Optimization of operating parameters on the activated carbon from Pinang frond for adsorption of remazol brilliant blue R

S G Herawan¹, M A Ahmad²

¹ Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
² Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia

Corresponding author: safarudin.gazali@binus.edu

Abstract. Activated carbons are frequently utilized for waste water treatment especially in dye removal in textile industries. With high level of carbon content, various organic materials have been chosen as based materials for activated carbon. In this study, activated carbon from pinang frond (PFAC) was created by using a physical activation and optimized the operating parameters such as activation temperature (°C), activation time (hour) and, CO₂ flow rate (mL/min). Experimental design (DoE) for PFAC preparation was developed and optimized using response surface methodology (RSM). It was found that the optimum PFAC preparation conditions was at the activation temperature of 867°C, activation time of 6.0 hour and CO₂ flow rate of 476 mL/min. By verification with experimental values, the predicted values from the model was only less than 2% of errors for RBBR removal onto PFAC. This can be pointed out that the model is sufficient and suitable to predict the operating parameters fixed responses.

1. Introduction

Activated carbon is broadly treated as an adsorbent for elimination pollutants of inorganic and organic matter effectively in aqueous solution [1], or from a gaseous environment [2]. Activated carbons have a comparatively high total pore volume and surface area. The activated carbons commercially available made from petroleum coke, lignite, and bituminous coal are expensive, which limits to use and application [3]. Therefore, due to economic reasons that are the most important factor about the research nowadays, other alternative precursors, which are inexpensive and abundantly available, have been investigated for activated carbon production. Nevertheless, some of these alternative precursors had higher capability than commercials activated carbon [4]. From the literature, cocoa bean husk [5], pinang frond [6], kenaf core fibres [7], palm kernel shell [8], waste polystyrene foams [9], coconut shells [10], oil palm shell [11,12], and tobacco waste [13], have all been used to prepare activated carbon.

To produce activated carbon, chemical and physical activation treatments are needed. The advantages of physical activation are the possibility of developing a structure with more pores and large active area [10] and having less effect in terms of the secondary pollution problem during the disposal stage [14]. The activated carbon preparation conditions are the most important operating parameters due to its adsorption capacity or uptake, such as CO₂ flow rate, activation time and activation temperature [6,15].

About 0.7 million tons of 10,000 different dyes are produced annually. They are coming from the processes of variety in the textile industry [16]. Numerous dyes varieties are used, for instance; basic dyes, acid dyes, direct dyes, dispersed dyes, and reactive dyes. Based on [17], reactive dyes were used worldwide in almost 45% for producing textiles. One of reactive dyes is Remazol Brilliant Blue R.
(RBBR), which has the favourable characteristics of high solubility in water, bright colour, and a low energy consumption dyeing process. This kind of dyes is toxic and highly carcinogenic to organisms when discharged in stream of waste water [18]. RBBR has a toxic effect cause by mycelia growth of fungus [18]. Since dyes toxicity and crucial to the ecosystem impact, many studies focused on this topic [19]. Therefore, it is very interesting to study on removal of Remazol Brilliant Blue R (RBBR) dyes from wastewater.

Pinang (Areca catechu), which under the Arecaceae family is a tropical tree that mainly grows across tropical Asia to the central Pacific in a region from East Africa [20]. Traditionally, the main part used from this tree is the nut (or seed endosperm) as a stimulant masticatory for chewing purposes. This habit can be originated usually in some parts of Asia and India. The pinang frond as a waste material is typically being disposed without any utilization of it [21]. In fact, there is few research work on the utilization of pinang frond as activated carbon adsorbent in the previous literature. Therefore, the aim of this study is preparing activated carbon from pinang frond and to observe the prospective in aqueous solution for RBBR dye elimination by optimising the operating parameters in terms of CO2 flow rate, activation time, and activation temperature.

The experimental design (DoE) is a structured and ordered method that is used to define the relationships between the different variables that affect the process and the result of the process. The experimental design is the strategy for collecting empirical knowledge based on the analysis of experimental data. DoE generates a set of experiments design by varying systematically all relevant variables and it helped to identify (i) factors that most influence the results and (ii) optimal conditions. The most common DoE used is response surface methodology (RSM). RSM is a collection of mathematical statistics techniques that useful for modelling and analysis problems. The aim of RSM is to optimize the response where is subjected by several variables [22]. There were several design classified in RSM including Box-Behnken design, 3-Level Factorial, face centered composite design (FCCD), and hybrid design. Nevertheless, amongst RSM designs, FCCD turn into most appropriate design in activated carbon production due to its robustness and flexibility.

