Alzheimer’s disease (AD) is the most common cause of dementia in aged populations, being characterized by cerebrovascular and neuronal dysfunctions that induce a progressive decline in cognitive functions [1]. The occurrence of AD in individuals aged over 65 years is defined as late-onset AD (LOAD) - representing the majority of AD sufferers. Patients with early-onset AD (EOAD) represent approximately 1% of the overall population [2].

Symptomatic AD is diagnosed clinically using a battery of cognitive tests, with significant efforts ongoing to move diagnosis to earlier disease stages using the additional tools of genetic testing, blood and cerebrospinal fluid biomarkers and neuroimaging [3]. Previous to these advances, however, AD could only be definitively diagnosed as the cause of dementia by post-mortem detection of two major neuropathologies. These comprise senile plaques of aggregated Aβ peptide, and neurofibrillary tangles of hyperphosphorylated, aggregated tau protein.

Apolipoprotein E, amyloid-β clearance and therapeutic opportunities in Alzheimer’s disease

Adam Kline*

Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterised by extracellular amyloid-β (Aβ) and intraneuronal tau protein brain pathologies. The most significant risk factor for non-familial AD is the presence of the E4 isoform of the cholesterol transporter apolipoprotein E (apoE). Despite extensive basic research, the exact role of apoE in disease aetiology remains unclear. Correspondingly, therapeutic targeting of apoE in AD is at an early preclinical stage. In this review, I discuss the key interactions of apoE and Aβ pathology, the current progress of preclinical animal models and the caveats of existing therapeutic approaches targeting apoE. Finally, novel Alzheimer’s genetics and Aβ-independent disease mechanisms are highlighted.

Introduction
Alzheimer’s disease (AD) is the most common cause of dementia in aged populations, being characterized by cerebrovascular and neuronal dysfunctions that induce a progressive decline in cognitive functions [1]. The occurrence of AD in individuals aged over 65 years is defined as late-onset AD (LOAD) - representing the majority of AD sufferers. Patients with early-onset AD (EOAD) represent approximately 1% of the overall population [2].

In agreement with the amyloid hypothesis, studies in transgenic mouse models of AD imply a cascade of events in which abnormal forms of tau act as downstream mediators of Aβ toxicity [6,7]. Contrary to this proposed cascade, however, whilst neuronal loss and neurofibrillary tangle counts strongly predict cognitive status in LOAD patients, total Aβ plaque load correlates weakly with cognitive impairment [8]. The prevalent explanation for this disparity is that it is diffusible Aβ oligomers, rather than Aβ plaques, that represent the actual toxic species. The E693Δ APP mutation, for example, causes Alzheimer’s-type dementia through the toxicity of non-fibrillar, intracellular Aβ oligomers [9]. Conversely, the ‘Arctic’ APP mutation (E693G) induces formation of large Aβ oligomers known as protofibrils [10]. Experimental disagreement over the physicochemical nature of toxic oligomers in LOAD has hampered delineation of their exact role in disease [11].

Apolipoprotein E
Apolipoprotein E (apoE) is the primary transporter of cholesterol in the central nervous system (CNS), being synthesised within the blood brain barrier (BBB)
stimulated formation of neurotoxic Aβ aggregates developed as AD therapeutics. Small Aβ-mimetic these findings, apoE/Aβ interaction inhibitors are being apoE3 interacts directly with Aβ [18], enhancing Aβ fibrillisation [19]. Interpretation of such data is complicated by the difficulties of replicating in vivo Aβ conformation and apoE lipidation status. However, early Aβ amyloidosis mouse model data also support a clear role for apoE in Aβ pathology [20]. As a consequence of these findings, apoE/Aβ interaction inhibitors are being developed as AD therapeutics. Small Aβ-mimetic peptides initially demonstrated reductions in apoE-stimulated formation of neurotoxic Aβ aggregates in vitro [21], with these data being subsequently confirmed in vivo using a mouse model of Aβ brain amyloidosis [22].

