Data Article

DATA in BRIEF of: Interventional Cardiac Catheterization in Neonatal Age: Results in a Multi-centre Italian Experience

Mario Giordanoa, Giuseppe Santoroa,b,∗, Gabriella Agnolettic, Mario Carminatid, Andrea Dontie, Paolo Guccionef, Maurizio Marasinig, Ornella Milanesih, Biagio Castaldih, Martino Chelig, Roberto Formigarif, Gianpiero Gaioa, Luca Giugnod, Alessia Lunardinib, Carlotta Pepinoc, Maria Giovanna Russoa, Isabella Spadonib

aPediatric Cardiology, "Ospedali dei Colli", University of Campania “Luigi Vanvitelli”, Naples
bPediatric Cardiology and GUCH Unit, "Ospedale del Cuore", Tuscany-CNR Foundation “G. Monasterio”, Massa
cPediatric Cardiology, “Regina Margherita” Hospital, University of Turin
dPediatric Cardiology and GUCH Unit, IRCCS Policlinico San Donato, Milan
ePediatric Cardiology and GUCH Unit, “S. Orsola-Malpighi” Hospital, University of Bologna
fPediatric Cardiology, “Bambino Gesù” Hospital, Rome
gPediatric Cardiology, IRCCS “G. Gaslini” Hospital, Genoa
hPediatric Cardiology, University of Padua

ARTICLE INFO

Article history:
Received 16 April 2020
Revised 28 April 2020
Accepted 4 May 2020
Available online 13 May 2020

Keywords:
Interventional Cardiac Catheterization
Neonate
Adverse Events
Mortality
Risk Factor
Multivariable Analysis

ABSTRACT

A comprehensive description of morbidity and mortality as well as risk factors of interventional cardiac catheterization performed in neonatal age was reported in our paper recently published on the International Journal of Cardiology ([IJC]CA28502; PII: S0167-5273(20)30384-3; DOI: 10.1016/j.ijcard.2020.04.013). Eight Italian high-volume centres of Paediatric Cardiology were involved in this observational, retrospective data collection and analysis. In this dataset, clinical and procedural characteristics of 1423 newborns submitted to 1551 interventional cardiac catheterization procedures were analyzed. Primary outcomes were considered procedure and in-hospital mortality as well as major

∗ Corresponding author: Giuseppe Santoro, MD, Via Camillo Sorgente, 31, 84125 - Salerno, ITALY, Phone/Fax +39-0585-383634.
E-mail address: santoropino@tin.it (G. Santoro).

https://doi.org/10.1016/j.dib.2020.105694
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)
adverse event and procedural failure rates. Secondary outcomes were considered minor adverse events and need for blood transfusion. Targets of this data analysis were: 1) to evaluate the overall major risk factors of interventional cardiac catheterization; 2) to identify the most hazardous interventional procedures; 3) to assess possible trends of individual procedures as well as their outcome over time; 4) to find possible relationships between the volume activity of any centre and the procedure and follow-up outcome. In particular, this Data in Brief companion paper aims to report the specific statistic highlights of the multivariable analysis (binary logistic regression) used to assess the impact of any potential risk factors on the type of procedure over a short-term follow-up.

© 2020 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)

Specifications table

Subject	Cardiology and Cardiovascular Medicine
Specific subject area	Interventional Cardiology, Congenital Heart Disease, Neonatology, Morbidity and Mortality
Type of data	Table, Figure
How data were acquired	Clinicians’ analysis recording single centre registries
Data format	RAW
Parameters for data collection	Sample: Interventional cardiac catheterizations in neonatal age Parameters: centre, sex gender, weight, age, prematurity, co-morbidity, genetic syndrome, congenital heart disease, interventional procedure, hybrid approach, procedure failure, adverse events, mortality, blood transfusion
Description of data collection	Retrospective collection by analysing the procedural registry of each centre. No experimental features were used or applied to data collection and analysis.
Data source location	Bologna, Genoa, Massa, Milan, Naples, Padua, Rome, Turin (Italy)
Data accessibility	In the ARTICLE as well as in the SUPPLEMENTARY FILE section
Related research article	Interventional Cardiac Catheterization in Neonatal Age: Results in a Multicentre Italian Experience Giordano M, Santoro G, Agnoletti G, Carminati M, Doni A, Guccione P, Marasini M, Milanesi O, Castaldi B, Cheli M, Formigari R, Gaio G, Giugno L, Lunardini A, Pepino C, Russo MG, Spadoni I Int J Cardiol 2020; PII: S0167-5273(20)30384-3; DOI: 10.1016/j.ijcard.2020.04.013 (In press)

