Which Factors Drive Open Access Publishing? A Springer Nature Case Study

Fakhri Momeni1*, Stefan Dietze1,3, Philipp Mayr1, Kristin Biesenbender2 and Isabella Peters2

1*KTS, GESIS – Leibniz Institute for the Social Sciences, Unter Sachsenhausen 6-8, Cologne, 50667, Germany.
2*Web Science, ZBW – Leibniz Information Centre for Economics, Düsternbrooker Weg, Kiel, 24105, Germany.
3*Computer Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr, Düsseldorf, 40225, Germany.

*Corresponding author(s). E-mail(s): Fakhri.Momeni@gesis.org; Stefan.Dietze@gesis.org; Philipp.Mayr@gesis.org; k.biesenbender@zbw.eu; i.peters@zbw.eu;

Abstract

Open Access (OA) facilitates access to articles. But, authors or funders often must pay the publishing costs preventing authors who do not receive financial support from participating in OA publishing and citation advantage for OA articles. OA may exacerbate existing inequalities in the publication system rather than overcome them. To investigate this, we studied 522,664 articles published by Springer Nature. Employing statistical methods, we describe the relationship between authors affiliated with countries from different income levels, their choice of publishing (OA or closed access), and the citation impact of their papers. A machine learning classification method helped us to explore the association between OA-publishing and attributes of the author, especially eligibility for APC-waivers/discounts, journal, country, and paper. The results indicate that authors eligible for the publisher’s APC-waivers publish more in gold-OA-journals than other authors. In contrast, authors eligible for an APC discount have the lowest ratio of OA publications, leading to the assumption that this discount insufficiently motivates authors to publish in a gold-OA-journal. The journals’ rank is a significant driver for publishing in a gold-OA-journal, whereas the OA option is mostly
avoided in hybrid journals. Seniority, experience with OA publications, and the scientific field are the most decisive factors in OA-publishing.

Keywords: APC policies, bibliometrics, open access, citation impact, machine learning

1 Introduction

The unrestricted availability of Open Access (OA) publications is linked to the goal of granting all interested parties free access to scientific knowledge and, along with it ensuring greater equality of access (Munafò et al., 2017). This view is strongly related to the consumers of scholarly knowledge, who then would not have to pay for access. However, when taking the authors of those articles into account, they are affected by OA in two different ways: a) when choosing a publication model for an article and b) when receiving citations (and along with it reputation) for articles that have been published via a certain model (usually described as citation advantage, see e.g. Langham-Putrow, Bakker, and Riegelman (2021)). Those two aspects of OA may introduce major biases and inequality into the scholarly publication and reputation system since they may restrict participation in OA in particular ways (Bahlai et al., 2019).

First, in general, the OA publishing model shifts the costs of publishing from readers to authors or their institutions and funders by introducing article processing charges (APCs). This can be a severe constraint for those authors who cannot afford these costs or do not receive any financial support. To overcome this issue, most publishers have implemented an APC-waiver/discount policy for authors from e.g., low-income countries (Lawson, 2015). However, it is open how the different options for OA publishing and waivers/discounts are considered and adopted by researchers with various characteristics such as their countries’ income level, but also their seniority and gender – factors which are also often associated with the decision to publish OA (Iyandemye & Thomas, 2019; Olejniczak & Wilson, 2020; Simard, Ghiasi, Mongeon, & Larivière, 2021; Smith et al., 2022; Zhu, 2017).

To accommodate for OA publishing costs, three funding options have emerged over time. First, Diamond OA journals are funded by public institutions such as libraries, which enables free reading and publishing for all researchers. Second, transformative agreements between public institutions and publishers have been introduced that include reading and publishing contracts and which are also funded by the institutions. In this case, there are no direct fees for authors, but their institutions pay for the APCs as part of a consortium. Access to publishing and access to publications is limited to participating organizations only. Thirdly, APCs could also be paid by the authors or their institutions themselves. The first two options lead to Gold OA at the journal level. The third option is associated with hybrid journals, which - for a fee - allow to publish single articles as an OA-variant. All other publishing
models for journals usually require funding via subscriptions which result in closed access articles (CA) that can only be read after having paid the article or journal fee.

The publishing model is also strongly associated with the visibility of authors and articles. For many researchers, it makes a difference where, i.e., in which journals, they publish (e.g., considering discipline-specific journal rankings). If they want to be noticed by others and/or seek promotion, it can be crucial, especially for early career researchers, to publish in reputable journals. And to achieve this, not only financial hurdles and APCs have to be overcome, but, for example, English language skills and technical skills are needed, as well as institutions that can help with legal advice or infrastructure support. Against this background, researchers have to decide which publishing model to choose and whether OA is not only an altruistic but feasible option at all.

