Association Between R353Q (rs6046) Polymorphism in Factor VII with Coronary Heart Disease
A Meta-Analysis

Fei Li,1 MD, Shengda Hu,1 MD, Xianyong Zhou,1 MD, Xiaofei Mei,1 MD and Yafeng Zhou,1 PhD

Summary
A number of studies have showed the relationship between R353Q (rs6046) polymorphism in factor VII gene and coronary heart disease (CHD). However, the results remain controversial due to the limitations of the research objects and small sample size of individual study. We conducted this meta-analysis to validate the association between R353Q (rs6046) polymorphism and the risk of CHD.

The relevant data was collected up to March 25, 2019 from PubMed, Web of Science, CNKI, and Wanfang databases. We examined all eligible studies using the Newcastle-Ottawa Quality Assessment Scale (NOS). The odds ratio (OR) and its corresponding 95% confidence interval (CI) were adopted to evaluate the relationship between the R353Q (rs6046) polymorphism and CHD. Stata version 14.0 (Stata Corporation, USA) was used in all statistical tests.

There were at least 28 eligible studies, including 14626 cases and 17994 controls, included in our meta-analysis. R353Q (rs6046) polymorphism was associated with the reduced risk of CHD in four genetic models: allele model (Q versus R: OR = 0.79, 95% CI: 0.69 to 0.90, \(P<0.001\), \(I^2 = 56.4\%\)), homozygote (co-dominant) model (QQ versus RR: OR = 0.72, 95% CI = 0.58 to 0.92, \(P = 0.004\), \(I^2 = 5.8\%\)), heterozygote (co-dominant) model (RQ versus RR: OR = 0.71, 95% CI = 0.58 to 0.86, \(P = 0.001\), \(I^2 = 75.4\%\)), and dominant model (RQ+QQ versus RR+RQ: OR = 0.86, 95% CI = 0.57 to 1.28, \(P = 0.447\), \(I^2 = 51.6\%\)).

The results of the current meta-analysis suggested that R353Q (rs6046) polymorphism was associated with the reduced risk of CHD, especially in Asians.

Key words: Gene, Single nucleotide polymorphism, Coagulation factor VII

Coronary heart disease (CHD) is currently a main public health concern, which is leading the cause of death and disability around the world.1 Platelet aggregation or lipid deposition along the inner walls of coronary arteries causes stenosis or obstruction of vessel, causing cardiac ischemia.2 Up to now, the exact cause of CHD was still not expounded. Age, sex, smoking, alcoholism, hypertension, hyperlipidemia, diabetes, family history, and genetic factors were prompted common risk factors by epidemiological studies.3 Among the abovementioned causes of CHD, blood coagulation was also linked to the onset of atherosclerotic lesion through its role in the formation of blood clots.4,5

The coagulation factor VII plays a key role in activating the extrinsic coagulation pathway, which binds to the tissue factor, and then, it converts into factor VIIa, activating fibrin, and leads to platelet aggregation and blood clot. When the plaque was unstable and ruptured, high factor VII levels might strengthen thrombosis and lead to sudden obstruction, causing fatal events such as acute myocardial infarction (AMI).6

R353Q (rs6046) polymorphism in factor VII gene had been shown to influence FVII factor levels. A number of case-control studies suggested that R353Q (rs6046) polymorphism might reduce the risk of CHD especially AMI because carriers of the Q allele can lower the levels of factor FVII, compared with individuals who were heterozygous for the R allele.7-13 However, these results are still controversial due to limitations of the research objectives, small sample size, low quality of research, etc. Accordingly, we conducted this meta-analysis to further validate the relationship between R353Q (rs6046) polymor-
Phenotypism in factor VII gene and the risk of CHD.

Methods

We conducted this study as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA). This meta-analysis was performed based on previously published papers; therefore, approval from an ethics review committee and consent of patients were not required.

