Genetic Determinants of Phosphate Response in Drosophila

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Bergwitz, Clemens, Mark J. Wee, Sumi Sinha, Joanne Huang, Charles DeRobertis, Lawrence B. Mensah, Jonathan Cohen, et al. 2013. Genetic determinants of phosphate response in drosophila. PLoS ONE 8(3): e56753.
Published Version	doi:10.1371/journal.pone.0056753
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:10655809
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Genetic Determinants of Phosphate Response in Drosophila

Clemens Bergwitz, Mark J. Wee, Sumi Sinha, Joanne Huang, Charles DeRobertis, Lawrence B. Mensah, Jonathan Cohen, Adam Friedman, Meghania Kulkarni, Yanhui Hu, Arunachalam Vinayagam, Michael Schnall-Levin, Bonnie Berger, Lizabeth A. Perkins, Stephanie E. Mohr, Norbert Perrimon

Abstract

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired Malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phi/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.

Introduction

Inorganic phosphate, the mono- or divalent anion of phosphoric acid [HPO$_4^{2-}$, H$_2$PO$_4^{-}$], is required for cellular functions such as DNA and membrane lipid synthesis, generation of high-energy phosphate esters, and intracellular signaling. Cells and organisms have developed elaborate mechanisms to assure an adequate supply of phosphate. Yeast is the only eukaryote, however, in which the genetics of cellular phosphate homeostasis is understood [1]. When yeast cells are starved of phosphate, the phosphate-dependent cyclin-dependent-kinase (CDK) inhibitor Pho81 inactivates the Pho80/Pho85 cyclin/CDK complex. As a consequence the unphosphorylated basic helix-loop-helix transcription factor Pho4 associates with the nuclear import receptor Pse1 to enter the nucleus and binds to a phosphate response element (PRE) [2] in genes belonging to the yeast Pho-regulon that permit the cell to better assimilate phosphate from the surroundings [3,4]. The Pho-regulon includes genes coding for high affinity phosphate transporters (Pho84, Pho89) and secreted acid phosphatases (Pho5, Pho11, Pho12) [3].

Compared to what is known for bacteria and yeast, little is known about the metabolic effects of phosphate in metazoan species [5,6]. Recent evidence suggests that the mammalian ortholog of yeast Pho89, Pit1, mediates cellular effects of phosphate [7], which can be blocked by the addition of phosphonoformic acid (PFA), a competitive antagonist of phosphate transporters and cellular phosphate uptake [8,9]. In addition, we recently showed that orthologs of yeast Pho84 mediate activation of MAPK in Drosophila cell lines [10]. Thus, multiple membrane transporter families may be involved in cellular phosphate uptake and intracellular phosphate may be what is sensed in metazoan species. Activation of MAPK by inorganic phosphate at physiological concentrations between 5–10 mM was also demonstrated in multiple mammalian cell lines [7,11,12,13,14] and may be required for osteoblastic and chondrogenic differentiation, or pathological osteogenic differentiation of vascular smooth muscle cells in response to phosphate [5,6].

In multicellular organisms phosphate needs to be absorbed from the diet in the gut to enter the circulation and to be available for cells. Circulating phosphate levels, total body phosphate content and excretion by the kidneys are tightly regulated by a number of hormones. In mammals these hormones are fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), and 1,25-dihydroxy vitamin D
phosphate has a role in the homeostatic regulation of Fly Stocks and Culture (1,25(OH)2D) to determine the number of animals at different developmental stages (i.e. climbing L3 larva, prepupa, pupa, adult fly male/female). Life span was evaluated by culturing 30–40 young adults separated by gender on SM or DM with different supplements as described in Methods S1. In initial tests comparing males and females, we were able to rule out gender-specific effects of dietary phosphate supplementation or RNAi-knockdown. Thus, we subsequently conducted life span tests using males.

To collect excretions sibling females fed different media at 18°C, 25°C or 29°C for 5 days were transferred to SM for 60 min., followed by a 60 min. collection of excretions in a 1.5 ml vial. For hemolymph collections, female flies were anesthetized with CO2, heads were removed, and fly bodies were centrifugated at 3000 rpm for 3 min. at 4°C in a 200 ul eppendorf vial with a punctured bottom, allowing for the collection of the clear, cell-free hemolymph. For whole fly phosphate bodies were homogenized in assay reagent. The excretion, hemolymph and whole fly samples were then cleared by centrifugation and assayed for phosphate concentration in 100 ul ammonium molybdate phosphate assay reagent (Phospho LiQUi-UV, Stanbio 0851-250) at 340 nm.

