Contents

Supplemental Methods ... 2

Suppl. table 1: Summary of published validation tests of the FoundationOne pipeline 6

Suppl. table 2: Molecular pathways definition ... 7

Suppl. table 3: Summary of GAs for the entire cohort by type and allele frequency 8

Suppl. table 4: Summary of key genomic alterations by cell of origin ... 9

Suppl. table 5: Summary of key involved pathways by cell of origin .. 10

Suppl. figure 1: Waterfall plot of genomic alterations by type .. 11

Suppl. figure 2: Co-mutation plot ... 12

Suppl. figure 3: Genomic alterations by cell of origin .. 13

Suppl. Excel file: Summary of genomic abnormalities. ... 14

Suppl. Excel file: Potentially targetable genomic alterations by level of evidence 14
Supplemental Methods

Description of workflow

DNA and RNA from each patient are extracted and made into barcoded libraries through separate workflow streams. The DNA and cDNA undergo library construction and hybrid selection on independent plates. DNA and RNA samples from the same patient then converge in an analysis pipeline using the plate names and shared specimen ID.

DNA and RNA extraction

DNA and RNA are extracted from FFPE samples as previously described.1,2 A 5µm FFPE section is stained using hematoxylin and eosin and reviewed by a pathologist to confirm ≥ 20% tumor nuclei and a tissue volume of ≥2mm3. A macro-dissection of samples is performed when warranted in order to enrich for tumor content. DNA and RNA are each extracted from 40 µm (typically 4x10µm) of unstained FFPE sections.

DNA extraction: FFPE samples are deparaffinized and then digested with a proteinase K buffer for 12–24 h followed by purification with the Promega Maxwell 16 Tissue LEV DNA kit. Double-stranded DNA is quantified by a Picogreen fluorescence assay using the provided lambda DNA standards (Invitrogen). 50–200 ng of dsDNA in 50–100 µl water in microTUBEs is fragmented to ~200 bp by sonication (3 min, 10% duty, intensity = 5, 200 cycles/burst; Covaris E210) before purification using a 1.8x volume of AMPure XP Beads (Agencourt). Samples yielding <50 ng of extracted DNA are considered failed (estimated failure rate 4.9%1).

RNA extraction: FFPE samples are deparaffinized and then digested with proteinase K lysis buffer at 56ºC for 15min followed by 80ºC for 15min. The lysate is treated with freshly prepared DNase at room temperature for 10 min and then purified using the Promega Maxwell CSC RNA FFPE kit. Samples are quantified for RNA yield using RiboGreen (LifeTech). Samples with RNA yield ≥3.5ng/µL proceed to cDNA synthesis. RNA is normalized 500ng in a volume of 22.7µL. A cDNA primer mixture of random hexamer (IDT) and oligo dT (IDT) are annealed to the template RNA at 65ºC for 5min. First strand synthesis is performed using M-MLV RT RNase(H-') (Promega #M3683) 25ºC 10 min, 40ºC 50 min, 85ºC 5 min. Second strand synthesis follows using the NEB Second strand mRNA synthesis kit (#E6111L) and incubated at 16ºC for 30min. The entire cDNA product is sheared by sonication to ~200bp fragment size (3 min, 10% duty, intensity = 5, 200 cycles/burst; Covaris E210) before purification using 1.8x SPRI clean up.

