Comparison of the Human Gut Microbiota between Normal Control Subjects and Patients with Colonic Polyps and Colorectal Cancer

Kittipot Uppakarn
Prince of Songkla University

Khotchawan Bangpanwimon
Prince of Songkla University

Tipparat Hongpattarakere
Prince of Songkla University

Worrawit Wanitsuwan (wworrawi@medicine.psu.ac.th)
Prince of Songkla University

Research Article

Keywords: Microbiome, Gut microbiota, Colonic polyps, Colorectal cancer

Posted Date: December 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1172479/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The human gut microbiota has been related to numerous colonic diseases. To identify colorectal cancer (CRC)-associated microbiota, the gut microbiomes of patients with colonic polyps and CRC compared to normal controls were analyzed.

Methods: Between July and December 2020, forty-four stool samples were obtained from participants older than 50 years who were scheduled for elective colonoscopies at the Surgery Clinic, Songklanagarind Hospital. The samples were divided into 3 groups (17 normal control, 17 colonic polyps, and 10 CRC) and were collected for analysis with a 16s metagenomic sequencing library preparation with MiSeq Reporter software (MSR) following the protocol of the 16s metagenomics workflow. The microbiome data were analyzed with Kruskal–Wallis test with the Dunn-Bonferroni post hoc method.

Results: The relative proportions of beneficial butyrate-producers *Kineothrix alysoides, Eubacterium rectale,* and *Roseburia inulinsivorans* were significantly higher in healthy control and colonic polyp groups compared with the CRC group at the top three lowest p-values. The recommended CRC biomarker *Clostridium symbiosum* was shown in a significantly higher proportion in the CRC group than in the normal control group. The prevalences and relative proportion of the novel CRC-associated species *Acutalibacter muris* and the familiar CRC-associated species *Christensenella massiliensis* and *Intestinimonas butyriciproducens* were significantly higher in the CRC group than in the normal control and colonic polyp groups at the top three lowest p-values.

Conclusions: A correlation between specific bacteria and clinical outcomes was found in this pilot study. The microbiome data revealed possible microbial biomarkers associated with CRC. Studies with larger numbers of stool samples are required to substantiate our findings.

Introduction

Colorectal cancer (CRC) is the second most deadly and the third most commonly diagnosed cancer in the world [1]. Approximately 1.97 million people worldwide or 10% of all cancer patients have been diagnosed with CRC in 2020 [1]. CRC is commonly found in people over 50 years of age. However, if a patient acknowledged any symptom and received treatment at the early stage, the patient would have a 93.2% of five years life extended whereas if a patient acknowledged cancer during the spreading stage, the curable rate was reduced to less than 10% [2]. The death rate is greater when CRC is detected in elderly patients. A recent study suggested that the gut microbiome could play a significant role in controlling the digestive system and thus in individual health [3]. In the human intestine, there are numerous microorganisms and up to 100 trillion cells, altogether weighing 1.5 kilograms, approximately three times the amount of cells in the individual human body [4]. The gut microbiome plays an important role in gut maturation, host nutrition, and pathogen resistance. It was found that the intestinal epithelial proliferation, fat collection in the metabolism system, and inflammatory immune response were controlled by the gut microbiome [5]. Scientific evidence found the relationship between the gut microbiome and CRC [6].
In recent years, following improvements in genetic engineering technology, a correlation between the gut microbiota and the CRC has been shown by different genetic analysis methods such as real-time PCR and next-generation sequencing. The microorganisms correlated with CRC were reported in the previous study such as *Fusobacterium*, *Providencia*, *Leptotrichia*, and *Campylobacter* genera. Most of the studies found that the amount of *Fusobacterium* spp. was significantly higher in CRC patients than in non-cancerous patients [7-9]. Nowadays, the studies of the correlation between microbiome from the feces and CRC patients had significantly shown an increased amount of the microbiome as well as the decline in gut microbiome diversity [7, 10]. Previous work found that the accuracy of fecal microbiota analysis for CRC screening in early and late stages was similar to the standard fecal occult blood test and when combining both assays the sensitivity could be increased by approximately 45% [11].

This present research aimed to identify appropriate biomarkers which could be used for potential CRC assessment in patients with gastrointestinal (GI) disorders and lead to further studies to investigate the scientific relationship of the surrounding factors in patients at risk for CRC.

Methods

Sample collections and preparation

The Human Research Ethics Committee, Faculty of Medicine, Prince of Songkhla University, reviewed and approved the study and all protocols and data collection forms (REC.62-327-10-4). This pilot study was conducted in Songklanagarind Hospital between July and December 2020. The clinical characteristics were collected in patients older than 50 years who were scheduled for elective colonoscopies at the surgery clinic. Forty-four stool samples were only collected from participants who agreed and signed an informed consent form. The specimens were divided into 3 groups based on colonoscopy and anatomic pathology reports. For stool preparation, at least 50 grams of stool specimen was collected in a plastic collection container then frozen immediately at -20°C at the outpatient clinic, and later transferred for storage at -20°C at the Office of Scientific Instrument and Testing, Prince of Songkhla University. For analysis, DNA was extracted from approximately 25 grams of stool sample by the GF-1 Bacterial DNA Extraction kit (Vivantis Technologies, Malaysia). A NanoDrop spectrometer (Thermo Fisher Scientific, USA) was used to evaluate the DNA concentration, which had to be not less than 5 ng/µL per 2.5 µL.

Analysis of the microbiome

An approximate 460 bp section of the V3–V4 region of the 16s rRNA gene was amplified by PCR analysis with the forward primer (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3') and reverse primer (5'-GTCTCGTGGCGACTACHVGGGTATCTAATCC-3') containing an Illumina adapter and Illumina index to mark each specimen. A Miseq Instrument (Illumina, California) with a Miseq v3 reagent kit (Illumina, California) was used for sequencing the 2 × 300 bp 16s rRNA amplicon. The sequencing data was analyzed using MiSeq Reporter software based on the Greengenes database to perform taxonomic classification showing phylum, genus, or species level classification. After quality
filtering, a total of 44 samples showing sequence 404,490 reads (average 9,192 reads) were included for downstream analysis.

