Machine Learning-powered Iterative Combinatorial Auctions

Gianluca Brero†
Harvard University
gbrero@g.harvard.edu

Benjamin Lubin†
Boston University
blubin@bu.edu

Sven Seuken†
University of Zurich
seuken@ifi.uzh.ch

August 31, 2021

Abstract

We present a machine learning-powered iterative combinatorial auction (MLCA). The main goal of integrating machine learning (ML) into the auction is to improve preference elicitation, which is a major challenge in large combinatorial auctions (CAs). In contrast to prior work, our auction design uses value queries instead of prices to drive the auction. The ML algorithm is used to help the auction decide which value queries to ask in every iteration. While using ML inside a CA introduces new challenges, we demonstrate how we obtain a design that is individually rational, satisfies no-deficit, has good incentives, and is computationally practical. We benchmark our new auction against the well-known combinatorial clock auction (CCA). Our results indicate that, especially in large domains, MLCA can achieve significantly higher allocative efficiency than the CCA, even with only a small number of value queries.

Keywords: Combinatorial Auctions, Machine Learning, Preference Elicitation, CCA

1. Introduction

Combinatorial auctions (CAs) are used to allocate multiple items among multiple bidders who may view these items as complements or substitutes. Specifically, they allow bidders to submit bids on bundles of items to express their complex preferences. CAs have found widespread real-world applications, including for the sale of spectrum licenses (Cramton, 2013) and the allocation of TV-ad slots (Goetzendorf et al., 2015).

1.1. Preference Elicitation in CAs

One of the main challenges when conducting CAs in practice is that the bundle space grows exponentially in the number of items, which typically makes it impossible for bidders to fully reason about, let alone report their full valuation, even in medium-sized domains. This makes preference elicitation a key challenge, especially in large CAs. Researchers have addressed this challenge by designing bidding languages that are succinct yet expressive for specific (restricted) classes of valuation functions (see Nisan (2006) for a survey).

†All authors have contributed equally to this work.
But, unfortunately, if one must support general valuations and guarantee full (or even approximate) efficiency, then the auction requires an exponential amount of communication in the worst case (Nisan and Segal, 2006).

To get around this difficulty in practice, the preference elicitation challenge is often addressed by using iterative combinatorial auctions (ICAs), where the auctioneer elicits information from bidders over multiple rounds, imposing some kind of limit on the amount of information exchanged. Common formats include ascending-price auctions and clock auctions, where prices are used to coordinate the bidding process. In recent years, the combinatorial clock auction (CCA) (Ausubel et al., 2006) has gained momentum. Between 2012 and 2014 alone, ten countries have used the CCA for conducting spectrum auctions, raising approximately $20 billion in revenues, with the 2014 Canadian 700 MHZ auction being the largest auction, raising more than $5 billion (Ausubel and Baranov, 2017). Furthermore, the CCA has been used to auction off the rights for building offshore wind farms for generating green energy (Ausubel and Cramton, 2011). The CCA consists of two main phases: in the initial clock phase, the auctioneer quotes (linear) item prices in each round, and bidders are asked to respond to a demand query, stating their profit-maximizing bundle at the quoted prices. In the second phase (the supplementary round), bidders can submit a finite number of “all-or-nothing” bundle bids (typically up to 500). The goal of this design is to combine good price discovery in the clock phase with good expressiveness in the supplementary round.

Despite the practical successes of the CCA, a recent line of papers has revealed some shortcomings regarding both of its phases. Recall that in the clock phase (which often has more than 100 rounds (Industry Canada, 2013)), bidders must answer demand queries, i.e., they must respond with their optimal bundle given a vector of prices. However, experimental studies by Scheffel, Ziegler and Bichler (2012) and Bichler, Shabalin and Wolf (2013) have shown that bidders may not be able to optimally respond to a demand query. In particular, these studies found that bidders tend to focus on a limited search space consisting of some bundles of items selected prior to the auction, and that this can cause significant efficiency losses (between 4% to 11% in their experiments). Furthermore, in the supplementary round, bidders face the difficult challenge of deciding which additional bids to submit while obeying a limit on the maximum number of bids they can submit. If the bidders do not pick their bundles well in this round, this can further reduce efficiency. Thus, designing a practically feasible CA with high empirical efficiency remains a challenging research problem.

1.2. Identifying Useful Bundles via Machine Learning

With general valuations, finding the efficient (or even approximately efficient) allocation in a CA requires communication that is exponential in the number of items in the worst case (Nisan and Segal, 2006). This implies that a bidder may need to answer an exponential number of queries and/or report an exponential number of values. Given that bidders have cognitive costs for determining their value for a given bundle and for answering queries, no practical CA mechanism can guarantee full efficiency beyond small toy domains. Note that the results from Nisan and Segal (2006) imply that iterative VCG mechanisms (e.g., Mishra and Parkes, 2007; de Vries, Schummer and Vohra, 2007) also require exponential communication in the worst case and are thus impractical even in medium-sized domains. To obtain a practical CA, we therefore design a mechanism that, like iterative VCG, interacts with bidders over multiple rounds, but that imposes a limit on the information exchanged between each bidder and the auction.

The amount and the type of information being exchanged depends on the auction format and thus the type of queries that are used. Many iterative CAs use demand queries, where bidders are shown prices and have to report their profit-maximizing bundle at these prices. The amount of information exchanged per demand query depends on the dimensionality of the prices. For example, the CCA uses linear prices (i.e., one price

1 For example, in the 2014 Canadian spectrum auction, bidders could submit at most 500 bids (which is a small fraction of the 2^{98} bundles), and multiple bidders reached this limit (Industry Canada, 2013).
per item), which, combined with a bound on the number of rounds, ensures practicality. Due to the result by Nisan and Segal (2006), this also implies that the CCA cannot provide efficiency guarantees.

In our mechanism, the information exchanged consists of a small set of bundle-value pairs from each bidder, and the size of this set is limited via a parameter of our mechanism (e.g., 500). Of course, due to Nisan and Segal (2006), and as in the CCA, this implies that our mechanism also cannot provide useful efficiency guarantees. However, our goal is to design a mechanism that maximizes empirical efficiency in realistic CA domains.

Intuitively, a mechanism that wants to maximize empirical efficiency but is constrained on information exchange should elicit the “most important” information from each bidder. However, in an iterative mechanism, identifying the “next most-useful query” is not an easy task because it requires reasoning about the incremental value of the missing information given what has already been elicited. To this end, there are three basic approaches.

First, if enough structure regarding bidders’ valuations can be assumed ex ante, then the auctioneer can exploit this structure by adopting an (approximately) expressive domain-specific bidding language (Sandholm, 2013; Goetzendorf et al., 2015). One can view such languages as value models for the domain, where the parameters of the model are left to be specified by the bidders. The model then ensures that this finite amount of information is generalized, such that the value for all bundles can be computed. However, in many domains, like spectrum auctions, bidders’ valuations exhibit such a rich and complex structure that the auctioneer cannot propose a single domain-specific language/model that would be parsimonious enough in its own description that it could be put into practice. Furthermore, any particular choice of a domain-specific bidding language may favor one bidder over another, which is problematic for a government-run auction which should not be biased against any given participant. In the present paper, we therefore consider general valuations such that our mechanism does not rely on any critical structural assumptions.

Second, instead of the auctioneer performing the generalization task by exploiting structural assumptions, the bidders can do it themselves by explicitly providing information statements about their whole valuation. The CCA follows this principle by asking bidders demand queries in each round of the clock phase. An answer to a demand query does not only provide the auctioneer with information on one bundle, but it is simultaneously a statement regarding the bidder’s whole valuation. The auctioneer can then use these “global information statements” to identify the next query. For example, the CCA computes the next query via a simple price update rule where prices on over-demanded items are increased by a fixed percentage (Ausubel and Baranov, 2017). However, this places a relatively large burden on the bidders, who may not be able to respond optimally to every demand query, as discussed above.

In this paper, we propose a third approach to perform the generalization task, using machine learning (ML). The idea is to train an ML algorithm for each individual bidder on that bidder’s value reports to generalize to the whole bundle space, i.e., to learn a value for each bundle the bidder has not yet evaluated. To build some intuition, consider the use of linear regression for the ML algorithm, and the following simple example: a bidder who reports value 1 for the bundle (1, 0) and value 10 for bundle (1, 1). In this example, linear regression would predict a value of 9 for bundle (0, 1). Of course, linear regression can only learn additive valuations as it only has one coefficient per item. In Section 5, we present our general ML framework and explain how non-linear ML algorithms (which can capture substitute and complements valuations) can be employed in our mechanism. Because such an ML model provides information about the whole valuation, this generalization can be leveraged to determine a good sequence of bundles to query. This is the key ingredient of the new auction design we develop in this paper.
1.3. Overview of Contributions

We propose a machine learning-powered iterative combinatorial auction (MLCA). In contrast to the CCA, our auction does not use demand queries (i.e., prices) but instead asks bidders for value reports on individual bundles. While in the clock phase of the CCA, clock prices do the job of coordinating bidders towards finding an (approximately) efficient allocation, in our approach, we use an elicitation process guided by ML to serve this role.

Our main innovation is an ML-powered query module (Section 3.1) which, given a set of bundle-value pairs already reported by each bidder, determines a new query for each bidder to be answered in the next round of the auction. The query module consists of two key steps. First, we use an ML algorithm for each bidder to compute a learned valuation for this bidder. This provides us with a prediction of each bidder’s value for any bundle in the bundle space and thus allows us to compute the predicted social welfare of any allocation. Second, we solve an ML-based winner determination problem to find the allocation with the highest predicted social welfare. The next query for each bidder is then chosen as the bundle the bidder would be allocated in that allocation. These two steps embody the main idea of MLCA: we aim to generate vectors of queries that are feasible allocations, and in particular, we query those feasible allocations that have highest predicted social welfare.

Our second contribution is the design of the full MLCA mechanism (Section 3.2). MLCA uses the query module as a sub-routine in every round of the auction and ultimately determines an allocation and payments. To achieve good incentives in practice, MLCA aims to behave as “similarly as possible to VCG,” while obeying the maximum number of bids constraint. In addition to using the query module, the following four design elements are essential for this: (1) the final allocation and payments are computed based on the elicited bundle-value pairs (and not based on learned values), (2) MLCA computes VCG payments based on these elicited bundle-value pairs, (3) throughout the auction, MLCA explicitly queries each bidder’s marginal economy, and (4) MLCA enables bidders to “push” information to the auction which they deem useful.

In Section 4, we provide a detailed theoretical analysis of MLCA. First, we derive a relationship between the learning error of the ML algorithm used and the efficiency achieved by MLCA (Section 4.1). Next, we analyze the incentives of MLCA, and we explain how its design features promote good incentives in practice. Finally, we show that MLCA satisfies individual rationality and no-deficit.

In Section 5, we instantiate the ML algorithm. In principle, any ML algorithm could be used within MLCA. However, a key requirement is that one can relatively quickly solve the corresponding winner determination problem (WDP) based on bidders’ learned valuations, to compute a new allocation – and this computation is done many hundreds of times (inside the query module) throughout one run of MLCA. We first explain how standard linear regression can be used to obtain the bidders’ learned valuations, and how formulating the linear regression-based WDP is straightforward. Then we generalize this to non-linear machine learning models that can also capture substitutes and complements valuations – in particular, we use kernelized support vector regression (SVR). Using a different kernel in the SVR essentially leads to a different ML algorithm inside MLCA. We discuss SVRs with four popular kernels: Linear (which corresponds to linear regression), Quadratic, Exponential, and Gaussian, and we provide WDP formulations for all four.

In Section 6, we then provide experimental results comparing the performance of these four ML algorithms. Our main insight in this section is that the choice of the right ML algorithm used inside MLCA depends on two characteristics: first, the ML algorithm’s prediction performance (measured in terms of the learning error), and second, our ability to solve the ML-based WDP problem reasonably quickly. We find that the Quadratic kernel only has slightly worse prediction performance than the Exponential or Gaussian kernels, but we can formulate the corresponding WDP as a Quadratic Integer program which we can solve relatively quickly, even for large auction instances. This is why, in terms of economic efficiency (our main variable of interest), the Quadratic kernel outperforms the other three kernels.
In Section 7, we present experimental results regarding the efficiency of MLCA when using the Quadratic kernel (compared to the CCA) and regarding its manipulability. For these experiments, we employ the spectrum auction test suite (SATS) Weiss, Lubin and Seuken (2017), and we use the LSVM, GSVM and MRVM domains. Our first result is that, as one would expect, the performance of MLCA depends on how well the ML algorithm can capture the structure of the domain. LSVM has a highly non-linear structure, but bidders are not interested in a large number of bundles. In this domain, the CCA achieves slightly higher efficiency than MLCA with 500 queries.\footnote{In work subsequent to this paper, Weissteiner and Seuken (2020) showed how to use neural networks instead of SVRs as the ML algorithm in MLCA, and they demonstrated that this leads to an additional efficiency increase in the LSVM domain. Similarly, also in work subsequent to this paper, Weissteiner et al. (2020) showed how Fourier analysis can be leveraged for the design of ML-powered iterative CAs to achieve better results than MLCA.} In contrast, in GSVM, the Quadratic kernel can perfectly capture the structure of the domain, and thus is able to generalize very well. This leads to an efficiency of 100% for MLCA, even with only 100 queries, matching the efficiency of the CCA. We test both mechanisms on the MRVM domain, which is the largest and most realistic domain, with 10 bidders and 98 items. Here, MLCA clearly outperforms the CCA. With 500 queries, the CCA achieves an efficiency of 94.2% while MLCA achieves 96.4%, which is a 2.2% point improvement. Finally, we provide experimental evidence for MLCA’s robustness against strategic manipulations in Section 7.3. Overall, our results suggest that MLCA may be a promising candidate for running large-scale CAs in practice.

1.4. Related Work

An important research agenda related to this paper is the one on preference elicitation in combinatorial auctions, which dates back to the early 2000s (Sandholm and Boutilier, 2006). Among the most relevant work in this agenda are the papers by Lahaie and Parkes (2004) and Blum et al. (2004) which used learning algorithms to design elicitation algorithms for specific classes of valuations. Elicitation algorithms for generic valuations based on ML were introduced by Lahaie (2011) and further developed by Lahaie and Lubin (2019). These approaches are based on using ML on bidders’ reports to find competitive equilibrium prices, i.e., prices that coordinate bidders towards demanding efficient allocations. Brero and Lahaie (2018) and Brero, Lahaie and Seuken (2019) built on these mechanisms and designed Bayesian auctions that, besides bidders’ reports, can exploit prior beliefs on bidders’ valuations to quickly determine competitive equilibrium prices. In contrast to the pre-dominant research agenda in this field, we do not use ML to directly learn or predict competitive equilibrium prices. Instead, we use ML to learn bidders’ valuations, and we only provide an implicit correspondence to approximate clearing price.

Another related line of research grew out of the automated mechanism design (AMD) research agenda (Conitzer and Sandholm, 2002, 2004), aiming to use algorithms to design direct-revelation mechanisms: these are mechanisms where agents report all of their preferences upfront and the mechanism determines the outcome based on these preferences. The first approaches to AMD were based on formulating the mechanism design problem as a search problem over the space of all possible mappings from agents’ preference profiles to outcomes. These approaches were only applicable to small settings mainly because of the dimension of the preference profile space. Recent work has partly addressed this scalability issue by limiting the search to parametrized classes of mechanisms and using learning algorithms to find suitable parameter values. Dütting et al. (2015) used discriminant-based classifiers to learn approximately strategyproof payment rules for combinatorial auctions. In more recent work, Dütting et al. (2018) have used deep learning methods to advance the design of revenue-maximizing auctions. Thus, this strand of research has used ML in the process of designing new mechanisms. In contrast, in our work, we incorporate an ML algorithm into the mechanism itself, such that an ML algorithm is part of the resulting mechanism’s execution.
2. Preliminaries

2.1. Formal Model

In a combinatorial auction (CA), there is a set of a set of \(m \) indivisible items denoted \(M = \{1,\ldots,m\} \) to be allocated among \(n \) bidders denoted \(N = \{1,\ldots,n\} \). A bundle is a subset of the set of items. We associate each bundle with its indicator vector and denote the set of bundles as \(X = \{0,1\}^m \). We represent the preferences of each bidder \(i \) with a value function \(v_i : X \rightarrow \mathbb{R}_{\geq 0} \) that is private knowledge of the bidder. Thus, for each bundle \(x \in X \), \(v_i(x) \) represents the true value that bidder \(i \) has for obtaining \(x \). We do not make any assumptions regarding the structure of bidders’ value functions.\(^3\) We assume that values are normalized such that the bidders have zero value for the empty bundle. We also refer to \(v_i \) as bidder \(i \)’s valuation. We let \(v = (v_1,\ldots,v_n) \) denote the valuation profile and \(v_{-i} = (v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_n) \) the corresponding profile where bidder \(i \) is excluded. We also call the set of all bidders \(N \) the main economy, and we call the set \(N \setminus \{i\} \) bidder \(i \)’s marginal economy.

A CA mechanism defines how bidders interact with the auction, how the final allocation is determined, and how much each bidder has to pay. By \(a = (a_1,\ldots,a_n) \in X^n \) we denote an allocation, with \(a_i \) being the bundle that bidder \(i \) obtains under \(a \). We denote the set of feasible allocations by \(\mathcal{F} \). Our mechanism supports various notions of feasibility; in this paper, we consider an allocation to be feasible if each item is allocated to at most one bidder. Payments are defined as a vector \(p = (p_1,\ldots,p_n) \in \mathbb{R}^n \), with \(p_i \) denoting the amount charged to bidder \(i \). We assume that bidders have a quasi-linear utility function of the form

\[
 u_i(a, p) = v_i(a_i) - p_i.
\]

The social welfare of allocation \(a \) is defined as the sum of the bidders’ true values for \(a \), i.e., \(V(a) = \sum_{i \in N} v_i(a) \). The social welfare-maximizing (i.e., efficient) allocation is denoted as \(a^* = \arg \max_{a \in \mathcal{F}} V(a) \). We measure the efficiency of any allocation \(a \in \mathcal{F} \) as \(\text{Eff}(a) = V(a)/V(a^*) \). We aim to design mechanisms that allocate items such that this measure of efficiency is maximized.

