WEIGHTED PERSISTENT HOMOLOGY SUMS
OF RANDOM ČECH COMPLEXES

BENJAMIN SCHWEINHART

ABSTRACT. We study the asymptotic behavior of random variables of the form

\[E^i_\alpha(x_1, \ldots, x_n) = \sum_{(b,d) \in PH_i(x_1, \ldots, x_n)} (d - b)^\alpha \]

where \(\{x_j\}_{j \in \mathbb{N}} \) are i.i.d. samples from a probability measure on a triangulable metric space, and \(PH_i(x_1, \ldots, x_n) \) denotes the \(i \)-dimensional reduced persistent homology of the Čech complex of \(\{x_1, \ldots, x_n\} \). These quantities are a higher-dimensional generalization of the \(\alpha \)-weighted sum of a minimal spanning tree; we seek to prove analogues of the theorems of Steele [16] and Aldous and Steele [2] in this context.

As a special case of our main theorem, we show that if \(\{x_j\}_{j \in \mathbb{N}} \) are distributed independently and uniformly on the \(m \)-dimensional Euclidean sphere, \(\alpha < m \), and \(0 \leq i < n \), then there are real numbers \(\gamma \) and \(\Gamma \) so that

\[\gamma \leq \lim_{n \to \infty} n^{-\frac{m-\alpha}{m}} E^i_\alpha(x_1, \ldots, x_n) \leq \Gamma \]

in probability. More generally, we prove results about the asymptotics of the expectation of \(E^i_\alpha \) for points sampled from a locally bounded probability measure on a space that is the bi-Lipschitz image of an \(m \)-dimensional Euclidean simplicial complex.

1. Introduction

We are interested in random variables of the form

\[E^i_\alpha(x_1, \ldots, x_n) = \sum_{(b,d) \in PH_i(x_1, \ldots, x_n)} (d - b)^\alpha \]

where \(\{x_j\}_{j \in \mathbb{N}} \) are independent samples drawn from a probability measure on a triangulable metric space, and \(PH_i(x_1, \ldots, x_n) \) denotes the \(i \)-dimensional reduced persistent homology of the Čech complex of \(\{x_1, \ldots, x_n\} \). The special case \(i = 0 \) is,
under a different guise, already the subject of an expansive literature in probabilistic combinatorics; \(E_α^0 (x) \) gives the \(α \)-weight of the minimal spanning tree on a finite subset of a metric space \(x, T (x) \):

\[
E_α^0 (x) = 2^{-α} \sum_{e \in T(x)} |e|^α
\]

In 1988, Steele [16] showed the following:

Theorem 1 (Steele). Let \(μ \) is a compactly supported probability distribution on \(\mathbb{R}^m \), and let \(\{x_n\}_{n \in \mathbb{N}} \) be i.i.d. samples from \(μ \). If \(α < m \),

\[
\lim_{n \to \infty} n^{\frac{m-α}{m}} E_α^0 (x_1, \ldots, x_n) \to c(α, m) \int_{\mathbb{R}^d} f(x)^{(m-α)/m} ~dx
\]

with probability one, where \(f(x) \) is the probability density of the absolutely continuous part of \(μ \), and \(c(α, m) \) is a positive constant that depends only on \(α \) and \(m \).

In 1992, Aldous and Steele [2] showed that if \(\{x_i\}_{i \in \mathbb{N}} \) sampled independently from the uniform distribution on the unit cube in \(\mathbb{R}^m \), then

\[
\lim_{n \to \infty} E_α^m (x_1, \ldots, x_n) \to c(d, d)
\]

in the \(L^2 \) sense. Under the same hypotheses, Kesten and Lee proved the following central limit theorem in 1996 [12]:

\[
\frac{E_α^0 (X_1, \ldots, X_n) - \mathbb{E} (E_α^0 (X_1, \ldots, X_n))}{n^{m-2α}2^d} \to N \left(0, \sigma_{α,d}^2 \right)
\]

in distribution, for any \(α > 0 \). Here, we take the first step toward a higher-dimensional generalization of these celebrated results.

Another special case of \(E_α^0 (x) = α = 1 \) — gives the total lifetime persistence of \(x \). Random variables of the form \(E_1^0 (x) \) have been investigated by Hiraoka and Shiurai [11] in the context of Linial—Meshulam processes. They showed that if \(X \) is sampled from the \(m \)-Linial—Meshulam process then

\[
\mathbb{E} \left(E_1^{m-1} (X) \right) \in O \left(n^{m-1} \right)
\]

which is a higher-dimensional generalization of Frieze’s \(ζ(3) \)-theorem for Erdős—Rényi random graphs [10]. Also, Adams et al. [1] studied the behavior of the lifetime persistence of random measures on Euclidean space, performing computational experiments and conjecturing the existence of a limit function capturing finer properties of the persistent homology.
The properties of $E^i_\alpha (x)$ for general i and n have until now, as far as we know, not been studied in a probabilistic context (see the note at the end of the introduction). However, some work has been done in the extremal context. In 2010, Cohen-Steiner et al. \cite{6} showed that if M is the bi-Lipschitz image of an m-dimensional simplicial complex and $\alpha > m$, then $E^\alpha_i (X)$ is uniformly bounded for $X \subset M$. We use their results to prove the upper bounds in Section \ref{Section2}. Furthermore, in our previous paper \cite{13} we related the upper box dimension of a subset X of a metric space to the behavior of $E^\alpha_i (Y)$ for extremal subsets $Y \subset X$. We will say more about the relation of this to the present work in Section \ref{Section1.2}.

