Unusual Polypeptide Synthesis in the Kinetoplast-Mitochondria from Leishmania tarentolae

IDENTIFICATION OF INDIVIDUAL DE NOVO TRANSLATION PRODUCTS*

Anton Horváth‡§, Martina Neboháčková‡, Julius Lukeš¶, and Dmitri A. Maslov†

From the Department of Biology, University of California, Riverside, California 92521

The de novo synthesis of cytochrome c oxidase subunits I, II (COI and COII), and apocytochrome b (Cyb) was investigated in kinetoplast-mitochondria of Leishmania. The organelles were isolated after breaking whole cells with nitrogen cavitation. Individual COI, COII, and Cyb polypeptides were identified by fractionation of the kinetoplast membranes, labeled with [35S]methionine and cysteine, using two-dimensional (9 versus 14% and 20 versus 11%) denaturing gel electrophoresis. The reaction did not require exogenous energy sources or amino acids. On the contrary, the presence of amino acids other than methionine somewhat inhibited the labeling reaction probably by competing with the uptake of labeled amino acids. The synthesis reaction was insensitive to 100 μg/ml chloramphenicol, gentamycin, paromomycin, lincomycin, hygromycin, and tetracycline, as well as cycloheximide. The process showed a linear increase in the amount of synthesized polypeptides during the first 2 h of incubation, followed by a slower accumulation of products for up to 4 h. The de novo synthesized polypeptides were stable for several additional hours. Their assembly into respiratory complexes, investigated using two-dimensional Blue Native/N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinem-SDS gels, began early during the incubation and continued throughout the course of the synthesis. This work represents the first unequivocal identification of the polypeptide synthesis in kinetoplasts.

The kinetoplast-mitochondrial genetic system of trypanosomes has revealed features that clearly distinguish it from animal, fungal, or plant mitochondria. The maxicircle component of kinetoplast DNA networks contains cryptic genes whose expression depends on post-transcriptional mRNA editing by uridylicate insertions and deletions (1–3). This process is mediated by guide RNAs encoded in the kinetoplast DNA minicircles, which account for the bulk of DNA in these mitochondria. After the discoveries of RNA editing in 1986 (4) and guide RNAs in 1990 (5), there has been a steady progress toward elucidating the mechanism of this process, which has now been demonstrated to involve several enzymes and protein factors (6–10).

At the same time very little is known about other aspects of kinetoplast gene expression, especially at the level of translation. The very existence of a functional translation system remained unproven for almost 3 decades (summarized in Ref. 11). This question is important because kinetoplast translation must utilize templates modified or created by editing, and it is interesting to investigate interactions of these two systems. Early works demonstrated that cycloheximide at low concentrations effectively inhibited cytosolic translation in Crithidia luciliae and Trypanosoma brucei in vivo. A small fraction of the total cell protein synthesis was resistant to cycloheximide and at the same time insensitive to chloramphenicol and other inhibitors at concentrations that inhibit mitochondrial translation in other organisms (12, 13). However, high concentrations (~1 mg/ml) of chloramphenicol substantially inhibited total cell protein synthesis in T. brucei (13), whereas in C. luciliae the inhibition was close to 50% (14). Unexpectedly, no inhibition was observed in a closely related organism, Crithidia fasciculata (15). Consistent with the idea that some permeability barriers might be responsible for the apparent lack of chloramphenicol-sensitive translation in whole cells, the analysis of translation in the isolated mitochondrial fractions of T. brucei and Crithidia oncopelti showed that protein synthesis is indeed sensitive to lower concentrations of mitochondrial inhibitors (13, 16). A recent analysis of amino acid incorporation by digitonin-treated cells or the isolated kinetoplast-mitochondria of T. brucei (17, 18) apparently confirmed the existence of chloramphenicol-sensitive and cycloheximide-resistant kinetoplast translation system. In contrast, this idea was not supported by the results obtained in C. fasciculata, which showed that leucine incorporation by digitonin-treated kinetoplast-mitochondria was insensitive to 250 μg/ml chloramphenicol (19). The insensitivity to a broad range of chloramphenicol concentration in this organism was recently shown again, although no attempts to increase the permeabilization were made (20). Although incomplete inhibition in principle can be caused by impermeable barriers, the observed discrepancies can also be attributed to the presence of variable levels of bacterial contamination in kinetoplast preparations, as well as the presence of prokaryotic endosymbionts in some species. Because of this controversy, a differential sensitivity of polypeptide synthesis to antibiotics, which in other systems served as a reliable criterion to distinguish cytosolic translation from mitochondrial, cannot be used as an evidence for translation in kinetoplasts. The problem can be solved, however, by demonstrating the de novo synthesis of individual polypeptides with known kinetoplast origin. We have recently...
identified two such polypeptides, cytochrome c oxidase subunit I (COI) and apocytochrome b (Cyb), which were found in enzymatically active respiratory complexes IV and III, respectively, from *Leishmania tarentolae* (21–23). The N-terminal sequences of these polypeptides matched the sequences of the corresponding mRNAs, which in the case of Cyb is modified by RNA editing, indicating that they are translated in the kinetoplasts. In this work we have identified the *de novo* synthesized COI, COII, and Cyb polypeptides in isolated kinetoplasts and demonstrated that they assemble into the corresponding respiratory complexes. This work for the first time clearly demonstrates the existence of protein synthesis in kinetoplasts and describes some unusual properties of this process.

