The $0^+ \rightarrow 0^+$ positron double-β decay with emission of two neutrinos in the nuclei 96Ru, 102Pd, 106Cd and 108Cd

P. K. Raina1, A. Shukla1, S. Singh2, P. K. Rath2 and J. G. Hirsch3

1Department of Physics and Meteorology, IIT Kharagpur-721302, India
2Department of Physics, University of Lucknow, Lucknow-226007, India
3Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543 México 04510 D.F., México

Abstract

Theoretical results for two neutrinos in the nuclei 96Ru, 102Pd, 106Cd and 108Cd are presented. The study employs the Hartree-Fock-Bogoliubov model to obtain the wave functions of the parent and daughter nuclei, in conjunction with the summation method to estimate the double beta decay nuclear matrix elements. The reliability of the intrinsic wave functions of 96,102Ru, 96Mo, 102,106Pd and 106,108Cd nuclei are tested by comparing the theoretically calculated spectroscopic properties with the available experimental data. Calculated half-lives $T_{1/2}^{2\nu}$ of 96Ru, 102Pd, 106Cd and 108Cd nuclei for $2\nu \beta^+ \beta^+$, $2\nu \beta^+EC$ and $2\nu ECEC$ modes are presented. The effect of deformation on the nuclear transition matrix element $M_{2\nu}$ is also studied. PACS Numbers: 23.40.Hc, 21.60.Jz, 23.20.-g, 27.60.+j

1 Introduction

The two neutrino double beta ($2\nu \beta\beta$) decay and the neutrinoless double beta ($0\nu \beta\beta$) decay can occur in four different processes: double electron ($\beta^-\beta^-$) emission, double positron ($\beta^+\beta^+$) emission, electron-positron conversion (β^+EC) and double electron capture ($ECEC$). The latter three processes are energetically competing and we shall refer to them as positron double beta decay (e^+DBD) modes. The $2\nu \beta^-\beta^-$ decay is allowed in the standard model of electroweak unification (SM) and the half-life of this process has been already measured for about ten nuclei out of 35 possible candidates. Hence, the absolute values of the nuclear transition matrix elements (NTMEs) $M_{2\nu}$ can be extracted directly. Consequently, the validity of different models employed for nuclear structure calculations can be tested by calculating the $M_{2\nu}$. In case of $2\nu e^+DBD$ modes, experimental limits
on half-lives have already been given for 14 out of 34 possible isotopes. The observation of $2\nu\, e^+\, \text{DBD} \,$ modes would further constrain the nuclear models employed to study the $\beta\beta$ decay severely.

On the other hand, the $0\nu\, \beta\beta$ decay violates the lepton number conservation and is possible in gauge theoretical models beyond the SM as GUTs, Majoron models, R_p violating SUSY models, lepto quark exchange and compositeness scenario. The aim of all the present experimental activities is to observe the $0\nu\, \beta\beta$ decay. The observation of $0\nu\, e^+\, \text{DBD} \,$ modes would play a crucial role in discriminating finer issues like the dominance of Majorana neutrino mass or right handed currents. The experimental aspects and theoretical implications of $e^+\, \text{DBD} \,$ modes have been widely discussed over the past years [1-11].

The experimental study of $\beta^-\beta^-$ decay is usually preferable due to a larger available phase space in comparison to $e^+\, \text{DBD} \,$ modes. However, the experimental sensitivity of $\beta^-\beta^-$ decay mode gets limited because of the presence of electron background. On the other hand, the $e^+\, \text{DBD} \,$ modes are attractive from the experimental point of view due to the fact that they can be easily separated from the background contaminations and easily detected through coincidence signals from four γ-rays, two γ-rays and one γ-ray for $\beta^+\beta^+,\, \beta^+\text{EC}$ and ECEC modes respectively. In the case of the $2\nu\, \text{ECEC} \,$ mode, the Q-value of ^{106}Cd is pretty large, 2.782 MeV, but the detection of the $0^+ \rightarrow 0^+$ transition is difficult since only X-rays are emitted.

In 1955, Winter studied the $e^+\, \text{DBD} \,$ modes of ^{106}Cd experimentally to explore the possibility of distinguishing between the Dirac or Majorana character of the electron neutrino [12]. The $2\nu\, e^+\, \text{DBD} \,$ modes were studied theoretically for the first time by Rosen and Primakoff [1]. Following the discovery of parity violation in beta decay, there was a marked decline in the experimental searches of $\beta\beta$ decay in general as both the lepton number conservation and the γ_5 invariance had to be violated for the $0\nu\, \beta\beta$ decay to occur. However, the perception began to change after Vergados showed that $e^+\, \text{DBD} \,$ modes are possible as lepton number violating process in gauge theories beyond the SM [2]. Kim and Kubodera estimated the half-lives of all the three modes with modified NTMEs and non-relativistic phase space factors [13]. Abad et al. performed similar calculations using relativistic Coulomb wave functions [14]. Some other theoretical studies were also done for the $e^+\, \text{DBD} \,$ modes [15-18]. The experimental activities on the study of $2\nu\, e^+\, \text{DBD} \,$ modes were also resumed [19-21]. In the meantime, the QRPA emerged as a successful model in explaining the quenching of NTMEs by incorporating the particle-particle part of the effective nucleon-nucleon interaction in the proton-neutron channel [22] and the observed $T^2_{1/2}$ of several $2\nu\, \beta^-\beta^-$ decay emitters were reproduced successfully [7]. Subsequently, the $2\nu\, e^+\, \text{DBD} \,$ modes were studied in shell model, QRPA and its extensions, SU(4)$_{\sigma\tau}$ and SSDH and pseudo SU(3) [7].

Low-background setups using Ge detectors were proposed by Barabash [23] to detect the transition of $2\nu\, \text{ECEC} \,$ mode to the 0^+_1 excited state. New developments in experimental setups have led to good limits on the measurement of the $2\nu\, e^+\, \text{DBD} \,$ modes of nuclei of our interest namely ^{106}Cd [12,20,24–30] and ^{108}Cd [24,28,29] through the direct counting experiments. In the mass region $A \sim 100$, Norman has studied the $2\nu\, e^+\, \text{DBD}$
modes of 96Ru \cite{21} and 102Pd is also a potential candidate to be studied with Q-value of about 1.175 MeV with natural abundance of about 1.02%. With improved sensitivity in detection systems of the planned bigger Osaka-OTO experiment \cite{31} and COBRA \cite{32}, it is expected that 2ν e$^+$DBD modes will be in observable range in the near future. Hence, a timely reliable prediction of the half-lives of 96Ru, 102Pd, 106Cd and 108Cd nuclei will be helpful in the ongoing planning of future experimental setups.

The structure of nuclei in the mass region $A \approx 100$ is quite complex. This mass region offers a nice example of shape transitions, i.e. sudden onset of deformation at neutron number $N=60$. The nuclei are soft vibrators for $N<60$ and quasi rotors for $N>60$. The nuclei with neutron number $N=60$ are transitional nuclei. In this mass region $A=96-108$, the smallest and largest quadrupole deformation parameter β_2 are 0.1580 ± 0.0032 and 0.2443 ± 0.0030 for 96Ru and 102Ru respectively. Further, the pairing of like nucleons plays an important role in all $\beta\beta$ decay emitters, which are even-Z and even-N nuclei. Thus, it is expected that pairing and deformation degrees of freedom will play some crucial role in the structure of 96,102Ru, 96,102,106Mo, 108Pd and 106,108Cd nuclei. For the study of 2ν e$^+$DBD modes of these nuclei, it is desirable to have a framework in which the pairing and deformation degrees of freedom are treated on equal footing in its formalism. The Projected Hartree-Fock-Bogoliubov (PHFB) model is, in this sense, a sensible choice which fulfills these requirements. However in the present version of the PHFB model, it is not possible to study the structure of odd-odd nuclei. Hence, the single beta decay rates and the distribution of Gamow-Teller strength cannot be calculated. On the other hand, the study of these processes has implications in the understanding of the role of the isoscalar part of the proton-neutron interaction. This is a serious drawback in the present formalism of the PHFB model. Notwithstanding, PHFB model has been successfully applied to the $\beta^-\beta^-$ decay of many emitters in this mass region, where it was possible to describe, in the same context, the lowest excited states of the parent and daughter nuclei, as well as their electromagnetic transition strengths on one hand, and to reproduce their measured double-beta decay rates on the other \cite{33}.

The aim of nuclear many-body theory is to describe the observed properties of nuclei in a coherent framework. The $\beta\beta$ decay can be studied in the same framework as many other nuclear properties and decays. Experimental studies involving in-beam γ-ray spectroscopy concerning the level energies as well as electromagnetic properties has yielded a vast amount of data over the past years. Although the availability of data permits a rigorous and detailed critique of the ingredients of the microscopic model that seeks to provide a description of nuclear $\beta\beta$ decay, most of the calculations of 2ν e$^+$DBD transition matrix elements performed so far but for the work of Barabash et al. \cite{26} and Suhonen et al. \cite{34} do not satisfy this criterion. The successful study of 2ν e$^+$DBD modes of 106Cd for $0^+ \rightarrow 0^+$ transition together with other observed nuclear properties, like the yrast spectra, reduced transition probabilities $B(E2: 0^+ \rightarrow 2^+)$, static quadrupole moments $Q(2^+)$ and g-factors $g(2^+)$ of both parent and daughter nuclei using the PHFB model in conjunction with the summation method \cite{35} has motivated us to apply the same framework to study the 2ν e$^+$DBD modes of 96Ru, 102Pd and 108Cd isotopes. The reason for presenting again the results of 106Cd is that the HFB wave functions are generated with improved accuracy.
and it is nice to see that the results remain almost unchanged.

Further, it has been shown that there exists an inverse correlation between the Gamow-Teller strength and quadrupole moment \[36, 37\]. The PPQQ interaction \[38\] has two terms, associated with the pairing interaction (PP) and the quadrupole-quadrupole (QQ) interactions. The former accounts for the sphericity of nucleus, whereas the latter increases the collectivity in the nuclear intrinsic wave functions and makes the nucleus deformed. Hence, the PHFB model in conjunction with the PPQQ interaction is a convenient choice to examine the explicit role of deformation on the NTME \[2\nu\]M. In case of \(^{106}\)Cd, we have already shown that deformation plays an important role in the variation of \(M_{2\nu}\) vis-a-vis changing strength of the QQ part of effective two-body interaction \[35\].

The structure of the present paper is as follows. The theoretical formalism to calculate the half-lives of \(2\nu\) e\(^+\)DBD modes has been given in a number of reviews \[4, 7\] and our earlier study of \(2\nu\) e\(^+\)DBD modes of \(^{106}\)Cd for the \(0^+ \rightarrow 0^+\) transition \[35\]. Hence, we briefly outline steps of the above derivations in sect. 2 for clarity in notation. Details of the mathematical expressions used to calculate the spectroscopic properties of nuclei in the PHFB model have been given by Dixit \textit{et al.} \[39\]. In sect. 3, we present results to check the reliability of the wave functions of \(^{96,102}\)Ru, \(^{96}\)Mo, \(^{102,106,108}\)Pd and \(^{106,108}\)Cd nuclei by calculating the mentioned spectroscopic properties and comparing them with the available experimental data. The half-lives \(T_{1/2}^{2\nu}\) for the \(2\nu\) e\(^+\)DBD modes of \(^{96}\)Ru, \(^{102}\)Pd, \(^{106}\)Cd and \(^{108}\)Cd nuclei for the \(0^+ \rightarrow 0^+\) transition are calculated. The role of deformation on \(M_{2\nu}\) is also studied. We present some concluding remarks in sect. 4.

2 Theoretical framework

The inverse half-life of the \(2\nu\) e\(^+\)DBD mode for the \(0^+ \rightarrow 0^+\) transition is given by

\[
\left[T_{1/2}^{2\nu}(0^+ \rightarrow 0^+)\right]^{-1} = G_{2\nu} |M_{2\nu}|^2.
\] (1)

The \(G_{2\nu}\) is the integrated kinematical factor and the NTME \(M_{2\nu}\) is expressed as

\[
M_{2\nu} = \sum_N \frac{\langle 0^+_F |\sigma \tau^- |1^+_N \rangle \langle 1^+_N |\sigma \tau^- |0^+_I \rangle}{E_0 + E_N - E_I},
\] (2)

where

\[
E_0 = \frac{1}{2} (E_I - E_F) = \frac{1}{2} W_0.
\] (3)

The total energy released \(W_0\) for different \(2\nu\) e\(^+\)DBD modes is given by

\[
W_0(\beta^+\beta^+) = Q_{\beta^+\beta^+} + 2m_e,
\] (4)

\[
W_0(\beta^+EC) = Q_{\beta^+EC} + e_b,
\] (5)

\[
W_0(ECEC) = Q_{ECEC} - 2m_e + e_{b1} + e_{b2}.
\] (6)
The summation over intermediate states is carried out using the summation method and the NTME $M_{2\nu}$ can be written as

$$M_{2\nu} = \frac{1}{E_0} \left< 0_F^+ \left| \sum_m (-1)^m \Gamma_m F_m \right| 0_I^+ \right>, \quad (7)$$

where the Gamow-Teller (GT) operator Γ_m has been defined as

$$\Gamma_m = \sum_s \sigma_m s^-, \quad (8)$$

and

$$F_m = \sum_{\lambda=0}^{\infty} \left(-1 \right)^{\lambda} \frac{1}{E_{\lambda}^0} D_{\lambda} \Gamma_m, \quad (9)$$

with

$$D_{\lambda} \Gamma_m = [H, [H, \ldots, [H, \Gamma_m] \ldots]], \quad (10)$$

When the GT operator commutes with the effective two-body interaction, the Eq. (7) can be further simplified to

$$M_{2\nu} = \sum_{\pi,\nu} \frac{\left< 0_F^+ \left| \sigma_\pi \sigma^-_\tau^- \right| 0_I^+ \right>}{E_0 + \varepsilon(n_{\nu}, l_{\nu}, j_{\nu}) - \varepsilon(n_{\pi}, l_{\pi}, j_{\pi})}. \quad (11)$$

The energy denominator is evaluated as follows. The difference in single particle energies of neutrons in the intermediate nucleus and protons in the parent nucleus is mainly due to the difference in Coulomb energies. Hence

$$\varepsilon(n_{\nu}, l_{\nu}, j_{\nu}) - \varepsilon(n_{\pi}, l_{\pi}, j_{\pi}) = \begin{cases} \Delta_C - 2E_0 & \text{for } n_{\nu} = n_{\pi}, l_{\nu} = l_{\pi}, j_{\nu} = j_{\pi} \\ \Delta_C - 2E_0 + \Delta E_{s.o.\text{splitting}} & \text{for } n_{\nu} = n_{\pi}, l_{\nu} = l_{\pi}, j_{\nu} \neq j_{\pi} \end{cases}, \quad (12)$$

where the Coulomb energy difference Δ_C is given by Bohr and Mottelson

$$\Delta_C = \frac{0.70}{A^{1/3}} \left((2Z + 1) - 0.76 \left(Z + 1 \right)^{4/3} - Z^{4/3} \right). \quad (13)$$

In the case of pseudo SU(3) model [42-44], the energy denominator is a well-defined quantity without any free parameter as the GT operator commutes with the two-body interaction. The energy denominator has been evaluated exactly for $2\nu \beta^-\beta^-$ [42, 43] and $2\nu e^+DBD$ modes [44] in pseudo SU(3) scheme.

In the present work, we use a Hamiltonian with $PPQQ$ type [38] of effective two-body interaction. Explicitly, the Hamiltonian is written as

$$H = H_{sp} + V(P) + \chi_{qq} V(QQ), \quad (14)$$

where H_{sp} denotes the single particle Hamiltonian. The pairing part of the effective two-body interaction $V(P)$ is written as

$$V(P) = -\left(\frac{G}{4} \right) \sum_{\alpha\beta} (-1)^{j_{\alpha}+j_{\beta}-m_{\alpha}-m_{\beta}} a_{\alpha}^\dagger a_{\beta}^\dagger a_{\beta} a_{\alpha}, \quad (15)$$
where α denotes the quantum numbers ($nljm$). The state $\bar{\alpha}$ is same as α but with the sign of m reversed. The QQ part of the effective interaction $V(QQ)$ is expressed as

$$V(QQ) = -\left(\frac{\chi}{2}\right) \sum_{\alpha,\beta,\gamma,\delta} \sum_{\mu} (-1)^\mu \langle \alpha | q^2_\mu | \gamma \rangle \langle \beta | q^2_{-\mu} | \delta \rangle \bar{a}_\alpha^\dagger a_\beta^\dagger a_\delta a_\gamma,$$ \hspace{1cm} (16)$$

where

$$q^2_\mu = \left(\frac{16\pi}{5}\right)^{1/2} r^2 Y^2_{\mu}(\theta, \phi).$$ \hspace{1cm} (17)$$

The χ_{qq} is an arbitrary adimensional parameter and the final results are obtained by setting the $\chi_{qq} = 1$. The purpose of introducing χ_{qq} is to study the role of deformation by varying the strength of QQ part of the effective two-body interaction.

The model Hamiltonian given by Eq. (14) is not isospin symmetric. Hence, the energy denominator is not as simple as in Eq. (11). However, the violation of isospin symmetry for the QQ part of our model Hamiltonian is negligible, as will be evident from the parameters of the two-body interaction given later. Further, the violation of isospin symmetry for the pairing part of the two-body interaction is presumably small in the mass region under study.

Under these assumptions, the expression to calculate the NTME $M_{2\nu}$ of 2ν e^+DBD modes for $0^+ \to 0^+$ transition in the PHFB model is obtained as follows.

In the PHFB model, states with good angular momentum J are obtained from the axially symmetric HFB intrinsic state $|\Phi_0\rangle$ with $K=0$ using the standard projection technique \[45\] given by

$$|\Psi^J_{00}\rangle = \left[\frac{(2J+1)}{8\pi^2}\right] \int D^J_{00}(\Omega) R(\Omega) |\Phi_0\rangle d\Omega,$$ \hspace{1cm} (18)$$

where $R(\Omega)$ and $D^J_{00}(\Omega)$ are the rotation operator and the rotation matrix respectively. The axially symmetric HFB intrinsic state $|\Phi_0\rangle$ can be written as

$$|\Phi_0\rangle = \prod_{im} (u_{im} + v_{im} b^\dagger_{im} b^\dagger_{\bar{im}}) |0\rangle,$$ \hspace{1cm} (19)$$

where the creation operators b^\dagger_{im} and $b^\dagger_{\bar{im}}$ are defined as

$$b^\dagger_{im} = \sum_{\alpha} C_{ia,m} a^\dagger_{\alpha m} \quad \text{and} \quad b^\dagger_{\bar{im}} = \sum_{\alpha} (-1)^{l+j} C_{ia,m} a^\dagger_{\alpha,-m}.$$ \hspace{1cm} (20)$$

The results of HFB calculations are summarized by the amplitudes (u_{im}, v_{im}) and expansion coefficients $C_{ij,m}$.

Finally, one obtains the following expression for NTME $M_{2\nu}$ of the 2ν e^+DBD mode:

$$M_{2\nu} = \sum_{\pi,\nu} \frac{\langle \Psi^{J=0}_{00} | \sigma.\sigma \pi^- \pi^- | \Psi^{J=0}_{00}\rangle}{\tilde{E}_0 + \varepsilon(n_\nu, l_\nu, j_\nu) - \varepsilon(n_\pi, l_\pi, j_\pi)}.$$
where

\[n^J = \int_0^\pi \left\{ \text{det}[1 + F^{(\pi)}(\theta) f^{(\pi)\dagger}] \right\}^{1/2} \times \left\{ \text{det}[1 + F^{(\nu)}(\theta) f^{(\nu)\dagger}] \right\}^{1/2} d\theta \sin(\theta) d\theta, \]

(22)

and

\[n_{(Z,N),(Z-2,N+2)}(\theta) = \left\{ \text{det}[1 + F^{(\pi)}(\theta) f^{(\pi)\dagger}] \right\}^{1/2} \times \left\{ \text{det}[1 + F^{(\nu)}(\theta) f^{(\nu)\dagger}] \right\}^{1/2}. \]

(23)

The \(\pi(\nu) \) represents the proton (neutron) of nuclei involved in the 2\(\nu \) e\(^+\)DBD. The matrices \(f_{Z,N} \) and \(F_{Z,N}(\theta) \) are given by

\[[f_{Z,N}]_{\alpha\beta} = \sum_i C_{ijm,m_c} C_{ijm,m} (\nu_{m_\alpha}/u_{m_\alpha}) \delta_{m, -m}, \]

(24)

and

\[[F_{Z,N}(\theta)]_{\alpha\beta} = \sum_{m',m} d^{ij}_{m',m}(\alpha) d^{ij}_{m,m}(\beta) f_{jm',m,m}, \]

(25)

The calculation of NTME \(M_{2\nu} \) for the 2\(\nu \) e\(^+\)DBD mode is carried on as follows. In the first step, the matrices \([f_{Z,N}]_{\alpha\beta}\) and \([F_{Z,N}(\theta)]_{\alpha\beta}\) are set up using expressions given by Eqs. (24) and (25) respectively. Finally, the required NTME \(M_{2\nu} \) is calculated in a straightforward manner using Eq. (21) with 20 gaussian quadrature points in the range \((0, \pi)\).

3 Results and discussions

The model space, single particle energies (SPE’s) and the effective two-body interaction are the same employed in our earlier calculation on 2\(\nu \) e\(^+\)DBD modes of \(^{106}\text{Cd}\) for the \(0^+ \rightarrow 0^+ \) transition \([33]\). However, we present a brief discussion of them in the following for convenience. The model space consists of \(1p_{1/2}, 2s_{1/2}, 1d_{3/2}, 1d_{5/2}, 0g_{7/2}, 0g_{9/2} \) and \(0h_{11/2} \) orbits for protons and neutrons, where we have treated the doubly even nucleus \(^{76}\text{Sr} (N=Z=38)\) as an inert core. The orbit \(1p_{1/2} \) has been included in the valence space to examine the role of the \(Z=40 \) proton core vis-a-vis the onset of deformation in highly neutron rich isotopes. The set of single particle energies (SPE’s) used here are (in MeV)

\(\varepsilon(1p_{1/2})=-0.8, \varepsilon(0g_{9/2})=0.0, \varepsilon(1d_{5/2})=5.4, \varepsilon(2s_{1/2})=6.4, \varepsilon(1d_{3/2})=7.9, \varepsilon(0g_{7/2})=8.4 \) and \(\varepsilon(0h_{11/2})=8.6 \) for proton and neutrons. This set of SPE’s but for the \(\varepsilon(0h_{11/2}) \), which is
slightly lowered, has been employed in a number of successful shell model \[46\] as well as variational model \[47\] calculations for nuclear properties in the mass region \(A \approx 100\).

The strengths of the pairing interaction has been fixed through the relation \(G_p = 30/A\) MeV and \(G_n = 20/A\) MeV, which are same as used by Heestand et al. \[48\] to explain the experimental \(g(2^+\) data of some even-even Ge, Se, Mo, Ru, Pd, Cd and Te isotopes in Greiner’s collective model \[49\]. The strengths of the like particle components of the \(QQ\) interaction are taken as: \(\chi_{pp} = \chi_{nn} = 0.0105\) MeV \(b^{-4}\), where \(b\) is oscillator parameter.

The strength of proton-neutron (\(pn\)) component of the \(QQ\) interaction \(\chi_{pn}\) is varied to fit the spectra of \(^{96,102}\)Ru, \(^{96,102,106,108}\)Pd and \(^{106,108}\)Cd in agreement with the experimental results. To be more specific, we have taken the theoretical spectra to be the optimum one if the excitation energy of the \(2^+\) state \(E_{2^+}\) is reproduced as closely as possible to the experimental value. Thus for a given model space, SPE’s, \(G_p, G_n\) and \(\chi_{pp}\), we have fixed \(\chi_{pn}\) through the experimentally available energy spectra. We have given the values of \(\chi_{pn}\) in Table 1. These values for the strength of the \(QQ\) interaction are comparable to those suggested by Arima on the basis of an empirical analysis of the effective two-body interactions \[50\]. All the parameters are kept fixed throughout the calculation.

3.1 The yrast spectra and electromagnetic properties

In table 1, we have displayed the theoretically calculated and experimentally observed values of yrast spectra for \(J^\pi = 2^+, 4^+\) and \(6^+\) states of \(^{96,102}\)Ru, \(^{96}\)Mo, \(^{102,106,108}\)Pd and \(^{106,108}\)Cd isotopes. The agreement between the experimentally observed and theoretically reproduced \(E_{2^+}\) is quite good. However, it can be noticed that the theoretical spectra is more expanded in comparison to the experimental spectra. This can be corrected to some extent in the PHFB model in conjunction with the VAP prescription \[47\]. However, our aim is to reproduce properties of the low-lying \(2^+\) state. Hence, we have not attempted to invoke the VAP prescription, which will unnecessarily complicate the calculations.

In table 2, we present the calculated as well as the experimentally observed values of the reduced \(B(E2:0^+ \rightarrow 2^+)\) transition probabilities \[52\], static quadrupole moments \(Q(2^+\) and the gyromagnetic factors \(g(2^+)\) \[53\]. In case of \(B(E2:0^+ \rightarrow 2^+)\), only some representative experimental values are tabulated. \(B(E2:0^+ \rightarrow 2^+)\) results are given for effective charges \(e_{eff} = 0.40, 0.50\) and \(0.60\) in columns 2 to 4, respectively. The experimentally observed values are displayed in column 5. The calculated values are in excellent agreement with the observed \(B(E2:0^+ \rightarrow 2^+)\) of all the nuclei considered at \(e_{eff} = 0.50\) except for \(^{102}\)Ru, \(^{102}\)Pd and \(^{108}\)Pd, which differ by 0.049, 0.02 and 0.046 \(e^2 b^2\) respectively from the experimental lower limits.

The theoretically calculated \(Q(2^+)\) values are tabulated in columns 6 to 8 of the same table 2, along with the experimentally observed \(Q(2^+)\) data in column 9, for the same effective charges as used in case of \(B(E2:0^+ \rightarrow 2^+)\). Again, the agreement between the calculated and experimental \(Q(2^+)\) values is quite good in case of \(^{102}\)Ru, \(^{108}\)Cd, \(^{106}\)Pd and \(^{108}\)Pd nuclei except for \(^{106}\)Cd where the difference is 0.2 \(e b\). In case of \(^{96}\)Ru, \(^{96}\)Mo and \(^{102}\)Pd, although the experimental values have large error bars and a meaningful comparison
is difficult, the agreement between calculated and observed values is not satisfactory. The \(g(2^+) \) values are calculated with \(g_\pi^i = 1.0, \ g_\pi^f = 0.0, \ g_\sigma^i = g_\sigma^f = 0.60 \). No experimental result for \(g(2^+) \) is available for the isotope \(^{96}\text{Ru}\). The calculated and experimentally observed \(g(2^+) \) values are in excellent agreement for \(^{102}\text{Ru}\), \(^{102}\text{Pd}\), \(^{106}\text{Cd}\) and \(^{108}\text{Cd}\) nuclei whereas they are off by 0.073, 0.046 and 0.093 nm only for \(^{96}\text{Mo}\), \(^{106}\text{Pd}\) and \(^{108}\text{Pd}\) isotopes, respectively.

From the above discussions, it is clear that the overall agreement between the calculated and observed electromagnetic properties is quite good. Hence, the PHFB wave functions of \(^{96,102}\text{Ru}\), \(^{96}\text{Mo}\), \(^{102,106,108}\text{Pd}\) and \(^{106,108}\text{Cd}\) nuclei generated by fixing \(\chi_{\gamma n} \) to reproduce the yrast spectra are quite reliable. Below, we present the results of NTMEs \(M_{2\nu} \) as well as the half-lives \(T^{2\nu}_{1/2} \) of \(^{96}\text{Ru}\), \(^{102}\text{Pd},^{106}\text{Cd}\) and \(^{108}\text{Cd}\) for the \(0^+ \rightarrow 0^+ \) transition using the same HFB wavefunctions.

3.2 Results of \(2\nu \beta^+\beta^+/\beta^+EC/ECEC \) decay

In table 3, we have compiled the available experimental and theoretical results for \(2\nu \) e\(^+\)DBD modes of \(^{96}\text{Ru}\), \(^{102}\text{Pd}\), \(^{106}\text{Cd}\) and \(^{108}\text{Cd}\) nuclei along with our calculated NTMEs \(M_{2\nu} \) and the corresponding half-lives \(T^{2\nu}_{1/2} \). The calculated phase space factors were obtained following the prescription of Doi et al. \([4]\) in the approximation \(C_1 = 1.0, \ C_2 = 0.0, \ C_3 = 0.0 \) and \(R_{1,1}(\varepsilon) = R_{+1}(\varepsilon) + R_{-1}(\varepsilon) = 1.0 \). The phase space integrals have been evaluated for \(g_A = 1.261 \) by Doi et al. \([4]\). However, in heavy nuclei it is more justified to use the nuclear matter value of \(g_A \) around 1.0. Hence, the theoretical \(T^{2\nu}_{1/2} \) are presented both for \(g_A = 1.0 \) and 1.261.

In case of \(^{96}\text{Ru}\), the half-life limits \(T^{2\nu}_{1/2} \) of the \(2\nu \beta^+EC \) and \(2\nu \text{ECEC} \) modes for the \(0^+ \rightarrow 0^+ \) transition has been investigated by Norman \([21]\) and are of the order of \(10^{16} \) y. The calculated NTMEs \(M_{2\nu} \) in PHFB and SU(4)\(_{\gamma\tau}\) \([55]\) model differ by a factor of 2 for all the three modes while in QRPA model \([54]\), the values of NTMEs \(M_{2\nu} \) are larger than the PHFB model values by a factor of 5, approximately. The phase space factors for \(^{96}\text{Ru}\) isotope are \(G_{2\nu}(\beta^+\beta^+) = 2.516 \times 10^{-26} \) y\(^{-1}\), \(G_{2\nu}(\beta^+EC) = 9.635 \times 10^{-22} \) y\(^{-1}\) and \(G_{2\nu}(\text{ECEC}) = 5.385 \times 10^{-21} \) y\(^{-1}\). The theoretically calculated \(T^{2\nu}_{1/2} \) are of the order of \(10^{26-28} \) y, \(10^{22-23} \) y and \(10^{21-23} \) y for \(2\nu \beta^+\beta^+ \), \(2\nu \beta^+EC \) and \(2\nu \text{ECEC} \) modes respectively for \(g_A = 1.261-1.00 \).

The e\(^+\)DBD modes of \(^{102}\text{Pd}\) isotope for \(0^+ \rightarrow 0^+ \) transition has been investigated neither experimentally nor theoretically so far. We have used the phase space factors \(G_{2\nu}(\beta^+EC) = 1.449 \times 10^{-30} \) y\(^{-1}\) and \(G_{2\nu}(\text{ECEC}) = 9.611 \times 10^{-23} \) y\(^{-1}\) for \(2\nu \beta^+EC \) and \(2\nu \text{ECEC} \) modes, respectively. In PHFB model, the predicted \(T^{2\nu}_{1/2} \) of \(2\nu \beta^+EC \) and \(2\nu \text{ECEC} \) modes are \((2.509-6.344) \times 10^{32} \) y and \((3.783-9.565) \times 10^{24} \) y respectively for \(g_A = 1.261-1.00 \).

We have compiled the available experimental \([12,20,24-30]\) and theoretical results \([26,34,54-60]\) for \(^{106}\text{Cd}\) along with our calculated \(M_{2\nu} \) and corresponding half-life \(T^{2\nu}_{1/2} \) in table 3. In the case of \(^{106}\text{Cd}\), the phase factors are \(G_{2\nu}(\beta^+\beta^+) = 4.263 \times 10^{-26} \) y\(^{-1}\), \(G_{2\nu}(\beta^+EC) = 1.570 \times 10^{-21} \) y\(^{-1}\) and \(G_{2\nu}(\text{ECEC}) = 1.152 \times 10^{-20} \) y\(^{-1}\), respectively. In comparison to the theoretically predicted \(T^{2\nu}_{1/2} \), the present experimental limits for \(0^+ \rightarrow 0^+ \)
transition of 106Cd are smaller by a factor of 10^{3-7} in case of $2\nu \beta^+\beta^+$ mode but are quite close for $2\nu \beta^+EC$ and $2\nu EEC$ modes. The half-life $T_{1/2}^{2\nu}$ calculated in PHFB model using the summation method differs from all the existing calculations. The presently calculated NTME $M_{2\nu}$ is smaller than the recently given results in QRPA(WS) model of Suhonen and Civitarese [34] by a factor of 2 approximately for all the three modes. The theoretical $M_{2\nu}$ values of PHFB model and SU(4)$_{\sigma^T}$ [55] again differ by a factor of 2 approximately for the $2\nu \beta^+EC$ and $2\nu EEC$ modes. On the other hand, the $M_{2\nu}$ calculated in our PHFB model is smaller than the values of Hirsch et al. [51] by a factor of 3 approximately in case of $2\nu \beta^+\beta^+$ and $2\nu EEC$ modes while for $2\nu \beta^+EC$ mode the results differ by a factor of 4 approximately. All the rest of the calculations predict NTMEs, which are larger than our predicted $M_{2\nu}$ approximately by a factor of 7 [57, 58] to 10 [26]. The predicted $T_{1/2}^{2\nu}$ of $2\nu \beta^+\beta^+$, $2\nu \beta^+EC$ and $2\nu EEC$ modes in PHFB model are $(3.495 - 8.836)\times10^{27}$ y, $(9.489 - 23.992)\times10^{22}$ y and $(1.293 - 3.270)\times10^{22}$ y respectively for $g_A = 1.261$ and 1.0.

The $2\nu EEC$ mode of 106Cd for the $0^+ \rightarrow 0^+$ transition has been investigated by Georgadze et al. [24], Kiel et al. [25] and Danevich et al. [29]. No theoretical calculation has been done so far to study the above mentioned mode of 108Cd isotope. The phase space factor of $2\nu EEC$ mode is $G_{2\nu}(EEEC) = 2.803\times10^{-26}$ y$^{-1}$. In PHFB model, the calculated half-life $T_{1/2}^{2\nu}$ of the $2\nu EEC$ decay mode is 3.939×10^{27} y and 9.959×10^{22} y for $g_A = 1.261$ and 1.0 respectively.

The quenching of the nuclear matrix elements seems to be closely related with the explicit inclusion of deformation effects, which are absent in the other models. We analyze in detail this point below.

3.3 Deformation effect

We have investigated the variation of the $\langle Q_0^2 \rangle$, β_2 and $M_{2\nu}$ with respect to the change in strength of the QQ interaction χ_{qq} to understand the role of deformation on the NTME $M_{2\nu}$. Out of several possibilities, we have taken the quadrupole moment of the intrinsic state $\langle Q_0^2 \rangle$ (in arbitrary units) and the quadrupole deformation parameter β_2 as a quantitative measure of the deformation. The quadrupole moment of the intrinsic states $\langle Q_0^2 \rangle$, deformation parameter β_2 and the NTMEs $M_{2\nu}$ for different χ_{qq} are tabulated in table 4. The deformation parameter has been calculated with the same effective charge as used in the calculation of $B(E2:0^+ \rightarrow 2^+)$ transition probabilities.

It is noticed that the $\langle Q_0^2 \rangle$ as well as β_2 increases in general as the χ_{qq} is varied from 0 to 1.5 except a few anomalies. The intrinsic quadrupole moments show fluctuations in case of 96Ru at χ_{qq} value 0.6. In case of 96Mo, similar fluctuations are observed at χ_{qq} equal to 0.4 and 0.6. In case of 102,106Pd nuclei, the fluctuations occur at $\chi_{qq}=0.4$. In all cases, it is found that the quadrupole deformation parameter β_2 follows the same behavior as the quadrupole moment of the intrinsic state $\langle Q_0^2 \rangle$ with respect to the change in χ_{qq} except for 106Cd isotope. In this case, the $\langle Q_0^2 \rangle$ increases but β_2 decreases at $\chi_{qq}=0.4$. Further, there is an anticorrelation between the deformation parameter and the NTME $M_{2\nu}$ in general but for a few exceptions.
To quantify the effect of deformation on $M_{2\nu}$, we define a quantity $D_{2\nu}$ as the ratio of $M_{2\nu}$ at zero deformation ($\chi_{qq} = 0$) and full deformation ($\chi_{qq} = 1$). The $D_{2\nu}$ is given by

$$D_{2\nu} = \frac{M_{2\nu}(\chi_{qq} = 0)}{M_{2\nu}(\chi_{qq} = 1)}.$$ \hspace{1cm} (26)

The values of $D_{2\nu}$ are 3.13, 3.40, 2.06 and 2.19 for ^{96}Ru, ^{102}Pd, ^{106}Cd and ^{108}Cd nuclei respectively. These values of $D_{2\nu}$ suggest that the $M_{2\nu}$ is quenched by a factor of 2 to 3.5 approximately in the mass region $96 \leq A \leq 108$ due to deformation effects.

Given the schematic nature of the PPQQ interaction employed in the present calculation, and the fact that many of the nuclei studied are in the transitional region and do not display a well defined rotational spectrum, the quenching factors discussed above could be considered as a conservative estimate of the uncertainties in the predicted 2ν nuclear matrix elements. They qualify both the present results and those obtained with other models where deformation is not explicitly considered. The uncertainties associated with the 0ν processes would be expected to be far smaller. Future work is expected to clarify this point.

4 Conclusions

To summarize, we have tested the quality of PHFB wave functions by comparing the theoretically calculated results for yrast spectra, reduced $B(E2;0^+ \rightarrow 2^+)$ transition probabilities, static quadrupole moments $Q(2^+)$ and g-factors $g(2^+)$ of $^{96,102}\text{Ru}$, ^{96}Mo, $^{102,106,108}\text{Pd}$ and $^{106,108}\text{Cd}$ nuclei participating in $2\nu e^+\text{ DBD}$ modes with the available experimental results. The same PHFB wave functions are employed to calculate NTMEs $M_{2\nu}$ and half-lives $T_{1/2}^{2\nu}$ of ^{96}Ru ($2\nu \beta^+\beta^+$, $2\nu \beta^+\text{EC}$ and $2\nu \text{ECEC}$ modes), ^{102}Pd ($2\nu \beta^+\text{EC}$ and $2\nu \text{ECEC}$ modes), ^{106}Cd ($2\nu \beta^+\beta^+$, $2\nu \beta^+\text{EC}$ and $2\nu \text{ECEC}$ modes) and ^{108}Cd ($2\nu \text{ECEC}$ mode) nuclei. It is noticed that the proton-neutron part of the PPQQ interaction, which is responsible for triggering deformation in the intrinsic ground state, plays an important role in the quenching of $M_{2\nu}$ by a factor of approximately 2 to 3.5 in the considered mass region $96 \leq A \leq 108$. In case of ^{96}Ru and ^{106}Cd, we have presented and discussed the theoretical results of $2\nu e^+\text{ DBD}$ modes in the PHFB model along with other available nuclear models for $0^+ \rightarrow 0^+$ transition . In case of ^{102}Pd and ^{108}Cd, These are the first theoretical calculations and in view of growing interests in the study of $2\nu e^+\text{ DBD}$ modes, these predictions would be helpful in the planning of future experimental setups.

References

[1] S. P. Rosen and H. Primakoff, in Alpha-beta-gamma ray spectroscopy, ed. K. Siegbahn (1965) p.1499.

[2] J. D. Vergados, Nucl. Phys. B 218 (1983) 109.
[3] J. D. Vergados, Phys. Rep. 133 (1986) 1.
[4] M. Doi and T. Kotani, Prog. Theor. Phy. 87 (1992) 1207.
[5] M. Doi and T. Kotani, Prog. Theor. Phy. 89 (1993) 139.
[6] A. S. Barabash, Proc. Int. Workshop on Double Beta Decay and Related Topics, Trento, Italy, 1995, World Scientific, Singapore (1996) 502.
[7] J. Suhonen and O. Civitarese, Phys. Rep. 300 (1998) 123.
[8] I. V. Kirpichnikov, Phys. At. Nucl. 63 (2000) 1341.
[9] H. V. Klapdor-Kleingrothaus, Sixty years of Double Beta Decay, World Scientific, Singapore (2001).
[10] V. I. Tretyak, Y. G. Zdesenko, At. Data Nucl. Data Tables 61 (1995) 43; ibid 80 (2002) 83.
[11] A. S. Barabash, Phys. At. Nucl. 67 (2004) 438.
[12] R. G. Winter, Phys. Rev. 99 (1955) 88.
[13] C. W. Kim and K. Kubodera Phys. Rev. D 27 (1983) 2765.
[14] J. Abad, A. Morales, R. Nunez-Lagos and A.F. Pacheco, Anales de Fisica A 80 (1984) 15; J. de Phys. 45 (1984) C3-147.
[15] Ya. V. Zeldovich and M. Yu Khlopov, Pisma v ZhETF 34 (1981) 148 [JETF Lett. 34 (1981) 141].
[16] R. A. Eramzhyan, G. V. Micelmacher and M. E. Voloshin, Pisma v ZhETF 35 (1982) 530.
[17] J. Bernabeu, A. De Rujula and C. Jarlskog, Nucl. Phys. B 223 (1983) 15.
[18] S. K. Balaev, A. A. Kuliev and D. I. Salamov, Izvestiya Akademi Nauk USSR, ser. fiz. 53 (1989) 2136 (in Russian).
[19] E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino and L. Zanotti, Lett. Nuovo Cim. 33 (1982) 273.
[20] E. B. Norman and A. DeFaccio, Phys. Lett B 148 (1984) 31.
[21] E. B. Norman Phys. Rev. C 31 (1985) 1937.
[22] P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57 (1986) 3148.
[23] A. S. Barabash, JETP Lett. 51 (1990) 207.
[24] A. Sh. Georgadze, F. A. Danevich, Yu. G. Zdesenko, V. V. Kobychev, B. N. Kropivyaniskii, V. N. Kuts, A. S. Nikolaiko and V. I. Tretyak, Phys. At. Nucl 58 (1995) 1093.

[25] F. A. Danevich et al., Z. Phys. A 355 (1996) 433.

[26] A. S. Barabash, V.I. Umatov, R. Gurriaran, F. Hubert, Ph. Hubert, M. Aunola, and J. Suhonen, Nucl. Phys. A 604 (1996) 115.

[27] P. Belli, R. Bernabei, A. Incicchitti, C. Arpesella, V. V. Kobychev, O. A. Ponkratenko, V. I. Tretyak and Yu. G. Zdesenko, Astroparticle Phys. 10 (1999) 115.

[28] H. Kiel, D. Münstermann, K. Zuber, Nucl. Phys. A 23 (2003) 499, arXiv: nucl-ex/0301007

[29] F. A. Danevich, A. Sh. Georgadze, V. V. Kobychev, B. N. Kropivyan, A. S. Nikolaiko, O. A. Ponkratenko, V. I. Tretyak, S. Yu. Zdesenko and Yu. G. Zdesenko, Phys. Rev. C 68 (2003) 035501.

[30] K. Zuber, Eur. Phys. J. C 33 (2004) 817.

[31] Yutaka Ito, Makoto Minowa, Wataru Ootani, Keiji Nishigaki, Yasuhiro Kishimoto, Takayuki Watanabe and Youiti Ootuka, Nucl. Inst. and Meth. in Phys. Res. A 386, 439 (1997).

[32] K. Zuber, Phys. Lett. B 519 (2001) 1, arXiv: nucl-ex/0105018

[33] R. Chandra, J. Singh, P.K. Rath, P.K. Raina, and J.G. Hirsch, Eur. Phys. J. A 23 (2005) 223.

[34] J. Suhonen and O. Civitarese, Phys. Lett. B 497 (2001) 221.

[35] A. Shukla, P. K. Raina, R. Chandra, P. K. Rath and J. G. Hirsch, Eur. Phys. J. A 23 (2005) 235.

[36] N. Auerbach, D.C. Zheng, L. Zamick and B. A. Brown, Phys. Lett. B 304 (1993) 17; N. Auerbach, G. F. Bertsch, B. A. Brown and L. Zhao, Nucl. Phys. A 56 (1993) 190.

[37] L. Troltenier, J. P. Draayer and J. G. Hirsch, Nucl. Phys. A 601 (1996) 89.

[38] M. Baranger and K. Kumar, Nucl. Phys. A 110 (1968) 490.

[39] B. M. Dixit, P. K. Rath and P. K. Raina Phys. Rev. C 65 (2002) 034311, Phys. Rev. C 67 (2003) 059901(E).

[40] O. Civitarese and J. Suhonen, Phys. Rev. C 47 (1993) 2410.

[41] A. Bohr and B. R. Mottelson, Nuclear Structure Vol. I (World Scientific, Singapore, 1998).
[42] O. Castaños, J. G. Hirsch, O. Civitarese and P. O. Hess, Nucl. Phys. A 571 (1994) 276.

[43] J. G. Hirsch, O. Castaños, P. O. Hess and O. Civitarese, Phys. Rev. C 51 (1995) 2252.

[44] V. E.Ceron and J.G.Hirsch, Phys. Lett.B 471 (1999) 1.

[45] N. Onishi and S. Yoshida, Nucl. Phys. A 260 (1966) 226.

[46] J. D. Vergados and T.T.S. Kuo, Phys. Lett. B 35 (1971) 93.

[47] S. K. Khosa, P. N. Tripathi and S. K. Sharma, Phys. Lett. B 119 (1982) 257; P. N. Tripathi, S. K. Sharma and S. K. Khosa, Phys. Rev. C 29 (1984) 1951; S. K. Sharma, P. N. Tripathi and S. K. Khosa, Phys. Rev. C 38 (1988) 2935.

[48] G. M. Heestand, R. R. Borchers, B. Herskind, L. Grodzins, R. Kalish and D. E. Murnick, Nucl. Phys. A 133 (1969) 310.

[49] W. Greiner, Nucl. Phys. 80 (1966) 417.

[50] A. Arima, Nucl. Phys. A 354 (1981) 19.

[51] M. Sakai At. Data and Nucl. Data Tables 31 (1984) 400.

[52] S. Raman, C. H. Malarkey, W. T. Milner, C. W. Nestor, JR. and P. H. Stelson, At. Data and Nucl. Data Tables 36 (1987) 1.

[53] P. Raghavan, Atomic Data and Nuclear Data Table 42 (1989) 189.

[54] M. Hirsch, M. Muto, T. Oda, H. V. Klapdor- Kleingrothaus, Z. Phys. A 347 (1994) 151.

[55] O. A. Rumyantsev and M. G. Urin, Phys. Lett. B 443 (1998) 51.

[56] A. Staudt, K. Muto and H. V. Klapdor- Kleingrothaus Phys. Lett. B 268 (1991) 312.

[57] J. Suhonen, Phys. Rev. C 48 (1993) 574.

[58] J. Toivanen and J. Suhonen, Phys. Rev. C 55 (1997) 2314.

[59] O. Civitarese and J. Suhonen, Phys. Rev. C 58 (1998) 1535.

[60] S. Stoica, and H.V. Klapdor-Kleingrothaus Eur. Phys. J. A 17 (2003) 529.
Table 1. Excitation energies (in MeV) of $J^\pi = 2^+$, 4$^+$ and 6$^+$ yrast states of 96,102Ru, 96Mo, 102,106,108Pd and 106,108Cd nuclei.

Nucleus	χ_{pm}	Theo.	Expt. [51]	Nucleus	χ_{pm}	Theo.	Expt. [51]		
96Ru	0.02417	E_{2^+}	0.8323	0.8326	96Mo	0.02557	E_{2^+}	0.7779	0.7782
		E_{4^+}	2.1389	1.51797		E_{4^+}	2.0373	1.6282	
		E_{6^+}	3.8037	2.1496		E_{6^+}	3.5775	2.4406	
102Pd	0.01573	E_{2^+}	0.5551	0.5565	102Ru	0.02054	E_{2^+}	0.4751	0.4751
		E_{4^+}	1.6010	1.2760		E_{4^+}	1.4773	1.1064	
		E_{6^+}	2.9467	2.1115		E_{6^+}	2.8737	1.8732	
106Cd	0.01505	E_{2^+}	0.6321	0.6327	106Pd	0.01441	E_{2^+}	0.5115	0.5119
		E_{4^+}	1.7298	1.4939		E_{4^+}	1.4816	1.2292	
		E_{6^+}	3.1610	2.4918		E_{6^+}	2.7264	2.0766	
108Cd	0.01481	E_{2^+}	0.6319	0.6330	108Pd	0.01443	E_{2^+}	0.4336	0.4339
		E_{4^+}	1.8072	1.5084		E_{4^+}	1.3126	1.0482	
		E_{6^+}	3.3138	2.5413		E_{6^+}	2.4826	1.7712	

Table 2. Comparison of the calculated and experimentally observed reduced transition probability $B(E2:0^+ \rightarrow 2^+)$ in e2 b2, static quadrupole moments $Q(2^+)$ in e b and g-factors $g(2^+)$ in nuclear magneton. Here $B(E2)$ and $Q(2^+)$ are calculated for effective charge $e_p = 1 + e_{eff}$ and $e_n = e_{eff}$. The $g(2^+)$ has been calculated for $g^{n}_i = 1.0$, $g^{\nu}_l = 0.0$ and $g^{n}_s = g^{\nu}_s = 0.60$.

Nuclei	$B(E2:0^+ \rightarrow 2^+)$	$Q(2^+)$	$g(2^+)$							
	Theo.	Expt. [52]	Theo.	Expt. [53]	Theo.	Expt. [53]				
	e_{eff}	0.40	0.50	0.60	e_{eff}	0.40	0.50	0.60		
96Ru	0.208	0.261	0.319	0.251±0.010	-0.412	-0.461	-0.510	-0.15±0.27	0.394	
				0.260±0.010						
96Mo	0.265	0.335	0.413	0.310±0.047	-0.466	-0.524	-0.582	-0.20±0.08	0.563	0.419±0.033±0.038
				0.271±0.005				0.04±0.08		
102Pd	0.323	0.410	0.507	0.460±0.030	-0.514	-0.580	-0.645	-0.20±0.20	0.386	
102Ru	0.458	0.585	0.726	0.640±0.006	-0.613	-0.692	-0.771	-0.57±0.07	0.385	
				0.651±0.016				0.68±0.08		
106Cd	0.330	0.422	0.525	0.410±0.020	-0.518	-0.586	-0.654	-0.28±0.08	0.372	0.40±0.10
106Pd	0.403	0.515	0.640	0.610±0.090	-0.573	-0.648	-0.722	-0.56±0.08	0.465	0.398±0.021
				0.656±0.035				0.51±0.08		
108Cd	0.414	0.531	0.661	0.540±0.011	-0.581	-0.657	-0.734	-0.45±0.08	0.361	0.34±0.09
108Pd	0.456	0.584	0.727	0.700±0.070	-0.610	-0.690	-0.770	-0.58±0.04	0.483	0.36±0.03
				0.760±0.040				0.51±0.06	0.32±0.03	
*P. F. Mantica et al. Phy. Rev. C63, 034312 (2001).
Table 3. Experimental limits on half-lives $T^{2\nu}_{1/2}(0^+ \rightarrow 0^+)$, theoretically calculated $M_{2\nu}$ and corresponding $T^{2\nu}_{1/2}(0^+ \rightarrow 0^+)$ for $2\nu \beta^+\beta^+$, $2\nu \beta^+EC$ and $2\nu ECEC$ decay of 96Ru, 102Pd, 106Cd and 108Cd nuclei. Half-lives are calculated using $g_A = (1.261 - 1.0)$, respectively.

| Nuclei | Decay Mode | Ref | $T^{2\nu}_{1/2}$ (y) | Ref. | Model | Theory $|M_{2\nu}|$ | $T^{2\nu}_{1/2}$ (y) |
|--------|------------|-----|----------------------|-----|-------|----------------|----------------------|
| 96Ru | $\beta^+\beta^+$ | 21 | > 3.1x10^{16} | Present | PHFB | 0.0537 | (1.378-3.485)x10^{28} |
| | | | | | QRPA | 0.2510 | (6.309-15.950)x10^{26} |
| | | | | | SU(4)$_{\sigma\tau}$ | 0.1005 | (1.028-2.598)x10^{23} |
| | | | | | QRPA | 0.2694 | (1.430-3.616)x10^{22} |
| | β^+EC | 21 | > 6.7x10^{16} | Present | PHFB | 0.0537 | (5.99-9.100)x10^{23} |
| | | | | | QRPA | 0.2620 | (2.705-6.840)x10^{21} |
| | ECEC | - | | | PHFB | 0.0537 | (6.44-1.628)x10^{23} |
| | | | | | QRPA | 0.2620 | (2.705-6.840)x10^{21} |
| 102Pd | β^+EC | | | | | | |
| | ECEC | | | | | | |
| 106Cd | $\beta^+\beta^+$ | 29 | > 5.0x10^{18} | Present | PHFB | 0.0819 | (3.495-8.836)x10^{24} |
| | | | | | QRPA | 0.61 | (6.304-15.940)x10^{25} |
| | | | | | SQRPA(l.b.) | 0.57 | (7.220-18.260)x10^{25} |
| | | | | | SQRPA(s.b.) | 0.722 | (4.500-11.380)x10^{25} |
| | | | | | SQRPA(AWS) | 0.166 | (8.513-21.520)x10^{26} |
| | | | | | SQRPA(W) | 0.840 | (3.324-8.406)x10^{25} |
| | | | | | SQRPA(AWS) | 0.780 | (3.856-9.749)x10^{25} |
| | β^+EC | 29 | > 1.2x10^{18} | Present | PHFB | 0.0819 | (9.489-23.992)x10^{24} |
| | | | | | SQRPA(l.b.) | 0.61 | (1.712-4.328)x10^{21} |
| | | | | | SQRPA(s.b.) | 0.57 | (1.960-4.957)x10^{21} |
| | | | | | SQRPA(AWS) | 0.718 | (1.236-3.124)x10^{21} |
| | | | | | SQRPA(W) | 0.168 | (2.575-5.706)x10^{22} |
| | | | | | SU(4)$_{\sigma\tau}$ | 0.1947 | (1.482-3.697)x10^{21} |
| | | | | | RQRPA(AWS) | 0.56 | (2.031-5.136)x10^{21} |
| | | | | | RQRPA(W) | 0.55 | (2.106-5.324)x10^{21} |
| | | | | | RQRPA(AWS) | 0.56 | (2.031-5.136)x10^{21} |
| | | | | | RQRPA(W) | 0.55 | (2.106-5.324)x10^{21} |
| | | | | | RQRPA(AWS) | 0.56 | (2.031-5.136)x10^{21} |
| | | | | | RQRPA(W) | 0.55 | (2.106-5.324)x10^{21} |
| | | | | | RQRPA(AWS) | 0.56 | (2.031-5.136)x10^{21} |
| | | | | | RQRPA(W) | 0.55 | (2.106-5.324)x10^{21} |
| | | | | | RQRPA(AWS) | 0.56 | (2.031-5.136)x10^{21} |
| | | | | | RQRPA(W) | 0.55 | (2.106-5.324)x10^{21} |
Table 3 continued...

106Cd	ECEC	Present	PHFB	Present PHFB
30	>1.0×10^{18}		0.0819	(1.293-3.270)×10^{22}
29	>5.8×10^{17}	SQRPA(l.b.)	0.61	(2.333-5.899)×10^{20}
28	>1.0×10^{18}	SQRPA(s.b.)	0.57	(2.672-6.756)×10^{20}
24	>5.8×10^{17}	QRPA(AWS)	0.718	(1.684-4.258)×10^{20}
60		QRPA(WS)	0.168	(3.076-7.780)×10^{21}
59		SSDH(Theo)	0.28	(1.107-2.800)×10^{21}
58		SSDH(Exp)	0.17	(3.004-7.595)×10^{21}
55		SU(4)_{\sigma\tau}	0.1947	(2.290-5.790)×10^{21}
54		RQRPA(AWS)	0.56	(2.768-6.999)×10^{20}
57		RQRPA(WS)	0.55	(2.870-7.256)×10^{20}
26		QRPA(WS)	0.84	(1.230-3.111)×10^{20}
51		QRPA(AWS)	0.78	(1.427-3.608)×10^{20}
57		QRPA	0.270	(1.191-3.011)×10^{21}
57		QRPA(WS)	0.493	(3.572-9.031)×10^{20}
26			0.660	(1.993-5.039)×10^{20}

108Cd	ECEC	Present	PHFB	Present PHFB
29	>4.1×10^{17}		0.0952	(3.939-9.959)×10^{27}
28	>1.0×10^{18}			
24	>4.1×10^{17}			

* and ** denote half-life limit for 0ν + 2ν and 0ν + 2ν + 0νM modes respectively.
| χ_{qq} | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.20 | 1.30 | 1.40 |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 96Ru (Q_0^2) | 0.0 | 0.006 | 0.214 | 0.144 | 23.854 | 30.351 | 32.485 | 34.473 | 36.420 | 38.125 | 66.549 | 70.051 | 73.535 |
| β_2 | 0.0 | 0.046 | 0.097 | 0.098 | 0.112 | 0.140 | 0.151 | 0.161 | 0.171 | 0.180 | 0.295 | 0.317 | 0.365 |
| $M_{2\nu}$ | 0.168 | 0.154 | 0.152 | 0.153 | 0.093 | 0.072 | 0.067 | 0.054 | 0.036 | 0.024 | 0.076 | 0.049 | 0.056 |
| 96Mo (Q_0^2) | 0.0 | 0.695 | 0.211 | 0.144 | 23.854 | 30.351 | 32.485 | 34.473 | 36.420 | 38.125 | 66.549 | 70.051 | 73.535 |
| β_2 | 0.0 | 0.091 | 0.093 | 0.093 | 0.106 | 0.149 | 0.174 | 0.191 | 0.210 | 0.224 | 0.268 | 0.281 | 0.304 |
| $M_{2\nu}$ | 0.168 | 0.154 | 0.152 | 0.153 | 0.093 | 0.072 | 0.067 | 0.054 | 0.036 | 0.024 | 0.076 | 0.049 | 0.056 |
| 102Pd (Q_0^2) | 0.0 | 0.252 | 0.081 | 1.080 | 1.839 | 36.080 | 42.324 | 45.479 | 47.915 | 49.635 | 52.675 | 56.375 | 64.845 |
| β_2 | 0.0 | 0.085 | 0.046 | 0.090 | 0.092 | 0.149 | 0.172 | 0.185 | 0.196 | 0.203 | 0.217 | 0.234 | 0.244 |
| $M_{2\nu}$ | 0.178 | 0.203 | 0.208 | 0.215 | 0.135 | 0.092 | 0.072 | 0.052 | 0.039 | 0.027 | 0.021 | 0.0001 | 0.001 |
| 102Ru (Q_0^2) | 0.0 | 0.008 | 0.031 | 0.128 | 0.510 | 32.652 | 40.832 | 45.479 | 47.915 | 49.635 | 52.675 | 56.375 | 64.845 |
| β_2 | 0.0 | 0.007 | 0.003 | 0.035 | 0.073 | 0.127 | 0.152 | 0.176 | 0.211 | 0.243 | 0.299 | 0.325 | 0.350 |
| $M_{2\nu}$ | 0.169 | 0.164 | 0.162 | 0.166 | 0.170 | 0.127 | 0.095 | 0.082 | 0.084 | 0.066 | 0.041 | 0.027 | 0.030 |
| 106Cd (Q_0^2) | 0.0 | 0.015 | 0.047 | 0.132 | 0.488 | 35.732 | 43.873 | 53.291 | 67.981 | 76.170 | 79.269 | 80.608 | 86.365 |
| β_2 | 0.0 | 0.001 | 0.013 | 0.039 | 0.076 | 0.134 | 0.161 | 0.195 | 0.258 | 0.299 | 0.311 | 0.316 | 0.321 |
| $M_{2\nu}$ | 0.208 | 0.199 | 0.203 | 0.204 | 0.183 | 0.120 | 0.093 | 0.095 | 0.084 | 0.052 | 0.029 | 0.020 | 0.018 |