Klotho inhibits neuronal senescence in human brain organoids

Mohammed R. Shaker, Julio Aguado, Harman Kaur Chaggar and Ernst J. Wolvetang

INTRODUCTION

Klotho (KL) is a type I transmembrane protein with remarkable anti-aging properties, but is progressively downregulated during ageing. The full-length transmembrane form of KL is subject to ectodomain shedding via disintegrin and metalloproteinase (ADAM)−10 and −17, and beta- and gamma-secretase enzymes, but a secreted form of KL can also be generated via alternative splicing. KL is highly expressed in renal tubules, parathyroid glands, and choroid plexus but is also detectable in other tissues, including many brain cell types. In renal proximal tubular epithelial KL, functions as a co-receptor for FGF1 to regulate FGF23 signaling, and thus regulates phosphate homeostasis and Vitamin D metabolism. KL also performs important hormone-like functions in other tissues, suppressing insulin/IGF1 and Wnt signaling, and promoting increased resistance to oxidative stress and inflammation. In the brain, KL is predominantly expressed in ependymal cells of the choroid plexus, but is also detected in hippocampal neurons, cortical neurons, cerebral white matter, and cerebellar Purkinje cells. KL expression in murine retinal pigment epithelial cells or rat hippocampal neurons enhances cell survival by inhibiting oxidative stress. In agreement with these data, Klotho-deficient mice show impaired cognition, while overexpression of Klotho in mice increases lifespan by 30–40% and improves cognitive function in young and old mice, and enhances re-myelination in cuprizone-treated mice. In support of the notion that this is at least in part mediated by direct effects on neuronal cells, recombinantly produced KL increases differentiation and maturation of murine oligodendrocytes, and lentiviral delivery of Klotho to the brain reduced cognitive deficits in a mouse model of Alzheimer’s disease. In humans, the level of KL in the cerebrospinal fluid was found to decrease with advanced age and in Alzheimer’s disease patients. Conversely, KL polymorphisms that lead to a higher KL expression are associated with increased longevity, increased brain volume, and enhanced cognition. Collectively these studies, therefore, suggest that KL may play an important role in preventing brain aging and aging-associated neurodegenerative conditions. However, to date, KL’s impact and role in human neurons remains unclear. To address this and explore the neural cell autonomous and potential paracrine effects of KL, we here utilized human pluriotent stem cell (PSC)-derived neurons and brain organoids. We show that cortical neurons in brain organoids cultured for prolonged periods of time show increased senescence that is accompanied by a reduction in KL expression levels. Importantly, we demonstrate that upregulation of endogenous KL expression in human PSC-derived brain organoids inhibits multiple hallmarks of senescence whereas transcriptional repression of KL enhances senescence. Transcriptome analysis of brain organoids with moderate enforced upregulation of endogenous KL expression revealed modulation of senescence, extracellular matrix, and proteoglycan genes. Our data demonstrate that KL has direct beneficial effects on human neurons and thus holds significant potential for improving human brain function with advanced age and for treating aging-related neurodegenerative diseases such as Alzheimer’s disease.

RESULTS

Increased cellular senescence in human cortical organoids cultured for prolonged periods of time

Human pluripotent stem cell-derived brain organoids largely recapitulate the developmental trajectories, cellular make-up, and architecture of the developing human brain. Since in vitro culture of organoids imposes significant cellular and metabolic stress, we hypothesized that prolonged culture would promote senescence of neural cell types within human brain organoids. To test this, we generated cortical organoids from H9 embryonic stem (ES) cells and cultured these for 1, 4, 6, 8, 10, and 13 weeks (Supplementary Fig. 1a). Quantification of the number of cells that exhibit senescence-associated β-galactosidase (SA-β-gal) activity in these cortical organoids revealed a gradual increase in SA-β-gal positive cells over time in culture with a large and significant induction at weeks 10 and 13, as compared to earlier time points (Fig. 1a, b). This was concomitant with a significant increase in the percentage of cells that express p21 (CDKN1A) protein (Fig. 1c, d and Supplementary Fig. 1b), and with increased expression of p16 (INK4A) mRNA (Fig. 1e) at weeks 10 and 13, both markers associated with cellular senescence. Interestingly, mRNA

1Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia. Email: m.shaker@uq.edu.au; e.wolvetang@uq.edu.au

Published in partnership with the Japanese Society of Anti-Aging Medicine
expression of KL steadily increased between weeks 1 and 8 of organoid culture, but was then dramatically downregulated at weeks 10 and 13 (Fig. 1e), when the onset of senescence was most clearly observed in the cortical brain organoids (Fig. 1a–d). In agreement with these data, the protein level of full-length KL was gradually and significantly increased up to week 8, but next sharply and significantly dropped at weeks 10 and 13 (Fig. 1f, g). The protein expression of the secreted form of KL (sKL) did not significantly change over the cortical brain organoid differentiation time course (Fig. 1f, g). Collectively, these data led us to conclude that prolonged culture of human pluripotent ES cell-derived cortical brain organoids results in protein and gene expression changes suggestive of senescence that coincide with downregulation of full-length KL.
To independently validate these data, we next examined published RNA-seq datasets GSE82022\(^{18}\), GSE110006\(^{19}\), and GSE97881\(^{20}\) derived from cortical brain organoids also cultured for at least 13 weeks. In agreement with our observations, these datasets also showed increased expression of KL mRNA in cortical organoids cultured for 1, 4, 6, and 8 weeks (Fig. 1h), that was followed by a sharp decrease by weeks 10 and 13, as senescence genes such as p16\(^{INK4A}\) were upregulated (Fig. 1h). We then filtered these databases for genes that are consistently up and downregulated in senescence\(^{31}\). This revealed a progressive downregulation of mRNA expression of genes typically downregulated in senescence such as PTMA, ANP32B, SSRRP1, FBL, PARP1, LBR, and ITPTIPL1\(^{21}\), (Fig. 1i), and an increase in senescence-associated genes such as LRP10, CCND3, TAP1, SLC9A7, and ELMOD1\(^{21}\) in 10–13-weeks-old cortical brain organoids (Fig. 1i). Collectively, we interpreted these data to indicate that human stem cell-derived cortical organoids cultured for at least 10 weeks show downregulation of KL, contain increasing amounts of cells that exhibit the typical hallmarks of senescence, and therefore constitute a useful model to study the impact of KL on senescence of human neural cell types in vitro.

