LETTER TO THE EDITOR

Gastrointestinal microbiome and *Helicobacter pylori*: Eradicate, leave it as it is, or take a personalized benefit–risk approach?

Stanislav Sitkin, Leonid Lazebnik, Elena Avalueva, Svetlana Kononova, Timur Vakhitov

**Abstract**

*Helicobacter pylori* (*H. pylori*) is generally regarded as a human pathogen and a class 1 carcinogen, etiologically related to gastric and duodenal ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. However, *H. pylori* can also be regarded as a commensal symbiont. Unlike other pathogenic/opportunistic bacteria, *H. pylori* colonization in infancy is facilitated by Th helper type 2 immunity and leads to the development of immune tolerance. Fucosylated gastric mucin glycans, which are an important part of the innate and adaptive immune system, mediate the adhesion of *H. pylori* to the surface of the gastric epithelium, contributing to successful colonization. *H. pylori* may have beneficial effects on the host by regulating gastrointestinal (GI) microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of *H. pylori*. The inverse association between *H. pylori* and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota. Eradication of *H. pylori* can cause various adverse effects and alter the GI microbiota, leading to short-term or long-term dysbiosis.

Stanislav Sitkin, Elena Avalueva, Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia

Stanislav Sitkin, Svetlana Kononova, Timur Vakhitov, Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia

Stanislav Sitkin, Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia

Leonid Lazebnik, Department of Outpatient Therapy, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia

Svetlana Kononova, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia

Corresponding author: Stanislav Sitkin, MD, PhD, Associate Professor, Senior Researcher, Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, Kirochnaya Street, 41, St. Petersburg 191015, Russia. 
drsitkin@gmail.com
Overall, studies have shown that gastric Actinobacteria decrease after *H. pylori* eradication, Proteobacteria increase during short-term follow-up and then return to baseline levels, and Enterobacteriaceae and *Enterococcus* increase in the short-term and interim follow-up. Various gastric mucosal bacteria (*Actinomyces*, *Granulicatella*, *Parvimonas*, *Peptostreptococcus*, *Prevotella*, *Rothia*, *Streptococcus*, *Rhodococcus*, and *Lactobacillus*) may contribute to precancerous gastric lesions and cancer itself after *H. pylori* eradication. *H. pylori* eradication can also lead to dysbiosis of the gut microbiota, with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria. The increase in gut Proteobacteria may contribute to adverse effects during and after eradication. The decrease in Actinobacteria, which are pivotal in the maintenance of gut homeostasis, can persist for > 6 mo after *H. pylori* eradication. Furthermore, *H. pylori* eradication can alter the metabolism of gastric and intestinal bacteria. Given the available data, eradication cannot be an unconditional recommendation in every case of *H. pylori* infection, and the decision to eradicate *H. pylori* should be based on an assessment of the benefit-risk ratio for the individual patient. Thus, the current guidelines based on the unconditional “test-and-treat” strategy should be revised. The most cautious and careful approach should be taken in elderly patients with multiple eradication failures since repeated eradication can cause antibiotic-associated diarrhea, including severe *Clostridioides difficile*-associated diarrhea and colitis and antibiotic-associated hemorrhagic colitis due to *Klebsiella oxytoca*. Furthermore, since eradication therapy with antibiotics and proton pump inhibitors can lead to serious adverse effects and/or dysbiosis of the GI microbiota, supplementation of probiotics, prebiotics, and microbial metabolites (*e.g.*, butyrate + inulin) should be considered to decrease the negative effects of eradication.

**Key Words:** Helicobacter pylori; Eradication; Gastrointestinal microbiota; Dysbiosis; Fucosylated glycan; Inflammatory bowel disease

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

**Core Tip:** *Helicobacter pylori* (*H. pylori*) is generally regarded as a human pathogen, but it can act as a commensal symbiont. *H. pylori* colonization may have beneficial effects on the host by regulating gastrointestinal microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. *H. pylori* eradication can cause various adverse effects and alter the gastrointestinal microbiota, leading to dysbiosis. Therefore, eradication cannot be an unconditional recommendation in every case of *H. pylori* infection, and the therapeutic decision should be based on a personalized assessment of the benefit vs risk.

**Citation:** Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. Gastrointestinal microbiome and *Helicobacter pylori*: Eradicate, leave it as it is, or take a personalized benefit–risk approach? *World J Gastroenterol* 2022; 28(7): 766-774
**URL:** https://www.wjgnet.com/1007-9327/full/v28/i7/766.htm
**DOI:** https://dx.doi.org/10.3748/wjg.v28.i7.766

**TO THE EDITOR**

We read with great interest the article by Niu et al.[1], which showed that the effectiveness of quadruple *Helicobacter pylori* (*H. pylori*) eradication therapy containing bismuth depended on the gastric microbiota, and a high rate of *H. pylori* eradication was associated with the presence of *Rhodococcus*, *Lactobacillus*, and *Sphingomonas*, which were significantly enriched in the gastric mucosa in the successful eradication group[1]. The role of lactobacilli, mainly beneficial bacteria, in *H. pylori* infection, including eradication, has been well studied[2]. However, the authors showed for the first time the importance of *Rhodococcus* and *Sphingomonas*, which are more likely to be opportunistic or pathobiont species with unclear functions in the human gastrointestinal (GI) tract[3,4], in successful eradication of *H. pylori*[1]. It is noteworthy that in gastric cancer (GC), when the abundance of *H. pylori* decreased, several taxa (including *Rhodococcus* and *Lactobacillus*, discussed by Niu et al.[1]) in the gastric mucosa significantly increased, which may indicate their potential involvement in GC after *H. pylori* infection[5]. In addition, *H. pylori* was negatively correlated with some opportunistic bacteria/pathobionts such as *Haemophilus*, *Streptococcus*, *Neisseria*, and *Fusobacterium* in the success group[1]. The results obtained by Niu et al.[1] may suggest that *H. pylori* competes not so much with beneficial bacteria as with pathobionts, and eradication may ultimately worsen the gastric microbiota.
Indeed, not only does the composition of the gastric microbiota affect H. pylori eradication, but eradication significantly affects the microbiota of both the stomach and intestine, which can lead to marked and long-term dysbiotic changes. Dysbiosis of the microbiota after H. pylori eradication can be caused by many factors: by the action of antibiotics and proton pump inhibitors; by the loss of H. pylori leading to changes in the immune response of the GI mucosa; and by changes in the microenvironment of the GI tract, including those in microbial metabolic pathways and changes in gastric acidity associated with both pharmacotherapy and loss of H. pylori[6,7]. Features of the dysbiotic changes, their duration, and the rate of restoration of the disturbed microbiota vary greatly in different studies.

