Applications in Plant Sciences 2015 3(11): 1500071

JÖRG BÖCKELMANN2,4, DAVID WIESER2, KARIN TREMETSBERGER2, KATEŘINA ŠUMBEROVA3, AND KARL-GEORG BERNHARDT2

2Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria; and 3Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 602 00 Brno, Czech Republic

...markers to compare the genetic variation in the seed bank of viable seeds (Leck, 1989). We developed 21 microsatellite...1

Cyperus fuscus L. (Cyperaceae) is an annual herb that is native in the Mediterranean region and temperate Eurasia and introduced in North America. It grows on muddy, sandy, or gravelly substrata, on shores of rivers or lakes, and is also found in anthropogenic habitats like gravel pits, wet fields, and traditionally used fish ponds. It has a short life cycle, taking just two to three months from seedling to ripe fruits (von Lampe, 1996). Cyperus fuscus is anemophilous and self-compatible. With 0.24 pg/1C (or 234.72 Mbp; Doležel et al., 2003), the genome size of...2

Premise of the study: Microsatellite markers were characterized in the extremely specialized ephemeral wetland plant species Cyperus fuscus (Cyperaceae). The markers will be used for studying population genetics in natural vs. anthropogenic habitats, on a European scale, and the role of the soil seed bank in the life cycle of this ephemeral species.

Methods and Results: Twenty-one microsatellite loci were established and scored in two populations, with mean number of alleles of 2.6 and 2.9 and mean expected heterozygosity of 0.405 and 0.470, respectively. Forty-four additional loci with the number of alleles ranging from one to four (mean = 2.1) were successfully amplified in seven individuals.

Conclusions: The novel microsatellite markers will be useful for studying the genetic structure of populations of this ephemeral plant as well as their seed bank.

Key words: 454 sequencing; Cyperaceae; Cyperus fuscus; Isoëto-Nanojuncetea; microsatellites.

