THE WOBBLY DIVISORS OF THE MODULI SPACE OF RANK-2 VECTOR BUNDLES

SARBESWAR PAL AND CHRISTIAN PAULY

Abstract. Let X be a smooth projective complex curve of genus $g \geq 2$ and let $M_X(2, \Lambda)$ be the moduli space of semi-stable rank-2 vector bundles over X with fixed determinant Λ. We show that the wobbly locus, i.e., the locus of semi-stable vector bundles admitting a non-zero nilpotent Higgs field is a union of divisors $W_k \subset M_X(2, \Lambda)$. We show that on one wobbly divisor the set of maximal subbundles is degenerate. We also compute the class of the divisors W_k in the Picard group of $M_X(2, \Lambda)$.

1. Introduction

Let X be a smooth projective complex curve of genus $g \geq 2$ and let K be its canonical line bundle. Fixing a line bundle Λ we consider the coarse moduli space $M_X(2, \Lambda)$ parameterizing semi-stable rank-2 vector bundles of fixed determinant Λ over X. In this note we study the locus in $M_X(2, \Lambda)$ of wobbly, or non-very stable, vector bundles over X. We recall that a vector bundle E is called very stable if E has no non-zero nilpotent Higgs field $\phi \in H^0(X, \text{End}(E) \otimes K)$. Laumon [Lau, Proposition 3.5] proved, assuming $g \geq 2$, that a very stable vector bundle is stable and that the locus of very stable bundles is a non-empty open subset of $M_X(2, \Lambda)$. Hence the locus of wobbly bundles is a closed subset $W \subset M_X(2, \Lambda)$.

It was announced in Laumon [Lau, Remarque 3.6 (ii)] that W is of pure codimension 1. The term “wobbly” was introduced in the paper [DP].

Our first result proves this claim. Since the isomorphism class of the moduli space $M_X(2, \Lambda)$ depends only on the parity of the degree $\lambda = \deg \Lambda$, it will be enough to study two cases, $\lambda = 0$ and $\lambda = 1$. For $1 \leq k \leq g - \lambda$ we define W_k to be the closure in $M_X(2, \Lambda)$ of the locus of all semi-stable vector bundles arising as extensions

$$0 \rightarrow L \rightarrow E \rightarrow \Lambda L^{-1} \rightarrow 0,$$

with $\deg L = 1 - k$ and $\dim H^0(X, KL^2\Lambda^{-1}) > 0$. We denote by $[x]$ the ceiling of the real number x. With this notation we have the following results.

Theorem 1.1. The wobbly locus $W \subset M_X(2, \Lambda)$ is of pure codimension 1 and we have the following decomposition for $\lambda = 0$ and $\lambda = 1$

$$W = W_{\frac{\lambda + 1}{2}} \cup \ldots \cup W_{g - \lambda}.$$

In particular, all loci W_k appearing in the above decomposition are divisors. They are all irreducible, except W_0 for $\lambda = 0$, which is the union of 2^{2g} irreducible divisors.

Date: April 2, 2018.
This theorem completes the results obtained in [P] showing that \(W \) is of codimension 1 for \(\lambda = 1 \). The idea of the proof is to consider the rational forgetful map (forgetting the non-zero Higgs field) from the equidimensional nilpotent cone in the moduli space of semi-stable Higgs bundles to \(\mathcal{M}_X(2, \Lambda) \). It turns out that roughly half of the irreducible components of the nilpotent cone gets contracted by the forgetful map with one-dimensional fibers to the above mentioned divisors \(W_k \), and the other half gets contracted with fibers of dimension > 1 to subvarieties of these disisors \(W_k \).

Our second result studies the relationship between very stable vector bundles \(E \) and the loci of maximal line subbundles of \(E \). We recall here the main results on maximal line subbundles of rank-2 bundles (see e.g. [O], [LN]). Under the assumption that \(g + \lambda \) is odd, i.e., \(g \) odd if \(\lambda = 0 \) and \(g \) even if \(\lambda = 1 \), the Quot-scheme

\[
M(E) := \text{Quot}^{1,1-[\frac{g-\lambda}{2}]}(E)
\]

parameterizing subsheaves of rank 1 and degree \(1 - [\frac{g-\lambda}{2}] \) of \(E \) is a zero-dimensional, reduced scheme of length \(2^g \) for a general bundle \(E \in \mathcal{M}_X(2, \Lambda) \). In that case \(M(E) \) parameterizes line subbundles of \(E \) of maximal degree. We say that \(M(E) \) is non-degenerate if \(\dim M(E) = 0 \) and \(M(E) \) is reduced, and degenerate if the opposite holds.

Theorem 1.2. Under the assumption that \(g + \lambda \) is odd, the following holds.

1. If \(E \) is very stable, then \(M(E) \) is non-degenerate.
2. The subscheme \(M(E) \) is degenerate for any \(E \in W_{\lceil \frac{g-\lambda}{2} \rceil} \).

The case \(g = 2, \lambda = 1 \) was already worked out in [P]. In Remark 3.1 we show that part (2) does not hold on other components of the wobbly locus.

Our last result computes the class \(\text{cl}(W_k) \) of the wobbly divisors \(W_k \) in the Picard group of the moduli space \(\mathcal{M}_X(2, \Lambda) \), which is isomorphic to \(\mathbb{Z} \) (see e.g. [DN]).

Theorem 1.3. We have the following equality for \(\lambda = 0 \) and \(\lambda = 1 \)

\[
\text{cl}(W_k) = 2^{2k} \left(\frac{g}{2g-2k-\lambda} \right) \text{ for } \left[\frac{g-\lambda}{2} \right] \leq k \leq g - \lambda.
\]

In the case \(\lambda = 0 \) the computations of the class \(\text{cl}(W_k) \) were already carried out in [F2], but due to some typos the final result in loc.cit. is not correct. For the convenience of the reader we include a detailed presentation of the computations in the case \(\lambda = 1 \).

In the last section we give a description of these divisors for low genus.