Statistical analysis

The demographic and clinical characteristics of the study groups were analyzed using the ANOVA F-test for continuous variables and Fisher's exact test or Chi-Square test; \(\chi^2 \) for categorical variables. The microbiome data were analyzed to the Kruskal-Wallis test. The significant differences between groups were assessed by the Dunn-Bonferroni post hoc method. Statistical significance was assumed for adjusted p values <0.05 using IBM SPSS software ver. 22.

Results

Differences in bacterial community profiles between the normal control subject and colonic polyp and CRC patients were determined by 16s metagenomic sequencing. The demographic and clinical characteristics of the subject groups are shown in Table 1. A total of 17 normal control cases, 17 colonic polyp cases, and 10 CRC cases were analyzed in this study. The median body mass index (BMI) of the CRC group (20.9 ± 2.4) was significantly lower than in the normal control and colonic polyp groups (24.5 ± 3.5, 26.1 ± 3.4, respectively). The prevalence rates of patients with hypertension and who were taking aspirin in the CRC group were significantly higher than in the normal control and colonic polyp groups. The reasons for having a colonoscopy were significantly different, with clinical symptoms of gut obstruction and lower gastrointestinal bleeding which were higher in the CRC group than both the normal control and colonic polyp groups, while a regular colonoscopy screening was the least reported reason in the CRC group.

The comparison of microbiomes at the phylum level is shown in Fig. 1 and Table 2. The most abundant phyla in all groups were Bacteriodetes and Firmicutes. Phylum-level analyses identified one bacterial phylum, Synergistetes (p<0.05), that was significantly different between the normal control group and the CRC group. The relative abundance of phylum Euryarchaeota (p<0.01) in the CRC group was significantly higher than both the normal control and colonic polyp groups. The prevalence rates of both phyla in the CRC group were also higher in the normal control and colonic polyp groups. Other bacterial phyla were not significantly different between the groups.

Genus-level analyses as shown in Table 3 decreases in the levels of the genera *Kineothrix* (p<0.01), *Lactobacillus* (p<0.01), and *Lacrimsipora* (p<0.05) that were significantly different between the CRC group and both the normal control and colonic polyp groups, in contrast to the increased levels of the genera *Acutalibacter, Intestinimonas, Christensenella, Methanobrevibacter, Petrocella, Thermotalea, Comamonas,* and *Emergencia,* which were significantly different between the CRC group and both the normal control and colonic polyp groups at p-value<0.01. Likewise, the levels of the genera *Cloacibacillus, Culturomica, Anaerotruncus,* and *Neglecta* were significantly different (p<0.05) between the CRC group and the normal control group.
Table 4 demonstrates the comparison of microbiomes at the species level. The relative abundances of three bacterial species (Kineothrix alysoides, Eubacterium rectale, and Roseburia inulinivorans) were significantly lower in the CRC subjects than both the normal control and colonic polyp subjects at P-value<0.01. The relative abundances of four bacterial species (Lactobacillus rogosae, Lacrimispora xylanolytica, Roseburia intestinalis, and Lachnoclostridium pacaense) were significantly lower in the CRC subjects than both the normal control and colonic polyp subjects at P-value<0.05 while the relative abundances of ten bacterial species (Acatalibacter muris, Christensenella massiliensis, Intestinimonas butyriciproducens, Odoribacter laneus, Methanobrevibacter smithii, Thermodonta metallivorans, Comamonas kerstersii, Emergencia timonensis, Petrocella atlantisensis, and Butyricimonas virosa) were significantly higher in the CRC group than in the normal control and colonic polyp groups at P-value<0.01. The relative abundances of ten bacterial species (Cloacibacillus porcorum, Clostridium symbiosum, Parabacteroides chongii, Culturomica massiliensis, Oscillibacter valericigenes, Anaerotruncus colihominis, Christensenella minuta, Eubacterium limosum, Coprococcus catus, and Neglecta timonensis) were significantly higher between the CRC cases and normal control cases but not significantly different from the colonic polyp cases. Additionally, the prevalence rate data of the genus and species level analyses in Table 3 and Table 4 corresponded with the mean abundance values (MAV) as well.

Discussion

The data showed a statistically significant decrease of BMI in the CRC group as a result of poor oral intake and intestinal dysfunction in cancer patients. A previous study showed body weight loss in patients with CRC is correlated with tumor location, size, depth, and the prognostic factor for poor outcomes including overall survival and tumor relapse [12]. The clinical symptoms include abdominal pain, changes in bowel habits, constipation, and diarrhea, although these symptoms are not specific for the CRC. The symptoms of lower gastrointestinal bleeding and gut obstruction were found less in the normal control and colonic polyp groups than in the CRC group. Previous evidence suggests that the common practice of performing a colonoscopy to check for cancer in people with bowel symptoms is warranted only for gastrointestinal bleeding and the general symptom of weight loss [13].

This study found different bacterial flora between the normal control and CRC participants by next-generation sequencing analysis. Notwithstanding, this research didn't show statistically significant differences in gut microbiota between the normal control and colonic polyp groups. Only prominent gut microorganisms significantly associated with the normal control and CRC subjects would be indicated in Table 3 and Table 4.

