Hematopoietic stem cell transplantation (HSCT) is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs) and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi) mobilizes functional HS-PC, accelerates hematopoietic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cell (HSC) compartment in SHIP1−/− mice revealed that HSCs are spontaneously mobilized to the peripheral blood due to a combined effect of increased levels of granulocyte colony stimulating factor (G-CSF) and matrix metalloproteinase 9 (MMP-9), and a decrease in stromal-cell derived factor 1 (SDF1) (Hazen et al., 2009). The loss of SHIP1 generates two positive outcomes in the context of HSCT: mobilization of Hematopoietic Stem-Progenitor Cells (HS-PCs) to the periphery for harvesting, and a flux in the BM microenvironment that results in a suitable milieu for incoming donor cell engraftment. In aggregate, these studies suggested that recently identified SHIP1 inhibitors (Brooks et al., 2010, 2014; Fuhler et al., 2012) could eventually find utility in various aspects of both autologous and allogeneic HSCT.

Here, we investigated the potential of small molecule chemical inhibition of SHIP1 (SHIPi) in vivo with the aminosteroid inhibitor 3AC for facilitating HSCT. We found that SHIPi promotes beneficial effects that could find utility in both autologous and allogeneic transplant settings as well as mobilization of HS-PCs. We hypothesized that this instability in the bone marrow microenvironment would allow for significantly improved engraftment of an autologous BM graft following minimally ablative conditioning. As observed in genetic models, SHIPi increased immunoregulatory cell populations (MDSC and Treg cells), while disrupting NK cell effector function. The modulation of these immune cell types also enhanced engraftment of Major Histocompatibility Complex-I (MHC-I) mismatched BM following fully myeloablative radiation conditioning. Therefore, SHIPi shows promise as a potential non-toxic therapeutic to alter the immune environment for the purpose of successful HSCT.

2. Materials and Methods

2.1. Mouse Strains

C57BL/6-CD45.2 (B6.2), C57BL/6-CD45.1 (B6.1) and BALB/c (H2b) mice were purchased from Jackson Laboratories and Taconic and were at least 8 weeks old at the time of experimentation. All mice were housed at the Upstate Medical University Department of Laboratory Animal Resources Facility for at least one week prior to start of experiments under conventional immunocompetent housing and feeding conditions. All experiments were performed with the approval of the Institutional Animal Care and Use Committee.

2.2. Synthesis and Verification of 3AC and K190 Purity

See Supplemental experimental procedures for synthesis of 3α-amino-5α-cholestane (3AC) and 3α-hydroxy-5α-cholestane (K190). See Fig. S1A for structures of small molecules.

2.3. SHIPi Treatment of Mice

3AC (26.5 mg/kg) and K190 (24.3 mg/kg) were freshly emulsified in vehicle immediately prior to administration to each mouse by intraperitoneal (i.p.) injection (100 μl per injection). Vehicle (0.3% (weight/volume) Hydroxypropyl cellulose (Sigma) in Phosphate Buffered Saline (1×PBS, Corning)) was filter sterilized and was also administered by i.p. injection (100 μl per injection) in vehicle control mice. All injections were performed once daily for 7 consecutive days unless otherwise indicated. SHIPi or vehicle treatment of mice was performed on age-matched and sex-matched groups.

2.4. Radiation Conditioning of Mice

Following SHIPi or vehicle treatment and prior to transplants, mice received 300 Rads for minimally ablative conditioning, or 1100 Rads (B6) or 800 Rads (BALB/c) for lethal irradiation conditioning by total body irradiation from an X-ray source (RadSource, RS2000).

2.5. ELISA Assays for G-CSF, MMP-9 and SDF1

Plasma levels of G-CSF, MMP-9 and SDF1-CXCL12 were determined by ELISA (R&D Systems) according to the manufacturer’s instructions.

