
4.67. Tepotinib Hydrochloride Monohydrate

Tepotinib hydrochloride monohydrate (Figure 68) is a piperidine-pyrimidine based dihydropyrazidine derivative (MF: C₃₈H₂₈N₆O₂·HCl·H₂O; MW: 547.05; CAS Number: 1946828-82-9) [199]. US8580781B2 reveals certain pyridazinones as MET inhibitors to treat tumors. It claims tepotinib and its salts [200]. Tepotinib hydrochloride monohydrate is claimed explicitly in US8329692B2 [201].

\[
\text{HCl} \cdot \text{H₂O}
\]

Figure 68. Tepotinib hydrochloride monohydrate (3-[1-{(3-[5-{(1-methylpiperidin-4-yl)methoxy}pyrimidin-2-yl]phenyl}methyl]-6-oxo-1,6-dihydropyrazin-3-yl]benzonitrile hydrochloride monohydrate).

4.68. Umbralisib Tosylate

Umbralisibtosylate (Figure 69) is a chromen-4-one based pyrazolo[3,4-d]pyrimidine derivative (MF: C₃₈H₃₂F₃N₅O₆S; 743.75; 1532533-72-4) [202]. US10570142B2 provides pyrazolo[3,4-d]pyrimidines as inhibitors of PI3Kδ and their pharmaceutical compositions to treat PI3Kδ mediated disorders. It claims umbralisib tosylate having at least 95% enantiomeric excess [203]. US10414773B2 unveils a stable crystalline form of umbralisib tosylate possessing specified particle sizes with enhanced solubility and improved pharmacokinetics. This property makes it suitable to prepare a quality oral dosage form [204].

Figure 69. Umbralisib tosylate ((S)-2-(1-(4-amino-3-(3-fluoro-4-isopropoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-ethyl)-6-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one tosylate)).
4.69. Tivozanib Hydrochloride Monohydrate

Tivozanib hydrochloride monohydrate (Figure 70) is an isoxazole base quinoline derivative (MF: C_{22}H_{19}ClN_{4}O_{5}.HCl.H_{2}O; MW: 509.34; CAS Number: 682745-41-1) [205]. US6821987B2 and US7211587B2 unveil quinoline derivatives having azolyl group, useful for treating tumors, chronic rheumatism, psoriasis, and Kaposi’s sarcoma. These patents claim tivozanib and its salts [206,207]. US7166722B2 claims a physically stable crystalline form of tivozanib hydrochloride monohydrate stable under high temperature and humidity. This form is suitable for developing quality dosage forms [208].

Figure 70. Tivozanib hydrochloride monohydrate (1-[2-chloro-4-[(6,7-dimethoxyquinolin-4-yl)oxy]phenyl]-3-(5-methylisoxazol-3-yl)urea hydrochloride monohydrate).

4.70. Infigratinib Phosphate

Infigratinib (Figure 71) is a piperazine based pyrimidine derivative (MF: C_{26}H_{31}Cl_{2}N_{7}O_{3}.H_{3}PO_{4}; MW: 658.47; CAS Number: 1310746-10-1) [209]. US8552002B2 claims infigratinib and its salts [210]. US9067896B2 claims a monophosphoric acid salt of infigratinib as well as its anhydrous crystalline polymorph (Form A) and amorphous polymorph. The stability and physicochemical parameters of the crystalline Form A were better than other disclosed polymorphs [211].

Figure 71. Infigratinib phosphate (3-(2,6-dichloro-3,5-dimethoxyphenyl)-1-[6-4-(4-ethylpiperazin-1-yl)phenylamino]pyrimidin-4-yl)-1-methylurea phosphate).

5. Expert Opinion

In 2001, USFDA approved the marketing of the first clinical PKI, imatinib. From 2001 to 31 May 2021, about 70 PKIs have been approved by the USFDA (Table 2). The USFDA has also approved antibodies as PKIs such as trastuzumab and bevacizumab. A few antibodies are also in the clinical trial (amivantamab and patritumab). This review is limited to small molecules as PKIs. Accordingly, USFDA approved antibodies such as PKIs have not been discussed here. The physicochemical properties of about 55 USFDA approved
PKIs from 2001 to 2020 have been described in the literature [22,23]. However, these reports are silent about the patent data of the PKIs reported therein.

According to the patent literature, and the data presented in Tables 2 and 3, the major players that developed the marketed PKIs include Novartis (imatinib, lapatinib, everolimus, nilotinib, pazopanib, trametinib, dabrafenib, ceritinib, ribociclib, midostaurin, alpelisib, capmatinib, and inigfratinib), Pfizer (tofacitinib, palbociclib, dacomitinib, and lorlatinib), Astrazeneca (gefitinib, osimertinib, acalabrutinib, and selumetinib), Bayers (sorafenib, regorafenib, copanlisib, and larotrectinib), and PF Prism (temsirilimus, crizotinib, axitinib, and bosutinib). Nearly 535 PKs have been reported [6]. However, the major primary target of the approved PKIs includes ALK, BCR-Abel, B-RAF, BTK, CDK, EGFR, JAK, MEK, PDGFR, PI3K, RET, and VEGFR (Table 2). Accordingly, there remains a large number of unexplored PKs. Some KIs have specificity for multiple kinases and are called multikinase inhibitors (MKIs), such as sunitinib, regorafenib, imatinib, sorafenib, axitinib, lenvatinib, cabozantinib, vandetanib, and pazopanib. The MKIs are supposed to reduce the chances of developing resistance. However, they are also linked to causing adverse effects in patients, for example, hypertension, gastric upset, and dermatological reactions [212]. The development of the covalent PKIs (ibrutinib, dacomitinib, osimertinib, afatinib, and neratinib) had been an unwilling strategy because they can bind to certain proteins and cause toxicity. Furthermore, the allosteric PKIs (trametinib, asciminib, and selumetinib) are considered better than covalent inhibitors as they are not supposed to bind with other proteins. However, many new kinases have been identified possessing cysteine residues at their active sites. Therefore, the design of potent and selective covalent inhibitors may be useful against such kinases [213,214]. The pharmaceutical industries are trying to develop more potent and safer PKIs that can be used to treat many more PKs associated disorders with fewer adverse events [23]. Some example of PKIs, which are under development and/or waiting for the USFDA approval, include abrocitinib, belomosudil, dovitinib, sitravatinib, abivertinib, enzastaurin, rivoceranib (apatinib), asciminib, ensartinib, mobocertinib, momelotinib, pacritinib, quizartinib, vorolanib, GLPG3970, CA-4948, BAY1834845, BAY1830839, and PF-06650833 [213,214].

The PKIs contain one or more heterocyclic moieties in their structure that can explain the difference in their binding to the target and thus the spectrum of activity. The primary heterocyclic moieties include quinazoline, quinoline, isoquinoline, pyridine, pyrimidine, pyrazole, benzimidazole, indazole, imidazole, indole, carbazole, or their fused structures. This observation suggests that many clinical PKIs have been developed by the chemical modification of a formerly approved drug, and PKs are promiscuous targets. Further, most of the PKIs are marketed as acid-addition salts (hydrochloride, mesylate, tosylate, phosphate, malate, citrate, esylate, fumarate, succinate, and sulfate). This observation indicates the basic nature of the chemical nucleus of the PKIs.

The majority of the PKIs are approved to treat cancer and inflammatory disorders. Some of the PKIs have shown efficacy towards autoimmune diseases, Alzheimer’s disease (neflamapimod, tidegulsib, and saracitinib), and Parkinson’s disease (DNL201). It is also expected that PKIs of PKC/WNK that control the activity of ion transporters may be developed to treat hypertension [214].

