Recent Progresses on the High Molecular Polymer of Lactobacillus Extracellular Polysaccharides

Yanxia Xing¹, He Zhu¹,², Guifang Chang¹, Kexue Yu, Fengli Yue¹, *

¹Key laboratory of Shandong Provincial education department: Past-harvest QC and multi-utilization of characteristic agricultural products, Shandong agriculture and engineering university, Jinan 250100, China
²National Engineering Laboratory of Rice and By-Products Deep Processing, Central South University of Forestry and Technology, Changsha 410000, China

*Corresponding author e-mail: sdau_zhuhe@126.com

Abstract. Lactobacillus-extracellular polysaccharides (LAB-EPS) is a natural high molecular polymer with various functional properties, such as improving fermented milk texture and improving human health. Many scholars have carried out extensive and in-depth research on the structure, functional properties and structure-activity relationship of lactic acid bacteria extracellular polysaccharides, yet lacking systematic summary on the relationship among LAB-EPS types, chemical composition, structure and nutritional functions. This paper sorts out the research progress in this field and provides reference for further research and development.

1. Introduction
Lactic acid bacteria (LAB) are bacteria that use carbohydrates to produce lactic acid during long-term metabolism.

Among them, some strains are widely used in the food industry, including Streptococcus, Lactobacillus, Bifidobacterium research, lactic acid bacteria as one of the main types of probiotics, in the dispatcher Channel micro-ecological balance, dispatcher immune system and disease prevention play a vital role.

Therefore, in this review, we outline the progress that has been made in the several aspects in recent years, and also discuss existing issues that need to be addressed.

2. Nutritional Functions

2.1. Classification of LAB and LAB-EPS
It has been found that LAB such as Lactobacillus acidophilus, Lactobacillus subtilis, Lactobacillus plantarum, Lactobacillus rhamnose, Lactobacillus casei, Lactobacillus bulgaricus produce EPS(Exopolysaccharides) during the process of growth and metabolism, their yields also showed in the Table 1.
Table 1. Main LAB strains in the fermented sourdough

Strain	Temperature/℃	Time/h	pH	EPS-Yield	Reference
L.rhamnosus 9595M	32-37	72	6	~1000	1,2
L.delb. bulgaricus RR	38	24-28	5	95-110	3
L.rhamnosus R	37	72	6	500	4
L.rhamnosus R	42	24	/	110	5
L.delbrueckii bulgaricus	40	18	/	263	6
L.rhamnosus GG	37	20	/	80	7
L.delb. Bulgaricus 291	37	22	/	80	8
L.casei CG11	25	48	/	130	9
L.helveticus	37	60	5	730	10
L.delb. bulgaricus	37	18	6	800	3
L.rhamnosus 9595	37	24	6	2775	11
L.paracasei	32-37	72	6	~80	12

At the beginning, researchers thought that EPS was composed of glycoprotein or carbohydrate-protein, but later on a large number of researches, analysis and comparisons, revealed that EPS was composed of repeating unit with some branches, which including EPS-HOPS (homopolysaccharide) and EPS-HEPS (heteropolysaccharide).

Molecular weight of the EPS-HOPS was found to be between 4.0×10^4-6.0×10^6, which can be categorized into four types:

1. α-D-glucose, bond with α-1, 6 glucoside bond, with a branching structure at α-1,3 glucoside bond or α-1,2 glucoside bond and α-1, 4 glucoside bond, e.g. of this type of EPS are those that are metabolized by *L. Parabuchneri* 33, *S. sobrinus*, *L. reuteri* 180 and *L. reuteri* 35-5.
2. β-D-glucose, fructan residue bond with β-1,3 glucoside bond, with a branching structure at β-1,2 glucoside bond, e.g. of this type are EPS metabolized by *Pediococcus damnosus* 2.6 and *L. brevis* G-77.
3. β-D-fructan, fructan residue bond with β-2,6 glucoside bond, with branching structure at β-2,1 glucoside bond, e.g. of this EPS-type are those that are metabolizable by *L. frumenti* and *S. mutans* Ingbritt A.
4. Other EPS-HOPS, e.g. polygalactose.

