PROPERTIES AND DISTRIBUTION OF A LECTIN-LIKE HEMAGGLUTININ DIFFERENTIALLY EXPRESSED BY MURINE STROMAL TISSUE MACROPHAGES

BY PAUL R. CROCKER AND SIAMON GORDON

From the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom

Resident macrophages (Mφ) are widely distributed throughout tissues of adult animals, even in the absence of overt inflammation or infection. At portals of entry they may play a role in innate resistance to infection, but in other sites, particularly hematopoietic and lymphoid tissues where stromal Mφ are relatively abundant (1–3), their precise functions are less clear. It is possible, however, that in addition to scavenging worn-out and damaged cells and ingesting erythrocyte nuclei, stromal Mφ in these tissues may play a regulatory role in cellular proliferation and differentiation. Support for this possibility has come from studies on bone marrow and thymus (2–5). In both cases, stromal Mφ establish intimate physical associations in situ with immature hematopoietic cells or thymocytes (2, 3). After enzymatic dispersion of the tissues, it is possible to obtain clusters that contain Mφ and attached cells (4, 5). To date, there have been few attempts to determine the functional importance of cluster formation in these tissues or to characterize the receptors and ligands involved. To carry out such studies, it is necessary to isolate the relevant Mφ, rather than to use a more easily obtained population such as peritoneal Mφ, which may differ substantially in function and properties (5).

We recently described (5) a method for isolating resident Mφ from murine bone marrow (RBMM), in reasonable yield and purity, which allowed us to study the properties of RBMM (5). When their phenotype was compared with that of resident peritoneal Mφ (RPM), we found both quantitative and qualitative differences in expression of various antigens and receptors. The most striking difference was the ability of RBMM, but not RPM, to bind unopsonized sheep E without ingestion. In view of the possibility that this novel E receptor (SER) could be involved in Mφ-binding to hematopoietic cells in murine bone marrow, it seemed important to characterize it further. In the present paper we show that SER on RBMM is a lectin-like agglutinin with specificity for sialylated component(s) on E. Our studies show that SER is also expressed on stromal Mφ isolated...
from lymph node, liver, and spleen, but is at low levels or undetectable on monocytes and Mφ isolated from thymus, peritoneal cavity, pleural cavity, and bronchoalveolar spaces. The presence of SER on selected stromal but not “free” Mφ populations suggests that this hemagglutinin may be involved in adhesive interactions within tissues.

Materials and Methods

Animals. Mice were bred at the Sir William Dunn School of Pathology, University of Oxford and both sexes were used between 8 and 12 wk of age.

Media and Reagents. RPMI 1640 was obtained from Gibco-Biocult Ltd., Paisley, United Kingdom. FCS was obtained from Seralab UK Ltd., Crawley Down, United Kingdom, and was routinely heat inactivated for 30 min at 56°C. Media were supplemented with glutamine (2 mM) and gentamicin (20 μg/ml). PBS without calcium or magnesium was obtained from Oxoid Ltd., Basingstoke, United Kingdom. Hepes buffer was purchased from Gibco-Biocult Ltd. Collagenase was purchased from Boehringer Corp., Lewes, United Kingdom; and DNase (type I), trypsin (type IX), and *Staphylococcus aureus* protease (type XVII) were from Sigma Chemicals Ltd., Poole, United Kingdom. Neuraminidase (*Vibrio cholerae*) was obtained from BDH Ltd., Poole, England (500 U/ml), or from Calbiochem-Behring Corp., La Jolla, Ca. (1 Behringwerke unit/ml). Mono- and disaccharides were purchased from Sigma Chemicals Ltd. The trisaccharide, N-acetylmuramyl lactose (NANA-lactose) was obtained from either Sigma Chemicals Ltd. or from Boehringer Corp. From Sigma Chemicals Ltd. we purchased NANA-lactose purified from either bovine colostrum (85% 2,3-Neu-5-AcLac) or from human colostrum (85% 2,6-Neu-5-AcLac). The bovine form was also purchased from Boehringer Corp. The gangliosides GM1 and GD1α, purified from bovine brain, were generously provided by Dr. J. Mellanby, Department of Experimental Psychology, Oxford University. The neoglycoconjugates, mannosylated BSA, and galactosylated BSA, with 53–57 moles of sugar per mole protein, were kind gifts of Dr. P. Stahl, Washington University, St. Louis, MO. Ovine submaxillary mucin, prepared according to Hill et al. (6), and ovine orosomucoid (Sigma Chemicals Ltd.) were generously provided by Dr. K. McCusker, Washington University, St. Louis, MO. Fetuin (type III) was purchased from Sigma Chemicals Ltd. Sodium azide and the disodium salt of tetraacetic acid EDTA were from Sigma Chemicals Ltd. Sodium iodoacetate was from BDH Ltd. Sheep E, in Alsevers solution, were purchased from Gibco Biocult Ltd., stored at 4°C, and used within 2 wk.

