B4G2 Induces Mitochondrial Apoptosis by the ROS-Mediated Opening of Ca\(^{2+}\)-Dependent Permeability Transition Pores

Nan Yao\(^{a,b}\) Ying-Jie Li\(^{a,b}\) Dong-Mei Zhang\(^{a,b}\) Dao-Lu Liu\(^{a,b}\) Ming-Kuen Tang\(^{c}\) Anita Yiu\(^{d}\) Yong Li\(^{a,b}\) Wei-Min Chen\(^{a,b}\) Ping Lan\(^{a,b}\) Zhe Yao\(^{a,b}\) Zhe-Sheng Chen\(^{e}\) Wen-Cai Ye\(^{a}\)

\(^{a}\)Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China; \(^{b}\)Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China; \(^{c}\)Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong; \(^{d}\)School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; \(^{e}\)Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, United States

Key Words
23-hydroxybetulinic acid derivative • HepG2 cells • ROS • PT pore • Mitochondrial pathway

Abstract

Background/Aims: Hepatocellular carcinoma (HCC) is the most common type of liver cancer. At present, only sorafenib is approved to treat HCC. In this study, we found that a 23-hydroxybetulinic acid derivative, B4G2, exhibited potent antiproliferative activity in HCC cell lines. Methods: We used four HCC cell lines (HepG2, HepG2/ADM, Hep3B and Bel-7402) to evaluate the anti-tumour activity and explore underlying mechanisms by which B4G2 induces apoptosis. Results: Among these cell lines, HepG2 showed the highest sensitivity to B4G2. HepG2 cells treated with B4G2 showed a depolarized mitochondrial membrane potential, released cytochrome c, activated caspase-9 and caspase-3 and cleaved poly ADP-ribose polymerase (PARP). However, Z-VAD-FMK, a pan-caspase inhibitor, did not attenuate B4G2-induced apoptosis, implying that the induction of mitochondrial apoptosis by B4G2 may be independent of caspases. Moreover, pre-treatment with MgCl\(_2\), a blocker of Ca\(^{2+}\)-dependent permeability transition (PT) pores, attenuated the depolarization of the mitochondrial potential and decreased the population of apoptotic cells, indicating that B4G2-induced apoptosis was partly dependent on the opening of the Ca\(^{2+}\)-dependent PT pores. B4G2 also increased the levels of intracellular calcium and reactive oxygen species (ROS). Furthermore, an ROS scavenger, N-acetyl-cysteine (NAC), markedly decreased the accumulation of intracellular calcium and apoptosis. Conclusion: This is the first demonstration that B4G2 inhibits the growth of HCC cells and induces mitochondrial apoptosis in hepatocellular carcinoma cells by the ROS-mediated opening of Ca\(^{2+}\)-dependent permeability transition pores.

N. Yao and Y.-J. Li contributed equally to this study.

Accepted: August 11, 2015

This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.
Introduction

Liver cancer is the fifth most common malignancy, affecting approximately one million people around the world every year and is ranked second among all cancer-related deaths, causing more than 690,000 deaths annually [1]. China has the highest liver cancer incidence in the world, accounting for 45% and 53% of the worldwide morbidity and mortality, respectively [2, 3]. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis, which is mainly induced by alcoholism [4]. A number of classical anticancer drugs, interferons and hormone drugs as well as some cytotoxic compounds, such as Adriamycin are currently used for the treatment of HCC. However, most of these drugs show poor treatment efficacies with strong toxic and side effects [5]. Currently, only sorafenib, a tyrosine kinase inhibitor that has been shown to significantly block tumour growth, is approved for patients with advanced HCC [6]. Therefore, the development of novel chemotherapeutic agents is urgently needed.

23-Hydroxybetulinic acid (23-HBA) is a lupane-type pentacyclic triterpene from the Chinese medicinal herb *Pulsatilla chinensis* and has been found to exhibit antitumour activity *in vitro* and *in vivo* [7-10]. Several reports have indicated that the antineoplastic mechanisms of 23-HBA may be associated with depolarizations of the mitochondrial membrane potential and subsequent cell apoptosis [11-13]. 23-HBA has been shown to induce apoptosis in HL-60 cells via the inhibition of Bcl-2 expression and telomerase activity [14]. Additionally, 23-HBA is known to induce autophagic cell death in HL-60 cells via the up regulation of Beclin-1 expression [15]. Recently, we reported that 23-HBA and its bipiperidinyl derivatives reverse ABCB1-mediated multidrug resistance by simultaneously increasing the accumulation and decreasing the efflux of anti-cancer drugs [16-18]. Until now, there have been no report on the anti-hepatoma activity of 23-HBA. Given that 23-HBA has weak anticancer activity, our effort to improve its antitumour activity by structural modification has yielded a series of derivatives with enhanced bioactivity [19-23]. B4G2, a derivative of 23-HBA, was previously synthesized by our group and showed a stronger anticancer activity than 23-HBA in four cancer cell lines in preliminary activity screening [20]. The present study evaluated the anti-hepatoma activity of B4G2 and its underlying molecular mechanisms. Our results demonstrated that B4G2 inhibits the growth of HCC cells and induces a reactive oxygen species (ROS)-mediated accumulation of intracellular calcium, which subsequently opens Ca^{2+}-dependent permeability transition (PT) pores and leads to mitochondrial apoptosis.

