Identification of Dark Matter particles with LHC and direct detection data

G. Bertone1,2 D.G. Cerdeño3 M. Fornasa4 R. Ruiz de Austri5 and R. Trotta6

1 Institut for Theoretical Physics, Univ. of Zürich, Winterthurerstr. 190, 8057 Zürich CH
2 Institut d’Astrophysique de Paris, UMR 7005-CNRS, Univ. P. et M. Curie, 98bis Bd Arago, 75014 Paris, France
3 Departamento de Física Teórica, and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
4 Instituto de Astrofísica de Andalucía (CSIC), E-18008, Granada, Spain
5 Instituto de Física Corpuscular, IFIC-UV/CSIC, Valencia, Spain and
6 Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if Weakly Interacting Massive Particles (WIMPs) are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe Ω_{DM}. We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection (DD) data, by making a simple Ansatz on the WIMP local density ρ_χ, i.e., by assuming that the local density scales with the cosmological relic abundance, $(\rho_\chi/\Omega_{\text{DM}}) = (\Omega_\chi/\Omega_{\text{DM}})$. We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino LSP in the stau co-annihilation region. Our results show that future ton-scale DD experiments will allow to break degeneracies in the SUSY parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.

I. INTRODUCTION

Identifying the nature of the dark matter (DM) remains one of the central unsolved problems in modern particle physics and cosmology. A generic Weakly Interacting Massive Particle (WIMP) is among the best-motivated possibilities since it can be thermally produced in the early Universe in the right amount to account for the observed DM density. Indeed, many theories for Physics beyond the Standard Model contain viable WIMP candidates, as is the case of Supersymmetry (SUSY) when the lightest SUSY particle (LSP) is the lightest neutralino (a linear superposition of the super-symmetric partners of the gauge and Higgs bosons) \cite{1–4}.

DM can be searched for in various ways. One possibility is attempting a direct detection, through its scattering off nuclei inside an underground detector. Many experiments have been running or are under construction which are mostly sensitive to the spin-independent part of the WIMP-nucleus cross section, σ_SI. Among these, the DAMA/LIBRA collaboration reported a possible DM signal \cite{5,6}. However, its interpretation in terms of the elastic scattering of a WIMP with a mass around 10 – 100 GeV and $\sigma_\text{SI} \sim 10^{-3} – 10^{-5}$ pb has been challenged by other experiments, such as the CoGeNT 7,8, CDMS 9,10, XENON 11 and ZEPLIN 12. The CoGeNT collaboration has itself recently reported an irreducible excess of low-energy events which could also be understood as due to the scattering of a very light WIMP 8 (see also Ref. 13), but this interpretation has in turn been put under pressure by the XENON-100 results, obtained with a fiducial target mass of 40 kg and 11 days of exposure 13. Finally, the recent results from the CDMS-II collaboration show two events compatible with a WIMP signal, although these results are still statistically inconclusive 10.

The future increase of the sensitivity may clarify the situation, but it is becoming clear that several independent pieces of evidence will be necessary to claim discovery of DM. In fact, even if in principle the WIMP mass and scattering cross section can be determined with some accuracy after its direct detection in one direct detection experiment, provided that the measured event rate is large and the WIMP mass is small 13,16, a second direct detection with a different target would actually allow a much more precise determination of the WIMP mass 17, and if the new target is sensitive to the spin-dependent contribution of the WIMP-nucleus cross section it could even be used to discriminate among WIMP candidates 18.

Another possibility consists in looking for the products of DM annihilation (e.g., high energy neutrinos, gamma-rays or antimatter) and thus indirectly reveal the presence of the DM 2,4. We leave the discussion of this search strategy to a forthcoming work, where we will present the constraints that can be set on the DM parameter space from the observation (or non-observation, see also 19) of DM annihilation radiation 20.

Finally, collider experiments, most notably the Large Hadron Collider (LHC), will explore the nature of Physics at the TeV scale, where many of the extensions of the SM that propose DM candidates would manifest themselves. The detection of new Physics in particle colliders can provide crucial information about DM. For example, the mass and spin of the LSP could be determined through the study of kinematic variables 21,22. However, to prove that the newly discovered particles account for all (or most) of the DM in the Universe, is a challenging task. In fact, although particle accelerators can provide some information about the neutralino relic
density 23, it was found that in many cases the LHC would be unable to determine the precise composition of the neutralino, leading to an unreliable prediction of its relic abundance or to the occurrence of multiple solutions spanning several orders of magnitude, thus not allowing to establish whether or not it is the DM (see also Ref. 24 and references therein).

