Educational Level, Anticoagulation Quality, and Clinical Outcomes in Elderly Patients with Acute Venous Thromboembolism: A Prospective Cohort Study

Eveline Hofmann1, Nicolas Faller1,*, Andreas Limacher2, Marie Méan1,3, Tobias Tritschler1, Nicolas Rodondi1, Drahomer Aujesky1

1 Department of General Internal Medicine, Bern University Hospital, University of Bern, Bern, Switzerland, 2 Clinical Trials Unit Bern, Department of Clinical Research, and Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland, 3 Department of General Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland

* Nicolas.Faller@insel.ch

Abstract

Whether the level of education is associated with anticoagulation quality and clinical outcomes in patients with acute venous thromboembolism (VTE) is uncertain. We thus aimed to investigate the association between educational level and anticoagulation quality and clinical outcomes in elderly patients with acute VTE. We studied 817 patients aged ≥65 years with acute VTE from a Swiss prospective multicenter cohort study (09/2009-12/2013). We defined three educational levels: 1) less than high school, 2) high school, and 3) post-secondary degree. The primary outcome was the anticoagulation quality, expressed as the percentage of time spent in the therapeutic INR range (TTR). Secondary outcomes were the time to a first recurrent VTE and major bleeding. After adjustment, educational level was neither associated with anticoagulation quality nor with recurrent VTE or major bleeding. In elderly patients with VTE, we did not find an association between educational level and anticoagulation quality or clinical outcomes.
Introduction

Given the narrow therapeutic range of vitamin K antagonists, a strict adherence to anticoagulant therapy is important in the management of venous thromboembolism (VTE). Supra-therapeutic anticoagulation, defined as an international normalized ratio (INR) >3.0, increases the risk of bleeding, whereas sub-therapeutic anticoagulation (INR <2.0) may increase the risk of recurrent VTE [1]. Socioeconomic factors, such as poverty or homelessness, were found to be associated with lower adherence to anticoagulation therapy [2].

The educational level, defined as the highest level of schooling reached, is an important socioeconomic factor and has substantial health consequences [3]. A low educational level continues to increase the risk of adverse health effects even among the elderly [4]. Although patients with a lower educational level are more likely to have limited language proficiency, health literacy, and lower drug adherence and warfarin knowledge scores [5–9], whether educational level is associated with anticoagulation quality in patients with VTE is uncertain. Prior studies examining this question were limited by a cross-sectional design [10, 11] or a small sample size [11–14], did not focus on patients with VTE [10–14], or assessed anticoagulation quality indirectly using self-reported drug compliance or electronic medication monitoring systems rather than the time spent in therapeutic INR range (TTR) [11, 14].

According to population-based registries, patients with a lower educational level appear to have an increased overall risk of VTE [15, 16]. However, whether a lower education is associated with recurrent VTE or anticoagulation-related bleeding in patients with acute VTE is unknown. To fill these gaps of knowledge, we evaluated the association between educational level and the quality of anticoagulation in a prospective multicenter cohort of elderly patients with acute VTE. We also examined whether the educational level was associated with recurrent VTE or major bleeding.

Methods

Cohort sample

The study was conducted between September 2009 and December 2013 as part of a prospective, multicenter cohort study (SWITCO65+) to assess long-term medical outcomes and quality of life in consecutive in- and outpatients aged 65 years or older with acute symptomatic, objectively confirmed VTE from all five Swiss university and four high-volume non-university hospitals [17]. The patient enrolment phase ended in March 2012 and patients were followed-up until December 2013. VTE comprised proximal and distal deep vein thrombosis (DVT) and/or pulmonary embolism (PE). Exclusion criteria were catheter-related thrombosis, thrombosis at a different site than lower limb, insufficient German or French-speaking ability, impossibility to follow up (i.e., terminal illness), an inability to provide informed consent (i.e., severe dementia), or previous enrollment in the cohort. The detailed study methods, including eligibility criteria and exact definitions of DVT and PE, were published previously [17]. The Institutional Review Board at each participating center approved the study and patients gave written consent to participation. The approving ethic committees were the “Commission cantonale d’éthique de la recherche sur l’être humain Vaud” (site of Lausanne), “Commission cantonale d’éthique de la recherche Genève” (site of Geneva), “Kantonale Ethikkommission Bern” (site of Bern), “Kantonale Ethikkommission Zürich” (site of Zurich), “Ethikkommision Nordwest- und Zentralschweiz” (sites of Basel, Lucerne and Baden), “Ethikkommission des Kantons Thurgau” (site of Frauenfeld) and “Ethikkommission des Kantons St. Gallen” (site of St. Gallen). For the present study, we considered all patients of the original cohort who were treated with vitamin K antagonists within 30 days of VTE diagnosis.
Baseline data collection