The second possible source of bias and inequality is related to the paying for access case: It has been shown already that articles published as OA-variants are more visible, leading to higher citation counts and altmetrics (Evans & Reimer, 2009; Fraser, Momeni, Mayr, & Peters, 2020; Lewis, 2018; McKiernan et al., 2016; Ottaviani, 2016). Moreover, the Matthew effect shows that researchers who are already well-known and widely cited receive even more citations (Farys & Wolbring, 2021) - which directly affects rewards for publication in prestigious journals, for prominence, and citations. For researchers, publications play a central role in their daily practice and the reputation system in which they operate. Publications enable researchers to build on the body of knowledge and to refer to those findings by citing the according publications (which accumulate reputation in this way). Hence, access to publications is crucial for the progress of science and building of reputation – which both can be impeded by a lack of access to OA publishing options and the risk of CA-articles not being cited as frequently as OA articles.

From that, we hypothesize that researchers with better access to financial resources have better access to publications – both in terms of access to read openly and in terms of access to publish openly. Associated with that may be an even stronger citation advantage for those researchers (usually WEIRD: Western, educated, industrialized, rich, and democratic; (Henrich, Heine, & Norenzayan, 2010)) with extensive OA-publishing options. As such, OA may carry the risk of perpetuating already existing inequalities rather than resolving such marginalization in the scholarly communication system (Fox et al., 2021).

2 Related work

Related work also indicate a strong association between economic factors, OA, and citation advantages. The scientific output of countries is associated with their economic evolution because scientific progress needs governments’ financial support. Samimi (2011) used a Granger Causality Test to examine the causal relationship between scientific output and GDP in 176 countries and
found a two-way positive relationship between them. King (2004) compared published papers and their citation impacts across countries and found that only 31 countries contributed to 98% of the world’s highly cited papers and that the remaining 161 countries contributed less than 2%.

Open Access publishing is also highly influenced by the authors’ country of affiliation since it decides about APC waiver/discount policies or the availability of transformative agreements with publishers. Some publishers offer general waivers or have a discount policy for all of their journals for eligible authors, and the country’s income level mainly determines eligibility. Lawson (2015) has studied the waiver policy of the 32 most prominent publishers and found that 68% of them grant APC waivers. Simard et al. (2021) found that low-income countries publish and cite OA at a higher rate than upper-middle and high-income countries, and the positive correlation between OA citing and publishing is 1.3 times weaker for high-income countries than other countries. Similarly, Iyandemye and Thomas (2019) showed that biomedicine researchers from low-income countries have the highest percentage in OA publishing. Smith et al. (2022) reported the proportionately fewer OA articles published in Elsevier’s journals for low-income countries, despite their eligibility for APC waivers.

Olejniczak and Wilson (2020) studied the articles published by faculty members at research universities in the United States and found that in the United States, male and senior authors are more likely to publish in OA form. Zhu (2017) conducted a survey with over 1800 researchers at 12 Russell Group universities¹ to find the differences in OA publishing regarding discipline, seniority, and gender. Their results revealed disciplinary differences in OA publishing (Medical and Life Scientists are most likely to publish in Gold OA journals), more tendency toward OA publishing for senior authors, and across genders for men.

The journal rank is a decisive factor in submitting the article besides its business model. Schroter, Tite, and Smith (2005) conducted a survey study with 28 international authors who submitted to the BMJ and found that for authors, the ranking of the journal is more important than the availability of OA.

Many studies have investigated the OA citation outcome, and most found a citation advantage for OA articles (Evans & Reimer, 2009; Fraser et al., 2020; Lewis, 2018; McKiernan et al., 2016; Ottaviani, 2016). However, regarding biases (e.g., quality bias, self-selecting, mandating, self-archiving), different sampling and controlling data makes it difficult to conclude that receiving more citations is only the effect of OA. Momeni, Mayr, Fraser, and Peters (2021) studied the citation impact of flipping journals from CA to OA and generally found a slightly higher growth in receiving citations compared to journals in the same discipline and the impact factor’s range. However, they didn’t observe this trend in all scientific fields. Momeni, Mayr, and Dietze (2022) examined

¹https://russellgroup.ac.uk/about/our-universities/
the correlation between different factors and the future h-index and found a positive but weak correlation coefficient between them.

One issue which is often discussed together with the OA publishing and APC is the problem of predatory publishing. Predatory publishers take advantage of the OA movement but work against good scientific practice. Ross-Hellauer et al. (2021) did a systematic review to study the threat to equity in science via open science implementations. They concluded that less well-resourced researchers, researchers from non-English-speaking countries, and early-career researchers are in particular affected by the ‘predatory publishing’ problem.

3 Research questions

We conduct our study on the association between publishing models, the economic background of researchers, and other author-specific and structural factors along three major research questions:

RQ1: What is the relationship between the income level of researchers’ affiliation countries and their publication behaviour (do they prefer OA or CA)?

RQ2: What is the relationship between the income level of researchers’ affiliation countries and their publication behaviour (OA or CA) with their citation impact?

