ORIGINAL ARTICLE

RENACER study: Assessment of 12-month efficacy and safety of 168 certolizumab PEGol rheumatoid arthritis-treated patients from a Spanish multicenter national database

Vicenç Torrente-Segarra, Ana Urruticoechea Arana, Amalia Sánchez-Andrade Fernández, Juan Víctor Tovar Beltrán, Alejandro Muñoz Jiménez, Anna Martínez-Cristóbal, José Antonio González Ferrández, Manuel Fernández Prada, Noelia Vázquez Fuentes, Héctor Corominas, Silvia García-Díaz, Asunción Acosta Pereira, José Miguel Ruiz Martin, José Ramón Lamua Riazauleo, Rosa Expósito Moliner, Desirée Ruiz Vilchez, Raül Veiga Cabello, Jesús Carlos Fernández, José Raúl Noguera Pons, Noemi Patricia Garrido Punal, Mateos, Jaime Calvo Alén, Jenaro Graña Gil, Maria Pilar Navarro Alonso, Maria Jesús Martínez Blasco, and (RENACER StudyGroup)

Rheumatology Department, Hospital General Hospital Sant Joan Despi Moisés Broggi, Catalunya, Spain, Rheumatology Department, Hospital Can Misses, Ibiza, Spain, Rheumatology Department, Complejo Hospital Universitario Lucus Augusti, Lugo, Spain, Rheumatology Department, Hospital General Universitario de Elche, Elche, Spain, Rheumatology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain, Rheumatology Department, Hospital de la Ribera, Alzira, Spain, Rheumatology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain, Rheumatology Department, Hospital Universitario de Ceuta, Ceuta, Spain, Rheumatology Department, Hospital General Hospital Sant Joan Despi Moisés Broggi, Sant Joan Despi, Spain, Rheumatology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain, Rheumatology Department, Hospital de Viladecans, Viladecans, Spain, Rheumatology Department, Hospital Universitario del Henares, Alcalá de Henares, Spain, Rheumatology Department, Hospital Comarcal de Laredo, Laredo, Spain, Rheumatology Department, Hospital Universitario Reina Sofia, Córdoba, Spain, Rheumatology Department, Hospital Fuenlabrada, Fuenlabrada, Spain, Rheumatology Department, Complejo Hospital Universitario A Coruña, A Coruña, Spain, Rheumatology Department, Hospital Sant Bernabé, Berga, Spain, Rheumatology Department, Hospital Público LluísAlcanys de Xàtiva, Valencia, Spain, Rheumatology Department, Hospital Universitario de Getafe, Getafe, Spain, Rheumatology Department, Hospital Comarcal Mora d'Ebre, Mora d'Ebre, Spain, Rheumatology Department, Hospital General MateuOrfila, Mahó, Spain, Rheumatology Department, Hospital Universitari de Reus, Reus, Spain, Rheumatology Department, Clínica Dr. Rivas, Segovia, Spain, Rheumatology Department, Hospital General de Castellón, Castellón de la Plana, Spain, Rheumatology Department, Hospital General Virgen de la Victoria de Málaga, Málaga, Spain, Rheumatology Department, Hospital Universitario Arnu de Vilanova, Lleida, Spain, Rheumatology Department, ClinicaQuiron Valencia, Valencia, Spain, Rheumatology Department, Hospital Clínico Valencia, Valencia, Spain, Rheumatology Department, Hospital Sierrallana, Torrelavega, Spain, Rheumatology Department, EOXI CHU A Coruña, A Coruña, Spain, Rheumatology Department, Hospital de Fuenlabrada, Madrid, Spain, and Rheumatology Department, Hospital Universitario de Móstoles, Móstoles, Spain

Abstract

Objective: To assess effectiveness and safety of certolizumab PEGol (CZP) in rheumatoid arthritis (RA) patients after 12 months of treatment and to detect predictors of response.

Methods: Observational longitudinal prospective study of RA patients from 35 sites in Spain. Variables (baseline, 3- and 12-month assessment): sociodemographics, previous Disease Modifying Anti-Rheumatic Drug (DMARD) and previous Biological Therapies (BT) use; TJC, SJC, ESR, CRP, DAS28, SDAI. Response variables: TJC, SJC, CRP, ESR, and steroids dose reductions, EULAR Moderate/Good Response, SDAI response and remission, DAS28 remission. Safety variables: discontinuation due to side-effects. Descriptive, comparative and Logistic regression analyses were performed.

