Onset of dielectric modes at 110K and 60K due to local lattice distortions in non-superconducting YBa$_2$Cu$_3$O$_{6.0}$ crystals

Z. Zhai, P. V. Parimi, J. B. Sokoloff and S. Sridhar

Physics Department, Northeastern University, 360 Huntington Avenue, Boston, MA 02115.

A. Erb

DPMC, Université de Genève, Genève, Switzerland.

We report the observation of two dielectric transitions at 110K and 60K in the microwave response of non-superconducting YBa$_2$Cu$_3$O$_{6.0}$ crystals. The transitions are characterized by a change in polarizability and presence of loss peaks, associated with overdamped dielectric modes. An explanation is presented in terms of changes in polarizability of the apical O atoms in the Ba–O layer, affected by lattice softening at 110K, due to change in buckling of the Cu–O layer. The onset of another mode at 60K strongly suggests an additional local lattice change at this temperature. Thus microwave dielectric measurements are sensitive indicators of lattice softening which may be relevant to superconductivity.

It was recognized soon after the discovery of the high temperatures superconductors that the cuprates are structurally similar to the ferroelectric perovskites ABO_3. The basic perovskite ABO_3 structure occurs in ferroelectrics like BaTiO_3 and incipient ferroelectrics or quantum paraelectrics such as SrTiO_3, as well as in sub-units of the superconductor $\text{YBa}_2\text{Cu}_3\text{O}_{6.0+x}$. The implications of this structural similarity received early support from the observation of large dielectric response ϵ'' in the insulating parent compound $\text{YBa}_2\text{Cu}_3\text{O}_{6.0}$. Furthermore, theoretical models have been proposed which include the possible competition between ferroelectricity and superconductivity ϵ''.

In this paper we show some striking dielectric properties of single crystals of insulating $\text{YBa}_2\text{Cu}_3\text{O}_{6.0}$ which seem to have a strong bearing on the superconductivity of the doped YBCO. Traditionally the information on lattice dynamics has been obtained from inelastic neutron, XAFS, Raman and infrared spectroscopy measurements. Our microwave measurements probe consequences of lattice modes on the long wavelength ($q = 0$) dielectric properties, and its very high sensitivity leads to the observation of features not detected by other techniques.

In addition to large dielectric strengths $\epsilon' \sim 10^2 - 10^3$, consistent with previous measurements, we report the presence of two dielectric transitions at 110K and 60K. These transitions are accompanied by the onset of polarization modes indicated by the presence of dielectric loss peaks below the transition temperatures. The transitions arise from structural distortions occurring at these temperatures, such as buckling of the Cu–O plane leading to the 110K transition, which affect the electrodynamic response. Thus precision microwave measurements are shown to be a sensitive probe of lattice effects, complementing other traditional probes of lattice dynamics. Taken together with numerous reports of lattice effects at or near the superconducting transition temperature T_c, the present results demonstrate the importance of charge and lattice dynamics in the high temperature superconducting oxides.

Ultra-pure single crystals of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ were prepared in contamination-free BaZrO_3 crucibles. The high quality of these single crystals, which have also been prepared in the entire composition range from insulating, non-superconducting material ($x = 0$) to optimum ($x = 0.95$) and over-doped ($x = 1.0$), has been extensively documented in a wide range of measurements, including structural and transport studies of the superconducting and non-superconducting states. A brief list of these reports can be found in [8]. In this paper we focus on new results on the insulating $x = 0.0$ compound.

