Automatic Enrichment of WordNet with Common-Sense Knowledge

Luigi Di Caro, Guido Boella
University of Turin
Corso Svizzera 185 - Turin - Italy
dicaro@di.unito.it, boella@di.unito.it

Abstract
WordNet represents a cornerstone in the Computational Linguistics field, linking words to meanings (or senses) through a taxonomical representation of synsets, i.e., clusters of words with an equivalent meaning in a specific context often described by few definitions (or glosses) and examples. Most of the approaches to the Word Sense Disambiguation task fully rely on these short texts as a source of contextual information to match with the input text to disambiguate. This paper presents the first attempt to enrich synsets data with common-sense definitions, automatically retrieved from ConceptNet 5, and disambiguated accordingly to WordNet. The aim was to exploit the shared- and immediate-thinking nature of common-sense knowledge to extend the short but incredibly useful contextual information of the synsets. A manual evaluation on a subset of the entire result (which counts a total of almost 600K synset enrichments) shows a very high precision with an estimated good recall.

Keywords: Semantic Resources, Semantic Enrichment, Common-Sense Knowledge

1. Introduction
In the last 20 years, the Artificial Intelligence (AI) community working on Computational Linguistics (CL) has been using one knowledge base among all, i.e., WordNet (Miller, 1995). In few words, WordNet was a first answer to the most important question in this area, which is the treatment of language ambiguity.
Generally speaking, a word is a symbolic expression that may refer to multiple meanings (polysemy), while distinct words may share the same meaning. Syntax reflects grammatical rules which add complexity to the overall communication medium, making CL one of the most challenging research area in the AI field.
From a more detailed perspective, WordNet organizes words in synsets, i.e., sets of words sharing a unique meaning in specific contexts (synonyms), further described by descriptions (glosses) and examples. Synsets are then structured in a taxonomy which incorporates the semantics of generality/specificity of the referenced concepts. Although extensively adopted, the limits of this resource are sometimes critical: 1) the top-down and general-purpose nature of common-sense knowledge to extend the short but incredibly useful contextual information of the synsets. A manual evaluation on a subset of the entire result (which counts a total of almost 600K synset enrichments) shows a very high precision with an estimated good recall.

Keywords: Semantic Resources, Semantic Enrichment, Common-Sense Knowledge

2. Related Work
The idea of extending WordNet with further semantic information is not new. Plenty of methods have been proposed, based on corpus-based enrichments rather than by means of alignments with other resources.
In this section we briefly mention some of the most relevant but distinct works related to this task: (Agirre et al., 2000) use WWW contents to enrich synsets with topics (i.e., sets of correlated terms); (Ruiz-Casado et al., 2007) and (Navigli and Ponzetto, 2010) enrich WordNet with Wikipedia and other resources; (Montoyo et al., 2001) use a Machine
Learning classifier trained on general categories; (Navigli et al., 2004) use OntoLearn, a Word Sense Disambiguation (WSD) tool that discovers patterns between words in WordNet glosses to extract relations; (Niles and Pease, 2003) integrates WordNet with the Sumo ontology (Pease et al., 2002); (Bentivogli and Pianta, 2003) extends WordNet with phrases; (Laparra et al., 2010) align synsets with FrameNet semantic information; (Hsu et al., 2008) combine WordNet and ConceptNet knowledge for expanding web queries; (Chen and Liu, 2011) align ConceptNet entries to synsets for WSD; (Bentivogli et al., 2004) integrates WordNet with domain-specific knowledge; (Vannella et al., 2014) extends WordNet via games with a purpose; (Niemi et al., 2012) proposed a bilingual resource to add synonyms.

3. Common-sense Knowledge

The Open Mind Common Sense project developed by MIT collected unstructured common-sense knowledge by asking people to contribute over the Web. In this paper, we make use of ConceptNet (Speer and Havasi, 2012), that is a semantic graph that has been directly created from it. In contrast with linguistic resources such the above-mentioned WordNet, ConceptNet contains semantics which is more related to common-sense facts.