FCCD allows estimation of curvature by fractional factorial design with a central point plus a bunch of star points (axial point). Stabilize the variance of the predicted response and provide a measure of pure error can be achieved by the replicates at the center point [23]. The more replicates can generate more precise estimation error. Commonly, FCCD contains of a \(2^n\) axial or star points, \(n_c\) center run, and \(2^n\) factorial points, where \(n\) represents the variables number implemented in the study. Two parameters are needed to be defined; number of center points \(n_c\) and distance \(\alpha\) of the axial points from the design center [24]. Where \(\alpha\) is equal to 1 for face centered and \(n\) in the design based on the number of factors.

2. Materials and methods

2.1. Pinang frond activated carbon (PFAC) preparation
Pinang frond was taken from Sungai Petani, Kedah, Malaysia. It was cleaned and then dried at 110°C for 24 hours due to the moisture content removal. Next, by using a stainless steel vertical tubular reactor blanketed with a tube furnace, the sample was ground and placed into it and heated by 20°C/min up to an activation temperature between 600 – 900°C under a 150 ml/min flow rate of purified nitrogen (99.99%). Once the activation temperature was reached, the activation agent of CO2 was introduced at flow rates between 150 – 600 ml/min for 1 – 7 hours. After the process is done, the reactor was needed to be cooled down by flowing nitrogen up to room temperature. The samples were placed in an airtight container for further study on adsorption of RBBR to determine the optimization of operating parameters. The characterization of PFAC can be found detail in [6,15].

2.2. Experimental design for preparation of PFAC
DoE for PFAC preparation was developed and optimized using RSM in Design-Expert software version 6.0.6 (STAT-EASE Inc., Minneapolis, USA). A standard FCCD under RSM design has been selected on study for preparation of PFAC in terms of operating parameters. Activation temperature
(x1, °C), activation time (x2, hour) and, CO2 flow rate (x3, mL/min) have been chosen for independent variables on this study.

Table 1 shows the variables investigated in terms of ranges and levels. Meanwhile, table 2 summaries a complete design matrix of the experiments conducted based on the ranges and the levels given. 8 factorial points, 6 axial points and 6 replicates at the center points were implemented for those three variables using FCCD, indicating that altogether 20 experiments for this procedure, as calculated from Equation 1:

\[
N = 2^n + 2n + n_c = 2^3 + 2 \times 3 + 6 = 20
\]

Where \(N \) is the total experiments needed number and \(n \) is the factors number.

Table 1. Coded variable levels for independent variables using FCCD

Variables (factors)	Coded variable levels
Activation temperature (°C)	-1 600 0 750 +1 900
Activation time (hour)	-1 1.0 0 4.0 +1 7.0
CO2 flow rate (mL/min)	-1 150 0 375 +1 600

The center points which are the 6 replicate points (Run 15-20) in design matrix is used to verify data reproducibility and experimental error. Variables are encoded into (-1.1) intervals where low and high levels are encoded as -1 and +1, respectively. The response was RBBR removal (Y) and determined based on batch adsorption studies. In the adsorption test, a 0.2 g of PFAC was introduced into flask containing 200 mL of RBBR solution with initial concentration of 200 mg/L and was stored in water bath shaker at 30°C (120 rpm) until equilibrium was achieved. The RBBR concentrations before and after adsorption were analysed using Double-beam UV-Visible spectrometer (Model Shimadzu UV-1800, Japan). Equation 2 shows the percentage RBBR removal at equilibrium.

\[
RBBR \text{ Removal} (\%) = \left(\frac{C_o - C_e}{C_o} \right) \times 100
\]

Where \(C_o \) is the liquid-phase concentrations of the adsorbate at initial (mg/L) and \(C_e \) is at equilibrium concentration (mg/L).

3. Results and Discussion

3.1. Pinang frond activated carbon characterization

Pinang frond activated carbons have BET surface area in the range of 576.89 up to 958.23 m²/g with total pore volume in the range of 0.3449 up to 0.5469 mL/g and average pore diameter of 2.32 nm [15]. The increment of activation temperature, activation time, and CO2 flow rate can increase BET surface are and total pore volume. However, these characterizations would be decreased when each parameter pass the certain value as an optimum condition. The detail of the characterization of pinang frond activated carbon including the SEM analysis can be found in [15].

3.2. Experimental design

In this study, FCCD was used on design the experiment of preparing PFAC. One response of RBBR removal, \(Y (\%) \), with variables of activation temperature (x1), activation time (x2) and CO2 flow rate (x3) were studied. Design Expert Software version 6.0.6 (STAT-EASE Inc., Minneapolis, US) was
used to analyse the experimental data. Table 3 summaries the response for preparation of PFAC based on table 2.

The highest order polynomials become the model chosen due to the significant effect with the additional terms. Based on table 3, RBBR removal (Y) response was generated from quadratic model, which generated by FCCD consists of coded factors which reveals the variables significance and interaction concerning response. The one factor of coefficient stands for the only certain factor effect, while the two factors of coefficients correspond to the interaction between two factors. The coefficients with second-order term stand for quadratic effect. Equation 3 represents the final empirical model with coded factors for the response.

\[Y = 70.89 + 5.95 x_1 + 3.19 x_2 + 2.26 x_3 - 3.25 x_1^2 - 2.05 x_2^2 - 0.2 x_3^2 - 0.21 x_1 x_2 - 1.81 x_1 x_3 - 0.29 x_2 x_3 \] (3)

The adequacy and significance of the models were verified by analysis of variance (ANOVA). By dividing the sum of the squares of each of the variation sources, the means squares were obtained, while by the respective degree of freedom is meant for the model and the error variance. If Prob > F value less than 0.05, then it points out that the model has a significant effect on the response and the result is not random [25]. Table 4 shows the RBBR removal by PFAC model from the ANOVA. The F-value is 7.36 and Prob > F is 0.0022 for RBBR removal indicates that RBBR removal model was significant. In this case, activation temperature (x_1), activation time (x_2) and CO2 flow rate (x_3) were significant model terms.

Figure 1 illustrates the three-dimensional response surface which the RBBR removal was reached at the CO2 flow rate of 300 to 550 mL/min, time 3.0 to 6.0 h, and activation temperature of 800 to 870°C. The RBBR removal was better with the increased of CO2 flow rate, time, and activation temperature, which is due to the increment of surface area which caused by the internal porous cavities development at these operating parameters. As the more pore on the sample has been developed, the percentage of dyes removal were also increased, which is good agreement with Bello et al. [26] that used banana stalk to preparation of activated carbon and found that the significant effect on malachite green removal due to the time and activation temperature. The increment of temperature stimulates devolatilization rate, hence effects significantly on the activated carbon pore structure [27]. In fact, at higher CO2 flow rate, activation time, and temperature ought to be enough to remove the volatile components and moisture for developing the pores.

However, the RBBR removal decreased after exceeded activation temperature 870°C, time 6.0 h and CO2 flow rate 550 mL/min. The possible reason was that beyond optimum values of activation conditions, some pores start to collapse, which leads to decrease in surface area and percentage dyes removal. According to Ahmad and Alrozi [28], they found that too long for both activation temperature and time might be shrunk the adsorption capacity and surface area of the activated carbon from mangosteen peel.

According to Lua and Yang [29] increasing the CO2 flow rate, activation time, and activation temperature can enhance the adsorption capacity caused by more pore to be enlarged and developed. However, if it over exceeds beyond optimum value, the activated carbon undesirable characteristics can be created such as decline in surface area and pore volume.
Table 2. Experimental design matrix

Run	PFAC preparation variable			
	Activation temperature, x_1 (°C)	Activation time, x_2 (hour)	CO$_2$ flow rate, x_3 (mL/min)	
1	600	1.0	150	
2	900	1.0	150	
3	600	7.0	150	
4	900	7.0	150	
5	600	1.0	600	
6	900	1.0	600	
7	600	7.0	600	
8	900	7.0	600	
9	600	4.0	375	
10	900	4.0	375	
11	750	1.0	375	
12	750	7.0	375	
13	750	4.0	150	
14	750	4.0	600	
15	750	4.0	375	
16	750	4.0	375	
17	750	4.0	375	
18	750	4.0	375	
19	750	4.0	375	
20	750	4.0	375	
Table 3. Matrix for PFAC preparation variables and response

