Clarification of Dependence of the Macaulay Duration on the Period Until Maturity

N V Popova

1Associate Professor, Department of Higher Mathematics, G.V. Russian University of Economics Plekhanova, Russian Federation, 117997, Moscow, Stremyanny pereulok, d.36.

E-mail: nat_popova_@mail.ru

Abstract. The article is dedicated to clarification of dependence of the Macaulay duration on the period until maturity by accounting the behavior of this indicator between coupon payments. The problem of dependence of bond duration on the period until maturity accounting the behavior of duration between coupon payments has not been considered before. It has been observed that the Macaulay duration varies linearly during a coupon period and in the end of the period the duration jumps in direct proportion to the period until maturity. The maximum jump for discount obligations is in the region of long periods until maturity. We have received evidence of how the jump depends on the period until maturity. The article contains calculations of how the duration jump depends on the period until maturity. These calculations confirm the proven statements. The obtained results may be useful for long-term investment problems.

1. Introduction

Despite the limited number of conditions when the Macaulay duration may be determined [1, 2], it is widely used in theory and in practice [3-13]. Therefore, analysis of the factors affecting duration is of both theoretical and practical interest. The effect of the primary factors (yield, coupon rate and period until maturity) on duration has been formulated in financial investment literature, e.g., by Fabozzi [14, p. 512]. Publications [15-17] provide proofs of dependence of duration of par, premium and discount bonds on the period until maturity. Proofs have been obtained for the duration of the bonds sold immediately after a coupon payment. It ought to be noted that the duration behavior between coupon payments is not taken into account. The following theorem was proved by the author of publication [17].

Theorem. Let D_n be duration of a bond, the payments whereunder are performed m times a year, and which shall mature after n coupon periods, then the following statements are correct at set values of coupon rate f and yield to maturity r.

1) $\lim_{n \to \infty} \{D_n\} \approx (r + m)/mr$;

2) for par or premium bonds ($f \geq r$) the $\{D_n\}$ sequence is ascending, and $\lim_{n \to \infty} D_n = \sup \{D_n\}$;

3) for discount bonds ($f < r$) there is a maximum duration period n_0, and $\lim_{n \to \infty} D_n = \inf_{n > n_0} \{D_n\}$.

The theorem was proven for $m = 1$ by comparing members of sequence $\{D_n\}$ and using the method of mathematical induction. We proved that discount bonds feature maximum duration period n_0 and obtained an approximate value thereof:

$$n_0 \approx \frac{1}{r} + \frac{1 + r}{r - f}. \quad (1)$$

Figs. 1 and 2 demonstrate behavior of members of sequence $\{D_n\}$ for $f \geq r$ and $f < r$.

![Figure 1. D_n dependence on n ($f \geq r$)](image1)

![Figure 2. D_n dependence on n ($f < r$)](image2)

Heavy points in figs. 1 and 2 - members of sequence D_n immediately after coupon payments. As we have already mentioned, behavior of the duration between coupon payments (in the figures - between heavy points) was not considered in publication [17]. The issue of dependence of bond duration on the period until maturity accounting the behavior of duration between coupon payments has not been considered in the existing literature. That is why the insight into how duration behaves until maturity is not complete. The goal of this article was to take into account behavior of the duration between coupon payments in the problem of dependence of bond duration on the period until maturity.

2. Problem-solving methods and results

We proposed taking behavior of bond duration between coupon payments into account using τ. It is a secondary bond parameter. τ – period of time between the latest coupon payment before the bond is sold and the time of sale. τ follows ineqation $0 \leq \tau < 1/m$, where $1/m$ years - coupon period length. Thus, τ concerns time within a coupon period. Beginning of a coupon period – moment immediately after a coupon payment ($\tau = 0$). By the end of a coupon period – nears $1/m$. If a bond is sold after – following a coupon payment when the period until maturity is T years (n coupon payments), the period until the bond's maturity is

$$T = n/m - \tau, \quad (2)$$

where $\tau \in [0, 1/m]$. In the beginning of a coupon period, the period until maturity is n/m years (n coupon periods), and in the end of the coupon period it nears $(n-1)/m$ years. In the beginning of the next coupon period, the period until maturity is $(n-1)/m$ years ($n-1$ coupon periods). Therefore, when τ increases from 0 to $1/m$, the period until the bond's maturity decreases by one coupon period.

