Cohort profile: The Chikwawa lung health cohort; a population-based observational non-communicable respiratory disease study in Malawi.

Martin Njoroge*1,2,#, Sarah Rylance1,2, Rebecca Nightingale1,2, Stephen Gordon1,2, Kevin Mortimer1,#, Peter Burney3, Jamie Rylance1,2,#, Angela Obasi1,#, Louis Niessen1,4,#, Graham Devereux 1

1. Liverpool School of Tropical Medicine, Liverpool, UK
2. Malawi Liverpool Wellcome Trust Programme, Blantyre, Malawi
3. National heart and Lung Institute, Imperial College, London, UK
4. John Hopkins Bloomberg School of Public Health, Baltimore, USA

*Corresponding author; # On behalf of the IMPALA Consortium

Martin Njoroge

Liverpool School of Tropical Medicine

Pembroke Place, Liverpool L3 5QA, UK

Email: martin.njoroge@lstmed.ac.uk
Abstract

Purpose

The Chikwawa lung health cohort was established in rural Malawi in 2014 to prospectively determine the prevalence and causes of lung disease amongst the general population of adults living in a low-income rural setting in Sub-Saharan Africa.

Participants

A total of 1481 participants were randomly identified and recruited in 2014 for the baseline study. We collected data on demographic, socio-economic status, respiratory symptoms and potentially relevant exposures such as smoking, household fuels, environmental exposures, occupational history/exposures, dietary intake, healthcare utilization, cost (medication, outpatient visits and inpatient admissions) and productivity losses. Spirometry was performed to assess lung function. At baseline, 56.9% of the participants were female, a mean age of 43.8 (SD:17.8) and mean body mass index (BMI) of 21.6 Kg/m² (SD: 3.46)

Findings to date

Currently, two studies have been published. The first reported the prevalence of chronic respiratory symptoms (13.6%, 95% confidence interval [CI], 11.9 – 15.4), spirometric obstruction (8.7%, 95% CI, 7.0 – 10.7), and spirometric restriction (34.8%, 95% CI, 31.7 – 38.0). The second reported annual decline in forced expiratory volume in one second [FEV₁] of 30.9mL/year (95% CI: 21.6 to 40.1) and forced vital capacity [FVC] by 38.3 mL/year (95% CI: 28.5 to 48.1).
Future plans

The ongoing current phase of follow-up will determine the annual rate of decline in lung function as measured through spirometry, and relate this to morbidity, mortality and economic cost of airflow obstruction and restriction. Population-based mathematical models will be developed driven by the empirical data from the cohort and national population data for Malawi to assess the effects of interventions and programmes to address the lung burden in Malawi. The present follow-up study started in 2019.

Keywords: Cohort studies, Non-communicable respiratory disease, Asthma, Chronic obstructive pulmonary disease, economic modelling
Strengths and limitations of this study

- This is an original cohort study comprising adults randomly identified in a low-income Sub-Saharan African Setting.
- The repeated follow up of the cohort has included objective measures of lung function.
- The cohort has had high rates of case ascertainment that include verbal autopsies.
- The study will include an analysis of the health economic consequences of rate of change of lung function and health economic modelling of impact of lung diseases and potential interventions that could be adopted.
- A main limitation of our study is the systematic bias may be introduced through the self-selection of the participants who agreed to take part in the study to date and the migration of individuals from Chikwawa.
Introduction

Globally, non-communicable respiratory diseases (NCRD) are the third leading cause of non-communicable disease (NCD) mortality, causing an estimated 4 million deaths each year (1). Amongst the NCRD, asthma and chronic obstructive pulmonary disease (COPD) are the most prevalent, affecting approximately 358 million and 174 million people respectively (2). Annually, COPD causes 3 million deaths accounting for 6% of all deaths worldwide (2–4). Furthermore, the deaths from these diseases are rising globally (5) in part due to increased longevity and changes in population structure (6).

