A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.
I. INTRODUCTION

As a new method to study strongly coupled field theory, the AdS/CFT correspondence has been used to study the quantum many-body system in the past few years, which we call the AdS/CMT. A remarkable progress of AdS/CMT is the first holographic realization superconductivity, for review see. However, in this setup the superconductor is homogeneous without broken translational symmetry, as a result of the momentum being not dissipate, the DC conductivity is infinite even in the normal metal phase of the superconductor. The translational symmetry breaking in AdS/CFT has been studied by the perturbative method and Drude(-like) peaks were discovered. Some other related studies, including the construction of the inhomogeneous black hole solution and the corresponding holographic superconductor, by the perturbative method have also been obtained. Furthermore, instead of the perturbative method, the authors in Refs. constructed some periodic gravitational background to simulate the lattice by introducing a periodic scalar field or chemical potential on the boundary. With Einstein-DeTurck method, they solve the coupled partial equations numerically and the universal non-Drude frequency scalings with finite DC conductivity are disclosed. The first holographic setup of a lattice superconductor was studied by introducing a periodic charge density beyond probe limit in, and the expected infinite DC conductivity is also found in the superconducting state. Besides the way to solve partial differential equations with inhomogeneous sources as in, the use of a helical lattice, Q-lattice, or using spatially dependent but massless scalars can also enables us to break translation invariance while preserving homogeneity. We can also break translational symmetry spontaneously by introducing some topological terms or some addition field in the action. At the same time, the first example of a modulated phase in string theory was found in. Soon thereafter, they worked it out in D2-D8 model and also generalized the mechanism with magnetic fields and stuff both in D3-D7 and D2-D8 models.

Another mechanics to break translation symmetry is to introduce a mass term for the graviton as

$$\mathcal{L}_I = \sqrt{-g}m^2 \delta g_{tx} \delta g^{tx},$$

which can be implemented in the massive gravity framework. Due to diffeomorphism breaking, the conservation of the stress-energy tensor in the massive gravity is broken.
However, the massive gravity suffer from the instability problem due to the introduction of the mass term for the graviton. To eliminate Boulware-Deser ghost, a non-linear massive gravity is constructed by introducing higher order interaction terms in the action\cite{23}. In this framework, a charged black brane solution has been constructed and the conductivity has also been calculated\cite{20}. A recent review of massive gravity can be found in \cite{24}.

In this paper, we are trying to construct a holographic superconductor in the massive gravity theory. In the normal metal phase state, by choosing proper values of the gravity mass we reproduced exactly the results in \cite{20}, both the Drude peak and power-law scaling behavior with the exponents γ equal to $-2/3$ of the AC conductivity. This power-law scaling are in agreement with measurements of the normal phase of bismuth-based cuprates\cite{25} and also the results in\cite{10, 11}.

In the superconducting state, besides the infinite DC conductivity, the authors also found a Drude behavior at low frequency followed by a power law fall-off. These results are in striking agreement with measurements on cuprates \cite{26} and also the implicit lattice results with condensation in\cite{12}. However, in \cite{12} the author found that the coefficient of the power law is temperature independent, this is different from the holographic superconductor from massive gravity, in which the the coefficient of the power law is temperature dependent.

The organization of the paper is as follows. In Section \textbf{II} we gives the model of the holographic superconductor and the superconducting phase transitions are also studied. In Section \textbf{III} the equations of motion for fluctuations are derived and the conductivity of the normal phase is reviewed. The conductivity of the superconducting state is given in Section \textbf{IV}. Finally, the discussions and conclusions are given in Section \textbf{V}.

\section{Superconducting from Non-Linear Massive Gravity}

\subsection{Model and equations}

We start with the non-linear massive gravity action including a cosmological constant following \cite{20}

\begin{equation}
S_G = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[R + \Lambda + m_g^2 \sum_{i=1}^{4} c_i \mathcal{U}_i (g, f) \right].
\end{equation}
where $\Lambda = \frac{6}{L^2}$, f is the reference metric, c_i are constants and m_g is the mass of the graviton. U_i are symmetric polynomials of the eigenvalues of the matrix $K^\mu_\nu \equiv \sqrt{g^\mu\alpha} f_{\alpha\nu}$

$$U_1 = [K],$$

$$U_2 = [K]^2 - [K^2],$$

$$U_3 = [K]^3 - 3[K][K^2] + 2[K^3],$$

$$U_4 = [K]^4 - 6[K^2][K^2] + 8[K^3][K] + 3[K^2]^2 - 6[K^4],$$

(3)

where $[K] \equiv K^\mu_\mu$, $[K^2] \equiv (K^2)^\mu_\mu$ and $(K^2)^{\alpha}_\mu \equiv K^{\alpha}_\mu K^\mu_\nu$ et. al.. As Ref. [20], we are interested in the case of a spatial reference metric (in the basis (t, z, x, y))

