TOPICAL REVIEW

Chemical modification of graphene for atomic-scale catalyst supports

Yuji Kunisada and Norihito Sakaguchi
Center for Advanced Research of Energy and Materials, Hokkaido University, Kita 13 Nishi 8, Kitaku, Sapporo 060–8628, Japan
E-mail: kunisada@eng.hokudai.ac.jp

Keywords: graphene, dopant, catalyst, single atom catalyst, diffusion

Abstract

One promising way to reduce the use of noble metal catalysts is to use extremely fine particle catalysts, such as subnanoclusters and single-atom catalysts. For practical use, suppression of diffusion and agglomeration of catalysts are needed. Heteroatom-doped graphene, which has high specific surface area, high chemical and mechanical stabilities, high electrical and thermal conductivities, and contains anchoring sites for catalysts, is promising catalyst support. Heteroatom-doped graphene can widely control the support effects. This review summarizes recent dopant structure characterization using spectroscopy and density functional theory calculations. The distribution of highly-dispersed metal catalysts and their diffusion properties are discussed. In addition, The effects of environmental conditions on catalyst dynamic behaviors are introduced. Finally, the outlook of heteroatom-doped graphene and new two-dimensional material supports is discussed.

1. Introduction

Noble metal catalysts have been widely used in clean energy fields, such as fuel cell electrodes [1–4], exhaust gas purification [5], hydrogen production [6–10], and so on. Most of these noble metals which have high catalytic activities are precious metals. The demand for precious metal catalysts is increasing due to the urgent need to realize a green and sustainable society. In addition, precious metals are commonly used in the battery field [11–13]. However, precious metals are scarce, expensive, and unevenly distributed on the Earth. Therefore, reducing the usage of noble metal catalysts is one of the most critical objectives for realizing a clean energy society.

One promising way to reduce the use of noble metal catalysts is to use extremely fine particle catalysts, such as subnanoclusters and single-atom catalysts (SACs). These catalysts are composed of tens of metal atoms or fewer. Therefore, specific surface area, i.e., the number of active sites per weight, is drastically increasing from bulk materials. In addition, extremely fine particles show different atomic and electronic structures with bulk metals thanks to their quantum size effects [14–16]. For instance, the discrete energy level, high surface energy, magnetization, and bond length change are crucial in catalytic fields. It was experimentally elucidated that the sizes of metal clusters strongly affect catalytic activities [16–19]. Therefore, controlling and keeping catalyst sizes, which require suppression of catalyst migration and agglomeration, are essential for long-life catalysts.

Most inhomogeneous SACs are embedded in the host materials. It has been widely studied the single atom catalyst embedded in molecules [20–23], graphene-related materials [24–37], ceramic materials [38–44], and metals [45–54]. The embedded SACs can suppress the diffusion and agglomeration of catalysts. The stable embedded SACs show high cycle and reuse properties [39, 47]. On the other hand, the embedded SACs are limited in the variation of coordinated elements, size, and structures. In the case of supported catalysts, not only the size of catalysts but ligand effects and ensemble effects through alloying can be utilized in more varied ways. However, the supported subnanoclusters and SACs generally show lower adsorption energy and diffusion barriers than embedded ones. In addition, fine catalyst particles have high surface energy, which results in the agglomeration and coarsening of catalysts [55]. The high surface energy also results in the Ostwald ripening of...
fine particles [56]. Therefore, suppression of detachment and diffusion of catalysts on support materials are necessary for designing new long-life supported catalysts.

The other important factor in determining catalytic activities is the support and ligand effect, which modifies the electronic and magnetic states of catalysts [47, 49, 57]. Decreasing the catalyst particle size, the support effects become more significant. In the case of large nanoparticle catalysts, support effects are localized as interfacial effects, which emerge only in the vicinity of interface regions between nanoparticle catalysts and support materials. Therefore, the reactant adsorption and chemical reaction mainly occur at interface sites [58, 59]. On the other hand, most of the component atoms in the subnanocluster catalysts and SACs are directly coordinated with the support materials, which results in the drastic modification of catalytic activities of the subnanocluster catalysts and SACs through the interaction with support materials.

Carbon materials have been widely used as catalyst supports. Graphene and carbon nanotube support have been widely studied to achieve a high specific surface area [60–66]. As catalytic electrodes, these carbon allotropes have strong sp²-frameworks and show promising properties, i.e., high chemical and mechanical durability, and high electronic and thermal conductivities. However, the surfaces of these materials are covered with delocalized π-electrons, which show weak adsorption and fast diffusion of adsorbates [67]. It was experimentally reported that the fine catalyst particles are mainly distributed on the edges of graphene [68]. These results indicate that catalyst diffusion easily occurs at the graphene basal plane. Therefore, improved catalyst stability and diffusion suppression at the graphene basal plane are essential to effectively utilize the high specific surface area of graphene and carbon nanotube supports, which are of utmost importance for their further spread.

This topical review discussed the support fabrication through heteroatom doping at graphene basal plane as catalyst anchor sites. Recent reports of the various dopants in graphene and their structures were briefly introduced. Catalyst adsorption and diffusion properties on heteroatom-doped graphene were also touched. Finally, the outlook of metal subnanoclusters and single metal atoms on heteroatom-doped graphene was pointed out.

2. Heteroatom dopants in graphene

The doping of light elements into graphene has been widely studied for a long time [69]. The dopants are mainly introduced into graphene through chemical vapor deposition (CVD), implantation using an ion beam [70], and annealing reduced graphene oxide in an atmosphere containing target elements. Most of the reported light-element doped graphene are B- [71–74], N- [75–99], and co-doped graphene [100–102], since boron (0.85 Å) and nitrogen atoms (0.75 Å) have similar single-bond covalent radii as carbon atoms (0.71 Å) [103]. We note that boron and nitrogen atoms have lower and higher electronegativity than carbon atoms. Therefore, boron and nitrogen atoms substituted in graphene lattice have a positive and negative charge, respectively. From these points, nitrogen atoms do not induce the lattice distortion in graphene, and are easy for substitutional doping. It was also revealed that larger and heavier element doping is more challenging than nitrogen using a first-principles calculation based on density functional theory (DFT) [74]. Figure 1 shows the calculated substitutional energy of the light-element doped graphene. The substitutional energy of dopant X E_{sub}^X was defined as follows;

![Figure 1. Calculated substitutional energy of light-element doped graphene. Reprinted with permission from [67]. Copyright (2017) American Chemical Society.](image-url)
Where E_{gra}^X is the total energy of X-doped graphene, and μ_X and μ_C are the chemical potential of dopants X and C. Smaller substitutional energy means easier substitution. As shown in figure 1, nitrogen and boron atoms, which have similar atomic radii to carbon atoms, are relatively easier for substitutional doping than elements in the next period. In contrast, the substitutional energy of oxygen atoms is close to those of larger elements. This trend is because three-coordinated oxygen atoms, where six valence electrons occupy the 2s and 2p orbitals, only bond to two coordinating carbon atoms, forming an unstable dangling bond on the other carbon atom. The large aluminum, silicon, phosphorus, and sulfur atoms form the protruding steric structure through doping to release internal stress.

From the viewpoint of dopant distributions, it is well-known that most experimentally observed nitrogen atoms in graphene are in the vicinity of vacancy and edge sites of graphene. There are four types of nitrogen dopants in graphene. Graphitic-, pyridinic-, pyrrolic-, and amino-type species are nitrogen in pristine graphene lattice, nitrogen in the hexagonal lattice at the edge sites of graphene or next to the atomic vacancy, nitrogen in the pentagonal lattice at the edge sites of graphene or adjacent to the atomic vacancy, and nitrogen adsorbed on graphene, respectively. A schematic image of three substitutional dopants is shown in figure 2.