Antibodies. The following mAbs were obtained as shown and used at saturation as concentrated supernatants: F4/80, a rat mAb specific for mature mouse Mφ (7); M1/70, which binds to Mac-1, an epitope of the iC3b receptor (CR3) on mouse neutrophils, Mφ and NK cells (8; Dr. T. Springer, Harvard Medical School, Boston, MA); M5/114, a rat anti–mouse mAb that recognizes Ia antigens (1-Aβδq,Eαα) (9; Dr. H. Waldmann, Department of Pathology, University of Cambridge, United Kingdom); and 2A G2 a rat mAb directed to the trypsin resistant FcR for IgG1/2b isotypes (10; Dr. J. Unkeless, The Rockefeller University, New York).

Isolation of Mφ Populations. RBMM were isolated from mouse femoral marrow plugs as described previously (5). Briefly, plugs from 12 femora were digested with 0.05% collagenase and 0.001% DNase dissolved in RPMI. The resulting clusters, containing RBMM, were purified from single cells by velocity sedimentation and were allowed to adhere to 24 × 11 mm diameter coverslips for 2–3 h at 37°C, 5% CO2, in a fully humidified incubator. RBMM were then stripped free of clustering cells by prior incubation in PBS followed by gentle direct flushing.

All peritoneal Mφ populations were obtained by lavage with 6 ml of PBS. RPM were harvested from unstimulated mice, inflammatory peritoneal Mφ were from mice injected intraperitoneally 4–5 d previously with 1 ml of Brewer's thioglycollate broth (Difco, E. Mosely, United Kingdom), and immunologically activated peritoneal Mφ were obtained from mice injected intraperitoneally 12 d previously with either 107 live Bacillus Calmette-Guerin BCG organisms (Pasteur strain 1011; kindly provided by Dr. R. North, Trudeau
Instituted, Saranac Lake, NY) or killed Corynebacterium parvum (Wellcome Biotechnology
Ltd., Beckenham, United Kingdom).

Resident pleural Mφ were obtained from unstimulated mice by pleural lavage with 2
ml of PBS. Bronchoalveolar Mφ were obtained by tracheal cannulation followed by lavage
with 5 × 1-ml aliquots of PBS. Peritoneal, pleural, and bronchoalveolar Mφ were washed
once in PBS and plated onto 11-mm glass coverslips at a density of 10^5 cells per coverslip
in 1 ml RPMI plus 10% FCS. After 60 min at 37°C, nonadherent cells were removed by
gentle, direct pipetting with RPMI. The adherent cells were then cultured in RPMI plus
10% FCS before rosetting assays.

Spleen adherent cells were obtained from collagenase-perfused spleens as described
(11). The cell suspension from one spleen was distributed among eight coverslips, and
after 2–3 h at 37°C, nonadherent cells were removed by direct pipetting. Kupffer cells
were obtained from collagenase-perfused livers as described (11). The nonparenchymal
cell fraction from each liver was plated onto eight coverslips in RPMI plus 10% FCS, and
onadherent cells were removed by pipetting after 30 min at 37°C to minimize contamina-
tion by endothelial cells. Thymic and mesenteric lymph node–adherent cells were
obtained by mincing tissues from one mouse in 20 ml RPMI plus 0.05% collagenase and
0.001% DNase, and digesting them at 37°C for 60 min with constant rotation at 25 rpm.
on a 17-cm diameter rotary wheel. Undigested material was discarded and cell suspensions
were washed twice in RPMI by centrifugation for 10 min at 200 g. The cells were
resuspended in RPMI plus 10% FCS and plated onto four coverslips. Nonadherent cells
were removed after 2 h at 37°C.

Isolation of Monocytes. Mice were killed with CO2 and bled by cardiac puncture using
10% acid citrate dextrose or 10 U/ml heparin (Flow Laboratories, Irvine, United King-
dom) as anticoagulants. Buffy coat, obtained by centrifugation of blood at 100 g for 15
min, was suspended in 2 ml PBS and layered onto 8 ml of Lympholyte M (Sera-Lab Ltd.,
Crawley Down, United Kingdom). After centrifugation for 40 min at 400 g, the mono-
nuclear cells at the interface were collected and washed four times at 200 g for 10 min to
remove platelets. Cells were finally suspended in RPMI plus 10% FCS at 10^6 cells per ml
and 1-ml aliquots added to coverslips. After 60 min at 37°C, nonadherent cells were
removed by repeated, direct pipetting.

Opsonization of E with IgG. E were washed four times in PBS by centrifugation at 500
g for 5 min, were resuspended in 5% vol/vol in RPMI plus 1% FCS and incubated for 30
min at 37°C with a subagglutinating concentration of rabbit anti–E IgG (Nordic Immun-
ological Laboratories, Tilburg, The Netherlands). Opsonized E (ElgG) were then washed
four times in PBS before use.

