Accelerated closed universes in scalar-tensor theories

Sergio del Campoa and Patricio Salgadob,c

a Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile.
b Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
c Max-Planck Institut, für Strömungsforschung Bunsenstrasse 10, D-37073, Göttingen, Germany

(Dated: January 16, 2019)

We describe an accelerating universe model in the context of a scalar-tensor theory. This model is intrinsically closed, and is filled with quintessence-like scalar field components, in addition to the Cold Dark Matter component. With a background geometry specified by the Friedman-Robertson-Walker metric, we establish conditions under which this closed cosmological model, described in a scalar-tensor theory, may look flat in a genuine Jordan-Brans-Dicke theory. Both models become indistinguishable at low enough redshift.

PACS numbers: 98.80.Hw, 98.80.Bp

I. INTRODUCTION

Recent astronomical observations conclude that the matter density related to baryonic matter and to non-baryonic cold dark matter, is much less than the critical density value $\Omega^0 = 1$. From this it may be concluded that either the universe is open or that there are some other matter components which make the total matter density value close to one. We should note that each cosmological model is defined by a scalar field ϕ and its potential $V(\phi)$ which contribute to the total matter and the critical energy density, close to one. We have given for explaining the corresponding astronomical data. Among them, we distinguish those related to dark energy (quintessence) models, which are characterized by a scalar field χ and its potential $V(\chi)$.

One characteristic of this acceleration is that it may be quite recent, since it has been determined for low redshift parameter, $0.5 < z < 1$. Beyond these redshifts the behavior of the universe should be decelerating. In this way, at different epochs in the evolution of the universe we may expect that different "matter" components dominated its evolution. Certainly, these different "matter" components should be compared not only with each other, but also with the curvature term, which defines the geometry of the universe.

In relation to the geometry of the universe, most cosmologists prefer a flat rather than a closed or an open universe. This is motivated by the mentioned redshift-distant relation for supernova of type Ia, anisotropies in the cosmic microwave background radiation and gravitational lensing, which suggest that $\Omega_T = \Omega_M + \Omega_\Lambda = 1.00 \pm 0.12$ (95% c.l.), with Ω_M the ordinary matter density parameter, where baryons and CDM are the main contributions, and $\Omega_\Lambda = \frac{\Lambda}{3H_0^2}$ is associated with a smoothly distributed vacuum energy referred to as a cosmological constant Λ, and with H_0 the actual value of the Hubble parameter (from now on the subscript zero refers to quantities evaluated at the current epoch). The expression for Ω_T given above is the main characteristic of the so called ΛCDM model.

Nothing can prevent us from thinking that this flatness might be due to a compensation among different components that enter into the dynamical equations. In fact, our main goal in this paper is to describe this idea in a Scalar-Tensor or in a version of the Jordan-Brans-Dicke (JBD) theory, where the JBD scalar field ϕ has associated a scalar potential $V(\phi)$. The salient feature of this sort of theory depends on the strength of the dimensionless coupling "constant" ω that depends on the JBD scalar field ϕ in general. Here, we will consider it to be a constant that we will designated by ω_0. At present, observational limits from the solar system measurements give $\omega_0 \gtrsim 3000$.

We will fix the value of this parameter to be the quantity $\omega_0 = 3000$, throughout this paper.

We intend to start with a closed universe model com-
posed of three matter components. One of these components is the usual nonrelativistic dust matter (baryonic and CDM) \(\rho_M \), and the other two components correspond to quintessence-type matters which we will characterize by the scalar fields \(Q \) and \(\chi \). The scalar field \(Q \) will be introduced in such a way that its dynamics will exactly cancel the curvature together with the scalar potential term associated with the JBD field, so that the resulting model will mimic a flat accelerating universe in a genuine JBD theory. Both models become indistinguishable at a low enough redshift parameter. The JBD mimicked accelerated universe will be dominated by the scalar field \(\chi \). It has the characteristics of a dark energy component, and thus, its function will be to produce the acceleration of the universe.

One of the main characteristics of the \(Q \) field is that it obeys an equation of state given by \(P_Q = w_Q \rho_Q \). Here, \(P_Q \) and \(\rho_Q \) represent the pressure and the energy density, respectively. The quantity \(w_Q \) corresponds to the equation of state parameter and its range will be determined later on. Furthermore, we shall assume that this scalar field does not interact with any other field, except with the gravitational field. This scalar field will appear in the fundamental field equations as a fluid component.

On the other hand, the scalar field \(\chi \), contrarily to \(Q \), will interact not only with the gravitational field, but also with the JBD scalar field \(\phi \). The reason for this is that we want to obtain the correct equations of motion in the limit \(\chi \rightarrow \text{const.} \), i.e., a universe model dominated by a cosmological constant in a JBD-type of theory. In section III we introduce the constraint equations that allow mimicking a flat universe model from a curved universe model. Section IV describes a flat accelerated universe model, in which we determine the main properties of the accelerating scalar field. Here, we also determine the deceleration parameter and the angular size as a function of time and of redshift, respectively. In section V we study a universe model dominated by a cosmological constant. Our conclusions are drawn in section VI.

II. THE JBD-TYPE FIELD EQUATIONS

We take the effective action to be given by

\[
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[\phi R + \frac{\omega_0}{\phi} \partial_\mu \phi \partial^\mu \phi - \nabla^2 \phi + \sqrt{\frac{1}{2} \partial_\mu \chi \partial^\mu \chi - \phi V(\chi) + \mathcal{L}_{\text{fluid}}} \right],
\]

where \(R \) is the Ricci scalar curvature, \(\nabla^2 \phi \) is the scalar potential associated with the scalar JBD field \(\phi \), and \(\mathcal{L}_{\text{fluid}} \) is a classical bicomponent-fluid Lagrangian in which we include the minimally coupling scalar field \(Q \) and the CDM component. From now on we disregard any possible coupling of \(Q \) with ordinary matter, radiation, or dark matter. Notice that we have included here an interaction between the JBD field \(\phi \), and the dark energy field \(\chi \). The inclusion of this interaction comes motivated by the fact that we want to associate the scalar potential \(V(\chi) \) with the cosmological constant \(\Lambda \) in the limit \(\chi \rightarrow \text{const.} \), together with the correspondence \(\phi R \rightarrow \phi (\Lambda R - 2\Lambda) \). Another possibility is to consider the potential associated with the JBD field \(\nabla^2 \phi \), with a variable cosmological constant. Here we follow the former approach in which the cosmological acceleration is completely due to the scalar field \(\chi \).

The variation of the action \(\Pi \) with respect to the metric tensor \(g_{\mu\nu} \), the JBD field \(\phi \), and the Quintessence-like scalar field \(\chi \), yields the following set of Equations:

\[
G_{\mu\nu} = -\frac{8\pi}{\phi} T_{\mu\nu}^M - \frac{\omega_0}{\phi^2} \left[\partial_\mu \phi \partial_\nu \phi - \frac{1}{2} g_{\mu\nu} \partial^\alpha \phi \partial_\alpha \phi \right]
\]

\[
-\frac{1}{\phi} \left[D_\mu D_\nu \phi - g_{\mu\nu} \Box \phi + \frac{1}{2} g_{\mu\nu} \nabla^2 \phi \right] + \frac{1}{2} g_{\mu\nu} \nabla^2 \phi + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + g_{\mu\nu} \phi V(\chi),
\]

\[
\Box \phi - \frac{1}{2 \phi} \partial_\mu \phi \partial^\mu \phi + \frac{\phi}{2 \omega_0} \frac{\partial \phi}{\partial \phi}
\]

The plan of the paper is as follows: In section II we write down the field equations for a curved universe model in the scalar-tensor theory. In section III we introduce the constraint equations that allow mimicking a flat universe model from a curved universe model. Section IV describes a flat accelerated universe model, in which we determine the main properties of the accelerating scalar field. Here, we also determine the deceleration parameter and the angular size as a function of time and of redshift, respectively. In section V we study a universe model dominated by a cosmological constant. Our conclusions are drawn in section VI.
In these Equations, \(G_{\mu\nu}\) is the Einstein tensor, \(R\) the scalar curvature, \(T_{\mu\nu}\) the matter stress tensor associated with the two fluid lagrangian, \(L_{\text{Fluid}}\), and \(\square \equiv D_{\alpha}D^{\alpha} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\alpha}} (\sqrt{-g} g^{\alpha\beta} \partial_{\beta})\).

If we assume that the spacetime is isotropic and homogeneous with metric corresponding to the standard Friedman-Robertson-Walker (FRW) metric

\[
ds^2 = dt^2 - a(t)^2 \left[\frac{dr^2}{1 - kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right],
\]

where \(a(t)\) represents the scale factor and the parameter \(k\) takes the values \(k = -1, 0, 1\) corresponding to an open, flat, and closed three-geometry, respectively, and considering also that the JBD field \(\phi\) is homogeneous, i.e., is a time-depending quantity only, (the same is assumed for the other fields) the set of Equations (2) - (3) yields the following field Equations:

\[
\Box \phi + \frac{1}{\phi} \frac{\partial V(\phi)}{\partial \phi} = 0
\]

(4)

and, for each fluid component we have a conservation law

\[
T_{\mu\nu}^{\text{Fluid}} = 0 \quad (i = 1, 2).
\]

(5)

In these Equations, \(G_{\mu\nu}\) is the Einstein tensor, \(R\) the scalar curvature, \(T_{\mu\nu}\) the matter stress tensor associated with the two fluid lagrangian, \(L_{\text{Fluid}}\), and \(\square \equiv D_{\alpha}D^{\alpha} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\alpha}} (\sqrt{-g} g^{\alpha\beta} \partial_{\beta})\).