Molecular weight of the EPS-HEPS was found to be between 10^4-6.0×10^6, the structure is more complex than HOPS. EPS-HEPS consist of duplicate units with or without branches.
Table 2. Monosaccharide Composition of Some HEPS Produced By LAB

Strain	Monosaccharide composition	Proportion	Reference
Lactobacillus Fermentum TDS030603	Glucose: galactose	3:1	14
Lactobacillus kefiranofaciens	Glucose: galactose	2:4	15
Lactobacillus rhamnosus KL37B	Glucose: galactose	3:6	16
Lactis IPLA-R1	Glucose: galactose: rhamnose	1:2:3	17
Lactobacillus johnsonii 142	Glucose: galactose	1:4	18
Lactobacillus helveticus Lb161	Glucose: galactose	5:2	19
Lactobacillus helveticus K16	Glucose: galactose	4:2	20
Escherichia coli 180/C3	Glucose: galactose	1:2:1	21
Lactobacillus rhamnosus GG	Glucose: galactose: rhamnose	1:4:1	22
Streptococcus thermophilus THS	Glucose: galactose	3:2	23
Lactobacillus delbrueckii ssp. bulgaricus LBB.B26	Glucose: galactose	2:3	24
Lactobacillus delbrueckii ssp. bulgaricus LBB.B332	Glucose: galactose: rhamnose	1:2:2	25
Lactobacillus acidophilus 5e2	Glucose: galactose	4:3	26
Lactobacillus pentosus LPS26	Glucose: rhamnose	3:2	27

The primary structure of EPS determines its advanced structure, its hierarchical structure is roughly the same as proteins, it is divided into first, second, third and fourth structures\(^24,25\).

The two level structures of EPS refers to the polymer formed by hydrogen bonding between the backbone chains of polysaccharides, that is, the main chain conformation of polysaccharide molecules does not involve the spatial arrangement of the side chains\(^24\). The two level structure is further curled and folded to form the third conformation of a specific conformation. The four level structure of polysaccharides is the synergistic combination of polysaccharide chains, that is, the subunit phenomenon.

2.2. The relationship between composition and anti-cancer functions of LAB-EPS

2.2.1. Immunology. Clas\(^22\) studied the role of EPS in the intestine produced by Lactobacillus rhamnosus strain GG(LGG), suggested that LGG had the ability to adhere to and colonize intestinal mucosa through EPS, LGG produced EPS, but the nonadhesive L. rhamnosus LC-705 did not.

The structures of LAB-EPS not only affects the physical properties of the polysaccharides, but also affects their physiological activities\(^28\).

The physiological activities of EPS are related to the molecular weight of the polysaccharides, the composition of monosaccharides, the type and number of substituted groups, the position of substitution, and the degree of branching (primary structure)\(^29\).

1. Normally, glucan composed of β-glucosidase bond has more antitumor activity than glucan which are composed of α-glucoside bonds\(^30\).

2. Oberlender et al. found that the sulfate substituent group and the substitutional position had significant influence on the physiological activity of the polysaccharide\(^31\).

In addition, the functions of the LAB-EPS also has a relationship with the fineness of the structure and other physical factors (such as solubility, viscosity, etc.)\(^30\).
3. Functional characteristic of LAB-EPS

3.1. Intervention and mechanism of EPS on type 2 diabetes mellitus

More and more evidence shows that the intake of whole grain foods and cereal fiber (fermented with the sourdough) can prevent chronic diseases, such as type 2 diabetes and cardiovascular disease due to retard starch digestibility32,33.

Bajpai \textit{et al.}33 found that LAB-EPS extracted from L. Sakei Probio 65 had a consistent antioxidant activity of \(\alpha\)-glucosidase in vitro, thus it has the potential use for hypoglycemia.

LAB-EPS extracted from \textit{L. plantarum} RJF4 has antioxidant, cholesterol-lowering and inhibited \(\alpha\)-amylase activities, it showed that it had the effect of alleviating diabetes in vitro30.

LAB-EPS extracted from \textit{Streptococcus thermophilus} can inhibit angiotensin converting enzyme (ACE) activity and has \(\alpha\)-glucosidase activity. These results indicate that it has anti-diabetic benefits34.

3.2. Anticancer capacity (in vivo/in vitro)

It is encouraging to understand that our understanding of the mechanism of apoptosis enabled the proposal for a more reasonable approach to cancer treatment.

The anticancer activity of EPS may be played out through the following mechanisms:

(1) Prevention of carcinogenesis;
(2) inducing apoptosis of cancer cells;
(3) Inhibition of cell proliferation.