Value of the data

- Intervventional cardiac catheterization is an increasing approach to treat newborns with critical congenital heart disease. No data about risk stratification of interventional procedures in this subset of patients are so far reported in literature. Our dataset aims to evaluate the intrinsic risk of trans-catheter interventional approach as well as the potential risk factors involved in any individual procedure performed at this age.
- The nationwide cohort dataset recently published in the related research article provides specific information on morbidity and mortality of newborns submitted to interventional cardiac catheterization. The Authors showed that the morbidity (major adverse events and procedural failure) is significantly related to the complexity of the intended procedure while the in-hospital mortality significantly depends on the clinical characteristics and hemodynamic stability of the patient. These data may be useful to cardiologists involved in the management of newborns affected by congenital heart disease to clearly understand patient’s risk profile of any interventional procedure.
• The safety and effectiveness data of trans-catheter approach reported in this Data in Brief paper and its related research article may hopefully promote further developments in trans-catheter treatment of neonates with critical congenital heart disease. “Ad hoc”-planned future researches aiming to specifically compare percutaneous and surgical approaches in this subset of patients will give further useful information to set the future guide-lines of management of critical, neonatal-onset cardiac malformations.

• Defining careful risk profile of newborns in whom an interventional cardiac catheterization is planned allows to improve pre-procedure counselling with parents and care-givers as well as gives further insights about the short-term prognosis of these frail patients. These data will hopefully improve timing and type of interventional approach (percutaneous vs surgical vs hybrid) in this frail subset of patients.

1. Data Description

This dataset (see also the SUPPLEMENTARY FILE section) gives relevant details and explanations about the enrolled population/procedures (catheterizations/procedures and adverse events) and statistical analysis techniques (mainly multi-variable analysis). These data are expressed as figures and tables as well as in form of RAW DATA in the SUPPLEMENTARY FILE section:

- the Table 1 describes the different catheterization sessions and interventional procedures performed in our cohort
- the Table 2 labels the adverse events (either major or minor) listed in 8 categories: vascular access adverse events, arrhythmias, pericardial effusions, direct intra-cardiac lesions, great vessels damages, technical complications of the procedure, significant hemodynamic compromise and other adverse events
- the Table 3 and the Table 4 show multi-variable analyses (binary logistic regression) of the potential risk factors (gender, low-weight, prematurity, genetic syndrome, uni-ventricular heart physiology, hybrid approach, risk category, age ≤7 days and procedure failure) and the major interventional procedures (arterial duct stenting, atretic pulmonary valve perforation, balloon aortic valvuloplasty, balloon pulmonary valvuloplasty, Rashkind atrioseptostomy) in terms of primary and secondary outcomes
- the Table 5 describes in each large column the multi-variable analysis (binary logistic regression) of the different potential risk factors in terms of composite outcome (in-hospital mortality, major adverse event and/or failure) of each major procedure, as individually analyzed
- the Table 6 compares the first and second half-time periods (2000-2008 vs 2009-2017) of our observational dataset in terms of demography, risk factors and interventional procedures
- the Figure 1 is the forest plots representation of multi-variable analysis of the potential risk factors (A) and the most performed procedures (B) on the primary outcomes
- the Figure 2 shows, anonymously, the number of trans-catheter interventions for single centre (A) and, accordingly, the rate of composite outcome (B)

