On Matched Metric and Channel Problem

Artur Poplawska

Abstract—The sufficient condition for partial function from the cartesian square of the finite set to the reals to be “compatible” with some metric on this set is given. It is then shown, that when aforementioned set and function are respectively a space of binary words of length \(n\) and probabilities of receiving some word after sending the other word through Binary Asymmetric Channel the condition is satisfied so the required metrics exist. This proves under the slightly weaker definition of matched metric and channel conjecture stated in \([1]\).

Keywords—metric, channel.

I. INTRODUCTION

In \([1]\) authors consider following problem originating from Information Theory: for which channel models there is metric \(d\) on the space of the codewords such that following matching condition holds for each codewords \(x, y, z\): \(Pr(x|y) > Pr(x|z)\) if and only if \(d(x, y) < d(x, z)\) Here \(P(x|y)\) means probability of the receiving codeword \(x\) assuming that codeword \(y\) was sent. \([1]\) gives extensive overview of the history, current literature and state of knowledge on the subject. It also proves existence of such a metric in case of so called \(Z\)-channels and for the codewords of length 2 and 3 in the case of Binary Asymmetric Channel (BAC). Finally authors of \([1]\) state the conjecture that such a compatible metric exists for the space of the codewords of arbitrary length \(n\) for BAC.

In section II existence of metrics compatible to certain function will be considered (in slightly more general case comparing to \([1]\)). In this case necessary and sufficient condition for existence of such a metrics will be given. In section III we will discuss relation between the theorem from II and information theoretic case and also with some of the notions introduced in \([1]\). Section IV applies result from II to the case of BAC and proves (with some corrections discussed in III) conjecture from \([1]\).

II. COMPATIBLE METRICS

Let \(X\) be a finite set and let

\[
S \subseteq X^2 - \Delta
\]

where

\[
\Delta = \{(x, x) : x \in X\}
\]

Let \(f\) be a function:

\[
f : S \rightarrow \mathbb{R}
\]

We have following theorem:

Theorem 1: If for each \(n\) and sequence \(x_0, \ldots, x_{n-1}\) such that:

\[
\begin{align*}
 f((x_0, x_{n-1})) &> f((x_0, x_1)) \\
 f((x_1, x_0)) &> f((x_1, x_2)) \\
 \vdots
\end{align*}
\]

then there exists metric \(d\) on \(X\) such that for all \(x, y, z\):

\[
f(x, y) > f(x, z) \implies d(x, y) < d(x, z)
\]

Proof: Let \(U\) be the set of unordered pairs of elements of \(X\) so:

\[
U = \{s \subseteq X : |s| = 2\}
\]

Let’s define relation \(R \subseteq U^2\) in the following manner: for \(a, b \in S^2\) \(aRb\) if one of the two conditions below holds:

\[
a = b
\]

or

\[
a = \{x, y\}, b = \{x, z\}, y \neq z, f(x, y) > f(x, z)
\]

For \(R\) reflexive (what is obvious) and antisymmetric. Let \(\overline{R}\) be the transitive closure of the \(R\). It is, again, reflexive and by definition transitive. We will show that it is antisymmetric. Let’s assume that this is not true, so we have \(a\) and \(b\), such that \(a \neq b\) and \(a\overline{R}b\) but \(a\neq b\). Since \(\overline{R}\) is transitive closure of \(R\) we would have, that there exists \(n\) and \(m\) and two sequences (after appropriate allignment of idices):

\[
a = z_0, z_2, \ldots, z_n = b
\]

and

\[
b = z_n, z_{n+1}, \ldots, z_{n+m-1}, z_{n+m} = a = z_0
\]

such that

\[
z_0 \overline{R} z_1, z_1 \overline{R} z_2, \ldots, z_{n+m-1} \overline{R} z_0
\]

From the definition of \(R\) and because \(z_i \in U\) we have for \(0 \leq i < n + m\) \(z_i = \{x_i, x_{(i-1) \text{ mod } n+m}\}\) where \(x_i = z_i \cap z_{(i+1) \text{ mod } (n+m)}\)