Zhou \textit{et al.}35 found that the cell viability inhibition effect was significantly in mouse cholelrectal carcinoma CT26 cells rather than human cells (the effect was only found in the CT26 test, and was not found in the other types of cancer cells), the expression of Fas, c-Jun and TLR2 was markedly up-regulated in CT26 cell by exposure of EPS116 (\textit{Lactobacillus plantarum} NCU116) rather than the other control group, and the further experiments found that EPS116 regulate CT26 cells via apoptosis, and EPS-induced apoptosis mainly related to the Fas/Fasl pathway (EPS could not penetrate cells, so it influenced TLR2, then TLR2 affecting c-Jun, which transactivated Fas and Fasl to initiate apoptosis) rather than mitochondrial pathway34,36.

The majority of anticancer agents were found to be toxic to cells, but as GRAS (generally regarded as safe) most of the papers found that LAB-EPS had no toxic effect on normal cells (neutral red assay)37.

Other studies found that LAB-EPS affected the P53 gene (tumor suppressor P53 affect tumor cells apoptosis via inhibition of NF-\(\kappa\)B and up-regulating I\(\kappa\)B\(\alpha\) expression) significantly. Meanwhile, LAB-EPS affected TGF gene with down regulatory action on I\(\kappa\)B\(\alpha\), it induced TGF-\(\beta\) to retrieve its own character in normal cells as a potent tumor suppressor, to attenuate the TGF-\(\beta\)-SMAD pathway38.
Table 3. Anticancer properties of LAB-EPS (in vitro)

Biochemical property	Cancer type	Cells tested	Functional endpoint	Molecules involved	Reference
Lactobacillus plantarum NCU116	colorectal cancer	CT26	Induction of apoptosis	up-regulated the expression of death receptor Fas and its ligand Fasl	34, 36
Lactobacillus acidophilus DSM Z 20079	colon cancer	CaCo-2	Induction of apoptosis at sub-G0/G1	attenuate the attenuate TGF-β-SMAD pathway.	37
Lactobacillus acidophilus	colorectal cancer	CaCo-2	Inhibition of cell growth	up-regulated the expression of PPARγ and EPO	39
Lactobacillus plantarum NRRL B-4496	intestinal carcinoma	CaCo-2	Inhibition of cell proliferation	-	40
Lactobacillus delbrueckii ssp. bulgaricus,	colon carcinoma	HCT116	Inhibition of cell proliferation	-	40
Lactobacillus delbrueckii ssp. bulgaricus,	tumor leukemia	K-562	Inhibition of cell proliferation	-	38
Bifidobacterium Infantis	tumor human cervix	Hela cell	Inhibition of cell proliferation	-	38

Gu et al.41 found that LAB-EPS affected the anticancer capacity significantly according the model of transplanted S180 sarcoma in mice, most of the results found that LAB-EPS had positive effect on the tumor in vivo.

In most of the studies, the content of antibody in plasma increased (such as IL-2), cell activity increased including other functional substances, such as TNF-α in plasma38-41.

Table 4. Anticancer Properties of LAB-EPS (in vivo)

Biochemical property	Animal model	Animal type	Functional endpoint	Molecules involved	Reference
Lactobacillus delbrueckii bulgaricus ssp EPS	Sarcoma 180 by oral	BALB/c mice	Inhibition of sarcoma growth	TNF-α↑ IL-2↑	41
Lactobacillus plantarum NRRL B-4496	Ehrlich ascites carcinoma solid tumor bearing	female mice	reduced the tumor volume	MST↑ ILS↑	42-43
L. acidophilus		Mice	reduction the tumor volume	-	44
Lactobacillus acidophilus LAI	Albinism	Adult male Swiss mice	Tumor growth inhibition	ALT ↓ AST ↓	45
Bifidobacterium Infantis	Lewis lung cancer (LLC)	Mice		sFlt-1↑	46-47
In general, all LAB-EPS have anticancer abilities both in vitro and in vivo, but the pathways and their efficiencies vary with different LAB-EPS42. While, most of the LAB-EPS had no toxic effect on the normal cells or animals, the distinction(s) among them have not been fully studied.

So the two aspects worthy of further investigations, especially in the sourdough are:

① LAB-EPS affected the P53 gene (tumor suppressor P53 affect tumor cells apoptosis via inhibition of NF-κB and up-regulating IκBα expression) significantly42.

② LAB-EPS affected TGF gene with down regulatory action on IκBα, it induced TGF-β to retrieve its own character in normal cells as a potent tumor suppressor, to attenuate the TGF-β-SMAD pathway38.