2. Experimental Design, Materials, and Methods

In the related research article [1], a retrospective detection of all consecutive interventional cardiac catheterizations performed in neonatal age was carried out by the eight Italian high-volume centres involved in the study (Bologna, Genoa, Massa, Milan, Naples, Padua, Rome and Turin). To achieve this dataset, hospital registry and clinical folders were examined. From January 2000 to December 2017, 1423 consecutive newborns were submitted to 1551 interventional cardiac catheterizations, during which 1615 interventions were performed. The term “catheterization” was used to indicate any procedural session, while the term “procedure” was used to report any specific intervention. Primary outcomes were any procedure-related major adverse
Fig. 1. Forest plots reporting the effects of potential risk factors (A) and major procedures (B) on the primary outcomes.
Fig. 2. Column graph of the number of interventional catheterizations (A) and the composite outcome rate (B) for any individual centre both as overall (blue column) and separated data ranked as lower (orange column) and higher (grey column) procedure risk. The box reported the p-value calculated by linear regression analysis test.
Table 1
Summary catheterizations and procedures

Total catheterizations	N (%)	Total procedures	N (%)
Rashkind	1551.00	Rashkind	1615.00
BPV	665 (42.9)	BPV	692 (42.8)
AD stent	335 (21.6)	AD stent	354 (21.9)
BAV	169 (10.9)	BAV	211 (13.1)
APV Perforation	130 (8.4)	APV Perforation	155 (9.1)
RVOT stent	16 (1.0)	RVOT stent	16 (1.0)
IVC/SVC PTA	10 (0.6)	IVC/SVC PTA	11 (0.7)
MAPCAs embolization	7 (0.5)	MAPCAs embolization	9 (0.6)
RPA/LPA PTA	6 (0.4)	RPA/LPA PTA	6 (0.4)
Surgical Shunt stent	6 (0.4)	Surgical Shunt stent	6 (0.4)
Aorta PTA	5 (0.3)	Aorta PTA	7 (0.4)
AD embolization	5 (0.3)	AD embolization	6 (0.4)
IAS Perforation	5 (0.3)	IAS Perforation	6 (0.4)
RPA/LPA stent	5 (0.3)	RPA/LPA stent	6 (0.4)
Thrombolysis	3 (0.2)	Thrombolysis	3 (0.2)
Surgical Shunt PTA	2 (0.1)	Surgical Shunt PTA	2 (0.1)
AD stent PTA	2 (0.1)	AD stent PTA	2 (0.1)
PV PTA	1 (0.1)	PV PTA	1 (0.1)
Aorta stent	1 (0.1)	Aorta stent	1 (0.1)
Femoral artery stent	1 (0.1)	Femoral artery stent	1 (0.1)
AD stent + Rashkind	14 (0.9)	BTV	1 (0.1)
BPV + AD stent	12 (0.7)		
APV perf + AD stent	7 (0.5)		
APV perf + Rashkind	4 (0.3)		
IAS Perforation + IAS stent	4 (0.3)		
BAV + Rashkind	3 (0.2)		
AD stent + RPA/LAP stent	2 (0.1)		
BAV + Rashkind	2 (0.1)		
BAV + AD stent	2 (0.1)		
Rashkind + IAS stent	2 (0.1)		
BAV + BPV	1 (0.1)		
AD stent + Aorta PTA	1 (0.1)		
APV perf + RPA/LAP PTA	1 (0.1)		
MAPCAs embolization + AD embolization	1 (0.1)		
BPV + AD stent + IVC PTA	1 (0.1)		
IAS stent + AD stent	1 (0.1)		
BPV + AD stent + Rashkind	1 (0.1)		
Rashkind + Aorta PTA	1 (0.1)		
BPV + BTV + AD stent	1 (0.1)		

AD: Arterial Duct; APV: Atretic Pulmonary Valve; BAV: Balloon Aortic Valvuloplasty; BPV: Balloon Pulmonary Valvuloplasty; BTV: Balloon Tricuspid Valvuloplasty; IAS: InterAtrial Septum; IVC: Inferior Vena Cava; LPA: Left Pulmonary Artery; MAPCA: Major Aorto-Pulmonary Collateral Arteries; PTA: Percutaneous Trans-luminal Angioplasty; PV: Pulmonary Vein; RPA: Right Pulmonary Artery; RVOT: Right Ventricle Outflow Tract; SVC: Superior Vena Cava

...event (MAE), in-hospital mortality and failure of the intended procedure. They were analyzed both individually and as a composite outcome. Secondary outcomes were any procedure-related minor adverse event (MiAE) and need for blood transfusion. Gender, low-weight, prematurity, genetic syndrome, uni-ventricular heart physiology, hybrid approach, risk category, age ≤7 days and failure were analyzed as potential risk factors.

