Mjerenje temperature u stvarnom vremenu tijekom svjetlosno aktivirane polimerizacije eksperimentalnih kompozitnih materijala

Real-time Temperature Monitoring During Light-Curing of Experimental Composites

Sahetak

Cilj: Željelo se ispitati porast temperature u stvarnom vremenu tijekom svjetlosno aktivirane polimerizacije eksperimentalnih kompozitnih materijala koji sadržavaju bioaktivno staklo 45S5 (BG) i usporaditi ga s porastom temperature triju komercijalnih kompozitnih materijala. Materijali i metode: Pripremljeno je pet eksperimentalnih kompozitnih materijala s ukupnim težinskim udjelom punila od 70 % težinskim udjelom BG-a između 0 i 40 %. Cilindrični uzorci promjera 6 mm i debline 2 mm osvjetljeni su 30 sekunda polimerizacijskim uređajem Bluephase G2 (Ivoclar Vivadent) pri 1200 mW/cm². Porast temperature tijekom svjetlosne aktivacije polimerizacije mjeren je na dnu uzoraka termočlanom T-tipa, uz brzinu prikupljanja podataka od 20 sekunda. Kako bi se izmjerio doprinos zagrijavanja najočnjem promjera za controlni uređaj, polimerizirani uzorci ostavljeni su da se ohlade na sobnu temperaturu, nakon čega su naknadno osvijetljeni (30 s). Statistička analiza obavljena je jednosmjernom analizom varijance (ANOVA) i Pearsonovom analizom korelacija, uz račun značajnosti α = 0.05. Rezultati: Vrijednosti temperature izmjerene tijekom svjetlosno aktivirane polimerizacije eksperimentalnih kompozitnih materijala bile su između 12,2 i 14,0 °C, što se može usporediti s vrijednostima tekućih komercijalnih kompozita (12,5 °C), ali više od vrijednosti izmjerena za nano- i mikrohiribdne komercijalne kompozite (9,6 – 10,3 °C). Po porast temperature tijekom naknadnog osvjetljivanja bio je sličan u svim kompozitima (7,8 – 9,1 °C). Za eksperimentalne kompozite porast temperature zbog egzotermne reakcije, iznosio je 3,1 – 5,8 °C i negativno je korelirao s težinskim udjelom BG-a (R² = 0,96). Temperaturni porast dosegne maksimalne vrijednosti za 6,5 do 19,8 sekunda nakon početka osvjetljivanja, a vremena pri kojima su dosegne maksimalne vrijednosti pozitivno su korisniji s težinskim udjelom BG-a (R² = 0,98). Zaključak: Može se usporediti s porastom temperature komercijalnih kompozita. Zato se količina oslobodene topline može smatrati sigurnom za zubnu pulpu.

Ključne riječi

kompozitne smole; polimerizacija; termografijska; polimerizirajuće svjetlo, stomatološko

Uvod

Suvremeni kompozitni materijali za izravne restauracije omogućuju izravnu estetiku uz prihvatljiva mehanička svojstva (1). Trajnost kompozitnih restauracija skraćena je zbog njihove sklonosti prema razvoju sekundarnog karijesa (2). Kako bi se to spriječilo, istražuju se bioaktivni kompozitni materijali koji imaju antibakterijska svojstva ili otpuštaju remineralizujące ione (3). Različite bioaktivne formulacije pokazale su obećavajuće rezultate (3 – 7). Između različitih spojeva koji otpuštaju ionе i zato se istražuju kao potencijalna bioaktivna punila eksperimentalnih materijala koji imaju antibakterijska svojstva ili otpuštaju remineralizujące ione (3-7). Zbog porast temperature, zbog egzotermne reakcije, iznosio je 3,1 – 5,8 °C i negativno je korelirao s težinskim udjelom BG-a (R² = 0,96). Temperaturni porast dosegne maksimalne vrijednosti za 6,5 do 19,8 sekunda nakon početka osvjetljivanja, a vremena pri kojima su dosegne maksimalne vrijednosti pozitivno su korisniji s težinskim udjelom BG-a (R² = 0,98).
The composition of five experimental composite materials containing different fractions (0-40 wt %) of BG 45S5 and compare it to the temperature rise of three commercial composites. The null hypotheses were that: (I) the fraction of BG does not affect the temperature rise during light-curing of experimental composites; (II) the fraction of BG does not affect the time at which temperature reaches the maximum value; (III) the temperature rise in experimental bioactive composites does not differ from that in commercial reference materials.

