RESULTS: At the admission, first fasting blood glucose, pharmacological treatments (insulin and/or anti-diabetic drugs) prior to entering the study and basal glycated hemoglobin (HbA1c) were observed in the two groups treated with subcutaneous or intravenous insulin infusion, respectively. When compared with patients submitted to standard therapy, insulin-infused patients showed both increased first 24-h (median 6.9 mmol/L vs 5.7 mmol/L, P < 0.045) and overall hospitalization δglucose (median 10.9 mmol/L vs 9.3 mmol/L, P < 0.028), with a tendency to a significant increase in first 24-h glycaemic CV (23.1% vs 19.6%, P < 0.053). Severe hypoglycaemia was rare (14.3%), and it was observed only in 3 patients receiving insulin infusion therapy. HbA1c values measured during hospitalization and 3 mo after discharge did not differ in the two groups of treatment.

CONCLUSION: Our pilot data suggest that no real benefit in terms of GLUCV is observed when routinely managing blood glucose by insulin infusion therapy in type 2 diabetic ACS hospitalized patients in respect to conventional insulin treatment.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Glycaemic management; Intensive insulin therapy; Conventional insulin treatment; Acute coronary syndrome; Glucose variability

Core tip: In type 2 diabetic patients hospitalized for acute coronary syndrome no real benefit in terms of reduced glucose variability is observed by intensively managing blood glucose through insulin infusion therapy in respect to conventional insulin treatment.
2 diabetic patients by considering that type 2 diabetes comprises 90% of people with diabetes in Europe.

MATERIALS AND METHODS

Ethics

This work has been carried out in accordance with the Declaration of Helsinki (2000) of the World Medical Association. Informed consent was obtained from all patients and the study was approved by the institutional review board of the Hospital.

Patients

All type 2 diabetic patients admitted to the Heart Department of Fondazione CNR/Regione Toscana G. Monasterio from January 2013 to July 2013 with a diagnosis of ACS (i.e., STEMI, non-STEMI or unstable angina) and confirmed by electrocardiographic changes consistent with ACS, increased biochemical markers of cardiac necrosis and/or documented coronary artery disease were potentially eligible.

Additional inclusion criteria were: (1) age 18-80 years; (2) history of diabetes; (3) admission glucose level > 180 mg/dL (i.e., 10 mmol/L); and (4) glycated hemoglobin (HbA1c) > 6.2%.

Exclusion criteria were: (1) stage of chronic kidney disease > 3; (2) severe chronic liver, autoimmune diseases; (3) active neoplastic disease; and (4) treatment with corticosteroids.

We enrolled 44 patients, 32 males, 12 females, randomly assigned to standard multidose subcutaneous insulin treatment (n = 23) or continuous insulin infusion protocol (see below) for the first one-three days followed by standard subcutaneous multidose insulin treatment.

Methods

We adopted the nurse-implemented continuous intravenous insulin infusion protocol as proposed by Avanzini et al.[11] developed also to drive the optimal transition to subsequent subcutaneous insulin therapy,[22] with little modifications. In particular targeting glycemic values were 120-180 mg/dL (i.e., 6.6-10 mmol/L) instead of 100-139 mg/dL (i.e., 5.5-7.7 mmol/L), and infusion treatment was stopped in presence of glycemic values below 120 mg/dL (i.e., 6.7 mmol/L) instead of 100 mg/dL (i.e., 5.5 mmol/L).

To facilitate acceptance, during year 2012 all nurses involved in the study were previously trained by a week-long series of 1-h in-service training sessions and all experienced very good compliance with the infusion protocol at the time of the study.

The frequency of blood glucose determinations was guided by the infusion protocol as previously suggested,[21] usually blood samples were withdrawn every 2 h during day-time and every three hours during night-time. Blood glucose was checked at fixed times (i.e., 07:00 am; 10:00 am; 12:00 am; 04:00 am; 06:00 pm; 10:00 pm) in the case of subcutaneous insulin treatment.

To contribute equally to statistical analysis, blood
glucose levels utilized to determine GLUCV parameters (see below) were based only on measurements obtained at the same timetables in the two mentioned protocols (i.e., 07:00 am; 10:00 am; 12:00 am; 04:00 am; 06:00 pm; 10:00 pm).

