CASE REPORT

Adult expression of a 3q13.31 microdeletion

Chelsea Lowther1,2, Gregory Costain1, Rebecca Melvin1, Dimitri J Stavropoulos3,4, Anath C Lionel5,6, Christian R Marshall5,6, Stephen W Scherer5,6 and Anne S Bassett1,2,7*

Abstract

Background: The emerging 3q13.31 microdeletion syndrome appears to encompass diverse neurodevelopmental conditions. However, the 3q13.31 deletion is rare and few adult cases have yet been reported. We examined a cohort with schizophrenia (n = 459) and adult control subjects (n = 26,826) using high-resolution microarray technology for deletions and duplications at the 3q13.31 locus.

Results: We report on the extended adult phenotype associated with a 3q13.31 microdeletion in a 41-year-old male proband with schizophrenia and a nonverbal learning disability. He was noted to have a speech impairment, delayed motor skills, and other features consistent with the 3q13.31 microdeletion syndrome. The 2.06 Mb deletion overlapped two microRNAs and seven RefSeq genes, including GAP43, LSAMP, DRD3, and ZBTB20. No overlapping 3q13.31 deletions or duplications were identified in control subjects.

Conclusions: Later-onset conditions like schizophrenia are increasingly associated with rare copy number variations and associated genomic disorders like the 3q13.31 microdeletion syndrome. Detailed phenotype information across the lifespan facilitates genotype-phenotype correlations, accurate genetic counselling, and anticipatory care.

Keywords: 3q13 deletion, Schizophrenia, Copy number variation, Genotype-phenotype correlation, Genetic counselling, Genomic disorder, Nonverbal learning disability

Background

Preliminary evidence suggests that individuals with microdeletions at chromosome 3q13.31 (OMIM #615433) may be predisposed to a broad spectrum of neurodevelopmental/neuropsychiatric conditions including global developmental delay/intellectual disability (DD/ID), speech delay, autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD) [1-5]. Inconsistent molecular and cytogenetic techniques as well as variable genomic breakpoints have made pinpointing the responsible gene(s) within the 3q13.31 region challenging. In a large case series, Molin et al. defined a 580 kb shortest region of overlap (SRO) that includes five RefSeq genes: DRD3, ZNF80, TIGIT, MIR568, and ZBTB20 [1]. Those authors proposed that haploinsufficiency of DRD3 (OMIM #126451), which codes for the D3 subunit of the dopamine receptor, and ZBTB20 (OMIM #606025), a DNA transcription repressor expressed in hippocampal neurons, may contribute to the neurodevelopmental features of the 3q13.31 microdeletion syndrome [1,6]. Recently, a 1.3 Mb deletion at 3q13.31 downstream of this proposed SRO and encompassing just two genes (LSAMP, GAP43) was identified in a 7-year-old female with ADHD, hypotonia, and postnatal growth above the mean [3]. LSAMP (OMIM #603241) encodes a limbic system-associated membrane protein (LAMP) and has been shown to regulate anxiety-like phenotypes in mice [7]. GAP43 (OMIM #162060) is almost exclusively expressed in neuronal tissue and is a candidate gene for ASD [8].

Later-onset conditions, including neurodevelopmental diseases like schizophrenia, may also be associated with rare copy number variations (CNVs) [9]. To date, few adult cases with 3q13.31 deletions have been described in the literature, highlighting the paucity of phenotypic data across the lifespan needed to inform genetic counselling and anticipatory care. Here we provide a description of the extended adult phenotype associated with a 3q13.31 microdeletion [9] that encompasses all four of the previously proposed neurodevelopmental candidate genes at this locus: DRD3, ZBTB20, LSAMP, and GAP43.

* Correspondence: anne.bassett@utoronto.ca
1 Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
2 Institute of Medical Science, University of Toronto, Toronto, ON, Canada
Full list of author information is available at the end of the article

© 2014 Lowther et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Case presentation

Clinical description

The male proband (Figure 1) was conceived naturally to non-consanguineous parents of European ancestry, a 29-year-old mother and 36-year-old father. There was no known family history of major developmental or neuropsychiatric conditions. The pregnancy and term delivery were unremarkable; birth weight was 3,941 g (75th-90th percentile). There was no evidence of hypotonia. The patient was noted to have delayed motor developmental milestones and “clumsiness” prior to age 3 years, when he was hospitalized for suspected viral meningoencephalitis with decreased level of consciousness and dystonic movements. A speech impairment and enuresis was noted thereafter and persisted into adulthood. At age 9 years, fine motor and perceptual motor skills were noted to be under-developed. A head CT (computed tomography) scan at age 15 years showed focal hypoplasia of the superior cerebellar vermis; a repeat CT scan at age 33 years was read as normal.

