Effects of Dioxins and Furans on Liver Enzymes, Lipid Parameters, and Thyroid Hormones in Former Thermal Metal Recycling Workers

Gerhard Triebig,1 Egon Werle,2 Olaf Päpke,3 Günther Heim,1 Christoph Broding,1 and Heidi Ludwig1

1Institute and Policlinic of Occupational and Social Medicine, University of Heidelberg, Heidelberg, Germany; 2Central Laboratory of the Medical Clinic and Policlinic, University of Heidelberg, Heidelberg, Germany; 3ERGO Forschungsgesellschaft, Hamburg, Germany

A cross-sectional study was performed to examine the internal exposure of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDF) in former workers in a nonferrous metal recycling facility. Liver enzymes, lipid parameters, and thyroid hormones were measured to check possible biologic effects. Compared to background levels, the international toxicity equivalent levels of exposed workers were slightly elevated (median 42 ppt, range 13–281 ppt). The workers had also higher total PCDF concentrations (median 128 ppt, range 30–1338 ppt). Correlation analyses demonstrate significant associations with only one liver enzyme, alanine aminotransferase. There were no such associations with serum cholesterol levels or with serum thyroid hormones. Because of the cross-sectional design of the study, firm conclusions cannot be drawn. For further evaluation, a follow-up examination appears necessary. — Environ Health Perspect 106(Suppl 2):697–700 (1998). http://ehpnet1.niehs.nih.gov/docs/1998/Suppl-2/697-700/triebig/abstract.html

Key words: PCDD/PCDF exposure, liver enzymes, lipid parameters, thyroid hormones

Introduction and Aim of the Study

In 1985 high concentrations of dioxins and furans in soil and dust were found close to a nonferrous metal recycling plant located in Rastatt, a small town in southwestern Germany (1,2). Recovery of copper was the main objective of the recycling plant. Dust generated during thermal metal recycling processes of scrap material such as cables and electronic equipment and other equipment was identified as the main source of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF).

Because no data were available on the extent of PCDD/PCDF exposure of former workers—the plant closed in 1986—the legal accident insurance organization (Edel- und Unedelmetall-Berufsgenossenschaft, Stuttgart, Germany) decided to offer all employees a comprehensive medical examination. A steering group was established to coordinate and organize the activities, and especially to identify and recruit the subjects under study.

The aims of this study were 2-fold. First, the body burden of PCDD/PCDF was measured by blood fat analysis in a representative sample of the workforce. Second, health status of each worker was determined in comprehensive medical examinations carried out between 1992 and 1995. Details of the study group and methods are described elsewhere (3). In light of the well-known or suspected adverse effects of PCDD/PCDF exposure, liver function, lipid metabolism, and thyroid function were chosen target organs and the mechanisms to be investigated (4,5).

Materials and Methods

The workforce studied consisted of a total of 679 persons employed between 1961 to 1986 (Table 1). Duration of employment ranged from a few months up to almost 40 years. Despite intensive efforts only 250 persons could be completely examined. The main reasons for nonparticipation in the study were lack of interest (167 workers), emigration abroad, and unknown residence (194 workers).

PCDD/PCDF blood analyses were carried out on 76 subjects (70 men and 6 women). Relevant variables such as age, duration of employment, and time between end of employment and examination were not significantly different among the subgroups and the whole cohort (Table 2). A comparison of work functions was not possible because of lack of data.

Table 1. Profile of the study cohort of German workers exposed to PCDD and PCDF in a German recycling plant, 1961 to 1986.

Category	Workers, no.
All identified employees	675
Unknown residence, i.e., not located for study	142
Deceased	68
Not participating	167
Employees undergoing complete examination	250
With PCDD/PCDF analysis	76
Without PCDD/PCDF analysis	174

Table 2. Description of the cohort.

Characteristic	Whole cohort, n=250	Subcohort, n=76
Male	228 (9%)	70 (92%)
Female	22 (9%)	6 (8%)
Age, years (range)	53 (25–72)	50 (25–72)
Duration of employment, years (range)	26 (14–41)	9 (0.2–41)
Time between end of employment and examination, years (range)	9 (6–28)	12 (6–34)

This paper is based on a presentation at the International Symposium on Dioxins and Furans: Epidemiologic Assessment of Cancer Risks and Other Human Health Effects held 7–8 November 1996 in Heidelberg, Germany. Manuscript received at EHP 28 May 1997; accepted 2 December 1997.

