Analysis of clean water supply for remote area: study case at Sepatin village, Kutai Kartanegara Regency

A Diansyukma

1Magister of System Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
2Field Operation Production Department, South Processing Unit, PT Pertamina Hulu Mahakam, Kutai Kartanegara, Indonesia

E-mail: achmad.diansyukma@mail.ugm.ac.id

Abstract. Clean water is an essential part of life, and it is one of the human rights that must be provided continuously and sufficiently. United Nations has set up one of Sustainable Development Goals concerning access to clean water and sanitation. An analysis has been conducted at the outermost, remote, frontier, and the coastal area named Sepatin Village in Kutai Kartanegara Regency to figure out and mapping clean water issues as well as to define the effective solution. The assessment result has revealed that Sepatin Village suffering from clean water shortage for years, and the dominant causative factor as per root cause analysis is the limitation of water storage capacity. Rainwater Harvesting is considered as an effective solution taking into accounts the geographical conditions and location characteristic of Sepatin Village.

1. Introduction

Water is an essential element for health as well as poverty reduction and food security of human life. Without the presence of water, it almost impossible to run daily activities. The water supply for each person must be continuous and sufficient for personal and domestic uses. These uses ordinarily include drinking, personal sanitation, washing clothes, food preparation, and household hygiene. In some areas, water is utilized for renewable energy initiatives in the form of hydroelectric power generation. United Nation (UN) has declared that access to water, sanitation, and hygiene is a human right, and it becomes one of Sustainable Development Goals (SDGs) to ensure access to safe water sources and sanitation for all [1], given the fact that the water demand has outpaced population growth, and half the world’s population is already experiencing severe water scarcity at least one month a year. It is appropriate that various nations in the world put water on top priority among other basic needs because there will be no life without water [2][3][4].

As the matter of fact, about 70% of the earth’s surface is covered by water, where around 97.5% of the water is salty or sea water, so that practically only about 2.5% in the form of fresh water and the sad thing is only less than 1% of fresh water can be utilized by human since the rest still in the form of frozen water or glaciers and underground water [5]. Those will certainly encourage people to be able to innovate and conserve the availability of clean water so that the need for water supply can be guaranteed. Actually, the availability of water on earth is allegedly sufficient to meet human need, however the distribution issue is likely to occur in each region. It may be that in one region has abundance of water due to its position has a lot of ground water sources or near watershed area, while in other region has suffering from water shortages because geographically it is located in an area that is difficult to find water source such as remote offshore area or small island in the middle of the sea [6].

Indonesia is an archipelago with around 17,000 large and small islands, where the water area is about twice of the total land area. In recent decades, the strategic role of small island has become increasingly prominent. In addition to several strategic advantages, most small islands have limitations in the potential of water resources [6]. In this research, the focus of study is one of small village in the
Mahakam Delta island, Kutai Kartanegara Regency named Sepatin Village which located in brackish water area where the water condition is predominantly salt water. Considering the difficulties of water supply in this area, it should not recommend to live in that place. The only reason why the community willing to stay in Sepatin Village is the appeal of Coal and Petroleum mining industries nearby. The population of Sepatin Village is increasing from year to year however the problem of clean water is still remaining unchanged. In general, the aim of this research is to analyze the clean water system problem as well as to figure out the better alternative solution to ensure the availability of clean water reserves so that Sepatin Village is suitable as a place to live.

2. Methods
The research is conducted by performing field observation to have better point of view of the actual conditions which is carried out between June 2019 to December 2019. Survey and interview to the local residents is carried out to collect some information needed for problem quantification purposes. Some data is provided from local government office of Sepatin Village. Alternative solutions are defined upon scale of priority based on problem quantification. Analytical Hierarchy Process is used for selection of the best solution based on pre-determined criteria.

