Data on HepG2 cells changes following exposure to cadmium sulphide quantum dots (CdS QDs)

Laura Paesano, Alessio Perotti, Annamaria Buschini, Cecilia Carubbi, Marta Marmiroli, Elena Maestri, Salvatore Iannotta, Nelson Marmiroli

Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
Department of Biomedical, Biotechnological and Traslational Sciences (S.Bi.Bi.T), University of Parma, Via Gramsci 14, Parma 43126, Italy
Istituto dei Materiali per l’Elettronica ed il Magnetismo (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy

Abstract

The data included in this paper are associated with the research article entitled “Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria” (Paesano et al.) [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.

Specifications Table

Subject area	Biology
More specific subject area	Toxicogenomics, transcriptomics
Type of data	Table, image (x-ray, microscopy), text file, graph, figure

DOI of original article: http://dx.doi.org/10.1016/j.tox.2016.11.012

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
How data was acquired

Electron microscopy (JEM-2200 FS transmission electron microscope, ESEM Quanta 250FEG)
MTS assay (CellTiter 96 AQueous One Solution Cell Proliferation Assay)
Real Time PCR and hierarchical clustering (TaqMan Custom Array Plates, Applied Biosystems 7900HT Fast Real-Time PCR System),
DTNB assay [5,5'-dithiobis(2-nitrobenzoic acid)]
Flow cytometry (FC500 flow cytometer)

Data format
Filtered and analyzed

Experimental factors
HepG2 cells were exposed to a toxic acute dose of CdS QDs corresponding to the IC50, and to two sub-toxic doses for different time periods

Experimental features
Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% (v/v) fetal bovine serum (FBS), 50 U mL⁻¹ penicillin/streptomycin and 1% (w/v) L-glutamine in an incubator at 37 °C and 5% CO₂

Data source location
Parma, Italy

Data accessibility
Data are available within this article

Value of the data

- The dataset provides a list of candidate genes useful for comparing effects of nanomaterials in other cell systems.
- The data may be useful for other researchers analysing mitochondrial dysfunctions in stressed cells.
- The literature survey may be useful for planning additional experiments on risk assessment of cadmium-based quantum dots.

1. Data

Table 1 shows a survey of the most recent literature on experimentation with animal cell lines and cadmium-based quantum dots. It details the main parameters which can be assessed to estimate the functionality and viability of cells and describes the main changes detected in cells. Particular reference has been made to instances of oxidative stress, apoptosis and autophagy. In addition Table 2 reports a comparison of the effects of exposure to CdS QDs and Cd²⁺ ions. Table 3 reports in details the experimental conditions chosen for treating HepG2 cells with CdS QDs. Table 4 lists the changes in gene expression of candidate genes upon exposure to toxic and subtoxic doses of CdS QDs. Genes are grouped according to their involvement in relevant cellular processes. Table 5 lists the changes in gene expression determined after quantitative reverse transcriptase PCR (qRT-PCR) for specific genes chosen on the basis of their involvement in relevant cellular processes.

2. Experimental design, materials and methods

2.1. Synthesis and characterization of CdS QDs

The method¹ used to synthesize CdS QDs followed Villani et al. [28], and the synthesis was performed by IMEM-CNR (Parma, Italy). X-ray diffraction (XRD) was carried out using an ARL-X'Tra device (Thermo Fisher Scientific, Waltham, MA, USA). A field emission high resolution (Scherzer resolution of ~0.19 nm) JEM-2200 FS transmission electron microscope (JEOL Ltd., Tokyo, Japan)

¹ Similar information, but with less details, was provided as Supplementary material for the paper “Nucleo-mitochondrial interaction in yeast response to cadmium sulfide quantum dots exposure” [29]. This is because the same batch of CdS QDs was used as the one used here.
Reference	Quantum dots	Dimensions	Cell line(s)	Experimental evaluation of cell parameters	Main effects or toxicity mechanisms
Al-Ali et al. [2]	Commercial, CdSe/ZnS coated with hexadecylamine, carboxyl groups or polyethylene glycol	From 4 nm to 82 nm, peak at 6 nm	THP-1 (human monocytic cell line) differentiated into macrophages	Cell viability (Relative population doubling) Inflammatory response (ELISA analysis for cytokine, chemokine) Oxidative stress (Gene expression analysis)	No significant cytotoxicity at 24 h, some cytotoxicity at 72 h of exposure. Induction of inflammatory response. Modification of gene expression for genes of oxidative stress pathway
Alomar [3]	CdS	From 53.40 nm to 5.60 nm	A549 (human lung adenocarcinoma epithelial cells)	Cell viability (MTT assay and neutral red uptake) Mitochondrial functionality (Mitochondrial membrane potential) Oxidative stress (Intracellular reactive oxygen species (ROS) levels, lipid peroxidation assay, glutathione (GSH) levels, superoxide dismutase activity) Apoptosis (Staining of chromosomes, caspase assay, COMET assay) Inflammatory response (ELISA assay for release of cytokines)	Loss of cell viability. Induction of oxidative stress. Reduced mitochondrial function. Induced lysosome activity. Induction of apoptosis and inflammatory response
Bao et al. [4]	CdSe, or CdSe core with CdS shell	6 nm	Five human cell lines: HL-7702, Bel-7402, Bel-7404, 786-O, HeLa	Cell viability (MTT assay) Apoptosis (Flow cytometry) Acute toxicity (mice)	Cytotoxicity increased by CdS shell, differing among cell lines. Induction of apoptosis. Toxic to mice
Hossain and Mukherjee [5]	CdS	3 nm	HeLa (human cell line)	Cell viability (MTT assay, microscopy) Oxidative stress (intracellular ROS levels)	Decrease of cell viability. Accumulation of ROS. Changes in cell and nucleus morphology
Ju et al. [6]	CdSe core with ZnS shell, uncoated or coated with polyethylene glycol	440 nm and 680 nm	HSF-42 (human skin fibroblasts)	Cell viability (MTT assay and Trypan blue exclusion) DNA damage (formation of foci, Comet assay) Apoptosis (Western blot for caspase) Oxidative stress (intracellular ROS levels)	Uncoated QDs decrease cell viability, increase foci formation and DNA damage, but without apoptosis. They induce increased ROS levels. Coated QDs do not produce effects
Li et al. [7]	CdTe with thioglycolic acid	Around 2 nm	NIH/3T3 (mouse cell line)	Cell viability (WST-1 assay) miRNA expression (extraction, sequencing, real time PCR analysis, Western blot for p53)	Release of Cd ions. Decrease in cell viability. Changes in miRNA expression
Luo et al. 2013 [8]
Commercial: Cd/Se core, shell with ZnS
From 8 nm to 12 nm (10 ± 2 nm)
RAG (mouse renal adenocarcinoma)
Cell viability (MTT assay, Lactate Dehydrogenase activity assay to detect necrosis)
Mitochondrial functionality (ATP level and membrane potential)
Apoptosis (TUNEL staining)
Autophagy (microscopy and protein analysis)
Increase in intracellular levels of reactive oxygen species. Induction of autophagy, followed by apoptosis. QDs localised in ER, endosomes, lysosomes, mitochondria. Effect on mitochondrial function. Autophagy induced by oxidative stress is seen as a defense mechanism.

Manshian et al. [9]
Commercial CdSe core with ZnS shell, amine or carboxyl functional groups on the surface
From 3 nm to 5 nm
Three human cell lines: BEAS-2B, HFF-1, TK6
Cell viability (flow cytometry and microscopy, Relative population doubling)
DNA damage (Micronuclei frequency, pancentromeric staining)
Oxidative stress (intracellular ROS levels)
Mitochondrial functionality (membrane potential)
Inflammatory response (ELISA assay for cytokines)
Cytotoxicity depending on cell types, BEAS-2B showed no effects. Carboxyl functionalised QDs exert genotoxic effects. Minimal increase of ROS levels. Decrease in mitochondrial functionality with carboxyl QDs. No inflammatory effect.

