A High Burden of Cerebral white Matter Lesion: Evidences from 9 Asian Cities

Bonnie Yin Ka Lam
Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong

Brian Yiu
Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong

Encamita Ampil
Department of Neuroscience and Behavioural Medicine, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, the Philippines

Christopher Li-Hsian Chen
Memory Aging and Cognition Center, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Yustiani Dikot
Department of Neurology at Unjani, Indonesia

Jacqueline Dominguez
Institute for Neurosciences, St. Luke's Medical Centre, the Philippines

Patel Vishal Ganeshbhai
Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India

Saima Hilal
Memory Aging and Cognition Center, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Nagaendran Kandiah
Department of Neurology, National Neuroscience Institute, Singapore

SangYun Kim
Department of Neurology, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Korea

Jun-Young Lee
Department of Psychiatry, Seoul National University College of Medicine and SMG-SNU Boramae Medical Centre

Paulus Anam Ong
Department of Neurology, Hasan Sadikin Hospital, Bandung, Indonesia

Vorapun Senanarong
Department of Medicine at Mahidol University, Bangkok, Thailand

Kam Tat Leung
Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong
Huali Wang
Dementia Care and Research Centre, Peking University Institute of Mental Health, Beijing, China

Yuan-Han Yang
Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital & Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan

Tingting Yong
Department of Neurology, National Neuroscience Institute, Singapore

Faheem Arshad
Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India

Suvama Alladi
Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India

Samuel Wong
JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

Ho Ko
Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong

Alexander Yuk Lun Lau (✉ alexlau@cuhk.edu.hk)
Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong

Vincent Chung Tong Mok
Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong

Research Article

Keywords: White matter lesion, Alzheimer’s Disease, Stroke, multi-center study, Asia, vascular risk factors

DOI: https://doi.org/10.21203/rs.3.rs-124194/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Age-related white matter lesion (WML) is considered a manifestation of sporadic cerebral small vessel disease and an important pathological substrate for dementia. Asia is notable for its large population with a looming dementia epidemic. Yet, the burden of WML and its associated risk factors across different Asian societies are unknown.

Methods

Subjects from 9 Asian cities (Bangkok, Bandung, Beijing, Bengaluru, Hong Kong, Kaohsiung, Manila, Seoul, and Singapore) were recruited \(n = 5,701 \) and classified into i) stroke/transient ischemic attack (TIA), ii) Alzheimer's disease (AD)/mild cognitive impairment (MCI), or iii) control groups. Data on vascular risk factors and cognitive performance were collected. The severity of WML was visually rated on MRI or CT.

Results

The prevalence of moderate-to-severe WML was the highest in subjects with stroke/TIA (43.3%). Bandung Indonesia showed the highest prevalence of WML, adjusted for age, sex, education and disease groups. Hypertension and hyperlipidemia were significant risk factors for WML, and WML was negatively associated with MMSE in all groups.

Conclusions

WML is highly prevalent in Asia and is associated with increasing age, hypertension, hyperlipidemia and worse cognitive performance. Concerted efforts to prevent WML will alleviate the huge dementia burden in the rapidly aging Asian societies.

Introduction

Asia had the largest number of people suffering from dementia (22.9 million), which was more than twice the numbers in Europe (10.5 million) or in the Americas (9.4 million), as recorded in the global impact of dementia in the World Alzheimer Report 2015.\(^1\) This number was estimated to triple to 67 million in 2050–2 to 3 times higher than the estimates for Europe (19 million) or the Americas (30 million).\(^1\) Devising and implementing preventive strategies against dementia are of paramount importance, particularly in Asia.

Subclinical sporadic cerebral small vessel disease (CSVD) has been increasingly recognized in recent years to be a prevalent and important pathological substrate for cognitive impairment and dementia.\(^2\) Subclinical sporadic CSVD commonly manifests on neuroimaging as white matter lesion (WML), lacunes, microbleeds, enlarged perivascular space or microinfarcts.\(^3,4\) In patients with stroke, variable severity
levels of cognitive impairment are present in more than 80% of patients \(^5\) and the presence of subclinical CSVD lesions is associated with worse cognitive performance.\(^6\)–\(^12\) Its presence significantly increases the risk of poststroke dementia.\(^9\),\(^13\) Its presence significantly increases the risk of poststroke dementia. Among those who survive stroke without early-onset poststroke dementia, the presence of CSVD can also increase the risk of delayed-onset poststroke dementia.\(^9\)

In patients with Alzheimer’s disease (AD), CSVD is associated with worse cognitive performance and more rapid cognitive decline. Among those with mild cognitive impairment (MCI), it also increases the risk of conversion to AD.\(^14\),\(^15\) In addition, some studies have even suggested a causative role of CSVD in AD pathologies.\(^16\),\(^17\) Overall, population studies showed that the presence of CSVD increases the risk of incident vascular dementia or AD.\(^18\),\(^19\)

Apart from dementia, subclinical CSVD also increases the risk of incident stroke.\(^19\) Other clinical manifestations of CSVD may include depression and other behavioral problems (e.g. apathy), gait and postural instability, and urinary incontinence, which may occur in isolation or in conjunction with dementia/post-stroke syndrome. Overall, CSVD increases the risk of functional decline and mortality.\(^19\),\(^20\)

While there are many risk factors that may be associated with sporadic CSVD, age and hypertension are the most consistent factors.\(^21\) In addition, cerebral WML was found to be highly heritable and recent studies have identified increasing number of genetic foci associated with CSVD.\(^22\) Given the multifactorial nature of sporadic CSVD, the burden of CSVD may vary across geographical cities and ethnicities. The first population-based studies comparing the prevalence of sporadic subclinical CSVD between Asians (Chinese) and Caucasians (Australian) suggested that Asians may have a higher prevalence of CSVD than Caucasians, even after adjusting for vascular risk factors.\(^23\) Although few studies had reported the prevalence of subclinical CSVD in stroke patients in different Asia cities, comparison between studies of different cities was difficult because the studies used different scales for the quantification of CSVD.\(^24\)–\(^26\) Moreover, studies reporting CSVD prevalence in AD were very few in Asia\(^11\). Furthermore, there was limited data on CSVD in some cities such as Indonesia, the Philippines, and Thailand. Finally, no studies had compared the prevalence of subclinical CSVD in stroke and AD subjects in different age groups using a standardized CSVD rating method.

The AWARE (Asian White mAtteR IEsion) study group initiated a joint international effort across multiple Asian centres to estimate the burden of CSVD (using WML as a surrogate marker for CSVD) in Asia. The study group reported the largest community (stroke- and dementia-free subjects) study \((n = 1,797)\) on the prevalence of subclinical CSVD previously in Asia, which again showed a high prevalence of CSVD in Asia.\(^27\) Apart from community subjects, the AWARE study group also collected data from subjects with stroke/TIA \((n = 1,834)\) and AD/MCI \((n = 2,070)\). The objective of the present study was to estimate the burden of cerebral WML in stroke/TIA and AD/MCI across 9 cities in Asia. We also included community control groups from the AWARE to compare against the results of stroke/TIA and AD/MCI groups. We also investigated the risk factors and cognitive impact of WML among all subjects and among different
clinical groups. The hypotheses were: i) the overall prevalence of WML in Asia is high but there could be variations in the different Asian cities; ii) vascular risk factors are contributors to the WML and WML is associated with worse cognitive function.