ApoE proteins comprise an amino-terminal receptor-interacting domain and carboxy-terminal lipid-binding domain. Fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) studies on human post-mortem tissue sections indicate that Aβ is preferentially associated with the carboxyl terminus of apoE4 compared to that of apoE3, and that apoE4 undergoes greater amino-terminal degradation, prolonging Aβ interaction [23]. This prolonged interaction may enhance formation and stabilisation of toxic Aβ oligomers [24]. Analyses of AD brain samples have demonstrated a higher burden of oligomeric Aβ in APOE4 carriers with increased amyloid plaque-associated synaptic loss. ApoE4 colocalises with oligomeric Aβ at the synapse, indicating a key role as a co-factor in Aβ toxicity [25].

The greater susceptibility of apoE4 to proteolytic cleavage, and the subsequent prolongation of Aβ interactions, is thought to be a consequence of differential domain interaction. The C112R polymorphism in apoE4 results in a salt bridge between R61 and E255, which is lacking in apoE3 [26]. This brings the amino- and carboxy-terminal domains into closer proximity and exposes the hinge region of apoE4 to proteolysis [23]. Consequently, the development of small-molecule ‘structure correctors’ that shift apoE4 to an apoE3-like conformation has also been proposed as a therapeutic strategy for AD [27].

The main challenge for small molecule approaches aiming to disrupt apoE intradomain or apoE/Aβ protein-protein interactions is to achieve a compound with sufficient potency, specificity and BBB permeability to be suitable for clinical trials.

ApoE mouse models of Aβ amyloidosis

Multiple mouse models of Aβ brain amyloidosis have been generated, predominantly comprising familial, EOAD APP and PS1/2 mutations either alone or in combination [28]. To varying degrees, these mice recapitulate brain parenchymal and cerebrovascular Aβ deposition with cognitive behavioural disorder; however, neuronal loss is relatively lacking in most models. When considering the impact of apoE on Aβ pathology in these mice it is important to consider that endogenous murine apoE is non-polymorphic and does not display domain interaction [29]. Consequently, mouse apoE behaves most similarly to human apoE3. In order to determine the effects of human apoE isoforms, Aβ amyloidosis transgens have now been combined with a variety of human apoE mouse models. These crosses display delayed onset of Aβ pathology relative to their murine equivalents, emphasising the importance of interspecies differences [30].

Mice expressing mutant V717F APP in conjunction with human apoE isoform knock-ins (PDAPP/TRE mice) show isoform-dependent Aβ deposition, with apoE4 showing the strongest effect followed by apoE3 and then apoE2 [31].

Gene dosage is critically important, with haplo-insufficiency of both human apoE3 and apoE4 knock-in isoforms causing marked reductions in Aβ deposition in APP/PS1 mutant mice [32,33]. This is a key point, as there is an ongoing debate regarding the potential therapeutic benefits of raising versus lowering apoE expression levels. Whilst the transgenic data indicate that reducing apoE levels would be more beneficial, small-molecule upregulation of apoE levels, particularly through agonism of the lipid X receptor (LXR) [34] or retinoid X receptor (RXR) [35], has been reported as a promising therapeutic approach. In vivo studies of such agonists, whilst successfully demonstrating reductions in Aβ pathology, were carried out against a background of endogenous murine apoE. It remains a possibility, therefore, that increasing expression of human apoE4 may actually be deleterious to disease. It should also be noted that LXR/RXR agonism has side effects, such as hypertriglyceridaemia,
and the relatively hydrophobic nature of ligands makes complicating interactions with the γ-secretase multi-span membrane complex a possibility [36].

ApoE and Aβ production

There is limited evidence for modulation of Aβ production by apoE with in vitro studies using cultured cells co-overexpressing apoE and APP - a relatively unphysiological paradigm [37]. ApoE4-induced increases in Aβ production could be mediated by a novel, apoE-interacting protein, TMC22, proposed to facilitate an interaction between APP and the γ-secretase complex [38].

ApoE and Aβ aggregation

Neprilysin is the major protease mediating brain Aβ degradation [39]. In vivo inhibition of neprilysin by thiorphan infusion induces apoE isoform-dependent
aggregation of Aβ, with apoE4 causing the greatest increase in aggregation [40]. It is possible that apoE acts to stabilise oligomeric Aβ, causing enhanced toxicity and seeding deposition of larger aggregates [24].