Multi-variable analysis was performed with a binary logistic regression [2] and used to evaluate the independent impact of any risk factor on the outcome of interventional cardiac catheterization, either as a whole or for each specific procedure. Furthermore, the multi-variable analysis was used to evaluate the risk profile of the five more common procedures (arterial duct stenting, atretic pulmonary valve perforation, balloon aortic valvuloplasty, balloon pulmonary valvuloplasty, Rashkind atrio-septostomy) on short-term outcome.
Table 2
Summary Adverse Events

Major and Minor Adverse Events	N (%)
Vascular Access Adverse Events	
Femoral Artery Pseudo-aneurysm	3 (1.9)
Femoral Artery Thrombosis	12 (7.6)
Femoral Vein Thrombosis	6 (3.8)
Arrhythmias	
Brady-arrhythmia	7 (4.4)
Atrial Flutter	7 (4.4)
Supra-ventricular Tachycardia	5 (3.2)
Ventricular Fibrillation	4 (2.5)
Pericardial Effusion	
Haematic Pericardial Effusion	26 (16.5)
Cardiac Tamponade	12 (7.6)
Direct Intracardiac Lesions	
Ventricular Pseudo-aneurysm	2 (1.3)
Heart Perforation	3 (1.9)
Rope Rupture with severe TR	1 (0.6)
Intra-cardiac Thrombus	2 (1.3)
Great Vessels Damage	
Aortic Dissection	1 (0.6)
RPA/LPA Stenosis	3 (1.9)
IVC/SVC Perforation	2 (1.3)
RPA Perforation	1 (0.6)
Acute SVC Thrombosis	1 (0.6)
SVC Thrombosis	1 (0.6)
Technical Complications of Procedure	
Stent Embolization	4 (2.5)
Balloon Embolization	1 (0.6)
Stent Jailing	1 (0.6)
Acute Intra-stent Thrombosis	3 (1.9)
Significant Hemodynamic Compromise	
Cardio-circulatory Arrest	4 (2.5)
Low-output Syndrome	14 (8.9)
Shock	8 (5.1)
Others	
Pulmonary Embolism	1 (0.6)
Mild Haemorrhage	2 (1.3)
Transient Myocardial Ischemia	6 (3.8)
Cerebral Ischemia	4 (2.5)
Pneumothorax	5 (3.2)
Sepsis	5 (3.2)
Pleural Effusion	1 (0.6)
Total Adverse Events	158 (100)

ICV: Inferior Vena Cava; LPA: Left Pulmonary Artery; RPA: Right Pulmonary Artery; SVC: Superior Vena Cava; TR: Tricuspid Regurgitation

The data reported in the Table 6, comparing the first and the second half observational period were analysed by two-tail chi-square test (for categorical and binary variables) or unpaired two-samples Student’s t-test (for continuous variables).

The data were then divided for any centre in order to evaluate, by linear regression test, the impact of the volume of activity of any individual centre on the composite outcome. The same statistical analysis was also made by separating the higher-risk procedures (risk category 4) from the lower ones (risk category 3) [3].