Methods

Subjects and recruitment procedure

The AWARE study included a total of 5,701 subjects. Subjects consisted of patients with stroke/TIA \(n = 1,834 \), AD/MCI \(n = 2,070 \) and controls \(n = 1,797 \) across 9 Eastern and South-Eastern Asian cities (Bangkok, Bandung, Beijing, Bengaluru, Hong Kong, Kaohsiung, Manila, Seoul, Singapore) (see Supplemental Fig. S1). Patients with AD dementia or MCI were assessed and recruited in cognitive disorder clinics. Patients were diagnosed with AD dementia according to the NINCDS-ADRDA criteria. Patients were classified as having MCI if the cognitive syndrome mimicked those of AD (e.g. episodic memory impairment), cognitive impairment fulfilled that of local standards in defining cognitive impairment, and caused no or minimal functional impairment in daily living. Patients with mixed dementia cases were excluded, and hence, none of the patients with AD dementia or MCI had history of overt stroke. We included both hemorrhagic and ischemic stroke in the stroke group. We defined stroke according to clinical evidence of cerebral injury based on symptoms persisting 24 hours or longer, and other etiologies excluded. We defined TIA based on transient neurological deficits (less than 24 hours) and the absence of infarcts/hemorrhage on neuroimaging. Based on available data from each cohort, we defined dementia in stroke/TIA patients if they had a clinical dementia rating scale of 1 or above \(n = 115 \), a mini-mental state examinations (MMSE) of 16 or below \(n = 1,137 \) or they were diagnosed by respective dementia experts to have vascular dementia according to the NINDS-AIREN criteria \(n = 117 \). Healthy controls were subjects without dementia, stroke/TIA, or severe medical illnesses and were functionally independent.

Ethics approval of each cohort were obtained from the review board of the affiliated university. Ethics approval of the Bangkok cohort was obtained from the Central Institutional Review Board of Mahidol University; the Bandung cohort was obtained from Dr. Hasan Sadikin General Hospital and the Faculty of Medicine, Universitas Padjadjaran Health Research Ethics Committee; the Beijing cohort was obtained from the institutional review board of Peking University Institute of Mental Health (Sixth Hospital); the Bengaluru cohort was obtained from the Nizam’s Institute of Medical Sciences ethics committee; the Hong Kong cohort was obtained from the Joint Chinese University of Hong Kong – New Territories East Cluster Clinical Research Ethics Committee; the Kaohsiung cohort was obtained from the institutional review board of the Kaohsiung Medical University Hospital; the Manila cohort was obtained from the St. Luke’s Medical Center Institutional Ethics Review Committee; the Seoul cohort was obtained from the Institutional Review Board of Seoul National University Bundang Hospital while the Singapore cohort was obtained from the Singapore Eye Research Institute and National Healthcare Group Domain-Specific Review Board.
Clinical and cognitive measures

Clinical and cognitive measures such as age, sex, education years, and MMSE were collected. Patients were defined as having hypertension if they had a history of hypertension or were using antihypertensive medication. Diabetes mellitus (DM) was defined as a fasting serum glucose level of 7.0 mmol/L or higher, a postprandial serum glucose level of 11.1 mmol/L or higher, or the use of oral hypoglycemic agents/insulin. Hyperlipidemia was defined as a total cholesterol level of 5.2 mmol/L or higher, a low-density lipoprotein cholesterol level of 2.6 mmol/L or higher, a triglyceride level of 1.70 mmol/L or higher, or the use of lipid-lowering drugs. All patients provided informed consent and the work described was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki).

Imaging

Subjects with either magnetic resonance imaging (MRI) or computerized tomography (CT) were eligible for this study. For details of the scanner information, please see Supplemental Table S1. The severity of WMLs was rated on axial MRI FLAIR or CT scan. To assess inter-rater agreement between different raters, Hong Kong acted as the central rater and each center provided 30 raw images to Hong Kong for evaluation of inter-rater agreement.

Measurement of WML

The severity of WML for each subject was rated according to the modified Fazekas scale32 or the Age-Related White Matter Changes Scale (ARWMC)33 based on the MRI axial FLAIR sequence or CT. We used the operationalized global Fazekas rating, which has a score ranging from 0–3.34 We also used the operationalized global ARWMC score, with score ranging from 0–3.33 We defined the presence of moderate-to-severe WML by a global score of ≥ 2 for both Fazekas and ARWMC scale. The Hong Kong community dataset with both Fazekas and ARWMC global ratings showed that the correlation between the scales are high ($p < 0.0001; r = 0.943$). Both visual rating scales of WML showed good agreement between CT and MRI.35

Statistical analysis

Data in continuous variables were first examined by a test of normality. Group comparisons with clinical variables and demographic information were performed using the Kruskal-Wallis test for continuous variables while the chi-square test was used for categorical variables ($p < 0.05$). Post-hoc analyses between cities were conducted. Multiple logistic regression models were used to study the association between vascular risk factors and prevalence of moderate-to-severe WML with adjustment for age, sex and level of education, Asian regions, disease groups as appropriate. Multiple linear regression models were used to study the association between prevalence of moderate-to-severe WML and MMSE with adjustment for age, sex and level of education, Asian regions and hypertension. In addition, we stratified the subjects into age groups among disease groups ($\leq 60, 61–70, 71–80$ and ≥ 81 years old) to compare the associations between vascular risk factors and prevalence of moderate-to-severe WML.
Pairwise deletion was applied on missing data. Bonferroni correction was used for multiple comparison correction. All analyses were performed using IBM SPSS (IBM SPSS Statistics for Mac OS, Version 24.0).

Results

Table 1 shows the clinical demographics of the 3 groups: i) stroke/TIA group; ii) AD/MCI group, and iii) control group. The prevalence of moderate-to-severe WML (defined as ≥ 2 on visual rating) in stroke/TIA, AD/MCI and control groups were 43.3%, 38.2% and 36.7% respectively (Table 1).

Agreement in WML rating standard was first established before data analysis. The Fazekas scale was used as the tool for inter-rate measurement as most countries adopted this scale. The intra-class correlation range from fair to excellent in different centers (0.59–0.78), please see supplemental results.

Clinical demographics

Table 1 illustrated the clinical demographics of the disease groups and controls in the AWARE study. For post-hoc group comparisons, a: AD/MCI vs Stroke/TIA; b: AD/MCI vs Controls; c: Stroke/TIA vs Controls. Total number of inclusion cases were i n = 5653; ii n = 5643; iii n = 5286; iv n = 3497; v n = 3366; vi n = 4478. Abbreviations: MCI = Mild Cognitive Impairment; AD = Alzheimer’s disease; TIA = transient ischaemic attack; MMSE = Mini-mental state examination.
Table 1
Clinical demographics of different disease groups and controls in the AWARE study

