Efficacy of Gelatin Sponge Impregnated with Ropivacaine on Postoperative Pain After Transforaminal Lumbar Interbody Fusion: A Comparative Study

Shanxi Wang
Huazhong University of Science and Technology

Bo Wang
Huazhong University of Science and Technology

Xiaojun Yu
Huazhong University of Science and Technology

Tian Ma
Huazhong University of Science and Technology

Jiyuan Yan
Huazhong University of Science and Technology

Qing Ding
Huazhong University of Science and Technology

Ruizhuo Zhang
Huazhong University of Science and Technology

Hua Wu (✉️ wuhua@hust.edu.cn)
Huazhong University of Science and Technology

Chaoxu Liu
Huazhong University of Science and Technology

Research Article

Keywords: Ropivacaine, Gelatin sponge, Postoperative pain, Transforaminal lumbar interbody fusion, Lumbar degenerative diseases

DOI: https://doi.org/10.21203/rs.3.rs-523251/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background The purpose of this study was to investigate the efficacy of gelatin sponge impregnated with ropivacaine on postoperative pain after transforaminal lumbar interbody fusion (TLIF) in patients with lumbar degenerative diseases.

Methods A total of 127 patients were evaluated in this retrospective study. All patients underwent transforaminal lumbar interbody fusion. Based on whether they were administered by gelatin sponge impregnated with ropivacaine or saline during operation, patients were divided into ropivacaine group or saline group. The two groups were compared in reference to bedridden period, hospital stay, postoperative complications, visual analog scale (VAS) scores and functional score. The consumption of postoperative diclofenac sodium suppository use was also recorded. The Oswestry Disability Index (ODI) scores and and Japanese Orthopaedic Association (JOA) scores were used for functional evaluation at 1 year postoperatively.

Results The mean bedridden period and hospital day in the ropivacaine group were significantly lower than saline group. The VAS score was significantly lower in patients receiving gelatin sponge impregnated with ropivacaine as compared with patients in saline group on postoperative day 1, 2, 3 and 4. The number of patients who need the administration of diclofenac sodium suppository and the mean consumption of postoperative diclofenac sodium suppository was significantly lower in the ropivacaine group as compared with saline group.

Conclusion The application of gelatin sponge impregnated with ropivacaine around the nerve root in patients undergoing TLIF is a safe and effective method, which can effectively control the postoperative pain and promote the functional recovery of patients.

Background

Transforaminal lumbar interbody fusion (TLIF) is a highly effective intervention for treating severe lumbar degenerative diseases, such as lumbar disc herniation, lumbar spondylolisthesis and lumbar spinal stenosis[1]. However, because of the spinal structure damage and nerve root traction during operation, moderate-to-severe postsurgical pain after TLIF is frequently encountered in the early postoperative period, which often leads to limitations in patient recovery and prolonged hospital stay[2, 3]. Therefore, an effective method adopted by surgeons or anesthetists is essential to relief postoperative pain and improve the comfort of patients after operation.

Ropivacaine is a long-acting amide local anesthetic with an onset time of about 10 minutes and a duration of 4 to 5 hours. It is characterized by the block of sensory nerve fibers superior to motor nerve fibers, and it can cause separation block between sensory nerve fibers and motor nerve fibers even in a low concentration (0.2%)[4]. As a results, ropivacaine is more and more used in postoperative rehabilitation of surgical patients, which can effectively block the sensory nerve for analgesia without affecting the motor function of patients[5].
In this paper, we investigated the efficacy of gelatin sponge impregnated with ropivacaine on postoperative pain after transforaminal lumbar interbody fusion in patients with lumbar degenerative diseases, so as to provide reference for clinical treatment.

Patients And Methods

Study Sample

After obtaining approval from our institutional review board, we retrospectively reviewed patients who underwent TLIF in our department between August 2018 and January 2020. The inclusion criteria were as follow: (a) lumbar degenerative diseases, including lumbar disc herniation, lumbar spondylolisthesis and lumbar spinal stenosis, (b) primary lumbar surgery, (c) with at least 1 years of follow-up. Exclusion criteria included other spinal pathology (tumor, traumatic, congenital or infection) and known allergy to the ropivacaine. Based on whether they were administered by gelatin sponge impregnated with ropivacaine or saline during operation, patients were divided into ropivacaine group or saline group.