Materials and Methods

Reagents

B4G2 (purity >98%, Fig. 1A) was synthesized as previously described [19]. B4G2 was dissolved in DMSO to give a stock solution of 50 mM and stored at -20°C. An anti-caspase-8 antibody, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), propidium iodide (PI) and 2’-(4-hydroxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5’-bi-1H-benzimidazole trihydrochloride hydrate bisbenzimide (Hoechst 33258) were purchased from Sigma (St. Louis, MO, USA). An Annexin V-FITC/PI staining assay kit was obtained from Trevigen, Inc. (Gaithersburg, MD, USA). Wepurchased 5’,6’,6’,-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and N-(4-6-(4-acetylloxymethyl)-2,7-dichloro-3-oxo-3H-xanthen-9-yl)-2-(2-(bis(2-(4-acetylloxymethyl)-2-oxetyl)amino)-5-methylphenoxy)ethoxy)phenyl)-N-(2-((acetyloxy)methoxy)-2-oxetyl)-(acetyloxy) methyl ester (Fluo-3-AM) from Invitrogen (Eugene, OR, USA). Z-Val-Ala-Asp-Ch2F (Z-VAD-FMK) was obtained from Beyotime Institute of Biotechnology (Shanghai, China). Antibodies against caspase-3 and caspase-9 were purchased from Cell Signalling Technology (Beverly, MA, USA). We purchased 2’,7’-dichlorofluorescein diacetate (H2DCFDA) and antibodies against Bcl-2, Bax and PARP from Santa Cruz Biotechnology (Santa Cruz, CA, USA). An antibody against cytochrome c was obtained from Epitomics (Burlingame, CA, USA). N-acetyl-L-cysteine (NAC) was purchased from Qiyun Biotechnology Company (Guangzhou, Guangdong, China).
Cell lines and cell culture

The HCC cell lines HepG2 and Hep3B were obtained from American Type Culture Collection (ATCC, Rockville, MD, USA). The HCC cell line Bel-7402 and the human hepatocyte cell line LO2 were purchased from the Type Culture Collection of the Chinese Academy of Sciences (Xuhui, Shanghai, China). The HCC multidrug-resistant cell line HepG2/ADM was kindly provided by Prof. Kwok-Pui Fung (The Chinese University of Hong Kong). The HepG2, HepG2/ADM, Hep3B and Bel-7402 cell lines were maintained in RPMI 1640 medium (Gibco, NY, USA) containing 10% (v/v) foetal bovine serum (FBS, Gibco, NY, USA) and 1% (v/v) penicillin-streptomycin (PS; 10,000 U/mL, Gibco, NY, USA) at 37°C in a 5% CO₂ atmosphere. The HepG2/ADM cell line was cultured with doxorubicin (1.2 μM) to maintain the multidrug resistance.

MTT assay in vitro

The cytotoxicity of B4G2 in the HCC cells (HepG2, HepG2/ADM, Hep3B and Bel-7402) was measured using the MTT assay as previously described [23]. Cells were seeded in 96-well microplates at a density of 5000 cells/well and cultured for 24 h. The cells were then treated with various concentrations of B4G2 for 24, 48 and 72 h. MTT (30 μL; 5 mg/mL) was then added to the cells, and the cells were incubated for an additional 4 h. The medium was removed and 100 μL of DMSO was added to each well. The optical density was measured at 595 nm using a DTX 880 microplate reader (Beckman Coulter, CA, USA).

Colony formation assay

HepG2 cells were seeded in 6-well microplates at a density of 300 cells/well and cultured for 24 h. The cells were then treated with various concentrations of B4G2 for 48 h and maintained in fresh medium in a humidified atmosphere of 5% CO₂ at 37°C for 10 days. The cells were then fixed in methanol at -20°C for 10 min and stained with 1% crystal violet for 20 min. After being washed twice with phosphate-buffered saline (PBS), visible colonies were manually counted.

Cell cycle analysis

Cell cycle distribution was analysed as described previously [24]. Briefly, HepG2 cells were treated with or without B4G2 at various concentrations, collected, washed twice with PBS and fixed in ice-cold 70% (v/v) ethanol at 4°C overnight. After centrifugation at 2500 rpm, cell pellets were resuspended in 1 mL PBS containing 0.02 mg/mL PI and 0.1 mg/mL RNase A, and the samples were incubated at 37°C for 30 min in darkness. DNA content was measured by Epics XL Flow Cytometry (Beckman Coulter) (Ex=488 nm and Em=620 nm).

Hoechst 33258 staining

HepG2 cells treated with or without B4G2 for 48 h were stained with Hoechst 33258 (10 mg/mL in PBS) for 30 min at 37°C in darkness and then washed twice with PBS. Cell morphology was observed using a KX41 fluorescence microscope (Olympus, Tokyo, Japan) (Ex=350 nm and Em=460 nm).

Ultrastructural observation by transmission electron microscopy

HepG2 cells treated with B4G2 were first fixed in ice-cold 4% glutaraldehyde at 4°C overnight. The cells were then washed twice with PBS, post-fixed in 1% osmium tetroxide for 1 h and dehydrated in a graded series of ethanol and acetone. The cells were then polymerized by epoxy resin. Ultra-thin sections were cut and stained with aqueous uranyl acetate and lead citrate. Finally, the ultrastructure of the cells was examined using a JEM 1400 transmission electron microscope (Philips, Eindhoven, Netherlands).