It means, that we have respectively:

\[
\begin{align*}
 f((x_0, x_{n+m-1})) &> f((x_0, x_1)) \\
 f((x_1, x_0)) &> f((x_1, x_2)) \\
 \vdots
\end{align*}
\]

so, by the assumption on \(f\) we must have:

\[
f((x_{n+m-1}, x_{n+m-2})) \leq f((x_{n+m-1}, x_0))
\]

at the other hand, since \(z_{n+m-2} \overline{R} z_{n+m-1}\) we have:

\[
f((x_{n+m-1}, x_{n+m-2}) > f((x_{n+m-1}, x_0))
\]

\[
\ldots
\]
what is contradiction.

This proves, that \(R \) is a antysymmetric so a partial order in
U. As a partial order it can be extended to total (linear) order \(\overrightarrow{R} \), and, since the X so also U is finite there is a function
\(g : U \rightarrow \mathbb{R}^+ \) such that \(x \overrightarrow{R} y \) if \(g(x) < g(y) \) Now we will use
the trick from \(\text{[1]} \) Lemma 7 (for the selfcontainedness of the
work, Appendix Lemma 1 of this note repeats statement and
proof of the Lemma 7 from \(\text{[1]} \)). Let’s define the \(e : X^2 \rightarrow \mathbb{R}^+ \) as \(e(x, x) = 0 \) and for \(x \neq y \ e(x, y) = g([x, y]) \). \(e \) is
symmetric and \(e(x, y) = 0 \) iff \(x = y \), so \(e \) is symmetric. From
\(\text{[1]} \) Lemma 7 there is a metric \(d \) such that \(d(x, y) < d(x, z) \)
if and only if \(e(x, y) < e(x, z) \)
This finishes the proof.

Remark 1: The extension of the relation \(R \) to partial order
is a special case of the Suzuki’s Extension Theorem see
\(\text{e.g.} \) \(\text{[2]} \).

III. INFORMATION-THEORETIC CONTEXT

To bring results of II into the information-theoretic context,
for certain channel model we will consider the partial function
\(f \) defined on subspace the space \(X^2 \) where \(X \) is a space of
codewords of the length \(n \) by

\[
f(x, y) = Pr(x|y)
\]

There is one delicate point related to Theorem 1 and \(\text{[1]} \)
that needs to be discussed. Elements of \(a, b \in U \) (as defined
in the proof) are incomparable by \(R \) in three cases:

1) if \(a \cap b = \emptyset \)
2) \(a = \{ x, y \}, b = \{ x, z \}, y \neq z \) but either \((x, y) \notin S \) or
\((x, z) \notin S \) where \(S \) is domain of \(f \)
3) \(a = \{ x, y \}, b = \{ x, z \}, y \neq z \) but \(f(x, y) = f(x, z) \)

In information-theoretic interpretation of \(f \) second case
never happens. For the third case, construction of the \(R \)
relation introduces order between such a \(\{ x, y \} \) and \(\{ x, z \} \) so,
when we move to the construction of \(d \) there is implication
\(Pr(x|y) > Pr(x|z) \Rightarrow d(x, y) < d(x, z) \) but no implication
\(d(x, y) < d(x, z) \Rightarrow Pr(x|y) > Pr(x|z) \) claimed in \(\text{[1]} \).
Metric is still matched to the channel according to slightly
modified Definition 1 from \(\text{[1]} \):

Definition 1: Let \(W : X \rightarrow X \) be a channel with input
and output alphabets \(X \) and let \(d \) be a metric on \(X \) We
say that \(W \) and \(d \) are matched if maximum for every code
\(C \subset X \) and every \(x \in X \) \(\arg \min_{y \in X - \{x\}} d(x, y) \subset
\arg \max_{y \in X - \{x\}} Pr(x|y) \) where we interpret, that arg max
returns list of size at least 1, not the single element.