Search strategy: The relevant data were collected from the following electronic databases up to March 25, 2019: PubMed, Web of Science, CNKI, and Wanfang. The keywords included were as follows: R353Q, rs6046, gene, polymorphism, coronary artery disease, CHD, AMI, and acute coronary syndrome.

Inclusion and exclusion criteria: All eligible studies had to meet the following inclusion criteria: (1) studies reporting the relationship between the R353Q (rs6046) polymorphism and CHD or AMI; (2) case-control studies; (3) all patients were diagnosed by the diagnostic code of CHD or AMI; and (4) studies concerning valid data to calculate genotypic odds ratio (OR) and its corresponding 95% confidence intervals (95% CI).

Studies with the following characteristics would be excluded: (1) reviews, case reports, meta-analyses, and unpublished data; (2) not associated with R353Q (rs6046) polymorphism or CHD; and (3) the data of allele frequency were incomplete or unclear and could not be calculated.

Data extraction: Two of the authors independently extracted sufficient data from every included study. When the opinions were different, discussion is made to reach a consensus. Sufficient data of each eligible study included first author’s name, year of publication, country of origin, ethnicity of population, number of cases and controls, genotype frequency in cases and controls for R353Q polymorphism, and whether the distributions of R353Q genetic polymorphism in the control group met the Hardy-Weinberg equilibrium (HWE).

Quality assessment: We assessed all eligible studies using the Newcastle-Ottawa Quality Assessment Scale (NOS), which was a rating tool to evaluate the quality of a case-control study from selection, comparability, and exposure. The NOS has a score range from 0 to 9, with 0-4 regarded as low-quality study, 4-6 as moderate-quality study, and 6-9 as high-quality study.

Statistical analysis: The OR and its corresponding 95%
CI were adopted to evaluate the relationship between the R353Q (rs6046) polymorphism and CHD. We regarded that the distributions of R353Q genetic polymorphisms in the control group met the HWE if $P > 0.05$ in chi-squared test. Five genetic models were used to evaluate the association between R353Q (rs6046) polymorphism and CHD: allele model (Q versus R), homozygote (co-dominant) model (QQ versus RR), heterozygote (co-dominant) model (RQ versus RR), dominant model (RQ+QQ versus RR), and recessive model (QQ versus RR+RQ). We chose the random-effects model (Der Simonian-Laird method) to evaluate the results if heterogeneity between each eligible study was significant ($I^2 > 50\%$ or $P < 0.1$); otherwise, fixed-effects model (Mantel-Haenszel method) was chosen. We performed subgroup analysis based on ethnicity of study population as well as HWE. A sensitivity analysis was performed by removing each case-control study constantly to evaluate the stability and reliability of the combined results. Publication bias was calculated through the Egger’s test and drawing Begg’s funnel plot. We thought it was statistically significant between R353Q (rs6046) polymorphism and CHD if $P < 0.05$ or less. Stata version 14.0 (Stata Corporation, USA) was used in all statistical tests.

Results

Characteristics of the included studies: As shown in Figure 1, 66 eligible studies were identified in the initial search. After different levels of screening based on the inclusion and exclusion criteria described previously, 28 articles including 14976 cases and 18214 controls were selected in the final meta-analysis. Sample sizes of all selected studies ranged from 125 to 2132. Seventeen studies have included Asians as their study population, and 11 studies were with Caucasians. Four studies were not able to meet the HWE. All eligible studies were evaluated using NOS, and scores were mostly more than six points. Finally, the characteristics of included studies were summarized in Table.

Association between the R353Q (rs6046) polymorphism and CHD: We chose random-effects model to conduct the data analysis when $I^2 > 50\%$. Significant relationship was found in the four genetic models, allele model (Q versus R: OR = 0.79, 95% CI: 0.69 to 0.90), homozygote (co-dominant) model (QQ versus RR), heterozygote (co-dominant) model (RQ versus RR), dominant model (RQ+QQ versus RR), and recessive model (QQ versus RR+RQ). The subgroup analysis was performed by ethnicity and HWE. A sensitivity analysis was performed by removing each case-control study constantly to evaluate the stability and reliability of the combined results. Publication bias was calculated through the Egger’s test and drawing Begg’s funnel plot. We thought it was statistically significant between R353Q (rs6046) polymorphism and CHD if $P < 0.05$ or less. Stata version 14.0 (Stata Corporation, USA) was used in all statistical tests.

