The usefulness of stereotactic radiosurgery for recursive partitioning analysis class II/III lung cancer patients with brain metastases in the modern treatment era

In Bong Ha, MD, Jin Ho Song, MD, Bae Kwon Jeong, MD, PhD, Hoojin Jeong, PhD, Yun Hee Lee, MD, Hoon Sik Choi, MD, Ki Mun Kang, MD, PhD.

Abstract
Stereotactic radiosurgery (SRS) is considered the initial treatment for lung cancer patients with small-sized and limited number of brain metastases. The objective of this study was to assess clinical outcomes of SRS treatment using CyberKnife (CK) for recursive partitioning analysis (RPA) class II/III patients with 1 to 3 brain metastases from lung cancer and identify which patients in the high RPA class could benefit from SRS.

A total of 48 lung cancer patients who received CK-based SRS for their metastatic brain lesions from 2010 to 2017 were retrospectively analyzed. Radiographic response was evaluated during follow-up period. Overall survival (OS) and intracranial progression-free survival (IPFS) were calculated and prognostic variables associated with OS and IPFS were evaluated.

Median follow-up time was 6.6 months. Local control rates at 6 months and 1-year following SRS were 98% and 92%, respectively. The median OS of all patients was 8 months. One-year and 2-year OS rates were 40.8% and 20.9%, respectively. In multivariate analysis, uncontrolled primary disease \((P = .01) \) and Eastern Cooperative Oncology Group performance status of 2 or 3 \((P = .001) \) were independent prognostic factors for inferior OS. These 2 factors were also significantly associated with inferior IPFS. In subgroup analysis according to RPA class, primary disease status was the only prognostic factor, showing statistically significant OS differences in both RPA class II and III (controlled vs uncontrolled: 41.1 vs 12.3 months in RPA class II, \(P = .03; \) 26.9 vs 4.1 months in RPA class III, \(P = .01) \).

Our results indicated that SRS could be an effective treatment option for RPA class II/III patients with brain metastases from lung cancer in the modern treatment era. SRS might be particularly considered for patients with controlled primary disease.

Abbreviations: CK = cyberknife, CNS = central nervous system, CT = computed tomography, ECOG = eastern cooperative oncology group, GTV = gross tumor volume, IICP = increased intracranial pressure, IPFS = intracranial progression-free survival, LC = local control, MRI = magnetic resonance imaging, NSCLC = non-small cell lung cancer, OS = overall survival, R = regional control, RECIST = response evaluation criteria in solid tumors, RPA = recursive partitioning analysis, SCLC = small cell lung cancer, SRS = stereotactic radiosurgery, WBRT = whole-brain radiation therapy.

Keywords: brain metastases, lung cancer, prognostic factors, stereotactic radiosurgery

1. Introduction
Lung cancer has currently the highest incidence in the world. It is the leading cause of cancer-related deaths.\(^1\) Brain metastases from lung cancer also have a high incidence rate of 20%.\(^2\) As this disease progresses, brain metastases occur more often. Among all cases of brain metastases, those from lung cancer account for 40% to 50%.\(^3\) Therefore, appropriate management of brain metastases is a very important issue in treatment of lung cancer patients.

In the last several decades, whole-brain radiation therapy (WBRT) is a standard treatment for patients with multiple brain metastases. However, many clinical studies have shown that the quality of life of patients is deteriorated by the neurotoxicity caused by WBRT.\(^4,5\) Although median survival of patients with brain metastases treated with WBRT has been reported to be less than 6 months, the number of patients with long term survival as well as median survival of patients has increased recently due to the development of systemic therapies and choice of appropriate local treatment strategies, for example, stereotactic radiosurgery (SRS) alone, SRS plus WBRT and surgical resection.\(^6,7\) Treatment for 4 or fewer oligometastatic lesions has been gradually replaced by SRS or surgical resection, instead of WBRT which reduces neurotoxicity while
not affecting survival. In addition, some studies have reported that SRS alone is an effective treatment for patients with 5 or more brain metastases. Although some studies have reported SRS results in because most patients belong to class II and III in clinical practice. However, the number of such patients is very limited desirable to try aggressive treatment strategy for RPA class I ing median survival of patients with brain metastases, it is necessary to consider all significant prognostic factors for survival. Considering median survival of patients with brain metastases, it is desirable to try aggressive treatment strategy for RPA class I patients. However, the number of such patients is very limited because most patients belong to class II and III in clinical practice.

