Unique continuation and an inverse problem for hyperbolic equations across a general hypersurface

Arif Amirov\(^1\) and Masahiro Yamamoto\(^2\)

\(^1\)Department of Mathematics, Zonguldak Karadeniz University 67100 Zonguldak Turkey

\(^2\)Department of Mathematical Sciences, The University of Tokyo Komaba Meguro Tokyo 153-8914 Japan

E-mail: amirov@karadeniz.edu.tr; myama@ms.u-tokyo.ac.jp

Abstract. We consider a hyperbolic equation
\[
\begin{aligned}
(Au)(x,t) &\equiv p(x,t)\partial_t^2 u(x,t) - q_n(x,t)\partial_n u(x,t) \\
- q_{n+1}(x,t)\partial_n u(x,t) - r(x,t)u(x,t), &\quad x \in \mathbb{R}^n, \, t \in \mathbb{R},
\end{aligned}
\]
where \(p \in C^1(\mathbb{R}^n_+ \times \mathbb{R}_+)\), \(q_j, r \in L^\infty_{\text{loc}}(\mathbb{R}^n_+ \times \mathbb{R}_+)\) for \(1 \leq j \leq n+1\). We always set \(x = (x_1, ..., x_n) \in \mathbb{R}^n\), \(\partial_t = \frac{\partial}{\partial t}\), \(\partial_j = \frac{\partial}{\partial x_j}\), \(1 \leq j \leq n\), etc. and \(\Delta = \sum_{j=1}^n \partial_j^2\). Let \(\Gamma \subset \mathbb{R}^n_+\) be a hypersurface of class \(C^2\). For small \(\rho > 0\) and \(x_0 \in \Gamma\), the hypersurface \(\Gamma\) divides the open ball \(B_\rho(x_0)\) into \(D^+\) and \(D^-\). Let \(\nu = \nu(x)\) be the unit normal vector to \(\Gamma\) at \(x\) which is oriented inward to \(D^+\) and we set \(\frac{\partial u}{\partial \nu} = \nabla u \cdot \nu\).

In this paper, we discuss (1) unique continuation and (2) inverse problem. First we consider: Unique continuation. Let \(u = u(x,t)\) satisfy \(Au = 0\) in \(D^+ \times (-T,T)\) and \(u = \frac{\partial u}{\partial \nu} = 0\) on \(\Gamma \times (-T,T)\). Then can we find a neighbourhood \(U\) of \(x_0\) where \(u = 0\)?

In the case where the coefficients \(p, q_j, r\), \(1 \leq j \leq n+1\), are analytic, by the Holmgren theorem or Fritz John’s global Holmgren theorem (e.g., Rauch [28]), one can prove the unique continuation across \(\Gamma\), provided that \(\Gamma\) is not the characteristics of the hyperbolic operator \(P\). In the case where the coefficients are not analytic, for proving the unique continuation, one can apply Carleman estimates, and the unique continuation holds if \(D^+\) is convex near \(\Gamma\) (e.g., Hörmander [11], Isakov [18], [19], Khaidarov [20]).

In particular, in the case where the coefficients are independent of \(t\), Robbiano [29] proved the unique continuation for not necessarily convex \(D^+\). Also see Lerner [27]. The result by Robbiano

1. Introduction and main result

We consider a hyperbolic equation:
\[
(Au)(x,t) \equiv p(x,t)\partial_t^2 u(x,t) - \Delta u(x,t) - \sum_{k=1}^n q_k(x,t)\partial_k u(x,t)
- q_{n+1}(x,t)\partial_n u(x,t) - r(x,t)u(x,t), \quad x \in \mathbb{R}^n, \, t \in \mathbb{R},
\]
was generalized by Hörmander [12] and Tataru [30] where the analyticity of the coefficients in some components of \((x,t)\) is essential. See Eller, Isakov, Nakamura and Tataru [10] for applications to the Maxwell’s system and the Lamé system.

The Carleman estimates used in [12] and [30], are extremely difficult to be applied to our inverse problems. On the other hand, even for the analytic coefficient case, the unique continuation breaks for general domain \(D^+\) (i.e., in the case where \(\Gamma\) is across the characteristics of \(P\)). Moreover, in the case where \(D^+\) is not convex near \(\Gamma\), there are very few trials by classical Carleman estimates, which are applicable also to the inverse problems. In the case where \(\Gamma\) is flat and \(A\) is a ultrahyperbolic operator, Amirov [2] - [4] proved a Carleman estimate to apply it to an inverse problem of determining a source term by lateral Cauchy data. Isakov [19] established a Carleman estimate for a hyperbolic operator \(A\) and proved a unique continuation result across flat \(\Gamma\). In [2] - [4] and [19], we note that the principal coefficient \(p\) cannot be constant. On the other hand, in the case of \(p \equiv 1\), Khaïdarov [20] showed a counterexample of the nonuniqueness in the continuation: there exist \(u \in C^\infty(\mathbb{R}^n \times \mathbb{R})\) and \(q \in C^\infty(\mathbb{R}^n \times \mathbb{R})\) such that \(\partial^2_t u = \Delta u - q(x,t)\partial_t u\) in \(\mathbb{R}^n \times \mathbb{R}\), \(u = 0\) in \(x_1 \geq 0\) and \(u \neq 0\) in \(x_1 < 0\). Note that \(q\) depends on \(t\) also. As for other counterexamples, see Alinhac [1], Kumano-go [25]. If \(q\) is \(t\)-independent or analytic for some component of \((x,t)\), then we can know that if \(\partial^2_t u = \Delta u - q(x,t)\partial_t u\) in \(\mathbb{R}^n \times \mathbb{R}\) and \(u = 0\) in \(x_1 \geq 0\), then for any \(\tilde{x} = (0, x_2, ..., x_n)\), there exist a neighbourhood \(U\) of \(\tilde{x}\) and \(t_0 > 0\) such that \(u = 0\) in \(U \times (-t_0, t_0)\).

In this paper, in contrast with those existing papers, we will discuss a sufficient condition on the principal coefficient \(p\) and the boundary \(\Gamma\) for the unique continuation, under that

(i) the coefficients \(p, q_j, r, 1 \leq j \leq n + 1\), are not analytic in any components of \((x,t)\).

(ii) \(D^+\) is not necessarily convex near \(\Gamma\).

As is seen by the counterexample by [1], [20] and [25] and by [2] - [4] and [19], we cannot expect the unique continuation if \(p\) is constant. Furthermore for any \(\Gamma\), we cannot have the unique continuation across \(\Gamma\). For this, we will assume that the normal derivative of \(p\) at \(x_0 \in \Gamma\) is negative. For specifying the condition at \(x_0 \in \Gamma\), we introduce

Definition. Let \(x_0 \in \Gamma\) and \(R > 0\). We say that \(D^+\) satisfies the exterior sphere condition at \(x_0\) with \(R\) if there exists an open ball \(B\) with radius \(R\) such that \(\overline{B} \cap \overline{D^+} = \{x_0\}\).