**Diverse effects of H. pylori eradication on gastric and intestinal microbiota**

Recent studies have demonstrated not only short-term but also long-term (≥ 6 mo) changes in the gastric microbiota after H. pylori eradication. In about half of cases (52.3%), eradication led to the predominance of proinflammatory Acinetobacter in gastric corpus mucosa with a decrease in microbial diversity in patients with endoscopic follow-up for > 1 year[8]. An earlier study showed that Acinetobacter was enriched in patients with persistent gastric inflammation 1 year after H. pylori eradication[9]. Moreover, some bacteria in the gastric mucosa (Actinomyces, Granulicatella, Parvimonas, Pectostreptococcus, Prevotella, Rothia, and Streptococcus), which are predominantly of oral origin, were associated with precancerous gastric lesions (atrophy and/or intestinal metaplasia) 1 year after H. pylori eradication[9]. Actinomyces, whose abundance can increase in the absence of H. pylori, might significantly increase the risk of GC [10]. Thus, some studies demonstrated a contribution of various gastric bacteria to precancerous gastric lesions after H. pylori eradication[9]. In general, Actinobacteria decreased after H. pylori eradication, Proteobacteria increased during short-term follow-up and then returned to baseline levels, and Enterobacteriaceae and Enterococcus increased in the short-term and interim follow-up[11]. Alternatively, it has been shown that in regions with high GC risk, H. pylori is one of the main factors in gastric dysbiosis and successful eradication can lead to the restoration of gastric microbiota[12].

H. pylori eradication also affects the gut microbiota. Bismuth quadruple therapy leads to short-term dysbiosis of the gut microbiota with an increased abundance of Proteobacteria and decreased abundances of Bacteroidetes and Actinobacteria. The increase in gut Proteobacteria may contribute to adverse effects during eradication therapy[13]. In another study, H. pylori eradication was associated with significant alterations in the gut microbiota that did not completely recover 6 wk after treatment[7]. In general, there was a decrease in Actinobacteria, which is pivotal in the maintenance of gut homeostasis, compared with baseline throughout the follow-up (> 6 mo) after eradication[11]. Furthermore, eradication therapy alters microbial functional pathways and the metabolism of gastric and gut bacteria[9,15].

Conversely, other studies showed that successful H. pylori eradication exerts beneficial effects on gut microbiota, including increased probiotic Bifidobacterium and downregulation of drug-resistance mechanisms[12]. Liou et al[15] generally confirmed the long-term safety of H. pylori eradication therapy but reported incomplete restoration of microbial diversity after 1 year and clinically irrelevant but significant increases in body mass index (BMI) and body weight at that time.

Interestingly, an increase in body weight/body mass index after H. pylori eradication had been identified earlier[16]. Suggested mechanisms of this effect range from an improvement in the symptoms of postprandial dyspepsia[16] to changes in the regulation of leptin and ghrelin[17] mediated by antibiotic-associated changes in the microbiota (especially by the imbalance between bacterial producers of lactate and acetate)[18]. In general, however, the data in various studies are contradictory and indicate weight gain, weight loss, or the absence of an effect of H. pylori eradication on body weight; this may be due to differences in the characteristics of the studied populations, such as age, nosology, and composition of the GI microbiota[19]. Further in-depth study of the microbiome-mediated effects of H. pylori and eradication therapy on human host metabolism, including nutrient uptake, energy homeostasis, bodyweight, hormone secretion, lipid profile, and glucose homeostasis/glycemic control, will provide clinically important findings for the management of H. pylori infection.

**H. pylori status and the human gut microbiome**

The presence or absence of gastric H. pylori can significantly affect the gut microbiota. For example, Nitrospirae were found exclusively in H. pylori-negative patients. The role of this phylum, containing nitrite-oxidizing bacteria, in the human microbiome is unclear. In a study by Wang et al[20], Nitrospirae were found in the gastric mucosa in all patients with GC but not in patients with chronic gastritis. The authors suggested that these bacteria may be involved in carcinogenesis through enhanced production of N-nitroso compounds. A recent study demonstrated a possible pathogenetic link between enriched colonic Nitrospirae and drug-resistant epilepsy, implying that Nitrospirae can increase nitrite toxicity and cause blood-brain barrier dysfunction[21].