Results: We included 168 patients: 79.2% women, mean age 54.5 years (±13.2 SD), mean disease duration 7.5 years (±7.3 SD). Mean number of prior DMARD: 1.4 (±1.2 SD), mean number of prior BT was 0.8 (±1.1). Mean time on CZP was 9.8 months (±3.4 SD). A total of 71.4% were receiving CZP at 12-month assessment. Baseline predictors of response: lower prior number of DMARD; low number prior BT; higher CRP, ESR, TJC, SJC, DAS28 and SDAI (p < 0.05) scores.

Keywords

Certolizumab PEGol, Clinical practice, Efficacy, Rheumatoid arthritis, Safety, Spanish population, Survival rate

History

Received 23 July 2015
Accepted 20 September 2015
Published online 6 November 2015

Correspondence to: Vicenç Torrente-Segarra, MD, Rheumatology Department, Hospital General Hospital Sant Joan Despi Moisés Broggi, C/Avingudada Josep Molins 29-41, 08906 Hospitalat Llobregat, Catalunya, Spain. Tel: +34-93-4407500. Fax: +34-93-3344400. E-mail: vtorrente@hsjdbcn.org; vicente.torrentesegarra@sanitatintegral.org
A 25/46.4% Moderate/Good Response, a 20% SDAI remission, and a 44% DAS28 remission were observed. We observed 48 discontinuations (28.6%), 31 due to partial or complete ineffectiveness, and 17 due to side-effects.

Conclusions: CZP showed benefit in severe RA patients, with significant reduction of all effectiveness parameters, despite the high prevalence of previous BT exposure in our series. We found CRP, ESR, prior DMARD/BT number, TJC, SJC, DAS28, and SDAI as baseline predictors of response. CZP was mostly well tolerated.

Introduction
Rheumatoid arthritis (RA) is a joint inflammatory disease that leads to joint pain, disability and low quality of life. In Spain, the prevalence of RA is 0.5% (95% CI 0.25–0.85) with an estimated women-to-men ratio of 4:1 [1]. The ultimate goal of RA therapy is to achieve remission or low disease activity. Since their first appearance, anti-tumor necrosis factor alpha drugs (aTNFα) have dramatically improved the treatment of RA. Observational studies (e.g. from clinical registries) are needed to determine the possible differences between the various TNFα inhibitors in terms of their ability to induce satisfactory treatment responses (improvement according to the American College of Rheumatology criteria [an ACR response] [2], European League Against Rheumatology (EULAR) response [3] or clinical remission [4], or Disease Activity Score in 28 joints (DAS28) [5], in real-life settings). A further advantage of using observational studies data to assess real-life effectiveness is that the strict inclusion and exclusion criteria in randomized clinical trials make the results more applicable to routine care [6,7]. Although there is a considerable amount of published data regarding the use of infliximab, etanercept, and adalimumab in clinical practice [2,7,8], there is scant data concerning certolizumab PEGol (CZP) use [9].

Infliximab, etanercept, and adalimumab were the first aTNFα to become commercially available, and have been in use for the last 10 years [10,11]. Golimumab and CZP have been approved in Spain for use in RA since 2011. To date, no specific CZP registries have been compiled.

On the other hand, the use of different aTNFα treatments in clinical trials has significantly shown better effectiveness in combination therapy with methotrexate than in monotherapy. Whether this might also be true in CZP patients in clinical practice has yet to be confirmed.

We performed a prospective study with the following objectives:

(1) To assess effectiveness and safety of CZP in a series of RA patients after 3 and 12 months of treatment;

(2) To assess predictors of CZP 12-month response; and

(3) To compare CZP-monotherapy vs. CZP-methotrexate combination response.

Methods
Patients
A nationwide registry addressing the use of CZP in Spain, the Registro Nacional del uso de CTnilizumab (RENECER) registry, was launched in 2011 to record and monitor patients aged over 18 years old with RA using 1987 ACR criteria [12], who initiated CZP on a standard clinical care basis. The registry encomasses 35 hospital and community-based Rheumatology units throughout Spain. Patients aged >18 years are enrolled after giving their written informed consent, and the registry has been approved by the relevant local ethics committee (Internal Code 13/34).