2.6. HS-PC Mobilization and Congenic White Blood Cell (WBC) Transplantation

Host B6.1 and BALB/c mice were treated with SHIPi or vehicle. On day 8, Red Blood Cell (RBC) lysis was performed on blood obtained from treated-mice, and live cells were counted. Untreated B6.2 and BALB/c host mice were lethally irradiated, and were each injected with 7.5 × 10⁶ WBC from congenic vehicle-treated or SHIPi-treated donor mice. For all harvest, the number of WBC donors was equivalent or less than the number of hosts transplanted and did not compromise viability of donors. Survival of mice receiving the WBC grafts was monitored over a 4-month period.

2.7. Autologous, Congenic: Allogeneic and Allogeneic Bone Marrow Transplant (BMT) and Engraftment by Flow Cytometry

Host B6.2 mice were treated for 7 days with SHIPi or vehicle. On day 8, host mice were irradiated and received BMT as described in Table 1. Engraftment was measured by flow cytometry of RBC-lysed blood, stained with an antibody cocktail containing anti-CD45.2, anti-H2Db or anti-CD45.1, anti-CD3ε, anti-Mac1, anti-Gr1, and anti-CD19 for the different types of transplants as indicated in Table 1. For acute engraftment in congenic:allogeneic competitive BMT, host BM and splenocytes were harvested on day 5 post-transplant and stained with anti-H2Db and anti-CD45.1 for analysis by flow cytometry. Complete description of each transplant is also described in Supplemental methods.

2.8. Kinetic Analysis of NK, MDSC and Treg Cells

10 week old female B6.2 mice were treated daily for 0 to 10 days with 3AC as described above. On each day (0 to 10 inclusively), 5 mice were sacrificed, splenocytes were harvested, RBCs were lysed using 1 × RBC Lysis buffer (eBioscience), counted and then stained with anti-NK1.1, anti-Mac1 and anti-Gr1, or with anti-CD3ε and anti-CD4 then fixed and stained with anti-FoxP3 as per manufacturer’s recommendation (eBioscience). Cells were analyzed by flow cytometry as described below. Frequency and absolute numbers of live NK cells and MDSCs were compared to those observed in the splenocytes from the 5 uninjected mice harvested on day 0. Live CD4+FoxP3+ cells were expressed as frequency of CD3ε+ T-cells and compared to those on day 0.

2.9. Ex vivo NK Cell IFNγ Production Following Activating Receptor Crosslinking

Splenocytes were harvested from 6 day SHIPi or vehicle treated mice, red blood cells were lysed (1 × RBC Lysis buffer, eBioscience) and were incubated for 5 h alone (unstimulated), in anti-NK1.1 (PK136) antibody coated wells (NK1.1) or in the presence of 1.67 μg/ml Phorbol Myristate Acetate (PKA) and 1 μg/ml ionomycin. In all cases cells were incubated in the presence of GolgiPlug (BD Biosciences) Fc receptors were blocked (2.4G2, BD Biosciences), surface receptors were stained using anti-NKp46 or anti-DX5 and anti-CD3ε antibodies. Cells were fixed and permeabilized (BD Biosciences), Fc receptors were blocked (2.4G2, BD Biosciences), and cells were stained for IFNγ and analyzed via intracellular flow cytometry.

2.10. Flow Cytometry and Blood Recovery

Dead cells (positively stained for DAPI dye) were excluded from all the analyses, except for the NK cell analysis of IFNγ and Treg cells that
were stained with LiveDead Aqua (Invitrogen) for dead cell exclusion. Samples were acquired on an LSR-Fortessa or LSRII cytometers (BD Biosciences) and analyzed using FlowJo software. All antibodies were purchased from BD Biosciences or from eBiosciences. Blood component recovery was monitored by a Hemavet 950S automated blood cell analyzer (Drew Scientific).

2.11. Statistics

All statistical analyses were performed using GraphPad Prism 5.0.

2.12. Funding

This work was supported by grants from the NIH (RO1 HL072523, R01 HL085580, R01 HL107127) and the Paige Arnold Butterfly Run. S.F. is a postdoctoral fellow of the Crohn’s and Colitis Foundation of America (CCFA). W.G.K. is the Murphy Family Professor of Children’s Oncology Research, an Empire Scholar of the State University of NY and a Senior Scholar of the CCFA.

