On the nature of halogen bonded complexes between carbonyl bases and chlorotrifluoromethane

Wiktor Zierkiewicz1 · Dariusz C. Bięko1 · Danuta Michalska1 · Thérèse Zeegers-Huyskens2

Received: 17 July 2015 / Accepted: 21 July 2015 / Published online: 9 August 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The structures and intermolecular interactions in the halogen bonded complexes of six carbonyl bases with chlorotrifluoromethane have been studied by ab initio MP2 and CCSD(T) as well as density functional methods: B3LYP, B3LYP-D3 and wB97XD. The CCSD(T)/aug-cc-pVTZ calculated interaction energies of these complexes range between −1.22 and −2.62 kcal mol⁻¹. The interaction energies are related to the ionization potential and proton affinity of the carbonyl bases. The intermolecular interaction results in a contraction of the C–Cl bond and an elongation of the C–F bonds accompanied by a relevant frequency shift of the corresponding stretching vibrations. The origin of the variation of the C–Cl and C–F bond lengths is discussed on the basis of an NBO analysis. It is suggested that the formation of these complexes can be considered as a two-step mechanism, involving the intermolecular charge transfer from the lone-pair orbitals on the oxygen atom to the antibonding σ*(C–Cl) orbital followed by a decrease of the intramolecular charge transfer from the lone-pair orbitals on the fluorine atoms to the antibonding σ*(C–Cl) orbital. A symmetry-adapted perturbation theory (SAPT) decomposition of the interaction energies has been performed.

Keywords Halogen bond · Carbonyl bases · DFT · MP2 · CCSD(T)

1 Introduction

Classical textbooks on molecular interactions mainly devoted to hydrogen bonds [1] and charge transfer complexes [2] have appeared in the years 1960–1970. It is only in the late 1990s that charge transfer complexes involving an X halogen atom in the ZX···Y system have been recalled halogen bonds. They involve an interaction of an electron-rich center Y with an electronegative halogen substituent in a ZX molecule. These bonds have been featured in an increasing numbers of areas. Their importance in the field of molecular recognition [3, 4] and crystal engineering [5] as well as in biological systems [6] also has been recognized. This wide range of applications has placed the halogen bonded interactions in a center of great attention, and many theoretical works have been focused on them [7–20].

In this work, we present the results of a theoretical investigation of the interaction between chlorotrifluoromethane (CCIF₃) and substituted carbonyl derivatives. Let us notice that the complexes between trifluoromethyl halides (CF₃X) and guest molecules have been the subject of several theoretical investigations, as for example the interaction between CCIF₃ and NH₃ [21, 22], H₂O [23, 24], H₂S [25], organic bases of different nature [26–29] or halide anions [30]. The influence of angular distortions on the energies of halogen bonds and hydrogen bonds has been recently discussed [31]. Very few experimental data on these interactions are available. The vibrational properties of trifluoromethyl halides complexed with dimethyl ether have been investigated by IR and Raman spectroscopies in liquid argon and in liquid krypton [32]. The halogen bond
formed between CClF3 and dimethyl ether has been studied by rotational spectroscopy [33].

Although halogen atoms carry partial negative charges, there is a positive electrostatic potential at the head of the lone pair in the opposite direction of this lone pair. This region is called a σ-hole which accounts for the ability of halogens to accept an interaction with electronic rich atoms [34–36]. A σ-hole has been predicted in the Cl atom of CClF3 [34].

It has been shown that the properties of the hydrogen-bonded systems such as the thermodynamic or spectroscopic properties are intimately related to the nature of the proton acceptor (N, O, S) [37], and the influence of the basicity/acidity on these properties has been discussed in several works. Much less data are available for halogen bonds. In the present work, we want to discuss the influence of the basicity on the complexes formed between CClF3 and simple carbonyl derivatives (H2CO, HFCO, F2CO, CH3CHO, CH3CFO, (CH3)2CO) where different substitutions allow to modulate the electron donor ability. With the exception of the H2CO···CClF3 complex [27, 28, 36], no theoretical data have been reported for these systems.

The present work is arranged as follows. In the first part, the structure of the complexes, the binding energies and the variation of the C–Cl and C–F bond lengths are discussed. The second part deals with the NBO (natural bond orbital) analysis, focusing mainly on the occupation of bonding and antibonding orbitals, the hybridization of the C atom and inter- and intramolecular stabilization energies. The results of SAPT calculations are presented as well. In the last part of our work, the frequency shifts of the ν(C–Cl) and ν(C–F) stretching vibrations induced by the interaction with ketones are discussed.

2 Computational methods

The optimized geometries, vibrational harmonic frequencies and infrared intensities have been calculated for the following six carbonyl bases: H2C=O; HFC=O; F2C=O; CH3HC=O; CH3FC=O and (CH3)2C=O. Then, full geometry optimization and the calculations of the vibrational properties have been performed for the complexes of these bases with CClF3. In the calculations, we employed an ab initio MP2 method [38] combined with the cc-pVTZ basis set [39], as well as the B3LYP [40, 41], B3LYP-D3 (which is B3LYP corrected with the original D3 damping function) [42] and wB97XD [43] hybrid density functionals combined with the 6-311++G(d,p) basis set [44, 45]. The counterpoise CP-corrected gradient optimization has been used in the MP2 calculations [46].

The interaction energies of the studied complexes have been determined at the MP2/aug-cc-pVTZ, CCSD(T)/aug-cc-pVTZ, B3LYP/6-311++G(d,p), B3LYP-D3/6-311++G(d,p) and wB97XD/6-311++G(d,p) levels of theory. In the calculations of the interaction energies by two ab initio methods [MP2 and CCSD(T)] coupled with the aug-cc-pVTZ basis set, we have used the geometry of the complexes optimized at the MP2/cc-pVTZ level. All the interaction energies were corrected for the basis set superposition error (BSSE) computed by the CP method [46].

For all the complexes, the symmetry-adapted perturbation theory (SAPT) decomposition of the interaction energies has been performed at the MP2/cc-pVTZ level of theory. All the computations were carried out with the Gaussian 09 [47] or MOLPRO 2012 [48] programs.

