CHARACTERIZATION OF PINCHED RICCI CURVATURE
BY FUNCTIONAL INEQUALITIES

LI-JUAN CHENG¹² AND ANTON THALMAIER¹

¹Mathematics Research Unit, FSTC, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg, Grand Duchy of Luxembourg

²Department of Applied Mathematics, Zhejiang University of Technology
Hangzhou 310023, The People’s Republic of China

ABSTRACT. In this article, functional inequalities for diffusion semigroups on Riemannian manifolds
(possibly with boundary) are established, which are equivalent to pinched Ricci curvature, along with
gradient estimates, Lp-inequalities and log-Sobolev inequalities. These results are further extended to
differential manifolds carrying geometric flows. As application, it is shown that they can be used in
particular to characterize general geometric flow and Ricci flow by functional inequalities.

1. INTRODUCTION

Let (M, g) be a d-dimensional Riemannian manifold, possibly with boundary. Let V and Δ be the
Levi-Civita connection and the Laplacian associated with the Riemannian metric g, respectively. For
a given C¹-vector field Z on M and tangent vectors X, Y on M, let

\[\text{Ric}^Z(X, Y) := \text{Ric}(X, Y) - \langle \nabla_X Z, Y \rangle, \]

where Ric is the Ricci curvature tensor with respect to g and \(\langle \cdot, \cdot \rangle = g(\cdot, \cdot) \). We denote by
\(C(M), C_b(M), C^\infty(M) \) and \(C^\infty_0(M) \) the sets of continuous functions, bounded continuous functions, smooth
functions, smooth test functions on M, respectively.

Given a C¹-vector field Z on M, we consider the elliptic operator \(L := \Delta + Z \). Let \(X^t_x \) be a diffusion
process starting from \(X^t_x = x \) with generator L, called a \(L \)-diffusion process. We assume that \(X^t_x \) is
non-explosive for each \(x \in M \). Let \(B_t = (B^1_t, \ldots, B^d_t) \) be a \(\mathbb{R}^d \)-valued Brownian motion on a complete
filtered probability space \((\Omega, \{ \mathcal{F}_t \}_{t \geq 0}, \mathbb{P}) \) with the natural filtration \(\{ \mathcal{F}_t \}_{t \geq 0} \). The \(L \)-diffusion process
\(X^t_x \) starting from x can be constructed as a solution to the Stratonovich equation

\[dX^t_x = \sqrt{2}u^t_x \circ dB_t + Z(X^t_x) \, dt, \quad X^0_x = x, \quad (1.1) \]

where \(u^t_x \) is the horizontal process of \(X^t_x \) taking values in the orthonormal frame bundle \(O(M) \) over M
such that \(\pi(u^0_x) = x \). Note that

\[\|/\|_{s,t} := u^t_x \circ (u^s_x)^{-1} : T_{X^s_x}M \to T_{X^t_x}M, \quad s \leq t, \]

defines parallel transport along the paths \(r \mapsto X^t_r \). By convention, an orthonormal frame \(u \in O(M) \) is
interpreted as isometry \(u : \mathbb{R}^d \to T_x M \) where \(\pi(u) = x \). Note that parallel transport \(/\|_{s,t} \) is independent
of the choice of the initial frame \(u^0_x \) above x.

\[E-mail address: lijuan.cheng@uni.lu and chenglj@zjut.edu.cn, anton.thalmaier@uni.lu. \]
\[Date: September 30, 2018. \]
\[2010 Mathematics Subject Classification. \ 60J60, 58J65, 53C44. \]
\[Key words and phrases. \ Curvature, gradient estimate, log-Sobolev inequality, evolving manifold, Ricci flow. \]
The diffusion process \(X_t^x \) gives rise to a Markov semigroup \(P_t \) with infinitesimal generator \(L \): for \(f \in C_b(M) \), we have
\[
P_t f(x) = \mathbb{E}[f(X_t^x)], \quad t \geq 0,
\]
where \(\mathbb{E} \) stands for expectation with respect to the underlying probability measure \(\mathbb{P} \).

The problem of characterizing boundedness of \(\text{Ric}^Z \) from below in terms of gradient estimates and other functional inequalities for the semigroup \(P_t \), has been thoroughly studied in the literature, e.g. \([12, 16, 17]\). For instance, it is well-known that the curvature condition
\[
\text{Ric}^Z(X, X) \geq \kappa |X|^2, \quad X \in TM,
\]
is equivalent to each of the following inequalities:
1) (gradient estimate) for all \(f \in C^0_0(M) \),
\[
|\nabla P_t f|^2 \leq e^{-2\kappa t} P_t |\nabla f|^2;
\]
2) (Poincaré inequality) for all \(p \in (1, 2] \) and \(f \in C^0_0(M) \),
\[
\frac{p}{4(p-1)} (P_t f^2 - (P_t f^{2/p})^p) \leq \frac{1 - e^{-2\kappa t}}{2\kappa} P_t |\nabla f|^2;
\]
3) (log-Sobolev inequality) for all \(f \in C^0_0(M) \),
\[
P_t (f^2 \log f^2) - P_t f^2 \log P_t f^2 \leq \frac{2(1 - e^{-2\kappa t})}{\kappa} P_t |\nabla f|^2.
\]

However, the question how to use functional inequalities for \(P_t \) to characterize upper bounds on \(\text{Ric}^Z \) is much more delicate. When it comes to stochastic analysis on path space, there is a lot of former work based on bounds of \(\text{Ric}^Z \), see e.g. \([4, 5, 7, 11]\). Recently, A. Naber \([10]\) and R. Haslhofer and A. Naber \([10]\) have been able to establish gradient inequalities on path space which characterize boundedness of \(\text{Ric}^Z \); F.-Y. Wang and B. Wu \([18]\) extended these results to manifolds with boundary, where \(\text{Ric}^Z \) may also vary along the manifold and may be unbounded.

Let us briefly describe R. Haslhofer and A. Naber’s work. Among other things, they prove that the functional inequality,
\[
|\nabla \mathbb{E} F(X_{[0,T]})|^2 \leq e^{\kappa T} \mathbb{E} \left[|D^0_t F|^2 + \kappa \int_0^T e^{\kappa (r-t)} |D^r_t F|^2 \, dr \right], \quad F \in \mathcal{F} C^0_0,
\]
is equivalent to the curvature condition \(|\text{Ric}^Z| \leq \kappa \) for some nonnegative constant \(\kappa \), where
\[
\mathcal{F} C^0_0 := \{ f(X_{t_1}, \ldots, X_{t_N}) : 0 \leq t_1 < \ldots < t_N \leq T, \ f \in C^0_0(M^N) \}
\]
and
\[
D^t_t F(X_{[0,T]}) := \sum_{i=1}^N 1_{t \leq t_i} //_{t_i} \nabla_i F(X_{[0,T]}), \quad F \in \mathcal{F} C^0_0.
\]

In their proof, in order to show that gradient estimate (1.2) above implies \(|\text{Ric}^Z| \leq \kappa \), they show that it is sufficient to consider 2-point cylindrical functions of the special type
\[
F(X_{[0,T]}) = f(x) - \frac{1}{2} f(X_t)
\]
as test functional. From this observation, it is easy to see that the subsequent items (i) and (ii) are equivalent:

(i) \(|\text{Ric}^Z| \leq \kappa \) for \(\kappa \geq 0 \);
(ii) for \(f \in C^0_0(M) \) and \(t > 0 \),
\[
|\nabla P_t f|^2 \leq e^{2\kappa t} P_t |\nabla f|^2 \quad \text{and} \quad |\nabla f(x) - \frac{1}{2} \nabla P_t f|^2 \leq e^{\kappa t} \mathbb{E} \left[|\nabla f - \frac{1}{2} //_{0,t} \nabla f(X_t)|^2 + \frac{1}{4} (e^{\kappa t} - 1) |\nabla f(X_t)|^2 \right].
\]
Note that the inequalities in (ii) can be combined to the single condition:
\[
|\nabla P_t f|^2 - e^{2k_t} P_t |\nabla f|^2 \leq 4 \left((e^{2k_t} - 1) |\nabla f|^2 + \langle \nabla f, \nabla P_t f \rangle - e^{-k_t} \mathbb{E}[/(e^{1/2} \nabla f(X_t))] \right) \wedge 0.
\]

The discussion above gives rise to a natural question: Are there gradient inequalities on M which allow to characterize pinched curvature with arbitrary upper and lower bounds?

Our paper is organized as follows. In Section 2 we give a positive answer to the question above. In Section 3 we extend these results to characterize simultaneous bounds on Ric and II on Riemannian manifolds with boundary, where the curvature bounds are not given by constants, but may vary over the manifold. In Section 4 finally, we present gradient and functional inequalities for the time-inhomogeneous semigroup $P_{s,t}$ on manifolds carrying a geometric flow. We show that these inequalities can be used to characterize solutions to some geometric flows, including Ricci flow.

2. CHARACTERIZATIONS FOR RICCI CURVATURE

We start the section by introducing our main results.

Theorem 2.1. Let (M, g) be a complete Riemannian manifold. Let k_1, k_2 be two real constants such that $k_1 \leq k_2$. The following conditions are equivalent:

(i) $k_1 \leq \text{Ric}^Z \leq k_2$;
(ii) for $f \in C^0(M)$ and $t > 0$,
\[
|\nabla P_t f|^2 - e^{-2k_t} P_t |\nabla f|^2 \leq 4 \left((e^{2k_t} - 1) |\nabla f|^2 + \langle \nabla f, \nabla P_t f \rangle - e^{-k_t} \mathbb{E}[/(e^{1/2} \nabla f(X_t))] \right) \wedge 0;
\]
(iii) for $f \in C^0(M)$, $p \in (1, 2]$ and $t > 0$,
\[
\frac{p(P_t f^2 - (P_t f^{2/p})^p)}{4(p-1)} - \frac{1 - e^{-2k_t}}{2k_t} P_t |\nabla f|^2 \\
\leq 4 \int_0^t \left(e^{\frac{k_t}{2k_1} (t-r)} - 1 \right) P_{r} |\nabla f|^2 + \mathbb{E}[/(\nabla f(X_r), \nabla P_{t-r} f(X_r) - e^{-k_1(t-r)} \mathbb{E}[/(e^{1/2} \nabla f(X_t))] dr \wedge 0;
\]
(iv) for $f \in C^0(M)$ and $t > 0$,
\[
\frac{1}{4} \left(P_{t} (f^2 \log f^2) - P_{t} f^2 \log P_{t} f^2 \right) - \frac{1 - e^{-2k_t}}{2k_t} P_t |\nabla f|^2 \\
\leq 4 \int_0^t \left(e^{\frac{k_t}{2k_1} (t-r)} - 1 \right) P_{r} |\nabla f|^2 + \mathbb{E}[/(\nabla f(X_r), \nabla P_{t-r} f(X_r) - e^{-k_1(t-r)} \mathbb{E}[/(e^{1/2} \nabla f(X_t))] dr \wedge 0;
\]
(iv') for $f \in C^0(M)$ and $t > 0$,
\[
\frac{1}{4} \left(P_{t} (f^2 \log f^2) - P_{t} f^2 \log P_{t} f^2 \right) - \frac{1 - e^{-2k_t}}{2k_t} P_t |\nabla f|^2 \\
\leq 4 \int_0^t e^{\frac{k_t}{2k_1} (t-r)} P_{r} |\nabla P_{t-r} f|^2 - e^{-k_1(t-r)} \mathbb{E}[/(\nabla f(X_r), \mathbb{E}[/(e^{1/2} \nabla f(X_t))] dr \wedge 0.
\]

Remark 2.2. The inequalities in (iv) and (iv') can be understood as limits of the inequalities (iii) and (iii’) as $p \downarrow 1$ respectively.
Remark 2.3. As application, Theorem 2.1 can be used to characterize Einstein manifolds where \(\text{Ric} \) is a multiple of the metric \(g \) (constant Ricci curvature). The case \(\text{Ric} = \nabla Z \) can be characterized by all/some of the inequalities in (ii)-(iv) and (ii')-(iv') for \(k_1 = k_2 = 0 \), where the inequalities in (iii), (iii'), (iv) and (iv') may be understood as \(k_2 = k_1 \) and \(k_1 \to 0 \).