3. Results

3.1. Mobilization of an HS-PC Graft Capable of Long-Term, Multi-lineage Repopulation and Radioprotection

We previously found that SHIP1 has a significant role in HSC niche function and in BM retention of HSC (Desponts et al., 2006; Hazen et al., 2009, Iyer et al., 2014b). SHIP1-deficiency significantly reduces SDF1–CXCL12 expression by niche cells, increases G-CSF and MMP-9 production, and promotes significant mobilization of HSC to the

![Table 1](https://www.sciencedirect.com/science/article/abs/pii/S2352398515000256?via%3Dihub)
We hypothesized that in vivo treatment with SHIPi would have a similar effect on the BM niche and HSC compartments. To determine this, wild type (WT) mice were treated with SHIPi and blood was collected for plasma cytokine analysis as well as phenotypic analysis of peripheral tissues by flow cytometry. Consistent with our observations in mice with germline SHIP1 deficiency (Hazen et al., 2009) G-CSF and MMP-9 levels were profoundly increased and SDF1-CXCL12 levels were significantly reduced following SHIPi (Fig. 1A). SHIPi also triggered significant mobilization of Lin−Scal−cKit+Flk2− (LSKF-) HS-PC population (Christensen and Weissman, 2001) to the spleen and peripheral blood (Fig. 1B, C). To determine whether the HS-PCs mobilized through SHIPi treatment retained functional stem cell capabilities, we evaluated the capacity of peripheral blood from SHIPi treated donors to protect recipients from a lethal dose of radiation. Transplant of RBC lysed WBC from both SHIPi treated B6 or BALB/c donors afforded significant, long-term survival to 65% (13/20) and 70% (7/10) of their respective hosts (Fig. 1D). Importantly, WBC from vehicle treated donors exhibited no radioprotective capacity, consistent with the findings of Micklem et al. that murine peripheral blood lacks significant HSC activity (Micklem et al., 1975).

3.2. Facilitation of Congenic Transplantation at Non-ablative Radiation Doses

Intense pre-conditioning regimens are currently required to deplete the endogenous HSC compartment. This allows donor HSC to effectively compete for space in the BM HSC niche in order to rapidly reconstitute the hematolymphoid system. We considered that the mobilization of Scal−c-Kit+Lin−Flk2− HS-PC induced by SHIPi (Fig. 1B, C) might create a space for engrafting HS-PC without the requirement for significant cytoablation. For this purpose, following SHIPi or vehicle treatment, we conditioned B6.2 host mice using a minimally ablative dose of 300 Rads (Fig. 2A) prior to transplant with congenic B6.1 BM. We found that even at these low radiation doses, SHIPi significantly improved long-term engraftment of congenic BM cells (Table 1, Fig. 2B–E), as both global and lineage-specific engraftment of congenic cells was increased in SHIPi relative to vehicle-treated hosts.
Fig. 3. SHIPi treatment increases MDSCs, Tregs and decreases NK cell numbers and reduces their effector function. (A–E) B6.2 mice received indicated number of daily injection of SHIPi. 14 h after the last injection, splenocytes were harvested, counted and stained for Mac1, Gr1, and NK1.1 or fixed and stained for CD3ε, CD4, and FoxP3 and then analyzed by flow cytometry [mean ± SD, n = 5, 1-way ANOVA with Dunnett’s Multiple Comparison Test between control (0 injections) and each time point, *p < 0.05, **p < 0.01, ***p < 0.001]. Mac1+Gr1+ double positive cells (MDSC) reached significantly higher frequencies (A) and absolute numbers (B) after 7 consecutive days of SHIPi treatment, as did the frequency of regulatory (CD4+FoxP3+) T-cells (C). NK1.1+ cells were significantly decreased starting at 2 daily injections and reached the lowest levels at 7 and 6 days of daily injections in terms of frequency (C) and absolute numbers (D), respectively. (E–F) IFNγ production was measured via intracellular flow cytometry on NKp46+CD3− splenocytes harvested from 6-day SHIPi or vehicle treated mice. Splenocytes were stimulated with NK1.1 (center), PMA and ionomycin (right) or left unstimulated (Unstim., left) for 5 h prior to IFNγ staining and analysis [representative experiment of three independent experiments is shown with n = 5, t-test **p < 0.01, *** p < 0.001]. (F) Representative flow cytometry plots from E.
3.3. SHIPi Increases MDSC and Treg Cells and Causes Hyporesponsiveness by the NK Cell Compartment

