Proposed Pathogenesis, Characteristics, and Management of COVID-19 mRNA Vaccine-Related Myopericarditis

Adrija Hajra1 · Manasvi Gupta2 · Binita Ghosh3 · Kumar Ashish4 · Neelkumar Patel5 · Gaurav Manek9 · Devesh Rai6 · Jayakumar Sreenivasan7 · Akshay Goel7 · Carl J. Lavie8 · Dhrubajyoti Bandyopadhyay7

Accepted: 19 October 2021 / Published online: 24 November 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021, Corrected Publication 2021

Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus causing coronavirus disease 2019 (COVID-19), has affected human lives across the globe, with devastating consequences [1, 2]. A total of 182,319,261 confirmed cases and 3,954,324 deaths due to COVID-19 had been reported worldwide as of 28 June 2021, despite the implementation of control measures such as isolation of affected individuals, social distancing, frequent hand washing, and wearing of face masks [3, 4]. On the other hand, the development of effective vaccines against SARS-CoV-2 within 1 year of identifying its genomic sequence has been one of the most crucial scientific breakthroughs of the twenty-first century [5, 6]. The US FDA granted emergency use authorization for the Pfizer-BioNTech and Moderna COVID-19 vaccines in December 2020.

1 Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus causing coronavirus disease 2019 (COVID-19), has affected human lives across the globe, with devastating consequences [1, 2]. A total of 182,319,261 confirmed cases and 3,954,324 deaths due to COVID-19 had been reported worldwide as of 28 June 2021, despite the implementation of control measures such as isolation of affected individuals, social distancing, frequent hand washing, and wearing of face masks [3, 4]. On the other hand, the development of effective vaccines against SARS-CoV-2 within 1 year of identifying its genomic sequence has been one of the most crucial scientific breakthroughs of the twenty-first century [5, 6]. The US FDA granted emergency use authorization for the Pfizer-BioNTech and Moderna COVID-19 vaccines in December 2020.

1 Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
2 University of Connecticut, Farmington, CT, USA
3 Burdwan Medical College, Burdwan, West Bengal, India
4 Crozer-Chester Medical Center, Upland, PA 19013, USA
5 University of Kansas, Kansas City, KS, USA
6 Rochester General Hospital, Rochester, NY, USA
7 New York Medical College at Westchester Medical Center, New York, NY, USA
8 John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
9 Department of Internal Medicine, University of Connecticut, Farmington, CT, USA
Key Points

Cases of myopericarditis after receiving coronavirus disease 2019 (COVID-19) vaccines have been reported, although most cases have been mild.

Similar to myocardial and pericardial involvement in the setting of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, COVID-19 vaccine-related myopericarditis can be associated with inappropriate inflammatory response, and anti-inflammatory drugs are noted as useful for treatment.

Prospective studies are necessary to determine whether the vaccine-related myopericarditis is casual or causal.

3 Side Effects of COVID-19 Vaccines

COVID-19 vaccines provided a ray of optimism during this global crisis. As highlighted, SARS-CoV-2 has caused the death of significant populations throughout the world. Vaccination has been shown to be effective in preventing a severe or lethal form of COVID-19. The FDA granted the emergency use of the mRNA-based Pfizer and Moderna vaccines to combat this challenging pandemic in December 2020. These vaccines were also involved in systemic side effects, including headache, fatigue, fever, diarrhea, myalgia, chills, anaphylaxis, and nausea [11].

Younger recipients were more susceptible to local and systemic adverse events, with systemic reactions being more common after the second dose. However, severe adverse reactions were noted to be infrequent in the clinical trials, with similar incidences in vaccine and placebo groups [11, 26]. The CDC and the FDA have been monitoring the safety of the COVID-19 vaccines post-rollout through different vaccine safety monitoring systems, including the Vaccine
Table 1: COVID-19 vaccines available in the USA [22, 23]

Vaccine manufacturer	Recommended age	Schedule	General efficacy	Efficacy against the variants	Side effects	Contraindications^a
Pfizer-BioNTech	≥ 12 years	Two shots, 21 days apart	95% efficacy in preventing COVID-19 in those without prior infection. 100% effective at preventing severe disease	More than 95% effective against severe disease or death from the alpha variant and the beta variant. For the delta variant, 88% effective against symptomatic disease and 96% effective against hospitalization (studies not yet peer reviewed)	Pain, swelling, redness	Severe allergic reaction (anaphylaxis) or an immediate allergic reaction
Moderna	≥ 18 years	Two shots, 28 days apart	94.1% effective at preventing symptomatic infection	May provide protection against the alpha and beta variants; awaiting confirmation from studies	Pain, redness, swelling	Severe allergic reaction (anaphylaxis) or an immediate allergic reaction
Janssen/Johnson & Johnson	≥ 18 years	Single shot	72% overall efficacy and 86% efficacy against severe disease	Has been shown to offer protection against the alpha variant. 64% overall efficacy and 82% efficacy against severe disease in South Africa, where the beta variant was first detected. Also effective against the delta variant	Pain, redness, swelling	Severe allergic reaction (anaphylaxis) or an immediate allergic reaction

COVID-19 coronavirus disease 2019, mRNA messenger RNA

^aIndividual with severe or immediate allergic reaction (within 4 h) that needs to be treated with epinephrine or EpiPen or with medical care after getting the first dose of an mRNA COVID-19 vaccine should not get a second dose of either of the mRNA COVID-19 vaccines
Adverse Effect Reporting System, Vaccine Safety Datalink, V-safe, and the National Healthcare Safety Network [31]. Such vigorous monitoring eventually identified rare cases of post-vaccination anaphylaxis, thrombosis with thrombocytopenia syndrome, and cardiac involvement [15, 18]. The most frequent systemic reactogenicities were headache and fatigue [11]. The frequency of adverse effects is lower with the Pfizer/BioNTech vaccine than with the Moderna vaccine; however, the Moderna vaccine is easier to transport and store because it is less temperature sensitive [12]. In addition, serious complications such as myocarditis have been associated with administration of COVID-19 vaccines.

