The $\bar{\Lambda}/\Lambda$ production ratio measured in a wide range of proton scattering experiments $pZ \to \Lambda(\bar{\Lambda})X$ has been found to be a universal function $f(y_p - y)$ of “rapidity loss” $y_p - y$, where y_p and y are, respectively, the rapidities of the beam proton and the produced Λ or $\bar{\Lambda}$. The function $f(y_p - y)$ is observed to be independent, or depends only weakly, on the total center of mass energy \sqrt{s} of the two colliding hadrons in the range 0.24 to 7 TeV, on the target $Z = p, \bar{p},$ Be or Pb, on the transverse momentum p_T of the Λ or $\bar{\Lambda}$, or on sample composition. We consider the picture in which an u quark produced in the scattering may coalesce with a ud diquark remnant of the beam proton and produce a Λ.

Let $n_{\Lambda}(y)$ and $n_{\bar{\Lambda}}(y)$ be the distributions of Λ’s and $\bar{\Lambda}$’s as a function of rapidity y in the center of mass frame of the two colliding hadrons. Rapidity is defined so that the p beam has positive rapidity y. We write these distributions as follows:

$$n_{\Lambda}(y) = n_{\Lambda,1}(y) + n_{\Lambda,2}(y) + n_{\Lambda,3}(y),$$

$$n_{\bar{\Lambda}}(y) = n_{\bar{\Lambda},1}(y) + n_{\bar{\Lambda},2}(y) + n_{\bar{\Lambda},3}(y),$$

(1)

where $n_{\Lambda,1}(y)$ is the distribution of Λ’s containing a diquark remnant of beam 1, $n_{\Lambda,2}(y)$ is the distribution of Λ’s containing a diquark remnant of beam 2, and $n_{\Lambda,3}(y)$ is the distribution of Λ’s containing no beam remnant, and similarly for $\bar{\Lambda}$. Production mechanism β has no memory of the beams and hence $n_{\Lambda,\beta}(y) = n_{\bar{\Lambda},\beta}(y) = n_{\beta}(y) = n_{\beta}(-y)$. The distribution $n_{\beta}(y)$ is approximately independent of y within the “rapidity plateau” $-y_{\text{max}} < y < y_{\text{max}}$ as shown schematically in Fig. 1.

FIG. 1: Distributions of Λ and $\bar{\Lambda}$ production as a function of rapidity y in the center of mass frame of pp scattering. The beam rapidities are respectively y_1 and y_2. The sub-index α (β) denotes Λ’s or $\bar{\Lambda}$’s containing (not containing) a beam diquark remnant. Lowering the total center of mass energy \sqrt{s} translates y_p and $n_{\Lambda,1}(y)$ left, and translates $y_\bar{p}$ and $n_{\bar{\Lambda},2}(y)$ right.

The purpose of this note is to point out that the ratio r can be fit over four orders of magnitude, from $r \approx 0.01$ to $r \approx 100$, with a simple universal function with only two parameters κ and i:

$$r = \left[\frac{\kappa}{y_p - y}\right]^i.$$

(4)

Figure 2 presents the ratios $r = 1/f - 1$ measured in a wide range of proton scattering experiments. The data points with $y < 0.75$ of the DØ $p\bar{p}$ experiment were omitted because for them we can not neglect $n_{\bar{\Lambda},2}(y)$. The data point of the STAR pp experiment has $y = 0$, so $n_{\Lambda,1} = n_{\bar{\Lambda},2}$. Therefore we have divided $1/f - 1$ by 2.