Phylum-level investigations demonstrated that the relative proportions of the phyla Euryarchaeota and Synergistetes were significantly higher in the CRC group than in the normal control group. Previous studies show that the Methanobrevibacter genus in the Euryarchaeota phylum has been associated with CRC and linked to periodontitis and various GI disorders [14]. M. smithii is a colonic methane producer and it is a predominant methanogen in irritable bowel syndrome with constipation patients [15]. The level
of methane in CRC subjects was significantly higher than in healthy subjects [16]. A previous study indicated that individuals who high methane production showed high risks of colonic polyposis, ulcerative colitis, and colon cancer [17]. The genus *Methanobrevibacter* was found co-occurring with the genus *Christensenella*. Those genera were notably higher in the normal BMI (<25) subjects compared to the obese BMI (>30) subjects [18]. Previous studies found that the *Christensenella* genus was over-represented in CRC patients compared to the normal controls [19, 20]. The affluence of the genus *Christensenella* is higher in cancer patients with ZNF717 mutations. Burns et al. found that mutations in ZNF717, a transcription factor, regularly changed in numerous GI cancers such as CRC [21]. Alonso et al. reported *C. minuta* was isolated from a blood sample of an acute appendicitis patient [22]. In another study, the *Cloacibacillus* genus member of the Synergistetes phylum was higher in CRC patients than in healthy controls. This genus was at high levels in patients with CRC stage IV [23]. A previous study indicated that both *C. porcorum* and *C. evryensis* were potential human pathogens associated with bacteremia [24]. Yu et al. indicated that *C. evryensis* in the feces of CRC cases was significantly higher than in the control cases [25]. In another study, *C. porcorum*, a mucosa-associated degrading bacterium, was isolated from the swine intestinal tract [26].

Genus-level and species-level analyses found that the genus *Sutterella* and the species *L. rogosae* and *C. spiroforme* occurred in greater abundances in the normal control group compared to the CRC group. Deng et al. reported that the *Sutterella* genus was found in greater abundance in the normal control group compared to in the esophageal cancer group [27]. Another study found that the *Sutterella* genus has a high association with the survival of CRC patients, as a higher level of this bacteria was related to better CRC patient survival [28]. The previous study indicated that the relative abundance of *Lactobacillus* genus was significantly higher in the normal control group than in the CRC group [29]. A dysbiosis study found that the relative proportion of *L. rogosae* was significantly higher in normal control cases compared with the CRC and obese cases [30]. Ningning et al. reported in the research square preprint services that the lower abundance of *C. spiroforme* was detected in the stool samples of gastrointestinal cancer patients with decreased FOXP3+CD4+ T regulated T cells (Treg) and natural killer (NK) cells. The Treg and NK cells were strongly associated with better CRC patient survival. There is an assumption that higher numbers of Treg and NK cells were associated with longer survival times [31]. Furthermore, the relative proportions of butyrate-producer species, including *K. alysoides*, *E. rectale*, *L. xylanolytica*, *L. pacaense*, *R. inulinivorans*, and *R. intestinalis*, were significantly higher in the normal control group than in the CRC group. Butyrate is an essential substrate for enterocytes that appears to have anti-oxidative, anti-inflammatory, and anti-carcinogenic activities and plays a beneficial role in regulating gut homeostasis and controlling immune development [32]. The butyrate-producing bacteria *K. alysoides* facilitates regulation of the gut barrier by serving as an energy source for colonocytes. Another study found that the relative abundance of *K. alysoides* gradually decreased as the liver dysfunction progressed to liver cirrhosis [33]. Stadler et al. reported strong evidence linking obesity with increasing the risk of CRC [34]. Park et al. found that participants who had reduced TC and LDL-cholesterol levels had increased *K. alysoides* [35]. Previous studies indicated the levels of *E. rectale* in inflammatory bowel disease (IBD) and CRC participants were significantly lower compared to healthy controls [36, 37].
Youssef et al. demonstrated that lower abundances of the genus *Lachnolclostridium* have been observed in stools of patients with stomach, small intestine, or colon neoplasm as compared to stools of healthy controls [38]. Japanese research reported that *L. pacaense* was at high levels in healthy centenarians compared with IBD patients [39]. Another previous study indicated the genus *Roseburia* was found in higher abundance in healthy controls compared with CRC and hepatocellular carcinoma patients [40]. *R. inulinivorans* acts as a probiotic associated with mucus production and is significantly more abundant in healthy controls than in rectal cancer patients [41]. Another species, *R. intestinaalis* could reduce levels of endotoxin, inflammatory cytokines, and the macrophages chemoattractant interleukin resulting in enhancement of gut barrier functions. In *vivo* analysis, higher levels of β-hydroxybutyrate and lower levels of lipopolysaccharide (LPS) were found in a mice model with a higher abundance of *R. intestinaalis*. The β-hydroxybutyrate inhibits the chronic inflammatory pathway in contrast to the LPS increase inflammatory response by activating arachidonic acid signaling in macrophages through the IL-12 expression [42]. A previous study found that the supernatant of *R. intestinaalis* could suppress signal transducer and activator of transcription 3 and decrease the IL-6 production by macrophage [43]. Another work indicated that this bacteria could be able to enhance the production of anti-inflammatory factors including TSLP, TGF-β, and IL-10 and increase the level of colonic Treg cells [44]. In another murine model, *R. intestinaalis* also down-regulated the expression of the oncostatin M and increased tight junction integrity for enhancing gut barrier function [45].

