In utero exposure to a single low dose of 2,2’,4,4’,5-pentabromodiphenyl ether (PBDE-99) disrupts neurobehavioral development and causes permanent effects on the rat male reproductive system apparent in adulthood. PBDEs, a class of flame retardants, are widely used in every sector of modern life to prevent fire. They are persistent in the environment, and increasing levels of PBDEs have been found in biota and human breast milk. In the present study we assessed the effects of developmental exposure to one of the most persistent PBDE congeners (PBDE-99) on juvenile basal motor activity levels and adult male reproductive health. Wistar rat dams were treated by gavage on gestation day 6 with a single low dose of 60 or 300 µg PBDE-99/kg body weight (bw). In offspring, basal locomotor activity was evaluated on postnatal days 36 and 71, and reproductive performance was assessed in males at adulthood. The exposure to low-dose PBDE-99 during development caused hyperactivity in the offspring at both time points and permanently impaired spermato genesis by the means of reduced sperm and spermatid counts. The doses used in this study (60 and 300 µg/kg bw) are relevant to human exposure levels, being approximately 6 and 29 times, respectively, higher than the highest level reported in human breast adipose tissue. This is the lowest dose of PBDE reported to date to have an in vivo toxic effect in rodents and supports the premise that low-dose studies should be encouraged for hazard identification of persistent environmental pollutants. Key words: development, endocrine active compounds, in utero exposure, low-dose effects, male fertility, neurobehavior, PBDE-99. Environ Health Perspect 113:149–154 (2005), doi:10.1289/ehp.7421 available via http://dx.doi.org/ (Online 4 November 2004)
thiouracil (PTU) in the drinking water of pregnant females.

Material and Methods

Animals and treatment. Wistar rats (HsdCpb:WU; Fa. Harlan-Winkelmann, Borchen, Germany) weighing 200 ± 15 g were allowed to acclimatize for 2 weeks. The rats were exposed to constant light/dark periods of 12 hr each, a temperature of 21 ± 1°C, and 50 ± 5% relative humidity. Rodent chow (Altromin 1324; Altromin GmbH, Lage, Germany) and tap water were available *ad libitum.* Two nongravid females were placed with one male for 3 hr, and the day of sperm detection in the vaginal smear was considered day 0 of gestation. The gravid females were randomly assigned among the four groups and housed individually in type III Macron cages with stainless steel covers and wood shavings (Altromin GmbH). 2,2',4,4',5-Pentabromodiphenyl ether (PBDE-99; 98% pure), lot number VL02, was purchased from LGC Promochem GmbH (Wesel, Germany). Pregnant rats were treated orally by gavage with a single dose of 60 µg PBDE/kg (n = 20) or 300 µg PBDE-99/kg (n = 19) on GD6. The control pregnant rats (n = 16) received the vehicle, peanut oil, in a volume of 10 mL/kg bw on the same day. An additional group was administered the goitrogen PTU (6-n-propyl-2-thiouracil; Sigma-Aldrich Chemicals GmbH, Steinheim, Germany), which served as a reference control for TH effects. PTU was given to the gravid dams by adding 5 mg/L PTU in the drinking water on GD7–21. Dams were allowed to deliver, and the litter size was not artificially altered. The experimental protocol has the approval of the National Animal Protection Law (Tierschutzgesetz BGBI. IS. 3082, 2002).

Postnatal reflex and developmental landmarks. Developmental landmarks (eruption of incisors, fur development, eye opening, and testes descent) and postnatal reflexes were evaluated in all pups (control, PTU, PBDE 60, PBDE 300) at day 0 (GD6) and day 20 (PND20). Starting on postnatal day (PND)3, we monitored the offspring for the development of spontaneous cliff-drop aversion reflex, and beginning on PND18, we examined their ability to stay on a rotating rod for 3 min at 7 rpm.