Acknowledgments

None
Table 3
Multi-variable analysis of the potential risk factors

Binary logistic regression of the primary outcomes

	FAILURE	MAE	MORTALITY	COMPOSITE OUTCOME								
	Wald	OR (95% CI)	p-	Wald	OR (95% CI)	p-	Wald	OR (95% CI)	p-			
Gender	0.80	1.28 (0.75 – 2.21)	0.37	1.04	0.77 (0.46 – 1.28)	0.31	3.67	0.58 (0.33 – 1.01)	0.06	0.87	0.84 (0.58 – 1.21)	0.08
LW (≥2.5 kg)	1.20	1.48 (0.74 – 2.96)	0.27	5.05	1.99 (1.09 – 3.61)	0.03	10.67	2.75 (1.50 – 5.04)	<0.01	9.11	1.96 (1.27 – 3.04)	<0.01
Prematurity	0.06	0.88 (0.45 – 3.35)	0.81	0.23	1.22 (0.55 – 2.71)	0.63	9.41	3.09 (1.50 – 6.34)	<0.01	6.15	2.02 (1.16 – 3.52)	<0.01
Genetic Syndromes	0.71	0.42 (0.54 – 3.21)	0.42	4.01	2.73 (1.02 – 7.27)	0.05	20.86	7.88 (3.25 – 19.12)	<0.01	6.51	2.73 (1.26 – 5.90)	<0.01
U VH	16.19	3.81 (1.99 – 7.30)	<0.01	0.55	1.30 (0.65 – 2.60)	0.46	31.59	5.35 (2.98 – 9.60)	<0.01	32.94	3.78 (2.40 – 5.96)	<0.01
Hybrid Approach	2.69	0.27 (0.06 – 3.21)	0.10	1.48	1.88 (0.68 – 5.2)	0.22	0.03	1.10 (0.38 – 3.17)	0.86	0.99	0.65 (0.28 – 1.51)	0.91
Risk Category	28.49	4.67 (2.65 – 8.23)	<0.01	14.94	2.80 (1.66 – 4.72)	<0.01	0.03	1.06 (0.60 – 1.85)	0.86	39.22	3.22 (2.23 – 4.64)	<0.01
Age ≤7 days	6.70	2.36 (1.23 – 4.54)	<0.01	1.39	1.39 (0.81 – 2.39)	0.24	0.11	0.91 (0.53 – 1.58)	0.74	6.92	1.70 (1.14 – 2.53)	<0.01
Failure	-	-		36.75	7.79 (4.01 – 15.12)	<0.01	49.53	13.20 (6.43 – 27.07)	<0.01	-	-	-

Binary logistic regression of the secondary outcomes

	BLOOD TRANSFUSION	MAE				
	Wald	OR (95% CI)	p-	Wald	OR (95% CI)	p-
Gender	3.51	0.59 (0.33 – 1.06)	0.08	0.79	0.80 (0.50 – 1.30)	0.37
LW (≥2.5 kg)	6.40	2.28 (1.20 – 4.30)	-0.01	0.21	0.85 (0.43 – 1.70)	0.65
Prematurity	3.26	2.01 (0.94 – 4.30)	0.07	0.06	0.88 (0.32 – 2.43)	0.80
Genetic Syndromes	10.00	4.12 (1.71 – 9.93)	-0.01	0.01	1.04 (0.24 – 4.52)	0.96
U VH	0.01	0.98 (0.43 – 2.21)	0.95	1.14	0.59 (0.23 – 1.55)	0.29
Hybrid Approach	0.04	0.89 (0.26 – 3.03)	0.85	0.51	0.47 (0.06 – 3.77)	0.48
Risk Category	17.76	3.47 (1.94 – 6.18)	-0.01	3.32	1.57 (0.97 – 2.56)	0.07
Age ≤7 days	7.58	0.46 (0.27 – 0.80)	-0.01	0.13	1.10 (0.66 – 1.83)	0.72
Failure	5.36	2.90 (1.18 – 7.16)	0.02	1.02	1.66 (0.62 – 4.40)	0.31

Abbreviations. LW: Low-Weight; MAE: Major Adverse Events; MiAE: Minor Adverse Events; U VH: Uni-Ventricular Heart
Table 4
Multi-variable analysis of the major procedures

