Deletion of the type-1 interferon receptor in APP_{SWE}/PS1_{ΔE9} mice preserves cognitive function and alters glial phenotype

Myles R. Minter¹, Zachary Moore¹, Moses Zhang¹, Kate M. Brody¹, Nigel C. Jones², Sandy R. Shultz², Juliet M. Taylor^{1*} and Peter J. Crack^{1*}

Abstract

A neuro-inflammation response is evident in Alzheimer's disease (AD), yet the precise mechanisms by which neuro-inflammation influences the progression of Alzheimer's disease (AD) remain poorly understood. Type-1 interferons (IFNs) are master regulators of innate immunity and have been implicated in multiple CNS disorders, however their role in AD progression has not yet been fully investigated. Hence, we generated APP_{SWE}/PS1_{ΔE9} mice lacking the type-1 IFN alpha receptor-1 (IFNAR1, APP_{SWE}/PS1_{ΔE9} x IFNAR1^{−/−}) aged to 9 months to investigate the role of type-1 IFN signaling in a well-validated model of AD. APP_{SWE}/PS1_{ΔE9} x IFNAR1^{−/−} mice displayed a modest reduction in Aβ monomer levels, despite maintenance of plaque deposition. This finding correlated with partial rescue of spatial learning and memory impairments in the Morris water maze in comparison to APP_{SWE}/PS1_{ΔE9} mice. Q-PCR identified a reduced type-1 IFN response and modulated pro-inflammatory cytokine secretion in APP_{SWE}/PS1_{ΔE9} x IFNAR1^{−/−} mice compared to APP_{SWE}/PS1_{ΔE9} mice. Interestingly, immunohistochemistry displayed enhanced astrocyte reactivity but attenuated microgliosis surrounding amyloid plaque deposits in APP_{SWE}/PS1_{ΔE9} x IFNAR1^{−/−} mice in comparison to APP_{SWE}/PS1_{ΔE9} mice. These APP_{SWE}/PS1_{ΔE9} x IFNAR1^{−/−} microglial populations demonstrated an anti-inflammatory phenotype that was confirmed in vitro by soluble Aβ1-42 treatment of IFNAR1^{−/−} primary glial cultures. Our findings suggest that modulating neuro-inflammatory responses by suppressing type-1 IFN signaling may provide therapeutic benefit in AD.

Keywords: Alzheimer's disease, Type-1 interferons, Neuro-inflammation, Cognition, Amyloid-β, Microglial polarization

Introduction

Pathologically, Alzheimer's disease (AD) is characterized by the extracellular accumulation of Aβ plaques [60] and presence of neurofibrillary tangles containing hyper-phosphorylated tau [22]. Yet targeting these proteinopathies has yet proven clinically efficacious [47]. Neuro-inflammation, involving pro-inflammatory cytokine secretion and reactive gliosis, is evident in AD [34, 37, 38, 48, 54] and epidemiological evidence suggests that this innate immune process is a key contributor to disease pathogenesis [6, 59, 67]. However the exact contribution of cytokines to the exacerbation of neuro-inflammation in AD remains unclear.

Oligomeric and fibrillar Aβ are detected by pattern recognition receptors of the innate immune system and trigger inflammasome activation [57, 58]. Many studies have utilized the APP_{SWE}/PS1_{ΔE9} mouse model of AD as a tool to investigate in vivo inflammasome activation in response to Aβ production. These mice displays elevated production of Aβ1-42, leading to progressive plaque deposition and cognitive decline beginning at 6–9 months of age [30, 31]. Removal of the NLRP3 inflammasome, critical for caspase-1-mediated production of IL-1β, in APP_{SWE}/PS1_{ΔE9} mice confers reductions in Aβ load, enhances LTP and rescues cognitive impairments [26]. A supportive study addressing the NLRP1 inflammasome also demonstrated that a reduced IL-1β response to amyloid is beneficial in APP_{SWE}/PS1_{ΔE9} mice and...
reduces neuronal pyroptosis [62]. In addition, monoclonal antibodies blocking IL-12/IL-23 signaling attenuate amyloid burden and cognitive defects in APP_{SWE}/PS1_{ΔE9} mice [66].

Findings from these studies suggest that microglial phenotype and function play an important role in the exacerbation and progression of AD. Upon stimulus with pro-inflammatory cytokines, microglia can polarize towards a pro-inflammatory phenotype that is deleterious to neurogenesis and synaptic plasticity. Microglial populations can also adopt an alternate anti-inflammatory phenotype that results from exposure to anti-inflammatory cytokines and promotes resolution of inflammation considered to be neuro-protective [45, 55]. These aforementioned studies demonstrate that targeting pro-inflammatory cytokine networks can attenuate neuro-inflammation, promote Aβ clearance and confer cognitive benefit in mouse models of AD by promoting anti-inflammatory activity of microglia. However, Adenoviral delivery of anti-inflammatory cytokines IL-4 or IL-10 results in deleterious effects, impeding Aβ clearance and worsening cognitive decline [10, 11]. In contrast complete removal of IL-10 promotes innate immunity and mitigates AD-like pathology in APP_{SWE}/PS1_{ΔE9} mice [23]. Clearly a greater understanding of pro- and anti-inflammatory cytokine signaling is required to explain how modulating innate neuro-inflammation impacts progression of AD.

The pleiotropic type-1 IFNs regulate the aforementioned pro-inflammatory cytokine systems and are master regulators of the innate immune response [19, 33]. By signalling through the type-1 interferon receptor alpha-1 (IFNAR1) and activating the Janus associated kinase/Signal transducer and activator of transcription (JAK/Stat) pathway, type-1 IFNs can induce pro-inflammatory gene transcription generating hallmark cytokines (IL-1β, IL-6 and TNFα) that regulate immune cell recruitment and inflammatory progression. Whilst their contribution to peripheral immunity is well documented, type-1 IFNs are produced and trigger inflammatory cascades in CNS residents neuroinflammatory populations can also adopt an alternate anti-inflammatory phenotype when compared to APP_{SWE}/PS1_{ΔE9} mice alone. We confirm this anti-inflammatory glial phenotype in vitro in response to Aβ1-42 and demonstrate this polarization state protects primary neuronal cultures. Importantly, this study demonstrates that removal of type-1 IFN signaling modulates neuro-inflammation and retards phenotypic progression in the APP_{SWE}/PS1_{ΔE9} mouse model of AD.

Materials and Methods

Animals

APP_{SWE}/PS1_{ΔE9} transgenic mice [30] on a C57BL/6 background were sourced from JAX. (B6.Cg-Tg(APPswe,PSEN1dE9)85Db/o/Mmjax, JAX ID: 005864, https://www.jax.org/strain/005864). IFNAR1^{−/−} mice on a C57Bl/6 background were initially generated by [28]. APP_{SWE}/PS1_{ΔE9} transgenic mice lacking IFNAR1 were generated by interbreeding. APP_{SWE}/PS1_{ΔE9} and IFNAR1^{−/−} mice to produce F1 progeny. APP_{SWE}/PS1_{ΔE9} x IFNAR1^{−/−} mice from F1 progeny were then interbred to yield APP_{SWE}/PS1_{ΔE9} x IFNAR1^{−/−} mice (F2 progeny). In all animal experiments, animals were used at 9 months of age with aged-matched littermate non-transgenic wildtype and IFNAR1^{−/−} control mice. All mice were determined as specific pathogen-free, housed in sterile micro-isolator cages and fed ad-libitum on standard chow with open access to water. All animal procedures were performed in accordance with the University of Melbourne animal care committee’s regulations.

Animal genotyping

All animals used in this study were analysed for correct genotypes before use. This genotyping was either performed manually (Additional file 1: Figure S1), as described below, or in partnership with Transnetyx[™] (Cordova, TN, USA).

Tails from mice were obtained pre-weaning and genomic DNA was extracted. Tissue was digested using Proteinase K (9.3 mg/ml, New England Biolabs) in Tris buffer (containing 1 % w/v SDS). Upon removal of protein with Potassium acetate (1.5 M) and precipitation using propan-2-ol, the extracted DNA was washed in 70 % Ethanol and reconstituted in Tris-EDTA (TE) buffer. PCR was then conducted using the GoTa[®] DNA polymerase system (M3005, Promega) under the following conditions:
PCR products were then loaded into a 2 % w/v agarose Et-Br-labelled (40 μg/ml) gel and electrophoresis was performed to separate bands. A pre-stained BenchTop 100 bp DNA ladder (G8291, Promega) was used to determine sample band sizes upon gel imaging using the ChemiDoc™ MP image system (Biorad). Specific oligonucleotide primers used for amplification of APP_{SwE}, PS1_{ΔE9}, IFNAR1 and internal control DNA sequences are detailed below:

Primer name

Primer name	Direction (5′ → 3′)	Sequence (5′ → 3′)	Reaction concentration
oIMR3610 (APP)	Forward	AGG ACT GAC CAC TCG ACC AG	1 μM
oIMR3611 (APP)	Reverse	CGG GGG TCT AGT TCT GCA T	1 μM
oIMR1644 (PS1)	Forward	AAT AGA GAA CGG CAG GAG CA	1.33 μM
oIMR1645 (PS1)	Reverse	GCC ATG AGG GCA GTA ATC AT	1.33 μM
oIMR7338 (Control)	Forward	CTA GGC CAC AGA ATT GAA AGA TCT	0.5 μM
oIMR7339 (Control)	Reverse	GTA GGT GGA AAT TCT AGC ATC ATC C	0.5 μM
mIFNAR1E4F (IFNAR1)	Forward	CTC CTC CCG GAC AAG ACG GG	1 μM
mIFNAR1E5R (IFNAR1)	Reverse	TGG TGC TTA TAC ACT GCA CAG TGC T	1 μM
NeoF (neomycin)	Forward	GAG GCA GCG CGG CTA TCG TG	0.5 μM

whilst the other half was snap frozen and ground on liquid nitrogen in order to isolate both protein and RNA from the same mice.

Mixed cortical and hippocampal glial isolation

Mixed cortical and hippocampal glial cells were isolated from embryonic P0-1 embryos as previously described [35]. Briefly, cortices were isolated and meninges surgically removed. The cleaned cortical tissue was then digested in hanks buffered sulphate solution (HBSS, 14025–092, Gibco) using trypsin/DNase (1 mg/ml, T9201, D5025, Sigma) until a single cell suspension was achieved. Cells were then plated at a density of 1 brain/10 ml in culture medium (DMEM, 31985–062, Gibco, 20 % FBS, 0.5 % penicillin-streptomycin) in T75cm² flasks. Media was then replaced every two days until the glial cultures formed a comprehensive monolayer. Cells were seeded at 5 x 10⁵ cells/ml for experimental use between 14 and 28 days in vitro.