To answer these questions, we categorize authors based on the income level of their affiliation country and compare the access status of articles they have published and their citation impact. Whereas the first two RQs are rather descriptive and aim at quantifying the extent to which access to publish openly and access to read openly (and along with it to make them easier/more likely to cite) are related to the economic background of authors, the third RQ takes a variety of factors into account that have been shown to be strongly associated with tendencies to publish OA (Iyandemye & Thomas, 2019; Olejniczak & Wilson, 2020; Simard et al., 2021; Smith et al., 2022; Zhu, 2017).

RQ3: What factors (e.g., journals, articles, authors, or their countries) are associated with selecting the model of publications (OA against CA)?

Here we aim to give a rather detailed view on drivers for OA publishing. For that, structural factors, such as APC waivers, are considered besides author-specific properties, such as gender or years of publishing activity (see Table 1). We will also take a closer look at the different forms of access to publications such as Gold OA, Hybrid and Closed Access. In relation to the level of journals, the relationships between journal rankings, APCs and research fields (Health Sciences, Life Sciences, Physical Sciences, Social Sciences and multiple fields) will be examined. In addition, possible country-related influencing factors will be investigated such as the income level of countries, the existence of a transformation agreements or opportunities for researchers to obtain APC discounts or waivers. At the journal article level, the ratio of OA to CA citations in an article is examined, as well as the number of authors involved.
Other author-specific influencing factors can be gender and age or the ratio of OA to CA publications in the past, or even the proportion of international co-authors.

4 Data and methodologies

To conduct our study information on the business model, author characteristics, and article impact are needed and several approaches and databases have to be linked to receive a complete dataset.

4.1 Data selection

For the business model of journals (OA, Hybrid, CA) it is possible to crawl the information from the journal’s or publisher’s website or to look up sources such as the Directory of Open Access Journals (DOAJ) and Unpaywall, which both include OA information. But information about the history of the business model of journals is rarely available. In recent years, many journals have converted (flipped) from closed access to open access and vice versa, but often there is not enough information about the exact date of starting with the new access model. The Open Access Directory (OAD), a wiki hosted by the School of Library and Information Science at Simmons University, is the only resource containing a list of a few flipped journals and the date of flipping. The open-access start date of journals was available in the DOAJ dataset until 2020. Bautista-Puig, Lopez-Illescas, de Moya-Anegon, Guerrero-Bote, and Moed (2020) and Momeni et al. (2021) used OAD and DOAJ for their studies about flipping journals. Unfortunately, DOAJ stopped collecting and showing it in the following versions: "As time progressed, open access models became more complicated ... It has become harder to find the right answer to that seemingly simple question: when did open access start for this journal?". Matthias, Jahn, and Laakso (2019) employed different snapshots of datasets that have the open access status (Scopus, DOAJ, Ulrichsweb, publishers’ website, etc.) and some other resources to find out the reverse flip (converting from OA back to CA) and verified them manually. For the bibliometric analyses related to open access, it is necessary to know about the access status of journals for the period in which we study the effect of OA. Obtaining information more coherently requires looking into different journals’ business models and harmonizing them to make them comparable. In addition, every publisher has its own rules for APC exemptions to foster publishing in OA format. For example, eligibility for APC waiver for publishing in Elsevier’s journals is based on the ‘Research4Life program’ and for Springer Nature based on ‘World bank classification’. Various transformative agreements with publishers and the period of their contracts are other influential factors that should be considered in studying the publishing behavior of each publisher separately.

2 http://oad.simmons.edu/oadwiki/Main_Page
3 https://blog.doaj.org/2021/02/05/why-did-we-stop-collecting-and-showing-the-open-access-start-date-for-journals/
4 https://www.research4life.org/access/eligibility/
Due to these varying APC related rules for different publishers, we focused on one major publisher. To analyse papers for various disciplines and countries, we chose Springer Nature, one of the largest publishers of academic journals with worldwide authors from various disciplines.

We downloaded the list of journals and their access status from the snapshot from the year 2019 which is available on the publisher’s website. There are three publishing models for these Springer Nature (SN) journals: Gold Open Access, Hybrid (with the open access option: Open Choice), and Closed Access. Figure 1 displays the distribution of journals and their publishing models.

For the bibliometric analyses, we employed Scopus and matched the list of SN journals with journals in Scopus via title and ISSN. From 3,138 SN journals, we could match 2,757 journals, which we used for further analyses. Because of the problems regarding journals’ flipping mentioned above, we limited our data to two years, 2017 and 2018, to reduce the errors related to detecting the journals’ and articles’ business model. It resulted in 522,664 articles.

To detect the publishing model of articles in hybrid journals, we employed Unpaywall (the snapshot of 2019), a service to find the available version of articles. From metadata in this dataset, we can obtain the publishing model of articles in hybrid journals.

We obtained the APC amount in dollars for 1,741 hybrid journals and 297 gold OA journals from the website of Springer Nature. There was no fixed APC for 147 gold OA journals (only 5% of investigated articles belong to these journals), and we must visit their website to obtain the exact amount for these journals. Therefore we replaced the APC amount for these journals with null values (empty) and excluded them for the classification task.

