Modeling the Electrical Conductivity of Anode for Solid Oxide Fuel Cell using Support Vector Regression Machine

Jiangling Tang and Ping Huang*

Department of Physics and Engineering Technology, Guilin Normal College, Guilin, Guangxi, 541199, P.R. China
Email: tantian62@hotmail.com

Abstract. The electrical conductivity of Solid Oxide Fuel Cell (SOFC) anode is one of the most important indexes effect the efficiency of SOFC. In order to improve performance of fuel cell systems, it is necessary to have model which modeling the electrical conductivity. In this paper, a model using Support Vector Regression Machine (SVRM) was established to modeling the electrical conductivity of La$_{0.75}$Sr$_{0.25}$Cr$_{0.5}$Mn$_{0.5}$O$_{3-δ}$xCuO (LSCM-xCu) composite anode under two influence factors, including operating temperature (T) and Cu content (x) in LSCM-xCu composites anode. The test result by SVRM support that the generalization ability of SVRM model is with high accuracy. The mean absolute error (MAE) of 4 test samples is 0.32, mean absolute percentage error (MAPE) is 1.05%, multiple correlation coefficients (R^2) is 1.00, which is quite satisfied with the engineering demand. This investigation suggests that SVRM is a powerful tool to be used for optimal designing or controlling the technological process of fuel cell system.

1. Introduction

Solid Oxide Fuel Cell (SOFC) is an environment friendly and higher efficiency electrochemical device. It can directly convert the chemical energy to electrical energy and thermal energy without burning. Due to have virtues such as completely solid component, no causticity, no leak, simple equipment and fuel adaptability, SOFC become a worldwide attention energy source with progressive increase in electrical energy demand and environment consciousness [1-3].

In the last several decades, Artificial Neural Network (ANN) has been used to derive a SOFC model from the experimental data to modeling the performance of SOFC. The ANN has the ability to learn and approach the nonlinear function, and has been considered as a powerful computing tool for establishing the mathematical relationship of the nonlinear system based on the input-output data. But, ANN has the following insurmountable shortcomings: lack of a unified mathematical theory; easy to enmesh local minimization; weakly generalization ability for the small-sample dataset; prone to over-fitting, etc.

As a machine learning method, Support Vector Regression Machine (SVRM), proposed by Vapnik and co-workers in 1995, base on Structural Risk Minimization (SRM) and Vapnik-Chevronenks dimensions principle [4-5]. Research shows that SVRM with many excellences, such as fast-learning, global optimization and excellent generalization ability for the small-sample dataset, are generally superior to ANN model. At the present time, SVRM has been successfully applied to solve modeling problems in numerous fields [6-8].

In this paper, the SVRM model was set up to modeling the electrical conductivity of La$_{0.75}$Sr$_{0.25}$Cr$_{0.5}$Mn$_{0.5}$O$_{3-δ}$xCuO (LSCM-xCu) anode according to the SOFC electrical conductivity.
dataset which was measured under different operating temperature and Cu content in LSCM-xCu composites anode by Z Y Zhang[9].

2. Methods and Materials

2.1. Brief theory of SVRM

In SVRM, the basic idea is to map X from the input space into a higher-dimensional feature space F via a nonlinear mapping function \(\Phi(x) \), and then to conduct linear regression in F space. Therefore, SVRM is to find the linear relation equation (1) based on a given dataset \((x_1, y_1), \ldots, (x_n, y_n)\) [10].

\[
 f(x) = w \cdot \Phi(x) + b, \quad \Phi : R^n \rightarrow F, \quad w \in F.
\]

Where \(w \) is a vector for regression coefficients, \(b \) is a bias. They are estimated by minimizing the regularized risk function \(R(C) \), namely:

\[
 \text{minimize } R(C) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} L_i(f(x_i) - y_i),
\]

\[
 L_i(f(x_i) - y_i) = \begin{cases}
 0, & \text{if } |f(x_i) - y_i| < \varepsilon, \\
 |f(x_i) - y_i| - \varepsilon, & \text{if } |f(x_i) - y_i| \geq \varepsilon.
 \end{cases}
\]

Where \(C \) is a regularized factor, \(n \) is the number of training samples, \(\varepsilon \) is a prescribed parameter controlling the tolerance to error, \((1/2)\|w\|^2 \) is used as a measurement of function flatness. After solved, the regression function (1) has the following explicit form:

\[
 f(x) = \sum_{i=1}^{l} (\alpha_i - \alpha_i^*) k(x, x_i) + b,
\]

(4)

In equation (4), \(k(x, x_i) = \Phi(x) \cdot \Phi(x_i) \) is a kernel function, \(\alpha_i \) and \(\alpha_i^* \) are Lagrange multipliers. Choosing different kernel function can generate different SVRM models. There are four commonly used kernel functions, i.e., radial basis kernel, sigmoid kernel, polynomial kernel, linear kernel, etc. In this paper, the radial basis kernel (5) was utilized:

\[
 k(x, x_i) = \exp(-\gamma \|x - x_i\|^2),
\]

(5)

2.2. Description of the SOFC

The typical structure of a single SOFC is consists of anode, electrolyte membrane and cathode. It is shown in Figure 1[11].