ApoE and Aβ clearance

Aβ is cleared from the brain by proteolytic degradation [41], bulk flow along the perivascular interstitial fluid drainage pathway [42], or by receptor-mediated clearance across the BBB [43]. In addition, the ‘peripheral sink’ hypothesis postulates that clearance of Aβ from the brain is accelerated by removal of Aβ from the plasma via the liver and kidneys [44]. APOE4 carriers may display clearance deficits in both compartments as Aβ removal from both the CNS and the plasma is reduced in human apoE4 knock-in mice [31,45].

ApoE isoform status may influence CNS Aβ degradation through indirect mechanisms such as regulation of cellular cholesterol - enhancing endocytosis and lysosomal degradation of Aβ [46]. The major impact of apoE is, however, likely to be through interaction of Aβ with cell-surface apoE receptors, including LDL receptor-related protein 1 (LRP1), the LDL receptor (LDLR) and the VLDL receptor (VLDLR) [47]. Receptor binding of Aβ, alone or in complex with apoE, either delivers Aβ to the lysosome or leads to transcytosis into the plasma via the BBB. LRP1 is perhaps the best characterised transporter acting in the latter instance [48]. ApoE isoforms (apoE4 > apoE3 > apoE2) may disrupt rapid, LRP1-mediated clearance of unbound Aβ by diverting it to the VLDLR, which has a slower rate of endocytosis [49].

From a therapeutic perspective, peripheral administration of soluble fragments of LRP1 has been shown to reduce brain Aβ load in K670N/M671L APP mice through plasma Aβ binding - theoretically exploiting the peripheral sink hypothesis [50]. However, the primary investigation of this type of approach has been through enhancement of peripheral Aβ clearance through anti-Aβ immunisation strategies. These remain, despite early setbacks, one of the most promising current therapeutic avenues. Passive immunisation with the humanised anti-Aβ antibody bapineuzumab demonstrated lower efficacy in APOE4 carriers with a corresponding increase in vasogenic oedema, suggestive of transient increases in vascular permeability [51,52]. If phase III trials are positive, determination of APOE status is likely to become an important aspect of treatment.

In addition to LRP1, LDLR has also been implicated in Aβ removal from the CNS. LDLR over-expression decreased Aβ deposition and enhanced clearance in the K670N/M671L APP, ΔE9 PS1 amyloidosis mouse model [53]. LDLR knockout data are inconsistent, however, as whilst two studies reported increased Aβ load [54,55] a further analysis failed to show any effect [56]. Although LDLR-upregulating compounds have been reported [57], clinical usage of such drugs would be challenging due to specificity and toxicity concerns.

Aβ-independent disease mechanisms

Collaborative large-scale genome-wide association studies have identified, in addition to apoE, novel LOAD risk genes. These include CLU (encoding apolipoprotein J), PICALM, CR1 and BIN1 [58]. Conversely, variants of APP and PS1/2, which increase Aβ42 production in familial EOAD, were not hits in these studies. The genetic drivers of LOAD and EOAD are hence likely to be different. Whilst the novel LOAD risk genes may function in either Aβ clearance [43,59] or toxicity [60], there remains a possibility that key implicated pathways, such as lipid homeostasis and innate immunity, play Aβ-independent roles in the aetiology of LOAD. ApoE is linked to autoimmune inflammation, diabetes and coronary heart disease - environmental risk factors for LOAD magnified by the APOE4 genotype [61]. The clinical failures of non-steroidal anti-inflammatories [62], a peroxisome proliferator-activated receptor (PPAR)γ agonist [63] and HMG-CoA reductase inhibitors [64] suggest, however, that targeting mid-life risk factors for LOAD in late stage disease is unlikely to be therapeutically successful. Such treatments, including apoE-based therapeutics, may need to be given earlier in the disease process. This places additional importance on early diagnosis of AD and/or preventative treatment in individuals at high risk of developing LOAD.

ApoE, and related cell signalling, is also purported to modulate synaptic plasticity, tau phosphorylation, and neuroinflammation [47]. The extent to which apoE drives the aetiology of LOAD through these mechanisms is unclear; however, apoE mimetic peptides designed to mediate putative, beneficial effects of apoE demonstrated both behavioural and pathological benefits in mutant APP mice [65]. The main challenge with such an approach will be to achieve a candidate molecule with appropriate physicochemical properties for clinical use.

