Supporting Information:
Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO\(_2\) reduction electrocatalysis

Aditya M. Limaye,† Joy S. Zeng,† Adam P. Willard,*,‡ and Karthish Manthiram*†

†Department of Chemical Engineering, MIT, Cambridge, MA
‡Department of Chemistry, MIT, Cambridge, MA

E-mail: awillard@mit.edu; karthish@mit.edu

1 Supplementary Discussion

2 Literature Analysis

3 Dataset Organization

In this study, we manually digitized Tafel data included in several different papers from the electrochemical CO\(_2\) reduction literature. Often, a single paper may report multiple sets of Tafel data, possibly with many traces in the same figure. Each distinct paper that reports (possibly multiple) Tafel data(sets) receives a unique three-digit identifier, which will be referred to as PaperID. Note that PaperIDs are not guaranteed to be consecutive, and some numbers are skipped. Within each paper, each dataset receives a separate three-digit
identifier (unique within the same PaperID), which will be referred to as SetID. A single Tafel dataset in our study, then, is uniquely identified by the tuple (PaperID, SetID).

Our entire zipped dataset is organized into a hierarchical directory structure, with each directory named according to the PaperID identifier. Each individual paper directory contains several files. First, we include files with names of the form figure*.png, which are raw Portable Network Graphics (PNG) images of the paper figures, screenshotted manually from PDF copies of the papers. A few paper directories have multiple figure screenshots, and they are named according to figure1.png, figure2.png, etc. Directories also include raw data files with names of the form dat_<SetID>.txt, which contain raw x,y data taken from manually digitizing the figure. Associated with each raw data file is a separate metadata file with a name of the form metadata_<SetID>.txt. The metadata files contain key-value pairs stored in the YAML Ain’t Markup Language (YAML) format, and contain several pieces of information required for processing the raw x,y data. YAML parsers are available in several programming languages, and the official YAML standard is documented at https://yaml.org/.

Metadata Tags

Tags in a metadata file are associated with YAML keys, and their associated values have several types. The types of the values, as well as the information they carry, are documented in Table 1. Note that for CO$_2$ reduction catalysis, more negative applied electrochemical potentials correspond to more positive overpotentials. Studies in the literature report either the applied electrochemical potential or the overpotential on their voltage axis. The v_reversed tag contains the information required to properly orient the voltage data in the direction of increasing overpotential for each dataset.
Supplementary Table 1: Table describing the types and meanings of the key-value pairs in the metadata files associated with each Tafel dataset.

Tag Name	Value Type	Value Meaning
xdat	Enum[‘current’, ‘voltage’]	Indicates which data is reported on the x axis.
xunit	String	String describing units of measurement for the x axis data, for example mV or mA/cm².
xlog	Bool	Indicates whether the x axis data is reported on a logarithmic scale.
ydat	Enum[‘current’, ‘voltage’]	Indicates which data is reported on the y axis.
yunit	String	String describing units of measurement for the y axis data, for example mV or mA/cm².
ylog	Bool	Indicates whether the y axis data is reported on a logarithmic scale.
rval	Float	Reported Tafel slope value.
rerr	Union[Float, None]	Error in reported Tafel slope value, if reported. If not reported, then None.
runit	String	String describing units of measurement for the x axis data, for example mV/dec.
v_reversed	Bool	If false, then the voltage data increases in value with increasing direction of the axis. If true, then the voltage data decreases in value with decreasing direction of the axis.
i_reversed	Bool	If false, then the current data increases in value with increasing direction of the axis. If true, then the current data decreases in value with decreasing direction of the axis.
cat_tags	List[String]	A list of tags describing the catalyst material. For example, a CuO catalyst would get the tags [‘Cu’, ‘O’].
Table 2 documents the literature sources of all Tafel datasets analyzed in this study.

Supplementary Table 2: Provenance of all Tafel datasets analyzed in this study. The **PaperID** defines the unique identifier assigned to the paper in the zipped dataset.

PaperID	**Data Location**	**Document Object Identifier (DOI)**
000	Figure 5	10.1021/ja5065284¹
002	Figure 4	10.1021/ja309317u²
004	Figure 4	10.1246/bcsj.68.1889³
005	Figure 4	10.1002/anie.201604654⁴
009	Figure 5B	10.1021/acsnano.5b01079⁵
010	Figure 4B	10.1002/anie.201713003⁶
011	Figure 1C	10.1021/jacs.7b09074⁷
012	SI Figure 8	10.1002/anie.201900499⁸
014	Figure 10	10.1002/smll.201701809⁹
015	Figure 6D	10.1088/1361-6528/aa8f6f¹⁰
016	Figure 7A	10.1021/jacs.5b02975¹¹
017	SI Figure 6	10.1002/smll.201602158¹²
021	Figure 5C	10.1002/celc.201700517¹³
022	Figure 3A, 3C	10.1002/cssc.201600202¹⁴
023	Figure 4A	10.1021/ja501923g¹⁵
024	Figure 4B	10.1021/acsenergylett.8b00472¹⁶
025	SI Figure 12	10.1021/ja4113885¹⁷
026	Figure 2D	10.1016/j.elecom.2016.05.003¹⁸
027	Figure 3A, 3C	10.1021/ja2108799¹⁹
028	Figure 7A	10.1021/acs.jpcc.7b01586²⁰
029	SI Figure 13	10.1021/acscatal.7b00707²¹
031	Figure 7	10.1016/j.electacta.2016.03.182²²
Page	Title	DOI
------	-------------	----------------------------
032	Figure 8	10.1016/j.jcou.2017.05.024
033	Figure 2D	10.1002/cssc.201902859
035	Figure 4	10.1021/acsmi.8b03461
036	SI Figure 8	10.1021/acsmi.7b10421
039	Figure 3A	10.1002/asia.201800946
040	Figure 7	10.1002/cssc.201802409
042	SI Figure 4	10.1021/acsaem.8b00356
043	SI Figure 14	10.1021/acs.jpcc.8b06234
045	SI Figure 13	10.1021/acsaem.8b02048
048	Figure 6C	10.1002/celc.201801132
049	Figure 4C	10.1002/adma.201706194
050	Figure 3	10.1038/ncomms4242
051	Figure 4	10.1021/acscatal.5b01235
052	Figure 4E	10.1002/aenm.201701456
053	Figure 3F	10.1016/j.chempr.2017.08.002
054	Figure 4C	10.1002/anie.201608279
055	Figure 7A	10.1016/j.apcatb.2018.01.001
056	Figure 4	10.1021/ja3010978
057	Figure 2C	10.1016/j.apcatb.2018.09.025
058	Figure 5D	10.1021/jacs.6b10435
059	Figure 6	10.1021/jacs.6b12217
060	Figure 2F	10.1002/ange.201805696
061	Figure 6	10.20964/2017.03.72
062	Figure 3B	10.1002/cssc.201702229
063	Figure 3D	10.1002/aenm.201801536
064	Figure 4A	10.1016/j.jcis.2018.09.036
065	Figure 7	10.1016/j.nanoen.2018.03.023
	Figure/Reference	DOI
---	----------------	-----------------------------------
097	SI Figure 6	10.1016/j.cattod.2015.05.017
098	Figure 4C	10.1021/acsami.7b16164
099	Figure 3	10.1002/sml1.201703314
100	Figure 4A	10.1016/j.apcatb.2018.08.075
101	Figure 4D	10.1073/pnas.1711493114
102	Figure 5B	10.1002/cssc.201800925
103	Figure 1C	10.1021/acscatal.5b02424
104	Figure 3F	10.1021/acsenergylett.8b00519
105	Figure 4B	10.1002/anie.201612194
106	Figure 3C	10.1002/anie.201703720
108	SI Figure 4	10.1021/acscatal.5b04123
109	Figure 3F	10.1002/anie.201901575
110	Figure 3D	10.1016/j.electacta.2018.12.116
111	Figure 5A	10.1021/acscatal.8b01022
112	Figure 3	10.1002/cssc.201701673
113	Figure 2D	10.1002/aenm.201900276
114	Figure 2D	10.1021/acsenergylett.8b01286
115	Figure 2D	10.1002/anie.201712221
116	Figure 2D	10.1002/anie.201807571
117	Figure 3A	10.1021/acsenergylett.7b01096
118	Figure 5	10.1021/acsam.8b01692
119	Figure 6	10.1039/C5CP03559G
120	SI Figure 6	10.1126/science.aaw7515
121	Figure 10	10.1002/celc.201801036
122	Figure 5A	10.1002/adma.201705872
123	Figure 4C	10.1021/acscatal.8b04852
124	Figure 2F	10.1016/j.jcou.2019.05.026
Figure	Reference	
--------	-----------	
3D	10.1002/ange.201810538	
3C	10.1016/j.joule.2018.11.008	
1D	10.1002/aenm.201700759	
5B	10.1002/celc.201700935	
4B	10.1016/j.apcatb.2019.03.047	
SI 5B	10.1002/anie.201911995	
SI 12	10.1002/aenm.201702524	
4C	10.1002/ange.201805256	
SI 10	10.1002/aenm.201601103	
2A	10.1038/s41467-018-07970-9	
2B	10.1016/j.nanoen.2019.05.003	
4	10.1039/C6TA04325A	
2D	10.1002/celc.201800806	
3B	10.1002/anie.201805871	
4	10.1002/chem.201603359	
3D	10.1002/aenm.201903068	
3	10.1002/cssc.201501637	
3F	10.1002/anie.201907399	
3E	10.1016/j.electacta.2018.08.002	
4A	10.1021/jp509967m	
SI 8	10.1021/acs.est.5b00066	
SI 10	10.1021/acscatal.6b00543	
SI 39	10.1016/j.joule.2019.05.010	
3B	10.1016/j.jcou.2019.02.007	
4D	10.1002/cssc.201903117	
3C	10.1002/chem.201803615	
5D	10.1002/celc.201800104	
152	Figure 4A	10.1039/C9EE00018F¹³⁰
153	SI Figure 10	10.1016/j.joule.2018.10.015¹³¹
154	Figure 5	10.1002/celc.201900725¹³²
155	Figure 4B	10.1038/ncomms14503¹³³
156	Figure 2D	10.1016/j.elecom.2018.10.014¹³⁴
157	Figure 2C	10.1002/aenm.201803151¹³⁵
158	Figure 4E	10.1016/j.elecom.2019.03.017¹³⁶
159	Figure 4B, 4C	10.1002/cssc.201802725¹³⁷
160	Figure 12	10.1016/j.matchemphys.2017.02.016¹³⁸
161	Figure 4	10.1002/adfm.201802339¹³⁹
162	Figure 4D	10.1016/j.nanoen.2016.06.043¹⁴⁰
163	Figure 4C	10.1038/ncomms12697¹⁴¹
164	Figure 4F	10.1021/acssuschemeng.9b03502¹⁴²
165	Figure 5B	10.1039/C8TA03328E¹⁴³
166	Figure 6C	10.1039/C7TA03005C¹⁴⁴
167	Figure 3A	10.1002/anie.201908735¹⁴⁵
168	Figure 6D	10.1021/acsaem.9b02324¹⁴⁶
169	Figure 2C	10.1021/acs.jpcb.9b09730¹⁴⁷
170	Figure 3A	10.1073/pnas.1602984113¹⁴⁸
171	Figure 2	10.1021/acscatal.8b02181¹⁴⁹

Data Licensing

Code that supports the findings of this study is available under the MIT License in Zenodo (http://doi.org/10.5281/zenodo.3995021). Data that supports the findings of this study is available under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) in Zenodo (http://doi.org/10.5281/zenodo.3995021), with the exception of the excerpted figures from other articles as described in the Supporting Information. The excerpted fig-
ures are reused under agreement between MIT and the publishers of the articles (https://libraries.mit.edu/scholarly/publishing/using-published-figures/), where the copyright is owned by the publishers.

