Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead–lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector

The ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 16 May 2014 / Accepted: 15 July 2014 / Published online: 13 August 2014

© CERN for the benefit of the ATLAS collaboration 2014. This article is published with open access at Springerlink.com

Abstract The integrated elliptic flow of charged particles produced in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v_2, was measured in the pseudorapidity range $|\eta| \leq 2.5$ with the event-plane method. In order to include tracks with very low transverse momentum p_T, thus reducing the uncertainty in v_2 integrated over p_T, a 1μb$^{-1}$ data sample recorded without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v_2 is compared to other measurements obtained with higher p_T thresholds. The integrated elliptic flow is weakly decreasing with $|\eta|$. The integrated v_2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.

1 Introduction

The anisotropy in the azimuthal angle distribution of particles produced in heavy-ion collisions has been studied extensively due to its sensitivity to the properties of the produced hadronic medium [1, 2]. The final-state anisotropy arises from the initial spatial asymmetry of the overlap zone in the collision of two nuclei with non-zero impact parameter. The initial spatial asymmetry induces asymmetric pressure gradients that are stronger in the direction of the reaction plane and, due to the collective expansion, lead to an azimuthally asymmetric distribution of the ejected particles. The final-state anisotropy is customarily characterized by the coefficients v_n of the Fourier decomposition of the azimuthal angle distribution of the emitted particles [3]. The second Fourier coefficient v_2 is related to the elliptical shape of the overlap region in non-central heavy-ion collisions, and the higher flow harmonics reflect fluctuations in the initial collision geometry [4]. The first observation of elliptic flow, quantified by measurements of v_2, at RHIC [5–8] were found to be well described by predictions based on relativistic hydrodynamics [9–11], providing compelling evidence that the created matter is strongly coupled and behaves like an almost perfect, non-viscous, fluid. Later studies show small deviations from ideal hydrodynamics, described in terms of the ratio of shear viscosity to entropy density [12–15].

First results from Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [16–21] from the Large Hadron Collider (LHC) showed no change in the transverse momentum, p_T, dependence of elliptic flow from that measured at the highest RHIC energy, while the elliptic flow integrated over p_T [16,20] was found to increase by about 30 % from the RHIC energy of $\sqrt{s_{NN}} = 200$ GeV1 to $\sqrt{s_{NN}} = 2.76$ TeV at the LHC. This increase in the integrated elliptic flow with energy is therefore driven mostly by the increase in the mean p_T of the produced particles. The dependence of elliptic flow on the geometry of the collision (the collision centrality) is of particular importance, since the flow is thought to depend strongly on the initial spatial anisotropy. Hydrodynamical models are used to quantitatively relate the initial geometry to the experimentally measured distributions. Furthermore, recent hydrodynamical calculations [22,23] also include a longitudinal dependence in the source shape, which can be deduced from flow measurements over a wide pseudorapidity range.

This article presents measurements of the centrality and pseudorapidity dependence of the elliptic flow integrated over the p_T of charged particles produced in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV recorded in 2010 by the ATLAS detector.

In order to reduce the uncertainty in the p_T-integrated coefficient v_2 by including tracks with p_T lower than in the measurements reported by the ALICE [16] and CMS [20] experiments, a special track reconstruction procedure was applied to “field-off” data taken without the solenoid’s magnetic field in the tracking detectors. Other track recon-

1 ATLAS uses the system of units where $c = \hbar = 1$.

* e-mail: atlas.publications@cern.ch
straction methods, applicable at higher p_T, were exploited in cross-checks using “field-on” data taken with the solenoid’s magnetic field.

2 The ATLAS detector

The ATLAS detector is a multi-purpose particle physics apparatus and is described in detail elsewhere [24]. This analysis uses the three-level trigger system to select Pb+Pb collision events, the forward calorimeters (FCal) to measure the collision centrality, and the inner detector (ID) to measure charged-particle tracks. The ID tracking system comprises silicon pixel and microstrip detectors and a transition radiation tracker. It provides complete azimuthal coverage and spans the pseudorapidity region $|\eta| < 2.5$. The pixel detector consists of a three-layer barrel section and three discs in each of the forward regions. The semiconductor tracker has four double layers of microstrip sensors in its barrel section and nine discs in each of the forward regions. The ID is surrounded by a thin superconducting solenoid, which produces a 2 T axial magnetic field for the field-on data. The FCal measures both electromagnetic and hadronic energy, using copper–tungsten/liquid-argon technology, and provides complete azimuthal coverage and spans the pseudorapidity region $|\eta| < 4.9$. The hardware-based Level-1 trigger selected minimum-bias Pb+Pb collisions by requiring either a coincidence of signals recorded in the zero-degree calorimeters (ZDC) located symmetrically at $z = \pm 140$ m ($|\eta| > 8.3$) or a signal in at least one side of the minimum-bias trigger scintillators (MBTS) at $z = \pm 3.6$ m ($2.1 < |\eta| < 3.9$). To suppress beam backgrounds, the Level-2 trigger demanded MBTS signals from opposite sides of the interaction region and imposed a timing requirement on them.

With these trigger conditions, ATLAS recorded a sample of Pb+Pb collisions corresponding to an integrated luminosity of approximately 1 μb$^{-1}$ taken with the field provided by the solenoid turned off. In addition, approximately 0.5 μb$^{-1}$ of field-on data was used in studies of track reconstruction performance.

