Mieniplotia scabra (Müller, 1774), another gastropod invasive species in Europe and the status of freshwater allochthonous molluscs in Greece and Europe

CIANFANELLI S.
University of Florence, Natural History Museum, Zoological Section, Italy

TALENTI E.
Museo di Storia Naturale, Sezione Zoologica “La Specola”, Università di Firenze, Via Romana 17, 50125 Firenze

BODON M.
Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università di Siena,Via Mattioli 4, 53100 Siena

http://dx.doi.org/10.12681/mms.1331

Copyright © 2019 Mediterranean Marine Science

To cite this article:

CIANFANELLI, S., TALENTI, E., & BODON, M. (2016). Mieniplotia scabra (Müller, 1774), another gastropod invasive species in Europe and the status of freshwater allochthonous molluscs in Greece and Europe. Mediterranean Marine Science, 17(1), 253-263. doi:http://dx.doi.org/10.12681/mms.1331
Abstract

Mieniplotia scabra (Müller, 1774), a freshwater gastropod originating from the Indo-Pacific area, has proved to be a successful invader spreading to other parts of East Asia, Middle East, the Pacific Islands, North America and West Indies. This paper reports the first record of *M. scabra* from Europe, where it has become naturalized in Kos Island in Greece. This new trans-continental introduction brings the number of alien freshwater mollusc species to nine in Greece and to 30 in Europe. This paper provides an updated snapshot of the presence of the numerous non-native freshwater species in Europe (divided by nation) - an account that is currently lacking in literature and in the specific databases.

Keywords: *Mieniplotia scabra*, Europe, Greece, Kos Island, aquatic alien molluscs, distribution, Greek and European alien-list.

Introduction

Mieniplotia scabra (Müller, 1774) is a freshwater gastropod belonging to the Thiaridae Troschel, 1857, a family that in Europe includes another alien invasive species: *Melanoides tuberculata* (Müller, 1774). The original distribution includes a large area of the Indo-Pacific coasts and adjacent islands, from central-east Africa to south Asia and north-east Australia (Davis & Yamaguchi, 1969; Pace, 1973; Brandt, 1974; Starmühlner, 1976, 1979; Brown, 1980; Burch, 1980; Starmühlner, 1982, 1983, 1984; Subba Rao, 1989; Nesemann et al., 2007; Glaubrecht et al., 2009; Dunga et al., 2010; Nesemann et al., 2011; Budha, 2012; Göser & Pešić, 2012; GBIF, 2014). In Africa, the species lives in eastern South Africa, Kenya, Tanzania (Wami and Kingani rivers, Zanzibar, Pemba Island), Madagascar, Comore Islands, Seychelles Islands, Reunion, Mauritius (Rodriguez Island included). In Asia, the species has been recorded from Afghanistan, India, Sri Lanka, Nepal (Indo-Gangetic Plain), Bangladesh, Myanmar, Andaman Islands, Thailand, Malaysia, Laos, Vietnam, south China, Japan (Ryukyu Islands), Taiwan, Philippines, Indonesia (Borneo, Sulawesi, Sumatra, Java, Moluccas), East Timor. In addition, the species has been recorded from north and north-east Australia (Northern Territory and Queensland).

However, given its high propensity to invasiveness (Nasarat et al., 2014), it is difficult to be certain if this species is actually native throughout these regions. Nevertheless, for the Asian region, *M. scabra* has likely been introduced in the United Arab Emirates, in Oman and Yemen (including Socotra Island) in south-eastern Arabia (Brown & Gallagher, 1985; Al-Safadi, 1990; Neubert, 1998; Feulner & Green, 1999; Glaubrecht et al., 2009; Prasad, 2010; Budha, 2012). In the Pacific area, the species has now spread in many west Pacific Islands; Starmühlner (1983) considered the species native to this area, even if he affirmed that it was one of the commonest species in west Pacific Islands and hypothesized a possible human introduction with rice and aquatic plants. More recent papers tend to consider the species in this area as cryptogenic (Cowie, 2000, 2002; Glaubrecht et al., 2009) or invasive (Bogan, 2012; Budha, 2012). In particular, it has been recorded from Guam Island, Palau, Federated States of Micronesia (Kosrae, Pohnpei, Truk, Yap Islands), Papua New Guinea including Bismarck Archipelago (Manus, New Ireland, New Britain, Long Island), Solomon Islands (Guadalcanal, Malaita), Vanuatu (Espiritu Santo Island and Efate Island), New Caledonia, Fiji Islands (Viti Levu and Vanua Levu) and Samoa (Pace, 1973; Brandt, 1974; Starmühlner, 1976, 1983; Haynes, 1984; Starmühlner, 1984; Haynes, 1985, 1990, 1993; Cowie, 2000; Haynes, 2000; Cowie, 2002; Glaubrecht et al., 2009; Glaubrecht & Podlaka, 2010; Prasad, 2010; Budha, 2012; GBIF, 2014).