Although some studies have reported SRS results in lung cancer patients with limited number of brain metastases, few studies have reported the treatment outcomes of SRS for patients with only RPA class II/III.

Thus, the aim of this study was to analyze clinical outcomes of SRS using CyberKnife (CK) (Accuray Inc, Sunnyvale, CA) for RPA class II/III patients with 1 to 3 brain metastases from lung cancer and identify which patients in the high RPA class could benefit from SRS.

2. Material and methods

2.1. Patient selection

This retrospective study was approved by the Institutional Review Board (IRB) of the Gyeongsang National University Hospital (IRB number: 2018-05-015).

A total of 106 patients with brain metastases were treated with SRS using CK at the Gyeongsang National University Hospital between February 2010 and May 2017. Patients were selected for this study utilizing the following criteria:

1. pathologically proven lung cancer;
2. RPA class II or III;
3. completed planned schedule of SRS;
4. a maximum diameter of each brain lesion was less than 5 cm;
5. no apparent leptomeningeal disease.

Finally, 48 lung cancer patients eligible for RPA class II/III were retrospectively analyzed. SRS was performed in patients with less than 3 metastatic brain lesions in our institutional protocol.

2.2. Patient characteristics

The median age of the 48 patients analyzed in this study was 68.5 years (range, 48–82 years). The median follow-up time was 6.6 months (range, 0.6–89.7 months). Of these 48 patients, 37 (77.1%) were previously diagnosed with non-small cell lung cancer (NSCLC) and 11 (22.9%) were diagnosed with small cell lung cancer (SCLC). Of these NSCLC patients, 23, 9, 2, and 3 patients were diagnosed with adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and “not otherwise specified,” respectively. The Eastern Cooperative Oncology Group (ECOG) performance status was 0–1 in 28 (58.3%) patients and 2–3 in 20 (41.7%) patients. Our study only included patients with RPA class II and III. The factor that determines these 2 classes is only Karnofsky performance status. When assessing the clinical performance status of patients, patient’s ability to perform certain activities of daily living without help of others is regarded as up to 1 according to the ECOG scale and up to 70 according to Karnofsky performance status. We excluded RPA class from the analysis because groups categorized by ECOG (0–1 vs 2) were perfectly matched with groups categorized by RPA class (2 vs 3).

At the time of the initial radiosurgery, 9 (18.8%) patients were asymptomatic, 26 (54.2%) patients had headache, 9 (18.8%) patients had unilateral weakness, 6 (12.5%) patients had seizure, 4 (8.3%) patients had dysarthria, and 2 (4.2%) patients had ataxia. Furthermore, 10 (20.8%) patients had uncontrolled primary disease and 31 (64.6%) patients had extracranial metastases. Of the total of 48 patients, 20 (41.7%) previously received WBRT, including 5 patients with SCLC who underwent prophylactic cranial irradiation. Nine of these 20 patients who received WBRT underwent SRS for salvage treatment for recurrent brain metastases while the other 11 patients underwent SRS as boost treatment for WBRT. Planning target size ranged from 0.5 to 5.0 cm (median 2.0 cm) and target volume ranged from 0.2 to 78.9 mL (median 2.6 mL). Of the total 48 patients, 41 patients (85.4%) received systemic therapies before SRS. Thirty-six patients received cytotoxic agents, 15 patients received tyrosine kinase inhibitors such as erlotinib, gefitinib and 2 patients received checkpoint inhibitors such as nivolumab. Patient characteristics are detailed in Table 1.

2.3. SRS

All patients underwent SRS using CK. During treatments, all patients were immobilized with a thermoplastic head mask in supine position. Contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) for brain were taken with slice thickness of 1.0 mm and 2.5 mm, respectively. CT and MRI images were then rigidly fused with respect to each other using CK planning system (Multiplan version 3.3.5.4). Gross tumor volume (GTV) was defined as enhanced lesion observed by any of both images. First, GTV was delineated on a CT image. It was then modified to include clearly contrast-enhancing regions seen in MRI images. Clinical target volume was set to the same as GTV, assuming no microscopic invasion outside the GTV. Planning target volume was generated by adding 1-mm margin from the GTV. Organs at risk including lenses, optic nerves, optic chiasm, brainstem, and spinal cord were also contoured. If 2 lesions were close to 1 cm or less, they were planned as 1 target. Seven patients had multiple brain metastatic lesions corresponding to this condition. For this reason, although the number of brain metastatic lesions in all patients treated was 70, the actual number of planning targets was 63. Inverse treatment planning was performed for all patients using Multiplan version 3.3.4 (Accuray Inc). SRS treatment plans were basically designed so that the entire GTV and at least 95% PTV were covered by the prescription dose surface. The prescription dose was normalized median 80% isodose line (range, 75%–85%) relative to the maximal dose. The prescription dose was basically determined based on volume-dependent dose regimen suggested in the Radiation Therapy Oncology Group 95-05 trial. It was partly revised according to the judgment of clinicians considering the tumor size and location, the timing of SRS, and prior radiation therapy dose. Details in the prescription dose actually delivered are summarized in the Table 2 along with dose schedules and biologic equivalence dose for α/β = 10.
was calculated from the time of diagnosis to recurrent brain metastases in MRI. LC was defined as freedom from development of new lesions within the field treated with SRS or progression in preexisting metastases. RC was defined as freedom from development of new distant brain metastases.