Surgical Technique

All surgery was performed under general anaesthsia by one surgical team consisting of two senior orthopaedic surgeons. The patient was placed prone on a radiolucent table, a posterior midline lumbar incision was performed. After the exposure of bilateral lamina and facet joints, unilateral facetectomy and partial laminectomy were done to expose the intervertebral disc and achieve adequate posterior decompression. The reamer was used to remove disc tissue, and then a suitable size cage filled with the autologous bone graft was inserted into the intervertebral space. Subsequently, the bilateral pedicle screws and titanium rods were installed and axially compressed to restore the lordosis while maintaining the recovered disc height. For patients in the ropivacaine group, 2 pieces of gelatin sponge (6 cm×2 cm×0.5 cm) impregnated with 0.5% ropivacaine were gently covered the dura mater and nerve root surface and saline group received the gelatin sponge impregnated with 0.9% saline covered on the surface of dura mater and nerve root (Fig. 1). Finally, the incision was closed after placement of a drainage tube.

Postoperative Management and Aftercare

The prophylactic intravenous antibiotics were administered after the operation for 24 hours to prevent infection. Enoxaparin (0.4 mL) was administered subcutaneously every 24 hours until discharge to prevent deep venous thrombosis (DVT). The drainage was maintained for 24–48 hours and then was removed. Parecoxib 40 mg every 12 hours intramuscularly to control postoperative pain, and two diclofenac sodium suppositories (25 mg) was used when the patients complained pain with the visual analog scale (VAS) score[6] more than 6. No patient-controlled analgesia (PCA) pump was used in all patients. Limb functional exercises were encouraged after recovery from anesthesia, and out-of-bed activity as tolerated were encouraged after surgery.
Outcome Measurements

Patient demographic included age, gender, body mass index (BMI), diagnosis, American Society of Anesthesiologists (ASA) physical status, fusion level, fusion site, preoperative functional scores, operative time, blood loss and postoperative drainage volume were collected and compared. Clinical parameters included bedridden period, hospital stay, postoperative complications and functional score. Pain level was assessed using the VAS score preoperatively and on postoperative days 1, 2, 3, 4, 5 (POD 1, 2, 3, 4, 5). The rescue use of diclofenac sodium suppository was also recorded. After discharge, the patients would be followed at 1, 2, 3, 6 and 12 months and then at annually postoperatively in clinic. The Oswestry Disability Index (ODI) scores[7], and Japanese Orthopaedic Association (JOA) scores[8] were used for functional evaluation at 1 year postoperatively.

Statistical Analysis

All data management and statistical analysis were performed with Statistical Package for the Social Sciences (SPSS 20.0, IBM, New York City, USA). Categorical data were tabulated with frequencies or percentages, and continuous data were expressed as the mean ± standard deviation (SD). Normality was tested using the Kolmogorov-Smirnov test. Independent t-tests were used for normally distributed continuous data and the Mann-Whitney test was used to compare abnormally distributed continuous data between two groups. Chi-square test or Fisher exact test was used to analyze the categorical variables. The level of significance was set at p < 0.05.

Results

Baseline Characteristics

A total of 127 patients were evaluated in this retrospective study, included 62 patients in ropivacaine group and 65 patients in saline group. Baseline characteristics of the patients in both groups were summarized and comparable in Table 1. There was no statistically significant differences between the two groups in terms of age, gender, diagnosis, ASA physical status, fusion level, fusion site, preoperative functional scores, operative time, blood loss and postoperative drainage volume.
	Ropivacaine (n = 62)	**Saline** (n = 65)	**P** Value
Age (years)	53.63 ± 8.81	53.91 ± 11.60	0.879
Gender (male/female)	31/31	35/30	0.724
BMI (kg/m²)	23.76 ± 2.72	23.02 ± 2.68	0.128
Diagnosis			0.122
LDH	41	39	
LS	14	10	
LSS	7	16	
ASA status (I/II/III)	10/51/1	12/48/5	0.264
Fusion segments (number)	1.68 ± 0.76	1.48 ± 0.66	0.116
Fusion level(s)			0.352
1 Level	30	40	
2 Level	23	19	
3 Level	8	6	
4 Level	1	0	
Fusion site(s)			0.781
L2-L3	1	3	
L3-L4	14	13	
L4-L5	53	46	
L5-S1	36	34	
Preoperative ODI scores	62.93 ± 15.92	62.68 ± 17.70	0.931
Preoperative JOA scores	6.85 ± 3.69	7.06 ± 2.90	0.725
Preoperative VAS scores	6.76 ± 1.13	6.91 ± 1.13	0.456
Operative time (min)	208.08 ± 53.23	204.43 ± 54.23	0.703
Blood loss (ml)	314.52 ± 169.79	287.25 ± 188.34	0.394
Drainage volume (ml)	329.52 ± 229.81	383.75 ± 273.64	0.230

