Fuzzy-SPA method based quantitative risk assessment for tailings pond

Jianyun Shi*, Ke Pan
School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian, Liaoning, 116028, China
*Corresponding author’s e-mail: sjy_487@djtu.edu.cn

Abstract: Regarding characteristics of tailings pond and the requirements of regulations in China, a quantitative evaluation framework of tailings pond indicators was founded. The index system for tailings pond was divided into four parts, which were management capability, engineering designing, monitoring indexes and environmental impact. Furthermore, a set-pair analysis (SPA) based on fuzzy assessment method (Fuzzy-SPA) was presented for the quantitative risk assessment in this paper. It overcame some defects in traditional risk assessment methods and expanded the scope of current methods. Both qualitative and quantitative indexes can be used in the method, then a comprehensive risk score can be achieved. The proposed model was applied to assess a certain tailings pond in Benxi. The result indicated that this method used was feasible and rational. The work presented in this paper can be as reference through adequate selection of model parameters to the safety assessment work for the tailings ponds.

1. Introduction
Tailings pond must be managed and supervised according to relevant regulations and technical standards to ensure its safety because of its major hazards in the process of mine production. Tailings pond and its risk including environment problems is becoming an important research filed these years. YU et al combined the tailings own attributes on the comprehensive analysis of the tailings and put forward the online automatic detecting and early warning information security management technology and methods for safety monitoring and safety management [1]. M.Rico et al used the regression equation to predict the tailings flow which affected by run-out distance and other factors [2]. Mei used monte-carlo model to calculate the possibility of dam failure to improve the safety assessment technology of tailings dam[3]. Wang et al used the numerical and limit equilibrium method to analyze the tailings leakage and static stability and safety monitoring related problems which should be considered in design phase[4]. Yin et al used the laboratory physical model test and case to analyze the stability of tailings and got the results that tailings dam height should be less than originally planned [5]. Yang et al calculated the process of recovery in the tailings dam using ANSYS software on tailings recovery research and tailing dam stability calculation [6]. According to the two types of hazard theory presented by Professor Chen, the reason of unsafe system is the existent hazard [7]. The safety assessment was playing a more and more important role in ensuring the smooth functioning of the project and facility. Zheng et al developed one certain risk assessment software for the tailings dam foundation failure probability analysis and dam failure consequences assessment [8].To solve the subjectivity problem in the risk assessment, Zhu et al presented an uncertain AHP method and applied...
it in one tailings pond [9]. Li used fuzzy comprehensive assessment method to evaluate the dam break of two tailing pond [10].

To assess the risk level of a complicated system, several methods can be used, such as event tree analysis (ETA), fault tree analysis (FTA), fuzzy methods, and so on. However, these methods have a common defect, which was the probability of basic events were very difficult to obtain. The quantitative result were difficult to achieved without the original quantitative data. In these years, some risk assessment software or methods appeared and developed quickly [11]. However, most of the software focused on inherent risk only and the impact of safety management measures on the risk were ignored. To evaluate the comprehensive risk of a system, the likelihood and the consequence of an accident should be considered together.

For the above reasons, the triangular fuzzy method was applied to risk assessment for tailings pond safety. The weight of index was given based on its possibility and consequence [12]. The subjectivity was minimized by the set-pair analysis (SPA) method, which determined the membership function. Combining fuzzy logic and SPA, a new quantitative risk assessment model was presented to overcome the defects in above methods.

2. Fuzzy-SPA assessment method

2.1. Theory of SPA

The set-pair analysis (SPA) considers both certainties and uncertainties as an integrated certain-uncertain system and depicts the certainty and uncertainty systematically from three aspects as identity, discrepancy and contrary [13]. The basic idea of SPA is to analyze the features of a couple of sets (set-pair) and set up a connection degree of the two sets including identity degree, discrepancy degree and contrary degree under certain circumstances. SPA based researches have been conducted in many fields [13]. The connection degree of the set-pair was defined as follows:

$$\mu = a + bi + cj$$

Where a was called identity degree, b was called discrepancy degree, and c was called contrary degree of the two sets under certain circumstances respectively. The j was the coefficient of the contrary degree, which is specified as -1. The i was the coefficient of the discrepancy degree, which was an uncertain value between -1 and 1.