Proof of Theorem 2.1 We divide the proof into two parts. In Part I, we will derive the functional inequalities from the curvature condition; in Part II, we will prove the reverse.

Part I. We already know that the curvature condition \(\text{Ric}^Z \geq k_1 \) is equivalent to each of the following functional inequalities (see e.g. [17] Theorem 2.3.1):
1) for all \(f \in C^0_0(M) \),
\[|\nabla Pf|^2 \leq e^{-2k_1} P_t |\nabla f|^2; \]
2) for all \(p \in (1, 2] \) and \(f \in C^0_0(M) \),
\[\frac{p}{4(p-1)} \left(P_tf^2 - (P_tf^{2/p})^p \right) \leq \frac{1 - e^{-2k_1}}{2k_1} P_t |\nabla f|^2; \]
3) for all \(f \in C^0_0(M) \),
\[P_t(f^2 \log f^2) - P_tf^2 \log P_tf^2 \leq \frac{2(1 - e^{-2k_1})}{k_1} P_t |\nabla f|^2. \]

Now, we prove that under the curvature condition (i) in Theorem 2.1, the remaining bounds in (ii)-(iv) and (ii')-(iv') hold true.

(a) (i) \(\Rightarrow \) (ii) and (ii'): We start with well-known stochastic representation formulas for diffusion semigroups. By Bismut’s formula (see [3] [8]), we have
\[(\nabla P_t f)(x) = E[Q_t /_{0,t} - 1 \nabla f(X^t_t)]. \]

Here \(Q_t \) is the \(\text{Aut}(T_xM) \)-valued process defined by the linear pathwise differential equation
\[\frac{d}{dt}Q_t = -Q_t \text{Ric}^Z_{//_{0,t}}; \quad Q_0 = \text{id}_{T_xM}, \quad (2.1) \]

where
\[\text{Ric}^Z_{//_{0,t}} := //_{0,t} - 1 \circ \text{Ric}^Z_{X^t} \circ //_{0,t} \in \text{End}(T_xM) \quad (2.2) \]

and \(//_{0,t} \) is parallel transport in \(TM \) along \(X^t \). As usual, \(\text{Ric}^Z_{X^t} \) operates as a linear homomorphism on \(T_xM \) via \(\text{Ric}^Z_{X^t} v = \text{Ric}^Z(\cdot, v)^t, v \in T_xM \).

Let \(a \) and \(b \) be two constants such that \(a + b = 1 \). We first observe that
\[
2a\nabla f - 2b \nabla P_t f - Q_t /_{0,t} - 1 \nabla f (X^t_t)
\]

\[
= 2a\nabla f - 2b \nabla P_t f - e^{-\frac{b+1}{2}t} //_{0,t} - 1 \nabla f (X^t_t) + e^{-\frac{b+1}{2}t} \left(\text{id} - e^{\frac{b+1}{2}t} Q_t \right) /_{0,t} - 1 \nabla f (X^t_t)
\]

which implies that
\[
\left| 2(a \nabla f + b \nabla P_t f) - Q_t /_{0,t} - 1 \nabla f (X^t_t) \right|
\]

\[
\leq \left| 2(a \nabla f + b \nabla P_t f) - e^{-\frac{b+1}{2}t} //_{0,t} - 1 \nabla f (X^t_t) \right| + \left| e^{-\frac{b+1}{2}t} \left(\text{id} - e^{\frac{b+1}{2}t} Q_t \right) /_{0,t} - 1 \nabla f (X^t_t) \right|. \quad (2.3)
\]

We now turn to estimate the last term on the right-hand side above,
\[
\left| \left(\text{id} - e^{\frac{b+1}{2}t} Q_t \right) /_{0,t} - 1 \nabla f (X^t_t) \right| \leq \left| \text{id} - e^{\frac{b+1}{2}t} Q_t \right| \left| \nabla f (X^t_t) \right|.
\]

To estimate \(\| \text{id} - e^{\frac{b+1}{2}t} Q_t \| \), we rewrite the involved operator as
\[
\text{id} - e^{\frac{b+1}{2}t} Q_t = \int_0^t e^{\frac{b+1}{2}s} Q_s \left(\text{Ric}^Z_{//_{0,s}} - \frac{k_1+k_2}{2} \text{id} \right) ds.
\]
Hence, by the curvature condition (i), we have

\[
\left\| \text{id} - e^{\frac{k_s + k_i}{2}} Q_i \right\| \leq \int_0^t e^{\frac{k_s + k_i}{2}} \left\| Q_i \right\| \left| \Ric^Z_{/0,t} - \frac{k_1 + k_2}{2} \text{id} \right| \, ds
\]

which implies

\[
\left| e^{-\frac{k_s + k_i}{2}} \left(\text{id} - e^{\frac{k_s + k_i}{2}} Q_i \right) \right|_{0, t} \leq e^{-\frac{k_s + k_i}{2}} \left(e^{\frac{k_s + k_i}{2}} - 1 \right) |\nabla f| (X_t).
\]

By this and Eq. (2.3), we have

\[
2 (a \nabla^2 f + b \nabla P_t f) - Q_i \left/_{0, t} \nabla f \right| (X_t) \leq e^{-\frac{k_s + k_i}{2}} \left(e^{\frac{k_s + k_i}{2}} - 1 \right) |\nabla f| (X_t)
\]

By Cauchy’s inequality, we have

\[
2 e^{\frac{k_s + k_i}{2}} \left(e^{\frac{k_s + k_i}{2}} - 1 \right) \left| e^{\frac{k_s + k_i}{2}} \left[2 (a \nabla f + b \nabla P_t f) - e^{\frac{k_s + k_i}{2}} \left/_{0, t} \nabla f \right| (X_t) \right] |\nabla f| (X_t)
\]

Thus, combining this inequality with (2.4), we obtain

\[
2 e^{\frac{k_s + k_i}{2}} \left(e^{\frac{k_s + k_i}{2}} - 1 \right) \left| e^{\frac{k_s + k_i}{2}} \left| e^{\frac{k_s + k_i}{2}} \right| \left(e^{\frac{k_s + k_i}{2}} - 1 \right) |\nabla f| (X_t)
\]

Expanding the terms above yields

\[
\left| Q_i \left/_{0, t} \nabla f \right| (X_t) \right|^2 \leq e^{-2k_i t} |\nabla f|^2 (X_t)
\]

We observe that $|\nabla P_t f|^2 \leq \mathbb{E} (|Q_i \left/_{0, t} \nabla f \right| (X_t) |^2)$. Hence, by taking expectation on both sides of inequality (2.5), we arrive at

\[
|\nabla P_t f|^2 - e^{-2k_i t} P_t |\nabla f|^2
\]

Thus, letting $a = 1, b = 0$, respectively $a = 0, b = 1$, we complete the proof of (ii) and (ii’).
(b) (i) ⇒ (iii), (iii'): By Itô’s formula, we have
\[
d(P_{t-s} f^{2/p}(X_s)) = dM_s + (L + \partial s) \left(P_{t-s} f^{2/p}(X_s) \right)^p ds
\]
\[
= dM_s + p(p-1) \left(P_{t-s} f^{2/p}(X_s) \right)^{p-2} [\nabla P_{t-s} f^{2/p}(X_s)] ds
\] \tag{2.7}
where \(M_s\) is a local martingale. In addition,
\[
\left[\nabla P_{t-s} f^{2/p}(X_s) \right]^2 = \left[\frac{1}{\partial s} Q_{s,t} - 1 \nabla f^{2/p}(X_t) \right] \mathcal{F}_s \]
\[
= \frac{4}{p^2} \left[f(2-p)/p(X_t) \right] \mathcal{F}_s \leq \frac{4}{p^2} (P_{t-s} f^{2(2-p)/p}(X_s)) \mathcal{F}_s \], \tag{2.8}
where for fixed \(s \geq 0\), the two-parameter family \(Q_{s,t}\) of random automorphisms of \(T_{X_t} M\) solves the pathwise equation
\[
\frac{dQ_{s,t}}{dt} = -Q_{s,t} \frac{\nabla f}{\nabla f}, \quad Q_{s,s} = \text{id}_X, \quad t \geq s.
\]
Analogously to Eq. \(2.2\) we have \(\frac{\nabla f}{\nabla f} = \frac{\partial}{\partial s} \circ \frac{\nabla f}{\nabla f} \circ \frac{\partial}{\partial s}.
\]
As \(2 - p \in [0, 1]\), by Jensen’s inequality, we first observe
\[
P_{t-s} f^{2(2-p)/p} \leq (P_{t-s} f^{2/p})^{2-p}.
\]
Combining this with \(2.7\) and \(2.8\), we obtain
\[
d(P_{t-s} f^{2/p}) \leq dM_s + \frac{4(p-1)}{p} \mathbb{E} \left[\left[Q_{s,t} - 1 \nabla f(X_t) \right]^2 \right] ds.
\]
Integrating both sides from 0 to \(t\) and taking expectation, we arrive at
\[
\frac{p(P_t f^2 - (P_{t-s} f^{2/p}))}{4(p-1)} \leq \int_0^t \mathbb{E} \left[\left[Q_{s,t} - 1 \nabla f(X_t) \right]^2 \right] ds. \tag{2.9}
\]
Now, using similar arguments as in (a), we obtain
\[
\mathbb{E} \left[\left[Q_{s,t} - 1 \nabla f(X_t) \right]^2 \right] \leq e^{-2k_1(t-s)} P_{t-s} \mathbb{E} \left[\left[\nabla f \right]^2(X_s) \right]
\]
\[
+ 4 \mathbb{E} \left[\left(\nabla f, \nabla P_{t-s} f(X_s) - e^{-k_1(t-s)} f^{2/p}(X_s) \right) \right] \mathcal{F}_s \tag{2.10}
\]
and
\[
\mathbb{E} \left[\left[Q_{s,t} - 1 \nabla f(X_t) \right]^2 \right] \leq e^{-2k_1(t-s)} P_{t-s} \mathbb{E} \left[\left[\nabla f \right]^2(X_s) \right]
\]
\[
+ 4 e^{-k_1(t-s)} \mathbb{E} \left[\left(\nabla f, \nabla P_{t-s} f \right) \right] \mathcal{F}_s \tag{2.11}
\]
Together with \(2.9\), the proof of (iii) and (iii’) is completed.