METHODS AND RESULTS

Plants were grown in the greenhouse from ripe seeds collected in the field (Appendix 1). Genomic DNA of fresh leaves from one plant was extracted with the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions and sent to LGC Genomics (Berlin, Germany) for next-generation sequencing (NGS) on a Genome Sequencer FLX Titanium Instrument (454 Life Sciences, a Roche Company, Branford, Connecticut, USA). In this first run, 143,027 sequence reads with an average length of 238 bp were obtained (Table 1). NGS data are deposited in the GenBank Sequence Read Archive (BioProject no. PRJNA275048). MSATCOMMANDER version 0.8.2 (Faircloth, 2008) was used to detect 520 sequences with simple sequence repeat (SSR) motifs (options: dinucleotide repeats ≥10 repeat units, tri- and tetranucleotide repeats ≥6 repeat units, combine multiple arrays within a sequence if within 50 bp distance). Primers for microsatellite-containing sequences were also designed in MSATCOMMANDER using Primer3 (Rozen and Skaletsky, 1999), with a GTTT PIG-tail (Brownstein et al., 1996) added to the 5’ end of one primer and a CAG or M13R tail (CAG: 5′-CAGTCGCGGCTATCA-3′; M13R: 5′-GGAACAGCTATGACCAT-3′) added to the 5’ end of the other primer (Schuelke, 2000). Due to the shortness of the sequences (range = 7–762 bp, mean = 238 bp), only 101 out of the 520 SSR-containing sequences were suitable for primer design. PCR amplifications were performed in a 25-µL final volume of REDTaq ReadyMix PCR Reaction Mix (Sigma-Aldrich, St. Louis, Missouri, USA) with 0.40 µM 5’ FAM-labeled universal CAG or M13R primer, 0.40 µM GTTT-tailed primer, 0.04 µM CAG- or M13R-tailed primer, and 1 µL diluted DNA extract (2–20 ng DNA). Reactions were performed using a touchdown PCR protocol in an Eppendorf Mastercycler gradient (Eppendorf, Hamburg, Germany), with an initial 5 min of denaturation at 95°C, 24 cycles with denaturation at 95°C for 45 s, annealing at 63–48.6°C (0.6°C decrease per cycle) for 90 s, and extension at 72°C for 60 s; 19 cycles with denaturation at 95°C for 45 s, annealing at 50°C for 90 s, and extension at 72°C for 60 s; and a final extension at 72°C for 5 min and 60°C for 30 min. Amplified fragments were analyzed on a 3500 Genetic Analyzer (Applied Biosystems, Foster City, California, USA) and sized using GeneMarker 2.4 (SoftGenetics, State College, Pennsylvania, USA). The markers were tested on seven individuals from different localities (Appendix 1). Seven loci could be unambiguously scored in all seven test individuals. Four of these were applied to a larger number of individuals (primers with the prefix Cf in Table 2; remaining loci are shown in Appendix 2). A second NGS run of an SSR-enriched library was performed at ecogenics (Balgach, Switzerland), starting from a mix of genomic DNA of two individuals (Appendix 1). Size-selected fragments from genomic DNA were enriched for SSR content by using magnetic streptavidin beads and biotin-labeled CT, GT, AAG, and ATGT repeat oligonucleotides. The SSR-enriched library...
was analyzed on a Roche 454 platform using the GS FLX Titanium reagents (454 Life Sciences, a Roche Company). In total, 4877 reads with a mean length of 415 bp were obtained and deposited in the GenBank Sequence Read Archive (BioProject no. PRJNA275048), of which 967 contained SSR motifs (MSATCOMMANDER search and primer design settings same as above; Table 1). Four hundred ninety-four reads were suitable for primer design. Ego-
genics sent 80 primer pairs also designed with Primer3, containing an M13 tail at the 5′ end of the forward primer (5′-GTGAAAACGACGGCCAGT-3′; Schuelke, 2000) and no PIG-tail. For primer testing, the concentrations and volumes for PCR were the same as above, but we used JumpStart REDTaq ReadyMix Reaction Mix (Sigma-Aldrich) and a regular PCR protocol, with an initial 5 min of denaturation at 95°C; 38 cycles of denaturation at 95°C for 45 s, annealing at 56°C for 60 s, and extension at 72°C for 1 min; and a final extension at 72°C for 5 min and 60°C for 30 min. Of these 80 markers, 22 showed no PCR product or had a weak signal, failures, or were unspecific. The remaining 58 mark-
ers showed clear peaks. Ten of these were monomorphic and 48 polymorphic. Seventeen polymorphic markers were selected for further analysis and com-
bined into four multiplex PCRs with Multiplex Manager version 1.0 (Holleley and Geerts, 2009; PCR multiplex sets 1–4 in Table 2). The remaining loci are

Table 1. Characteristics of the two 454 GS FLX Titanium sequencing runs.

Sequencing run	Total no. of reads	Range of read lengths (bp)	Average read length (±SD; bp)	GC content (%)	SSR-containing sequences (total no. of SSRs encountered)	No. of reads useful for primer design
First run	145,027	7–762	238 (±130)	40.2	520 (539)	101
Second run	4877	34–801	415 (±165)	40.7	967 (990)	494

*Note: SD = standard deviation.

In the first run, a crude extract of genomic DNA of a single Cyperus fuscus individual was used. In the second run, an enriched library, generated from genomic extracts of two C. fuscus individuals, was used. See Appendix 1 for origin of sequenced individuals.

The 21 newly developed microsatellite markers were applied to 25 individu-
als from each of two fish pond populations in the Czech Republic (Appendix 1). Interpretation of electropherograms in all loci and all individuals is compatible with a diploid cytotype. The number of alleles, observed (H_o) and expected heterozygosity (H_e), fixation index, and exact test for Hardy–Weinberg equilibri-

LITERATURE CITED

BRONWSTEIN, M. J., J. D. CARPENTER, AND J. R. SMITH. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. *BioTechniques* 20: 1004–1010.

DOLEŽEL, J., J. BARTOŠ, H. VOGLMAYR, AND J. GREIHLUBER. 2003. Nuclear DNA content and genome size of trout and human. *Cytometry Part A* 51A: 127–128.