A natural bond orbital (NBO) analysis provides a detailed insight into the nature of electronic structure and bonding in the molecules. In this work, the atomic charges, hybridization, occupation of orbitals and the second-order interaction energies were calculated by the DFT method using the 5.0 version of the NBO program [49, 50]. The atoms in molecules (AIM) analysis [51] was used in order to characterize the intermolecular interactions between the carbonyl bases and chlorotrifluoromethane investigated in this work.

3 Results and discussion

3.1 Structures of the complexes and interaction energies

The structures of the interacting molecules optimized with the MP2 method are illustrated in Fig. 1. Intermolecular parameters (O···Cl distances, CO···Cl and CCl···O angles) are indicated in Table 1. In all the systems, the intermolecular O···Cl distances are all smaller than the sum of the van der Waals radii (3.27 Å).

At any level of theory, the O···Cl distance is the longest in the F2C=O complex; these distances in the CH3CHO and (CH3)2CO complexes are nearly equal, being slightly longer in the first system when considering the MP2, B3LYP and B3LYP-D3 calculations. As in the case of the complexes between molecular chlorine and the same carbonyl bases, the asymmetrical ketones show two different structures where the C–Cl bond coincides approximately with the direction of the lone-pair orbitals of the oxygen atom (O LPs) [52, 53]. The C–Cl···O bonds calculated at the B3LYP level are nearly linear and show larger departures from linearity when calculated at other levels. It follows from the H···Cl distances that there is no bond formation between the C–H group of the ketones and the Cl atom of CClF3. However, a weak interaction between the H and Cl atoms cannot be ruled out in the CH3CFO (b) and (CH3)2CO complexes.
According to the AIM theory, two atoms are bonded to each other if their nuclei are linked by a line of maximal electron density named the bond path. Figure 2 demonstrates the presence of a bond critical point (BCP) in the H₂CO···ClCF₃ complex. The electron density (ρ), the Laplacian of the electron density (∇²ρ) and the total electron energy (H) at the selected BCP in all the studied complexes are collected in Table 2.
complexes, the H···Cl distances are longer than the sum of the corresponding van der Waals radii by 0.29 and 0.20 Å, respectively.

When considering only the O···Cl interactions, we have found the following correlations between the B3LYP-D3 binding energies and the AMI parameters (ρ and $\nabla^2 \rho$):

$$\Delta E = 285.1 \rho - 0.27 \left(r^2 = 0.911 \right)$$

$$\Delta E = 2.66 \ln(\nabla^2 \rho) + 11.04 \left(r^2 = 0.931 \right)$$

The interaction energies calculated at different levels are reported in Table 3. The values of the energies calculated with the wB97XD and B3LYP methods are lower than the ones calculated by the other methods. The values obtained at the B3LYP-D3, MP2 and CCSD(T) levels of theory are similar. Let us notice that the interaction energy for the H$_2$CO···ClCF$_3$ system calculated in Ref. [29] at the MP2(full)/6-311++G(3df, 3pd) level is equal to -1.90 kcal mol$^{-1}$, which is by 0.3 kcal mol$^{-1}$ lower than our B3LYP-D3 calculated value.

At each level of theory, larger intermolecular O···Cl distances result in lower interaction energies, and in the further discussion, we will consider the B3LYP-D3 interaction energies.

As indicated in Table 3, the electron-releasing CH$_3$ group strengthens the interaction and the electron-attracting substituents weaken the interaction. This prompted us to compare the interaction energies with the basic properties of the ketones. The proton affinities (PA) calculated at the B3LYP-D3/6-311G(d,p) level as well as the calculated and experimental ionization potentials (IP) of the ketones [56–61] are reported in Table 4.

From the B3LYP-D3 energies, we have calculated the following correlations:

$$\Delta E \left(\text{kcal mol}^{-1} \right) = -0.470 \text{IP (eV)} + 7.325 \left(r^2 = 0.982 \right)$$

$$\Delta E \left(\text{kcal mol}^{-1} \right) = -0.034 \text{PA (kcal mol}^{-1} \right)$$

$$-3.992 \left(r^2 = 0.950 \right)$$

The correlation 3 is illustrated in Fig. 3. The slopes of these two correlations are much lower than those recently reported for the stronger complexes between the same carbonyl bases and molecular chlorine (−0.76 and 0.055, respectively) [52].

Comparison with the literature values is difficult. The reported interaction energy in the NH$_3$···ClCF$_3$ system is equal to -2.37 kcal mol$^{-1}$ (MP2/aug-cc-pVDZ) [21, 22]. The PA of NH$_3$ is 204 kcal mol$^{-1}$, about the same as that

Fig. 2 Contour line diagram of the Laplacian of the electron density of the H$_2$CO···ClCF$_3$ complex (in the plane passing through the O, Cl and C atoms marked on the figure). The solid (blue) lines represent negative values of the Laplacian, while the dashed (red) lines represent the positive values. The electron density description was obtained at the MP2/cc-pVTZ level.

Table 2 Bond critical points (BCP) properties: electron density ρ, Laplacian of electron density $\nabla^2 \rho$ (both in atomic units) and total electron energy (H, kcal mol$^{-1}$).

System	Interaction	P	$\nabla^2 \rho$	H
H$_2$CO···ClCF$_3$	O···Cl	0.0088	0.0358	1.079
HFCO···ClCF$_3$ (a)	O···Cl	0.0064	0.0274	0.953
HFCO···ClCF$_3$ (b)	O···Cl	0.0062	0.0276	0.987
ClCHO···ClCF$_3$	O···Cl	0.0055	0.0258	0.980
CH$_3$CHO···ClCF$_3$ (a)	O···Cl	0.0095	0.0386	1.158
CH$_3$CHO···ClCF$_3$ (b)	O···Cl	0.0083	0.0346	1.106
CH$_3$CO···ClCF$_3$ (a)	O···Cl	0.0069	0.0300	1.044
CH$_3$CO···ClCF$_3$ (b)	O···Cl	0.0073	0.0310	1.045
(CH$_3$)$_2$CO···ClCF$_3$	O···Cl	0.0101	0.0429	1.324
(CH$_3$)$_2$CO···ClCF$_3$	H···Cl	0.0037	0.0137	0.518

The electron density descriptions were obtained at the MP2/cc-pVTZ level.
of (CH₃)₂CO, 203.5 kcal mol⁻¹ (see Table 4), and the ΔE of the (CH₃)₂CO···ClCF₃ complex (calculated at the MP2/aug-cc-pVTZ level of theory) is −2.63 kcal mol⁻¹, as shown in Table 3. The interaction energy in the H₂O···ClCF₃ system is equal to −1.46 kcal mol⁻¹ (MP2/cc-pVTZ) [26] or −1.76 kcal mol⁻¹ [MP2/6-311++G(d,p)] [24], the PA of H₂O being equal to 166.5 kcal mol⁻¹. In the H₂CO···ClCF₃ complex, the interaction energy is larger (−2.07 kcal mol⁻¹), and this is consistent with the fact that the value of the PA of H₂CO (177.5 kcal mol⁻¹, Table 4) is larger than that of H₂O by 11 kcal mol⁻¹.