Upregulation of endogenous KL inhibits culture-induced senescence in human cortical brain organoids

Although the anti-aging properties of KL are well documented, its impact on human brain cells remains largely unclear. Having established that human embryonic stem cells-derived cortical brain organoids display a marked increase in senescence between weeks 10 and 13 that coincides with downregulation of KL, we next examined whether enforced expression of KL would affect the upregulation of senescence markers such as SA-β-gal, p16, and p21 in cortical organoids cultured for extended periods of time. To achieve this, we took advantage of human iPSCs that were engineered to possess a doxycycline (dox)-inducible dCas9-VPR cassette targeted to the AAVS1 safe harbor site. The VPR transcriptional activator can be directed to a promoter of choice with gRNAs and thus enables dox-dependent upregulation of a transcriptional activator can be directed to a promoter of choice with gRNAs upon dox treatment (Fig. 2i, and Supplementary Fig. 2d). We concluded that moderate upregulation of endogenous expression of KL is sufficient to prevent senescence-related changes in human cortical brain organoids cells cultured for extended periods of time in vitro.

KL inhibits senescence of cortical plate neurons in human cortical brain organoids

We next sought to understand the cell type-specific roles of KL in human cortical organoids. At 8 weeks in vitro, cells within cortical brain organoids segregate into ventricular zone (VZ) progenitors that express Pax6, and cortical plate (CP) zone neurons that express CTIP2\(^{22}\) (Fig. 3a). We found that KL protein expression was readily detected in 96% of CP cells, whereas only 22% of VZ cells expressed low amounts of KL protein (Fig. 3a, b), and in these cells was predominantly confined to progenitors positioned at the apical domain (Fig. 3a). To examine whether KL expression in cortical neurons impacts their entry into senescence, we generated cortical brain organoids and endogenously overexpressed KL as illustrated in Fig. 2a. We double-stained sections of dox-treated and untreated cortical brain organoids with CTIP2 and p21 antibodies (Fig. 3c). Automated quantification of staining revealed that enforced expression of endogenous KL did not significantly alter the proportion of CTIP2\(^{+}\) neurons in cortical brain organoids (Fig. 3d), but significantly reduced the upregulation of p21 observed in CTIP2\(^{+}\) neurons in cortical brain organoids cultured in the absence of dox (Fig. 3e). To explore to what extent this KL-mediated inhibition of senescence of CTIP2\(^{+}\) neurons was due to cell autonomous or paracrine effects, we examined weeks 10 and 13 time points, when p21 expression is significantly induced, and quantified the percentage of CTIP2\(^{+}\) p21\(^{+}\) KL\(^{+}\) vs CTIP2\(^{+}\) p21\(^{−}\) KL\(^{−}\) cells in cortical brain organoids with and without dox treatment (Fig. 3f–h). While we found a low and insignificant difference in the amount of CTIP2\(^{+}\) p21\(^{+}\) KL\(^{−}\) cells between dox-treated and untreated organoids (Fig. 3g), there was a significant reduction in CTIP2\(^{+}\) p21\(^{+}\) KL\(^{−}\) in dox-treated cortical brain organoids compared to the untreated group (Fig. 3h). It should be noted that not all CTIP2\(^{+}\) neurons are KL\(^{+}\) in these organoids (Supplementary Fig. 4a). Collectively, these data first indicate that moderate upregulation of KL expression in CTIP2\(^{+}\) neurons inhibits their entry into senescence, and that activation of KL in cortical brain organoids significantly protects CTIP2\(^{+}\) cortical neurons that are KL negative from becoming senescent, suggesting KL acts through paracrine signaling to bystander cells. To further substantiate the causal relationship between KL and cortical neuronal senescence, we next utilized the Gen2C iPSCs-KRAB cell line that was engineered to direct the KRAB transcriptional repressor to a promoter of choice with gRNAs upon dox treatment. One gRNA was sufficient to endogenously suppress KL expression upon treatment with dox over 7 days (Supplementary Fig. 4b). Repression of KL in brain organoids from week 4 onwards moderately but significantly reduced brain organoid size over time in culture (Supplementary Fig. 4c, d), in agreement with the observation that KL/KL null mice display a severe growth defect, including the brain\(^{23}\). Furthermore, enforced transcriptional downregulation of KL resulted in a significant upregulation of p16\(^{INK4A}\) (Supplementary Fig. 4e), and an increase in senescent cortical neurons in 8–13 weeks of cultured organoids (Supplementary Fig. 4f), indicating that KL is necessary to prevent premature neuronal senescence.

