مقاله زیرمی‌شود

تأثیر قارچ‌های انتخابی بر زوال بذر سویا در شرایط مختلف نگهداری و رطوبت بذر

سامان شیدائی 1, 2، آدین حمیدی 1، حسین صادقی 1، بیتی اسکویی 1، ایلا زارع 1

چکیده می‌باشد

مقدمه: زمان و درک خصوصیات چپ‌ساده‌های که طول عمر بذر را کنترل می‌کند، در ایالت هم‌اکنون زیادی است. شرایط نگهداری نامحسوس سپس در درختنی بذرهای این بذر با افزایش نشانه‌های زوال بذر به بهبود وضعیت آن به تدریج بدل و نهایتاً موجب جامعه می‌باشد. در حالی که عواملی مانند آب و آغشته، محصول و امکانات اسنگرداری می‌باشد که زوال بذر را در نظر داشته و میزان آبگرفتگی به قارچ‌ها یا گیاه‌شناسی پیش‌بینی می‌گردد.

مواد و روش‌ها: به‌منظور بررسی تأثیر قارچ‌های انتخابی بر زوال بذر سویا در شرایط مختلف نگهداری زیر به کار بردهم: بذر سویا در شرایط مختلف نگهداری، در طی انسداد و در صورت گفته شد. در این مطالعه، منابع مختلف برای نگهداری بذر سویا در این شرایط به کار رفته است. شرایط مختلف نگهداری شامل شرایط مختلف گردان و در انسداد به‌منظور بررسی تأثیر شرایط مختلف نگهداری و رطوبت اولیه بر رشد قارچ‌ها و ارتباط بین آبگرفتگی به قارچ‌های انتخابی و کیفیت بذر مورد بررسی قرار گرفته است.

۱۳۹۸/۱۲/۲۰، تاریخ پذیرش: ۱۲/۱۳۹۸/۱۲/۲۰

DOI: 10.29252/yujs.6.1.65

CrossMark
در سال‌های اخیر بسیاری از کشورهای در حال توسعه از کلیه این تلاش‌ها کمتری، برای افزایش میزان تولید بذر انجام داده‌اند. اما بعد از شرایط تک‌حدودی ناماسی پس از برداشت، کیفیت بذر در طی این‌بارداری کاهش می‌یابد. که قسمتی از آن بدن در حال توسعه شیلات می‌کند. در این‌بارداری نیز، میزان جوانگری را کاهش و موجب کم‌بودن بذر در ایران شود. چنان‌که بذر در طرف درازه را در مزرعه توپ و کنون‌داری با شرایط معیوب می‌کند. اما این‌بارداری نیز در طرف وارد، گردند و می‌تواند از این طرف دیگر ممنک است‌ارقامی که کمتری برای شرایط محلی هستند، خریداری گردید که ماجرای آن کاهش و ضعف محصول می‌باشد. ناز چلگویی از خصائص این‌بارداری در بذر‌های این‌بارداری توجه خاصی را می‌طلبد.

روش‌های متنوع از مهون‌بان اولار تک‌حدودی بر
قابلیت این‌بارداری می‌باشد. با افزایش رطوبت بذر سرعت
پیبین افزایش می‌باید و به‌دلیل نیز قابلیت جوانگری
کاهش می‌یابد. در شرایطی که بذرها در رطوبت 14/20
% این‌بارداری می‌شوند، میزان رشد قارچ‌ها افزایش
می‌یابد و در رطوبت 18/10% علاوه بر افزایش میزان
شرایط قارچ‌ها، نقص و گرما نیز افزایش می‌یابد که این
شرایط به زوال شدیدتر بذرها در طی این‌بارداری منجر
می‌گردد. (آگوارال، 1995). همچنین رطوبت بذر کمتر
از 5/0 باعث تجزیه‌سازی غشا و در نتیجه تسریع زوال
می‌گردد. رطوبت مهون‌بان و تک‌حدودی نسبت به
دار در طی رطوبت محیط به‌طور مسئول روز رطوبت
بذر اثر دارد. حاکم نیز این‌بارداری با رطوبت بذر
نیز این‌بارداری است‌افزایش می‌یابد و
نیز این‌بارداری
بزرگ. (آگوارال، 2008).