As outlined in several works [21, 24, 25, 28] when CCl₃ interacts with electron donors of medium strength such as NH₃, H₂O or H₂S, the C–Cl bond is contracted by moderate amounts. In the F₂Cl···NH₃ system, the C–Cl bond is contracted by 6.6 mÅ [24] or 6.3 mÅ [21]. In the F₃Cl···OH⁻ system, the C–Cl bond is contracted by 7 mÅ [24], and in the weaker F₂Cl···SH₂ complex, the C–Cl bond is contracted by only 2.9 mÅ [25].

The values of the C–Cl bond contraction for the present systems are reported in Table 5 which also indicates the elongation of the three CF bonds. These results show that the contraction of the C–Cl bond is moderate, ranging from 4.7 mÅ in F₂CO to 9.4 mÅ in (CH₃)₂CO. As in general, bond contractions are connected with blue shifts of the corresponding stretching frequency, the present complexes can be categorized as blue-shifting complexes. Further, the elongation of the C–F bonds is comprised between 1.6 and 5.1 mÅ and is also the largest in the complexed (CH₃)₂CO system.
Table 5 Variation of the C–Cl and C–F distances (mÅ) in the complexes between CClF₃ and carbonyl derivatives

System	Δr (C–Cl)ᵃ	Δr (C–F)ᵇ
H₂CO–CClF₃	−7.0⁻	+1.8, +2.8, +2.8
HFCO–CClF₃ (a)	−5.1	+2.9, +2.4, +1.6
HFCO–CClF₃ (b)	−6.3	+2.6, +2.6, +2.7
F₂CO–CClF₃	−4.7	+1.9, +1.9, +2.1
CH₃CHO–CClF₃ (a)	−8.2	+3.8, +3.8, +4.8
CH₃CHO–CClF₃ (b)	−8.2	+3.1, +4.1, +4.1
CH₃CFO–CClF₃ (a)	−7.0	+3.4, +3.4, +3.4
CH₃CFO–CClF₃ (b)	−6.5	+2.7, +2.2, +3.9
(CH₃)₂CO–CClF₃	−9.4	+4.0, +5.1, +4.6

ᵃ r(C–Cl) in isolated CClF₃ = 1.7730 Å. ᵇ r(C–F) in isolated CClF₃ = 1.3328 Å. ᶜ Contraction of the C–Cl bond reported in Ref. [28] = 6 mÅ

3.2 NBO analysis

In this section, we want to discuss the results of a NBO analysis, focusing mainly on the NBO charges, the occupation of bonding and antibonding orbitals, the hybridization of the C atom along with the second-order inter- and intramolecular stabilization energies.

Let us remember that halogen bonds have been compared to hydrogen bonds and have been shown to be similar in many aspects [63–67]. Briefly summarizing, let us mention that the contraction of a Z–H bond in a hydrogen-bonded system ZH···Y has been explained mainly by a variation of the σ*(C–H) occupation and a change in the hybridization of the Z(H) atom [68–74]. These parameters can also be discussed for the blue-shifting halogen bonds. The results of our NBO analysis for the present systems are presented in Tables 6, 7 and 8.

The variation of the NBO charges on the C and Cl atoms of CClF₃ induced by the interaction with the ketones is indicated in Table 6. This table also reports the variation of hybridization of the C atom in the C(Cl) and C(F) bonds along with the global charge transfer (CT) occurring from the ketones to CClF₃. Table 7 reports the second-order stabilization energies $E^{(2)} \rightarrow \sigma^*(C–Cl)$, the occupation of the $\sigma^*(C–Cl)$ antibonding and $\sigma(C–Cl)$ bonding orbitals. In Table 8, the intramolecular charge transfer energies from the lone-pair orbitals (LPs) of the three F atoms to the

Table 6 NBO charges (e) on the C, Cl and F atoms, % s-character of the C(Cl) and C(F) atoms in isolated and complexed CClF₃ and charge transfer (CT, me)

	q (C)	q (Cl)	%s C(Cl)	q (F)ᵇ	%s C(F)ᵃ
CClF₃	1.0060	−0.0037	26.16ᵇ	−0.3341	24.63
H₂CO–CClF₃	0.9949	0.0200	26.86ᵇ	−0.3407 (+6.6)	24.38 (−0.25)
CT = 4.2 meᵃ	(+11.1)	(−23.37)	(+0.70)	−0.3392 (+5.1)	24.43 (−0.20)
HFCO–CClF₃ (a)	0.9887	0.0131	26.60	−0.3386 (+4.5)	24.46 (−0.17)
CT = 1.3 me	(+7.3)	(−16.8)	(+0.44)	−0.3377 (+3.6)	24.49 (−0.14)
HFCO–CClF₃ (b)	0.9776	0.0158	26.67	−0.3367 (+2.6)	24.53 (−0.10)
CT = 1.10 me	(+8.4)	(−18.8)	(+0.53)	−0.3383 (+4.2)	24.48 (−0.15)
F₂CO–CClF₃	0.9998	0.0108	26.53	−0.3370 (+2.9)	24.52 (−0.11)
CT = 0.5 me	(+6.2)	(−14.5)	(+0.37)	−0.3370 (+2.9)	24.52 (−0.11)
CH₃CHO–CClF₃ (a)	0.9927	0.0251	26.99	−0.3404 (+6.3)	24.39 (−0.24)
CT = 4.9 me	(+13.3)	(−28.8)	(+0.83)	−0.3404 (+6.3)	24.38 (−0.25)
CH₃CHO–CClF₃ (b)	0.9931	0.0246	26.96	−0.3418 (+7.7)	24.34 (−0.29)
CT = 3.9 me	(+12.9)	(−28.3)	(+0.80)	−0.3406 (+6.5)	24.38 (−0.20)
CH₃CFO–CClF₃ (a)	0.9952	0.0209	26.82	−0.3394 (+5.3)	24.42 (−0.19)
CT = 2.1 me	(+10.8)	(−24.6)	(+0.66)	−0.3406 (+6.5)	24.38 (−0.20)
CH₃CFO–CClF₃ (b)	0.9966	0.0182	26.73	−0.3385 (+4.4)	24.46 (−0.17)
CT = 1.3 me	(+9.4)	(−21.9)	(+0.57)	−0.3376 (+3.5)	24.49 (−0.14)
(CH₃)₂CO–CClF₃	0.9891	0.0279	27.08	−0.3397 (+5.6)	24.36 (−0.27)
CT = 4.8 me	(+16.9)	(−31.6)	(+0.92)	−0.3414 (+7.3)	24.29 (−0.34)
				−0.3406 (+6.5)	24.33 (−0.30)