4. The Proposed Approach

This paper proposes a novel approach for the alignment of linguistic and common-sense semantics based on the exploitation of their intrinsic characteristics: while the former represents a reliable (but strict in terms of semantic scope) knowledge, the latter contains an incredible wide but ambiguous set of semantic information. In the light of this, we assigned the role of hinge to WordNet, that guides a trusty, multiple and simultaneous retrieval of data from ConceptNet which are then intersected with themselves through a set of heuristics to produce automatically-disambiguated knowledge. ConceptNet (Speer and Havasi, 2012) is a semantic graph that has been directly created from the Open Mind Common Sense project developed by MIT, which collected unstructured common-sense knowledge by asking people to contribute over the Web.

4.1. Common-sense Data: ConceptNet

The Open Mind Common Sense project collected unstructured common-sense knowledge by asking people to contribute over the Web. In this paper, we make use of ConceptNet, that is a semantic graph that has been directly created from it. In contrast with linguistic resources such as WordNet, ConceptNet contains semantics which is more related to common-sense facts.

4.2. Basic Idea

The idea of the proposed enrichment approach relies on a fundamental principle, which makes it novel and more robust with the state of the art. Indeed, our extension is not based on a similarity computation between words for the estimation of correct alignments. On the contrary, it aimed at enriching WordNet with semantics containing direct relations and words overlapping, preventing associations of semantic knowledge on the unique basis of similarity scores (which may be also dependent on algorithms, similarity measures, and training corpora). This point makes this proposal completely different from what proposed by (Chen and Liu, 2011), where the authors created word sense profiles to compare with ConceptNet terms using semantic similarity metrics.

4.3. Definitions

Let us consider a WordNet synset $S_i = \langle T_i, g_i, E_i \rangle$ where T_i is the set of synonym terms t_1, t_2, \ldots, t_k while g_i and E_i represent its gloss and the available examples respectively. Each synset represents a meaning ascribed to the terms in T_i in a specific context (described by g_i and E_i). Then, for each synset S_i, we can consider a set of semantic properties $P_{\text{wordnet}}(S_i)$ coming from the structure around S_i in WordNet. For example, hypernym(S_i) represents the direct hypernym synset while meronym(S_i) is the set of synsets which compose (as a made-of relation) the concept represented by S_i. The above-mentioned complete set of semantic properties $P_{\text{wordnet}}(S_i)$ of a synset S_i contains a set of pairs $<\text{rel} - \text{word}>$ where rel is the relation of S_i with the other synsets (e.g., is-a) and word is one of the lemmas of such linked synsets. For example, given the synset $S_{\text{cat}} : \text{cat} = \text{true cat} (\text{feline mammal usually having thick soft fur and no ability to roar: domestic cats; wild cats})$, one resulting $<\text{rel} - \text{word}>$ pair that comes from hypernym(S_{cat}) will be $<\text{isA} - \text{feline}>$ since feline is one lemma of the hypernym synset $S_{\text{feline, felid}} : \text{feline, felid} (\text{any of various lithe-bodied roundheaded fissiped mammals, many with retractile claws})$. Note that in case of multiple synonym words in the related synsets, there will be multiple $<\text{rel} - \text{word}>$ pairs. Then, ConceptNet can be seen as a large set of semantic triples in the form $NP_1 - \text{rel}_k - NP_2$, where NP_1 and NP_2 are simply nondisambiguated noun phrases whereas rel_k is one of the semantic relationships in ConceptNet.

4.4. Algorithm and heuristics

At this point, the problem is the alignment of ConceptNet triples with WordNet synsets. For this reason, the algorithm

1. http://commons.media.mit.edu/
2. http://commons.media.mit.edu/
3. http://commons.media.mit.edu/
is composed by a general cycle over all synsets in WordNet. Then, for each synset \(S_i \) we compute the set of all candidate semantic ConceptNet triples \(P_{\text{conceptnet}}(S_i) \) as the union of the triples that contain at least one of the terms in \(T_i \). The inner cycle iterates over the candidate triples to identify those that can enrich the synset under consideration. We used a number of heuristics to align each ConceptNet triple \(c_k \) (of the form \(NP \rightarrow rel \rightarrow NP \)) to each synset \(S_i \):

h1 IF a lemma of an \(NP \) of the triple \(c_k \) is contained in the lemmatized gloss \(g_i \) of the synset \(S_i \). This would mean that ConceptNet contains a relation between a term in \(T_i \) and a term in the description \(g_i \), making explicit some semantics contained in the gloss. Note that the systematic inclusion of related-to relations with all the terms in the gloss \(g_i \) would carry to many incorrect enrichments, so an heuristic like \(h1 \) is necessary to identify only correct enrichments.