Adverse effects such as increased intracranial pressure (ICP) signs, neurocognitive defect, and radiation necrosis were also evaluated. Quantitative evaluation such as questionnaire on neurocognitive function was not made. However, a clear clinical record of patient’s symptoms was obtained through a simple clinical interview with the clinician.

2.5. Statistical analysis
All statistical analyses were performed using SPSS software Version 21.0 for Windows. Actuarial OS, IPFS, LC rates, and RC rates were calculated using the Kaplan–Meier method. Log-rank test was used for univariate analysis to assess prognostic factors associated with OS and IPFS. Cox proportional hazard models were performed for multivariate analysis. A 2-sided P-value < .05 was considered statistically significant.

3. Results
LC rates at 6 months and 1-year following SRS were 98% and 92%, respectively. A representative case of good response after CK-based SRS for brain lesion is shown in Figure 1. RC rates at 6 months and 1-year following SRS were 88% and 78%, respectively. SRS site failure occurred in 5 patients while distant brain failure occurred in 12 patients during the follow-up period after SRS.

At the time of analysis, 41 (85.4%) patients died, including 26 (54.2%) patients due to cancer progression, 4 (8.3%) due to intracranial progression, 2 (4.2%) due to noncancerous cause, and 9 (18.8%) due to unknown reason. The median OS of all patients was 8 months. One-year and 2-year OS rates were 40.8% and 20.9%, respectively (Fig. 2A). In univariate analysis for OS, primary disease status (controlled vs uncontrolled: 31 vs 26 patients, 31.3 vs 19.1 months; P < .05). ECOG performance status (0 vs 1 vs 2–3: 17.3 vs 6.7 months; P = .007), extracranial metastases (absent vs present: 17.3 vs 6.7 months; P = .04), and primary histology (NSCLC vs SCLC: 9.9 vs 5.3 months; P = .04) were significant.
prognostic factors (Table 3). Multivariate analysis showed that uncontrolled primary disease ($P=0.01$) and ECOG performance status of 2–3 ($P=0.001$) were independent prognostic factors for inferior OS (Table 4).

The median IPFS of all patients was 5.3 months. One-year and 2-year IPFS rates were 23.9% and 15.2%, respectively (Fig. 2B). Similar to the analysis for OS, primary disease status and ECOG performance status were significant prognostic factors for IPFS (Table 4).

We also analyzed OS according to primary disease status and the presence of extracranial metastases in each RPA class II and III group. In RPA class II group, median OS time of patients with controlled primary disease was significantly higher than that of patients with uncontrolled primary disease (41.1 vs 12.3 months; $P=0.03$; Fig. 3A). Patients without extracranial metastases had significantly higher median OS than those with extracranial metastases (29.1 vs 8.5 months; $P=0.03$; Fig. 3B). In the RPA class III group, only OS according to primary disease status showed statistically significant difference (controlled vs uncontrolled: 26.9 vs 4.1 months; $P=0.01$; Fig. 4A). OS according to the presence of extracranial metastases also showed a large difference of 5.1 months (absent vs present: 9.3 vs 4.2 months; $P=0.07$; Fig. 4B), although the difference was marginally significant.

No symptoms or signs caused by radiation-induced necrosis were observed during follow-up period after SRS. In addition, there was no case showing significant neurocognitive dysfunction. Other complications included seizure in 2 patients and IICP signs in 3 patients due to cerebral edema.

