Frequent Query Matching in Dynamic Data Warehousing

Charles H. Goonetilleke, J. Wenny Rahayu, and Md. Saiful Islam

La Trobe University, Melbourne, Australia
* Corresponding author. Tel.: +61-3-9479-1282; fax: +61-3-9479-3060; e-mail: w.rahayu@latrobe.edu.au

ABSTRACT

With the need for flexible and on-demand decision support, Dynamic Data Warehouses (DDW) provide benefits over traditional data warehouses due to their dynamic characteristics in structuring and access mechanism. A DDW is a data framework that accommodates data source changes easily to allow seamless querying to users. Materialized Views (MV) are proven to be an effective methodology to enhance the process of retrieving data from a DDW as results are pre-computed and stored in it. However, due to the static nature of materialized views, the level of dynamicity that can be provided at the MV access layer is restricted. As a result, the collection of materialized views is not compatible with ever-changing reporting requirements. It is important that the MV collection is consistent with current and upcoming queries. The solution to the above problem must consider the following aspects: (a) MV must be matched against an OLAP query in order to recognize whether the MV can answer the query, (b) enable scalability in the MV collection, an intuitive mechanism to prune it and retrieve closely matching MVs must be incorporated, (c) MV collection must be able to evolve in correspondence to the regularly changing user query patterns. Therefore, the primary objective of this paper is to explore these aspects and provide a well-rounded solution for the MV access layer to remove the mismatch between the MV collection and reporting requirements. Our contribution to solve the problem includes a Query Matching Technique, a Domain Matching Technique and Maintenance of the MV collection. We developed an experimental platform using real data-sets to evaluate the effectiveness in terms of performance and precision of the proposed techniques.

Keywords: Frequent Matching, Dynamic Data Warehousing,

1. Introduction

Businesses collect large amounts of data from transactions in order to gain insight into their performance and growth. Decisions must be made based on this data to support the ever-changing needs of customers and business requirements. In present days’ the data warehouse has become a popular tool for decision making among businesses. Traditional data warehouses (DW) are subject-oriented, time variant, non-volatile and integrated data repositories that are capable of providing decision support as data is kept in an aggregated form [16]. Commonly, the data from transactional data sources are extracted and transformed into an aggregated form via the Extract-Transform-Load (ETL) process to be stored in the data warehouse and then onwards users can either execute On-Line Analytical Processing [3, 5, 18, 19] (OLAP) queries on it or create smaller data marts from it. Several data sources may have to be integrated to create the data warehouse. The query results can then be used for analytical purposes, for example to identify customer trends, so that business owners or management can make important business decisions based on this information.

In order to retrieve information from a data warehouse, users can either directly submit an OLAP query or use an existing Materialized View (MV), which contains the pre-computed result for a particular query. This type of information is mainly used for compiling reports for decision making purposes. Reports may be produced on a daily, weekly, monthly and/or yearly basis, and results from one or more queries would be required. Therefore, storing a number of MVs for this type of frequently used queries would be beneficial as query results need not be computed at runtime. This would mean that the utilization of MVs would reduce query execution time, as opposed to direct querying that requires expensive database operations such as joins, grouping, nesting to be performed at runtime. For example, if the cost of accessing the query result is C_1, then directly querying would have a total cost of $C_1 + O_2$, where O_2 is the cost of performing the aforementioned operations in DW. Contrary to this, the total cost of using an

MV to get the result is just C_1, as the result is already computed. Hence MVs are an effective solution to faster reporting.

The presence of an MV collection in a data warehouse is advantageous to the reporting process. However, the following issues exist from the user perspective:

- Users are required to determine which MV(s) can answer their query; and
- Users must explicitly reference the MV(s) in their queries.

This means that users are required to know intricate details about the collection and re-write their queries, if they wish to utilize MVs as illustrated in left hand side of Figure 1. Furthermore, from a DW perspective, the following issues are observed:

- The MV collection must be intuitive so that majority of the queries are answered using MVs;
- When the MV collection is large, finding a match by a linear scan is time consuming; and

Figure 1. OLAP querying in traditional DW and proposed DW
• MVs must be up-to-date in order to provide non-stale results.

In general, the MVs in the collection would be required to undergo changes as a consequence of the changes occurring in reporting requirements. The objective is to provide results for majority of queries using MVs, and therefore identification of most and least frequent queries is important. The frequency of usage of each MV may change at any given time, therefore MVs may require to be added or removed from the collection. For example, a particular report that used MV1 may change so that it requires MV2 instead. MV1 would no longer be in use so would have to be removed. Then MV2 must be added to the collection. Since traditional DWs are not able to automate these operations, the database administrator (DBA) would have to analyze the frequency of usage of each MV and determine which MV(s) should be remained/removed/added. In most DWs, the collection of MVs is expected to be quite large, hence finding a match for a query can be a time-consuming task. To ensure the results stored in MVs are up-to-date, these MVs must be updated whenever a change occurs in the underlying DW. For a large collection of MVs, this update process can take a lot of time as results must be re-computed. Due to the static characteristics of the MV collection, traditional DW impose lesser usability of MVs to its users.

Existing dynamic data warehouses (DDW) aim to provide dynamics to statically designed and implemented traditional data warehouses (DW). For example, the approaches presented by the authors of the articles [17, 22, 26] focus more on the design aspect of a DDW. In addition to that, concepts such as Slowly Changing Dimensions [9, 16, 19] (SCDs), Multi-Version Data warehouse [10] (RTDW) are other techniques that can transform the static DW to one that can accommodate structural and data changes seamlessly. The concept of Slowly Changing Measures [14, 15] (SCMs) is another recent approach to DDW design, which aims to enhance the ability of a DW to adapt to measurement function changes. Though dynamicity in the design of a DDW is an important aspect, the access to a DDW through dynamically maintained MV collection might play a major role in improving its usability. The works in [13, 21] propose techniques to keep the MVs up-to-date in relation to the changes in the data sources. However, there exists no work on dynamic maintenance of MV collection based on user queries and thereafter, answering the user queries by implicitly matching them to the appropriate MVs in the collection.

In this paper, we aim to introduce dynamicity in the MV collection of DDW as illustrated on the right-hand side of Figure 1. However, the introduction of dynamicity in the MV collection is a non-trivial problem and there are several issues that need to be addressed. Firstly, a technique to match an MV and an OLAP query must be defined. Next, in order to support the scalability of the MV collection, a faster access mechanism needs to be incorporated within it. Finally, the MV collection must be maintained by removing inactive MVs and adding new high demand MVs through identification of new query patterns, thus majority of user queries would be answered using the pre-computed results in MVs. To address the above issues, our contribution consists of the followings:

(1) Query Matching: we propose a novel technique to match an OLAP query to an MV in the collection;

(2) Domain Matching: we also propose a technique to add scalability to the MV collection for faster retrieval of matching MVs;

(3) Maintenance of MV Collection: we propose a technique to maintain the timeliness of the MV collection in relation to user query patterns; and

(4) We have also implemented each of the above techniques and performed detailed experimentation to demonstrate the effectiveness and efficiency of our approach.

With the above key points brought to context, the remainder of this paper is organized into the following sections: Section 2 provides the preliminaries. Section 3 formally presents the problem studied in this paper and captures the key challenges that need to be addressed. Section 4 presents our framework of solution. Section 5 explores the notion of matching an MV to an OLAP query and presents our proposed Query Matching technique. This section also presents our Domain Matching technique to address the scalability issue of matching an OLAP query to an MV in the collection. Section 6 presents our approach to maintain the timeliness of the MV collection based on user query patterns. Section 7 evaluates the effectiveness and performance of all of our proposed approaches by experimenting with real dataset. Finally, Section 8 concludes the findings of this paper.

2. Preliminaries

2.1. Data Warehouse

Data warehouses are central data repositories that contain consolidated data from one or more data sources for analytical and decision making purposes. The data stored in a DW takes a multi-dimensional form, as information can be retrieved from different points of view; for example, time, location, category. Conceptually, a DW is designed using a star schema [11]. It consists of fact tables and dimension tables. A fact is a measurement or metric of a transaction or collection of transactions. The granularity of the DW is described as the depth of information provided by the fact table(s). High granularity is similar to transactional level of data while low granularity data is summaries usually via grouping. The fact column(s) of the fact table contains this data and other columns are foreign keys to data that describe the facts. The foreign keys point to tables known as dimension tables, which contains
For a DDW with an MV collection, two types of OLAP queries can be presented. The first type are queries that contain explicit references to MVs – results are directly obtained from the collection. The second type are regular queries that have references to tables of the DW and some of these queries can be answered using MVs. In this paper, we target queries of the second type that can be processed by accessing the MVs although MV references are not explicitly given in the user query. Therefore, we state our problem formally as follows:

Definition 3.1: Given an OLAP query \(Q(S,F,W,G) \), where \(S \) is the set of projection columns, \(F \) is the set of tables, \(W \) is the set of selection conditions and \(G \) is the set of group by attributes, we want to find an appropriate match for the tables of \(F \) in the collection of materialized views \(M \) such that \(Q^F = Q^M \), where \(Q^F \) denotes the result of evaluating \(Q \) on the list of tables \(F \) in DDW and \(Q^M \) denotes the result of evaluating \(Q \) in the collection \(M \). Otherwise, decide whether \(Q^F \) should be stored in \(M \) to answer the same or queries that can be answered from \(Q^M \).