Zhang and co-workers precisely studied the nitrogen doping sites using x-ray absorption near edge structure (XANES) and x-ray photoelectron spectroscopy (XPS). As shown in figure 3(a)–(e), XANES and XPS spectra clearly show that the ratio of nitrogen species depends on the annealing temperature. The N-doped graphene is formed by heat treatment of graphene oxide in NH$_3$ flow. In the case of annealing at 300 °C, amino-type nitrogen dopants (8.13%) form much more than pyridinic- (2.06%) and graphitic-type (0.74%). This trend is because amino-type structures require breaking only a single C-O bond, while pyridinic- and graphitic-type structures require to break two and three C-C bonds, respectively. Therefore, amino-type structures can be observed more in low temperature annealing. With increasing the annealing temperature, the amount of pyridinic- and graphitic-type nitrogen dopants also increase. However, amino-type nitrogen dopants decrease above 500 °C. This is because amino-type nitrogen dopants forms only a single C-N bond and easily desorbe from graphene sheet. On the other hand, pyridinic- and graphic-type nitrogen dopants are stable at high temperatures because they have two and three C-N bonds, respectively. These results indicate that pyridine- and graphic-type nitrogen dopants are relatively stable once formed but difficult to form because of the accompanying C-C bond breaking. Therefore, it can be concluded that the nitrogen dopants substituted in graphene lattice are difficult to be formed. The pyridinic-type nitrogen dopants were observed more than graphic-type nitrogen dopants. The pyridinic-type nitrogen dopants are formed through the following three reaction passes; (1) substitution of carbon atoms in a pristine graphene lattice with the concomitant introduction of carbon vacancies in adjacent sites, (2) substitution of carbon atoms adjacent to vacancies, (3) substitution of carbon atoms at edge sites of graphene. Stumbla and co-workers also studied the nitrogen dopant species using XANES and transmission electron microscopy (TEM) with electron-energy loss spectroscopy (EELS) [68]. EELS spectra in figure 3(f) also indicate that amino- and pyridinic-type nitrogen dopants are dominant.
From the viewpoint of the dopant positions from the edge, the edge sites are preferable for doping. Nitrogen dopants can be observed only at the edge sites in the classical molecular dynamics (MD) simulation of the annealing of graphene nanoflake in NH$_3$ and CH$_3$CN [105]. The dopant position dependence and flake size dependence on the formation energy of nitrogen substitutional dopants in graphene nanoflakes were also studied using DFT [106]. The edge preference of nitrogen doping is clearly shown in figure 4. We note that the graphene nanoflake considered in the previous study has hexagonal structures with hydrogen-terminated zigzag edges. The most stable structures are graphitic-type, which means hydrogen-terminated pyridinic-type at the edge sites. The formation energy of graphitic-type nitrogen dopants at the edge sites is about 1 eV lower than inside of graphene nanoflake. This trend is because the carbon atoms in graphene edges are more unstable than those in basal planes, since carbon atoms at the edge sites have only two C-C bonds. In addition, atomic relaxation may easily occur near graphene edges. In the case of the formation of the nitrogen dopants in the graphene basal plane, the formation energy of pyridinic-type nitrogen dopants (0.066 eV) is even larger than that

Figure 3. (a) N K-edge XANES spectra of NG-300, NG-500, NG-700, and NG-800. (b), (c), (d), and (e) high-resolution N 1s XPS of NG-300, NG-500, NG-700, and NG-900. (f) Normalized EEL spectra of N K edge acquired from N-doped graphene sheets with 50 ALD Pt cycles and two separate areas. The N K edge is divided by the π*(P1-P4) and σ*(P5) regions, where P1 and P4 are attributed to the individual N-dopants of pyridinic- and graphitic-type, respectively. (a)–(e) are reproduced from [77] with permission from the Royal Society of Chemistry. (f) is reprinted with permission from [68]. Copyright (2014) American Chemical Society.
of graphitic-type nitrogen dopants (0.375 eV), while flake size dependence is unobvious [107]. This is because the formation of pyridinic-type nitrogen dopants requires a single carbon atom vacancy adjacent to nitrogen dopants, as we mentioned, resulting in the carbon atom vacancy forming unstable dangling bonds in coordinating atoms. Therefore, it seems that most of the experimentally observed nitrogen dopants are located at edge sites as pyridinic-type structures. These trends agree with the experimental results where edge nitrogen dopants dominate for a long growth time of N-doped graphene [96]. This edge preference may be more significant for larger dopants, since, at the edge sites, the distortion and accompanying lattice relaxation lattice distortion by doping can more easily occur than in basal planes.

Hydrogen termination also affects the stability and electronic properties of doped graphene. As we mentioned, the unstable dangling bonds remain in the vicinity of pyridinic-type structures. These dangling bonds may be terminated with hydrogen atoms same as graphene edge atoms. Actually, at the pyridinic-type structures in the graphene basal plane, increasing nitrogen dopants, the formation energy of pyridinic-type nitrogen dopants become smaller, in contrast, larger in the graphitic-type structures [107]. This is because nitrogen atoms have one more electron than carbon atoms, which change the unstable dangling bonds, i.e., half-filled electron orbitals, to stable lone pair orbitals. We also note that the combination study of XPS and first-principles calculations elucidated the effect of structures, dopant sites, and hydrogen termination on core level shift, as shown in figure 5 [108]. In addition, hydrogen termination induces the core level shift of neighbor atoms. Therefore, the more precise measurement and analysis of these spectra may clarify the dopant circumstance in more detail.

To increase the support effect options and application of catalytic reactions, more elements need to be doped into graphene. Recently, the larger heteroatom dopants in graphene were also reported. The atomic structures of Al- [109], Si- [114, 110–113, 115], P- [116, 117], S- [118–121], and Ge-doped graphene [122] were experimentally characterized. High-angle annular dark field (HAADF) and middle-angle annular dark field (MAADF) scanning TEM (STEM) experiments, which are sensitive to atomic numbers, are powerful tools to characterize such heavy-element doped graphene. Atomically resolved HAADF- and MAADF-STEM experiments elucidated that silicon, phosphorus, sulfur, and germanium dopants in graphene can form graphitic-type structures [110, 116, 122], as shown in figure 6, while these dopants have much larger atomic radii than carbon atoms. We note that, especially in the cases of larger dopants, four-fold dopants at divacancy sites, as shown in figure 6, are energetically favorable because of less internal stress. It is well-known that such four-fold structures can accept even transition metals [123, 124]. From the viewpoints of anchoring sites, protruded graphitic-type larger dopants, which form the sp³ hybrid orbitals accompanying dangling bonds, are very promising. Larger dopants are often implanted in graphene lattices using ion beams. Direct implanting using ion bombardments not only shows the low efficiency of doping but introduces severe damage to graphene through the knock-on and cascade process, which results in the formation of holey graphene, amorphized graphene, and graphene nanoflakes [125–128]. These drastic structural modifications affect graphene stability and electronic properties. Therefore, to take advantage of the superior properties of graphene, for instance, high specific surface, high chemical and mechanical stability, and high electron conductivity, it is necessary to increase the amount of doping in the basal plane with gentler methods.
One of the promising candidates is vacancy-mediated doping, which is a two-step process with pretreatment to introduce atomic vacancies in the graphene basal plane. The formation energy of light-element dopants in graphene with a single atom vacancy becomes negative, which indicates that the doping process is exothermic\(^6\). Atomic vacancies can enhance heteroatom doping. Energy-controlled ion and particle bombardments are widely used for creating vacancies in carbon materials\(^{129-131}\). These bombardments introduce various structural defects, i.e., monovacancy, divacancy, trivacancy, and so on. MD simulation of Au atom collisions with graphene shows the possibility of controlling defects in graphene by adjusting bombardment conditions\(^{129}\). It is well-known that electron beam irradiation can also introduce vacancies in graphene lattices\(^{132-140}\). An electron microscope can form atomic vacancies in graphene and observe the structure at the same time. Electron beam irradiation position and current density can be easily adjusted. MD simulation of electron irradiation has also been performed to reveal the relationship between defect formation in graphene and electron irradiation conditions, which shows the possibility of controlling defects in graphene\(^{138}\). Therefore, the fabrication of graphene suitable for heteroatom doping may be possible with proper electron irradiation.

