Research Article

Research Value of Intensity Modulated Radiation Therapy in Alleviating Parotid Gland Function Injury in Patients with Stage N0 Nasopharyngeal Carcinoma from Physical and Dosimetric Aspects

Lirong Zheng,1 Hong Wang,2 Neng Yang,1 Fenglei Du,3 Lin Xiao,4 and Gangfeng Wu5

1Department of E.N.T, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000 Zhejiang, China
2Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000 Zhejiang, China
3Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310000 Zhejiang, China
4Department of Otolaryngology, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, 317000 Zhejiang, China
5Department of E.N.T, Taizhou Second People’s Hospital, Taizhou, 317000 Zhejiang, China

Correspondence should be addressed to Gangfeng Wu; wugangfeng1981@163.com

Received 25 April 2022; Revised 10 June 2022; Accepted 16 June 2022; Published 11 July 2022

Academic Editor: Min Tang

Copyright © 2022 Lirong Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To study the feasibility of intensity modulated radiation therapy (IMRT) for stage N0 nasopharyngeal carcinoma (NPC) and its parotid gland (PG) function preservation from physical and dosimetric aspects. Methods. All the clinical data of 77 patients with pathologically confirmed T1−4,N0,M0 NPC who received radiotherapy between July 2017 and October 2019 in the Radiotherapy Center of Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University were analyzed retrospectively. Three-dimensional conformal radiotherapy (3D-CRT) and IMRT were used in 35 and 42 cases, respectively. The treatment efficiency and the dosimetry differences of the PG in the intensity modulation plan were compared between groups. Quantitative monitoring of 99mTc radionuclide imaging of PG was performed before, at the end of, and 3, 6, and 12 months after radiotherapy. The degree of PG function injury and xerostomia was compared between groups at the end of radiotherapy and 12 months later. Results. Higher minimal, maximal, and average irradiation doses of PG were determined in 3D-CRT-treated patients compared with IMRT-treated cases (P < 0.05). Compared with before radiotherapy, the PG uptake index (UI) and excretion index (EI) of both cohorts of patients decreased to varying degrees at the end of radiotherapy, with PG function injury and xerostomia symptoms observed in all cases but with no obvious difference between groups (P > 0.05). To a certain extent, the PG function recovered and the xerostomia symptoms relieved in both groups 12 months after radiotherapy, with better improvements in IMRT group versus 3D-CRT group. Conclusion. IMRT has similar short-term efficacy to 3D-CRT in treating patients with stage N0 NPC, but it can effectively reduce the dose of PG radiotherapy and protect the PG function on the premise of ensuring sufficient tumor coverage and dose, showing certain dosimetry advantages.

1. Introduction

As a malignancy occurring at the top and lateral wall of the nasopharyngeal cavity, nasopharyngeal carcinoma (NPC) inflicts 133,000 new cases in 2020, accounting for 0.7% of all cancers worldwide [1]. NPC is unsuitable for surgical treatment due to its unique biological characteristics, pathological types, and physiological anatomical location [2–4]. Radiotherapy is currently the preferred clinical treatment for NPC in clinic [5]. Meanwhile, concurrent chemoradiotherapy may be combined with neoadjuvant chemotherapy, which is also the best choice for locally advanced (stage II-IVa)
NPC [6, 7]. With the upgrading of radiotherapy equipment and the rapid development of engineering physics and imaging technology, radiotherapy has gone through several stages: conventional 2-dimensional radiotherapy (2D-RT) [8], 3-dimensional conformal radiotherapy (3D-CRT) [9], and intensity modulated radiation therapy (IMRT) [10]. 3D treatment planning makes it possible to better visualize the anatomy and improve target delineation, thus avoiding doses to normal structures. However, since each of the 3-4 beams used for treatment lacks dose regulation, a large amount of dose is still delivered to normal tissues [11]. At present, IMRT is the mainstream radiotherapy method in treating NPC. IMRT technology adjusts the dose distribution in the radiation field in all directions according to the needs of the objective function, so as to better match the high-dose region to the target area in the three-dimensional direction and lower the radiation dose to the adjacent normal counterparts [12, 13]. IMRT costs more and requires more logistics from the start of treatment planning through the physical quality assurance process. A retrospective comparative study showed that the dose advantage of IMRT over 3D-CRT improved patients’ clinical outcomes [14].