Let us consider how bond duration behaves throughout a coupon period between coupon payments. Duration of a coupon bond sold after – after a coupon payment, when the number of coupon payments until maturity is n, follows equation
\[
D = \sum_{i=1}^{n} \frac{fA/m}{(1 + r/m)^i} + t_n \frac{A}{(1 + r/m)^n},
\]
where \(A \) – bond's par value, \(t_i = \frac{i}{m} - \tau \), \(t_n = \frac{n}{m} - \tau \). Hence,
\[
D = D_n - \tau,
\]
where \(\tau \in [0, 1/m) \). Please note that the results in publications [15-17] were obtained for \(\tau = 0 \).

Equations (2) and (4) make up and expression for dependence of bond duration on the period until maturity during a coupon period:
\[
D = D_n - n/m + T,
\]
where \((n-1)/m < T \leq n/m\), \(n = 1, 2, 3, \ldots \). According to (5), bond duration is a linear increasing function of period until maturity \(T\) at any fixed \(n\) value within time \(((n-1)/m, n/m]\), i.e. during a coupon period. On the other hand, according to (2), bond duration is a linear decreasing function of \(\tau\) at any fixed \(n\) value. When \(\tau\) increases from 0 to \(1/m\), bond duration linearly decreases to \(D_n\) in the beginning of the period and nears \(D_n - 1/m\) in the end of the period. In the beginning of the next coupon period, duration is \(D_{n-1}\). Please note that \(D_1\) – bond duration one coupon period before maturity, when an obligation becomes a purely discount one. Then \(D_1 = 1/m\) years and, therefore, \(D_1 - 1/m = 0\). Let us prove the following statement for \(n > 1\).

Statement 1. When \(r\) and \(f\) are set, members of sequence \(\{D_n\}\) match the following inequation:
\[
D_n - 1/m < D_{n-1}, \text{ where } n \geq 2.
\]

Proof. It is evident that inequation \(D_n - 1/m < D_{n-1}\) is equivalent to inequation \(D_n - D_{n-1} - 1/m < 0\). Let us prove the statement for \(m = 1\). Let us use the results obtained by the author of publication [17], where \(D_n = f - fp^n + np^{n-1}a\)
\[
=f(1-p)+p^{n-1}a,
\]
\(p = \frac{1}{1+r}, \quad a = a(p(1-p)(r-f)).\)
Let us consider the following remainder:
\[
D_n - D_{n-1} - 1 = \frac{(1-p)^2}{(f(1-p)+p^{n+1}a)(f(1-p)+p^{n+2}a)}
\]
\[
\text{and use the following inequation to assess the last positive summand: } a^n - 1 > n(a-1), \text{ valid for } a > 1 \text{ and } n \geq 2. \text{ Let us assume that } a = 1/p, \text{ as } 0 < p < 1, \text{ then } p^{n-1}(f-r)(1-p) < (1-p^n)f(f-r) \text{ and the expression in square parentheses is negative, as its} \]

2875
value is \(< - \left(1 - p^{n-1}\right)f r<0\). The statement is thus proven. According to statement, as \(D_n - l/m < D_{n-1}\) at \(n \geq 2\), then in the end of each coupon period, excluding the last period, when \(n=1\), bond duration jumps up. Let us prove the following statement for jump \(\Delta D_{n-1}\).

\(\Delta D_{n-1} = D_{n-1} - \left(D_n - l/m\right)\). Proof. By definition, the jump of \(f(x)\) at \(x_0\) is \(|A - B| > 0\), where \(A = \lim_{x \to x_0^+} f(x), B = \lim_{x \to x_0^-} f(x)\). As
\[
\lim_{T \to (n-1)/m+0} D_n - n/m + T = D_n - l/m,
\]
\[
\lim_{T \to (n-1)/m-0} D_n - (n-1)/m + T = D_{n-1},
\]
then \(\Delta D_{n-1} = D_{n-1} - \left(D_n - l/m\right)\). Then \(\Delta D_{n-1} > 0\), because \(D_n - l/m < D_{n-1}\) at \(n \geq 2\), according to statement 1. Please note that \(\Delta D_0 = 0\) at \(n = 1\). Indeed, \(\Delta D_0 = D_0 - \left(D_1 - l/m\right) = 0 - (1/l - m/m) = 0\). The state is thus proven.

Note. Expression \(\Delta D_{n-1} = D_{n-1} - \left(D_n - l/m\right)\) for the duration jump at \((n-1)/m\) may be formulated as follows:
\[
\Delta D_{n-1} = 1/m - \left(D_n - D_{n-1}\right).
\] (7)

Let us consider how jump \(\Delta D_{n-1}\) depends on \(n\). Let us prove the following theorem.