Blood glucose levels were measured by a standard hospital glucose meter which was calibrated daily.

Assessment of glucose variability

GLUCV was assessed according to Brunner et al.[23] using three statistical indicators calculated for the three periods of interest i.e., (1) during the first 24 h; (2) during the whole hospitalization; and (3) during the pre-discharge day. The first indicator was represented by standard deviation (SD), the second by mean daily δ glucose, assessed as the mean of daily difference between maximum and minimum glucose, and the third indicator was the CV of glucose, express as percent [glucose (SD)/glucose (mean)] (%).

Statistical analysis

Continuous variables were expressed as mean ± SD or median (25th; 75th percentiles) and categorical variables were expressed as percentage. Student Independent t-test or Wilcoxon test was used as appropriate to compare continuous and ordinal variable differences between patients. Due to the small number of patients analyzed, the Wilcoxon test is preferred to the t-test for comparison of the indices of GLUCV between groups. Comparison between categorical variables was performed by χ² test or by Fisher exact test (if an expected cell count was 5). All statistical tests were evaluated with the use of 2-tailed 95%CI, and tests with P-value < 0.05 were considered significant. All analyses were performed using Stata, version 10.2.

RESULTS

Baseline characteristics of the 44 studied patients are reported in Table 1. Similar admission, first fasting blood glucose, pharmacological treatments (insulin and/or anti-diabetic drugs) prior to entering the study and basal HbA1c were observed in the two groups treated with subcutaneous or intravenous insulin infusion, respectively. Also, glycaemic control did not differ after three months from discharge between the two groups, as documented by superimposable HbA1c values (Table 1).

In patients submitted to intravenous infusion insulin therapy transition to subcutaneous insulin treatment was, on average, obtained after 3.5 ± 1.5 d.

The effectiveness of the two therapeutic protocols (i.e., infusion vs conventional insulin treatment) was assessed with regard to values of several relevant parameters of GLUCV (Tables 2 and 3 and Figure 1). Notwithstanding increased staff’s efforts and increased number of glycaemic determinations, patients receiving insulin infusion therapy showed both first 24-h and overall hospitalization increased GLUCV δ associated with a tendency to a significant increase in first 24-h glycaemic CV (P = 0.059).

Importantly, severe hypoglycemia (i.e., with glycaemic values < 50 mg/dL) was extremely rare (14.3%), but it was observed only in patients receiving insulin infusion therapy (Table 2).

All data, taken as whole, suggest that no improvement is observed in glucose management in day-to-day clinical activity by intensive insulin infusion protocol in diabetic type 2 patients with ACS when compared to standard subcutaneous insulin treatment.

DISCUSSION

An alteration of glucose metabolism which includes

Table 1 Main clinical characteristics of study population

	Total	Convensional insulin treatment	Infusion insulin treatment	P value
Gender (M)	72.7	69.6	76.2	0.622
Age (yr)	68.2 ± 11.5	69.6 ± 12.0	66.6 ± 11.0	0.397
BMI	29 (26; 31)	28 (26; 32)	29 (26; 30)	0.867
Urea mg/dL	46.7 ± 20.7	46.3 ± 15.5	47.2 ± 25.6	0.880
Creatinine mg/dL	1.0 ± 0.3	1.0 ± 0.4	1.0 ± 0.2	0.341
Basal glycated haemoglobin (%)	8.3 ± 1.8	8.1 ± 1.8	8.5 ± 1.9	0.459
First fasting glycaemia (mmol/L)	9.1 (7.4; 12.1)	9.4 (8.3; 10.9)	8.8 (6.9; 12.3)	0.435
Admission glycemia (mmol/L)	12.0 (10.3; 13.8)	11.4 (10.0; 13.2)	13.0 (10.8; 17.1)	0.205
Glycated haemoglobin after 3 mo from discharge (%)	8.1 ± 1.0	8.0 ± 1.1	8.3 ± 0.6	0.575
% Patients with new diagnosis of diabetes	13.6	13	14.3	1.000
% Patients under insulin treatment before admittance	26.3	26.3	26.3	1.000
% Patients with previous AMI	18.8	17.7	20.0	1.000
Lenght of in-hospital stay (d)	8 (7;10)	8 (7;10)	9 (7;12)	0.368
% Patients with STEMI	45.5	34.8	57.1	0.137
% Patients with non-STEMI	47.7	56.5	38.1	0.222
% Patients with in-hospital major complications	18.2	8.7	28.6	0.088
% Diabetic patients under dietetic treatment only	15.9	8.7	23.8	0.232
% Diabetic patients under oral anti diabetic drugs	45.5	52.2	38.1	0.382
% Patients under insulin treatment	20.5	21.7	19.1	1.000