Now we are ready to state our first main result.

Theorem 1. Let \(x_0 \in \Gamma \setminus \partial \Gamma\). In (1.1), let us assume that

\[
\begin{align*}
\left\{ \begin{array}{ll}
p \in C^1_\text{loc}(\mathbb{R}^n_x \times \mathbb{R}_t), & p > 0 \text{ in } \mathbb{R}^n_x \times \mathbb{R}_t, \\
q_j, r \in L^\infty_\text{loc}(\mathbb{R}^n_x \times \mathbb{R}_t), & 1 \leq j \leq n + 1,
\end{array} \right.
\end{align*}
\]

Moreover \(D^+\) is assumed to satisfy the exterior sphere condition at \(x_0\) with \(R > 0\) satisfying

\[
\frac{1}{2R} \leq \frac{-\partial_p(x_0,0)}{4(\|p\|_{L^\infty(B_p(x_0,0))} + 1)}.
\]

Let \(u \in H^2(D^+ \times (-T,T))\) satisfy

\[
Au = 0 \quad \text{in } D^+ \times (-T,T)
\]

and

\[
u = 0 \quad \text{on } \Gamma \times (-T,T).
\]
Then there exist a neighbourhood \mathcal{V} of x_0 and $T_1 \in (0, T)$ such that

$$u = 0 \quad \text{in} \ (\mathcal{V} \cap D^+) \times (-T_1, T_1).$$

(1.7)

Physically, $V(x, t) = \frac{1}{\sqrt{p(x, t)}}$ corresponds to the wave speed, and so assumption (1.3) means that $\frac{\partial V}{\partial n}(x_0, 0) > 0$, that is, the wave speed increases near x_0 along a transverse direction. Notice that assumption (1.3) excludes constant principal coefficients, so that our result is compatible with the counterexamples by [1], [20], [25].

By the definition, we see that a hyperplane Γ always satisfies condition (1.4), because we can take $R = \infty$. Theorem 1 yields

Corollary. We assume (1.2), (1.3), (1.5), (1.6) and that Γ is a hyperplane. Then the conclusion of Theorem 1 is true.

The corollary corresponds with Isakov’s result on unique continuation ([19]).

We can sum up the unique continuation across Γ for the equation $p(x, t)\partial_t^2 u = \Delta u + q(x, t)\partial_t u$ as follows:

(i) Let $p(x, t)$ and $q(x, t)$ be t-independent. Then we can prove the unique continuation across Γ which is flat or satisfies some geometric constraint ([12], [29], [30]).

(ii) Let $p \equiv 1$ and $q(x, t)$ be t-dependent without any analyticity. Then the unique continuation across the flat Γ is not true in general (e.g., [20], [25]).

(iii) Let $\frac{\partial p}{\partial n} < 0$ and $q \in L^\infty_{\text{loc}}(\mathbb{R}^2_x \times \mathbb{R}_t)$. Then the unique continuation across Γ is true under assumption (1.4).

Furthermore we can prove the conditional stability in the continuation.

Theorem 2. Under the same assumptions as in Theorem 1, let $u \in H^2(D^+ \times (-T, T))$ satisfy

$$Au = f \quad \text{in} \ D^+ \times (-T, T)$$

and

$$u = g, \quad \frac{\partial u}{\partial n} = h \quad \text{on} \ \Gamma \times (-T, T).$$

(1.9)

Then there exist a neighbourhood \mathcal{V} of x_0, $T_1 \in (0, T)$ and constants $C > 0, \theta \in (0, 1)$ such that

$$\|u\|_{H^1((\mathcal{V} \cap D^+) \times (-T_1, T_1))} \leq C \mathcal{E}^{\theta}(\mathcal{E}^{1-\theta} + \|u\|_{H^1(D^+ \times (-T, T))}^{1-\theta}).$$

(1.10)

Here we set

$$\mathcal{E} = \|f\|_{L^2(D^+ \times (-T, T))} + \|g\|_{H^2(\Gamma \times (-T, T))} + \|g\|_{H^2(-T, T; L^2(\Gamma))} + \|h\|_{L^2(-T, T; H^1(\Gamma))}.$$

Next we will discuss

Inverse Problem. In (1.1), we assume that the zeroth order coefficient $r = r(x)$ is t-independent. Determine $r = r(x)$ in some neighbourhood of $x_0 \in \Gamma$ by $u\big|_{\Gamma \times (-T, T)}$ and $\frac{\partial u}{\partial n}\big|_{\Gamma \times (-T, T)}$ where u satisfies $Au = 0$ in $D^+ \times (-T, T)$, and $u(\cdot, 0)$ and $\partial_t u(\cdot, 0)$ are given suitably in D^+. This kind of inverse problem is related with the unique continuation and the paper by Bukhgeim and Klibanov [9] is the first work, where a Carleman estimate and an inequality for a Volterra integral operator in t are essential. After [9], there are many papers with similar methodology concerning determination of coefficients in hyperbolic or ultrahyperbolic equations by lateral Cauchy data; [2] - [4], Bellassoued [6], Bellassoued and Yamamoto [7], Bukhgeim [8], Imanuvilov and Yamamoto [14], [15], [16], Isakov [19], Kha˘ıdarov [20], [21], Klibanov [22],
Klibanov and Timonov [23], Klibanov and Yamamoto [24], Yamamoto [31]. As for similar inverse problems for a Schrödinger equation and an elasticity equation, we refer to Baudouin and Puel [5], and Imanuvilov, Isakov and Yamamoto [13], Imanuvilov and Yamamoto [17], respectively.

In all the papers treating hyperbolic inverse problems except for Amriov [3], [4], we have to assume that \(D^+ \) is convex near \(\Gamma \), because the grounding Carleman estimate requires the convexity of \(D^+ \). Therefore the uniqueness in the inverse problem has not been studied for non-convex \(D^+ \).

The following theorem is one answer to this open problem.