We would like to thank Jochen Heinloth and Ana Peón-Nieto for useful discussions on the nilpotent cone. The first author thanks the University of Nice Sophia-Antipolis for financial support of a visit in November 2017, when most of this work was carried out.

2. Proof of Theorem 1.1

Let \(\text{Higgs}_X(2, \Lambda) \) be the moduli space of semi-stable Higgs bundles of rank 2 with fixed determinant \(\Lambda \). The Hitchin map defined by mapping a Higgs field \((E, \phi) \) to its determinant \(\text{det}(\phi) \) is a proper surjective map

\[
h : \text{Higgs}_X(2, \Lambda) \to H^0(X, K^2).
\]

It is easy to see that the nilpotent cone decomposes as

\[
h^{-1}(0) = \mathcal{M}_X(2, \Lambda) \cup \mathcal{E},
\]
where $M_X(2, \Lambda)$ denotes here pairs $(E, 0)$ with zero Higgs field and $\tilde{\mathcal{E}}$ consists of semi-stable pairs (E, ϕ) with non-zero nilpotent Higgs field — note that the underlying bundle E is not necessarily semi-stable. In other words, the image of \mathcal{E} under the rational forgetful map $h^{-1}(0) \to M_X(2, \Lambda)$ is the locus of wobbly bundles. In the case $\lambda = 1$ the nilpotent cone was already described in [2]. For the convenience of the reader we recall now the description.

By [2] Lemma 3.1 a vector bundle E admits a non-zero nilpotent Higgs field if and only if it contains a line subbundle L with $H^0(X, KL^2 \Lambda^{-1}) \neq 0$. Thus any such bundle can be written as an extension

$$0 \to L \to E \to L^{-1} \Lambda \to 0,$$

where Λ is a line bundle of degree $\lambda \in \{0, 1\}$ and the nilpotent Higgs field is given as the composition $\phi = u \circ \pi$ with a non-zero $u \in H^0(X, KL^2 \Lambda^{-1}) = \text{Hom}(L^{-1} \Lambda, LR)$. Then we have the following inequalities:

- Since $\phi(L) = 0$, L is invariant under ϕ and by semi-stability of the pair (E, ϕ), we have $\text{deg}(L) = d \leq \frac{\lambda}{2}$.
- We also have $u \neq 0$. This implies that $\text{deg}(KL^2 \Lambda^{-1}) \geq 0 \Leftrightarrow d \geq \frac{\lambda}{2} + 1 - g$.

Hence we obtain the inequalities

$$\frac{\lambda}{2} + 1 - g \leq d \leq \frac{\lambda}{2}.$$

We set $k = 1 - d$ and we distinguish two cases:

- $\lambda = 0 : 1 - g \leq d \leq 0 \Leftrightarrow 1 \leq k \leq g$.
- $\lambda = 1 : \frac{1}{2} - g \leq d \leq \frac{1}{2} \Leftrightarrow 1 \leq k \leq g - 1$.

We introduce the subloci

$$W_k^0 := \{ E \in W : E \text{ contains a line subbundle } L \text{ of degree } 1-k \text{ with } H^0(X, KL^2 \Lambda^{-1}) \neq 0\}$$

and denote by W_k the Zariski closure of W_k^0 in $M_X(2, \Lambda)$. We therefore deduce from the above considerations the following decompositions $W = \bigcup_{k=1}^{g} W_k$ for $\lambda = 0$ and $W = \bigcup_{k=1}^{g-1} W_k$ for $\lambda = 1$.

Remark 2.1. We observe that for $\lambda = 0$ the locus W_1 coincides with the semi-stable boundary of $M_X(2, \Lambda)$, which equals the Kummer variety of X.

Now we decompose $\tilde{\mathcal{E}}$ as $\bigcup_{k=1}^{g} \tilde{\mathcal{E}}_k$ for $\lambda = 0$ and $\bigcup_{k=1}^{g-1} \tilde{\mathcal{E}}_k$ for $\lambda = 1$ such that the image of $\tilde{\mathcal{E}}_k$ under the forgetful map is W_k. The construction goes as follows (we omit the construction of $\tilde{\mathcal{E}}_1$ for $\lambda = 0$ — see Remark 2.1):

We introduce the subvarieties $Z_k \subset \text{Pic}^{1-k}(X)$ for $1 \leq k \leq g - \lambda$ defined by

$$Z_k := \{ L \in \text{Pic}^{1-k}(X) \text{ such that } h^0(X, KL^2 \Lambda^{-1}) \neq 0 \}.$$

Then one can construct Z_k as the pre-image of the Brill-Noether locus $W_{2g - 2k - \lambda}(X)$ under the map

$$\mu_k : \text{Pic}^{1-k}(X) \to \text{Pic}^{2g - 2k - \lambda}(X)$$

taking L to $KL^2 \Lambda^{-1}$. Then

$$\dim Z_k = 2g - 2k - \lambda \text{ if } 2g - 2k - \lambda \leq g$$

$$= g \text{ if } 2g - 2k - \lambda \geq g.$$
Note that in the latter case $Z_k = \text{Pic}^{-k}(X)$. Consider the fiber product $\tilde{Z}_k = Z_k \times_{W_{2g-2k-\lambda}} S^{2g-2k-\lambda}(X)$

\begin{equation}
\begin{array}{c}
\tilde{Z}_k \\
\downarrow q \\
Z_k
\end{array} \quad \begin{array}{c}
\longrightarrow \\
\mu_k \\
\downarrow \\
W_{2g-2k-\lambda}
\end{array} \quad (2.2)
\end{equation}

where the right vertical map is the natural map from the symmetric product of the curve to its Picard variety. Then the projection map $p : \tilde{Z}_k \to S^{2g-2k-\lambda}(X)$ is a 2^g-fold étale covering of $S^{2g-2k-\lambda}(X)$ and \tilde{Z}_k parameterizes line bundles L and effective divisors in $|\mathcal{K}L^2\Lambda^{-1}|$. There exists a unique line bundle \mathcal{L} over $S^{2g-2k-\lambda}(X)$ whose fiber at a divisor D is canonically isomorphic to the space of sections of the line bundle determined by D which vanish precisely on D. Furthermore, it can be shown that this line bundle is trivial.