He was enrolled in a special education program beginning at age 7 years, with particular difficulties noted in mathematics and writing. At age 33 years, clinical neuropsychological testing revealed a full-scale IQ in the borderline range. Research-based testing at age 39 years using the WASI (Wechsler Abbreviated Scale of Intelligence) demonstrated a full-scale IQ of 75, with a marked difference between verbal (90) and performance (62) scores consistent with a nonverbal learning disability.

The patient developed schizophrenia and was first treated with standard antipsychotic medications at age 24 years. Overall, he has had an unremarkable course of illness (details available upon request); of note, aggressive behaviour at age 28 years prompted a change in his medication regimen. His past medical history also includes type 2 diabetes mellitus treated with insulin and hypercholesterolemia diagnosed in his 20’s, mild hypocalcemia first identified at age 31 years, bilateral L5-S1 disc protrusion requiring surgery at 34 years, and hypertension diagnosed at age 34 years. At time of last contact, he was 41 years old and living in a supported situation in the community.

Molecular studies

The patient was recruited into a longitudinal study of the genetics of schizophrenia [9] at age 31 years. Research chromosomal microarray analysis using the Affymetrix® Genome-Wide Human SNP Array 6.0 ultimately demonstrated a deletion at cytoband 3q13.31 (chr3:115,308,450–117,370,859, hg18) [9], which was clinically confirmed at a CLIA (Clinical Laboratory Improvement Amendments) approved laboratory and reported back to the patient. All stringent genome-wide CNV calls in this individual are included in Additional file 1: Table S1 with only the 3q13.31 deletion predicted to be pathogenic [10]. As is common with adult-onset disorders like schizophrenia, both parents were unavailable for testing (deceased). The deletion overlaps two microRNAs (miRNAs) and seven RefSeq genes (Figure 2), including the four promising neurodevelopmental gene candidates highlighted by Gimelli et al. (GAP43 and LSAMP) and Molin et al. (DRD3 and ZBTB20) [1,3]. The 3q13.31 region was inspected for
Figure 2 (See legend on next page.)
Including the present case, four adults (3q13.31 deletion expression in adults) [9,12]. 3q13.31 deletions or duplications were identified using the Centre for Applied Genomics (TCAG), no similar wide CNV data available to our colleagues at The Centre for Applied Genomics (TCAG), no similar database and 10 patients were found to have deletions overlapping the one presented in this case report (Figure 2) [11]. In the 26,826 adult control subjects with genome-wide CNV data available to our colleagues at The Centre for Applied Genomics (TCAG), no similar 3q13.31 deletions or duplications were identified using a 50% reciprocal overlap criterion (Additional file 2: Table S2) [9,12].

Discussion

3q13.31 deletion expression in adults

Including the present case, four adults (≥18 years) with 3q13.31 microdeletions have been reported in the literature to date (Table 1) [1,2]. Several features present in this patient, including DD/ID, speech delay, enuresis, postnatal growth above the mean, structural brain abnormalities, high arched palate, and skeletal anomalies, are consistent with previous reports of adults with 3q13.31 microdeletions (Table 1) [1,2]. Of all forty-one cases previously in the literature, the 3q13.31 deletion was reported as occurring de novo in thirty-eight (92.7%) and of unknown inheritance in three (7.3%) [1-4,14,15].

Neuropsychiatric phenotypes (i.e., ADHD and ASD) have been previously associated with the 3q13.31 microdeletion; however, this is the first report of schizophrenia in an individual with a 3q13.31 microdeletion. Moreover, the patient described in this report had a >25 point discrepancy between his performance and verbal IQ scores, consistent with a nonverbal learning disability [16]. Interestingly, the 42 year old female (Case 6) reported in Shuvarikov et al. [2] demonstrated a similar trend in IQ scores (Table 1). Raw IQ scores were not given for many of the paediatric cases, however Vuillaume et al. [4] described an affected 16 year old female (Case 1) as “being able to read and write but educational learning was difficult,” potentially describing a nonverbal learning disability. Detailed neuropsychological phenotyping of additional cases will help determine if nonverbal learning disabilities are part of the emerging 3q13.31 microdeletion syndrome.