This study was supported by grants from the Edel- und Unedelmetall-Berufsgenossenschaft, Stuttgart, Germany.

Address correspondence to Prof. Dr. G. Triebig, Institute and Policlinic of Occupational and Social Medicine, University of Heidelberg, Hospitalstr. 1, 69115 Heidelberg, Germany. Telephone: 06221 565101. Fax: 06221 562991. E-mail: gtriebig@krzmail.krz.uni-heidelberg.de

Abbreviations used: ALC, alcohol intake; ALT, alanine aminotransferase (GPT); AST, aspartate aminotransferase (GOT); CDF, chlorodibenzo-furans; CHOL, total cholesterol level; GGT, y-glutamyltranspeptidase; GOT, glutamic-oxaloacetic transaminase; GPT, glutamic-pyruvic transaminase; I-TEQ, international toxicity equivalent; PCDD, polychlorinated dibenzo-p-dioxins; PCDF, polychlorinated dibenzofurans; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.
In Table 3 job activities and workplaces of the employees are shown according to the degree of PCDD/PCDF exposure, which was estimated by an overall evaluation of PCDD/PCDF concentrations in dust samples, the production process, and geographic and meteorologic aspects of the process. The relatively high exposures in office workers was explained by the fact that the predominant wind direction appears to have led to increased dust pollution in this area of the plant. PCDD and PCDF levels were analyzed in worker blood samples by gas chromatography/mass spectrometry after separation of the blood lipids. The analytical procedure is described in detail elsewhere (6).

To examine the target organs or functions, the following parameters were determined: γ-glutamyltranspeptidase (GGT), alanine aminotransferase ([ALT] or glutamic pyruvic transaminase [GPT]), and aspartate aminotransferase ([AST]) or glutamic-oxaloacetic transaminase ([GOT]), alkaline phosphatase, total cholesterol level (CHOL), high density lipoprotein cholesterol, serum triiodothyronine, serum thyroxine, and thyroid-stimulating hormone.

Parametric and nonparametric tests were applied to analyze the results. Correlations were tested by linear regression as well as multivariate analysis. A level of significance, $p < 0.05$, was chosen for all statistical tests.

Results and Discussion

Blood lipid concentrations of total PCDD and PCDF, sum of total PCDD and PCDF and of toxic equivalency factors (North Atlantic Treaty Organization Committee on the Challenges of Modern Society) are shown in Table 4 (9). For a comparison with background levels, the results of Päpke et al. (7) were chosen; these results were calculated from analyses of 102 nonoccupationally exposed individuals from Germany. Because all blood samples were measured in the same laboratory using identical methods, systematic analytical errors were unlikely.

PCDD concentrations appear to be within the background range. PCDF levels, on the other hand, are elevated compared...

Table 3. Job activities and workplaces of German recycling plant employees with PCDD/PCDF exposure.

Workers, n=76	Type of worker	PCDF exposure
4	Sludge transportation	High
3	Bricklayers	
8	Electrolysis workers	
7	Office workers	
25	Furnace operators	
15	Mechanics	
5	Electricians	
3	Laboratory workers	Low
6	Workers in other areas	

Table 4. Internal exposure of German recycling plant workers expressed as PCDD/PCDF levels in lipid content of blood, ppt.

Chemical tested	Exposed workers, n=76, median and range	Background, n=102, median and range
Total PCDD	586 (155–1484)	703 (221–1983)
Total PCDF	128 (30–1138)	91 (27–192)
Total PCDD/PCDF	758 (200–2477)	836 (269–2134)
TEQ (NATO-CCMS)	42 (13–281)	38 (12–94)

NATO-CCMS, North Atlantic Treaty Organization Committee on the Challenges of Modern Society. #Data from Päpke et al. (7).

Figure 1. Distribution of median PCDD/PCDF concentrations in blood lipids in the study group compared to background levels. Data on background levels adapted from Päpke et al. (7). CDD, chlorodibenzo(oxins).
to those of the normal population. The highest concentration was 1138 ppt, about 6-fold above the maximum background level. It must be mentioned, however, that the average age of control subjects is about 10 years below that of the study group (median 39 [22–69] years of age). Because of age dependent increases in body burden of PCDD/PCDF, the differences are more pronounced (8).

Further analyses showed that penta-, hexa-, and hepta-chlorodibenzo-p-dioxins (CDF) contributed most to the elevated internal exposure (Figure 1). This pattern is partly in accordance with the distribution of PCDD/PCDF in dust samples (2). It can be used as an indicator of PCDD/PCDF exposure during nonferrous metal recycling processes.

