This is the publisher’s PDF (Version of Record) of the article.
This is the final published version of the article.

How to cite this publication:
Ivanovaite, L., & Riede, F. (2018). The Final Palaeolithic Hunter-Gatherer Colonisation of Lithuania in Light of Recent Palaeoenvironmental Research. Open Quaternary, 4(4), 1-21.
DOI: http://doi.org/10.5334/oq.39

Publication metadata

Title: The Final Palaeolithic Hunter-Gatherer Colonisation of Lithuania in Light of Recent Palaeoenvironmental Research

Author(s): Felix Riede & Livija Ivanovaitė

Journal: Open Quaternary

DOI/Link: http://doi.org/10.5334/oq.39

Document version: Publisher’s PDF (Version of Record)

Document license: CC BY 4.0

General Rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

If the document is published under a Creative Commons license, this applies instead of the general rights.
RESEARCH PAPER

The Final Palaeolithic Hunter-Gatherer Colonisation of Lithuania in Light of Recent Palaeoenvironmental Research

Livija Ivanovaitė and Felix Riede

This paper critically reviews the culture-historical framework for the re-colonisation of Lithuania during the Final Palaeolithic in the light of recent palaeoclimatic and palaeoenvironmental data. We argue that the existing chronology of the Final Palaeolithic in Lithuania suffers from an undue western European orientation grounded in research history, and that it likely requires reconsideration. The lack of well-constrained excavations, the paucity of both radiocarbon dates and of palaeoenvironmental data pertinent to the Last Glacial-Interglacial Transition (LGIT) lead us to be cautious with regard to the existing chronology. In reviewing the typological classification of the relevant lithic material, we argue in particular that there is a lack of reliable evidence not only for Hamburgian occupation but also for any substantive Federmessergruppen, Brommean and Ahrensburgian presence. Whilst Swiderian sites are better represented, a large majority of these may date to the early Holocene. In light of the current evidence, we question the usefulness of existing archaeological taxonomies for this period and favour a model of punctuated colonisation for the Lithuanian territory, where periodic and ephemeral forager presences are interspersed with longer periods of depopulation. In closing, we outline avenues for future research in the region.

Keywords: Final Palaeolithic; Baltic Magdalenian; Lithuania; classification; Last Glacial Interglacial Transition; pioneer colonisation

Introduction

During the height of the last ice age, hunter-gatherer groups were pushed southwards, leaving Northern Europe depopulated for several millennia (e.g. Burdukiewicz 2001). Despite some initial forays northwards very early after peak glaciation (Terberger & Street 2002), Northern Europe was once again colonised by hunter-gatherer groups only during the Late Glacial, i.e. from about 14,700 years ago (Riede 2014b; Wygal & Heidenreich 2014). This process can be said to have proceeded in several waves and in relation to the see-saw warming and cooling that occurred during the final phases of the Late Pleistocene (the so-called Last Glacial Interglacial Transition, LGIT; see Rasmussen et al. 2014).

Initially, the topographically and hence ecologically more varied regions of Western and Central Europe were occupied by Magdalenian horse and reindeer hunters expanding outward from the south-western refugial areas. The settlement of Europe remained at low densities and patchy, however, with vast swaths of land effectively uninhabited (Maier 2015). Areas north of ca. 54° N – here specifically the Baltic region in the broadest sense – were colonised even later and only during the Meiodorf Interstadial warming (Gl-1e) at the earliest. In the Western Baltic, this re-colonisation sequence is reasonably well investigated with a traditional succession of an initial colonisation by the Hamburgian (Meiodendorf/Bolling – Gl-1e; Grimm & Weber 2008), followed by the Federmessergruppen (early/middle Allerod – Gl-1c and b; Riede & Edinborough 2012), then the Brommean interlude (late Allerod/early Younger Dryas – Gl-1a and into GS-1; Fischer et al. 2013; Riede 2017), and finally the Ahrensburgian (late Younger Dryas/early Holocene – GS-1; Eriksen 2002; Brinch Petersen 2009; Weber, Grimm & Bøles 2011).

Increasingly, the Hamburgian colonisation in the Western Baltic is seen as highly ephemeral and possibly unsuccessful (Riede 2014a; Riede & Pedersen 2018). Although the subsequent Allerod-period settlement and especially the autochthonous Brommean are often viewed as the best-understood of these Scandinavian techno-complexes (Eriksen 1999), an interesting debate about its taxonomic status and relationship to the Federmessergruppen has recently emerged (Riede 2013; Buck Pedersen 2014; Riede 2014c; Buck Pedersen 2015; Riede 2017). In particular, an analysis of supposedly diagnostic artefacts – the large tanged points – from the Brommean as well as a range of other Final Palaeolithic techno-complexes indicates that regionally and chronologically consistent
patterns are difficult to establish (Riede, Laursen & Hertz 2011b; Serwatka & Riede 2016). Whilst still preliminary, these analyses cast doubt on the utility of this supposed *Leitfossil* as both a cultural and chronological marker in the Western Baltic region and beyond.

Large tanged points also occur outside of the Western Baltic and similarly critical arguments with regards to their culture-historical sensitivity have already been made previously (Kobusiewicz 2009b; Kobusiewicz 2009a). Yet, outside of Scandinavia, large tanged points – usually labelled typologically as Bromme or Lysnby points – are commonly used as proxies for the presence of these hunter-gatherer groups: Barton & Roberts (2001) extend the territory of the Brommeean to the British Isles, and Breest & Gerken (2008) see these hunters also ranging south of the River Elbe. Likewise, and with specific reference to Lithuania, Šatavičius (2004) sees the presence of large tanged points as indicative of Brommean foragers in the region, who succeeded earlier cultures in lock-step with the Western Baltic. Others still would like to see additional Final Palaeolithic groups characterised by large tanged points present in the Eastern Baltic (Sinitsyna 2002). In contrast, however, Rimantienė (1971) – Lithuania’s very own ‘trowelblazing’ (see http://trowelblazers.com/) pioneer in relation to the Final Palaeolithic (see Butrimas 2016) – had previously argued that all the material that may belong to the Final Palaeolithic in the present-day territory of Lithuania is so heterogeneous that truly diagnostic pieces and hence specific techno-complexes cannot be readily distinguished. Instead, she suggested a more generic category under the label ‘Baltic Magdalenian’. More recently, Kobusiewicz (2009b) presented similar reflections arguing that the ubiquitous occurrence of large tanged points and their consistent link to especially Federmessergruppen as well as later inventories invalidates their use as *culturally specific* diagnostic marker artefact. This paper attempts to resolve these opposing viewpoints through an in-depth research historical analysis and a critical review of the current archaeological and palaeoenvironmental evidence base for the Final Palaeolithic settlement in Lithuania. Our results indicate no secure evidence for the presence of the Hamborgian, and at best an ephemeral presence of foragers in the region during the Allerod Interstadial and, most likely centuries later at the very end of the Younger Dryas or first in the early Holocene, a more substantive settlement by groups of the Swiderian tradition. In concluding, we offer suggestions for future research.

