ON THE BROWN-PETE RSON COHOMOLOGY OF BPU_n IN LOWER DIMENSIONS AND THE THOM MAP

XING GU

ABSTRACT. For an odd prime p, we determined the Brown-Peterson cohomology of BPU_n in dimensions $-(2p - 2) \leq i \leq 2p + 2$, where BPU_n is the classifying space of the projective unitary group PU_n. We construct a family of p-torsion classes $\eta_{p,k} \in BP^{2p^k + 2}(BPU_n)$ for $p|n$ and $k \geq 0$ and identify their images under the Thom map with well understood cohomology classes in $H^*(BPU_n; \mathbb{Z}(p))$.

1. INTRODUCTION

Let p be an odd prime number, and let BP be the corresponding Brown-Peterson spectrum. The Brown-Peterson cohomology $BP^*(BG)$ of the classifying space of a compact Lie group or a finite group G is the subject of various works such as Kameko and Yagita [8], Kono and Yagita [11], Leary and Yagita [12], and Yan [21].

One case that $BP^*(BG)$ is particularly interesting is when G is homotopy equivalent to a complex algebraic group via a group homomorphism. In this case the Chow ring of BG, $CH^*(BG)$ is defined by Totaro [16], and one has the cycle class map

$$\text{cl} : CH^*(BG) \to H^{even}(BG; \mathbb{Z})$$

which is a ring homomorphism from the Chow ring to the subring of $H^*(BG)$ of even dimensional classes. Although for complex algebraic varieties, Chow rings are in general much more complicated than ordinary cohomology, it is shown in many cases that $CH^*(BG)$ is simpler than $H^*(BG; \mathbb{Z})$. On the other hand, Totaro [16] shows that the cycle class map (1.1) factors as

$$CH^*(BG) \xrightarrow{\tilde{\text{cl}}} MU^{even}(BG) \otimes_{MU^*} \mathbb{Z} \xrightarrow{T} H^{even}(BG; \mathbb{Z})$$

where MU denotes the complex cobordism theory, and the second map T is the Thom map. The first map $\tilde{\text{cl}}$ is called the refined cycle class map. Therefore, the BP theory, being a p-local approximation of the MU theory, plays the role of a bridge between the Chow ring and the ordinary cohomology of BG. Indeed, it is an interesting problem to find out for which G is the refined cycle class map

$$\tilde{\text{cl}} : CH^*(BG) \xrightarrow{\tilde{\text{cl}}} MU^*(BG) \otimes_{MU^*} \mathbb{Z}$$

an isomorphism. For this to hold, it is necessary that $BP^*(BG)$ concentrates in even dimensions. This property is studied for various G by Kono and Yagita [11].

Key words and phrases. the Brown-Peterson cohomology, the classifying spaces of the projective unitary groups.

The author would like to thank the Max Planck Institute for Mathematics for their hospitality and financial support.
In this paper we focus on $BP^*(BU_n)$, where PU_n is the nth projective unitary group. The algebraic invariants of BU_n are much less known compared to BG for most of the other compact Lie groups G. The Chow ring of BP_U is determined, up to one relation, by Vezzosi [18]. The additive structure of $CH^*(BU_3)$ is independently determined by Kameko and Yagita [8]. Vistoli [19] improved Vezzosi’s method and determined the additive structures of the Chow ring and ordinary cohomology with integral coefficients of BU_p for an odd prime p and much of the ring structures, and completed Vezzosi’s study of the Chow ring of BU_3. The ordinary mod p cohomology and Brown-Peterson cohomology of BU_p are studied by Kameko and Yagita [8]. Kono and Yagita [14], and Vavpetič and Viruel [17]. The mod 2 ordinary cohomology ring of BU_n for $n = 2$ (mod 4) is determined by Kono and Mimura [10] and Toda [15].

For a general positive integer n, the cohomology groups $H^k(BU_n;\mathbb{Z})$ for $k \leq 3$ are trivial and are briefly discussed in Section 3. The group $H^k(BU_n;\mathbb{Z})$ is determined by Woodward [20] and $H^k(BU_n;\mathbb{Z})$ by Antieau and Williams [2]. The ring structure of $H^*(BU_n;\mathbb{Z})$ in dimensions less than or equal to 10 is determined by the author [5]. The author [6] also studies some p-torsion classes of $CH^*(BU_n)$ for n with p-adic valuation 1, i.e., $p|n$ but $p^2 \nmid n$. To the author’s best knowledge, $BP^*(BU_n)$ for n not a prime number has not been studied in any published work before.

Before stating the main conclusions of this paper, we fix some notations. For a spectrum A, we denote by A_+ its homotopy groups, or the group of coefficients of the homology theory A, considered as a graded abelian group. Denote by A^* the group of coefficients of the cohomology theory associated to A. Then A^* and A_+ are isomorphic, but the gradings are opposite to each other. For instance, we have $BP_+ \cong \mathbb{Z}_p[v_1, v_2 \cdots]$ where $\dim v_k = 2p^k - 2$ and $BP^* \cong \mathbb{Z}_p[v_1, v_2 \cdots]$ where $\dim v_k = -(2p^k - 2)$.