Locomotor activity. Circadian motility was measured over 24-hr periods on PND36 and PND71 in individual offspring using a Mobiltron (FU-Berlin/Eisenberger GmbH, Dillenburg, Germany), a device that monitors the locomotion of the animal at 5-min intervals using three infrared photocells per cage. Habituation in the Mobiltron took place for a 24-hr period before testing began in order to allow the animals to adjust to their new environment and the solitary accommodation before measurements were taken. The locomotor activity of one male and one female per litter per group (one animal per cage) were evaluated before puberty (PND36) and after puberty (PND71). The animals were randomly assigned in the Mobiltron (which allows simultaneous measurement of 48 cages) to avoid confounding factors. The method has been described in detail by Thiel et al. (1989).

Reproductive assessment of adult male offspring. At adulthood (~ PND140), 12 males/group (from different litters) were killed by decapitation. Trunk blood was collected for hormone analysis, and organ weights (thymus, spleen, liver, testis, epididymis, seminal vesicle, and ventral prostate) were recorded. The right testis and caudal epididymis were kept in saline buffer for spermatic and sperm counts, respectively.

Spermatid number. The testis was minced and homogenized for 1 min in 10 mL 0.9% NaCl containing 0.5% Triton X-100 at medium speed in an IKA-RW 15 Tissuemizer (Janke and Kunkel, Staufen in Breisgau, Germany). The number of homogenization-resistant spermatids was counted in a Buerker hemocytometer (Brand GmbH, Wertheim, Germany). Daily sperm production was calculated, dividing the number of homogenization-resistant spermatids by 6.1 (Robb et al. 1978).

Sperm count and morphology. Cauda epididymis was minced and homogenized for 1 min in 10 mL 0.9% NaCl containing 0.5% Triton X-100 at medium speed in an IKA-RW 15 Tissuemizer (Janke and Kunkel, Staufen in Breisgau, Germany). The number of homogenization-resistant sperm was counted in a hemocytometer (Brand GmbH, Wertheim, Germany). Daily sperm production was calculated, dividing the number of homogenization-resistant spermatids by 6.1 (Robb et al. 1978).

Testosterone and luteinizing hormone levels. After decapitation, trunk blood was collected and allowed to clot on an ice bath (4°C) for 2 hr. Serum was collected via
centrifugation of clotted samples (2,500 rpm for 15 min) and stored at −20°C for later analyses. Serum testosterone and luteinizing hormone (LH) were measured using the ELISA kit purchased from DRG Diagnostics GmbH (Marburg, Germany). Testosterone was measured in crude rat serum, which is reliable for comparison among groups, but matrix effects cause uncertainties with respect to absolute values.

Male reproductive performance. Adult male offspring (± 150 days of age; n = 15–19 animals/group), representing all litters, were mated with untreated females (1:1) daily for 14 days to determine whether the males were fertile and could sire normal offspring. Vaginal smears were collected daily and examined for the presence of sperm. The day of sperm detection in vaginal smears was considered day 0. The dams were sacrificed on GD21 and the uterus was excised. The uterine and fetal weights and the numbers of implantations, resorptions, and fetuses were determined. The fetuses were examined for external anomalies and sexed.

Male sexual behavior. Approximately on PND160, 20 males/group (representing all litters) were mated with untreated females in estrus (1:1), and the sexual behavior of each mating was recorded for 20 min under blue light illumination (black light, 75W; Osram, Berlin, Germany) using a video camcorder (Hi8 Handycam CCD-V800E, Sony, Tokyo, Japan). The recorded videos, which provide a permanent record and the opportunity for replay, were evaluated by a trained observer in a blind fashion. The phase of the estrous cycle of the untreated females was predetermined by examining vaginal smears. The method was previously described in detail by Chaoued and Faqi (1998).

Statistical analyses. The statistical analyses were performed with SPSS software, version 11.5 for Windows (SPSS Inc., Chicago, IL, USA). Data for males and females within each group were tested by the Student t-test. Data with normal distribution were analyzed by analysis of variance (ANOVA) followed by the Dunnett t-test. The equality of survival distributions was examined using the Kruskal-Wallis test followed by the Mann-Whitney U test. Proportions were analyzed by Fisher’s exact test, and statistical differences were considered significant when p < 0.05.