Research history

The first Final Palaeolithic finds from the region of present-day Lithuania were registered in amateur collections at the end of the 19th and early in the 20th centuries (Szuikiewicz 1901). Yet, more systematic attempts to classify the lithic material and to place it into a chronological framework appeared only in the second half of the 20th century. The first synthesis of the Final Palaeolithic in Lithuania was published by Rimutė Rimantienė in 1971. In this seminal publication, she suggested a culture-historical framework for the Final Palaeolithic in the region that distinguishes only two main cultural units: 1) the Baltic Magdalenian and 2) the Swiderian. The latter had earlier been defined by Sawicki (1936) and had become widely used by eastern European archaeologists (e.g. Benet-Tygel 1944). Swiderian material culture shares many similarities with the Ahrensburgian of the Western Baltic, but is characterised by leaf-shaped and tanged points with basal retouch on their ventral face instead of small tanged points with ventral retouch only (Kobusiewicz 2002). In contrast, the term Baltic Magdalenian was devised by Rimantienė herself in order to capture the variability of candidate Final Palaeolithic material – various large and small tanged points, backed elements as well as scrapers, burins and borers – in Lithuania, and to reflect her unwillingness to further differentiate these.

In order to classify the existing lithic material, she drew far-reaching parallels to other and at that time better investigated regions to the west. While assemblages with projectile points containing characteristic invasive retouch on the ventral side of the tang were undoubtedly identified as Swiderian, other lithic assemblages with tanged projectile points were tentatively compared to Northern German and Southern Scandinavian tanged point techno-complexes. In this, Rimantienė (1971) drew on key publications that had earlier established the cultural-historical framework for the Baltic region: Ekholm (1926), Brøndsted (1938), Mathiassen (1946) and De Molyne (1954) for the Lyngby culture (synonymous with the Brommeean – see Brinch Petersen 1970), as well as the important syntheses of Schwabedissen (1954) and Taute (1968) for the Final Magdalenian/Federmessergruppen and Ahrensburgian respectively. In light of the evident typological and technological variability seen in the Lithuanian candidate assemblages, Rimantienė shied away from a classification as detailed as that suggested for the Western Baltic by Taute who distinguished not only between some of the major techno-complexes, but also between numerous sub-categories or groups within, for instance, the Ahrensburgian. Instead, she applied the label Baltic Magdalenian as a catch-all category for assemblages containing Lyngby/Bromme, Ahrensburgian and at times Hamburgian elements. The use of this ‘lumping’ rather than a ‘splitting’ classification (see Simpson 1945) was intended to stress both the heterogeneity of lithic assemblages from Lithuania as well as their similarities to the Magdalenian, as Rimantienė (1971) considered all these cultures to have evolved from the Late Magdalenian (stage VI). It reflects the general hypothesis that the re-colonisation of Eastern Baltic region took place from the south-west. Although the term did not enter widespread usage outside of Lithuania, Rimantienė (1996) herself never revised it substantially. She considered the Baltic Magdalenian to date to the end of Allerod and the Younger Dryas. According to her suggested chronology, the peopling of Lithuania began in the Allerod and was an uninterrupted process, reflected, she argued, in the what she saw as hybrid assemblages: an initial Baltic Magdalenian, later on with strong Swiderian influences.

The classification proposed by Rimantienė prevailed in the regional archaeological literature for 30 years until Šatavičius (2001) suggested a new and, he argued, more up-to-date chronology for the Final Palaeolithic in his doctoral dissertation. His cultural-historical framework
was comprised of five cultural units: the Hamburgian (both ‘classic’ and Havelte phases), Federmessergruppen, Brommean, Ahrensburgian, and Swiderian. This chronology suggested that the re-colonisation of Lithuania began already in the Bolling Interstadial (GI-1e) and it was seen as a continuous process (Satavičius 2001; Satavičius 2005b).

There is little doubt that the impetus for this new hypothesis for the Final Palaeolithic re-colonisation of Lithuania is to be sought in broadly contemporaneous developments in the Western Baltic. In the late 1980s and throughout the 1990s in particular a great number of new publications regarding the earliest settlement in the wider region became available (Burdukiewicz 1986; Burdukiewicz & Kobusiewicz 1987; Barton, Roberts & Roe 1991; Larsson 1996; Kozłowski, Gurb & Zaliznyak 1999), along with new and significantly more highly-resolved climatic and environmental data for northern Europe (Björck 1995; Björck et al. 1998). New evidence for the earliest re-colonisation of the Western Baltic emerged in the form of definite Hamburgian sites in Denmark (Holm & Rieck 1983; Holm & Rieck 1987; Holm & Rieck 1992) as well as perhaps in southern Sweden (Larsson 1991; Larsson 1994). Also, the Federmessergruppen were recognised in Denmark and a Final Palaeolithic culture-historical framework including the Hamburgian (Havelte phase only), Federmessergruppen, Brommean and Ahrensburgian became quickly established in this region (Eriksen 1999). Milestone regional syntheses effectively reached out with these new data to regions beyond the Western Baltic (e.g. Larsson 1996; Straus et al. 1996). It is in light of these developments that the establishment of a similar classification of and chronology for the Lithuanian material must be understood.

However, the chronology suggested by Satavičius (2001) encountered strong critique from Ostrauskas (2002a) shortly after it was proposed; he argued that its empirical basis was rather weak. Still, the chronology proposed by Satavičius soon became the new orthodoxy among Lithuanian Stone Age researchers (Girininkas 2009; Girininkas 2011) and now represents the textbook culture history of the Lithuanian Final Palaeolithic (Satavičius 2016). In the following, we critically examine the palaeoenvironmental background for the Final Palaeolithic human colonisation of the Lithuanian territory as well as the available archaeological evidence. Given that the established framework of early and continuous settlement is being questioned for the Western Baltic, we here explore the implications of such revisions for the situation in the Eastern Baltic, specifically for Lithuania.

Palaeoclimatic and palaeoenvironmental data

Any consideration of the Final Palaeolithic colonisation of northern latitudes must be made in relation to contemporaneous climatic and environmental changes. Recent developments in palaeoclimatology have yielded important new and highly resolved datasets, coming contemporaneously with and environmental changes and the establishment of human settlement dynamics during this period.
Table 1: Comparison of reconstructed palaeoclimatic conditions in Central Poland and the Eastern Baltic region during the Late Glacial and Early Holocene. Age b2k = thousands of years before AD 2000, following Lowe et al. (2008). After Feurdean et al. (2014).