The majority of the burden of NCRD mortality and morbidity is in low and middle-income countries (LMIC) (1,7), which now account for 90% of COPD deaths (8). Several community based studies in LMIC have documented a high prevalence of abnormal lung function, both obstructive and restrictive (low lung volumes) (9–15), whilst several couple have documented low prevalence of COPD (16,17) but high prevalence of respiratory symptoms (17). On the other hand, very few observational cohort studies have reported and described the health and economic burden of NCRD (18,19), especially in LMIC settings. Their prevalence means that there is a pressing need to better document the life course epidemiology and the related health and economic burden of abnormal (obstructive and restrictive) lung function in LMIC (10,11).

Malawi remains one of the poorest countries in the world (20) with 83% of its 18 million inhabitants living in rural areas (21). With a GDP per capita of $300, over half the households live below the poverty line (using the international poverty line of US$ 1.90 per person per day) (22), and about 50% of the national health expenditure is funded from external donors (23,24). Like many sub-Saharan African (SSA) countries, Malawi is at the intersection of high rates of
communicable respiratory diseases (Tuberculosis (TB), pneumonia), and increasing NCRD (25–27). Recent studies have reported substantial levels of abnormal lung function with spirometric evidence of low lung volumes and obstructive deficits present in 34.8% (95% CI: 31.7%, 38.0%) and 8.7% (7.0%, 10.7%) of rural adults and 38.6% (34.4%, 42.8%) and 4.2% (2.0%, 6.4%) of urban adults respectively (10,11). Spirometric deficits were defined according to the NHANES III Caucasian references (28). What is not known is whether and how these spirometric deficits impact on the everyday lives of the country’s people and health system. Potentially, as in other low-income situations, the economic burden of NCRD may have serious adverse outcomes for households including unpredictable household expenditures due to complications and catastrophic health expenditure (29).

To examine the health and economic burden of NCRD, including abnormal lung function in Malawi, our prospective study aims to follow up a population-based cohort of participants in the rural district of Chikwawa, in southern Malawi, who were recruited to a longitudinal follow-up spirometry study conducted between August 2014 and July 2015 (the Chikwawa lung health cohort) (11,15). The primary objectives of the current study are to; (i) estimate the annualised rate of change in lung function by age and sex as determined by repeating spirometry; (ii) to develop a mathematical population model based on the cohort findings that estimates the lifetime health impact of airflow obstruction in Malawian adults in disability-adjusted life years (DALYS); (iii) estimate the health resource use and lifetime costs in the cohort of Malawian adults with airflow obstruction in international dollars (Int$); (iv) produce model estimates of the lifetime cost effectiveness (Int$/DALY) of selected key intervention compared with current practice to define optimum packages of interventions; and (v), recreate these analyses for
Malawian adults with low lung volumes. The economic cost will be from a societal perspective and will include health sector costs, patient/family and carer costs and productivity losses (30). Presently, the Malawian health system recommends the use of salbutamol and beclomethasone inhalers and prednisolone as interventions for chronic asthma management and salbutamol inhalers, prednisolone and hydrocortisone injections as interventions for acute asthma (31) but these interventions are only available in 8% of urban health facilities and 2% of rural health facilities in Malawi (32).
Cohort description

Setting
The study is currently conducted in Chikwawa district, located in Southern region of Malawi (see figure 1)

Figure 1: Districts in Malawi. Inset map highlights Chikwawa district, the study area.
Who is in the study?

The Chikwawa lung health cohort was initiated alongside the Cooking and Pneumonia study (CAPS) (11,33) (Trial registered with ISRCTN, number ISRCTN59448623). CAPS was a cluster randomized trial that investigated the health effects of a cleaner-biomass fuel cookstove intervention (33). The aim of setting up the Chikwawa lung cohort was to determine the prevalence and determinates of lung disease amongst adults in Chikwawa, rural Malawi (11). In addition, two rounds of follow-up studies have been done with the Chikwawa lung cohort aiming to assess the determinants of lung function trajectories as affected by personal air pollutant exposures, including the CAPS cookstove intervention (15). The current study will provide longitudinal data by following up participants from the Chikwawa lung health cohort who still reside in Chikwawa and were recruited to the baseline study in 2014 – 2015 (11) and associated risk factors, health utilisation use and economic burden.