Mixed cortical and hippocampal neuron isolation

Mixed cortical and hippocampal neurons were isolated as described previously [63]. Briefly, cortices were isolated from embryonic day 14–16 pups and meninges were removed. Cleaned cortices were then digested in Krebs solution containing trypsin (250 μg/ml) and DNase (33 μg/ml) and mechanically agitated to ensure a single cell suspension. Cells were then plated into pre-coated Poly-L-lysine (0.5 mg/ml, P6282, sigma) plastic ware at a density of 1 x 10⁶ cells/ml in neurobasal media (17504–044, Gibco) containing B-27 growth factor supplement (17504–044, Gibco), L-glutamine (500 μM, G7513, Sigma) and 2 % FBS. The following day, FBS was removed from the media and cultures were supplemented with fresh culture media every two days until experimental use. Neuronal purity was assessed at >90 % using NeuN (neuronal nuclei) immunohistochemistry (data not shown) and all cultures were used day 9–10 in vitro.

Cardiac perfusion of mice and isolation of brain tissue

Mice were deeply anaesthetized using intra-peritoneal injection of combinatorial ketamine (90 mg/kg) and xylazine (4.5 mg/kg, K113, Sigma). Mice were cardiac perfused with ice-cold heparinized PBS (1U/ml, H3393, Sigma). Brains were then excised and separated for use in immunohistochemistry or for RNA/protein biochemical analysis. Isolation of the cortex for RNA/protein biochemistry was performed using a modified dissection technique [24]. Hemispheres were placed on an ice cold glass dissection plate and orientated in a sagittal plane. The cerebellum was removed, and the striatum, thalamus, midbrain and brain stem remnants were identified. These structures were then removed using sterilized blunt
spatulas, exposing the hippocampal complex and interior wall of the cortex. The hippocampus was then peeled away from the cortex, and cortical tissue was snap frozen in liquid nitrogen and stored at −80 °C until required.

Immunohistochemistry

For immunohistochemical analysis, hemispheres were post-fixed in 4 % w/v paraformaldehyde in PBS for 72 h (4 °C) before being transferred into 30 % w/v sucrose in PBS for 48 h (4 °C) and embedded in Optimal Cutting Temperature (OCT, 4583, Sakura) medium for subsequent cryosectioning. Sagittal sections (30 μm) were then cut throughout the hippocampal region using a cryostat (Reichert-Jung) and mounted onto electrostatic Menzel-Gläser Superfrost™ plus glass microscopy slides (J1800AMNZ, Thermo-Scientific). Tissue was then permeabilized in PBS-T (0.05 % v/v Tween-20, 5 min, room temperature) and blocked in CAS-Block™ (1 h, room temperature, 008120, Invitrogen). After rinsing with PBS, tissue was then incubated overnight with primary antibody diluted in 10 % v/v CAS-Block™ in PBS (4 °C, humidified chamber). After washing in PBS, slides were then incubated with fluorescent secondary antibodies diluted in 10 % v/v CAS-Block™ in PBS (2 h, room temperature). Post-PBS rinse coverslips were mounted in Vectashield™ DAPI-containing mounting media (H-1200, Vector laboratories). Images were then obtained using a Zeiss Axio Observer.Z1 (Carl Zeiss imaging) inverted fluorescence microscope. Details of antibodies used for immunohistochemistry are provided below:

Antibody	Supplier	Source	Dilution
GFAP	Dako (Z0334)	Rabbit pAb	1:1000
IBA-1	Wako (019–19741)	Rabbit pAb	1:300
WO-2	(Wun et al., 2008 [68])	Mouse mAb IgG1	1:500
Alexa Fluor® 488 Goat anti-rabbit	Molecular probes (A-11008)	Goat pAb	1:1000
Alexa Fluor® 594 Goat anti-mouse	Molecular probes (A-11005)	Goat pAb	1:1000

To quantify plaque number and burden, WO-2 immunofluorescent labelled sections were converted to 8-Bit images and an image fluorescence threshold was set using Image J quantification software (National Institutes of Health, NIH). Plaque staining was then analysed by particle quantification giving plaque number. The WO-2 positive pixel coverage value was then expressed relative to total cortical area to calculate cortical plaque burden. For IBA-1 and GFAP immunofluorescence quantification, integrated densities were calculated from entire cortical regions using Image J quantification software (National Institutes of Health, NIH). These values were then normalized to staining background and expressed as relative fluorescence intensity as described previously [32]. All quantified data is from average values generated from ≥3 sections/mouse (each 270 μm apart or every 6th section).

Amyloid beta preparation and cell culture treatment

Amyloid peptide stocks were prepared according to methods described previously [2]. Aβ1-42 stocks (A-42-T-1, GenecBio) were initially monomerized in 1, 1, 3, 3-Hexafluoro-2-propanol (0.5 mg/ml, HFIP, 52512, Fluka), lyophilized and stored at −80 °C until required. The peptide was then dissolved in ice cold 5 mM NaOH in Dulbecco’s PBS by rigorous vortexing and protein concentration was determined by absorbance spectrophotometry at 214 nm. Peptide concentrations were calculated using Eq. 1.

\[
[A\beta42] = \frac{Abs_{214\mu m} (DF/ε)}{ε}
\]

Where \(Abs_{214\mu m} = \) Absorbance value of sample at 214 nm, \(DF = \) Sample dilution factor, \(ε = \) molar extinction coefficient of Aβ42 (75,887 L/mol/cm).

Primary cultured glial cells were treated with 10 μM Aβ1-42 or NaOH vehicle for up to 96 h in serum-reduced glial treatment medium (DMEM with 2 % FBS and 0.5 % penicillin-streptomycin). The final concentration of NaOH across all treatment groups was <5nM and remained non-toxic.

Protein extraction

Following treatment, primary glial cell cultures were washed in ice cold PBS and collected via cell scraping. Cell pellets were briefly sonicated in Tris lysis buffer (50 mM Tris, 150 mM NaCl, 1 % v/v Triton x-100 (T8787, Sigma), 1 % w/v SDS, PhosphoSTOP® phosphatase and cOmplete® protease inhibitors (04906837001, Roche), pH 7.4). Brain tissue was homogenized in Tris lysis buffer (±100 mg/ml concentration, without 1% w/v SDS). Upon rotation for 90 min at 4 °C, homogenates were centrifuged (12,000xg, 4 °C, 5 min) before supernatants were removed and stored at −80 °C until required. Protein concentrations were determined as per the method of Bradford ([5], 500–0006, Bio-Rad).

SDS-PAGE gel electrophoresis and Western blotting

Fifty micrograms of protein was denatured in reducing buffer (20 mM Tris, 20%v/v glycerol, 4%w/v SDS, 10 % β-mecapoethanol (M6250, Sigma), and bromophenol blue). Samples were loaded onto 10 % SDS-PAGE gels (60 mM Tris, 0.1 % w/v SDS, 0.1 % w/v APS, 0.01 % v/v TEMED, 10 % Acrylamide/Bis (161–0156, Bio-Rad)) or 4-20 % Mini-PROTEAN® TGX Stain-Free™ gels (456–
8093, Bio-Rad) and electrophoresis was performed at 120 V in Novex® Tris-Glycine SDS running buffer (LC2675-5, Invitrogen). Proteins were then transferred to polyvinylidene fluoride (PVDF) membranes by semidry transfer (60 mA/gel, 1.25 h) or using the TransBlot® Turbo™ transfer system (2.5MA, 7 min, 170–4155, Bio-Rad) as per manufacturer’s instructions. Membranes were blocked in 5% w/v skim milk powder in Tris buffered saline-Tween 20 (0.05 % v/v Tween-20, TBS-T) for 1 h before overnight incubation with primary antibodies at 4 °C (dilutions in 2 % w/v skim milk powder in TBS-T). Membranes were then washed in TBS-T before being incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies (dilutions in 2 % w/v skim milk powder in TBS-T) for 90 min at room temperature. HRP signals were detected using an enhanced chemiluminescence (ECL™) prime Western blotting detection kit (RPN2232, Amersham) and visualized using the ChemiDoc™ MP system (Bio-Rad). For densitometry analysis, all raw pixel intensities of HRP signals from Western blots were calculated using Image J quantification software (NIH). Details of antibodies used for Western blotting are provided below:

Antibody	Supplier	Source	WB dilution
p-Stat-3 (Y705)	Cell Signaling	Rabbit mAb IgG1	1:1000
Stat-3	Cell Signaling	Rabbit pAb	1:1000
WO-2	[68]	Mouse mAb IgG1	1:2000
p-NFkB (p65, S536)	Cell Signaling	Rabbit mAb IgG1	1:1000
SOCS3	Abcam (ab723)	Goat pAb	1:200
β-actin	Sigma-Aldrich	Mouse mAb IgG1	1:4000
G α-rabbit/HRP	Dako (P0448)	Goat pAb-HRP	1:1000
G α-mouse/HRP	Dako (P0447)	Goat pAb-HRP	1:1000

Aβ1:40 sandwich Enzyme-linked immunosorbent assay (ELISA)

For quantification of soluble and insoluble Aβ levels, tissues were homogenized in PBS (containing Triton x-100, 1 % v/v, PBS-T) containing PhosphoSTOP® phosphatase and cOmplete® protease inhibitors (04906837001, 11697498001, Roche), pH 7.4) via sonication. After centrifugation (100,000xg, 60 min, 4 °C) the supernatant was collected to detect PBS-T-soluble Aβ1:40 levels. The remaining tissue pellets were further homogenized in 70 % v/v formic acid in PBS, centrifuged (100,000xg, 60 min, 4 °C) and the resulting supernatant was neutralized with 1 M Tris base (20x volume) and collected to detect PBS-T-insoluble Aβ1:40 levels by sandwich ELISA.

Assays were run in 96-well plate format with all standards and samples run in duplicate reactions. ELISA plates were coated in WO-2 capture antibody (diluted in 0.05 M carbonate-bicarbonate, pH 9.6) overnight and blocked in 1 % BSA (diluted in TBS-T) prior to sample incubation (100 µg protein/well, 4 °C, overnight incubation with shaking). Plates were then washed in TBS-T and incubated with an anti-Aβ1:40 casein-1E8 biotinylated monoclonal sandwich detection antibody. After washing in TBS-T plates were incubated with high sensitivity Streptavidin-HRP and signals were developed using TMB substrate and detection at 450 nm. Sample absorbance were normalized to the Aβ1:40 standard curve and concentrations are expressed relative to sample total protein concentrations as determined by Bradford assay.