Procedure	FAILURE Wald	OR (95% CI)	p-	MAE Wald	OR (95% CI)	p-	MORTALITY Wald	OR (95% CI)	p-	COMPOSITE OUTCOME Wald	OR (95% CI)	p-
AD Stenting	0.16	0.74 (0.17 – 3.18)	0.69	7.71	3.87 (1.49 – 10.07)	<0.01	3.76	2.99 (0.99 – 9.02)	0.05	8.70	3.13 (1.47 – 6.66)	<0.01
APV Perforation	14.49	17.92 (4.05 – 79.16)	<0.01	9.63	5.56 (1.88 – 16.43)	<0.01	0.59	1.67 (0.45 – 6.17)	0.44	20.51	7.21 (3.07 – 16.95)	<0.01
BAV	1.68	3.10 (0.56 – 17.12)	0.2	8.73	5.71 (1.80 – 18.15)	<0.01	2.59	2.93 (0.79 – 10.80)	0.11	11.42	4.84 (1.94 – 12.09)	<0.01
BPV	0.01	0.93 (0.16 – 5.35)	0.93	0.73	0.56 (0.15 – 2.12)	0.39	3.41	0.19 (0.03 – 1.10)	0.06	1.03	0.60 (0.23 – 1.61)	0.31
Rashkind Atrio-septostomy	1.02	2.15 (0.48 – 9.58)	0.31	1.70	2.01 (0.7 – 5.74)	0.19	1.31	1.99 (0.61 – 6.49)	0.25	4.64	2.46 (1.08 – 5.60)	0.03

Binary logistic regression of the secondary outcomes

Procedure	BLOOD TRANSFUSION Wald	OR (95% CI)	p-	MiAE Wald	OR (95% CI)	p-
AD Stenting	5.93	4.10 (1.31 – 12.25)	0.02	0.44	1.44 (0.49 – 4.18)	0.51
APV Perforation	0.27	1.42 (0.38 – 5.30)	0.6	3.38	3.06 (0.93 – 10.10)	0.07
BAV	2.85	3.05 (0.84 – 11.09)	0.09	1.75	0.30 (0.05 – 1.79)	0.19
BPV	0.00	1.01 (0.30 – 3.38)	1.0	0.35	1.43 (0.44 – 4.66)	0.55
Rashkind Atrio-septostomy	3.10	0.31 (0.08 – 1.15)	0.08	0.35	0.70 (0.21 – 2.92)	0.56

Abbreviations. AD: Arterial Duct; APV: Atretic Pulmonary Valve; BAV: Balloon Aortic Valvuloplasty; BPV: Balloon Pulmonary Valvuloplasty; MAE: Major Adverse Events; MiAE: Minor Adverse Events
Table 5
Multi-variable analysis of the potential risk factors in the most common procedures and hybrid approaches

	Gender	LW (≤2.5 kg)	Prematurity	Genetic Syndromes	UVH	Age ≤7 days						
	Wald	OR (95% CI)	p-	Wald	OR (95% CI)	p-	Wald	OR (95% CI)	p-			
AD Stenting	0.40	1.35 (0.54 – 3.40)	0.53	2.93	0.45 (0.18 – 1.12)	0.09	0.36	0.83 (0.45 – 1.54)	0.55	0.90	0.50 (0.12 – 2.10)	0.34
Atretic Pulmonary Valve Perforation	1.39	1.95 (0.64 – 5.92)	0.24	5.46	3.46 (1.22 – 9.80)	0.02	1.35	1.56 (0.74 – 3.33)	0.25	0.93	2.27 (0.43 – 12.06)	0.34
Rashkind Atrio-septostomy	0.14	1.32 (0.30 – 5.85)	0.71	0.08	1.22 (0.30 – 4.98)	0.78	6.08	3.23 (1.27 – 8.22)	0.02	1.62	3.50 (0.51 – 24.08)	0.20
Balloon Pulmonary Valvuloplasty	7.72	5.24 (1.63 – 16.83)	<0.01	-	-	-	4.36	4.54 (1.10 – 18.82)	0.04	-	-	-
	7.86	3.79 (1.49 – 9.63)	<0.01	-	-	-	21.66	4.71 (2.45 – 9.05)	<0.01	-	-	-
	0.76	1.52 (0.59 – 3.92)	0.38	0.03	0.89 (0.25 – 3.24)	0.86	1.11	1.77 (0.61 – 5.14)	0.29	<0.01	1.03 (0.27 – 3.97)	0.97