Theorem 3. Let \(x_0 \in \Gamma \setminus \partial \Gamma \), and let us assume that (1.3) and (1.4) hold, and let \(p = p(x) \in C^1(\overline{D^+}) \), \(q_j, \partial_t q_j \in L^\infty(D^+ \times (-T, T)) \), \(1 \leq j \leq n+1 \). Let \(u_\ell \in H^2(D^+ \times (-T, T)) \), \(\ell = 1, 2 \), satisfy

\[
\begin{align*}
\partial_t u_\ell & \in H^2(D^+ \times (-T, T)) \cap L^\infty(D^+ \times (-T, T)), \\
p(x) \partial_t^2 u_\ell(x, t) & = \Delta u_\ell(x, t) \\
+ \sum_{k=1}^n q_k(x, t) \partial_k u_\ell(x, t) + q_{n+1}(x, t) \partial_t u_\ell(x, t) + r_\ell(x) u_\ell(x, t), \\
u_\ell(x, 0) & = a(x), \quad \partial_t u_\ell(x, 0) = b(x), \quad x \in D^+
\end{align*}
\]

and

\[
\begin{align*}
\| \partial_t u_\ell \|_{L^\infty(D^+ \times (-T, T))}, & \| u_\ell \|_{H^2(D^+ \times (-T, T))}, & \| \partial_t u_\ell \|_{H^2(D^+ \times (-T, T))}, \\
\| r_\ell \|_{L^\infty(D^+)} & \leq M, \quad \ell = 1, 2.
\end{align*}
\]

We assume that

\[
|a(x)| > 0 \quad \text{on } \overline{D^+}.
\]

Then there exist a neighbourhood \(\mathcal{V} \) of \(x_0 \) and constants \(C > 0, \theta \in (0, 1) \) which are dependent on \(M, a, b, p, q_j, 1 \leq j \leq n+1 \), such that

\[
\| r_1 - r_2 \|_{L^2(\mathcal{V} \cap D^+)} \leq C \left\{ \sum_{k=0}^1 \left(\| \partial_t^k (u_1 - u_2) \|_{H^{\frac{3}{2}}(\Gamma \times (-T, T))} + \| \partial_t^k (u_1 - u_2) \|_{H^2(-T, T; L^2(\Gamma))} \right) \\
+ \| \partial_t^k \left(\frac{\partial}{\partial n}(u_1 - u_2) \right) \|_{H^2(-T, T; L^2(\Gamma))} + \| \partial_t^k \left(\frac{\partial}{\partial n}(u_1 - u_2) \right) \|_{L^2(-T, T; H^\frac{1}{2}(\Gamma))} \right\}^\theta.
\]

The proofs of our main theorems are based on a Carleman estimate with an uncommon choice of a weight function whose derivation is, however, quite conventional. Our grounding Carleman estimate is proved in Section 2, where the weight function is same as in Amirov [2] and different from Isakov’s one in [19], and our Carleman estimate is suitable for treating non-convex \(D^+ \). Once the Carleman estimate is established, the unique continuation (Theorems 1 and 2) and the conditional stability in the inverse problem (Theorem 3) are proved by the arguments in [9], [11] and [14] - [15] respectively. Thus, in this paper, we are restricted to the proof of Theorem 2.

This paper is composed of three sections. In Secion 2, we will establish a key Carleman estimate and in Section 3, we will complete the proof of Theorem 2.

2. A key Carleman estimate

Let \(\Gamma \subset \mathbb{R}^n \) be a \(C^2 \)-hypersurface such that \(0 = (0, \ldots, 0) \in \Gamma \setminus \partial \Gamma \) and \(\nu(0) = (1, 0, \ldots, 0) \). Near 0, we will parametrize \(\Gamma \) by

\[
x_1 = \gamma(x_2, \ldots, x_n), \quad |x_2|^2 + \cdots + |x_n|^2 < \rho^2.
\]

We assume that

\[
-\alpha_0 \equiv (\partial_1 p)(0, 0) < 0
\]

(2.2)
\[\kappa < \frac{\alpha_0}{4(||p||_{L^\infty(B_0(0,0))} + 1)} \]

(2.3) and

\[-\kappa \sum_{j=2}^{n} |x_j|^2 < \gamma(x_2, \ldots, x_n) \quad \text{if} \quad \sum_{j=2}^{n} |x_j|^2 < \rho^2. \]

(2.4)

Here and henceforth we set

\[B_\rho(0,0) = \{(x,t) \in \mathbb{R}^{n+1}; |x|^2 + t^2 < \rho^2\}, \quad B_\rho(0) = \{x \in \mathbb{R}^n; |x| < \rho\}. \]

Furthermore we set

\[M_1 = \max\{||p||_{C^1(B_\rho(0,0))}, 1\}. \]

(2.5)

Let \(D^- = \{x \in B_\rho(0) \subset \mathbb{R}^n; x_1 < \gamma(x_2, \ldots, x_n)\} \) and \(D^+ = B_\rho(0) \setminus \overline{D^-} \). First let us choose \(\alpha > 0 \) arbitrarily such that \(\alpha_0 > \alpha \). Then there exists a sufficiently small \(\delta_0 > 0 \) such that

\[0 < \delta_0 < \min\{1, \rho^2\} \quad \text{and} \quad \partial_1 p(x,t) < -\alpha \quad \text{if} \quad |x|^2 + t^2 \leq \delta_0. \]

(2.6)

This is possible by (2.2).

Next by (2.3), we can choose \(N > 0 \) such that

\[\kappa < \frac{1}{2N} < \frac{\alpha}{4(M_0 + 1)}, \]

(2.7)

where we set \(M_0 = ||p||_{L^\infty(B_\rho(0,0))} \). For \(\kappa \) and \(N \), we will further choose sufficiently small \(\varepsilon \in (0,1) \) such that

\[\varepsilon^2 \left| \max \left\{ \frac{\kappa}{1-2N\kappa}, \frac{1}{2N} \right\} \right|^2 + \frac{\varepsilon}{1-2N\kappa} + \varepsilon + \frac{2\kappa N \varepsilon}{1-2N\kappa} \leq \delta_0 \]

(2.8)

and

\[\alpha N - 2(M_0^2 + M_0) > 2(M_1^2 + M_1) \times \left\{ \varepsilon^2 \left| \max \left\{ \frac{\kappa}{1-2N\kappa}, \frac{1}{2N} \right\} \right|^2 + \frac{\varepsilon}{1-2N\kappa} + \varepsilon + \frac{2\kappa N \varepsilon}{1-2N\kappa} \right\}^{\frac{1}{2}}, \]

(2.9)\[N^2 > M_1 \left\{ \varepsilon^2 \left| \max \left\{ \frac{\kappa}{1-2N\kappa}, \frac{1}{2N} \right\} \right|^2 + \frac{\varepsilon}{1-2N\kappa} + \varepsilon + \frac{2\kappa N \varepsilon}{1-2N\kappa} \right\}. \]

Here we note that (2.7) implies that \(1 - 2N\kappa > 0 \) and \(\alpha N - 2(M_0 + 1) > 0 \). We define a weight function by

\[\psi(x,t) = N x_1 + \frac{1}{2} \sum_{j=2}^{n} |x_j|^2 + \frac{1}{2} t^2 + \frac{\varepsilon}{2} \]

(2.10)

and

\[Q_\mu = \left\{ (x,t) \in \mathbb{R}^{n+1}; x_1 > -\kappa \sum_{j=2}^{n} |x_j|^2, \sum_{j=2}^{n} |x_j|^2 < \delta_0, \psi(x,t) < \mu \right\} \]

(2.11)

with \(\frac{\varepsilon}{2} < \mu \).