Annexin-V-FITC/PI staining assay

HepG2 cells were stained with 500 μL of labelling solution containing 5 μL Annexin-V-FITC and 10 μL PI for 15 min at room temperature in darkness. The fluorescence of the sample was detected by Epics XL Flow Cytometry (Beckman Coulter) (Ex=488 nm and Em=525 nm for Annexin V-FITC; Ex=488 nm and Em=620 nm for PI).

Detection of mitochondrial membrane potential (ΔΨₘ)

Changes in the mitochondrial membrane potential were detected using JC-1, a fluorescent dye that accumulates in mitochondria, as previously described [23, 24]. Cells with high mitochondrial membrane...
potential were indicated by red fluorescence emitted from J-aggregates, whereas cells with depolarized mitochondria were detected by the green fluorescence emitted from JC-1 monomers. HepG2 cells treated with or without B4G2 at various concentrations were collected by trypsinization, and then washed twice with PBS. After centrifugation at 2500 rpm, cell pellets were resuspended in 500 μL of JC-1 solution (5 μM JC-1 in PBS) and incubated for 15 min at 37°C in darkness. The mitochondrial membrane potential was measured by Epics XL Flow Cytometry (Beckman Coulter, USA) (Ex=488 nm and Em=575 nm for J-aggregates; Ex=488 nm and Em=525 nm for JC-1 monomers).

Measurement of intracellular calcium level and ROS

For the observation of intracellular calcium level, HepG2 cells were seeded in 6-well plates and incubated overnight for attachment. Cells were treated with B4G2 (4 μM) for 0.5, 1 and 4 h. After being washed three times with PBS, cells were incubated with Fluo-3-AM (10 μM) for 30 min at 37°C in darkness. The cells were then washed with PBS after the Fluo-3-AM was removed. The green fluorescence was observed using a KX41 fluorescence microscope (Olympus, Japan) (Ex=488 nm and Em=535 nm). For the quantification of intracellular calcium levels and ROS, HepG2 cells were seeded in black 96-well microplates (transparent bottom) at a density of 20,000 cells/well and cultured with B4G2 for specified time intervals. The cells were then treated with Fluo-3-AM (10 μM) or H2DCFDA (10 μM) for 30 min at 37°C in darkness. The intensity of the fluorescence was measured using a DTX 880 microplate reader (Beckman Coulter, USA) (Ex=488 nm and Em=535 nm).

Western blotting

The preparation of total protein lysates and western blot analyses were performed as previously described [24]. HepG2 cells were collected by trypsinization and washed twice with ice-cold PBS. Total cellular protein was extracted using RIPA lysis buffer (1% Nonidet-P40, 0.5% sodium deoxycholate and 0.1% SDS in PBS) with 1 mM phenylmethanesulfonyl fluoride (PMSF), 1× phosphatase inhibitor and 1× protease inhibitor on ice for 30 min. The lysates were centrifuged at 14,000 rpm for 10 min to obtain supernatants. For cytosol fraction preparation, cells were treated with cytoplasmic protein lysis buffer (10 mM HEPES, pH=7.9; 10 mM KCl; 0.1 mM EDTA; and 0.4% Nonidet-P40) containing 1 mM PMSF, 1× phosphatase inhibitor and 1× protease inhibitor on ice for 30 min. After centrifugation at 14,000 rpm for 1 min at 4°C, the supernatant was collected as cytoplasmic protein. The protein concentration was quantified using a BCA assay kit (Thermo Scientific, USA). Proteins (30-50 μg) were resolved on SDS-PAGE gels and then transferred to polyvinylidene fluoride (PVDF) membranes. The membranes were blocked with 5% nonfat milk or bovine serum albumin (BSA) in Tris-buffered saline (50 mM Tris and 150 mM NaCl, pH 7.6) with 0.05% Tween-20 (TBS-T) and probed overnight with primary antibodies at 4°C. The membranes were then incubated with secondary antibodies conjugated to horseradish peroxidase (HRP) at room temperature for 1 h. An enhanced chemiluminescence kit (Thermo Scientific, MA, USA) and an X-ray film processor (Kodak X-102, NY, USA) were used to visualize the bands.

Statistical analysis

Each experiment was performed at least three times, and the results are represented as the mean ± standard deviation (SD). GraphPad Prism 4.0 was used for statistical analyses. A difference was considered significant when P<0.05.

Results

B4G2 inhibits the growth of HCC cells

Four HCC cell lines, HepG2, HepG2/ADM, Hep3B and Bel-7402, were used to evaluate the cytotoxicity of B4G2. As shown in Table 1, B4G2 significantly reduced the cell viability of the four HCC cell lines. HepG2 cells were sensitive to B4G2, which inhibited the survival of HepG2 cells in a concentration-dependent manner at 48 and 72 h (Fig. 1B). B4G2 also had an inhibitory effect on the viability of HepG2/ADM cells, in which doxorubicin was ineffective (Table 1). B4G2 showed lower toxicity to normal cell line LO2 than the human cancer cells (Table 1). The colony formation assay also confirmed that B4G2 inhibited the proliferation...
of HepG2 cells in a concentration-dependent manner (Fig. 1C). We next investigated the molecular mechanisms underlying B4G2-induced cell death in HepG2 cells.