CZP was used according to the Spanish Society of Rheumatology (SER) guidelines for the use of biological therapies in RA [13], which recommended the use of aTNFα in patients with active RA who have failed to respond to two or more Disease Modifying Anti-Rheumatic Drugs (DMARDs) or methotrexate single failure exceptions.

Design
An observational longitudinal prospective study was conducted. We collected data at 3 months and at 12-month visit in order to assess 1-year effectiveness and safety of CZP in RA patients under a clinical practice setting.

Variables
Patient data were recorded at baseline, 3 and 12 months from CZP onset. A patient completed the study if CZP was withdrawn or if completed the 12-month assessment.

The data collected included age, sex, disease duration, smoking status, time from diagnosis to beginning of treatment with a biological drug, glucocorticoids intake, previous DMARDs, previous Biological Therapies (BTs), 28-joint Disease Activity Score (DAS28), tender joint count (TJC), swollen joint count (SJC), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR; mm/h), rheumatoid factor (RF), joint pain (using a visual analog scale 0–100), side effects, CZP discontinuation and the reason for it, and discontinuation/tapering of glucocorticoids and DMARDs.

Effectiveness was determined by the reduction on TJC, SJC, DAS28 (remission if ≤2.6) [5], EULAR Response (good response: >1.2 reduction plus total score <3.2; and moderate response: 0.6–1.2 reduction plus total score 3.2–5.1) [3], SDAI Response (reduction of >16 points), and the reduction of steroids dosage, CRP and ESR [14].

Thus, we classified a patient as a CZP ‘responder’ if patient fulfilled at least one the following: reduction of DAS28 >1.2 compared with baseline, good or moderate EULAR response and/or SDAI reduction >16.

Safety variables: discontinuations due to side-effects; side-effects nature and date; severity (life-threatening, death).

Patients lost to follow-up because of CZP discontinuation were included in the final analysis at their 12-month visit with the last observed clinical and biological assessment carried forward (LOCF).

Statistical analysis
A descriptive analysis was performed. Responders and non-responders patients’ baseline data were compared using Chi-square test and Fisher’s exact for qualitative variables, and Mann–Whitney’s U-test for quantitative variables. Longitudinal analysis was performed using the Friedman’s test for quantitative variables and Cochran’s test for the dichotomous variables. A multivariate logistic regression model analysis was performed using Response Criteria as dependent variable. Factors with p value <0.10 in the bivariate analysis as the independents variables. Statistical significance was defined for values p <0.05. All statistical analyses were performed using SPSS version 19.0 (IBM Corporation, Armonk, NY).
Results

Socio-demographics and clinical effectiveness data

A total of 168 patients who received CZP to treat their RA were included. Of these, 79.2% were women; mean age 54.5 years old (±13.2); mean disease duration 7.5 years (±7.3). A total of 70.8% of patients had RF-positive titers and 59.8% had CCP-positive titers. Mean time on CZP was 9.8 months (±3.4 SD). Most patients received induction dose at CZP onset (93.5%).

DMARDs’ failure distribution prior to beginning CZP (25.6% none; 32.1% 1, 42.3% ≥2) is shown in Figure 1. Previous BT distribution [54.2% none (naïve), 28.6% 1, 17.2% ≥2] was: etanercept in 23.8% of cases, adalimumab in 19.0%, infliximab in 16.1%, rituximab in 6.5%, tocilizumab in 5.4%, abatacept in 4.2%, and golimumab in 3.0%. Mean number of prior BT was 0.8 (±1.1). Regarding concomitant treatment at baseline, we found 11.9% of patients used oral steroids, 24.4% DMARDs, 50.0% both DMARDs and steroids (Figure 2 shows DMARDs distribution).

A total of 120 patients (71.4%) were receiving CZP at the 12-month assessment in a real-world clinical setting, as retention rate. Effectiveness variables (Table 1) and steroids use were significantly reduced at 3- and 12-month assessments (Table 2).