One possibility is to build a new collider, such as the proposed International Linear Collider (ILC), that would allow a much more precise evaluation of the supersymmetric masses and couplings, and a better determination of the inferred relic density, as argued by the authors of Ref. 23. However, this machine will not be available in the near future, and it is therefore crucial to devise strategies that can be implemented as soon as new particles are discovered at the LHC. Fortunately, direct detection experiments are expected to greatly improve their sensitivity in the next few years and start probing interesting regions of the supersymmetric parameter space. In case of discovery, it will certainly be reassuring if the mass reconstructed from direct detection experiments matched the value obtained from accelerator measurements, since it would prove the existence of a particle which is stable over cosmological timescales. The error on the mass reconstructed from direct detection experiments depends on the DM particle parameters, and on the experimental setup, and the interested reader can find a detailed analysis in Refs.15, 16. But one can do much more than checking the compatibility of the two mass determinations. We show here that a combined analysis of the two data sets will allow a much better reconstruction of the DM properties, and a convincing identification of DM particles.

Although the strategy discussed here is model-independent, we work out an explicit example in the context of a 24-parameters supersymmetric model, with a neutralino LSP in the stau co-annihilation region.

II. THEORETICAL FRAMEWORK AND LHC DATA

We work within the framework of the minimal supersymmetric extension of the Standard Model (MSSM), for which we adopt a low energy parametrization in terms of 24 parameters, corresponding to its CP-conserving version. The input parameters are the coefficients of the trilinear terms for the three generations, the mass terms for gauginos (for which no universality assumption is made), right-handed and left-handed squarks and leptons, the mass of the pseudoscalar Higgs, the Higgsino mass parameter μ, and finally the ratio between the vacuum expectation values of the two Higgs bosons $\tan \beta$.

If searches for new Physics at the LHC are consistent with a SUSY scenario, the study of different kinematical variables will allow us to determine some properties of the SUSY spectrum. In particular, the masses of several particles or mass-splittings between them could be extracted, with a precision that obviously depends on the properties of the specific point of the parameter space. These measurements can then be used as constraints on the 24-dimensional SUSY model, in order to determine the regions of the MSSM parameter space which are consistent with such a measurement. This can be done by applying Bayes’ theorem

\begin{equation}
\frac{p(x|d)}{p(d)} = \frac{p(d|x)p(x)}{p(d)},
\end{equation}

which updates the so-called prior probability density $p(x)$, encapsulating the knowledge of the 24-dimensional space before taking into account the experimental constraints, d, into the posterior probability function (pdf) $p(x|d)$. The latter describes the probability density assigned to a generic 24-dimensional point x once the data have been taken into account via the likelihood function $p(d|x)$. Furthermore, on the RHS of Eq. (1), $p(d)$ is the Bayesian evidence which, in our case, can be dropped since it simply plays the role of a normalization constant for the posterior in this context (see 25 for further details).

The marginal pdf of a particular subset (as e.g. only one) of the 24 parameters defining x can be obtained by integrating over the remaining directions:

\begin{equation}
\text{p}(x^i|d) = \int_{[1,24]\setminus\{i\}} p(x|d) dx^1 ... dx^{i−1} dx^{i+1} ... dx^{24}.
\end{equation}

The posterior encodes both the information contained in the priors and in the experimental constraints, but, ideally, it should be largely independent of the choice of priors, so that the posterior inference is dominated by the data contained in the likelihood. If some residual dependence on the prior $p(x)$ remains this should be considered as a sign that the experimental data employed are not constraining enough to override completely different plausible prior choices and therefore the resulting posterior should be interpreted with some care, as it might depend on the prior assumptions. The probability distribution for any observable that is a function of the 24 SUSY parameters $f(x)$ can also be obtained since $p(f|d) = \delta(f − f(x))p(x|d)$.

For the practical implementation of the Bayesian analysis sketched above we employed the SuperBayeS code 26, extending the publicly available version 1.35 to handle the 24 dimensions of our SUSY parameter space. To scan in an efficient way the SUSY parameter space we have upgraded the MultiNest 27, 28 algorithm included in SuperBayeS to the latest MultiNest release (v 2.7). MultiNest is a multi-modal implementation of the nested sampling algorithm, which is used to produce a list of samples in parameter space whose density is proportional to the posterior pdf of Eq. (1). For further information on nested sampling we refer the reader to the appendix of Ref. 24 and references therein.

