Edges not covered by monochromatic bipartite graphs

Xiutao Zhu1,2, Ervin Győri1, Zhen He1,3, Zequn Lv*1,3, Nika Salia1,5, Casey Tompkins1, and Kitti Varga1,4

1Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences.
2Department of Mathematics, Nanjing University.
3Department of Mathematical Sciences, Tsinghua University.
4Department of Computer Science and Information Theory, Budapest University of Technology and Economics.
5Extremal Combinatorics and Probability Group, Institute for Basic Science, Daejeon, South Korea.

Abstract

Let $f_k(n, H)$ denote the maximum number of edges not contained in any monochromatic copy of H in a k-coloring of the edges of K_n, and let $\text{ex}(n, H)$ denote the Turán number of H. In place of $f_2(n, H)$ we simply write $f(n, H)$. In [5], Keevash and Sudakov proved that $f(n, H) = \text{ex}(n, H)$ if H is an edge-critical graph or C_4 and asked if this equality holds for any graph H. All known exact values of this question require H to contain at least one cycle. In this paper we focus on acyclic graphs and have the following results:

(1) We prove $f(n, H) = \text{ex}(n, H)$ when H is a spider or a double broom.
(2) A tail in H is a path $P_3 = v_0v_1v_2$ such that v_2 is only adjacent to v_1 and v_1 is only adjacent to v_0, v_2 in H. We obtain a tight upper bound for $f(n, H)$ when H is a bipartite graph with a tail. This result provides the first bipartite graphs which answer the question of Keevash and Sudakov in the negative.
(3) Liu, Pikhurko and Sharifzadeh [6] asked if $f_k(n, T) = (k-1)\text{ex}(n, T)$ when T is a tree. We provide an upper bound for $f_2(n, P_{2k})$ and show it is tight when $2k-1$ is prime. This provides a negative answer to their question.

1 Introduction

Given any graph H, the classical theorem of Ramsey asserts that there exists an integer $R(H, H)$ such that every 2-coloring of the edges of the complete graph K_n with $n \geq R(H, H)$ contains a monochromatic copy of H. A natural extension of this problem is determining how many monochromatic copies of H there are. For the case of $H = K_3$, this question was answered by Goodman [4] and the case of $H = K_4$ was settled by Thomason [10].

In a different direction, one can ask how many edges must be contained in some monochromatic copy of H in every 2-coloring of the edges of K_n (equivalently how many edges there can be in a 2-coloring which are not contained in any monochromatic copy of H). The first result about this topic is due to Erdős, Rousseau and Schelp [2]. They considered the maximum number of edges not contained in any monochromatic triangle in a 2-coloring of the edges of K_n. Erdős also wrote “many further related questions can be asked” in [2]. In this paper, we will consider problems of this type.

Let c be a 2-coloring of the edges of K_n and let H be a graph. If an edge of K_n is not contained in any monochromatic copy of H, then we say it is NIM-H. Let $E(c, H)$ denote the

*Corresponding author. Email: lvzq19@mails.tsinghua.edu.cn
set of all NIM-H edges in K_n under the 2-edge-coloring c and let

$$f(n, H) = \max \{|E(c, H)| : c \text{ is a 2-edge-coloring of } K_n\}.$$

Let $ex(n, H)$ be the Turán number of H. If one considers a 2-coloring of the edges of K_n in which one of the colors yields an extremal graph for H, then it is easy to see

$$f(n, H) \geq ex(n, H).$$ \hspace{1cm} (1)

As observed by Alon, the result on $f(n, K_3)$ by Erdős, Rousseau and Schelp [2] can also be deduced from a result of Pyber [9] (see [5]). In [5], Keevash and Sudakov studied $f(n, H)$ systematically. They proved that if H contains an edge e such that $\chi(H - e) < \chi(H)$ or $H = C_4$, then equality holds in (1) for sufficiently large n. Furthermore, they asked if the equality holds for all H.

Question 1 (Keevash, Sudakov [5]). Is it true that for any graph H we have $f(n, H) = ex(n, H)$ when n is sufficiently large?

In 2017, Ma [7] provided an affirmative answer to Question 1 for an infinite family of bipartite graphs H, including all even cycles and complete bipartite graphs $K_{s,t}$ for $t > s^2 - 3s + 3$ or $(s,t) \in \{(3,3),(4,7)\}$. In 2019, Liu, Pikhurko and Sharifzadeh [6] extended Ma’s result by providing a larger family of bipartite graphs for which $f(n, H) = ex(n, H)$ holds (however, the graphs they construct still contain a cycle). Surprisingly, Yuan [11] recently found an example showing that the assertion in Question 1 does not hold in general.

Theorem 1 (Yuan [11]). Let $p \geq t + 1 \geq 4$ and K_t^{p+1} denote the graph obtained from K_t by replacing each edge of K_t with a clique K_{p+1}. When n is sufficiently large, then

$$f(n, K_t^{p+1}) = ex(n, K_t^{p+1}) + \binom{t-1}{2}.$$

Based on this result, he conjectured the following.

Conjecture 1 (Yuan [11]). Let H be any graph and n be sufficiently large. Then there exists a constant $C = C(H)$ such that $f(n, H) = ex(n, H) + C$.

As mentioned earlier, the known results about the exact value of $f(n, H)$ require that H contains a cycle. For acyclic graphs and some other bipartite graphs, the situation is less clear. Thus, in this paper, we will focus on this case. A spider is the graph consisting of t paths with one common end vertex such that all other vertices are distinct. A double broom with parameters t, s_1 and s_2 is the graph consisting of a path with t vertices with s_1 and s_2 distinct leaves appended to each of its respective end vertices.

Theorem 2. Let H a spider or a double broom with $s_1 < s_2$ and n be sufficiently large, we have

$$f(n, H) = ex(n, H).$$

A tail in a (not necessary acyclic) graph H is a path $P_3 = v_0v_1v_2$ such that v_2 is only adjacent to v_1 and v_1 is only adjacent to v_0 and v_2.

Theorem 3. Let $H = (A, B, E)$ be a bipartite graph containing a tail and $|A| \leq |B|$. When n is sufficiently large, we have

$$f(n, H) \leq ex(n, H) + \binom{|A| - 1}{2}. \hspace{1cm} (2)$$

Furthermore, the upper bound is tight.
Remark 1. In Theorem 3, there are many bipartite graphs H such that $f(n, H)$ achieves an upper bound greater than $\text{ex}(n, H)$. This implies that even for the bipartite case, the answer to Question 1 can be negative. However, the graphs from Theorem 3 satisfy Conjecture 1.