3 Event selection and centrality definition

The offline event selection required each event to have a vertex formed by at least three charged-particle tracks reconstructed in the ID. The data were recorded at low instantaneous luminosity where the probability of multiple collisions per bunch crossing (pile-up) was negligible. The track reconstruction algorithms therefore allowed only one collision vertex (called the primary vertex) in each event, thereby reducing the processing time while maintaining efficiency. The time difference between the MBTS signals from the opposite sides of the interaction region was required to be less than 3 ns, and a coincidence of ZDC signals was also required. These additional selection criteria efficiently remove beam-gas and photo-nuclear interactions. As shown in previous studies [18], the applied trigger and offline requirements provide a minimum-bias event sample in which the fraction of inelastic Pb+Pb collisions is 98 ± 2 %.

Events satisfying the above criteria were also required to have a primary vertex within 50 mm (100 mm) in the z-direction of the nominal centre of the ATLAS detector for the field-off (field-on) data subsample. After requiring all relevant subdetectors to be performing normally, the subsamples used in the analysis of the field-off and field-on data contained approximately 1.6 million and 3 million minimum-bias events, respectively.

Monte Carlo (MC) event samples were used to determine the tracking efficiencies and the rates of fake tracks. The HIJING event generator [25] was used to produce minimum-bias Pb+Pb collisions. Events were generated with the default parameters except for jet quenching, which was turned off. The effect of elliptic flow was implemented after event generation. The azimuthal angles of final-state particles were redistributed at generator level to produce an elliptic flow consistent with previous ATLAS measurements [18,19]. The simulation of the ATLAS detector’s response [26] to the generated events is based on the GEANT4 package [27] and included a detailed description of the detector geometry and material in the 2010 Pb+Pb run. Two samples of 0.5 million MC events were simulated, one with the solenoid field switched off and the other with it switched on. Additional MC samples consisting of 50,000 events simulated with 10–20 % extra detector material were used to study systematic uncertainties. The generated charged particles were reweighted with p_T- and centrality-dependent functions so that the p_T spectra in the MC samples matched the experimental ones [28].

The centrality of the Pb+Pb collisions was characterized by the summed transverse energy, ΣE_T^{FCal}, measured in the FCal [18]. The ΣE_T^{FCal} distribution was divided into ten centrality bins, each representing 10 % of the full distribution after accounting for 2 % inefficiency in recording the most peripheral collisions (the 0–10 % centrality interval corresponds to the most central 10 % of collisions: those with the largest ΣE_T^{FCal}). A small change in the overall recording efficiency leads to large fluctuations in the population of the most peripheral collisions. To avoid resulting large sys-

\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.}
tematic uncertainties, the 20% of events with the smallest \(\sum E_T^{FCal} \) were not included in the analysis.

4 Elliptic-flow measurement

The final-state azimuthal anisotropy is quantified by the coefficients in the Fourier expansion of the \(\phi \) distribution of charged particles [3],

\[
dN/d\phi \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos (n[\phi - \Psi_n]),
\]

where \(v_n \) and \(\Psi_n \) are the magnitude and the azimuthal direction (called the event-plane angle) of the \(n \)-th flow harmonic, respectively.

The second flow harmonic, \(v_2 \), for a given collision centrality is a function of \(\eta \) and \(\Delta\eta \), and is determined by

\[
v_2(\eta, \Delta \eta) = \frac{\langle \cos (2[\phi - \Psi_2]) \rangle}{\sqrt{\langle \cos (2[\Psi_2 - \Psi_2^N]) \rangle}},
\]

where the numerator denotes the average over charged-particle tracks in a given \(\eta \) and \(\Delta \eta \) range, and the denominator, averaged over events, is a correction accounting for the finite experimental resolution in the determination of the event-plane angle \(\Psi_2 \). This resolution correction was obtained using the sub-event technique [3] as described in Refs. [18,19]. The two “sub-events” defined for each event cover two \(\eta \) ranges of the same width in the positive and negative \(\eta \) hemispheres (3.2 < |\(\eta \)| < 4.8) of the FCal detector. The sub-event-plane angles are determined by

\[
\Psi_2^{N(P)} = \frac{1}{2} \tan^{-1} \left(\frac{\sum E_{T_i}^{\text{tower}} w_i \sin(2\phi_i)}{\sum E_{T_i}^{\text{tower}} w_i \cos(2\phi_i)} \right),
\]

where the sums run over transverse energies, \(E_{T_i}^{\text{tower}} \), as measured in calorimeter towers located at negative (N) and positive (P) \(\eta \) in the first sampling layer of the FCal. The FCal towers consist of cells grouped into projective regions in \(\Delta \eta \times \Delta \phi \) of 0.1 × 0.1. The weights, \(w_i (\Delta \eta_i, \Delta \phi_i) \) are used to correct for any non-uniformity in the event-averaged azimuthal angle distribution of \(E_{T_i}^{\text{tower}} \). They are determined from the data in narrow \(\Delta \eta_i \) and \(\Delta \phi_i \) slices.

In the sub-event approach, potential non-flow correlations are minimized by using the reaction plane estimated from the \(\eta \) side opposite to the tracks used for the \(v_2 \) measurement; this provides a separation of \(\Delta \eta > 3.2 \). This method was previously applied [18] to measure \(v_2 \) as a function of \(p_T \) using charged-particle tracks reconstructed in the ID tracking system with a minimum \(p_T \) of 0.5 GeV.