Figure 1. An example of the MRI response after CyberKnife (Accuray Inc, Sunnyvale, CA) based SRS. (A) Pre-SRS axial T1-weighted MRI with gadolinium illustrates a 2.5 cm sized enhancing mass on the left side of the cerebellum. (B) Post-SRS axial T1-weighted MRI with gadolinium at 5 months shows a partial response in which the initial mass almost disappeared. MRI = magnetic resonance imaging, SRS = stereotactic radiosurgery.

Figure 2. Overall survival (A) and intracranial progression-free survival (B) of recursive partitioning analysis class II/III lung cancer patients with brain metastases.
4. Discussion

Recently, with the advent of novel targeted or immunotherapeutic agents, rapid development of systemic therapy has improved survival and clinical outcomes of patients with metastatic lung cancer.\[16–21\] Previously, SRS for brain metastases is known to be an effective alternative treatment modality for WBRT in patients with RPA class I predicted to have good prognosis.\[5,22\] There are not so many clinical studies on patients with RPA class II/III who are predicted to have poor prognosis. Particularly RPA class III patients were excluded from most randomized studies because of their extremely poor prognosis.\[23,24\] However, in the modern treatment era, when chemotherapeutic agents with acceptable toxicity and advanced supportive management are introduced, lung cancer patients with brain metastases not necessarily have lower survival rates due to old age or poor performance.\[25,26\] Our results also showed that, in the modern treatment era, survival benefit could be achieved through aggressive local treatment for brain lesions if primary disease is adequately controlled even if patients with old age or poor performance.

Since the publication of RPA classification system by Gaspar et al, it has been questionable whether this could be generally applied to determine the treatment strategies of patients with brain metastases.\[5\] A few studies have been conducted to verify this system.\[14,27,28\] Nieder et al have confirmed that patients with RPA class I have no disagreement with aggressive local treatment such as SRS.\[14\] However, considering time to non-central nervous system (CNS) death, primary disease controlled subgroups of RPA class II patients suggest that aggressive LC of brain metastases may provide survival benefit.\[14\] Yamamoto et al have divided RPA class II into 3 subclasses by scoring 4 prognostic factors (Karnofsky performance status, tumor numbers, primary disease status, and nonbrain metastases) and reported that prognostic factors that can determine RPA class II are diverse and very heterogeneous, showing significant

Table 3

Variables	No.	Median OS, mo	P-value	Median IPFS, mo	P-value
Primary disease status					
Controlled	10	31	.007	26.9	.001
Uncontrolled	38	6.7		4.7	
ECOS performance status					
0–1	28	12.3	.006	7.8	.04
2–3	20	4.2		4.1	
Extracranial metastases					
Absent	17	17.3	.04	10.2	.005
Present	31	6.7		4.7	
Histological type					
NSCLC	37	9.9	.04	7.5	.07
SCLC	11	5.3		2.4	
No. of brain lesions					
1	35	6.7	.67	5.1	.39
≥2	13	12.3		8.0	
Neurologic status					
Asymptomatic	9	12.3	.27	6.7	.90
Symptomatic	30	8.0		5.4	
Age					
<65	18	12.3	.46	7.3	.81
≥65	30	5.4		4.7	
Prior WBRT					
No	28	7.5	.54	6.7	.78
Yes	20	8.5		5.1	

ECOG = Eastern Cooperative Oncology group, IPFS = intracranial progression-free survival, No. = number, NSCLC = non-small cell lung cancer, OS = overall survival, SCLC = small cell lung cancer, WBRT = whole-brain radiation therapy.

Table 4

Variables	OS HR	95% CI	P-value	IPFS HR	95% CI	P-value
Primary disease status						
(controlled vs uncontrolled)	4.49	1.41–14.34	.01	4.04	1.28–12.75	.02
ECOS performance status						
(0–1 vs 2–3)	3.87	1.79–8.36	.001	2.62	1.28–5.35	.008
Histological type						
(NSCLC vs SCLC)	1.88	0.85–4.16	.12	1.92	0.84–4.35	.12
Extracranial metastases						
(absent vs present)	1.46	0.61–3.52	.40	1.79	0.75–4.30	.19

ECOG = Eastern Cooperative Oncology group, IPFS = intracranial progression-free survival, NSCLC = non-small cell lung cancer, OS = overall survival, SCLC = small cell lung cancer.
In the above study, they included tumor numbers that could be associated with target volume rather than age, one of the prognostic factors that determine original RPA class, suggesting the importance of LC in the era of advanced systemic therapies.[28]

One retrospective study has shown that RPA class III patients with brain metastases have a reasonable median OS of 7.2 months when they are treated with SRS alone.[26]

That study also argues that poor performance patients may be ideal candidates for SRS because low incidence of distant CNS failure during life expectancy and single faction treatment can be helpful for patients with debility and their caregivers.[26]

We also believe that the convenience of short fractionation is a clear benefit for poor performance patients. In addition, SRS is more effective than WBRT in that it could be used in combination with chemotherapy without delaying systemic therapy.