میزان طول عمر بذر و مدت زمان تک‌حدودی آن به
کاهش سبب بذر به‌طور سیستمیکی که از زوال
فیبرولیز و پانولیزیک آن جلوگیری کند. محتوای
رابطی‌باید بذر سبب افزایش سرعت تنفس و رشد و
نیز قارچ‌ها می‌شود. افزایش سرعت تنفس بالا

1. Agrawal
2. Ellis
3. Hartman
4. Kakde and Chavan
5. Bewley
6. Malaker
روغن بذر کاهش می‌دهد. آنها نشان دادند که در طی دوره انبارگردانه میزان کاهش در کروپهیدرات‌ها با افزایش جمعیت قارچ‌های انباری در همه بذرها ممکن است در معرض بود. آنها نتیجه گرفتند که نئینی کاهش‌دهنده مصرف کروپهیدرات‌ها توسط قارچ‌های انباری به‌عنوان یک منبع ارزش است. میزان میزان در اولین ماه آزمایش کاهش داشت. در آزمایش انجام شده بودن، پس از انبار کردن، لازم بود که این کاهش‌دهنده را متفاوت بود. فاکتورهایی شامل میزان جمعیت قارچ‌ها و میزان پروتئین بذرها، به‌طور کلی تغییر کنند. میزان مصرف کروپهیدرات‌های گزارش‌شده روند‌پذیر به‌طور کلی در استان اردبیل تغییر معنی‌داری را نشان دادند. این نتایج اشاره دارد که مصرف کروپهیدرات‌ها به‌طور کلی تأثیری بر رشد و عطریت بذرها داشته است.

مواد و روش‌ها

به‌منظور بررسی و ارزیابی زوال بذر سویای رقم ویلیام تولیدی در استان اردبیل، تحقیق محصول آزمایش‌های فاکتورال بر پایه طرح کاملاً تصویفی در 4 نگاره در 6 نگاره مهاجم کنی به‌طور متساوی تجهیز، ثابت و گویا، بذر و نهال اجرا گردید. فاکتورهای آزمایش شامل رطوبت بذر و شارط نگهداری بذر بود. میزان رطوبت اولیه بذر شارط رطوبت باین (100%)، رطوبت متوسط (120%) و رطوبت بالا (140%) به‌عنوان فاکتور اول و دو شرایط انبارگردان شامل انبار مورد استفاده برای نگهداری بذر در محل و انبار کنترل شده نگهداری بذر در میزان شد. انبار کنترل شده

1 Nandi
2 Harman and Nash
3 Aspergillus niger
4 Aspergillus flavus
5 Alternaria dianthicola
6 Fusarium oxysporum
7 Fusarium equiseti
8 Penicillium digitatum
9 Penicillium chrysogenum
10 Kakde and Chavan
11 Bhattacharya and Raha
شیدانی و همکاران: تأثیر فاصله‌های انباری بر زوال بذر سویا در شرایط مختلف تکه‌داری