The solution to the above problem has two major challenges to be addressed. Firstly, we need to determine whether \(M \) can answer \(Q \). To do so, we need to compare the materialized views in \(M \) to an OLAP query \(Q \). Since the two entities are different, the derivation of a comparison algorithm is not a trivial problem. The main challenge regarding this is to provide a common platform for both entities so that the comparison would be accurate. In this paper, we define what determines the match between \(Q^F \) and \(Q^M \), called query matching, which is discussed in Section 5. However, the number of MVs in \(M \) can be large, and if so, the query matching process might take longer time than evaluating \(Q \) directly in DDW. That is, if \(T_M \) is the total time taken to find a matching MV in \(M \) and then retrieve the result from \(M \), and \(T_{DDW} \) is the time taken for direct querying in DDW, then the condition \(T_M < T_{DDW} \) must be satisfied. To satisfy this requirement, we propose an efficient domain matching technique to prune the search space so that only MVs that are most likely to have a match with the user query are used in query matching, which is discussed in detail in Section 6.

Secondly, with regards to determining whether or not to store \(Q^F \) as a materialized view, the main issue is the limited space available in the MV collection. Having an intuitive and highly usable list of MVs is important as it will ensure most user queries will be answered using MVs in the collection. To add an MV into the collection, we need to consider how often users will require it. To delete an existing MV and make space for \(Q^F \), we need to determine if the deleted MV is no longer used by the users. If the latter case is true we also need to determine if users may require the MV again on a later occasion. Furthermore, the contents of each MV must be updated to ensure integrity in the results provided by MVs. These issues of MV maintenance in \(M \) are addressed in detail in Section 7 of this paper.
of this approach is that if an entirely new query is entered and none of the MVs match, then the pruning stage recognizes this as early as possible. The resulting subset for the next stage then becomes null and so the query to MV matching operations need not be performed. As a consequence, computation time and resources for an entirely new query can be saved. This is discussed in detail in Section 5.

4.2. MV Maintenance

The frequency of the usage of the MVs in the collection M can change over time. In order to increase the success rate of DM and QM the collection of materialized views in M must be updated regularly to match user query patterns. In addition to that, the results stored in MVs must be up-to-date with the DW. To satisfy these requirements, we perform the following actions on M and more details of each type of action are given in section 7: (a) maintenance of a query log – keep track of the hits of each QMV for each OLAP session, (b) create new MVs for OLAP queries that are most frequent – a mechanism to determine which queries are frequent, (c) temporary-delete MVs– move MV out of M to secondary collection N, (d) permanent-deletion – delete outdated MVs from N, and (e) keep track of DW changes for view maintenance – a mechanism to monitor the DW and update the MVs when the underlying DW changes. Our framework runs the above as an isolated process so that the users can run their OLAP queries seamlessly.

5. Query Matching

Matching the OLAP query Q to the queries of the MVs in M, i.e., QMV, is not trivial. Existing approaches for finding the similarity between these two types of queries are not applicable. In this section, first we review existing approaches to identify their strengths and weaknesses for the above. We then propose a novel two step technique for matching Q to QMV: (a) firstly, we represent both Q and QMV by a unified structure, and (b) then, we apply a set of heuristics rules to do the actual matching. As the matching process requires to compare each QMV in M to Q, we also propose domain matching as a pruning technique to reduce the search space, i.e., QMV in M, for the input query Q.

5.1 Existing Approaches

Determining the similarity between two entities has been vastly explored in the literature, especially in the area of information retrieval [6]. In a DW environment, determining similarity between OLAP queries have been explored in areas such as query recommendation [1, 8] and query personalization [2]. The following are some common models used to represent queries and thereafter, determine the similarity in the literature:

- String of the interpreted SQL statement [24]: the string of a SQL query with another is a straightforward methodology of determining the similarity as edit-distance measure such as Levenshtein Distance [7] can be used. Here we can either compare the entire string or split the query into sections and compare each one independently and finally take the summation of the distances. This method is not suitable for matching OLAP queries as queries such as the following would be determined as non-similar, although the result of them are identical.

 \[Q_1 = \text{"select id, description from fact_table"}; \]
 \[Q_2 = \text{"select description, id from fact_table"}; \]
Vectors of features [4]: contain vectors of features to store a score for each characteristic in the queries and cosine similarity is then used to determine the similarity. The authors of the article [12] propose an algorithm known as SIMCHECK to perform this operation. In the first stage of the algorithm, the feature vectors are compared to determine if the number of tables, sum of the table degrees, and the sum of the join index and predicate counts are equal. In the next phase structural features are compared to determine similarity. The main advantage of this approach is that if the queries are found to be dis-similar in the first phase, continuation into the second phase is aborted and so computation resources and time are saved. Though SIMCHECK can be used to prune the number of QMV's to be compared with Q in our problem settings, it requires complicated feature vector construction and thereafter Hamming distance calculation with each QMV in M, which is not efficient.

Represent query as a graph [23]: The database schema is used to create graphs for two queries and then a graph comparison algorithm is used to find similarity. However, this approach can introduce unnecessary complexity in our problem settings. Representing a query as a tree would be a more suitable approach, which has been explored in our approach.

5.2 Our Approach

In this section, we present our approach for matching an OLAP query Q to the queries QMV in M. To achieve this, we firstly define a common/unified structure for representing both, Q and QMV, known as OLAP query tree. The matching algorithm then takes these representations as its inputs to determine the match between them. We also outline the limitation of our approach on queries involving aggregate functions except summation. Finally, we present a novel technique to prune non-promising MVs in M, which can reduce the number of candidate QMV's to be matched for Q significantly.

5.2.1 Unified Structure for QMV and Q

Considering the limitations of existing approaches for matching queries in our problem settings, we identified that the following criteria must be considered for matching Q to QMV:

(a) Evaluate QMV and Q from bottom to top – as query execution engine of a database generates execution plan using the bottom-up evaluation;
(b) Compare each type of fragment – compare SELECT, FROM, WHERE, GROUP BY conditions of QMV and Q;

To satisfy these requirements we propose a variation of relational algebra query tree as depicted in Figure 5, known as OLAP Query Tree (OQT). As each segment of a query such as the SELECT, FROM, WHERE and GROUP BY are placed in separate nodes, each fragment can be evaluated and then compared in isolation. With reference to [25], the structure of a OQT can be formally defined as follows:

An OQT Q = (Vd, Vp, Vr, E_q, f_e), where:

1. V_d and V_p are finite sets of nodes, known as, Data nodes and Operator nodes, respectively. And we define V_q as the complete set of nodes, where V_q = V_d ∪ V_p.
2. If u_1 ∈ V_d is a table T and can be represented as T ⊆ ∏_{a ∈ A} D_a, such that for each f ∈ T has a domain A and each f(ā) ∈ D_a, then V_c ⊆ A known as Result columns.
3. E_q ⊆ {(u_1, u_2) | u_1, u_2 ∈ V_q} ∪ {(u_1, u_2) | u_1 ∈ V_o, u_2 ∈ V_d} is a finite set of edges and (V_q, E_q) is a directed graph.
4. f_e is a function for nodes u_1 ∈ V_o and u_2 ∈ V_d that define the number of children it can have, i.e. f_e(u_1) ∈ [1, 2] and f_e(u_2) = 0.

All nodes in OQT can be categorized into two types as, Operator Node and Table node. Operator nodes contain either a distinct, projection, selection, group by, having, join or Cartesian product operation, where each node produces a number of columns as the result. The queries Q and QMV are represented in the OQT in their un-optimized form i.e., each type of condition is placed in one node only. For example, all selection conditions are placed in a single node. All nodes except for Table nodes are allowed to have 1-2 children, where only Join and Cartesian product nodes have exactly 2 child nodes. The types of child nodes each node can have are summarized in Table 1.