4 Myopericarditis Following COVID-19 Messenger RNA Vaccination

In June 2021, isolated case reports highlighting possible causal associations between both the BNT162b2 (Pfizer-BioNTech) and the mRNA-1273 (Moderna) mRNA-based vaccines and myocarditis and/or pericarditis began to surface [32–36]. In the short period since the first published report, more extensive case series have been reported with similar concerns about myocarditis and/or pericarditis following vaccine administration.

In a case series from Israel, Abu Mouch et al. [37] described six patients who developed myocarditis after the BNT162b2 mRNA vaccine. At the time of reporting, 4 million people in Israel had received two doses [37]. Larson et al. [38] also reported the cases of eight male adults, ranging in age from 21 to 56 years (median 22), who developed symptoms suggestive of myocarditis, later confirmed on cardiac magnetic resonance imaging (MRI) within 2–4 days of the second dose of the mRNA vaccine. Three of these cases received the mRNA-1273 vaccine, and the remaining five patients received the BNT162b2 vaccine [38]. Kim et al. [39] reported four cases of adult males who developed myocarditis within 5 days of administration of the second vaccine dose (50% BNT162b2 vaccine, 50% mRNA-1273 vaccine). Montgomery et al. [40] also reported 23 cases of adult males (median age 25 years) within the US Military Health System who developed symptoms of myocarditis within 4 days of receiving the second dose of mRNA vaccine (30% BNT162b2 vaccine, 70% mRNA-1273 vaccine). Rosner et al. [41] also reported seven cases of adult males developing myocarditis following the second dose of a vaccine, with most patients receiving the BNT162b2 vaccine. Similar cases have also been reported in the pediatric age group, with each case noted to have received the only approved vaccine in this age group: the BNT162b2 mRNA vaccine [42, 43]. Although most of the myopericarditis cases were reported after administration of mRNA vaccines, a few cases were reported after administration of the Ad26.

Recently, some other interesting studies have resulted in additional findings. A study using the database of Clalit Health Services, the largest healthcare organization in Israel, for diagnoses of myocarditis in patients who had received at least one dose of the BNT162b2 mRNA vaccine was published. The estimated incidence of myocarditis...
Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echo^a, WMA^b, MRI	Clinical course	Treatment
1	Larson et al. [38]	22; M; W; USA	mRNA-1273; two	3: fever, chill, myalgia, CP	TRO: 285 CRP: 4.8	ECG: diffuse STE, Echo: 50%; WMA: gen. MRI: patchy subpericardial LGE	HD stable	NSAIDs, CCS
2		31; M; W; USA	mRNA-1273; two	3: fever, chill, CP, SOB	TRO: 46 CRP: 14	ECG: normal. Echo: 34%; WMA: gen. MRI: patchy subpericardial and midmyocardial LGE	HD stable, TTE normal on d 11	None
3		40; M; W; USA	BNT162b2; one	2: CP	TRO: 520 CRP: 9.5	ECG: diffuse STE. Echo: 47%; WMA: gen. MRI: LGE and edema, pericardial effusion	HD stable	Colchicine, CCS
4		56; M; W; Italy	BNT162b2; two	3: CP	TRO: 37 CRP: 5.81	ECG: diffuse peaked T waves. Echo: 60%; WMA: inferolateral. MRI: LGE and edema	HD stable	None
5		26; M; W; Italy	BNT162b2; two	3: CP	TRO: 100 CRP: 1	ECG: inferolateral STE. Echo: 60%; WMA: inferior. MRI: LGE and edema	ICU 2 d, no inotropes, SD	Colchicine
6		35; M; W; Italy	BNT162b2; two	2: CP	TRO: 29 CRP: 9	ECG: diffuse STE. Echo: 50%; WMA: inferolateral. MRI: LGE and edema	ICU 4 d, no inotropes, SD	NSAIDs
7		21; M; W; Italy	BNT162b2; two	4: CP	TRO: 1164 CRP: 4.6	ECG: diffuse STE. Echo: 54%; WMA: inferior posterolateral. MRI: LGE and edema, pericardial effusion	ICU 2 d, no inotropes, NSVT, SD	NSAIDs