Recently *M. scabra* has also been introduced into North America, in Florida and in the West Indies, such
as Antilles, Jamaica and Montserrat (Thompson et al., 2009; GBIF, 2014).

It has also been introduced in the Mediterranean area recently: in Israel (Mienis, 2008; Mienis & Mienis, 2008a, 2009b; Roll et al., 2009; Mienis, 2011; Heller et al., 2014) and Jordan (Nasarat et al., 2014).

M. scabra is considered one of the most successful invasive species in many parts of the world (Thompson et al., 2009) and its recent and very rapid diffusion in some Middle East countries (Israel and Jordan) confirms the high level of invasiveness (Mienis & Mienis, 2008a, 2009b; Nasarat et al., 2014).

To date, no record exists from Europe, and the discovery of a population in the Kos Island, Greece, is the first data from this continent.

Materials and Methods

Specimens were collected by hand. The collection data are listed as follows: locality, altitude, UTM coordinates, collectors and dates; number of specimens, collection and, if present, number of collections in parentheses. Names of the localities and UTM coordinates were taken from Google Earth and converted in ED 50. The examined material is preserved in the following collections: Museo di Storia Naturale dell’Università di Firenze, sezione di Zoologia “La Specolda”, Via Romana 17, Florence, Italy (MZUFC); Marco Bodon, Via delle Eiche 100/8, Genoa, Italy (MBC); Simone Cianfanelli, Via Monforte 3, Florence, Italy (SCC); Enrico Talenti, Piazza Parri 4, Incisa, Florence, Italy (ETC).

Sampling was performed at five sites in Greece, South Aegean, Dodekanisos, Kos Island, municipality of Kos (Table 1); *M. scabra* was found in sites 1 and 2.

1. Lake Pyli, small lake feds by springs, 1.2 km SSE of Marmari, 22 m ca. a.s.l., 35S 05143 40800, E. Talenti leg. 01/07/2013 (1 spec., 1 juv. spec., MZUFC GC/44740; 1 spec., MBC; 1 spec., SCC 44740/18955; 2 spec., 7 juv. spec., ETC).

2. Small canal feds by springs, along the main road, 900 m S-SE of Marmari, 15 m ca. a.s.l., 35S 05141 40803, E. Talenti leg. 01/07/2013 (2 juv. spec., ETC).

3. Tributary canal of the Lake Alliki, west shore, 0 m a.s.l., 35S 05146 40819, E. Talenti leg. 04/07/2013.

4. Lake Alliki, west shore, debris, 0 m a.s.l., 35S 05146 40820, E. Talenti leg. 04/07/2013.

5. Lake Alliki, southern shore, debris, 0 m a.s.l., 35S 05152 40818, E. Talenti leg. 10/07/2013.

The updated distribution of alien species in Europe (Table 2) and the data processing (Figs. 2-4) are the result of a meticulous research utilizing books, texts and scientific journals, including journals of regional relevance, from national checklists (Gittenberger et al., 1998; Angelov, 2000; Falkner et al., 2002; Korniushin et al., 2002; Reischütz, 2002; Albuquerque de Matos & Kolucho, 2003, 2004; Killeen et al., 2004; Anderson, 2005; Gööer & Zettler, 2005; Zettler et al., 2005; Gloer & Sirbu, 2006; Gollasch & Nehring, 2006; Céka et al., 2007; Hubenov, 2007; Jungbluth & Knorre, 2008; Byrne et al., 2009; Feher & Eross, 2009; Fontaine et al., 2010; Kantor et al., 2009; De Oliveira et al., 2010a, 2010b; Horsák et al., 2010; Koralewska-Batata et al., 2010; Munjul & Shubernetski, 2010; Sirbú et al., 2010; Sokolka & Preda, 2010; Boschi, 2011; Gargominy et al., 2011; Proschwitz, 2011; Welte-Schultes et al., 2011; Zettler, 2014) to records or monographs on alien species (especially recent works, i.e. Reischütz, 2002; Anderson, 2003, 2004; Horsák et al., 2004; Nienhuis, 2004; Vimpère, 2004; Beran & Gloer, 2006; Zettler et al., 2006; Majoros et al., 2008; López Soriano et al., 2009; Son, 2008; van der Velde et al., 2010; Verween et al., 2010; Marrone et al., 2011; Soes et al., 2011; Butkus et al., 2014; Marrone et al., 2014; Quiñone-Ro-Salgado & López-Soriano, 2014); furthermore, various online databases were checked, such as Fauna Europea (Araujo, 2013; Bank, 2014), GBIF (2014), GISP (2014), IUCN (2014) and AnimalBase (2015).

