Nanoscale neuromorphic networks and criticality: a perspective

Christopher S Dunham, Sam Lilak, Joel Hochstetter, Alon Loeffler, Ruomin Zhu, Charles Chase, Adam Z Stieg, Zdenka Kuncic and James K Gimzewski

1 Department of Chemistry and Biochemistry, University of California, Los Angeles, United States of America
2 School of Physics, University of Sydney, Sydney, Australia
3 UniLAB, Savannah, GA, United States of America
4 California NanoSystems Institute, University of California, Los Angeles, United States of America
5 International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science, Tsukuba, Japan
6 Sydney Nano Institute, University of Sydney, Sydney, Australia
7 Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan

* Author to whom any correspondence should be addressed.
E-mail: csdunham@chem.ucla.edu

Keywords: criticality, dynamical systems, neuromorphic networks, abiotic criticality, avalanche dynamics, memristive devices, atomic switch

Abstract
Numerous studies suggest critical dynamics may play a role in information processing and task performance in biological systems. However, studying critical dynamics in these systems can be challenging due to many confounding biological variables that limit access to the physical processes underpinning critical dynamics. Here we offer a perspective on the use of abiotic, neuromorphic nanowire networks as a means to investigate critical dynamics in complex adaptive systems. Neuromorphic nanowire networks are composed of metallic nanowires and possess metal-insulator-metal junctions. These networks self-assemble into a highly interconnected, variable-density structure and exhibit nonlinear electrical switching properties and information processing capabilities. We highlight key dynamical characteristics observed in neuromorphic nanowire networks, including persistent fluctuations in conductivity with power law distributions, hysteresis, chaotic attractor dynamics, and avalanche criticality. We posit that neuromorphic nanowire networks can function effectively as tunable abiotic physical systems for studying critical dynamics and leveraging criticality for computation.

1. Background

1.1. Criticality in nature
Nature is awash with complex systems that exhibit behavior which collectively extends beyond the predicted behavior of the system’s individual components [1–3]. This is an example of emergent behavior, or properties which cannot be predicted by extrapolation from a system’s individual components alone. Rather, the system’s state evolves through the interactions of its components [4, 5]. Numerous studies have devoted considerable effort to elucidating the mechanisms underlying such complex dynamical systems [3, 6–8]. One potential mechanism that has emerged as a candidate for describing complex behavior is criticality. The concept of criticality refers to a system poised at the point between ordered and disordered states (a ‘critical point’), analogous to a phase transition [9]. Such systems exhibit long-range spatio-temporal interactions over many scales [9]. Scale-invariant phenomena can be represented in the form of power-law (Pareto) probability distributions, \(f(x) \propto x^{-\beta} \), where \(\beta \) is a positive real number [10–13]. Furthermore, the tuning of some parameter that controls or governs the system (e.g. temperature, strain)—whether driven by the system intrinsically or by an external agent—can direct the system away from the critical point and into sub- or supercritical regimes [9, 14–17]. In addition, it has been suggested that a system operates optimally when poised at its critical state [9, 18–20].
In nature, numerous abiotic and biotic systems are suspected to exhibit critical dynamics. Evidence of power-law distributions in abiotic phenomena include the dynamics of arrays of magnetic dipoles, cellular automata, earthquake size and frequency, forest fire propagation, atmospheric flows, climate fluctuations, word frequency, wealth distribution, economic systems, and solar flares [14, 15, 21–28]. Similarly, power-law distributions are observed in a variety of biotic phenomena including evolutionary ecology, gene networks, morphology, animal collective movement (e.g. flocks of birds), mitochondrial networks in the heart, and neural systems, among others [13, 29–39].

1.2. Criteria for criticality

The use of power laws as the sole criterion for determining whether a system demonstrates criticality has been challenged previously [40, 41]. The criteria for determining whether or not a system demonstrates criticality are sometimes misunderstood or loosely applied. In certain fields, studies have been published professing that a system exhibits critical or self-organized critical dynamics based solely on the exhibition of a power-law distribution. Such work sometimes overlooks non-critical phenomena that are capable of producing power-law distributions. Prominent examples include successive fractionation, multiplicative noise, randomly-terminated exponential processes, preferential attachment, and the typing of random words [42–46]. Therefore, power-law relationships alone are insufficient to conclusively demonstrate that a system is critical.

