Topological magnetic materials of the \((\text{MnSb}_2\text{Te}_4)\cdot(\text{Sb}_2\text{Te}_3)\) \(n\) van der Waals compounds family

S. V. Eremeev,\(^1,2\) I. P. Rusinov,\(^2\) Yu. M. Koroteev,\(^1,2\) A. Yu. Vyazovskaya,\(^2,3\) M. Hoffmann,\(^4\) P. M. Echenique,\(^5,6,7\) A. Ernst,\(^4,8\) M. M. Otrokov,\(^7,9\) and E. V. Chulkov\(^5,6,7,3,10\)

\(^1\)Institute of Strength Physics and Materials Science, Russian Academy of Sciences, 634021 Tomsk, Russia
\(^2\)Tomsk State University, 634050 Tomsk, Russia
\(^3\)Saint Petersburg State University, 198504 Saint Petersburg, Russia
\(^4\)Institut für Theoretische Physik, Johannes Kepler Universität, A 4040 Linz, Austria
\(^5\)Departamento de Física de Materiales UPV/EHU, 20080 Donostia-San Sebastián, Basque Country, Spain
\(^6\)Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
\(^7\)Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
\(^8\)Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
\(^9\)IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain

(Dated: February 5, 2021)

Combining robust magnetism, strong spin-orbit coupling and unique thickness-dependent properties of van der Waals crystals could enable new spintronics applications. Here, using density functional theory, we propose the \((\text{MnSb}_2\text{Te}_4)\cdot(\text{Sb}_2\text{Te}_3)\) \(n\) family of stoichiometric van der Waals compounds that harbour multiple topologically-nontrivial magnetic phases. In the groundstate, the first three members of the family, i.e. \(\text{MnSb}_2\text{Te}_4\) \((n = 0)\), \(\text{MnSb}_4\text{Te}_7\) \((n = 1)\), and \(\text{MnSb}_8\text{Te}_{10}\) \((n = 2)\), are 3D antiferromagnetic topological insulators (AFMTIs), while for \(n \geq 3\) a special phase is formed, in which a nontrivial topological order coexists with a partial magnetic disorder in the system of the decoupled 2D ferromagnets, whose magnetizations point randomly along the third direction. Furthermore, due to a weak interlayer exchange coupling, these materials can be field-driven into the FM Weyl semimetal \((n = 0)\) or FM axion insulator states \((n \geq 1)\). Finally, in two dimensions we reveal these systems to show intrinsic quantum anomalous Hall and AFM axion insulator states, as well as quantum Hall state, achieved under external magnetic field, but without Landau levels. Our results provide a solid computational proof that \(\text{MnSb}_2\text{Te}_4\) is not topologically trivial as was previously believed that opens possibilities of realization of a wealth of topologically-nontrivial states in the \((\text{MnSb}_2\text{Te}_4)\cdot(\text{Sb}_2\text{Te}_3)\) \(n\) family.

INTRODUCTION

The recently discovered first intrinsic antiferromagnetic topological insulator (AFMTI) \(\text{MnBi}_2\text{Te}_4\) has attracted a great deal of attention.\(^{11,12}\) The AFMTI state of matter is expected to give rise to a number of exotic phenomena such as quantized magneto-electric effect,\(^{13,14}\) axion electrodynamics,\(^{37}\) and Majorana hinge modes.\(^{35}\) Due to its layered van der Waals structure and interlayer AFM order, in the 2D limit \(\text{MnBi}_2\text{Te}_4\) has been predicted to show an unusual set of thickness-dependent magnetic and topological transitions, which drive it through FM and (un)compensated AFM phases, as well as quantum anomalous Hall (QAH) and zero plateau QAH states.\(^{20}\) This makes \(\text{MnBi}_2\text{Te}_4\) the first stoichiometric material predicted to realize the zero plateau QAH state intrinsically, which has been theoretically shown to host the exotic axion insulator (AXI) phase.\(^{15}\) Soon after the density functional theory (DFT) prediction,\(^{21}\) the evidence of both the AXI and QAHI states has indeed been reported in thin \(\text{MnBi}_2\text{Te}_4\) flakes in Refs.\(^{16,17}\) and \(^{20}\) respectively. Very recently, the QAH regime has also been reported in the \(\text{MnBi}_2\text{Te}_4/\text{Bi}_2\text{Te}_3\) superlattice.\(^{39}\) Moreover, the quantized Hall effect under external magnetic field has been achieved in \(\text{MnBi}_2\text{Te}_4\) flakes, displaying the Chern numbers \(C = \pm 1\) and \(\pm 2\).\(^{20}\) A recent study also predicts that the \(C = 3\) state is achievable in the twisted \(\text{MnBi}_2\text{Te}_4\) bilayer.\(^{50}\) Finally, \(\text{MnBi}_2\text{Te}_4\)-derived family of compounds has been recently proposed as a magnetically tunable platform for realizing various symmetry-protected higher-order topologies,\(^{42,43}\) hinged quantum spin Hall effect,\(^{44}\) helical Chern insulator,\(^{45}\) as well as spin-polarized flat band.\(^{46}\)

The abovementioned results establish a new direction in the field of magnetic TIs that focuses on intrinsically magnetic stoichiometric compounds. For further successful development of this direction more layered magnetic materials need to be found. Currently, the quest for new \(\text{MnBi}_2\text{Te}_4\)-like systems follows the strategy of either codoping Bi sublattice with Si,\(^{19,21,47,48}\) or...
growing the homologous series (MnBi₂Te₄)·(Bi₂Te₃)ₙ, whose typical representatives are MnBi₄Te₇ (n = 1) and MnBi₆Te₁₀ (n = 2), although MTIs with higher n have also been reported very recently.[21,23,24,36–38] In this paper, using the state-of-the-art DFT and tight-binding calculations we propose the (MnSb₂Te₄)·(Sb₂Te₃)ₙ homologous series, which has not been considered previously. By means of the highly-accurate total-energy calculations we show that n = 0, 1, and 2 systems, i.e. MnSb₂Te₄, MnSb₄Te₇, and MnSb₆Te₁₀, are interlayer antiferromagnets in which FM Mn layers are coupled antiparallel to each other and the easy axis of staggered magnetization points perpendicular to the layers. Such magnetic ordering makes these compounds invariant with respect to the combination of the time-reversal (Θ) and primitive-lattice translation (T$_{1/2}$) symmetries, $S = \Theta T_{1/2}$, which gives rise to the Z₂ topological classification of AFM insulators.[39,42] Z₂ being equal to 1 for all these materials. Consistently, their S-breaking (0001) surfaces exhibit Dirac point gap, which is a consequence of the out-of-plane direction of the easy axis of staggered magnetization. At the same time, the S-preserving surfaces are gapless as expected for AFMTIs. For the MnSb₆Te₁₃ compound (n = 3), whose interlayer exchange coupling is so weak that it can hardly be reliably established within DFT, we predict the AFMTI state assuming the interlayer AFM phase. In the FM phases, that can be achieved by the application of the external magnetic field, MnSb₂Te₄ appears to be a Weyl semimetal, while MnSb₄Te₇, MnSb₆Te₁₀, MnSb₆Te₁₃, etc., are 3D FM AXIs according to the Z₄ classification. Finally, we study the thin films of the (MnSb₂Te₄)·(Sb₂Te₃)ₙ compounds and find AFM AXIs in the zero plateau QAH state, Chern insulators in the constrained FM state, as well as intrinsic QAHI in the uncompensated AFM state. Our study provides a compelling first-principles evidence that MnSb₂Te₄, previously predicted to be trivial at normal conditions,[31,33,35] is, in fact, a topological insulator or Weyl semimetal in the AFM or FM states, respectively. These findings significantly extend the emergent family of the MTIs by predicting a number of solid materials candidates.