Proinflammatory Bacteroides ovatus and Fusobacterium varium, associated with ulcerative colitis and adenomatous polyps[22,23] as well as trimethylamine-producing Clostridium sp. AT5[24] were enriched in H. pylori-negative samples, while Bacteroides plebeius, characteristic of the healthy groups (vs patients with adenomatous polyps)[23] and butyrate-producing Escherichia rhamnus were enriched in H. pylori-positive samples[7].
Conversely, Butyricimonas spp., including Butyricimonas virosa, associated with bacteremia in patients with GI cancer (colon and duodenal adenocarcinomas) and diverticulitis[25] as well as Bacteroides coprophilus, specifically enriched in ankylosing spondylitis[26], were enriched in H. pylori-positive individuals[7]. Prolinflammatory Prevotella copri, associated with rheumatoid arthritis and microscopic colitis as well as Enterobacter cloacae and Klebsiella pneumoniae, pathogens commonly associated with hospital infections, were also enriched in H. pylori-positive individuals[27]. Moreover, gut microbial vitamin B₃ bioavailability was significantly lower in H. pylori-positive individuals compared with H. pylori-negative individuals[27]. Dash et al.[28] showed that the gut microbiota of H. pylori-infected individuals was characterized by a significantly increased abundance of Saccinibrio, Coriobacteriaceae, Enterococcaceae and Rikenellaceae as well as Candida glabrata and other unclassified fungi. The authors suggested a possible role for these H. pylori-associated changes in the gut microbiota in intestinal barrier disruption and development of colorectal carcinoma[28].

Potential protective and regulatory role of commensal H. pylori
Currently, H. pylori is generally regarded as a human pathogen and a class 1 carcinogen[29], responsible for 15% of the total cancer burden globally and up to 89% of all GC cases[30]. H. pylori is etiologically related to gastric and duodenal ulcers and mucosa-associated lymphoid tissue lymphoma. According to current guidelines, it is almost always subject to unconditional eradication based on the “test-and-treat” strategy[31]. However, although H. pylori is present in > 50% of the world’s population, sequelae of infection occur in only 20% of infected individuals, and malignant complications, such as GC, occur in < 3% of infected people[7]. Therefore, there is also an alternative point of view that H. pylori is a commensal symbiont[32,33]. Back in 1998, Blaser[32] wrote that, “H. pylori can thus be regarded as indigenous or ‘normal’ flora, which most humans acquire within the first few years of childhood and then carry for life.”

Unlike other pathogenic/opportunistic bacteria, H. pylori colonization of newborns/infants is facilitated by T helper type 2 immunity and leads to the development of immune tolerance[34]. Most likely, the co-evolution of H. pylori and the human host over millennia has led to the fact that this bacterium is considered a commensal symbiont, not a pathogen, by the host’s immune system. This is indirectly confirmed by the fact that α1,2-fucosylated glycans of the GI epithelium, which are an important part of the innate and adaptive immune system (they create a symbiotic environment for the host and microbiota and protect against pathogens), mediate the adhesion of H. pylori to the surface of the gastric epithelium, contributing to successful colonization[35]. As a result, early colonization of H. pylori can have a positive effect on the host, for example on the regulation of the hormones leptin and ghrelin as well as on protection against some allergic (e.g., asthma) and autoimmune diseases and against inflammatory bowel disease (IBD)[36,34]. The inverse association between H. pylori and some potentially proinflammatory and/or procarcinogenic bacteria found in various studies[20,22-24] may suggest a regulatory function of H. pylori toward the GI microbiota. The available evidence for beneficial effects of H. pylori toward the GI microbiota, as well as potential protective effects against certain diseases, should not be ignored by the gastroenterological community.

Presence of H. pylori infection and reduced risk of IBD: Is there a causal relationship? The potential protective role of H. pylori in the development of IBD, shown in some studies[37], may be related to both modulation of the gut microbiota and the immunomodulatory properties of H. pylori. An inverse association between H. pylori and potentially proinflammatory microbes (Bacteroides ovatus, Fusobacterium varium, Rhodococcus, Sphingomonas) supports a microbiome-modulating mechanism, while an immunomodulatory mechanism of protection against IBD may involve the activation of colonic mucus production by H. pylori via the NLRP3/caspase-1/interleukin-18 axis[38].

We suggest another possibility for the association between H. pylori infection and IBD, a non-causal relationship, which relates to the fucosylation status of host mucin glycans in the GIT. Individuals with a non-functional α(1,2)-fucosyltransferase 2 (FUT2) gene (they are termed non-secretors), who have loss-of-function mutations, cannot express α(1,2)-fucosylated glycans in the GI mucosa. Non-secretors (about 20% of the population) are more susceptible to infection by some pathogens (Escherichia coli, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, Candida albicans) and have aberrant gut microbiota, with a reduction of beneficial Bifidobacterium spp. The FUT2 non-secretor phenotype increases susceptibility to Crohn’s disease, ulcerative colitis, primary sclerosing cholangitis, celiac disease, psoriasis, Behçet’s disease, type 1 diabetes, and so on but at the same time protects against H. pylori, which requires fucosylated glycans in the gastric mucosa for an adhesion[35,39,40].

A recent study showed that patients with ulcerative colitis and Crohn’s disease had decreased FUT2 expression and α1,2-fucosylation in the colon[41]. In addition, Fut2 deficiency in the intestinal epithelium exacerbated colitis in epithelium-specific Fut2 knockout (Fut2⁻/⁻) mice, promoted the release of proinflammatory cytokines, and aggravated epithelial barrier damage[41]. The authors demonstrated for the first time that epithelium-specific Fut2 deficiency increased susceptibility to IBD through modulation of the gut microbiome and microbiota-mediated lysosphatidylcholine generation. Lysosphatidylcholine may have deleterious effects on the colon by promoting the release of proinflammatory cytokines, damaging the tight junctions and epithelial barrier in the colon epithelium, and exacerbating colonic inflammation in Fut2⁻/⁻ mice[41].
In turn, upregulation of FUT2-mediated fucosylation in the intestinal epithelium, for example by exogenous L-fucose, can protect the intestinal barrier, enhance tight junctions, and alleviate intestinal inflammation[42]. Similar to the colon, increased expression of the fucosyltransferase genes FUT2 and FUT1 in the gastric epithelium promotes H. pylori adhesion and ultimately infection[43]. Thus, we suggest that increased expression of FUT2 in the gastrointestinal mucosa can simultaneously mediate both H. pylori infection and protection against IBD via an H. pylori-independent mechanism. In this case, a causal relationship between the presence of H. pylori and a reduced risk of IBD is unlikely. However, it cannot be ruled out that H. pylori mediates the protective effect of fucosylation against IBD by modulation of the gut microbiota or through an immunomodulatory mechanism[38].