8		22; M; A; USA	mRNA-1273; two	2: CP	TRO: 1433 CRP: 4	ECG: inferior and anterolateral STE. Echo: 53%; WMA: inferior. MRI: LGE and edema	NSVT	None
Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echo^a, WMA^b, MRI	Clinical course	Treatment
----	-------	-------------------------	-------------------------	-----------------------------	--------------------------	---	----------------	----------
9	Marshall et al. [45]	16; M; W	BNT162b2; two	2: CP, nausea, vomiting	TRO: 15.5 CRP: 1.23	ECG: diffuse STE, AV dissociation with junctional escape. Echo: normal. WMA: none. MRI: subpericardial LGE in lateral LV apex	NR	NSAIDs, CCS, IVIg
10		19; M; W	BNT162b2; two	3: CP	TRO: 27.7 CRP: 6.7	ECG: diffuse STE. Echo: normal. WMA: none. MRI: midmyocardial LGE in basal inferolateral wall	NR	Colchicine
11		17; M; W	BNT162b2; two	2: CP	TRO: 27.1 CRP: 2.53	ECG: diffuse STE. Echo: normal, basal lateral, basal posterior. WMA: NR. MRI: subpericardial LGE in basal antero-lateral and inferolateral wall	NR	NSAIDs
12		18; M; W	BNT162b2; two	2: CP	TRO: 109 CRP: 12.7	ECG: diffuse STE. Echo: normal. WMA: none. MRI: fibrosis and edema	NR	NSAIDs, CCS, IVIg
13		17; M; W	BNT162b2; two	4: CP, nausea, vomiting, SOB	TRO: 333 CRP: 18.1	ECG: T-wave abnormality. Echo: normal. WMA: none. MRI: epicardial LGE in anterior and lateral LV	NR	NSAIDs, CCS, IVIg
14		16; M; W	BNT162b2; two	3: CP, SOB	TRO: 82 CRP: 1.8	ECG: diffuse STE. Echo: normal. WMA: none. MRI: LGE and edema	NR	CCS, IVIg
15		14; M; W	BNT162b2; two	2: CP, SOB	TRO: 491.1 CRP: 12.7	ECG: diffuse STE. Echo: 47%. WMA: RV, LV, MRI: subpericardial LGE in mid and apical free wall	NR	NSAIDs
Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echo\(^a\), WMA\(^b\), MRI	Clinical course	Treatment
----	-----------------------	-------------------------	--------------------------	------------------------------	----------------------------	--------------------------------	----------------	-----------
16	Abu Mouch et al. [37]	24; M; Israel	BNT162b2; two	3: CP/discomfort	TRO: 45 CRP: 12	ECG: diffuse STE. Echo: normal. WMA: NR. MRI: subepicardial and midmyocardial LGE in basal septum and inferior wall	NR	NR
17		20; M; Israel	BNT162b2; two	1	TRO: 81.69 CRP: 20	ECG: STE V2–V6. Echo: 50%. WMA: NR. MRI: mild myocardial edema with LGE in the subepicardial, basal, middle anterolateral, and inferolateral walls	NR	NR
18		29; M; Israel	BNT162b2; two	2	TRO: 67.38 CRP: 17.2	ECG: diffuse STE. Echo: normal. WMA: NR. MRI: mild diffuse myocardial edema and LGE of the basal, inferolateral, anterolateral, anteroseptal walls	NR	NR
19		45; M; Israel	BNT162b2; one	16	TRO: 30.15 CRP: 11.2	ECG: STE: I, aVL, V3–5 Inverted T. STD: III, aVF. Echo: 50%. WMA: NR. MRI: subepicardial edema of the middle anterolateral, inferolateral, and apical anterior walls with LGE of the same walls	NR	NR
Pt.	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO: highest CRP	ECG, echo\(^a\), WMA\(^b\), MRI	Clinical course	Treatment
-----	-------	------------------------	-------------------------	-------------------------------	--------------------------	--------------------------------	----------------	--------
20		16; M; Israel	BNT162b2; two	I	NR	ECG: lateral STE	NR	NR
				Day of presentation: symptoms	TRO: 87	CRP: normal		
21		17; M; Israel	BNT162b2; two	3	NR	ECG: STE II, III, V2–V6, SI QII, IIII	NR	NR
				Day of presentation: symptoms	TRO: 11	CRP: 11		
22		24; M; USA	mRNA-1273; two	4: fever, chills, myalgia, cough on d 1, CP	TRO: 47, 5	CRP: 2, 64	NR	NSAIDs, CCS
23		30; M; Italy	BNT162b2; two	3: CP, SOB, diaphoresis, nausea	TRO: 367, 36	CRP: 7, 92	NR	NSAIDs, CCS