Results

Identification and taxonomy

M. scabra is a medium size operculate gastropod, with a dextral shell (Fig. 1 A-F). The shell is ovoid-conical, 10-32 mm in height, with a rather short spire (less than last whorl in height), consisting of 7-9 whors (even if usually early juvenile whors are worn away) with fine spiral ridges and more strong axial ribs with rising, in the upper part of the whors, as nodules and spines. Sometimes the spines may be very developed, extending the suture of the whorl (*Melania spinulosa* Lamark, 1822, taxa of uncertain taxonomic status, considered synonym by some authors as Brandt, 1974). The ground colour is tawny with vertical, rust-coloured flames and blotches alternating with the nodules and spines (Benthem-Jutting, 1956; Brandt, 1974; Starmühliner, 1976; Muley, 1978b; Glaubrecht et al., 2009; Nasarat et al., 2014). *M. scabra* has a horny, paucispiral operculum smaller than aperture, with eccentrinc nucleus (Pace, 1973; Starmühliner, 1976, 1983; Gomez et al., 2011).

In the case of the Thiariidae family, the anatomy of the genital tract is quite uniform and anatomical details are irrelevant for the recognition of the species (Riech, 1937; Abbot, 1948; Pace, 1973; Brandt, 1974; Starmühliner, 1974, 1976; Muley, 1977, 1978a).

M. scabra may be confused for the apparent morphological similarity of the shell with some untypical forms of *Melanoides tuberculata*, which usually is easily distinguishable for the more elongated and conical shape, the on average bigger size, the absence, in the upper part of the whors, of the more or less developed nodules or stout spines.

M. scabra is variable and includes many synonyms or infraspecific taxa of uncertain validity (Benthem-Jutting, 1956; Brandt, 1974; Starmühliner, 1976, 1983, 1984).

254 Medit. Mar. Sci., 17/1, 2016, 253-263
Even the systematic recognition at genus level is controversial; the species is often attributed to *Thiara* Röding, 1798, and, even recently, some authors are continuing to consider valid the attribution to this genus (Roll *et al.*, 2009; GBIF, 2014); other authors (Mienis, 2012; Mienis & Rittner, 2013; Nasarat *et al*., 2014) place the species in the genus *Pseudoplotia* Forcart, 1950; while Glaubrecht *et al.* (2009), Glaubrecht & Podlaka (2010), Budha (2012) and Bogan (2012) place the species in the genus *Plotia* Röding, 1798. The generic attribution has been recently reviewed by Low & Tan (2014) that have established the new monospecific genus *Mieniplotia*, already adopted by Bouchet (2015). Considering that the genetic analysis confirms *M. scabra* as rather distant from all other *Thiariidae* (Glaubrecht *et al*., 2009), its inclusion in a monospecific genus is acceptable.

Distribution on Kos Island

At sites 1 and 2 (Table 1), the populations of *Mieniplotia scabra*, sampled in 2013, were abundant and with
specimens of all sizes, demonstrating that naturalization of this alien species occurred in Kos Island. At all sites, except 4, also other alien species were found.

Discussion

At present, there are no reliable data on the date and causes of the introduction of *M. scabra* in Kos Island; the findings are recent but there have not been any reports in the previous years from the same locality. Only Bank & Neuteboom (1988) sampled the area near Pyli, in 1978, 1979 and 1987 and *Melanopsis buccinoidea* (Olivier, 1801) was collected, but no *M. scabra*. One reliable hypothesis can be the natural introduction through avian carriers, given the recent invasion of *M. scabra* in Israel, observed since 2006 (Mienis, 2008; Mienis & Mienis, 2008a, 2008b; Mienis & Rittner, 2013); the Kos Island is, in effect, near one of the major bird migration routes that transit from Europe to the Middle East (BLI, 2015; WID, 2015). However, an involuntary introduction for anthropogenic causes, by means of the transport and trade of aquatic ornamental plants or by means of aquariophily, as has been suggested by Roll et al. (2009) for the aquatic species introduced in Israel or by Nasarat et al. (2014) for the introduction of *M. scabra* in Jordan, cannot be excluded.

