경피적 척추체 성형술 후 새로 발생한 인접 척추체 골절의 위험 인자

김명호, 민상혁, 전숙하
단국대학교 의과대학 정형외과학교실

목적: 경피적 척추체 성형술 후 인접 척추체에서 새로운 골절이 발생하는 것을 관찰한 인자들에 대해 알아보았다.

대상 및 방법: 1996년 1월부터 2005년 6월까지 본원에서 경피적 척추체 성형술을 시행 받고 1년 이상 추시가 가능했던 296명의 환자들 중 인접 척추체 골절이 발생한 환자 16명과 골절 없이 추시되고 있는 환자들 중 추출된 30명에 대해 각각 시술 전후의 골절 척추체의 높이 회복률 (%)과 후만각 (kyphotic angle) 회복 정도를 측정하였다.

결과: 경피적 척추체 성형술 후 인접 척추체 골절이 발생한 16명의 평균 척추체 높이 회복률 및 후만각 회복정도는 평균 16.7%와 2.53도로 나타났으며, 대조군의 경우 각각 7.07%와 4.2도로 나타났으며, 높이 회복률이 높을수록 (p<0.01) 후만각 회복 정도가 적을수록 (p<0.05) 인접부위 척추체 골절의 위험이 증가하였다. 특히 척추체 전방부보다 중심부의 높이 회복률이 클수록 인접 척추체의 골절 위험도가 증가하였고 통계적으로 유의하였다 (all p<0.05, Logistic regression test SPSS 13.0).

결론: 척추체 성형술시 시술 후 추체 높이 회복률이 클수록 인접추체 골절의 위험이 증가할 것으로 사료한다.

색인 단어: 인접 추체 골절, 경피적 척추체 성형술

Risk Factors of New Compression Fractures in Adjacent Vertebrae after Percutaneous Vertebroplasty

Myung-Ho Kim, M.D., Sang-Hyuk Min, M.D., Suk-Ha Jeon, M.D.
Department of Orthopedic Surgery, Dankook University College of Medicine, Cheonan, Korea

Purpose: To evaluate the risk factors related to the development of new fractures in adjacent vertebrae after vertebroplasty.

Materials and Methods: The study was conducted on 46 patients in whom 296 patients were performed during last 9 years. We were especially concerned with the restoration rate of vertebral height and kyphotic angle and estimated them on simple X-ray films.

Results: In patients experienced subsequent vertebral fractures and no subsequent vertebral fractures after vertebroplasty, the mean height restoration rate of treated vertebra were 16.7% and 7.07%, and the kyphotic angle difference were 2.53 degree and 4.2 degree. The greater degree of height restoration of the vertebral body, especially in middle vertebral height and the lesser degree of kyphotic angle difference increased the risk of adjacent vertebral fracture risk. This results were available statistically (all p<0.05, Logistic regression test, SPSS 13.0).

Conclusion: It may be thought that the vertebral body height restoration rate will become risk factor of adjacent vertebral fractures.

Key Words: Adjacent vertebral fractures, Vertebroplasty
서론

경피적 뼈체 성형술 후 새로 발생한 인접 뼈체 골절의 위험 인자가지

대상 및 방법

1. 연구 대상

1996년 1월 1일부터 2005년 6월 30일까지 경피적 뼈체 골절의 위험 인자를 조사하였고, 그 중 30건의 경우에 대해서는 고령 환자들이었고, 사살한 인접 뼈체 골절의 위험 인자를 조사하였다.

Table 1. The comparison between subsequent fractures group & no subsequent fractures group

	Adjacent fractures group	No adjacent fractures group
Age	66 (62~82)	70 (61~83)
Sex	M : F = 0 : 16	M : F = 4 : 26
Initial fracture	Lumbar : 5 (37.5%)	Lumbar : 13 (43.3%)
level	Thoracic : 10 (62.5%)	Thoracic : 17 (56.7%)
BMD (T-score)	-3.16 (~ -2.12 ~ -4.61)	-3.24 (~ -1.76 ~ -4.91)
Spine	-2.72 (~ -2.17 ~ -3.87)	-2.91 (~ -1.99 ~ -4.09)

Vertebral body height before compression fracture \(Y = \frac{(a + c)}{2} \)

Anterior height restoration rate \(A = \frac{(e - b) \times 100}{Y} \)

Middle height restoration rate \(M = \frac{(f - d) \times 100}{Y} \)

Fig. 1. The method of estimating in vertebral body height restoration rate.
3. 평가 방법

모든 환자는 치료 전까지의 재발(vertebra) 및 의료 기록(health record)을 확인한 후, 이전 치료 전부와 후 NSDictionary 데이터베이스를 이용하여 각각의 원격 treatment(后备 treatment)을 추정하였다.

4. 통계학적 분석

치료 전부와 후의 각각의 원격 treatment(后备 treatment)을 추정하였다.

Table 2. The distance from previous treated vertebra to adjacent new fracture

Distance from treated vertebra	No. of cases
1 vertebra	8
2 vertebrae	3
3 vertebrae	3
1 & 3 vertebrae	2
Total	16

(%) Pearson correlation analysis(pearson correlation analysis)을 이용하여 양성 상관관계를 알 수 있었다. (SPSS 13.0).