For the present work we have chosen a specific benchmark point in the MSSM parameter space, corresponding
to the low-energy extrapolation of model LCC3 defined in Ref. [23]. This benchmark is representative of SUSY models in the co-annihilation region, where the lightest neutralino is almost degenerate in mass with the lightest stau. In this region, co-annihilation effects reduce the neutralino relic abundance down to values compatible with the results from the WMAP satellite [30], and therefore, the mass difference between the neutralino and the lightest stau is a fundamental parameter for the reconstruction of the relic density. It has been shown [23] that for this benchmark point LHC would be able to provide a measurement of the masses of a good part of the SUSY spectrum, including the two lightest neutralinos (see Ref. [31] for an extension of this analysis to the case of the ILC). However the masses of some particles (most notably the two heaviest neutralinos and both charginos) would not be measured. The set of measurements that we use as constraints in our analysis corresponds to that in Table 6 of Ref. [23] 1, which assumes an integrated luminosity of 300 fb −1. Furthermore, as pointed out in Ref. [32], the neutralino-stau mass difference can be measured with an accuracy of 20% with 10 fb −1 luminosity in models where the squark masses are much larger than those of the lightest chargino and second-lightest neutralino, as is our case. We therefore also include a measurement of the neutralino-stau mass difference in our likelihood. For convenience, we summarize in Table I the set of LHC measurements on which we build our likelihood. For each of the constraints listed in Table I we use as constraints in our analysis corresponds to that in Table 6 of Ref. [23]. This benchmark is representative of SUSY models in the co-annihilation region, where the lightest neutralino is almost degenerate in mass with the lightest stau. In this region, co-annihilation effects reduce the neutralino relic abundance down to values compatible with the results from the WMAP satellite [30], and therefore, the mass difference between the neutralino and the lightest stau is a fundamental parameter for the reconstruction of the relic density. It has been shown [23] that for this benchmark point LHC would be able to provide a measurement of the masses of a good part of the SUSY spectrum, including the two lightest neutralinos (see Ref. [31] for an extension of this analysis to the case of the ILC). However the masses of some particles (most notably the two heaviest neutralinos and both charginos) would not be measured. The set of measurements that we use as constraints in our analysis corresponds to that in Table 6 of Ref. [23] 1, which assumes an integrated luminosity of 300 fb −1. Furthermore, as pointed out in Ref. [32], the neutralino-stau mass difference can be measured with an accuracy of 20% with 10 fb −1 luminosity in models where the squark masses are much larger than those of the lightest chargino and second-lightest neutralino, as is our case. We therefore also include a measurement of the neutralino-stau mass difference in our likelihood. For convenience, we summarize in Table I the set of LHC measurements on which we build our likelihood. For each of the constraints listed in Table I we use as constraints in our analysis corresponds to that in Table 6 of Ref. [23].

III. FUTURE DIRECT DETECTION DATA

In the simulation of a direct detection experiment we assume a future signal giving a WIMP detection, namely a certain number of events N and a corresponding set of recoil energies \(\{ E_i \}_{i=1,...,N} \). The total number N of simulated events is the sum of both background events (mainly interactions of detector nuclei with neutrons from surrounding rock, from residual contaminants or from spallation of cosmic muons) and recoils due to DM. For concreteness, we will exemplify the method in the case of an experiment akin to the 1-ton scale SuperCDMS experiment [36]. We simulated the differential number of background events as in Ref. [32]. Since the capability of a simulated direct detection experiment to reconstruct the DM properties (see Refs. [12], [16], [37] for more details) is worse in the case of a constant background distribution than for an exponential one, we only consider the case of energy-independent background recoil spectrum in order to be conservative. Therefore, we adopt a constant background differential spectrum \(dN_{\text{back}}/dE_\tau = \text{const} \) which is normalized so that, when binning the spectrum in 9 bins of 10 keV width (from \(E_{\text{th}} = 10 \text{ keV} \) to \(E_{\text{max}} = 100 \text{ keV} \)) the number of background events in the first bin is the same as the number of DM signal events there.