Safety

We observed 48 discontinuations (28.6%): 31 due to partial or complete ineffectiveness and 17 due to side-effects: six within the first 3 months of CZP initiation (one of each: varicella zoster reactivation, dry mouth, unexplained fatigue, mild skin rash, pityriasis alba, mild raised liver enzyme test), and 11 at 12 months (one of each: acute infectious otitis, mild raised liver enzyme test, oral aphthosis, dry cough, urticarial rash, hands pustulous–papulous rash, adenoid tuberculosis, pancreatitis, unexplained fatigue, upper respiratory tract mild infection, and acute sinusitis). All led to CZP discontinuation. No life-threatening side-effects and/or deaths were registered.

Predictors of response

After comparing CZP Responders vs. Non-Responders using DAS28/EULAR Response/SDAI in the logistic regression model, we found the following variables as predictors of response: lower number of previous DMARD use; lower number of previous BT exposure; BT-naïve, higher baseline CRP, ESR, TJC, SJC, DAS28, and SDAI (p<0.05) (Supplementary Material). Table 3 shows all baseline predictors of response when adjusting for all variables in the binary logistic regression model.

CZP monotherapy

We explored effectiveness differences regarding the use of CZP in monotherapy vs. combined therapy with MTX, based on prior use of BT. We found better 12-month response in monotherapy CZP-treated patients who had previously failed to only one aTNFα (Table 4).

Discussion

To the best of our knowledge, this is the first registry that specifically addresses CZP effectiveness and safety in a routine clinical practice setting in a 12-month period. CZP provided clear benefits in RA patients who had failed to standard treatments (both DMARD and BT) showing significant improvement in all clinical and serological parameters. These data did not differ from those shown by other aTNFα, such as etanercept and adalimumab in clinical practice setting, higher than previous observations with infliximab [15], and also very similar to the Swedish registry recently published [9]. Even more, our findings were similar to those observed in different clinical trials of CZP, either after DMARD failure or intolerance [16–19] or MTX-naïve [20].

Comparisons to another observational nationwide Swedish registry (SRQ) [9] observations may be performed, but only at 3-month period, as this study assessed clinical CZP effectiveness and safety at 3- and 6-month period from its onset. It must be said that patients might not be completely comparable, as at baseline, our patients showed higher mean DAS28 score than SRQ patients.

Table 1. Clinical effectiveness data at baseline, 3- and 12-month assessments.

	Baseline	3 months	12 months	p value
TJC	8.0 (±5.2)	4.7 (±5.3)	3.3 (±5.2)	<0.001
SJC	6.0 (±4.5)	3.1 (±4.2)	2.2 (±3.9)	<0.001
CRP	9.0 (±12.7)	5.7 (±11.7)	4.7 (±9.9)	<0.001
ESR	32.3 (±25.3)	25.7 (±21.2)	23.5 (±19.9)	<0.001
DAS28	5.1 (±1.3)	4.0 (±1.6)	3.4 (±1.7)	<0.001
DAS28 remission	7 (4.2%)	40 (23.8%)	74 (44.0%)	<0.001
EULAR moderate/good response	33 (19.6%)/50 (29.8%)	42 (25.0%)/78 (46.4%)	<0.001	
SDAI	35.8 (±18.1)	22.1 (±20.7)	17.1 (±19.6)	<0.001
SDAI remission	–	9 (5.6%)	32 (20.0%)	<0.001

Data are shown as: number (%) and mean (±standard deviation).
(5.1 ± 1.3 vs. 4.6 ± 1.4, respectively). The outcome parameters are very similar, although we found slightly lower overall 3-month EULAR response rate compared with the SRQ patients (48.4% vs. 58.2%, respectively). However, the rate of Good EULAR responders was higher in our study (29.8% vs. 23.9%, respectively). Noteworthy, we found response rates were higher as longer was the follow-up (12-month), while SRQ found very similar response rates between 3- and 6-month period assessments. The survival-on-drug in the SRQ study was assessed up to 30-month follow-up, and it seemed comparable with other aTNFα observational registries. The authors found it higher in those who were taken concomitant MTX and who had high disease activity at baseline, and lower in patients with more previous failure to an aTNFα.