	Stroke/TIA (n = 1834)	AD/MCI (n = 2070)	Controls (n = 1797)	p
Age, yr, mean ± SD (min; max)	67.73 ± 12.16 (15; 98)	76.30 ± 8.67 (37; 99)	70.29 ± 6.00 (60; 89)	\(< 0.001\) _a,b,c_
Education, yr, mean ± SD (min; max)	6.35 ± 5.02 (0; 30)	8.28 ± 5.57 (0; 22)	7.19 ± 4.79 (0; 22)	\(< 0.001\) _a,b,c_
Female; n (%)	806 (43.9%)	1319 (63.7%)	1024 (57.0%)	\(< 0.001\) _a,b,c_
Hypertension; n (%) i	1315 (71.9%)	1079 (53.2%)	1220 (67.9%)	\(< 0.001\) _a,b,c_
Diabetes mellitus; n (%) ii	665 (36.4%)	527 (26.1%)	529 (29.5%)	\(< 0.001\) _a,b,c_
Hyperlipidemia; n (%) iii	1016 (55.8%)	470 (28.2%)	909 (50.6%)	\(< 0.001\) _a,b,c_
Ischemic heart disease; n (%) iv	198 (11.4%)	205 (11.7%)	/	\(= 0.837\)
Atrial fibrillation; n (%) v	258 (14.1%)	42 (2.7%)	/	\(< 0.001\)
Smoker (either current or past); n (%) vi	615 (34.3%)	159 (17.9%)	419 (23.3%)	\(< 0.001\) _a,b,c_
MMSE, mean ± SD (min; max)	22.04 ± 6.98 (0; 30)	18.90 ± 6.12 (0; 30)	25.6 ± 3.48 (2; 30)	\(< 0.001\) _a,b,c_
WML = 0	499 (27.2%)	269 (13.0%)	258 (14.4%)	\(< 0.001\) _a,b,c_
WML = 1	541 (29.5%)	1011 (48.8%)	880 (49.0%)	
WML = 2	416 (22.7%)	495 (23.9%)	533 (29.7%)	
WML = 3	378 (20.6%)	295 (14.3%)	126 (7.0%)	
Prevalence of WML with age

The prevalence of moderate-to-severe WML in different age groups were examined. Age was divided into four groups and the overall prevalence of moderate-to-severe WML increased with age. The positive trend between age and the prevalence of moderate-to-severe WML was consistent in all groups (Fig. 1). The prevalence of the stroke/TIA group was 32.2% at ≤ 60 years old but increased to 64.2% at ≥ 81 years old. Prevalence of moderate-to-severe WML in the AD/MCI group was 20.0% at ≤ 60 years old and increased at a relatively moderate rate to 49.1% at ≥ 81 years old (Fig. 1). The control group had a relatively lower WML at a younger age (8.3% at ≤ 60 years old) but its prevalence increased proportionally with age and its prevalence reached 65.2%, matching that in the stroke/TIA group at ≥ 81 years old.

Prevalence of WML in specific disease groups

Clinical demographics of various Asian cohorts in specific disease groups were presented in Tables 2a, 2b & 2c.

Hong Kong, Kaohsiung, Bandung, Bangkok, Singapore, Bengaluru and Manila contributed data to the stroke/TIA group. When assessing the prevalence of moderate-to-severe WML using the ≥2-cutoff, Bandung showed the highest prevalence of moderate-to-severe WML (88.9%) while the Kaohsiung had the lowest prevalence of 30.0% (see Table 2a). Data from Bengaluru (n = 31) and Manila (n = 6) had a relatively small sample size and were excluded from the ANOVA and the subsequent regression analyses. Brief information about the Bengaluru group was specified in the supplemental results.

	Stroke/TIA (n = 1834)	AD/MCI (n = 2070)	Controls (n = 1797)	p
Prevalence of moderate to severe WML (≥2); n (%)	794 (43.3%)	790 (38.2%)	659 (36.7%)	p < 0.001

\[\text{\textit{a,c}}\]
	Hong Kong (n = 1006)	Kaohsiung (n = 400)	Bandung (n = 162)	Bangkok (n = 138)	Singapore (n = 101)	p*
Age, year, mean ± SD	69.6 ± 11.67 (20; 98)	68.49 ± 12.17 (34; 94)	58.69 ± 11.08 (31; 84)	62.21 ± 13.55 (15; 91)	68.63 ± 7.18 (52; 92)	p < 0.001 a,b,fg,h,i
Education, year, mean ± SD	5.57 ± 4.69 (0; 30)	6.43 ± 5.19 (0; 20)	6.53 ± 4.14 (0; 18)	9.63 ± 5.78 (0; 18)	8.62 ± 4.98 (0; 22)	p < 0.001 a,d,eg,h,j
Female; n (%)	445 (44.2%)	157 (39.3%)	90 (55.6%)	55 (39.9%)	53 (52.5%)	p = 0.003 i
Hypertension; n (%)	698 (69.4%)	305 (76.3%)	132 (81.5%)	88 (64.2%)	73 (72.3%)	p = 0.001 b,e
Diabetes mellitus; n (%)	364 (36.2%)	176 (44.0%)	41 (25.3%)	46 (33.6%)	30 (29.7%)	p < 0.001 i
Hyperlipidemia; n (%)	610 (60.6%)	200 (50.0%)	68 (42.0%)	56 (41.2%)	74 (73.3%)	p < 0.001 a,b,d,f,h,j
Ischemic heart disease; n (%)	93 (9.2%)	45 (11.3%)	30 (18.5%)	12 (22.2%)	17 (16.8%)	p < 0.001 a,b
Atrial fibrillation; n (%)	159 (15.8%)	62 (15.5%)	27 (16.7%)	0 (0.0%)	8 (7.9%)	p < 0.001 a,e,f,g
Smoker (either current or past); n (%)	397 (40.0%)	119 (29.8%)	50 (30.9%)	37 (26.8%)	12 (11.9%)	p < 0.001 a,c,d,f,h,j
MMSE, mean ± SD	24.05 ± 5.86 (4; 30)	15.24 ± 6.45 (0; 28)	22.93 ± 5.21 (7; 30)	24.35 ± 6.38 (5; 30)	24.56 ± 5.43 (10; 30)	p < 0.001 d,g,ij
WML = 0	396 (39.4%)	30 (7.5%)	11 (6.8%)	60 (43.5%)	2 (2.0%)	p < 0.001 a,b,c,d,e,f,g,h,i
WML = 1	203 (20.2%)	250 (62.5%)	7 (4.3%)	21 (15.2%)	56 (55.4%)	
WML = 2	203 (20.3%)	86 (21.5%)	29 (17.9%)	57 (41.3%)	34 (33.7%)	
WML = 3	204 (20.3%)	34 (8.5%)	115 (71.0%)	0 (0.0%)	9 (8.9%)	
Table 2a
Clinical demographics of the stroke/TIA group

Prevalence of moderate to severe WML (≥2); n (%)	407 (40.5%)	120 (30.0%)	144 (88.9%)	57 (41.3%)	43 (42.6%)	p < 0.001

Table 2a showed the clinical demographics of the stroke/TIA group.
a: Hong Kong vs Bangkok; b: Hong Kong vs Bandung; c: Hong Kong vs Singapore; d: Hong Kong vs Kaohsiung; e: Bangkok vs Bandung; f: Bangkok vs Singapore; g: Bangkok vs Kaohsiung; h: Bandung vs Singapore; i: Bandung vs Kaohsiung; j: Singapore vs Kaohsiung. Abbreviations: MMSE = Mini-mental state examination; WML = white matter lesion.

Seoul, Kaohsiung, Singapore, Beijing, Manila, and Bengaluru contributed data to the AD/MCI group. Among this group, both Kaohsiung and Singapore showed a very high prevalence of WML with gradings 2 or above (58.4% and 57.9% respectively) while Manilla showed the lowest (18.9%) (see Table 2b). Data from Bengaluru had a relatively small sample size (n = 24) and were excluded from the ANOVA analysis, as well as the subsequent regression analyses. Brief information about the Bengaluru group was included in the supplemental results.