Parotid gland (PG), as one of the glands secreting saliva [14], plays a vital part in protecting oral health. Today, the survival time of patients has been prolonged as the treatment technology improves, accompanied by some after-effects brought by relevant treatment, resulting in an increasing attention in patients’ quality of life (QOL) [15]. Among them, PG, which is highly sensitive to radiotherapy, will inevitably receive a certain dose of radiation due to the limitation of radiotherapy technology and limited target area [16]. It is well known that even 10-15 Gy can affect the PG in traditional fractionated radiotherapy. Although the PG function may recover with time after 40-50 Gy irradiation, large-dose irradiation can cause irreversible damage to the PG function, seriously damaging the patient’s taste, language, and other related functions [17, 18]. This kind of injury will not threaten the patient’s life, but will seriously compromise the patient’s QOL. Now, IMRT is gaining popularity in the treatment of NPC, due to findings that suggest a significant incremental improvement in dose distribution in a three-dimensional conformal plan, encouraging local control and protection of PG function [19]. Hence, it is of great clinical implications to explore a therapeutic strategy for minimizing PG disorders in NPC cases treated with radiotherapy. Related studies have shown that IMRT can significantly lower the radiation dose of PG, reduce subsequent adverse events, and restore the patient’s secretory function [20]. Therefore, how to reduce the irradiation dose and volume of PG irradiated while ensuring the treatment volume of the target area, so as to preserve the PG function, reduce the incidence and severity of xerostomia (XS) symptoms, and improve the QOL of patients, has become a problem to be solved in radiotherapy for NPC. The novelty and motivation of this work lie in clarifying the protective action of IMRT against parotid dysfunction in stage N0 NPC patients from the dosimetric point of view, which hopefully provide scientific basis for optimizing the dose in neck clinical target area of nasopharyngeal carcinoma.

2. Data and Methods

2.1. Study Population. All the clinical data of 77 pathologically confirmed T1-4N0M0 NPC patients who received radiotherapy between July 2017 and October 2019 in the Radiotherapy Center of Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University were analyzed retrospectively. Among them, 35 patients were treated with 3D-CRT, including 19 males and 16 females aged 23-71 years (median age: 45); T1, T2, T3, and T4N0M0 NPC were found in 4, 11, 3, and 17 cases, respectively. 42 patients were treated with IMRT, including 24 males and 18 females aged 20-69 years (mean: 46). In terms of clinical staging, 6 cases were in stage T1, 12 in stage T2, 6 in stage T3, and 18 in stage T4. Inclusion criteria: (1) no history of PG-related diseases, (2) the Eastern Cooperative Oncology Group (ECOG) grading [21] ≤1, (3) Karnofsky performance scale (KPS) score ≥80, (4) follow-up time >12 months, and (5) complete clinical data. Exclusion criteria: (1) abnormal hepatorenal, cardiac, or pulmonary function; (2) other serious systemic diseases; and (3) incomplete clinical data. No statistical differences were observed in general data between groups, which were comparable (P > 0.05). This research was carried out after obtaining approval from the Medical Ethics Committee of Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University.

