Predictive factors associated with malignancy of intraductal papillary mucinous pancreatic neoplasms

Jin Hee Lee, Kyu Taek Lee, Jongwook Park, Sun Youn Bae, Kwang Hyuck Lee, Jong Kyun Lee, Kee-Taek Jang, Jin Seok Heo, Seong Ho Choi, Dong Wook Choi, Jong Chul Rhee

AIM: To identify preoperative predictive factors associated with malignancy of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas.

METHODS: Between April 1995 and April 2010, 129 patients underwent surgical resection for IPMNs at our institute and had confirmed pathologic diagnoses. The medical records were retrospectively reviewed and immunohistochemical staining for mucin (MUC) in pancreatic tissues was performed.

RESULTS: Univariate analysis showed that the following five variables were closely associated with malignant IPMNs preoperatively: absence of extrapancreatic malignancy; symptoms; tumor size > 4 cm; main pancreatic duct (MPD) size > 7 mm; and lymph node enlargement on preoperative computed tomography (CT). Multivariate analysis revealed that the following two factors were significantly associated with malignant IPMNs preoperatively: MPD size > 7 mm (odds ratio (OR) = 2.50); and lymph node enlargement on preoperative CT (OR = 3.57). No significant differences in the expression of MUC1, MUC2 and MUC5AC were observed between benign and malignant IPMNs.

CONCLUSION: MPD size > 7 mm and preoperative lymph node enlargement on CT are useful predictive factors associated with malignancy of IPMNs.

Key words: Intraductal papillary mucinous neoplasms; Malignancy; Predictive factors; Pancreatic neoplasms

INTRODUCTION

Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are characterized by intraductal proliferation of neoplastic mucinous cells, which usually form papillae, and cystic dilation of the pancreatic ducts, thus forming...
a clinically and macroscopically detectable mass\(^{[11]}\). The classification of IPMNs according to the World Health Organization nomenclature\(^{[1]}\) is as follows: adenoma; borderline tumor; carcinoma in situ (CIS); and invasive carcinoma. Depending on the degree of dysplasia, treatment of IPMNs includes conservative treatment and radical pancreatectomy with extended resection. Therefore, it is important to diagnose the grade of IPMNs preoperatively.

Previous studies have revealed predictive factors of invasiveness or malignancy of IPMNs of the pancreas\(^{[2-8]}\). Factors, such as age at the time of diagnosis, tumor size, main pancreatic duct (MPD) size, duct type, the presence of mural nodules, the presence of symptoms, and thick septum are associated with invasiveness or malignancy of IPMNs. However, the results of predictive factors have not been consistent with each other and some are not diagnostic. The pre-operative differential diagnosis between benign and malignant IPMNs, or between non-invasive and invasive IPMNs is not easy, despite the development of diagnostic modalities.

Recently, several studies have demonstrated the expression of mucin (MUC) on pancreatic tumors by immunohistochemical staining\(^{[9-13]}\). MUC1 (membrane mucin) is related to the invasive proliferation of tumors, while the expression of MUC2 (intestinal-type secretory mucin) is related to noninvasive proliferation of tumors\(^{[14]}\).

The purpose of the current study was to identify pre-operative predictive factors associated with malignancy of IPMNs of the pancreas by reviewing patients’ records, and to reveal the role of MUC expression in differentiating malignant IPMNs using several specific antibodies.

MATERIALS AND METHODS

Patients and clinical characteristics

Between April 1995 and April 2010, 129 patients who underwent surgical resection for IPMNs of the pancreas at the Samsung Medical Center in Seoul, Korea, and had a confirmed pathological diagnosis were included. The medical records were retrospectively reviewed to obtain the demographic characteristics.

We analyzed variable factors, such as age at the time of diagnosis, sex, presence or absence of diabetes mellitus, alcohol intake history, and cigarette smoking. Symptomatic IPMNs were defined as the presence of abdominal pain and/or jaundice. Recently, IPMNs have been shown to be associated with a high incidence of extrapancreatic gastrointestinal neoplasms\(^{[15,16]}\), thus, we assessed preoperatively the presence of extrapancreatic gastrointestinal cancers in the study population.

We determined the serum levels of total bilirubin, amylase, lipase, carcinoembryonic antigen (CEA), and carbohydrate antigen (CA) 19-9 within 1 mo preoperatively. All patients underwent preoperative computed tomography (CT). We assessed the duct type, tumor size, location, MPD size, and presence of mural and intra-abdominal lymph node enlargement on CT. Adenomas and borderline tumors were benign tumors, and CIS and invasive carcinomas were malignant tumors.