E and ElgG Rosetting Assays. Coverslips with adherent cells were rinsed three times by
immersion in RPMI and placed in 0.5 ml RPMI, with or without inhibitors, in a 24-well
tissue culture dish. ElgG or E, washed four times with PBS by centrifugation for 5 min at
400 g, were resuspended in RPMI at 5% vol/vol and 50 μl of the suspension added to
the coverslips and were mixed by swirling. After 30 min at 37°C (or the temperature under
test), unbound E or ElgG were removed by immersing coverslips three times in each of
four beakers of RPMI. In between each beaker the excess fluid on coverslips was drained
by touching the edge on tissue paper. After the final rinse, coverslips were placed in 1 ml
of 1% vol/vol glutaraldehyde in PBS and stored at 4°C until examination by phase-
contrast microscopy. In some experiments, ingestion of E was assessed after lysing bound
E by immersing coverslips in 10 mM phosphate buffer (pH 7.2) for 10 s. For immunoocy-
tochemistry (see below) cells were fixed in 0.25% glutaraldehyde for 10 min at room
temperature and then rinsed three times in PBS. Assays were routinely carried out in
duplicate; a cell was considered positive for SER if ≥5 E were attached. Usually, 200 MØ
were scored on each coverslip.

In some experiments, rosetting was carried out in suspension as follows: splenic or bone
marrow cells and clusters obtained by collagenase digestion were incubated at 4°C in PBS
containing 5 mM glucose, 0.5 mM EDTA and were gently dispersed into single cells by
passage through a 27-gauge needle. The cell suspension was adjusted to 5 × 10^6 cells/ml
and washed E was added at a ratio of 10 E per nucleated cell. After thorough mixing, the
suspension was centrifuged at 200 g for 15 min. The pellet was gently resuspended in 5 ml PBS containing 0.5 mM EDTA and the proportion of rosetted cells (≥ 5 E) was assessed by phase-contrast microscopy. For further analysis of rosettes, unbound E were removed by velocity sedimentation; 10^6 nucleated cells in 5 ml PBS/EDTA were layered over 40 ml PBS containing 0.5 mM EDTA, 5 mM glucose, 3% BSA, and 20 mM Hepes, pH 7.3, in a 50-ml syringe. After 1 h at room temperature, 5-ml fractions were collected from the bottom of the syringe and inspected by phase-contrast microscopy. Fractions free of unbound E were pooled, adjusted to 10^6 nucleated cells/ml, and cytocentrifuge preparations were made from 1-ml aliquots. Slides were fixed "wet" in 0.25% glutaraldehyde and processed for immunocytochemistry.

Immunocytochemistry. Cell surface antigens on adherent and cytoseed preparations were detected by immunoperoxidase labeling, using an avidin-biotin detection system as described (5).

Enzyme Treatment. Enzymes were added to or dissolved in RPMI as required and 0.5-ml aliquots were added to Mφ on coverslips prewashed with RPMI, or to 25 μl of washed, packed E. After mixing, cells were incubated for 60 min at 37°C and digestion was ended by adding 0.5 ml RPMI + 20% FCS. Coverslips were rinsed nine times by immersion in RPMI; E were washed three times in PBS by centrifugation.

Assays Measuring Inhibition by Various Reagents. Sugars, neoglycoproteins, sialoglycoproteins, metabolic inhibitors, and EDTA were dissolved at various concentrations in RPMI. Where necessary, the pH was adjusted to the original value with 0.1 M NaOH, and 0.5-ml aliquots were added to RBMM on coverslips prewashed with RPMI. E-rosetting assays were carried out after 15 min preincubation at 37°C in the continued presence of inhibitors.

Results

Resident Bone Marrow Mφ Express a Novel E Receptor. RBMM were purified from hematopoietic cell clusters by selective adherence to glass and removal of attached cells, after collagenase digestion of femoral bone marrow, as described (5). Two classes of adherent cells were obtained by this procedure. ~50% were large, well-spread cells of which >90% were RBMM, staining strongly with the Mφ-specific mAb F4/80 (7). The remaining 50% were small immature neutrophils and monocytes, the latter staining weakly with F4/80. Other adherent cells, present at ~1% of the total, included large, well-spread osteoclasts and fibroblast-like cells. When these preparations were incubated with unopsonized E, the majority of RBMM, but none of the other adherent cells, rapidly formed rosettes (Fig. 1A). In comparison, rosette formation to RPM was rarely observed (Fig. 1B). Binding of E to RBMM was maximal by 30 min of incubation and was not accompanied by significant ingestion (not shown). This phenomenon was highly reproducible and was not due to the collagenase or DNase used for their isolation, since the few RBMM that could be obtained without enzymes rosetted indistinguishably and treatment of RPM with collagenase and DNase did not reveal a "cryptic" form of SER. To examine the fate and stability of bound E, rosettes were cultivated for varying periods up to 24 h in RPMI or RPMI + 10% FCS. At all time points examined we did not observe significant ingestion. Instead, E slowly detached at a rate of ~5% per hour in RPMI and ~10% per hour in RPMI + 10% FCS (not shown).