The DANBIO registry showed a similar clinical response rate at 12 months for etanercept (32/49% EULAR Moderate/Good Response 32/49 and 33% DAS28 remission), adalimumab (30/57 and 39%, respectively) and infliximab (39/40 and 27%, respectively), compared with our CZP (25/46 and 44%, respectively) observations. In all of these previous studies concomitant treatment use with steroids, MTX or both was even higher than what we observed with CZP. For example, in the DANBIO registry, infliximab was combined with MTX and steroids in 87 and 50% of patients, respectively. In addition, steroids were significantly reduced after 3 and 12 months of CZP treatment compared with baseline. The use of steroids at baseline in all published data varies from 29 to 84% [11,21–23]. In our series we also observed a high rate of steroid use (over 60% with a mean daily dosage of 8.8 mg). However, CZP significantly reduced both the proportion of patients on steroids and the mean daily dosage. The latter assessment was not performed in the SRQ study [9].

The retention rate for CZP use was similar to those observed with other aTNFα drugs in other series [6,16–18], although no direct comparisons could be made for the aforementioned reasons. Nevertheless, as previously described, retention rates for etanercept, infliximab, and adalimumab can vary from 70 to 84% after the first year [21]. No specific data on overall 12-month retention rate are shown in SRQ study [9].

In comparisons with other aTNFα series, we observed a very similar or slightly lower side-effects occurrence rate than what had been recorded in other 12-month follow-up series: the prevalence in an adalimumab registry ranged from 12 to 32% [24–26]. Flouri et al. [27] found that adalimumab showed a 4.1%, etanercept a 1.0% and infliximab a 6.1% rate of discontinuations due to side-effects; a Hellenic registry found an 8.5, 5.3, and 3.5 incidence rate per 100 persons of side-effects with infliximab, adalimumab, and etanercept, respectively [28]. However, no specific data for each aTNFα within the first year were described. In addition, of all the serious infections recorded during the 5-year-follow-up, 42% occurred in the first 12 months from BT onset. Serious aTNFα-related infections have been linked to older age, the concomitant use of prednisolone and DMARD, and the use of infliximab or adalimumab vs. etanercept [29]. No serious infections were observed during the 12-month CZP treatment course. The different designs underlying all these studies precluded any possibility of making direct comparisons. In the SRQ study, patients on CZP showed a total of 15.2% discontinuations in a 30-month period due to intolerance or non-inefficacy related decisions [9].

Among the variables that impacted the 12-month response, we found the as predictors of response the higher CRP and ESR levels, the lower number of both previous DMARDs and BTs use, and the higher TJC, SJC, DAS28, and SDAI scores. After adjusting for all these factors, we determined that only previous lower DMARDs use and both higher baseline SJC and DAS28 served as significant response predictors (OR ranging from 1.3 to 1.8). The SRQ study also showed more benefit in terms of clinical improvement in those patients with higher baseline disease activity (as mean DAS28 score), although higher remission rates were achieved in those patients with non-high DAS28 (≤5.1) compared with those with high baseline DAS28 (>5.1) [9].

As has been previously described, concomitant MTX might be a positive predictor of a good aTNFα response [25,30,31], although other authors have not confirmed this [6]. In fact, we did not find MTX to be an effective predictor of response. For example, the use of CZP in monotherapy did not show lower clinical response rates. Concomitant DMARD influence on the latter was not assessed in the SRQ study [9].

Unlike other studies, we did not find any differences regarding RA duration as a response predictor [12]. Unfortunately, we did not specifically assess anti-CZP antibodies.

As previously described, we did not find differences in terms of clinical response among patients who were active smokers. Recent works from large European registries have suggested that smokers and past smokers are at higher risk of showing poorer response to aTNFα than non-smokers [30,32,33]. No data about CZP response based on smoking status was communicated in the SRQ study [9].

We observed that the use of CZP in monotherapy (23% of patients) did not result in poorer response rates than those involving concomitant MTX. No data on CZP monotherapy was shown in the SRQ study [9]. Moreover, we observed better response in patients treated with CZP in monotherapy after failing.

Table 2. Steroids use and dosage throughout CZP use in RA patients.

