Clinico-demographic Characteristics, Associated Anomalies and Treatment Profiles of Children presented with Undescended Testis at Medical University of Bangladesh

Shoheli Alam1, KM Didarul Islam2, Noor Mahammad3, Umme Habiba Dilshad Munmun4, Md. Nowfel Islam1

1Assistant Professor, Department of Paediatric Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh; 2Associate Professor, Department of Paediatric Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh; 3Resident, Department of Paediatric Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh; 4Resident, Paediatric Surgery Department, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh; 5Professor, Department of Neuropathology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh

[Received on: 22 April 2021; Accepted on: 12 May 2021; Published: 1 July 2021]

Abstract

Background: The most common paediatric disorder among boy is undescended testis (UDT) which is usually identified during birth and these patients require proper treatment at the appropriate time due to increased risk of torsion, infertility, testicular cancer and associated inguinal hernia(>90%) as well as for cosmetic purposes. Objective: The purpose of this study was to determine side, palpability, age at presentation, associated anomalies and treatment plan in our institution. Methodology: This retrospective study was carried out in the department of Paediatric Surgery of Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh from January 2017 to June 2019. Results: In this study 1.08% (213 children had UDT out of total paediatric outdoor 19803 patients) boys had UDT. They were aged from 7 months to 15 years (mean 5.61±3.81 years) at presentation. Only 16 (7.5%) patients presented within the 1 years of age in this study. 51.8% of patients presented at the age of >1yrs-5yrs. > 5yrs-10yrs of age was 33.5% cases and 13.6% of patients presented as late as 10yrs to 15 yrs. Unilateral UDT was found in 184 (86.4%) patients and bilateral in 29(13.6%) patients. Right-sided unilateral UDT was in 112(52.6%) patients, left-sided unilateral UDT was in 72 (33.8%) patients. Palpable testis was found in 178(83.6%) patients and non-palpable found in 35(16.4%) patients. Associated anomalies of UDT were seen in 64(30%) patients. Hypospaedias was in 19(08%) patients and intersex disorders were in 15 (07%) patients. Orchiopexy was done in 192(90.1%) cases and orchidectomy was done only in 4(1.9%) cases. No testis was found in 17 (08%) cases. Conclusion: UDT is one of the commonest disorders of paediatric age group. Very important issue is the early diagnosis and treatment of this anomaly. To treat the UDT in proper time help to optimize testicular function, earlier diagnosis of testicular malignancy, give cosmetic benefits and to prevent complications such as a clinical hernia or torsion. [Journal of National Institute of Neurosciences Bangladesh, July 2021;7(2):173-176]

Keywords: Undescended testis; children; associated anomalies

Introduction

When one or both testes fail to descend to a normal scrotal position is called UDT and is the common genital anomaly among boys. The prevalence of UDT is from 2% to 9% at birth. Most of cases testes usually descend in normal position within 6 months of age, nearly 1%
remain undescended and surgery is required. The surgical correction for UDT is that the boys with UDT have an increased risk of testicular cancer. It has been documented that UDT inhibits the differentiation of primitive germ cells, starting at 4 to 12 months, and subsequently enable spermatogenesis. Reposition of the undescended testis in wrong time causes reduction of the germ cell development and low testicular volume, resulting in diminishing the subsequent fertility. There has been a general consensus that early orchidopexy improves fertility and reduces the testicular malignancy. Orchidopexy should be performed before 12 month of age helping to preserve potential and avoid the risk of malignancy according to recent international guideline. But a recent systematic review reported that >75% of orchidopexies were performed later than the recommended age. The majority (80%) of UDT is palpable below the external inguinal ring, and orchidopexy is performed through a conventional 'groin and scrotal' approach. Nonpalpable UDT is approximately in 20.0%. Intraabdominal, canalicular within the inguinal canal or peeping just inside the internal inguinal ring UDT are in between 50.0% to 60%. Among 20.0% non-palpable testes 4.0% of all cryptorchid testes are absent and another 30.0% which is 6.0% of the total are atrophic or rudimentary. In this institution the majority of boys with congenital UDT undergo orchidopexy later than the recommended age. The objective of this two and half years retrospective study among the patients presented with undescended testis in medical university hospital of Bangladesh was to determine the current trends in age at presentation, side, palpability of UDT, associated anomalies and treatment plan of undescended testis.