Arbitrarily, positive rosetting in all experiments was defined by the ability to bind five or more E. However, the majority of positive RBMM bound >20 E and in 30 independent experiments we found that an average of 70% ± 15 (mean ± 1 SD; range, 29–91%) bound ≥ 5 E. The variability in rosette formation
Figure 1. RBMM express a novel E receptor. Phase-contrast micrographs of rosetting assays with RBMM (A, C, and D) and RPM (B) after adherence and purification on glass coverslips (× 200). Mo were incubated with a 0.5% vol/vol suspension of E or ElgG in RPMI for 30 min at 37°C. Unbound erythrocytes were removed by repeated immersion of coverslips in RPMI and cells were fixed in 1% glutaraldehyde before examination. (A) Binding of E to RBMM but not to contaminating monocytes and neutrophils (arrows). (B) Low binding of E to RPM with only occasional rosettes (arrows). (C) Inhibition of E binding to RBMM by 20 mM NANA-lactose. Coverslips were preincubated in NANA-lactose for 15 min at 37°C before addition of E. Same experiment as shown in A. (D) Binding of ElgG to RBMM in presence of 20 mM NANA-lactose, as described in (C). Monocytes and neutrophils also form rosettes with ElgG (arrows), unlike with E. Same experiment as in A and C.

seen between experiments was not due to the different batches of E. In addition, the age (6–12 wk) and sex of mice did not appear to affect the ability of RBMM to form rosettes. To determine whether SER was present among other inbred mouse strains, RBMM were isolated from ASN, CBA T6T6, and BALB/c mice. There were no significant differences in expression of SER and in all cases, ingestion of rosetted E was <1% of those bound.

To confirm the specificity of SER for MΦ, rosetting was also carried out on cells in suspension. In three independent experiments with collagenase-digested bone marrow, 1–3% of nucleated cells formed rosettes, 100% of which were RBMM as assessed by size, morphology, and immunoperoxidase labeling with F4/80 (not shown). The proportion of RBMM that formed rosettes in suspension was 80–90%, values that were similar to those seen with adherent RBMM. These results therefore suggested that SER is MΦ restricted.

Characteristics of the Interaction between RBMM and E. To investigate the nature of the surface molecules on RBMM and E that mediate rosetting we tested various conditions and reagents for their ability to affect binding. These included temperature and cation dependence, effects of metabolic inhibitors,
and pretreatment of RBMM or E with proteolytic enzymes or *V. cholerae* neuraminidase (Fig. 2). Rosetting was unaffected over the temperature range 0–37 °C (0, 4, 22, and 37 °C) and was independent of divalent cations, since addition of 0–10 mM EDTA to RPMI did not influence binding. Binding was also unaltered in calcium and magnesium-free PBS containing 1 mM EDTA, although RBMM became rounded under these conditions (not shown). Finally, rosetting was unaffected in the presence of the metabolic inhibitors sodium azide and iodoacetate up to 10 mM.

SER was found to be labile to *S. aureus* V8 protease and trypsin (Fig. 2, top), but resistant to the collagenase and DNase used in isolation of RBMM. The dose-dependent inhibition observed with trypsin was not due to a toxic effect on RBMM since rosetting to antibody-coated E was unimpaired, presumably via the trypsin-resistant Fc receptor (12, not shown). In contrast to protease and trypsin, treatment of RBMM with neuraminidase resulted in enhancement of rosetting (Fig. 2, top). When E were pretreated with trypsin or neuraminidase, we saw precisely the opposite pattern (Fig. 2, bottom). Thus, trypsinization led to a dose-dependent enhancement of binding, whereas neuraminidase treatment inhibited binding by up to 90% at the lowest concentration tested, 6 U/ml. Similar results were obtained with *V. cholerae* neuraminidase supplied by Calbiochem-Behring, which inhibited >90% at an equivalent low concentration (<0.01 Behringwerke
MACROPHAGE SHEEP ERYTHROCYTE RECEPTOR

FIGURE 3. Inhibition by NANA-lactose of E (filled circles) but not ElgG (open circles) binding to RBMM. Data show means ± 1 SD of triplicate coverslips. Similar results were obtained in two independent experiments. No inhibition was seen with the following mono- and disaccharides, all tested at 100 mM: d-glucose, d-galactose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, d-fucose, d-mannose, N-acetyl neuraminic acid, α-lactose, and β-lactose.

U/ml). Sialylated components on the surface of E therefore appeared to be required for the interaction with SER on RBMM.

Lectin-like Properties of SER. To investigate the possible lectin-like nature of SER, we first determined whether various sugars could inhibit rosetting (for details see legend to Fig. 3). Of the mono- and disaccharides studied, none had any effect on rosetting at concentrations up to 100 mM. However, the trisaccharide NANA-lactose, purified either from human or bovine colostrum, gave 50% inhibition at 5−10 mM (Figs. 1C and 3). 35 mM was required for 100% inhibition. This was not due to nonspecific toxic effects, since RBMM treated with NANA-lactose were morphologically intact (Fig. 1C) and rosette formation with ElgG was virtually unaffected (Fig. 1D and Fig. 3).