3. Results and Discussion
Administratively, Sepatin Village is included in the region of Anggana District, Kutai Kartanegara regency, East Kalimantan Province Indonesia. The location is categorized as outermost, remote, frontier and coastal area so that local people experiencing obstacles and difficulties in their daily activities. The topography is dominated by coastal area of tidal coast which has elevation of between 1 to 4 meters above sea level with slope ranging from 0 – 5% or relatively flat. Geographically, Sepatin Village is located at the southern part of Kutai Kartanegara Regency with an area of approximately 55,819 ha where its territory covers a delta land area of 33,170 ha and pond area of 21,980 ha. The object of study focused on Dusun 1 with population of 1016 people from 266 families. The livelihood of community is mostly work as fisherman. The access of Sepatin Village is very limited where the only way to reach the village is using water transportation.

3.1 Issue Identification
It has already noticed that Sepatin Village is suffering from water shortages. Based on field observation and interview to the local residents, almost all of them expressed the same problem of difficulties in access clean water for their daily needs. Given the actual condition that Sepatin Village does not have public water treatment facility so that every families must provide clean water supply on
their own whether collecting rain water or buy water from other places. Thus, will create another problem because rain does not happen everyday and if they have to buy water, the price will be expensive. Some issues regarding clean water supply and the analysis of potential impact is presented in Table 1.

Table 1. Analysis of clean water issue at Sepatin Village.

Issues	Analysis of Issues	Potential Impact	Remark
Inadequate clean water supply	Sepatin Village is located at remote area and salty water. No public water facility	All community suffer of water scarcity, means 1016 people is affected	
	Local people assumed and believe that rainwater quality is not hygienic considering there is no water treatment facility	Around 50% of population still assumed that rainwater is not good to consume	Sepatin Village Dusun I consist of 266 families and 1016 population
Hygienic perception of water quality	The prices is expensive due to additional charge of transportation	Most of people prefer not to buy water	
High cost of buying water	Lack of sanitation awareness	Some people complain about their broken teeth due to water condition	
Health problem			

3.2 Risk Analysis of Issue Prediction

The potential impact of the problem that have been described previously can be quantified and analyzed by the pareto method, where, the calculation is based on magnitude of the potential impact on exposed community. The result of calculation is provided in Table 2.

Table 2. Problem quantification.

Issues	Potential Impact	Relative (%)	Cumulative (%)
Inadequate clean water supply	1016	49	49
Hygienic perception of water quality	508	24	73
High cost of buying water	284	14	87
Health problem	266	13	100

Diagram in Figure 2 has confirmed that inadequate of clean water supply is happening at Sepatin Village and thus require immediate action to overcome the problem. Currently, local people rely only on rainwater by collecting into drums or torrent. Basically, quantity of water during rainy season is enough to cover water needs during dry season as long as rainwater harvesting system is managed correctly [6]. It is found during site visit and field observation to Sepatin Village that every single
house has create their own way to collect rain water and of course it is still below standard. Rainwater collected into torrent directly without any further treatment will lead to health issue. Some people complaining about their health condition especially their broken teeth (caries) and they are blaming the rainwater quality as the cause.

Figure 3. Conventional rainwater collection created by local people.

Particularly for the problem of people’s perception of rainwater hygiene factors can be corrected by carry out sampling of rainwater, then the samples are analyzed for physical and biological parameters. The analysis result of rainwater sample taken from Sepatin Village is presented in Table 3.

Table 3. Lab analysis result of rainwater from Sepatin Village.

Parameter	Standard Quality	Sampling Location I	Sampling Location II					
		A1	B1	C1	A2	B2	C2	D2
Total Coliform	50 CFU/100 mL	8	<1.8	920	<1.8	2	<1.8	1600
TDS	1000 mg/L				Average 29.5 (Max. = 80, Min. = 0.4)			
pH	6.5 – 8.5				Average 7.1 (Max. = 7.8, Min. = 6.45)			
Turbidity	25 NTU				Average 1.13 (Max. = 4, Min. = 0.33)			

Remark:
- TDS = Total Dissolved Solid
- CFU = Colony Forming Unit
- NTU = Nephelometric Turbidity Unit

Sample Code:
- A1 = Rainwater from rooftop
- B1 = Rainwater directly from sky
- C1 = Rainwater from torrent
- A2 = Rainwater directly from sky
- B2 = Rainwater from rooftop
- C2 = Rainwater being cooked / boiled
- D2 = Rainwater from torrent