LDH, lumbar disc herniation; LS, lumbar spondylolisthesis; LSS, lumbar spinal stenosis.
Clinical Outcomes

The mean postoperative hospital stay was 4.97 ± 1.43 days for the ropivacaine group and 6.23 ± 1.44 days for the saline group (P < 0.001). Pain scores on POD 1, 2, 3 and 4 were significantly lower for ropivacaine group compared to saline group (2.40 ± 0.86 VS. 3.18 ± 1.01, P < 0.001; 2.79 ± 0.94 VS. 3.85 ± 1.11, P < 0.001; 2.48 ± 0.90 VS. 2.95 ± 0.82, P = 0.003; 2.24 ± 0.82 VS. 2.58 ± 0.79, P = 0.018, respectively), no statistical difference was identified between two groups on POD 5. The delayed wound healing was found in one patient in the ropivacaine group and three patients in the saline group, no postoperative nausea and vomiting (PONV) or DVT was found in either group. There was no statistically significant difference between the two groups in the incidence of postoperative complications. (Table 2)

	Ropivacaine	Saline	P value
	(n = 62)	(n = 65)	
Postoperative hospital stay (days)	4.97 ± 1.43	6.23 ± 1.44	< 0.001
VAS scores			
POD1	2.40 ± 0.86	3.18 ± 1.01	< 0.001
POD2	2.79 ± 0.94	3.85 ± 1.11	< 0.001
POD3	2.48 ± 0.90	2.95 ± 0.82	0.003
POD4	2.24 ± 0.82	2.58 ± 0.79	0.018
POD5	2.10 ± 0.82	2.23 ± 0.64	0.254
Complications			
Delayed wound healing	1	3	0.619
PONV	0	0	-
DVT	0	0	-

Table 2: Comparison of postoperative hospitalization duration complications between the two groups.

In ropivacaine group, 19 patients required the administration of diclofenac sodium suppository, and the mean consumption of diclofenac sodium suppository was 15.32 ± 28.76 mg. In saline group, the number of patient who need analgesic rescue was 34, and the mean consumption of diclofenac sodium suppository was 28.46 ± 34.20 mg. Fewer patients required diclofenac sodium suppository in ropivacaine group than in saline group, and the difference was statistically significant. Lower diclofenac sodium suppository consumption was found in ropivacaine group than saline group, and the difference also has statistically significant. (Table 3)
At one year after surgery, the mean ODI scores of ropivacaine group was 10.81 ± 5.52, while the mean ODI scores of saline group was 11.97 ± 6.26. The average JOA scores of ropivacaine group and saline group were 27.06 ± 1.33 and 26.71 ± 1.73, respectively. There were no statistically significant differences between the two groups in the ODI scores and JOA scores at one year postoperatively. (Table 3)

Table 3
Comparison of VAS scores, requirement of diclofenac sodium suppositories and function evaluation at 1 year postoperatively between two groups.

	Ropivacaine (n = 62)	Saline (n = 65)	P value
Diclofenac sodium suppository			
Number (n)	19	34	0.019
Dose (mg)	15.32 ± 28.76	28.46 ± 34.20	0.010
One year after surgery			
ODI scores	10.81 ± 5.52	11.97 ± 6.26	0.270
JOA scores	27.06 ± 1.33	26.71 ± 1.73	0.139

ODI, Oswestry Disability Index; JOA, Japanese Orthopaedic Association.

Discussion

The low back pain is a leading reason of disability worldwide, which often caused by lumbar degenerative diseases, such as lumbar disc herniation, lumbar spondylolisthesis and lumbar spinal stenosis[9]. For patients who fail non-operation treatment, lumbar fusion is an effective option, which can not only relieve pain, but also improve the life quality of patients[10, 11]. According to the surgical approach, lumbar fusion can be divided into different types, the most common are anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF), posterior lumbar interbody fusion (PLIF) and TLIF[12].