Theorem 1.1. Assume $p|n$. There is a homomorphism of \mathbb{Z}_p-algebras

$$Z_p(v_1) \otimes R^* \otimes \mathbb{Z}_p[\eta_{p, 0}]/(p\eta_{p, 0}) \to BP^*(BU_n) \quad (1.3)$$

which is an isomorphism in dimensions $-(2p - 2) \leq i \leq 2p + 2$. Here we have $\dim \eta_{p, 0} = 2p + 2$, $\dim v_1 = -(2p - 2)$ and R^* a graded \mathbb{Z}_p-algebra such that

(a) the Thom map $T : BP^*(BU_n) \to H^*(BU_n; \mathbb{Z}_p)$ takes $\eta_{p, 0}$ to $y_{p, 0}$, and

(b) R is free as a graded \mathbb{Z}_p-module, and

(c) we have an isomorphism

$$R^* \otimes \mathbb{Q} \cong \mathbb{Q}[e_2, e_3, \cdots, e_p + 1]$$

with $\dim e_i = 2i$, and

(d) the following homomorphism induced from (1.3)

$$R^* \otimes \mathbb{Z}_p[\eta_{p, 0}]/(p\eta_{p, 0}) \to BP^*(BU_n) \otimes_{BP^*} \mathbb{Z}_p \quad (1.3)$$

is an isomorphism in dimensions $0 \leq i \leq 2p + 2$.

In particular, in dimensions $-(2p - 2) \leq i \leq 2p + 2$, $BP^*(BU_n)$ concentrates in even dimensions.

For the next conclusion, we note that there are p-torsion classes

$$y_{p, k} \in H^{2p^k+1+2}(BU_n; \mathbb{Z}_p)$$

which are studied in [5] and discussed in more details in Section 3.
Theorem 1.2. For $k \geq 0$ and $p \mid n$, there are p-torsion classes

$$\eta_{p,k} \in \text{BP}^{2p^{k+1}+2}(\text{BP} U_n)$$

such that $T(\eta_{p,k}) = y_{p,k}$, where T is the Thom map.

The class $\eta_{p,0}$ is already given in Theorem 1.1.

Remark 1.2.1. Localizing at p the homotopy fiber sequence $B\mathbb{Z}_n \to \text{BSU}_n \to \text{BP} U_n$, we obtain a p-local homotopy equivalence $\text{BSU}_n \simeq \text{BP} U_n$ in the case $p \nmid n$. Therefore this case is not very interesting.

Remark 1.2.2. In [6], the author constructs p-torsion classes $\rho_{p,k}$, $k \geq 0$ in the Chow ring of $\text{BP} U_n$ when the p-adic valuation of n is 1, satisfying $\text{cl}(\rho_{p,k}) = y_{p,k}$. This suggests that the classes $\rho_{p,k}$ should exist for n with p-adic valuation greater than 1 and that the refined cycle class map ([16]) should take $\rho_{p,0}$ to $\eta_{p,0}$.

This paper is organized as follows. In Section 2 we present some preliminaries on the the cohomology theories $P(n)$ defined by Johnson and Wilson [7]. In Section 3 we give some results on the ordinary cohomology of $\text{BP} U_n$, most of which are proved in [5] and [6], and presented in slightly different forms. In Section 4 and Section 5, we prove Theorem 1.1 and Theorem 1.2, respectively.

This paper is written during a visit to the Max Planck Institute for Mathematics (MPIM), and also in the middle of the COVID-19 pandemic. The author would like to thank MPIM for their supports in various ways during this difficult time.

2. Preliminaries on the cohomology theories $P(n)$

In [7], Johnson and Wilson consider variations of the BP cohomology theory $P(n)$, $n \geq 0$ defined inductively in terms of the following cofiber sequences of spectra

$$P(n) \xrightarrow{x_n} P(n) \to P(n+1)$$

where $P(0) = \text{BP}$ and $v_0 = p$. In particular, we have the cofiber sequence

$$\text{BP} \xrightarrow{x_p} \text{BP} \to P(1).$$

We immediately deduce

$$P(n)^* = \mathbb{Z}_p[v_n, \cdots].$$

In particular, in the case $n = 0$ and $n = 1$, we have

$$P(0)^* = \text{BP}^* = \mathbb{Z}_p(v_1, v_2, \cdots, v_n, \cdots)$$

and

$$P(1)^* = \mathbb{Z}_p[v_1, \cdots].$$

We consider the Atiyah-Hirzebruch spectral sequence of the cohomology theories $P(1)$ and BP. Brown and Peterson [3] studied the Postnikov tower of the spectrum BP, of which the 0th level is the Eilenberg-Mac Lane spectrum $H\mathbb{Z}_{(p)}$. To obtain the 1st level, we consider the map

$$H\mathbb{Z}_{(p)} \xrightarrow{\bigvee_{i \geq 1} \delta_{p,i}} \bigvee_{i \geq 1} \Sigma^{2p^{i-1}} H\mathbb{Z}_{(p)}.$$
where $\bigvee_{i \geq 1} \Sigma^{2p^i-1}H\mathbb{Z}_{(p)}$ is the wedge sum of the spectra $\Sigma^{2p^i-1}H\mathbb{Z}_{(p)}$. By convention, \mathcal{P}^k denotes the kth Steenrod reduced power operation and δ denotes the connecting homomorphism associated to the short exact sequence $\mathbb{Z}_{(p)} \xrightarrow{x_p} \mathbb{Z}_{(p)} \to \mathbb{Z}_p$. The 1st level of the Postnikov tower is the homotopy fiber of this map. Therefore we have the following lemma that gives the first nontrivial differential of the Atiyah-Hirzebruch spectral sequence of BP in the universal case:

