INTEGRABLE SPIN CHAINS
ASSOCIATED TO $\hat{sl}_q(n)$ and $\hat{sl}_{p,q}(n)$

J. Abad and M. Rios

Departamento de Física Teórica, Facultad de Ciencias,
Universidad de Zaragoza, 50009 Zaragoza, Spain

ABSTRACT

The Hoft structure of the central extension of the $U_q\left(\hat{sl}(n)\right)$ algebra is considered. The intertwine matrix induces new integrable spin chain models. We show the relation of these models and the biparametric spin chain $\hat{sl}_{p,q}(n)$ models. The cases $n = 2$ are $n = 3$ are discussed and for $n = 2$ we obtain the model of Dasgupta and Chowdhury. The case $n = 3$ is solved with nested Bethe ansatz method and it is showed the dependence of the Bethe equations in the second parameter introduced.
1. Introduction

The search for integrable models is an important problem and has deserved great attention over the two last decades. The isotropic and anisotropic spin chains of Heisenberg occupy a central position in such studies. The mathematical structure arising in these relatively simple models is astonishingly rich. The Yan Baxter equation (YBE), based on the original treatment of Baxter and the quantum inverse formulation due to Faddeev and collaborators [1] are the key to find new solvable models.

The quantum groups [2] constitute an elegant formalism to obtain, in a consistent mathematical way, objects fulfilling the YBE and therefore, providing new solvable spin chains [3].

In this paper, we find a set of integrable models by considering a central extension of the algebra $U_q\left(\hat{sl}(n)\right)$, that obviously introduce a suitable definition of the coproduct on its Hopf algebra. The models so obtained, are related with the models derived from the coloured braid group representations [4] and they are the two parameter deformed quantum groups $\hat{sl}_{p,q}(n)$ [5, 6].

The present paper is organized as follows. In the next section we develop the formalism and show the relations with other models in the cases $n = 2$ and 3.

In third section, the model with $n = 3$ is solved by the nested Bethe ansatz (NBA) method. The Bethe equations obtained, show the dependence on the second parameter that will introduced a new degree of freedom in its solutions compared with the obtained with $\hat{sl}_p(n)$ [7, 8].
2. Formulation

Consider $U_q(\widehat{sl(n)})$ the universal covering of the affine algebra and let its
generators be $\{E_i, F_i, H_i\}_{i=0}^{n-1}$. This algebra has a central extension $\{Z\}$ whose
elements are multiples of the identity, $Z = \lambda I$, λ being a parameter. Then, if q
is not a root of the unity, the elements of the fundamental representation will be
characterized by two parameters, λ and the affine parameter of the algebra x [9].

The $U_q(\widehat{sl(n)})$ with the central extension has a Hopf algebra. The coproduct
is not uniquely determinate, then we can define one coproduct Δ,

$$\Delta(E_i) = Z K_i \otimes E_i + E_i \otimes K_i^{-1}, \quad i = 1, \cdots, n-1, \quad (2.1a)$$
$$\Delta(F_i) = Z^{-1} k_i \otimes F_i + F_i \otimes K_i^{-1}, \quad i = 1, \cdots, n-1, \quad (2.1b)$$
$$\Delta(E_0) = Z^{-(n-1)} K_0 \otimes E_0 + E_0 \otimes K_0^{-1}, \quad (2.1c)$$
$$\Delta(F_0) = Z^{n-1} K_0 \otimes F_0 + F_0 \otimes K_0^{-1}, \quad (2.1d)$$
$$\Delta(K_i^{\pm 1}) = K_i^{\pm 1} \otimes K_i^{\pm 1}, \quad i = 0, \cdots, n-1, \quad (2.1e)$$
$$\Delta(Z) = Z \otimes Z, \quad (2.1f)$$

and its coproduct symmetric Δ',

$$\Delta'(E_i) = K_i^{-1} \otimes E_i + E_i \otimes Z K_i, \quad (2.2a)$$
$$\Delta'(F_i) = K_i^{-1} \otimes F_i + F_i \otimes Z^{-1} K_i^{-1}, \quad (2.2b)$$
$$\Delta'(E_0) = K_0^{-1} \otimes E_0 + E_0 \otimes Z^{-(n-1)} K_0^{-1}, \quad (2.2c)$$
$$\Delta'(F_0) = K_0^{-1} \otimes F_0 + F_0 \otimes Z^{n-1} K_0^{-1}, \quad (2.2d)$$
$$\Delta'(K_i^{\pm 1}) = K_i^{\pm 1} \otimes K_i^{\pm 1}, \quad (2.2e)$$
$$\Delta'(Z) = Z \otimes Z. \quad (2.2f)$$