The expected number of events \(\lambda \) for our benchmark model and for an exposure \(\epsilon = 300 \) ton day is obtained by integrating the sum of the differential rate of WIMP

Mass	Benchmark value, \(\mu \)	LHC error, \(\sigma \)
\(m(\tilde{\chi}^0_1) \)	139.3	14.0
\(m(\tilde{\chi}^0_2) \)	269.4	41.0
\(m(\tilde{\epsilon}_1) \)	257.3	50.0
\(m(\tilde{\mu}_1) \)	257.2	50.0
\(m(h) \)	118.50	0.25
\(m(A) \)	432.4	1.5
\(m(\tilde{\tau}_1) - m(\tilde{\chi}^0_1) \)	16.4	2.0
\(m(\tilde{u}_R) \)	859.4	78.0
\(m(\tilde{d}_R) \)	882.5	78.0
\(m(\tilde{\epsilon}_R) \)	882.5	78.0
\(m(\tilde{\tau}_R) \)	859.4	78.0
\(m(\tilde{u}_L) \)	876.6	121.0
\(m(\tilde{d}_L) \)	884.6	121.0
\(m(\tilde{\epsilon}_L) \)	884.6	121.0
\(m(\tilde{\tau}_L) \)	876.6	121.0
\(m(\tilde{b}_1) \)	745.1	35.0
\(m(\tilde{b}_2) \)	800.7	74.0
\(m(\tilde{t}_1) \)	624.9	315.0
\(m(\tilde{g}) \)	894.6	171.0
\(m(\tilde{\tau}_2) \)	328.9	50.0
\(m(\tilde{\mu}_2) \)	328.8	50.0

1 The exact values that we are using are slightly different from those in Table 6 of Ref. [23] since we are not deriving the mass spectrum from the low energy extrapolation of a cMSSM point. On the contrary our reference SUSY model is defined at low energy to be near LCC3.
TABLE II: Relevant quantities for a SuperCDMS-like direct detection experiment. The quantity λ gives the expected number of WIMP recoils for our SUSY benchmark model.

Target	A	ϵ	E_{th}	E_{max}	ρ_X	λ
Ge	73	300 ton day	10 keV	100 keV	0.385 GeV cm$^{-3}$	638

and background events

$$\lambda = \varepsilon \int_{E_{\text{th}}}^{E_{\text{max}}} \frac{dR_X}{dE} + \frac{dR_{\text{back}}}{dE} dE.$$

The dependency of the WIMP event rate on the physical quantities in the problem becomes apparent in the following parametrization:

$$\frac{dR_X}{dE} = c_1 R_0 e^{-E/(E_{\text{c0}})} F^2(E),$$

where

$$R_0 = \frac{\sigma_{\chi p}^\text{SI} \rho_X A^2 c^2 (m_X + m_p)^2}{\sqrt{\pi} m_X^3 m_p^2 v_0},$$

and

$$E_0 = \frac{2 m_X^2 v_0^2 A m_p}{(m_X + A m_p)^2 c^2}.$$

Here, ρ_X is the local WIMP density, A is the mass number of the target nuclei ($A = 73$ in the case of Germanium), m_p is the proton mass, v_0 is the characteristic WIMP velocity and $F^2(E)$ denotes the nuclear form factor. A discussion on the values of the parameters c_1 and c_2 and the functional form of $F(E)$ can be found in Refs. [15, 16, 38]. The specific values of the quantities for our case study are summarized in Table I.

In order to combine the result of a direct detection experiment with LHC data, we run an additional scan of the SUSY parameter space including in the likelihood function an additional Poisson-distributed term that compares the number of events and their spectral shape predicted in each point in parameter space with the recoil spectrum corresponding to the benchmark value of Table I. The overall background rate and its spectral shape are assumed to be known.

As shown by Eqs. (3)–(5), the number of detected events is proportional to the product of the WIMP-proton cross section and the local DM density $\lambda \propto \sigma_{\chi p}^\text{SI} \rho_X$. Therefore, unless one specifies the value of ρ_X, any information on the number of events leaves the scattering cross section practically unconstrained.

We propose two different strategies to specify ρ_X:

1. **Consistency check**: we impose that

$$\rho_X = \rho_{\text{DM}},$$

and we adopt for this quantity the value obtained in a recent paper by Catena and Ullio [39], through a careful analysis of dynamical observables in the Galaxy, namely $\rho_X = 0.385$ GeV cm$^{-3}$ (see also [40, 43]). Although this assumption completely removes the degeneracy between $\sigma_{\chi p}^\text{SI}$ and ρ_X, it forces the identification of neutralino with the DM particle, irrespectively of the value of its thermal relic density. This is therefore equivalent to assuming that, a non-standard cosmological history of the Universe can correct any excess or deficit in the thermal relic density and make it agree with the WMAP result, for example, either by invoking late injection of entropy, non-thermal production through late-decaying particles (such as a modulus or a gravitino [44]), scenarios with a low-reheating temperature [15] (see also Ref. [46]) or a faster expansion rate [47, 48]. For these reasons this Ansatz must be considered as a consistency check rather than a proof of the identification of DM particles.