Experimental Procedures

Isolation of Kinetoplast-Mitochondria—Cells of *L. tarentolae*, strain UC, were cultivated in brain heart infusion medium supplemented with 10 μg/ml hemin and grown to a density 0.8–1.2×10⁶ cells/ml as described earlier (24). The kinetoplast-mitochondrial fraction was isolated after cell rupture by nitrogen cavitation according to the procedure described previously with some modifications (25). The procedure was performed at 0–4 °C. Cells obtained from a 6-liter culture were pelleted by centrifugation at 6,000 × g for 10 min and washed with 20 mM sodium phosphate buffer, pH 7.9, containing 20 mM glucose and 150 mM KCl, nH, 2.5 mg/ml bovine serum albumin, 4 mM ATP, 0.5 mM GTP, 5 mM NADH, 5 mM succinate, 12 mM creatine phosphate, and 0.1 mM amounts of each amino acid except methionine and cysteine.

The reaction was set according to Refs. 17 and 26 with the following modifications. Kinetoplasts (100–200 μg of protein) were pelleted in a bench-top centrifuge, resuspended in 10 μl of SoTE, and combined with 100 μl of 1.2-fold concentrated translation buffer. After addition of creatine phosphokinase (Sigma) to 0.18 mg/ml and an appropriate antibiotic solution (see below), kinetoplasts were pre-incubated at 28 °C in 14-ml Falcon capped plastic tubes for 10 min with agitation at 100 rpm followed by the addition of 100 μCi (∼8–9 μl) of 35S-methionine (EXPRE'S'S label kit, 1.2×10⁶ Ci/mmol) (PerkinElmer Life Sciences, >1000 Ci/mmol). Most reactions included cycloheximide at 50 μg/ml added at the preincubation step. Incubation continued for the specified time of period followed by chilling on ice, and kinetoplasts were recovered by a 5-min centrifugation at 2,000 × g. The pellet was resuspended in 200 μl of SoTE containing 0.1 mM phenylmethylsulfonfyl fluoride and centrifuged again. This was followed by resuspension of the pellet in 50 μl of buffer containing 50 mM sodium phosphate, pH 7.4, and 0.05% Triton X-100, incubation on ice for 30 min, and centrifugation at 16,000 × g for 20 min. Before loading on the electrophoretic gel, the last pellet, resuspended in 50 μl of the Triton buffer, was mixed with an equal volume of denaturing buffer containing 125 mM Tris-Cl, pH 6.8, 2.5% SDS, 2% β-mercaptoethanol, 30% glycerol, and 0.01% bromophenol blue, and incubated at 28 °C. Samples were prepared at 50 μg/ml in water (emetine, gentamycin, hygromycin, lincomycin, paromomycin, puromycin, tetracycline) or methanol (chlamphorolin, cycloheximide). Antibiotics were purchased from Fluka and Sigma.

Isolation of Yeast Mitochondria and Translation in Organello—This was done using the strain *S. cerevisiae* S288C according to published methods (26, 27) with minor modifications.