Excluding the case $\lambda = 0$ and $k = 1$ (see Remark 2.1), we observe that the dimension of $\text{Ext}^1(\mathcal{L}L^{-1}, \mathcal{L}) = H^1(\Lambda^{-1}L^2)$ depends only on the degree of the line bundle L. Therefore there exists a vector bundle \mathcal{V}_k over Z_k whose fiber at a point $L \in Z_k$ is canonically isomorphic to $\text{Ext}^1(\mathcal{L}L^{-1}, \mathcal{L})$. The rank of the vector bundle \mathcal{V}_k is $g + 2k + \lambda - 3$ and a general extension class v in the fiber $(\mathcal{V}_k)_L$ defines a stable rank-2 vector bundle E_v.

Proposition 2.2. We have the following:

1. The total space of the vector bundle $q^*\mathcal{V}_k \oplus p^*\mathcal{L}$ over \tilde{Z}_k parameterizes triples (L, v, u), where L is a line bundle in \tilde{Z}_k, v is an extension class in the fiber $(\mathcal{V}_k)_L$ and u is a global section of $\mathcal{K}L^2\Lambda^{-1}$.

2. There exists a rational map ϕ_k from the projectivized bundle $\mathbb{P}(q^*\mathcal{V}_k \oplus p^*\mathcal{L})$ to $\text{Higgs}_X(2, \Lambda)$ defined by sending (L, v, u) to the Higgs bundle $(E_v, i \circ u \circ \pi)$ as defined by the exact sequence (2.2).

3. We have a commutative diagram

\begin{equation}
\begin{array}{c}
\mathbb{P}(q^*\mathcal{V}_k \oplus p^*\mathcal{L}) \\
\downarrow \phi_k \\
\text{Higgs}_X(2, \Lambda)
\end{array} \quad \begin{array}{c}
\mathbb{P}(\mathcal{V}_k) \\
\downarrow \psi_k \\
\text{M}_X(2, \Lambda),
\end{array}
\end{equation}

where all arrows are rational maps. The vertical maps are forgetful maps of the global section of $\mathcal{K}L^2\Lambda^{-1}$ and of the Higgs field respectively.

4. The restriction of ϕ_k to the vector bundle $q^*\mathcal{V}_k \subset \mathbb{P}(q^*\mathcal{V}_k \oplus p^*\mathcal{L})$ is an injective morphism.

Proof. Part (1) follows immediately from the previous description of \mathcal{V}_k and \mathcal{L}. As for part (2) it will be enough to show that the Higgs bundle associated to the triple $(L, \lambda v, \lambda u)$ does not depend on the scalar $\lambda \in \mathbb{C}^*$. But this follows from the observation that the extension class of the exact sequence obtained from (2.2) by replacing either i by $\frac{1}{\lambda}i$ or π by $\frac{1}{\lambda^2}\pi$ equals $\lambda v \in \text{Ext}^1(\mathcal{L}L^{-1}, \mathcal{L})$ for any $\lambda \in \mathbb{C}^*$. Part (3) and part (4) are straightforward.

Now we define \mathcal{E}_k^0 to be the image of the rational map ϕ_k and \mathcal{E}_k its Zariski closure. Then clearly $\mathcal{E}_k \subset \mathcal{E}$ and \mathcal{W}_k^0 is the image of \mathcal{E}_k^0 under the forgetful map. Clearly \mathcal{E}_k is irreducible, except if $\dim Z_k = 0$ which is equivalent to $\lambda = 0$ and
\(k = g \), and since \(\phi_k \) is generically injective

\[
\dim \mathcal{E}_k = \dim \mathcal{Z}_k + \text{rk} \mathcal{V}_k = (2g - 2k - \lambda) + (g + 2k + \lambda - 3) = 3g - 3.
\]

We note that the fiber over a general element \(E \in \mathcal{W}_k^{0} \) of the forgetful map \(\mathcal{E}_k^{0} \to \mathcal{W}_k^{0} \) is \(H^0(X, KL^2 \Lambda^{-1}) \), where \(L \) is a line bundle of degree \(-k + 1 \) contained in \(E \). If \(2g - 2k - \lambda \leq g \) and \(L \) is a general line bundle of degree \(-k + 1 \) with \(H^0(X, KL^2 \Lambda^{-1}) \neq 0 \), then \(h^0(X, KL^2 \Lambda^{-1}) = 1 \). Therefore \(\dim \mathcal{W}_k^{0} = 3g - 3 - 1 = 3g - 4 \) for \(2g - 2k - \lambda \leq g \). Thus \(W_k \) is an irreducible divisor in \(M_X(2, \Lambda) \) for \(k \geq \frac{3g-4}{2} \) and \(k \neq g \).

Proposition 2.3. We have the inclusions

\[
\left\{ \frac{2g-2k-\lambda}{2} \right\}_{k=1}^{\dim \mathcal{E}_k} W_k \subset \mathcal{W}_{\left\{ \frac{2g-2k-\lambda}{2} \right\}}.
\]

Proof. We put \(k_0 = \left\{ \frac{2g-2k-\lambda}{2} \right\} \) and consider the rational map

\[\psi_{k_0} : \mathbb{P}(\mathcal{V}_{k_0}) \to M_X(2, \Lambda) \]

introduced in Proposition 2.2 (3). Let \(L \in \mathcal{Z}_{k_0} \). The restriction of \(\psi_{k_0} \) on the fiber of \(\mathbb{P}(\mathcal{V}_{k_0}) \) over \(L \) is not defined at the points where the associated bundles are not semi-stable. Let

\[\psi_L : \mathbb{P}_L := \mathbb{P}(H^1(X, L^2 \Lambda^{-1})) \to M_X(2, \Lambda) \]

be the restriction of \(\psi_{k_0} \) at the fiber over \(L \). Then by [3] Theorem 1 there is a natural sequence \(\sigma \) of blow-ups along smooth centers resolving \(\psi_L \) into a morphism \(\tilde{\psi}_L : \tilde{\mathbb{P}}_L \to M_X(2, \Lambda) \). The image of \(\tilde{\psi}_L \) is contained in closure of the image of the rational map \(\tilde{\psi}_L \). Here \(\sigma \) is the blow-up morphism \(\sigma : \tilde{\mathbb{P}}_L \to \mathbb{P}_L \).