Criticisms of criticality necessitated the establishment of specific criteria to define a critical system. Physicists and neuroscientists have contributed significantly to this effort by developing a robust set of criteria that critical systems should meet, including:

(a) Power-law relationships, \(p(x) \propto x^{-\beta} \), between order parameter, control parameter and size of system.

(b) Finite size scaling of correlation length and order parameter susceptibility (i.e. distribution cut-offs diverge with system size).

(c) Mathematical relationships between power-law exponents for different parameters in a dynamical system [42, 47].

(d) Evidence of shape (data) collapse: multiple phenomena or events across different scales exhibiting self-similarity (e.g. event duration) [47].

(e) Tunability: the ability of a system state to be regulated by a control parameter that drives the system into sub- or supercritical regimes, resulting in non-critical dynamics [42].

These requirements, among others, for critical systems have provided focus for experimental tests of criticality in a variety of systems [42].

1.3. Criticality in neuronal systems

Few potentially critical biological systems have received more attention than the brain’s cortical neuronal system. Experimental and theoretical studies over the last few decades provide support for the argument that the brain demonstrates critical dynamics [10, 39, 42, 48, 49]. Studies of in vitro neurons and cortical tissue slices have demonstrated statistically robust power-law distributions in neuronal spiking events, called ‘avalanches’, in both duration and size of the event [10, 39, 42, 48, 49]. After re-scaling avalanche size and duration, the resulting distributions exhibit a shape collapse, where avalanches of different durations converge onto a universal scaling function [47]. Additionally, in vivo functional magnetic resonance imaging studies of the human brain provide evidence that the brain may exhibit critical dynamics [50, 51]. Computational modeling data from one such study reasonably predicted the patterns of activity in specific regions of the brain when it is in or near a critical state [48]. Other studies showed how critical dynamics were lost in abnormal neural conditions, such as epileptic seizures, in rats and humans [52–54].

Several studies provide evidence that the brain’s performance in operations such as information storage and transmission is optimal when the brain is at or near a critical point [51, 55–60]. However, studying the brain for evidence of criticality as a mechanism for its information processing prowess is an inherently challenging task. Our perspective is that an abiotic system that demonstrates both information processing capabilities and diverse nonlinear dynamics could provide new insights into critical systems. The utilization of a tunable abiotic system would also allow for control over available parameter space, material composition, and network topology, as well as more extensive measurement and analysis methodologies. In our view, neuromorphic networks are a suitable system for advancing the understanding of critical dynamics in neuronal and other biological systems.
2. Nanoscale neuromorphic networks

2.1. General characteristics of physical neuromorphic networks

The first synthetic, brain-inspired computer, the perceptron, was developed in 1958 by Frank Rosenblatt at Cornell University and the United States Office of Naval Research [61]. The perceptron was conceived in an attempt to mimic biological information processing systems and perform difficult tasks such as image recognition [61, 62]. Although this technology failed to achieve the task in its era, the notion of brain-inspired computational systems endured. In 1990, Carver Mead introduced the concept of neuromorphic engineering to describe systems specifically engineered to mimic features of the brain, including co-localized processing and memory [63–65]. Since then, many neuromorphic computational systems have been developed, including atomic switch networks [65–84].

Atomic switch networks are biologically-inspired, abiotic, physical systems composed of highly interconnected networks of nanoionic devices called ‘atomic switches’ [66]. Atomic switches are functionally akin to information-retaining nonlinear circuit elements which exhibit memory-resistive (memristive) switching and quantized conductance in addition to short- and long-term memory elements [66]. Such memristive circuit elements retain information, or memory, of their previous states. Memristive switching is achieved via the formation or degradation of nanometer-scale conductive filaments between structural elements, which arise from voltage- or current-driven ionic migration and reduction/oxidation processes [85]. The memory effect is governed by the size of the formed filament [67]. The ability to tune the conductance of a memristive (atomic) switch via filament formation/degradation is considered analogous to the adaptive strength of synaptic connections between neurons [67], making them an inorganic synaptic analog. Memristive (atomic) switches, functioning as conductance-based inorganic synapses, can form from nanoscale structures that self-assemble into complex networks [68–70]. Various combinations of conductive and insulating materials can be used to produce these networks, including silver, polyvinylpyrrolidone (PVP), sulfur, iodine, and selenide, among others [69–78]. Memristive switch networks of nanoparticles or nanowires, as shown in figures 1(A)–(C), previously demonstrated emergent behavior that isolated atomic switches do not, including spatially distributed memory and recurrent dynamics [70, 79].