5 https://www.springernature.com/gp/open-research/journals-books/journals
6 The in-house Scopus database maintained by the German Competence Centre for Bibliometrics (Scopus-KB), 2021 version
7 https://unpaywall.org/
4.2 Features and definitions

To compare the publishing and citation behaviour across countries, we classified countries by income based on the World Bank classification\(^9\) into four groups: low, lower-middle, upper-middle and high income economies. The income level of a country has been evaluated every year and its history is available\(^\text{10}\). From 218 listed countries by the World Bank, we excluded 20 countries with different income levels from 2015 to 2018.

Springer Nature offers APC waiver and discount to those articles with the corresponding author from low and lower-middle income countries (classified by the World Bank), respectively\(^\text{11}\). We detected four countries with an open access agreement with this publisher during the investigated years (Austria\(^\text{12}\), Finland\(^\text{13}\), the Netherlands\(^\text{14}\), and Sweden\(^\text{15}\)). 20,369 articles belong to the corresponding authors from countries with a transformative agreement.

Figure 2 represents the number of articles published in Springer Nature in which their corresponding author has an affiliation from a country with the respective income group. Sixty-seven articles had a corresponding author with multiple affiliation countries and we excluded them from the analyses.

Fig. 2 Number of papers published by Springer Nature grouped by income level of countries

\(^9\)https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
\(^\text{10}\)http://databank.worldbank.org/data/download/site-content/OGHIST.xlsx
\(^\text{11}\)https://www.springernature.com/gp/open-research/policies/journal-policies/apc-waiver-countries
\(^\text{12}\)https://group.springernature.com/de/group/media/press-releases/springer-nature-and-austria-renew-open-access-contract/17130720
\(^\text{13}\)https://esac-initiative.org/about/transformative-agreements/agreement-registry/sc2018finelib/
\(^\text{14}\)https://www.springer.com/gp/about-springer/media/press-releases/corporate/springer-and-dutch-universities-reach-wide-ranging-agreement-on-access/40938
\(^\text{15}\)https://www.springer.com/gp/about-springer/media/press-releases/corporate/swedish-researchers-to-benefit-from-innovative-open-access-agreement-with-springer/10347200
Which Factors Drive Open Access Publishing? A Springer Nature Case Study

Table 1 Features used to study OA publishing drivers

Feature type	Feature	Description
Journal	journal_ranking	H-index ranking of the journal in the related discipline (for multidisciplinary journals, the average ranking among disciplines).
	journal_APC	The cost of APC to publish OA in the journal (US-Dollar).
	field	Field of journal (If the journal has more than one field, the value is ‘multiple fields’).
Country	country_income	Income level of the country in which corresponding author is affiliated.
	OA_agreement	If the corresponding author’s country of affiliation has an OA agreement with the publisher, it equals 1, otherwise 0.
	discount_eligible	If the corresponding author’s country of affiliation belongs to the lower-middle income group, it equals 1, otherwise 0.
	waiver_eligible	If the corresponding author’s country of affiliation belongs to the low income group, it equals 1, otherwise 0.
Paper	OA_cite	ratio of citing OA against CA in this paper number of authors
Author*	gender	for females equals 1 and for male 0.
Author*	age	years since first publication
Author*	OA_publish	ratio of OA publications against CA in the past (number of previous OA publications divided by the number of CA publications)
Author*	international_coauthors	proportion of international co-authors** to all co-authors in this paper

* Corresponding author
** An international co-author is a co-authors who has a different affiliation country than the corresponding author.

To investigate the factors that drive OA publishing, we defined some features presented in Table 1. Figure 3 presents an overview of data collection and preparation steps. The final analysed data is available on Git repository 16.

To obtain the ratio of authors’ previous open access publications, we needed to identify authors and their publications. Scopus Author Id enabled us to get each author’s list of published articles. We used the year of the first publication of authors indexed in Scopus to calculate their career age as a measurement of seniority. To detect the gender status of authors, we utilized a combined name and image-based approach introduced by Karimi, Wagner, Lemmerich, Jadidi, and Strohmaier (2016) which categorizes the gender into male and female. We acknowledge that the person’s gender is not a binary variable, and considering the social dimensions, there are more gender identities. Using Scopus author Id, we found 381,074 unique corresponding authors for the investigating articles, and were able to identify the gender status for 49% of them.

16https://github.com/momenifi/open_access_springer_nature
Fig. 3 Flow chart of data collection and preparation process.

To evaluate the quality of journals and rank them, we employed the journal’s H-index, which Hodge and Lacasse (2011) suggested as a better measurement for ranking journals than the 5-year impact factor in social science and has been used in previous studies (Barner, Holosko, & Thyer, 2014; Xia,
We calculated the H-index of all journals in Scopus classified in 27 subject categories within the years 2011 and 2016.