3. Single metal atoms and clusters on doped graphene

Catalyst metal atoms and clusters are conventionally deposited with the atomic layer deposition (ALD) technique, as shown in figure 7\(^6\). Recently, the atomically dispersed deposition using plasma sputtering, suppressing agglomeration, is also realized\(^{141}\). Metal atoms on graphene are revealed to be trapped in the edge of overlying graphene nanoflake or bonded with contaminations using HAADF-STEM, XPS, and DFT calculations\(^{142,143}\). DFT calculations elucidated that Pt atoms preferably adsorb at the zigzag edges\(^{144}\). In addition, as we mentioned, anchoring sites for metal atoms, i.e., dopant atoms, are mainly located at the
graphene edge. In figure 8, HAADF-STEM images of Pt decorated N-doped graphene [68]. Single Pt atoms and atomic clusters are adsorbed primarily at graphene edges. This trend is maintained up to 150 ALD cycles without the formation of nanoparticles. This result indicates that the nitrogen dopants, probably carbon atoms adjacent to nitrogen dopants [145, 146], work as the anchoring sites for adsorbates. Pt atoms on terrace sites seem trapped
at the vacancy and dopants. Such anchoring effects, accompanying prominent cycle properties, and superior catalytic activity of catalysts have been reported in various dopants and adsorbates [147–155].

DFT calculations also clearly show the anchoring effects of heteroatom dopants in graphene. The adsorption energy on X-doped graphene is conventionally obtained as follows;

\[E_{ad}^X = E_{adsorbate/gra}^X - [E_{gra}^X + E_{adsorbate}], \]

where \(E_{adsorbate/gra}^X \), \(E_{gra}^X \), and \(E_{adsorbate} \) are the total energies of total adsorbed systems, isolated X-doped graphene, and adsorbates, respectively. The adsorption energy of a single atom on heteroatom-doped graphene is shown in figure 9 [156]. The heteroatom doping enhances the adsorption of a single Pt atom. Especially, O-, Si-, P-, and S-doped graphene significantly stabilize a single Pt atom. This is because these graphene have dangling bonds to form strong chemical bonds with adsorbates. As we mentioned, O-doped graphene has dangling bonds in adjacent carbon atoms. Silicon, phosphorus, and sulfur atoms in graphene have steric structures, resulting in the formation of sp\(^3\) hybrid orbitals accompanying dangling bonds perpendicular to the graphene plane. Therefore, these dopants show more significant effects than boron and nitrogen atoms. The importance of van der Waals (vdW) interactions was also revealed. Since graphene is chemically inert because of \(\pi \) electrons, vDW interactions play important roles in adsorption and adhesion. Conventional exchange-correlation functionals can not treat dispersion interactions accurately. Therefore, nonlocal correlation functionals are required for graphene-related materials [157–166]. In the cases of a single Pt atom adsorption on heteroatom-doped graphene, dispersion interactions strengthen the adsorption by about 0.3 eV, corresponding to more than 15% of adsorption energy on pristine graphene [156].

The diffusion of metal atoms is also suppressed by heteroatom doping. Figure 10 shows the diffusion barrier of a single Pt atom on heteroatom-doped graphene obtained from DFT calculations [156]. A single Pt atom on pristine graphene has a diffusion barrier of only 0.15 eV. The corresponding diffusion coefficient of a single Pt atom is in the order of \(10^{-9} \) m\(^2\)/s. Therefore, atomically dispersed Pt atoms on pristine graphene can easily diffuse and agglomerate. B- and N-doped graphene show larger diffusion barriers than pristine graphene. However, the effects of B and N doping are less than 1 eV. On the other hand, O, Si, P, and S increase the diffusion barriers by more than 1 eV. As a result, the corresponding diffusion coefficients are reduced by more than 20 orders of magnitude, and the diffusion of a single platinum atom is strongly suppressed. Such anchoring effects originate not from the increase of potential barrier but the deepening adsorption potential well in the
vicinity of dopants. Figure 11 shows the HADDF-STEM images of the Pt nanocluster catalysts on S-doped and S-free carbon supports before and after sintering tests at 700 °C, 600 min [167]. The sizes of Pt catalysts are about 1 nm before sintering tests. In the sintering test, Pt catalysts on the desulfurized (<0.01 at% S) and commercial carbon support diffuse and agglomerate. The Pt catalysts agglomeration occurs, and their sizes reach 3 and 17 nm on the desulfurized and commercial carbon supports after the sintering test, respectively. This result clearly indicates that the nanocluster catalyst migration, agglomeration, and/or Ostwald ripening occur in the long-term thermal treatment. The catalyst size distribution also becomes considerably broader. On the other hand, Pt catalysts on S-doped carbon supports (~14 wt%) maintain their size through sintering tests. Even increasing Pt catalyst loading from 1 to 5 wt%, Pt catalyst coarsening does not occur. These results indicate that the S dopants suppress the Pt diffusion even in high-temperature conditions. Suppression of coarsening of metal nanocluster catalysts on S-doped carbon supports was observed in other metals, Rh, Rh, Os, and Ir. Therefore, the concept of long-life catalysts based on heteroatom-doped carbon supports can be applied to various catalysts. While these supports contain vacancies, desulfurized carbon supports are less effective for Pt coarsening suppression. Therefore, not only vacancies but S dopants also play an essential role in suppressing Pt diffusion. In addition, Pt catalyst coarsening occurs on N-doped carbon supports. These results indicate that the S dopants suppress Pt diffusion more than N dopants. The decrease of N dopants (3.01 to 1.44 at%) was also observed through sintering tests. Therefore, the dopant concentration and stability of dopants are also important for catalyst usage in severe conditions.

The effects of atmospheric gasses have to be addressed for practical use. The diffusion barriers of a single Pt atom with H and H₂ are also shown in figure 10 [156]. The adsorption of H and H₂ on a single Pt atom reduces the diffusion barriers on pristine graphene to less than 0.07 eV. Even in the cases of heteroatom-doped graphene supports, the hydrogen atmosphere enhances the Pt diffusion, except in several cases. In addition, the adsorption energy becomes smaller through hydrogen adsorption in all cases, which indicates that the hydrogen atmosphere also enhances the detachment of Pt catalysts. These results indicate that atmospheric gas adsorption strongly affects the metal catalyst detachment, migration, and agglomeration, i.e., a lifetime of catalysts. Experimentally observed Pt catalyst coarsening on the desulfurized and commercial carbon catalysts in figures 11 (f) and (h) may be enhanced by a hydrogen atmosphere. Such dynamic structural changes of materials in various atmospheric gasses were also experimentally reported using in situ TEM [168–173]. Liu and co-workers systematically studied the effect of various conditions on Pt cluster behaviors in zeolite crystallites and elucidated that not only agglomeration but redispersion of subnanometric Pt catalysts occur depending on atmospheric gasses and environmental temperature. Figure 12 shows a summary of the behaviors of subnanometric Pt catalysts under different reaction conditions [174]. Under the reductive condition, i.e., CO + O₂ and CO + H₂O, atomically dispersed Pt catalysts diffuse and agglomerate into Pt clusters at 100 °C–300 °C. Then, Pt catalysts atomically redisperse in CO + O₂ at 400 °C, while Pt catalysts continue to grow in CO + H₂O at higher temperatures. In oxidative atmosphere gasses, i.e., NO + H₂ and NO + CO, Pt clusters disintegrate into atomically dispersed Pt at 200 °C–400 °C. Then, atomically dispersed Pt catalysts agglomerate into clusters and small particles at 600 °C–800 °C. Formed Pt clusters and particles are stable even at 1000 °C. These results revealed that the behaviors of metal catalysts are very complex and strongly relate to atmospheric gasses and environmental temperatures. Therefore, to comprehend not only coarsening but redispersion of metal catalysts, Therefore, to understand redispersion as well as coarsening of metal catalysts, it is necessary to study both kinetics and equilibrium theory, including diffusion barriers on the support, adsorption energy of atmospheric gasses, and binding energy between catalysts.
4. Summary and outlook

We briefly reviewed the recent progress of heteroatom doping of graphene and metal catalysts behaviors on heteroatom-doped graphene. Thanks to the detailed characterization using XPS, XANES, and EELS, the atomic structures of heteroatom-doped graphene were elucidated. Pyridinic-type structures were often observed in substitutional doping, while graphitic-type structures were less contained. From the viewpoints of doping positions, DFT calculations and classical MD simulations clarified that dopants are preferably located at the edge sites. HAADF- and MAAADF-STEM revealed that heavier dopants can also be doped in the graphene basal plane, while the concentration of dopants is low. The more dopants in the graphene basal plane, the more anchor sites for highly-dispersed metal atoms and clusters, which results in more catalyst loading. Therefore, new synthetic procedures for a higher concentration of graphitic-type dopants without damage are required to realize broad applications utilizing the high specific surface area, high chemical and mechanical durability, and high electrical and thermal conductivity.