Run	RBBR removal, Y (%)
1	52.8
2	69.1
3	61.9
4	72.8
5	62.8
6	67.3
7	66.2
8	74.4
9	55.8
10	75.4
11	62.5
12	71.1
13	64.4
14	72.9
15	72.2
16	72.2
17	72.4
18	72.1
19	72.3
20	72.3

3.3. Operating parameters optimization

The aim of the experimental design is to determine the optimum operating parameters on activated carbon preparation with regards to high RBBR removal. Table 5 shows the model validation for PFAC in RBBR dyes removal. Based on the higher desirability, the optimized parameters were chosen and verified by experiments. By targeting at the maximum value within range value of parameters studied, the operating parameters optimization was achieved by using Design Expert Software version 6.0.6 (STAT-EASE Inc., Minneapolis, USA). The activation temperature of 867°C, activation time of 6.0 hour and CO₂ flow rate of 476 mL/min were found as the RBBR removal optimum conditions on PFAC. From the table, it shows that the predicted values were in good agreement with the experimental values. Only less than 2% of errors can be clearly seen between the predicted and the actual values for RBBR removal onto PFAC. This can be pointed out that the model is sufficient and suitable to predict the operating parameters fixed responses.
Table 4. RBBR removal by ANOVA analysis for PFAC

Source	Sum of Squares	Degree of Freedom	Mean Square	F-Value	Prob > F
Model	653.98	9	72.66	7.360	0.0022
x_1	354.03	1	354.03	35.87	0.0001
x_2	101.76	1	101.76	10.31	0.0093
x_3	51.08	1	51.08	5.180	0.0462
x_1^2	28.97	1	28.97	2.930	0.1175
x_2^2	11.51	1	11.51	1.170	0.3056
x_3^2	0.11	1	0.11	0.011	0.9199
x_1x_2	0.36	1	0.36	0.037	0.8521
x_1x_3	26.28	1	26.28	2.660	0.1338
x_2x_3	0.66	1	0.66	0.067	0.8010

Table 5. PFAC Model validation for RBBR removal

Dye	Model desirability	Activation temperature	Activation time	CO$_2$ flow rate	RBBR removal %	Error (%)	
					Predicted	Experimental	
RBBR	0.989	867 ºC	6.0 h	476 mL/min	74.91	76.4	1.98

4. Conclusions
Based on the results obtained within the framework of this study, it has been shown that pinang frond based activation carbon (PFAC) can be successfully prepared by using pinang frond (PF). The optimum PFAC preparation conditions obtained from face centered composite design were found at the activation temperature, activation time and CO$_2$ flow rate of 867ºC, 6.0 hour and 476 mL/min, respectively. The optimization model was suitable and sufficient to predict the response from the operating parameters fixed.
Figure 1. Response surface plot of RBBR removal of PFAC: (a) Effect of activation temperature and time, CO₂ flow rate = 375 mL/min; (b) Effect of activation temperature and CO₂ flow rate, t = 4h; (c) Effect of activation time and CO₂ flow rate, temperature = 750°C.

References
[1] Dias J M, Alvim-Ferraz M, Almeida M F, Rivera-Utrilla J and Sánchez-Polo M 2007 Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review Journal of Environmental Management 85 833-846.
[2] Sumathi S, Bhatia S, Lee K and Mohamed A 2010 Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO₂ and NOₓ Journal of Hazardous Materials 176 1093-1096.
[3] Gupta V 2009 Application of low-cost adsorbents for dye removal–A review Journal of environmental management 90 2313-2342.
[4] El Qada E N, Allen S J and Walker G M 2008 Adsorption of basic dyes from aqueous solution onto activated carbons Chemical Engineering Journal 135 174–184.

[5] Plaza-Recobert M, Trautwein G, Pérez-Cadenas M and Alcañiz-Monge J 2017 Preparation of binderless activated carbon monoliths from cocoa bean husk Microporous and Mesoporous Materials 243 28-38.

[6] Herawan S G, Ahmad M, Putra A and Yusof A 2013 Effect of Flow Rate on the Pinang Frond-Based Activated Carbon for Methylene Blue Removal The Scientific World Journal 2013.

[7] Wu Y, Xia C, Cai L and Shi S Q 2018 Controlling pore size of activated carbon through self-activation process for removing contaminants of different molecular sizes Journal of colloid and interface science 518 41-47.

[8] Rashidi N A and Yusup S 2017 Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption Journal of Cleaner Production 168 474-486.

[9] de Paula F G, de Castro M C, Ortega P F, Blanco C, Lavall R L and Santamaria R 2018 High value activated carbons from waste polystyrene foams Microporous and Mesoporous Material 267 181-184.

[10] Sun K, Leng C Y, Jiang J C, Bu Q, Lin G F, Lu X C and Zhu G Z 2018 Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance Carbon 130 844.

[11] Herawan S G, Hadi M, Ayob M R and Putra A 2013 Characterization of activated carbons from oil-palm shell by CO₂ activation with no holding carbonization temperature The Scientific World Journal 2013.

[12] Herawan S G 2000 Characterisation and analysis of carbon molecular sieve from oil palm shell Master Thesis.

[13] Chen H, Guo Y C, Wang F, Wang G, Qi P R, Guo X H, Dai B and Yu F 2017 An activated carbon derived from tobacco waste for use as a supercapacitor electrode material New Carbon Materials 32(6) 592-599.

[14] Rashidi N A, Yusup S, Ahmad M M, Mohamed N M and Hameed B H 2012 Activated carbon from the renewable agricultural residues using single step physical activation: a preliminary analysis APCBEE Procedia 3 84-92.

[15] Ahmad M A, Herawan S G and Yusof A A 2014 Effect of activation time on the pinang frond based activated carbon for remazol brilliant blue R removal Journal of Mechanical Engineering and Sciences 7(1) 1085–1093.

[16] Lua A C and Yang T 2004 Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell Journal of Colloid and Interface Science 274 594-601.

[17] Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, et al. 2009 Effects of CO₂ activation on porous structures of coconut shell-based activated carbons Applied Surface Science 255 8443-8449.

[18] Sumandono T, Saragih H, Watanabe T and Amirta R 2015 Decolorization of Remazol Brilliant tropical rain forest in East Kalimantan and its ligninolytic enzymes activity Blue R by new isolated white rot fungus collected from Procedia Environmental Sciences 28 45-51.

[19] Tunc Ö, Tanaci H and Aksu Z 2009 Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye Journal of Hazardous Materials 163 187-198.

[20] Baskaralingam P, Pulikesi M, Ramamurthi V and Sivanesan S 2007 Modified hectorites and adsorption studies of a reactive dye Applied clay science 37 207-214.

[21] Staples G W and Bevacqua R F 2006 Areca catechu (betel nut palm) Species profiles for Pacific Island agroforestry 1-17.

[22] Shapiro L J and Montgomery M T 1993 A three-dimensional balance theory for rapidly rotating vortices Journal of the atmospheric sciences 50 3322-3335.

[23] Ferreira S C, Bruns R, Ferreira H, Matos G, David J, Brandao G, da Silva E P, Portugal L, Dos Reis P and Souza A 2007 Box-Behnken design: An alternative for the optimization of analytical methods Analytica Chimica Acta 597 179-186.
24] Myers R and Montgomery D 2001 *Response surface methodology* (New York: Wiley).
25] Sahu J, Acharya J and Meikap B 2010 Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology *Bioresource Technology* 101 1974-1982.
26] Bello O S, Ahmad M A and Ahmad N 2011 Adsorptive features of banana (Musa paradisiaca) stalk-based activated carbon for malachite green dye removal *Chemistry and Ecology* 28 153-167.
27] Sudaryanto Y, Hartono S B, Irawaty W, Hindarso H and Ismadji S 2006 High surface area activated carbon prepared from cassava peel by chemical activation *Bioresource Technology* 97 734-739.
28] Ahmad M A and Alrozi R 2011 Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies *Chemical Engineering Journal* 171 510-516.
29] Lua A C and Yang T 2004 Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell *Journal of Colloid and Interface Science* 274 594-601.