![Figure 1. Schematic of an Individual SOFC](image-url)
The electrochemical reactions at the anode and cathode in a single SOFC are below:

Anode reactions:

\[2O_2^- + 2H_2 + 4e^- \rightarrow 2H_2O \]

OR: \[4O_2^- + CH_4 + 8e^- \rightarrow 2H_2O + CO_2 \]

\[O_2^- + CO + 2e^- \rightarrow CO_2 \]

Cathode reactions:

\[O_2 + 4e^- \rightarrow 2O_2^- \]

Overall reactions:

OR: \[2O_2^- + CH_4 \rightarrow 2H_2O + CO_2 \]

\[O + 2CO \rightarrow 2CO_2 \]

2.3. Dataset

The dataset used in this study was generated by Z Y Zhang. (Reference 9) and is tabulated in Table 1. This dataset includes the electrical conductivity of LSCM-xCu composite anode data for 36 samples in different operating temperatures \((T \, (^\circ\,C)) \) and Cu contents \((x = 10, 20, 30, 40 \, (wt\%)) \).

\(T \, (^\circ\,C) \)	Sample			
	LSCM-10Cu	LSCM-20Cu	LSCM-30Cu	LSCM-40Cu
400	0.0609	55.601	262.5286	1224.223
450	0.0869	52.3414	246.5688	1145.267
500	0.1104	48.6229	229.5001	1069.878
550	0.1506	46.0421	216.1346	1001.864
600	0.2172	42.3817	201.2089	943.8957
650	0.2857	40.3967	191.0472	892.7194
700	0.375	38.7124	181.8775	844.1343
750	0.4798	37.1665	174.3879	808.4111
800	0.5934	36.9213	173.8623	788.618

2.4. Modeling and Results

In the SVRM model, the operating temperature and Cu content were employed as input variables, while as the electrical conductivity of LSCM-xCu composite anode as output variable.

Thirty-two samples were randomly selected as training samples, the other four samples numbered acted as the validation samples.
Table 2. Lists the modeling results by SVRM.

NO	Input	Output	percentage		
	operating temperature (°C)	Cu contents (wt%)	electrical conductivity (S·cm⁻¹)	modeling results (S·cm⁻¹)	error (%)
1	400	10	0.0609	0.060310	-0.969351
2	400	20	55.601	55.592180	-0.015864
3	400	30	262.5286	262.534083	0.001936
4	400	40	1224.223	1224.211565	-0.000689
5	450	10	0.0869	0.086393	-0.813190
6*	450	20	52.3414	52.406455	0.124289
7	450	30	246.5688	246.061492	-0.205828
8	450	40	1145.267	1145.572610	0.026423
9	500	20	48.6229	48.617810	-0.010468
10	500	30	1069.878	1068.838049	-0.097390
11	500	40	229.5001	229.500935	0.000407
12	500	40	1069.878	1068.838049	-0.097390
13*	550	10	0.1506	0.145001	-3.717806
14	550	20	46.0421	45.068276	-2.115072
15	550	30	216.1346	214.535319	-0.740130
16	550	40	1145.267	1145.572610	0.026423
17	500	10	0.2172	0.217249	-0.000392
18	500	20	42.3817	42.372971	-0.020597
19	500	30	201.2089	201.904130	0.345477
20	500	30	229.5001	229.500935	0.000407
21	500	40	1069.878	1068.838049	-0.097390
22	500	40	943.8957	943.892303	-0.000392
23	500	40	42.3817	42.372971	-0.020597
24	500	40	201.2089	201.904130	0.345477
25	500	40	844.1343	844.132509	-0.000177
26	500	40	844.1343	844.132509	-0.000177
27*	700	30	181.8775	181.415941	-0.254049
28	700	30	181.8775	181.415941	-0.254049
29	700	30	174.3879	174.385849	-0.001233
30	700	30	807.673015	807.673015	-0.091288
31	700	30	807.673015	807.673015	-0.091288
32*	700	30	807.673015	807.673015	-0.091288
33	800	10	0.5934	0.596312	0.490704
34	800	20	36.9213	36.912050	-0.025053
35	800	30	173.8623	173.862195	0.000112
36	800	40	788.6168	788.611888	-0.000775