Residuals vs. Literature-Reported Values

Residual analysis can help sniff out systematic or correlated errors in the results presented in Fig. 3A of the main text. We can define residuals between the literature-reported values and the MAP values in several different ways. Here, we will consider two definitions of the residuals, normalized either to the literature-reported Tafel slopes,

$$\text{Residual Normalized to Reported} = \frac{T_{\text{reported}} - T_{\text{MAP}}}{T_{\text{reported}}},$$ \hspace{1cm} (1)

or to the MAP Tafel slopes,

$$\text{Residual Normalized to MAP} = \frac{T_{\text{reported}} - T_{\text{MAP}}}{T_{\text{MAP}}}. \hspace{1cm} (2)$$

Figure 1 depicts plots of the residuals versus the literature-reported and MAP Tafel slopes (A and C, respectively), as well as kernel density estimates of the distribution over the residuals normalized to the literature-reported and MAP Tafel slopes (B and D, respectively). To the eye, the residuals appear roughly unbiased around zero, and there appear to be no spurious correlations between the residuals.

Correlation Plot over Full Range

Figure 2 depicts a correlation plot of the MAP Tafel slope versus the literature-reported Tafel slope, including all datasets considered in this study.
Supplementary Figure 1: Residual Analysis. (A) Plot of the relative residual to the literature-reported Tafel slope, defined in Eq. (1), versus the literature-reported Tafel slope, including only reported Tafel slopes less than 200 mV/decade. (B) Kernel density estimate of the distribution over the relative residual to the literature-reported Tafel slope. (C) Plot of the relative residual to the MAP Tafel slope, defined in Eq. (1), versus the MAP Tafel slope, including only reported Tafel slopes less than 200 mV/decade. (D) Kernel density estimate of the distribution over the relative residual to the MAP Tafel slope.
Supplementary Figure 2: Correlation plot of reported Tafel slopes from the literature against Tafel slopes fitted by our algorithm on identical data. The solid red line represents perfect agreement, while the red filled intervals are lines representing 10% and 20% relative error.
For every single dataset considered in the study, we draw $N = 4 \times 10^4$ samples from the posterior distribution over the Tafel slope. In Fig. 3C in the main text, we depict a kernel density estimate of the distribution over the MAP Tafel slope from each of these posterior distributions. We choose to display this data because the MAP Tafel slope is a straightforward point estimate of the Tafel slope given a posterior distribution over the parameter, and hence is likely the quantity one would quote if asked what the Tafel slope of a catalyst is. However, the averaging operation involved in computing the MAP Tafel slope can collapse broad features in the posterior distribution down to a single value; this is especially true in the case of bimodal posterior distributions arising from insufficient datasets. Figure 3 depicts a kernel density estimate of the distribution over the Tafel slope using all samples collected from the posterior distribution for each dataset. The essential conclusions reported in the main text are upheld when examining the data in Fig. 3. A very small preference for Tafel slopes around 45 mV/decade emerges in this analysis. However, given the small amount of total distributional mass under this peak and the high degree of sampling variability (as evinced by the bootstrap standard deviations), we do not believe it should be interpreted strongly.

Catalyst Breakout Results

As described in the main text, we split out our results on the distributions over the Tafel slope by catalyst material identity in order to confirm that our conclusion of a lack of Tafel cardinality in CO$_2$ reduction catalysis is not an artifact of pooling together data from several catalyst materials, each of which individually exhibit cardinality. Figures 4–9 depict these results for catalysts containing Cu, Ag, Au, Sn, and Bi. Each figure has three panels: the left-most panel plots a kernel density estimate of the distribution over Tafel slopes using all samples from the posterior distribution, akin to Fig. 3. The center panel plots a kernel density estimate of the distribution over the MAP Tafel slope from each dataset, akin to main
Supplementary Figure 3: Kernel density estimates (KDE) of the empirical probability distribution function of Tafel slopes reported in literature data (blue) and those refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed lines correspond to cardinal values of the Tafel slope.
text Fig. 3C. The right-most panel plots a CDF of the distributional breadth B_i for each dataset considered. The distributional breadth is parametrized by the threshold parameter t, and is defined as,

$$B_i(t) = \text{CDF}_i^{-1}(1 - t) - \text{CDF}_i^{-1}(t),$$

where $\text{CDF}_i(m_T)$ represents the CDF of the Tafel slope for the i'th dataset. Intuitively, a high distributional breadth implies that the experimental data measured in the dataset does not provide information to pin down the value of the Tafel slope with high confidence. Correspondingly, if the CDF of the distributional breadth increases quickly, then most of the datasets in the catalyst material subset predict tight distributions over the Tafel slope. Conversely, if the CDF of the distributional breadth climbs slowly, then several datasets in the catalyst material subset do not determine a Tafel slope value with high confidence.

For some catalysts, the KDE constructed from all Tafel slope samples (left panel) and the KDE constructed from the MAP Tafel slope samples (center panel) show different behavior. The former plot looks more visually noisy than the latter plot; this is to be expected, since taking the mean of the posterior distribution over the parameters is a “smoothing” operation. The two ways of visualizing the data convey slightly distinct information, since the KDE constructed from all samples preserves the uncertainty information retained in a single fit, while the KDE constructed from the MAP Tafel slopes is the most direct comparison to the distribution of literature values (which do not carry an associated uncertainty, in most cases). In certain cases (Ag, Sn), the KDE comprising all samples appears to have more defined peaks than the KDE comprising MAP samples. First, we note that in these cases, the bootstrap standard errors for these peaks are much greater than in other areas of the distribution, suggesting that this peaking behavior is controlled by a small number of samples, and hence more variable with respect to a change in the specific datasets re-analyzed in this study. Second, peaking behavior in the KDE comprising all samples that does not appear in the KDE comprising MAP samples is a sign of some underlying data insufficiency issues highlighted by Fig. 2 in the main text; these peaks can easily disappear.
or be shifted upon measuring additional data. To declare confidently that a certain dataset espouses a cardinal Tafel slope preference, we contend that both ways of visualizing the distribution of Tafel slopes for a certain catalyst should show peaking around a cardinal value. This standard, while stringent, enforces that the available experimental data confidently determines a cardinal value of the Tafel slope, free of latent data insufficiency issues. While we observe this for the Bi breakout results in Fig. 9, the remainder of the catalyst breakout datasets do not meet this standard. Hence, though we do not foreclose the possibility that additional future data collection on these catalysts may reveal a cardinal Tafel slope preference, we argue that broadly, when considering the data extant in the literature, the typical CO₂ reduction catalyst does not exhibit a strong preference for cardinal values of the Tafel slope.

Supplementary Figure 4: Tafel Slope statistics for catalysts containing Ag ($N_{\text{datasets}} = 38$). (Left) Kernel density estimates (KDE) of the empirical probability distribution function of Tafel slopes reported in literature data (blue) and those refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed lines correspond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional breadth, as defined by Eq. (3).
Supplementary Figure 5: Tafel Slope statistics for catalysts containing Au ($N_{\text{datasets}} = 50$). (Left) Kernel density estimates (KDE) of the empirical probability distribution function of Tafel slopes reported in literature data (blue) and those refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed lines correspond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional breadth, as defined by Eq. (3).

Supplementary Figure 6: Tafel Slope statistics for catalysts containing Ag or Au ($N_{\text{datasets}} = 88$). (Left) Kernel density estimates (KDE) of the empirical probability distribution function of Tafel slopes reported in literature data (blue) and those refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed lines correspond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional breadth, as defined by Eq. (3).
Supplementary Figure 7: Tafel Slope statistics for catalysts containing Cu ($N_{\text{datasets}} = 54$). (Left) Kernel density estimates (KDE) of the empirical probability distribution function of Tafel slopes reported in literature data (blue) and those refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed lines correspond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional breadth, as defined by Eq. (3).

Supplementary Figure 8: Tafel Slope statistics for catalysts containing Sn ($N_{\text{datasets}} = 37$). (Left) Kernel density estimates (KDE) of the empirical probability distribution function of Tafel slopes reported in literature data (blue) and those refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed lines correspond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional breadth, as defined by Eq. (3).
Supplementary Figure 9: Tafel Slope statistics for catalysts containing Bi ($N_{\text{datasets}} = 27$). (Left) Kernel density estimates (KDE) of the empirical probability distribution function of Tafel slopes reported in literature data (blue) and those refitted by our algorithm (red). Error intervals correspond to one standard deviation of bootstrapped resamples. Green dashed lines correspond to cardinal values of the Tafel slope. (Center) Same as (Left), but KDEs are computed using only the MAP Tafel Slope values for each dataset. (Right) CDF of the distributional breadth, as defined by Eq. (3).
Limiting Current Statistics

Figure 10 depicts kernel density estimates of the distribution of fitted limiting currents i_{lim} from a re-analysis of literature data. Roughly, the distribution appears to be in agreement with the value of the transport-limited current density for CO$_2$ reduction at an aqueous flooded electrode.

Supplementary Figure 10: Limiting current statistics for all datasets analyzed in the study. (Left) Kernel density estimates (KDE) of the empirical probability distribution of the limiting current, i_{lim} fitted when interpreting the data through the model in main text Eq. (2). (Right) Same as (Left), but KDEs are computed using only the MAP limiting current values for each dataset.

Bayesian Fitting

Mathematical Detail

As quoted in the main text, Bayes’ rule reads,

$$p(\theta|y) = \frac{p(y|\theta) \times p(\theta)}{p(y)}.$$ \hspace{1cm} (4)

In the context of this work, y represents the measured current data at a set of voltage points. We will use the subscript notation y_k to denote a single current data point, where the index $k = 1, \ldots, N_{\text{pts}}$. The parameters of a model for interpreting current-voltage data are denoted
by θ; in the context of this work, the relevant parameters for the limiting current model are i_{lim}, the limiting current density, i_0, the exchange current density, and m^{-1}_T, the inverse Tafel slope. We will denote the model’s predictions at each voltage point by the subscript notation $M_k(\theta)$.