For all enrolled patients, trained study nurses prospectively collected information about baseline demographics such as age, gender, living status (living at home with another person or alone, or living in a nursing home), and self-reported educational level. Additional data collection included smoking status, body mass index, average weekly alcohol consumption, recent major surgery, comorbid conditions (active cancer, arterial hypertension, chronic heart failure, diabetes mellitus, cerebrovascular disease, chronic liver disease, chronic renal failure, inflammatory bowel disease, history of VTE or major bleeding), localization of index VTE (DVT only, PE only, or both), type of VTE (provoked, unprovoked, or cancer-related), routine laboratory findings (hemoglobin, platelet count), risk of falls, concomitant antiplatelet therapy or non-steroidal anti-inflammatory drugs, polypharmacy. The risk of falls was assessed using two validated screening questions: 1) did you fall during the last year? and 2) did you notice any problem with gait, balance, or mobility [18]? Patients who answered yes to at least one screening question were considered to be at high risk of falls. Polypharmacy was defined as the prescription of more than four drugs, including St. John’s wort, at the time of the index VTE event [19]. The intake of vitamins or alternative medicine treatments was not considered.

Level of education

Study nurses assessed the patient’s self-reported level of education at baseline. We defined three educational levels: 1) less than high school education (≤9 years of schooling completed), 2) high school degree (high school completed), or 3) post-secondary degree (diploma from a university or an equivalent institution), as done previously [15, 16].

Anticoagulation management

Patients were treated with Acenocoumarol and Phenprocoumone, the two vitamin K antagonists available in Switzerland. Patients received discharge instructions and educational measures on anticoagulation by their managing physicians. After discharge, anticoagulation was managed by primary care physicians who determined the frequency of INR measurements on an individual basis.

Study outcomes

The primary outcome of this study was the quality of anticoagulation, expressed as the percentage of time spent in the therapeutic range (TTR) of the INR (2.0–3.0) according to the Rosendaal method [20]. Secondary outcomes were clinical events, i.e. the time to a first recurrent VTE and major bleeding. Recurrent VTE was defined as a new or recurrent, fatal or non-fatal, symptomatic, and objectively confirmed PE or DVT, as previously described [17]. We defined major bleeding as a fatal bleeding, a symptomatic bleeding in a critical organ (intracranial, intraspinal, intraocular, retroperitoneal, intraarticular, pericardial, or intramuscular with compartment syndrome), a bleeding with a reduction of hemoglobin ≥20 g/l, or a bleeding leading to the transfusion of ≥2 units of packed red blood cells [21].

Follow-up included one telephone interview and two face-to-face evaluations during the first year of study participation and then semi-annual contacts, alternating between face to face-evaluations and telephone calls as well as periodic hospital chart reviews. As part of the follow-up interview/visits, study nurses obtained information about the date and type of VTE recurrence, bleeding events, and death. We also collected INR values throughout follow-up. A committee of three blinded clinical experts adjudicated all outcomes. The committee classified the cause of all deaths as definitely due to PE (i.e., confirmed by autopsy or death followed a
clinically severe PE), possibly due to PE (i.e., death in a patient who died suddenly or unexpectedly), due to bleeding, or due to another cause. Death was judged to be bleeding-related if it followed an intracranial hemorrhage or a bleeding episode leading to hemodynamic deterioration [22]. Final classifications were made on the basis of the full consensus of this committee.

Statistical analysis

We compared patient baseline characteristics by educational level using the chi-squared and Kruskal-Wallis rank tests as appropriate. We compared the percentage of time spent within one of three specified INR ranges (<2.0, 2.0–3.0, >3.0) across educational levels using analysis of variance and adjusted regression models, excluding the first seven treatment days [20]. We compared the cumulative incidence of recurrent VTE and major bleeding by educational level using Kaplan-Meier analysis and the log rank test.

We examined the association between educational level and the TTR using linear regression models, adjusting for known risk factors of poor anticoagulation quality, including age, female gender, living status, body mass index, self-reported average weekly alcohol consumption (expressed in standard glasses), smoking status, chronic liver disease, chronic heart failure, diabetes mellitus, active cancer, and polypharmacy [23–25].

We examined the association between educational level and time to first recurrent VTE and major bleeding using competing risk regression models according to Fine and Gray, accounting for overall death as a competing event [26]. The strength of the association between the educational level and clinical outcomes in the Fine-Gray model is reflected by the sub-hazard ratio (SHR), which is the ratio of hazards associated with the cumulative incidence function in the presence of a competing risk. For recurrent VTE, we adjusted for variables that were previously shown to be associated with recurrent VTE, including age, gender, body mass index, localization of the index VTE (PE with or without concomitant DVT, proximal DVT only, distal DVT only), type of VTE (provoked, unprovoked, or cancer-related), history of prior VTE, inflammatory bowel disease, and periods of anticoagulation as a time-varying covariate [27–34]. For major bleeding, we adjusted for variables that were previously associated with anticoagulation-related bleeding complications, including age, gender, self-reported average weekly alcohol consumption (expressed in standard glasses), overt pulmonary embolism, history of major bleeding, recent major surgery, cerebrovascular disease, chronic heart failure, diabetes mellitus, arterial hypertension, active cancer, chronic liver disease, chronic renal disease, risk of falls, polypharmacy, concomitant antiplatelet therapy, anemia, low platelet count, and periods of anticoagulation as a time-varying covariate [35–43].