3.3. Antioxidant capacity (in vivo/in vitro)

LAB-EPS has strong antioxidant capacity and no cyto-toxicity has been widely reported48-49. The antioxidant mechanism of the polysaccharides are still at the conjecture stage. There are several possible explanations:

① LAB-EPS affects free radicals, by providing hydrogen atoms which reacts with OH- rapidly to form water; as well as, oxidizes O$_2^-$ 50.

② LAB-EPS chelates with the metal ion catalyzed by ROS, which repressed the production of ROS finally 51.

③ LAB-EPS improves the activity of antioxidant enzymes in the body. Lactic acid bacteria (LAB) are Gram-positive bacteria, widely distributed in nature, and industrially important as they are used in a variety of industrial food fermentations. Lately, some LAB strains have been found with important biological functions, such as antioxidant activities50-51.

However, the study on structure-activity relationship of antioxidant activity of polysaccharides is not as intense as the structure-activity relationship of cancer research or strains’ functions. The study of structure-activity relationship is a systematic and huge project, and the research is just beginning.

The hemiacetal group in the LAB-EPS, hydroxyl etc. have a significant relationship with the free radicals52. According to reports, the more the number of hydroxyl groups, the stronger the antioxidant capacity, however, their ability is not only dependent on the number of hydroxyl groups, but also on its active state53.

The yield and antioxidant properties of LAB-EPS have significant difference between different strains (Table 6), meanwhile, the character of the total activities, anion and hydroxyl radical scavenging activities maintain the arrangement direction uniformity basically, but it is still a little different among different strain30.

Recently, LAB-EPS are rarely analyzed in vivo, especially, CAT, SOD and MDA are mostly analyzed in vitro53. Although EPS-I’s antioxidant mechanism is unclear, it is possible that the effects of EPS-I on SOD and CAT are associated with triggering SOD and CAT gene expressions 54.
Table 5. Antioxidant properties of LAB-EPS (in vitro)

Strains	LAB-EPS yield (g/L)	Total activities	Anion scavenging activity	Hydroxyl radical scavenging activity	Results	References
L. lactis subsp. *lactis* 12	0.95	Ascorbic acid was used as a standard	Total activity(p<0.05)†	Ascorbic acid was used as a standard	Vitamin C showed a slightly stronger effect on hydroxyl radicals than EPS-1 under the same conditions(p<0.05). †	48
Streptococcus phocae P180	11.75	Ascorbic acid was used as a standard	Total activity(p<0.05)†	Ascorbic acid was used as a standard	(p<0.05)†	48
Lactobacillus plantarum LP6	-	Ascorbic acid was used as a standard	DPPH radical 1.38 (p<0.05)†	Ascorbic acid was used as a standard	(p<0.05)†	53
Lactobacillus helveticus MB2-1	0.15	Ascorbic acid was used as a standard	DPPH_1.4	Ascorbic acid was used as a standard	Crude EPS(p<0.05) EPS2EPS-3EPS-2EPS-1	50
Lactobacillus plantarum KM041	0.599	Ascorbic acid was used as a standard	DPPH 0.10~0.20	Ascorbic acid was used as a standard	(p<0.05)†	51
Lactobacillus plantarum N TM05	0.956	Ascorbic acid was used as a standard	DPPH >3	Ascorbic acid was used as a standard	(p<0.05)†	52
Lactobacillus plantarum N TM20	0.872	Ascorbic acid was used as a standard	DPPH 0.10~0.30	Ascorbic acid was used as a standard	(p<0.05)†	52
Lactobacillus plantarum LP6	1.5	Ascorbic acid was used as a standard	DPPH 1.38	Ascorbic acid was used as a standard	Crude EPS(p<0.05) EPS2EPS-3EPS-2EPS-1	53
Lactobacillus plantarum RJ F4	0.325	Ascorbic acid was used as a standard	DPPH >2	Ascorbic acid was used as a standard	(p<0.05)†	54
Lactobacillus plantarum B C-25	0.429	Ascorbic acid was used as a standard	DPPH >2.5	Ascorbic acid was used as a standard	(p<0.05)†	28
Lactobacillus plantarum Z DY2015	0.133	Ascorbic acid was used as a standard	DPPH >5	Ascorbic acid was used as a standard	(p<0.05)†	56
Lactobacillus plantarum N W11	-	Ascorbic acid was used as a standard	DPPH >5	Ascorbic acid was used as a standard	(p<0.05)†	29
Lactobacillus plantarum S KT09	0.059	Ascorbic acid was used as a standard	DPPH >40	Ascorbic acid was used as a standard	(p<0.05)†	57
Lactobacillus plantarum Y ML009	0.26	Ascorbic acid was used as a standard	DPPH >40	Ascorbic acid was used as a standard	(p<0.05)†	57-58
Lactobacillus plantarum C 88	0.069	Ascorbic acid was used as a standard	DPPH >4	Ascorbic acid was used as a standard	(p<0.05)†	58
4. Conclusion
On the basis of the findings from several investigations, there are numerous LAB-EPS strains in the sourdough. Although several effective strains have been successfully utilized and designed for highly efficiency, significant improvements in their performance are still required in order to satisfy the future demands in variety of fields, especially in the high production of LAB-EPS (including the isolation of the effective strains and the selection of fermentation process) based on this current review.