Baseline participant recruitment

The participants were originally recruited in 2014 – 2015. The participants were selected through random sampling of a list of adults living in each of the 50 villages participating in CAPS (11). The participants included those who took part in the CAPS intervention and those who did not but resided in villages where the CAPS intervention was being implemented. The list of adults was obtained from local community liaison personnel from each village following a series of community engagement events with the village leaders such as chiefs and other community representatives (11). The random selection was conducted by an independent statistician at the Burden of Obstructive Lung Disease (BOLD) centre in London in accordance with the BOLD protocol (34). The identified individuals comprised a population-representative, age and gender
stratified, sample of adults who were then invited to participate in the 2014 – 2015 baseline study. Participants had to provide written informed consent or an independently witnessed thumbprint to be included in the study (11). Those who were acutely unwell or pregnant women or were non-permanent residents of Chikwawa were excluded from the baseline study (11).

A total of 3000 adults were invited to participate in the baseline study of which 1481 (49.3%) agreed to participate (11). Participants were stratified into two age groups: 18 – 39 years and 40 years and above. In order to provide an estimate of chronic airflow limitation prevalence in the stratum with a precision (95% CI) of +3.3% to 5.0% and assuming a prevalence of 10% to 25%, a total sample of 1200 participants was estimated allowing for unequal age and gender distribution, refusals and inability to provide spirometry measurements of acceptable quality (11). Table 1 below summarises the age and sex characteristics of those who agreed to participate in the study compared to those who did not.

Table 1: Demographic characteristics of cohort participants

Age categories, n years (%)	Consenting participants n = 1481	Selected, did not give consent n = 1519	
Age, mean (SD)	43.9 (17.8)	40.3 (16.5)	
<39	685 (46.3%)	765 (50.3%)	
40 – 49	258 (17.4%)	336 (22.1%)	
50 – 59	217 (14.7%)	179 (11.8%)	
60 – 69	161 (10.9%)	150 (9.9%)	
>70	160 (10.8%)	89 (5.9%)	
Sex	Female	844 (57.0%)	757 (49.9%)
-------	--------	-------------	-------------
	Male	637 (43.0%)	762 (50.2%)

Participant tracking and recruitment procedures for the current longitudinal study.

In the current study, the adult participants have been tracked from participant logs developed in the original baseline study (11). The participant log contains the person’s name, study identification number, age, gender and village of residence. Community liaison personnel and chiefs were asked to help identify the household of each study participant to maximise fidelity. Study staff then approached the participant in their households, obtained informed consent, geolocation, and agreed a suitable time to collect the lung function, environmental exposures and socioeconomic data.
How often has the cohort been followed up?

Study participants have been followed up twice prior to the current study. The baseline study was done between August 2014 – July 2015 (11) with an aim of determining the prevalence and determinates of lung disease. The first and second follow-up studies were between August 2015 – November 2017(15) aiming to assess the determinants of lung function trajectories as affected by personal air pollutant exposures, including the CAPS cookstove intervention. The current round of follow-up is taking place between July 2019 – March 2021 (see figure 2).
Figure 2: Flow chart of participant recruitment and follow-up schedule

Setting up baseline study embedded within the CAPS study: 2014-2015
Questionnaire & Spirometry done n = 1481 adults

First and second follow-up (CAPS – ALHS study): 2015-2017
Questionnaire & Spirometry done n = 1090 adults 1st follow-up & 989 adults 2nd follow-up

Ongoing follow-up (ALDM study) year: 2019-2021
Questionnaire & Spirometry n = all previous participants who agree to take part in this ongoing study.

Conduct verbal autopsies for deceased participants and those who have moved.
What has been measured?
In the baseline study, structured interviews were used to collect data on demographic, socio-economic status, respiratory symptoms, and potentially relevant exposures such as smoking(35,36), household fuels (35,37), environmental exposures (36,38), and occupational history (36,39).

In addition to the data collected for the baseline study in the current 2019-2021 follow up, we are collecting additional data on dietary intakes (36,40), healthcare utilization, cost (medication, outpatient visits and inpatient admissions) and productivity losses.