2.2. Treatment Methods. All patients were placed in a comfortable supine position, so as to make a U-shaped thermoplastic mask for their heads. CT scanning was performed after fixing the patient’s posture with the headframe and thermoplastic mask, covering the whole skull, nasopharynx, oropharynx, and the whole neck, with a layer spacing of 3 mm. After the scan, CT images were transmitted to the Eclipse planning system (TPS) to outline vital organs for reconstruction, planning, calculation, and evaluation. According to enhanced CT and MRI images and by referring to ICRU reports nos. 50 and 62, the radiotherapy target area marked, which composed of clinical target volume (CTV), gross tumor volume (GTV), and planning target volume (PTV), was delineated layer by layer by physicians. PTV was automatically generated by TPS according to uncertain factors, which were PGTVnx, PTV1, and PTV2, respectively. The related organs at risk (OARs) like spinal cord, brainstem, temporal lobe, eyeball, optic nerve, PG, and temporomandibular joint were sketched, so that the dose of specific OAR was within the corresponding dose limit [23]. The planning organ at risk volume (PRV) referred to the areas that extend 3 mm from the OAR. In IMRT group, an iX linear accelerator made by VARIAN Inc. of USA was used, and the radiation energy was 6 MV. The prescription doses of PGTVnx, PTV1, and PTV2 were 68 Gy/30 times, 60 Gy/30 times, and 54 Gy/30 times, respectively, 5 times per week. The dose of shrinkage field in 3D-CRT group was increased when irradiated for 20 times, so that the dose of the primary tumor reached the radical dosage.

2.3. Endpoints

(1) Clinical Effect Evaluation. The short-term efficacy of all patients after radiotherapy was evaluated by...
2.4. Statistical Processing. SPSS 20.0 statistical software (IBM, New York, USA) was used for statistical analysis. The intergroup differences of normally distributed quantitative data represented by mean ± standard deviation were identified by an independent sample t-test. A Chi-square test was adopted to test counting data represented by n (%). Differences were markedly significant when P < 0.05.

3. Results

3.1. Clinical Efficacy of the Two Groups. The clinical response rate in 3D-CRT and IMRT groups was 77.1% and 85.7%, respectively, showing no statistical difference (χ² = 0.0960, P = 0.7566) Table 1.

3.2. PG Irradiation Doses of Two Radiotherapy Methods. While giving sufficient irradiation dosage to the target area, the irradiation dose to normal counterparts should be controlled within the required limited dose, so as to ensure the effectiveness and safety of treatment. Comparing the minimal, maximal, and average irradiation volumes of the two radiotherapy methods and the doses received by 20%, 30%, and 40% of the PG, it was found that the PG irradiation doses for IMRT-treated patients were significantly higher than those in cases treated with IMRT, and the difference was statistically significant (P < 0.05) Table 2.

3.3. Parotid Function Imagining before and after Radiotherapy in Two Groups. At the end of radiotherapy, the PG imaging before radiotherapy and a period after radiotherapy, the UI and EI of PG dropped in both cohorts compared with the preradiotherapy values. However, patients treated with IMRT showed lower UI and EI than those in cases treated with 3D-CRT, and the difference was statistically significant (P < 0.05) Table 3.

3.4. Functional Impairment of PG in Two Groups. After radiotherapy, 4 cases in the 3D-CRT group developed grade IV PG functional impairment, versus 2 cases in the IMRT group. Patients in the two cohorts showed no evident difference in PG function at the end of radiotherapy (P > 0.05). Twelve months later, the PG function recovered in both 3D-CRT and IMRT groups and was better in the IMRT group (P < 0.05) Table 4.

3.5. Grading of XS in Two Groups. No patients developed grade 3 XS at the end of and 12 months after radiotherapy. The number of cases with grade 1 and grade 2 XS at the end of radiotherapy in 3D-CRT group was 13 and 22, respectively, while that in IMRT group was 18 and 24, respectively. The difference was not statistically significant (P > 0.05) Table 5.

4. Discussion

Clinically, radiotherapy, with the target site radiation dose directly associated with the local tumor control rate, is the preferred treatment for NPC [28]. During radiotherapy for NPC patients, the PG is inevitably exposed to a certain dose of radiation, which results in XS symptoms that affect the...
patient’s chewing, swallowing, and taste functions. Dry and ruptured oral mucosa will also cause pain, interfere with the patient’s sleep, and even lead to oral infection and radioactive dental caries, seriously affecting the patient’s QOL and treatment compliance [29, 30]. Although the mechanism of radiation-induced PG volume reduction has not been clarified, it has been reported that it may be due to acinar cell loss or fibrosis, while the recovery of PG volume may be attributed to acinar cell regeneration [31, 32]. Therefore, PG function preservation has become a goal in the treatment of NPC patients.

