The math modeling analysis based on Simplex method

Yu Song, Pengfei Ji
Weifang Vocational College of Engineering, Shandong Weifang 262500

Abstract. In this article, based on the objective trend of the mathematical modeling technology of the Simplex method, this is been analyzed and studied by using the large number of reference analysis and contrast method. The four instances about the math which aims to the objective development trend of Simplex method math modeling which begins from the concept of Simplex method. Firstly, the initial adoption based on Simplex method had been realized by the first case. Secondly, through the second case, the in-depth application of mathematical modeling based on Simplex method is realized. We hope that it can provide the effective reference to student for high-efficiency learning of math modeling.

1. Introduction
In recent years, with more and more attentions about math modeling based on Simplex method in our country, there are increasing amount of scholars have put forward more scientific, systematic and completed analysis plans based on Simplex method math modeling. Therefore, the topic of "mathematical modeling analysis based on the Simplex method" has become the focus of social attention. In order to promote the rapid development of mathematical modeling analysis, we should pay attention to the understanding and comprehension of mathematical modeling based on Simplex method, on the other hand, we should pay attention to the application of mathematical modeling in practical cases, which is based on Simplex. The development of mathematical modeling techniques for methods makes a greater contribution.

2. Math Modeling Conception
As it is known, the math modeling conception means is to address the real issues in the practical lives by using math knowledge which mainly adopt the idea of how to transfer a certain real issue into a math model. For instance, to extract and rebuild the issues in the real lives. Then, is to find out the relationship between real issues and math theory knowledge by using the theory of math and to eventually solve practical problems effectively by also using the math principles and formulas that have already been learnt. Thus a sort of idea that can address the real practical problems can also be finally formed that which has a character that is to cope every circumstance by using one principle.

Meanwhile, the mathematical modeling analysis based on the Simplex method is mainly to guide students to carry out in-depth study of mathematical modeling ideas, strengthen students’ practical ability, and through practice, solve the problem of practical life problems and cultivate students' awareness of using mathematical model analysis. To help students shape good mathematical models to build thinking habits, this mathematical modeling idea is crucial for students to improve their mathematics performance, because students have mastered the mathematical modeling analysis method based on Simplex method, which helps to improve students. The perception of mathematical modeling based on the Simplex method can also improve students' competence to apply mathematical modeling analysis [2]. In addition, it can also cultivate students' reasoning ability in mathematical modeling analysis, which helps Students build their own knowledge systems for mathematical modeling analysis,
which lays a solid theoretical foundation for students’ future mathematical modeling and analysis of their learning career. At the same time, it also contributes to the comprehensive development of students’ comprehensive knowledge, because it is based on the mathematical method based on Simplex method. Modular analysis is the basic knowledge of the discipline used, and any discipline Simplex method to use based on mathematical modeling analysis, therefore, learn this mathematical modeling analysis is very paramount.

3. The case application
As we all know, every learning of a certain knowledge can not be proceed without the practical instance of the real cases. Because, the circumstance of the new knowledge learning of students can be tested only by solving the real cases. And there is also no exception in the math modeling analysis of Simplex method, in order to let students have a better comprehension about the math modeling analysis based on the Simplex method, in the following content, there will be 2 real cases, which shall present the detailed information and introduction, in order to give students a obvious feeling about the powerful strength of the math modeling based on the Simplex method.

