Packing Directed Circuits Quarter-Integrally

Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge

University of Warsaw, Poland
&
Charles University, Prague, Czech Republic

European Symposia on Algorithms 2019
Munich, Germany
Section 1

Introduction
Erdős-Pósa

Erdős-Pósa Theorem 65’

Every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size $O(k \log k)$.
Erdős-Pósa

Erdős-Pósa Theorem 65’

Every undirected graph where $\text{cp}(G) < k$ has $\text{fvs}(G) \leq O(k \log k)$.

- Cycle Packing $\text{cp}(G) < k$: does not admit k vertex-disjoint cycles.
- Feedback Vertex Set $\text{fvs}(G) \leq O(k \log k)$: a set of vertices hitting all cycles in the graph is at most $O(k \log k)$.
Erdős-Pósa

Erdős-Pósa Theorem 65’

Every undirected graph where \(cp(G) < k \) has \(fvs(G) \leq \mathcal{O}(k \log k) \).

Younger’s Conjecture 73’

Every directed graph without a family of \(k \) vertex-disjoint directed cycles contains a directed feedback vertex set of size at most \(f(k) \).
Erdős-Pósa

Erdős-Pósa Theorem 65’

Every undirected graph where \(cp(G) < k \) has \(fvs(G) \leq O(k \log k) \).

Theorem (Reed, Robertson, Seymour, Thomas 96’ Combinatorica)

Every \textit{directed} graph without a family of \(k \) vertex-disjoint cycles contains a feedback vertex set of size at most \(f(k) \).
Erdős-Pósa

Erdős-Pósa Theorem 65’
Every undirected graph where \(cp(G) < k \) has \(fvs(G) \leq O(k \log k) \).

Theorem (Reed, Robertson, Seymour, Thomas 96’ Combinatorica)
Every directed graph without a family of \(k \) vertex-disjoint cycles contains a feedback vertex set of size at most \(f(k) \).

\[f(k) \text{ (the dependency) is not elementary.} \]
Main Result: Quarter-integral Erdős-Pósa

Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

If a directed graph G does not contain a family of k directed cycles such that every vertex in G is contained in at most four cycles, then there exists a directed feedback vertex set in G of size $O(k^4)$.

\[\text{If a directed graph } G \text{ does not contain a family of } k \text{ directed cycles such that every vertex in } G \text{ is contained in at most four cycles, then there exists a directed feedback vertex set in } G \text{ of size } O(k^4). \]
Main Result: Quarter-integral Erdős-Pósa

Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

If a directed graph G does not contain a family of k quatre-integral cycles, then there exists a feedback vertex set in G of size $O(k^4)$.

\[\text{\includegraphics{figure.png}}\]
Directed Tree-Width Relation

Observation

For a directed graph G it holds that $\text{fvs}(G) \leq (\text{dtw}(G) + 1) \text{cp}(G)$.
Directed Tree-Width Relation

Observation

For a directed graph G it holds that $fvs(G) \leq (dtw(G) + 1) \cdot cp(G)$.

$+$
Directed Tree-Width Relation

Observation
For a directed graph G it holds that $\text{fvs}(G) \leq (\text{dtw}(G) + 1) \cdot \text{cp}(G)$.

Theorem dtw (TM, Muzi, Pilipczuk, Rzążewski, Sorge)
If a directed graph G does not contain a family of k quatre-integral cycles then $\text{dtw}(G) = O(k^3)$.
Directed Tree-Width Relation

Observation
For a directed graph G it holds that $fvs(G) \leq (dtw(G) + 1) cp(G)$.

Theorem dtw (TM, Muzi, Pilipczuk, Rzążewski, Sorge)
If a directed graph G does not contain a family of k quatre-integral cycles then $dtw(G) = O(k^3)$.
Directed Tree-Width Relation

Observation
For a directed graph G it holds that $\text{fvs}(G) \leq (\text{dtw}(G) + 1) \text{cp}(G)$.

Theorem dtw (TM, Muzi, Pilipczuk, Rzążewski, Sorge)
If a directed graph G does not contain a family of k quatre-integral cycles then $\text{dtw}(G) = \mathcal{O}(k^3)$.

Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)
If a directed graph G does not contain a family of k quatre-integral cycles, then there exists a feedback vertex set in G of size $\mathcal{O}(k^4)$.
General result

Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

If a directed graph G does not contain a family of k quatre-integral cycles then $\text{dtw}(G) = O(k^3)$.
General result

Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

If a directed graph G does not contain a family of k quatre-integral cycles then $\text{dtw}(G) = O(k^3)$.

General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a and b, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot b^8 \cdot \log^2(ab)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least b.
General result

General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a and b, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot b^8 \cdot \log^2(ab)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least b.
General result

Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

If a directed graph G does not contain a family of k quatre-integral cycles then $\text{dtw}(G) = O(k^3)$.