Methodology
In this retrospective study, the patients with undescended testes treated between January 2017 and June 2019 in paediatric surgery department of BSMMU were studied. The data were extracted from the case files included patient's age, the way of diagnosis of undescended testes, age at presentation, side involved, palpability, associated anomalies and treatment plan. As hernial sac was found in most of the UDT, it was excluded from associated anomalies. Patients with palpable undescended testes underwent open orchidopexy in day care basis. The patients with non-palpable testes required an ultrasonogram to locate the testis. When an ultrasonogram fails to locate the testis, then diagnostic laparoscopy was performed after admitting the child in the paediatric surgery ward.

Orchidopexy was done by undescended testes Fowler-Stephen’s stage orchidopexy in case of intra-abdominal undescended testes. An inguinal exploration was carried out when the vas and vessels were exited through the deep ring. All flabby, very small testes were excised according to age of child. The data were analyzed using SPSS version 20.0.

Results
There were 19803 patients seen in paediatric surgery outdoor clinic from January 2017 to June 2019; of these, 213 (1.08%) had a recorded diagnosis of UDT. They were aged from 7 months to 15 years (mean 5.61 ± 3.81 years) at presentation (Table 1).

Table 1: Hospital Prevalence of Undescended testis Patients

| Disease Pattern | Frequency | Percent |
|-----------------|-----------|---------|
| Undescended Testis | 213 | 1.1 |
| Other Diseases | 19,590 | 98.9 |
| **Total** | **19803** | **100.0** |

Only 16 (7.5%) patients were presented within the one year of age. Maximum (51.8%) of our patients presented in this study at the age of (>1yrs-5yrs). 33.5% of patients were in (> 5yrs-10yrs) of age, and 13.6% of patients were in as late as 10yrs -15yrs (Table 2).

Table 2: Age at presentation (n=213)

| Age Group | Frequency | Percent |
|-----------|-----------|---------|
| >6 months to 1 year | 16 | 7.5 |
| >1 year to 15 year | 197 | 92.5 |
| >1year to 5year | 102 | 47.9 |
| >5year to 10 year | 66 | 31 |
| >10 year to 15year | 29 | 13.6 |
| **Total** | **213** | **100.0** |
| **Mean±SD** | **5.61 ± 3.81 (7 month to 15 years)** |

Unilateral UDT was 184(86.4%) and bilateral was 29 (13.6%). Right- sided unilateral UDT was 112(52.6%), left -sided unilateral UDT was 72 (33.8%). Palpable testis was found in 190(90.2%) patients and non-palpable found in 23(10.8%) patients (Table 3). Associated anomalies of UDT was seen in 64(30.0%) patients. Hypospaedias was in 19(8.9%) patients and intersex disorders were in 15(7.0%) patients (Table 4). Orchidopexy was done in 192(90.1%) cases and orchidectomy was done only in 4(1.9%) cases. No testis was found in 17(08%) cases (Table 5).
Introduction

In normal position within 6 months of age, nearly 1% of undescended testes (UDT) is an anomaly among boys. The prevalence of UDT is from 0.5% to 4.0% in different countries. Chitale and his colleagues showed in their study that it was 28.2% cases and 51.8% patients presented more than 1 to 5 years of age. 33.5% patients were in (> 5yrs-10yrs) of age, and 14.6% cases were in 6 to 10 years of age. However, Ekwunife et al. showed in their study that the left-sided was 36.8% and left-sided unilateral undescended testes was 44.0% cases and left-sided was 36.8% cases and 19.2%. This study is similar to Schneuer and his colleagues showed in their study that 1% of children had undescended testes. In our study unilateral undescended testes were palpable and orchidopexy was performed before 12 months of age helping to preserve potential and avoid the risk of malignancy according to recent international guideline.

However, a systematic review had been reported that more than 75.0% of orchidopexies were performed after than the recommended age.

In this study 1.1% of children had undescended testes. This study is similar to Schneuer and his colleagues study, where 1% of children had undescended testes. In our study, the mean age of presentation was 5.61 years. Shitta A and his colleagues found the mean age was 4 years at diagnosis. Dabbagh found a mean age of 2.46 ± 2.37 years in patients with undescended testis in their study.

In our study, only 7.5% children presented within the one year of age. However, Ekwunife showed in their study that it was 28.2% cases and 51.8% patients presented in this study more than 1 to 5 years of age.

33.5% patients were in more than 5 to 10 years of age and 13.6% of patients presented as late as 10 years to 15 years. However, Chitale and his colleagues showed that maximum of their patients (48.31%) presented before 2 years of age. In this study 23.59% patients were in 3 to 5 years of age, 14.6% cases were in 6 to 10 years of age and 13.5% patients were as late as 11 to 13 years.