Node	Number of children	Allowed Nodes as Children
Projection	1	All nodes
Group by	1	Projection, Join,
		Cartesian Product, Table
Selection	1	Projection, Join,
		Cartesian Product, Table
Cartesian	2	Projection, Join,
Product		Cartesian Product, Table
Table	0	None

Table 1. Possible Child Nodes of OQT Nodes

Using OQT to represent the structure of a query is beneficial as fragments of queries can be compared with each other. The OQT is set to contain nodes for projection, selection, group by and cartesian product operator only. The OQT can also be easily extended to include the structure of inner queries. For the purpose of query matching in dynamic data warehousing, we add the following restrictions to the OQT:

(a) Distinct and Having nodes constict the result of an MV to be very specific and hence the usage of such MVs would be low.
(b) Inner and outer joins were excluded from the OQT as these can be broken down as cartesian products followed by one or more selection conditions.
(c) All selection conditions are placed in one selected node.
(d) All projection conditions are placed in one projection node.
(e) All OLAP queries must contain one or more group by conditions as OLAP queries are used to retrieve aggregated results.
(f) All selection conditions are placed in one selected node.
(g) All projection conditions are placed in one projection node.
(h) All OLAP queries must contain one or more group by conditions as OLAP queries are used to retrieve aggregated results.

5.2.2 Matching a QMV to OLAP query Q

Let us consider the following example OLAP queries Q3 and Q4, and the QMV1 in M as given as follows:

\[Q_3 = \text{SELECT attr1, attr3 FROM table1 WHERE attr3='X'}; \]
\[Q_4 = \text{SELECT attr1, attr2 FROM table1 WHERE attr3='X'}; \]
\[Q_{MV1} = \text{SELECT attr1, attr2, attr5 FROM table1}; \]

The two queries Q3 and Q4 are similar with respect to their tables and the where conditions, but only differ in terms of one attribute in the select statement. Therefore, it can be stated that Q3 and Q4 are closely related. A comparison between Q4 and MV1 would yield a different kind of result. Although Q4 is not closely related to the query of MV1, it is certainly a valid match to the view's pre-computed results. MV1 contains results for all rows of table1 along with only the three columns, attr1, attr2 and attr5. Q4 requires a result where it contains the columns attr1 and attr2 and only rows where attr3 is equal to 'X'. This means that the result of Q4 is a subset of the result of MV1 and therefore Q4 is a match to Q2. Moreover, matching Q3 with QMV1 returns a mismatch. MV1 is able to provide all the rows required by Q3 but since MV1 does not contain the column attr3, it cannot provide a complete answer to Q3. If we use similarity measures for queries only and not for data, this information would not be captured. Figure 6 illustrates the result of MV1 and the query results of Q3 and Q4.

Therefore, to find a match between a QMV and Q, the matching algorithm must identify if the result of Q is already a subset of the result of QMV. The result produced by evaluating each node after the final cartesian product of OQTQ, which is the OQT representation of Q, must be a subset of the result produced after evaluating the counterpart node of the OQT representation of QMV, i.e., OQTMV. The evaluations proceed in a bottom-up manner as depicted in Figure 7.

For the OQTQ and OQTMV illustrated in Figure 7 the output of columns produced by the final cartesian product are the same. Hence, we can proceed to match the remaining nodes. Assume that 100 rows are produced at n3 and n′3, and both have same tables, and 50 rows are produced at n2. The number of rows at n′2, with comparison to n2, will be much less than 50 as it has an extra selection condition. Therefore, the rows produced at n′2 is a subset of the rows produced at n2. Hence, at points n2 and n′2, it can be stated that OQTQ is derivable using OQTMV. At n3 aggregation is performed under two attributes whereas at n′3 aggregation is performed under one attribute and both have Sum(R.c) as the aggregate function. That is, the level of granularity of the result for OQTQ is lower than the corresponding result present in OQTMV. At n3 and n′3, a similar scenario occurs as depicted in Figure 8 and Figure 9. As the grouping attribute R.b is not present in OQTQ, further summation is required with respect to only R.a. The sum of R.c, are already available at point 3 and therefore, the result required at point II of OQTQ is derivable using the result in OQTMV at point 3 by further aggregating its result to the R.a attribute. The sum of R.c, which is already available at point 3 and therefore, the result required at point II of OQTQ is derivable using the result in OQTMV at point 3 by further aggregating its result to the R.a attribute. The sum of R.c, are already available at point 3 and therefore, the result required at point II of OQTQ is derivable using the result in OQTMV at point 3 by further aggregating its result to the R.a attribute. Therefore, Q3 and Q4 are closely related. A comparison between Q4 and MV1 would yield a different kind of result. Although Q4 is not closely related to the query of MV1, it is certainly a valid match to the view's pre-computed results. MV1 contains results for all rows of table1 along with only the three columns, attr1, attr2 and attr5. Q4 requires a result where it contains the columns attr1 and attr2 and only rows where attr3 is equal to 'X'. This means that the result of Q4 is a subset of the result of MV1 and therefore Q4 is a match to Q2. Moreover, matching Q3 with QMV1 returns a mismatch. MV1 is able to provide all the rows required by Q3 but since MV1 does not contain the column attr3, it cannot provide a complete answer to Q3. If we use similarity measures for queries only and not for data, this information would not be captured. Figure 6 illustrates the result of MV1 and the query results of Q3 and Q4.

Therefore, to find a match between a QMV and Q, the matching algorithm must identify if the result of Q is already a subset of the result of QMV. The result produced by evaluating each node after the final cartesian product of OQTQ, which is the OQT representation of Q, must be a subset of the result produced after evaluating the counterpart node of the OQT representation of QMV, i.e., OQTMV. The evaluations proceed in a bottom-up manner as depicted in Figure 7.

For the OQTQ and OQTMV illustrated in Figure 7 the output of columns produced by the final cartesian product are the same. Hence, we can proceed to match the remaining nodes. Assume that 100 rows are produced at n3 and n′3, and both have same tables, and 50 rows are produced at n2. The number of rows at n′2, with comparison to n2, will be much less than 50 as it has an extra selection condition. Therefore, the rows produced at n′2 is a subset of the rows produced at n2. Hence, at points n2 and n′2, it can be stated that OQTQ is derivable using OQTMV. At n3 aggregation is performed under two attributes whereas at n′3 aggregation is performed under one attribute and both have Sum(R.c) as the aggregate function. That is, the level of granularity of the result for OQTQ is lower than the corresponding result present in OQTMV. At n3 and n′3, a similar scenario occurs as depicted in Figure 8 and Figure 9. As the grouping attribute R.b is not present in OQTQ, further summation is required with respect to only R.a. The sum of R.c, are already available at point 3 and therefore, the result required at point II of OQTQ is derivable using the result in OQTMV at point 3 by further aggregating its result to the R.a attribute. Next it is observed that n′3 contains a subset of the projection columns of n3 and the aggregate functions specified at n3 and n′3 are the same; hence it is a match.

Query matching begins at the leaf nodes which contain tables, the OQTMV and OQTQ must be equivalent in terms of their tables. Then the matchings are performed in the order
Selection (σ), Group by (γ) and Projection (π). The group by
evaluation is split into two where firstly the Group by Attributes
(γ) are compared, then Aggregate Functions (ω) are compared.
For all the following matchings between a OQT$_{MV}$ and OQT$_O$,
Levenshtein Distance [7] is used for string comparison.

A. Matching Selection Conditions

In order for an OQT$_O$ and OQT$_{MV}$ to be similar with respect
to their selection conditions, all conditions of OQT$_{MV}$ must be
in OQT$_O$. This means that the data in OQT$_{MV}$ can be reused
by OQT$_O$ and if it contains more conditions it would retrieve a
subset of the data from OQT$_{MV}$. For each selection condition
of OQT$_O$ that match with that of OQT$_{MV}$, a score of 1 will be
given and if no match the score will be 0. The sum of these scores
divided by the number of conditions in OQT$_O$ gives a value
between $[0,1]$. This should be equal to 1 as otherwise the OQT
should be equal to 1 as otherwise the OQT$_O$ and the OQT$_{MV}$
are not a match with respect to their selection conditions.

Given an input query OQT$_O$ which consists of a set of
conjunctive selection conditions $S_O = \{c_1, c_2, \ldots , c_n\}$
and materialized view query OQT$_{MV}$ which consists of a set of
conjunctive selection conditions $S_M = \{c_1, c_2, \ldots , c_n\}$

Function $f(c_n)$ where $c_n \in S_O$, is defined such that if $c_n
\in S_O$ then $f(c_n) = 1$ and if $c_n \notin S_O$ then $f(c_n) = 0$.

Sum of selection condition matches ($S_\sigma = \sum_{n=1}^m f(c_n)$,
where $m = |S_O|$). Therefore, the match between the selection
conditions OQT$_O$ and OQT$_{MV}$ is $\sigma = \frac{S_\sigma}{|S_O|}$ where $0 \leq \sigma \leq 1$.