RESULTS

The growth of the trigonal $R3m$-group bulk MnSb₂Te₄ has been reported very recently.[22,60] This structure, comprised of the septuple layer blocks (SLs; Fig. 1a) turns out to be energetically more favorable than the monoclinic structure,[6] previously observed for some other chalcogenides with the same formula.[54] Magnetic properties of MnSb₂Te₄ have been found to depend on the degree of Mn-Sb intermixing: the larger the amount of the Mn atoms incorporated in the Sb layers, the stronger the tendency to the interlayer FM coupling.[30] At lowest intermixing levels as well as some Mn deficiency, MnSb₂Te₄, similarly to MnBi₂Te₄ is experimentally found to be an interlayer antiferromagnet, in which FM Mn layers of SLs are coupled antiparallel to each other below the Néel temperature of 19 K.[21,55] This is in agreement with our total energy calculations (Table 1), performed for the ideal crystal structure model. Importantly, we find that the ideal structure is energetically more favorable than those with Mn-Sb intermixing and therefore in what follows we consider the ordered structure of MnSb₂Te₄. We further find a positive magnetic anisotropy energy E_a of 0.115 meV per formula unit, indicating the easy axis with an out-of-plane orientation of the local magnetic moment (4.59 μ_B), which is, again, in agreement with the experimental report.[21]

The combination of the trigonal structure and the interlayer AFM order makes MnSb₂Te₄ S-symmetric, S being the combination of the time-reversal Θ and primitive-lattice translational symmetries $T_{1/2}$, $S = \Theta T_{1/2}$. The presence of this symmetry allows introducing Z_2 classification of AFM insulators.[39,42] To determine whether the system is insulating or not, bulk electronic structure has been studied next for the above discussed magnetic ground state. Our calculations reveal an insulating character of the spectrum, the fundamental band gap value being equal to 124 meV taking spin-orbit coupling (SOC) into account (Fig. 1b). The Z_2 invariant can be calculated based on the occupied bands parities,[40,42] in which way we find $Z_2 = 1$ for MnSb₂Te₄, meaning that it is an AFMTI. The latter means that the bulk band gap of the material should be inverted, which is indeed confirmed by performing the density of states (DOS) calculations lowering the SOC constant λ stepwise from its natural value λ_0 to $\lambda = 0.35\lambda_0$ (see Fig. 1c). As can be seen, the system demonstrates the topological phase transition, i.e. passes through the zero gap state, when the SOC strength is decreased to about 0.7λ_0. Recent DFT studies,[31,33,35] report, however, that MnSb₂Te₄ is topologically trivial, which is in contrast to our results. As we discuss in detail in the Supplementary Information, the crucial factor causing this difference is the MnSb₂Te₄ crystal structure, which in our case is fully optimized taking the van der Waals interactions into account (see Methods section). To provide further support to our claim of the AFMTI state in MnSb₂Te₄, apart from the projector augmented wave method (PAW) calculations using VASP, we have performed DFT calculations using the full-potential linearized augmented plane-wave method (FLEUR code) as well as the Green’s functions method (HUTSEPO code). These calculations predict the band-inverted AFMTI phase in MnSb₂Te₄ as well (Supplementary Information Figures S1 and S2).

The bulk edge correspondence dictates that the inverted bulk band gap gives rise to a 2D spin-polarized state at the material’s surface, i.e. the topological surface state (TSS). In an AFMTI case, this state...
FIG. 1: Bulk and surface band structures of AFM MnSb$_2$Te$_4$. (a) Atomic structure of bulk MnSb$_2$Te$_4$ with red, gray and green balls showing Mn, Te and Sb atoms. (b) Bulk electronic band structure calculated for the interlayer AFM state modelled in the rhombohedral unit cell. (c) The evolution of the bulk band gap E_g with the change of the SOC constant λ. (d) Electronic structure of the MnSb$_2$Te$_4$(0001) surface. Gray areas correspond to the bulk band structure projected onto the surface Brillouin zone (BZ). (e) Spin texture of the gapped Dirac state in the vicinity of the BZ center. (f) The tight-binding calculated electronic bandstructure of the S-preserving (10¯11) surface. The regions with a continuous spectrum correspond to the 3D bulk states projected onto a 2D BZ.

may either be gapless or not, depending on whether the corresponding surface preserves the S symmetry. Namely, the breakdown of this symmetry lifts the Dirac point (DP) protection and even an infinitesimal magnetization component perpendicular to the surface will cause the DP gap opening.\cite{113,116,1122} To check whether MnSb$_2$Te$_4$ shows such a behavior, we have calculated the electronic structures of the S-breaking [(0001)] and S-preserving [(10¯11)] surfaces. In the latter case, since the computational cell is very large, the calculations have been done using the \textit{ab-initio}-based tight-binding method, which is more cost-effective computationally. In Fig. 1d one can see that the spectrum of the S-breaking (0001) surface is indeed gapped, with the DP gap being equal to 14.8 meV. The spin texture of the gapped Dirac state (Fig. 1e) changes
FIG. 2: Bulk and surface band structures of AFM MnSb$_4$Te$_7$. (a) Atomic structure of bulk MnSb$_4$Te$_7$, with yellow, blue and green balls showing Mn, Te and Sb atoms, respectively. The interlayer AFM ground state is also reflected. (b) Bulk band spectrum calculated for the hexagonal unit cell. (c) The evolution of the bulk gap with the change of the SOC strength. (d) Surface band structure of MnSb$_4$Te$_7$(0001) for the SL (blue) and QL (red) block terminations. (e) The tight-binding calculated electronic band structure of the S-preserving side surface.

from a helical far from the $\bar{\Gamma}$ point to the hedgehog one in the vicinity of the gap with a purely out-of-plane spin alignment at $\bar{\Gamma}$, positive and negative for the lower and upper branches, respectively. The S-preserving (1011) surface features a gapless Dirac cone (Fig. 1f), as expected for an AFMTI. These results constitute another proof of the AFMTI phase in MnSb$_2$Te$_4$.