Bonferroni correction is applied on the alpha (α = 0.005).
	Seoul \(n = 1099 \)	Kaohsiung \(n = 363 \)	Singapore \(n = 214 \)	Beijing \(n = 190 \)	Manilla \(n = 180 \)	\(p^* \)
Age, year, mean ± SD (min; max)	77.45 ± 7.56 (37; 99)	80.23 ± 8.01 (58; 99)	70.92 ± 9.38 (49; 91)	72.46 ± 7.51 (46; 88)	73.82 ± 9.58 (50; 92)	\(p < 0.001 \)
Education, year, mean ± SD (min; max)	7.33 ± 5.33 (0; 20)	6.40 ± 5.21 (0; 20)	7.83 ± 4.83 (0; 22)	12.25 ± 4.68 (0; 21)	13.98 ± 9.58 (50; 92)	\(p < 0.001 \)
Female; \(n \) (%)	723 (65.8%)	247 (68.0%)	117 (54.7%)	123 (64.7%)	99 (55.0%)	\(p = 0.001 \)
Hypertension; \(n \) (%)	491 (44.7%)	167 (47.2%)	120 (59.7%)	63 (36.2%)	113 (63.1%)	\(p < 0.001 \)
Diabetes mellitus; \(n \) (%)	282 (25.7%)	82 (23.7%)	64 (31.8%)	27 (15.5%)	65 (36.1%)	\(p < 0.001 \)
Hyperlipidemia; \(n \) (%)	215 (19.6%)	/	119 (59.2%)	57 (33.1%)	70 (38.9%)	\(p < 0.001 \)
Ischemic heart disease; \(n \) (%)	122 (11.1%)	3 (4.1%)	20 (9.4%)	25 (14.4%)	35 (19.6%)	\(p = 0.002 \)
Atrial fibrillation; \(n \) (%)	23 (2.6%)	3 (4.1%)	6 (2.8%)	6 (3.4%)	4 (2.2%)	\(p = 0.900 \)
Smoker (either current or past); \(n \) (%)	41 (19.0%)	19 (18.1%)	14 (6.5%)	31 (17.9%)	54 (30.0%)	\(p < 0.001 \)
MMSE, mean ± SD (min; max)	18.97 ± 5.58 (0; 30)	15.38 ± 6.38 (0; 28)	20.40 ± 5.58 (3; 30)	20.42 ± 6.46 (1; 30)	21.78 ± 6.08 (5; 30)	\(p < 0.001 \)
WML = 0	182 (16.6%)	57 (15.7%)	15 (7.0%)	2 (1.1%)	12 (6.7%)	\(p < 0.001 \)
WML = 1	570 (51.9%)	94 (25.9%)	75 (35.0%)	118 (62.1%)	134 (74.4%)	
WML = 2	228 (20.7%)	90 (24.8%)	88 (41.1%)	61 (32.1%)	26 (14.4%)	
WML = 3	119 (10.8%)	122 (33.6%)	36 (16.8%)	9 (4.7%)	8 (4.4%)	
Prevalence of moderate to severe WML (≥2); \(n \) (%)	347 (31.6%)	212 (58.4%)	124 (57.9%)	70 (36.8%)	34 (18.9%)	\(p < 0.001 \)
Table 2b showed the clinical demographics of the AD/MCI group.

Table 2b showed the clinical demographics of the AD/MCI group.

a: Beijing vs Seoul; b: Beijing vs Manilla; c: Beijing vs Singapore; d: Beijing vs Kaohsiung; e: Seoul vs Manilla; f: Seoul vs Singapore;

g: Seoul vs Kaohsiung; h: Manilla vs Singapore; i: Manilla vs Kaohsiung; j: Singapore vs Kaohsiung

Abbreviations: MMSE = Mini-mental state examination; WML = white matter lesion.

* Bonferroni correction is applied on the alpha (α = 0.005).

The control group consists of data from Hong Kong, Singapore, and Seoul. Singapore showed the highest prevalence of moderate-to-severe WML (47.5%), followed by Hong Kong (28.8%) while Seoul showed the lowest (16.5%) (see Table 2c).
Table 2c
Clinical demographics of the control group

	Hong Kong \(n = 850\)	Singapore \(n = 832\)	Seoul \(n = 115\)	\(p^*\)
Age, year, mean ± SD (min; max)	71.37 ± 5.09 (64; 89)	69.96 ± 6.46 (60; 88)	64.72 ± 5.31 (60; 79)	\(p < 0.001\)
Education, year, mean ± SD (min; max)	7.89 ± 4.91 (0; 22)	6.07 ± 4.52 (0; 22)	10.12 ± 3.37 (6; 18)	\(p < 0.001\)
Female; \(n\) (%)	524 (61.6%)	434 (52.2%)	66 (57.4%)	\(p < 0.001\)
Hypertension; \(n\) (%)	519 (61.1%)	669 (80.4%)	32 (27.8%)	\(p < 0.001\)
Diabetes mellitus; \(n\) (%)	202 (23.8%)	311 (37.4%)	16 (13.9%)	\(p < 0.001\)
Hyperlipidemia; \(n\) (%)	264 (31.1%)	627 (75.4%)	18 (15.7%)	\(p < 0.001\)
Smoker (either current or past); \(n\) (%)	160 (18.8%)	224 (26.9%)	35 (30.4%)	\(p < 0.001\)
MMSE, mean ± SD (min; max)	26.94 ± 2.36 (19; 30)	23.87 ± 3.80 (2; 30)	28.21 ± 1.38 (23; 30)	\(p < 0.001\)
WML = 0	170 (20.0%)	25 (3.0%)	63 (54.8%)	\(p < 0.001\)
WML = 1	435 (51.2%)	412 (49.5%)	33 (28.7%)	
WML = 2	187 (22.0%)	332 (39.9%)	14 (12.2%)	
WML = 3	58 (6.8%)	63 (7.6%)	5 (4.3%)	
Prevalence of moderate to severe WML (≥2); \(n\) (%)	245 (28.8%)	395 (47.5%)	19 (16.5%)	\(p < 0.001\)
Table 2c
Clinical demographics of the control group

Table 2c showed the clinical demographics of the control group.
a: Hong Kong vs Seoul; b: Hong Kong vs Singapore; c: Seoul vs Singapore

Abbreviations: MMSE = Mini-mental state examination; WML = white matter lesion.

* Bonferroni correction is applied on the alpha (α = 0.0167).

Risk factors of moderate-to-severe white matter lesions

A multiple logistic regression was performed particularly to ascertain the effects of hypertension, hyperlipidaemia and diabetes mellitus on moderate-to-severe WML on all subjects. Age, sex, level of education, Asian cities and disease groups were entered as covariates as appropriate. Predictors were only regarded as significant if \(p \leq 0.0125 \), corrected for multiple comparisons using Bonferroni correction.