RNA isolation and cDNA synthesis

RNA was extracted from cell pellets or brain tissue by methods previously described [12] using TRIzol® reagent (15596018, Life-Technologies). Contaminating genomic DNA was then removed prior to reverse transcription using the TURBO DNA-free™ kit (AM1907, Ambion) according to manufacturer’s guidelines. Yield quantities and purity of the RNA product was then assessed using the nanodrop 1000 spectrophotometer (Thermo Scientific). One microgram of RNA was then reverse transcribed to produce cDNA using a high capacity cDNA reverse transcription kit (4368814, Applied Biosciences) as per manufacturer’s instructions and cDNA was then diluted 1:3 in diethylpyrocarbonate (DEPC)-treated dH₂O for use in QPCR.

Quantitative PCR

All QPCR was performed in standard 384-well plates (4309849, Applied Biosystems) using the 7900ht fast real-time PCR system (Applied Biosystems) and reactions for a given sample were performed in triplicate. All Taqman gene expression assays were purchased commercially (431182, Applied Biosystems) and reactions were performed under the following thermal conditions:

Step #	Temperature (°C)	Time (minutes)	Comments
1	50	2	-
2	94.5	10	-
3	97	0.5	X40 repeats
4	59.7	1	
For SYBR® green-based detection, gene-specific primers were synthesized commercially (Geneworks) and reactions were performed under the following thermal conditions:

Step #	Temperature (°C)	Time (minutes)	Comments
1	95	20	-
2	95	0.5	X40 repeats
3	60	1.5	
4	95	15	-
5	60	15	-
6	95	15	-

Fold change readouts presented throughout the study were calculated using the ΔΔCt calculation method [36]. For each experiment a fluorescence detection threshold was automatically set at 1.0 RFU and the cycle number at which each reaction reached this threshold was calculated (cycle threshold (Ct)). Triplicate Ct value for genes of interest were then normalized back to the Ct values of the GAPDH housekeeping gene to account for differences in original cDNA concentration between samples (ΔCt). The calculated ΔCt of treatment or genotype groups were then normalized back to the ΔCt of appropriate genotype-specific control samples. In addition, ΔΔCt values were converted to fold change data using Eq. 2.

\[
\text{Fold change} = 2^{(-\Delta\Delta C_t)}
\]

(2)

Primers used for QPCR analysis are listed below:

Gene	Species	Inventory number
GAPDH	Mouse	Mm99999915_m1
IFNβ	Mouse	Mm00439552_s1
IRF7	Mouse	Mm00516788_m1
IRF3	Mouse	Mm00516779_m1
IRF8	Mouse	Mm00492567_m1
IL-1β	Mouse	Mm01336189_m1
IL-6	Mouse	Mm00446190_m1
TNFα	Mouse	Mm00443258_m1
CD33	Mouse	Mm00491152_m1
TREM2	Mouse	Mm04209422_m1

MTS cell viability assay

Cell viability was measured by the ability to metabolize 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS, CellTiter 96® AQUEous non-radioactive cell proliferation assay, G5421, Promega) in the presence of the electron coupler phenazine methosulfate (PMS) to a media soluble formazan product, as described previously [9]. Combined MTS (400 μg/ml) and PMS (44 μg/ml) solution was incubated on primary cultured neurons for 4 h (37 °C). Culture medium absorbance at 492 nm was then determined using a Multiskan Ascent spectrophotometer (Thermo Scientific). All sample absorbance readings were then blank normalized using a negative control reaction containing only culture medium and the MTS/PMS reagent. Absorbance readings of all treatment groups were then normalized back to genotype-specific vehicle controls and expressed as a percentage of vehicle control cell viability. Experiments were performed in technical triplicate and staurosporine (1 μM, S6942, Sigma) was used to induce cellular apoptosis in primary neuronal cultures for positive control means.

Morris water maze

Morris water maze (MWM) testing was conducted in a black circular pool 1.6 m in diameter and 0.8 m deep. A
white Perspex 10 cm² circular platform was then secured to the enclosure 25 cm from the pool wall. The pool was then filled with water at 21–23 °C until the white platform was submerged 1 cm below the surface. Non-toxic, water soluble white ceiling paint (Taubmans) was then used to opacify the water. The room was brightly illuminated using wall-mounted halogen lamps. Several distinct and distal extra-maze cues were placed around the pool as points of reference. These cues remained in place throughout the duration of testing and the platform was only removed to conduct the probe trial.

Mice were subjected to a 4 trial/day protocol for 7 days with 60 s maximum trial duration. Mice were removed from their test cage and placed into the water maze at a randomized cardinal point, facing towards the pool wall. The 60 s trial commenced after the mouse had entered the MWM for 2 s. If the test mouse found, mounted and stayed on the hidden platform for 2 s the trial was deemed complete and latency to reach the platform was calculated. The mouse remained on the hidden platform for 20 s before being removed from the water maze and placed back in their testing cage. If the mouse failed to find or remain on the platform for at least two seconds before the 60 s time allowance, the researcher entered the testing area and guided the mouse to the hidden platform. Once an individual mouse completed the trial and was towel dried, the next mouse within the testing group was immediately placed into the MWM for testing. Each mouse underwent 4 trials per day, according to the aforementioned trial parameters and had an inter-trial resting time of 10 min. All MWM testing was recorded to DVD and automatically tracked using Ethovision® XT (Noldus). For all individual trials, latency to platform, success rate, path length and swim speed was calculated. A 60 s value for latency was awarded for all trials where the test mouse failed to find the platform within the allocated time.

To assess spatial reference memory, a probe trial was conducted on day 7 of MWM acquisition. Mice were placed into the maze at the north cardinal point and allowed to explore for the standard 60 s trial length with the escape platform removed. The maze was virtually divided up into quadrants and time spent in the quadrant which previously held the platform was calculated. All primary readouts reported from MWM testing conducted in this study are well-established in the AD field [7].

Statistical analysis

GraphPad Prism software (version 6.0, http://www.graphpad.com/scientific-software/prism/) was used for all t-tests, ANOVAs and post-hoc statistical evaluation. Where comparisons of multiple groups was required a one or two-way analysis of variance (ANOVA) was performed, with mouse genotype as the fixed variable. A Bonferroni post-hoc or Tukey’s HSD multiple comparisons test was then performed. Otherwise an unpaired two-tailed Student’s t-test was used. For all statistical tests a two-tailed α value of 0.05 was utilized. Box plots were used to display data in which the midline represents the median value and the upper and lower margins equate to the 25 % and 75 % quartiles. The whiskers display data within the 1.5xinterquartile range and values beyond this were determined as outliers (represented as circles). All other numerical data is presented as mean ± SEM. Power values for each test where calculated post-hoc using G*Power (version 3.1, http://gpower.hhu.de/), based upon the effect size, group number and sample size. Exact p-values were calculated for all Student’s t-tests and multiplicity adjusted p-values were determined for all Bonferroni’s and Tukey’s post-hoc tests. A p-value <0.05 was considered statistically significant. All use of statistics is detailed in Additional file 2: Table S1.

Results

Removal of IFNAR1 in APP_SWE/PS1ΔE9 mice confers modest reductions in cortical Aβ monomer load but plaque burden remains unaltered

To investigate the effect of removing type-1 IFN signaling in AD we generated APP_SWE/PS1ΔE9 x IFNAR1−/−. APP_SWE/PS1ΔE9 mice aged 9 months display an enhanced type-1 IFN and pro-inflammatory cytokine response [64]. Hence, we focused on characterizing phenotypic alterations in APP_SWE/PS1ΔE9 x IFNAR1−/− mice at this age. With variable hippocampal Aβ plaque deposition at this age in both APP_SWE/PS1ΔE9 and APP_SWE/PS1ΔE9 x IFNAR1−/− mice (data not shown), the current study focused on cortical regions only, not hippocampus. To assess potential alterations in Aβ plaque burden, immunohistochemistry was performed on APP_SWE/PS1ΔE9 and APP_SWE/PS1ΔE9 x IFNAR1−/− mouse brain sagittal sections, stained with anti-Aβ mAb WO-2 (n = 9 per genotype, Fig. 1a, b). Both APP_SWE/PS1ΔE9 and APP_SWE/PS1ΔE9 x IFNAR1−/− mice display extensive plaque deposition within cortical regions but no difference was detected between genotypes when Aβ plaques were counted (n = 9 per genotype, Fig. 1c) or when cortical plaque burden percentage was quantified (n = 9 per genotype, Fig. 1d). To validate these immunohistochemical findings we prepared PBS-T-soluble and PBS-T-insoluble fractions from cortical tissue to quantify Aβ levels by ELISA. We did not observe any differences in PBS-T-soluble or PBS-T-insoluble Aβ140 levels measured from cortical tissue lysates of APP_SWE/PS1ΔE9 and APP_SWE/PS1ΔE9 x IFNAR1−/− mice (n = 4–6 per genotype, Fig. 1e, d). These findings suggest that removal of type-1 IFN signaling in APP_SWE/PS1ΔE9 mice does not influence amyloid plaque deposition at 9 months of age.
Fig. 1 (See legend on next page.)
Whilst amyloid plaque levels remained unchanged in the APP_{SW}/<PS1_{ΔE9} IFNAR1^{−/−} mouse, the oligomerization state of soluble Aβ species may be altered. This can influence peptide toxicity and potentially impact cognitive phenotypes [1, 15, 44]. To investigate the oligomerization state of various Aβ species, we analyzed Tris–HCl soluble cortical fractionations from wildtype, IFNAR1^{−/−}, APP_{SW}/<PS1_{ΔE9} and APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−} mice by western blotting, probed with anti-Aβ mAb WO-2 (n = 4–6 per genotype, Fig. 1g). Analysis of Aβ oligomers in wildtype and IFNAR1^{−/−} mice displayed constitutive Aβ production but not overexpression that is characteristic of the APP_{SW}/<PS1_{ΔE9} transgene. Densitometry identified a trend, albeit not statistically significant, to decreased transgenic human APP-CTF expression (n = 4–6 per genotype, p = 0.0618, Fig. 1h) and significant reductions in endogenous murine APP-CTF levels (n = 4–6 per genotype, p < 0.0001, Fig. 1i) in APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−} mice compared to APP_{SW}/<PS1_{ΔE9} mice. Densitometry confirmed a significant 43.3 ± 0.2-fold decrease of cortical Aβ monomer levels in APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−} mice compared to APP_{SW}/<PS1_{ΔE9} mice (n = 4–6 per genotype, p = 0.0122, Fig. 1j). Although not statistically significant, Aβ trimer (3-mer) levels also trended to a decrease in APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−} mice compared to APP_{SW}/<PS1_{ΔE9} mice (n = 4–6 per genotype, p = 0.0569, Fig. 1k). Collectively, this data highlights that removal of IFNAR1 in APP_{SW}/<PS1_{ΔE9} mice does not influence Aβ plaque deposition, but may influence oligomerization through modest, but significant, reductions in Aβ monomer levels.