TLIF was first described by Harms and it developed as a modification of PLIF[13]. Compared with other approaches, it can directly access to the intervertebral foraminal area with little damage of spinal structural integrity[14–16]. There are also evidences show that TLIF can reduce the risk of dural tears and nerve root injury whilst has a lower rate of postoperative complications and better functional recovery[10, 15]. As a result, TLIF has become a well-established and prevalent surgical approach for degenerative lumbar diseases[14, 15]. However, there are also disadvantages of TLIF, one of the most major challenges is the severe postoperative pain related to the extensive muscle dissection and nerve root stimulation during operation[10]. As uncontrolled postoperative pain is directly associated to longer hospital stays, increased costs, delayed recovery and greater complications, the management of postoperative pain is highly imperative for patients undergoing TLIF[17].
Although opioids or non-steroidal anti-inflammatory drugs play an important role in the control of postoperative pain for spinal patients, the side effects such as PONV, pruritus, respiratory depression or peptic ulcer still limited their use[18, 19]. Besides, excessive use of opioids can contribute to long-term opioids dependence and abuse[20]. Therefore the control of postoperative pain is essential to curb the overuse of analgesics and related adverse outcomes. Prasartritha et al.[21] reported that epidural infusion analgesia is safe and effective for controlling postoperative pain in spinal surgery. However, the technique is sometimes very dangerous because of the possible penetration of dura mater, which can injure spinal cord and cause total spinal subarachnoid anesthesia[22]. Local infiltration analgesia may be an another alternative method to control postoperative pain in spinal surgery. Tomov et al.[23] investigated the efficacy of subcutaneous infiltration of liposomal bupivacaine on postoperative pain management and narcotic use following TLIF. Although the result showed that the application of local infiltration can significantly reduce postoperative pain and the consumption of postoperative analgesic, it can not significant reduce the length of hospital stay.

In our study, the gelatin sponge impregnated with ropivacaine arround the nerve root were applied on the limitation of postoperative pain. Patients undergoing spinal surgery may experience intense pain in the early postoperative period, the use of gelatin sponge can slowly release ropivacaine around the nerve root so as to extend the postoperative analgesia time[24, 25]. In most studies, ropivacaine was injected into gelatin sponge by syringe[8, 26]. However, because of the residual gas in the gelatin sponge, it is difficult to make the gelatin sponge completely absorb ropivacaine in this method. We created a negative pressure in the syringe which could effectively exhaust the residual gas in the gelatin sponge and make the gelatin sponge absorb enough ropivacaine, so as to increase the release time of ropivacaine and prolong the effect of postoperative analgesia. Our results showed that the application of gelatin sponge impregnated with ropivacaine could significantly reduce the postoperative pain on POD 1, 2, 3 and 4, especially on POD 1 and 2, the VAS scores of ropivacaine group was markedly lower than the saline group. Fewer patients in ropivacaine group need the administration of diclofenac sodium suppositor, and the mean consumptions of diclofenac sodium suppositor was also less in ropivacaine group. Besides, our study also suggested that the application of gelatin sponge impregnated with ropivacaine during operation could effectively shorten the length of bedridden period and hospital stay, which may be due to the limited postoperative pain. The control of postoperative pain is conducive to the recovery of postoperative function in spinal patients, and the early out-of-bed activity is beneficial to the prevention of pulmonary complications and deep venous thrombosis. In addition, a shorter length of hospital stay means that the costs of hospitalization can be saved.

There are several limitations to our study. One of the limitations is that this was a retrospective study. Randomized controlled study is needed to further investigated the efficacy of gelatin sponge impregnated with ropivacaine on postoperative pain after transforaminal lumbar interbody fusion in patients with lumbar degenerative diseases. Second, since all surgery in this study was performed by one surgical team including two senior orthopaedic surgeons at a single center, multi-center research is needed to further verify our conclusions. Furthermore, further study is required to compare the efficacy for gelatin
sponge impregnated with ropivacaine and other analgesic strategies on postoperative pain in patients treated with TLIF.

Conclusions

Our study demonstrated that the application of gelatin sponge impregnated with ropivacaine around the nerve root in patients undergoing TLIF is a safe and effective method, which can effectively control the postoperative pain and promote the functional recovery of patients.

Declarations

Ethical approval: The study was approved by the ethical committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. All procedures performed in studies involving human participants were in accordance with the ethical standards of institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Written informed consent was obtained from all patients included in this study.