Electrophoretic, Autoradiographic, and Immunochromic Procedures—After translation, the kinetoplast pellets were resuspended in 50 μl of 50 mM sodium phosphate buffer, pH 7.4, containing 0.05% Triton X-100. After a 30-min incubation at 0 °C, the insoluble material was recovered by a 20-min centrifugation at 16,000 × g in an Eppendorf microcentrifuge. The samples were analyzed by single dimension Tris-glycine-SDS gels (28), two-dimensional Tris-glycine-SDS gels (29), and BN/Tricine-SDS-polyacrylamide gels (BN gels) (30) as described previously (23). After electrophoresis, the gels were fixed for 40 min in 10% acetic acid, 50% methanol and stained with Coomasie Blue R250 (Sigma). For autoradiography, stained gels were subjected to four 10-min washes in water followed by 40-min incubation in 1 m salicylate solution and dried with vacuum.

Western blot analysis was performed after semidy electroblotting. The source of anti-COI serum and its immunoadfinity purification were described previously (23). The blots were treated with SuperSignal enhanced chemiluminescence system (Pierce). The procedures utilized for N-terminal amino acid sequencing have also been described earlier (23).

Results

Isolation of Intact Kinetoplast-Mitochondria—Because quality of the kinetoplasts was crucial for efficient in organello translation, we compared several isolation procedures. We used the level of electrochemical transmembrane potential in freshly isolated organelles and its maintenance after freezing-thawing as the criteria for intact kinetoplasts. Isolation by the traditional method of hypotonic cell lysis followed by purification in Percoll gradients (25); however, contamination of the kinetoplasts was observed (26)

1 The abbreviations used are: CO, cytochrome c oxidase; Tricine, N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine; BN, Blue Native; ND, NADH dehydrogenase; Cyb, apocytochrome b; SoTE, Tris-Cl, sorbitol, EDTA.
lower. The Percoll procedure was adopted for the subsequent work. It should also be mentioned that the highest potential was observed in kinetoplasts purified by several rounds of low speed differential centrifugation instead of gradients (data not shown). The potential was well maintained after freezing-thawing; however, contamination levels in such preparations were unacceptably high.

Translation in Whole Cells and Cell Lysates—After intact cells were incubated in SoTE buffer in the presence of radioactive methionine and cysteine, they were lysed and the labeled polypeptides were resolved by electrophoresis in denaturing gels. A specific pattern of bands representing the de novo synthesized polypeptides was observed (Fig. 2, lane 1). A nearly identical pattern was seen when the protein synthesis was performed using cell lysates (Fig. 2, lane 2). Cycloheximide and emetine at 50 µg/ml significantly inhibited isotope incorporation. After an exposure time equivalent to that shown in Fig. 2 (lanes 1 and 2), no bands were detected on the autoradiogram (data not shown). The observed labeling, therefore, was attributed to cytosolic translation, and the corresponding pattern of labeled bands is hereafter referred to as the whole cell or cytosolic pattern. Although the inhibition by cycloheximide was very efficient, it was not complete, and a longer exposure revealed a residual, cycloheximide-resistant incorporation pattern (Fig. 2, lanes 3 and 4). This pattern of bands could be traced to a specific subset of minor bands seen in the whole cell pattern. The “residual” pattern accounts for no more than 4% of the total incorporation as judged by the PhosphorImager analysis of a gel similar to that presented in Fig. 2. Cycloheximide at 1 mg/ml only slightly reduced the incorporation to a level of ~2.5%. The residual translation was also resistant to chloramphenicol at high concentrations (data not shown). Although it could be expected that the cycloheximide-resistant pattern represented kinetoplast translation, further analysis indicated that this was not the case.

Translation in Isolated Kinetoplasts: De Novo Synthesis of COI and Cyb—In the original experiments we used the complete translation mixture as described under “Experimental Procedures.” In the course of this work, we found that, surprisingly, the presence of the remaining amino acids and the ATP regeneration system did not stimulate protein synthesis, and that this process can occur in SoTE buffer alone. This property is further addressed in the next section.

When isotonically isolated, gradient-purified organelles were incubated in SoTE buffer with 35S-labeled amino acids without or with cycloheximide, the observed incorporation pattern largely resembled translation in unfractionated lysates or residual translation, respectively (data not shown). The presence of contaminating cytoplasmic membranes was not unexpected because a relatively low, ~3-fold, enrichment of kinetoplasts is achieved by this method (31); however, it had become clear that the residual incorporation could obscure kinetoplast translation.