The malignant cells have genomic instability, which may cause the development of resistance to PKIs. This phenomenon is the reason for developing 2nd, 3rd, and later generations of PKIs targeting the equivalent PKs and their related disorders [212]. To combat resistance development, scientists are exploring different chemical templates and pharmacophores to develop novel PKIs [22]. Besides, inflammatory conditions do not exhibit genomic instability. Therefore, the PKIs, which are approved to treat inflammatory disorders, seldom demonstrate the development of resistance [22,23].

The main marketed dosage form of about 66 USFDA approved PKIs is either a tablet or capsule (Table 2). These are solid dosage forms. The quality of the formulation of a solid dosage form depends upon the solid-state properties (stability, solubility, compressibility, etc.) of the drug [215]. Therefore, many patents related to salts and polymorphs (mostly
crystalline forms) of the USFDA approved PKIs have been obtained by the innovator companies. The innovator companies have done this to capture the market for a longer time.

The development of the PKIs is considered a medical breakthrough. However, the prices of these therapeutics cause financial toxicity. The financial burden can make the patients non-compliant with the treatment instructions as they may take lower doses than the prescribed doses. This causes failure of the treatment [216,217]. One way to avoid financial toxicity is to develop the generic version of a drug [218]. Currently, seven PKIs have been genericized (imatinib, erlotinib, sorafenib, dasatinib, lapatinib, temsirolimus, and everolimus) (Table 3). These generic versions must have lower prices than the innovator products. The data given in Table 3 also suggest that twelve more PKIs (gefitinib, sunitinib, pazopanib, vandetanib, axitinib, bosutinib, tofacitinib, idelalisib, nintedanib, lenvatinib, midostaurin, and neratinib) may be genericized by 2025 due to basic/compound/governing patent expiry or expiry of the drug exclusivity. It means by the end of 2025, 19 PKIs will have their generic version in the USA market. Besides, it is also expected that the generic version of about 48 PKIs will be available in the USA market by the end of 2030. Thus, it is hoped that the generic availability of these PKIs will reduce the financial toxicity on a patient.

Although great strides have been made in developing small molecule such as PKIs during the past 20 years, this field is still in its infancy. PKs are ubiquitous, and hence specificity has always been an issue regarding the design of new therapies targeting them. The major disadvantage of the existing PKIs is that they target a minor portion of the kinome, with countless clinically significant kinases missing validated inhibitors [22,23]. There are essential kinases without any inhibitors, and this is a critical area for further research. As the field advances during the next 20 years, one can anticipate that PKIs with many scaffolds, chemotypes, and pharmacophores will be developed. Other innovative strategies are also expected soon. A summary of the PKIs is provided in Figure 72.
In conclusion, there is a huge scope for discovering PKIs, and it will dominate other cancer discovery strategies for decades. The rate of discovery of better and selective PKIs having less propensity for resistance development will be faster than the last two decades because of the better understanding of the molecular and structural aspects of the human kinases. The development of PKIs to treat hypertension, Alzheimer’s disease, and Parkinson’s disease are foreseeable.

Author Contributions: Conceptualization, M.I., and S.A.K.; methodology, S.M.B.A. and M.A. (Majid Alhomrani); validation, D.U.M. and E.H.A.; formal analysis, A.S.A. (Abdulhakeem S. Alamri), M.T., A., S.I.A., M.A.B. and A.K.A.; resources, W.F.A. and O.A.; data curation, M.A. (Mohammed AlMotairi) and A.S.A. (Ahmed Subeh Alshrari); writing—original draft preparation, M.I.; writing—review and editing, S.A.K., D.U.M., M.T., A.; visualization, S.I.A. and M.A.B.; supervision, M.I. and S.A.K.; project administration, Y.M.; funding acquisition, A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.
Acknowledgments: The authors are thankful to AlMaarefa University, Riyadh for providing support to write this review article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ALK: Anaplastic lymphoma kinase; ALL: Acute lymphoblastic leukemia; AML: Acute myelogenous leukemia; API: Active pharmaceutical ingredient; ARCC: Advanced renal cell carcinoma; ATC: Anaplastic thyroid cancer; ATP: Adenosine triphosphate; BCR-ABL: Breakpoint cluster region/-abl oncogene; BRAF/B-raf: Murine sarcoma viral oncogene homolog; BTK: Bruton’s tyrosine kinase; CDK: Cyclin-dependent protein kinase; CLL: Chronic lymphocytic leukemia; CML: Chronic myeloid leukemia; CSFIR: Colony stimulating factor 1 receptor; DTC: Differentiated thyroid cancer; EGFR: Epidermal growth factor receptor; FBKP12/mTOR: FK Binding Protein-12/mammalian target of rapamycin; FL: Follicular lymphoma; Flt3: fms-like tyrosine kinase 3; GISTs: Gastrointestinal stromal tumors; GIST: Gastrointestinal stromal tumor; GSK: Glycogen synthase kinase; HCC: Hepatocellular carcinoma; HER-1/HER-2: Human epidermal growth factor receptor 1/2; HGF: Heparin-binding growth factor; IFN: Interferon; IL: Interleukin; ITK: Immunity-related kinase; ITKs: Interferon-γ-inducible T helper 2 cytokine-inducible kinases; ITP: Idiopathic thrombocytopenic purpura; JAK: Janus kinase; MAPK/MEK1/2: Mitogen-activated protein kinase; MAT: Monoamine transporter; MCL: Mantle cell lymphoma; MTC: Medullary thyroid cancer; muc: Metastatic urothelial carcinoma; MZL: Marginal zone lymphoma; NFI: Neurofibromatosis type 1; NSCLC: Non-small cell lung cancer; PDGF: Platelet-derived growth factor receptor; Ph'−ALL: Philadelphia chromosome-negative Acute lymphoblastic leukemia; Ph'−CML: Philadelphia chromosome-positive chronic myeloid leukemia; PI3K: Phosphatidylinositol 3-kinase; PKIs: Protein kinase inhibitors; PKs: Protein kinases; pNET: Primitive neuroendocrine tumor; RCC: Renal cell carcinoma; SCL: Small lymphocytic lymphoma; SSc: Systemic sclerosis; STS: Soft-tissue sarcomas; TKI: Tyrosine Kinase inhibitors; Tyk2: Tyrosine kinase; USFDA: United States Food and Drug Administration; VEGFR: Vascular endothelial growth factor receptor.