Table. The Basic Characteristics of the Included Studies and R353Q (rs6046) Polymorphisms Genotype Distribution and Allele Frequency in Cases and Controls

Author	Year	Country	Ethnicity	RR	RQ	QQ	R allele	Q allele	RR	RQ	QQ	R allele	Q allele	NOS	HWE
Doggen	1998	Netherlands	Caucasian	440	115	5	995	125	529	111	4	1169	1197	7	Y
Iacoviello	1999	Italy	Caucasian	114	49	1	277	51	138	76	10	352	396	6	Y
Feng	1999	USA	Caucasian	81	19	0	181	19	18	7	0	43	43	7	Y
Tamaki	1999	Japan	Asian	176	28	4	380	36	245	38	2	528	42	6	Y
Song	2000	Korea	Asian	140	18	0	298	18	122	16	1	260	18	7	Y
Cai	2000	China	Asian	125	12	0	262	12	109	16	0	234	16	7	Y
Girelli	2000	Italy	Caucasian	215	89	7	519	103	94	34	5	222	44	8	Y
Batalla	2001	Spain	Caucasian	130	43	2	303	47	154	38	8	346	54	7	N
Kakko	2002	Finland	Caucasian	129	13	0	271	13	130	12	0	272	12	7	Y
Xu	2002	China	Asian	210	23	1	443	25	89	15	1	193	17	6	Y
Shimokata	2002	Japan	Asian	237	18	0	492	18	103	22	0	228	22	7	Y
Carew	2003	UK	Caucasian	124	32	1	280	34	1449	333	17	3231	367	7	Y
Xu	2003	China	Asian	210	23	1	443	25	178	30	2	386	34	6	Y
Xu	2003	China	Asian	210	23	1	443	25	122	17	1	261	19	7	Y
Ogawa	2004	Japan	Caucasian	117	10	0	244	10	131	17	2	279	21	7	Y
Zhang	2004	China	Asian	204	20	1	428	22	101	14	1	216	16	6	Y
Pegoraro	2005	India	Asian	100	79	16	279	111	152	128	20	432	168	6	Y
Salazar	2006	Costa Rica	Caucasian	130	35	1	295	37	119	46	1	284	48	6	Y
Taymaz	2007	Turkey	Caucasian	82	32	4	196	40	25	12	1	62	14	6	Y
Zhao	2007	China	Asian	190	16	1	396	18	226	37	1	489	39	6	Y
Yang	2007	China	Asian	375	42	2	792	46	488	72	4	1048	80	7	Y
Ekstrom	2007	Sweden	Caucasian	310	58	9	678	76	323	62	2	708	66	6	Y
Huang	2009	China	Asian	74	4	0	152	4	51	7	2	109	11	7	N
Huang	2009	China	Asian	908	91	21	1907	133	904	165	43	1973	251	7	N
Huang	2009	China	Asian	589	59	16	1237	91	599	118	33	1316	184	7	N
Sobti	2010	India	Asian	110	12	88	232	188	78	150	72	306	294	7	Y
Qi	2012	China	Asian	132	10	0	274	10	177	15	0	369	15	6	Y
Sonia	2012	Tunisia	Asian	196	37	13	479	113	169	122	11	460	144	7	Y

NOS indicates Newcastle-Ottawa Quality Assessment Scale; and HWE, Hardy-Weinberg equilibrium.
Figure 2. Forests for Rs353Q (rs6046) polymorphism and coronary heart disease (CHD). A: Allele model (Q versus R); B: Homozygote (co-dominant) model (QQ versus RR); C: Heterozygote (co-dominant) model (RQ versus RR); D: Dominant model (RQ + QQ versus RR); E: Recessive model (QQ versus RR + RQ). CI, confidence interval; OR, odds ratio.