In view of the seeming importance of sialylated components on E, we also tested the inhibitory effect of the mono- and disialylated gangliosides GM1 and GD1a, respectively, and of the richly sialylated glycoproteins fetuin, orosomucoid and ovine submaxillary mucin. GM1 gave no inhibition at the highest concentration tested (1,000 μg/ml, 650 μM) but GD1a inhibited binding by 50% at 20 μg/ml (11 μM) and by 100% at ~100 μg/ml. Inhibition was not accompanied by toxic effects and RBMM remained fully viable throughout. A 30-min preincubation of RBMM with GD1a, followed by washout, resulted in inhibition of rosetting at similar concentrations. This suggests that GD1a mediates its effects by interacting with RBMM. Of the sialoglycoproteins tested, fetuin or orosomucoid at concentrations up to 1,000 μg/ml (20 μM) had no effect on rosetting, but ovine submaxillary mucin gave 50% inhibition at 500 μg/ml (3 μM). This was not thought to be significant since higher concentrations were toxic.

Previously characterised lectin-like receptors on Mφ include the mannosyl-fucosyl receptor (MFR) and galactose receptor (13, 14). To exclude a role for either of these in rosette formation, we tested the effect of specific neoglycoconjugate inhibitors. We saw no inhibition with either mannosylated or galactosylated BSA at 100 μg/ml (1.5 μM), concentrations that completely inhibit MFR and the galactose receptor, respectively (15, 16). In addition, pre- or coincubation
Inverse Expression of SER and Ia Antigens on RBMM

The heterogeneity in expression of SER on RBMM was a noticeable feature in all experiments. As heterogeneity of a similar kind had previously been seen (5) for expression of Ia antigens on RBMM, we investigated the relationship between these two markers by employing a double-labeling procedure of rosetting followed by immunoperoxidase staining with mAb M5/114 to detect Ia antigens. Control experiments showed that prior rosetting with E did not alter the proportion of RBMM-expressing Ia antigens, as assessed by immunocytochemistry (not shown). In four independent experiments the proportion of RBMM expressing Ia antigens varied from 21–64%. In each experiment there was a clear inverse correlation between expression of SER and Ia antigens on RBMM isolated from either C57BL/6 (H-2b) or BALB/c (H-2d) mouse strains (Table I). This was most clear if the Ia- population was compared with the strongly Ia+ RBMM. Thus, in all experiments, 96–100% of Ia- RBMM bound ≥5 E while only 3–33% of the strongly Ia+ population formed rosettes. The weakly Ia+ population showed variable E rosetting, although the mean values of E bound per RBMM were intermediate between the Ia- and strongly Ia+ RBMM subpopulations (Table I).

Table I

Inverse Expression of SER and Ia Antigens on RBMM

Exp.	Strain	n	Ia negative RBMM	Weak Ia+ RBMM	Strong Ia+ RBMM
			Total ≥5 E per RBMM	Total ≥5 E per RBMM	Total ≥5 E per RBMM
1	C57BL/6	234	79.96 ± 29	15.72 ± 17	8 ± 2
2	C57BL/6	215	72.98 ± 41	16.81 ± 22	12 ± 2
3	C57BL/6	188	46.97 ± 33	14.33 ± 16	40 ± 3
4	BALB/c	248	56.99 ± 27	34.77 ± 21	50 ± 3

* Expression of Ia antigens on individual RBMM, determined by immunocytochemistry using mAb M5/114 (anti-I-A^d^, I-E^d^).

† Total number of RBMM counted on duplicate coverslips.

‡ I-A^d^ haplotype.

§ Mean ± 1 SD derived from counts of E on individual RBMM.

\(^* \) I-A^d^/I-E^d^ haplotype.

with 100% homologous plasma or serum had no detectable effect on binding of E. Finally, saturating concentrations of the mAbs F4/80, M5/114 (Ia antigen), 2.4G2 (FcR II), or M1/70 (CR3) did not affect rosetting.
accompanied by gradual detachment of nonviable RBMM with ~50% remaining at 72 h. Precisely the same pattern of phenotypic changes was seen in three independent experiments. In conclusion, SER levels declined in culture with a half-life of ~24 h. This could not be accounted for by a population shift and was accompanied by changes in expression of Mac-1 and Ia antigens, but not 174/80.

Distribution of SER on Monocytes and Various Mφ Populations. The properties and differential expression of SER on RBMM compared with RPM suggested that it could be involved in adhesive cellular interactions within bone marrow. It was therefore important to determine the distribution of SER on other deeply embedded stromal tissue Mφ populations and compare this with expression on other “free” Mφ obtained by lavage from serous cavities and bronchoalveolar spaces (Table II). To distinguish Mφ from other adherent cells, preparations were rosetted and then stained immunocytochemically with the Mφ-specific mAb, F4/80. Control experiments showed that immunocytochemical detection of F4/80 was unaffected by prior rosetting (not shown). This double-labeling procedure was essential with stromal tissue Mφ isolated by collagenase digestion from liver, spleen, mesenteric lymph nodes, and thymus, which were often contaminated by a variety of other cell types (e.g., endothelial cells, fibroblasts, dendritic cells, and epithelial cells).