Kos Island has not been the subject of recent research on freshwater and brackish water species and only nine have been cited in literature (Gambetta, 1929; Schütt, 1980, 1986; Bank & Neuteboom, 1988; Georgiev, 2013; see Table 1). From the summarily research carried out in 2013, with the sampling of 5 sites, 12 aquatic species were identified, some of which are new for the island: 11 gastropod and 1 bivalve species. The preliminary list of the malacological fauna from Kos has therefore been updated to 16 species (Table 1). Nevertheless, this checklist is certainly incomplete, as few aquatic habitats have been sampled in Kos. Besides *M. scabra*, two other alien freshwater species were identified: *Physella acuta* (Draparnaud, 1805) (Fig. 1 G-H) (already reported in Bank & Neuteboom, 1988 and in Bank, 2006) and *Helisoma duryi* (Wetherby, 1879), a new record for the island (Fig. 1 I).

With *M. scabra*, the number of allochthonous freshwater molluscs found in Greece rises to 9 (Economou et al., 1991; Petridis & Sinis, 1993; Conides et al., 1995; Bank, 2006).

Table 1. List of the freshwater (F) and brackish water (B) molluscs of Kos Island, based on the literature and the collections of the authors; the asterisk (*) highlights the alien species.

Family	Species	Habitat	Literature	Collecting sites							
Neritidae	*Theodoxus anatolicus* (Récluz, 1844)	F	Gambetta 1929; Schütt 1986; Bank and Neuteboom 1988; Bank 2006	X							
Thiaridae	*Mnioplota scabra* (Müller, 1774)*	F	X								
Melanopsidae	*Melanopsis buccinoidea* (Olivier, 1801)	F	Gambetta 1929; Fuchs and Käufel 1936; Bank and Neuteboom 1988; Bank 2006	X X X X							
Bithyniidae	*Pseudohythinia gittenbergeri* Glöer & Maassen, 2009	F	X								
Hydrobiidae	*Pseudannicola* sp.	F	Bank and Neuteboom 1988								
Hydrobiidae	*Radomaniola* sp.	F	Schütt 1980 (Belgrandiella seminula); Bank and Neuteboom 1988 (Belgrandiella n. sp.); Bank 2006 (Belgrandiella seminula); Georgiev 2013 (Radomaniola seminula)								
Cochliopidae	*Eupaludestrina* sp.	F/B	X								
Bythinellidae	*Bythinella kosensis* Schütt, 1980	F	Schütt 1980; Bank and Neuteboom 1988; Bank 2006								
Truncatellidae	*Truncatella subcyclindrica* (Linnaeus, 1767)	B	X								
Valvatae	*Valvata sauleyi* Hourguignet, 1853	F	X								
Physidae	*Physella acuta* (Draparnaud, 1805)*	F	Bank and Neuteboom 1988; Bank 2006	X X X X							
Lymnaeidae	*Galba truncatula* (Müller, 1774)	F	Bank and Neuteboom 1988; Bank 2006	X							
Planorbidae	*Planorbid intermixta* (Mousson, 1874)	F	X								
Planorbidae	*Helisoma duryi* (Wetherby, 1879)*	F	X								
Ancylidae	*Ancylus fluviatilis* Müller, 1774	F	Gambetta 1929; Bank and Neuteboom 1988; Bank 2006								
Sphaeriidae	*Pisidium casertanum* (Poli, 1791)	F	? Bank and Neuteboom 1988 (Pisidium sp.)	X							
Species Name	Continent(s) of Origin	Native Area	Non-native Countries	Alien Chernobyl-Related	Alien C-S America	Alien N America	Alien E Europe	Alien N Europe	Alien S Europe	Alien C Europe	Alien S Europe
--------------	------------------------	-------------	---------------------	------------------------	------------------	----------------	----------------	----------------	----------------	---------------	---------------
Marisa cornuarietis	Africa and C-S America	Asia	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Physella acuta	North America	N America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Potamopyrgus antipodarum	North America	N America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Menetus dilatatus	North America	N America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Dreissena polymorpha	North America	N America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Mytilopsis leucophaeata	North America	N America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Helisoma duryi	North America	N America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Corbicula fluminea	C-S America	C-S America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Ferrissia fragilis	N America	N America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Bellamya chinensis	C-S America	C-S America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Pomacea bridgesii	South America	S America	France, Italy, Austria, Portugal, Andorra, Belgium, Switzerland, Austria, Serbia and Kosovo, Moldova, Liechtenstein, Great Britain, Germany, Denmark, Netherlands, Sweden, Norway, Iceland, Ireland, Finland								
Molluscs are, at the European level, a taxon with many allochthonous species representing about 10% of the total amount of introduced freshwater alien species (Gherardi et al., 2008; DAISIE, 2009). Currently the freshwater molluscs of extra-European origin, present in European countries, amount to 30 species (Table 2). In the list of introduced species, taxa of extra-European origin or present, in origin, only marginally in the continent (taking the eastern geographic borders proposed in UNSC, 2014 and in INSTAT, 2014, thereby excluding Turkey to the south of the Bosphorus and the Georgia) have been considered. A very invasive species, which has its original origin in Eastern Europe at the turn with the Asian continent: *Dreissena polymorpha* (Pallas, 1771) was also included, while *Dreissena rostriformis bugensis* (Andrusov, 1897) being native to Ukraine has been regarded as of European origin (van der Velde et al., 2010) and therefore not included. Finally, two other taxa have been considered as non-European, with the exception of a single European nation, where the species are considered autochthonous (*Melanoides tuberculata* in Malta and *Gyraulus parvus* (Say, 1817) in Iceland). Allochthonous species include both species acclimated in nature and those known from the literature as species present in artificial environments such as pools, greenhouses, intensive crops, nurseries, gardens and botanical gardens, sometimes not naturalized. It is in fact known that some species, spread by means of aquariophilia, such as *Melanoides tuberculata* or *Helisoma duryi*, species distributed in tropical areas, remain confined to artificial and semi-natural environments or hot and thermal waters in colder countries in central Europe (Glöer, 2002), while, in the Mediterranean countries, these species spread more easily in natural environments and become invasive.