Immunohistochemical staining

The surgical specimens were fixed with 10% formalin and cut at intervals of 5 mm. The tumor samples were embedded in paraffin, and the histological sections were cut into 5-µm thick slices for hematoxylin and cosin staining. Immunohistochemical staining for p53, MUC1, MUC2 and MUC5AC was performed on the serial sections for IPMN tissues. The 5-µm thick sections were deparaffinized with xylene, and rehydrated in alcohol. After rinsing in PBS, the sections were incubated for 1 h at room temperature with DF3 (1:50 dilution; Toray-Fuji Bionics, Tokyo, Japan) for MUC1 antigen, Cep58 (undiluted; Biogenex, San Ramon, CA, USA) for MUC2 antigen, and CLH2 (1:50 dilution; Novocastra, Newcastle, UK) for MUC5AC antigen. In addition, sections were incubated for 25 min at room temperature with BP53.12 (1:400 dilution; Zymed, San Francisco, CA, USA) for p53 antigen. The sections were rinsed with tap water. Positivity of the immunohistochemical stain was judged by the presence of staining in the intraductal tumor cells.

Statistical analysis

Continuous data are presented as the mean ± SD or median and range. The \(\chi^2\) test or Fisher’s exact test was used to evaluate differences between categorical variables. Significant predictors in the univariate analysis were included in the logistic regression model for multivariate analysis. Differences at \(P < 0.05\) were considered statistically significant. Statistical analyses were performed using SPSS 17.0k software (SPSS Inc., Chicago, IL, USA).

RESULTS

Patient characteristics

One hundred and twenty-nine patients underwent surgical resection and were confirmed with IPMN of the pancreas (Table 1). The study group included 94 men and 35 women, with a mean age at the time of diagnosis of 60.9 years (range, 32-77 years). More than half of the IPMNs were detected incidentally in asymptomatic patients during routine check-ups. The duct type included the main duct in 56 patients (43.4%), a branch duct in 46 (35.7%), and mixed ducts in 27 (20.9%). Eighty-one of the patients (62.8%) were diagnosed with benign tumors (adenomas and borderline tumors) and 48 (37.8%) had malignant tumors (CIS and invasive carcinomas).

Comparisons of characteristics between benign and malignant IPMNs

There were no differences in age at the time of diagnosis and sex between the patients with benign and malignant IPMNs (Table 2). In both groups, the proportion of current smokers and alcohol drinkers was no different. Of the IPMNs in patients with diabetes mellitus, 37.5% were malignant and 27.1% were benign tumors (\(P > 0.05\)). Symptomatic IPMNs were observed in 31 of the patients (64.6%) with malignant tumors and 32 (39.5%) with benign tumors (\(P = 0.007\)). The proportion of patients with tumors > 4 cm in size was greater in patients with malignant IPMNs.
(37.5%) than benign tumors (18.5%, \(P = 0.019 \)). The MPD was > 7 mm in diameter more frequently in malignant (62.5%) than in benign (33.3%, \(P = 0.002 \)) tumors. According to CT, there were no significant differences in the proportion of patients with mural nodules, the tumor location within the pancreas, and duct types (\(P > 0.05 \)). Intraductal lymphadenopathy, defined as lymph nodes > 1.5 cm in size on preoperative CT, existed in 31.2% of malignant and 9.8% of benign tumors (\(P = 0.003 \)). The mean serum level of amylase in patients with benign IPMNs was higher than in those with malignant tumors (128.0 ± 13.5 U/L vs 86.8 ± 61.1 U/L, \(P = 0.173 \)). The mean serum levels of total bilirubin (2.1 ± 4.6 mg/dL), CEA (2.2 ± 1.3 ng/mL), and CA 19-9 (867.9 ± 3958.5 U/mL) in patients with malignant IPMNs was similar to those in patients with benign tumors (0.7 ± 0.4 mg/dL, 6.7 ± 31.9 ng/mL, and 34.5 ± 81.4 U/mL, respectively, \(P > 0.05 \)).