(درصد جوانه‌زی × میانگین طول گیاهه) = SVI

آزمون گیاهه
روش بالاتر یکی از روش‌های تشخیص فاصله‌های بذر در بافتی که بر اساس تکه‌داری روی کاغذ صافی مرطوب در مدت 1-10 روز در تحت شرایط خاص می‌باشد؛ برای تشخیص دامنه و سیاست برای تدوین و یا نمونه‌گیری شستن در مدت 24 ساعت از این روی بذر در این روش 400 عدد بذر از هر نمونه مورد تعیین قرار گرفت. سپس از کاشت‌های عدد بذر در هر ظرف پی. بر تی. با خاک با انتی‌کش با دمای 5-30 درجه سانتی‌گراد در 12 ساعت تا 24 ساعت روشنایی انتقال داده شد. نور مورد استفاده نور 10-20 کورسنر بی‌دود و 30 한‌سانتی‌متر. بذرها در زیر استروپیکسکیس مدل Micros بر روی کاغذ گردن‌بندی شدند. خصوصیات قرار، نحوه رشد و نوع اندام فاصله تشکیل دهنده مشاهده و نتایج گردید. شناسایی فاصله یا شدید یافته با استفاده از گیاهه تشخیص در زیر استروپیکسکیسکیس انجام شد. همچنین میزان آلودگی بذرها به شمارش تعداد بذرها در خود به نسبت 1% بذرها مطالعه شده برآورد گردید (شیمی و کنگسالد 2000-2009).

اندازه‌گیری فاصله‌های محلول
برای اندازه‌گیری فاصله‌های محلول کل از روی فلز‌آسید سولفوریک (انگلیسی شیمی دانان تحلیل گر) 1995 با کمی تغییر استفاده شد، پس از اضافه کردن اتانول 80/20 گرم شده، نمونه سانترپیوز شدند. در مرحله بعد محلول سولفات روح به پنج نگهداری در درجه حرارت هیدروکسید باریک 3/6 نرم در مدت 24 ساعت در نمونه‌ها

3 Abdul-baki and Anderson
4 Mathur and Kongsdal
5 AOAC

1 ISTA
2 SVI
جدول 1. میانگین دما و رطوبت نسبی انبار نگهداری بذر در مغان طی ماههای ابزارکردن

ماههای سال	دی	بهمن	اسفند	فروردین	اردیبهشت	خرداد	تیر
رطوبت نسبی (%)	77.0	75.9	76.0	67.5	69.1	65.0	62.5
میانگین دما (°C)	4.0	7.9	8.8	14.4	21.0	23.6	26.7
کمینه دما (°C)	-5.2	-0.4	-3.0	1.4	5.0	11.4	15.4
بیشینه دما (°C)	15.8	21.0	28.2	28.2	31.4	35.8	37

نتایج و بحث

بررسی تأثیر رطوبت اولیه بذر و شرایط انبارکردن بر آلوگدی قارچی بذرها

نتایج تجزیه واریانس داده‌ها (جدول 3) نشان داد که برهمکنش شرایط نگهداری بذر در رطوبت اولیه بذر برای کلیه صفات مورد بررسی در سطح 1 درصد معنی‌دار نبود. همچنین مقایسه میانگین‌ها مشخص نمود (جدول 3) که آلوگدی بذر به قارچ آسپریلیوس فلاوس و پنیسلیوم در رطوبت 16 درصد در هر دو شرایط نگهداری بذر بالاترین بود. در شرایط کنترل شده تفاوت معنی‌داری بین رطوبت 10 و 12 درصد از نظر آلوگدی به قارچ آسپریلیوس فلاوس و پنیسلیوم وجود نداشت، ولی در انبار معانی معنی‌داری بین کلیه سطوح رطوبتی وجود داشت و با افزایش رطوبت بذر میزان آلوگدی به این قارچ‌ها افزایش معنی‌داری نشان داد.

در مقایسه بین دو شرایط نگهداری بذر مشخص گردید که درصد آلوگدی به قارچ آسپریلیوس فلاوس و پنیسلیوم در شرایط نگهداری کنترل شده بطور معنی‌داری نسبت به انبار معانی در کلیه سطوح رطوبتی کمتر بود (جدول 3)。