The parameters κ and i have a simple interpretation and can be read off the log $(y_p - y)$ vs log r graph in Fig. 2. $\kappa \approx 2.8$ is the rapidity loss at which $r = 1$, and $i \approx -4.4$ is the slope of the straight line in Fig. 2.
For $y_p - y < \kappa$ production mechanism α dominates. For $y_p - y > \kappa$ production mechanism β dominates. The fit to all of the data in Fig. 2 obtains $\kappa = 2.79 \pm 0.03$ and $i = 4.54 \pm 0.08$ with $\chi^2 = 637$ for 121 degrees of freedom. The large χ^2 is due to tension between the data points of different experiments as can be seen in Fig. 2. Omitting the R-603 and R-607 measurements, which have some data points off the rapidity plateau, obtains $\kappa = 2.86 \pm 0.03$ and $i = 4.39 \pm 0.06$ with $\chi^2 = 342$ for 102 degrees of freedom. This is the fit shown in Fig. 2. Fitting only the E8 Pb data points where production mechanism α dominates obtains $\kappa = 2.93 \pm 0.15$ and $i = 4.06 \pm 0.30$ with $\chi^2 = 10.6$ for 13 degrees of freedom. Fitting all data with $y_p - y > 2.8$, where production mechanism β dominates, obtains $\kappa = 2.94 \pm 0.10$ and $i = 4.23 \pm 0.25$ with $\chi^2 = 37$ for 32 degrees of freedom. In conclusion, we see no significant departure from Eq. (4) at either end of the data range. Our final estimate from several fits is

$$\kappa = 2.86 \pm 0.03 \pm 0.07, i = 4.39 \pm 0.06 \pm 0.15,$$

where the first uncertainty is statistical from the fit, and the second uncertainty is systematic and accounts for different data selections for the fits.

From $\sqrt{s} = 0.024$ to 7 TeV the cross-sections $\sigma(pp)$ and $\sigma(\bar{p}\bar{p})$, and the width of the rapidity plateau $2\gamma_{\text{max}}$, increase by approximately a factor 2 [2], so $n_s(y)$ is approximately independent of \sqrt{s} and y on the rapidity plateau. We conclude that the probability density that a p scatters and becomes a Λ with rapidity y is proportional to $[\kappa/(y_p - y)]^i$. This result should also be valid for Λ_c, Λ_b, Σ^+, etc.

I thank my colleagues in the D0 Collaboration for their comments and inspiration to undertake this analysis.

[1] R. Aaij et al. (LHCb Collaboration), Measurement of V^0 production ratios in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV, J. High Energy Phys. 1108 (2011) 034.
[2] V.M. Abazov et al. (D0 Collaboration), Measurement of the forward-backward asymmetry of Λ and $\bar{\Lambda}$ production in $p\bar{p}$ collisions, Phys. Rev. D 93, 032002 (2016).
[3] K. P. Das and Rudolph C. Hwa, Quark-antiquark recombination in the fragmentation region, Phys. Lett. B 68, 5 (1977).
[4] Stanley J. Brodsky and John F. Gunion, Hadron fragmentation as a probe of the underlying dynamics of hadron collisions, Phys. Rev. D 17, 3 (1978).
[5] D. Cutts et al., Experimental study of low-p_T hadron fragmentation, Phys. Rev. Lett. 43, 5 (1979).
[6] Rudolph C. Hwa and R. G. Roberts, Pion structure function from low-p_T hadron production, Z. Physik C, 1, 81-86 (1979) and references therein.
[7] K.A. Olive et al. (Particle Data Group), Review of particle physics, Chin. Phys. C, 36, 090001 (2014).
[8] E. Abbas et al. (ALICE Collaboration), Mid-rapidity anti-baryon to baryon ratios in pp collisions at $\sqrt{s} = 0.9, 2.76$, and 7 TeV measured by ALICE, Eur. Phys. J. C 73, 2496 (2013).
[9] G. Aad et al. (ATLAS Collaboration), K_S^0 and Λ production in pp interactions at $\sqrt{s} = 0.9$ and 7 TeV measured with the ATLAS detector at the LHC, Phys. Rev. D 85 (2012) 012001.
[10] B.I. Abelev et al. (STAR Collaboration), Strange particle production in $p + p$ collisions at $\sqrt{s} = 200$ GeV, Phys. Rev. C 75, 064901 (2007).
[11] G.J. Bobbink et al. (R-607 Collaboration), The production of high-momentum particles and resonances in pp collisions at the CERN intersecting storage rings, Nucl. Phys. B 217 (1983) 11.
[12] S. Erhan et al. (R-603 Collaboration), Hyperon production in pp interactions at $\sqrt{s} = 53$ and 62 GeV, Phys. Lett. B 85 (1979) 447.
[13] P. Skubic et al. (E8 Collaboration), Neutral-strange-particle production by 300-GeV protons, Phys. Rev. D 18, 3115 (1978).