$$f_{\mu\nu} = (f_{sp})_{\mu\nu} = diag(0, 0, F^2, F^2),$$

(4)

where F is constant. In this case, there are only two spatial graviton mass terms

$$m_g^2 U_{sp} = m_g^2 (\alpha V_1 + \beta V_2),$$

(5)

where

$$V_1 = U_1 = [K] = F(\sqrt{g^{xx}} + \sqrt{g^{yy}}),$$

$$V_2 = U_2 = [K]^2 - [K^2] = 2F^2 \sqrt{g^{xx}g^{yy}},$$

(6)

and we have denoted $\alpha = c_1$, $\beta = c_2$. Without loss of generality, we will set $F = 1$ in the following.

In order to build a holographic superconductor from non-linear massive gravity, we introduce a $U(1)$ gauge field and a charged complex scalar field, with action

$$S_M = -\frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(\frac{L^2}{4} F_{\mu\nu} F^{\mu\nu} + |D\Psi|^2 + m_{\Psi}^2 |\Psi|^2 \right),$$

(7)

where $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ and $D_\mu = \nabla_\mu - iq A_\mu$ with m_{Ψ} and q being the mass and charge of the complex scalar field, respectively. For convenience, we will set $L = 1$. From the non-linear massive gravity action (2) plus the matter action (7), one can obtain Einstein’s

1 The terms U_3 and U_4 vanish when we take the spatial reference metric (4).
equation, scalar equation and Maxwell’s equation as, respectively
\begin{align*}
R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R - \frac{1}{2} g_{\mu\nu} \Lambda + m^2 g_{\mu\nu} X_{\mu\nu} - \frac{1}{2} g^{\rho\sigma} F_{\mu\rho} F_{\nu\sigma} + \frac{1}{8} g_{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} \\
- \frac{1}{2} (D_\mu \Psi D_\nu \Psi^* + D_\nu \Psi D_\mu \Psi^*) + \frac{g_{\mu\nu}}{2} (m^2 |\Psi|^2 + |D\Psi|^2) = 0, \\
D_\mu D^\mu \Psi - m^2 \Psi = 0, \\
\n\n\n(8) \\
\n\n\n(9) \\
\n\n\n(10) \\
\end{align*}
where
\begin{align*}
X_{\mu\nu} &= \frac{\alpha}{2} \left(\mathcal{K}_{\mu\nu} - [\mathcal{K}] g_{\mu\nu} \right) - \beta \left((\mathcal{K}^2)_{\mu\nu} - [\mathcal{K}] \mathcal{K}_{\mu\nu} + \frac{1}{2} g_{\mu\nu} ([\mathcal{K}]^2 - [\mathcal{K}]^2) \right). \\
\n(11) \\
\end{align*}

We take the metric ansatz
\begin{align*}
ds^2 &= \frac{L^2}{z^2} \left(-g(z) e^{-\chi(z)} dt^2 + \frac{dz^2}{g(z)} + dx^2 + dy^2 \right), \\
\end{align*}
with
\begin{align*}
A &= \Phi(z) dt, \quad \Psi = \Psi(z). \\
\end{align*}

(12)

(13)

From the z component of Maxwell’s equations, one finds that the phase of the complex scalar field Ψ must be constant so that we can set Ψ being real without loss of generality. The equations of the scalar field and the Maxwell field are, respectively
\begin{align*}
\Psi'' + \left(\frac{g'}{g} - \frac{\chi'}{2} - \frac{2}{z} \right) \Psi' + \frac{q^2 e^\chi \Phi^2 \Psi}{g^2} - \frac{m^2 \Psi}{z^2 g} &= 0, \\
\Phi'' + \frac{\chi' \Phi'}{2} - \frac{2q^2 \Psi \Phi}{z^2 g} &= 0. \\
\end{align*}

(14)

(15)

Einstein’s equations are
\begin{align*}
\Psi'^2 - \frac{\chi'}{z} + \frac{q^2 e^\chi \Phi^2 \Psi^2}{g^2} &= 0, \\
3 \frac{\chi'}{z^2} - 3 \frac{\alpha m^2 g}{z^2 g} - \frac{\beta m^2 g}{zg} + \frac{m^2 g \Psi^2}{2z^2 g} + \frac{q^2 e^\chi \Psi \Phi^2}{2g^2} - \frac{g'}{zg} + \frac{e^\chi z^2 \Phi^2}{4g} + \frac{1}{2} \Psi'^2 &= 0, \\
\end{align*}

(16)

(17)