Both coproducts must be related by a transformation matrix $R_{1,2}$ such that

$$R_{1,2} \cdot \Delta_{(x,\lambda) \otimes (y,\mu)}(a) = \Delta'_{(x,\lambda) \otimes (y,\mu)}(a) \cdot R_{1,2}, \quad \forall a \in U_q(\widehat{sl(n)}), \quad (2.3)$$
where R verifies the Yang-Baxter equation

$$R_{1,2} \cdot R_{1,3} \cdot R_{2,3} = R_{2,3} \cdot R_{1,3} \cdot R_{1,2}. \quad (2.4)$$

that is the key to build an integrable model [10].

The solution, that we have found to eq. (2.3), is the form

$$R_{1,2}(x, y, \lambda, \mu) = \left(y^n - q^2 x^n \right) \sum_{i=1}^{n} \lambda^{i-1} \mu^{n-i} e_{i,i} \otimes e_{i,i} + q(y^n - x^n) \sum_{i,j=1 \atop i \neq j}^{n} \lambda^{i-1} \mu^{n-i} e_{i,i} \otimes e_{j,j} + (1 - q^2) \sum_{i,j=1 \atop i < j}^{n} \left(\lambda^{i-1} \mu^{n-i} x^{i-j} y^{i-j} e_{i,j} \otimes e_{j,i} + \lambda^{j-1} \mu^{n-j} x^{i-j} y^{i-j} e_{j,i} \otimes e_{i,j} \right). \quad (2.5)$$

Associated to every solution of YBE acting on the spaces $C^n_1 \otimes C^n_2$, we can find a solvable model [8]. So, we introduce an one-dimensional lattice with a vector space $V_r \equiv C^n$ in every site. Now, we define an operator per site equal to $R_{1,2}(x, y, \lambda, \lambda_0)$ where the first space C^n_1 is an auxiliary space and the second space is the V_r. We call this operator

$$L_r(u, \lambda, \lambda_0) = \sinh \left(\frac{n}{2} u + \gamma \right) \sum_{i=1}^{n} \left(\frac{\lambda}{\lambda_0} \right)^i e_{i,i} \otimes e_{i,i} + \sinh \left(\frac{n}{2} u \right) \sum_{i,j=1 \atop i \neq j}^{n} \left(\frac{\lambda^j}{\lambda_0} \right)^i e_{i,i} \otimes e_{j,j} + \sinh (\gamma) \sum_{i,j=1 \atop i \neq j}^{n} \exp \left[(i - j - \frac{n}{2} \text{sign} (i - j)) u \right] \left(\frac{\lambda}{\lambda_0} \right)^i e_{i,j} \otimes e_{j,i}. \quad (2.6)$$

where we have made the substitutions

$$\frac{y}{x} = \exp (u), \quad q = \exp (-\gamma). \quad (2.7)$$

The YBE can be written now as

$$R(u-v, \lambda, \mu) \cdot (L_r(u, \lambda, \lambda_0) \otimes L_r(v, \mu, \lambda_0)) = (L_r(v, \mu, \lambda_0) \otimes L_r(u, \lambda, \lambda_0)) \cdot R(u-v, \lambda, \mu). \quad (2.8)$$

where the \otimes product is in the site space and the \cdot product is in the $A \otimes A$ tensorial space. The operator R in (2.8) is obtained from $R_{1,2}$ in (2.5) by interchanging
the indices \(j \) and \(m \) in every product \(e_{i,j} \otimes e_{i,m} \) and the same substitution on its accompanying coefficient. So

\[
R(u, \lambda, \mu) = \sinh (\frac{n}{2} u + \gamma) \sum_{i=1}^{n} \left(\frac{\lambda}{\mu} \right)^{i} e_{i,i} \otimes e_{i,i} + \sinh (\frac{n}{2} u) \sum_{i,j=1, i \neq j}^{n} \left(\frac{\lambda i}{\mu j} \right) e_{i,j} \otimes e_{j,i}
\]

\[
+ \sinh (\gamma) \sum_{i,j=1, i \neq j}^{n} \exp[(j - i - \frac{n}{2} \text{sign}(j - i))u] \left(\frac{\lambda}{\mu} \right)^{j} e_{i,i} \otimes e_{j,j},
\]