2.2. Fuzzy-SPA assessment method

Because the fuzzy method has the advantage of handling uncertainty information, the combination of fuzzy method and other assessment methods were widely used to solve the uncertainly problems over the years. However, the determination of membership function was subjective by traditional fuzzy method. To minimize the subjectivity, the SPA method was used to provide membership function. The combination of fuzzy logic and SPA was named Fuzzy-SPA method, which combined the advantages of both methods and can provide more credible results.

The set of standard values of assessment grades and the set of factors’ values were seen as a set-pair. The grades of the assessing values were confirmed by the connection degree between the two sets. If a value was within a grade interval, the value was regarded identical with this grade. And for the adjacent grade, the value was regarded discrepant with it. While for other grades, the value was regarded contrary to them.

For a assessment object which had n grades $Grade_1, Grade_2, \ldots, Grade_n$, and m assessment indexes p_1, p_2, \ldots, p_m, the values of the indexes are v_1, v_2, \ldots, v_m. The connection degree between the value v_k of the index p_k and the grades was given by Eq.(2).

$$\mu_k = a_{k1}i_1 + a_{k2}i_2 + \cdots + a_{km}i_m$$

Where a_{kj} ($k = 1, \ldots, m, j = 1, \ldots, n$) was the membership between v_k and the n grades. If the value was within the interval of a grade, $a_{kj}=1$. And for the adjacent grade, $a_{kj}\in(-1, 1)$. While for other grades, $a_{kj}=-1$. i_j was the coefficient of $Grade_j$, u_k was the connection degree. When a_{kj} was seen as
membership, i_j was the sign of certain grade, which was not an actual value. For the values of m indexes, the connection degrees can be expressed by Eq. (3).

$$U = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix} \cdot \begin{pmatrix} i_1 \\ i_2 \\ \vdots \\ i_n \end{pmatrix}$$

(3)

Also, if value v_k was in the grade $Grade_i$ of index p_k, a_{ij} can be determined by Eq. (4).

$$a_{ij} = \begin{cases} \frac{1}{2} - \frac{v_k - X_{k(i-1)l} - X_{k(i)l}}{X_{k(i)l} - X_{k(i-1)l}} & (j = i - 1) \\ 1 & (j = i) \\ \frac{1}{2} - \frac{X_{k(i)l} - v_k}{X_{k(i)l} - X_{k(i-1)l}} & (j = i + 1) \\ -1 & (j \geq i + 2 \text{ or } j \leq i - 2, 1 \leq j \leq n) \end{cases}$$

(4)

In Eq. (4), $X_{k(i)l}$ was the upper limit of $Grade_i$ of index p_k.

Figure 1 showed the membership a_{ij} of different grades.

![Figure 1. SPA based membership function.](image)

If the weights of the m indexes were w_1, w_2, \ldots, w_m, which were denoted by a vector W, the total connection degree can be calculated as follows:

$$R = W \times U = (w_1 \ w_2 \ \cdots \ w_m) \times \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix} \times \begin{pmatrix} i_1 \\ i_2 \\ \vdots \\ i_n \end{pmatrix}$$

(5)

It can also be denoted as:

$$R = W \times U = (r_1 \ r_2 \ \cdots \ r_n) \times \begin{pmatrix} i_1 \\ i_2 \\ \vdots \\ i_n \end{pmatrix}$$

(6)

$$r_k = \sum_{j=1}^{m} w_j a_{ij}(k = 1, 2, \cdots, n)$$

where r_k indicated the total membership degree relating to $Grade_k$. To confirm the final assessment grade, the common fuzzy set method can be used. For example, according to the maximum membership degree rule, if $\max(r_1, r_2, \cdots, r_n) = r_k, k = 1, 2, \cdots, n$, the final assessment grade was $Grade_k$.

3. Application of the model

3.1. Foundation of the tailings pond risk assessment index system

Factors influencing risk included engineering designing of the tailings pond and its actual situation, population density, etc. As is known, the risk of harm events occurrence is the combination of the possibility and consequence. Based on current regulations and structured division principles, an index system including four subsystems was presented. The four subsystems were respectively management capability, engineering designing, monitoring indexes, environment impact. The index system of risk assessment was shown in table 1.

