Genome Sequence of *Bacillus velezensis* SGAir0473, Isolated from Tropical Air Collected in Singapore

Serene B. Y. Lim,*² Ana Carolina M. Junqueira,*² Akira Uchida,*² Rikky W. Purbojati,*² James N. I. Houghton,*² Caroline Chénard,* Anthony Wong,*² Sandra Kolundžija,* Megan E. Clare,* Kavita K. Kushwaha,* Deepa Panicker,*² Alexander Putra,*² Nicolas E. Gaultier,* Balakrishnan N. V. Premkrishnan,*² Cassie E. Heinle,* Vineeth Kodengil Vettath,*² Daniela I. Drautz-Moses,*² Stephan C. Schuster*²

*Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
*²Departamento de Genética, Instituto de Biología, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
*Asian School of the Environment, Nanyang Technological University, Singapore

ABSTRACT *Bacillus velezensis* strain SGAir0473 (*Firmicutes*) was isolated from tropical air collected in Singapore. Its genome was assembled using short reads and single-molecule real-time sequencing and comprises one chromosome with 4.18 Mb. The genome consists of 3,937 protein-coding genes, 86 tRNAs, and 27 rRNAs.

Bacillus velezensis is a Gram-positive rod-shaped aerobic bacterium classified in the phylum *Firmicutes*. This bacterium was first isolated from a brackish water sample collected from the river Vélez in Spain (1). It was isolated from an extremely high-salt environment (12% [wt/vol]) utilizing a test that screens for surfactant-producing bacteria (1). Since then, *B. velezensis* has been found in diverse habitats, including cotton waste (2), wheat anthers (3, 4), and soil (5). Past studies have also highlighted the ability of *B. velezensis* to produce antimicrobial metabolites (6) and antibiotics (7) and have also demonstrated its involvement in a wide spectrum of antifungal activities (8).

B. velezensis strain SGAir0473 was isolated from air in an outdoor seaside location in Singapore (global position system coordinates 1.391°N, 103.992°E). Air was drawn and directly impacted onto brain heart infusion agar (Becton, Dickinson, USA) using the Andersen single-stage impactor (SKC, USA). After initial incubation at 30°C, subsequent colony isolation was carried out by culturing on Trypticase soy agar at 30°C. Finally, the pure culture was grown in Luria-Bertani broth overnight before DNA extraction.

Extraction of genomic DNA was performed using the Wizard genomic DNA purification kit (Promega, USA) according to the manufacturer’s standard protocol. After extraction, library preparation was performed with the SMRTbell template prep kit 1.0 (Pacific Biosciences), followed by single-molecule real-time (SMRT) sequencing on the PacBio RS II (Pacific Biosciences) platform. Short reads were also generated with a MiSeq (Illumina) 300-bp paired-end run using whole-genome shotgun libraries constructed with the TruSeq Nano DNA library preparation kit (Illumina).

De novo assembly of the 26,993 long subreads generated on the PacBio RS II platform was accomplished using Hierarchical Genome Assembly Process (HGAP, version 3), which is included in the PacBio SMRT Analysis 2.3.0 package (9). The assembly was then polished and error corrected with the 770,556 MiSeq reads using Quiver (9) and Pilon version 1.16 (10). The final assembly generated one chromosomal contig with a total size of 4,184,178 bp (38.26-fold coverage) and a G+C content of 45.96% evaluated using QUAST (11). The genome was unable to be circularized using Circulator (12). Average nucleotide identity (ANI) analysis, performed with MIsI (13), indicated a 99.26% match to *B. velezensis*.

Received 6 June 2018 Accepted 7 June 2018 Published 5 July 2018

Citation Lim SBY, Junqueira ACM, Uchida A, Purbojati RW, Houghton JNI, Chénard C, Wong A, Kolundžija S, Clare ME, Kushwaha KK, Panicker D, Putra A, Gaultier NE, Premkrishnan BNV, Heinle CE, Vettath VK, Drautz-Moses DI, Schuster SC. 2018. Genome sequence of *Bacillus velezensis* SGAir0473, isolated from tropical air collected in Singapore. Genome Announc 6:e00642-18. https://doi.org/10.1128/genomeA.00642-18.