At the horizon $z_+ \ (g(z_+) = 0)$, by using a serious solution we can find that there are are independent parameters
\begin{align*}
z_+, \Psi_+ \equiv \Psi(z_+), E_+ \equiv \Phi'(z_+), \chi_+ = \chi(z_+). \\
\end{align*}

(18)
The scalar potential itself must go to zero at the horizon in order for the gauge connection to be regular. The Hawking temperature of the black solution is determined by the above quantities

$$T = \frac{1}{16\pi L^2}((12 + 4\Psi_+^2)e^{-\chi+/2} - L^2 E_+^2 e^{\chi+/2} + 4(\alpha + \beta)e^{\chi+/2}).$$

(19)

By choosing a value of the scalar fields \(m_\Psi^2 = -2\), the information of the boundary field theory can be read from the asymptotic behavior of the fields at boundary \(z = 0\),

$$\Phi(z) = \mu - \rho z + \cdots,$$

(20)

$$\Psi(z) = \Psi_1 z - \Psi_2 z^2 + \cdots,$$

(21)

where the \(\mu\) is the chemical potential and \(\rho\) is charge density on the boundary field theory. The order parameter of the holographic superconductor is expectation value of the scalar operator, it can be \(\Psi_1\) or \(\Psi_2\) depending on the quantization we choose. One is to set \(\Psi_1 = 0\) while \(\Psi_2 = \langle O_2 \rangle\) is the order parameter. The other is to treat \(\Psi_2 = 0\) as the source while \(\Psi_1 = \langle O_1 \rangle\) is the condensation value.

Before solving the four equations we can set both \(L\) and \(z_+\) equal to one by using a scaling symmetry of the system. With fixed \(z_+ = 1\) we still have three independent parameter at the horizon. We should also fix the value of \(\chi_+ = 0\) at the horizon, then after a rescaling of time \(t \rightarrow ct\) with \(c = e^{\chi(z=0)}\) we can set \(\chi = 0\) on the boundary. Then the Hawking temperature of the black hole is to be the temperature of the boundary field theory.

Finally, with the two independent parameter \(\Psi_+\) and \(\Phi_+\), we can solve the equations of motion by the shooting method after choosing a specific quantization for scalar field \(\Psi\). We will see that after reducing temperature the system will enter a superconducting state.

B. the superconducting phase transition

We choose two combinations of \(\alpha\) and \(\beta\) as examples followed [20], which are \(\alpha = -1, \beta = 0\) and \(\alpha = -0.75, \beta = 0\). The order parameter of \(q = 1\) are shown in FIG.1 and FIG.2. Note that in this paper, we will set \(m_g = 1\) throughout.

From the two figures we see that there indeed a critical temperature below that there are condensation for \(\langle O_2 \rangle\). However, the case of \(\langle O_1 \rangle\) is different, for the parameter \(\alpha = -0.75, \beta = 0\) we even can not find a finite temperature solution with condensation, when \(\alpha = -1, \beta = 0\), the condensation \(\langle O_1 \rangle\) takes a two valued behavior when \(T/T_c < 0.95\),
FIG. 1: The condensation phase diagram when $\alpha = -1, \beta = 0, q = 1$.

FIG. 2: The phase diagram when $\alpha = -0.75, \beta = 0, q = 1$.

which means that the phase transition structure is complex. However, the condensed region near the critical temperature is single valued, we choose this region when we compute the conductivity for the $\langle O_1 \rangle$ case. Numerical fitting of the data close to T_c also indicates that the order parameter $(1 - T/T_c)^{1/2}$ at the critical point, which admit the mean field exponent.

III. CONDUCTIVITY OF NORMAL STATE

When there is no condensation, it has been confirmed in [20, 27] that for a region of α and β, the conductivity takes a Drude like peak at low frequency $\omega < T$, while $T < \omega < \mu$, the conductivity has a Power law scaling $|\sigma| \approx C + \frac{B}{\omega^{2/3}}$, C and B are determined by α and β. In [27], the author analytically computed the AC conductivity when the frequency is small and get exactly the Drude model form. In [28], a universal formula for the DC conductivity was derived based on the argument of [29] that the DC conductivity does not
vary with the radial coordinate, but depends only on geometric properties of the horizon. This formula derived in [28] relates the resistivity of the boundary field theory to the mass of the graviton evaluated on the horizon of the bulk black hole as

\[\sigma_{DC} = \frac{1}{q^2} \left[1 + \frac{q^2 \mu^2}{m^2(z_h)} \right], \]

in which \(m^2(z_h) = -2\beta - \alpha/z_h \). By choosing the same value of \(\alpha \) and \(\beta \) used in the previous section we reproduce both the Drude like scaling and the power-law scaling. The \(\sigma_{DC} \) can also vanish if we choose \(q = 1, \mu = 1, \alpha = 0, \beta = 0.5 \), this maybe a holographic realization of coherent metal in massive gravity.