(e) (i) ⇒ (iv) and (iv'): By Itô's formula, we have
\[
d(P_{t-s} f^2)(X_s) \log(P_{t-s} f^2)(X_s) = d\tilde{M}_s + (L + \partial s)(P_{t-s} f^2)(X_s) \log(P_{t-s} f^2)(X_s) ds
\]
\[
= d\tilde{M}_s + \frac{1}{P_{t-s} f^2(X_s)} [\nabla P_{t-s} f^2(X_s)] ds \tag{2.12}
\]
where \(\tilde{M}_t \) is a local martingale. Furthermore, using the derivative formula, we have
\[
\| \nabla P_{t-s} f \|^2 (X_s) = \mathbb{E} \left[\frac{1}{\partial_s Q_{st}} / \partial_s f^2 (X_t) | \mathcal{F}_s \right]^2 \leq 4 P_{t-s} f^2 (X_s) \mathbb{E} \left[|Q_{st} / \partial_s f^2 (X_t) | \mathcal{F}_s \right].
\]
Combining this with (2.12), we obtain
\[
d(P_{t-s} f^2) (X_s) \log (P_{t-s} f^2) (X_s) \leq d \tilde{M}_s + 4 \mathbb{E} \left[|Q_{st} / \partial_s f^2 (X_t) | \mathcal{F}_s \right] ds.
\]
Using the estimates in (2.10) and (2.11) for \(\mathbb{E} [Q_{st} / \partial_s f^2 (X_t) | \mathcal{F}_s] \), we finish the proof by integrating from 0 to \(t \) and taking expectation on both sides. \(\square \)

Remark 2.4. Actually, when \(k_1 \neq k_2 \), the following inequality can be derived by minimizing the upper bound in (2.6) over \(a, b \) under the restriction \(a + b = 1 \):
\[
| \nabla P_t f |^2 - e^{-2k_t t} P_t | \nabla f |^2 \leq 4 \left[\left(e^{\frac{\lambda}{t}} - 1 \right) | \nabla f |^2 + \left(e^{\frac{\lambda}{t}} - 1 \right) \nabla f \right] - \left(e^{\frac{\lambda}{t}} - 1 \right) | \nabla P_t f |^2 \right] \wedge 0.
\]
(2.13)

It is easy to see that this bound is sharper than the ones given in Theorem (2.1) (ii) and (ii').

Proof. Inequality (2.13) can be checked as follows. First recall estimate (2.6):
\[
| \nabla P_t f |^2 - e^{-2k_t t} P_t | \nabla f |^2 \leq 4 \left[\left(e^{\frac{\lambda}{t}} - 1 \right) |a \nabla f | + b \nabla P_t f |^2 + \langle a \nabla f + b \nabla P_t f, \nabla P_t f - e^{-k_t t} \mathbb{E} [\nabla f (X_t) | \mathbb{F}_t] \rangle \right].
\]
Taking \(b = 1 - a \) in the terms of the right-hand side, we get
\[
4 \left[\left(e^{\frac{\lambda}{t}} - 1 \right) |a \nabla f | + b \nabla P_t f |^2 + \langle a \nabla f + b \nabla P_t f, \nabla P_t f - e^{-k_t t} \mathbb{E} [\nabla f (X_t) | \mathbb{F}_t] \rangle \right]
= 4 \left[\left(e^{\frac{\lambda}{t}} - 1 \right) |\nabla f | - \nabla P_t f |^2 a^2 + \langle \nabla f - \nabla P_t f, (2 e^{\frac{\lambda}{t}} - 1) \nabla P_t f - e^{-k_t t} \mathbb{E} [\nabla f (X_t) | \mathbb{F}_t] \rangle a
+ e^{\frac{\lambda}{t}} | \nabla P_t f |^2 - e^{-k_t t} \langle \nabla P_t f, \mathbb{E} [\nabla f (X_t) | \mathbb{F}_t] \rangle \right].
\]
(2.14)

For the value
\[
a = a_0 = \frac{\langle \nabla f - \nabla P_t f, (2 e^{\frac{\lambda}{t}} - 1) \nabla P_t f - e^{-k_t t} \mathbb{E} [\nabla f (X_t) | \mathbb{F}_t] \rangle}{2 \left(e^{\frac{\lambda}{t}} - 1 \right) | \nabla f | - \nabla P_t f |^2},
\]
(2.15)
the expression in (2.14) reaches its minimum as a function of \(a \):
\[
4 \left[e^{\frac{\lambda}{t}} | \nabla P_t f |^2 - e^{-k_t t} \langle \nabla P_t f, \mathbb{E} [\nabla f (X_t) | \mathbb{F}_t] \rangle \right]
- \left(e^{\frac{\lambda}{t}} - 1 \right) | \nabla f | - \nabla P_t f |^2
\]
(2.15)
Similarly, substituting $a = 1 - b$ in the terms on the left-hand side of Eq. (2.14), we get

$$4 \left(e^{\frac{k}{2} - k t} - 1 \right) |a \nabla f + b \nabla P f|^2 + \left(a \nabla f + b \nabla P f, \nabla P f - e^{-k t} \nabla f(X) \right)$$

$$= 4 \left(e^{\frac{k}{2} - k t} - 1 \right) |\nabla f - \nabla P f|^2 b^2 + \left(\nabla f - \nabla P f, 2 \left(e^{\frac{k}{2} - k t} - 1 \right) \nabla f + \nabla P f - e^{-k t} \nabla f(X) \right) b$$

$$+ \left(e^{\frac{k}{2} - k t} - 1 \right) |\nabla f|^2 + \left(\nabla f, \nabla P f - e^{-k t} \nabla f(X) \right).$$

(2.16)

It is easy to see that for

$$b = 1 - a_0 = -\frac{\left(\nabla f - \nabla P f, 2 \left(e^{\frac{k}{2} - k t} - 1 \right) \nabla f + \nabla P f - e^{-k t} \nabla f(X) \right)}{2 \left(e^{\frac{k}{2} - k t} - 1 \right) |\nabla f - \nabla P f|^2},$$

expression (2.16) reaches its minimal value:

$$4 \left(e^{\frac{k}{2} - k t} - 1 \right) |\nabla f|^2 + \left(\nabla f, \nabla P f \right) - e^{-k t} \left(\nabla f, \nabla f \right)$$

$$- \frac{\left(\nabla P f - \nabla f, 2 \left(e^{\frac{k}{2} - k t} - 1 \right) \nabla f + \nabla P f - e^{-k t} \nabla f(X) \right)^2}{\left(e^{\frac{k}{2} - k t} - 1 \right) |\nabla P f - \nabla f|^2}.$$

As the minimum is unique, we conclude that the upper bounds (2.14) and (2.16) are indeed equivalent.

To prove that the inequalities in (ii)-(iv), (ii')-(iv') imply condition (i), we use the following lemma.

Lemma 2.5. For $x \in M$, let $X \in T_x M$ with $|X| = 1$. Let $f \in C^\infty_0 (M)$ such that $\nabla f(x) = X$ and $\text{Hess} f(x) = 0$, and let $f_n = n + f$ for $n \geq 1$. Then,

(i) for any $p > 0$,

$$\text{Ric}^\mathbb{Z}(X, X) = \lim_{t \to 0} \frac{P_t |\nabla f|^p (x) - |\nabla P_t f|^p (x)}{pt};$$

(ii) for any $p > 1$,

$$\text{Ric}^\mathbb{Z}(X, X) = \lim_{n \to \infty} \lim_{t \to 0} \frac{1}{4t^2} \left(P_t |\nabla f_n|^2 - \frac{P_t f_n^2 - (P_t f_n^2/p)^p}{4(p - 1)t} \right) (x);$$

(iii) $\text{Ric}^\mathbb{Z}(X, X)$ can be calculated as

$$\text{Ric}^\mathbb{Z}(X, X) = \lim_{n \to \infty} \lim_{t \to 0} \frac{1}{4t^2} \left\{ 4t P_t |\nabla f_n|^2 + (P_t f_n^2) \log P_t f_n^2 - P_t f_n^2 \log f_n^2 \right\} (x);$$

(iv) $\text{Ric}^\mathbb{Z}(X, X)$ is also given by the following two limits:

$$\text{Ric}^\mathbb{Z}(X, X) = \lim_{t \to 0} \frac{\left \{ \left(\nabla f, \nabla f \right) - \left(\nabla f, \nabla P f \right) \right \} (x)}{t}$$

$$= \lim_{t \to 0} \frac{\left \{ \left(\nabla P f, \nabla f \right) - |\nabla P f|^2 \right \} (x)}{t}.$$

Proof. The formulae in (i)-(iii) can be found in [17, Theorem 2.2.4] (see also [2, 15]). The two expressions in (iv) are easily derived using Taylor expansions:

$$\left(\nabla f, \nabla f \right) (x) - \left(\nabla f, \nabla P f \right) (x)$$

$$= \left(\nabla f, \nabla f \right) (x) - \left(\nabla f, \nabla f \right) (x) + o(t)$$

$$= \text{Ric}^\mathbb{Z}(\nabla f, \nabla f) (x) t + o(t)$$
and
\[
\langle \nabla P_t f, \mathbb{E}/\partial_t^{-1} \nabla f(X_t) \rangle (x) - \langle \nabla P_t f, \nabla f \rangle (x)
= \langle \nabla f, \mathbb{L} \nabla f \rangle (x) - \langle \nabla f, \nabla \mathbb{L} f \rangle (x) + o(t)
= \text{Ric}^Z(\nabla f, \nabla f) (x) + o(t).
\]

Here, we use the fact that for \(f \in C^0_0(M) \) such that \(\text{Hess}_f(x) = 0 \), the following equation holds:
\[
\text{Ric}^Z(\nabla f, \nabla f) (x) = \langle \mathbb{L} \nabla f, \nabla f \rangle (x) - \langle \nabla \mathbb{L} f, \nabla f \rangle (x).
\]

Using Lemma 2.5, we are now able to complete the proof of the main result.

Proof of Theorem 2.1

Part II “(ii) and (ii’) \(\Rightarrow \) (i)”: Fix \(x \in M \) and let \(f \in C^0_0(M) \) such that \(\text{Hess}_f(x) = 0 \). Without explicit mention, the following computations are all taken implicitly at the point \(x \). First, we rewrite the inequalities (ii) and (ii’) as follows,
\[
\frac{|\nabla P_t f|^2 - P_t|\nabla f|^2}{2t} + \frac{1 - e^{-2k_2 t}}{2t} P_t|\nabla f|^2
\leq \frac{1}{t} \left(e^{\frac{b_2 - k_1}{t}} - 1 \right) |a \nabla f + b \nabla P_t f|^2 + 2 \frac{\langle a \nabla f + b \nabla P_t f, \mathbb{E}/\partial_t^{-1} \nabla f(X_t) \rangle}{t}
+ \frac{2}{t} \left(1 - e^{-k_1 t} \right) \mathbb{E} \langle a \nabla f + b \nabla P_t f, \mathbb{E}/\partial_t^{-1} \nabla f(X_t) \rangle
\]
where \(a = 1, b = 0 \) or \(a = 0, b = 1 \). Letting \(t \to 0 \), by Lemma 2.5, we obtain
\[
-\text{Ric}^Z(\nabla f, \nabla f) + k_1|\nabla f|^2 \leq (k_2 - k_1)|\nabla f|^2 - 2\text{Ric}^Z(\nabla f, \nabla f) + 2k_1|\nabla f|^2
\]
which implies that
\[
\text{Ric}^Z(\nabla f, \nabla f) \leq k_2|\nabla f|^2.
\]

“(iii), (iv), (iii’), (iv’) \(\Rightarrow \) (i)”**: We only prove that “(iii) and (iii’) imply (i)”, as the inequalities (iv) and (iv’) can be considered as limits of the inequalities (iii) and (iii’) as \(p \downarrow 1 \).