On the other hand, it is expected that the selected strains may be very promising candidates for effective LAB-EPS production, we need to further study the structure and the constitution of LAB-EPS in the higher yield LAB strains, based on the conclusion in difference in LAB-EPS efficiency (in the anticancer, antioxidant, antidiabetic etc.).

In addition, the development of sourdough product with novel functionality or multi-functionalities (of LAB-EPS) may become research interest in the nearest future. If one can assemble sourdough products with the functional substance, such as LAB-EPS, a large variety of functions can be incorporated, and this may have great commercial potential for practical applications.

Acknowledgments
This work was supported by funding from NSFC (Modern agricultural industry technology system. vegetable innovation team of Shandong Province SDAIT-05-14). Doctor funds of Shandong Agricultural and Engineering University (BSQJ201903).

References
[1] Macedo, M. G.; Lacroix, C.; Champagne, C. P., Combined Effects of Temperature and Medium Composition on Exopolysaccharide Production by Lactobacillus rhamnosus RW - 9595M in a Whey Permeate Based Medium. Biotechnology Progress 2010, 18 (2), 167-173.
[2] Weckx, S.; Meulen, R. v. d.; Maes, D.; Scheirlinck, I.; Huys, G.; Vandamme, P.; Vuyst, L. d., Laetic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiology 2010, 27 (8), 1000-1008.
[3] Wang, Q. M.; Yang, H. J.; Chen, Q.; Biotechnology, D. O., Optimization of nutritional conditions for high-yield extracellular polysaccharides(EPS) of L. burlgaricus NCFB2772. Heilongjiang Animal Science & Veterinary Medicine 2015.
[4] Pham, P. L.; Dupont, I.; Roy, D.; Lapointe, G.; Cerning, J., Production of Exopolysaccharide by Lactobacillus rhamnosus R and Analysis of Its Enzymatic Degradation during Prolonged Fermentation. Appl Environ Microbiol 2000, 66 (6), 2302-2310.
[5] Van Calsteren, M. R.; Pauroblot, C.; Bégis, A.; Roy, D., Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochemical Journal 2002, 363 (Pt 1), 7.
[6] Hess, S. J.; Roberts, R. F.; Ziegler, G. R., Rheological Properties of Nonfat Yogurt Stabilized Using Lactobacillus delbrueckii ssp. bulgaricus Producing Exopolysaccharide or Using Commercial Stabilizer Systems. Journal of Dairy Science 1997, 80 (2), 252-263.
[7] Zhang, J.; Liu, L.; Gao, K.; He, Y.; Wang, Y.; Wang, H., Optimization of conditions in synthesis and extraction of exopolysaccharide of Lactobacillus rhamnosus GG. Feed Industry 2014.
[8] Petry, S.; Furlan, S.; Waghorne, E.; Saulnier, L.; †, J. C.; Maguin, E., Comparison of the thickening properties of four Lactobacillus delbrueckii subsp. bulgaricus strains and physicochemical characterization of their exopolysaccharides. Fems Microbiology Letters 2010, 221 (2), 285-291.
[9] Kojic, M.; Vujicic, M.; Banina, A.; Cocconcelli, P.; Cerning, J.; Topisirovic, L., Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl Environ Microbiol 1992, 58 (12), 4086-4088.
[10] Chen, R. W.; Li, L. I.; Duan, J. C.; Qi, L. U.; Gao, L.; Pan, S. Y., Optimization of Fermentation
Conditions for Exopolysaccharid Production from Lactobacillus lactis. *Journal of Food Science & Biotechnology* 2010.

[11] Kim, H., Whang., Function of cell-bound and released exopolysaccharides produced by *Lactobacillus rhamnosus* ATCC 9595. *Journal of Microbiology and Biotechnology, 2006, 16*(6), 939-945.