Library construction and hybrid selection

Solution hybridization is performed using pools of 5’ biotinylated 120 bp oligonucleotide DNA baits (Integrated DNA Technology); a pool of 35,845 baits for the DNA libraries and pool of 22,656 baits for the cDNA libraries. Baits were designed by taking overlapping 120 bp DNA sequence intervals covering target exons (60 bp overlap) and introns (20 bp overlap), with a minimum of three baits per target; SNP targets were allocated one bait each. Intronic baits were filtered for repetitive elements as defined by the UCSC Genome RepeatMasker track.3 Hybrid selection of targets demonstrating reproducibly low coverage was boosted by increasing the number of baits for these targets.
SPRI purification and subsequent library construction with the NEBNext kits (E6040S, NEB), containing mixes for end repair, dA addition and ligation, are performed in 96-well plates (Eppendorf) on a Bravo Benchbot (Agilent) using the “with-bead” protocol⁴ to maximize reproducibility and library yield. 500–2,000 ng of sequencing library is and suspended in water, heat denatured at 95 °C for 5 min and then incubated at 68 °C for 5 min before addition of the baitset reagent and Cot, salmon sperm and adaptor-specific blocker DNA in hybridization buffer. After a 24-h incubation, the library-bait duplexes are captured on paramagnetic MyOne streptavidin beads (Invitrogen) and off-target library is removed by washing once with 1× SSC at 25 °C and four times with 0.25× SSC at 55 °C. The PCR master mix is added to directly amplify (12 cycles) the captured library from the washed beads.⁴ After amplification, the samples are 1.8× SPRI purified, quantified by qPCR (Kapa) and sized on a LabChip GX (Caliper). Samples yielding <500 ng of sequencing library, or with a mean insert size >400 bp, are considered failed. Size selection was not done. Libraries are normalized to 1.05 nM and pooled such that each Illumina HiSeq 2500 lane has up to four samples each (32 per flowcell), before 49 × 49 paired-end sequencing using manufacturer’s protocols to ~500× unique coverage for DNA and to >3 M unique on-target pairs for cDNA.

Sequence data processing

Sequence data were mapped to the human genome (hg19) using BWA aligner v0.5.9.⁵ PCR duplicate read removal and sequence metric collection was done using Picard 1.47 (http://picard.sourceforge.net/) and Samtools 0.1.12a33. Local alignment optimization was performed using GATK 1.0.4705.⁶ Variant calling was done only in genomic regions targeted by the test.

Base substitutions, indels, and copy number analysis

Samples with median exon coverage in the range 150 to 250× are considered qualified, whereas those with coverage <150× are considered failed. Significant non-synonomous variants were defined as any somatic alteration annotated in the COSMIC database (v62), as well as clear inactivating mutations (i.e. truncations or deletions) in established tumor suppressor genes.⁷ For base substitutions, the mutant allele frequency (MAF) cutoff used was 1% for known somatic variants (based on COSMIC v62) and 5% for novel somatic variants.

To detect indels, de novo local assembly in each targeted exon was performed using the de Bruijn approach.⁸ Key steps are:

1. Collecting all read-pairs for which at least one read maps to the target region.

2. Decomposing each read into constituent k-mers and constructing an enumerable graph representation (de Bruijn) of all candidate nonreference haplotypes present.

3. Evaluating the support of each alternate haplotype with respect to the raw read data to generate mutational candidates. All reads are compared to each of the candidate haplotypes through ungapped alignment, and a 'vote' for each read is assigned to the candidate with best match. Ties between candidates are resolved by splitting the read vote, weighted by the number of reads already supporting each haplotype. This process is iterated until a 'winning' haplotype is selected.
4. Aligning candidates against the reference genome to report mutation calls. Indel candidates arising from direct read alignment were also considered. For indels, the MAF cutoff was 3% for known somatic variants and 10% for novel somatic variants. Additional details were described previously.¹

CNA detection was achieved using a comparative genomic hybridization (CGH)-like method. A log-ratio profile of the sample is obtained by normalizing the sequence coverage at all exons against a process-matched normal control. This profile was corrected for GC-bias, segmented and interpreted using allele frequencies of sequenced SNPs to estimate tumor purity and copy number at each segment as previously described.¹. Fitting was performed using Gibbs sampling, assigning absolute copy number to all segments. Model quality was reviewed and alternative explanations considered,⁹ and focal amplifications are called at segments with ≥6 copies (or ≥7 for triploid; ≥8 for tetraploid tumors) and homozygous deletions at 0 copies, in samples with purity >20%.