With respect to the biochemical parameters and the fact that an adequate control group was not examined, the subjects were dichotomized into low- and high-exposure subgroups (Table 5). Low exposure was defined as having an international toxicity equivalent (I-TEQ) below 38 ppt, the median of the background level in nonoccupationally exposed persons (7). Highly exposed workers had increased total PCDF concentrations caused by the congeners penta-, hexa-, and octa furans. Results of examination of the biochemical parameters of both high- and low-exposed workers are given in Table 6. The only significant difference found was an increased serum cholesterol level in high exposure subgroup. Triglyceride serum levels were also measured. They were not further analyzed, however, because not all workers fasted before their blood samples were collected.

To evaluate possible relationships between internal exposure and biochemical parameters, correlation analyses were performed (Table 7). For total PCDF concentrations as well as for I-TEQ, positive and significant correlation coefficients were observed for ALT (GPT) and AST (GOT) as well as for CHOL. Because of the well known associations between liver enzyme activity, serum cholesterol level, and alcohol intake, a multiple regression analysis was performed (Table 8). I-TEQ correlated significantly only with serum ALT (GPT) activity (p<0.05). The correlation between I-TEQ and serum cholesterol is not significant (p = 0.063). These results may indicate an exposure–response relationship. However, statistically significant results do not necessarily reflect causality.

Our results must be discussed in the context of other publications. Note that PCDD/PCDF can cause liver damage in humans in high doses [reviewed by the World Health Organization (5)]. However, in the case of low PCDD/PCDF exposure, relevant effects on liver function are questionable. To our knowledge there are no data on liver toxicity of PCDF in humans. According to the tissue- as well as enzyme-specific relative potency, 2,3,4,7,8-penta-CDF has the highest hepatotoxic potency of the furans (9). PCDF, however, were not increased in our study subjects (Figure 1).

In several studies hepatotoxicity in PCDF/PCDD-exposed workers was addressed with different results. Only a few studies found statistically significant associations between 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure and liver parameters (GGT, ALT, AST), but to our knowledge a consistent pattern has not been reported (10–12). In other studies no such relationships were reported (13–15). In a group of 138 former chemical workers with high TCDD exposure, none of the liver function indicators (AST, ALT, GGT) were significantly correlated with current and backcalculated TCDD concentration (13,15). In a total of 281 former workers of a trichlorophenol production plant, a significantly elevated risk of an out-of-range GGT was found only for persons with a history of significant alcohol consumption (14).

In conclusion, workers in nonferrous metal recycling plants may be exposed to dust contaminated with PCDF and to a lesser degree with PCDD. To prevent increased exposure, technical and personal preventive measures should be applied to reduce inhalation of dust and fumes originating from thermal processes. Statistical associations found between internal PCDF/PCDD exposure indicators and some liver parameters as well as cholesterol in serum should be reevaluated in a follow-up study.

References and Notes

1. Klett M, Peper M, Sennewald E, Heller W-D. Bewertung der Toxizität partiellegebundener Dioxine und Furane im Umfeld einer Metallhütte. Off. Gesundh-Wes 53:581–586 (1991).

2. Schick W, Conrad W. Polychlorierte Dibenzodioxidine und-furan an Arbeitsplätzen im Bereich Nichtferrom-Recycling. Staub-Reinhaltung der Luft 54:349–354 (1994).

Tables

Table 5. Characteristics of subgroups of German recycling plant workers with low and high PCDF/PCDF exposures (median values).

Characteristic	Low exposurea	High exposureb
Age, years*	46	55
Exposure, years*	4.7	17.3
Latency, years*	4	9
I-TEQ, ppt*	24	88
Total PCDD, ppt*	486	626
Total PCDF, ppt*	65	306
Total PCDD/F, ppt*	551	932

Abbreviations: a, female; m, male; I-TEQ<38 ppt; f = 4, m = 26. I-TEQ≥38 ppt; f = 2, m = 44. *Latency means time between end of employment and examination. **Significant difference (p<0.05).

Table 6. Comparison of liver, lipid, and thyroid parameters in German recycling plant workers with low and high PCDF/PCDF exposure.