Candidate genes for neuropsychiatric expression

The four genes (GAP43, DRD3, LSAMP, and ZBTB20) that have been posited as contributing to the brain phenotype of the 3q13.31 microdeletion syndrome are all overlapped by this patient’s deletion (Figure 2) [1,2]. Regarding these genes and their potential role in schizophrenia and related neuropsychiatric conditions, non-synonymous point mutations in GAP43 were recently identified in two unrelated schizophrenia cases in a next-generation sequencing study [17]. DRD3 has been a longstanding candidate gene for schizophrenia, largely based on its affinity to bind antipsychotic drugs and its localization in limbic brain structures [18]. Further, LSAMP and ZBTB20 have each been implicated in various brain regions associated with schizophrenia. In a post-mortem study of schizophrenia, LSAMP expression was noted to be increased by ~20% in the dorsolateral prefrontal cortex of individuals with schizophrenia compared to controls [19]. In mice, ZBTB20 knockdowns were noted to have faulty hippocampal cytoarchitecture and selective ablation of ZBTB20 in mature hippocampal CA1 neurons led to disruptions in learning and memory [20,21].

In addition to genic haploinsufficiency, other molecular mechanisms may contribute to the phenotype of the 3q13.31 microdeletion syndrome. In particular, recent reports suggest miRNAs may play a role in mediating the risk for neurodevelopmental disorders [22,23]. Both miRNAs overlapped by the 3q13.31 deletion in this patient (miR-4796, miR-568) have predicted targets that are additional candidate genes for schizophrenia and related disorders, including SHANK2 and FMR1 [24,25]. The individual and collective influence of the above mentioned genes and miRNAs on the neuropsychiatric expression of the 3q13.31 microdeletion is deserving of further study. Of interest with respect to genotype-phenotype correlations are the few reports to date of the reciprocal 3q13.31 duplication, in which individuals appear to share some (i.e., DD/ID, hypotonia) but not all of the same clinical features as the 3q13.31 microdeletion [4,26]. The fact that neither deletions nor duplications at 3q13.31 were identified in 26,826 controls suggest that
copy number aberrations in this region, rather than haploinsufficiency alone, may be associated with the deleterious phenotypic consequences.

Implications for clinical practice

Cytogenetic anomalies may be found in up to 5-8% of cases with schizophrenia, suggesting a potential future role for clinical microarray testing in this population [9]. The occurrence of schizophrenia in the patient reported here could be unrelated to the 3q13.31 microdeletion. However, multiple lines of evidence, including the variable expression of many other recurrent large, rare CNVs, suggest a genetically-related neuropsychiatric spectrum of disease that includes both DD/ID and schizophrenia [9,27,28]. This is, to our knowledge, the first report of a 3q13.31 deletion discovered in a schizophrenia cohort. This attests to the overall rarity of these variants, and to the relative paucity of available data (almost all of which are research-based) compared with diseases like DD/ID where clinical microarray testing is now the first-tier diagnostic test [9,29]. More data are needed to delineate the role of pathogenic CNVs in the dual-diagnosis (schizophrenia and premorbid ID) population to which this patient would belong, where the yield may be significantly higher and where clinical testing is already indicated [30].

Conclusions

In conclusion, we have identified an adult male with schizophrenia and a 3q13.31 deletion overlapping four promising neurodevelopmental candidate genes: DRD3,
ZBTB20, GAP43, and LSAMP. Later-onset conditions like schizophrenia are increasingly associated with rare CNVs. Detailed phenotypic information across the lifespan facilitates genotype-phenotype correlations, accurate genetic counselling, and anticipatory care.

Consent
Written informed consent was obtained from the patient for publication of this Case report and any accompanying images. A copy of the written consent is available for review through the Editor-in-Chief of this journal.