One (not essential) modification that we require is that range
of arg max and arg min exclude \(x \) this is because \(\text{[1]} \)
makes assumption that channel is reasonable, so \(Pr(x|x) > Pr(x|y) \)
whenever \(x \neq y \) so without this exclusion operators trivially
return \(\{ x \} \)

More subtle is weakening the requirement
\(\arg \min_{y \in X - \{x\}} d(x, y) = \arg \max_{y \in X - \{x\}} Pr(x|y) \)
expressed in the same context in corresponding Definition 1
in \(\text{[1]} \). This one is essential. In fact in case of the metrics
built as in the Theorem 1, expression \(\arg \min_{y \in X - \{x\}} d(x, y) \)
will always evaluate to a single element list.

Some of the channels that do not have matched metrics in
the sense of Definition 1 from \(\text{[1]} \) do have in the sense of
Definition 1 as stated above. It is such in the following case:
Let \(X = \{ a, b, c \} \) and let

\[
Pr(a|a) = Pr(b|b) = Pr(c|c) = \frac{1}{2}
\]

\[
Pr(a|b) = Pr(a|c) = \frac{1}{4}
\]

\[
Pr(b|a) = Pr(c|b) = \frac{1}{6}
\]

\[
Pr(b|c) = Pr(c|a) = \frac{1}{3}
\]

Let’s also observe, that in the case whe we assume, that
\(Pr(x|z) \neq Pr(x|t) \) whenever \(x \neq t \neq z \) both definitions
coincide. It would be interesting to further explore this relation
between definitions in context of some perturbation argument,
where we modify slightly the channel to assure condition above
in consistent manner and go to the limit.

IV. BINARY ASSYMMETRIC CHANNEL HAS MATCHED
METERS

Now, let’s apply theorem from previous section and prove
following:

Theorem 2: Binary Assymetric Channel has matched metric
(in sense of definition 1).

Proof: Let \(X \) be a space of the codewords of length \(m \).
According to theorem from section I, if for each sequence of
codewords \(x_0, x_1, \ldots, x_{n-1} \) we will have:

\[
Pr(x_0|x_{n-1}) > Pr(x_0 : x_1)
\]

\[
Pr(x_1|x_0) > Pr(x_1|x_2)
\]

\[
\ldots
\]

\[
Pr(x_{n-2}|x_{n-3}) > Pr(x_{n-2}|x_{n-1})
\]

implies:

\[
Pr(x_{n-1}|x_{n-2}) < P(x_{n-1}|x_0)
\]

there is a metric with required propery. Le’s assume that this
is not true, so there is a sequence \(x_i \) which satisfies all the
inequalities from the premise but for which

\[
Pr(x_{n-1}|x_{n-2}) \geq P(x_{n-1}|x_0)
\]

Let \(x_i(j) \) for \(i \in \{ 0, \ldots, n-1 \} \), \(j \in \{ 0, \ldots, m-1 \} \) be the
\(j \)-th symbol in \(i \)-th codeword. Probability of reception of the
symbol codeword \(x_i \) when \(x(i+k) \mod n \), where \(k \in \{ 1, -1 \} \),
was sent is then:

\[
Pr(x_i|x_{(i+k) \mod n}) = \prod_{j=0}^{m-1} Pr(x_i(j)|x_{(i+k) \mod m(j)})
\]
So inequalities from the premise can be written as

\[
\prod_{j=0}^{m-1} Pr(x_j | x_{(i-1) \mod m(j)}) \times \prod_{j=0}^{m-1} Pr(x_j | x_{(i+1) \mod m(j)})^{-1} > 1
\]

for \(i \in \{0, \ldots, n-2\} \). For convenience, let’s move to logarithms, so we have for the same \(i \):

\[
\sum_{j=0}^{m-1} (\log(Pr(x_j | x_{(i-1) \mod m(j)})) - \log(Pr(x_j | x_{(i+1) \mod m(j)}))) > 0
\]

and also

\[
\sum_{j=0}^{m-1} \log(Pr(x_{n-1}(j) | x_{n-2}(j))) > 0
\]

summing over \(i \in \{0, \ldots, n-1\} \) we have:

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} (\log(Pr(x_j | x_{(i-1) \mod m(j)})) - \log(Pr(x_j | x_{(i+1) \mod m(j)}))) > 0
\]

Let’s change the order of summation, and we will have

\[
\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} (\log(Pr(x_j | x_{(i-1) \mod m(j)})) - \log(Pr(x_j | x_{(i+1) \mod m(j)}))) > 0
\]

We claim however, that for each \(j \) the inner sum is 0:

\[
\sum_{i=0}^{n-1} (\log(Pr(x_j | x_{(i-1) \mod m(j)})) - \log(Pr(x_j | x_{(i+1) \mod m(j)}))) = 0
\]

so the total sum is 0, what leads to a contradiction.