Results

Spontaneous behavior and developmental landmarks. Spontaneous behavior and developmental landmarks are shown in Figure 1. Except for cliff-drop aversion reflex, no differences between sexes were detected in the statistical analysis, and therefore, the male and female data were pooled for the analysis of all the developmental landmarks and the rotating rod reflex. The age at fur development, testes descent, and the ability to master the rotating rod test were not different between treated and control animals (data not shown). However, cumulative survival function analysis for the age at eye opening, eruption of incisors, and the cliff-drop aversion reflex revealed a statistically significant difference among the groups. The onset of eye opening was earlier in the PTU-treated litters than among controls (Figure 1A), and the eruption of incisors was delayed in the groups treated with PTU or 300 µg/kg PBDE compared with controls (Figure 1B). The development of the cliff-drop aversion reflex was significantly delayed in both PTU-exposed male and female offspring as well as in males exposed to the 300 µg dose of PBDE-99 (Figure 1C,D).

Locomotor activity. Using the Mobiltron apparatus, individual locomotion of rats was measured over 24 hr in young and pubertal offspring. Statistical analysis revealed no difference between the sexes for all groups tested, and therefore, the data from the males and females are presented together. On PND36, the total light beam interruption (LBI) count per day was significantly greater in the PTU and 300 µg/kg PBDE groups (Figure 2A). The number of active hours per day was longer in the PBDE 300 µg/kg group, an effect not seen in the PTU group (Figure 2B). The qualitative analysis (i.e., LBI count per phase and duration of activity per phase) on the same day (PND36) confirms what was observed in the quantitative analysis. Both the PTU and 300 µg/kg PBDE groups were more active during the active phases compared with control, and the duration of the active phases were also longer even though there were no statistically significant differences in the number of active phases (Figure 2C,D). An active phase is defined when the animal begins to move (associated with LBIs) until a pause (a period of no LBI) is observed. No differences compared with control were seen in the 60 µg PBDE group on PND36. At puberty (PND71), the quantitative analysis indicated that the two PBDE groups were hyperactive compared with controls. In other words, both the LBI counts and duration of activity per day were significantly increased in 60 µg PBDE and 300 µg PBDE groups. In that age (PND71), no statistically significant qualitative differences were observed among the groups (Figure 3).

![Figure 2. Locomotor activity of rat offspring after pre- and postnatal (via milk) low-dose PBDE-99 (60 or 300 µg/kg bw) exposure: quantitative and qualitative analysis on PND36 showing total activity (LBI) and duration of activity per day and per active phase. (A) LBI counts per day. (B) Duration (hours) of activity per day. (C) LBI counts per active phase. (D) Duration of activity (minutes) per active phase. Bars represent mean ± SEM.](image-url)

p < 0.05; significances were detected by ANOVA, followed by the Dunnett t-test when p < 0.05.
Body and organ weights of adult male offspring (PND140). Body, liver, thymus, and spleen weights of adult male offspring are given in Table 1. We observed no changes in body, liver, and thymus weights related to the treatment. Pre- and postnatal exposure to PBDE-99 and gestational exposure to PTU produced a significant increase in absolute spleen weight (Table 1). However, when spleen weight was expressed as a ratio of body weight (relative weight), only animals in the 60 µg PBDE-99 group exhibited the same trend (Table 1).

Male fertility and reproductive performance. Table 2 shows the reproductive organ weights, as well as sperm and spermatid counts, sperm morphology, and steroid hormone levels. We found no significant differences in the absolute testis and epididymis weights; however, when expressed as a percentage of body weight (relative weight), the PTU and PBDE 300 µg groups had smaller testes, whereas the epididymis relative weights were decreased in all three treatment groups compared with controls. No differences were observed in prostate and seminal vesicle (absolute and relative) weights (Table 2). The lower testis and epididymis weights were accompanied by reductions in sperm and spermatid counts as well as daily sperm production. Reductions in testicular spermatid count and sperm count from caudal epididymis were observed in all treatment groups (Table 2). It is noteworthy that daily sperm production was reduced by approximately 30% from controls. The decrease in sperm production was not associated with poor sperm quality because the percentage of abnormal sperm was within normal limits in all groups. Testosterone and LH levels were also not affected, suggesting a minor role for steroid hormones in the impairment of sperm production. When the litter mates of the animals analyzed for sperm counts were mated with untreated females for fertility studies, exposed males could sire offspring similar to the control males (Table 3). Uterine weight, litter size, and numbers of implantations, resorptions, and viable fetuses were within the normal range of control (Table 3).