Genome-wide Drosophila Cell-based RNAi Screen (Primary Screen)

The genome-wide dsRNA screening collection of the Drosophila RNAi Screening Center (DRSC) covering >95% of the Drosophila genome has been described previously [25]. Approximately 14,000 genes were screened in S2R+ cells [26], using an in-cell immunohistochemical assay for dual-phosphorylated ERK1/2 (Cell Signaling Technologies, Inc #5928) and DAPI as counter stain to confirm cell number, and 10 mM sodium phosphate as the stimulus along with control as described in Methods S1 and Figure S6A-C. The primary list of “hits” (positive results) comprised 1924 genes, including 5 genes of the canonical MAPK pathway (i.e. downstream of receptor kinase (drk), downstream of raf1 (Drosphila), mad5D, sos, caskscr) and 11 genes that are known inputs or effectors of MAPK (i.e. slp1, mushroom bodies tiny, protein tyrosine phosphatase-ERK1/2 enhancer of ras1, nemo, eiger, RH51659P, SD03670P, CG32703-PA, CG14217-PD, seseless, pointed). We excluded hits not expressed in S2R+ cells and annotated the remaining genes for molecular function, conservation, and other features by cross-referencing with publicly-available databases i.e. DAVID [27], FlyMine [28] and by manually annotating the list. Our goal was to retain genes that encode conserved proteins with known or putative membrane-spanning molecules, as well as known or putative receptors, kinases, phosphatases and transcription factors, but to exclude genes required for routine basic cellular functions, genes for which we could not detect known or putative human orthologs, or genes previously identified as important for insulin-mediated activation of MAPK [29]. A subset of 555 genes was selected for validation using at least two independent dsRNA amplicons per gene as described in the results section and Methods S1 using 10 mM sodium phosphate buffer or with 50 ug/ml human insulin as stimulus.

In vivo Drosophila RNAi Screen (Secondary Screen)

At least two independent transgenic RNAi-lines targeting 51 of the 146 final hits were available (TRIP, http://www.flyrnai.org/TRIP-HOME.html, VDRC, http://stockcenter.vdrc.at/control/main) and crossed with temperature-regulated ubiquitous Gal80/Gal4 driver stocks using the daughterless (da) promotor to drive Gal4 expression (w−, hs-hid1/+)Gal4; da-Gal4; referred to as da-Gal4b, and confirmed using the alphaTub84B promoter (w; tub-Gal80b; Tub-Gal4/TM6B; referred to as tub-Gal4b) [30].
da-Gal4>UAS-RNAi animals were examined for larval lethality at 29°C, the inducing temperature. Adult males were reared at 18°C to keep the RNAi un-induced during development and used within three days of eclosing for life span assays. Sibling females were used for hemolymph phosphate assays as described above. Life span of F1 males generated with control RNAi-lines targeting the white gene (TRiP # HMS00017, VDRC #30034) at 29°C on SM was 31+/−1 days, and 35+/−0.4 days, respectively, targeting green fluorescence protein (GFP) (Bloomington ID # 35705) was 35+/−1.4 days, and targeting luciferase (Luc) (TRiP # JF01355) was 39+/−2 days. Hemolymph phosphate of F1 generation females targeting white (TRiP # HMS00017, VDRC #30034) was 25+/−2.5 mg/dl and 31+/−1.7 mg/dl, respectively, targeting GFP (Bloomington ID # 35705) was 27+/−2 mg/dl, and targeting Luc (TRiP # JF01355) was 29+/−2.4 mg/dl.

Off-target effects were unlikely if results were reproducible by at least two independent RNAi-lines and significant based on p<0.05 (Student’s t-test) across all RNAi-lines targeting a single gene when compared to control hairpins targeting white, GFP and Luc. Genetic background effects were unlikely since phenotypes were generally absent in the uninduced state (18°C) (see Figs. S1A, S9).