The high sensitivity microwave measurements were carried out in a Nb superconducting cavity resonant at 10GHz in the TE_{011} mode. The sample is placed at the center of the cavity at a maximum of the microwave magnetic field H_w. We introduce an electromagnetic susceptibility $\tilde{\chi}_H (T) = \chi_H (T) + i\tilde{\chi}_H'' (T)$ which is related to the measured parameters, the shift in cavity resonant frequency $\delta f(T)$ and the resonance width $\Delta f(T)$ by $\delta f(T) - i\Delta f(T) = -g(\tilde{\chi}_H (T) + \tilde{\chi}_H'' (T))$, where g is a geometric factor. A detailed analysis of the relevant cavity perturbation for general sample conditions including lossy dielectric and metallic or superconducting states, has been recently carried out by us [4]. We are able to directly measure the conductivity $\tilde{\sigma}_\text{tot}$ or the dielectric permittivity $\tilde{\varepsilon}_\text{tot}$ (where $\tilde{\sigma}_\text{tot} = -i\omega\varepsilon_0\tilde{\varepsilon}_\text{tot}$). The analysis shows that for arbitrary conductivity,

$$\tilde{\chi}_H (T) = -\frac{3}{2} \left[1 - \frac{3}{\tilde{\varepsilon}} + 3 \cot (\frac{\tilde{\varepsilon}}{\tilde{\varepsilon}}) \right];$$ \hspace{1cm} (1)

where $\tilde{\varepsilon} = ka = k_0a\sqrt{\varepsilon_\text{tot}}$. Note that we use time dependences $e^{-i\omega t}$. In the limit $\tilde{\varepsilon} \ll 1$, $\tilde{\chi}_H (T) \approx (1/10)(k_0a)^2(\varepsilon_\text{tot} - 1)$ for a lossy dielectric. The dielectric permittivity $\tilde{\varepsilon}_\text{tot}$ was extracted from the data using Eq. [4]. $\tilde{\varepsilon}_\text{tot}$ includes both bound polarization $\tilde{\varepsilon}$ and free charge conductivity $\tilde{\sigma}_\text{tot}$ contributions, i.e. $\tilde{\varepsilon}_\text{tot} = \tilde{\varepsilon} + i\tilde{\sigma}/\omega\varepsilon_0$. In the present case the conductivity is negligible and $\tilde{\varepsilon}_\text{tot} = \tilde{\varepsilon}$. We have earlier carried
out extensive measurements of the surface impedance of a variety of superconductors, metals and insulators, and demonstrated the validity of these measurements.

The dielectric permittivity \(\varepsilon'(T) \) and \(\varepsilon''(T) \) of \(YBa_2Cu_3O_6 \) are shown in Fig. 1. Here \(\dot{H}_o || \delta \)-axis, so that the displacement currents are in the \(ab \)-plane, i.e. we are measuring in-plane dielectric permittivity \(\dot{\varepsilon}_{ab} \).

The large microwave dielectric permittivity observed in the present composition seems to be a characteristic of some perovskite oxides. Such large dielectric strengths \(\varepsilon' \sim 10^2 - 10^3 \) in non-metallic insulating \(YBa_2Cu_3O_{6.0+x} \) were reported by Rey, et. al., [2] for ceramic samples which were quenched to retain the oxygen homogeneity. It is worth remarking that the present crystals are also quenched from high temperature and this may be an important requirement for the observation of this effect. We have observed similar response in the microwave dielectric permittivity of another \(YBa_2Cu_3O_{6.0} \) crystal (Fig. 2, bottom panel) obtained from a different batch, confirming the presence of the dielectric transitions reported here.

The data in Fig.1 can be analyzed in terms of three dielectric modes, \(\dot{\varepsilon} = \dot{\varepsilon}_\alpha + \dot{\varepsilon}_\beta + \dot{\varepsilon}_\gamma \), each of which is well described by a Debye relaxation form with respect to the temperature dependence:

\[
\dot{\varepsilon} = \frac{\varepsilon_{i\omega}(T)}{1 - i \omega \tau_i(T)} \quad (2)
\]