Patients with benign tumors had more extrapancreatic gastrointestinal malignancies before or during the diagnosis of IPMN than patients with malignant tumors (28.1% vs 6.2%, \(P = 0.014 \)). Four of 23 patients with IPMNs with extrapancreatic malignancies were women and more than half of all cases were detected at the same time as the diagnosis of IPMN was established. Gastric cancer (10 patients) and lower gastrointestinal tract cancer (eight patients) comprised the majority of extrapancreatic malignancies (Table 3).

Analysis of preoperative findings associated with malignant IPMNs

Univariate analysis showed that the following preoperative variables were closely associated with malignant IPMNs: absence of extrapancreatic malignancy; symptoms; tumor size > 4 cm; MPD size > 7 mm; and lymph node enlarge-

Factor	Benign (\(n = 81 \))	Malignant (\(n = 48 \))	\(P \) value	
Age (yr)				
< 60	27	24	0.063	
\(\geq 60 \)	54	24		
Sex				
Male	64	30	0.064	
Female	17	18		
Alcohol				
Non-alcoholic	50	37	0.083	
Alcoholic	31	11		
Smoking				
Non-smoker	53	35	0.437	
Current smoker	28	13		
Diabetes mellitus				
No	59	30	0.242	
Yes	22	18		
Symptoms				
No	49	17	0.007	
Yes	32	31		
Tumor size (cm)				
\(\leq 4 \)	66	30	0.019	
\(> 4 \)	15	18		
MPD diameter (mm)				
\(\leq 7 \)	54	18	0.002	
\(> 7 \)	27	30		
Mural nodules on CT				
No	77	44	0.469	
Yes	4	4		
Amylase (U/L)				
\(\leq 100 \)	53	37	0.173	
\(> 100 \)	28	11		
Total bilirubin (mg/dL)				
\(\leq 1.2 \)	75	41	0.231	
\(> 1.2 \)	6	7		
CEA (ng/mL)				
\(\leq 6 \)	79	48	0.529	
\(> 6 \)	2	0		
CA 19-9 (U/mL)				
\(\leq 37 \)	65	32	0.063	
\(> 37 \)	10	12		
Location in pancreas				
Head	52	28	0.575	
Body or tail	29	20		
Intraductal lymphadenopathy on CT				
No	73	33	0.003	
Yes	8	15		
Duct type				
Main or mixed	47	36	0.059	
Branch duct	34	12		
Extrapancreatic malignancy	61	45	0.014	
Yes	20	3		

\(^1\text{Missing data on CA 19-9 in some patients was presented. MPD: Main pancreatic duct; CT: Computed tomography; CEA: Carcinoembryonic antigen; CA: Carbohydrate antigen.}\)
Lee JH et al. Predictive factors for pancreatic malignancy

Table 3 Characteristics of intraductal papillary mucinous neoplasms with extrapancreatic malignancies

No.	Sex	Age (yr)	Diagnosis	Extrapancreatic malignancy	Time of occurrence
1	M	62	Adenoma	Early gastric cancer	Syn
2	M	55	Adenoma	Early gastric cancer	Syn
3	M	66	Adenoma	Colon tubular adenoma	Syn
4	M	58	Borderline	Advanced gastric cancer	Prior
5	F	54	Adenoma	Advanced gastric cancer	Syn
6	F	72	Adenoma	Advanced gastric cancer	Syn
7	F	70	Adenoma	Appendix mucinous tumor	Syn
8	M	64	Adenoma	Colon cancer	Prior
9	M	72	Borderline	Colon cancer	Prior
10	M	56	Invasive	Colon cancer	Syn
11	M	59	Adenoma	Early gastric cancer	Syn
12	M	48	Adenoma	Early gastric cancer	Prior
13	M	60	Adenoma	Early gastric cancer	Prior
14	M	67	Adenoma	Early gastric cancer	Syn
15	M	62	Borderline	Early gastric cancer	Syn
16	M	53	Adenoma	Gastric SMT	Prior
17	M	66	CIS	Prostate cancer	Prior
18	M	68	Adenoma	Renal cell carcinoma	Syn
19	M	64	Adenoma	Rectal cancer	Prior
20	M	74	Adenoma	Rectal cancer	Prior
21	M	76	Adenoma	Rectal cancer	Prior
22	F	60	Adenoma	Rectal cancer	Syn
23	M	61	Adenoma	Rectal carcinoma tumor	Syn

SMT: Submucosal tumor; CIS: Carcinoma in situ; Prior: Prior to intraductal papillary mucinous neoplasm (IPMN); Syn: Synchronous to IPMN.