~50% of Kupffer cells were SER+, but rosetting was of lower intensity than that seen with RBMM. Contaminating F4/80− endothelial cells did not bind E. With spleen, 25–55% of the F4/80+ adherent cells formed rosettes, with similar intensity to that of Kupffer cells. This was seen predominantly on the large, well-spread population and was normally absent from the smaller immature Mφ and monocytes. Occasionally, well-spread F4/80− cells with Mφ morphology formed rosettes, but F4/80− cells with the morphology of Steinman-Cohn spleen den-
TABLE II

Expression of SER on Different Mo Populations and Monocytes after Adherence to Glass

Tissue	Number of experiments	Adherent cells F4/80*	F4/80* cells binding ≥5 E*1
Bone marrow	4	60-81	64 ± 11*
Liver	4	50-90	51 ± 9
Mesenteric lymph node	3	53-60	55 ± 11*
Spleen	4	28-65	29 ± 9
Thymus	2	55-65	5 ± 1
Peritoneal cavity			
Resident	9	90-100	7 ± 6
Thiglycolate	10	95-100	5 ± 4
BCG-activated	2	95-100	6 ± 2
C. parvum-activated	2	95-100	5 ± 2
Pleural cavity	3	90-100	0 ± 0
Bronchoalveolar spaces	3	95-100	0 ± 0
Blood	5	80-90	0 ± 0

* Based on counts of duplicate coverslips in each experiment and includes small F4/80* Mo and monocyte-like cells. 100-200 F4/80* cells counted per coverslip.
1 Positive rosetting of E to F4/80* cells was seen only in spleen where it constituted ~5% of total rosettes.
2 Range of values from the indicated number of experiments.
3 Mean ± 1 SD of individual coverslips (two per experiment).

dritic cells (17) did not bind E (not shown). With collagenase-digested mesenteric lymph nodes, rosetting was again seen predominantly on the large, well-spread stromal Mo and was of similar intensity to that of RBMM. With adult thymus, the majority of F4/80* adherent cells were small cells resembling immature Mo and expression of SER was restricted to the few stromal-type Mo. With the peritoneal cavity, a variable, but usually low degree of rosetting (<10%), was seen with either resident, inflammatory, or activated Mo. Pleural Mo, bronchoalveolar Mo, and blood monocytes were all SER-. Finally, in two experiments with spleen, rosetting was also carried out in suspension. 5-6% of nucleated spleen cells bound ≥5 E, and 90% of the rosetting cells were F4/80*. The F4/80+, SER+ subpopulation consisted of large phagocytic cells with oval nuclei and a nuclear/cytoplasmic ratio of ≤1. They may correspond to F4/80+ marginal zone Mo (18). Cells with lymphocyte morphology did not bind E.

In conclusion, SER was expressed differentially on other stromal tissue Mo populations, in addition to RBMM, and appeared to be Mo specific. Of the tissues examined, we saw the most intense rosetting on RBMM and mesenteric lymph node Mo; intermediate levels with liver Mo and stromal splenic Mo; but we saw low levels of SER on monocytes and Mo isolated from the thymus, serous cavities, and alveolar spaces.

Discussion

In this study we have characterized a novel lectin-like, Mo-restricted receptor, with specificity for sialylated ligand(s) on sheep E. This hemagglutinin mediates
binding, but not ingestion, of E and is differentially expressed, being present at
high levels on a majority of murine RBMM and stromal lymph node macro-
phages, at intermediate levels on liver and stromal splenic Mφ, but at low or
undetectable levels on blood monocytes and thymic, peritoneal, pleural, and
bronchoalveolar Mφ. We propose that this hemagglutinin is involved in non-
phagocytesic cellular interactions within tissues.

E are commonly used as carriers of Ig or complement fragments to detect FcR
and complement receptors, respectively, on myeloid and lymphoid cells. It is
therefore, perhaps, surprising that background rosetting with unopsonized con-
trol E has not been reported in previous studies of murine tissue Mφ. However,
effective isolation of Mφ from solid tissues requires the use of tissue-dispersing
enzymes so that methods based on mechanical disruption would select for the
nonstellate, SER− Mφ. Even in those studies that use dispersing enzymes, non-
specific proteases, either in the enzyme preparation or released from tissues,
could remove the receptor. In addition, since bound E are not ingested via SER,
they could be easily removed during pipetting procedures, which were avoided
in our assays.

In contrast to the mouse, the formaion of rosettes with unopsonized E is a
well-recognized phenomenon with human T lymphocytes (19, 20). By several
criteria, the ligand on E recognized by human T cells appears to be distinct from
that recognized by murine macrophages. These include the converse effects of
neuraminidase and trypsin pretreatment of E as well as the temperature and
metabolic requirements for rosette formation with human T cells (21). The
precise nature of the ligand on E that interacts with murine macrophages is
unclear, although the extreme sensitivity to neuraminidase provides evidence
that sialic acid is a minimal requirement. It is possible that the recognized sialic
acid is associated with a ganglioside rather than a glycopeptide, since there was
potent inhibition by the ganglioside, GD1a, but not by a variety of heavily
sialylated glycoproteins. The inhibition mediated by GD1a was unlikely to be a
nonspecific effect since high concentrations of the related ganglioside,
GM1, gave no inhibition. We have not carried out an extensive survey of different
gangliosides because the mechanism of inhibition is likely to be complex and for
meaningful comparisons it is necessary to use ceramide-free oligosaccharides. It
is probable that the inhibition mediated by millimolar concentrations of the
trisaccharide, NANA-lactose, reflects a low-affinity interaction with SER. This
could not be simply a charge effect, because N-acetyl neuraminic acid failed to
inhibit binding at similar concentrations, thereby implying that either the correct
anomeric structure of sialic acid (22) or adjoining galactose and/or glucose
residues are required. Further studies are clearly needed to define the structural
requirements for optimal inhibition of SER.