۱Bradford
۲Comassie Brilliant Blue G-250

اضافه شد. محلول پنج درصد فلز به عصاره رو شناور و سپس اسمیدسولفوریک 98% به هر یک از نمونه‌ها اضافه شد. پس از این مرحله در صورت وجود قند محلول در هر یک از نمونه‌ها، رنگ محلول به سمت نارنجی تغییر می‌کند. پس از ۴۰ دقیقه و با تنشی رنگ قهوه‌ای مایل به زرد، میزان جذب نور با اسپکتروفتوترم (طول موج ۴۸۵ نانومتر) قانونی شد.
جدول 2. تجزیه واریانس (میانگین مربعات) صفات اندازه‌گیری شده در آزمون بلاتر و آزمون جوانزی استاندارد

صفات اندازه‌گیری	سطح معنی‌داری	آزمون	سلیقه	واریانس	ضریب تغییر	شاخص بهینه	کیفیت SVI
رطوبت بذر	\(\times 2 \)	28884.87**	1979.29**	883.04**	4479.12**	3685.50**	2276351**
شرایط نگهداری بذر	\(\times 1 \)	3528.37**	1148.17**	1218.37**	2380.04**	864.00**	486395**
رطوبت*شرایط نگهداری	\(\times 2 \)	298.62**	66.54**	142.62**	378.79**	462.50**	169345**
درصد ضریب تغییرات	C.V. (%)	7.06	10.40	17.62	8.79	9.12	11.20

** معنی‌دار در سطح احتمال 1 درصد

جدول 3. مقایسه میانگین اثر متغیران شرایط نگهداری و رطوبت بذر بین صفات اندازه‌گیری شده در آزمون بلاتر و آزمون جوانزی استاندارد

شرایط نگهداری بذر	سلیقه	واریانس	ضریب تغییر	شاخص بهینه	کیفیت SVI		
کنترل شده	25.00e	1.25f	0.00e	0.00c	1.00c	81.50a	1702a
controlled	29.25e	5.50e	2.50e	5.25d	5.25d	78.00a	1072c
انبار مغان	50.00c	27.50b	18.75c	32.50b	52.50b	52.50b	893d
Moghan warehouse	36.25d	8.50d	7.50d	7.50d	7.50d	79.50a	1585b

Means in each column with the same letter are not significantly different based on LSD test.

درصد نشان داد که میزان آلوگی به قارچ آسپرژیل فلورس در انبار مغان بین بذر های با رطوبت ۱۰ الی ۲۰ درصد نسبت به بذر های با رطوبت ۵ از رشته ۱۴۵ و ۱۵۵ درصد به دو در شرایط کنترل شده افزایش سطح آلوگی به قارچ آسپرژیل فلورس و پنیسیلوپس در رطوبت‌های بالای ۱۲ درصد اتفاق افتاد در حالت که در انبار مغان با توجه به دما و رطوبت نسبی بالا شرایط برای فعالیت قارچ‌ها حتی در رطوبت‌های اولیه با بذر مرها می‌باشد ولی رطوبت اولیه بذر نشان می‌دهد.

نتایج نشان داد که میزان آلوگی به قارچ آسپرژیل فلورس در انبار مغان بین بذر های با رطوبت ۱۴ درصد نسبت به بذر های با رطوبت ۱۰ الی ۲۰ درصد هم‌ارز و ۵ درصد به دو در شرایط کنترل شده افزایش سطح آلوگی به قارچ آسپرژیل فلورس و پنیسیلوپس در رطوبت‌های بالای ۱۲ درصد اتفاق افتاد در حالت که در انبار مغان با توجه به دما و رطوبت نسبی بالا شرایط برای فعالیت قارچ‌ها حتی در رطوبت‌های اولیه با بذر مرها می‌باشد ولی رطوبت اولیه بذر نشان می‌دهد.
نیز مساعده بود که مکان در انتهای گردش سریع‌تری دارند، این رشد در دمای کمتر از ۵ درجه متوسط می‌شود (ماه و مه‌هار). (۲۰۰۴) این نتایج مؤید این موضوع است که بذرها با رطوبت بالا در انبار معان دارای سرعت زوال بسیار بالاتری می‌باشند که باعث کاهش سرعت در کیفیت بذر می‌گردد و تغییرات این بذر در شرایط کنترل شده سپس تأخیر در روز بذر می‌گردد.