In this paper, we design a mechanism for an iterative combinatorial auction that asks each bidder to make value reports for different bundles across different rounds of the auction. We let \((x_{ik}, \hat{v}_{ik}) \) denote the \(k \)th bundle-value report from bidder \(i \), where \(x_{ik} \) denotes the bundle and \(\hat{v}_{ik} \) denotes the corresponding value report (which may not necessarily be truthful). Throughout the auction, our mechanism maintains the set of bundle-value reports (or report set, for short) from bidder \(i \) denoted \(R_i \). At the point when bidder \(i \) has made \(\ell \) bundle-value reports, we have \(R_i = \{(x_{ik}, \hat{v}_{ik})\}_{k \in L} \) where \(L = \{1,\ldots,\ell\} \). Note that this notation enables us to refer to specific bundle-value pairs contained in \(R_i \) via an index. We let \(R = (R_1,\ldots,R_n) \) denote the profile of these report sets. For notational simplicity, we say that a bundle \(x \in R_i \) if bidder \(i \) has made a value report on bundle \(x \). We use \(|R_i| \) to denote the number of bundle-value reports made by bidder \(i \). Our mechanism will enforce that a bidder cannot make multiple reports on the same bundle.

At the end of the auction (after the last round), our mechanism determines a final allocation and payments based on all elicited value reports. In this step, we need to “look up” a bidder’s value report for specific bundles. To this end, we define the report function \(\hat{v}_i(\cdot) \), such that, for any bundle \(x \in R_i \), \(\hat{v}_i(x) \) is bidder \(i \)’s value report for \(x \) (and undefined otherwise). Note that this definition of \(\hat{v}_i(\cdot) \) is different from its usage in the literature on direct revelation mechanisms where this function (when applied to CAs) assigns a value report to every bundle in the bundle space.

In our mechanism, bidders typically only make a value report on a limited number of bundles in the bundle space. Given that \(\hat{v}_i(\cdot) \) captures all of the reported information by bidder \(i \), and without making further assumptions, we only need to consider the set of bundles restricted to the \(R_i \)’s when determining the effi-

\(^3\)However, our mechanism allows for structural assumptions (like free disposal) if they are needed.
cient allocation with respect to the \(\hat{v}_i(\cdot) \)'s. Formally, we define this restricted set of feasible allocations as
\[F_R = \{ a \in F : a_i \in R_i \ \forall i \} . \]
Consequently, given a profile of report sets \(R \), our mechanism computes the efficient allocation with respect to \(R \) by solving
\[\arg \max_{a \in F_R} \sum_{i \in N} \hat{v}_i(a_i) , \]
which is a standard (combinatorial) winner determination problem that can be formulated as an Integer Program.

2.2. The Vickrey-Clarke-Groves (VCG) Auction

We now define the well-known VCG auction (Vickrey, 1961; Clarke, 1971; Groves, 1973).

Definition 1 (VCG Auction). Under the VCG auction, every bidder \(i \) must make a value report for every bundle in the bundle space, which is captured by the report function \(\hat{v}_i(\cdot) \). Given these value reports, the outcome is defined by:

- **The allocation rule:**
 \[a_{VCG} \in \arg \max_{a \in F} \sum_{i \in N} \hat{v}_i(a_i) \]

- **The payment rule,** which charges every bidder \(i \) a payment:
 \[p_i^{VCG} = \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_i^{-i}) - \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_j^{VCG}) , \quad \text{where} \quad a_i^{-i} \in \arg \max_{a \in F} \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_j) . \quad (2) \]

It is well known that the VCG auction is strategyproof; i.e., it is a dominant strategy for all bidders to report their true valuation, independent of what the other bidders do. When all bidders follow their (truthful) dominant strategy, the VCG auction is efficient.

Note that the VCG auction is often impractical for CAs, as it requires bidders to report their full valuation (which is exponentially sized in the number of items). Thus, researchers have proposed iterative VCG mechanisms (e.g., Mishra and Parkes, 2007; de Vries, Schummer and Vohra, 2007) that interact with bidders over multiple rounds and only elicit enough information to determine the VCG outcome. By realizing the VCG outcome, these mechanisms inherit some good incentive properties of the VCG auction, supporting truthful bidding in ex-post Nash equilibrium. However, iterative VCG mechanisms are still impractical in general, because, in the worst case, they need to exchange an exponentially sized amount of information with bidders to determine an efficient allocation (Mishra and Parkes, 2007).

3. The Machine Learning-powered Combinatorial Auction (MLCA)

In this section, we introduce our new ML-powered combinatorial auction (MLCA). To obtain a practical CA, we design a mechanism that, like iterative VCG mechanisms, interacts with bidders over multiple rounds. However, in contrast to iterative VCG mechanisms, we impose an important design constraint on the amount of information exchanged between each bidder and the auction: the auctioneer limits the maximum number of bids which each bidder is allowed to submit, and this maximum is a parameter of our design (e.g., 500). Under this constraint, we know from Nisan and Segal (2006) that we cannot provide useful efficiency guarantees, and we cannot directly apply iterative VCG mechanisms to obtain ex-post Nash incentive compatibility. Therefore, we adopt as our goals for MLCA to (a) maximize empirical efficiency in realistic CA domains and (b) have good incentives in practice.

To achieve high empirical efficiency despite the limit on the number of bids, our most important innovation is the ML-powered query module, which we introduce in Section 3.1. In Section 3.2 we then present the full MLCA mechanism, which uses the query module as a sub-routine in every round of the auction, and which ultimately determines the final allocation and payments. To achieve good incentives in practice, we combine the query module with four additional design elements to obtain a mechanism that (in practice) behaves as
“similarly as possible to VCG,” while always obeying the maximum number of bids constraint. Concretely, the four design elements are: (1) the final allocation and payments are computed based on the elicited bundle-value pairs (and not based on learned values), (2) MLCA computes VCG payments based on these elicited bundle-value pairs, (3) throughout the auction, MLCA explicitly queries each bidder’s marginal economy, and (4) MLCA enables bidders to “push” information to the auction which they deem useful. We analyze the effect these design elements have on incentives in Section 4.2 and we provide experimental evidence for MLCA’s robustness against strategic manipulations in Section 7.3.

3.1. Machine Learning-powered Query Module

In this section, we present the ML-powered query module, which is based on three key ideas. First, we use ML to learn each bidder’s full value function from a small set of reported bundle-value pairs, such that we can predict the bidder’s value for any bundle in the bundle space. Second, we aim to generate query profiles that are feasible allocations. Third, putting these ideas together, we design an ML-based optimization algorithm which, based on the bidders’ learned valuations, finds feasible allocations with high predicted social welfare.

We provide a high-level overview of the query module in Figure 1. The module takes as input a set of bundle-value pairs R_i from each bidder i. In a first step, for each bidder i, we train a separate ML algorithm A_i based on R_i to learn i’s valuation \tilde{v}_i (which we call the learned valuation going forward). Given all bidders’ learned valuations, we define the learned social welfare of any allocation a as follows:

$$\tilde{V}(a) = \sum_{i \in N} \tilde{v}_i(a_i)$$

(3)

In a second step, we then feed all learned valuations \tilde{v}_i to an ML-based winner determination algorithm. This algorithm finds a candidate allocation \tilde{a} that maximizes the learned social welfare $\tilde{V}(\tilde{a})$. Finally, the query module outputs a query q_i for each bidder equal to the bundle he would be allocated under this candidate allocation, i.e., $q_i = \tilde{a}_i$.

To understand the design of our query module, recall that, in our mechanism, we use ML only to guide the elicitation of the most useful bundles, but the computation of the final allocation and payments is only based on the reported bundle-value pairs. Thus, by generating a query profile $q = \tilde{a}$ that constitutes a feasible allocation, we are gathering bids on bundles that could in the end be used in the final allocation. By contrast, if we generated each bidder’s query by only looking at this individual bidder, we would likely generate queries that are “incompatible” (i.e., the bundles are overlapping) and thus could not be used in the final allocation.

Algorithm 1 provides a formal description of our ML-powered query module – to improve clarity and
Algorithm 1: Machine Learning-powered Query Module

function NextQueries,ₐ(I, R);
parameters: profile of ML algorithms A;
inputs: index set of bidders for the economy to be considered I; profile of reports R;
1 foreach bidder i ∈ I : \[\hat{v}_i := A_i(R_i); \] \textbf{\textit{Learning Step:}} learn valuations using ML algorithm
2 select \(\tilde{a} \in \arg\max_{a \in A} \sum_{i \in I} \hat{v}_i(a_i); \) \textbf{\textit{Optimization Step (based on learned valuations)}}
3 assign new query profile: \(q = \tilde{a} \) (i.e., for each \(i \in I : q_i = \tilde{a}_i \));
4 foreach bidder i ∈ I do
5 \textbf{\textit{if}} bundle \(q_i \) has already been queried from bidder i (i.e., \(q_i \in R_i \)) \textbf{\textit{then}}
6 \textbf{\textit{define set of allocations containing a new query for bidder i:}} \(\mathcal{F}' := \{ a \in A : a_i \neq x, \forall x \in R_i \} \);
7 select \(\tilde{a} \in \arg\max_{a \in \mathcal{F}'} \sum_{i \in I} \tilde{v}_i(a_i); \) \textbf{\textit{Optimization Step (with restrictions)}}
8 overwrite new query for bidder i: \(q_i = \tilde{a}_i \);
9 end
10 return profile of new queries q;

readability, we here present a slightly abbreviated description; we provide a full version of the query module in Algorithm 3 in the Appendix A. Formally, we represent the query module as a function NextQueries,ₐ(I, R).

The function is parameterized by a profile of machine learning algorithms A, one for each bidder.⁴ The function takes as its first argument an index set I ⊆ N of the bidders for the economy to be considered (as we will describe in Section 3.2, our mechanism calls the query module for both the main and all bidders’ marginal economies). The function takes as its second argument a profile of reports R, where each \(R_i \) is the set of bundle-value pairs that bidder i has already reported.

In Line 1, we begin with the learning step: for each bidder i ∈ I, bidder i’s ML algorithm \(A_i \) is trained on the bundle-value pairs \(R_i \) to learn a valuation \(\hat{v}_i \). In Line 2, in the optimization step, we solve the ML-based winner determination problem, i.e., given all bidders’ learned valuations \(\hat{v}_i \), we find an allocation \(\tilde{a} \) that maximizes the learned social welfare \(\tilde{V}(\tilde{a}) \). In Section 5, we show how this ML-based winner determination problem can be solved in practice. In Line 3, we assign \(q \) (i.e., the candidate query profile) to the allocation \(\tilde{a} \) found in the optimization step. Note that at this point, all bidders’ queries come from the same allocation \(\tilde{a} \) and are thus compatible. However, some bidders may already have reported the value for their candidate query \(q_i = \tilde{a}_i \). Because we want to generate a new query for every bidder, we next test for this on Line 5, i.e., whether \(q_i \in R_i \). If true, we then create a “next-best query” for that bidder: in Line 6, we first define a set of feasible allocations \(\mathcal{F}' \) specifically tailored to bidder i, making sure that, for each allocation \(a \) in the set, bidder i has not yet reported his value for bundle \(a_i \). In Line 7, we then solve a new restricted optimization problem, this time solving the ML-based winner determination problem, but now with the feasible allocations restricted to the set \(\mathcal{F}' \) defined in the previous step. In Line 8, we then overwrite bidder i’s query with the bundle he is assigned in the allocation found in the previous step. Finally, in Line 10, we return the final query profile.

Remark 1. In MLCA, bidders submit bundle-value reports, while prices are used for elicitation in most prior work on iterative CAs (e.g., Parkes, 2006). Typically, the goal of such price-based elicitation is to obtain approximate clearing prices. It is possible to relate our mechanism to the rest of the literature through a price-based interpretation of the elicitation performed by MLCA’s query module. Specifically, in Appendix B we describe

⁴In Section 5.1, we first instantiate the ML algorithm using linear regression; in Section 5.2 we then generalize to non-linear learning models by using kernelized support vector regression. For our experiments (Sections 6 and 7) we equip all bidders with the same ML algorithm. However, our approach also supports using a different ML algorithm for each bidder (see Remark 5 in Section 5.2).
Algorithm 2: Machine Learning-powered Combinatorial Auction (MLCA)

parameters: profile of ML algorithms A; maximum # of queries per bidder Q^{max}; # of initial queries $Q^{\text{init}} \leq Q^{\text{max}}$;

1. foreach bidder $i \in N$: ask the bidder to report his value for Q^{init} randomly chosen bundles;
2. Let $R = (R_1, \ldots, R_n)$ denote the initial report profile; each R_i is i’s set of bundle-value reports;
3. Let $T = \lceil (Q^{\text{max}} - Q^{\text{init}})/n \rceil$ denote the total number of auction rounds and $t = 1$ the current round;
4. while $t \leq T$ do // Auction round iterator
 5. Generate query profile via $\text{NextQueries}_A(N, R)$; // Queries for the main economy
 6. foreach $i \in N$ do
 7. Generate query profile via $\text{NextQueries}_A-i(N \setminus \{i\}, R_{-i})$; // Queries for marg. econ
 8. end
 9. foreach bidder $i \in N$: send new queries to bidder i and wait for reports;
10. foreach bidder $i \in N$: receive bundle-value reports R'_i and add them to R_i, i.e., $R_i = R_i \cup R'_i$;
11. $t = t + 1$;
12. end
13. Let $\hat{v}_i(\cdot)$ denote bidder i’s report function capturing his bundle-value reports R_i, $\forall i \in N$;
14. Compute final allocation: $a^{\text{MLCA}}_i \in \arg\max_{a \in F_R} \sum_{i \in N} \hat{v}_i(a_i)$;
15. foreach bidder $i \in N$: compute his payment
 $$p_i^{\text{MLCA}} = \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_{-i}^{-j}) - \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_{-i}^{\text{MLCA}}),$$
 where $a_{-i}^{-j} \in \arg\max_{a \in F_R} \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_j)$; (4)
16. Output allocation a^{MLCA} and payments p^{MLCA};

how to impute approximate clearing prices that are implicit in the elicitation. We provide a bound on how close these prices are to clearing prices in the learning error of the ML algorithm. We emphasize that such imputed prices are only implicit when MLCA is run. The imputed prices will in general be non-anonymous, and if we use high-dimensional (non-linear) ML algorithms, then they will also be high-dimension bundle prices. This implicit high-dimensional price structure enables MLCA to find an approximate CE (where the approximation depends on the learning error of the ML algorithm) while approaches based on linear prices (such as the CCA) may be limited. For more details on this price-based interpretation of MLCA, please see the discussion in Appendix B.

3.2. The MLCA Mechanism

In this subsection, we describe our full machine learning-powered combinatorial auction (MLCA) mechanism. MLCA is an iterative auction that proceeds in rounds until a maximum number of queries has been asked. In each round, it generates new queries for the main economy as well as each bidder’s marginal economy, each time employing the query module described in Section 3.1. After each round, the newly generated queries are sent to the bidders and the mechanism waits for the corresponding bundle-value reports. This enables the query module (when called in the next round) to update each bidder’s ML algorithm based on the new reports and exclude already reported bundle-value reports when generating a new query. At the end of the auction, the mechanism computes the final allocation and payments based only on all bidders’ reported bundle-value pairs. As the default payment rule, we compute VCG payments based on these reports.

Algorithm 2 provides a formal description of the MLCA mechanism – again, to improve clarity and readability, we here present a slightly abbreviated version; we present the full version of MLCA in Algorithm 4.
of Appendix A. The mechanism is parameterized by a profile of machine learning algorithms A (one for each bidder) that will be used to parameterize the query module. The mechanism has two more parameters: an overall maximum number of queries Q^{max} that it can ask each bidder, and the number of initial queries Q^{init} that it asks each bidder in the initialization phase of the auction (which we can think of as round 0).

When the auction begins, the mechanism asks each bidder i to report their values for Q^{init} randomly chosen bundles (Line 1). Next, each bidder i reports a value for each bundle he is queried, and all resulting bundle-value pairs are then stored in the variable R_i (Line 2). We include this initialization phase (Lines 1-2) before going into the iterative phase, such that the ML algorithms used in the query module already have some amount of training data when they are first called. Specifically, this avoids wasteful learning and optimization steps in the query module (when the ML algorithms have no or little training data) and additionally leads to some amount of exploration of the bundle space.\footnote{In our experiments in Section 7, we optimize the number of initial queries Q^{init} to maximize efficiency. There are many avenues for potential improvement of the initialization phase, for example by using a Bayesian approach to determine the optimal sequence of initial queries. However, exploring those ideas is beyond the scope of this paper and we leave them to future work.}

Next, we enter the iterative phase of the mechanism. We first define the total number of auction rounds T (Line 3), which is simply the number of queries left (i.e., $Q^{\text{max}} - Q^{\text{init}}$) divided by the number of agents in the auction n, because in each round, each bidder will be asked n queries (one query in the main economy and $n - 1$ marginal economy queries). Next, Lines 4-12 iterate over the rounds of the auction. In Line 5 we call the function NextQueries to generate a query profile for the main economy (one new query for each bidder). Therefore, the function NextQueries takes as inputs the set of all bidders N and all bidders’ bundle-value reports received so far R. Additionally, we parameterize NextQueries using the profile of ML algorithms A. Next, in Lines 6-8, we then create a query profile for each bidder i’s marginal economy. Accordingly, in Line 7, we again call the function NextQueries, but this time using as inputs the set of all bidders excluding bidder i, and all bundle-value reports except for those by bidder i. Additionally, we now parameterize NextQueries using $A_{\neg i}$.\footnote{Note that in our implementation of MLCA, when calling NextQueries, we also hand over the set of queries that have already been generated in the current auction round, such that the query module can automatically exclude these queries in the optimization steps. This is needed to guarantee that the query module generates a new query for every bidder. For details, please see Algorithms 3 and 4 in Appendix A.}

Next, we send all queries that have been generated in this round to the bidders and wait for their reports (Line 9). Upon receiving each bidder’s i’s reports for the queried bundles, we then store the new bundle-value pairs in the variables R_i (Line 10). Finally, at the end of this auction round, we increase the round counter by one (Line 11).