Materials and methods

Composite materials

The composition of five experimental composite materials according to preliminary studies (18-20) is detailed in Table 1. Resins and photoinitiator system were mixed in a dark room using a magnetic stirrer for 48 hours. Blending of the resulting photoactivated resin with fillers was performed in a mixing device (Speed Mixer TM DAC 150 FVZ, Hauschild & Co. KG, Hamm, Germany) at 2700 rpm during five minutes (26). The experimental composite pastes were then kept for 12 h in vacuum to remove air inclusion.

Apart from the experimental composites, three commercial composites (flowable, nano- and micro-hybrid) were
Mjerenje temperature u stvarnom vremenu

Za mjerenje porasta temperature tijekom svjetlosno aktivirane polimerizacije pripremljeni su cilindrični uzorci mjera 6 mm i debljine 2 mm u crnim teflonskim kalupima. Nepolimerizirani materijal postavljen je u kalup koji je zatim s obiju strana pokriven polietilen-tereftalatnim (PET) filmom used as a reference (Table 2). Information on the composition of commercial materials was obtained from manufacturer provided datasheets and references (27, 28).

Bis-GMA: bisfenol-A glicidil metakrilat, Esttech, PA, SAD; TEGDMA: trietilen glikol dimetakrilat, Esttech; CQ: kamforkinon, Aldrich, WI, SAD; 4E: etil-4- (dimetilamino) benzoat, Aldrich.

Bioaktivno staklo: SiO$_2$ 45%, Na$_2$O 25%, CaO 25%, P$_2$O$_5$ 5%, veličina čestica (d$_{50}$/d$_{99}$ [µm]): 4.0/13.0, silanizacija: ne, naziv proizvoda/proizvođač: G018-144/Schott, Njemačka.

Barijevo staklo (Ba): SiO$_2$ 55.0%, BaO 25.0%, B$_2$O$_3$ 10.0%, Al$_2$O$_3$ 10.0%, veličina čestica (d$_{50}$/d$_{99}$ [µm]): 1.0/4.0, silanizacija 3.2 wt %, naziv proizvoda/proizvođač: GM27884/Schott, Njemačka.

Silika punila (Si): SiO$_2$ \geq 99.8 %, veličina primarnih čestica: 12 nm, silanizacija 4-6 w t %, naziv proizvoda/proizvođač: Aerosil DT/Evonik Degussa, Njemačka.

Bioaktivno staklo: SiO$_2$ 45 %, Na$_2$O 25 %, CaO 25 %, P$_2$O$_5$ 5 %, veličina čestica (d$_{50}$/d$_{99}$ [µm]): 4.0/13.0, silanizacija: ne, naziv proizvoda/proizvođač: G018-144/Schott, Njemačka.

Bioaktivno staklo: SiO$_2$ 45 %, Na$_2$O 25 %, CaO 25 %, P$_2$O$_5$ 5 %, veličina čestica (d$_{50}$/d$_{99}$ [µm]): 4.0/13.0, silanizacija: ne, naziv proizvoda/proizvođač: G018-144/Schott, Njemačka.

Bioaktivno staklo: SiO$_2$ 45 %, Na$_2$O 25 %, CaO 25 %, P$_2$O$_5$ 5 %, veličina čestica (d$_{50}$/d$_{99}$ [µm]): 4.0/13.0, silanizacija: ne, naziv proizvoda/proizvođač: G018-144/Schott, Njemačka.

Bioaktivno staklo: SiO$_2$ 45 %, Na$_2$O 25 %, CaO 25 %, P$_2$O$_5$ 5 %, veličina čestica (d$_{50}$/d$_{99}$ [µm]): 4.0/13.0, silanizacija: ne, naziv proizvoda/proizvođač: G018-144/Schott, Njemačka.

Bioaktivno staklo: SiO$_2$ 45 %, Na$_2$O 25 %, CaO 25 %, P$_2$O$_5$ 5 %, veličina čestica (d$_{50}$/d$_{99}$ [µm]): 4.0/13.0, silanizacija: ne, naziv proizvoda/proizvođač: G018-144/Schott, Njemačka.
debljine 0,05 mm. Kalupi ispunjeni kompozitnim materijalom nakon toga pokriveni su s obje strane staklenim pločicama debljine 1 mm i pritisnuti između metalnih utega ravnog površina kako bi se uklonio suvišak materijala. Termočlanka T-tipa smešten je na suprotno strani uzorka ispod PET filma. Preliminarna mjerenja pokazala su da postavljanje PET filma između kompozitnog uzorka i termočlanka nema značajan učinak na temperaturne krivulje, nego samo neznatno pridonosi nasumičnoj pogreški mjerenja. Detaljniji opis eksperimentalnog postava dostupan je u referenciji (23). Šest uzoraka pripremljeno je za svaki kompozitni materijal (n = 6).