\(\text{ECG: STE II, III, V2–V6, SI QII, IIII}\)
Table 2 (continued)

Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echo^a, WMA^b, MRI	Clinical course	Treatment	
24	Rosner et al. [41]	28; M; W	J&J; one	5: CP	TRO: 427 CRP: 1.3	ECG: STE in II, V5, V6. Echo: 51% WMA: subepicardial LGE in mid to apical wall	NR	NSAIDs	
25		39; M; W	BNT162b2; two	3: CP, SOB	TRO: 275.25 CRP: 5.1	ECG: diffuse STE. Echo: 40%. WMA: subepicardial LGE in anterior and lateral wall	NR	None	
26		39; M; W	mRNA-1273; two	4: CP	TRO: 325 CRP: 11.7	ECG: no changes. Echo: 61%. WMA: subepicardial and midmyocardial LGE in anterior wall	NR	CCS	
27		24; M; W	BNT162b2; one	7: CP	TRO: 9.25 CRP: 0.1	ECG: no changes. Echo: 53%. WMA: midmyocardial LGE in septal and inferior wall	NR	NSAIDs, colchicine	
28		19; M; H	BNT162b2; two	2: CP	TRO: 1120 CRP: 3.1	ECG: no changes. Echo: 55%. WMA: subepicardial and midmyocardial LGE in inferolateral wall	NR	NSAIDs, colchicine	
29		20; M; W	BNT162b2; two	3: CP	TRO: 209 CRP: 8.2	ECG: STE in V2–V5. Echo: 55%. WMA: distal anteroseptal and apical. MRI: subepicardial LGE in lateral, inferolateral, and anterolateral wall, including apex	NR	NSAIDs	
30		23; M; W	BNT162b2; two	3: CP	CRP 7.3	ECG: diffuse STE. Echo: 58%. WMA: basal anteroseptal LGE	NR	Colchicine	
Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echo^a, WMA^b, MRI	Clinical course	Treatment	
----	--------------------------------	-------------------------	--------------------------	-------------------------------	--------------------------	---	----------------	-----------	
31	Habib et al. [36]	37; M; Asian; Qatar	BNT162b2; two	3: fever, cough, CP	TRO: 75.86	ECG: STE anterior leads. Echo: 57%. WMA: NR. MRI: subepicardial LGE in basal lateral wall	NR		
32	Mclean and Johnson [42]	16; M	BNT162b2; two	3: fever, cough, CP	CRP 7.6	ECG: STE V2–V6, aVL. Echo: 61%. WMA: NR. MRI: subepicardial LGE in lateral wall	NR	IVIg	
33	Mansour et al. [35]	25; M	mRNA-1273; two	1: fever, cough, CP	TRO: 466.66	ECG: diffuse STE. Echo: 55%. WMA: NR. MRI: subepicardial LGE in the anterolateral wall in the mid-ventricle to apex	NR	NR	
34		21; F	mRNA-1273; two	2: fever, cough, CP	TRO: 7.6 CRP: 14.6	ECG: diffuse STE. Echo: 50%. WMA: NR. MRI: subepicardial LGE in the inferolateral wall	NR	NR	
35	Muthukumar et al. [54]	52; M	mRNA-1273; two	3: fever, cough, CP, headache		ECG: normal. Echo: NR. WMA: NR. MRI: LGE in the inferoseptal, inferolateral, anterolateral, and apical walls	NR	NR	
36	Minocha et al. [47]	17; M	BNT162b2; two	2	TRO: 126.5 CRP: 1284	ECG: diffuse STE. Echo: 53%. WMA: NR. MRI: subepicardial LGE	NR	NR	
Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echo, WMA, MRI	Clinical course	Treatment	
----	------------------	-------------------------	-------------------------	-------------------------------	--------------------------	---------------------	------------------	--------------------------	
37	Kim et al. [39]	36; M	mRNA-1273; two	3: fever, CP, SOB	TRO: 230 CRP: 6.32	ECG: diffuse STE, PR depression. Echo: 53%. WMA: NR. MRI: epicardial LGE apical lateral wall	NR	NSAIDs, colchicine	
38		23; M	BNT162b2; two	5: fever, CP, SOB	TRO: 7452 CRP: 2.2	ECG: lateral STE. Echo: 58%. WMA: NR. MRI: epicardial LGE in multiple walls	NR	Colchicine, CCS	
39		70; F	mRNA-1273; two	1: CP, SOB	TRO: 2.34	ECG: anterolateral STE. Echo: 40%. WMA: NR. MRI: patchy diffuse LGE in multiple walls	NR	NR	
40		24; M	BNT162b2; two	2: fever, CP, palpitation	TRO: 698 CRP: 6.08	ECG: diffuse STE, PR depression. Echo: 59%. WMA: NR. MRI: epicardial patchy LGE in lateral wall	NR	Colchicine, NSAIDs	
41	Schauer et al. [46]	16; M; W; USA	BNT162b2; two	2: CP, fever, chills, myalgia, headache, SOB	TRO: 8 CRP: 4.3	ECG: normal. Echo: 66%. WMA: none. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 1 d, SD	NSAIDs	
42		16; M; A; USA	BNT162b2; two	2: CP, fever, myalgia	TRO: 11.1 CRP: 3.5	ECG: STE. Echo: 59%. WMA: none. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 1 d, SD	NSAIDs	
43		16; M; W; USA	BNT162b2; two	3: CP, myalgia, headache	TRO: 10.9 CRP: 3.6	ECG: STE. Echo: 69%. WMA: none. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 3 d, SD	NSAIDs	
Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echoa, WMAb, MRI	Clinical course	Treatment	
----	-------	-------------------------	--------------------------	-----------------------------	-------------------------	----------------------------------	----------------	----------	
44	17: M; American Indian/Alaska Native; USA	BNT162b2; two	3: CP, fever, malaise	TRO: 9.18 CRP: NR	ECG: STE. Echo: 58%. WMA: none. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 1 d, SD	NSAIDs		
45	15; M; W; USA	BNT162b2; two	2: CP, myalgia, SOB	TRO: 4.95 CRP: 5.5	ECG: normal. Echo: 58%. WMA: None. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 2 d, SD	NSAIDs		
46	15; F; W; USA	BNT162b2; two	3: CP, vomiting	TRO: 0.06 CRP: 1.4	ECG: nonspecific T-wave changes. Echo: 58%. WMA: none. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 1 d, SD	NSAIDs		
47	15; M; W; USA	BNT162b2; two	3: CP, fever, SOB	TRO: 9.12 CRP: 3	ECG: T-wave inversion. Echo: 61%. WMA: none. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 3 d, SD	NSAIDs		
48	15; M; W; USA	BNT162b2; two	3: CP, chills	TRO: 13.2 CRP: 6.2	ECG: STE. Echo: 45%. WMA: LV regional. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 3 d, SD	NSAIDs, IVIG, CCS		
49	12; M; W; USA	BNT162b2; two	3: CP	TRO: 13 CRP: NR	ECG: normal. Echo: 64%. WMA: none. MRI: patchy subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 2 d, SD	NSAIDs		
Pt	Study	Age, sex, race, country	Vaccine; number of doses	Day of presentation: symptoms	Peak/BL TRO; highest CRP	ECG, echo^a, WMA^b, MRI	ECG, STE. Echo: 62%. WMA: none. MRI: peaky subepicardial to transmural edema and LGE in inferior LV free wall	Clinical course	Treatment
----	-------	------------------------	-------------------------	----------------------------	-------------------------	--------------------------------	---	----------------	-----------
50	14; M; W; USA	BNT162b2; two	3: CP, fever, headache	TRO: 18.5 CRP: NR	ECG, STE. Echo: 62%. WMA: none. MRI: peaky subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 3 d, SD	NSAIDs		
51	14; M; A; USA	BNT162b2; two	4: CP, malaise, SOB	TRO: 6.08 CRP: 3.7	ECG, STE. Echo: 60%. WMA: none. MRI: peaky subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 2 d, SD	NSAIDs		
52	16; M; W; USA	BNT162b2; two	2: CP, SOB	TRO: 16.4 CRP: 6.5	ECG, STE. Echo: 53%. WMA: LV regional WMA. MRI: peaky subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 2 d, SD	NSAIDs, IVIG, CCS		
53	15; M; W; USA	BNT162b2; two	3: CP	TRO: 7.89 CRP: 3.4	ECG, normal. Echo: 61%. WMA: none. MRI: peaky subepicardial to transmural edema and LGE in inferior LV free wall	HD stable, no ICU, LOS 2 d, SD	NSAIDs		

