Unshared binding sites for *Bacillus thuringiensis* Cry3Aa and Cry3Ca proteins in the weevil *Cylas puncticollis* (Brentidae)

Patricia Hernández-Martínez a, b, Natalia Mara Vera-Velasco a, b, Baltasar Escriche a, b,*

a Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain
b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain

A R T I C L E I N F O

Article info
Received 6 May 2016
Received in revised form 16 September 2016
Accepted 17 September 2016
Available online 20 September 2016

Keywords:
African sweetpotato weevil
Binding sites
Insecticidal proteins
Insect control

A B S T R A C T

Bacillus thuringiensis Cry3Aa and Cry3Ca proteins have been reported to be toxic against the African sweetpotato pest *Cylas puncticollis*. In the present work, the binding sites of these proteins in *C. puncticollis* brush border vesicles suggest the occurrence of different binding sites, but only one of them is shared. Our results suggest that pest resistance mediated by alteration of the shared Cry-receptor binding site might not render both Cry proteins ineffective.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Cylas puncticollis (Bohemian) (Coleoptera: Brentidae) is one of the major pests of sweetpotato (*Ipomoea batatas* (L.) Lam.) in Eastern Africa (Smit, 1997). The sweetpotato weevil larvae make tunnels in roots and stems causing extensive damage (Stathers et al., 2005) which can cause yield losses of up to 60–100% depending on the severity of the infestation (Chalfant et al., 1990). Chemical control is not effective enough due to the cryptic habit of the larvae (Reddy et al., 2012). Hence, the use of transgenic plants which express *Bacillus thuringiensis* proteins (Bt crops) can be an useful alternative to control *C. puncticollis* insect pest as they have been shown to effectively control stem borers, ear feeders and rootworms (Loseva et al., 2002; Walters et al., 2008). Nowadays, genetically modified sweetpotato plants expressing Cry3Aa, Cry3Ca or Cry7Aa proteins, which have been reported to be active against *C. puncticollis* (Ekobu et al., 2010), have been developed in order to control different sweetpotato weevils of the genus *Cylus* (Morán et al., 1998; Rukarwa et al., 2013a, 2013b).

The mode of action of Cry proteins from *B. thuringiensis* has been extensively studied, especially for lepidopteran-active Cry proteins (Bravo et al., 2007; Vachon et al., 2012; Adang et al., 2014), whereas much less is known for coleopteran-active Cry proteins (Hernández-Martínez et al., 2014; Ochoa-Campuzano et al., 2012; Rausell et al., 2004, 2007; Slaney et al., 1992). The proposed model starts after the ingestion of the crystals by susceptible insect larvae, followed by crystal solubilization and protease activation in the midgut environment. Finally, the toxic fragment binds, as a key step, to specific receptors on the brush border membrane of the midgut epithelium columnar cells and that leads to toxin insertion into the membrane producing lytic pores which causes cell lysis and insect death (Federici et al., 2010).

The study of the Cry binding site model can help to maintain the long-term efficacy of Bt-crops, since binding site alteration has been described as the basis of cross-resistance when different Cry proteins share the same binding site (Ferré and Van Rie, 2002; Ferré et al., 2008). Recently, the existence of common binding sites for three *B. thuringiensis* proteins, Cry3Ca, Cry3Bb, and Cry7Aa proteins to *C. puncticollis* brush border membrane vesicles (BBMV) has been proposed (Hernández-Martínez et al., 2014). Thus, from a resistant management standpoint, combinations of these three proteins do not seem to be suitable for development of Bt sweetpotato plants. However, there is no information available about Cry3Aa protein binding sites in *C. puncticollis*. For this reason, the aim of the present study was to assess whether Cry3Aa and Cry3Ca proteins share binding sites in this pest to predict possible cross-resistance patterns for these Cry proteins which have been already introduced separately into sweetpotato plants.
Cry3Aa and Cry3Ca proteins were obtained from the
B. thuringiensis strains BGSC-4AA1 (provided by ARS Culture
Collection) and BTS02109P (provided by Bayer CropScience, Gent,
Belgium), respectively. Cry3 protein solubilization and activation,
either with bovine pancreas trypsin (type I) (Sigma-Aldrich) or
bovine pancreas x-chymotrypsin was performed as described by
Hernández-Martínez et al. (2014). Processing of Cry3Aa protoxin
with either trypsin or chymotrypsin renders a single main polypeptide with a mass of about 55 kDa (Fig. S1). Similar results were
described previously, though a second fragment of about 49 kDa
was also described to occur together with the 55 kDa fragment
when Cry3Aa protoxin was processed in *vitro* with chymotrypsin
(Carroll et al., 1997; Martínez-Ramírez and Real, 1996). These differences could be attributed to differences in the experimental
conditions used.