Factor	Content	Weight	Value of the case
Management capability	Risk management structure	0.114	85.4
	Risk management philosophy	0.219	86.1
	Emergency management including plans, facilities, drilling	0.296	63.7
	Implementation of safety inspection	0.119	77.6
	Risk analysis and management of hidden danger	0.252	81.2
Engineering designing	Sliding ability of tailings particles	0.072	75.3
	The scale of deposited beach(length and height)	0.131	86.8
	The stability of both embankment and starter dam	0.131	82.4
	The height and slope ratio of the tailing dam	0.172	86.6
	Collapsing, crack, marsh and subsidence conditions	0.271	73.2
	Flood protection standards and its facilities	0.152	77.5
	Seepage condition including the height of the phreatic line	0.071	80.9
Monitoring indexes	Monitoring the deformation of slope and dam	0.370	73.5
	Monitoring the seepage conditions	0.243	69.2
	Monitoring the dry beach	0.156	83.2
	Monitoring hydrology and meteorology	0.039	81.3
	The on-line monitoring system	0.192	40.3
Environment impact	Site design for the earthquake intensity	0.178	85.0
	Massif condition of beach slope	0.362	75.8
	Engineering geological conditions	0.102	81.3
	The distance between residential area and population density	0.358	86.3

3.2. The determination of weight

The factor weight can be got by triangular fuzzy theory [12]. For a kind of harm event, its risk was determined by the consequence and the possibility, as is shown by Eq.(7).

\[RF = RI \times RP \]

where, \(RF \) represents risk, \(RI \) and \(RP \) respectively represent the consequence and the severity of the harm event.

Furthermore, the language variables for corresponding grades of \(RP \) and \(RI \) and their triangular fuzzy intervals are shown in table 2 and table 3[12]. Some factor only need consider \(RP \) or \(RI \). Some must consider them together.

Description of the accident occurs	RP language	Triangular fuzzy interval
frequently	high	(0.7,0.9,1)
sometimes	a little high	(0.4,0.6,0.8)
occasionally	a little low	(0.2,0.4,0.6)
hardly ever	low	(0,0.1,0.3)
Table 3. The triangular fuzzy interval and its description of risk impact

Description of the consequence	RI language	Triangular fuzzy interval
serious	catastrophic	(0.8,0.9,1)
relatively serious	serious	(0.6,0.75,0.9)
moderately	medium	(0.3,0.5,0.7)
little effect	little	(0.1,0.25,0.4)
almost no effect	negligible	(0,0.1,0.2)

The weight of the assessment factors can be got by Eq.(8) and Eq.(9).

\[
(RF_i) = \frac{\int_0^x xRF_i(x) dx}{\int_0^x RF_i(x) dx}
\]

\[
w_i = \frac{(RF_i)}{\sum_{i=1}^n (RF_i)}
\]

3.3. The determination of the value or interval for each index

In reference of Pan et al [12], four judgment grades were used, which were negligible, low, medium, high. The grade intervals for each index are listed in Table 4. The grades of low and medium can be defined as risk acceptable.

Classification criteria	I (95,100)	II (80,95)	III (60,80)	IV (0,60)
The aggregate score t				

The score interval and its risk classification of each index can be confirmed according to the relevant safety management regulations and technical requirements for tailing pond. For example, the criterion for sliding capability of tailings particles was shown in table 5.

Table 5. The criterion for sliding capability of tailings particles

Average particle diameter / mm	Risk level
>0.50	negligible
0.20~0.50	acceptable
<0.20	unacceptable

The attribute value of each index was given by a expert team. Then the fuzzy judging attribute values of each index given by each expert were combined into one fuzzy judging attribute value \(x_i\). As is shown in the Eq.(10).

\[
x_i = \sum_{k=1}^i (\lambda_k x_i^k) = \lambda_1 x_1^1 \oplus \lambda_2 x_2^1 \oplus \cdots \oplus \lambda_k x_k^1 \oplus \cdots \oplus \lambda_i x_i^1
\]

where \(x_i^k\) means the triangular fuzzy judging attribute value of the \(i\)th index that given by the \(k\)th expert.