For \(x \in M \) and \(f \in C^0_0(M) \) such that \(\text{Hess}_f(x) = 0 \), let \(f_n := f + n \) and rewrite (iii) as
\[
\frac{1}{t^2} \left(\frac{p(1 - (2n)^2/(p-1))}{4(p-1)} - tP_t|\nabla f_n|^2 \right) - \frac{1}{t^2} \int_0^t \left(1 - e^{-2k_2 (t - s)} \right) ds \times P_t|\nabla f_n|^2
\leq \frac{4}{t^2} \int_0^t \left(e^{\frac{2k_2 - k_1}{t}} - 1 \right) P_t|\nabla f_n|^2 dr + \frac{4}{t^2} \int_0^t \left(1 - e^{-k_2 (t - r)} \right) \mathbb{E} \langle \nabla f_n(X_r), \mathbb{E}/\partial_r^{-1} \nabla f_n(X_r) \rangle dr
+ \frac{4}{t^2} \int_0^t \mathbb{E} \langle \nabla f_n(X_r), \nabla P_{r-t} f_n(X_r) - \mathbb{E}/\partial_t^{-1} \nabla f_n(X_t) \rangle dr.
\]

Now letting \(t \to 0 \), by Lemma 2.5(ii), the terms on the right-hand side become
\[
-\text{Ric}^Z(\nabla f, \nabla f) + k_1|\nabla f|^2.
\]

For the terms on the left-hand side of (2.17), we have the following expansions:
\[
\frac{4}{t^2} \int_0^t \left(e^{\frac{2k_2 - k_1}{t}} - 1 \right) P_t|\nabla f_n|^2 dr = \frac{4}{t^2} \int_0^t \left(e^{\frac{2k_2 - k_1}{t}} - 1 \right) (|\nabla f_n|^2 + o(1)) dr
= (k_2 - k_1)|\nabla f|^2 + o(1);
\]
\[
\frac{4}{t^2} \int_0^t \left(1 - e^{-k_1 (t - r)} \right) \mathbb{E} \langle \nabla f_n(X_r), \mathbb{E}/\partial_r^{-1} \nabla f_n(X_r) \rangle dr = \frac{4}{t^2} \int_0^t \left(1 - e^{-k_1 (t - r)} \right) (|\nabla f_n|^2 + o(1)) dr
= 2k_1|\nabla f|^2 + o(1);
\]
\[
\frac{4}{t^2} \int_0^t \mathbb{E} \left\langle \nabla f_n(X_r), \nabla P_{t-r}f_n(X_r) - \frac{1}{\sqrt{t-r}} \nabla f_n(X_t) \right\rangle \, dr = \frac{4}{t^2} \int_0^t (\text{Ric}^Z(\nabla f_n, \nabla f_n)(t-r) + o(t) + o(r)) \, dr = 2\text{Ric}^Z(\nabla f, \nabla f) + o(1).
\]

Therefore, letting \(t \to 0 \) in \((\text{2.17})\), we arrive at
\[
-\text{Ric}^Z(\nabla f, \nabla f) + k_1 |\nabla f|^2 \leq (-2\text{Ric}^Z(\nabla f, \nabla f) + (k_2 + k_1)|\nabla f|^2) \land 0,
\]
i.e.,
\[
k_1 |\nabla f|^2 \leq \text{Ric}^Z(\nabla f, \nabla f) \leq k_2 |\nabla f|^2.
\]
The proof of “(iii’) implies (i)” is similar. We skip the details here. \(\square \)

Remark 2.6. In the proof of Theorem \([2.1]\) “(ii) (ii’) \(\Rightarrow \) (i)”, we take into account that for \(a \) and \(b \) satisfying \(a + b = 1 \), trivially \(\lim_{t\to0}(a\nabla f + b\nabla P_t f) = \nabla f \) holds. However, when choosing \(a = a_0 \) as in \((\text{2.15})\) for the proof of inequality \((\text{2.6})\), obviously \(a_0 \) depends on \(t \), and thus we get
\[
\lim_{t\to0}(a_0\nabla f + (1 - a_0)\nabla P_t f) = \lim_{t\to0}(\nabla f + (1 - a_0)(\nabla P_t f - \nabla f)) = \nabla f - \lim_{t\to0} \left(\frac{\langle \nabla f - \nabla P_t f, 2 \left(e^{\frac{t}{2(k_2-k_1)}} - 1 \right) \nabla f + \nabla P_t f - e^{-k_1t} \mathbb{E} \langle \nabla \nabla f(X_r) \rangle \rangle \nabla f - \nabla P_t f \right)^2 \right)
\]
\[
= \nabla f + \lim_{t\to0} \left(\frac{\langle (\nabla L f) t + o(t), k_2 \nabla f t + \nabla (L f) t - (\nabla f) t + o(t) \rangle \rangle \right) \nabla (L f) t
\]
\[
= \nabla f + \left(\frac{\langle (\nabla L f, k_2 \nabla f) t + \nabla (L f) t - \nabla (f) t \rangle \rangle}{(k_2 - k_1)|\nabla (L f)|^2} \right) \nabla (L f) t \neq \nabla f.
\]
Actually, dividing both hands of inequality \((\text{2.13})\) by \(2t \) and letting \(t \to 0 \), we obtain
\[
k_1 |\nabla f|^2 \leq \text{Ric}(\nabla f, \nabla f) \leq k_2 |\nabla f|^2 - \frac{\langle \nabla L f, k_2 \nabla f + \nabla (L f) - \nabla (f) \rangle \rangle}{(k_2 - k_1)|\nabla (L f)|^2} (\leq k_2 |\nabla f|^2).
\]

3. POINTWISE CHARACTERIZATIONS OF CURVATURE BOUNDS

Consider a Riemannian manifold \(M \) possibly with non-empty boundary \(\partial M \), and let \(X_t \) be a reflecting diffusion processes generated by \(L = \Delta + Z \). We assume that \(X_t \) is non-explosive. It is well known that the reflecting process \(X_t \) can be constructed as solution to the equation
\[
dX_t = \sqrt{2} u_t \circ dB_t + Z(X_t) \circ d\tau + N(X_t) \circ d\ell_t,
\]
where \(u_t \) is a horizontal lift of \(X_t \) to the orthonormal frame bundle, \(N \) the inward normal unit vector field on \(\partial M \) and \(\ell_t \) the local time of \(X_t \) supported on \(\partial M \), see \([17]\) for details. Again,
\[
\|_{/s} u_t \circ u_t^{-1} : T_{X_t}M \to T_{X_s}M, \quad r \leq s,
\]
denotes parallel transport along \(t \mapsto X_t \). Finally, let \(II \) be the second fundamental form of the boundary:
\[
II(X,Y) = - \langle \nabla_X N, Y \rangle, \quad X,Y \in T_s \partial M, x \in \partial M.
\]

In this section, we extend the results of Section \([2]\) in order to characterize pointwise bounds on \(\text{Ric}^Z \) and \(II \). To this end, for continuous functions \(K_1, K_2, \sigma_1 \) and \(\sigma_2 \) on \(M \), let
\[
\mathbb{K}_1(X_{[s,t]}) = \int_s^t K_1(X_r) \, dr + \sigma_1(X_r) \, dl_r, \quad \mathbb{K}_2(X_{[s,t]}) = \int_s^t K_2(X_r) \, dr + \sigma_2(X_r) \, dl_r
\]
where \(X_{[s,t]} = \{ X_r : r \in [s,t] \} \). Furthermore, let
\[
C^\infty_N(M) := \{ f \in C^0(M) : Nf|_{\partial M} = 0 \}.
\]
Finally let
\[(P_t f)(x) = \mathbb{E}[f(X^1_t)], \quad f \in C_b(M),\]
be the semigroup with Neumann boundary conditions generated by \(L\).

Theorem 3.1. We keep the assumptions and notations from above. Let \(x \mapsto K_1(x)\) and \(x \mapsto K_2(x)\) be two continuous functions on \(M\) such that \(K_1 \leq K_2\). In addition, let \(x \mapsto \sigma_1(x)\) and \(x \mapsto \sigma_2(x)\) be two functions on \(\partial M\) such that \(\sigma_1 \leq \sigma_2\). Assume that
\[
\mathbb{E}\left[e^{-(2+\varepsilon)K_1(x^0_t)}\right] < \infty, \quad \text{for some } \varepsilon > 0 \text{ and } t > 0.
\]

The following statements are equivalent:
(i) Curvature Ric^Z and second fundamental form II satisfy the bounds
\[K_1(x) \leq \text{Ric}^Z(x) \leq K_2(x), \quad x \in M, \quad \text{and} \quad \sigma_1(x) \leq \text{II}(x) \leq \sigma_2(x), \quad x \in \partial M.
\]
(ii) For \(f \in C^0_N(M) \) and \(t > 0\),
\[
|\nabla P_t f|^2 - \mathbb{E}\left[e^{-2K_1(x^0_t)}|\nabla f|^2(X^1_t)\right]
\leq 4 \left\{ \mathbb{E}\left[e^{1(K_2(x^0_t)-K_1(x^0_t))} \right] - 1 \right\} |\nabla f|^2 + \left\langle \nabla f, \mathbb{E}\left[e^{-K_1(x^0_t)}//_{\partial M}^{-1}\nabla f(X^1_t)\right] \right\} \land 0.
\]
(iii) For \(f \in C^0_N(M) \) and \(t > 0\),
\[
|\nabla P_t f|^2 - \mathbb{E}\left[e^{-2K_1(x^0_t)}|\nabla f|^2(X^1_t)\right]
\leq 4 \left\{ \mathbb{E}\left[e^{\frac{1}{2}(K_2(x^0_t)-K_1(x^0_t))} \right] |\nabla P_t f|^2 - \left\langle \nabla P_t f, \mathbb{E}\left[e^{-K_1(x^0_t)}//_{\partial M}^{-1}\nabla f(X^1_t)\right] \right\} \land 0.
\]
(iv) For \(f \in C^0_N(M) \) and \(t > 0\),
\[
\mathbb{E}\left[e^{1(K_2(x^0_t)-K_1(x^0_t))} P_t |\nabla f|^2(X^1_t) - \left\langle \nabla f, \mathbb{E}\left[e^{-K_1(x^0_t)}//_{\partial M}^{-1}\nabla f(X^1_t)\right] \right\} \right] \land 0.
\]
(iv') For \(f \in C^0_N(M) \) and \(t > 0\),
\[
\mathbb{E}\left[e^{1(K_2(x^0_t)-K_1(x^0_t))} P_t |\nabla f|^2(X^1_t) - \left\langle \nabla f, \mathbb{E}\left[e^{-K_1(x^0_t)}//_{\partial M}^{-1}\nabla f(X^1_t)\right] \right\} \right] \land 0.
\]
To prove the theorem, we need the following lemmas.

Lemma 3.2. ([17] Lemma 3.1.2) Let X^t be the reflecting diffusion process generated by L such that $X_0 = x$ and l_t^i the corresponding local time on the boundary.

(i) For any $x \in M$ and $r_0 > 0$, there exists a constant $c > 0$ such that
\[
\mathbb{P}\{\sigma_r \leq t\} \leq e^{-ct^2/r}, \quad \text{for all } r \in [0, r_0] \text{ and } t > 0,
\]
where $\sigma_r = \inf\{s \geq 0 : \rho(x, X^s) \geq r\}$.

(ii) Let $x \in \partial M$ and r as above. Then:
\begin{itemize}
 \item[(a)] $\mathbb{E}^x[e^{\lambda t \cdot \sigma_r}] < \infty$ for any $\lambda > 0$ and there exists $c > 0$ such that $\mathbb{E}^x[l_t^2 \cdot \sigma_r] \leq c(t + t^2)$;
 \item[(b)] $\mathbb{E}^x[l_t^2 \cdot \sigma_r] = \frac{2\sqrt{t}}{\sqrt{\pi}} + o(t^{1/2})$ holds for small $t > 0$.
\end{itemize}

By means of Lemma 3.2, we can derive pointwise formulae for Ric^Z and II.