Figure 1. Network morphology and power-law distributions in silver nanoparticle or silver sulfide (Ag2S) nanowire networks. Top row: scanning electron microscope (SEM) images of different types of networks. (A) nanoparticle thin-film network (scale bar = 5 μm, insert = 200 nm), (B) dendritic or fractal network (scale bar = 30 μm), (C) high-density, seed-patterned nanowire network (scale bar = 50 μm). Bottom row: power-law relationships in memristive (atomic) switches and atomic switch networks. (D) power spectral density (PSD) of simulated data for a single atomic switch (red) compared to multiple atomic switches embedded in a network (blue), (E) comparison of power-law distributions between PSD plots of a purely ohmic network with no atomic switch (gray), and experimental (black) and simulated (blue) atomic switch networks, (F) probability distribution of temporally metastable conduction states over single (blue) and multiple (black) signal pulses. Partially adapted from [72, 80, 81].
2.2. Nanowire networks

Nanowire-based atomic switch networks (figure 1(B) and (C)) rely on interactions between network elements. However, nanowire networks differ from nanoparticle networks (figure 1(A)) in their morphology and connectivity. Nanowire networks can be tuned to control for nanowire thickness, extent of branching, and regional nanowire density [86]. Nanowire networks also exhibit higher levels of connectivity than nanoparticle networks. Each nanowire has the potential to engage in multiple connections with other wires elsewhere in the network, generating long-range connections between wires that would not otherwise interact and enabling recurrent connectivity loops. In contrast, nanoparticle networks rely upon nearest-neighbor interactions. Furthermore, nanowire connections are regulated by the amount of activity experienced by the nanowire-nanowire junction [70]. The high density of atomic switches, functioning as synthetic synapses, in nanowire networks (~10^8 synthetic synapses per square centimeter) further reinforces their structural similarity to synaptic networks between neurons in the brain, e.g. in the neocortex [81]. In addition to synaptic behavior similarities, nanowire networks have demonstrated fractal geometries, power-law behavior (figures 1(D)–(F)), memory, and long-range spatio-temporal correlations [87]. Importantly, the neuromorphic properties of nanowire networks are observed for different materials [71], suggesting their dynamics and information processing capacity are robust to variations in the atomic switch junctions.

2.3. Information processing

The intrinsic complexity and interconnectivity of neuromorphic networks have demonstrated a means of distributed computation in materio, which refers to a phenomenon in which the physical changes in the network are capable of performing computational tasks [88–91]. These properties can be harnessed by treating the network as a dynamic reservoir capable of mapping input signals into higher dimensions for complex computational tasks. This is achieved through a technique called reservoir computing (RC), a modification of recurrent neural network frameworks. RC enables the use of a simple readout mechanism from the network which can be employed to map the higher dimension outputs onto a desired task [91–94]. This method is advantageous in that it only requires weighting and manipulation of the output layer, greatly reducing the training cost and improving power efficiency in contrast to conventional computing architectures. Consequently, neuromorphic networks have been extensively explored as a suitable substrate for RC and have successfully realized high fidelity, low power implementation of both simple and complex tasks, including logic tasks, T-maze tests, speech recognition and associative memory among others [95–99].

Simulation-based studies also lend support to the experimental data, demonstrating several information processing and learning tasks implemented in the RC framework, including chaotic time series prediction, memory capacity, transfer learning, and multitask learning [99–104]. Indeed, one study reported that neuromorphic nanowire networks prepared in an edge-of-chaos state (i.e. a phase transition between stable and unstable dynamics) perform better in tasks of greater computational complexity [105]. A similar result was found in another study using spiking neuromorphic networks prepared in a critical state [106]. Information dynamics (e.g. transfer entropy) has also been found to be maximized when nanowire networks transition from a quiescent to an active phase [102, 107, 108]. Task performance, combined with other network properties demonstrate that nanowire networks can perform reservoir computation and other information processing paradigms. Simulations of these networks suggest their optimal performance may arise from operating at a
Figure 3. Current–voltage ($I-V$) by AC triangular input at 1 Hz and $+/-1$ V amplitude resistive switching and fluctuations, as well as chaotic attractor dynamics with increasing number of cycles: (A) cycles 1–3; (B) cycles 10–20; (C) cycles 1–100.
critical regime [74, 95, 109]. Our perspective is that this makes neuromorphic nanowire networks a unique physical system for studying critical dynamics.