Cortical brain organoids contain neural progenitors in addition to neurons, hence, we next examined whether neural progenitors exhibited senescence phenotypes in these organoids. We found 5% of all SOX2\(^{+}\) neural progenitors co-stained with p21 protein genes (namely IL-8, IL-1α, and IL-1β), whereas these genes were significantly upregulated between weeks 8 and 13 in cortical brain organoids cultured in the absence of dox (Fig. 2i, and Supplementary Fig. 2d). We concluded that moderate upregulation of endogenous expression of KL is sufficient to prevent senescence-related changes in human cortical brain organoids cells cultured for extended periods of time in vitro.

Published in partnership with the Japanese Society of Anti-Aging Medicine
between W8 and W13 (Supplementary Fig. 5a, b), and that this was not inhibited by KL overexpression. We also failed to detect changes in the proportion of SOX2+ cells population in the absence or presence of enforced KL expression (Supplementary Fig. 5c, d). After neurogenesis has been initiated, cortical brain organoids are known to exhibit waves of gliogenesis24, and we similarly observed the specification of GFAP expressing cells in our organoids (Supplementary Fig. 6a). We found that dox-induced upregulation of KL did not affect the proportion of GFAP+ cells in the organoids (Supplementary Fig. 6b, c). Collectively, these data indicate that in pluripotent stem cell-derived cortical brain organoids KL is predominately expressed in cortical neurons and that these neurons are more susceptible to senescence than other neural cells when cultured for extended periods of time. Our data further show that moderate upregulation of endogenous KL expression in human cortical brain organoids is necessary and
KL overexpression modulates senescence-related changes in human cortical brain organoids. a Schematic diagram showing the experimental plan used to endogenously activate KL using WTC iPSCs-VPR cell line upon daily dox treatment at weeks 4–13. W is week. b Measurement of the diameter of organoids derived from human dCas9-VPR iPSCs with and without dox treatment from weeks 4 to 13. Data are the mean ± standard deviation. Number of independent experiments N = 4. Total number of analyzed organoids = 78. c qRT-PCR of KL at different stages of in vitro culture of human cortical brain organoids derived from human dCas9-VPR iPSCs following daily treatment with dox from weeks 4 to 13. Dox—represents organoids without dox treatment. All values were normalized to GAPDH levels of their respective samples, normalized data were further normalized to W4 to obtain the fold change value. Data are shown as mean ± standard error mean; **P < 0.01 via One-Way ANOVA. W is week. d qRT-PCR of p16 at different stages of in vitro culture of human cortical organoids derived from human dCas9-VPR iPSCs following daily dox treatment from weeks 4 to 13. KL—represents organoids without dox treatment. All values were normalized to GAPDH levels of their respective samples, normalized data were further normalized to W4 to obtain the fold change value. Data are shown as mean ± standard error mean; Number of independent experiments N = 4. Total number of analyzed organoids = 96; **P < 0.01 via one-way ANOVA. W is week. e Representative images of SA−β-gal stained sections of human cortical brain organoids derived from dCas9-VPR iPSCs transduced with 3 gRNAs and treated with dox from weeks 4 to 13. Dox—represents organoids without dox treatment. Scale bar = 1000 µm. W is week. f Quantification of the percentage of SA−β-gal area normalized to the total area of each individual organoid derived from human iPSCs. Data are presented as mean ± standard deviation. **P < 0.001 via one-way ANOVA. Number of independent experiments N = 4. Total number of analyzed organoids = 80. W is week. g Representative images of sections of human cortical brain organoids of different ages derived from human dCas9-VPR iPSCs transduced with 3 gRNAs and treated with dox from weeks 4 to 13. Scale bar = 100 µm. W is week. h Quantification of the percentage of total p21 cells relative to the total number of cells per organoids derived from human dCas9-VPR iPSCs. Data are presented as mean ± standard error mean; **P < 0.0001 via One-Way ANOVA. Number of independent experiments N = 4. Total number of analyzed organoids = 80. W is week. i qRT-PCR of SASP at different stages of human cortical organoid derived from human dCas9-VPR iPSCs in vitro following daily dox treatment from weeks 4 to 13. Dox—represents organoids without dox treatment. All values were normalized to GAPDH levels of their respective samples, normalized data were further normalized to W4 to obtain the fold change value. Data are shown as mean ± standard error mean; **P < 0.05 and via t-test. Number of independent experiments = 4, total number of examined organoids is 144.

Fig. 2

Sufficient to prevent human cortical neuronal cell senescence via paracrine mechanisms but has little effect on neural progenitor cells in this in vitro model. Having established that cortical neurons in brain organoids display typical features of senescence after the prolonged culture that can be modulated by KL expression, we next investigated this process in 2D neuronal cultures. To this end, we generated 2D neurons derived from iPSC-neural stem cells (NSC)-s and cultured these up to 13 weeks before analysis (Fig. 4a, b). Remarkably, similar to what we observed in cortical brain organoids, iPSC-derived neurons again exhibited a progressive increase in the proportion of neurons that show SA−β-gal activity from week 6 onwards which increased to ~20% of neurons by week 13 (Fig. 4c, d). Because telomere shortening is an established hallmarks of senescent cells25, even in post-mitotic cells such as neurons26, we next measured telomere length by fluorescence in situ hybridization (FISH) (Fig. 4e). This revealed that human iPSC-derived neurons exhibited a progressive reduction in telomere length between 6 and 13 weeks of in vitro culture (Fig. 4f). Since the thickness of neuronal axons indicates the vulnerability of neurons to toxicity, we next quantified the neurite diameter of neurons over time in culture, revealing a significant loss of axon thickness between weeks 8 and 13 (Fig. 4g, h). Similar to cortical brain organoids, human neurons also exhibited increased expression of p16 (INK4A) mRNA (Fig. 4i) at weeks 10 and 13. This was concomitant with a reduction in KL mRNA expression at weeks 10 and 13 (Fig. 4j), when the onset of senescence was most clearly observed in 2D human neurons. Collectively, these data indicate that extended in vitro culture-induced senescence-like phenotypes in 2D human neurons and that this is also accompanied by KL downregulation.