The above applies only if both S_1 and S_2 have at least one
element. If not the following applies,

if $S_1 = \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \gamma = 1$
if $S_1 = \phi$ and if $S_2 \neq \phi$, then $f(c_n) = 0 \Rightarrow \gamma = 0$
if $S_1 \neq \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \gamma = 1$

B. Matching Group By Attributes

In order for the OQT$_O$ and the OQT$_{MV}$ to match with respect
to their group by attributes, all group by attributes of OQT$_O$
must be in OQT$_{MV}$ as well. For each attribute in OQT$_O$ that
match with that of OQT$_{MV}$, a score of 1 will be given and if no
match the score will be 0. The sum of these scores divided by
the number of group by attributes in OQT$_O$ gives a value
between $[0,1]$. This should be equal to 1 as otherwise the OQT
and the OQT$_{MV}$ are not a match with respect to their group
by attributes.

Given an OQT$_O$ which consists of a set of group by attributes
$S_O = \{g_1, g_2, \ldots , g_n\}$ and a OQT$_{MV}$ which consists of a set of
group by attributes $S_M = \{g_1, g_2, \ldots , g_n\}$

Function $f(g_n)$ where $g_n \in S_O$, is defined such that if $g_n
\in S_O$ then $f(g_n) = 1$ and if $g_n \notin S_O$ then $f(g_n) = 0$.

Sum of group by attribute matches ($S_\gamma = \sum_{n=1}^m f(g_n)$,
where $m = |S_O|$)

Therefore, the match between the grouping attributes of S_O
and S_M is $\gamma = \frac{S_\gamma}{|S_O|}$ where $0 \leq \gamma \leq 1$.

The above applies only if both S_1 and S_2 have at least one
element. If not the following applies,

if $S_1 = \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \gamma = 1$
if $S_1 = \phi$ and if $S_2 \neq \phi$, then $f(c_n) = 0 \Rightarrow \gamma = 0$
if $S_1 \neq \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \gamma = 1$

C. Matching Aggregate Functions

In order for a OQT$_O$ and a OQT$_{MV}$ to match with respect to
their aggregate functions, all functions of OQT$_O$ must be in
OQT$_{MV}$ as well. For each function in OQT$_O$ that match with that
of OQT$_{MV}$, a score of 1 will be given and if no match the score
will be 0. The sum of these scores divided by the number of
function by functions in OQT$_O$ gives a value between $[0,1]$. This
should be equal to 1 as otherwise the query and the materialized
view are not a match with respect to their aggregate functions.

Given an OQT$_O$ which consists a set of group by attributes
$S_O = \{ag_1, ag_2, \ldots , ag_m\}$ and a OQT$_{MV}$ which consists of a
set of group by attributes $S_M = \{ag_1, ag_2, \ldots , ag_m\}$

Function $f(a_n)$ where $a_n \in S_O$, is defined such that if $a_n
\in S_O$ then $f(a_n) = 1$ and if $a_n \notin S_O$ then $f(a_n) = 0$.

Sum of aggregate function matches ($S_\omega = \sum_{n=1}^m f(a_n)$,
where $m = |S_O|$)

Therefore, the match between the aggregate functions of S_O
and S_M is $\omega = \frac{S_\omega}{|S_O|}$ where $0 \leq \omega \leq 1$.

The above applies only if both S_1 and S_2 have at least one
element. If not the following applies,

if $S_1 = \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \omega = 1$
if $S_1 = \phi$ and if $S_2 \neq \phi$, then $f(c_n) = 0 \Rightarrow \omega = 0$
if $S_1 \neq \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \omega = 1$

The last case would happen only if there was a syntax error
in the query. If OQT$_O$ has grouping and the OQT$_{MV}$ does not,
then the group by attribute match calculation would produce 0
as its result.

D. Matching Projection Attributes

In order for an OQT$_O$ and a OQT$_{MV}$ to be similar with respect
to their projection columns, all projection columns of OQT$_O$
must be in OQT$_{MV}$ as well. For each column OQT$_O$ that
match with that of OQT$_{MV}$, a score of 1 will be given and if no
match the score will be 0. The sum of these scores divided by the
number of columns in OQT$_O$ gives a value between $[0,1]$. This
should be equal to 1 as otherwise the OQT$_O$ and OQT$_{MV}$ are not
a match with respect to their projection columns.

Given an OQT$_O$ which consists a set of projection columns
$S_O = \{p_1, p_2, \ldots , p_n\}$ and a OQT$_{MV}$ which consists of a
set of projection columns $S_M = \{p_1, p_2, \ldots , p_n\}$

Function $f(p_n)$ where $p_n \in S_O$, is defined such that if $p_n
\in S_O$ then $f(p_n) = 1$ and if $p_n \notin S_O$ then $f(p_n) = 0$.

Sum of projection condition matches ($S_\pi = \sum_{n=1}^m f(p_n)$,
where $m = |S_O|$)

Therefore, the match between the projections columns of the
queries OQT$_O$ and OQT$_{MV}$ is $\pi = \frac{S_\pi}{|S_O|}$ where $0 \leq \pi \leq 1$.

The above applies only if both S_1 and S_2 have at least one
element. If not the following applies,
if $S_1 = \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \omega = 1$
if $S_1 = \phi$ and if $S_2 \neq \phi$, then $f(c_n) = 0 \Rightarrow \omega = 0$
if $S_1 \neq \phi$ and if $S_2 = \phi$, then $f(c_n) = 1 \Rightarrow \omega = 1$

Each pair of fragments being matched produces a score in the range $[0,1]$ as the number of elements checked is divided by the cardinality of the set. If the score of a certain fragment matching is 1, it means that the OQT Q_{MV} fragment is derivable using the corresponding fragment of the OQT Q. Therefore, if the score is less than 4 then it indicates that one fragment matching did not succeed and hence the algorithm will not proceed any further. As a result, the OQT Q is not derivable using the OQT Q_{MV}. If the score is 4, it means that each fragment of the OQT Q is derivable using the corresponding OQT Q_{MV} fragment, hence the result of OQT Q is derivable using OQT Q_{MV} and thereby the OQT Q and OQT Q_{MV} are a match. The above is pseudocoded in Algorithm 1.

5.2.4 Limitations in aggregate functions

For OLAP queries, the aggregation functions are SUM, AVG, COUNT, MAX and MIN. It is important to note that being able to derive the result to an OLAP query using an MV is restricted to only the SUM aggregate function. For example, consider Figure 10. The derived average using the MV is not equal to the actual value expected by the query. Hence AVG cannot be used as an aggregate function for a OQT Q_{MV} or an OQT Q. Similarly, this same behavior is displayed with the aggregate functions COUNT, MAX and MIN. As granularity decreases, only the SUM aggregate function preserves its associativity and thereby the derivation of the result of a query using an MV must be restricted to the SUM aggregate function.

5.2.5 Optimization via Domain Matching

Comparison of each Q_{MV} in M to Q can be a very time-consuming operation. To reduce the search space of M, we propose domain matching (DM) as an optimization technique. Assume the following scenarios take place where OQTs for Q and Q_{MV} are being evaluated at the final cartesian products, denoted by \times in Figure 11:

Scenario 1: Tree 1 is OQT Q_{MV} and Tree 2 is OQT Q. The OQT Q_{MV} does not have enough information to derive the result of the OQT Q as it does not have the table Q in its result.

Scenario 2: Tree 1 is OQT Q and Tree 2 is OQT Q_{MV}. Since table Q is in the OQT Q_{MV}, one or more of its attributes may either be used as a grouping attribute or a selection attribute. Therefore, the result required by the OQT Q is not derivable by the OQT Q_{MV}.

As both Q and Q_{MV} are OLAP queries, a group by clause will be present. Therefore, at least one attribute of each table specified in the query will either be used as a group by attribute or as a selection condition’s attribute. Moreover, all group by attributes are present in the projection along with one or more aggregate functions. As a result of these constraints, the tables in OQT Q_{MV} and OQT Q must be equivalent. We define the comparison between OQT Q_{MV} and OQT Q in terms of their tables as domain matching. A hash table is used to further optimize the domain matching process. The type of keys used for hashing are the table names and the value for each table are the materialized views that references it. An example of a hash table used for domain matching is illustrated by Figure 11. The algorithm

![Algorithm 1 OQT Q_{MV} to OQT Q matching algorithm](image)

Table	Attr1	Attr2	Attr3	Attr_Total
199401	C-90A	101	101.1	
199403	C-90A	104	4.4	
199407	C-90A	105	1.9	
199401	C-90A	106	4.1	
199401	PA23-250	104	7.9	
199401	PA23-250	105	6.6	
199401	PA23-250	109	5.2	
199401	PA31-350	106	18.1	

MV1 for AVG	Attr1	Attr2	Attr_Total
199401	C-90A	...	125
199401	PA23-250	65666666666	
199401	PA31-350	18.1	

MV2 for SUM	Attr1	Attr2	Attr_Total
199401	C-90A	20.5	
199401	PA23-250	19.7	
199401	PA31-350	18.1	

![Figure 10. Behavior of sum and avg in levels of aggregation](image)

![Figure 11. Domain matching scenarios](image)

![Figure 12. Domain matching hash table example](image)
extracts the tables of OQT₀ and extracts the values for those from the hash table as lists. The intersection of these lists is the OQTₐtó that have the same tables as OQT₀ and therefore will be proceeding to the query matching stage. The above domain matching technique is pseudocoded in Algorithm 2.