결 과

모든 환자의 경우 16개의 경우 중 16.7%의 경우 17.4%의 경우 2.53의 크기의 상관관계를 나타내었으며, 7.07%의 경우 7.6%의 경우 4.21의 크기의 상관관계를 나타내었다. (각각 p<0.03, p<0.01).
경미적 척추체 성형술 후 새로 발생한 인접 척추체 골절의 위험 인자

Table 3. The statistic analysis using Logistic regression test (SPSS13.0)

	B	S.E.	Wald	p-value	Exp (B)
Kyphotic angle					
difference					
	-0.591	0.249	5.648	0.017	0.554
A	0.298	0.107	7.772	0.005	1.347
M	0.322	0.099	10.498	0.001	1.379

고찰

모든 통계를 수행한 결과 (p<0.01, P<0.005, p=0.001, p=0.017)로 확인하였다. 경미적 척추체 형태의 통계학적 차이의 위험인자는 다음과 같다 (Table 3, Wald).

Table 4. The statistic analysis using Pearson correlation analysis (SPSS 13.0)

	The Kyphotic angle difference	The restoration rate of anterior vertebral height	
The Kyphotic	Pearson coefficient	1.000	0.773
angle difference	p-value	.	0.044
n	46	46	
The restoration	Pearson coefficient	0.773	1.000
rate of anterior	p-value	0.044	.
vertebral height	n	46	46
The Kyphotic	Pearson coefficient	1.000	0.245
angle difference	p-value	.	0.177
n	46	46	
The restoration	Pearson coefficient	0.245	1.000
rate of middle	p-value	0.177	.
vertebral height	n	46	46

Goebner, J, et al. 12)에 따르면 (Table 3), 경미적 척추체 형태의 척추체 골절의 위험성은 더 높아지며, 이는 Baroud and 13)의 연구에서 (pillar effect)와는 달리 경미적 척추체 형태의 척추체 골절은 경미적 척추체 형태의 척추체 골절의 위험성에 영향을 미치지 않는 것으로 나타났다. Uppin 14)에 따르면 경미적 척추체 형태의 척추체 골절의 위험성을 38.7와 38.7로, 경미적 척추체 형태의 척추체 골절의 위험성을 20.8와 20.8로 나타내었다. 경미적 척추체 형태의 척추체 골절의 위험성은 경미적 척추체 형태의 척추체 골절의 위험성에 영향을 미치지 않는 것으로 나타났다.
Fig. 3. 72 year-old female visited in our hospital because of back pain after vertebroplasty of T12. Without trauma history. (A) Simple radiograph and (B) Magnetic Resonance Image after 6 months since T12 vertebroplasty in local clinic. The large amount of cement augmented in midportion of vertebral body.
결론

요약하면, 이 연구는 임상적 결과를 바탕으로 대퇴골 이외의 골절의 위험요인을 평가하고자 하였다. 본 연구의 결과는 다음과 같다.

참고 문헌

1) Banud G, Nemes J, Ferguson SJ, Steffen T: Material changes in osteoporotic human cancellous bone following infiltration with acrylic bone cement for a vertebral cement augmentation. Comput Methods Biomech Biomed Engin, 6: 133-139, 2003.
2) Belkoff SM, Mathis JM, Erbe EM, Fenton DC: Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine, 25: 1061-1064, 2000.
3) Berlemann U, Ferguson SJ, Nolte LP, Heini PF: Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br, 84: 748-752, 2002.
4) Delmas PD, Ensrud KE, Adachi JD, et al: Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab, 87: 3609-3617, 2002.
5) Evans AJ, Jensen ME, Kip KE, et al: Vertebral compression fractures: pain reduction and improvement in functional mobility after percutaneous polymethylmethacrylate vertebroplasty retrospective report of 245 cases. Radiology, 226: 366-372, 2003.
6) Ferguson SJ, Berlemann U, Heini PF, Nolte LP: Evaluation of adjacent segment failure following vertebroplasty. Orthopedic Research Society, 280: 362-637, 2001.
7) Hwang JK, Kim JH, Kim JH: Vertebroplasty in the treatment of osteoporotic compression fracture more than 1 year follow up. J Korean Fracture Soc, 17: 368-373, 2004.
8) Jensen ME, Dion JE: Percutaneous vertebroplasty in the treatment of osteoporotic compression fractures. Neuroimaging Clin N Am, 10: 547-568, 2000.
9) Kim SH, Kang HS, Choi JA, Ahn JM: Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiol, 45: 440-445, 2004.
10) Kumpen W, Salomonowitz E, Seidl G, Wittich GR: The intravertebral vacuum phenomenon. Skeletal Radiol, 15: 444-447, 1986.
11) Liesbschner MA, Rosenberg WS, Keaveny TM: Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine, 26: 1547-1554, 2001.
12) Lindsay R, Silverman SL, Cooper C, et al: Risk of new vertebral fracture in the year following a fracture. JAMA, 285: 320-323, 2001.
13) Min SH, Kim MH, Park HG, Paik HD: A clinical analysis of 260 percutaneous vertebroplasty in the treatment of osteoporotic compression fracture. J Korean Fracture Soc, 19: 357-362, 2006.
14) Polkekt A, Nolte AP, Ferguson SJ: The effect of cement augmentation on load transfer in an osteoporotic functional spine unit. Spine, 26: 991-996, 2003.
15) Schlaich C, Minne HW, Buecker T, et al: Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int, 8: 261-267, 1998.
16) Silverman SL: The clinical consequences of vertebral compression fracture. Bone, 13(Suppl 2): S27-31, 1992.
17) Uppin AA, Hirsch JA, Centenera LV, Pfeifer BA, Pazianos AG, Choi IS: Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology, 226: 119-124, 2003.