Differential expression of anti-senescent genes in cortical brain organoids upon KL overexpression

To obtain insight into the mechanisms via which KL protects cortical neurons from entry into senescence, we compared the transcriptomes of week 13 cortical organoids with and without KL overexpression (Fig. 5a). We found 2663 genes that were significantly upregulated (Supplementary Tables 1) and 2608 downregulated genes (Supplementary Tables 2) upon overexpression of KL in cortical brain organoids. Hierarchical clustering of differentially expressed genes revealed several co-regulated genes cohorts and confirmed the suppression of senescence-associated genes upon KL overexpression in cortical brain organoids (Fig. 5b), previously identified by qPCR and IHC analysis21. KEGG enrichment analysis revealed enrichment of many extracellular matrix (ECM) and proteoglycans-related genes upon KL overexpression in cortical brain organoids (Fig. 5c), with 33.5% of ECM genes among the top 10% of upregulated genes (Supplementary Fig. 6d). Control cortical brain organoids were enriched for synapse and addiction-associated genes including nicotine, amphetamine, and morphine (Fig. 5c), many of which are known to be upregulated in senescence (Supplementary Table 3)27. Genes with no significant changes between the two groups were associated with axon guidance and cell cycle (Fig. 5c), suggesting that modulation of KL expression has no significant impact on differentiation and proliferation processes. In addition, we found that KL has no effect on the cellular composition of cortical organoids as indicated by equivalent expression levels of neural cell markers between organoids with and without dox (Supplementary Fig. 6e). Filtering for genes with a cut-off value of >2-fold change and an adjusted P-value < 0.05 identified 233 upregulated genes (Volcano plot shown in Fig. 5d, gene list in Supplementary Table 4). Interaction analysis of this gene list with KL using GeneMANIA identified 6 genes including two ECM genes (SPARC1 and COL20A1)28, two transcription factors (TWIST1 and MEIS1)30, and two proteoglycan genes (FGL2 and GPC3), all of which are known to be involved in inhibition of senescence28–32. Significantly strong increased expression of SPARC1, FGL-2, GPC3, and MEIS1 genes in week 13 cortical organoids with KL overexpression was next validated by qRT-PCR (Fig. 5e). Interestingly, the dox-induced suppression of KL expression in cortical organoids derived from KRAB-iPSCs significantly inhibited the expression of COL20A1 and SPARC1 only (Fig. 5e). Collectively, these results revealed the enrichment of ECM in cortical brain organoids upon KL overexpression, and identified several anti-senescent genes that are co-regulated with KL, further supporting the notion that KL contributes to inhibition of senescence in human cortical neurons via modulation of ECM make-up, in agreement with its paracrine mode of action identified in this study.
DISCUSSION

Cortical brain organoids have become an invaluable model platform for human brain disease modeling, as they reproducibly generate the complex neuronal networks and cell diversity of the developing human cerebral cortex and can recapitulate aging-related neurodegenerative processes such as...
β-amyloid aggregation34 and Tau-pathology of Alzheimer’s disease35 in vitro. Gene inactivation and overexpression studies in mice previously showed that KL increases lifespan11, enhances myelination, synaptic plasticity, and cognitive functions, and protects neuronal cultures against Aβ and excitotoxicity10. Its effect on human brain cells has however remained under-investigated, despite the fact that heterozygous carriers of the “KL-VS” KL gene variant, who exhibit higher levels of circulating sKL, display extended longevity36, larger brain volumes37, and enhanced cognition37. Because the extracellular domain of sKL can be proteolytically released and then act as a hormone on remote tissues, the direct impact of KL expression in the human central nervous system has been particularly difficult to investigate. To address this, we here generated human neurons and brain organoids from human iPSC and H9-ESC. We first demonstrate that both cortical neurons differentiated from human iPSC in 2D cell culture and in 3D cortical brain organoids show the typical hallmarks of senescent cells such as increased SA-β-gal activity, increased expression of p16 and p21, increased secretion of inflammatory cytokines, and accelerated telomere shortening,
provided they are cultured for extended periods of time. Importantly, we demonstrate that the emergence of these hallmarks of senescence coincides with a sharp downregulation of KL between weeks 10–13 of culture. Previously, it was shown that accelerated senescence can be detected in iPSC-derived cells such as smooth muscle cells derived from Hutchinson–Gifford progeria syndrome iPSCs, and in neurons from human iPSC that artificially overexpress Progerin. Our data now show that despite the well-established epigenetic rejuvenation that accompanies reprogramming to pluripotency, even healthy control pluripotent stem cell-derived neurons can become senescent and display typical hallmarks of aging provided they are cultured for sufficiently long periods of time. Our data are in agreement with previous reports that demonstrate that increased organoid size limits the diffusion and transport of nutrients, growth factors, and oxygen and that this negatively impacts cell type specification, progenitor maturation, and cell viability. Our data may indeed provide a potential explanation as to why disease processes that in vivo emerge much later in life, such as β-amyloid aggregation and tau-pathology, can be readily detected in vitro human neuronal differentiation. All values were normalized to GAPDH levels of their respective samples, and expressed relative to W4 values to obtain the fold change. Data are shown as mean ± standard error mean; Number of independent experiments = 3. W is week.