Rearrangement calling methods

Gene rearrangements were detected by identifying clusters of chimeric read pairs from both DNA (pairs mapping >10 kbp apart or on different chromosomes) and RNA (pairs mapping to refSeq sequences corresponding to different genes or to genomic loci >10 kbp apart, and reads with suboptimal mapping were aligned to whole genome references). Alignments to the 2 different references were then merged and calibrated based on the full genome reference (hg19) for fusion detection. Chimera clusters were filtered for repetitive sequence (average mapq >30) and by distribution of mapped positions (SD >10). Identified rearrangements were then annotated according to the genomic loci of both clusters and categorized as gene fusions (eg, BCR-ABL1), gene rearrangements (eg, IGH-BCL2), or truncating events (eg, TP53 rearrangement). Rearrangement candidates were then filtered based on number of chimera reads supporting the rearrangement events (for documented fusions, a minimum 10 chimera reads are required; for putative somatic driver rearrangements, 50 chimera reads are required).

In addition to the de novo rearrangement detection method described above, reads were also separately aligned to a custom reference library generated based on common fusions and rearrangements. Fusions were detected based on the observation of reads aligned across the junction of rearrangement breakpoints. Immunoglobulin heavy locus (IGH) rearrangements were detected by targeting rearrangement hotspots of both common immunoglobulin fusion partner genes (major and minor translocations involving MYC, BCL2, and CCND1), as well as IGH breakpoint regions.
References

1. Frampton GM, Fichtenholtz A, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. *Nat Biotechnol*. 2013;31(11):1023-1031.

2. He J, Abdel-Wahab O, Nahas MK, et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. *Blood*. 2016;127(24).

3. Karolchik D, Hinrichs AS, Furey TS, et al. The UCSC Table Browser data retrieval tool. *Nucleic Acids Res*. 2004;32(90001):493D-496.

4. Fisher S, Barry A, Abreu J, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. *Genome Biol*. 2011;12(1):R1.

5. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2010;26(5):589-595.

6. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet*. 2011;43(5):491-498.

7. Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. *Nucleic Acids Res*. 2015;43(D1):D805-D811.

8. Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. *Nat Biotechnol*. 2011;29(11):987-991.

9. Van Loo P, Nordgard SH, Lingjaerde OC, et al. Allele-specific copy number analysis of tumors. *Proc Natl Acad Sci*. 2010;107(39):16910-16915.
Suppl. table 1: Summary of published validation tests of the FoundationOne pipeline

Cell lines - concordance with known abnormalities at various dilutions/coverage	2 pools of 10 normal cell lines (total 2,057 SNVs at variable VAFs) Several dilutions to simulate lower coverages	At median exon coverage of 600x-700x: >99% Sensitivity and >99% PPV even at VAF<5% At median exon coverage of 250x: >98% sensitivity and >99% PPV even at VAF<5% Significant reduction of sensitivity was observed at VAF<10% & coverage < 100x.
SNVs	28 cell lines with 47 somatic indels. 41 pools of 2-10 cell lines.	At median exon coverage of 670x: 98% sensitivity at VAF ≥ 20%; 97% at VAF ≥ 10% and 88% at VAF ≥ 5%; PPV > 99% At median exon coverage of 250x: 98% sensitivity at VAF ≥ 20%; 92% at VAF ≥ 10%.
Indels	Pooled 7 cell lines with 19 focal amplifications (6-15 copies in 15 genes) and 9 homozygous deletions (6 genes) with matched normal cells at sequential mixtures of 10-75%	Sensitivity and PPV 99% for deletion and CAN≥7 copies at tumor purity ≥ 30%; Overall sensitivity >80% for CAN≥7 and tumor content 20-30%.
CNAs	21 cell lines with 28 known rearrangements mixed with pooled normal cell lines at sequential mixtures of 10-50%	DNAseq - 100% sensitivity for fusion detection (161/161) above 20% tumor fraction. PPV >98% (245/248) with 3 false positive at marginal readings. RNAseq - 100% sensitivity for fusion detection (161/161) above 25% tumor fraction.
Rearrangements	Mass spectrometry (iPlex - Sequenom/Agena) 113 specimens 91 mutations (solid malignancies) 76 specimens 113 genes (hematologic malignancies)	97% concordance for solid tumors. 99% concordance for hematologic tumors.
Concordance with alternative methods	Other NGS (AmpliSeq - Thermo Fisher) 21 samples with low frequency calls (<10% VAF)	95% concordance (20/21)
PCR - Gene rearrangement	12 MLL-PTD 14 controls	97% accuracy 11/12 MLL-PTD 14/14 negative controls. The 1 missed case d/t present MLL-PTD but below calling threshold.
FISH - IgH rearrangement and known cell lines	10 cell-lines 38 FISH	94% concordance 2 FP; 1 FN
FISH - CNAs	119 specimens with CNAs (solid tumors)	98% accuracy (1 FP; 1 FN)

Assay reproducibility and comparison of FFPE to fresh specimen

Assay reproducibility	13 samples X 5 replicates	97% concordance with missed case d/t present alterations below calling threshold.
Long-term reproducibility	1 pooled RNA sample 1 pooled DNA sample Sequenced repeatedly (134) over 5 months.	100% concordance for 303 SNVs 100% concordance for rearrangement by RNA.
Comparison of FFPE to blood	5 matched normal blood FFPE samples (13 germline alterations)	100% Sensitivity though many SNVs highlighted only on the FFPE sample all at VAF < 5%.

Reproduced from Frampton GM, Fichtenholtz A, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023-1031. and from He J, Abdel-Wahab O, Nahas MK, et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood. 2016;127(24).
Suppl. table 2: Molecular pathways definition

Pathway	Involved gene
Histone epigenetic	ASXL1, BCOR, BRD4, CREBBP, ELP2, EP300, EZH2, HDAC7, HIST1H1C, HIST1H1E, HIST1H2BJ
DNA epigenetic	DNMT3A, IDH2, TET2
SWI SNF epigenetic	ARID1A, ARID2, PRBM1, SMARCA4
Epigenetic cofactors	ASXL1, BCOR, BRD4, NCOR1, NCOR2, TBL1XR1, TRRAP, ZMYM3
BCR NFKB	BCL10, BIRC3, CARD11, CD79B, MALT1, MAP3K14, MYD88, REL, TNFAIP3, TNFRSF11A, TNFRSF14
JAK STAT	ELP2, JAK1, JAK2, PIM1, SOCS1, TYK2
RAS MAPK	BRAF, CIC, EGFR, ERBB2, ERBB3, FLT1, FLT3, FLT4, FRS2, KRAS, MAP2K1
PI3K AKT TOR	AKT1, AXL, FLCN, FRS2, HGF, IGF2, PIK3CA, PIK3CG2, PIK3C3, PIK3R1, PTEN
NOTCH MYC	APH1A, FBXW7, MYC, MIB1, NCSTN, NOTCH1, NOTCH2, NOTCH4, SPEN
WNT	APC, AXIN1, F2D8, WNT10B
Transcription factors	BC6, CDC73, CIC, CUX1, ERG, ETS1, ETV6, FBXO11, FOXO1, ID3, IKZF1
Tumor suppressor	APC, ATM, AXIN1, BACH1, BAP1, BRCA2, BRIP1, CDKN2A, CDKN2B, FANCG, FANCL, TP53
DNA Damage	ATM, BACH1, BAP1, BRCA2, BRIP1, CHEK1, FANCG, FANCL, FBXO31, MDM2, MDM4
Cell Cycle	BRSK1, BTG1, BTG2, CCND1, CCND3, CCNE1, CDK6, CDKN1B, CDKN2C, CHEK1, CKS1B
RNA processing	CDK12, CIRBP, DDX3X, DIS3, PUS10, SF3B1, SRSF2, USAF1, XPO1, ZR5R2
Cell death	BCL2, CASP8, DEDD2, FAS, MCL1
Immune evasion	B2M, CD58, CD70, CD274, CIITA, HLA-A, IL4R, MARCH1, PDCD1LG2, TRG
Metabolism	CD36, GRIN2A, IDH2, LRP1B, LRRK2, OSBPL10, PC, SDHA, SDHC, SDHD, SEC22B
Translation	CIRBP, EIF4A2, HSP90AA1, HSP90AA1, MYC, SBD5
Transcription	CDC73, ELP2, MED12, TAF1
GPCR	CXCR4, GNA13
Phosphatase	PPP2R1A, PTPN2, PTPN6, SETBP1
Adhesion cytoskeleton	ARHGAP24, ARHGAP26, ARHGAP27, CDH1, DDR2, DSCAML1, LPP, RELN, RHOA, SLAMF1, STK11
Suppl. table 3: Summary of GAs for the entire cohort by type and allele frequency