A. Fluctuations and equations of motion

The conductivity is computed from the retarded Greens function of the transverse current via the Kubo formula

\[\sigma(\omega) = \frac{i}{\omega} G^R(\omega). \]

According to the \(\text{AdS/CFT} \) correspondence, the Green function \(G^R(\omega) \) is computed by solving the equations of motion for fluctuations \(a_x \) and the fields coupled to it. No matter the temperature is below \(T_c \) or above \(T_c \), there are three independent fluctuation fields \(a_x, h_{tx} \) and \(h_{zx} \). The linear equations of the three fields are

\[a''_x + \left(\frac{g'}{g} - \frac{\chi'}{2} \right) a'_x + \left(\frac{\omega^2 e^\chi}{g^2} - \frac{2q^2 \Psi^2}{z^2 g} \right) a_x + \frac{z^2 e^\chi \Phi'}{g} \left(\frac{2}{z} h_{tx} + h'_{tx} - i\omega h_{zx} \right) = 0, \]

\[\frac{2}{z} h_{tx} + h'_{tx} - i\omega h_{zx} + \Phi' a_x = -\frac{ie^{-\chi} g m^2(z)}{\omega} h_{zx}, \]

\[\frac{2}{z} h_{tx} + h'_{tx} - i\omega h_{zx} + \Phi' a_x = \frac{m^2(z)}{g} h_{tx} - \frac{1}{2} \chi' \left(\frac{2}{z} h_{tx} + h'_{tx} - i\omega h_{zx} + \Phi' a_x \right), \]

in which \(m^2(z) = -2\beta - \frac{\alpha}{z} \). If there is no condensation, the equations above will come back to the equations studied in [20, 27].

We can express \(h_{tx} \) as a function of \(h_{zx} \),

\[\frac{g}{m^2(z)} \left[-\frac{ie^{-\chi} g m^2(z)}{\omega} h_{zx} \right]' + \left(-\frac{ie^{-\chi} g^2}{2\omega} h_{zx} \right) = h_{tx}. \]

Finally we get two coupled non-linear equations for \(a_x \) and \(h_{zx} \),

\[a''_x + \left(\frac{g'}{g} - \frac{\chi'}{2} \right) a'_x + \left(\frac{\omega^2 e^\chi}{g^2} - \frac{2q^2 \Psi^2}{z^2 g} \right) a_x + \frac{z^2 e^\chi \Phi'}{g} \left(-\Phi' a_x - \frac{ie^{-\chi} g m^2(z)}{\omega} h_{zx} \right) = 0, \]
\[
\frac{2}{z} \left[\frac{g}{m^2(z)} \left(-\frac{ie^{-\chi}g m^2(z)}{\omega} h_{xx} \right)' + \left(-\frac{ie^{-\chi}g^2}{2\omega} h_{xx} \right) \right] \\
+ \left[\frac{g}{m^2(z)} \left(-\frac{ie^{-\chi}g m^2(z)}{\omega} h_{xx} \right)' \right]' + \left(-\frac{ie^{-\chi}g^2}{2\omega} h_{xx} \right)'
\]
\[= -i\omega h_{xx} + \Phi' a_x = -\frac{ie^{-\chi}g m^2(z)}{\omega} h_{xx}. \tag{29}\]

The equations of motion is solved numerically by setting a ingoing boundary condition at the horizon that
\[a_x(z), h_{xx}(z) \propto (1 - z)^{-i\omega/4\pi T}. \tag{30}\]

We set normalizable UV boundary conditions for the \(h_{xx}\) field. On the boundary, the behavior of the \(a_x\) is
\[a_x(z) = a_1 + a_2 z + \cdots. \tag{31}\]

And then the retard green function is read as
\[G_R(\omega) = \frac{a_2}{a_1}, \tag{32}\]

Therefore, the conductivity can be expressed as
\[\sigma(\omega) = \frac{i}{\omega} \frac{a_2}{a_1}. \tag{33}\]

In the next subsection, we will present the results of conductivity with both Drude and power law scaling.

B. Drude like scaling and power law scaling

Following [20], we choose \(\alpha = -1, \beta = 0\) and \(\alpha = -0.75, \beta = 0\). In FIG.3 the conductivity of the both cases above are presented, the Drude peak is clear and the real part goes to one at large frequency. The Drude scaling at low frequency are shown in FIG.4 for three different temperature of both \(\alpha = -1, \beta = 0\) and \(\alpha = -0.75, \beta = 0\). When \(\omega < T\) the data can be fitted well very well by the Drude formula
\[\sigma(\omega) = \frac{\sigma_{DC}}{1 - i\omega \tau}, \tag{34}\]
in which \(\tau\) is the relaxation time.
FIG. 3: Both real part and imaginary part of conductivity. Left: $\alpha = -1, \beta = 0, \mu = 1.732$. Right: $\alpha = -0.75, \beta = 0, \mu = 2.5$. We can see there is a Drude peak at low frequency.