Lemma 2.1. The first nontrivial differential in the Atiyah-Hirzebruch spectral sequence of $BP^*(H\mathbb{Z}_{(p)})$ is $d_{2p-1} = v_1 \otimes \delta \mathcal{P}^1$.

The Postnikov tower of $P(1)$ is constructed in a similar way, with the 0th level $H\mathbb{Z}_p$ and the 1st level the homotopy fiber of the map

$$H\mathbb{Z}_p \xrightarrow{\bigvee_{i \geq 1} \beta \mathcal{P}^i} \bigvee_{i \geq 1} \Sigma^{2p^i-1}H\mathbb{Z}_p$$

where β is the connecting homomorphism associated to the short exact sequence $\mathbb{Z}_p \xrightarrow{x_p} \mathbb{Z}_p \to \mathbb{Z}_p$. Hence we have the following

Lemma 2.2. The first nontrivial differential in the Atiyah-Hirzebruch spectral sequence of $P(1)^*(H\mathbb{Z}_p)$ is $d_{2p-1} = v_1 \otimes \beta \mathcal{P}^1$. If x is a class of the E_2 page which is the mod p reduction of an integral cohomology class, we have $d_{2p-1}(x) = v_1 \otimes Q_1(x)$ where Q_1 is the Milnor’s operation defined in [13].

Finally we take notes on a comparison between the cohomology operations for BP theory and the mod p ordinary cohomology theory due to Kane [9]. Let $E = (e_1, e_2, \cdots)$ be a sequence of non-negative integers with only finitely many nonzero terms, and let \mathcal{P}^E be the operation defined by Milnor [13]. Then we have a BP cohomology operation $r^E_E \in BP^*BP$ and the following diagram (display (1.1) of [9]):

$$BP^*(X) \xrightarrow{r^E} BP^*(X) \xrightarrow{T} H^*(X; \mathbb{Z}_p)$$

$$H^*(X; \mathbb{Z}_p) \xrightarrow{c(\mathcal{P}^E)} H^*(X; \mathbb{Z}_p)$$

where $c : \mathcal{A}^* \to \mathcal{A}^*$ is the canonical anti-automorphism of the mod p Steenrod algebra \mathcal{A}, and the vertical arrows labelled by T are the reduced Thom isomorphisms, i.e., the composition of the Thom map and the mod p reduction.

Since r^E_E is a map of BP-modules, which in particular commutes with the multiplication $BP \xrightarrow{x_p} BP$, it reduces to an operation $r^E_P \in P(1)^*P(1)$, and yields a commutative diagram

$$P(1)^*(X) \xrightarrow{r^E_P} P(1)^*(X) \xrightarrow{T} H^*(X; \mathbb{Z}_p)$$

$$H^*(X; \mathbb{Z}_p) \xrightarrow{c(\mathcal{P}^E)} H^*(X; \mathbb{Z}_p)$$

3. ON THE ORDINARY COHOMOLOGY OF $BP\mathbb{U}_n$

In this section we consider the ordinary cohomology of $BP\mathbb{U}_n$. For the most part of this section, we reformulate some results in [5]. By definition we have a short
Then we have
\[x \text{ defines a generator} \]
which defines the Lie group \(PU_n \).

Consider the short exact sequence of Lie groups
\[1 \to S^1 \to U_n \to PU_n \to 1 \]
which defines the Lie group \(PU_n \). Here \(S^1 \) is the complex unit circle, and \(U_n \) is the \(n \)th unitary group. Taking classifying spaces, we obtain a homotopy fiber sequence
\[BS^1 \to BU_n \to BPU_n. \]

Notice that \(BS^1 \) is of the homotopy type of the Eilenberg-Mac Lane space \(K(\mathbb{Z}, 2) \). Delooping \(BS^1 \), we obtain another homotopy fiber sequence
\[(3.1) \quad BU_n \to BPU_n \xrightarrow{\chi} K(\mathbb{Z}, 3). \]

Here the map
\[(3.2) \quad \chi : BPU_n \to K(\mathbb{Z}, 3) \]
defines a generator \(x_1 \) of \(H^3(BPU_n; \mathbb{Z}) \cong \mathbb{Z}_n \) (or \(H^3(BPU_n; \mathbb{Z}_{(p)}) \cong \mathbb{Z}_{e p} \), where \(e \) is the \(p \)adic valuation of \(n \)), which we call the canonical Brauer class of \(BPU_n \).