An additional complication was caused by the hydrophobic nature of kinetoplast-encoded polypeptides, such as COI and Cyb. We observed earlier that each of these molecules formed a series of aggregation products that were seen in single dimension SDS gels as broad, diffuse bands (22, 23). If these proper-
ties are shared by other kinetoplast-encoded polypeptides, which are also predicted to be hydrophobic, then an overlapping set of bands from the translation products will be represented by a smear.

These factors made single dimension gel electrophoresis unsuitable for the analysis of kinetoplast translation. We, therefore, had to look for an alternative procedure, which would allow us to separate the kinetoplast pattern and identify its individual components. We have previously shown that COI and Cyb polypeptides migrate in the form of well separated spots positioned off the main diagonal in 9 versus 14% two-dimensional polyacrylamide-SDS gels. Now, when we applied this gel system to the analysis of the products generated by in organello labeling in the presence of cycloheximide, we observed a labeled diagonal and a series of off-diagonal spots (Fig. 3A). By correlating the positions of these spots with the known positions of COI and Cyb spots, identified in the Coomassie-stained gel (Fig. 3A, inset image), we could easily identify the observed de novo synthesis products representing these polypeptides. We observed both the monomeric form of COI (spot c) and its aggregated forms (spots b and a and other high molecular weight spots) that we have identified previously (23). The monomeric form of Cyb was also present in its characteristic gel position (22), although its labeling was significantly lower level than that of COI. This difference contrasts sharply with the nearly equal ratio of the corresponding Coomassie-stained bands (Fig. 3A, inset). Although intensity varied in different experiments, the labeling of the COI spots was always lower than that of Cyb.

In the COI molecule there are twice as many predicted methionine residues (28 residues) as in Cyb (12 residues), whereas the cysteine content is nearly equal (19 and 20 residues, respectively). The labeling pattern in Fig. 3A was produced using E. coli [35S]methionine-labeled hydrolysate in which [35S]methionine and [35S]cysteine accounted for 73 and 22% of the radioactivity, respectively. The intensity of COI was also greater than Cyb when labeling was done using methionine alone (Fig. 3B). Although the methionine content certainly contributes to the observed labeling difference, it is not a sufficient explanation. Therefore, other factors must be responsible.

It is noticeable that the COI aggregates (spots b, a, and others) were labeled less intensively with [35S]Met than with the labeled mixture. This result is consistent with our previous observation that the spot b likely includes a heterodimer of COI and COIII. The COIII polypeptide contains 24 Cys residues and 5 Met residues.

Properties of the Polypeptide Synthesis in Organello—The influence of the components included in translation mixtures, such as amino acids and an ATP regeneration system, was investigated by the experiments presented in Fig. 4. Comparison of the labeling intensity in a complete system (Fig. 4A) to incubation in SoTE alone (Fig. 4D) showed that there was no stimulation of [35S]Met and Cys incorporation by these additional components. Gel resolution, however, declined when a complete medium was used. Addition of the remaining 18 amino acids at 0.1 mM concentrations to the SoTE buffer medium slightly reduced the incorporation (Fig. 4C), whereas their omission from the complete medium slightly increased it (Fig. 4B). These results indicate that the reaction utilizes the endogenous pool of amino acids, whereas the exogenously added components may slightly compete with the uptake of the isotope.

The observed situation contrasted sharply with translation in the isolated yeast mitochondria, in which no incorporation was observed in SoTE with or without amino acids in a one h incubation (Fig. 4E). Translation medium without the 18 amino acids produced a smeared pattern that is probably the result of incomplete synthesis of polypeptides, which were hence misfolded and aggregated. On the other hand, very efficient polypeptide synthesis was observed after the reintroduction of the missing components. The overall efficiency of yeast mitochondrial synthesis, as judged by the comparison of band intensities, was at least an order of magnitude greater than in kinetoplasts.

The observed synthesis of kinetoplast Cyb and COI was not affected by chloramphenicol, hygromycin, paromomycin, linco-
mycin, tetracycline, and gentamycin at 100 μg/ml (Fig. 5A). Interestingly, puromycin strongly inhibited synthesis of Cyb, and synthesis of COI was also noticeably affected. Yeast translation, as expected, was completely inhibited by chloramphenicol and puromycin and was noticeably sensitive to other antibiotics (Fig. 5B).