Table 4 Multivariate analysis of preoperative findings associated with malignant intraductal papillary mucinous neoplasms

Factors	OR	95% CI	P value
Extrapancreatic malignancy - none	3.58	0.95-13.51	0.059
Symptomatic	1.89	0.83-4.32	0.127
Tumor size > 4 cm	2.35	0.96-5.76	0.062
MPD diameter > 7 mm	2.50	1.10-5.65	0.028
Preoperative CT lymphadenopathy	3.57	1.22-10.37	0.020

MPD: Main pancreatic duct; CT: Computed tomography; OR: Odds ratio; CI: Confidence interval.

Table 5 Immunohistochemical staining of intraductal papillary mucinous neoplasms \(n (\%) \)

Markers	Benign IPMN	Malignant IPMN
MUC1	2/9 (22.2)	3/15 (17.6)
MUC2	8/27 (29.6)	8/14 (57.1)
MUC5AC	26/27 (96.3)	16/17 (94.1)
p53	2/18 (11.1)	10/29 (34.5)

IPMN: Intraductal papillary mucinous neoplasm; MUC: Mucin.

Immunohistochemical expression of malignant IPMNs

The expression of pancreatic tissues was present in 22.2%, 29.6%, 96.3% and 11.1% of benign IPMNs for MUC1, MUC2, MUC5AC and p53, respectively (Table 5). In patients with malignant IPMNs, the expression of mucin genes was 17.6%, 57.1%, 94.1%, and 34.5% with immunohistochemical staining for MUC1, MUC2, MUC5A, and p53, respectively. No significant differences in expression of MUCs were observed according to the degree of dysplasia.

DISCUSSION

Several studies regarding the natural course of IPMNs have shown that tumor size < 3 cm, branch duct type, and no mural nodules are low-risk factors of malignancy[3]; thus, the pancreas can be conserved until the tumor progresses to an invasive carcinoma. Therefore, a therapeutic strategy for IPMNs should be based on the stage of the malignancy.

Previous studies that have investigated predictive factors for malignant or invasive IPMNs preoperatively were based on univariate analysis, with only four studies being performed using multivariate analysis[3-5,7]. Our data showed that the presence of extrapancreatic malignancies, symptoms, tumor size > 4 cm, MPD dilatation > 7 mm, and intra-abdominal lymphadenopathy on preoperative CT were significant predictive factors of malignant IPMNs, based on univariate analysis, and only two of the five factors (MPD > 7 mm and intra-abdominal lymphadenopathy on CT) were statistically significant on multivariate analysis. The present study is believed to be the first to report intra-abdominal lymphadenopathy on CT as a predictive factor, which is not well known for sensitivity and specificity. According to our study, we emphasized the diagnostic importance of CT and recommend it as a follow-up tool to predict malignant changes.

Symptomatic tumors > 3 cm in size are known as important factors for malignancy of branch duct type IPMNs according to international guidelines[18]. In another study[19], the optimal cut-off value for IPMN size in the detection of malignancies was 4 cm. The analysis of our patients divided by tumor size of 3 cm was not statistically significant, thus, we set the cut-off value at 4 cm, which was significantly associated with malignant IPMNs.

A number of previous studies have reported that malignant or invasive IPMNs are more frequently observed in those who have main duct or mixed duct type than branch duct type IPMN[5,18,19]. We showed that the duct type of IPMNs was not affected by malignant transformation of tumors. Patients with the branch duct type in our institute usually underwent wait and watch management; therefore, they were not included with the study group who underwent surgical resection. For the accuracy of predictive factors, follow-up data of branch duct type IPMNs will be necessary in future studies.

The presence of mural nodules has also been reported as a predictive factor of malignant IPMNs[8-7], but it was not associated with malignant tumors in the current study. Mural nodules are usually detected on preoperative multi-detector row CT. Mucinous secretions in cystic masses appear to be misdiagnosed as mural nodules because of similarities on CT imaging. Therefore, mural nodules are not diagnostic predictive factors associated with malignant IPMNs.

Our study revealed that benign IPMNs were more likely to have extrapancreatic gastrointestinal malignan-
cies than malignant tumors, which is in agreement with other studies.11,20-22 The basis for this result has not been explained, but the hypothesis has been advanced that patients with extrapancreatic malignancies were excluded from the study group due to death from underlying cancer.33 In our study, 28 of 129 patients had an extrapancreatic malignancy and many cases were detected during preoperative evaluation of IPMNs. Gastric or lower gastrointestinal cancers comprised most of the extrapancreatic malignancies, therefore, upper endoscopy and colonoscopy are necessary to detect associations with other gastrointestinal malignancies at the time diagnosis of IPMNs.