Dopants in graphene enhance the adsorption of a single metal atom and clusters. HAADF-STEM elucidated that highly-dispersed Pt atoms are preferably adsorbed at edge sites, where dopants in graphene are abundant. Diffusion barriers of a single Pt atom increase by dopants in graphene. The anchoring effects of dopants were also experimentally confirmed with HAADF-STEM. Sizes of Pt clusters on S-doped carbon supports keep through high-temperature heat treatment, while coarsening of Pt clusters occurs on desulfurized and commercial carbon supports. Sizes and distribution of Pt were systematically observed in various atmospheric gases and environmental temperatures. Not only agglomeration but redispersion occur depending on environmental conditions.

For practical applications, controlling support effects is essential to improve target functionalities. for instance, catalytic activities of bulk materials generally show ‘volcano’ relationships with the adsorption energy of reaction intermediates [3, 175]. However, DFT calculations elucidated that a single Pt atom and clusters on light-element doped graphene describe different volcano shapes from bulk catalysts [176]. Therefore, the catalytic activities of subnanometric catalysts cannot be estimated from the bulk database. Recently, new boron-based two-dimensional materials have been intensively studied [177–184]. These materials may be new options to control support effects. Recently, atomic-scale manipulation has been developed in the electron microscope [185]. This technique can help to fabricate precisely controlled heteroatom-doped graphene supports. Recent advances in atomic-scale vibrational spectroscopy [186, 187] and electromagnetic field measurements [188–192] are also promising tools to characterize newly developed support materials.

In addition, geometric differences between a single Pt atom and clusters on doped graphene and bulk materials should be reconsidered. A single Pt atom and clusters on doped graphene consist of a composite of small active metal sites, inert terrace area, and low-dimensional edge sites, which may also show catalytic activity. Therefore, reaction processes over a large area may have collective mechanisms, including chemical reactions on doped graphene sites and reactant spillover [45, 46, 193]. Direct in situ/operando measurements and DFT calculations are crucial to designing new atomic-scale catalysts supported on heteroatom-doped graphene.

Acknowledgments

This work was supported by JSPS KAKENHI: Grant-in-Aid for Early-Career Scientists, No. 20K15165.
Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Yuji Kunisada https://orcid.org/0000-0001-7743-5369

References

[1] Four Ghenciu A 2002 Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems *Carr. Opin. Solid State Mater.* Sci. 6 389–99
[2] Xu Y, Ruban A V and Mavrikakis M 2004 Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys *J. Am. Chem. Soc.* 126 4717–25
[3] Norskov J K, Rossmeyer I, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T and Jonsson H 2004 Origin of the overpotential for oxygen reduction at a fuel-cell cathode *J. Phys. Chem. B* 108 17886–92
[4] Huang J-F and Yang H-W 2016 Electrochemical quantifying, counting, and sizing supported Pt nanoparticles in real time *Anal. Chem.* 88 6403–9
[5] Heck R M and Farrauto R J 2001 Automobile exhaust catalysts *Appl. Catal. A* 221 443–57
[6] Cheng N et al 2016 Platinum single-atom and cluster catalysis of the hydrogen evolution reaction *Nat. Commun.* 7 13638
[7] Strmcnik D, Lopes P P, Genorio B, Stamenkovic V R and Markovic N M 2016 Design principles for hydrogen evolution reaction catalyst materials *Nano Energy* 29 29–56
[8] Wang Z, Yang J, Gan J, Chen W, Zhou F, Zhou Z, Yu Z, Zhu J, Duan X and Wu Y 2020 Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction *J. Mater. Chem. A* 8 10755–60
[9] Ren Z H, Zhang X, Gao M X, Pan H G and Liu Y F 2021 Research Progress in Ti-based catalysts-Modified NaAlH4 hydrogen storage materials *Chinese Journal of Rare Metals* 45 569–82
[10] Wan C et al 2022 Defect engineered mesoporous graphitic carbon nitride modified with Ag/Pd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid *Eur. J. Chem.* 429 132380
[11] Rougié A, Saadoun J, Graveureau P, Willmann P and Delmas C 1996 Effect of cobalt substitution on cationic distribution in LiNi1–yCo1+yO2 electrode materials *Solid State Ionics* 90 83–90
[12] Li M, Liu J, Chen Z and Amine K 2018 30 years of lithium-ion batteries *Adv. Mater.* 30 e1800561
[13] Qi S, Wu D, Dong Y, Liao J, Foster C W, O’Dwyer C, Feng Y, Liu C and Ma J 2019 Cobalt-based electrode materials for sodium-ion batteries *Chem. Eng. J.* 370 185–207
[14] Halperin W P 1986 Quantum size effects in metal particles *Rev. Mod. Phys.* 58 533–606
[15] Valden M, Lai X and Goodman D W 1998 Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties *Science* 281 1647–50
[16] Haruta M and Date M 2001 Advances in the catalysis of Au nanoparticles *Appl. Catal. A* 222 427–37
[17] Haruta M 1997 Size- and support-dependency in the catalysis of gold nanoparticles *Catal. Today* 36 153–66
[18] Imaoaka T, Akunuma Y, Haruta N, Tsuchiya K, Ishihara K, Okayasu T, Chun W-J, Takahashi M and Yamamoto K 2017 Platinum clusters with precise numbers of atoms for preparative-scale catalysis *Nat. Commun.* 8 688
[19] Ishida T, Murayama T, Taketoshi A and Haruta M 2020 Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes *Chem. Rev.* 120 646–525
[20] Gu J-Y, Cai Z-F, Wang D and Wan L-J 2016 Single-molecule imaging of iron–phthalocyanine-catalyzed oxygen reduction reaction by *In Situ* scanning tunneling microscopy *ACS Nano* 10 8746–50
[21] Abe H, Hirai Y, Ikeda S, Matsuo Y, Matsuya J, Matsue T and Yabu H 2019 Fe arachidonic acid monolayers (FeAaULs) on carbon nanotubes for realizing highly active oxygen reduction reaction (ORR) catalytic electrodes *NPG Asia Mater.* 11 57
[22] Guo X, Lin S, Gu J, Zhang S, Chen Z and Huang S 2019 Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts *ACS Catal.* 9 11042–54
[23] Ramuglia A R, Budhia V, Ly K H, Marquardt M, Schwab M and Weidinger I M 2021 An iron porphyrin complex with pendant pyridine substituents facilitates electrocatalytic CO2 reduction via second coordination sphere effects *ChemCatChem* 13 3934–44
[24] Zhang J, Wang Z, Zhu Z and Wang Q 2015 A density functional theory study on mechanism of electrochemical oxygen reduction on *FeN5*-Graphene *J. Electrochem. Soc.* 162 F796–801
[25] Zhang X, Yu S, Chen H and Zheng W 2015 TM atoms on B/N doped defective graphene as a catalyst for oxygen reduction reaction: a theoretical study *RSC Adv.* 5 82804–12
[26] Chen X, Chen S and Wang J 2016 Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory *Appl. Surf. Sci.* 379 291–5
[27] Tang Y, Zhou J, Shen Z, Chen W, Li C and Dai X 2016 High catalytic activity for CO oxidation on single Fe atom stabilized in graphene vacancies *RSC Adv.* 6 95985–96
[28] Tang Y, Chen W, Shen Z, Li C, Ma D and Dai X 2018 A computational study of CO oxidation reactions on metal impurities in graphene vacancies *Phys. Chem. Chem. Phys.* 20 2284–95
[29] Han G et al 2019 High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction *Nano Energy* 66 104088
[30] Qiu X, Yan X, Pang H, Wang J, Sun D, Wei S, Xu L and Tang Y 2019 Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction *Adv. Sci.* 6 1801103
[31] Liu D et al 2020 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction *Small Methods* 4 1900827
[32] Li N, Nam Y and Yong Lee J 2020 Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction *Appl. Surf. Sci.* 514 146073
[33] Fu N et al 2020 Fabricating Pd isolated single atom sites on C,N/rGO for heterogenization of homogeneous catalysis *Nano Res.* 13 947–51
[34] Zhou H-Y, Yu X, Yu Q, Xiao H, Zhang X and Li J 2020 Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts Science China Materials 63 1741–9