Genus-level and species-level analyses in this study indicated that several harmful bacteria were harbored in the CRC group. Decousser et al. reported that *C. symbiosum* was isolated from the bloodstream of a highly immunocompromised patient with metastatic CRC [46]. Another work indicated *C. symbiosum* was over-represented in CRC patients with early- and late-stage CRC compared to the normal controls in 335 participants from several countries [11]. Remarkably, *C. symbiosum* was recommended as a high-accuracy biomarker for both early- and late-stage CRC diagnosis in many previous reports [47, 48]. Other studies found that the relative abundance of *Comamonas* genus was higher in patients with CRC compared with healthy controls [14, 23, 49]. The level of this genus was significantly higher in patients with CRC stage IV [23]. Other studies found that *C. kerstersii* could be isolated from patients with intra-abdominal and urinary tract infections including peritonitis, diverticulosis, and appendix rupture [50-52]. Three previous reports demonstrated that the relative abundances of the genera *Odoribacter* and *Oscillibacter* were significantly higher in patients with CRC compared with normal controls [19, 23, 53]. In an *in vivo* investigation, the levels of *Odoribacter laneus* were significantly higher in colitis rats compared to wild-type rats [54]. The genus *Oscillibacter* was more abundant in patients with CRC stage III [23]. The negative relationship between the abundance of this genus and the gut barrier function in the proximal colon is interesting. The increased level of the genus *Oscillibacter* in obese and diabetic animal models had a relationship with increased gut permeability and decreased gut barrier integrity which was linked with metabolic dysfunction and mesenteric fat inflammation development [55]. Some species in this genus such as *Oscillibacter valericigenes* were in higher abundance in unilateral ureteral obstruction mice, which were associated with higher levels of the genus *Intestinimonas* [56]. Osman et al. revealed the over-representation of *I. butyriciproducens* was
detected in 88.9% of the CRC subjects [20]. In vivo study indicated the average abundance of Culturomica genus in mice with chronic kidney disease was higher than in normal control mice [57]. The previous studies reported the Parabacteroides genus was tightly associated with CRC patients. It was isolated from a biofilm-positive human CRC tumor when transporting it to a new cohort of germ-free mice, the CRC will have occurred. The relative abundance of this genus was strongly positively associated with increased tumors in a mice model [58, 59]. This genus was previously reported as a potential biomarker for cervical cancer diagnosis [60]. Another study indicated the genus Anaerotruncus was more prevalent in the intestinal lumen of CRC subjects compared to healthy subjects [61]. Both P. chongii and A. colihominis were previously isolated from the bacteremia patients [62, 63]. The USA microbiome study showed that N. timonensis was found in greater abundance in CRC groups compared to normal groups [64]. Previous works found that E. timonensis could produce significant amounts of trimethylamine N-oxide, a metabolite associated with an increased risk of CRC and cardiovascular disease [65, 66]. Infrequent human pathogens were reported in previous works including E. limosum were detected in bacteremia patients with CRC, gynecologic cancer, gastrointestinal disease, and diabetes mellitus [67]. B. virosa was isolated from bacteremia patients with CRC, peritonitis, and intestinal perforation [68, 69]. C. catus was reported as a dominant bacteria in the stools of breast cancer stage I patients [70]. T. metallivorans was isolated from the sputums of patients with respiratory tract infections [71]. Interestingly, we also found the levels of A. muris and P. atlantisensis were overrepresented in CRC patients that both bacteria have not been previously reported to be CRC-related bacteria. Studies with larger numbers of fecal samples are required to substantiate our findings. Pathological non-equilibrium of the gut microbiome or dysbiosis of the gut microbiome was found in CRC subjects. Intestinal bacteria might influence CRC directly or indirectly through secreting metabolites, invading intestinal tissues, and regulating host immune response. The underlying tumorigenesis of numerous CRC-correlated bacteria remains undescribed.

Colonoscopy is the gold standard for sporadic CRC screening at age above 50 years. It is a minor invasive procedure, needing thorough bowel cleansing, sometimes performed under anesthesia or sedative, with a risk of post-procedural bleeding, and a small risk of gut perforation with the air or CO2 [72]. The fecal occult blood test is a non-invasive currently routine diagnostic method for screening for CRC which has a medium sensitivity (24% to 86%) [73]. Bleeding in the stool from a cancer cause is normally intermittent which can lead to false-negative results and lower sensitivity. Additionally, this test could be positive in other diseases with bleeding leading to false-positive results and lower specificity [74]. The current assay for CRC screening requires improvement. The previous study reported that a change of gut microbiota might be an indicator of the initiation and progression of CRC [10]. We found statistically significant differences in the microbiome between the normal control group and the CRC group, and suggest the four bacteria shown in Fig. 2 as a putative biomarker panel that might be useful in CRC screening including one recommended CRC biomarker species C. symbiosum (PR of normal controls: CRC = 18%: 70%, MAV of Normal Control: CRC = 0.022%: 0.157%) [47, 48] and the top three lowest p-values by Kruskal-Wallis test including a novel CRC-associated species A. muris (PR of Normal Control: CRC = 0%: 60%, MAV of Normal Control: CRC = 0%: 0.203%), and two familiar CRC-
associated species *C. massiliensis* (PR of Normal Control: CRC = 6%: 60%, MAV of Normal Control: CRC = 0.001%: 1.741%), and *l. butyriciproducens* (PR of Normal Control: CRC = 47%: 90%, MAV of Normal Control: CRC = 0.411%: 0.577%). Based on the microbiome analysis in our research, we propose the candidate bacterial biomarkers associated with CRC. The development of the CRC screening tool based on bacterial biomarkers is underway in the next study. The bacterial biomarkers combined with conventional screening tools and clinical risk factors could increase the accuracy of CRC diagnoses and might facilitate the physician's decision for early management and treatment of CRC patients.

Conclusion

The relative proportions of the beneficial butyrate-producer species such as *K. alysoides*, *E. rectale*, and *R. inulinsivorans* were significantly higher in the fecal samples of the healthy control and colonic polyp groups compared to the CRC group as indicated by 16s metagenomic sequencing. In addition, the relative abundances of several CRC-associated bacteria, including *C. symbiosum* as a recommended CRC biomarker species, *A. muris* as a novel CRC-associated species, and *C. massiliensis*, and *l. butyriciproducens* as familiar CRC-associated species, were statistically significantly higher in the feces of the patients with CRC compared to healthy controls and colonic polyp patients. The microbiome data in this work could be useful for potential CRC assessment in patients with GI disorders and lead to further studies to investigate the scientific relationship between gut biomarkers and CRC risk.

Abbreviations

CRC: Colorectal cancer; BMI: Body Mass Index; IBD: Inflammatory Bowel Disease; ANOVA: Analysis of Variance; SD: Standard Deviation; MRS: MiSeq Reporter Software; MAV: Mean Abundance Value; PR: Prevalence; LPS: Lipopolysaccharide; GI: Gastrointestinal; DLP: Dyslipidemia; ACS: Acute Coronary Syndrome; HT: Hypertension; ASA: On Aspirin; DM: Diabetes Mellitus.

