Obturating Materials in Pediatric Dentistry: Literature Review

Swati Manhas1 | Vibha Haritwal2 | Yogita Chaturvedi3 | Divya Vyas4 | Raj Dalsania5 | Ritika Chhibber6

1 MDS, Paedodontics and Preventive Dentistry, Varanasi, Uttar Pradesh
2 Dental Officer, Rama Hospital, Sonipat, Haryana
3 Senior Lecturer, Department of Paedodontics and Preventive Dentistry, Rajasthan Dental College and Hospital, Jaipur, Rajasthan
4 Senior Lecturer, Department of Paedodontics and Preventive Dentistry, Himachal Institute of Dental Sciences, Paonta Sahib, Himachal Pradesh
5 MDS, Paedodontics and Preventive Dentistry, Rajkot, Gujarat
6 MDS, Paedodontics and Preventive Dentistry, Yamuna Nagar, Haryana

Abstract
Preservation of primary teeth is essential for the space maintenance till the eruption of permanent teeth. So, endodontic treatment is done for the same purpose. Various obturating materials have been introduced for the root canal filling of primary teeth but none could match all the ideal properties of the material. The main aim of the clinician should be to fill the root canal with material which could match maximum requirements of the ideal properties.

Keywords: Calcium Hydroxide, Iodoform, Obturation, Zinc Oxide

1 | INTRODUCTION:

The goal of any procedure performed in a primary tooth is to remove acute and chronic infection from tooth or oral cavity so as to maintain tooth structure which help in maintaining arch length and preserve masticatory function. (1) Pulp therapy for pulpally involved primary teeth is a very challenging situation for clinicians due to:

• Anatomy (tortuous and ribbon shaped) of the primary teeth

Supplementary information The online version of this article (https://doi.org/10.15520/ijcrr.v11i08.835) contains supplementary material, which is available to authorized users.

Corresponding Author: Swati Manhas
MDS, Paedodontics and Preventive Dentistry, Varanasi, Uttar Pradesh
Email Id: mswati17oct@gmail.com
• Roots get resorbed physiologically

• In order to allow for the development of the succedaneous tooth, primary molar roots are usually curved, these curves increase the chance of perforation of the apical portion of the root or the coronal one-third of the canal into the furcation. (2)

Primarily, chemical cleansing and sterilization and secondarily, mechanical instrumentation during pulpectomy procedure are the procedures which increase the chance of success of the endodontic treatment in primary teeth due to complex anatomy. (3) Substances with antimicrobial properties are frequently used as root canal filling materials in deciduous teeth. The main objective of endodontic treatment is total elimination of microorganisms from the root canal and the prevention of subsequent reinfection which is achieved by proper cleaning and shaping followed by the complete obturation of the canal space. (4)

2 | DISCUSSION:

The ultimate goal of endodontic obturation has remained the same for the past 50 years i.e. to create a fluid-tight seal along the length of the root canal system from the coronal opening to the apical termination. (4)

Goals of obturatuion (5)

• Fill the entire root canal system & complexities completely as closely as possible with a suitable obturating materials so that no voids remain.

• Filling the root canal with a material that will resorb and give way for the eruption of the permanent tooth.

• As there is developmental, anatomical & physiological differences between primary & permanent teeth, there is difference in obturation techniques and materials from that of permanent teeth.

Criteria for an ideal pulpectomy obturant (Rifkin & Rabinowitch) (6, 7)

• Non-inflammatory and nonirritating to the underlying permanent

• Radio-opacity for visualization on radiographs

• Ease of insertion

• Resorbability

• Ease of removal

• Antiseptic property

• Stable disinfecting power

• Excess press beyond the apex should be resorbed easily

• Adhere to walls of the canal and should not shrink

• Insoluble in water

• Should not discolor the tooth

• Induce vital tissue to seal the canal with calcified or connective tissue

• Harmless to the adjacent permanent tooth germ

• Not set to a hard mass

However, presently no single material fulfill all these criterias.