Nguyen et al. [10]
Commercial, CdTe core, CdS shell, coated by polyacrylate
7.3 ± 1.2 nm
HepG2 (human hepatocellular carcinoma)
Cell viability (MTT assay)
Mitochondrial morphology (Transmission Electron Microscopy, TEM)
Mitochondrial functionality (membrane potential, quantification of complexes, activity assay, oxygen consumption, ATP levels)
Mitochondria biogenesis (ELISA for PGC-1alpha levels)
Localisation of QDs (mitochondria enrichment)
Oxidative stress and apoptosis (release of calcium)
Decrease in cell viability. Swelling of mitochondria and loss of cristae. Localisation of QDs in mitochondria. Loss of membrane potential. Increase in cytosolic calcium levels. Inhibition of respiration. Decrease in ATP levels. Decrease in complexes II, III, IV, no change in complexes I and V. Activation of mitochondrial biogenesis.

Nguyen et al. [11]
Commercial, CdTe core with CdS shell coated with polymers
7.3 ± 1.2 nm
J774A.1 (mouse macrophage), HT29 (human colon epithelium)
Cell viability (MTT assay, microscopy)
Nitric oxide production (Griess reagent)
Inflammatory response (cytokines and chemokines assay)
Decrease in cell viability. Morphological changes in cells, actin filaments, nucleus. No changes in inflammatory markers. Increase in the cytotoxicity of bacterial infection and alteration of immune response.

Nguyen et al. [12]
Commercial, CdTe core with CdS shell coated with polymers
7.3 ± 1.2 nm
HepG2
Cell viability (MTT assay)
Oxidative stress (intracellular ROS levels, GSH levels, SOD and CAT activity, Nrf2 activation)
Apoptosis (caspase activity, Annexin stain, Bcl2 and Bax levels)
Decrease in cell viability. Morphological changes in cells, actin filaments, nucleus. No changes in inflammatory markers. Increase in the cytotoxicity of bacterial infection and alteration of immune response. Cause oxidative stress, interfere with antioxidant defenses and activate protein kinases, leading to apoptosis via both extrinsic and intrinsic pathways. Effects of CdTe-QDs were similar or greater compared to those of CdCl2 at equivalent concentrations of cadmium.
Reference	Quantum dots	Dimensions	Cell line(s)	Experimental evaluation of cell parameters	Main effects or toxicity mechanisms
Peng et al. [13]	Four types of commercial QDs, CdSe core and ZnS shell, functional groups on the surface	From 15 nm to 25 nm	HepG2 (human hepatocellular carcinoma)	Cell viability (MTT assay) Apoptosis (DNA staining) Oxidative stress (GSH levels) Stress response (analysis of gene expression)	Localisation to lysosomes. No decrease in cell viability. No apoptosis. No changes in GSH levels. Upregulation of stress response genes
Romoser et al. [14]	Commercial, CdSe/ZnS-COOH	15 nm	HEK (human epidermal keratinocytes), HDF (human dermal fibroblasts)	Cell viability (resazurin assay, microscopy) Localisation of QDs (fluorescence) Inflammatory response, immune response, apoptosis (gene expression analysis, Western blot, transcriptional activity of NFkappaB)	Morphological changes and loss of viability. Internalisation of QDs. Upregulation of genes involved in NFkappaB pathway. Induction of inflammatory and immune response. Induction of apoptotic genes. Induction of markers for oxidative stress
Smith et al. [15]	CdSe core, ZnS shell, coated with polymers TOPO and PMAT	12.7 ± 0.5 nm	HepG2 (human hepatocellular carcinoma)	Localisation of QDs (fluorescence microscopy) Cell viability (MTT assay) Oxidative stress (GSH levels) Stress response (analysis of gene expression, Western blotting) Inflammatory response (cytokine assay)	No effect on cell viability. No induction of GSH. No effect on oxidative stress gene markers. No induction of inflammatory response
Tan et al. [16]	CdSe core, ZnS shell, polymer coating with carboxyl or amine groups, functionalisation	From 20 nm to 30 nm	HepG2 (human hepatocellular carcinoma), NIH/3T3 (mouse cell line)	Cell viability (microscopy, MTT assay) Localisation of QDs (microscopy) Endocytosis (inhibitors)	Effects depend on surface charge, hydrophobicity and presence of PEG. Cytotoxicity depends on intake. QDs with PEG can reach the lysosomes. Endocytosis is mediated by clathrin Induction of apoptosis. Increase of ROS and decrease of GSH. Induction of autophagic vacuoles. Presence of swollen mitochondria
Wu et al. [17]	CdTe coated with carboxyl groups	Unspecified	HepG2 (human hepatocellular carcinoma)	Apoptosis (DNA staining) Oxidative stress (intracellular ROS levels, GSH levels) Autophagy (TEM)	Little effect on cell viability for CdTe QDs, enhanced by GA. Intake into cells. Induction of apoptosis not assessed, no changes in cell cycle phases
Xu et al. [18]	CdTe, and nanocomposites of QDs with gambo-gic acid, GA-CdTe	About 5 nm	HELF (human embryonic lung fibroblasts), HepG2 (human hepatocellular carcinoma)	Cell viability (MTT assay) Cell morphology (DAPI staining) QDs localisation (fluorescence microscopy) Apoptosis (annexin,propidium iodide, flow cytometry) Cell viability (MTT assay)	
Author	QDs Specifications	Cells	Methods	Outcomes	
--------	-------------------	-------	---------	----------	
Zhang et al. [19]	Commercial, CdSe core, ZnS shell, coated with PEG: neutral, acid or basic	AML 12 (mouse hepatocytes)	Mitochondrial functionality (ATP levels) Oxidative stress (intracellular ROS levels) Apoptosis (annexin, propidium iodide, flow cytometry, analysis of gene expression, Western blot)	Loss of cell viability. Decrease in ATP levels. Induction of oxidative stress. Induction of apoptosis and related genes for mitochondria-dependent pathways. Activation of Nrf2 pathway for response to ROS	
Zhang et al. [20]	Commercial, CdSe core, ZnS shell, coated with PEG: neutral, acid or basic	Dendritic cells derived from PBMC (pig peripheral blood mononuclear cells)	Cell viability (flow cytometry, proliferation, cell counting, Alamar-Blue assay) Endocytosis (inhibitors) Oxidative stress (GSH levels) Inflammatory response (cytokine assay)	Dendritic cells intake QDs with acidic surface. Endocytosis involves clathrin and partially micro-pinoctosis. Small loss in cell viability. Induction of oxidative stress. No induction of inflammatory response	
Zhang et al. [21]	CdTe coated with 3-mercaptopropionic acid	HepG2/ADM (human hepatoma, adriamycin resistant cells)	Drug uptake (electrochemical assay) Apoptosis (DNA staining, flow cytometry, DNA fragmentation, Western blots, TUNEL staining) Acute toxicity (mice)	Decrease in cell viability, synergistic effect with drug daunorubicin through facilitated uptake. Induction of apoptosis, DNA fragmentation. Activation of caspases after release of cytochrome C. Inhibition of tumor growth in synergy with drug	
Table 2

Gene expression	Oxidative Stress	Genotoxicity	Cell death	
CdS QDs (our experiments)	Most of the induced genes belonged to the three major functional categories: apoptosis, autophagy, and stress response.	CdS QDs did not induce a rapid ROS generation, causing only a mild increase in reactive oxygen species (ROS) levels.	CdS QDs generated, in HepG2 cells, a minor degree of DNA damage; after major exposure, the extent of the damage was almost indistinguishable from that shown by the non-treated control.	The data suggest that mitochondrial-mediated intrinsic apoptosis pathway was activated by CdS QDs exposure, but did not reach the extreme point (mitochondria disruption, cell death).

Cadmium induces at least two types of ROS generation, causing formation of superoxide and hydrogen peroxide. The major toxic effects of increasing doses of Cd concentration involve decreased antioxidant enzyme levels (superoxide dismutase and glutathione peroxidase).