Consent for publication: Not applicable.

Competing interests: The authors declare that they have no conflict of interest.

Funding: This work was supported by National Natural Science Foundation of China (No.51537004 and No. 51877097).

Authors' contributions: Shanxi Wang and Bo Wang contributed equally to this work. Chaoxu Liu and Hua Wu conceived and designed this study; Shanxi Wang, Bo Wang, Xiaojun Yu, Tian Ma, Ruizhuo Zhang collected the data; Shanxi Wang, Bo Wang, Jiyuan Yan and Qing Ding performed the statistical analysis; Shanxi Wang wrote the manuscript; Chaoxu Liu revised this manuscript. All authors reviewed the final manuscript. All authors agree to be accountable for all aspects of the work.

Availability of data and materials: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Acknowledgements: We wish to thank all of those who generously agreed to be interviewed for this research.

References

1. Rosenberg W S, Mummaneni P V(2001) Transforaminal lumbar interbody fusion: technique, complications, and early results. NEUROSURGERY. 48(3): 574–575. doi: 10.1097/00006123-200103000-00022

2. Ghabach M B, Mhanna N E, Abou A E M, et al(2019) Comparison of Effects of Hemostatic Gelatin Sponge Impregnated with Ropivacaine versus Normal Saline Applied on the Transverse Process of
the Operated Vertebrae on Postoperative Pain in Patients Undergoing Spinal Instrumentation Surgery: A Randomized Clinical Trial. WORLD NEUROSURG. 128: e1126-e1130. doi: 10.1016/j.wneu.2019.05.101

3. Aljabi Y, Aljabi Y(2015)Effect of epidural methylprednisolone on post-operative pain and length of hospital stay in patients undergoing lumbar microdiscectomy. Surgeon Journal of the Royal Colleges of Surgeons of Edinburgh & Ireland. 13(5): 245–249. doi: 10.1016/j.surge.2014.03.012

4. Markham A, Faulds D(1996)Ropivacaine. DRUGS. 52(3): 429–449. doi: 10.2165/00003495-199652030-00012

5. Axelsson K, Johanzon E, Essving P, et al(2005)Postoperative extradural analgesia with morphine and ropivacaine. A double-blind comparison between placebo and ropivacaine 10 mg/h or 16 mg/h. ACTA ANAESTH SCAND. 49(8): 1191–1199. doi: 10.1111/j.1399-6576.2005.00715.x

6. Huskisson E C(1997)Measurement of pain. LANCET. 2(7889): 1127–1131. doi: 10.1016/S0140-6736(74)90884-8

7. Fairbank J, Pynsent P B(2000)The Oswestry Disability Index. SPINE. 25(22): 2940–2953. doi: 10.1097/00007632-200011150-00017

8. Du J P, Hao D J, Fan Y, et al(2018)Application of Gelatin Sponge Impregnated with a Mixture of 3 Drugs to Intraoperative Nerve Root Block to Promote Early Postoperative Recovery of Lumbar Disc Herniation. WORLD NEUROSURG. 114: e1168-e1173. doi: 10.1016/j.wneu.2018.03.170

9. Vos T, Allen C, Arora M, et al(2016)Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet. 388(10053): 1545–1602. doi: 10.1016/S0140-6736(16)31678-6

10. Teng I, Han J, Phan K, et al(2017)A meta-analysis comparing ALIF, PLIF, TLIF and LLIF. J CLIN NEUROSCI. 44: 11–17. doi: 10.1016/j.jocn.2017.06.013

11. Resnick D K, Choudhri T F, Dailey A T, et al(2005)Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 8: lumbar fusion for disc herniation and radiculopathy. Journal of neurosurgery. Spine. 2(6): 673–678. doi: 10.3171/spi.2005.2.6.0673

12. Mobbs R J, Phan K, Malham G, et al(2015)Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. Journal of Spine Surgery. 1(1): 2–18. doi: 10.3978/j.issn.2414-469X.2015.10.05

13. Harms J(1997)True spondylolisthesis reduction and monosegmental fusion in spondylolisthesis. The textbook of Spinal Surgery.: 1337–1347.