The following anthropometric measures have been recorded at each phase of follow up: height, weight, hip, waist, and neck circumferences, ulna, and fibula lengths. Lung function (forced expiratory volume in one second \([\text{FEV}_1]\) and forced vital capacity \([\text{FVC}]\)) are measured using the ndd EasyOne Spirometer (ndd Medizintechnik AG, Zurich, Switzerland), before and 15 minutes after administration of inhaled salbutamol (200 µg) administered via spacer device. The contraindications for spirometry include: in the previous three months; thoracic or abdominal surgery, acute coronary syndrome, detached retina or eye surgery; hospitalisation for any other cardiovascular reason in the previous month; final trimester of pregnancy; a resting heart rate > 120 beats per minute and current treatment for tuberculosis(41).

Spirometry has been conducted by trained and certified technicians who received regular feedback on spirogram quality in accordance with the BOLD protocol(34). The quality of each spirogram has been reviewed and scored based on the American Thoracic Society and European Respiratory Society acceptability and reproducibility criteria (42).

In the current phase of follow-up, verbal autopsies were conducted for the 2014 – 2015 baseline participants who have died, and a questionnaire was administered to the next of kin for those
who were unobtainable due to being no longer resident in Chikwawa. The data and variables collected in the Chikwawa lung health cohort are described in table 2.
Table 2: Summary of measurements in the Chikwawa lung health cohort

Phase	Spirometry measured	Anthropometric measured	Questionnaires & tools administered
Baseline	• Forced vital capacity (FVC)	• Weight	• Socio-economic status
2014 – 2015 (11)	• Forced expiratory volume in 1 second (FEV₁)	• Height	• Demographic characteristics
	• Forced expiratory volume in 6 seconds (FEV₆)	• Waist & hip circumference	• Environmental exposures
			• Smoking history
			• History of respiratory disease (Tuberculosis, Asthma and COPD).
First and second follow-up	• FVC	• Weight	• Personal air pollutant monitoring
(this follow-up phase was	• FEV₁	• Height	
called the CAPS-Adult Lung	• FEV₆.	• Waist & hip circumference	
Health study)			
2015 – 2017 (15)			
Ongoing	• FVC	• Weight	• Socio-economic status
(this follow-up phase is	• FEV₁	• Height	• Demographic characteristics
called Adult Lung Diseases	• FEV₆.	• Waist & hip circumference	• Environmental exposures
in Malawi study)			• Smoking history
2019 – 2021			• History of respiratory disease (Tuberculosis, Asthma and COPD).
			• History of health utilization and costs (medication, outpatient & inpatient)
			• Productivity losses
			• Household dietary consumption
Ethical approval
The study protocol was approved by the Imperial College Research Ethics Committee (17IC4272), Liverpool School of Tropical Medicine Research Ethics Committee (19-005) and the Malawi College of Medicine Research and Ethics Committee (COMREC, P.03/19/2617). Written informed consent was obtained from all the participants in this study for the follow-up and for the second interview and examination.

Participant and public involvement
Participants were not involved in setting research question or the outcome measures but have been instrumental in implementation of the study.

Participants and the public were involved in the dissemination of baseline information nationally through the Ministry of health, and in the Chikwawa community from which the data was collected through the Chikwakwa Health Research Committee and the Chiefs and community leaders from the villages from where we collected our data. These activities have encouraged community buy-in and involvement in the subsequent rounds of follow-up within the study.
Findings to date

The Chikwawa lung health cohort has provided data characterising the burden of chronic respiratory symptoms, abnormal spirometry and air pollution exposures and risk factors from an adult population in Malawi (11,33). These data have contributed to the understanding of NCRD in LMIC. The baseline characteristics of the Chikwawa lung health cohort when established in 2014 – 2015 are outlined in Table 3. At baseline, a total of 1481 participants were recruited of which 637 (43.0%) were male and 844 (57.0%) were female (11). The mean age was 43.9 years (SD: 17.8), mean body mass index (BMI) was 21.6 Kg/m² (SD: 3.46). Cigarette smoking rates were 22.1% (n=327) were current or ever smokers of which the majority were men (n = 255, 78.0%). There was no difference in ages between the men and women (see table 3).