(1) Case 1
In the process of learning the knowledge of “proportional assignment of application questions”, in order to let students have a deeper understanding and understanding of the “proportional assignment of application questions” [3], teachers can guide students to “proportionate application questions”. Knowledge is linked to real life, helping students use mathematical modeling analysis to analyze real life by finding the relationship between real life and “proportional application questions”. In addition, teachers should encourage more students. Accumulate common sense of life, observe life more, and understand and recognize the observed life at any time with mathematical modeling analysis, let students realize that using mathematical modeling analysis to observe and solve problems in life, to cultivate their own mathematical modeling The importance of thinking, at the same time, through the use of mathematical modeling analysis, students can experience the fun of using the knowledge they have learned to solve practical problems, thereby improving students' ability to learn mathematical modeling analysis. For example, teachers can regularly organize students to leave school. To experience life in nature, you can lead students to electronics factories, health centers, etc. Conducting visits and inspections, collecting a large amount of information resources through the experience of real life, for example, the size of the electronics factory, the total number of electronic factories, the electronic product types of electronic factories, and other information resources are collected, and then the statistical information resources are used. The way of mathematical modeling analysis is summarized and summarized. Finally, it is described in the form of graphs. Finally, the scattered information resources are displayed through a series of sorting, summarizing and visual images. The collection and arrangement of such resource information [4], it is helpful to cultivate students' comprehensive application ability of the knowledge points of “proportional application problem” and “chart application method”. In addition, students can be increased by organizing students to experience the life of electronics factory and health center. By being exposed to real life opportunities, by continuously experiencing life, observing life, and thinking about life, we can truly apply the knowledge we have learned to real life, that is, the ability to apply what we have learned. Of course, through this teaching method, let Students experience the joy of experiencing life and have an emphasis on cultivating students' mathematical modeling analysis. At the same time, it can also improve students' interest in learning mathematical modeling analysis. Interest is the best teacher. Only students are interested in what they have learned, and their learning ability can be improved quickly. At the same time, through the combination and connection with real life. It can also make complex and boring mathematical modeling analysis knowledge interesting and interesting. In this way, the students' practical ability has been improved, which means that the ability of combining students' theory and practice has been improved. In order to improve students' ability to solve real life problems, students can also develop the ability of students to learn independently, so that students can experience the positive changes and influences brought by learning new knowledge to real life, so that students fall in love with learning.
(2) Case 2
Teachers can help students to collect some exam questions about the application of mathematical modeling analysis, so that students can improve their students' ability to apply mathematical modeling analysis by doing problems, for example: "A school holds a football match, the rules of the game. Only one football champion can be selected for every 30 football players. Then, the selected football champions can be used as the participating representatives to participate in the competition. Then, for the 30 football players to compete in the game rules of the survival of the fittest, there is no tie. In the case of how many games need to be played to determine the final winner? The illusion of the solution to this problem is complicated and difficult to solve [5], but when you really understand the meaning of the question, the teacher can help students simplify the problem by breaking down the complex problem. Mathematical modeling analysis is used at this time to solve the problem. Mathematical modeling can be used to number each football player, and then the complex problem can be simplified by the rules of the game, if the student chooses Eliminate two words, then, regardless of the two ways of the game, you must eliminate the selected one of the football groups. In this way, the complicated problems are simplified, and the efficiency of solving the problem is improved. A great role, through the use of mathematical modeling analysis, can make complex problems easier, in addition, through the use of mathematical modeling analysis can improve the efficiency of students to solve complex problems quickly, complex problems Simplification is a very efficient way to deal with problems. In addition, through this case, students can also develop the reasoning ability of mathematical modeling analysis, which helps students to build their own knowledge system of mathematical modeling analysis, which lays a foundation for students' future mathematical modeling and analysis. A solid theoretical foundation, at the same time, also contributes to the comprehensive development of students' comprehensive knowledge. In order to allow students to have a higher level of understanding and application level of mathematical modeling analysis based on Simplex method, it is very important to strengthen students' ability to use.

4. Conclusion
In summary, the continuous development of the mathematical modeling analysis technology based on the Simplex method in China and the mathematical modeling analysis technology based on the Simplex method has been applied in many practical cases and based on the Simplex method, Mathematical modeling and analysis techniques are continuously applied to practical cases, which can improve students' understanding of mathematical modeling and analysis based on Simplex method. In addition to promote the rapid development of mathematical modeling analysis technology based on Simplex method, more scholars have invested in the research of this technology and through the study of more practical cases, it has played a positive role in promoting the mathematical modeling and analysis technology.

References:
[1] Chai Ruishuai. Mathematical modeling analysis and simulation of seismic wave intensity variation [J]. Journal of Earthquake Engineering, 2018, 40(3).
[2] Chen Jiaqi, Su Zhimin, Wang Mengcheng, et al. Digital-analog analysis of hydraulic characteristics of vertical tubular pumping device [J]. China Rural Water and Hydropower, 2018(7).
[3] Yan Chenguang, SU Lianqing, SUN Xiaoling. Exploration and Analysis of Innovative Talents Training Model Based on Mathematical Modeling [J]. Contemporary Education Practice and Teaching Research, 2018(01): 43-44+47.
[4] Feng Mei. Analysis of tea sales strategy based on mathematical modeling method [J]. Fujian Tea, 2018.
[5] Yan Yanfang. Value Analysis of Mathematical Modeling Thoughts Incorporated into Higher Mathematics Teaching [J]. Youth, 2018(1).
[6] Han Yuanhong, Xu Xuhui, Lu Jianlin, et al. Numerical simulation of sedimentary evolution of
the Suining Formation in the Dongtai depression, northern Jiangsu Province[J]. Journal of Sedimentology, 2018, 36(4).