[35] Li Q et al 2020 Microwave-enabled incorporation of single atomic Cu catalytic sites in holey graphene: unifying structural requirements of a carbon matrix for simultaneous achievement of high activity and long-term durability ACS Appl. Energy Mater. 3 8266–75

[36] Cao H, Xia G-J, Chen J-W, Yan H-M, Huang Z and Wang Y-G 2020 Mechanistic insight into the oxygen reduction reaction on the Mn–Nₓ/C single-atom catalyst: the role of the solvent environment J. Phys. Chem. C 124 7287–94

[37] Meng Y, Li K, Xiao D, Yuan X, Wang Y and Wu Z 2020 High selective and efficient Fe–Nₓ sites for CO₂ electroreduction: a theoretical investigation Int. J. Hydrogen Energy 45 14311–7

[38] Lu Z, Li P, Liang Y, Ma D, Zhang Y, Zhang W, Yang X and Yang Z 2016 CO oxidation catalyzed by the single Co atom embedded hexagonal boron nitride nanosheet: a DFT-D study Phys. Chem. Chem. Phys. 18 21865–70

[39] Zhang J, Zhao Y, Guo X, Chen C, Dong CL, Liu R, Han CP, Li Y, Gogotsi Y and Wang G 2018 Single platinum atoms immobilized on an MnXε as an efficient catalyst for the hydrogen evolution reaction Nat. Catal. 1 985–92

[40] Gao Y et al 2019 Functionalization Ti₃C₂MXene by the adsorption or substitution of single metal atom Appl. Surf. Sci. 465 911–8

[41] Deng C, He R, Shu W and Li M 2019 Theoretical analysis of oxygen reduction reaction activity on single metal (Ni, Pd, Pt, Cu, Ag, Au) atom supported on defective two-dimensional boron nitride materials Phys. Chem. Chem. Phys. 21 183589–94

[42] Zhao D et al 2019 MXene (Ti₃C₂) vacancy-confined single-atom catalyst for efficient functionalization of CO₂ J. Am. Chem. Soc. 141 4086–93

[43] Gusmão R, Vesely M and Sofer Z 2020 Recent developments on the single atom supported at 2D materials beyond graphene as catalysts ACS Catal. 10 9634–48

[44] Li L, Li B, Guo H, Li Y, Sun C, Tian Z and Chen L 2020 Synergistic effects of heteroatom–decorated MXene catalysts for CO reduction reactions Nanoscale 12 15880–7

[45] Lucci F R, Marcinkowski M D, Lawton T J and Sykes E C H 2015 H₂ activation and spillover on catalytically relevant Pt single atom alloys J. Phys. Chem. C 119 24351–7

[46] Lucci F R, Darby M T, Mattera M F G, Ivimey C J, Therrien A J, Michaelides A, Stamatakis M and Sykes E C H 2016 Controlling hydrogen activation, spillover, and desorption with Pd–Au single-atom alloys J. Phys. Chem. Lett. 7 480–5

[47] Sun G et al 2018 Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation Nat. Commun. 9 4454

[48] Greiner M T, Jones T E, Beeg S, Zwiener L, Scherzer M, Girgsdies F, Armbrüster M, Knop-Gericke A and Schlögl R 2018 Free-atom-like d states in single-atom alloy catalysts Nat. Chem. 10 1008–15

[49] Darby M T, Stamatakis M, Michaelides A and Sykes E C H 2017 Lone atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys J. Phys. Chem. Lett. 9 5366–46

[50] Simonovis J P, Hunt A, Senanayake S D and Walyouni I 2019 Subtle and reversible interactions of ambient pressure H₂ with Pt/Cu (111) single-atom alloy surfaces Surf. Sci. 679 207–13

[51] Marcinkowski M D, Darby M T, Liu J, Wimble J M, Lucci F R, Lee S, Michaelides A, Flynntzani-Stapanopoulou M, Stamatakis M and Sykes E C H 2018 Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–C activation Nat. Chem. 10 325–32

[52] Zhang L et al 2019 Pt/Pd single-atom alloys as highly active electrocatalysts and the origin of enhanced activity ACS Catal. 9 9350–8

[53] Giannakakis G, Flynntzani-Stapanopoulou M and Sykes E C H 2019 Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts Acc. Chem. Res. 52 237–47

[54] Hennanagan R T, Giannakakis G, Flynntzani-Stapanopoulou M and Sykes E C H 2020 Single-atom alloy catalysis Chem. Rev. 120 12004–88

[55] Mondloch J E, Bayram E and Finke R G 2012 A review of the kinetics and mechanisms of formation of supported-nanoparticle heterogeneous catalysts J. Mol. Catal. A: Chem. 355 1–38

[56] Simonsen S B, Chorkendorff I, Dahl S, Skoglundh M, Sehested J and Helveg S 2011 Ostwald ripening in a Pt/SiO₂ model catalyst studied by in situ TEM J. Catal. 281 147–55

[57] Liu J, Bak J, Roh J, Lee K-S, Cho A, Han JW and Cho E 2021 Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction activity ACS Catal. 11 466–75

[58] Green I X, Tang W, Neurock M and Yates JT 2011 Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO₂ catalyst Science 333 733–79

[59] Yoshida H, Kuwazuki Y, Jinschek J R, Sun K, Tanaka S, Kohyama M, Shimada S, Haruta M and Takeda S 2012 Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions Science 335 317–9

[60] Imran Jafri R, Rajalakshmi N and Ramaprabhul S 2010 Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell J. Mater. Chem. 20 7114–7

[61] Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S and Liu J 2015 Single-atom Pd, /graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene J. Am. Chem. Soc. 137 10484–7

[62] Sub W-K, Ganesan P, Son B, Kim H and Shammuang S 2016 Graphene supported Pt–Ni nanoparticles for oxygen reduction reaction in acidic electrolyte Int. J. Hydrogen Energy 41 12983–94

[63] Dongil A B, Bachiller–Baeza B, Rodriguez–Ramos I, Fierro J L G and Escalona N 2016 The effect of Cu loading on Ni/ carbon nanotubes catalysts for hydrodeoxygenation of guaiacol RSC Adv. 6 26568–68

[64] Kim B-H, Lee K-R, Chung Y-C and Park M 2016 Functionalization effect on Pt/carbon nanotube composite catalyst: a first-principles study Phys. Chem. Chem. Phys. 18 22867–92

[65] Ali S, Liu T F, Lian Z, Li B and Su D S 2017 The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation Phys. Chem. Chem. Phys. 19 22344–54

[66] Li H, Zhang H-X, Yan X-L, Xu B-S and Guo J-J 2018 Carbon–supported metal single atom catalysts New Carbon Mater. 33 1–11

[67] Hasegawa S, Kunisada Y and Sakaguchi N 2017 Diffusion of a single platinum atom on light-element–doped graphene J. Phys. Chem. C 121 17787–95

[68] Stambula S, Qauquelin N, Bugnet M, Goranla S, Turner S, Sun S, Liu J, Zhang G, Sun X and Botton G A 2014 Chemical structure of nitrogen–doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode J. Phys. Chem. C 118 3890–900