In Europe, among the major invasive continental molluscs there are several aquatic species that have found a quick and easy route of spreading along the drainage systems, also thanks to anthropical interventions (Ricciardi, 2001; Gherardi et al., 2008). Among the 30 alien freshwater species of molluscs, these are the most alarming invaders, such as *Physella acuta* (Draparnaud, 1805), present in all the 43 European countries, *Potamopyrgus antipodarum* (Gray, 1843) present in 34 countries, *Dreissena polymorpha*, present in 32 countries, *Ferrissia fragilis* (Tryon, 1863), present in 31 countries, *Corbicula fluminea* (Müller, 1774) and *Sinandodonta woodiana* (Lea, 1834), present in 22 countries (Table 2; Fig. 2). However the data reported in Table 2 are still provisional, since the phenomenon of biological introductions is extremely dynamic, and the number of species is exponentially growing; also the level of knowledge is very different from one country to another, and many of the small alien entities are not easily detected except through specific research, which sometimes is not carried out in depth in all the European countries.

In Europe, the wide range of habitats and climatic diversity facilitate the acclimatization of alien species from different continents, and these are mainly found in the central and Mediterranean areas (Fig. 3). The allochthonous species come from Oceania (*Potamopyrgus antipodarum*), Africa and Asia (*Melanoides tuberculata*, *Meniplotia scabra*), Central and South America (*Pseudo-
dosuccinea columella (Say, 1817) and species of the genus Helisoma Swainson, 1840), Asia (with Corbicula fluminalis and particularly invasive species such as Sinandonta woodiana and Corbicula fluminea (Müller, 1774)), but the largest number of alien species (13 species, 44 %, Fig. 4) is native to North America, with Physella acuta, the more prevalent alien in Europe and other species such as Ferrissia fragilis at present very frequent, while species such as Menetus dilatatus (Gould, 1841) and Gyraulus parvus are less widespread.

Acknowledgements

We wish to thank Caterina Guiducci and Raffaella Sprugnoli (Biblioteca di Biologia Animale, Università di Firenze, Italy) for the bibliographic research and Gianna Innocenti (Museo di Storia Naturale dell’Università di Firenze, Italy) for her helpful comments. Our thanks are also due to the anonymous reviewers for the comments on the manuscript and to Preet Lidder for editing the English text.