The regression model showed the significant risk factors for moderate-to-severe WML in all subjects were hypertension \((p < 0.001; \text{OR} = 1.80, 95\% \text{CI} = 1.57–2.07) \) and hyperlipidemia \((p = 0.009; \text{OR} = 1.20, 95\% \text{CI} = 1.05–1.37) \) (Table 3). Hypertension was also a significant predictor for moderate-to-severe WML, after adjustment for age, sex, education and Asian cities in the stroke/TIA \((p < 0.001; \text{OR} = 1.76, 95\% \text{CI} = 1.37–2.25) \), AD/MCI \((p < 0.001; \text{OR} = 1.75, 95\% \text{CI} = 1.39–2.21) \) and control groups \((p < 0.001; \text{OR} = 1.97, 95\% \text{CI} = 1.52–2.55) \) (Table 3). Strength of association between hypertension and moderate-to-severe WML decreased with increasing age. Similar pattern was observed in the stroke/TIA, AD/MCI and control groups (see Supplemental Tables S2 – S5).

The association between hyperlipidemia and moderate-to-severe WML was significant in all subjects \((p = 0.009; \text{OR} = 1.20, 95\% \text{CI} = 1.05–1.37) \), as well as in those in the 61–70 age range \((p = 0.048; \text{OR} = 1.28, 95\% \text{CI} = 1.00–1.64) \), (Table 3 & Supplemental Table S2). However, the association in the 61–70 age group did not survive Bonferroni correction for multiple comparison. There was no significant association between diabetes mellitus and moderate-to-severe WML in all disease groups.

The risk of moderate-to-severe WML in different Asian regions

In order to examine the variations of WML in different regions and accounting of sampling bias in each region, the regression was performed with adjustment for age, sex and level of education, Asian regions and disease groups (see Table 3). Using Hong Kong as a reference center, Bandung showed a higher risk of having moderate-to-severe WML \((p < 0.001; \text{OR} = 34.55, 95\% \text{CI} = 20.04–59.56) \) while Manila showed a lower risk \((p < 0.001; \text{OR} = 0.28, 95\% \text{CI} = 0.17–0.46) \) when all groups were combined.

When focusing on the stroke/TIA group, Bandung showed a higher risk of having moderate-to-severe WML \((p < 0.001; \text{OR} = 32.99, 95\% \text{CI} = 18.71–58.17) \) while Kaohsiung showed a lower risk \((p = 0.001; \text{OR} = 0.63, 95\% \text{CI} = 0.48–0.83) \) compared to Hong Kong. Using Beijing as a reference center, Singapore
showed a higher risk of having moderate-to-severe WML ($p < 0.001$; $OR = 2.58$, 95% CI = 1.61–4.13) while Manila showed a lower risk of WML ($p < 0.001$; $OR = 0.29$, 95% CI = 0.17–0.48) in the AD/MCI group. Finally, Singapore showed a higher risk of having moderate-to-severe WML compared to Hong Kong and Seoul ($p < 0.001$; $OR = 2.18$, 95% CI = 1.71–2.79).
Table 3
Risk factors of moderate-to-severe white matter lesions

All subjects (n = 5215)	OR	95% CI	*p	
		Lower	Upper	
Dependent variables				
Age	1.07	1.06	1.08	< 0.001
Female	1.03	0.91	1.17	0.649
Level of education	0.99	0.98	1.00	0.125
HT	1.80	1.57	2.07	< 0.001
DM	1.09	0.96	1.25	0.199
HLD	1.20	1.05	1.37	0.009
Hong Kong (reference)	/	/	/	< 0.001
Beijing	1.00	0.63	1.59	0.996
Bangkok	2.03	1.36	3.03	0.001
Bandung	34.55	20.04	59.56	< 0.001
Seoul Korea	0.51	0.36	0.72	< 0.001
Manilla	0.28	0.17	0.46	< 0.001
Singapore	1.91	1.58	2.32	< 0.001
Kaohsiung	0.66	0.51	0.86	0.002
Control (reference)	/	/	/	< 0.001
AD/MCI	1.50	1.11	2.02	0.008
Stroke/TIA	1.43	1.18	1.73	< 0.001

Stroke/TIA (n = 1786)	OR	95% CI	*p	
		Lower	Upper	
Dependent variables				
Age	1.07	1.06	1.08	< 0.001
Female	1.26	1.01	1.57	0.041
Level of education	0.99	0.97	1.02	0.555
HT	1.76	1.37	2.25	< 0.001
DM	1.07	0.86	1.33	0.566
All subjects (n = 5215)

	OR	95% CI	*p	
		Lower	Upper	
HLD	1.27	1.02	1.57	0.034
Hong Kong (reference)	/	/	/	< 0.001
Bangkok	1.88	1.25	2.84	0.003
Bandung	32.99	18.71	58.17	< 0.001
Singapore	1.21	0.77	1.89	0.408
Kaohsiung	0.63	0.48	0.83	0.001

AD/MCI (n = 1633)

Dependent variables	OR	95% CI	*p	
		Lower	Upper	
Age	1.06	1.05	1.08	< 0.001
Female	0.80	0.63	1.03	0.083
Level of education	1.01	0.98	1.03	0.547
HT	1.75	1.39	2.21	< 0.001
DM	1.06	0.83	1.37	0.634
HLD	1.11	0.86	1.44	0.439
Beijing (reference)	/	/	/	< 0.001
Seoul Korea	0.56	0.38	0.81	0.002
Manilla	0.29	0.17	0.48	< 0.001
Singapore	2.58	1.61	4.13	< 0.001

Controls (n = 1796)

Dependent variables	OR	95% CI	*p	
		Lower	Upper	
Age	1.10	1.08	1.12	< 0.001
Female	0.94	0.75	1.18	0.591
Level of education	0.98	0.96	1.01	0.184
HT	1.97	1.52	2.55	< 0.001
DM	1.15	0.91	1.45	0.233
HLD	1.12	0.88	1.43	0.356
All subjects (n = 5215)				

Hong Kong (reference)	< 0.001			
Seoul Korea	1.13	0.65	1.95	0.671
Singapore	2.18	1.71	2.79	< 0.001

Table 3 shows the vascular risk factors contributing to moderate-to-severe white matter lesions. Age, sex, level of education, Asian cities and disease groups are entered as covariates in each regression model as appropriate.

Abbreviations: DM = diabetes mellitus; HLD = hyperlipidemia; HT = hypertension.

* Bonferroni correction is applied on the alpha (α = 0.0125).

Multiple linear regression analyses showed that the presence of moderate-to-severe WML was significantly associated with lower MMSE scores among all subjects and among each disease group (see Table 4). Overall, the MMSE was 20.6 ± 6.2 in those with moderate-to-severe WML (n = 2,529) compared to 22.5 ± 6.5 in those none-or-mild WML (n = 3,621). Further, subgroup analysis showed that MMSE was approximately 2 points lower in those with moderate-to-severe WML compared to those without. The MMSE scores in the moderate-to-severe WML and none-or-mild WML were 20.4 ± 6.9 and 22.6 ± 7.0 respectively in the stroke/TIA group; 17.5 ± 6.2 and 19.7 ± 5.9 respectively in the AD/MCI group; and 24.5 ± 3.9 and 26.3 ± 3.0 respectively in the control group. Subjects with stroke/TIA and dementia had a higher prevalence of moderate-to-severe WML than those with stroke/TIA but without dementia (51.7% vs 40.7%). Subjects with AD dementia also had a higher prevalence of moderate-to-severe WML than those with MCI (41.2% vs 25.3%).
Table 4
Association between MMSE and moderate-to-severe white matter lesions

All subjects				
n	β	95% CI for B	*p	
		Lower	Upper	
5519	-0.052	-0.945	-0.415	< 0.001

Stroke/TIA				
n	β	95% CI for B	*p	
		Lower	Upper	
1765	-0.056	-1.316	-0.258	0.004

AD/MCI				
n	β	95% CI for B	*p	
		Lower	Upper	
1958	-0.079	-1.478	-0.517	< 0.001

Controls				
n	β	95% CI for B	*p	
		Lower	Upper	
1796	-0.064	-0.735	-0.191	0.001

Table 4 shows the association between moderate-to-severe white matter lesions contributing to cognition. Age, sex, level of education, Asian cities and hypertension are entered as covariates in each regression model.