Lemma 3.3. Let $x \in \bar{M} := M \setminus \partial M$ and $X \in T_x \bar{M}$ with $|X| = 1$. Let $f \in C_0^1(M)$ such that $Nf|_{\partial M} = 0$, $\text{Hess}_f(x) = 0$ and $\nabla f(x) = X$ and let $f_n = f + n$ for $n \geq 1$. Then all assertions of Lemma 2.5 hold.

Proof. Let $r > 0$ be such that $B(x, r) \subset \bar{M}$ and $|\nabla f| \geq \frac{1}{2}$ on $B(x, r)$. Due to Lemma 2.5, the proof of Lemma 2.5 applies to the present situation, using $t \wedge \sigma_r$ to replace t, so that the boundary condition is avoided. We refer the reader to the proof of [17] Theorem 3.2.3 for more explanation.

Lemma 3.4. Let $x \in \partial M$ and $X \in T_x \bar{M}$ with $|X| = 1$.

1. For any $f \in C_0^1(M)$ such that $\nabla f(x) = X$, and for any $p > 0$, we have
\[
\text{II}(X, X) = \lim_{t \downarrow 0} \frac{\sqrt{\pi}}{2p \sqrt{t}} \left\{ P_t|\nabla f|^p - |\nabla f|^p \right\}(x)
\]
\begin{equation}
= \lim_{t \downarrow 0} \frac{\sqrt{\pi}}{2p \sqrt{t}} \left\{ P_t|\nabla f|^p - |\nabla P_t f|^p \right\}(x)
\end{equation}
\begin{equation}
= \frac{\sqrt{\pi}}{2p \sqrt{t}} \left\{ \left(\nabla f, \mathbb{E}^{\mathbb{E}^{/0, t} \nabla f(X_t)} \right) - \left(\nabla f, \nabla P_t f \right) \right\}(x)
\end{equation}

2. If moreover $f > 0$, then for any $p \in [1, 2]$,
\[
\text{II}(X, X) = -\lim_{t \downarrow 0} \frac{3}{8} \frac{\sqrt{\pi}}{t} \left\{ |\nabla f|^2 + \frac{p|(P_t f^2)^p - P_t f^2|^p}{4(p - 1)t} \right\}(x)
\]
\begin{equation}
= -\lim_{t \downarrow 0} \frac{3}{8} \frac{\sqrt{\pi}}{t} \left\{ |\nabla P_t f|^2 + \frac{p|(P_t f^2)^p - P_t f^2|^p}{4(p - 1)t} \right\}(x),
\end{equation}
where when $p = 1$, we interpret the quotient $\frac{(P_t f^2)^p - P_t f^2}{p - 1}$ as the limit
\[
\lim_{p \downarrow 1} \frac{(P_t f^{2p})^p - P_t f^2}{p - 1} = (P_t f^2)\log P_t f^2 - P_t (f^2 \log f^2).
\]

Proof. We only need to prove formulas (3.2) and (3.3). For the remaining statements we refer to [17], Theorem 3.2.4. Let $r > 0$ such that $|\nabla f| \geq 1/2$ on $B(x, r)$, and let $\sigma_r := \inf\{s \geq 0 : X_s \notin B(x, r)\}$. Then, by Itô’s formula and Lemma 3.2, we get
\[
\mathbb{E}^{\mathbb{E}^{/0, t} \nabla f(X_t)}(X_t) = \nabla f(x) + \mathbb{E}^{\mathbb{E}^{/0, \sigma_r} \nabla f(X_t)} \left(\int_0^{\tau_{\sigma_r}} (\nabla f(X_s)) \, ds + \int_0^{\tau_{\sigma_r}} \nabla f(X_s) \, dW_s \right) + o(t)
\]
where $\Box = -\nabla^*\nabla$ is the connection Laplacian (or rough Laplacian) acting on $\Gamma(TM)$.

Along with Lemma 3.2(ii) (b), the formulae in (3.2) and (3.3) are obtained by taking into account the expansions:

$$\langle E\left[//_{0,t}^{-1}\nabla f(X_t), \nabla f\right]\rangle = |\nabla f|^2 + II(\nabla f, \nabla f)\frac{2\sqrt{t}}{\sqrt{\pi}} + o(\sqrt{t}),$$

resp.

$$\langle E\left[//_{0,t}^{-1}\nabla f(X_t), \nabla P_t f\right]\rangle = |\nabla f|^2 + II(\nabla f, \nabla f)\frac{2\sqrt{t}}{\sqrt{\pi}} + o(\sqrt{t}).$$

\Box

Proof of Theorem 3.7 Let $\text{Ric}^Z(x) \geq K_1(x)$ and $II(x) \geq \sigma_1(x)$. Furthermore, assume that

$$E\left[e^{-(2+\epsilon)K_1(X_{[0,t]})}\right] < \infty, \quad \text{for some } \epsilon > 0 \text{ and } t > 0.$$ By [17] Theorem 4.1.1], there exists a unique two-parameter family of random endomorphisms $Q_{s,t} \in \text{End}(TM)$ solving, for $s \geq 0$ fixed, the following equation in $t \geq s$,

$$dQ_{s,t} = -Q_{s,t}\left(\text{Ric}^Z_{//s,t} dt + II_{//s,t} dt\right)(\text{id} - \mathbf{1}_{\left\{X_t \in \partial M\right\}}P_{//s,t}), \quad Q_{s,s} = \text{id},$$

where by definition, for $u \in \partial O(M) := \{u \in O(M) : pu \in \partial M\}$,

$$P(uu, uz) = \langle uu, N \rangle \langle uz, N \rangle, \quad y, z \in \mathbb{R}^d.$$

Recall that

$$\text{Ric}^Z_{//s,t} = \mathbb{I}^{-1}_{//s,t} \circ \text{Ric}^Z_{//s,t} \circ \mathbb{I}_{//s,t}, \quad \text{II}_{//s,t} = \mathbb{I}^{-1}_{//s,t} \circ \text{II}_{//s,t} \circ \mathbb{I}_{//s,t}, \quad P_{//s,t} = \mathbb{I}^{-1}_{//s,t} \circ P_{//s,t} \circ \mathbb{I}_{//s,t},$$

where as usual bilinear forms on TM, resp. on $T\partial M$, are understood fiberwise as linear endomorphisms via the metric. Moreover, by [17] Theorem 3.2.1], we have

$$\nabla P_{s,t} f(X_s) = \langle//_{0,s}E[///_{0,t}Q_{s,t}///_{0,t}^{-1}\nabla f(X_t), \mathbb{F}_s]\rangle.$$ (3.4)

By using derivative formula (3.4), the proofs are similar to that of Theorem 2.1. We only prove the equivalence “(i) \iff (ii) or (iii)” to explain the idea.

“(i) \Rightarrow (ii)”: First, from the derivative formula and the lower bound on the curvature, we get

$$|\nabla P_t f|^2 \leq E\left[e^{-2K_1(X_{[0,t]})}|\nabla f|^2(X_t)\right].$$ (3.5)

Next, it is easy to see that

$$2\nabla f - Q_t///_{0,t}^{-1}\nabla f(X_t)$$

$$= 2\nabla f - e^{-\frac{t}{2}(K_2(X_{[0,t]})+K_1(X_{[0,t]}))}///_{0,t}^{-1}\nabla f(X_t)$$

$$+ \left(e^{-\frac{t}{2}(K_2(X_{[0,t]})+K_1(X_{[0,t]}))} \text{id} - Q_t\right)///_{0,t}^{-1}\nabla f(X_t)$$ (3.6)

where $Q_t := Q_{0,t}$, which implies that

$$\left|2\nabla f - Q_t/\langle//_{0,t}^{-1}\nabla f(X_t)\rangle\right|$$

$$\leq \left|2\nabla f - e^{-\frac{t}{2}(K_2(X_{[0,t]})+K_1(X_{[0,t]}))}///_{0,t}^{-1}\nabla f(X_t)\right|$$

$$+ \left|\left(e^{-\frac{t}{2}(K_2(X_{[0,t]})+K_1(X_{[0,t]}))} \text{id} - Q_t\right)///_{0,t}^{-1}\nabla f(X_t)\right|.$$

We start by estimating the last term on the right-hand side,

$$\left|\left(e^{-\frac{t}{2}(K_2(X_{[0,t]})+K_1(X_{[0,t]}))} \text{id} - Q_t\right)///_{0,t}^{-1}\nabla f(X_t)\right|$$

$$\leq e^{-\frac{t}{2}(K_2(X_{[0,t]})+K_1(X_{[0,t]}))} \left\|\text{id} - e^{\frac{t}{2}(K_2(X_{[0,t]})+K_1(X_{[0,t]}))} Q_t\right\| \left|\nabla f(X_t)\right|.$$
Thus we get

\[
\text{id} - e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) + \mathbb{K}_1(X_{0,t}) \right)} Q_t = - \int_0^t \left[e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,s}) + \mathbb{K}_1(X_{0,s}) \right)} Q_s \right] \frac{ds}{ds} = \int_0^t e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,s}) + \mathbb{K}_1(X_{0,s}) \right)} Q_s \left[\text{Ric}_{\perp/_{0,s}} - \frac{K_1(X_s) + K_2(X_s)}{2} \right]\text{id} - \text{id}_{(X_s \in \partial M) P_{/_{0,s}}} ds + \left(\Pi_{/_{0,s}} - \frac{\sigma_1(X_s) + \sigma_2(X_s)}{2} \right) \left(\text{id} - \text{id}_{(X_s \in \partial M) P_{/_{0,s}}} \right) dr.
\]

Thus we get

\[
\left\| \text{id} - e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) + \mathbb{K}_1(X_{0,t}) \right)} Q_t \right\| \leq \int_0^t e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,s}) + \mathbb{K}_1(X_{0,s}) \right)} \left\| Q_s \right\| \left(\left| \text{Ric}_{\perp/_{0,s}} - \frac{K_1(X_s) + K_2(X_s)}{2} \right| \text{id} ds + \left(\Pi_{/_{0,s}} - \frac{\sigma_1(X_s) + \sigma_2(X_s)}{2} \right) \frac{ds}{ds} \right) = e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) - \mathbb{K}_1(X_{0,t}) \right)} - 1,
\]

which implies

\[
2\nabla f - Q_t/_{/0} \nabla f(X_t) \left| 2\nabla f - Q_t/_{/0} \nabla f(X_t) \right| \leq \left[2\nabla f - e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) + \mathbb{K}_1(X_{0,t}) \right)} \left| e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) - \mathbb{K}_1(X_{0,t}) \right)} - 1 \right| \right] \left| \nabla f(X_t) \right|^2 \leq e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) - \mathbb{K}_1(X_{0,t}) \right)} \left| 2\nabla f - e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) + \mathbb{K}_1(X_{0,t}) \right)} \right| \left| \nabla f(X_t) \right|^2 + e^{-\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) + \mathbb{K}_1(X_{0,t}) \right)} \left| \nabla f(X_t) \right|^2 \leq 4 e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) - \mathbb{K}_1(X_{0,t}) \right)} \left| \nabla f(X_t) \right|^2 + 4 e^{-\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) + \mathbb{K}_1(X_{0,t}) \right)} \left| \nabla f(X_t) \right|^2.
\]

By expanding the terms above, we get

\[
\left| Q_t/_{/0} \right| \left| \nabla f(X_t) \right|^2 - e^{-2\mathbb{K}_1(X_{0,t})} \left| \nabla f(X_t) \right|^2 \leq 4 e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) - \mathbb{K}_1(X_{0,t}) \right)} \left| \nabla f(X_t) \right|^2 + 4 e^{-\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) + \mathbb{K}_1(X_{0,t}) \right)} \left| \nabla f(X_t) \right|^2.
\]