Data Analysis

Median life span and maximum life span were calculated for each vial of flies using Prism 5.0 d (GraphPad Software, CA), averaged between multiple vials based on a total of 120–240 flies of each genotype and medium. Student’s T-test (two-sided, unequal variance) was then used to determine significant differences between genetic mutants and treatment groups (p<0.05). To correct for multiple comparisons we applied Bonferroni’s method [31] to re-test outliers. Hierarchical clustering was performed in Cluster 3.0 [32] using Pearson correlation or Euclidean distance, and displayed using Java TreeView 1.1.6 [33]. Final hits were annotated with GO term categories using the DAVID tool [http://david.abcc.ncifcrf.gov/] [27], and FlyMine (www.flymine.org/) [28]. Candidate human and murine orthologs were obtained using DIOPT [http://www.flyrnai.org/cgi-bin/ DRSC_orthologs.pl] [34] and annotated with murine knockout or over-expression phenotypes at MGI if available (http://www.
informatics.jax.org/) [35], and with human disease phenotypes using DIOPT-DIST (http://www.flyrnai.org/cgi-bin/DRSC_DG_query.pl) [34].

Results

Phosphate is Required for Drosophila Larval Development

Culture of three commonly used laboratory fly strains, y w, Canton S (CS) and Oregon R (OR), on standard medium (SM) or SM supplemented with 30 mM sodium phosphate (P30) equally supported larval development and eclosion of adult flies after 10 days at 25°C. To investigate the effects of phosphate on larval development, we added phosphonoformic acid (PFA) to block sodium-phosphate co-transporters and cellular uptake of phosphate [36]. Supplementation of SM with 0.1 mM PFA did not result in developmental delay or lethality of y w flies. However, developmental delay was noticeable in y w animals fed SM with 1 mM PFA and led to pupal lethality. Larvae reared on SM with 10 mM PFA died at the first instar stage unless the medium was further supplemented with 30 mM sodium phosphate (P1.5, n = 202; P27, n = 200; P53, n = 194). P < 0.005 was used to test for multiple comparisons between eleven treatments.

doi:10.1371/journal.pone.0056753.g002

Figure 2. Phosphate supplementation or inhibitors of phosphate uptake influences adult life span. Median life span of adult y w males cultured on standard medium (SM): Control (C, n = 550), 30 mM sodium phosphate (P30, n = 465), 30 mM sodium sulfate (S30, n = 245), 1% sevelamer (Sev1, n = 207), 1 mM phosphonoformic acid (PFA1, n = 130), and the combinations: Sev1+P30 (n = 115), PFA1+P30 (n = 137), or defined medium (DM) supplemented with 1.5, 27, or 53 mM sodium phosphate (P1.5, n = 202; P27, n = 200; P53, n = 194). P < 0.005 was used to test for multiple comparisons between eleven treatments.

doi:10.1371/journal.pone.0056753.g002

Figure 3. Adult hemolymph phosphate, phosphate excretion and whole fly Pi. A: Excretion of phosphate after culture of y w females for five days on standard medium (C) alone or supplemented with 1% sevelamer (Sev1%) and 30 mM sodium phosphate (P30) (n = 3 pooled collections of 15–20 flies). B: hemolymph phosphate concentration (n = 3 pooled collections of 15 flies) and C: whole fly phosphate (n = 10) of flies cultured as described for A. Note that y w and CS flies have lower hemolymph phosphate concentrations than OR and w1118 flies and the F1 generation females that express control RNAs (see Methods and Fig. S5), which is likely due to differences in genetic background.

doi:10.1371/journal.pone.0056753.g003
Figure 4. Principal cell ablation increases hemolymph phosphate and decreases life span, rescue by addition of sevelamer to the culture medium. A, B: Micrographs of 10 days old males with expression of GFP (green) in principal cells (A) or females with expression of GFP along with reaper (rpr) in principal cells after culture for ten days at 29°C (B). Epifluorescent microphotograph (10X) of tubule and gut of the same.

t-test genotype	medium	p-value	
a	GFP		
b	GFP vs. rpr	P30	0.0242
c	GFP vs. rpr	Sev	0.1051
d	rpr	Sev vs. P30	0.2742