IPMN cells secrete a thick MUC that causes dilatation of the MPD. The dysregulation of one or more types of MUCs could lead to formation of malignant IPMNs. There have been several studies8-11 regarding the expression of MUC in pancreatic tumors. For example, MUC1 is known to be a marker of invasive carcinoma and MUC2 is found only in the intestinal type of IPMNs10. In the current study, a difference in the expression of MUC on benign and malignant IPMNs was not demonstrated. Positive staining of MUC1 was shown in 22.2% of adenomas or borderline IPMNs and MUC5AC expression was shown in > 94% of all IPMNs. Cell cycle modulator molecules, for example p53, were similar in both groups.

This study was limited in that it was retrospective and evaluated the predictive factors associated with malignancy, which were diagnosed in most cases by CT. Another limitation was that the examination of MUC expression according to pathological subtypes33, such as gastric, intestinal, pancreatobiliary, and oncocytic, was not performed, and the study group consisted only of patients who underwent surgical resection. We do not know the significance of patients who received conservative treatment or adjuvant chemoradiation therapy.

In conclusion, a MPD size > 7 mm and preoperative intra-abdominal lymphadenopathy on CT are useful preoperative factors associated with malignancy of IPMNs. The proper diagnosis of malignancies in patients with IPMNs is needed for those who are undergoing surgical resection.

Peer review
This is a good retrospective study. Whether or not the results will prove useful in a prospective fashion is appropriately addressed by the authors.

REFERENCES

1. Klöppel G, Solcia E, Longneker DS, Capella C, Sobin LH. Histological typing of tumours of the exocrine pancreas. In: World Health Organization International Classification of Tumors, 2nd ed. Berlin: Springer, 1996:11-20
2. Jang JY, Kim SW, Ahn YJ, Yoon YS, Choi MG, Lee KJ, Han JK, Kim WH, Lee YJ, Kim SC, Han DJ, Kim YI, Choi SH, Cho BH, Yu HC, Yoon DS, Lee WJ, Lee KB, Kim YC, Lee KS, Kim MW, Kim HJ, Kim HJ, Park YH. Multicenter analysis of clinicopathologic features of intraductal papillary mucinous tumor of the pancreas: is it possible to predict the malignancy before surgery? Ann Surg Oncol 2005; 12: 124-132
3. Murakami Y, Umemura K, Hayashidani Y, Sudo T, Sueda T. Predictive factors of malignant or invasive intraductal papillary-mucinous neoplasms of the pancreas. J Gastrointest Surg 2007; 11: 338-344
4. Nagai K, Doi R, Kida A, Kami K, Kawaguchi Y, Ito T, Saku H, Uemoto S. Intraductal papillary mucinous neoplasms of the pancreas: clinicopathologic characteristics and long-term follow-up after resection. World J Surg 2008; 32: 271-278, discussion 279-280
5. Nara S, Onaya H, Hiraoka N, Shimada K, Sano T, Sakamoto Y, Esaki M, Kosiwge T. Preoperative evaluation of invasive and noninvasive intraductal papillary-mucinous neoplasms of the pancreas: clinical, radiological, and pathological analysis of 123 cases. Pancreas 2009; 38: 8-16
6. Shin SH, Han DJ, Park KT, Kim YH, Park JB, Kim SC. Validating a simple scoring system to predict malignancy and invasiveness of intraductal papillary mucinous neoplasms of the pancreas. World J Surg 2010; 34: 776-783
7. Sugiyama M, Izumisato Y, Abe N, Masaki T, Mori T,ATOMI Y. Predictive factors for malignancy in intraductal papillary-mucinous tumours of the pancreas. Br J Surg 2003; 90: 1244-1249
8. Wiesenauer CA, Schmidt CM, Cummings OW, Yannoutsos CT, Howard TJ, Wiebe EA, Goulet RJ Jr, McHenry L, Sherman S, Lehman GA, Cramer H, Madura JA. Preoperative predictors of malignancy in pancreatic intraductal papillary mucinous neoplasms. Arch Surg 2003; 138: 610-617, discussion 617-618
9. Ito H, Endo T, Oka T, Matumoto T, Abe T, Toyota M, Imai K, Satoh M, Maguchi H, Shinohara T. Mucin expression profile is related to biological and clinical characteristics of intraductal papillary-mucinous tumors of the pancreas. Pancreas 2005; 30: e96-e102
10. Kanno A, Satoh K, Kimura H, Hirota M, Umino J, Masamune A, Satoh A, Asakura T, Egawa S, Sunamura M, Endoh M, Shimosegawa T. The expression of MUC4 and MUC5AC is related to the biologic malignancy of intraductal papillary mucinous neoplasms of the pancreas. Pancreas 2006; 33: 391-396
11. Lee SY, Choi DW, Jang KT, Lee KT, Choi SH, Heo JS, Lee JK, Paik SW, Rhee JC. High expression of intestinal-type mucin (MUC2) in intraductal papillary mucinous neoplasms coexisting with extrapancreatic gastrointestinal cancers. Pancreas 2006; 32: 186-189
12. Terris B, Dubois S, Buisine MP, Sauvanet A, Rusaniewski P, Aubert JP, Portet N, Couvelard A, Degott C, Flejou JF. Mucin gene expression in intraductal papillary-mucinous pancreatic tumors and related lesions. J Pathol 2002; 197: 632-637
13. Ueda M, Miura Y, Kunihiro O, Ishikawa T, Ichikawa Y, Endo I, Sekido H, Togo S, Shimada H. MUC1 overexpression is the most reliable marker of invasive carcinoma in intraductal papillary-mucinous tumor (IPMT). Hepatogastroenterology
Lee JH et al. Predictive factors for pancreatic malignancy