Algorithm 2 Domain Matching
Input: Q: Input query, hash_table: inverted list containing tables names as keys and Qₛₘₜₜ as values of keys
Output: Collection of Qₛₘₜ
Uses: lookup (hash_table, key): Looks up a hash table and returns the value,
insert(map, key, value): Insert a key with value to a map. Replace value if key exists, insert(list, value): insert into list the given value,
size(collection): number of item in collection

Variables: mvs: a map with table name as key and list of MVs as value, counts: a map with MV as key and an integer as value

1: T = Table names referenced in Q
2: result = empty set of MVs
3: for all t ∈ T do
4: value = lookup(hash_table, t)
5: if value equals ∅ then
6: insert (mvs, t, value)
7: else
8: value = empty list of MVs
9: insert (mvs, t, value)
10: end if
11: end for
12: for all t ∈ T do
13: temp := empty set of MVs
14: temp = lookup (mvs, t)
15: for all q ∈ temp
16: count := an integer
17: count = lookup (counts, q)
18: if count equals null then
19: insert (counts, q, 1)
20: else
21: count = count + 1
22: insert (counts, q, count)
23: end if
24: end for
25: end for
26: for all (key, value) ∈ counts do
27: if size(value) equals size(T) then
28: insert (result, value)
29: end if
30: return result

5.3 The Overall Query Matching Algorithm

The overall process of finding a match to Q from M begins by retrieving all active Qₜₐₜₛₛ to be passed to domain matching. The subset of Qₜₐₜₛₛ obtained after applying domain matching are then passed to query matching to determine a match for Q. If several Qₜₐₜₛₛ are a match to Q, the Qₜᵥ with the smallest number of rows is selected. Then the rows of the corresponding MV are retrieved from the DW and the relevant conditions of Q are applied to this result set before sending the query result to the user. In the event of no matching Qₜᵥ is found for Q, the system retrieves the query results directly from the DW.

5.4 Summary

In this section, we defined the structure and algorithm for matching the query of an MV to an input query Q. We introduced the OLAP query tree as the formal representation for Q and Qₜᵥ. The query matching algorithm takes a pair of these representations as its inputs and determines if the result expected by Q is within Qₜᵥ. An optimization technique domain matching is proposed. In the domain matching, all Qₜₐₜₛₛ with the same tables as Q are retrieved from an inverted list. The output of domain matching is used as input by query matching technique to find Qₜₐₜ₄ₛ(s) that can derive Q. The overall query matching algorithm utilized the above-mentioned techniques to determine a match and then retrieves the result from the DW, which is pseudocoded in Algorithm 3.

6 Maintenance

In order to have a set of MVs that can provide answers to a high proportion of user queries with up-to-date results, the collection MVs in M must be maintained. The maintenance process must consider all sources of change and then update M. According to the authors of [20] the development of a data warehouse (DW) must satisfy the information needs of the end-users and the available data sources. Based on this hypothesis, we propose a novel approach to maintain the MV collection by considering the query patterns of the user along with the changes of the sources in the underlying DW.

6.1 Analyse User Query Patterns

In order to dynamically add or remove an MV from the collection based on user query patterns, an Analyzer component is incorporated into our technique. The analyzer runs as an independent process, monitoring the usage of existing Qₜₐₜ₄ₛ in M and predict their upcoming usage. Upon completion of an analysis cycle, Qₜₐₜ₄ₛ are either added to/removed from M. In this paper, we define the changes done on M as Slowly Changing Views (SCV). As a consequence of SCVs, a materialized view will undergo a number of stages in its life cycle. Let us consider a DDW with the materialized views MVᵥ, MVᵥ and MVᵥ. Assume that queries Qᵥ, Qᵥ and Qᵥ are the possible queries that users can enter; and assume that the result of Qᵥ is derivable by MVᵥ and the answer of Qᵥ is derivable by
Figure 13 User queries for three days

Figure 14 QMV life cycle

MV$_3$. Q$_7$ is not derivable by MV$_2$. MV$_1$ and MV$_4$. The queries were entered by several users over a three-day period as given in Figure 13. It is observed that Q$_2$ is entered daily during the three-day period and since it is derivable using MV$_2$, MV$_3$ is recognized as a materialized view with high demand. Therefore, there is a high probability that MV$_3$ will be used on day 4 as well. Contrary to this Q$_6$ was entered only on day 1 and therefore MV$_6$ was not popular among the users, thus the probability of it being used on the fourth day is low. Q$_7$ does not have a materialized view that is able to derive its result but users have entered it into the system on all three days. Therefore, we can say that Q$_7$ has been a popular query within the three-day period and there is a high probability that it will be entered on the fourth day. Based on this analysis and the predicted outcomes for day 4 the analyzer can execute the following changes to M:

- Create an MV using query Q$_6$ – on the fourth day the cost for query Q$_6$ is reduced
- Remove MV$_1$ – Best case is Q$_6$ is not entered. Worst case is Q$_6$ is required to be run directly on the DW

This type of analysis can also be retrieved using sophisticated data mining methodologies such as clustering. However, for our approach the analysis is performed in short timespans, therefore data mining techniques would not be as effective.

In addition to creation and deletion of MVs, we also considered cases where removed Q$_{QMV}$s might be in demand again. Hence, we incorporate a secondary collection of Q$_{QMV}$s, denoted by N, to contain Q$_{QMV}$s that are temporarily unavailable to the user due to their inactivity. Any unused Q$_{QMV}$s that are removed from M and moved to N. Any Q$_{QMV}$s that have an uprising demand will be moved back to M. The advantage of maintaining N aids in reducing the search space of M. Thereby it avoids iteration over unused Q$_{QMV}$ when looking for a match for Q. By having unused Q$_{QMV}$ in N re-creations of MVs is avoided. This is cost effective as the cost for moving a Q$_{QMV}$ between the collections is less than re-creating it. A re-creation would require re-executing costly database operations such as joins, group by etc. In addition to storing inactive Q$_{QMV}$, N is configured to store new queries which are not derivable by existing Q$_{QMV}$.s. The query log records their usage for the analyzer. Considering the above steps, the state transitions of a Q$_{QMV}$ are illustrated in Figure 14.

6.1.1 Record query patterns in sessions

To perform SCV operations on the MV collection, the usage of existing MVs from both primary and secondary collections and of new queries are required to be monitored for a particular period of time. Therefore, we define this time period as a session. For example, a session can last one hour, two hours or even a day etc. During this period the analyzer collects frequency of usage of each MV and new query within the session. Furthermore, in order to make accurate predictions it would be most useful to analyze several sessions and median outcome can be used by SCV operations. We identify that the length of a session and the number of sessions to take into account should be able to be varied as it depends on the DW environment. For example, if the reporting requirement is for an hourly basis, the session length can be two hours and the analyzer looks at usage data from five such sessions.

6.1.2 Query log for recording usage of MVs and Queries

The query log stores the number of hits for each Q$_{QMV}$ and query against a session. For a particular session, the system assigns hit counters for each MV and all new queries. At the completion of a session this data is copied to a permanent query log such as a database table and the hit counters are reset to zero. The process repeats until the query log collects usage data for a given number of sessions, then the analyzer analyzes this and perform SCV operations. Once the analysis is performed, the hit counters in the log are set to zero. A sample of the query log as a database table is given below:

Session_id	Q$_{QMV}$ or Query_id	Hits
1	Q$_{MV1}$	5
1	Q$_{MV2}$	1
1	Q$_{MV3}$	0
2	Q$_{MV1}$	1
2	Q$_{MV2}$	1
2	Q$_{MV3}$	1

6.1.3 A scenario for analyzer

Let us consider a scenario where a DDW contains the materialized views MV$_5$ and MV$_6$ in the primary collection M, and MV$_1$ and Q$_6$ in the secondary collection N. Q$_{QMV}$ is derivable by MV$_5$, Q$_{QMV1}$ is derivable by MV$_6$ and Q$_{QMV2}$ is derivable by MV$_7$. Let M = \{(MV$_{QMV1}$, 0), (MV$_{QMV2}$, 0)\} and N = \{(MV$_{QMV3}$, 0), (Q$_{QMV4}$, 0)\}, where the second item of a pair is the hit counter for the first item. The analyzer executes after the completion of three sessions. Assume the queries are entered as depicted in Figure 16, and the snapshot of the corresponding query log is given in Figure 17. The following SCV operations take place during the analysis process:

- Remove MV$_6$ from primary collection and add to secondary collection – MV$_6$ had no hits in all sessions. It has lost its popularity.
- Remove MV$_7$ from secondary collection and add to primary collection – MV$_7$ had hits in all sessions. It has become popular again.
Create a new MV for Q9 and store it in primary collection – Q9 had hits in all sessions and we predict that a user will enter it in the next session

Remove Q9 from secondary collection

Moreover, if no hits are recorded for MV6 in the next 3 sessions, it is permanently removed from the N and thereby completely discarded from the DDW as well. After performing the above actions, the analyzer begins a new session by resetting the log counters and continues to collect usage information. The above steps of the analyzer are pseudocoded in Algorithm 4.