Including recessive model (QQ versus RR + RQ: OR = 0.86, 95% CI = 0.57 to 1.28, P = 0.447, I² = 51.6%) (Figure 2).

The outcomes of the analysis showed that the Q carriers could reduce the risk of CHD.
Figure 3. Subgroup association analysis between R353Q (rs6046) polymorphism and coronary heart disease (CHD) in ethnicity. A: Allele model (Q versus R); B: Homozygote (co-dominant) model (QQ versus RR); C: Heterozygote (co-dominant) model (RQ versus RR); D: Dominant model (RQ + QQ versus RR); E: Recessive model (QQ versus RR + RQ). CI, confidence interval; OR, odds ratio.
Figure 4. Subgroup association analysis between R353Q (rs6046) polymorphism and coronary heart disease (CHD) in HWE. A: Allele model (Q versus R); B: Homozygote (co-dominant) model (QQ versus RR); C: Heterozygote (co-dominant) model (RQ versus RR); D: Dominant model (RQ + QQ versus RR); E: Recessive model (QQ versus RR + RQ). CI, confidence interval; OR, odds ratio.
Subgroup analysis: Because four studies failed to meet the Hardy-Weinberg equilibrium, we performed further subgroup analysis based on HWE (Y or N), by ethnicity (Caucasian and Asian). The results were presented in Figure 3 (subgroup analysis by HWE) and Figure 4 (subgroup analysis by ethnicity). In the subgroup analysis by HWE, rejecting these studies which were in inconformity to HWE,17,29,31,32) ORs were not significantly changed in all genetic models except for the homozygote (co-dominant) model (QQ versus RR: OR = 0.94, 95% CI = 0.71 to 1.23, \(P = 0.637 \)), and at the same time, the heterogeneities were decreased in different levels. In the subgroup analysis by ethnicity, the relationship between R353Q (rs6046) polymorphism and CHD was found to be stronger in Asians with more obvious ORs: allele model (Q versus R: \(OR = 0.70, 95\% \ CI = 0.61 \) to 0.82, \(P < 0.001, I^2 = 49.4\% \)), homozygote (co-dominant) model (QQ versus RR: \(OR = 0.73, 95\% \ CI = 0.57 \) to 0.93, \(P = 0.010, I^2 = 36.7\% \)).
Figure 6. Begg’s funnel plots of publication biases on the relationships between R353Q (rs6046) polymorphism and coronary heart disease (CHD). A: Allele model (Q versus R); B: Homozygote (co-dominant) model (QQ versus RR); C: Heterozygote (co-dominant) model (RQ versus RR); D: Dominant model (RQ + QQ versus RR); E: Recessive model (QQ versus RR + RQ).

0.0%), heterozygote (co-dominant) model (RQ versus RR: OR = 0.58, 95% CI = 0.44 to 0.76, P < 0.001, I² = 76.8%), dominant model (RQ+QQ versus RR: OR = 0.63, 95% CI = 0.52 to 0.75, P < 0.001, I² = 53.0%), and recessive model (QQ versus RR+RQ: OR = 0.90, 95% CI = 0.55 to 1.47, P = 0.676, I² = 60.0%). Meanwhile in Caucasians, the data are as follows: allele model (Q versus R: OR = 0.96, 95% CI = 0.83 to 1.12, P = 0.642, I² = 22.0%), homozygote (co-dominant) model (QQ versus RR: OR = 0.77, 95% CI = 0.37 to 1.58, P = 0.470, I² = 31.9%), heterozygote (co-dominant) model (RQ versus RR: OR = 1.02, 95% CI = 0.88 to 1.18, P = 0.790, I² = 0.0%), dominant model (RQ+QQ versus RR: OR = 1.00, 95% CI = 0.86 to 1.16, P = 0.965, I² = 6.6%), and recessive model (QQ versus RR+RQ: OR = 0.76, 95% CI = 0.37 to 1.57, P = 0.460, I² = 31.7%) . In summary, our meta-analysis showed that R353Q (rs6046) polymorphism was a protective factor for CHD, especially in Asians.