\(\dot{\varepsilon}_\gamma \) appears to represent the low \(T \) tail of a high temperature process, with \(\dot{\varepsilon}_{\gamma 0}(T) \) = 160, and with a relaxation time \(\tau_{\gamma}(T) = 6.5 \times 10^{-13} \text{sec} \cdot \text{K}^{-1} \text{exp}(1000/T) \) characterized by an activation energy 1000K. The \(\dot{\varepsilon}_\gamma \) process is dominant between 300K and approximately 180K, below which it “freezes” out quasistatically as the dipole relaxation rate becomes extremely slow. A residual temperature independent dielectric contribution \(\dot{\varepsilon}_\alpha \approx 465 \pm 125 \) remains at all temperatures. We believe \(\dot{\varepsilon}_\alpha \) is the contribution which has been measured by several previous investigators on non-metallic \(YBa_2Cu_3O_{6.0} \) and represents a polarization mode formed at high temperatures \(T > 300K \). \(\dot{\varepsilon}_\alpha \) and \(\dot{\varepsilon}_\beta \) indicate the onset of two new dielectric modes which turn on below transition temperatures \(\tau_{\alpha} \approx 60K \) and \(\tau_{\beta} \approx 110K \). We describe these modes with the following parameters:

- \(\dot{\varepsilon}_{\alpha 0}(T) = 60(1-(T/T_{\alpha\beta})) \), \(T_{\alpha\beta} = 110K \) and \(\tau_{\beta}(T) = 4 \times 10^{-10} \text{sec} \cdot \text{K}^{-1} \text{exp}(200/T) \), for the \(\dot{\varepsilon}_\beta \) process, and
- \(\dot{\varepsilon}_{\alpha 0}(T) = 280(1-(T/T_{\alpha})) \), \(T_{\alpha} = 60K \) and \(\tau_{\alpha}(T) = 2.5 \times 10^{-10} \text{sec} \cdot \text{K}^{-1} \text{exp}(5/T) \), for the \(\dot{\varepsilon}_\alpha \) process.

\(\dot{\varepsilon}_{\alpha 0} \) and \(\dot{\varepsilon}_{\beta 0} \) are similar to order parameters which grow at temperatures below a transition. As \(T \) is lowered, both \(\dot{\varepsilon}'_{\alpha}(T) \) and \(\dot{\varepsilon}'_{\alpha}(T) \) increase initially due to the growing polarization. However below a characteristic temperature both \(\dot{\varepsilon}'_{\alpha}(T) \) and \(\dot{\varepsilon}'_{\alpha}(T) \) begin to decrease because the dipoles are no longer able to follow the microwave field. The peak temperature \(T_{p\alpha} \sim 25K \) is determined by the condition \(\omega \tau_{\alpha}(T_{p\alpha}) = 1 \), although the peak for \(\varepsilon' \) is at a higher \(T \) than for \(\varepsilon'' \). The peaks are so-called dielectric loss peaks. Identical arguments hold for \(\dot{\varepsilon}_\beta(T) \) also. Here the peak is much broader and occurs at \(T_{p\beta} \sim 75K \).

For the \(\alpha \) and \(\beta \) processes, the temperature dependence is too broad to be described by an activated relaxation rate. We have found that a relaxation rate which is linear in \(T \), i.e. \(\tau_{\alpha\beta}^{-1}(T) \approx a_{\alpha\beta}(T + T_{\alpha\beta}) \), describes the data very well as seen in Fig. 1, with \(a_{\alpha} \approx 0.4 \times 10^{10} \text{sec} \cdot \text{K}^{-1} \text{exp}(1000/T) \) and \(a_{\beta} \approx 0.25 \times 10^{10} \text{sec} \cdot \text{K}^{-1} \text{exp}(1000/T) \), \(T_{\alpha\beta} = 200K \). Such relaxation rates with linear \(T \) dependences are well known in the copper oxide superconductors.