Tijekom svjetlosno aktivirane polimerizacije (30 s) uređajem Bluephase G2 (Ivoclar-Vivadent, Schaan, Liechtenstajn) s plavo-ljubičastom svjetlo-četkom diodom (LED) intenziteta 1200 mW/cm², temperatura uzoraka mjeren je u stvarnom vremenu (20 s⁻¹) s pomoću računalnog programa vlastite izrade pripremljenog u paketu LabVIEW 2011 (National Instruments, Austin, Texas, SAD). Mjerenje temperature nastavljeno je i nakon što je ciklus osvjetljavanja završen kako bi se pratilo hlađenje uzorka. Približno 160 sekunda nakon početka svjetlosno aktivirane polimerizacije, temperatura se spustila na početnu vrijednost. Zatim je uzorak osvijetljen još jedanput i to 30 sekunda. Takav postupak omogućio je odvajanje učinaka zagrivanja polimerizacijskim uređajem od egzoternih reakcija polimerizacije. Opisani pristup pretpostavlja da je polimerizacija završena tijekom prvog osvjetljavanja, što je potvrđeno preliminarnim pokusima. Temperatura okoliša izmjerena T-tipom termočlanka kao vrijednost zabilježena prije početka mjerenja u stvarnom vremenu, iznosi la 21 ± 1 °C.

Statistička analiza

Normalnost distribucije i prihvatljiva homogenost varijanči provršene su Shapiro-Wilkovim i Leveneovim testom. Jednosmjernom ANOVA-om s Tukeyjevom post-hoc prilagodbom uspoređene su srednje vrijednosti temperaturnog porasta svih kompozita s vremenom vršnih vrijednosti temperature u eksperimentalnim kompozitima. Pearsonovom analizom koreliran je težinski udjel BG-a s toplinom oslobođenom polimerizacijom. Statistička analiza obavljena je u programskom paketu SPSS 20 (IBM, Armonk, NY, USA) uz α = 0,05.

Rezultati

Reprezentativna krivulja porasta temperature kao funkcije vremena prikazana je na slici 1. Porast temperature pri prvom osvjetljavanju ukupni je porast temperature tijekom svjetlosno aktivirane polimerizacije (T₁), a porast temperature pri drugom osvjetljavanju odražava učinak zagrivanja polimerizacijskim uređajem (T₂). Razlika između T₁ i T₂ pokazuje porast temperature koji se može pripisati energiji oslobodenoj u egzoternoj polimerizaciji (T_{exotherm}).

Srednje vrijednosti T₁, T₂, T_{exotherm} prikazane su na slici 2. Porast temperature zbog zagrivanja polimerizacijskim uređajem (T₂) bio je sličan u svim kompozitima. Kad je riječ (PET) film. The composite-filled molds were covered from both sides with 1 mm thick glass plates and pressed between two flat metal slabs to remove excess material. The curing unit was centered above the specimen at the distance of 1 mm from its surface. A custom-made t-type thermocouple was positioned at the opposite side of the specimen below the PET film. Preliminary measurements showed that placing the PET film between the composite specimen and thermocouple had no significant effect on real-time temperature curves, rather adding only slightly to the random measurement error. The detailed description of the experimental setup is given in the reference (23). Six specimens were prepared for each composite material (n=6).

During the light-curing for 30 s by means of a blue-violet light emitting diode (LED) curing unit (Bluephase G2, Ivoclar-Vivadent, Schaan, Liechtenstein, irradiance of 1200 mW/cm²), the temperature of the specimens was monitored in real-time (20 s⁻¹) using a custom-made computer program prepared in LabVIEW 2011 (National Instruments, Austin, Texas, USA). Temperature monitoring was continued after the curing has been completed in order to observe the specimen cooling. Approximately 160 seconds after the start of the curing, temperature returned to the baseline and the specimen was illuminated again for 30 seconds. This procedure was performed in order to discern the heating effect of the curing unit from the polymerization exotherm. Such an approach assumes that polymerization has been completed during the first illumination, which was demonstrated in preliminary experiments. The environmental temperature recorded using a t-type thermocouple as the baseline temperature before initiating the real-time temperature measurement was 21±1 °C.

