Probing TeV Physics through Lattice Neutron-Decay Matrix Elements

Saul D. Cohen (for PNDME Collaboration)
University of Washington
Fermi Theory of Beta Decay

§ Four-fermion interaction explained beta decay before electroweak theory was proposed

✿ New operators in effective low-energy theories

§ Electroweak theory adds 3 vector bosons

✿ W and Z bosons directly detected later at CERN

\[
\Lambda \approx m_W \approx 80 \text{ GeV}, \quad m_Z \approx 90 \text{ GeV}
\]
What You See/How You Look

$\Lambda_{\text{BSM}} \approx \text{TeV}$

E

$M_{W,Z}$

$\Lambda_{\text{QCD}} \approx \text{GeV}$

$L_{\text{SM}} + L_{\text{BSM}}$

$L_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} \hat{O}_i$

$g_S = \langle n|\bar{u}d|p\rangle$

$g_T = \langle n|\bar{u}\sigma_{\mu\nu}d|p\rangle$
Neutron Beta Decay

§ Experiments measure the total neutron decay rate

\[\frac{d\Gamma}{dE} \propto F(E_e) \left[1 + a \frac{p_e \cdot p_{\nu}}{E_e E_{\nu}} + A \frac{\vec{\sigma}_n \cdot \vec{p}_e}{E_e} + b \frac{m_e}{E_e} + \left(B_0 + B_1 \frac{m_e}{E_e} \right) \frac{E_{\nu}}{E_e} + \ldots \right] \]

_within the Standard Model, \(a \) and \(A \) are \(O(10^{-1}) \), \(B_0 \) is \(O(1) \), \(b \) and \(B_1 \) are \(O(10^{-3}) \)
BSM Interactions

Theoretically, b and B_1 are related to new interactions: the scalar and tensor

$$H_{\text{eff}} = G_F \left(J_{V-A}^{\text{lept}} \times J_{V-A}^{\text{quark}} + \sum_i \epsilon_i^{\text{BSM}} \hat{O}_i^{\text{lept}} \times \hat{O}_i^{\text{quark}} \right)$$

$$\hat{O}_S = \bar{u}d \times \bar{e}(1 - \gamma_5)\nu_e \quad \rightarrow \quad g_S = \langle n|\bar{u}d|p\rangle$$

$$\hat{O}_T = \bar{u}\sigma_{\mu\nu}d \times \bar{e}\sigma^{\mu\nu}(1 - \gamma_5)\nu_e \quad \rightarrow \quad g_T = \langle n|\bar{u}\sigma_{\mu\nu}d|p\rangle$$

ϵ_S and ϵ_T are related to the masses of the new TeV-scale particles

... but the unknown coupling constants $g_{S,T}$ are needed

These are nonperturbative functions of the neutron structure, described by quantum chromodynamics (QCD)
§ Given precision $g_{S,T}$ and b, B_1, we can predict possible new particles.

ε_S and ε_T

Give the scale of particles mediating new forces.

$g_{S,T} = 1$

UCNs by 2013

Precision LQCD input ($m_\pi \approx 140$ MeV, $a \to 0$)

ε_S and ε_T
Current Constraints

§ Given precision $g_{S,T}$ and O_{BSM}, predict new-physics scales

$O_{BSM} = f_0(\varepsilon_{S,T} g_{S,T})$

Nuclear Exp.

Model input

$\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$

Nuclear beta decays
- $0^+ \rightarrow 0^+$ transitions
- β asym in Gamow-Teller ^{60}Co
- polarization ratio between Fermi and GT in ^{114}In
- positron polarization in polarized ^{107}In
- $\beta-\nu$ correlation parameter a
§ Given precision $g_{S,T}$ and O_{BSM}, predict new-physics scales

\[O_{BSM} = f_0(\varepsilon_{S,T} g_{S,T}) \]

Model input

\[\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2} \]

LANL UCN neutron decay exp’t

\[
d\Gamma \propto F(E_e) \left[1 + \left(B_0 + B_1 \frac{m_e}{E_e} \right) \frac{\bar{n}_e \bar{p}_\nu}{E_\nu} + \cdots \right]
\]

Expect by 2013:

\[
|B_1 - b|_{BSM} < 10^{-3} \\
|b|_{BSM} < 10^{-3}
\]

Similar proposal at ORNL by 2015
Crucial Role of Theory

§ Given precision $g_{S,T}$ and O_{BSM}, predict new-physics scales

New UCN Exp.

$O_{BSM} = f_0(\varepsilon_{S,T} g_{S,T})$

Precision LQCD input

$(m_\pi \to 140$ MeV, $a \to 0)$

$\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$

LANL UCN neutron decay exp’t

$$d\Gamma \propto F(E_e) \left[1 + \left(B_0 + B_1 \frac{m_e}{E_e} \right) \frac{\vec{\sigma}_n \vec{p}_\nu}{E_\nu} + \cdots \right]$$

Expect by 2013:

$|B_1 - b|_{BSM} < 10^{-3}$

$|b|_{BSM} < 10^{-3}$

Similar proposal at ORNL by 2015
§ Constraints from high-energy experiments?
LHC current bounds and near-term expectation

Estimated though effective L

$$L = -\frac{\eta_S}{\Lambda_S^2} V_{ud} \bar{u}d (\bar{e}P_L \nu_e)$$
$$- \frac{\eta_T}{\Lambda_T^2} V_{ud} \bar{u} \sigma^{\mu\nu} P_L d (\bar{e}\sigma_{\mu\nu} P_L \nu_e)$$

Looking at high transverse mass in $e\nu + X$ channel

Compare with W background

Estimated 90% C.L. constraints on $\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$

HWL, 1112.2435; 1109.2542
T. Bhattacharyya et al, 1110.6448
§ Lattice uncertainties:

- Statistical noise
- Unphysical scales a, L
- Extrapolation to M_π

§ Computational costs

- Scaling: $a^{-(5-6)}, L^5, M_\pi^{-(2-4)}$

§ Most major 2+1-flavor gauge ensembles: $M_\pi < 200$ MeV

- Now including physical pion-mass ensembles

§ Charm dynamics: 2+1+1-flavor gauge ensembles

- MILC (HISQ), ETMC (TMW)

§ Pion-mass extrapolation $M_\pi \rightarrow (M_\pi)_{\text{phys}}$

(Bonus products: low-energy constants)
§ Difficulties in Euclidean space

§ Exponentially worse signal-to-noise ratios

Consider a baryon correlator \(C = \langle O \rangle = \langle qqq(t) \bar{q}\bar{q}\bar{q}(0) \rangle \)

Variance (noise squared) of \(C \propto \langle O^\dagger O \rangle - \langle O \rangle^2 \)

What you want: \(N \quad \pi \quad \pi \quad \pi \)

What you get: \(N^\dagger \quad \pi \quad \pi \quad \pi \)
The Trouble with Nucleons

§ Difficulties in Euclidean space

§ Exponentially worse signal-to-noise ratios

☞ Consider a baryon correlator \(C = \langle O \rangle = \langle qqq(t) \bar{q}\bar{q}\bar{q}(0) \rangle \)

☞ Variance (noise squared) of \(C \propto \langle O^\dagger O \rangle - \langle O \rangle^2 \)

What you want: \(\pi \) \(\pi \) \(\pi \) \(\pi \)

What you get: \(N \) \(N^\dagger \) \(N \) \(N^\dagger \)

☞ Signal falls exponentially as \(e^{-m_N t} \)

☞ Noise falls as \(e^{-(3/2)m_\pi t} \)

☞ Problem worsens with:
 - increasing baryon number
 - decreasing quark (pion) mass
Targeted statistical on charges: 2% estimation

Other sources of error: 8% (NPR + continuum extrap. + mixed sys.)

g_s would be most challenging
§ Chiral extrapolation suffers biggest systematic uncertainty
 ✂ Huge obstacle to precision measurement
 ✂ Issues: validity of XPT over the range of pion masses used, convergence, SU(3) vs. SU(2) flavor, etc.

§ Remaining systematics: finite-volume effects
 ✂ Seems pretty well controlled
 \[m_\pi L \geq 4 \]
 RBC/UKQCD arXiv:1003.3387[hep-lat]

§ Solutions
 ✂ Include the physical pion mass in the calculation
 ✂ Extrapolate to the continuum limit (use multiple \(a \))
§ Plan

☞ MILC HISQ (140-MeV \(\pi \) available)
☞ Jan. 1 – Jun. 30, 2011 (USQCD)
☞ Apr. 1, 2011 (Teragrid 8M SUs)
☞ Jul. 1– (USQCD), Dec. (NERSC)
☞ 10% within 2 years
☞ O(1%) in 3–4 years

\(a / \text{fm} \)	\(m_1 / m_s \)	Lattice	\(m_{\pi L} \)	\(m_{\pi} \text{(MeV)} \)
0.15	1/5	\(16^3 \times 48 \)	3.78	306
0.15	1/10	\(24^3 \times 48 \)	3.99	217
0.12	1/5	\(24^3 \times 64 \)	4.54	309
0.12	1/10	\(32^3 \times 64 \)	4.29	221
0.12	1/27	\(48^3 \times 64 \)	4.08	140
0.09	1/5	\(32^3 \times 96 \)	4.50	314
0.09	1/10	\(48^3 \times 96 \)	4.77	222
0.09	1/27	\(64^3 \times 96 \)	3.66	129
0.06	1/5	\(48^3 \times 144 \)	4.51	315
0.06	1/10	\(64^3 \times 144 \)	4.25	227
Excited-State Contamination

§ Explore optimal smearing parameters and multiple source-sink separations

§ Analyze the three-point function including excited state
Excited-State Contamination

§ Explore optimal smearing parameters and multiple source-sink separations (0.96—1.44fm)

§ Analyze the three-point function including excited state

![Graphs showing data analysis for excited-state contamination](chart)
§ Our preliminary numbers and world $N_f = 2 + 1$ values

\(a = 0.06, 0.09, 0.12 \) fm, 220- and 310-MeV pion
§ Our numbers (unrenormalized) and other $N_f=2+1$ values
$x = 0.06, 0.09, 0.12$ fm, 220- and 310-MeV pion
§ Our numbers (unrenormalized) and other $N_f=2+1$ values
§ g_S becomes much noisier at light pion mass

![Graph showing the relationship between g_S^{2+1f} and $m_{\pi}^2 (\text{GeV}^2)$.

- HSC anisoCl(2011)
- Mixed(2011)
- PNDME

Saul D. Cohen — Project-X Physics Study 2012

21
§ Tensor charge: the zeroth moment of transversity

≲ Probed through SIDIS: $g_T(Q^2=0.8 \text{ GeV}^2) = 0.77^{+0.18}_{-0.24}$

≲ Model estimate 0.8(4)

§ Scalar charge $\langle n|\bar{u}d|p\rangle$ Prior model estimate: $1 \gtrsim g_S \gtrsim 0.25$

\[g_{T}^{\text{LQCD}} = 1.05(4) \quad m_{\pi}^2 \left(\text{GeV}^2 \right) \quad g_{S}^{\text{LQCD}} = 0.79(9) \]

HWL, 1112.2435; 1109.2542
Summary

The name of the game is precision

§ The precision frontier enables us to probe BSM physics
 ☝ Opportunities combining both high- (TeV) and low- (GeV) energy
§ Exciting era using LQCD for precision inputs from SM
 ☝ Increasing computational resources and improved algorithms
 ☝ Enables exploration of formerly impossible calculations
§ Necessary when experiment is limited
§ Bringing all systematics under control