Spatial learning and memory defects in APP_{SW}/<PS1_{ΔE9} mice are improved upon removal of IFNAR1

To assess if removal of type-1 IFN signaling can alleviate the cognitive deficits observed in APP_{SW}/<PS1_{ΔE9} we analyzed spatial learning and memory performance of wildtype, IFNAR1^{−/−}, APP_{SW}/<PS1_{ΔE9} and APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−} mice using the Morris water maze. Compared to wildtype, APP_{SW}/<PS1_{ΔE9} mice required more time to find the escape platform, whilst APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−} mice were initially impaired but recovered to wildtype levels as pheno-copied by IFNAR1^{−/−} mice (n = 9–18 per genotype, 0.05 < p < 0.001, Fig. 2a). Compared to wildtype, an initial decline in trial success rate was seen for all genotypes but this was only maintained by the APP_{SW}/<PS1_{ΔE9} mice over the course of acquisition (n = 9–18 per genotype, 0.05 < p < 0.0001, Fig. 2b). Compared to wildtype, all genotypes initially selected longer escape paths but only APP_{SW}/<PS1_{ΔE9} mice maintained this abnormality throughout testing (n = 9–18 per genotype, p < 0.01, Fig. 2c). Representative tracks (Day 7 acquisition) of APP_{SW}/<PS1_{ΔE9} mice display a lack of cue-directed swimming to find the platform, partially rectified in the APP_{SW}/<PS1_{ΔE9} IFNAR1^{−/−} counterparts. Wildtype and IFNAR1^{−/−} behaved similarly (Fig. 2d, Additional file 2: Table S1 for detailed analysis).

After the 7 day acquisition period, the escape platform was removed from the maze and persistence of the mouse to escape was measured. Although not statistically significant, APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−} mice spent more time exploring the escape quadrant than APP_{SW}/<PS1_{ΔE9} mice (APP_{SW}/<PS1_{ΔE9} 27.3 ± 3.8 % vs. APP_{SW}/<PS1_{ΔE9} x IFNAR1^{−/−}: 39.0 ± 7.7 %, n = 9–18 per genotype, p = 0.5111, Fig. 2e). Interestingly, IFNAR1^{−/−} mice spent a significantly greater amount of time in the escape quadrant than APP_{SW}/<PS1_{ΔE9} mice (IFNAR1^{−/−}: 45.6 ± 0.5 % vs. APP_{SW}/<PS1_{ΔE9}: 27.3 ± 3.8 %, n = 9–18 per genotype, p = 0.0488, Fig. 2e). As swimming ability can represent a potential confounding factor in the Morris water maze, average swim speed was measured. APP_{SW}/<PS1_{Δ9} mice swim at a significantly lower velocity than their wildtype counterparts (Wildtype: 18.5 ± 0.5 cm/s vs. APP_{SW}/<PS1_{Δ9}: 15.9 ± 0.4 cm/s, n = 9–18 per genotype, p = 0.0025, Fig. 2f); however this difference at a physiological level is minor and observed swimming technique remained consistent amongst genotypes. Collectively, this data implicates that removal of type-1 IFN signaling in APP_{SW}/<PS1_{ΔE9} mice rescues spatial
learning and memory deficits assessed using the Morris water maze.

The type-1 IFN and pro-inflammatory cytokine response is attenuated in APP_{SWE/PS1_{ΔE9}}x IFNAR1^{−/−} mice

Previously it has been demonstrated that removal of IFNAR1 attenuates the type-1 IFN response to soluble Aβ1-42 in primary cultured neurons and confers neuroprotection [64]. To investigate alterations in the type-1 IFN response in APP_{SWE/PS1_{ΔE9}}x IFNAR1^{−/−} mice, Q-PCR was performed on cortical tissue. Levels of IFNα expression were significantly elevated in APP_{SWE/PS1_{ΔE9}}x IFNAR1^{−/−} mice compared to wildtype mice with this elevation attenuated in APP_{SWE/PS1_{ΔE9}}x IFNAR1^{−/−} mice (Wildtype:
1.0 ± 0.08-fold vs. APP^{SWE}/PS1_{ΔE9}: 3.4 ± 0.8-fold, *p = 0.0009; APP^{SWE}/PS1_{ΔE9} x IFNAR1^{−/−}: 1.3 ± 0.1-fold, *p = 0.0063, *n = 9 per genotype, Fig. 3a). This data confirms that aged APP^{SWE}/PS1_{ΔE9} display enhanced type-1 IFNα expression that is IFNAR1-dependent. We also analyzed IFNβ transcript levels in both wildtype and APP^{SWE}/PS1_{ΔE9} cortical tissue but were unable to detect a difference between genotypes (*n = 7 per genotype, Additional file 3: Figure S2).

As IRF7 and IRF3 are critical mediators of IFNα [27] and IFNβ [56] production respectively, mRNA levels were also analyzed to assess the capacity for type-1 IFN production in these mice. Levels of IRF7 expression were significantly elevated in APP^{SWE}/PS1_{ΔE9} mice compared to wildtype mice, implying elevated capacity for IFNα production in these mice (Wildtype: 1.1 ± 0.08-fold vs. APP^{SWE}/PS1_{ΔE9}: 2.2 ± 0.3-fold, *p < 0.0001, *n = 9 per genotype, Fig. 3a). This elevation in IRF7 was attenuated in APP^{SWE}/PS1_{ΔE9} x IFNAR1^{−/−} mice (APP^{SWE}/PS1_{ΔE9}: 2.2 ± 0.3-fold vs. APP^{SWE}/PS1_{ΔE9} x IFNAR1^{−/−}: 0.3 ± 0.03-fold, *p < 0.0001, *n = 9 per genotype, Fig. 3a). Interestingly, IFNAR1^{−/−} mice exhibit basal reductions in IRF7 expression levels compared to wildtype mice (Wildtype: 1.1 ± 0.08-fold vs. IFNAR1^{−/−}: 0.2 ± 0.02-fold, *n = 9 per genotype).
Expression levels of IRF3 were significantly elevated in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice compared to wildtype mice (Wildtype: 1.1 ± 0.06-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 1.5 ± 0.1-fold, \(p = 0.0004\), \(n = 9\) per genotype), implying that signaling through IFNAR1 does not regulate IRF3 expression in these mice (APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 1.5 ± 0.1-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ: 1.4 ± 0.09-fold, \(p = 0.4369\), \(n = 9\) per genotype, Fig. 3a). We also analyzed transcript levels of IRF8, a type-1 IFN-regulated mediator important in microglial activation and phenotype [40]. Levels of IRF8 expression were significantly elevated in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice compared to wildtype mice (Wildtype: 1.1 ± 0.07-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 1.7 ± 0.2-fold, \(p = 0.0009\), \(n = 9\) per genotype, Fig. 3a) and this elevation was maintained in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice (APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 1.7 ± 0.2-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ: 1.9 ± 0.1-fold, \(p = 0.3845\), \(n = 9\) per genotype, Fig. 3a).

Considering type-1 IFNs signal via the JAK-Stat cascade and induce pro-inflammatory cytokine transcription, phosphorylation of Stat-3 was analyzed as a reporter of net type-1 IFN signaling in the APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice. Western blotting confirmed elevated phosphorylation of Stat-3 in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice compared to both wildtype and IFNAR1Δ/Δ mice (\(n = 4\) per genotype, Fig. 3b). Densitometry of these blots identified a trend for decreased Stat-3 activation in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice compared to APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice (APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 2.4 ± 0.8-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ: 1.1 ± 0.4-fold, \(p = 0.1955\), \(n = 4\) per genotype, Fig. 3c). Collectively, these data highlight that removal of IFNAR1 attenuates the type-1 IFN response in aged APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice, correlating with cognitive benefits and modest reductions in Aβ monomer load.

Type-1 IFNs are master regulators of the innate immune response, regulating pro-inflammatory cytokine production [33]. To investigate if the removal of type-1 IFN signaling alters pro-inflammatory cytokine secretion in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice, Q-PCR analyzing cortical tissue was performed. IL-1β mRNA transcript levels were upregulated in the APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice compared to wildtype mice (Wildtype: 1.1 ± 0.09-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 3.1 ± 0.4-fold, \(p < 0.0001\), \(n = 9\) per genotype, Fig. 3d). Interestingly, APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice displayed elevated IL-1β mRNA levels compared to APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice alone (APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 3.1 ± 0.4-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ: 4.5 ± 0.5-fold, \(p = 0.0071\), \(n = 9\) per genotype, Fig. 3d). Whilst IL-6 expression levels were significantly elevated in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice when compared to wildtype mice, this response was not significantly altered in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice (Wildtype: 1.1 ± 0.1-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ: 2.0 ± 0.2-fold, \(p = 0.0005\), \(n = 9\) per genotype, Fig. 3d). TNFa mRNA transcript levels were upregulated in the APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice compared to wildtype mice (Wildtype: 1.0 ± 0.09-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 2.2 ± 0.2-fold, \(p < 0.0001\), \(n = 9\) per genotype, Fig. 3d) Significantly, TNFa expression was reduced in the APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} IFNAR1Δ/Δ mice compared to APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} counterparts (APP\textsubscript{SWE}/PS1\textsubscript{ΔE9}: 2.2 ± 0.2-fold vs. APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ: 1.4 ± 0.1-fold, \(p = 0.0037\), \(n = 9\) per genotype, Fig. 3d). These data suggest that type-1 IFN signaling through IFNAR1 is an important regulator of pro-inflammatory cytokine expression in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice.

APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice exhibit enhanced astrocyte reactivity but attenuated microgliosis surrounding amyloid deposition

Both microgliosis and astrocyte reactivity are important hallmarks of the neuro-inflammation evident in AD and are primary sources of pro-inflammatory cytokine production [25]. To establish if removal of type-1 IFN signaling alters astrocyte reactivity in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice, immunohistochemistry was performed. Representative images and fluorescence quantification of sagittaly sections revealed significant 2.2 ± 0.3-fold increase in GFAP reactivity in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice compared to APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} counterparts (\(p = 0.0006\), \(n = 9\) per genotype, Fig. 4a, b). High power magnification images demonstrate this elevated astrocyte reactivity surrounds Aβ plaques, generating a localized inflammatory environment (Fig. 4c). Collectively, this data highlights that removal of IFNAR1 triggers increased astrocyte reactivity in cortical areas of Aβ accumulation in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice. However, further investigation is required to conclude if this is a compensatory or direct effect of removing type-1 IFN signaling in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice.