	Baseline	3 months	12 months	p value
Glucocorticoids use	104 (61.9%)	88 (52.4%)	78 (46.4%)	<0.001
Glucocorticoids (mg dosage)	8.8 (±6.9)	6.6 (±5.7)	4.8 (±5.2)	<0.001

Data are shown as: (%) and Mean (±SD).

Table 3. Binary logistic regression model results.

	OR	IC95% (OR)	p value
Using DAS28 response criteria			
Higher Baseline DAS28	1.844	1.37:2.48	<0.001
Lower number of previous DMARD use	1.406	1.03:1.92	0.031
BT-naïve	1.949	0.97:3.93	0.061
Using EULAR response criteria			
Lower number of previous DMARD use	1.362	1.01:1.85	0.048
Higher SJC	1.312	1.17:1.47	<0.001
Table 4. Certolizumab PEG effectiveness response in monotherapy according to the different response criteria used and prior administration of aTNFα, compared with combined therapy with methotrexate.

Visit	Bio-naïve	MTX (+)	MTX (−)	p value	OR (IC 95%)
	Total	MTX (+)	MTX (−)		
		OR (IC 95%)	OR (IC 95%)		
		p value	p value		
	Total MTX (+)				
	MTX (−)	OR (IC 95%)	OR (IC 95%)		
	p value				
	OR (IC 95%)				
	p value				
	OR (IC 95%)				
	p value				
	OR (IC 95%)				
	p value				
	OR (IC 95%)				
	p value				
	OR (IC 95%)				
	p value				
	OR (IC 95%)				
	p value				
	OR (IC 95%)				

- **DAS28**
 - **Criteria:** Responders
 - **3 m:** 50 (54.9%) 30 (53.6%) 20 (57.1%) 0.739 0.865 (0.37; 2.03) 15 (31.3%) 7 (29.2%) 8 (33.3%) 0.755 0.824 (0.24; 2.79) 6 (20.7%) 2 (15.4%) 4 (25.0%) 0.663 0.546 (0.08; 3.58)
 - **12 m:** 64 (70.3%) 40 (71.4%) 24 (68.6%) 0.772 1.146 (0.46; 2.87) 25 (52.1%) 11 (45.8%) 14 (58.3%) 0.386 0.604 (0.19; 1.89) 13 (44.8%) 5 (38.5%) 8 (33.3%) 0.711 0.625 (0.26; 1.58)

- **EULAR Responders**
 - **3 m:** 54 (59.3%) 34 (60.7%) 20 (57.1%) 0.736 1.159 (0.49; 2.73) 20 (41.4%) 8 (33.3%) 12 (50.0%) 0.242 0.500 (0.16; 1.61) 9 (31.0%) 4 (30.8%) 5 (31.3%) 1.000 0.977 (0.20; 4.70)
 - **12 m:** 71 (78.0%) 45 (80.4%) 26 (74.3%) 0.496 1.416 (0.52; 3.86) 33 (68.8%) 16 (66.7%) 17 (70.8%) 0.043 0.300 (0.06; 0.88) 16 (55.2%) 8 (61.5%) 8 (33.3%) 0.663 0.546 (0.08; 3.58)

- **SDAI Responders**
 - **3 m:** 38 (45.8%) 20 (41.7%) 18 (51.4%) 0.772 1.146 (0.46; 2.87) 15 (31.3%) 7 (29.2%) 8 (33.3%) 0.755 0.824 (0.24; 2.79) 6 (20.7%) 2 (15.4%) 4 (25.0%) 0.663 0.546 (0.08; 3.58)
 - **12 m:** 48 (57.8%) 28 (58.3%) 20 (57.1%) 0.914 1.050 (0.43; 2.54) 25 (52.1%) 9 (37.5%) 16 (66.7%) 0.386 0.604 (0.19; 1.89) 13 (44.8%) 5 (38.5%) 8 (33.3%) 0.711 0.625 (0.26; 1.58)

- **Number of patients (percentage %).**

Bold indicates statistical significant value.

© 2016 Mod Rheumatol; 26(3): 336–341.
Certolizumab in rheumatoid arthritis patients

Yamamoto K, Takeuchi T, Yamanaka H, Ishiguro N, Eguchi K, et al. Efficacy and safety of certolizumab pegol in Japanese rheumatoid arthritis patients who could not receive methotrexate: 52-week results from a open-label extension of the HIKARI study. Mod Rheumatol. 2014;24:725–33.