Methods

Human embryonic stem cells culture and cortical organoids generation

Human embryonic stem cells H9 from (Wisconsin International Stem Cell Bank, WiCell Research Institute, WA09 cells), WTC iPSC (gift from Professor Bruce Conklin), EU79 iPSCs, and KRAB-GEN2C iPSCs lines were cultured in Minimum Essential Medium αMEM containing 15% fetal bovine serum, L-ascorbic acid, β-mercaptoethanol, β-estradiol, and DMSO, with frequent passaging. For directed differentiation, cells were plated on mitotically inactivated mouse embryonic fibroblasts (MEFs) for 2 days, and subsequently treated with 500 ng/ml CHIR99021 and 100 nM SB431542 for 48 hours. Afterward, cells were cultured in Neural induction medium (NIM), which contain 1% B27, 100 ng/ml basic fibroblast growth factor (bFGF), 50 ng/ml ephrins, and 500 ng/ml CHIR99021. Three days later, cells were transferred to NIM supplemented with 20 ng/ml glial cell-derived neurotrophic factor (GDNF) and 50 ng/ml bFGF and cultured for an additional 5 days. On the last day of this period, an additional 20 ng/ml glial cell-derived neurotrophic factor (GDNF) and 50 ng/ml bFGF were added to the media. This process allows for neural differentiation of the embryonic stem cells and the formation of neuronal progenitors. Subsequently, the neural progenitors were induced to differentiate into human cortical neurons by culturing them on control MEFs for 14 days in media containing 50 ng/ml platelet-derived growth factor (PDGF-abbb) and 50 ng/ml bFGF. Finally, the neurons were cultured on laminin-coated poly-L-ornithine-coated 35-mm culture dishes for an additional 3 weeks in NIM containing 20 ng/ml Neurotrophin-3 and 50 ng/ml retinoic acid and 50 ng/ml bFGF.
according to Stem Cell Technologies protocols on feeder-free in hESCs medium on Matrigel (StemCell Technologies, Cat. #354277) in mTeSR (Stem Cell Technologies, Cat. #85851)49. The generation of cortical brain organoids was essentially performed as described previously33,50 with modifications. In brief, patterned embryoid bodies were further expanded for four days in N2 medium: DMEM/F12 (Gibco, Cat. #11320-33), 2% B-27 supplement (Gibco, Cat. #17504044), 1% N-2 supplement (Gibco, Cat. #17502-048), 12.5 µl of insulin (Sigma), 2% Glutamax, 1% MEM Non-Essential Amino Acids (Gibco, Cat. #11140-050), 1% penicillin/streptomycin (Gibco, Cat. #15140148), 0.1%β-mercaptoethanol (Gibco, Cat. #21985-023), and 2% B-27 supplement (Gibco, Cat. #17504044). Fresh media was replaced three times a week. All experiments were carried out in accordance with the ethical guidelines of the University of Queensland and with the approval by the University of Queensland Human Research Ethics Committee (Approval number-2019000159).

Generation of stably transduced VPR and KRAB lines

Three gRNAs were designed to endogenously overex- press KL overexpression compared to control/untreated organoids. Normalized expression values were color-coded with red values indicating upregulation and white values indicating downregulation. W is week. c Bar graphs showing KEGG enrichment analysis of upregulated genes (red), downregulated genes (blue), and unaffected genes (white) in 13-weeks cortical brain organoids compared with untreated organoids.

vFig. 5 Transcriptome analysis of cortical brain organoids with KL overexpression identifies enrichment for ECM and proteoglycan genes. a Heatmap expression patterns of 13-weeks cortical brain organoid with KL overexpression compared to control/untreated organoids. b Heatmap representing the expression of senescence-associated markers as well as senescence increased and decreased markers in cortical brain organoids derived from human dCas9-VPR iPSCs cultured over 13 weeks with/without KL overexpression. Normalized expression values were color-coded with red values indicating upregulation and white values indicating downregulation. W is week. c Bar graphs showing KEGG enrichment analysis of upregulated genes (red), downregulated genes (blue), and unaffected genes (white) in 13-weeks cortical brain organoids compared with untreated organoids. d Volcano plot highlighting differentially expressed genes in 13-weeks cortical brain organoid with KL overexpression. Red color defines an upregulated expression with a log2 (fold change) > 2, blue defines a downregulated expression with a log2 (fold change) < 2. e Fold change of mRNA levels of genes identified in d. Left panel represents data derived from WTC iPSCs-VPR, right panel represents data derived from Gen2C iPSCs-KRAB. All values were normalized to GAPDH levels of their respective samples and expressed relative to Dox − 13-weeks cortical brain organoid values to obtain the fold change. Data are shown as mean ± standard deviation. Number of independent experiments = 3, total number of analyzed organoids = 72; *P < 0.05 via Student’s t-test. W is week.
GAGCGGCGGCCTACCAGACCCGA, gRNA2
Forward sequence: GCGTTCGGAGTCTCCCGG. The annealed gRNAs were then cloned into the Plenti V5 Topo BSD selection cassette vector driven by the U6 promoter. The production of lentivirus was achieved by co-transfection of the cloned Plenti V5 Topo BSD selection cassette vector along with the VSV-G (Addgene, Plasmid #14888) and pPAX2 (Addgene, Plasmid #12260) into 293FT cells (ThermoFisher Scientific, Cat. #R70007) using the Lipofectamine 3000 (Thermofisher Scientific, Cat. #L3000008). Lentivirus particles were then transduced into the dCas9-VPR iPSCs, and appropriate antibiotic selection was carried on three days after transduction. During the culture, transduced dCas9-VPR iPSCs were occasionally exposed to appropriate antibiotic selection to maintain a high proportion of dCas9-VPR iPSCs having XL gRNA.