Statistical analysis

No significant deviations from a normal distribution and an acceptable homogeneity of variances were confirmed by the Shapiro Wilk and Levene's test, respectively. The one-way ANOVA with Tukey post-hoc adjustment was used to compare mean values of temperature rise among all composites, as well as times of the temperature peak among the experimental composites. A Pearson correlation analysis was performed to correlate the BG fraction with the reaction exotherm and time of the temperature peak. Statistical analysis was performed in SPSS 20 (IBM, Armonk, NY, USA) with α=0.05.

Results

A representative plot of the temperature increase as a function of time is presented in Figure 1. The temperature rise during the first illumination represents the total temperature rise during light-curing (T₁), while the temperature rise during the second illumination reflects the heating effect of the curing unit (T₂). The difference between T₁ and T₂ represents the temperature rise due to the polymerization exotherm (T_{exotherm}).

Mean values of T₁, T₂, and T_{exotherm} are presented in Figure 2. The temperature rise due to the curing unit heating (T₂) was similar for all composites. T₁ values for BG-20 and BG-
Temperature Monitoring During Light-Curing of Experimental Composites

Španović et al.

Slika 1. Reprazentativna krivulja porasta temperature u stvarnom vremenu (materijal: TEF); vršna vrijednost temperature tijekom prvog osvjetljivanja (T_1) označava porast temperature tijekom svjetlosne aktivacije polimerizacije i zbroj je učinaka zagrijavanja i egzotermne reakcije; druga vršna vrijednost (T_2) uzrokovana je zagrijavanjem polimerizacijskim uređajem; razlika između navedenih parametara pokazuje porast temperature koji se može pripisati oslobađanju energije u polimerizacijskoj reakciji ($T_{exotherm}$)

Figure 1 Representative plot of the real-time temperature rise (material: TEF). The temperature peak during the first illumination (T_1) represents the temperature increase during light curing, which is a sum of the heating effect from the curing unit and the reaction exotherm. The second peak (T_2) is solely due to the curing unit heating. The difference between these two values represents the temperature rise which is attributable to the exotherm of the polymerization reaction ($T_{exotherm}$).

Slika 2. Srednje vrijednosti (± s.d.) temperaturnog porasta tijekom svjetlosne aktivacije polimerizacije (T_1), tijekom naknadnog osvjetljivanja (T_2) i egzotermne reakcije ($T_{exotherm}$); statistički homogene skupine označene su istim malim slovima za T_1, istim velikim slovima za T_2 i istim brojevima za $T_{exotherm}$

Figure 2 Mean values (± s.d.) of temperature rise during light curing (T_1), during additional illumination (T_2) and polymerization exotherm ($T_{exotherm}$). Statistically homogeneous groups are denoted with same lowercase letters for T_1, same uppercase letters for T_2, and same numbers for $T_{exotherm}$.

Slika 3. Povećani prikaz početnog dijela temperaturnih krivulja (tijekom prvog osvjetljavanja) u eksperimentalnim kompozitima (a) i komercijalnim referentnim materijalima (b)

Figure 3 A close-up of the initial part of temperature curves (during the first illumination) for experimental composites (a) and commercial reference composites (b).

Slika 4. Vrijeme postizanja vršne vrijednosti temperature (srednje vrijednosti ± s.d.) u eksperimentalnim kompozitima; statistički homogene skupine označene su istim malim slovima

Figure 4 Time of the temperature peak (mean values ± s.d.) for experimental composites. Statistically homogeneous groups are denoted with same lowercase letters.

Slika 5. Porast temperature i vrijeme vršne vrijednosti temperature kao funkcija težinskog udjela BG-a; opažene su visoko značajne korelacije s visokim koeficijentima determinacije

Figure 5 Temperature rise and the time of temperature peak plotted as a function of the BG fraction. Highly significant correlations with high coefficients of determination were observed.
Polimerizacija eksperimentalnih kompozitnih materijala

Španović i sur.