t-test genotype	medium	p-value	
e	GFP		
f	GFP vs. rpr	P30	0.0235
g	GFP vs. rpr	Sev	0.4642
h	rpr	Sev vs. P30	0.0025
treatment that could be reversed by supplementation with dietary phosphate. To confirm phosphate-dependence of larval development we used the anion exchange resin sevelamer to inhibit dietary uptake of phosphate [23]. When \(y\) \(w \) larvae were reared on SM supplemented with 0.1% sevelamer, no effect on larval development was observed. However, increasing the dose to 0.5% delayed emergence of L3 larvae from the medium, preparation and eclosion of adults by at least one day (Fig. 1C, Fig. S2). Similar to what we found for PFA, the effect of sevelamer could be rescued by supplementation with 30 mM sodium phosphate. A dose of 1% sevelamer (Sev1%) resulted in a more severe developmental delay that could be prevented by the addition of 30 mM sodium phosphate. Similar results were obtained with the two wildtype genotypes shown in A+B. Ablation of GFP-positive cells (green) by \(rpr \) is nearly complete with the exception of a few segments as shown schematically in the inset. As a consequence when compared to \(rpr \)-negative tubules (C), the majority of the tubule stained with propidium iodide (red) is made up of GFP-negative cells in (D). Median life span (E, \(n = 60–120 \) per condition) or hemolymph phosphate concentration (F, \(n = 3 \) with collections from 15 flies) of females expressing \(rpr \) or GFP-RNAi in principal cells after culture on standard medium containing 30 mM sodium phosphate (P30) normalized when cultured on 1% sevelamer (Sev1%) for 14 days. doi:10.1371/journal.pone.0056753.g004

Figure 5. RNAi-mediated inhibition of MAPK-signaling in vivo decreases hemolymph phosphate. A: The most advanced developmental stage with induced knockdown was scored on standard medium (1 = embryonic, 2 = first and second instar larva, 3 = third instar larva, 4 = pupal lethal, 4.5 = developmental delay, adult, 5 = adult). B: hemolymph phosphate concentration of young adult females cultured at 29°C for five days, and C: median life span of adult males cultured at 29°C on standard medium (see also Table S1). a: \(p < 0.05 \), b: \(p < 0.007 \) vs. Luc/GFP/white controls. P<0.017 was used to test for multiple comparisons between three treatments. doi:10.1371/journal.pone.0056753.g005

Phosphate Response in Drosophila
Adult Hemolymph Phosphate is Dependent on the Function of the Malpighian Tubules

The kidneys in higher species are responsible for excretion of phosphate in the setting of high dietary load and re-absorption of phosphate from the urine when dietary supply of phosphate is low. Malpighian tubules are the phylogenetic ancestor of the renal tubes [41]. They are composed of two cell types: stellate cells, which are important for water and chloride excretion, and principal cells, which are important for the excretion of cations and organic solutes. To determine the role of principal cells in phosphate homeostasis, we expressed the pro-apoptotic gene reaper (rpr) [42] using a urate-oxidase (Uro-Gal4)ub-Gal80ts7 driver (Uro-Gal4ubiGal80ts7), which permits gene expression in a temperature-inducible
fashion in principal cells. At the inducing temperature, epifluorescent and confocal analyses confirmed the near-total ablation of GFP-positive cells by \textit{rpr} when coexpressed in principal cells (Fig. 4A, 4B). As a consequence, when compared to \textit{rpr}-negative flies (Fig. 4C), the majority of the tubule in \textit{rpr}-positive flies is made up of urate-oxidase negative cells in Figure 4D. Thereby impaired function of principal cells resulted in a female life span of 34 ± 2.2 days on P30 medium (vs. 42 ± 0.9 days for control flies, \(p = 0.024\)). Hemolymph phosphate in these flies was raised to 42 ± 2.3 mg/dl (vs. 33 ± 0.7 mg/dl for control flies, \(p = 0.023\)) (Fig. 4F). Importantly, this effect could be overcome by the addition of 1% sevelamer to the medium, resulting in lower hemolymph levels and improved life spans (Fig. 4E). Taken together these findings suggest that dietary phosphate increases hemolymph phosphate, which inversely correlates with longevity, at least in the setting of tubule failure. These results parallel what is observed in human patients with CDK, who similarly have increased circulating phosphate concentrations, and for whom blocking phosphate-uptake from the diet with sevelamer can improve outcomes.