Delays in diagnosis due to lack of parental awareness after birth is the main issue in our country. Other contributing factors are lack of assessment, follow-up or timely referral by general practitioners. So, routine health checks after the birth of child is essential to ensure timely intervention. In our study unilateral undescended testes was in 86.4% of patients and bilateral undescended testes was in 13.6% of patients. Right-sided unilateral undescended testes was in 52.6% of patients and left-sided unilateral undescended testes was in 33.8% of patients. Sinha showed in their study that 80.8% cases were unilateral, whereas right-sided was 44.0% cases and left-sided was 36.8% cases and 19.2% cases were bilateral.

Usually right-sided undescended testes was more common in the previous reports as because right-sided testis descends later than the left. However, David and his colleagues showed in their study that the left-sided unilateral undescended testes was in 34(47.9%) cases whereas right-side was in 22(31.0%) cases. In this study, palpable testis was in 83.6% cases and non-palpable testis was in 16.4% cases. Our study was nearly similar to Chitale study's where palpable was in 82.1% cases and non-palpable was in 17.9% cases.

In this present study, common associated anomalies were urogenital, abdominal wall defects and intersex disorders which was similar to Baker LA and his

| Variables | Frequency | Percent |
|-----------|-----------|---------|
| Side      |           |         |
| Unilateral| 184       | 86.4    |
| • Right side| 112     | 52.6    |
| • Left Side| 72       | 33.8    |
| Bilateral | 29        | 13.6    |
| Palpability|          |         |
| • Palpable| 178       | 83.6    |
| • Non palpable| 35      | 16.4    |

| Variables | Frequency | Percent |
|-----------|-----------|---------|
| Associated Anomalies | 64       | 30.0    |
| Urogenital System      |           |         |
| • Hypospaedias         | 19        | 8.9     |
| • Exstrophy of bladder | 5        | 2.3     |
| • Pelvic ureteric Junction | | |
| Obstruction (PUJO)     | 2         | 0.9     |
| • Hydrocele            | 3         | 1.4     |
| Total                  | 29        | 13.6    |
| Abdominal Wall Defect  |           |         |
| • Omphalocele          | 3         | 1.4     |
| • Umbilical Hernia     | 4         | 1.9     |
| • Diaphragmatic Hernia | 1        | 0.5     |
| Total                  | 8         | 3.8     |
| Intersex Disorder      |           |         |
| • 45X/46XY,46XX/47XXXY | 3         | 1.4     |
| • Male Pseudohermaphrodite | 4    | 1.9     |
| • Testicular Feminisation | 8      | 3.8     |
| Total                  | 15        | 7.0     |
| Miscellaneous           |           |         |
| • Myelomeningocele     | 3         | 1.4     |
| • Imperforate anus      | 5         | 2.3     |
| • Cleft lip and Palate | 4         | 1.9     |
| Total                  | 12        | 5.6     |

| Treatment Option | No of Patients | Percentage (%) |
|------------------|----------------|-----------------|
| Orchidopexy      | 192            | 90.1            |
| Orchidectomy     | 4              | 1.9             |
| Absent           | 17             | 8.0             |

Discussion

Undescended testes are arrested in the line of descent. Rarely, the testis may remain inside the inguinal canal or abdomen, in which case it will be nonpalpable. Orchidopexy should be performed before 12 month of age helping to preserve potential and avoid the risk of
colleagues\textsuperscript{18} studied. The incidence of undescended testes accompanying hypospadias in our study was similar to Ates U and his colleagues\textsuperscript{20} studied (8.9%). In this present study orchioectomy was done in 90.0\% of cases, orchioectomy was in 1.9\% cases and testis was not found in 8.0\% patients. Ekwunife\textsuperscript{13} had shown in their study that 88.0\% cases were done orchioectomy; 2.0\% cases were in orchioectomy and 10.0\% cases were found with no testes. Undescended testes is one of the most common surgical disorders in children. The right side was most commonly affected. The majority of undescended testes were palpable and orchioectomy was the treatment of choice.