We assumed missing values (see Table 1) in covariates used for adjustment to be normal or absent. All analyses were performed using Stata 14.0.

Results

Study sample

Of the 1003 patients initially enrolled in the cohort [17], we excluded 186 patients, mainly patients with no initial oral anticoagulation (N = 132), leaving a final study sample of 817 patients with acute VTE (Fig 1). Excluded patients were more likely to be current or past smokers (56% vs. 47%, P = 0.01) and to have a high risk of falls (53% vs. 44%, P = 0.021), had a lower body mass index (median 25 vs. 27, P<0.001), had less often an unprovoked index VTE (24% vs. 68%, P<0.001), and had more often active cancer (57% vs. 9%, P<0.001), a history of major bleeding (15% vs. 9%, P = 0.026), anemia (64% vs. 34%, P<0.001), and polypharmacy (58% vs. 49%, P = 0.016) than analyzed patients. Because direct oral anticoagulants were not yet
Characteristica	Less than high school (N = 460)	High school (N = 206)	Post-secondary (N = 151)	P-value
Age, years	75 (69–82)	75 (69–79)	74 (69–81)	0.42
Female gender	242 (53)	98 (48)	41 (27)	<0.001
Living status				
Living at home with someone else	274 (60)	142 (69)	98 (65)	0.14
Living at home alone	174 (38)	58 (28)	51 (34)	
Living in a nursing home	12 (3)	6 (3)	2 (1)	
Localization of index VTE				0.79
PE (with/without DVT)	323 (70)	149 (72)	111 (74)	
Proximal DVT	106 (23)	41 (20)	32 (21)	
Distal DVT only	31 (7)	16 (8)	8 (5)	
Type of index VTE				0.68
Provokedb	108 (23)	42 (20)	34 (23)	
Unprovokedc	317 (69)	136 (66)	103 (68)	
Cancer-relatedd	35 (8)	28 (14)	14 (9)	0.05
Arterial hypertenstion	298 (65)	136 (66)	92 (61)	0.59
Diabetes mellitus	72 (16)	32 (16)	24 (16)	0.03
Smoking status				0.49
Current smoker	29 (6)	14 (7)	13 (9)	
Past smoker	177 (39)	80 (39)	67 (44)	
Never smoker	245 (55)	112 (54)	71 (47)	
Body mass index (kg/m²)	27.3 (24.6–30.5)	26.9 (23.9–30.2)	26.6 (23.8–29.4)	0.03
Chronic heart failurea	36 (8)	13 (6)	10 (7)	0.75
Cerebrovascular diseasef	42 (9)	20 (10)	11 (7)	0.71
Chronic pulmonary diseaseg	66 (14)	29 (14)	15 (10)	0.37
Chronic liver diseaseh	8 (2)	2 (1)	0 (0)	0.22
Chronic renal failurei	82 (18)	41 (20)	30 (20)	0.76
Inflammatory bowel disease	13 (3)	9 (4)	4 (3)	0.53
Prior VTE	128 (28)	67 (33)	48 (32)	0.39
History of major bleedingj	41 (9)	22 (11)	12 (8)	0.64
Standardized alcoholic drinks/weekk	1 (0–7)	2 (0–7)	3 (0–7)	0.02
High risk of fallsl	218 (47)	84 (41)	61 (40)	0.15

Characteristica	Less than high school (N = 460)	High school (N = 206)	Post-secondary (N = 151)	P-value
Anemiaa	164 (36)	67 (33)	44 (29)	0.26
Platelet count <150 G/l	61 (13)	24 (12)	26 (17)	0.30
Serum creatinine >1.5 mg/dl	50 (11)	15 (7)	18 (12)	0.24
Antiplatelet/NSAID therapyh	160 (35)	96 (47)	64 (42)	0.01
Polypharmacyj	228 (50)	96 (47)	77 (51)	0.68
VKA therapy prior to VTE diagnosis	18 (4)	11 (5)	8 (5)	0.63
Type of initial parenteral anticoagulation				<0.001
Unfractionated Heparin	153 (33)	79 (38)	49 (32)	
Low molecular weight Heparin	204 (44)	101 (49)	69 (46)	
Fondaparinux	97 (21)	18 (9)	23 (15)	
Danaparoid	0 (0)	0 (0)	1 (1)	
No parenteral anticoagulation	6 (1)	8 (4)	9 (6)	
Use of inferior vena cava filter	4 (1)	1 (0)	1 (1)	0.86

(Continued)
authorized for treatment of acute VTE at the time of patient recruitment in Switzerland, none of the excluded patients was treated with direct oral anticoagulants.