FIG. 4: Left: The Drude scaling for three different temperature $T = 0.08; 0.1; 0.114$ (from top to bottom) for $\alpha = -1, \beta = 0$. Right: The Drude scaling for three different temperature $T = 0.1; 0.119; 0.134$ (from top to bottom) for $\alpha = -0.75, \beta = 0$. When $\omega < T$, the curves can be fitted very well with the Drude scaling $\sigma(\omega) = \sigma_{DC}/(1 - i\omega\tau)$ when $\omega < T$. We also see that the σ_{DC} decease when increasing the temperature and finally goes to one.

In the intermediate frequency the absolute value of the conductivity can be fitted well by the power law scaling

$$|\sigma(\omega)| = C + B\omega^{-\gamma}, \quad (35)$$

By a fine-tuning of the graviton mass, we can obtain $\gamma \approx 2/3$ (FIG.5), as claimed in the lattice models[10–13]. In addition, the results of $\alpha = -0.75, \beta = 0$ for three different temperature have also been presented in FIG.5 which indicate that the power law scaling hold when changing temperature. However, we must also point out that for a certain class of holographic lattice models, the so-called holographic Q-lattice model[16], the power law
FIG. 5: Left: The power law scaling for three different temperature $T = 0.1; 0.119; 0.134$ (from top to bottom) for $\alpha = -0.75, \beta = 0$. The plots are fitted very well by $|\sigma(\omega)| = C + B\omega^{-2/3}$. Right: The phase of $\sigma(\omega)$.

scaling of 2/3 exponent found in [10–12] is not universal, which may be depend on the specific model and need to be furthermore studied.

Both the Drude scaling at low frequency $\omega < T$ and Power law scaling at an intermediate regime $T < \omega < \mu$ shown above are in agreement with the results in [10, 11, 13] when an explicit inhomogeneous lattice is introduced in the bulk theory. There must be connections between the massive gravity theory and the inhomogeneous lattice models, in [30], by using the small-lattice expansion, the authors proved that, the presence of the latticed scalar source induces an effective mass for the graviton via a gravitational version of the Higgs mechanism.

IV. CONDUCTIVITY OF SUPERCONDUCTING STATE

In this section we are going to discuss the conductivity in the condensation state with non-zero Ψ. As a results of superconducting we see that the DC conductivity will become infinite. However, the finite frequency AC conductivity admit the same scaling behavior as the normal state as discussed in the previous section. Especially the power law scaling with $\gamma \approx -2/3$ are in agreement with the measurement in cuprates [25, 26].

At temperature is $T/T_c = 0.99$, the conductivity of the condensation phase with $\langle O_1 \rangle$ of $\alpha = -1, \beta = 0$ are plotted in FIG 6. Compared the results of normal state in previous section, the difference is that the imaginary part of conductivity diverges at zero frequency.
FIG. 6: The conductivity of the condensation phase with $\langle O_1 \rangle$ for $\alpha = -1, \beta = 0$ and $T/T_c = 0.99$.

FIG. 7: At low frequency, the scaling of conductivity of the condensation phase with $\langle O_1 \rangle$ for $\alpha = -1, \beta = 0$ and $T/T_c = 0.99$. The plots can be fitted very well by Eq. (36).

The divergence of imaginary part when $\omega = 0$ indicates that there is a delta function of the real part conductivity, which confirms the exist of superconducting state.

A. Low frequency region

When ω is small, we find that the conductivity can be fitted well by the formula as found in [12]

$$\sigma(\omega) = \frac{i \rho_s}{\omega} + \frac{\rho_n \tau}{1 - i \omega \tau}. \quad (36)$$

where ρ_s is the superfluid density and ρ_n is the normal fluid density, τ is the relaxation time.

In FIG. 7 and FIG. 8 we present the low frequency conductivity for both $\langle O_1 \rangle$ and $\langle O_2 \rangle$ of $\alpha = -1, \beta = 0$. The agreement with Eq. (36) is very convincing. From FIG. 8 we also see that when the temperature is lowered, the pole of the imaginary conductivity grows rapidly.
FIG. 8: $\alpha = -1, \beta = 0$, at low frequency, scaling of conductivity of the condensation phase with $\langle O_2 \rangle$, the temperature from top to bottom is $T/T_c = 0.999; 0.981; 0.930; 0.856$. The data can be fitted very well by Eq.(36).