Now \(X \) is embedded in \(\mathbb{P}_L \) via the natural map. Let \(x \in X \) and \(E \) be the bundle associated to \(x \). Then \(E \) fits into the exact sequence (2.1) and by [3] Observation (2) page 451 the bundle \(E \) is not semi-stable. Furthermore by [3] Theorem 1 (2) there is a natural isomorphism \(\sigma^{-1}(x) \cong \tilde{\mathbb{P}}_{L(x)} \) and, when restricted to \(\sigma^{-1}(x) \), the morphism \(\tilde{\psi}_L \) coincides with the morphism

\[\tilde{\psi}_{L(x)} : \tilde{\mathbb{P}}_{L(x)} \to M_X(2, \Lambda). \]

Now \(\tilde{\mathbb{P}}_{L(x)} \) is the blow-up of \(\mathbb{P}_L(x) \) and the bundles corresponding to extension classes in \(\mathbb{P}_{L(x)} \) fit in the exact sequence of the form

\[0 \to L(x) \to V \to L^{-1}(-x) \Lambda \to 0. \]

Hence we deduce that the image of \(\tilde{\psi}_{L(x)} \) is contained in \(\mathcal{W}_{k_0} \). Next we observe that if \(L \in \mathcal{Z}_{k_0} \), then \(L(x) \in \mathcal{Z}_{k_0-1} \) for any \(x \in X \). Hence we obtain a morphism

\[\mu : \mathcal{Z}_{k_0} \times X \to \mathcal{Z}_{k_0-1}, \quad \mu(L, x) = L(x). \]

It will be enough to show that \(\mu \) is surjective to conclude that \(\mathcal{W}_{k_0-1}^{0} \subset \mathcal{W}_{k_0} \). Hence \(\mathcal{W}_{k_0-1} \subset \mathcal{W}_{k_0} \) since \(\mathcal{W}_{k_0} \) is closed.

If \(g - \lambda \) is even, then \(Z_{k_0-1} = \text{Pic}^{2-k_0}(X) \) et \(Z_{k_0} = \text{Pic}^{1-k_0}(X) \) and \(\mu \) is obviously surjective. If \(g - \lambda \) is odd, then \(Z_{k_0-1} = \text{Pic}^{2-k_0}(X) \) and \(Z_{k_0} \) is an irreducible divisor in \(\text{Pic}^{1-k_0}(X) \). If on the contrary \(\mu \) is not surjective, then \(Z_{k_0} \) would be invariant by a translation by an line bundle of the form \(\mathcal{O}_X(x - y) \) for \(x, y \in X \), hence by any translation. This is a contradiction.

More generally let \(D \) be a general effective divisor of degree \(1 \leq d \leq k_0 - 1 \). Then again by [3] Observation 2 any point \(x \in \overline{D} \) corresponds to a non-semi-stable
bundle, except if $\lambda = 0$ and $d = k_0 - 1$ (see below for a discussion of this exceptional case). Furthermore if x is general in D then by [2] Theorem 1 (2) there is a natural
isomorphism $\sigma^{-1}(x) \cong \mathbb{P}_L(D)$ and the restriction of ψ_L to $\sigma^{-1}(x)$ coincides with the map
$$\tilde{\psi}_{L(D)} : \mathbb{P}_L(D) \to M_X(2, \Lambda).$$
As before, the natural multiplication morphism
$$\mu : Z_{k_0} \times S^d(X) \to Z_{k_0 - d}$$
is easily seen to be surjective, which implies that $\mathcal{W}_{k_0 - d}^{0} \subset \mathcal{W}_{k_0}$, hence $\mathcal{W}_{k_0 - d} \subset \mathcal{W}_{k_0}$ since \mathcal{W}_{k_0} is closed.
Finally, the case $\lambda = 0$ and $d = k_0 - 1$ corresponds to \mathcal{W}_1, which is the image of the $(k_0 - 1)$-th secant variety to $X \subset \mathbb{P}_L$ under the rational map ψ_L, when L varies in Z_{k_0}.

We will need the following lemma in section 4.

Lemma 2.4. With the notation of Proposition 2.2 and for $\left\lceil \frac{2 - \lambda}{2} \right\rceil \leq k \leq g - \lambda$, a general line bundle $L \in Z_k$ and a general extension class $v \in (\mathcal{V}_k)_L = \text{Ext}^1(\Lambda L^{-1}, L)$ defining a bundle E_v as in (2.1), we have
$$\dim \text{Hom}(E_v, L^{-1}\Lambda) = 1.$$

Proof. Since L is general in Z_k we have $h^0(KL^{-1}\Lambda) = 1$, or equivalently by Riemann-Roch and Serre duality $h^1(\Lambda L^{-1} = 1) = h^0(L^{-2}\Lambda) = \lambda + 2k - g$. Applying the functor $\text{Hom}(\cdot, L^{-1}\Lambda)$ to the short exact sequence (2.1) we see that $\dim \text{Hom}(E_v, L^{-1}\Lambda) = 1$ if and only if the coboundary map given by the cup product $\cup v$ with the extension class v
$$\cup v : H^0(L^{-2}\Lambda) = \text{Hom}(L, L^{-1}\Lambda) \longrightarrow H^1(\mathcal{O}_X) = \text{Ext}^1(L^{-1}\Lambda, L^{-1}\Lambda)$$
is injective. Given a non-zero section $s \in H^0(L^2\Lambda)$ it is well-known that $s \cup v = 0$ if and only if the extension class $v \in \text{Ext}^1(\Lambda L^{-1}, L) = \text{Ext}^1(L^2\Lambda^{-1}) = H^0(KL^{-2}\Lambda)^*$ lies in the linear span $(D) \subset |KL^{-2}\Lambda|^*$, where D is the zero divisor of s. But $\dim(D) = 2k - 4 + \lambda$, so
$$\dim \bigcup_{D \in |L^{-2}\Lambda|} (D) \leq (\lambda + 2k - g - 1) + (2k - 4 + \lambda) = 4k - g + 2\lambda - 5,$$
which is $< \dim \mathbb{P}(\mathcal{V}_k)_L = g + 2k + \lambda - 4$. So for a general extension class v we see that $s \cup v \neq 0$ for any non-zero $s \in H^0(L^{-2}\Lambda)$, which is equivalent to
$$\dim \text{Hom}(E_v, L^{-1}\Lambda) = 1.$$