Processing of the Cry3Ca protein with either trypsin or
chymotrypsin renders a fragment with a mass of about 53 kDa
(Rausell et al., 2004) (Fig. S1). Additionally, processing of Cry3Ca
protein by either *C. puncticollis* gut fluid or BBMV also rendered a
fragment with a mass of about 53 kDa (Martínez-Solís et al.,
2011).

Cry3 proteins (73 kDa) are considered as truncated versions of
the lepidopteran-active proteins (130 kDa) (Park et al., 2009).
However, to be active the Cry3 protoxins must be processed at the
N-terminal part of the protein (Carroll et al., 1989; Rukmini et al.,
2000). In general, it has been proposed that serine proteases such
as trypsin-like or chymotrypsin-like proteases are involved in the
processing of *B. thuringiensis* Cry protoxins (Carroll et al., 1989,
1997; Mohan and Gujar, 2003; Oppert et al., 1996). In the present
study, the N-terminal sequence of either trypsin or chymotrypsin-activated Cry3Ca proteins was determined as described by
Hernández-Martínez et al. (2014). Briefly, protein bands were cut
out from the membrane and sent for N-terminal amino acid
sequencing by the Edman method at the Alphalyse A/S, Odense,
Denmark, using an ABI Procise 494 sequencer. The N-terminal
sequence of the trypsin-activated fragments was SQGRI, corre-
spanding to the position 159, whereas the N-terminal sequence of
the chymotrypsin-activated fragment was TLRDG at the position
153. The N-terminal sequences of the trypsin- and chymotrypsin-
activated Cry3Aa proteins was described by Carroll et al. (1997)
and correspond to the aminoacid positions 159 (sequence
NPHSQ) and 162 (sequence SQGRI), respectively.

Previous studies (Slaney et al., 1992; Rausell et al., 2004) have
shown that some Cry3 proteins are able to bind to BBMV from
some coleopteran insect pest including *C. puncticollis* (Hernández-
Martínez et al., 2014). Interestingly, some reports have shown
that only the chymotrypsin-activated Cry3Aa, and not the trypsin-
activated, was able to bind specifically to BBMV from *L. decemlineata* (Martínez-Ramírez and Real, 1996). In contrast,
Rausell et al. (2004) did not observe differences in the binding
ability of either trypsin- or chymotrypsin Cry3Aa protein to BBMV
from the same insect species. To clarify the active binding fragment
for Cry3Aa and Cry3Ca proteins in *C. puncticollis*, competition as-
says were carried out with either trypsin- or chymotrypsin-activated
proteins. BBMV were prepared from whole last-instar
C. puncticollis larvae based on the differential magnesium precipi-
tation method (Wolfersberger et al., 1987) as modified by Escriche
et al. (1995). Trypsin- and chymotrypsin-activated Cry3 proteins
were biotinylated with a protein biotinylation kit (GE HealthCare)
according to the manufacturer’s instructions. The working condi-
tions for the binding experiments were set up in preliminary experi-
ments. Competition experiments were performed incubating 5 µg of BBMV with 18 nm of biotinylated trypsin or chymotrypsin-
activated Cry3 proteins in binding buffer (phosphate-buffered sa-
line, pH 7.4, 0.1% BSA) in the absence or the presence of an excess of
unlabeled Cry proteins. Incubations were carried out for 1 h at 25 ºC
in a final volume of 100 µl. Moreover, control binding assays con-
ducted without BBMV showed practical absence of protein precipi-
tation (Fig. S2).

