INTRODUCTION AND HISTORICAL PERSPECTIVE

The entity of multiple neoplasms is not rare or new, having been first described by Billroth in 1889 and further reported on by Owen in 1921. Multiple primary malignant neoplasm (MPMN) is defined as more than one primary histologically distinct malignant tumor that occurs in a single individual and may include solid cancers and hematologic malignancies. MPMN can be divided into two categories (based on International Association of Cancer Registries and International Agency for Research on Cancer definitions): (i) synchronous — malignancies occurring within 6 months of a previous malignant neoplasm; and (ii) metachronous — defined as malignancies occurring more than 6 months apart.

The prevalence of MPMN is reported to be 2%–17%. It is expected that the prevalence of MPMN (mainly metachronous) will increase in the future due to increasingly aging populations combined with improved cancer survival, improved diagnostic tests, increasingly sophisticated treatment, better screening, and enhanced surveillance of patients with previous cancer.

According to the National Cancer Institute’s Surveillance, Epidemiology and End Results Program,
cancers with the best survival rates are breast, Hodgkin’s lymphoma, melanoma, prostate, testicular, and differentiated thyroid cancer (DCT), which all have a 5-year survival rate of >85% (the 10-year survival rate for papillary thyroid carcinoma [PTC] is 95–99%). Because of the high cure rates, most of these patients will survive having cancer, and will therefore be at increased risk for development of a second primary cancer (SPC), with a lifetime risk as high as 37%.4,5

DTC is the most common endocrine malignancy, accounting for approximately 0.5%–1.5% of all cases (in adulthood and childhood) and more than 90% of all the thyroid cancers and malignancies of the endocrine system. The most common DTC is PTC. DTC incidence is increasing worldwide, mainly due to PTC.7,8 So, as expected, due to the rising increasing incidence and low disease-related mortality rate, MPMNs are not rare in patients with DTC.9

2 | CURRENT SITUATION

Studies report that patients with DTC have an associated 6%–39% higher risk of SPCs than the general population (greater in younger patients) and this has been shown to have a negative impact on prognosis.7,10–16 It has been shown that there is an increased incidence of multiple locations for SPCs both before, during, and after a diagnosis of DTC.8,9,12–14,17,18

There appears to be an increased and persistent two-way association, verified by updated large epidemiology studies and a meta-analysis of breast (the most frequent correlated tumor), kidney (renal cell carcinoma [RCC]) and stomach/gastric cancer in DTC patients. Reciprocal association has also been evidenced with melanoma, colon, prostate, scrotum, ovarian, brain, central nervous system cancer, and leukemia, irrespective of which tumor occurred first.7–10,12,13,16–23

A number of factors, including (i) endogenous such as inherited/genetic predisposition (whether or not as part of specific syndromes) (Table 124–27), abnormal embryo development, immune-associated diseases and/or comorbidities affecting carcinogen sensitivity; (ii) behavioral or lifestyle influences and environmental exposures; (iii) surveillance bias, or late iatrogenic effects of therapies for DTC/other primary tumors, could explain the enhanced general SPC risk and, particularly, in DTC patients.3,4,15,18

Specifically, the association of radioactive iodine (RAI) therapy and risk of SPCs following DTC remains widely debated.12 This association has suggested an enhanced SPC risk for both solid tumors and leukemia in patients with RAI-treated DTC compared with DTC survivors not exposed to RAI, mainly in younger patients. This risk significantly increases linearly with each increment of cumulative iodine-131 (I131).10,15,16,18,19,28–30 However, this correlation has not been fully confirmed.8,31–33

Some studies have also found an increased risk for SPC (including DTC) after external beam radiation therapy (EBRT) for other primary tumors.31 Accordingly, as the evidence suggests that increased risk for non-thyroid SPC could be related to treatment for DTC, more restricted use of RAI therapy and EBRT in selected DTC patients has been suggested recently, notably for younger patients with low-risk disease.11,34