	Gender	LW (≤2.5 kg)	Prematurity	Genetic Syndromes	UVH	Age ≤7 days			
	Wald	OR (95% CI)	p-	Wald	OR (95% CI)	p-	Wald	OR (95% CI)	p-
Balloon Aortic Valvuloplasty	2.97	2.58 (0.88 – 7.58)	0.09	0.19	0.62 (0.07 – 5.25)	0.66	0.19	0.62 (0.07 – 5.25)	0.66
Hybrid Approach	7.59	6.30 (1.70 – 23.34)	<0.01	0.02	1.15 (0.15 – 8.86)	0.90	0.02	1.15 (0.15 – 8.86)	0.90
	0.29	0.66 (0.15 – 3.01)	0.59	0.07	1.44 (0.10 – 21.88)	0.79	0.07	1.44 (0.10 – 21.88)	0.79
	-	-	-	2.53	10.23 (0.58 – 179.9)	0.11	10.23	10.23 (0.58 – 179.9)	0.11
	0.20	1.46 (0.27 – 7.75)	0.66	2.51	0.27 (0.05 – 1.37)	0.11	2.51	0.27 (0.05 – 1.37)	0.11
	4.86	4.21 (1.17 – 15.12)	0.03	2.89	4.16 (0.80 – 21.52)	0.09	4.16	4.16 (0.80 – 21.52)	0.09

Abbreviations: LW: Low-Weight; UVH: Uni-Ventricular Heart
Table 6
Comparison of temporal period (years 2000-2008 vs 2009-2017)

Total catheterization	Years 2000-2008	Years 2009-2017	p-value
N=528	N=1023		
Risk Factors and Demographic Data			
Weight (kg)	3.0±0.5	3.0±0.6	0.8
Prematurity	27 (5.1%)	89 (8.7%)	<0.01
Genetic syndromes	6 (1.1%)	34 (3.3%)	<0.01
UVH physiology	40 (7.8%)	113 (11%)	0.03
Hybrid Approach	2 (0.4%)	40 (3.9%)	<0.01
Outcomes Analysis			
Composite Outcomes	46 (8.7%)	114 (11%)	0.1
Failure	19 (4.2%)	40 (3.9%)	0.8
MAE	22 (4.2%)	55 (5.4%)	0.3
Mortality	20 (3.8%)	60 (5.8%)	0.08
MIAE	23 (4.4%)	58 (5.7%)	0.3
Blood transfusion	13 (2.5%)	51 (5.0%)	0.02
Total procedures	N=537	N=1078	
AD stenting	9 (1.7%)	173 (16.0%)	<0.01
APV perforation	49 (9.1%)	77 (7.1%)	0.2
BAV	51 (9.5%)	84 (7.8%)	0.2
BPV	116 (21.6%)	238 (22.0%)	0.8
Rashkind Attrio-septostomy	266 (49.5%)	426 (39.5%)	<0.01
RVOT stenting	2 (0.4%)	14 (1.3%)	0.08

Continuous variables are expressed as mean±SD, whereas dichotomic variables as absolute values (percentage). Test T-Student and chi-square test were used to compare continuous and dichotomic variables, respectively.

Abbreviations. AD: Arterial Duct; APV: Atretic Pulmonary Valve; BAV: Balloon Aortic Valvuloplasty; BPV: Balloon Pulmonary Valvuloplasty; MAE: Major Adverse Events; MIAE: Minor Adverse Events; RVOT: Right Ventricle Outflow Tract; UVH: UniVentricular Heart

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.105694.

References

[1] M. Giordano, G. Santoro, G. Agnoletti, M. Carminati, A. Donti, P. Guccione, M. Marasini, O. Milanesi, B. Castaldi, M. Cheli, R. Formigari, G. Gaio, L. Giugno, A. Lunardini, C. Pepino, I. Spadoni, M.G. Russo, Interventional Cardiac Catheterization in Neonatal Age: Results in a Multi-center Italian Experience, Int J Cardiol (2020) PII: S0167-5273(20)30384-3(In Press), doi:10.1016/j.ijcard.2020.04.013.

[2] A.M. Richardson, G. Joshy, C.A. D’Este, Understanding statistical principles in linear and logistic regression, Med J Aust 208 (8) (2018) 332–334.

[3] R. Aggarwal, P. Ranganathan, Common pitfalls in statistical analysis: Linear regression analysis, Perspect Clin Res 8 (2) (2017) 100–102.