To assess if ablation of type-1 IFN signaling affects microgliosis in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice further immunohistochemistry was performed. Representative images and fluorescence quantification of sagittaly sections revealed a significant 1.5 ± 0.09-fold decrease in IBA-1 reactivity in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ mice compared to APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} counterparts (\(p = 0.0032\), \(n = 9\) per genotype, Fig. 4d, e). High power magnification images demonstrate a hypertrophic and reactive microglial phenotype surrounding Aβ plaques in the APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice. IBA-1 positive cells detected in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} x IFNAR1Δ/Δ display decreased staining intensity and remain embedded within plaque deposition, adopting a different morphology than cells in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice (Fig. 4f). These findings suggest that ablation of type-1 IFN signaling in APP\textsubscript{SWE}/PS1\textsubscript{ΔE9} mice attenuates cortical microgliosis and alters cellular morphology within the amyloid plaque microenvironment.
Fig. 4 (See legend on next page.)
Removal of IFNAR1 shifts elevates expression of anti-inflammatory glial phenotypic markers in APP_{SWE/PS1_{E9}} mice

It has been suggested that pro-inflammatory microglial phenotypes enhance are largely deleterious in AD whereas anti-inflammatory microglial activity can promote beneficial inflammatory resolution [53]. We have shown that altered gliosis, decreased type-1 IFN responses and altered pro-inflammatory cytokine secretion is evident in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice, thus we were interested in assessing expression of glial inflammatory phenotypic markers. Cortical tissue from wildtype, IFNAR^{−/−}, APP_{SWE/PS1_{E9}} and APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice were analyzed by Q-PCR for pro- and anti-inflammatory glial phenotype markers.

Elevation of iNOS pro-inflammatory marker expression was confirmed in APP_{SWE/PS1_{E9}} mice compared to wildtype mice (Wildtype: 1.1 ± 0.1-fold vs. APP_{SWE/PS1_{E9}}: 2.6 ± 0.4-fold, <i>p</i> < 0.0001, <i>n</i> = 9 per genotype, Fig. 5a). Significantly, iNOS expression was decreased in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice compared to APP_{SWE/PS1_{E9}} mice alone (APP_{SWE/PS1_{E9}}: 2.6 ± 0.4-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 1.4 ± 0.1-fold, <i>p</i> = 0.0053, <i>n</i> = 9 per genotype, Fig. 5a). Transcript levels of the pro-inflammatory marker CD11b were elevated in APP_{SWE/PS1_{E9}} mice compared to wildtype mice (Wildtype: 1.0 ± 0.07-fold vs. APP_{SWE/PS1_{E9}}: 2.4 ± 0.4-fold, <i>p</i> = 0.0014, <i>n</i> = 9 per genotype, Fig. 5a). Similar to the iNOS expression, CD11b transcript levels were decreased in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice compared to APP_{SWE/PS1_{E9}} alone (APP_{SWE/PS1_{E9}}: 2.4 ± 0.4-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 1.4 ± 0.1-fold, <i>p</i> = 0.0371, <i>n</i> = 9 per genotype, Fig. 5a). Expression of the CD33 pro-inflammatory marker was elevated in APP_{SWE/PS1_{E9}} mice compared to wildtype, but this elevation was not suppressed in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice (Wildtype: 1.0 ± 0.05-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 1.9 ± 0.3-fold, <i>p</i> = 0.0015, <i>n</i> = 9 per genotype, Fig. 5a).

Analysis of the anti-inflammatory marker TGFβ revealed elevated expression levels in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice compared to wildtype mice (Wildtype: 1.0 ± 0.06-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 1.6 ± 0.2-fold, <i>p</i> = 0.0189, <i>n</i> = 9 per genotype, Fig. 5b). This elevation was not present in the APP_{SWE/PS1_{E9}} cohort. Transcript levels of the YM1 anti-inflammatory marker were also elevated in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice when compared to both wildtype and APP_{SWE/PS1_{E9}} mice (Wildtype: 1.2 ± 0.2-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 2.5 ± 0.5-fold, <i>p</i> = 0.0061; APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 1.4 ± 0.2-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 2.5 ± 0.5-fold, <i>p</i> = 0.0490, <i>n</i> = 9 per genotype, Fig. 5b). ARG1 anti-inflammatory marker expression levels were elevated in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice when compared to both wildtype and APP_{SWE/PS1_{E9}} cohorts (Wildtype: 1.2 ± 0.1-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 3.0 ± 0.5-fold, <i>p</i> = 0.0002; APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 1.7 ± 0.2-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 3.0 ± 0.5-fold, <i>p</i> = 0.0141, <i>n</i> = 9 per genotype, Fig. 5b). Expression levels of both CD206 and CCL22 M2 markers remained constant amongst all genotypes (n = 9 per genotype, Fig. 5b). Transcript levels of the TREM2 anti-inflammatory marker were elevated in APP_{SWE/PS1_{E9}} x IFNAR^{−/−} mice when compared to both wildtype and APP_{SWE/PS1_{E9}} mice (Wildtype: 1.0 ± 0.07-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 2.5 ± 0.2-fold, <i>p</i> = 0.0001; APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 2.0 ± 0.1-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 2.5 ± 0.2-fold, <i>p</i> = 0.0056, <i>n</i> = 9 per genotype, Fig. 5b). Of interest is the finding that elevations in TREM2 expression were not unique to the APP_{SWE/PS1_{E9}} x IFNAR^{−/−} genotype but also observed in APP_{SWE/PS1_{E9}} mice when compared to wildtype counterparts (Wildtype: 1.0 ± 0.07-fold vs. APP_{SWE/PS1_{E9}} x IFNAR^{−/−}: 2.0 ± 0.1-fold, <i>p</i> < 0.0001, <i>n</i> = 9 per genotype, Fig. 5b). Western blot analysis of the anti-inflammatory marker SOCS-3, a negative regulator of type-1 IFN signaling and cytokine production [61,
confirmed an up-regulation in APP_{SWE}/PS1_{ΔE9} mice compared to APP_{SWE}/PS1_{ΔE9} littermates. This up-regulation was also confirmed in IFNAR1^{−/−} mice alone when compared to wildtype mice (Fig. 5c).

From the summarized data depicting pro-inflammatory (Fig. 5d) and anti-inflammatory glial phenotypic marker expression (Fig. 5e), these findings implicate that removal of type-1 IFN signaling shifts the glial phenotype from a pro-inflammatory phenotype towards an anti-inflammatory and presumably neuroprotective phenotype in APP_{SWE}/PS1_{ΔE9} mice.

Removal of IFNAR1 attenuates the type-1 IFN and pro-inflammatory cytokine response in response to Aβ1-42 in primary glial cultures

Astrocytes and microglia are key contributors to the inflammatory phenotype in AD and are also sources of type-1 IFN production within the CNS [51]. To investigate the role of astroglial and microglial type-1 IFN production in response to Aβ1-42, the predominant Aβ species over-produced in APP_{SWE}/PS1_{ΔE9} mice [30, 31], we adopted an in vitro approach using primary cultured mixed glial cultures. Wildtype and IFNAR1^{−/−} glia were treated with 10 μM Aβ1-42 for 24–96 h and Q-PCR was used to assess
IFNα and IFNβ expression. At 72 and 96 h post-treatment IFNAR1−/− glia displayed reduced IFNα (72 h: Wildtype: 12.7 ± 1.8-fold vs. IFNAR1−/−: 1.4 ± 0.1-fold, p < 0.0001; 96 h: Wildtype: 9.1 ± 4.4-fold vs. IFNAR1−/−: 1.3 ± 0.2-fold, p = 0.0007, n = 4–5 per genotype, Fig. 6a) and IFNβ expression (72 h: Wildtype: 6.4 ± 1.3-fold vs. IFNAR1−/−: 0.7 ± 0.2-fold, p = 0.0006; 96 h: Wildtype: 6.3 ± 2.1-fold vs. IFNAR1−/−: 0.9 ± 0.3-fold, p = 0.0012, n = 4–5 per genotype, Fig. 6b). The reduced IFNα and IFNβ expression coincided with decreased IL-1β, IL-6, and TNFα gene expression (72 h: Wildtype: 6.4 ± 1.3-fold vs. IFNAR1−/−: 0.7 ± 0.2-fold, p = 0.0006; 96 h: Wildtype: 6.3 ± 2.1-fold vs. IFNAR1−/−: 0.9 ± 0.3-fold, p = 0.0012, n = 4–5 per genotype, Fig. 6c).

Fig. 6 The type-1 IFN and pro-inflammatory cytokine response to Aβ1-42 is attenuated upon removal of IFNAR1 in primary cultured glia.

a Q-PCR of primary wildtype and IFNAR1−/− gial cultures treated with 10 μM Aβ1-42 for 24–96 h analyzing IFNα, IFNβ, IL-1β, IL-6 and TNFα transcript levels.

b Representative immunoblot of primary wildtype and IFNAR1−/− gial cultures treated with 10 μM Aβ1-42 for 24–72 h using anti-p-NFkB (p65).

c Densitometry of p-NFkB (p65) levels in primary wildtype and IFNAR1−/− gial cultures treated with 10 μM Aβ1-42 for 24–72 h. For Q-PCR all samples were normalized back to the Ct value of the housekeeping gene GAPDH (ΔCt). The mRNA of the Aβ1-42 treatment groups was then expressed relative to their gene-specific vehicle controls (fold change, ΔΔCt). For densitometry raw intensities of p-NFkB (p65) bands were normalized to β-actin levels. All intensity values of Aβ1-42 treated groups are expressed as fold change relative to the genotype-specific vehicle control (average of which is represented by the dashed line). Immunodetection of β-actin was used to ascertain loading quantities. Data are displayed as mean ± SEM (Q-PCR: n = 4 (wildtype), n = 5 (IFNAR1−/−); Western blotting: n = 3 per genotype; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). See Additional file 2: Table S1 for further analysis.
genotype, Fig. 6a) compared to wildtype cultures. In contrast to our in vivo data, Western blotting and subsequent densitometry revealed that Aβ1-42 treatment did not induce a p-Stat-3 response in either wildtype or IFNAR1−/− glial cultures, displaying a comparable expression level (Additional file 4: Figure S3). Overall these findings identify a glial-derived type-1 IFN response to Aβ1-42. Furthermore this type-1 IFN response is attenuated upon removal of IFNAR1, in line with the notion that IFNAR1 is critical in autocrine up-regulation of type-1 IFNs in response to inflammatory stimuli [13, 29].