As mentioned previously, germline and induced SHIP-deficient mice are characterized by substantially increased numbers of MDSCs (Ghansah et al., 2004; Paraiso et al., 2007) and Tregs (Collazo et al., 2009) and display a severely compromised NK cell compartment (Wahle et al., 2006; Wang et al., 2002; Fortenbery et al., 2010). Moreover, we had previously shown that treatment of WT mice with SHIPi caused a dramatic increase in MDSCs in both the spleen and mesenteric lymph node (Brooks et al., 2010). To extend these analyses, we evaluated the effect of SHIPi treatment on splenic NK, Treg and MDSC cell numbers. For this purpose, B6 mice were treated daily for 10 consecutive days, and the frequency and absolute numbers of these cell types were observed. As shown in Fig. 3A and B, both the frequency and the absolute numbers of MDSC were significantly increased by SHPI and reached a plateau after 7 days. While total T-cell numbers were slightly decreased during the course of SHPI (data not shown), the frequency of CD4+FoxP3+ Treg cells was significantly increased over the treatment period (Fig. 3C). Concurrently, frequency and absolute number of NK cells were dramatically reduced following 2 daily injections of SHPI and reached a nadir at 6–7 days as compared to controls (Fig. 3D, E). Cytokine production after NK cell activation is a major effector function of this cell type. NK cell effector function is compromised by SHIP1 deficiency in genetic mouse models, including when SHIP1 is selectively deleted in the NK cell lineage of NCR1CreSHIPlox/lox mice (Gumbleton et al., in press). To determine if SHPI treatment results in NK cell hyporesponsiveness, mice were treated with SHPI for 6 days. On the seventh day splenocytes were harvested and the ability of splenic NK cells to produce IFNγ following ex vivo crosslinking of an activating receptor was then assessed as a measurement of the functionality of the NK cell compartment (Biron et al., 1999). SHPI treatment of mice resulted in significantly lower production of IFNγ after NK.1 receptor crosslinking as compared to vehicle treated mice (Fig. 3F, G). Furthermore, NK cells from SHPI treated mice also had significantly lower IFNγ production when treated with PMA and ionomycin. Therefore, the NK cells in SHPI treated mice display lower levels of effector functions using both receptor-specific and unspecific stimulation. These findings suggest they are in a state of general hyporesponsiveness. Taken together, the cellular milieu promoted by SHPI treatment could contribute to decreased allogeneic immune cell responses and enables better engraftment of allogeneic HS-PCs.

3.4. SHPI Facilitates Hematologic Recovery and Engraftment of MHC-I Unmatched BM Grafts

To assess the effects of SHPI treatment on allogeneic BM engraftment, WT B6.2 hosts were treated with SHPI or vehicle and were lethally irradiated prior to transplant with an equal mixture of congenic (B6.1) and MHC-I mismatched (BALB/c) BM cells (Table 1). The frequency of allogeneic cells found in BM and in the spleens of SHPI or vehicle conditioned hosts was assessed by flow cytometry. Analysis of the acute engraftment of the mixed BM graft revealed that SHPI treatment of host significantly increased frequencies of H2d+ cells found in both the BM (Fig. 4A left panels and B) and the spleen (Fig. 4A right panels and C) as compared to vehicle controls. These findings suggest that treatment with SHPI reduced the acute rejection of the MHC-I mismatched BM graft without a congenic co-graft following fully ablative conditioning. Using low doses of allogeneic BM (1 × 10⁶ and 2 × 10⁶ total cells, Table 1), we observed that both short (Fig. 5A, B) and long-term marrow repopulation activity (Fig. 5D) was improved relative to both vehicle and steroidal controls (Fig. 5A, C). Increased allogeneic engraftment at these low transplant doses was also reflected in significantly improved post-transplant survival (Fig. 5C), increased lineage specific repopulation (Fig. 5E) and in accelerated recovery of all major blood cell components (Fig. 5F-G, and Fig. S1D-E). Thus, SHPI lowers the immune barrier to engraftment following allogeneic BM, consistent with previous findings in genetically SHPI-deficient hosts (Wang et al., 2002; Paraiso et al., 2007; Collazo et al., 2009; Wahle et al., 2006).