h2 IF a lemma of an \(NP \) of \(c_k \) is also contained in \(P_{\text{wordnet}} \). By traversing the WordNet structure, it is possible to link words of related synsets to \(S_i \) by exploiting existing semantics in ConceptNet.

h3 IF a lemma of an \(NP \) of \(c_k \) is contained in the lemmatized glosses of the most probable synsets associated to the words in \(g_i \). The word sense disambiguation algorithm used for disambiguating the text of \(g_i \) is a simple match between the words in the triple with the words in the glosses. In case of empty intersections, the most frequent sense is selected.

h4 After taking all the hypernyms of \(S_i \), we queried ConceptNet with their lemmas obtaining different sets of triples (one for each hypernym lemma). IF the final part \(* \rightarrow rel \rightarrow word \) of the triple \(c_k \) is also contained in one of these sets, we then associate \(c_k \) to \(S_i \). The idea is to intersect different sets of ambiguous common-sense knowledge to make a sort of collaborative filtering of the triples. For example, let \(S_i \) be \(S_{\text{burn,burning}} : pain \text{ that feels hot as if it were on fire} \), and the two candidate ConceptNet triples \(c_1 = \text{burning} \rightarrow \text{relatedto} \rightarrow \text{suffer} \) and \(c_2 = \text{burn} \rightarrow \text{relatedto} \rightarrow \text{melt} \). Once retrieved hypernym(\(S_{\text{burn,burning}} \)) = \{pain, hurting\} from WordNet, we query ConceptNet with both pain and hurting, obtaining two resulting sets \(P_{\text{conceptnet}}(pain) \) and \(P_{\text{conceptnet}}(hurting) \). Given that the end of the candidate triple \(c_1 \) is contained in \(P_{\text{conceptnet}}(pain) \), the triple is added to synset \(S_{\text{burn,burning}} \). On the contrary, the triple \(c_2 \) is not added to \(S_{\text{burn,burning}} \) since relatedto \rightarrow melt is not contained neither in \(P_{\text{conceptnet}}(pain) \) and \(P_{\text{conceptnet}}(hurting) \).

The proposed method was able to link (and disambiguate) a total of 98122 individual ConceptNet instances to 102055 WordNet synsets. Note that a single ConceptNet instance is sometimes mapped to more than one synset (e.g., the semantic relation hasproperty-red has been added to multiple synsets such as \{pomegranate, ...\} and \{pepper, ...\}). Therefore, the total number of ConceptNet-to-WordNet alignments was 582467. Note that we only kept those instances which were not present in WordNet (i.e., we removed redundant relations from the output). Table 4.4. shows an analytical overview of the resulting WordNet enrichment according to the used heuristics.

Heuristic	\# of enrichments
h1	222544
h2	109212
h3	19769
h4	230942

Table 2: Overview of the WordNet enrichment according to the used heuristics.

In order to obtain a first and indicative evaluation of the approach, we manually annotated a set of 505 randomly-picked individual synset enrichments. In detail, given a random synset \(S_i \) which has been enriched with at least one ConceptNet triple \(c_k = \langle NP \rightarrow rel \rightarrow NP \rangle \), we verified the semantic correctness of \(c_k \) when added to the meaning expressed by \(S_i \), considering the synonym words in \(T_i \) as well as its gloss \(g_i \) and examples \(E_i \). Table 4.4. shows the results.

The manual validation revealed a high accuracy of the automatic enrichment. While the total accuracy is 88.31% (note that higher levels of accuracy are generally difficult to reach even by inter-annotation agreements), the extension seems to be highly accurate for relations such as capable-of and has-property. On the contrary, is-a and related-to relations have shown a lower performance. However, this
Relation	# correct	# incorr.	Acc.
related-to	121	22	84.62%
is-a	99	17	85.34%
at-location	39	5	88.84%
capable-of	36	1	97.29%
has-property	29	2	93.55%
antonym	27	4	87.10%
derived-from	25	1	96.15%
Total	446	59	88.31%

Table 3: Accuracy of some WordNet semantic enrichments obtained by the manual evaluation.

is in line with the type of used resources: on the one hand, WordNet represents a quite complete taxonomical structure of lexical entities; on the other hand, ConceptNet contains a very large semantic basis related to objects behaviours and properties. Finally, related-to relations are more easily identifiable through statistical analysis of co-occurrences in large corpora and advanced topic modeling built on top of LSA (Dumais, 2004), LDA (Blei et al., 2003) and others. Extending WordNet with non-disambiguated commonsense knowledge may be challenging, also considering the very limited contextual information at disposal. However, such an alignment is feasible due to the few presence of common-sense knowledge related to very specific synsets / meanings (e.g., for the term "cat", it is very improbable to find a common-sense fact related to the synset S_{cat}: a method of examining body organs (...).