[Interquartile ranges (25th; 75th percentile) values reported in brackets; Major complications include re-infarction, malignant arrhythmias, death. M: Males; BMI: Body mass index; AMI: Acute myocardial infarction; STEMI: ST-segment elevation myocardial infarction.]
A large meta-analysis clearly indicated that new hyperglycaemia per se in presence of AMI represents a strong prognostic predictor of short and long-term mortality and progression toward heart failure in both diabetic and non-diabetic patients.

Table 2 Hypo and hyperglycaemic states in patients treated with conventional insulin or insulin-infused protocol

	Total n = 44	Conventional insulin treatment n = 23	Infusion insulin treatment n = 21	P value
% Patients with glycaemic values > 11.1 mmol/L (at least one determination)	100.0	100.0	100.0	-
% Patients with glycaemic values 7.77-11.1 mmol/L (at least one determination)	100.0	100.0	100.0	-
% Patients with glycaemic values 5.55-7.72 mmol/L (at least one determination)	90.9	95.7	85.7	0.335
% Patients with glycaemic values < 5.55 mmol/L (at least one determination)	45.5	39.1	52.4	0.378
% Patients with severe hypoglycaemia (i.e., glucose < 2.77 mmol/L)	6.8	0.0	14.3	0.100
% Patients with more than 5 glycaemic values > 13.88 mmol/L	22.7	21.7	23.8	0.870
% Patients with more than two glycaemic values > 16.66 mmol/L	13.6	8.7	19.1	0.403
Average number of glycaemic values evaluated	30.8 ± 12.5	23.4 ± 9.0	31.0 ± 10.8	P < 0.001
Number of glycaemic values evaluated	1356 (6; 56)†	538 (6; 38)	818 (12; 56)	

†Interquartile ranges (25th; 75th percentile) values reported in brackets.

Table 3 Main glucose variability parameters measured in patients treated with conventional insulin or insulin-infused therapy

	Total n = 44	Conventional insulin treatment n = 23	Infusion insulin treatment n = 21	P value
Median of glycaemic values Glycaemic values (first 24 h) mmol/L	10.3 (9.0; 12.1)†	10.1 (8.6; 11.6)	10.3 (9.2; 12.1)	0.716
Glycaemic values (overall hospitalization) mmol/L	10.2 (8.8; 11.5)	9.8 (8.7; 10.7)	10.6 (9.1; 11.5)	0.366
Glycaemic values (pre-discharge) mmol/L	9.3 (8.6; 10.2)	9.1 (8.5; 9.9)	9.4 (8.6; 11.4)	0.331
Median of glycaemic values variability (δ) Variability of glycaemic values (first 24 h)	6.2 (4.5; 9.5)	5.7 (2.9; 7.5)	6.9 (5.5; 10.2)	0.045
Variability of glycaemic values (overall hospitalization)	9.9 (8.1; 13.1)	9.3 (7.3; 10.9)	10.9 (9.2; 14.3)	0.028
Variability of glycaemic values (pre-discharge)	5.2 (3.6; 6.1)	4.3 (2.9; 6.1)	5.3 (4.3; 6.8)	0.236
Median of glycaemic variability (Coefficient of Variation) Glycaemic Coefficient of Variation (first 24 h)	21.4% (15.7%; 31.2%)	19.6% (12.6%; 29.6%)	23.1% (20.7%; 31.1%)	0.059
Glycaemic Coefficient of Variation (overall hospitalization)	25.3% (20.7%; 28.5%)	27.1% (20.7%; 30.1%)	24.9% (21.7%; 27.1%)	0.518
Glycaemic Coefficient of Variation (pre-discharge)	23.1% (17.0%; 28.5%)	23.1% (14.8%; 26.4%)	23.4% (17.9%; 29.1%)	0.466

†Interquartile ranges (25th; 75th percentile) values reported in brackets.