If we assume that the spacetime is isotropic and homogeneous with metric corresponding to the standard Friedman-Robertson-Walker (FRW) metric

\[
ds^2 = dt^2 - a(t)^2 \left[\frac{dr^2}{1 - kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right],
\]

where \(a(t)\) represents the scale factor and the parameter \(k\) takes the values \(k = -1, 0, 1\) corresponding to an open, flat, and closed three-geometry, respectively, and considering also that the JBD field \(\phi\) is homogeneous, i.e., is a time-depending quantity only, (the same is assumed for the other fields) the set of Equations (2) - (3) yields the following field Equations:

\[
3 \left(\frac{\dot{a}}{a} \right)^2 + 3 \frac{k}{a^2} = \frac{1}{2\phi} \left[\frac{\omega_f}{\phi} (\dot{\phi})^2 + \tilde{V}(\phi) - 6 \frac{\dot{\phi}}{\phi} \right]
\]

(6)

\[
+ 16\pi \left(\rho_{\text{Fluid}} + \frac{1}{2} \dot{\chi}^2 + \phi V(\chi) \right),
\]

(7)

\[
2 \frac{\ddot{a}}{a} \left(\frac{\dot{a}}{a} \right)^2 + \frac{k}{a^2} = - \frac{1}{2\phi} \left[\frac{\omega_f}{\phi} (\dot{\phi})^2 + 2 \dot{\phi} + 4 \frac{\dot{\phi}}{\phi} \right]
\]

(8)

\[
- \frac{\ddot{\phi}}{\phi} + 3 \frac{\dot{\phi}}{\phi} \frac{\dot{\phi}}{\phi} + \frac{1}{3 + 2\omega_f} \left[\frac{\partial \tilde{V}(\phi)}{\partial \phi} - 2 \frac{\tilde{V}(\phi)}{\phi} \right]
\]

(9)

\[
\frac{\dot{\phi}}{\phi} + 3 \frac{\dot{\phi}}{\phi} \frac{\dot{\phi}}{\phi} + \frac{1}{3 + 2\omega_f} \left[\frac{\partial \tilde{V}(\phi)}{\partial \phi} - 2 \frac{\tilde{V}(\phi)}{\phi} \right]
\]

(10)

From Eq. (5), the continuity equations for each individual fluid component are given by

\[
\dot{\rho}_i = -3 \frac{\dot{a}}{a} (\rho_i + P_i) \quad (i = 1, 2).
\]

(11)

These fluid components represent, on the one hand, the usual (Cold Dark) matter component \((\rho_m, P_m)\) with equation of state \(P_m = 0\) (dust), and therefore \(\rho_m(t) \propto a^{-3}(t)\). On the other hand, we have the quintessence-like scalar field \(\phi(t)\). For this latter field we define a density and pressure by

\[
\rho_{\phi} = \frac{1}{2} \dot{\phi}^2 + V(\phi),
\]

(12)

and by

\[
P_{\phi} = \frac{1}{2} \dot{\phi}^2 - V(\phi),
\]

(13)

respectively. This scalar field obeys an equation of state given by \(P_{\phi} = w_{\phi} \rho_{\phi}\). In the following, we consider this parameter to be constant, and we will determine its range of values in the next section. Here also, the gravitational "constant" becomes given by

\[
G(t) = 2 \left(\frac{\omega_f + 2}{2\omega_f + 3} \right) \frac{1}{\phi(t)}.
\]

(14)

This latter expression fixes the present value of the JBD scalar field \(\phi(t)\) in terms of the Newton constant \(G\) and the JBD parameter \(\omega_f\).

III. THE FLATNESS CONSTRAINT EQUATIONS

As was specified in the introduction, we want to describe a curved universe which, at low redshift, mimicks a flat universe model. In order to do this, we substitute the fluid components into the field Equations, and we extract the following "flatness constraint Equations":

\[
3 \frac{k}{a^2} = \frac{8\pi}{\phi} \rho_{\phi} + \frac{\tilde{V}(\phi)}{2\phi},
\]

(15)

\[
-k \frac{\dot{a}}{a^2} = \frac{8\pi}{\phi} P_{\phi} - \frac{\tilde{V}(\phi)}{2\phi},
\]

(16)

and

\[
\frac{8\pi}{\phi} (\rho_{\phi} - 3 P_{\phi}) = \frac{\partial \tilde{V}(\phi)}{\partial \phi} - 2 \frac{\tilde{V}(\phi)}{\phi}.
\]

(17)
With these conditions the following set of dynamical field equations occurs:

\[
3 \left(\frac{\dot{a}}{a} \right)^2 - 8\pi V(\chi) = \frac{8\pi}{\phi} \left[\rho_m + \frac{1}{2} \chi^2 \right] + \frac{\omega_0}{2} \left(\frac{\dot{\phi}}{\phi} \right)^2 - 3 \frac{\dot{a}}{a} \frac{\dot{\phi}}{\phi} .
\]

(18)

\[-2 \frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a} \right)^2 + 8\pi V(\chi) = \frac{4\pi}{\phi} \chi^2 + \frac{\omega_0}{2} \left(\frac{\dot{\phi}}{\phi} \right)^2 + \frac{\phi}{\phi} + 2 \frac{\dot{a}}{a} \frac{\dot{\phi}}{\phi} .
\]

(19)

and

\[\frac{\dot{\phi}}{\phi} + 3 \frac{\dot{a}}{a} \frac{\dot{\phi}}{\phi} - \frac{8\pi}{3 + 2\omega_0} \frac{1}{\phi} \left(\rho_m - \chi^2 \right) + 2 V(\chi) .
\]

(20)

To this set of Equations we should add Eq. (10) which does not change. Therefore, our fundamental set of Equations is formed by Eqs. (15) - (17) together with Eq. (10). We should stress here that this set of Equations correspond to a genuine JBD theory. Therefore, we have passed from a curvature (closed) model, described by using a scalar-tensor theory (characterized by a scalar potential), to a flat model, described by using the JBD theory.

At this point we might specify that the constraint Eqs. (15) - (17) may be looked upon as assumptions meant for some simplification of the Equations of motions described by Eqs. (7) - (9). Before studying this set of Eqs. of motion we want to describe the characteristics of either of the scalar fields \(Q\) and \(\phi\) by using the constraint Eqs. (15) - (17). First of all, adding Eqs. (15) and (16) and using the Equation of state \(P_Q = w_Q \rho_Q\), we obtain an expression that, when evaluated at present time, we get

\[\Omega_Q = \frac{4}{3\kappa} \left(\frac{\Omega_k}{1 + w_Q} \right) ,
\]

(21)

where \(\kappa\), \(\Omega_Q\) and \(\Omega_k\) become defined by \(\kappa = \frac{4 + 3 w_m}{3 w_0}\), \(\Omega_Q = \frac{8\pi G}{3 \kappa H_0^2} P_Q^0\) and \(\Omega_k = \frac{8\pi G}{3 H_0^2} \), respectively. Now, since \(k \neq 0\) and \(| w_Q | < 1\), we should take \(k = 1\), otherwise the energy density \(\rho_Q\) would be negative, violating the strong energy condition. Therefore, in the following we will restrict ourselves to closed universe models. On the other hand, by subtracting Eqs. (15) and (16) and using again the Equation of state for the \(Q\) field, we get

\[\rho_Q = \frac{1}{8\pi} \frac{1}{1 + w_Q} \bar{V}(\phi) .
\]

(22)

where \(\sigma\) becomes defined by \(\sigma = 1 + 3w_Q\). This latter expression tells us that we must have \(w_Q > -1/3\) in order to make \(\rho_Q\) a positive quantity. Thus, we can say that the range of the \(w_Q\) parameter corresponds to \(-1/3 < w_Q \leq 1\).

Combining Eqs. (17) and (22), we can obtain an explicit expression for the JBD scalar potential:

\[\bar{V}(\phi) = \bar{V}_0 \left(\frac{\phi}{\phi_0} \right)^{3 \left(\frac{1 + w_Q}{\sigma} \right)} .
\]

(23)

Here, the constant of integration has been fixed by asking that the scalar potential at present time becomes \(\bar{V}_0\).

With the help of this latter relation we could get a more precise value of the constant \(w_Q\). By using Eq. (23) together with the constraint Eqs. (15) and (16) we get a relation between the scale factor \(a\) and the JBD field \(\phi\) given by \(\left(1 + w_Q \right) a^2 = \frac{\phi_0}{\bar{V}_0} \left(\frac{\phi}{\phi_0} \right)^{-2/\sigma}\), which yields the following relation:

\[H(t) = \left(\frac{1}{\sigma} \right) \epsilon(t),
\]

(24)

where \(H(t) = \dot{a}/a\) is the hubble parameter and \(\epsilon(t) = -\dot{\phi}/\phi = G(t)/G(t)\) represents the changing rate of the gravitational constant. When this expression is evaluated at present time, we get for the parameter \(w_Q\) the following quantity:

\[w_Q = -\frac{1}{3} + \frac{1}{3} \frac{\epsilon_0}{H_0} .
\]

(25)

Therefore, this parameter becomes determined by the ratio of the present time variation of the gravitational constant and the Hubble parameter. Local laboratory and solar system experiments put an upper limit on the \(\epsilon_0\) parameter given by \(\epsilon_0 \leq \pm 10^{-11}\) per year. This limit together with the value measured for the Hubble parameter, which is in the range \(56 [\text{Km/s/Mpc}] \leq H_0 \leq 88 [\text{Km/s/Mpc}]\) according to the \(2\sigma\) range of the HST Key Project [21], induce a limit for the \(w_Q\) parameter. We will consider a positive value for \(\epsilon_0\) (the gravitational "constant" is an increasing function of time). In order to agree with the bound specified for \(w_Q\) previously, we will use the value \(w_Q = -0.3324\), which corresponds to \(\epsilon_0 = 10^{-13}\) per year and \(H_0 = 72 [\text{Km/s/Mpc}]\).

Since our interest is to describe an accelerating universe, we will assume that \(a\) is a function of the cosmic time \(t\) in the form \(a(t) = a_0 \left(\frac{t_0}{t} \right)^N\), with \(N \geq 1\). With this assumption, together with the constraint Eqs. and the Equation of state for the scalar field \(Q\), we find that

\[Q(t) = Q_0 \left[1 - \left(\frac{t_0}{t} \right)^{N-1} \right] + Q_0 V_Q(\phi) t_0^{2N},
\]

where \(Q_0\) is the present value of \(Q\), \(\alpha = \frac{3}{2} N (1 + w_Q)\), \(\bar{Q} = \frac{a - 1}{t_0} \sqrt{\frac{8\pi \sigma}{\bar{V}_0} \left(\frac{1 + w_Q}{1 + w_Q} \right)}\), and \(V_Q^0 = \frac{\bar{V}_0}{16\pi} \left(1 - w_Q \right)\).
These relations allow us to write an explicit expression for the scalar potential associated with \(Q \):

\[
V(Q) = V_Q^0 \left[1 - \frac{Q}{Q_0} \right]^{\frac{2\pi}{\alpha_t}}. \tag{26}
\]

Figure 1 shows the form of the potential for four different values of \(N \). We note that the potential decreases when \(Q \) increases, tending to a vanishing value for \(Q \rightarrow \infty \). Note also that as we increase the value of \(N \), \(V(Q) \) tends to zero faster. Asymptotically, this scalar field behaves as a stiff fluid (\(P_Q = \rho_Q \)), for \(Q \neq 0 \).

FIG. 1: Plot of the scalar potential \(V_Q \) (in units of \(\frac{V_{Q0}}{16\pi} \left(\frac{1 - w_{Q0}}{\sigma} \right) \)) as a function of the scalar field \(Q \) (in unit of \(Q_0 \)), for four different values of the parameter \(N \). We have taken \(w_Q = -0.3324 \). The point \(M \), where all the curves intercept, coincides with \(Q_0 \equiv t_0 \sqrt{V_0/8\pi} \).

IV. AN ACCELERATED UNIVERSE MODEL

Starting from the field Eqs. 18 - 20, together with Eq. 10, we want to describe the main characteristics of our accelerated model. Specifically, we want to determine the characteristics of the scalar field \(\chi \). By using the accelerated power law solution, it is not hard to find that the scalar field \(\chi \) and its associated potential \(V(\chi) \) become given by

\[
\chi(x) = \sqrt{\frac{1}{\pi G}} \frac{\eta_1}{2\beta} x^{-\beta} \\
\times \, _2F_1 \left(\left[-\frac{\beta}{\gamma}, \frac{1}{2} \right], \left[\frac{\gamma - \beta}{\gamma} \right], A_1 x^\gamma \right) \tag{27}
\]

and

\[
V(x) = \left(\frac{H_0^2}{16\pi} \right) \eta_2 \left[x^{-2/N} - A_1 x^{-\delta} \right], \tag{28}
\]

respectively. Here, the constants are given by \(\beta = 3(\frac{1}{\lambda} + w_{Q}), \gamma = \frac{w_0}{2} \sigma^2 - 3\sigma \) and \(A_1 = \frac{3}{2} \frac{\Omega_M}{\eta_2} \). The minimal value of the scalar field \(\chi \), where the potential \(V(\chi) \) vanishes, corresponds to the value

\[
\chi_{\text{min}} = \left\{ 3\beta \left(\frac{\Omega_M}{3 - \frac{w_0}{2} \sigma^2 - 3\sigma} \right) \right\}^{1/(3-\sigma-2/N)}.
\]

FIG. 2: This graph shows the scalar potential \(V_\chi \) (in units of \((16\pi t_0^2)^{-1} \)) as a function of the scalar field \(\chi \) (in units of \((2\pi G N)^{-1/2} \)) for different values of the parameter \(N \), as is shown in the figure. Here, we have taken \(\Omega_M = 0.35 \), \(w_\chi = -3324 \) and \(w_0 = 3000 \).

By using numerical computations we can plot the scalar potential \(V_{\chi} \) as a function of the scalar field \(\chi \). Figure 2 shows the potential \(V(\chi) \) as function of the scalar field \(\chi \) for four different values of the parameter \(N \), and the other parameters \(w_0 \) and \(w_\chi \) have been fixed at 3000 and -0.3324, respectively. All of these curves asymptotically tend to vanish for \(\chi \rightarrow \infty \). There, in this limit and for \(\chi \neq 0 \), the universe becomes dominated by a stiff fluid with Equation of state \(P_\chi = \rho_\chi \). This property also is found in similar models described by using Einstein’s theory of gravity 18.