To successfully apply Bayes’ rule to glean $p(\theta|y)$, the posterior distribution over the model parameters given measured data, we need to identify mathematical forms for the prior distribution $p(\theta)$ and the likelihood function $p(y|\theta)$. In all fits conducted in this study, we employ a uniform prior distribution (also known as an “uninformative” prior distribution) over a certain parameter range. Since the prior is uniform in the selected parameter range, as long as the range includes the values of the parameters for which $p(\theta|y)$ has high probability mass, the choice of prior is unimportant (see further on for a numerical confirmation of this fact). Given this fact, the choice for the range of our uniform prior is determined by first using a standard nonlinear least-squares optimization algorithm (TRF) to determine a point estimate of the optimal set of parameters, θ^*. Formally,

$$\theta^* = \arg\min_{\theta} \left\{ \sum_{k=1}^{N_{\text{pts}}} [y_k - M_k(\theta)]^2 \right\}.$$ \hspace{1cm} (5)

With the optimal parameters θ^* in hand, we select a uniform prior $p(\theta)$ that is supported in the range $[0, a \times \theta^*_i]$ for each parameter $i = 1, \ldots, N_{\text{params}}$. We choose the very conservative value $a = 10$ to ensure that the prior distribution has support over a very broad range around the optimal parameters. In principle, this choice of a results in a wide parameter space, which may affect the computational efficiency of a posterior sampling algorithm. In practice, we find very little computational disadvantage for choosing $a = 10$ as compared to $a = 2$ when using the No-U-Turn Sampler implemented in PyMC3.

The likelihood function for the data given the parameters, $p(y|\theta)$, is determined by assuming that the experimental measurement represents a ground truth measurement described
by the model, polluted by unavoidable experimental error,

\[y_k = M_k(\theta) + \epsilon_k. \]

(6)

We assume that errors at different data points are uncorrelated, and further assume that the error \(\epsilon_i \) at any single data point is drawn from a Gaussian distribution with zero mean and variance \(\sigma^2 \),

\[p(\epsilon_k) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{\epsilon_k^2}{2\sigma^2} \right]. \]

(7)

Because the errors at each point are uncorrelated, the likelihood now factorizes over all the data points,

\[p(y|\theta) = \prod_{k=1}^{N_{\text{pts}}} \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{(y_k - M_k(\theta))^2}{2\sigma^2} \right]. \]

(8)

With a likelihood function \(p(y|\theta) \) and a prior distribution \(p(\theta) \) in hand, we can plug this information into a Monte Carlo sampler of our choice to draw samples from the posterior distribution \(p(\theta|y) \). Equation (8) also makes apparent how one can generalize the Bayesian posterior sampling approach to more general models \(M(\theta) \). After we write down a suitable model, we simply evaluate the model predictions with different parameters whenever we need to compute the likelihood function for a given set of parameters during the sampling procedure.

Gaussian Error Estimates from Nonlinear Optimization

The Bayesian posterior sampling approach advanced in this work provides a way to glean distributional uncertainty information about the estimated values of model parameters given observed data. A similar set of information can also be obtained by analyzing the Hessian matrix determined by a nonlinear optimization algorithm seeking an optimal point estimate.
of the model parameters. Specifically, if the optimizer seeks to minimize a loss function,

\[\mathcal{L}(\theta) = \frac{1}{2\sigma^2} \sum_{k=1}^{N_{\text{pts}}} [y_k - \mathcal{M}_k(\theta)]^2 , \]

(9)

then it often also produces an estimate of the Hessian,

\[H_{ij} = \left. \frac{\partial \mathcal{L}}{\partial \theta_i \partial \theta_j} \right|_{\theta^*} , \]

(10)

evaluated at the optimal value of the parameters \(\theta^* \). If we assume that the experimental data is generated by the random process described by Eq. (6), and further assume that the errors at different data points are uncorrelated and drawn from Gaussian distributions with mean zero and variance \(\sigma^2 \), then we can form a Gaussian approximation to the posterior distribution around \(\theta^* \),

\[p(\theta|y) \approx \frac{1}{(2\pi)^{d/2}(\det H)^{1/2}} \exp \left[-\frac{1}{2} (\theta - \theta^*)^T H (\theta - \theta^*) \right] , \]

(11)

where \(d \) is the number of parameters being estimated, and \(H \) is guaranteed to be positive definite by virtue of being evaluated at the optimal point \(\theta^* \).

We stress that the expression provided by Eq. (11) is an approximation to the true posterior distribution; due to its Gaussian form, this expression can never accurately represent bimodality in the posterior distribution. In this sense, the Bayesian sampling approach is superior, although it comes at significant additional computational expense as \(d \) increases. In this work, \(d = 3 \), and this additional expense is essentially negligible given the computational power available on a typical laptop or desktop computer. Hence, we suggest that posterior distributions over the Tafel slope fitted using the model in Eq. (2) of the main text should always be computed using the Bayesian posterior sampling algorithm described in the previous section. We have simply included mention of the Gaussian approximation for the sake of completeness, and to guide possible future work that attempts to fit models
Sensitivity to Error Distribution Width

One important parameter of the Bayesian fitting approach is the width of the normal distribution governing the probability of deviations from the model, which arises when evaluating the quantity $p(y|\theta)$ in Bayes’ rule. Figure 11 studies the sensitivity of the posterior distribution over the Tafel slope to the parameter σ, the standard deviation of the normal distribution governing the statistics of the model error. As expected, lowering the value of σ causes the algorithm to become more confident in its estimate. At $\sigma = 0.01$ logarithmic units, the model essentially nails the true Tafel slope of 80 mV/decade. For larger values of σ, a clear distributional drift to lower values of the Tafel slope is observed. This occurs because most of the data in Fig. 11A lies in the plateau region, and the model faces less penalty for down-weighting these points as the value of σ is increasing. Hence, the model drifts to larger slopes on the Fig. 11A plot, which corresponds to lower values of the Tafel slope. Note that the distributional widening is significantly greater than the drift in the mean, suggesting that we should not put much stock into the mean drift. The upshot: for high values of the...
σ parameter, this particular set of data does not contain enough information to pin down the value of the Tafel slope accurately.

Sensitivity to Prior Distribution

As explained in the main text, our Bayesian approach requires specification of a prior distribution $p(\theta)$ over the parameters. Since we know very little about the true distribution of the Tafel slope at the outset, we choose an uninformative uniform box prior over the interval $[0, a \times \theta^*_i]$ for each parameter θ_i, where θ^*_i is the optimal value of the parameter gleaned from the TRF algorithm described in the Methods section. Here, we conduct a sensitivity analysis on the a parameter. Given that we are using an uninformative prior, we should expect that the prior width should not influence the posterior distribution as long as the data expresses some opinion about the ideal value of the parameters. Figure 12 depicts the results of the sensitivity analysis on a set of synthetic data. Indeed, as expected, the posterior distributions are insensitive to the choice of prior. Note that in all fits considered in the main text, we use a value of $a = 10$, as mentioned in the Methods section.

Supplementary Figure 12: Sensitivity to the width of the uniform prior distribution bounds. (A) Synthetic data sampled from a model with an underlying Tafel slope of 80 mV/decade. (B) Several traces of the posterior distribution computed using different values of a, a parameter influencing the width of the prior distribution fed to the Bayesian posterior sampling algorithm. All posterior distributions are computed with $\sigma = 0.05$.
Derivations

Cardinal Tafel Slopes Equation

We will work with a generic reaction scheme, assuming that we begin with a starting species $A^{(n+q)+}$ which undergoes n electron transfers prior to the rate-determining step, and then q electron transfers at the RDS. In practice n will be an integer, and q will be either zero or one. Here we assume the reaction taking place is reductive; however, the derivation is entirely analogous for an equivalent oxidation reaction. Schematically, the reactions read,

$$
A^{(n+q)+} + e^- \leftrightarrow A^{(n+q-1)+} \\
\vdots \\
A^{(q+1)+} + e^- \leftrightarrow A^q \\
A^q + q e^- \rightarrow A.
$$

The overall current is determined by the rate of the RDS. Assuming Butler-Volmer kinetics for the forward rate constant of the RDS, we have,

$$
\text{rate} = k_0 \left\{ a_{A^q+} \exp \left[-\beta q e (1 - \alpha) \cdot (\phi - \phi_{eq})\right] - a_A \exp \left[+\beta q e \alpha \cdot (\phi - \phi_{eq})\right] \right\},
$$

where k_0 is the rate prefactor (sometimes called the Arrhenius prefactor), a_i is the activity of species i, $\beta \equiv (k_B T)^{-1}$ is the inverse thermodynamic temperature, e is the fundamental charge, α is the symmetry coefficient, ϕ is the applied potential, and ϕ_{eq} is the equilibrium potential for the RDS. At sufficiently high reductive overpotentials $\phi - \phi_{eq} \ll 0$, only the first term survives,

$$
\text{rate} \approx k_0 a_{A^q+} \exp \left[-\beta q e (1 - \alpha) \cdot (\phi - \phi_{eq})\right].
$$

To make further progress, we have to solve for the activity of the intermediate species A^{q+} in terms of the activity of the reactant species for the overall reaction, $A^{(n+q)+}$. If we assume
that all steps prior to the RDS are fast and equilibrated, we can extract this activity by analyzing the thermodynamics of the steps prior to the RDS. The free energy change associated with the r’th reaction reads,

$$\Delta F_r = -\beta^{-1} \log a_{A^{(n+q-(r+1)+}}} + \beta^{-1} \log a_{A^{(n-q-r)+}} + e\phi. \quad (14)$$

Then, the equilibrium constant for reaction r goes as,

$$K_r \equiv \exp [-\beta \Delta F_r] \quad (15)$$

$$K_r = \frac{a_{A^{(n+q-(r+1)+}}}{a_{A^{(n-q-r)+}}} \times \exp [-\beta e\phi] \quad (16)$$

$$K_r = \tilde{K}_r \times \exp [-\beta e\phi], \quad (17)$$

where \tilde{K}_r is defined by Eq. (17), and is independent of potential. Since Eq. (17) holds for all reactions r before the RDS, we can easily solve for the activity of the intermediate,

$$a_{A^{q+}} = \left[\prod_{r=1}^{n} \tilde{K}_r \right] \exp [-n\beta e\phi] \times a_{A^{(n+q)+}} \quad (18)$$

$$a_{A^{q+}} = \left[\prod_{r=1}^{n} \tilde{K}_r \right] \exp [-n\beta e(\phi - \phi_{eq.})] \exp [-n\beta e\phi_{eq.}] \times a_{A^{(n+q)+}}. \quad (19)$$

Plugging back into Eq. (13),

$$rate \approx k_0 \left(\prod_{r=1}^{n} \tilde{K}_r \right) \exp [-n\beta e(\phi - \phi_{eq.})] \exp [-n\beta e\phi_{eq.}] \times a_{A^{(n+q)+}} \exp [-\beta qe(1 - \alpha) \cdot (\phi - \phi_{eq.})]$$

$$rate = k_0 \left(\prod_{r=1}^{n} \tilde{K}_r \right) \exp [-n\beta e\phi_{eq.}] \times a_{A^{(n+q)+}} \exp [-\beta e(\phi - \phi_{eq.})(n + q \cdot (1 - \alpha))]. \quad (21)$$

This is a mess, but we only care about the potential-dependent terms when extracting the Tafel slope, which means we only have to consider the last factor on the RHS. Taking the
logarithm yields,

$$\log [\text{rate}] = -\beta e (\phi - \phi_{eq}) (n + q \cdot (1 - \alpha)) + C,$$

where C is a constant independent of potential. For a reduction reaction, the Tafel slope is defined as,

$$\text{Tafel Slope} = \left(\frac{\partial \log_{10} [\text{rate}]}{\partial \left(- (\phi - \phi_{eq}) \right)} \right)^{-1}.$$

Hence, we have,

$$\text{Tafel Slope} = \left[\log_{10} (\exp(1)) \cdot \beta e \right]^{-1} \cdot \frac{1}{n + q \cdot (1 - \alpha)}.$$

Appropriate unit scalings yield,

$$\text{Tafel Slope} = \frac{60 \text{ mV/decade}}{n + q \cdot (1 - \alpha)},$$

which reduces to the equation quoted in the main text when $\alpha = 1/2$.