FIG. 9: The ρ_n and ρ_s in the superconducting state.

since there is more superfluid density ρ_s.

The temperature dependence of both ρ_n and ρ_s are plotted in FIG.9, we are working in the case of $\langle O_2 \rangle$ when $\alpha = -1, \beta = 0$. The ρ_s is zero at T_c and increases rapidly when lowing temperature. The normal fluid density ρ_n can be fitted very well as

$$\rho_n(T) = a + be^{-\Delta/T}, \Delta \approx 6T_c.$$ \hspace{1cm} (37)

This also similar to the BCS theory and also the result in [12]. The $\Delta \approx 6T_c$ is much larger than the value of a BCS superconductor with $\Delta \approx 1.7T_c$ means that the holographic superconductor in the massive gravity is indeed a strongly coupled superconductor. This is also a significant distinction that highlights how holographic lattice and massive gravity models generically lead to results that are qualitatively similar but quantitatively different.
FIG. 10: The log-log plot of the normal part conductivity. Left: $\alpha = -1, \beta = 0$, the condensation phase with $\langle O_2 \rangle$, the temperature from top to bottom is $T/T_c = 0.999; 0.981; 0.930; 0.856$. Right: from top to bottom are the cases: $(\alpha = -0.75, \beta = 0, \langle O_2 \rangle > 0, T/T_c = 0.98); (\alpha = -1, \beta = 0, \langle O_1 \rangle > 0, T/T_c = 0.98)$ and $(\alpha = -1, \beta = 0, \langle O_2 \rangle > 0, T/T_c = 0.856)$.

B. Power law scaling and cuprates

At slightly larger frequency, the absolute value of the conductivity of the normal component follows the same power law Eq.(35) as was found in the normal phase above the critical temperature. In FIG. 10 we plotted the absolute value of the $\sigma(\omega)$ minus the off-set C vs frequency on a log-log plot after subtracting the part from superfluid density. In the left side of FIG. 10 the four lines corresponding to the same temperature as studied in FIG. 8 for the case $\alpha = -1, \beta = 0$ with condensation $\langle O_2 \rangle$. While in the right side we plotted the results of both $\alpha = -1, \beta = 0$ and $\alpha = -0.75, \beta = 0$, and also both two kinds of condensation $\langle O_1 \rangle$ and $\langle O_2 \rangle$. This clearly shows that the power law fall-off is completely unaffected by the condensation. Here, we also point out that we also need a fine-tuning of the graviton mass as that in the normal state.

The fact that the lines are parallel implies that the exponent is the same, which is in agreement with the results in [12] and also the experiment on bismuth-based cuprates [26]. The fact that the lines does not lie on top of each other implies that the coefficient B of the power law is temperature dependent, this is different from the results in [12], in which the author found the coefficient B of the power law is temperature independent.
V. CONCLUSION

In this paper, a holographic superconductor with momentum relaxation is constructed in the massive gravity proposed in [20]. In the normal state we reproduced the Drude scaling and power-law scaling as studied in [20, 27], while in the superconducting state, the superconducting part induces a delta function for real part conductivity when $\omega = 0$. However, the Drude scaling and power-law scaling of the normal part are not affected by the condensation. The results agree with the result in [12], in which the holographic superconductor with implicity lattice is studied. This agreement confirm that there is a deep connection between the massive gravity and the holographic lattice theory as studied in [30]. Recently, a holographic theory of strange metals is constructed from the Einstein-Maxwell-Dilaton massive gravity [31, 32], it would be interesting to find the superconductor/strange metal phase transitions in this setup. In this paper, we only focus on the cases of α and β that produce the normal metal state with Drude scaling, however, as pointed in [28], there are other possibility that the conductivity will show possible incoherent metal behaviors by choosing a proper mass term, this is also worth a further studying.

Acknowledgments

We are grateful to David Vegh and Yong Qiang Wang for helpful discussions. HBZ is supported by the National Natural Science Foundation of China (under Grant No. 11205020). J. P. Wu is supported by the Natural Science Foundation of China under Grants No. 11305018 and No. 11275208.

[1] J. M. Maldacena, ”The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2 (1998) 231, \texttt{arXiv:hep-th/9711200}; S. S. Gubser, I. R. Klebanov and A. M. Polyakov, ”Gauge Theory Correlators from Non-Critical String Theory”, Phys. Lett. B 428, 105 (1998) \texttt{arXiv:hep-th/9802109}; E. Witten, ”Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998) \texttt{arXiv:hep-th/9802150}; O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, ”Large N Field Theories, String Theory and Gravity,” Phys. Rept. 323, 183 (2000) \texttt{arXiv:hep-th/9905111}.
[2] S. S. Gubser, "Breaking an Abelian gauge symmetry near a black hole horizon", Phys. Rev. D 78, 065034 (2008), [arXiv:0801.2977[hep-th]]; S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, "Building a Holographic Superconductor", Phys. Rev. Lett. 101, 031601 (2008), [arXiv:0803.3295[hep-th]].