We note that similar large dielectric constants have been observed in other copper oxides. In \(Bi_2Sr_2(Dy, Y)Cu_2O_{8+\delta} \), the parent compound of \(Bi_2212 \), large in plane \(\varepsilon' \sim 10^3 - 10^5 \) were reported [6]. It is also important to note that the dielectric modes discussed here bear a strong similarity to the numerous modes observed in the dielectric response of the perovskite \(SrTiO_3 \) at 65K, 37K and 16K. The dielectric loss peaks reported here are similar to those observed in \(Ln_{5/3}Sr_{1/3}TiO_4 \) and \(Ln_{1/3}Cu_{2/3}O_{41} \) [19].

The present results indicate that at 110K [19] and 60K, two new polarization onset transitions occur in \(YBa_2Cu_3O_{6.0} \). We note that the 110K and 60K onsets cannot arise from any contamination of the sample by a superconducting phase, since then the contribution should be diamagnetic (negative \(\varepsilon' \)), opposite to what is observed.

A scenario leading to such dielectric transitions can be arrived at starting with the so-called Bilz model for ferroelectricity [14], which is based upon the nonlinear polarizability of oxygen, and originally developed for perovskite structures. This applies to a displacive type ferroelectric where dipole moments are induced during the phase transition so that soft mode concept becomes important. Above the displacive ferroelectric transition, the oxygen atoms are essentially oscillating in a potential well. Below the ferroelectric transition, a double-well is formed and the oxygen atom then locks into one of the minima - the displacement then leads to a large permanent polarization.

In the present case the ferroelectricity is prevented from occurring, either due to quantum fluctuations, as was proposed for \(SrTiO_3 \) [12], or due to coupling between Ba-O and Cu-O layers (Fig. 3) [1]. Consequently the \(O \) potential is greatly softened leading to the large dielectric permittivities observed.

We use a modification of the Bilz model specifically for the o xo-cuprate superconductors implemented by Shenoy, et. al. [1]. The equation-of-motion of the Oxygen relative ion-electron coordinate \(\vec{w} \) is given by \(m_e(\vec{\dot{\vec{w}}} + \Gamma \vec{\vec{w}}) + D\vec{\vec{w}} = Ze\vec{E}e^{-i\omega t} \), where \(D \) is the SCPA curvature of the anharmonic Oxygen electronic potential. For a driving electric field \(\vec{E}e^{-i\omega t} \), the susceptibility \(\alpha = Ze\omega/E = Ze/m_eD(\omega^2 - \omega^2 - i\omega\Gamma) \). The dielectric
constant \(\varepsilon = n\alpha/\varepsilon_0 \) then becomes

\[
\tilde{\varepsilon} = \frac{\varepsilon(0)}{(1 - \omega^2/\omega_0^2) - i\omega\tau}
\]

(3)

Here \(\varepsilon(0) = nZe^2/D \) and \(\tau = 1/\omega_0^2 \).

Rather large dielectric constants are feasible for soft modes. For the case of the \(O \) atom in the \(Ba - O \) layer in \(YBa_2CuO_{6+\delta} \) we have \(n = 1.2 \times 10^9m^{-3} \). With \(Z = 1, \varepsilon_0 = 8.85 \times 10^{-12}F/m, \) and using \(\omega_0 = 2\pi f_0 \), \(f_0 = 3 \times 10^{12}Hz \) so that \(D = 3.3 \times 10^{-2}N/m, \) we get \(\varepsilon(0) \sim 10^3 \) comparable to the experimental results.

Note that despite the softening, the condition \(\omega \ll \omega_0 \) is well satisfied (\(f = 10^{10}Hz \)), and the so-called Drude-Lorentz form of a resonant mode given by Eq. 3 reduces to the Debye-like relaxation forms used in Eq. 2. The above estimate indicates considerable softening of the anharmonic \(O \) potential. Indeed this can happen because the curvature is extremely sensitive to interatomic forces in these materials. A mechanism for such softening has been given by Shenoy, et. al. for the layered HTS.