Physical Non-Idealities

Tafel Slopes with Physical Non-Idealities

Eq. (25) already accounts for the non-ideality effects introduced by $\alpha \neq 1/2$. If we assume that the CO$_2$ adsorption step has partial charge transfer character quantified by γ, then despite the fact that the adsorption step is purely chemical, we assume that its equilibrium constant carries a non-integer order dependence on the applied potential. This can also be motivated by considering the formation of a permanent dipole on the surface species, which can access additional thermodynamic stabilization due to a dipole Stark shift from electric fields present at the interface. The manner in which surface dipole formation augments the Tafel slope depends on whether or not the CO$_2$ adsorption step is the rate determining step. For the case $(n, q) = (0, 1)$, the adsorption step is the RDS. The Frumkin correction
attenuates the applied potential for the rate-determining step by a factor \(f \), which simply multiplies the latter term in the denominator of Eq. (25). Hence, the Tafel slope for \((n, q) = (0, 1)\) is,

\[
\text{Tafel Slope} = \frac{60 \text{ mV/decade}}{\gamma \cdot f \cdot (1-\alpha)}. \tag{26}
\]

For the case \((n, q) = (1, 0)\), the adsorption step is the RDS, and rather than contributing \(n = 1 \) to the order, it instead contributes according to the \(\gamma \) parameter,

\[
\text{Tafel Slope} = \frac{60 \text{ mV/decade}}{\gamma}. \tag{27}
\]

Finally, for the case \((n, q) = (1, 1)\), the adsorption step occurs before the RDS, and the Tafel slope reads,

\[
\text{Tafel Slope} = \frac{60 \text{ mV/decade}}{\gamma + f \cdot (1-\alpha)}. \tag{28}
\]

Sensitivities to Parameter Bounds

Figures 13 and 14 study the sensitivity of the distributional results presented in Fig. 4 of the main text to the bounds of the uniform distributions over non-ideality parameters. Broadly, our claim is supported by the sensitivity analysis; within reasonable parameter bounds, we still see that we can get essentially arbitrary distributional shapes depending on the nonidealities included in the model.

Multiple Kinetic Regimes

Here, we examine the consequences of fitting current-voltage data from a system exhibiting multiple kinetic regimes to a model that only allows a single Tafel slope (as in Eq. (2) in the main text) by analyzing synthetic data. The synthetic data is generated from the model,

\[
\frac{1}{i(E)} = \frac{1}{i_{\text{lim}}} + \frac{1 + \exp \left(-e \frac{k_B T}{1} \times |E - E_{\text{eq,1}}| \right)}{\exp \left(e \frac{k_B T}{1} \times \alpha |E - E_{\text{eq,2}}| \right)}, \tag{29}
\]
Supplementary Figure 13: Several synthetic kernel density estimates of the probability distributions over the Tafel slope generated from including random values of different parameters governing physical non-idealities. Different panels use different uniform distributions over the symmetry coefficient parameter, α.

Supplementary Figure 14: Several synthetic kernel density estimates of the probability distributions over the Tafel slope generated from including random values of different parameters governing physical non-idealities. Different panels use different uniform distributions over the Frumkin correction parameter, f.
where E is the applied potential, and the model has free fitting parameters α, i_{lim}, $E_{\text{eq},1}$, and $E_{\text{eq},2}$. This model can be shown to arise when a reaction proceeds through a rate-limiting surface reaction involving a surface intermediate generated through a one-electron transfer, and present at non-negligible surface coverages. The specifics of how this model arises are less relevant to this analysis than the fact that the model exhibits two different Tafel regimes. When $\alpha = 1/2$, the first regime has Tafel slope $m_T = 40 \text{ mV decade}^{-1}$ for $E_{\text{eq},1} < E < E_{\text{eq},2}$, and the second regime has a Tafel slope $m_T = 120 \text{ mV decade}^{-1}$ for $E > E_{\text{eq},2}$, before topping out at the limiting current i_{lim}.

Supplementary Figure 15: (A) Current-voltage trace generated from Eq. (29) using the parameters $\alpha = 1/2$, $i_{\text{lim}} = 100 \text{ mA cm}^{-2}$, $E_{\text{eq},1} = 0.05 \text{ V}$, and $E_{\text{eq},2} = 0.15 \text{ V}$ (red trace), along with artificially noised data sampled from the model (black points). (B) Current-voltage traces evaluated from the MAP fit parameters for Eq. (2) in the main text and Eq. (29), along with the noised data used for the fits (black points). (C) Posterior distribution over the Tafel slope for the model described by Eq. (2) in the main text.

Figure 15A shows a trace of the current-voltage behavior predicted by Eq. (29), with parameters $\alpha = 1/2$, $i_{\text{lim}} = 100 \text{ mA cm}^{-2}$, $E_{\text{eq},1} = 0.05 \text{ V}$, and $E_{\text{eq},2} = 0.15 \text{ V}$, as well as artificially noised data sampled from this model at a sparsely sampled set of voltage points. Figure 15B shows current-voltage traces from both Eq. (29) (red) and Eq. (2) from the main text (blue), each evaluated under the MAP parameters determined from their respective Bayesian fits. Finally, Fig. 15C shows the Bayes posterior distribution for the Tafel slope fitted using Eq. (2) from the main text. As expected, when using the single Tafel regime model to fit data generated from multiple Tafel regimes, the MAP value of the Tafel slope does not coincide with the Tafel slope from either kinetic regime in Eq. (29).
Supplementary Figure 16: Posterior distributions for α, i_{lim}, $E_{\text{eq},1}$, and $E_{\text{eq},2}$ (A, B, C, D, respectively) gleaned from Bayesian posterior sampling on the artificially noised data in Fig. 15A.
However, as illustrated in Fig. 16, when the original data is fit to Eq. (29), the posterior distributions are peaked around the true values of the parameters.

This analysis yields two important takeaways. First, it lends credence to the idea that fitting a single Tafel slope to data collected under multiple Tafel regimes, each individually exhibiting a cardinal Tafel slope, can produce an off-cardinal value of the Tafel slope, providing an alternative possible explanation for the lack of observed cardinality in the literature analysis in the main text. Second, and perhaps more importantly, it shows that the Bayesian framework presented here can successfully estimate the parameters of more complicated physical models that incorporate the effects of multiple different Tafel regimes, or some of the physical nonidealities discussed in the main text. Practically, we furnish the following recommendation: if one knows in advance that multiple kinetic regimes are at play in a set of current-voltage data, and the nature of these regimes can be encoded into a kinetic model like Eq. (29), then one should carry out Bayesian fitting to such a model. In the absence of sufficient independent evidence to pin down a kinetic model that resolves multiple kinetic regimes, Eq. (2) from the main text is a viable alternative, but one should be very cautious about over-interpreting the mechanistic implications of a Tafel slope determined in this manner.
References

(1) Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced Electrochemical Metha-
nation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst. J. Am. Chem.
Soc. 136, 13319–13325, DOI: 10.1021/ja5065284, (2014).

(2) Chen, Y.; Li, C. W.; Kanan, M. W. Aqueous CO₂ Reduction at Very Low Overpoten-
tial on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 134, 19969–19972, DOI:
10.1021/ja309317u, (2012).

(3) Noda, H.; Ikeda, S.; Yamamoto, A.; Einaga, H.; Ito, K. Kinetics of Electrochemical
Reduction of Carbon Dioxide on a Gold Electrode in Phosphate Buffer Solutions. Bull.
Chem. Soc. Jpn. 68, 1889–1895, DOI: 10.1246/bcsj.68.1889, (1995).

(4) Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Selective and Efficient Reduction of
Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Elec-
trocatalysts. Angew. Chem. Int. Ed. 55, 9748–9752, DOI: 10.1002/anie.201604654,
(2016).

(5) Wu, J.; Yadav, R. M.; Liu, M.; Sharma, P. P.; Tiwary, C. S.; Ma, L.; Zou, X.; Zhou, X.-
D.; Yakobson, B. I.; Lou, J.; Ajayan, P. M. Achieving Highly Efficient, Selective, and
Stable CO₂ Reduction on Nitrogen-Doped Carbon Nanotubes. ACS Nano 9, 5364–
5371, DOI: 10.1021/acsnano.5b01079, (2015).

(6) Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. Densely Packed, Ultra Small SnO
Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO₂ Reduc-
tion. Angew. Chem. Int. Ed. 57, 2943–2947, DOI: 10.1002/anie.201713003, (2018).

(7) Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, W.; Zhu, J.; Wu, X.; Chu, W.; Wu, C.;
Xie, Y. Exclusive Ni–N₄ Sites Realize Near-Unity CO Selectivity for Electrochemical
CO₂ Reduction. J. Am. Chem. Soc. 139, 14889–14892, DOI: 10.1021/jacs.7b09074,
(2017).
(8) Zhu, M.; Chen, J.; Huang, L.; Ye, R.; Xu, J.; Han, Y. Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO$_2$ Electroreduction. Angew. Chem. Int. Ed. 58, 6595–6599, DOI: 10.1002/anie.201900499, (2019).

(9) Wang, Y.; Liu, J.; Wang, Y.; Al-Enizi, A. M.; Zheng, G. Tuning of CO$_2$ Reduction Selectivity on Metal Electrocatalysts. Small 13, 1701809, DOI: 10.1002/smll.201701809, (2017).

(10) Ma, T.; Fan, Q.; Tao, H.; Han, Z.; Jia, M.; Gao, Y.; Ma, W.; Sun, Z. Heterogeneous electrochemical CO$_2$ reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology 28, 472001, DOI: 10.1088/1361-6528/aa8f6f, (2017).

(11) Liu, Y.; Chen, S.; Quan, X.; Yu, H. Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond. J. Am. Chem. Soc. 137, 11631–11636, DOI: 10.1021/jacs.5b02975, (2015).

(12) Su, P.; Iwase, K.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide. Small 12, 6083–6089, DOI: 10.1002/smll.201602158, (2016).