[12] RH Xu, S. M., Y Wang., Screening, identification and statistic optimization of a novel exopolysaccharide producing *Lactobacillus paracasei* HCT. *African Journal of Microbiology Research* 2010, *4* (9), 783-795.

[13] Hassan, A. N., ADSA Foundation Scholar Award: Possibilities and Challenges of Exopolysaccharide-Producing Lactic Cultures in Dairy Foods. *Journal of Dairy Science* 2008, 91 (4), 1282-1298.

[14] Du, X.; Zhang, Y.; Mu, H.; Lv, Z.; Yang, Y.; Zhang, J., Structural elucidation and antioxidant activity of a novel polysaccharide (TAPB1) from Tremella aurantalba. *Food Hydrocolloids* 2015, 43, 459-464.

[15] Furuno, T.; Nakanishi, M., Kefiran suppresses antigen-induced mast cell activation. *Biological & Pharmaceutical Bulletin* 2012, 35 (2), 178.

[16] Górska-Fraczek, S.; Sandström, C.; Kene, L.; Rybka, J.; Strus, M.; Heczko, P.; Gamian, A., Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from *Lactobacillus rhamnosus* KL37B. *Carbohydrate Research* 2011, 346 (18), 2926-2932.

[17] Shaun, L.; Claudio, H. C.; Glenn, R.; Abelardo, M.; Patricia, R. M.; Laws, A. P., Structure of the high molecular weight exopolysaccharide produced by *Bifidobacterium animalis* subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster. *Carbohydrate Research* 2011, 346 (17), 2710-2717.

[18] Górska, S.; Jachymek, W.; Rybka, J.; Strus, M.; Heczko, P. B.; Gamian, A., Structural and immunochemical studies of neutral exopolysaccharide produced by *Lactobacillus johnsonii* 142. *Carbohydrate Research* 2010, 345 (1), 108-114.

[19] Staaf, M.; Yang, Z.; Huttunen, E.; Widmalm, G., Structural elucidation of the viscous exopolysaccharide produced by *Lactobacillus helveticus* Lb161. *Carbohydrate Research* 2000, 326 (2), 113-119.

[20] Yang, Z.; Staaf, M.; Huttunen, E.; Widmalm, G., Structure of a viscous exopolysaccharide produced by *Lactobacillus helveticus* K16. *Carbohydr Res* 2000, 329 (2), 465-469.

[21] Staaf, M.; Urbina, F.; Weintraub, A.; Widmalm, G., Structural elucidation of the O-antigenic polysaccharides from *Escherichia coli* O21 and the enterogauggerative *Escherichia coli* strain 105. *Eur J Biochem* 1999, 340 (12), 2010-2014.

[22] Clas Landersjö; Zhennai Yang; Eine Huttunen, A.; Göran Widmalm, Structural Studies of the Exopolysaccharide Produced by *Lactobacillus rhamnosus* strain GG (ATCC 53103). *Biomacromolecules* 2002, 3 (4), 880-4.

[23] Nordmark, E. L.; Yang, Z.; Huttunen, E.; Widmalm, G., Structural studies of an exopolysaccharide produced by *Streptococcus thermophilus* THS. *Biomacromolecules* 2005, 6 (1), 105.

[24] Sánchez-Medina, I.; Gerwig, G. J.; Urshev, Z. L.; Kamerling, J. P., Structure of a neutral exopolysaccharide produced by *Lactobacillus delbrueckii* ssp. bulgaricus LBB.B26. *Carbohydrate Research* 2007, 342 (16), 2430-2439.

[25] Sánchez-Medina, I.; Gerwig, G. J.; Urshev, Z. L.; Kamerling, J. P., Structural determination of a neutral exopolysaccharide produced by *Lactobacillus delbrueckii* ssp. bulgaricus LBB.B332. *Carbohydrate Research* 2007, 342 (18), 2735-2744.

[26] Laws, A. P.; Chadha, M. J.; Chacon-Romero, M.; Marshall, V. M.; Maqsood, M., Determination of the structure and molecular weights of the exopolysaccharide produced by *Lactobacillus acidophilus* 5e2 when grown on different carbon feeds. *Carbohydrate Research* 2008, 343 (2), 301-307.
[27] Rodríguez-Carvajal, M. A.; Sánchez, J. I.; Campelo, A. B.; Martínez, B.; Rodríguez, A.; Gil-Serrano, A. M., Structure of the high-molecular weight exopolysaccharide isolated from Lactobacillus pentosus LPS26. *Carbohydrate Research* 2008, 343 (18), 3066-3070.