2. **Scaling Ansatz**: we assume that the local density of the neutralino scales with the cosmological abundance. More precisely, we propose the following Ansatz

$$\rho_{\tilde{\chi}}^i / \rho_{\text{DM}} = \Omega_{\tilde{\chi}}^i / \Omega_{\text{DM}}.$$

This Ansatz is strictly valid in the reasonable case where the distribution of neutralinos in large structures, and in particular in the Galaxy, traces the cosmological distribution of the DM. This Ansatz is obviously true if neutralinos contribute all the DM in the Universe, but is also valid in the case where the neutralino is a subdominant component of DM, provided that DM behaves, as expected, as a cold collisionless particle. As shown below, this simple assumption is powerful tool to remove degeneracies in the parameter space.

The reconstruction of the neutralino relic density is shown in Fig. 4. The left panel corresponds to the case where only LHC constraints are considered. Consistently with previous analyses [23], multiple peaks can be observed, as a consequence of degeneracies in the SUSY parameters space that the LHC constraints are unable to break. In particular, the two observed peaks correspond to neutralinos with different composition: mostly Wino and mostly Bino, from left to right. This is a consequence of the fact that the LHC is assumed to be able to measure only the two lightest neutralino states, but not the two more massive ones or the charginos. The true value of the relic density for our benchmark point ($\Omega_{\tilde{\chi}}^0 h^2 = 0.176$), represented by a diamond in Fig. 4 is indeed inside the peak corresponding to mostly Bino dark matter. Although this value is about 60% larger than the relic abundance measured by the WMAP satellite [30], we expect our results to remain qualitatively correct for other points in the co-annihilation region leading to the correct cosmological relic abundance. As commented above and already pointed out in previous works [23], the better reconstruction of particle masses at the ILC could
allow a more precise determination of the neutralino relic abundance, potentially removing some of these degeneracies. However, this information would only be available after a much longer period of time.

The constraints from LHC only data are also shown in the left panel of Fig. 2 in the plane $\sigma^\text{SI}_{\chi^0-p}$ vs $\Omega\chi^0h^2$, where the true value of those quantities is given by $(\Omega\chi^0h^2 = 0.176, \sigma^\text{SI}_{\chi^0-p} = 7.1 \times 10^{-8} \text{ pb})$. The leftmost region corresponds to a neutralino which has a leading Wino component, thereby displaying a smaller relic abundance, whereas the region towards larger relic abundance corresponds to Bino-like neutralinos, for which the scattering cross section is also slightly smaller.

In the central and right panels of the two figures, we show the impact of adding information from direct detection experiments. These plots have been obtained by statistical posterior re-sampling of the LHC only scan, adding the relevant Ansätze and the likelihood function of a direct detection experiment as specified above. The central panels correspond to the assumption 1, or consistency check. This amounts to fixing the local neutralino density, and therefore we expect that only regions along a direction of constant $\sigma^\text{SI}_{\chi^0-p}$ to survive after direct detection data are implemented. This can be understood as follows: for a given number of measured events, and a fixed local density, there is only a range of values of $\sigma^\text{SI}_{\chi^0-p}$ that are compatible with the measurement. Notice that, as explained above, this Ansatz does not further constrain the neutralino thermal relic density. In this case the pdf for the neutralino relic density still displays the two maxima, corresponding to the two peaks in Fig. 1 and the two “islands” in Fig. 2. This is due to the fact that the neutralino can have a similar scattering cross section for both compositions and therefore (if the fact
that it might be a subdominant DM component is not
properly taken into account) could account for the same
detected rate.