We note that

\[\psi(x,t) > \frac{\varepsilon}{2} \quad \text{if} \quad x_1 > -\kappa \sum_{j=2}^{n} |x_j|^2. \]

(2.12)
In fact, by $x_1 > -\kappa \sum_{j=2}^{n} |x_j|^2$, we have

$$-N\kappa \sum_{j=2}^{n} |x_j|^2 + \frac{1}{2} \sum_{j=2}^{n} |x_j|^2 + \frac{\varepsilon}{2} \leq Nx_1 + \frac{1}{2} \sum_{j=2}^{n} |x_j|^2 + \frac{1}{2} \varepsilon^2 + \frac{\varepsilon}{2} = \psi(x,t).$$

By (2.7), we obtain

$$\frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} + \left(\frac{1}{2} - N\kappa \right) \sum_{j=2}^{n} |x_j|^2 \leq \psi(x,t).$$

In particular, we see by (2.12) that $Q_\mu \neq \emptyset$ if $\mu > \frac{\varepsilon}{2}$. Then we show our key Carleman estimate:

Lemma 1. Let $\|q_j\|_{L^\infty(B_\rho(0,0))}$, $\|r\|_{L^\infty(B_\rho(0,0))} \leq M_2$ for $1 \leq j \leq n + 1$. Under the above assumptions, there exist constants $C = C(p, \varepsilon, M_2) > 0$, $\eta = \eta(p, \varepsilon, M_2) > 0$ and $s_0 = s_0(p, \varepsilon, M_2) > 0$ such that

$$\int_{Q_\varepsilon} (s|\nabla u|^2 + s|\partial_t u|^2 + s^3 u^2) \exp(2s\psi^{-\eta}) dx dt \leq C \int_{Q_\varepsilon} |Au|^2 \exp(2s\psi^{-\eta}) dx dt \quad (2.13)$$

for all $u \in H^2_0(Q_\varepsilon)$ and $s \geq s_0$.

In our Carleman estimate (2.13), choice (2.10) of the weight function is a key and was established in Amirov [2]. In fact, ψ is same as in a Carleman estimate for a parabolic operator (p. 73 in Lavrent’ev, Romanov and Shishatinskii[26]), which is not conventional for the hyperbolic operator. For example, for the unique continuation across flat Γ, Isakov [19] uses the weight function

$$\exp(2s\exp(\eta(-2(x_1 - \beta_1)^2 - \sum_{j=2}^{n} |x_j|^2 - \theta^2 t^2 + \beta_2)))$$

where $\beta_1 > 0$, $\beta_2, \theta > 0$ are constants. His weight function is isotropic with respect to t and all the components $x_1, ..., x_n$. With our choice, we can prove the unique continuation whose character has a similarity to the parabolic case.

Proof of Lemma 1. Let us set

$$t = x_{n+1}, \quad \zeta = (\zeta_1, ..., \zeta_{n+1}), \quad \xi = (\xi_1, ..., \xi_{n+1}),$$

$$\zeta' = (\zeta_1, ..., \zeta_n), \quad \xi' = (\xi_1, ..., \xi_n), \quad \nabla = (\partial_1, ..., \partial_n), \quad \nabla_{x,t} = (\partial_1, ..., \partial_n, \partial_t),$$

$$A_0 = p(x,t) \partial_t^2 - \Delta, \quad A(x,t,\zeta) = p(x,t) \zeta_{n+1}^2 - \sum_{k=1}^{n} \zeta_k^2.$$

Then it is sufficient to prove

$$\int_{Q_\varepsilon} (s|\nabla u|^2 + s|\partial_t u|^2 + s^3 u^2) \exp(2s\psi^{-\eta}) dx dt \leq C \int_{Q_\varepsilon} |A_0 u|^2 \exp(2s\psi^{-\eta}) dx dt \quad (2.14)$$

for all $u \in C_0^\infty(Q_\varepsilon)$ and for all sufficiently large $s > 0$.

In fact, since

$$|Au|^2 \leq |A_0 u|^2 + C(|u|^2 + |\nabla u|^2 + |\partial_t u|^2)$$

in Q_ε by (1.2), estimate (2.14) implies conclusion (2.13) for all $u \in C_0^\infty(Q_\varepsilon)$ by taking s sufficiently large. Since $C_0^\infty(Q_\varepsilon)$ is dense in $H^2(Q_\varepsilon)$, a usual density argument completes the proof.

In order to prove (2.14), we can apply a general result by Hörmander [11], Isakov [18], [19], which gives a sufficient condition on $\psi^{-\eta}$ and A_0 in order that a Carleman estimate holds.
true. Here we use the version by Isakov (e.g., Theorem 3.2.1 in [19]). We set \(\varphi = \psi^{-n} \) and \(A = A(x, t, \zeta) \). By [19], we have to verify: If

\[
A(x, t, \zeta) = 0, \quad \zeta = \xi + is\nabla_x t \varphi, \quad \zeta \neq 0, \quad \xi \in \mathbb{R}^{n+1}, \quad (x, t) \in \overline{Q}_\varepsilon,
\]

then

\[
J(x, t, \zeta) = \sum_{j,k=1}^{n+1} (\partial_j \partial_k \varphi) \frac{\partial A}{\partial \zeta_j} \frac{\partial A}{\partial \zeta_k} + \frac{1}{s} \Im \left(\sum_{k=1}^{n+1} (\partial_k A) \frac{\partial A}{\partial \zeta_k} \right) > 0, \quad (x, t) \in \overline{Q}_\varepsilon.
\]

Here and henceforth \(\Im \) denotes the imaginary part of a complex number. By \(J_1 \) and \(J_2 \), we denote the first and the second terms at the right hand side of (2.16) respectively. First we have

\[
\begin{aligned}
\{ \partial_j \varphi &= -\eta(\partial_j \psi)\psi^{-n-1}, \\
\partial_j \partial_k \varphi &= \eta(\eta + 1)(\partial_j \psi)(\partial_k \psi)\psi^{-n-2} - \eta(\partial_j \partial_k \psi)\psi^{-n-1}, \\
1 \leq j, k \leq n+1, \\
\zeta &= \xi - is\eta\psi^{-n-1}\nabla_x t \psi.
\end{aligned}
\]