Cadmium induces a rapid and transient ROS generation, causing formation of superoxide and hydrogen peroxide. Exposing non-treated control (c-RAS, c-JNK, c-ERK, etc.) [23], the data suggest that mitochondrial-mediated intrinsic apoptosis pathway was activated by CdS QDs exposure, but did not reach the extreme point (mitochondria disruption, cell death).

The data suggest that mitochondrial-mediated intrinsic apoptosis pathway was activated by CdS QDs exposure, but did not reach the extreme point (mitochondria disruption, cell death).

Several authors report the view that genotoxicity induced by Cd is not a direct effect of the metal, but rather due to the generation of reactive oxygen species and the resulting oxidative stress [26]. Oh and Lim [23] demonstrated that Cd-induced cell death was caspase-dependent.

Cadmium causes DNA fragmentation [23]. Oh and Lim [23] demonstrated that Cd-induced cell death was caspase-dependent.
Table 3
Rationale of doses and time for CdS QDs treatment.

Experiment type	Treatments	Controls					
	Substances	Doses	Times	Untreated	Medium + reagent assay	Medium + QDs + reagent assay	Positive
		a	b				
Flow cytometry	CdS QDs	100 μg mL⁻¹	0–30–60–	X			Aflatoxin B
Cytotoxicity assay	CdS QDs, CdSO₄	0.5–100 μg mL⁻¹	24 h	X	X	X	H₂O₂
Gene expression analysis	CdS QDs	3–7–14 μg mL⁻¹	24 h	X			
Genotoxicity assay	CdS QDs	1.5 μg mL⁻¹	1–4–24 h	X			
Reactive oxygen species with DCFH-DA	CdS QDs	3–7–14 μg mL⁻¹	1–4 h	X	X	X	
Reactive oxygen species with microscope	CdS QDs	14 μg mL⁻¹	4 h	X			H₂O₂
Nitric oxide assay	CdS QDs	3–7–14 μg mL⁻¹	1–4 h	X	X	X	LPS
Glutathione with DTNB	CdS QDs	3–7–14 μg mL⁻¹	24 h	X	X	X	
Mitochondrial function	CdS QDs	14 μg mL⁻¹	4 h	X			
mtDNA	CdS QDs	3–7–14 μg mL⁻¹	24 h	X			

^a The concentrations were chosen on the basis of cell viability assay. Three doses were chosen: a toxic (acute) dose, corresponding to half-maximal inhibitory concentration (IC₅₀), a sub-toxic (subacute or upperchronic) dose (IC₃₀) and an intermediate (chronic) dose (IC₄₀).

^b The choice of treatment times includes sampling at 1 and 4 h to highlight the early cell response to CdS QDs, and 24 h to observe the late response or the recovery.

^c LPS = Lipopolysaccharide.

^d Given the small size of the QDs, the cells were treated with 100 μg mL⁻¹ to better observe the possible variation of the parameter SS. In addition, the time-dependent uptake was monitored.

^e A dose-response curve was obtained by exposing the cells to doses of QDs for 24 h. This curve was used for IC₅₀ determination.

^f Three doses were chosen: a toxic, corresponding to IC₅₀, a sub-toxic (IC₃₀) and an intermediate dose (IC₄₀).

^g Since, for Comet assay, it is necessary to use a dose that does not cause cytotoxic effects, the cells were exposed to 1.5 μg mL⁻¹ CdS QDs. The treatment times were 1 and 4 h, to highlight the early DNA damage attributed to oxidative stress, and 24 h to verify the recovery of the damage.

^h DCFH-DA is 2',7'-dichlorodihydrofluorescein diacetate. Doses used are the same as in point f. Treatment times were reduced as 1 and 4 h are enough to highlight the presence of reactive oxygen species (ROS).

ⁱ Because 4 h exposure to 14 μg mL⁻¹ CdS QDs induced a large increase in ROS level, this condition was used to analyze mitochondrial integrity. In conditions that give a good signal, was used as positive control.

^j See ROS with DCFH-DA.

^k DTNB is 5,5'-dithiobis(2-nitrobenzoic acid). The same conditions used for gene expression analysis were used.

^l Because 4 h exposure to 14 μg mL⁻¹ CdS QDs induced a large increase in ROS level, this condition was used to analyze mitochondrial integrity.

^m The same conditions used for gene expression analysis were used to appreciate the possible change in the mtDNA content, following the alteration of mitochondrial function.
Table 4

Gene subjected to transcription profiling using TaqMan® Custom Array Plates. Values in bold face are statistically significant at \(p < 0.5 \). Official full name and function derive from UniProt Knowledgebase (UniProtKB) (accessed in July 2016, www.uniprot.org).