4.3 Methodologies

4.3.1 Normalizing the citation impact

To evaluate and compare the citation impact at the article and journal level among different subject areas, we should normalize them because of varying citation patterns across scientific disciplines and fields. To normalize the journal’s H-index across categories, we computed the Percentile Rank (PR) of each journal (inspired by Bornmann and Mutz (2014)) in its category. This method gives the journals within a category a rank between 0 (lowest H-index) to 100 (highest H-index). In this approach, journals with the same H-index have the same rank. If the journal belongs to more than one category, we used the weighted PR (Bornmann & Williams, 2020). Based on this approach, weighted PR (wPR) will be calculated using the formula:

\[
wPR = \frac{PR_{sci1} \cdot n_{sci1} + PR_{sci2} \cdot n_{sci2} + ... + PR_{sci} \cdot n_{sci}}{n_{sci1} + n_{sci2} + ... + n_{sci}}
\]

whereby, \(sci \) is the \(i \)th subject category that the journal belongs to and \(n_{sci} \) is the number of journals in this subject category, and \(PR_{sci} \) is PR of the journal in it.

To present the citation impact of articles, we employed the similar normalizing approach. Because the citation count is confounded by time since publication, we consider the citations during a time window of two years since the publication, as in previous studies (Jannot, Agoritsas, Gayet-Ageron, & Perneger, 2013; Piwowar et al., 2018). Next, we categorized the articles into groups with the same subject category and publication year and ranked them based on received citations. An article is highly cited if its rank is above of 50% of PR in its group. For articles belonging to multiple subject categories, we used wPR mentioned in Equation 1, where \(sci \) is the \(i \)th subject category of the article and \(n_{sci} \) is the number of articles in this subject category, and \(PR_{sci} \) is PR of the article in it.

4.3.2 Classification method

To address the third research question and understand what factors are related to choosing a business model of publications by authors, we categorized the publishing model of articles into two groups, OA and CA. Then, we utilized the value of defined features in Table 1 to estimate the likelihood of choosing the publishing model. This process is a classification task in Machine learning.

To estimate the publishing model of articles, we use a supervised machine learning method, random forest (RF), which is a common tool for classification tasks (Behr, Giese, Theune, et al., 2020; Kumar, Mukhopadhyay, Gupta, 2012).
Handa, & Shukla, 2019; Roy, Chopra, Lee, Spampinato, & Mohammadi-ivatlood, 2020; Yamak, Saunier, & Vercouter, 2016). We utilize this tool for a binary classification (OA=1 or CA=0) and use the features introduced in 1 as independent variables. We implement the algorithm for hybrid journals in which authors can choose their paper’s business model. We used k-Fold cross-validation ($k=10$) procedure to train and test the model.

Due to the skewed distribution in the target variable (more CA than OA publishing), we balance them by re-sampling data via SMOTE (Synthetic Minority Over-sampling Technique), which many authors proved its outperformance relative to other techniques to handle the class imbalance problem (Spelmen & Porkodi, 2018).

5 Results

In this section, first, we present some descriptive statistics about the publishing model of articles across four country groups and address the RQ1. Next, we display their differences in terms of citation impact among different models to answer the RQ2. Then we focus on the RQ3 and present the correlation coefficient between the publishing model and features defined in Table 1. Also, we demonstrate the performance of estimating the publishing model of articles in hybrid journals and the importance of defined features in the estimation task to reveal the influential factors in selecting the OA model for publishing.

5.1 Countries’ income level of corresponding authors and their publishing model

Figure 4(a) shows the distribution of articles categorized by publishing model and the country income level of the corresponding authors. Authors with affiliations in countries with a lowest income level and are eligible for the APC waiver have the highest proportion of gold OA publications. In contrast to this, authors from lower-middle income countries who are eligible for APC discount have the lowest percentage in gold OA publishing. Figure 4(b) presents the distribution of articles’ publishing model in hybrid journals identified by Unpaywall.

![Fig. 4](image)

(a) Distribution of articles published in journals with three publishing models across four groups of countries (Source: Springer Nature). (b) Percentage of OA and CA published in hybrid journals in four country groups.
5.2 Countries’ income level of corresponding authors and their citation impact

Figure 5 shows the ratio of highly cited articles for the investigating articles with different publishing models across country groups. Generally, we observe a higher percentage of highly cited papers for corresponding authors from countries with higher income level.

The ratio of highly cited articles among all countries for gold and hybrid OA models is higher than in other models. Also, this ratio is higher for gold OA articles and indicates the better citation impact of articles published in gold OA journals. The only exception is for countries with low-income levels, with more highly cited papers in the hybrid OA model. Compared to CA journals, journals in hybrid CA have more quality articles except for countries with the high-income level.

![Fig. 5 Percentage of highly cited papers published in different models. Hybrid Open Access / Closed Access belong to articles published as OA/CA in hybrid journals.]