تفعیل‌کننده کیفیت بذر

بررسی‌ها نشان داد که کاهش کیفیت بذر با افزایش آلوگذوش به قارچ‌ها از یک روند مشابه پروپی می‌کند. در هر دو انبار نگهداری بذر با افزایش میزان رطوبت اولیه و همچنین میزان آلوگذوش به قارچ‌های آسپرژیلوس فلانوس، آسپرژیلوس نیگر، پنیسیلوس و فوزولیوم، درصد جوانزنی و شاخص کیفیتی کاهش یافته. بررسی نتایج نشان داده که در انتظار کشیده درصد جوانزنی بین رطوبت ۱۰ و ۱۴ درصد تفاوت معنی‌داری نداشت. ولی در رطوبت بذر ۲۵ درصد باعث کاهش درصد جوانزنی به میزان ۳۵/۶ درصد نسبت به رطوبت ۱۰ درصد شد (جدول ۳).

همچنین در انتظار معان نسبت به انبار کنترل شده با افزایش در میزان رطوبت بذر و قارچ‌های انباری کاهش بیشتری در کیفیت بذر مشاهده شد. البته این درصد جوانزنی بذری در رطوبت ۲۵ و ۳۵ درصد کاهش نشان داد. میزان کاهش شاخص کیفیتی گیاه‌های آلوگذوش در انتظار معان نسبت به انبار کنترل شده با شدت بیشتری اثر افتاد و میزان کاهش شاخص بینه گیاه‌های آلوگذوش در انتظار معان نسبت به انبار کنترل شده ۱۴ درصد تفاوت معنی‌داری نداشت. ولی در انتظار معان درصد مشاهده شد. این مسئله می‌تواند تأکیدی بر نشان‌گری کاهش قارچ‌های انباری بکیفیت بذر باشد. در انتظار معان که کاهش بیشتری در قوه نامه و پنیه بذر انتظار فاز شرایط برای رشد و نمو و تغییرات قارچ‌های آلوگذوش ممکن نبود.

1 Ma
شیدانی و همکاران: تأثیر عارضه انباری بر زوال بذر سویا در شرایط مختلف نگهداری...

محتوی قندهای محول
مقایسه میانگین داده‌ها (شکل 1) نشان داد بذرهای نگهداری شده در شرایط کنترل شده به رطوبت اولیه ۱۰ و ۱۲ درصد بیشتر معنی‌دار میزان قندهای محول بیشتری داشتند. میزان قندهای محول در انبار معنی‌دار نسبت به بذرهای نگهداری شده در شرایط کنترل شده در همان سطح رطوبت اولیه بذر به معنی معنی‌داری که باعث بهبود کیفیت بذر در این شرایط می‌توان گفت با افزایش زوال بذر از میزان قندهای محول در طی انبار کنترل کاسته شد و میزان قندهای محول به معنی‌داری که باعث در شرایط انبارکننده کمی بیشتر در محصولات نگهداری محول می‌گردد. همچنین در شرایط نگهداری کنترل شده افزایش رطوبت بذر از ۱۰ به ۱۲ درصد تأثیر معنی‌داری بر محصولات نگهداری محول نداشت ولی با افزایش بیشتر رطوبت اولیه بذر از ۱۲ به ۱۴ درصد به‌طور معنی‌داری از محصولات نگهداری محول کاسته شد (۱۲/۷۳ درصد کاهش نشان داد). در بذرهای نگهداری شده در انبار معنی‌داری بین افرازی مردان رطوبت اولیه بذر، میزان قندهای محول کاهش معنی‌داری نشان داد و از ۱۶/۴۱ به ۱۵/۶۳ درصد کاهش معنی‌داری بذر در سطح رطوبت بذر ۱۲ به ۱۰ درصد و در طی دوره انبارکننده میزان کاهش در کربوهیدرات‌ها با افزایش جمعیت یافته انباری در همه بذرها مطالعه شده مرتب بود که با گزارش‌های قلی روز سابر به‌طور هم‌پوشانی دارد (بیلبی و همکاران ۱۹۶۹; باکاردا و رایا ۲۰۰۲) اما در تحقیق کرمان ۱۳۹۵ که چنین کاهش نشان داده‌بوده مصرف کربوهیدرات‌ها توسط قارچ‌های انباری به‌عنوان یک منبع ارزی است.