A number of labeled polypeptides are always found in the main diagonal of the kinetoplast two-dimensional gels. We cannot exclude the possibility that some of these proteins correspond to unidentified kinetoplast-encoded translation products. However, taking into account the existence of cycloheximide-resistant residual translation, it is more likely that the diagonal represents translation products from contaminating cytoplasmic ribosomes. Contaminating cytosolic rRNA was de-
tectable in the RNA extracted from the kinetoplast preparations used in these experiments, although it was much less abundant than the kinetoplast 12 and 9 S rRNAs (data not shown). The intensity of the diagonal generally correlated with the level of contamination by unbroken cells and cell debris, as judged by light microscopy. The reasons why a fraction of cytoplasmic ribosomes was insensitive to cycloheximide remain unclear.

Time Course of the Synthesis—Freshly isolated kinetoplasts were incubated in SoTE with isotope for the specified periods of time. Chloramphenicol at 100 \(\mu \)g/ml was included to prevent bacterial growth during long incubations. Control experiments conducted with and without the antibiotic did not show any significant difference in the initial rate of the reaction (data not shown). The aliquots were withdrawn and chilled on ice. The organelles were pelleted by brief centrifugation, washed with SoTE, and lysed with the electrophoretic sample dye. The overall handling time from sample withdrawal to lysis did not exceed 5 min. The samples were analyzed by the two-dimensional gel electrophoresis. After fluorography of the gels, the radioactive spots were excised, and the amount of radioactivity was determined by scintillation counting.

These experiments were performed several times; each time a new preparation of kinetoplasts was used. Some variations in kinetics of labeling were observed, which can be attributed to the differences in physiological conditions of the kinetoplasts, in particular to their intactness after isolation. Results of one experiment are shown in Fig. 6. The amount of newly synthesized COI and Cyb polypeptides accumulated linearly for more than 2 h, followed by a gradually decreasing rate during the overnight incubation (Fig. 6, A and B). In other experiments the plateau was reached after 4 h, and the products were stably maintained for at least 12 h (data not shown). As no evidence for the product degradation could be seen, the rate of accumulation represented the rate of synthesis. The amount of radioactivity associated with the monomeric COI spot was always 15–20 times higher than with Cyb (Fig. 6B). Relative rates of synthesis (Fig. 6C) were calculated on the basis of four inde-
Unusual Polypeptide Synthesis in Leishmania Kinetoplasts

A number of labeled polypeptides migrate at the front of the native dimension including an intensively labeled band with a size close to monomeric COI (Fig. 8B). It is possible that some of these polypeptides represent a free pool of kinetoplast translation products; however, the anti-COI serum failed to recognize a cognate polypeptide in this region (Fig. 8C), indicating that its free pool must be much lower in abundance than the amount which is found within the assembled complexes. This apparent decrease of Cyb synthesis at 2 h is most likely the result of experimental error. Nevertheless, the relative rate for Cyb appears to be somewhat slower than for COI. Whether these differences reflect the fact that RNA editing is required for maturation of the Cyb mRNA is unknown. Addition of excess cold methionine completely stopped the incorporation, and the labeled pattern and intensities remained unchanged during an additional incubation for several hours (data not shown).

Identification and de Novo Synthesis of COII—To identify smaller size translation products, we utilized a 20 versus 11% two-dimensional gel (Fig. 7A). High molecular weight components did not resolve well in these gels, and therefore COI was seen as a single spot. Cyb was represented by a faster migrating spot. An additional weaker radioactive spot was seen off the main diagonal. With the purpose of its identification, we analyzed purified cytochrome c oxidase, which was isolated by a procedure described recently (21). The gel was stained with SYPRO-RED, a fluorescent dye with a higher efficiency of staining for hydrophobic polypeptides than Coomassie (Fig. 7B). The COI spot stained very well with this dye. In addition, there were also several brightly stained spots near the main diagonal that are the nuclear-encoded subunits of the enzyme (subunit 2 is usually lost from the preparations obtained by DEAE chromatography) (21), as well as contaminating polypeptides. Several low intensity spots were observed off the diagonal. The N-terminal amino acid sequence of the spot positioned near the nuclear-encoded subunit 5 was MAFIL/S/AVXXI. This is nearly identical to the expected sequence of COII (MAFILAFWMI). The staining intensity of the COII spot was substantially lower than COI. Because these subunits are stoichiometric in the holoenzyme, the observed difference in their abundance must be the result of a preferential loss of COII by aggregation.