2005; 52: 398-403
14 Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M, Yonezawa S. Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepatobiliary Pancreat Surg 2007; 14: 243-254

15 Lee SY, Son HJ, Kim JJ, Paik SW, Rhee JC, Choi KW. A case of intraductal papillary mucinous tumor of pancreas combined with early gastric cancer and MALToma of stomach. J Clin Gastroenterol 2002; 35: 109-110

16 Sugiyama M, Atomi Y. Extrapancreatic neoplasms occur with unusual frequency in patients with intraductal papillary mucinous tumors of the pancreas. Am J Gastroenterol 1999; 94: 470-473

17 Kobayashi G, Fujita N, Noda Y, Ito K, Horaguchi J, Takasawa O, Akaishi S, Tsuchiya T, Kobari M. Mode of progression of intraductal papillary-mucinous tumor of the pancreas: analysis of patients with follow-up by EUS. J Gastroenterol 2005; 40: 744-751

18 Tanaka M, Chari S, Adsay V, Fernandez-del Castillo C, Falconi M, Shimizu M, Yamaguchi K, Yamao K, Matsuno S. International consensus guidelines for management of intraductal papillary-mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology 2006; 6: 17-32

19 Schnelldorfer T, Sarr MG, Nagorney DM, Zhang L, Smyrk TC, Qin R, Chari ST, Farnell MB. Experience with 208 resections for intraductal papillary mucinous neoplasm of the pancreas. Arch Surg 2008; 143: 639-646; discussion 646

20 Choi MG, Kim SW, Han SS, Jang JY, Park YH. High incidence of extrapancreatic neoplasms in patients with intraductal papillary mucinous neoplasms. Arch Surg 2006; 141: 51-56; discussion 56

21 Ishida M, Egawa S, Kawaguchi K, Aoki T, Sakata N, Mikami Y, Motoi F, Abe T, Fukuyama S, Katayose Y, Sunamura M, Unno M, Moriya T, Horii A, Furukawa T. Synchronous and metachronous extrapancreatic malignant neoplasms in patients with intraductal papillary-mucinous neoplasm of the pancreas. Pancreatology 2008; 8: 577-582

22 Raimondo M, Tachibana I, Urrutia R, Burgart LJ, DiMagno EP. Invasive cancer and survival of intraductal papillary mucinous tumors of the pancreas. Am J Gastroenterol 2002; 97: 2553-2558

23 Furukawa T, Klöppel G, Volkan Adsay N, Albores-Saavedra J, Fukushima N, Horii A, Hruban RH, Kato Y, Klimstra DS, Longnecker DS, Lütgjes J, Offerhaus GJ, Shimizu M, Sunamura M, Suriawinata A, Takaori K, Yonezawa S. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 2005; 447: 794-799

S- Editor Shi ZF L- Editor Kerr C E- Editor Lin YP