This study compared the treatment outcome and radiation dose of N 0 NPC patients with either 3D-CRT or IMRT. The results showed that the minimum (13.4 ± 2.3 Gy), maximum (56.8 ± 4.3 Gy), and average (31.2 ± 3.3 Gy) radiation dosages of PG in patients with 3D-CRT treatment were significantly higher compared with those receiving IMRT (minimum: 6.6 ± 1.5 Gy; maximum: 50.3 ± 3.7 Gy; average: 24.5 ± 2.8 Gy). To a certain extent, PG function recovered and XS symptoms relieved in both cohorts at 12 months after radiotherapy, with better improvements in IMRT group. Eisbruch et al. [33, 34] studied the dose-volume

Table 1: Clinical efficacy comparison.

Groups	Complete response	Partial response	Stable disease	Progressive disease	Total effective rate
3D-CRT group (n = 35)	20 (57.1)	7 (20.0)	4 (11.4)	4 (11.4)	27 (77.1)
IMRT group (n = 42)	25 (59.5)	11 (26.2)	4 (9.5)	2 (4.8)	36 (85.7)
χ^2					0.0960
P					0.7566

Table 2: Parotid gland radiation dose of two groups of patients.

Parotid irradiation dose	3D-CRT group (n = 35)	IMRT group (n = 42)	t	P
Average irradiation dose (Dmean, Gy)	31.2 ± 3.3	24.5 ± 2.8	9.6396	<0.0001
Maximum irradiation dose (Dmax, Gy)	56.8 ± 4.3	50.3 ± 3.7	7.1301	<0.0001
Minimum irradiation dose (Dmin, Gy)	13.4 ± 2.3	6.6 ± 1.5	15.5984	<0.0001
V20%	59.8 ± 8.6	49.2 ± 10.1	4.9013	<0.0001
V30%	47.8 ± 9.6	33.8 ± 7.2	7.3051	<0.0001
V40%	34.8 ± 9.8	22.4 ± 6.7	6.5665	<0.0001

Notes: Dmean: mean dose; Dmin: minimum dose; Dmax: maximum dose.

Table 3: Comparison of quantitative determination results of 99mTc radionuclide imaging of the parotid gland before and after radiotherapy between the two groups.

Before radiotherapy	3D-CRT group (n = 35)	IMRT group (n = 42)	t	P
UI	6.26 ± 0.73	6.33 ± 0.74	0.4159	0.6787
EI	0.67 ± 0.36	0.72 ± 0.33	0.6352	0.5272
At the end of radiotherapy	5.59 ± 0.63	5.40 ± 0.60	1.3526	0.1803
UI	0.59 ± 0.31	0.50 ± 0.35	1.1828	0.2406
EI	0.49 ± 0.19	0.41 ± 0.15	2.0646	0.0424
3 months after radiotherapy	4.75 ± 0.70	4.67 ± 0.66	0.5152	0.6079
UI	0.52 ± 0.21	0.34 ± 0.18	4.0503	0.0001
6 months after radiotherapy	4.76 ± 0.57	4.18 ± 0.45	4.9893	<0.0001
UI	0.55 ± 0.36	0.33 ± 0.23	3.2465	0.0017