Therefore (2.15) is equivalent to

\[
p(\kappa_{n+1}^2 - s^2\eta^2\psi^{-2n-2}(\partial_{n+1} \psi)^2) = |\xi'|^2 - s^2\eta^2\psi^{-2n-2}(\nabla \psi)^2
\]

and

\[
p\kappa_{n+1} \partial_{n+1} \psi = (\xi' \cdot \nabla \psi).
\]

Then, by (2.17) we have

\[
J_1(x, t, \zeta) = \sum_{j,k=1}^{n+1} \eta(\eta + 1)(\partial_j \psi)(\partial_k \psi)\psi^{-n-2} \frac{\partial A}{\partial \zeta_j} \frac{\partial A}{\partial \zeta_k} - \sum_{j,k=1}^{n+1} \eta(\partial_j \partial_k \psi)\psi^{-n-1} \frac{\partial A}{\partial \zeta_j} \frac{\partial A}{\partial \zeta_k} = \eta(\eta + 1)\psi^{-n-2}\left| \sum_{j=1}^{n+1} (\partial_j \psi) \frac{\partial A}{\partial \zeta_j} \right|^2 - \sum_{j=2}^{n+1} \eta\psi^{-n-1} \left| \frac{\partial A}{\partial \zeta_j} \right|^2 = J_{11} + J_{12}.
\]

Here, by (2.17) and (2.19), we have

\[
\sum_{j=1}^{n+1} (\partial_j \psi) \frac{\partial A}{\partial \zeta_j} = 2p(\partial_{n+1} \psi)\kappa_{n+1} - 2(\nabla \psi \cdot \xi') + 2is\eta\psi^{-n-1}(|\nabla \psi|^2 - p|\partial_{n+1} \psi|^2),
\]

so that

\[
J_{11}(x, t, \zeta) = 4s^2\eta^2(\eta + 1)\psi^{-3n-4}(|\nabla \psi|^2 - p|\partial_{n+1} \psi|^2)^2.
\]

Similarly we can calculate to obtain

\[
J_{12}(x, t, \zeta) = -4\eta\psi^{-n-1}\left(\sum_{j=2}^{n+1} |\xi_j|^2 + p^2|\kappa_{n+1}|^2 \right) - 4s^2\eta^2\psi^{-3n-3}\left(\sum_{j=2}^{n+1} |\partial_j \psi|^2 + p^2|\partial_{n+1} \psi|^2 \right)
\]

\[
\geq -4\eta\psi^{-n-1}(|\xi'|^2 + p^2|\kappa_{n+1}|^2) - 4s^2\eta^2\psi^{-3n-3}(|\nabla \psi|^2 + p^2|\partial_{n+1} \psi|^2).
\]

Therefore, by (2.18) we obtain

\[
\begin{aligned}
J_1(x, t, \zeta) &\geq -4\eta\psi^{-n-1}(|\xi'|^2 + p^2|\kappa_{n+1}|^2) \\[4s^2\eta^2\psi^{-3n-4}\left(\eta + 1 \right) \left(N^2 + \sum_{j=2}^{n+1} |x_j|^2 - pt^2 \right)^2 - \psi \left(N^2 + \sum_{j=2}^{n+1} |x_j|^2 + p^2t^2 \right) \right) \\[4s^2\eta^2\psi^{-3n-4}\left(\eta + 1 \right) \left(N^2 + \sum_{j=2}^{n+1} |x_j|^2 - pt^2 \right)^2 - \psi \left(2N^2 + 2 \sum_{j=2}^{n+1} |x_j|^2 + (p^2 - p)t^2 \right) \right) \end{aligned}
\]
Next we can directly calculate

\[J_2(x, t, \zeta) = 2\eta \psi^{-n-1} \left\{ \left(\nabla p \cdot \nabla \psi \right) + p(\partial_t p)(\partial_{n+1} \psi) \right\} \xi_{n+1}^2 + 2(\nabla p \cdot \xi')(\partial_{n+1} \psi) \xi_{n+1} + 2s^2 \eta^3 \psi^{-3n-3} |\partial_{n+1} \psi|^2 \left\{ \left(\nabla p \cdot \nabla \psi \right) - p(\partial_t p)(\partial_{n+1} \psi) \right\}. \] (2.21)

On the other hand, let \((x, t) \in \overline{Q}_\varepsilon\). Then

\[-\kappa \sum_{j=2}^{n} |x_j|^2 \leq x_1 < -\frac{1}{2N} \sum_{j=2}^{n} |x_j|^2 - \frac{1}{2N} t^2 + \frac{\varepsilon}{2N} \leq \varepsilon. \] (2.22)

so that

\[\frac{1 - 2N\kappa}{2N} \sum_{j=2}^{n} |x_j|^2 < \frac{\varepsilon}{2N}, \]

that is,

\[\sum_{j=2}^{n} |x_j|^2 \leq \frac{\varepsilon}{1 - 2N\kappa}. \] (2.23)

By (2.22), we have

\[|x_1| \leq \max \left\{ \frac{\varepsilon \kappa}{1 - 2N\kappa}, \frac{\varepsilon}{2N} \right\}. \] (2.24)

Moreover, by (2.22) and (2.23), we obtain

\[-\kappa \frac{\varepsilon N}{1 - 2N\kappa} + \frac{1}{2} t^2 < N x_1 + \frac{1}{2} t^2 + \sum_{j=2}^{n} |x_j|^2 < \varepsilon, \]

that is,

\[t^2 < \varepsilon + \frac{2\kappa N\varepsilon}{1 - 2N\kappa}. \] (2.25)

Therefore, in terms of (2.8), we have

\[|x|^2 + t^2 \leq \varepsilon^2 \left| \max \left\{ \frac{\kappa}{1 - 2N\kappa}, \frac{1}{2N} \right\} \right|^2 + \frac{\varepsilon}{1 - 2N\kappa} + \varepsilon + \frac{2\kappa N\varepsilon}{1 - 2N\kappa}. \] (2.26)

Hence, by (2.18) and the Schwarz inequality, we obtain

\[-\left\{ \left(\nabla p \cdot \nabla \psi \right) + p(\partial_t p)(\partial_{n+1} \psi) \right\} \xi_{n+1}^2 + 2s^2 \eta^3 \psi^{-3n-3} \left\{ \left(\nabla p \cdot \nabla \psi \right) - p(\partial_t p)(\partial_{n+1} \psi) \right\} \xi_{n+1} \]

\[\geq - \left(\left(\nabla p \cdot \nabla \psi \right) + p(\partial_t p)(\partial_{n+1} \psi) \right) \xi_{n+1}^2 - |\nabla p||\partial_{n+1} \psi|(|\xi'|^2 + |\xi_{n+1}|^2) \]

\[= - \left(\left(\nabla p \cdot \nabla \psi \right) + p(\partial_t p)(\partial_{n+1} \psi) + |\nabla p||\partial_{n+1} \psi|(|\xi'|^2 + |\xi_{n+1}|^2) \right) \xi_{n+1}^2 \]

\[- |\nabla p||\partial_{n+1} \psi|s^2 \eta^3 \psi^{-2n-2} (|\nabla \psi|^2 - p|\partial_{n+1} \psi|^2). \]