Declarations

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki. The Human Research Ethics Committee (HREC), Faculty of Medicine, Prince of Songkhla University, Thailand, reviewed and approved the study and all protocols and data collection forms (REC.62-327-10-4). All subjects were asked for their permission to participate, and signed consent forms.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in the published article.
Competing interests

The authors declare that they have no competing interests.

Funding

This work was financially supported by a grant from the Faculty of Medicine Research Fund, Prince of Songkla University, and the Familial Colon Cancer Fund, Songklanagarind Hospital Foundation, Thailand.

Authors' contributions

WW designed and conducted the study, provided the cases, reviewed and edited the manuscript. KU analyzed and interpreted data, statistical analysis of the data, and drafted the manuscript. KB interpreted data, statistical analysis of the data, and helped draft the manuscript. TH helped plan the study, revised the article critically. All authors have read and approved the final manuscript.

Acknowledgments

The authors appreciate the statistical advice of Miss Nannapat Prupetchkaew from Epidemiology Unit, Prince of Songkla University, and are grateful to Mr. David Patterson from the Office of International Affairs, Prince of Songkla University for his assistance with the English.

References

1. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14:101174.
2. O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst. 2004;96:1420-5.
3. Nowicki A, Dahms S. Incidence, morbidity and 5-year survival of colorectal cancer patients in the Kujawsko-Pomorskie voivodship in 2005-2011, based on data from the National Health Fund. Pol J Surg. 2018;90:1-8.
4. Magrone T, Jirillo E. The interaction between gut microbiota and age-related changes in immune function and inflammation. Immun Ageing. 2013;10:1-6.
5. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231-41.
6. Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020;12:1406.
7. Jahani-Sherafat S, Alebouyeh M, Moghim S, Amoli HA, Ghasemian-Safaei H. Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Gastroenterol Hepatol Bed Bench. 2018;11:101.
8. Zhou Z, Chen J, Yao H, Hu H. *Fusobacterium* and colorectal cancer. Front Oncol. 2018;8:371.

9. Wong SH, Kwong TN, Chow T-C, Luk AK, Dai RZ, Nakatsu G, *et al.* Quantitation of faecal *Fusobacterium* improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 2017;66:1441-8.

10. Sun J, Kato I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 2016;3:130-43.

11. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, *et al.* Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10:766.

12. Kuo YH, Shi CS, Huang CY, Huang YC, Chin CC. Prognostic significance of unintentional body weight loss in colon cancer patients. Mol Clin Oncol. 2018;8:533-8.

13. Adelstein B-A, Macaskill P, Chan SF, Katelaris PH, Irwig L. Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review. BMC Gastroenterol. 2011;11:1-10.

14. Alomair AO, Masoodi I, Alyamani EJ, Allehibi AA, Qutub AN, Alsayari KN, *et al.* Colonic mucosal microbiota in colorectal cancer: a single-center metagenomic study in Saudi Arabia. Gastroenterol Res Pract. 2018;2018.

15. Kim G, Deepinder F, Morales W, Hwang L, Weitsman S, Chang C, *et al.* *Methanobrevibacter smithii* is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci. 2012;57:3213-8.

16. Piqué JM, Pallarés M, Cusó E, Vilar-Bonet J, Gassull MA. Methane production and colon cancer. Gastroenterology. 1984;87:601-5.

17. Holma R, Korpela R, Saarinen U, Blom M, Rautio M, Poussa T, *et al.* Colonic methane production modifies gastrointestinal toxicity associated with adjuvant 5-fluorouracil chemotherapy for colorectal cancer. J Clin Gastroenterol. 2013;47:45-51.

18. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, *et al.* Human genetics shape the gut microbiome. Cell. 2014;159:789-99.

19. Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H, Cedgård L, *et al.* Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol. 2017;4:e000145.

20. Osman MA, Neoh H-m, Ab Mutalib N-S, Chin S-F, Mazlan L, Ali RAR, *et al.* *Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum* and *Akkermansia muciniphila* as a four-bacteria biomarker panel of colorectal cancer. Sci Rep. 2021;11:1-12.

21. Burns MB, Montassier E, Abrahante J, Priya S, Niccum DE, Khoruts A, *et al.* Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet. 2018;14:e1007376.

22. Alonso BL, von Sierakowski AI, Nieto JAS, Rosel AB. First report of human infection by *Christensenella minuta*, a gram-negative, strictly anaerobic rod that inhabits the human intestine. Anaerobe. 2017;44:124-5.
23. Sheng Q, Du H, Cheng X, Cheng X, Tang Y, Pan L, et al. Characteristics of fecal gut microbiota in patients with colorectal cancer at different stages and different sites. Oncol Lett. 2019;18:4834-44.

24. Domingo M-C, Yansouni C, Gaudreau C, Lamothe F, Lévesque S, Tremblay C, et al. Cloacibacillus sp., a potential human pathogen associated with bacteremia in Quebec and New Brunswick. J Clin Microbiol. 2015;53:3380-3.

25. Yu J, Feng Q, Wong SH, Zhang D, yi Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70-8.

26. Looft T, Levine U, Stanton T. Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus. Int J Syst Evol Microbiol. 2013;63:1960.

27. Deng Y, Tang D, Hou P, Shen W, Li H, Wang T, et al. Dysbiosis of gut microbiota in patients with esophageal cancer. Microb Pathog. 2021;150:104709.

28. Lee W-H, Chen K-P, Wang K, Huang H-C, Juan H-F. Characterizing the cancer-associated microbiome with small RNA sequencing data. Biochem Biophys Res Commun. 2020;522:776-82.

29. Villéger R, Lopès A, Veziant J, Gagnière J, Barnich N, Billard E, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24:2327.

30. Campisciano G, de Manzini N, Delbue S, Cason C, Cosola D, Basile G, et al. The obesity-related gut bacterial and viral dysbiosis can impact the risk of colon cancer development. Microorganisms. 2020;8:431.