Notes: UI: uptake index; EI: excretion index.
relationship of PG and found that the PG function of patients could be well preserved if the mean radiation dose of PG was under 24 Gy under nonstimulated conditions or less than 26 Gy under stimulated conditions, that is, under nonstimulated conditions, the salivary secretion can be restored to 76% of the preirradiation on average, and the PG secretion can be restored to 114% of the preirradiation under stimulated conditions. However, once the threshold dose is exceeded, parotid function will be difficult to recover. Blanco et al. [35] analyzed head and neck cancer (HNC) patients who received 3D-CRT or IMRT. The authors found that the secretion of unilateral PG decreased after irradiation, and the rate of decline was 5% of the average dose of 1 Gy. When the irradiated dose to the PG reached 25.8 Gy, the salivary flow of a single PG decreased to 25% of its pretreatment value, and the average stimulated parotid salivary (SPS) flow recovered 6 to 12 months after radiotherapy. The results showed that the dose-volume relationship was closely related to the SPS flow of the PG, and the incidence of xerostomia symptoms decreased significantly when the average dose was <25.8 Gy to the PG. Xerostomia, a common complication of HNC after radiotherapy, affects 60-90% of patients, especially their long-term well-being [36]. With the continuous increase of radiation-induced toxicity, it is often aggravated by the simultaneous use of systemic therapy, which has prompted the de intensification of radiotherapy dose in a specific HNC patient cohort [37, 38]. Previous studies also showed that without compromising treatment efficacy, IMRT lowered the incidence of xerostomia by limiting irradiation dose to the salivary glands, which is consistent with our results [39, 40].

The pathological changes of radiotherapy-induced PG function injury are mainly acute inflammatory reactions of PG caused by radiation. In the later stage of injury, there will be gland atrophy, compensatory hyperplasia of adipocytes, central necrosis of glandular lobules and PG related blood vessels, lymphatics, and nerves necrosis, resulting in impaired saliva secretion and excretion function [41]. Salivary gland scintigraphy (SGS) is to evaluate salivary gland function through the ability of salivary gland to absorb and excrete radionuclides. Compared with salivary gland flow measurement, SGS is noninvasive, accurate, and reproducible, so it is widely used in salivary gland function evaluation [5]. Pertechnetate 99mTc is the commonly used radionuclide in salivary gland imaging to measure PG UI and salivary EI after acid stimulation for a certain period of time, thus quantitatively evaluating salivary gland uptake and excretion function [42]. Our study revealed that the UI and EI of PG in both groups decreased at the end of radiotherapy and a period after radiotherapy compared with the preradiotherapy values. In addition, the UI of patients treated with IMRT showed lower UI from 6 months after radiotherapy and EI from 3 months after radiotherapy compared with 3D-CRT-treated cases. Raza et al. [43] used PG imaging to monitor the PG function in 50 cases of thyroid cancer treated with high dose I131, which also demonstrated the feasibility of PG imaging in monitoring PG function injury.

However, this study still has room for improvement. Due to the limited time frame, the small number of enrolled patients, and the absence of follow-up regarding patients’ long-term survival, the research results may be affected to a certain extent. Meanwhile, optimization of clinical target delineation is equally important. Besides, instead of collecting more relevant diagnosis and treatment data from other hospitals, we only studied NPC patients in one

Table 4: Comparison of parotid gland function injury after radiotherapy.
Classification
I
II
III
IV
V
\(\chi^2\)
P

Table 5: Comparison of xerostomia grading after radiotherapy.
Classification
0
1
2
3
\(\chi^2\)
P
hospital with insufficient case data, which may result in some deviation. Thus, in further studies, a large sample size and multicenter survey is needed to obtain more detailed and objective data.

5. Conclusion

To sum up, from the dosimetric point of view, IMRT technology for N0 NPC can effectively reduce the radiotherapy dose of PG on the premise of ensuring sufficient tumor coverage and dose, which is worth further exploring in clinic.

Data Availability

The labeled dataset used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no competing interests.