Abbreviations: MMSE = mini-mental state examination.

* Bonferroni correction is applied on the alpha (α = 0.0125).

Discussion

This is the first multi-center study to formally assess the prevalence of moderate-to-severe WML in stroke/TIA and AD/MCI, in different age groups, and from 9 Asian cohorts. The prevalence of moderate-to-severe WML was higher in stroke/TIA (43.3%) than that in AD/MCI (38.2%), \(\chi^2 (1, n = 3904) = 10.6, p = 0.001 \). Moderate-to-severe WML was associated with hypertension, hyperlipidemia and a lower MMSE score.

In this study we primarily reported the prevalence of moderate-to-severe WML, rather than any presence of WML. Previous studies that included any presence of WML (i.e. including those with mild WML as well)
reported a much higher prevalence of WML, reaching 81.4% in the community.36 We recorded only moderate-to-severe WML because previous studies showed that only those with moderate-to-severe WML as defined by a grade 2 or above in the global rating of Fazekas or ARMCW scale were associated with increased risk of incident cognitive decline. Although mild or focal/punctate WML may still represent early or minor SVD, previous studies showed that it had no or minimal clinical relevance, while longitudinal studies revealed no progression of mild WML over time. Whereas, early confluent to confluent WML will likely progress in size and is clinically relevant.15,18,20,34 In cohorts where the prevalence of mild WML is high and that of moderate-to-severe WML is low, reporting any presence of WML may overestimate the severity of CSVD.

WML in stroke/TIA

Despite the mean age of the stroke/TIA group was the youngest (67.7 ± 12.2 years old) when compared with AD/MCI group (76.3 ± 8.7 years old) and controls (70.3 ± 6.0 years old), stroke/TIA group had a higher prevalence of moderate-to-severe WML to that of AD/MCI group as a whole and at each age group, with a prevalence of 32.2% for age ≤ 60 that increased to 64.2% for subjects older than 80 years (Fig. 1). The high prevalence of moderate-to-severe WML in stroke/TIA was most probably explained to a large extent by the fact that both stroke/TIA and WML shared a strong association with cardiovascular risk factors, in particular hypertension.37 The most alarming finding was observed in Bandung, Indonesia where the prevalence of moderate-to-severe WML is highest among all cities. In particular, hypertension (81.5%) in this group was high despite the relatively young mean age (59 years old). Note further that the Indonesian cohort provided only CT imaging and hence we might have even underestimated the prevalence of moderate-to-severe WML, as CT is less sensitive in detection of WML relative to MRI. This is indeed the first study investigating the prevalence of WML in Indonesia, which showed a very high prevalence of WML in this region, alongside a high prevalence of hypertension.

WML in AD/MCI

The prevalence of moderate-to-severe WML in AD/MCI group was lower than that in stroke/TIA across all age distributions by about 12–15%. Still, the prevalence ranged from 20% for age ≤ 60 to almost 50% for subjects older than 80 year old. The prevalence of HT and other cardiovascular risk factors were lower in AD/MCI than that in the stroke/TIA group, which might at least partially explain the lower prevalence of WML in AD/MCI than in the stroke/TIA group. Another interesting observation was seen in Manila, despite having a large proportion of patients having hypertension (63.1%) and being a current or a past smoker (30%), only 18.9% of the patients in Manila had the lowest prevalence of moderate-to-severe WML. Note that all subjects in the Manila cohort had MRI, and hence, under-reporting of WML was not likely. Whether Filipinos are less susceptible to the development of WML in association with hypertension requires further investigation.38

WML in the control group
Our previous report on the prevalence of CSVD in Asian communities did not report specifically the prevalence of moderate-to-severe WML according to different age groups. In the current study, the prevalence of moderate-to-severe WML rose from 28.1% at 61–70 years old to 65.2% at ≥ 81 years old. Of note, this prevalence of WML is even slightly higher than the prevalence rates of amyloid positivity reported previously among subjects with normal cognition, which vary from around 20% at 70 years old to slightly above 40% at 90 years old. Among the three cities with community subjects, Singapore recorded the highest prevalence of moderate-to-severe WML despite a mean age of only 69.96 years old, which could again be related to the fact that Singapore group had the highest prevalence of hypertension (80.4%) and hyperlipidemia (75.4%) relative to other cities.

Association between WML, vascular risk factors and global cognition

We found that the strength of association between hypertension and moderate-to-severe WML decreased with increasing age, which suggested that the effects of blood pressure-lowering therapy may be more effective in the younger age group. While among older patients, factors other than high blood pressure (e.g. impaired autoregulation) may have a greater contribution to WML. Note further that the strength of association between hypertension and WML in the AD/MCI group ($p < 0.001$; OR = 1.75, 95% CI = 1.39–2.21) was similar to that of in the stroke/TIA ($p < 0.001$; OR = 1.76, 95% CI = 1.37–2.25) or control groups ($p < 0.001$; OR = 1.97, 95% CI = 1.52–2.55), suggesting that moderate-to-severe WML observed in subjects with AD/MCI did have a significant vascular component.

Previous studies showed conflicting results with respect to the association between hyperlipidemia and WML. The present study with a large sample size of approximately 6000 subjects did show a small yet significant association between hyperlipidemia and moderate-to-severe WML. The strength of association was less than that for hypertension. Similar to most previous studies, we could not demonstrate an association between DM and WML. Note, however, that other studies showed that DM was related to measures of lacunes, rather than to WML.

Above all, we have shown that moderate-to-severe WML was associated with worse cognitive performance in stroke/TIA, AD/MCI and controls. MMSE of those with moderate-to-severe WML was approximately 2 points lower compared to those without moderate-to-severe WML among all subjects and among each of the clinical groups.

Strengths and limitations

The strength of this study includes the large sample size, the inclusion of the AD/MCI and stroke/TIA groups that are known with a high prevalence of moderate-to-severe WML, as well as a large control group for comparison. Further, this is the first joint international effort with standardized measurement of the WML burden across multiple clinical cohorts in different Asian cities. In addition, analyses in this study were also adjusted with confounders such as age, sex, education, vascular risk factors, disease groups, and different Asian cities.
However, there are certain limitations in this study. First, we acknowledge that certain biases were introduced in the study. Similar to any multi-center study, the pooled sample may contain a more heterogeneous dataset across centers, as well as a potential source of sampling bias from non-random recruitment. However, we have set the study-specific inclusion and exclusion criteria, and used the same neuropsychological screening test (MMSE). Survival bias may be introduced as the patients enrolled into study could have been biased to the younger group who had better cognitive function, and milder chronic brain changes. This could lead to an underestimation of the true magnitude of the prevalence of WML in each city, as well as the association between WML, vascular risk factors and cognition. Hypertension was based on patient history and any use of antihypertensive medication. This can induce systematic bias into the study. However, clinicians and researchers have ensured accurate reporting and entry during the data collection period to reduce such bias.