Theorem. The following statements are correct when \(r\) and \(f\) are set:

1) sequence \(\{\Delta D_{n-1}\}\) is convergent, and \(\lim_{n \to \infty} \Delta D_{n-1} = 1/m\);

2) for par or premium bonds \((f \geq r)\) the \(\{\Delta D_{n-1}\}\) sequence is ascending, and \(\lim_{n \to \infty} \Delta D_{n-1} = \inf \{\Delta D_{n-1}\}\);

3) for discount bonds \((f < r)\) there is a maximum \(n_\Delta\) for jump \(\Delta D_{n-1}\), and \(\lim_{n \to \infty} \Delta D_{n-1} = \sup \{\Delta D_{n-1}\}\).

Proof. 1) According to [17], sequence \(\{D_n\}\) is convergent. As \(\lim_{n \to \infty} \{D_n\} = \lim_{n \to \infty} \{D_{n-1}\}\), then \(\lim_{n \to \infty} \left(D_n - D_{n-1}\right) = 0\). Then, according to equation (7), \(\lim_{n \to \infty} \{\Delta D_{n-1}\} = 1/m\). Please note that \(1/m\) is the length of a coupon period. The first statement of the theorem is thus proven.

2) In order to prove that if \(f \geq r\), sequence \(\{\Delta D_{n-1}\}\) is increasing, it is necessary to demonstrate that \(\Delta D_n - \Delta D_{n-1} > 0\). As
\[
\Delta D_n - \Delta D_{n-1} = \left(D_n - D_{n-1}\right) - \left(D_{n+1} - D_n\right),
\]
the problem amounts to analyzing sequence \(\{D_n - D_{n-1}\}\). Using the method of mathematical induction, we get \(\Delta D_n - \Delta D_{n-1} > 0\).

3) For discount bonds \((f < r)\) there is a maximum duration period \(n_0\) – formula (1). Then, according to equation (7), \(\Delta D_{n-1} < 1/m\) if \(n < n_0\), near \(n_0\) there is jump \(\Delta D_{n-1} \approx 1/m\), and at \(n > n_0\) the jump is \(\Delta D_{n-1} > 1/m - \Delta D_{n-1}\) increases in direct proportion to \(n\). Let us prove that there is maximum period \(\Delta D_{n-1}\). Near \(n_0\) \((n \approx n_0)\) the remainder is
\[\Delta D_n - \Delta D_{n-1} \approx \Delta D_n - \frac{1}{m} \left(D_{n+1} - D_n \right) - \frac{1}{m} = D_n - D_{n+1} > 0, \text{ as } n + 1 > n_0, \] whereas at \(n > 2n_0 \) \(\Delta D_n - \Delta D_{n-1} < 0 \). Therefore, there is period \(n_\Delta \), when remainder \(\Delta D_n - \Delta D_{n-1} \approx 0 \), and \(n_\Delta > n_0 \) – this period \(n_\Delta \) is in the region of long periods until maturity. The approximate value of maximum period \(n_\Delta \) of the duration jump is determined under condition that \(\Delta D_n - \Delta D_{n-1} \approx 0 \):

\[
n_\Delta \approx 1 + \frac{2}{r} + \frac{1 + r}{r - f}.
\] (8)

Therefore, jump level \(\Delta D_{n-1} \) at \(f < r \) increases from 0 at \(n = 1 \) to approximately \(\frac{1}{m} \) near \(n_0 \), with the increase in \(n \). After that, \(\Delta D_{n-1} \) increases at \(n > n_0 \), reaches the maximum level near \(n_\Delta \), and decreases at the limit to \(\frac{1}{m} \). Please note that \(\Delta D_{n-1} \) tends \(\frac{1}{m} \) remaining > \(\frac{1}{m} \), because if period until maturity \(n > n_0 \), jump \(\Delta D_{n-1} > \frac{1}{m} \). The theorem is thus proven.

Table 1 provides the values of members of sequence \(\{ D_n \} \) calculated using formula (3) at \(\tau = 0 \) and jump \(\Delta D_{n-1} \) and using formula (7) at \(m = 1 \) when \(f > r \) or \(f < r \).