31. Kuwahara T, Hazama S, Suzuki N, Yoshida S, Tomochika S, Nakagami Y, et al. Intratumoural-infiltrating CD4+ and FOXP3+ T cells as strong positive predictive markers for the prognosis of resectable colorectal cancer. Br J Cancer. 2019;121:659-65.

32. Encarnação J, Abrantes A, Pires A, Botelho M. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 2015;34:465-78.

33. Chen Z, Xie Y, Zhou F, Zhang B, Wu J, Yang L, et al. Featured gut microbiomes associated with the progression of chronic hepatitis B disease. Front Microbiol. 2020;11:383.

34. Stadler J, Stern HS, Yeung KS, McGuire V, Furrer R, Marcon N, et al. Effect of high fat consumption on cell proliferation activity of colorectal mucosa and on soluble faecal bile acids. Gut. 1988;29:1326-31.

35. Park YE, Kim MS, Shim KW, Kim Y-I, Chu J, Kim B-K, et al. Effects of Lactobacillus plantarum Q180 on postprandial lipid levels and intestinal environment: a double-blind, randomized, placebo-controlled, parallel trial. Nutrients. 2020;12:255.

36. Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol. 2008;23:1298-303.

37. Heinen A, Ravcheev DA, Baldini F, Heirendt L, Fleming RM, Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019;7:1-18.
38. Youssef O, Lahti L, Kokkola A, Karla T, Tikkanen M, Ehsan H, et al. Stool microbiota composition differs in patients with stomach, colon, and rectal neoplasms. Dig Dis Sci. 2018;63:2950-8.

39. Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021:1-10.

40. Jia W, Rajani C, Xu H, Zheng X. Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein Cell. 2021;12:374-93.

41. Yi Y, Shen L, Shi W, Xia F, Zhang H, Wang Y, et al. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a prospective, longitudinal study. Clin Cancer Res. 2021;27:1329-40.

42. Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas El, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol. 2018;3:1461-71.

43. Luo W, Shen Z, Deng M, Li X, Tan B, Xiao M, et al. Roseburia intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response. Mol Med Rep. 2019;20:1007-16.

44. Shen Z, Zhu C, Quan Y, Yang J, Yuan W, Yang Z, et al. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J Gastroenterol Hepatol. 2018;33:1751-60.

45. Tan B, Luo W, Shen Z, Xiao M, Wu S, Meng X, et al. Roseburia intestinalis inhibits oncostatin M and maintains tight junction integrity in a murine model of acute experimental colitis. Scand J Gastroenterol. 2019;54:432-40.

46. Decousser J, Bartizel C, Zamni M, Fadel N, Doucet-Populaire F. Clostridium symbiosum as a cause of bloodstream infection in an immunocompetent patient. Anaerobe. 2007;13:166-9.

47. Xie Y-H, Gao Q-Y, Cai G-X, Sun X-M, Zou T-H, Chen H-M, et al. Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies. EBioMedicine. 2017;25:32-40.

48. Yang J, Li D, Yang Z, Dai W, Feng X, Liu Y, et al. Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families. Gut microbes. 2020;11:918-29.

49. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Welch JLM, Rossetti BJ, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA. 2014;111:18321-6.

50. Almuzara M, Cittadini R, Estraviz M, Ellis A, Vay C. First report of Comamonas kerstersii causing urinary tract infection. New Microbes New Infect. 2018;24:4-7.

51. Almuzara MN, Cittadini R, Vera Ocampo C, Bakai R, Traglia G, Ramirez MS, et al. Intra-abdominal infections due to Comamonas kerstersii. J Clin Microbiol. 2013;51:1998-2000.

52. Opota O, Ney B, Zanetti G, Jaton K, Greub G, Prod’hom G. Bacteremia caused by Comamonas kerstersii in a patient with diverticulosis. J Clin Microbiol. 2014;52:1009-12.
53. Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633-43.

54. Yoshimura T, McLean MH, Dzutsev AK, Yao X, Chen K, Huang J, et al. The antimicrobial peptide CRAMP is essential for colon homeostasis by maintaining microbiota balance. J Immunol. 2018;200:2174-85.

55. Olivares M, Neyrinck AM, Pötgens SA, Beaumont M, Salazar N, Cani PD, et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia. 2018;61:1838-48.

56. Chen L, Chen D-Q, Liu J-R, Zhang J, Vaziri ND, Zhuang S, et al. Unilateral ureteral obstruction causes gut microbial dysbiosis and metabolome disorders contributing to tubulointerstitial fibrosis. Exp Mol Med. 2019;51:1-18.

57. Maier JI, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, et al. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells. 2021;10:1509.

58. Tomkovich S, Ghaaribeh RZ, Dejea CM, Pope JL, Jiang J, Winglee K, et al. Human colon mucosal biofilms and murine host communicate via altered mRNA and microRNA expression during cancer. Msystems. 2020;5:e00451-19.

59. Baxter NT, Zackular JP, Chen GY, Schloss PD. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome. 2014;2:1-11.

60. Wang Z, Wang Q, Zhao J, Gong L, Zhang Y, Wang X, et al. Altered diversity and composition of the gut microbiome in patients with cervical cancer. AMB Express. 2019;9:1-9.

61. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PloS one. 2012;7:e39743.

62. Kim H, Im W-T, Kim M, Kim D, Seo YH, Yong D, et al. Parabacteroides chongii sp. nov., isolated from blood of a patient with peritonitis. J Microbiol. 2018;56:722-6.

63. Lau SK, Woo PC, Woo GK, Fung AM, Ngan AH, Song Y, et al. Bacteraemia caused by Anaerotruncus colihominis and emended description of the species. J Clin Pathol. 2006;59:748-52.

64. Loftus M, Hassouneh SA-D, Yooseph S. Bacterial community structure alterations within the colorectal cancer gut microbiome. BMC Microbiol. 2021;21:1-18.