Sexual behavior. Pre- and postnatal exposure to PTU or either dose of PBDE-99 did not impair sexual behavior of the adult male offspring. Ejaculatory and mounting latencies, intromission frequency and latency, and number of penetrations were normal when all groups were compared with controls (Table 4). However, the number of animals that had two or more ejaculations during 20 min of mating was significantly lower in the PBDE-exposed animals. Approximately 50% of controls had a second ejaculation, whereas only 39% and 21% of the males from the 60 µg PBDE and 300 µg PBDE groups, respectively, achieved a second ejaculation (Table 4).

Discussion
In the present study we found consistent evidence that exposure to low doses of PBDE-99 during critical periods of development affects motor activity and permanently impairs spermatogenesis in adult rat offspring. This is the lowest dose of PBDE reported to date to have an in vivo toxic effect in rodents. We observed neurobehavioral changes on PND71 showing total activity (LBI) and duration of activity per day and per active phase, (A) LBI counts per day, (B) Duration (hours) of activity per day, (C) LBI counts per active phase, (D) Duration of activity (minutes) per active phase. Bars represent mean ± SEM. *p < 0.05; significances were detected by ANOVA, followed by the Dunnett t-test when p < 0.05.

Table 1. Absolute and relative (percent of body weight) organ weights from adult offspring (PND140) exposed pre- and postnatally (via milk) to PBDE-99 (n = 12/group).

Parameters	Control	PTU 60 µg/kg bw	PTU 300 µg/kg bw	PBDE 60 µg/kg bw	PBDE 300 µg/kg bw
Body weight (g)	311.7 ± 8.3	335.9 ± 9.9	320.5 ± 5.9	334.9 ± 8.6	
Liver weight (g)	10.43 ± 0.47	11.17 ± 0.53	10.82 ± 0.21	11.26 ± 0.39	
Percent bw	3.35 ± 0.08	3.31 ± 0.07	3.38 ± 0.04	3.36 ± 0.07	
Thymus weight (g)	0.34 ± 0.02	0.34 ± 0.03	0.36 ± 0.02	0.32 ± 0.03	
Percent bw	0.11 ± 0.006	0.10 ± 0.008	0.11 ± 0.005	0.10 ± 0.007	
Spleen weight (g)	0.55 ± 0.01	0.63 ± 0.03*	0.60 ± 0.02*	0.60 ± 0.02*	
Percent bw	0.17 ± 0.004	0.19 ± 0.006	0.19 ± 0.005*	0.18 ± 0.004	

Absolute and relative organ weights were analyzed using ANOVA followed by the Dunnett t-test. Values are presented as mean ± SEM. *p < 0.05.

Article | Kuriyama et al.

Figure 3. Locomotor activity of rat offspring after pre- and postnatal (via milk) low-dose PBDE-99 (60 or 300 µg/kg bw) exposure: quantitative and qualitative analysis on PND71 showing total activity (LBI) and duration of activity per day and per active phase, (A) LBI counts per day, (B) Duration (hours) of activity per day, (C) LBI counts per active phase, (D) Duration of activity (minutes) per active phase. Bars represent mean ± SEM. *p < 0.05; significances were detected by ANOVA, followed by the Dunnett t-test when p < 0.05.