After the last round of the auction (Line 12), we proceed towards computing the final allocation and payments. Because these steps require us to “look up” a bidder’s value report for specific bundles, for notational simplicity, we first construct each bidder i’s report function $\hat{v}_i(\cdot)$ to capture all bundle-value reports made by bidder i (Line 13). Recall from Section 2.1 that $\hat{v}_i(\cdot)$ is defined in such a way that, for any bundle $x \in R_i$, $\hat{v}_i(x)$ is bidder i’s value report for x (and undefined otherwise). In Line 14, we compute the final allocation a^{MLCA} by solving $\arg \max_{a \in \mathcal{F}_R} \sum_{i \in N} \hat{v}_i(a_i)$, which is a standard (combinatorial) winner determination problem to find the optimal allocation according to the \hat{v}_i’s. Note, that the set of feasible allocations $\mathcal{F}_R = \{a \in \mathcal{F} : a_i \in R_i \, \forall i\}$ is restricted to only contain bundles a_i for which a bidder has made an explicit value report.\footnote{This implies that $\hat{v}_i(\cdot)$ will only ever be called for bundles for which it is defined.} In Line 15 we then compute each bidder i’s payment p_i^{MLCA}. Concretely, in Equation (4), we essentially compute VCG payments; but in contrast to standard VCG, when computing the optimal allocations a^{MLCA} and $a^{\neg i}$, we restrict the set of feasible allocations to only contain bundles for which the bidders have explicitly reported a value. Finally, we output the final allocation a^{MLCA} and the payment profile p^{MLCA}.

Remark 2 (Randomization and Information Hiding in MLCA). Note that there are two steps in MLCA where...
we use randomization. First, in Line 1 of the algorithm, we generate a separate randomly chosen set of queries for every bidder, such that the bidders do not know each others’ queries. Second, in Line 9 of the algorithm, we send the queries to the bidders as a randomized list, such that a bidder cannot easily identify whether a query was generated in the main economy or in a specific bidder’s marginal economy. Of course, we never tell any bidder about the queries nor value reports of other bidders. These design features make MLCA less transparent to the bidders, which makes it more difficult for a bidder to predict how the mechanism will use a given value report. Intuitively, this makes the mechanism more robust to manipulations, as we will discuss in Section 4.2. This argument is similar to the one presented in Parkes (2001).

Remark 3 (Answering Value Queries with Upper and Lower Bounds). Note that MLCA uses standard value queries that ask bidders to reply with a single value report to each query. However, in practice, rather than replying with a single (exact) value report, it may be easier for bidders to specify bounds on bundle values (see, e.g., Parkes, 2006). In subsequent work, Beyeler et al. (2020) have recently introduced a modified version of MLCA that takes as input bidders’ reports consisting of upper and lower bounds on their values, and they have shown that this modified version of MLCA still achieves comparable levels of efficiency.

3.3. Additional Design Features of MLCA

We now describe three additional design features of MLCA that will likely be important in many domains when applying MLCA: (a) enabling bidders to “push bids,” (b) enabling the auctioneer to control the number of rounds of the auction, and (c) enabling the auctioneer to switch out the payment rule (e.g., to charge core-selecting payments).

Push bids. Recall that MLCA aims to iteratively elicit the most useful information from the bidders by sending them carefully chosen queries. However, a bidder might have some particularly useful information about his valuation that could improve efficiency. Thus, a natural idea is to let bidders provide unsolicited information to the mechanism. Following Sandholm and Boutilier (2006), we call this “bidder push.” Concretely, in MLCA, we allow bidders to submit a limited number of push bids, which are unsolicited bundle-value pairs that the bidders can submit in the initialization phase. These push bids are then treated the same as the queried bids, i.e., they are included in the learning step; and of course, they are included in the final winner determination (the details are described in Algorithm 4 in Appendix A). Note that a second motivation for adding push bids (beyond potentially increasing efficiency) is related to incentives. On this point, Nisan and Ronen (2007) have shown that letting bidders provide unsolicited information in a VCG-style mechanism can improve the incentives of a mechanism. In Section 4.2, where we analyze the incentives of MLCA, we will make a similar point, arguing that push bids improve the incentives of MLCA. Finally, in some domains, it may be useful to let bidders push some information about their preferences in a language that is richer than using bundle-value pairs. For example, bidders could state “my valuation is additive,” “I am only interested in a specific subset of the items,” or “item A creates strong synergies with all other items.” MLCA can be extended to also handle such structural preference descriptions.

Controlling the number of rounds. Note that the total number of auction rounds T in MLCA depends on the maximum number of queries Q^{max}, the number of initial queries Q^{init}, and the number of agents n in the following way: $T = \left\lfloor \frac{(Q^{\text{max}} - Q^{\text{init}})}{n} \right\rfloor$ (Line 3 of Algorithm 2). In practice, the auctioneer cannot control any of these parameters without hindering the auction performance: n is determined by the setting at hand, Q^{max} is maximized under the constraint of maintaining a reasonable bidding effort, and Q^{init} is set to be the optimal amount of exploratory queries made during the initialization phase of the auction. To provide

*Given the different nature of these bids, it may be useful to weight these bids differently in the learning step, to avoid potential negative effects on efficiency.
the auctioneer with better control over the number of auction rounds, we deploy MLCA with an additional parameter Q^round that controls the number of queries MLCA asks each bidder at each round: When Q^round is larger than the number of bidders n, the auction would go through the steps of generating queries for the main and marginal economies (Lines 5–8) multiple times. Otherwise, it would randomly select Q^round queries for each bidder and use these to determine his queries. We refer to Appendix F for a more detailed description of this additional design feature.

Alternatives to VCG payments. Recall that our auction computes final payments by applying the VCG payment rule (see Section 2.2) to the bundle-value pairs reported by the bidders (see Line 15 of Algorithm 2). However, this choice is completely modular in our auction, and the auctioneer can instead adopt different payment rules with other desirable properties (e.g., core-selecting payment rules such as VCG-nearest (Day and Cramton, 2012)). We provide a more extended discussion on the trade-offs related to the choice of different payment rules in Appendix F.

4. Theoretical Analysis

We now turn to the theoretical analysis of the MLCA mechanism.

4.1. Learning Error and Elicitation Guarantees

Because MLCA employs an ML algorithm, the effectiveness of MLCA in terms of eliciting the most useful information and its overall efficiency are related to the *prediction performance* of that ML algorithm. In this section, we formalize this relationship by providing theoretical guarantees that can be used by an auctioneer as guidance in selecting and parameterizing an ML algorithm for use in MLCA.

The prediction performance of an ML algorithm is usually assessed via its *learning error*. Formally, for a bidder i, we define the learning error on a bundle x as the absolute value of the difference between the bidder’s true value and the learned value for that bundle, i.e.: $\text{err}(x) = |v_i(x) - \tilde{v}_i(x)|$. Of course, in practice, an auctioneer cannot evaluate the learning error directly because she does not have access to the true valuations. However, she can evaluate the ML algorithm using data from previous auctions. In general, the better the ML algorithm captures the domain, the smaller the learning errors will be. In Section 6, we evaluate the learning error of four different ML algorithms and show how they depend on the richness of the ML model used. Throughout this section, we leave the ML algorithm unspecified and derive theoretical properties that hold for any ML algorithm.

4.1.1. Bounding the Efficiency Loss

In service of connecting the learning error of the ML algorithm to the efficiency loss of MLCA, we start with a bound on the efficiency loss of the learned valuation \tilde{a}, as follows:

Proposition 1. Let \tilde{v} be a learned valuation profile. Let \tilde{a} be an efficient allocation w.r.t. \tilde{v}, and let a^* be an efficient allocation w.r.t. the true valuation profile. Assume that the learning errors in the bundles of these two allocations are bounded as follows: for each bidder i, $|\tilde{v}_i(\tilde{a}) - v_i(\tilde{a})| \leq \delta_1$ and $|\tilde{v}_i(a^*) - v_i(a^*)| \leq \delta_2$, for $\delta_1, \delta_2 \in \mathbb{R}$. Then the following bound on the efficiency loss in \tilde{a} holds:

$$1 - \text{Eff}(\tilde{a}) \leq \frac{n(\delta_1 + \delta_2)}{V(a^*)}.$$

(5)
Proof. We add and subtract $V(\tilde{a})$ and $\tilde{V}(a^*)$ to $V(a^*) - V(\tilde{a})$, obtaining
\[
V(a^*) - V(\tilde{a}) = \left(V(a^*) - \tilde{V}(a^*)\right) + \left(\tilde{V}(\tilde{a}) - V(\tilde{a})\right) + \left(\tilde{V}(a^*) - \tilde{V}(\tilde{a})\right).
\] (6)

Given that \tilde{a} is a social welfare-maximizing allocation under \tilde{v}, the term $\tilde{V}(a^*) - \tilde{V}(\tilde{a})$ in (6) cannot be positive. Inequality (5) follows by considering that any real number cannot be greater than its absolute value, and dividing both side by $V(a^*)$.

In words, Proposition 1 shows that the efficiency loss at \tilde{a} is bounded by the overall learning error at the two allocations a^* and \tilde{a} (normalized by the maximum social welfare). Note that the proposition does not require any assumptions regarding bidders’ strategies; in particular, it holds independent of whether \tilde{v} was learned based on truthful or misreported values.

Now that we have a bound on \tilde{a}, we can derive a bound on the final allocation a_{MLCA}:

Proposition 2. Assume that all bidders only submit truthful bids to MLCA. Let \tilde{v} be some learned valuation profile, let \tilde{a} be an efficient allocation w.r.t. to \tilde{v}, and let a^* be an efficient allocation w.r.t. the true valuation profile. Assume that the learning errors in the bundles of \tilde{a} and a^* are bounded as follows: for each bidder i, $|\tilde{v}_i(\tilde{a}) - v_i(\tilde{a})| \leq \delta_1$ and $|\tilde{v}_i(a^*) - v_i(a^*)| \leq \delta_2$, for $\delta_1, \delta_2 \in \mathbb{R}$. Then following bound on the efficiency loss in the final allocation a_{MLCA} holds for all \tilde{v} learned for any economy, in any iteration of MLCA (i.e., in the Query Module; Line 1 of Algorithm 1):
\[
1 - \text{Eff}(a_{MLCA}) \leq \frac{n(\delta_1 + \delta_2)}{V(a^*)}.
\] (7)

Proof. Given Proposition 1, it suffices to show that $\text{Eff}(a_{MLCA}) \geq \text{Eff}(\tilde{a})$. This follows from considering that, whenever the Query Module is called, MLCA afterwards ensures that all bundles contained in \tilde{a} will be queried. This implies that, under truthful reports, the efficiency of MLCA can only be (weakly) higher than the efficiency of \tilde{a}. Thus, $\text{Eff}(a_{MLCA}) \geq \text{Eff}(\tilde{a})$.

Proposition 2 provides a bound on the efficiency loss of the mechanism as a whole, in the learning error of the ML algorithm. It follows that, with truthful reports, the mechanism is fully efficient if it has a perfect ML algorithm with zero learning error.

4.2. Incentives

In this section, we study the incentive properties of MLCA. We first explain how MLCA’s design features promote good incentives in practice (Section 4.2.1). We then show that, under certain assumptions, MLCA is social welfare aligned and ex-post Nash incentive compatible (Section 4.2.2).

4.2.1. Design Features Promoting Good Incentives in Practice

For MLCA to achieve high allocative efficiency, it is important that bidders act truthfully. Formally:

Definition 2. In MLCA, a bidder’s strategy is called truthful if the bidder (1) only replies truthfully to any value query and (2) only pushes truthful value reports.

Given the iterative design of MLCA, bidders have various direct and indirect ways to influence the final allocation as well as their payments. Without making any assumptions, it is not possible to formally guarantee that it is always optimal for bidders to be truthful. Furthermore, as is the case for all deployed iterative CAs, it is analytically intractable to determine the equilibrium bidding strategies in MLCA (e.g., see Levin...
and Skrzypacz (2016) for an analysis of the incentives of the CCA). Nevertheless, we argue that MLCA has good incentives in practice, in the sense that any possible manipulation strategies are implausible to execute successfully and too risky, such that a rational bidder should simply report truthfully. The following four design features of MLCA promote this behavior:

- **Design Feature #1**: The MLCA outcome is computed based on the elicited bids only
- **Design Feature #2**: MLCA computes VCG payments (based on the elicited bids)
- **Design Feature #3**: MLCA explicitly queries each bidder’s marginal economy
- **Design Feature #4**: MLCA allows for push-bids

Design Feature #1: It is important to note that the final allocation (Step 14 in Algorithm 2) and the final payments (Step 15 in Algorithm 2) are computed based on the set of elicited bids only. In particular, no ML is used in this step. This implies that bidders only care about the set of bids that MLCA elicits.

Design Feature #2: Based on these bids, MLCA computes VCG payments. Of course, without requiring bidders to report their full value function, VCG is no longer strategyproof (Nisan and Ronen, 2000). To see the different pathways of how a bidder may be able to benefit from misreporting in MLCA, consider a bidder’s utility when the VCG payment rule is applied to the bundle-value pairs at the end of MLCA:

\[
\begin{align*}
 u_i &= \left(v_i(a_{i}^{\text{MLCA}}) + \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_{j}^{\text{MLCA}}) \right) - \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_{j}^{-i}) \\
\end{align*}
\]

Observe from this equation that a bidder seeking to manipulate MLCA can evaluate the effect of a manipulation by grouping the three terms in his utility function into two components: the first two terms are the *reported social welfare of the main economy* (when bidder \(i \) is truthful), while the last term is the *social welfare of bidder \(i \)’s marginal economy*. Any beneficial manipulation must increase the difference between the first and the second component. We next argue that, with Design Features #3 and #4 in place, it is practically implausible to successfully execute any such manipulation.

Design Feature #3: In every auction round, MLCA explicitly queries each bidder’s marginal economy (Step 7 in Algorithm 2). This means that, for each bidder \(i \), the query module generates a new query profile with one query for all other bidders, such that this query profile maximizes the learned social welfare in bidder \(i \)’s marginal economy. This makes it very likely that, for the final outcome computation, most or even all bids constituting the optimal allocation in bidder \(i \)’s marginal economy have been elicited without considering his reports. Thus, the only way for bidder \(i \) to have an effect on the social welfare of his marginal economy is to affect (via his own bids) how the other bidders’ valuations are learned. However, to safely execute such a manipulation, a bidder would essentially need complete information about the other bidders and perfect information about all steps taken by the mechanism. In practice, this is implausible for multiple reasons. First, not only does a bidder have uncertainty regarding the other bidders’ values but also regarding their strategies (e.g., which bundle-value pairs they will push). Second, due to the design of MLCA, a bidder does not know which queries the other bidders have been asked (e.g., due to the random initial bundles; see Remark 2). Given these two sources of uncertainty, we argue that any manipulation of the marginal economy is very risky for a bidder and thus implausible in practice.

If we accept that a bidder’s marginal economy is practically independent of his reports, a bidder’s only way to increase his utility is to increase the reported social welfare of the main economy (i.e., the first term in

\[9\]See Appendix F for a discussion regarding core payments.
Equation 8). Here, bidder i’s reports are used in the optimization that determines a^{MLCA}. The following example illustrates how a bidder might (theoretically) want to misreport his value to increase the social welfare in the main economy.

Example 1. Consider a setting with 2 bidders and 2 items. We let $A = (1, 0), B = (0, 1), AB = (1, 1)$. We use MLCA with linear regression, which in this setting estimates 2 coefficients (one per item). The other MLCA parameters are set as follows: $Q^{\text{max}} = 2$, and $Q^{\text{init}} = 1$. Bidder 1’s true values are $v_1(A) = v_1(AB) = 2$, $v_1(B) = 1.1$, and bidder 2’s ones are $v_2(A) = v_2(AB) = 2$, $v_2(B) = 1$. Implicitly, MLCA assumes a report from both of zero for the empty bundle. Assume that, in Line 1 of Algorithm 2, bidder 2 is assigned query AB and he truthfully reports $\hat{v}_2(AB) = 2$, bidder 1 is assigned query B, and he truthfully report $\hat{v}_1(B) = 1.1$.

The mechanism then calls the Query Module to determine new queries for the main economy. The valuations learned in Line 1 of Algorithm 1 are: $\hat{v}_1(A) = 0$ and $\hat{v}_1(AB) = 1.1$, and $\hat{v}_2(A) = \hat{v}_2(AB) = 1$, and $\hat{v}_2(B) = 2$. Bidder 1 is then assigned query AB, while bidder 2 is assigned query A. If bidders are truthful, bidder 1 is allocated bundle B and charged $p_1^{\text{MLCA}} = 1$, with utility equal to $1.1 - 1 = 0.1$.

If bidder 1 had reported 0.9 for bundle B, i.e., $\hat{v}_1(B) = 0.9$, then the valuation \hat{v}_1 learned in Line 1 of Algorithm 1 would have been $\hat{v}_1(A) = 0$ and $\hat{v}_1(AB) = 0.9$; he would have been assigned query A in the main economy, obtaining this bundle in the final allocation for a payment equal to 1. Then, his utility would have been $2 - 1 = 1 > 0.1$.

Design Feature #4: Due to the uncertainty a bidder faces regarding the state of the mechanism (see Remark 2), the effect of the manipulation shown in Example 1 would be very difficult to predict for the bidder, which makes it very risky. But more importantly, the ability for bidders to push bids in the initial auction phase make the manipulation unnecessary, even for bidders who would otherwise contemplate executing it. Specifically, with push bids, instead of misreporting his value for B to ultimately be queried and allocated A, bidder 1 could just push his value for A, and then report truthfully afterwards. Given this, we argue that any remaining manipulations would be too risky for the bidder to execute and are thus implausible in practice.

4.2.2. Social Welfare Alignment and Ex-post Nash Incentive Compatibility

We now show that, given two assumptions, we also obtain formal incentive guarantees for MLCA.

