Measurements of B meson decays to ϕK^* and $\omega \phi$
Rapid Communications

MEASUREMENTS OF B MESON DECAYS TO ωK^* AND $\omega \rho$

PHYSICAL REVIEW D 71, 031103 (2005)

25Ecole Polytechnique, LLR, F-91128 Palaiseau, France

26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

27Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy

28Florida A&M University, Tallahassee, Florida 32307, USA

29Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

30Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

31Harvard University, Cambridge, Massachusetts 02138, USA

32Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany

33Imperial College London, London, SW7 2AZ, United Kingdom

34University of Iowa, Iowa City, Iowa 52242, USA

35Iowa State University, Ames, Iowa 50011-3160, USA

36Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy

37Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France

38Lawrence Livermore National Laboratory, Livermore, California 94550, USA

39University of Liverpool, Liverpool L69 7E, United Kingdom

40Queen Mary, University of London, E1 4NS, United Kingdom

41University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

42University of Louisville, Louisville, Kentucky 40292, USA

43University of Manchester, Manchester M13 9PL, United Kingdom

44University of Maryland, College Park, Maryland 20742, USA

45University of Massachusetts, Amherst, Massachusetts 01003, USA

46Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

47McGill University, Montréal, Quebec City, Canada H3A 2T8

48Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

49University of Mississippi, University, Mississippi 38677, USA

50Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec City, Canada H3C 3J7

51Mount Holyoke College, South Hadley, Massachusetts 01075, USA

52Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

53NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

54University of Notre Dame, South Bend, Indiana 46656, USA

55Ohio State University, Columbus, Ohio 43210, USA

56University of Oregon, Eugene, Oregon 97403, USA

57Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy

58Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France

59University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

60Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy

61Prairie View A&M University, Prairie View, Texas 77446, USA

62Princeton University, Princeton, New Jersey 08544, USA

63Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy

64Universität Rostock, D-18051 Rostock, Germany

65Rutherford Appleton Laboratory, Chilton, Didcot, Oxford, OX11 0QX, United Kingdom

66DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France

67University of South Carolina, Columbia, South Carolina 29208, USA

68Stanford Linear Accelerator Center, Stanford, California 94309, USA

69Stanford University, Stanford, California 94305-4060, USA

70State University of New York, Albany, New York 12222, USA

71University of Tennessee, Knoxville, Tennessee 37996, USA

72University of Texas at Austin, Austin, Texas 78712, USA

73University of Texas at Dallas, Richardson, Texas 75083, USA

74Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

75Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

76Universidad de Valencia, E-46100 Burjassot, Valencia, Spain

77Vanderbilt University, Nashville, Tennessee 37235, USA

78University of Victoria, Victoria, British Columbia, Canada V8W 3P6

79Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

80University of Wisconsin, Madison, Wisconsin 53706, USA

81Yale University, New Haven, Connecticut 06511, USA

*Also with Università della Basilicata, Potenza, Italy.
†Deceased.
We describe searches for \(B \) meson decays to the charmless vector-vector final states \(\omega K^* \) and \(\omega \rho \) in \(89 \times 10^6 \) \(B\bar{B} \) pairs produced in \(e^+e^- \) annihilation at \(\sqrt{s} = 10.58 \) GeV. We measure the following branching fractions in units of \(10^{-6} \): \(\mathcal{B}(B^0 \to \omega K^{*0}) = 3.4^{+1.2}_{-0.8} \pm 0.4(\text{stat}) \pm 0.4(\text{syst}) \), \(\mathcal{B}(B^+ \to \omega K^{*+}) = 3.5^{+2.0}_{-1.5} \pm 0.7(\text{stat}) \), and \(\mathcal{B}(B^+ \to \omega \rho^+) = 0.6^{+0.1}_{-0.1} \pm 0.4(\text{stat}) \). We also measure the longitudinal spin alignment fraction \(f_L = 0.88^{+0.12}_{-0.15} \pm 0.03 \) and charge asymmetry \(A_{ch} = (5 \pm 2)\% \). Because these charmless \(B \) decays involve couplings with small Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix elements, several amplitudes potentially contribute with similar strengths, as indicated in Fig. 1. The \(B^+ \) modes receive contributions from external tree, color-suppressed tree, and gluonic penguin amplitudes, with the external tree (a) favored for \(B^+ \to \omega \rho^+ \), and the penguin (b) strongly favored by CKM couplings for \(B^+ \to \omega K^{*+} \). For the \(B^0 \) modes there are no external tree contributions, and again, for \(B^0 \to \omega K^{*0} \) the penguin (c) is CKM favored. For \(B^0 \to \omega \rho^0 \) the color-suppressed tree amplitudes (e, f) almost cancel [10] because of the different isospins of the final-state mesons, leaving only a Cabibbo-suppressed penguin (d). Weak exchange and annihilation amplitudes are expected to be negligible.