Event chronology	Age (b2k)	Central Poland	Eastern Baltic
GS-1	12,896–11,703	Mild	Cold
GI-1a	13,099–12,896	Warm	Moderate
GI-1b	13,311–13,099	Warm	Cold
GI-1c	13,954–13,311	Warm but colder than GI-1e	Moderate
GI-1d	14,075–13,954	Warm	Cold
GI-1e	14,692–14,075	Warm	Cold
GS-2a	Very cold	Very cold	

The reconstructions of palaeovegetation based on the archaeobotanical analysis from Slotseng in southwest Denmark and Kašučiai in western Lithuania provide first insights into the ecological differences between these two regions. At Slotseng, Bolling warming was more pronounced than in western Lithuania, and vegetation started to develop earlier creating a landscape covered by open dwarf-shrub vegetation dominated by Betula nana, Helianthemum oelandicum, Salix, Dryas octopetala and Poaceae. In contrast, palaeobotanical data from Kašučiai indicate open, tundra-like conditions with a dominance of herbs, grasses and shrubs. Cyperaceae, Poaceae and Artemisia along with Salix and Juniperus are the most common plant species, although Betula nana L. and Betula sect. Albae have also immigrated at that time.

In south-western Denmark, during the Older Dryas drought-tolerant species such as Campanula cf. rotundifolia, G. detonsa, Rumex acetosella, Lychnis alpina increased suggesting a period of moisture restriction rather than a significant temperature decrease. Meanwhile, at Kašučiai the vegetation cover remained very sparse with a dominance of Artemisia, Chenopodiaceae and Cyperaceae. The subsequent Allerod is, in both regions, marked by an increase of arboreal vegetation. At the Slotseng catchment, Betula generally dominated these forest stands, although the amount of Betula pollen decreased significantly while Pinus reached its maximum during the colder Gerzensee oscillation. In contrast, at Kašučiai (like in other regions of Lithuania), Pinus dominated throughout the Allerod.

Table 2: Approximate comparison of registered palaeoclimatic changes in the sediment cores across the Baltic region. After Mortensen et al. (2011) and Stančikaitė et al. (2008). YD = Younger Dryas; OD = Older Dryas.

Palaeoclimatic changes	Age calBP	Slotseng (SW Denmark)	Kašučiai (W Lithuania)
Cooling associated with the YD	12,800	12,600	
Warming associated with Allerod	14,000	13,700	
Cooling associated with OD	14,100	14,300	
Warming associated with Bolling	14,700		

During the Younger Dryas, the expansion of species in favour of open habitats is recorded at Slotseng. At Kašučiai, a decrease in forest vegetation and attendant increase in non-arboreal species is registered. Although birch was present in the sparse local vegetation, open herb-grass cover dominated the landscape (Stančikaitė et al. 2008; Mortensen et al. 2011). In the following, we review the sites and assemblages known from the LGIT in Lithuania and attempt to correlate these with the current, albeit tentative, palaeoclimatic changes as sketched out here.

Archaeological data
The bulk of candidate Final Palaeolithic archaeological material from Lithuania is part of surface collections from the end of the 19th and the beginning of the 20th centuries (Szkiewicz 1901), field surveys conducted – with significant wartime interruptions – during the 1920s to the 1960s, and archaeological excavations carried out during the 1950s and 1960s (Rimantiené 1971). These lithic assemblages still form the empirical backbone for the Lithuanian Final Palaeolithic chronology today. Several new excavations have been conducted at the end of the 1990s, in the early years of the new millennium (Ostrauskas 1998; Ostrauskas 2000a; Ostrauskas 2000b; Šatavičius 2012; Šatavičius 2014) as well as during the last decade (Grigaliūnas 2013; Girininkas et al. 2016; Slah 2016; Girininkas et al. 2017), but these have failed to produce new robustly datable sites. More than half of all candidate
Lithuanian Final Palaeolithic assemblages derives from old surveys and collecting activities (Table 3).

Working with surface collections as the foundation for culture-historical classification is fraught with difficulties, however. While surface assemblages must and can be used as valid sources of information (Schwabedissen 1955; Veil 2006), they have usually been subject to a variety of difficult to account for transformations related to natural, anthropogenic and stochastic processes (Ammerman & Feldman 1974; Baker 1978; Odell & Cowan 1987; Boismier 1997) with the result that the relative composition of such assemblages cannot be seen as reflecting prehistoric reality. Furthermore, preservation of organic and hence datable material is generally low and stratigraphic resolution poor or non-existent (Vermeersch 1977; Crombé et al. 2013). Many major studies of the Final Palaeolithic in northern Europe have attempted to account for this reservation by assigning a quality ranking to all sites (e.g. Taute 1968; Burdukiewicz 1986).

All Lithuanian lithic assemblages share the difficulties outlined above. Rimantienė’s (1971) solution was to define the Baltic Magdalenian as a lumping category arguing that “every Baltic Magdalenian site shows a slight variation in tools and sometimes it might look accidental, however, that is one of the main characteristic features of this culture” (Rimantienė 1971: 30). Accordingly, it is defined by a broad and inclusive range of diagnostic tool types that cuts across the boundaries of techno-complexes as defined elsewhere (e.g. Ahrensburgian, Brommean, Federmessergruppen). These include (i) tanged points of different sizes and shapes/types, (ii) projectile points with complete retouch along one edge, (iii) lanceolated-shaped blades with retouch at the tip only, (iv) wide and short scrapers including so-called thumbnail scrapers, (v) concave end-scrapers, (vi) various types of burins, which occur almost in the same number as scrapers, (vii) combination tools with a burination on one end and a scraper on the other. Additional tool types are said to be very rare, but blades or flakes with retouch do occur (Figure 1). In 1971, there was no evidence for bone and antler tools but, according to Rimantienė, Lyngby-type reindeer axes and harpoons with large barbs should belong to the Baltic Magdalenian tool-kit (Rimantienė 1971; Rimantienė 1996).

Three decades later and in strong contrast to Rimantienė, Šatavičius (2001; 2005b; 2016) proposed an alternative splitting culture history and chronology for the Final Palaeolithic in Lithuania. Interestingly, he drew largely on the same assemblages as Rimantienė but saw these as reflecting Hamburgian – both the ‘classic’ and Havelte phases – Federmessergruppen, Brommean, and Ahrensburgian occupations. Lithic material from five sites was identified as Hamburgian, from one site as Federmessergruppen, 27 sites were attributed to the Brommean and 24 sites to the Ahrensburgian. Table 4 summarizes those currently known candidate Final Palaeolithic sites from Lithuania, which have figured most prominently in the taxonomic debate. Importantly, Table 4 lists how different workers have classified the same lithic material in different ways. Figure 2 shows these locales on a current topographic map.