We observe that \(\left| \nabla P_t f \right|^2 \leq E \left[Q_t/_{/0} \right| \left| \nabla f(X_t) \right|^2 \] and take expectation on both sides of the inequality above, to obtain

\[
\left| \nabla P_t f \right|^2 - E \left[e^{-2\mathbb{K}_1(X_{0,t})} \left| \nabla f(X_t) \right|^2 \right] \leq 4 e^{\frac{1}{2} \left(\mathbb{K}_2(X_{0,t}) - \mathbb{K}_1(X_{0,t}) \right)} \left| \nabla f(X_t) \right|^2 + 4 E \left(\nabla f, Q_t/_{/0} \right| \left| \nabla f(X_t) \right|^2.
\]

Combining this with (3.5) completes the proof of “(i) \(\Rightarrow\) (ii)”.
“(i) ⇒ (iii)”: It is well known that if \(f \in C^\infty_N(M) \), then \(NP_tf = 0 \) for \(t > 0 \). Combined with Itô’s formula, we obtain
\[
d(P_t - s)^{2/p}(X_s) = dM_s + (L + \partial_s)(P_t - s)^{2/p}(X_s)\,ds
\]
\[
= dM_s + p(p-1)(P_t - s)^{2/p}(X_s)\,p^{-2}\nabla P_t - s)^{2/p}(X_s)\,ds
\]
\[
+ p(P_t - s)^{2/p}\,p^{-1}NP_t - s)^{2/p}(X_s)\,dl,
\]
where \(M_t \) is a local martingale. The rest of the argument is then similar to the proof of Theorem 2.1 we skip it here.

“(ii) ⇒ (i)”: Conversely, for \(x \in \hat{M} \) and \(f \in C^\infty_N(M) \) such that \(\text{Hess}_f(x) = 0 \), we have
\[
\|\nabla P_t f\|^2 - P_t\|\nabla f\|^2 \leq 4 \left(\frac{\mathbb{E}[e^{\frac{1}{2}(K_2(x,t) - K_1(x,t))}]}{t} \right) - 1 \left\langle \nabla f, \nabla P_t f - \left\langle 0, \nabla f(X_t) \right\rangle \right\rangle \right) \wedge 0.
\]
By Lemma 2.5 (i), there exists \(r > 0 \) such that \(B(x,r) \subset \hat{M} \) and
\[
\lim_{t \to 0} \frac{1 - e^{-2K_1(x,t)}}{t} = \lim_{t \to 0} \frac{1 - e^{-2K_1(x,t)}}{t} + o(t) = \lim_{t \to 0} \frac{2K_1(x) \, t \wedge \sigma_t + o(t)}{t} = 2K_1(x).
\]
Similarly, we have
\[
\lim_{t \to 0} \frac{1 - e^{-2K_1(x,t)}}{t} = \frac{K_2(x) - K_1(x)}{2},
\]
and
\[
\lim_{t \to 0} \left\langle \nabla f, \mathbb{E} \left[\frac{1 - e^{-2K_1(x,t)}}{t} \right\rangle \nabla f(X_t) \right\rangle = K_1(x)\|\nabla f\|^2.
\]
Thus, letting \(t \to 0 \) on both sides of (3.7) and using Lemma 3.3, we obtain
\[-2\text{Ric}^g(\nabla f, \nabla f) + 2K_1(x)\|\nabla f\|^2 \leq \left[2(K_2(x) - K_1(x))\|\nabla f\|^2 - 4\text{Ric}^g(\nabla f, \nabla f) + 4K_1(x)\|\nabla f\|^2 \right] \wedge 0,
\]
i.e.,
\[-2\text{II}(\nabla f, \nabla f) + 2\sigma_1(x)\|\nabla f\|^2 \leq 4\text{II}(\nabla f, \nabla f) + 2(\sigma_2(x) - \sigma_1(x))\|\nabla f\|^2 + 4\sigma_1(x)\|\nabla f\|^2 \wedge 0,
\]
i.e.,
\[\sigma_1(x)\|\nabla f\|^2 \leq \sigma_2(x)\|\nabla f\|^2 \leq \sigma_2(x)\|\nabla f\|^2(x).
\]
Similarly, using Lemma 3.3 and 3.4, one can prove “(iii) ⇒ (i)”; we skip the details here.

4. Extension to Evolving Manifolds

In this section, we deal with the case that the underlying manifold carries a geometric flow of complete Riemannian metrics. More precisely, for some $t_0 \in (0, \infty)$, we consider the situation of a d-dimensional differentiable manifold M equipped with a C^1 family of complete Riemannian metrics $(g_t)_{t \in [0, T_c)}$. Let ∇^t be the Levi-Civita connection and Δ_t the Laplace-Beltrami operator associated with the metric g_t. In addition, let $(Z_t)_{t \in [0, T_c)}$ be a C^1-family of vector fields on M. For the sake of brevity, we write

$$\mathcal{R}^t(X, Y) := \text{Ric}_t(X, Y) - \langle \nabla^t X, Y \rangle - \frac{1}{2} \partial_t g_t(X, Y), \quad X, Y \in T_t M, \ x \in M,$$

where Ric_t is the Ricci curvature tensor with respect to the metric g_t and $\langle \cdot, \cdot \rangle_t := g_t(\cdot, \cdot)$.

In what follows, for real-valued functions ϕ, ψ on $[0, T_c)$, we write $\psi \leq \mathcal{R}^t \leq \phi$, if

$$\psi|X|^2 \leq \mathcal{R}^t(X, X) \leq \phi|X|^2$$

holds for all $X \in TM$ and $t \in [0, T_c)$, where by definition $|X|^2 := \sqrt{g_t(X, X)}$. Let X_t be the diffusion process generated by $L_t := \Delta_t + Z_t$ (called L_t-diffusion) which is assumed to be non-explosive up to time T_c.

We first introduce some notations and recall the construction of X_t. Let $F(M)$ be the frame bundle over M and $O_t(M)$ the orthonormal frame bundle over M with respect to the metric g_t. We denote by $\pi: F(M) \to M$ the projection from $F(M)$ onto M. For $u \in F(M)$, let

$$T_{\pi u} M \to T_u F(M), \quad X \mapsto H^t_X(u),$$

be the ∇^t-horizontal lift. In particular, we consider the standard-horizontal vector fields H^t_i on $F(M)$ given by

$$H^t_i(u) = H^t_{e_i}(u), \quad i = 1, 2, \ldots, d$$

where $\{e_i\}_{i=1}^d$ denotes the canonical orthonormal basis of \mathbb{R}^d. Let $\{V_{\alpha, \beta}\}_{\alpha, \beta = 1}^d$ be the standard-vertical vector fields on $F(M)$,

$$V_{\alpha, \beta}(u) := T_{\ell_u}(\exp(E_{\alpha, \beta})), \quad u \in F(M),$$

where $E_{\alpha, \beta}$ is a basis of the real $d \times d$ matrices, and $\ell_u: \text{GL}(d; \mathbb{R}) \to F(M), g \mapsto u \cdot g$, is defined via left multiplication of the general linear group $\text{GL}(d; \mathbb{R})$ on $F(M)$.

Let $B_t = (B^1_t, \ldots, B^d_t)$ be a d-dimensional Brownian motion on a complete filtered probability space $(\Omega, \mathcal{F}_t, \mathbb{P})$. To construct the L_t-diffusion X_t, we first construct the corresponding horizontal diffusion process u_t by solving the following Stratonovich SDE on $F(M)$:

$$\begin{cases}
\frac{du_t}{dt} = \sqrt{2} \sum_{i=1}^d H^t_i(u_t) \circ dB^i_t + H^t_{Z_t}(u_t)dt - \frac{1}{2} \sum_{\alpha, \beta = 1}^d \mathcal{G}_{\alpha, \beta}(t, u_t) V_{\alpha, \beta}(u_t)dt, \\
u_t \in O_{\pi}(M), \ \pi(u_t) = x, \ s \in [0, T_c),
\end{cases}$$

(4.1)

where $\mathcal{G}_{\alpha, \beta}(t, u_t) := \partial_t g_t(u_t e_\alpha, u_t e_\beta)$. As explained in [11], the last term is crucial to ensure $u_t \in O_t(M)$. Since $\{H^t_i\}_{t \in [0, T_c)}$ is $C^{1, \infty}$-smooth, Eq. (4.1) has a unique solution up to its lifetime $\zeta := \lim_{n \to \infty} \zeta_n$ where

$$\zeta_n := \inf \{t \in [s, T_c) : \rho_t(\pi(u_s), \pi(u_t)) \geq n\}, \quad n \geq 1, \ \inf \emptyset := T_c,$$

(4.2)

and where ρ_t stands for the Riemannian distance induced by the metric g_t. Then $X^{(s,x)}_t = \pi(u_t)$ solves the equation

$$dX^{(s,x)}_t = \sqrt{2}u_t \circ dB_t + Z_t(X^{(s,x)}_t)dt, \quad X^{(s,x)}_s = x := \pi(u_s)$$

where $\mathcal{R}^t(X, Y) := \text{Ric}_t(X, Y) - \langle \nabla^t X, Y \rangle - \frac{1}{2} \partial_t g_t(X, Y), \quad X, Y \in T_t M, \ x \in M,$
up to the lifetime ζ. By Itô’s formula, for any $f \in C^2_0(M)$,
\[
f(X_{t}^{(s,x)}) - f(x) - \int_{s}^{t} L_{r} f(X_{r}^{(s,x)}) \, dr = \sqrt{2} \int_{s}^{t} \langle f(X_{r}^{(s,x)}), \nabla \eta_r \rangle_{\eta_r} \, d\eta_r, \quad t \in [s,T_c),
\]
is a martingale up to ζ. In other words, $X_{t}^{(s,x)}$ is a diffusion process with generator L_{t}. In case $s = 0$, if there is no risk of confusion, we write again X_{t}^{0} instead of $X_{t}^{(0,x)}$.

Throughout this section, we assume that the diffusion X_{t} generated by L_{t} is non-explosive up to time T_c (see [13] for sufficient conditions ensuring non-explosion). Then this process gives rise to an inhomogeneous Markov semigroup $\{P_{s,t}\}_{0 \leq s \leq t < T_c}$ on $B_b(M)$ by
\[
P_{s,t} f(x) := \mathbb{E} \left[f(X_{t}^{(s,x)}) \right] = \mathbb{E}^{(s,x)} \left[f(X_{t}) \right], \quad x \in M, \ f \in B_b(M),
\]
which is called the diffusion semigroup generated by L_{t}.

We are now in position to present the main result of this section.