Various root canal obturating materials for primary teeth (6–8)

• Zinc Oxide Eugenol

• Calcium Hydroxide

• Iodoform based pastes

• Walkhoff paste

• KRI paste

• Maisto paste

• Vitapex/Metapex
OBTURATING MATERIALS IN PEDIATRIC DENTISTRY: LITERATURE REVIEW

- Endoflas
- Endoflas-Chlorphenol-free (CF)
- Calen Paste
- Smartseal
- Guedes Pinto Paste
- Chirta HAP-Fil
- Pulpotec
- Aloe vera
- Ozone
- Rifocort
- CTZ Paste

Zinc Oxide Eugenol

![Figure 1: Zinc Oxide Eugenol](image)

Bonastre (1837) discovered ZOE and it was subsequently used in dentistry by Chisholm (1876), as one of the most widely used materials for root canal filling of primary teeth. It was first described by Sweet in 1930 (7) and until 2008, it was the only material explicitly recommended in the clinical guidelines developed by the AAPD. (9) Usually, a thin mix of ZOE is made which allow the material to flow easily but it may push the material beyond the apex. But if thick paste is used, it leads to underfilled canals (to avoid this pressure syringe technique can be used, which was introduced by Camp in 1984). ZOE without any catalyst allows a longer working time for filling of canals. (10)

Advantages (11)

- Excellent antibacterial and analgesic effects (in lower concentrations)
- Radiopaque for good radiographic visibility
- Easy to manipulate & fill in the canals
- Insoluble in tissue fluids
- Easily available
- Cost effective
- No tooth discoloration

Disadvantages (12)

- Slow resorption
- Irritation to the periapical tissues
- Necrosis of bone and cementum of primary tooth
- Harm the permanent tooth bud
- Forms a fibrous capsule and alters the path of eruption

ZOE and Combinations

To improve properties and success rate, zinc oxide eugenol in combination with different components like formocresol, formaldehyde and paraformaldehyde, aloe vera and cresol have been tried out, but the addition of these compounds neither increased the success rate nor any properties. (7)Khairwa A et al (2014) evaluated clinically and radiographically a mixture of zinc oxide eugenol and aloe vera as an obturating material for pulpectomy in a total of 15 primary molars for a period of 9 months. Tenderness to percussion was noted in all the patients preoperatively. At 9 months, the reduction of tenderness to percussion in 93.34% of cases and was highly
significant. Periapical radiolucency was present in all the 15 cases before the start of the study. Radiographic examination was carried out at seven days, one month, 3 months, 6 months and 9 months interval and it was observed that 11 cases (73.34%) demonstrated arrest or decrease of radiolucency. (13)

Calcium Hydroxide

Calcium hydroxide containing root canal filling materials can trigger inflammatory root resorption when come in contact with some vital tissue, when used in primary teeth with hyperemic pulp. (14) Also, when this paste is used in necrotic pulp, it produces a superficial layer of necrosis causing damage to dentin which, in turn can lead to exposure of dentin to odontoclasts and cause subsequent damage. (15) The alkaline property of the calcium hydroxide was said to counteract the inflammatory process by activating the alkaline phosphatase activity and acting as a local buffer, which was important for hard tissue formation. (11) Antibacterial effect is primarily due to the liberation of hydroxyl ions and inactivation of enzymes in the bacterial cytoplasmic membrane. (7)

Chawla HS et al (1998) conducted a pilot study in primary molars where Calcium Hydroxide paste was used as root canal filling material. Clinical and radiographic follow-up for 6 months was carried out at 2 months interval, revealed that the treated teeth with Ca(OH)2 as root canal filling material were successful, which show no pain and tenderness to percussion. Decrease in size of radiolucency was seen. (16)

Iodoform Pastes

Iodoform

It is a preparation of iodine obtained by action of chlorinated lime upon an alcoholic solution of potassium iodide when heated at 1040°F. No irritant action. Relieves pain and is a potent disinfectant. Better re-sorbability and disinfectant properties than ZOE. But they may produce a yellowish brown discoloration of the tooth. (7)

Walkhoff Paste (7, 8, 11, 17)

It consist of Iodoform, Parachlorophenol 33-37%, Camphor 63-67% and Menthol crystals 1.40-2.90%. Non-vital teeth associated with large periapical lesions can be treated with this paste.

Parachlorophenol

Used as antiseptic agent which dissolve albumin and therefore progressively penetrate into the canalculus of the tooth.

Camphor

- Treat pain
- Arrest the hemorrhage

Menthol

- Anodyne
- Antispasmodic
- Antiseptic
- External remedy in facial neuralgia, odontalgia, as an obtunder of sensitive dentin as a local anesthetic

Disadvantages

- Periapical area and root canal area get totally resorbed.