The numbers in parentheses indicate the variation of the charges (in me) induced by the interaction
ᵃ CT = 4.8 me (Ref. [28]). b s-character in isolated F₂CCl = 26.62 % and in H₂CO–CClF₃ = 27.27 % (Ref. [28]), giving an increase equal to 0.65 %
(s) a CT from the LPs of the O atom to the Rydberg orbitals of Cl is smaller (between 0.07 and 0.18 kcal mol\(^{-1}\)).

In a first step, we will discuss the origin of the variation of the C–Cl and C–F bond lengths. The interaction with ketones results in an increased polarization of the C–Cl bond. The variations of the charges on the C and Cl atoms are +6.2 and −14.5 me for the weakest F\(_2\)CO complex. The largest changes of the charges on the C atom (+16.9 me) and on the Cl atom (−31.6 me) are predicted for the (CH\(_3\))\(_2\)CO···ClCF\(_3\) system. For this system, the CT to the three F atoms is also the largest (19 me). Let us notice that for CClF\(_3\) complexed with stronger electron donors such as Br\(^-\), the CT is equal to 15.4 me [24].

As indicated in Table 7, the second-order stabilization energies \(E^2 \rightarrow \sigma^*(\text{C–Cl})\) increase from F\(_2\)CO (0.3 kcal mol\(^{-1}\)) to CH\(_3\)CHO (1.24 kcal mol\(^{-1}\)). Despite this charge transfer, the occupation of the \(\sigma^*(\text{C–Cl})\) orbital decreases, its decrease being slightly larger for the (CH\(_3\))\(_2\)CO···ClCF\(_3\) system (12.7 me) than for the F\(_2\)CO one (11.4 me). Our calculations also predict a small decrease of the \(\sigma^*(\text{C–Cl})\) occupation between 0.7 and 1.1 me. Further, as indicated in Table 6, the interaction results in an increase of the s-character of the C(Cl) atom, smaller for the weaker complexes (F\(_2\)CO = 0.37 %) than for the stronger ones ([CH\(_3\)]\(_2\)CO = 0.92 %). It must be pointed out that a variation of hybridization of the C(Cl) atom of CClF\(_3\) is a known effect which has already been predicted for CClF\(_3\) complexed with molecules such as NH\(_3\) [24], H\(_2\)O and H\(_2\)S [25].

Both the increase of the s-character of the C(Cl) atom and the decrease of the \(\sigma^*(\text{C–Cl})\) occupation contribute to the contraction of the C–Cl bond. The variation of the \(\sigma^*(\text{C–Cl})\) occupation is very small, but it has been considered in our calculations. From the present results, we have deduced the following dual expression (\(\Delta r(\text{C–Cl})\) in mÅ, \(\Delta \sigma^*(\text{C–Cl})\) in me):

\[
\Delta r(\text{C–Cl}) = -8.07 [\Delta \% s \ C(Cl)] \\
+ 0.16 [\Delta \sigma^*(\text{C–Cl}) + \Delta \sigma(\text{C–Cl})]
\] (5)

\(\sigma^*(\text{C–Cl})\) orbitals and the variation of the occupation of the \(\sigma^*(\text{C–F})\) orbitals are indicated.

The results of Table 6 show that the charge transfer from the ketone to CClF\(_3\) is rather low, ranging from 0.5 me (F\(_2\)CO) to 4.9 me (CH\(_3\)CHO). Let us notice that for the systems involving H\(_2\)CO, F\(_2\)CO and HFCO, there is also a CT from the LPs of the O atom to the Rydberg orbitals of the Cl atom. The corresponding second-order stabilization energies are comprised between 0.39 kcal mol\(^{-1}\) (F\(_2\)CO) and 0.44 kcal mol\(^{-1}\) (H\(_2\)CO). It must be mentioned that these values are of the same order of magnitude as the \(E^2\) (LPO \(\rightarrow\) \(\sigma^*(\text{C–Cl})\)) stabilization energies which range between 0.3 and 0.58 kcal mol\(^{-1}\) (Table 7). This effect is rather unusual and illustrates the electrophilic feature of the halogen. For the other systems, the charge transfer energy to the Rydberg orbitals of Cl is smaller (between 0.07 and 0.18 kcal mol\(^{-1}\)).

Table 8 Second-order stabilization energies \(E^2 \rightarrow \sigma^*(\text{C–Cl})\) (kcal mol\(^{-1}\)) and \(\sigma^*(\text{CF})\) occupation (\(e\)) and variation in parentheses (me)