^A Asian, AV Atrioventricular, BL baseline, CCS corticosteroids, COVID-19 coronavirus disease 2019, CP chest pain, CRP C-reactive protein, d day(s), ECG electrocardiogram, Echo echocardiogram, F female, gen generalized, HD hemodynamically, ICU intensive care unit, IVIG intravenous immunoglobulin, LGE late gadolinium enhancement, LOS length of hospital stay, LV left ventricle, M male, MRI magnetic resonance imaging, mRNA messenger RNA, NR not reported, NSAIDs nonsteroidal anti-inflammatory drugs, NSVT non-sustained ventricular tachycardia, PT prothrombin time, RV right ventricle, SD stable discharge, SOB shortness of breath, STD ST-segment depression, STE ST-segment elevation, TRO troponin, TTE trans-thoracic echocardiogram, W white, WMA wall motion abnormality

^aLowest ejection fraction

^bHypokinesis
was 2.13 cases per 100,000 people. The highest incidence was among male patients between the ages of 16 and 29 years (10.69 cases per 100,000). Most cases of myocarditis were mild or moderate in severity [51]. Another retrospective review of data from Israel obtained from 20 December 2020 to 31 May 2021 and using the Brighton Collaboration definition showed a standardized incidence ratio of post-vaccine myocarditis of 5.34 (95% confidence interval [CI] 4.48–6.40), which was highest after the second dose in male recipients between the ages of 16 and 19 years (13.60; 95% CI 9.30–19.20). In males of all ages, myocarditis occurred at an incidence of 0.64 cases per 100,000 people after the first dose and 3.83 cases per 100,000 after the second dose. The incidence increased to 1.34 and 15.07 per 100,000 after the first and second doses, respectively, for teenage boys aged 16–19 years [52]. Both these studies showed an increased incidence of post-vaccine myocarditis compared with already available data from the CDC. A difference in the number of incidences was noted in these two studies, maybe because of the different data collection methods and differences in criteria for diagnosing myocarditis. Also, both studies could not exclude confounders that also contribute to the incidence of myocarditis. Still, these data highlight a need for further investigation and follow-up.

Another cross-sectional study showed data from 25 children aged 12–18 years diagnosed with probable myopericarditis after COVID-19 mRNA vaccination as per the CDC criteria for diagnosis at eight US centers between 10 May 2021 and 20 June 2021. Most (88%) cases occurred after the second dose of vaccine, and chest pain (100%) was the most common presenting symptom. Patients sought medical attention a median of 2 days after administration of the Pfizer mRNA COVID-19 vaccination [53]. Interestingly, most of these cases were mild and transient.

Given the remarkably similar clinical presentation and the lack of an alternative explanation for a confirmed diagnosis of myocarditis or myopericarditis, only the temporal association with the mRNA vaccine was consistent. None of the reported cases developed a severe form of the disease (as measured by the requirement for inotropes, mechanical support, or heart transplant). All patients were discharged in a stable condition within 1 week of hospitalization. Interestingly, all patients were male, most were Caucasian, all were young (age 16–25 years), and all had no significant cardiovascular comorbidities. The majority of patients had received two doses of the vaccine. The number of vaccine doses administered in the general population was difficult to estimate for each case report, making it challenging to extrapolate an overall incidence of myocarditis in patients receiving mRNA vaccines for SARS-CoV-2 from the available data. However, the incidence of myocarditis demands population-based studies in the future to highlight the complete adverse effect profile of the vaccine. The CDC continues to endorse two doses of vaccine for all individuals, including the population noted to have reported cases of myocarditis or pericarditis [50].

5 Pathogenesis

Although several case reports and case series on myopericarditis following mRNA COVID-19 vaccination exist in the literature, they only establish a temporal relationship between vaccine receipt and development of myopericarditis and fail to demonstrate a conclusive causality. Interestingly, the majority of the cases share some common attributes. Most of the patients developed symptoms of myocarditis within 1–4 days of receiving the second dose of the vaccine. In addition, relatively healthy adolescent or young adult males were commonly affected with a benign clinical course and rapid resolution of symptoms (Table 2). Some cases were also investigated for other possible etiologies of myocarditis, with no alternative cause found [40, 54–56]. Therefore, clustering of similar cases of myopericarditis following mRNA COVID-19 vaccination supports a causal association between them, which must be further investigated with larger prospective studies [57]. In most cases, endomyocardial biopsy was not performed because of rapid clinical improvement precluding an etiological diagnosis [33, 35, 40, 45]. However, Larson et al. [38] performed a cardiac biopsy in one patient before initiating steroids, and this did not demonstrate myocardial infiltrates. Therefore, the pathogenesis of myopericarditis post administration of mRNA COVID-19 vaccination is largely speculative.

Children developed a more robust immune response than adults during SARS-CoV-2 infection, as demonstrated by multisystem inflammatory syndrome in children. In addition, mRNA vaccines produced more potent immunogenicity and reactogenicity in younger recipients and after the second dose. Similarly, the propensity of young adults to develop myocarditis following the second dose of vaccine supports the hypothesis of the vaccine-associated maladaptive immune response causing cardiac injury [35, 38, 45–47, 56, 58]. Recognition of vaccine antigen by circulating monocytes and macrophages activates complements and recruits inflammatory cells, causing cytokine release, resulting in adaptive immunity. This systemic immune response, when exaggerated in predisposed individuals, might cause organ damage [59]. Schauer et al. [46] described two cases of post-vaccine myocarditis in patients with a history of myocarditis in first-degree relatives. In a case report by Minocha et al. [47], an adolescent patient with a history of myocarditis 4 months before vaccination developed recurrent myocarditis with gadolinium enhancement in similar distribution following mRNA COVID-19 vaccination. Muthukumar et al. [54] demonstrated an increase in a specific natural killer cell
subset and multiple autoantibodies in a 52-year-old male with COVID-19 vaccine-associated myocarditis. In contrast, the interleukin-17 level was not raised, unlike other causes of myocarditis. The authors hypothesized that such unique immune changes might be contributing to a specific subtype of vaccine-associated myocarditis with rapid recovery.