(2.9)

With the local operator \(L_r \), we build the monodromy matrix \(T(u, \lambda, \lambda_0) \) defined on the auxiliary space \(A \), whose components are operators on the configuration space, i.e. the tensorial product of the site spaces of the lattice

\[
T(u, \lambda, \lambda_0) \equiv T(u, \lambda) = L_N(u, \lambda, \lambda_0) \cdot L_{(N-1)} \cdots L_1(u, \lambda, \lambda_0),
\]

(2.10)

where the \(\cdot \) product is understood as before in the auxiliary space.

The monodromy matrix \(T \) enjoys most of the properties of \(L_r \). The most important is a YBE similar to (2.7)

\[
R(u-v, \lambda, \mu) \cdot (T(u, \lambda, \lambda_0) \otimes T(v, \mu, \lambda_0)) = (T(v, \mu, \lambda_0) \otimes T(u, \lambda, \lambda_0)) \cdot R(u-v, \lambda, \mu).
\]

(2.11)

A consequence of (2.11) is the existence of a commuting family of transfer matrices \(F \), given by the expression

\[
F(u, \lambda, \mu) = \text{trace}_{aux} T(u, \lambda, \mu),
\]

(2.12)

for which

\[
[F(u, \lambda, \lambda_0), F(v, \mu, \lambda_0)] = 0,
\]

(2.13)

as can be proved by taking the trace of (2.11). This implies that differentiating \(F \) respect his parameters for certain values of them, we obtain a set of commuting
operators. In particular the hamiltonian, a two next neighbors interacting operator, is related to the first logarithmic derivative of F. So, we can take the hamiltonian as

$$H = \frac{2}{n} \sinh \gamma \frac{\partial}{\partial u} \ln(F(u)) \bigg|_{u=0}^{\lambda=\lambda_0} - \frac{N}{n} \cosh \gamma,$$ \hspace{1cm} (2.14)

The derivative respect to λ

$$Q = -\lambda_0 \frac{\partial}{\partial \lambda} \ln(F) \bigg|_{u=0}^{\lambda=\lambda_0} + \left(\frac{n+1}{2}\right) N,$$ \hspace{1cm} (2.15)

will be a conserved charge. These operators can be expressed as

$$H = \sum_{r=1}^{N-1} h_{r,r+1},$$ \hspace{1cm} (2.16a)

$$Q = \sum_{r=1}^{N-1} k_{r,r+1},$$ \hspace{1cm} (2.16b)

with

$$h_{r,r+1} = -\frac{n-1}{n} \cosh(\gamma) \sum_{i=1}^{n} e_{i,i}^r \otimes e_{i,i}^{r+1} + \sum_{i,j=1}^{n} \lambda_0 (i-j) e_{i,j}^r \otimes e_{j,i}^{r+1}$$

$$+ \sum_{i,j=1}^{n} \left(\frac{2(j-i)}{n} - \text{sign}(j-i)\right) \frac{\cosh(\gamma)}{n} e_{i,i}^r \otimes e_{j,j}^{r+1}. \hspace{1cm} (2.17)$$

and

$$k_{r,r+1} = -\sum_{i=1}^{n} i e_{i,i}^r \otimes e_{i,i}^{r+1} + \sum_{i,j=1}^{n} j e_{i,j}^r \otimes e_{j,i}^{r+1} + \frac{n+1}{2} \sum_{i,j=1}^{n} e_{i,i}^r \otimes e_{j,j}^{r+1}$$

$$= \sum_{i,j=1}^{n} \left(\frac{n+1}{2} - j\right) e_{i,i}^r \otimes e_{j,j}^{r+1} = I^r \otimes S_z^{(r+1)}. \hspace{1cm} (2.18)$$

The last expression shows that k is a local operator, the third component of the spin $su(2)$. The operator Q, in view of (2.16), is the sum of the these components and it is a conserved quantity.
If we specify for \(n = 2 \) and \(\lambda = \lambda_0 = \exp i\delta \), we obtain

\[
H_{sl(2)} = \frac{1}{2} \sum_{i=1}^{N} \left(\cos \delta \left(\sigma_x^i \sigma_x^{i+1} + \sigma_y^i \sigma_y^{i+1} \right) + \cosh \gamma \sigma_z^i \sigma_z^{i+1} + \sin \delta \left(\sigma_y^i \sigma_x^{i+1} - \sigma_x^i \sigma_y^{i+1} \right) \right),
\]

(2.19)

where \(\sigma \) are the Pauli matrices.