92

Rasprava

U ovom istraživanju ispitano je vremena osvjetlivanja ekspanzionalnih kompozita s težinom udjela BG-a od 0 do 40 % i ukupnog težinskog udjela punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Sastav eksperimentalnih kompozita utvrđen je u ranijem istraživanju koje je potvrdilo njihovo svojstvo da precipitiraju do 40 % i ukupnim težinskim udjelom punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Uzorci debljine 2 mm simulirana je debljina sloja koji je uobičajena u kliničkoj uporabi kliničkih kompozita. Budući da količina oslobodene topline ovisi o količini kompozita, uobičajen je uobičajen postupak za izradu velikog sloja pri osvjetlivanju sloja koji bi osigurao uravnoteženu bioaktivnost i mehaničku stabilnost (21). Sastav eksperimentalnih kompozita utvrđen je u ranijem istraživanju koje je potvrdilo njihovo svojstvo da precipitiraju do 40 % i ukupnim težinskim udjelom punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Sastav eksperimentalnih kompozita utvrđen je u ranijem istraživanju koje je potvrdilo njihovo svojstvo da precipitiraju do 40 % i ukupnim težinskim udjelom punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Rasprava

U ovom istraživanju ispitana je o svojstvima u stvarnom vremenu tijekom svjetlosno aktivirane polimerizacije eksperimentalnih kompozita s težinskog udjela BG-a od 0 do 40 % i ukupnog težinskog udjela punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Sastav eksperimentalnih kompozita utvrđen je u ranijem istraživanju koje je potvrdilo njihovo svojstvo da precipitiraju do 40 % i ukupnim težinskim udjelom punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Sastav eksperimentalnih kompozita utvrđen je u ranijem istraživanju koje je potvrdilo njihovo svojstvo da precipitiraju do 40 % i ukupnim težinskim udjelom punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Sastav eksperimentalnih kompozita utvrđen je u ranijem istraživanju koje je potvrdilo njihovo svojstvo da precipitiraju do 40 % i ukupnim težinskim udjelom punila od 70 %. Tri komercijalne kompozite (tekuci, nano- i mikrohibridni) služili su kao referencije.

Discussion

The composition of experimental composites followed a previous study which demonstrated their capability to precipitate hydroxyapatite (20). The potential for hydroxyapatite precipitation was investigated with higher BG fractions. However, increasing the fraction of water-soluble BG fillers is expected to impair mechanical properties (29). Thus composites with various BG fractions were investigated since the optimal composition which would provide a balance between bioactivity and mechanical stability has not yet been determined (21).

The thickness of the specimens used in this study was 2 mm in order to simulate the layer thickness which is common in the clinical use of conventional composites. Since the amount of heat released depends on the composite amount (22), the dimensions of composite specimens were chosen to represent the volume of the composite which would be used in a large increment for filling an extensive preparation in posterior teeth. The curing time of 30 seconds exceeds the commonly recommended curing times, which usually range between 10 and 20 seconds for a high-irradiance curing unit with an output of 1200 mW/cm². Such a long curing time was used in order to gain a better insight into temperature curves during polymerization and capture the temperature peaks for all experimental materials (Figure 3).
Pristup koji uključuje dva uzastopna osvjetljanja (slika 1.) prihvaćen je nastavno na ranije istraživanje u kojem se pokazao korisnim za odvajanje toplinskih doprinosa podrijetlom od polimizacijskog uređaja i egzotermne reakcije polimerizacije (23). Statistička analiza pokazala je da se razlike u temperaturnom porastu između materijala najvećim dijelom mogu pripisati egzotermnoj reakciji, a učinak zagrijavanja polimizacijskim uređajem bio je sličan za sve materijale, s obzirom na to da svi imaju sličan toplinski kapacitet (slika 2.). Zato padajući trend temperaturnih porasta tijekom svjetlosno aktivirane polimerizacije (T_r) zapravo odražava sličan uzorak opažen za T_{exotherm}. Razlike u težinskim udjelima BG-a rezultirale su s više statistički značajnih razlika u parametru T_{exotherm} negoli u T_r, što se može objasniti manjom varijabilnošću podataka u slučaju prvog parametra. U svakom slučaju može se uočiti statistički značajan učinak težinskog udjela BG-a na porast temperature pri svjetlosno aktiviranoj polimerizaciji. Bu đuci da su svi eksperimentalni kompositi sadržavali slične vol umne udjelove smeše (48 – 52 %) i zato usporedivi količine C = C veza dostupnih za konverziju u jednostruke veze, uočeni učinak može se objasniti smanjenjem stupnja konverzije sevjetlitom kompositima. Ishva dočuđuje da su svi eksperimentalni kompositi sadržavali slične volumne udjelove smeše (48 – 52 %) i zato usporedivi količine C = C veza dostupnih za konverziju u jednostruke veze, uočeni učinak može se objasniti smanjenjem stupnja konverzije u životnom kompositima (48 – 52 %) i zato usporedivi količine C = C veza dostupnih za konverziju u jednostruke veze.
Tef i Gradia poslužili kao referentne vrijednosti za eksperimentalne kompozite.

