Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

Teodoro Cordova-Fraga, Modesto Sosa, Carlos Wiechers, Jose Maria De la Roca-Chiapas, Alejandro Maldonado Moreles, Jesus Bernal-Alvarado, Raquel Huerta-Franco

AIM: To study the esophageal transit time (ETT) and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI).

METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at 90°, 45° and 0° inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI).

RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions. The ETT means were 5.2 ± 1.1 s, 6.1 ± 1.5 s, and 23.6 ± 9.2 s for 90°, 45° and 0°, respectively. Pearson correlation results were \( r = -0.716 \) and \( P < 0.001 \) by subjects' anatomical position, and \( r = -0.024 \) and \( P > 0.05 \) according the subject's BMI.

CONCLUSION: We demonstrated that using this biomagnetic technique, it is possible to measure the ETT and the effects of the anatomical position on the ETT.

Key words: Transit time; Magnetic marker; Esophagus; Anatomical position; Non-invasive

Peer reviewer: Michael F Vaezi, Department of Gastroenterology and Hepatology, Vanderbilt University Medical Center, 1501 TVC, Nashville, TN 37232-5280, United States

Cordova-Fraga T, Sosa M, Wiechers C, De la Roca-Chiapas JM, Maldonado Moreles A, Bernal-Alvarado J, Huerta-Franco R. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique. World J Gastroenterol 2008; 14(37): 5707-5711 Available from: URL: http://www.wjgnet.com/1007-9327/14/5707.asp DOI: http://dx.doi.org/10.3748/wjg.14.5707

INTRODUCTION

The esophageal phase is the last phase in the swallow process; it includes the propulsion of the meal through the esophagus toward the stomach. The esophageal transit time (ETT) reported for solid and semisolid meals is between 4 and 8 s, whereas liquid ETT lasts approximately 1 to 2 s in healthy people[1]. A diagnosis of gastroesophageal reflux disease should include the presence of a pathological reflux in patients lacking another motility disorder or damage in the esophagus[2-3]. If this condition can not be met, then the evaluation should include the assessment of disintegration time of oral tablets before they enter the stomach[4]. Currently, diagnosis of gastroesophageal reflux diseases is made with endoscopy[5-8], manometry[9], imaging methods[10], impedance[10], scintigraphy[11] and other techniques[12,13]. These assessments are useful to quantify the liquid and solid volumes retained in the esophagus. Currently, the scintigraphic technique is the gold standard test accepted to assess ETT and it is indicated in cases where the manometric and barometric studies do not give a differential diagnosis[14].

The ETT assessment is used to complete the diagnosis of diseases, such as gastroesophageal reflux[12-14], dysphagia[15,16], esophagitis[17,18], and achalasia[19,20]. The latter studies are commonly performed with scintigraphic and manometric techniques[21], in healthy[22], geriatric[23], and pediatric patients[24], despite the use of ionizing radiation and catheters in each test, respectively. Recently, several assessments were performed using the biomagnetic technique, including gastric emptying time[25] and colon...
transit time\textsuperscript{24}. These studies have the advantage of being non-invasive, comfortable for the patient, and do not use ionizing radiation. Daghastani et al\textsuperscript{27} in 1998 reported an ETT study carried out with a biosusceptometer and a magnetic tracer, where they used 5 g of manganese (Mn) and ferrite powder. In their study, they also measured the ETT using the scintigraphy technique and found that the ETT was $4.6 \pm 0.9$ s when biomagnetic technique was used, in comparison to a time of $3.8 \pm 0.8$ s as measured by the scintigraphy technique. The results of these studies demonstrated the efficacy of the magnetic techniques to carry out the ETT.

In this study, we implemented a novel modality of the biomagnetic technique using modern instruments, which included the monitoring of a magnetic marker (MM) traveling though the length of the esophagus. This was done using a pair of fluxgate magnetometers. We hypothesized that the esophagus motility and the mean ETT are significantly different when they are tested as a function of different anatomical positions of a subject (supine = 0\textdegree; fowler = 45\textdegree, and upright = 90\textdegree, respectively) (Figure 1).

**MATERIALS AND METHODS**

In Figure 1, we present a schematic set up of the biomagnetic probe used, which consisted of two digital tri-axis fluxgate magnetometers which were placed in an electronic device. They were separated 19 cm and were positioned in a line along the esophagus, just above the subjects’ thorax (Figure 2). A 3-mm long and 4-mm high magnet was used as the biomagnetic source or MM. This magnet was enclosed in a polycarbonate sphere 6 mm in diameter (Figure 3) in order to avoid chemical reactions with the gastric acids.

**Subjects**

Fourteen normal and healthy adult subjects (10 men and 4 women) participated in the study; they did not have clinical antecedents of esophageal or gastrointestinal disease. The subject's mean age and body mass index (BMI) were 21.8 ± 1.5 years and 23.9 ± 2.7 kg/m\textsuperscript{2}, respectively. All volunteers received instructions before starting the experiment and signed an informed consent approved by the Institutional Review Board of our institution. The experiment was carried out according to the Declaration of Helsinki.

**Procedure**

Subjects were studied after fasting for 12 h. All of them were assessed in three anatomical positions: (1) upright position, 90\textdegree; (2) fowler position, this is a semi-laying position bent at 45\textdegree; and (3) supine position, this is a laying position with a bend of 0\textdegree (Figure 1). The MM or magnetic particle was introduced inside the mouth of the subjects and swallowed with 20 mL of yogurt (50 kcal), this substance was used as MM vehicle.

**Data collection and signal processing**

The magnetic signal was registered for 1 min, with a sampling rate of 30 samples/s. Data acquisition was carried out using a routine informatic implemented with software of LabVIEW 7 platform. Then, collected data were exported and graphically analyzed in Matlab 6.5 in order to measure the ETT.

**Statistical analysis**

We calculated the mean age and BMI of the subjects using descriptive statistics. Using one way ANOVA and Tuckey post-hoc test, we compared the differences among the mean ETT obtained when subjects adopted each of the three anatomical positions. A Pearson correlation was used to determine the correlation coefficient between the ETT and the subject's age, BMI and the angle of inclination of the anatomical position. 

$P < 0.05$ was considered statistically significant.

**RESULTS**

Figure 4 shows the raw signals recorded from one subject in three anatomical positions. The time signal shown as a continuous line is the recording with the fluxgate magnetometer added in the upper part of the esophagus, while the dashed line corresponds to the fluxgate magnetometer in the bottom part of the esophagus. The different time between the dominant peaks of each raw signal gives the ETT in each case. In Figure 4, it shows the raw recordings carried out in each anatomical position of one subject. We estimate that the differences in the time seen here was typical of all subjects.

Figure 5 demonstrates the mean and standard deviation values of the ETTs, which were significantly longer at 0\textdegree ($23.6 \pm 9.2$ s) than at 45\textdegree ($6.1 \pm 1.5$ s), and 90\textdegree ($5.18 \pm 1.8$ s). The results of the ANOVA and Tuckey post-hoc test demonstrated the significant differences between the groups (Figure 5). Pearson correlation coefficient test demonstrated an indirect relationship between anatomical position and ETT. This means that when subjects adopt a greater angle of inclination, they will have shorter ETT values. This relationship had a coefficient of $r = -0.716$, $P < 0.001$. However, we did not find any statistically significant difference between the EET and weight, age or BMI.

**DISCUSSION**

The esophageal phase is the last phase in the swallow process; it includes the propulsion of the meal through the esophagus toward the stomach. The ETT reported for solid and semisolid meals is between 4 and 8 s, whereas liquid ETT lasts approximately 1 to 2 s in healthy people\textsuperscript{[10]}. Using the biomagnetic technique, we demonstrated that ETT is affected by anatomical position, with a significantly larger transit time when subjects adopted an upright position. These results concur with previous reports\textsuperscript{[11,28,29]} including studies in which a biosusceptometer magnetometer was used\textsuperscript{[27]}

Previously, researchers reported that ETT in healthy individuals was approximately 4-8 s for solid and semisolid meals, and 1-2 s for liquid meals\textsuperscript{[11,28,29]}. In
agreement with the aforementioned findings, our study demonstrated that the mean ETT was 6.1 ± 1.5 s in the upright position and 5.18 ± 1.8 s in the fowler position. However, the only value which was inconsistent with previous reports was that of the supine position, a transit time of 23.6 ± 9.2 s. This can be explained by the effects of gravity on the test meal and magnets.

Our study demonstrated that ETT is affected by gravity, and therefore, the subjects’ anatomical position changes ETT. This phenomenon is explained by the physiology of the esophagus, which combines resistance and contraction to cause movement of the bolus or liquid. When gravity also contributes to the propulsion of the bolus or liquid through the esophagus, transit time is decreased and esophageal transit rates are increased.

Using this biomagnetic modality, we demonstrated that ETT varies depending on the subjects’ anatomical position. In this study, we found no relationship between ETT and the subjects’ age, which can be explained by the fact that we generally evaluated only young and healthy subjects (mean age: 21.8 ± 1.5 years). However, more studies assessing the ETT in older subjects and patients with different pathologies, such as gastroesophageal reflux, dysphagia, esophagitis, and achalasia, are necessary to determine the differences in ETT of healthy subjects versus patients. It is likely that the ETT will differ in patients with a clinical diagnosis of esophageal disease.

In this study, we found no significant correlation between ETT and the subject’s BMI, which also may be explained by the samples from a largely homogeneous group of healthy and non-obese subjects (BMI: 23.9 ± 2.7 kg/m²). Therefore, in order to demonstrate the relationship of BMI and ETT, additional studies are needed using males and females with BMI within normal and obese ranges. Other clinical applications of biomagnetic technique exist in gastro-pharmacology.
The results of one way ANOVA demonstrate statistically significant differences in the subjects’ ETT between the supine position (0°) and both the fowler (45°) and the upright (90°) positions.

ACKNOWLEDGMENT

The authors would like to thank Kathleen M. Capaccione for review and revision of the manuscript.

COMMENTS

Background

Esophageal transit time (ETT) assessment is used to diagnose of gastrointestinal disease, such as esophagitis and achalasia. These studies are carried out using either scintigraphic or manometric techniques, but each has its own disadvantage: scintigraphy uses ionizing radiation, while manometry uses an invasive probe. Recently, several assessments of other body systems were performed using the biomagnetic technique (BMT), including ETT, gastric emptying time, and colon transit time. These studies have the advantage of being non-invasive, comfortable for the patient, and are conducted without ionizing radiation. Recently, researchers have tested the validity of BMT by comparing it with the scintigraphic technique (the gold standard test accepted to assess ETT) in the evaluation of ETT.

Research frontiers

In this study, authors implemented a novel use of the BMT using modern instruments, which included the monitoring of a magnetic marker (MM) traveling though the length of the esophagus. Using the BMT technique, they demonstrated that ETT varies depending on the subjects’ anatomical position.

Innovations and breakthroughs

ETT = 4.3 s

ETT = 6.1 s

ETT = 22.9 s

Figure 4 This series of graph showing the raw signal recorded from a single representative subject lying in the three angles of inclination: 90° (A), 45° (B) and 0° (C).

An advantage of this new application of the biomagnetic technique, implemented for the measurement of ETT, is that it demands little space and hardware, since all that is needed is a low-cost magnetometer. Therefore, this technique could be implemented for clinical assessment of esophageal disorders in general practice medicine, for gastroenterologists studying drug transit time and in other specialties. Additionally, because of its low cost and non-invasiveness, this technique could be implemented in small clinical areas and hospitals. Although this technique has already been validated, further studies are needed to compare biomagnetism with the most innovative and sophisticated techniques commonly used for esophageal evaluation in order to identify its sensitivity and reproducibility.

Figure 5 The results of one way ANOVA demonstrate statistically significant differences in the subjects’ ETT between the supine position (0°) and both the fowler (45°) and the upright (90°) positions.

www.wjgnet.com
susceptibilities. MM means external magnetic substance or object used in this case as a vehicle to monitor the passage of an orally taken substance (food, drug, tablet, capsule, etc.) through the intestinal tract. Fluxgate sensor is a scientific instrument used to measure the strength and/or direction of the magnetic field in the vicinity of the instrument. Magnetic susceptibility means the magnetization of a material per unit applied field. It describes the magnetic response of a substance to an applied magnetic field.

**Peer review**

This is an interesting study. Authors used a BMT to monitor ETT to test the hypothesis that esophageal motility and the mean ETT are significantly different when subjects adopt different anatomical inclinations. With this technique, they demonstrated that the mean values of ETT vary depending on the subjects' anatomical inclination.

**REFERENCES**

1. Ojeaburu J, Benjamin SB. Normal Esophageal Fisiology. In: Antony JD, Stanley BB. Gastrointestinal Disease an Endoscopic Approach. New Jersey: Slack Incorporated, 2002; 173-190
2. Mariani G, Boni G, Barreca M, Bellini M, Fattori A, AllShair A, Grosso M, Stasi C, Costa F, Anselmino M, Marchi S, Rubello D, Strauss HW. Radionuclide gastroesophageal motor studies. *J Nucl Med* 2004; 45: 1004-1028
3. Can MF, Yagci G, Cetiner S, Gulsen M, Yigit T, Ozturk E, Oliveira RB, Aprile LR, Hara SH, Sifrim DA, Dantas RO, Troncon LE, Moriguti
4. Blackshaw PE, Hay PD, Lawes SC, Atherton 2008;
5. Cordova-Fraga T et al. Effects of position on ETT
6. Dagan A, Draganov P. Endoscopic mucosal resection in the upper gastrointestinal tract. *World J Gastroenterol* 2008; 14: 1964-1989
7. Chung JJ, Park HJ, Yu JS, Hong YJ, Kim JH, Kim MJ, Lee SI. A comparison of esophagography and esophageal transit scintigraphy in the evaluation of usefulness of endoscopic pneumatic dilatation in achalasia. *Acta Radiol* 2008; 49: 498-505
8. Gilja OH, Hatlebakk JG, Odgaard S, Berstad A, Viola L, Gierts C, Hausken T, Gregersen H. Advanced imaging and visualization in gastrointestinal disorders. *World J Gastroenterol* 2007; 13: 1408-1421
9. Blonski W, Hila A, Jain V, Freeman J, Vela M, Castell DO. Impedance manometry with visscos test solution increases detection of esophageal function defects compared to liquid swallows. *Scand J Gastroenterol* 2007; 42: 917-922
10. Hike K, Urita Y, Watanabe M, Sugimoto M, Iki K. Saliva transit from the oral cavity to the esophagus in GERD. *Hepatogastroenterology* 2008; 55: 4-7
11. Vergara MT. Labotario en los trastornos motores del esófago. *Castr Linnaen* 2005; 16: 109-114
12. Osmanoglu E, Van Der Voort IR, Fuchs K, Kosch O, Bach D, Hartmann V, Strenzke A, Weitschies W, Wiedenmann B, Trahms L, Momkies H. Oesophageal transport of solid dosage forms depends on body position, swallowing volume and pharyngeal propulsion velocity. *Neurogastroenterol Motil* 2004; 16: 547-556
13. Sidhu SS, Bal C, Karak P, Garg PK, Bhargava DK. Effect of endoscopic variceal sclerotherapy on esophageal motor functions and gastroesophageal reflux. *J Nucl Med* 1995; 36: 1363-1367
14. Tolin RD, Malmbud LS, Reilly J, Fisher RS. Esophageal scintigraphy to quantitate esophageal transit (quantitation of esophageal transit). *Gastroenterology* 1979; 76: 1402-1408
15. Stanghellini V, Tosetti C, Corinaldesi R. Standards for non-invasive methods for gastrointestinal motility: scintigraphy. A position paper from the Italiano di Studio Motilita Apparato Digerente (GISMAD). *Dig Liver Dis* 2000; 32: 447-452
16. Zhu ZJ, Chen LQ, Duranceau A. Long-term result of total versus partial fundoplication after esophagomyotomy for primary esophageal motor disorders. *World J Surg* 2008; 32: 401-407
17. Dantas RO, Oliveira RB, Aprile LR, Sara H, Sifrim DA, Saliva to transport to the distal esophagus. *Scand J Gastroenterol* 2005; 40: 1010-1016
18. De Jonge PJ, Van Eijck BC, Geldof H, Bekkering FC, Essink-Bot ML, Polinder S, Kuipers EJ, Siersema PD. Capsule endoscopy for the detection of oesophageal mucosal disorders: a comparison of two different ingestion protocols. *Scand J Gastroenterol* 2008; 43: 870-877
19. Bonavina L, Nosadini A, Bardini R, Baessato M, Peracchia A. Primary treatment of esophageal achalasia. Long-term results of myotomy and Dor fundoplication. *Arch Surg* 1992; 127: 222-227
20. Dogan I, Mittal RK. Esophageal motor disorders: recent advances. *Curr Opin Gastroenterol* 2006; 22: 417-422
21. Mughal MM, Marples M, Bancewicz J. Scintigraphic assessment of esophageal motility: what does it show and how reliable is it? *Gut* 1986; 27: 946-953
22. Caleiro MT, Lage LV, Navarro-Rodriguez T, Bresser A, da Costa FA, Yoshinari NH. Radionuclide imaging for the assessment of esophageal motility disorders in mixed connective tissue disease patients: relation to pulmonary impairment. *Dis Esophagus* 2006; 19: 394-400
23. Issa Okubo Pde C, Dantas RO, Troncon LE, Moriguti JC, Ferriolli E. Clinical and scintigraphic assessment of swallowing of older patients admitted to a tertiary care geriatric ward. *Disphagia* 2008; 23: 1-6
24. Warrington JC, Charron M. Pediatric gastrointestinal nuclear medicine. *Semin Nucl Med* 2007; 37: 269-285
25. de la Roca-Chiapas JM, Cordova T, Hernandez E, Solorio S, Solis S, Sosa M. Magnetogastrography (MGG) reproducibility assessments of gastric emptying on healthy subjects. *Physiol Meas* 2007; 28: 175-183
26. Cordova-Fraga T, Carneiro AA, de Araujo DB, Oliveira RB, Sosa M, Baffa O. Spatiotemporal evaluation of human colon motility using three-axis fluxgates and magnetic markers. *Med Biol Eng Comput* 2005; 43: 712-715
27. Daghastanli NA, Braga FJ, Oliveira RB, Baffa O. Oesophageal transit time measured by a biomagnetic method. *Physiol Meas* 1998; 19: 413-420
28. Wise JL, Murray JA, Conklin JL. Regional differences in esophageal motor function. *Neurogastroenterol Motil* 2004; 16: 31-37
29. Tutuan R, Elton JP, Castell DO, Gideon RM, Castell JA, Katz PO. Effects of position on esophageal function: studies using combined manometry and multichannel intraluminal impedance. *Neurogastroenterol Motil* 2003; 15: 63-67

S-Editor Li DL  L-Editor Kumar M  E-Editor Lin YP