References

Abbot, R.T., 1948. Handbook of medically important mollusks of the orient and the western Pacific. Bulletin Museum of Comparative Zoology, 100 (3), 285-299.
Albuquerque-de-Matos, R.M., 2004. Non-marine testaceous Gastropoda of continental Portugal and Berlangas Islands. I. Catalogue and bibliography. Arquivos do Museu Bocage, Nova Série, 4 (1), 1-158.
Al-Safadi, M.M., 1990. Freshwater molluscs of Yemen Arab Republic. Hydrobiologia, 208 (3), 245-251.
Anderson, R., 2003. Physella (Costatella) acuta Draparnaud in Britain and Ireland – Its taxonomy, origins and relationship to other introduced Physidae. Journal of Conchology, 38 (1), 7-19.
Anderson, R., 2004. Pseudosuccinea columella (Say) and other additions to the fauna of Menorca. Journal of Conchology, 38 (3), 323.
Anderson, R., 2005. An annotated list of the non-marine Mollusca of Britain and Ireland. Journal of Conchology, 38 (6), 607-637.
Angelov, A.M., 2000. Catalogus Faunae Bulgaricae 4. Mollusca (Gastropoda e Bivalvia) aquae dulcis. Academia Scientarium Scientiarum Bulgariae. Backhuys Publ., Sofia, Leiden, xiv + 57 pp.
Araujo, R., 2013. Mollusca Bivalvia. Fauna Europaea version 2.6.2. Last update 29 August 2013. http://www.faunaeur.org (Accessed January 2015)
Bank, R.A., Neuteboom, W.H., 1988. Zur Molluskenfauna der Dodekanes-Inseln Kos, Kalymnos, Pserimos und Nisiros (Griechenland). De Kreukel Jubileumnummer, 45-62.
Bank, R.A., 2006. Towards a catalogue and bibliography of the freshwater Mollusca of Greece. Heldia, 6 (1-2), 51-86.
Bank, R.A., 2011. Checklist of the land and freshwater Gastropoda of Greece. Fauna Europaea Project. http://www.nmbe.ch/sites/default/files/uploads/pubinv/fauna_europaea - gastropoda_of_greece.pdf (Accessed November 2014)
Bank, R.A., 2013. Mollusca Gastropoda. Fauna Europaea version 2.6.2. Last update 29 August 2013. http://www.faunaeur.org (Accessed January 2015)
Benthem-Jutting, W.S.S. van, 1956. Critical revision of the non-marine aquatic Mollusca of Britain and Ireland – Its taxonomy, origins and relationship to other introduced Physidae. Journal of Conchology, 38 (1), 7-19.
Bouquet, P., 2015. Mieniplotia scabra (O.F. Müller, 1774). In: MolluscDBase, 2015. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=828967 on 2015-06-03
Brandt, R.A.M., 1974. The non-marine aquatic Mollusca of Thailand. Archiv für Molluskenkunde, 105 (1-4), 1-423.
Brown, D.S., 1980. Freshwater snails of Africa and their medical importance. Taylor & Francis, London, 487 pp.
Brown, D.S., Gallagher, M.D., 1985. Freshwater snails of Oman, South Eastern Arabia. Hydrobiologia, 127 (2), 125-149.
Brown, D.S., Wright, C.A., 1980. Freshwater Molluscs. p. 341-358. In: Fauna of Saudi Arabia 2, Wittner W., Buttiker W. (Eds). Natural History Museum, Basel.
Budha, P.B., 2012. Plota scabra. The IUCN Red List of Threatened Species. Version 2014.3. www.iucnredlist.org (Accessed November 2014)
Burch, J.B., 1980. A guide to the freshwater snails of the Philippines. Malacological review, 13 (1-2), 121-143.
Butkus, R., Sidiagyte E., Rakuaksas V., Arbačiauskas K., 2014. Distribution and current status of non-indigenous mollusc species in Lithuanian inland waters. Aquatic Invasions, 9 (1), 95-103.
Byrne, A., Moorkens E.A., Anderson, R., Killeen J.J., Regan, E.C., 2009. Ireland Red List No. 2 Non-Marine Molluscs. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland, 1-49. http://www.npws.ie/sites/default/files/publications/pdf/RL2.pdf
Čečka, T., Dvořák L., Horská M., Štefek J., 2007. Checklist of the Molluscs (Mollusca) of the Slovak Republic. Folia Malacologica, 15 (2), 49-58.
Conides, A., Koussouris, T., Gritzalis, K., Bertahas, I., 1995. Zebra mussel, Dreissena polymorpha: population dynamics and notes on control strategies in a reservoir in Western Greece. Lake and Reservoir Management, 11, 329-336.
Cowie, R.H., 2000. Non-indigenous land and freshwater molluscs in the islands of the Pacific: conservation impacts and threats. p. 143-166. In: Invasive species in the Pacific: a technical review and draft regional strategy. Sherley G. (Ed). http://www.isgg.org/database/species/%5Cspecies %5Creference_files%5CypressPDFs/pdfpage=150 (Accessed November 2014)
Cowie, R.H., 2002. Invertebrate invasions on Pacific Islands and the replacement of unique native faunas: a synthesis of the land and freshwater snails. Biological Invasions, 3, 119-136.
DAISIE Consortium (Eds.), 2009. DAISIE, Handbook of Alien Species in Europe. Springer, Dordrecht, 399 pp.
Davis, G.M., Yamaguchi, S., 1969. The freshwater Gastropoda of Okinawa. Verus, 28 (3), 137-152.
De Oliveira, Á., Altonaga, K., 2010a. Materiais para o estudo da malacofauna não-marinha de Portugal. 10. Oxychilus (Ortiusis) allius (Miller, 1822) e Oxychilus (Oxychilus) cellarius (Müller O. F., 1774) Pulmonata, Oxychilidae. Noticiario de la Sociedad Española de Malacología, 54, 46-47.
De Oliveira, Á., Holyoak, A.G., Holyoak, D. T., 2010b. Additional records of alien freshwater Mollusca in Portugal (Materiais para o estudo da malacofauna não-marinha de Portugal. 9). Noticiario de la Sociedad Española de Malacología, 54, 41-45.
Dung, B.T., Madsen, H., The, D.T., 2010. Distribution of freshwater snails in family-based VAC ponds and associated waterbodies with special reference to intermediate hosts of fish-borne zoonotic trematodes in Nam Dinh Province, Vietnam. Acta Tropica, 116 (1), 15-23.
Economou, A.N., Daoulas, Ch., Economidis, P., 1991. Observations on the biology of Leuciscus svalitze in the Kremasta reservoir (Greece). Hydrobiologia, 213 (2), 99-111.
Eröss, Z.P., Fehér, Z., Hunyadi, A., 2005. Invasion of a North American Alien, Planorbella aniceps (Menge, 1830) (Mollusca: Gastropoda: Planorbidae), in the ancient Lake Prepa. Tentacle, 13, 6-7.
Falkner, G., Ripken, T.E.J., Falkner, M., 2002. Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=828967 on 2015-06-03
http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 10/02/2020 17:43:01 |
Skolka, M., Preda, C., 2010. Alien invasive species at the Romanian black seacoast – present and perspectives. *Travaux du Muséum National d'Histoire Naturelle «Grigore Antipa»*, 53, 443-467.