Categories	Symbol	Official full name	Function	Fold change (RQ)
Apoptosis	ABL1	Tyrosine-protein kinase ABL1	Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics.	0.565 1.475
	BAK1	Bcl-2 homologous antagonist/killer	In the presence of an appropriate stimulus, accelerates programmed cell death by binding to, and antagonizing the anti-apoptotic action of BCL2.	1.131 1.632
	BAX	Apoptosis regulator BAX	Promotes activation of CASP3, and thereby apoptosis.	1.860 2.397
	BBC3 (PUMA)	Caspase-3	Essential mediator of p53/TP53-dependent and p53/TP53-independent apoptosis.	0.806 3.973
	CASP2	Caspase-2	Involved in the activation cascade of caspses responsible for apoptosis execution. Might function by either activating some proteins required for cell death or inactivating proteins necessary for cell survival.	1.127 0.961
	CASP3	Caspase-3	Involved in the activation cascade of caspses responsible for apoptosis execution. Cleaves and activates caspase −6, −7 and −9.	1.455 0.923
	CHEK2 (RAD53)	Serine/threonine-protein kinase Chk2	It is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles.	1.685 1.478
	DEDD2	DNA-binding death effector domain-containing protein 2	May play a critical role in death receptor-induced apoptosis and may target CASP8 and CASP10 to the nucleus. May regulate degradation of intermediate filaments during apoptosis. May play a role in the general transcription machinery in the nucleus and might be an important regulator of the activity of GTF3C3	0.716 1.497
	DIABLO (SMAC)	Diablo homolog, mitochondrial	Promotes apoptosis by activating caspses in the cytochrome c/Apaf-1/caspase-9 pathway. Acts by opposing the inhibitory activity of inhibitor of apoptosis proteins (IAP). Inhibits the activity of BIRC6/bruce by inhibiting its binding to caspses.	1.524 1.679
	HRK (BID3)	Activator of apoptosis harakiri	Promotes apoptosis.	–
	PIDD1 (LRDD)	p53-induced death domain-containing protein 1	Promotes apoptosis downstream of the tumor suppressor as component of the DNA damage/stress response pathway that connects p53/TP53 to apoptosis.	0.398 0.569
	PMAIp1 (NOXA)	Phorbol-12-myristate-13-acetate-induced protein 1	Promotes activation of caspses and apoptosis. Promotes mitochondrial membrane changes and efflux of apoptogenic proteins from the mitochondria.	2.340 3.874
	PYCARD	Apoptosis-associated speck-like protein containing a CARD	Functions as key mediator in apoptosis and inflammation.	2.648 3.425
	RAD21	Double-strand-break repair protein rad21 homolog	Cleavable component of the cohesin complex, involved in chromosome cohesion during cell cycle, in DNA repair, and in apoptosis.	1.785 12.435
Gene	**Description**	**Fold Change**		
------------	---	-----------------		
XIAP (BIRC4)	E3 ubiquitin-protein ligase XIAP Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis. Acts as a direct caspase inhibitor	0.646 0.684		
DNA repair	**FANCA** Fanconi anemia group A protein DNA repair protein that may operate in a postreplication repair or a cell cycle checkpoint function. May be involved in interstrand DNA cross-link repair and in the maintenance of normal chromosome stability	1.456 1.783		
	MRE11A MRE11 homolog A, double strand break repair nuclease Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis	– –		
	MSH2 DNA mismatch repair protein Msh2 Component of the post-replicative DNA mismatch repair system (MMR). Forms two different heterodimers which bind to DNA mismatches thereby initiating DNA repair	3.320 2.310		
	NBN Nibrin Component of the MRN complex which plays a critical role in the cellular response to DNA damage and the maintenance of chromosome integrity. The complex is involved in double-strand break repair, DNA recombination, maintenance of telomere integrity, cell cycle checkpoint control and meiosis. The complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11A	3.628 1.962		
	PRKDC DNA-dependent protein kinase catalytic subunit Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage. Involved in DNA nonhomologous end joining (NHEJ) required for double-strand break repair	1.264 1.239		
	RAD18 E3 ubiquitin-protein ligase RAD18 E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity	1.912 1.090		
	REV1 DNA repair protein REV1 Deoxyguanylyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction	1.615 2.345		
	RPA1 Replication protein A 70 kDa DNA-binding subunit As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates, which form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage	1.610 1.377		
	XPA DNA repair protein complementing XP-A cells Involved in DNA excision repair. Initiates repair by binding to damaged sites with various affinities, depending on the photoproduct and the transcriptional state of the region	2.305 1.409		
	XRCC6 X-ray repair cross-complementing protein 6e Single-stranded DNA-dependent ATP-dependent helicase. Has a role in chromosome translocation	1.659 1.958		
Cell cycle	**BUB3** Mitotic checkpoint protein BUB3 Has a dual function in spindle-assembly checkpoint signaling and in promoting the establishment of correct kinetochore-microtubule (K-MT) attachments. Promotes the formation of stable end-on bipolar attachments. Necessary for kinetochore localization of BUB1	2.882 3.705		
	ICMT Protein-S-isoprenylcysteine O-methyltransferase Catalyzes the post-translational methylation of isoprenylated C-terminal cysteine residues	0.983 0.786		
	MDM2 E3 ubiquitin-protein ligase Mdm2	1.177 0.802		
Categories	Symbol	Official full name	Function	Fold change (RQ)
------------	--------	-------------------	----------	-----------------
Mitochondrial processes	UBAC1	Ubiquitin-associated domain-containing protein 1	E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain	1.840 2.490
	ATP5L	ATP synthase subunit g, mitochondrial	Mitochondrial membrane ATP synthase	6.887 3.234
	COX8A	Cytochrome C oxidase subunit 8A, mitochondrial	This protein is one of the nuclear-coded polypeptide chains of cytochrome C oxidase, the terminal oxidase in mitochondrial electron transport	2.053 2.143
	FIS1	Mitochondrial fission 1 protein	Involved in the fragmentation of the mitochondrial network and its perinuclear clustering. Plays a minor role in the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface and mitochondrial fission. Can induce cytochrome c release from the mitochondrion to the cytosol, ultimately leading to apoptosis	1.158 2.059
	MSRB2	Methionine sulfoxide reductase B2, mitochondrial	Methionine-sulfoxide reductase that specifically reduces methionine (R)-sulfoxide back to methionine. Upon oxidative stress, may play a role in the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance	2.371 3.209
	SDHB	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial	Iron-sulfur protein (IP) subunit of succinate dehydrogenase that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q)	3.340 3.911
	PRELID3A (SLMO1)	PRELI domain containing protein 3A	In vitro, the TRIAP1:PRELID3A complex mediates the transfer of phosphatidic acid (PA) between liposomes and probably functions as a PA transporter across the mitochondrial intermembrane space. Phosphatidic acid import is required for cardiolipin (CL) synthesis in the mitochondrial inner membrane	0.917 0.707
	UQCR11	Cytochrome b-c1 complex subunit 10	This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may be closely linked to the iron-sulfur protein in the complex and function as an iron-sulfur protein binding factor	1.201 2.129
	UQRC1	Cytochrome b-c1 complex subunit 1, mitochondrial	This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1	1.177 1.859
Cytochrome b-c1 complex subunit 2, mitochondrial

This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex.

Ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. This plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction.

Plays an important role in the regulation of different protein degradation mechanisms and pathways including ubiquitin-proteasome system (UPS), autophagy and endoplasmic reticulum-associated protein degradation (ERAD) pathway. Mediates the proteasomal targeting of misfolded or accumulated proteins for degradation by binding (via UBA domain) to their polyubiquitin chains and by interacting (via ubiquitin-like domain) with the subunits of the proteasome. Involved in the regulation of macroautophagy and autophagosome formation; required for maturation of autophagy-related protein LC3 from the cytosolic form LC3-I to the membrane-bound form LC3-II and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion.

Catalyzes: an alcohol + NAD+ = an aldehyde or ketone + NADH

Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses arachidonate and eicosapentaenoate as substrates.

It is a member of the large short-chain dehydrogenase/reductase (SDR) family of enzymes that metabolize steroid hormones, prostaglandins, retinoids, lipids, and xenobiotics.

Catalyzes the hydrolysis GTP to GMP in two consecutive cleavage reactions

Involved in glutathione biosynthesis. Catalyzes: ATP+L-glutamate+L-cysteine=ADP+phosphate+gamma-L-glutamyl-L-cysteine

Catalyzes: (S)-malate + NAD+ = oxaloacetate + NADH

Involved in mitochondria homeostasis. May be involved in the metabolism of reactive oxygen species and control of oxidative phosphorylation and mitochondrial DNA maintenance.

Non-catalytic subunit of the NatB complex which catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Asp-Glu. May play a role in normal cell-cycle progression.

 Catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and thereby links the glycolytic pathway to the tricarboxylic cycle

 Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis

 Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides

Metabolism of protein	UQCRCC2	SUMO1				
UBQLN1 Ubiquilin 1						
Metabolism	**ADH1** Alcohol dehydrogenase 1A	**ACSL4** Long-chain-fatty-acid–CoA ligase 4				
	DHRS11 Dehydrogenase/reductase SDR family member 11	**GBP2** Guanylate-binding protein 2				
	GCLC Glutamate-cysteine ligase catalytic subunit	**MDH1** Malate dehydrogenase, cytoplasmic				
	MPV17 Protein Mpv17	**NAA25** N(alpha)-acetyltransferase 25, NatB auxiliary subunit				
	PDHB Pyruvate dehydrogenase E1 component subunit beta, mitochondrial	**PFKB** ATP-dependent 6-phosphofructokinase, platelet type				
	RRM1 Ribonucleoside-diphosphate reductase large subunit	**DDIT3** DNA damage-inducible transcript 3 protein				
Stress response	**DDIT3** DNA damage-inducible transcript 3 protein					
Categories	Symbol	Official full name	Function	Fold change (RQ)		
------------	--------	-------------------	----------	-----------------		
	DNAJB9	DnaJ homolog subfamily B member 9	Involved in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins. Acts as a co-chaperone with an Hsp70 protein	2.354	1.929	
	GPX3	Glutathione peroxidase 3	Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione	0.769	2.162	
	HSP90AA1	Heat shock protein HSP 90-alpha	Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function	4.360	1.074	
	HSPB3	Heat shock protein beta-3	Inhibitor of actin polymerization	0.830	1.177	
	HSPD1	60 kDa heat shock protein, mitochondrial	Implicated in mitochondrial protein import and macromolecular assembly. May facilitate the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix	2.378	2.505	
	HSPH1	Heat shock protein 105 kDa	Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities	1.291	0.801	
	LONP1	Lon protease homolog, mitochondrial	ATP-dependent serine protease that mediates the selective degradation of misfolded, unassembled or oxidatively damaged polypeptides as well as certain short-lived regulatory proteins in the mitochondrial matrix. May also have a chaperone function in the assembly of inner membrane protein complexes. Participates in the regulation of mitochondrial gene expression and in the maintenance of the integrity of the mitochondrial genome. Binds to mitochondrial promoters and RNA in a single-stranded, site-specific, and strand-specific manner. May regulate mitochondrial DNA replication and/or gene expression using site-specific, single-stranded DNA binding to target the degradation of regulatory proteins binding to adjacent sites in mitochondrial promoters	3.157	3.041	
	SIRT1	NAD-dependent protein deacetylase sirtuin-1	NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular	1.008	1.838	
Gene	Description	Functions	Log2 Fold Change TXN2	Log2 Fold Change TXN2	Log2 Fold Change TP53	Log2 Fold Change TP53
------	-------------	-----------	----------------------	----------------------	----------------------	----------------------
TXN2	Thioredoxin, mitochondrial	Has an anti-apoptotic function and plays an important role in the regulation of mitochondrial membrane potential. Could be involved in the resistance to anti-tumor agents. Possesses a dithiol-reducing activity.	1.978	1.225	-	-
DROSHA	Ribonuclease 3	Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis.	2.512	1.790	-	-
Dicer	Endoribonuclease Dicer	Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing (RISC).	1.495	0.863	-	-
AGO2	Protein argonaute-2	Required for RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC).	1.109	2.170	-	-
XPO5	Exportin-5	Mediates the nuclear export of proteins bearing a double-stranded RNA binding domain (dsRBD) and double-stranded RNAs (cargos).	1.452	1.541	-	-
DOM3Z	Decapping and exoribonuclease protein	Ribonuclease that specifically degrades pre-mRNAs with a defective 5' end cap and is part of a pre-mRNA capping quality control.	1.734	2.558	-	-
METTL18	Histidine protein methyltransferase 1 homolog	Probable histidine methyltransferase.	2.395	2.295	-	-
MRPL44	39S ribosomal protein L44, mitochondrial	Component of the 39S subunit of mitochondrial ribosome. May have a function in the assembly/stability of nascent mitochondrial polypeptides exiting the ribosome.	2.670	2.392	-	-
MTIF2	Translation initiation factor IF-2, mitochondrial	One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex.	3.941	2.292	-	-
N6AMT1	HemK methyltransferase family member 2	Heterodimeric methyltransferase that catalyzes N5-methylation of ETF1 on 'Gln-185', using S-adenosyl L-methionine as methyl donor. ETF1 needs to be complexed to ERF3 in its GTP-bound form to be efficiently methylated.	6.317	2.233	-	-
RPL36AL	60S ribosomal protein L36a-like	Structural constituent of ribosome.	-	-	-	-
RPS8	40S ribosomal protein S8	Structural constituent of ribosome.	2.537	4.553	-	-
RTF1	RNA polymerase-associated protein RTF1 homolog	Component of the PAF1 complex which has multiple functions during transcription by RNA polymerase II.	2.962	2.184	-	-
SUPT3H	Transcription initiation protein SPT3 homolog	Probable transcriptional activator.	4.612	8.239	-	-
TADA1	Transcriptional adapter 1	Probably involved in transcriptional regulation.	1.719	1.796	-	-
XRN2	5'-3' exoribonuclease 2	May promote the termination of transcription by RNA polymerase II. During transcription termination, cleavage at the polyadenylation site liberates a 5' fragment which is subsequently processed to form the mature mRNA and a 3' fragment which remains attached to the elongating polymerase.	2.860	3.754	-	-
YARS2	Tyrosyl-tRNA synthetase, mitochondrial	Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).	3.901	3.562	-	-
ZNF180	Zinc finger protein 180	Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycylidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety.	1.010	0.680	-	-
Categories	Symbol	Official full name	Function	Fold change (RQ)		
----------------	----------	--	---	------------------------		
		ATG3	**Ubiquitin-like-conjugating enzyme** ATG3 E2 conjugating enzyme required for the cytoplasm to vacuole transport, autophagy, and mitochondrial homeostasis. Responsible for the E2-like covalent binding of phosphatidylethanolamine to the C-terminal Gly of ATG8-like proteins (GABARAP or MAP1LC3A). The formation of the ATG8-phosphatidylethanolamine conjugates is essential for autophagy and for the cytoplasm to vacuole transport. Preferred substrate is MAP1LC3A. Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.	3.323 2.078		
		ATP6V1E1	**V-type proton ATPase subunit E 1** Required for the E2-like covalent binding of phosphatidylethanolamine to the C-terminal Gly of ATG8-like proteins (GABARAP or MAP1LC3A). The formation of the ATG8-phosphatidylethanolamine conjugates is essential for autophagy and for the cytoplasm to vacuole transport. Preferred substrate is MAP1LC3A. Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.	3.972 3.311		
		CHAC2	**Putative glutathione-specific gamma-glutamylcyclotransferase 2** Catalyzes the cleavage glutathione into 5-oxoproline and a Cys-Gly dipeptide. Acts specifically on glutathione, but not on other gamma-glutamyl peptides.	2.163 0.596		
		ESD	**S-formylglutathione hydrolase** Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. May bind to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promote membrane invagination and the formation of tubules	3.820 3.603		
		FNBP1L	**Formin-binding protein 1-like** Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. May bind to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promote membrane invagination and the formation of tubules	1.845 2.754		
		GAD1	**Glutamate decarboxylase 1** Catalyzes the production of GABA	2.746 10.255		
		HEMK1	**HemK methyltransferase family member 1** Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription, Chaperone. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex	1.119 1.354		
		HSPA8	**Heat shock 71 kDa protein** Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription, Chaperone. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex	0.830 1.177		
		LCP1	**Plastin-2** Actin-binding protein	0.342 1.324		
		NEDD8	**NEDD8 (Neural precursor cell expressed, developmentally downregulated 8)** Ubiquitin-like protein which plays an important role in cell cycle control. Covalent attachment to its substrates requires prior activation by the E1 complex UBE1C-APPBP1 and linkage to the E2 enzyme UBE2M. Attachment of NEDD8 to cullins activates their associated E3 ubiquitin ligase activity, and thus promotes polyubiquitination and proteasomal degradation of cyclins and other regulatory proteins	1.866 1.834		
		PEX7	**Peroxisomal targeting signal 2 receptor** Binds to the N-terminal PTS2-type peroxisomal targeting signal and plays an essential role in peroxisomal protein import	7.444 2.405		
		PHB2	**Prohibitin-2** Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases	1.730 1.807		
		STX16	**Syntaxin-16** SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network	1.352 2.038		
		TWF1	**Twinfilin-1** Actin-binding protein involved in motile and morphological processes. Inhibits actin polymerization	3.656 2.781		
Candidate endogenous		**18S**	**Eukaryotic 18S rRNA**	–		
		ACTB	**Actin, beta**	–		
		GAPDH	**Glyceraldehyde-3-phosphate dehydrogenase**	–		
Categories	Symbol	Official Full Name	Function	Fold Change (RQ)		
------------	--------	-------------------	---------	-----------------		
Apoptosis	AIFM2	Apoptosis-inducing factor 2	Oxidoreductase, which may play a role in mediating a p53/TP53-dependent apoptosis response. Probable oxidoreductase that acts as a caspase-independent mitochondrial effector of apoptotic cell death	5.938 1.002 0.497		
	CASP7	Caspase 7	Involved in the activation cascade of caspases responsible for apoptosis execution	0.448 0.501 0.349		
	DAPK1	Death-associated protein kinase 1	Calcium/calmodulin-dependent serine/threonine kinase involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. Regulates both type I apoptotic and type II autophagic cell deaths signal, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles	0.644 0.809 0.709		
	FADD	FAS-associated death domain protein kinase 1	Apoptotic adaptor molecule that recruits caspase-8 or caspase-10 to the activated Fas (CD95) or TNFR-1 receptors	5.776 0.735 0.660		
	MAP3K5	Mitogen-activated protein kinase kinase kinase 5	Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Mediates signaling for determination of cell fate such as differentiation and survival. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Plays a crucial role in the caspase signal transduction pathway through mitochondria-dependent caspase activation	0.192 0.037 0.205		
	PYCARD	Apoptosis-associated speck-like protein containing a CARD	Functions as key mediator in apoptosis and inflammation. Promotes caspase-mediated apoptosis involving predominantly caspase-8 and also caspase-9 in a probable cell type-specific manner. Involved in activation of the mitochondrial apoptotic pathway, promotes caspase-8-dependent proteolytic maturation of BID independently of FADD in certain cell types and also mediates mitochondrial translocation of BAX and activates BAX-dependent apoptosis coupled to activation of caspase – 9, –2 and –3	1.270 1.510 0.793		
BAD	Bcl2-associated agonist of cell death	Promotes cell death. Successfully competes for the binding to Bcl-X(L), Bcl-2 and Bcl-W, thereby affecting the level of heterodimerization of these proteins with BAX	3.000 0.487 0.559			
BCL2	Apoptosis regulator Bcl-2	Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1)	0.521 0.375 0.204			
APAF1	Apoptotic protease-activating factor 1	Oligomeric Apaf-1 mediates the cytochrome c-dependent autocatalytic activation of pro-caspase-9 (Apaf-3), leading to the activation of caspase-3 and apoptosis	5.464 0.844 0.423			