The position of COII in this gel approximately corresponds to the position of the additional spot in Fig. 7A, thus making it very likely to be the same polypeptide. The loss of COII by aggregation can also explain, at least in part, the lower labeling intensity of COII compared with COI. Although the weakly labeled spot could also represent other polypeptides, the BN gel analysis of translation products described below supports the conclusion that it is subunit II of cytochrome c oxidase.

The monomeric COIII, which in Leishmania is larger than COII, has not yet been identified. It is possible that this highly hydrophobic polypeptide aggregates completely or that the gel used does not separate this polypeptide from the diagonal.

Assembly of the de Novo Synthesis Products into the Respiratory Complexes—The stability of newly synthesized polypeptides may be associated with their incorporation into respiratory complexes. When a dodecyl maltoside extract of kinetoplasts that had been incubated with the isotope for 12 h was analyzed in a two-dimensional BN/Tricine-SDS gel, we observed respiratory complexes with a characteristic subunit composition, similar to what we observed earlier (22). Because hydrophobic polypeptides in general, and the kinetoplast polypeptides in particular, migrate anomalously in SDS gels, it was impossible to confirm these identifications by estimating the polypeptides’ molecular masses. However, this interpretation of the BN gel data is consistent with the polypeptides’ relative labeling intensities described above.

A single, relatively intensive band comigrated with complex III (Fig. 8B, open arrow). This polypeptide represents monomeric Cyb, whereas the few products labeled with lower intensity above this band likely represented the Cyb aggregates that we observed earlier (22). Because hydrophobic polypeptides in general, and the kinetoplast polypeptides in particular, migrate anomalously in SDS gels, it was impossible to confirm these identifications by estimating the polypeptides’ molecular masses. However, this interpretation of the BN gel data is consistent with the polypeptides’ relative labeling intensities described above.

A number of labeled polypeptides migrate at the front of the native dimension including an intensively labeled band with a size close to monomeric COI (Fig. 8B). It is possible that some of these polypeptides represent a free pool of kinetoplast translation products; however, the anti-COI serum failed to recognize a cognate polypeptide in this region (Fig. 8C), indicating that its free pool must be much lower in abundance than the amount which is found within the assembled complexes. This
also suggests that the newly synthesized subunits are rapidly incorporated into complexes. The labeled material in the front region may contain a low amount of nascent kinetoplast polypeptides, but these labeled polypeptides are probably largely the result of the contaminating cytosolic translation. Therefore, the polypeptides in the front of BN gels are the same as the polypeptides in the diagonal of denaturing two-dimensional gels.

The kinetics of complex assembly was investigated by labeling kinetoplasts for various periods of time up to 4 h, followed by a two-dimensional gel analysis (Fig. 8D). Incorporation of the labeled polypeptides into complexes was already seen after labeling for 30 min. The amount of the incorporated material increased steadily during the incubation, and the pattern of labeled bands remained the same as in Fig. 8B. The 30-min labeling pattern and its intensity did not change after a 3.5-h chase with the excess of cold methionine and other amino acids. Thus, it appears that the observed kinetics of complex assembly (Fig. 8D) is similar to the kinetics of product accumulation (Fig. 8A), confirming the conclusion that the entire amount of the newly synthesized polypeptides is rapidly incorporated into respiratory complexes.

DISCUSSION

In this work we have investigated de novo polypeptide synthesis in isolated kinetoplasts of *Leishmania tarentolae*. Although it has been known for decades that isolated mitochondria from a number of organisms are capable of faithful translation of the endogenous messengers (33, 34), the progress toward investigating the process of translation in kinetoplasts has been very slow. In fungi, mammals, and plants, a differential sensitivity of the mitochondrial and cytosolic translation systems to cycloheximide and chloramphenicol provided a reliable criterion to distinguish one system from another (35, 36).

We found that, in *Leishmania*, although the bulk of the total cell synthesis was highly sensitive to cycloheximide, a so-called residual incorporation had taken place even at high concentrations of the antibiotic. This process, however, could not be attributed to kinetoplast translation mainly because the identified authentic kinetoplast polypeptides, COI and Cyb, were clearly derived from a different translation pattern. Residual synthesis was also insensitive to emetine at 100 μg/ml, as well as chloramphenicol (data not shown).