VOLUME 113 | NUMBER 2 | February 2005 • Environmental Health Perspectives
exposure) can cause serious impairment in neurologic development (Porterfield 1994). In support of our findings, previous studies have reported hyperactivity in rodent offspring after pre- and postnatal hypothyroidism induced by goitrogens such as PTU (Akaike et al. 1991; Davenport and Hennies 1976; Goldley et al. 1995; Tamasy et al. 1986). However, the behavioral changes in PBDE-99 groups (persistent at least until PND71) observed in this study are not similar to our reference group for TH-mediated effects (PTU; transient hyperactivity only on PND36), suggesting that the neurotoxicity induced by PBDE-99 may stem from mechanisms other than those caused by PTU. Even though more mechanistic studies are lacking, the cholinergic system seems to be affected after neonatal exposure to PBDE, because Viberg et al. (2003a) found reduced amounts of nicotinic receptors in the hippocampus of exposed animals using an α-bungarotoxin assay, and the response of the cholinergic agent nicotine was altered in mice neonatally exposed to PBDE-99 (Viberg et al. 2002, 2003a). In that way, hyperactivity induced by PBDE-99 might be explained by changes in the cholinergic system during pre- and postnatal exposure. Nevertheless, one should not rule out other mechanisms because some hydroxylated PBDE metabolites have been shown to possess high binding affinities to TH receptors (March et al. 1998). It is plausible to hypothesize that also the binding of the PBDE-99 molecule or its metabolite to the TH receptor in the developing brain could cause neurobehavioral disturbance in offspring.

Increasing evidence suggests that continuous exposure to environmental pollutants is related to the postulated deterioration of male reproductive health in the last 50 years. This hypothesis highlights the need for more experimental studies that employ doses relevant to environmental/human exposure scenarios in order to elucidate possible mechanisms involved in such a decline. In this study, developmental exposure to low-dose PBDE-99 not only caused persistent neurobehavioral effects but also permanently affected adult male reproductive health (Table 2). This is the first report on effects of PBDE-99 on male reproductive performance because our survey of the literature failed to find data on this topic. Questions regarding persistent chemical contamination typically focus on bioaccumulation, neurotoxicity, and carcinogenicity. However, the male reproductive system has been shown to be a very sensitive end point when the insult occurs during critical periods of development (Andrade et al. 2002; Cooke et al. 1992; Dalsenter et al. 1997; Faqi et al. 1998b; Kuriyama and Chahoud 2004; Sharpe et al. 1995). In the mating study, no effect on fertility was seen when males were mated with untreated females, which is not inconsistent with the observed decrease in daily sperm count of the littermates (Tables 2 and 3). In rats, sperm production can be reduced up to 90% without compromising fertility (Aafjes et al. 1980; Kirby et al. 1992). On the other hand, relatively small changes in sperm production in men may have severe consequences for human reproduction (Zenick and Clegg 1989). Because the normal human sperm count is near the threshold for the number of sperm needed to ensure reproductive competence, sperm count is a sensitive and validated end point for reproductive toxicology assessment. The growth and maturation of the developing testes as well as the maintenance of spermatogenesis are regulated by several endocrine and paracrine factors. Among them, thyroid function during early life has a major impact on regulating testicular growth and function. When rats are made hypothyroid during a critical window of neonatal development, permanent increases in adult testis size and sperm production have been observed (Cooke et al. 1992). However, this effect occurs only when rats are hypothyroid during the first week of postnatal development (Cooke et al. 1992). Using a dose 200-fold lower than that reported by Cooke et al. (1992), we observed that prenatal hypothyroidism induced by PTU caused an opposite effect, namely, decreased sperm production and testis size. Impaired spermatogenesis and reduced testicular weight seen in

Table 2. Reproductive organ weights, hormone levels, sperm number, and daily sperm production in adult offspring (PND140) exposed pre- and postnatally (via milk) to PBDE-99 (n = 12/group).