Second, we have only used a brief screening test to measure the overall cognitive function. MMSE is not sensitive in detecting executive dysfunction or slow processing speed that are predominantly affected by CSVD. Further, the MMSE was administered in various languages and cultures specific to the local population and there may be characteristics differences in each version. Third, we acknowledge that Fazekas and ARWMC are two different visual rating scales for WML. Although the scales are different, a cut-off at ≥ 2 in both scales was selected as they both indicated a certain severity of WML that are progressive, and thus, malignant, and lead to devastating outcomes such as global functional decline or delayed-onset dementia. The Hong Kong community dataset with both Fazekas and ARWMC global ratings showed that the correlation between the scales is high ($p < 0.0001; r = 0.943$).

Forth, WML can be associated with inflammation, cerebral amyloid angiopathy, or neurodegenerative disease secondary to Wallerian degeneration, which we were unable to differentiate in this study. Fifth, although we had included data from Bengaluru India to investigate the prevalence and vascular risk factors of WML, the small sample size prevented us from making a comparison on its prevalence of WML with other cities/ethnicities. Finally, other CSVD imaging markers such as lacunes, cerebral microbleeds, enlarged perivascular space and microinfarcts were not assessed and may have impact on the overall clinical manifestation.

Implications

Our findings that there was a high burden of CSVD/WML in stroke/TIA, AD/MCI, community controls and specific cities (e.g. Indonesian, Singaporean), and that it was associated with hypertension, hyperlipidemia and poor global cognition. These findings have huge implications in the management, research and public health strategies for preventing dementia in Asia. Strategies that can improve management of high blood pressure and lipids at both population and individual levels cannot only prevent stroke, but also potentially prevent or delay the development and progression of subclinical CSVD/WML. Recent clinical trials of large sample sizes and long durations did show positive effects of aggressive blood pressure lowering and use of statins upon reducing the progression of WML, along with possible benefits upon cognition. Note that any strategies targeting CSVD should also incorporate
other measures relevant to dementia prevention (e.g. reduce air pollution, limit alcohol, avoid smoking, provide primary and secondary education, reduce obesity and diabetes, increase physical exercise, improve sleep) so as to achieve the maximal effect in reducing dementia burden. Note further that control in hypertension, in particular, should start in mid-life as the evolution of WML from no to severe WML may take more than a decade. Such comprehensive strategies if can be implemented aggressively and efficiently in cities with high burden of vascular risk factors and CSVD (e.g. Indonesia), the effect size in preventing dementia cases in these cities may be more pronounced. In addition to primary preventive strategies, we propose that more clinical trials should target individuals who already harbor moderate-to-severe CSVD/WML at different clinical contexts, e.g. poststroke/TIA with cognitive impairment (without dementia), MCI (prodromal AD) or even in “preclinical CSVD” dementia- and stroke-free individuals, as they are at high risk of further cognitive decline or dementia. Preferably, such trials should include Asians so that findings from these trials can be generalized to Asians as well.

Declarations

Acknowledgments

This study was financially supported by the National Key Research and Development Program of China (grant number 2016YFC1300600), Health and Health Services Research Fund (0708041) of the Food and Health Bureau of the Government of HKSAR General Research Fund (grant number GRF CUHK 471911), the Lui Che Woo Institute of Innovative Medicine, and Therese Pei Fong Chow Research Centre for Prevention of Dementia (in memory of Donald H. K. Chow). We acknowledge Eugene S. K. Lo for the coordination and data collection of the project.

Competing Interest

We acknowledge Otsuka Pharmaceutical Company Limited (Korea Otsuka International Asia Arab) for providing partial financial support in conducting the AWARE study. However, they had no input in the study design, interpretation of the results, or preparation of the manuscript. There is no other conflict of interest.

Author contributions statement

B.Y.K.L., A.Y.L.L. and V.C.T.M. designed and conceptualised study. B.Y.K.L., B.Y. and K.T.L., analysed the data. B.Y.K.L. drafted the manuscript for intellectual content. B.Y., E.A., C.L.H.C., Y.D., J.C.D., P.V.G., S.H., N.K., S.Y.K, J.Y.L., P.O., V.S., K.T.L., H.W., Y.H.Y., T.Y., F.A., S.A., S.W., H.K., A.Y.L.L. and V.C.T.M. interpreted the data. B.Y., E.A., C.L.H.C., Y.D., J.C.D., P.V.G., S.H., N.K., S.Y.K, J.Y.L., P.O., V.S., H.W., Y.H.Y., T.Y., F.A., S.A., S.W., H.K., A.Y.L.L. and V.C.T.M. revised the manuscript for intellectual content. E.A., C.L.H.C., Y.D., J.C.D., P.V.G., S.H., N.K., S.Y.K, J.Y.L., P.O., V.S., H.W., Y.H.Y., F.A., S.A. and V.C.T.M. had a major role in data acquisition.
1. Prince, M. et al. World Alzheimer Report 2015: The Global Impact of Dementia. (London, 2015).
2. Toledo, J. B. et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136, 2697–2706 (2013).
3. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. The Lancet Neurology 12, 822–838, doi:http://dx.doi.org/10.1016/S1474-4422(13)70124-8 (2013).
4. Smith, E. E., Schneider, J. A., Wardlaw, J. M. & Greenberg, S. M. Cerebral microinfarcts: the invisible lesions. The Lancet Neurology 11, 272–282 (2012).
5. Jokinen, H. et al. Post-stroke cognitive impairment is common even after successful clinical recovery. European Journal of Neurology 22, 1288–1294, doi:10.1111/ene.12743 (2015).
6. Wen, H. M. et al. Effect of white matter changes on cognitive impairment in patients with lacunar infarcts. Stroke 35, doi:10.1161/01.str.0000133686.29320.58 (2004).
7. Wang, Z. et al. Cerebral Microbleeds and Cognitive Function in Ischemic Stroke or Transient Ischemic Attack Patients. Dementia and Geriatric Cognitive Disorders 40, 130–136 (2015).
8. Wang, Z. et al. Risk factors and cognitive relevance of cortical cerebral microinfarcts in patients with ischemic stroke or TIA. Stroke (2016).
9. Mok, V. C. T. et al. Early-onset and delayed-onset poststroke dementia - revisiting the mechanisms. Nat Rev Neurol 13, 148–159, doi:10.1038/nrneurol.2017.16 (2017).
10. De Groot, J. C. et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. 47, 145–151 (2000).
11. Kao, Y.-H., Chou, M.-C., Chen, C.-H. & Yang, Y.-H. White Matter Changes in Patients with Alzheimer’s Disease and Associated Factors. Journal of clinical medicine 8, 167 (2019).
12. Mok, V. C. T. et al. Cognitive impairment and functional outcome after stroke associated with small vessel disease. Journal of Neurology, Neurosurgery & Psychiatry 75, 560–566, doi:10.1136/jnnp.2003.015107 (2004).
13. Pendlebury, S. T. & Rothwell, P. M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. The Lancet Neurology 8, 1006–1018 (2009).
14. Prasad, K., Wiryasaputra, L., Ng, A. & Kandiah, N. White Matter Disease Independently Predicts Progression from Mild Cognitive Impairment to Alzheimer’s Disease in a Clinic Cohort. Dementia and Geriatric Cognitive Disorders 31, 431–434, doi:10.1159/000330019 (2011).
15. Kim, S. et al. Periventricular white matter hyperintensities and the risk of dementia: a CREDOS study. International psychogeriatrics 27, 2069 (2015).
16. Alosco, M. L. et al. A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer’s Disease Neuropathology. J Alzheimers Dis 63, 1347–1360, doi:10.3233/JAD-180017 (2018).
17. Lee, S. et al. White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network. *Annals of Neurology* **79**, 929–939, doi:10.1002/ana.24647 (2016).