The prediction of the AFMTI state in MnSb$_2$Te$_4$ implies that there exists a number of related intrinsically magnetic insulators that should be topologically nontrivial. Indeed, as a rule, compounds with a formula XY_2Z_4 (X=Ge, Sn, Pb; Y=Sb, Bi and Z=Se, Te), give rise to a series of the $(XY_2Z_4)_n$ form that retain a nontrivial topology. Let us therefore consider a hypothetical MnSb$_4$Te$_7$ compound, whose crystal structure is formed by alternating quintuple layers (QLs) of Sb$_2$Te$_3$ and SLs of MnSb$_2$Te$_4$ (space group $P\bar{3}m1$; Fig. 2). Our total-energy calculations reveal that each SL block of MnSb$_4$Te$_7$ is ordered ferromagnetically, while the interlayer exchange coupling is antiferromagnetic (see Table I and Fig. 2a). Further calculations show that the system has an easy axis pointing out of the Mn.
plane, but the magnetic anisotropy energy, E_a, appears to be significantly lower than that in MnSb$_2$Te$_4$: 0.05 meV. The reduction of E_a arises due to the reduced E_{diff} value, while the dipolar contribution stays the same because both the local magnetic moment and in-plane lattice parameter are practically equal to those in MnSb$_2$Te$_4$, see Table 1. It is reasonable to suggest that, similarly to how it happens in the (MnBi$_2$Te$_4$)$_n$ series, the critical temperature of the magnetic ordering will drop roughly twice when going from MnSb$_2$Te$_4$ to MnSb$_4$Te$_7$. This is due to the weakening of both the interlayer exchange coupling and magnetic anisotropy energy of the system (Table 1).

Like in the MnSb$_2$Te$_4$ case, the combination of the $P3m1$-structure with the interlayer AFM ordering in MnSb$_4$Te$_7$ meets the S-symmetry. According to the bulk electronic structure calculations, MnSb$_4$Te$_7$ features an inverted bulk band gap of 0.1 eV (Fig. 2a,c), while the calculated Z_2 value of 1 confirms nontrivial topology of the system, similarly to MnSb$_2$Te$_4$ appears to be an AFMTI.

| | a_0 (Å) | c_0 (Å) | m | $\Delta E_{||}$ (meV/Mn pair) | ΔE_{\perp} (meV/Mn pair) | E_{diff} (meV/Mn at) | E_{d-d} (meV/Mn at) | E_a (meV/Mn at) | E_g (meV/Mn at) |
|------|-----------|-----------|-----|------------------------------|----------------------------------|----------------------|---------------------|------------------|------------------|
| MnSb$_2$Te$_4$ | 4.263 | 39.657 | 4.59 | 17.30 | -1.30 | 0.24 | -0.12 | 0.12 | 124 |
| MnSb$_4$Te$_7$ | 4.265 | 23.265 | 4.61 | 19.60 | -0.21 | 0.17 | -0.12 | 0.05 | 100 |
| MnSb$_6$Te$_{10}$ | 4.269 | 99.563 | 4.59 | 19.24 | -0.12 | 0.16 | -0.12 | 0.04 | 91 |

Another potential member of the (MnSb$_2$Te$_4$)$_n$ family is MnSb$_6$Te$_{10}$. In this compound, adopting a trigonal structure with the $R3m$ space group, each MnSb$_2$Te$_4$ SL is separated by two Sb$_2$Te$_3$ QLs (Fig. 3a), leading to even weaker exchange interaction between SLs, which, nevertheless, stays antiferromagnetic (Table 1). The bulk spectrum has a direct Γ-point gap of 91 meV (Fig. 3b), which is inverted as confirmed by its dependence on the SOC strength (Fig. 3c). Our Z_2 invariant calculations (MnSb$_6$Te$_{10}$ is S-symmetric as well) yield a value of 1, meaning that it is an AFMTI too.

Sharing the same crystal structure with MnBi$_6$Te$_{10}$ and non-magnetic PbBi$_6$Te$_{10}$, MnSb$_6$Te$_{10}$ should have three possible surface terminations, QL-QL-SL-, QL-SL-QL- and SL-QL-QL-, showing different dispersions of the TSS (Fig. 3d). The spectra of the SL-QL-QL- and QL-SL-QL-terminated surface of MnSb$_6$Te$_{10}$ in general are similar to those for SL-QL- and QL-SL- terminations in MnSb$_4$Te$_{7}$, c.f. Fig. 2a and Fig. 3d. The TSS dispersion at the double-QL termination, QL-QL-SL-, is similar to that of the QL-SL-QL- termination as well.

A common feature of MnSb$_2$Te$_4$ and MnSb$_6$Te$_{10}$ is a weak interlayer exchange coupling. As it can be seen from Table 1, the total-energy difference between the interlayer AFM and FM structures, $\Delta E_{\perp} = E_{AFM} - E_{FM}$, in MnSb$_4Te_7$ (MnSb$_6$Te$_{10}$) is more than 6 (10) times smaller than that in MnSb$_2$Te$_4$, indicating a dramatic drop in the interlayer exchange coupling strength due to insertion of one (two) Sb$_2$Te$_3$ QL block(s) between each pair of MnSb$_2$Te$_4$ SLs. With further increase in number of the Sb$_2$Te$_3$ QL blocks to three and formation of the
FIG. 3: Bulk and surface band structures of AFM MnSb$_6$Te$_{10}$. (a) Atomic structure of bulk MnSb$_6$Te$_{10}$, with yellow, blue and green balls showing Mn, Te and Sb atoms, respectively. The interlayer AFM ground state is also reflected. (b) Bulk electronic structure calculated for the rhombohedral unit cell. (c) The evolution of the bulk band gap E_g with the change of the SOC strength. (d) Surface band structure of MnSb$_6$Te$_{10}$(0001) for the SL-QL-QL- (blue), QL-SL-QL- (red), and QL-QL-SL- (green) terminations. Gray areas correspond to the bulk band structure projected onto the surface Brillouin zone. (e) Bulk spectrum of MnSb$_8$Te$_{13}$ in the AFM state.

MnSb$_8$Te$_{13}$ compound the interlayer exchange coupling between ferromagnetic SLs practically vanishes. This leads to a situation where below the Curie temperature of the MnSb$_2$Te$_4$ SLs their magnetizations are randomly oriented either parallel or antiparallel to the [0001] direction. If calculated in the imposed interlayer AFM state, MnSb$_8$Te$_{13}$ shows an inverted bulk band gap of about 100 meV (Fig. 3c).