Assumption 1. For every bidder i, if all other bidders report truthfully, then the social welfare of bidder i’s marginal economy is independent of bidder i’s value reports.

In our discussion of Design Feature #3, we have provided arguments for why this assumption is justified in practice. Given this assumption, we can make our earlier arguments regarding a bidder’s remaining manipulation opportunities more precise.

Proposition 3 (Social Welfare Alignment of MLCA). If Assumption 1 holds, and if all other bidders are truthful, then MLCA is social welfare aligned, i.e., increasing the reported social welfare of a^{MLCA} is the only way for a bidder to increase his utility.

Proof. As we see in Equation (8), in MLCA, the utility of a bidder is given by the difference between the reported social welfare in the main economy and the one in his marginal. Given Assumption 1, we know that, when the other bidders are truthful, a bidder cannot affect the reported social welfare of his marginal economy. Thus, the only way for him to increase his utility is to increase the reported social welfare for the final allocation a^{MLCA}.

Proposition 3 says that any beneficial manipulation for a bidder must increase the reported social welfare in the main economy. However, this is already the primary goal of MLCA’s elicitation process. In particular, the
query module is designed such that it generates query profiles with maximum learned social welfare. Thus, if the ML algorithm works well, MLCA should already perform this task on behalf of the bidders, without the need for any manipulations. Indeed, in our experiments (Section 7), we show that, when all bidders report truthfully, MLCA finds the efficient allocation in the majority of auction instances, for two of the three domains we study. This motivates the second assumption:

Assumption 2. If all bidders bid truthfully then MLCA finds an efficient allocation.

With this assumption in hand, we can now provide formal incentive guarantees for MLCA:

Proposition 4 (Truthful Ex-post Nash Equilibrium). If Assumptions 1 and 2 hold, then bidding truthfully is an ex-post Nash equilibrium of the game induced by MLCA.

Proof. Given Assumption 1, we know that MLCA is social welfare aligned; i.e., any beneficial manipulation must increase the social welfare of the main economy. Given Assumption 2, MLCA finds an efficient allocation if all bidders are truthful. Thus, there is no possibility to further increase the reported social welfare in the main economy. The result follows.

In practice, Assumptions 1 and 2 do not hold perfectly. Therefore, we also analyze the robustness of MLCA against various strategic manipulations via computational experiments (see Section 7.3). In our experiments, we could not find any manipulation strategy that increases a bidder’s utility, providing further evidence regarding MLCA’s robustness against manipulations in practice.

Remark 4 (Collusion and Spitefulness). A potential remaining concern regarding manipulative behavior is collusion (where two or more bidders manipulate together to increase each others’ profits) and spiteful bidding (where a bidder manipulates to decrease another bidder’s profits). Given that MLCA uses the VCG payment rule, it is (like VCG) also susceptible to collusive and spiteful behavior. However, note that other practical CAs like the CCA are also susceptible to similar manipulations (Levin and Skrzypacz, 2016). Investigating the degree to which our mechanism can be manipulated via spiteful or collusive bidding, and comparing it to the CCA, is outside the scope of this paper but interesting future work.

4.3. Individual Rationality

A mechanism is *individually rational* if each bidder’s payment is less than or equal to the bidder’s reported value for his final allocation. We can show:

Proposition 5. MLCA satisfies individual rationality.

Proof. Note that, despite its iterative nature, MLCA computes its final payments by just applying a VCG (or a core-selecting) payment rule on the reported valuation profile \hat{v} (see Equation (4), Algorithm 2). As each \hat{v}_i is only defined on bundles evaluated by bidder i (and assigns bidder i’s reported values to these bundles), MLCA inherits individual rationality from using the VCG (or core-selecting) mechanism. More formally, if we expand each bidder i’s utility $\hat{v}_i(a^{MLCA}) - p_i^{MLCA}$ using our payment equation (4), we obtain $\sum_{j \in N} \hat{v}_j(a^{MLCA}) - \sum_{j \in N \setminus \{i\}} \hat{v}_j(a^{\{i\}})$, which, as a^{MLCA} is optimal for \hat{v}, cannot be negative.

4.4. No-Deficit

A mechanism stipulating transfers between its participants and the center should not run a deficit. We can show that MLCA guarantees the no-deficit property.

Proposition 6. MLCA satisfies no-deficit.
Proof. As we discussed in the proof above, MLCA computes its final payments by just applying a VCG (or a core-selecting) payment rule on the reported valuation profile \(\hat{v} \) (see Equation (4), Algorithm 2). Our proposition follows by considering that VCG (or core-selecting) payments are always non-negative for each reported valuation profile \(\hat{v} \).

5. Instantiating the Machine Learning Algorithm

So far, our presentation of MLCA has been agnostic about which ML algorithm to use. However, in practice, this choice is very important as it determines not only the quality of the queries identified by Algorithm 1, but also whether running this algorithm is computationally feasible in practice. Indeed, each time our Query Module is called, the mechanism may need to determine up to \(n + 1 \) social welfare-maximizing allocations for the learned valuations, each time under different constraints. The evaluation of each allocation \(a \) requires applying \(A_i \) for each bidder \(i \) to derive their respective \(\tilde{v}_i \). In general, explicitly considering each allocation would require evaluating exponentially many allocations. However, if the learning model exhibits useful structure, we can exploit this structure when searching for the social welfare-maximizing allocation. In this section, we present learning models that can be used in our mechanism and show how to integrate their predictions into our mechanism’s winner determination problem in a computationally practical way. Specifically, we provide an integer program formulation of the winner determination problem used to derive \(\tilde{a} \) by careful representation of each trained ML model. Throughout this section, we also assume that each bidder has made the same number of reports \(\ell \). In Section 5.1, we start with a simple linear regression model. While simple to understand and computationally convenient, this learning model cannot capture complementarities between items, which prevents Algorithm 1 from learning highly efficient allocations in settings where such complementarities are important. Then, in Section 5.2, we introduce more expressive learning models, i.e., learning models able to capture more complex valuations.

Remark 5. In general, MLCA can use \(n \) bidder-specific learning algorithms \(A_i \) (see Line 2 in Algorithm 2). For simplicity, in this section we introduce our winner determination formulations under the assumption that each bidder uses the same learning algorithm for their learned valuation function \(\tilde{v}_i \). We emphasize that because bidders’ ML algorithms are treated independently it is easy to generalize to the case where different ML algorithms \(A_i \) are used for each bidder.

5.1. Linear Regression

In linear regression, each learned valuation \(\tilde{v}_i \) has the linear structure

\[
\tilde{v}_i(x) = w_i \cdot x,
\]

where \(w_i \in \mathbb{R}^m \) is the weight vector corresponding to \(\tilde{v}_i \). Given a weight vector \(w_i \), each \(w_{ij} \) represents bidder \(i \)’s learned value for item \(j \). A first, simple approach to determine \(\tilde{v}_i(x) \) is to interpolate bidder \(i \)’s reported values \(R_i = \{(x_{ik}, \hat{v}_{ik})\}_{k \in L} \). We can then use a standard squared loss function \(L_2(y, \tilde{y}) = (y - \tilde{y})^2 \) to quantify the interpolation error between an observation \(y \) and prediction \(\tilde{y} \), and choose our weight vector

10 Most theoretical work in ML assumes that the input data is IID. Despite this, many ML algorithms still work well on dependent samples in practice. Here, we take advantage of this empirical efficacy, as the training data in our framework is not independent. Of note, in a non-IID context, learning error may not diminish with additional training data. We leave it to future work to incorporate techniques specifically built around non-IID data (Steinwart, Hush and Scovel, 2009, e.g.).

11 Here we do not introduce a bias term. This is consistent with assuming that our bidders always value the empty bundle at zero.
as
\[w_i \in \arg \min_{w'_i} \sum_{k \in L} \mathcal{L}(\hat{v}_{ik}, w'_i \cdot x_{ik}). \]

(10)

Note that this simple approach does not provide a full characterization of \(w_i \) and, consequently, of bidder \(i \)'s learned valuation. We then add the extra term \(||w'_i||^2 = w'_i \cdot w'_i \) to the objective in (10), obtaining a convex problem. This technique is generally called Tikhonov regularization (Tikhonov and Arsenin, 1977), and it biases the learning towards valuations with low weights \(w_{ij} \). This new learning model is known as regularized linear regression and determines the weight vector as:

\[w_i \in \arg \min_{w'_i} c \sum_{k \in L} \mathcal{L}(\hat{v}_{ik}, w'_i \cdot x_{ik}) + ||w'_i||^2 \]

(11)

Here \(c > 0 \) defines the tradeoff between interpolation accuracy and regularization.

When valuations are learned via regularized linear regression, the optimization problem that determines \(\tilde{a} \in \arg \max_{a \in \mathcal{F}} \sum_{i \in N} \tilde{v}_i(a) \) can be formulated as the following integer program (IP):

\[
\begin{align*}
\max \quad & \sum_{i \in N} \sum_{j \in M} w_{ij} a_{ij} \\
\text{st.} \quad & \sum_{i \in N} a_{ij} \leq 1 \quad \forall j \in M \\
& a_{ij} \in \{0, 1\} \quad \forall i \in N, j \in M.
\end{align*}
\]

(12)

This IP has \(n \cdot m \) boolean variables \(a_{ij} \), each denoting whether bidder \(i \) should get item \(j \) under allocation \(a \), and \(m \) feasibility constraints enforcing that each item \(j \) is not allocated more than once. To limit this search problem to the allocations of the set \(\mathcal{F} \) defined in Line 10 of Algorithm 1, it is sufficient to add an integer cut \(\sum_{j \in M} |x_{ij} - a_{ij}| \geq 1 \) for each bundle \(x \) in \(R_0 \). While integer programming problems are NP-hard, using branch and bound algorithms (Land and Doig, 1960) as implemented by modern IP solving software such as CPLEX (CPLEX, 2019) allows us to solve Problem (12) in a few milliseconds even for large auction instances with 98 items and 10 bidders.

Despite being computationally very convenient, linear regression models have a major drawback: they cannot capture valuations where items are complements or substitutes.\(^{12}\) In the next section, we introduce a learning model that generalizes linear regression and allows us to capture a broader class of valuations.

5.2. Support Vector Regression

Support vector regression (SVR) is a learning model that provides powerful non-linear learning, while retaining attractive computational properties. In this subsection, we present the most important properties of SVR. We defer to Smola and Schölkopf (2004) for a detailed introduction.

To learn non-linear valuations, SVR algorithms project our bundle encodings from \(\mathbb{R}^m \) into a high (possibly infinite) dimensional feature space \(\mathbb{R}^f \). This projection is determined via a mapping function \(\varphi : \mathbb{R}^m \to \mathbb{R}^f \) that is an implicit meta-parameter of the learning model (as we shall see, it is specified via the choice of kernel). The learned function is then captured via linear regression in the feature space as

\[\tilde{v}_i(x) = w_i \cdot \varphi(x), \]

(13)

\(^{12}\)Under linear regression models, the learned value bidder \(i \) has for bundle \(x \) is always additive as it is given by the sum of the learned values \(w_{ij} \) for the items \(j \) contained in \(x \) (see Equation (9)).
where \(w_i \in \mathbb{R}^f \). The weight vector \(w_i \) minimizes an objective similar to the one in (11), with the important difference that the squared loss is replaced by the \(\varepsilon \)-insensitive hinge loss \(L_\varepsilon(y, \tilde{y}) = \max\{|y - \tilde{y}| - \varepsilon, 0\} \), where \(\varepsilon \geq 0 \) is a meta-parameter of the model. The \(\varepsilon \)-insensitive hinge loss is a linear function in contrast to the squared loss in the regularized least squares approach described earlier. Moreover, when the interpolation error is smaller than \(\varepsilon \), the loss drops to zero. This “insensitive” region will turn out to be important in that it allows for more succinct models to be learned. In standard machine learning applications, this parsimony is useful for speeding up the computation of the trained model, \(\tilde{v}_i(x) \). In our application, the parsimony of models trained under the \(\varepsilon \)-insensitive loss translates into making the winner determination problem easier to solve.

With this background we formulate the learning problem under SVRs as follows (Smola and Schölkopf, 2004):

\[
\begin{align*}
 w_i \in \arg \min_{w'_i} & \sum_{k \in L} L_\varepsilon(\hat{v}_{ik}, w'_i \cdot \varphi(x_{ik})) + ||w'_i||^2 \\
\text{s.t.} & \quad \alpha_{ik}, \beta_{ik} \in [0, c] \quad \forall k \in L.
\end{align*}
\]

(14)

When the dimensionality of the feature space is low, \(w_i \) can be determined using standard simplex algorithms, as for linear regression. However, SVR algorithms may involve high dimensional feature spaces, meaning that it is often impractical to determine \(\tilde{v}_i \) via its weight vector. In this scenario, it is convenient to derive \(\tilde{v}_i \) via the dual version of the learning problem presented in (14), which is formulated in \(\ell \) pairs of variables \(\alpha_{ik} \) and \(\beta_{ik} \); these variables are the Lagrange multipliers of the two constraints \(w'_i \cdot \varphi(x_{ik}) \leq \hat{v}_{ik} + \varepsilon \) and \(w'_i \cdot \varphi(x_{ik}) \geq \hat{v}_{ik} - \varepsilon \), respectively. To do this, we begin by defining the kernel function, which is defined as the value of the dot product of the projection of two vectors \(x \) and \(x' \) in the feature space:

Definition 3 (Kernel Function (Mercer, 1909)).

\[
\kappa(x, x') = \varphi(x) \cdot \varphi(x')
\]

(15)

The kernel is useful because of the so-called “kernel trick”: for a suitable choice of \(\varphi \), \(\kappa(\cdot) \) can be evaluated directly in closed form, without the need to invoke the explicit projection \(\varphi \) at all.

With this definition, the dual formulation of the SVR training problem, (14), is as follows (Smola and Schölkopf, 2004):

\[
\begin{align*}
 \max_{\alpha, \beta} & \quad -\frac{1}{2} \sum_{k \in L} \sum_{k' \in L} (\alpha_{ik} - \beta_{ik})(\alpha_{ik'} - \beta_{ik'}) \kappa(x_{ik}, x_{ik'}) \\
 & \quad - \varepsilon \sum_{k \in L} (\alpha_{ik} + \beta_{ik}) + \sum_{k \in L} \hat{v}_{ik} (\alpha_{ik} - \beta_{ik}) \\
\text{s.t.} & \quad \alpha_{ik}, \beta_{ik} \in [0, c] \quad \forall k \in L.
\end{align*}
\]

(16)

Because of the kernel trick, for a suitable kernel, this problem can be formulated and solved without entering the high dimensional feature space at all. Solving the training problem is thus equivalent to determining the optimal \(\alpha_i \) and \(\beta_i \). Having accomplished this, predictions under the learned model are obtained via the following (Smola and Schölkopf, 2004):

\[
\tilde{v}_i(x) = \sum_{k \in L} (\alpha_{ik} - \beta_{ik}) \kappa(x, x_{ik})
\]

(17)
5.2.1. Formulating the Winner Determination Problem Under SVR

In our application, we need to solve for the social welfare maximizing allocation under market clearing constraints. That is, we need to be able to formulate the objective:

\[\tilde{a} \in \arg \max_{a \in \mathcal{F}} \sum_{i \in N} \tilde{v}_i(a) \tag{18} \]

For a given kernel, we can formulate (18) via (17), as follows:

\[
\begin{align*}
\max_a & \quad \sum_{i \in N} \sum_{k \in L} (\alpha_{ik} - \beta_{ik}) \kappa(a_i, x_{ik}) \\
\text{s.t.} & \quad \sum_{i \in N} a_{ij} \leq 1 \quad \forall j \in M \\
& \quad a_{ij} \in \{0, 1\} \quad \forall i \in N, j \in M.
\end{align*}
\tag{19}
\]

It remains, however, to pick a kernel function \(\kappa \) that is non-linear (to gain expressive power over regularized linear regression) and that can still be effectively encoded in an integer program.

In selecting kernels, we focus on two commonly used classes: dot-product kernel functions and radial basis kernel functions (RBF kernels) (Williams and Rasmussen, 2006, chapter 4). In Appendix C, we present the integer programming formulations of Problem (19) for dot-product and RBF kernels. In our application, we consider three kernel functions selected based on two criteria: 1. the expressivity of the corresponding learning model (which is determined by the implicit feature mapping \(\varphi \)), and 2. the complexity of the corresponding instantiation of Problem (19).

We start by considering the Quadratic kernel:

Definition 4 (Quadratic Kernel). A Quadratic kernel is a kernel function of the form

\[\kappa(x, x') = x \cdot x' + \lambda(x \cdot x')^2, \tag{20} \]

where \(\lambda \) is a non-negative parameter.

The Quadratic kernel is not fully expressive, i.e., it cannot capture any valuation function a bidder may have. However, it allows us to formulate Problem (19) as a quadratic programming problem with boolean variables, which can be practically solved via branch and bound methods (Lima and Grossmann, 2017):

\[
\begin{align*}
\max_a & \quad \sum_{i \in N} \sum_{k \in L} (\alpha_{ik} - \beta_{ik}) \left(\sum_{j \in M} a_{ij} x_{ikj} + \lambda \left(\sum_{j \in M} a_{ij} x_{ikj} \right)^2 \right) \\
\text{s.t.} & \quad \sum_{i \in N} a_{ij} \leq 1 \quad \forall j \in M \\
& \quad a_{ij} \in \{0, 1\} \quad \forall i \in N, j \in M.
\end{align*}
\tag{21}
\]

We also consider two fully expressive kernels: the Gaussian kernel and the Exponential kernel:

Definition 5 (Gaussian Kernel). A Gaussian kernel is a kernel function of the form

\[\kappa(x, x') = \exp\left(-\frac{||x - x'||^2}{\lambda}\right), \tag{22} \]
where λ is a non-negative parameter.

Definition 6 (Exponential Kernel). An Exponential kernel is a kernel function of the form

$$\kappa(x, x') = \exp \left(\frac{x \cdot x'}{\lambda} \right),$$

(23)

where λ is a non-negative parameter.