According to our study results, significant prognostic factors for both OS and IPFS in multivariate analysis were primary disease status and ECOG performance status. Primary disease status has been previously identified as the strongest prognostic factor associated with survival and intracranial progression in several studies.[12,29,30]

This plays a very important role in clinical decision-making, in predicting long term outcome after treatment of patients with brain metastases, and when using treatment strategies such as upfront SRS. The ECOG scale is the simplest and most commonly used performance status scale in clinical practice and was also used in our study. Because the patient group

Figure 3. Overall survival difference according to primary disease status (A) and extracranial metastases (B) for recursive partitioning analysis class II patients.

Figure 4. Overall survival difference according to primary disease status (A) and extracranial metastases (B) for recursive partitioning analysis class III patients.
divided into ECOG (0–1 vs 2) is the same group as the RPA class (2 vs 3), this shows that the RPA class also serves as a statistically significant prognostic factor for survival. The presence of extracranial metastases is known to be a significant poor prognostic factor for survival in several clinical studies, including factors that should be considered in diagnosis-specific graded prognostic assessment by stratifying based on primary cancer histology as well as RPA classification for brain metastases.\(^5\)\(^{15}\)\(^{52}\)\(^{22}\)\(^{23}\)\(^{24}\)\(^{14}\)\(^{25}\)\(^{47}\)\(^{53}\)\(^{72}\)

The presence of extracranial metastases in our study was a significant prognostic factor in univariate analysis of OS and PFS. However, it did not show any statistically significant difference in multivariate analysis.

In each group of RPA class II and III, we further analyzed the OS for these 2 factors (primary disease status, extracranial metastases) showing significantly survival difference in univariate analysis except for age among the 3 factors determining RPA class II. As a result, controlled primary disease was associated with significantly superior OS in both RPA class II and III. The absence of extracranial metastases was also associated with significantly superior OS in RPA class II. Particularly, RPA class III patients with poor performance had a median survival time longer than 2 years if the primary disease was controlled. These results suggest that, among patients with RPA class II/III, some of them will have good prognosis depending on whether their primary tumor and extracranial metastatic lesions are controlled.

When we identified adverse effects, there were no patients with significant neurocognitive dysfunction or radionecrosis. Only 10% of patients suffered from neurologic toxicities after SRS. Side effects might have been underestimated due to evaluations without a quantitative neurocognitive test. Individual setting of dose schedules at clinician’s discretion might have also affected the severity of side effects.

We acknowledge that this retrospective study has several limitations including selection bias and confounding factors. In particular, patients who previously had WBRT were included. Heterogeneous lung cancer group was formed by including both SCLC and NSCLC patients. In addition, the relatively small sample size limits the statistical power. Thus, further studies with a large number of patients are needed to validate our findings and to help determine which patients will need active local treatment or just supportive care.

5. Conclusions

In conclusion, our results showed that SRS could be a useful treatment modality for RPA class II/III patients with 1 to 3 brain metastases from lung cancer in the modern treatment era. We suggest that patients with older age or poor performance should not be unconditionally excluded from aggressive treatment for brain metastases and SRS might be considered as an initial treatment for RPA class II/III patients with well-controlled primary disease.

Author contributions

Conceptualization: In Bong Ha, Ki Mun Kang.
Data curation: In Bong Ha, Bae Kwon Jeong.
Formal analysis: In Bong Ha, Bae Kwon Jeong, Ki Mun Kang.
Funding acquisition: Ki Mun Kang.
Investigation: In Bong Ha, Hojin Jeong, Hoon Sik Choi.
Methodology: Hojin Jeong, Yun Hee Lee.

Project administration: Jin Ho Song, Yun Hee Lee, Hoon Sik Choi.
Resources: Hoon Sik Choi.
Software: In Bong Ha, Yun Hee Lee.
Supervision: Ki Mun Kang.
Validation: Jin Ho Song, Hojin Jeong, Hoon Sik Choi, Ki Mun Kang.
Visualization: In Bong Ha.
Writing – original draft: In Bong Ha, Ki Mun Kang.
Writing – review & editing: In Bong Ha, Ki Mun Kang.
Ki Mun Kang orcid: 0000-0002-6123-9635.