Conclusions

Understanding of the interplay between APOE genotype and Aβ pathology has progressed significantly in recent years, particularly with respect to human apoE knock-in animal models of Aβ amyloidosis. These demonstrate an isoform-specific role for apoE4 in retarding Aβ clearance from the CNS. By virtue of the nature of the target, however, apoE therapeutics are still at an early preclinical stage, with appreciable chemistry challenges facing small-molecule approaches. The most immediate impact of apoE on AD therapeutics will likely be the profiling of patients for APOE4 status to help determine dosing of anti-Aβ immunotherapy treatments. ApoE has multiple
systemic functions, some of which relate to novel LOAD risk genes, which may also affect the aetiology of AD independently of Aβ. The understanding, and modelling, of these functions remain goals for future research.

Abbreviations
Aβ, amyloid-β peptide; AD, Alzheimer’s disease; apoE, apolipoprotein E; APP, amyloid precursor protein; BBB, blood brain barrier; CNS, central nervous system; EOAD, early onset Alzheimer’s disease; LDL, low-density lipoprotein; LDLR, LDL receptor; LOAD, late onset Alzheimer’s disease; LRP, LDL receptor-related protein; PS, presenilin; VLDLR, VLDL receptor.

Competing interests
Adam Kline was in the past 5 years an employee of Eisai Limited and received a fixed salary. Adam Kline was not an Eisai employee at the time of publication.

Acknowledgements
The author thanks Eisai Limited for approving this review for publication.