The homotopy fiber sequence \(\chi \) induces a Serre spectral sequence \(^U E^{s,t}_2 \) converging to \(H^*(BPU_n; \mathbb{Z}_{(p)}) \):
\[^U E^{s,t}_2 \cong H^s(K(\mathbb{Z}, 3); H^t(BU_n; \mathbb{Z}_{(p)})) \Rightarrow H^{s+t}(BPU_n; \mathbb{Z}_{(p)}). \]

Then an element in \(^U E^{s,t}_2 \) is the sum of elements of the form \(\vartheta \otimes \xi \) where \(\vartheta \in H^s(BPU_n; \mathbb{Z}_{(p)}) \) and \(\xi \in H^t(K(\mathbb{Z}, 3); \mathbb{Z}_{(p)}) \). The cohomology of \(BU_n \) is a polynomial ring in the universal Chern classes:
\[H^*(BU_n; \mathbb{Z}_{(p)}) \cong \mathbb{Z}_{(p)}[c_1, c_2, \cdots]. \]

As in [5], we consider the linear operator
\[\nabla : H^*(BU_n; \mathbb{Z}_{(p)}) \to H^{*+2}(BU_n; \mathbb{Z}_{(p)}) \]
determined by \(\nabla(c_i) = (n - i + 1)c_{i-1} \) and the Leibniz formula \(\nabla(ab) = a\nabla(b) + \nabla(a)b \). The differential \(^U d_3 \) is completely determined in [5]:

Lemma 3.1 (Corollary 3.10, [5]). Let \(\vartheta = \vartheta[c_1, \cdots, c_n] \) be a class in \(H^*(BPU_n; \mathbb{Z}) \), and let \(\xi \in H^*(K(\mathbb{Z}, 3); \mathbb{Z}) \). Let \(x_1 \in H^3(K(\mathbb{Z}, 3); \mathbb{Z}) \) be the canonical Brauer class.

Then we have
\[^U d_3(\vartheta \otimes \xi) = \nabla(\vartheta) \otimes x_1 \xi. \]

Let \(TU_n \) and \(TPU_n \) be the respective standard maximal tori of \(U_n \) and \(PU_n \). Then we have
\[H^*(TU_n; \mathbb{Z}) \cong \mathbb{Z}[t_1, t_2, \cdots, t_n] \]
where each \(t_i \) is of dimension 2. It follows from an elementary calculation that the canonical projection \(TU_n \to TPU_n \) identifies \(H^*(BTU_n; \mathbb{Z}) \) as the subring of
$H^*(BTU_2;\mathbb{Z})$ generated by $t_i - t_j$ for all $i \neq j$. Let W be the Weyl group of TPU_n. Then it is well known that the pullback
\[H^*(BU_n;\mathbb{Z}) \rightarrow H^*(BTU_2;\mathbb{Z})^W \]
is an isomorphism, where $H^*(BTU_2;\mathbb{Z})^W$ is the invariant subring of the Weyl group action. Furthermore, an elementary calculation yields the following

Proposition 3.2. The pullback
\[H^*(BU_n;\mathbb{Z}) \rightarrow H^*(BTU_2;\mathbb{Z})^W \]
sends $\text{Ker } \nabla$ isomorphically onto $H^*(BTPU_n;\mathbb{Z})^W$.

Remark 3.3. In general $H^*(BTU_2;\mathbb{Z})^W$ is not necessarily a polynomial ring. As shown by Vezzosi [18], there is a class $y_{12} \in H^{12}(BTU_2;\mathbb{Z})^W$ which is not a nontrivial product, but $3y_{12}$ is.

The cohomology of $K(\mathbb{Z}, 3)$, in principle, is determined in [4], where the homology of $K(\pi, n)$ for any finitely generated abelian group π and any $n > 0$ is described in full. In [5], the author uses an alternative description of the cohomology of $K(\mathbb{Z}, 3)$, which is consistent with the notations in this paper. The following lemma is well known and can be easily deduced from Section 2 of [4].

Lemma 3.4. In dimensions $0 < i \leq 2p + 2$, we have
\[H^i(K(\mathbb{Z}, 3);\mathbb{Z}(p)) \cong \begin{cases} \mathbb{Z}(p), & i = 3, \\ \mathbb{Z}, & i = 2p + 2, \\ 0, & 0 < i \leq 2p + 4, \ i \neq 3, \ 2p + 2. \end{cases} \]

Let $x_1 \in H^3(K(\mathbb{Z}, 3);\mathbb{Z}(p))$ be the canonical Brauer class. Then the group
\[H^{2p+2}(K(\mathbb{Z}, 3);\mathbb{Z}(p)) \cong \mathbb{Z}_p \]
is generated by a class $y_{p,0} = \delta \mathcal{P}^1(x_1)$, where δ is the connecting homomorphism and \mathcal{P}^1 is the first Steenrod reduced power operation. The mod p reduction of $y_{p,0}$, denoted by $\bar{y}_{p,0}$, is equal to $Q_1(x_1)$, where Q_1 is one of the Milnor’s operations defined in [13].