EXCOFFIER, L., AND H. E. L. LISCHER. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology Resources* 10: 564–567.

FARCLOTH, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. *Molecular Ecology Resources* 8: 92–94.

HOLLELEY, C. E., AND P. GEERTS. 2009. Multiplex Manager 1.0: A cross-
platform computer program that plans and optimizes multiplex PCR. *BioTechniques* 46: 511–517.

KRAHULCOVA, A. 2003. Chromosome numbers in selected monocotyle-
dons (Czech Republic, Hungary, and Slovakia). *Prelisia* 75: 97–113.

LIECK, M. A. 1989. Wetland seed banks. *In M. A. Leck, V. T. Parker, and R. L. Simpson [eds.], Ecology of soil seed banks, 283–305. Academic Press, San Diego, California, USA.*

ROALSON, E. H. 2008. A synopsis of chromosome number variation in the Cyperaceae. *Botanical Review* 74: 209–393.

ROZEN, S., AND H. SKALETSKY. 1999. Primer3 on the WWW for general users and for biologist programmers. *In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics meth-
ods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.*

SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.

VON LAMPE, C. 1996. Wuchsform, Wuchsrhythmus und Verbreitung der Arten der Zwergbinsengesellschaften. *Dissertationes Botanicae* vol. 266. J. Cramer, Berlin, Germany.
Table 2. Characteristics of 21 SSR loci developed in *Cyperus fuscus*.

Locus	Primer sequences (5′–3′)b	PCR multiplex set	Fluorescent dyec	Repeat motif	A	Allele size range (bp)i	EMBL accession no.
Cf_008	F: GGAACACGCTATGACCATAGTGATCAAAAATTACACGGATCAGGGACG R: GTTTACGATGACATGACAGATAGATTAACGGATCAGGGACG	NA	ATTO 565	(AG) 11	4	312–344	LN848930
Cf_017	F: GGAACACGCTATGACCATGAGGCAATAGAAATTGTTGGAG R: GTTTGAGACAGATTACTCACCTCTCAAG	NA	ATTO 550	(CTT) 13	3	218–242	LN848931
Cf_019	F: GTTTAATTGTCAGGCCACATGCC R: GGAACACGCTATGACCATACAGGGAGCAACCTGAGC	NA	FAM	(CTT) 7 + (CTT) 6	2	184–205	LN848932
Cf_104	F: GGAACACGCTATGACCATGACAGAAGATGAATTAAGGCCAC R: GTTTTCGATGACAGTTTAAAGGTCCAG	NA	Yakima Yellow	(GT) 14	2	180–184	LN848934
Cypfus_0173	F: CGCCAAAGGAGAATGAGGTG R: GTTTATCGAACAATCCGATCTCGC	1	ATTO 532	(GAA) 9	3	189–201*	LN848937
Cypfus_0551	F: TTTCCAATTGACGGACCAAC R: GTTTAGCGTGCTATTTACAACCTTGG	4	FAM	(CTT) 13	3	230–236*	LN848952
Cypfus_1207	F: ATCCTTCACCTCCTCCCCCCATC R: GTTTGGAGTAAACCACGGACTCG	1	ATTO 565	(CTT) 12	4	218–245*	LN848954
Cypfus_2257	F: TGTGATGACGAGGAGGTTGG R: GTTTGTACAGGTAAGCGCAAGCM13: TGTAAAACGACGGCCAGT	3	ATTO 550	(CTT) 13	4	249–264*	LN848964
Cypfus_2663	F: TGTGATGACGAGGAGGTTGG R: GTTTGTACAGGTAAGCGCAAGCM13: TGTAAAACGACGGCCAGT	3	ATTO 565	(CTT) 13	4	141–162*	LN848965
Cypfus_2987	F: GGAACACGCTATGACCATGACAGAAGATGAATTAAGGCCAC R: GTTTTCGATGACAGTTTAAAGGTCCAG	1	ATTO 550	(CTT) 9	3	209–227*	LN848966
Cypfus_3218	F: GGAACACGCTATGACCATGACAGAAGATGAATTAAGGCCAC R: GTTTTCGATGACAGTTTAAAGGTCCAG	2	FAM	(GAA) 8	3	163–193*	LN848967
Cypfus_3300	F: GGAACACGCTATGACCATGACAGAAGATGAATTAAGGCCAC R: GTTTTCGATGACAGTTTAAAGGTCCAG	3	ATTO 550	(CTT) 12	4	189–221*	LN848968
Cypfus_3921	F: TGTGATGACGAGGAGGTTGG R: GTTTGTACAGGTAAGCGCAAGCM13: TGTAAAACGACGGCCAGT	2	ATTO 550	(GAA) 8	3	261–270*	LN848970
Cypfus_4093	F: TGTGATGACGAGGAGGTTGG R: GTTTGTACAGGTAAGCGCAAGCM13: TGTAAAACGACGGCCAGT	2	ATTO 550	(GAA) 8	3	261–270*	LN848982
Cypfus_4163	F: GGAACACGCTATGACCATGACAGAAGATGAATTAAGGCCAC R: GTTTTCGATGACAGTTTAAAGGTCCAG	2	FAM	(GAA) 8	3	163–193*	LN848983
Cypfus_4236	F: GGAACACGCTATGACCATGACAGAAGATGAATTAAGGCCAC R: GTTTTCGATGACAGTTTAAAGGTCCAG	4	TATG	(AG) 12	3	176–184*	LN848990
Cypfus_4666	F: GGAACACGCTATGACCATGACAGAAGATGAATTAAGGCCAC R: GTTTTCGATGACAGTTTAAAGGTCCAG	3	Yakima Yellow	(TATG) 7	3	189–221*	LN848995

Note: A = number of alleles sampled; EMBL = European Molecular Biology Laboratory.

a Primers with the prefix Cf are from an NGS run from raw genomic DNA libraries; primers with the prefix Cypfus are from an NGS run from an enriched library.
b GTTT PIG-tails (Brownstein et al., 1996), M13R tails (5′-GGAAACAGCTATGACCATCAGCTTCAG-3′; Cf-primers), and M13 tails (5′-TGTAAAACGACGGCCAGCTTCAGATTGAGTCGACAGCTTCAG-3′; Cypfus_4093) added to the 5′ ends of primers are underlined.
c Fluorescent dye at the 5′ ends of M13R and M13 primers (Cf-primers and Cypfus_4093) and forward primers (remaining loci).
d The allele range is based on seven test individuals (Appendix 1).
* Length of PCR products is without PIG-tail, but with M13 tail (as for other loci resulting from the second NGS run in Appendix 2).
Table 3. Genetic diversity of 21 newly developed SSR markers in two fish pond populations of *Cyperus fuscus*.a

Locus	Population	A	H₀	Hₑ	Fₛᵇ	A	H₀	Hₑ	Fₛᵇ
Cf_008	Zahrádky	4	0.240	0.577	0.589***	4	0.160	0.565	0.721***
Cf_017	Zahrádky	2	0.160	0.470	0.664***	3	0.240	0.528	0.551***
Cf_019	Zahrádky	3	0.040	0.365	0.892***	2	0.120	0.497	0.762***
Cf_104	Zahrádky	2	0.040	0.301	0.870***	2	0.200	0.301	0.341
Cypfus_0173	Libohošť	3	0.120	0.541	0.782***	2	0.200	0.510	0.613***
Cypfus_0551	Libohošť	2	0.080	0.509	0.846***	2	0.080	0.509	0.846***
Cypfus_1207	Libohošť	3	0.080	0.223	0.646***	3	0.160	0.496	0.682***
Cypfus_2257	Libohošť	2	0.200	0.301	0.341	3	0.160	0.545	0.711***
Cypfus_2506	Libohošť	2	0.160	0.509	0.690***	3	0.120	0.667	0.823***
Cypfus_2663	Libohošť	2	0.080	0.444	0.823***	3	0.160	0.562	0.710***
Cypfus_2987	Libohošť	4	0.120	0.381	0.690***	3	0.120	0.548	0.784***
Cypfus_2993	Libohošť	3	0.080	0.401	0.804***	2	0.040	0.184	0.786***
Cypfus_3114	Libohošť	3	0.120	0.541	0.782***	3	0.200	0.601	0.672***
Cypfus_3212	Libohošť	2	0.040	0.510	0.923***	2	0.120	0.507	0.767***
Cypfus_3218	Libohošť	2	0.120	0.510	0.768***	4	0.240	0.584	0.594***
Cypfus_3300	Libohošť	4	0.320	0.706	0.552***	5	0.200	0.579	0.569***
Cypfus_3921	Libohošť	2	0.000	0.078	1.000*	2	0.160	0.490	0.675***
Cypfus_4093	Libohošť	2	0.120	0.301	0.607*	3	0.000	0.153	1.000***
Cypfus_4216	Libohošť	3	0.120	0.411	0.712***	4	0.000	0.584	1.000***
Cypfus_4236	Libohošť	2	0.040	0.350	0.888***	3	0.120	0.411	0.712***
Cypfus_4666	Libohošť	2	0.000	0.078	1.000*	2	0.040	0.040	0.000

Note:
- **A:** number of alleles sampled;
- **Fₛᵇ:** fixation index;
- **Hₑ:** expected heterozygosity;
- **H₀:** observed heterozygosity;
- **N:** number of individuals sampled;
- **SD:** standard deviation.

a See Appendix 1 for locality information for each population.

b Significant departures from Hardy–Weinberg equilibrium: *P < 0.05, **P < 0.01, ***P < 0.001.

Appendix 1. Voucher information for *Cyperus fuscus* populations used in this study. All vouchers are deposited at the Institute of Botany, University of Natural Resources and Life Sciences, Vienna (WHB). Individuals were grown from seeds in the greenhouse.

Voucher no.	Collection locality	Geographic coordinates	N
62957a	Czech Republic, Záryby	50°13.424’N, 14°37.717’E	1
62959b	Czech Republic, Semnice	49°45.067’N, 14°39.635’E	1
62987c	Czech Republic, Tchořopice	49°26.115’N, 13°48.442’E	1
62962c	Czech Republic, Mšec	50°11.815’N, 13°54.651’E	1
62960c	Czech Republic, Hluboká nad Vltavou	49°02.624’N, 14°25.952’E	1
62964d	Czech Republic, Zahrádky	49°26.078’N, 13°54.699’E	1
62982d	Czech Republic, Břeclav	48°42.710’N, 16°54.169’E	1
62979d	Czech Republic, Velké Němčice	48°59.056’N, 16°39.894’E	1
62973c	Poland, Borków	51°40.477’N, 16°12.239’E	1
62955c	Poland, Cigacice	48°18.739’N, 16°54.224’E	1
62968d	Czech Republic, Zahrádky	50°37.687’N, 14°32.595’E	25
62964d	Czech Republic, Libohošť	49°42.057’N, 14°35.398’E	25

Note: N = number of individuals sampled.

a Used for first NGS run at LGC Genomics (Berlin, Germany).

b Used for second NGS run at ecogenics (Balagch, Switzerland).

c Test individuals for screening of primer pairs.

d Test populations for assessment of genetic diversity.
Appendix 2. Characteristics of 44 additional SSR loci with flanking regions useful for primer design in *Cyperus fuscus*

Locus	Primer sequences (5′–3′)	Repeat motif	A	Allele size range (bp)	EMBL accession no.
First NGS run					
Ct_007	F: CAGTCGGGCGTCATCACGAGTATTTGAGATGATGAGGACC R: GTTTAAGGTGCAAGATGAGTCGCGG	(AT)₁₁	3	274–286	LN848929
Cf_020	F: GGAACACAGCATGACCCCTCTGAGGCCACATTCACTGAGG R: GTTTAGGCCATGACCCTCTCCCACTGACC	(GGT)₃ + (GGT)₅	1	273	LN848933
Cf_112	F: GATTCGGGCGTCATCACGAGTATTTGAGATGAGGACC R: GTTTAAGGTGCAAGATGAGTCGCGG	(AATG)₁	1	203	LN848935
Second NGS run					
Cypfus_0023	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₈	4	160–170	LN848941
Cypfus_0563	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(AT)₁₂	2	139–143	LN848939
Cypfus_0568	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	153–175	LN848940
Cypfus_0785	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	152–155	LN848943
Cypfus_1174	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	162–166	LN848947
Cypfus_1319	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	164–202	LN848948
Cypfus_1398	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	207–210	LN848950
Cypfus_2381	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	213–222	LN848951
Cypfus_2517	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	215–226	LN848952
Cypfus_2640	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	224–269	LN848953
Cypfus_2806	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	230–270	LN848954
Cypfus_2855	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	242–328	LN848955
Cypfus_2891	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	255–315	LN848956
Cypfus_2898	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	320–360	LN848957
Cypfus_3033	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	361–466	LN848958
Cypfus_3195	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	473–521	LN848959
Cypfus_3323	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	531–616	LN848960
Cypfus_3597	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	638–723	LN848961
Cypfus_3776	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	732–794	LN848962
Cypfus_3864	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	806–896	LN848963
Cypfus_3873	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	907–1000	LN848964
Cypfus_3898	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	1021–1110	LN848965
Cypfus_4041	F: GTTTAACGAGCCATGAGTAAGGAAATTTGGTCAGG R: TGGTTAAGGTGCAAGATGAGTCGCGG	(GA)₁₂	2	1121–1200	LN848966

http://www.bioone.org/loi/apps
APPENDIX 2. Continued.

Locus	Primer sequences (5′–3′)a	Repeat motif	A	Allele size range (bp)b	EMBL accession no.
Cypfus_4074	F: TGTAACGAGCGCGCATTTGGCCATGGGACAGCAAGAG	(TC)₃₃	4	184–198	LN848985
	R: UCTTAAGGTAGGACACAGGGG				
Cypfus_4102	F: TGTAACGAGCGCGCATTTGGGCGTTTCAATCAAGAGAG	(GA)₃₃	1	260	LN848987
	R: GGGGCCACACTGAAGAAAGAA				
Cypfus_4240	F: TGTAACGAGCGCGCATTTGGGCGTTTCAATCAAGAGAG	(TACA)₇	2	251–255	LN848991
	R: GGGGCCACACTGAAGAAAGAGAG				
Cypfus_4347	F: TGTAACGAGCGCGCATTTGGGCGTTTCAATCAAGAGAG	(TGTA)₇	2	252–256	LN848992
	R: CAATACACTCGCACTCACTCA				
Cypfus_4468	F: TGTAACGAGCGCGCATTTGGGCGTTTCAATCAAGAGAG	(CT)₃₂	3	259–275	LN848993
	R: AGATATCAAAAGCAGCACGCCACC				
Cypfus_4479	F: TGTAACGAGCGCGCATTTGGGCGTTTCAATCAAGAGAG	(AAG)₉	2	158–233	LN848994
	R: AGATATACAAAGCAGCACGCCACC				
Cypfus_4799	F: TGTAACGAGCGCGCATTTGGGCGTTTCAATCAAGAGAG	(AAG)₉	2	248–251	LN848996
	R: AGATATACAAAGCAGCACGCCACC				
Cypfus_4849	F: TGTAACGAGCGCGCATTTGGGCGTTTCAATCAAGAGAG	(GA)₃₂	1	158	LN848997
	R: AAAAAAACACCACTTCGCGTTAAGCAAGAG				

Note: A = number of alleles sampled; EMBL = European Molecular Biology Laboratory.

aGT TT PIG-tails (Brownstein et al., 1996), CAG and M13R tails (CAG: 5′-CAGTCGGGCGTCATCA-3′; M13R: 5′-GGAACAGCTATGACCAT-3′; only in Cf_007, Cf_020, and Cf_112), and M13 tails (5′-TGTAACGAGCGGACAGCT-3′) added to the 5′ ends of primers are underlined.
bThe allele range is based on seven test individuals (Appendix 1).