Analyzed patients had a median age of 75.0 years (interquartile range [IQR] 69.0–81.0), 381 (47%) were women, and 556 (68%) had unprovoked index VTE. Overall, 460 patients (56%) had a less than high school education, 206 (25%) were high school graduates, and 151 (18%) had a post-secondary degree (Table 1). Patients with less than a high school education were more likely to be women and to have a higher body mass index, and were less likely to receive antiplatelet or non-steroidal anti-inflammatory drugs. They also had a lower alcohol consumption. The median follow-up period was 30 months (IQR 24–41).

Educational level and quality of anticoagulation

There was no statistically significant difference in the percentage of TTR across the three educational levels, with a mean TTR of 61% (standard deviation [SD] 23%) in the less than high school group, 64% (SD 23%) in the high school group, and 63% (SD 21%) in the post-secondary group (P = 0.36, Table 2). The percentage of time above and below the therapeutic range did not differ by educational level. After adjustment for risk factors of poor anticoagulation control, measures of anticoagulation quality did not differ significantly between patients with less than high school education and those with a higher educational level (Table 3).

Educational level and clinical events

Overall, 110 patients (13.5%) died during follow-up. 105 patients (12.9%) had a first recurrent VTE and 102 (12.5%) had a first major bleeding during follow-up. The 3-year cumulative incidence of recurrent VTE and major bleeding did not differ across the three educational levels (Fig 2A and 2B). After adjustment, patients with a high school (SHR 0.95, 95% CI 0.56–1.61)
or a post-secondary degree (SHR 1.14, 95% CI 0.68–1.92) did not have a lower risk of recurrent VTE compared to patients with less than a high school education. Similarly, patients with a high school (SHR 1.12, 95% CI 0.70–1.81) or a post-secondary degree (SHR 1.40, 95% CI 0.82–2.38) did not have a lower risk of major bleeding than patients with less than high school education (Table 4).

Discussion

In our prospective cohort of elderly patients with VTE, we found no association between the level of education and the quality of anticoagulation, recurrent VTE, or major bleeding. Our results are consistent with prior studies that did not demonstrate a relationship between the level of education and anticoagulation quality in mixed samples including patients with atrial fibrillation, VTE, and mechanical heart valves [11–13]. Although patients with a lower educational level have a limited language proficiency, a lower health literacy, and a poorer knowledge of anticoagulation therapy [5–7], a lower level of education does not appear to translate into a worse quality of anticoagulation or outcomes in elderly patients with VTE. Overall, our results indicate that elderly patients with VTE who have a low educational level do not need to be specifically targeted for intensified anticoagulation-related educational measures or surveillance.
In contrast to our findings, a study of elderly patients with atrial fibrillation reported that patients with a university degree spent more time in the therapeutic INR range [10]. Similarly, patients with atrial fibrillation who had a low income were more likely to be hospitalized for bleeding or to experience fatal bleeds [44]. A possible explanation is that the effect of educational level and other socioeconomic factors on anticoagulation quality may be more relevant in primary (e.g., stroke prevention in atrial fibrillation) than in secondary prevention (e.g., prevention of recurrent VTE) [45].

Somewhat paradoxically, a higher educational level was associated with a decreased adherence to warfarin in a prior study, possibly as a consequence of independent decision making or reduced trust in physicians relative to less educated patients [14]. However, this study evaluated the adherence to warfarin therapy, measured by electronically monitored pill bottle openings, and did not determine the TTR, a more direct indicator of anticoagulation quality.

Our study has several strengths. First, our prospective cohort enrolled in- and outpatients with acute VTE from nine Swiss university and non-university hospitals, increasing the generalizability of our findings. Second, we directly and objectively assessed anticoagulation quality using the TTR rather than self-reported or electronically measured anticoagulation compliance. Third, clinical outcomes, such as recurrent VTE and major bleedings, were adjudicated by a committee of three blinded clinical experts using pre-defined criteria, reducing the risk of detection bias. Finally, to decrease the risk of confounding, our analyses were adjusted for the risk factors associated with anticoagulation quality.

Table 2. Anticoagulation quality by educational level.

Anticoagulation quality	Less than high school	High school	Post-secondary	P-value
Time in the therapeutic range (INR 2.0–3.0)	61.4 (22.7)	64.1 (23.3)	62.8 (20.9)	0.36
Time above the therapeutic range (INR >3.0)	15.0 (16.7)	14.9 (18.3)	15.1 (16.2)	0.99
Time below the therapeutic range (INR <2.0)	23.5 (22.0)	21.0 (20.8)	22.1 (19.5)	0.35

SD, standard deviation; INR, international normalized ratio.

doi:10.1371/journal.pone.0162108.t002

Table 3. Association between educational level and anticoagulation quality.