SER appears to be unrelated to the previously well-characterized Mφ lectin-
like receptors, MFR, and galactose receptor (13, 14), but it may be related to
agglutinins described on rat bronchoalveolar and peritoneal Mφ and on the
murine Mφ-like cell line, Mml, which recognize sialylated components on gan-
glioside-treated E and quail erythrocytes, respectively (23, 24). Although
the properties of both receptors are similar to SER, the differential expression on
tissue Mφ populations was not reported previously.
The lability of SER to trypsin suggests it is a protein, but because of its transient expression in culture, we could not determine whether RBMM synthesize or acquire the hemagglutinin. In recent experiments (our unpublished observations), however, we have found that SER can be induced readily by cultivation in the presence of mouse serum, rather than in FCS as used here, and that reexpression after trypsinisation is sensitive to cycloheximide, suggesting that RBMM synthesize SER. In the present study, the loss of SER was accompanied by changes in expression of Mac-1 and Ia antigens that probably reflect rapid in vitro dedifferentiation. At the beginning of culture, however, there was a striking inverse correlation between expression of SER and Ia antigens that points to differential in vivo regulation, the significance of which is unknown.

In conclusion, the high levels of SER on deeply embedded stromal Mφ and the absence of ingestion suggest that the hemagglutinin may be involved in nonphagocytic interactions within tissues. In bone marrow, for example, SER on RBMM could interact with the attached hematopoietic cells to influence their growth and differentiation, a possibility that has recently been strengthened by our finding that bone marrow cells express an appropriate sialylated ligand (our unpublished observations). The heterogeneity in SER levels detected among various tissues may reflect the differing proportions of immature macrophages as well as the effects of local and systemic modulators that regulate SER expression. Interestingly, the Mφ populations that exhibited lowest levels of SER were obtained by lavage from serous cavities or bronchoalveolar spaces. This implies that the majority of SER-bearing Mφ are "fixed" within tissues, either through adhesion to extracellular matrix components or by cellular interactions. Further studies are needed to establish whether SER is expressed after fixation or whether it contributes directly to this process.

Summary

We describe a novel hemagglutinin which is differentially expressed on murine stromal tissue macrophages. Resident bone marrow macrophages (RBMM), which are physically associated with immature, proliferating hematopoietic cells in vivo, formed striking rosettes with unopsonized sheep erythrocytes (E) in vitro, unlike resident peritoneal macrophages (RPM). Binding of E was macrophage (Mφ) specific, not accompanied by ingestion and independent of temperature (0–37°C), divalent cations, and the metabolic inhibitors azide and iodoacetate. Pretreatment of RBMM with trypsin prevented rosette formation, but neuraminidase enhanced it. Conversely, binding was virtually abrogated if E were pretreated with neuraminidase, whereas trypsin pretreatment of the ligand resulted in a slight enhancement. The lectin-like nature of the E receptor (SER), with specificity for sialylated glycoconjugates, was consistent with the inhibition of binding we saw with neuraminylactose or the ganglioside GD1α (50% inhibition at 5–10 mM and 11 μM, respectively).

Expression of SER on freshly isolated RBMM was heterogeneous and exhibited a striking inverse correlation with expression of Ia antigens. During cultivation in 10% FCS, levels of SER on RBMM declined with a half-life of ~24 h. Other cell surface changes induced by cultivation included a transient increase in expression of Ia antigen and acquisition of Mac-1. To determine whether SER
was expressed on other stromal Mφ populations, adherent cells were isolated from various tissues by collagenase digestion or lavage. Binding of E was highest on RBMM and lymph node stromal Mφ, at intermediate levels on Kupffer cells and splenic stromal Mφ, but was low or undetectable on blood monocytes and thymic, peritoneal, pleural, and bronchoalveolar Mφ. SER therefore appeared to be expressed on certain Mφ populations embedded in solid tissues but was largely absent from Mφ recoverable by lavage. Its absence from monocytes implies that SER is acquired by Mφ after entering tissues where it may perform adhesive functions. In bone marrow, SER on RBMM could interact with an appropriate sialylated ligand on murine hematopoietic cells, and could influence their rate of growth and differentiation.

We thank Mrs. Maxine Hill for expert technical assistance, Mr. Jim Kent for advice and expertise with mice, Mr. Stan Buckingham and Miss Catherine Lee for skillful photographic help, and Mrs. Pam Woodward and Mrs. Elwena Gregory for preparation of the manuscript.

Received for publication 7 April 1986 and in revised form 7 August 1986.