3. Proof of Theorem 1.2

We only consider the case when $\lambda = 1$ and g is even, i.e., $g = 2a$ for some integer a. The proof in the other case can be carried out similarly. If $g = 2a$, then
$$\left\lceil \frac{2 - \lambda}{2} \right\rceil = a.$$ In this situation, a general rank-2 vector bundle of degree 1 has a line subbundle of maximal degree $1 - a$ (see e.g. [O], [LN]).

Proof of (1): Let E be a very stable rank-2 vector bundle of degree 1. Suppose on the contrary that $\dim M(E) > 0$ or $M(E)$ is non-reduced. Let $L_0 \in M(E)$. If $L_0 \to E$ is not saturated, then we have a sequence of maps
$$L_0 \to L \to E \to L^{-1}\Lambda \to L_0^{-1}\Lambda,$$
where $\deg L \geq \deg L_0 + 1 = 2 - a$. Then $\chi(L^{-2}\Lambda) \leq -2$. Therefore $h^1(X, L^{-2}\Lambda) = h^0(X, KL^{-2}\Lambda^{-1}) > 0$, which implies that E contains a line subbundle L with
$h^0(X, KL^2 \Lambda^{-1}) \neq 0$. Then by [L] Lemma 3.1 the bundle E is not very stable, a contradiction.

On the other hand, if $L_0 \rightarrow E$ is saturated, then E fits in the exact sequence

$$0 \rightarrow L_0 \rightarrow E \rightarrow L_0^{-1} \Lambda \rightarrow 0.$$

Note that the Zariski tangent space at L_0 is given by $\text{Hom}(L_0, L_0^{-1} \Lambda)$. Therefore if $\text{dim } M(E) \geq 1$ or if L_0 is a non-reduced point in $M(E)$, then $\text{dim } \text{Hom}(L_0, L_0^{-1} \Lambda) > 0$. But $\chi(L_0^{-1} \Lambda) = 0$. Thus if $\text{dim } \text{Hom}(L_0, L_0^{-1} \Lambda) > 0$, then $h^1(X, L_0^{-1} \Lambda) = h^0(X, KL^2 \Lambda) > 0$. Therefore E is not very stable, a contradiction.

Proof of (2): Let $E \in \mathcal{W}_0$. Then E contains a line subbundle L of degree $1-a$ such that $h^0(X, KL^2 \Lambda^{-1}) \neq 0$ and we have the exact sequence (2.1). Since $\chi(L^{-2} \Lambda) = 0$, we obtain that $h^0(X, L^{-2} \Lambda) = h^0(X, KL^2 \Lambda^{-1}) > 0$. Therefore the dimension of the tangent space at L to the Quot-scheme $M(E)$ is $h^0(X, L^{-2} \Lambda) > 0$. Therefore $M(E)$ is degenerate at L. Finally, since being degenerate is a closed condition, $M(E)$ is degenerate for any $E \in \mathcal{W}_0$.

Remark 3.1. The statement in Theorem 1.2 (2) is not valid for the points in other components \mathcal{W}_k for $k > \left[\frac{2a}{3} \right]$.

Example: Take $\lambda = 0$ and $g = 2a + 1 = 3$, i.e., $a = 1$. For simplicity we assume that the curve X is non-hyperelliptic. Then the wobbly locus has two components, \mathcal{W}_2 and \mathcal{W}_3, where \mathcal{W}_2 is an irreducible divisor, but \mathcal{W}_3 is a union of 64 hyperplane sections. The 64 hyperplane sections are indexed by the 64 theta-characteristics θ, i.e. line bundles satisfying $\theta^2 = K$. We claim that a general extension class $\xi \in \mathbb{P}(H^1(X, \theta^{-2})) \rightarrow \mathcal{W}_2 \subset M_X(2, \mathcal{O})$ is such that $M(E_\xi)$ is non-degenerate. Note that $\mathbb{P}(H^1(X, \theta^{-2})) = \mathbb{P}^5 = \mathbb{P}(H^0(X, K^2)^*) = |K^2|^*$ contains the following secant varieties to the curve $X \hookrightarrow |K^2|^*$

$$X = \text{Sec}^1(X) \hookrightarrow |K^2|^*, \quad \text{Sec}^2(X) \hookrightarrow |K^2|^*,$$

which are of dimension 1 and 3 respectively, and we have an equality (see e.g. [Lan])

$$\text{Sec}^3(X) = |K^2|^*.$$

(3.1)

It is well-known, see e.g. [Lan] Proposition 1.1, that an extension class $\xi \in |K^2|^*$ lies on $\text{Sec}^i(X)$ for $1 \leq i \leq 3$ if and only if the associated vector bundle E_ξ contains a line subbundle of degree $2-i$. Let $\xi \in \text{Sec}^3(X) \setminus \text{Sec}^2(X)$. Then the maximal degree of line subbundles of E_ξ is -1. Let $D = x_1 + x_2 + x_3$ be a general effective divisor on X of degree 3 such that $\xi \in (D)$, the linear span of three points x_1, x_2, x_3 of D in $|K^2|^*$. Then E_ξ contains the line subbundle $\theta(-D)$. Note that E_ξ is an extension

$$0 \rightarrow \theta^{-1} \rightarrow E_\xi \rightarrow \theta \rightarrow 0.$$

We also note that $L = \theta(-L)$ is a reduced point of the Quot-scheme $M(E_\xi)$ if and only if $\text{Hom}(L, E_\xi/L) = \text{Hom}(L, L^{-1}) = H^0(X, L^{-2}) = \{0\}$.