[69] Huang H et al 2020 The chemistry and promising applications of graphene and porous graphene materials Adv. Funct. Mater. 30 1909035
[70] Bangert U, Pierce W, Kepaptsoglou D M, Ramasse Q, Zan R, Gass M H, Van den Berg J A, Boothroyd C B, Amati J and Hofsiass H 2013 Ion implantation of graphene-toward IC compatible technologies Nanot. Lett. 13 4902–7
[71] Sheng Z-H, Gao H-L, Bao W-J, Wang F-B and Xia X-H 2011 Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells J. Mater. Chem. 22 390–5
[72] Lin T, Huang F, Liang J and Wang Y 2011 A facile preparation route for boron-doped graphene, and its CdTe solar cell application Energy Environ. Sci. 4 862–5
[73] Wang H, Zhou Y, Wu D, Liu L, Zhao S, Peng H and Liu Z 2013 Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition Small 9 1316–20
[74] Peng Z, Ye R, Mann J A, Zakhidov D, Li Y, Smalley P R, Lin J and Tour J M 2015 Flexible boron-doped laser-induced graphene microsupercapacitors ACS Nano 9 5868–75
[75] Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P and Yu G 2009 Synthesis of N-Doped graphene by chemical vapor deposition and its electrical properties Nanot. Lett. 9 1752
[76] Li X, Wang H, Robinson J T, Sanchez H, Diankov G and Dai H 2009 Simultaneous nitrogen doping and reduction of graphene oxide J. Am. Chem. Soc. 131 15959–44
[77] Zhang L-S, Liang X-Q, Song W-G and Wu Z-Y 2010 Identification of the nitrogen species on N-doped graphene layers and Pt/N graphene composite catalyst for direct methanol fuel cell Phys. Chem. Chem. Phys. 12 12055–9
[78] Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Li J, Aksay I A and Lin Y 2010 Nitrogen-doped graphene and its electrochemical applications J. Mater. Chem. 20 7491
[79] Wang D-W, Gentle I R and Lu G Q 2010 (max) Enhanced Electronic sensitivity of PtRh electrodes coated with nitrogen-doped graphene Electrochem. Commun. 12 423–7
[80] Li N, Wang Z, Zhao K, Shi Z, Gu Z and Xu S 2010 Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method Carbon N. Y. 48 255–9
[81] Qu L, Liu Y, Buek J-B and Dai L 2010 Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells ACS Nano 4 1321–6
[82] Reddy A L M, Srivistava A, Gowda S R, Gullapalli H, Dubey M and Ajayan P M 2010 Synthesis of nitrogen-doped graphene films for lithium battery application ACS Nano 4 6337–42
[83] Long D, Li W, Ling L, Miyawaki J, Mochida I and Yoon S H 2010 Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide Langmuir 26 16096–102
[84] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K and Choi J W 2011 Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes Nano Lett. 11 2472–7
[85] Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T and Lin J 2011 Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property J. Mater. Chem. 21 8038–44
[86] Imamura G and Saiti K 2011 Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition J. Phys. Chem. C 115 10000–5
[87] Jin Z, Yao J, Kittrell C and Tour J M 2011 Large-scale growth and characterization of nitrogen-doped monolayer graphene sheets ACS Nano 5 4112–7
[88] Wang H B, Maiyalagan T and Wang X 2012 Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications ACS Catal. 2 781–94
[89] Lu Y-F, Lu S-T, Lin J-C, Zhang W, Lu J-Y, Liu F-H, Tseng C-M, Lee Y-H, Liang C-T and Li L-J 2013 Nitrogen-doped graphene grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport ACS Nano 7 6522–32
[90] Liang J, Du X, Gibson C, Du X W and Qiao S Z 2013 N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction Adv. Mater. 25 6262–31
[91] Bai J, Zhu Q, Lv Z, Dong H, Yu J and Dong L 2013 Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions Int. J. Hydrogen Energy 38 1413–8
[92] Zabet-Khosousi A, Zhao L, Palova L, Hybertsen M S, Reichman D R, Pasupathy A N and Flynn G W 2014 Segregation of sublattice domains in nitrogen-doped graphene J. Am. Chem. Soc. 136 15919–7
[93] Shi L, Liu S, He Z and Shen J 2014 Nitrogen-doped graphene: effects of nitrogen species on the properties of the vanadium redox flow battery Electrochim. Acta 138 93–100
[94] Wu J, Ma L, Yadav R M, Yang Y, Zhang X, Vajiral J, Lou J and Ajayan P M 2015 Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction ACS Appl. Mater. Interfaces 7 14763–89
[95] Qin Y, Yuan J, Li J, Chen D, Kong Y, Chu F, Tao Y and Liu M 2013 Crosslinking graphene oxide into robust 3D porous N-Doped graphene Adv. Mater. 25 37171–9
[96] Matsoso B J, Ranganathan K, Mutuma B K, Lerotholi T, Jones G and Coville N J 2016 Time-dependent evolution of the nitrogen configurations in N-doped graphene films RSC Adv. 6 106914–20
[97] Guo D, Shibuya R, Akiba C, Saji S, Kondo T and Nakamura J 2016 Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts Science 351 361–5
[98] Cress C D, Schmucker S W, Friedman A L, Dev P, Culberson J C, Lyding J W and Robinson J T 2016 Nitrogen-doped graphene and twisted bilayer graphene via hyperthermal ion implantation with depth control ACS Nano 10 3714–22
[99] Ito Y, Christodoulou C, Nardi M V, Koch N, Sachdev H and Müllen K 2014 Chemical vapor deposition of N-doped graphene and carbon nanotubes: the role of precursors and gas phase ACS Nano 8 3337–46
[100] Panchakarra I S, Subrahmanyan K S, Saha S K, Govindaraju A, Krishnamurthy H R, Waghmare UV and Rao C N R 2009 Synthesis, structure, and properties of boron- and nitrogen-doped graphene Adv. Mater. 21 4726–30
[101] Wu Z-S, Ren W, Xu L, Li F and Cheng H-M 2011 Doped graphene sheets as anode materials with superhigh rate and large capacity for feedstock lithium ion batteries ACS Nano 5 5463–71
[102] Wu Z-S, Winter A, Chen L, Sun Y, Turchian A, Feng X and Müllen K 2012 Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors Adv. Mater. 24 5130–5
[103] Pyryko P, Atsumi M, Pyryko P and Atsumi M 2009 Molecular single-bond covalent radii for elements 1-118 Chemistry - A European J. 15 186–97
[104] Tang Q, Zhou Z and Chen Z 2013 Graphene-related nanomaterials: tuning properties by functionalization Nano. 4 4514–83
[105] Dong Y, Gahl M T, Zhang C and Lin J 2017 Computational study of precision nitrogen doping on graphene nanoribbon edges Nanotechnology 28 505602
[106] Lin C-S 2018 Theoretical study of nitrogen-doped graphene nanoflakes: Stability and spectroscopy depending on dopant types and flake sizes J. Comput. Chem. 39 1387–97
Nano Express 3 (2022) 642001

Y Kunisada and N Sakaguchi

117 Yutomo E B, Noor F A and Winata T 2021 Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene - a density-functional study RSC Adv. 11 18371–80

118 Matanovic I, Artysyukova K, Strand M B, Dzeza M J, Pylypenko S and Atanassov P 2016 Core level shifts of hydrogenated pyridinic and pyrrolic nitrogen in the nitrogen-containing graphene-based electrocatalysts: in-plane vs edge defects J. Phys. Chem. C 120 29225–32

119 Qin Y et al 2019 Aluminum and nitrogen codoped graphene: highly active and durable electrocatalyst for oxygen reduction reaction ACS Catal. 9 1610–9

120 Susi T et al 2014 Silicon-carbon bond inversions driven by 60-keV electrons in graphene Phys. Rev. Lett. 113 115501

121 Lv B et al 2014 Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing Adv. Mater. 26 7893–9

122 Yang Z, Yin L, Lee J, Ren W, Cheng H-M, Ye H, Pantelides S T, Pennycook J I and Chisholm M F 2014 Direct observation of atomic dynamics and silicon doping at a topological defect in graphene Angew. Chem. Int. Ed. Engl. 89 8908–12