Sampling result has revealed that Total Coliform parameter has exceeded far above the maximum standard quality, while other parameters are still acceptable. The high value of Total Coliform parameter can be an indicator of bacterial content as a cause of disease and this inevitably occurs if the way they are collecting rainwater remain unchanged. Given the fact that the rooftop of the houses to be used as catchment area of rainwater is the most likely to be exposed to contaminant and foreign material then carry over during rainy and settled down inside the torrent. If there is no further treatment or purification of the water then for sure the bacteria inside the torrent will grow up easily. It is urge to find the best solution to solve the clean water issue because if the issue last for prolonged of time would have negative impact to community.
Table 4. Risk assessment of prolonged issue.

Strategic Issue	Risk Event	Risk Agent	Symptom	Control	Qualitative Impact	Quantitative Impact	Prob	Impact	RPN
Prolonged clean water shortage	Decrease quality of life	Most activities dealing with water	Vulnerable to illness	Medical Check Up Campaign	Impact will be last for years and potential of people abandoned the village	Whole community will suffer	4	5	20
	Decrease level of welfare	High cost for buying water	Increase stress level	Economic stagnant	Promote life-saving culture				

Figure 4. Risk matrix analysis.

3.3 Root Cause Analysis

Inadequate of clean water supply has been determined as top priority issue to be solved. However, this issue is still general and need to be more specific. It is very important to define the root cause of the problem prior to formulate alternative solutions. The Root Cause Analysis is carried out by listing all the possibilities of the related issue according to the five different fundamental factor categories namely Human, Material, Environment, Tools and Method. Fishbone diagram is used to help brainstorming process of determining the root cause since it has a better visualization of the list factors.

Upon completion of listing all the possibilities which is expressed in a fishbone diagram, then cause-effect analysis is needed to figure out the correlation between the factor and issue. If the factor does not have something to do with the issue, then it can be dropped from the list and will not be considered during a decision making of correct solution.

Based on the cause-effect analysis presented in Table 5, there are two root causes that has no correlation with the issue. The 4 remaining root cause will be analyzed using FMEA method to determine the most dominated factor. Risk Priority Number (RPN) is calculated by multiplying the value of Severity, Occurrence and Deliverability (SOD). The calculation result is presented in Table 6.
Table 5. Cause effect analysis.

Category	Cause Factor	Analysis	Field Observation Result	Correlation
Tools / Means	No water treatment facility	Water need to be treated prior to be consumed as per hygiene specifications	at least need two types of treatment which are physical and chemical. First sampling has been carried out and analysis only for physical and biological parameters, overall result was good except for total coliform	Yes
	No public water storage facility	Sepatin Village is located at remote area and it is very difficult to build storage facility	It is not economical to build the facility compared to population, coverage area and water source	No
	Storage capacity is not equal to rain intensity	In order to collect every single drop of rainwater, big storage capacity is needed. Otherwise, rainwater will be disposed away into the sea	almost all houses have torrent to collect rainwater, but the capacity only 1.2 tons and it is not enough to cover water need for family with 4 members. Considering the topography of Sepatin and rain intensity, a big storage water tank will be helpful	Yes
Methods	No body willing to take care the existing facility	It needs awareness and team spirit to fight against water shortage. Need more effort and time consuming to take care a facility	Most livelihood of Sepatin communities are fisherman. A desalination water facility has been provided through PNPM Mandiri Program. However, it seems no body take care this facility. People rely on each other and currently the facility is not operated.	Yes
Human	Transportation cost and Supply - Demand principle	Sepatin Village is using boat. Additional cost will be charged such as transport cost and margin price. It makes the price of water is expensive	At least a family buy water once a week in the dry season. The price of water is IDR 35000 per drum (200 liters). In average, a family spend IDR 1 - 3 million per month depend on number of family member and activity	Yes
	Seapatin Village is surrounded by Oil & Gas and Mining activities	Industrial activity may affect the quality of water since the contaminant from gas emission could be immersed into the water	According to water sampling analysis result, the TDS was 80 mg/L, however further analysis is needed to confirm the quality of water	No
Table 6. FMEA calculation result.