Now consider the map

$$\Phi : S^3(X) \rightarrow \text{Pic}^2(X)$$

which takes a point (x_1, x_2, x_3) to $\mathcal{O}(2x_1 + 2x_2 + 2x_3) \otimes \theta^{-2}$. Clearly the map Φ is surjective. Let Z denote the divisor $\Phi^{-1}(\Theta)$, where Θ denotes the theta divisor in $\text{Pic}^2(X)$. Then $D \in Z$ if and only if $h^0(X, \mathcal{O}(2D) \otimes \theta^{-2}) \neq 0$. We denote by \tilde{Z} the span of all projective planes $(D) \subset |K^2|^*$ when D varies in Z. Then \tilde{Z} is a divisor in $|K^2|^*$ and we have $\xi \in \tilde{Z}$ if and only if E_ξ contains a line subbundle L such that $H^0(X, L^{-2}) \neq \{0\}$. So for general $\xi \notin \tilde{Z}$ the set $M(E_\xi)$ is reduced and consists of 8 line subbundles.
A similar computation can be done for λ = 1 and g = 4 to show that the statement in Theorem 1.2 (2) is not valid for the points in the component \(W_3 \).

4. PROOF OF THEOREM 1.3

In this section we compute the class \(cl(W_k) \) of the wobly divisor \(W_k \) in the case \(\lambda = 1 \) for \(\left\lfloor \frac{g}{2} \right\rfloor \leq k \leq g - 1 \) following closely the method used in [Fa] Section 5 Example 1. Note that in [Fa] the case \(\lambda = 0 \) is worked out.

Let \(S \) be a smooth connected variety and let \(E \) be a rank-2 vector bundle over \(S \times X \) such that \(\det E = \pi_X^* (\Lambda) \), where \(\pi_S \) and \(\pi_X \) denote the projections onto \(S \) and \(X \) respectively, and such that \(E_s := E_{(s) \times X} \) is stable for any \(s \in S \). Then the family \(E \) determines a classifying map

\[f : S \to M_X(2, \Lambda). \]

Our first task is to compute the first Chern class of the pull-back under \(f \) of the ample generator \(D \) of the Picard group of \(M_X(2, \Lambda) \), i.e.,

\[\Theta_S := c_1(f^* D) \in H^2(S), \]

in terms of Chern classes of \(E \). We recall [DN] Théorème B that the line bundle \(f^* D \) is defined as the inverse of the determinant line bundle

\[\det R\pi_{S*} (E \otimes \pi_X^* H), \]

where \(H \) is a rank-2 vector bundle of degree \(2g - 3 \). Note that the condition on the degree is equivalent to \(\chi(E_s \otimes H) = 0 \). Then the Grothendieck-Riemann-Roch theorem gives the equalities

\[
\begin{align*}
\Theta_S &= -\frac{1}{2} \pi_{S*} \left[c_1(E \otimes \pi_X^* H) \right] - 2c_2(E \otimes \pi_X^* H) - c_1(E \otimes \pi_X^* H) \cdot \pi_X^*(c_1(K)) \\
&= 2\pi_{S*} c_2(E \otimes \pi_X^* H) \\
&= 2\pi_{S*} c_2(E) \in H^2(S).
\end{align*}
\]

Since we need to compute the class in \(H^2(S) \) of the \(k \)-th wobly divisor \(f^{-1}(W_k) \subset S \) in terms of \(\Theta_S \), it will be enough to do the computations modulo classes in \(H^i(S) \) for \(i \geq 3 \). Hence the above relation allows to write

\[
c_2(E) = \frac{1}{2} \Theta_S \otimes \eta \in H^4(S \times X),
\]

where \(\eta \in H^2(X) \) denotes the class of a point in \(X \) — note that we omit classes in \(H^4(S) \otimes H^0(X) \) and \(H^3(S) \otimes H^1(X) \). Since \(c_1(E) = 1 \otimes \eta \in H^0(S) \otimes H^2(X) \subset H^2(S \times X) \) we get the following expression for the Chern character of \(E \)

\[
ch(E) = 2 + 1 \otimes \eta - \frac{1}{2} \Theta_S \otimes \eta + \text{h.o.t.},
\]

where all h.o.t. are contained in \(\oplus_{i \geq 3} H^i(S) \otimes H^*(X) \).

We also need to recall some standard facts on the first Chern class of a Poincaré bundle \(L \) over \(P \times X \), with \(P := \text{Pic}^{1-k}(X) \) (see e.g. [ACGH] page 335). We have

\[
c_1(L) = (1-k)1 \otimes \eta + \gamma \in H^2(P \times X),
\]

where \(\gamma \) denotes a class in \(H^1(P) \otimes H^1(X) \) — for a more precise description of \(\gamma \) see [ACGH] — with the property

\[
\gamma^2 = -2\Theta_P \otimes \eta.
\]