Sensitivity analysis: We performed sensitivity analysis to evaluate the influence of every study on the final pooled ORs (Figure 5). When we omitted each case-control study constantly, the final ORs were not significantly changed, which confirmed the stability and reliability of our meta-analysis.

Publication bias: Begg’s funnel plot and Egger’s test were applied to evaluate the publication bias in selected
studies. As per the Begg’s funnel plot, all studies included were equally distributed on both sides of the line, which shows that obvious publication bias was not found among our meta-analysis. Meanwhile, Egger’s test showed the same results (all \(P > 0.05 \)) (Figure 6).

Discussion

A large number of genetic loci had been identified by several genome-wide association studies, which suggested the potential association between the common genetic variants with CHD development. A previous genome-wide association study showed an obvious relationship between R353Q (rs6046) polymorphism and plasma levels of coagulation factor VII. This is a simple nucleotide polymorphism which had been identified in exon 8 of factor FVII gene, characterized by the missense replacement of amino acid (R) by glutamine (Q) and, consequently, could downregulate the gene expression level and decrease the plasma levels, which was closely linked to the reduced risk of CHD.

Several studies had reported that R353Q (rs6046) polymorphism was a protective factor against CHD, whereas some controversies offered different opinions. Doggen, et al. found that R353Q (rs6046) polymorphism could increase the development of CHD, while Shimokata, et al. have suggested the contrary. Girelli et al. did not find any relationship between R353Q (rs6046) polymorphism and CHD. A recent meta-analysis by Mo, et al. showed a trend association between CHD and R353Q but with no definite result. Based on the controversial or uncertain researches, we conducted this meta-analysis, and after adding the two studies published in 2012, the association became statistically significant.

Twenty-eight eligible studies including 14626 cases and 17994 controls were enrolled in our meta-analysis. We found a statistically significant association between R353Q (rs6046) polymorphism in factor VII gene and CHD under all genetic models except for the recessive model. To reduce the influence of different ethnicities to final results, we performed a subgroup analysis by ethnicity, and final pooled ORs were not obviously changed; meanwhile, we found Q carriers of R353Q polymorphism were a protective factor associated with the reduced risk of CHD, especially in Asians, which could be demonstrated by lower ORs. We performed sensitivity analysis which confirmed the final ORs were not influenced by any single study. Meanwhile, no publication bias was found in all genetic models by drawing Begg’s funnel plot or calculating Egger’s test. In conclusion, our meta-analysis could go through the test of stability and reliability.

Several drawbacks in our meta-analysis should be considered. Firstly, though no publication bias was found in all genetic models by funnel plots, we could not ignore the possibility of it since unpublished studies were not included. Secondly, we only selected studies published in English and Chinese languages, excluding other studies in other languages. Thirdly, CHD is a complex disease involving several genes as well as many interferential factors such as environmental factors, which could affect the final results. Further, we casually divided ethnicity into “Caucasian” and “Asian” without the detailed information of the patients, which might bias the results. Eventually we did not estimate the association between R353Q (rs6046) polymorphism and the different types of CHD such as AMI or angina because of insufficient data. Taking these limitations into consideration, more high-quality studies with larger sample size should be performed to confirm our results.

Conclusion

The results of the current meta-analysis suggested that R353Q (rs6046) polymorphism in factor VII gene was associated with the reduced risk of CHD, especially in Asians. More high-quality studies with larger sample size need to be carried out for further research.

Disclosure

Conflicts of interest: None.