3. Critical dynamics in nanowire networks

Characteristics of criticality have been observed in both Ag$_2$S and Ag-PVP nanowire networks. Experimental measurements as well as theoretical and simulation studies revealed persistent current fluctuations with a power-law PSD over several decades in frequency [73, 77, 80, 81, 110]. However, as mentioned earlier, power-law relationships, while necessary, are not sufficient to designate a system critical.

Recent studies found evidence for avalanche criticality in Ag-PVP nanowire networks [105]. It is our perspective that evidence for avalanche criticality should also exist in other types of neuromorphic nanowire networks. To test this, we considered a silver selenide (Ag$_2$Se) nanowire network. Silver selenide nanowire networks can be synthesized by drop-casting (see supporting information S1 (https://stacks.iop.org/JPCOMPLEX/2/042001/mmedia)) nanowires onto a microelectrode array (MEA). Figure 2 shows images of a MEA and the resulting drop-cast network. The highly inhomogeneous morphology of the nanowire network, as seen in figure 2 (right panel), specifically those regions of higher density and varying degrees of interconnectivity, bears some structural similarity to the neuropil of the biological neocortex [81].

Figure 3 shows current–voltage (I–V) phase diagrams acquired over many cycles of a 1 Hz triangular input wave. Several observations can be made. Firstly, each cycle forms a closed bipolar hysteresis loop pinched at the centre. This nonlinear (non-ohmic) electrical response is a key characteristic of memristive devices and reflects their memory property—i.e. the current state $I(t)$, $V(t)$ depends on the history of states prior to t [111–114]. In this network, individual nanowire-nanowire intersections are memristive atomic switch junctions. Figure 3 indicates that, collectively, these junctions act like a single memristive element. A second observation from figures 3(A) and (B) is that some cycles exhibit fluctuations and hard switching (i.e. a very sharp increase or decrease in I). Switching events are associated with abrupt resistance changes at individual junctions, attributable to the formation/degradation of conductive filaments. A third observation is that each I–V cycle deviates slightly from previous cycles. Indeed, no two trajectories completely coincide. Similar chaotic attractor dynamics was previously observed in memristor devices and memristive networks of Ag-PVP nanowires [105, 115]. Note, however, that the trajectories do not diverge sufficiently to qualify as chaotic. Their confinement to a localised region of phase-space instead suggests chaotic attractor dynamics. Such dynamics may be useful for computation as outputs $I(t)$ for each AC cycle represent separable features and the collective attractor dynamics suggest solutions converge to local stable states [116, 117]. Further investigation is warranted to determine (e.g. via Lyapunov exponent analysis) if these trajectories are consistent with the edge-of-chaos state, or the state where the maximal Lyapunov exponent is approximately zero. This state has been purported to be optimal for information processing [118–120]. Hochstetter et al showed that Ag-PVP
nanowire networks tuned into an edge-of-chaos state performed better on reservoir learning tasks with higher computational complexity [105].

When driven by a DC bias, fluctuations and switching events in Ag$_2$Se nanowire networks were observed to persist on timescales of many hours, as shown in figure 4. The magnified inset in figure 4(A) reveals many events where changes in $I(t)$ exceed a defined threshold (5%) over the course of a few minutes. The PSD in figure 4(B) exhibits a distinctive power-law shape, $x^{-\beta}$, with more low-frequency power potentially indicative of temporal correlations or other collective effects.