\textbf{RNAi-mediated Inhibition of MAPK-signaling in vivo Decreases Hemolymph Phosphate}

Previously, we showed that activation of MAPK by phosphate is evolutionary conserved in \textit{Drosophila} S2R+ hemocyte-like cultured cells and likely requires the function of major facilitator superfamily (MFS) sodium-phosphate co-transporters \cite{10} (Fig. S7). When we decreased MAPK-signaling activity \textit{in vivo} by RNAi-mediated knockdown of \textit{drk/GRB2}, Ras85D, \textit{phl/D-Raf} and \textit{Dsor1/MEK} using \textit{da-Gal4ts} for a relatively short period of five days, hemolymph phosphate was decreased in adult flies (Fig. 5B). Likewise, knockdown of \textit{corksrew (csw/SHP2)}, a phosphatase known to stimulate RTK input into the MAPK pathway \cite{43}, and \textit{Sos} mildly reduced adult hemolymph phosphate. Therefore, hemolymph phosphate is genetically downstream of MAPK signaling. Knockdown of these genes also impaired larval development and reduced longevity when ablated during adult life, with the exception of \textit{csw/SHP2} whose knockdown during adult life increased life span (Fig. 5A, 5C).
Genome-wide RNAi Screen to Identify Modifiers of Phosphate-induced MAPK in Drosophila Hemocyte-like Cultured Cells

To identify novel components of the phosphate sensing pathway and to further understand whether the MAPK pathway mediates some of the phosphate effects observed on larval development, adult life span and hemolymph phosphate, we adapted a high throughput assay for MAPK activation in S2R+ cells [29] using 10 mM sodium phosphate as the stimulus and screened sixty-one 384-well plates with an average of 1.5 dsRNAs per gene in duplicate to cover the entire fly genome (approximately 14,000 genes). We obtained 1924 primary hits (see Methods). A subset of

Table 1. Significant outliers in development, life span, and hemolymph phosphate.

Assay	Developmental lethal genes	Life span of adults (longer, shorter)	Hemolymph phosphate (higher, lower)
Genes	CkαIα, br, Hsc70-4, Hsc70-5, HdaC3, smo, Rbf, penguin, emb, CG6218, CG7185, rut, CG12703, Rpl5, CG9931, del, pAbp, Uvr, mask, Sin3A, Ptp69D, CG3446, CG13998	Rho81B, rut, CG33887, CG17906, Tre1, Acon, pyd3, Map205, Rpl5, CG9931, B52, CG3446, Uvr, CG7185, pAbp, emb, Hsc70-4	pyd3, CG31217, CG3446, pAbp, CG17906, CG33887, Hsc70-4, msp, 3oc31f6, drk, Dsk1

Drosophila gene names for developmental lethal mutants and outliers in life span and hemolymph phosphate assays shown in Figures 6 and 7. Significance for longevity and hemolymph phosphate is based on Student's t-test (p<0.05). Bold script indicates genes that remain significant after Bonferroni's correction for multiple comparisons when we used p<0.003 for the life span assay based on 17 outliers and when we used p<0.007 and p<0.0125 for the hemolymph assay based on seven and four outliers, respectively. Underline script is used for longer/higher outliers, while regular script is used for shorter/lower outliers. (See Table S1 and Figs. 7, 8 for detailed results).

doi:10.1371/journal.pone.0056753.t001
Subsets of Phosphate-selective Genes are Modifiers of Larval Development, Life Span and Hemolymph Phosphate in vivo

To determine the effect of these 103 genes in vivo, we tested whether ubiquitous expression of RNAi constructs targeting these genes affected viability and if so, whether viability could be affected by dietary phosphate. Two or more RNAi lines were available from the TRIP and VDRC for 51 genes (including 40 ‘phosphate-selective’). Viability tests were initially done using da-Gal4P (Fig. 7) and a subset verified using tub-Gal4P (Fig. 8).

When cultured at the inducing temperature of 29°C, knockdown of 22 genes resulted in lethality at or before pupariation (Table 1, Fig. 7A). Lethality could not be rescued by supplementation of the media with 30 mM sodium phosphate (not shown). When reared at 18°C to keep the RNAi un-induced development was normal for most genes (Fig. S1A). When knockdown was induced within three days of eclosing ten genes prolonged median life span in adult males, when compared to control hairpins, while knockdown of seven genes reduced median life span (Table 1, Fig. 7C). Knockdown in young sibling females significantly (Fig. 7C, 7D). Knockdown of seven genes reduced median life span (Table 1), whereas knockdown of four genes resulted in decreased hemolymph phosphate levels (i.e. knockdown resulted in increased levels), indicating that the ‘phosphate-selective’ set is enriched for the MAPK-pathway. Interestingly, knockdown of 84 genes with putative and previously unrecognized roles in metabolic and homeostatic phosphate sensing.