For \(n = 3 \) the Hamiltonian obtained is

\[
H_{sl(3)} = \frac{1}{2} \sum_{i=1}^{N} \left(\cos \delta \left(\lambda_1^i \lambda_1^{i+1} + \lambda_2^i \lambda_2^{i+1} + \lambda_6^i \lambda_6^{i+1} + \lambda_7^i \lambda_7^{i+1} \right) + \sin \delta \left(\lambda_2^i \lambda_1^{i+1} - \lambda_1^i \lambda_2^{i+1} + \lambda_7^i \lambda_6^{i+1} - \lambda_6^i \lambda_7^{i+1} \right) + \cos (2\delta) \left(\lambda_4^i \lambda_4^{i+1} + \lambda_5^i \lambda_5^{i+1} \right) + \sin (2\delta) \left(\lambda_5^i \lambda_4^{i+1} - \lambda_4^i \lambda_5^{i+1} \right) + \cosh \gamma \left(\lambda_3^i \lambda_3^{i+1} + \lambda_8^i \lambda_8^{i+1} \right) + \frac{\sinh \gamma}{\sqrt{3}} \left(\lambda_8^i \lambda_3^{i+1} - \lambda_3^i \lambda_8^{i+1} \right) \right),
\]

(2.20)

where we have used the same substitutions that before and \(\lambda \) are the Gell-Mann matrices.

For \(\delta = 0 \) these Hamiltonians correspond to the XXZ models and their generalizations to \(sl(n) \) [8].

A more specific model is obtained if we do the substitutions

\[
\exp (-\gamma) = \sqrt{pq}, \quad \exp (i\delta) = \sqrt{\frac{p}{q}}.
\]

(2.21)

we find in this way the models obtained from \(SU_{p,q}(n) \). Since that for \(n = 2 \) we obtain this model of Dasgupta and Chowdhury [5], there must be a relation between \(U_r(sl(2)) \) and \(U_{p,q}(sl(2)) \). In fact, the set \(\{e, f, h^{\pm 1} \equiv r^{\pm \frac{1}{2}}\} \) of generators of \(U_r(sl(2)) \) and the set \(\{\bar{e}, \bar{f}, q^{\pm \frac{1}{2}}, p^{\pm \frac{1}{2}}\} \) of generators of \(U_{p,q}(sl(2)) \) are \(\{\bar{e}, \bar{f}, q^{\pm \frac{1}{2}}, p^{\pm \frac{1}{2}}\} \), that verify respectively the equations

\[
[e, f] = \frac{r^h - r^{-h}}{r - r^{-1}}, \quad [\bar{e}, \bar{f}]_{(\frac{q}{p})^{\frac{1}{2}}} \equiv \bar{e} \bar{f} - pq^{-1} \bar{f} \bar{e} = \frac{q^h - p^{-h}}{q - p^{-1}},
\]

(2.22)
are related to each other by

\[\tilde{e} = \left(\frac{q}{p} \right)^{\frac{4}{n}} e, \quad \tilde{f} = \left(\frac{q}{p} \right)^{\frac{4}{n}} f. \] (2.23)

In this sense, the models we derived from the quantum group \(sl(n) \) with center include the model derived by Dasgupta and Chowdhury.

3. Bethe solutions in the \(n = 3 \) case

The usual method to solve these models is the algebraic Bethe ansatz proposed by Faddeev and his collaborators [1]. For a model with site space of \(n \) components, the method, known as nested Bethe ansatz [7, 8], is developed in \((n-1) \) steps, every one similar to the Bethe ansatz. In this section we are going to solve the case \(n = 3 \) and we will show the main features of the model. The generalization to higher values of \(n \) of the conserved magnitudes will follow immediately.