Algorithm 4 Analyzer algorithm

Input: primary: primary MV collection M, secondary: secondary MV collection N, query_log: Query log (database table), session_id: id of session, session_threshold: the number of sessions to analyze

Output: None

1. Reset all hit counters
2. if session_id equals session_threshold then
3. for all mv € primary do
4. temp := query result set
5. sum_of_hits := integer
6. temp <- Get from log where id = mv.id
7. for all row € temp do
8. sum_of_hits = sum_of_hits + row.hits
9. end for
10. if sum_of_hits equals 0
11. add mv to secondary
12. remove mv from primary
13. end if
14. end for
15. for all mv € secondary do
16. temp := query result set
17. count := integer
18. temp <- Get from log where id = mv.id
19. for all row € temp do
20. if row.hits >= 1 then
21. count = count + 1
22. end if
23. end for
24. if count equals session_threshold
25. add mv to primary
26. remove mv from secondary
27. end if
28. if count equals 0
29. remove mv from secondary
30. end if
31. end for
32. truncate query_log
33. session_id = 1
34. end if

6.2 DDW Change Tracker

To provide up-to-date results using the MV collection M, we propose a tracking component to our maintenance system to identify changes in the schema or the data. DWs primarily contain historical data [16] and newly arriving data will be aggregated and added into the DW. DDWs are designed to integrate these more seamlessly than DWs. Due to this we can expect a growth in the number of records in the fact tables. Consequently, in dimensions, new records may be added or removed. The conceptual and physical schemas can change unpredictably in DDW as discussed in earlier chapters. To cater for these requirements, the DDW change tracker of our technique is configured to monitor the aforementioned changes in the DDW. In instances where the schema changes, new data arrives or data being removed it will produce an alert so that the MVs can be re-computed. As the QMVs in M can be looked up in the hash table using the table name, the MVs affected can easily be updated by looking up the affected tables.

6.3 Summary

In summary, it can be stated that the maintenance of M is important as it increases the possibility of finding a match for Q. The analyzer achieves this by looking at user query patterns recorded in the query log. It is modeled to run independently from the remainder of the system and so users are able to query the DDW without interruption. DDW change tracker aims to update the content of outdated MVs by listening to changes in the DDW tables.

7 Experimental Setup and Evaluation

In this section, we experimentally evaluate query matching, domain matching and MV maintenance. We demonstrate that these three approaches are effective solutions, by making comparisons to their traditional/naïve approach counterparts.

7.1 Experimental Setup

7.1.1 Machine and Database server

The machine used for running experiments has an Intel Core i5-2450M processor with speed 2.5GHz. It contains 2 cores and 4 logical processors and supports multi-threading. This PC has a DDR3 RAM memory of 8GB with a speed of 1333GHz. Furthermore, it is installed with an Oracle 12c Release 1 Enterprise edition database server running locally, which is used to setup the data warehouse for all experiments.

7.1.2 Simulator program

The simulator program is written using Java. The implementation of the proposed OLAP query tree and the query
to perform horizontal partitioning on the diagnosis table. Subsets with incremental sizes are created in the range 100-
1,500,000 with an increment of 100,000. These subsets are used in the range 100,000-200,000 rows with an increment of 100, in the range 1,000-20,000 rows with an increment of 10,000 and in the range 100,000-
1,500,000 with an increment of 100,000. These subsets are used to perform horizontal partitioning on the diagnosis table.

Queries: The OLAP queries chosen for experiments are given in the Appendix along with the range for the number of rows produced. The queries Q13-Q18 are designed to target specific costs of a query. Q13 contains a large number of tables and joins and therefore the cost of processing the query is high with respect to the join operations. Q14 contains a large number of group by attributes, hence it affects the cost of grouping a given data set. Q15 contains several selections and these increases the cost of the selection operation of a query. Q16 contains a large number of joins, group by attributes and selection conditions and therefore it produces a huge cost at query time. Q17 and Q18 contain special functions in selection conditions and grouping by conditions, respectively.

7.2 Query Matching Experiments

In order to evaluate the efficiency of Query Matching (QM), it must be compared against Directly querying (DQ) the DW. Therefore, four experiments are conducted using the following four distinct queries:

Q13 – Contains 10 tables, 9 joins and 2 group by attributes
Q14 – Contains 2 tables, 1 join and 8 group by attributes
Q15 – Contains 1 table, 6 selection conditions and 1 group by attribute
Q16 – Contains 10 tables, 9 joins, 5 selection conditions and 8 group by attributes

The simulator program is setup to contain a collection of OQT_{MV} and OQT_{Q} and the algorithm for the matching. Queries Q13-Q18 are used to create four OQT_{MV} in the simulator program and the corresponding materialized views are created in the DW. Four OQT_{Q} that match with the OQT_{MV} are created and it is ensured that a given OQT_{Q} only matches with one OQT_{MV} only.

Each OQT_{Q} is submitted to the simulator and the time taken by the QM to find a match and retrieve all the rows of the MV and the time taken by the simulator to obtain all the rows from the DW for the OLAP query of the OQT_{Q} is recorded. The simulator is configured to repeat these recordings for both cases for 15 times. We observed that the simulator internally performed some caching mechanism and therefore the time recordings for the first 1-5 runs are different than the remaining recordings. To obtain a fair result the first 5 recordings are discarded and the average of the remaining are calculated.

The time taken by the QM and DQ can be represented using the following formulas:

\[T_{FM} = \text{Time taken to find match using QM} \]
\[T_{RQM} = \text{Time taken to retrieve rows for QM} \]
\[T_{RDQ} = \text{Time taken to retrieve rows for DQ} \]
\[T_D = T_i \text{ taken for query operations in DQ} \]
\[T_{QM} = \text{Total time taken for QM} \]
\[T_{DQ} = \text{Total time taken for DQ} \]
To collect information on the performance of QM for different sizes of the data set, each OQT experiment is repeated for all incremental subsets of Admissions and Diagnosis tables stated in section 7.1.3.

7.2.1 Results

Q_{13} – Large number of joins

Q_{13} returns a result of 6-15 rows (refer Appendix), and the MV created using it would have the same number of records. Therefore, T_{QM} is small as it only performs a search to find the OQTMV and then retrieve 6-15 records from the DW (T_{ROM} would be small). As the data set gets larger, significant change in this time is not seen as the maximum number of records retrieved is limited to 15 rows. The cost of joining 10 tables is considered only at MV creation time. DQ always takes longer time than the QM as it has to perform 9 joins between 10 tables each time the query is submitted. As the data size increases, the cost of each join increases as more rows are needed to be joined, therefore T_{DQ} increases exponentially.

Q_{14} – Large number of group by attributes

For Q_{14}, figure 25 shows that QM performs worse than DQ. We observed that the T_{DQ} is relatively less than T_{QM}. Both methods retrieve the same number of rows, therefore T_{ROM} and T_{DQ} would be closely similar. When the algorithm does a comparison between a OQTQ and the OQTMV, as there are several group by attributes to be compared, some extra time is taken and additionally the remaining parts of the QM adds more time as well, hence T_{QM} is impacted by this; relative to this, DQ only applies the cost of the group by operation and this is less than the time taken by the QM to do query matching and so T_{DQ} is bound to be less than T_{QM}. In Figure 24 it is observed that QM performs better than DQ. We observed that the T_{QM} for datasets with 110,000 – 1,500,000 rows, does not increase considerably but T_{DQ} increases by a significant amount.
Here T_{DQ} and T_{QMT} would remain to be closely similar but as the size of the data set grows, the group by operation produces a significant cost and this impacts on T_{O}.

Q15 - Large number of selection conditions

As observed Figure 26 and Figure 27 in almost every case, T_{DQ} is higher than T_{QMT}. The result for Q15 would only contain 3-6 rows and therefore the total time taken by QM T_{QMT} is low as T_{FM} and T_{RQMT} would be quite small. T_{QMT} remains in the range of 0-3 milliseconds whereas T_{DQ} increases by a substantial amount as the data set grows. This is due to the selection operation cost increasing with the increasing size of the data set.

Q16 - Large number of joins, group by and selection conditions

In Figure 28 and Figure 29 it is observed that T_{DQ} is higher than T_{QMT}. For Q16 the number of rows in the result remains in the range 1-1445. Therefore, T_{DQ} is higher than T_{QMT}, as T_{O} would have had a substantial impact on it due to the cost of the large number of operations required to be performed. Contrary to this QM only has a small time for T_{FM}, therefore T_{QMT} remain less than 20 milliseconds.

7.2.2 Efficiency Analysis

For queries Q13, Q15 and Q16 performance of QM is consistently better than DQ in all sizes of data sets. T_{RQMT} and T_{BQMT} remains closely similar as the final result obtained by QM and DQ contains the same number of rows and as the simulator program retrieves data using its own internal DB access mechanism for both methods. Under DQ, the query operations required to find the appropriate OQT from the corresponding MV. Therefore, it can be deduced are required to be performed at run time whereas QM is only

that for Q15, Q16 and Q10 T_{O} is larger than T_{FM} for all data sets. Therefore, there is a considerable benefit for using QM over DQ. The only exception is for smaller data sets with queries of the type Q14.

![Figure 22 Q14 partitions 100 – 20,000](image22)

![Figure 23 Q14 partitions 30,000 – 1,500,000](image23)
As there are several number of group by attributes to be compared in the query matching algorithm, for data sets with less than 100,000 records, $T_{Q\text{M}}$ is greater than T_D. But beyond 100,000 records, T_D is higher than $T_{Q\text{M}}$ as the grouping of $>100,000$ of records under 8 attributes produce a higher cost than the time taken by the algorithm to return a match.

To further verify the performance of QM, all of the above experiments are repeated with non-unique indexes on the Admissions and Diagnosis subset tables. It is observed that for OQT$_{MV}$s made using Q$_13$, Q$_{15}$ and Q$_{16}$, the index did not affect the performance of DQ and so QM has a lower time for all cases. Similar trends seen between experiments performed for Q$_{14}$, without index and with index, and it is observed that DQ takes more time than QM for subsets with $>100,000$ records for both cases.

7.2.3 Summary

It can be concluded that our proposed Query Matching (QM) technique demonstrates better performance for most cases compared to Directly querying (DQ) the DW. This is also true when indexes are present. However, QM has an unsatisfactory performance than DQ for queries that contain many Group By conditions but this only occurs for tables with less than 100,000 records. In DDW environments the expected amount of data is large than this value, hence, it can be justified that this weakness of the QM does not occur in most DDWs.

7.3 Domain Matching Experiments

In domain matching (DM), we find candidates for query matching (QM) by pruning the Q$_{MV}$ collection in M. This is achieved by selecting Q$_{MV}$s that are equivalent to Q in terms of tables. This optimization technique is further improved by using a hash table with table name as search key, for faster lookup. In order to evaluate the effectiveness of our DM, it must be compared against a trivial searching mechanism such as iterating each Q$_{MV}$ in M to find a match. The simulator program is setup to contain OQT$_{MV}$s for queries Q$_{15}$-Q$_{17}$ and the following collections,

1. Hash table with table name as search key
2. List of OQT$_{MV}$s
As the Admissions is divided into 70 subsets (section 7.2.3), the program is set to loop 70 times for each subset. In each loop, it would add five OQT_MVs to each collection. Since a different subset of the Admissions table is used by each loop, five distinct OQT_MVs are added to the collections in each iteration. For example, if run 1 uses Admissions_100, it would add OQT_MVs that use Admissions_100, Diagnosis_100; Then run 2 would add OQT_MVs that use Admissions_200, Diagnosis_200 and so on. With each iteration, the number of unique tables within each collection is increased by two and the number of unique OQT_MVs is increased by 5.

Under each loop for the subsets, the program would find the time taken by the three collections to return a match for a given OQT_Q. To ensure a fair result is obtained for the average, the times are recorded 35 times for each collection. The first 5 records of each set are discarded and then the average time taken by each collection is calculated. This process is repeated as the number of elements in the collection are set to grow by each subset loop. Q_16 is used as the OQT_Q as it contains a large number of joins, selections, group by attributes and also special functions in the selection.

7.3.1 Results analysis

The results of the domain matching experiments are illustrated in Figure 28 and Figure 29. The hash table with table name as search key takes the least amount of time to find the match. As the number of elements are increased from 5 to 10, our proposed domain matching technique performs significantly better in all experiments. The time taken by DM remains under 1 millisecond whereas time taken by the list increases exponentially.

7.3.2 Summary

In summary, it can be stated that domain matching technique is beneficial as it identifies obvious mismatches for a query Q at an earlier stage. Due to this, performance of the query matching process is improved as a subset of M is obtained. All the experiments conducted indicate the above.
7.4 Maintenance Experiments

The aim of MV maintenance is to maintain an intuitive set of QMV's in the primary MV collection based on the frequency of queries entered by users. The analyser component logs the queries and the hits for each MV to perform its analysis. In our proposed analyser component, we provide flexibility to the user through the configuration of the session length and session threshold. Based on the usage of the DDW, a database administrator can change these variables to suit their needs. To make recommendations on how to choose values for session length and session threshold, we carried out a number of experiments on the analyser component. The program is setup to run experiments of 2-hour duration, in which a separate process would send queries to it at a specified interval during this period. Initially, the primary and secondary collections are empty and the program is set to contain 13 queries (variations of queries are given in Appendix). During the execution of the program, queries are to submitted by selecting one at random. We conducted 10 experiments by varying the session length, session threshold and the query frequency. The results of the experiments are summarized in Table 2.

7.4.1 Analysis

From experiments 1-4, the session length and query frequency is kept constant and the session threshold is incremented gradually. It is observed that the cumulative total of active QMV's decreased, thereby the number of hits decreased as well. As the session threshold increases, a QMV's probability of remaining active decreases. For example, cumulative total of QMV's for experiment 4 is 1047, but as these QMV's did not receive hits across four sessions, the analyser is not able to move them from secondary to primary collection, which resulted in the cumulative total of active QMV's becoming zero. However, a high session threshold value can be used for DDWs that receive similar queries repeatedly over short periods of time. Since the average number of hits per QMV per session would be higher, the pattern of hits must be analysed over a longer time span. The values for session length and session threshold also depends on the variety of queries submitted to the DDW. For environments with a broad range of queries, smaller values of session threshold are preferred. This is observed in experiments 4 and 5, where we increased the probability of similar queries being submitted by reducing the query frequency to 15 per second. As a result, the proportion of cumulative total of active QMV's for session thresholds 2 and 3 increased from 8.95% to 34.02% and 2.69% to 29.83%, respectively. Furthermore, it is also observed that experiment 5 yielded a better outcome as the proportion of active QMV's with hits is higher than experiment 3. For experiments 7-10, the session threshold remained constant and the session length and query frequency is varied to observe the
effectiveness of the analyser. For experiments 9 and 10, the session length is increased and it is observed that the cumulative total of QMVs decreased. Although the cumulative total of active QMVs has decreased, the proportion of active QMVs that received hits has increased from 62.18% to 66.76%. Thereby for longer session lengths, analyser is able to make more accurate decisions for future sessions. However, the session length must not be too high, as it could result in too many QMVs being in the primary collection.

7.4.2 Summary

In summary, it can be stated that the analyser component is able to improve the usage of QMVs by maintaining an intuitive collection of QMVs, i.e. by removing stale QMVs from it and adding popular QMVs to it. Throughout all experiments, it is observed that the actions of the analyser component did not interfere with the querying process. We experimentally determined that for a given DDW the values of session length and session threshold depends on the range of queries presented to the system and the query frequency. Based on the results we provided recommendations on how to select values for these variables.

8 Conclusion and Future Work

8.1 Conclusion

Existing dynamic data warehouses provide dynamicity in its design. We observed that the main problem that persists in a DDW is the mismatch between the collection of MVs and the reporting requirements of decision makers. To retrieve the result of an MV users would have to explicitly specify the MV references. This is disadvantageous as only users with prior knowledge of the MV collection would be able to utilize it. In order to improve the dynamicity of the MV collection of a DDW, we proposed a novel solution consisting of query matching, domain matching and MV maintenance. The query matching technique intercepts an incoming query Q and determines whether it can be answered using an existing MV in the collection. To facilitate this process, we proposed a novel structure known as OLAP query tree, for representing the query of the corresponding MV OQT_{MV} and for representing the incoming OLAP query OQT_{Q}. The query matching algorithm receives a pair of OQT_{MV} and OQT_{Q} as inputs and determines if the result expected by OQT_{Q} is a subset of the result in OQT_{MV}. As the comparison of each pair of OQT_{MV} and OQT_{Q} is an inefficient process, we proposed domain matching as a search space pruning technique. This optimization technique uses a hash table with table name as search key to filter OQT_{MV}s that does not have same tables as Q. Query requirements of users can change over time, and to ensure a high proportion of queries are answered using MVs, we proposed a novel MV maintenance approach that maintains a log for every OQT_{Q} in the collection. Furthermore, we include a DW change tracker to update the data in the MV collection upon change occur in the underlying data sources. Finally, we experimentally evaluate our proposed techniques against their naïve counterparts to demonstrate their effectiveness and efficiency.

8.2 Future Work

Our future works in this area include the enhancement of query matching (QM) for complex types of queries involving ROLLUP, CUBE, PARTIAL ROLL, PARTIAL CUBE functions. Further investigation of aggregate functions such as AVG, COUNT, MAX and MIN that does not show associativity as granularity decreases would be useful for improving the QM algorithm. Also, we aim to extend the query matching algorithm to find partial matches for an incoming query Q, such that a result can be provided by using one or more materialized views.

Experiment	Session length (seconds)	Session threshold	Query frequency (seconds)	Cumulative total of QMVs	Cumulative total of active QMVs	Cumulative total of active QMV that got hits	Cumulative total of non-active QMVs that got hits
EXP1	60	1	30	520	211	39	174
EXP2	60	2	30	849	76	13	206
EXP3	60	3	30	1229	33	5	259
EXP4	60	4	30	1047	0	0	250
EXP5	60	2	15	1029	350	157	264
EXP6	60	3	15	952	284	121	294
EXP7	60	2	45	1044	44	10	167
EXP8	90	2	30	665	147	62	162
EXP9	90	2	15	629	386	240	100
EXP10	120	2	15	533	328	219	79

Table 2 Maintenance Experiments summary
9 References

1. Akbarnejad, J., et al., SQL QueRIE Recommendations. PVLDB, 2010. 3(2): p. 1597-1600.

2. Aligon, J., et al., Mining Preferences from OLAP Query Logs for Proactive Personalization. 2011. p. 84-97.

3. Aligon, J., et al., Similarity measures for OLAP sessions. Knowl. Inf. Syst., 2014. 39(2): p. 463-489.

4. Aouiche, K., et al., Clustering-based materialized view selection in data warehouses, in Proceedings of the 10th East European conference on Advances in Databases and Information Systems. 2006, Springer-Verlag: Thessaloniki, Greece. p. 81-95.

5. Auffare, M.-A., et al., Predicting Your Next OLAP Query Based on Recent Analytical Sessions, in Data Warehousing and Knowledge Discovery: 15th International Conference, DaWaK 2013, Prague, Czech Republic, August 26-29, 2013. Proceedings, L. Bellatreche and M.K. Mohania, Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 134-145.

6. Chen, L.-C., Term Suggestion with Similarity Measure based on Semantic Analysis Techniques in Query Logs. Online Information Review, 2011. 35(1): p. 9-33.

7. Chen, Y.Y., S.-P. Yong, and A. Ishak, Email Hoax Detection System Using Levenshtein Distance Method. JCP, 2014. 9(2): p. 441-446.

8. Drosou, M. and E. Pitoura, ReDRIVE: result-driven database exploration through recommendations. 2011. p. 1547-1552.

9. Faisal, S. and M. Sarwar, Handling slowly changing dimensions in data warehouses. Journal of Systems and Software, 2014. 94: p. 151-160.

10. Ferreira, N. and P. Furtado, Real-time data warehouse: a solution and evaluation. UBIDM, 2013. 8(3): p. 244-263.

11. Garani, G. and S. Helmer, Integrating Star and Snowflake Schemas in Data Warehouses. IJDWM, 2012. 8(4): p. 22-40.

12. Ghosh, A., et al., Plan Selection Based on Query Clustering. 2002. p. 179-190.

13. Ghosh, P. and S. Sen. Dynamic incremental maintenance of materialized view based on attribute affinity. in Data Science & Engineering (ICDSE), 2014 International Conference on. 2014.

14. Goller, M. and S. Berger, Slowly changing measures, in Proceedings of the sixteenth international workshop on Data warehousing and OLAP. 2013, ACM: San Francisco, California, USA. p. 47-54.

15. Goller, M. and S. Berger, Handling measurement function changes with Slowly Changing Measures. Information Systems, 2015. 53: p. 107-123.

16. Kimball, R. and M. Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. 2002: John Wiley & Sons, Inc. 416.

17. Köhler, H., K.-D. Schewe, and J. Zhao, Dynamic Data Warehouse Design as a Refinement in ASM-based Approach. 2007. p. 61-69.

18. Lawrence, M. and A. Rau-Chaplin, Dynamic View Selection for OLAP, in Strategic Advancements in Utilizing Data Mining and Warehousing Technologies: New Concepts and Developments. 2010. p. 91-106.

19. Mansmann, S., et al., Discovering OLAP dimensions in semi-structured data. Information Systems, 2014. 44: p. 120-133.

20. Mazón, J.-N. and J. Trujillo, A hybrid model driven development framework for the multidimensional modeling of data warehouses! SIGMOD Record, 2009. 38(2): p. 12-17.

21. Nica, A., Incremental maintenance of materialized views with outerjoins. Inf. Syst., 2012. 37(5): p. 430-442.

22. Theodoratos, D. and T.K. Sellis, Dynamic Data Warehouse Design. 1999. p. 1-10.

23. Yang, X., C.M. Procopiuc, and D. Srivastava, Recommending Join Queries via Query Log Analysis. 2009. p. 964-975.

24. Yao, Q., A. An, and X. Huang, Finding and Analyzing Database User Sessions. 2005. p. 851-862.

25. Zeng, Q., X. Jiang, and H. Zhuge, Adding Logical Operators to Tree Pattern Queries on Graph-Structured Data. PVLDB, 2012. 5(8): p. 728-739.

26. Zhao, J., K.-D. Schewe, and H. Köhler, Dynamic Data Warehouse Design with Abstract State Machines. J. UCS, 2009. 15(1): p. 355-397.
Appendix

The following queries were used in the Query Matching and MV Maintenance experiments:

QMV	Query type	Query
1	large number of joins (rows: min – 6, max - 15)	`select a.sex, a.age_category, sum(1) from admissions a, diagnosis d, admsource_dim ads, admtime_dim adt, admtypdim atp, age_dim ag, care_type_dim c, separation_mode_dim s, diagnosis_dim dm where a.pk = d.admissions_pk and a.sex = g.gender_number and a.admsource = ads.vaed_value and a.admtype = atp.vaed_value and a.care = c.vaed_value and a.sepmode = s.vaed_value and a.age_category = ag.age_category and to_char(a.admdate, 'yyyymm') = adt.admtimeid and substr(d.diag, 1, 1) = substr(dm.code_range_start, 1, 1) group by a.sex, a.age_category;`
2	large number of group by conditions (rows: min – 55, max - 52637)	`select a.sex, a.admsource, a.admtype, a.care, a.sepmode, a.age_category, adt.admyear, adt.admmonth, sum(1) from admissions a, admtime_dim adt where to_char(a.admdate, 'yyyymm') = adt.admtimeid group by a.sex, a.admsource, a.admtype, a.care, a.sepmode, a.age_category, adt.admyear, adt.admmonth;`
3	large number of selection conditions (rows: min – 3, max - 6)	`select a.age_category, sum(1) from admissions a where a.admsource = 'h' and a.admtype = 'x' and a.care = '4' and a.sepmode = 'h' and to_char(a.admdate, 'yyyymm') = '2007' and to_char(a.admdate, 'mm') = '12' group by a.age_category;`
4	large number of joins, selection conditions and group by conditions (rows: min – 1, max - 1445)	`select a.sex, a.admsource, a.admtype, a.care, a.sepmode, a.age_category, adt.admyear, adt.admmonth, sum(1) from admissions a, diagnosis d, admsource_dim ads, admtime_dim adt, admtypdim atp, age_dim ag, care_type_dim c, separation_mode_dim s, diagnosis_dim dm where a.pk = d.admissions_pk and a.sex = g.gender_number and a.admsource = ads.vaed_value and a.admtype = atp.vaed_value and a.care = c.vaed_value and a.sepmode = s.vaed_value and a.age_category = ag.age_category and a.admsource = 'h' and a.admtype = 'x' and a.care = '4' and a.sepmode = 'h' and to_char(a.admdate, 'yyyymm') = adt.admtimeid and substr(d.diag, 1, 1) = substr(dm.code_range_start, 1, 1) and dm.diagnosis_desc like 'diseases%' group by a.sex, a.admsource, a.admtype, a.care, a.sepmode, a.age_category, adt.admyear, adt.admmonth;`
5	special functions in selection conditions (rows: min – 2, max - 3)	`select sex, sum(1) from admissions a, diagnosis d, diagnosis_dim dm where a.pk = d.admissions_pk and substr(dm.code_range_start, 1, 1) = substr(dm.code_range_start, 1, 1) and dm.diagnosis_desc like 'diseases%' group by sex;`
6	special functions in group by conditions (rows: min – 63, max - 120)	`select to_char(admdate, 'yyy'), to_char(admdate, 'mm'), sum(1) from admissions group by to_char(admdate, 'yyy'), to_char(admdate, 'mm');`