B4G2 induces apoptosis in HepG2 cells

To determine whether B4G2-induced cell death was related to cell cycle arrest, a cell cycle analysis was performed. As shown in Fig. 2A, HepG2 cells treated with different concentrations of B4G2 resulted in the accumulation of cells in the sub-G1 phase of the cell cycle in a concentration-dependent manner at 48 h. Because the sub-G1 phase of cell cycle may be attributed to the induction of either apoptosis or necrosis, morphological changes were examined to determine whether B4G2 induced apoptotic cell death. After treatment with B4G2 for 48 h, HepG2 cells showed both cell shrinkage and chromatin condensation as indicated by strong bright blue fluorescence, whereas control cells showed normal morphologies with weak blue fluorescence (Fig. 2B). Additionally, a few specific apoptotic characteristics, including cell volume reduction, plasma membrane blebbing, nuclear membrane shrinkage, chromatin condensation, chromatin margination and nuclear fragmentation, were observed by transmission electron microscopy in B4G2-treated HepG2 cells (Fig. 2C). The quantification of apoptotic cells by the Annexin V/PI double staining assay also showed that the B4G2 treatment led to significant increases in cell populations in the early apoptotic phases, ranging from 25.0% to 34.5% compared with a 3.8% increase in the vehicle-treated control (Fig. 2D). Collectively, these data indicated that B4G2 induces apoptotic cell death in HepG2 cells.

Table 1. Cytotoxicity of B4G2 towards four hepatoma carcinoma cell lines and the normal cell line LO2 (72 h). 23-HBA (23-hydroxy betulinic acid) was used as the positive control.

	HepG2	HepG2/ADM	Hep3B	Bel-7402	LO2
IC_{50} (μM)					
B4G2	3.20 ± 0.43	3.40 ± 0.39	3.24 ± 0.25	3.31 ± 0.74	9.45 ± 0.99
23-HBA	32.44 ± 3.76	45.84 ± 3.66	43.96 ± 3.36	38.16 ± 3.37	48.69 ± 3.62

Fig. 1. (A) The chemical structure of B4G2. (B) The inhibitory effect of B4G2 on the viability of HepG2 cells. HepG2 cells were treated with different concentrations of B4G2 for 24, 48 and 72 h. Cell viability was measured by MTT assay. (C) The inhibitory effect of B4G2 on the colony formation of HepG2 cells. HepG2 cells were treated with different concentrations of B4G2 for 48 h. Clonogenic survival of HepG2 cells after B4G2 treatment was measured by the number of clones capable of anchorage-dependent growth.
B4G2 induces apoptosis through the mitochondrial apoptotic pathway

It is well-known that apoptosis is primarily triggered through two signalling pathways: the death receptor pathway and the mitochondrial pathway. To explore the mechanisms of apoptosis induction by B4G2, several key molecules of the two apoptotic pathways were investigated. The activation of caspase-8, which occurs when apoptosis is triggered by death receptors, was not observed in B4G2-treated HepG2 cells (Fig. 3A). Instead, the treatment with B4G2 led to the activations of caspase-9 and caspase-3, as evidenced by the

Fig. 2. B4G2 induces apoptosis in HepG2 cells. (A) B4G2 triggers the accumulation of HepG2 cells in the sub-G1 phase of the cell cycle. Cells were stained with PI (0.02 mg/mL). Cell cycle distribution was determined by flow cytometry. (B) Morphological changes of HepG2 cells after B4G2 treatment for 48 h. Cells were stained with Hoechst 33528 (10 mg/mL) and then observed under a fluorescence microscope. Apoptotic cells with strong blue fluorescence were observed (as indicated by the arrow). Original magnifications: ×100; scale bar: 200 μm. (C) Ultrastructural observation of HepG2 cells by transmission electron microscopy after B4G2 treatment for 48 h. Original magnifications (from left to right): ×8900, ×8900 and ×8900; scale bar (from left to right): 2 μm, 5 μm and 2 μm. (D) Apoptotic cells as a result of B4G2 treatment were quantified by the Annexin V/PI assay. Cells were stained using an Annexin V/PI staining kit and then detected by flow cytometry.
decreases of pro-caspase-9 and pro-caspase-3 expression levels (Fig. 3A). PARP, which is a protein associated with DNA repair and considered as a hallmark of apoptosis, was also found to be cleaved in response to the activation of caspase-3 (Fig. 3A). However, a pretreatment with Z-VAD-FMK, a broad spectrum inhibitor of caspases, did not rescue cells from apoptosis caused by B4G2 (Fig. 3B). These results indicated that the mitochondrial pathway, rather than the death receptor pathway, may be involved in a caspase-independent apoptosis mechanism induced by B4G2. To further confirm this hypothesis, changes in the mitochondrial membrane potential and cytosolic levels of cytochrome c (Cyto c), which are
two important events in the mitochondrial apoptotic pathway, were studied. Results from the JC-1 staining assay showed that after B4G2 treatment, the percentage of cells with depolarized mitochondrial membrane potentials increased in a concentration-dependent manner (from 37.4% to 67.3%; Fig. 3C). B4G2 treatment also significantly increased the level of cytosolic Cyto c in a concentration-dependent manner (Fig. 3D). Taken together, our results suggested that B4G2 induces apoptosis through the mitochondrial apoptotic pathway.