The results presented here are based on data collected with the BABAR detector [16] at the PEP-II asymmetric \(e^+e^- \) collider [17] located at the Stanford Linear Accelerator Center. An integrated luminosity of 81.9 fb\(^{-1} \), corresponding to 88.9 ± 1.0 million \(B\bar{B} \) pairs, was recorded at the \(Y(4S) \) resonance (center-of-mass energy \(\sqrt{s} = 10.58 \) GeV).

Charged particles from the \(e^+e^- \) interactions are detected, and their momenta measured, by a combination of five layers of double-sided silicon microstrip detectors surrounded by a 40-layer drift chamber, both operating in the 1.5-T magnetic field of a superconducting solenoid. We identify photons and electrons using a CsI(Tl) electromagnetic calorimeter. Further charged particle identification (PID) is provided by the average energy loss \(dE/dx \) in the tracking devices and by an internally reflecting ring imaging Cherenkov detector covering the central region.

We reconstruct the \(B \)-daughter candidates through their decays \(\rho^0 \to \pi^0 \pi^0 \), \(\rho^0 \to \pi^+ \pi^- \), \(K^{*0} \to K^+ \pi^- \), \(K^{*0} \to K^- \pi^+ \), \(K^{*+} \to K^+ \pi^0(K^{*0}_{S} \pi^+) \), \(K^{*+} \to K^+ \pi^0(K^{*0}_{L} \pi^+) \), and \(K^{*0} \to K^+ \pi^- \). Table I lists the requirements on the invariant

\[
\begin{aligned}
1 \frac{d^2 \Gamma}{d \cos \theta_1 d \cos \theta_2} &= 9 \left\{ (1 - f_L) \sin^2 \theta_1 \sin^2 \theta_2 \\
&+ f_L \cos^2 \theta_1 \cos^2 \theta_2 \right\},
\end{aligned}
\]
mass of these particles’ final states. For the \(\rho, K^*, \) and \(\omega \) invariant masses these requirements are set loose enough to include sidebands, as these mass values are treated as observables in the maximum-likelihood fit described below. For \(K_S^0 \) candidates we further require the three-dimensional flight distance from the event primary vertex to be greater than 3 times its uncertainty. Secondary pions and kaons in \(\rho, K^*, \) and \(\omega \) candidates are rejected if their ring imaging Cherenkov detector, \(dE/dx \), and electromagnetic calorimeter PID signature satisfies tight consistency with protons or electrons, and the kaons (pions) must (must not) have a kaon signature.

Table I also gives the restrictions on the \(K^* \) and \(\rho \) helicity angles \(\theta \) made to avoid regions of rapid acceptance variation or combinatorial background from soft particles. We define \(\theta \) as the angle relative to the helicity axis of: the normal to the decay plane for \(\omega \), the positively-charged (or only charged) daughter momentum for \(\rho \), and the daughter kaon momentum for \(K^* \).

A \(B \)-meson candidate is characterized kinematically by the energy-substituted mass \(m_{ES} = \left[(s/2) + p_0 \cdot p_B)^2/E_0^2 - p_B^2 \right]^{1/2} \) and energy difference \(\Delta E = E_B - \frac{1}{2}\sqrt{s} \), where the subscripts 0 and \(B \) refer to the initial \(Y(4S) \) and to the \(B \) candidate, respectively, and the asterisk denotes the \(Y(4S) \)

![Feynman diagrams](image)

FIG. 1. Representative Feynman diagrams for \(B \to \omega \rho \) and \(B \to \omega K^* \) decays: (a) external tree; (b,c) CKM-favored gluonic penguins; (d) CKM-suppressed penguin; (e,f) destructively interfering color-suppressed trees.

TABLE I. Selection requirements on the invariant mass (in MeV) and decay angle of \(B \)-daughter resonances. The decay angle for \(\omega \) is unrestricted.

State	inv. mass	decay angle
\(\rho^0 \)	\(510 < m(\pi\pi) < 1060 \)	\(-0.85 < \cos \theta < 0.85 \)
\(\rho^+ \)	\(470 < m(\pi\pi) < 1070 \)	\(-0.6 < \cos \theta < 0.85 \)
\(K_{K^0}^{\ast -},K_S^{\ast +} \)	\(755 < m(K\pi) < 1035 \)	\(-0.85 < \cos \theta < 1.0 \)
\(K_{K^0}^{\ast +},\pi^+ \)	\(755 < m(K\pi) < 1035 \)	\(-0.6 < \cos \theta < 1.0 \)
\(\omega^0 \)	\(735 < m(\pi\pi\pi) < 825 \)	
\(\pi^0 \)	\(120 < m(\gamma\gamma) < 150 \)	
\(K_S^0 \)	\(488 < m(\pi\pi) < 508 \)	
frame. The resolution on ΔE (m_{ES}) is about 30 MeV (3.0 MeV). We require $|\Delta E| \leq 0.2$ GeV and $5.20 \leq m_{ES} \leq 5.29$ GeV. The average number of candidates found per selected event is in the range 1.15 to 1.2, depending on the final state. We choose the candidate with the smallest value of a χ^2 constructed from the deviations of the daughter resonance masses from their expected values.

Backgrounds arise primarily from random combinations of particles in continuum $e^+e^-\rightarrow q\bar{q}$ events ($q = u, d, s, c$). We reduce these by selecting on the angle θ_1 between the thrust axis of the B candidate in the $Y(4S)$ frame and that of the rest of the charged tracks and neutral calorimeter clusters in the event. The distribution of $|\cos\theta_1|$ is sharply peaked near 1.0 for combinations drawn from jetlike $q\bar{q}$ pairs, and nearly uniform for B-meson decays. The requirements, which optimize the expected signal yield relative to its background-dominated statistical error, are $|\cos\theta_1| < 0.8$ for the K^* modes and $|\cos\theta_1| < 0.65$ for the ρ modes. In the maximum-likelihood fit we also use a Fisher discriminant F [18] that combines four variables defined in the $Y(4S)$ frame: the angles with respect to the beam axis of the B momentum and B thrust axis, and the zeroth and second angular moments $L_{0,2}$ of the energy flow about the B thrust axis. The moments are defined by $L_j = \sum_i p_i \times |\cos\theta_i|^j$, where θ_i is the angle with respect to the B thrust axis of track or neutral cluster i, p_i is its momentum, and the sum excludes the B candidate daughters.

From Monte Carlo (MC) simulation [19] we estimate the residual charmless $B\bar{B}$ background to be 0.1% or less of the total sample in all cases. To allow for contributions possibly missing in the simulation we include a component for these in the fit described below, with a yield free to vary.

We obtain yields, f_L, and A_{ch} from extended unbinned maximum-likelihood fits with input observables ΔE, m_{ES}, F, and for vector meson k the mass m_k and helicity-frame decay angle θ_k. For each event i and hypothesis j (signal, continuum background, $B\bar{B}$ background) we define the probability density function (PDF)

$$P^j = P_j(m_{ES}^i)P_j(\Delta E^i)P_j(F^i)P_j(m_1^i, m_2^i, \theta_1^i, \theta_2^i).$$

(2)

We check for correlations in the background observables beyond those contained in this PDF and find them to be small. For the signal component, we correct for the effect of neglected correlations (see below). The likelihood function is

$$L = e^{-(\sum Y_j)} \prod_{i=1}^{N} \sum_{j} Y_j P^j,$$

(3)

where Y_j is the yield of events of hypothesis j found by maximizing L, and N is the number of events in the sample.

The PDF factor for the resonances in the signal takes the form $P_{1,sig}(m_1^i)P_{2,sig}(m_2^i)Q(\theta_1^i, \theta_2^i)$ with Q given by Eq. (1) modified to account for detector acceptance. For $q\bar{q}$ background it is given for each resonance independently by $P_{sig}(m^i, \theta^i) = P_{pk}(m^i)\mathcal{P}_{ak}(\theta^i) + P_{k}(m^i)\mathcal{P}_{k}(\theta^i)$, distinguishing between true resonance (\mathcal{P}_{ak}) and combinatorial components (\mathcal{P}_{k}). For the $B\bar{B}$ background we take all four mass and helicity-angle observables to be independent. The other PDF forms are sum of two Gaussians for $P_{sig}(m_{ES})$, $P_{sig}(\Delta E)$, and the peaking components of $P_{j}(m_k)$; a conjunction of two Gaussians with different widths below and above the peak for $P_j(F)$; and linear or quadratic dependences for ΔE, m_k, and helicity cosines for $q\bar{q}$ combinatorial background. The $q\bar{q}$ background in m_{ES} is described by the function $x\sqrt{1-x^2}\exp[-\xi(1-x^2)]$, with $x = 2m_{ES}/\sqrt{s}$ and parameter ξ.

For the signal and $B\bar{B}$ background components we determine the PDF parameters from simulation. We study large control samples of B decays to charmed final states of similar topology to verify the simulated resolutions in ΔE and m_{ES}, adjusting the PDFs to account for any differences found. For the continuum background we use (m_{ES}, ΔE) sideband data to obtain initial values, before applying the fit to data in the signal region, and ultimately leave them free to vary in the final fit.

Free parameters of the fit include signal and background yields, background-PDF parameters, and for the mode for which we find a significant signal, f_L and the signal and background charge asymmetries. For the fits without significant signal we fix $f_L = 0.9$, a choice that is consistent with a priori expectations, and account for the associated uncertainty in the systematic error. The free background-PDF parameters are ξ for m_{ES}, slope for ΔE, area and slope of the combinatorial component for m_k, and the peak position and lower and upper width parameters for F.

We evaluate possible biases from our neglect of correlations among discriminating variables in the PDFs by fitting ensembles of simulated experiments into which we have embedded the expected number of signal events randomly extracted from the fully simulated MC samples. We give in Table II the values found for bias for each mode. Events from a weighted mixture of simulated $B\bar{B}$ background decays are included, and so the bias we measure includes the effect of crossfeed from these modes.

In Table II we show for each decay mode the measured branching fraction together with the quantities entering into its computation and with its uncertainty and significance. The statistical error on the signal yield or branching fraction, f_L, and A_{ch}, is taken as the change in the central value when the quantity $-2\ln L$ increases by one unit from its minimum value. The significance is taken as the square root of the difference between the value of $-2\ln L$ (with systematic uncertainties included) for zero signal and the value at its minimum. For all modes except $B^+ \rightarrow \omega \rho^+$ we quote a 90% C.L. upper limit, taken to be the branching fraction below which lies 90% of the total of the likelihood integral in the positive branching fraction region. In calcu-
TABLE II. Signal yield Y and bias Y_0 with their statistical uncertainties, detection efficiency ϵ, daughter branching fraction product $\prod \mathcal{B}$, significance S (with systematic uncertainties included), measured branching fraction \mathcal{B}, and 90% C.L. upper limit for each mode. The number of produced B mesons is $(88.9 \pm 1.0) \times 10^6$.

Mode	Y (events)	Y_0 (events)	ϵ (%)	$\prod \mathcal{B}$	S (\%)	\mathcal{B} (10$^{-6}$)	\mathcal{B} U.L. (10$^{-6}$)
ωK^{*0}	$26.1^{+12.1}_{-10.8}$	3.2 ± 1.1	13.2	59	2.2	$3.4^{+1.8}_{-1.6}$	6.0
$\omega K^{*+}_{K^{*0} \pi^0}$	$11.6^{+8.7}_{-7.2}$	2.9 ± 1.1	13.3	20	1.3	$3.9^{+3.7}_{-3.0}$	\cdots
$\omega K^{*+}_{K^{*0} \pi^+}$	$5.4^{+5.0}_{-4.2}$	-0.1 ± 0.8	6.7	30	1.4	$3.1^{+3.4}_{-3.2}$	\cdots
$\omega K^{*+}_{\pi^0}$	1.9	1.9	0	0	0	$3.5^{+5.2}_{-3.6}$	7.4
ωp^0	$4.3^{+11.0}_{-9.1}$	-0.5 ± 1.0	10.5	89	0.4	$0.6^{+1.3}_{-1.1}$	3.3
ωp^+	$57.7^{+18.5}_{-16.5}$	4.2 ± 2.8	5.4	89	4.7	$12.6^{+3.7}_{-3.3}$	\cdots

We present in Fig. 2 the data and PDFs projected onto m_{ES} and ΔE, for subsamples enriched with a mode-dependent threshold requirement on the ratio of signal to total likelihood (computed without the PDF associated with the variable plotted) chosen to optimize the significance of signal in the resulting subsample. Figure 3 gives background-subtracted projections onto the helicity-angle cosines for $B^+ \rightarrow \omega p^+$ corresponding to the fit result $f_L = 0.88^{+0.12}_{-0.15} \pm 0.03$; the dominance of the term proportional to f_L in Eq. (1) is evident.

The branching fraction value \mathcal{B} given in Table II for $B^+ \rightarrow \omega p^+$ comes from a direct fit with the free parameters \mathcal{B} and f_L, as well as A_{ch}. This choice exploits the

FIG. 2 (color online). Projections of m_{ES} (left) and ΔE (right) with a cut on the per-event signal/total likelihood ratio for (a,b) $B^0 \rightarrow \omega K^{*0}$; (c,d) $B^+ \rightarrow \omega K^{*+}$; (e,f) $B^0 \rightarrow \omega p^0$; and (g,h) $B^+ \rightarrow \omega p^+$. The solid (dashed) curve gives the total (background) PDF, computed without the variable plotted, and projected onto the same subspace as the data.
feature that \mathcal{B} is less correlated with f_L than either the yield or efficiency taken separately. The behavior of $-2 \ln L(f_L, \mathcal{B})$ is shown in Fig. 4.

Most of the systematic uncertainties on the branching fractions arising from lack of knowledge of the PDFs have been included in the statistical error since most background parameters are free in the fit. For the signal, the uncertainties in PDF parameters are estimated from the consistency of fits to MC and data in control modes. Varying the signal-PDF parameters within these errors, we estimate yield uncertainties of 1–4 events, depending on the mode. The uncertainty in the fit-bias correction is taken to be half of the correction itself. Similarly we estimate the uncertainty from modeling the $B\overline{B}$ backgrounds by taking half of the contribution of that component to the fitted signal yield. These additive systematic errors are dominant for the modes with little or no signal yield. We have also considered backgrounds from B decays to the same ultimate final-state as the signal. States with ω and nonresonant $\pi\pi$ or πK are included in the $B\overline{B}$ backgrounds discussed previously. The helicity-angle restrictions given in Table I suppress $\omega\pi$ or ωK subsystems in the region of known resonances. For the $B^0 \rightarrow \omega\rho^0$ and $B \rightarrow \omega K^*$ upper limits, inclusion of the helicity-angle PDF with fixed $f_L = 0.9$ reduces to a negligible level the effect of interferences with possible S wave $\pi\pi$ or πK states.

Uncertainties in our knowledge of the efficiency, found from auxiliary studies, include 0.8% $\times N_t$, 2.5% $\times N_\gamma$, and 4% for a K^0_S decay, where N_t and N_γ are the number of tracks and photons, respectively, in the B candidate. Our estimate of the B-production systematic error is 1.1%. Published data [20] provide the uncertainties in the B-daughter product branching fractions (1%). The uncertainties in the efficiency from the event selection are 1%–3% for the requirement on $\cos\theta_T$ and 1% for PID for the modes with a charged kaon. The dependence of efficiency on f_L causes uncertainties of 2%–6% in the $B^0 \rightarrow \omega\rho^0$ and $B \rightarrow \omega K^*$ measurements.

The 0.03 systematic error on f_L for $B^+ \rightarrow \omega\rho^+$ comes from imperfect representation of correlations in the PDF and is estimated from fits to fully simulated MC samples. From several large inclusive kaon and B-decay samples, we find a systematic uncertainty for \mathcal{A}_{χ} of 2% due mainly to the dependence of reconstruction efficiency on the charge of the ρ-daughter charged pion. The value of $\mathcal{A}_{\chi}^{99} = (-1.0 \pm 0.7\%$ that we find for the background in the $B^+ \rightarrow \omega\rho^+$ fit provides confirmation of this estimate.

In summary, we have performed searches for the previously undetected decays $B^0 \rightarrow \omega K^{\ast0}$, $B^+ \rightarrow \omega K^{*+}$, $B^0 \rightarrow \omega\rho^0$, and $B^+ \rightarrow \omega\rho^+$. The results are
MEASUREMENTS OF B MESON DECAYS TO ωK^+ AND $\omega \rho$

$\mathcal{B}(B^0 \rightarrow \omega K^0) = [3.4^{+1.8}_{-1.6} \pm 0.4(<6.0)] \times 10^{-6},$

$\mathcal{B}(B^+ \rightarrow \omega K^+) = [3.5^{+2.5}_{-2.0} \pm 0.7(<7.4)] \times 10^{-6},$

$\mathcal{B}(B^0 \rightarrow \omega \rho^0) = [0.6^{+1.3}_{-1.1} \pm 0.4(<3.3)] \times 10^{-6},$

$\mathcal{B}(B^+ \rightarrow \omega \rho^+) = (12.6^{+3.7}_{-3.3} \pm 1.6) \times 10^{-6},$

where the first error quoted is statistical, the second systematic, and the upper limits are taken at 90% C.L. For $B^+ \rightarrow \omega \rho^+$ we also measure the longitudinal polarization fraction

$$f_L = 0.88^{+0.12}_{-0.11} \pm 0.03,$$

and charge asymmetry

$$A_{\text{ch}} = (5 \pm 26 \pm 2)\%.$$

We find that the longitudinal spin alignment is dominant, as for the $\rho\rho$ modes [1–4]. The central value of the branching fraction for $B^+ \rightarrow \omega \rho^+$ is about half of those found for $B^+ \rightarrow \rho^+ \rho^0$ and $B^0 \rightarrow \rho^+ \rho^-$. All of our branching fraction results are in general agreement within errors with the theoretical estimates.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003).
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 69, 031102 (2004).
[3] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 231801 (2004).
[4] BELLE Collaboration, J. Zhang et al., Phys. Rev. Lett. 91, 221801 (2003).
[5] Amol S. Dighe et al., Phys. Lett. B 369, 144 (1996).
[6] A. Ali et al., Z. Phys. C 1, 269 (1979); M. Suzuki, Phys. Rev. D 66, 054018 (2002).
[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003); BELLE Collaboration, K.-F. Chen et al., Phys. Rev. Lett. 91, 201801 (2003).
[8] Charge-conjugate reactions are included implicitly.
[9] CLEO Collaboration T. Bergfeld et al., Phys. Rev. Lett. 81, 272 (1998).
[10] A. Ali, G. Kramer, and C. D. Lu, Phys. Rev. D 58, 094009 (1998).
[11] D. Atwood and A. Soni, Phys. Rev. D 59, 013007 (1999).
[12] Y. H. Chen et al., Phys. Rev. D 60, 094014 (1999).
[13] A. Ali, G. Kramer, and C. D. Lu, Phys. Rev. D 59, 014005 (1999).
[14] W.-S. Hou and K.-C. Yang, Phys. Rev. D 61, 073014 (2000).
[15] H.-Y. Chang and K.-C. Yang, Phys. Lett. B 511, 40 (2001).
[16] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[17] PEP-II Collaboration, Stanford Linear Accelerator Center Report No. SLAC-R-418 (1993).
[18] R. A. Fisher, Ann. Eugenics 7, 179 (1936).
[19] The BABAR detector Monte Carlo simulation is based on GEANT4: S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[20] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).