Anticoagulation quality	Adjusted differencea (95% CI)	P-value
Percent		
Time in the therapeutic range (INR 2.0–3.0)		
Less than high school	Reference	-
High school	2.3 (-1.3 to 5.9)	0.21
Post-secondary	0.0 (-4.1 to 4.1)	1.0
Time above the therapeutic range (INR >3.0)		
Less than high school	Reference	-
High school	0.1 (-2.7 to 2.9)	0.95
Post-secondary	0.6 (-2.6 to 3.8)	0.71
Time below the therapeutic range (INR <2.0)		
Less than high school	Reference	-
High school	-2.4 (-5.9 to 1.1)	0.18
Post-secondary	-0.6 (-4.6 to 3.3)	0.75

INR, international normalized ratio; CI, confidence interval.

*aAdjusted for age, gender, living status, smoking status, body mass index, alcohol consumption, chronic liver disease, history of heart failure, diabetes mellitus, active cancer, and polypharmacy.

doi:10.1371/journal.pone.0162108.t003
Fig 2. Kaplan-Meier estimates of clinical outcomes by educational level. Panel A. Kaplan-Meier estimates of a first recurrent venous thromboembolism by educational level. The 3-year cumulative incidence of a first recurrent venous thromboembolism was 14.2%, 12.9%, and 16.4% for patients with less than high school, high school, and a post-secondary degree, respectively ($P = 0.64$ by the logrank test). Panel B. Kaplan-Meier estimates of a first major bleeding by educational level. The 3-year cumulative incidence of a first major bleeding was 13.3%, 15.1%, and 15.4% for patients with less than high school, high school, and a post-secondary degree, respectively ($P = 0.68$ by the logrank test).

doi:10.1371/journal.pone.0162108.g002
majority of known risk factors of poor anticoagulation control, recurrent VTE, and major bleeding.

Our study has potential limitations. First, our study enrolled exclusively patients aged 65 years or older with acute VTE. We thus cannot generalize our results to younger patients or those with other indications for anticoagulation. Because patients were enrolled exclusively in hospital in- and outpatient services, healthier patients with milder forms of VTE (typically DVT) who are managed in private practices may be underrepresented in our study. Second, the level of education was self-reported in our study, which may have resulted in an overestimation of the educational level in some patients [46]. Third, we could not evaluate other socio-economic factors with known impact on anticoagulation quality and outcomes, such as patient income and living area [23, 44, 47–49]. However, Swiss residents have universal health care coverage and a good access to health care, including anticoagulant drugs and monitoring [50]. Moreover, there was no relationship between income class and access/affordability of vitamin K antagonists in an international study [51]. Fourth, patients with severe dementia and those with insufficient language skills were not enrolled in our cohort, both risk factors for poor anticoagulation control [5, 23]. Thus, we cannot exclude the possibility that the inclusion of such patients would have influenced our results. Finally, we used the TTR as a measure of anticoagulation quality. Although it is associated with drug adherence [52, 53], other factors such as comorbid conditions, variations in food intake or drug interactions may also have influenced the TTR.

Conclusion

In conclusion, our results did not show an association between educational level and anticoagulation quality or clinical outcomes in elderly patients with acute VTE who were treated with vitamin K antagonists. Our findings indicate that elderly patients with VTE who have a low educational level do not need to be specifically targeted for intensified anticoagulation-related educational measures or surveillance.

Table 4. Association between educational level, recurrent venous thromboembolism, and major bleeding.
Recurrent VTE
Less than high school
High school
Post-secondary
Major Bleeding
Less than high school
High school
Post-secondary

VTE, venous thromboembolism; SHR, sub-hazard ratio; CI, confidence interval.

*Adjusted for age, gender, body mass index, type of the index VTE, localization of the index VTE, history of prior VTE, inflammatory bowel disease, and periods of anticoagulation as a time-varying covariate.

*Adjusted for age, gender, alcohol consumption, overt pulmonary embolism, history of major bleeding, recent major surgery, cerebrovascular disease, chronic heart failure, diabetes mellitus, arterial hypertension, active cancer, chronic liver disease, chronic renal disease, risk of falls, polypharmacy, concomitant antiplatelet therapy, anemia, low platelet count, and periods of anticoagulation as a time–varying covariate.

doi:10.1371/journal.pone.0162108.t004
Acknowledgments
The authors thank all collaborators of the SWITCO65+ study.

Author Contributions
Conceived and designed the experiments: EH AL MM DA.
Performed the experiments: EH AL MM.
Analyzed the data: EH AL MM.
Contributed reagents/materials/analysis tools: AL.
Wrote the paper: EH NF AL MM TT NR DA.
Obtained funding from Swiss National Science Foundation: NR DA.

References
1. Wells PS, Forgie MA, Rodger MA. Treatment of venous thromboembolism. Jama. 2014; 311(7):717–28. doi: 10.1001/jama.2014.65 PMID: 24549552.
2. Kneeland PP, Fang MC. Current issues in patient adherence and persistence: focus on anticoagulants for the treatment and prevention of thromboembolism. Patient Prefer Adherence. 2010; 4:51–60. PMID: 20361065; PubMed Central PMCID: PMC2846139.
3. Seeman T, Merkin SS, Crimmins E, Koretz B, Charette S, Karlamangla A. Education, income and ethnic differences in cumulative biological risk profiles in a national sample of US adults: NHANES III (1988–1994). Social science & medicine. 2008; 66(1):72–87. doi: 10.1016/j.socscimed.2007.08.027 PMID: 17920177; PubMed Central PMCID: PMC2180425.
4. Huisman M, Read S, Towriss CA, Deeg DJ, Grundy E. Socioeconomic Inequalities in Mortality Rates in Old Age in the World Health Organization Europe Region. Epidemiologic reviews. 2013. Epub 2013/02/06. doi: 10.1093/epirev/mxs010 PMID: 23382476.
5. Rodriguez F, Hong C, Chang Y, Oertel LB, Singer DE, Green AR, et al. Limited English proficient patients and time spent in therapeutic range in a warfarin anticoagulation clinic. Journal of the American Heart Association. 2013; 2(4):e000170. doi: 10.1161/JAHA.113.000170 PMID: 23832325; PubMed Central PMCID: PMC3828815.
6. Fang MC, Machtinger EL, Wang F, Schillinger D. Health literacy and anticoagulation-related outcomes among patients taking warfarin. Journal of general internal medicine. 2006; 21(8):841–6. doi: 10.1111/j.1525-1497.2006.00537.x PMID: 16881944; PubMed Central PMCID: PMC1831580.
7. Hu A, Chow CM, Dao D, Errett L, Keith M. Factors influencing patient knowledge of warfarin therapy after mechanical heart valve replacement. The Journal of cardiovascular nursing. 2006; 21(3):169–75; quiz 76–7. PMID: 16699355.
8. Ho PM, Bryson CL, Rumsfeld JS. Medication adherence: its importance in cardiovascular outcomes. Circulation. 2009; 119(23):3028–35. doi: 10.1161/CIRCULATIONAHA.108.768986 PMID: 19528344.
9. Goldman DP, Smith JP. Can patient self-management help explain the SES health gradient? Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(16):10929–34. doi: 10.1073/pnas.162086599 PMID: 12140364; PubMed Central PMCID: PMC125075.
10. Bertomeu-Gonzalez V, Anguita M, Moreno-Arribas J, Cequier A, Muniz J, Castillo-Castillo J, et al. Quality of Anticoagulation With Vitamin K Antagonists. Clinical cardiology. 2015; 38(6):357–64. doi: 10.1002/clc.22397 PMID: 25962838.
11. Armento JH, Gelfand JM, Singer DE. Determinants of compliance with anticoagulation: A case-control study. The American journal of medicine. 1997; 103(1):11–7. PMID: 9236480.
12. Costa GL, Ferreira DC, Valacio RA, Vieira Moreira Mda C. Quality of management of oral anticoagulation as assessed by time in therapeutic INR range in elderly and younger patients with low mean years of formal education: a prospective cohort study. Age and ageing. 2011; 40(3):375–81. doi: 10.1093/ageing/afq020 PMID: 21422013.
13. Costa GL, Lamego RM, Colosimo EA, Valacio RA, Moreira Mda C. Identifying potential predictors of high-quality oral anticoagulation assessed by time in therapeutic international normalized ratio range: a prospective, long-term, single-center, observational study. Clin Ther. 2012; 34(7):1511–20. doi: 10.1016/j.clinthera.2012.06.002 PMID: 22717417.
14. Platt AB, Localio AR, Brensinger CM, Cruess DG, Christie JD, Gross R, et al. Risk factors for nonadherence to warfarin: results from the IN-RANGE study. Pharmacoepidemiology and drug safety. 2008; 17(9):853–60. Epub 2008/02/14. doi: 10.1002/pds.1556 PMID: 18271059; PubMed Central PMCID: PMC2919157.

15. Isma N, Merlo J, Ohtsson H, Svensson PJ, Lindblad B, Gottsater A. Socioeconomic factors and comitant diseases are related to the risk for venous thromboembolism during long time follow-up. Journal of thrombosis and thrombolysis. 2013; 36(1):58–64. Epub 2012/12/19. doi: 10.1007/s11939-012-0858-8 PMID: 23247894.

16. Zoller B, Li X, Sundquist J, Sundquist K. Socioeconomic and occupational risk factors for venous thromboembolism in Sweden: a nationwide epidemiological study. Thrombosis research. 2012; 129(5):577–82. Epub 2011/08/27. doi: 10.1016/j.thromres.2011.07.050 PMID: 21868069.

17. Mean M, Righini M, Jaeger K, Beer HJ, Frauchiger B, Osterwalder J, et al. The Swiss cohort of elderly patients with venous thromboembolism (SWITC065+): rationale and methodology. Journal of thrombosis and thrombolysis. 2013; 36(4):475–83. doi: 10.1007/s11939-013-0875-2 PMID: 23359097.

18. Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient fall? Jama. 2007; 297(1):77–80. doi: 10.1001/jama.297.1.77 PMID: 17200478.

19. Gasse C, Hollowell J, Meier CR, Haefeli WE. Drug interactions and risk of acute bleeding leading to hospitalisation or death in patients with chronic atrial fibrillation treated with warfarin. Thrombosis and haemostasis. 2005; 94(3):537–43. doi: 10.1111/j.1538-7836.2005.01204.x PMID: 15842354.

20. Rosendaal FR, Cannegieter SC, van der Meer FJ, Brandjes DP, Cohen A, Dekker FW, et al. A method to determine the optimal intensity of anticoagulant therapy. Thrombosis and haemostasis. 1993; 69(3):236–9. Epub 1993/03/01. PMID: 8470047.

21. Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the S, Standardization Committee of the International Society on T, Haemostasis. Definition of major bleeding in clinical investigations of antithrombotic medicinal products in non-surgical patients. J Thromb Haemost. 2005; 3(4):692–4. doi: 10.1111/j.1538-7866.2005.01204.x PMID: 15842354.

22. Jakobsson C, Jimenez D, Gomez V, Zamarro C, Mean M, Aujesky D. Validation of a clinical algorithm to identify low-risk patients with pulmonary embolism. Journal of thrombosis and haemostasis: JTH. 2010; 8(6):1242–7. doi: 10.1111/j.1538-7866.2010.03396.x PMID: 20320422.

23. Rose AJ, Hylek EM, Ozonoff A, Ash AS, Reisman JI, Berlowitz DR. Patient characteristics associated with oral anticoagulation control: results of the Veterans Affairs Study to Improve Anticoagulation (VARIA). Journal of thrombosis and haemostasis: JTH. 2010; 8(10):2182–9. doi: 10.1111/j.1538-7866.2010.03996.x PMID: 20653840.

24. Witt DM, Delate T, Clark NP, Martell C, Tran T, Crowther MA, et al. Outcomes and predictors of very stable INR control during chronic anticoagulation therapy. Blood. 2009; 114(18):4992–9. doi: 10.1182/blood-2009-05-057345 PMID: 19439733.

25. Melamed OC, Horowitz G, Elhayany A, Vinker S. Quality of anticoagulation control among patients with inflammatory bowel disease is a risk factor for recurrent venous thromboembolism. Gastroenterology. 2010; 139(3):779–86. doi: 10.1053/j.gastro.2010.05.026 PMID: 20546736.

26. Eichinger S, Hron G, Bialonczyk C, Hirschl M, Minar E, Wagner O, et al. Overweight, obesity, and the risk of recurrent venous thromboembolism: a meta-analysis. Lancet. 2006; 368(9533):371–8. Epub 2006/08/01. doi: 10.1016/S0140-6736(06)6110-1 PMID: 16876665.

27. Eichinger S, Heinz G, Jandeck LM, Kyte PA. Risk assessment of recurrence in patients with unpro- voked deep vein thrombosis or pulmonary embolism: the Vienna prediction model. Circulation. 2010; 121(14):1630–6. doi: 10.1161/CIRCULATIONAHA.109.925214 PMID: 20351233.
33. Louzada ML, Carrier M, Lazo-Langner A, Dao V, Kovacs MJ, Ramsay TO, et al. Development of a clinical prediction rule for risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism. Circulation. 2012; 126(4):448–54. Epub 2012/06/09. doi: 10.1161/CIRCULATIONAHA.111.051920 PMID: 22679142.

34. Iorio A, Kearon C, Filippucci E, Marucci M, Macura A, Pengo V, et al. Risk of recurrence after a first episode of symptomatic venous thromboembolism provoked by a transient risk factor: a systematic review. Archives of internal medicine. 2010; 170(19):1710–6. Epub 2010/10/27. doi: 10.1001/archinternmed.2010.367 PMID: 20975016.

35. Olesen JB, Lip GY, Hansen PR, Lindhardsen J, Ahlehoff O, Andersson C, et al. Bleeding risk in ‘real world’ patients with atrial fibrillation: comparison of two established bleeding prediction schemes in a nationwide cohort. Journal of Thrombosis and Haemostasis. 2011; 9(8):1460–7. Epub 2011/06/01. doi: 10.1111/j.1538-7836.2011.04378.x PMID: 21624047.

36. Shireman TI, Mähnenk JD, Howard PA, Kresowik TF, Hou Q, Ellerbeck EF. Development of a contemporary bleeding risk model for elderly warfarin recipients. Chest. 2006; 130(5):1390–6. doi: 10.1378/chest.130.5.1390 PMID: 17099015.

37. Ruiz-Gimenez N, Suarez C, Gonzalez R, Nieto JA, Todoli JA, Samperiz AL, et al. Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIEPE Registry. Thrombosis and haemostasis. 2008; 100(1):28–51. doi: 10.1160/TH07-03-0193 PMID: 18612534.