We will also consider the case of edge colorings with 3 or more colors. Let $f_k(n, H)$ be the maximum number of edges not contained in any monochromatic copy of H in a k-coloring of the edges of K_n. Thus, $f_k(n, H) = f(n, H)$. It appears likely that for $k \geq 3$, the function $f_k(n, H)$ has different behavior for bipartite graphs and non-bipartite graphs. For non-bipartite graphs, one can see that $f_k(n, H) \neq (k-1)\text{ex}(n, H)$ since $(k-1)\text{ex}(n, H) \geq \binom{k}{2}$.

For a tree T, Ma [7] constructed a lower bound by taking random overlays of $k-1$ copies of extremal T-free graphs, and the construction implies $f_k(n, T) \geq (k-1-o(1))\text{ex}(n, T)$. Liu, Pikhurko and Sharifzadeh [6] showed that this lower bound is asymptotically correct.

Theorem 4 (Liu, Pikhurko, Sharifzadeh [6]). Let T be a tree with h vertices. Then there exists a constant $C(k, h)$ such that for all sufficiently large n, we have

$$|f_k(n, T) - (k-1)\text{ex}(n, T)| \leq C(k, h).$$

For more general bipartite graph H, Ma [7] wrote “it may be reasonable to ask if $f_k(n, H) = (k-1)\text{ex}(n, H)$ holds for sufficiently large n”. However, this is not true for disconnected bipartite graphs. Liu, Pikhurko and Sharifzadeh [6] gave an example and showed $f_k(n, 2K_2) = (k-1)\text{ex}(n, 2K_2) - \binom{k-1}{2}$. Based on this example, Liu, Pikhurko and Sharifzadeh [6] asked the following question.

Question 2 (Liu, Pikhurko, Sharifzadeh [6]). Is it true that $f_k(n, T) = (k-1)\text{ex}(n, T)$ for any tree T and sufficiently large n?

Our third result concerns the case when T is a path with an even number of vertices and yields a negative answer to Question 2.

Theorem 5. Let $k \geq 1$ and $n \geq (2k)^{2k^2}$ be integers. We have

$$f_{2k}(n, P_{2k}) \leq (2k-1)\text{ex}(n, P_{2k}) + (k-1)\binom{2k-1}{2}.$$

Furthermore, equality holds when $2k-1$ is a prime and $n \in \{a(2k-1) + (k-1), a(2k-1) + k\}$.

Notation and organization. For a given graph G, we use $e(G)$ to denote the number of edges of G. For a subset of vertices X, let $G[X]$ denote the subgraph induced by X and $G - X$ denote the subgraph induced by $V(G) \setminus X$. For two disjoint subset X, Y, let $G[X, Y]$ denote the bipartite subgraph of G consisting of the edges of G with one end vertex in X and the other in Y. In a red-blue edge-colored complete graph K_n, we say that u is a red (or blue) neighbor of v if the edge uv is red (or blue). For a set X of vertices, let $N_r(v, X)$ and $N_b(v, X)$ denote the red and blue neighbors of v in X, respectively. Let $d_r(v, X) = |N_r(v, X)|$ and $d_b(v, X) = |N_b(v, X)|$. If $X = V(K_n)$, then we simply write $d_r(v)$ and $d_b(v)$. For two graphs G and H, we use $G \cup H$ to denote the disjoint union of G and H. Let $G + H$ be the graph obtained from $G \cup H$ by adding all edges with one end vertex in $V(G)$ and one end vertex in $V(H)$.

The rest of the paper is organized as follows. In Sections 2 and 3, we study the function $f(n, H)$ and prove Theorems 2 and 3, respectively. In Section 4, we study the general function $f_k(n, H)$ and prove Theorem 5.

2 Proof of Theorem 2

Let H be a spider or a double broom on k vertices and c be a red-blue edge-coloring of K_n with $|E(c, H)|$ being maximum. If $E(c, H)$ contains no H, then

$$f(n, H) = |E(c, H)| \leq \text{ex}(n, H),$$
and we are done. Hence we may assume there is a non-monochromatic copy of H in $E(c, H)$.

Since we can take n to be larger than the Ramsey number $R(k^2, k^2)$, it follows, without loss of generality, that K_n contains a blue clique K of size at least k^2. We partition $V(K_n)$ into two parts X and Y such that Y is maximal with the property that any vertex v in Y has $d_b(v, Y) \geq k$ and X consists of the remaining vertices. Note that the large blue clique K is contained in Y, and hence $|Y| \geq k^2$. Since each vertex in Y has blue degree at least k in Y, every blue edge in Y or between X and Y can be extended to a blue copy of H. Hence, all blue NIM-H edges are contained in X and $|X| \geq 2$.

For each vertex u in X, we have $d_b(u, Y) \leq (k - 1)$. Thus for each subset X' of X, the subset $Y' = Y \setminus N_b(X', Y)$ is such that $K_n[X', Y']$ is a red complete bipartite graph and $|Y'| \geq |Y| - (k - 1)|X'|$. We call Y' the corresponding subset of X'.

First assume $|X| \geq \left\lceil \frac{k}{2} \right\rceil + 1$. For each red edge uv contained in X or between X and Y, we can find a subset $X' \subseteq X$ of size $\left\lfloor \frac{k}{2} \right\rfloor$ that contains exactly one of u and v. Using the corresponding subset Y' of X', this red edge uv can be extended to a red copy of H. Hence all red NIM-H edges are contained in Y and

$$|E(c, H)| \leq \text{ex}(|Y|, H) + \text{ex}(|X|, H) \leq \text{ex}(n, H).$$

Therefore, in the rest of the proof, we will assume $|X| \leq \left\lceil \frac{k}{2} \right\rceil$. Furthermore, each red edge in Y is NIM-H, otherwise we replace the color of this edge by blue and since $E(c, H)$ is maximum, it has no changes.

Next we distinguish two cases based on whether H is a spider or a double broom.

The proof when H is a spider. Let H be a spider consisting of t paths with a common initial vertex v_0. We call each path starting from v_0 a branch, and we assume that the lengths of these t branches are ℓ_1, \ldots, ℓ_t such that $v(H) = k = 1 + \sum_{i=1}^t \ell_i$.