123 Wang Z, Li P, Chen Y, Liu J, Zhang W, Guo Z, Dong M and Li Y 2015 Synthesis, characterization and electrical properties of silicon-doped graphene films J. Mater. Chem. 3 6301–6

124 Hage F S, Radtke G, Kepaptsoglou D M, Lazzeri M and Ramasse Q M 2020 Single-atom vibrational spectroscopy in the scanning transmission electron microscope Science 367 1124–7

125 Liu H, Yang W, Che S, Li Y, Xu C, Wang X, Ma G, Huang G and Li Y 2022 Silicon doped graphene as high cycle performance anode for lithium-ion batteries Carbon N. Y. 196 633–8

126 Susi T, Hardcastle T P, Hofsäss H, Mittelberger A, Pennycook T J, Mangler C, Drummond-Brydson R, Scott A J, Meyer J C and Kotakoski J 2017 Single-atom spectroscopy of phosphorus dopants implanted into graphene 2D Mater. 4 021013

127 Su C et al 2019 Engineering single-atom catalysis with electronic interaction Sci. Adv. 5 eaav2252

128 Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou H, Chen X X and Huang S 2012 Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction ACS Nano 6 205–11

129 Park J-E, Jang Y J, Kim Y J, Song M S, Yoon S, Kim D H and Kim S-J 2013 Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction Phys. Chem. Chem. Phys. 16 1633–9

130 Yan L, Xiao M, Wang S, Han D and Meng Y 2017 Edge sulfurized graphene nanoplatelets via vacuum mechano-chemical reaction for lithium–sulfur batteries J. Mater. Chem. A 26 522–9

131 Zhong J, Wu T, Wu Q, Du S, Chen D, Chen B, Chang M, Luo X and Liu Y 2019 N- and S-co-doped graphene sheet-encapsulated CoSx nanomaterials as excellent electrocatalysts for the oxygen evolution reaction J. Power Sources 417 90–8

132 Tripathi M, Markevich A, Böttger R, Faccsko S, Besley E, Kotakoski J and Susi T 2018 Implanting germanium into graphene ACS Nano 12 4641–7

133 Grasseschi D, Silva W C, Souza Paiva R, de, Starke L D and do Nascimento A S 2020 Surface coordination chemistry of graphene: understanding the coordination of single transition metal atoms Coord. Chem. Rev. 422 133469

134 Langer R, Mustonen K, Markevich A, Öyepka M, Susi T and Blotioki P 2022 Graphene lattices with embedded transition-metal atoms and tunable magnetic anisotropy energy: implications for spintronic devices ACS Appl. Nano Mater. 5 1562–73

135 Wu X, Zhao H, Zhong M, Murakawa H and Tsukamoto M 2014 Molecular dynamics simulation of graphene sheets joining under ion beam irradiation Carbon 66 31–8

136 Bai Z, Zhang L and Liu L 2015 Bombarding graphene with oxygen ions: combining effects of incident angle and ion energy on defect formation J. Phys. Chem. C 119 26793–802

137 Willke P, Amanti J A, Sinterhaul A, Thakur S, Kotzott T, Druga T, Weikert S, Matik I, Hofäss H and Wenderoth M 2015 Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties Nano Lett. 15 5110–5

138 Wu X, Zhao H, Yan D and Pei J 2017 Doping of graphene using ion beam irradiation and the atomic mechanism Comput. Mater. Sci. 129 184–93

139 Wang HT et al 2012 Doping monolayer graphene with single atom substitutions Nano Lett. 12 141–4

140 Inani H, Mustonen K, Markevich A, Ding E-X, Tripathi M, Hussain A, Mangler C, Kauppinen E I, Susi T and Kotakoski J 2019 Silicon substitution in nanotubes and graphene via intermittent vacancies J. Phys. Chem. C 123 13136–40

141 Trentino A, Mizohata K, Zagler G, Längle M, Mustonen K, Susi T, Kotakoski J and Harriet Ahlgren E 2022 Two-step implantation of gold into graphene 2D Mater. 9 025011

142 Teweldebrhan D and Balandin A A 2009 Modification of graphene properties due to electron-beam irradiation Appl. Phys. Lett. 94 2007–10

143 Jones JD, Mahajan K K, Williams WH, Ecton PA, Mo Y and Perez JM 2010 Formation of graphene and partially hydrogenated graphene by electron irradiation of adsorbates on graphene Carbon 48 2335–40

144 Kotakoski J, Krasheninnikov A V, Kaiser U and Meyer J C 2011 From point defects in graphene to two-dimensional amorphous carbon Phys. Rev. Lett. 106 105505

145 Susi T et al 2012 Atomic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes ACS Nano 6 8387–46

146 Asayama Y, Yasuda M, Tada K, Kawata H and Hirai Y 2012 Molecular dynamics study of the structural modification of graphene by electron irradiation J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 30 063002

147 Meyer J C et al 2012 An accurate measurement of electron beam induced displacement cross sections for single-layer graphene Phys. Rev. Lett. 108 196102

148 Yamamoto M, Asayama Y, Yasuda H, Kawata H and Hirai Y 2014 Defect formation and transformation in graphene under electron irradiation: a molecular dynamics study J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 32 06FK01

149 Sun L, Banhart F and Warner J 2015 Two-dimensional materials under electron irradiation MRS Bull. 40 29–37

150 Börner P, Kaiser U and Lehtinen O 2016 Evidence against a universal electron-beam-induced virtual temperature in graphene Phys. Rev. B Condens. Matter 93 134104

151 Yamazaki K, Maehara Y, Kitajima R, Fukami Y and Gohara K 2018 High-density dispersion of single platinum atoms on graphene by plasma sputtering in N2 atmosphere Appl. Phys. Express 11 095101

152 Yamazaki K, Maehara Y, Lee cc, Yoshinobu I, Ozaki T and Gohara K 2018 Atomic structure and local electronic states of single Pt atoms dispersed on graphene J. Phys. Chem. C 122 2792–300

153 Sugimoto R, Segawa Y, Suzuta A, Kunisada Y, Uchida T, Yamazaki K and Gohara K 2021 single Pt atoms on N-Doped graphene: atomic structure and local electronic states J. Phys. Chem. C 125 2900–6