[28] Zhang, Z.; Liu, Z.; Tao, X.; Wei, H., Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. *Carbohydrate Polymers* 2016, 153, 25-33.

[29] Wang, J.; Zhao, X.; Tian, Z.; He, C. C.; Yang, Y. W.; Yang, Z. N., Isolation and characterization of exopolysaccharide-producing Lactobacillus plantarum SKT109 from Tibet Kefir. *Polish Journal of Food & Nutrition Sciences* 2015, 65 (4), 269-280.

[30] Dilna, S. V.; Surya, H.; Aswathy, R. G.; Varsha, K. K.; Sakhikumar, D. N.; Pandey, A.; Nampoothiri, K. M., Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJJ 4. *LWT - Food Science and Technology* 2015, 64 (2), 1179-1186.

[31] Oberlender, R. A.; Kothari, P. J.; Nichols, D. E.; Zabik, J. E., ChemInform Abstract: SUBSTITUENT BRANCHING IN PHENETHYLAMINE-TYPE HALLUCINOGENS: A COMPARISON OF 1-(2,5-DIMETHOXY-4-(2-BUTYL)PHENYL)-2-AMINOPROPANE AND 1-(2,5-DIMETHOXY-4-(2-METHYLPROPYL)PHENYL)-2-AMINOPROPANE. *Chemischer Informationsdienst* 1984, 15 (44).

[32] Mellen, P.; Walsh, T., *Dm*, Whole grain intake and cardiovascular disease: a meta-analysis. *Nutr Metab Cardiovasc Dis* 2008, 18 (4), 283-290.

[33] Bajpai, V. K.; Rather, I. A.; Park, Y. H., Partially Purified Exo-Polysaccharide from Lactobacillus Sakei Probio 65 with Antioxidant, α-Glucosidase and Tyrosinase Inhibitory Potential. *Journal of Food Biochemistry* 2016, 40 (3), 264-274.

[34] Ramchandran, L.; Shah, N. P., Effect of exopolysaccharides and inulin on the proteolytic, angiotensin-I-converting enzyme- and α-glucosidase-inhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage. *Dairy Science & Technology* 2009, 89 (6), 583-600.

[35] Zhou, X.; Tao, H.; Qiang, Y.; Nie, S.; Gong, D.; Tao, X.; Xie, M., Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. *Sci Rep* 2017, 7 (1).

[36] Zhou, X.; Hong, T.; Yu, Q.; Nie, S.; Gong, D.; Xiong, T.; Xie, M., Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. *Sci Rep* 2017, 7 (1).

[37] El-Deeb, N. M.; Yassin, A. M.; Al-Madboly, L. A.; El-Hawiet, A., A novel purified Lactobacillus acidophilus20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-kB inflammatory pathways in human colon cancer. *Microbial Cell Factories* 2017, 17 (1), 29.

[38] Jia, X.; Wang, C.; Bai, Y.; Yu, J.; Xu, C., Sulfation of the Extracellular Polysaccharide Produced by the King Oyster Culinary-Medicinal Mushroom, Pleurotus eryngii (Agricomicetes), and Its Antioxidant Properties In Vitro. *International Journal of Medicinal Mushrooms* 2017, 19 (4), 355-362.

[39] Deepak, V.; Ram, K. P. S.; Sivasubramaniam, S. D.; Nellaiah, H.; Sundar, K., Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology. *Preparative Biochemistry* 2015, 46 (3), 288-297.

[40] Xu, P.; Yuan, R.; Hou, G.; Li, J.; Ye, M., Structural Characterization and In Vitro Antitumor Activity of a Novel Exopolysaccharide from Lachnum YM130. *Applied Biochemistry & Biotechnology* 2017, 185 (2), 1-14.

[41] Gu, X.; Kong, J.; Wang, F.; Ma, C., Exopolysaccharide I (EPS I) purified from a strain of lactic acid bacterium Z222 and studying on the effect of EPS I on the immunofunction of mice planted with S180. *Acta Microbiologica Sinica* 2003, 43, 251-256.

[42] Zhu, H.; Li, Z.; Mao, S.; Ma, B.; Zhou, S.; Deng, L.; Liu, T.; Cui, D.; Zhao, Y.; He, J.
Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice. *Cancer Gene Therapy* 2011, 18 (12), 884-896.