65. Wu W-K, Panyod S, Liu P-Y, Chen C-C, Kao H-L, Chuang H-L, et al. Characterization of TMAO productivity from carnitine challenge facilitates personalized nutrition and microbiome signatures discovery. Microbiome. 2020;8:1-17.

66. Xu R, Wang Q, Li L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genom. 2015;16:1-9.

67. Lee M-R, Huang Y-T, Liao C-H, Chuang T-Y, Wang W-J, Lee S-W, et al. Clinical and microbiological characteristics of bacteremia caused by Eggerthella, Paraeggerthella, and Eubacterium species at a university hospital in Taiwan from 2001 to 2010. J Clin Microbiol. 2012;50:2053-5.
68. Ogawa Y, Sato M, Yamashita T, Nakano R, Mochizuki S, Kasahara K, et al. Polymicrobial anaerobic bacteremia caused by *Butyricimonas virosa* and *Brachyspira pilosicoli* in a patient with peritonitis following intestinal perforation. Ann Lab Med. 2018;38:71-3.

69. Toprak NU, Bozan T, Birkan Y, Isbir S, Soyletir G. *Butyricimonas virosa*: the first clinical case of bacteraemia. New Microbes New Infect. 2015;4:7.

70. Terrisse S, Derosa L, Iebba V, Ghiringhelli F, Vaz-Luis I, Kroemer G, et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ. 2021:1-19.

71. Al-Mussawi AA. New report of some bacterial species isolated from human sputum among patients with respiratory tract infections using 16srdna sequencing. Int J Appl Nat Sci. 2015;4:65-74.

72. Rex DK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, et al. Colorectal cancer screening: recommendations for physicians and patients from the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2017;153:307-23.

73. Raginel T, Puvinel J, Ferrand O, Bouvier V, Levillain R, Ruiz A, et al. A population-based comparison of immunochemical fecal occult blood tests for colorectal cancer screening. Gastroenterology. 2013;144:918-25.

74. Kuipers EJ, Rösch T, Bretthauer M. Colorectal cancer screening—optimizing current strategies and new directions. Nat Rev Clin Oncol. 2013;10:130-42.

Tables

Table 1 Demographic and clinical characteristics of the study groups
Characteristic	NC (N=17)	CP (N=17)	CRC (N=10)	P-value
Age, mean (SD)	62.1 (8.4)	65.1 (8.8)	69.9 (10.2)	0.106
BMI, median (SD)	24.5 (3.5)	26.1 (3.4)	20.9 (2.4)	0.001
Gender				0.112
Female	10 (58.8)	4 (23.5)	4 (40)	
Male	7 (41.2)	13 (76.5)	6 (60)	
Preexisting diseases				
Diabetes mellitus (DM)	1 (5.9)	3 (17.6)	4 (40)	0.106
Hypertension (HT)	2 (11.8)	8 (47.1)	7 (70)	0.007
Dyslipidemia (DLP)	4 (23.5)	8 (47.1)	7 (70)	0.058
Acute coronary syndrome (ACS)	0 (0)	1 (5.9)	1 (10)	0.695
On Aspirin (ASA)	0 (0)	1 (5.9)	3 (30)	0.032
Reason for colonoscopy				
Abdominal pain	2 (11.8)	1 (5.9)	0 (0)	0.782
Bowel habit change	0 (0)	4 (23.5)	2 (20)	0.122
Historical polyps	3 (17.6)	1 (5.9)	0 (0)	0.427
Gut obstruction	0 (0)	0 (0)	3 (30)	0.009
Lower gastrointestinal bleeding	1 (5.9)	5 (29.4)	5 (50)	0.029
Screening colonoscopy	11 (64.7)	6 (35.3)	0 (0)	0.003

Data are shown as n (%) unless indicated otherwise. P-values are based on ANOVA F-test for continuous variables and Fisher's exact test or Chi-Square test for categorical variables. NC = normal control, PC = colonic polyps, CRC = colorectal cancer.

Table 2 Prevalence of phylum and average abundance distribution of gut microbiomes of normal control, colonic polyp, and colorectal cancer groups

Different letters indicate significant differences according to Kruskal–Wallis test with the Dunn-Bonferroni post hoc method. (* = p < 0.01, ** = p < 0.05). PR = prevalence, MAV = mean abundance value, NC = normal control, PC = colonic polyps, CRC = colorectal cancer.
Phylum	PR: MAV of NC (%)	PR: MAV of PC (%)	PR: MAV of CRC (%)	P-value
	(N=17)	(N=17)	(N=10)	
Bacteroidetes	100: 47.53	100: 36.17	100: 42.40	0.171
Firmicutes	100: 39.88	100: 50.98	100: 36.50	0.072
Proteobacteria	100: 10.17	100: 7.543	100: 10.52	0.604
Actinobacteria	88: 1.281	82: 3.007	100: 1.526	0.885
Fusobacteria	53: 0.618	47: 0.702	80: 0.594	0.552
Verrucomicrobia	47: 0.366	24: 1.229	50: 6.199	0.248
Synergistetes**	12: 0.002 a	18: 0.011 ab	50: 1.952 b	0.024
Euryarchaeota*	0: 0.000 a	6: 0.008 a	40: 0.068 b	0.004
Tenericutes	6: 0.056	0: 0.000	0: 0.000	0.452
Cyanobacteria	0: 0.000	12: 0.005	0: 0.000	0.197
Unclassified	53: 0.091	53: 0.342	60: 0.243	0.817