References

1. Shamloo AS, Dinov B, Bertagnolli L, et al. Value of cardiogoniometry in diagnosis of coronary artery disease in patients with suspected stable ischemic heart disease: A systematic review and meta-analysis. Int Heart J 2019; 60: 527-38.
2. He Y, Zhang Z, Dai Q, et al. Accuracy of MRI to identify the coronary artery plaque: A comparative study with intravascular ultrasound. J Magn Reson Imaging 2012; 35: 72-8.
3. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016; 118: 535-46.
4. Cooper JA, Miller GJ, Bauer KA, et al. Comparison of novel hemostatic factors and conventional risk factors for prediction of coronary heart disease. Circulation 2000; 102: 2816-22.
5. Rosendaal FR. Clotting and myocardial infarction: A cycle of insights. J Thromb Haemost 2003; 1: 640-2.
6. Mo X, Hao Y, Yang X, Chen S, Lu X, Gu D. Association between polymorphisms in the coagulation factor VII gene and coronary heart disease risk in different ethnicities: A meta-analysis. BMC Med Genet 2011; 12: 107.
7. Girelli D, Russo C, Ferraresi P, et al. Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 2000; 343: 774-80.
8. Iacoviello L, DiCastelnuovo A, DeKniijff P, et al. Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N Engl J Med 1998; 338: 79-85.
9. Shimokata K, Kondo T, Ohno M, et al. Effects of coagulation factor VII polymorphisms on the coronary artery disease in Japanese: Factor VII polymorphism and coronary disease. Thromb Res 2002; 105: 493-8.
10. Xu G, Jin GD, Fu GS, et al. Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction in patients undergoing coronary angiography. Chin Med J 2003; 116: 1194-7.
11. Ogawa M, Abe S, Biro S, et al. R353Q polymorphism, activated factor VII, and risk of premature myocardial infarction in Japanese men. Circ J 2004; 68: 520-5.
12. Jeffery S, Poloniecki J, Leatham E, et al. A protective contribution of the Q allele of the R353Q polymorphism of the factor VII gene in individuals with chronic stable angina? Int J Cardiol 2005; 100: 395-9.
13. Fujimaki T, Kato K, Yoshida T, et al. Association of genetic variants with myocardial infarction in Japanese individuals with chronic kidney disease. Thromb Haemost 2009; 101: 963-8.
14. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. Int J Surg 2010; 8: 336-41.
15. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-5.
16. Wu N, Zhang XW, Jia PY, Jia DL. Lack of an Association between polymorphisms of the coagulation factor VII and myocardial infarction in middle-aged Spanish men. Int J Cardiol 2001; 80: 209-12.
17. Carew JA, Basso F, Miller GJ, et al. Functional haplotype in the 5' flanking region of the factor VII gene is associated with an increased risk of coronary heart disease. J Thromb Haemost 2003; 1: 2179-85.
18. Ben-Hadj-Khalifa S, Lakhal B, Mahjoub T, Almawi WY. Contribution of coagulation factor VII and myocardial infarction in Japanese individuals with chronic kidney disease. Thromb Haemost 2009; 101: 963-8.
19. Doggen CJM, Manger Cats VM, Bertina RM, Reitsma PH, Van denbroucke JP, Rosendaal FR. A genetic propensity to high factor VII is not associated with the risk of myocardial infarction in men. Thromb Haemost 1998; 80: 281-5.
20. Xu G, Jin GD, Fu GS, Ma J, SHAN J. Association of coagulation factor VII gene polymorphisms with coronary heart disease. Chin J Med Genet 2003; 20: 39-42.
21. Feng YJ, Draghi A, Linfert DR, Wu AHB, Tsongalis GJ. Polymorphisms of genes affecting thrombosis and risk of myocardial infarction. Arch Pathol Lab Med 1999; 123: 1230-5.
22. Sobti RC, Maithil N, Thakur H, Sharma Y, Talwar KK. Association of ACE and factor VII gene variability with the risk of coronary heart disease in north Indian population. Mol Cell Biochem 2010; 341: 87-98.
23. Song J, Yoon YM, Jung HJ, Hong SH, Park H, Kim JQ. Plasminogen activator inhibitor-1 4G/5G promoter polymorphism and coagulation factor VII Arg353>Gln polymorphism in Korean patients with coronary artery disease. J Korean Med Sci 2000; 15: 146-52.