There have been extensive studies of lattice dynamics in superconducting \(YBa_2Cu_3O_{6±\delta} \). One of the key features that has emerged is that there are small structural distortions which occur although there is no change in the overall structure. Particularly well-established are the structural distortions reported at \(T_c \) in \(YBCO \), \(Hg : 1201 \) and \(Tl : 2212 \). In \(YBa_2Cu_3O_{6±x} \) the coupling between apical \(O(1) \) and planar \(O(2) \) oxygen changes due to the superconducting transition due to the displacements of \(O(2) \) in the directions perpendicular to the \(CuO_2 \) plane (Fig. 3) changing the buckling in the plane. The nearness of the \(\beta \) dielectric mode around \(110K \) to the \(T_c = 93K \) \(YBa_2Cu_3O_{6.95} \) is striking and suggests a possible change in the \(O(2) \) dynamics in \(YBa_2Cu_3O_{6.0} \) as well, and hence we attribute this \(\beta \) mode to the change in the dynamics of \(O(2) \).

In ref. the possibility of dielectric modes in coupled \(Ba - O \) and \(Cu - O \) layers is described. Including the various interatomic forces, it can be shown that the curvature \(D \) becomes a function of the buckling angle \(\theta \). The change in buckling at \(110K \) would lead to a change in the mixing of the \(ab \) plane acoustic and \(c \)-axis optic mode, resulting in a new set of mixed modes which would move to lower frequency due to softening. The resulting decrease in \(D \) would then explain the \(\beta \) mode at \(110K \). The calculation of Shenoy et al. based on the mean field approach support our description of the dynamics of \(O(1) \).

The presence of the \(60K \) mode suggests another local structural change at this temperature scale, possibly in the chain layer. It is very interesting to note that this temperature scale is present in the doped YBCO as well. In addition to the proximity of the \(110K \) transition to the optimum superconducting \(T_c \) of \(93K \) noted above, equally important is the presence of a secondary temperature scale around \(60K \) in certain measurements of \(YBa_2Cu_3O_{6±x} \). This temperature scale has manifested itself in various experiments whose connections are becoming apparent only recently. Thus the present results may have important implications for superconductivity in these materials.

In optimally doped single crystals of \(YBa_2Cu_3O_{6.95} \), an additional onset of pair conductivity at \(65K \) was noted in ref. well below the main \(T_c = 93K \). The consequences of this on the thermal conductivity and vortex transport have been observed. The present temperature scales also have striking resemblance to transitions around \(110K \) and \(65K \) in over doped YBCO as observed in NQR measurements by Grevin et al. which have been interpreted in terms of CDW correlations. In their results a short range CDW sets in the \(Cu-O \) chains at \(110K \) which becomes long range around \(65K \). The formation of CDW in the \(Cu-O \) chains modulate the charge in the planes leading to a transition between an inhomogeneous charge state to a low-temperature ordered charge state in the planes. Keeping in view the fact that NQR probes the electric field gradient around the \(Cu \) nucleus the NQR transitions could as well be due to changes in local structure which leads to CDW formation in the doped metallic YBCO. Together, the NQR,thermal conductivity and the present results stress the importance of the \(110K \) and \(60K \) temperatures scales. These results indicate that local distortions in the structure at \(110K \) and \(60K \) would lead to changes in polarization as we have observed in \(YBa_2Cu_3O_{6.0} \) and charge ordering in doped YBCO. Microwave conductivity measurements on doped crystals from \(x = 0 \) to \(1 \), when taken together with these other observations, strongly suggest that doping moves this onset temperature from \(60K \) at \(x = 0 \) to \(\sim 70K \) at \(x = 1 \). At the superconducting \(T_c \) increases with \(x \), but never exceeds \(93K \). An interesting implication is that the implied structural distortion transition at \(110K \) may represent an upper limit on the superconducting transition \(T_c \).