Supporting Information

Figure S1 Developmental phenotypes. A: Latest larval stage observed for F1 offspring generated in matings between 268 UAS-RNAi males and virgin w+; tub-Gal40-289/da-Gal4 females when cultured on standard medium at 18°C (non-inducing temperature). B: Latest larval stage observed for F1 offspring generated as described for (A) with the same genetic crosses on standard medium at 29°C (inducing temperature). (TIF)

Figure S2 The effect of sevelamer and PFA on larval development by developmental stage. Shown is larval development of three wild-type strains: y w (YW), Oregon R (OR) and Canton S (CS) on control (C), P30, Sev1% and PFA 1 mM medium. Abbreviations as follows: ML, migrating instar 3 larva; PP, prepupa; P, pupa; M, adult male; F, adult female.
Shown is one representative experiment with cumulative fly counts, means of three vials per condition. (TIF)

Figure S3 Effect of phosphate, sevelamer and PFA on adult life span. **A:** Median life span of Canton S (CS) and Oregon R (OR) wild type males on standard medium or SM with 30 mM sodium phosphate or 1% sevelamer (CS, n = 155; P30, n = 62; Sev1, n = 58, OR: C, n = 117; P30, n = 52; Sev1, n = 59). **B:** Median life span of *y w* males on standard medium, supplemented with 15, 30 and 60 mM sodium phosphate (C, n = 550; P15, n = 282; P30, n = 463; P60, n = 115). To correct for the influence of osmolarity, life spans for P15, P30, and P60 are displayed as % of life spans for 15, 30, and 60 mM sodium sulfate, respectively. (TIF)

Figure S4 Dye uptake and excretion. **A:** Uptake of food dyes within 60 min. **B:** Dye excretion over 60 min. after flies were loaded with food dyes over night. **C:** Ratio of amount of dyes present in excretions (theoretical ratio 5.2 from fresh food is indicated by blue line). (TIF)

Figure S5 Adult hemolymph Pi. Phosphate excretion and whole fly Pi. Young adult w1118 Canton S or Oregon R females were cultured on standard medium alone or SM supplemented with 30 mM sodium phosphate (P30), or 1% sevelamer. Following culture for 5 days at 25°C, phosphate excretion was determined (A, n = 3, 20 flies each), and hemolymph phosphate (B) (n = 3) and whole fly phosphate (C) (n = 10 individual flies) were measured. (TIF)

Figure S6 Genome-wide RNAi screen (Controls). 20,000 S2R+ cells/384 well were treated with 0.375 ug dsRNA targeting Lac-Z, Ras85D, Dsor1/MEK, Rho1 and thread (A, primary screen) or LacZ, drk/GRB2, and Tao-1 targeting Lac-Z, Ras85D, Dsor1/MEK, Rho1 and thread (B, secondary screen) as well as described in materials and methods. After four days 10 mM phosphate (P10) (A, B), 50 ug/ml human insulin (C) or 30 uM of the MEK-inhibitor UO126 (UO126) were added for 10 min., followed by fixation and antibody staining for dpERK and cellular staining with Dead Red or DAPI and detection of total fluorescence with the appropriate filter sets. Ratios of dpERK signal over cell Dead Red or nuclear DAPI stain were expressed after subtraction of background and wandering-median correction across each 384-well plate as z-scores. (TIF)

Figure S7 P-induced ERK activation in murine and *Drosophila* cells is blocked by RNAi-knockdown of sodium-phosphate co-transporters and members of the canonical MAPK pathway. RNAi knockdown in S2R+ cells using dsRNA targeting luciferase (luc), insulin receptor (IR), two sodium-phosphate co-transporters (MFS10 and MFS13), or various components of the canonical MAPK pathway was performed for three days prior to challenge with 10 mM sodium phosphate (pH7.4) or 25 ug/ml Insulin for 3 min. Immunoblot analysis of cell lysates was performed with anti-dpERK antibody, converted into percent-stimulation (mean+/− SD of three independent experiments). (TIF)

Figure S8 Tissue distribution of genes indentified in the primary screen. Available expression data for all 146 genes were downloaded from Fly Atlas [44], normalized by gene and hierarchically clustered using Cluster 3.0 [32] and displayed using Java TreeView 1.1.6 [33]. Red indicates high, green low expression. (TIF)