Although diagnosis of an SPC does not appear to affect the initial clinical course of DTC in terms of response to RAI and recurrence-free survival, it does appear to impact overall survival (OS) and disease-specific survival. Most DTCs remain low-risk in the context of MPMNs, but are more likely to become concurrent at more advanced stages.5,30,35 The OS of patients with DTC and SPC may be up to 4.4 times less than that of patients without SPC. Usually, patients with DTC and synchronous SPC have worse prognoses in terms of disease stage and mortality than patients with metachronous SPC or without SPC.14,34,35 It is currently unclear whether I131 or EBRT therapy increases the mortality risk due to SPC.16

3 | TREATMENT RECOMMENDATIONS

Treatment of synchronous MPMN can be a challenge. There are no well-established, evidence-based guidelines for this patient group. MPMN also affect enrolment in clinical trials because patients with a prior or current cancer are excluded from most trials. Therefore, for management of synchronous or metachronous MPMN with concurrent active disease, only case reports are published and thus the information given should be taken with caution. Many parameters should be considered (Table 2) including malignancy type, disease stage, and overall patient health, leading to individualized treatment in each patient. In this sense, molecular profiling might help to choose the best approach.3,5,36–39

As it is known, in the initial scenario, the therapeutic approach to DTC mainly relies on surgery and RAI with I131.40 However, up to 20% of DTC patients present at an advanced stage (aDTC) at diagnosis, with distant metastasis and/or locally advanced disease.41 Moreover, up to 30% of patients with initial early-stage disease (eDTC) relapse to an aDTC.42 Additionally, one-third of patients with aDTC at diagnosis and nearly two-thirds at follow-up will become refractory to RAI (radioiodine-refractory DTC; RR-DTC) during treatment.43 As previously described, the OS of DTC patients is high,6 but in aDTC the OS decreases markedly, with a 10-year survival rate for
TABLE 1 (A) Genetic DTC predisposition syndromes associated with an increased risk of developing MPMN, and (B) common driver mutations in non-medullary thyroid cancer.24–27

(A) Genetic DTC predisposition syndromes	(B) Mutations in non-medullary thyroid cancer												
Mutated/altered gene(s)	**Relevant thyroid cancer histotypes**	**Mutated/altered gene(s)**	**Relevant thyroid cancer histotypes**	**Mutated/altered gene(s)**	**Relevant thyroid cancer histotypes**								
---	--												
FAP and Gardner syndrome	*RET-PTC* fusions	PTC	PDTC	*TP53*	PDTC	ATC	*PTEN*	PDTC	ATC				
PTEN-hamartoma tumor syndrome/Cowden disease	*BRAF* (generally V600E/K mutations)	PTC	PDTC	ATC	*RAS*	PTC	FTC	PDTC	ATC	*EGFR*	PTC	PDTC	ATC
Peutz-Jeghers syndrome	*PAX8-PPARG (PPARγ)* fusions	FTC	PTC	*TERT*	PTC	FTC	HCC	PDTC	ATC	*P13K*	FTC	PDTC	ATC
Pendred syndrome	*NTRK* rearrangement	PTC	PDTC	ATC									
Carney complex	*AXIN1*	ATC											
Werner syndrome	*CTNNB1*	PDTC	ATC										
Birt-Hogg-Dube syndrome	*CTNNB4*	ATC											
Dicer1 syndrome	*FLT3*	PDTC	ATC	*APC*	PDTC	ATC							
	ATM	PDTC	ATC	*ALK*	PDTC	ATC							
	KIT	PDTC	ATC										

Abbreviations: ATC, anaplastic thyroid carcinoma; FAP, familial adenomatous polyposis; FTC, follicular thyroid carcinoma; HCC, Hürthle cell carcinoma; PTC, papillary thyroid carcinoma; PDTC, poorly differentiated thyroid carcinoma.
RAI-responders of 56% compared with 10% for RR-DTC patients. Therapy for patients with clinically relevant (symptomatic and/or rapidly progressive) RR-DTC will involve locoregional techniques and systemic drugs, with the latter mostly based on antiangiogenic multikinase inhibitors (MKIs). Two randomized, placebo-controlled, multicenter, double-blind, phase III clinical trials (DECISION, and SELECT) have resulted in US Food and Drug Administration (FDA) and European Medicines Agency (EMA) approval of MKIs (sorafenib and lenvatinib) for treatment of progressive RR-DTC in adults. More recently, based on results of the phase III COSMIC-311 trial, the FDA has granted a breakthrough therapy designation for cabozantinib as a possible therapeutic option for patients with RAI-refractory DTC that has progressed after previous therapy, which is currently pending approval. These MKIs, however, have also proven useful for the treatment of other advanced cancers. They are currently approved by the FDA and/or EMA for use in unresectable hepatocellular carcinoma (all 3), advanced RCC (all 3, with lenvatinib plus everolimus or pembrolizumab) and advanced endometrial carcinoma (lenvatinib plus pembrolizumab) in patients who have disease progression following previous systemic therapy and who are not medically suitable for curative surgery or radiation. Additionally, other non-registrational studies have shown the potential efficacy of MKIs alone or given with other drugs in other advanced cancers, thus increasing their potential usefulness in scenarios associated with DTC and MPMN.