BAK1	Bcl-2 homologous antagonist/killer	In the presence of an appropriate stimulus, accelerates programmed cell death by binding to, and antagonizing the anti-apoptotic action of BCL2 or its adenovirus homolog E1B 19k protein	0.357 0.429 0.421			
BID	BH-interacting domain death agonist	The major proteolytic product p15 BID allows the release of cytochrome C	0.505 0.797 0.369			
Categories	Symbol	Official Full Name	Function	Fold Change (RQ)		
------------	--------	-------------------	----------	-----------------		
Stress response				3 µg mL⁻¹	7 µg mL⁻¹	14 µg mL⁻¹
CASP8	L	Caspase-8	Most upstream protease of the activation cascade of caspases responsible for the TNFRSF6/FAS mediated and TNFRSF1A induced cell death. Binding to the adapter molecule FADD recruits it to either receptor	0.473	0.684	0.326
CASP9	L	Caspase-9	Involved in the activation cascade of caspases responsible for apoptosis execution. Binding of caspase-9 to Apaf-1 leads to activation of the protease which then cleaves and activates caspase-3. Promotes DNA damage-induced apoptosis in a ABL1/c-Abl-dependent manner. Proteolytically cleaves poly(ADP-ribose) polymerase	1.172	2.585	1.021
AOX1	L	Aldehyde oxidase	Plays a key role in the metabolism of xenobiotics and drugs	10.629	0.807	1.169
COX4I1	L	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial	This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport	1.374	1.034	1.038
CAT	L	Catalase	Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide	1.705	0.714	1.873
CYGB	L	Cytoglobin	May have a protective function during conditions of oxidative stress	4.563	0.514	0.509
DHCR24	L	Delta(24)-sterol reductase	Catalyzes the reduction of the delta-24 double bond of sterol intermediates. Protects cells from oxidative stress by reducing caspase 3 activity during apoptosis induced by oxidative stress	3.824	0.545	0.807
DUSP1	L	Dual specificity phosphatase 1	Induction by oxidative stress and heat shock. Dual specificity phosphatase that dephosphorylates MAP kinase MAPK1/ERK2 on both ‘Thr-183’ and ‘Tyr-185’, regulating its activity during the meiotic cell cycle	1.045	0.962	0.966
FOXO1	L	Forkhead box protein O1	Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative factors	1.467	0.825	1.108
FOXO3	L	Forkhead box protein O3	Transcriptional activator which triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress	0.986	1.076	1.354
GPX1⁴	L	Glutathione peroxidase 1	This gene encodes a member of the glutathione peroxidase family. Glutathione peroxidase functions in the detoxification of hydrogen peroxide	1.197	1.592	1.153
GPX4	L	Phospholipid hydroperoxide glutathione peroxidase, mitochondrial	Protects cells against membrane lipid peroxidation and cell death. Protects from radiation and oxidative damage	0.902	1.269	0.889
HIF1A	L	Hypoxia inducible factor 1-alpha	Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HIFPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia	0.990	1.039	2.767
MSRA	L	Mitochondrial peptide methionine sulfoxide reductase	It has an important function as a repair enzyme for proteins that have been inactivated by oxidation	4.098	1.161	0.369
OXSR1	L	Serine/threonine-protein kinase OSR1	Regulates downstream kinases in response to environmental stress. May also have a function in regulating the actin cytoskeleton	2.780	0.930	0.593
PRDX1	L	Peroxiredoxin-1		0.835	0.883	0.530
Gene	Description	Expression Changes				
--------	---	--------------------				
PRDX2	Peroxiredoxin-2, involved in redox regulation of the cell. Reduces peroxides with reducing equivalents provided through the thioredoxin system but not from glutaredoxin. May play an important role in eliminating peroxides generated during metabolism.	0.966 1.071 1.035				
PRDX3	Thioredoxin-dependent peroxide reductase, mitochondrial, involved in redox regulation of the cell. Protects radical-sensitive enzymes from oxidative damage by a radical-generating system.	6.320 2.204 0.812				
PRDX5	Peroxiredoxin-5, mitochondrial, reduces hydrogen peroxide and alkyl hydroperoxides with reducing equivalents provided through the thioredoxin system. Involved in intracellular redox signaling.	1.424 0.541 0.527				
PRDX6	Peroxiredoxin-6, involved in redox regulation of the cell. Can reduce H₂O₂ and short chain organic, fatty acid, and phospholipid hydroperoxides. May play a role in the regulation of phospholipid turnover as well as in protection against oxidative injury.	1.860 0.774 0.509				
PTGS1	Prostaglandin G/H synthase 1, converts arachidonate to prostaglandin H₂ (PGH₂), a committed step in prostanoid synthesis.	0.285 0.144 0.816				
GBP2	Guanylate-binding protein 2, hydrolyzes GTP to GMP in two consecutive cleavage reactions.	0.901 0.868 1.959				
STK25	Serine/threonine protein kinase 25, oxidant stress-activated serine/threonine kinase that may play a role in the response to environmental stress. Targets to the Golgi apparatus where it appears to regulate protein transport events, cell adhesion, and polarity complexes important for cell migration.	0.561 0.516 0.646				
GSR	Glutathione reductase, mitochondrial, maintains high levels of reduced glutathione in the cytosol.	2.246 2.211 3.446				
GSTZ1	Maleylacetocetate isomerase (Glutathione S-transferase zeta 1), bifunctional enzyme showing minimal glutathione-conjugating activity with ethacrynic acid and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and maleylacetocetate isomerase activity. Has also low glutathione peroxidase activity with T-butyl and cumene hydroperoxides. Is able to catalyze the glutathione dependent oxygenation of dichloroacetic acid to glyoxylic acid.	5.637 0.644 3.655				
GCLC	Glutamate-cysteine ligase, catalytic subunit, this protein is involved in step 1 of the subpathway that synthesizes glutathione from L-cysteine and L-glutamate.	0.235 0.483 0.241				
GSS	Glutathione synthetase, this protein is involved in step 2 of the subpathway that synthesizes glutathione from L-cysteine and L-glutamate.	3.095 0.467 1.625				
LONP1	Lon protease homolog, mitochondrial, ATP-dependent serine protease that mediates the selective degradation of misfolded, unassembled or oxidatively damaged polypeptides as well as certain short-lived regulatory proteins in the mitochondrial matrix. May also have a chaperone function in the assembly of inner membrane protein complexes. Participates in the regulation of mitochondrial gene expression and in the maintenance of the integrity of the mitochondrial genome. Binds to mitochondrial promoters and RNA in a single-stranded, site-specific, and strand-specific manner. May regulate mitochondrial DNA replication and/or gene expression using site-specific, single-stranded DNA binding to target the degradation of regulatory proteins binding to adjacent sites in mitochondrial promoters.	0.829 1.021 0.635				
MPV17	Protein Mpv17, involved in mitochondria homeostasis. May be involved in the metabolism of reactive oxygen species and control of oxidative phosphorylation and mitochondrial DNA maintenance.	1.090 0.389 0.470				
NOS2	Nitric oxide synthase, inducible, produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body.	1.602 0.334 0.408				
Categories	Symbol	Official Full Name	Function	Fold Change (RQ)		
------------	--------	-------------------	----------	------------------		
				3 µg mL⁻¹	7 µg mL⁻¹	14 µg mL⁻¹
OXIR1	Oxidation resistance protein 1	May be involved in protection from oxidative damage	3.543	0.966	0.635	
SOD1	Superoxide dismutase [Cu-Zn]	Destroys radicals which are normally produced within the cells and which are toxic to biological systems	1.747	1.108	0.938	
SOD2	Superoxide dismutase [Mn], mitochondrial	Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems	0.998	0.567	0.995	
TXN	Thioredoxin	Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity	0.914	1.089	1.478	
TXNRD2	Thioredoxin reductase 2, mitochondrial	Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox-regulated cell signaling	1.400	**0.434**	**0.338**	
UCP2	Mitochondrial uncoupling protein 2	UCP are mitochondrial transporter proteins that create proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. As a result, energy is dissipated in the form of heat	0.597	0.775	0.715	
Autophagy	ATG12	Ubiquitin-like protein ATG12	Ubiquitin-like protein involved in autophagy vesicles formation. Conjugation with ATG5 through a ubiquitin-like conjugating system involving also ATG7 as an E1-like activating enzyme and ATG10 as an E2-like conjugating enzyme, is essential for its function	1.600	0.581	0.747
	ATG13	Autophagy-related protein 13	Autophagy factor required for autophagosome formation and mitophagy. Target of the TOR kinase signaling pathway that regulates autophagy through the control of the phosphorylation status of ATG13 and ULK1	**4.423**	**0.463**	0.588
	ATG14	Beclin 1-associated autophagy-related key regulator	Required for both basal and inducible autophagy. Plays a role in autophagosome formation	**6.869**	0.821	0.561
	ATG7	Ubiquitin-like modifier-activating enzyme ATG7	E1-like activating enzyme involved in the 2 ubiquitin-like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 as well as the ATG8 family proteins for their conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes membranes. Required for autophagic death induced by caspase-8 inhibition. Required for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production	**5.877**	0.525	0.732
	GABARAP	Gamma-aminobutyric acid receptor-associated protein	Ubiquitin-like modifier that plays a role in intracellular transport of GABA(A) receptors and its interaction with the cytoskeleton. Involved in apoptosis. Involved in autophagy	1.688	0.574	**2.196**
	MAP1LC3A	Microtubule-associated protein 1A/1B light chain 3A	Ubiquitin-like modifier involved in formation of autophagosomal vacuoles	**0.352**	0.927	**0.119**
	MTOR			0.700	0.914	0.779
200 kV, was used to examine QD structure. The aggregation of a group of QDs following solvent evaporation (Fig. 1a) was due to the lack of capping molecules at the QD surface. The corresponding reduced Fourier transform (FT) in the inset confirms the hexagonal structure (greenockite, P63mc) of as-synthesized CdS QDs ($d = 0.36$ nm in agreement with standard card JCPDS no. 80-0006). The FT of the whole high resolution transmission electron microscope (HRTEM) image is presented in Fig. 1b. The expected ring feature arising from the random orientation of CdS crystals is clear, as is the overlap of (100), (002) and (101) reflections of the wurtzite structure (at high d values) due to low dimension peak broadening. Such features are in agreement with the XRD pattern shown in Fig. 1c. All peaks have been indexed according to the structure of greenockite and no other reflections arising from possible impurities are observed. A Scherrer calculation based on the FWHM (full width at half maximum) of the three main peaks produced an estimated mean size of ~ 6 nm. An ESEM (environmental scanning electron microscopy) Quanta 250FEG (FEI Co., Hillsboro, OR, USA) together with a QUANTAX EDS (energy-dispersive systems) XFlash™ 6T detector series and the ESPRIT 2 analytical methods interface (Bruker, Berlin, Germany) was used to determine CdS QDs morphology and elemental content. Single 1 mL drops containing 80 mg L$^{-1}$ CdS QDs were left to dry on a scanning electron microscopy (SEM) stub covered with carbon tape in a protected environment. Seven stubs were analysed during one round of experiments. The working parameters for SEM imaging and X-ray spectra acquisition were: pressure: 70 Pa, working distance: 9.9 mm, acceleration voltage: 20 keV. SEM images of a CdS QDs drop at 29,750x magnification (Fig. 2a) and at 130,802x magnification (Fig. 2b) show the nanocrystals are grouped into small agglomerates of 50–100 nm. The energy-dispersive X-ray analysis (EDX) (Fig. 2c) of the point indicated by the green arrow in Fig. 2b reveals clear emission lines for Cd Lα1 and Lβ1 at 3.133 and 3.316 eV. The S Kα1 and Kβ1 lines at 2.308 and 2.464 eV are also visible.
2.2. Cell culture