We envision, that similarly to (MnBi$_2$Te$_4$)·(Bi$_2$Te$_3$)$_n$ [140], the (MnSb$_2$Te$_4$)·(Sb$_2$Te$_3$)$_n$ homologous series can contain members with $n > 3$, i.e. MnSb$_{10}$Te$_{16}$, MnSb$_{12}$Te$_{19}$, etc., that are going to be topologically-nontrivial as well. This is because adding more Sb$_2$Te$_3$ QLs is expected to make the band gap inversion stronger, since the material becomes more Sb$_2$Te$_3$-like. Thus, if an $n \geq 3$ compound is cooled below the critical temperature of the SL block FM ordering, a special phase is formed, in which a nontrivial topological order coexists with a partial magnetic disorder in the system of the decoupled 2D ferromagnets, whose magnetizations point randomly along the third direction.

The relatively weak interlayer exchange coupling in MnSb$_2$Te$_4$, MnSb$_4$Te$_7$, and MnSb$_6$Te$_{10}$ or its absence for $n \geq 3$ make possible driving them into a globally FM
FIG. 4: Bulk band structure of ferromagnetic phase of MnSb$_2$Te$_4$ family compounds. (a) Spectrum of MnSb$_2$Te$_4$ as calculated within GGA-PBE+U; (b) Magnified view of the MnSb$_2$Te$_4$ spectrum near the Fermi level in the vicinity of the Γ point; (c) and (d) the same as in panels (a) and (b) but calculated with mBJ functional with Hubbard U; Bulk spectra of ferromagnetic MnSb$_4$Te$_7$ (e), MnSb$_6$Te$_{10}$ (f), and MnSb$_8$Te$_{13}$ (g) calculated along high symmetry directions of corresponding Brillouin zones (hexagonal or rhombohedral) within GGA-PBE+U.

phase by applying an external magnetic field along the c axis. Such a change in a magnetic state may cause change in the topology. In order to identify the topological phases of the (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ family compounds in FM state we calculated the strong topological invariant Z_4 (see Methods section). $Z_4 = 1$ or 3 correspond to Weyl semimetal phases, where an odd number of Weyl points exist in half of the BZ. $Z_4 = 2$ corresponds to the AXI, having the quantized topological magnetoelectric response in the bulk and chiral hinge modes.

Similarly to MnBi$_2$Te$_4$, where in FM state a Weyl semimetal phase was predicted$^{[11]}$ ferromagnetic MnSb$_2$Te$_4$, according to Z_4 calculations, is a Weyl semimetal, too ($Z_4 = 1$), in agreement with Refs. $^{[53,54]}$. Namely, the GGA+U bulk spectrum (Fig. 4a,b) is gapless and shows a band crossing near the Fermi level, forming the Weyl points (k_W) at ± 0.003 Å$^{-1}$ along the ΓZ direction just above the Fermi level. However, since the inversion of the bands at Γ is only 2 meV, the topological phase can be sensitive to the choice of the exchange-correlation functional. As can be seen in Figs. 4c,d, applying the modified Becke-Johnson (mBJ) semilocal exchange potential$^{[59,60]}$ retains the Weyl phase, providing larger Γ gap (20 meV) and a larger $k_W = \pm 0.01$ Å$^{-1}$ as well as shifting the Weyl points slightly below the Fermi level.

The bulk spectra of MnSb$_4$Te$_7$ (Fig. 4e) and MnSb$_6$Te$_{10}$ (Fig. 4f) in the FM phase demonstrate direct band gaps at the BZ boundaries with magnitudes of 84 and 58 meV, respectively, whereas the MnSb$_8$Te$_{13}$ spectrum shows indirect ΓZ gap of 96.5 meV (Fig. 4g).

At the same time, all these spectra demonstrate band inversion of the Sb and Te p_z orbitals at the Γ point. Calculations of the topological indices for ferromagnetic phase of the (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ compounds with $n=1, 2$, and 3 gives $Z_4 = 2$ and hence all of them are in the FM AXI state, which can be expected for $n > 3$ as well.

Now we show that in the thin-film limit not only the magnetic, but also the electronic and topological properties of MnSb$_2$Te$_4$, are strongly thickness dependent. The spectrum of a single MnSb$_2$Te$_4$ SL demonstrates the indirect gap of 419.7 meV, which is significantly larger than that in the MnBi$_2$Te$_4$ family compounds.$^{[21]}$ The direct Γ-gap amounts to 811.4 meV. The Chern number calculations reveal a $C = 0$ state, the system being a topologically trivial ferromagnet (Table II). Upon increasing thickness up to 2, 3 and 4 SLs the interlayer AFM order (compensated or uncompensated for even and odd SL thicknesses, respectively) sets in, but $C = 0$ again for all of them. For these systems, we find the Γ-point band gaps of 210.2, 69.5, and 65.8 meV, respectively (see Table II). However, if calculated in the artificial FM phase (that could be achieved by applying external magnetic field), the Chern number appears to be equal to −1 in case of the 4-SL-thick film (for 2 and 3 SLs C is still zero). This means that 4 SLs of MnSb$_2$Te$_4$ is a Chern insulator that is expected to show the quantum Hall effect in the external magnetic field but without Landau levels, as it has been recently reported for MnBi$_2$Te$_4$ flakes.$^{[20,22,26]}$ Reversing the magnetization of the FM
4-SL-thick MnSb$_2$Te$_4$ film yields the $C = +1$ Chern insulator state, thus proving a so-called zero plateau quantum Hall behavior in the compensated AFM state of this film, characteristic of the AFM AXI\cite{124.0}.

At a thickness of 5 SLs MnSb$_2$Te$_4$ appears to be in the trivial insulator phase again, the band gap being equal to 18.6 meV. Similarly to the 4-SL-thick film case, we also predict the intrinsic AFM AXI states for the 6- and 8-SL-thick films (meaning that in the FM state they are expected to show the quantum Hall effect without Landau levels). While the 7-SL-thick MnSb$_2$Te$_4$ film is in the QAHI phase with a gap of 4.8 meV (Table II). Thus, like MnBi$_2$Te$_4$ in the thin film limit\cite{213}, the MnSb$_2$Te$_4$ films also demonstrate alternating AXI/QAHI topological phases, however, owing to a weaker SOC in MnSb$_2$Te$_4$, they emerge at larger thicknesses than in the MnBi$_2$Te$_4$ case.

We have further constructed various MnSb$_2$Te$_4/(Sb$_2Te_3$)$_n$/MnSb$_2Te_4$ sandwiches with different number of the Sb$_2$Te$_3$ QLSs, $n = 1 - 3$. While for $n = 1$ and 2 we find topologically trivial situation for both parallel and antiparallel alignments of the SLs magnetizations, the $n = 3$ system appears to be in the AFM AXI and Chern insulator phases for the AFM and FM states, respectively. Similar behavior is also expected for $n = 4$ and 5. Note that MnSb$_2$Te$_4/(Sb$_2Te_3$)$_n$/MnSb$_2Te_4$ can in principle be obtained by careful exfoliation of the thin flakes from the (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ single crystals.

