Role of Tensor Force in Light Nuclei with Tensor-Optimized Shell Model

1 Introduction

The nucleon–nucleon (NN) interaction has strong tensor forces at long and intermediate distances caused by the pion exchange, which emerges large momentum transfer, and also strong central repulsions at short distance caused by the quark dynamics [1,2]. It is important to investigate the nuclear structure by treating these characteristics of the NN interaction. There are two theoretical developments for this purpose. One is to find out that the strong tensor force is of intermediate range, and we are able to express the tensor correlation in a reasonable shell model space [3,4]. We name this method as tensor-optimized shell model (TOSM), in which the wave function is constructed in terms of the shell model basis states with full optimization of the two particle-two hole ($2p2h$) states. Here the spatial shrinkage of the particle states is essential to obtain the convergence of the tensor contribution involving high momentum components [5,6], and then we do not put any truncation to describe the particle states in TOSM. The other is the unitary correlation operator method (UCOM) to treat the short-range correlation [8]. We shall combine two methods, TOSM and UCOM, to describe nuclei using bare interaction and see how this new method works.

For s-shell nuclei, the validity of TOSM was confirmed using a few-body framework by taking only the D-wave component connected with the S-wave state directly via the tensor force [7]. They call this method as the tensor-optimized few-body model (TOFM). So far, we have obtained successful results using TOSM for the investigation of the tensor correlations in He and Li isotopes. In 4He, we have confirmed the selectivity of $(p_{1/2})^2(s_{1/2})^{-2}$ configuration in the $2p2h$ space with the pn pair induced by the tensor force. This correlation is recognized as the deuteron-like state [3]. The specific $2p2h$ excitation plays a decisive role to reproduce the energy spectra of neutron-rich He and Li isotopes [9,10], such as the effect on the p-wave splitting energy in 5He [11], and the neutron halo formation in 11Li due to the breaking the neutron magic number $N = 8$ by the tensor and pairing correlations [12,13]. In this paper, we perform the systematic analyses of He and Li isotopes using TOSM+UCOM and discuss their structures focusing on the roles of the tensor force on the energies and configurations.
2 Tensor-Optimized Shell Model (TOSM)

We begin with a many-body Hamiltonian having the bare nucleon–nucleon interaction, AV8′ [1]. We explain the TOSM wave function Ψ as

$$\Psi = \sum_{\nu} \sum_{i} A_{i} \left| 0_{p0h} \right\rangle_{\nu} + \sum_{k} A_{k} \left| 1_{plh} \right\rangle_{i} + \sum_{k} A_{k} \left| 2_{p2h} \right\rangle_{k}. \quad (1)$$

Here, $\left| 0_{p0h} \right\rangle$, $\left| 1_{plh} \right\rangle$ and $\left| 2_{p2h} \right\rangle$ are the $0p0h$, $1p1h$ and $2p2h$ states with various radial components for particle states p which are distinguished by the labels ν. The variational coefficients are given as $\{ A_i \}$. The hole states h are described by the harmonic oscillator basis states in TOSM. To construct the $0p0h$ states in TOSM within the $0s+0p$ space of the hole states, we allow up to the two particle excitations from the $0s$ orbit to the $0p$ orbits due to the presence of the two-body interactions. From each configuration in the $0p0h$ states, up to two nucleons can be excited to the particle states to make the $1p1h$ and $2p2h$ states in TOSM. The orbits of particle states are taken as much as possible until we get the convergence of the solutions. In this treatment, there is no truncation of the particle states.

We use the Gaussian expansion method to describe the various radial basis states in the particle states [4]. In this method, we construct the ortho-normalized single-particle wave function for the orbit a using a linear combination of Gaussian bases $\{ \phi_a \}$ with length parameter $b_{a,v}$.

$$\phi_a(r, b_{a,v}) = N_l(b_{a,v}) r^l e^{-(r/b_{a,v})^2} \left[Y_l(\hat{r}), \chi_1^{\sigma}, \chi_2^{\tau} \right] \chi_{t_z}, \quad (2)$$

where v is the index that distinguishes the bases with different lengths $b_{a,v}$. The quantum numbers l and j are the orbital and total angular momenta of the single-particle states, respectively, and t_z is the isospin component. The normalization factor is denoted as $N_l(b_{a,v})$. We superpose the Gaussian bases with a sufficient number and having various length parameters, which are used in each configuration in TOSM. This description fully describes the radial components of the particle states of every configuration of TOSM independently. We eliminate the center-of-mass excitations using the projection technique of the lowest HO state for the center-of-mass motion.

We minimize the total energies by optimizing the length parameters of the bases for all the hole states and the particle states in each J^π state of particular nucleus. The variation of the energy expectation value with respect to the total wave function Ψ in Eq. (1), leads to the following equations:

$$\frac{\partial \langle \Psi | H - E | \Psi \rangle}{\partial b_{a,v}} = 0, \quad \frac{\partial \langle \Psi | H - E | \Psi \rangle}{\partial A_{k_i}} = 0 \quad \text{for} \quad i = 0, 1, 2. \quad (3)$$

The total energy is represented by E. We solve two variational equations in Eq. (3) in the following steps. First, fixing the length parameters $b_{a,v}$ and the partial waves of the basis states up to L_{max}, we solve the linear equation for $\{ A_{k_i} \}$ as an eigenvalue problem for H. We thereby obtain the eigenvalue E, which is functions of $\{ b_{a,v} \}$ and L_{max}. Next, we try to adopt various sets of the length parameters $\{ b_{a,v} \}$ and increase L_{max} in order to find a better solution which minimizes the total energy E.

We use short-range part of UCOM [8] to include the short-range correlation in TOSM. In UCOM, the shift operator, which is unitary, is introduced for every nucleon pair in nuclei. This operator reduces the short-range amplitude of the relative pair wave functions. The amounts of shifts are determined variationally for four spin-isospin channels to minimize the total energy of the system. The detailed forms of shift operators and their parametrization are explained in our recent papers [4,9,10].

3 Results of TOSM+UCOM

3.1 4He

We show first the results of 4He using TOSM+UCOM with the bare AV8′ interaction. The Hamiltonian components are shown in Table 1 in comparison with the stochastic variational method (SVM) [14], which is one of the rigorous calculations, and also the TOFM proposed by Horii et al. [7], the concept of which is very similar to TOSM to treat the tensor forces. The matter radius of 4He is obtained as 1.52 fm in TOSM+UCOM.
When we introduce the partial-wave dependence in the function $s(r)$ of UCOM, called as S-UCOM, the energy gain is about 2 MeV in total energy and the total energy gets closer to the rigorous value [4].

The dominant configurations of 4He in TOSM are listed in Table 2. It is found that the specific $2p2h$ states such as $(0s)^2(0p_{1/2})^2$ show the large probabilities and these configurations are essential to produce the tensor correlation in 4He because of the coupling by the tensor operator [3, 5]. These $2p2h$ states commonly correspond to the excitations of a pn pair. This feature of $2p2h$ excitations plays an important role to determine the structures of heavier He and Li isotopes as will be discussed later.

We also list the occupation numbers of nucleon in 4He using AV8' in Table 3. It is shown that the $p_{1/2}$ orbit has the largest contribution among the particle states according to the large $2p2h$ mixing including the $p_{1/2}$ component shown in Table 2. For comparison, we show the results using the effective Minnesota force (MN) [15] consisting of central and LS force only. In MN case, it is found that the component of the $0s$ orbit is larger than the AV8' case, and the enhancement of the $p_{1/2}$ orbit is not seen. These differences indicate that the tensor force brings the specific excitations from the s-shell to the p- and sd-shells in 4He.

3.2 Energy Spectra of He and Li Isotopes

We explain the results of He and Li isotopes with AV8' interaction, where L_{max} is commonly taken as 10 to get a sufficient convergence. The excitation energies of He isotopes are shown in Fig. 1. and also shown in Fig. 2 for Li isotopes. For the excitation energies, we see good agreement with the experimental ones in two isotopes, so that we can discuss the structure differences between energy levels. We also predict some energy levels, which have not observed experimentally yet or not settled to assign the spin of the states, in particular, in the neutron-rich side, 7He and 8Li.

In Fig. 2, it is also found that the resulting level spacing of the Li isotopes in TOSM+UCOM is good, but slightly more compact than the experimental spectra. For example, in 9Li, the small energy difference between the lowest $3/2^-$ and $1/2^-$ states in TOSM+UCOM in comparison with the experimental values. These characteristics are commonly obtained in the GFMC calculation within the two-body interaction level [1]. The additional genuine three-body interaction can be one of the components to reproduce the experimental situation.

In TOSM, the length parameters of the hole and particle states are determined variationally in each state, hence we can discuss the radial properties of particular nuclei including the neutron halo nuclei 6He. The matter radii of 4He and 8He are listed in Table 4. The results are good to explain the enhancement of radius of loosely
binding neutrons in two nuclei, which are, however, slightly smaller than the experiments. We also show the results of cluster model consisting of the 4He core and extra neutrons [16], in which the spatial extension of extra neutrons are fully described. We also show the matter radii of 6−9Li in TOSM+UCOM in Table 5, which agree with experiments. We include the both results of He and Li isotopes in Fig. 3 and find the whole trend on the matter radii in two isotopes is very good.

We discuss the configuration properties of each level of He and Li isotopes. We here show two cases of 5He and 6He. More detailed and systematic discussion is given in the recent papers [9, 10]. For 5He, various energy components in the doublet states are listed in Table 6. In this calculation, we take the common length
Table 6 Various energy components in 5He measured from those of the 4He ground state

5He(J^P)	Config.	Energy	Kinetic	Central	Tensor	LS
3/2$^-$	$p_{3/2}$	6.97	24.14	-8.99	-5.60	-2.58
1/2$^-$	$p_{1/2}$	10.05	17.53	-6.96	-1.11	1.04

Energy units are given in MeV and $\hbar\omega = 18.43$ MeV. Neutron configuration is also listed.

Table 7 Various energy components in 6He in comparison with 4He

6He(J^P)	Config.	E	Kinetic	Central	Tensor	LS
$^4_1^-$	($p_{3/2}$)2	8.95	53.04	-27.75	-12.02	-4.04
$^2_0^+$	($p_{1/2}$)2	21.90	34.30	-14.06	-0.17	2.11

Units are given in MeV.

parameters of the hole states as 1.5 fm for s and $0p$ orbits. The corresponding $\hbar\omega$ is 18.43 MeV. This is done to exclude the continuum effect, which produces a few MeV energy gain in 5He, and to focus our discussion on the internal structures of He isotopes. In Table 6, we compare various energy components in 3/2$^-$ and 1/2$^-$ states of 5He measured from those of 4He. The LS splitting energy is obtained as about 3 MeV. We discuss the effect of the tensor interaction on this splitting energy. A large difference is seen in the tensor energies of the 3/2$^-$ and 1/2$^-$ states. The larger contribution of the tensor interaction in 3/2$^-$ brings the enhancement of the kinetic energy, because of the involvement of high momentum components from the tensor interaction. The amount of the enhanced kinetic energy is 24 MeV, which is larger than $\hbar\omega$. For 1/2$^-$, on the other hand, the energy gain from the tensor interaction is small and the enhancement of the kinetic energy is 17.5 MeV, which is close to the value of $\hbar\omega$. These results are related to the larger amount of the $p_{1/2}$ component than the $p_{3/2}$ one in 4He as shown in Tables 2 and 3. When the last neutron in 5He occupies the $p_{3/2}$ orbit, this neutron does not disturb the 4He structure. Hence, the $p_{3/2}$ occupied state gains an additional tensor energy without disturbing the large energy gain in 4He. On the other hand, in case of the $p_{1/2}$ occupation for the 1/2$^-$ state, this neutron blocks some component of the spatially compact $p_{1/2}$ neutron in the $2p2h$ excitations of the 4He core configuration because of the small degeneracy of the $p_{1/2}$ orbit. This effect dynamically produces the Pauli-blocking and reduces the total binding energy of 5He. As a result, the last neutron located in the $p_{1/2}$ orbit should be orthogonal to the excited $p_{1/2}$ orbit in 4He and the tensor interaction does not gain the energy in 5He(1/2$^-$). Those dynamical coupling behaviors between 4He and a last neutron explain the difference in the Hamiltonian components in two states of 5He, which results in the LS splitting energy as a net value.

We also consider the case of 6He, the ground and the excited 0$^+$ states. In Table 7, it is found that the 0$^+_1$ ground state has a larger tensor contribution than the 0$^+_2$ case. This result is very similar to the 5He case. When the last two neutrons occupy the $p_{3/2}$ orbit in 6He, these neutrons do not disturb the 4He structure so much. This configuration causes the gain of the tensor contribution in 6He(0$^+_1$), which enhances the kinetic energy due to the high momentum nature of the tensor interaction. In case of the $(p_{1/2})^2$ configuration in the 0$^+_2$ state, two neutrons are blocked to occupy the orbit owing to the excited $p_{1/2}$ neutron from 4He by the tensor interaction. This Pauli-blocking does not increase the tensor contribution in 6He(0$^+_2$) from that of 4He.
These results of 5He, 6He show that the tensor interaction plays a decisive role to create the LS-like splitting energy. The same mechanism has been confirmed in heavier He isotopes, such as the tensor energy differences between the ground and the excited states in $^7,^8$He [9]. Here, as seen in 8He(0^+_2), the $(p_{1/2})^2$ occupation of last two neutrons is also occurred in 11Li, the halo nuclei. We have confirmed that in 11Li, the above blocking effect reduces the p-wave configuration and brings the enhancement of s-wave mixing relatively [12, 13]. This effect dynamically produces the halo structure in 11Li. There is also the discussion of the effect of the genuine three-body force on the splitting energy [22].

For Li isotopes, we discuss the configurations of the p-shell nucleons. In Table 8, we list the dominant configurations of p-shell nucleons in the ground states of Li isotopes. These are useful to understand the structures of Li isotopes. It is found that the 4Li (1^+) state with isospin $T = 0$ shows the LS coupling behavior of last two nucleons with about a half weight. On the other hand, the 0^+ state with isospin $T = 1$ corresponding to the isobaric analog state of 4He, shows the jj coupling state occupying dominantly the $0p_{3/2}$ orbit. For heavier 7,8Li, those ground states show the jj coupling structure with about half weights. From those results, only the 6Li ground state show the LS coupling structure and this can be related to the $α+d$ clustering in the $T = 0$ state. The other heavier Li isotopes show the different jj coupling structure in their ground states. The detailed analyses including the excited states are performed in our paper [10].

Acknowledgments The author would like to thank Prof. K. Ikeda, Prof. H. Toki, Prof. K. Kato, Dr. S. Sugimoto, Dr. A. Umeya, Dr. Y. Kikuchi, Ms. K. Horii for their collaborations of this work. He is also grateful to Prog. H. Horiuchi and Dr. Y. Ogawa for fruitful discussions and continuous encouragement. This work was supported by a Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (No. 24740175)

References

1. Pieper, S.C., Wiringa, R.B.: Quantum Monte Carlo calculations of light nuclei. Annu. Rev. Nucl. Part. Sci. **51**, 53 (2001)
2. Kamada, H., et al.: Benchmark test calculation of a four-nucleon bound state. Phys. Rev. C **64**, 044001 (2001)
3. Myo, T., Sugimoto, S., Katō, K., Toki, H., Ikeda, K.: Tensor correlation in 4He with the tensor-optimized shell model. Prog. Theor. Phys. **117**, 257 (2007)
4. Myo, T., Toki, H., Ikeda, K.: Tensor-optimized shell model with bare nucleon–nucleon interaction for 4He. Prog. Theor. Phys. **121**, 511 (2009)
5. Toki, H., Sugimoto, S., Ikeda, K.: Relativistic mean-field theory with the pion in finite nuclei. Prog. Theor. Phys. **108**, 903 (2002)
6. Ogawa, Y., Toki, H., Tamenaga, S., Sugimoto, S., Ikeda, K.: Charge and parity projected relativistic mean field model with pion for finite nuclei. Phys. Rev. C **73**, 034301 (2006)
7. Horii, K., Toki, H., Myo, T., Ikeda, K.: Tensor optimized few-body model for s-shell nuclei. Prog. Theor. Phys. **127**, 1019 (2012)
8. Feldmeier, H., Neff, T., Roth, R., Schnack, J.: A unitary correlation operator method. Nucl. Phys. **632**, 61 (1998)
9. Myo, T., Umeya, A., Toki, H., Ikeda, K.: Role of the tensor interaction in He isotopes with a tensor-optimized shell model. Phys. Rev. C **84**, 034315 (2011)
10. Myo, T., Umeya, A., Toki, H., Ikeda, K.: Tensor-optimized shell model for the Li isotopes with a bare nucleon–nucleon interaction. Phys. Rev. C **86**, 024318 (2012)
11. Myo, T., Katō, K., Ikeda, K.: Tensor correlation in 4He and its effect on the doublet splitting in 5He. Prog. Theor. Phys. **113**, 763 (2005)
12. Myo, T., Katō, K., Toki, H., Ikeda, K.: Roles of tensor and pairing correlations on halo formation in 11Li. Phys. Rev. C **76**, 024305 (2007)
13. Ikeda, K., Myo, T., Katō, K., Toki, H.: Di-neutron clustering and deuteron-like tensor correlation in nuclear structure focusing on 11Li. In: Clusters in Nuclei. Lecture Notes in Physics 818, vol. 1, pp. 165–221. Springer, Berlin (2010)
14. Suzuki, Y., Horiuchi, W., Orabi, M., Araï, K.: Global-vector representation of the angular motion of few-particle systems II. Few Body Syst. **42**, 33 (2008)
15. Tang, Y.C., LeMere, M., Thompson, D.R.: Resonating-group method for nuclear many-body problems. Phys. Rep. **47**, 167 (1978)
16. Myo, T., Ando, R., Katō, K.: Five-body resonances of 8He using the complex scaling method. Phys. Lett. B **691**, 150 (2010)
17. Tanihata, I. et al.: Revelation of thick neutron skins in nuclei. Phys. Lett. B **289**, 261 (1992)
18. Alkhazov, G.D. et al.: Nuclear matter distributions in 6He and 8He from small angle p-He scattering in inverse kinematics at intermediate energy. Phys. Rev. Lett. 78, 2313 (1997)
19. Kiselev, O.A. et al.: Investigation of nuclear matter distribution of the neutron-rich He isotopes by proton elastic scattering at intermediate energies. Eur. Phys. J. A25(Suppl. 1), 215 (2005)
20. Tanihata, I. et al.: Measurement of interaction cross sections using isotope beams of Be and B and isospin dependence of the nuclear radii. Phys. Lett. B206, 592 (1988)
21. Dobrovolsky, A. et al.: Study of the nuclear matter distribution in neutron-rich Li isotopes. Nucl. Phys. 766, 1 (2006)
22. Nollett, K.M., Pieper, S.C., Wiringa, R.B., Carlson, J., Hale, G.M.: Quantum Monte Carlo calculations of neutron-α scattering. Phys. Rev. Lett. 99, 022502 (2007)