At least three replicates were performed to each competition
assay. Binding was detected as previously described by Hernández-
Martínez et al. (2014) using streptavidin-conjugated horseradish
peroxidase (1:2000).

Homologous competition assays showed that either trypsin or
chymotrypsin-activated Cry3Aa and Cry3Ca proteins bound speci-
fically to the *C. puncticollis* BBMV since they exhibited competi-
tion with an excess of their respective unlabeled Cry protein (Fig 1).
In order to test the role of proteolytic processing by commercial
enzymes on binding ability, labeled Cry3Aa and Cry3Ca trypsin
or chymotrypsin-activated proteins were competed with unlabeled
chymotrypsin-activated Cry3Aa or Cry3Ca proteins, respectively.
In all cases, the results showed a similar reduction on the binding of the biotinylated Cry3 proteins suggesting that independently of the protease treatment the Cry3 protein binds to the same receptor (Fig 1).

Thus, the differences in the N-terminal sequence described by
other authors to either trypsin- or chymotrypsin-activated Cry3Aa
(Carroll et al., 1997) or by ourselves to either trypsin- or

![Fig. 1. Homologous competition binding assays on *C. puncticollis* BBMV. Biotinylated trypsin or chymotrypsin-activated Cry3 proteins were incubated in absence (−) or presence (250x) of unlabeled trypsin or chymotrypsin-activated proteins.](image-url)
proteins due to a single binding site modulation between Cry3Aa and Cry3Ca proteins. Demonstrated the occurrence of shared and unshared binding sites unlikely in BBMV (Rausell et al., 2004). Nevertheless, this is the three Cry3 proteins were also reported on Colorado potato beetle (Hernández-Martínez et al., 2011) and two Cry3 proteins (Cry3Bb and Cry3Ca) was previously described for mosquito control Open Toxinology J, 3, 83–85. http://www.ascrypt.com.

In summary, based on the results of binding site interactions, the development of cross-resistance between Cry3Aa and Cry3Ca proteins due to a single binding site modification appears to be unlikely in C. puncticollis, since both proteins have unshared binding sites. Thus, from a resistant management standpoint, combinations of Cry3Aa and Cry3Ca can be suitable for development of Bt sweetpotato plants.

Acknowledgments

We thank R.J. Rukarwa and Dr. M. Ghislain for providing the C. puncticollosis larvae as well as the National Crop Resources Research Institute in Uganda. We are also grateful to both of them and to Dr. J. Van Rie (Bayer CropScience N.V.) and Dr. J. Ferré (Universitat de València) for their helpful discussions. This work was supported by the Bill and Melinda Gates Foundation through the Sweetpotato Action for Security and Health in Africa (SASHA) (Grant No.OPP53344) project including additional support for the weevil activities in Uganda from the United States Agency for International Development (USAID).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.toxicon.2016.09.014.

Transparency document

Transparency document related to this article can be found online at http://dx.doi.org/10.1016/j.toxicon.2016.09.014.

References

Adang, M.J., Crickmore, N., Jurat-Fuentes, J.L., 2014. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv. Insect Physiol 47, 39–87. http://dx.doi.org/10.1016/B978-0-12-400907-4.00002-6.

Bravo, A., Gill, S.S., Sobrero, M., 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435. http://dx.doi.org/10.1016/j.toxicon.2006.11.022.

Carroll, J., Convents, D., Van Damme, J., Boets, A., Van Rie, J., Ellar, D.J., 1997. Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry1A delta-endotoxin may facilitate its coleopteran toxicity. J. Invertebr. Pathol. 70, 41–49. http://dx.doi.org/10.1006/jipa.1997.4656.

Carroll, J., Li, J., Ellar, D.J., 1989. Proteolytic processing of a coleopteran-specific delta-endotoxin produced by Bacillus thuringiensis var. tenebrionis. Biochem. J. 261, 99–105.