METHODS

Electronic structure and total-energy calculations

Electronic structure calculations were carried out within the density functional theory using the projector augmented-wave (PAW) method\cite{65} as implemented in the VASP code\cite{66}. The exchange-correlation energy was treated using the generalized gradient approximation\cite{67}. The Hamiltonian contained scalar relativistic corrections and the spin-orbit coupling was taken into account by the second variation method\cite{68}. The energy cutoff for the plane-wave expansion was set to 270 eV. The crystal structure of each compound was fully optimized to find the equilibrium lattice parameters, cell volumes, c/a ratios as well as atomic positions. At that, a conjugate-gradient algorithm was used. In order to describe the van der Waals interactions we made use of the DFT-D\cite{69} and the DFT-D3\cite{70} approaches, which gave similar results. The atomic coordinates were relaxed using a force tolerance criterion for convergence of 0.01 eV/Å. Spin-orbit coupling was always included when performing relaxations.

The Mn 3d-states were treated employing the GGA+U approach\cite{71} within the Dudarev scheme\cite{72}. The $U_{eff} = U - J$ value for the Mn 3d-states was chosen to be equal to 5.34 eV, as in previous works\cite{73}. Further extensive testing was performed for MnSb$_2$Te$_4$, MnSb$_4$Te$_7$ and MnSb$_6$Te$_{10}$ systems to check the stability of the results against U_{eff} variation. Namely, the

CONCLUSIONS

Using state-of-the-art *ab initio* calculations we have predicted the existence of a new family of magnetic topological insulators of the van der Waals layered compounds (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$. In their groundstate, the MnSb$_2$Te$_4$ ($n = 0$), MnSb$_4$Te$_7$ ($n = 1$), and MnSb$_6$Te$_{10}$ ($n = 2$) materials appear to be antiferromagnetic topological insulators. For $n \geq 3$ (i.e. from MnSb$_8$Te$_{13}$ and on), a special magnetic topological insulator phase is formed in which, below critical temperature, the magnetizations of the 2D ferromagnetically ordered Mn layers of the MnSb$_2$Te$_4$ building blocks are disordered along the [0001] direction. We have further shown that imposing the overall ferromagnetic state (which can be achieved by applying external magnetic field) drives MnSb$_2$Te$_4$ into a Weyl semimetal phase, while the compounds with higher n become 3D ferromagnetic axion insulators. Finally, in the 2D limit, (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ films show a variety of the topologically-nontrivial states, being among them intrinsic axion and quantum anomalous Hall insulators, as well as quantum Hall state, that could be achieved under external magnetic field, but without Landau levels.

Our results convincingly show that MnSb$_2$Te$_4$ is not trivial as it has been concluded by the previous *ab initio* works and we actually demonstrate the reason why those studies found it to be trivial. Obviously, the (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ family represents a fertile ground for realizing multiple and tunable exotic states and the experimental realization of this family would represent a great advance in the research of the magnetic topological matter.

Note. Very recently, the first member of the (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ series, i.e. MnSb$_2$Te$_4$, has been proved in the experiment as a magnetic topological insulator\cite{74}.
bulk crystal structure was fully optimized for $U_{\text{eff}} = 3$ eV and then the magnetic ordering and electronic structure were studied. It was found that neither the magnetic ground state nor the topological class change upon such a variation of U_{eff} and crystal structure. The magnetic anisotropies of (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ were found to be stable against this variation as well.

The bulk magnetic ordering was studied using total-energy calculations, performed for the FM and two different AFM states. Namely, we considered an interlayer AFM state and a noncollinear intralayer AFM state, in which three spin sublattices form angles of 120° with respect to each other. To model the FM and interlayer AFM structures in (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$, we used rhombohedral cells for $n = 0, 2,$ and 3, while a hexagonal cell was chosen for $n = 1$ (all cells contained the number of atoms corresponding to two formula units). For the $n \leq 2$ systems, the noncollinear intralayer AFM configuration was calculated using hexagonal bulk cells containing three atoms per layer $[(\sqrt{3} \times \sqrt{3})R30°$ in-plane periodicity]. The magnetic anisotropy energy was calculated as explained in Ref.\cite{1}.

The (MnSb$_2$Te$_4$)-(Sb$_2$Te$_3$)$_n$ semi-infinite surfaces were simulated within a model of repeating films separated by a vacuum gap of a minimum of 10 Å. The interlayer distances were optimized for the utmost SL or QL block of each surface.

Additional bulk electronic structure calculations for the AFM MnSb$_2$Te$_4$ (Supplementary Figure S1) were performed within the full-potential linearized augmented plane waves (FLAPW) formalism as implemented in FLEUR.\cite{7} We took the GGA+U approach under the fully localised limit with the same $U_{\text{eff}}=5.34$ eV as we use in VASP calculations. The core states were treated fully relativistically, while the valence states were computed in a scalar relativistic approximation with taking into account the spin-orbit coupling. The muffin-tin radii for Mn, and Te were chosen to be 2.70 a.u., while for Sb we used 2.87 a.u. Inside each muffin-tin sphere, the basis functions were expanded in spherical harmonics with angular momentum up to $l_{\text{max}}=10$, and the electron density and potential were expanded up to $l_{\text{max}}=8$. The crystal wave functions were expanded into augmented plane waves with a cutoff of $k_{\text{max}}=3.7$ a.u.-1, corresponding approximately to the 180 basis LAPW functions per atom.

The bulk electronic structure of the AFM MnSb$_2$Te$_4$ was also calculated using the HUTSEPO code based on the Green’s function method within the multiple scattering theory (Supplementary Figure S2). To describe both localization and interaction of the Mn 3d orbitals, the Hubbard U_{eff} values between 3 and 5 eV were used employing the GGA+U approach.\cite{8}

Ab-initio-based tight-binding calculations were performed using the VASP package with the Wannier90 interface. The Wannier basis chosen consisted of six spinor p-type orbitals of Sb and Te. The surface electronic band structure was calculated within the semi-infinite medium Green’s function approach.\cite{9,10}

Topological invariants calculations

The Chern numbers were calculated using Z2Pack.\cite{11,12} The Z_2 invariant for the 3D AFMTIs was calculated using the expression derived in Ref.\cite{13}. When spatial inversion symmetry is present in the system, as it is in the MnSb$_2$Te$_4$-family compounds, the following Z_2 invariant λ_0 can be defined:

$$(-1)^{\lambda_0} = \prod_{\mathbf{k}_{\text{occ}} \in B-\text{TRIM}, n \in \text{occ}/2} \zeta_n(\mathbf{k}_{\text{inv}}),$$

where ζ_n is the parity of the nth occupied band and the multiplication over $\text{occ}/2$ means only one state in a Kramers’ pair is chosen. See Ref.\cite{13} for further details.

Calculations of Z_4 topological invariant were done according to Refs.\cite{14,15} as

$$Z_4 = \sum_{\alpha=1}^{n_{\text{occ}}} \sum_{n=1}^{\text{max}} \left(1 + \zeta_n(\Lambda_{\alpha}) \right) / 2 \mod 4,$$

where Λ_{α} are the eight inversion-invariant momenta, n is the band index, n_{occ} is the total number of electrons, and $\zeta_n(\Lambda_{\alpha})$ is the parity of the n-th band at Λ_{α}.

1. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estymin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullahayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büncher, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Küffner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, E. V. Chulkov, Prediction and observation of an antiferromagnetic topological insulator. *Nature* **576**, 416-422 (2019).
2. M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi$_2$Te$_4$-films. *Phys. Rev. Lett.* **122**, 107202 (2019).
3. J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, Y. Xu, Intrinsic magnetic topological insulators in van der Waals layered MnBi$_2$Te$_4$-family materials. *Science Advances* **5**, eaaw5685 (2019).
4 D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, J. Wang, Topological axion states in the magnetic insulator MnBi$_2$Te$_4$ with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

5 Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S.-C. Zhang, X. Ma, Q.-K. Xue, K. He, Experimental realization of an intrinsic magnetic topological insulator. Chinese Physics Letters 36, 076801 (2019).

6 M. M. Otrokov, T. V. Menschikhova, M. G. Vergniory, I. P. Rusinov, A. Y. Vyazovskaya, Y. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau, E. V. Chulkov, Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

7 M. M. Otrokov, T. V. Menschikhova, I. P. Rusinov, M. G. Vergniory, V. M. Kuznetsov, E. V. Chulkov, Magnetic extension as an efficient method for realizing the quantum anomalous Hall state in topological insulators. JETP Lett. 105, 297–302 (2017).

8 S. V. Ereemeev, M. M. Otrokov, E. V. Chulkov, Competing rhombohedral and monoclinic crystal structures in MnPn$_2$Ch$_4$ compounds: An ab-initio study. J. Alloys Compd. 709, 172–178 (2017).

9 S. V. Ereemeev, M. M. Otrokov, E. V. Chulkov, New universal type of interface in the magnetic insulator/topological insulator heterostructures. Nano Lett. 18, 6521-6529 (2018).

10 T. Hirahara, S. V. Ereemeev, T. Shirasawa, Y. Okiyama, T. Kubo, R. Nakarishi, R. Akiyama, T. Akayama, T. Hagiiri, S. Ideta, et al., Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Lett. 17, 3493–3500 (2017).

11 J. A. Hagmann, X. Li, S. Chowdhury, S.-N. Dong, S. Rouvimov, S. J. Pookpanratana, K. M. Yu, T. A. Orlova, T. B. Bolin, S. C. U., D. G. Seiler, C. A. Richter, X. Liu, M. Dobrowolska, J. K. Furdyna, Molecular beam epitaxy growth and structure of self-assembled Bi$_2$Se$_3$/Bi$_2$MnSe$_4$ multilayer heterostructures. New J. Phys. 19, 085002 (2017).

12 S. Chowdhury, K. F. Garrity, F. Tavazza, Prediction of Weyl semimetal and antiferromagnetic topological insulator phases in Bi$_2$MnSe$_4$. npj Computational Materials 5, 1–7 (2019).

13 S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, H. Yi, S. Kempinger, J. Hu, C. A. Heikes, P. Quarderian, W. Ratcliff, J. A. Borchers, H. Zhang, X. Ke, D. Graf, N. Alem, C.-Z. Chang, N. Samarth, Z. Mao, Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi$_2$Te$_4$. Phys. Rev. Research 1, 012011 (2019).

14 E. Rienks, S. Wimmer, J. Sánchez-Barriga, O. Caha, P. Mandal, J. Růžička, A. Ney, H. Steiner, V. Volobuev, H. Groiss, et al., Large magnetic gap at the Dirac point in Bi$_2$Te$_3$/MnBi$_2$Te$_4$ heterostructures. Nature 576, 423–428 (2019).

15 Z. S. Aliev, I. R. Amiraslanov, D. I. Nasonova, A. V. Shevelkov, N. A. Abdullahyev, Z. A. Jahanghi, E. N. Oruju, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, E. V. Chulkov, Novel ternary layered manganese bismuth tellurides of the MnTe-Bi$_2$Te$_3$ system: Synthesis and crystal structure. Journal of Alloys and Compounds 789, 443 - 450 (2019).

16 J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J.-G. Cheng, W. Wu, D. Vaknin, B. C. Sales, R. J. McQueeney, Crystal growth and magnetic structure of MnBi$_2$Te$_4$. Phys. Rev. Materials 3, 064202 (2019).

17 A. Zeugner, F. Nietzschke, A. U. Wolter, S. Gaß, R. C. Vidal, T. R. Peixoto, D. Pohl, C. Damm, A. Lubk, R. Hentrich, et al., Chemical aspects of the candidate antiferromagnetic topological insulator MnBi$_2$Te$_4$. Chemistry of Materials 31, 2795-2806 (2019).

18 B. Chen, F. Fei, D. Zhang, B. Zhang, W. Liu, S. Zhang, P. Wang, B. Wei, Y. Zhang, Z. Zuo, et al., Intrinsic magnetic topological insulator phases in the Sb doped MnBi$_2$Te$_4$ bulks and thin flakes. Nature Communications 10, 1–8 (2019).

19 R. C. Vidal, H. Bentmann, T. R. F. Peixoto, A. Zeugner, S. Moser, C.-H. Min, S. Schatz, K. Kifner, M. Ünzelmann, C. I. Fornari, H. B. Vasilii, M. Valdiviares, K. Sakamoto, D. Mondal, J. Fuji, I. Vobornik, S. Jung, C. Cacho, T. K. Kim, R. J. Koch, C. Jozwiak, A. Bostwick, J. D. Demlinger, E. Rotenberg, J. Buck, M. Hoesch, F. Diekmann, S. Rohlf, M. Källåne, K. Rossnagel, M. M. Otrokov, E. V. Chulkov, M. Ruck, A. Isaeva, F. Reinert, Surface states and rashba-type spin polarization in antiferromagnetic MnBi$_2$Te$_4$(0001). Phys. Rev. B 100, 121104 (2019).

20 Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, Y. Zhang, Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi$_2$Te$_4$. Science 367, 895–900 (2020).

21 J.-Q. Yan, S. Okamoto, M. A. McGuire, A. F. May, R. J. McQueeney, B. C. Sales, Evolution of structural, magnetic, and transport properties in MnBi$_2$Te$_3$Sb$_2$. Phys. Rev. B 100, 104409 (2019).

22 C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, Y. Wang, Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nature Materials 19, 522-527 (2020).

23 C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao, D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu, H. Brawer, A. P. Ramirez, L. Ding, H. Cao, Q. Liu, D. Dessau, N. Ni, A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nature Communications 11, 97 (2020).

24 J. Wu, F. Liu, M. Sasasse, K. Ienaga, Y. Obata, R. Yikawa, K. Horiba, H. Kumigashira, S. Okuma, T. Inoshita, et al., Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Science Advances 5, eaax9989 (2019).