Synchronous multiple primaries	Metachronous multiple primaries
Points for consideration when deciding on treatment	Points for consideration when deciding on treatment
• Malignancy types and each disease stage	• Curative intent for the second primary cancer
• The most significant tumor in terms of prognosis	• Prior treatment for the previous cancer diagnosis
• The tumor that is more detrimental to the patient’s survival or quality of life	• Potential for treatment-induced second primary
• The chance for a curative approach or palliative situation	• Anticipated complications based on prior primary evolution and previous anticancer therapy
• If the situation is palliative, tumor metastasis, and tumor dynamics (imaging, tumor marker)	• Possible carcinogenic factors that can be managed
• Therapeutic options	• Specific treatment
• Local or systemic treatment strategy focus	• Cancer predisposition for multiple primaries
• Radical treatment for one of the synchronous tumors plus sequential treatment for the second malignancy	• Predisposition for more cancer that requires screening for prior to initiating treatment
• Anticipated problems	
• Systemic therapy regimen active for all diagnoses	
• Potential for interaction between different regimens	
• Literature about any combination therapy	
• Evidence the combination can be given	
• Treating the two malignancies in a cyclical manner	
• Tumor profiling (e.g. targeted panel sequencing) and the possibility of a common genetic background that enables a common strategy option	

*If the first malignancy is still present, considerations for synchronous multiple primaries apply.

TABLE 2 Treatment considerations for patients with MPMN.
Points for consideration when deciding on treatment
• Malignancy types and each disease stage
• The most significant tumor in terms of prognosis
• The tumor that is more detrimental to the patient’s survival or quality of life
• The chance for a curative approach or palliative situation
• If the situation is palliative, tumor metastasis, and tumor dynamics (imaging, tumor marker)
• Therapeutic options
• Local or systemic treatment strategy focus
• Radical treatment for one of the synchronous tumors plus sequential treatment for the second malignancy
• Anticipated problems
• Systemic therapy regimen active for all diagnoses
• Potential for interaction between different regimens
• Literature about any combination therapy
• Evidence the combination can be given
• Treating the two malignancies in a cyclical manner
• Tumor profiling (e.g. targeted panel sequencing) and the possibility of a common genetic background that enables a common strategy option

Nowadays, there are just a few reports of aDTC in the context of MPMN and there is no definitive published clinical evidence supporting the use of MKIs in patients with MPMNs and aDTC. The usefulness of MKIs in patients with MPMNs (including DTC) has been described in some patients though, with comparable results to those in a non-MPMN context. Despite the lack of sound clinical evidence, there is sufficient pathophysiological rationale to use MKIs, particularly lenvatinib alone or in combination, for specific combinations of MPMNs, including DTC and most common associated SPCs. Furthermore, there might be an even greater potential benefit of combining an MKI and a TKI for treatment of advanced malignancies (including DTC) according to therapeutic molecular targets based on common driver...
4 | DISCUSSION

MPMNs associated with DTC are increasingly frequent. There is scarce definitive scientific evidence for its management to date. Treatment decisions must be individualized, according to the available published literature and the rational basis of the advantages and disadvantages of each therapeutic modality.