Therefore, in terms of (2.26), inequality (2.21) yields

\[J_2(x, t, \zeta) \geq -2\eta \psi^{-n-1} \left\{ \left(\nabla p \cdot \nabla \psi \right) + p(\partial_t p)(\partial_{n+1} \psi) + |\nabla p||\partial_{n+1} \psi|(|\xi'|^2 + |\xi_{n+1}|^2) \right\} \xi_{n+1}^2 + 2s^2 \eta^3 \psi^{-3n-3} \left\{ \left(\nabla p \cdot \nabla \psi \right) - p(\partial_t p)(\partial_{n+1} \psi) \right\} \xi_{n+1} \]

\[\geq -2\eta \psi^{-n-1} \left\{ N(\partial_1 p) + 2(M_1^2 + M_1)\sqrt{\mu_0(\varepsilon)} \right\} \xi_{n+1}^2 - 2s^2 \eta^3 \psi^{-3n-3} \times C(N, M_1, \delta_0). \] (2.27)
Here and henceforth $C(N, M_1, \delta_0) > 0$ denotes generic constants which are independent of $\eta > 0$ and $s > 0$. Similarly, by (2.26), we have $(p + 1)c_{n+1}^2 < (M_0 + 1)c_{n+1}^2$ and and
\[
(\eta + 1) \left(N^2 + \sum_{j=2}^n |x_j|^2 - p^2 \right)^2 - \left(2N^2 + 2\sum_{j=2}^n |x_j|^2 + (p^2 - p)^2 \right) \psi \\
\geq (\eta + 1)(N^2 - M_1\mu_0(\varepsilon))^2 - C(N, M_1, \delta_0),
\]
so that (2.20) implies
\[
J_1(x, t, \zeta) \geq 4s^2\eta^3\psi^{-3\eta - 4}\eta(N^2 - M_1\mu_0(\varepsilon))^2 - C(N, M_1, \delta_0))
\]
Estimates (2.27) and (2.28) yield
\[
J(x, t, \zeta) \geq 2\eta^2\psi^{-1}\epsilon_n^2(1 - N(\partial tp) - 2(M_1^2 + M_0) - 2(M_1^2 + M_1)\sqrt{\mu_0(\varepsilon)}) \\
+ 4s^2\eta^2\psi^{-3\eta - 3}\eta(N)\mu_0(\varepsilon) - (1 + \varepsilon)C(N, M_1, \delta_0).
\]
By the first inequality in (2.9) and (2.6), we have
\[
-N(\partial tp) - 2(M_1^2 + M_0) - 2(M_1^2 + M_1)\sqrt{\mu_0(\varepsilon)} \\
> \alpha N - 2(M_1^2 + M_0) - 2(M_1^2 + M_1)\sqrt{\mu_0(\varepsilon)} \equiv \mu_1(N, M_1, \delta_0, \varepsilon) > 0.
\]
Moreover, by the second inequality in (2.9), we choose $\eta > 0$ sufficiently large, so that
\[
\eta(N^2 - M_1\mu_0(\varepsilon))^2 - (1 + \varepsilon)C(N, M_1, \delta_0) \equiv \mu_2(N, M_1, \delta_0, \varepsilon) > 0.
\]
Hence we obtain
\[
J(x, t, \zeta) \geq 2\eta^2\psi^{-1}\epsilon_n^2\mu_1(N, M_1, \delta, \varepsilon) + 4s^2\eta^2\psi^{-3\eta - 3}\mu_2(N, M_1, \delta_0, \varepsilon)
\]
for $(x, t) \in Q_{e}$ if (2.15) holds. Thus the proof of Lemma 1 is complete.

3. Proof of Theorem 2

It is sufficient to prove Theorem 2 because Theorem 1 follows directly from Theorem 2. On the basis of Lemma 1, we introduce a cut-off function and apply a usual argument (e.g., Chapter VII in Hörmander [11], Chapter 3 in Isakov [19]).

Since Δ is invariant with respect to rotations, translation and symmetric transforms of the coordinate system, without loss of generality, we may assume that $x_0 = (0, \ldots, 0)$, $\nu(x_0) = (1, 0, \ldots, 0)$ and that Γ is given by (2.1) near 0. Next considering the Taylor expansions of $x_1 = -\kappa \sum_{j=2}^n |x_j|^2$ and $x_1 = R - \sqrt{R^2 - \sum_{j=2}^n |x_j|^2}$ up to the terms of the second orders, we can verify that if D^+ satisfies the exterior sphere condition at x_0 with $R > 0$ and $0 < \kappa \leq \frac{1}{2R}$, then there exist a neighbourhood of V_0 of x_0 and a paraboloid $P = \{x; x_1 = -\kappa \sum_{j=2}^n |x_j|^2\}$ which is tangential to Γ at x_0 and that $P \cap V_0 \subset D^-$. Therefore, by (1.4), we can choose $\kappa > 0$, δ_0, N, ε such that (2.3) - (2.4) and (2.6) - (2.9) hold. Let ψ be defined by (2.10) and let us set $\varphi = \psi^{-\eta}$ for sufficiently large $\eta > 0$.

First we will determine the boundary of Q_{e}. By (2.10) and (2.11), for $0 < \mu \leq \varepsilon$, we have
\[
\partial Q_{\mu} = \left\{ (x, t) \in \mathbb{R}^{n+1}; x_1 = \gamma(x_2, \ldots, x_n), \sum_{j=2}^n |x_j|^2 < \delta_0, \psi(x, t) < \mu \right\}
\]
\[
\bigcup_{\mu} \left\{ (x, t) \in \mathbb{R}^{n+1}; x_1 > \gamma(x_2, \ldots, x_n), \sum_{j=2}^n |x_j|^2 = \delta_0, \psi(x, t) = \mu \right\}
\]
\[
\bigcup_{\mu} \left\{ (x, t) \in \mathbb{R}^{n+1}; x_1 > \gamma(x_2, \ldots, x_n), \sum_{j=2}^n |x_j|^2 = \delta_0, \psi(x, t) < \mu \right\}
\]
\[
= \partial Q_{\mu}^1 \cup \partial Q_{\mu}^2 \cup \partial Q_{\mu}^3.
\]
We can prove that $\partial Q_0^1 = \emptyset$. In fact, since $x_1 > -\kappa \sum_{j=2}^n |x_j|^2$ and $\sum_{j=2}^n |x_j|^2 \leq \delta_0$ by (2.23), we have

$$-2N\kappa \sum_{j=2}^n |x_j|^2 + \sum_{j=2}^n |x_j|^2 + t^2 < 2Nx_1 + \sum_{j=2}^n |x_j|^2 + t^2 = 2\psi(x,t) - \varepsilon < 2\mu - \varepsilon \leq \varepsilon,$$

that is, $(1 - 2N\kappa)\delta_0 + t^2 < \varepsilon$ by $1 - 2N\kappa > 0$. Moreover (2.8) implies $\frac{\varepsilon}{1 - 2N\kappa} < \delta_0$, so that $\varepsilon + t^2 < \varepsilon$, which is impossible.