References

1. Keohane, E.M.; Otto, C.N.; Walenga, J.M. *Redak’s Hematology-E-Book: Clinical Principles and Applications*; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019.
2. Prescott, J.C.; Braisted, A. Identification of Kinase Inhibitors. PCT Patent Application Publication Number WO2005034840A2, 21 April 2005.
3. Charrier, J.D.; Durrant, S. Protein Kinase Inhibitors. U.S. Patent Application Publication Number US20120028966A1, 2 February 2012.
4. Liu, C.; Ke, P.; Zhang, J.; Zhang, X.; Chen, X. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A. *Front. Physiol.* 2020, 11, 574030, doi:10.3389/fphys.2020.574030.
5. Plowman, G.; Whyte, D.; Manning, G.; Sudarsanan, S.; Martinez, R. Novel human protein kinases and protein kinase-like enzymes. U.S. Patent Application Publication US20040048310A1, 11 March 2004.
6. Buljan, M.; Ciuffa, R.; van Drogen, A.; Vichalkovski, A.; Mehnert, M.; Rosenberger, G.; Lee, S.; Varjosalo, M.; Pernas, L.E.; Spegg, V.; et al. Kinase interaction network expands functional and disease roles of human kinases. *Mol. Cell* 2020, 79, 504–520.e9, doi:10.1016/j.molcel.2020.07.001.
7. Wilson, L.J.; Linley, A.; Hammond, D.E.; Hood, F.E.; Coulson, J.M.; MacEwan, D.J.; Ross, S.J.; Slupsky, J.R.; Smith, P.D.; Eyers, P.A.; et al. New perspectives, opportunities, and challenges in exploring the human protein kinome. *Cancer Res.* 2018, 78, 15–29, doi:10.1158/0008-5472.CAN-17-2291.
8. Arencibia, J.M.; Pastor-Flores, D.; Bauer, A.F.; Schulze, J.O.; Biondi, R.M. AGC protein kinases: From structural mechanism of regulation to allosteric drug development for the treatment of human diseases. *Biochim. Biophys. Acta* 2013, 1834, 1302–1321, doi:10.1016/j.bbadis.2013.03.010.
9. Junho, C.V.C.; Caio-Silva, W.; Trentin-Sonoda, M.; Carneiro-Ramos, M.S. An overview of the role of calcium/calmodulin-dependent protein kinase in cardiorenal syndrome. *Front. Physiol.* 2020, 11, 735, doi:10.3389/fphys.2020.00735.
10. Schittek, B.; Sinnberg, T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. *Mol. Cancer* 2014, 13, 231, doi:10.1186/1476-4598-13-231.
11. Strang, B.L. RO0504985 is an inhibitor of CMGC kinase proteins and has anti-human cytomegalovirus activity. *Antivir. Res.* 2017, 144, 21–26, doi:10.1016/j.antiviral.2017.05.004.
12. Sawa, M.; Masai, H. Drug design with Cdc2 kinase: A potential novel cancer therapy target. *Drug Des. Devel. Ther.* 2009, 2, 255–264, doi:10.2147/dddt.s4303.
13. Matrone, C.; Petrillo, F.; Nasso, R.; Ferretti, G. Fyn tyrosine kinase as harmonizing factor in neuronal functions and dysfunctions. *Int. J. Mol. Sci.* 2020, 21, 4444, doi:10.3390/ijms21124444.
14. Petrie, E.J.; Hildebrand, J.M.; Murphy, J.M. Insane in the membrane: A structural perspective of MLKL function in necroptosis. *Immunol. Cell Biol.* 2017, 95, 152–159, doi:10.1038/icb.2016.125.
46. Skotnicki, J.S.; Leone, C.L.; Schiebler, G.A. Rapamycin Hydroxysterols. U.S. Patent Number USRE4768E1, 18 February 2014.
47. Guarini, A.; Minoia, C.; Giannoccaro, M.; Rana, A.; Iacobazzi, A.; Lapietra, A.; Raimondi, A.; Silvestris, N.; Gadala, C.D.; Ranieri, G. mTOR as a target of everolimus in refractory/relapsed Hodgkin lymphoma. Curr. Med. Chem. 2012, 19, 945–954, doi:10.2174/092986712799320277.
48. Cottens, S.; Sedrani, R. O-Alkylated Rapamycin Derivatives and Their Use, Particularly as Immunosuppressants. U.S. Patent Number US5665772A, 9 September 1997.
49. Vaid, A. Nilotinib as first-line therapy for chronic myeloid leukemia. Indian J. Cancer 2011, 48, 438–445, doi:10.4103/0019-509X.92274.
50. Breitstein, W.; Furet, P.; Jacob, S.; Manley, P.W. Inhibitors of Tyrosine Kinases. U.S. Patent Number US7169791B2, 30 January 2007.
51. Manley, P.W.; Shieh, W.C.; Sutton, P.A.; Karpinski, P.P.H.; Wu, R.R.; Monnier, S.M.; Brozio, J. Salts of 4-methyl-N-[3-(4-methylimidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide. U.S. Patent Number US8163904B2, 24 April 2012.
52. Manley, P.W.; Shieh, W.C.; Sutton, P.A.; Karpinski, P.P.H.; Wu, R.R.; Monnier, S.M.; Brozio, J. Crystalline Forms of 4-methyl-N-[3-(4-methyl-imidazol-1-yl)-5-trifluoromethyl-phenyl]-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-benzamide. U.S. Patent Number US8415363B2, 9 April 2013.
53. Schutz, F.A.; Choueiri, T.K.; Sternberg CN. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit. Rev. Oncol. Hematol. 2011, 77, 163–171, doi:10.1016/j.critrevonc.2010.02.012.
54. Boloor, A.; Cheung, M.; Davis, R.; Harris, P.A.; Hinkle, K.; Mook, R.A., Jr.; Stafford, J.A.; Veal, J.M. Pyrimidineamines as Anti-angiogenesis Modulators. U.S. Patent Number US7105530B2, 12 September 2006.
55. Boloor, A.; Cheung, M.; Hinkle, K.; Veal, J.M.; Harris, P.A.; Mook, Jr. R.A.; Stafford, J.A. Chemical Compounds. U.S. Patent Number US8114885B2, 12 September 2012.
56. Sim, M.W.; Cohen, M.S. The discovery and development of vandetanib for the treatment of thyroid cancer. Expert Opin. Drug Discov. 2014, 9, 105–114, doi:10.1517/17460441.2013.866942.
57. Thomas, A.P.; Johnstone, C.; Clayton, E.; Stokes, E.S.E.; Lohmann, J.J.M.; Hennequin, L.F.A. Quinazoline Derivatives and Pharmaceutical Compositions Containing Them. U.S. Patent Number USRE4233E1, 10 May 2011.
58. Kim, A.; Cohen, M.S. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov. 2016, 11, 907–916, doi:10.1080/20074727.2016.1201057.
59. Artis, D.R.; Bollag, G.; Bremer, R.; Cho, H.; Hirb, K.P.; Ibrahim, P.N.; Tsai, J.; Zhang, C.; Zhang, J. Compounds and Methods for Kinase Modulation, and Indications Thereof. U.S. Patent Number US8143271B2, 27 March 2012.
60. Roskoski, R. Jr. The preclinical profile of crizotinib for the treatment of non-small-cell lung cancer and other neoplastic disorders. Expert Opin. Drug Discov. 2013, 8, 1165–1179, doi:10.1517/17460441.2013.813015.
61. Ia, L.; Kung, P.F.; Shen, H.; Tran, D.M.; Cui, J.J.; Funk, L.A.; Meng, J.J.; Nambu, M.D.; Pairish, M.A. Enantiomerically Pure Aminoheteroaryl Compounds as Protein Kinase Inhibitors. U.S. Patent Number US788643B2, 28 December 2010.
62. Cui, J.J.; Tran, D.M.B. Polymorphs of a c-MET/HGFR Inhibitor. U.S. Patent Number US8217038B2, 10 July 2012.
63. Naqui, K.; Verstovsek, S.; Kantarjian, H.; Ravandi, F. A potential role of ruxolitinib in leukemia. Expert Opin. Investig. Drugs 2011, 20, 1159–1166, doi:10.1517/13543738.2011.589384.
64. Rodgers, J.D.; Shepard, S. Heteroaryl Substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus Kinase Inhibitors. U.S. Patent Number US7598257B2, 6 October 2009.
65. Li, H.Y.; Rodgers, J.D. Salts of the Janus kinase Inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopenta(pyrano)enitrile. U.S. Patent Number US7822693B2, 13 October 2009.
66. Zakharova, Y.; Zakharov, K.; Rixe, O. Axitinib: From preclinical development to future clinical perspectives in renal cell carcinoma. Expert Opin. Drug Discov. 2015, 10, 925–935, doi:10.1517/17460441.2015.1045411.
67. Bender, S.L.; Borchart, A.J.; Collins, M.R.; Hua, Y.; Johnson, M.D.; Johnson, T.O., Jr.; Luu, H.T.; Palmer, C.L.; Reich, S.H.; Tempczyk-Russell, A.M.; et al. Indazole Compounds and Pharmaceutical Compositions for Inhibiting Protein Kinases, and Methods for Their Use. U.S. Patent Number US8534524B1, 18 March 2003.
68. Campeta, A.M.; Chekal, B.P.; Singer, R.A. Crystalline Forms of 6-[2-(methylcarbamoyl) phenylsulfonyl]-3-E-[2-(pyridin-2-yl)etheneyonazole Suitable for the Treatment of Abnormal Cell Growth in Mammals. U.S. Patent Number US8791140B2, 29 July 2014.
69. Quintás-Cardama, A.; Kantarjian, H.; Cortes, J. Bosutinib for the treatment of chronic myeloid leukemia in chronic phase. Drugs Today (Barc). 2012, 48, 177–188, doi:10.1388/2012.DT.48.3.1750274.
70. Berger, D.M.; Floyd, M.B.; Frost, P.; Hamann, P.R.; Tsou, H.R.; Wissner, A.; Zhang, N. Substituted 3-cyanoquinolines. U.S. Patent Number USRE42376E, 17 May 2011.
71. Feigelson, G.; Strong, H.; Wen, H.; Tesconi, M.S. Crystalline Forms of 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3 Quinolinecarbonitrile and Methods of Preparing the Same. U.S. Patent Number US7767678B2, 3 August 2010.
72. Miura, K.; Satoh, M.; Kinouchi, M.; Yamamoto, K.; Hasegawa, Y.; Philchenkov, A.; Kakugawa, Y.; Fujiya T. The preclinical development of regorafenib for the treatment of colorectal cancer. Expert Opin. Drug Discov. 2014, 9, 1087–1101, doi:10.1517/17460441.2014.924923.
73. Boyer, S.; Dumas, J.; Riedl, B.; Wilhelm, S. Fluoro Substituted omega-carboxyaryl Diphenyl Urea for the Treatment and Prevention of Diseases and Conditions. U.S. Patent Number US8637535B2, 28 January 2014.