5 | CONCLUSIONS

Although to date we lack specific publications with solid scientific evidence for treatment of aDTC in the context of MPMNs, MKI therapies could be one of the main therapeutic approaches in this scenario, taking into account not only the specific separately reported associated success rates of MKIs (particularly lenvatinib alone or in combination) in some of the major associated cancers and in advanced RR-DTC, but also the potential implications of the recent advances in the knowledge of specific molecular/genetic markers for each tumor and its immediate consequent potential modifications in the current and near future management. The therapeutic approach to these conditions should always be individualized using tumor board discussion and ensuring multidisciplinary coordinated care, but hopefully forthcoming information based on currently ongoing and future MPMNs clinical trials may help to offer even more personalized and effective single or multimodal treatment alternatives.

AUTHOR CONTRIBUTION

None.

FUNDING INFORMATION

The authors received honoraria payment from Eisai Farmacéutica SA in line with ICMJE guidelines.

CONFLICT OF INTEREST

Dr Sambo Marcel has received research funding, honoraria, and non-financial or other support from Eisai Farmacéutica SA.

DATA AVAILABILITY STATEMENT

None.

ETHICS STATEMENT

None.

ORCID

Marcel Sambo https://orcid.org/0000-0003-4487-6525

REFERENCES

1. Billroth T. Die Allgemeine Chirurgische Pathologie und Therapie in 51 Vorlesungen. In: Reimer G, ed. Handbuch für Studierende und Ärzte, 14. Berlin: Auflage; 1889:p. 908.
2. Owen LJ. Multiple malignant neoplasms. JAMA. 1921;76:1329-1333.
3. Vogt A, Schmid S, Heinimann K, et al. Multiple primary tumours: challenges and approaches, a review. ESOMO Open. 2017;2:e000172. doi:10.1136/esmoopen-2017-000172
4. Fournier DM, Bazzell AF. Second primary malignancies in cancer survivors. J Nurse Pract. 2018;14(4):238-244.
5. Amer MH. Multiple neoplasms, single primaries, and patient survival. Cancer Manag Res. 2014;6:119-134. doi:10.2147/CMAR.S57378
6. National Cancer Institute. Surveillance, epidemiology, and end results program. Thyroid Cancer. 2018; Accessed May 30, 2021. https://seer.cancer.gov/statfacts/html/thyro.html
7. Ronckers CM, McCarron P, Ron E. Thyroid cancer and multiple primary tumors in the SEER cancer registries. Int J Cancer. 2005;117(2):281-288. doi:10.1002/ijc.21064
8. Verkooijen RB, Smit JW, Romijn JA, Stokkel MP. The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol. 2006;155(6):801-806. doi:10.1530/eje.1.02300
9. Hirsch D, Shohat T, Gorshtein A, Robenshtok E, Shimon I, Benbassat C. Incidence of nonthyroidal primary malignancy and the association with (131)I treatment in patients with differentiated thyroid cancer. Thyroid. 2016;26(8):1110-1116. doi:10.1089/thy.2016.0037
10. Sandeep TC, Strachan MW, Reynolds RM, et al. Second primary cancers in thyroid cancer patients: a multinational record linkage study. J Clin Endocrinol Metab. 2006;91(5):1819-1825. doi:10.1210/jc.2005-2009
11. Hakala TT, Sand JA, Jukkola A, Huhtala HS, Metso S, Kellokumpu-Lehtinen PL. Increased risk of certain second primary malignancies in patients treated for well-differentiated thyroid cancer. Int J Clin Oncol. 2016;21(2):231-239. doi:10.1007/s10147-015-0904-6
12. Lu CH, Lee KD, Chen PT, et al. Second primary malignancies following thyroid cancer: a population-based study in Taiwan. *Eur J Endocrinol*. 2013;169(5):577-585. doi:10.1530/EJE-13-0309

13. Karaköse M, Çordan İ, Can M, Kocabas M, Kulakszöglu M, Karakurt F. Incidence of second primary malignancies in patients with thyroid cancer in the Turkish population. *Turk J Med Sci*. 2019;49(5):1529-1533. doi:10.3906/sag-1903-104

14. Zafon C, Obiols G, Mesa J. Second primary cancer in patients with papillary thyroid carcinoma. *Anticancer Res*. 2013;33(1):337-340.