Figure 5 shows avalanche statistics determined from the $I(t)$ data in figure 4(A). The exponents of maximum likelihood (ML) power-law fits to $P(S)$ and $P(T)$ are $\tau_S = 1.89 \pm 0.02$ and $\tau_T = 2.12 \pm 0.04$, respectively. The exponent of $\langle S(T) \rangle$ is $\gamma = 1.23 \pm 0.04$, which is consistent with that predicted by the crackling noise dynamical scaling relation $(\tau_T - 1)/(\tau_S - 1) = 1.26 \pm 0.05$, within uncertainties, thus confirming avalanche criticality [121]. The critical exponent $\gamma = 1.23$ differs from the PSD exponent $\beta = 1.7$, which reflects the inhomogeneous nature of nanowire networks. In homogeneous many-body systems, the mean field approximation (e.g. random field Ising model) predicts a relation between γ and β [122]. The critical exponents found for avalanches in Ag$_2$Se nanowire networks differ from those in Ag-PVP nanowire networks ($\tau_S = 2.1$ and $\tau_T = 2.3$) [105] and Sn nanoparticle networks ($\tau_S = 2.0$ and $\tau_T = 2.6$) [84], which adhere to the crackling noise scaling relation with $\gamma = 1.2$ and 1.6, respectively. Conversely, it was reported that Sn nanoparticle networks demonstrate critical exponents inconsistent with the crackling noise scaling relation [123]. Different critical exponents may indicate different universality classes for these neuromorphic systems. Another possibility is that they exhibit ‘quasi-criticality’, which predicts departure from a single critical point defining a universality class along a line of (τ_S, τ_T) pairs that approximately obey a dynamical scaling relation [124]. Experimental measurements of Ag$_2$Se networks conducted over a much longer duration than shown in figure 4(A) (up to 72 h) exhibited avalanches with varying critical exponents during different epochs (data not shown here). This could be interpreted as quasi-criticality. Further investigation is warranted to continue exploring this idea.

4. Summary

In this perspective, we proposed that neuromorphic networks represent a unique abiotic physical system for studying criticality. We reviewed existing evidence for critical or critical-like dynamics in such systems and tested this proposition further with new experiments on silver selenide nanowire networks. This neuromorphic system was found to exhibit avalanche criticality in addition to hysteresis, persistent fluctuations with a power-law distribution, and chaotic attractor dynamics. Many studies have already demonstrated the information processing capabilities of a variety of in materio neuromorphic networks. What remains to be revealed is how the neuromorphic dynamical properties determine computational abilities. This would provide proof-of-concept credibility for neuromorphic networks as a physical abiotic model system for investigating the role of critical dynamics in information processing and computational task performance.
5. Outlook

5.1. Future work: criticality and neuromorphic networks

This perspective on neuromorphic networks and criticality provided support for the claim that such networks exhibit characteristics of critical systems. One area prime for future investigation is whether neuromorphic nanowire networks demonstrate optimal information processing capabilities at or near a critical regime.

Studies in simulation have shown that information processing systems perform reservoir computation optimally when operating at or near a critical state [107, 108]. To date, this phenomenon remains unexplored in physical neuromorphic systems such as nanowire networks despite their successful implementation into RC frameworks. Our outlook on future studies of critical systems is that new insights are to be gained by investigating how neuromorphic networks perform in a variety of computational tasks when in quasi-critical, critical and non-critical states. As neuromorphic nanowire networks are stimulus driven systems, an important goal is to demonstrate tunability between quasi-critical, critical and non-critical states. Demonstrating improved information processing performance at or near criticality, would justify using these networks as an abiotic physical model to study critical dynamics in the brain.

Neuromorphic networks could enable a new artificial intelligence (AI) ‘computer’ where the training knowledge is resident in the physical structure of the nanowire network. The information in the system can adapt based on real time interactions with the environment, exhibiting emergent human-like cognition. As machine learning and AI proliferate, computers are asked to engage in a larger array of tasks previously reserved for humans (e.g. driving, medical diagnoses, financial markets, warfare), certain distinctions between the brain and computer are expected to increasingly blur. Systems explicitly designed to mimic processes previously relegated to the human domain will need to become more brain-like (i.e. more neuromorphic) in order to achieve an ever-growing list of ambitious operations. To effectively develop such computationally intelligent matter, we need to better understand those attributes crucial to conferring the brain with its various capabilities. Criticality is one such potential attribute and its role in both the brain and abiotic physical systems must be understood in order to develop next-generation technologies for machine intelligence.

