Dissecting combining ability effect in a rice NCII-III population provides insights into heterosis in *indica-japonica* cross

Hao Zhou, Duo Xia, Jing Zeng, Gonghao Jiang and Yuqing He*

Abstract

Background: Combining ability is a measure for selecting elite parents that make the highest contributions to hybrid performance. However, the genetic bases of combining ability and how they contributed to heterosis is seldomly known.

Results: We constructed a both NCII and NCIII population derived from an *indica-japonica* cross to study the relationship among parental performance, combining ability and hybrid performance of 11 agronomic traits. Among them, specific combining ability is more important to grain yield than parental performance and general combining ability. We performed linkage analyses to phenotypic values and combining ability of all 11 traits in Doubled haploid lines and its two backcross populations and identified 108 QTLs in total. Among these QTLs, four known loci, *Sd1*, *Ghd7*, *Ghd8* and *DEP1* contribute a lot to GCA effects of agronomic traits except grain yield and seed setting rate. Three QTLs, *Ghd8*, *S5* and *qS12*, contribute a lot to SCA effects of grain yield and present overdominance.

Conclusions: Our study provides insights into the genetic bases of combining ability and heterosis and will promote the improvements of *indica-japonica* hybrid breeding.

Keywords: *Oryza sativa* L., Combining ability, Mating design, *indica-japonica* cross, Linkage analysis, Heterosis

Background

The phenomenon heterosis has been applied to rice breeding for improving grain yield since the early 1970s in China (Cheng et al. 2007; Darwin 1876; Li et al. 2007). To breed an ideal cross with the highest grain yield and great stress resistance is the ultimate goal of hybrid rice breeders. As parents with excellent agronomic traits do not always pass those traits on to their progenies, breeders often test the potential of a selfing line by cross it to several other lines. The potential for creating high heterosis progenies of an inbred line is called combining ability, a concept proposed by Sprague and Tatum and has been widely used in cross breeding for elite parent selection (Comstock and Robinson 1948; Griffing 1956; Sprague and Tatum 1942). Parent lines with high general combining ability (GCA) in grain yield and resistance to pests and diseases are more likely to form hybrids with satisfactory performance. On the other hand, some parent lines of general GCA also is able to form excellent hybrids and this is caused by another special effect called special combining ability (SCA). The both effects of GCA and SCA are able to create hybrids with high heterosis but the genetic bases of these effects are largely unknown.

The first attempt to unveil the genetic basis of combining ability was done by Griffing (1956). He proposed the methods of using diallel-cross to dissect the genetic variance into additive variance and non-additive variance, and estimated the GCA and SCA effects. His study provide theory basis for estimating genetic variance and combining ability effect in various mating design, including complete or incomplete diallel (Griffing 1956), North Carolina design (Comstock et al. 1949), and top crossing (Hill et al. 1998). Later study conducted transcriptome analysis and molecular markers to reveal the relationship between combining ability and genetic diversity (Ajmone...
et al. 1998; Bernardo 1996; Frisch et al. 2010; Stupar et al. 2008). Those studies revealed that the genetic distance between two parents are positively correlated with combining ability and hybrid performance.

Recently, with the development of molecular marker, linkage analysis has been used to dissect the GCA effects into quantitative trait locus (QTL) (Lv et al. 2012; Qi 2013; Qu 2012). Liu et al. (2015) utilized a NCII design, performed linkage analyses to GCA, and confirmed that Ghd7 and OsPRR37 (Koo et al. 2013; Xue et al. 2008) are major genes for GCA of heading date, plant height and spikelet per panicle in rice. Though a few QTLs contributed to combining ability has been indentified, the genetic bases of combining ability are still not clear and how they contributed to hybrid performance was totally unknown. In this study, we developed a both NCII and NCIII population (see Methods) derived from an indica-japonica cross, performed linkage analysis to both GCA and SCA effects, and explored how QTLs of combining ability contributed to hybrid performance of hybrid rice.