We start by specifying the monodromy operator (2.10) as

\[
T(u, \lambda) = T(u, \lambda, \lambda_0) = \begin{pmatrix}
A(u, \lambda) & B_2(u, \lambda) & B_3(u, \lambda) \\
C_2(u, \lambda) & D_{22}(u, \lambda) & D_{23}(u, \lambda) \\
C_3(u, \lambda) & D_{32}(u, \lambda) & D_{33}(u, \lambda)
\end{pmatrix}
\] (3.1)

The components are operators in the configuration space of the lattice. Considering

\[
B(u, \lambda) = \begin{pmatrix} B_2(u, \lambda) & B_3(u, \lambda) \end{pmatrix}, \quad D(u, \lambda) = \begin{pmatrix} D_{22}(u, \lambda) & D_{23}(u, \lambda) \\
D_{32}(u, \lambda) & D_{33}(u, \lambda)
\end{pmatrix},
\] (3.2)

the YBE (2.8) gives the relations

\[
B(u, \lambda) \otimes B(v, \mu) = \left[B(v, \mu) \otimes B(u, \lambda) \right] \cdot R^{(2)}(u - v, \lambda, \mu),
\] (3.3a)
\[A(u, \lambda)B(v, \mu) = g(v - u)B(v, \mu)A(u, \lambda)s(\lambda) \]
\[- B(u, \lambda))A(v, \mu) \cdot \tilde{r}^{(2)}(v - u)s(\lambda), \]
\[D(u, \lambda) \otimes B(v, \mu) = g(u - v)B(v, \mu) \otimes s(\mu)(D(u, \lambda) \cdot R^{(2)}(u - v, \lambda, \mu)) \]
\[- B(u, \lambda) \otimes s(\lambda)(r^{(2)}(u - v) \cdot D(v, \mu)), \]
(3.3b)
\[D(u, \lambda) \otimes B(v, \mu) = g(u - v)B(v, \mu) \otimes s(\mu)(D(u, \lambda) \cdot R^{(2)}(u - v, \lambda, \mu)) \]
(3.3c)

\[g \text{ and } h_{\pm} \text{ being the functions} \]
\[g(\theta) = \frac{\sinh(\frac{\theta}{2} + \gamma)}{\sinh(\frac{\theta}{2})}, \quad h_{\pm} = \frac{\sinh(\gamma)e^{\pm \theta/2}}{\sinh(\frac{\theta}{2})}, \]
(3.4)

and the matrices
\[s(x) = \begin{pmatrix} x & 0 \\ 0 & x^2 \end{pmatrix}, \quad r^{(2)}(\theta) = \begin{pmatrix} h_-(\theta) & 0 \\ 0 & h_+(\theta) \end{pmatrix}, \quad \tilde{r}^{(2)}(u) = \begin{pmatrix} h_+(\theta) & 0 \\ 0 & h_-(\theta) \end{pmatrix}, \]

\[R^{(2)}(u, \lambda, \mu) = \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & \frac{h_-(u)}{g(u)} \frac{\lambda^2}{\mu} & \frac{1}{g(u)} \frac{\lambda}{\mu} & 0 \\ 0 & \frac{1}{g(u)} \frac{\lambda^2}{\mu} & \frac{h_+(u)}{g(u)} \frac{\lambda}{\mu} & 0 \\ 0 & 0 & 0 & \frac{\lambda^2}{\mu^2} \end{pmatrix}. \]
(3.5)

The state
\[\| 1 \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_N \otimes \cdots \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}_1. \]
(3.6)

is an eigenstate of the \(A \) and \(D_{i,j} \) components of \(T \), i.e.
\[A(u, \lambda) \| 1 \rangle = \text{[sinh}(\frac{3}{2} u + \gamma) \frac{\lambda}{\lambda_0}]^N \| 1 \rangle = [a(u, \lambda)]^N \| 1 \rangle \]
(3.7a)
\[D_{i,j}(u, \lambda) \| 1 \rangle = \text{[sinh}(\frac{3}{2} u + \gamma) \frac{\lambda}{\lambda_0}]^N \delta_{i,j} \| 1 \rangle = [d_{i,j}(u, \lambda)]^N \| 1 \rangle \]
(3.7b)
Now, with the help of the relations (3.3), we look for solutions of the equation

\[F(u, \lambda)\Psi_{\lambda_0}(\mu_1, \cdots, \mu_r) = \Lambda(u, \lambda, \lambda_0, \mu_1, \cdots, \mu_r)\Psi_{\lambda_0}(\mu_1, \cdots, \mu_r), \tag{3.8} \]

of the form

\[\Psi_{\lambda_0}(\vec{\mu}) = \Psi_{\lambda_0}(\mu_1, \cdots, \mu_r) = X_{i_1, \cdots, i_r}B_{i_1}(\mu_1) \otimes \cdots \otimes B_{i_r}(\mu_r) \parallel 1 >, \tag{3.9} \]