18. Ding, D. et al. White Matter Hyperintensity Predicts the Risk of Incident Cognitive Decline in Community Dwelling Elderly. *J Alzheimers Dis* **61**, 1333–1341 (2018).

19. Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. *BMJ* **341**, 1–9, doi:10.1136/bmj.c3666 (2010).

20. Inzitari, D. et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. *BMJ* **339**, doi:10.1136/bmj.b2477 (2009).

21. Jorgensen, D. R. et al. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review. *American Journal of Physiology-Heart and Circulatory Physiology* **314**, H1117-H1136 (2018).

22. Marini, S., Anderson, C. D. & Rosand, J. Genetics of cerebral small vessel disease. *Stroke* **51**, 12–20 (2020).

23. Mok, V. et al. Race-ethnicity and cerebral small vessel disease – Comparison between Chinese and White populations. *International Journal of Stroke* **9**, 36–42 (2014).

24. Hiremath, N., Kate, M., Mohimen, A., Kesavadas, C. & Sylaja, P. N. Risk factors of white matter hyperintensities in South Asian patients with transient ischemic attack and minor stroke. *Neuroradiology*, doi:10.1007/s00234-020-02429-5 (2020).

25. Ren, X.-M. et al. White Matter Lesions Predict Recurrent Vascular Events in Patients with Transient Ischemic Attacks. *Chin Med J (Engl)* **131**, 130–136, doi:10.4103/0366-6999.222341 (2018).

26. Lee, S.-J. et al. The leukoaraiosis is more prevalent in the large artery atherosclerosis stroke subtype among Korean patients with ischemic stroke. *BMC Neurol* **8**, 31–31, doi:10.1186/1471-2377-8-31 (2008).

27. et al. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. *Journal of Neurology, Neurosurgery & Psychiatry* **88**, 669 (2017).

28. McKhann, G. et al. Clinical diagnosis of Alzheimer's disease. *Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease **34**, 939–939, doi:10.1212/wnl.34.7.939 (1984).

29. Sacco, R. L. et al. An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. *Stroke* **44**, 2064–2089, doi:10.1161/STR.0b013e318296aeca (2013).

30. Li, H., Jia, J. & Yang, Z. Mini-mental state examination in elderly Chinese: a population-based normative study. *Journal of Alzheimer's Disease* **53**, 487–496 (2016).

31. Román, G. C. et al. Vascular dementia: diagnostic criteria for research studies. *Neurology* **43**, 250–250 (1993).
32. Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I. & Zimmerman, R. A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. *American Journal of Roentgenology* **149**, 351–356, doi:10.2214/ajr.149.2.351 (1987).

33. Xiong, Y. *et al.* Operational definitions improve reliability of the age-related white matter changes scale. *European Journal of Neurology* **18**, 744–749, doi:10.1111/j.1468-1331.2010.03272.x (2011).

34. Inzitari, D. *et al.* Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LADIS study. *Archives of Internal Medicine* **167**, 81–88 (2007).

35. Ferguson, K. *et al.* Visual Rating Scales of White Matter Hyperintensities and Atrophy: Comparison of Computed Tomography and Magnetic Resonance Imaging. *Journal of Stroke and Cerebrovascular Diseases* **27**, doi:10.1016/j.jstrokecerebrovasdis.2018.02.028 (2018).

36. Jin, H. *et al.* Prevalence and Risk Factors of White Matter Lesions in Tibetan Patients Without Acute Stroke. *Stroke* **51**, 149–153, doi:10.1161/STROKEAHA.119.027115 (2020).

37. O’donnell, M. J. *et al.* Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. *The Lancet* **376**, 112–123 (2010).

38. Sudre, C. H. *et al.* Cardiovascular Risk Factors and White Matter Hyperintensities: Difference in Susceptibility in South Asians Compared With Europeans. *Journal of the American Heart Association* **7**, e010533, doi:10.1161/JAHA.118.010533 (2018).

39. Ossenkoppele, R. *et al.* Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. *JAMA* **313**, 1939–1949 (2015).

40. van Dijk, E. J. *et al.* Progression of Cerebral Small Vessel Disease in Relation to Risk Factors and Cognitive Consequences: Rotterdam Scan Study. *Stroke* **39**, 2712–2719, doi:10.1161/strokeaha.107.513176 (2008).

41. Jimenez-Conde, J. *et al.* Hyperlipidemia and Reduced White Matter Hyperintensity Volume in Patients With Ischemic Stroke. *Stroke* **41**, 437–442, doi:10.1161/strokeaha.109.563502 (2010).

42. Longstreth Jr, W. *et al.* Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. **36**, 56–61 (2005).

43. De Bresser, J. *et al.* Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes. *Diabetes care* **33**, 1309–1314 (2010).

44. Kooistra, M. *et al.* Diabetes mellitus and progression of vascular brain lesions and brain atrophy in patients with symptomatic atherosclerotic disease. The SMART-MR study. *Journal of the neurological sciences* **332**, 69–74 (2013).

45. Van Elderen, S. *et al.* Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up. *Neurology* **75**, 997–1002 (2010).

46. Shim, Y. S., Yang, D. W., Kim, H.-J., Park, Y. H. & Kim, S. Characteristic differences in the mini-mental state examination used in Asian countries. *BMC Neurol* **17**, 141–141, doi:10.1186/s12883-017-0925-z (2017).
47. Schmidt, R., Enzinger, C., Ropele, S., Schmidt, H. & Fazekas, F. Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. *The Lancet* **361**, 2046–2048, doi:https://doi.org/10.1016/S0140-6736(03)13616-1 (2003).

48. Mok, V. C. *et al.* Delayed-onset dementia after stroke or transient ischemic attack. *Alzheimer’s & Dementia* **12**, 1167–1176 (2016).

49. Ding, D. *et al.* White matter hyperintensity predicts the risk of incident cognitive decline in community dwelling elderly. *Journal of Alzheimer’s Disease* **61**, 1333–1341 (2018).

50. Livingston, G. *et al.* Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. *The Lancet* (2020).

51. Nasrallah, I. M. *et al.* Association of intensive vs standard blood pressure control with cerebral white matter lesions. *Jama* **322**, 524–534 (2019).

52. Williamson, J. D. *et al.* Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. *Jama* **321**, 553–561 (2019).

53. Ott, B. R. *et al.* Do Statins Impair Cognition? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Journal of General Internal Medicine* **30**, 348–358, doi:10.1007/s11606-014-3115-3 (2015).

54. Zhang, H. *et al.* Effects of sartans and low-dose statins on cerebral white matter hyperintensities and cognitive function in older patients with hypertension: a randomized, double-blind and placebo-controlled clinical trial. *Hypertension Research* **42**, 717–729 (2019).

Figures
Figure 1

The prevalence of severe white matter lesion in different age groups in the AD/MCI group, stroke/TIA group and control group.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaldatafiguretableadditionaldataSR20201210updated.docx