Published: 27 August 2012

References
1. Amaducci LA, Rocca WA, Schenker BS: Origin of the distinction between Alzheimer’s disease and senile dementia: how history can clarify nosology. Neurology 1986, 36:1497-1499.
2. Campion D, Dumanian C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A, Martin C, Charbonnier F, Raux G, Camuzat A, Penet C, Mensage V, Martinez M, Clerget-Darpoux F, Bruce A, Febugou T: Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999, 65:664-670.
3. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern R, Hardy J, Lai SL, Arepalli S, Hernandez D, Traynor BJ, Singleton A, Tienari PI, Mylllynganari L: APOE and AD/PAPP gene variation in cortical and cerebrovascular amyloid-β pathology and Alzheimer’s disease: a population-based analysis. J Alzheimers Dis 2011, 22:37-38.
4. Kost A, Kost I, Kost J, Kost K: Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-β in human Alzheimer brain. PLoS One 2011, 6:e14586.
5. Erk F, Gustot A, Goormaghtigh E, Ryuskaecht JM, Raussem V: High ability of apolipoprotein E4 to stabilize fibrillar vascular amyloid deposition and cerebral microhemorrhages in tgs/DI mice. J Alzheimers Dis 2011, 24:269-285.
6. Jones PB, Adams KW, Rozkalne A, Spiesz-Jones TL, Hshieh TT, Hashimoto T, von Armin CA, Mielke M, Backali BJ, Hyman BT: Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-β in human Alzheimer brain. PLoS One 2011, 6:e14586.
7. Sano DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD: Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monomers. Isform apoE4 associates more efficiently than apoE3. J Clin Invest 1994, 94:860-869.
8. Wisevski T, Castella EM, Golabek A, Vogel T, Frangione B: Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 1994, 145:1030-1035.
9. Bales KR, Verina T, Cummins DJ, Yu Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petengiev F, Gbhti B, Paul SM: Apolipoprotein E is essential for amyloid deposition in the APP/V17F transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 1999, 96:15233-15238.
10. Ma J, Brewer JR Jr, Potter H, Alzheimer A beta neurotoxicity: promotion by antichymotrypsin. ApoE4 inhibition by abeta-related peptides. Neurobiol Aging 1996, 17:773-780.
11. Yang J, Jay ET, Mehta P, Bates KA, Sun Y, Wisniewski T: Blocking the apolipoprotein E Amyloid-β interaction reduces fibrillar vascular amyloid deposition and cerebral microhemorrhages in TgSwDI mice. J Alzheimers Dis 2011, 24:269-285.
12. Nito S, Yamasawa Y, Ikeda J, Yamasawa Y, Goto T, Watanabe S, Suga T, Takayama M, Kato T, Sato Y, Hori R, Nakayama K, Igarashi T: Familial Alzheimer’s disease with presenilin 1 mutations: impairment of long-term synaptic plasticity in the entorhinal cortex. J Biol Chem 2008, 283:26303-26311.
13. Sato K, Yamada K, Terada T, Kato T, Sato Y, Hori R, Nakayama K, Igarashi T: Familial Alzheimer’s disease with presenilin 1 mutations: impairment of long-term synaptic plasticity in the entorhinal cortex. J Biol Chem 2008, 283:26303-26311.
14. Bales KR, Verina T, Cummins DJ, Yu Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petenegiev F, Gbhti B, Paul SM: Apolipoprotein E is essential for amyloid deposition in the APP/V17F transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 1999, 96:15233-15238.
15. Ma J, Brewer Jr Jr, Potter H, Alzheimer A beta neurotoxicity: promotion by antichymotrypsin. ApoE4 inhibition by abeta-related peptides. Neurobiol Aging 1996, 17:773-780.
31:1007-18012.
33. Bens-Ly N, Gillespie AK, Walker D, Yoon SY, Huang Y: Reducing human apolipoprotein E levels attenuates age-dependent Aβ accumulation in mutant human amyloid precursor protein transgenic mice. J. Neuroscience 2012, 32:4803-4811.
34. Biddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, Ring RH, Kirksey Y, Aschmies S, Xu J, Kubek H, Hirst WD, Gonzales C, Chen Y, Murphy E, Leonard S, Vasylyev D, Oganesian A, Martone RL, Pangalos MN, Reinhart PH, Jacobsen JS: The LXR agonist T0901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 2007, 34:561-628.
35. Cranmer FE, Cristino JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WC, James MJ, Brunden KR, Wilson DA, Landreth GE: ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 2012, 335:1503-1506.
36. Czech C, Burns MP, Vardanian L, Augustin A, Jacobsen JS, Baumann K, Rebeck GW: Cholesterol independent effect of LXR agonist T0901317 on gamma-secretase. J. Neuroscience 2007, 101:9289-9304.
37. Ye S, Huang Y, Mullendoff K, Dong L, Giedt G, Meng F, Cohen FE, Kunz ID, Weissgraber KH, Malley RW: Apolipoprotein (apo) E4 enhances amyloidosis formation in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc Natl Acad Sci U S A 2005, 102:18700-18705.
38. Hopkins PC, Saijain-Fueites R, Lovestone S: The impact of a novel apolipoprotein E and amyloid-β protein precursor-interacting protein on the production of amyloid-β. J. Alzheimer’s Dis 2011, 26:339-353.
39. Marr RA, Guan H, Rockenstein E, Kindy M, Gage FH, Verma I, Masliah E, Hersh LB: Neprilysin regulates amyloid Beta peptide levels. J Mol Neurosci 2004, 2255-11.