Moreover $\partial Q_0^1 \subset \overline{Q_\varepsilon}$, $j = 1, 2$, and it follows from (2.25) that $(x,t) \in \overline{Q_\varepsilon}$ implies

$$|t| \leq \left(\varepsilon + \frac{2\kappa\varepsilon}{1 - 2N\kappa} \right) \equiv t_0,$$

so that

$$\partial Q_0^1 \subset \{ x; x_1 = \gamma(x_2, \ldots, x_n) \} \times \{ |t| \leq t_0 \}, \quad \partial Q_0^1 \subset \{ x; \psi(x,t) = \mu \} \quad \text{for } 0 < \mu \leq \varepsilon. \quad (3.3)$$

Now we will proceed to the proof of Theorem 2. By the extension theorem, there exists $F \in H^2(D^+ \times (-T,T))$ such that

$$\begin{cases}
rlF = g, & \frac{\partial F}{\partial n} = h \quad \text{on } \Gamma \times (-T,T), \\
\|F\|_{H^2(D^+ \times (-T,T))} \leq C \left(\|g\|_{H^2(\Gamma \times (-T,T))} + \|h\|_{H^2(-T,T;L^2(\Gamma))} \right) + \|h\|_{L^2(-T,T;H^2(\Gamma))} \equiv CD.
\end{cases} \quad (3.4)$$

Set $u - F = v$, and we have

$$\begin{cases}
Av = f - AF & \text{in } D^+ \times (-T,T), \\
v = \frac{\partial v}{\partial n} = 0 & \text{on } \Gamma \times (-T,T).
\end{cases} \quad (3.5)$$

Let us fix $0 < \varepsilon_0 < \frac{\varepsilon}{6}$ arbitrarily and let us introduce a cut-off function $\chi = \chi(x,t) \in C_0^\infty(\mathbb{R}^{n+1})$ such that $0 \leq \chi \leq 1$ and

$$\chi(x,t) = \begin{cases} 1, & \psi(x,t) \leq \varepsilon - 2\varepsilon_0, \\
0, & \varepsilon - \varepsilon_0 \leq \psi(x,t) \leq \varepsilon. \end{cases} \quad (3.6)$$

We set $w = \chi v$. Then, by the choice of ε, N, κ, noting (3.2) - (3.4), we see that $w \in H^2_0(Q_\varepsilon)$. By (3.5), we have

$$Aw = 2p(\partial_t v)(\partial_t \chi) + pv(\partial_t^2 \chi) - 2\nabla v \cdot \nabla \chi - v \Delta \chi - \sum_{j=1}^{n+1} (q_j \partial_j \chi) v + \chi (f - AF) \quad \text{in } Q_\varepsilon.$$

Henceforth $C > 0$ denotes generic constants which are independent of $s > 0$. Therefore we can apply Lemma 1 to Aw, so that

$$\int_{Q_\varepsilon} (s^3 |w|^2 + s|\nabla w|^2 + s|\partial_t w|^2) e^{2s\varepsilon} \, dx \, dt \leq C \int_{Q_\varepsilon} \left| 2p(\partial_t v)(\partial_t \chi) + pv(\partial_t^2 \chi) - 2\nabla v \cdot \nabla \chi - v \Delta \chi - \sum_{j=1}^{n+1} (q_j \partial_j \chi) v \right|^2 e^{2s\varepsilon} \, dx \, dt + C \int_{Q_\varepsilon} |f - AF|^2 e^{2s\varepsilon} \, dx \, dt.$$
By (3.6), the first integral at the right hand side is not zero only if
\(\varepsilon - 2\varepsilon_0 \leq \psi(x,t) \leq \varepsilon - \varepsilon_0 \),
that is, \(\psi(x,t)^{-n} \leq (\varepsilon - 2\varepsilon_0)^{-n} \). Hence (3.4) yields
\[
\int_{Q_\varepsilon} (s^3|\nabla v|^2 + s|\partial_t v|^2)e^{2s\varphi}dxdt \\
\leq C\|u\|_{H^1(Q_\varepsilon)}^2 \exp(2s(\varepsilon - 2\varepsilon_0)^{-n}) + Ce^{2sC}\left(\|f\|_{L^2(Q_\varepsilon + \mathcal{D})}^2\right)
\]
for all large \(s > 0 \). Since
\[
\int_{Q_\varepsilon} (s^3|\nabla v|^2 + s|\partial_t v|^2)e^{2s\varphi}dxdt \\
\geq \exp(2s(\varepsilon - 3\varepsilon_0)^{-n})\int_{Q_{\varepsilon - 3\varepsilon_0}} (s^3|\nabla v|^2 + s|\partial_t v|^2)e^{2s\varphi}dxdt,
\]
by means of (3.6), we obtain
\[
\exp(2s(\varepsilon - 3\varepsilon_0)^{-n})\int_{Q_{\varepsilon - 3\varepsilon_0}} (s^3|\nabla v|^2 + s|\partial_t v|^2)dxdt \\
\leq C\|u\|_{H^1(Q_\varepsilon)}^2 \exp(2s(\varepsilon - 2\varepsilon_0)^{-n}) + Ce^{2sC}\left(\|f\|_{L^2(D^+(-T,T))}^2 + \mathcal{D}\right),
\]
that is, there exists a constant \(s_0 > 0 \) such that
\[
\|v\|_{H^1(Q_{\varepsilon - 3\varepsilon_0})}^2 \leq C\|u\|_{H^1(Q_\varepsilon)}^2 e^{-s_0\mu_3} + Ce^{2sC}\mathcal{D}_1 \tag{3.7}
\]
for all \(s \geq s_0 \). Here we set \(\mu_3 = 2((\varepsilon - 3\varepsilon_0)^{-n} - (\varepsilon - 2\varepsilon_0)^{-n}) > 0 \) and \(\mathcal{D}_1 = \mathcal{D} + \|f\|_{L^2(D^+(-T,T))}^2 \).