Now we choose a copy of H from $E(c, H)$ and denote it by H'. Let $X' = X \cap V(H')$. Since H' contains blue edges and all NIM-H blue edges are contained in X, we have $X' \neq \emptyset$ and the corresponding subset Y' is of size at least

$$|Y'| - (k - 1)|X'| \geq k.$$

For every branch of H', we apply the following method to replace all blue edges with red edges. First, every branch consisting entirely of blue edges is replaced by a red path of the same length in $K_n[X', Y']$. This can be done since $K_n[X', Y']$ is a complete bipartite graph consisting of only red edges and Y' is large enough. For any remaining branch $v_0v_1 \ldots v_{\ell_m}$, let v_iv_{i+1} be the first red edge on this branch, i.e., every edge in the path $v_0v_1 \ldots v_i$ is blue. If i is even, we replace the path $v_{2j}v_{2j+1}v_{2j+2}$ by a new red path $v_{2j}y_jv_{2j+2}$ with a distinct $y_j \in Y'$ for all $0 \leq j \leq \frac{k}{2} - 1$. If i is odd, we replace the path $v_{2j}v_{2j+1}v_{2j+2}$ by a new red path $v_{2j}y_jv_{2j+2}$ with a distinct $y_j \in Y'$ for all $0 \leq j \leq \frac{k}{2} - \frac{1}{2} - 1$ and replace the single edge $v_{i-1}v_i$ by a new red path $v_iy'v_{i-1}$ with a distinct $y' \in Y'$. For all other blue edges after v_iv_{i+1}, we replace them by a new red path P_3 with the middle vertices in Y'. Again, this can be done since $K_n[X', Y']$ is a complete bipartite graph consisting of only red edges and Y' is large enough.

After this, the original branch becomes a longer red path and we take the first segment of length ℓ_m as the new branch. Note that this new branch still contains the original red edge v_iv_{i+1} unless i is odd and $i + 1 = \ell_m$. Let H'' be the resulting copy of H.

If H'' still contains one of the original red edges, then we have a monochromatic copy of H, a contradiction since the original edges are NIM-H. Otherwise every branch of H' is either entirely blue or has even length and is such that only the final edge is red. However, then we have $|X| \geq |X'| \geq \left\lceil \frac{k}{2} \right\rceil + 1$, a contradiction of our assumption that $|X| \leq \left\lceil \frac{k}{2} \right\rceil$ (recall that the blue edges are in X'). The proof is complete for spiders.

The proof when H is a double broom. Let H be a double broom with parameters t, s_1 and s_2 such that $k = t + s_1 + s_2$ and $s_1 < s_2$.
First, assume that t is odd and $|X| \geq \lceil \frac{t}{2} \rceil + 1$. For a red edge uv with $u \in X$, $v \in Y$, there is a subset $X' \subseteq X$ of size $\frac{t+1}{2}$ containing u. Let Y' be the corresponding subset for X'. Then there is a path P_1 in $K_n[X', Y']$ which starts from u and ends at another vertex, say w in X', and avoids v. Since $|Y'| \geq k^2 - (k-1)\frac{t+1}{2}$, we can select additional red edges incident to u and w, which together with the edge uv represent the set of edges incident to the leaves of H. It follows that uv is not NIM-H. Hence all red NIM-H edges are contained in X and Y, and we have

$$|E(c, H)| \leq \text{ex}(n - |X|, H) + \left(\frac{|X|}{2}\right) \leq \text{ex}(n, H),$$

where the second inequality holds since $|X| \leq \frac{n}{2}$.

Now assume that t is even and $|X| \geq \lceil \frac{t}{2} \rceil + 1$. Let $Y_1 = \{v \in Y : d_r(v, X) \geq 1\}$ and $Y_2 = Y \setminus Y_1$. Since each vertex in X has at most $k - 1$ blue neighbors in Y, we have $|Y_2| \leq k - 1$.

Now we show that for each vertex $v \in Y_1$, there are at most $s_1 + \frac{t}{2} - 1$ NIM-H edges incident to v. Suppose by way of contradiction that for a vertex $v \in Y_1$, there are at least $s_1 + \frac{t}{2}$ red NIM-H edges incident to v. By the definition of Y_1, there is a red edge vu with $u \in X$. Let $X' = X$ and let $Y' \subseteq Y$ be the corresponding subset of X'. We extend the red edge vu to a red path P_1 in such a way that: (1) one of the end vertex is v and the other end vertex w is in X', (2) every second vertex of the path is in X' and the remaining vertices of the path are in Y', (3) there remain at least s_1 red NIM-H edges incident to v which are not vertices of the path. These conditions can be satisfied since $|Y'|$ is sufficiently large. Now at least s_1 red NIM-H edges incident to v are not covered by the vertices of the path, which we can view as leaf edges of H incident to v. Select another t red (but not necessarily NIM-H) edges incident to w and to some vertices which have not been used yet. Thus we found a red copy of H containing at least one NIM-H edge, a contradiction.

Therefore, for each vertex $v \in Y_1$, there are at most $s_1 + \frac{t}{2} - 1$ NIM-H edges incident to v. All other NIM-H edges are contained in Y_2 and X. Hence,

$$|E(c, H)| \leq |Y_1| \left(s_1 + \frac{t}{2} - 1\right) + \left(\frac{|Y_2|}{2}\right) + \left(\frac{|X|}{2}\right) \leq \text{ex}(n, H),$$

where the second inequality holds since the coefficient of $|Y_1|$ satisfies $s_1 + \frac{t}{2} - 1 < \frac{k-2}{2}$ and $|Y_2| \leq k - 1$, $|X| \leq \frac{n}{2}$. Thus, we are done in the case $|X| \geq \lceil \frac{t}{2} \rceil + 1$.

Finally, we consider the case when $|X| \leq \lceil \frac{t}{2} \rceil$. Since $|X| \geq 2$, we have $t \geq 4$. Let $Y_1 = \{v \in Y : d_r(v, X) \geq 2\}$ and $Y_2 = Y \setminus Y_1$. Now we show that there is no red path of length $t - 2|X| + 1$ in Y_1. Suppose by way of contradiction that P is a red path of length $t - 2|X| + 1$ in Y_1. First, we extend P to a red path of length $t - 1$ using vertices in X and the corresponding subset of X in Y such that the two end vertices of this longer path, say u and v, are contained in X. Since each vertex in X has red degree at least $(|Y| - (k-1))$ in Y, we can find s_1 new red neighbors of u and s_2 new red neighbors of v in Y and view them as the leaf-edges of H. That is, we extended the red path P to a red copy of H. However, as we assumed all red edges in Y are NIM-H, we have a contradiction.