(13) Shao, P.; Ci, S.; Yi, L.; Cai, P.; Huang, P.; Cao, C.; Wen, Z. Hollow CuS Microcube Electrocatalysts for CO$_2$ Reduction Reaction. ChemElectroChem 4, 2593–2598, DOI: 10.1002/celc.201700517, (2017).

(14) Xu, J.; Kan, Y.; Huang, R.; Zhang, B.; Wang, B.; Wu, K.-H.; Lin, Y.; Sun, X.; Li, Q.; Centi, G.; Su, D. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide. ChemSusChem 9, 1085–1089, DOI: 10.1002/cssc.201600202, (2016).

(15) Medina-Ramos, J.; DiMeglio, J. L.; Rosenthal, J. Efficient Reduction of CO$_2$ to CO
with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials. *J. Am. Chem. Soc.* **136**, 8361–8367, DOI: 10.1021/ja501923g, (2014).

(16) Ma, M.; Liu, K.; Shen, J.; Kas, R.; Smith, W. A. In Situ Fabrication and Reactivation of Highly Selective and Stable Ag Catalysts for Electrochemical CO₂ Conversion. *ACS Energy Lett.* **3**, 1301–1306, DOI: 10.1021/acsenergylett.8b00472, (2018).

(17) Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. *J. Am. Chem. Soc.* **136**, 1734–1737, DOI: 10.1021/ja4113885, (2014).

(18) Jiang, X.; Cai, F.; Gao, D.; Dong, J.; Miao, S.; Wang, G.; Bao, X. Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. *Electrochem. Commun.* **68**, 67–70, DOI: 10.1016/j.elecom.2016.05.003, (2016).

(19) Chen, Y.; Kanan, M. W. Tin Oxide Dependence of the CO₂ Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts. *J. Am. Chem. Soc.* **134**, 1986–1989, DOI: 10.1021/ja2108799, (2012).

(20) Chang, Z.; Huo, S.; Zhang, W.; Fang, J.; Wang, H. The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO₂ Electrochemical Reduction Reaction. *J. Phys. Chem. C* **121**, 11368–11379, DOI: 10.1021/acs.jpcc.7b01586, (2017).

(21) Koh, J. H.; Won, D. H.; Eom, T.; Kim, N.-K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. Facile CO₂ Electro-Reduction to Formate via Oxygen Bidentate Intermediate Stabilized by High-Index Planes of Bi Dendrite Catalyst. *ACS Catal.* **7**, 5071–5077, DOI: 10.1021/acscatal.7b00707, (2017).

(22) Jianping, Q.; Juntao, T.; Jie, S.; Cuiwei, W.; Mengqian, Q.; Zhiqiao, H.; Jianmeng, C.; Song, S. Preparation of a silver electrode with a three-dimensional surface and its
performance in the electrochemical reduction of carbon dioxide. *Electrochim. Acta* 203, 99–108, DOI: 10.1016/j.electacta.2016.03.182, (2016).

(23) Qiu, Y.; Du, J.; Dong, W.; Dai, C.; Tao, C. Selective conversion of CO$_2$ to formate on a size tunable nano-Bi electrocatalyst. *J. CO$_2$ Util.* 20, 328–335, DOI: 10.1016/j.jcou.2017.05.024, (2017).

(24) Karapinar, D.; Zitolo, A.; Huan, T. N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Giaume, D.; Marcus, P.; Mougel, V.; Fontecave, M. Carbon-Nanotube-Supported Copper Polyphtalocyanine for Efficient and Selective Electrocatalytic CO$_2$ Reduction to CO. *ChemSusChem* 13, 173–179, DOI: 10.1002/cssc.201902859, (2020).

(25) Luan, C.; Shao, Y.; Lu, Q.; Gao, S.; Huang, K.; Wu, H.; Yao, K. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays. *ACS Appl. Mater. Interfaces* 10, 17950–17956, DOI: 10.1021/acsami.8b03461, (2018).

(26) Peng, Y.; Wu, T.; Sun, L.; Nsanzimana, J. M. V.; Fisher, A. C.; Wang, X. Selective Electrochemical Reduction of CO$_2$ to Ethylene on Nanopores-Modified Copper Electrodes in Aqueous Solution. *ACS Appl. Mater. Interfaces* 9, 32782–32789, DOI: 10.1021/acsami.7b10421, (2017).

(27) Lu, H.; Zhang, L.; Zhong, J. H.; Yang, H. G. Partially Oxidized Palladium Nanodots for Enhanced Electrocatalytic Carbon Dioxide Reduction. *Chem. Asian J.* 13, 2800–2804, DOI: 10.1002/asia.201800946, (2018).

(28) Guo, S.; Zhang, Y.; Zhang, X.; Easton, C. D.; MacFarlane, D. R.; Zhang, J. Phosphomolybdic Acid-Assisted Growth of Ultrathin Bismuth Nanosheets for Enhanced Electrocatalytic Reduction of CO$_2$ to Formate. *ChemSusChem* 12, 1091–1100, DOI: 10.1002/cssc.201802409, (2019).
(29) Raciti, D.; Wang, Y.; Park, J. H.; Wang, C. Three-Dimensional Hierarchical Copper-Based Nanostructures as Advanced Electrocatalysts for CO₂ Reduction. *ACS Appl. Energy Mater.* 1, 2392–2398, DOI: 10.1021/acsaem.8b00356, (2018).

(30) Kauffman, D. R.; Alfonso, D. R.; Tafen, D. N.; Wang, C.; Zhou, Y.; Yu, Y.; Lekse, J. W.; Deng, X.; Espinoza, V.; Trindell, J.; Ranasingha, O. K.; Roy, A.; Lee, J.-S.; Xin, H. L. Selective Electrocatalytic Reduction of CO₂ into CO at Small, Thiol-Capped Au/Cu Nanoparticles. *J. Phys. Chem. C* 122, 27991–28000, DOI: 10.1021/acs.jpcc.8b06234, (2018).

(31) Bejtka, K.; Zeng, J.; Sacco, A.; Castellino, M.; Hernández, S.; Farkhondehfal, M. A.; Savino, U.; Ansaloni, S.; Pirri, C. F.; Chiodoni, A. Chainlike Mesoporous SnO₂ as a Well-Performing Catalyst for Electrochemical CO₂ Reduction. *ACS Appl. Energy Mater.* 2, 3081–3091, DOI: 10.1021/acsaem.8b02048, (2019).

(32) Liu, H.; Xiang, K.; Liu, Y.; Zhu, F.; Zou, M.; Yan, X.; Chai, L. Polydopamine Functionalized Cu Nanowires for Enhanced CO₂ Electroreduction Towards Methane. *ChemElectroChem* 5, 3991–3999, DOI: 10.1002/celc.201801132, (2018).

(33) Duan, Y.-X.; Meng, F.-L.; Liu, K.-H.; Yi, S.-S.; Li, S.-J.; Yan, J.-M.; Jiang, Q. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO₂ Reduction to Liquid Fuels with High Faradaic Efficiencies. *Adv. Mater.* 30, 1706194, DOI: 10.1002/adma.201706194, (2018).

(34) Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. *Nat. Commun.* 5, 3242, DOI: 10.1038/ncomms4242, (2014).

(35) Hsieh, Y.-C.; Senanayake, S. D.; Zhang, Y.; Xu, W.; Polyansky, D. E. Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver
Nanocoral Electrodes for CO$_2$ Electroreduction. ACS Catal. 5, 5349–5356, DOI: 10.1021/acscatal.5b01235, (2015).

(36) Cui, X.; Pan, Z.; Zhang, L.; Peng, H.; Zheng, G. Selective Etching of Nitrogen-Doped Carbon by Steam for Enhanced Electrochemical CO$_2$ Reduction. Adv. Energy Mater. 7, 1701456, DOI: 10.1002/aenm.201701456, (2017).

(37) Han, N. et al. Supported Cobalt Polyphthalocyanine for High-Performance Electro-catalytic CO2 Reduction. Chem 3, 652–664, DOI: 10.1016/j.chempr.2017.08.002, (2017).

(38) Li, F.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical Mesoporous SnO$_2$ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO$_2$ Reduction with High Efficiency and Selectivity. Angew. Chem. Int. Ed. 56, 505–509, DOI: 10.1002/anie.201608279, (2017).

(39) Pan, F.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B 226, 463–472, DOI: 10.1016/j.apcatb.2018.01.001, (2018).

(40) Li, C. W.; Kanan, M. W. CO$_2$ Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu$_2$O Films. J. Am. Chem. Soc. 134, 7231–7234, DOI: 10.1021/ja3010978, (2012).

(41) Lu, P.; Yang, Y.; Yao, J.; Wang, M.; Dipazir, S.; Yuan, M.; Zhang, J.; Wang, X.; Xie, Z.; Zhang, G. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Appl. Catal. B 241, 113–119, DOI: 10.1016/j.apcatb.2018.09.025, (2019).

(42) Luc, W.; Collins, C.; Wang, S.; Xin, H.; He, K.; Kang, Y.; Jiao, F. Ag–Sn Bimetallic Catalyst with a Core–Shell Structure for CO$_2$ Reduction. J. Am. Chem. Soc. 139, 1885–1893, DOI: 10.1021/jacs.6b10435, (2017).
(43) Rogers, C.; Perkins, W. S.; Veber, G.; Williams, T. E.; Cloke, R. R.; Fischer, F. R.
Synergistic Enhancement of Electrocatalytic CO\textsubscript{2} Reduction with Gold Nanoparticles
Embedded in Functional Graphene Nanoribbon Composite Electrodes. \textit{J. Am. Chem. Soc.} \textbf{139}, 4052–4061, DOI: 10.1021/jacs.6b12217, (2017).

(44) Cao, Z.; Zacate, S. B.; Sun, X.; Liu, J.; Hale, E. M.; Carson, W. P.; Tyndall, S. B.;
Xu, J.; Liu, X.; Liu, X.; Song, C.; Luo, J.-h.; Cheng, M.-J.; Wen, X.; Liu, W. Tuning
Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO\textsubscript{2}
Reduction. \textit{Angew. Chem.} \textbf{130}, 12857–12861, DOI: 10.1002/ange.201805696, (2018).

(45) School of Petrochemical Engineering, Changzhou University, Changzhou 213164,
P. R. China.; Bei, J. Efficient Reduction of CO\textsubscript{2} to Formate Using in Situ Pre-
pared Nano-Sized Bi Electrocatalyst. \textit{Int. J. Electrochem. Sci.} 2365–2375, DOI:
10.20964/2017.03.72, (2017).

(46) Su, P.; Xu, W.; Qiu, Y.; Zhang, T.; Li, X.; Zhang, H. Ultrathin Bismuth Nanosheets
as a Highly Efficient CO\textsubscript{2} Reduction Electrocatalyst. \textit{ChemSusChem} \textbf{11}, 848–853,
DOI: 10.1002/cssc.201702229, (2018).