Yamamoto K, Takeuchi T, Yamanaka H, Ishiguro N, Tanaka Y, Eguchi K, et al. Efficacy and safety of certolizumab pegol without methotrexate co-administration in Japanese patients with active rheumatoid arthritis: the HIKARI randomized, placebo-controlled trial. Mod Rheumatol. 2014;24:552–60.

Atsumi T, Yamamoto K, Takeuchi T, Yamanaka H, Ishiguro N, Tanaka Y, et al. The first double-blind, randomised, parallel-group certolizumab pegol study in methotrexate-naive early rheumatoid arthritis patients with poor prognostic factors. C-OPERA, shows inhibition of radiographic progression. Ann Rheum Dis. 2015. [Epub ahead of print]. doi: 10.1136/annrheumdis-2015-207511.

Blom M, Kevit W, Kuper HH, Jansen TL, Visser H, den Broeder AA, et al. Frequency and effectiveness of dose increase of adalimumab, etanercept, and infliximab in daily clinical practice. Arthritis Care Res (Hoboken). 2010;62:1335–41.

Marchesoni A, Zaccara E, Gorla R, Bazzani C, Sarzi-Puttini P, Atzeni F, et al. TNF-alpha antagonist survival rate in a cohort of rheumatoid arthritis patients observed under conditions of standard clinical practice. Ann NY Acad Sci. 2009;1173:837–46.

Kaneko A, Hirano Y, Fujibayashi T, Hattori Y, Terabe K, Kojima T, et al. Twenty-four-week clinical results of adalimumab therapy in Japanese patients with rheumatoid arthritis: retrospective analysis for the best use of adalimumab in daily practice. Mod Rheumatol. 2013;23:466–77.

Bennett AN, Peterson P, Zain A, Grumley J, Panayi G, Kirkham B. Adalimumab in clinical practice. Outcome in 70 rheumatoid arthritis patients, including comparison of patients with and without previous anti-TNF exposure. Rheumatology. 2005;44:1026–31.

Markatseli TE, Alamanyos Y, Saougou I, Voulgar PV, Drosos AA. Survival of TNF-alpha antagonists in rheumatoid arthritis: a long-term study. Clin Exp Rheumatol. 2012;30:31–8.

Takeuchi T, Tanaka Y, Kaneko Y, Tanaka E, Hirata S, Kurasawa T, et al. Effectiveness and safety of adalimumab in Japanese patients with rheumatoid arthritis: retrospective analyses of data collected during the first year of adalimumab treatment in routine clinical practice (HARMONY study). Mod Rheumatol. 2012;22:327–38.

Flouri I, Markatseli TE, Voulgar PV, Boki KA, Papadopoulos I, Sestas L, et al. Comparative effectiveness and survival of infliximab, adalimumab, and etanercept for rheumatoid arthritis patients in the Hellenic Registry of Biologics: Low rates of remission and 5-year drug survival. Semin Arthritis Rheum. 2014;43:447–57.

Atzeni F, Sarzi-Puttini P, Bottsios C, Carletto A, Cipriani P, Favalli EG, et al. Long-term anti-TNF therapy and the risk of serious infections in a cohort of patients with rheumatoid arthritis: Comparison of adalimumab, etanercept and infliximab in the GISEA registry. Autoimmun Rev. 2012;12:223–9.

Flouri I, Markatseli TE, Voulgar PV, Boki KA, Papadopoulos I, Sestas L, et al. Comparative effectiveness and survival of infliximab, adalimumab, and etanercept for rheumatoid arthritis patients in the Hellenic Registry of Biologics: Low rates of remission and 5-year drug survival. Semin Arthritis Rheum. 2014;43:447–57.

Atzeni F, Sarzi-Puttini P, Bottsios C, Carletto A, Cipriani P, Favalli EG, et al. Long-term anti-TNF therapy and the risk of serious infections in a cohort of patients with rheumatoid arthritis: Comparison of adalimumab, etanercept and infliximab in the GISEA registry. Autoimmun Rev. 2012;12:223–9.