In (3.7), setting \(s + s_0 \) by \(s \), we replace \(C \) by \(C' = Ce^{2s_0C} \), so that we see that (3.7) holds for all \(s \geq 0 \). If \(\mathcal{D}_1 = 0 \) in (3.7), then \(u = v \) and \(\|u\|_{H^1(Q_{\varepsilon - 3\varepsilon_0})}^2 \leq C\|u\|_{H^1(Q_\varepsilon)}^2 e^{-s_0\mu_3} \) for all \(s > 0 \), so that letting \(s \to \infty \), we have \(u = 0 \) in \(Q_{\varepsilon - 3\varepsilon_0} \). Therefore conclusion (1.10) holds. Next let \(\mathcal{D}_1 > 0 \). If \(\|u\|_{H^1(Q_\varepsilon)}^2 < \mathcal{D}_1 \), then conclusion (1.10) is obtained already.

If \(\|u\|_{H^1(Q_\varepsilon)}^2 > \mathcal{D}_1 \), then we can set \(s = \frac{1}{2c_3 + \mu_3} \log \frac{\|u\|_{H^1(Q_\varepsilon)}^2}{\mathcal{D}_1} > 0 \). Then (3.7) yields
\[
\|v\|_{H^1(Q_{\varepsilon - 3\varepsilon_0})}^2 \leq 2C\mathcal{D}_1 e^{2s_0\mu_3} \|u\|_{H^1(Q_\varepsilon)}^2 e^{-s_0\mu_3}.
\]
By definition (2.11) of \(Q_{\varepsilon - 3\varepsilon_0} \) and \(\varepsilon - 3\varepsilon_0 > \frac{1}{2}\varepsilon \), we see that \(Q_{\varepsilon - 3\varepsilon_0} \) is a non-empty open set. Hence (1.10) follows. Thus the proof of Theorem 2 is complete.

Acknowledgments

The second named author was supported partially by Grant 15340027 from the Japan Society for the Promotion of Science and Grant 15654015 from the Ministry of Education, Cultures, Sports and Technology. The authors thank Dr. Dan Tiba for his invaluable comments.

References

[1] Alinhac S 1983 Non-unicité du problème de Cauchy *Annals Math.* 117 77-108

[2] Amirov A 1988 *Integral Geometry and Inverse Problems for Kinetic Equations* Doctoral dissertation (in Russian)

[3] Amirov A 2001 One class of inverse problems for an ultrahyperbolic equation *Doklady Math.* 64 22-4

[4] Amirov A 2001 *Integral Geometry and Inverse Problems for Kinetic Equations* (Utrecht: VSP)

[5] Baudouin L and Puel J-P 2002 Uniqueness and stability in an inverse problem for the Schrödinger equation *Inverse Problems* 18 1537-54

[6] Bellassoued M 2004 Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation *Inverse Problems* 20 1033-52

[7] Bellassoued M and Yamamoto M Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation *to appear in J. Math. Pures Appl.*

[8] Bukhgeim A L 2000 *Introduction to the Theory of Inverse Problems* (Utrecht: VSP)
[9] Bukhgeim A L and Klibanov M V 1981 Global uniqueness of a class of multidimensional inverse problems
Soviet Math. Dokl. 24 244-7
[10] Eller M, Isakov V, Nakamura G and Tataru D 2002 Uniqueness and stability in the Cauchy problem for
Maxwell and elasticity systems Nonlinear Partial Differential Equations and their Applications Vol. 14
(Collège de France Seminar) ed Elsevier and Amsterdam pp 329-49
[11] Hörmander L 1963 Linear Partial Differential Operators (Berlin: Springer-Verlag)
[12] Hörmander L 1997 On the uniqueness of the Cauchy problem under partial analyticity assumptions Geometric
Optics and Related Topics Vol 32 Progr. Nonlinear Differential Equations Appl ed Birkhäuser and Boston
pp 179-219
[13] Imanuvilov O, Isakov V and Yamamoto M 2003 An inverse problem for the dynamical Lamé system with
two sets of boundary data Comm. Pure Appl. Math 56 1366-82
[14] Imanuvilov O and Yamamoto M 2001 Global Lipschitz stability in an inverse hyperbolic problem by interior
observations Inverse Problems 17 717-28
[15] Imanuvilov O and Yamamoto M 2001 Global uniqueness and stability in determining coefficients of wave
equations Commun. in Partial Differential Equations 26 1409-25
[16] Imanuvilov O and Yamamoto M 2003 Determination of a coefficient in an acoustic equation with a single
measurement Inverse Problems 19 151-71
[17] Imanuvilov O and Yamamoto M 2005 Carleman estimates for the non-stationary Lamé system and the
application to an inverse problem ESAIM:COCV 11 1-56
[18] Isakov V 1993 Carleman type estimates in an anisotropic case and applications J. Diff. Equations 105 217-38
[19] Isakov V 1998 Inverse Problems for Partial Differential Equations (Berlin: Springer-Verlag)
[20] Khâidarov A 1987 Carleman estimates and inverse problems for second order hyperbolic equations Math.
USSR Sbornik 58 267-77
[21] Khâidarov A 1989 On stability estimates in multidimensional inverse problems for differential equations
Soviet, Math. Dokl. 38 614-7
[22] Klibanov M V 1992 Inverse problems and Carleman estimates Inverse Problems 8 575-96
[23] Klibanov M V and Timonov A 2004 Carleman Estimates for Coefficient Inverse Problems and Numerical
Applications (Utrecht: VSP)
[24] Klibanov M V and Yamamoto M Lipschitz stability of an inverse problem for an acoustic equation to appear
in Appl. Anal
[25] Kumano-go H 1963 On an example of non-uniqueness of solutions of the Cauchy problem for the wave
equation Proc. Japan Acad. 39 578-82
[26] Laven't'ev M M, Romanov V G and Shishat-skiiS P 1986 Ill-posed Problems of Mathematical Physics and
Analysis (Providence, Rhode Island: American Mathematical Society)
[27] Lerner N 1988 Uniqueness for an ill-posed problem J. Diff. Equations 71 255-60
[28] Rauch J 1991 Partial Differential Equations (Berlin: Springer-Verlag)
[29] Robbiano L 1991 Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques Commun.
in Partial Differential Equations 16 789-800
[30] Tataru D 1995 Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s
theorem Commun. in Partial Differential Equations 20 855-84
[31] Yamamoto M 1999 Uniqueness and stability in multidimensional hyperbolic inverse problems J. Math. Pures
Appl. 78 65-98