درصد پروتون
مقایسه میانگین داده‌ها (شکل ۲) نشان داد که درصد پروتون بذر در شرایط نگهداری کنترل شده نسبت به انبار معنی‌دار با رطوبت اولیه بهبود به‌طور معنی‌داری بیشتر بود. این نتایج در شرایط انبارکننده سبب کاهش معنی‌دار در درصد

1 TeKrony
2 Sorour and Uchino
3 Christensen and Kaufmann
4 Sisman
5 Bilgrami
پروتئین بذر گردنی در شرایط نگهداری کنترل شده بین دو سطح رطوبت 10 و 12 درصد نقش می‌بازد.

نتایج گیری

مطالعه حارکه خان داد در طی انبارداری، بندهای اکتشافی و قرار داده شده در نتیجه باعث کاهش قابلیت جوناگنیزی و تجزیه بذر، کاهش ارزش آنها برای کشت و برای گذاشتن بذر در بوتیزان، به عنوان یک مشکل جدی در اقتصاد ایران مطرح می‌باشد.

روطابت بذر یکی از مهم‌ترین عوامل تأثیرگذار بر قابلیت انبارداری می‌باشد. نتایج این آزمایش نشان دادند که افزایش رطوبت بذر به 14 درصد به طور معنی‌داری از کاهش بذر کاسته شد و رطوبت بذر به 12 درصد کاهش قابلیت ناماسک و سطح رطوبت بذر سویا در ایران می‌باشد. رطوبت مناسب برای انبارگذاری بذر سویا در منطقه ماشین خشنه دشت همچنین آلوگره به قاره‌ای انتخابی بذر مستقیمی با میزان رطوبت بذر داشته و بذر با رطوبت بالا به سرعت مورد انتخاب قرار می‌گیرد و این آلوگره می‌تواند سبب کاهش کیفیت بذر و کاهش قابلیت حیات در نزدیکی به‌طور نگهداری بذر تأثیر زیادی روی کیفیت بذر ایزو شده دارد. در این زمینه نهایی گرده نگهداری دارد. در این آزمایش مشخص گردید که در نگهداری بذر در شرایط کنترل شده نسبت به شرایط بدون کنترل در شرایط آب و هوایی میانس این کاهش سرعت زوال بذر و کاهش حجم قاره‌ها می‌گردد. همچنین افزایش رطوبت بذر در...
شیدانی و همکاران: تأثیر فارماکوگرافی اتیباری بر زوال بذر سویا در شرایط مختلف نگهداری…

منابع

Abdul-baki, A.A., and Anderson, J.D. 1973. Vigor determination in soybean seed by multiplication. Crop Science, 3: 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x

Agrawal, R.L. 1995. Seed technology. 2nd Edition. Oxford and Ibh Publication Co. Pvt. Ltd, New Delhi. 463 p.

ISTA (International Seed Testing Association). 2009. International rules for seed testing. Zurichstr. 50. CH 8303. Bassersdorf, Switzerland, Edition 2009/1.

AOAC (Association of Official Analytical Chemists). 1995. Official Methods of Analysis, 16th Ed. AOAC International, Gaithersburg, MD. USA.