Parameter	Low exposure, I-TEQ<38 ppt	High exposure, I-TEQ≥38 ppt
GGT, U/liter	20±13	17±9
ALT, U/liter	10±3	10±3
AST, U/liter	17±7	15±5
AP, U/liter	106±27	115±30
CHOL, mg/dl	184±39	216±45*
LDL, mg/dl	47±10	46±18
T3, µg/liter	1.3±0.3	1.2±0.3
T4, µg/liter	75±18	76±14
TSH, mU/liter	1.4±0.9	1.2±0.9

Alcohol intake, 14±25 to 22±31 g/day (range) (0–118) to (0–130).

Table 7. Result of correlation analyses between I-TEQ and biologic parameters.

Parameter	Pearson correlation	p<0.05
GGT	0.129	No
ALT	0.383	Yes
AST	0.299	Yes
AP	0.074	No
CHOL	0.384	Yes
HDL	0.104	No
T3	0.010	No
T4	0.038	No
TSH	0.126	No

Table 8. Results of multiple regression analyses. Levels of probability of error are given.

ALT	AST	CHOL	ALC	I-TEQ	
GGT	0.281	0.227	0.069	0.087	0.362
ALT	0.001	0.295	0.312	0.031	
AST	0.694	0.086	0.741		
CHOL	-	0.583	0.063		
3. Triebig G, Broding HC, Lichtnecker H, Heim G, Heipertz W, Hanf P, Böhme C, Lünzmann M, Malländer B. Unpublished data.

4. Sweeney MH, Fingerhut MA, Calvert GM, Piacitelli LA, Alderfer RJ, Davis-King K, Halperin WE, Connally LB, Marlow DA. Noncancer health effects and exposure to 2,3,7,8-TCDD. In: Dioxin '93: 13th International Symposium on Chlorinated Dioxins and Related Compounds (Fiedler H, Frank H, Hutzinger O, Parzefall W, Riss A, Safe S, eds), September 1993, Vienna. Vienna, Austria: Federal Environmental Agency, 1993; 369–374.

5. WHO. Polychlorinated Dibenzo-para-Dioxins and Dibenzofurans. Environmental Health Criteria 88. Geneva: World Health Organization, 1989.

6. Päpke O, Ball M, Lis ZA, Scheunert K. PCDD and PCDF in whole blood samples of unexposed persons. Chemosphere 19:941–948 (1989).

7. Päpke O, Ball M, Lis A. Various PCDD/PCDF patterns in human blood resulting from different occupational exposures. Chemosphere 25:1101–1108 (1992).

8. Päpke O, Ball M, Lis A, Wuthe J. PCDD/PCDFs in humans, follow-up of background data for Germany, 1994. Chemosphere 32:575–582 (1996).

9. Birnbaum LS, DeVito MJ. Use of toxic equivalency factors for risk assessment for dioxins and related compounds. Toxicology 105:391–401 (1995).

10. Mocarelli P, Mocarelli A, Brambilla P, Berthoux P, Young DS, Mantel N. Clinical laboratory manifestations of exposure to dioxin in children. JAMA 256:2687–2695 (1986).

11. Roegner RH, Grubbs WD, Lustik MB, Brockmann AS, Henderson SC, Williams DE, Wolfe WH, Michalek JE, Miner JC. An Epidemiological Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. Serum Dioxin Analysis of 1987 Examination Results. Brooks Air Force Base, TX: U.S. Air Force School of Aerospace Medicine, Aerospace Medical Division, 1991.

12. Wolfe WH, Michalek JE, Miner JC, Rahe A. Health status of Air Force veterans occupationally exposed to herbicides in Vietnam. JAMA 264:1824–1831 (1990).

13. Benner A, Edler L, Mayer K, Zober A, eds. Polychlorinated Dibenzo-dioxin (PCDD) and Dibenzofuran (PCDF) Levels and Morbidity Data of Employees Occupationally Exposed in the Chemical Industry—Dioxin Investigation Program—Part II by the Employment Accident Insurance Fund (Berufsgenosenschaft) of the Chemical Industry in Germany. Heidelberg: Berufsgenossenschaft der chemischen Industrie, 1993.

14. Calvert GM, Hornung RW, Sweeney MH, Fingerhut MA, Halperin WE. Hepatic and gastrointestinal effects in an occupational cohort exposed to 2,3,7,8-tetrachlorodibenzo-para-dioxin. JAMA 267:2209–2214 (1992).

15. Ott MG, Zober A, Germann C. Laboratory results for selected target organs in 138 individuals occupationally exposed to TCDD. Chemosphere 29:2423–2437 (1994).