154 Wella S A, Hamamoto Y, Suprijadi, Morikawa Y and Hamada I 2019 Platinum single-atom adsorption on graphene: a density functional theory study Nano Scale Adv. 1 1165–74
[145] Singh S K, Takeyasu K and Nakamura J 2019 Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials Adv. Mater. 31 e1804297
[146] Takeyasu K, Furukawa M, Shimoyama Y, Singh S K and Nakamura J 2021 role of pyridinic nitrogen in the mechanism of the oxygen reduction reaction on carbon electrocatalysts Angew. Chem. Int. Ed. Engl. 60 5121–4
[147] Sun S et al 2013 Single-atom catalysis using Pt/graphene achieved through atomic layer deposition Sci. Rep. 3 1775
[148] Ye S et al 2019 Highly stable single Pt atomic sites anchored on aniline-supported graphene for hydrogen evolution reaction Energy Environ. Sci. 12 1000–7
[149] Cheng Y et al 2019 Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells Adv. Sci. 6 1802066.
[150] Bakandritos A et al 2019 Mixed-valence single-atom catalyst derived from functionalized graphene Adv. Mater. 31 e1900323
[151] Meng J et al 2020 universal approach to fabricating graphene-supported single-atom catalysts from doped ZnO solid solutions ACS Cent Sci 6 1431–40
[152] Langer R, Fako E, Błoński P, Vavrečka M, Bakandritos A, Otyepka M and López N 2020 Anchoring of single-/-platinum-/-adatoms on cyanographene: experiment and theory Applied Materials Today 18 100462
[153] Zhou H-Y, Zhang X, Liang J-X, Yu Q, Xiao H and Li J 2020 Theoretical understandings of graphene-based metal-single-atom catalysts: stability and catalytic performance Chem. Rev. 120 12335–41
[154] Hamamoto Y, Wells A S, Inagaki K, Abild-Pedersen F, Bliigard F, Hamada I and Morikawa Y 2020 Enhanced CO tolerance of Pt clusters supported on graphene with lattice vacancies Phys. Rev. B 102 075408
[155] Elibol K, Mangler C, O’Regan D D, Mustonen K, Eder D, Meyer J C, Kotakoski J, Hobs B G, Susi T and Bayer B C 2021 Single indium atoms and few-atom indium clusters anchored on graphene via silicon heteroatoms ACS Nano 15 14373–83
[156] Hasegawa S, Kunisada Y and Sakaguchi N 2020 Exploration of long-life Pt/heteroatom-/-doped graphene catalysts in hydrogen atmosphere ACS Omega 4 16573–84
[157] Hamada I and Otani M 2010 Comparative van der Waals density-functional study of graphene on metal surfaces Phys. Rev. B 82 155412
[158] Brako R, Sokčevič D, Lažič P and Atodiresei N 2010 Graphene on the Ir(111) surface: from van der Waals to strong bonding New J. Phys. 12 113016
[159] Mittendorfer F, Garhofer A, Redinger J, Klimej I, Harl J and Kresse G 2011 Graphene on Ni(111): strong interaction and weak adsorption Phys. Rev. B 84 204101
[160] Le D, Kara A, Schröder E, Hylgaard P and Rahman T S 2012 Physioisorption of nucleobases on graphene: a comparative van der Waals study J. Phys. Condens. Matter 24 424210
[161] Hamada I 2002 Adsorption of water on graphene: a van der Waals density functional study Phys. Rev. B 65 195436
[162] Hamada I 2014 van der Waals density functional made accurate Phys. Rev. B 89 121303
[163] Search H, Journaux C, Contact A, Jopsience M, Lažič P, Atodiresei N, Caciuc V, Brako R, Gumhalter B and Blügel S 2012 Rationale for switching to nonlocal functionals in density functional theory J. Phys. Condens. Matter 24 424215
[164] Caciuc V, Atodiresei N, Callsen M, Lažič P and Blügel S 2012 Ab initio and semi-empirical van der Waals study of graphene-based nitrile interaction from a molecular point of view J. Phys. Condens. Matter 24 424214
[165] Takeuchi K et al 2017 Adsorption of CO2 on graphene: a combined TPD, XPS, and vdW-/DF study J. Phys. Chem. C 121 2807–14
[166] Abidin A F Z and Hamada I 2020 Interaction of water with nitrogen-doped graphene Phys. Rev. B 101 075416
[167] Yin P, Luo X, Ma Y, Chu S-Q, Chen S, Zheng X, Lu J, Wu X-J and Liang H-W 2021 Sulfur stabilizing metal nanoclusters on carbon at high temperatures Nat. Commun. 12 3135
[168] Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S and Topsøe H 2002 Atom-resolved imaging of dynamic shape switches in supported copper nanocrystals Science 295 2053–5
[169] Vendalebo S B et al 2014 Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation Nat. Mater. 13 884–90
[170] Bayram E, Lau J, Aydin C, Browning N D, Özkär S, Finney E, Gates B C and Finke R G 2015 Agglomerative sintering of an atomically dispersed Ir1–Zeolite Y Catalyst: compelling evidence against ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps ACS Catal. 5 5514–27
[171] Li Y, Zakhvorov D, Zhao S, Tapper R, Jung U, Elen A, Baumann P, Nuzzo R G, Stach E A and Frenkel A I 2015 Complex structural dynamics of nanocatalysts revealed in operando conditions by correlated imaging and spectroscopy probes Nat. Commun. 6 5738
[172] Tao F and Crozier P A 2016 Atomic-scale observations of catalyst structures under reaction conditions and during catalysis Chem. Rev. 116 3487–539
[173] Zugic B, Wang L, Heine C, Zakhvorov D N, Lechner B A J, Stach E A, Biener J, Salmeron M, Madix R J and Friend C M 2017 Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts Nat. Mater. 16 558–64
[174] Liu L, Zakhvorov D N, Arevalo R, Concepcion P, Stach E A and Corma A 2018 Evolution and stabilization of subnanometric metal species in confined space by in situ TEM Nat. Commun. 9 5747
[175] Seh Z W, Kibsgaard J, Dickerson C F, Chorkendorff I, Nørskov J K and Jaramillo T F 2017 Combining theory and experiment in electrocatalysis: Insights into materials design Science 353 aad4998
[176] Hasegawa S, Kunisada Y and Nakamura S 2020 Oxygen reduction reaction activity of pt sub-nanocluster supported on graphene Vac. Sci. Technol. A 38 413–8
[177] Wu X, Dai J, Zhao Y, Zhao Z, Yang J and Zeng X C 2012 Two-dimensional boron monolayer sheets ACS Nano 6 7443–53
[178] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Experimental realization of two-dimensional boron sheets Nat. Chem. 8 563–8
[179] Fujino A, Ito S-I, Goto T, Ishibiki R, Kondo J N, Fujitani T, Nakamura J, Hosono H and Kondo T 2019 Hydrogenated borophene shows catalytic activity as solid acid ACS Omega 4 41099–4
[180] Tateishi I et al 2019 Semimetallicity of free-standing hydrogenated monolayer boron from MgB2 Phys. Rev. Materials 3 0524004
[181] Wang Z-Q, Li L-T, Wang H-Q, Feng Y P and Zhong J-C 2019 Review of borophene and its potential applications Front. Phys. 14 33403
[182] Rojas K M et al 2021 Chemical stability of hydrogen boride nanosheets in water Communications Materials 2 81
[183] Li Q, Kolluru V S C, Rahn M S, Schwenker E, Li S, Henning R G, Darancet P, Chan M K Y and Hersam M C 2021 Synthesis of borophene polymorphs through hydrogenation of borophene Science 371 1143–8
[184] Kusaka H et al 2021 Crystalline boron monosulfide nanosheets with tunable bandgaps J. Mater. Chem. A 9 24631–40
[185] Susi T, Kepaptsoglou D, Lin Y-C, Ramasse Q M, Meyer J C, Suemaga K and Kotakoski J 2017 Towards atomically precise manipulation of 2D nanostructures in the electron microscope ZD Mater. 4 042004
[186] Chen Y et al 2019 Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells Adv. Sci. 6 1802066.
[186] Senga R, Suenaga K, Barone P, Morishita S, Masuri F and Pichler T 2019 Position and momentum mapping of vibrations in graphene nanostructures Nature 573 247–50

[187] Senga R, Lin Y-C, Morishita S, Kato R, Yamada T, Hasegawa M and Suenaga K 2022 Imaging of isotope diffusion using atomic-scale vibrational spectroscopy Nature 603 68–72

[188] Shibata N, Seki T, Sánchez-Santolino G, Findlay S D, Kohno Y, Matsumoto T, Ishikawa R and Ikuhara Y 2017 Electric field imaging of single atoms Nat. Commun. 8 13631

[189] Shibata N, Findlay S D, Matsumoto T, Kohno Y, Seki T, Sánchez-Santolino G and Ikuhara Y 2017 Direct visualization of local electromagnetic field structures by scanning transmission electron microscopy Acc. Chem. Res. 50 1502–12

[190] Ishikawa R, Findlay S D, Seki T, Sánchez-Santolino G, Kohno Y, Ikuhara Y and Shibata N 2018 Direct electric field imaging of graphene defects Nat. Commun. 9 3878

[191] Sánchez-Santolino G et al 2018 Probing the internal atomic charge density distributions in real space ACS Nano 12 8875–81

[192] Kohno Y, Seki T, Findlay S D, Ikuhara Y and Shibata N 2022 Real-space visualization of intrinsic magnetic fields of an antiferromagnet Nature 602 234–9

[193] Beaumont S K, Alayoglu S, Specht C, Kruse N and Somorjai G A 2014 A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles Nano Lett. 14 4792–6