To investigate if ablation of type-1 IFN signaling decreases the pro-inflammatory cytokine burden in Aβ1-42-treated glial cultures, further Q-PCR analysis was conducted. At 24 and 48 h post-treatment, the IL-1β response to Aβ1-42 was decreased in IFNAR1−/− cultures compared to wildtype glia (24 h: Wildtype: 10.9 ± 4.4-fold vs. IFNAR1−/−: 0.8 ± 0.4-fold, p = 0.0105; 48 h: Wildtype: 10.8 ± 3.8-fold vs. IFNAR1−/−: 0.4 ± 0.1-fold, p = 0.0074, n = 4–5 per genotype, Fig. 6a). Wildtype glia generated an elevated IL-6 response upon Aβ1-42 insult that was attenuated in IFNAR1−/− cultures at 96 h (Wildtype: 2.7 ± 0.9-fold vs. IFNAR1−/−: 0.3 ± 0.04-fold, p = 0.0259, n = 4–5 per genotype, Fig. 6a). Expression of TNFα after 24 and 96 h of Aβ1-42 treatment was also reduced in IFNAR1−/− glia compared to wildtype counterparts (24 h: Wildtype: 7.2 ± 2.6-fold vs. IFNAR1−/−: 0.6 ± 0.05-fold, p = 0.0003; 96 h: Wildtype: 4.8 ± 0.4-fold vs. IFNAR1−/−: 0.2 ± 0.09-fold, p = 0.0034, n = 4–5 per genotype, Fig. 6a). These data suggest that type-1 IFN signaling regulates further pro-inflammatory cytokine production in glial cells exposed to Aβ1-42.

Type-1 IFNs can regulate the activity of NFKB, which is required for robust immune responses [50, 65]. To ascertain if attenuation of the type-1 IFN and pro-inflammatory cytokine response to Aβ1-42 observed in IFNAR1−/− glial cultures resulted in reduced NFKB (p65) activation, further western blotting was performed (n = 3 per genotype, Fig. 6b). Densitometry quantification identified phosphorylation of NFKB (p65) was decreased in Aβ1-42-treated IFNAR1−/− glia across the entire treatment course when compared to wildtype cultures (24 h: Wildtype: 2.2 ± 0.2-fold vs. IFNAR1−/−: 0.9 ± 0.08-fold, p = 0.0001; 48 h: Wildtype: 2.1 ± 0.1-fold vs. IFNAR1−/−: 1.2 ± 0.08-fold, p = 0.0007; 72 h: Wildtype: 1.8 ± 0.2-fold vs. IFNAR1−/−: 0.8 ± 0.06-fold, p = 0.0002, n = 3 per genotype, Fig. 6c). Collectively this data suggests that type-1 IFN signaling regulates the pro-inflammatory glial response to Aβ1-42.

Wildtype glia adopt a pro-inflammatory phenotype in response to Aβ1-42, whereas IFNAR1−/− cultures display enhanced expression of anti-inflammatory phenotypic markers

Within the current study we have demonstrated that removal of IFNAR1 confers an anti-inflammatory glial response in APPSWE/PS1ΔE9 mice. Thus we were interested in confirming this phenotype in Aβ1-42-treated IFNAR1−/− glial cultures that display attenuated pro-inflammatory responses. To analyze the polarization phenotype in response to Aβ1-42, wildtype and IFNAR1−/− glial cultures were treated with 10 μM Aβ1-42 for 24–96 h and analyzed by Q-PCR.

Significantly, expression of the iNOS pro-inflammatory marker was elevated in wildtype but not IFNAR1−/− glial cultures in response to Aβ1-42 (24 h: Wildtype: 5.4 ± 2.8-fold vs. IFNAR1−/−: 1.1 ± 0.3-fold, p = 0.0195; 48 h: Wildtype: 5.9 ± 2.3-fold vs. IFNAR1−/−: 0.6 ± 0.06-fold, p = 0.0032, n = 4–5 per genotype, Fig. 7a). Transcript levels of the CD11b pro-inflammatory marker were also elevated in Aβ1-42-treated wildtype cultures but not when IFNAR1 was absent (72 h: Wildtype: 3.6 ± 0.9-fold vs. IFNAR1−/−: 0.7 ± 0.2-fold, p = 0.0274; 96 h: Wildtype: 4.1 ± 1.2-fold vs. IFNAR1−/−: 0.8 ± 0.2-fold, p = 0.0083, n = 4–5 per genotype, Fig. 7a). Expression levels of the CD32 pro-inflammatory marker were also reduced in IFNAR1−/− glial cultures when compared to wildtype counterparts upon Aβ1-42 insult (96 h: Wildtype: 4.6 ± 1.4-fold vs. IFNAR1−/−: 1.4 ± 0.2-fold, p = 0.0054, n = 4–5 per genotype, Fig. 7a).

Analysis of the ARG1 anti-inflammatory marker revealed elevated expression levels in Aβ1-42-treated IFNAR1−/− glia but not wildtype cultures (72 h: Wildtype: 0.8 ± 0.5-fold vs. IFNAR1−/−: 2.9 ± 0.9-fold, p = 0.0252; 96 h: Wildtype: 1.3 ± 0.7-fold vs. IFNAR1−/−: 3.5 ± 0.5-fold, p = 0.0163, n = 4–5 per genotype, Fig. 7b). CCL22 anti-inflammatory marker expression levels were also elevated in Aβ1-42-treated IFNAR1−/− glia but not wildtype cultures (24 h: Wildtype: 1.0 ± 0.3-fold vs. IFNAR1−/−: 2.5 ± 0.5-fold, p = 0.0089, n = 4–5 per genotype, Fig. 7b). Expression levels of the CD206 anti-inflammatory marker remained constant across all time points and between genotypes (n = 4–5 per genotype, Fig. 7b). Collectively these data suggest that wildtype glia adopt a mixed inflammatory polarization phenotype in response to amyloid insult. Removal of IFNAR1 shifts this mixed population towards a predominantly anti-inflammatory polarization state.

Conditioned media from Aβ1-42-treated IFNAR1−/− primary glia is less toxic to primary cultured neurons than wildtype media

To investigate the contribution of the glial polarized inflammatory response to Aβ1-42 on neuronal viability, primary wildtype and IFNAR1−/− mixed glial cultures
were treated with 10 μM Aβ1-42 for 24–48 h and media was collected. Primary wildtype neuronal cultures were then supplemented with this media for 48 h and an MTS assay was performed to assess cellular viability. Significantly, treatment of neurons with wildtype glial conditioned media induced severe cytotoxicity that was attenuated when the same neurons were supplemented with IFNAR1−/− glial conditioned media (24 h media: Wildtype: 28.9 ± 1.2 % vs. IFNAR1−/−: 77.8 ± 5.7 %, p = 0.0003; 48 h media: Wildtype: 18.4 ± 1.9 % vs. IFNAR1−/−: 85.1 ± 7.1 %, p = 0.0001, n = 3 individual neuronal and glial cultures per genotype, Fig. 8). Both genotypes showed equal susceptibility to staurosporine-induced apoptosis. This data implies that the reduced Aβ1-42-induced pro-inflammatory cytokine burden and anti-inflammatory activity identified in IFNAR1−/− glia is protective to neurons in vitro.

Discussion

The precise mechanism of how Aβ drives neurotoxicity and exacerbation of AD remains largely unknown. Neuro-inflammation has been routinely implicated in AD and is gaining credence as a major facilitator of disease progression [25, 41, 46, 47]. Type-1 IFNs are master regulators of the innate immune response [33] regulating IL-1β, IL-6 and TNFα cytokine secretion that remain up-regulated in AD [42, 43]. The present study was designed to test the hypothesis that type-1 IFN signalling...
influences neuro-inflammation and subsequent pathology in the APP_{SWE}/PS1_{E9} mouse model of AD. To address this hypothesis we generated APP_{SWE}/PS1_{E9} x IFNAR^{1^{Δ/Δ}} mice lacking type-1 IFN signaling. We identified that these mice were protected from spatial learning and memory deficits demonstrated by APP_{SWE}/PS1_{E9} mice. Interestingly, this phenotypic rescue did not correlate with alterations in Aβ plaque burden and only modest reductions in soluble cortical Aβ monomers were detected. Additionally, removal IFNAR1 in the APP_{SWE}/PS1_{E9} mouse promoted cortical astrocyte reactivity, decreased total microgliosis, and conferred a largely anti-inflammatory glial phenotype. These findings were corroborated with IFNAR1^{Δ/Δ} glial cultures initiating a predominantly anti-inflammatory response to in vitro Aβ1-42 insult (Fig. 9).

Our observation that removal of IFNAR1 in APP_{SWE}/PS1_{E9} mice alters many aspects of the neuro-inflammatory response, improves performance in the MWM behavioural test paradigm, but does not significantly alter amyloid pathology is notable. Whilst it is clear that amelioration of amyloidosis in the majority of preclinical AD models results cognitive benefit, we speculate that alleviating the pro-inflammatory burden on the CNS alone is sufficient to rescue at least some of the cognitive impairment demonstrated in these models. We demonstrate that IFNα and IRF7 are up-regulated in APP_{SWE}/PS1_{E9} mice and this expression is attenuated upon removal of IFNAR1. Crucially, IRF7 is considered a central mediator of the deleterious type-1 IFN response on neurogenesis and cognition in old mice that lack amyloid deposition; a phenotype rescued upon anti-IFNAR1 monoclonal antibody treatment [3]. Thus modulation of the type-1 IFN signalling system and subsequent neuro-inflammatory responses may be sufficient in providing cognitive benefit irrespective of the clearance of Aβ. However, we cannot rule out the modest, albeit significant, reduction in Aβ monomer levels observed in the APP_{SWE}/PS1_{E9} x IFNAR^{1^{Δ/Δ}} mice and its potential effect on cognition. Indeed, targeted removal of soluble Aβ production in aged tetracycline-inducible APP_{SWE} (Tg2576) mice reverts spatial learning and memory impairments in the MWM without affecting plaque burden [21]. Thus further studies involving mass spectrometry profiles and electron microscopy of Aβ species produced in APP_{SWE}/PS1_{E9} x IFNAR^{1^{Δ/Δ}} may provide insight on the mechanisms by which type-1 IFN signalling potentially influences Aβ oligomerization and cognition.