Cause factor	S	O	D	RPN	Relative (%)	Cumulative (%)
Storage capacity is limited compare to rain intensity	9	8	9	576	60	60
No water treatment facility	7	5	6	210	22	81
Transportation cost and Supply - Demand principle	6	4	6	144	15	96
No body willing to take care the existing facility	6	3	2	36	4	100
Total				966	100	100

Figure 6. Pareto Diagram for root cause analysis.

According to the pareto diagram in Figure 6, the limited storage capacity owned by local community is the top root cause among others. This situation encourages residents to make savings in their daily use of water. Based on survey result, the clean water consumption of Sepatin Village residents is 24 liters per day per person, meanwhile WHO standard is between 50 – 100 liters of water per person per day to ensure the most basic needs [1]. The average cost for buying water during shortage is 13% of family income, while WHO recommendation should not exceed 5% of a household’s income. Despite the fact that each house already has its own water torrent, but the capacity is not sufficient to collect much water during rain season and the overflow water is disposed into the sea for nothing. Reservoir with big capacity would help whole community in Sepatin Village to have more water reserves so that they will be ready to face dry season without being worry.

3.4 Alternative Prioritize Solution

Actually, Sepatin Village is not recommended as a place to live since life-supporting facilities and infrastructures such as public health, electricity and clean water treatment are not available. However, it is impossible to relocate all of community because they have already settled for years. Particularly for the provision of clean water facility, it is necessary to consider some criteria such as potential amount of produced water, output water quality, handling facility, risk, duration of development, maintenance and operational cost and budget construction. Taking into account the geographical and characteristic conditions of Sepatin Village, at least there are 3 alternative solutions that can be applied which are Desalination method, Rainwater harvesting, and Drilling well. Analytic Hierarchy Process (AHP) decision making technique was simply applied to select the best alternative solution based on predetermined criteria. The AHP generates a weight for each evaluation criterion according to the decision maker’s pairwise comparisons of the criteria and assigns a score to each alternative solution according to the decision maker’s pairwise comparison as well [7][8][9]. Finally, the AHP combines the criteria weights and the alternative solutions scores, thus determining a global score for each alternative solution and a consequent ranking. The highest score will be considered as the best solution to be selected.
Table 7. Selection of alternative solution based on AHP method

Criteria	Desalination Method	Rainwater Harvesting	Drilling water well
Potential amount of produced water	Yes. Convert salt water into fresh water	Yes. Directly collect from rain	Probably yes. Depend on successful of drilling
Output water quality	Relatively clean	Relatively clean	Relatively clean
Handling facility	Complicated, need competent person	Simple and user friendly	Quite complicated
Risk	Medium risk	Low risk	High risk
Duration of development	9 months	6 months	3 months
Maintenance cost	High cost for spare part, membrane	Low cost	Medium cost
Budget construction	High	low	medium

Conclusion

| Conclusion | Not selected (high operational cost and complicated for handling) | Selected | Not selected (uncertainty of getting success) |

Rainwater harvesting has been selected as suitable solution for clean water issue at Sepatin Village according to AHP method. Rainwater harvesting method has been widely used in many places particularly for the area where it is very difficult to get clean water. Rainwater harvesting method has been applied to the area which is similar to Sepatin Village such in Pari Island [10], Gili Ketapang Island [11], Micronesia Ifalik Atol Island [12] and South Africa [13]. There are some advantages of Rainwater harvesting such as minimize environmental impact, good water quality, increase water reserves, conservation initiative, saving cost, and simple technique [14].

3.5 Design recommendation

The rooftop of community houses can be used as catchment area of rainwater [15][16]. The housing characteristic of Sepatin Village is close to each other so that it would be easier to design the Rainwater harvesting concept network. The illustration of Rainwater harvesting method recommended for Sepatin Village is presented in Figure 7.