Soes, D.M., Majoor, G. D., Keulen, S.M.A., 2011. *Bellamya chinensis* (Gray, 1834) (Gastropoda: Viviparidae), a new alien snail species for the European fauna. *Aquatic Invasions*, 6 (1), 97–102.

Son, M.O., 2008. Rapid expansion of the New Zealand mud snail *Potamopyrgus antipodarum* (Gray, 1843) in the Azov-Black Sea Region. *Aquatic Invasions*, 3 (3), 335-340.

Starmühlner, F., 1974. The freshwater Gastropods of Ceylon. *Bulletin of the Fisheries Research Station, Sri Lanka*, 25 (1/2), 97-181.

Starmühlner, F., 1976. Beiträge zur Kenntnis der Süßwasser-Gastropoden pazifischer Inseln. Ergebnisse der Österreichischen Indopazifik-Expedition des 1. Zoologischen Institutes der Universität Wien. *Annalen des Naturhistorischen Museums in Wien*, 80, 473-456.

Starmühlner, F., 1979. Results of the Austrian Hydrobiological Mission, 1974, to the Seychelles, Comores and Mascarene Archipelegos. Part I. Preliminary Report: introduction, methods, general situation of the islands with descriptions of the stations and general comments on the distribution of the fauna in the running waters of the islands. *Annalen des Naturhistorischen Museums in Wien*, 82, 621-742.

Starmühlner, F., 1982. Occurrence, distribution and geographical range of the freshwater-Gastropods of the Andaman Islands. *Malacologia*, 22 (1-2), 455.