Figure S9 Temperature dependence of RNAi-effects on hemolymph Phosphate and adult life span. **A:** Hemolymph phosphate after culture of F1 offspring at inducing temperature 29°C (orange bars), and 18°C (blue line) for 63 RNAi-lines, control hairpins are shown in light orange, mean+/− SEM. **B, C:** Median life-spans of 110 and 60 RNAi-lines at inducing temperature 29°C (orange bars) and 18°C (blue line) (TIF)

Table S1 Annotations of 146 validated genes. (XLSX)

Methods S1 Supplemental methods. (DOCX)

Acknowledgments

We thank the TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947) for providing transgenic RNAi fly stocks and/or plasmid vectors used in this study. We also thank the DRSC at Harvard Medical School for support of cell-based and in vivo screening (NIH/NIGMS R01-GM067761). *Uve-Gal4* was kindly provided by Julian Dow, University of Glasgow, UK. Sevelamer was a gift from Dr. Yves Sabbagh, Genzyme, Inc.

Author Contributions

Conceived and designed the experiments: CB LAP SEM NP. Performed the experiments: CB CD MJW SS JH LM JC. Analyzed the data: CB YH AV MS-L BB NP. Contributed reagents/materials/analysis tools: CB AF MK LAP NP. Wrote the paper: CB.
12. Nair D, Miera RP, Sallis JD, Cheung HS (1997) Phosphatocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J Biol Chem 272: 18929–18932.

13. Julien M, Magri D, Masson L, Rolli-Derkinderen M, Chassaing O, et al. (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148: 530–537.

14. Chang SY, Yu KK, Lee YM, An GH, Beck GR Jr, et al. (2006) Elevated inorganic phosphate stimulates Akt-ERK1/2-Mnk1 signaling in human lung cells. Am J Respir Cell Mol Biol 35: 528–539.

15. Bringhurst FR, Leder BZ (2006) Regulation of calcium and phosphate homeostasis. In: De Groot LJ, James JL, editors. Endocrinology. Fifth ed. Philadelphia: W.B. Saunders Co. 805–813.

16. Zhang MY, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, et al. (2012) Vitamin D1alpha-hydroxylase. Kidney Int 75: 1166–1172.

17. Stubbs JR, Liu S, Tang W, Zhou J, Wang Y, et al. (2007) Role of FGF23 toxicity in experimental kidney disease. Nephrol Dial Transplant 22: 1217–1224.

18. Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity and Drosophila melanogaster models of human disease. Nat Rev 39: 715–720.

19. Mizobuchi M, Towler D, Slatopolsky E (2009) Vascular calcification: the killer phenotype to the pathogenesis of ectopic calcification. J Invest Dermatol 129: 630–662.

20. Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, et al. (2007) FlyMine: an integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12: 357.

21. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, et al. (2008) Suppression of the FAT/CD36 expression in chondrocytes by deletion of the FAT/CD36 gene in vivo. Bone. 42: 652–660.

22. Tenenhouse HS, Klugerman AH, Neal JL (1989) Effect of phosphonoformic acid on the hyperphosphatemia of patients with chronic kidney disease. J Am Soc Nephrol 20: 1453–1463.

23. Chertow GM, Dillon M, Burke SK, Steg M, Bleyer AJ, et al. (1999) A randomized trial of sevelamer hydrochloride (RenaGel) with and without supplemental calcium. Strategies for the control of hyperphosphatemia and hyperparathyroidism in hemodialysis patients. Clin Nephrol 51: 10–16.

24. Jan De Beur S, Finnegan R, Vassiliadis J, Cook B, Barberio D, et al. (2002) A conserved splicing mechanism of the LMNA gene controls mineralisation. Endocr Dev 16: 133–156.

25. Dinur M, Kilav R, Sela-Brown A, Jacquemin-Sablon H, Naveh-Malya T (2006) In Vivo evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol 20: 1652–1660.

26. Jan De Beur S, Finnegan R, Vassiliadis J, Cook B, Barberio D, et al. (2002) A conserved splicing mechanism of the LMNA gene controls mineralisation. Endocr Dev 16: 133–156.

27. Dunn OA, Shepherd SM, O’Neill LA, Jones RM (2002) Interactions between the TARGET and gene-switch systems in Drosophila. Sci STKE 2004: pl6.

28. Hesse E, Saito H, Kiviranta R, Correa D, Yamana K, et al. (2010) Zfp521 functions as a regulator of splice site choice in vitro, is critical for Drosophila development. Semin Cell Dev Biol 20: 582–589.