HepG2 cells (Fig. 3) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) contained 10% (v/v) fetal bovine serum (FBS), 50 U mL\(^{-1}\) penicillin/streptomycin and 1% (w/v) L-glutamine in an incubator at 37 °C and 5% CO\(_2\). Cells were exposed to different doses of CdS QDs.

2.3. Cytotoxicity assay

The cytotoxicity of CdS QDs (Fig. 4) was evaluated by CellTiter 96\(^{®}\) AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA) according to the manufacturer’s protocol. In this assay, cell viability was assumed to be proportional to the quantity of formazan generated by the reduction of MTS. Data obtained were also used in Paesano et al. [1].
2.4. Detection of glutathione

The cellular level of glutathione (GSH) was determined by an assay based on the conversion of 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) (Sigma-Aldrich) to the yellow-coloured product 2-nitro-5-thiobenzoic acid (TNB) (Fig. 5).
Fig. 7. Hierarchical clustering (heatmap) of relative transcript abundances obtained by TaqMan® Custom Array Plates in qRT-PCR. Up-regulated genes are shown in red and down-regulated ones in green. The colour intensity reflects the transcript’s abundance. HepG2 cells were exposed for 24 h to either (1) 3 or (2) 14 μg mL⁻¹ CdS QDs. Data showed in figure are representative of three independent experiments, each performed in triplicate for each condition.
2.5. Assay on mitochondrial integrity

HepG2 cells were exposed to a range of CdS QDs concentrations and were subsequently stained for 30 min in 40 nM rhodamine B hexyl ester (ThermoFisher Scientific, Waltham, MA, USA), rinsed in PBS, harvested by centrifugation (800 g, 5 min) and re-suspended in PBS with 1% (v/v) FBS. The suspension was analyzed using a FC500 flow cytometer (Beckman Coulter Inc.) (Fig. 6).

2.6. Analysis of transcriptomic data

The data reported in Table 4 were analysed to build a heat map (Fig. 7) depicting the hierarchical clustering of genes according to their expression profile. Moreover, data were summarized in a scheme that highlights the interactions between the different cellular processes involved (Fig. 8).

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors acknowledge financial support from the SITEIA.PARMA Technopole, the University of Parma Doctorate School, Doctorate of Biotechnology. The work was made possible through the University of Parma Local Fund Project.
Transparency document. Supplementary material

Transparency document associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.12.051.

References

[1] L. Paesano, A. Perotti, A. Buschini, C. Carubbi, M. Marmiroli, E. Maestri, S. Iannotta, N. Marmiroli, Markers for toxicity of HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology 374 (2016) 18-28, http://dx.doi.org/10.1016/j.tox.2016.11.012.