Nano- i mikrohibridni komercijalni kompozit pokazali su slične vrijednosti temperaturnog porasta tijekom osvjetljivanja koje su bile statistički značajno niže negoli u tekućem kompozitu (slika 2.). Navedena razlika može se pripisati većem udjelu smolaste komponente u tekućem materijalu (tabela 2.), što je rezultiralo većom količinom dvostrukih C = C veza raspoloživih za egzotermnu reakciju polimerizacije. Tako objašnjenje podupire i nalaz vrijednosti $T_{exotherm}$ koje su u TEF materijalima bile dvostruko više negoli u materijalima TEC-a i Gradije. Eksperimentalni kompozit BG-20 i BG-40 pokazali su vrijednosti temperaturnog porasta tijekom osvjetljivanja uspoređive s referentnim vrijednostima izmjerenih za tekući komercijalni kompozit, a eksperimentalni kompoziti s nižim udjelima BG-a dosegnuli su vrijednosti temperature koje su bile do 1,8 °C više od referentnih. Iako je navedena razlika bila statistički značajna, upitano je kliničko značenje dobi venih rezultata. Potrebno je napomenuti da su značajno veće vrijednosti temperaturnog porasta u rasponu od 6,6 do 14,1 °C (35) i od 5,8 do 14,0 °C (36) bile izmjerene u istraživanjima komercijalnih kompozita, uz primjenu sličnog eksperimentalnog postava kao i u ovom radu. Nadalje, znatno veće vrijednosti temperaturnog porasta (do 43 °C) izmjerene su za komercijalne kompozite uporabom skenirajućeg infracrvenog sustava (37). Zato se u kontekstu podataka iz literature može zaključiti da je porast temperature tijekom svjetlosne aktivacije polimerizacije eksperimentalnih BG-kompozita bio unutar raspona vrijednosti izmjerenih za komercijalne kompozite.

Iz temperaturnih krivulja snimljenih tijekom polimerizacije u svrchnom vremenu može se dobiti informacija o dinamici porasta temperature unutar uzorka. U eksperimentalnim kompozitnim materijalima uočen je razlikiti oblici temperaturnih krivulja čije su vršne vrijednosti postajale sve šire i pomicale se prema kasnijim vremenima s porastom udjela BG-a (slika 3. a). Takav rezultat upućuje se na sporiji i postupan porast temperature u kompozitima s većim udjelima BG punila. Kako bi se kvantificirale navedene razlike, određena je vrijeme vršnih vrijednosti temperaturnog porasta, a rezultati su prikazani na slici 4. Vidljivo je da se vrijeme vršnih vrijednosti temperature značajno produljuje u kompozitima s višim udjelima BG punila. Oblik temperaturne krivulje za tekući komercijalni kompozit (TEF) bio je sličan kao za eksperimentalne kompozite, a i za nano- i mikrohibridne komercijalne kompozite (TEC i Gradia) nije zabilježena vršna vrijednost temperaturnog porasta, nego samo kontinuirani porast tijekom cijelog razdoblja osvjetljivanja (slika 3. b). Navedena razlika može se objasniti činjenicom da su nano- i mikrohibridni kompoziti (TEC i Gradia) imali najniže vrijednosti $T_{exotherm}$ od svih ispitanih materijala, što je rezultiralo prikrivanjem toplinskog učinka egzotermne reakcije mnogo izraženijim zagrijavanjem polimerizacijskim uređajem. Zato u temperaturnim krivuljama navedenih materijala nije bila vidljiva izdvojena vršna vrijednost.

Na temelju opaženoga sistematskog utjecaja udjela BG punila na temperaturni porast zbog egzotermne reakcije i vrijeme vršne vrijednosti temperaturnog porasta (slike 2. i 4.), ovisnost je analizirana Pearsonovom analizom korelacije (slika 2. i 4.))

ence value for comparison with experimental materials.