Gene	Total alterations	SNVs	Allele frequency	Trans	Amp	Del	Total alterations UKS	SNVs UKS	Allele frequency UKS	Trans UKS	Amp UKS	Del UKS
IGK	76	0	NA	76	0	0	1	0	NA	0	0	1
KMT2D	62	59	0.33 (0.07, 0.74)	3	0	0	24	24	0.44 (0.06, 0.66)	0	0	0
CDKN2A	54	13	0.27 (0.02, 0.92)	2	0	40	6	5	0.49 (0.06, 0.52)	1	0	0
TP53	48	48	0.50 (0.02, 0.92)	0	0	0	2	2	0.12 (0.11, 0.14)	0	0	0
BCL2	46	22	0.40 (0.04, 0.88)	45	0	0	32	27	0.36 (0.05, 0.55)	5	0	0
BCL6	37	2	0.56 (0.21, 0.91)	35	0	0	16	14	0.36 (0.08, 0.60)	0	0	2
MYD88	36	36	0.36 (0.09, 0.74)	0	0	0	6	4	0.38 (0.36, 0.50)	2	0	0
CREBBP	35	32	0.36 (0.15, 0.75)	3	0	0	25	25	0.43 (0.16, 0.94)	0	0	0
B2M	33	32	0.44 (0.05, 0.88)	1	0	1	13	12	0.28 (0.06, 0.78)	1	0	0
CDKN2B	32	0	NA	2	0	30	3	2	0.36 (0.24, 0.48)	1	0	0
TNFAIP3	24	21	0.30 (0.06, 0.78)	0	0	3	8	8	0.42 (0.06, 0.57)	0	0	0
EZH2	21	21	0.33 (0.02, 0.56)	0	0	0	4	4	0.48 (0.42, 0.52)	0	0	0
PIM1	20	20	0.40 (0.03, 0.88)	0	0	0	40	40	0.30 (0.06, 0.84)	1	0	0
TNFRSF14	20	15	0.54 (0.05, 0.91)	1	0	4	16	16	0.42 (0.12, 0.93)	0	0	0
CARD11	19	18	0.24 (0.03, 0.51)	1	0	0	16	16	0.32 (0.14, 0.68)	0	0	0
ARID1A	16	16	0.34 (0.15, 0.44)	0	0	0	16	16	0.46 (0.05, 0.53)	0	0	0
REL	16	0	NA	0	16	0	8	6	0.18 (0.07, 0.86)	0	0	2
CD79B	15	15	0.37 (0.16, 0.84)	0	0	0	20	20	0.26 (0.08, 0.83)	0	0	0
FAS	15	15	0.31 (0.07, 0.67)	0	0	0	11	11	0.24 (0.06, 0.50)	0	0	0
MYC	15	0	NA	13	2	0	12	12	0.38 (0.07, 0.61)	0	0	0
BCL7A	14	14	0.32 (0.13, 0.54)	0	0	0	22	22	0.34 (0.07, 0.60)	0	0	0
BCL10	12	11	0.18 (0.03, 0.49)	1	0	0	3	2	0.09 (0.07, 0.11)	1	0	0
CD58	12	8	0.28 (0.10, 0.39)	2	0	2	8	8	0.24 (0.11, 0.37)	0	0	0
CD70	11	9	0.56 (0.30, 0.86)	0	0	2	12	12	0.33 (0.11, 0.48)	0	0	0
ETV6	11	9	0.24 (0.08, 0.83)	2	0	0	9	9	0.34 (0.10, 0.79)	0	0	0
NOTCH2	11	11	0.36 (0.08, 0.74)	1	0	0	18	16	0.50 (0.06, 0.59)	2	0	0
PRDM1	11	9	0.33 (0.11, 0.72)	1	0	1	7	7	0.46 (0.08, 0.81)	0	0	0
TET2	10	10	0.28 (0.10, 0.56)	0	0	0	3	3	0.43 (0.15, 0.47)	0	0	0

SNV – short nucleotid variant; UKS – alterations of unknown significance. Genomic abnormalities occurring in ≥5% of the cohort.