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a Cancer Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.
[2] Y.-P. Chen, A. T. Chan, Q.-T. Le, P. Blanchard, Y. Sun, and J. Ma, “Nasopharyngeal carcinoma,” The Lancet, vol. 394, no. 10192, pp. 64–80, 2019.
[3] E. T. Chang, W. Ye, Y.-X. Zeng, and H.-O. Adami, “The evolving epidemiology of nasopharyngeal carcinoma,” Cancer Epidemiology and Prevention Biomarkers, vol. 30, no. 6, pp. 1035–1047, 2021.
[4] P. Bossi, A. Chan, L. Licitra et al., “Nasopharyngeal carcinoma: Esmo-euracan clinical practice guidelines for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 32, no. 4, pp. 452–465, 2021.
[5] S. W. Lee, K. W. Kang, and H. G. Wu, “Prospective investigation and literature review of tolerance dose on salivary glands using quantitative salivary gland scintigraphy in the intensity-modulated radiotherapy era,” Head & Neck, vol. 38, no. S1, pp. E1746–E1755, 2016.
[6] P. Blanchard, A. Lee, S. Marguet et al., “Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the mac-npc meta-analysis,” The Lancet Oncology, vol. 16, no. 6, pp. 645–655, 2015.
[7] Y. Sun, W.-F. Li, N.-Y. Chen et al., “Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial,” The Lancet Oncology, vol. 17, no. 11, pp. 1509–1520, 2016.
[8] J. Co, M. B. Mejia, and J. M. Dizon, “Evidence on effectiveness of intensity-modulated radiotherapy versus 2-dimensional radiotherapy in the treatment of nasopharyngeal carcinoma: meta-analysis and a systematic review of the literature,” Head & Neck, vol. 38, no. S1, pp. E2130–E2142, 2016.
[9] J. Y. Chang, “Intensity-modulated radiotherapy, not 3 dimensional conformal, is the preferred technique for treating locally advanced lung cancer,” Presented at Seminars In Radiation Oncology, vol. 25, pp. 110–116, 2015.
[10] Z.-G. Liang, G. Kusumawidjaja, F. Kazmi, J. T. Wee, and M. L. Chua, “Intensity-modulated radiotherapy for paranasal sinuses and base of skull tumors,” Oral Oncology, vol. 86, pp. 61–68, 2018.
[11] S. H. Lin, L. Wang, B. Myles et al., “Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer,” International Journal of Radiation Oncology Biology Physics, vol. 84, pp. 1078–1085, 2012.
[12] M. Hussein, B. J. Heijmen, D. Verellen, and A. Nisbet, “Auto-mation in intensity modulated radiotherapy treatment planning—a review of recent innovations,” The British Journal of Radiology, vol. 91, no. 1092, p. 20180270, 2018.
[13] Y. H. Leong, Y. Y. Soon, K. M. Lee, L. C. Wong, I. W. K. Tham, and F. C. H. Ho, “Long-term outcomes after reirradiation in nasopharyngeal carcinoma with intensity-modulated radiotherapy: a meta-analysis,” Head & Neck, vol. 40, no. 3, pp. 622–631, 2018.
[14] M. Xi and S. H. Lin, “Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer,” Expert Review of Anticancer Therapy, vol. 17, no. 7, pp. 635–646, 2017.
[15] S. Tasaka, K. Jingu, N. Takahashi et al., “The long-term recovery of parotid glands in nasopharyngeal carcinoma treated by intensity-modulated radiotherapy,” Frontiers in Oncology, vol. 11, p. 1594, 2021.
[16] Y.-G. Kong, M. Cui, S.-M. Chen, Y. Xu, Y. Xu, and Z.-Z. Tao, “Lncrna-linc00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging mir-149-5p to up-regulate il6,” Gene, vol. 639, pp. 77–84, 2018.
[17] Y. Nishimura, K. Nakamatsu, T. Shibata et al., “Importance of the initial volume of parotid glands in xerostomia for patients with head and neck cancers treated with imrt,” Japanese Journal of Clinical Oncology, vol. 35, no. 7, pp. 375–379, 2005.
[18] S. Porter, S. Fedele, and K. Habbab, “Xerostomia in head and neck malignancy,” Oral Oncology, vol. 46, no. 6, pp. 460–463, 2010.
[19] A. Miah, S. Gulliford, J. Morden et al., “Recovery of salivary function: contralateral parotid-sparing intensity-modulated radiotherapy versus bilateral superficial lobe parotid-sparing intensity-modulated radiotherapy,” Clinical Oncology, vol. 28, no. 9, pp. e69–e76, 2016.
[20] L. Zheng, L. Tong, F. Du, H. Ren, and L. Xiao, “Effect of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy on parotid gland function and quality of life in patients with nasopharyngeal carcinoma,” American Journal of Translational Research, vol. 13, no. 5, pp. 5272–5279, 2021.
[21] A.-M. Mischel and D. A. Rosielle, “Eastern cooperative oncology group performance status# 434,” Journal of Palliative Medicine, vol. 25, no. 3, pp. 508–510, 2022.
[22] N. Y. ÇELTEK, M. Süren, O. Demir, and İ. Okan, “Karnofsky performance scale validity and reliability of turkish palliative cancer patients,” Turkish Journal Of Medical Sciences, vol. 49, no. 3, pp. 894–898, 2019.
[23] G. Noël and D. Antoni, “Organs at risk radiation dose constraints,” Cancer/Radiothérapie, vol. 26, no. 1-2, pp. 59–75, 2022.
[24] J. O. Park, S. I. Lee, S. Y. Song et al., “Measuring response in solid tumors: comparison of recist and who response criteria,” Computational and Mathematical Methods in Medicine
X. Yang, H. Ren, W. Yu et al., “Nasopharyngeal carcinoma outcome with induction chemotherapy followed by concurrent chemoradiotherapy,” Oral Oncology, vol. 81, pp. 75–80, 2018.

