Text Classification Using ES Based L1-LS-SVM

Li-wei WEI, Ying ZHANG and Wen-wu LI

China National Institute of Standardization, Beijing 100191, China

Keywords: LS-SVM, SVM, ES based L1-LS-SVM, Text classification.

Abstract. With the advent of big-data age, it is essential to organize, analyze, retrieve and protect the useful data or sensitive information in a fast and efficient way for customers from different industries and fields. In this paper, evolution strategies based a least squares support vector machine with L1 penalty (ES based L1-LS-SVM) is proposed to deal with LS-SVM shortcomings. A minimum of 1-norm based object function is chosen to get the sparse and robust solution based on the idea of basis pursuit (BP) in the whole feasibility region. A real Chinese corpus from Fudan University is used to demonstrate the effectiveness of this model. The experimental results show that ES based L1-LS-SVM can obtain a small number of support vectors and improve the generalization ability of ES based LS-SVM.

Introduction

In the big-data age from the perspective of data management, it is essential to organize, analyze, retrieve and protect the useful data or sensitive information in a fast and efficient way for customers from different industries and fields. The sensitive information and malicious messages or behaviors are respectively expected to be found out for protection and to be classified, filtered and analyzed for tracing the attackers, protecting victims as well as invoking the intelligent defense systems to process data, learn knowledge and update model. Among the machine learning methods, since cluster analysis (unsupervised learning) and classification (supervised learning) are able to be employed for detecting, tracing, organizing and analyzing either available information or behavior patterns, they are suggested to be the effective ways and crucial techniques for maximizing the efficiency of information security and protection.

Recently, as an important machine learning method based on statistical learning theory, SVM [1,2] have received a lot of attention in the machine learning community because of their remarkable generalization performance. The SVM typically follows from the solution to a quadratic programming. Despite its many advantages. Thus this greatly increases the computational complexity [3,4], especially for the problems which deal with mass data or need on-line computation. Least squares support vector machine just makes up for that shortcoming.

Because the ε–insensitive loss function used in SVM is replaced by a sum square error loss function, the inequality restriction is replaced by the equation restriction. Thus this makes the least squares support vector machine (LS-SVM)[5] achieve lower computational complexity. But there are some potential drawbacks for LS-SVM [6]. The first drawback is that the usage of the sum square error may lead to less robust estimates. Reference [6] presents a weighted LS-SVM to solve this issue. This method needs an interactive procedure to get optimal cost function and robust estimation gradually. The second drawback is that the sparseness of the data points is lost. The pruning method [7] introduces a procedure that the training samples be selected from a data set, and these training samples will introduce the smallest approximation error that can be omitted. Another method [8] deletes some columns of the coefficient matrix through a certain measure. When the final model is used to represent the original system, the performance would be hurt.

Focusing on the above-mentioned questions, we propose a new method to improve the sparseness and robustness of the ES based LS-SVM. In this method, a l_1 norm representation is used as the object function. And LS-SVM is used to characterize the system as a set of linear equations with deficient rank just like the overcomplete problem in independent component analysis (ICA) [9]. So the
solution with the minimum l_1 norm is got based on the idea of basis pursuit (BP) in the whole feasibility region [10,11]. BP is closely connected with linear programming. So the proposed method is called least squares support vector machine with linear programming formulation (L1-LS-SVM). Above contents are introduced in chapter 2. Then the performance of this method is examined by three examples.

This paper is organized as follows. In section 2, we give the ES based L1-LS-SVM classifier formulations and then set up the corresponding solutions. Numerical test results represent in Section 3 shows that our ES based L1-LS-SVM is of good sparse and robustness performance. Section 4 concludes the paper and introduces some future research directions.

L1-LS-SVM Model

Algorithm

Like least squares support vector machine, the object function for the L1-LS-SVM is defined as:

$$
\min J(\hat{w},c) = \frac{1}{2}\|w\|^2 + \frac{1}{2} \gamma \sum_{i=1}^{n} e_i^2
$$

(1)

$$
y_i(w^T(k)\phi(x_{i,k}) + b) = 1 - e_i, i = 1, \ldots, n, k = 1, \ldots, m
$$

(2)

where $x_{i,k}$ denotes the k^{th} component of the input vector x_i. It can be overcomplete dictionaries such as wavelet.