14. Phan K, Rao P J, Kam A C, et al(2015)Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. EUR SPINE J. 24(5): 1017–1030. doi: 10.1007/s00586-015-3903-4

15. Lan T, Hu S Y, Zhang Y T, et al(2018)Comparison Between Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion for the Treatment of Lumbar Degenerative Diseases: A
16. Foley K T, Holly L T, Schwender J D (2003) Minimally invasive lumbar fusion. SPINE. 28(15 Suppl): S26-S35. doi: 10.1097/01.BRS.0000076895.52418.5E

17. Jenkins N W, Parrish J M, Mayo B C, et al (2020) The identification of risk factors for increased postoperative pain following minimally invasive transforaminal lumbar interbody fusion. EUR SPINE J. 29(6): 1304–1310. doi: 10.1007/s00586-020-06344-4

18. Fisher C G, Belanger L, Gofton E G, et al (2003) Prospective randomized clinical trial comparing patient-controlled intravenous analgesia with patient-controlled epidural analgesia after lumbar spinal fusion. SPINE. 28(8): 739–743. doi: 10.1097/01.BRS.0000058943.93281.28

19. Hida T, Yukawa Y, Ito K, et al (2016) Intrathecal morphine for postoperative pain control after laminoplasty in patients with cervical spondylotic myelopathy. J ORTHOP SCI. 21(4): 425–430. doi: 10.1016/j.jos.2016.03.004

20. Boulter J H, Curry B P, Szulflita N S, et al (2020) Protocolization of Post-Transforaminal Lumbar Interbody Fusion Pain Control with Elimination of Benzodiazepines and Long-Acting Opioids. NEUROSURGERY. 26(5): 717–723. doi: 10.1093/neuros/nyz232

21. Prasartritha T, Kunakornsawat S, Tungsiripat R, et al (2010) A prospective randomized trial comparing epidural morphine through intraoperatively placed epidural catheter and intravenous morphine in major lumbar spinal surgery. J SPINAL DISORD TECH. 23(8): e43-e46. doi: 10.1097/BSD.0b013e3181cd3048

22. Berger C W, Crosby E T, Grodecki W (1998) North American survey of the management of dural puncture occurring during labour analgesia. Canadian Journal of Anaesthesia. 45(2): 110–114. doi: 10.1007/BF03013247

23. Tomov M, Tou K, Winkel R, et al (2018) Does Subcutaneous Infiltration of Liposomal Bupivacaine Following Single-Level Transforaminal Lumbar Interbody Fusion Surgery Improve Immediate Postoperative Pain Control? Asian spine journal. 12(1): 85–93. doi: 10.4184/asj.2018.12.1.85

24. Ghabach M B, Mhanna N E, Abou A E M, et al (2019) Comparison of Effects of Hemostatic Gelatin Sponge Impregnated with Ropivacaine versus Normal Saline Applied on the Transverse Process of the Operated Vertebrae on Postoperative Pain in Patients Undergoing Spinal Instrumentation Surgery: A Randomized Clinical Trial. WORLD NEUROSURG. 128: e1126-e1130. doi: 10.1016/j.wneu.2019.05.101

25. Du J P, Fan Y, Liu J J, et al (2017) Application of Gelatin Sponge Impregnated with a Mixture of 3 Drugs to Intraoperative Nerve Root Block Combined with Robot-Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery in the Treatment of Adult Degenerative Scoliosis: A Clinical Observation Including 96 Patients. WORLD NEUROSURG. 108: 791–797. doi: 10.1016/j.wneu.2017.09.075

26. Jun-Song Y, Kai-Xuan L, Lei C, et al (2020) Cocktail Treatment with a Gelatin Sponge Impregnated with Ropivacaine, Dexamethasone, and Vitamin B12 Promotes Early Postoperative Recovery after...
Percutaneous Endoscopic Lumbar Discectomy: A Retrospective, Case-Controlled Study. PAIN PHYSICIAN. 23(2): E211-E218.

Figures

Figure 1

Operation steps of gelatin sponge impregnated with ropivacaine. a The gelatin sponge was immersed in a syringe filled with ropivacaine, and the gas in the syringe was evacuated. b Plug the outlet of the syringe with a finger while pulling back the piston repeatedly with the other hand to create a negative pressure in the syringe. c The residual gas in the gelatin sponge was sucked out by negative pressure and formed bubbles in the syringe. d-e Remove the bubbles from the syringe, the volume of ropivacaine in the syringe was significantly decreased compared to before, which proved that the gelatin sponge further absorbed ropivacaine. f The location of the intraoperative gelatin sponge.