The Gaussian kernel is an RBF kernel commonly used in the machine learning literature. The Exponential kernel is also fully expressive but, unlike the Gaussian one, is a dot-product kernel.

6. Optimizing the Machine Learning Algorithm

To achieve maximal performance with MLCA, we need to identify the kernel and parameters that work best for the machine learning algorithm. Before evaluating the full MLCA in the next section, we here perform a series of experiments to identify the optimal parameterization.

6.1. Experiment Set-up

In order to run these experiments, we need data with which to exercise the mechanism. The allocation of spectrum is one of the most important applications of CAs. We therefore adopt the allocation of spectrum for our experimental evaluation. To do this, we employ the Spectrum Auction Test Suite (SATS) version 0.7.0 (Weiss, Lubin and Seuken, 2017), which allows us to easily generate thousands of auction instances on demand. We tested our approach on three of SATS’ value models across a range of complexity. We describe each in turn below:

- The Global Synergy Value Model (GSVM) (Goeree and Holt, 2008) generates medium-sized instances with 18 items and 7 bidders. GSVM models the items (spectrum licenses) as being arranged in two circles. Depending on his type, a bidder may be interested in licenses from different circles and has a value that depends on the total number of licenses of interest. GSVM also includes a “global” bidder with interest in two thirds of the total licenses.

- The Local Synergy Value Model (LSVM) (Scheffel, Ziegler and Bichler, 2012) also generates medium-sized instances with 18 items and 6 bidders. In LSVM, the items are placed on a two-dimensional grid, and a bidder’s value depends on a sigmoid function of the number of contiguous licenses near a target item of interest. This makes the value model of LSVM more complex than that of GSVM.

- The Multi-Region Value Model (MRVM) (Weiss, Lubin and Seuken, 2017) generates large instances with 98 items and 10 bidders. MRVM captures large settings, such as US and Canadian auctions, by modeling the licenses as being arranged in multiple regions and bands. Bidders’ values are affected by both geography and frequency dimensions of the licenses.

The GSVM, LSVM, and MRVM instances we tested correspond to SATS seeds 101-200 for experiments based on 100 samples, and SATS seeds 101-150 for experiments based on 50 samples. We used CPLEX 12.10 to solve the integer programs used to determine welfare-optimal allocations and train our learning algorithms.\(^{13}\)

\(^{13}\)Experimentally we need to evaluate several different mechanism design choices, and do so with enough data points for statistical significance. Consequently, in our experiments, we ran an enormous number of MIPs (approximately 2,000,000). Accordingly, we adopt a modest timeout for the solver, which we set to 1 minute, and adopt the best solution found so far. We note that in practical use, auctioneers will typically have more time to let the optimizer run (typically at least an hour), which would improve the outcome of our mechanisms; we thus report conservative results with respect to the optimality of the MIP solutions.
Table 1: The effect of varying the insensitivity parameter ε on the predictive performance: both efficiency of the predicted optimal allocation, and learning error. Results are shown for the two expensive kernels, Exponential and Gaussian, in the LSVM domain.\footnote{Dashes in the table indicate entries where we could not get complete results because CPLEX could not find any feasible solution within the given time limit. Note that these are preliminary results subject to change due to ongoing updates to our code base.}

Kernel	ε	Efficiency	Learning Error	WD Solve Time	Optimality Gap							
	50	100	200	50	100	200	50	100	200			
Exponential 0	81.7%	84.2%	84.6%	16.08	13.39	11.46	54.39s	60.00s	60.00s	0.49	2.04	6.70
Exponential 2	82.7%	84.7%	84.7%	16.37	13.51	11.54	47.86s	60.00s	60.00s	0.32	1.56	5.31
Exponential 4	82.7%	83.8%	84.7%	16.80	13.76	11.77	43.60s	60.00s	60.00s	0.17	1.17	4.28
Gaussian 0	72.5%	83.2%	85.9%	19.41	15.69	12.61	60.00s	60.00s	60.00s	0.68	1.79	4.44
Gaussian 2	71.0%	84.3%	87.3%	19.70	15.82	12.79	60.00s	60.00s	60.00s	0.59	1.51	3.71
Gaussian 4	72.3%	81.4%	87.6%	20.11	16.05	13.10	60.00s	60.00s	60.00s	0.47	1.28	3.14

conducted our experiments on a Ubuntu 16.04 cluster with AMD EPYC 7702 2.0 GHz processors using 8 cores and 32 GB of RAM.

6.2. Results

In the experiments in this section, we are interested in identifying which kernel to use in the ML algorithm such that the full mechanism will yield the most efficient outcome. In selecting a kernel, we need to optimize the various parameters of the learning algorithm (i.e. ε, c, and any kernel hyperparameters). We tune these parameters to maximize the efficiency of the predicted allocation. Because we need the machine learning algorithm to operate within a reasonable computational budget, one of the most important parameters is the insensitivity threshold ε. This is because, as is standard in kernel-based ML methods, ε controls the number of support vectors that are likely to be part of the learned model. The size of the winner determination MIP that we solve (see Appendix C) is heavily dependent on the number of support vectors. Thus, ε determines a trade-off between the learning error of the ML model and the run-time of the winner determination optimizer.

To investigate this trade-off, we conducted an experiment on the two more expensive kernels, Gaussian and Exponential. We present the corresponding results for the LSVM domain in Table 1. Results for the other two domains are provided in Appendix D. To conduct this experiment, we first generate an LSVM domain using SATS. From this domain we then randomly sample $Q \in \{100, 200, 500\}$ truthful bundle-value pairs from each bidder. Based on these reports, we train an ML algorithm (with particular parameters) to construct $\tilde{\nu}$. We then evaluate this $\tilde{\nu}$ and its effectiveness in learning optimal allocations (in terms of quality and speed) according to four measures of interest which we next describe.

First, we provide the efficiency of the learned optimal allocation. To do this, we compute the social welfare of the gold standard optimal allocation at true values, $V(a^*)$, using the concise MIP formulation built into SATS, and compare this to the true social welfare of the learned optimal allocation, $V(\tilde{a})$. Note that this is not the efficiency of MLCA (which we investigate in the next section), but the efficiency of the learned optimal allocation \tilde{a} after being trained on $Q \in \{100, 200, 500\}$ randomly selected bundles. The table includes subcolumns for each Q, enabling us to compare the effect of training data size on the learning algorithm. For each kernel, we show the results for three insensitivity thresholds, ε: the one that is best for efficiency on average across the different Qs, one twice that size, and zero. From the table, we can see that most of the efficiency gains occur in the first half of the considered range of ε. Further, we see that for sufficiently large ε, efficiency is monotonically increasing in the sample size Q.\footnote{Dashes in the table indicate entries where we could not get complete results because CPLEX could not find any feasible solution within the given time limit. Note that these are preliminary results subject to change due to ongoing updates to our code base.}
Next, we report the learning error of the machine learning algorithm. Here we are measuring learning error in the standard way by measuring the average absolute difference between the predicted and true value for all bundles in the domain. From the table we see that the higher the epsilon (and thus the fewer support vectors) the worse the learning error.

Next, we report the solve time for the winner determination MIP that finds \tilde{a} based upon the trained ML model. From the table we see that the solver always times out unless the insensitivity threshold ε is sufficiently large.

Finally, we list the optimality gap reported by the solver when it stops. Specifically, this is calculated as $(\overline{o} - \underline{o})/\overline{o}$, where \overline{o} and \underline{o} are the solver’s proven upper and lower bounds on the objective value respectively. When the value is zero, the solver has proven optimality. As expected, the optimality gap is closely correlated with the solve time, but it provides a quantitative measure of the consequence of the solver stopping early.

Overall from the table, we see that it is important to select epsilon carefully in order to properly trade off learning performance (as measured via learning error) with solve time (as measured via WD solve time) to maximize the efficiency of the learned optimal allocation (as measured by Efficiency).

Now that we have selected the best parameters for each kernel, we turn to a head-to-head comparison of each of the kernels we have introduced. Accordingly, in each of our domains of study we run the same experiment as described above with the Linear, Quadratic, Exponential and Gaussian kernels. We present the results for the LSVM domain in Table 2; results for the other two domains are available in Appendix D. Following the result in the previous table, all parameters (i.e. ε, c, and any kernel hyperparameters) in this kernel comparison are tuned to maximize efficiency.

From the table we can see the the Quadratic kernel yields the best efficiency at all sample sizes. The Linear kernel has the lowest efficiency, showing that more expressive kernels can be worth the computational effort they require.

Turning to the learning error column, we observe that all of the entries in this table are higher than the lowest observed value in Table 1, which is the Exponential kernel with $\varepsilon = 0$. This indicates that the Exponential kernel is best able to generalize in this domain, but its calculation is sufficiently expensive that we are generally better off choosing a Quadratic kernel that has somewhat higher learning error, but a more succinct winner determination formulation.

We note that efficiency is typically inversely related to learning error. For example, the efficiency of the Quadratic kernel rises in the sample size Q, while its learning error decreases in Q.

Turning to the final columns in the table, we see that the Linear kernel is solvable very rapidly with 0 optimality gap. Whereas the Exponential and Gaussian kernels are more expensive.

We see that similar arguments hold for GSVM and MRVM (see Appendix D). Overall, the Quadratic kernel makes the best tradeoff between learning error and solve time, yielding the most efficient learned optimal allocation.

Table 2: Comparison of different kernels in the LSVM domain. The Quadratic kernel obtains the best efficiency under the imposed computational constraints.

15 This is possible for GSVM and LSVM which have 18 items and are enumerable in this way; for MRVM we compute a similar statistic by sampling 100,000 bundles.
allocation within our computational budget, and we therefore adopt it going forward in the experiments in the next section.

7. Experiments

In this section, we evaluate the full MLCA mechanism, comparing it against the widely-used CCA. Additionally, we investigate the effect of non-truthful bidding.

7.1. Experiment Set-up

To run our experiments, we need to specify a number of attributes of both the MLCA and CCA mechanisms, as well as define the scope and properties of the experiments themselves.

MLCA. MLCA is parametrized by a machine learning algorithm A_i for each bidder i, the number of queries Q^{max} and the number of initial queries Q^{init}. As described in Section 6, our ML algorithm will be an SVR with Quadratic kernel for all domains of study. In our experiments, we use $Q^{\text{max}} = 100$ in the simpler GSVM domain, and $Q^{\text{max}} = 500$ in LSVM and MRVM. We note that the $Q^{\text{max}} = 500$ is a practical number of queries, given that it was used in the real-world Canadian auction that inspired the MRVM model that we use. For the number of initial queries Q^{init}, we select an optimal value through offline tuning. Specifically, we use $Q^{\text{init}} = 50$ for GSVM, $Q^{\text{init}} = 60$ for LSVM, and $Q^{\text{init}} = 50$ for MRVM. To be conservative, we don’t allow any bidders to “push” bundles in our MLCA evaluation. This avoids confusing the results by including contributions due to a bidder push heuristic.

CCA. The CCA is parameterized by the reserve prices employed, the way prices are updated, and what heuristics are assumed for bidder behavior in the supplementary phase. In our experiments, we use reserve prices for each license equal to 1% of the average license value derived from 10,000 bundle-value pairs sampled from bidders in the domain. For the price updates, we follow the parameterization of the real-world Canadian CCA, that used 5% price increments for most of the auction rounds. We note that the number of auction rounds we obtain under these price settings is similar to the number of auction rounds observed in the real-world Canadian auction. Finally, we specify how bidders in the CCA select which bundle-value pairs to report in the supplementary round.\(^\text{16}\) We consider the following heuristics:

- **Clock Bids:** this corresponds to there being no supplementary round. Thus, the final allocation of the CCA is only determined based on the those bundles reported in the clock phase (as an answer to the corresponding demand query), using the value equal to the highest quoted price for that bundle.

- **Clock Bids Raised:** bidders provide their true values for all unique bundles they reported during the clock phase.

- **Profit Max:** bidders report their true values for all bundles reported during the clock phase and additionally for Q bundles earning them the highest profit at the final clock prices.\(^\text{17}\) In our simulations,

\(^{16}\)There is no prior work to guide the optimal strategy for bidders in choosing bundles to bid upon in the supplemental round. We therefore explored several different heuristics in our experiments after consulting with industry experts who have been involved in the design of the CCA and who have provided advice to bidders in the CCA. The lack of theoretical guidance here represents an additional strategic burden on bidders, in contrast to MLCA.

\(^{17}\)To get a similar number of reported values across small and large bidders, we also let bidders report values for bundles earning them negative profit at the final clock prices, which may still be useful for them in the final winner determination.
we use $Q = 100$ in the simpler GSVM domain, and $Q = 500$ in LSVM and MRVM18.

For both MLCA and CCA, we simulate truthful bidding in Section 7.2; in Section 7.3 we will consider more complex bidder behavior.

7.2. Efficiency Results

We now study the efficiency of MLCA, comparing it against the CCA. We consider each of our three domains in turn. We begin with the two more stylized domains GSVM and LSVM, to build intuition for when MLCA works well and when it does not, before we move on to the realistically-sized MRVM domain.19

7.2.1. GSVM

Mechanism	ML Algorithm	Bidding Heuristic	Efficiency	Revenue	Revenue (Core)	Rounds
MLCA	SVR-Linear	-	99.7% (0.10)	66.1% (0.99)	69.6% (0.96)	14 (0.0)
	SVR-Quadratic	-	100.0% (0.00)	68.4% (1.10)	72.4% (1.05)	14 (0.0)
CCA	-	Clock Bids	88.8% (0.81)	37.9% (1.43)	52.5% (0.83)	233 (3.0)
	-	Clock Bids Raised	94.0% (0.47)	51.3% (1.70)	67.1% (0.93)	234 (3.0)
	-	Profit Max	100.0% (0.00)	68.1% (1.13)	73.1% (0.99)	234 (3.0)
VCG	-	-	100.0% (0.00)	68.4% (1.11)	-	1 (0.0)
Random Allocation	-	-	19.6% (0.79)	-	-	-

Table 3: Results for MLCA, CCA and VCG in the GSVM domain. We use $Q_{\text{max}} = 100$ in MLCA and $Q = 100$ in the Profit Max heuristic of CCA. Results are averages over 100 auction instances. Standard errors are in parentheses.

We start with the relatively simple GSVM domain, for which we present results in Table 3. We see that MLCA provides 100% efficiency even with only a 100 query cap. We note that bidder preferences in the GSVM domain can be captured perfectly by the Quadratic kernel (see Appendix E).

The CCA with the Profit Max heuristic also performs very well, achieving 100% efficiency. In the table, we next report revenue, measured as the fraction of surplus accruing to the seller. We see that VCG produces a high level of revenue in this setting, and that all of the CCA and MLCA versions are close to VCG, except for the Clock Bids heuristic. In the next column we show revenue for the VCG-nearest core-selecting rule as applied to the bundle-value pairs in the supplemental round of the CCA (this is the payment rule that is often used in practice). As expected, we see some revenue lift when swapping VCG for the core-selecting rule. Finally the table shows the number of rounds employed by each mechanism. We observe that MLCA uses a very small number of rounds given the relatively small query cap.

18Our implementation of the CCA in MRVM includes generics, enabling bidders to submit “quantity bids” for groups of substitutable items (see Weiss, Lubin and Seuken, 2017). Note that MLCA currently does use generics, which gives the CCA a slight advantage in this respect.

19Our experiments are run on the same computational grid as was used for the experiments in Section 6. However, the experiments in this section required a much larger computational effort because many more MILPs needed to be solved in an iterative fashion (more than 100,000 core hours).
7.2.2. LSVM

Mechanism	ML Algorithm	Bidding Heuristic	Efficiency	Revenue	Revenue (Core)	Rounds
MLCA	SVR-Linear	N/A	98.3% (0.40)	72.8% (0.88)	75.3% (0.79)	114 (0.0)
	SVR-Quadratic		99.6% (0.12)	80.9% (0.91)	84.5% (0.83)	114 (0.0)
CCA	N/A	Clock Bids	82.4% (0.71)	62.8% (0.98)	66.4% (0.81)	123 (0.3)
		Clock Bids Raised	91.0% (0.47)	76.0% (1.03)	79.2% (0.89)	124 (0.3)
		Profit Max	**99.9% (0.03)**	82.3% (0.91)	86.4% (0.73)	124 (0.3)
VCG			100.0% (0.00)	83.1% (0.89)	-	1 (0.0)
Random Allocation			20.4% (0.64)	-	-	-

Table 4: Results for MLCA, CCA and VCG in the LSVM domain. We use $Q_{\text{max}} = 500$ in MLCA and $Q = 500$ in the Profit Max heuristic of CCA. Results are averages over 100 auction instances. Standard errors are in parentheses.

Next we turn to the LSVM domain, the results for which we show in Table 4. We see that the CCA obtains an efficiency of 99.9%. Note that the strong performance of the CCA is heavily dependent on the employed Profit Max heuristic for the supplementary phase, as we can see from the much lower performance of the CCA when using the other two heuristics. MLCA again performs best when using the Quadratic kernel, achieving an efficiency of 99.7%, but this is still slightly worse than the performance of the CCA with the Profit Max heuristic. Using a paired t-test we found this difference to be statistically significant ($p < 0.01$). We can make similar arguments to GSVM regarding revenue and rounds.

Overall, in the LSVM domain, we observe that the CCA slightly outperforms MLCA. This is likely due to two effects. First, most bidders in the LSVM domain (in particular, the regional bidders) are only interested in a relatively small number of bundles (Scheffel, Ziegler and Bichler, 2012). The Profit Max heuristic with a query cap of 500 then essentially allows them to almost fully described their preferences. In contrast, MLCA does not rely on such a strong bidding heuristic, and the Quadratic kernel employed cannot capture the domain very well (in contrast to GSVM), which explains the slightly lower efficiency.