Results
The design of a both NCII and NCIII population
The F1 generation of an indica line ZS97B (ZS97) and a japonica line Wuyugeng2 (WYG) has heterosis in PH, HD, KGW and SP, but has hybrid weakness in SS (Table 1). This hybrid sterility phenomenon leads to the lower YD of F1 than both parents. To dissect the genetic basis of the heterosis and hybrid weakness of ZS97 × WYG, we constructed the both NCII and NCIII population (see Methods) derived from an indica-japonica cross, performed linkage analysis to both GCA and SCA effects, and explored how QTLs of combining ability contributed to hybrid performance of hybrid rice.

Performance of the populations.
The phenotypic distributions of 11 agronomic traits measured in the DHs and their TC progenies are shown in Fig. 2. All these traits varied widely in the DHs and three TC populations and most of these traits showed normal distributions expect GF and SS.

The average levels of most traits, except HD, KGW and SS, in the TC populations were higher than that in the DHs. The average HD in DHs was higher than that of ZS97 × DHs, while higher than that of the other two TC populations. The average SS in ZS97 × DHs and WYG × DHs were both lower than that in DHs. These differences indicate that the three TC populations might have a high level of special combining ability and heterosis.

Relationship between traits values in DHs and TC populations
Table 1 shows the correlations among the phenotypic values and GCA effects of DHs, the phenotypic values and SCA effects of TC populations for the 11 agronomic traits. The phenotypes of DHs are significantly and positively correlated with GCA effects of DHs in most traits expect YD and SS. This indicated the genetic bases of GCA and trait value for YD and SS may be quite different. Both GCA and SCA effects are positively correlated with phenotypic values of all traits in all three TC populations, indicates that both GCA and SCA contribute a lot to hybrid performance.

Variance analysis of combining ability
We determined the effects of GCA (DHs or Testers) and SCA (Testers × DHs) by two-factor variance analysis and found these effects were significant in all traits. This also indicated that both kinds of gene effects were important for the inheritance of agronomic traits. We further calculated the additive variance (V A), non-additive variance (V Na) and narrow sense heritability (h 2 N) for each trait. These traits with h 2 N larger than 0.5 indicates they are mainly controlled by additive effects, as GF, HD and KGW; conversely, those with h 2 N below 0.5 are mainly controlled by non-additive effects, as GF, YD and SS. This also indicates over-dominance contribute a lot to the heterosis of GF, YD and SS.

QTL mapping for combining ability
We applied linkage analysis to both phenotypic value and GCA effect of 190 DHs for 11 agronomic traits and identified many known and unknown QTLs for these traits (Fig. 3 and Additional file 1: Figure S1). Most loci detected in analysis of phenotype were also detected in GCA and we found these QTLs often explained larger proportion of phenotypic variations in DH population. Several QTLs for PH and HD also contribute to YD in

Trait	GF	PH	HD	YD	TP	KGW	SP	GP	SS	PL	SDEN
ZS97	90.7	79.3	69.5	23.1	12.7	21.7	109.6	83.7	76.4	19.5	5.6
WYG	99.6	84.2	99.0	44.7	16.8	24.9	132.0	107.1	81.2	15.9	8.3
F1	99.7	121.1	109.0	22.6	14.2	27.0	147.4	58.8	39.9	19.9	7.4

GF grain-filling degree, PH plant height, HD heading date, YD yield, TP number of tillers per panicle, KGW grain weight per 1000 grains, SP spikelet per panicle, GP number of grains per panicle, SS seed-setting rate, PL panicle length, SDEN grain density per panicle
DHs, such as *Hd1* and *Ghd8* (Yan et al. 2011; Yano et al. 2000). However, they have no effect on GCA and we detected no QTL for YD in analysis of GCA. This may be due to the low h^2_N of YD in our NCII population. Locations of QTLs for GCA on linkage map are show in Fig. 4 and detailed information is show in Additional file 2: Table S1.