On the other hand, the development of symptoms within 1–4 days of the second dose of vaccine could be explained by a delayed hypersensitivity or serum sickness-like reaction. Additionally, patients who developed myocarditis following the first dose had a history of COVID-19 infection. In both cases, initial exposure caused sensitization to viral antigen with subsequent exposure forming antigen–antibody complexes and eventual damage to cardiac myocytes [33, 40, 55, 60].

The high prevalence of myocardial damage in COVID-19, combined with a tiny proportion of myocarditis in mRNA COVID-19 vaccine recipients, indicates the possibility of molecular mimicry between SARS-CoV-2 spike protein and an unknown myocardial protein [33, 38, 58, 61].

Smallpox vaccine and tetanus toxoid vaccine have been found to cause myocardial damage following immunization. Endomyocardial biopsy has demonstrated evidence of eosinophilic myocarditis in such cases [62, 63]. Increased circulating eosinophils produced following immunization infiltrate cardiac tissue. Degranulation of eosinophils causes direct myocardial injury [64]. A similar mechanism might exist in the case of mRNA COVID-19 vaccine-associated myocarditis. However, the lack of peripheral eosinophilia in a few instances renders this mechanism unlikely [45, 58].

6 Management

We do not have enough data about COVID-19 vaccine-related myocarditis. Published case reports indicate that the pathogenesis of the COVID-19 vaccine-related myocarditis shares similar mechanisms with COVID-19 infection-related myocarditis [38, 65]. We highlight the management of COVID-19 infection-related myocarditis because treatment options will also be effective in patients with COVID-19 vaccine-related myocarditis. Recently, a systematic review by Sawalha et al. [66] described the treatments available for COVID-19-related myocarditis. In this study, around 50% of the patients required vasopressor support, and 25% required inotropic support. Medical management of myocarditis/myopericarditis included glucocorticoids (being the most used), immunoglobulin therapy, and colchicine [66]. Other studies have also supported the use of corticosteroids and intravenous immunoglobulin in pediatric myocarditis. Studies have shown that intravenous immunoglobulin may improve ventricular systolic function. Temporary cardiac pacing and antiarrhythmic drugs (e.g., lidocaine and mexiletine) have been used to manage arrhythmias in the setting of COVID-19-related myocarditis. Caution must be taken while using antiarrhythmic drugs given the risk for QTc prolongation [65, 67]. The case reports included mainly treatment with nonsteroidal anti-inflammatory drugs, corticosteroids, and colchicine [32, 37]. We also noted the use of β-blockers (bisoprolol) and acetylsalicylic acid in patients with myocarditis after COVID-19 vaccines [33]. In some case reports, the patients required intensive care-level treatment without requiring inotropic agent therapy and were eventually discharged in a hemodynamically stable situation. However, we need more data to assess the clinical course of patients with myocarditis after administration of COVID-19 vaccine [38].

7 Discussion

The global COVID-19 pandemic has resulted in global lockdowns, the economic collapse of countries, and rising mortality and morbidity. The creation of these vaccines has increased our ability to fight against this disease. With rising vaccination rates, fatal outcomes have decreased significantly. However, recent studies have shown that the Pfizer/BioNTech and Moderna mRNA-based vaccines have been associated with myocarditis and/or myopericarditis as an adverse effect. Figure 1 summarizes the possible pathogenesis of COVID-19 vaccine-related myocarditis [31, 33, 36, 38, 40, 43–46, 49, 50, 54, 56, 57, 59–65]. We note that the pathogenesis of myocardial and pericardial involvement is mainly related to inflammation. This finding is supported by the effective use of anti-inflammatory medication, including steroids, in patients with myopericarditis [38]. Interestingly, the case reports and case series provided evidence of myocardial inflammation and edema on cardiac MRI. Similar findings have been noted in both pediatric and adult cases of myocarditis post administration of COVID-19 vaccines. Although symptoms in all patients resolved rapidly, the potential for myocardial fibrosis and its unknown long-term effects on the heart must be followed-up. The AHA and American College of Cardiology recommendations for acute myocarditis include long-term cardiac surveillance [46]. Follow-up clinical visits and follow-up cardiac imaging for all patients should be considered.

Although incidences of vaccine-related myocarditis are being reported, the established benefits of these vaccines outweigh the rare risk of myocarditis or pericarditis. The extent of myocarditis and pericarditis has been particularly noticeable in young and adolescent males, occurring most often within several days after the second dose of the vaccine. Undoubtedly, this may lead to concern about administering mRNA-based COVID-19 vaccines to younger populations. Larson et al. [38] also found very few cases of myocarditis following COVID-19 vaccination, confirmed by
cardiac MRI. Most of these cases of vaccine-related myocarditis resolved in a few days with treatment. The potential benefits of these vaccines are well-established, and the potential for systemic organ involvement such as myocarditis or pericarditis should not change vaccine policies [68]. Sweden and Denmark have recently paused the use of Moderna’s COVID-19 vaccine for younger age groups after reports of possible rare cardiovascular side effects [69]. Certainly, this is the time to think carefully about this potential risk. We believe a more extensive prospective trial is required to establish the causation or to improve estimates of the incidence of myocarditis following COVID-19 vaccination.

8 Conclusions

COVID-19 infection has been associated with myocarditis. Cases of myopericarditis are also being reported in the setting of COVID-19 vaccines. Although most cases are mild, we must be extremely cautious about the follow-up of these patients. Undoubtedly, COVID-19 vaccines have provided optimism in the fight against this pandemic. At the time of writing, a causal relationship between vaccine receipt and myopericarditis development should not be concluded. Identification of myopericarditis as an adverse event should be investigated and followed-up with high priority. These events should not be a reason to change vaccine policy, but further studies are necessary to alleviate anxiety about and resistance to routine COVID-19 vaccinations.

Declarations

Funding No external funding was used in the preparation of this manuscript.

Conflict of interest Adrija Hajra, Manasvi Gupta, Binita Ghosh, Kumar Ashish, Gaurav Manek, Neelkumar Patel, Devesh Rai, Carl J Lavie, and Dhrubajyoti Bandyopadhyay have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Availability of data and material Availability of data and material—available from authors on request.

Ethics approval Not applicable.

Consent Not applicable.

Fig. 1 Proposed pathogenesis of myopericarditis related to coronavirus disease 2019 (COVID-19) vaccine [31, 33, 36, 38, 40, 43–46, 49, 50, 54, 56, 57, 59–65]
Author Contributions AH contributed to the conceptualization, article search, writing, reviewing, and editing. MG contributed to the article search, writing, and editing. BG and KA contributed to the writing and editing. GM, NP, DR, and CJL contributed to the reviewing and editing. DB contributed to the conceptualization, article search, reviewing, and editing.

References

1. Nicola M, Alsafi Z, Sohrabi R, Kerwan A, Al-Jabir A, Iosifidis C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg. 2020;78:185–93.
2. Hajra A, Mathai SV, Ball S, Bandyopadhyay D, Veyseh M, Chaharaborty S, et al. Management of thrombotic complications in COVID-19: an update. Drugs. 2020;80:1553–62.
3. WHO Coronavirus (COVID-19) Dashboard [Internet]. https://covid19.who.int
4. Lotfi M, Hamblin MR, Rezaei N. COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254–66.
5. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.
6. Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, et al. COVID-19: coronavirus vaccine development updates. Front Immunol. 2020;11:602256.
7. Pfizer-BioNTech COVID-19 Vaccine [Internet]. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine
8. Moderna COVID-19 Vaccine [Internet]. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/moderna-covid-19-vaccine
9. Janssen COVID-19 Vaccine [Internet]. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine
10. COVID-19 Vaccinations in the United States [Internet]. https://covid.cdc.gov/covid-data-tracker/#vaccinations
11. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383:2603–15.
12. MEO SA, Bukhari IA, Akram J, MEO AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur Rev Med Pharmacol Sci. 2021;25:1663–9.
13. CDC COVID-19 Response Team, Food and Drug Administration. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine - United States, December 21, 2020-January 10, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:125–9.
14. CDC COVID-19 Response Team, Food and Drug Administration. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine - United States, December 14-23, 2020. MMWR Morb Mortal Wkly Rep. 2021;70:46–51.
15. Selected Adverse Events Reported after COVID-19 Vaccination [Internet]. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html
16. Clinicians reminded to be aware of myocarditis and pericarditis symptoms [Internet]. https://www.health.govt.nz/news-media/media-releases/clinicians-reminded-be-aware-myocarditis-and-pericarditis-symptoms
17. Rizk JG, Gupta A, Sardar P, Henry BM, Lewin JC, Lippi G, et al. Clinical characteristics and pharmacological management of COVID-19 vaccine-induced immune thrombotic thrombocytopenia with cerebral venous sinus thrombosis: a review. JAMA Cardiol. 2021;
18. Su JR, McNeil MM, Welsh KJ, Marquez PL, Ng C, Yan M, et al. Myopericarditis after vaccination. Vaccine Adverse Event Reporting System (VAERS), 1990–2018. Vaccine. 2021;39:839–45.
19. Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med. 2020;26:1422–7.
20. He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun. 2004;324:773–81.
21. The COVID-19 vaccine tracker and landscape compiles detailed information of each COVID-19 vaccine candidate in development by closely monitoring their progress through the pipeline [Internet]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
22. Types of vaccines for COVID-19 [Internet]. https://www.immunology.org/coronavirus/connect-coronavirus-public-engagement-resources/types-vaccines-for-covid-19
23. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19) [Internet]. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-managment-patients.html
24. Schlake T, Thess A, Fottin-Meiczek M, Kallen K-J. Developing mRNA-vaccine technologies. RNA Biol. 2012;9:1319–30.
25. Reichnuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319–34.
26. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403–16.
27. Sahin U, Muik A, Derhovanesian E, Vogler I, Kranz LM, Vormehr M, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586:594–9.
28. Comparing the COVID-19 Vaccines: How Are They Different? [Internet]. https://www.yalemedicine.org/news/covid-19-vaccine-comparison
29. Different COVID-19 Vaccines [Internet]. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html?cid=11304:best%20vaccine%20for%20cov%20id:sem.g:pa:RG:GM:gen:PTN:FY21
30. Menzi C, Klauser K, May A, Polidori L, Capdevila J, Louca P, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis. 2021;21:939–49.
31. COVID-19 Vaccine Reporting Systems [Internet]. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/reporting-systems.html
32. Albert E, Aurigemma G, Saucedo J, Gerson DS. Myocarditis following COVID-19 vaccination. Radiol Case Rep. 2021;16:2142–5.
33. D’Angelo T, Cattafi A, Carere ML, Booz C, Ascenti G, Cicero G, et al. Myocarditis after SARS-CoV-2 vaccination: a vaccine-induced reaction? Can J Cardiol. 2021;
34. Garcia JB, Ortega PP, Antonio Bonilla Fernández J, León AC, Burgos LR, Dorta EC. Acute myocarditis after administration of the BNT162b2 vaccine against COVID-19. Rev Esp Cardiol. 2021;
35. Mansour J, Short RG, Bhalla S, Woodward PK, Verma A, Robinson X, et al. Acute myocarditis after a second dose of the mRNA COVID-19 vaccine: a report of two cases. Clin Imaging. 2021;78:247–9.
36. Habib MB, Hamamly T, Elyas A, Altermanini M, Elhassan M. Acute myocarditis following administration of BNT162b2 vaccine. IDCases. 2021;25:e01197.
37. Abu Mouch S, Roguin A, Hellou E, Ishai A, Shoshan U, Mahamid L, et al. Myocarditis following COVID-19 mRNA vaccination. Vaccine. 2021;39:3790–3.