Acknowledgments

The authors wish to thank members of the California NanoSystems Institute (CNSI) Integrated Systems Nanofabrication Cleanroom (ISNC) and Nano and Pico Characterization Lab (NPC) for their support for this project. A special thanks is given to Masakazu Aono of the International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science (NIMS), in Tsukuba, Japan. ZK acknowledges support from the Australian-American Fulbright Commission. The authors also wish to thank Hirofumi Tanaka and Takumi Kotooka at the Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan, for their technical advice and inspiration for the design of silver selenide nanowire networks. JKG would like to acknowledge Dante Chialvo and the late Walter Freeman III for inspirational discussions on criticality.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID iDs

Christopher S Dunham 🐝 https://orcid.org/0000-0001-9547-0053
Sam Lilak 🐝 https://orcid.org/0000-0003-4021-2895
Joel Hochstetter 🐝 https://orcid.org/0000-0003-3460-7305
Alon Loeffler 🐝 https://orcid.org/0000-0002-8866-3073
Ruomin Zhu 🐝 https://orcid.org/0000-0002-2310-7762
Charles Chase 🐝 https://orcid.org/0000-0001-9554-6003
Adam Z Stieg 🐝 https://orcid.org/0000-0001-7312-9364
Zdenka Kuncic 🐝 https://orcid.org/0000-0001-6765-3215
James K Gimzewski 🐝 https://orcid.org/0000-0003-4333-6957
References

[1] Brown J H, Gupta V K, Li B-L, Milne B T, Restrepo C and West G B 2002 The fractal nature of nature: power laws, ecological complexity and biodiversity Phil. Trans. R. Soc. B 357 619–26

[2] Arthur W B 1999 Complexity and the economy Science 284 107–9

[3] Foote R 2007 Mathematics and complex systems Science 318 410–2

[4] Li Z, Sim C and Hearn Low M 2006 A survey of emergent behavior in agent-based systems IEEE Int. Conf. Industr. Inform.

[5] O’Connor T 1994 Emergent properties Am. Philos. Q. 31 91–104 http://www.jstor.org/stable/20014490

[6] Weng G, Bhalla U S and Iyengar R 1999 Complexity in biological signaling systems Science 284 92–6

[7] Pham V D et al 2017 Tuning the electronic and dynamical properties of a molecule by atom trapping chemistry ACS Nano 11 10743–9

[8] Sujith R I and Unni V R 2020 Dynamical systems and complex systems theory to study unsteady combustion Proc. Combust. Inst. 38 3445–62

[9] Cocchi L, Gollo L L, Zalesky A and Breakspear M 2017 Criticality in the brain: a synthesis of neurobiology, models and cognition Prog. Neurobiol. 158 132–52

[10] Plenz D 2013 The critical brain Physics 6 47

[11] Vilfredo P 1897 Cours d’Economie Politique 1 vol 2 ed F Rouge (Lausanne: Universite de Lausanne) p 426

[12] Vilfredo P 1971 Manual of Political Economy Reprint (New English Translation) ed A S Schwier and A N Page (New York: Augustus M Kelly) p 504

[13] Sole R V, Manrubia S C, Benton M, Kauffman S and Bak P 1999 Criticality and scaling in evolutionary ecology Trends Ecol. Evol. 14 156–60

[14] Bak P, Tang C and Wiesenfeld K 1987 Self-organized criticality: an explanation of the 1/ f noise Phys. Rev. Lett. 59 381–4

[15] Bak P, Tang C and Wiesenfeld K 1988 Self-organized criticality Phys. Rev. A 38 643–74

[16] McFaul L W, Wright W J, Sickle J and Dahmen K A 2019 Force oscillations distort avalanche shapes Mater. Res. Lett. 7 496–502

[17] Denisov D V, Lörincz K A, Wright W J, Hufnagel T C, Nawano A, Gu X, Uhl J T, Dahmen K A and Schall P 2017 Universal slip dynamics in metallic glasses and granular matter - linking frictional weakening with inertial effects Sci. Rep. 7 43576

[18] Shew W L and Plenz D 2012 The functional benefits of criticality in the cortex Neuroscientist 18 88–100

[19] Crutchfield J P and Young K 1990 Computation at the onset of chaos Entropy, Complexity, and the Physics of Information (SFI Studies in the Sciences of Complexity) vol 8 ed W Zurek (Reading, MA: Addison-Wesley) pp 223–69

[20] Akar F G, Aon M A, Tomaselli G F and O’Rourke B 2005 The mitochondrial origin of postischemic arrhythmias J. Clin. Invest. 115 3527–35

[21] Bak P and Tang C 1989 Earthquakes as a self-organized critical phenomenon Geophys. Res. 94 15635–7