The frequency of chronic respiratory symptoms and abnormal spirometry. Among the participants with interpretable and reliable spirometry (34) (n = 886), spirometric obstruction (defined as FEV₁/FVC < 0.70) and spirometric restriction (defined as FEV₁/FVC > 0.70 and post-bronchodilator FVC < 80% predicted) (28) were present in 8.7% (7.0%, 10.7%) and 34.8% (95% CI: 31.7%, 38.0%) of the participants respectively according to the NHANES III Caucasian references (11). 13.7% reported either having a ‘cough without having a cold’, ‘bringing up phlegm from your chest’, ‘wheezing in your chest’, ‘shortness of breath when hurrying on the level or walking up a slight hill’, or ‘breathing problems interfering with your daily activity’ while 11.3% reported a ‘cough on most days of the month for at least three months per year’. 3.4% were diagnosed with asthma while 4.0% were diagnosed with either asthma, emphysema, chronic bronchitis, or COPD (see table 3). Presently, we are able to trace over 85% of the participants in the Chikwawa lung cohort and have invited them to participate in this current phase of follow-up.
Table 3: Baseline demographic, anthropometric and symptomatic characterises of the Chikwawa lung health cohort collected 2014 – 2015.

Variable (n)	Total n (%)	Male n (%)	Female n (%)	P value
Age group (years)				
(n=1481)				
<39	685 (46.3%)	288 (45.2%)	397 (47.0%)	0.150
40 – 49	258 (17.4%)	103 (16.2%)	162 (18.4%)	
50 – 59	217 (14.7%)	110 (17.3%)	110 (12.7%)	
60 – 69	161 (10.9%)	70 (11.0%)	96 (10.8%)	
>70	160 (10.8%)	66 (10.4%)	99 (11.1%)	
BMI (n=1341)				
Underweight (<18.5)	182 (13.9%)	84 (13.2%)	98 (11.6%)	<0.001
Normal weight (>=18.5; <=24.99)	950 (72.8%)	465 (73.0%)	485 (57.5%)	
Overweight (>24.99; <=29.99)	133 (10.2%)	36 (5.7%)	97 (11.5%)	
Obese (>=30.0)	40 (3.1%)	2 (0.3%)	38 (4.5%)	
Smoking (n=1481)				
Never	1154 (77.9%)	382 (60.0%)	772 (91.5%)	<0.001
Current	205 (13.8%)	165 (25.9%)	40 (4.7%)	
Former	122 (8.2%)	90 (14.1%)	32 (3.8%)	
Previous TB (n=1481)				
Yes	47 (3.2%)	16 (2.5%)	31 (3.7%)	0.268

* CC-BY 4.0 International license

This work is licensed under a CC-BY 4.0 International license.
Symptoms	Yes	No	NS	P value
Cough (Do you have a cough on most days of the month for at least three months per year?)	167 (11.3%)	81 (12.7%)	86 (10.2%)	0.148
Sputum (Do you usually bring up phlegm from your chest?)	39 (2.6%)	21 (3.3%)	18 (2.1%)	0.221
Wheeze (Have you had wheezing/whistling in your chest at any point in the past 12 months in the absence of a cold?)	24 (1.6%)	15 (2.4%)	9 (1.1%)	0.082
MRC dyspnea II (43,44) (Do you have shortness of breath when hurrying on the level or walking up a slight hill?)	23 (1.6%)	11 (1.7%)	12 (1.4%)	0.766
Any respiratory symptoms (Any of)	203 (13.7%)	105 (16.5%)	98 (11.6%)	0.008
cough, sputum, wheeze without cold, exertional breathlessness

	Yes	Yes	Yes	
Functional limitation	44 (3.0%)	21 (3.3%)	23 (2.7%)	0.624
(Have breathing problems interfered with your usual daily activities?)				

Diagnosis with a doctor

	Yes	Yes	Yes	
Asthma	51 (3.4%)	23 (3.6%)	28 (3.3%)	0.868
Asthma, emphysema, chronic bronchitis, or COPD	59 (4.0%)	28 (4.4%)	31 (3.7%)	0.566

Contains 9.5% missing data. Missing data points were dropped from further analysis. BMI classification based on WHO guidelines.
Present research plans. The ongoing current phase of follow-up of the Chikwawa lung health cohort will determine the annual rate of decline in lung function as measured through spirometry, morbidity, mortality and economic cost of airflow obstruction and restriction and develop population-based mathematical models driven by the empirical data from the cohort and national population data for Malawi to assess the effects of interventions and programmes to address the lung burden in Malawi. It is expected that this further phase of follow-up will add to the body of knowledge of the life course of NCRD in LMIC and further refine and add to the validity of the health economic models developed.
Strengths and limitations

The Chikwawa lung health cohort appears to be the only one of its kind in a low-income country setting aiming to investigate the economic costs over the life course of non-communicable respiratory disease. This cohort represents an opportunity to develop and model cost-effective interventions and programmes for this setting. The baseline cohort was conducted alongside a rigorously conducted cluster randomised control trial. Despite local complexities, we presently have identified over 85% of the baseline cohort to be included in the current phase of follow-up.