Additional files

Additional file 1: Table S1. Genome-wide copy number variation detected by Affymetrix 6.0 microarray in the proband with a 3q13.31 deletion described in this report.

Additional file 2: Table S2. Overview and negative results of 13 control datasets (total n=26,826) searched for 3q13.31 deletions and duplications.

Abbreviations
DD/ID: Developmental delay/intellectual disability; ASD: Autism spectrum disorder; ADHD: Attention deficit hyperactivity disorder; SRO: Shortest region of overlap; CNV: Copy number variation; CT: Computed tomography; IQ: Intelligence quotient; WASI: Wechsler Abbreviated Scale of Intelligence; CLIA: Clinical Laboratory Improvement Amendments; miRNA: microRNA; TCAG: The Centre for Applied Genomics.

Competing interests
SWS is on the Scientific Advisory Board of Population Diagnostics, Inc. and is a co-founder of YouNique Genomics. The other authors declare no conflicts of interest.

Authors’ contributions
CL organized the clinical data and drafted and revised the manuscript. RM organized the clinical data and drafted and revised the manuscript. GC carried out the study and helped draft and revise the manuscript. ASB conceived, designed, carried out the study, reviewed the detailed cytogenetic studies. ACL, CRM, and SWS carried out the molecular studies. GC carried out the study and helped draft and revise the manuscript. ASB conceived, designed, carried out the study, reviewed the detailed phenotypic data, and helped draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors thank the patient for his participation, research assistants and staff at Saint John Community Mental Health Services and the Saint John Regional Hospital, and staff at The Centre for Applied Genomics (TCAG). The authors would also like to thank the anonymous reviewers for their valuable feedback. This study was supported by Canadian Institutes of Health Research (CIHR) grants (MOP-111238 and MOP-89066 to A.S.B.). A.S.B. holds a research chair and the Dalglish Chair in 22q11.2 Deletion Syndrome.

Author details
1Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada. 2Institute of Medical Science, University of Toronto, Toronto, ON, Canada. 3Cytogenetics Laboratory, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada. 4Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada. 5The Centre for Applied Genomics and Program in Genomics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada. 6Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada. 7Department of Psychiatry, University of Toronto, Toronto, ON, Canada.

Received: 30 December 2013 Accepted: 11 March 2014 Published: 20 March 2014

References
1. Molin AM, Andrieux J, Koolen DA, Malan V, Carella M, Colleaux L, Correrie-Daine V, David A, de Leeuw N, Delobel B, Duban-Bedu B, Fischetto R, Flinter F, Kjaergaard S, Kok F, Krepischi AC, Le Caignec C, Ogilvie CM, Maisa S, Mathieu-Dramard M, Munnich A, Palumbo O, Papadia F, Pfundt R, Reardon W, Receiveur A, Rio M, Ronsboro Darling L, Rosenberg C, Sa J, et al: A rare 3q13.31 microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoclastic male genitails, and characteristic facial features. J Med Genet. 2012, 49(10):104–109.
2. Shuvankov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, Wheeler PG, Wallace SE, Hannibal MC, Murray MF, Giovanni MA, Terpolsky D, Sodhi S, Cassina M, Viskochi D, Moghaddam B, Herman K, Brown OW, Beck CR, Gambin A, Cheung SW, Patel A, Lamb AN, Shaffer LG, Ellison JW, Ravan RN, Starkiewicz P, Rosenfeld JA: Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat. 2013, 34(10):1415–1423.
3. Girmelli S, Leoni M, Di Rocco M, Cardi G, Porta S, Coco C, Girmelli G, Tassano E: A rare 3q13.31 microdeletion including GAP43 and LSAMP genes. Mol Cytogenet. 2013, 6(1):52.
4. Vuillaume ML, Defraue MA, Naudion S, Toutain J, Fergelot P, Awerber B, Lacombe D, Rooyck C: Expanding the clinical phenotype at the 3q13.31 locus with a new case of microdeletion and first characterization of the reciprocal duplication. Mol Genet Metab. 2013, 110(1–2):90–97.
5. Shinojima K, Saito K, Yamamoto T, A & de novo 1.9-Mb interstitial deletion of 3q13.2-q13.31 in a girl with dysmorphic features, muscle hypotonia, and developmental delay. Am J Med Genet A. 2009, 149A(8):1818–1822.
6. Nielsen JV, Thomasen M, Mollgard K, Norberg J, Jensen NA: Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex. 2013 (Epub ahead of print).
7. Inno J, Koido K, Phillips MA, Vasar E: Limbic system associated membrane protein as a potential target for neuropsychiatric disorders. Front Pharmacol 2013, 4:32.