Remark 6. There are multiple ways to further increase the efficiency of MLCA. First, with more computational resources (i.e., larger compute clusters, improvements in compute technology expected to come), the 1 minute time limit we impose on each MIP becomes less of a constraint, which automatically increases efficiency. Second, with more computational resources, we could then also employ more expressive kernels (e.g., Gaussian or Exponential). As we have shown in Section 6, with our current computational set-up, the Quadratic kernel leads to the highest efficiency, even though the Gaussian and Exponential kernel have lower learning error – but this would likely change once we have sufficiently powerful computers. Third, we could explore using other ML algorithms that may capture the structure of the LSVM domain better than the Quadratic kernel. In fact, in work subsequent to this paper, Weissteiner and Seuken (2020) have recently shown how deep neural networks (NNs) can be used as the ML algorithm in MLCA (instead of SVRs). For the LSVM domain, they showed that using NNs increases the efficiency of MLCA beyond that achievable via SVRs.
7.2.3. MRVM

Mechanism	ML Algorithm	Bidding Heuristic	Efficiency	Revenue	Revenue (Core)	Rounds
MLCA	SVR-Linear	N/A	96.4% (0.13)	40.5% (0.33)	40.7% (0.34)	114 (0.0)
	SVR-Quadratic		93.9% (0.18)	42.7% (0.33)	42.9% (0.32)	114 (0.0)
CCA	N/A	Clock Bids	93.2% (0.20)	17.4% (0.48)	18.0% (0.44)	140 (0.9)
		Clock Bids Raised	93.4% (0.20)	30.0% (0.80)	34.9% (0.39)	141 (0.9)
		Profit Max	94.2% (0.20)	30.0% (0.77)	34.5% (0.39)	141 (0.9)
VCG	-	-	100.0% (0.00)	42.2% (0.31)	-	1 (0.0)
Random Allocation	-	-	34.4% (0.72)	-	-	-

Table 5: Results for MLCA, CCA and VCG in the MRVM domain. We use $Q^{\text{max}} = 500$ in MLCA and $Q = 500$ in the ProfitMax heuristic of CCA. Results are averages across 50 auction instances. Standard errors are in parentheses.

Finally, we turn to MRVM, which is a realistically-sized domain, and the most complex value model we consider. The results for this domain are shown in Table 5. We see that MLCA (using the Quadratic kernel) achieves an efficiency of 96.4%, while the CCA (using the Profit Max heuristic) only achieves an efficiency of 94.2%. Using a paired t-test, we find that this efficiency difference is highly statistically significant ($p < 1e^{-8}$).

There are multiple reasons for the performance advantage of MLCA over the CCA in this domain. First, MRVM has 2^{98} bundles, and, importantly, the bidders are interested in a very large subset of those bundles. This means that 500 bundle-value pairs is not sufficient to reasonably describe bidders’ preferences. As a consequence, the CCA Profit Max heuristic is not nearly as effective as it was in the simper GSVM and LSVM domains. Second, even though the Quadratic kernel cannot learn the MRVM model perfectly (unlike in GSVM), our kernel experiments have shown that the learning error of the Quadratic kernel in MRVM is also relatively small. Thus, in this large (realistically-sized) domain, the power of a well-tuned ML algorithm can really shine.

Turning to revenue, we observe that the CCA with the Profit Max heuristic obtains a much smaller amount of revenue than VCG. Further, we observe that this low level of revenue is present not only with the VCG payment rule, but also with a core-selecting payment rule. In contrast, MLCA achieves a significantly higher amount of revenue than the CCA. The most likely explanation for this is the fact that MLCA explicitly queries the marginal economies, which leads to good information elicitation in the marginals and thus higher prices, while the CCA essentially only focuses on preference elicitation in the main economy.

Finally, we observe that MLCA and the CCA require a comparable number of rounds, implying that the number of rounds required by MLCA would not be a limitation in practice.

Overall, we see that MLCA performs exceptionally well in this complex domain. We see that when the domain is very large and complex, our rich ML-based elicitation approach is highly effective, while the CCA becomes less effective.

7.3. Manipulation Results

So far, we have considered truthful behavior on the part of bidders. But we are also interested in the robustness of the mechanism to non-truthful bidder behavior. While a full equilibrium analysis of a mechanism as complex as MLCA is beyond the state-of-the-art for either a closed-form or for a computational approach (Bosshard et al., 2020), we can still provide useful evidence about how the mechanism performs in the face of strategic bidders. Specifically, we consider the effect of a single bidder attempting a unilateral deviation towards strategic play, holding all other bidders at truthful bidding.
It remains to specify what strategy our single manipulating bidder, \(i \), should employ. To do so, we reason carefully about MLCA in order to develop a potentially useful strategy. In this exercise we will allow the bidder access to private information that would not be available to bidders; doing so only strengthens potential power of the strategy and thus the exercise. For reasons described in Section 4.2, it will be very difficult for a bidder to gain advantage through manipulating the main economy. Therefore, we target our strategy at the marginal economy, lowering that economy’s social welfare, and thus decreasing it as much as possible without winning the bundle. This approach seeks to drive out competition in the bidder’s economy as follows: (a) for those bundles \(i \) may win, bid truthfully; (b) for all other bundles overbid by as much as possible without winning the bundle. This approach seeks to drive out competition in \(i \)’s marginal economy, lowering that economy’s social welfare, and thus decreasing \(i \)’s VCG payment.

We instantiate the approach by granting bidder \(i \) access to the following information:

\[
V_R = \max_{a \in \mathcal{F} : a_j \in R, \forall j \in N} V(a) \tag{24}
\]

\[
V_T(b) = \max_{a \in \mathcal{F} : a_i = b} V(a) \tag{25}
\]

The scalar \(V_R \) (24) is the social welfare of the best allocation available among the elicited bundles up to the current round (note that this calculation uses the bids of the other bidders evaluated at their true values). For a given bundle \(b \), \(V_T(b) \) (25), is the social welfare of the best allocation where bidder \(i \) is fixed to bundle \(b \) and the other bidders are not restricted to their reports (note that this calculation uses the full truthful valuation of the other bidders). Both of these pieces of information contain powerful private information that would not normally be available to bidders outside the confines of the present exercise.

We then propose the following strategy for bidder \(i \), when queried bundle \(b \):

\[
\hat{v}(b) = \begin{cases}
\nu_i(b) & \text{if } V_R \leq V_T(b) \\
\nu_i(b) + z(V_R - V_T(b)) & \text{otherwise}
\end{cases} \tag{26}
\]

Where \(0 \leq z < 1 \) is a parameter specifying the amount of overbidding. The strategy works by using \(V_T(b) \) as a threshold: so long as the best allocation at reports, \(V_R \), is below this value any overbid might change the allocation (assuming other bidders are truthful), and so to be “safe” the bidder remains truthful. Otherwise the bidder can overbid by up to the amount \(V_R \) is in excess of the threshold and still be “safe” from changing the allocation (assuming other bidders are truthful). Thus, by construction and as desired, bidder \(i \) will never win a misreported bundle when all other bidders report truthfully, as they do in our experiments.

To evaluate this strategy, we ran experiments for all three domains and with all bidder types separately employing this strategy. We evaluated \(z \in \{0.25, 0.5, 0.75, 0.99\} \) with the quadratic kernel. Results for MRVM are reported in Table 6; we defer the results for GSVM and LSVM to Appendix G. In the last row of the table we provide the p-value of the one-way ANOVA to test for statistically significant differences across all applied strategies for each column respectively. We observe that none of the manipulation strategies we consider leads to a statistically significant improvement in the bidder’s utility. Thus, even when providing the bidder with access to powerful information not normally present (i.e., an oracle capable of calculating \(V_R \))
and $V_T(b)$, the bidder is not able to significantly improve their utility under the proposed strategy targeting the bidder’s marginal economy. This provides further evidence regarding MLCA’s robustness against such manipulations.

8. Conclusion

In this paper, we have introduced a machine learning-powered iterative combinatorial auction mechanism we call MLCA. In contrast to prior designs like the CCA, MLCA does not use prices but value queries to interact with the bidders. Via simulations, we have shown that MLCA is able to achieve higher efficiency than the CCA, even with just a small number of queries per bidder.

Two components in our design are responsible for this efficiency gain: (1) the ML algorithm learns a bidder’s valuation on the whole bundle space, and (2) in each iteration of the auction, we compute the (tentatively) optimal allocation based on the learned values, which we use to decide which value query to ask next to each bidder. To achieve good incentives, we have drawn on principles from the VCG mechanism to design MLCA.

Our results give rise to promising directions for future research: First, while we have shown how our elicitation method can be modified to allow bidders to only report bounds on their values, we have left a full mechanism based on this bounds-based elicitation method to future work. Second, while our method of selecting the initial set of queries uniformly at random from the whole bundle space has worked surprisingly well, future work could explore more sophisticated active learning methods for generating this initial set.

Acknowledgments

Part of this research was supported by the SNSF (Swiss National Science Foundation) under grant #156836 and by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 805542) and by the National Science Foundation (NSF) under grant no. CMMI-1761163. We thank Fabio Isler and Manuel Beyeler for excellent research assistance in implementing some of the algorithms and running some of the experiments.
A. Full Versions of the Query Module and of MLCA

Algorithm 3: Machine Learning-powered Query Module (full version, including set \(S \))

```
function NextQueries_A(I, R, S);
parameters: profile of ML algorithms \( A \);
inputs: index set of bidders for the economy to be considered \( I \); profile of reports \( R \);
profile of queries that have already been generated in this auction round \( S \);

1 foreach bidder \( i \in I : \tilde{v}_i := A_i(R_i) \);  \hspace{1cm} \textbf{\textit{Learning Step}}: learn valuations using ML algorithm
2 select \( \tilde{a} \in \arg\max_{a \in \mathcal{F}} \sum_{i \in I} \tilde{v}_i(a_i) \);  \hspace{1cm} \textbf{\textit{Optimization Step}} (based on learned valuations)
3 assign new query profile: \( q = \tilde{a} \) (i.e., for each \( i \in I : q_i = \tilde{a}_i \));

4 foreach \( i \in I \) do
5  if bundle \( q_i \) has already been queried or generated before (i.e., \( q_i \in R_i \cup S_i \)) then
6  define set of allocations containing a new query for \( i \): \( \mathcal{F}' := \{ a \in \mathcal{F} : a_i \neq x, \forall x \in R_i \cup S_i \} \};
7  select \( \tilde{a} \in \arg\max_{a \in \mathcal{F}'} \sum_{i' \in I} \tilde{v}_{i'}(a_{i'}) \);  \hspace{1cm} \textbf{\textit{Optimization Step}} (with restrictions)
8  overwrite new query for bidder \( i \): \( q_i = \tilde{a}_i \);
9 end

10 return profile of new queries \( q \);
```
Algorithm 4: Machine Learning-powered Combinatorial Auction (MLCA) (full version)

parameters: profile of ML algorithms A; maximum # of queries per bidder Q^max;
of initial queries $Q^\text{init} \leq Q^\text{max}$; # of queries per round Q^round; maximum # of push bids per bidder P^max;

1. foreach bidder $i \in N$: receive $P_i \leq P^\text{max}$ push bids;
2. foreach bidder $i \in N$: ask the bidder to report his value for Q^init randomly chosen bundles;
3. Let $R = (R_1, ..., R_n)$ denote the initial report profile, where each R_i is i’s set of bundle-value reports;
4. Let $T = [(Q^\text{max} - Q^\text{init})/Q^\text{round}]$ denote the total number of auction rounds and $t = 1$ the current round;
5. while $t \leq T$ do // Auction round iterator
 6. Let $S = (S_1, ..., S_n)$ denote the profile of queries for this auction round, with each $S_i = \emptyset$;
 7. foreach bidder $i \in N$ do
 8. Sample a set of bidders N' from $N \setminus \{i\}$ with $|N'| = Q^\text{round} - 1$;
 9. foreach $i' \in N'$ do
 10. Generate query profile $q := \text{NextQueries}_{A,M}(N \setminus \{i\}, R_{i'}, S_{i'})$; // Queries for ME
 11. For bidder i: add q_i to the queries generated for this round, i.e., $S_i = S_i \cup \{q_i\}$;
 end
 end
 12. Generate query profile $q := \text{NextQueries}_{A}(N, R, S)$; // Queries for the main economy
 13. foreach bidder $i \in N$ do
 14. add q_i to the queries generated for this round, i.e., $S_i = S_i \cup \{q_i\}$;
 15. foreach bidder $i \in N$ do
 16. send new queries S_i to bidder i and wait for reports;
 end
 17. foreach bidder $i \in N$: receive bundle-value reports R_i and add them to R_i, i.e., $R_i = R_i \cup R_i$;
 18. $t = t + 1$;
end
20. Let $\hat{v}_i(\cdot)$ denote bidder i’s report function capturing his bundle-value reports R_i, $\forall i \in N$;
21. Compute final allocation: $a^\text{MLCA} = \arg \max_{a \in \mathcal{F}_R} \sum_{i \in N} \hat{v}_i(a_i)$;
22. foreach bidder $i \in N$: compute his payment

 $$p^\text{MLCA}_i = \sum_{j \in N \setminus \{i\}} \hat{v}_j(a^{-i}_j) - \sum_{j \in N \setminus \{i\}} \hat{v}_j(a^\text{MLCA}_j), \quad \text{where } a^{-i} = \arg \max_{a \in \mathcal{F}_R} \sum_{j \in N \setminus \{i\}} \hat{v}_j(a_j); \quad (27)$$
23. Output allocation a^MLCA and payments p^MLCA;

B. Learning Error and Imputed Approximate Clearing Prices

Recall that in MLCA, bidders submit bundle-value reports, while prices are used for elicitation in most prior work on iterative CAs (e.g. Parkes, 2006). Typically, the goal of such price-based elicitation is to obtain approximate clearing prices. Here we relate our mechanism to the rest of the literature by showing how to obtain a price-based interpretation of the elicitation performed by MLCA’s query module. Specifically, we describe how to impute approximate clearing prices that are implicit in the elicitation. We provide a bound on how close these prices are to clearing prices, based upon a bound on the learning error of the ML algorithm. We next formalize these concepts.

To begin, we introduce a very general concept of prices (allowing for non-anonymous bundle prices). We let $\pi = (\pi_1, ..., \pi_n)$ denote the price profile, where each π_i is bidder i’s price function, with $\pi_i(x)$ denoting bidder i’s price for any given bundle $x \in \mathcal{X}$. Next, we define a competitive equilibrium (CE):
Definition 7 (Competitive equilibrium). Given prices π, we define each bidder i’s demand set d^π_i as the set of bundles that maximize his utility at π:

$$d^\pi_i = \arg \max_{x \in X} (v_i(x) - \pi_i(x))$$ \hspace{1cm} (28)

Similarly, we can define the seller’s supply set s^π as the set of allocations that are most profitable at π:

$$s^\pi = \arg \max_{a \in F} \sum_{i \in N} \pi_i(a_i)$$ \hspace{1cm} (29)

We say that prices π and allocation a are in competitive equilibrium if $a_i \in d^\pi_i \ \forall \ i \in N$ and $a \in s^\pi$. Any prices that are part of a CE, are called clearing prices.

A special case of the first welfare theorem holds that any competitive equilibrium allocation is also efficient (Mas-Colell, Whinston and Green, 1995, 16.C-D). Prior work on iterative CAs has exploited this property by iteratively updating prices until a CE is found (e.g., iBundle, Parkes, 1999).20 This approach is motivated by the fact that any auction that finds an efficient allocation must reveal CE prices (Nisan and Segal, 2006). However, in the worst case, this may require an exponential amount of communication (potentially quoting a different price for each bundle). Recall that in MLCA, we limit the amount of information exchanged (via the query cap). Thus, due to the result by Nisan and Segal (2006), we cannot guarantee finding a CE. In fact, MLCA does not even use prices to interact with bidders (in contrast to the CCA or iterative VCG mechanisms). However, at each round of the auction, we can impute prices based on the learned valuations in that round. This provides insight into how bundles are being implicitly priced in each round of MLCA.

To make this connection, we will need the following relaxation of clearing prices:

Definition 8 (δ-Approximate Clearing Prices). Given prices π, we define each bidder i’s β-demand set d^π_i as the set of bundles that maximize his utility at π when subsidized by β:

$$d^\pi_i = \{ x \in X : (v_i(x) - \pi_i(x)) + \beta \geq (v_i(x') - \pi_i(x')) \ \forall x' \in d^\pi_i \}$$ \hspace{1cm} (30)

Similarly, we can define the seller’s γ-supply set s^π as the set of allocations that are most profitable at π when subsidized by γ:

$$s^\pi = \{ a \in F : \sum_{i \in N} \pi_i(a_i) + \gamma \geq \sum_{i \in N} \pi_i(a'_i) \ \forall a'_i \in s^\pi \}$$ \hspace{1cm} (31)

We say that prices π are δ-approximate clearing prices if, at any allocation a^*, the following holds:

$$a^*_i \in d^\pi_i \text{ and } a^* \in s^\pi \text{ and } \delta \geq \sum_{i \in N} \beta_i + \gamma.$$

That is, δ-approximate clearing prices are those prices that would be clearing, if the participants were subsidized by an amount not greater than δ.

It turns out that given a bound on the learning error of the ML algorithm, we can bound the degree of approximation in the price profile:

Proposition 7. Let \hat{v} be a learned valuation profile, π be a profile of clearing prices for \hat{v}, and a^* be an efficient allocation at truthful values v. Assume that the learning errors are bounded as follows: for each bidder i, $v_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, $\hat{v}_i \sim \mathcal{N}(\mu_i + \epsilon_i, \sigma_i^2)$, $\pi_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, and $\epsilon_i \sim \mathcal{N}(0, \zeta^2)$. Let \hat{v} be a learned valuation profile, π be a profile of clearing prices for \hat{v}, and a^* be an efficient allocation at truthful values v.

20We note that the iterative VCGs mechanisms by Mishra and Parkes (2007) and de Vries, Schummer and Vohra (2007) go beyond CE prices and find universal competitive equilibrium (UCE) prices, which are specific clearing prices that contain all the information necessary to compute a VCG outcome.
\[\max_{x \in X} |\tilde{v}_i(x) - v_i(x)| \leq \delta_1 \text{ and } |\tilde{v}_i(\tilde{a}_i) - v_i(\tilde{a}_i)| \leq \delta_2. \] Then, \(\pi\) is a \((n(\delta_1 + \delta_2))\)-approximate competitive equilibrium price profile for \(v\).