References

1. Lee, S-H., P. M. Starkey, and S. Gordon. 1985. Quantitative analysis of total macrophage content in adult mouse tissues. Immunocytochemical studies with monoclonal antibody F4/80. J. Exp. Med. 161:475.

2. Hume, D. A., A. P. Robinson, G. G. MacPherson, and S. Gordon. 1983. The mononuclear phagocyte system of the mouse defined by immunocytochemical localization of antigen F4/80: relationship between macrophages, Langerhans cells, reticular cells and dendritic cells in lymphoid and hematopoietic organs. J. Exp. Med. 158:1522.

3. Dijkstra, C. D., E. A. Dopp, P. Joling, and G. Kraal. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 54:589.

4. Kyewski, B. A., R. V. Rouse, and H. S. Kaplan. 1982. Thymocyte rosettes-multicellular complexes of lymphocytes and bone marrow derived stromal cells in the mouse thymus. Proc. Natl. Acad. Sci. USA. 79:5646.

5. Crocker, P. R., and S. Gordon. 1985. Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow. J. Exp. Med. 162:995.

6. Hill, H. D., J. A. Reynolds, and R. L. Hill. 1977. Purification, composition, molecular weight and subunit structure of ovine submaxillary mucin. J. Biol. Chem. 252:3791.

7. Austyn, J. M., and S. Gordon. 1981. F4/80: a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol. 10:805.

8. Beller, D. I., T. A. Springer, and R. D. Schreiber. 1982. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J. Exp. Med. 156:1000.

9. Bhattacharya, A., M. E. Dorf, and T. A. Springer. 1981. A shared alloantigenic determinant on Ia antigens encoded by the I-A and I-E subregions: evidence for I region gene duplication. J. Immunol. 127:2488.

10. Unkeless, J. C. 1979. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150:580.

11. Lee, S-H., P. Crocker, and S. Gordon. 1986. Macrophage plasma membrane and
secretory properties in murine malaria: effects of \textit{Plasmodium yoelii} blood stage infection on macrophages in liver, spleen and blood. \textit{J. Exp. Med.} 163:54.

12. Unkeless, J., H. Fleit, and I. S. Mellman. 1981. Structural aspects and heterogeneity of immunoglobulin Fc receptors. \textit{Adv. Immunol.} 31:247.

13. Wileman, T. E., M. R. Lennartz, and P. D. Stahl. 1986. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. \textit{Proc. Natl. Acad. Sci. USA}. 83:2501–2505.

14. Roos, P. H., H-J. Hartman, J. Schlepper-Schafer, H. Kolb, and V. Kolb-Bachofen. 1985. Galactose-specific receptor on liver cells. II. Characterization of the purified receptor from macrophages reveals no structural relationship to the hepatocyte receptor. \textit{Biochim. Biophys. Acta}. 847:115.

15. Niesen, T. E., D. H. Alpers, P. D. Stahl, and J. L. Rosenblum. 1984. Metabolism of glycosylated human salivary amylase: in vivo plasma clearance by rat hepatic endothelial cells and in vitro receptor mediated pinocytosis by rat macrophages. \textit{J. Leukocyte Biol.} 36:307.

16. Schlepper-Schafer, J., V. Kolb-Bachofen, and H. Kolb. 1983. Identification of a receptor for senescent erythrocytes on liver macrophages. \textit{Biochem. Biophys. Res. Commun.} 115:551.

17. Steinman, R. M., and M. C. Nussenzweig. 1980. Dendritic cells: features and functions. \textit{Immunol. Rev.} 53:127.

18. Dijkstra, C. D., E. Van Fleit, E. A. Dopp, A. A. Van der Lelij, and G. Kraal. 1985. Marginal zone macrophages identified by a monoclonal antibody: characterisation of immuno- and enzyme histochemical properties and functional capacities. \textit{Immunology}. 55:23.

19. Coombs, R. R. A., B. W. Gurner, A. B. Wilson, G. Holm, and B. Lindgren. 1970. Rosette formation between human lymphocytes and sheep red blood cells not involving immunoglobulin receptors. \textit{Int. Arch. Allergy Appl. Immunol.} 39:648.

20. Brain, P., J. Gordon, and W. A. Willets. 1970. Rosette formation by peripheral lymphocytes. \textit{Clin. Exp. Immunol.} 6:681.

21. Jondal, M., G. Holm, and H. Wigzell. 1972. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming non-immune rosettes with sheep red blood cells. \textit{J. Exp. Med.} 136:207.

22. Yu, R. K., and R. Ledeen. 1969. Configuration of the ketosidic bond of sialic acid. \textit{J. Biol. Chem.} 244:1306.

23. Kyoizumi, S., and T. Masuda. 1985. A lectin-like receptor on murine macrophage cell line cells, Mml: involvement of sialic acid-binding sites in opsonin-independent phagocytosis for xenogeneic red cells. \textit{J. Leukocyte Biol.} 37:289.

24. Riedl, M., O. Forster, H. Rumpold, and H. Bernheimer. 1982. A ganglioside-dependent cellular binding mechanism in rat macrophages. \textit{J. Immunol.} 128:1205.