\(n \)	\(D_n \)	\(\Delta D_{n-1} \)	\(D_n \)	\(\Delta D_{n-1} \)
1	1.00	0	1	0
2	1.91	0.089	1.90	0.102
3	2.74	0.168	2.68	0.215
4	3.50	0.238	3.35	0.332
6	4.85	0.356	4.34	0.560
7	5.44	0.407	4.68	0.661
12	7.81	0.596	5.34	0.962
13	8.18	0.624	5.36	0.987
14	8.53	0.650	5.35	1.005
15	8.86	0.674	5.33	1.016
17	9.44	0.717	5.28	1.027
18	9.71	0.736	5.25	1.029
19	9.95	0.754	5.23	1.029
20	10.18	0.770	5.20	1.027
25	11.12	0.836	5.09	1.016
\(n \to \infty \)	13.5	1	5	1

Maximums \(D_n \) and \(\Delta D_{n-1} \) are represented in the table with dots. As we can see, calculations confirm the proven statements. Please note that maximum duration periods \(n_0 \) and duration jumps \(n_\Delta \) for bonds with the following parameters: \(f = 0.05; r = 0.25; m = 1 \), are 13 and 18 years, respectively (according to formula (1), \(n_0 \approx 10 \) years, according to formula (8), \(n_\Delta \approx 15, 25 \) years).

3. Conclusions
It has been found that the Macaulay duration decreases linearly during a coupon period and jumps up in the end of the period in direct proportion with the increase in the period until maturity for par or premium bonds. The maximum jump for discount obligations is in the region of long periods until maturity.

Consideration of how duration behaves during a coupon period helps to clarify how the Macaulay duration depends on the period until maturity: this dependence is linear during each coupon period and jump-like during the period until maturity.
The upward jump of the duration in the end of a coupon period means a jump of bond price's sensitivity to changes of the market interest rate (bond's interest rate risk), and it also ought to be noted that this sensitivity is decreased immediately prior to a coupon payment.

Please note that these study results were obtained at the same conditions as has been in place when the Macaulay duration was determined, i.e. at the condition of horizontality of the yield curve. In real practice, the yield curve is not horizontal, and its shifts may not be parallel.

As peculiarities of duration behavior (presence/absence and level of jumps) are more noticeable in the region of long periods until maturity, study results may be useful for portfolio and long-term investment problems.

References

[1] Macaulay F 2006 Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States Since 1856 (New York: NBER) pp 44-53
[2] Geoffrey Poitras, Frederick R Macaulay, Frank M 2006 Redington and the Emergence of Modern Fixed Income Analysis CiteSeer pp 1-34
[3] Hopewell M, Kaufman G 1973 Bond Price Volatility and Term to Maturity: a Generalized Respecification American Economic Review vol 63 4 pp 749–753
[4] Spears B 2001 “Duration Measures Risk in Loan and Investment Portfolios” Credit Union Magazine vol 67 9 pp 44-45
[5] Kopprasch B 2006 Duration: A Practitioners’s View Journal of Applied Finance 16.2 pp 138-143
[6] Bierwag G O, Kaufman G G, Duration 1983 A T Its Development and Use in Bond Portfolio Management Financial Analysts Journal vol 39 4 pp 15-35
[7] Shirvani H, Wilbratte B 2005 Duration and Bond Price Volatility: Some Further Results Journal of Economics and Finance Education vol 4 1 pp 1-6
[8] Chen Xiqun Zheng Siqi Average duration of return for evaluation of mutually exclusive projects China Civil Engineering Journal 11 URL: http://en.cnki.com.cn/Article_en/CJFDTotal-TMGC200711020.htm
[9] Van Vuuren G and Styger P 2008 Adapting the Macaulay duration for defaultable and option-embedded bonds: economics South African Journal of Economic and Management Sciences 11 pp 172 - 189
[10] Martin L Leibowitz, Anthony Bova, & Stanley Kogelman 2014 Long-Term Bond Returns under Duration Targeting Journal Financial Analysts Journal vol 70 5 pp 31-51 https://www.tandfonline.com/doi/abs/10.2469/faj.v70.n1.5
[11] Leszek Zaremba Does Macaulay Duration Provide The Most Cost-Effective Immunization Method - A Theoretical Approach Foundations of Management vol 9 pp 99-110
[12] Popova N V 2015 The effect of the frequency of coupon payments on the duration of a bond Bulletin of the financial university 4(88) pp 104-115
[13] Popova N V 2016 On Certain Propertis of Bond Prices International Business Management vol 10 3 pp 6270-6273 URL:http://medwelljournals.com/abstract/?doi=ibm.2016.6270.6273
[14] Fabozzi F J 2000 Investment Management (M.: Infra-M) University textbook 932 p
[15] Hawawini G A On the Mathematics of Macaulay's Duration: a Note URL: https://flora.insead.edu/fichiersri_wp/inseadwp1982/82-03.pdf
[16] Pianca P 2005 Maximum Duration of Below Par Bonds: A Closed-form Formula Available at SSRN: http://ssrn.com/abstract=738445
[17] Popova N V 2011 On some properties of Macaulay duration Bulletin of the Financial University 1(61) pp 42–46