8. Allen-Brady K, Miller J, Matsunami N, Stevens J, Block H, Farley M, Krasny L, Pingree C, Lainhart J, Leppert M, MacMahon WM, Coon H: A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol Psychiatry 2009, 14(6):550–600.

9. Costain G, Lionel AC, Merico D, Forsythe P, Russell K, Lowther C, Yuen T, Husted J, Stavropoulos DJ, Speevak M, Chow EW, Marshall CR, Scherer SW, Bassett AS: Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrayas. Hum Mol Genet 2013, 22(22):4485–4501.

10. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST, Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee: American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 2011, 13(7):680–685.

11. Firth HV, Richards SM, Bevan AP, Clayton S, Copas M, Rajan D, Van Vroeren S, Moreau Y, Petitt RM, Carter NP: DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genom 2009, 84(4):524–533.

12. Lionel AC, Crobie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J, Gazzellone M, Carson AR, Howe JL, Wang Z, Wei J, Stewart AF, Roberts R, McPherson R, Fiebig A, Franke A, Schreiber S, Zwaigenbaum L, Fernandez BA, Roberts W, Arnold PD, Sztatmai P, Marshall CR, Schachar R, Scherer SW: Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med 2011, 3(95):95ra75.

13. Macdonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW: The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 2014, 42(1):D986–D992.

14. Wisniewska-Kowalik B, Kastory-Bronowicka M, Barink M, Derwinska K, Dymczak-Domini W, Szumbarska D, Ziemka E, Szczaluba K, Sykulski M, Gambin T, Shaw CA, Mazurczak T, Obersztyn E, Bocian E, Staniekiewicz P: Application of custom-designed oligonucleotide array CGH in 145 patients with autistic spectrum disorders. Eur J Hum Genet 2013, 21(6):620–625.

15. Materna-Kryluk A, Kryluk K, Burgess KE, Bejaniannk A, Sanna-Cherchi S, Gharavi AG, Lato-Bielenka A: The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1. Pediatr Nephrol 2014, 29(2):257–267.

16. Rouke BP, Ahmad SA, Collins DW, Hayman-Abello BA, Hayman-Abello SE, Warriner EM: Child clinical/pediatric neuropsychology: some recent advances. Am Rev Psychol 2002, 53:309–339.

17. Need AC, McEvoy JP, Gennarelli M, Heinen EL, Ge D, Maia JM, Shanna KV, He M, Cirulli ET, Gumbis CE, Zhao Q, Campbell CR, Hong L, Rosenberg BS, Putkonen A, Hallikainen T, Repo-Tohonen E, Tohonon J, Levy DL, Mietzer HY, Golden DB: Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet 2012, 91(2):303–312.

18. Cho D, Zheng M, Kim XM: Current perspectives on the selective regulation of dopamine D2 and D3 receptors. Arch Pharm Res 2010, 33(10):1521–1538.

19. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR: Proteomic analysis of membrane microdomain associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 2009, 14(6):601–613.

20. Ren A, Zhang H, Xie Z, Ma X, Ji W, He DZ, Yuan W, Ding YQ, Zhang XH, Zhang WJ: Regulation of hippocampal-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons. Physiol 2012, 590(3 Pt 19):4917–4932.

21. Xie Z, Ma X, Ji W, Zhou G, Lu Y, Xiang Z, Wang YY, Zhang L, Hu Y, Ding YQ, Zhang WJ: Zbtb20 is essential for the specification of CA1 field identity in the developing hippocampus. Proc Natl Acad Sci U S A 2010, 107(14):6510–6515.

22. Brzustowicz LM, Bassett AS: miRNA-mediated risk for schizophrenia in 22q11.2 deletion syndrome. Front Genet 2012, 3:291.

23. Melillo N, Sur M: The emerging role of microRNAs in schizophrenia and autism spectrum disorders. Front Psychiatry 2012, 3:39.