System	\(E^2\) \(\rightarrow \sigma^*(\text{C–Cl})\)	\(\sigma^*(\text{C–F})\)
CClF\(_3\)	37.11	0.1121
H\(_2\)CO···ClCF\(_3\)	35.50 (−1.51)	0.1139 (1.8, 0.1133 (1.2))
HFCO···ClCF\(_3\) (a)	35.97 (−1.14)	0.1134 (1.3, 0.1131 (1.0), 0.1127 (0.6))
HFCO···ClCF\(_3\) (b)	35.88 (−1.23)	0.1133 (1.2, 0.1133 (1.2), 0.1134 (1.3))
F\(_2\)CO···ClCF\(_3\)	36.18 (−0.93)	0.1129 (0.8, 0.1129 (0.8), 0.1130 (0.9))
CH\(_3\)CHO···ClCF\(_3\) (a)	35.10 (−2.01)	0.1136 (1.5, 0.1136 (1.5), 0.1142 (2.1))
CH\(_3\)CHO···ClCF\(_3\) (b)	35.26 (−1.85)	0.1134 (1.3, 0.1138 (1.7), 0.1142 (2.1))
CH\(_3\)CFO···ClCF\(_3\) (a)	36.64 (−1.47)	0.1136 (1.5, 0.1136 (1.5), 0.1137 (1.6))
CH\(_3\)CFO···ClCF\(_3\) (b)	35.66 (−1.45)	0.1133 (1.2, 0.1129 (0.8), 0.1139 (1.8))
(CH\(_3\))\(_2\)CO···ClCF\(_3\)	35.29 (−1.82)	0.1136 (1.5, 0.1142 (2.1), 0.1138 (1.7))
which illustrates the predominance of the hybridization effect over the σ^*\,(C–Cl) and σ\,(C–Cl) occupations. The values of Δr\,(C–Cl) calculated by Eq. (5) and by the B3LYP method are compared in Fig. 4 ($r^2 = 0.971$).

In order to test the validity of this equation, we have calculated the Δr\,(C–Cl) value for the F$_2$CCl···Br$^-$ system from the parameters reported in Ref. [24]. This complex is strong, the interaction energy calculated by MP2(full)/6-311++G(d,p) being -7.27 kcal mol$^{-1}$. The parameters of Eq. (5) are: $\Delta \%s$\,(C–Cl) $= +2.68$, $\Delta \sigma^*$\,(C–Cl) $= -4.1$ me, $\Delta \sigma$\,(C–Cl) $= +1.2$ me. Note that in contrast to the present systems, there is an increase of the σ\,(C–Cl) occupation. From these parameters, a Δr\,(C–Cl) value of -22.5 mÅ has been calculated from Eq. (5) which is very close to the value of -22.1 mÅ predicted by MP2 calculation in Ref. [24].

In a similar way, the elongation of the C–F bond can be evaluated from the same parameters, the variation of the occupation of the σ\,(C–F) orbitals being negligible:

$$\Delta r$$\,(C–F) $= -14.14 \left[\Delta \%s$$ C(F) \right] + 0.24 \Delta \sigma^*$\,(C–F)

(6)

Our calculations predict an increase of the polarity of the C–Cl bond along with an increase of the s-character of the C(Cl) atom. These results are in agreement with the Bent’s rule. Let us briefly remember that the Bent’s rule states that atoms maximize their s-character in hybrid orbitals aimed toward electropositive substituents and the atoms maximize their p-character toward electronegative substituents. This rule has been discussed in detail for systems involving CClF$_3$ complexed with Lewis acids and Lewis bases [28]. Let us notice that in the present systems, an increase of the s-character is also reflected in the variation of the intramolecular angle in CClF$_3$. Indeed, in isolated CClF$_3$, the CClF and FCF angles are equal to 110.3° and 108.6°; in the complex with (CH$_3$)$_2$CO, these angles take values of 110.8° and 108.1°.

For the present systems, the correlation between the charges on the Cl atom and the $\%$ s-character in C orbital of the C–Cl bond can be written as:

$$q(Cl) (\text{me}) = 0.035 [\%s C(Cl)] - 0.908 \left(r^2 = 0.989 \right)

(7)

Interestingly, for CClF$_3$ complexed with stronger electron donors (OH$^-$, Cl$^-$), we have found a very similar correlation1 from the data reported in Ref. [28].

Let us now discuss more in detail the changes occurring in the C–F bonds of CClF$_3$. The interaction with ketones results in a decrease of the s-character in C orbital of the C–F bond (in order to preserve the total s-character of the C atom). Further, as indicated in Table 6, the interaction with ketones results in an increase of the charges on the external F atoms. The sum of these charges increases is larger than the variation of charges on the C atoms, being, for example, 8.9 me for the F$_2$CO system and 19.4 me for the (CH$_3$)$_2$CO system. These variations can be explained by the fact that in isolated CClF$_3$ there is a strong intramolecular delocalization, taking place from one of the LP of the F atoms to the σ^*\,(C–Cl) orbital. For each of the F atoms, this delocalization is equal to 12.37 kcal mol$^{-1}$, giving a sum of 37.11 kcal mol$^{-1}$ in the isolated molecule. Complex formation results in a decrease of this delocalization, in the range between 0.93 kcal mol$^{-1}$ (F$_2$CO) and 2.01 kcal mol$^{-1}$ (CH$_3$CHO). It must be also mentioned that in isolated CClF$_3$, there are other intramolecular delocalizations which are not very sensitive to complex formation. This is the case of the energy of the LPF$_1 \rightarrow \sigma^*$\,(CF$_2$) delocalization equal to 30.30 kcal mol$^{-1}$ in the isolated molecule and decreasing by only 0.39 kcal mol$^{-1}$ in the CH$_3$CHO complex. Further, the weak delocalization from σ(C–Cl) to σ^*\,(C–Cl) decreases by ca 0.15 kcal mol$^{-1}$ by complex formation. These delocalizations will no more be considered hereafter.

Let us mention that a nice effect of electron transfer from the LPs of the halogen atoms to the remote part of the complex has been predicted in the H$_2$N–CCl$_3$ system characterized by the N–CICCl$_4$ interaction. In this system, the three LPs of the bonded Cl atom are delocalized to the three external C–Cl bonds, resulting in an increase of the σ^*\,(C–Cl) occupation in these three external bonds and a contraction of the C–Cl bond involved in the interaction [64].