Proposition 3.5. In dimension $0 \leq i \leq 2p + 2$ we have
\[(H^*(BTPU_n;\mathbb{Z})^W \otimes \mathbb{Z}(p)[x_1, y_{p,0}])(nx_1, py_{p,0}) \leq 2p + 2 \cong H^{2p+2}(BPU_n;\mathbb{Z}(p)). \]

Proof. It follows from Lemma 3.3 that in the spectral sequence $\text{U}E_{s,t}^*$, the only possibly nontrivial differentials from $\text{U}E_{s,t}^{0,1}$ for $t \leq 2p + 2$ are $\text{U}d_{0,2t}^{0,1}$. Therefore, by Lemma 3.4 we have $\text{U}E_{s,t}^{0,1} \cong \text{Ker } \nabla$, and by Proposition 3.2 we have $\text{U}E_{s,t}^{0,1} \cong H^t(BTPU_n;\mathbb{Z})^W$ for $t \leq 2p + 2$. The class $1 \otimes x_1$ being an n-torsion permanent cocycle and $1 \otimes y_{p,0}$ being a permanent cocycle follow from Theorem 1.1 and Theorem 1.2 of [5]. Therefore the groups $\text{U}E_{s,t}^s$ for $s + t \leq 2p + 2$ is determined, and we conclude.

In the cohomology ring $H^*(K(\mathbb{Z}, 3);\mathbb{Z}(p))$ we have p-torsion classes
\[y_{p,k} = \delta \mathcal{P}^p \mathcal{P}^{p-1} \cdots \mathcal{P}^1(x_1), \ k \geq 0 \]
of dimension $2p^{k+1} + 2$, where $x_1 \in H^3(BPU_n;\mathbb{Z})$ is the canonical Brauer class. In [6] the author shows that these classes have nontrivial images under
\[\chi : H^*(K(\mathbb{Z}, 3);\mathbb{Z}(p)) \rightarrow H^*(BPU_n;\mathbb{Z}(p)). \]
Theorem 3.6 (I) of Theorem 1.1, [6]). In $H^{2p^{k+1}+2}(BPUn;\mathbb{Z}(p))$, we have p-torsion classes $y_{p,k} \neq 0$ for all odd prime divisors p of n and $k \geq 0$.

As pointed out in Section 1, the canonical map $BSU_n \to BP_0$ is a rational homotopy equivalence. This means that in principal we do not need to worry about the non-torsion classes in $H^*(BPUn;\mathbb{Z}(p))$ or $BP^*(BPUn)$. We formulate this argument as the following

Proposition 3.7. We have

$$H^*(BPUn;\mathbb{Q}) \cong \mathbb{Q}[e_2, e_3, \cdots, e_n]$$

where $\dim e_i = 2i$, and

$$BP^*_\mathbb{Q}(BPUn) \cong H^*(BPUn;\mathbb{Q}) \otimes_{\mathbb{Q}} (BP^* \otimes \mathbb{Q}) \cong \mathbb{Q}[e_2, e_3, \cdots, e_n, v_1, v_2, \cdots],$$

where $BP^*_\mathbb{Q}$ denotes the localization of BP with respect to \mathbb{Q}.

4. ON THE P(1) AND BP COHOMOLOGY OF BPUn

In this section we prove Theorem [11] by studying an Atiyah-Hirzebruch spectral sequence, and the Thom map for the Eilenberg-Mac Lane space $K(\mathbb{Z}, 3)$. Indeed, the Thom map for Eilenberg-Mac Lane spaces are studied in Tamanoi [14], and we make use of one of his main conclusions. In what follows, we denote by A^* the mod p Steenrod algebra, and we use the notations for the stable cohomology operations in Milnor [13].

Theorem 4.1 (Tamanoi, (I) of Theorem A, [14]). Let p be a prime, and let $n \geq 1$. The image of the Thom map

$$T: BP^*(K(\mathbb{Z}, n + 2)) \to H^*(K(\mathbb{Z}, n + 2); \mathbb{Z}_p)$$

is an A^*-invariant polynomial subalgebra with infinitely many generators:

$$\text{Im} T = \mathbb{Z}_p[Q_{s_n}Q_{s_{n-1}} \cdots Q_{s_1}(\tau_{n+2}) | 0 < s_1 < \cdots < s_n],$$

where $\tau_{n+2} \in H^{n+2}(K(\mathbb{Z}, n + 2); \mathbb{Z}_p)$ is the fundamental class.

Consider the Atiyah-Hirzebruch spectral sequence $(E(1)^*, d_*)$ converging to $P(1)^*(BPUn)$:

$$E(1)^*_{2^t} = H^*(BPUn; P(1)^t) \Rightarrow P(1)^{s+t}(BPUn).$$

Lemma 4.2.

$$P(1)^3(BPUn) = 0.$$

Proof. Consider the Atiyah-Hirzebruch spectral sequence converging to $P(1)^*(BPUn)$ with

$$E(1)^*_{2^t} \cong H^*(BPUn; P(1)^t).$$

We use overhead bars to indicate mod p reductions of classes in $H^*(BPUn; \mathbb{Z}(p))$. The only nontrivial entry $E(1)^*_{2^t}$ with $s + t = 3$ is $E(1)^{3,0}_2$, which is generated by $1 \otimes x_1$. It follows from Lemma 2.2 that in the spectral sequence $E(1)^*_*$, we have

$$d_{2p-1}(1 \otimes x_1) = v_1 \otimes Q_1(x_1) = v_1 \otimes y_{p,0} \neq 0,$$

and we conclude.