[22] Malamud B D, Morein G and Turcotte D L 1998 Forest fires: an example of self-organized critical behavior Science 281 1840–2

[23] Smyth W D, Nash J D and Moum J N 2019 Self-organized criticality in geophysical turbulence Sci. Rep. 9 5747

[24] Dánillá B, Harko T and Mocanu G 2015 Self-organized criticality in a two-dimensional cellular automation model of a magnetic flux tube with background flow Mon. Not. R. Astron. Soc. 453 2983–92

[25] Rind D 1999 Complexity and climate Science 284 105–7

[26] Zipf G K 1936 Zipf’s word frequency law in natural language: a critical review and future directions Phys. Rev. E 95 012413

[27] Zipf G K 1949 Human Behavior and the Principle of Least Effort (London, UK: Routledge)

[28] Zipf G K 1949 The Psychobiology of Language (Reading, MA: Addison-Wesley)

[29] Kiyono K, Struzik Z R, Aoyagi N and Yamamoto Y 2006 Multiscale probability density function analysis: non-Gaussian and scale-invariant fluctuations of healthy human heart rate IEEE Trans. Biomed. Eng. 53 95–102

[30] Shew W L and Plenz D 2012 The functional benefits of criticality in the cortex Neuroscientist 18 88–100

[31] Beggs J M and Timme N 2012 Being critical of criticality in the brain Front. Physiol. 3 163

[32] Mitenzacher M 2004 A brief history of generative models for power law and lognormal distributions Internet Math. 1 226–51

[33] Sornette D 1998 Multiplicative processes and power laws Phys. Rev. E 57 4811–3

[34] Reed W J and Hughes B D 2002 From gene families and genera to incomes and internet file sizes: why power laws are so common in nature Phys. Rev. E 66 067103

[35] Chialvo D R 2010 Emergent complex neural dynamics Nat. Phys. 6 744–50

[36] Friedman N, Ito S, Brinkman B A W, Shimono M, DeVille R E L, Dahmen K A, Beggs J M and Butler T C 2012 Universal critical dynamics in high resolution neuronal avalanche data Phys. Rev. Lett. 108 208102
[48] Haimovici A, Tagliazucchi E, Balenzuela P and Chialvo D R 2013 Brain organization into resting state networks emerges at criticality on a model of the human connectome Phys. Rev. Lett. 110 178101

[49] Petermann T, Thiagarajan T C, Lebedev M A, Nicolelis M A L, Chialvo D R and Plenz D 2009 Spontaneous cortical activity in awake monkeys composed of neuronal avalanches Proc. Natl Acad. Sci. 106 15921–6

[50] Tagliazucchi E, Balenzuela P, Fraiman D and Chialvo D R 2012 Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis Front. Physiol. 3 15

[51] Ezaki T, Fonseca dos Reis E, Watanabe T, Sakaki M and Masuda N 2020 Closer to critical resting-state neural dynamics in individuals with higher fluid intelligence Commun. Biol. 3 52

[52] Rundle J B, Klein W, Gross S and Turcotte D L 1995 Boltzmann fluctuations in numerical simulations of nonequilibrium lattice threshold systems Phys. Rev. Lett. 75 1658–61

[53] Meisel C, Storch A, Hallmeyer-Elgner S, Bullmore E and Gross T 2012 Failure of adaptive self-organized criticality during epileptic seizure attacks PLoS Comput. Biol. 8 e1002312

[54] Schuman C D, Potok T E, Patton R M, Birdwell J D, Dean M E, Rose G S and Plank J S 2017 A survey of neuromorphic networks with neuronal avalanches J. Neurosci. 37 380–6

[55] Meisel C, Bailey K, Achermann P and Plenz D 2017 Decline of long-range temporal correlations in the human brain during sustained wakefulness Sci. Rep. 7 11825

[56] Torres J J and Marro J 2015 Brain performance versus phase transitions Sci. Rep. 5 12216

[57] Daffertshofer A, Toni R, Krügelbach M L, Woolrich M and Deco G 2018 Distinct criticality of phase and amplitude dynamics in the resting brain NeuroImage 180 442–7

[58] Haldeman C and Beggs J M 2005 Critical branching captures activity in living neural networks and maximizes the number of metastable states Phys. Rev. Lett. 94 058101