KRI Paste

KRI paste is basically an iodoform paste, was introduced by Volkoff as a resorbable paste suitable for root canal filling. It consists of iodoform (80.5%), camphor (4.84%), para chlorophenol (2.023%), and menthol (1.213%). KRI paste is a radiopaque endodontic root filling. Camphor and menthol are mixed with the antimicrobial agent and para chlorophenol, to minimize coagulation with adjacent tissues. Iodoform is added as a vehicle to carry the antimicrobial agent as it is a non-irritant and radiopaque. (18) According to Rifkin, it meets all criteria required from an ideal root canal filling material for primary teeth. It was also found to have long-lasting bactericidal potential. Overall success rate for KRI paste was 84% versus 65% for ZOE. Various components of KRI Paste and its role has been described in Table 1. (11)

Kri-1: In 1989, a procedure was published for root canal preparation and filling in necrotic primary molars with a paste made of Kri-1 and pure calcium hydroxide obtaining a high percentage of success with
remission of all symptoms. This was the first publication in which formaldehyde was mentioned as a component of root canal filling material, thus partly recovering Buckley’s formula, which contained 40% formaldehyde and glycerine. (19)

KRI-3: This liquid differs from commonly used KRI-1 paste in that, its parachlorophenol, camphor and menthol concentration are twelve times superior and hence possess greater antimicrobial properties. (7) Holan G et al (1993) found that the success rates of 84% with KRI paste group versus 65% with ZOE group. Overfills more successful KRI paste 79% versus ZOE 41%. The excess paste will resorb without causing any adverse side effects. (20)

Maisto Paste

An iodoform based paste developed by Maisto and used clinically for many years with good results reported. It consist of Zinc oxide -14g, Iodoform-42g, thymol-2g, Chlorophenol camphor-3 cc, lanolin – 0.5 g. It differs from KRI paste, in that it also contains Zinc oxide, thymol and lanolin. It reduces the resorption rate of the paste from within the canals of endodontically treated primary teeth. (11) Pabla T et al (1997) evaluated the antimicrobial efficacy of Zinc Oxide Eugenol, Iodoform paste, KRI paste, Maisto paste and Vitapex against aerobic and anaerobic bacteria from infected nonvital primary anterior teeth. Order of antimicrobial activity: Maisto paste > Iodoform paste> Zinc Oxide Eugenol> Vitapex. (21)

Vitapex/Metapex

Vitapex was introduced by Kawakami et al in 1979. Various components of Vitapex and its role has been described in Table 2 . (11)

Advantage (22)

- Non toxic to permanent successor tooth

Component	Action
Iodoform	Relieves pain and potent disinfectant
Camphor	Arrest hemorrhage and allays pain of wounded pulp of teeth
Menthol	Anodyne, antispasmodic and antiseptic
Parachlorophenol	Disinfect root canal and treating periapical infections

FIGURE 2: Metapex

- Antiseptic action
- Good adherence to the canal walls
- Non- setting to a hard mass
- Resorption faster than root, complete resorption of the excess paste is expected within 2-8 weeks.
- Applicability of the material is easier
- Radiopaque

Disadvantage (7)

- Rapid elimination of iodoform by the organism leaves behind empty spaces inside the root canal
- Pushed beyond the apex
- Discoloration of the teeth
TABLE 2: Composition of Vitapex

Component	Percentage	Action
Iodoform	40.4%	Bactericide, suppresses any residual bacteria in the canal or periapical region.
Calcium hydroxide	30.3%	Biocompatible, antibacterial activity, induction of mineralized tissue formation, activation of alkaline phosphatase and collagen synthesis and ability to produce hydrolysis of bacterial endotoxin.
Silicone	22.4%	Oily base additive

Doneria D et al (2017) in their study evaluate the clinical and radiographic success of zinc oxide-ozonated oil (ZnO-OO), modified 3Mix antibiotic paste and Vitapex in treatment of primary molars requiring pulpectomy. On the basis of the overall success rates of all the three medicaments, following order of performance can be inferred clinical success and radiographical success: - ZnO-OO(100%)=Vitapex(100%)> modified 3MIX-MP paste.(95.8% and 79.2%). (23)

Advantages (8)