5. Bibliographical References

Agirre, E., Ansa, O., Hovy, E., and Martínez, D. (2000). Enriching very large ontologies using the www. arXiv preprint cs/0010026.

Bentivogli, L., and Pianta, E. (2003). Beyond lexical units: Enriching wordnets with phrasets. In Proceedings of the tenth conference on European chapter of the Association for Computational Linguistics-Volume 2, pages 67–70. Association for Computational Linguistics.

Bentivogli, L., Bocco, A., and Pianta, E. (2004). Archiwordnet: Integrating wordnet with domain-specific knowledge. In Proceedings of the 2nd International Global Wordnet Conference, pages 39–47.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3:993–1022.

Chen, J. and Liu, J. (2011). Combining conceptnet and wordnet for word sense disambiguation. In IJCNLP, pages 686–694.

Collins, N. S. and Murphy, J. (2013). Towards a folk taxonomy of popular new media marketing terms.

Di Caro, L., Candan, K. S., and Sapino, M. L. (2011). Navigating within news collections using tag-flakes. Journal of Visual Languages & Computing, 22(2):120–139.

Dumais, S. T. (2004). Latent semantic analysis. Annual review of information science and technology, 38(1):188–230.

Hsu, M.-H., Tsai, M.-F., and Chen, H.-H. (2008). Combining wordnet and conceptnet for automatic query expansion: a learning approach. In Information Retrieval Technology, pages 213–224. Springer.

Kiu, C.-C. and Tsui, E. (2011). Taxofolk: A hybrid taxonomy–folksonomy structure for knowledge classification and navigation. Expert Systems with Applications, 38(5):6049–6058.

Laparra, E., Rigau, G., and Cuadros, M. (2010). Exploring the integration of wordnet and frame.net. In Proceedings of the 5th Global WordNet Conference (GWC 2010), Mumbai, India.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41.

Montoyo, A., Palomar, M., and Rigau, G. (2001). Wordnet enrichment with classification systems. In Proceedings of WordNet and Other Lexical Resources: Applications, Extensions and Customisations Workshop.(NAACL-01) The Second Meeting of the North American Chapter of the Association for Computational Linguistics, pages 101–106.

Navigli, R. and Ponzetto, S. P. (2010). Babelnet: Building a very large multilingual semantic network. In Proceedings of the 48th annual meeting of the association for computational linguistics, pages 216–225. Association for Computational Linguistics.

Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F., and Cucchiarelli, R. (2004). Extending and enriching wordnet with ontolearn. In Second Global WordNet Conference, Brno, Czech Republic, January, pages 20–23.

Niemi, J., Lindén, K., Hyvärinen, M., et al. (2012). Using a bilingual resource to add synonyms to a wordnet. In Proceedings of the Global Wordnet Conference.

Niles, I. and Pease, A. (2003). Mapping wordnet to the sumo ontology. In Proceedings of the ieee international knowledge engineering conference, pages 23–26.

Pease, A., Niles, I., and Li, J. (2002). The suggested upper merged ontology: A large ontology for the semantic web and its applications. In Working notes of the AAAI-2002 workshop on ontologies and the semantic web, volume 28.

Ruiz-Casado, M., Alfonseca, E., and Castells, P. (2007). Automatising the learning of lexical patterns: An application to the enrichment of wordnet by extracting semantic relationships from wikipedia. Data & Knowledge Engineering, 61(3):484–499.

Speer, R. and Havasi, C. (2012). Representing general relational knowledge in conceptnet 5. In LREC, pages 3679–3686.

Vannella, D., Jurgens, D., Scarfiniti, D., Toscani, D., and Navigli, R. (2014). Validating and extending semantic knowledge bases using video games with a purpose. In Proc. of ACL.