Variant actionability was graded based on the OncoKB guideline. Level 1 was defined as alterations recognized by the FDA as predictive of response to an approved drug in DLBCL. Level 2 included non-FDA predictive biomarkers for response in DLBCL (2A) or FDA approved biomarkers for response in a different malignancy (2B). Level 3 includes alterations supported by compelling data from clinical trials in DLBCL (3A) or another malignancy (3B). Level 4 are candidate biomarkers for response based on early clinical or preclinical studies.
Suppl. table 4: Summary of key genomic alterations by cell of origin

	ALL	GCB	non-GCB	NA	p value*	BH p*
SNVs	198	95	82	21		
	191 (96.5)	91 (95.8)	81 (98.8)	19 (90.5)	0.375	
SNVs per/pt.	4 (0.9)	4 (0.9)	3 (0.9)	4 (0.7)	0.019	
SNVs of UKS per/pt.	15.5 (3, 45)	15 (3, 45)	15.5 (4, 40)	18 (10, 38)	0.931	
Amplifications	36 (18.2)	19 (20.0)	14 (17.1)	3 (14.3)	0.760	
Deletions	57 (28.8)	26 (27.4)	25 (30.5)	6 (28.6)	0.771	
Translocations	112 (56.6)	62 (65.3)	37 (45.1)	13 (61.9)	0.011	
Total number of GAs	6 (0, 13)	6 (0, 13)	5 (0, 13)	7 (0, 10)	0.028	
KMT2D	62 (31.3%)	41 (43.2%)	17 (20.7%)	4 (19.0%)	0.003	0.015
CDKN2A	54 (27.3%)	23 (24.2%)	26 (31.7%)	5 (23.8%)	0.346	0.538
TP53	48 (24.2%)	27 (28.4%)	16 (19.5%)	5 (23.8%)	0.229	0.401
BCL2	46 (23.2%)	38 (40.0%)	4 (4.88%)	4 (19.0%)	<0.001	0.000
BCL6	37 (18.7%)	10 (10.5%)	22 (26.8%)	5 (23.8%)	0.009	0.039
MYD88	36 (18.2%)	12 (12.6%)	23 (28.0%)	1 (4.76%)	0.017	0.061
CREBBP	35 (17.7%)	26 (27.4%)	5 (6.10%)	4 (19.0%)	<0.001	0.004
B2M	33 (16.7%)	16 (16.8%)	14 (17.1%)	3 (14.3%)	0.189	0.353
CDKN2B	32 (16.2%)	15 (15.8%)	14 (17.1%)	3 (14.3%)	0.979	1.000
TNFAIP3	24 (12.1%)	7 (7.37%)	12 (14.6%)	5 (23.8%)	0.189	0.353
EZH2	21 (10.6%)	16 (16.8%)	4 (4.88%)	1 (4.76%)	0.023	0.072
PIM1	20 (10.1%)	7 (7.37%)	10 (12.2%)	3 (14.3%)	0.406	0.568
TNFRSF14	20 (10.1%)	16 (16.8%)	3 (3.66%)	1 (4.76%)	0.010	0.039
CARD11	19 (9.60%)	9 (9.47%)	8 (9.76%)	2 (9.52%)	1.000	1.000
ARID1A	16 (8.08%)	6 (6.32%)	7 (8.54%)	3 (14.3%)	0.783	0.934
REL	16 (8.08%)	11 (11.6%)	5 (6.10%)	0 (0.00%)	0.315	0.518
CD79B	15 (7.58%)	0 (0.00%)	13 (15.9%)	2 (9.52%)	<0.001	0.003
FAS	15 (7.58%)	4 (4.21%)	9 (11.0%)	2 (9.52%)	0.152	0.305
MYC	15 (7.58%)	10 (10.5%)	2 (2.44%)	3 (14.3%)	0.067	0.143
BCL7A	14 (7.07%)	10 (10.5%)	2 (2.44%)	2 (9.52%)	0.067	0.143
BCL10	12 (6.06%)	5 (5.26%)	6 (7.32%)	1 (4.76%)	0.801	0.934
CD58	12 (6.06%)	5 (5.26%)	5 (6.10%)	2 (9.52%)	1.000	1.000
CD70	11 (5.56%)	5 (5.26%)	6 (7.32%)	0 (0.00%)	0.801	0.934
ETV6	11 (5.56%)	2 (2.11%)	9 (11.0%)	0 (0.00%)	0.034	0.085
NOTCH2	11 (5.56%)	4 (4.21%)	7 (8.54%)	0 (0.00%)	0.381	0.561
PRDM1	11 (5.56%)	2 (2.11%)	9 (11.0%)	0 (0.00%)	0.034	0.085
TET2	10 (5.05%)	4 (4.21%)	6 (7.32%)	0 (0.00%)	0.517	0.689