Concluding remarks
Given the available data, eradication cannot be an unconditional recommendation in every case of H. pylori infection, as in the vast majority of people H. pylori is most likely a commensal[32,33], possibly beneficial in mutualistic interaction with the host (for example protecting against some allergic and autoimmune diseases[36]). We join the opinion of Chen et al[7] that the decision to eradicate H. pylori should be based on an assessment of the benefit-risk ratio for the individual patient. We also support the position of Miller and Williams[44] that “universal eradication” of H. pylori may cause more harm than good for the infected persons. Thus, the current guidelines based on the unconditional “test-and-treat” strategy[31] should be revised, including to reduce the excessive number of indications for eradication and to avoid empirical eradication therapy without a previous diagnostic test for H. pylori infection.

It may be worth recommending unconditional eradication only in patients with concomitant mucosa-associated lymphoid tissue lymphoma[45] and/or in individuals at high risk of GC, for example in groups of high familial (hereditary) risk[46] or in high-risk areas/populations where eradication effectively reduces the risk of GC[47]. In the latter case, the advisability of such an approach is unquestionable, if it is evidence-based. For example, a recent systematic review and meta-analysis provided moderate-certainty evidence that searching for and eradicating H. pylori can reduce the subsequent incidence of GC and death from GC in healthy asymptomatic infected people; the risk of GC decreased by 46% after eradication therapy[48]. However, the authors concluded that as all but one of the eligible trials were conducted in East Asian populations (in China, Japan, or South Korea), and the only trial conducted in a non-Asian population (in Colombia) did not demonstrate any benefit of such an approach, the results of the systematic review cannot be extrapolated to populations outside East Asia[48].

A well-known paradox, the low incidence of GC in some regions of Africa, Asia (e.g., in India), and Latin America with a high prevalence of H. pylori infection, also requires in-depth study; this is called the African[49] or Asian/Indian enigma[50]. Although the existence of this phenomenon is sometimes disputed[51], studies have shown that H. pylori alone is most likely not enough for the development of GC, even with a high prevalence of highly pathogenic strains. Therefore, it is necessary to take into account not only the virulence factors of H. pylori and the oncogenic potential of specific strains of H. pylori but also the genetics and ethnicity of the human host population, their dietary habits (including antioxidant and sodium levels), smoking, alcohol consumption, socioeconomic status, and coinfection (parasitoses/helminthiases) modulating the potentially protective T helper type 2 immune response[49, 50].

An important factor influencing the serious consequences of H. pylori infection appears to be the co-evolution of H. pylori and the human host. A recent study demonstrated that the African human ancestry showed clear signs of co-evolution with H. pylori, while the European ancestry was maladapted. The Asian ancestry was intermediate but closer to the African ancestry[52]. This supports the hypothesis that H. pylori is a commensal symbiont rather than a human pathogen. Hopefully, a series of international prevalence surveys to investigate age-specific prevalence of H. pylori in areas of low and high GC risk, namely ENIGMA, recently launched under the auspices of the International Agency for Research on Cancer in Africa (Uganda, Asia (Iran), and Latin America (Chile, Costa Rica), will shed light on the regional characteristics of H. pylori infection and identify markers for GC risk stratification to offer reasonable preventive interventions for different populations[53].

In addition, H. pylori eradication is likely to be recommended in patients with cancer who are on therapy with immune checkpoint inhibitors or vaccine-based immunotherapy, for example in patients with non-small-cell lung cancer[54].

In patients with diseases negatively associated with H. pylori, such as IBD, microscopic colitis, celiac disease, asthma, multiple sclerosis, Barrett’s esophagus, esophageal adenocarcinoma, eosinophilic esophagitis, and so on, eradication should be carried out with caution, carefully weighing the risk-to-benefit in each case. Even though H. pylori eradication did not affect either the healing rate or the recurrence rate of pre-existing gastroesophageal reflux disease, the possibility of developing new erosive gastroesophageal reflux disease after eradication should always be kept in mind[55].

The most cautious and careful approach should be taken in elderly patients with multiple eradication failures since repeated eradication (second-/third-line therapies) can cause antibiotic-associated diarrhea, including severe Clostridioides difficile-associated diarrhea and colitis[56] and antibiotic-associated hemorrhagic colitis due to Klebsiella oxytoca[57]. In this regard, we support the recent
conclusion of the American Gastroenterological Association experts that, “after multiple failed eradication attempts, the potential benefits of H. pylori eradication should be weighed carefully against the likelihood of adverse effects and inconvenience of repeated high-dose acid suppression and antibiotic exposure, particularly among individuals who are not at an identifiably higher risk of complications from persistent H. pylori infection (e.g., GC, peptic ulcer disease); in such scenarios, a shared decision-making approach should be seriously considered, especially in the elderly, those with frailty, and those with intolerance to antibiotics” (Best Practice Advice #9)[30]. Furthermore, since eradication therapy with antibiotics and proton pump inhibitors can lead to serious adverse effects and/or long-term dysbiotic changes in the GI microbiota, the supplementation of probiotics[58-61], prebiotics, and microbial metabolites (e.g., butyrate + inulin)[62] to reduce the negative effects of eradication should be considered[7]. In addition, alternative eradication regimens with limited or no antibiotic use, for example phage-based regimens[63], autoprobiotics[64], and natural agents and methods including traditional Chinese medicine[65], should be proposed, developed, and explored in future studies.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. James Allen for editing a draft of this manuscript.