1 The correlation computed from the data of Ref. [28] can be written q \,(Cl)$ (\text{me}) = 0.032 [\% s-character C] - 0.0926 \left(r^2 = 0.993 \right).
It follows from these considerations that the formation of the present complexes can be considered as originating from a two-step mechanism: the intermolecular charge transfer from the LPsO to \(\sigma^*(C-Cl)\) followed by a decrease of the intramolecular charge transfer from LPF to \(\sigma^*(C-Cl)\). Both effects are connected as illustrated by the following correlation:

$$
E^2(\text{LPsO} \rightarrow \sigma^*(C-Cl)) = -0.82 \Delta E^2(\text{LP F} \rightarrow \sigma^*(C-Cl)) - 0.45 \quad (r^2 = 0.954) \quad (8)
$$

showing the predominance of the intramolecular effect over the intermolecular one. Figure 5 illustrates selected orbitals involved in the above-mentioned two-step mechanism. It must be mentioned that a similar effect has been demonstrated for the CHF\(_3\) molecule hydrogen-bonded to proton acceptor of medium strength \([75]\). In the isolated CHF\(_3\) molecule, the intramolecular hyperconjugation energy occurring from the three F atoms to the \(\sigma^*(C-H)\) bond is equal to 26.40 kcal mol\(^{-1}\). This value is similar to the hyperconjugation energy from the three F atoms to \(\sigma^*(C-Cl)\) deduced in the present work for isolated CClF\(_3\). In the F\(_3\)CH···OH\(_2\) complex, this hyperconjugation energy decreases by 3.8 kcal mol\(^{-1}\) and predominates over the intermolecular effect. As a consequence, the C–H bond is contracted by a small amount. It should be noted that the interaction between CHF\(_3\) and stronger proton acceptors such as F\(^-\) or Cl\(^-\) results in a net increase of the \(\sigma^*(C-H)\) occupation, a decrease of the \(\sigma^*(C-F)\) occupation and an elongation of the C–H bond. This is in strong contrast to the halogen bonds, the interaction between CClF\(_3\) and Br\(^-\) or OH\(^-\) resulting in a contraction of the C–Cl bond, as previously mentioned.

As for CClF\(_3\), CBrF\(_3\), CBrCl\(_3\) complexed with F\(^-\), Cl\(^-\) and Br\(^-\) \([30]\), in the present systems there is also a correlation between the binding energies and the second-order interaction energies \(E^2 \text{LPsO} \rightarrow \sigma^*(C-Cl)\). The best fit is found for the following logarithmic equation:
and complexed CClF₃ energies were proposed in Ref. [30] for the –

Table 10 ν(C–Cl) and ν(C–F) frequencies (cm⁻¹) in isolated and complexed CClF₃

	Isolated	F₃C=O	HFC=O (a)	HFC=O (b)
ν(C–Cl) (A₁)	1073.5	1077.8 (+4.3)	1079.6 (+6.3)	1081.1 (+6.6)
ν(C–F) (E)	1181.3	1173.5 (–7.8)	1170.9 (–10.4)	1170.9 (–10.4)
CH₃CFO (a)	CH₃CFO (b)	H₂CO	CH₃CHO (a)	
ν(C–Cl) (A₁)	1080.7 (+7.2)	1079.8 (+6.3)	1081.1 (+7.6)	1082.2 (+8.7)
ν(C–F) (E)	1167.9 (–13.4)	1168.1 (–13.2)	1166.7 (–14.6)	1163.9 (–13.4)
CH₃CHO (b)	CH₄COCH₃			
ν(C–Cl) (A₁)	1081.7 (+8.2)	1083.0 (+9.5)		
ν(C–F) (E)	1163.9 (–17.4)	1162.0 (–19.3)		
ν(C–Cl)	1167.8 (–13.5)	1165.0 (–15.1)		

\[
\Delta E = 0.985 \ln \left(E^2 \mathrm{LPsO} \rightarrow \sigma \right) + 2.27 \left(r^2 = 0.941 \right)
\]

(9)

It should be mentioned that a unique correlation between

the \(\Delta E \) and \(E^2 \) values was proposed in Ref. [30] for the
different systems. The lower correlation coefficient of
0.819 probably results from the fact that each system is
characterized by another correlation depending on the spe-
cific features of the halomethanes. This shows the advan-
tage to consider closely related systems.

3.3 SAPT decomposition of the energies

To evaluate the physically meaningful components of the
interaction energy in the complexes studied, a SAPT analy-
ysis has been performed at the MP2/cc-pVTZ level of theory.
The results are collected in Table 9. The SAPT interaction
ergies vary between \(-1.13 \) and \(-2.32 \) kcal mol⁻¹ for the
complexes investigated. As follows from these results, the
electrostatic term \(E(\text{elec}) \) is the dominant attraction compo-
nent representing about 60 % of the total attraction forces.
With regard to the induction \(E(\text{ind}) \) and dispersion \(E(\text{disp}) \)
components, they account for about 10 and 30 % of the
total attraction forces, respectively. The value of the repul-
sive exchange energy \(E(\text{exch}) \) is lower than the absolute
value of the electrostatic term \(E(\text{elec}) \). Similar results have
been found for the halogen bonded complexes between car-
bonyl bases and molecular chlorine calculated at the same
level of theory [52].

3.4 Frequencies of the ν(C–Cl) and ν(C–F) vibrations

The calculated frequencies of the ν(C–Cl) and ν(C–F)
vibrations in isolated and complexed CClF₃ are indicated
in Table 10. For isolated CClF₃ the ν(C–Cl) stretching

vibration is predicted at 1073.5 cm⁻¹ in good agreement
with the value reported in Ref. [30]. The ν(C–F) vibration
is predicted at 1181.3 cm⁻¹. These values are in good agree-
ment with the respective values of 1099.4 and 1208.0 cm⁻¹
observed in liquid argon at 89 K [19]. The interaction with
ketones results in an increase of the ν(C–Cl) frequency
from 4.3 cm⁻¹ (F₂CO) to 9.5 cm⁻¹ [(CH₃)₂CO]. The degener-
eate ν(C–F) vibrations are split into two components, and
their frequencies decrease from 7.8 to 19.3 cm⁻¹.

As demonstrated in numerous hydrogen-bonded sys-
tems, the interaction energies and the frequency shifts of
the stretching vibration of the bond involved in the inter-
action are linearly related. This correlation was originally
referred as the Badger–Bauer correlation [76, 77].

For the present systems, there is only a very crude cor-
relation between the interaction energies and the frequency
shifts:

\[
\Delta E = 0.333 \Delta \nu(\text{C–Cl}) – 0.40 \left(r^2 = 0.862 \right)
\]

(10)

This can be accounted for by the fact that the interaction
energies are extended to the whole \(F₃C=Cl \) molecule and that
the ν(C–Cl) stretching vibration is a more localized mode.