Generation of human neurons
Human iPSCs were cultured in feeder-free maintenance media (mTeSR). To induce neuronal progenitor differentiation, N2 medium was replaced with N2 medium: DMEM/F12 (Gibco, Cat. #11320-33), 2% B-27 supplement (Gibco, Cat. #17004-044), 1% N-2 supplement (Gibco, Cat. #17052-048), 1% MEM Non-Essential Amino Acids (Gibco, Cat. #11140-050), 1% penicillin/streptomycin (Gibco, Cat. #15140-148), 0.1% β-mercaptoethanol (Gibco, Cat. #21985-023), cells were supplemented daily with dual SMAD inhibitors (Agar Scientifc, Cat. #15431-022), 10 μM PD-0325901 (Cell Biotech, Cat. #130-106-543) and 0.1 μM LDN-193189 (Stemgent, Cat. #A00-0008) for 10 days. Fresh medium was daily replaced. On day 11, neural progenitors were detached using Accutase (Gibco, Cat. #A1105-051), dissociated cells were then seeded onto coverslips coated with Poly-λ-ornithine (Sigma, Cat. #P94957) and 5 mg/ml Laminin (Thermofisher, Cat. #23017015) in 18 mm cover glass cell. The presence of basic fibroblast growth factor (bFGF, 20 ng/ml; R&D, Cat. #233-FB-01M) for 12 h. To induce neuronal differentiation, N2 medium was replaced with neurobasal medium (Gibco, Cat. #A38529-01) containing 2% B-27, 1% N-2, 1% penicillin/streptomycin, 0.025% Insulin (Sigma, Cat. #I9278), 10 ng/ml BDNF (Lonza-Peprotech, Cat. #450-02-50), 0.2 μg/ml L-Ascorbic acid (Sigma, Cat. #A544) and 0.1 mM cAMP (Sigma, Cat. #D60627).

For qRT-PCR
Total RNA was isolated from cells as described previously. For qPCR, SYBR Green (Applied Biosystem, Cat. #A25742) was used. 1 μg of RNA was utilized to generate the cDNA using the First Strand cDNA Synthesis Kit (Thermo Scientific, Cat. #K1612). qPCR standard reaction conditions were set according to the manufacturer’s instructions. PCR primers were designed using the NCBI free online system. All experiments were performed in biological duplicates or triplicates for each sample analyzed. Expression values were normalized against the GAPDH expression value of each sample, means and standard deviations were calculated and plotted using the GraphPad Prism 8.1.1 and SigmaPlot 13.0 software. Primers are listed in Supplementary Table 6.

Immunohistochemistry
Tissue processing was performed as described in ref. 52 and immunohistochemistry (IHC) was performed as described in ref. 53. In brief, organoids were fixed in 4% PFA for 60 min at RT, followed by washing three times with 1× phosphate buffer saline (PBS) for 10 min at RT before sectioning. Fixed organoids were then immersed in 30% sucrose in PBS for 4°C. Suncos organoids were then embedded in a solution containing 3/2 ratio Optimal Cutting Temperature (O.C.T) and 30% sucrose in PBS. Embedded tissues were then sectioned serially to the 14-μM thickness and collected onto Superfrost slides (Thermo Scientific, Cat. #S441296). For IHC, sectioned samples were washed three times for 10 min at RT before blocking for 1 h with a solution containing 3% bovine serum albumin (Sigma, Cat. A9418-50G) and 0.1% Triton X-100 in PBS. Primary antibodies were added overnight at 4°C before washing three times with PBS for 10 min each at RT. For immunofluorescence, cells were fixed with 4% PFA in 1× PBS for 10 min at RT. Samples were then heated for 10 min at 100°C before loading. An equal amount of proteins was loaded and separated using Mini-PROTEAN TGX Stain-Free-Gels (Bio-Rad, Cat. #4568044), separated proteins were then transferred onto iBlot 2 PVDF Mini Stacks (Invitrogen, Cat. #IB24002). The membrane was then blocked with 5% Skim Milk in TBS-T (20 mM Tris–HCl pH 7.6, 136 mM NaCl, and 0.1% Tween-20) for 1 h at RT, followed by primary antibody incubation diluted in 5% BSA at 12°C. The primary antibodies used in this experiment are listed in Supplementary Table 5. The membrane was then washed three times with 1× TBST for 10 min each at RT before incubation with secondary antibody diluted 1:5000 in 5% Skim Milk in 1× TBST for 1 h at RT. The membrane was washed again three times with 1× TBST for 10 min each at RT before visualization with Clarity Western ECL Substrate (Bio-Rad, Cat. #170-5060).