Regrettably, the existing Final Palaeolithic chronology for Lithuania cannot be significantly supported by dated organic artefacts. At present, there is only one radiocarbon date, which falls within the Late Pleistocene, obtained on a reindeer antler implement found in the village of Parupe (Biržai district, Lithuania) in 2014 (Table 5; Girinkas et al. 2016). This implement stands as the oldest known antler axe from the Eastern Baltic region. Its Allerød date falls squarely within the known corpus of dates for these objects, which, however, stretch from the early Allerød to the Holocene with cultural affiliations to the Federmessergruppen, the Brommean and the Ahrensburgian (Clausen 2004; Girinkas et al. 2016). Like the Parupė implement, most of these objects are not or only circumstantially found in association with lithics and hence provide little to no clues as to their cultural affiliation. At present, it seems most likely that reindeer antler implements were in common use across all Final Palaeolithic techno-complexes.

It is worth noting further that it has been suggested for a long time that four paddle-shaped points and one bobbin-shaped bone point found in Kalniškiai (Lithuania) in 1865 could belong to the Final Palaeolithic (Rimantienė 1971; Rimantienė 1996; Girinkas 2009; Grigaliūnas 2013), yet the actual age of these bone points remains uncertain. Future radiocarbon dating of these and other relevant organic implements may yet allow us to better constrain and evaluate the Final Palaeolithic occupation in the Eastern Baltic region.

Discussion

While reviewing the existing chronology, it becomes evident that the current culture history and chronology for the Lithuanian Final Palaeolithic are constructed solely on a foundation of typology, in the absence of secure stratigraphies and absolute chronological fix-points, and in analogy with other regions, especially the Western Baltic. Given recent discussions about the robusticity of these reference sequences (Kobusiewicz 2009b; Kobusiewicz 2009a; Riede 2017; Sauer & Riede 2018), it is warranted to ask whether the Lithuanian data hold up against a critical assessment. One of the most controversial components of the current chronology is related to the possible Hamburgian presence in the territory during the Bølling/GI-1e. During GI-1e, significant climatic amelioration is registered in Western and Central Europe, yet the Eastern Baltic remains cold (see Table 1). These differing climatic conditions are likely a key factor for human occupation,

Table 3: Indicated number and the percentage of candidate Final Palaeolithic assemblages that were obtained from different types of archaeological investigation in Lithuania.

Type of archaeological investigation	N_site	%
Surface collection	28	50
Archaeological survey	6	11
Archaeological excavation	22	39

Art.4, page 5 of 21
especially in this early phase when populations were low and environments fragile (Riede 2014a; Riede & Pedersen 2018). Today, the easternmost known site of the Hamburgian is Krągola 25 (Kabacinski & Kobusiewicz 2007; Kabacinski & Sobkowiak-Tabaka 2012). Secure evidence for the Hamburgian is absent in the area east of the River Vistula, which has led to suggestions that the eastern and north-eastern border of the Hamburgian expansion should be limited by the Rivers Noteć and Vistula respectively (Bobrowski & Sobkowiak-Tabaka 2006). This notion finds support in palaeoenvironmental datasets that indicate relatively favourable conditions in Western Poland but harsher conditions in the Eastern Baltic at this time (Feurdean et al. 2014). Moreover, extensive field surveys in the north-eastern extremes of Poland – here assumed to be the most probable route into the Eastern Baltic and into Lithuania – have not yielded material older than at most the Allerød/Gl-1c-a (Siemaszko 1999).

Taking into account this prima facie absence of evidence for the Hamburgian in the entire south-eastern and Eastern Baltic region, it is worth re-evaluating the archaeological evidence from Lithuania. The typological assessment of projectile points assigned to the Hamburgian (e.g. Figure 1:1) forms the basis for the argument in favour of very early human presence. Yet, these artefacts are interpreted differently by different workers: While some researchers see them as typical Hamburgian shouldered projectiles (Zaliznyak 1999; Šatavičius 2001; Šatavičius 2002b; Figure 2:1,2), more recent work by Rimantienė (1971; Figures 6 and 11) and Šatavičius (2002b; Figure 2:1,2) provides insights into the cultural units of the Baltic Magdalenian, including the Hamburgian, Federmessergruppen, Brommean, and Ahrensburgian.
Table 4: Candidate Final Palaeolithic sites in Lithuania and their lumping and splitting cultural taxonomic identification according to different archaeologists. Sites are listed alphabetically.

H = Hamburgian, F = Federmessergruppen, B = Brommean, A = Ahrensburgian, S = Swiderian, BM = Baltic Magdalenian, M = Mesolithic. LNM = National Museum of Lithuania, VDKM = Vytautas the Great War Museum, ŠAM = Šiauliai “Ausra” Museum, KšM = Kaišiadorys Museum, JKM = Jonava Area Museum, NM = Nalšia Museum. See also Figure 2.