38. Nieuwenhuis HK, Albada J, Banga JD, Sixma JJ. Identification of risk factors for bleeding during treatment of acute venous thromboembolism with heparin or low molecular weight heparin. Blood. 1991; 78(9):2337–43. PMID: 1657248.

39. Pisters R, Lane DA, Nieuwlaat R, de Vogt CB, Crijs HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010; 138(5):1093–100. doi: 10.1378/chest.10-0134 PMID: 20929623.

40. Fang MC, Go AS, Chang Y, Borovsky LH, Pomeracki NK, Udaltsova N, et al. A new risk scheme to predict warfarin-associated hemorrhage: the ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study. Journal of the American College of Cardiology. 2011; 58(4):395–401. doi: 10.1016/j.jacc.2011.03.031 PMID: 21757566; PubMed Central PMCID: PMC3172066.

41. Gage BF, Yan Y, Milligan PE, Waterman AD, Culverhouse R, Rich MW, et al. Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF). American heart journal. 2006; 151(3):713–9. doi: 10.1016/j.ahj.2005.04.017 PMID: 16504638.

42. Lip GY, Frison L, Halperin JL, Lane DA. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. Journal of the American College of Cardiology. 2011; 57(2):173–80. doi: 10.1016/j.jacc.2010.09.024 PMID: 21111555.

43. Leiss W, Mean M, Limacher A, Righini M, Jaeger K, Beer HJ, et al. Polypharmacy is associated with an increased risk of bleeding in elderly patients with venous thromboembolism. Journal of general internal medicine. 2015; 30(1):17–24. doi: 10.1007/s11606-014-2993-8 PMID: 25143224; PubMed Central PMCID: PMC4284255.

44. Cressman AM, Macdonald EM, Yao Z, Austin PC, Gomes T, Paterson JM, et al. Socioeconomic status and risk of hemorrhage during warfarin therapy for atrial fibrillation: A population-based study. American heart journal. 2015; 170(1):133–40, 40 e1–3. doi: 10.1016/j.ahj.2015.03.014 PMID: 26093874.

45. Perreault S, Blais L, Lamarre D, Dragomir A, Berbiche D, Lalonde L, et al. Persistence and determinants of statin therapy among middle-aged patients for primary and secondary prevention. British journal of clinical pharmacology. 2005; 59(5):564–73. doi: 10.1111/j.1365-2125.2005.02355.x PMID: 15842555; PubMed Central PMCID: PMC1884848.

46. Johnson-Green D, Dehring M, Adams KM, Miller T, Arora S, Beylin A, et al. Accuracy of self-reported educational attainment among diverse patient populations: a preliminary investigation. Archives of clinical neuropsychology: the official journal of the National Academy of Neuropsychologists. 1997; 12(7):635–43. PMID: 14590657.

47. Dlott JS, George RA, Huang X, Odeh M, Kaufman HW, Ansell J, et al. National assessment of warfarin anticoagulation therapy for stroke prevention in atrial fibrillation. Circulation. 2014; 129(13):1407–14. doi: 10.1161/CIRCULATIONAHA.113.002601 PMID: 24493817.

48. Razouki Z, Ozonoff A, Zhao S, Rose AJ. Pathways to poor anticoagulation control. Journal of thrombosis and haemostasis: JTH. 2014; 12(5):628–34. doi: 10.1111/jth.12530 PMID: 24548552.

49. Rose AJ, Miller DR, Ozonoff A, Berlowitz DR, Ash AS, Zhao S, et al. Gaps in monitoring during oral anticoagulation: insights into care transitions, monitoring barriers, and medication nonadherence. Chest. 2013; 143(3):751–7. doi: 10.1378/chest.12-1119 PMID: 23187457.
50. Kauffman YS, Schroeder AE, Witt DM. Patient Specific Factors Influencing Adherence to INR Monitoring. Pharmacotherapy. 2015; 35(8):740–7. doi: 10.1002/phar.1616 PMID: 26289306.

51. Aiyagari V, Pandey DK, Testai FD, Grysiewicz RA, Tsiskaridze A, Sacks C, et al. A prototype worldwide survey of diagnostic and treatment modalities for stroke. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association. 2015; 24(2):290–6. doi: 10.1016/j.jstrokecerebrovasdis.2014.08.002 PMID: 25440332.

52. Davis NJ, Billett HH, Cohen HW, Amsten JH. Impact of adherence, knowledge, and quality of life on anticoagulation control. The Annals of pharmacotherapy. 2005; 39(4):632–6. doi: 10.1345/aph.1E464 PMID: 15713790.

53. Wang Y, Kong MC, Ko Y. Comparison of three medication adherence measures in patients taking warfarin. Journal of thrombosis and thrombolysis. 2013; 36(4):416–21. doi: 10.1007/s11239-013-0872-5 PMID: 23345042.