4 Conclusions

In this work, the halogen bonded complexes of six car-
bonyl bases: H₂C=O; HFC=O; F₃C=O; CH₃HC=O; CH₃FC=O; (CH₃)₂C=O with chlorotrifluoromethane
have been studied using ab initio MP2 and CCSD(T) as
well as density functional theory (B3LYP, B3LYP-D3 and
wB97XD) methods. The most important conclusions are the
following:

1. In these complexes, the intermolecular O···Cl distances
are all smaller than the sum of the van der Waals radii.
2. The interaction energies calculated at the CCSD(T)/aug-cc-pVTZ level vary between -1.22 and -2.62 kcal mol$^{-1}$. The largest $\Delta E_{\text{CCSD(T)}}$ is predicted for the (CH$_3$)$_2$CO···ClCF$_3$ system, while the smallest interaction energy has been obtained for the F$_2$CO···ClCF$_3$ complex.

3. The B3LYP-D3 calculated interaction energies are linearly related to the ionization potential and the proton affinity of the carbonyl bases.

4. The interaction results in a contraction of the C–Cl bond and an elongation of the C–F bond. The variation of the bond lengths is accompanied by a blueshift of the C–Cl stretching vibration and a redshift of the C–F stretching vibration.

5. The NBO analysis shows that the increase of the s-character of the C(Cl) atom largely predominates over the decrease of the $\sigma^*(C–Cl)$ occupation in determining the contraction of the C–Cl bond.

6. The elongation of the C–F bonds is explained by a decrease of intramolecular delocalization from one of the lone-pair orbital (LP) of the F atoms to the $\sigma^*(C–Cl)$ orbital.

7. It is suggested that the formation of these complexes originates from a two-step mechanism: the intermolecular charge transfer from the lone-pair orbitals of the O atom (LP$_{SO}$) to the $\sigma^*(C–Cl)$ antibonding orbital followed by a decrease of the intramolecular charge transfer from the LP on the fluoride atom to the $\sigma^*(C–Cl)$ orbital.

8. The SAPT results for these complexes show that the dispersion and electrostatic contributions cover about 90% of the total attraction forces. The exchange energy $E(\text{exch})$ is lower than the absolute value of the electrostatic term $E(\text{elec})$. Similar results were found in the case of the carbonyl bases complexed with molecular chlorine [38].

Acknowledgments This work was financed in part by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wroclaw University of Technology. A generous computer time from the Poznan Supercomputer and Networking Center as well as from the Poznan Supercomputer and Networking Center is acknowledged. Th. Z. H thanks the University of Leuven for computer facilities.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Pimentel GC, McClellan AL (1960) The hydrogen bond. W.H. Freeman Co., San Francisco, London

2. Mulliken RS, Person WB (1969) Molecular complexes. A lecture and reprint volume. Wiley-Interscience. Wiley, New York

3. Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7:2511–2519

4. Chu QL, Wang ZM, Huang QC, Yan CH, Zhu SZ (2001) Fluorine-containing donor-acceptor complexes: infinite chains formed by oxygen–iodine interactions. J Am Chem Soc 123:11069–11070

5. Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) Halogen bonding: a new interaction for liquid crystal formation. J Am Chem Soc 126:16–17

6. Wang W, Zhang Y, Ji B, Tian A (2011) On the correlation between bond-length change and vibrational frequency shift in halogen-bonded complexes. J Chem Phys 134:224303

7. Riley KE, Merz KM (2007) Insights into the strength and origin of halogen bonding: the halobenzene–formaldehyde dimer. J Phys Chem A 111:1688–1694

8. Amezaga NJM, Pamies SC, Peruchena NN, Sosa GL (2010) Halogen bonding: a study based on the electronic charge density. J Phys Chem A 114:552–562

9. Donald KJ, Wittmaack BK, Crigger C (2010) Tuning σ-holes: charge redistribution in the heavy (group 14) analogues of simple and mixed halomethanes can impose strong propensities for halogen bonding. J Phys Chem A 114:7213–7222

10. Wang W (2011) Halogen bonding involving hypervalent halogen: CSD search and theoretical study. J Phys Chem A 115:9294–9299

11. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

12. Zhang X, Zeng Y, Li X, Meng L, Zheng S (2011) A computational study on the nature of the halogen bond between sulfides and dihalogen molecules. Struct Chem 22:567–576

13. Hill JG, Legon A (2015) On the directionality and non-linearity of halogen and hydrogen bonds. J Phys Chem A 118:1588–1597

14. Otero-de-la-Roza A, Johnson ER, DiLabio GA (2014) Halogen bonding from dispersion-corrected density-functional theory: the role of delocalization error. J Chem Theor Comput 10:5436–5447

15. Azofra LM, Scheiner S (2014) Substituent effects in the noncovalent bonding of SO$_2$ to molecules containing a carbonyl group. The dominating role of the chalcogen bond. J Phys Chem A 21:3835–3845

16. Kozuch S, Martin JML (2013) Halogen bonds: benchmarks and theoretical analysis. J Chem Theory Comput 9:1918–1931

17. Alkorta I, Elguero J (2014) Characterizing traditional and chlorine-shared halogen bonds in complexes of phosphine derivatives with ClF and Cl$_2$. J Phys Chem A 118(23):4222–4231

18. Scheiner S (2015) The interplay between charge transfer, rehybridization, and atomic charges in the internal geometry of subunit pairs in noncovalent interactions. Int J Quant Chem 115:28–33

19. Stone AJ (2013) Are halogen bonded structures electrostatically driven? J Am Chem Soc 135:7005–7009

20. Sutrakhar D, Chandra AK, Zeegers-Huyskens Th (2014) A theoretical investigation of the interaction between fluorinated dimethyl ethers and molecular chlorine. Mol Phys 112:2791–2801

21. Zou J-W, Jiang Y-J, Guo M, Hu G-X, Zhang B, Liu H-C, Yu Q-S (2005) Ab initio study of the complexes of halogen-containing molecules RX (X=Cl, Br, and I) and NH$_3$: towards understanding the nature of halogen bonding and the electron-accepting propensities of covalently bonded halogen atoms. Chem Eur J 11:740–751

22. Jahromi WJ, Eskandari K (2013) Halogen bonding: a theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules. Struct Chem 24:1281–1287