29. Moallem E, Kilav R, Silver J, Naveh-Malya T (1998) RNA-Protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem 273: 5253–5259.

30. Perez VI, Cortez LA, Webb CR, Rodriguez M, Lew CM, et al. (2011) A conserved splicing mechanism of the LMNA gene controls mineralisation. Endocr Dev 16: 133–156.

31. Perez VI, Cortez LA, Webb CR, Rodriguez M, Lew CM, et al. (2008) A conserved splicing mechanism of the LMNA gene controls mineralisation. Endocrinology 153: 1806–1816.

32. Bergwitz C, Jupner H (2009) Disorders of Phosphate Homeostasis and Tissue Mineralisation. Endocr Dev 16: 133–156.

33. Sprecher E (2010) Fumaryl tumoral calcification: from characterization of a rare phenotype to the pathogenesis of ectopic calcification. J Invest Dermatol 130: 644–646.

34. Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, et al. (2007) FlyMine: an integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12: 357.

35. cannatow, K, Hirakawa M, Saito H, Koepp D, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs 1 and 2. Proc Natl Acad Sci U S A 95: 2135–2139.

36. Dinur M, Kilav R, Sela-Brown A, Jacquemin-Sablon H, Naveh-Malya T (2006) In vivo evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol 20: 1652–1660.

37. Nechama M, Ben-Dow EZ, Briata P, Gherzi R, Naveh-Malya T (2008) The mRNA decay promoter factor K-homology splicing regulator protein post-transcriptionally determines parathyroid hormone mRNA levels. Faseb J 22: 4530–4540.

38. Nechama M, Uchiha T, Mor Yossi-Levi I, Silver J, Naveh-Malya T (2009) The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest 119: 3312–3314.

39. Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol 46: 1132–1138.

40. Gardner PR, Frischdo I (1991) Superoxide sensitivity of the Escherichia coli aconitate. J Biol Chem 266: 19320–19326.

41. Hesse E, Saito H, Kiviranta R, Correa D, Yamana K, et al. (2010) Zfp521 functions as a regulator of splice site choice in vitro, is critical for Drosophila development. Semin Cell Dev Biol 20: 582–589.

42. Chang SY, Yu KK, Lee YM, An GH, Beck GR Jr, et al. (2006) Elevated inorganic phosphate stimulates Akt-ERK1/2-Mnk1 signaling in human lung cells. Am J Respir Cell Mol Biol 35: 528–539.

43. Eiser NM, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14463–14468.

44. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358.

45. Eiser NM, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14463–14468.

46. Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs 1 and 2. Proc Natl Acad Sci U S A 95: 2135–2139.

47. Dunn OA, Shepherd SM, O’Neill LA, Jones RM (2002) Interactions between the TARGET and gene-switch systems in Drosophila. Sci STKE 2004: pl6.

48. Yuan Y, Li Y, Li H, Karydas A, et al. (2011) Bone proteins PHEx and DMP1 regulate fibroblast growth factor Fg23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. Faseb J 25: 2351–2362.

49. Zhao HW, Haddad GG (2011) Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Planta 232 Suppl 2: S104–S114.

50. Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol 46: 355–362.

51. Perez VI, Cortez LA, Webb CR, Rodriguez M, Logroscino SJ, et al. (2011) Tho2dom1 1 overexpression maintains the earlier period of life span in mice. J Am Soc Nephrol 22: 1296–1299.

52. Perez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M, et al. (2008) Tho2dom1 1 induces premature aging in Drosophila melanogaster models of human disease. J Am Soc Nephrol 22: 1290–1295.
70. Laplantine E, Rossi F, Sahni M, Basilico C, Cobrinik D (2002) FGF signaling targets the pRb-related p107 and p130 proteins to induce chondrocyte growth arrest. J Cell Biol 156: 741–750.
71. Rossi F, MacLean HE, Yuan W, Francis RO, Semenova E, et al. (2002) p107 and p130 Coordinately regulate proliferation, Cbfa1 expression, and hypertrophic differentiation during endochondral bone development. Dev Biol 247: 271–285.
72. Ito E, Konno Y, Toki T, Terui K (2010) Molecular pathogenesis in Diamond-Blackfan anemia. Int J Hematol 92: 413–418.
73. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, et al. (2008) Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 83: 769–780.