74. Grunenberg, A.; Keil, B.; Stieltj, J.; Tenbиеg, K. 4-[4-(4-chloro-3-(trifluoromethyl) phenyl) carbamoyl] amino)-3-fluorophenoxo]-N-methylpyridine-2-carboxamide Monohydrate. U.S. Patent Number US9957322B2, 1 May 2018.

75. Kaur, K.; Kalra, S.; Kaushal, S. Systematic review of tofacitinib: A new drug for the management of rheumatoid arthritis. Clin. Ther. 2014, 36, 1074–1086, doi:10.1016/j.clinthera.2014.06.018.

76. Blumenkopf, T.A.; Flanagan, M.E.; Munchhof, M.J. Pyrrolo [2,3-d]pyrimidine Compounds. U.S. Patent Number USRE41783E, 28 September 2010.

77. Flanagan, M.E.; Li, Z.J. Crystalline 3-[4-methyl-3-[7H- pyrrolo [2,3-d]pyrimidin-4-yl]amino]-piperidin-1-yl]-3-oxo-propanitrile Citrate. U.S. Patent Number US8695027B2, 15 November 2005.

78. Grassi, P.; Verzoni, E.; Ratta, R.; Mennitto, A.; de Braud, F.; Procopio, G. Cabozantinib in the treatment of advanced renal cell carcinoma: Design, development, and potential place in the therapy. Drug Des. Devel. Ther. 2016, 10, 2167–2172, doi:10.2147/DDDT.S104225.

79. Chan, D.S.M.; Forsyth, T.P.; Khoury, R.G.; Leahy, J.W.; Mann, L.W.; Nuss, J.M.; Parks, J.; Wang, Y.; Xu, W.; Bannen, L.C.; Mac, M.B. c-Met Modulators and Methods of Use. U.S. Patent Number US8579473B2, 28 May 2009.

80. Brown, A.S.C.; Gallagher, W.P.; Lamb, P.; (L)-malate Salt of N-(4-[6, 7-bis (methylxy) quinolin-4-yl] oxy) phenyl-N'-(4-fluorophenyl) cyclopropane-1, 1-dicarboxamide. U.S. Patent Number US8877768B2, 4 November 2014.

81. Tan, F.H.; Puczekci, T.L.; Styli, S.S.; Luwor, R.B. Ponatinib: A novel multi-tyrosine kinase inhibitor against human malignancies. Oncotargets Ther. 2019, 12, 635–645, doi:10.2147/OTT.S189391.

82. Dalgarno, D.C.; Huang, W.S.; Qj, J.; Sawyer, T.K.; Shakespeare, W.C.; Sundaramoorthi, R.; Wang, Y.; Zhu, X.; Zou, D.; Metcalf, III C.A.; Romero, J.A.C.; Thomas, R.M. Substituted Acetylenic imidazo[l,2-][pyrazine Compounds as Kinase Inhibitors. U.S. Patent Number US8114874B2, 14 February 2012.

83. Chaber, J.J.; Murray, C.K.; Rozamus, L.W.; Sharma, P. Crystalline Forms of 3-imidazo[1,2-b] pyrazin-3-ylethynyl)-4-methyl-N-[4-[4-(methylpiperazin-1-yl) methyl]-3-(trifluoromethyl)phenyl]benzamide and Its Mono Hydrochloride Salt. U.S. Patent Number US9493470B2, 15 November 2016.

84. Jeanson, A.; Boyer, A.; Grellier, L.; Tomasini, P.; Barlesi, F. Therapeutic potential of trametinib to inhibit the mutagenesis by inactivating the protein kinase pathway in non-small cell lung cancer. Exp Rev. Anticancer Ther. 2019, 19, 11–17, doi:10.1080/14737140.2019.1554440.

85. Abe, H.; Hayakawa, K.; Horii, Y.; lida, T.; Kawasaki, H.; Kikuchi, S.; Kurachi, H.; Nanayama, T.; Sakai, T.; Takahashi, M.; Tamaru M., Yamaguchi, T.; Yoshida, T. Pyrimidine Compound and Medical Use Thereof. U.S. Patent Number US7378423B2, 17 May 2008.

86. Knispeh, S.; Zimmer, L.; Kanaki, T.; Ugurel, S.; Schadendorf, D.; Livingstone, E. The safety and efficacy of dabrafenib and trametinib for the treatment of melanoma. Expert Opin. Drug Saf. 2018, 17, 73–87, doi:10.1080/14740336.2018.1390562.

87. Rheault, T.R. Benzene Sulfonamide Thiazole and Oxazole Compounds. U.S. Patent Number US7994185B2, 9 August 2011.

88. Brückl, W.; Tufman, A.; Huber, R.M. Advanced non-small cell lung cancer (NSCLC) with activating EGFR mutations: First-line treatment with afatinib and other EGFR TKIs. Expert Rev. Anticancer Ther. 2017, 17, 143–155, doi:10.1080/14772560.2017.1266265.

89. Himmelsbach, F.; Blech, S.; Langkopf, E.; Jung, B.; Baum, A.; Solca, F. Quinazoline and Pharmaceutical Compounds Containing Them. U.S. Patent Number US843431E1, 29 May 2012.

90. Kulmina, C.; Rall, W.; Schaubelt, J.; Sieger, P.; Soyka, R. Process for Preparing Amino Crotolyn Compounds. U.S. Patent Number US8426856B2, 23 April 2013.

91. Liu, L.; Shi, B.; Wang, X.; Xiang, H. Strategies to overcome resistance mutations of Bruton’s tyrosine kinase inhibitor ibrutinib. Future Med. Chem. 2018, 10, 343–356, doi:10.4155/fmc-2017-0145.

92. Honigberg, L.; Pan, Z.; Verner, E. Inhibitors of Bruton’s Tyrosine Kinase. U.S. Patent Number US8735403B2, 27 May 2014.

93. Goldman, E.; Purro, N.; Smyth, M.; Wirth, D.D. Crystalline Forms of a Bruton’s Tyrosine Kinase Inhibitor. U.S. Patent Number US9296753B2, 29 March 2016.