By the identification of newly synthesized COI and Cyb polypeptides, we were able for the first time to provide clear evidence for the existence of authentic kinetoplast translation in *organello* and investigate some of its properties. The hydrophobicity of these polypeptides, a property usually detrimental for analytical procedures, was utilized for their visualization in denaturing two-dimensional gels off the main diagonal. We could demonstrate that the kinetoplast protein synthesis is resistant to the usual inhibitors of mitochondrial translation. This is at odds with a number of earlier works, in which kinetoplast translation was found to be sensitive to chloramphenicol (16–18), but consistent with the others, which indicated that it is resistant to this antibiotic (12, 15, 19, 20). It should be mentioned, however, that in none of the previous cases were individual polypeptides investigated, so it is very difficult to ascertain that the authentic kinetoplast process was considered in each case.

A possible explanation for the insensitivity of kinetoplast translation to various inhibitors lies in the unusual structure of the kinetoplast ribosomes. The ribosomal large (12 S) and small (9 S) RNAs are the smallest among their counterparts. Several structural domains are entirely missing, and other domains are reduced in these molecules (37–39). Their remaining sequences, including the region of 12 S rRNA that represents the peptidyl transferase center and that is highly conserved in most other organisms, are significantly diverged. The part of the peptidyl transferase region, implicated in chloramphenicol binding that inhibits translation, is partially missing whereas the remainder is highly diverged. Kinetoplast translation had been predicted earlier to be resistant to this antibiotic (39), and our results confirm this.

An unexpected and distinguishing property of the in or-
Unusual Polypeptide Synthesis in Leishmania Kinetoplasts

ganello kinetoplast translation is the absence of requirements for exogenous amino acids and additional sources of energy. On the contrary, addition of other amino acids to the translation medium resulted in a slightly decreased incorporation of the labeled methionine. We can explain these results by proposing that most amino acids enter kinetoplasts through a common port and thus compete with the methionine. On the other hand, there is possibly an endogenous pool sufficient for the reaction to proceed over the time. Kinetoplasts also show significantly lower intensity of labeling than yeast mitochondria. This may be caused by a slower rate of importation resulting from a lower intensity of labeling than yeast mitochondria. This may proceed over the time. Kinetoplasts also show significantly lower intensity of labeling than yeast mitochondria. This process requires further investigation.

Acknowledgments—We thank L. Simpson and M. Peris for critical reading of the manuscript. A. Schneider for details of the kinetoplast isolation protocol. T. Kingan for protein sequencing, and M. Grunstein for the yeast strain.