The quadratic optimization problem can be solved by transforming Eq. 2 into:

$$
y_i \left(\sum_{j=1}^{n} \sum_{k=1}^{m} \alpha_{j,k} y_j k(x_{i,k}, x_{j,k}) + b \right) + \sum_{k=1}^{m} \alpha_{j,k} / \gamma = 1, i = 1, \ldots, n
$$

(3)

where $k(\bar{x}_i, \bar{x}_j) = \phi(\bar{x}_i) \cdot \phi(\bar{x}_j)$ is called the kernel function.

Eq. 3 and the transformation formula can be written as the following matrix form:

$$
\begin{bmatrix}
A_1 * \begin{bmatrix} b \\ \hat{\alpha} \end{bmatrix}
\end{bmatrix} = \begin{bmatrix} 0 \\ \tilde{l} \end{bmatrix}
$$

(4)

where

$$
A_1 = \begin{bmatrix}
0 & \tilde{y}_1^T & \cdots & \tilde{y}_n^T \\
\tilde{y} & K_1 & \cdots & K_m \end{bmatrix}_{(m+1) \times (n+1)}
$$

$\tilde{l}^T = [1, \ldots, 1]_{1 \times n}$, $\tilde{\alpha} = [\alpha_{1,1}, \ldots, \alpha_{n,1}, \alpha_{1,2}, \ldots, \alpha_{nm}]$ and

$$
K_d = \begin{bmatrix}
y_{1} y_{1} k(x_{1,d}, x_{1,d}) + \frac{1}{\gamma} & \cdots & y_{1} y_{n} k(x_{1,d}, x_{n,d}) \\
\vdots & \ddots & \vdots \\
y_{n} y_{1} k(x_{n,d}, x_{1,d}) & \cdots & y_{n} y_{n} k(x_{n,d}, x_{n,d}) + \frac{1}{\gamma}
\end{bmatrix}, d = 1, \ldots, m.
$$

The following equation is the standard form of LS-SVM:
Compared Eq. 4 with the standard form of LS-SVM in Eq. 5, we can find that the kernel mapping is executed in each component and the Lagrange multiplier $\alpha_{i,k}$ can be seen as the weight for each component and sample other than only for each sample in other methods.

Then the output is obtained:

$$f(x) = \text{sgn} \left(\sum_{j=1}^{n} \sum_{k=1}^{m} y_i \alpha_{i,k} k(x_{i,k}, x_{j,k}) + b \right)$$

(6)

Above function is equivalent to the sum of the sub-function in different elements:

$$f(x) = \text{sgn} \left(\sum_{k=1}^{m} f_k(x) + b \right) = \text{sgn} \left(\sum_{k=1}^{m} \left(\sum_{i=1}^{n} y_i \alpha_{i,k} k(x_{i,k}, x_k) \right) + b \right)$$

(7)

Where $f_k(x)$ represents the contribution for the output by each element.

Finding Solutions

From Eq. 4, we can find that the new LS-SVM is equivalent to solve a deficient rank linear equation set just like the overcomplete problem in ICA. Because the matrix A is $n \times nm$, there are infinite solutions to Eq. 4. It brings us a chance and challenge to get sparse solutions. There are many approaches presented to resolve this problem, including the method of Frames (MOF) and basis pursuit (BP)[10,11].

Unlike MOF, BP replaces the l^2 norm with the l^1 norm:

$$\min \| \beta \|_1$$

(8)

Subject to

$$A* \tilde{\beta} = c$$

(9)

Where $\tilde{\beta} = \begin{bmatrix} b \\ \tilde{\alpha} \end{bmatrix}$, $A = A_1, c = \begin{bmatrix} 0 \\ \tilde{l} \end{bmatrix}$, for classifier

$$A = A_2, c = \begin{bmatrix} 0 \\ \tilde{y} \end{bmatrix}, \text{ for regression}$$

It is a very important character that $e_i = \sum_{k=1}^{m} \alpha_{i,k} / \gamma$. Because b is a constant, the minimum of $\| \tilde{\beta} \|_1$ is equivalent to that of $\| \tilde{\alpha} \|_1$. And from equation (6), we can conclude that:

$$\| \tilde{e} \|_1 = \sum_{i=1}^{n} |e_i| = \frac{\sum_{i=1}^{n} \sum_{k=1}^{m} \alpha_{i,k}}{\gamma} \leq \frac{\sum_{i=1}^{n} \sum_{k=1}^{m} \alpha_{i,k}}{\gamma} = \| \tilde{\alpha} \|_1$$

(10)
So the minimum of $\|\alpha\|$ can guarantee $\|e\|$ in a lower level. And it improves the robustness for the final solution. Of course, we can use other optimization forms or algorithms according to the requirements of the problems. The flexibility is just the most advantages for this method. So the new LS-SVM method is called least squares support vector machine with linear programming formulation.

Evolution Strategies (ES) for Selection of the Adaptive Model

Based on the Darwinian principle of ‘survival of the fittest’, ES obtains the optimal solution after a series of iterative computations [12]. ES works with a set of candidate solutions called a population. The ES has three basic operations: mutation, recombination and selection.

ES is an optimization algorithm, which can generates successive populations of alternate solutions to the problem, until obtained acceptable results. A fitness function assesses the quality of a solution in the evaluation process. Mutation and recombination functions are the main operators that randomly impact the fitness value. The evolutionary process operates for many generations, until the termination condition is satisfied.

It can be concluded that there are endogenous as well as exogenous strategy parameters in ES. Endogenous strategy parameters such as populations of individuals, specific object parameter set γ and its fitness value $F(1)$, can evolve during the evolution process, and are needed in self-adaptive ES. Strategy-specific parameters l and k, as well as q, are called exogenous strategy parameters which are kept constant during the evolution process.

To implement the proposed approach, this study requires only γ parameters to be defined.

Experiment and Discussion

In this section, we use the typical experimental data: Chinese corpus that is collected by Fudan University Dr. Li Ronglu[13], which are shown in Table 1. We will report the results of our empirical analysis on the above presented L1-LS-SVM algorithm. The corpus including the training set and testing set. There are 1882 documents in the training set. The test set contains 934 documents which have no classification label. And the test set is divided into 10 classes. The proportion of training set text number and test set text number is two-to-one.

Text Class	Number of experimental set	
	Training set	Test set
Art	166	82
Computer	134	66
Economy	217	108
Education	147	73
Environment	134	67
medicine	136	68
Policy	338	167
Sports	301	149
Transportation	143	71
Military	166	83

In automatic text classification system, will be used in the experiment data is usually divided into two parts: the training set and testing set. The so-called training set is composed of a set of have finished classification (namely has a given category label) text, which used for summed up the characteristics of each category in structure classifier. According to the classification system settings, each class should contain a certain amount of training text. The test set is the collection of documents that used to test the effect of the classification. Each one of these texts was through the classifier
classification, and then the classification results contrast to the correct decision. Thus we can evaluate the effect of classifier. But the test set is not participated in constructing the classifier.

In addition, three evaluation criteria measure the efficiency of text classification:

\[
\text{recall}_i = \frac{a}{a + c} \tag{11}
\]

\[
\text{precision}_i = \frac{a}{a + b} \tag{12}
\]

\[
F1 = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \tag{13}
\]

Where \(a\) is the positive example test documentations that are correctly classified as belongs to the number of this kind. \(b\) is the negative example test documentations that are be error classified for belong to the number of this kind. \(c\) is the positive example test documentations that are be error classified for does not belong to the number of this kind.

Firstly, the data is pre-processed by the ICTCLAS (Institute of Computing Technology, Chinese Lexical Analysis System)[13]. In this method the Gaussian kernel is used, and the kernel parameter needs to be chosen. Thus the method has two parameters to be prepared set: the kernel parameter \(\sigma^2\) and the coefficient \(\gamma\). The recall precision and F1 for each category text using SVM-MK approach are shown in Table 2.

Text Class	Evaluation index		
	Precision	Recall	F1
Art	100	96.01	98.92
Computer	98.97	99.03	98.96
Economy	95.98	94.87	94.04
Education	98.17	93.95	95.08
Environment	100	95.27	95.31
Medicine	98.86	96.02	96.57
Policy	94.76	96.07	95.24
Sports	97.26	98.08	96.63
Transportation	98.92	95.17	96.64
Military	91.46	90.01	89.69

From Table 2 and Table 3, we can conclude that the ES based L1-LS-SVM model has better text classification capability in term of the recall, precision and the F1 in comparison with the improved L1-LS-SVM models[14]. This method is of better text classification performance in kinds of art, computer, economy, environment, sports, military and transportation. Compared to the traditional improved ES based L1-LS-SVM, L1-LS-SVM is not very good in classifying the kinds of education, policy. This may be because in removing relevant features of test results, and lost some information. So that the recall rate index is affected. This is also need to further improve. Consequently, the proposed ES based L1-LS-SVM model can provide efficient alternatives in conducting text classification tasks.
Table 3. Comparison of results of improved ES based L1-LS-SVM and L1-LS-SVM.

model	Text Class	Precision	Recall	F1
ES based LS-SVM	Art	100	96.01	98.92
LS-SVM	100	96.59		98.61
ES based LS-SVM	Computer	98.97	99.03	98.96
LS-SVM	98.73	98.91		98.87
ES based LS-SVM	Economy	95.98	94.87	94.04
LS-SVM	95.37	94.76		94.95
ES based LS-SVM	Education	98.17	93.95	95.08
LS-SVM	98.03	93.92		95.79
ES based LS-SVM	Environment	100	95.27	95.31
LS-SVM	100	94.35		95.86
ES based LS-SVM	medicine	98.86	96.02	96.57
LS-SVM	98.03	96.16		96.95
ES based LS-SVM	Policy	94.76	96.07	95.24
LS-SVM	93.02	97.83		95.16
ES based LS-SVM	Sports	97.26	98.08	96.63
LS-SVM	96.35	98.76		96.69
ES based LS-SVM	Transportation	98.92	95.17	96.64
LS-SVM	98.73	95.32		96.91
ES based LS-SVM	Military	91.46	90.01	89.69
LS-SVM	91.32	89.26		90.17

Conclusions

This paper presents a novel ES based L1-LS-SVM text classification model. By using the 1-norm, the ES based L1-LS-SVM is equivalent to get the minimum of a sum absolute error in the feasibility region. So this method can improve the robustness and get the sparseness for the solution simultaneously. Another advantage is that it is equivalent to solve a linear programming and do not increase the computational burden that much. In addition, the output of the ES based L1-LS-SVM can be viewed as a weighted sum for different components. This makes the output more understandable. And it provides efficient alternatives in conducting text classification tasks. Furthermore, empirical results show that the ES based L1-LS-SVM is very efficient in text classification. Generalizing the rules by the features that have been selected is another further work.

Acknowledgements

This work has been supported by Provincial and ministerial level scientific research funds (222016Z-5133).

References

[1] V. Vapnik, *The nature of statistic learning theory*, Springer, New York(1995).
[2] V. Vapnik, *Statistic Learning Theory*, Willey, New York(1998).
[3] T. Gartner, P.A. Flach, WBCSVM: *Weighted Bayesian Classification based on support vector machine*, 18th Int. Conf. on Machine Learning, Williamstown, Carla E. Brodley, Andrea Pohoreckyj Danyluk, (eds.) (2001), p. 207–209.
[4] F. Jiang, *Research on Chinese Text Categorization based on Support Vector Machine*, Degree of Master paper, Chongqing University(2009).
[5] J.A.K. Suykens, Wandewalle J.: *Least squares support vector machine classifiers*, Neural Processing Letters, Vol. 9 (1999), p. 293-300.
[6] J.A.K. Suykens, J.D. Branbater, L. Lukas, J. Wandewalle: *Weighted least squares support vector machine: robustness and sparseness approximation*, Neurocomputing, Vol. 48 (2002), p. 85-105.

[7] Y.G. Li, C. Lin, W.D. Zhang: *Improved sparse least-squares support vector machine classifiers*, Neurocomputing, 2006 (69), p.1655-1658.

[8] V. Jozsef, H. Gabor: *A sparse least squares support vector machine classifiers*, IEEE international conference on neural network(2004), p.543-548.

[9] A. Hyvarinen, J. Karhunen, E. Oja: *Independent Component Analysis*. Willey, New York(2001).

[10] S.S. Chen, D.L. Donoho, M.A. Sauders: *Atomic decomposition by basis pursuit*, SIAM review, Vol. 43 (2001), p. 129-159.

[11] P. Georqiev, A. Cichocki: *Sparse component analysis of overcomplete mixture by improved basis pursuit method*, IEEE international symposium on Circuits and System(2004), p. 37-40.

[12] H.P. Schwefel, Evolutions Strategie und Numerische Optimierung, Dissertation, TU Berlin, Germany(1975).

[13] Information on http://www.ics.uci.edu/~mlearn/ML Repository.html

[14] L.W. Wei, Ch. Sh. Wei, Q. Xiao, Y. Zhang: *Text Classification Using a new method: least square Support Vector Machine*, 5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016), p. 370-375.