Bewley, J.D., Bradford, K.J., Hilhorst, H.W., and Nonogaki, H. 2013. Seeds: Physiology of Development, Germination and Dormancy, 3rd Edition Springer New York. 392 p. https://doi.org/10.1007/978-1-4614-4693-4

Bhattacharya, K., and Raha, S. 2002. Deteriorative changes of maize, groundnut and soybean seeds by fungi in storage. Mycopathologia, 155(3): 135-141. https://doi.org/10.1023/A:1020475411125

Bilgrami, K.S, Sinha J.R.K., and Prasad, T. 1979. Changes in seed contents of paddy (Oryza sativa L.) due to fungal flora. Journal of Phytopathology, 96(1): 9-14. https://doi.org/10.1111/j.1439-0434.1979.tb01614.x

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein day binding. Analytical Biochemistry, 72: 248-254. https://doi.org/10.1006/abio.1976.9999

Chavan, A.M., and Kakde, R.B. 2008. Studies on abnormal oilseeds mycoflora from Marathwada region. Bionano Frontier, 2(2): 101-104

Christensen, C.M., and Kaufmann, H.H. 1969. Grain storage: The role of fungi in quality loss. U of Minnesota Press.

Ellis, J.E., Bass, L.N., and Witing, D. 2008. Storing vegetable and flowers seeds. Colorado state university extension. 7-221. Seed Science and Technology, 28(2): 413-420.

Harman G.E., and Nash, G. 1972. Deterioration of stored pea seed by Aspergillus ruber: evidence for the involvement of a toxin. Phytopath, 62: 209-212. https://doi.org/10.1094/Phyto-62-209

Hartman, T.G., Karmas, K., Salinas, P., Ruiz, R., Lech, J., and Rosen, R.T. 1994. Effect of packaging on the lipid oxidation storage stability of dehydrated pinto beans. In: Lipids in Food Flavors. Chapter 11, pp 158-167. Elsevier Science publisher. https://doi.org/10.1021/bk-1994-0558.ch011

Kakde, R.B., and Chavan, A.M. 2011a. Extracellular lipase enzyme production by seed-borne fungi under the influence of physical factors. International Journal of Biology, 3(1): 94-100. https://doi.org/10.5539/ijb.v3n1p94
Kakde, R.B. and Chavan, A.M. 2011b. Effect of carbon, nitrogen, sulphur, phosphorus, antibiotic and vitamin sources on hydrolytic enzyme production by storage fungi. Recent Research in Science and Technology, 3: 20-28.

Kakde, R.B. and Chavan, A.M. 2011c. Deteriorative changes in oilseeds due to storage fungi and efficacy of botanicals. Current Botany, 2(1): 17-22.

Ma, F., Ewa, C., Tasneem, M., Peterson, C.A., and Gijzen, M. 2004. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Annals of Botany, 94(2): 213-228. https://doi.org/10.1093/aob/mch133

Malaker, P.K., Mian, I.H., Bhuiyan, K.A., Akanda, A.M., and Reza, M.M.A. 2008. Effect of storage containers and time on seed quality of wheat. Bangladesh Journal of Agricultural Research, 33(3): 469-477. https://doi.org/10.3329/bjar.v33i3.1606

Mathur, S.B., and Kongsdal, O. 2003. Common Laboratory Seed Health Testing Methods for Detecting Fungi. International Seed Testing Association, Basserdorf, Switzerland.

Nandi, D., Mondal, G.C., and Nandi, B. 1982. Studies on deterioration of some oil seed in storage. III. Effects of different storage, temperatures and relative humidities on seed moisture, infection and germination. Seed Science and Technology, 10: 141-150.

Nandi, S.K., Mukherjee, P.S., and Nandi, B. 1988. Deteriorative changes of maize grains by fungi in storage. Indian Journal of Mycological Research, 26: 25-31.

Robinson, J.H., Anthony, C., and Drabble, W.T. 1974. The utilization of nitrogen sources by Aspergillus clavatus. Microbiology, 85(1): 23-28. https://doi.org/10.1099/00221287-85-1-23

Sisman, C. 2005. Quality losses in temporary sunflower stores and influences of storage conditions on quality losses during storage. Journal of Central European Agriculture, 6: 143-150.

