had RBBB, 25% had LBBB, 3% had IVCD, 12% were RV paced and 24% had narrow QRS complexes. Pacing indications: AV block with LVEF 35%-50%: 48%, rescue CRT or pacing induced cardiomyopathy: 40% and refractory AF with LVEF <50%: 12%. Mean procedural duration was 84±45 mins and mean fluoroscopic time was 14±13 mins. Paced QRSd was 116±14 ms. Mean LV activation time was 74.6±12 ms at high output and 78±13 ms at low output. LBB potentials were noted in 20% patients. Transition from non-selective to selective LBBA or septal pacing was noted in 67%. Mean follow-up was 299±220 days (median 248 days). The were no chronic LBBAP lead related complications such as lead perforation, threshold rise or lead revision.

Conclusion: LBBAP is safe and feasible alternative for CRT. LBBAP is associated with stable intermediate term lead parameters, low complication rate, and is associated with improved echocardiographic outcomes.

CI-569-04

SEPTAL FLASH CORRECTION WITH HIS-PURKINJE PACING PREDICTS ECHOCARDIOGRAPHIC RESPONSE IN RESYNCHRONIZATION THERAPY

Margarida Pujol Lopez MD; Rafael Jiménez Arjona MD; Eduard Guasch MD, PhD; Adelina Doltra MD, PhD; Roger Borràs Amoraga MSc; Ivo Roca-Luque MD, PhD; Maria-Angeles Castel MD, PhD; Paz Garre Anguera de Sojo BEng; Elisenda Ferró Lozano BEng; Mireia Niebla Bellido RN; Esther Carro Fernandez RN; Elena Arbelo MD, MSci, PhD; Marta Sitges MD, PhD; JOSE MARIA TOLOSANA MD, PhD and Lluis Mont MD, PhD

Background: His-Purkinje conduction system pacing (HPCSP) has been proposed as an alternative to cardiac resynchronization therapy (CRT); however, no predictors of echocardiographic response have been described. Septal flash (SF) is a marker of intraventricular dyssynchrony.

Objective: The study aimed to analyze whether HPCSP corrects SF in patients with CRT indication, and if correction of SF predicts echocardiographic response.

Methods: Prospective observational study (n=30). Left ventricular ejection fraction (LVEF) was measured with echocardiography at baseline and at 6-month follow-up. Echocardiographic response was defined as increase in 5 points LVEF. ECG Imaging was performed (CardioInsight Mapping Vest-Medtronic) in 2 patients to validate ventricular activation shortening and to study the basal and HPCSP activation pattern.

Results: HPCSP shortened QRS duration by 48±21ms and SF was significantly decreased (baseline 3.6±2.2mm vs HPCSP 1.5±1.5mm p<0.0001). At 6-months, mean LVEF improvement was 8.6% ± 8.7% and 64% of patients were responders. There was a significant correlation between SF correction and increased LVEF (r=0.61, p=0.004). A correction of ≥1.5mm had 81% sensitivity and 80% specificity to predict echocardiographic response (area under curve 0.86, p=0.019).

Conclusion: HPCSP improves intraventricular dyssynchrony and results in 64% echocardiographic responders at 6-month follow-up. Dyssynchrony improvement with SF correction may predict echocardiographic response at 6-month follow-up (Fig.1.).