Systematic bias may be introduced through the self-selection of the participants who agreed to take part in the study to date and the migration of individuals from Chikwawa. Although we have been able to track over 85% of the original Chikwawa lung health cohort and have invited them to participate in the current phase of follow-up, the participants who can be traced and from whom data are collected may differ from those who cannot be traced or do not attend follow-up. Similarly, at baseline, the participants who agreed to be consented were slightly older and mainly women. The process of verbal autopsies for those who have died (46), and collection of data from the next of kin of those who have moved away, may shed some light on the status of those who have moved away from Chikwawa and deaths from respiratory causes will be of particular interest in the current follow-up. The other limitation identified in this study is recall bias. This is due to most of the data being collected through administering questionnaires in a structured interview format, one can expect recall bias over the follow-up period. We are using tested and validated tools in addition to well-trained experienced interviewers to minimize this bias.
The main strength of the cohort is the collection of initial objective measures of lung function using spirometry conducted to internationally agreed standards (34,42) and on two further occasions over a 3-year period. This will provide valuable insights into the health relevance and natural history of abnormal lung functions in an LMIC setting. Previous studies in the United States, the United Kingdom and Australia have reported the annual rate of decline of FEV\textsubscript{1} in adults to be 18 ml/year standard deviation (SD) = 2.5 (47), 33ml/year (SD = 1.5)(48) and 45ml/year (SD = 83) (49).
Collaboration

The Chikwawa lung health cohort is managed by the Malawi Liverpool Wellcome Trust programme (MLW), Liverpool School of Tropical Medicine (LSTM) and the BOLD centre at Imperial College London. Potential collaborators are invited to contact Martin Njoroge (e-mail: martin.njoroge@lstmed.ac.uk). Additional information about this study can be found at: www.boldstudy.org
DECLARATIONS

Author contributions

M.N. drafted the study protocol, the first version of the manuscript and is the local PI of current phase of the study. All other authors contributed to the protocol and the manuscript in several rounds of review. K.M. set up the baseline study. S.R and B.N. conducted CAPS – ALHS. All authors planned and conducted studies within the cohort. All authors read approved the final manuscript.

Competing interests

There are no competing interests.

Funding

This research was funded by the National Institute for Health Research (NIHR) (project reference 16/136/35) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care. Initial funding (between 2013 – 2017) was provided by a New Investigator Research Grant from the Medical Research Council (Ref: MR/L002515/1), a Joint Global Health Trials Grant from the Medical Research Council, UK Department for International Development and Wellcome Trust (Ref: MR/K006533/1).

Data sharing statement

Further information about the data can be obtained from the corresponding author (martin.njoroge@lstmed.ac.uk). All the from the Chikwawa lung health cohort presented in this article are stored by the research group on safe servers at the Malawi Liverpool Wellcome Trust
programme (MLW), Malawi and the BOLD centre at Imperial College London, UK and handled confidentially.
REFERENCES

1. World Health Organization; Non communicable diseases: Fact sheet [Internet]. 2017 [cited 2003 Aug 20]. Available from: http://www.who.int/mediacentre/factsheets/fs355/en/

2. Soriano JB, Abajobir AA, Abate KH, Abera SF, Agrawal A, Ahmed MB, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017;5(9):691–706.

3. World Health Organization; Asthma: Fact Sheet [Internet]. 2017 [cited 2003 Aug 20]. Available from: http://www.who.int/mediacentre/factsheets/fs307/en/

4. Finney LJ, Feary JR, Leonardi-Bee J, Gordon SB, Mortimer K. Chronic obstructive pulmonary disease in sub-Saharan Africa: a systematic review. Int J Tuberc Lung Dis. 2013;17(5):583–9.