94. De Pas, T.; Pala, L.; Catania, C.; Conforti, F. Molecular and clinical features of second-generation anaplastic lymphoma kinase inhibitors: Ceritinib. Future Oncol. 2017, 13, 2629–2644, doi:10.2217/fon-2017-0262.

95. Michelys, P.Y.; Pei, W.; Marsilje, T.H.; Chen, B.; Uno, T. Compounds and Compositions as Protein Kinase Inhibitors. U.S. Patent Number US8039497B2, 18 October 2011.

96. Feng, L.; Gong, B.; Karpsinski, P.H.; Waykole L.M. Crystalline Forms of 5-chloro-N2-(2-isopropoxy-5-methyl-4-piperidin-4-ylphenyl)-N4-[2-(propene-2-sulfonyl)-phenyl]-pyrimidine-2, 4-diamine. U.S. Patent Number US9309229B2, 12 April 2016.

97. Zirlik, K.; Veelken, H. Idealisisib. Recent Results Cancer Res. 2018, 212, 243–264, doi:10.1007/978-3-319-91349-8_12.

98. Fowler, K.W.; Huang, D.; Kiescki, E.A.; Oliver, A.; Ooi, H.C.; Puri, K.D.; Ruan, F.; Treiberg, J. Quinazolinones as Inhibitors of Human Phosphatidylinositol 3-kinase Delta. U.S. Patent Number US844638E, 10 December 2013.

99. Carra, E.; Evarts, J.B.; Gerber, M.; Shi, B.; Sujino, K.; Tran, D.; Wang, F. Polymeric Forms of (S)-2-((9H-purin-6-ylamino)propyl)-5-fluoro-3-phenylquinazolin-4(3H)-one. U.S. Patent Number US9469643B2, 18 October 2016.

100. Khalique, S.; Banerjee, S. Nintedanib in ovarian cancer. Expert Opin. Investig. Drugs 2017, 26, 1073–1081, doi:10.1080/13543784.2017.1335399.

101. Heckel, A.; Hilberg, F.; Redemann, N.; Roth, G.J.; Spevak, W.; Tonisch, G.U.; Van, M.J.; Walter, R. Substituted Indolines which Inhibit Receptor Tyrosine Kinases. U.S. Patent Number US6762180B1, 13 July 2004.
102. Bock, T.; Hilberg, F.; Linz, G.; Rall, W.; Roth, G.J.; Sieger, P. 3-Z-[1-(4-[(4-Methyl-piperazin-1-yl)-methylcarbonyl]-N-methylamino)-anilino]-1-phenyl-methylen]-6-methoxy carbonyl-2-indolino-monoethanesulphonate and the Use Thereof as a Pharmaceutical Composition. U.S. Patent Number US719093B2, 10 October 2006.

103. de Dueñas, E.M.; Gavila-Gregori, J.; Olimos-Antón, S.; Santaballa-Bertrán, A.; Lluch-Hernández, A.; Espinal-Dominguez, E.J.; Rivero-Silva, M.; Llombart-Cussac, A. Preclinical and clinical development of palbociclib and future perspectives. *Clin. Transl. Oncol.* 2018, 20, 1136–1144, doi:10.1007/s12094-018-1850-3.

104. Barvian, M.; Booth, R.J.; Repine, J.T.; Sheehan, D.J.; Toogood, P.L.; Vanderwel, S.N.; Zhou, H. 2-(pyridin-2-ylamino)-pyrido[2,3-d]pyrimidin-7-ones. U.S. Patent Number USRE47739E, 26 November 2019.

105. Chekal, B.P.; Ide, N.D. Solid Forms of a Selective CDK4/6 Inhibitor. U.S. Patent Number US1072370B2, 28 July 2020.

106. Capozzi, M.; De Divitiis, C.; Otaiano, A.; von Arx, C.; Scala, S.; Tatangelo, F.; Delrio, P.; Tafuto, S. Lenvatinib, a molecule with versatile application: From preclinical evidence to future development in anti-cancer treatment. *Cancer Manag. Res.* 2019, 11, 3847–3860, doi:10.2147/CMAR.S188316.

107. Arimoto, I.; Fukuda, Y.; Funashahi, Y.; Haneda, T.; Kamat, J.; Matsu, J.; Matsu, K.; Matsuura, M.; Matsushita, M.; Mimura, F.; et al. Nitrogen-Containing Aromatic Derivatives. U.S. Patent Number US7253286B2, 7 August 2007.

108. Matsushima, T.; Arimoto, I.; Ayata, Y.; Gotoda, M.; Kamada, A.; Nakamura, T.; Sakaguchi, T.; Suzuki, N.; Yoshizawa, K. Crystalline Form of a Salt of 3-[4-chloro-4-cyclopropylcarboxylamino]-7-methoxy-6-quinolinecarboxamide or the Solvate of the Salt and a Process for Preparing the Same. U.S. Patent Number US7612208B2, 3 November 2009.

109. Eagles, J.R.; Jimeno, A. Cobimetinib: Inhibiting MEK1/2 in BRAF V600-mutant melanoma. *Drugs Today (Barc)* 2016, 52, 593–605, doi:10.1385/DT:2016.52.11.254224.

110. Aay, N.; Anand, N.K.; Blazey, C.M.; Bowles, O.J.; Busseniuss, J.; Costanzo, S.; Curtis, J.K.; Defina, S.C.; Dubenko, L.; Joshi, A.A.; et al. Azetidines as MEK Inhibitors for the Treatment of Proliferative Diseases. U.S. Patent Number US7983389B2, 28 September 2010.

111. Brown, A.C. Crystalline Fumarate Salt of (S)-(3,4-difluoro-2-(2-fluoro-4-iodophenylamino)phenyl) [3-hydroxy-3-(piperidin-2-yl)azetin-1-yl][methanone. U.S. Patent Number US10590102B2, 17 March 2020.

112. Santarpia, M.; Lizzi, A.; Karachaliou, N.; Gonzalez-Cao, M.; Daffinà, M.G.; D’Aveni, A.; Marabello, G.; Altvilla, G.; Rosell, R. Osimertinib is the treatment of non-small-cell lung cancer: Design, development and place in therapy. *Lung Cancer (Amst)* 2017, 109, 109–125, doi:10.1016/j.lungcan.2017.01.005.

113. Butterworth, S.; Finlay, M.R.V.; Reid, H.M.; Ward, R.A. 2-(2,4,5-substituted-anilino) pyrimidine Compounds. U.S. Patent Number US8946238B2, 3 February 2015.

114. Srinivasamaharaj, S.; Salame, B.K.; Rios-Perez, J.; Kloecker, G.; Perez, C.A. The role of alemtuzumab in the treatment of advanced ALK-rearranged non-small-cell lung cancer. *Expert Rev. Anticancer Ther.* 2016, 16, 1227–1233, doi:10.1080/14737442.2016.1249857.

115. Asoh, K.; Emura, T.; Furuichi, N.; Hong, W.; Ishii, N.; Ito, T.; Kawada, H.; Kinoshita, K.; Morikami, K.; Oikawa, N.; et al. Tetra cyclic Compound. U.S. Patent Number US9126931B2, 8 September 2015.

116. Curigliano, G.; Cricci, C.; Esposito, A.; Intra, M.; Minucci, S. Pharmacokinetic drug evaluation of ribociclib for the treatment of metastatic, hormone-positive breast cancer. *Expert Opin. Drug Metab. Toxicol.* 2017, 13, 575–581, doi:10.1080/17425255.2017.1318848.

117. Brain, C.T.; Sung, M.J.E.; Lagu, B. Pyrrolopyrimidine Compounds and Their Uses. U.S. Patent Number US8415335B2, 9 April 2013.