FOOTNOTES

Author contributions: Sitkin S contributed to the conception, review of literature, and drafting of the manuscript; All authors contributed to the writing and editing of the manuscript and approved the final version of the manuscript.

Supported by the Russian Science Foundation, No. 20-65-47026.

Conflict-of-interest statement: The authors declare no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Russia

ORCID number: Stanislav Sitkin 0000-0003-0331-0963; Leonid Lazebnik 0000-0001-8736-5851; Elena Avalueva 0000-0001-6011-0998; Svetlana Kononova 0000-0002-7373-7797; Timur Vakhitov 0000-0001-8221-6910.

Corresponding Author’s Membership in Professional Societies: European Crohn’s and Colitis Organisation (ECCO), Member ID: 37495.

S-Editor: Wang LL
L-Editor: Filipodia
P-Editor: Wang LL

REFERENCES

1 Niu ZY, Li SZ, Shi YY, Xue Y. Effect of gastric microbiota on quadruple Helicobacter pylori eradication therapy containing bismuth. World J Gastroenterol 2021; 27: 3913-3924 [PMID: 34321854 DOI: 10.3748/wjg.v27.i25.3913]
2 Chen YH, Tsai WH, Wu HY, Chen CY, Yeh WL, Chen YH, Hsu HY, Chen WW, Chang WW, Lin TL, Lai HC, Lin YH, Lai CH. Probiotic Lactobacillus spp. act Against Helicobacter pylori-induced Inflammation. J Clin Med 2019; 8 [PMID: 30646625 DOI: 10.3390/jcm8010090]
3 Lepage P, Häsl er R, Spehlmann ME, Rehman A, Zvirbliene A, Doré J, Raedler A, Schreiber S. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011; 141: 227-236 [PMID: 21621540 DOI: 10.1053/j.gastro.2011.04.011]
4 Richard ML, Ligi or i G, Lamas B, Brandi G, da Costa G, Hoffmann TW, Pierluigi Di Simone M, Calabrese C, Poggioli G, Langella P, Campieri M, Sokol H. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes 2018; 9: 131-142 [PMID: 28914591 DOI: 10.1080/19490976.2017.1379637]
5 Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, Figueiredo C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018; 67: 226-236 [PMID: 29102920 DOI: 10.1136/gutjnl-2017-314205]
Lopetuso LR, Napoli M, Rizzatti G, Scaldaferrri F, Franceschi F, Gasbarrini A. Considering gut microbiota disturbance in the management of Helicobacter pylori infection. *Expert Rev Gastroenterol Hepatol* 2018; 12: 899-906 [PMID: 30040500 DOi: 10.1080/17474124.2018.1503946]

Chen L, Xu W, Lee A, He J, Huang B, Zheng W, Su T, Lai S, Long Y, Chu H, Chen Y, Wang L, Wang K, Si J, Chen S. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: An open-label, randomized clinical trial. *EliBioMedicine* 2018; 35: 87-96 [PMID: 30145102 DOi: 10.1016/j.ebsi.2018.08.028]

Shin CM, Kim N, Park JH, Lee DH. Changes in Gastric Corpus Microbiota With Age and After Helicobacter pylori Eradication: A Long-Term Follow-Up Study. *Front Microbiol* 2020; 11: 621879 [PMID: 3363697 DOi: 10.3389/fmicb.2020.621879]

Sung JJY, Coker OO, Chu E, Szeto CH, Luk STY, Lau HCH, Yu J. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after *Helicobacter pylori* eradication. *Gut* 2020; 69: 1572-1580 [PMID: 31974133 DOi: 10.1136/gutjnl-2019-198326]

Gunathilake M, Lee J, Choi IJ, Kim YI, Kim J. Association between bacteria other than Helicobacter pylori and the risk of gastric cancer. *Helicobacter* 2021; 26: e12836 [PMID: 34268831 DOi: 10.1111/hepc.12836]

Chen CC, Liou JM, Lee YC, Hong TC, El-Omar EM, Wu MS. The interplay between *Helicobacter pylori* and gastrointestinal microbiota. *Gut Microbes* 2021; 13: 1-22 [PMID: 33938378 DOi: 10.1080/19490976.2021.1909454]

Guo Y, Zhang Y, Gerhard M, Gao JJ, Mejias-Luque R, Zhang L, Vieth M, Ma JI, Bajbouj M, Suchanek S, Liu WD, Ulm K, Quante M, Li ZX, Zhou T, Schmid R, Classen M, Li WQ, You WC, Pan KF. Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer. *Gut* 2020; 69: 1598-1607 [PMID: 31837433 DOi: 10.1136/gutjnl-2019-199696]

Hsu PI, Pan CY, Kao JY, Tsay FW, Peng NJ, Kao SS, Wang HM, Tsai JT, Wu DC, Chen CL, Tsai KW; Taiwan Acid-Related Disease (TARD) Study Group. Helicobacter pylori colonization with bimonth quadruple therapy leads to dysbiosis of gut microbiota with an increased relative abundance of Proteobacteria and decreased relative abundances of Bacteroidetes and Actinobacteria. *Helicobacter* 2018; 23: e12498 [PMID: 29987654 DOi: 10.1111/hel.12498]