- Hydrophilic and can be used in mildly humid canals.
- Firmly adheres to the surface of the root canals to provide a good seal.
- Disinfect dentinal tubules and difficult to reach accessory canals that cannot be disinfected or cleansed mechanically.
- Only resorbs when extruded extraradicularly, but does not wash out intra-radically

Disadvantage (8)

- Periapical irritation
- Tooth discoloration

Navit S et al (2016) evaluated the antimicrobial efficacy of obturating materials against E. faecalis, amongst all the groups Endoflas had significantly higher zone of inhibition. Antimicrobial efficacy of various materials according to this study can be summarized as follows: Endoflas > ZOE > Calcium hydroxide + Chlorhexidine > Calciumhydroxide + Iodoform +Distilled water ~ Metapex > Saline. (24)
TABLE 3: Composition of Endoflas

Powder	Liquid
Iodoform, Zinc oxide (56.5%),	Eugenol
Calcium hydroxide (1.07%),	Paramonochlorophenol
Tri-iiodomethane dibutylorthocresol (40.6%),	
Barium sulphate (1.63%)	

Endoflas-Chlorophenol-free (CF)

Following endodontic treatment of primary teeth radiolucent lesions were may be due to the filling material that contain phenol. Because of this, Endoflas CF was developed which is chlorophenol free. Chlorophenol was eliminated from endoflas as it has fixation effect which may affect the osteoblast cells. (25)

Calen Paste

It is a calcium hydroxide-based paste. Calen paste exhibits biocompatibility, high antimicrobial activity and satisfactory clinical, radiographic outcomes and intermediate setting time values. The mean initial pH was 6.1 and it exhibited a progressive increase until reaching a peak at the five-hour time point with mean pH value of 8.4. It has high registration levels, which indicate high radiopacity and lower solubility when compared with the other groups. (26)

Pinto DN et al (2011) compared success rate of ZOE and calen paste thickened with zinc oxide. High success rate with calen/zo was seen as this material prevented pathologic root resorption and induced new bone formation. ZnO provides better consistency to the paste. (27)

Smartseal (8)

It is a root canal obturating material which is based on polymer technology. It uses a hydrophilic principle which can absorb surrounding moisture and expand which results in filling of spaces and voids. Hydrophilic nature is revealed by ProPoints, which permits infinite water volume existing in the root canal system that is engrossed by these points. This water may hydrogen bond to the existing polar locations, therefore, permitting the enlargement inside the polymeric chains.

Advantages

- Geometry of point can be accurately made
- Biocompatibility
- Controlled expansion

Guedes Pinto Paste

Introduced by Guedes Pinto in 1991. Composition of GPP has been described in Table 4 (28)

Advantages (29)

- Easy to apply
- Faster resorption than root
- No toxic effects on permanent successor
- Radiopaque

Disadvantages (30)

- Pulp obliteration due to osteogenic potential
- Induces internal resorption in primary teeth
- Lack of adhesion to the hard tissue, leading to inadequate seal against microleakage
- Can be depleted from canal
- Resorbs earlier than the physiological resorption of the roots

Chitra HAP-Fil

It is a hydroxyapatite nanoparticle gel based root filler material which corresponds to the bone and dentin’s mineral content. It is highly biocompatible. “Chitra HAP-Fil” satisfies all requirements of an ideal pulpectomy material. (11)

Jeeva PP et al (2014) conducted a study to investigate the microbial and cellular response of Chitra HAP-Fil in comparison with Zinc oxide eugenol...
and Metapex. They evaluated the antimicrobial and cytotoxic activity of three pulpectomy materials. It was found that the Metapex is significantly least cytotoxic than Chitra HAP Fil which is less cytotoxic than Zinc oxide eugenol. (31)

Aloe vera

It is a herbal material that has been founded naturally and because of its properties, it can be used widely in dentistry for various therapeutic properties. Various phases of wound healing process has been enhanced by Aloe vera such as macrophage recruitment, collagen synthesis and wound contraction. (34) The chemical constituents of it are part of the physiological functions of living flora and hence, they have better compatibility with the human body. It can be used for various preventive purposes owing to its anti-inflammatory, antifungal, moisturizing, antibacterial, antiviral and pain-relieving properties. (35)