B4G2-induced mitochondrial apoptosis is dependent on the opening of the PT pore

The opening of the PT pores is one of the most important events leading to the mitochondrial apoptotic pathway [25]. Therefore, we evaluated the role of the PT pore in the induction of mitochondrial-mediated apoptosis caused by B4G2. Pre-treatments with...
MgCl₂, an inhibitor of the PT pore, markedly decreased the collapse of the mitochondrial potential and the population of Annexin V-positive cells induced by B4G2 (Fig. 4A and B). This
observation suggested that B4G2-induced mitochondrial apoptosis is partially promoted by the opening of the PT pore. Moreover, the expression levels of Bcl-2 and Bax, which play important roles in the induction of the PT pore, exhibited significant changes after the B4G2 treatment, as shown in Fig. 4C.

Fig. 6. Blockage of ROS attenuates B4G2-induced apoptosis. (A) Inhibition of ROS increases the cell viability of HepG2 cells. HepG2 cells were cultured with various concentrations of B4G2 in the presence or absence of NAC (20 mM). Cell viability was measured by the MTT assay. ***P≤0.001 vs. control, ###P≤0.001 and ####P≤0.001 vs. B4G2 treatment alone at the same conditions. (B) Blockage of ROS decreases B4G2-induced apoptotic cells. HepG2 cells were exposed to B4G2 with or without NAC (20 mM) for 48 h. Proportion of apoptotic cells was measured by flow cytometry. ***P≤0.001 vs. control, ##P≤0.01 and ###P≤0.001 vs. B4G2 treatment alone at the same conditions. (C) Pretreatment with NAC decreases B4G2-induced collapse of mitochondrial membrane potential. HepG2 cells were treated with B4G2 in the presence or absence of NAC (20 mM) for 48 h and then ΔΨm were measured by flow cytometry. (D) NAC pretreatment attenuates B4G2-induced cleavage of PARP. Total cell lysate from HepG2 cells treated with a combination of B4G2 and NAC (20 mM) for 48 h was evaluated by western blotting. β-Actin was used as a loading control. One-way ANOVA, post hoc comparisons and Tukey’s test were used for statistical analyses. Columns, mean; error bars, SD.
B4G2 induces the generation of ROS to mediate the increase of intracellular calcium levels

Given the disruption of the mitochondrial potential induced by B4G2, the intracellular calcium levels, which regulate mitochondrial function, were examined. The occurrence and intensity of green fluorescence were both markedly increased by extending the duration of B4G2 treatment from 0.5 to 4 h, which indicated an overloading of calcium in the cytoplasmic fraction (Fig. 5A). ROS, important markers of mitochondrial damage, were also detected. As indicated in Fig. 5B and C, the exposure to B4G2 also induced an increase of intracellular ROS as early as 0.5 h, which was abrogated in the presence of the NAC, a ROS scavenger. Moreover, pre-treatment with NAC decreased the B4G2-induced accumulation of intracellular calcium (Fig. 5D), indicating that the release of ROS elevated the intracellular calcium levels.

Blockage of ROS attenuates B4G2-induced mitochondrial apoptosis

To further confirm the role of ROS as an initiator in B4G2-induced apoptosis, cells were preincubated with 20 mM NAC prior to B4G2 treatment. As shown in Fig. 6, NAC pre-treatment markedly increased cell viability compared with B4G2 treatment alone. NAC pre-treatment also attenuated the B4G2-induced collapse of the mitochondrial membrane potential, increased the population of Annexin V-positive cells and increased the specific cleavage of PARP. These results suggested that ROS initiate the B4G2-induced mitochondrial apoptosis in HepG2 cells.

Discussion

Natural products and their derivatives have been considered major sources of chemotherapeutic drugs and leading drugs [26]. 23-HBA, a derivative of the Chinese medicinal herb Pulsatilla chinensis, has weak antitumour activity in vitro and in vivo [8, 9, 11-14]. Therefore, our group chemically modified 23-HBA by introducing a nitrogenc side chain at the C28 position to obtain B4G2, which was shown to have remarkably improved anticancer activity [10]. In the present study, we report the effects of B4G2 on HBV-infected HCC cells, i.e., HepG2, Bel-7402 and Hep3B cells, and on multidrug resistant HepG2/ADM cells. The results indicated the potential of B4G2 in the treatment of various types of HCC. Based on the present data, an in vivo study will be performed to determine whether B4G2 can inhibit tumour growth in a nude mouse xenograft model. Additionally, the in vivo toxicity of B4G2 towards normal tissues (e.g., heart, lung, liver, kidney and spleen) should be determined to further develop B4G2 as a chemotherapeutic agent for preclinical studies. Many studies have shown that the induction of apoptosis in cancer cells is crucial to the killing mechanisms of most anti-cancer treatments including chemotherapy, immunotherapy and cytokine therapy [27, 28]. At least two main pathways have been identified that lead to apoptosis, namely the death receptor pathway and the mitochondrial pathway [27]. Abundant studies have demonstrated that betulinic acid (BA) induces apoptosis through the mitochondrial pathway, as evidenced by mitochondrial membrane potential depolarizations, Cyto c release from mitochondria, Smac release from mitochondria and increased levels of proteolytically cleaved caspase-3 and PARP [29]. However, Liby reported that TP-295 and TP-296 (BA derivatives that contain a methoxycarbonyl group in ring A) activate apoptosis through the
extrinsic death receptor-mediated pathway [30] in Bax/Bak−/− cells. In our research, typical apoptotic morphological characteristics, including an increase in the sub-G1 phase of the cell cycle, the appearance of Annexin V-positive cells and the cleavage of PARP, were found to be responses to the effects of B4G2, which suggested that B4G2 decreases the viability of HepG2 cells through the induction of apoptosis. Moreover, in B4G2-treated HepG2 cells, B4G2 activated the mitochondrial apoptotic pathway, as supported by the decrease in the mitochondrial membrane potential, the release of Cyto c, and the activations of caspase-9 and caspase-3. However, caspase-8 expression remained unchanged, and the pan-caspase inhibitor had no effect on B4G2-induced cell death. These results indicated that caspase-independent mechanisms may be involved, such as the release of apoptosis-inducing factor and endonuclease G from mitochondria. Interestingly, these events are observed following increases to the mitochondrial membrane permeability. These mechanisms require further study.

Mitochondrial membrane permeability transition plays a critical role in apoptosis; this transition occurs after the opening of the PT pore [31]. The PT pore is a multi-protein complex formed between the inner and outer mitochondrial membranes. The PT pore permits water, ions and low molecular weight proteins up to 1.5 kDa to cross the mitochondrial matrix and cytosol. The pore is composed of adenine nucleotide translocase (ANT) and cyclophilin D (CyPD), which are located in the inner membrane, as well as VDAC and the recently discovered mitochondrial phosphate carrier, which are located in the outer membrane [25]. Arsenic trioxide may activate the PT pore through a direct interaction with ANT in the treatment of acute promyelocytic leukaemia [32]. This finding suggests that the regulation of the PT pore is an attractive target for cancer therapeutics. Recent research has indicated that Bak and Bax interact with ANT and/or VDAC, and this interaction results in a sudden permeability increase in the inner mitochondrial membrane. Subsequently, mitochondrial functions are disrupted and proapoptotic proteins are released, including Cyto c, apoptosis-inducing factor and endonuclease G, leading to apoptosis [33]. Moreover, anti-apoptotic Bcl-2 family members, such as Bcl-2 and Bcl-xl, could block the amplification in mitochondrial membrane permeability by directly inhibiting VDAC or heterodimerizing pro-apoptotic Bcl-2 family members. Other Bcl-2 proteins may also form autonomous channels independent of the PT pore due to their ability to oligomerize into ion channel structures that increase the depolarizing effect induced by PT [25]. Fulda found that the overexpression of the anti-apoptotic proteins, Bcl-2 or Bcl-xl, counteracted BA-induced apoptosis [34]. Moreover, Mullauer reported that BA altered the levels of Bax and Bcl-2 proteins but did not alter the levels of Bcl-xS, Bcl-xl, Bax and Bak [35]. Mullauer further reported that BA affected mitochondria and induced the release of Cyto c directly via the PT pore. In our study, we found that the expressions Bcl-2 and Bax significantly changed after B4G2 treatment, suggesting that Bcl-2 and Bax are involved in the regulation of the mitochondrial membrane permeability. Additionally, the roles of the other Bcl-2 family members, such as Bak or Bcl-xl, in the formation of the PT pores remain unknown. As an important modulator of PT pores, Ca2+ induces a conformational change in the inner mitochondrial membrane by binding to the membrane and also alters the activity of mitochondrial membrane protein thiol groups. Thus, a cytosolic Ca2+ overload can induce excessive mitochondrial Ca2+ sequestration and can subsequently induce the opening of the PT pores [25]. In our study, B4G2 induced Ca2+ overloading, suggesting that it may have resulted in the opening of the PT pores. Until now, the Ca2+-based mechanism behind the regulation of the PT pore remained undetermined [25]. The common pharmacological inhibitors of the Ca2+-dependent PT pore are the competitive inhibitors of Ca2+, such as Mg2+, Mn2+ and Sr2+ [25]. We further found that pretreatment with MgCl2, which inhibits the PT pore by competing with Ca2+ for mitochondrial membrane binding sites [36], inhibited the depolarization of the mitochondrial membrane potential and protected cells from apoptotic cell death. Thus, these data demonstrated that the PT pore plays a pivotal role in B4G2-induced apoptosis. Based on the inhibition caused by MgCl2, it can be concluded that B4G2 can induce the opening of the Ca2+-dependent PT pore. In addition to Ca2+, many other signals, such as increased cytosolic ROS and low
ATP concentration [37], can also trigger the opening of the PT pore by inducing several mitochondrial dysfunctions. These dysfunctions include oxidative damage to mitochondrial proteins, mitochondrial respiratory chain uncoupling, inner mitochondrial membrane reorganization and outer mitochondrial membrane permeabilization. These factors could all potentially lead to the activation of the mitochondrial apoptosis pathway [38]. Among these signals, ROS act by oxidizing the thiol groups of mitochondrial membrane proteins, resulting in the alterations of structural proteins and thus the formation of the PT pore [25]. In our study, B4G2 induced ROS generation, suggesting that ROS may be associated with the opening of the PT pore. Indeed, the effects of Ca\(^{2+}\) and ROS are often dependent on each other in the induction of the PT pore [39]. Mitochondrial Ca\(^{2+}\) uptake induces ROS formation by enhancing ATP production and interacting with some forms of ROS in the opening of the PT pore. Conversely, the release of Ca\(^{2+}\) from the endoplasmic/sarcoplasmic reticula (ER/SR) is regulated by ROS through the regulation of ryanodine receptors and 1, 4, 5-inositol-triphosphate receptors [40]. The transfer of Ca\(^{2+}\) between the ER/SR and mitochondria leads to increased Ca\(^{2+}\) levels in mitochondria. Moreover, Ca\(^{2+}\) and ROS can be both stimulatory and inhibitory, depending on the type of target proteins, chemical dose and cell type [41]. In this study, B4G2 increased the level of Ca\(^{2+}\), which was completely blocked by NAC, suggesting that the induction of ROS is necessary for the release of Ca\(^{2+}\) in B4G2-treated cells. Furthermore, the B4G2-induced mitochondrial potential collapse and apoptosis were partially blocked by NAC, which implied that the B4G2-induced opening of the PT pore and apoptosis are dependent on the generation of ROS. However, the identity of membrane proteins of the PT pore complex involved in the ROS-induced opening of the pore remains unknown. It should also be noted that oxidative stress and ER stress are closely correlated and that the ER/SR is the main Ca\(^{2+}\) pool [42]. Hence, the relationship among ER stress, ROS generation and Ca\(^{2+}\) release as well as the crosstalk between the ER/SR and mitochondria in B4G2-induced apoptosis are interesting issues that require further study.

In summary, we demonstrated that B4G2 significantly inhibits the growth of HCC cells and revealed that ROS play a pivotal role in the anti-hepatoma effect of B4G2. B4G2 increases the accumulation of cytosolic Ca\(^{2+}\) and subsequently opens the PT pores, leading to the induction of apoptosis through the mitochondrial pathway (Fig. 7).

Acknowledgments

This work was supported by the Science and Technology Programme of China (2012ZX09103101-053), the Science and Technology Program of Guangzhou City (2009A1-E011-1, 2010U1-E00531-9, 2011Y1-00017-11 and 2011J2200045), the National Science Foundation of China (No. 30901847) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT0965).

Disclosure Statement

The authors have not conflict of interest to disclose.

References

1. Jemal A, Bray F, Center MM, Ferlay J; Ward E: Global cancer statistics. CA Cancer J Clin 2011;61:69-90.
2. Bosch FX, Ribes J, Cléries R, Díaz M: Epidemiology of hepatocellular carcinoma. J Clin Liver Dis 2005;9:191-211.
3. Parikh S, Hyman D: Hepatocellular cancer: a guide for the internist. Am J Med 2007;120:194-20.
4. El-Serag HB: Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012;142:1264-1273.
Yao et al.: B4G2 Induces Apoptosis in HepG2 Cells

5 Rampone B, Schiavone B, Martino A, Viviano C, Conforto G: Current management strategy of hepatocellular carcinoma. World J Gastroenterol 2009;15:3210-3216.

6 Llovet JM, Ricci S, Mazzaferro V: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390.

7 Ye WC, Ji NN, Zhao SX, Liu JH, Ye T, McKervey MA, Stevenson P: Triterpenoids from Pulsatilla chinensis. Phytochemistry 1996;42:799-802.

8 Ye YY, He DW, Ye WC, Zhang XQ, Zhao SX: The anticancer effect of 23-hydroxy betulinic acid in vitro. J Southeast Univ (Med Science Edition) 2011;20:141-144.

9 Ye YY, He DW, Ye WC, Zhang XQ, Zhao SX: Differentiation of B16 melanoma cells induced by 23-hydroxy betulinic acid. Chin J Biochem Pharm 2001;22:163-166.

10 Lan P, Zhang DM, Chen WM, Ye WC: Advances in the study of structural modifications and biological activities of betulinic acids. Yao Xue Xue Bao 2010;45:1339-1345.

11 Liu WK, Ho JC, Cheung FW, Liu BP, Ye WC, Che CT: Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line. Eur J Pharmacol 2004;498:71-78.

12 Cheng Y, Ye WC, Shi JM, Yao XS, Kurihara H: Apoptotic activity of 23-hydroxy betulinic acid and the change of mitochondrial membrane potential in human colorectal cancer cell line LoVo. Chin Pharmacol Bulletin 2007;23:350-353.

13 Cheng Y, Ye WC, Shi JM, Yao XS, Kurihara H: Role of reactive oxygen species in 23-hydroxybetulinic acid-induced apoptosis in LoVo cells. Chin J Pathophysiol 2007;23:772-775.

14 Ji ZN, Ye WC, Liu GG, Wendy Hsiao WL: 23-hydroxy betulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sci 2002;73:1-9.

15 Ye B, Ji ZN: 23-hydroxy betulinic acid-induced HL-60 cell autophagic apoptosis and its molecular mechanism. Nat Prod Res 2012;26:1063-1068.

16 Zheng Y, Zhou F, Wu X, Wen X, Li Y, Yan B, Zhang J, Hao G, Ye W, Wang G: 23-hydroxybetulinic acid from Pulsatilla chinensis (Bunge) Regel synergizes the antitumor activities of doxorubicin in vitro and in vivo. J Ethnopharmacol 2010;128:615-622.

17 Zhang DM, Shu C, Chen JJ, Sodani K, Wang J, Bhatnagar J, Lan P, Ruan ZX, Xiao ZJ, Ambudkar SV, Chen WM, Chen ZS, Ye WC: BBA, a derivative of 23-hydroxybetulinic acid, potently reverses ABCB1-mediated drug resistance in vitro and in vivo. Mol Pharm 2012;9:147-159.

18 Zhang DM, Li YJ, Shu C, Ruan ZX, Chen WM, Yiu A, Peng YH, Wang J, Lan P, Yao Z, Fung KP, Fu LW, Chen ZS, Ye WC: Bipiperidinyl derivatives of 23-hydroxybetulinic acid reverse the resistance of HepG2/ADM and MCF-7/ADR cells. Anti-cancer Drugs 2013;24:441-454.

19 Zhu P, Bi Y, Xu J, Li Z, Liu J, Zhang L, Ye W, Wu X: Terpenoids III: Synthesis and biological evaluation of 23-hydroxybetulinic acid derivatives as novel inhibitors of glycogen phosphorylase. Bioorg Med Chem Lett 2009;19:6966-6969.

20 Lan P, Wang J, Zhang DM, Shu C, Cao HH, Sun PH, Wu XM, Ye WC, Chen WM: Synthesis and antiproliferative evaluation of 23-hydroxybetulinic acid derivatives. Eur J Med Chem 2011;46:2490-2502.

21 Bi Y, Xu JY, Sun F, Wu XM, Ye WC, Sun YJ, Huang WW: Synthesis and biological activity of 23-hydroxy betulinic acid C-28 ester derivatives as antitumor agent candidates. Molecules 2012;17:8832-8841.

22 Bi Y, Xu JY, Sun F, Wu XM, Ye WC, Sun YJ, Huang WW: Synthesis and biological activity of 28-amide derivatives of 23-hydroxy betulinic acid as antitumor agent candidates. Med Chem 2013;9:920-925.

23 Zhang DM, Liu JS, Tang MK, Yi A, Cao HH, Jiang L, Chan YJ, Tian HY, Fung KP, Ye WC: Bufotalin from Venenum Bufonis inhibits growth of multidrug resistant HepG2 cells through G2/M cell cycle arrest and apoptosis. Eur J Pharmacol 2012;692:19-28.

24 Zhang DM, Liu JS, Chen MF, Yi A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, Ye WC: Arenobufagin, a natural bufadendiolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis 2013;34:311-317.

25 Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL: Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 2009;1787:1-15.

26 Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SP: Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 2005;13:5892-5908.

27 Martin BJ, Laura DA: The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 2005;5:231-237.
28 Zhou J, Lu S, Yang S, Chen H, Shi H, Miao M, Jiao B. MicroRNA-127 Post-Transcriptionally Downregulates Sept7 and Suppresses Cell Growth in Hepatocellular Carcinoma Cells. Cell Physiol Biochem 2014;33:1537-1546.

29 Fulda S, Kroemer G: Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 2009;14:885-890.

30 Liby K, Honda T, Williams CR, Risingsong R, Royce DB, Suh N, Dinkova-Kostova AT, Stephenson KK, Talalay P, Sundararajan G, Grubb GW, Sporn MB: Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative, and proapoptotic activities. Mol Cancer Ther 2007;6:2113-2119.

31 Luo L, Xie Y, Wang A, Liu X, Xiao F, Zhong X, Zhong C. Desipramine Ameliorates Cr(VI)-Induced Hepatocellular Apoptosis via the Inhibition of Ceramide Channel Formation and Mitochondrial PTP Opening. Cell Physiol Biochem 2014;34:2128-2136.

32 Costantini P, Jacotot E, Decaudin D, Kroemer G: Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 2000;92:1042-1053.

33 Daniel PT, Schulze-Osthoff K, Bella C, Guner D: Guardians of cell death: the Bcl-2 family proteins. Essays Biochem 2003;39:73-88.

34 Fulda S, Debatin KM: Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol 2000;35:616-618.

35 Mullauer FB, Kessler JH, Medema JP: Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Apoptosis 2009;14:191-202.

36 Kowaltowski AJ, Naia-da-Silva ES, Castilho RF, Vercesi AE: Ca2+-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+. Arch Biochem Biophys 1998;359:77-81.

37 Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS: Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004;287:C817-833.

38 Xie Y, Xiao F, Luo L, Zhong C. Activation of Autophagy Protects Against ROS-Mediated Mitochondria-Dependent Apoptosis in L-02 Hepatocytes Induced by Cr(VI). Cell Physiol Biochem 2014;33:705-716.

39 Jezek P, Hlavata L: Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J of Biochem Cell Biol 2005;37:2470-2503.

40 Favero TG, Zable AC, Abramson JJ: Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J Biol Chem 1995;270:25557-25563.

41 Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science 2004;305:626-629.

42 Santos CX, Tanaka LY, Wosniak J, Laurindo FR: Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 2009;11:2409-2427.