□

Lemma 4.3.

$$BP^3(BPUn) = 0.$$
Proof. Let $E_{s,t}^*$ be the Atiyah-Hirzebruch spectral sequence for $BP^*(BPU_n)$:
\[E_{s,t}^2 \cong H^s(BPU_n; BP^t) \Rightarrow BP^{s+t}(BPU_n). \]
Consider the cofiber sequence (2.2)\[\text{BP} \xrightarrow{x_p} \text{BP} \to P(1), \]
which induces a long exact sequence of BP^*-modules\[(4.2) \]
\[\cdots \to BP^i(BPU_n) \xrightarrow{x_p} BP^i(BPU_n) \to P(1)^i(BPU_n) \to BP^{i+1}(BPU_n) \to \cdots. \]
By Proposition 3.5, we have\[P(1) \cong \mathbb{Z} \]
where e is the p-adic valuation of n, i.e., we have $n = p^e n'$ where $p \nmid n'$. Therefore,\[BP^3(BPU_n) \]
is a subring of \mathbb{Z}/p^e. Let $i = 3$ in the long exact sequence (4.2). Then we have a monomorphism\[BP^3(BPU_n)/p \hookrightarrow P(1)^3(BPU_n). \]
By Lemma 4.2 we have $P(1)^3(BPU_n) = 0$. Hence we have $BP^3(BPU_n) = 0$. \hfill \Box

Lemma 4.4. The class $1 \otimes y_{p,0} \in E_2^{2p+2,0}$ is a permanent cocycle.

Thus we denote by $\eta_{p,0}$ the class represented by $1 \otimes y_{p,0}$. The Thom map therefore takes $\eta_{p,0}$ to $y_{p,0}$.

Proof. Recall that the mod p reduction of $y_{p,0}$ is $\bar{y}_{p,0} = Q_1(x_1)$. It follows from Theorem 4.4.1 that $\bar{y}_{p,0}$, as a class in $H^*(K(\mathbb{Z}, 3); \mathbb{Z}_p)$, is in the image of the reduced Thom map\[(4.3) \quad \text{BP}^{2p+2}(K(\mathbb{Z}, 3)) \xrightarrow{T} H^{2p+2}(K(\mathbb{Z}, 3); \mathbb{Z}_p) \xrightarrow{\eta} H^{2p+2}(K(\mathbb{Z}, 3); \mathbb{Z}_p), \]
where the first arrow is the Thom map and the second one is the mod p reduction. Moreover, the second arrow is an isomorphism, from which it follows that $y_{p,0} \in H^{2p+2}(K(\mathbb{Z}, 3); \mathbb{Z}_p)$ is in the image of T. Therefore, the class $y_{p,0} \in H^*(BPU_n; \mathbb{Z}_p)$ is in the image of the reduced Thom map, since we have the following commutative diagram:
\[
\begin{array}{ccc}
\text{BP}^{2p+2}(K(\mathbb{Z}, 3)) & \xrightarrow{\chi} & \text{BP}^{2p+2}(BPU_n) \\
\downarrow T & & \downarrow T \\
H^{2p+2}(K(\mathbb{Z}, 3); \mathbb{Z}_p) & \xrightarrow{\chi} & H^{2p+2}(BPU_n; \mathbb{Z}_p)
\end{array}
\]
where the vertical arrows are the Thom maps, and the horizontal ones are induced by the canonical Brauer class χ defined in (3.2). Therefore the class $y_{p,0} \in H^{2p+2}(BPU_n; \mathbb{Z}_p)$ is in the image of T and we conclude. \hfill \Box

Next we consider the classes\[1 \otimes e_i \in \text{BP}^0 \otimes H^{2i}(BPU_n; \mathbb{Z}_p) \cong E_2^{2i,0} \]
and\[v_1 \otimes 1 \in E_2^{0,-(2p-2)}. \]
It follows from Proposition 3.7 that there are nonnegative integers \(\lambda_1, \lambda_2 \geq 2 \) and \(\mu \), such that \(p^\lambda v_i \) and \(p^\mu v_1 \) are permanent cocycles. Therefore, the groups \(E_{s,t}^\infty \) for \(0 \leq s \leq 2p + 2 \) and \(-2p - 2 \leq t \leq 0\) are determined up to nonzero multiples of non-torsion classes, from which Theorem 1.1 follows.

5. THE CLASSES \(\eta_{p,k} \)

In this section we prove Theorem 1.2 by constructing the \(p \)-torsion classes \(\eta_{p,k} \). One might be tempted to consider copying the construction of \(\eta_{p,0} \). Indeed, by Tamanoi’s Theorem 4.1, one can show that the classes

\[
\bar{y}_{p,k} = Q_k(x_1) \in H^*(K(\mathbb{Z},3); \mathbb{Z}_p)
\]

is in the image of the Thom map. However, one may run into trouble trying to produce an analog of the isomorphism in (4.3) in higher dimensions. Hence we take a different approach.