To begin with, since \(\parallel 1 > \) is eigenvector of \(A(u) \) and \(D_{i,j} \), we apply these operators on \(\Psi \) and, by using the commutation relations (3.3), we push the operators \(A \) or \(D_{i,j} \) through the \(B \) to the right. When either \(A \) or \(D \) reaches \(\parallel 1 > \) they reproduce this vector again. Since the commutation relations have two terms, this procedure generates a lot of terms. Some of them have the same order of the arguments in the \(B \) product; we call them wanted terms. The others have some \(B(\mu_j\lambda_0) \) replaced by \(B(u, \lambda_0) \) and we call them unwanted terms.

When we apply \(F = A + D_{2,2} + D_{3,3} \) to \(\Psi(\mu_1, \cdots, \mu_r) \), we collect the unwanted terms and require them to have a vanishing sum. This condition gives us a set of equations for the parameters. The sum of the wanted terms will be required to be proportional to \(\Psi \), providing us with the second part of equation (3.8).

So, the application of \(F(u, \lambda) \) on \(\Psi_{\lambda_0}(\vec{\mu}) \) gives the wanted term

\[
\begin{align*}
&\left[a(u, \lambda)^N \prod_{j=1}^r g(\mu_j - u)B_{j_1}(\mu_1, \lambda_0) \otimes \cdots \otimes B_{j_r}(\mu_r, \lambda_0)S^{(r)}(\lambda)X_{j_1, \cdots, j_r} \\
&\quad + \prod_{j=1}^r g(u - \mu_j)B_{j_1}(\mu_1, \lambda_0) \otimes \cdots \otimes B_{j_r}(\mu_r, \lambda_0)F^{(r)}(u, \vec{\mu}, \lambda, \lambda_0)X_{j_1, \cdots, j_r} \right] \parallel 1 >.
\end{align*}
\tag{3.10}
\]

being

\[S^{(r)}(\lambda) = s(\lambda) \otimes \cdots \otimes s(\lambda) \]

\(r \)-times \tag{3.11a}
\[F_{(2)}^{(r)}(u, \bar{\mu}, \lambda, \lambda_0) = \lambda_0^r d_{22}^N(u, \lambda) A^{(2)}(u, \bar{\mu}, \lambda) + \lambda_0^{2r} d_{33}^N(u, \lambda) D^{(2)}(u, \bar{\mu}, \lambda) \]

Now, we impose the cancelation of the unwanted terms. The operators \(A^{(2)}\) and \(D^{(2)}\) are components of

\[
T_{(2)}(u, \bar{\mu}, \lambda, \lambda_0) \overset{i_1, i_2, \cdots, i_r}{\Longrightarrow} R_{(2)} \overset{a_1, \cdots, a_r}{\Longrightarrow} (u - \mu_1, \lambda, \lambda_0),
\]

a 2 \times 2 matrix in the components acting on the second and third components of the auxiliary space, that can be written

\[
T_{(2)}(u, \bar{\mu}, \lambda, \lambda_0) = \begin{pmatrix}
A_{(2)}^{(2)}(u, \bar{\mu}, \lambda, \lambda_0) & B_{(2)}^{(2)}(u, \bar{\mu}, \lambda, \lambda_0) \\
C_{(2)}^{(2)}(u, \bar{\mu}, \lambda, \lambda_0) & D_{(2)}^{(2)}(u, \bar{\mu}, \lambda, \lambda_0)
\end{pmatrix},
\]

and its components are operators on the configuration space.

