Bouquets, vertex covers and the projective dimension of graphs

Nursel Erey

February 18, 2014

Abstract

We characterize the maximum cardinality of a minimal vertex cover of a graph in terms of bouquet subgraphs.

1 Introduction

Let G be a finite simple graph with vertex set $V(G) = \{x_1, \ldots, x_n\}$ and edge set $E(G)$. Let k be a fixed field and $S = k[x_1, \ldots, x_n]$. The edge ideal of G is a squarefree monomial ideal $I(G) \subseteq S$ given by

$$I(G) = (x_ix_j : \{x_i, x_j\} \in E(G)).$$

The projective dimension of G is defined as the length of the minimal free resolution of $S/I(G)$ and, it is denoted by $\text{pd}(G)$. The Betti numbers of G are the ranks of modules in a minimal free resolution of $S/I(G)$. A current research topic in commutative algebra is to express or bound the invariants of minimal free resolution of a graph in terms of its combinatorial properties (see, for example, [1] – [9]). Many authors introduced new graph parameters and notions in this context.

A subset C of vertices of G is called a vertex cover of G if every edge in G contains an element of C. A vertex cover C is minimal if no proper subset of C is a vertex cover of G. We write $\alpha'_0(G)$ for the maximum cardinality of a minimal vertex cover of G. There is a one-to-one correspondence between the minimal vertex covers of G and the minimal prime ideals of $I(G)$ given by

$$C \text{ is a minimal vertex cover of } G \iff (x_i : i \in C) \text{ is a minimal prime ideal of } I(G).$$

Therefore the parameter $\alpha'_0(G)$ coincides with the big height of $I(G)$, which is the maximum height of the minimal prime ideals of $I(G)$. It is well known that the maximum cardinality of a minimal vertex cover of a graph is a lower bound for its projective dimension. In fact, it is a sharp bound for the following cases:

*Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, e-mail: nurselerey@gmail.com
Theorem 1.1. For a graph G, the equality $\text{pd}(G) = \alpha'_{0}(G)$ holds if

(a) $S/I(G)$ is sequentially Cohen-Macaulay.
(b) G is a chordal graph.
(c) G is a vertex decomposable graph.

In this work, we will give a new characterization of $\alpha'_{0}(G)$, or equivalently, the big height of $I(G)$.

2 Semi-strongly disjoint bouquets and minimal vertex covers

A bouquet is a graph B with $V(B) = \{r, f_1, \ldots, f_d\}$ and $E(B) = \{\{r, f_i\} : i = 1, \ldots, d\}$ where $d \geq 1$. Then the vertex r is called the root of B and the vertices f_i flowers of B. Suppose that $\mathcal{B} = \{B_1, \ldots, B_j\}$ is a set of bouquets of G. Then

$$F(\mathcal{B}) = \{f : f \text{ is a flower of some bouquet of } \mathcal{B}\},$$
$$R(\mathcal{B}) = \{r : r \text{ is a root of some bouquet of } \mathcal{B}\}.$$

In [7] Kimura introduced the following definition in order to study Betti numbers of chordal graphs.

Definition 2.1 (Definition 5.1, [7]). A set $\mathcal{B} = \{B_1, B_2, \ldots, B_j\}$ of bouquets of G is said to be semi-strongly disjoint in G if the following conditions hold.

1. $V(B_k) \cap V(B_\ell) = \emptyset$ for all $k \neq \ell$.
2. Any two vertices belonging to $R(\mathcal{B})$ are not adjacent in G.

Also the number

$$d'_G = \max\{\#F(\mathcal{B}) : \mathcal{B} \text{ is a semi-strongly disjoint set of bouquets of } G\}.$$

is the maximum number of flowers that a semi-strongly disjoint set of bouquets of G can have.

Lemma 2.2. If H is an induced subgraph of G then $\alpha'_0(H) \leq \alpha'_0(G)$.

Proof. By induction it suffices to prove the given statement when the order of G is one more than the order of H. Suppose that u is the only vertex of G which do not belong to H. Let $C = \{v_1, \ldots, v_s\}$ be a minimal vertex cover of H of maximum cardinality. If every edge which is incident to u in G has an endpoint in C, then clearly C is also a minimal vertex cover of G. Hence $s \leq \alpha'_0(G)$ follows. Therefore we assume that there exists an edge $\{u, w\}$ of G such that $w \notin C$. Then clearly $\{v_1, \ldots, v_s, u\}$ is a vertex cover of G. To see that it is a minimal one, first note that u is not redundant as $w \notin C$. By minimality of C in H none of v_i is redundant in $\{v_1, \ldots, v_s, u\}$ for $i = 1, \ldots, s$. Hence $s + 1 \leq \alpha'_0(G)$ and the result follows.

Remark 2.3. Lemma 2.2 is not necessarily true if H is a subgraph of G. See for example Figures 1 and 2.
The next result was proved for the special case of vertex decomposable graphs in [5] (see Theorem 3.8 in [5]).

Theorem 2.4. For any graph G, the equality $\alpha'_0(G) = d'_G$ holds.