Here \(\Theta_P \in H^2(P) \) denotes the class of a theta divisor in \(P \). The rest of the computations goes exactly as in the case \(\lambda = 0 \). For the convenience of the reader we include the details.
The main idea is to realize the k-th wobbly divisor
\[f^{-1}(W_k) = \pi_S(\Delta_k \cap (S \times Z_k)) \subset S \]
as the projection onto S of the intersection of $S \times Z_k$ with the determinantal subvariety $\Delta_k \subset S \times P$ defined by
\[\Delta_k = \{(s, L) \in S \times P \mid \text{Hom}(E_s, L^{-1}A) \neq 0\} , \]
and which is constructed by the standard technique as follows. We fix a reduced divisor D_0 of degree d_0 sufficiently large such that $h^1(X, \text{Hom}(E_s, L^{-1}A(D_0))) = 0$ for all $s \in S$ and $L \in P$. We consider the exact sequence over $S \times P \times X$
\[0 \rightarrow \text{Hom}(E, L^{-1}A) \rightarrow \text{Hom}(E, L^{-1}A(D_0)) \rightarrow \text{Hom}(E, L^{-1}A(D_0))|_{D_0} \rightarrow 0 . \]
We introduce the following two vector bundles over $S \times P$
\[F := (\pi_{S \times P})_* \left(\text{Hom}(E, L^{-1}A(D_0)) \right) \quad \text{and} \quad A := \bigoplus_{x \in D_0} \text{Hom}(E, L^{-1})|_{S \times P \times \{x\}} \]
of ranks $2(d_0 + k - g) + 1$ and $2d_0$ respectively. Taking the direct image of the above exact sequence under the projection $\pi_{S \times P}$ onto $S \times P$ we obtain a map $\phi : F \rightarrow A$ over $S \times P$. Let us denote by $q : \mathbb{P}(F) \rightarrow S \times P$ the projection from the projectivized bundle $\mathbb{P}(F)$ onto the base variety $S \times P$. Then the composition of the tautological section over $\mathbb{P}(F)$ with $q^*\phi$
\[O(-1) \rightarrow q^*F \rightarrow q^*A \]
defines a global section $s \in H^0(\mathbb{P}(F), q^*A \otimes O(1))$ whose zero set equals
\[\Delta_k = \{(s, L, \varphi) \mid (s, L) \in \Delta_k \text{ and } \varphi \in \mathbb{P}(\text{Hom}(E_s, L^{-1}A))\} . \]
By Lemma [3], the map $\Delta_k \cap q^{-1}(S \times Z_k) \rightarrow \Delta_k \cap (S \times Z_k)$ induced by the projection q is birational, which implies that
\[\dim \Delta_k \cap q^{-1}(S \times Z_k) = \dim \Delta_k \cap (S \times Z_k) = \dim S - 1 . \]
Hence
\[\dim \Delta_k \leq \dim S - 1 + \text{codim } Z_k = \dim \mathbb{P}(F) - 2d_0 , \]
which shows that codim $\Delta_k = 2d_0$. Hence we can conclude that its fundamental class is given by the top Chern class
\[[\Delta_k] = c_2d_0(q^*A \otimes O(1)) . \]
Moreover, by the projection formula we have
\[[\Delta_k] = q_*[\Delta_k] = \sum_{i=0}^{2d_0} q_*(c_i(q^*A)c_1(O(1))^{2d_0-i}) = \sum_{i=0}^{2d_0} c_i(A)q_*(c_1(O(1))^{2d_0-i}) = q_*(c_1(O(1))^{2d_0}) \mod H^i(S) \ for \ i \geq 3 . \]
The last equality follows from the facts that
\[c_1(\text{Hom}(E, L^{-1})|_{S \times P \times \{x\}}) = 0 \quad \text{and} \quad c_2(\text{Hom}(E, L^{-1})|_{S \times P \times \{x\}}) \in H^4(S) \otimes H^0(P) , \]
which imply that
\[c_1(A) = 0 \quad \text{and} \quad c_k(A) \in H^{2k}(S) \otimes H^0(P) \ for \ k \geq 2 . \]
In order to compute the class \(q_*(c_1(O(1))^{2d_0}) \), we compute by the Grothendieck-Riemann-Roch theorem the first terms of the Chern character of \(F \).

\[
ch(F) = \frac{(\pi_S \times P)_*(ch(E^0) \cdot ch(L^{-1} \Lambda(D_0)) \cdot Td(X))}{(\pi_S \times P)_*(\frac{2}{k} \Theta_S \otimes \eta + h.o.t) \cdot (1 + (d_0 + k) \otimes \eta + \gamma \Theta_P \otimes \eta) + h.o.t.}
\]

where we put \(e = 2d_0 - r = 2g - 2k - 1 = \text{dim } Z_k \). We only need to compute the component in \(H^2(S) \otimes H^{2e}(P) \) of this class, which equals

\[
\frac{(e + 1)\frac{1}{2} \Theta_S \otimes 2^e \Theta_P^g}{(e + 1)!} = \Theta_S \otimes \frac{2^{e-1}}{e!} \Theta_P^g.
\]

In order to conclude we will need the following fact.

Lemma 4.1. The fundamental class of \(Z_k \) in \(P \) equals

\[
[Z_k] = \frac{2^{2(g - e)}}{(g - e)!} \Theta_P^{g - e}.
\]

Proof. We recall that the duplication map of an abelian variety \(A \) acts as multiplication by \(2^n \) on the cohomology \(H^n(A, \mathbb{C}) \). We apply this fact to the map \(\mu_k \) defining \(Z_k \) and we obtain

\[
[Z_k] = \mu_k^*[W_c(X)] = \frac{2^{2(g - e)}}{(g - e)!} \Theta_P^{g - e},
\]

where \(W_c(X) \subset \text{Pic}^c(X) \) denotes the Brill-Noether locus of line bundles \(L \) with \(h^0(L) > 0 \), whose fundamental class equals \(\Theta_P^{g - c} \) by Poincaré’s formula. \(\Box \)

We now combine the previous results and we obtain

\[
[\Delta_k][Z_k] = \Theta_S \otimes \frac{2^{g-1}2^{2(g - e)}}{e!(g - e)!} \Theta_P^g = \Theta_S 2^{2g - e - 1} \left(\frac{g}{e} \right) = \Theta_S 2^{2k} \left(\frac{g}{2} - 2k - 1 \right),
\]

which gives the class \(c_2(W_k) \) stated in Theorem 1.3.
Remark 4.2. We observe that in [Fa] page 350 the factor (\tilde{e}) is missing in the formula giving “the integral of Θ_j^\ast over the preimage of C^∞”.