REFERENCES

1. Estevez, A. M., and Simpson, L. (1999) Genie (Amst.) 240, 247-260
2. Priest, J. W., and Hajduk, S. L. (1994) J. Bioenerg. Biomembr. 26, 179–192
3. Stuart, K. D., Panigrahi, A. K., and Salavati, R. (2001) in RNA Editing (Bass, B. L., ed) pp. 1–19, Oxford University Press, New York
4. Brasch, R., Van den Burg, J., Brakenhoff, J., Sloof, P., Van Boom, J., and Tromp, M. (1996) Cell 86, 819–826
5. Blum, B., Bakalarana, N., and Simpson, L. (1990) Cell 60, 189–198
6. Aphasizhev, R., and Simpson, L. (2001) J. Biol. Chem. 276, 21280–21284
7. McManus, M. T., Shimamur, M., Grans, J., and Hajduk, S. L. (2001) RNA Pubb. RNA Soc. 7, 167–175
8. Muller, U. F., Lundahl, L., and Goriing, H. U. (2001) EMBO J. 20, 1394–1404
9. Bruhat, L. N., Huang, C. B., Miller, K. J., Hemmann, M., Wirtz, R., and Solin, W. (2001) Mol. Cell. Biol. 21, 979–989
10. Schnauser, A., Panigrahi, A. K., Panicucci, B., Igo, R. P., Jr., Salavati, R., and Stuart, K. (2001) Science 291, 2159–2162
11. Breek, C. K., Speijer, D., Dekker, H., Muijers, A. O., and Benne, R. (1977) Biochim. Biophys. Acta 578, 837–841
12. Kleisen, C. M., and Borst, P. (1975) Biochim. Biophys. Acta 390, 78–81
13. Spithill, T., Shiner, S., and Hill, G. (1981) Mol. Biochem. Parasitol. 2, 235–256
14. Laub-Kuperszteijn, R., and Thirion, J. (1974) Biochim. Biophys. Acta 340, 314–322
15. Dixon, R. H. (1974) T. Protocolet 21, 450
16. Zaitseva, G. N., Kolesnikov, A. A., and Shirshov, A. T. (1977) Mol. Cell. Biochem. 14, 47–54
17. Nabholz, C. E., Speijer, D., and Schneider, A. (1999) Parasitol. Res. 85, 779–782
18. Shu, H. H., and Goriing, H. U. (1998) Parasitology 116, 157–164
19. Hill, R. C., Morris, C. A., and Weber, M. M. (1975) Arch. Biochem. Biophys. 170, 392–399
20. Tittawella, I. (1998) FEBS Lett. 423, 351–356
21. Horvath, A., Berry, E. A., Huang, L. S., and Maslov, D. A. (2000) Exp. Para. 111, 160–168
22. Horvath, A., Berry, E. A., and Maslov, D. A. (2000) Science 287, 1639–1640
23. Horvath, A., Kingan, T. G., and Maslov, D. A. (2000) J. Biol. Chem. 275, 17660–17665
24. Braly, P., Simpson, L., and Kretzer, F. (1974) T. Protocolet 21, 782–790
25. Hauser, R., Pappert, M., Hauser, T., Horn, E. K., and Schneider, A. (1996) T. Cell. Con 109, 517–523
26. Poyton, R. O., Bellus, G., McKee, E. E., Sevarino, K., and Goethinger, B. (1996) Methods Enzymol. 264, 36–49
27. Beattie, D. S., and Sen, K. (1987) in Mitochondria: A Practical Approach (Darley-Usmar, V. M., Rickwood, D., and Wilson, M. T., eds) pp. 283–308, IRL Press, Oxford, Washington, D. C.
28. Laemmli, U. K. (1970) Nature 267, 680–685
29. Marres, C. A. M., and Slater, E. C. (1977) Biochim. Biophys. Acta 462, 531–548
30. Schagge, H., Cramer, W. A., and von Jagow, G. (1994) Anaal. Biochem. 217, 220–230
31. Allemann, N., and Schneider, A. (2000) Mol. Biochem. Parasitol. 111, 87–94
32. Maslov, D. A., Nawatheam, P., and Scheel, J. (1999) Mol. Biochem. Parasitol. 99, 207–221
33. McLean, J. R., Cohn, G. L., Brandt, I. K., and Simpson, M. V. (1958) J. Biol. Chem. 233, 657–665
34. Schatz, G., and Mason, T. L. (1974) Annu. Rev. Biochem. 43, 51–87
35. Krogen, A. M., and De Jong, L. (1979) Methods Enzymol. 16, 29–39
36. Leaver, C. J., Hack, E., and Forde, B. G. (1983) Methods Enzymol. 97, 476–484
37. de la Cruz, V., Lake, J. A., Simpson, A. M., and Simpson, L. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1401–1405
38. de la Cruz, V., Simpson, A., Lake, J., and Simpson, L. (1985) Nucleic Acids Res. 13, 2377–2386
39. Eperon, I., Janssen, J., Hoeijmakers, J., and Borst, P. (1983) Nucleic Acids Res. 11, 105–125
40. Beattie, D. S. (1979) Methods Enzymol. 16, 7–29
41. Chomyn, A. (1996) Methods Enzymol. 264, 157–211
42. Bhat, G. J., Koslowsky, D. J., Feagan, J. E., Smiley, B. L., and Stuart, K. (1990) Cell 61, 885–894
43. Nawatheam, P., and Maslov, D. A. (2000)Curr. Genet. 38, 95–103
44. Simpson, L., Wang, S. H., Thiemann, O. H., Alfonzo, J. D., Maslov, D. A., and Avila, H. A. (1998) Nucleic Acids Res. 26, 170–176

2 D. A. Maslov, unpublished observations.
Unusual Polypeptide Synthesis in the Kinetoplast-Mitochondria from *Leishmania tarentolae*: IDENTIFICATION OF INDIVIDUAL DE NOVO TRANSLATION PRODUCTS

Anton Horváth, Martina Neboháková, Julius Lukes and Dmitri A. Maslov

J. Biol. Chem. 2002, 277:7222-7230. doi: 10.1074/jbc.M109715200 originally published online December 28, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M109715200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 42 references, 9 of which can be accessed free at http://www.jbc.org/content/277/9/7222.full.html#ref-list-1