Now we show $|Y_2| \leq s_1 - 1$. Suppose by way of contradiction that $|Y_2| \geq s_1$. If there are two vertices v_1, v_2 in Y_2 such that $N_b(v_1, X) \cup N_b(v_2, X) = X$, then for any blue edge u_1u_2 in X, we have that $v_1u_1u_2v_2$ or $v_1u_2u_1v_2$ is a blue path. Since $t \geq 4$ and all vertices in Y have large blue degree in Y, this blue path can be extended to a blue copy of H. Hence there are no blue NIM-H edges, a contradiction. Thus by the definition of Y_2, there exists a vertex $w \in X$ such that $N_b(v, X) = X \setminus \{v\}$. Let uv' be a blue NIM-H edge in Y with $u \neq w$. Using uv' and s_1 blue edges between u and Y_2, we can find a blue star with $s_1 + 1$ leaves. By the definition of Y, we can extend this blue star to a blue copy of H using other vertices in Y,
a contradiction. Hence we have $|Y_2| \leq s_1 - 1$. Furthermore, there are at most $|Y_2|$ red NIM-H
edges between X and Y_2.

Therefore, we have

$$|E(c, H)| \leq \text{ex}(|Y_1|, P_{t-2|X|+2}) + |Y_1|(|Y_2| + |X|) + \left(\frac{|Y_2|}{2}\right) + \left(\frac{|X|}{2}\right) + |Y_2|$$

$$\leq \frac{t - 2|X|}{2}|Y_1| + |Y_1|(|Y_2| + |X|) + \left(\frac{|Y_2|}{2}\right) + \left(\frac{|X|}{2}\right) + |Y_2|$$

$$\leq \frac{t + 2(s_1 - 1)}{2}(n - (s_1 - 1) - |X|) + \left(\frac{s_1}{2}\right) + \left(\frac{|X|}{2}\right)$$

$$\leq \frac{t + 2s_1 - 2}{2}n \leq \text{ex}(n, H), \tag{2}$$

where the last inequality holds since $s_1 < s_2$. The proof is complete. \hfill \blacksquare

Remark 2. One may note that in inequality (1) and (2), we need the condition $s_1 < s_2$ to ensure that $\frac{t + 2s_1 - 2}{2}n \leq \text{ex}(n, H)$. For the case $s_1 = s_2$, these inequalities still show $f(n, H) \leq k/2n$ but this does not imply $f(n, H) \leq \text{ex}(n, H)$ for all n. With additional details, one could extend the proof to the case $s_1 = s_2$. But this would make our proof more complicated, so we omit it.

3 Proof of Theorem 3

We first construct some bipartite graphs which attain the upper bound in (2). Our idea comes from a theorem of Bushaw and Kettle [1]. Before we present the detailed constructions, we recall some results which we will require.

It is well-known that $\text{ex}(n, T) \leq \frac{v(T)-2}{2}n$ when T is a path or star. For a general tree T, this is the celebrated Erdős–Sós Conjecture.

Conjecture 2 (Erdős–Sós). For a tree T, we have $\text{ex}(n, T) \leq \frac{v(T)-2}{2}n$.

In 2005, McLennan [8] proved that the Erdős–Sós Conjecture holds for trees of diameter at most four.

Theorem 6 (McLennan [8]). Let T be a tree of diameter at most four, then $\text{ex}(n, T) \leq \frac{v(T)-2}{2}n$.

A tree is called balanced if it has the same number of vertices in each color class when the tree is viewed as a bipartite graph. A forest is called balanced if each of its components is a balanced tree. Bushaw and Kettle [1] proved the following theorem.

Theorem 7 (Bushaw and Kettle [1]). Let H be a balanced forest on $2a$ vertices which comprises at least two trees. If the Erdős–Sós Conjecture holds for each component tree in H, then for any $n \geq 3a^2 + 32a^2\binom{2a}{a}$, we have

$$\text{ex}(n, H) = \begin{cases} \binom{a-1}{2} + (a - 1)(n - a + 1) & \text{if } H \text{ admits a perfect matching,} \\ (a - 1)(n - a + 1) & \text{otherwise.} \end{cases}$$

Now, making use of Theorems 6 and 7, we construct some bipartite graphs H which are negative examples for Question 1. Let \mathcal{H}_1 be the family of all balanced trees on $2a$ vertices which admit no perfect matching and for which the Erdős–Sós Conjecture holds. One can see that \mathcal{H}_1 is not empty since a double star $S_{a-1, a-1}$ is a balanced tree on $2a$ vertices and the Erdős–Sós Conjecture holds for it by Theorem 6. Let \mathcal{H}_2 be the family of balanced trees on $2a$ vertices for which the Erdős–Sós Conjecture holds for sufficiently large n. Note that \mathcal{H}_2 is also nonempty, for example a path on $2a$ vertices belongs to \mathcal{H}_2.

6
Let $H_1 \in \mathcal{H}_1$, $H_2 \in \mathcal{H}_2$ and set $H = H_1 \cup H_2$. We know that H is a balanced forest on $4a$ vertices. Since H_1 admits no perfect matching, H admits no perfect matching either. The Erdős–Sós Conjecture holds for each component of H, hence by Theorem 7, when n is sufficiently large, we have

$$ex(n, H) = (2a - 1)(n - 2a + 1).$$

On the other hand, consider a partition of the vertices of the complete graph K_n into parts X and Y with $|X| = 2a - 1$ and $|Y| = n - 2a + 1$. We color all edges between X and Y red and the remaining edges blue. One can see that the red edges induce a complete bipartite graph $K_{2a - 1, n - 2a + 1}$ which contains no red copy of H. The blue edges induce a blue $(2a - 1)$-clique and a blue $(n - 2a + 1)$-clique which are disjoint with each other. Since each component of H contains $2a$ vertices, all blue copies of H are contained in the $(n - 2a + 1)$-clique. Therefore, all red edges and all the edges in the blue $(2a - 1)$-clique are NIM-H, that is,

$$f(n, H) \geq \left(\frac{2a - 1}{2}\right) + (2a - 1)(n - 2a + 1) = \left(\frac{2a - 1}{2}\right) + ex(n, H).$$

Therefore, such a bipartite graph H attains the upper bound of the inequality (2).

Next we prove that if the bipartite graph H contains a tail $v_0v_1v_2$, then $f(n, H) \leq ex(n, H) + \binom{|A| - 1}{2}$. Note that it is possible that H is disconnected, hence let $H = H_1 \cup \cdots \cup H_q$, where H_i are its components (if H is connected, then $H = H_1$) and we say the tail $v_0v_1v_2$ is contained in H_1. Let A_i, B_i be the two color classes of H_i with $|A_i| \leq |B_i|$ for any $1 \leq i \leq q$, and let $A = \bigcup_{i=1}^q A_i$, $B = \bigcup_{i=1}^q B_i$. Set $a = |A|$.