[59] Shew W L, Yang H, Yu S, Roy R and Plenz D 2011 Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches J. Neurosci. 31 55–63

[60] Shriki O and Yellin D 2016 Optimal information representation and criticality in an adaptive sensory recurrent neuronal network PLoS Comput. Biol. 12 e1004698

[61] Hino T, Hasegawa T, Terabe K, Tsuruoka T, Nayak A, Ohno T and Aono M 2011 Atomic switches: atomic-movement-controlled nanodevices for new types of computing Sci. Technol. Adv. Mater. 12 013003

[62] Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K and Aono M 2012 Controlling the synaptic plasticity of a CuS gap-type Atomic switch Adv. Funct. Mater. 22 3606–13

[63] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K and Aono M 2011 Short-term plasticity and long-term potentiation mimicked in single inorganic synapses Nat. Mater. 10 591–5

[64] Steig A Z, Avizienis A V, Silllin H O, Martin-Olmos C, Aono M and Gimzewski J K 2011 Emergent criticality in complex turing B-type atomic switch networks Adv. Mater. 24 286–93

[65] Avizienis A V, Silllin H O, Martin-Olmos C, Shiie H H, Aono M, Steig A Z and Gimzewski J K 2012 Neuromorphic atomic switch networks PLoS One 7 e42772

[66] Kuncic Z and Nakayama T 2021 Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing Adv. Phys. 6 1894234

[67] Scharnhorst K S, Carbajal J P, Aguileria R C, Sandouk E I, Aono M, Steig A Z and Gimzewski J K 2018 Atomic switch networks as complex adaptive systems Ipn. J. Appl. Phys. 57 013E02

[68] Lilak S, Woods W, Scharnhorst K, Dunham C, Teuscher C, Steig A Z and Gimzewski J K 2021 Spoken digit classification by in-materio reservoir computing with neuromorphic atomic switch networks Front. Nanotechnol. 3 675792

[69] Kotoro T, Lilak S, Steig A, Gimzewski J, Sugiyama N, Tanaka Y, TAMUKOH H, USAMI Y and Tanaka H 2021 Ag2Se nanowire network as an effective in-materio reservoir computing device Research Square Preprint

[70] Díaz-Alvarez A, Higuchi R, Sanz-León P, Marcus I, Shingaya Y, Steig A Z, Gimzewski J K, Kuncic Z and Nakayama T 2019 Emergent dynamics of neuromorphic nanowire networks Sci. Rep. 9 14920

[71] Milano G, Pedretti G, Fretto M, Boarino L, Benfenati F, Jelmini D, Valov I and Ricciardi C 2020 Brain-inspired structural plasticity through rewiring and reweighting in multi-terminal self-organizig memristive nanowire networks Adv. Intelligent Systems 2 2000096

[72] Kuncic Z et al 2018 Emergent brain-like complexity from nanowire atomic switch networks: towards neuromorphic synthetic intelligence 2018 IEEE 18th Int. Conf. Nanotechnol

[73] Steig A Z, Avizienis A V, Silllin H O, Martin-Olmos C, Lam M L, Aono M and Gimzewski J K 2013 Self-organized atomic switch networks Ipn. J. Appl. Phys. 53 01A102

[74] Steig A Z, Avizienis A V, Silllin H O, Aguileria R, Shiie H H, Martin-Olmos C, Sandouk E J, Aono M and Gimzewski J K 2014 Self-organization and emergence of dynamical structures in neuromorphic atomic switch networks Memrisor Netw. ed A Adamatzky and L Chua (Berlin: Springer) pp 173–209

[75] Shirai S, Acharya S K, Bose S K, Mallinson J B, Galli E, Pike M D, Arnold M D and Brown S A 2020 Long-range temporal correlations in scale-free neuromorphic networks Network Neuroscience 4 432–47

[76] Bose S K, Mallinson J B, Gazoni R M and Brown S A 2017 Stable self-assembled atomic-switch networks for neuromorphic applications IEEE Trans. Electron Devices 64 5394–401

[77] Mallinson J B, Shirai S, Acharya S K, Bose S K, Galli E and Brown S A 2019 Avalanches and criticality in self-organized nanoscale networks Sci. Adv. 5 eaaz8438

[78] Yang J J, Strukov D B and Stewart D R 2013 Memristive devices for computing Nat. Nanotechnol. 8 13–24