5.3 Influential factors on the publishing model

Table 2 shows the Pearson correlation coefficient between the publishing model (if open access is equal to 1 otherwise 0) and features in Table 1. We separated the data into two sets, set 1 for articles published in open access or closed access journals (non-hybrid journals) and set 2 for the articles in hybrid journals. Set 1 reveals the association of discount and waiver policies with OA publishing, while optional OA publishing for hybrid journals in set 2 displays more author-specific factors related to OA publishing. The values of the correlation coefficient for field indicate that among scientific fields, those authors having an article with a multidisciplinary subject are more likely to choose a gold OA. It agrees with the result of the study by Liu and Li (2018). The possible reasons for the high participation in OA publishing in this field are more support from different scientific communities and the availability of more multidisciplinary OA-mega-journals. The high negative correlation between Physical Sciences means that authors in this field publish their articles more
in CA journals. The weak negative correlation with gender demonstrates that the tendency toward gold OA publishing for women is slightly more than for men which disagrees with previous findings (Olejniczak & Wilson, 2020; Zhu, 2017). As we observed the lowest proportion of OA publishing for countries with lower-middle income level in Figure 4 (a), the negative correlation for discount eligible (also positive value for waiver eligible) in Table 2 points out that the discount policies are insufficient to motivate the authors from these countries for gold OA publishing.

The strong positive correlation between journal ranking and the publishing model for the first set suggests that the journal’s rank is the dominant factor in choosing a gold OA journal for publication. Therefore, we estimate the publishing model for articles in set 2 (hybrid journals) to discover other feature categories rather than journal-specific factors influencing the authors’ decision for an OA option. Moreover, the optional choice of the OA model in hybrid journals better reveals characteristics leading to the OA model.

Table 2 Correlation coefficient between independent variables and the target variable. The value of target equals to 1 (0) means the paper has been published in the OA (CA) model.

Feature	set 1 (non-hybrid)	set 2 (hybrid)
journal_ranking	0.73	0.07
journal_APC	-	0.11
field Health Sciences	0.14	0.02
Life Sciences	-0.02	0.02
Physical Sciences	-0.72	-0.09
Social Sciences	-0.01	0.02
multiple fields	0.51	0.06
country_income	0.4	0.19
OA_agreement	0.07	0.37
discount_eligible	-0.10	-
waiver_eligible	0.04	-
OA_cite	0.42	0.14
authors_count	0.22	0.07
gender	-0.06	-0.008
age	-0.06	0.045
OA_publish	0.43	0.35
international_coauthors	0.12	0.09
sample size:	192,665	329,999

Table 3 performance of predicting the publishing model of papers with random forest method.

Classification	OA	CA
Precision	0.91	0.94
Recall	0.94	0.90
F1score	0.92	0.92
Accuracy	0.92	
Table 3 shows the performance of the RF classifier for the second set (hybrid journals). Figure 6 displays the permutation importance of features employed to predict the publishing model implemented for this set. Permutation importance of a feature shows a decrease in the model performance when the feature’s value is randomly shuffled while the values of other predictors remain unchanged. A higher value for a feature shows more predictive power in the proposed model. Highest importance values for OA publish and age in Figure 6 indicates that most significant factors to select a OA model is seniority and having more experiences in OA publishing. The lowest value for the variable gender presents that gender has a lower impact on the authors’ decision for the OA model compared to other factors.

6 Conclusion and discussion

This work presents a detailed study on the relationship between author-specific and structural factors (e.g., income level of authors’ affiliation country), OA publishing, and OA citation advantage. First, we investigated the relationship between the income level of countries and OA publishing for articles published by Springer Nature. We found that authors from lower-middle-income countries with the eligibility of using APC discount have a lower proportion of gold OA publications in all published papers by this publisher compared to other countries. It points out that discounted APC is still too much for these authors to pay for a gold OA model. In contrast, this proportion for authors from countries with the low-income level who receive APC waivers is higher than authors from other countries. This result conflicts with the study’s results by Smith et al. (2022) who found a fewer OA papers proportions published by Elsevier for these countries compared to others. The reason can be stricter conditions, which this publisher considers for waiver eligibility.

We examined the citation impact of these articles and compared the percentage of highly cited papers among the publishing models and the income
levels of the corresponding authors’ countries. For all countries, the OA model in gold OA or hybrid has the highest percentage of highly cited papers. Also, the results demonstrate a higher proportion of highly cited articles for countries with higher income levels. Although it displays more citation impact for OA models, but it can be the result of confounding factors such as self-selection and quality biases (Gargouri et al., 2010). Also, examining the preprint and green OA publishing (if the article has been published in the CA model, but a free version is available in a repository outside of the publisher’s website.) effect will result in more accurate analyses (Fraser et al., 2020; Wang, Glänzel, & Chen, 2020).

To find more characteristics (e.g., author, journal, paper) related to OA publishing, we defined some features, estimated the publishing model of articles (OA or CA) using a random forest based machine learning approach, and examined the impact of each feature on the estimation task. The results show that age and more experiences in OA rather than CA publishing are the most influential factors in estimating the publishing model. Also, we found the field of publications as the next important factor, which indicates that OA publishing is field-specific. We discovered that the tendency toward OA publishing was slightly higher for women, but it was a less important feature than other features in estimating the OA model.