Nano- and micro-hybrid commercial composites demonstrated similar values of temperature rise during light-curing which was significantly lower than that in the flowable composite (Figure 2). This difference can be attributed to a higher fraction of the resinous component in the flowable composite (Table 2), resulting in more C=C bonds available for the exothermic polymerization reaction. This explanation is supported by $T_{exotherm}$ values being twice higher in TEF compared to TEC and Gradia. Experimental composites BG-20 and BG-40 showed values of temperature rise during light-curing similar to those of the flowable reference composite, while the composites with lower BG fraction reached temperature values up to 1.8 °C higher. Although the difference was statistically significant, its clinical importance is questionable. It should be noted that temperature ranges of 6.6-14.1 °C (35) and 5.8-14.0 °C (36) were reported in studies with similar experimental setups as in the present study, while much higher temperature rise (up to 43 °C) was measured in a study using infrared scanning system (37). Thus, within the context of the literature data, the temperature rise during light-curing produced by the experimental BG-containing composites was within the range of commercial composites.

The real-time plots of temperature rise during light-curing provide information on the dynamics of temperature buildup. In experimental composites, different shapes of temperature curves were identified (Figure 3a); the temperature peaks showed a tendency to widen and shift to later times as the BG fraction increased, suggesting a slower and more gradual temperature buildup in composites with higher BG fractions. To quantify this behavior, the time at which the temperature peaks occurred was determined and presented in Figure 4. The time of temperature peaks prolonged significantly as a function of higher BG fractions. The flowable commercial composite (TÉF) showed a temperature peak similar to that observed in experimental composites, unlike the nano- and micro-hybrid commercial composites (TEC and Gradia) which showed no distinct temperature peak during the light-curing but rather a gradual temperature increase throughout the curing period (Figure 3b). This difference is attributable to TEC and Gradia presenting with the lowest $T_{exotherm}$ of all the materials which resulted in the polymerization exotherm being masked by the more pronounced heating effect of the curing unit. Hence, a separate temperature peak was not distinguishable in these materials.

Since temperature rise due to the polymerization exotherm ($T_{exotherm}$) and time needed to reach the temperature peak appeared to be systematically influenced by the BG fraction (Figure 2 and 4), these parameters were analyzed using Pearson correlation analysis (Figure 5). The finding that both the $T_{exotherm}$ and the time of the temperature peak were strongly correlated to the BG fraction suggests a possible impact of BG fillers on composite polymerization. The negative correlation between the BG fraction and $T_{exotherm}$ could be related to the aforementioned effect of BG to affect the degree of conversion. The correlation of the time of temperature peak and BG fraction implies that composites with higher BG fractions not only released less heat but were also slower in
Temperature Monitoring During Light-Curing of Experimental Composites

Abstract

Objective: To investigate the real-time temperature rise during light-curing of experimental composites containing bioactive glass 4555 (BG) and compare it to the temperature rise in three commercial composites. Materials and methods: Five light-curable composite materials containing 0-40 wt% of BG and a total filler load of 70 wt% were prepared. Cylindrical composite specimens 6 mm in diameter and 2 mm thick were cured using Bluephase G2 (Ivoclar Vivadent) at 1200 mW/cm² for 30 s. The rise in temperature during light-curing was measured at the bottom of the specimens using a T-type thermocouple at the data collection rate of 20 s⁻¹. An additional illumination for 30 s was performed after the specimen temperature returned to the baseline in order to record the temperature rise due to the heating from the curing unit. Statistical analysis was performed using the one-way ANOVA and Pearson correlation analysis with α=0.05. Results: Temperature rise during light-curing of experimental composites amounted to 12.2-14.0 °C and was comparable to that of the flowable commercial composite (12.5 °C) but higher than that of nano- and micro-hybrid commercial composites (9.6-10.3 °C). The temperature rise during the second illumination was similar for all composites (7.8-9.1 °C). In experimental composites, the temperature rise which was attributable to the polymerization exotherm amounted to 3.1-5.8 °C and was negatively correlated to the BG fraction (R²=0.94). Times at which temperature reached maximum values were in the range of 6.5-19.8 s and were positively correlated to the BG fraction (R²=0.98). Conclusions: Temperature rise during light-curing of experimental composites was comparable to that of commercial composites, suggesting that the amount of heat released is tolerable by dental pulp.