38. Larson KF, Ammirati E, Adler ED, Cooper LT, Hong KN, Saponara G, et al. Myocarditis after BNT162b2 and mRNA-1273 Vaccination. Circulation. 2021

39. Kim HW, Jenista ER, Wendell DC, Azevedo CF, Campbell MJ, Darty SN, et al. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol. 2021

40. Montgomery J, Ryan M, Engler R, Hoffman D, McClennen B, Collins L, et al. Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol. 2021

41. Rosner CM, Genovese L, Tehrani BN, Atkins M, Bakhshi H, Chaudhri S, et al. Myocarditis Temporally Associated With COVID-19 Vaccination. Circulation. 2021;CIRCULATIONAHA.121.055891

42. McLean K, Johnson TJ. Myopericarditis in a Previously Healthy Adolescent Male Following COVID-19 Vaccination: A Case Report. Acad Emerg Med. 2021;

43. COVID-19 Vaccines for Children and Teens [Internet]. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/adolescents.html

44. Díaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson IV, Robicsek A. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021 Aug 4

45. Marshall M, Ferguson ID, Lewis P, Jaggi P, Gagliardo C, Collins JS, et al. Symptomatic Acute Myocarditis in Seven Adolescents Following Pfizer-BioNTech COVID-19 Vaccination. Pediatrics. 2021

46. Schauer J, Buddhe S, Colyer J, Sagiv E, Law Y, Chikara-Considere TJ, Rezai VA, et al. Myocarditis and pericarditis after the Pfizer mRNA COVID-19 Vaccine in Adolescents. The Journal of Pediatrics. 2021;S002234762100665X.

47. Minocha PK, Better D, Singh RK, Hoque T. Recurrence of Acute Myocarditis Temporally Associated with Receipt of the mRNA Coronavirus Disease 2019 (COVID-19) Vaccine in a Male Adolescent. J Pediatr. 2021;S002234762100617X

48. Luetskens JA,aron A, Isaak A, Dabir D, Kuetting D, Feisst A, et al. Comparison of original and 2018 lake louise criteria for diagnosis of acute myocarditis: results of a validation cohort. Radiol Cardiothorac Imaging. 2019;1:e190010.

49. Law YM, Lal AK, Chen S, Cháıková D, Cooper LT, Deshpande S, et al. Diagnosis and Management of Myocarditis in Children: A Scientific Statement From the American Heart Association. Circulation [Internet]. 2021 [cited 2021 Sep 16];144. https://www.ahajournals.org/doi/10.1161/CIR.0000000000001001

50. Clinical Considerations: Myocarditis and Pericarditis after Receipt of mRNA COVID-19 Vaccines Among Adolescents and Young Adults [Internet]. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html

51. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, Grinberg T, Auster O, Dagan N, Balicer RD, Kornowski R. Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. N Engl J Med. https://doi.org/10.1056/NEJMoa2110737

52. Mevorach D, Anis E, Cedar N, Bromberg M, Haas EJ, Nadir E, et al. In-depth evaluation of a case of presumed myocarditis after the second dose of COVID-19 mRNA vaccine. Circulation. 2021;144:487–98.

53. Shay DK, Shimabukuro TT, DeStefano F. Myocarditis Occurring After Immunization With mRNA-Based COVID-19 Vaccines. JAMA Cardiol [Internet]. 2021 [cited 2021 Sep 16]; https://jamanetwork.com/journals/jamacardiology/fullarticle/2781600

54. Muthukumar A, Narasimhan M, Li Q-Z, Mahimainathan L, Hitto I, Fuda F, et al. No serious health effects linked to mRNA COVID-19 vaccines [Internet]. https://www.worldpharmanews.com/research/5790-no-serious-health-effects-linked-to-mrna-covid-19-vaccines

55. Klein NP, Lewis N, Goddard K, Fireman B, Zerbo O, Hanson KE, et al. Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA [Internet]. 2021 [cited 2021 Sep 16]; https://jamanetwork.com/journals/jama/fullarticle/2784015

56. Lampert E, Cavallotti C, Milazzo A, Pedrotti P, Soriano F, Schroeder JW, et al. Temporal relation between second dose BNT162b2 mRNA Covid-19 vaccine and cardiac involvement in a patient with previous SARS-COV-2 infection. J Heart Vasc. 2021;34:100774.

57. Hervé C, Laupèze B, Del Giudice G, Didierlaurent AM, Tavares D, Silva F. The how’s and what’s of vaccine reactogenicity. npj Vaccines. 2019;4:39

58. Lawley TJ, Belfiore L, Gascon P, Yancey KB, Young NS, Frank MM. A study of human serum sickness. J Investig Dermatol. 1985;85:S129–32.

59. Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100–23.

60. Murphy JG, Wright RS, Bruce GK, Baddour LM, Farrell MA, Edwards WD, et al. Eosinophilic-lymphocytic myocarditis after smallpox vaccination. The Lancet. 2003;362:1378–80.

61. Yamamoto H, Hashimoto T, Ohta-Ogo K, Ishibashi-Ueda H, Imanaka-Yoshida K, Hiroe M, et al. A case of biopsy-proven eosinophilic myocarditis related to tetanus toxoid immunization. Cardiovasc Pathol. 2018;37:54–7.

62. Kuchynka P, Palecek T, Masek M, Cerny V, Lambert L, Vitkova N, et al. Diagnosis and Management of Myocarditis in Children: Results of a Validation Cohort. Heart Rhythm. 2020;17(9):1463–71. https://doi.org/10.1016/j.hrthm.2020.05.001

63. Lawley TJ, Bielory L, Gascon P, Yancey KB, Young NS, Frank MM. A study of human serum sickness. J Investig Dermatol. 1985;85:S129–32.

64. Arad D, Hasin T, Levi N, Asleh R. Myocarditis following BNT162b2 mRNA COVID-19 Vaccination. Cureus [Internet]. 2021 [cited 2021 Sep 16]; https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-complications-of-the-mrna-based-covid-19-vaccines

65. Adis