4. Discussion

Our previous studies in mice with germline or induced ablation of SHPI expression suggested that chemical inhibition of SHPI in vivo
Mobilization of HSCs by G-CSF administration as it is currently practiced is a very effective and safe procedure. However, since a subset of patients and donors fail to mobilize sufficient numbers of HSCs to permit engraftment, other alternatives such as CXCR4 antagonists (AMD3100) have been developed (Broxmeyer et al., 2005). Clinical trials demonstrated that combining this antagonist, AMD3100-Plerixafor, with G-CSF improved stem cell harvest and reduced the incidence of graft failure. In several diseases, and particularly severe autoimmune diseases, there is a growing effort to use autologous or allogeneic BMT to ‘reboot’ the patient’s immune system (Li and Sykes, 2012). However, HSCST can be associated with significant morbidity and mortality and thus is only utilized in the most severe cases. As the SHIPi conditioning regimen we describe poses no significant risk to host viability (Brooks et al., 2010), we propose that SHIPi might eventually enable a great proportion of patients to benefit from these autologous BMT procedures, at least in part by creating space in the BM niche for engrafting HSC.

In our previous studies, it was observed that germline SHIP1 deficiency caused dramatic alterations in the receptor repertoire such that rejection of MHC-I mismatched BM was severely compromised (Wang et al., 2002; Wahl et al., 2006). More recently, NK cell-specific deletion of SHIP1 has been shown to alter the receptor repertoire and induced (Paraiso et al., 2007) or triggered by SHIPi (Brooks et al., 2010), we propose that SHIPi might eventually enable a great proportion of patients who lack a HLA matched donor.

Mobilization of HS-PCs by G-CSF administration as it is currently practiced is a very effective and safe procedure. However, since a subset of patients and donors fail to mobilize sufficient numbers of HS-PCs to permit engraftment, other alternatives such as CXCR4 antagonists (AMD-3100) have been developed (Broxmeyer et al., 2005). Clinical trials demonstrated that combining this antagonist, AMD3100-Plerixafor, with G-CSF improved stem cell harvest and reduced the incidence of graft failure (DiPersio et al., 2009a, 2009b). Nonetheless, even with this combination of mobilizing agents, failure rates of ~7% are still observed (Mattsson et al., 2008). The mobilization of HS-PC triggered by SHIPi might also be used in lieu of such cytoablative regimens, or perhaps in combination with minimally ablative chemotherapeutic regimen to decrease the incidence of graft failure. In several diseases, and particularly severe autoimmune diseases, there is a growing effort to use autologous or allogeneic BMT to ‘reboot’ the patient’s immune system (Li and Sykes, 2012). However, HSCST can be associated with significant morbidity and mortality and thus is only utilized in the most severe cases. As the SHIPi conditioning regimen we describe poses no significant risk to host viability (Brooks et al., 2010), we propose that SHIPi might eventually enable a great proportion of patients who lack a HLA matched donor.

In our previous studies, it was observed that germline SHIP1 deficiency caused dramatic alterations in the receptor repertoire such that rejection of MHC-I mismatched BM was severely compromised (Wang et al., 2002; Wahl et al., 2006). More recently, NK cell-specific deletion of SHIP1 has been shown to alter the receptor repertoire and induced (Paraiso et al., 2007) or triggered by SHIPi (Brooks et al., 2010), we propose that SHIPi might eventually enable a great proportion of patients who lack a HLA matched donor.
factors in facilitating the observed increase in allogeneic BM engraftment. Finally, germline SHIP-deficiency has been shown to cause increased Treg cell numbers (Collazo et al., 2009; Ghansah et al., 2004; Paraiso et al., 2007), and splenocytes from SHIP-deficient mice and SHIP-deficient peripheral blood mononuclear cells (PBMC) display reduced priming of allogeneic responses in one-way mixed leukocyte reactions (Brooks et al., 2010). We propose that the significant increase in CD4+ FoxP3+ regulatory T-cell frequency observed here also contributed to the immunoregulatory environment, which allowed for better engraftment of allogeneic BM grafts as host Treg cells can also promote MHC-I mismatched BM engraftment (Fujisaki et al. 2011).