For future work, we can consider other publishers to examine how the different APC policies among publishers impact OA publishing. Also, controlling for articles’ language in the analyses encourages future studies. SN is an international publisher and publishes mostly articles in English18, and articles in other languages are underrepresented in this study. Regarding other publishers with non-English contents and considering the articles’ language in the analyses can reveal the role of languages in publishing international OA articles and citation advantages.

7 Limitations

One obvious limitation of this study is, that we included the articles from just one publisher, Springer Nature. Publishing behavior of authors may differ in articles published by other publishers which can effect and bias the results.

We obtained the access status of journals in 2019 based on the list published on Springer Nature’s website (the same for the access status in the article level from Unpaywall). Some journals may have flipped from CA to OA or vice versa, and we did not detect them, which can cause errors in results. Furthermore, we did not control the correctness of external data (Springer nature and Unpaywall). The accuracy of these data affects the results’ precision. We identified the gender of 49% authors and removed articles having the corresponding authors without gender status. In addition, 2% of the rest data have been removed because of the null value in other features(e.g., journals’ APC).

18https://support.springernature.com/en/support/solutions/articles/6000219817-are-any-of-your-titles-available-in-other-languages-
Because the gender detection approach doesn’t work well for Asian names, especially Chinese ones, it also creates biases in our analyses.

8 Declarations

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The dataset analysed during the current study and codes are available on the https://github.com/momenifi/open_access_springer_nature.git.

Acknowledgements
This work is financially supported by BMBF project OASE, grant number 01PU17005A. We acknowledge the support of the German Competence Center for Bibliometrics (grant: 01PQ17001) for maintaining the used dataset for the analyses.

References
Bahlai, C., Bartlett, L.J., Burgio, K.R., Fournier, A.M., Keiser, C.N., Poisot, T., Whitney, K.S. (2019). Open science isn’t always open to all scientists. American Scientist, 107(2), 78–82.

Barner, J.R., Holosko, M.J., Thyer, B.A. (2014). American social work and psychology faculty members’ scholarly productivity: A controlled comparison of citation impact using the h-index. The British Journal of Social Work, 44(8), 2448–2458.

Bautista-Puig, N., Lopez-Illescas, C., de Moya-Anegon, F., Guerrero-Bote, V., Moed, H.F. (2020). Do journals flipping to gold open access show an oa citation or publication advantage? Scientometrics, 124(3), 2551–2575.

Behr, A., Giese, M., Theune, K., et al. (2020). Early prediction of university dropouts—a random forest approach. Jahrbücher für Nationalökonomie und Statistik, 240(6), 743–789.

Bornmann, L., & Mutz, R. (2014). From p100 to p100’: A new citation-rank approach. Journal of the Association for Information Science and Technology, 65(9), 1939–1943.
Bornmann, L., & Williams, R. (2020). An evaluation of percentile measures of citation impact, and a proposal for making them better. *Scientometrics, 124*(2), 1457–1478.

Evans, J.A., & Reimer, J. (2009). Open access and global participation in science. *Science, 323*(5917), 1025–1025.

Farys, R., & Wolbring, T. (2021). Matthew effects in science and the serial diffusion of ideas: Testing old ideas with new methods. *Quantitative Science Studies, 2*(2), 505–526.

Fox, J., Pearce, K.E., Massanari, A.L., Riles, J.M., Szulc, L., Ranjit, Y.S., ... others (2021). Open science, closed doors? countering marginalization through an agenda for ethical, inclusive research in communication. *Journal of Communication, 71*(5), 764–784.

Fraser, N., Momeni, F., Mayr, P., Peters, I. (2020). The relationship between biorxiv preprints, citations and altmetrics. *Quantitative Science Studies, 1*(2), 618–638.

Gargouri, Y., Hajjem, C., Larivière, V., Gingras, Y., Carr, L., Brody, T., Harnd, S. (2010). Self-selected or mandated, open access increases citation impact for higher quality research. *PloS One, 5*(10), e13636.

Henrich, J., Heine, S.J., Norenzayan, A. (2010). The weirdest people in the world? *Behavioral and Brain Sciences, 33*(2-3), 61–83.

Hodge, D.R., & Lacasse, J.R. (2011). Evaluating journal quality: Is the h-index a better measure than impact factors? *Research on Social Work Practice, 21*(2), 222–230.

Iyandemye, J., & Thomas, M.P. (2019). Low income countries have the highest percentages of open access publication: A systematic computational analysis of the biomedical literature. *PLoS One, 14*(7), e0220229.

Jannot, A.-S., Agoritsas, T., Gayet-Ageron, A., Perneger, T.V. (2013). Citation bias favoring statistically significant studies was present in medical research. *Journal of clinical epidemiology, 66*(3), 296–301.
Karimi, F., Wagner, C., Lemmerich, F., Jadidi, M., Strohmaier, M. (2016). Inferring gender from names on the web: A comparative evaluation of gender detection methods. *Proceedings of the 25th international conference companion on world wide web* (pp. 53–54).