In conclusion we have observed three paraelectric modes with temperature onsets at \(60K, 110K \) and \(300K \) in the non-metallic \(YBa_2Cu_3O_{6.0} \). These modes are well described by the change in polarizability of apical \(O(1) \) oxygens due to change in lattice dynamics with temperature. A striking observation is that the two low temperature modes have direct connections with the transitions observed by traditional lattice probes as well as NQR and thermal conductivity measurements on doped superconducting \(YBa_2Cu_3O_{6.0±\delta} \), strongly suggesting that oxygen and lattice dynamics plays an important role in both the superconducting and non-superconducting materials.

We thank C.Kusko, R.S. Markiewicz, C. Perry and S.R. Shenoy for useful discussions.

This work was supported by ONR and NSF-ECS-9711910.
[1] J. G. Bednorz and K. A. Müller, Z. Phys. B, 4, 189 (1986).
[2] C. M. Rey, et al., Phys. Rev. B, 45, 10639 (1992).
[3] G. A. Samara, W. F. Hammetter and E. L. Venturini, Phys. Rev. B, 41, 8974 (1990).
[4] A. R. Bishop, R. L. Martin, K. A. Müller, and Z. Tešanović, Z. Phys. B-Cond. Mat. 76, 17 (1989).
[5] A. Bussmann-Holder, A. Simon and H. Büttner, Phys. Rev. B, 39, 207 (1989).
[6] S. R. Shenoy, et al., Phys. Rev. Lett., 79, 4657 (1997).
[7] See articles in “Lattice effects in High Temperature Superconductors, ed. Y. Bar-Yam, T. Egami, J. Mustre-de Leon and A.R. Bishop, World Scientific (1992).
[8] A. Erb, Habilitation Thesis, U. of Geneva (unpublished).
[9] Z. Zhai, C. Kusko, N. Hakim, S. Sridhar, and A. Revcolevschi, Rev. Sci. Instr., (in print), cond-mat/0001280.
[10] H. Srikanth, Balam A. Willemsen, T. Jacobs, S. Sridhar, A. Erb, E. Walker and R. Flükiger*, Phys. Rev. B, 55, R14733 (1997).
[11] H. Bilz et al., Phys. Rev. B 35, 4840 (1987); H. Bilz et al., Phys. Rev. Lett. 48, 264 (1982); A. Bussmann-Holder et al., Phys. Rev. Lett., 67, 512 (1991).
[12] G. Bednorz and K. A. Muller, Phys. Rev. Lett., 52, 2289 (1984).
[13] (a) R. P. Sharma, et al., Phys. Rev. Lett., 62, 2869 (1989), (b) C. H. Booth, et al., Phys. Rev. B 52, R15745 (1995), (c) B. H. Toby, et al., Phys. Rev. Lett. 64, 2414 (1990), (d) J. Mustre de Leon, et al., Phys. Rev. Lett. 65, 1675 (1990).
[14] T. Egami and S. J. L. Billinge, in “Physical Properties of High Temperature Superconductors V”, Ed. D. M. Ginsberg, World Scientific (1998).
[15] T. Takayanagi, et al., Proc. ISS ’99, cond-mat/9911156.
[16] C. Ang, et al., Phys. Rev. B, 59, 6661 (1999).
[17] N. Hakim, et al., Proc. MRS, Boston, (to appear).
[18] Z. Zhai, et al., (to be published).
[19] Ref. 2 mentions a dielectric anomaly at 100K in some YBCO6.0 samples.
[20] R. Gagnon, et al., Phys. Rev. Lett. 78, 1976 (1997).
[21] H. Darmaoui and J. Jung, Phys. Rev. B 57, 8009 (1998).
[22] B. Grevin, Y. Berthier and G. Collin, (preprint), B. Grevin, et al., Phys. Rev. Lett., 84, 1636 (2000).
[23] Z. Zhai et al., (to be published).
FIG. 3. Apical, O(1) and planar O(2) oxygens in YBCO. The change in the buckling angle at 110K changes the polarizability of O(1) resulting in the β dielectric mode.