We further performed linkage analysis to both phenotype and SCA effect for two BC populations (ZS97 × DHs and WYG × DHs) and indentified 66 QTLs for 11 agronomic traits. Most QTLs identified in BC populations were identified in DHs but with lower significance. Two new QTLs for SS and YD were detected on chromosome 6 and chromosome 12 in both phenotypic value and SCA effect of both BC populations. The QTL on chromosome 6 cover the known hybrid sterility gene *S5* and has similar genetic effect (Yang et al. 2012). QTL spanning *Ghd8* were identified for SP and YD in both

Fig. 1 The experimental design and analysis procedure used in this study

Fig. 2 The phenotypic distributions of 11 agronomic traits in the DH population and their TC progenies. GF, grian-filling degree; PH, plant height; HD, heading date; YD, yield; TP, number of tillers per panicle; KGW, grain weight per 1000 grains; SP, spikelet per panicle; GP, number of grains per panicle; SS, seed-setting rate; PL, panicle langth; SDEN, grain density per panicle
Fig. 3 The linkage mapping of phenotypic values and GCA effect for 11 agronomic traits in DHs. For a description of agronomic traits see materials and methods.

Fig. 4 The QTLs detected for GCA and SCA effect in NCII population. For a description of agronomic traits see materials and methods.
phenotypic value and SCA effect of both BC populations. By sequencing these genes in ZS97 and WYG (Additional file 1: Figure S1), we found that ZS97 carried a $S5_i$ allele of $S5$ and non-functional allele of $Ghd8$, and WYG carried a $S5_j$ allele of $S5$ and functional allele of $Ghd8$ (Yan et al. 2011; Yang et al. 2012). So the two QTLs for SCA of grain yield are actually $S5$ and $Ghd8$. And the QTL on chromosome 12 is a new QTL for SS and YD. The location and detailed information for these QTLs are show in Fig. 4 and Additional files 3 and 4: Tables S2 and S3.

Three QTLs for SCA effect of grain yield

We analyzed the effects of $S5$, $qS12$ and $Ghd8$ on grain yield in both BC populations and identified the over-dominant effect of these QTLs. In ZS97 × DHs (Fig. 5a), heterozygous genotypes (H) of $S5$ and $qS12$ both show lower grain yield than correspondent homozygous ZS97 genotype (A); similarly in WYG × DHs (Fig. 5b), heterozygous genotypes (H) of $S5$ and $qS12$ both show lower grain yield than correspondent homozygous WYG genotype (B). This indicates $S5$ and $qS12$ show hybrid weakness in grain yield. On the contrary, the heterozygous genotype of $Ghd8$ show higher grain yield than both homozygous genotypes and that indicates $Ghd8$ show hybrid vigour in grain yield (Fig. 5a, b).

Dosage effects of QTLs on yield traits.

$S5$ and $qS12$ both effected on SS and YD in our NCII population and they also show dosage effect on SS and YD (Fig. 5c, e). The both homozygous genotype (AA or BB) show much higher SS and YD than the