King, D.A. (2004). The scientific impact of nations. *Nature, 430* (6997), 311–316.

Kumar, N., Mukhopadhyay, S., Gupta, M., Handa, A., Shukla, S.K. (2019). Malware classification using early stage behavioral analysis. *2019 14th asia joint conference on information security (asiajcis)* (pp. 16–23).

Langham-Putrow, A., Bakker, C., Riegelman, A. (2021). Is the open access citation advantage real? a systematic review of the citation of open access and subscription-based articles. *PloS one, 16*(6), e0253129.

Lawson, S. (2015). Fee waivers for open access journals. *Publications, 3*(3), 155–167.

Lewis, C.L. (2018). The open access citation advantage: Does it exist and what does it mean for libraries? *Information technology and libraries, 37*(3), 50–65.

Liu, W., & Li, Y. (2018). Open access publications in sciences and social sciences: A comparative analysis. *Learned Publishing, 31*(2), 107–119.

Matthias, L., Jahn, N., Laakso, M. (2019). The two-way street of open access journal publishing: flip it and reverse it. *Publications, 7*(2), 23.

McKiernan, E.C., Bourne, P.E., Brown, C.T., Buck, S., Kenall, A., Lin, J., ... others (2016). Point of view: How open science helps researchers succeed. *elife, 5*, e16800.

Momeni, F., Mayr, P., Dietze, S. (2022). How can i improve my scientific impact? the most influential factors in predicting the h-index. *arXiv preprint arXiv:2207.09655*.
Momeni, F., Mayr, P., Fraser, N., Peters, I. (2021). What happens when a journal converts to open access? a bibliometric analysis. *Scientometrics*, 1–17.

Munafò, M.R., Nosek, B.A., Bishop, D.V., Button, K.S., Chambers, C.D., Percie du Sert, N., . . . Ioannidis, J. (2017). A manifesto for reproducible science. *Nature human behaviour*, 1(1), 1–9.

Olejniczak, A.J., & Wilson, M.J. (2020). Who’s writing open access (oa) articles? characteristics of oa authors at ph. d.-granting institutions in the united states. *Quantitative science studies*, 1(4), 1429–1450.

Ottaviani, J. (2016). The post-embargo open access citation advantage: it exists (probably), it’s modest (usually), and the rich get richer (of course). *PLoS One*, 11(8), e0159614.

Piwowar, H., Priem, J., Larivière, V., Alperin, J.P., Matthias, L., Norlander, B., . . . Haustein, S. (2018). The state of oa: a large-scale analysis of the prevalence and impact of open access articles. *PeerJ*, 6, e4375.

Ross-Hellauer, T., Reichmann, S., Cole, N.L., Fessl, A., Klebel, T., Pontika, N. (2021). Dynamics of cumulative advantage and threats to equity in open science: a scoping review. *Royal Society Open Science*, 9(1), 211032.

Roy, S.S., Chopra, R., Lee, K.C., Spampinato, C., Mohammadi-ivatlood, B. (2020). Random forest, gradient boosted machines and deep neural network for stock price forecasting: a comparative analysis on south korean companies. *International Journal of Ad Hoc and Ubiquitous Computing*, 33(1), 62–71.

Samimi, A.J. (2011). Scientific output and gdp: Evidence from countries around the world. *Journal of Education and Vocational Research*, 2(2), 38–41.

Schroter, S., Tite, L., Smith, R. (2005). Perceptions of open access publishing: interviews with journal authors. *BMJ*, 330(7494), 756.
Simard, M.-A., Ghiasi, G., Mongeon, P., Larivière, V. (2021). Geographic differences in the uptake of open access. *18th international conference on scientometrics and informetrics conference, issi 2021.*

Smith, A.C., Merz, L., Borden, J.B., Gulick, C.K., Kshirsagar, A.R., Bruna, E.M. (2022, 02). Assessing the effect of article processing charges on the geographic diversity of authors using Elsevier’s “Mirror Journal” system. *Quantitative Science Studies, 2*(4), 1123-1143. Retrieved from https://doi.org/10.1162/qss_a_00157

Spelmen, V.S., & Porkodi, R. (2018). A review on handling imbalanced data. *2018 international conference on current trends towards converging technologies (icctct)* (pp. 1–11).

Wang, Z., Glänzel, W., Chen, Y. (2020). The impact of preprints in library and information science: an analysis of citations, usage and social attention indicators. *Scientometrics, 125*(2), 1403–1423.

Xia, J. (2012). Positioning open access journals in a lis journal ranking. *College & Research Libraries, 73*(2), 134–145.

Yamak, Z., Saunier, J., Vercouter, L. (2016). Detection of multiple identity manipulation in collaborative projects. *Proceedings of the 25th international conference companion on world wide web* (pp. 955–960).

Zhu, Y. (2017). Who support open access publishing? gender, discipline, seniority and other factors associated with academics’ oa practice. *Scientometrics, 111*(2), 557–579.