Maiti KS, Apolonski A. Monitoring the Reaction of the Body State to Antibiotic Treatment against *Helicobacter pylori* via Infrared Spectroscopy: A Case Study. *Molecules* 2021; 26 [PMID: 34200459 DOi: 10.3390/molecules26113474]

Liu JM, Chen CC, Chang CM, Fang YJ, Baier MJ, Chen PY, Chang CY, Hsu YC, Chen MJ, Lee JY, Yang TH, Luo J, Chen CY, Hsu WF, Chen YN, Wu JY, Lin JT, Lu TP, Chuang EY, El-Omar EM, Wu MS; Taiwan Gastrointestinal Disease and Helicobacter Consortium. Long-term changes of gut microbiota, antibiotic resistance, and metabolic parameters after *Helicobacter pylori* eradication: a multicentre, open-label, randomised. *Lancet Infect Dis* 2019; 19: 1109-1120 [PMID: 31559966 DOi: 10.1016/S1473-7748(19)30272-5]

Lane JA, Murray LJ, Harvey JM, Donovan JL, Nair P, Harvey RF. Randomised clinical trial: *Helicobacter pylori* eradication is associated with a significantly increased body mass index in a placebo-controlled study. *Aliment Pharmacol Ther* 2011; 33: 922-929 [PMID: 21366634 DOi: 10.1111/j.1365-2036.2011.04610.x]

Francois F, Roper J, Joseph N, Pei Z, Chhada A, Shak JR, de Perez AZ, Perez-Perez GI, Blaser MJ. The effect of *H. pylori* eradication on meal-associated changes in plasma ghrelin and leptin. *BMC Gastroenterol* 2011; 11: 37 [PMID: 21489301 DOi: 10.1186/1471-230X-11-37]

Martín-Núñez GM, Cornejo-Paraje I, Clemente-Postigo M, Tinahones FJ, Moreno-Indias I. *Helicobacter pylori* Eradication Therapy Affect the Gut Microbiota and Ghrelin Levels. *Front Med (Lausanne)* 2021; 8: 712908 [PMID: 34552825 DOi: 10.3389/fmed.2021.712908]

Martín-Núñez GM, Cornejo-Paraje I, Clemente-Postigo M, Tinahones FJ. Gut Microbiota: The Missing Link Between *Helicobacter pylori* Infection and Metabolic Disorders? *Front Endocrinol (Lausanne)* 2021; 12: 639856 [DOi: 10.3389/fendo.2021.639856]

Wang L, Zhou J, Xin Y, Geng C, Tian Z, Yu X, Dong Q. Bacterial overgrowth and diversification of microbiota in gastrointestinal cancer. *Eur J Gastroenterol Hepatol* 2016; 28: 261-266 [PMID: 26657453 DOi: 10.1097/MEG.0000000000000542]

Gong X, Liu X, Chen C, Lin J, Li A, Guo K, An D, Zhou D, Hong Z. Alteration of Gut Microbiota in Patients With Epilepsy and the Potential Index as a Biomarker. *Front Microbiol* 2020; 11: 517797 [PMID: 33042045 DOi: 10.3389/fmicb.2020.517797]

Sasaki M, Klapproth JM. The role of bacteria in the pathogenesis of ulcerative colitis. *J Signal Transduct* 2012; 2012: 704953 [PMID: 22619714 DOi: 10.1155/2012/704953]

Wei PL, Hung CS, Kao YW, Lin YC, Lee CY, Chang TH, Shia BC, Lin JC. Classification of Changes in the Fecal Microbiota Associated with Colonic Adenomatous Polyps Using a Long-Read Sequencing Platform. *Genes (Basel)* 2020; 11 [PMID: 32323335 DOi: 10.3390/genes11111374]

Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. *Microbiome* 2017; 5: 54 [PMID: 28506279 DOi: 10.1186/s40168-017-0271-9]

Enemchukwu CU, Ben-Farars H, Giallanella P, Smyczak WA, Nosanchuk JD, Madaline TF. Butyricimonas virosa bacteremia and bowel disease: case report and review. *New Microbes New Infect* 2016; 13: 34-36 [PMID: 27408738 DOi: 10.1016/j.nmni.2016.05.004]

Zhou C, Zhao H, Xiao XY, Chen BD, Guo RJ, Wang Q, Chen H, Zhao LD, Zhang CC, Jiao YH, Ju YM, Yang HX, Fei YY, Wang L, Shen M, Li H, Wang XH, Lu X, Yang B, Liu JJ, Li J, Peng LY, Zheng WJ, Zhang CY, Zhou JX, Wu QJ, Yang YJ, Su JM, Shi Q, Wu D, Zhang W, Zhang FC, Jia HJ, Liu DP, Jie ZY, Zhang X. Metagenomic profiling of the pro-inflammatory gut microbiota inankylosing spondylitis. *J Autoimmun* 2020; 107: 102360 [PMID: 31806420 DOi: 10.1016/j.jaut.2019.102360]

Wang D, Li Y, Zhong H, Ding Q, Lin Y, Tang S, Zong Y, Wang Q, Zhang X, Yang H, Wang R, Liu X. Alterations in the human gut microbiome associated with Helicobacter pylori infection. *FEBS Open Bio* 2019; 9: 1552-1560 [PMID: 31250985 DOi: 10.1002/2211-5463.12694]

Dash NR, Khoder G, Nada AM, Al Bataineh MT. Exploring the impact of Helicobacter pylori on gut microbiome composition. *PLoS One* 2019; 14: e0218274 [PMID: 31211818 DOi: 10.1371/journal.pone.0218274]
29 Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2020; 17: 50-63 [PMID: 31804619 DOI: 10.1038/s41423-019-0339-5]