Khairwa A et al (2014) evaluated clinical and radio-graphic success of zinc oxide combined with aloe vera and showed good success rate. They reported that this material can be used as an alternative for zinc oxide eugenol. (13)

Ozone

Ozone is energized and gaseous form of oxygen. It is unstable and dissociates readily back into oxygen, thereby liberating a strong oxidizing agent i.e. Nascent oxygen which is responsible for bactericidal and fungicidal effects. (7)

Chandra SP et al (2014) conducted a study and found good clinical success rate at 12 months follow up, which was attributed to the antibacterial and excel-lent healing properties of ozone peroxides. Radio-graphic success rate of ZOE was less than that of ozonated oil-ZOE. It was concluded that Ozone can be considered as a good

TABLE 4: Composition of Guedes Pinto Paste

Components	Percentage	Action
Rifocort		Anti-inflammatory
Champhorated parachlorophenol	70% Parachlorophenol	Antibiotic
Iodoform	30% Camphor	Vehicle
		Antimicrobial and Analgesic

FIGURE 4: Pulpotec

It has antibacterial, antiseptic and anti-inflammatory properties. (32) Iodoform is the main component and because of its antiseptic properties, it acts like an antibiotic paste at the entry of the empty root canal. (7) It can be used in teeth with bone lesion and also help in reducing the infection clinically. Clinical and Radiolographical results show that this procedure could be considered as an alternative to the conventional endodontic treatment for the treatment of necrotic primary teeth in paediatric dentistry. (33)

Aboujaoude S et al (2015) in their study evaluate the effectiveness of a Pulpotec modified endodontic approach on primary molars presenting necrotic pulp and furcation bone loss in a cohort of healthy children. In this study 67.7% of patients showed healing of bone loss, and a significant difference in height and width of the lesion was observed (respectively 80.6%, 71%). (33)
alternative for ZOE. (36)

Rifocort
It is a product formed from a corticosteroid and an antibiotic, presenting a great antimicrobial action and recommended for the treatment of primary teeth presenting with pulpal infectious processes. The paste also presented bactericidal action against most organisms except for Enterococcus faecalis and Bacillus subtilis. (37)

CTZ Paste
CTZ is an antibiotic paste Combination of chloramphenicol 500mg+tetracycline 500mg+zinc oxide 1000mg+ eugenol 1 drop. (38) Chloramphenicol is an antimicrobial agent that acts against a large number of aerobic, facultative anaerobe and spirochetes as well as gram +ve and gram –ve microorganisms. (39) Tetracycline is a broad spectrum antibiotic which can be bactericidal at high conc. offering excellent effectiveness against gram –ve bacteria and all anaerobes. ZOE provides analgesc properties and potent antibacterial action against staphylococcus, micrococi, bacillus and enterobacteria for more than 30 days. (40)

Advantages (38)

• Simple and easy application
• Antibacterial property
• Stabilization of bone resorption
• Does not cause tissue sensitivity
• Does not produce damage to the permanent tooth in development

Disadvantages (39)

• Pigmentation of the crown of the treated tooth

Fereira JL et al (2017) evaluate the clinical and radiographic CTZ (Chloramphenicol-Tetracycline-Zinc Eugenol Oxide) antibiotic paste in pulpotomies of primary molars. 93% and 88.4% clinically; 97.7% and 93% were radiographic at 6 and 12 months respectively. (41)

3 | CONCLUSION

Appropriate material selection for obturation is crucial in successful endodontic therapy. Although, current obturating materials clinically provide satisfactory results for primary teeth but still modification is required to suit the various clinical situations that have been encountered. Since ZOE has many drawbacks, several other materials have been investigated and various combinations tried with some degree of success. The current combinations of calcium hydroxide and iodoform seem to provide better results than ZOE cement. Recent advances in alternative root filling materials also promise better adhesion to root canal and avert the shortcomings of gutta-percha.

REFERENCES

1. Jindal L, Bhat N, Mehta S, Bansal S, Sharma S, Kumar A. Rotary endodontics in pediatric dentistry: Literature review. Int J Health Biol Sci 2020;3(2): 09-13.

2. Goerig AC, Camp JH. Root canal treatment in primary teeth: a review. Pediatr Dent 1982;5(1): 33-37.

3. Ahmed HMA. Pulpectomy procedures in primary molar teeth. Eur J Gen Dent 2014;3:3-10.

4. Praveen P, Anantharaj A, Venkataragahavak K, Rani PS, Sudhir R, Jaya AR. A review of obturating materials for primary teeth. Streamdent 2011;1(3): 1-4.