Challant, R.B., Jansson, R.K., Seal, D.R., Schalk, J.M., 1990. Ecology and management of sweet potato insects. Annu. Rev. Entomol. 35, 157–180. http://www.annualreviews.org/doi/10.1146/annurev.en.35.011990.01105.

Ekobu, M., Solera, M., Kyamanywa, S., Mwanga, R.O., Odongo, B., Ghislain, M., Moor, W.J., 2010. Toxicity of seven Bacillus thuringiensis Cry proteins against Cylas puncticollis and Cylus brunneus (Coleoptera: Bredinidae) using a novel artificial diet. J. Econom. Entomol. 103, 1493–1502. http://dx.doi.org/10.1603/EC09432.

Escriche, B., Silva, F.J., Ferré, J., 1995. Testing suitability of brush border membrane vesicles prepared from whole larvae from small insects for binding studies with Bacillus thuringiensis CryA(b) crystal protein. J. Invertebr. Pathol. 65, 318–320. http://dx.doi.org/10.1006/jipa.1995.0151.

Federici, R.A., Park, H.W., Bideshi, D.K., 2010. Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control Open Toxinology J. 3, 83–100.

Ferré, J., Van Rie, J., MacIntosh, S.C., 2008. Insecticidal genetically modified crops and insect resistance management (IRM). In: Integration of Insect-Resistant Genetically Modified Crops Within IPM Programs. Springer, Netherlands, pp. 41–85.

Ferré, J., Van Rie, J., 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47 (1), 501–533.

Hernández-Martínez, P., Vera-Velasco, N.M., Martínez-Solís, M., Ghislain, M., Ferré, J., Escriche, B., 2014. Shared binding sites for the Bacillus thuringiensis proteins Cry3Bb, Cry3Ca and Cry7Aa in the African sweet potato pest Cylus puncticcillls (Bredinidae). Appl. Environ. Microbiol. 80, 7545–7550. http://dx.doi.org/10.1128/AEM.02514-14.

Loseva, O., Ibrahim, M., Candas, M., Koller, C.N., Bauer, L.S., Bulla Jr., L.A., 2002. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxin Cry3Aa. Biochem. Molec. Biol. 32 (5), 567–577. http://dx.doi.org/10.1007/s00179-000179-4.

Martínez-Ramírez, A.C., Real, M.D., 1996. Proteolytic processing of Bacillus thuringiensis CryIA(b) toxin and specific binding to brush-border membrane vesicles of Leptinotarsa decemlineata (Colorado potato beetle). Pestic. Biochem. Phys. 54, 115–122. http://dx.doi.org/10.1016/0048-9268(96)00015-7.

Martínez-Solís, M., Hernández-Martínez, P., Escriche, B., 2011. Proteolytic processing of Bacillus thuringiensis Cry3Ca toxin by different protease digestion treatments. IOBC/WPRS Bull. 66, 79–82.

Mohamed, M., Gujar, G.T., 2003. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae: Lepidoptera). J. Invertebr. Pathol. 82, 1–11. http://dx.doi.org/10.1016/S0022-1812(02)00194-5.

Morán, R., García, R., López, A., Zaldívar, Z., Mena, J., García, M., Armas, R., Somonte, D., Rodríguez, J., Gómez, M., Pimentel, E., 1998. Transegenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci. 139, 175–184. http://dx.doi.org/10.1016/S0168-9452(98)00179-4.

Ochoa-Lizárraga, C., Sánchez, J., García-Robles, I., Real, M.D., Rausell, C., Sánchez, J., 2012. Identification of a calmodulin-binding site within the domain I of Bacillus thuringiensis Cry3Aa toxin. Arch. Insect Biochem. Physiol. 81, 53–62. http://dx.doi.org/10.1002/arch.21044.

Oppert, B., Kramer, K.J., Johnson, D., Upton, S.J., McGaughy, W.H., 1996. Luminal proteinases from Ploida interpunctella and the hydrolysis of Bacillus thuringiensis CRY1(Ac) prototoxin. Insect Biochem. Mol. Biol. 26, 571–583. http://dx.doi.org/10.1016(S0965-1748(96)00013-5.

Park, Y., Abdullah, M.A., Taylor, M.D., Rahman, K., Adang, M.J., 2009. Enhancement of
Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin. Appl. Environ. Microbiol. 75, 3086–3092. http://dx.doi.org/10.1128/AEM.00268-09.

Rausell, C., García-Robles, I., Sánchez, J., Muñoz-Garay, C., Martínez-Ramírez, A.C., Real, M.D., Bravo, A., 2004. Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say). Biochim. Biophys. Acta 1660, 99–105. http://dx.doi.org/10.1016/j.bbamem.2003.11.004.

Rausell, C., Ochoa-Campuzano, C., Martínez-Ramírez, A.C., Bravo, A., Real, M.D., 2007. A membrane associated metalloprotease cleaves Cry3Aa Bacillus thuringiensis toxin reducing pore formation in Colorado potato beetle brush border membrane vesicles. Biochim. Biophys. Acta 1768, 2293–2299. http://dx.doi.org/10.1016/j.bbamem.2007.06.01.

Reddy, G.V., Gadi, N., Taianao, A.J., 2012. Efficient sex pheromone trapping: catching the sweetpotato weevil, Cylas formicarius. J. Chem. Ecol. 38, 846–853. http://dx.doi.org/10.1007/s10886-012-0160-4.

Rukarwa, R.J., Mukasa, S.B., Sefasi, A., Ssemakula, G., Mwanga, R.O.M., Ghislain, M., 2013a. Segregation analysis of cry7Aa1 gene in F1 progenies of transgenic and non-transgenic sweetpotato crosses. J. Plant Breed. Crop Sci. 5, 209–213. http://dx.doi.org/10.5897/JPBCS2012.070.

Rukarwa, R.J., Prentice, K., Ormachea, M., Kreuze, J.F., Tovar, J., Mukasa, S.B., Ghislain, M., 2013b. Evaluation of bioassays for testing Bt sweetpotato events against sweetpotato weevil. Afr. Crop Sci. J. 21, 235–244.

Rukmini, V., Reddy, C.Y., Venkateswelu, G., 2000. Bacillus thuringiensis crystal delta-endotoxin: role of proteases in the conversion of protoxin to toxin. Biochimie 82, 109–116. http://dx.doi.org/10.1016/S0300-9684(00)00355-2.

Slaney, A.C., Robbins, H.L., English, L., 1992. Mode of action of Bacillus thuringiensis toxin CryIIIA: an analysis of toxicity in Leptinotarsa decemlineata (Say) and Diabrotica undecimpunctata howardi Barber. Insect Biochem. Mol. Biol. 22, 9–18. http://dx.doi.org/10.1016/0965-1748(92)90094-U.

Smit, N.E., 1997. The effect of the indigenous cultural practices of in-ground storage and piecemeal harvesting of sweetpotato on yield and quality losses caused by sweetpotato weevil in Uganda. Agr Ecosyst. Environ. 64, 191–200. http://dx.doi.org/10.1016/S0167-8809(97)00022-4.

Stathers, T., Namanda, S., Mwanga, R.O.M., Khina, G., Kapenga, R., 2005. Manual for Sweetpotato Integrated Production and Pest Management Farmer Field Schools in Sub-Saharan Africa. International Potato Center, Kampala, Uganda.

Vachon, V., Laprade, R., Schwartz, J.L., 2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J. Invertebr. Pathol. 111, 1–12. http://dx.doi.org/10.1016/j.jip.2012.05.001.

Walters, F.S., Stacy, C.M., Lee, M.K., Palekar, N., Chen, J.S., 2008. An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against western corn rootworm larvae. App. Environ. Microbiol. 74 (2), 367–374. http://dx.doi.org/10.1128/AEM.02163-07.

Woltersberger, M.G., Luthy, P., Parenti, P., Sacchi, V.F., Giordana, B., Hanozet, G.M., 1987. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. A. Comp Physiol. 86A, 301–308. http://dx.doi.org/10.1016/0300-9629(87)90334-3.