Fig. 5 The effects of $S5$, $qS12$ and $Ghd8$ on agronomic traits in two BC populations. a The average grain yield of ‘A’ and ‘H’ genotype of the three QTLs in ZS97 × DHs; b The average grain yield of ‘B’ and ‘H’ genotype of the three QTLs in WYG × DHs; c The average seed setting rate of ‘A’ and ‘H’ genotype and combination genotype of $S5$ and $qS12$ in ZS97 × DHs; d The average spikelet number per panicle of ‘A’ and ‘H’ genotype of $Ghd8$ in ZS97 × DHs; e The average seed setting rate of ‘B’ and ‘H’ genotype and combination genotype of $S5$ and $qS12$ in WYG × DHs; f The average spikelet number per panicle of ‘B’ and ‘H’ genotype of $Ghd8$ in WYG × DHs; ‘A’ and ‘B’ represent the different homozygous allelic type from ZS97 and WYG, respectively. ‘H’ represents the hybrid allelic type of the two parents.
both heterozygous genotype (HH). The heterozygous genotype of \(Ghd8\) has more spikelet number than homozygous genotype which lead to the heterozygous advantage in grain yield (Fig. 5d, f). Though the genetic effect of \(Ghd8\) is different to \(S5\) and \(S12\), the three genes show dosage effect on YD. Comparing the top 10 and bottom 10 lines of grain yield in BC populations, we found that advantage genotypes were accumulated in the top 10 lines and disadvantage genotypes were accumulated in the bottom 10 lines (Fig. 6). The \(F_1\) of ZS97 × WYG has heterozygous genotypes in all \(S5, S12\) and \(Ghd8\), and the weakness in seed setting rate weight more than the heterosis in total spikelet number and grain weight (Table 1).

Discussion

In this study, GCA and SCA effects in an *indica-japonica* cross were estimated using a NCII population. It is interesting to note that, the performance of GCA was not significantly or strongly \((-0.35 < r < 0.35)\) correlated to the performance of DHs per se in several traits (Table 2). And these traits all have low heritability in our NCII population (Table 3). So traits with low heritability, as GF, YD and SS, are hardly to be predicted by parental performance. Weak correlations between the performance of inbred lines and their GCA effects were also detected in a previous study (Lv et al. 2012), so the performance of test-crosses was important for the evaluation and selection of elite inbred lines. On the other hand, only QTLs with large effects on agronomic traits can pass their effects from parents to hybrids. The major QTLs, \(sd1, Ghd8\) and \(DEP1\) (Sasaki et al. 2002; Yan et al. 2011; Yano et al. 2000), detected in DHs were also major QTLs for GCA effects (Fig. 3). However, several QTLs (\(Hd1, Ghd7\) and \(Hd2\)) have large effects in DHs but have little effects in GCA effects (Koo et al. 2013; Xue et al. 2008; Yano et al. 2000). And other QTLs have little effects in DHs can hardly be detected in GCA effects. These differences among QTLs also reflect the different genetic basis between parental performance and GCA.

Indica-japonica cross were reported to has higher heterosis than *indica-indica* cross and *japonica-japonica* cross (Yuan 1994). Although *indica* generally has better yield performance, *japonica* carries many beneficial alleles that are uncommon in *indica* gene pools (for example, \(DEP1, IPA1\) and \(NAL1\) (Fujita et al. 2013; Huang et al. 2009; Jiao et al. 2010). Positive partial dominance and overdominance effects have served as the major causes of heterosis in *indica-japonica* \(F_1\) hybrids (Huang et al. 2016). Matting design in classic genetics helps to dissect the contributions of different genetic effects and QTL mapping in molecular genetics helps to identify important loci for hybrid performance (George 2012; Zeng 1994). We combined both methods of classic and molecular genetics to detect alleles of additive and non-additive effects contribute to intersubspecies hybrid performance. This new method is better than simply perform QTL mapping to hybrid performance, as we identified more loci with higher significances and more clear effects (Additional files 2, 3, and 4: Tables S1-S3). For example, \(sd1\) is the major locus with additive effects (\(a = -7.54\)) on plant height of hybrids and \(Ghd8\) is the major locus with overdominance effect on grain yield of hybrids (Sasaki et al. 2002; Yan et al. 2011). The same locus may have different effect on different traits as \(Ghd8\) is also a major locus with additive effect (\(a = -9.42\)) on heading date of hybrids. The \(S5\) (Yang et al. 2012) and \(qS12\) are two loci conferring the wide-compatibility between *indica* and *japonica*. The two QTLs will accelerate the development of intersubspecific hybrids with high heterosis.