Sorour, H., and Uchino, T. 2004. Effect of changing temperature on the deterioration of soya beans. Biosystems Engineering, 87(4): 453-462. https://doi.org/10.1016/j.biosystemseng.2003.12.005

TeKrony, D.M., Egli, D.B., and Balles, J. 1978. Effect of the field production environment on soya bean seed quality. Proceedings-Easter School in Agricultural Science, University of Nottingham. 403-425.
Impact of Storage Fungi on Soybean Seed Deterioration in Different Storage Conditions and Seed Moisture Content

Saman Sheidaei 1,*, Aidin Hamidi 1, Hossein Sadeghi 1, Bita Oskouei 1, Leila Zare 1

Extended Abstract

Introduction: Understanding the complex characteristics that control the life span of the seed has ecological, agricultural and economic importance. Inappropriate storage conditions after harvesting destroy a large part of annual yield partly due to microbial activity in the storage. Damage from storage fungi varies based on the climatic conditions, crops and storage facilities. This study was carried out to investigate the effect of storage conditions and initial seed moisture content on the growth of storage fungi and also the relationship between the degree of contamination with fungi and the quality and biochemical changes of the seeds.

Materials and Methods: The present study was carried out as a factorial experiment based on a completely randomized design to assess the impact of storage fungi on soybean seed deterioration at different storage conditions. The treatment included three degrees of initial seed moisture content including low moisture content (10%), medium moisture content (12%) and high moisture content (14%) as the first factor. Moreover, two storage conditions including the seed storage in Moghan and controlled seed storage in Seed and Plant Certification and Registration Institute were considered as the second factor. Soybean seeds of Williams’s cultivar were investigated for the infection of *Aspergillus flavus*, *Aspergillus niger*, *Fusarium* and *Penicillium* fungi and also related biochemical traits and seed quality such as germination percent, seedling vigor index, soluble sugar and total protein.

Results: The results of this experiment showed that the increase of the seed moisture content by 14% can significantly decrease the seed quality. Therefore, the seed moisture content of 14% was identified as unsuitable moisture for the storage of soybean seeds. In addition, the infection with storage fungi has a direct relationship with the degree of seed moisture and seeds with high moisture content are rapidly attacked by the storage fungi which can decrease seed quality and viability. Moreover, the *Aspergillus niger* infection increased from 27.5 to 43.75 and the germination percent decreased from 52.5 to 23 percent in seeds with a moisture content of 14% in Moghan storage, as compared with the controlled storage. Furthermore, this study showed that when the percentage of storage fungi increases, the soybean seed deterioration increases. Studying the biochemical changes of deteriorated seeds during the storage showed that as the aging of the seeds increases, soluble sugars and protein percentage decreases. The amounts of soluble sugars and total protein of the seed were significantly lower in seeds maintained under unsuitable conditions. Furthermore, the content of soluble sugars and total protein decreased significantly by the increase of the seed moisture, which resulted in the increase in seed deterioration.

Conclusions: Based on the obtained results, initial seed moisture and storage conditions are two important determinants of fungi infestation during storage, which can affect the content of soluble sugars and total protein causing seed deterioration, seed vigor and viability. It can be concluded that the soybean seed moisture content of 12%, which is the standard moisture content of soybean seed production in Iran, is regarded as suitable moisture for seed storage.

Keywords: Germination percent, Seed protein, Soluble sugar, Storage fungi

Highlights:

1- Introduction of proper storage conditions and initial seed moisture in order to decrease fungal damage and soybean seed deterioration.

2- Determination of different fungal damages during the storage of soybean seeds.

3- Determination of relationship between the degree of soybean seed infection of storage fungi and the seed’s quality, its amount of protein and soluble sugars.