Proof. Let us assume that G has no isolated vertices since deleting isolated vertices from a graph G does not change $\alpha'_0(G)$ or d'_G. First we show that $\alpha'_0(G) \geq d'_G$. Let \mathcal{B} be a semi-strongly disjoint set of bouquets of G which has the maximum number of flowers. Let $G_{\mathcal{B}}$ be the induced subgraph of G on $F(\mathcal{B}) \cup R(\mathcal{B})$. Since $F(\mathcal{B}) \cap R(\mathcal{B}) = \emptyset$, the set $F(\mathcal{B})$ is a vertex cover of $G_{\mathcal{B}}$. As no two vertices belonging to $R(\mathcal{B})$ are adjacent in G, the set $F(\mathcal{B})$ is a minimal vertex cover of $G_{\mathcal{B}}$. Therefore by Lemma 2.2 we get $\alpha'_0(G) \geq \alpha'_0(G_{\mathcal{B}}) \geq |F(\mathcal{B})| = d'_G$ as desired.

Next we show that $\alpha'_0(G) \leq d'_G$. Let C be a minimal vertex cover of G of maximum cardinality. We will construct a set \mathcal{B} of semi-strongly disjoint bouquets of G such that $|F(\mathcal{B})| = |C|$. First note that by minimality of C, for every $v \in C$ there exists a vertex $u \notin C$ which is adjacent to v in G. Pick a vertex $r_1 \notin C$. Let $\{f_1^1, ..., f_{d_1}^1\}$ be the set of vertices of C which are adjacent to r_1. Let B_1 be the bouquet with root r_1 and flowers $f_1^1, ..., f_{d_1}^1$. If $C = F(B_1)$ then $\mathcal{B} = \{B_1\}$ and we are done. Otherwise we keep constructing new bouquets inductively as follows. Suppose that we have bouquets $B_1, ..., B_i$ such that $F(B_1) \cup ... \cup F(B_i)$ is a proper subset of C. Then there exists $f_{i+1}^1 \in C \setminus (F(B_1) \cup ... \cup F(B_i))$. By minimality of C there exists $r_{i+1} \notin C$ which is adjacent to f_{i+1}^1. Let B_{i+1} be the bouquet with root r_{i+1} and let the flower set $F(B_{i+1}) = \{f_{i+1}^1, ..., f_{d_{i+1}}^{i+1}\}$ be the subset of $C \setminus (F(B_1) \cup ... \cup F(B_i))$ which consists of neighbours of r_{i+1} in G. Note that by construction of B_{i+1} we have $r_{i+1} \notin \{r_1, ..., r_i\}$. Now if $C = F(B_1) \cup ... \cup F(B_{i+1})$ then we claim that $\mathcal{B} = \{B_1, ..., B_{i+1}\}$ is a semi-strongly disjoint set of bouquets of G. To see this, observe that $V(B_k) \cap V(B_{\ell}) = \emptyset$ for all $k \neq \ell$ by construction. Also for all $k \neq \ell$, the pair $\{r_k, r_{\ell}\}$ is not an edge of G since $r_k, r_{\ell} \notin C$ and C is a vertex cover of G. Hence the proof is completed for such a case. If $F(B_1) \cup ... \cup F(B_{i+1})$ is a proper subset of C then we continue the process and it will stop at some step since G is a finite graph.

Corollary 2.5. If G is a graph then $pd S/I(G) \geq d'_G = \alpha'_0(G)$.

Remark 2.6. The authors of [5] generalized Definition 2.1 and the parameter d'_G to hypergraphs (see Definition 3.2 in [5]). However with their definition, for a hypergraph $\bar{\mathcal{H}}$, the parameters d'_G and $\alpha'_0(\bar{\mathcal{H}})$ are not always equal. What would be a natural generalization
of semi-strongly disjoint bouquets to hypergraphs in the sense that the parameter d'_H still characterizes $\alpha'_0(H)$?

References

[1] H. Dao, J. Schweig, Projective dimension, graph domination parameters, and independence complex homology, J. Combin. Theory Ser. A 120 (2013), no. 2, 453–469.

[2] S. Faridi, The projective dimension of sequentially Cohen-Macaulay monomial ideals, math.AC/1310.5598, 2013.

[3] C. A. Francisco, A. Van Tuyl Sequentially Cohen-Macaulay edge ideals, Proc. Amer. Math. Soc. 135 (2007), 2327–2337.

[4] H. T. Hà, A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin. 27 (2008), 215–245.

[5] F. Khosh-Ahang, S. Moradi, Codismantlable hypergraphs, projective dimension and regularity of edge ideal of special hypergraphs, math.AC/1305.5954v1, 2013.

[6] F. Khosh-Ahang, S. Moradi, Regularity and projective dimension of edge ideal of C_5-free vertex decomposable graphs, to appear in Proc. Amer. Math. Soc.

[7] K. Kimura, Non-vanishingness of Betti numbers of edge ideals, Harmony of Gröbner bases and the modern industrial society, 153–168, World Sci. Publ., Hackensack, NJ, 2012.

[8] S. Morey, R.H. Villarreal, Edge ideals: algebraic and combinatorial properties, Progress in commutative algebra 1, 85–126, de Gruyter, Berlin, 2012.

[9] X. Zheng, Resolutions of facet ideals, Comm. Algebra 32 (2004) 2301–2324.