Theorem 4.1. Let $(t,x) \mapsto K_1(t,x)$ and $(t,x) \mapsto K_2(t,x)$ be two functions on M such that $K_1 \leq K_2$. Suppose that
\[
\mathbb{E} \left[e^{-(2+\varepsilon) \int s \wedge \zeta K_1(s,X_s) \, ds} \right] < \infty \quad \text{for some } \varepsilon > 0 \text{ and } t \in (0,T_c).
\]
The following statements are equivalent to each other:

(i) the curvature \mathcal{R}^Z_t for time-dependent Witten Laplacian satisfies
\[
K_1(t,x) \leq \mathcal{R}^Z_t(x) \leq K_2(t,x), \quad (t,x) \in [0,T_c) \times M;
\]

(ii) for $f \in C^0_0(M)$ and $0 \leq s \leq t < T_c$,
\[
\left| \nabla^s P_{s,t} f \right|^2 \leq \mathbb{E}^{(s,x)} \left[e^{-2 \int s \wedge \zeta K_1(s,X_s) \, ds} \left| \nabla^t f \right|^2 (X_t) \right] \leq 4 \mathbb{E}^{(s,x)} \left[e^{\frac{c_1}{2} \int s \wedge \zeta (K_2(s,X_s) - K_1(s,X_s)) \, ds} \left| \nabla^s f \right|^2 (X_s) \right] + \left\langle \nabla^s f, \mathbb{E}^{(s,x)} \left[e^{-\int s \wedge \zeta K_1(s,X_s) \, ds} \langle \nabla^t f \rangle \right] \right\rangle \wedge 0;
\]

(ii') for $f \in C^0_0(M)$ and $0 \leq s \leq t < T_c$,
\[
\left| \nabla^s P_{s,t} f \right|^2 \leq \mathbb{E}^{(s,x)} \left[e^{-2 \int s \wedge \zeta K_1(s,X_s) \, ds} \left| \nabla^t f \right|^2 (X_t) \right] \leq 4 \mathbb{E}^{(s,x)} \left[e^{\frac{c_1}{2} \int s \wedge \zeta (K_2(s,X_s) - K_1(s,X_s)) \, ds} \left| \nabla^s P_{s,t} f \right|^2 \right]
\]
\[+ \left\langle \nabla^s P_{s,t} f, \mathbb{E}^{(s,x)} \left[e^{-\int s \wedge \zeta K_1(s,X_s) \, ds} \langle \nabla^t f \rangle \right] \right\rangle \wedge 0;
\]

(iii) for $f \in C^0_0(M)$, $p \in (1,2]$ and $0 \leq s \leq t < T_c$,
\[
\frac{p(P_{s,t} f^2 - (P_{s,t} f^2)^p)}{4(p-1)} \leq \mathbb{E}^{(s,x)} \left(\int_{s}^{t} e^{-2 \int \tau \wedge \zeta K_1(\tau,X_\tau) \, d\tau} \left| \nabla^t f \right|^2 (X_t) \right)
\]
\[\leq 4 \int_{s}^{t} \mathbb{E}^{(s,x)} \left[e^{\frac{c_1}{2} \int \tau \wedge \zeta (K_2(\tau,X_\tau) - K_1(\tau,X_\tau)) \, d\tau} - 1 \right] P_{s,t} \left| \nabla^t f \right|^2 \, d\tau
\]
\[+ \mathbb{E}^{(s,x)} \left(\nabla^t f(X_s), \nabla^t P_{s,t} f(X_s) - e^{-\int \tau \wedge \zeta K_1(\tau,X_\tau) \, d\tau} \langle \nabla^t f \rangle \right) \wedge 0.
\]
(iii') for $f \in C^\infty_0(M)$, $p \in (1, 2]$ and $0 \leq s \leq t < T_c$,
\[
\frac{\rho \left(P_{s,t}f^2 - (P_{s,t}f^2/p)^p\right)}{4(p-1)} - \mathbb{E}^{(s,x)} \left[\int_s^t e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right]
\leq \frac{1}{4} \left[\int_s^t \mathbb{E}^{(s,x)} \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\leq 4 \left[\int_s^t \left| e^{-\int_0^s K_i(t,X_r)dr} \int_s^t \left| \nabla^t f(X_r) \right|^2 dX_r \right| \right]
\]
(i) for any $p > 0$,
\[\mathcal{R}_s^Z(X, X) = \lim_{t \downarrow s} \frac{P_{s,t} |\nabla^s f|_t^p(x) - |\nabla^s P_{s,t} f|_t^p(x)}{p(t-s)}; \]

(ii) for any $p > 1$,
\[\mathcal{R}_s^Z(X, X) = \lim_{t \to \infty} \frac{1}{t-s} \left(\frac{p(P_{s,t} f^2_n - (P_{s,t} f^2_n)^p)}{4(p-1)(t-s)} - |\nabla^s P_{s,t} f|_t^2 \right)(x) \]
\[= \lim_{t \to \infty} \frac{1}{4(t-s)} \left(P_{s,t} |\nabla^t f|_t^2 - \frac{p(P_{s,t} f^2_n - (P_{s,t} f^2_n)^p)}{4(p-1)(t-s)} \right)(x); \]

(iii) $\mathcal{R}_s^Z(X, X)$ is equal to each of the following limits:
\[\mathcal{R}_s^Z(X, X) = \lim_{t \to \infty} \frac{1}{t-s} \left((P_{s,t} f_n)^2_P - (P_{s,t} f_n)^2_P \right)(x) \]
\[= \lim_{t \to \infty} \frac{1}{4(t-s)} \left(4(t-s)P_{s,t} |\nabla^t f|_t^2 + (P_{s,t} f^2_n)^2 - P_{s,t} f^2_n \log f_n \right)(x); \]

(iv) $\mathcal{R}_s^Z(X, X)$ can also be calculated via the following limits:
\[\mathcal{R}_s^Z(X, X) = \lim_{t \to \infty} \frac{\left\{ \langle \nabla^s f, \mathbb{E}/\nabla^t f \rangle_0 \right\}}{t-s} \left\{ \langle \nabla^s f, \mathbb{E}/\nabla^t f \rangle_0 - \langle \nabla^s f, \mathbb{E}/\nabla^t f \rangle_0 \right\} \]
\[= \lim_{t \to \infty} \frac{\left\{ \langle \nabla^s f, \mathbb{E}/\nabla^t f \rangle_0 \right\}}{t-s} \left\{ \langle \nabla^s f, \mathbb{E}/\nabla^t f \rangle_0 - \langle \nabla^s f, \mathbb{E}/\nabla^t f \rangle_0 \right\}. \]

Proof. Without loss of generality, we prove (iv) only for $s = 0$. For the remaining formulae, the reader is referred to [6]. We have
\[\lim_{t \downarrow 0} \langle \nabla^0 f, \mathbb{E}/\nabla^t f \rangle_0 - \langle \nabla^0 f, \mathbb{E}/\nabla^t f \rangle_0 \]
\[= \lim_{t \downarrow 0} \langle \nabla^0 f, \mathbb{E} \left[\frac{(id - Q_t)}{t} \right] \rangle_0 - \langle \nabla^0 f, \mathbb{E} \left[\frac{(id - Q_t)}{t} \right] \rangle_0 \]
\[= \lim_{t \downarrow 0} \langle \nabla^0 f, \mathbb{E} \left[\frac{1}{t} \int_0^t Q_s \mathcal{R}_s^Z \mathbb{E} \left[\frac{1}{t} \right] \right] \rangle_0 \]
\[= \mathcal{R}_0^Z(\nabla^0 f, \nabla^0 f). \]

Similarly, we have
\[\lim_{t \downarrow 0} \langle \nabla^0 P_{s,t} f, \mathbb{E}/\nabla^t f \rangle_0 - \langle \nabla^0 P_{s,t} f, \mathbb{E}/\nabla^t f \rangle_0 \]
\[= \lim_{t \downarrow 0} \langle \nabla^0 P_{s,t} f, \mathbb{E} \left[\frac{(id - Q_t)}{t} \right] \rangle_0 - \langle \nabla^0 P_{s,t} f, \mathbb{E} \left[\frac{(id - Q_t)}{t} \right] \rangle_0 \]
\[= \lim_{t \downarrow 0} \langle \nabla^0 P_{s,t} f, \mathbb{E} \left[\frac{1}{t} \int_0^t Q_s \mathcal{R}_s^Z \mathbb{E} \left[\frac{1}{t} \right] \right] \rangle_0 \]
\[= \mathcal{R}_0^Z(\nabla^0 f, \nabla^0 f). \]

Proof of Theorem [6.1] We give the proof of the equivalence (i) and (ii), resp. (ii').
“(i) implies (ii) and (ii’):” By \((4.4) \), we know that
\[
\left\| \text{id} - e^{\frac{1}{2} \int_s^t f_r'(r) (K_1(r,X_r) + K_2(r,X_r)) \, dr} Q_{s,t} \right\|
\]
\[
= \left\| \int_s^t e^{\frac{1}{2} \int_u^r f_u'(u) (K_1(u,X_u) + K_2(u,X_u)) \, du} Q_{s,r} \left(R^x_{s,t} - \frac{K_1(r,X_r) + K_2(r,X_r)}{2} \right) \, dr \right\|
\]
\[
\leq \int_s^t e^{\frac{1}{2} \int_u^r f_u'(u) (K_1(u,X_u) + K_2(u,X_u)) \, du} \|Q_{s,r}\| \frac{K_2(r,X_r) - K_1(r,X_r)}{2} \, dr
\]
\[
\leq \int_s^t e^{\frac{1}{2} \int_u^r f_u'(u) (K_2(u,X_u) - K_1(u,X_u)) \, du} \frac{K_2(r,X_r) - K_1(r,X_r)}{2} \, dr
\]
\[
eq e^{\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} - 1.
\]

By a similar discussion as in the proof of Theorem 2.1, we have
\[
\left| 2a\nabla^s f + 2b\nabla^s P_{s,t} f - Q_{s,t} / s \nabla^s f(X_s) \right|^2_s
\]
\[
\leq e^{\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} \left| 2a\nabla^s f + 2b\nabla^s P_{s,t} f - e^{-\frac{1}{2} \int_s^r f_r'(r) (K_1(r,X_r) + K_2(r,X_r)) \, dr} / s \nabla^s f(X_s) \right|^2_s
\]
\[
+ e^{-\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} \left(e^{\frac{1}{2} \int_r^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} - e^{\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} \right) \left| \nabla^s f(X_s) \right|^2_t
\]
\[
= e^{\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} \left| 2a\nabla^s f + 2b\nabla^s P_{s,t} f \right|^2_s
\]
\[
- 2e^{-\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} \left(2a\nabla^s f + 2b\nabla^s P_{s,t} f, / s \nabla^s f(X_s) \right)_s + e^{-2 \int_s^r f_r'(r) (K_1(r,X_r) + K_2(r,X_r)) \, dr} \left| \nabla^s f(X_s) \right|^2_t
\]
where \(a, b \) are constants such that \(a + b = 1 \). From this, we obtain
\[
\mathbb{E} \left| u_s Q_{s,t} u_t^{-1} \nabla^s f(X_s) \right|^2_s - \mathbb{E} \left[e^{-2 \int_s^r f_r'(r) (K_1(r,X_r)) \, dr} \left| \nabla^s f(X_s) \right|^2_t \right]
\]
\[
\leq \left(\mathbb{E} e^{\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} - 1 \right) \left| 2a\nabla^s f + 2b\nabla^s P_{s,t} f \right|^2_s
\]
\[
- 2 \left(2a\nabla^s f + 2b\nabla^s P_{s,t} f, \mathbb{E} \left[e^{-\frac{1}{2} \int_s^r f_r'(r) (K_1(r,X_r)) \, dr} / s \nabla^s f(X_s) \right] \right)_s
\]
\[
+ 2 \left(2a\nabla^s f + 2b\nabla^s P_{s,t} f, \nabla^s P_{s,t} f \right)_s.
\]

Moreover, by the derivative formula (Lemma 4.3), we have
\[
\left| \nabla^s P_{s,t} f \right|^2_s \leq \mathbb{E} \left| Q_{s,t} / s \nabla^s f(X_s) \right|^2_s
\]
which combines with (4.6) implies
\[
\left| \nabla^s P_{s,t} f \right|^2_s \leq \mathbb{E} \left[e^{-2 \int_s^r f_r'(r) (K_1(r,X_r)) \, dr} \left| \nabla^s f(X_s) \right|^2_t \right]
\]
\[
\leq \left(\mathbb{E} e^{\frac{1}{2} \int_s^r f_r'(r) (K_2(r,X_r) - K_1(r,X_r)) \, dr} - 1 \right) \left| 2a\nabla^s f + 2b\nabla^s P_{s,t} f \right|^2_s
\]
\[
- 2 \left(2a\nabla^s f + 2b\nabla^s P_{s,t} f, \mathbb{E} \left[e^{-\frac{1}{2} \int_s^r f_r'(r) (K_1(r,X_r)) \, dr} / s \nabla^s f(X_s) \right] \right)_s
\]
\[
+ 2 \left(2a\nabla^s f + 2b\nabla^s P_{s,t} f, \nabla^s P_{s,t} f \right)_s.
\]

Hence taking \(a = 1, b = 0 \) and \(a = 0, b = 1 \) in the above inequalities, we complete the proof of “(i) \Rightarrow (ii’(ii))”.