[3] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, "Holographic Superconductors", [arXiv:0810.1563[hep-th]]; G. T. Horowitz, "Introduction to Holographic Superconductors", [arXiv:1002.1722[hep-th]]; D. Musso, "Introductory notes on holographic superconductors", [arXiv:1401.1504[hep-th]].

[4] S. A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdev, "Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes", Phys. Rev. B 76, 144502 (2007), [arXiv:0706.3215[cond-mat.str-el]].

[5] S. A. Hartnoll and C. P. Herzog, "Ohm's Law at strong coupling: S duality and the cyclotron resonance", Phys.Rev. D 76, 106012 (2007), [arXiv:0706.3228[hep-th]].

[6] S. A. Hartnoll and C. P. Herzog, "Impure AdS/CFT", Phys.Rev. D 77, 106009 (2008), [arXiv:0801.1693[hep-th]].

[7] S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, "Towards strange metallic holography", JHEP 1004, 120 (2010), [arXiv:0912.1061[hep-th]].

[8] S. A. Hartnoll and D. M. Hofman, "Locally critical umklapp scattering and holography", Phys.Rev.Lett. 108, 241601 (2012), [arXiv:1201.3917[hep-th]].

[9] K. Maeda, T. Okamura, J. Koga, "Inhomogeneous charged black hole solutions in asymptotically anti-de Sitter spacetime", Phys.Rev. D85 (2012) 066003, [arXiv:1107.3677[gr-qc]]; N. Iizuka, K. Maeda, "Towards the Lattice Effects on the Holographic Superconductor", JHEP 1211 (2012) 117, [arXiv:1207.2943[hep-th]].

[10] G. T. Horowitz, J. E. Santos, and D. Tong, "Optical Conductivity with Holographic Lattices", JHEP 1207, 168 (2012), [arXiv:1204.0519[hep-th]].

[11] G. T. Horowitz, J. E. Santos, and D. Tong, "Further Evidence for Lattice-Induced Scaling", JHEP 1211, 102 (2012), [arXiv:1209.1098[hep-th]].

[12] G. T. Horowitz, J. E. Santos, "General Relativity and the Cuprates", [arXiv:1302.6586[hep-th]].

[13] Y. Ling, C. Niu, J. P. Wu, Z. Y. Xian, "Holographic Lattice in Einstein-Maxwell-Dilaton Gravity", JHEP 1311 (2013) 006, [arXiv:1309.4580[hep-th]].
[14] Y. Ling, C. Niu, J. P. Wu, Z. Y. Xian, and H. Zhang, "Holographic Fermionic Liquid with Lattices", JHEP 1307 (2013) 045, [arXiv:1304.2128 [hep-th]].

[15] A. Donos and S. A. Hartnoll, "Metal-insulator transition in holography", [arXiv:1212.2998 [hep-th]]; T. Andrade, B. Withers, "A simple holographic model of momentum relaxation", [arXiv:1311.5157 [hep-th]]; A. Donos, J. P. Gauntlett, "Novel metals and insulators from holography", [arXiv:1401.5077 [hep-th]]; B. Gouroux, "Charge transport in holography with momentum dissipation", [arXiv:1401.5436 [hep-th]]; S. Nakamura, H. Ooguri, and C.-S. Park, "Gravity Dual of Spatially Modulated Phase", Phys. Rev. D81 (2010) 044018, [arXiv:0911.0679 [hep-th]]; H. Ooguri and C.-S. Park, "Holographic End-Point of Spatially Modulated Phase Transition", Phys. Rev. D82 (2010) 126001, [arXiv:1007.3737 [hep-th]]; A. Donos, J. P. Gauntlett, "Holographic helical superconductors", JHEP 1112 (2011) 091, [arXiv:1109.3866 [hep-th]]; A. Donos, J. P. Gauntlett, "Black holes dual to helical current phases", Phys.Rev. D86 (2012) 064010, [arXiv:1204.1734 [hep-th]]; A. Donos and J. P. Gauntlett, "Holographic helical superconductors", JHEP 12 (2011) 091, [arXiv:1109.3866 [hep-th]]; A. Donos, J. P. Gauntlett, "Holographic charge density waves", Phys.Rev. D87 (2013) 12, 126008, [arXiv:1303.4398 [hep-th]]; N. Iizuka, A. Ishibashi, K. Maeda, "Persistent Superconductor Currents in Holographic Lattices", [arXiv:1312.6124 [hep-th]]; N. Iizuka, A. Ishibashi, K. Maeda, "Can a stationary Bianchi black brane have momentum along the direction with no translational symmetry?", [arXiv:1403.0752 [hep-th]].