Finally, the risk grade of the tailings pond was determined by Fuzzy–SPA assessment method.

4. A case study

To verify the model above, a tailings pond in Benxi was chosen as an example. The physical model can be seen in figure 2.
Figure 2. physical model of the case

Using the model presented in the paper, a safety assessment team scored the tailings pond. The values given by different experts were listed in Table 1. Based on the model, the final assessment grade was “normal pond”.

The results by Fuzzy-SPA assessment method introduced were listed in Table 6.

Assessment factor of the tailing pond	w	membership degree	Risk grade by Fuzzy-SPA	Risk grade by triangular fuzzy
Management capability	0.245	(-0.670, 0.308, 0.670, -0.489)	III	III
Engineering designing	0.359	(-0.509, 0.610, 0.679, -0.744)	III	II
Monitoring indexes	0.255	(-0.923, 0.113, 0.669, 0.113)	III	II
Environment impact	0.141	(-0.564, 0.848, 0.564, -0.848)	II	II

And the risk grade of the tailing pond can be got by Eq. (8).

\[R = -0.662i_1 + 0.443i_2 + 0.658i_3 - 0.478i_4 \]

The result was grade III, “Medium, risk acceptable, but need improved” which was same to the result got by the triangular fuzzy method.

5. Conclusions
Based on Fuzzy-SPA theories, a quantitative risk assessment model for tailing pond was founded. The quantitative analysis and comparison of potential risk including risk probability and risk impact was realized. According to system hierarchy analysis, the performance of safety management including risk and emergency capability was depicted by an index system. The Fuzzy-SPA theories have obvious advantages to assess such a complicated system. The original information from different resources were analyzed in assessment phase and the comprehensive risk level of the tailing pond were obtained. The method presented in the paper can change qualitative linguistic variables to quantitative assessment results. Sorting the quantitative results, the defects requiring rectification in the system emerged.

Acknowledgments
This work was supported by dalian jiaotong university and the department of science& technology of Liaoning Province (2019-ZD-0092)

References
[1] Yu G M, Song CH W, Zou J B, et al. Applications of online monitoring technology for tailings dam on digital mine [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 604-609
[2] Rico M, Benito G, Diez-Herro A. Floods from tailings dam failures [J]. Journal of Hazardous Materials, 2008, 154(1-3): 79-87

[3] Mei G D. Quantitative Assessment Method Study Based on Weakness Theory of Dam Failure Risks in Tailings Dam [J]. Procedia Engineering, 2011, 26, 1827-1834

[4] Wang T, Zhou Y, Lv Q, et al. A safety assessment of the new Xiangyun phosphogypsum tailings pond [J]. Minerals Engineering, 2011, 24(10): 1084-1090

[5] Yin G ZH, Li G ZH, Wei Z AN, et al. Stability analysis of a copper tailings dam via laboratory model tests: A Chinese case study [J]. Minerals Engineering, 2011, 24(2): 122-130

[6] Yang Y, Sun W, Li SH F. Tailings dam stability analysis of the process of recovery [J]. Procedia engineering, 2011, 26, 1782-1787

[7] Chen B Z. (2005). System safety assessment and prediction, Metallurgical Industry Press, Beijing

[8] ZHENG X, XU X H, XU K L. Study on the Risk Assessment of the Tailings Dam Break [J]. Procedia Engineering, 2011, 26, 2261-2269

[9] Zhu J X, Li C L. Application of Uncertain AHP to the Safety Assessment of Tailing Dam [J]. Metal Mine, 2010, 1(8): 167-169.

[10] Li Q M, Zhang X K, WANG Y H, ZHANG BY. Risk index system and evaluation model for failure of tailings dams [J]. Journal of Hydraulic Engineering, 2009, 40(8): 989-994

[11] Zhou J F. SPA-fuzzy method based real-time risk assessment for major hazard installations storing flammable gas [J]. Safety Science, 2010 48 (10): 819–822

[12] Pan K, Dong Y. Risk assessment of tailings pond based on triangular fuzzy theory [J]. Advanced Material Research, 2012, 524-527: 515-519

[13] Zhao K Q, Xuan A L. Set pair theory-a new theory method of non-define and its applications. Systems Engineering, 1996, 14(1), 18-23