118. Calienni, S.; Scott, J.; Arx, S.; Comastri, A. Cell cycle inhibitor. U.S. Patent Number US20160206761A1, 24 November 2015.

119. Ali, R.; Arshad, I.; Palacio, S.; Mudad, R. Brigitinib for ALK-positive metastatic non-small-cell lung cancer: Design, development and place in therapy. *Drug. Des. Devel. Ther.* 2019, 13, 569–580, doi:10.2147/DDDT.S147499.

120. Dalgarno, D.C.; Huang WS.; Li, F.; Liu, S.; Qi, J.; Romero, J.A.C.; Shakespeare, W.C.; Thomas, R.M.; Wang, Y.; Zhu, X.; et al. Phosphorous Derivatives as Kinase Inhibitors. U.S. Patent Number US9012462B2, 21 April 2015.

121. Rozamurs, L.W.; Sharma, P. Crystalline Forms of 5-chloro-N-[2-(dimethylphospholyl)phenyl]-2-(2-methoxy-4-[4-(4-methylpiperazin-1-yl)-piperidin-1-yl]phenyl)pyridine-2,4-diamine. U.S. Patent Number US9385078B2, 20 August 2019.

122. Kim, E.S. Midostaurin: First Global Approval. *Drugs* 2017, 77, 1251–1259, doi:10.1007/s40265-017-0779-0.

123. Caravatti, G.; Freedenhagen, A. Staurosporine Derivatives Substituted at Methylen Nitrogen. U.S. Patent Number US8093330A, 3 March 1992.

124. Griffin, J.D.; Manley, P.W. Staurosporine Derivatives as Inhibitors of FLT3 Receptor Tyrosine Kinase Activity. U.S. Patent Number US7997303B1, 5 July 2011.

125. Deeks, E.D. Neratinib: First Global Approval. *Drugs* 2017, 77, 1695–1704, doi:10.1007/s40265-017-0811-4.

126. Rabindran, S.K.; Tsou, H.R.; Wissner, A. Protein Tyrosine Kinase Enzyme Inhibitors. U.S. Patent Number US7399865B2, 15 July 2008.

127. Markham, A.; Copanlisib: First Global Approval. *Drugs* 2017, 77, 2057–2062, doi:10.1007/s40265-017-0838-6.
129. Militzer, H.C.; Müller, H.; Peters, J.G. Substituted 2,3-dihydroimidazo[1,2-c]quinazoline Salts. U.S. Patent Number US10383876B2, 20 August 2019.

130. Kim, E.S. Abemaciclib: First Global Approval. Drugs 2017, 77, 2063–2070, doi:10.1007/s40265-017-0840-z.

131. De Dios, M.A.; De Prado, G.A.; Filadelfa, D.P.C.M.; Garcia, P.M.C.; Gelbert, L.M.; Knobeloch, J.M.; Martin, D.L.N.E.M.; Martin, O.F.M.D.; Martinez, P.J.A. Protein Kinase Inhibitors. U.S. Patent Number US7855211B2, 21 December 2010.

132. Markham, A.; Dhillon, S. Acalabrutinib: First Global Approval. Drugs 2018, 78, 139–145, doi:10.1007/s40265-017-0852-8.

133. Barf, T.A.; Man, P.A.D.A.; Oubrie, A.A.; Rewinkel, J.B.M.; Sterrenburg, J.G.; Jans, C.G.J.M.; Raaijmakers, H. 4-imidazopyridazin-1-yl-benamides and 4-imidazotetrazin-1-yl-benamides as Btk Inhibitors. U.S. Patent Number US9290504B2, 22 March 2016.

134. Aret, E.; Barf, T.; Blatter, F.; Evarts, J.; Ingallinera, T.; Krejsa, J. Crystal forms of (S)-4-(2-amino-3-(1-[(but-2-yonyl) pyrrolidin-2-yl]imidazo[1,5-a][1,2,4]triazin-1-yl)]-N-(pyridin-2-yl)benzamide. U.S. Patent Number US9796721B2, 24 October 2017.

135. Lin, C.W.; Sherman, B.; Moore, L.A.; Laethem, C.L.; Lu, D.W.; Pattabiraman, P.P.; Rao, P.V.; deLong, M.A.; Kopczynski, C.C. Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J. Ocul. Pharmacol. Ther. 2018, 34, 40–51, doi:10.1089/jop.2017.0023.

136. Elong, M.A.; Royalty, S.M.; Sturdivant, J.M. Dual Mechanism Inhibitors for the Treatment of Disease. U.S. Patent Number US8394826B2, 12 March 2013.

137. Kopczynski, C.; Lin, C.W.; Sturdivant, J.M.; deLong, M.A. Combination Therapy. U.S. Patent Number US9415043B2, 16 August 2016.

138. Markham, A. Baricitinib: First Global Approval. Drugs 2017, 77, 697–704, doi:10.1007/s40265-017-0273-3.

139. Rodgers, J.D.; Shepard, S. Azetidine and Cyclobutane Derivatives as JAK Inhibitors. U.S. Patent Number US8158616B2, 17 April 2012.

140. Tran, B.; Cohen, M.S. Discovery of and development of binimetinib for the treatment of melanoma. Expert Opin. Drug Discov. 2020, 15, 745–754, doi:10.1080/17460441.2020.1746265.

141. Wallace, E.M.; Lyssikatos, J.P.; Marlow, A.L.; Hurley, T.B. N3 Alkylated Benzimidazole Derivatives as MEK Inhibitors. U.S. Patent Number US7777058B2, 17 August 2010.

142. Rell, C.M.; Liu, W.; Misun, M.; Nichols, P.; Niederer, D.A.; Pachinger, W.H.; Stengel, P.J.; Wolf, M.C.; Zimmermann, D. Preparation of and Formulation Comprising a MEK Inhibitor. U.S. Patent Number US8952016B2, 7 February 2017.

143. Shirley, M. Dacomitinib: First Global Approval. Drugs 2018, 78, 1947–1953, doi:10.1007/s40265-018-1028-x.

144. Fakhoury, S.A.; Lee, H.T.; Reed, J.E.; Schlosser, K.M.; Sexton, K.E.; Tece, H.; Winters, R.T. 4-phenylamino-quinazolin-6-yl-amides. U.S. Patent Number US7772438B2, 10 August 2010.

145. Koeblinger, P.; Thuerigen, O.; Dummer, R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr. Opin. Oncol. 2018, 30, 125–133, doi:10.1097/CCO.000000000000426.

146. Huang, S.; Jin, X.; Liu, Z.; Poon, D.; Tellew, J.; Wan, Y.; Wang, X.; Xie, Y. Compounds and Compositions as Protein Kinase Inhibitors. U.S. Patent Number US8507588B2, 6 August 2013.

147. Markham, A. Fostamatinib: First Global Approval. Drugs 2018, 78, 959–963, doi:10.1007/s40265-018-0927-1.

148. Bhamidipati, S.; Singh, R.; Stella, V.J.; Sun, T. Prodrugs of 2,4-pyrimidinediamine Compounds and Their Uses. U.S. Patent Number US8449458B2, 11 November 2008.

149. Bhamidipati, S.; Masuda, E.; Singh, R.; Sun, T. Prodrugs of 2,4-pyrimidinediamine Compounds and Their Uses. U.S. Patent Number US8163902B2, 24 April 2012.

150. Blair, H.A. Duvelisib: First Global Approval. Drugs 2018, 78, 1847–1853, doi:10.1007/s40265-018-1013-4.

151. Chan, K.; Li, L.; Liu, Y.; Ren P.; Rommel C; Wilson TE. Substituted Isoquinolin-1(2H)-ones, and Methods of Use Thereof. U.S. Patent Number US8193318B2, 5 June 2012.