For \(k \geq 0 \), we have the classes

\[
(x_{p,k} = \mathcal{R}^p_k(x_{p,k-1}) \in H^{2p^{k+1}+1}(K(\mathbb{Z},3); \mathbb{Z}_p))
\]

and

\[
(y_{p,k} = \delta(x_{p,k}) \in H^{2p^{k+1}+2}(K(\mathbb{Z},3); \mathbb{Z}_p)).
\]

Let \(\bar{y}_{p,k} \) denote mod \(p \) reduction of \(y_{p,k} \). Then the classes \(x_{p,k} \) and \(\bar{y}_{p,k} \) may be obtained inductively on \(k \) as follows:

Proposition 5.1. For \(k \geq 1 \), we have

\[
x_{p,k} = \mathcal{R}^p_k(x_{p,k-1}) \text{ and } \bar{y}_{p,k} = \mathcal{R}^p_k(\bar{y}_{p,k-1}).
\]

Proof. Recall that for positive integers \(a, b \) such that \(a \leq pb \), we have the Adem relation (11)

\[
\mathcal{A}^a \beta \mathcal{A}^b = \sum_i (-1)^{ai} \binom{(p-1)(b-i)}{a-p_i} \beta \mathcal{A}^{a-b+i} \mathcal{A}^i + \sum_i (-1)^{ai+b+1} \binom{(p-1)(b-i)-1}{a-p_i-1} \mathcal{A}^{a-b+i} \beta \mathcal{A}^i.
\]

For \(k > 0 \), let \(a = p^k \) and \(b = p^{k-1} \). Then the only choice of \(i \) to offer something nontrivial on the right hand side of (5.3) is \(i = p^{k-1} \), and (5.3) becomes

\[
\mathcal{R}^p \beta \mathcal{R}^{p^{k-1}} = \beta \mathcal{R}^p \mathcal{R}^{p^{k-1}}.
\]

Then it follows by induction that we have

\[
\mathcal{R}^{p^k} \beta \mathcal{R}^{p^{k-1}} \cdots \mathcal{R}^p \mathcal{R}^1 = \beta \mathcal{R}^{p^k} \cdots \mathcal{R}^p \mathcal{R}^1.
\]

Compare the above with the definitions (5.1) and (5.2), and we conclude. \(\square \)

We abuse notations and let \(x_{p,k} \), \(y_{p,k} \) and \(\bar{y}_{p,k} \) denote the image of themselves under \(\chi^* : H^*(K(\mathbb{Z},3);L) \rightarrow H^*(BP^0;L) \) for \(L = \mathbb{Z}_\ell \) or \(\mathbb{Z}_p \).

Lemma 5.2. The class \(x_{p,0} \in H^*(BP^0;\mathbb{Z}_p) \) is in the image of the Thom map

\[
T: \mathcal{P}(1)^*(BP^0_n;\mathbb{Z}_p) \rightarrow H^*(BP^0_n;\mathbb{Z}_p).
\]

We denote by \(\xi_{p,0} \in \mathcal{P}(1)^{2p+1}(BP^0_n) \) a class satisfying \(T(\xi_{p,0}) = x_{p,0} \).
Proof. It follows from the long exact sequence of BP\(^\ast\)-modules (4.2)
\[
\cdots \to \text{BP}\(i\)(BP\(U_n\)) \xrightarrow{\times p} \text{BP}\(i\)(BP\(U_n\)) \xrightarrow{\delta} \text{BP}\(i+1\)(BP\(U_n\)) \xrightarrow{\times p} \cdots
\]
that the \(p\)-torsion class \(\eta_{p,0}\) is in the image of
\[
\delta: \text{BP}\(2p+1\)(BP\(U_n\)) \to \text{BP}\(2p+2\)(BP\(U_n\)).
\]
Let \(\xi_{p,0} \in \text{BP}\(2p+1\)(BP\(U_n\))\) be a class satisfying \(\delta(\xi_{p,0}) = \eta_{p,0}\). The commutative diagram
\[
P(1)^{2p+1}(BP\(U_n\)) \xrightarrow{\delta} \text{BP}\(2p+2\)(BP\(U_n\))
\]
\[
\Downarrow T
\]
\[
H^{2p+1}(BP\(U_n\);Z\(_p\)) \xrightarrow{\delta \cong} H^{2p+2}(BP\(U_n\);Z\(_p\)).
\]
yields \(T(\xi_{p,0}) = x_{p,0}\), and we conclude. \(\square\)