(47) Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J.
Selective CO\textsubscript{2} Reduction on 2D Mesoporous Bi Nanosheets. \textit{Adv. Energy Mater.} \textbf{8},
1801536, DOI: 10.1002/aenm.201801536, (2018).

(48) Han, P.; Yu, X.; Yuan, D.; Kuang, M.; Wang, Y.; Al-Enizi, A. M.; Zheng, G. Defective
graphene for electrocatalytic CO\textsubscript{2} reduction. \textit{J. Colloid Interface Sci.} \textbf{534}, 332–337,
DOI: 10.1016/j.jcis.2018.09.036, (2019).

(49) Zheng, X.; Han, J.; Fu, Y.; Deng, Y.; Liu, Y.; Yang, Y.; Wang, T.; Zhang, L. Highly
efficient CO\textsubscript{2} reduction on ordered porous Cu electrode derived from Cu2O inverse
opals. \textit{Nano Energy} \textbf{48}, 93–100, DOI: 10.1016/j.nanoen.2018.03.023, (2018).
(50) Jiang, B.; Zhang, X.-G.; Jiang, K.; Wu, D.-Y.; Cai, W.-B. Boosting Formate Production in Electrocatalytic CO$_2$ Reduction over Wide Potential Window on Pd Surfaces. *J. Am. Chem. Soc.* **140**, 2880–2889, DOI: 10.1021/jacs.7b12506, (2018).

(51) Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO$_2$ Reduction. *ACS Catal.* **5**, 4586–4591, DOI: 10.1021/acscatal.5b00922, (2015).

(52) Jiang, K.; Wang, H.; Cai, W.-B.; Wang, H. Li Electrochemical Tuning of Metal Oxide for Highly Selective CO$_2$ Reduction. *ACS Nano* **11**, 6451–6458, DOI: 10.1021/acsnano.7b03029, (2017).

(53) Cho, M.; Song, J. T.; Back, S.; Jung, Y.; Oh, J. The Role of Adsorbed CN and Cl on an Au Electrode for Electrochemical CO$_2$ Reduction. *ACS Catal.* **8**, 1178–1185, DOI: 10.1021/acscatal.7b03449, (2018).

(54) Lv, W.; Zhou, J.; Bei, J.; Zhang, R.; Wang, L.; Xu, Q.; Wang, W. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate. *Appl. Surf. Sci.* **393**, 191–196, DOI: 10.1016/j.apsusc.2016.10.017, (2017).

(55) Xie, J.; Zhao, X.; Wu, M.; Li, Q.; Wang, Y.; Yao, J. Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO$_2$ Reduction Outcompeting Hydrogen Evolution. *Angew. Chem. Int. Ed.* **57**, 9640–9644, DOI: 10.1002/anie.201802055, (2018).

(56) Pan, F.; Zhao, H.; Deng, W.; Feng, X.; Li, Y. A novel N,Fe-Decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. *Electrochim. Acta* **273**, 154–161, DOI: 10.1016/j.electacta.2018.04.047, (2018).

(57) Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. *J. Am. Chem. Soc.* **137**, 14129–14135, DOI: 10.1021/jacs.5b08212, (2015).
(58) Yang, H.; Wu, Y.; Lin, Q.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C.; Lin, Z. Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO \(_2\). *Angew. Chem. Int. Ed.* 57, 15476–15480, DOI: 10.1002/anie.201809255, (2018).

(59) Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.; Zeng, J. Oxygen Vacancies in ZnO Nanosheets Enhance CO \(_2\) Electrochemical Reduction to CO. *Angew. Chem. Int. Ed.* 57, 6054–6059, DOI: 10.1002/anie.201711255, (2018).

(60) Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Zhao, P.; Xue, X.; Chen, R.; Yang, S.; Ma, J.; Liu, J.; Jin, Z. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO\(_2\) reduction on two-dimensional metal nanostructure. *Nano Energy* 53, 808–816, DOI: 10.1016/j.nanoen.2018.09.053, (2018).

(61) Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X.; Copéret, C.; Chang, C. J. Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO\(_2\) Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. *Angew. Chem. Int. Ed.* 57, 4981–4985, DOI: 10.1002/anie.201800367, (2018).

(62) Zhao, C.; Wang, J. Electrochemical reduction of CO\(_2\) to formate in aqueous solution using electro-deposited Sn catalysts. *Chem. Eng. J.* 293, 161–170, DOI: 10.1016/j.cej.2016.02.084, (2016).

(63) Zhang, X.; Lei, T.; Liu, Y.; Qiao, J. Enhancing CO\(_2\) electrolysis to formate on facilely synthesized Bi catalysts at low overpotential. *Appl. Catal. B* 218, 46–50, DOI: 10.1016/j.apcatb.2017.06.032, (2017).

(64) He, J.; Liu, X.; Liu, H.; Zhao, Z.; Ding, Y.; Luo, J. Highly selective electrocatalytic
reduction of CO2 to formate over Tin(IV) sulfide monolayers. *J. Catal. 364*, 125–130, DOI: 10.1016/j.jcat.2018.05.005, (2018).

(65) Smith, P. T.; Benke, B. P.; Cao, Z.; Kim, Y.; Nichols, E. M.; Kim, K.; Chang, C. J. Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO2 Reduction in Water. *Angew. Chem. Int. Ed. 57*, 9684–9688, DOI: 10.1002/anie.201803873, (2018).

(66) Zhang, A.; He, R.; Li, H.; Chen, Y.; Kong, T.; Li, K.; Ju, H.; Zhu, J.; Zhu, W.; Zeng, J. Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO2 Reduction. *Angew. Chem. Int. Ed. 57*, 10954–10958, DOI: 10.1002/anie.201806043, (2018).

(67) Morimoto, M.; Takatsuji, Y.; Hirata, K.; Fukuma, T.; Ohno, T.; Sakakura, T.; Haruyama, T. Visualization of catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode. *Electrochim. Acta 290*, 255–261, DOI: 10.1016/j.electacta.2018.09.080, (2018).

(68) Spataru, N.; Tokuhiro, K.; Terashima, C.; Rao, T. N.; Fujishima, A. Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. *J. Appl. Electrochem. 33*, 1205–1210, DOI: 10.1023/B:JACH.0000003866.85015.b6, (2003).

(69) Hirota, K.; Tryk, D. A.; Yamamoto, T.; Hashimoto, K.; Okawa, M.; Fujishima, A. Photoelectrochemical Reduction of CO2 in a High-Pressure CO2 + Methanol Medium at p-Type Semiconductor Electrodes. *J. Phys. Chem. B 102*, 9834–9843, DOI: 10.1021/jp9822945, (1998).

(70) Liu, X.; Yang, H.; He, J.; Liu, H.; Song, L.; Li, L.; Luo, J. Highly Active, Durable Ultrathin MoTe2 Layers for the Electrocatalytic Reduction of CO2 to CH4. *Small 14*, 1704049, DOI: 10.1002/smll.201704049, (2018).
(71) Li, F.; Chen, L.; Xue, M.; Williams, T.; Zhang, Y.; MacFarlane, D. R.; Zhang, J. Towards a better Sn: Efficient electrocatalytic reduction of CO$_2$ to formate by Sn/SnS$_2$ derived from SnS$_2$ nanosheets. *Nano Energy* 31, 270–277, DOI: 10.1016/j.nanoen.2016.11.004, (2017).

(72) Hu, X.-M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced Catalytic Activity of Cobalt Porphyrin in CO$_2$ Electroreduction upon Immobilization on Carbon Materials. *Angew. Chem. Int. Ed.* 56, 6468–6472, DOI: 10.1002/anie.201701104, (2017).

(73) Liu, S.; Tao, H.; Zeng, L.; Liu, Q.; Xu, Z.; Liu, Q.; Luo, J.-L. Shape-Dependent Electrocatalytic Reduction of CO$_2$ to CO on Triangular Silver Nanoplates. *J. Am. Chem. Soc.* 139, 2160–2163, DOI: 10.1021/jacs.6b12103, (2017).

(74) Liu, S.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. D. Efficient Electrochemical Reduction of CO$_2$ to HCOOH over Sub-2 nm SnO$_2$ Quantum Wires with Exposed Grain Boundaries. *Angew. Chem. Int. Ed.* 58, 8499–8503, DOI: 10.1002/anie.201903613, (2019).

(75) Liu, S.; Yang, H.; Huang, X.; Liu, L.; Cai, W.; Gao, J.; Li, X.; Zhang, T.; Huang, Y.; Liu, B. Identifying Active Sites of Nitrogen-Doped Carbon Materials for the CO$_2$ Reduction Reaction. *Adv. Funct. Mater.* 28, 1800499, DOI: 10.1002/adfm.201800499, (2018).

(76) Nursanto, E. B.; Jeon, H. S.; Kim, C.; Jee, M. S.; Koh, J. H.; Hwang, Y. J.; Min, B. K. Gold catalyst reactivity for CO2 electro-reduction: From nano particle to layer. *Catal. Today* 260, 107–111, DOI: 10.1016/j.cattod.2015.05.017, (2016).

(77) Peng, X.; Karakalos, S. G.; Mustain, W. E. Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO$_2$ Electro-
chemical Reduction to CO. *ACS Appl. Mater. Interfaces* **10**, 1734–1742, DOI: 10.1021/acsami.7b16164, (2018).

(78) Zhu, W.; Zhang, L.; Yang, P.; Chang, X.; Dong, H.; Li, A.; Hu, C.; Huang, Z.; Zhao, Z.-J.; Gong, J. Morphological and Compositional Design of Pd-Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO \(_2\) Electroreduction. *Small* **14**, 1703314, DOI: 10.1002/smll.201703314, (2018).

(79) Geng, Z.; Cao, Y.; Chen, W.; Kong, X.; Liu, Y.; Yao, T.; Lin, Y. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. *Appl. Catal. B* **240**, 234–240, DOI: 10.1016/j.apcatb.2018.08.075, (2019).

(80) Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO \(_2\) to C \(_2\)–C \(_3\) products. *Proc. Natl. Acad. Sci.* **114**, 10560–10565, DOI: 10.1073/pnas.1711493114, (2017).

(81) Chen, Z.; Mou, K.; Yao, S.; Liu, L. Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO \(_2\) to CO. *Chem-SusChem* **11**, 2944–2952, DOI: 10.1002/cssc.201800925, (2018).

(82) Kim, S. K.; Zhang, Y.-J.; Bergstrom, H.; Michalsky, R.; Peterson, A. Understanding the Low-Overpotential Production of CH \(_4\) from CO \(_2\) on Mo \(_2\) C Catalysts. *ACS Catal.* **6**, 2003–2013, DOI: 10.1021/acscatal.5b02424, (2016).

(83) Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the Reactivity and Mechanism of CO \(_2\) Electroreduction at Highly Dispersed Cobalt Phthalocyanine. *ACS Energy Lett.* **3**, 1381–1386, DOI: 10.1021/acsenergylett.8b00519, (2018).

(84) Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO\(_2\) Porous Nanowires with a High Density of Grain Boundaries
as Catalysts for Efficient Electrochemical CO₂-into-HCOOH Conversion. *Angew. Chem. Int. Ed.* 56, 3645–3649, DOI: 10.1002/anie.201612194, (2017).

(85) Wang, H.; Jia, J.; Song, P.; Wang, Q.; Li, D.; Min, S.; Qian, C.; Wang, L.; Li, Y. F.; Ma, C.; Wu, T.; Yuan, J.; Antonietti, M.; Ozin, G. A. Efficient Electrocatalytic Reduction of CO₂ by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO₂ Refinery. *Angew. Chem. Int. Ed.* 56, 7847–7852, DOI: 10.1002/anie.201703720, (2017).

(86) Wu, J.; Liu, M.; Sharma, P. P.; Yadav, R. M.; Ma, L.; Yang, Y.; Zou, X.; Zhou, X.-D.; Vajtai, R.; Yakobson, B. I.; Lou, J.; Ajayan, P. M. Incorporation of Nitrogen Defects for Efficient Reduction of CO₂ via Two-Electron Pathway on Three-Dimensional Graphene Foam. *Nano Lett.* 16, 466–470, DOI: 10.1021/acs.nanolett.5b04123, (2016).

(87) Ren, W.; Tan, X.; Yang, W.; Jia, C.; Xu, S.; Wang, K.; Smith, S. C.; Zhao, C. Isolated Diatomic Ni-Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO₂. *Angew. Chem. Int. Ed.* 58, 6972–6976, DOI: 10.1002/anie.201901575, (2019).

(88) Li, L.; Ma, D.-K.; Qi, F.; Chen, W.; Huang, S. Bi nanoparticles/Bi₂O₃ nanosheets with abundant grain boundaries for efficient electrocatalytic CO₂ reduction. *Electrochim. Acta* 298, 580–586, DOI: 10.1016/j.electacta.2018.12.116, (2019).

(89) Hu, X.-M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M.-M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M.; Beller, M.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Selective CO₂ Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. *ACS Catal.* 8, 6255–6264, DOI: 10.1021/acscatal.8b01022, (2018).

(90) Zhang, L.; Wu, N.; Zhang, J.; Hu, Y.; Wang, Z.; Zhuang, L.; Jin, X. Imidazolium
Ions with an Alcohol Substituent for Enhanced Electrocatalytic Reduction of CO$_2$.

ChemSusChem 10, 4824–4828, DOI: 10.1002/cssc.201701673, (2017).

(91) Liu, K.; Wang, J.; Shi, M.; Yan, J.; Jiang, Q. Simultaneous Achieving of High Faradaic
Efficiency and CO Partial Current Density for CO$_2$ Reduction via Robust, Noble-
Metal-Free Zn Nanosheets with Favorable Adsorption Energy. *Adv. Energy Mater.* 9,
1900276, DOI: 10.1002/aenm.201900276, (2019).

(92) Zhu, W.; Zhang, L.; Yang, P.; Hu, C.; Dong, H.; Zhao, Z.-J.; Mu, R.; Gong, J. Forma-
tion of Enriched Vacancies for Enhanced CO$_2$ Electrocatalytic Reduction over AuCu
Alloys. *ACS Energy Lett.* 3, 2144–2149, DOI: 10.1021/acsenergylett.8b01286,
(2018).

(93) Sun, X.; Lu, L.; Zhu, Q.; Wu, C.; Yang, D.; Chen, C.; Han, B. MoP Nanoparti-
cles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly
Efficient CO$_2$ Electroreduction. *Angew. Chem. Int. Ed.* 57, 2427–2431, DOI:
10.1002/anie.201712221, (2018).

(94) Ghausi, M. A.; Xie, J.; Li, Q.; Wang, X.; Yang, R.; Wu, M.; Wang, Y.; Dai, L. CO
$_2$ Overall Splitting by a Bifunctional Metal-Free Electrocatalyst. *Angew. Chem. Int.
Ed.* 57, 13135–13139, DOI: 10.1002/anie.201807571, (2018).

(95) Verma, S.; Hamasaki, Y.; Kim, C.; Huang, W.; Lu, S.; Jhong, H.-R. M.;
Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Insights into
the Low Overpotential Electroreduction of CO$_2$ to CO on a Supported Gold
Catalyst in an Alkaline Flow Electrolyzer. *ACS Energy Lett.* 3, 193–198, DOI:
10.1021/acsenergylett.7b01096, (2018).

(96) Hsieh, Y.-C.; Betancourt, L. E.; Senanayake, S. D.; Hu, E.; Zhang, Y.; Xu, W.;
Polyansky, D. E. Modification of CO$_2$ Reduction Activity of Nanostructured Silver
Electrocatalysts by Surface Halide Anions. *ACS Appl. Energy Mater.* 2, 102–109, DOI: 10.1021/acsaem.8b01692, (2019).

(97) Ma, M.; Djanashvili, K.; Smith, W. A. Selective electrochemical reduction of CO$_2$ to CO on CuO-derived Cu nanowires. *Phys. Chem. Chem. Phys.* 17, 20861–20867, DOI: 10.1039/C5CP03559G, (2015).

(98) Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X. Atomically dispersed Fe$^{3+}$ sites catalyze efficient CO$_2$ electroreduction to CO. *Science* 364, 1091–1094, DOI: 10.1126/science.aaw7515, (2019).

(99) Miao, C.-C.; Yuan, G.-Q. Morphology-Controlled Bi$_2$O$_3$ Nanoparticles as Catalysts for Selective Electrochemical Reduction of CO$_2$ to Formate. *ChemElectroChem* 5, 3741–3747, DOI: 10.1002/celc.201801036, (2018).

(100) He, R.; Zhang, A.; Ding, Y.; Kong, T.; Xiao, Q.; Li, H.; Liu, Y.; Zeng, J. Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO$_2$ Electroreduction. *Adv. Mater.* 30, 1705872, DOI: 10.1002/adma.201705872, (2018).

(101) Todoroki, N.; Tei, H.; Tsurumaki, H.; Miyakawa, T.; Inoue, T.; Wadayama, T. Surface Atomic Arrangement Dependence of Electrochemical CO$_2$ Reduction on Gold: Online Electrochemical Mass Spectrometric Study on Low-Index Au(hkl) Surfaces. *ACS Catal.* 9, 1383–1388, DOI: 10.1021/acscatal.8b04852, (2019).

(102) Huang, J.; Guo, X.; Wei, Y.; Hu, Q.; Yu, X.; Wang, L. A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction. *J. CO2 Util.* 33, 166–170, DOI: 10.1016/j.jcou.2019.05.026, (2019).

(103) He, S.; Ni, F.; Ji, Y.; Wang, L.; Wen, Y.; Bai, H.; Liu, G.; Zhang, Y.; Li, Y.; Zhang, B.;
Peng, H. The p-Orbital Delocalization of Main-Group Metals to Boost CO$_2$ Electroreduction. *Angew. Chem. 130*, 16346–16351, DOI: 10.1002/ange.201810538, (2018).

(104) Zhao, C. et al. Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. *Joule 3*, 584–594, DOI: 10.1016/j.joule.2018.11.008, (2019).

(105) Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon Solving Carbon’s Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO$_2$. *Adv. Energy Mater. 7*, 1700759, DOI: 10.1002/aenm.201700759, (2017).

(106) Xia, Z.; Freeman, M.; Zhang, D.; Yang, B.; Lei, L.; Li, Z.; Hou, Y. Highly Selective Electrochemical Conversion of CO$_2$ to HCOOH on Dendritic Indium Foams. *Chem-ElectroChem 5*, 253–259, DOI: 10.1002/celc.201700935, (2018).

(107) Zhu, M.; Chen, J.; Guo, R.; Xu, J.; Fang, X.; Han, Y.-F. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. *Appl. Catal. B 251*, 112–118, DOI: 10.1016/j.apcatb.2019.03.047, (2019).

(108) Liu, S.; Yang, H. B.; Hung, S.; Ding, J.; Cai, W.; Liu, L.; Gao, J.; Li, X.; Ren, X.; Kuang, Z.; Huang, Y.; Zhang, T.; Liu, B. Elucidating the Electrocatalytic CO$_2$ Reduction Reaction over a Model Single-Atom Nickel Catalyst. *Angew. Chem. Int. Ed. 59*, 798–803, DOI: 10.1002/anie.201911995, (2020).

(109) Zhao, Y.; Liang, J.; Wang, C.; Ma, J.; Wallace, G. G. Tunable and Efficient Tin Modified Nitrogen-Doped Carbon Nanofibers for Electrochemical Reduction of Aqueous Carbon Dioxide. *Adv. Energy Mater. 8*, 1702524, DOI: 10.1002/aenm.201702524, (2018).

(110) Chang, X.; Wang, T.; Zhao, Z.; Yang, P.; Greeley, J.; Mu, R.; Zhang, G.; Gong, Z.; Luo, Z.; Chen, J.; Cui, Y.; Ozin, G. A.; Gong, J. Tuning Cu/Cu$_2$O Interfaces for the
Reduction of Carbon Dioxide to Methanol in Aqueous Solutions. *Angew. Chem. 130*, 15641–15645, DOI: 10.1002/ange.201805256, (2018).

(111) Song, J. T.; Ryoo, H.; Cho, M.; Kim, J.; Kim, J.-G.; Chung, S.-Y.; Oh, J. Nanoporous Au Thin Films on Si Photoelectrodes for Selective and Efficient Photoelectrochemical CO\textsubscript{2} Reduction. *Adv. Energy Mater. 7*, 1601103, DOI: 10.1002/aenm.201601103, (2017).

(112) Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H.; Ringe, S.; Hahn, C.; Jaramillo, T. F.; Nørskov, J. K.; Chan, K. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. *Nat. Commun. 10*, 32, DOI: 10.1038/s41467-018-07970-9, (2019).

(113) Huang, P.; Cheng, M.; Zhang, H.; Zuo, M.; Xiao, C.; Xie, Y. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. *Nano Energy 61*, 428–434, DOI: 10.1016/j.nanoen.2019.05.003, (2019).

(114) Sun, K.; Wu, L.; Qin, W.; Zhou, J.; Hu, Y.; Jiang, Z.; Shen, B.; Wang, Z. Enhanced electrochemical reduction of CO\textsubscript{2} to CO on Ag electrocatalysts with increased unoccupied density of states. *J. Mater. Chem. A 4*, 12616–12623, DOI: 10.1039/C6TA04325A, (2016).

(115) Wu, H.; Zeng, M.; Zhu, X.; Tian, C.; Mei, B.; Song, Y.; Du, X.-L.; Jiang, Z.; He, L.; Xia, C.; Dai, S. Defect Engineering in Polymeric Cobalt Phthalocyanine Networks for Enhanced Electrochemical CO\textsubscript{2} Reduction. *ChemElectroChem 5*, 2717–2721, DOI: 10.1002/celc.201800806, (2018).