152. Iebester, P.; Kropp, J.; Lane, B.S.; Michael, M.; Pingda, R. Processes for Preparing Isoquinolinones and Solid Forms of Isoquinolinones. U.S. Patent Number US846621E, 2 April 2017.

153. Dhillon, S. Gilteritinib: First Global Approval. Drugs 2019, 79, 331–339, doi:10.1007/s40265-019-01062-3.

154. Kazuhiko, I.; Yoshinori, I.; Akio, K.; Yutaka, K.; Kazuo, K.; Takahiro, M.; Itsuro, S.; Hiroshi T. Diamino Heterocyclic Carbamide Compound. U.S. Patent Number US8969336B2, 3 March 2015.

155. Scott, I.J. Larotrectinib: First Global Approval. Drugs 2019, 79, 201–206, doi:10.1007/s40265-018-1044-x.

156. Andrews, S.W.; Haas, J.; Jiang, Y.; Zhang, G. Method of treatment using substituted pyrazolo[1,5-a] pyrimidine compounds. U.S. Patent Number US9127013B2, 8 September 2017.

157. Alisha, B.; Juengst, D.; Shah, K. Crystalline Form of (S)-(S)-(R)-2-(2,5-difluorophenyl)-pyrrolidin-1-yl)-pyrazolo[1,5-a]pyrimidine-3-yl-3-hydroxypyrrolidine-1-carboxamide Hydrogen Sulfate. U.S. Patent Number US10172861B2, 8 January 2019.

158. Syed, Y.Y. Lorlatinib: First Global Approval. Drugs 2019, 79, 93–98, doi:10.1007/s40265-018-1041-0.

159. Bailey, S.; Burke, B.J.; Collins, M.R.; Cui, J.J.; Deal, J.G.; Hoffman, R.L.; Huang, Q.; Johnson, T.W.; Kania, R.S.; Kath, J.C. Macro cyclic Derivatives for the Treatment of Diseases. U.S. Patent Number US8680111B2, 25 March 2014.

160. Birch, M.J.; Pencheva, K.D. Crystalline Form of Lorlatinib Free Base. U.S. Patent Number US10420749B2, 24 September 2019.

161. Al-Salam, Z.T.; Keam, S.J. Entrectinib: First Global Approval. Drugs 2019, 79, 1477–1483, doi:10.1007/s40265-019-01177-y.

162. Lombardi, B.A.; Marchionni, C.; Menichincheri, M.; Nesi, M.; Orsini, P.; Panzeri, A.; Perrone, E.; Vanotti, E. Substituted Indazole Derivatives Active as Kinase Inhibitors. U.S. Patent Number US8290507B2, 30 October 2012.

163. Candiani, I.; Oattaiano, G.; Tomasi, A. Crystalline Form of N-[5-(3,5-difluoro-benzyl)-1H-indazol-3-yl]-4-(4-methyl-piperazin-1-yl)-2-(tetrahydro-pyran-4-ylamino)-benzamide. U.S. Patent Number US10738037B2, 11 August 2020.
164. Duggan, S.; Keam, S.J. Upadacitinib: First Approval. *Drugs* 2019, 79, 1819–1828, doi:10.1007/s40265-019-01211-z.

165. Frank, K.E.; Friedman, M.; George, D.M.; Stewart, K.D.; Wallace, G.A.; Wishart, N. Tricyclic Compounds. U.S. Patent Number USRE47221E, 5 February 2019.

166. Allian, A. Processes for the Preparation of (35,4R)-3-ethyl-4-(3H-imidazo[1,2-alpha]pyrrolo[2,3-c]pyrazin-8-yl)-N-[(2,2,2-trifluoroethoxy)pyrrolidine-1-carboxamide and Solid State Forms Thereof. U.S. Patent Number US9951080B2, 24 April 2018.

167. Markham, A. Alpelisib: First Global Approval. *Drugs* 2019, 79, 1249–1253, doi:10.1007/s40265-019-01161-6.

168. Caravatti, G.; Fairhurst, R.A.; Furet, P.; Guagnano, V.; Imbach, P. Pyrrolidine-1,2-dicarboxamide Derivatives. U.S. Patent Number US8227462B2, 24 July 2012.

169. Hanna, K.S. Erdafitinib to treat urothelial carcinoma. *Drugs Today (Barc)* 2019, 55, 495–501, doi:10.1385/dot.2019.55.8.3010573.

170. Akkari, R.; Berdini, V.; Besong, G.E.; Embrechts, W.C.J.; Freyne, E.J.E.; Glisson, R.A.H.J.; Hamlett, C.C.F.; Johnson, C.N.; Lacroix, J.F.A.; Meerpoel, L.; et al. Pyrazolyl Quinoxaline Kinase Inhibitors. U.S. Patent Number US8895601B2, 25 November 2014.

171. Monestime, S.; Lazaridis, D. Pexidartinib (TURALIO®): The first FDA-indicated systemic treatment for Tenosynovial Giant Cell Tumor. *Drugs R D* 2020, 20, 189–195, doi:10.4172/2156-9582.1000314-3.

172. Bremer, R.; Ibrahim, P.N.; Zhang, J. Compounds Modulating c-fms and/or c-kit Activity and Uses Therefor. U.S. Patent Number US9169250B2, 27 October 2015.

173. Ibrahim, P.N.; Visor GC. Solid Forms of a Compound Modulating Kinases. U.S. Patent Number US9802932B2, 2017.

174. Blair, H.A. Fedratinib: First Approval. *Drugs* 2019, 79, 1719–1725, doi:10.1007/s40265-019-01205-x.

175. Cao, J.; Hood, J.D.; Lohse, D.L.; Mcpherson, A.; Noronha, G.; Pathak, V.P.; Renick, J.; Soll, R.M.; Zeng, B.; Mak, C.C. Biaryl meta-pyrimidine Inhibitors of Kinases. U.S. Patent Number US7528143B2, 5 May 2009.

176. Syed, Y.Y. Zanubrutinib: First Approval. *Drugs* 2020, 80, 91–97, doi:10.1007/s40265-019-01252-4.

177. Guo, Y.; Wang, Z. Substituted pyrazolo[1,5-a]pyrimidines as Bruton’s Tyrosine Kinase Modulators. U.S. Patent Number US9447106B2, 20 September 2016.

178. Dhillon, S. A vapritinib: First Approval. *Drugs* 2020, 80, 433–439, doi:10.1007/s40265-020-01275-2.

179. Hodous, B.L.; Kim, J.L.; Wilson, D.; Wilson, K.J.; Zhang, Y. Compositions Useful for Treating Disorders Related to Kit. U.S. Patent Number US9444651B2, 17 April 2018.

180. Markham, A.; Keam, S.J. Selumetinib: First Approval. *Drugs* 2020, 80, 931–937, doi:10.1007/s40265-020-01331-x.

181. Wallace, E.M.; Lysikatok, J.P.; Marlow, A.L.; Hurley, T.B. N3 Alkylated Benzimidazole Derivatives as MEK Inhibitors. U.S. Patent Number US7425367B2, 16 September 2008.

182. Chau, T.H.; Demattei, J.; Dickinson, P.A.; Ford, J.G.; Perverz, M.; Roberts, R.J.; Sharma, S.G.; Squire, C.J.; Storey, R.A. Hydrogen Sulfate Salt. U.S. Patent Number US9156795B2, 13 October 2015.

183. Hoy, S.M. Pemigatinib: First Approval. *Drugs* 2020, 80, 923–929, doi:10.1007/s40265-020-01330-y.

184. He, C.; Lu, L.; Wu, L.; Yao, W.; Zhang, C. Substituted Tricyclic Compounds as FGFR Inhibitors. U.S. Patent Number US9611267B2, 4 April 2017.