1.1. Our Results. The following are special cases of our main theorem:

Theorem 2. Let $\{x_j\}_{j \in \mathbb{N}}$ be be distributed independently and uniformly on the S^n. If $\alpha < m$, $0 \leq i < n$, and persistent homology is taken with respect to the intrinsic metric on S^n,
\[
\gamma \leq \lim_{n \to \infty} n^{-\frac{m-\alpha}{m}} E^\alpha_i (x_1, \ldots, x_n) \leq \Gamma
\]
in probability, where γ and Γ are constants that depend on μ and α. Furthermore, there exists a $D \in \mathbb{R}$ so that
\[
\lim_{n \to \infty} \frac{1}{1 + \log (n)} E^m_i(x_1, \ldots, x_n) \leq D
\]
in probability.

Theorem 3. Let $\{x_j\}_{j \in \mathbb{N}}$ be be distributed independently and uniformly on an m-dimensional Euclidean ball. If $\alpha < m$, $0 \leq i < n$,
\[
\gamma \leq \lim_{n \to \infty} n^{-\frac{m-\alpha}{m}} \mathbb{E} (E^\alpha_i (x_1, \ldots, x_n)) \leq \Gamma
\]
where γ and Γ are constants that depend on μ and α. In fact, the lower bound holds in probability.

Furthermore, there exists a $D \in \mathbb{R}$ so that
\[
\lim_{n \to \infty} \frac{1}{1 + \log (n)} \mathbb{E} (E^m_i (x_1, \ldots, x_n)) \leq D
\]

We show a stronger result for compactly supported probability measures on \mathbb{R}^2 that are locally bounded.
Definition 1. A probability measure μ on \mathbb{R}^m is **locally bounded** if there is a $A \subset \mathbb{R}^m$ with positive volume and real numbers $a_1 \geq a_0 > 0$ so that

$$a_0 \text{vol}(B) \leq \mu(B) \leq a_1 \text{vol}(B)$$

for all Borel sets $B \subset A$.

Theorem 4. Let μ is a compactly supported, locally bounded probability measure on \mathbb{R}^2, and let $\{x_n\}_{n \in \mathbb{N}}$ be i.i.d. samples from μ. If $\alpha < m$,

$$\gamma \leq \lim_{n \to \infty} n^{-\frac{m-\alpha}{m}} E_1^1(x_1, \ldots, x_n) \leq \Gamma$$

in probability. In fact, the upper bound holds with probability one.

Furthermore, there exists a constant D so that

$$\lim_{n \to \infty} \frac{1}{\log(n)} E_2^1(x_1, \ldots, x_n) \leq D$$

with probability one.

More generally, we prove results for locally bounded probability measures on spaces that are the bi-Lipschitz image of a compact, m-dimensional Euclidean simplicial complex:

Definition 2. Let M be the bi-Lipschitz image of a compact m-dimensional Euclidean simplicial complex Δ_M under a map ϕ_M. A probability measure μ on M is **locally bounded** if there exists a subset $A \subset \Delta_M$ with positive m-dimensional volume, and real numbers $a_1 \geq a_0 > 0$ so that

$$a_0 \frac{\text{vol}(B)}{\text{vol}(\Delta_M)} \leq \mu(\phi_M(B)) \leq a_1 \frac{\text{vol}(B)}{\text{vol}(\Delta_M)}$$

for all Borel sets $B \subseteq A$.

For example, a the uniform measure on a m-dimensional Riemannian manifold is locally bounded, as is any measure that is locally bounded with respect to the Riemannian volume.

While there exist metric spaces M with point sets $\{x_j\}_{j \in \mathbb{N}}$ so that

$$|PH_i(x_1, \ldots, x_n)| \neq O(n)$$

this is thought to be somewhat pathological behavior [13].
Definition 3. A probability measure μ on a triangulable metric space has **linear** PH_i **expectation** if
\[
\mathbb{E} \left(|PH_i(\{x_1, \ldots, x_n\})| \right) \in O(n)
\]
Similarly, μ has **linear** PH_i **variance** if
\[
\mathbb{E} \left(\left(|PH_i(\{x_1, \ldots, x_n\})| - \mathbb{E}(|PH_i(\{x_1, \ldots, x_n\})|) \right)^2 \right) \in O(n)
\]
For example, the uniform measure on a Euclidean ball [8] and any positive, continuous probability density on the Euclidean n-sphere [17] has linear PH_i expectation. It is more difficult to prove that a probability measure has linear PH_i variance. As far as we are aware, this is only known for probability measures on \mathbb{R}^2 and the uniform measure on the n-dimensional Euclidean sphere [17] (see Equation 1 and Proposition 3).

Theorem 5. Let M be the bi-Lipschitz image of an m-dimensional Euclidean simplicial complex, and $0 \leq i < m$. If μ is a locally bounded probability measure on M, there are real numbers $0 < \gamma < \Gamma$ so that
\[
\gamma n^{\frac{m-\alpha}{m}} \leq \mathbb{E} \left(E_{\alpha}^i (x_1, \ldots, x_n) \right) \leq \Gamma \mathbb{E} \left(|PH_i(\{x_1, \ldots, x_n\})|^{\frac{m-\alpha}{m}} \right)
\]
for all sufficiently large n. In particular, if μ has linear PH_i expectation, there is a real number Γ_0 so that
\[
\gamma \leq \lim_{n \to \infty} n^{-\frac{m-\alpha}{m}} \mathbb{E} \left(E_{\alpha}^i (x_1, \ldots, x_n) \right) \leq \Gamma_0
\]
The lower bound holds in probability, and the upper bound does if μ has linear PH_i variance.

Furthermore, there exists a real number D so that
\[
\mathbb{E} \left(E_n^i (x_1, \ldots, x_n) \right) \leq D \log \left(\mathbb{E} \left(|PH_i(x_1, \ldots, x_n)| \right) \right)
\]
where analogously sharper statements hold if μ has linear PH_i expectation or variance.

We prove the upper bound in Proposition 2 and the lower bound in Proposition 3.

After completion of this manuscript, we became aware that Divol and Polonik [7] independently and concurrently proved a sharper result for the persistent homology of points sampled from bounded, absolutely continuous probability densities on $[0, 1]^m$. We believe this manuscript is still useful in that the proofs are largely self-contained, and the methods are applicable to other situations. In a later paper [14], we use them
to study the behavior of \(E_{\alpha}^i (x_1, \ldots, x_n) \) for i.i.d. points sampled from a measure supported on a set of fractional dimension.

1.2. \(PH \)-dimension. In [13], we defined a family of persistent homology dimensions for a subset \(X \) of a metric space \(M \) in terms of the extremal behavior of \(E_{\alpha}^i (Y) \) for subsets \(x \) of \(X \):

\[
\dim_{PH}^i (X) = \inf \left\{ \alpha : E_{\alpha}^i (x) < C \forall x \subset X \right\}
\]

That is, \(E_{\alpha}^i (x) \) is uniformly bounded for all \(\alpha > \dim_{PH}^i (X) \), but not for \(\alpha < \dim_{PH}^i (X) \). Note that the persistent homology is taken with respect \(M \). Our results were the first rigorously relating persistent homology to a classically defined fractal dimension, the upper box dimension, but the definition is difficult to compute with in practice. Here, we define a similar notion of fractal dimension for measures on a metric space that may be more computable in practice:

Definition 4. The \(PH_i \)-dimension of a probability measure on a a triangulable metric space is

\[
dim_{PH}^i (\mu) = \sup \left\{ \alpha : \limsup_{n \to \infty} E \left(E_{\alpha}^i (x_1, \ldots, x_n) \right) = \infty \right\}
\]

Clearly, \(\dim_{PH}^i (\mu) \leq \dim_{PH}^i (\text{supp} (\mu)) \). As a corollary to our main theorem, we show:

Theorem 6. Let \(M \) be the bi-Lipschitz image of a compact \(m \)-dimensional Euclidean simplicial complex, and \(0 \leq i < m \). If \(\mu \) is a locally bounded probability measure on \(M \),

\[
\dim_{PH}^i (\mu) = m
\]

1.3. Persistent Homology. If \(X \) is a bounded subset of a triangulable metric space \(M \), let \(X_\epsilon \) denote the \(\epsilon \)-neighborhood of \(X \):

\[
X_\epsilon = \{ x \in M : d(x, X) < \epsilon \}
\]

Also, let \(H_i (X_\epsilon) \) be the reduced homology of \(X \), with coefficients in a field \(k \). The **persistent homology** of \(X \) is the product \(\prod_{\epsilon \geq 0} H_i (X_\epsilon) \), together with the inclusion maps \(i_{\epsilon_0, \epsilon_1} : H_i (X_{\epsilon_0}) \to H_i (X_{\epsilon_1}) \) for \(\epsilon_0 < \epsilon_1 \). The structure of persistent homology is captured by a set of intervals, which we refer to as \(PH_i (X) \) [18]. These intervals represent how the topology of \(X_\epsilon \) changes as \(\epsilon \) increases. Under certain finiteness hypotheses — which are satisfied if \(X \) is a finite point set — \(PH_i (X) \) is the unique
set of intervals so that the rank of \(i_{\epsilon_0, \epsilon_1} \) equals the number of intervals containing \((\epsilon_0, \epsilon_1)\) \([5]\).

If \(X \) is finite \(PH_i(X) \) is the same as the persistent homology of the Čech complex of \(X \). Note that this depends on the ambient metric space. Here, if “\(\mu \) is a probability measure on \(M \) and \(\{x_j\}_{j \in \mathbb{N}} \) are sampled from \(\mu \),” then \(PH_i(x_1, \ldots, x_n) \) is the persistent homology with ambient metric space \(M \). All questions we study here would also be interesting in the context of the Vietoris—Rips Complex.

1.4. Notation. In the following, an \(m \)-space will be the bi-Lipschitz image of a compact \(m \)-dimensional Euclidean simplicial complex. Also, if the measure \(\mu \) is obvious from the context, \(\{x_j\}_{j \in \mathbb{N}} \) will denote a collection of independent random variables with common distribution \(\mu \). Also, \(x_n \) will be shorthand for \(\{x_1, \ldots, x_n\} \) and \(x \) will denote a finite point set.

2. Upper Bounds

Our strategy to prove an upper bound for the asymptotics of \(E^i_\alpha(x_1, \ldots, x_n) \) will be to bound the number and length of the persistent homology intervals in terms of the number of simplices in a triangulation of the ambient metric space. The approach is similar to that in our earlier paper \([13]\).

2.1. Preliminaries. We require the following result, which is proven by bounding the number of persistent homology intervals of a triangulable metric space of length greater than \(\delta \) in terms of the number of simplices in a triangulation of mesh \(\delta \):

Proposition 1. (Cohen-Steiner, Edelsbrunner, Harer, and Mileyko \([6]\)) Let \(M \) be an \(m \)-space. There exists a real number \(C_0 \) so that for any \(0 \leq i < m, X \subseteq M, \) and \(\delta > 0, \)

\[
|\{(b,d) \in PH_i(X) : d - b > \delta\}| \leq C_0 \delta^{-m}
\]

We use this result to bound \(E^i_\alpha(x) \) in terms of the number of \(PH_i \) intervals of \(x \):

Lemma 1. Let \(M \) be an \(m \)-space, \(\alpha < m, \) and \(i \in \mathbb{N} \). There exists a real number \(C_1 > 0 \) so that

\[
E^i_\alpha(X) \leq C_1 |PH_i(X)|^{\frac{m-\alpha}{m}}
\]

for all \(X \subseteq M \). Furthermore, there exists a real number \(D_1 > 0 \) so that

\[
E^i_m(X) \leq D_1 \log(|PH_i(X)|)
\]
for all \(X \subseteq M \).

Proof. Dilating \(M \) by a factor \(r \) multiplies \(E^i_\alpha (X) \) by \(r^\alpha \), so we may assume without loss of generality that the diameter of \(M \) is less than one. Let \(n = |PH_i(X)| \) and

\[
I_k = \left\{(b,d) \in PH_i(X) : \frac{1}{2^{k+1}} < d - b \leq \frac{1}{2^k}\right\}
\]

Also, let \(C_0 \) be as in Proposition 1 so

\[
|I_k| \leq C_0 2^{mk}
\]

The largest \(C_0 \) intervals of \(PH_i(X) \) each have length less than or equal to \(2^0 \), the next largest \(C_0 2^m \) intervals have length less than or equal to \(2^{-1} \), and so on. It follows that if

\[
l = \left\lfloor \log_2 \left(\frac{2n}{C_0} \right) \right\rfloor / m
\]

then

\[
n \leq \sum_{k=0}^{l} C_0 2^{mk}
\]

and

\[
E^i_\alpha (X) \leq \sum_{k=0}^{l} C_0 2^{mk} \left(\frac{1}{2^k} \right)^\alpha
\]

If \(\alpha = m \), the previous inequality becomes

\[
E^i_\alpha (X) \leq C_0 l = O \left(\log (n) \right)
\]

as desired.
Otherwise, if $\alpha < m$,
\[
E^i_\alpha (X) \leq \sum_{k=0}^{l} C_0 \cdot 2^{k(m-\alpha)}
= C_0 \cdot \frac{2^{(m-\alpha)(l+1)} - 1}{2^{m-\alpha} - 1}
\leq \frac{C_0}{2^{m-\alpha} - 1} \cdot 2^{(m-\alpha)(l+1)}
\leq \frac{C_0}{2^{m-\alpha} - 1} \cdot 2^{(\log_2(2n/C_0)/m + 2)(m-\alpha)}
= C_1 n^{\frac{m-\alpha}{m}}
\]
where $C_1 = \frac{C_0 4^{m-\alpha}}{2^{m-\alpha} - 1}$.

\[\square \]

2.2. The Upper Bound. The upper bound in our main theorem now follows immediately from Jensen’s inequality, as the function $f(x) = x^{\frac{m-\alpha}{m}}$ is concave for $0 < \alpha \leq m$:

Proposition 2. Let M be an m-space, let i be a natural number less than m, and let μ be a locally bounded probability measure on M. For all $0 < \alpha < m$ there exists a real number $C > 0$ so that
\[
E \left(E^i_\alpha (x_1, \ldots, x_n) \right) \leq C \cdot E \left(|PH^i (x_1, \ldots, x_n)| \right)^{\frac{m-\alpha}{m}}
\]
In particular, if μ has linear PH^i expectation and linear PH^i variance then there is a $C' > 0$ so that
\[
\lim_{n \to \infty} n^{-\frac{m-\alpha}{m}} E^i_\alpha (x_1, \ldots, x_n) \leq C'
\]
in probability.

Furthermore, there exists a real number D so that
\[
E \left(E^i_m (x_1, \ldots, x_n) \right) \leq D \cdot \log \left(|PH^i (x_1, \ldots, x_n)| \right)
\]
In particular, if μ has linear PH^i expectation and linear PH^i variance then there is a $D' > 0$ so that
\[
\lim_{n \to \infty} \frac{1}{\log (n)} E^i_m (x_1, \ldots, x_n) \leq D'
\]
in probability.
Proof. Let \(x \) be a finite subset of \(B \), and let \(C_1 \) be as in Lemma 1. If \(\alpha < m \),

\[
\mathbb{E} \left(E^i_\alpha (x) \right) \leq C_1 \mathbb{E} \left(|PH|_i (x) \frac{m - \alpha}{m} \right) \quad \text{by Lemma 1}
\]

\[
\leq C_1 \mathbb{E} \left(|PH|_i (x) \right) \frac{m - \alpha}{m} \quad \text{by Jensen’s inequality}
\]
as desired. If \(\mu \) has linear \(PH_i \) expectation and linear \(PH_i \)-variance, Chebyshev’s Inequality implies that

\[
\lim_{n \to \infty} |PH_i (x_1, \ldots, x_n) | / n \leq C_2
\]
in probability, for some \(C_2 > 0 \), and the desired statement follows from Lemma 1.
The proof for the case \(\alpha = m \) is similar. \(\square \)

2.3. Sharper Upper Bounds. Our sharper upper bounds in Theorems 2 and 3 follow from the fact that if \(\{x_1, \ldots, x_n\} \) is a finite subset of \(\mathbb{R}^m \) of \(S^m \) in general position then

\[
|PH_i (x_1, \ldots, x_n) | \leq |DT (x_1, \ldots, x_n) |
\]

where \(DT (x_1, \ldots, x_n) \) is the number of simplices of the Delaunay triangulation on \(\{x_1, \ldots, x_n\} \). In fact, the Alpha complex is a filtration on the simplices of the Delaunay triangulation that is homotopy equivalent to the \(\epsilon \)-neighborhood filtration of the points \(\{x_1, \ldots, x_n\} \) \(\text{[9]} \). This construction is usually defined for points in Euclidean space, but easily extends to points on the \(m \)-sphere, in which case the Delaunay triangulation is the spherical convex hull of the points.

Proposition 3. If \(B \) be a bounded subset of \(\mathbb{R}^m \)

\[
E^i_\alpha (x_1, \ldots, x_n) = O \left(n^{\frac{m+1}{2}} \frac{m-n}{m} \right)
\]

for any general position point set \(\{x_1, \ldots, x_n\} \) contained in \(B \).

Proof. The Upper Bound Theorem \(\text{[15]} \) implies that if \(X \subset \mathbb{R}^m \) then

\[
|(DT) (x_1, \ldots, x_n) | = O \left(n^{\frac{m+1}{2}} \right)
\]

The desired statement follows immediately from Lemma 1 and Equation 1. \(\square \)
3. Lower Bounds

Our strategy to prove lower bounds for the asymptotics of weighted PH-sums is to study collections of sets whose persistent homology obeys a super-additivity property. We define certain “cubical occupancy events” giving rise to such collections, and prove that they occur with positive probability for sets of i.i.d. points drawn from a locally bounded probability measure on an m-space. We bootstrap these results by subdividing a subset of an m-dimensional cube into many small sub-cubes. This bootstrapping argument is similar to the one we used to prove a lower bound for PH_i dimension in our previous paper [13].

In the following, fix $0 \leq i < m$.

3.1. Super-additivity for Persistent Homology. Persistent homology does not in general obey a super-additivity property, but we can define a subclass of sets whose persistent homology does. If X and T are subsets of a triangulable metric space and $b < d$, let $M_{X,T}(b,d)$ be the rank of the homomorphism on homology induced by the inclusion

$$X_b \hookrightarrow X_d \hookrightarrow X_d \cup T_d$$

where X_ϵ denotes the ϵ-neighborhood of X. Note that

$$M_{X,C}(b,d) \leq N_X(b,d)$$

where $N_X(b,d)$ is the number of intervals of $PH_i(X)$ with birth times less than b and death times greater than d. We will show that if C is an m-dimensional cube and $X \subset C$, then quantities of the form $M_{X,\partial C}(d,b)$ obey a super-additivity property.

Lemma 2. Let $\{C_1, \ldots, C_n\}$ be m-dimensional cubes in \mathbb{R}^m so that

$$C_j \cap C_k \subset \partial C_j \quad \forall j, k \in \{1, \ldots, n\} : j \neq k$$

If $X_j \subset C_j$ for $j = 1, \ldots, n$

$$N_{\bigcup_j X_j}(b,d) \geq M_{\bigcup_j X_j, \bigcup_j \partial C_j}(b,d) \geq \sum_{j=1}^n M_{X_j, \partial C_j}(b,d)$$

for any $0 \leq b < d$.

Proof. Let $k \in \{1, \ldots, n\}$, $S = \bigcup_{j=1}^{k-1} X_j$, $T = \bigcup_{j=1}^n \partial C_j$, $X = X_k$, and $C = C_k$. See Figure 1.
We consider the cases $i = m - 1$ and $i < m - 1$ separately. If $i = m - 1$, Alexander Duality implies that $N_S(b,d)$ is the number of bounded components of the complement of (S_b) that intersect non-trivially with the complement of S_d. Similarly, $M_{X,C}(b,d)$ is the number of bounded components of the complement of X_b that intersect non-trivially with $(X_d \cup (\partial C)_d)^c$. Note that all bounded components of $(X_b)^c$ are contained within the interior of C, because C is convex and separates \mathbb{R}^m into two components.

Let Y be a component of the complement of X_b that intersects non-trivially with $(X_d \cup (\partial C)_d)^c$, and let $y \in Y \cap (X_d \cup (\partial C)_d)^c$. ∂C separates \mathbb{R}^m into two components so

$$d(y, S) \geq d(y, S \cup T) = d(y, X \cup \partial C) > d$$

Therefore,

$$Y \cap (S_d)^c \supseteq Y \cap (S_d \cup T_d)^c = Y \cap (X_d \cup (\partial C)_d)^c \neq \emptyset$$

Applying the same argument to each X_j and counting components of the complement yields the desired inequalities.

Otherwise, assume that $i \leq m - 1$. We will show that

$$M_{S \cup X, T}(b,d) \geq M_{S,T}(b,d) + M_{X, \partial C}(b,d)$$

and the desired result will follow by induction. Note that

$$X_\epsilon \cap S_\epsilon \subseteq X_\epsilon \cap (S_\epsilon \cup T_\epsilon) \subseteq (\partial C)_\epsilon$$

for any $\epsilon > 0$. Consider the following commutative diagram of inclusion homomorphisms and Mayer-Vietoris sequences:
$H_i(X_b \cap S_b) \xrightarrow{\phi \oplus \psi} H_i(X_b) \oplus H_i(S_b) \xrightarrow{\alpha_b + \beta_b} H_i(X_b \cup S_b) \xrightarrow{\zeta} H_i((\partial C)_d) \oplus H_i(S_d \cup T_d) \xrightarrow{\alpha_d + \beta_d} H_i(X_d \cup S_d \cup T_d)$

Observe that $M_{X,\partial C}(b,d) = \text{rank } \phi$, $M_{S,T}(b,d) = \text{rank } \psi$, and $M_{X \cup S,T}(b,d) = \text{rank } \zeta$. It follows that

$$M_{X \cup S,T}(b,d) = \text{rank } \zeta \geq \text{rank } (\alpha_d + \beta_d) \circ (\phi \oplus \psi)$$

$$= \text{rank } (\phi \oplus \psi) \quad \text{because } H_i((\partial C)_d) = 0$$

$$= \text{rank } \phi + \text{rank } \psi$$

$$= M_{X,\partial C}(b,d) + M_{S,T}(b,d)$$

$$\geq \sum_{j=1}^k M_{X_j,\partial C_j}(b,d) \quad \text{by induction}$$

3.2. **Occupancy Events.** If B is a subset of an m-space, define the occupancy event

$$\delta(B, x) = \begin{cases} 0 & |x \cap B| = 0 \\ 1 & |x \cap B| > 0 \end{cases}$$

Also, if $\{A_i\}_{i=1}^r$ and $\{B_j\}_{j=1}^s$ are collections of subsets of M, let

$$\xi(x, \{A_i\}, \{B_j\}) = \begin{cases} 1 & \delta(A_i, x) = 0 \text{ and } \delta(B_j, x) = 1 \quad \forall i, j \\ 0 & \text{otherwise} \end{cases}$$

Lemma 3. Let μ be a locally bounded probability measure on an m-space M. There exists a real number $V_0 > 0$ so for any $r, s \in \mathbb{N}$ there exists a real number $\gamma_0 > 0$ so that for any collections of disjoint, congruent cubes $\{A_i^k\}$ and $\{B_j^k\}$, for $i \in \{1, \ldots, r\}$, $j \in \{1, \ldots, s\}$, and $k \in \{1, \ldots, n\}$ (for a total of $(r + s)n$ cubes) with volume
Lemma 4. Let $0 < b < d < 1/6$, and $V_0 > 0$. There exists a $\lambda_0 > 0$ so that if $C \subset \mathbb{R}^m$ is an m-dimensional cube of width R and $\lambda > \lambda_0$, there exist disjoint, congruent cubes $\{A_j\}$ and $\{B_k\}$ of width $R (V_0/\lambda)^{1/m}$ so that

$$\xi(x, \{A_j\}, \{B_k\}) = 1 \implies M_{x, \partial C} (Rb, Rd) > 0$$

Proof. We may assume without loss of generality that $R = 1$ and C is centered at the origin. Let $S^i \subset \mathbb{R}^m$ be an i-dimensional sphere of diameter $1/3$ centered at the origin; note that $PH_i (S^i)$ consists of a single interval $(0, 1/6)$.

Let $\kappa = \min (b, 1/6 - d)$ and $\Delta_0 = \kappa / \sqrt{m}$.

$$\lim_{\delta \to 0} \delta |1/\delta| = 1$$
so there is a real number $\Delta_1 > 0$ so that $1 - \delta [1/\delta] < \kappa$ for all $\delta < \Delta_1$. Set

$$\lambda_0 = \frac{V_0}{\min(\Delta_0, \Delta_1)^m}$$

Choose $\lambda > \lambda_0$, set $\delta = (V_0/\lambda)^{\frac{1}{m}}$, and let C' be the cube of width $\delta [1/\delta]$ centered at the origin. Subdivide C' into $[1/\delta]^m$ sub-cubes of width δ. Call this collection of sub-cubes $\{C_l\}$ and let

$$\{A_j\} = \left\{ c \in \{C_l\} : S^i \cap c = \emptyset \right\} \quad \text{and} \quad \{B_k\} = \left\{ c \in \{C_l\} : S^i \cap c \neq \emptyset \right\}$$

See Figure 2 for an illustration.

If $x \subset C$ and the event $\xi(x, \{A_j\}, \{B_k\})$ occurs, then

$$d_H(x \cap C', S^i) < \kappa$$

where d_H is the Hausdorff distance and we used the fact that the diagonal of an m-dimensional cube of width δ is $\delta \sqrt{m}$. The stability of the bottleneck distance [5] implies that $PH_i(x \cap C')$ includes an interval (\hat{b}, \hat{d}) so that

$$\hat{b} < \kappa \leq b < d \leq 1/3 - \kappa < \hat{d}$$

In particular,

$$N_{x \cap C'}(b, d) > 0$$

By construction,

$$\frac{1}{2} d(x \cap C', C \setminus C') > \frac{1}{2} \left(\frac{1}{6} \sqrt{m} \delta - d(C, C') \right) > \frac{1}{6} \kappa \geq d$$

so the ϵ-neighborhoods of $x \cap C'$ and $C \setminus C'$ are disjoint for all $\epsilon \leq d$. It follows that the maps on homology induced by the inclusions $(x \cap C')_{\epsilon} \hookrightarrow x_{\epsilon}$ and $x_{\epsilon} \hookrightarrow x_{\epsilon} \cup (\partial C)_{\epsilon}$ are injective for all $\epsilon \leq d$. Therefore, $M_{x, \partial C}(b, d) > 0$, as desired. □

3.3. Proof of the Lower Bound. In the remainder, let μ be a locally bounded probability measure on an m-space M, let $\{x_j\}_{j \in \mathbb{N}}$ be i.i.d. samples from μ, and let $x_n = \{x_1, \ldots, x_n\}$. Also, let C be as in Lemma 3, and rescale Δ_M if necessary so that C is a unit cube. Finally, let λ_0 be as in Lemma 4.
3.3.1. The Euclidean Case. For clarity, we first consider the special case where ϕ_M is the identity map, and μ is a locally bounded probability measure on a compact Euclidean simplicial complex. The argument for the general case contains many of the same elements.

Lemma 5. Let $0 < b_0 < d_0 < 1/6$. If $n_0 > \lambda_0$, there is a $\gamma_1 > 0$ so that

$$
\lim_{n \to \infty} \frac{1}{n} N_{x_n} \left(\left(\frac{n_0}{n} \right)^{\frac{1}{m}} b_0, \left(\frac{n_0}{n} \right)^{\frac{1}{m}} d_0 \right) > \gamma_1
$$

in probability.

Proof. Let V_0 be as in Definition 3 and let $r = |A_i|$ and $s = |B_j|$, where $\{A_i\}$ and $\{B_j\}$ are as in the previous lemma.

Assuming $n > n_0$, let $\omega = \left(\frac{n_0}{n} \right)^{\frac{1}{m}}$. Subdivide \mathbb{R}^m into cubes of width ω, and let $\{D_l\}_{l=1}^{K_n}$ be the cubes that are fully contained in C. Note that

$$K_n := |\{D_l\}| \approx \frac{n}{n_0}$$

By the previous lemma, there are collections of disjoint, congruent sub-cubes $\{A^l_1, \ldots, A^l_r\}$ and $\{B^l_1, \ldots, B^l_s\}$ of width $\omega (V_0/n_0)^{\frac{1}{m}}$ contained inside each cube D_l so that

$$\xi \left(x_n, \{A^l_i\}, \{B^l_j\} \right) = 1 \implies M_{x_n \cap D_l, \partial D_l} (\omega b_0, \omega d_0) > 0$$

Note that

$$N_{x_n} (\omega b_0, \omega d_0) \geq \sum_{l=1}^{K_n} M_{x_n \cap D_l, \partial D_l} (\omega b_0, \omega d_0) \quad \text{by Lemma 2}$$

$$\geq \sum_{l=1}^{K_n} \xi \left(x_n, \{A^l_i\}, \{B^l_j\} \right)$$

Let γ_0 be as in Lemma 3 and $\gamma < \gamma_0/n_0$. Set

$$\delta = \frac{1 + \gamma n_0}{2} \quad \text{and} \quad \epsilon = \frac{1 - \delta}{\delta}$$
so $1/2 < \delta < 1$ and $0 < \epsilon < 1$. Also, find a N so that $K_n > \delta n/n_0$ for all $n > N$. Note that

$$\gamma n = \frac{\gamma_0 \delta n}{n_0} \left(1 - \frac{1 - \delta}{\delta} \right) < (1 - \epsilon) \gamma_0 K_n$$

for all $n > N$. Therefore, if $n > N$,

$$\mathbb{P}(N_{x_n}(\omega_{b},\omega_{d}) > \gamma n) \geq \mathbb{P}\left(\sum_{l=1}^{K_n} \xi_{x_n,\{A_l^i\},\{B_l^j\}} > \gamma n \right)$$

by Lemma 3

$$\geq \mathbb{P}(B(K_n,\gamma_0) > \gamma n) \geq \mathbb{P}(B(K_n,\gamma_0) > (1 - \epsilon) \gamma_0 K_n)$$

by Equation 2

which converges to 1 as $n \to \infty$. \qed

We can now prove the lower bound in the Euclidean setting:

Proposition 4. There is a $\gamma' > 0$ so that

$$\lim_{n \to \infty} n^{-\frac{m-a}{m}} E^i_{\alpha}(x_n) \geq \gamma'$$

in probability.

Proof. Let $0 < b < d < 1/6$, and let $n_0 > \lambda_0$ and γ_1 be as before. Also, let $\omega = \left(\frac{n_0}{n}\right)^{1/m}$. We have that

$$\lim_{n \to \infty} n^{-\frac{m-a}{m}} E^i_{\alpha}(x_n) \geq \lim_{n \to \infty} n^{-\frac{m-a}{m}} (\omega d - \omega b)^{\alpha} N_{x_n}(\omega b, \omega d)$$

$$= \lim_{n \to \infty} \frac{n_0^{\alpha/m}}{n} (d - b)^{\alpha} N_{x_n}(\omega b, \omega d)$$

$$\geq n_0^{\alpha/m} (d - b)^{\alpha} \gamma_1$$

by Lemma 5

$$:= \gamma'$$

in probability. \qed
3.3.2. The General Case. Before proving the lower bound in our main theorem, we require an interleaving result for the persistent homology of images of bi-Lipschitz maps:

Lemma 6. Let M_0 and M_1 be metric spaces and let $\psi : M_0 \to M_1$ be L-bilipshitz. If $X \subset M_0$ and $0 \leq b_0 < d_0$

$$N_X(b_0/L, Ld_0) \leq N_{\psi(X)}(b_0, d_0) \leq N_X(Lb_0, d_0/L)$$

Proof. Fix $i \in \mathbb{N}$, and let $j_{\epsilon_0, \epsilon_1} : X_{\epsilon_0} \hookrightarrow X_{\epsilon_1}$ and $k_{\epsilon_0, \epsilon_1} : \phi(X)_{\epsilon_0} \hookrightarrow \phi(X)_{\epsilon_1}$ denote the inclusion maps for $\epsilon_0 \leq \epsilon_1$.

By the definition of a bi-Lipschitz map

$$\frac{1}{L}d_{M_0}(x, y) \leq d_{M_1}(\psi(x), \psi(y)) \leq Ld_{M_0}(x, y)$$

for all $x, y \in M_0$. In particular, we have the following inclusions:

$$\psi(X_{b_0/L}) \hookrightarrow \psi(X)_{b_0} \hookrightarrow \psi(X)_{d_0} \hookrightarrow \psi(X_{Ld_0})$$

It follows that the rank of map on homology induced by $i_{b_0/L, Ld_0}$ is less than or equal to the rank of the map induced by j_{b_0, d_0} (where we have used that a bi-Lipschitz map is a homeomorphism). Therefore,

$$N_X(b_0/L, Ld_0) \leq N_{\psi(X)}(b_0, d_0)$$

The argument for the other inequality is very similar. \qed

Proposition 5. Let μ be a locally bounded probability measure on an m-space M and $0 \leq i < m$. There is a $\gamma > 0$ so that

$$\lim_{n \to \infty} n^{-\frac{m-i}{m}} E_\alpha^i(x_1, \ldots, x_n) > \gamma$$

in probability

Proof. Let L be the bi-Lipschitz constant of ϕ_M, and choose $b, d > 0$ so that

$$L^2b < d < 1/6$$

Set

$$n_0 = \max \left((d/L - Lb)^{-m}, n_0 \right)$$

so

$$n_0^{\frac{1}{m}} (d/L - Lb) \geq 1$$
Let $\omega = \left(\frac{n_0}{n}\right)^{\frac{1}{m}}$ and $y_n = \phi_n^{-1}(x_n)$. Our strategy is to bound $E_{\alpha}^i(x_n)$ by applying Lemma 5 to y_n.

First,
\[
E_{\alpha}^i(x_n) \\
(\omega(d/L - Lb))^\alpha N_{x_n}(\omega Lb, \omega d/L) \\
\geq n^{-\alpha/m}N_{x_n}(\omega Lb, \omega d/L) \quad \text{by Equation 3} \\
\geq n^{-\alpha/m}N_{y_n}(\omega b, \omega d) \quad \text{by Lemma 6} \\
= n^{-\alpha/m}N_{y_n}(\omega b, \omega d)
\]

Therefore,
\[
\lim_{n \to \infty} n^{\frac{-m-\alpha}{m}}E_{\alpha}^i(x_n) \geq \lim_{n \to \infty} \frac{1}{n}N_{y_n}(\omega b, \omega d) > \gamma_1
\]

in probability, where $\gamma_1 > 0$ is as given in Lemma 5.

\[\square\]

REFERENCES

[1] Henry Adams, Manuchehr Aminian, Elin Farnell, Michael Kirby, Joshua Mirth, Rachel Neville, Chris Peterson, Patrick Shipman, and Clayton Shonkwiler. A fractal dimension for measures via persistent homology. Preprint, 2018.

[2] David Aldous and J. Michael Steele. Asymptotics for Euclidean minimal spanning trees on random points. Probability Theory and Related Fields, 1992.

[3] Ulrich Bauer and Florian Pausinger. Persistent Betti numbers of random Čech complexes. arXiv:1801.08376.

[4] Omer Bobrowski, Matthew Kahle, and Primoz Skraba. Maximally persistent cycles in random geometric complexes. The Annals of Applied Probability, 2017.

[5] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103120, 2007.

[6] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz functions have l_p-stable persistence. Foundations of Computational Mathematics, 2010.

[7] Vincent Divol and Wolfgang Polonik. On the choice of weight functions for linear representations of persistence diagrams. arXiv:1807.03678, July 2018.

[8] Rex Dwyer. Higher-dimensional voronoi diagrams in linear expected time. Discrete and Computational Geometry, 1991.

[9] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 2002.

[10] A. M. Frieze. On the value of a random minimum spanning tree problem. Discrete Applied Mathematics, 1985.
[11] Yasuaki Hiraoka and Tomoyuki Shirai. Minimum spanning acycle and lifetime of persistent homology in the Linial—Meshulam process. *Random Structures & Algorithms*, 2017.

[12] Harry Kesten and Sungchul Lee. The central limit theorem for weighted minimal spanning trees on random points. *Annals of Applied Probability*, 1996.

[13] B. Schweinhart. Persistent homology and the upper box dimension. arXiv:1802.00533.

[14] Benjamin Schweinhart. The persistent homology of random geometric complexes on fractals. arXiv:1808.02196.

[15] Richard Stalney. The upper bound conjecture and Cohen-Macaulay rings. *Studies in Applied Mathematics*, 1975.

[16] J. Michael Steele. Growth rates of Euclidean minimal spanning trees with power weighted edges. *Annals of Probability*, 1988.

[17] Johannes Stemeseder. *Random polytopes with vertices on the sphere*. PhD thesis, Paris-Lodron University of Salzburg, 2014.

[18] A. Zomorodian and G. Carlsson. Computing persistent homology. *Discrete and Computational Geometry*, 33:249–274, 2005.