In order to perform the integration over \(p_T \), the differential \(v_2 \) measurements are weighted by the number of charged-particle tracks \(N_{i,k}^{\text{corr}} \),

\[
v_2 = \sum_{i} \sum_{k} v_2(\eta_i, p_T,k) N_{i,k}^{\text{corr}} / \sum_{i} \sum_{k} N_{i,k}^{\text{corr}},
\]

and summed over bins in \(\eta \) (denoted by the index \(i \)) and \(p_T \) (index \(k \)). The number of charged-particle tracks is calculated as \(N_{i,k}^{\text{corr}} = N_{i,k} \times [1 - f(i,k)]/\epsilon(i,k) \), where the \(N_{i,k} \) is the observed number of tracks in a given \(\eta \) and \(p_T \) bin, \(\epsilon(i,k) \) is the track reconstruction efficiency and \(f(i,k) \) is the estimated rate of fake tracks. In the following sections, the lower limit in the integration of \(v_2 \) over \(p_T \) is denoted by \(p_T,0 \).

5 Track reconstruction

The ID was used to reconstruct charged-particle trajectories. Three track reconstruction methods were applied in order to exploit a large range in particle \(p_T \):

- the tracklet (TKT) method used for the field-off data in order to reach charged-particle \(p_T \) below 0.1 GeV [28],
- the pixel track (PXT) method used to reconstruct tracks with \(p_T \geq 0.1 \) GeV using only the pixel detector in the field-on data sample,
- the ID track (IDT) method for the field-on data sample, the default ATLAS reconstruction method, for which all ID sub-detectors are used and the track \(p_T \) is limited to \(p_T \geq 0.5 \) GeV [29].

In the TKT method for field-off data, tracks are formed from the positions of hit clusters in the inner two layers of the pixel detector and the position of the primary vertex reconstructed using ID tracks. In the first step, the \(\eta \) and \(\phi \) coordinates are defined using the event’s vertex position and the hit recorded in the first pixel layer. Then a search for a hit in the second pixel layer (with \(\eta_1 \) and \(\phi_1 \) coordinates defined with respect to the vertex position) is performed and its consistency with a straight-track hypothesis is checked. Candidate tracklets are required to satisfy the condition

\[
\Delta R = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{\Delta \eta}{\sigma_{\eta}(\eta_0)} \right)^2 + \left(\frac{\Delta \phi}{\sigma_{\phi}(\eta_0)} \right)^2} < N_{\sigma},
\]

where \(\Delta \eta = \eta_1 - \eta_0 \) and \(\Delta \phi = \phi_1 - \phi_0 \), and \(\sigma_{\eta}(\eta_0) \) and \(\sigma_{\phi}(\eta_0) \) are pseudorapidity-dependent widths of the \(\Delta \eta \) and \(\Delta \phi \) distributions, respectively. In this analysis, \(N_{\sigma} = 3 \) was used as the default condition. Clusters located close to each other in the second pixel layer are most likely to originate from the same particle. Therefore, if more than one cluster located in the second pixel layer fulfills the selection criteria, the resulting tracklets are merged into a single tracklet. The \(\Delta \eta \) and \(\Delta \phi \) distributions in data and MC simulation are compared in Fig. 1. The data and MC distributions agree well. Candidates fulfilling the criterion in Eq. (5) were accepted for further analysis with \(\eta = \eta_0 \) and \(\phi = \phi_0 \).
This method does not provide information about the track’s p_T; nevertheless, its performance can be checked as a function of generator-level particle p_T by applying the same reconstruction procedure to the MC simulation and using the p_T of the generated particle corresponding to the reconstructed tracklet whenever applicable. Figure 2 compares the p_T spectra of stable charged particles at the MC-generator level, $N_{primary}$, to the spectra of reconstructed tracklets matched to charged particles, $N_{matched}$, for three representative centrality bins and for $|\eta| < 1$. A particle was considered to be primary if it originated directly from the collision or resulted from the decay of a particle with $c\tau < 1$ mm. The matching criterion required that the two hits forming the tracklet be identical to the hits associated with a charged particle. The distributions show that the TKT method is able to reconstruct particles with transverse momenta ~ 0.07 GeV with 50% efficiency, and that a plateau at about 80% is reached for $p_T > 0.1$ GeV in all centrality bins. For low p_T, the efficiency decreases sharply, but the particle density is small in this region, as is v_2; thus the contribution from this region to the integrated elliptic flow is expected to be small. Figure 2 also shows the reconstruction efficiency, $N_{matched}$/$N_{primary}$, as a function of η. Here, $N_{primary}$ denotes all primary charged particles with $p_T \geq 0.07$ GeV, which defines the low-p_T limit for integrating v_2 over p_T. The efficiency is found to be $\sim 80\%$ and depends weakly on η. The rate of fake tracklets, N_{fake}, measured as the ratio of the number of tracklets not matched to charged particles to the total number of reconstructed tracklets, N_{fake}/N_{reco}, increases with centrality and $|\eta|$, reaching about 35% for the most central collisions at $|\eta| = 2$. For field-on data, the PXT method allows the transverse momentum range $p_T > 0.1$ GeV to be examined. Tracks were reconstructed within the full acceptance of the pixel detector ($|\eta| < 2.5$).
To improve the track reconstruction’s performance in the heavy-ion collision environment, the track-quality requirements were made more stringent than those for proton–proton collisions [30]. Pixel tracks were required to have no missing hits in the pixel layers, and the transverse and longitudinal impact parameters, d_0 and z_0, with respect to the vertex were required to have $|d_0|$, $|z_0\sin(\theta)|$, less than 1 mm and significances $|d_0/\sigma_{d_0}|$, $|z_0\sin(\theta)/\sigma_{z_0\sin(\theta)}|$, less than 3.0. Figure 3 shows good agreement between data and MC simulation in the distributions of $|d_0/\sigma_{d_0}|$ and $|z_0\sin(\theta)/\sigma_{z_0\sin(\theta)}|$.