* Test sample

2.5. Evaluation of Model's Performance

Three indices, mean absolute error (MAE), mean absolute percentage error (MAPE) and multiple correlation coefficients (R^2) were adopted for performance evaluation. They are formulated by equations (6), (7) and (8) respectively[12]:

$$MAE = \frac{1}{m} \sum_{j=1}^{m} |\hat{y}_j - y_j|$$

(6)
MAPE = \frac{1}{m} \sum_{j=1}^{m} \frac{\hat{y}_j - y_j}{y_j} \quad (7)

\begin{align*}
R^2 &= \left[\frac{\sum_{j=1}^{m} (y_j - \bar{y})(\hat{y}_j - \bar{y})}{\sum_{j=1}^{m} (y_j - \bar{y})^2 \cdot \sum_{j=1}^{m} (\hat{y}_j - \bar{y})^2} \right]^2 \quad (8)
\end{align*}

Where \(m \) denotes the number of test samples, \(y_j \) represents the \(j \)th target value, \(\hat{y}_j \) stands for the predicted value for the \(j \)th test sample, \(\bar{y} \) is the mean value of the predicted values \(\hat{y}_j \) (\(j=1 \sim m \)) for test samples.

Table 3. Performance of SVRM model.
MAE

Training samples
Test sample

2.6. Analysis and Discussions

From Table 2, it can be observed that, the maximum percentage error for the 32 training sample's electrical conductivity of LSCM-xCu composite anode(#25) is 3.20%. The number of the training samples, whose percentage error no more than 1% are 30. There are only 2 training sample's percentage error exceed 1%. The maximum percentage error for the 4 test sample's electrical conductivity of LSCM-xCu composite anode(#13) is 3.72%, the rest of test samples under 0.3%.

Table 3 reveals that the MAP of 32 training samples comes up to 0.21, the MAPE is 0.33%, \(R^2 \) as high as 1.00. The MAP of 4 test samples comes up to 0.21, the MAPE is 0.33%, \(R^2 \) reach 1.00 too.

All these results indicate, the performance of SVRM is excellent, it enough to meet the engineering demand.

3. Conclusions

In this study, the SVRM model was established to modeling the electrical conductivity of \(\text{La}_{0.75}\text{Sr}_{0.25}\text{Cr}_{0.5}\text{Mn}_{0.5}\text{O}_3-\delta-x\text{CuO} \) composite anode under two influence factors, including operating temperature (\(T \)) and Cu content (\(x \)) in LSCM-xCu composites anode. The result is revealed that:

(1) For the electrical conductivity of LSCM-xCu composites anode, the effect of operating temperature and Cu content in LSCM-xCu composites anode is complicated.

(2) The SVRM model possesses strong modeling ability. It can predict the electrical conductivity of LSCM-xCu composites anode accurately.

(3) The accuracy of SVRM model is higher enough to meet the demand of engineering.

This study suggests that the SVRM approach is a promising and practical methodology to modeling and simulate the fuel cell system.

4. Acknowledgments

This work is supported by the 2018 guangxi university young and middle-aged teacher basic ability enhancement project (Application of support vector regression technique in concrete strength prediction (2018KY0916)) and the education and teaching reform demonstration major project of applied technology in guilin normal College (the education and teaching reform demonstration major project of applied technology in guilin normal university(2010201311)).

5. References

[1] Stambouli A B and Traversa E 2002 Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy Renew. Sus. Ener. Rev. 6 pp 433–55.
[2] Singhal S C 2002 Solid oxide fuel cells for stationary, mobile, and military applications Solid. State. Ionics. 152–153 pp 405–10.

[3] Calise F, Palombo A and Vanoli L 2006 Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–gas turbine system Energy 31 pp 3278–99.

[4] Vapnik V N 1995 The nature of statistical learning theory. (New York: Springer)

[5] Smola A J and Scholkopf B 2004 A tutorial on support vector regressing Stat. Comput. 14 pp 199–222.

[6] Cai C Z, Han L Y , Ji Z L, Chen X and Chen Y Z 2003 SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence Nucl. Acids. Res 31 pp 3692–97.

[7] Clarke S M, Griebsh J H and Simpson T W 2005 Analysis of support vector regression for approximation of complex engineer analyses J. Mech. Design 127 pp 1077–87.

[8] Mao D, Zeng Z Y, Wang C and Lin W H 2007 Support vector machine with PSO algorithm for soil erosion evaluation and prediction Proceedings of Third International Conference on Natural Computation 1 pp 656–60.

[9] Zhang Z Y 2010 Preparation and Performance of Anode materials Sr Mn doped LaCrO₃ for Solid Oxide Fuel Cells D (china: Jilin University)

[10] Tang J L and Huang J 2015 Modeling of Proton Exchange Membrane fuel cell using support vector regression machine 5th International Conference on Information Engineering for Mechanics and Materials pp380–5.

[11] http://tech.newmaker.com/art_23205.html.

[12] Tang J L, Cai C Z, Xiao T T and Huang S J 2012 Modeling and predicting the composite of composite cathode for solid oxide fuel cell by using support vector regression support vector regression Int J Mod Phys B 26 p1250093 (9 pages)