The most interesting case is the one that corresponds
to our assumption 2, namely the scaling Ansatz, which
represents the most important result of this paper. When
the appropriate scaling of the local density is applied, the
Ansatz cuts the parameter space along a direction
\[\sigma_{\chi p}^{SI} \propto \Omega_{\chi_1}^{-1} \]
due to the fact that for a fixed number of events \(\sigma_{\chi p}^{SI} \propto \rho_{\chi}^{-1} \) and that under the scaling Ansatz \(\rho_{\chi} \propto \Omega_{\chi_1} \). The
dramatic consequences of this simple Ansatz are shown
in the right-most panels of both figures. Models corre-
sponding to a low relic density are essentially ruled out,
because under the scaling Ansatz they correspond to a
low local density. Given a number of observed events
in direct detection searches, a low local density would
require a larger scattering cross section, which is incom-
patible with LHC constraints. As a consequence, the pa-
rameter space region corresponding to a neutralino that
is mostly Wino can now be ruled out with high confi-
dence, thereby leading to a much better reconstruction
of the DM composition than it would be possible under
the consistency check Ansatz.

We note that if the reconstructed relic density matches
the observational determination of \(\Omega_{DM} \), this procedure
also validates the standard cosmological history, and con-
strains deviations from the standard expansion rate at
the epoch of DM freeze-out. Conversely, a mismatch
between the reconstructed relic density and \(\Omega_{DM} \) would
point towards a multi-component DM sector, or a non-
standard expansion rate (see e.g. Ref. \[39\] and refer-
cences therein).

IV. DISCUSSION AND CONCLUSIONS

We have investigated the effect of combining informa-
tion from accelerator searches with data from direct DM
detection, assuming realistic measurements at the LHC
and in a Germanium detector with an exposure of 300
ton days.

An interesting question is whether the systematic and
statistical errors on this quantity and on other relevant
physical quantities entering in the calculation of the event
rate for direct detection experiments can spoil the re-
construction procedure presented here. For instance, we
have assumed a Maxwellian distribution for the velocity
dispersion of DM particles, but a more refined analysis
should keep into account the uncertainties on this quan-
tity. Fortunately, recent estimates based on numerical
simulations, suggest that the small measured deviations
from a Maxwell-Boltzmann distribution lead to errors of
10% or less on the recoil rate, and they are therefore sub-
dominant with respect to other uncertainties, such as the
error on the nuclear form factor \[50\], and especially the
error on the observed DM local density. The most im-
portant effect of such uncertainties, once marginalized over,
would be to widen the pdf’s of Fig. 2 in the vertical direc-
tion by less than 10%, if one considers only the statistical
error on \(\rho_{DM} \) derived in Ref. \[39\], and by up to a factor
of two if one also considers the systematic error due to
halo triaxiality \[43\]. Since the vertical thickness of the
 contours in the 2D posterior of Fig. 2 is approximately
equal to a factor of 2, we expect that including these un-
certainties would not modify qualitatively the marginal
posterior distribution for \(\Omega_{\chi_1} h^2 \), and our results would
still apply. A more detailed discussion of these effects
is beyond the scope of this paper, and we leave it to a
separate upcoming work. However we explicitly studied
the effect of varying the value for the mass of the top,
including it as a nuisance parameter in the likelihood.
The variation in the reconstructed pdf for the neutralino
relic abundance and neutralino-nucleon scattering cross
section is negligible.

We stress once more the importance of combining dif-
ferent types of experiments. The specific case discussed
here shows that when reasonable assumptions are made
to link the local density to the relic abundance, a com-
bined analysis of data from accelerators and direct detec-
tion experiments allows a significantly better reconstruc-
tion of the DM properties.

This is true in the co-annihilation region discussed
here, but it will provide important information for any
SUSY scenario, and more in general for any new physics
scenario. Even in cases where the LHC data are sufficient
to pinpoint the underlying DM scenario, direct detection
experiments can corroborate the results, and they can
also be used to identify deviations from the standard ex-
\(\Omega_{\chi_1} \) inferred from LHC data and cosmological measurements.

Acknowledgements. D.G.C. is supported by the
Ramón y Cajal program of the Spanish MICINN,
by the Spanish grants FPA2009-08958, HEPHACOS
S2009/ESP-1473 and by the EU network PITN-GA-
2009-237920. R.T. would like to thank the EU FP6 Marie
Curie Research and Training Network “UniverseNet”
(MRTN-CT-2006-035863) for partial support, the
Instituto de Física Teórica (Madrid) and the Institut
d’Astrophysique de Paris for hospitality. The work of R.
RdA has been supported in part by MEC (Spain) under
grant FPA2007-60323, by Generalitat Valenciana under
grant PROMETEO/2008/069 and by the Spanish Con-
solider Ingenio-2010 program PAU (CSD2007-00060).
We also thank the support of the spanish MICINN’s
Consolider-Ingenio 2010 Programme under grant Multi-
Dark CSD2009-00064.