5. Examples

5.1. Genus 2.

5.1.1. $\lambda = 0$. It is known that $M_X(2, \mathcal{O}_X)$ is isomorphic to \mathbb{P}^3. By Theorem 1.1 the wobbly locus has two components

$$W = W_1 \cup W_2,$$

where W_k is the closure of the locus W_k^0 for $k = 1, 2$.

Let $k = 1$. Note that for any line bundle L of degree zero $h^0(X, KL^2) \neq 0$ and any bundle which contains a line subbundle of degree zero is semi-stable. Therefore, W_1 is precisely the locus of semi-stable bundles which are not stable. It is known that the strictly semi-stable locus is a quartic hypersurface (known as Kummer surface) in \mathbb{P}^3. Thus the class $\text{cl}(W_1)$ of the wobbly divisor W_1 in the Picard group of $M_X(2, \mathcal{O}_X)$ is 4Θ, where Θ is the ample generator of the Picard group of $M_X(2, \mathcal{O}_X)$.

Let $k = 2$. Then for a line bundle L, $h^0(X, KL^2) \neq 0$ if and only if L is the inverse of a theta characteristic. There are precisely 16 such line bundles. If L is such a line bundle, then any nontrivial extension of L by L^{-1} is stable and for each such line bundle L the space of extensions gives a hyperplane in \mathbb{P}^3. Therefore W_2 is the union of 16 hyperplanes in \mathbb{P}^3 and the class $\text{cl}(W_2)$ of the wobbly divisor W_2 in the Picard group of $M_X(2, \mathcal{O}_X)$ is 16Θ.

5.1.2. $\lambda = 1$. Let Λ be a line bundle of degree 1. It is known that $M_X(2, \Lambda)$ is isomorphic to a smooth intersection Y of two quadrics in \mathbb{P}^5. By Theorem 1.1 the wobbly locus is irreducible. If a stable vector bundle E in the wobbly locus, then under the identification of $M_X(2, \Lambda)$ with Y, it corresponds to a point $P \in Y$ such that the intersection of Y with the projectivized embedded tangent space of Y at P contains fewer than 4 lines. Classically, it is known that the locus of such points $P \in Y$ is isomorphic to a surface in \mathbb{P}^5 of degree 32. In other words, the irreducible wobbly divisor is isomorphic to a surface in \mathbb{P}^5 of degree 32. Thus the class $\text{cl}(W_1)$ of the wobbly divisor W_1 in the Picard group of $M_X(2, \mathcal{O}_X)$ is 8Θ, where Θ is a hyperplane section of degree 4 of $M_X(2, \Lambda)$.

5.2. Genus 3, $\lambda = 0, k = 2$. It is known that $M_X(2, \mathcal{O}_X)$ is isomorphic to Coble’s quartic hypersurface in \mathbb{P}^7 [NR]. On the other hand, by Theorem 1.3 we have that the class $\text{cl}(W_2)$ of the wobbly divisor W_2 in the Picard group of $M_X(2, \mathcal{O}_X)$ is 48Θ, where Θ is a hyperplane section of degree 4. Therefore, we can describe W_2 as the cut out of Coble’s quartic by a hypersurface of degree 48.

5.3. Arbitrary genus g, $\lambda = 0$, $k = g$. We recall that $W_g^0 = \{ E : E$ contains a line subbundle L of degree $1 - g$ with $h^0(KL^2) \neq 0 \}$. For a line bundle L of degree $1 - g$, $h^0(KL^2) \neq 0$ if and only if L is the inverse of a theta characteristic. For each such line bundle L the space of non-trivial extension classes of L by L^{-1} gives a divisor of $M_X(2, \mathcal{O}_X)$, whose class is the ample generator Θ of the Picard group of $M_X(2, \mathcal{O}_X)$. Therefore the 2^{2g} irreducible divisors of W_g correspond to the 2^{2g} theta characteristics of X. Thus the class $\text{cl}(W_g)$ of the wobbly divisor W_g in the Picard group of $M_X(2, \mathcal{O}_X)$ is $2^{2g}\Theta$.

References

[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves, Grundlehren der mathematischen Wissenschaften 267, Springer-Verlag, 1985

[B] A. Bertram, Moduli of rank-2 vector bundles, theta divisors, and the geometry of curves in projective space, J. Differential Geom. 35 (1992), 429-469.

[DP] R. Donagi, T. Pantev, Geometric Langlands and non-abelian Hodge theory, Surveys in differential geometry, Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, 85–116, International Press, Somerville, MA, 2009.

[DN] J.-M. Drézet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Inventiones Math. 97 (1989), 53-94.

[Fa] G. Faltings, Theta functions on moduli spaces of G-bundles, J. Algebraic Geom. 18 (2009), 309-369.

[Fu] W. Fulton, Intersection Theory, Springer-Verlag, 1998

[LN] H. Lange, M.S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983), 55-72

[Lan] H. Lange, Higher secant varieties of curves and the theorem of Nagata on ruled surfaces, Manuscripta Math. 47 (1984), 263-269

[Lau] G. Laumon, Un analogue global du cône nilpotent, Duke Math. Jour. 57 (1988), 647-671.

[P] S. Pal, Locus of non-very stable bundles and its geometry, Bulletin des Sciences Mathématiques 141 (2017), 747-765

[NR] M. S. Narasimhan and S. Ramanan, 20-linear system on abelian varieties, Vector bundles and algebraic varieties (Bombay, 1984), pp. 415–427, Oxford University Press, 1987.

[O] W.M. Oxbury, Varieties of maximal line subbundles, Math. Proc. Camb. Phil. Soc. 129 (2000), 9-18.

[T] M. Thaddeus, Topology of the moduli space of stable bundles over a compact Riemann surface (1990), Oxford Master thesis, unpublished

SARBESWAR PAL, INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH, THIRUVANANTHAPURAM, MARUTHAMALA PO, VITHURA, THIRUVANANTHAPURAM - 695551, KERALA, INDIA
E-mail address: sarbeswar11@gmail.com, spal@iisertvm.ac.in

CHRISTIAN PAULY, Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France
E-mail address: pauly@unice.fr