#	Site name	Long	Lat	Museum No.	Investigation type	N_{lithics}	Context (Multiple/Single phase)	Taxonomic assignments by author	References
1	Aukštumala	21.36	55.37		Excavation	46	Multiple	Rimančienė (2013)	Grigaliūnas (2013)
2	Baltašiškės	23.99	54.03		Surface	>50	Multiple	BM	Rimantienė (1974); Šatavičius (2001); Šatavičius (2004)
3	Barzdžio miškas (Margiu V)	24.70	54.04	LNM (EM 2255)	Excavation	6292	Multiple	B	Rimantienė (1999a); Šatavičius (2001); Šatavičius (2004)
4	Bratoniškės-1	25.37	54.85	LNM (V11 a. ax)	Survey		Multiple	S	Girininkas (2009); Rimantienė (1974); Šatavičius (2001); Šatavičius (2005a)
5	Derežnycia-6	24.54	54.22	LNM (Va 14)	Surface	>13	Multiple	BM	Rimantienė (1971); Šatavičius (2001); Šatavičius (2004)
6	Derežnycia-30	24.54	54.22	LNM	Surface	>50	Multiple	BM	Girininkas (2009); Rimantienė (1974); Šatavičius (2001); Šatavičius (2004)
7	Draseikiai-1	24.08	55.00	LNM (EM 2966)	Surface		Multiple	BM; S	Rimantienė (1974); Šatavičius (2001); Šatavičius (2004)
8	Dubos ežeras	24.69	54.02	LNM	Surface		Multiple	BM	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2004)
9	Eiguliai-1	23.92	54.93	VDKM	Excavation	~1600	Multiple	S	Girininkas (2009); Šatavičius (2001); Šatavičius (2004)
10	Ežerynas	23.98	54.20	LNM (EM 1991)	Excavation	~23 000	Single phase	BM; S	Girininkas (2009); Šatavičius (2001); Šatavičius (2005a)
11	Glyno pelkė-6	24.29	54.16	LNM (EM 3063)	Surface	>500	Single phase	BM	Girininkas (2009); Šatavičius (2001); Šatavičius (2005a)
#	Site name	Long	Lat	Museum No.	Investigation type	N_{UN}ks	Context (Multiple/Single phase)	Taxonomic assignments by author	References
----	------------------------	------	------	------------	--------------------	------------------	--------------------------------	--------------------------------	--
12	Glūkas-4	24.56	54.29	LNM (Va 21 b)	Surface	Multiple	S	Rimančienė, Braitis, Šatavičius, Ostauksas, Girininkas, Grigaliūnas, Slaht	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2004)
13	Gribaša	24.73	54.04		Surface	Multiple	BM	B; A; B; A; S	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2004)
14	Ilgio ežeras (Mergežeris-19)	24.20	54.27	LNM (Va 71)	Surface	6 Single phase	BM	A	Girininkas (2009); Rimantienė (1971); Šatavičius (2001)
15	Jakėnai-2 (Duobupis-1)	24.60	54.34	LNM (Va 25)	Surface	<10 Multiple	BM	B; B	Girininkas (2009); Rimantienė (1974); Šatavičius (2001); Šatavičius (2004)
16	Kabeliai-2C	24.29	53.95		Excavation	~2070 Multiple	S	Šatavičius	Girininkas (2009); Ostauskas (1999); Ostauskas (2005); Šatavičius (2001); Šatavičius (2005a)
17	Kalviai-1 (Basonys)	24.29	54.72		Excavation	850 Multiple	B; A; S	Šatavičius	Šatavičius (2014)
18	Kašėtos	24.35	54.11	LNM (EM 23)	Surface	Multiple	BM; S	H; B; H; A; S BM H; B; A	Girininkas (2009); Ostauskas (2005); Rimantienė (1971); Šatavičius (2001); Šatavičius (2004); Šatavičius (2002a); Šatavičius (2004); Šatavičius (2005a)
19	Katra-1	24.60	54.00	LNM (EM 27.24)	Excavation	~200 000 Multiple	B; S	B; S	Girininkas (2000); Girininkas (2009); Šatavičius (2001); Šatavičius (2004)
20	Katros ištakos-1	24.67	54.02		Excavation	~19300 Multiple	S	Šatavičius	Girininkas (2009); Ostauskas & Rimantienė (1998); Ostauskas (2005); Šatavičius (2001); Šatavičius (2005a)

(Contd.)
#	Site name	Long	Lat	Museum No.	Investigation type	N_{links}	Context (Multiple/Single phase)	Taxonomic assignments by author	References
21	Lieporiai	23.25	55.89	SAM (I–A 199/1)	Excavation*	1	Multiple	B; BM; B	Girininkas (2009); Ostrauskas (2005); Šatavičius (2001); Šatavičius (2004)
22	Maksimonys-1	24.13	54.19	LNM (EM 3033)	Surface	~10 000	Multiple	BM; S; H; BM; S; H; S	Girininkas (2009); Ostrauskas (2005); Rimantienė (1971); Šatavičius (2001); Šatavičius (2002a)
23	Marcinkony-1	24.38	54.06	LNM (31)	Surface	Multiple	S	A; A; S	Girininkas (2009); Rimantienė (1974); Šatavičius (2001)
24	Margiai “Sala”	24.70	54.04	LNM (EM 53/EM 2735)	Excavation	~3300	Multiple	BM; S; H; B; A; S; B; A; S	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2002a); Šatavičius (2004); Šatavičius (2005a)
25	Margiai-1	24.70	54.04	LNM (EM 2258–2686)	Excavation	63 222	Multiple	M; B; A; S; B; A; S	Girininkas (2009); Rimantienė (1999b); Šatavičius (2001); Šatavičius (2005a)
26	Margioniys	24.29	54.00	LNM	Excavation	Multiple	B	B; S B	Girininkas (2009); Ostrauskas (2000b); Ostrauskas (2005); Šatavičius (2001); Šatavičius (2004)
27	Maskauka-6	24.62	54.29	LNM (Va 128)	Surface	~60	Single	BM B	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2004)
28	Mergežeris-3	24.52	54.20	LNM (Va 98 a)	Survey	~180	Single	BM S	Rimantienė (1971); Šatavičius (2001); Šatavičius (2005a)
29	Mergežeris-8	24.52	54.20	LNM (Va 56)	Surface	10	Multiple	BM B; S	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2004)
30	Merkys-Ūla	24.34	54.16	LNM (57)	Surface	Multiple	BM B; A; S; B; A; S	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2004)	
#	Site name	Long	Lat	Museum No.	Investigation type	N_{obs}	Context (Multiple/Single phase)	Taxonomic assignments by author	References
---	------------------------	-------	-------	------------	-------------------	---------------	-------------------------------	--------------------------------	--
31	Mitriškės-5	24.55	54.24	LNM (Va 107 a)	Surface	~230	Multiple BM; B	Rimančienė; Brazytis; Šatavicius; Girininkas; Grigaliūnas	Girininkas (2009); Rimantienė (1971); Rimantienė (1974); Šatavicius (2001); Šatavicius (2004)
32	Mitriškės-6	24.55	54.24	LNM (Va 107 a)	Surface	>90	Single BM; S; B; B	Rimančienė; Rimantienė (1971); Rimantienė (1974); Šatavicius (2001); Šatavicius (2004)	
33	Nendriniai-1	23.38	54.69	LNM (EM 2047)	Excavation	~1000	Multiple BM	Rimančienė; Rimantienė (1971); Šatavicius (2001)	Girininkas (2009); Rimantienė (1971); Šatavicius (2001)
34	Netiesos-1	24.08	54.19	LNM (EM 1987 (3042))	Surface	Single BM; S	Multiple BM; S; S; A; S	Girininkas (2009); Rimantienė (1971); Rimantienė (1974); Šatavicius (2001); Šatavicius (2005a)	
35	Panupė	24.76	56.39		Surface	~20	Single BM; S; B; A	Girininkas et al. (2017)	Girininkas (2009); Ostrauskas (2005); Šatavicius (2001); Šatavicius (2005a)
36	Pasieniai-1	25.15	54.68	KSM	Excavation	>6000	Multiple A; S; S; A; S	Girininkas (2009); Šatavicius (2001); Šatavicius (2005a)	Girininkas (2009); Ostrauskas (2005); Šatavicius (2001); Šatavicius (2005a)
37	Paštuva 1	23.60	54.99	LNM	Excavation	Multiple S	A	Girininkas (2009); Rimantienė (1974)	Girininkas (2009); Rimantienė (1974)
38	Pypliai-1C	23.76	54.92	LNM	Excavation	>12000	Multiple M; M; F; A	Brazaitis (1998); Girininkas (2009); Šatavicius (2016)	Girininkas (2009); Šatavicius (2006)
39	Pūgainiai (Papiškės)	24.97	54.76	LNM (KJ N11 b)	Survey	Single A; S; A; S; A; S	Girininkas (2009); Šatavicius (2006)	Girininkas (2009); Šatavicius (2006)	
40	Puvočiai-1	24.30	54.11		Survey	>350	Multiple S; S; S; S	Girininkas (2009); Rimantienė (1971); Šatavicius (2001); Šatavicius (2005a)	Girininkas (2009); Rimantienė (1971); Šatavicius (2001); Šatavicius (2005a)
41	Radikiai	23.96	54.97	VDKM	Surface	Multiple BM; S	A; S; A; S	Girininkas (2009); Rimantienė (1974); Šatavicius (2001); Šatavicius (2005a)	Girininkas (2009); Rimantienė (1974); Šatavicius (2001); Šatavicius (2005a)

(Contd.)
#	Site name	Long	Lat	Museum No.	Investigation type	N (bins)	Context (Multiple/Single phase)	Taxonomic assignments by author	References
42	Rékučiai-1B	26.11	55.28	NM	Excavation	~1200	Multiple	A; S	Girininkas (2009); Šatavičius (1998); Šatavičius (2001); Šatavičius (2005a)
43	Rudnia	24.67	54.07		Surface	Multiple	BM; S	B; A; S BM; B; A	Girininkas (2009); Rimantienė (1971); Šatavičius (2001); Šatavičius (2005a)
44	Saleninkai-2	24.37	55.08	LNM (3060)	Surface	~93	Multiple	S	Girininkas (2009); Rimantienė (1974); Šatavičius (2001)
45	Samantonys	24.58	55.12		Surface	Multiple	BM; S	A	Girininkas (2009); Šatavičius (2001); Šatavičius (2016)
46	Skarulaii	24.31	55.08	VDKM	Excavation	Multiple	BM; S	A	Girininkas (2009); Šatavičius (2005a)
47	Sudota-2A	25.97	55.12	LNM	Excavation	~1500	Multiple	S	Girininkas (2009); Šatavičius (2001); Šatavičius (2005a)
48	Šilelis-2	23.76	54.93	LNM (EM 2986)	Surface	>200	Single	BM; S	Girininkas (2009); Šatavičius (2001); Šatavičius (2016)
49	Titno ežeras	24.66	54.08		Excavation	~6700	Multiple	B; S	Girininkas (2009); Šatavičius (2001); Šatavičius (2005a); Šatavičius (2012)
50	Tvityvelėliai	23.17	55.62		Survey	Multiple	S	A	Slah (2016)
51	Varėna	24.58	54.22	LNM (EM 1969)	Surface	Multiple	S	B; A; S BM; B; S	Girininkas (2009); Rimantienė (1974); Šatavičius (2001); Šatavičius (2004)
52	Varėnė-2	24.55	54.25	LNM (EM 2414)	Excavation	>3000	Multiple	H; B BM; H; B; A	Girininkas (2009); Šatavičius (2001); Šatavičius (2002a); Šatavičius (2005a)

(Contd.)
#	Site name	Long	Lat	Museum No.	Investigation type	N_{tools}	Context (Multiple/Single phase)	Taxonomic assignments by author	References
53	Vilnius-1	25.28	54.69	LNM (V1)	Surface	~800	Single	BM A	Girininkas (2009); Ostrauskas (2005); Rimantienė (1971); Šatavičius (2001)
54	Vilnius-2	25.29	54.68	LNM (V2 a. b. c)	Surface	~30	Single	BM B	Girininkas (2009); Rimantienė (1974); Šatavičius (2001); Šatavičius (2004)
55	Žalioji-1	24.99	54.90	LNM (V25)	Excavation	~50	Multiple	BM A	Girininkas (2009); Rimantienė (1974); Šatavičius (2001)
56	Žuvintai-1	23.62	54.45		Survey	60	Multiple	BM B	Girininkas (2009); Šatavičius (2001); Šatavičius (2004)
Ivanovaitė and Riede: The Final Palaeolithic Hunter-Gatherer Colonisation of Lithuania in Light of Recent Palaeoenvironmental Research

2002a; Šatavičius 2005b), others claim that they, neither typologically nor technologically, can convincingly be linked to the Hamburgian. Instead, they see them as being of the Grensk type and hence as reflecting this much younger techno-complex (Butrimas & Ostrauskas 1999; Ostrauskas 2002a). Hamburgian points, especially of the ‘classic’ variant, are diverse in shape (Grimm, Jensen & Weber 2012; Riede & Pedersen 2018). Yet, Hamburgian flint-knappers, similarly to their Magdalenian ancestors, were rather strict in the application of specific chaîne opératoire approaches (Weber 2012) and the observed difference in technology, therefore, suggest caution in classifying such stray finds (see Figure 1:1, and compare Table 4). Initially, Rimantienė (1971; 1996) attributed these projectiles to her Baltic Magdalenian and identified them as projectiles with complete retouch on one edge (i.e. backed pieces). In nearby Belarus, there are found a handful of possible shouldered points, but these too are finds from uninformative context and all lack secure dating (Vashanau 2010). All these observation amount to a cautious stance: The few candidate lithic objects may indicate a Hamburgian presence, but the lack of additional material such as cores and Zinken coupled with the lack of numeric dates indicating human presence at this early stage in the LGIT should lead to a careful interpretation of these collections.

The Federmessergruppen techno-complex, perceived as a more western and central European phenomenon, has traditionally attracted less interest from Lithuanian Final Palaeolithic researchers. Compared with other Final Palaeolithic cultures, the smallest number of artefacts are ascribed to this techno-complex. Only a small assemblage from Ežerynas 11 that contains Wehlen-type tanged scrapers, microburins, fragments of blades with retouch, and one special-purpose tool (Figure 1:2; Šatavičius 2001), as well as two backed pieces from Pypliai 1C and Skaruliai (Girininkas 2009) have been attributed to the Federmessergruppen. This paucity may in part relate to the fact that in the Western Baltic, finds of Federmessergruppen artefacts and associated sites have been underreported until the 1970s (Riede 2017). During the last few decades, however, much new knowledge about the distribution, typology,
and technology of the Federmessergruppen has been gained. Its boundaries have been expanded, including eastwards into Poland. In Poland, more and more sites are ascribed to the Federmessergruppen (Sobkowiak-Tabaka 2014). Yet, substantial uncertainty regarding the Federmessergruppen remains: This is in part driven by the much lower degree of technological standardisation that results in a rather varied and often hard to recognise archaeological signature. Federmessergruppen flint-knappers adapted their technological strategies to the available raw materials using flexible chaines opératoires (De Bie & Vermeersch 1998; Loew 2005), making Federmessergruppen single finds and assemblage components easy to overlook or to falsely ascribe them to other cultural units – a problem further confounded when working with surface collections (Riede, Laursen & Hertz 2011a; Riede 2013).

The number of sites attributed to the Brommean increases significantly in comparison to the Hamburgian and Federmessergruppen. This presumed presence of the Brommean is, however, based almost exclusively on the presence of large tanged points, which by many are assumed to be a diagnostic tool for said culture. Yet, large tanged points are found within Federmessergruppen, Ahrensburgian, Swiderian and other Eastern European Final Palaeolithic cultures (Kobusiewicz 2009b; Kobusiewicz 2009a). Both in their shape (Serwatka & Riede 2016) and their technology (Fischer 1985) large tanged points from different contexts cannot readily be distinguished – an issue almost certainly due to convergent cultural evolutionary trajectories shaped by similar functional constraints (cf. O’Brien, Buchanan & Eren 2018).

While some researchers want to extend the territory of the Bromme culture both far to the west as well as to the east (Andersson et al. 2004), the lithic evidence from Lithuania cannot be harnessed for such arguments. While the antler axe from Parupė clearly indicates human presence in the territory of present-day Lithuania in the Allerød, this artefact class lacks cultural diagnostic value (Clausen 2004) and hence cannot resolve to which technological tradition these colonists may belong. Given the current uncertainties regarding the Final Palaeolithic cultural taxonomy, it is tempting to advocate a collapse of the taxonomic unit Baltic Magdalenian into the Federmessergruppen. In light of research conducted since Rimantienė’s definition of the Baltic Magdalenian, this is, however, based almost exclusively on the presence of large tanged points suggests an affiliation with the Federmessergruppen. In light of research conducted since Rimantienė’s definition of the Baltic Magdalenian, its chronology and its place with the contemporaneous landscape of Final Palaeolithic taxonomic units. Tentatively, the similarity of the candidate assemblages to the Final Magdalenian combined with the lack of standardization in the flint technology, the presence of thumbnail scrapers and large tanged points suggest an affiliation with the Federmessergruppen. In summary, the review of the available evidence for the Final Palaeolithic culture history of present-day Lithuania leaves us compelled to side with the earlier and less detailed chronology suggested by Rimantienė. A question remains with regard to the Baltic Magdalenian, its chronology and its place with the contemporaneous landscape of Final Palaeolithic taxonomic units. Tentatively, the similarity of the candidate assemblages to the Final Magdalenian combined with the lack of standardization in the flint technology, the presence of thumbnail scrapers and large tanged points suggests an affiliation with the Federmessergruppen. In light of research conducted since Rimantienė’s definition of the Baltic Magdalenian, it is tempting to advocate a collapse of the taxonomic unit Baltic Magdalenian into the Federmessergruppen. Given the high level of variability within lithic assemblages of the Federmessergruppen and their wide chronological and geographic occurrence, this techno-complex constitutes the most conservative ‘jumping’ taxonomic unit for this period. However, Sauer & Riede (2018) have recently shown that uncertainties in the construction of archaeological taxonomic units in the Final Palaeolithic of Europe may be so acute as to warrant a more radical rejection of such traditional frameworks (see also Otte & Keeley 1990; Barton & Neeley 1996; Houtsma et al. 1996). New methods (e.g. geometric morphometrics) that couple technological analyses with transparent data-driven classifications may yet come to offer alternative avenues to unit construction and classification (e.g. cultural phylogenetics).

Regarding the chronology and the process of re-colonisation, we conclude that the suggestion that Lithuania was re-inhabited by Hamburgian foragers already during Gl-1e does not, we argue, have enough supporting evidence at present. Recolonisation during the Allerød/Gl-1c, b, may be supported by the environmental data indicating moderate climatic conditions and the AMS radiocarbon date from the Parupė implement. However, as yet, there

In contrast to the other cultural entities discussed above, the evidence for a Swiderian presence in present-day Lithuania is derived from more secure contexts. Radiocarbon dates from Kabeliai-2 (Ostrauskas 2002b) obtained from charred wood found in the lower cultural level C indicates an age of occupation at the end of the Younger Dryas/GS-1 or the beginning of the Holocene (Table 6). It should also be noted that – much like the bulk of dates for the Ahrensburgian – most Swiderian sites should probably be dated to the very end of the Younger Dryas or even the early Holocene (Weber, Grimm & Baales 2011).

In summary, the review of the available evidence for the Final Palaeolithic culture history of present-day Lithuania leaves us compelled to side with the earlier and less detailed chronology suggested by Rimantienė. A question remains with regard to the Baltic Magdalenian, its chronology and its place with the contemporaneous landscape of Final Palaeolithic taxonomic units. Tentatively, the similarity of the candidate assemblages to the Final Magdalenian combined with the lack of standardization in the flint technology, the presence of thumbnail scrapers and large tanged points suggests an affiliation with the Federmessergruppen. In light of research conducted since Rimantienė’s definition of the Baltic Magdalenian, it is tempting to advocate a collapse of the taxonomic unit Baltic Magdalenian into the Federmessergruppen. Given the high level of variability within lithic assemblages of the Federmessergruppen and their wide chronological and geographic occurrence, this techno-complex constitutes the most conservative ‘jumping’ taxonomic unit for this period. However, Sauer & Riede (2018) have recently shown that uncertainties in the construction of archaeological taxonomic units in the Final Palaeolithic of Europe may be so acute as to warrant a more radical rejection of such traditional frameworks (see also Otte & Keeley 1990; Barton & Neeley 1996; Houtsma et al. 1996). New methods (e.g. geometric morphometrics) that couple technological analyses with transparent data-driven classifications may yet come to offer alternative avenues to unit construction and classification (e.g. cultural phylogenetics).