We proceed to construct a collection of classes \(\xi_{p,k}\) for \(k \geq 0\) by induction on \(k\). For \(k = 0\), the class \(\eta_{p,0}\) is given in Theorem 1.1. For the inductive argument, recall Kane’s commutative diagram (2.6):
\[
P(1)^{\ast}(X) \xrightarrow{r^{\ast}_k} P(1)^{\ast}(X)
\]
\[
\Downarrow T
\]
\[
H^{\ast}(X;Z\(_p\)) \xrightarrow{c(\mathscr{P}^E)} H^{\ast}(X;Z\(_p\)).
\]
The canonical anti-automorphism satisfies \(c^2 = \text{id}\), and restricts to an anti-automorphism on the subalgebra of \(\mathscr{A}\) generated by \(\mathscr{P}^E\) for various sequences \(E\). Therefore, for \(k \geq 0\), we have sequences \(E_i\) such that
\[
c(\mathscr{P}^k) = \sum_i \mathscr{P}^{E_i},
\]
or equivalently
\[
\mathscr{P}^k = \sum_i c(\mathscr{P}^{E_i}).
\]
By (5.5) we have \(R_k \in P(1)^{\ast}P(1)\) such that the following diagram commutes:
\[
P(1)^{\ast}(X) \xrightarrow{R_k} P(1)^{\ast}(X)
\]
\[
\Downarrow T
\]
\[
H^{\ast}(X;Z\(_p\)) \xrightarrow{\mathscr{P}^k} H^{\ast}(X;Z\(_p\)).
\]
By induction on \(k\) and Proposition 5.1, if \(x_{p,k}\) is in the image of the Thom map \(T\), then so is \(x_{p,k+1} = \mathscr{P}^k(x_{p,k})\). The induction also gives classes \(\xi_{p,k} = R_k(\xi_{p,k-1})\) such that \(T(\xi_{p,k}) = x_{p,k}\). The desired classes \(\eta_{p,k}\) are thus given by \(\eta_{p,k} = \delta(\xi_{p,k})\).

References
[1] J. Adem. The iteration of the Steenrod squares in algebraic topology. Proceedings of the National Academy of Sciences of the United States of America, 38(8):720, 1952.
[2] B. Antieau and B. Williams. The topological period–index problem over 6-complexes. Journal of Topology, 7(3):617–640, 2014.
[3] E. Brown and F. Peterson. A spectrum whose \(Z\(_p\)\) cohomology is the algebra of reduced \(p\)-th powers, Topology 5 (1966), 149-154. MR, 33:719.
[4] É. N. S. (France) and H. Cartan. Séminaire Henri Cartan: ann. 7 1954/1955; Algèbres d'Eilenberg-MacLane et homotopie. Secrétariat Mathématique, 1958.
[5] X. Gu. On the cohomology of the classifying spaces of projective unitary groups. Journal of Topology and Analysis, pages 1–39, 2019.
[6] X. Gu. Some torsion classes in the Chow ring and cohomology of $BPGL_n$. arXiv preprint arXiv:1901.10090, 2019.
[7] D. C. Johnson and W. S. Wilson. BP operations and Morava’s extraordinary K-theories. Mathematische Zeitschrift, 144(1):55–75, 1975.
[8] M. Kameko and N. Yagita. The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups $PU(p)$ and exceptional Lie groups. Transactions of the American Mathematical Society, 360(5):2265–2284, 2008.
[9] R. Kane. Brown-Peterson operations and Steenrod modules. The Quarterly Journal of Mathematics, 30(4):455–467, 1979.
[10] A. Kono and M. Mimura. On the cohomology of the classifying spaces of $PSU(4n + 2)$ and $PO(4n + 2)$. Publications of the Research Institute for Mathematical Sciences, 10(3):691–720, 1975.
[11] A. Kono and N. Yagita. Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups. Transactions of the American Mathematical Society, 339(2):781–798, 1993.
[12] I. Leary and N. Yagita. Some examples in the integral and Brown-Peterson cohomology of p-groups. Bulletin of the London Mathematical Society, 24(2):165–168, 1992.
[13] J. Milnor. The Steenrod algebra and its dual. Annals of Mathematics, pages 150–171, 1958.
[14] H. Tamanoi. The image of the BP Thom map for Eilenberg-MacLane spaces. Transactions of the American Mathematical Society, 349(3):1209–1237, 1997.
[15] H. Toda et al. Cohomology of classifying spaces. In Homotopy theory and related topics, pages 75–108. Mathematical Society of Japan, 1987.
[16] B. Totaro. The Chow ring of a classifying space. In Proceedings of symposia in pure mathematics, volume 67, pages 249–284. Providence, RI; American Mathematical Society; 1998, 1999.
[17] A. Vavpetic and A. Viruel. On the mod p cohomology of $BPU(p)$. Transactions of the American Mathematical Society, 357(11):4517–4532, 2005.
[18] G. Vezzosi. On the Chow ring of the classifying stack of $PGL_{3,C}$. Journal für die reine und angewandte Mathematik (Crelles Journal), 2000(523):1–54, 2000.
[19] A. Vistoli. On the cohomology and the Chow ring of the classifying space of PGL_p. Journal für die reine und angewandte Mathematik (Crelles Journal), 2007(610):181–227, 2007.
[20] L. Woodward. The classification of principal PU_n-bundles over a 4-complex. Journal of the London Mathematical Society, 2(3):513–524, 1982.
[21] D. Y. Yan. The Brown-Peterson homology of the classifying spaces BO and $BO(n)$. Journal of Pure and Applied Algebra, 102(2):221 – 233, 1995.

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: gux2006@mpim-bonn.mpg.de