Table 3 Prevalence of genera and average abundance distribution representative of gut microbiomes from normal control, colonic polyp, and colorectal cancer groups
Genus	PR: MAV of NC (%) (N=17)	PR: MAV of PC (%) (N=17)	PR: MAV of CRC (%) (N=10)	P-value
Kineothrix	100: 1.066 b	94: 1.417 b	90: 0.187 a	0.002
Lactobacillus	88: 0.481 b	76: 0.494 b	30: 0.057 a	0.012
Lacrimispora	94: 0.610 b	76: 0.426 b	50: 0.051 a	0.014
Sutterella	65: 0.556 b	47: 0.190 ab	20: 0.007 a	0.027
Acutalibacter	0: 0.000 a	6: 0.001 a	60: 0.203 b	0.000
Intestinimonas	47: 0.411 a	18: 0.014 a	90: 0.577 b	0.001
Christensenella	6: 0.002 a	18: 0.009 a	60: 1.762 b	0.001
Methanobrevibacter	0: 0.000 a	6: 0.008 a	40: 0.068 b	0.004
Petrocella	0: 0.000 a	0: 0.000 a	30: 4.724 b	0.005
Thermotalea	0: 0.000 a	0: 0.000 a	30: 0.009 b	0.005
Comamonas	0: 0.000 a	0: 0.000 a	30: 0.411 b	0.005
Emergencia	0: 0.000 a	0: 0.000 a	30: 0.013 b	0.005
Cloacibacillus	6: 0.002 a	18: 0.011 ab	50: 1.526 b	0.011
Culturomica	0: 0.000 a	6: 0.001 ab	30: 3.320 b	0.025
Anaerotruncus	0: 0.000 a	6: 0.003 ab	30: 0.017 b	0.028
Neglecta	18: 0.005 a	35: 0.024 ab	70: 0.020 b	0.044

Different letters indicate significant differences according to Kruskal–Wallis test with the Dunn-Bonferroni post hoc method. (* = $p< 0.01$, ** = $p< 0.05$). PR = prevalence, MAV = mean abundance value, NC = normal control, PC = colonic polyps, CRC = colorectal cancer.

Table 4 Prevalence of species and average abundance distribution representative of gut microbiomes from normal control, colonic polyp, and colorectal cancer groups
Species	PR: MAV of NC (%)	PR: MAV of PC (%)	PR: MAV of CRC (%)	P-value
Kineothrix alysoides	100: 1.066 b	94: 1.417 b	90: 0.187 a	0.002
Eubacterium rectale	94: 2.106 b	88: 3.610 b	60: 0.227 a	0.005
Roseburia inulinivorans	76: 0.648 b	94: 1.184 b	50: 0.075 a	0.005
Lactobacillus rogosae	88: 0.481 b	76: 0.494 b	30: 0.057 a	0.012
Lacrimispora xylanolytica	94: 0.610 b	76: 0.426 b	50: 0.048 a	0.012
*Roseburia intestinalis**	71: 0.126 b	65: 0.418 b	20: 0.004 a	0.015
Lachnoclostridium pacaense	76: 0.851 b	59: 0.871 b	20: 0.044 a	0.024
Clostridium spiroforme	82: 1.559 b	41: 0.359 ab	20: 0.392 a	0.036
Acutalibacter muris	0: 0.000 a	6: 0.001 a	60: 0.203 b	0.000
Christensenella massiliensis	6: 0.001 a	6: 0.006 a	60: 1.741 b	0.000
Intestinimonas butyriciproducens	47: 0.411 a	18: 0.014 a	90: 0.577 b	0.001
Odoribacter laneus	0: 0.000 a	6: 0.001 a	40: 0.334 b	0.004
Methanobrevibacter smithii	0: 0.000 a	6: 0.008 a	40: 0.068 b	0.004
Thermotalea metallivorans	0: 0.000 a	0: 0.000 a	30: 0.009 b	0.005
Comamonas kerstersii	0: 0.000 a	0: 0.000 a	30: 0.411 b	0.005
Emergencia timonensis	0: 0.000 a	0: 0.000 a	30: 0.013 b	0.005
Petrocella atlantisensis	0: 0.000 a	0: 0.000 a	30: 4.724 b	0.005
Butyricimonas virosa	18: 0.055 a	12: 0.002 a	60: 0.213 b	0.006
Cloacibacillus evryensis	6: 0.002 a	6: 0.001 a	40: 0.128 b	0.014
Cloacibacillus porcorum	0: 0.000 a	12: 0.010 ab	40: 1.398 b	0.010
Clostridium symbiosum	18: 0.022 a	59: 0.134 ab	70: 0.157 b	0.015
Parabacteroides chongii	0: 0.000 a	12: 0.012 ab	40: 0.056 b	0.019
Culturomica massiliensis**
0: 0.000 a
6: 0.001 ab
30: 3.320 b
0.025

Oscillibacter valericigenes**
65: 0.348 a
65: 0.632 ab
90: 3.745 b
0.028

Anaerotruncus colihominis**
0: 0.000 a
6: 0.003 ab
30: 0.012 b
0.032

Christensenella minuta**
6: 0.001 a
12: 0.004 ab
40: 0.021 b
0.038

Eubacterium limosum**
12: 0.011 a
29: 0.126 ab
60: 0.096 b
0.038

Coprococcus catus**
24: 0.026 a
29: 0.049 ab
70: 0.191 b
0.043

Neglecta timonensis**
18: 0.005 a
35: 0.024 ab
70: 0.020 b
0.044

Different letters indicate significant differences according to Kruskal–Wallis test with the Dunn-Bonferroni post hoc method. (* = p< 0.01, ** = p< 0.05). PR = prevalence, MAV = mean abundance value, NC = normal control, PC = colonic polyps, CRC = colorectal cancer.

Figures

Figure 1

The gut microbiome profiling at the phylum level. Mean abundance value (%) of the microbiota at the phylum level in fecal samples of the normal control (n = 17), colonic polyp (n = 17), and colorectal cancer
(n = 10) groups.

Figure 2

The candidate CRC-associated bacteria biomarkers. The bacterial abundance of a recommended CRC biomarker species *Clostridium symbiosum*, a novel CRC-associated species *Acetalibacter muris*, and the familiar CRC-associated species *Christensenella massiliensis*, and *Intestinimonas butyriciproducens* that were analyzed from the fecal samples of the normal control (n = 17), colonic polyp (n = 17), and colorectal cancer (n = 10) groups.