The pixel track method’s reconstruction efficiency was evaluated in MC simulation by matching reconstructed tracks to the generated charged particles. A track is matched to a generated charged particle if it is reconstructed from at least 69% of the pixel hits originating from the latter. Figure 4 illustrates the dependence of the pixel track reconstruction efficiency on p_T in three pseudorapidity ranges and for three selected centrality bins. The efficiency decreases slightly from peripheral to central collisions and also deteriorates when moving away from mid-rapidity. A weak p_T dependence is observed above $p_T > 0.5$ GeV for all collision centralities. At lower p_T, the efficiency decreases with decreasing p_T and to about 20% at the lowest accessible p_T. The fraction of fake tracks, defined as the ratio of reconstructed tracks not matched to generated charged particles to all reconstructed pixel tracks, was evaluated using MC simulation. Figure 4 shows the fake-rate dependence on p_T in three pseudorapidity ranges and for three centrality bins. The fake rate is below 10% for p_T above 0.4 GeV and depends very weakly on p_T and $|\eta|$ for peripheral collisions. In more central collisions, the fake rate increases at low p_T and shows a similar increase with increasing $|\eta|$.

The performance of the PXT reconstruction method can be compared with that of the IDT method. The track reconstruction efficiency and rate of fake tracks from the IDT method are shown in Fig. 5 (for reconstruction details see Ref. [18]). The minimum p_T reached is 0.5 GeV. A comparison of Figs. 4 and 5 shows that the extension towards lower
Fig. 5 The transverse momentum, \(p_T \), dependence of the ID track reconstruction efficiency (left) and the fake rate (right) for three pseudo-rapidity ranges and three centrality intervals as indicated in the legend.

Fig. 6 Comparison of the distribution of multiplicity ratios of number of tracklets, \(N_{TKT} \), (left) and pixel tracks, \(N_{PXT} \), (right) to the number of ID tracks, \(N_{IDT} \), in data (red) and MC simulation (blue) in three centrality bins as indicated on the plots.

\(p_T \) values for the PTX method is achieved at the expense of much larger fake rates than observed for the IDT method, whereas the reconstruction efficiencies are similar. The two methods have different \(p_T \) resolutions: it is very good for ID tracks, the root mean square of \((\frac{p_T^{\text{rec}}}{p_T^{\text{true}}} - 1) \) being, in \(|\eta| < 1 \), about 4 % and independent of the track \(p_T \) in the used range, whereas for pixel tracks it is about 10 % at the lowest \(p_T \) and increases to about 15 % at 5 GeV.

The performance of the MC simulation in describing the fake rates in the data was checked by comparing the \(\Delta \eta \), \(\Delta \phi \), \(d_0/\sigma_{d_0} \), and \(z_0 \sin \theta/\sigma_{z_0} \sin \theta \) distributions, like the ones shown in Figs. 1 and 3. Additionally, the distributions of the ratios of the number of tracklets and pixel tracks to the number of ID tracks in data and MC simulation were compared, as shown in Fig. 6. It can be concluded that the MC description of the TKT and PXT methods’ performance is adequate.

The elliptic flow depends on the particle type [31] as does the reconstruction efficiency. Although the track reconstruction efficiency is averaged over all particle types in this analysis, the reconstruction efficiencies for simulated pions, kaons and protons are shown as a function of \(p_T \) in the Appendix. At low transverse momenta, which are the focus of this analysis, the measured \(v_2 \) is dominated by pions with negligible contributions from kaons and protons. Nevertheless, the information on the particle type-dependent efficiencies can be used for detailed comparison of the measurement to theoretical predictions of the elliptic flow for identified particles.

6 Corrections to measured \(v_2 \)

The event-plane method [3] is applied to measure the differential elliptic flow harmonic \(v_2(\eta) \) in small \(\eta \) bins with the TKT method, and \(v_2(\eta, p_T) \) in small \(\eta \) and \(p_T \) bins with the PXT and IDT methods. The differential \(v_2 \) measurements are then corrected for detector-related effects.

The first correction is associated with the variation in tracking efficiency induced by the flow itself. It is applied only to the PXT method, which is found to be sensitive to the detector occupancy. Such sensitivity is not observed for the IDT method. Since the flow phenomenon is a modulation of the multiplicity, it may induce a variation of the tracking efficiency in an event. Higher occupancy causes lower efficiency, and the number of tracks observed in the event plane is reduced more strongly than the number of tracks observed in other directions. As a consequence, the observed
The fake-track flow correction for the integrated v_2 is smaller. In order to correct for this effect, an appropriate weight was applied to the tracks in the calculation of the numerator of Eq. (2). This weight, the inverted efficiency parameterized as a function of detector occupancy in the vicinity of the track, was derived from MC simulation. In the data, the occupancy was determined for each track from the number of hits near the track in the first layer of the pixel detector. The corrected $v_2(p_T)$ was compared to the measurement obtained from the IDT method in the same data. In the MC simulation, the comparison was made to $v_2(p_T)$ determined using generated particles. The relative increases in the value of $v_2(p_T)$ in data and in simulation were found to be compatible for $p_T > 0.5$ GeV, the range in which the comparison could be performed.

The occupancy correction results in an increase of about 12% in the integrated v_2 for the 0–20% centrality interval while it amounts to only 1% for the most peripheral collisions, when using a lower p_T integration limit of $p_T,0 = 0.1$ GeV. For higher values of $p_T,0$ the correction gradually becomes smaller. For $p_T,0 = 0.5$ GeV it decreases to about 7% for the most central collisions.

An additional correction, applied to the differential measurement of v_2, accounts for the difference between v_2 measured only with fake tracks and v_2 measured with charged-particle tracks from the primary vertex. The corrected v_2 is calculated as

$$v_2 = \frac{v_{2,m} - f v_{2,f}}{1 - f}, \quad (6)$$

where $v_{2,m}$ is the elliptic flow measured with all tracks, $v_{2,f}$ is the flow of fake tracks, and f is the fake-track rate. This correction was applied to the differential v_2 measured with the TKT, PXT and IDT methods with the corresponding fake rates and $v_{2,f}$ values. The rate and $v_{2,f}$ of the fake tracks were derived from MC simulation and then cross-checked in the data with a sample, obtained with inverted track selection criteria, in which fake tracks dominate. Differences between the MC simulation and the data of up to 20% were observed and included in the systematic uncertainties.

The fake tracks reduce the values of v_2 integrated over the p_T ranges considered in this analysis. The correction is a function of the fake-track rate and accordingly exhibits a dependence on centrality, p_T and η. For $|\eta| < 1$, the largest correction, about 15%, was obtained for the PXT method with $p_T,0 = 0.1$ GeV. For peripheral collisions in the same kinematic range, it decreases to about 11%. The correction is smaller for higher values of $p_T,0$. It decreases to about 2% for $p_T,0 = 0.5$ GeV for the 0–10% centrality interval and gradually drops to zero for the most peripheral collisions. The fake-track flow correction for the integrated v_2 obtained with the IDT method ($p_T,0 = 0.5$ GeV) is less than 2% for the most central collisions and even smaller for the more peripheral ones. For the TKT method, the correction is about 1% for the most central collisions.

The limited p_T resolution for tracks reconstructed in the pixel detector and the rapidly changing dN_{ch}/dp_T distribution lead to a significant bin-to-bin migration in p_T. As a consequence of the variation of v_2 with p_T, v_2 measured in a given p_T bin is contaminated by v_2 values of particles from the neighbouring bins. In order to compensate for this effect, a correction derived from MC simulation was applied to the $v_2(p_T)$ values. This correction was determined, using pixel tracks matched to generated particles, by comparing the $v_2(p_T)$ distribution as a function of reconstructed p_T to $v_2(p_T)$ as a function of generated p_T. In order to validate the correction derived from the MC simulation, the same procedure was applied in the data and in the simulation in the region of $p_T > 0.5$ GeV, where the ID tracks were used instead of the generated particles. The ID tracks were matched by requiring an angular separation $\sqrt{\Delta \eta^2 + (\Delta \phi)^2} < 0.02$. A comparison between the corrections obtained in the data and in the MC simulation, as a function of measured p_T, showed a good agreement.

The correction for p_T-bin migration of the reconstructed tracks was found to be small compared to the occupancy and fake-track flow corrections, and to depend only on the value of $p_T,0$. It increases the integrated v_2 value by 1% (1.5%) for $p_T,0 = 0.1$ GeV ($p_T,0 = 0.5$ GeV) independently of collision centrality.

7 Uncertainties in the v_2 determination

The systematic uncertainties include those common to different tracking methods, as well as method-specific ones.

The uncertainty which originates from the statistics of the MC samples is treated as a source of systematic uncertainty.

The v_2 values determined for samples enriched in fake tracks in data and MC simulation were compared and differences of up to 20% for both the PXT and IDT methods were observed. For the PXT method, this difference resulted in a change of v_2, integrated from $p_T,0 = 0.1$ GeV, for the most central (0–10%) collisions of 3% at mid-rapidity and of 15% at $|\eta| \sim 2$. The impact on the integrated v_2 decreases with increasing centrality. For higher $p_T,0$ values, the change was found to be negligible. For the IDT method, the uncertainty on the v_2 value of fake tracks induces a systematic uncertainty in the integrated v_2 for central collisions of less than 4% at mid-rapidity and of 9% at $|\eta| \sim 2$; for peripheral collisions the uncertainty is smaller.

The variation of the fake tracklets’ v_2, at the level of 10%, obtained from the comparison of data and MC simulation, results in an uncertainty at the level of 2% in the integrated v_2 across the centrality range 0–40%.
A comparison of v_2 values obtained with the TKT method for a MC sample with the nominal detector geometry to that with 10% more active material and 15–20% more inactive material shows agreement to better than 2%. Therefore it was assumed that possible inaccuracies in the description of the detector material in the GEANT4 simulation have a negligible effect on the final results. The same holds for the measurements with the PXT and IDT methods.

An overall scale uncertainty on v_2 originates from the uncertainty on the fraction of the total inelastic cross section accepted by the trigger as well as from the event selection criteria, which affects the population of the centrality bins. It is negligibly small (below 1%) for central collisions and increases to about 6% for the most peripheral collisions for the TKT method and to about 5% for both the PXT and IDT methods.

The influence of the detector nonuniformities on the measured v_2 was checked by comparing the v_2 values obtained for positive and negative η. This led to a typical uncertainty of 1% except for the most peripheral collisions where it increases to 2%. The relative difference between the expected and measured values is included in the total systematic uncertainty.

The ΔR parameter used in the tracklet reconstruction was varied by $\pm 1\sigma$ from the nominal value. The resulting variation in the value of v_2 at the level of 1% is included in the systematic uncertainty. For the PXT and IDT methods, differences between v_2 determined from tracks of negatively and positively charged particles as well as between the baseline v_2 and that obtained with tighter or looser tracking requirements (in which the transverse and longitudinal impact parameter significance criteria are changed by ± 1) also contribute to the systematic uncertainty at the level of a few percent.

For the PXT method, the corrections due to the limited p_T resolution were varied within their statistical uncertainties and the resulting variation was found to be at the level of 0.5%, independently of the centrality.

The p_T spectrum of charged particles in the MC simulation was reweighted so that the expected detector-level distribution agrees with that observed in the data. This changes the effective fake-track rate and therefore the weights used in the calculation of v_2. A variation of these weights by up to 10% has a negligible effect on the determination of v_2.

The different contributions to the total systematic uncertainty on the integrated v_2 for $|\eta| < 1$ are shown in Fig. 7 and summarized in Table 1 for the three tracking methods. The total systematic uncertainties are determined by adding in quadrature all the individual contributions and are treated as $\pm 1\sigma$ uncertainties.

8 Results

Figure 8 shows the centrality dependence of v_2 integrated over $|\eta| < 1$. For the TKT method, v_2 is integrated over $p_T > 0.07$ GeV. For the PXT method, v_2 is integrated over $p_{T,0} < p_T < 5$ GeV and $p_{T,0}$ is varied from 0.1 to 0.5 GeV in steps.
Table 1 Summary of the systematic uncertainties as percentages of the integrated v_2 value for charged particles with $|\eta|<1$ and different collision centrality bins

Source	Centrality bin	0–10 %	10–20 %	20–60 %	60–70 %	70–80 %
TKT $p_T > 0.07$ GeV						
MC Statistics	0.1	0.1	<0.2	0.3	1	
Fake tracks	2	2	1–2	1	1	
Centrality bins	1	1.5	<1	2	6	
N-P η regions	2	1	<1.5	1	2.5	
Sine term	1.5	1	1	1	1	
Closure	1.5	1	<2	3.5	5	
ΔR	1	0.5	<1	0.5	1	
Total	3.5	3.2	<3.2	4	8	
PXT $p_T > 0.1$ GeV						
MC Statistics	0.1	0.1	<0.2	0.3	1	
Fake tracks	3	2	<1.5	0.5	0.5	
Centrality bins	1	1.5	<1	1.5	5	
N-P η regions	0.5	0.5	<0.5	1	3	
Sine term	0.5	0	<0.5	1	4	
Closure	1	1	<2	0	5	
Charge \pm	0.5	0.5	<1	1	1.5	
Track selection	0.5	0.5	<0.5	1	1	
p_T resolution	0.5	0.5	0.5	0.5	0.5	
Total	3	2	<2	2	8	
IDT $p_T > 0.5$ GeV						
MC Statistics	0.1	0.1	<0.2	0.3	1	
Fake tracks	3.5	1.5	<1	0.2	0.2	
Centrality bins	1	1.5	<1	1	5	
N-P η regions	1.2	1	<1.5	0.5	0.5	
Sine term	0.5	0.5	0.5	0.5	1.5	
Closure	1.5	0.5	<1	0.5	0.5	
Charge \pm	0.2	0.2	0.2	0.2	2.2	
Track selection	0.5	0	<0.5	0.2	1	
Total	3.5	2	<1.5	1	5.5	

of 0.1 GeV. Also shown is the v_2 value obtained from the IDT method integrated over $0.5 < p_T < 5$ GeV. The TKT method with $p_{T,0} = 0.07$ GeV gives results consistent with the v_2 values obtained with the PXT method with $p_{T,0} = 0.1$ GeV, as could be expected due to the very low charged-particle density and small v_2 signal in the momentum range below 0.1 GeV. This indicates that there is no need to extrapolate the measurements obtained with tracklets down to $p_T = 0$ in order to obtain a reliable estimate of v_2 integrated over the whole kinematic range in p_T. Furthermore, for the PXT method such an extrapolation would result in a very small correction to the measured integrated flow, well within the uncertainties of the measurement. This is in contrast to the integrated v_2 with $p_{T,0}$ chosen at higher values, as also shown in Fig. 8. It can be seen that the integrated v_2 increases almost linearly with $p_{T,0}$ for $p_{T,0} > 0.1$ GeV. Good agreement between the PXT and IDT methods is observed at $p_{T,0} = 0.5$ GeV. In Fig. 9, the results of this analysis are compared to the integrated v_2 measured by CMS [20] with $p_{T,0} = 0.3$ GeV. In this comparison, the sensitivity to $p_{T,0}$ is clearly visible. A systematically larger v_2 is observed for the higher value of $p_{T,0}$ as a consequence of the strong increase of v_2 with increasing p_T.

The η dependence of the p_T-integrated v_2 provides useful constraints on the initial conditions of heavy-ion collisions used in model descriptions of the system’s evolution (see, e.g., Refs. [1,2]). Figure 10 shows the η dependence of the p_T-integrated v_2. As already shown in Fig. 9, the differ-
Fig. 8 Elliptic flow v_2 integrated over transverse momentum $p_T > p_{T,0}$ as a function of $p_{T,0}$ for different centrality intervals, obtained with different charged-particle reconstruction methods: the tracklet (TKT) method with $p_{T,0} = 0.07$ GeV, the pixel track (PXT) method with $p_{T,0} \geq 0.1$ GeV and the ID track (IDT) method with $p_{T,0} = 0.5$ GeV as described in the legend. Error bars show statistical and systematic uncertainties added in quadrature.

Fig. 9 Centrality dependence of elliptic flow, v_2, measured for $|\eta| < 1$ and integrated over transverse momenta, p_T, for different charged-particle reconstruction methods as described in the legend. Also shown are v_2 measurements by CMS integrated over $0.3 < p_T < 5$ GeV and $|\eta| < 0.8$ [20] (open crosses). Error bars show statistical and systematic uncertainties added in quadrature.

Fig. 10 Pseudorapidity, η, dependence of elliptic flow, v_2, integrated over transverse momentum, p_T, for different charged particle reconstruction methods and different low-p_T thresholds in different centrality intervals as indicated in the legend. Error bars show statistical and systematic uncertainties added in quadrature.
The large acceptance in η of the ATLAS and CMS experiments makes it possible to study whether the observation of the extended longitudinal scaling of v_2, when viewed in the rest frame of one of the colliding nuclei, reported by the PHOBOS experiment at RHIC [6,32], holds at the much higher LHC energy. The PHOBOS measurements of elliptic flow over a range of Au+Au collision energies, $\sqrt{s_{NN}} = 19.6, 62.4, 130$ and 200 GeV, showed energy independence of the integrated v_2 as a function of $|\eta| - \eta_{beam}$, where $\eta_{beam} = \ln (\sqrt{s_{NN}}/m)$ is the beam rapidity and m is the proton mass. A similar effect was also observed in charged-particle densities [6] and is known as limiting fragmentation [33]. In Fig. 12, the integrated v_2 is plotted as a function of $|\eta| - \eta_{beam}$ and compared to the PHOBOS results for three centrality bins matching those used by PHOBOS. The PHOBOS results are obtained with the event-plane method for charged particles with a low-p_T limit of 0.035 GeV at mid-rapidity and of 0.004 GeV around the beam rapidity [34]. The CMS data [20] obtained with the event-plane method are also shown. The CMS measurement represents v_2 integrated over p_T from 0 to 3 GeV. This measurement was obtained by extrapolating $v_2(p_T)$ measured for $p_T > 0.3$ GeV and the charged-particle spectra down to $p_T = 0$ under the assumption that $v_2(p_T = 0) = 0$ and with the charged-particle yield constrained by the measured $dN_{ch}/d\eta$ distribution [35]. The ATLAS and CMS results agree within the uncertainties, although the CMS v_2 is systematically smaller by about 5% than the ATLAS measurement. This small systematic difference can be attributed to the uncertainty in the CMS extrapolation to $p_T = 0$ or the p_T threshold of 0.07 GeV for the ATLAS measurement, or the combination of both.

As can be seen from the figure, there is no overlap in $|\eta| - \eta_{beam}$ between the PHOBOS and LHC data, so a direct comparison with the low-energy data is not possible. Nevertheless, it can be concluded, keeping in mind the relatively large uncertainties in the low-energy results, that the extrapolation of the trend observed at RHIC to the LHC energy appears to be consistent with the LHC measurements, although the dependence on $|\eta| - \eta_{beam}$ may be weaker at the LHC energy.

9 Summary and conclusions

Measurements of the integrated elliptic flow of charged particles in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV are presented by the ATLAS experiment at the LHC. The elliptic anisotropy parameter v_2 is measured with the event-plane method over a broad range of collision centralities (0–80%). The kinematic range in pseudorapidity extends out to $|\eta| = 2.5$, and in p_T down to 0.07 GeV. This low-p_T region is reached by using a tracklet reconstruction algorithm to analyze about 1 μb$^{-1}$ of data taken with the solenoid field turned off. Other

Fig. 11 Comparison of the pseudorapidity, η, dependence of elliptic flow, v_2, integrated over transverse momentum, p_T, for different low-p_T thresholds, as indicated in the legend, in the 40–50% centrality interval from the ATLAS and CMS experiments. Error bars show statistical and systematic uncertainties added in quadrature.