Prediction of hybrid performance is important in hybrid rice breeding. Heterosis and combining ability are two main indexes for hybrid performance. In this study, we dissect the hybrid performance of ZS97 × WYG and the NCII population in to GCA and SCA effects (Table 3). Among 11 agronomic traits, PH, HD, KGW and PL were mainly controlled by GCA effects, and major QTLs were detected for these traits (\(sd1, Ghd8, qKGW2\) and \(DEP1\) (Che et al. 2015; Huang et al. 2009; Sasaki et al. 2002; Yan et al. 2011)) (Figs. 3 and 4). On the contrary, GF, YD and SS were mainly controlled by SCA.
We dissected the effects of GCA and SCA in an indica-japonica cross and identified lots of known and unknown QTLs for them. Among these QTLs, Ghd8, S5 and qS12 largely contributed to the hybrid grain yield of indica-japonica cross. These results provide insights into the genetic bases of combining ability and heterosis and will provide valuable information for the improvements of indica-japonica hybrid breeding.

Methods

Materials and field planting

The NCII and NCIII populations in our study were constructed according to the North Carolina design II and III (George 2012). In a NCII design, each member of a group of parents used as males is mated to each member of another group of parents used as females. NCII design is used to evaluate GCA for inbred lines and SCA for every cross. In a NCIII design, a random sample of F2 plants (as well as RILs and DH lines) is backcrossed to the two inbred lines from which the F2 was descended.

Our study included 3 rice mapping populations (Fig. 1). The first one is a set of 190 Doubled haploid lines (DHs) derived from the anther culture of the F1 from a cross between an indica variety ZS97 and a japonica variety WYG (Jiang et al. 2004). Subsequently, taking the two parents as two testers, two BC populations were developed by crossing all 190 DHs to each parent. The gather of the two BC populations is also called a NCIII population. We took an indica variety P64S as the third tester, and cross all 190 DHs to P64S × DHs. Finally, the NCII population was composed of the three testcross (TC) populations. The parents of the DHs (ZS97 and WYG), the F1 hybrid (ZS97 × WYG), were used as control.

The phenotypic performance was evaluated at the experimental field of Huazhong Agricultural University, Wuhan, China. All materials for these populations and parents were sown in the seedling nursery, and 27-day-

Table 2 Phenotypic correlation (r) coefficients for agronomic traits in DHs and TC populations

Correlations	GF	PH	HD	YD	TP	KGW	SP	GP	SS	PL	SDEN
DPs and GCA DHs	0.32**	0.86**	0.75**	0.06	0.36**	0.55**	0.66**	0.38**	0.12	0.67**	0.73**
ZS97 × DHs and DHs	0.34**	0.83**	0.83**	0.42**	0.40**	0.58**	0.69**	0.57**	0.36**	0.69**	0.79**
ZS97 × DHs and GCA DHs	0.78**	0.89**	0.83**	0.50**	0.82**	0.77**	0.68**	0.47**	0.48**	0.87**	0.74**
ZS97 × DHs and SCA ZS97 × DHs	0.78**	0.52**	0.44**	0.80**	0.73**	0.40**	0.57**	0.70**	0.79**	0.38**	0.42**
WYG × DHs and DHs	0.23**	0.60**	0.44**	−0.31**	0.22**	0.44**	0.31**	−0.17**	−0.16**	0.56**	0.34**
WYG × DHs and GCA DHs	0.52**	0.76**	0.48**	0.67**	0.64**	0.65**	0.68**	0.58**	0.67**	0.71**	0.69**
WYG × DHs and SCA WYG × DHs	0.74**	0.17**	0.17**	0.81**	0.62**	0.33**	0.50**	0.74**	0.85**	0.25**	0.48**
P64S × DHs and DHs	0.25**	0.82**	0.57**	−0.05	0.22**	0.58**	0.43**	0.33**	0.11	0.62**	0.59**
P64S × DHs and GCA DHs	0.73**	0.91**	0.88**	0.62**	0.70**	0.73**	0.79**	0.64**	0.59**	0.87**	0.83**
P64S × DHs and SCA P64S × DHs	0.63**	0.33**	0.61**	0.58**	0.66**	0.22**	0.65**	0.46**	0.24**	0.31**	0.63**
GCA DHs and SCA ZS97 × DHs	0.22**	0.21**	0.17**	−0.08	0.24**	0.02**	−0.08**	−0.10**	−0.11**	0.03	−0.13**
GCA DHs and SCA WYG × DHs	−0.20**	−0.35**	−0.56**	0.19**	−0.18**	−0.15**	−0.15**	0.08	0.29**	−0.26**	−0.15**
GCA DHs and SCA P64S × DHs	−0.06	0.10	0.36**	−0.21**	−0.07**	−0.11**	0.24**	−0.07**	−0.45**	0.00	0.26**

GCA DHs denote the general combining ability of DH lines; SCA ZS97 × DHs, SCA WYG × DHs and SCA P64S × DHs indicate the special combining ability for hybrids of ZS97 × DHs, WYG × DHs and P64S × DHs.

GF: grain-filling degree, PH: plant height, HD: heading date, YD: yield, TP: number of tillers per panicle, KGW: grain weight per 1000 grains, SP: spikelet per panicle, GP: number of grains per panicle, SS: seed-setting rate, PL: panicle length, SDEN: grain density per panicle

* P < 0.05, ** P < 0.01

Table 3 Variance analysis of combining ability and genetic parameters estimation of agronomic traits

Trait	DPs × DHs	Testers	Testers × DHs	\bar{V}_A	\bar{V}_D	h^2_N
GF	37**	193**	27**	1.4	9.15	0.13
PH	1116**	18515**	230**	138.01	76.67	0.64
HD	924**	47864**	366**	164.84	121.91	0.57
YD	326**	8498**	392**	10.19	130.64	0.07
TP	35**	157**	19**	2.03	6.33	0.24
KGW	25**	3626**	9**	9.57	3.13	0.75
SP	3866**	140348**	2155**	489.26	718.35	0.41
GP	2308**	183467**	2793**	337.13	931.13	0.27
SS	618**	21437**	846**	19.26	281.87	0.06
PL	23**	823**	6**	3.68	1.89	0.66
SDEN	11**	419**	5**	1.57	1.59	0.5

\bar{V}_A: additive variance, \bar{V}_D: non-additive variance, h^2_N: narrow-sense heritability.
old seedlings were transplanted into tow-row plots, 10 plants with 16.5 cm of space between plants with a row and 26.4 cm of space between the rows. The plots were arranged in a randomized complete block design with two replications.

Trait measurements and statistical analyses

Agronomic traits measured in this study included grain yield per plant (YD), number of tillers per plant (TP), number of grains per panicle (GP), 1000-grain weight (KGW), spikelet per panicle (SP), panicle length (PL), grain density per panicle (SDEN), grain-filling degree (GF), and seed-setting rate (SS). Trial means were determined from eight randomly selected plants in the middle of the rows of all lines. The former four traits, YD, TP, GP, and KGW, were essentially as described previously by Yu et al. (1997). The SP was scored as the total number of spikelets divided by the number of reproductive tillers of a plant. The PL was measured as the average length from the bottom neck of three main panicles to their tips for each plant. The SDEN was scored as the number of grains divided by the PL, with average grain number per centimeter for three main panicles representative of each plant. The GF was scored as the percentage of the average weight of a single fertilized grain compared to the weight of single grain with mass density > 1 in each plant, essentially as previously described by Niu et al. (2004) and Zhu et al. (1995). SS was scored as the number of grains divided by the total number of spikelets from the reproductive tillers of a plant. Phenotypic distribution of 11 agronomic traits were drew by boxplot() function of R software (Ihaka and Gentleman 1996). P-values for phenotypic coefficients were calculated with a two-sided t-test using cor.test() function in R.