[43] Gu, X., Exopolysaccharide I (EPS I) Purified from a Strain of Lactic Acid Bacterium Z. (222) and Studying on the Effect of EPS I on the Immunofunction of Mice Planted with S. (180). *Acta Microbiologica Sinica* 2003, 43, 251-256.

[44] Mahdi, S. D. M.; Hossein, Y. M.; Hassan, Z. M.; Marzieh, H.; Peymaneh, A. M. T.; Amin, H. F.; Soulmaa, A. A.; Mahdi, M., THE EVALUATION OF PROBIOTIC EFFECT OF L. ACIDOPHILUS ON THE IMMUNE RESPONSES IN BALB/C MICE AGAINST TRANSPLANTED TUMOR DERIVED FROM BREAST TISSUE. *Acta Agriculturae Boreali Sinica* 2010, 18 (73), 37-48.

[45] Chung, W. H.; Kang, J.; Kang, J.; Mi, Y. L.; Lim, T.; Lim, S.; Roh, S. W.; Nam, Y. D.; Nam, Y. D., Complete Genome Sequence and Genomic Characterization of Lactobacillus acidophilus LA1 (11869BP). *Frontiers in Pharmacology* 2018, 9.

[46] Zhu, H., Bifidobacterium Infantis on Lewis lung cancer in mice. *Journal of Cancer Science & Therapy* 2011, 03 (7).

[47] Deng, L. C.; Shi-Ye, X. U.; Mao, S. H.; Cheng, Y. I.; Huang, Y., Anti-tumor effect of Bifidobacterium infantis-mediated sFlt-1 eukaryotic expression system on Lewis lung cancer in mice. *West China Journal of Pharmaceutical Sciences* 2011, 26 (6), 564-566.

[48] Kanmani, P.; Kumar, R. S.; Yuvaraj, N.; Paari, K. A., Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae P180 and its functional characteristics activity in vitro. *Bioresour Technol* 2011, 102 (7), 4827-4833.

[49] Liu, J.; Pan, D. D., THE IMMUNOMODULATORY EFFECTS OF SELENIUM EXOPOLYSACCHARIDE ON MOUSE PERITONEAL MACROPHAGES. *Acta Nutrimenta Sinica* 2013.

[50] Sun, C.; Wang, J. W.; Fang, L.; Gao, X. D.; Tan, R. X., Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. *Life Sciences* 2004, 75 (9), 1063-1073.

[51] Volpi, N.; Tarugi, P., Influence of Chondroitin Sulfate Charge Density, Sulfate Group Position, and Molecular Mass on Cu2+-Mediated Oxidation of Human Low-Density Lipoproteins: Effect of Normal Human Plasma-Derived Chondroitin Sulfate. *Journal of Biochemistry* 1999, 125 (2), 297-304.

[52] Tsiapali, E.; Whaley, S.; Kalbfleisch, J.; Ensley, H. E.; Bowder, I. W.; Williams, D. L., Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biology & Medicine 2001, 30 (4), 393-402.

[53] Li, J. Y.; Jin, W. M.; Meng, J.; Gao, S. M.; Lu, R. R., Exopolysaccharide from Lactobacillus plantarum LP6: antioxidation and the effect on oxidative stress. *Carbohydrate Polymers* 2013, 98 (1), 1147-1152.

[54] Zhou, K.; Zeng, Y.; Yang, M.; Chen, S.; He, L.; Ao, X.; Zou, L.; Liu, S., Production, purification and structural study of an exopolysaccharide from Lactobacillus plantarum BC-25. *Carbohydrate Polymers* 2016, 144, 205-214.

[55] Li, W.; Ji, J.; Chen, X.; Jiang, M.; Rui, X.; Dong, M., Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. *Carbohydrate Polymers* 2014, 102 (1), 351-359.

[56] Wang, J.; Zhao, X.; Tian, Z.; Yang, Y.; Yang, Z., Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. *Carbohydr Polym* 2015, 125, 16-25.

[57] Rather, I., Partially Purified Exopolysaccharide from Lactobacillus plantarum YML009 with Total Phenolic Content, Antioxidant and Free Radical Scavenging Efficacy. *Indian Journal of pharmaceutical education and research* 2015, 49 (4), 282-292.

[58] Zhang, L.; Liu, C.; Li, D.; Zhao, Y.; Zhang, X.; Zeng, X.; Yang, Z.; Li, S., Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. *International Journal of Biological Macromolecules* 2013, 54 (1), 270-275.