5. Chapman KR, Mannino DM, Soriano JB, Vermeire PA, Buist AS, Thun MJ, et al. Epidemiology and costs of chronic obstructive pulmonary disease. European Respiratory Journal. 2006.

6. Burney PGJ, Patel J, Newson R, Minelli C, Naghavi M. Global and regional trends in COPD mortality, 1990–2010. Eur Respir J. 2015;45(5):1239–47.

7. Terzic A, Waldman S. Chronic diseases: the emerging pandemic. Clin Transl Sci. 2011;4(3):225–6.
8. World Health Organization; Chronic obstructive pulmonary disease (COPD): Fact sheet. 2017.

9. Obaseki DO, Erhabor GE, Awopeju OF, Adewole OO, Adeniyi BO, Buist EAS, et al. Reduced forced vital capacity in an African population. Prevalence and risk factors. Ann Am Thorac Soc. 2017;14(5):714–21.

10. Meghji J, Nadeau G, Davis KJ, Wang D, Nyirenda MJ, Gordon SB, et al. Noncommunicable lung disease in Sub-Saharan Africa. A community-based cross-sectional study of adults in urban Malawi. Am J Respir Crit Care Med. 2016;194(1):67–76.

11. Nightingale R, Lesosky M, Flitz G, Rylance SJ, Meghji J, Burney P, et al. Non-communicable respiratory disease and air pollution exposure in Malawi (CAPS): a Cross-Sectional Study. Am J Respir Crit Care Med. 2018 Mar 1;199(ja):613–21.

12. El Rhazi K, Nejjari C, BenJelloun MC, El Biaze M, Attassi M, Garcia-Larsen V. Prevalence of chronic obstructive pulmonary disease in Fez, Morocco: results from the BOLD study. Int J Tuberc Lung Dis. 2016;20(1):136–41.

13. Meghji J, Lesosky M, Joekes E, Banda P, Rylance J, Gordon S, et al. Patient outcomes associated with post-tuberculosis lung damage in Malawi: a prospective cohort study. Thorax. 2020;

14. Rylance S, Nightingale R, Naunje A, Mbalume F, Jewell C, Balmes JR, et al. Lung health and exposure to air pollution in Malawian children (CAPS): a cross-sectional study. Thorax. 2019;74(11):1070–7.
15. Rylance S, Jewell C, Naunje A, Mbalume F, Chetwood JD, Nightingale R, et al. Non-communicable respiratory disease and air pollution exposure in Malawi: a prospective cohort study. Thorax. 2020;

16. Siddharthan T, Grigsby M, Morgan B, Kalyesubula R, Wise RA, Kirenga B, et al. Prevalence of chronic respiratory disease in urban and rural Uganda. Bull World Health Organ. 2019;97(5):318.

17. North CM, Kakuwikire B, Vořechovská D, Hausammann-Kigozi S, McDonough AQ, Downey J, et al. Prevalence and correlates of chronic obstructive pulmonary disease and chronic respiratory symptoms in rural southwestern Uganda: a cross-sectional, population-based study. J Glob Health. 2019;9(1).

18. Adab P, Fitzmaurice DA, Dickens AP, Ayres JG, Buni H, Cooper BG, et al. Cohort Profile: The Birmingham Chronic Obstructive Pulmonary Disease (COPD) Cohort Study. Int J Epidemiol. 2016;46(1):23.

19. Garden FL, Toelle BG, Mihrshahi S, Webb KL, Almqvist C, Tovey ER, et al. Cohort profile: The Childhood Asthma Prevention Study (CAPS). Int J Epidemiol. 2018;47(6):1736-1736k.

20. Mussa R, Pauw K. Poverty in Malawi: Current status and knowledge gaps. International Food Policy Research Institute (IFPRI); 2011.

21. International NSO [Malawi] and ICF. Malawi Demographic and Health Survey 2015–16: Key Indicators Report. NSO and ICF International Zomba, (Malawi) and Rockville (MD); 2016.

22. The World Bank; Open Data [Internet]. Accessed Online. 2019 [cited 2019 Aug 21].
Available from: https://data.worldbank.org/country/malawi

23. Ministry of Health; Multi-country impact evaluation of the scale up to fight AIDS, tuberculosis and malaria: Malawi national health accounts - with sub accounts for HIV and AIDS, tuberculosis and malaria. LILONGWE; 2008.