The identification of attenuated plaque-localised microgliosis, a predominant anti-inflammatory glial phenotype combined with enhanced plaque-localised astrocytic reactivity in APP_{SWE}/PS1_{E9} x IFNAR^{1^{Δ/Δ}} mice is also of interest. We confirm downregulated expression of pro-inflammatory (iNOS, CD11b and CD33) and up-regulations of anti-inflammatory glial phenotypic markers (TGFβ, YM1, ARG1 and TREM2) upon removal of IFNAR1 in APP_{SWE}/PS1_{E9} mice. Many studies suggest that this glial phenotypic shift results in enhanced Aβ phagocytosis and clearance, yet we do not observe this. One possible explanation is that the anti-inflammatory microglial activity may be counteracted by enhanced astrocyte reactivity and elevated IL-1β secretion, known to promote amyloidosis in APP_{SWE}/PS1_{E9} mice [26]. Indeed type-1 IFNs are pleiotropic in nature and induce cell-type specific functions [49]. Whilst this study focuses on the pro-inflammatory role of these cytokines it is equally feasible that type-1 IFNs are also exhibiting beneficial anti-inflammatory activity in specific cell types. There are currently 14 known IFNα...
subtypes produced in mice, 13 in humans and a singular IFNβ isoform, that in the majority of cases require IFNAR1 for signalling. Thus the mixed inflammatory phenotype we observe in our global IFNAR1 knockout approach in APP_{SWE}/PS1_{ΔE9} mice is likely due to signal-ling elimination of these type-1 IFN subtypes and their pleiotropic effects in multiple cell types. Further studies identifying specific type-1 IFN subtypes and their contribu-tion to neuro-inflammatory cascades and potential impact on amyloidosis will be beneficial in understanding the progression of AD.

Stimulation of primary mixed glial cultures lacking IFNAR1 with Aβ1-42 results in a predominantly anti-inflammatory response as observed in vivo. We demonstrate that the IFNAR1^{−/−} glial response to Aβ1-42 challenge is neuro-protective compared to the wildtype pro-inflammatory response in our conditioned media paradigm. We propose two alternative explanations for the protection observed in this assay: 1) IFNAR1^{−/−} glia are more effective at removing Aβ1-42 from the media than wildtype cultures, resulting in less Aβ1-42 transfer to neuronal cultures and subsequent reduction in neurotoxicity. 2) Aβ1-42 insult triggers a reduced pro-inflammatory response from IFNAR1^{−/−} glia compared to wildtype cultures, meaning that cytokine concentra-tions are reduced when transferred onto neurons resulting in neuroprotection. Indeed, the phenotype observed may be resultant from a combination of these two explana-tions and warrants further experimentation to explore this neuro-protective mechanism.
Whilst the use of a global IFNAR1−/− mouse remains a strength of the current study, enabling conclusions based on the effect of complete removal of type-1 IFN signaling, this also remains a limitation as the central and peripheral cellular contribution to neuro-inflammation in APPswe/PS1ΔE9 mice cannot be separated. Indeed, peripheral T-regulatory FoxP3+ cells appear to breach the CSF-blood brain barrier and their presence within the CNS impacts AD pathology [4]. Considering the important role of type-1 IFN signaling in T-cell activity [16], analyzing these cell types and other peripherally invading immune cells will be crucial in further deciphering the role of type-1 IFN signaling in progression of AD. In addition, it will be important to decipher the impact of reduced endogenous murine APP levels in APPswe/PS1ΔE9 x IFNAR1−/− mice, although endogenous Aβ production appears not to influence pathology in mice carrying both mutant APP and PS1 alleles [39].

Conclusion
The mechanisms by which neuro-neuroinflammation contributes to AD exacerbation and progression is highly complex and far from being fully understood. We provide evidence that removal of type-1 IFN signalling in the APPswe/PS1ΔE9 mouse model of AD confers a predominantly anti-inflammatory glial response and protects from cognitive decline. However, finding that this phenotype does not correlate with alterations in amyloid deposition and only a modest reduction in Aβ monomer levels requires further investigation. Deciphering the exact contribution of type-1 IFN isoforms and cell types involved in the neuro-inflammatory response will benefit our understanding of AD pathogenesis and enhance our ability to target type-1 IFN signalling in numerous neuro-inflammatory disorders.

Additional files

Additional file 1: Figure S1. Generation and confirmation of the APPswe/PS1ΔE9 x IFNAR1−/− mouse. A) To generate a colony of C57BL/6 APPswe/PS1ΔE9 x IFNAR1−/− mice with appropriate IFNAR1−/− littermate controls, heterozygous APPswe/PS1ΔE9 mice were bred to mice homozygous for the IFNAR1 gene disruption (neomycin insert; IFNAR1−/−). The subsequent litters were termed F1 progeny and were expected to yield mice heterozygous for both the APPswe/PS1ΔE9 mutation and IFNAR1-neoE5 allele (25 % male and 25 % female according to Mendelian inheritance). Upon genetic confirmation, APPswe/PS1ΔE9 (het) x IFNAR1−/− mice were then interbred to generate the first APPswe/PS1ΔE9 x IFNAR1−/− mice from F2 progeny (62.5 % male and 62.5 % female according to Mendelian inheritance). APPswe/PS1ΔE9 (het) x IFNAR1−/− mice were then interbred to generate F3 progeny consisting of APPswe/PS1ΔE9 x IFNAR1−/− (75 %) and IFNAR1+/− (25 %) littermates. B) Genotyping results for the initial progeny containing APPswe/PS1ΔE9 x IFNAR1−/− and littermate IFNAR1−/− mice is displayed. Genotyping PCR was performed using a combined APPswe/PS1ΔE9 and IFNAR1−/−. For each mouse, genotyping for APPswe/PS1ΔE9 and IFNAR1 expression was performed in separate reactions with internal control (IC) amplification (APPswe reactions only). The expected band sizes were as follows: APPswe 377 bp, PS1ΔE9 608 bp, wildtype IFNAR1: 351 bp, IFNAR1−/− neomycin (IFNAR1−/−): 985 bp and IC: 324 bp. APP positive bands in lanes 2, 8 and 12 are comprised of both APPswe and IC bands as indicated. 1. C) Immunoblotting of Triton-X-100 soluble cortical brain extracts, using mAb WO-2, revealed effective APP overexpression in APPswe/PS1ΔE9 x IFNAR1−/− mice that was indistinguishable from levels in APPswe/PS1ΔE9 mice. (TIF 6948 kb)

Additional file 2: Table S1. Statistical table (See additional statistical table file). Statistical analysis information is displayed for all data displayed within the accompanying figures. Values were determined post-hoc based upon population effect size, sample size and groupings. An α value of 0.05 was used to set the type-1 error rate in statistical comparisons. p values are given as exact values or adjusted multiplicity variants where an ANOVA and multiple comparisons post-hoc test was applied to the data. n represents the number of individual animals or primary cell cultures derived from separate animals used in each experiment. N/A not applicable. (XLSX 49 kb)

Additional file 3: Figure S2. IFNAR1 mRNA transcript levels are unaltered in cortical tissue 9 month old APPswe/PS1ΔE9 mice. Q-PCR of cortical tissue isolated from 9 month old wildtype and APPswe/PS1ΔE9 mice analyzing IFNβ mRNA levels. For Q-PCR, all samples were normalized back to the Ct value of the housekeeping gene GAPDH (ΔCt). The mRNA of the variant genotype groups were then expressed relative to their gene-specific wildtype littermate controls (fold change, ΔCt/ΔCt). Data are displayed as box plots box plots described in the statistical analysis section in Materials and Methods (n = 7 per genotype) See Additional file 2 Table S1 for further analysis. (TIF 213 kb)

Additional file 4: Figure S3. Aβ1-42 does not induce a p-Stat-3 mediated response in either wildtype or IFNAR1−/− primary glial cultures. A) Representative immunoblot of primary wildtype and IFNAR1−/− glial cultures treated with 10 μM Aβ1-42 for 24–72 h using anti-p-Stat-3. B) Densitometry of p-Stat-3 levels in primary wildtype and IFNAR1−/− glial cultures treated with 10 μM Aβ1-42 for 24–72 h. For densitometry, total Stat-3 levels were normalized to the β-actin loading control and p-Stat-3 intensity was calculated relative to this value (p-Stat-3/Stat-3/β-actin). All intensity values of Aβ1-42 treated groups are expressed as fold change relative to the genotype-specific vehicle treatment (average of which is represented by the dashed line). Immunodetection of β-actin was used to ascertain loading quantities. Data are displayed as mean ± SEM (n = 3 per genotype). See Additional file 2 Table S1 for further analysis. (TIF 4277 kb)

Abbreviations
Aβ, amyloid-beta; AD, Alzheimer’s disease; APP, amyloid precursor protein; CTF, c-terminal fragment; ELISA, enzyme-linked immunosorbent assay; GFAP, glial fibrillary acidic protein; IBA-1, ionized calcium-binding adapter molecule-1; IFN, interferon; IFNAR1, type-1 interferon alpha receptor; IL, interleukin; IRF, interferon regulatory factor; JAK, Janus-associated kinase; MTS, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MWM, Morris water maze; NFkB, nuclear factor kappa-B; NLRP, nod-like receptor; PS1, presenilin-1; Q-PCR, quantitative-polymerase chain reaction; Stat, signal transducer and activator of transcription; TNF, tumor necrosis factor

Acknowledgments
The authors would like to acknowledge A/Prof. Paul A. Adlard (Synaptic Neurobiology Laboratory, Division of Mental Health, The Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia) for his kind donation of the WO-2 monoclonal antibody and advice concerning the APPswe/PS1ΔE9 mouse model. The authors thank Mr Bevan Main for technical assistance. The authors thank Prof. Anthony J. Hannan, Mr. Jake Rogers and Mr. Ariel Zeleznikow-Johnston (The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia) for expert advice on rodent behavior and behavioral testing paradigms.

Funding
This study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia to P.J.C and J.M.T. P.J.C is an Australian Research Council (ARC) Future Fellow. M.R.M holds an Alzheimer’s Australia Dementia Research Fund (AADRF) postgraduate scholarship.
Contributions

MRR, JMT and PJC conceived the study. MRR, ZM, NCJ, SRS, JMT and PJC calculated the data and interpreted the results. MRR, JMT and PJC wrote the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare they have no competing interests.

Ethics approval

All animal procedures were performed in accordance with the University of Melbourne animal care committee’s regulations.

Author details

1Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne 3010, Victoria, Australia. 2Department of Medicine (The Royal Melbourne Hospital), Melbourne Brain Center, University of Melbourne, Parkville, Melbourne, Victoria, Australia.

Received: 5 June 2016 Accepted: 24 June 2016

Published online: 11 July 2016

References

1. Adlard PA, Cherry RA, Finkelstein DJ, Gautier E, Robb E, Cortes M, Voltaitis I, Liu X, Smith JP, Perez K et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased intestinal Abeta. Neuroph. 2008;59:43–55. doi:10.1165/neuron.2008.06.018.

2. Barnham KJ, Ciccotosto GD, Tidicker AK, Ali FE, Smith DG, Williamson NA, Lam YH, Carrington D, Tew D, Kocak G et al. Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem. 2003;278:42959–65. doi:10.1074/jbc.M305494200.

3. Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, Berzuki T, Barnett-Itzhaki S, Zealli D, Wyss-Coray T et al. Aging: induction of type I interferon response at the choroid plexus negatively affects brain function. Science. 2014;346:89–93. doi:10.1126/science.1252945.

4. Baruch K, Rosenzwieg N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, Tistrou-Kampeli A, Sarel A, Cahalon L, Schwartz M. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6:7967. doi:10.1038/ncomms8967.

5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

6. Breitner JC. The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer’s disease. Annu Rev Med. 1996;47:401–11. doi:10.1146/annurev.med.47.1.401.

7. Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp. 2011. doi:10.3791/2920.

8. Brown CJ, Nitschke Y, Rutsch F. Novel interferonopathies associated with mutations in RIG-I-like receptors. Cytokine Growth Factor Rev. 2016. doi:10.1016/j.cytogfr.201603.005.

9. Buttle TM, McCubrey JA, Olsen TC. Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods. 1993;157:233–40.

10. Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, DiNunno N, Rosario AM, Cruz PE, Verbeeck C et al. IL-4 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Mol Neurodegener. 2015;8:519–33. doi:10.1186/s13236-015-0092-z.

11. Chakrabarty P, Tianbai L, Herring A, Ceballos-Diaz C, Das P, Golde TE. Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol Neurodegener. 2012;7:36. doi:10.1186/1750-1326-7-36.

12. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993;15(3):532–534:536–7.

13. Conzelmann KK. Transcriptional activation of alpha/beta interferon genes: interference by nongenomemtive negative-strand RNA viruses. J Virol. 2005;79:5241–8. doi:10.1128/JVI.79.14.5241-5248.2005.

14. Cox DJ, Field RH, Williams DG, Baruch K, Schwartz M. Type I interferon receptors: biochemistry and biological functions. J Biol Chem. 2007;282:20053–7. doi:10.1074/jbc.R700006200.

15. Crouch PJ, Hung LW, Adlard PA, Cortes M, La V, Filliz G, Perez NA, Nurjono M, Caragounis A, Du T et al. Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci U S A. 2009;106:3861–6. doi:10.1073/pnas.0809057106.

16. Crouse J, Kalinke U, Oenius A. Regulation of antiviral T cell responses by type I interferons. Rev Immunol. 2015;15:231–42. doi:10.1080/23323028.2015.1051806.

17. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, All M, Black DN, van Bokhoven H, Brunner HG, Hamel BC et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38:917–20. doi:10.1038/ng1845.

18. Deczkowska A, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, Ali M, Semple C, Cricardi J, Babul-Hirji R et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet. 2006;38:910–6. doi:10.1038/ng1842.

19. de Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and biological functions. J Biol Chem. 2007;282:20053–7. doi:10.1074/jbc.R700006200.

20. Deczkowska A, Baruch K, Schwartz M. Type II interferon balance in the regulation of brain physiology and pathology. Trends Immunol. 2016;37:181–92. doi:10.1016/j.it.2016.01.006.

21. Dowler SW, Chiang AC, Savajny RR, Larson ME, Sherman MA, Schuler DR, Cintro JR, Lesene SE, Jankowsky JL. Genetic modulation of soluble Abeta rescues cognitive and synaptic impairment in a mouse model of Alzheimer’s disease. J Neurosci. 2014;34:7871–85. doi:10.1523/JNEUROSCI.0572-14.2014.

22. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder L. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer’s cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83:4913–7.

23. Guillot-Seixier MV, Doyt KY, Gate D, Rodriguez Jr J, Leung BP, Rezai-Zadeh K, Town T. IL10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuroph. 2015;85:534–48. doi:10.1165/neuron.2014.12.068.

24. Hagihara H, Toyma K, Yamasaki N, Miyakawa T. Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp. 2009. doi:10.3791/1543.

25. Heneka MT, Crouch PJ, Hertzog PJ, Holland KA, Sumarsono SH, Tymms MJ, Hamilton JA. Treatment of Alzheimer’s disease. Annu Rev Med. 1997;48:1. doi:10.1146/annurev.med.48.1.53.

26. Heneka MT, van der Flier WM, Caragounis A, Du T et al. Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci U S A. 1995;92:2894–8.

27. Ishikawa BH, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36–49. doi:10.1038/nri3581.

28. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet. 2004;13:159–70. doi:10.1093/hmg/ddh019.

29. Jankowsky JL, Toll HT, Gonzales V, Jenkins NA, Copeland NG, Borchelt DR. APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiol Aging. 2004;25:885–92. doi:10.1016/j.neurobiolaging.2003.09.008.

30. Kallio IP, Zhang M, Halbground M, Frugier T, Brody KM, Sashindranath M, Ek CJ, Chappaz S, Kile BT, Wright D et al. Ablation of Type-I IFN signaling in
hematopoietic cells confers protection following traumatic brain injury. eNeuro. 2016;3(12):8-15. doi:10.1523/ENEURO.0288-15.2016.

33. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006;7:131–7. doi:10.1038/ni1303.

34. Kuba H, Luth HJ, Hafenberg D, Boeck J, Arendt J, Munch G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann N Y Acad Sci. 2005;1043:211–6. doi:10.1196/annals.1333.026.

35. Liddell JR, Dringen R, Crack PJ, Robinson SR. Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes. Glia. 2006;54(8):73–9. doi:10.1002/glia.20433.

36. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC(T) Method. Methods. 2001;25:402–8. doi:10.1016/S1046-2023(01)00038-9.

37. Luth HJ, Munch G, Arendt T. Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrosytamine formation. Brain Res. 2002;953:135–43.

38. Luth HJ, Ogunlade V, Kliautsch Engel R, Stahl P, Webster J, Arendt T, Munch G. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb Cortex. 2005;15:211–20. doi:10.1093/cercor/bhbb123.

39. Maher J, Morales-Coralaza J, Stolt J, Skodras A, Radde R, Duma CC, Eisele AM, Perry G, Riederer P. Alzheimer’s disease. Mol Neurodegener. 2011;6:5. doi:10.1186/1750-1326-6-5.

40. McGeer PL, McGeer EG, The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126:479–97. doi:10.1007/s00401-013-1177-7.

41. McGeer PL, McGeer EG. Autotoxicity and Alzheimer disease. Arch Neurol. 2000;57:799–90.

42. Michaud JP, Richard KL, Rivest S. MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer’s disease. Mol Neurodegener. 2011;6:5. doi:10.1186/1750-1326-6-5.

43. Minter MR, Taylor JM, Crack PJ. The contribution of neuro-inflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem. 2015;131(1):131–41.

44. Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:235. doi:10.1186/2045-5848-1-235.

45. Munch G, Schirzel R, Loske C, Wong A, Dunay N, Li JJ, Vlassara H, Smith MA, Perry G, Riederer P. Alzheimer’s disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm. 1998;105:439–61.

46. Ng CT, Mendoza JL, García KC, Oldstone MB. Alpha and beta type I interferon signaling: passage for diverse biologic outcomes. Cell. 2016;164:479–98. doi:10.1016/j.cell.2015.12.027.

47. Ng SL, Friedman BA, Schmid S, Gertz J, Myers RM, Tenover BR, Maniatis T. IkappaB kinase epsilon (IKK(epsilon)) regulates the balance between type I and type II interferon responses. Proc Natl Acad Sci U S A. 2011;108:21170–5. doi:10.1073/pnas.1119137109.

48. Owens T, Khorsoshi R, Wlodarczyk A, Asgari N. Interferons in the central nervous system: a few instruments play many tunes. Glia. 2014;62:339–55.

49. Pehrhad C, Megret F, Lafage M, Daudon M, Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol. 2005;79:12893–904. doi:10.1128/JVI.79.201283-1204.2005.

50. Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer’s disease. Acta Neuropathol. 2013;126:461–77.

51. Retz W, Gössl W, Munch G, Rosler M, Riederer P. Free radicals in Alzheimer’s disease. J Neural Transm Suppl. 1998;54:221–36.

52. Reus, GZ, Fries GR, Stetzl L, Badawy M, Ptaszynski, Barcello T, Kaczynski F, Quevedo J. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;301:141–54. doi:10.1016/j.neuroscience.2015.05.018.

53. Sakaguchi S, Negishi H, Asagiri M, Nakajima C, Mizutani T, Takaoka A, Honda K, Taniguchi T. Essential role of IFN-3 in lipo polysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun. 2003;306:860–6.

54. Salminen A, Ojala J, Kauppinen A, Kaarnimaa K, Suuronen T. Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009;87:181–94.

55. Salminen A, Ojala J, Suuronen T, Kaarnimaa K, Kauppinen A. Amyloid-beta oligomers set fire to inflammasesmoses and induce Alzheimer’s pathology. J Cell Mol Med. 2008;12:2255–62. doi:10.1111/j.1471-4424.2008.00496.x.

56. Seikoe DJ. Alzheimer’s disease’s results from the cerebral accumulation and cytotoxicity of amyloid-beta protein. J Alzheimers Dis. 2001;3:75–80.

57. Seikoe DJ. Alzheimer’s disease’s results from the cerebral accumulation and cytotoxicity of amyloid-beta protein. J Alzheimers Dis. 2001;3:75–80.

58. Sastre M, Davenport D, Landreth GE, Willson TM, Krockgether T, van Leuven F, Heneka MT. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci. 2003;23:9796–804.

59. Tenoever BR, Ng SL, Chua MA, McWhirter SM, Garcia-Sastre A, Maniatis T. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science. 2007;315:1274–8. doi:10.1126/science.1136567.

60. Vorn Berg J, Prokop S, Miller KR, Obst J, Kalin RE, Lopategui-Cabezas L, Wegner A, Mair F, Schipke CG, Peters O et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med. 2012;18:1812–9. doi:10.1038/nm.2965.

61. Weggen S, Eriksen JL, Das P, Sagv SA, Wang R, Pietrak CU, Findlay KA, Smith TE, Murphy MP, Bulter T et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature. 2001;414:212–6. doi:10.1038/3510259.

62. Wun KS, Miles LA, Crespi GA, Wycherley K, Ascher DB, Barnham KJ, Cappai R, Beyreuther K, Masters CL, Parker MW et al. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the Abeta peptides associated with Alzheimer’s disease. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006;64:438–41. doi:10.1107/S0567739406001178.

63. Yokota S, Yokosawa N, Okabayashi T, Suzutani T, Miura S, Jimbow K, Fujii N. Inflammation-induced interferon-beta gene expression and endotoxin shock. Biochem J. 2001;357:405–11. doi:10.1042/0264-6021/35702-0264.

Submit your next manuscript to BioMed Central and we will help you at every step:
• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Thorough peer review
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit
