Abstract

Models of the mind are based on the idea that neuron microtubules can perform computation. From this point of view, information processing is the fundamental issue for understanding the brain mechanisms that produce consciousness. The cytoskeleton polymers could store and process information through their dynamic coupling mediated by mechanical energy. We analyze the problem of information transfer and storage in brain microtubules, considering them as a communication channel. We discuss the implications of assuming that consciousness is generated by the subneuronal process.

1 Introduction

In recent years many papers have addressed the problem of developing a theory of mind [1-13]. R. Penrose and S. Hameroff developed a quantum model of the mind considering the cytoskeleton of neuron cells as the principal component that produces states of mind or consciousness [2,3]. In their model the microtubules (MTs) perform a kind of quantum computation through the tubulins. Tubulins are proteins which form the walls of the MTs. They claim that the tubulins work like a cellular automata performing that kind of computation. In this way, the walls of the MT could be able to store and process information by using combinations of the two possible states (α and β) of the tubulins. The MT interior works as an electromagnetic wave guide, filled with water in an organized collective state, transmitting information through the brain. A gelatinous state of water in brain cells, which was observed by [13], could boost these communication effects.
Using a different approach, Tuszynski et al. [6-8] model the biophysical aspects of the MTs considering the following questions: What kind of computing do microtubules perform? How does a microtubule store and process information? In order to analyze these questions they use a classical approach, studying the basic physical properties of the MTs as interacting electric dipoles.

According to [6-8,14-17] each tubulin has an electric dipole moment \vec{p} due to an asymmetric charge distribution. The microtubule is thus a lattice of oriented dipoles that can be in random phase, ferroelectric (parallel-aligned) and an intermediate weakly ferroelectric phase like a spin-glass phase. It is natural to consider the electric field of each tubulin as the information transport medium.

Therefore, the tubulin dimers would be considered the information unit in the brain and the MT sub-processors of the neuron cells. Therefore, to know how MTs process information and allow communication inside the brain is a fundamental point to understand the mind functions.

In this work we derive some results which were not explicitly obtained in [6-8] and extend the ideas introduced by [6,16] using the point of view of the information theory. We analyze the problem of information transfer and storage in brain microtubules, considering them as a communication channel. The electric field is the mediator of each communicator entity. We discuss the implications of assuming that the consciousness is generated by the microtubules as sub-neuronal processors.

2 Biophysical Aspects of the Microtubules

The cytoskeleton has a dynamic structure which reorganizes continually as the cells change their shape, divide, and respond to their environment. The cytoskeleton is composed of intermediate filaments, actin filaments (or microfilaments), and microtubules. The filaments and the microtubules are mutually connected and form a three-dimensional network in the cell. There are many papers [6-8] showing that the cytoskeleton is the main component which organizes the cell, mediates transport of molecules, organelles, and synaptic vesicles. The cytoskeleton possibly receives signals from the cellular environment mediated by the membrane of proteins and participates in signal transmission to the neighborhood of the cell [16,17].

Microtubules are hollow cylinders whose exterior surface cross-section diameter measures 25nm with 13 arrays of protein dimers called tubulins. The interior of the cylinder contains ordered water molecules which implies the existence of an electric dipole moment and an electric field. The MTs represent a dipole due to individual dipolar charges of each tubulin monomer. The microtubule dipole produces a fast growth at the plus end towards the cell periphery and a slow growth at the minus end. The MT polarity is closely connected with its functional behavior which can be regulated by phosphorylation and dephosphorylation of microtubule-associated protein (MAP) [6-8,14-17].

Guanosine triphosphate molecules (GTP) are bound to both tubulins in the heterodimer. After polymerization, when the heterodimer is attached to the
microtubule, the GTP bound to the β-tubulin is hydrolyzed to the guanosine disphosphate (GDP). On the other hand, the GTP molecule of the α-tubulin is not hydrolyzed. The microtubules present a calm dynamic instability which are their principal feature [6-8].

Many models of conformation (and polarity energy) of the microtubular protofilament were developed. These models describe the behavior of the pulses generated by the free energy in the GTP hydrolysis. The pulses propagate along of the MTs through an elastic coupling or through electric field propagation between tubulin dimers [5-8,14,15]. The overall effect of the surrounding dipoles on a site n can be modelled by the double-well quartic potential [6-7]

$$V(u_n) = -\frac{A}{2}u_n^2 + \frac{B}{4}u_n^4,$$

where u_n represents the dimer conformational change on the n-th protofilament axis coupled to the dipole moment. A and B are parameters of the model, where A is dependent of the temperature by $A = a(T - T_c)$, T_c is the critical temperature, and B is a positive parameter independent of the temperature [6,8]. In figure 1 we plot the effective potential in terms of u_n.

$$\text{Fig. 1 - Double well quartic potential model with a potential barrier } |\frac{A^2}{2B}|.$$

Our assumptions lead us to reconsider this model taking into account the Information Theory to calculate the storage and transference of information along the MT. The information is mediated by the electric field propagating in the cellular medium. This propagation of energy can provide a communication channel.

3 Communication Channels

The Shannon entropy of a random variable X is defined by [18]:

$$\langle I(X) \rangle = -\sum_i p(x_i) \log p(x_i).$$

(2)
where \(p(x_i) \) is the probability of the outcome \(x_i \). This definition describes the amount of physical resources required on average to store the information being produced by a source, in such a way that at a later time the information can be restored completely.

If we want to send a message \(X \) through a noisy channel, that message can be subjected to a loss of information. To correlate a sent message \(X \) with a received message \(Y \) we have to calculate the mutual information \(I(X : Y) \) between them. The mutual information concept gives us how much knowledge we obtain from a message \(X \) given that we have received \(Y \). It is defined by

\[
\langle I(X : Y) \rangle = \langle I(X) \rangle - \langle I(X | Y) \rangle = \langle I(Y) \rangle - \langle I(Y | X) \rangle \tag{3}
\]

and

\[
\langle I(X | Y) \rangle = - \sum_i \sum_k p(x_i, y_k) \log p(x_i | y_k), \tag{4}
\]

where \(p(x_i | y_k) = p(y_k, x_i) / p(y_k) \).

Nevertheless, by using a binary code to send a message \(M \), compressed by procedure \(C \) that minimizes the use of bits in that codification, any receiver of \(M \), using a decoding procedure \(D \), must to be able to get all information associated to \(M \).

Consider a symmetric memoryless channel\(^1\) \(N \) with a binary input \(A_{\text{in}} \) and a binary output \(A_{\text{out}} \). For \(n \) uses of the channel, the procedure \(C \) encodes the input message \(M \) such that \(C^n : \{1, \ldots, 2^nR\} \rightarrow A_{\text{in}} \) and \(D \) decodes the output such that \(D^n : \{1, \ldots, 2^nR\} \rightarrow A_{\text{out}} \), where \(R \) is the rate of the code (the number of data bits carried per bit transmitted) \([19]\). Therefore, if \(X \) is the encoded message \(M \) through the procedure \(C \), \(Y \) is the received message, and \(D \) is the decoding procedure for \(Y \), then the probability of error is defined by

\[
p(C^n. D^n) = \max_M p(D^n(Y) \neq M | X = C^n(M)). \tag{5}
\]

The principal problem of the information theory is to determine the maximum rate \(R \) for a reliable communication through a channel. When \(p(C^n. D^n) \rightarrow 0 \) for \(n \rightarrow \infty \), the rate \(R \) is said achievable. According to Shannon’s theorem, given a noisy channel \(N \), its capacity \(\Omega(N) \) is defined to be the supremum over all achievable rates for this channel. That is

\[
\Omega(N) = \max_{p(x_i)} \langle I(X : Y) \rangle, \tag{6}
\]

where the maximum is taken over all input distributions \(p(x_i) \) of the random variable \(X \), for one use of the channel, and \(Y \) is the corresponding induced random variable at the output of the channel.

\(^1\)The memoryless channel is the one that acts in the same way every time it is used, and different uses are independent of one another.
of vibrations, etc. Molecules can contain energy in the chemical bonds, in the excited electron states, in the conformation states, etc. A common measure of the interaction leading to cooperative behaviour is the information transference. The electromagnetic field can transfer information through the environment among the systems like a communication channel.

4 Information Processing in Microtubules

Many features of the cytoskeleton support the idea that microtubules can perform computation and store information. According to [6] the charge separation of the MTs is wide enough to store information. Due to its dynamic coupling the information can be stored as mechanical energy and chemical events.

Changes in the opposite direction can be favorable to the SG phase over the F-phase. This change could switch from the growth mode to operational behavior. Our focus is this operational mode. Information processing is addressed by [1-5] considering the highly specialized nature of the functional proteins on the microtubules.

4.1 Information Storage in Microtubules

The tubulins form a dipole moment net and therefore are sensitive to external electric fields. Some papers use physical models such as spin net to describe the behavior of the dipole moment net [6-7,20]. According to those models models, all tubulins are oriented to the same direction at low temperature (∼ 200K) and the units of the system are organized (figure 2). In this case the system is in ferroelectric phase (F). At high temperatures (∼ 400K), the system is in the paraelectric phase (P) and the polarity of the tubulins are completely disorganized (figure 3). However, there is a critical temperature T_c in which occurs a phase transition between F and P, that is, between order and disorder. At this phase transition emerges a new state known as spin-glass phase (SG) (figure 4). There are some theoretical models trying to estimate this critical temperature. One of them estimates the critical temperature around to 300K which is near to the human body temperature [7,8].
We analyze the propagation of information along MTs considering the above phases. Assuming an energy approximation dependent on the mean polarity described by the Landau theory of phase transitions, the total energy can be given by \[6,16,21\]

\[E = \left(\frac{a}{2} \varphi^2 + \frac{b}{4} \varphi^4\right) N_0,\]

(7)

where \(\varphi\) represents the continuous variable for the mean polarization at each site, and \(N_0\) is the total number of sites. The parameter \(a\) has a linear dependence with the temperature \(a = \pi(T - T_c)\), where \(200K < T_c < 400K\) and \(b > 0\) \[6-8\]. \(E\) will be minimized by \(\varphi = 0\) for \(T > T_c\) and by \(\varphi = \pm \sqrt{-\pi(T - T_c)/b}\) for \(T < T_c\). We use the Boltzmann distribution \(g(\varphi)\) to weight the energy distribution as a function of the mean polarity

\[g(\varphi) = Z^{-1} \exp(-\beta E),\]

(8)

where \(\beta^{-1} = kT\), \(Z\) is the normalization, and \(k\) is the Boltzmann constant. Substituting (8) into (7) we get

\[g(\varphi) = Z^{-1} \exp\left(\frac{\pi(T - T_c)}{2kT} \varphi^2 + \frac{b}{4kT} \varphi^4\right).\]

(9)

Because \(\varphi\) is a continuous variable, we need to use the continuous counterpart of (2) in order to calculate the information mean value of the system. Replacing \(p(x)\) by \(g(\varphi)\) in (2) we obtain the following expression for the information storage capacity:

\[\langle I \rangle = \frac{\ln Z - \pi(T - T_c)}{2kT \ln 2} \langle \varphi^2 \rangle - \frac{b}{4kT \ln 2} \langle \varphi^4 \rangle.\]

(10)

The average of \(\varphi\) over the whole MT, considering all domains, is obtained from

\[\langle \varphi^n \rangle = \int_{-\infty}^{\infty} g(\varphi) \varphi^n d\varphi.\]

(11)
Using (10) we can plot the information capacity against the temperature for some parameter values.

Fig 5. - Storage information capacity of MT when \(\alpha = \beta = 0.5 \).

Fig. 6 - Storage information capacity of MT when \(\alpha = 0.5 \) and \(\beta = 50 \).
These graphs corroborate with the results of [6], which show that, probably at physiological temperature, we can have a mode of information storage in MTs. This is the most important feature for finding another subunit of information processing inside the brain. It could show us new perspectives for cognitive aspects.

However, according to these graphs, the maximum information storage is obtained at the spin-glass phase, therefore we need to make some assumptions. In this phase, there are domains with many energy levels which can store information. The interaction among the domains due to the electric field generated by the oscillating dipoles must be considered. This electric field is emitted to the neighbouring area producing many channels among the domains in MT.

4.2 Microtubules as a Communication Channel

Given the capacity of information storage of MTs, the issue now is to know whether there exist some kind of information processing on them. To study any kind of processing, it is necessary to describe how the information is stored in the MT walls. That is, we need to understand how the information propagates along the MT. We saw that the SG phase has the maximum capacity of information storage. Therefore, we will restrict to this phase in order to describe the interaction, or communication, among the domains. Here, we are assuming that the electric field generated by the MT dipoles is the main mediator which allows the communication among the domains.

The graphs of the previous section show that near to the critical temperature T_c, the information capacity has the maximum capacity of storage. Following [6], we assume in this phase a partition of lattices by local domains (see figure 4). Therefore, the previous prescription is valid only on the local domains. In
this way, a domain j has a polarization φ_j with probability $g_j(\varphi_j)$. If we make these assumptions, the total probability is given by

$$g = \prod_{j=1}^{r} g_j(\varphi_j), \quad (12)$$

where r is the number of domains [6].

As a consequence of (12) we have for the spin-glass phase

$$\langle I \rangle = \sum_j \langle I_j \rangle \quad (13)$$

with j in the set of domains.

Now, we need to calculate the amount of information transferred through the channels among the domains [6,16]. The domains will communicate only if they interact. If we consider two domains, the communication is mediated by the electric field interaction between them. In order to calculate the capacity of this communication channel, we use the mutual information concept.

From [6] we know how much information is transferred from an event x_k (of an ensemble X) to another event y_j (of an ensemble Y). The term $p(x_k|y_j)$ imposes the dependence among the systems. Assuming a Boltzmann distribution, we want to know the dependence between the domain k, with polarization φ_k, and the domain j, with polarization φ_j. This dependence is described by the distribution $g(\varphi_k|\varphi_j)$ which imposes a connection between the domains. Following [16] we will assume that the output energy is expressed as a function of the electric field energy and of the mean polarization energy. Therefore, in the thermodynamic equilibrium, we have the average of the output energy E_{out} of a domain j as

$$\langle E_{out}^j \rangle = \langle E_{signal}^j \rangle = \langle E_{flow}^j \rangle + \langle E_{noisy}^j \rangle, \quad (14)$$

where E_{signal}^j is the energy of the coherent signal, E_{noisy}^j is the noisy energy, and E_{flow}^j is the energy of the flow along the system. The energy E_{flow}^j is responsible for the interaction between the domains. Therefore, supposing that the domain j emits E_{flow}^j, we can express the dependence of a domain k as

$$g(\varphi_k|\varphi_j) = Z^{-1} \exp \left[-\beta (E_k + E_{flow}^j + E_{noisy}^j) \right], \quad (15)$$

where E_k is the correspondent energy of the domain k.

The information entropy depends on the amount of energy in the system and on the noisy energy E_{noisy}^j. Therefore, the energy of the noise is given by [16]

$$\langle E_{noisy}^j (T_n) \rangle = Z^{-1} \exp (A\langle \varphi_j^2 \rangle + B\langle \varphi_j^4 \rangle), \quad (16)$$

where $A = \pi(T_n - T_c)/2kT_n$ and $B = b/4kT_n$.

To evaluate the communication channel capacity, each domain is approximated by a unique dipole. The information transference will be mediated by a radiation of the electric field in the equatorial region of an oscillating dipole.
Using the complex Poynting vector and taking the real part, we get an expression for the mean value of the flow of energy E_{j}^{flow}. The amount of energy absorbed by the oscillating charged units depends directly on its effective cross-section and on the intensity of the flow of energy. We can calculate it considering the radiation flow of energy through the cross-section D over a spherical surface of radius R, where D is a rectangle whose sides are x and z. Hence the expression for the flow of energy towards the dipole axis is given by

$$\langle E_{j}^{\text{flow}} \rangle = 2\pi^{2} S_{j} \arcsin \frac{x}{2R_{x}} \left[\frac{z}{2R_{z}} - \frac{1}{3} \left(\frac{z}{2R_{z}} \right)^{3} \right],$$ \hspace{1cm} (17)

where $S_{j} = \nu_{j}^{2} \sqrt{\eta \varepsilon \nu_{j}^{4}}$, such that ν_{j} is the dipole frequency, ε is the permittivity, η is the permeability of the medium, R_{x} and R_{z} are the perpendicular distances from the dipole to the z and x sides, respectively [16].

Using (3) and (4), and the previous relations, we can derive an expression for the capacity of communication between two domains. The channel between two domains j and k will be denoted by N_{jk}, hence

$$\Omega(N_{jk}) = \langle I(E_{k}) \rangle - \langle I(E_{k}|E_{j}) \rangle,$$ \hspace{1cm} (18)

where $\langle I(E_{k}) \rangle$ is given by an expression similar to (10). The conditional information $\langle I(E_{k}|E_{j}) \rangle$, for a specific polarity ν_{j}, can be calculated by a continuous version of (4), that is

$$\langle I(E_{k}|E_{j}) \rangle = \ln \frac{Z}{\ln 2} - \beta \int g(\nu_{k}, \nu_{j}) \left(E_{k} + E_{j}^{\text{signal}} \right) d\nu_{k}. \hspace{1cm} (19)$$

Through those calculations we can infer that there is an inter-dependence among the domains in the SG phase. Each domain communicates to other domain the value of its polarity. It transforms the MT in a net of communication units (in this case the units are the domains - see figure 8). Besides, as each domain has a particular polarity, in the context of the information theory, we can interpret each polarity representing a type of symbol. It would build a kind of alphabet along the whole MT, where each domain represents a letter. However, as the polarity ν is a continuous variable, the change of a letter in another would be also in a continuous way and not in a discrete way.

Fig. 8 - A representation of the communication between domain j and domain k accomplished by the electromagnetic field E_{j}^{flow} along the walls of MT.
Considering the case $x = z$, we plot the capacity of information transference between each domain as a function of the distance and frequency.

Fig. 9 - Communication channel capacity:
frequency $v_j \times \text{distance } R_z$ when $T \sim 300K$.

Fig. 10 - Communication channel capacity:
frequency $v_j \times \text{distance } R_z$ when $T \sim 100K$.

11
Fig. 11 - Communication channel capacity:
frequency $v_j \times$ distance R_z when $T \sim 600K$.

The graphs show that the best conditions to have a communication among the domains are at the physiological temperature, with frequency of the conformational changes of the tubulin dimer protein around to $10^{12}s^{-1}$. The relative permittivity and permeability in the neighbourhood of the oscillating units is assumed to be 1 [14-16]. The distance z between the protein molecules is adopted to be around to $1\mu m - 0.1\mu m$. At $300K$ the information transference is suppressed over a distance R_z equal to $0.1\mu m$, and frequency around to $0.1THz$ (figure 9). At a distance smaller than $0.1\mu m$ the communication starts to become independent of the frequency. Finally, at a distance greater than $0.1\mu m$ the high frequency of the electric field plays a fundamental role in the transfer of information. For the other regimes of temperature, the system is not in the SG-phase and the graphs show the loss in performance (figures 10 and 11).

According to [22], biological molecules with dipolar vibrational activity could manifest a quantum coherent mode. That systems could have some isolating effect from thermal environments. The frequency range of that quantum mode, (also known as Fröhlich systems) is around $10^{11}s^{-1}$ to $10^{12}s^{-1}$ [1,4]. Therefore, the high frequency regimes obtained above can work not only to perform a communication along the MT but also to maintain some quantum coherent regime\(^2\).

5 Conclusions

This work confirm the results of [1-8] which consider microtubules as a classical subneuronal information processor. Through the information theory we calculate the information capacity of the MTs. Utilizing models of [1-8] we estimate that the favorable conditions for storage and information processing

\(^2\)Some papers show that the tubulin vibration frequency is in this regime [16,21].
are found at temperatures close to the human body. These results corroborate the possibility of communication among the domains (where each energy level corresponds to some kind of symbol). This communication is mediated by the dipole electric field, and this interaction is necessary to describe some processing or computing on MT. Through this communication, each domain (or symbol) presents some dependence with another. Therefore there are storage as well as processing of information associated to the dimers. Besides, from the information theory point of view, the formation of domains creates some redundancy for storage or representation of these symbols. This redundancy is important for error correction and information protection. However, some points still need further investigations. To mention at least two, (1) the direction of the propagation of the information under the influence of the environment is an interesting point to be analyzed, (2) according to [1-5] there is some water ordination inside MTs which could increase the quantum processes in MTs. These points deserve to be analyzed using the information theory point of view.