24. Zere E, Walker O, Kirigia J, Zawaira F, Magombo F, Kataika E. Health financing in Malawi: evidence from national health accounts. BMC Int Health Hum Rights. 2010;10(1):27.

25. Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet. 2007;370(9603):1929–38.

26. Institute for Health Metrics and Evaluation; The global burden of disease: generating evidence, guiding policy - Sub-Saharan Africa Regional Edition. IHME Seattle^ eWA WA; 2013.

27. Gowshall M, Taylor-Robinson SD. The increasing prevalence of non-communicable diseases in low-middle income countries: The view from Malawi. International Journal of General Medicine. 2018.

28. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. Population. Am J Respir Crit Care Med. 1999;

29. Jan S, Laba TL, Essue BM, Gheorghe A, Muhunthan J, Engelgau M, et al. Action to address the household economic burden of non-communicable diseases. The Lancet. 2018.

30. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. Oxford university press; 2015.
31. Republic of Malawi and Malawi NCDI Poverty Commission. The Malawi Noncommunicable Disease & Injuries report [Internet]. 2018. Available from: https://static1.squarespace.com/static/55d4de6de4b011a1673a40a6/t/5b7f27f64ae2370aaf202aa5/1535059963531/Malawi+NCDI+Poverty+Commission+Report+FINAL.pdf

32. Ministry of Health - Malawi and ICF International. Malawi Service Provision Assessment - MSPA - 2013-14 [Internet]. LILONGWE; 2014. Available from: https://www.dhsprogram.com/publications/publication-spa20-spa-final-reports.cfm

33. Mortimer K, Ndamala CB, Naunje AW, Malava J, Katundu C, Weston W, et al. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. Lancet. 2017;389(10065):167–75.

34. Buist AS, Vollmer WM, Sullivan SD, Weiss KB, Lee TA, Menezes AMB, et al. The burden of obstructive lung disease initiative (BOLD): rationale and design. COPD J Chronic Obstr Pulm Dis. 2005;2(2):277–83.

35. Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, et al. Committee on Nonsmoking COPD, Environmental and Occupational Health Assembly. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718.

36. Hooper R, Burney P, Vollmer WM, McBurnie MA, Gislason T, Tan WC, et al. Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project. Eur
Respir J. 2012;39(6):1343–53.

37. Boy E, Bruce N, Delgado H. Birth weight and exposure to kitchen wood smoke during pregnancy in rural Guatemala. Environ Health Perspect. 2002;110(1):109–14.

38. Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sørensen M, et al. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. Am J Respir Crit Care Med. 2011;183(4):455–61.

39. Buist AS. Risk factors for COPD. Eur Respir Rev. 1996;6(39):253–8.

40. Romieu I, Trenga C. Diet and obstructive lung diseases. Epidemiol Rev. 2001;23(2):268–87.

41. Cooper BG. An update on contraindications for lung function testing. Thorax. 2011.

42. Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, et al. General considerations for lung function testing. Eur Respir J. 2005;

43. FLETCHER CM. The clinical diagnosis of pulmonary emphysema; an experimental study. Proc R Soc Med. 1952;

44. Fletcher CM. Standardised questionnaire on respiratory symptoms: a statement prepared and approved by the MRC Committee on the Aetiology of Chronic Bronchitis (MRC breathlessness score). British Medical Journal. 1960.

45. Organization WH. Obesity: preventing and managing the global epidemic. World Health Organization; 2000.

46. D’Ambruoso L, Boerma T, Byass P, Fottrell E, Herbst K, Källander K, et al. The case for verbal
autopsy in health systems strengthening. Lancet Glob Heal. 2017;5(1):e20–1.

47. Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax. 2014;69(9):805–10.

48. Tagiyeva N, Devereux G, Fielding S, Turner S, Douglas G. Outcomes of childhood asthma and wheezy bronchitis. A 50-year cohort study. Am J Respir Crit Care Med. 2016;193(1):23–30.

49. Lange P, Celli B, Agustí A, Boje Jensen G, Divo M, Faner R, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373(2):111–22.