* Unadjusted and BH adjusted p values reflect the comparison of GCB to non-GCB disease (i.e. excludes Unclassified).
BH – FDR adjusted p value (Benjamini-Hochberg); GCB – germinal center; NA – not available; SNV- short nucleotide variant; UKS – alterations of unknown significance (per Cosmic v62).
Genomic abnormalities occurring in ≥5% of the cohort. For certain genes alteration may include SNVs, rearrangements and/or CNAs (see Suppl. figure 1). In bold – differing values with unadjusted p < 0.05.
Suppl. table 5: Summary of key involved pathways by cell of origin

Pathways	[ALL]	GCB	non-GCB	NA	p value*	BH p*
Tumor suppressor	198	95	82	21	0.362	0.597
Histone epigenetic	107	61	35	11	0.007	0.063
BCR NFKB	107	47	50	10	0.167	0.397
Transcription factors	74	27	38	9	0.021	0.132
Cell death	68	46	16	6	0.000	0.002
Immune evasion	53	23	25	5	0.443	0.601
NOTCH MYC	45	21	18	6	1.000	1.000
JAK STAT	35	12	18	5	0.148	0.397
RAS MAPK	35	14	17	4	0.396	0.597
Metabolism	32	21	9	2	0.077	0.367
Cell Cycle	24	15	6	3	0.132	0.397
Translation	22	12	6	4	0.359	0.597
SWI SNF epigenetic	21	10	7	4	0.848	0.597
DNA Damage	21	8	11	2	0.408	1.000
RNA processing	20	12	4	4	0.126	0.397
Epigenetic cofactors	19	10	6	3	0.631	0.800
PI3K AKT TOR	17	11	5	1	0.315	0.597
DNA epigenetic	13	7	6	0	1.000	1.000
Adhesion cytoskeleton	12	6	6	0	1.000	1.000

* p values reflect the comparison of GCB to non-GCB disease (i.e. excludes NA).

GCB – germinal center; NA – not available; SNV- short nucleotid variant; UKS – alterations of unknown significance (per Cosmic v62). Genomic abnormalities occurring in ≥5% of the cohort. For certain genes alteration may include SNVs, rearrangements and/or CNAs (see Suppl. figure 1). In bold – differing values with unadjusted p < 0.05.
Suppl. figure 1: Waterfall plot of genomic alterations by type

Displaying GA present in 5% or more of patients.
Suppl. figure 2: Co-mutation plot

Pairwise analysis of genes for co-occurrence (blue) and anti-co-occurrence plot (red) (lower right triangle). Pairwise frequency calculated as the rate of abnormality B among patients with abnormality A (top right triangle).
Suppl. figure 3: Genomic alterations by cell of origin
Suppl. Excel file: Summary of genomic abnormalities.

Suppl. Excel file: Potentially targetable genomic alterations by level of evidence.