General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a and b, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot b^8 \cdot \log^2(ab)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least b.

General result

Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

If a directed graph G does not contain a family of k quatre-integral cycles then $\text{dtw}(G) = \mathcal{O}(k^3)$.

General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot 2^8 \cdot \log^2(2a)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least 2.
General result

General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot 2^8 \cdot \log^2(2a)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least 2.

General Theorem implies G does not contain a family of k quatre-integral cycles then $\text{dtw}(G) = \mathcal{O}(k^6 \log(k))$.
General result

General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a and b, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot b^8 \cdot \log^2(ab)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least b.
General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a and b, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot b^8 \cdot \log^2(ab)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least b.

(Chekuri, Chuzhoy, STOC 2013)

There exists an absolute constant c s.t., for every pair of positive integers a and b, and every directed graph G of directed treewidth at least $c \cdot \min(ab^2, a^3b)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least b.
Section 2

Tools
Definitions

Linkages

A linkage from A to B in G is a set \mathcal{L} of $|A|$ pairwise vertex-disjoint paths in G, each with a starting vertex in A and ending vertex in B.

Introduction

Tools

Proof Sketch

Conclusions

Definitions

Linkages

A **linkage** from A to B in G is a set \mathcal{L} of $|A|$ pairwise vertex-disjoint paths in G, each with a starting vertex in A and ending vertex in B.
Definitions

Linkages

A linkage from A to B in G is a set \mathcal{L} of $|A|$ pairwise vertex-disjoint paths in G, each with a starting vertex in A and ending vertex in B.
Definitions

Linkages

A linkage from \(A \) to \(B \) in \(G \) is a set \(\mathcal{L} \) of \(|A|\) pairwise vertex-disjoint paths in \(G \), each with a starting vertex in \(A \) and ending vertex in \(B \).

Well-linkedness

A vertex set \(W \subseteq V(G) \) is well-linked if for all subsets \(A, B \subseteq W \) with \(|A| = |B|\) there is a linkage \(\mathcal{L} \) of order \(|A|\) from \(A \) to \(B \) in \(G \setminus (W \setminus (A \cup B)) \).
Section 3

Proof Sketch
General Theorem

General Theorem (TM, Muzi, Pilipczuk, Rzążewski, Sorge)

There exists an absolute constant c s.t., for every pair of positive integers a and b, and every directed graph G of directed treewidth at least $c \cdot a^6 \cdot b^8 \cdot \log^2(ab)$, there are directed graphs G_1, G_2, \ldots, G_a s.t.:

1. each G_i is a subgraph of G,
2. each vertex of G belongs to at most four graphs G_i, and
3. each graph G_i has directed treewidth at least b.
Lemma (Kawarabayashi, Kreuzer 15’ STOC)

\[\exists c \text{ s.t., for all } \alpha, \beta \in \mathbb{N} \text{ and } G \]
a digraph of \(\text{dtw}(G) \geq c \cdot \alpha^2 \beta^2 \). Then:
- a set of \(\alpha \) vertex-disjoint paths \(P_1, \ldots, P_\alpha \),
- sets \(A_i, B_i \subseteq V(P_i) \), where \(A_i \) appears before \(B_i \) on \(P_i \), \(|A_i|, |B_i| = \beta \),
- \(\bigcup_{i=1}^\alpha A_i \cup B_i \) is well-linked.
Lemma (Kawarabayashi, Kreuzer 15’ STOC)

\[\exists c \text{ s.t., for all } \alpha, \beta \in \mathbb{N} \text{ and } G \text{ a digraph of } \]
\[\text{dtw}(G) \geq c \cdot \alpha^2 \beta^2. \text{ Then:} \]

- a set of \(\alpha \) vertex-disjoint paths \(P_1, \ldots, P_\alpha \),
- sets \(A_i, B_i \subseteq V(P_i) \), where \(A_i \) appears before \(B_i \) on \(P_i \), \(|A_i|, |B_i| = \beta \),
- \(\bigcup_{i=1}^{\alpha} A_i \cup B_i \) is well-linked.
Lemma (Kawarabayashi, Kreuzer 15’ STOC)

∃c s.t., for all α, β ∈ N and G a digraph of

dtw(G) ≥ c · α²β². Then:
- a set of α vertex-disjoint paths P₁, ..., Pₐ,
- sets Aᵢ, Bᵢ ⊆ V(Pᵢ), where Aᵢ appears before
 Bᵢ on Pᵢ, |Aᵢ|, |Bᵢ| = β,
- \(\bigcup_{i=1}^{\alpha} Aᵢ \cup Bᵢ \) is well-linked.
Lemma (Kawarabayashi, Kreuzer 15’ STOC)

\[\exists c \text{ s.t., for all } \alpha, \beta \in \mathbb{N} \text{ and } G \text{ a digraph of } \]
\[\text{dtw}(G) \geq c \cdot \alpha^2 \beta^2. \text{ Then:} \]