Parameters	Control	PTU 60 µg/kg bw	300 µg/kg bw
Testis weight (g)	1.57 ± 0.06	1.47 ± 0.10	1.58 ± 0.03
Percent bw	0.51 ± 0.02	0.44 ± 0.03*	0.56 ± 0.03
Epididymis weight (g)	0.58 ± 0.02	0.55 ± 0.02	0.58 ± 0.02
Percent bw	0.19 ± 0.01	0.17 ± 0.01*	0.18 ± 0.02*
Seminal vesicle weight empty (g)	0.99 ± 0.04	1.11 ± 0.04	1.00 ± 0.04
Percent bw	0.32 ± 0.01	0.33 ± 0.01	0.31 ± 0.01
Prostate (g)	1.20 ± 0.01	1.21 ± 0.01	1.23 ± 0.01
Percent bw	0.12 ± 0.01	0.12 ± 0.01	0.12 ± 0.01
Spermatid (10⁶)	266.2 ± 7.5	196.5 ± 10.5*	182.8 ± 7.6*
Daily sperm production (10⁶)	43.6 ± 1.2	32.6 ± 1.7*	30.0 ± 1.2*
Sperm number (10⁶)	189.6 ± 11.7	143.2 ± 8.0*	134.7 ± 6.4*
Abnormal sperm (%)	6.3 ± 0.8	7.7 ± 1.0	5.6 ± 0.5
LH (ng/mL)	10.8 ± 1.2	12.4 ± 1.3	14.4 ± 2.1
Testosterone (ng/mL)	8.7 ± 1.2	10.4 ± 1.4	7.5 ± 1.0

Absolute and relative organ weights were analyzed using ANOVA followed by the Dunnett t-test. Values are presented as mean ± SEM.

Male rats were pre- and postnatally exposed to a low dose (60 µg or 300 µg/kg bw) of PBDE-99 and mated with non-exposed females. Values are presented as mean ± SEM. *p < 0.05.

Table 3. Reproductive performance of adult male offspring exposed pre- and postnatally (via milk) to PBDE-99.

Parameters	Control	PTU 60 µg/kg bw	300 µg/kg bw	
No. of days	19	19	15	
Body weight gain (%)	49.3	46.3	47.5	
Uterine weight (g)	73.6 ± 4.3	77.8 ± 1.7	71.2 ± 2.7	71.3 ± 3.5
Implantations (n)	214	203	161	
Implantations/litter (n)	11.3 ± 0.18	11.3 ± 0.11	10.7 ± 0.15	11.4 ± 0.12
Viable fetuses/litter (%)	10.8 ± 0.19	10.9 ± 0.11	10.1 ± 0.15	10.3 ± 0.17
Total resorptions (%)	9.4	6.3*	10 (8)	
Fetal weight/litter (g)	4.70 ± 0.10	4.66 ± 0.06	4.66 ± 0.13	4.85 ± 0.07
Sex ratio (male/female)	47.3/52.7	47.4/52.6	46.4/53.6	42.9/57.1

Male rats were pre- and postnatally exposed to a low dose (60 µg or 300 µg/kg bw) of PBDE-99 and mated with non-exposed females. Values are presented as mean ± SEM. *p < 0.05.

Table 4. Male sexual behavior of adult offspring exposed pre- and postnatally (via milk) to PBDE-99.

Parameters	Control	PTU 60	PBDE 300	
No. of animals with ejaculation/total no. (%)	17/20 (85)	18/20 (90)	19/20 (95)	17/20 (85)
Mounting latency (sec)	24.7 ± 3.9	23.4 ± 4.5	41.0 ± 9.6	27.2 ± 4.3
Intromission latency (sec)	50.7 ± 11.6	37.2 ± 7.3	54.7 ± 10.1	35.1 ± 5.5
Ejaculatory latency (min)	11.1 ± 0.7	8.4 ± 1.0	12.9 ± 1.1	12.5 ± 0.8
Intromission frequency (n/min)	0.99 ± 0.08	0.97 ± 0.12	1.06 ± 0.08	1.23 ± 0.10
No. of penetrations before the first ejaculation	19.8 ± 1.5	19.5 ± 2.5	21.3 ± 1.5	24.7 ± 2.0
Percent of animals with two or more ejaculations	53	71	39	21*

Animals were pre- and postnatally exposed to a low dose of PBDE-99 (60 µg or 300 µg/kg bw) or PTU (5 mg/L). Adult offspring were mated with nonexposed females. Values are presented as mean ± SEM. *p < 0.05.
males exposed to both doses of PBDE-99 might also be correlated to alterations in TH concentrations. However, the mechanisms underlying these effects observed both in PTU-exposed and PBDE-99–exposed animals remain to be elucidated. This study demonstrates for the first time that exposure to a low dose of PBDE-99, which resembles the human exposure levels, causes permanent impairment of spermatogenesis in rats. These findings encourage further investigation on mechanistic studies in order to assess the hazard of flame retardants on human reproductive health. Moreover, the issue of synergistic or additive effects when PBDEs are combined to other persistent pollutants (e.g., PCBs and DDT) remains to be elucidated.