In summary, similarly to that observed in germline SHIP-deficient mice, chemical inhibition of SHIP1 was observed to significantly enhance HS-P mobilization and engraftment in a variety of settings, including minimally ablative conditioning for autologous transplantation and in a fully ablative MHC-I mismatched setting. These findings further support a role for SHIP1 in several aspects of HSCT and suggest that SHIP1 could prove to be an attractive therapeutic target to improve HSCT outcomes.

Author contributions

S.F., R.B., M.G., and W.G.K. designed the research, analyzed the data and wrote the manuscript. S.F., R.B., M.G. and M.Y.P. performed experiments. S.F. and R.B. contributed equally. J.D.C., C.M.R. and K.T.H. synthesized 3AC and developed and synthesized K190.

Disclosures

W.G.K., S.F., R.B., M.G., and J.D.C. have patents, filed, pending and issued, concerning the analysis and targeting of SHIP1 in disease. The other authors have no conflicts to disclose.

Acknowledgments

The authors wish to thank B. Toms and C. Youngs for technical assistance, and S. Neelam and K.H. Miller for generating recombinant SHIP1 protein and in vitro enzymatic assays, respectively.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ebiom.2015.02.004.

References

Biron, C.A., Nguyen, K.R., Pien, G.C., Cousens, L.P., Salazar-Mather, T.P., 1997. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220
Brooks, R., Fuhler, G.M., Iyer, S., Smith, M.J., Park, M.Y., Paraiso, K.H., Engelman, R.W., Kerr, W.G., 2010. SHIP1 inhibition increases immunoregulatory capacity and triggers cell homeostasis, effector function, and repertoire formation. J. Immunol. 184, 5065–5074
Fuhler, G.M., Brooks, R., Toms, B., Iyer, S., Gengo, E.A., Park, M.Y., Gumbleton, M., Viernes, D.R., Chisholm, J.D., Kerr, W.G., 2012. Therapeutic potential of SH2 domain-containing inositol-5′-phosphatase 1 (SHIP1) and SHIP2 inhibition in cancer. Mol. Med. 18, 65–75
Fujisaki, J., Wu, J., Carlson, A.L., Putheti, P., Larijani, R., Roark, C., Wao, C., Saijo, T., Lo Celso, C., Tsuyuzaki, H., Sato, T., Cote, D., Sykes, M., Strom, T.B., Scadden, D.T., Lin, C.P., 2011. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219
Ghansah, T., Paraiso, K.H., Highfill, S., Despots, C., May, S., McIntosh, J.K., Wang, J.W., Ninos, J., Brayer, J., Cheng, F., Sotomayor, E., Kerr, W.G., 2004. Expansion of myeloid suppressor cells in SHIP1-deficient mice represses allogeneic T cell responses. J. Immunol. 173, 7324–7330
Gumbleton, M., Vivier, E., Kerr, W.G., 2015. SHIP1 intrinsically regulates NK cell signaling and education resulting in insufficiency of a MHC-I mismatched BM graft in mice. J. Immunol. http://dx.doi.org/10.1002/jimm.2402930 (in press).
Hazen, A.L., Smith, M.J., Despots, C., Winter, O., Moser, K., Kerr, W.G., 2009. SHIP is required for a functional hematopoietic stem cell niche. Blood 113, 2924–2933
Hosoba, S., Weller, E.K., 2014. New molecule for mobilizing marrow stem cells. Blood 123, 310–311
Iyer, S., Viernes, D.R., Chisholm, J.D., Margules, B.S., Kerr, W.G., 2014a. SHIP1 regulates MSC numbers and their osteolineage commitment by limiting induction of the PI3K/AKT/sigma-catenin/Id2 axis. Stem Cells Dev. 23, 2336–2351
Iyer, S., Brooks, R., Gumbleton, M., Kerr, W.G., 2014b. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging. Stem Cells Dev. Epub ahead of print.
Kashiwada, M., Cattoretti, G., McKeag, L., Rouse, T., Showalter, B.M., Al-Alem, U., Niki, M., Pandofo, P.P., Field, E.H., Rothman, P.B., 2006. Downstream factors in tyrosine kinases-1 and Src homology 2-containing inositol 5′-phosphatase are required for regulation of CD4+CD25+ T cell development. J. Immunol. 176, 3957–3963
Kerr, W.G., Park, M.Y., Maubert, M., Engelmann, R.W., 2011. SHIP deficiency decreases Crohn’s disease-like ileitis. Gut 60, 177–188
Li, H.W., Sykes, M., 2012. Emerging concepts in haematopoietic cell transplantation. Nat. Rev. Immunol. 12, 403–416
Locke, N.R., Patterson, S.J., Hamilton, M.J., Syl, L.M., Krystal, G., Levings, M.K., 2009. SHIP regulates the reciprocal development of T regulatory and Th17 cells. J. Immunol. 183, 975–983
Mattsson, J., Ringden, O., Storb, R., 2008. Graft failure after allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 14, 165–170
Micklem, H.S., Anderson, N., Ross, E., 1975. Limited potential of circulating haemopoietic stem cells. Nature 256, 41–43
Paraiso, K.H., Ghansah, T., Costello, A., Engelmann, R.W., Kerr, W.G., 2007. Induced SHIP1 deficiency causes Crohn’s disease-like ileitis. Gut 56, 170–178
Paraiso, K.H., Ghansah, T., Costello, A., Engelmann, R.W., Kerr, W.G., 2006. Impaired T-cell survival promotes mucosal inflammatory disease in SHIP1-deficient mice. Mucosal Immunol. 7, 1429–1439
Paulus, C.M., Wrzesinski, C., Kaiser, A., Hinrichs, C.S., Chieppa, M., Cassard, L., Palmer, D.I., Davis, N.A., Muranski, P.A., Gattinoni, L., D’Ambrosio, D.A., 2010. NK cells express SHIP1-containing inositol-5′-phosphatase λ′. J. Immunol. 185, 983–993
Ruggeri, L., Capani, M., Urbani, E., Perruccio, K., Shlomchik, W.D., Tosti, A., et al., 2002. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplantation. Science (New York, NY) 295 (5562), 2097–2100
Seiler, C., Pohl, T., Wustmann, K., Hutter, D., Nicolet, P.A., Windeweck, S., Eberl, F.R., Meier, B., 2001. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with peripheral artery disease: a randomized clinical trial. JAMA 310, 2631–2639
Shlomchik, W.D., 2007. Graft-versus-host disease. Nat. Rev. Immunol. 7, 340–352
Despots, C., Hazen, A.L., Paraiso, K.H., Kerr, W.G., 2006. SHIP deficiency enhances HSC proliferation and survival but compromises homing and repopulation. Blood 107, 4338–4345.
Tiwari, S., Choi, H.P., Matsuzawa, T., Pypaert, M., Macmicking, J.D., 2009. Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) promotes immunity to mycobacteria. Nat. Immunol. 10, 907–917.

Wahle, J.A., Paraizo, K.H., Costello, A.L., Goll, E.L., Sentman, C.L., Kerr, W.G., 2006. Cutting edge: dominance by an MHC-independent inhibitory receptor compromises NK killing of complex targets. J. Immunol. 176, 7165–7169.

Wang, J.W., Howson, J.M., Ghansah, T., Desponts, C., Ninos, J.M., May, S.L., Nguyen, K.H., Toyama-Sorimachi, N., Kerr, W.G., 2002. Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science 295, 2094–2097.

Yuan, T.L., Cantley, L.C., 2008. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510.