Western blot
The protein expression level was determined using Western blotting. For Western blot, organoids were collected and lysed in Pierce™ RIPA Buffer (ThermoFisher Scientific, Cat. #89900), and a cocktail of protease and phosphatase inhibitors (Roche). Organoids were then sonicated, and protein concentration was determined using Quantitat Protein Assay Kit (ThermoFisher Scientific, Cat. #23227) according to the manufacturer’s instructions. Samples were then heated for 10 min at 100°C before loading. Equal amount of proteins was loaded and separated using Mini-PROTEAN TGX Stain-Free-Gels (Bio-Rad, Cat. #4568044), separated proteins were then transferred onto iBlot 2 PVDF Mini Stacks (Invitrogen, Cat. #IB24002). The membrane was then blocked with 5% Skim Milk in TBS-T (20 mM Tris–HCl pH 7.6, 136 mM NaCl, and 0.1% Tween-20) for 1 h at RT, followed by primary antibody incubation diluted in 5% BSA at 12°C. The primary antibodies used in this experiment are listed in Supplementary Table 5. After incubation with secondary antibody diluted 1:5000 in 5% Skim Milk in 1× TBST for 1 h at RT. The membrane was washed three times with 1× TBST for 10 min each at RT before visualization with Clarity Western ECL Substrate (Bio-Rad, Cat. #170-5060).

Semen induced by 33°C overnight in staining solution was previously described in ref. 55. Brain organoids were fixed in 4% PFA in PBS, pH 7.4, for 1 h at RT and washed with PBS for 10 min at RT before allowing to sink in 30% sucrose at 4°C. Once sunk, organoids were immediately embedded in OCT (Agar Scientific, cat. #AGR1180), cryosectioned at 14 μm, and incubated at 37°C overnight in staining solution. Staining was evident in 2–4 h and maximal in 12–16 h. Samples were examined under phase-contrast microscopy.

Telomere FISH assay
2D neurons were fixed in 4% PFA in PBS for 10 min. Cells were washed in PBS, dehydrated in ethanol series (70, 95, 100%), and air-dried. Coverslips were then denatured for 5 min at 80°C in hybridization mix (70% formamide, 10 mM Tris–HCl (pH 7.2), and 0.5% Roche blocking solution) containing telomeric PNA-(CCTAA)3 probe. After denaturation, hybridization was continued for 2 h at RT in a dark humified chamber. Coverslips were washed twice for 15 min each with 70% formamide, 10 mM Tris–HCl (pH 7.2), and 0.1% BSA, and followed by three washes for 5 min each with 0.15 M NaCl, 0.1 M Tris–HCl (pH 7.2), and 0.08% Tween-20. Nuclei were stained with DAPI (0.5 μg/ml) in PBS and slides were mounted in mowiol solution (Calbiochem). Images were obtained using a Leica TCS SP8 MP confocal laser microscope by the acquisition of optical z-sections at different levels along the optical axis. Telomere length was analyzed by quantification of telomeric signal fluorescence intensities by the imaging software CellProfiler. Comparative immunofluorescence analyses were performed in parallel with identical acquisition parameters.
Beverly, USA). Then 3 μl USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at 95°C before PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers, and Index (X) Primer. At last, PCR products were purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system. Raw data (raw reads) of FASTQ format were firstly processed through fastq. In this step, clean data (clean reads) were obtained by removing reads containing adapter and poly-N sequences and reads with low quality from raw data. At the same time, Q20, Q30, and GC content of the clean data were calculated. All the downstream analyses were based on clean data with high quality. Reference genome and gene model annotation files were downloaded from the genome website browser (NCBI/UCSC/Ensembl) directly. Paired-end clean reads were mapped to the reference genome using HISAT2 software. HISAT2 uses a large set of small GFM indexes that collectively cover the whole genome. These small indexes (called local indexes), combined with several alignment strategies, enable rapid and accurate alignment of sequencing reads. Stringtie was used to assemble the set of transcript isoforms of each bam file according to a recent study. Lists of senescence increased and decreased genes were isolated from these RNA-seq databases according to a recent study.

Reference genome and gene model annotation files were downloaded from the genome website browser (NCBI/UCSC/Ensembl) directly. Paired-end clean reads were mapped to the reference genome using HISAT2 software. HISAT2 uses a large set of small GFM indexes that collectively cover the whole genome. These small indexes (called local indexes), combined with several alignment strategies, enable rapid and accurate alignment of sequencing reads. Stringtie was used to assemble the set of transcript isoforms of each bam file according to a recent study. Lists of senescence increased and decreased genes were isolated from these RNA-seq databases according to a recent study.

Bioinformatics analysis
RNA-sequencing normalized data GSE110006, GSE110006, and GSE97881 were downloaded. H9-ESCs group was used as a control to Each database was normalized as explained before. Reference genome and gene model annotation files were downloaded from the genome website browser (NCBI/UCSC/Ensembl) directly. Paired-end clean reads were mapped to the reference genome using HISAT2 software. HISAT2 uses a large set of small GFM indexes that collectively cover the whole genome. These small indexes (called local indexes), combined with several alignment strategies, enable rapid and accurate alignment of sequencing reads. Stringtie was used to assemble the set of transcript isoforms of each bam file according to a recent study. Lists of senescence increased and decreased genes were isolated from these RNA-seq databases according to a recent study.