N. Lee, P. Xia, J. M. Quivey et al., “Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience,” International Journal of Radiation Oncology Biology Physics, vol. 53, pp. 12–22, 2002.

Y. Anacak, D. Yalman, Z. Özsaran, and A. Haydaroğlu, “Late radiation effects to the rectum and bladder in gynecologic cancer patients: the comparison of LENT/soma and RTOG/EORTC late-effects scoring systems,” International Journal of Radiation Oncology Biology Physics, vol. 50, pp. 1107–1112, 2001.

X. Yang, H. Ren, W. Yu et al., “Analysis of clinical target volume delineation in local-regional failure of nasopharyngeal carcinoma after intensity-modulated radiotherapy,” Journal of Cancer, vol. 11, no. 7, pp. 1968–1975, 2020.

V. W. Wu, M. T. Ying, D. L. Kwong, P.-L. Khong, G. K. Wong, and S.-y. Tam, “A longitudinal study on parotid and submandibular gland changes assessed by magnetic resonance imaging and ultrasonography in post-radiotherapy nasopharyngeal cancer patients,” BJR Open, vol. 2, p. 20200003, 2020.

J. Hey, J. Setz, R. Gerlach et al., “Parotid gland recovery after radiotherapy in the head and neck region - 36 months follow-up of a prospective clinical study,” Radiation Oncology, vol. 6, no. 1, pp. 1–8, 2011.

C.-J. Juan, C.-C. Cheng, S.-C. Chiu et al., “Temporal evolution of parotid volume and parotid apparent diffusion coefficient in nasopharyngeal carcinoma patients treated by intensity-modulated radiotherapy investigated by magnetic resonance imaging: a pilot study,” PLoS One, vol. 10, no. 8, article e0137073, 2015.

P. Van Luijk, S. Pringle, J. O. Deasy et al., “Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer,” Science Translational Medicine, vol. 7, pp. 305ra147–305ra147, 2015.

A. Eisbruch, R. K. Ten Haken, H. M. Kim, L. H. Marsh, and J. A. Ship, “Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 45, pp. 577–587, 1999.

A. Eisbruch, J. A. Ship, L. A. Dawson et al., “Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer,” World Journal of Surgery, vol. 27, no. 7, pp. 832–837, 2003.

A. I. Blanco, K. C. Chao, I. El Naqa et al., “Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 62, pp. 1055–1069, 2005.

N. Jiang, Y. Zhao, H. Jansson, X. Chen, and J. Mårtensson, “Experiences of xerostomia after radiotherapy in patients with head and neck cancer: a qualitative study,” Journal of Clinical Nursing, vol. 27, no. 1-2, pp. e100–e108, 2018.

J. R. Kelly, Z. A. Husain, and B. Burtness, “Treatment de-intensification strategies for head and neck cancer,” European Journal of Cancer, vol. 68, pp. 125–133, 2016.