Fig. 12 Integrated elliptic flow, v_2, as a function of $|\eta| - \eta_{beam}$ for three centrality intervals indicated in the legend, measured by the ATLAS and CMS experiments for Pb+Pb collisions at 2.76 TeV and by the PHOBOS experiment for Au+Au collisions at 200 GeV. The CMS result is obtained by averaging the $v_2(p_T)$ with the charged particle spectra over the range $0 < p_T < 3$ GeV. Error bars show statistical and systematic uncertainties added in quadrature.
track reconstruction methods with low-p_T thresholds of 0.1 and 0.5 GeV respectively, are exploited in order to verify the tracklet measurement and provide results that can be directly compared to other LHC measurements. The value of v_2 integrated from $p_T = 0.07$ GeV provides a reliable estimate of the elliptic flow measured over the range $p_T \geq 0$.

The p_T-integrated elliptic flow as a function of collision centrality shows a clear dependence on $p_{T,0}$, both within the present measurements and in comparison to the CMS results obtained with higher low-p_T limits. The integrated elliptic flow increases with centrality, reaching a maximum of 0.08 for mid-central collisions (40–50 %) and then decreases to about 0.02 for the most central collisions.

The pseudorapidity dependence of the p_T-integrated v_2 is very weak, with a slight decrease in v_2 as $|\eta|$ increases. The results are in agreement with the CMS measurements covering the same $|\eta|$ range, provided the same low-p_T cutoff is used. The integrated v_2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data. Although a direct comparison is not possible due to the non-overlapping kinematic regions, the general trend observed in the RHIC energy regime seems consistent with the LHC measurements, while the latter may have a weaker dependence on pseudorapidity.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSCRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; POM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP3 / License Version CC BY 4.0.

Appendix

In the low-p_T region, the track reconstruction efficiency depends strongly on the particle type. This information is important for comparison of measurements with theory predictions in which the elliptic flow depends on the particle type.

The efficiency of the PXT and TKT methods in reconstructing tracks with $|\eta| < 1$ generated as π^\pm, K^\pm, p, and \bar{p} in MC simulation is shown in Fig. 13 as a function of p_T. Large differences in efficiency are observed for the PXT method at p_T below about 1 GeV and for the TKT method at p_T below about 0.4 GeV. Above these values, the reconstruction efficiency is independent of particle type. The efficiency is lowest for p and \bar{p}. For the TKT method, which is most relevant at low p_T, the efficiency for reconstructing protons drops to zero below 0.2 GeV.

![Efficiency vs. p_T](image-url)

Fig. 13 The transverse momentum, p_T, dependence of the TKT (left) and PXT (right) track reconstruction efficiency for π^\pm, K^\pm and p^\pm in the pseudorapidity range $|\eta| < 1$ for three centrality intervals, as indicated in the legend.
18 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
19 (a) Department of Physics, Bogazici University, Istanbul, Turkey; (b) Department of Physics, Dogus University, Istanbul, Turkey; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna, Bologna, Italy; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, USA
23 Department of Physics, Brandeis University, Waltham, MA, USA
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c) University Politehnica Bucharest, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, UK
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d) School of Physics, Shandong University, Jinan, Shandong, China; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, USA
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, USA
41 Physics Department, University of Texas at Dallas, Richardson, TX, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, USA
46 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, USA
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
107 Department of Physics, Northern Illinois University, DeKalb, IL, USA
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, USA
110 Ohio State University, Columbus, OH, USA
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
113 Department of Physics, Oklahoma State University, Stillwater, OK, USA
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, UK
120 (a) INFN Sezione di Pavia, Pavia, Italy; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
122 Petersburg Nuclear Physics Institute, Gatchina, Russia
123 (a) INFN Sezione di Pisa, Pisa, Italy; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
125 (a) Laboratorio de Instrumentacão e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b) Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c) Department of Physics, University of Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e) Departamento de Física, Universidade do Minho, Braga, Portugal; (f) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g) Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
131 Physics Department, University of Regina, Regina, SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (a) INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
135 (a) INFN Sezione di Roma Tre, Rome, Italy; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
139 Department of Physics, University of Washington, Seattle, WA, USA
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, CA, USA
145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
(a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden

Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA

Department of Physics and Astronomy, University of Sussex, Brighton, UK

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto, ON, Canada

(a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, MA, USA

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana, IL, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Department of Physics, University of Warwick, Coventry, UK

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, USA

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, CT, USA

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, UK
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
d Also at TRIUMF, Vancouver, BC, Canada
e Also at Department of Physics, California State University, Fresno, CA, USA
f Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
g Also at Università di Napoli Parthenope, Naples, Italy
h Also at Institute of Particle Physics (IPP), Canada

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia

Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece

Also at Louisiana Tech University, Ruston, LA, USA

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
m Also at CERN, Geneva, Switzerland
n Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
o Also at Manhattan College, New York, NY, USA
p Also at Novosibirsk State University, Novosibirsk, Russia
q Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
r Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
s Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
t Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
u Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
v Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
w Also at Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
x Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
y Also at Section de Physique, Université de Genève, Geneva, Switzerland
z Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ab Also at International School for Advanced Studies (SISSA), Trieste, Italy
ac Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
ad Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
ae Also at Physics Department, Brookhaven National Laboratory, Upton, NY, USA
af Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
ag Also at Department of Physics, Oxford University, Oxford, UK
ah Also at Department of Physics, Nanjing University, Jiangsu, China
ai Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
aj Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
ak Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased