New Representations for the Curvature Tensor of a Surface with Application to Theories of Elastic Shells

Nathaniel N. Goldberg, Oliver M. O’Reilly

1 Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA

Abstract

Consider two points P and Q on a surface. Modulo rotations about the normal vector to the surface at P and the normal vector to the surface at Q, a rotation can be defined that maps the unit normal vector to the surface at Q to the corresponding unit normal vector at P. With the help of Weingarten’s formulae, new representations are established for the components of the curvature tensor of a surface and the associated mean and Gaussian curvatures in terms of components of a pair of vectors associated with the rotation. The formulae are shown to be helpful in demonstrating how different strain measures for Kirchhoff-Love shell theory are equivalent.

Keywords Theory of shells · Finite rotations · Weingarten’s formulae

Mathematics Subject Classification 53A01 · 73L05

1 Introduction

Given a surface S, Weingarten’s well-known formulae express the evolution of a unit normal vector \mathbf{n} to a two-dimensional surface in terms of the coefficients $b_{\alpha\beta}$ of second-fundamental form of the surface and the covariant basis vectors \mathbf{a}_γ (cf. Fig. 1). In this paper, we use his formulae to establish new representations for the components of the curvature tensor $\mathbf{b} = b_{\alpha\beta} \mathbf{a}_\alpha \otimes \mathbf{a}_\beta = b^\beta_\alpha \mathbf{a}_\beta \otimes \mathbf{a}_\alpha$, the mean curvature H, and the Gaussian curvature K:

$$b_{\alpha\beta} = (\mathbf{a}_\alpha \times \mathbf{n}) \cdot \mathbf{\omega}_\beta, \quad b^\beta_\alpha = (\mathbf{a}^\alpha \times \mathbf{n}) \cdot \mathbf{\omega}_\beta,$$

$$H = \frac{1}{2\sqrt{a}} (\mathbf{\omega}_2 \cdot \mathbf{a}_1 - \mathbf{\omega}_1 \cdot \mathbf{a}_2), \quad K = \frac{1}{\sqrt{a}} (\mathbf{\omega}_1 \times \mathbf{\omega}_2) \cdot \mathbf{n},$$

(1.1)

where the angular rate vectors $\mathbf{\omega}_\beta$ are used to compute the partial derivatives of \mathbf{n}:

$$\mathbf{n}_{,\beta} = \mathbf{\omega}_\beta \times \mathbf{n}.$$

(1.2)
As an illustrative example, the case of a spherical surface is considered. The representations (1.1) are then shown to be helpful in relating two different formulations for some of the strain measures used in Kirchhoff-Love shell theory. We also note that the discussion in this paper complements alternative representations for $b_{\alpha\beta}$, H, and K, including those using Cartan’s moving frames that can be found in texts on differential geometry (see, e.g., [1, 5, 12]).

2 Background

Consider a two-dimensional surface S that is embedded in three-dimensional Euclidean space \mathbb{E}^3. The surface is parameterized using a curvilinear coordinate system $\{\theta_1, \theta_2\}$ such that every point P on the surface can be uniquely identified by a position vector (relative to a fixed origin):

$$r = r(\theta^1, \theta^2).$$ \hfill (2.1)

We now define a covariant basis $\{a_1, a_2\}$ for the tangent space to a point on S:

$$a_\beta = r_\beta = \frac{\partial r}{\partial \theta^\beta} , \quad (\beta = 1, 2).$$ \hfill (2.2)

Here, and in the sequel, lower-case Greek letters range from 1 to 2, the summation convention on repeated indices is employed, and the comma denotes partial derivative. A unit normal n is assumed to be defined at every point P on the surface where $(a_1 \times a_2) \cdot n > 0$.

We can define a contravariant basis $\{a^1, a^2\}$ where $a_\alpha \cdot a^\beta = \delta_\alpha^\beta$ and $n \cdot a^\beta = 0$. The Kronecker delta $\delta_\alpha^\beta = 0$ if $\beta \neq \alpha$ and $= 1$ if $\alpha = \beta$. Solving $a_\alpha \cdot a^\beta = \delta_\alpha^\beta$ for a^β:

$$\sqrt{a} a^1 = a_2 \times n, \quad \sqrt{a} a^2 = -a_1 \times n.$$ \hfill (2.3)

where $\sqrt{a} = \|a_1 \times a_2\| = (a_1 \times a_2) \cdot n$. We note that

$$a_\beta = a_{\beta\alpha} a^\alpha, \quad a^\beta = a^{\beta\alpha} a_\alpha,$$ \hfill (2.4)

where

$$a_{\alpha\beta} = a_\alpha \cdot a_\beta, \quad a^{\alpha\beta} = a^\alpha \cdot a^\beta.$$ \hfill (2.5)

Here, $a_{\alpha\beta}$ are the coefficients of the first fundamental form of S.

\(\text{Springer} \)
3 A Rotation of the Unit Normal Vector and a Pair of Axial Vectors

We consider a point Q on the surface and denote the normal to the surface at this point by n_0. As the normal vector is a unit vector, we can define a rotation that transforms n_0 to the normal n at any point on the surface. The resulting rotation tensor, which we denote by Q, is a function of the coordinates θ^β:

$$n = n(\theta^1, \theta^2) = Q(\theta^1, \theta^2)n_0. \quad (3.1)$$

As discussed in the sequel, the tensor Q is not uniquely defined. We also note that various representations, including Euler angles, axis-angle, Euler parameters, unit quaternions, and Cayley parameters for Q can be employed but this specification is not needed for present purposes.

Differentiating the identity $n = Qn_0$ with respect to θ^β, using the facts that $Q^T Q = I$ and n_0 is constant, we conclude that

$$n_\beta = Q_{\beta \gamma} Q^\gamma_n. \quad (3.2)$$

However, as $Q_{\beta \gamma} Q^\gamma$ is skew-symmetric, we can define an axial vector ω_β such that

$$\left(Q_{\beta \gamma} Q^\gamma\right) a = \omega_\beta \times a \quad (3.3)$$

for any vector a. The vector ω_β has the representations

$$\omega_\beta = \omega_\beta^1 a_1 + \omega_\beta^2 a_2 + \omega_\beta^n n = \omega_{\beta 1} a^1 + \omega_{\beta 2} a^2 + \omega_{\beta n} n. \quad (3.4)$$

As the vectors ω_β associated with Q are identical to those associated with QQ_1 where Q_1 is an arbitrary constant rotation tensor, the choice of Q, as anticipated, does not effect the forthcoming results.

The prescription (3.1) for Q does not define a unique rotation tensor. Indeed, if Q satisfies (3.1) then so does

$$R = L(\nu, n)QL(\nu_0, n_0), \quad (3.5)$$

where the tensor $L(\theta, p)$ represents a rotation through an angle θ about the unit vector p: \(^1\)

$$Rn_0 = L(\nu, n)QL(\nu_0, n_0)n_0 = L(\nu, n)Qn_0 = L(\nu, n)n = n. \quad (3.6)$$

The angle of rotation ν_0 is a constant. The axial vectors associated with the rotation R can be computed using relative angular velocity vectors [3]:

$$\left(\frac{\partial R}{\partial \theta^\alpha} R^\gamma\right) a = (\omega_\alpha + \nu_\alpha n) \times a. \quad (3.7)$$

\(^1\)Representations for the rotation L using a wide range of parameterizations can be found in [8]. A discussion of how to compute ω_1 and ω_2 using relative angular velocity vectors [3] is presented in [8].
Thus, the non-uniqueness of Q implies that the n component of ω_α are not uniquely prescribed. Examining (1.1), we find that the components of b and K and H are independent of $\omega_\alpha \cdot n$. In conclusion, the curvature tensor b is insensitive to the fact that Q is defined modulo an arbitrary rotation about n.

4 Formulae for the Curvature Tensor, the Mean Curvature, and the Gaussian Curvature

The curvature tensor b has the representations (see, e.g., [2, 9]):

$$b = b_\beta^\alpha a_\alpha \otimes a^\beta = b_{\alpha\beta} a^\alpha \otimes a_\beta,$$

where

$$b_{\alpha\beta} = a_{\alpha,\beta} \cdot n. \quad b_\alpha^\gamma = a^\gamma a_{\alpha\beta}.$$

(4.1)

and \otimes is the tensor product: $(a \otimes b) c = a (b \cdot c)$ for any vectors a, b, and c.

Weingarten’s formulae relate the evolution of n to the components of b:

$$n_{,\beta} = -b_{\alpha\beta} a^\alpha.$$

(4.2)

The standard derivation of this formula starts by differentiating the identities $n \cdot n = 1$ and $n \cdot a_\beta = 0$. For our purposes, it is fruitful to consider the components of $n_{,\beta}$:

$$n_{,\beta} \cdot a_\alpha = \left(\omega_\beta \times n\right) \cdot a_\alpha = \omega_\beta \cdot \left(n \times a_\alpha\right) = \epsilon_\alpha\gamma \omega_\beta \cdot a_\gamma,$$

(4.3)

where $\epsilon_{11} = \epsilon_{22} = 0$ and $\epsilon_{12} = -\epsilon_{21} = \sqrt{a}$.

We can use (4.3) along with (4.4) to show that

$$b_{\alpha\beta} = -n_{,\beta} \cdot a_\alpha = -\left(\omega_\beta \times n\right) \cdot a_\alpha = -\omega_\beta \cdot \left(n \times a_\alpha\right).$$

(4.4)

Thus, we find the sought-after representations (1.1)\textsubscript{1,2} for the components $b_{\alpha\beta}$ and b_α^γ:

$$b_{\alpha\beta} = \left(a_\alpha \times n\right) \cdot \omega_\beta, \quad b_\alpha^\gamma = \left(a^\gamma \times n\right) \cdot \omega_\beta.$$

(4.5)

The identities $b_\alpha^\gamma = a^\gamma b_{\beta\delta}$ and $a^\alpha = a^\alpha a_\beta$ were used to establish the second representation. The identity (4.6)\textsubscript{1} along with the symmetry $b_{12} = b_{21}$ implies that

$$\omega_1 \cdot a^1 + \omega_2 \cdot a^2 = 0.$$

(4.6)

Thus, the components of ω_1 and ω_2 are not all independent.

The representation (1.1)\textsubscript{3} for H can be obtained by first substituting for b_α^γ in the definition of H (cf. [9]) and then appealing to (2.3) and (4.6):
We observe that the representation for K provides an elegant representation for KdA where dA is the element of area on S:

$$KdA = (\omega_1 \times \omega_2) \cdot n d\theta^1 d\theta^2.$$ \hfill (4.10)

The integral of KdA is central to the Gauss-Bonnet theorem.

5 Application to a Sphere

As an example, we consider a sphere of radius R and use a set of polar angles $\theta^1 = \varphi$ and $\theta^2 = \vartheta$ to parameterize the sphere (cf. Fig. 2). The representation for the position vector \mathbf{r} of any point on the sphere is

$$\mathbf{r} = R \mathbf{e}_R,$$ \hfill (5.1)

where

$$\mathbf{e}_r = \cos (\vartheta) \mathbf{E}_1 + \sin (\vartheta) \mathbf{E}_2, \quad \mathbf{e}_R = \sin (\varphi) \mathbf{e}_r + \cos (\varphi) \mathbf{E}_3.$$ \hfill (5.2)
Differentiating \(\mathbf{r} \), the covariant basis vectors can be computed along with their contravariant counterparts:

\[
\mathbf{a}_1 = R \mathbf{e}_\varphi, \quad \mathbf{a}_2 = R \sin(\varphi) \mathbf{e}_\vartheta, \quad \mathbf{a}^1 = \frac{1}{R} \mathbf{e}_\varphi, \quad \mathbf{a}^2 = \frac{1}{R \sin(\varphi)} \mathbf{e}_\vartheta, \tag{5.3}
\]

where

\[
\mathbf{e}_\varphi = \cos(\varphi) \mathbf{e}_r - \sin(\varphi) \mathbf{E}_3, \quad \mathbf{e}_\vartheta = \cos(\vartheta) \mathbf{E}_2 - \sin(\vartheta) \mathbf{E}_1. \tag{5.4}
\]

Clearly, \(\mathbf{n} = \mathbf{e}_R \) and \(\sqrt{\mathbf{a}} = R^2 \sin(\varphi) \).

The rotation tensor \(\mathbf{Q} \) can be defined as the product of two rotations: one about the \(\mathbf{E}_3 \) axis through an angle \(\vartheta \) followed by a rotation about \(\mathbf{e}_\vartheta \) through an angle \(\varphi \):

\[
\mathbf{Q} = \mathbf{L}(\varphi, \mathbf{e}_\vartheta) \mathbf{L}(\vartheta, \mathbf{E}_3). \tag{5.5}
\]

Thus,

\[
\mathbf{\omega}_1 = \mathbf{e}_\vartheta, \quad \mathbf{\omega}_2 = \mathbf{E}_3, \quad \mathbf{\omega}_1 \times \mathbf{\omega}_2 = \mathbf{e}_r. \tag{5.6}
\]

Noting that \(\mathbf{e}_\vartheta \times \mathbf{e}_R = \mathbf{e}_\varphi \), we can now compute the components of \(\mathbf{b} \) using either (1.1)\(_1\) or (1.1)\(_2\):\(^2\)

\[
\mathbf{b} = -\frac{1}{R} \left(\mathbf{e}_\varphi \otimes \mathbf{e}_\varphi + \mathbf{e}_\vartheta \otimes \mathbf{e}_\vartheta \right). \tag{5.7}
\]

The curvatures \(H \) and \(K \) can be computed using (1.1)\(_3,4\):

\[
H = \frac{1}{2 \sqrt{\mathbf{a}}} (\mathbf{\omega}_2 \cdot \mathbf{a}_1 - \mathbf{\omega}_1 \cdot \mathbf{a}_2) = -\frac{1}{R}, \quad K = \frac{1}{\sqrt{\mathbf{a}}} (\mathbf{\omega}_1 \times \mathbf{\omega}_2) \cdot \mathbf{n} = \frac{1}{R^2}, \tag{5.8}
\]

as anticipated.

6 Comments on Applications to Kirchhoff-Love Shell Theory

The representation (1.1)\(_1\) is of particular use when demonstrating the equivalence of formulations of Kirchhoff-Love shell theory. The strain energy density function for this shell theory has the representations (cf., e.g., [7, 11]):

\[
W = \hat{W}(a_{\alpha\beta}, b_{\gamma\delta}, \theta^1, \theta^2) \tag{6.1}
\]

and (cf., e.g., [4, 6])

\[
W = \tilde{W}(a_{\alpha\beta}, \mathbf{\omega}_\gamma, \theta^1, \theta^2). \tag{6.2}
\]

\(^2\)That is, \(b_{11} = -R, b_1^1 = -\frac{1}{R}, b_2^1 = b_1^2 = b_{12} = b_{21} = 0, b_{22} = -R \sin^2(\varphi) \), and \(b_2^2 = -\frac{1}{R} \).
The formula (1.1) can be used to establish the equivalence of \tilde{W} and \hat{W}:

$$
\begin{align*}
 b_{11} &= -\omega_1 \cdot a^2, \\
 b_{22} &= \omega_2 \cdot a^1, \\
 b_{12} &= b_{21} = \omega_1 \cdot a^1 = -\omega_2 \cdot a^2.
\end{align*}
$$

It should also be evident from (6.3) that the strain energy function \tilde{W} should be independent of the components $\omega_\beta \cdot n$. This restriction is in complete agreement with our earlier remarks that Q is defined modulo a rotation about n.

Although the tensor Q plays a central role in some formulations of Kirchhoff-Love shell theory (see [6]), we have not found a previous discussion of the non-uniqueness of Q. In some shell theories (cf. [4, 10]) where a rotation tensor Ψ is associated with each point of the material surface, a pair of right-handed orthonormal triads (or adapted frames) are chosen: one comprised of n_0 and two unit tangent vectors s_{01} and s_{02} in the reference configuration and the other comprised of n and two unit tangent vectors s_1 and s_2 in the present configuration. The rotation tensor Ψ, where

$$
\Psi = s_1 \otimes s_{01} + s_2 \otimes s_{02} + n \otimes n_0,
$$

is uniquely defined in this case. The fact that there are infinitely many choices of the triads $\{n_0, s_{01}, s_{02}\}$ and $\{n, s_1, s_2\}$ provides another explanation for the non-uniqueness of Q.\(^3\)

Acknowledgements

This work was supported by the United States Department of Defense through the National Defense Science and Engineering Graduate Fellowship and a Berkeley Graduate Fellowship awarded to N. N. Goldberg. The authors are also grateful to our colleagues Professors James Casey and David Steigmann for their comments on an earlier draft of this paper.

Declarations

Declaration of Competing Interests

The authors declare no conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. do Carmo, M.P.: Differential Forms and Applications. Universitext Springer, Berlin (1994). https://doi.org/10.1007/978-3-642-57951-6. Translated from the 1971 Portuguese original
2. Casey, J.: Kinematical aspects of Levi-Civita transport of vectors and tensors along a surface curve. J. Elast. 119, 213–249 (2015). https://doi.org/10.1007/978-94-017-7300-3_12
3. Casey, J., Lam, V.C.: On the relative angular velocity tensor. J. Mech. Transm. Autom. Des. 108, 399–400 (1986). https://doi.org/10.1115/1.3258746
4. Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004). https://doi.org/10.1023/B:ELAS.0000026106.09385.8c
5. Kreyszig, E.: Differential Geometry. Mathematical Expositions, vol. 11. University of Toronto Press, Toronto (1959)

\(^3\)We are indebted to an anonymous reviewer for pointing out this alternative explanation.
6. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511574511
7. Naghdi, P.M.: The theory of shells and plates. In: Truesdell, C. (ed.) Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells, pp. 425–640. Springer, Berlin (1973). https://doi.org/10.1007/978-3-662-39776-3_5
8. O’Reilly, O.M.: Intermediate Dynamics for Engineers: Newton-Euler and Lagrangian Mechanics, 2nd edn. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108644297
9. Simmonds, J.G.: A Brief on Tensor Analysis. Springer, New York (1982). https://doi.org/10.1007/978-1-4419-8522-4
10. Simmonds, J.G., Danielson, D.A.: Nonlinear shell theory with finite rotation and stress-function vectors. J. Appl. Mech. 39(4), 1085–1090 (1972). https://doi.org/10.1115/1.3422833
11. Steigmann, D.J.: On the relationship between the Cosserat and Kirchhoff-Love theories of elastic shells. Math. Mech. Solids 4(3), 275–288 (1999). https://doi.org/10.1177/108128659900400301
12. Struik, D.J.: Lectures on Classical Differential Geometry, second edn. Dover, New York (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.