Acknowledgments

Composite materials Tetric EvoCeram and Tetric EvoFlow were donated by Ivoclar Vivadent.

Conflict of interest

None declared

Key words

Composite Resins; Polymerization; Thermography; Curing Lights, Dental

Zaključci

Eksperimentalni kompoziti s visokim težinskim udjelima BG punila (20 i 40 %) pokazali su porast temperature sličan komercijalnim kompozitima. Više vrijednosti porasta temperaturnog porasta tijekom svjetlosno aktivirane polimerizacije materijala BG-20 i BG-40 bio je sličan vrijednostima izmjerenim za komercijalne materijale TEF-a.

Conclusions

Experimental composites with high BG fractions (20 and 40 wt. %) showed the temperature rise during polymerization similar to that of the commercial reference composite. A slightly higher temperature rise was measured in experimental composites with lower BG fractions (0-10 wt %); however, the obtained temperature values were within the range of commercial composites reported in previous studies. Thus the amount of heat released by experimental composites can be considered tolerable by dental pulp. Increasing the BG fraction in experimental composites decreased the temperature rise during curing and increased the time of temperature peak in a linear manner, suggesting a systematical effect of BG fraction on polymerization kinetics.

Acknowledgments

Composite materials Tetric EvoCeram and Tetric EvoFlow were donated by Ivoclar Vivadent.

Conflict of interest

None declared

Key words

Composite Resins; Polymerization; Thermography; Curing Lights, Dental
References

1. Miletic V. Development of Dental Composites. In: Miletic, V - editor. Dental Composite Materials for Direct Restorations. Cham: Springer International; 2018. p. 235-43.

2. Nedeljkovic, I; Van Landuyt, KL. Secondary Caries. In: Miletic, V - editor. Dental Composite Materials for Direct Restorations: Cham: Springer International; 2018. p. 3-9.

3. Cheng L, Zhang K, Zhang N, Melo MAS, Weir MD, Zhou XD, et al. Developing a New Generation of Antibacterial and Bioactive Dental Resins. J Dent Res. 2017 Jul;96(8):855-863.

4. Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzić JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. 2013 Nov;29(11):1139-48.

5. Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzić JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps in composite restorations. Dent Mater. 2016 Jan;32(1):73-81.

6. Chiari MD, Rodrigues MC, Xavier TA, de Souza EM, Arana-Chavez VE, Braga RR. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent Mater. 2015 Jun;31(6):726-33.

7. Cheng L, Weir MD, Xu HH, Kraigslsey AM, Lin NJ, Lin-Gibson S, et al. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine. 2012 May;28(5):573-83.

8. Tezvergili-Mutiuyu A, Seseogullari-Dirihan R, Feitosa VP, Cama G, Brauer DS, Sauro S. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin J Dent Res. 2017 Aug;96(9):999-1005.

9. Gillam DG, Tang JY, Mordan NJ, Newman HN. The effects of a novel Bioglass dentifrice on dentine sensitivity: a scanning electron microscopy investigation. Send to J Oral Rehabil. 2002 Apr;29(4):305-13.

10. Allan I, Newman H, Wilson M. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials. 2001 Jun;22(12):1683-7.

11. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 2014 Jan;102(1):254-74.

12. Carneiro KK, Meier MM, Santos CC, Maciel AP, Carvalho CN, Bauer J. Adhesives Doped with Bioactive Niobophosphate Micro-Filler: Degree of Conversion and Microtensile Bond Strength. Braz Dent J. 2016 Oct-Dec;27(6):705-711.

13. Davis HB, Gwinner F, Mitchell JC, Ferracane JL. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass. Dent Mater. 2014 Oct;30(10):1187-94.

14. Yli-Urpo H, Narhi M, Narhi T. Compound changes and tooth mineralization effects of glass ionomer cements containing bioactive glass (S53P4a), an in vivo study. Biomaterials. 2005 Oct;26(30):5934-41.

15. Taubock TT, Zehnder M, Schweizer T, Stark WJ, Attin T, Mohn D. Functionailizing a dentin bonding resin to become bioactive. Dent Mater. 2014 Aug;30(8):868-75.

16. Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006 Nov;17(11):967-78.

17. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013 Jan;9(1):4457-86.

18. Par M, Spanovic N, Gamulin O, Marovic D, Mandic V, Tarle Z. Degree of conversion of experimental bioactive glass-containing composites. Clin Oral Investig. 2017;21(4A):1368.