“(i) \Rightarrow (iii)” By Itô’s formula, for \(f \in C^0_0(M) \),
\[
d(P_{s,t} f^{2/p})^p(X_s) = dM_s + (L_s + \partial_s)(P_{s,t} f^{2/p}(X_s))^p \, ds
\]
\[
= dM_s + p(p - 1)(P_{s,t} f^{2/p}(X_s))^{p-2} |\nabla^s P_{s,t} f^{2/p}|^2_s (X_s) \, ds
\]
\[
= dM_s + p(p - 1)(P_{s,t} f^{2/p}(X_s))^{p-2} |\nabla^s P_{s,t} f^{2/p}|^2_s (X_s) \, ds
\]
where \(M_s \) is a local martingale. The rest of the proof then is similar to the one of Theorem 2.1; we skip the details here.
“(ii) and (ii’) ⇒ (i)”:
\[
\frac{|\nabla^s P_{s,t}f|^2}{t-s} - \mathbb{E}_{(s,x)} \left[1 - e^{-2\int_t^s K(r,X_r)dr} \right] |\nabla^t f|^2(X_t) \\
\leq 4 \left[\frac{1}{t-s} \right] \mathbb{E}_{(s,x)} \left[e^{2\int_t^s K(r,X_r)dr} \right] |\nabla^s P_{s,t}f|^2(X_t) \\
- \left[\langle \nabla^s f, \mathbb{E}_{(s,x)} [e^{-2\int_t^s K(r,X_r)dr}] \rangle \right] \wedge 0;
\]
Letting \(t \downarrow s \) and using Lemma 4.4 (i) (iv), we have
\[
-2 \mathcal{R}_s^2(\nabla^s f, \nabla^s f) + 2K(s, x) |\nabla^s f|^2_s \\
\leq 4 \left[\frac{1}{2} (K_2(s, x) - K_1(s, x)) |\nabla^s f|^2_s - \mathcal{R}_s^2(\nabla^s f, \nabla^s f) + K_1(s, x) |\nabla^s f|^2_s \right] \wedge 0,
\]
that is
\[
K_1(s, x) |\nabla^s f|^2_s(x) \leq \mathcal{R}_s^2(\nabla^s f, \nabla^s f)(x) \leq K_2(s, x) |\nabla^s f|^2_s(x).
\]
Similarly, (ii’) implies (i) as well. We skip the details here.

Based on our characterizations for pinched curvature on evolving manifolds, we can define (weak) solutions to some geometric flows.

Corollary 4.5. Let \((t, x) \mapsto K(t, x)\) be some function on \([0, T_c) \times M\). The following statements are equivalent to each other:

(i) the family \((M, g_t)_{t \in [0, T_c)}\) evolves by
\[
\frac{1}{2} \partial_t g_t = \text{Ric}_t - \nabla^s Z_t - K(t, x) g_t, \quad t \in [0, T_c);
\]

(ii) for \(f \in C^0_0(M) \) and 0 ≤ s ≤ t < T_c,
\[
|\nabla^s P_{s,t}f|^2_s - \mathbb{E}_{(s,x)} \left[e^{-2\int_t^s K(r,X_r)dr} |\nabla^t f|^2(X_t) \right] \\
\leq 4 \left[\langle \nabla^s f, \nabla^s P_{s,t}f \rangle_s - \langle \nabla^s f, \mathbb{E}_{(s,x)} [e^{-2\int_t^s K(r,X_r)dr} / \int_s^t |\nabla^t f(X_r)| dr] \rangle_s \right] \wedge 0;
\]

(ii’) for \(f \in C^0_0(M) \) and 0 ≤ s ≤ t < T_c,
\[
|\nabla^s P_{s,t}f|^2_s - \mathbb{E}_{(s,x)} \left[e^{-2\int_t^s K(r,X_r)dr} |\nabla^t f|^2(X_t) \right] \\
\leq 4 \left[|\nabla^s P_{s,t}f|^2_s - \langle \nabla^s P_{s,t}f, \mathbb{E}_{(s,x)} [e^{-2\int_t^s K(r,X_r)dr} / \int_s^t |\nabla^t f(X_r)| dr] \rangle_s \right] \wedge 0;
\]

(iii) for \(f \in C^0_0(M), p \in (1, 2) \) and 0 ≤ s ≤ t < T_c,
\[
\frac{p|\nabla^s P_{s,t}f|^2 - (p - 1)|\nabla^t f|^2}{4(p - 1)} - \mathbb{E}_{(s,x)} \left[\int_s^t e^{-2\int_t^r K(r,X_r)dr} |\nabla^t f|^2(X_r) \right] \\
\leq 4 \int_s^t \mathbb{E}_{(s,x)} \left[\nabla^t f(X_r), \nabla^t P_{s,t}f(X_r) - e^{-2\int_t^r K(r,X_r)dr} / \int_s^r |\nabla^t f(X_r)| dr \right] \wedge 0;
\]

(iii’) for \(f \in C^0_0(M), p \in (1, 2) \) and 0 ≤ s ≤ t < T_c,
\[
\frac{p|\nabla^s P_{s,t}f|^2 - (p - 1)|\nabla^t f|^2}{4(p - 1)} - \mathbb{E}_{(s,x)} \left[\int_s^t e^{-2\int_t^r K(r,X_r)dr} |\nabla^t f|^2(X_r) \right] \\
\leq 4 \int_s^t \mathbb{E}_{(s,x)} \left[\nabla^t P_{s,t}f(X_r), e^{-2\int_t^r K(r,X_r)dr} / \int_s^r |\nabla^t f(X_r)| dr \right] \wedge 0;
\]
(iv) for $f \in C_0^\infty(M)$ and $0 \leq s \leq t < T_c$,
\[
\frac{1}{4} \left(P_{s,t} (f^2 \log f^2) - P_{s,t} f^2 \right) \geq -\mathbb{E}^{(s,x)} \left[\int_s^t e^{-\frac{2}{s} f(Y) \tau} \, dt \times (\nabla^2 f)_t^2(X_t) \right] \leq 4 \int_s^t \mathbb{E}^{(s,x)} \left(\nabla^2 P_{s,t} f(X_t) - e^{-\frac{2}{s} f(Y) \tau} \frac{1}{(\nabla^2 f)_t^2} \right) \, dt \wedge 0;
\]
(iv') for $f \in C_0^\infty(M)$ and $0 \leq s \leq t < T_c$,
\[
\frac{1}{4} \left(P_{s,t} (f^2 \log f^2) - P_{s,t} f^2 \right) - \mathbb{E}^{(s,x)} \left[\int_s^t e^{-\frac{2}{s} f(Y) \tau} \, dt \times (\nabla^2 f)_t^2(X_t) \right] \leq 4 \int_s^t \mathbb{E}^{(s,x)} \left(\nabla^2 P_{s,t} f(X_t), e^{-\frac{2}{s} f(Y) \tau} \frac{1}{(\nabla^2 f)_t^2} \right) \, dt \wedge 0.
\]

Remark 4.6. In Corollary 4.5, if $Z_t \equiv 0$ and $K \equiv 0$, the results characterize solutions to the Ricci flow, see [9] for functional inequalities on path space characterizing Ricci flow.

Acknowledgments. This work has been supported by Fonds National de la Recherche Luxembourg (Open project O14/7628746 GEOMREV). The first named author acknowledges support by NSFC (Grant No. A0111002) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ16A010009).

References

1. Marc Arnaudon, Kolehe Abdoulaye Coulibaly, and Anton Thalmaier, *Brownian motion with respect to a metric depending on time: definition, existence and applications to Ricci flow*, C. R. Math. Acad. Sci. Paris 346 (2008), no. 13-14, 773–778. MR 2427080
2. Dominique Bakry, *On Sobolev and logarithmic Sobolev inequalities for Markov semigroups*, New trends in stochastic analysis (Charingworth, 1994), World Sci. Publ., River Edge, NJ, 1997, pp. 43–75. MR 1654503
3. Jean-Michel Bismut, *Large deviations and the Malliavin calculus*, Progress in Mathematics, vol. 45, Birkhäuser Boston, Inc., Boston, MA, 1984. MR 755001
4. Mireille Capitaine, Elton P. Hsu, and Michel Ledoux, *Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces*, Electron. Comm. Probab. 2 (1997), 71–81 (electronic). MR 1484557
5. Xin Chen and Bo Wu, *Functional inequality on path space over a non-compact Riemannian manifold*, J. Funct. Anal. 266 (2014), no. 12, 6753–6779. MR 3198853
6. Li-Juan Cheng, *Diffusion semigroup on manifolds with time-dependent metrics*, to appear in: Forum. Math. (2016).
7. Bruce K. Driver, *A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold*, J. Funct. Anal. 110 (1992), no. 2, 272–376. MR 1194990
8. K. D. Elworthy and X.-M. Li, *Formulae for the derivatives of heat semigroups*, J. Funct. Anal. 125 (1994), no. 1, 252–286. MR 1290212
9. Robert Haslhofer and Aaron Naber, *Characterizations of the Ricci flow*, to appear in: J. Eur. Math. Soc. (2016).
10. __________, *Ricci curvature and Bochner formulas for martingales*, arXiv:1608.04371 (2016).
11. Elton P. Hsu, *Logarithmic Sobolev inequalities on path spaces*, New trends in stochastic analysis (Charingworth, 1994), World Sci. Publ., River Edge, NJ, 1997, pp. 168–181. MR 1654360
12. __________, *Stochastic analysis on manifolds*, Graduate Studies in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 2002. MR 1882015
13. Kazumasa Kuwada and Robert Philipowski, *Coupling of Brownian motions and Perelman’s \mathcal{L}-functional*, J. Funct. Anal. 260 (2011), no. 9, 2742–2766. MR 2772350
14. Aaron Naber, *Characterizations of bounded Ricci curvature on smooth and nonsmooth spaces*, arXiv:1306.6512v4 (2015).
15. Max-K. von Renesse and Karl-Theodor Sturm, *Transport inequalities, gradient estimates, entropy, and Ricci curvature*, Comm. Pure Appl. Math. 58 (2005), no. 7, 923–940. MR 2142879
16. Feng-Yu Wang, *Functional inequalities, markov semigroups and spectral theory*, The Science Series of the Contemporary Elite Youth, Science Press, Beijing, 2005.
17. __________, *Analysis for diffusion processes on Riemannian manifolds*, Advanced Series on Statistical Science & Applied Probability, 18, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. MR 3154951
18. Feng-Yu Wang and Bo Wu, *Pointwise characterizations of curvature and second fundamental form on Riemannian manifolds*, arXiv:1605.02447v4 (2016).