Starmühlner, F., 1983. Results of the Hydrobiological Mission 1974 of the Zoological Institute of the University of Vienna. Part VIII. Contributions to the knowledge of the freshwater-Gastropoda of the Indian Ocean Islands (Seychelles, Comores, Mascarene-Archipelagos). *Annalen des Naturhistorischen Museums in Wien*, 84 B, 127-249.

Starmühlner, F., 1984. Results of the Austrian-Indian Hydrobiological Mission 1976 to the Andaman-Islands. Part IV. The freshwater Gastropods of the Andaman Islands. *Annalen des Naturhistorischen Museums in Wien*, 86 B, 145-204.

Subba-Rao, N.V., 1989. *Freshwater molluscs of India*. Zoological Survey of India, Calcutta, 289 pp.

Thompson, F.G., Heyn, M.W., Campbell, D.N., 2009. *Thiara scabra* (O. F. Muller, 1774): the introduction of another Asian freshwater snail into the United States. *Nautilus*, 123 (1), 21-22.

UNSC, 2014. United Nations Statistical Commission Composition of macro geographical (continental) regions, geographical sub-regions, and selected economic and other groupings. http://millenniumindicators.un.org/unsd/methods/m49/m49regin.htm (Accessed November 2014)

Van-der-Velde, G., Rajagopal, S., bij-de-Vaate, A., 2010. 1. From zebra mussels to quagga mussels: an introduction to the Dreissenidae. p. 1-10. In: *The Zebra Mussel in Europe*. van der Velde G., Rajagopal S., bij de Vaate A. (Eds). Backhuys Publishers, Leiden/Margraf Publishers, Weikersheim.

Verween, A., Vinex, M., Degaer, S., 2010. 3. *Mytilopsis leucophaeata*: The brackish water equivalent of *Dreissena polymorpha*? A review. In: van der Velde G., Rajagopal S. & bij de Vaate A. (eds). *The Zebra Mussel in Europe*. Backhuys Publishers, Leiden/Margraf Publishers, Weikersheim, 29-43.

Vimpère, J., 2004. Introduction en France continentale d’un gastéropode d’eau douce originaire de Floride: *Planorbella duryi* (Wetherby, 1879), (Mollusca; Gastropoda; Pulmonata). *Le Naturaliste Vendeen*, 4, 127-130.

Welter-Schultes, F., Audibert, C., Bertrand, A. 2011. Liste des mollusques terrestres et dulcicoles de France continentale (excl. hydrobioïdes). *Folia Conchylologica*, 12, 4-44.

Welter-Schultes, F. 2015. AnimalBase Project Group, 2005-2015. *AnimalBase*. Early zoological literature online. World wide web electronic publication www.animalbase.uni-goettingen.de (Accessed January 2015)

WID, 2015. Birds without boundaries. Migratory, nomadic & other wandering birds. WysInfo Dpcuwebs http://www.wysinfo.com/Migratory_Birds/Migratory_Birds_Without_Boundaries.htm (Accessed January 2015)

Zenetos, A., Pancucci-Papadopoulou, M.A., Zogaris, S., Vardakas, L., Aligizaki, K., Economou, A.N., 2009. Aquatic alien species in Greece (2009): tracking sources, patterns and effects on the ecosystem. *Journal of Biological Research-Thessaloniki*, 12, 135-172.

Wilke, T., Schultheiß, R., Albrecht, C., Bornmann, N., Trajanovski, S., Kovrékidís, T., 2010. Native *Dreissena* freshwater mussels in the Balkans: in and out of ancient lakes. *Biogeosciences*, 7, 3051-3065.

Zettler, M.L., Zettler, A., 2005. The Zebra Mussel in Europe. *Die Süßwassermollusken Mecklenburg-Vorpommerns. Schwerin (Obotritendruck), 1-318.

Zettler, M.L., Zettler, A., Daunys, D., 2005. Bemerkenswerte Süßwassermollusken Litauens, eine Ergänzung. *Mitteilungen der Deutschen Malakozoologischen Gesellschaft*, 91, 33-42.

Zettler, M.L., Zettler, A., Daunys, D., 2005. Bemerkenswerte Süßwassermollusken Litauens, eine Ergänzung. *Mitteilungen der Deutschen Malakozoologischen Gesellschaft*, 91, 33-42.

Zettler, M.L., Zettler, A., Daunys, D., 2005. Bemerkenswerte Süßwassermollusken Litauens, eine Ergänzung. *Mitteilungen der Deutschen Malakozoologischen Gesellschaft*, 91, 33-42.