References

Aastveit BH, Vels JM, Schenck E. 1980. Fertility of rats with artificial oogoniosis. J Reprod Fertil 58:345–351.
Adami HO, Bergstrom R, Mohner M, Zatonski W, Storm H, Tulinius H. 1986. Trends in cancer incidence in the Nordic countries. A collaborative study of the five Nordic cancer registries. Acta Pathol Microbiol Immunol Scand 84:519–525.
Andrade AJ, Araujo S, Santana GM, Ohi M, Dalsenter PR. 2002. Andrade AJ, Araujo S, Santana GM, Ohi M, Dalsenter PR. 2002. An epidemiological study on congenital malformations of external genitalia [Letter]. Lancet 1(420):462–463.

Davenport JW, Hennis RS. 1976. Perinatal hypothyroidism in rats: persistent motivational and metabolic effects. Dev Psychobiol 9(9):87–92.
de Wit CA. 2002. An overview of brominated flame retardants in the environment. Chemosphere 46:583–624.
Eriksson P, Jakobsson E, Fredriksson A. 2001. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect 109:903–908.
Eriksson P, Viberg H, Jakobsson E, Om U, Fredriksson A. 2002. A brominated flame retardant, 2,2′,4,4′,5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci 67:98–103.
Faqi AS, Dalsenter PR, Mathar W, Heinrich-Hirsch B, Chahoud I. 1999a. Reproductive toxicity and tissue concentrations of 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) in male adult rats. Hum Exp Toxicol 17:151–156.
Faqi AS, Dalsenter PR, Merker HJ, Chahoud I. 1999b. Reproductive toxicity and tissue concentrations of low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin in male offspring rats exposed throughout pregnancy and lactation. Toxicol Appl Pharmacol 150:382–393.
Forman D, Mollier H. 1994. Testicular cancer. Cancer Surv 19:2032–341.
Geyer HJ, Schramm KW, Darnerud PO. Aune M, Feicht EA, Fried KW, et al. 2004. Terminal elimination half-lives of the brominated flame retardants TRBPA, HBCD and lower brominated PBDEs in humans. Organohalogen Compounds 66:3867–3872.
Goldby ES, Kehn LS, Rehberg GL, Crofton KM. 1995. Effects of developmental hypothyroidism on auditory and motor function in the rat. Toxicol Appl Pharmacol 135:67–76.
Hakulinen T, Andersen A, Malker B, Pukkala E, Schou G, Tulinius H. 1986. Trends in cancer incidence in the Nordic countries. A collaborative study of the five Nordic cancer registries. Acta Pathol Microbiol Immunol Scand 28B(suppl):115–118.
Hakulinen T, Andersen A, Malker B, Pukkala E, Schou G, Tulinius H. 1986. Trends in cancer incidence in the Nordic countries. Acta Pathol Microbiol Immunol Scand 84:519–525.
Hakulinen T, Andersen A, Malker B, Pukkala E, Schou G, Tulinius H. 1986. Trends in cancer incidence in the Nordic countries. Acta Pathol Microbiol Immunol Scand 84:519–525.
Heinrich-Hirsch B. 2000. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect 109:903–908.
Hepatic hyperactivity and spatial maze learning impairment of adult rats with polybrominated diphenyl ether (PBDE 153) disrupts spontaneous motor activity, exploratory behavior, avoidance learning and responses of pituitary—thyroid axis to stress in male rats. Psychoneuroendocrinology 31:191–203.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney, M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.
Sharpe RM, Fisher JS, Miller MM, Jobling S, Sumpter JP. 1995. Gestational and lactational exposure of rats to xenostrogens results in reduced testis size and sperm production. Environ Health Perspect 103:1136–1143.
She J, Seteras M, Winkler J, Visita P, McKinney M, Kopcow D. 2002. PBDEs in the San Francisco Bay Area: measurement in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697–707.