Since we take n to be sufficiently large, we may assume $n \geq R(K_{v(H)}, K_{v(H)})$. Let c be a red-blue edge-coloring of K_n. Without loss of generality, there is a blue clique on at least $v(H)$ vertices in K_n. Let K_t be a blue clique in K_n such that t is as large as possible. We have $t \geq v(H)$ and every other vertex has a red neighbor in $V(K_t)$. We partition $V(K_n) \setminus V(K_t)$ into two subsets X, Y such that Y consists of the vertices which have blue neighbors in $V(K_t)$ and X consists of the remaining vertices. Hence all edges between $V(K_t)$ and X are red.

The following claims will be used several times.

Claim 1. All blue NIM-H edges are contained in X.

Proof. Obviously, the blue edges in K_t and $K_0[V(K_t), Y]$ are not NIM-H. Let xy be a blue edge with $y \in Y$ and $x \in X \cup Y$. By the definition of Y, the vertex y has a blue neighbor, say v, in $V(K_t)$. If we embed $V(H) \setminus \{v_1, v_2\}$ into $V(K_t)$ and view vyx as the tail of H, then we find a blue copy of H containing xy. Thus xy is not NIM-H. Therefore, all blue NIM-H edges are contained in X. \hfill \square

Claim 2. If $|X| \geq a$, then the red edges between X and $V(K_t) \cup Y$ are not NIM-H.

Proof. Since the red edges between X and $V(K_t)$ induce a red complete bipartite graph and $|X| \geq a$ and $t \geq v(H)$, each such edge is contained in a red copy of H, thus these edges are not NIM-H. Let xy be a red edge with $x \in X$, $y \in Y$. By the maximality of K_t, the vertex y has a red neighbor, say v, in $V(K_t)$. Actually, $\{x, y, v\}$ induces a red triangle. If the tail $v_0v_1v_2$ of H satisfies $\{v_0, v_2\} \subset B$ and $v_1 \in A$, then embed $B \setminus \{v_2\}$ into $V(K_t)$ so that v_0 is identified with v, embed $A \setminus \{v_1\}$ into $X \setminus \{x\}$ and view vxy as the tail of H, thus we find a red copy of H containing xy. So in this case, xy is not NIM-H. If the tail $v_0v_1v_2$ of H satisfies $\{v_0, v_2\} \subset A$ and $v_1 \in B$, then embed $B \setminus \{v_1\}$ into $V(K_t) \setminus \{v\}$, embed $A \setminus \{v_2\}$ into X so that v_0 is identified with x. View xyv as the tail, we find a red copy of H containing xy. So in this case, xy is not NIM-H either. \hfill \square

We distinguish three cases based on the size of X.
Case 1: $|X| \geq a + 1$. In this case, we first claim that the red edges in X are also not NIM-H. Let xx' be a red edge contained in X and v be a vertex in K_1. If the tail $v_0v_1v_2$ in H satisfies \{v_0, v_2\} $\subset B$ and $v_1 \in A$, then since $|X \setminus \{x, x'\}| \geq a - 1 = |A \setminus \{v_1\}|$, we can embed $A \setminus \{v_1\}$ into $X \setminus \{x, x'\}$, embed $B \setminus \{v_2\}$ into $V(K_1)$ so that v_0 is identified with v and view vxx' as the tail $v_0v_1v_2$, thereby finding a red copy of H containing xx'. So in this case, xx' is not NIM-H.

If the tail $v_0v_1v_2$ in H satisfies \{v_0, v_2\} $\subset A$ and $v_1 \in B$, then we embed $A \setminus \{v_2\}$ into $X \setminus \{x\}$ so that v_0 is identified with x, embed $B \setminus \{v_1\}$ into $V(K_1) \setminus \{v\}$ and view $xx'v$ as the tail, and again we can find a red copy of H containing xx'. Therefore, xx' is not NIM-H.

By Claim 2 and the above result, all red NIM-H edges are contained in $V(K_1) \cup Y$. Note that the red NIM-H edges contained in $V(K_1) \cup Y$ induce an H_1-free graph. Otherwise, such a red copy of H_1, together with a red copy of $H_2 \cup \cdots \cup H_q$ if H is disconnected) contained in the complete bipartite graph $K_n[X, V(K_1)]$ yields a red copy of H containing an NIM-H edge, a contradiction. Analogously, the blue NIM-H edges contained in X induce a graph which is H_1-free. Hence,

$$|E(c, H)| \leq \text{ex}(|X|, H_1) + \text{ex}(n - |X|, H_1)$$

$$\leq \text{ex}(n, H_1) \leq \text{ex}(n, H),$$

where the second inequality holds since H_1 is connected. The proof is complete in this case.

Case 2: $|X| = a$. By Claim 2, the set of red NIM-H edges can be partitioned into two parts: the ones contained in $V(K_1) \cup Y$ and the remaining ones which are contained in X. Since all blue NIM-H edges are contained in X by Claim 1, the sum of the total number of blue NIM-H edges and the number of red NIM-H edges contained in X is at most $\binom{a}{2}$. The set of red NIM-H edges contained in $V(K_1) \cup Y$ yields an H_1-free graph. Indeed, otherwise together with a red copy of $H_2 \cup \cdots \cup H_q$ (if H is disconnected) in $K_n[X, V(K_1)]$, we could find a red copy of H containing a red NIM-H edge, a contradiction. Thus the number of red NIM-H edges contained in $V(K_1) \cup Y$ is at most $\text{ex}(n - a, H_1)$.

Therefore, the total number of NIM-H edges is at most $\text{ex}(n - a, H_1) + \binom{a}{2}$. Since H_1 is connected and contains a tail, it follows that the union of a star S_{a-1} on a vertices and an extremal graph for $\text{ex}(n - a, H_1)$ is still H_1-free. Hence,

$$\text{ex}(n - a, H_1) + (a - 1) \leq \text{ex}(n, H_1).$$

Thus, we have

$$|E(c, H)| \leq \text{ex}(n - a, H_1) + \binom{a}{2} \leq \text{ex}(n, H_1) + \binom{a - 1}{2}$$

$$\leq \text{ex}(n, H) + \binom{a - 1}{2},$$

and the proof of this case is complete.

Case 3: $|X| \leq a - 1$. By Claim 1, the number of blue NIM-H edges is at most $\binom{a-1}{2}$, and the red NIM-H edges yield an H-free graph. Hence

$$|E(c, H)| \leq \text{ex}(n, H) + \binom{a - 1}{2},$$

and the proof is complete.

\[\blacksquare \]

Remark 3. In [12], the first author and Chen also give a family of examples such that $\chi(H) = 3$ and $f(n, H) > \text{ex}(n, H)$.

8
4 Proof of Theorem 5

We first give a 2k-edge-coloring of K_n with $(2k-1)ex(n, P_{2k})+(k-1)(2k-1)$ NIM-P_{2k} edges when $2k-1$ is a prime and $n \in \{a(2k-1) + (k-1), a(2k-1) + k\}$. Before showing our construction, we need to recall the exact value of $ex(n, P_t)$.

Theorem 8 (Faudree and Schelp [3]). Let $n = a(\ell - 1) + b$ with $0 \leq b \leq \ell - 2$. Then we have

$$ex(n, P_t) = a\left(\frac{\ell - 1}{2}\right) + \left\lceil \frac{b}{2} \right\rceil.$$

If ℓ is even and $b \in \{\ell/2, \ell/2-1\}$, then the extremal graphs are $tK_{\ell-1} \cup (K_{\ell/2-1} + \bar{K}_{n-t(\ell-1)-\ell/2+1})$ for any $0 \leq t \leq a$. Otherwise $aK_{\ell-1} \cup K_b$ is the unique extremal graph.

Therefore, by Theorem 8, when $n \in \{a(2k-1) + (k-1), a(2k-1) + k\}$, the extremal graphs for $ex(n, P_{2k})$ are $tK_{2k-1} \cup (K_{k-1} + \bar{K}_{n-t(2k-1)-(k-1)})$ for any $0 \leq t \leq a$.

Let U be a subset of size $(2k-1)^2$ of $V(K_n)$ and label the vertices of U by $[i, j]$ where $1 \leq i, j \leq 2k-1$. We divide U into $2k-1$ subsets by setting

$$U_i = \{[i, 1], [i, 2], \ldots, [i, 2k-1]\}, \quad 1 \leq i \leq 2k-1.$$

When it is not confusing, we also let U and U_i denote the cliques induced by the vertices in them.

For any $1 \leq i, j \leq 2k-1$, let σ_{ji} denote the clique induced by the vertices $[1, i], [2, i + j], \ldots, [2k-1, i + (2k-2)j]$, where the indices are taken modulo $2k-1$. For any $1 \leq j \leq 2k-1$, let

$$C_j = \{\sigma_{ji} : 1 \leq i \leq 2k-1\}.$$

Then C_j is a set consisting of $2k-1$ disjoint $(2k-1)$-cliques.

Let $c : E(K_n) \to \{c_1, \ldots, c_{2k}\}$ be a 2k-edge-coloring defined as follows. Let $W = V(K_n) \setminus U$. For any $j \in [2k-1]$, we assign the color c_j to the edges of each clique σ_{ji} in C_j. Let σ_{j1}^c denote the clique induced by the vertices $[k+1, 1 + kj], \ldots, [2k-1, 1 + (2k-2)j]$. Clearly, we have $\sigma_{j1}^c \subset \sigma_{ji}$. Now consider the sub-clique $\sigma_{j1} - \sigma_{j1}^c$ and replace the color c_j by c_{2k} inside it. With this, σ_{j1} decomposes into a copy of $K_{k-1} + \bar{K}_k$ colored by c_j and a copy of K_k colored by c_{2k}. After this, we assign the color c_{2k} to all the edges between σ_{j1}^c and V. Figure 1 shows the subgraph induced by the edges colored by c_{2k-1}. Finally, we assign the color c_{2k} to the edges which have not been colored yet.

![Figure 1: The subgraph induced by the edges of color c_{2k-1}.](image)

In the next two paragraphs, we show that this $2k$-edge-coloring is well-defined, namely, each edge is assigned exactly one color. Clearly, each edges is assigned at least one color and the edges inside W or between $U_1 \cup \cdots \cup U_k$ and W are assigned exactly one color.
Note that U is a $(2k - 1)^2$-clique. Let $1 \leq i, \ell, s, t \leq 2k - 1$. Clearly, the edge $[i, s][i, t]$ is only covered by the clique U_i. If the edge $[i, s][\ell, t]$ with $i < \ell$ were covered by two cliques, say by one in C_j and by another one in C_j' for some $1 \leq j, j' \leq 2k - 1$, then

$$\begin{cases} t \equiv s + (\ell - i)j \pmod{2k - 1} \\
 t \equiv s + (\ell - i)j' \pmod{2k - 1}
\end{cases}$$

would hold, and since $2k - 1$ is prime, we would have $j = j'$, a contradiction. Thus, each edge inside U is covered by at most one clique in C_j or by the clique U_i. On the other hand, considering the number of edges in U and the total number of edges of cliques in each C_j and U_i yields

$$e(U) = \sum_{i=1}^{2k-1} e(U_i) + \sum_{j=1}^{2k-1} \sum_{\sigma_j \in C_j} e(\sigma_j).$$

Therefore, the cliques in each C_j together with the cliques U_i for all $1 \leq i, j \leq 2k - 1$ form an edge-decomposition of the large clique U. Hence each edge in U is assigned one color.

Now we show that for any $1 \leq j, j' \leq 2k - 1$ with $j \not= j'$, the sub-cliques σ_j and σ_j' are vertex-disjoint. Supposing that a vertex $[i, 1 + (i - 1)j] \in V(\sigma_j)$ is also contained in $\sigma_{j'}$ for some $1 \leq i, j, j' \leq 2k - 1$, we obtain

$$1 + (i - 1)j \equiv 1 + (i - 1)j' \pmod{2k - 1}.$$

Since $2k - 1$ is a prime number, we get $j = j'$, a contradiction. Thus the sub-cliques σ_j for all $1 \leq j \leq 2k - 1$ form a vertex-decomposition of $U_{k+1} \cup \cdots \cup U_{2k-1}$. Hence, each edge between $U_{k+1} \cup \cdots \cup U_{2k-1}$ and W is assigned one color in $\{c_1, \ldots, c_{2k-1}\}$. Therefore, our $2k$-edge-coloring c is well-defined.

Note that for any $1 \leq j \leq 2k - 1$, the subgraph induced by the edges of color c_j is a copy of $tK_{2k-1} \cup (K_{k-1} + \overline{K}_{n-(k-1)-t(2k-1)})$ with $t = 2k - 2$, and this graph is extremal for $\text{ex}(n, P_{2k})$ when $n \not\in \{a(2k - 1) + (k - 1), a(2k - 1) + k\}$. Now consider the edges colored by c_{2k}. They are in the cliques U_i with $1 \leq i \leq 2k - 1$, inside $\sigma_{j1} - \sigma_{j1}'$ with $1 \leq j \leq 2k - 1$, inside W, and between $U_1 \cup \cdots \cup U_k$ and W. Note that for any $k + 1 \leq i \leq 2k - 1$, U_i are independent $(2k - 1)$-cliques colored by c_{2k}, hence the edges in U_i are also NIM-P_{2k}. For all other c_{2k}-edges, they construct a large connected component such that W is a clique in the component. Hence none of these edges are NIM-P_{2k}.

Therefore,

$$|E(c, P_{2k})| = (2k - 1)\text{ex}(n, P_{2k}) + (k - 1)\binom{2k - 1}{2},$$

and we are done.

Remark 4. Note that $tK_{2k-1} \cup (K_{k-1} + \overline{K}_{n-(k-1)-t(2k-1)})$ is not extremal for $\text{ex}(n, P_{2k})$ when $n \not\in \{a(2k - 1) + (k - 1), a(2k - 1) + k\}$, but we still have

$$\text{ex}(n, P_{2k}) - e\left(tK_{2k-1} \cup (K_{k-1} + \overline{K}_{n-(k-1)-t(2k-1)})\right) < (k - 1)^2.$$

Hence in our construction, when $2k - 1$ is prime, the number of NIM-P_{2k} edges is more than $(2k - 1)\text{ex}(n, P_{2k})$. That is to say, when $2k - 1$ is prime, we have $f_{2k}(n, P_{2k}) > (2k - 1)\text{ex}(n, P_{2k})$ for every sufficiently large n.

Next we prove the upper bound of $f_{2k}(n, P_{2k})$. Let $c : E(K_n) \to \{c_1, \ldots, c_{2k}\}$ be a $2k$-edge-coloring of K_n. We call an edge a c_i-edge if it is of color c_i and we let G_i denote the subgraph induced by all c_i-edges, for any $1 \leq i \leq 2k$. Without loss of generality, we can assume $e(G_{2k}) \geq \binom{n}{2}/2k$. By Theorem 8, there is a path P of at least $\frac{n}{2k}$ vertices in G_{2k}. Let G'_{2k} be
the component of G_{2k} which contains the path P, and let $X = V(G'_{2k})$ and $Y = V(K_n) - X$. Then we have $|X| \geq \frac{n}{2k}$ and there is no c_{2k}-edge between X and Y. Since the component G'_{2k} contains a long path P, each edge of G'_{2k} is contained in a monochromatic copy of P_{2k}. Hence, all NIM-P_{2k} c_{2k}-edges are contained in Y.

For each $1 \leq i \leq 2k-1$, there are at most $\text{ex}(n, P_{2k})$ NIM-P_{2k} c_{i}-edges. If $|Y| \leq (k-1)(2k-1)$, then there are at most $\text{ex}(|Y|, P_{2k}) \leq (k-1)(2k-1)$ NIM-P_{2k} c_{2k}-edges. Hence, the total number of NIM-P_{2k} edges is at most

$$(2k-1)\text{ex}(n, P_{2k}) + (k-1)\binom{2k-1}{2},$$

so we are done. Therefore, we may assume $|Y| \geq (k-1)(2k-1) + 1$.

Let us define a procedure to find pairs (X_i, Y_i) satisfying the following conditions:

(i) $X_i \subseteq X$ with $|X_i| = 2k$ and $Y_i \subseteq Y$ with $|Y_i| = k$ for any $1 \leq i \leq 2k$;

(ii) Y_i and Y_j are disjoint for any $1 \leq i, j \leq 2k$ with $i \neq j$;

(iii) $K_n[X_i, Y_i]$ forms a monochromatic copy of complete bipartite graph for any $1 \leq i \leq 2k$.

Assume that for some $1 \leq i \leq 2k$, we have found $(X_1, Y_1), \ldots, (X_{i-1}, Y_{i-1})$ which satisfy the conditions. Let $s = (k-1)(2k-1) + 1$. If

$$|Y \setminus \bigcup_{j=1}^{i-1} Y_j| \leq s - 1,$$

then the procedure terminates. Otherwise we choose a subset Y'_i of $Y \setminus \bigcup_{j=1}^{i-1} Y_j$ with $|Y'_i| = s$. Let $Y'_i = \{y_1, \ldots, y_s\}$. For each $x \in X$, we define a vector $\vec{e}(x, Y'_i) = (e_1, \ldots, e_s)$ as follows: for any $1 \leq j \leq s$, let $e_j = i$ if and only if the edge xy_j is colored by c_i. Since no edge between X and Y is colored by c_{2k}, we have $\vec{e}(x, Y'_i) \in \{1, \ldots, 2k-1\}^s$ for any $x \in X$. For each $\vec{v} \in \{1, \ldots, 2k-1\}^s$, let $X_{\vec{v}}$ denote the set of vertices $x \in X$ for which $\vec{e}(x, Y'_i) = \vec{v}$. Hence, X is divided into $(2k-1)^s$ subsets and clearly, at least one subset, say $X_{\vec{v}}$, contains at least $|X|/(2k-1)^s$ vertices. Observe that $K_n[X_{\vec{v}}, Y_i]$ is a monochromatic star for any $y_j \in Y'_i$. Since $|Y'_i| = (k-1)(2k-1) + 1$ and there are at most $2k-1$ different colors between $X_{\vec{v}}$ and Y'_i, by pigeonhole principle, there exists a subset $Y_i' \subseteq Y'_i$ such that $|Y_i'| = k$ and the edges between X_i and Y_i' are monochromatic. That is $K_n[X_{\vec{v}}, Y_i']$ is a monochromatic complete bipartite graph. Since $n \geq (2k)^{2k^2}$,

$$|X_{\vec{v}}| \geq \frac{|X|}{(2k-1)^s} \geq \frac{n}{(2k)^s} \geq 2k.$$

We can choose a subset X_i from $X_{\vec{v}}$ with $|X_i| = 2k$, thereby finding the pair (X_i, Y_i) as we wanted.