If we associate with the scalar field \(\chi \) an energy and pressure density defined by \(\rho_\chi = \frac{\chi^2}{2} + \phi(\chi) \) and \(P_\chi = \frac{1}{2} \chi^2 - \phi(V(\chi)), \) respectively, we can introduce an equation of state parameter \(w_\chi \) defined by the ratio \(P_\chi/\rho_\chi \). It is not hard to see that this quantity is negative for small redshifts. This means that the scalar field \(\chi \) acts as the source for the acceleration of the universe. In general this quantity is variable and becomes a constant only for \(N = \frac{3}{\frac{2}{2} w_\chi} \). In any case its present value
will be interesting at the time of calculating the present deceleration parameter q_0, as we will see soon.

From the definition of the deceleration parameter $q(t) = -\frac{\dot{a}(t)}{a(t)H(t)^2}$ together with the field Equation of motion, Eqs. (19), we obtain

$$q(t) = \frac{1}{2} + \frac{4\pi}{3+2w_0} \frac{\rho_m}{H^2 \varphi} + 4\pi w_0 \left(\frac{1+w_0}{3+2w_0}\right) \frac{\rho_x}{H^2 \varphi} + \frac{w_0}{4} \left(\frac{\epsilon}{H}\right)^2 + \frac{1}{2} \left(\frac{\epsilon}{H}\right)^2.$$

(29)

This expression, together with Eq. (20), when evaluated at present time, gives

$$q_0 = \frac{1}{2} \left(\frac{3+w_0}{2+w_0}\right) \Omega_M + \frac{1}{4} \Omega_X \left[1 \right.$$

$$+ 3 \left(\frac{1+2w_0}{3+2w_0}\right) w_0^3 + \frac{w_0}{3} \left(\frac{\epsilon}{H}\right)_0^2 + \left(\frac{\epsilon}{H}\right)_0^2 \left.\right].$$

(30)

where w_0^0 represents the present density parameter Ω_x defined by $\Omega_x = \frac{8\pi G}{3H^2} \rho_x^0$. In order to describe an acceleration for our model, we need to satisfy for the w_0^0 parameter the following inequality:

$$w_0^0 < -\frac{1}{3} \left(\frac{3+w_0}{1+2w_0}\right) \left[1 + 2 \left(\frac{3+w_0}{3+2w_0}\right) \Omega_M + \frac{1}{4} \Omega_X \left[1 \right.$$

$$+ 3 \left(\frac{1+2w_0}{3+2w_0}\right) w_0^3 + \frac{w_0}{3} \left(\frac{\epsilon}{H}\right)_0^2 + \left(\frac{\epsilon}{H}\right)_0^2 \left.\right]$$

which coincides with the result found in Einstein's theory of gravity, in the limit $\omega_0 \rightarrow \infty$. Note that here we have neglected the ratio $\left(\frac{\epsilon}{H}\right)_0^2$ (and its square).

Now we would like to calculate the angular size $\Theta(z)$ as a function of the redshift z. In order to do this, we need first to calculate the luminosity distance $d_L(z)$. This parameter plays a crucial role in describing the geometry and matter content of the universe. From the metric (4), we observe that light emitted by the object of luminosity L and located at the coordinate distance θ at a time t, is received by an observer (assumed located at $\theta = 0$) at the time $t = t_0$. The time coordinates are related by the cosmological redshift z in the θ direction by the expression: $1+z = a_0/a(\theta)$. The luminosity flux reaching the observer is $F = L/4\pi d_L^2$, where d_L is the luminosity distance to the object, given by $d_L(z) = a_0 \sin[\theta(z)](1+z)$. On the other hand, if we want to obtain an explicit expression for the angular size, let us now consider an object aligned to the φ direction and proper length l, so that its "up" and "down" coordinates are $(\theta, \varphi + \delta \varphi, 0)$ and $(\theta, \varphi, 0)$. The proper length of the object is obtained by setting $\theta = \text{const.}$ in the line-element metric (5), $ds^2 = -dt^2 = -a^2(t) \sin^2(\theta) d\varphi^2$. Thus, the angular size becomes $\delta \varphi \equiv \Theta(z) = \frac{l}{d_L(z)}(1+z)$.

Our solution gives

$$\Theta(z) = \frac{1}{H_0} \frac{\Omega(1+z)}{\sin\left[\pi \left(\frac{(1+z)}{N} - 1\right)\right]},$$

(31)

where $N = 1 - 1/N$ and $\Omega = \frac{3}{8}(1+w_0)\kappa \Omega Q$.

Figure 3 shows the angular size as a function of the redshift for three different values of the parameters N ($N=2$, 3, 4). We have used the value $\Omega Q = 0.02$. For comparison, in this plot we have added the graph of the angular size corresponding to the flat FRW model for $N=4$. Notice that, at sufficient large redshift, the two curves begin to separate. Therefore, we expect that we could distinguish them at high enough redshift.

V. COSMOLOGICAL CONSTANT UNIVERSE MODEL

Here we study the case in which $\chi = \chi_0 = \text{const.}$ and taking $8\pi V(\chi_0) = \lambda$. The set of Equations (18) - (20) reduces to

$$3 \left(\frac{\dot{\alpha}}{\alpha}\right)^2 - \lambda = \frac{8\pi}{3} \rho_m \left(\frac{\dot{\varphi}}{\varphi}\right)^2 - 3 \frac{\dot{\alpha}}{\alpha} \frac{\dot{\varphi}}{\varphi}$$

(32)

$$- 2 \frac{\ddot{\alpha}}{\alpha} - \left(\frac{\dot{\alpha}}{\alpha}\right)^2 + \lambda = \frac{\omega_0}{2} \left(\frac{\dot{\varphi}}{\varphi}\right)^2 + \frac{\ddot{\varphi}}{\varphi} + 2 \frac{\dot{\alpha}}{\alpha} \frac{\dot{\varphi}}{\varphi}$$

(33)

and

$$\frac{\ddot{\varphi}}{\varphi} + 3 \left(\frac{\dot{\alpha}}{\alpha}\right) \left(\frac{\dot{\varphi}}{\varphi}\right) = \frac{2\lambda}{3+2w_0} + \frac{8\pi}{3} \frac{\rho_m}{3+2w_0}.$$

(34)

This set of Eqs. coincides with that studied in Ref. [14]. There, dust ($P_M \approx 0$) was considered for the matter component. The case $\Lambda = 0$ was treated in Ref. [21].
In order to write down a possible solution for the set of Equations (32) - (34) we first notice that the quantity

\[B_1 = \sqrt{1 - \frac{2}{4 + 3w_0} \left(\frac{2}{\kappa} \right) \left(\frac{\Omega_X}{\Omega_M} \right) [1 + (1 + w_0)\sigma]^2,} \]

with \(\Omega_X, \Omega_M, \kappa \) and \(\sigma \) defined in the previous section, is real for the present values of the quantities that we are considering. Therefore, the solution to this set of Equations which vanishes at \(t = 0 \) becomes

\[
a(t) = a_0 \begin{cases}
B_1 \cosh \left[2\kappa \chi (x - x_c) \right] - 1
& \text{if } \Omega_X < 0 \\
B_1 \cosh \left[2\kappa \chi (x_0 - x_c) \right] - 1
& \text{if } \Omega_X > 0
\end{cases} \]

\[\times \begin{cases}
\frac{B_2 \tanh \kappa \chi (x - x_c)}{B_2 \tanh \kappa \chi (x_0 - x_c) + 1} - 1
& \text{if } \Omega_X < 0 \\
\frac{B_2 \tanh \kappa \chi (x_0 - x_c)}{B_2 \tanh \kappa \chi (x_0 - x_c) + 1} - 1
& \text{if } \Omega_X > 0
\end{cases} \alpha_1 \alpha_2, \quad (35) \]

where \(x = H_0 t, \kappa \chi = \frac{1}{2} \sqrt{3 \Omega_X}, \quad B_2 = \sqrt{\frac{1 + B_1}{1 - B_1}}, \quad x_c = -\frac{1}{\kappa \chi} \tanh^{-1}(B_2^{-1}), \quad \alpha_1 = \frac{1 + w_0}{4 + 3w_0}, \quad \alpha_2 = \frac{1}{4 + 3w_0} \sqrt{\frac{3 + 2w_0}{2}} \quad \text{and} \quad \eta = \sqrt{2 \frac{4 + 3w_0}{3 + 2w_0}} \).

From this expression we can determine the deceleration parameter \(q(t) \) as we defined it previously. The following Figure shows how this parameter changes with time for three different values of the density parameter \(\Omega_X \). \(\Omega_X \) is given, the parameter \(\Omega_M \) becomes immediately determined, since this parameter has to satisfy the relation

\[\Omega_M = \frac{2}{\kappa} \left(1 - \sigma \left[1 + \frac{w_0}{6} \sigma \right] \right) - \Omega_X. \]

This relation results from the field Eq. (32) when it is evaluated at the present time. Note also that this relation reduces to the expression \(\Omega_M + \Omega_X = 1 \), in the limit of Einstein’s theory.

Note also that the deceleration parameter tends to the value -0.1 at the current epoch, as shown from Fig. 4 implying that the expansion of the universe is accelerating rather than slowing down. This certainly agrees with evidence coming from type Ia supernova observational data [3, 5]. Finally, we should mention that, in the limit of \(\phi \rightarrow \text{const.} \) and \(\omega \rightarrow \infty \), the solution of Eq. (35) becomes

\[a(t) \sim \sinh^{2/3} \left(\frac{3}{2} \sqrt{\Omega_X} H_0 t \right), \quad (36) \]

which is nothing but the exact solution to the Friedmann Equations [14].