Genotyping and linkage map construction

A linkage map consisting of 179 SSR markers (Fig. 4) covering the 12 chromosomes with a total length of 1849.4 cM (an average length of 9.4 cM) between two markers was constructed as described by Jiang et al. (2004). All the 179 markers are public makers and their markers was constructed as described by Jiang et al. (2004). The former four traits, YD, TP, GP, and KGW, were essentially as described previously by Yu et al. (1997). The SP was scored as the total number of spikelets divided by the number of reproductive tillers of a plant. The PL was measured as the average length from the bottom neck of three main panicles to their tips for each plant. The SDEN was scored as the number of grains divided by the total number of spikelets from the reproductive tillers of a plant. Phenotypic distribution of 11 agronomic traits were drew by boxplot() function of R software (Ihaka and Gentleman 1996). P-values for phenotypic coefficients were calculated with a two-sided t-test using cor.test() function in R.

Variance analysis and QTL mapping

Two-factor variance analysis were performed to the NCIII population to calculated the effects of DHs, testers and DHs × testers. The GCA variance effects of the parents and the SCA variance effects of the hybrids were estimated by the fixed model described by Mo (1982).

The mathematical representation of the relationship between phenotype and combining ability for each cross is: $Y_{ij} = Y + G_i + G_j + S_{ij}$, where Y_{ij} is the phenotype value of the hybrid derived from the i th male parent and j th female parent, Y is the mean phenotype value of all hybrids, G_i is the general combining ability (GCA) of the i th male parent, G_j is the GCA of the j th female parent, S_{ij} is the specific combining ability (SCA) of the hybrid derived from the i th male parent and the j th female parent. As Y_{i} is the mean phenotype of the hybrid derived from the i th male parent and Y_{j} is the mean phenotype of the hybrid derived from the j th female parent, the combining ability was calculated by the following equations:

$$G_i = \bar{Y}_i - \bar{Y}; G_j = \bar{Y}_j - \bar{Y}; S_{ij} = \bar{Y}_{ij} - \bar{Y}_i - \bar{Y}_j$$

Candidate gene confirmation

Many QTLs were colocated with known genes and have similar effects on agronomic traits. To confirm whether these QTLs were identical to these cloned genes, we sequenced these genes in ZS97B and Wuyugeng2 and compared their allelotype (Additional file 1: Figure S1) according to previous studies (Huang et al. 2009; Kojima et al. 2002; Koo et al. 2013; Sasaki et al. 2002; Xue et al. 2008; Yan et al. 2011; Yang et al. 2012; Yano et al. 2000).

Additional files

Name	Description	Size
Additional file 1: Figure S1.	Allele differences between Wuyugeng2 and Zhenshan97B in 8 cloned genes. Genes structure of schl (a), Hd3a (b), S5 (c), Hs1 (d), Ghd7 (e), Hd2 (f), Ghd8 (g) and dep1 (h) in Wuyugeng2 and Zhenshan97B. (TIFF 305 kb)	305 kb
Additional file 2: Table S1.	Detailed information for QTLs detected in DHs and GCA effects. (DOCX 18 kb)	18 kb
Additional file 3; Table S2.	Detailed information for QTLs detected in ZS97 × DHs and SCA effects. (DOCX 16 kb)	16 kb
Author contributions
HZ conducted analyzed the data and wrote the paper. DX, JZ and GHJ participated in the field management and logistic work. YH designed and supervised the study.

Competing interests
The authors declare that they have no competing financial interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 June 2017 Accepted: 21 August 2017
Published online: 29 August 2017

References
Ajmone MP, Castiglioni P, Fusari F, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219–227
Bernardo R (1996) Testcross additive and dominance effects in best linear unbiased prediction of maize single-cross performance. Theor Appl Genet 93:1098–1102
Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H (2015) Control of grain size and yield by GL2-mediated brassinosteroid responses. Nature plants 2:15195
Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Botany 100:959–966
Comstock RE, Robinson H, Harvey P (1949) Breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367
Comstock RE, Robinson HF (1948) The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:256–264
Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London
Frisch M, Thiemann A, Fu J, Schrag TA, Scholten S, Melching AE (2010) Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet 120:441–450
Fujita D, Trijatmiko KR, Tagle AG, Sapatap MV, Koide H, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci U S A 110:20431–20436
George A (2012) Principles of plant genetics and breeding. John Wiley & Sons, New York
Griffing B (1956) Concept of general and specific combining ability in relation to diallel cross systems. Aust Biol Soc 9463–943
Hill J, Becker HC, Tigerstedt PM (1998) Quantitative and ecological aspects of plant breeding. Plant Breeding
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497
Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J (2016) Genomic architecture of heterosis for yield traits in rice. Nature 537:629–633
Hulka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp &Graph Stat 5:299–314
Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688–698
Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hdp3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant & Cell Physiology 43:1096
Koo BH, Yoo SC, Park JW, Kwon JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888
Li SQ, Yang DC, Zhu YG (2007) Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol 49:791–804
Liu C, Song G, Zhou Y, Qu X, Guo Z, Liu Z, Jiang D, Yang D (2015) OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep 5:12803
Lv AZ, Zhang H, Zhang ZX, Tao YS, Yue B, Zheng YL (2012) Conversion of the statistical combining ability into a genetic concept. J Integr Agric 11:43–52
Mo H (1982) The analysis of combining ability in χ²xχ matrix pattern. Journal of Yangzhou University
Niu AL, Liu XL, Song C (2004) Mapping of QTLs controlling grain plumpness of rice using doubled haploid lines. Journal of Wuhan Botanical Research 22:477–481
Qi H (2013) Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet 126:369–377
Qu Z (2012) QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One 7:e28463
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702
Sprague GF, Tatum LA (1942) General vs specific combining ability in single cross wheat. Proc Natl Acad Sci U S A 28:2483
Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8:33
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767
Yan WH, Wang P, Chen HK, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330
Yang J, Zhang X, Cheng K, Du H, Ouyang Y, Chen J, Qiu S, Huang J, Jiang J, Li J (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337:1336–1400
Yano M, Katayose Y, Ashikari M, Yamanechi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehra Y, Nagamura Y (2000) HD1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483
Yu SB, Li JX, Xu CG, Gan YF, Gao YJ, Li XH, Zhang Q, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 94:9226–9231
Yuan L (1994) Increasing yield potential in rice by exploitation of heterosis. Hybrid rice technology: New developments and future prospects: 1
Zhang Q (2008) Natural variation in Ghd7 is an important regulator of flowering time gene HD1 in rice backcross recombinant inbred lines and hybrid crosses. PLoS One 3:e28463
Zhang Q (2008) Natural variation in Ghd7 is an important regulator of flowering time gene HD1 in rice backcross recombinant inbred lines and hybrid crosses. PLoS One 3:e28463
Zhu QS, Wang ZQ, Zhang ZJ, Hui DF (1995) Study on indicators of grain-filling of indica by japonica cross. Theor Appl Genet 95:629–637
Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp &Graph Stat 5:299–314
This work was supported by grants from the National Natural Science Foundation (91435202, 91635302), the National Program on R&D of Transgenic Plants (2016ZX08001002-002), the National 863 Project (2012AA10A303) and the earmarked fund for the China Agriculture Research System (CARS-01-03) of China and the Bill & Melinda Gates Foundation.

Abbreviations
DhTs: double haploid lines; GCA: general combining ability; QTLs: quantitative trait locus; SCA: specific combining ability

Acknowledgements
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

Additional file 4: Table S3. Detailed information for QTLs detected in YYG × Dhs and Sca effects: (DOCX 16 kb)