[2] A. Al-Ali, N. Singh, B. Manshian, T. Wilkinson, J. Wills, G.J.S. Jenkins, S.H. Doak, Quantum dot induced cellular perturbations involving varying toxicity pathways, Toxicol. Res. 4 (2015) 623–633. http://dx.doi.org/10.3934/C4TX00175C.

[3] S. Alomar, Cadmium sulfide nanoparticle induces oxidative stress and pro-inflammatory effects in human lung adenocarcinoma epithelial cells, Toxicol. Environ. Chem. 97 (2015) 619–633. http://dx.doi.org/10.1080/02772248.2015.1049815.

[4] Y.J. Bao, J.J. Li, Y.T. Wang, L. Yu, L. Lou, W.J. Du, Z.Q. Zhu, H. Peng, J.Z. Zhu, Probing cytotoxicity of CdSe and CdSe/CdS quantum dots, Chin. Chem. Lett. 22 (2011) 843–846. http://dx.doi.org/10.1016/j.ccl.2010.12.008.

[5] S.T. Hossain, S.K. Mukherjee, Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells, Int. J. Hazard Mater. 260 (2013) 1073–1082. http://dx.doi.org/10.1016/j.ijhazmat.2013.07.005.

[6] L. Ju, G. Zhang, C. Zhang, L. Sun, Y. Jiang, C. Yan, P.J. Duerksen-Hughes, X. Zhang, X. Zhu, F.F. Chen, J. Yang, Quantum dot-related genotoxicity perturbation can be attenuated by PEG encapsulation, Mutat. Res. 753 (2013) 54–64. http://dx.doi.org/10.1016/j.mrgentox.2013.01.006.

[7] L. Peng, M. He, B. Chen, Q. Wu, Z. Zhang, D. Pang, Y. Zhu, B. Hu, Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in NIH/3T3 cells, Biomaterials 32 (2011) 3807–3814. http://dx.doi.org/10.1016/j.biomaterials.2011.01.074.

[8] Y.H. Luo, S.B. Wu, Y.H. Wei, Y.C. Chen, M.H. Tsai, C.C. Hu, S.Y. Lin, C.S. Yang, P. Lin, Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress, Chem. Res. Toxicol. 26 (2013) 662–673. http://dx.doi.org/10.1021/tx300455k.

[9] B.B. Manshian, S.J. Soenen, A. Al-Ali, A. Brown, N. Hondow, J. Wills, G.J.S. Jenkins, S.H. Doak, Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints, Toxicol. Sci. 144 (2015) 246–258. http://dx.doi.org/10.1093/toxsci/kfv002.

[10] K.C. Nguyen, P. Rippstein, A.F. Tayabali, W.G. Willmore, Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes, Toxicol. Sci. 146 (2015) 31–42. http://dx.doi.org/10.1093/toxsci/kfv068.

[11] K.C. Nguyen, V.L. Seligy, A.F. Tayabali, Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa, Nanotoxicology 7 (2013) 202–211. http://dx.doi.org/10.3109/19441291.2013.648667.

[12] K.C. Nguyen, W.G. Willmore, A.F. Tayabali, Cadmium quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatic carcinoma HepG2 cells, Toxicology 306 (2013) 114–123. http://dx.doi.org/10.1016/j.tox.2013.02.010.

[13] L. Peng, M. He, B. Chen, Q. Wu, Z. Zhang, D. Pang, Y. Zhu, B. Hu, Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells, Biomaterials 34 (2013) 9545–9558. http://dx.doi.org/10.1016/j.biomaterials.2013.08.038.

[14] A.A. Romoser, P.L. Chen, J.M. Berg, C. Seabury, I. Ivanov, M.F. Criscitiello, C.M. Sayes, Quantum dots trigger immunomodulation via the NF-κB pathway in human skin cells, Mol. Immunol. 48 (2011) 1349–1359. http://dx.doi.org/10.1016/j.molimm.2011.02.009.

[15] W.E. Smith, J. Brownell, C.C. White, Z. Afsharinejad, J. Tsai, X. Hu, S.J. Polyak, X. Gao, T.J. Kavanagh, D.L. Eaton, in vitro toxicity assessment of amphiphilic polymeric coated CdSe/ZnS quantum dots in two human liver cell models, ACS Nano 6 (2012) 9475–9484. http://dx.doi.org/10.1021/nn302288r.

[16] S.J. Tan, N.R. Jana, S. Gao, P.K. Patra, J.Y. Ying, Surface-lgand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymeric coated quantum dots, Chem. Mater. 22 (2010) 2239–2247. http://dx.doi.org/10.1021/cm902989f.

[17] J. Wu, Q. Chen, W. Liu, Y. Zhang, J.M. Lin, Cytotoxicity of quantum dot assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues, Lab. Chip (2012) 3474–3480. http://dx.doi.org/10.1039/c2lc40502d.

[18] P. Xu, J. Li, L. Shi, M. Selke, B. Chen, X. Wang, Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogenic acid for HepG2 cell-labeling and proliferation inhibition, Int. J. Nanomed. 8 (2013) 3729–3736. http://dx.doi.org/10.2147/IJN.S51622.

[19] T. Zhang, Y. Hu, M. Tang, L. Kong, J. Ying, T. Wu, Y. Xue, Y. Pu, Liver toxicity of cadmium telluride quantum dots (CdTe QDs) due to oxidative stress in vitro and in vivo, Int. J. Mol. Sci. 16 (2015) 23279–23299. http://dx.doi.org/10.3390/ijms161023279.

[20] L.W. Zhang, W. Bäumer, N.A. Monteiro-Riviere, Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells, Nanomedicine 6 (2011) 777–791. http://dx.doi.org/10.2217/nmn.11.173.

[21] G. Zhang, L. Shi, M. Selke, X. Wang, CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation, Nanoscale Res. Lett. 6 (2011) 418. http://dx.doi.org/10.1186/1556-276X-6-418.

[22] D. Beyerstmann, Effects of carcinogenic metals on gene expression, Toxicol. Lett. 127 (2002) 63–68. http://dx.doi.org/10.1016/S0378-4274(01)00484-2.

[23] S.H. Oh, S.C. Lim, A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation, Toxicol. Appl. Pharmacol. 212 (2006) 212–223. http://dx.doi.org/10.1016/j.taap.2005.07.018.

[24] S.A. Bashandy, I.M. Alhazza, M. Mubarak, Role of zinc in the protection against cadmium induced hepatotoxicity, Int. J. Pharmacol. 2 (2006) 79–88. http://dx.doi.org/10.3923/ijp.2006.79.88.
[25] R. Aziz, M.T. Rafiq, J. Yang, D. Liu, L. Lu, Z. He, M.K. Daud, T. Li, X. Yang, Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702), Biomed. Res. Int. 2014 (2014) 1–8. http://dx.doi.org/10.1155/2014/839538.

[26] P. Joseph, Mechanisms of cadmium carcinogenesis, Toxicol. Appl. Pharmacol. 238 (2009) 272–279. http://dx.doi.org/10.1016/j.taap.2009.01.011.

[27] C. Giaginis, E. Gatzidou, S. Theocharis, DNA repair systems as targets of cadmium toxicity, Toxicol. Appl. Pharmacol. 213 (2006) 282–290. http://dx.doi.org/10.1016/j.taap.2006.03.008.

[28] M. Villani, D. Calestani, L. Lazzarini, L. Zanotti, R. Mosca, A. Zappettini, Extended functionality of ZnO nanotetrapods by solution-based coupling with CdS nanoparticles, J. Mater. Chem. 22 (2012) 5694–5699. http://dx.doi.org/10.1039/c2jm16164h.

[29] F. Pasquali, C. Agrimonti, L. Pagano, A. Zappettini, M. Villani, M. Marmiroli, J.C. White, N. Marmiroli, Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure, J. Hazard. Mater. 324 (2017) 744–752. http://dx.doi.org/10.1016/j.jhazmat.2016.11.053.