30 Shah SC, Iyer PG, Moss SF. AGA Clinical Practice Update on the Management of Refractory Helicobacter pylori Infection: Expert Review. Gastroenterology 2021; 160: 1831-1841 [PMID: 33524402 DOI: 10.1053/j.gastro.2020.11.059]

31 Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuipers EJ, Axon AT, Bazzi F, Gasbarrini A, Atherton J, Graham DY, Lugli M, Maastricht V/Florence Consensus Report Panel. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017; 66: 6-30 [PMID: 27707770 DOI: 10.1136/gutjnl-2016-312288]

32 Blaser MJ. Helicobacter pylori and gastric diseases. BMJ 1998; 316: 1507-1510 [PMID: 9582144 DOI: 10.1136/bmj.316.7143.1507]

33 Rethelyi VI, Burmistrov AI, Maev IV. Helicobacter pylori: Commensal, symbiont or pathogen? World J Gastroenterol 2021; 27: 545-560 [PMID: 33642828 DOI: 10.3748/wjg.v27.i7.545]

34 Kononova S, Litvinova E, Vakhitov T, Skalinskaya M, Sitkin S. Acceptive Immunity: The Role of Fucosylated Glycans in Human Host-Microbiome Interactions. Int J Mol Sci 2021; 22 [PMID: 33917766 DOI: 10.3390/ijms20223854]

35 Goto Y, Uematsu S, Kiyono H. Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol 2016; 17: 1244-1251 [PMID: 27760104 DOI: 10.1038/ni.3587]

36 Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AF. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects. World J Gastroenterol 2018; 24: 3071-3089 [PMID: 30065554 DOI: 10.3748/wjg.v24.i28.3071]

37 Papamichail K, Konstantopoulos P, Mantzaris GJ. Helicobacter pylori infection and inflammatory bowel disease: is there a link? World J Gastroenterol 2014; 20: 6374-6385 [PMID: 24914359 DOI: 10.3748/wjg.v20.i21.6374]

38 Engler DB, Leonard I, Hartung ML, Kyburz A, Spahn S, Becker B, Rogler G, Müller A. Helicobacter pylori-specific protection against inflammatory bowel disease requires the NLRP3 inflammasome and IL-18. Inflamm Bowel Dis 2015; 21: 854-861 [PMID: 25742401 DOI: 10.1097/MIB.0000000000000318]

39 Zhou F, Zhu Q, Zheng PF, Feng YL. Association of Fucosyltransferase 2 Gene Variant with Inflammatory Bowel Diseases: A Meta-Analysis. Med Sci Monit 2019; 25: 184-192 [PMID: 30615663 DOI: 10.12659/MSM.918857]

40 Giampaoli O, Conta G, Calvani R, Michieli A. Can the FUT2 Non-secretor Phenotype Associated With Gut Microbiota Increase the Children Susceptibility for Type 1 Diabetes? Front Nutr 2020; 7: 606171 [PMID: 33425974 DOI: 10.3389/fnut.2020.606171]

41 Tang X, Wang W, Hong G, Duan C, Zhu S, Tian Y, Han C, Qian W, Lin R, Hou X. Gut microbiota-mediated lysophosphatidylcholine generation promotes colitis in intestinal epithelium-specific Fut2 deficiency. J Biomed Sci 2021; 28 [PMID: 33722220 DOI: 10.1186/s12929-021-00711-z]

42 Li Y, Jiang Y, Zhang L, Qian W, Hou X, Lin R. Exogenous l-fucose protects the intestinal mucosal barrier depending on upregulation of FUT2-mediated fucosylation of intestinal epithelial cells. FEBS J 2021; 35: e12699 [PMID: 35141549 DOI: 10.1093/febsel/fjab046]

43 Fan R, Han X, Gong Y, He L, Xue Z, Yang Y, Sun L, Fan D, You Y, Meng Y, Yan X, Zhang M, Zhang J. Alterations of Fucosyltransferase Genes and Fucosylated Glycans in Gastric Epithelial Cells Infected with Helicobacter pylori. Pathogens 2021; 10 [PMID: 33557187 DOI: 10.3390/pathogens10020168]

44 Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Diseases 2021; 10 [PMID: 33821388 DOI: 10.3390/diseases10040167]

45 Salar A. Gastric MALT lymphoma and Helicobacter pylori. med. Clin (Barc) 2019; 152: 65-71 [PMID: 30424932 DOI: 10.1016/j.medcli.2019.08.006]

46 Choi IJ, Kim CG, Lee JY, Kim YI, Kook MC, Park B, Joo J. Family History of Gastric Cancer and Helicobacter pylori Treatment. N Engl J Med 2020; 382: 427-436 [PMID: 31959688 DOI: 10.1056/NEJMoa1906666]

47 Sugimoto M, Murata M, Yamaoka Y. Chemoprevention of gastric cancer development after Helicobacter pylori eradication therapy in an East Asian population: Meta-analysis. World J Gastroenterol 2020; 26: 1820-1840 [PMID: 32351296 DOI: 10.3748/wjg.v26.i15.1820]

48 Ford AC, Yuan Y, Forman D, Hunt R, Moayyedi P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane Database Syst Rev 2020; 7: CD005583 [PMID: 32628791 DOI: 10.1002/14651858.CD005583.pub3]

49 Smith S, Fowora M, Pellicano R. Infections with Helicobacter pylori and challenges encountered in Africa. World J Gastroenterol 2019; 25: 3183-3195 [PMID: 31333310 DOI: 10.3748/wjg.v25.i25.3183]

50 Misra V, Pandey R, Misra SP, Dwivedi M. Helicobacter pylori and gastric cancer: Indian enigma. World J Gastroenterol 2014; 20: 1503-1509 [PMID: 24587625 DOI: 10.3748/wjg.v20.i6.1503]

51 Graham DY, Lu H, Yamaoka Y. African, Asian or Indian enigma, the East Asian Helicobacter pylori: facts or medical myths. J Dig Dis 2009; 10: 77-84 [PMID: 19426388 DOI: 10.1111/j.1751-2980.2009.00368.x]

52 Cavadas B, Leite M, Pedro N, Magalhães AC, Melo J, Correia M, Máximo V, Camacho R, Fonseca NA, Figueiredo C, Pereira L. Shedding Light on the African Enigma: In Vitro Testing of Homo sapiens-Helicobacter pylori Coevolution. Microorganisms 2021; 9 DOI: 10.3390/microorganisms9020240

53 Herrera R, Heise K, Acevedo J, Cook P, Gonzalez C, Gahona J, Cortés R, Collado L, Beltrán ME, Cikutovic M, Gonzalez P, Murillo R, Lema M, Megraud F, Hernandez ML, Barbier S, Park JY, Ferrerio C. ENIGMA Chile study group. Regional variations in Helicobacter pylori infection, gastric atrophy and gastric cancer risk: The ENIGMA study in Chile. PLoS One 2020; 15: e0237515 DOI: 10.1371/journal.pone.0237515

54 Oster P, Vaillant L, Riva E, McMillan B, Begka C, Trumpeter C, Richard C, Leblond MM, Messaoudene M, Machremi E, Limagne E, Ghihringhelli F, Routy B, Verdel G, Velin D. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut 2021 [PMID: 34253574 DOI: 10.1136/gutjnl-2020-323392]

55 Zhao Y, Li Y, Hu J, Wang X, Ren M, Lu G, Lu X, Zhang D, He S. The Effect of Helicobacter pylori Eradication in Patients with Gastrosophageal Reflux Disease: A Meta-Analysis of Randomized Controlled Studies. Dig Dis 2020; 38: 261-268 [PMID: 32396819 DOI: 10.1159/000504806]
Sitkin S et al. GI microbiome and H. pylori

56 Nei T, Hagiwara J, Takiguchi T, Yokobori S, Shiie K, Yokota H, Senoh M, Kato H. Fatal fulminant Clostridoides difficile colitis caused by Helicobacter pylori eradication therapy; a case report. J Infect Chemother 2020; 26: 305-308 [PMID: 31822448 DOI: 10.1016/j.jiac.2019.10.021]

57 Tanaka K, Fujiya M, Sakatani A, Fujibayashi S, Nomura Y, Ueno N, Kashima S, Goto T, Sasajima J, Moriichi K, Okumura T. Second-line therapy for Helicobacter pylori eradication causing antibiotic-associated hemorrhagic colitis. Ann Clin Microbiol Antimicrob 2017; 16: 54 [PMID: 28806959 DOI: 10.1186/s12941-017-0230-0]

58 Franceschi F, Cazzato A, Nista EC, Scarpellini E, Roccarina D, Gigante G, Gasparrini G, Gasparrini A. Role of probiotics in patients with Helicobacter pylori infection. Helicobacter 2007; 12 Suppl 2: 59-63 [PMID: 17991178 DOI: 10.1111/j.1523-5378.2007.00565.x]

59 Iarovenko II, Golofeyskii Vl, Sitkin SI. The new possibilities for improving peptic ulcer therapy with the use of probiotic drugs. Voen Med Zh 2007; 328: 17-22 [PMID: 17580472]

60 Goderska K, Agudo Pena S, Alarcon T. Helicobacter pylori treatment: antibiotics or probiotics. Appl Microbiol Biotechnol 2018; 102: 1-7 [PMID: 29075827 DOI: 10.1007/s00253-017-8535-7]

61 Wu L, Wang Z, Sun G, Peng L, Lu Z, Yan B, Huang K, Yang Y. Effects of anti-H. pylori triple therapy and a probiotic complex on intestinal microbiota in duodenal ulcer. Sci Rep 2019; 9: 12874 [PMID: 31492912 DOI: 10.1038/s41598-019-49415-3]

62 Butorova Li, Ardatskaya MD, Osadchuk MA, Kadinikova NG, Lukianova EI, Plavnik RG, Sayutina EV, Topchiy TB, Tuayevo EM. [Comparison of clinical-metabolic efficacy of pre- and probiotics in the conducted optimized protocols of eradication therapy of Helicobacter pylori infection]. Ter Arkh 2020; 92: 64-69 [PMID: 32598700 DOI: 10.26442/00403660.2020.04.000647]

63 Cuomo P, Papaiannii M, Fulgione A, Guerra F, Capparelli R, Medaglia C. An Innovative Approach to Control H. pylori-Induced Persistent Inflammation and Colonization. Microorganisms 2020; 8 [PMID: 32785664 DOI: 10.3390/microorganisms8081214]

64 Suvorov A, Karaseva A, Kotyleva M, Kondratenko Y, Lavrenova N, Korobeinikov A, Kozyrev P, Kramskaya T, Leonieva G, Kudryavtsev I, Guo D, Lapidas A, Ermolenko E. Autoprobiotics as an Approach for Restoration of Personalised Microbiota. Front Microbiol 2018; 9: 1869 [PMID: 30258408 DOI: 10.3389/fmicb.2018.01869]

65 Li Y, Li X, Tan Z. An overview of traditional Chinese medicine therapy for Helicobacter pylori-related gastritis. Helicobacter 2021; 26: e12799 [PMID: 33765344 DOI: 10.1111/hel.12799]