185. Lee, A. Tucatinib: First Approval. *Drugs* 2020, 80, 1033–1038, doi:10.1007/s40265-020-01340-w.

186. Greschuk, J.M.; Hemmings, D.D.; Liu, W.; Lysikatok, J.P.; Marmaeser, F.P.; Zhao, Q. N4-phenyl-quinazoline-4-amine Derivatives and Related Compounds as ErBB type I Receptor Tyrosine Kinase Inhibitors for the Treatment of Hyperproliferative Diseases. U.S. Patent Number US8664807B2, 11 February 2014.

187. Dhillon, S. Capmatinib: First Approval. *Drugs* 2020, 80, 1125–1131, doi:10.1007/s40265-020-01347-3.

188. He, C.; Metcalfe, B.; Qian, D.Q.; Xu, M.; Yao, W.; Zhang, C.; Zhuo, J. Imidazotriazines and Imidazopyrimidines as Kinase Inhibitors. U.S. Patent Number US7767675B2, 3 August 2010.

189. Liu, P.; Pan, Y.; Qiao, L.; Weng, L.; Zhou, J. Salts of 2-fluoro-N-methyl-4-[[7-(quinolin-6-yl-methyl)]imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide and Processes Related to Preparing The Same. U.S. Patent Number US8420645B2, 16 April 2013.

190. Markham, A. Selpomatine: First Approval. *Drugs* 2020, 80, 1119–1124, doi:10.1007/s40265-020-01343-7.

191. Andrews, S.W.; Aronow, S.; Blake, J.F.; Brandhuber, B.J.; Cook, A.; Haas, J.; Jiang, Y.; Kolakowski, G.R.; McFadden, E.A.; McKenzie, M.L.; et al. Substituted Pyrazolo[1,5-alpyridine Compounds as RET Kinase Inhibitors. U.S. Patent Number US10112942B2, 30 October 2018.

192. Metcalfe, A.T.; Fry, D.; McFadden, E.A.; Kolakowski, G.R.; Haas, J.; Tang, T.P.; Jiang, Y. Crystalline Forms. U.S. Patent Number US10584124B2, 10 March 2020.

193. Dhillon, S. Ripretinib: First Approval. *Drugs* 2020, 80, 1133–1138, doi:10.1007/s40265-020-01348-2.

194. Flynn, D.L.; Kaufman, M.D.; Petillo, P.A. Dihydronaphthyridines and Related Compounds Useful as Kinase Inhibitors for the Treatment of Proliferative Diseases. U.S. Patent Number US8461179B1, 11 June 2013.

195. Markham, A. Pralsetinib: First Approval. *Drugs* 2020, 80, 1865–1870, doi:10.1007/s40265-020-01427-4.

196. Brubaker, J.D.; DiPietro, L.V.; Kim, J.L.; Wilson, D.W.; Wilson, K.J. Inhibitors of RET. U.S. Patent Number US10030005B2, 24 July 2018.

197. Dhillon, S. Trilaciclib: First Approval. *Drugs* 2021, 81, 867–874, doi:10.1007/s40265-021-01508-y.

198. Strum, J.C.; Tavares, F.X. CDK Inhibitors. U.S. Patent Number US8598186B2, 3 December 2013.

199. Markham, A. Tepotinib: First Approval. *Drugs* 2020, 80, 829–833, doi:10.1007/s40265-020-01317-9.

200. Dorsch, D.; Steiber F.; Schadt, O.; Blaukat, A. Pyridazinone Derivatives. U.S. Patent Number US8580781B2, 12 November 2013.
201. Schadt, O.; Dorsch, D.; Steiber F.; Blaukat, A. Pyrimidinyl Pyridazinone Derivatives. U.S. Patent Number US8329692B2, 11 December 2012.

202. Dhillon, S.; Keam, S.J. Umbralasis: First Approval. *Drugs* **2021**, *81*, 857–866, doi:10.1007/s40265-021-01504-2.

203. Muthuppaniappan, M.; Nagarathnam, D.; Vakkalanka, S.K. Selective PI3K Delta Inhibitors. U.S. Patent Number US10570142B2, 2020.

204. Vakkalanka, S.K. Forms of a PI3K Delta Selective Inhibitor for Use in Pharmaceutical Formulations. U.S. Patent Number US10414773B2, 2019.

205. Tivoziubin Hydrochloride. *Am. J. Health Syst. Pharm.* **2021**, *zxab199*, doi:10.1093/ajhp/zxab199.

206. Kubo, K.; Sakai, T.; Nagao, R.; Fujiwara, Y.; Isoe, T.; Hasegawa, K. Quinoline Derivatives and Quinazoline Derivatives Having Azolyl Group. U.S. Patent Number US6821987B2, 23 November 2004.

207. Kubo, K.; Sakai, T.; Nagao, R.; Fujiwara, Y.; Isoe, T.; Hasegawa, K. Quinoline Derivatives and Quinazoline Derivatives Having Azolyl Group. U.S. Patent Number US7211587B2, 1 May 2007.

208. Matsunaga, N.; Yoshida, S.; Yoshino, A.; Nakajima, T. N-2-chloro-4-[(6,7-dimethoxy-4-quinolyl)oxy]phenyl]-N'-(5-methyl-3-isoxazolyl)urea Salt in Crystalline Form. U.S. Patent Number US7166722B2, 23 January 2007.

209. Botrus, G.; Raman, P.; Oliver, T.; Bekaii-Saab, T. Infigranitib (BG1398): An investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma. *Expert Opin. Investig. Drugs* **2021**, *30*, 309–316, doi:10.1080/13543878.2021.

210. Ding, Q.; Gray, N.S.; Li, B.; Liu, Y.; Sim, T.; Uno, T.; Zhang, G.; Soldermann, C.P.; Breitenstein, W.; Bold, G.; et al. Compounds and Compositions as Protein Kinase Inhibitors. U.S. Patent Number US8552002B2, 8 October 2013.

211. Berghausen, J.; Kapa, P.K.; McKenna, J.; Slade, J.; Wu, R.; Du, Z.; Stowasser, F. Crystalline Forms of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-[6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl]-1-methyl-urea and Salts Thereof. U.S. Patent Number US9067896B2, 30 June 2015.

212. Kanev, G.K.; de Graaf, C.; de Esch, I.J.P.; Leurs, R.; Würdinger, T.; Westerman, B.A.; Kooistra, A.J. The Landscape of Atypical and Eukaryotic Protein Kinases. *Trends Pharmacol. Sci.* **2019**, *40*, 818–832, doi:10.1016/j.tips.2019.09.002.

213. Available online: https://www.phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Orig/PDF/MID-Reports/MID-Cancer2020_Product-List_FINAL.pdf (accessed on 31 May 2021).

214. Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. *Nat. Rev. Drug Discov.* **2021**, *20*, 1–19, doi:10.1038/s41573-021-00195-4.

215. Couillaud, B.M.; Espeau, P.; Mignet, N.; Corvis, Y. State of the art of pharmaceutical solid forms: From crystal property issues to nanocrystals formulation. *Chem. Med. Chem.* **2019**, *14*, 8–23, doi:10.1002/cmdc.201800612.

216. Smalley, K.S.M. Pharmacological research and cancer: A call to arms. *Pharmacol. Res.* **2019**, *146*, 104291, doi:10.1016/j.phrs.2019.104291.

217. Kantarjian, H.M.; Fojo, T.; Mathisen, M.; Zwelling, L.A. Cancer drugs in the United States: Justum Pretium--the just price. *J. Clin. Oncol.* **2013**, *31*, 3606–3604, doi:10.1200/JCO.2013.49.1845.

218. Mishuk, A.U.; Fasina, I.; Qian, J. Impact of U.S. federal and state generic drug policies on drug use, spending, and patient outcomes: A systematic review. *Res. Soc. Adv. Pharm.* **2020**, *16*, 736–745, doi:10.1016/j.sapharm.2019.08.031.