To show that the claim is true, let’s represent \(\{x_j(i)\}_i \) of symbols 0s and 1s as concatenation of sequences consisting of identical symbols in such a way, that sequences we concatenate contain different symbols, e.g. sequence \((0, 0, 1, 1, 0)\) will be represented as concatenation of sequences \((0, 0), (1, 1), 0\) and let’s call this sequences respectively \(X_0, X_1, \ldots, X_{k-1}\) and it’s elements the the double indexed \(x_{i,j}\), which represents \(i\)-th element of \(j\)-th sequence. Because sum we consider is cyclic, we can also assume without loss of generality, that first and the last sequence consists of different symbols (shifting sequence cyclically if needed). Let’s denote by \(|X_i|\) length of the sequence \(X_i\). We will also fix \(j\) so we will not write it. We now have:

\[
s_j = \sum_{i=0}^{n-1} (\log(Pr(x_j | x_{(i-1) \mod m(j)})) - \log(Pr(x_j | x_{(i+1) \mod m(j)}))) + \log(Pr(x_j | x_{(i+1) \mod m(j)})) - \log(Pr(x_j | x_{(i+1) \mod m(j)}))
\]

because number of terms under the sign \(\sum\) is the same and these terms are equal (since concatenated subsequences consisted of the same symbol. The terms outside the sum are equal, since neighbour groups consists of different symbols, so on both sides their will be either \(Pr(0\mid 1)\) or \(Pr(1\mid 0)\). This, together with contradiction pointed out earlier completes the proof. ■

APPENDIX A

LEMMA FROM [1]

Following repeats the Lemma 7 from [1] and its proof

Lemma 7: Let \(X \) be a finite set and \(e : X^2 \to \mathbb{R} \) be a semimetric, i.e. satisfy following conditions: \(e(x, y) \geq 0 \) for all \(x, y \in X \) \(e(x, y) = 0 \) if and only if \(x = y \), \(e(x, y) = e(y, x) \) for all \(x, y \in X \) then, there is a metric \(d \) on \(X \) such that \(d(x, y) < d(x, z) \) if and only if \(e(x, y) < e(x, z) \)

Proof: Let \(m = \min\{e(x, y) : x, y \in X, x \neq y\} > 0 \)

Let \(M = \max\{e(x, y) : x, y \in X, x \neq y\} \) Let \(\delta \) satisfying \(0 < \delta < \frac{1}{2} \) be some number. Let \(f \) be a strictly increasing bijective function \(f : [m, M] \to [1 - \delta, 1 + \delta] \). We define \(d : X^2 \to \mathbb{R} \) following manner:

\[
d_{x,y} = \begin{cases}
0 & \text{if } x = y \\
\frac{f(e(x, y))}{\delta} & \text{otherwise.}
\end{cases}
\]
Symmetry, nonnegativity and accordance of inequalities between e and d is immediate consequence of the definition of d. It also satisfies the triangle inequality since

$$d(x, y) + d(y, z) \geq 2(1 - \delta) > 2(1 - \frac{1}{3}) = \frac{4}{3} > 1 + \delta \geq d(x, z)$$

so d is a metric what finishes the proof of the lemma

REFERENCES

[1] M. Firer and L. L. Walker, *Matched Metrics and Channels* IEEE Trans. Infor. Theory vol. 62 no. 3, pp. 1150-1156, Mar. 2016

[2] S. Lahiri *A Simple Proof of Suzumura’s Extension Theorem for Finite Domains With Applications* Jour. of Applied Mathematics and Decision Sciences, 6(3), 183190