Figure 1 Standard deviation of glycaemic levels determined in patients treated with conventional insulin or insulin infused therapy.

A prediabetic state is frequently observed during acute cardiac events. Furthermore, diabetic patients show an increased mortality and morbidity after both AMI and ACS in general when compared with non-diabetic patients. Also, the relationship of high blood glucose with risk of death or poor outcome after AMI is present for both diabetic and non-diabetic patients.

Arvia C et al. Insulin treatment in ACS diabetic patients
On the other hand, worse outcome in diabetic patients with ACS has not been improved by progressive diffusion of new, more efficacious pharmacological cardiac treatments and interventional procedures thus suggesting the hyperglycemia and glucose toxicity playing a critical role on adverse prognosis in ACS.

Serum GLUCV and in particular SD/CV of glycemic values measured during the first days after acute events including ACS has been demonstrated to represent a good prognostic biomarker of increased death rate[29].

It has been also reported that the relationship between mean serum GLUCV and mortality is described by a “U-shaped” curve, with lower and higher GLUCV values associated with higher death rate[9]. This suggests that preventing both hypo and hyperglycemic states may be an important therapeutic target to minimize changes in GLUCV.

Because hypoglycemia, hyperglycemia and high GLUCV are associated with an increased risk of death, an intensive insulin treatment has been proposed as a better strategy than conventional treatment to ameliorate glycemic control immediately after the acute cardiac event and, consequently patient’s prognosis[1]. Data so far reported are somewhat contrasting[1,29,30]; actually, although the DIGAMI study[13] demonstrated the superiority of intravenous insulin infusion when compared with standard care in reducing early and long-term mortality in diabetic AMI patients, the later DIGAMI 2 study did not confirm previous results[31]. Also, a major risk of intensive insulin treatment is the greater appearance of hypoglycemic episodes which are mainly related to diabetes life span, frequency of previous hypoglycemic attacks and pre-existing coronary artery disease[8,25,30] with worsening of prognosis and prolongation of in-hospital stay. Several insulin-infused operational protocols to be adopted in ICUs have been proposed so far[15-22] but no specific guidelines with validate protocols in day-to-day clinical practice. Our preliminary results indicate that GLUCV as represented by SD of blood glucose levels and glucose δ variation does not improve by intensive insulin treatment when compared to conventional approach. A concurrent clear disadvantage is represented by both higher personnel efforts and costs related to the significant increase in number of blood glucose determinations in the case of an insulin-infused protocol.

We do not have definite explanations for our findings. Among the possible causes we may recognize an increased difficulty in: (1) managing the infusion protocol, also by well-trained and compliant nurses, when compared with conventional insulin therapy, in a day-to-day clinical practice of a cardiac ICU; (2) managing the infusion protocol in feeding patients as in the case of ACS; and (3) managing the transition to conventional insulin treatment.

In conclusion our pilot study suggests that no benefit in terms of GLUCV is observed by early insulin infusion therapy in type 2 diabetic ACS in-patients in respect to conventional treatment in a day-to-day clinical practice. Further studies in larger populations and with a longer follow-up are, however, necessary to confirm these preliminary results.

REFERENCES

1. De Caterina R, Madonna R, Sourij H, Wascher T. Glycaemic control in acute coronary syndromes: prognostic value and therapeutic options. *Eur Heart J* 2010; 31: 1557-1564 [PMID: 20519242 DOI: 10.1093/eurheartj/ehq112]

2. Suleiman M, Hammerman H, Boulos M, Kapeliovich MR, Suleiman A, Agmon Y, Markiewicz W, Aronson D. Fasting glucose is an important independent risk factor for 30-day mortality in patients with acute myocardial infarction: a prospective study. *Circulation* 2005; 111: 754-760 [PMID: 15704859]
Arvia C et al. Insulin treatment in ACS diabetics patients