5. Lopez L. Endodontic obturation considerations for the general dentist. Inside Dent 2007;3(6): 1-5.
6. Rifin A. The root canal treatment of abscessed primary teeth: A three to four year follow-up. ASDC J Dent Child 1982;49:428-31.

7. Rajasekhar S, Mallineni SK, Nuvvula S. Obturating materials used for pulpectomy in primary teeth- A review. J Dent Craniofac Res 2018;3(1): 1-9.

8. Kannan R, Mathew MG. Pediatric obturating materials- A review. Drug Invent Today 2019;11(1): 221-24.

9. American Academy on Pediatric Dentistry Clinical Affairs Committee-Pulp Therapy subcommittee, American Academy on Pediatric Dentistry Council on Clinical Affairs. Guideline on pulp therapy for primary and young permanent teeth. Pediatr Dent 2008;30:170-4.

10. Hiremath MC, Srivastava P. Comparative evaluation of endodontic pressure syringe, insulin syringe, jiffy tube and local anesthetic syringe in obturation of primary teeth: An in vitro study. J Nat Sci Biol Med 2016;7(2): 130-35.

11. Chonat A, Rajamani T, Ephraim R. Obturating materials in primary teeth- A review. Res Rev J Dent Sci 2018;6(1): 20-25.

12. Coll JA, Sadrian R. Predicting pulpectomy success and its relationship to exfoliation and succedaneous dentition. Pediatr Dent. 1996;18:57-63.

13. Khairwa A, Bhat M, Sharma R, Satish V, Maganur P, Goyal AK. Clinical and radiographic evaluation of zinc oxide with aloe vera as an obturating material in pulpectomy: An in vivo study. J Indian Soc Pedod Prev Dent 2014;32:33-8.

14. Nurko C, Garcia Godoy F. Evaluation of a calcium hydroxide/iodoform paste (Vitapex) in root canal therapy for primary teeth. J Clin Pediatr Dent 1999;23: 289-294.

15. Ravi GA, Subramanyam RV. Calcium hydroxide- Induced resorption of deciduous teeth: A possible explanation. Dent Hypotheses 2012; 3: 90-94.

16. Chawla HS, Mani SA, Tewari A, Goyal A. Calcium hydroxide as a root canal filling material in primary teeth – a pilot study. J Indian Soc Pedod Prev Dent 1998;16(3): 90-92.

17. Stallaert KM. A retrospective study of root canal therapy in non-vital primary molars. Department of Paediatric Dentistry, University of Toronto. 2011.

18. Castagnola L, Oray H. Treatment of gangrene of the pulp by the Walkhoff method. Br Dent J 1952;93:93-102.

19. Dominguez A, Solano E. Root canal treatment in necrotic primary molars. J Pedodont 1989;14: 36-40.

20. Holan G, Fuks AB. A comparison of pulpectomies using ZOE and KRI paste in primary molars: A retrospective study. Pediatr Dent 1993;15(6): 403-07.

21. Pabla T, Gulati MS, Mohan U. Evaluation of antimicrobial efficacy of various root canal filling materials for primary teeth. J Indian Soc Pedod Prev Dent 1997;15(4): 134-40.

22. Mortazavi M, Mesbahi M. Comparison of zinc oxide and eugenol and vitapex for root canal treatment of necrotic primary teeth. Int J Pediatr Dent. 2004;14:417-24.

23. Doneria D, Thakur S, Singhal P, Chauhan D. Comparative evaluation of clinical and radiological success of zinc oxide-ozonated oil, modified 3mix-mp antibiotic paste and vitapex as treatment options in primary molars requiring pulpectomy: An in vivo study. J Indian Soc Pedod Prev Dent 2017,35(4): 346-52.
24. Navit S, Jaiswal N, Khan SA, Malhotra S, Sharma A, Mukesh et al. Antimicrobial efficacy of contemporary obturating materials used in primary teeth- An in-vitro study. J Clin Diagn Res 2016;10(9): ZC09–ZC12.

25. Al-Ostwani AO, Al-Monaqel BM, Al-Tinawi MK. A clinical and radiographic study of four different root canal fillings in primary molars. J Indian Soc Pedod Prev Dent 2016;34: 55-59.