Proof. Follows as a special case of Proposition 8, below. \(\Box\)

Proposition 7 states that clearing prices for the learned valuation \(\tilde{v}\) will be \(\delta\)-approximate clearing prices at the true valuations, with a \(\delta\) that depends on the quality of the ML algorithm. That is, one would need to inject at most \(n(\delta_1 + \delta_2)\) into the market to induce the bidders and the seller to trade the allocation \(a^*\) at prices \(\pi\). Accordingly if we can move towards CE in the learned valuations, we are moving towards approximate CE at the true valuations.

Next, we slightly generalize Proposition 7, by allowing the prices \(\pi\) to be only approximately clearing:

Proposition 8. Let \(\tilde{v}\) be a learned valuation profile and \(a^*\) be an efficient allocation at truthful values \(v\). Assume that the learning errors are bounded as follows: for each bidder \(i\), \(\max_{x \in X} |\tilde{v}_i(x) - v_i(x)| \leq \delta_1\) and \(|\tilde{v}_i(\tilde{a}_i) - v_i(\tilde{a}_i)| \leq \delta_2\). Let \(\pi\) be a \(\delta_3\)-approximate competitive equilibrium price profile for \(\tilde{v}\). Then, \(\pi\) is a \((n(\delta_1 + \delta_2) + \delta_3)\)-approximate competitive equilibrium price profile for \(v\).

Proof. Let \(\delta_3^i\) be the transfer that should be made to the seller to trade \(\tilde{a}\) at prices \(\pi\). Then, the transfer that needs to be made to the seller to trade \(a^*\) at prices \(\pi\) is:

\[\tau_s = \sum_{i \in N} \pi_i(\tilde{a}_i) - \pi_i(a^*_i) + \delta_3^i.\] (32)

Given \(\bar{x}_i \in \delta_i^T\), then the transfer that needs to be made to each bidder \(i\) to trade \(a^*\) at prices \(\pi\) is

\[\tau_i = v_i(\bar{x}_i) - \pi_i(\bar{x}_i) - (v_i(a^*_i) - \pi_i(a^*_i)).\] (33)

\(\pi\) is a \(\delta_3\)-approximate competitive equilibrium price profile for \(\tilde{v}\), so for each bidder \(i\) there exist a transfer \(\delta_3^i\) such that

\[\tilde{v}_i(\tilde{a}_i) - \pi_i(\tilde{a}_i) + \delta_3^i \geq \tilde{v}_i(\bar{x}_i) - \pi_i(\bar{x}_i),\] (34)

and

\[\sum_{i \in N} \delta_3^i + \delta_3^s \leq \delta_3.\] (35)

After adding and subtracting \(\tilde{v}_i(\bar{x}_i)\) to \(\tau_i\) in Equation (33) and using the inequality in (34), we obtain

\[\tau_i \leq v_i(\bar{x}_i) - \tilde{v}_i(\bar{x}_i) + \tilde{v}_i(\tilde{a}_i) - v_i(a^*_i) + \pi_i(a^*_i) - \pi_i(\tilde{a}_i) + \delta_3^i.\] (36)

Considering the inequalities in (35) and (36) and Equation (32), we have the following bound on the overall transfer that should be made to induce \(a^*\):

\[\tau_s + \sum_{i \in N} \tau_i \leq \sum_{i \in N} v_i(\bar{x}_i) - \tilde{v}_i(\bar{x}_i) + \sum_{i \in N} \tilde{v}_i(\tilde{a}_i) - v_i(a^*_i) + \pi_i(a^*_i) - \pi_i(\tilde{a}_i) + \delta_3.\] (37)

Note that \(\sum_{i \in N} \tilde{v}_i(\tilde{a}_i) - v_i(a^*_i) \leq \sum_{i \in N} \tilde{v}_i(\tilde{a}_i) - v_i(\tilde{a}_i)\), as \(a^*\) is an efficient allocation for \(v\). We then have

\[\tau_s + \sum_{i \in N} \tau_i \leq \sum_{i \in N} v_i(\bar{x}_i) - \tilde{v}_i(\bar{x}_i) + \sum_{i \in N} \tilde{v}_i(\tilde{a}) - v_i(\tilde{a}) + \delta_3 \leq n(\delta_1 + \delta_2) + \delta_3,\] (38)

which concludes our proof. \(\Box\)
In words, Proposition 8 tells us how close to clearing prices at the true valuations, \(v \), is a price profile \(\pi \) that are \(\delta_3 \)-approximate clearing prices at the learned valuation, \(\hat{v} \).\(^{21}\)

There are many price vectors we could use to instantiate Propositions 7 and 8. One way to instantiate the propositions is to **impute** as the price profile \(\pi = \hat{v} \) (i.e. use the learned values as prices). \(^{22}\) Such prices are a natural choice because they meet the exact clearing condition for the buyers and the seller. We want to emphasize such imputed prices are only implicit when MLCA is run. Importantly, they inherit the structure of learned value \(\hat{v} \), which can be very complex, depending on the ML algorithm used. In particular, the prices will in general be non-anonymous, and if we use high-dimensional (non-linear) ML algorithms, then they will also be high-dimension bundle prices. Note that this implicit high-dimensional price structure enables MLCA to find an approximate CE (where the approximation depends on the learning error of the ML algorithm) while approaches based on linear prices may severely limited.

Together, these prices and Propositions 7 and 8 allow us to interpret the learned value functions, as effectively, imputed approximate clearing prices. Introducing this price-based interpretation allows us to explain how our mechanism is related to the work by Lahaie and Parkes (2004) who were among the first to establish a theoretical connection between preference elicitation in CAs and machine learning. In this prior work, they proposed an iterative ML-based elicitation paradigm which also uses learned valuations to drive the elicitation process. However, while MLCA is based on value reports, their algorithm critically requires demand queries (i.e., it communicates ask prices to bidders in every round). The advantage of their approach is that it guarantees finding a competitive equilibrium. However, due to the result by Nisan and Segal (2006), if their approach was applied in a general setting, it would require communicating exponentially-sized prices to the agents in every round, which makes it impractical in such settings.

In contrast to the approach by Lahaie and Parkes (2004), the CCA is designed with practical applications in mind (like MLCA). A guiding principle underlying the clock phase of the CCA is that it aims to find approximate CE prices. However, as a practical mechanism, it cannot use exponential communication; instead, it uses linear prices and a limited number of rounds. Thus, due to Nisan and Segal (2006), it cannot guarantee finding a true CE. Note that the supplementary round of the CCA (allowing bidders to submit up to 500 bundle-value pairs in one final round) is designed to address the potential inefficiencies that remain at the end of the clock phase (e.g., due to using linear prices that may be out of equilibrium). Note that both, MLCA and CCA are practical auction designs, but they restrict the amount of information exchanged in different ways. Moreover, while the CCA explicitly aims to find an approximate CE by using demand queries, MLCA can be interpreted as doing so implicitly by using an ML algorithm on value reports.

C. Winner Determination for Dot-Product and RBF Kernels

In this appendix we show how to formulate Problem (19) under dot-product and RBF kernels as integer programming problems (IPs). That we can do this is perhaps surprising, as it requires us to compactly encode our non-linear social welfare objective in a linear program, a feat we manage by exploiting the structure of the kernel functions we consider and our binary bundle encoding.

We start by noticing that, under dot-product kernel functions, each kernel evaluation in the objective of Problem (19) can be formulated as \(\kappa(x, x_{ik}) = \bar{\kappa}(x \cdot x_{ik}) = \bar{\kappa}(\tau) \), where \(\tau \in \{0, \ldots, \bar{\tau}\} \) is the number of items bundles \(x \) and \(x_{ik} \) have in common, and \(\bar{\tau} \) is the size of bundle \(x_{ik} \). Similarly, under RBF kernels, we have that each kernel evaluation in Problem (19) can be formulated as \(\kappa(x, x_{ik}) = \bar{\kappa}(||x - x_{ik}||) = \bar{\kappa}(\tau) \),

\(^{21}\)Note that, starting from the same approximately-clearing price profile \(\pi \), we could now derive a bound on the efficiency loss in \(\bar{a} \).

However, it would be the same bound we have already proven in the Proposition.

\(^{22}\)In fact, these will be the seller-optimal imputed prices for this \(\delta \). In general there will be a set of price profiles that are all \(\delta \)-approximately clearing that provide more or less of the surplus to different players. Here, without loss we adopt the seller-optimal prices to simplify the exposition.
where \(\tau \in \{0, \ldots, \bar{\tau} \} \) is the number of items contained in only one among bundles \(x \) and \(x_{ik} \), and \(\bar{\tau} \) is the total number of items \(m \). In both cases, we can introduce \(\bar{\tau} + 1 \) binary variables \(z_{ik\tau} \), each indicating the value \(\tau \) where the kernel function should be evaluated, and encode each kernel evaluation \(\kappa(x, x_{ik}) \) as

\[
\sum_{\tau=0}^{\bar{\tau}} \kappa(\tau) z_{ik\tau} \tag{39}
\]

s.t. \(\sum_{\tau=0}^{\bar{\tau}} z_{ik\tau} = 1. \)

To use this linearized kernel encoding in Problem (19), we should also establish the relationship between the allocation variables \(a_{ij} \) and the newly introduced binary variables \(z_{ik\tau} \). Under dot-product kernels, this relationship can be encoded by introducing the following constraint for each support vector \(x_{ik} \):

\[
\sum_{j \in x_{ik}} a_{ij} = \frac{|x_{ik}|}{\tau} \sum_{\tau=0}^{\bar{\tau}} (\tau + 1) z_{ik\tau} - 1. \tag{40}
\]

The left term in Equation (40) tracks the number of items that bidder \(i \)’s allocated bundle \(a_i \) and the support vector \(x_{ik} \) have in common; the right term enforces that only the \(z_{ik\tau} \) corresponding to this number gets activated. Under RBF kernels, the relationship between variables \(a_{ij} \) and \(z_{ik\tau} \) for each \(x_{ik} \) can be encoded as

\[
\sum_{j \in x_{ik}} (1 - a_{ij}) + \sum_{j \notin x_{ik}} a_{ij} = m \sum_{\tau=0}^{\bar{\tau}} (\tau + 1) z_{ik\tau} - 1. \tag{41}
\]

Here, the left term tracks the number of items that belong to \(x_{ik} \) and not to \(a_{ij} \) (first sum) and the ones that belong to \(a_{ij} \) and not to \(x_{ik} \) (second sum).

After integrating the kernel encoding in (39) and the constraints in (40) in Problem (19), we derive that the allocation problem for dot-product kernels can be encoded via the following IP:

\[
\begin{align*}
\text{max} & \quad a_{ij}, z_{ik\tau} \\
& \sum_{i \in N} \sum_{k \in L} (\alpha_{ik} - \alpha_{ik}^*) \sum_{\tau=0}^{\bar{\tau}} \kappa(\tau) z_{ik\tau} \quad \text{Problem (19)} \\
& \text{s.t.} \quad \sum_{\tau=0}^{\bar{\tau}} z_{ik\tau} = 1 \quad \forall i \in N, k \in [\ell_i] \\
& \quad \sum_{j \in x_{ik}} a_{ij} = \frac{|x_{ik}|}{\tau} \sum_{\tau=0}^{\bar{\tau}} (\tau + 1) z_{ik\tau} - 1 \quad \forall i \in N, k \in [\ell_i] \\
& \quad \sum_{i \in N} a_{ij} \leq 1 \quad \forall j \in M
\end{align*}
\]

By replacing the constraints in (40) with the constraints in (41), we obtain the following formulation of the
allocation problem under RBF kernels:

\[
\begin{align*}
\text{max} & \quad \sum_{i \in N} \sum_{k \in L} (\alpha_{ik} - \alpha_{ik}^*) \sum_{\tau=0}^{p} \tilde{r}(\tau) z_{ik\tau} \\
\text{s.t.} & \quad \sum_{\tau=0}^{p} z_{ik\tau} = 1 \quad \forall i \in N, \ k \in [\ell_i] \\
& \quad \sum_{j \in x_{ik}} (1 - a_{ij}) + \sum_{j \not\in x_{ik}} a_{ij} = \sum_{\tau=0}^{m} (\tau + 1) z_{ik\tau} - 1 \quad \forall i \in N, \ k \in [\ell_i] \\
& \quad \sum_{i \in N} a_{ij} \leq 1 \quad \forall j \in M
\end{align*}
\]

Note that the size of both the integer programming problems presented above heavily depends on the number of support vectors. In both problems, each support vector \(x_{ik}\) introduces two constraints and \(|x_{ik}| + 1\) binary variables under dot-product kernels or \(m + 1\) binary variables under RBF kernels. As discussed in Section 5, one can reduce the number of support vectors by using a larger \(\varepsilon\) in the SVR training problem (19), which can be extremely helpful to maintain our mechanism computationally tractable.

D. Experiments I: Additional Results

D.1. Results for GSVM domain

Kernel	\(\varepsilon\)	Efficiency	Learning Error	WD Solve Time	Optimality Gap													
	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200
Exponential	0	93.3%	95.8%	92.7%	12.04	7.52	4.95	3.36s	48.22s	60.00s	0.00	0.08	1.05					
Exponential	1	91.5%	96.0%	98.4%	15.27	9.64	6.63	1.43s	4.01s	8.86s	0.00	0.00	0.00					
Exponential	2	86.2%	87.9%	92.2%	18.04	12.61	8.46	0.79s	1.83s	2.94s	0.00	0.00	0.00					
Gaussian	0	89.1%	85.0%	57.9%	20.67	16.87	14.26	57.39s	60.00s	60.00s	0.11	1.01	7.41					
Gaussian	1	87.7%	90.4%	93.7%	25.05	20.32	16.96	12.68s	41.17s	53.89s	0.00	0.04	0.10					
Gaussian	2	86.2%	87.9%	92.2%	27.67	23.70	20.26	2.69s	9.61s	18.23s	0.00	0.00	0.00					

Table 7: The effect of varying the insensitivity parameter \(\varepsilon\) on the predictive performance: both efficiency of the predicted optimal allocation, and learning error. Results are shown for the two expensive kernels, Exponential and Gaussian, in the GSVM domain. Results are averages across 50 instances.

Kernel	Efficiency	Learning Error	WD Solve Time	Optimality Gap													
	50	100	200	50	100	200	50	100	200	50	100	200					
Linear	90.3%	90.3%	91.1%	13.20	12.99	12.72	0.03s	0.04s	0.06s	0.00	0.00	0.00					
Quadratic	88.5%	96.6%	100.0%	8.54	8.54	0.02	0.74s	0.77s	0.47s	0.00	0.00	0.00					
Exponential	91.5%	96.0%	98.4%	15.27	9.64	6.63	1.43s	4.01s	8.86s	0.00	0.00	0.00					
Gaussian	87.7%	90.4%	93.7%	25.05	20.32	16.96	12.68s	41.17s	53.89s	0.00	0.04	0.10					

Table 8: Comparison of different kernels in the GSVM domain. The Quadratic kernel obtains the best efficiency under the imposed computational constraints. Results are averages across 50 instances.
D.2. Results for MRVM domain

Kernel	ε	Efficiency (50, 100, 200%)	Learning Error (50, 100, 200)	WD Solve Time (50, 100, 200s)	Optimality Gap (50, 100, 200)
Exponential	0	80.8%, 77.3%, 14.8%	7.4e+07, 5.7e+07, 4.1e+07	60.00s, 60.00s, 60.00s	0.05, 0.41, 2.66
Exponential	2048	79.2%, 78.7%, 74.2%	1.6e+08, 1.5e+08, 1.3e+08	42.82s, 60.00s, 60.00s	0.00, 0.03, 0.11
Exponential	4096	76.1%, 76.6%, 75.5%	2.1e+08, 2.0e+08, 1.9e+08	15.59s, 41.55s, 57.51s	0.00, 0.00, 0.01
Gaussian	0	-	-	-	-
Gaussian	16384	82.7%, 82.7%, 83.8%	6.6e+08, 5.8e+08, 5.3e+08	60.00s, 60.00s, 60.00s	0.06, 0.07, 0.07
Gaussian	32768	82.4%, 82.0%, 81.7%	1.0e+09, 9.8e+08, 9.5e+08	60.00s, 59.26s, 60.00s	0.04, 0.05, 0.05

Table 9: The effect of varying the insensitivity parameter ε on the predictive performance: both efficiency of the predicted optimal allocation, and learning error. Results are shown for the two expensive kernels, Exponential and Gaussian, in the MRVM domain. We do not report results for the Gaussian kernel with $\varepsilon = 0$, because for this parameterization, the solver fails to find a feasible solution within 60 seconds for a large number of instances.

Kernel	Efficiency (50, 100, 200%)	Learning Error (50, 100, 200)	WD Solve Time (50, 100, 200s)	Optimality Gap (50, 100, 200)
Linear	83.8%, 83.8%, 82.4%	9.5e+07, 1.1e+08, 7.6e+07	0.00s, 0.00s, 0.00s	0.00, 0.00, 0.00
Quadratic	83.7%, 84.8%, 81.8%	9.4e+07, 9.3e+07, 6.1e+07	1.55s, 1.37s, 2.36s	0.00, 0.00, 0.00
Exponential	79.2%, 78.7%, 74.2%	1.6e+08, 1.5e+08, 1.3e+08	42.82s, 60.00s, 60.00s	0.00, 0.03, 0.11
Gaussian	82.7%, 82.7%, 83.8%	6.6e+08, 5.8e+08, 5.3e+08	60.00s, 60.00s, 60.00s	0.06, 0.07, 0.07

Table 10: Comparison of different kernels in the MRVM domain. The Quadratic kernel obtains the best efficiency under the imposed computational constraints.23

E. Quadratic Kernel and Global Synergy Value Model

Proposition 9. Every valuation of the Global Synergy Value Model domain can be formulated in the feature space where the Quadratic kernel is the inner product.