40. Zepa L, Frenkel M, Belinson H, Kanv-Imbal Z, Kayed R, Masliah E, Michaelson DM: ApoE4-driven accumulation of intraneuronal oligomerized Aβ42 following activation of the amyloid cascade in vivo is mediated by a gain of function. J. Alzheimer’s Dis 2011, 21:79070.
41. Saito T, Leissring MA: Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med 2012, 2:a006379.
42. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO: Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 2008, 18:253-266.
43. Deane R, Bell RD, Sagare A, Zlokovic BV: Clearance of amyloid-beta peptide across the blood-brain barrier: implications for therapies in Alzheimer’s disease. CNS Neurol Drug Disord Targets 2009, 8:16-30.
44. Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V, Wang L, Casey E, Lu Y, Shiratori C, Lemere C, Duff K: Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurochem 2003, 23:29-33.
45. Sharman MJ, Morici M, Hone E, Berger T, Taddei K, Martins IJ, Lim WL, Singh S, Wenk KR, Ghiso J, Buxbaum JD, Gandy S, Martins RN: APOE genotype results in differential effects on the peripheral clearance of amyloid-beta242 in APOE knock-in and knock-out mice. J. Alzheimer’s Dis 2010, 21:403-409.
46. Lee CY, Tse W, Smith JD, Landreth GE: Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 2012, 287:2032-2044.
47. Holtzman DM, Heiz SJ, Bu GP: Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2012, 3:a006312.
48. Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA: Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer’s amyloid β-peptide elimination from the brain. J. Neuroscience 2010, 115:1077-1089.
49. Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV: ApoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin Invest 2008, 118:4002-4013.
50. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Penua R, Marky A, Lenting PJ, Wu Z, Zancone T, Goate A, Mayo K, Perlmutter D, Como M, Zhong Z, Zlokovic BV: Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 2007, 13:1029-1031.
51. Salloway S, Sperling R, Gilman S, Fox NC, Bellcross N, Raskind M, Sabbagh M, Honig LS, Doody R, van Dyck CH, Mulnard R, Barakos J, Gregg KM, Liu E, Lieberburg I, Schenk D, Black R, Grundman M: Bapineuzumab 201 Clinical Trial Investigators: A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 2009, 73:2061-2070.
52. Roher AE, Maourou CL, Daugs ID, Koikojh TN, Hunter JM, Sabbagh WN, Beach TG: Neuropathy and amyloid-β spectrum in a bapineuzumab phase 1 trial: results from the M001 study. J. Alzheimer’s Dis 2011, 24:315-325.
53. Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, Mason SM, Paul SM, Holtzman DM: Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuorion 2009, 4:652-644.
54. Katsouri L, Georgopoulos S: Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer’s disease mouse model. PLoS One 2011, 6:e21880.
55. Cao D, Fukushima K, Wan H, Kim H, Li L: Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 2006, 27:1632-1643.
56. Ueberland Y, Moller MB, Liebisch G, Kelm CA: ApoE influences memory and synaptic plasticity in the hippocampus of Alzheimer’s disease patients. J. Genet Psychiatry 2011, 12:796-802.
57. Biffi A, Shulman JM, Jagiella JM, Cortellini L, Ayres AM, Schwab K, Brown DL, Silliman SL, Selim M, Worrall BB, Meschia JF, Semkova E, De Jager PL, Greenberg SM, Schneider JA, Bennett DA, Rosand J: Genetic variation at CR1 increases risk of cerebral amyloid angiopathy. Neurology 2012, 78:334-341.
58. Treusch S, Hamamichi S, Goodman J, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Person M, Reiman EM, Evans DA, Bennett DA, Olsfson A, DeJager PL, Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S: Functional links between Aβ toxicity, endocytotoxic trafficking, and Alzheimer’s disease risk factors in yeast. Science 2011, 334:241-245.
59. Kivipelto M, Rovio S, Ngandu T, Kähörell T, Eskelinen M, Winblad B, Hachinski V, Cedazo-Minguez A, Soininen H, Tuomilehto J, Nissinen A: Apolipoprotein E epsilon4 magnifies lifestyle risks for dementia: a population-based study. J. Cell Mol Med 2008, 12:2762-2771.
60. ADAPT Research Group, Martin BK, Szekely C, Brandt J, Pantadosi S, Breitner JC, Craft S, Evans D, Green A, Mullan M: Cognitive function over time in the Alzheimer’s Disease Anti-Inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Alzheim Arch 2008, 65:395-905.
61. Harrington C, Sawchak S, Chiang C, Davies J, Donovon C, Saunders AM, Irizarry M, Jeter B, Zvartau-Hind M, van Dyck CH, Gold MS: Rosiglitazone does not improve cognition or global function when used as adjunctive therapy to ACHE inhibitors in mild-to-moderate Alzheimer’s disease: two phase 3 studies. Curr Alzheimer Res 2011, 8:592-606.
62. Feldman HH, Doody RS, Kivipelto M, Sparks DL, Waters DD, Jones RW, Schwam E, Schindler R, Hey-Hadavi J, DeMicco DA, Breazna A; LEADe Investigators: Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease. LEADe. Neurology 2010, 74:956-964.
63. Vitek MP, Christensen DJ, Wilcock D, Van Nostrand WE, Li FQ, Colton CA: APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenic mice. Neurodegenerative Dis 2012, 12:122-126.