15. Van Nostrand D, Freitas J, Sawka A, Tsang R. Side effects of 131I for therapy of differentiated thyroid carcinoma. *Thyroid Cancer*. 2016;671-708. doi:10.1097/1078-1-4939-3314-3_62

16. Rubino C, de Vathaire F, Dottorini ME, et al. Second primary malignancies in thyroid cancer patients. *Br J Cancer*. 2003;89(9):1638-1644. doi:10.1038/sj.bjc.6601319

17. Trinh LN, Crawford AR, Hussein MH, et al. Deciphering the risk of developing second primary thyroid cancer following a primary malignancy—who is at the greatest risk? *Cancer*. 2021;13(6):1402. doi:10.3390/cancers13061402

18. Endo M, Liu JB, Dougan M, Lee JS. Incidence of second malignancy in patients with papillary thyroid cancer from surveillance, epidemiology, and end results 13 dataset. *J Thyroid Res*. 2018;2018:8765369. doi:10.1158/1078-1-4939-3314-3_62

19. Lal G, Groff M, Howe JR, Weigel RJ, Sugg SL, Lynch CF. Risk of subsequent primary thyroid cancer after another malignancy: latency trends in a population-based study. *Ann Surg Oncol*. 2012;19(6):1887-1896. doi:10.1245/s10434-011-1933-2

20. Van Fossen VL, Wilhelm SM, Eaton JL, McHenry CR. Association of thyroid, breast and renal cell cancer: a population-based study of the prevalence of second malignancies. *Ann Surg Oncol*. 2013;20(4):1341-1347. doi:10.1245/s10434-012-2718-3

21. Morris S, Antunes L, Bento MJ, Lunet N. Risk of second primary cancers among patients with a first primary gastric cancer: a population-based study in North Portugal. *Cancer Epidemiol*. 2017;50(Pt A):85-91. doi:10.1016/j.jcancer.2017.08.007

22. Lee YT, Liu CJ, Hu YW, et al. Incidence of second primary malignancies following colorectal cancer: a distinct pattern of occurrence between colon and rectal cancers and association of co-morbidity with second primary malignancies in a population-based cohort of 98,876 patients in Taiwan. *Medicine (United States)*. 2015;94(26):e1079.

23. Tran D, Gotow E, Galvin J, et al. Meta-analyses of epidemiologic associations between cutaneous melanoma and thyroid cancer. *J Clin Exp Dermatol Res*. 2016;7(2):1000343. doi:10.4172/2155-9554.1000343

24. Grandis JR, Argris A. Targeting angiogenesis from premalignancy to metastases. *Cancer Prev Res*. 2009;2(4):291-294. doi:10.1158/1940-6207.CAPR-09-0032

25. Khatami F, Tavangar SM. A review of driver genetic alterations in thyroid cancers. *Iran J Pathol*. 2018;13(2):125-135.

26. Remei C, Elisei R. A narrative review of genetic alterations in primary thyroid epithelial cancer. *Int J Mol Sci*. 2021;22(4):1726. doi:10.3390/ijms22041726

27. Volante M, Lam AK, Papotti M, Tallini G. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? *Endocr Pathol*. 2021;32:63-76. doi:10.1007/s12022-021-09665-2

28. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. *J Clin Endocrinol Metab*. 2008;93(2):504-515. doi:10.1210/jc.2007-1154

29. Molenaar RJ, Sidana S, Radiovoyevitch T, et al. Risk of hematologic malignancies after radioiodine treatment of well-differentiated thyroid cancer. *J Clin Oncol*. 2018;36(18):1831-1839. doi:10.1200/JCO.2017.75.0232

30. Marti JL, Jain KS, Morris LG. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer. *Thyroid*. 2015;25(6):681-687. doi:10.1089/thy.2015.0067

31. Gandhi S, Abhyankar A, Basu S. Dual malignancies in the setting of differentiated thyroid carcinoma: their synchronous or metachronous nature, impact of radioiodine treatment on occurrence of second malignancy and other associated variables. *Nucl Med Commun*. 2014;35(2):205-209. doi:10.1097/MNM.0000000000000303

32. Giovacchini G, Leoncini R. Incidence of second cancers in thyroid cancer patients treated with radioactive iodine ablation: how high is really the risk? *J Diagn Imaging Ther*. 2016;3(1):49-51. doi:10.17229/jdit.2016-07120-022