Then, in order to \(\Psi\) be solution of (3.8), we must require

\[
S^{(r)}(\lambda) X = \omega_r(\lambda) X \tag{3.14a}
\]

\[
F_{(r)}^{(2)}(u, \bar{\mu}, \lambda, \lambda_0)) X = \Lambda_{(r)}^{(2)}(u, \bar{\mu}, \lambda, \lambda_0)) X \tag{3.14b}
\]

The cancelation of the unwanted terms impose the set of equations

\[
[a(\mu_k, \lambda_0)]^N \omega_{r-1}(\lambda_0) = \prod_{j \neq k}^{r} \frac{g(\mu_k - \mu_j)}{g(\mu_j - \mu_k)} \Lambda_{(r-1)}^{(2)}(\mu_k, \bar{\mu}, \lambda, \lambda_0), \quad k = 1, \ldots, r \tag{3.15}
\]

The second step is to diagonalize the (3.11b) equation. We apply the same method as in the first step with one unit lower. So, the operator \(T_{(2)}^r\) verifies the YBE

\[
R^{(2)}(u - v, \lambda, \mu) \cdot (T_{(2)}^{(2)}(u, \bar{\mu}, \lambda, \lambda_0) \otimes T_{(2)}^{(2)}(v, \bar{\mu}, \mu, \lambda_0) = \]
= \left(T_{r}^{(2)}(v, \vec{\mu}, \mu, \lambda_{0} \otimes T_{r}^{(2)}(u, \vec{\mu}, \lambda, \lambda_{0})) \right) \cdot R^{(2)}(u - v, \lambda, \vec{\mu}, \lambda_{0}), \quad (3.16)

that gives the relations

\begin{align*}
B^{(2)}(u, \lambda) \cdot B^{(2)}(v, \mu) &= \frac{\lambda}{\mu} B^{(2)}(v, \mu) \cdot B^{(2)}(u, \lambda), \quad (3.17a) \\
A^{(2)}(u, \lambda) \cdot B^{(2)}(v, \mu) &= \lambda g(v - u) B^{(2)}(v, \mu) \cdot A^{(2)}(u, \lambda) - \\
&\qquad - \lambda h_{+}(v - u) B^{(2)}(u, \lambda) \cdot A^{(2)}(v, \mu), \quad (3.17b) \\
D^{(2)}(u, \lambda) \cdot B^{(2)}(v, \mu) &= \lambda g(u - v) B^{(2)}(v, \mu) \cdot D^{(2)}(u, \lambda) - \\
&\qquad - \lambda h_{-}(u - v) B^{(2)}(u, \lambda) \cdot v^{(2)}(v, \mu). \quad (3.17c)
\end{align*}

Now we take the state

\[\| 1 >^{(2)} = \left(\begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array} \right) \otimes \cdots \otimes \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \quad (3.18) \]

that is a eigenstate of \(F^{(2)} \), and we look for eigenstates of the form

\[X = \Psi^{(2)} = B^{(2)}(\rho_{1}, \vec{\mu}, \lambda_{0}) \cdots B^{(2)}(\rho_{s}, \vec{\mu}, , \lambda_{0}) \| 1 >^{(2)}, \quad (3.19) \]

that introduce the dependence of the eigenvalues on a new set of parameters \(\{ \lambda_{i} \}_{i=1}^{\lambda} \).

Following the same procedures as in the first step, but now in two dimensions, then we find the eigenvalues of \(F^{(2)} \) and the conditions that must verify the set of parameters \(\{ \rho_{i} \}_{i=1}^{\lambda} \). Then we obtain finally the eigenvalues of \(F \) and \(F^{(2)} \)

\[\Lambda(u, \vec{\mu}, \vec{\rho}, \lambda, \lambda_{0}) = \left[\sinh \left(\frac{3}{2} u + \gamma \right) \right]^{N} \prod_{j=1}^{r} g(\mu_{j} - u) \]

\[+ \prod_{j=1}^{r} g(u - \mu_{j}) \Lambda_{(2)}^{r}(u, \vec{\mu}, \vec{\rho}, \lambda, \lambda_{0}), \quad (3.20a) \]
\[\Lambda_{(u, \vec{\mu}, \vec{\rho}, \lambda, \lambda_0)}^{(2)} = \left[\sinh \left(\frac{3}{2} u \right) \right]^N \frac{\lambda^{N+r+s}}{\lambda_{0}^{2N}} \left(\prod_{i=1}^{s} g(\rho_i - u) + \frac{1}{\lambda_{0}^{N}} \prod_{i=1}^{s} g(\rho_i - \mu_i) \prod_{j=1}^{r} \frac{1}{g(\mu_j - \mu_i)} \right), \quad (3.20b) \]