26. Segato RAB, Pucinelli CM, Ferreira DCA, Daldegan ADR, Silva RS, Filho PN et al. Physicochemical properties of root canal filling materials for primary teeth. Braz Dent J 2016;27(2): 196-201.

27. Pinto DN, De Sousa DL, Araujo RB, Neto MJJ. Eighteen-month clinical and radiographic evaluation of two root canal filling materials in primary teeth with pulp necrosis secondary to trauma. Dent Traumatol 2011;3: 221-24.

28. Barja-Fidalgo F et al. A systematic review of root canal filling materials for deciduous teeth: is there an alternative for zinc oxide-eugenol? ISRN Dent 2010;24;2011.

29. Cerqueira DF, Moura ACVM, Santos EM, Pinto ACG. Cytotoxicity, histopathological, microbiological and clinical aspects of an endodontic iodoform-based paste used in pediatric dentistry: A review. J Clin Pediatr Dent 2007;32(2): 105-110.

30. Moura ACVM, Fanaro J, Nicoletti MA, Mendes FM, Wanderley MT, Pinto ACG. Variability in the proportion of components of iodoform-based Guedes-Pinto paste mixed by dental students and pediatric dentists. Indian J Dent Res 2011;22(6): 781-85.

31. Jeeva PP and Retnakumari N. In-vitro comparision of cytotoxicity and anti-microbial activity of three pulpectomy medicaments-Zinc oxide euginol, Metapex and Chitra HAP – Fill . IOSR J Dent Med Sci. 2014;13:40-47.

32. Kakarla P, Avula J, Mellela G, Bandi S, Anche S. Dental pulp response to collagen and pulpotec cement as pulpotomy agents in primary dentition: a histological study. J Conserv Dent 2013;16: 434-38.

33. Aboujaoude S, Noueiri B, Berbari R, Khairalla A, Sfeir E. Evaluation of a modified Pulpotec endodontic approach on necrotic primary molars: a one-year follow-up. Eur J Paediatr Dent 2015;16: 111-14.

34. Kriplani R, Thosar N, Baliga MS, Kulkarni P, Shah N, et al. Comparative evaluation of antimicrobial efficacy of various root canal filling materials along with aloe vera used in primary teeth: a microbiological study. J Clin Pediatr Dent 2013;37: 257-62.

35. Surjushe A, Vasani R, Saple DG. Aloe vera : A short review. Indian J Dermatol 2008;53(4): 163-66.

36. Chandra SP, Chandrasekhar R, Uloopi KS, Vinay C, Kumar NM. Success of root fillings with zinc oxide-ozonated oil in primary molars: preliminary results. Eur Arch Paediatr Dent 2014;15:191-195.

37. Antoniazzi BF, Pires CW, Bresolin CR, Weiss RN, Praetzel JR. Antimicrobial activity of different filling pastes for deciduous tooth treatment. Braz Oral Res 2015;29(1): 1-6.

38. Perona G, Mungi S. Tratamiento endodóntico no instrumentado en dientes deciduos. Odont Ped 2014;4(1): 53-64.
39. Luengo J, Ramos A, Hernandez M, Diaz C, Carlos L, et al. Clinical and radiographic effectiveness of antibiotic paste CTZ in primary molars pulpotomy. Randomized Controlled Clinical Trial. Int J Odontostomat 2016;10(3): 425-431.

40. Mariz P, Cavalcanti R, Alvez S. Clinical and radiographic monitoring of primary teeth submitted to pulp therapy with CTZ paste. Braz Res Ped Dent Int Clin 2014;14(3): 56-68.

41. Fereira JL, Rivas HR, Toscano I, Flores YG, Alvarez MA, Casas FDM. Clinical and radiographic evaluation of CTZ (chlormephenicol- tetracycline- zinc eugenol oxide) antibiotic paste in pulp treatment of primary molars. J Dent Health Oral Disord Ther 2017;8(1): 451-55.

How to cite this article: Manhas S., Haritwal V., Chaturvedi Y., Vyas D., Dalsania R., Chhibber R. Obturating Materials in Pediatric Dentistry: Literature Review. International Journal of Contemporary Research and Review. 2020;20842–20853. https://doi.org/10.15520/ijcrr.v11i08.835