Aletaha D, Nell VP, Stamm T, Uffmann M, Pflugbeil S, Machold K, et al. Acute phase reactants add little to composite disease activity indices for rheumatoid arthritis: validation of a clinical activity score. Arthritis Res Ther. 2005;7:R796–806.

Prevool ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38:84–9.

Hetland ML, Lindegaard HM, Hansen A, Podenphant J, Unker-skov J, Ringsdal VS, et al. Do changes in prescription practice in patients with rheumatoid arthritis treated with biological agents affect treatment response and adherence to therapy? Results from the nationwide Danish DANBIO Registry. Ann Rheum Dis. 2008;67:1023–6.

Zink A, Strangfeld A, Schneider M, Herzer P, Hiera F, Stoy-anovascholz M, et al. Effectiveness of tumor necrosis factor inhibitors in rheumatoid arthritis in an observational cohort study: comparison of patients according to their eligibility for major randomized clinical trials. Arthritis Rheum. 2006;54:3399–407.

Kristensen LE, Saxne T, Nilsson JA, Geborek P. Impact of concomitant DMARD therapy on adherence to treatment with etanercept and infliximab in rheumatoid arthritis. Results from a six-year observational study in southern Sweden. Arthritis Res Ther. 2006;8:R174.

Chatzidionysiou K, Kristensen LE, Eriksson J, Askling J, van Vollenhoven R. For the Artis Group. Effectiveness and survival-on-drug of certolizumab pegol in rheumatoid arthritis in clinical practice: results from the national Swedish register. Scand J Rheumatol. 2015;18:1–7.

Iannone F, Gremese E, Atzeni F, Biasi D, Bottsios C, Cipriani P, GruppoItaliano di Studio sulle Early Arthritides (GISEA). Longterm retention of tumor necrosis factor-? inhibitor therapy in a large Italian cohort of patients with rheumatoid arthritis from the GISEA registry: an appraisal of predictors. J Rheumatol. 2012;39:1179–84.

Hetland ML, Christensen J, Tarp U, Dreyer L, Hansen A, Hansen IT, et al. Modified disease activity scores that include twenty-eight joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1996;39:34–40.

4. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.

5. Sociedad Española de Reumatología [sede Web]. Madrid: Sociedad Española de Reumatología [accedido Oct 2011]. Guía de práctica clínica para el manejo de la artritis reumatoide 2007. Available at: http://www.ser.es/practicaClinica/GUIPACAR_2007/Menú_Principal.php.

6. Smolen JS, Breedveld FC, Schiff MH, Kalden JR, Emery P, Eberl G, et al. Simplified disease activity index for rheumatoid arthritis for use in clinical practice. Rheumatology (Oxford). 2000;41:57–63.

7. Kievt W, Adang EM, Fransen J, Kuper HH, van de Laar MA, Jansen TL, et al. The effectiveness and medication costs of three anti-tumour necrosis factor alpha agents in the treatment of rheumatoid arthritis from prospective clinical practice data. Ann Rheum Dis. 2008;67:1229–34.

8. Keystone E, Heijde D, Mason D Jr, Landewé R, Vollenhoven RV, Combe B, et al. Certolizumab Pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multi-center, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 2008;58:3319–29.

9. Yamamoto K, Takeuchi T, Yamanaka H, Ishiguro N, Tanaka Y, Eguchi K, et al. Efficacy and safety of certolizumab pegol plus methotrexate in Japanese rheumatoid arthritis patients with an inadequate response to methotrexate: the J-RAPID randomized, placebo-controlled trial. Mod Rheumatol. 2014;24:715–24.

10. Hatta S, Yamashita M, Fujii H, Tanaka H, Takeuchi T, et al. TNF-alpha antagonist therapy in patients with rheumatoid arthritis who failed to respond to methotrexate: 52-week results from an open-label extension of the HIKARI study. Mod Rheumatol. 2014;24:725–33.

11. Hetland ML, Christensen IJ, Tarp U, Dreyer L, Hansen A, Hansen IT, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1996;39:34–40.

12. Aletaha D, Nell VP, Stamm T, Uffmann M, Pflugbeil S, Machold K, et al. Acute phase reactants add little to composite disease activity indices for rheumatoid arthritis: validation of a clinical activity score. Arthritis Res Ther. 2005;7:R796–806.