VI. CONCLUSIONS

We have described a closed universe model in which, apart from the usual Cold Dark Matter component, we have included a quintessence-like scalar field \(Q \) in a scalar-tensor theory characterized by a scalar JBD field \(\phi \) and its scalar potential \(V(\phi) \). We have fine-tuned the \(Q \) component, together with the curvature term and the scalar potential \(V(\phi) \), for mimicking a flat universe model. The resulting model corresponds to the Quintessence (or Dark Energy) Cold Dark Matter (\(\chi CDM \)) scenario described in a JBD theory of gravity, in which the JBD parameter \(w_0 \) has the value \(w_0 = 3000 \), in agreement with solar experiments. The flatness conditions allow us to obtain the properties of the scalar field \(Q \) together with the JBD scalar field \(\phi \). Especially, we have determined an explicit form for the potentials \(V(Q) \) and \(V(\phi) \). There, we have imposed an effective equation of state, \(P_Q = w_Q \rho_Q \), for the field \(Q \), in which the equation of state parameter \(w_Q \) has taken the value \(w_Q = -0.3324 \). The main characteristic of \(V(Q) \) is that it decreases when \(Q \) increases, going to zero asymptotically. Contrarily, the potential \(V(\phi) \) occurred as an increasing quantity when \(\phi \) increases.

After applying the flatness constraint Equations for our model, we determined the angular size, apart from the deceleration parameter. There it was shown that, at low enough redshifts, the curvature and the flat models become indistinguishable and, on the other hand, that the model presents an acceleration rather than a deceleration. The same parameter of deceleration was determined in the limit in which the scalar field \(\chi = \text{const} = \chi_0 \), in which the potential term contributed as a cosmological constant, in the identification \(16\pi V(\chi_0) = \lambda \).
The resulting Equations of motion coincided with those studied by Uehara and Kim. With the values used for the present quantities, we have found that our model perfectly accommodates an accelerating universe model in a genuine JBD theory.

Acknowledgments

The authors wish to thank F. Müller-Hoissen for the hospitality in Göttingen. SdC thank MECESUP FSM 9901 grant for financial support. PS wishes to thank Deutscher Akademischer Austauschdienst (DAAD) for financial support. The support from grants FONDECYT Projects N° 1030469 (SdC) and 1010485 (SdC and PS), and by grants PUCV-DGIP N° 123.764/2003, UdeC/DI N° 202.011.031-1.0 are also acknowledged. The authors are grateful to Universidad de Concepción for partial support of the 2nd Dichato Cosmological Meeting, where this work was started.

[1] White S. et al 1993 Nature 366 429.
[2] Ostriker J. P. and Steinhardt P. J. 1995 Nature 377 600.
[3] de Bernardis P. et al Nature 2000 404 955.
[4] Guth A. 1981 Phys. Rev. D 23 347.
[5] Perlmutter S. et al 1998 Nature 391 51 ; Perlmutter S. et al 1999 Astrophy. J. 517 565.
[6] Garnavich P. M. et al 1998 Astrophy. J. 509 74.
[7] Caldwell R. R. , Dave R. and Steinhardt P. 1998 Phys. Rev. Lett. 80 82.
[8] Filippenko A. V. and Riess A. G. 2000 in Particle and cosmology: Second Tropical Workshop ed. J. F. Nieves (New York : AIP).
[9] Roos M. and Harun-or-Rashid S. The flatness of the Universe is Robust Report astro-ph/0005541.
[10] Melchiorri A. et al 2000 Astrophy. J. 536 L63.
[11] Mellier Y. 1999 ARA&A 37 127.
[12] Jordan P. 1959 Z. Phys. 157 112; Brans C. and Dicke R.H. 1961 Phys. Rev. 124 925.
[13] Will C. M. 2001 Living Rev. Rel. 4 4.
[14] Uehara K. and Kim C. W. 1982 Phys. Rev. D 26 2575.
[15] Bertolami O. and Martins P. J. 2000 Phys. Rev. D 61 064007.
[16] Banerjee N. and Pavón D. 2001 Phys. Rev. D 63 043504.
[17] Banerjee N. and Pavón D. 2001 Class. Quant. Grav. 18 593.
[18] del Campo S. 2002 Phys. Rev. D 66 123513; del Campo S. 2003 Mon. Not. R. Astron Soc 339 235.
[19] Gillies G.T. 1997 Rep Prog. Phys. 60 151.
[20] Freedman W. L. et al 2001 Astrophy. J. 553 47.
[21] Cruz N. , del Campo S. and Herrera R. 1998 Phys. Rev. D 58 123504.