(116) Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. Highly Efficient CO\textsubscript{2} Electroreduction on ZnN\textsubscript{4} -based Single-Atom Catalyst. *Angew. Chem. Int. Ed. 57*, 12303–12307, DOI: 10.1002/anie.201805871, (2018).
(117) Choi, J.; Benedetti, T. M.; Jalili, R.; Walker, A.; Wallace, G. G.; Officer, D. L. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO\(_2\) Reduction. Chem. Eur. J. 22, 14158–14161, DOI: 10.1002/chem.201603359, (2016).

(118) Fan, Q.; Hou, P.; Choi, C.; Wu, T.; Hong, S.; Li, F.; Soo, Y.; Kang, P.; Jung, Y.; Sun, Z. Activation of Ni Particles into Single Ni–N Atoms for Efficient Electrochemical Reduction of CO\(_2\). Adv. Energy Mater. 10, 1903068, DOI: 10.1002/aenm.201903068, (2020).

(119) Zhang, L.; Wang, Z.; Mehio, N.; Jin, X.; Dai, S. Thickness- and Particle-Size-Dependent Electrochemical Reduction of Carbon Dioxide on Thin-Layer Porous Silver Electrodes. ChemSusChem 9, 428–432, DOI: 10.1002/cssc.201501637, (2016).

(120) Han, J.; An, P.; Liu, S.; Zhang, X.; Wang, D.; Yuan, Y.; Guo, J.; Qiu, X.; Hou, K.; Shi, L.; Zhang, Y.; Zhao, S.; Long, C.; Tang, Z. Reordering d Orbital Energies of Single-Site Catalysts for CO\(_2\) Electroreduction. Angew. Chem. Int. Ed. 58, 12711–12716, DOI: 10.1002/anie.201907399, (2019).

(121) Hu, H.; Gui, L.; Zhou, W.; Sun, J.; Xu, J.; Wang, Q.; He, B.; Zhao, L. Partially reduced Sn/SnO\(_2\) porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. Electrochim. Acta 285, 70–77, DOI: 10.1016/j.electacta.2018.08.002, (2018).

(122) Koh, J. H.; Jeon, H. S.; Jee, M. S.; Nursanto, E. B.; Lee, H.; Hwang, Y. J.; Min, B. K. Oxygen Plasma Induced Hierarchically Structured Gold Electro catalyst for Selective Reduction of Carbon Dioxide to Carbon Monoxide. J. Phys. Chem. C 119, 883–889, DOI: 10.1021/jp509967m, (2015).

(123) Shen, Q.; Chen, Z.; Huang, X.; Liu, M.; Zhao, G. High-Yield and Selective Photoelectrocatalytic Reduction of CO\(_2\) to Formate by Metallic Copper Decorated Co\(_3\)O\(_4\)
Nanotube Arrays. *Env. Sci. Tech.* **49**, 5828–5835, DOI: 10.1021/acs.est.5b00066, (2015).

(124) Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous Reduction of CO₂ and Splitting of H₂O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst. *ACS Catal.* **6**, 3092–3095, DOI: 10.1021/acscatal.6b00543, (2016).

(125) Liu, M. et al. Quantum-Dot-Derived Catalysts for CO₂ Reduction Reaction. *Joule* **3**, 1703–1718, DOI: 10.1016/j.joule.2019.05.010, (2019).

(126) Xiang, H.; Rasul, S.; Scott, K.; Portoles, J.; Cumpson, P.; Yu, E. H. Enhanced selectivity of carbonaceous products from electrochemical reduction of CO₂ in aqueous media. *J. CO₂ Util.* **30**, 214–221, DOI: 10.1016/j.jcou.2019.02.007, (2019).

(127) Han, H.; Park, S.; Jang, D.; Lee, S.; Kim, W. B. Electrochemical Reduction of CO₂ to CO by N,S Dual-Doped Carbon Nanoweb Catalysts. *ChemSusChem* **13**, 539–547, DOI: 10.1002/cssc.201903117, (2020).

(128) Jeong, H.; Balamurugan, M.; Choutipalli, V. S. K.; Jo, J.; Baik, H.; Subramanian, V.; Kim, M.; Sim, U.; Nam, K. T. Tris(2-benzimidazolylmethyl)amine-Directed Synthesis of Single-Atom Nickel Catalysts for Electrochemical CO Production from CO₂. *Chem. Eur. J.* **24**, 18444–18454, DOI: 10.1002/chem.201803615, (2018).

(129) Hu, X.; Yang, H.; Guo, M.; Gao, M.; Zhang, E.; Tian, H.; Liang, Z.; Liu, X. Synthesis and Characterization of (Cu, S) Co-doped SnO₂ for Electrocatalytic Reduction of CO₂ to Formate at Low Overpotential. *ChemElectroChem* **5**, 1330–1335, DOI: 10.1002/celc.201800104, (2018).

(130) Zhang, X.; Sun, X.; Guo, S.-X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO₂ reduction at low overpotential. *Energy & Environmental Science* **12**, 1334–1340, DOI: 10.1039/C9EE00018F, (2019).
(131) Zheng, T.; Jiang, K.; Ta, N.; Hu, Y.; Zeng, J.; Liu, J.; Wang, H. Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst. *Joule* 3, 265–278, DOI: 10.1016/j.joule.2018.10.015, (2019).

(132) Todoroki, N.; Tei, H.; Miyakawa, T.; Tsurumaki, H.; Wadayama, T. Electrochemical CO2 Reduction on Bimetallic Surface Alloys: Enhanced Selectivity to CO for Co/Au(110) and to H2 for Sn/Au(110). *ChemElectroChem* 6, 3101–3107, DOI: 10.1002/celc.201900725, (2019).

(133) Gao, S.; Sun, Z.; Liu, W.; Jiao, X.; Zu, X.; Hu, Q.; Sun, Y.; Yao, T.; Zhang, W.; Wei, S.; Xie, Y. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. *Nat. Commun.* 8, 14503, DOI: 10.1038/ncomms14503, (2017).

(134) Yang, H.-J.; Dong, J.; Hong, Y.-H.; Lin, W.-F.; Zhou, Z.-Y.; Sun, S.-G. Comparative investigation of CO2 and oxygen reduction on Fe/N/C catalysts. *Electrochem. Commun.* 97, 82–86, DOI: 10.1016/j.elecom.2018.10.014, (2018).

(135) Wang, J.; Gan, L.; Zhang, Q.; Reddu, V.; Peng, Y.; Liu, Z.; Xia, X.; Wang, C.; Wang, X. A Water-Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO2 Reduction on Graphene-Based Electrodes. *Adv. Energy Mater.* 9, 1803151, DOI: 10.1002/aenm.201803151, (2019).

(136) Wang, X.; Xiao, W.; Zhang, J.; Wang, Z.; Jin, X. Nanoporous Ag-Sn derived from codeposited AgCl-SnO2 for the electrocatalytic reduction of CO2 with high formate selectivity. *Electrochem. Commun.* 102, 52–56, DOI: 10.1016/j.elecom.2019.03.017, (2019).

(137) Zhang, Q.; Zhang, Y.; Mao, J.; Liu, J.; Zhou, Y.; Guay, D.; Qiao, J. Electrochemical Reduction of CO2 by SnOx Nanosheets Anchored on Multiwalled Carbon
Nanotubes with Tunable Functional Groups. *ChemSusChem* 12, 1443–1450, DOI: 10.1002/cssc.201802725, (2019).

(138) Rabiee, A.; Nematollahi, D. Electrochemical reduction of CO2 to formate ion using nanocubic mesoporous In(OH)3/carbon black system. *Mater. Chem. Phys.* 193, 109–116, DOI: 10.1016/j.matchemphys.2017.02.016, (2017).

(139) Lv, K.; Teng, C.; Shi, M.; Yuan, Y.; Zhu, Y.; Wang, J.; Kong, Z.; Lu, X.; Zhu, Y. Hydrophobic and Electronic Properties of the E-MoS2 Nanosheets Induced by FAS for the CO2 Electroreduction to Syngas with a Wide Range of CO/H2 Ratios. *Adv. Funct. Mater.* 28, 1802339, DOI: 10.1002/adfm.201802339, (2018).

(140) Min, S.; Yang, X.; Lu, A.-Y.; Tseng, C.-C.; Hedhili, M. N.; Li, L.-J.; Huang, K.-W. Low overpotential and high current CO2 reduction with surface reconstructed Cu foam electrodes. *Nano Energy* 27, 121–129, DOI: 10.1016/j.nanoen.2016.06.043, (2016).

(141) Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L.; Yao, T.; Pan, B.; Wei, S.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. *Nat. Commun.* 7, 12697, DOI: 10.1038/ncomms12697, (2016).

(142) Zhang, M.; Wu, T.-S.; Hong, S.; Fan, Q.; Soo, Y.-L.; Masa, J.; Qiu, J.; Sun, Z. Efficient Electrochemical Reduction of CO2 by Ni–N Catalysts with Tunable Performance. *ACS Sust. Chem. Eng.* 7, 15030–15035, DOI: 10.1021/acssuschemeng.9b03502, (2019).

(143) Chen, Z.; Mou, K.; Yao, S.; Liu, L. Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM. *J. Mater. Chem. A* 6, 11236–11243, DOI: 10.1039/C8TA03328E, (2018).

(144) Pan, F.; Liang, A.; Duan, Y.; Liu, Q.; Zhang, J.; Li, Y. Self-growth-templating synthesis of 3D N,P,Co-doped mesoporous carbon frameworks for efficient bifunctional
(145) Zhou, J.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M.; Guo, X.; Meng, Q.; Zhang, Y. Boosting Electrochemical Reduction of CO$_2$ at a Low Overpotential by Amorphous Ag-Bi-S-O Decorated Bi0 Nanocrystals. Angew. Chem. Int. Ed. 58, 14197–14201, DOI: 10.1002/anie.201908735, (2019).

(146) Kou, W.; Zhang, Y.; Dong, J.; Mu, C.; Xu, L. Nickel-Nitrogen-Doped Three-Dimensional Ordered Macro-/Mesoporous Carbon as an Efficient Electrocatalyst for CO$_2$ Reduction to CO. ACS Appl. Energy Mater. 3, 1875–1882, DOI: 10.1021/acsaem.9b02324, (2020).

(147) He, S.; Ji, D.; Zhang, J.; Novello, P.; Li, X.; Zhang, Q.; Zhang, X.; Liu, J. Understanding the Origin of Selective Reduction of CO$_2$ to CO on Single-Atom Nickel Catalyst. J. Phys. Chem. B 124, 511–518, DOI: 10.1021/acs.jpcb.9b09730, (2020).

(148) Wuttig, A.; Yaguchi, M.; Motobayashi, K.; Osawa, M.; Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl. Acad. Sci. 113, E4585–E4593, (2016).

(149) Dunwell, M.; Luc, W.; Yan, Y.; Jiao, F.; Xu, B. Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 8, 8121–8129, (2018).

(150) Williams, K.; Corbin, N.; Zeng, J.; Lazouski, N.; Yang, D.-T.; Manthiram, K. Protecting effect of mass transport during electrochemical reduction of oxygenated carbon dioxide feedstocks. Sustain. Energy Fuels 3, 1225–1232, (2019).