References

[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:367–394.
[2] Barnholtz-Sloan JS, Sloan AE, Davis FG, et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan detroit cancer surveillance system. J Clin Oncol 2004;22:2865–2872.
[3] Zejnullaha D, Adamska K, Liebert W. Evaluation of results of linac-based radiosurgery for brain metastases from primary lung cancer. J Radiat Oncol Biol Phys 2007;68:1388–1395.
[4] Ayamah Y, Tago M, Kato N, et al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 2004;60:2865–2871.
[5] Gaspar L, Scott C, Rottman M, et al. Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 1997;37:745–751.
[6] Tabouret E, Chinon O, Metellus P, et al. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 2012;32:4655–4662.
[7] Mut M. Surgical treatment of brain metastasis: a review. Clin Neurol Neurosurg 2012;114:1–8.
[8] Gupta T. Stereotactic radiosurgery for brain oligometastases: good for some, better for all? Am J Clin Oncol 2005;38:1749–1754.
[9] Hunter GK, Suh JH, Reuther AM, et al. Treatment of five or more brain metastases with stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2012;83:1394–1399.
[10] Yamamoto M, Kawabe T, Sato Y, et al. Stereotactic radiosurgery for patients with multiple brain metastases: a case-matched study comparing treatment results for patients with 2–9 versus 10 or more tumors. J Neurosurg 2014;121(Suppl 1):16–25.
[11] Zindler JD, Slotman BJ, Lagerwaard FJ. Patterns of distant brain recurrences after radiosurgery alone for newly diagnosed brain metastases: implications for salvage therapy. Radiother Oncol 2014;112:212–216.
[12] Korovets D, Ayala-Deacon D, Tyyor DJ, et al. Multi-institutional nomogram predicting survival free from salvage whole brain radiation after radiosurgery in patients with brain metastases. Int J Radiat Oncol Biol Phys 2017;97:246–253.
[13] Sperduto PW, Kased N, Robege D, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 2012;30:419–25.
[14] Nieder C, Nestle U, Motaraf B, et al. Prognostic factors in brain metastases: should patients be selected for aggressive treatment according to recursive partitioning analysis (RPA) classes? Int J Radiat Oncol Biol Phys 2000;46:297–302.
[15] Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–247.
[16] Therasse P, van der Veldt B, et al. A systematic review of the clinical effectiveness of first-line chemotherapy for adult patients with locally advanced or metastatic non-small cell lung cancer. Thorax 2015;70:359–367.
[17] Yang WC, Xiao F, Shih JY, et al. Epidermal growth factor receptor mutation predicts favorable outcomes in non-small cell lung cancer patients with brain metastases treated with stereotactic radiosurgery. Radiother Oncol 2018;126:368–374.
[18] Nieder C, Hintz M, Oehlke O, et al. Validation of the graded prognostic assessment for lung cancer with brain metastases using molecular markers (lung-molGPA). Radiat Oncol 2017;12:107.

[19] Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373:123–35.

[20] Borghini H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;373:1627–39.

[21] Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016;17:976–83.

[22] Gaspar LE, Scott C, Murray K, et al. Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int J Radiat Oncol Biol Phys 2000;47:1001–6.

[23] Chang EL, Wefel JS, Hess KR, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 2009;10:1037–44.

[24] Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 2006;295:2483–91.

[25] Hanna N, Johnson D, Temin S, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2017;35:5484–515.

[26] Kubicek GJ, Turz T, Xue J, et al. Stereotactic Radiosurgery for Poor Performance Status Patients. Int J Radiat Oncol Biol Phys 2016;95:956–9.

[27] Nieder C, Andratschke N, Grosu AL, et al. Recursive partitioning analysis (RPA) class does not predict survival in patients with four or more brain metastases. Strahlenther Onkol 2003;179:16–20.

[28] Yamamoto M, Sato Y, Serizawa T, et al. Subclassification of recursive partitioning analysis Class II patients with brain metastases treated radiosurgically. Int J Radiat Oncol Biol Phys 2012;83:1399–405.

[29] Tsao M, Xu W, Sahgal A. A meta-analysis evaluating stereotactic radiosurgery, whole-brain radiotherapy, or both for patients presenting with a limited number of brain metastases. Cancer 2012;118:2486–93.

[30] Wegner RE, Olson AC, Kondziolka D, et al. Stereotactic radiosurgery for patients with brain metastases from small cell lung cancer. Int J Radiat Oncol Biol Phys 2011;81:e21–7.