33. Yu CY, Saeed O, Goldberg AS, et al. A systematic review and meta-analysis of subsequent malignant neoplasm risk after radioactive iodine treatment of thyroid cancer. *Thyroid*. 2018;28(12):1662-1673. doi:10.1089/thy.2018.0244

34. Lang BH, Wong KP. Risk factors for nonsynchronous second primary malignancy and related death in patients with differentiated thyroid carcinoma. *Ann Surg Oncol*. 2011;18(13):3559-3565. doi:10.1245/s10434-011-1777-1

35. Lang BH, Lo CY, Wong IO, Cowling BJ. Impact of second primary malignancy on outcomes of differentiated thyroid carcinoma. *Surgery*. 2010;148(6):1191-1196; discussion 1196–7. doi:10.1016/j.surg.2010.09.022

36. Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. *J Endocrinol*. 2017;235(2):R43-R61. Retrieved April 5, 2021. https://joe.bioscientifica.com/view/journals/joe/235/2/JOЕ-17-0266.xml

37. Basté N, Mora M, Grau JJ. Emerging systemic antitarget treatment for differentiated thyroid carcinoma. *Curr Opin Oncol*. 2021;33(3):184-195. doi:10.1097/CCO.0000000000000727

38. Testa U, Castelli G, Pelosi E. Breast cancer: a molecularly heterogeneous disease needing subtype-specific treatments. *Med Sci (Basel)*. 2020;8(1):18. doi:10.3390/medsci8010018

39. Elelman O, Abdelkhalak S, Abdelmoety D, Baraka R, Yousef M. Multiple primary tumours, how frequent we can offer curative therapy? *Asian Pac J Cancer Care*. 2020;5(2):71-78. doi:10.31557/apjcc.2020.5.2.0266

40. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. *Thyroid*. 2016;26(1):1-133. doi:10.1089/thy.2015.0020

41. Haugen BR, Sherman SI. Evolving approaches to patients with advanced differentiated thyroid cancer. *Endocr Rev*. 2013;34(3):439-455. Accessed December 27, 2021. https://academic.oup.com/edrv/article/34/3/439/2354655
Hao Z, Wang P. Lenvatinib in management of solid tumors. Clin Transl Oncol. 2017;19(3):279-287. doi:10.1007/s12094-016-1554-5

Tumino D, Frasca F, Newbold K. Updates on the Management of Advanced, metastatic, and radiodine refractory differentiated thyroid cancer. Front Endocrinol. 2017;8:312. Accessed December 27, 2021. http://journal.frontiersin.org/article/10.3389/fendo.2017.00312/full

Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892-2899. Accessed December 27, 2021. https://academic.oup.com/jcem/article/91/8/2892/2656354

Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319-328.

Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioidine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621-630.

Brose MS, Robinson B, Bermingham C, et al. A phase 3 (COSMIC-311), randomized, double-blind, placebo-controlled study of cabozantinib in patients with radiodine (RAI)-refractory differentiated thyroid cancer (DTC) who have progressed after prior VEGF-targeted therapy. J Clin Oncol. 2019;37(suppl 15):TPS6097. doi:10.1200/JCO.2019.37.15_suppl.TPS6097

Hao Z, Wang P. Lenvatinib in management of solid tumors. Oncologist. 2020;25(2):e302-e310. doi:10.1634/theoncologist.2019-0407

Taylor MH, Schmidt EV, Dutuc C, et al. The LEAP program: lenvatinib plus pembrolizumab for the treatment of advanced solid tumors. Future Oncol. 2021;17(6):637-648. doi:10.2217/fon-2020-0937

Omür O, Ozcan Z, Yazici B, Akgün A, Oral A, Ozkılıç H. Multiple primary tumors in differentiated thyroid carcinoma and relationship to thyroid cancer outcome. Endocr J. 2008;55(2):365-372. doi:10.1507/endocrj.k07e-058

Fazekas-Lavu M, Parker A, Spigelman AD, et al. Thyroid cancer in a patient with Lynch syndrome - case report and literature review. Ther Clin Risk Manag. 2017;13:915-918. doi:10.2147/TCRM.S121812

El Bez I, Tuhlah R, Alghfals F, Alharbi M. Synchronous dual metastatic breast and thyroid carcinoma: one train Can Hide another. J Gynecol Oncol. 2020;3(2):1027.