\textbf{Conclusion}

UDT is one of the most common disorders of paediatric age group. Very important issue is early diagnosis and treatment of this anomaly. To treat the UDT in proper time help to optimize testicular function, earlier diagnosis of testicular malignancy, give cosmetic benefits and to prevent complications such as a clinical hernia or torsion. In our institution child with UDT were admitted beyond the recommended age as diagnosis of this anomaly were rarely made by birth attendants, even though this was obvious at birth. So for improvement, must require health awareness campaign, thorough genital examination after birth and regular screening of toddlers for undescended testis.

\textbf{References}

1. Ghriri P, Ciulli C, Vuerich M. Incidence at birth and natural history of cryptorchidism: a study of 10,730 consecutive male infants. J Endocrinol Invest 2002;25(8):709–15
2. Boisen KA, Kaleva M, Main KM. Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet. 2004; 363(9417):1264–69.
3. Lip SZ, Murchison LE, Cullis PS, Govan L, Carachi R. A meta-analysis of the risk of boys with isolated cryptorchidism developing testicular cancer in later life. Arch Dis Child. 2013;98(1):20–6
4. Ong C, Hashthorpe S, Hutson JM. Germ cell development in the descended and cryptochid testis and the effects of hormonal manipulation. Pediatr Surg Int 2005;21(4):240–54
5. Chan E, Wayne C, Nasr A. FRCSC for Canadian Association of Pediatric Surgeon Evidence-Based Resource. Ideal timing of orchioectomy: a systematic review. Pediatr Surg Int 2014;30(1):87–97
6. Kolon TF, Herndon CD, Baker LA. American Urological Association. Evaluation and treatment of cryptorchidism: AUA guideline. J Urol 2014;192(2):337–45.
7. Hrivatakis G, Astfall W, Schmidt A. The timing of surgery for undescended testes: a retrospective multicenter analysis. Dtsch Arztebl Int. 2014;111(39):649–57
8. Burgu B, Baker LA, Docimo SG. Cryptorchidism. In: Gearhart JP, Rink RC, Mouriquand PDE, eds. Pediatric Urology. 2nd ed. Philadelphia: Saunders Elsevier; 2010:563–76.
9. Hutson JM, Beasley SW. The Surgical Examination of Children. 2nd ed. Berlin Heidberg: Springer-Verlag; 2013. Chapter 4, Inguinalscrotal lesions; 41–61.
10. Schneuer FJ, Holland AJ, Pereira G, Jamieson S, Bower C, Nasser N. Age at surgery and outcomes of an Undescended Testis. Pediatrics. 2016;137(2):1–8.
11. Shitta A, Peter S, Dung E, Shilong D, Ale A, Isichei M et al. Presentation of Undescended testis to a paediatric referral center in JOS. Open J. of Paediatr. 2020; 10(3): 438–46.
12. Dabbag AADA. Age at diagnosis and surgery for cryptorchidism. A single center study in Baghdad. Euro. J. of Molecular and Clin. Med. Med. 2020; 7(2): 177–81.
13. Ekwunife OH, Wgwu JO, Onwurah C, Okoli CC, Epundu LK. Undescended testes: Contemporary factors accounting for late presentation. African J. of Urol. 2018; 24(3): 206–11
14. Chitale A, Manekar A, Mahakalkar S. Case series: Epidemiology of cryptorchidism at our rural setup. Int. Jour. Of Surgery Science. 2017;1(1):14–17
15. Sinha CK, Vinay S, Kulkarni R, Nour S. Delayed Diagnosis for undescended Testes. Indian Paed J 2008;45(6):503–4
16. Hutson JM. Undescended testis, torsion and vericocele. In: O’Neill JA, Rowe MI, Grosfeld JI, Fonkalsrud EW, Coran GA eds. Paediatric Surgery. 6th ed. Philadelphia: Mosby Year book Inc. 2006; 1193-1205.
17. Ameh EA, Mbibu HN. Management of undescended testes in children in Zaria, Nigeria. East Afr. Med J 2006;77: 485–7
18. David OO, Iye Koret C. Undescended testes in a developing country. A study of the management of 71 patients. Afr J Paediatr. Surg 2008;5:11-14
19. Baker LA, Silver RI, Docimo SG. Cryptorchidism. In: Gearhart JP, Rink RC, Mouriquand PDE eds. Pediatric Urology. 2nd ed. W.B.Saunders Company. Philadelphia, Pennsylvania. 2010. 563-67.
20. Ates U, Golli G, Tastekin NY, Qurbanov A, Ekberli G, Kologlu MB et.al. Evaluation of Additional anomalies in Concomitance of Hypospadias and Undescended testes. Turkish J.of Pediatr. Dis. 2019; 4:222-26.