[16] A. Donos, J. P. Gauntlett, "Holographic Q-lattice", JHEP 1404 (2014) 040, [arXiv:1311.3292 [hep-th]].

[17] A. Donos, J. P. Gauntlett, "Holographic striped phases", JHEP 1108 (2011) 140, [arXiv:1106.2004 [hep-th]]; M. Rozali, D. Smyth, E. Sorkin, J. B. Stang, "Striped Order in AdS/CFT", Phys.Rev. D87 (2013) 12, 126007, [arXiv:1304.3130 [hep-th]]; B. Withers, "The moduli space of striped black branes", [arXiv:1304.2011 [hep-th]]; A. Donos, "Striped phases from holography", JHEP 1305 (2013) 059, [arXiv:1303.7211 [hep-th]]; M. Rozali, D. Smyth, E. Sorkin, J. B. Stang, "Holographic Stripes", Phys.Rev.Lett. 110 (2013) 20, 201603, [arXiv:1211.5600 [hep-th]]; Y. Ling, C. Niu, J. P. Wu, Z. Y. Xian, and H. Zhang, "Metal-insulator Transition by Holographic Charge Density Waves", [arXiv:1404.0777 [hep-th]].

[18] O. Bergman, N. Jokela, G. Lifschytz, M. Lippert, "Striped instability of a holographic Fermi-like liquid", JHEP 10 (2011) 034, [arXiv:1106.3883 [hep-th]].
[19] N. Jokela, G. Lifschytz, M. Lippert, "Magnetic effects in a holographic Fermi-like liquid", JHEP 1205 (2012) 105, [arXiv:1204.3914 [hep-th]]; N. Jokela, M. Jarvinen, M. Lippert, "Fluctuations and instabilities of a holographic metal", JHEP 02 (2013) 007, [arXiv:1211.1381 [hep-th]].

[20] D. Vegh, "Holography without translational symmetry", [arXiv:1301.0537[hep-th]].

[21] H. van Dam and M. G. Veltman, "Massive and massless Yang-Mills and gravitational field", Nucl. Phys. B 22, 397 (1970).

[22] V. I. Zakharov, "Linearized gravitation theory and the graviton mass", JETP Lett. 12, 312 (1970), [Pisma Zh. Eksp. Teor. Fiz. 12, 447 (1970)].

[23] C. de Rham, G. Gabadadze, and A. J. Tolley, "Resummation of Massive Gravity", Phys. Rev. Lett. 106, 231101 (2011), [arXiv:1011.1232].

[24] K. Hinterbichler, "Theoretical Aspects of Massive Gravity," Rev. Mod. Phys. 84, 671 (2012), [arXiv:1105.3735 [hep-th]].

[25] D. v. d. Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone, A. Damascelli, H. Eisaki, M. Greven, P. H. Kes, and M. Li, "Quantum critical behaviour in a high-Tc superconductor," Nature 425 (Sept., 2003) 271-274, [arXiv:cond-mat/0309172]; D. van der Marel, F. Carbone, A. B. Kuzmenko, and E. Giannini, "Scaling properties of the optical conductivity of Bi-based cuprates", Annals of Physics 321 (July, 2006) 1716-1729, [arXiv:cond-mat/0604037].

[26] J. Hwang, T. Timusk, and G. D. Gu, "Doping dependent optical properties of $Bi_2Sr_2CaCu_2O_{8+\delta}$", Journal of Physics Condensed Matter 19 (Mar., 2007) 125208, [arXiv:cond-mat/0607653].

[27] R. A. Davison, "Momentum relaxation in holographic massive gravity", Phys. Rev. D 88, 086003 (2013), [arXiv:1306.5792[hep-th]].

[28] M. Blake and D. Tong, "Universal Resistivity from Holographic Massive Gravity", Phys. Rev. D 88, 106004 (2013), [arXiv:1308.4970[hep-th]].

[29] N. Iqbal and H. Liu, "Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm", Phys. Rev. D 79, 025023 (2009), [arXiv:0809.3808[hep-th]].

[30] M. Blake, D. Tong, and D. Vegh, "Holographic Lattices Give the Graviton a Mass," Phys. Rev. Lett. 112, 071602 (2014), [arXiv:1310.3832[hep-th]].

[31] R. A. Davison, K. Schalm and J. Zaanen, "Holographic duality and the resistivity of strange
metals", [arXiv:1311.2451[hep-th]].

[32] A. Lucas, S. Sachdev and K. Schalm, "Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder", [arXiv:1401.7993[hep-th]].