![Figure 7. Illustration Concept of Integrated Rainwater Harvesting for Sepatin Village](image_url)

Rainwater also can be used as raw water to produce drinking water with correct treatment through water purification equipment. Since the electric power is so limited, solar panel can be an alternative for electric power source and it is environmentally friendly. In order to simply cover all area of distribution, a clustering system is the best way to reach whole places.
4. Conclusion
The phenomenon of clean water shortage has occurred in Sepatin Village for years. The root cause analysis has revealed that the limited water storage capacity is the dominant causative factor that makes water supply to the community insufficient and unsustainable. Rainwater Harvesting is considered as an effective solution to overcome the clean water supply issue, taking into account the geographical condition of Sepatin Village. Support from all stakeholders is needed to ensure that all residents have access to clean water according to what was declared by the United Nations in the formulation of the Sustainable Development Goals number 6 pertaining to clean water and sanitation.

Acknowledgment
Author would like to acknowledge for mentoring and encouragement from Ms. Ami Marlim and Ms. Gita Evelina during SMART program held by PT. Pertamina Hulu Mahakam. Author also would like to express many thanks to all community of Sepatin Village during site visit and field monitoring.
Reference

[1] United Nations, 2017, Goal 6: Ensure access to water and sanitation for all, Why it matters: Clean Water and Sanitation. [Online]. Available: https://www.un.org/sustainabledevelopment/wp-content/uploads/2016/08/6_Why-It-Matters-2020.pdf.

[2] Seckler D Barker R and Amarasinghe U, 1999 Water scarcity in the twenty-first century Int. J. Water Resour. Dev. 15, 1–2 p. 29–42.

[3] United Nations, 2007 Coping with water scarcity: Challenge of the twenty-first century UN WATER.

[4] Lautze J and Hanjra M A, 2014, Water scarcity, in Key Concepts in Water Resource Management: A Review and Critical Evaluation, p. 7–24.

[5] Hotloś H, 2008 Quantity and availability of freshwater resources: the world-Europe-Poland Environ. Prot. Eng. 34, 2 p. 67–77.

[6] Maryono A, 2020 Memanen Air Hujan UGM PRESS.

[7] Paleie I and Lalic B, 2009 Analytical hierarchy process as a tool for selecting and evaluating projects Int. J. Simul. Model. 8, 1 p. 16–26.

[8] Ariff H Salit M S Ismail N and Nukman Y, 2012 Use of Analytical Hierarchy Process (AHP) for Selecting The Best Design Concept J. Teknol.

[9] Taherdoost H, 2018 Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step Approach Int. Journel Econ. Manag. Syst. 2 p. 244–246.

[10] Marganingrum D and Sudrajat Y, 2018 Estimasi Daya Dukung Sumber Daya Air di Pulau Kecil (Studi Kasus Pulau Pari) J. Wil. dan Lingkung. 6, 3 p. 164–182.

[11] Ramdhani M et al., 2019 Simulasi Daya Dukung Lingkungan Di Pulau Gili Ketapang – Probolinggi Dengan Mengandalkan Curah Hujan Sebagai Pemenuhan Kebutuhan Air J. Kelaut. Nas. 14 p. 25–32.

[12] Bailey R T Beikmann A Kottermair M Taborosi D and Jenson J W, 2018 Sustainability of rainwater catchment systems for small island communities J. Hydrol. p. 137–146.

[13] Mwenge Kahinda J marc Taigbenu A E and Boroto J R, 2007 Domestic rainwater harvesting to improve water supply in rural South Africa Phys. Chem. Earth 32, 15–18 p. 1050–1057.

[14] Han M and Ki J, 2010 Establishment of sustainable water supply system in small islands through rainwater harvesting (RWH): Case study of Guja-do Water Sci. Technol. 62, 1 p. 148–153.

[15] Mun J S and Han M Y, 2012 Design and operational parameters of a rooftop rainwater harvesting system: Definition, sensitivity and verification J. Environ. Manage. 93, 1 p. 147–153.

[16] Goyal R, 2014 Rooftop Rainwater Harvesting: Issues and Challenges Indian Plumb. today 125 p. 148–161.