- a set of \(\alpha \) vertex-disjoint paths \(P_1, \ldots, P_\alpha \),
- sets \(A_i, B_i \subseteq V(P_i) \), where \(A_i \) appears before \(B_i \) on \(P_i \), \(|A_i|, |B_i| = \beta \),
- \(\bigcup_{i=1}^{\alpha} A_i \cup B_i \) is well-linked.
Lemma (Kawarabayashi, Kreuzer 15’ STOC)

∃c s.t., for all α, β ∈ N and G a digraph of
\[\text{dtw}(G) \geq c \cdot \alpha^2 \beta^2. \]

Then:
- a set of \(\alpha \) vertex-disjoint paths \(P_1, \ldots, P_\alpha \),
- sets \(A_i, B_i \subseteq V(P_i) \), where \(A_i \) appears before \(B_i \) on \(P_i \), \(|A_i|, |B_i| = \beta\),
- \(\bigcup_{i=1}^{\alpha} A_i \cup B_i \) is well-linked.
Intersection Graph

For linkages \mathcal{L} and \mathcal{K}, let us define a new bipartite graph $I(\mathcal{L}, \mathcal{K})$ with bipartition classes \mathcal{L} and \mathcal{K}...

We have an edge between L_i and K_j if they have a common vertex.
Two Cases

(i) for all i, j, i', j' the graph $I(\mathcal{L}_{i,j}, \mathcal{L}_{i',j'})$ is d-degenerate.

(ii) there exist i, j, i', j', for which the graph $I(\mathcal{L}_{i,j}, \mathcal{L}_{i',j'})$ is not d-degenerate.
Two Cases

(i) for all \(i, j, i', j' \) the graph \(I(\mathcal{L}_{i,j}, \mathcal{L}_{i',j'}) \) is \(d \)-degenerate.

(ii) there exist \(i, j, i', j' \), for which the graph \(I(\mathcal{L}_{i,j}, \mathcal{L}_{i',j'}) \) is not \(d \)-degenerate.
Two Cases

(i) for all i, j, i', j' the graph $I(L_{i,j}, L_{i',j'})$ is d-degenerate.
(ii) there exist i, j, i', j', for which the graph $I(L_{i,j}, L_{i',j'})$ is not d-degenerate.

First Case: Combination of Results

- Lemma (Reed, Wood 12’ EurJC)
- Lemma (Hatzel, Kawarabayashi, Kreutzer 19’ SODA)
Second Case

there exist i, j, i', j', for which the graph $I(L_{i,j}, L_{i',j'})$ is not d-degenerate.
Second Case

there exist \(\mathcal{L}, \mathcal{K} \), for which the graph \(I(\mathcal{L}, \mathcal{K}) \) is not \(d \)-degenerate.

Four Linkages

Consider the linkages \(\mathcal{L} \) and \(\mathcal{K} \) together with backlinkages \(\mathcal{L}^{\text{back}}, \mathcal{K}^{\text{back}} \).

Proof Plan

- Partitioning Lemma (will be shown)
- Enhanced and reproved Lemma (Hatzel, Kawarabayashi, Kreutzer 19')
Partitioning Lemma
Partitioning Lemma
Partitioning Lemma
Partitioning Lemma
Partitioning Lemma
Section 4

Conclusions
Conclusions

- Does high congestion mean better dependency between fvs and cp?
Conclusions

- Does high congestion mean better dependency between fvs and cp?
- Possible improvements of KK Lemma?

Lemma (Kawarabayashi, Kreuzer 15’ STOC)

∃c s.t., for all $\alpha, \beta \in N$ and G a digraph of $\text{dtw}(G) \geq c \cdot \alpha^2 \beta^2$. Then:

 - a set of α vertex-disjoint paths P_1, \ldots, P_α,

 - sets $A_i, B_i \subseteq V(P_i)$, where A_i appears before B_i on P_i,

 $|A_i| = |B_i| = \beta$,

 - $\bigcup_{i=1}^{\alpha} A_i \cup B_i$ is well-linked.
Conclusions

- Does high congestion mean better dependency between fvs and cp?
- Possible improvements of KK Lemma?
- Uses for the Partitioning Lemma?
Conclusions

- Does high congestion mean better dependency between fvs and cp?
- Possible improvements of KK Lemma?
- Uses for the Partitioning Lemma?

Thank you for your attention!