Statistical and image analysis
Normally distributed data were expressed as the mean ± standard deviation of the mean of independent experiments. The median ± standard deviation was used to express the non-normally distributed data. For organoid size measurements, organoids were imaged over time using the Olympus CKX5 microscope and an Olympus SC50 camera. The Olympus cellSens Entry software used to generate the scale bar and corresponds to the objective lens. Images of organoids were exported to ImageJ to measure the measure of individual organoids. The shortest distance across the organoid was measured and assigned as organoid diameter. For neurites diameter measurement, confocal images with scale bar were exported to ImageJ, lines were manually drawn onto the confocal images and the pixel length of the lines was used to calculate the average neurite diameter, calibrated against a given scale. The sample size was determined using power analysis. The number of biological replicates, as well as the sample size, are indicated in the figure legends. When comparing two groups, we used the Student’s t-test. A one-way or two-way ANOVA was used for the comparison of multiple groups, followed by Tukey’s post-hoc analysis for comparisons to a single control. Statistical analysis was performed using Sigma Plot 13® software. Minimal statistical significance was defined as P < 0.05.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding author upon reasonable request. Bulk RNA-sequence data from brain organoids that support the findings of this study have been deposited in the GEO-NCBI with the primary accession code GSE171719.

Received: 30 August 2020; Accepted: 28 May 2021; Published online: 02 August 2021

Published in partnership with the Japanese Society of Anti-Aging Medicine

REFERENCES
1. Kuro-o, M. Klotho and the aging process. Korean J. Intern. Med. 26, 113 (2011).
2. Masso, A. et al. Secreted and transmembrane klotho isoforms have different spatio-temporal profiles in the brain during aging and Alzheimer’s disease progression. PLoS ONE 10, e0143623 (2015).
3. Kato, T., Hagiyama, M. & Ito, A. Renal ADAM10 and 17: their physiological and medical meanings. Front. Cell Dev. Biol. 6, 153 (2018).
4. Vo, H. T., Laczycky, A. M. & King, G. D. Klotho, the key to healthy brain aging? Brain Plast. 3, 183–194 (2018).
5. Xu, Y. & Sun, Z. Molecular basis of Klotho: from gene to function in aging. J. Endocr. Res. 36, 174–193 (2015).
6. Zhu, L. et al. Klotho controls the brain-immune system interface in the choroid plexus. PNAS 115, E11388–E11396 (2018).
7. King, G. D., Rose, D. L. & Abraham, C. R. Promoter methylation and age-related downregulation of Klotho in hensus monkey. Age 34, 1405–1419 (2012).
8. Lim, K. et al. Klotho expression in human tissues. J. Clin. Endocrinol. Metab. 100, E1308–E1318 (2015).
9. Kokkinaki, M. et al. Klotho regulates retinal pigment epithelial functions and protects against oxidative stress. J. Neurosci. 33, 16343–16359 (2013).
10. Zeldich, E. et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J. Biol. Chem. 289, 24700–24715 (2014).
11. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).
12. Zeldich, E., Chen, C.-D., Avila, R., Medicetty, S. & Abraham, C. R. The anti-aging protein Klotho enhances remyelination following cuprizone-induced demyelination. J. Mol. Neurosci. 57, 185–196 (2015).
13. Dubal, D. B. & Shao, Y. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J. Neurosci. 35, 2358–2371 (2015).
14. Semb, R. D. et al. Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. J. Neurosci. Lett. 558, 37–40 (2014).
15. Qian, X., Song, H. & Ming, G.-l. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).
16. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).
17. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).
18. Luo, C. et al. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 17, 3369–3384 (2016).
19. Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).
20. Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398. e387 (2017).
21. Casella, G. et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294–7305 (2019).
22. Watanabe, M. et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 21, 517–532 (2017).
23. Leibrock, C. B., Voelkli, J., Kuro-o, M., Lang, F. & Lang, U. E. 1, 25 (OH) 2 D 3 dependent overt hyperactivity phenotype in klotho-hypomorphic mice. Sci. Rep. 6, 1–12 (2016).
24. Jia, Y. et al. SHP2 mutations induce precocious glosingenesis of Noonan syndrome-derived iPSCs during neural development in vitro. Stem Cell Res. Ther. 11, 1–19 (2020).
25. Aguado, J., di Fagagna, F. d. A. & Wolvetang, E. Telomere transcription in Ageing. Ageing Res. Rev. 62, 101115 (2020).
26. Jacome-Burbano, M. S. & Gilson, E. Long-lived post-mitotic cell aging: is a telomere clock at play? Mech. Ageing Dev. 189, 128256 (2020).
27. Xu, K. et al. CircGRIA1 shows an age-related increase in male macaque brain and regulates synaptic plasticity and synaptogenesis. Nat. Commun. 11, 1–15 (2020).
28. Limbad, C. et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE 15, e0227887 (2020).
29. Tran, P. T. et al. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet. 8, e1002650 (2012).
30. Alam, P. et al. Inhibition of senescence-associated genes Rb1 and Mesp2 in adult cardiomyocytes results in cell cycle reentry and cardiac repair post-myocardial infarction. J. Am. Heart Assoc. 8, e012089 (2019).
31. Tang, X., Li, P.-H. & Chen, H.-Z. Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Front. Endocrinol. 11, 280 (2020).
32. Sun, C. K., Chua, M.-S., He, J. & Samuel, K. S. Suppression of gliypican 3 inhibits growth of hepatocellular carcinoma cells through up-regulation of TGF-B2. Neoplasia 13, 735–747 (2021).