Copyright © 2018 Lim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Stephan C. Schuster, SCSchuster@ntu.edu.sg.

S.B.Y.L and A.C.M.J. contributed equally to this article.

Volume 6 Issue 27 e00642-18
Genome annotation was performed with NCBI’s Prokaryotic Genome Annotation Pipeline (PGAP) version 4.2 (14). A total of 4,198 genes were predicted, including 3,937 protein-coding genes, 9 copies each of 5S, 16S, and 23S rRNA genes, 86 tRNA genes, 5 noncoding RNA genes, and 143 pseudogenes.

Functional annotation with Rapid Annotations using Subsystems Technology (RAST) (15–17) highlighted genes that were associated with osmotic stress response (14 genes) and alkanesulfonate metabolism (8 genes), which could explain how this bacterium survives in high-salt (18) or surfactant-rich (19, 20) environments. Genes related to sporation and dormancy (116 genes) were also found. This indicates that the species might be capable of surviving in other extreme environments, such as air.

Accession number(s). The genome sequence of *Bacillus velezensis* strain SGAir0473 has been deposited in DDBJ/EMBL/GenBank under the accession number CP027868.

ACKNOWLEDGMENT

This work was supported by a Singapore Ministry of Education Academic Research Fund tier 3 grant (MOE2013-T3-1-013).

REFERENCES

1. Ruíz-García C, Béjar V, Martínez-Checa F, Llamaz S, Quesada E. 2005. *Bacillus velezensis* sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int J Syst Evol Microbiol 55:191–195. https://doi.org/10.1099/ijs.0.63310-0.

2. Kim SY, Lee SY, Weon H-Y, Sang MK, Song J. 2017. Complete genome sequence of *Bacillus velezensis* M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J Biotechnol 241:112–115. https://doi.org/10.1016/j.jbiotec.2016.11.023.

3. Palazzini JM, Ramírez ML, Torres AM, Chulze SN. 2007. Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Prot 26:1702–1710. https://doi.org/10.1016/j.cjrop.2007.03.004.

4. Kang X, Zhang W, Cai X, Zhu T, Xue Y, Liu C. 2018. *Bacillus velezensis* CC09: a potential “vaccine” for controlling wheat diseases. Mol Plant Microbe Interact 31:623–632. https://doi.org/10.1094/MPMI-09-17-0227-R.

5. Krebs B, Höding B, Kübart S, Workie MA, Junge H, Schmiedeknecht G, Grosch R, Bochow H, Hevesi M. 1998. Use of *Bacillus subtilis* as biocontrol agent. I. Activities and characterization of *Bacillus subtilis* strains/Anwendung von *Bacillus subtilis* als Mittel für den Biologischen Pflanzenschutz. I. Aktivititen und Charakterisierung von *Bacillus subtilis*-Stämmen. J Plant Dis Prot 105:181–197.

6. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borris R. 2009. Genome analysis of *Bacillus subtilis* FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37.

7. Ruiz-García C, Béjar V, Martínez-Checa F, Llamaz S, Quesada E. 2005. *Bacillus velezensis* sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int J Syst Evol Microbiol 55:191–195. https://doi.org/10.1099/ijs.0.63310-0.

8. Liu X, Ren B, Chen M, Wang H, Kokare CR, Zhou X, Wang J, Dai H, Song F, Liu M, Wang J, Wang S, Zhang L. 2010. Production and characterization of a group of bioemulsifiers from the marine *Bacillus velezensis* strain H3. Appl Microbiol Biotechnol 87:1881–1893. https://doi.org/10.1007/s00253-010-2653-9.

9. Makkar RS, Cameotra SS, Banat IM. 2011. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5. https://doi.org/10.1186/2191-0855-1-5.