Proof. To prove this statement, it is sufficient to show that each valuation v_i of the Global Synergy Value Model (GSVM) domain is a 2-wise dependent valuation function in the sense of Conitzer, Sandholm and Santi (2005) and use Proposition 1 of Brero, Lubin and Seuken (2017). According to Conitzer, Sandholm and Santi (2005), a 2-wise dependent valuation is any valuation v_i that can be expressed as

$$v_i(x) = \sum_{j \in x} w_j + \sum_{j' \in x, j' < j} w_{j,j'}$$

(42)

where w_j and $w_{j,j'}$ are scalar parameters. At the same time, as discussed by Goeree and Holt (2010), any

23Note that these are preliminary results subject to change due to ongoing updates to our code base.
valuation of the GSVM domain v_{i}^{GSVM} can be expressed as

$$v_{i}^{\text{GSVM}}(x) = \sum_{j \in \bar{x}} v_{ij}^{\text{GSVM}} \left(1 + 0.2 \left(|\bar{x}| - 1 \right) \right), \quad (43)$$

where v_{ij}^{GSVM} is the value assigned by v_{i}^{GSVM} to item j and \bar{x} is a sub-bundle of x containing only the licenses in x that are of interest to bidder i (i.e., all the licenses $j \in x$ such that $v_{ij}^{\text{GSVM}} > 0$). v_{i}^{GSVM} can be expressed as a 2-wise dependent valuation by setting $w_{j} = v_{ij}^{\text{GSVM}}$ and $w_{j,j'} = 0.2 \left(v_{ij}^{\text{GSVM}} + v_{ij'}^{\text{GSVM}} \right)$ if both j and j' are of interest to bidder i, $w_{j,j'} = 0$ otherwise. Indeed, with these parameters, the value contributed to $v_{i}(x)$ in Equation (42) by each item j of interest to bidder i will be the sum of

- v_{ij}^{GSVM} (via w_{j})
- $0.2 \left(|\bar{x}| - 1 \right) v_{ij}^{\text{GSVM}}$ (via all the $w_{j,j'}$ such that $j' \in \bar{x}$ and $j \neq j'$),

which corresponds to Equation (43).

\[\square \]

F. Additional Design Features of MLCA

In this appendix we provide more details on two additional design features of MLCA that will likely be important in many domains when applying MLCA: (a) enabling the auctioneer to control the number of rounds of the auction, and (b) enabling the auctioneer to switch out the payment rule (e.g., to charge core-selecting payments).

Controlling the number of rounds.

Recall that the version of MLCA presented in Algorithm 2 is slightly abbreviated to improve clarity and readability. In particular, we left out additional control structure that would be necessary to provide the auctioneer with explicit control over the number of rounds, which however might be important in practice. Note that the total number of auction rounds T depends on the maximum number of queries Q_{\max}, the number of initial queries Q_{init}, and the number of agents n in the following way: $T = \left\lceil \frac{(Q_{\max} - Q_{\text{init}})}{n} \right\rceil$ (Line 3 of Algorithm 2). We assume that the auctioneer sets Q_{\max} to control the effort required by the bidders, and Q_{init} is then optimized (given Q_{\max}) for the chosen ML algorithm, which would leave the auctioneer without direct control over the number of auction rounds. This could lead to an undesirable or even impractical number of rounds in certain domains. Assume the auctioneer sets $Q_{\max} = 500$ and $Q_{\text{init}} = 100$. Then, in an auction with just a few bidders, the resulting number of rounds may be too large; for example, $n = 2$ would result in 200 rounds. Conversely, in an auction with a large number of bidders, the resulting number of rounds may be too small; for example, $n = 100$ would result in just 4 rounds. Fortunately, it is straightforward to modify MLCA such that the auctioneer can directly control the number of rounds. In an auction with a small number of bidders, the auctioneer can simply go through the steps of generating queries for the main and marginal economies (Lines 5–8) multiple times before sending all generated queries to the bidders at once (Line 9). By deciding how many times to go through these steps, the auctioneer now has more control over the number of rounds.\footnote{Note that this requires that the function nextQuery is guaranteed to always generate a new query for every bidder, which we guarantee in our implementation (see Footnote 6 for details).} In an auction with a large number of bidders, the auctioneer can choose to generate less than $n - 1$ queries per bidder per round, to increase the number of rounds. Specifically, let Q_{round} denote the number of queries per round the auctioneer selects. Then the resulting number of rounds is $T = \left\lceil \frac{(Q_{\max} - Q_{\text{init}})}{Q_{\text{round}}} \right\rceil$, which provides the auctioneer with the desired control over the number of rounds. We provide details for the later approach in the full version of MLCA in Appendix A.
Alternatives to VCG Payments. Recall that our auction computes final payments by applying the VCG payment rule (see Section 2.2) based on the bundle-value pairs reported by the bidders (see Line 15 of Algorithm 2). It is well known that VCG payments may be outside the core. Informally, this means that payments may be so low that a coalition of bidders may be willing to pay more in total than what the seller receives from the current winners. As bidders in such a coalition might complain, payments in the core may likely be desirable to auctioneers in practice. Accordingly, many contemporary real-world auction formats, such as the CCA (Ausubel et al., 2006), eschew VCG payments in favor of rules that charge payments in the (revealed) core, such as the VCG-nearest payment rule (Day and Cramton, 2012). In MLCA, it is straightforward to substitute a core-selecting payment rule (e.g. VCG-nearest) for VCG in Line 15 of Algorithm 2. In practice, different auctioneers may have different desires for the mechanism, and this will affect their choice of payment rule. Specifically, when targeting good incentives they may want to use VCG as the payment rule; when aiming to be robust against defecting coalitions, they may prefer a core-selecting rule such as VCG-nearest. While we believe it is important to be able to support multiple payment rules in order to facilitate an auctioneer tailoring the mechanism to their particular domain of application, we adopt the VCG payment rule in Algorithm 2 and in the following section on theoretical properties of MLCA, as it is simpler to analyze. In our experiments (Section 7), we additionally provide the revenue numbers that result from using VCG-nearest.

G. Manipulation Experiments

Strategy	Local		National			
	Social Welfare	Marginal Economy	Utility	Social Welfare	Marginal Economy	Utility
		Social Welfare				
Truthful	437.5 (3.6)	418.1 (3.5)	19.40 (1.84)	437.5 (3.6)	433.5 (4.0)	4.01 (1.11)
Overbidding (25%)	437.5 (3.6)	418.1 (3.5)	19.40 (1.84)	437.5 (3.6)	433.5 (4.0)	4.01 (1.11)
Overbidding (50%)	437.5 (3.6)	418.1 (3.5)	19.40 (1.84)	437.5 (3.6)	433.5 (4.0)	4.01 (1.11)
Overbidding (75%)	437.5 (3.6)	418.1 (3.5)	19.40 (1.84)	437.5 (3.6)	433.5 (4.0)	3.96 (1.11)
Overbidding (99%)	437.4 (3.6)	418.1 (3.5)	19.31 (1.83)	437.5 (3.6)	433.5 (4.0)	3.94 (1.11)
ANOVA p-value	1.000	1.000	1.000	1.000	1.000	1.000

Table 11: Manipulation Experiments for GSVM. Entries are the average of 100 runs.

Strategy	Local		National			
	Social Welfare	Marginal Economy	Utility	Social Welfare	Marginal Economy	Utility
		Social Welfare				
Truthful	532.6 (4.5)	521.0 (5.8)	11.54 (2.78)	532.6 (4.5)	512.7 (4.2)	19.88 (2.82)
Overbidding (25%)	532.3 (4.5)	520.6 (5.9)	11.70 (2.86)	532.7 (4.5)	513.0 (4.2)	19.64 (2.76)
Overbidding (50%)	532.6 (4.5)	520.7 (5.8)	11.97 (2.68)	532.2 (4.5)	511.8 (4.4)	20.38 (2.79)
Overbidding (75%)	532.4 (4.5)	521.1 (5.8)	11.32 (2.51)	531.7 (4.5)	513.0 (4.2)	18.70 (2.77)
Overbidding (99%)	527.8 (4.9)	519.8 (5.8)	7.91 (1.94)	525.6 (4.6)	511.7 (4.2)	13.97 (2.49)
ANOVA p-value	0.933	1.000	0.792	0.784	0.999	0.461

Table 12: Manipulation Experiments for LSVM. Entries are the average of 99 runs (One run did not terminate for numerical reasons within CPLEX).
References

CPLEX. 2019. https://www.ibm.com/analytics/cplex-optimizer, Retrieved 5/11/19.

Ausubel, Lawrence, and Peter Cramton. 2011. “Auction design for wind rights.” Report to Bureau of Ocean Energy Management, Regulation and Enforcement.

Ausubel, Lawrence M, and Oleg Baranov. 2017. “A practical guide to the combinatorial clock auction.” The Economic Journal, 127(605).

Ausubel, Lawrence M, Peter Cramton, Paul Milgrom, et al. 2006. “The Clock-proxy Auction: A Practical Combinatorial Auction Design.” In Combinatorial Auctions, ed. Peter Cramton, Yoav Shoham and Richard Steinberg, Chapter 5. MIT Press.

Beyeler, Manuel, Gianluca Brero, Benjamin Lubin, and Sven Seuken. 2020. “Machine Learning-powered Iterative Combinatorial Auctions with Interval Bidding.” arXiv preprint.

Bichler, Martin, Pasha Shabalin, and Jürgen Wolf. 2013. “Do Core-selecting Combinatorial Clock Auctions Always Lead to High Efficiency? An Experimental Analysis of Spectrum Auction Designs.” Experimental Economics, 16(4): 511–545.

Blum, Avrim, Jeffrey Jackson, Tuomas Sandholm, and Martin Zinkevich. 2004. “Preference elicitation and query learning.” Journal of Machine Learning Research, 5: 649–667.

Bosshard, Vitor, Benedikt Bünz, Benjamin Lubin, and Sven Seuken. 2020. “Computing Bayes-Nash Equilibria in Combinatorial Auctions with Verification.” Journal of Artificial Intelligence Research, 69: 531–570.

Brero, Gianluca, and Sébastien Lahaie. 2018. “A Bayesian Clearing Mechanism for Combinatorial Auctions.” In Proceedings of the Thirty-second AAAI Conference of Artificial Intelligence.

Brero, Gianluca, Benjamin Lubin, and Sven Seuken. 2017. “Probably Approximately Efficient Combinatorial Auctions via Machine Learning.” In Proceedings of the Thirty-first AAAI Conference of Artificial Intelligence.

Brero, Gianluca, Benjamin Lubin, and Sven Seuken. 2018. “Combinatorial Auctions via Machine Learning-based Preference Elicitation.” In Proceedings of the Twenty-seventh International Joint Conference on Artificial Intelligence.

Brero, Gianluca, Sébastien Lahaie, and Sven Seuken. 2019. “Fast Iterative Combinatorial Auctions via Bayesian Learning.” In Proceedings of the Thirty-third AAAI Conference on Artificial Intelligence.

Clarke, Edward H. 1971. “Multipart pricing of public goods.” Public choice, 11(1): 17–33.

Conitzer, Vincent, and Tuomas Sandholm. 2002. “Complexity of mechanism design.” In Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI). Edmonton, Canada.

Conitzer, Vincent, and Tuomas Sandholm. 2004. “Self-interested automated mechanism design and implications for optimal combinatorial auctions.” In Proceedings of the 5th ACM conference on Electronic commerce.

Conitzer, Vincent, Tuomas Sandholm, and Paolo Santi. 2005. “Combinatorial Auctions with k-Wise Dependent Valuations.” In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI).
Cramton, Peter. 2013. “Spectrum Auction Design.” *Review of Industrial Organization*, 42(2): 161–190.

Day, Robert W, and Peter Cramton. 2012. “Quadratic core-selecting payment rules for combinatorial auctions.” *Operations Research*, 60(3): 588–603.

de Vries, Sven, James Schummer, and Rakesh V Vohra. 2007. “On ascending Vickrey auctions for heterogeneous objects.” *Journal of Economic Theory*, 132(1): 95–118.

Düttting, Paul, Zhe Feng, Harikrishna Narasimhan, and David C. Parkes. 2018. “Optimal Auctions through Deep Learning.” arXiv:1706.0345.

Dütting, Paul, Felix Fischer, Pichayut Jirapinyo, John K Lai, Benjamin Lubin, and David C Parkes. 2015. "Payment rules through discriminant-based classifiers." *ACM Transactions on Economics and Computation*, 3(1): 5.

Goeree, Jacob K, and Charles A Holt. 2008. "Hierarchical Package Bidding: A Paper & Pencil Combinatorial Auction." *Games and Economic Behavior*.

Goeree, Jacob K, and Charles A Holt. 2010. "Hierarchical Package Bidding: A Paper and Pencil Combinatorial Auction." *Games and Economic Behavior*, 70(1): 146–169.

Goetzendorf, A., M. Bichler, P. Shabalin, and R. W. Day. 2015. "Compact Bid Languages and Core Pricing in Large Multi-item Auctions." *Management Science*, 61(7): 1684–1703.

Groves, Theodore. 1973. "Incentives in teams." *Econometrica: Journal of the Econometric Society*, 617–631.

Industry Canada. 2013. “Responses to Clarification Questions on the Licensing Framework for Mobile Broadband Services (MBS) — 700 MHz Band.” Government of Canada.

Lahaie, Sébastien. 2011. “A Kernel-Based Iterative Combinatorial Auction.” In *Proceedings of the 25th Conference on Artificial Intelligence (AAAI)*.

Lahaie, Sébastien, and Benjamin Lubin. 2019. “Adaptive-price combinatorial auctions.” In *Proceedings of the 2019 ACM Conference on Economics and Computation*.

Lahaie, Sébastien, and David C Parkes. 2004. “Applying Learning Algorithms to Preference Elicitation.” In *Proceedings of the 5th ACM Conference on Electronic Commerce*.

Land, Ailsa H, and Alison G Doig. 1960. “An automatic method of solving discrete programming problems.” *Econometrica: Journal of the Econometric Society*, 497–520.

Levin, Jonathan, and Andrzej Skrzypacz. 2016. “Properties of the Combinatorial Clock Auction.” *American Economic Review*, 106(9).

Lima, Ricardo M, and Ignacio E Grossmann. 2017. “On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study.” *Computational Optimization and Applications*, 66(1): 1–37.

Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green. 1995. *Microeconomic theory*. Oxford university Press.

Mercer, James. 1909. “Functions of positive and negative type, and their connection with the theory of integral equations.” *Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character*, 209: 415–446.
Mishra, Debasis, and David C Parkes. 2007. “Ascending price Vickrey auctions for general valuations.” *Journal of Economic Theory*, 132(1): 335–366.

Nisan, Noam. 2006. “Bidding languages.” *Combinatorial auctions. Cambridge: MIT*.

Nisan, Noam, and Amir Ronen. 2000. “Computationally feasible VCG-based mechanisms.” In *Proceedings of the Second ACM Conference on Electronic Commerce*. Minneapolis, MN: ACM.

Nisan, Noam, and Amir Ronen. 2007. “Computationally feasible VCG mechanisms.” *Journal of Artificial Intelligence Research*, 29: 19–47.

Nisan, Noam, and Ilya Segal. 2006. “The communication requirements of efficient allocations and supporting prices.” *Journal of Economic Theory*, 129(1): 192–224.

Parkes, David C. 1999. “iBundle: an efficient ascending price bundle auction.” In *Proceedings of the 1st ACM Conference on Electronic Commerce*.

Parkes, David C. 2001. “An iterative generalized Vickrey auction: Strategy-proofness without complete revelation.” In *Proceedings of AAAI Spring Symposium on Game Theoretic and Decision Theoretic Agents*.

Parkes, David C. 2006. “Iterative Combinatorial Auctions.” In *Combinatorial Auctions*, ed. Peter Cramton, Yoav Shoham and Richard Steinberg, Chapter 2. MIT Press.

Sandholm, T. 2013. “Very-Large-Scale Generalized Combinatorial Multi-Attribute Auctions: Lessons from Conducting $60 Billion of Sourcing.” In *The Handbook of Market Design*, ed. Nir Vulkan, Alvin E. Roth and Zvika Neeman, Chapter 1. Oxford University Press.

Sandholm, Tuomas, and Craig Boutilier. 2006. “Preference Elicitation in Combinatorial Auctions.” In *Combinatorial Auctions*, ed. Peter Cramton, Yoav Shoham and Richard Steinberg, Chapter 10. The MIT Press.

Scheffel, Tobias, Georg Ziegler, and Martin Bichler. 2012. “On the Impact of Cognitive Limits in Combinatorial Auctions: An Experimental Study in the Context of Spectrum Auction Design.” *Experimental Economics*, 15: 667–692.

Smola, Alex J, and Bernhard Schölkopf. 2004. “A tutorial on support vector regression.” *Statistics and computing*, 14(3): 199–222.

Steinwart, Ingo, Don Hush, and Clint Scovel. 2009. “Learning from dependent observations.” *Journal of Multivariate Analysis*, 100(1): 175–194.

Tikhonov, Andrey N, and Vasilii Iakckovlevich Arsenin. 1977. *Solutions of ill-posed problems*. Vol. 14, Vh Winston.

Vickrey, William. 1961. “Counterspeculation, auctions, and competitive sealed tenders.” *The Journal of Finance*, 16(1): 8–37.

Weiss, Michael, Benjamin Lubin, and Sven Seuken. 2017. “SATS: A Universal Spectrum Auction Test Suite.” In *Proceedings of the Sixteenth Conference on Autonomous Agents and MultiAgent Systems*.

Weissteiner, Jakob, and Sven Seuken. 2020. “Deep Learning-powered Iterative Combinatorial Auctions.” In *Proceedings of the Thirty-fourth AAAI Conference on Artificial Intelligence*. New York, NY: AAAI.
Weissteiner, Jakob, Chris Wendler, Sven Seuken, Benjamin Lubin, and Markus Püschel. 2020. "Fourier Analysis-based Iterative Combinatorial Auctions." arXiv preprint.

Williams, Christopher K., and Carl E. Rasmussen. 2006. *Gaussian Processes for Machine Learning*. The MIT Press.