25 Y. Peng, Y. Xu, Proximity-induced majorana hinge modes in antiferromagnetic topological insulators. Phys. Rev. B 99, 195431 (2019).

26 B. Lian, Z. Liu, Y. Zhang, J. Wang, Flat Chern band from twisted bilayer MnBi$_2$Te$_4$. Phys. Rev. Lett. 124, 126402 (2020).

27 Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H.-Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, C. Liu, Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi$_2$Te$_4$. Phys. Rev. X 9, 041038 (2019).

28 Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo,
Y. Xu, Z. K. Liu, L. X. Yang, Y. L. Chen, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi$_2$Te$_4$. Phys. Rev. X 9, 041040 (2019).

H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian, J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang, J.-J. Li, D.-Y. Yan, Z.-T. Liu, W.-L. Liu, Y.-B. Huang, Y.-L. Li, Y. Liu, G.-B. Zhang, P. Zhang, T. Kondo, S. Shin, H.-C. Lei, Y.-G. Sh, W.-T. Zhang, H.-M. Weng, T. Qian, H. Ding, Dirac surface states in intrinsic magnetic topological insulators EuSn$_2$As$_2$ and MnBi$_2$Te$_{3n+1}$. Phys. Rev. X 9, 041039 (2019).

D.estyunin, I. I. Klimovskikh, A. M. Shikin, E. Schierw, M. Otrokvo, A. Kimura, S. Kumar, S. Filno, Z. S. Aliev, M. Bankany, et al., Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi$_2$Te$_4$. APL Materials 8, 021105 (2020).

P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, A. Kaminski, Gapless dirac surface states in the antiferromagnetic topological insulator MnBi$_2$Te$_4$. Phys. Rev. B 101, 161109 (2020).

B. Li, J.-Q. Yan, D. M. Pajerski, E. Gordon, A.-M. Nedci, Y. Sizyuk, L. Ke, P. P. Orth, D. Vaknin, R. J. McQueeney, Competing magnetic interactions in the antiferromagnetic topological insulator MnBi$_2$Te$_4$. Phys. Rev. Lett. 124, 167204 (2020).

A. Shikin, D. Estyunin, I. Klimovskikh, S. Filnov, E. Schierw, S. Kumar, K. Myamoto, T. Okuda, A. Kimura, K. Kuroda, et al., Nature of the dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi$_2$Te$_4$. Sci. Rep. 10, 13226 (2020).

B. Xu, Y. Zhang, E. Alizade, Z. Jahangiri, F. Lyzwa, E. Sheveleva, P. Marsik, Y. Li, Y. Yao, Z. Wang, et al., Infrared study of the multiband low-energy excitations of the topological antiferromagnet MnBi$_2$Te$_4$. arXiv preprint arXiv:2009.09261 (2020).

T. Hirahara, M. Otrokvo, T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, et al., Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. Nature Communications 11, 1–8 (2020).

R. S. K. Mong, A. M. Essin, J. E. Moore, Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

R. Li, J. Wang, X.-L. Qi, S.-C. Zhang, Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

J. Wang, B. Lian, S.-C. Zhang, Dynamical axion field in a magnetic topological insulator superlattic. Phys. Rev. B 93, 045115 (2016).

H. Deng, Z. Chen, A. Wolos, M. Konczykowski, K. Sobczak, J. Sitnicka, I. V. Fedorchenko, J. Borysiuk, T. Heider, L. Pucinski, et al., High-temperature quantum anomalous Hall regime in a MnBi$_2$Te$_4$/Bi$_2$Te$_3$ superlattic. Nature Physics (2020).

J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, J. Wang, High-Chern-Number and High-Temperature Quantum Hall Effect without Landau Levels. National Science Review 7, 1280–1287 (2020).

I. I. Klimovskikh, M. M. Otrokvo, D. Estyunin, S. V. Ereemeev, S. O. Filnov, A. Koroleva, E. Shevchenko, V. Voroshnin, A. G. Rybkina, I. P. Rinoinov, M. Blancone, M. Hoffman, Z. S. Aliev, M. B. Bankany, I. R. Amiraslanov, N. A. Abdullayev, V. N. Zerve, A. Kimura, O. E. Teshechenko, K. A. Kokhi, L. Petaccia, G. Di Santo, A. Ernst, P. M. Echenique, N. T. Mamedov, A. M. Shikin, E. V. Chulkov, Tunable 3D/2D magnetism in the (MnBi$_2$Te$_4$)/(Bi$_2$Te$_3$)$_n$ topological insulators family. npj Quantum Materials 5, 54 (2020).

R.-X. Zhang, F. Wu, S. Das Sarma, Möbius insulator and higher-order topology in MnBi$_2$Te$_{3n+1}$. Phys. Rev. Lett. 124, 136407 (2020).

B. Roy, Higher-order topological superconductors in P_τ-odd quadrupolar Dirac materials. Phys. Rev. B 101, 220506 (R) (2020).

Y.-R. Ding, D.-H. Xu, C.-Z. Chen, and X. C. Xie, Hinged quantum spin Hall effect in antiferromagnetic topological insulators. Phys. Rev. B 101, 041404(R) (2020).

C. Liu, Y. Wang, M. Yang, J. Mao, H. Li, Y. Li, J. Li, H. Zhu, J. Wang, L. Li, et al., Helical Chern insulator phase with broken time-reversal symmetry in MnBi$_2$Te$_4$. arXiv preprint arXiv:2001.08101 (2020).

E. K. Petrov, V. N. Men show, I. P. Rinoinov, M. Hoffman, A. Ernst, M. M. Otrokvo, V. K. Dugaev, V. T. Menschikova, E. V. Chulkov, Domain wall induced spin-polarized flat bands in antiferromagnetic topological insulators. arXiv.preprint arXiv:2001.06432 (2020).

Y. Chen, Y.-W. Chuang, S.-H. Lee, Y. Zhu, K. Honz, Y. Yuan, Y. Wang, K. Wang, Z. Mao, J. Zhu, C. Heikes, P. Quarterman, P. Zajdel, J. A. Borchers, W. Rateiiff, Ferromagnetism in van der waalsa compound MnSb$_2$Bi$_2$Te$_4$. Phys. Rev. Materials 4, 064411 (2020).

S. H. Lee, Y. Zhu, H. Yi, D. Graf, R. Basnet, A. Fereidouni, A. Wegner, Y.-F. Zhao, L. Min, K. Verlind, et al., Transport evidence for a magnetic-field induced ideal Weyl state in antiferromagnetic topological insulator MnBi$_2$Te$_4$. arXiv preprint arXiv:2002.10683 (2020).

Z. A. Jahangiri, E. H. Alizade, Z. S. Aliev, M. M. Otrokvo, N. A. Ismayilova, S. N. Mammadov, I. R. Amiraslanov, N. T. Mamedov, G. S. Orudjev, M. B. Bankany, et al., Electronic structure and dielectric function of Mn-Bi$_2$Te$_4$ layered compounds. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 37, 062910 (2019).