23. Wang W, Wang N-B, Zheng W, Tian A (2004) Theoretical study on the blueshifting halogen bond. J Phys Chem A 108:1799–1805
24. Wang W, Hobza P (2008) Origin of the X–Hal (Hal=Cl, Br) bond-length change in the halogen-bonded complexes. J Phys Chem A 112:4114–4119
25. Zhao Q, Deng F, Hao J, Cai Z (2010) Chemical origin of contracted C–Cl bonds in the halogen-bonded complexes. J Mol Struct (THEOCHEM) 958:71–75
26. Tawfik M, Donald K (2014) Halogen bonding: unifying perspectives on organic and inorganic cases. J Phys Chem A 118:10090–10100
27. Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845
28. Grabowski SJ (2011) Halogen bond and its counterparts: Bent’s rule explains the formation of nonbonding interactions. J Phys Chem A 115:12340–12347
29. Grabowski SJ (2013) Non-covalent interactions—QTAIM and NBO analysis. J Mol Model 19:4713–4721
30. Zhang Y, Li A-Y, Cao L-J (2012) Electronic properties of the halogen bonds Z ···CX–Y between halide anions and methyl halides. Struct Chem 23:627–636
31. Scheiner S (2013) Detailed comparison of the pnictogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quant Chem 113:1609–1620
32. Hauchecorne D, Szostak R, Herrebout WA, van der Veen B (2009) C–X···O halogen bonding: interactions of trifluoromethyl halides with dimethyl ether. J Chem Phys 10:2105–2115
33. Evangelisti L, Feng G, Gou Q, Grabov J-U, Caminati W (2014) Halogen bond and free internal rotation: the microwave spectrum of CF3Cl–dimethyl ether. J Phys Chem A 118:579–582
34. Clark T, Hennemann M, Murray J. S., Politzer P. (2007) Halogen bonding: the sigma-hole. In: Proceedings of modeling intermolecular orbital methods. XX. A basis set for correlated calculations. J Chem Phys 96:6796–6806
35. Schirmer R, Binkley JS, Seeger R, Popela JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654
36. Frisch MJ, Popela AJ, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269
37. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566
38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson et al (2009) Gaussian 09. Gaussian Inc, Wallingford
39. Wendler HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G et al (2012) MOLPRO, version 2012.1, a package of ab initio programs
40. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926
41. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0 Software. Theoretical Chemistry Institute, University of Wisconsin, Madison.
42. http://www.chem.wisc.edu/~nbo5
43. Todd A, Keith TK (2014) AIMAll (Version 14.11.23). Gristmill Software, Overland Park KS, USA, 2014 (aim.tkgristmill.com)
44. Zierkiewicz W, Bierko DC, Michalska D, Zeegers-Huyskens Th (2015) Theoretical investigation of the halogen bonded complexes between carboxyl bases and molecular chlorine. J Comput Chem 36:821–832
45. Wiberg KB, Marquez M, Castejon H (1994) Lone pairs in carboxyl compounds and ethers. J Org Chem 59:6817–6822
46. Koch U, Popelier PLA (1995) Characterization of C–H···O hydrogen bonds on the basis of the charge density. J Chem Phys 99:9747
47. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873
48. Chandra AK, Zeegers-Huyskens Th (2012) A theoretical investigation of the interaction between substituted carboxyl derivatives and water: Open or cyclic complexes? J Comput Chem 33:1131–1141
49. Niu B, Shirley DA, Bai Y (1993) High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H2CO+ and D2CO+. J Chem Phys 98:4377–4390
50. Wittel K (1976) The photoelectron spectrum of formylfluoride. J Electron Spectrosc Relat Phenom 8:245–248
51. Buckley TJ, Johnson RD, Huie RE, Zhang Z, Kuo SC, Klemm RB (1995) Ionization Energies, appearance energies, and thermochemistry of CF2O and FCO. J Phys Chem 99:4879–4885
52. Hernandez R, Mouvier G (1977) Spectroscopic de photoelectrons d’aldéhydes et de cétones aliphatiques. J Electron Spectrosc Relat Phenom 10:333–347
53. Chadwick D, Katrib A (1974) Photoelectron spectra of acetaldehyde and acetyl halides. J Electron Spectrosc Relat Phenom 5:39–52
54. Trotta WM, Blais NC, Walters EA (1978) Molecular beam photoionization study of acetone and acetone-d6. J Chem Phys 69(7):3150–3158
55. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 12:10856–10863
56. Wang W, Zhang Y, Ji B (2010) On the difference of the properties between the blue-shifting halogen bond and the blue-shifting hydrogen bond. J Phys Chem A 114:7257–7260
57. Mohan N, Suresh CH (2014) A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. J Phys Chem A 118:1697–1705
58. An X, Zhao H, Wang Y, Li Q (2013) Competition between hydrogen bonds and halogen bonds in complexes of formamide and hypohalous acids. J Mol Mod 19:4529–4535
59. Wu W, Zeng Y, Li X, Zhang X, Zheng S, Meng L (2013) Interplay between halogen bonds and hydrogen bonds in OH/SH—HOX···HY (X=Cl, Br; Y=F, Cl, Br) complexes. J Mol Mod 19:1069–1077
68. Scheiner S, Grabowski SJ, Kar T (2001) Influence of hybridization and substitution on the properties of the CH···O hydrogen bond. J Phys Chem A 105:10607–10612
69. Li X, Schlegel B (2002) On the physical origin of blue-shifted hydrogen bonds. J Am Chem Soc 124:9639–9647
70. Sosa GL, Peruchena NM, Contreras RH, Castro E (2002) Topological and NBO analysis of hydrogen bonding interactions involving C–H···O bonds. J Mol Struct 577:219–228
71. Kryachko ES, Zeegers-Huyskens Th (2001) Theoretical Study of the CH···O interaction in fluoromethanes H2O and chloromethanes H2O complexes. J Phys Chem A 105:7118–7125
72. Alabugin IV, Manoharan M (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987
73. Nguyen HMT, Peters J, Zeegers-Huyskens Th (2006) Theoretical study of the blue-shifting hydrogen bonds between CH2X2 and CHX3 (X=F, Cl, Br) and hydrogen peroxide. J Mol Struct 792:16–22
74. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632
75. Li AY (2007) Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation. J Chem Phys 126:154102–154112
76. Badger RM, Bauer SH (1937) Spectroscopic studies of the hydrogen bond. II. The shift of the O–H vibrational frequency in the formation of the hydrogen bond. J Chem Phys 5:839
77. Badger RM (1940) The relation between the energy of a hydrogen bond and the frequencies of the O–H bands. J Chem Phys 8:288