15699267 DOI: 10.1161/01.CIR.0000155255.48601.2A

3 Sinnaeve PR, Steg PG, Fox KA, Van de Werf F, Montalescot G, Granger CB, Knobel E, Anderson FA, Dabbous OH, Avezum A. Association of elevated fasting glucose with increased short-term and 6-month mortality in ST-segment elevation and non-ST-segment elevation acute coronary syndromes: the Global Registry of Acute Coronary Events. Arch Intern Med 2009; 169: 402-409 [PMID: 19237725 DOI: 10.1001/archinternmed.2008.572]

4 Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2006; 355: 773-778 [PMID: 10711923]

5 Bartnik M, Malmberg K, Norhammar A, Tenerz A, Ohvrik J, Rydén L. Newly detected abnormal glucose tolerance: an important predictor of long-term outcome after myocardial infarction. Eur Heart J 2004; 25: 1990-1997 [PMID: 15541834 DOI: 10.1016/j.ehj.2004.09.021]

6 Zeller M, Cottin Y, Brindisi MC, Dengt G, Laurent Y, Janin-Manifacet L, L’Huillier I, Beer JC, Touzery C, Makki H, Verges B, Wolf JE. Impaired fasting glucose and cardiovascular shock in patients with acute myocardial infarction. Eur Heart J 2004; 25: 308-312 [PMID: 14984919 DOI: 10.1016/j.ehj.2003.12.014]

7 Wahab NN, Cowden EA, Pearce NJ, Gardiner MJ, Merry H, Cox JL. Is blood glucose an independent predictor of mortality in acute myocardial infarction in the thrombolytic era? J Am Coll Cardiol 2002; 40: 1748-1754 [PMID: 12446057]

8 Otten R, Kline-Rogers E, Meier DJ, Dumasia R, Fang J, May N, Resin Y, Armstrong DF, Saab F, Petrina M, Eagle KA, Mukherjee D. Impact of pre-diabetic state on clinical outcomes in patients with acute coronary syndrome. Heart 2005; 91: 1466-1468 [PMID: 16230445]

9 Bilotta F, Rosa G. Optimal glycemic control in neurocritical care patients. Crit Care 2012; 16: 163 [PMID: 23106972 DOI: 10.4239/wjd.v3.17.130]

10 Zhang XL, Lu JM, Shan GL, Yang ZJ, Yang WY. Association between glucose variability and adverse in-hospital outcomes for Chinese patients with acute coronary syndrome. Saudi Med J 2010; 31: 1146-1151 [PMID: 20953532]

11 Deedwania P, Kosiborod M, Barrett E, Cerillo A, Isley W, Mazzone T, Raskin P. Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Anesthesiology 2008; 109: 14-24 [PMID: 18580168 DOI: 10.1097/ALN.0b013e3181dcd3]

12 Malmberg K, Rydén L, Erfindc S, Herlitz J, Nicol P, Waldenström A, Wedel H, Welin L. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): Effects on mortality at 1 year. J Am Coll Cardiol 1995; 26: 57-65 [PMID: 7797776]

13 Malmberg K, Norhammar A, Wedel H, Rydén L. Glycemic-abolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 1999; 99: 2626-2632 [PMID: 10338454]

14 Rydén L, Standl E, Bartnik Mg, Van den Bergh G, Betteridge J, de Boer MJ, Cosentino F, Jönsson B, Laakso M, Malmberg K, Priori S, Österberg J, Tuomilehto J, Thoennesdottir I. [Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death—executive summary]. Rev Port Cardiol 2007; 26: 1213-1274 [PMID: 18297842]

15 Shetty S, Inzucchi SE, Goldberg PA, Cooper D, Siegel MD, Honiden S. Adapting to the new consensus guidelines for managing hyperglycemia during critical illness: the updated Yale insulin infusion protocol. Endocr Pract 2012; 18: 363-370 [PMID: 22138078 DOI: 10.4158/EP11260.0R]

16 van den Bergh G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345: 1359-1367 [PMID: 11794168]

17 Bode BW, Braithwaite SS, Steed RD, Davidson PC. Intravenous insulin infusion therapy: indications, methods, and transition to subcutaneous insulin therapy. Endocr Pract 2004; 10 Suppl 2: 71-80 [PMID: 15251644]

18 Goldberg PA, Siegel MD, Sherwin RS, Halickman JJ, Lee M, Bailey VA, Lee SL, Dzurda JD, Inzucchi SE. Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit. Diabetes Care 2004; 27: 461-467 [PMID: 14747229]