and the parameters \(\{\mu_i\}_{i=1}^{r} \) and \(\{\rho_i\}_{i=1}^{s} \) solutions of the equations given by the cancelation of the unwanted terms

\[(g(\mu_k))^N \lambda_{0}^{N} = \prod_{j=1}^{r} \frac{g(\mu_k - \mu_j)}{g(\mu_j - \mu_k)} \prod_{i=1}^{s} g(\rho_i - \mu_k), \quad (3.21a) \]

\[\lambda_{0}^{N} \prod_{j=1}^{r} g(\rho_k - \mu_j) = \prod_{i=1}^{s} g(\rho_k - \rho_i) \quad (3.21b) \]

Every set of solutions for \(1 \leq s \leq r \leq N \) of these coupled equations determines an eigenvalue of \(F \).

An analogous set of equations exist for \(\widehat{sl}_q(3) \) model, as you can see in the references [7, 8], the difference between that set and (3.21) is the factor \(\lambda_{0}^{N} \) that will modified the solutions for the parameters \(\{\mu_i\}_{i=1}^{r} \) and \(\{\rho_i\}_{i=1}^{s} \).

The energy spectrum, obtained by applying (2.14) to \(\Lambda(u, \vec{\mu}, \vec{\rho}, \lambda, \lambda_0) \), is

\[E = \frac{2}{3} N \cosh(\gamma) + \sinh(\gamma) \sum_{i=1}^{r} \left(\frac{1}{\tanh \left(\frac{3}{2} \mu_i \right)} - \frac{1}{\tanh \left(\frac{3}{2} \mu_i + \gamma \right)} \right) \quad (3.22) \]

As we can see in the last expression, the energy depends only on the first set of introduced parameters \(\{\mu_j\}_{j=1}^{r} \)

The second operator defined by (2.15), gives the conserved quantity

\[q = -\lambda_{0} \frac{\partial}{\partial \lambda} \ln \Lambda \bigg|_{\lambda = \lambda_0} + 2N = N - (r + s) \quad (3.23) \]

which is the third component of a chain of spin 1 states of a \(SU(2) \) group with \((N - r) \) sites in the state \(e_1 \), \((r - s) \) sites in \(e_2 \) and \(s \) states in \(e_3 \).
In conclusion, we can say that the introduction of a coproduct with an element of the center of the algebras, permit to find integrable models with new parameters. We have show that such models are related with the models coming from the algebras $sl_{p,q}(n)$. In addition, we have found the form (2.21) to connect the uniparametric models with the multiparametric deformations.

Acknowledgements

We would like to thank G. Sierra for very useful discussions and Professor J. Sesma for the careful reading of the manuscript. This work was partially supported by the Dirección General de Investigación Científica y Técnica, Grant No PB93-0302.
References

[1] L. D. Faddeev, Sov. Sci. Rev. Math. Phys. C1, (1981) 107.

[2] V.G. Drinfeld, Proceedings of the I. C. M. 1986, A.M. Gleason editor (A.M.S.1987).

[3] A. Berkovich, C. Gómez and G. Sierra, Int. J. Mod. Phys. B 7, (1992) 1939.
V. Pasquier and H. Saleur, Nucl. Phys. B 330 (1990), 523.
C. Gómez and G. Sierra, Phys. Lett. B 285 (1992), 126.

[4] Y. Akutsu and T. Deguchi, Phys. Rev. Lett. 67 (1991), 777

[5] N. Dasgupta and A. R. Chowdhury, Jour. Phys. A 26 (1993), 5427.

[6] M. Kibler, LYCEN preprint 9338, (1993) (hep-th 9407050).
V. Karimipour, Jour. Phys. A 26 (1993), 6277.
B. Basu-Mallick, hep-th 9402142, (1994).

[7] H.J. de Vega, Int. J. Mod. Phys. A 4 (1989), 2371.

[8] J. Abad and M.Rios, Univ. de Zaragoza, preprint DFTUZ 94-11, (1994).

[9] J. Fuchs, Affine Lie Algebras and Quantum Groups. Cambridge University Press,
Cambridge (1993).

[10] M. Jimbo, Nankai Lectures on Mathematical Physics 1991, edts C. N. Yang and M. L. Ge, World Scientific, Singapore.