Ito Y, Ishikawa H, Kihara M, et al. Control of lung metastases and colon polypsis with Lenvatinib therapy in a patient with cribriform-mullular variant of papillary thyroid carcinoma and an APC gene mutation: a case study. Thyroid. 2019;29(10):1511-1517. doi:10.1089/thy.2019.0121

Wu ST, Chi SY, Wang PW, et al. Analysis of overall survival in differentiated thyroid cancer patients with double primary malignancy. Kaohsiung J Med Sci. 2021;37(1):63-71. doi:10.1002/kjms.212286

Mahfoud T, Tanz R, Khammouche MR, et al. Synchronous primary renal cell carcinoma and pancreatic ductal adenocarcinoma: case report and literature review. Case Rep Oncol. 2017;10(3):1050-1056. doi:10.1159/000484552

Zamarron C, Abdulkader I, Areses MC, Garcia-Paz V, León L, Cameselle-Teijeiro J. Metastases of renal cell carcinoma to the thyroid gland with synchronous benign and malignant follicular cell-derived neoplasms. Case Rep Oncol Med. 2013;2013:485025. doi:10.1155/2013/485025

Gang G, Hongkai Y, Xu Z. Sorafenib combined with radiofrequency ablation in the treatment of a patient with renal cell carcinoma plus primary hepatocellular carcinoma. J Cancer Res Ther. 2015;11(4):1026. doi:10.4103/0973-1482.150405

Mishima Y, Terui Y, Takeuchi K, et al. Simultaneous supression of CML and GIST by imatinib in single patient. Blood. 2004;104(11):4660. doi:10.1182/blood.V104.11.4660.4660

Capozzi M, De Divitiis O, Otaiano A, et al. Lenvatinib, a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment. Cancer Manag Res. 2019;11:3847-3860. doi:10.2147/CMAR.S188316

Bible KC, Ryder M. Evolving molecularly targeted therapies for advanced-stage thyroid cancers. Nat Rev Clin Oncol. 2016;13(7):403-416. doi:10.1038/nrclinonc.2016.19

Li Q, Dong Y, Pan Y, Tang H, Li D. Case report: clinical responses to Tislelizumab as a first-line therapy for primary hepatocellular carcinoma with B-cell indolent lymphoma. Front Immunol. 2021;12:634559. doi:10.3389/fimmu.2021.634559

Knowles KJ, Alattia L, Cheng M, Chu Q, Turbat-Herrera EA, Herrera GA. Synchronous primary tumors of the liver and gallbladder: case report and review of the literature. Ann Clin Case Rep. 2017;2:1407.

Verma D, Kantarjian H, Strom SS, et al. Malignancies occurring during therapy with tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML) and other hematologic malignancies. Blood. 2011;118(16):4353-4358. doi:10.1182/blood-2011-06-362889

Giuliani J, Bonetti A. Gastrointestinal stromal tumors and second primary malignancies before and after the introduction of imatinib mesylate. Chin J Cancer Res. 2013;25(5):486-487. doi:10.3978/j.issn.1000-9604.2013.10.13

Gugliotta G, Castagnetti F, Breccia M, et al. Gruppo Italiano Malattie Ematologiche dell'Adulto - chronic myeloid leukemia working party. Incidence of second primary malignancies and related mortality in patients with imatinib-treated chronic myeloid leukemia. Haematologica. 2017;102(9):1530-1536. doi:10.3324/haematol.2017.169532

Schneider TC, Kapiteijn E, van Wezel T, Smit JW, van der Hoeven JMJ, Morreau H. (secondary) solid tumors in thyroid cancer patients treated with the multi-kinase inhibitor sorafenib may present diagnostic challenges. BMC Cancer. 2016;16:31. doi:10.1186/s12885-016-2060-4

How to cite this article: Sambo M. Use of multikinase inhibitors/lenvatinib in patients with synchronous/metachronous cancers coinciding with radioactive-resistant differentiated thyroid cancer. Cancer Med. 2022;11(Suppl. 1):26-32. doi: 10.1002/cam4.5107