6 References

[1] S. Hagan, S. R. Hameroff and J. A. Tuszynski, Quantum Computation in Brain Microtubules: Decoherence and Biological Feasibility, Phys. Rev. E. 65, 061901, 2002.
[3] S. R. Hameroff and R. Penrose, Orchestrated Reduction of Quantum Coherence in Brain Microtubules, in S. Hameroff, A. K. Kassznia and A. C. Scott, Toward a Science of Consciousness, MIT Press, Cambridge, 1996
[3] S. R. Hameroff and R. Penrose, Conscious Events as Orchestrated Space Time Selections, in J. Shear, Explaining Consciousness. The Hard Problem, MIT Press, Cambridge, USA, 1998
[4] M. Jibu, S. Hagan, S. R. Hameroff, K. H. Pribram and K. Yasue, Quantum Optical Coherence in Cytoskeletal Microtubules: Implications for Brain Function, Biosystems 32, 195-209, 1994.
[5] L. P. Rosa and J. Faber, Quantum Models of Mind: Are They Compatible with Environmental Decoherence? Phys. Rev. E 70, 031902, 2004.
[6] J. A. Tuszynski, B. Tripisova, D. Sept, M.V. Sataric, The Enigma of Microtubules and their Self-organization Behavior in the Cytoskeleton. Biosystems 42, 153-175, 1997.
[7] J. A. Tuszynski, J. A. Brown and P. Hawrylak, Dielectric Polarization, Electric Conduction, Information Processing and Quantum Computation in Microtubules. Are They Plausible?, The Royal Society,356, 1897-1926,1998.
[8] J.A. Tuszynski, S. R. Hameroff, M.V. Sataric, B. Tripisova and M. L. A. Nip, Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly.Journal Theoretical Biology, 174, 371-380, 1995.
[9] M. Tegmark, Importance of Quantum Decoherence in brain process, Phys. Rev. E 61 , 4194, 2000
[10] R. Penrose, The Emperor New Mind, Oxford University Press, 1989
[11] R. Penrose, *Shadows of the Mind*, Vintage, London, 1994
[12] J. C. Eccles, *How the Self Controls Its Brain*, Spring Verlag, Berlin, 1994
[13] J. Watterson, Water Clusters: Pixels of Life, in S. Hameroff et alii, Toward a Sience of Consciousness, MIT Press, Cambridge, 1996
[14] M. V. Sataric, J. A. Tuszynski and R. B. Zakala Phys. Rev. E, 48, 589,1993
[15] J. A. Brown and J. A. Tuszynski, Phys. Rev. E 56, 5834,1997
[16] J. Pokoorny and T. Ming Wu, *Biophysics Aspects of Coherence and Biological Order*, Spinger, 1998.
[17] E. R. Kandel, J. H. Schwarts, and T. M. Jessell, *Principles of Neural Science*. Appleton & Lange Norwalk, third edition 1991.
[18] M. A. Nielsen and I. L. Chuang, *Quantum Computing and Quantum Information*. Cambridge, 2000.
[19] J. Preskill, *Lecture notes for Physics 229: Quantum Information and Computation*, 1998. www.theory.caltech.edu/~preskill/ph229.
[20] V. Dotsenko, An Introduction to The Theory of Spin Glasses and Neural Networks. World Scientific Lecture Notes in Physics, v. 54, 1994.
[21] H. Haken, *Synergetics: An Introduction*. Springer, Berlin 1990.
[22] H. Frohlich, *Coherent excitations in active Biological systems, in Modern Bioelectrochemistry*, F. Gutman and H. Keyzer, Springer Verlag, N Y, 1986
This figure "Info1.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "Tub_Pot.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "communMT1.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "Info2.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "Info3.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "ferroel.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "highT.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "lowT.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "lowT1.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "paramag.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2
This figure "spin-glass.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0404007v2