J.-Q. Yan, Y. H. Liu, D. S. Parker, Y. Wu, A. A. Azcel, M. Matsuda, M. A. McGuire, B. C. Sales, A-type antiferromagnetic order in MnBi$_2$Te$_7$ and MnBi$_5$Te$_{10}$ single crystals. Phys. Rev. Materials 4, 054202 (2020).

C. Hu, L. Ding, K. N. Gordon, B. Ghosh, H. Li, S.-W. Lian, A. G. Lin, H.-J. Tien, C.-Y. Huang, P. Reddy, et al., Realization of an intrinsic, ferromagnetic axion insulator in MnBi$_4$Te$_{11}$. Science Advances 6, eaba4275 (2020).

C. Fang, M. J. Gilbert, B. A. Bernevig, Topological insulators with commensurate antiferromagnetism. Phys. Rev. B 88, 085406 (2013).

L. Zhou, Z. Tan, D. Yan, Z. Fang, Y. Shi, H. Weng, Topological phase transition in the layered magnetic compound MnSb$_2$Te$_4$: Spin-orbit coupling and interlayer coupling dependence. Phys. Rev. B 102, 085114 (2020).

C. Lei, S. Chen, A. H. MacDonald, Magnetized topological insulator multilayers. Proc. Natl. Acad. Sci. U.S.A. 117, 27224 (2020).

Y. Liu, L.-L. Wang, Q. Zheng, Z. Huang, X. Wang, M. Chi, Y. Wu, B. C. Chakoumakos, M. A. McGuire, B. C. Sales,
et al., Site mixing engineers the magnetism of MnSb$_2$Te$_4$. arXiv preprint arXiv:2007.12217 (2020).

56 T. Murakami, Y. Nambu, T. Koresnue, G. Xiangyu, T. Yamamoto, C. M. Brown, H. Kageyama, Realization of interlayer ferromagnetic interaction in MnSb$_2$Te$_4$ toward the magnetic Weyl semimetal state. Phys. Rev. B 100, 195103 (2019).

57 K. G. Ranmohotti, H. Djeutdeu, P. F. Pouddeu, Chemical manipulation of magnetic ordering in Mn$_{1-x}$Sn$_x$Bi$_2$Se$_4$ solid-solutions. Journal of the American Chemical Society 134, 14033–14042 (2012).

58 S. V. Eremin, G. Landolt, T. V. Menshikova, B. Slomski, Y. M. Koroteev, Z. S. Aliev, M. B. Babaniy, J. Henk, A. Ernst, L. Patthey, A. Eich, A. A. Khajetoori, J. Hagemeister, O. Pietzsch, J. Wiebe, R. Wiesendanger, P. M. Echenique, S. S. Tsirkin, I. R. Amiraslanov, J. H. Dil, E. V. Chulkov, Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nature Communications 3, 635 (2012).

59 I. V. Silkin, T. V. Menshikova, M. M. Otrokov, S. V. Eremin, Y. M. Koroteev, M. G. Vergniory, V. M. Kuznetsova, E. V. Chulkov, Natural sulfur-containing minerals as topological insulators with a wide band gap. JETP Lett. 96, 322–325 (2012).

60 M. Papagno, S. V. Eremin, J. Fujii, Z. S. Aliev, M. B. Babaniy, S. K. Mahatha, I. Vobornik, N. T. Mamedov, D. Pacile, E. V. Chulkov, Multiple coexisting dirac surface states in three-dimensional topological insulator PbBi$_2$Te$_5$. ACS Nano 10, 3518–3524 (2016).

61 I. Grimaldi, D. Pacile, S. V. Eremin, O. De Luca, A. Policicchio, P. Moras, P. M. Sheverdyava, A. K. Kundu, Z. S. Aliev, P. Rudolf, R. G. Agostino, E. V. Chulkov, M. Papagno, Electronic band structure of three-dimensional topological insulators with different stoichiometry composition. Phys. Rev. B 102, 085118 (2020).

62 A. D. Becke, E. R. Johnson, A simple effective potential for exchange. The Journal of Chemical Physics 124, 221101 (2006).

63 F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

64 S. Wimmer, J. Sánchez-Barriga, P. Küpppers, A. Ney, E. Schierle, F. Freyse, O. Cala, J. Michalicka, M. Liebmann, D. Primethofer, M. Hoffmann, A. Ernst, M. M. Otrokov, G. Bihlmayer, E. Weschke, B. Lake, E. V. Chulkov, M. Morgenstern, G. Bauer, G. Springholz, O. Rader, Ferromagnetic MnSb$_2$Te$_4$: A topological insulator with magnetic gap closing at high Curie temperatures of 45–50 K. [arXiv:2011.07052] (2020).

65 P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

66 G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

67 G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

68 J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

69 D. D. Koelling, B. N. Harmon, A technique for relativistic spin-polarised calculations. J. Phys. C: Sol. St. Phys. 10, 3107 (1977).

70 S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

71 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

72 S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

73 V. I. Anisimov, J. Azaen, O. K. Andersen, Band theory and mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 44, 943–954 (1991).

74 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

75 E. Wimmer, H. Krakauer, M. Weintr, A. J. Freeman, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O$_2$ molecule. Phys. Rev. B 24, 864–875 (1981).

76 Fleur site: http://www.fleur.de

77 M. Geilhufe, S. Achilles, M. A. Kobis, M. Arnold, I. Mertig, W. Hergert, A. Ernst, Numerical solution of the relativistic single-site scattering problem for the coulomb and the Mathieu potential. Journal of Physics: Condensed Matter 27, 435202 (2015).

78 N. Marzari, D. Vanderbilt, Maximally localized generalized wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

79 A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 178, 685 - 699 (2008).

80 M. L. Sancho, J. L. Sancho, J. L. Sancho, J. Rubio, Highly convergent schemes for the calculation of bulk and surface green functions. Journal of Physics F: Metal Physics 15, 851 (1985).

81 J. Henk, W. Schattke, A subroutine package for computing green’s functions of relaxed surfaces by the renormalization method. Computer physics communications 77, 69 – 83 (1993).

82 A. A. Soluyanov, D. Vanderbilt, Computing topological invariants without inversion symmetry. Phys. Rev. B 83, 235401 (2011).

83 D. Gresch, G. Autès, O. V. Zayzov, M. Troyer, D. Vanderbilt, B. A. Bernevig, A. A. Soluyanov, Z2pack: Numerical implementation of hybrid wannier centers for identifying topological materials. Phys. Rev. B 95, 075146 (2017).

84 Y. Xu, L. Elcoro, Z.-D. Song, B. J. Wieder, M. G. Vergniory, N. Regnault, Y. Chen, C. Felser, B. A. Bernevig, High-throughput calculations of magnetic topological materials. Nature 586, 702 (2020).