19 Goldberg PA, Roussel MG, Inzucchi SE. Clinical results of an updated insulin infusion protocol in critically ill patients. Diabetes Spectr 2005; 18: 188-191 [DOI: 10.2237/diabetes.18.3.188]

20 Furnary AP, Wu Y, Bookin SO. Effect of hyperglycemia and continuous intravenous insulin infusions on outcomes of cardiac surgical procedures: the Portland Diabetic Project. Endocr Pract 2004; 10 Suppl 2: 21-33 [PMID: 15251637]

21 Avanzini F, Marelli G, Donzelli W, Sorbara L, Palazzo E, Bel-lato L, Colombo EL, Roncaglioni MC, Riva E, De Martini M. Hyperglycemia during acute coronary syndrome: a nurse-managed insulin infusion protocol for stricter and safer control. Eur J Cardiovasc Nurs 2009; 8: 182-189 [PMID: 19179114 DOI: 10.1016/j.ejcnurse.2008.12.001]

22 Avanzini F, Marelli G, Donzelli W, Busi G, Carbone S, Bel-lato L, Colombo EL, Foschi R, Riva E, Roncaglioni MC, De Martini M. Transition from intravenous to subcutaneous insulin: effectiveness and safety of a standardized protocol and predictors of outcome in patients with acute coronary syndrome. Diabetes Care 2011; 34: 1445-1450 [PMID: 21993302 DOI: 10.2337/dc10-2023]

23 Brunner R, Adelsmayer G, Herkner H, Madl C, Holzinger U. Glycemic variability and glucose complexity in critically ill patients: a retrospective analysis of continuous glucose monitoring data. Crit Care 2012; 16: R175 [PMID: 23031322]

24 Tian L, Zhu J, Liu L, Liang Y, Li J, Yang Y. Prediabetes and short-term outcomes in non-diabetic patients after acute ST-elevation myocardial infarction. Cardiology 2014; 127: 55-61 [PMID: 24247986 DOI: 10.1159/000354998]

25 Levitan EB, Song Y, Ford ES, Liu S. Is non-diabetic hypergly-cemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 2004; 164: 2147-2155 [PMID: 15505129]

26 Petursson P, Herlitz J, Caidahl K, Gudbjörnsdottir S, Karls-son T, Perers E, Sjöland H, Hartford M. Admission glycaemia and outcome after acute coronary syndrome. Int J Cardiol 2011; 166: 315-320 [PMID: 16854479]

27 Angeli F, Verdecchia P, Karthikeyan G, Mazzotta G, Del Pin-to M, Repaci S, Gatteschi C, Gentile G, Cavallini C, Rebollid G. New-onset hyperglycemia and acute coronary syndrome: a systematic overview and meta-analysis. Curr Diabetes Rev 2010; 6: 102-110 [PMID: 20034367]

28 Krinsley JS. Glycemic variability: a strong independent pre-dictor of mortality in critically ill patients. Crit Care Med 2008; 36: 3008-3013 [PMID: 18824908 DOI: 10.1097/CCM.0b013e3181883842]

29 Rana OA, Byrne CD, Greaves K. Intensive glucose control and hypoglycemia: a new cardiovascular risk factor? Heart 2014; 100: 21-27 [PMID: 23967655 DOI: 10.1136/heartjnl-2013-303871]

30 Chatterjee S, Sharma A, Lichstein E, Mukherjee D. Intensive glucose control in diabetics with an acute myocardial infarction does not improve mortality and increases risk of hypoglycemia—a meta-regression analysis. Curr Vasc Pharma col 2013; 11: 100-104 [PMID: 22724474]

31 Malmberg K, Rydén L, Wedel H, Birkeland K, Bootsma
Arvia C et al. Insulin treatment in ACS diabetic patients

A. Dickstein K, Efendic S, Fisher M, Hamsten A, Herlitz J, Hildebrandt P, MacLeod K, Laakso M, Torp-Pedersen C, Waldenström A. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. *Eur Heart J* 2005; 26: 650-661 [PMID: 15728645]

P- Reviewer: Liu EQ, Ramos S, Romani A **S- Editor:** Wen LL **L- Editor:** A **E- Editor:** Liu SQ