Note that since Y is finite, the procedure terminates. Let t denote the number of steps the algorithm took, and let $(X_1, Y_1), \ldots, (X_t, Y_t)$ be the pairs the algorithm found. Let $Y_0 = Y \setminus \bigcup_{i=1}^{t} Y_i$. Then we have $|Y_0| \leq (k-1)(2k-1)$. For any $1 \leq i \leq 2k-1$, let t_i denote the number of the pairs (X_j, Y_j) for which the edges of $K_n[X_j, Y_j]$ are of color c_i. Without loss of generality, we may assume that $t_1, \ldots, t_h > 0$ for some $1 \leq h \leq 2k-1$. Then $t = \sum_{i=1}^{h} t_i$. Let $1 \leq i \leq h$ and consider the c_i-edges. Without loss of generality, we can assume that $K_n[X_1, Y_1], \ldots, K_n[X_{t_i}, Y_{t_i}]$ are of color c_i. Then each NIM-P_{2k} c_i-edge is contained in $V(K_n) \setminus \bigcup_{j=1}^{t_i} (X_j \cup Y_j)$. Since the sets Y_1, \ldots, Y_{t_i} are pairwise disjoint and $X_1, \ldots, X_{t_i} \subseteq X$, we have

$$\left| \bigcup_{j=1}^{t_i} (X_j \cup Y_j) \right| \geq t_i k + 2k,$$
thus the number of NIM-P_{2k} c_i-edges is at most $\operatorname{ex}(n - t_i k - 2 k, P_{2k})$. Now let $h + 1 \leq i \leq 2k - 1$ (if such an index exists). Since $t_i = 0$, the number of NIM-P_{2k} c_i-edges is at most $\operatorname{ex}(n, P_{2k})$.

As we have proved, all NIM-P_{2k} c_2k-edges are contained in Y and $|Y| \leq (k - 1)(2k - 1) + tk$. Therefore, the total number of NIM-P_{2k} edges is at most

$$\operatorname{ex}((k - 1)(2k - 1) + tk, P_{2k}) + \sum_{i=1}^{h} \operatorname{ex}(n - t_i k - 2 k, P_{2k}) + (2k - 1 - h) \operatorname{ex}(n, P_{2k}).$$

(3)

To prove the final result, we need the following lemma.

Lemma 1. Let n_1, n_2 and c be constants. Then we have

$$\operatorname{ex}(n_1, P_t) + \operatorname{ex}(n_2, P_t) < \operatorname{ex}(n_1 - c, P_t) + \operatorname{ex}(n_2 + c + \ell, P_t).$$

Proof. Let $n_1 - c = a_1(\ell - 1) + b_1$ and $n_2 + c = a_2(\ell - 1) + b_2$, where $0 \leq b_1, b_2 \leq \ell - 2$. By Theorem 8, we have

$$\operatorname{ex}(n_1 - c, P_t) + \operatorname{ex}(n_2 + c, P_t) + \operatorname{ex}(\ell, P_t) \geq \operatorname{ex}(n_1 - c, P_t) + \operatorname{ex}(n_2 + c, P_t) + \operatorname{ex}(\ell, P_t) > (a_1 + a_2)\left(\frac{\ell - 1}{2}\right) + \left(\frac{b_1}{2}\right) + \left(\frac{b_2}{2}\right) + \left(\frac{\ell - 1}{2}\right)$$

and

$$\operatorname{ex}(n_1, P_t) + \operatorname{ex}(n_2, P_t) \leq \frac{\ell - 2}{2}(n_1 + n_2) = (a_1 + a_2)\left(\frac{\ell - 1}{2}\right) + (b_1 + b_2)\frac{\ell - 2}{2}.$$

Hence we have

$$\operatorname{ex}(n_1 - c, P_t) + \operatorname{ex}(n_2 + c, P_t) - (\operatorname{ex}(n_1, P_t) + \operatorname{ex}(n_2, P_t)) > \left(\frac{b_1}{2}\right) + \left(\frac{b_2}{2}\right) + \left(\frac{\ell - 1}{2}\right) - (b_1 + b_2)\frac{\ell - 2}{2} > 0.$$

we are done. \hfill \Box

When applying the above lemma to (3), we get

$$\operatorname{ex}((k - 1)(2k - 1) + tk, P_{2k}) + \sum_{i=1}^{h} \operatorname{ex}(n - t_i k - 2 k, P_{2k}) + (2k - 1 - s) \operatorname{ex}(n, P_{2k})$$

$$< (2k - 1) \operatorname{ex}(n, P_{2k}) + \operatorname{ex}((k - 1)(2k - 1), P_{2k})$$

$$= (2k - 1) \operatorname{ex}(n, P_{2k}) + (k - 1)\left(\frac{2k - 1}{2}\right).$$

Thus the proof is complete. \hfill \blacksquare

5 Acknowledgements

The research of the authors Győri and Salia was partially supported by the National Research, Development and Innovation Office NKFIH, grants K132696, SNN-135643 and K126853. The research of Salia was supported by the Institute for Basic Science (IBS-R029-C4). The research of Tompkins was supported by NKFIH grant K135800.
References

[1] N. Bushaw and N. Kettle. Turán numbers of multiple paths and equibipartite forests. *Combin. Probab. Comput.*, 20:837–553, 2011.

[2] P. Erdős. Some recent problems and results in graph theory. *Discrete Math.*, 164:81–85, 1997.

[3] R.J. Faudree and R.H. Schelp. Path Ramsey numbers in multicolourings. *J. Combin. Theory B.*, 19:150–160, 1975.

[4] A.W. Goodman. On sets of acquaintances and strangers at any party. *Amer. Math. Monthly*, 66:778–783, 1959.

[5] P. Keevash and B. Sudakov. On the number of edges not covered by monochromatic copies of a fixed graph. *J. Combin. Theory Ser. B*, 90:41–53, 2004.

[6] H. Liu, O. Pikhurko, and M. Sharifzadeh. Edges not in any monochromatic copy of a fixed graph. *J. Combin. Theory Ser. B*, 135:16–43, 2019.

[7] J. Ma. On edges not in monochromatic copies of a fixed bipartite graph. *J. Combin. Theory Ser. B*, 123:240–248, 2017.

[8] A. McLennan. The Erdős-Sós Conjecture for trees of diameter four. *Journal of Graph Theory*, 49(4):291–301, 2005.

[9] L. Pyber. Clique covering of graphs. *Combinatorica*, 6:393–398, 1986.

[10] A. Thomason. Graph products and monochromatic multiplicities. *Combinatorica*, 17:125–134, 1997.

[11] L.T. Yuan. Extremal graphs for edge blow-up of graphs. *J. Combin. Theory Ser. B*, 152:379–398, 2022.

[12] Xiutao Zhu and Yaojun Chen. Turán number for odd-ballooning of trees. *arXiv preprint arXiv:2207.11506*, 2022.