Regarding the chronology and the process of re-colonisation, we conclude that the suggestion that Lithuania was re-inhabited by Hamburgian foragers already during Gl-1e does not, we argue, have enough supporting evidence at present. Recolonisation during the Allerød/Gl-1c, b, may be supported by the environmental data indicating moderate climatic conditions and the AMS radiocarbon date from the Parupė implement. However, as yet, there

Table 6: Radiocarbon dates from the Kabeliai-2 site obtained on charred wood. After Ostrauskas (2002b), recalibrated using OxCal 4.3 (Bronk Ramsey 2009) and the IntCal13 calibration curve (Reimer et al. 2013).

Laboratory number	¹⁴C age (BP)	Calibrated age (cal BP), 95.4 % CI
Ta-2606	9910 ± 100	11,770–11,170
Ta-2601	9820 ± 220	12,050–10,650
is no robust archaeological evidence indicating human presence during the warmer early GI-1c, nor during the cold Gerzensee oscillation (GI-1b). Palaeoenvironmental data suggest rather large climate fluctuations during the entire Late Glacial and, independently of the precise date for an initial human presence in the region, we favour a model of punctuated human colonisation in accordance with these frame-setting fluctuations. At present, a basic model for the Final Palaeolithic human re-colonisation of Lithuania would postulate a periodic, perhaps seasonal but at any rate ephemeral presence of foragers during the GI-1c, b, a, followed by a longer period of depopulation during the first half of GS-1, followed again by re-colonisation at the very end of GS-1 and the Early Holocene.

Concluding remarks and future perspectives
The Lithuanian Final Palaeolithic culture history and palaeoenvironmental data critically reviewed in this paper serves as a cautionary example of the excessive application of typology and of supposedly diagnostic tool types as cultural markers. We suggest that a model with a colonisation sequence much like the Western Baltic is not supported by the data currently at hand. Typology has been heavily criticised as an outmoded tool for constructing cultural taxonomies in the Palaeolithic (Houtsma et al. 1996; Newell & Constandse-Westermarck 1996; Bisson 2000; Shea 2014) and regionally specific taxonomies are argued to often obscure rather than reveal important cross-regional similarities and differences (Otte & Keeley 1990; Sauer & Riede 2018). The existing chronology which suggests the presence of Hamburgian, Federmessergruppen, Brommean and Ahrensburgian technological units in Lithuania during the Final Palaeolithic, mirroring the Western Baltic situation, is found unsupported by the evidence currently available. The older culture-historical framework suggested by Rimantienė (1971) including only two cultural entities – the Baltic Magdalenian and the Swiderian – is considered more appropriate, although we further suggest collapsing the Baltic Magdalenian into the Federmessergruppen, or alternatively rejecting these traditional classifications in favour of new more uniformly constructed classifications (cf. Gamble et al. 2005).

Based on the existing evidence, the timing of re-colonisation should be placed not into GI-1e but rather into GI-1c-a when the amelioration of climatic condition is registered in the Eastern Baltic. It is likely, however, that the subsequent cooling of GS-1/Younger Dryas again led to a decolonisation of the region. In our view, the Final Palaeolithic in Lithuania is in need of both more critical re-assessments of the available evidence as well as new data. Only preliminary conclusions vis-à-vis cultural affiliations, chronology and relations to contemporaneous environmental changes can be offered – there is a clear need for excavations to be carried out according to contemporary standards, further absolute dates and robust stratigraphic observations. In addition, dating organic artefacts – even stray finds – from Lithuania and surrounding regions should be given priority in researching the Final Palaeolithic in Lithuania, and the candidate lithic material should be submitted to detailed technological recording and analysis. Increasing the number of radiocarbon dates on clearly humanly modified organic objects is the most straightforward way of falsifying the hypothesis of a more curtailed colonisation suggested here. Yet, even if new and secure numeric dates can be obtained, these must still be brought into robust contextual association with the lithic material in order to further inform our understanding of the cultural taxonomic relations and trajectories in this period. In parallel, the acquisition of high-resolution palaeoenvironmental information for the LGIT, ideally time-constrained by key marker tephras, would be desirable. All of these efforts will require substantial investments into research, but as long as such data are not available, we caution against models outlining all too detailed colonisation chronologies and culture-historical connections.

Acknowledgements
The authors would like to thank Florian Sauer (Aarhus University) for helping with the illustrations and the two anonymous reviewers for the valuable comments on our manuscript. Research associated with this paper is carried out as part of grant #6107-00059B awarded by the Danish Council for Independent Research.

Competing Interests
The authors have no competing interests to declare.

References
Ammerman, AJ and Feldman, MW. 1974. On the “Making” of an Assemblage of Stone Tools. American Antiquity, 39(4): 610–616. DOI: https://doi.org/10.2307/278909
Andersson, M, Karsten, P, Knarrström, B and Svensson, M. 2004. Stone Age Scania. Significant places dug and read by contract archaeology. Lund: Riksantikvarieämbetet.
Baker, CM. 1978. The Size Effect: An Explanation of Variability in Surface Artifact Assemblage Content. American Antiquity, 43(2): 288–293. DOI: https://doi.org/10.2307/279254
Barton, CM and Neeley, MP. 1996. Phantom cultures of the Levantine Epipaleolithic. Antiquity, 70(267): 139–147. DOI: https://doi.org/10.1017/ S0003598X00082995
Barton, RNE and Roberts, AJ. 2001. A Lyngby point from Mildenhall, Suffolk and its implications for the British Late Upper Palaeolithic. In: Milliken, S and Cook, J (eds.), A Very Remote Period Indeed. Papers on the Palaeolithic presented to Derek Roe, 234–241. Oxford: Oxbow.
Barton, RNE, Roberts, AJ and Roe, D. (eds.) 1991. The Late Glacial in north-west Europe: human adaptation and environmental change at the end of the Pleistocene Council for British Archaeology Research Report 77. London: CBA.
Benet-Tygel, S. 1944. The Magdalenian culture in Poland. American Anthropologist, 46(4): 479–499. DOI: https://doi.org/10.1525/aa.1944.46.4.02a00050
Binford, LR. 2001. Constructing frames of reference: an analytical method for archaeological theory building using hunter-gatherer and environmental data sets. Berkeley, CA: University of California Press.

Bisson, MS. 2000. Nineteenth Century Tools for Twenty-First Century Archaeology? Why the Middle Paleolithic Typology of François Bordes Must Be Replaced. Journal of Archaeological Method and Theory, 7(1): 1–48. DOI: https://doi.org/10.1023/A:1009578011590

Björck, S. 1995. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quaternary International, 27(Supplement C): 19–40. DOI: https://doi.org/10.1016/1040-6182(94)00573-A

Björck, S., Walker, MJC, Cwynar, LC, Johnsen, SJ, Knudsen, K-L, Lowe, JJ and Wohlfarth, B. 1998. An Event Stratigraphy for the Last Termination in the North Atlantic Region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science, 13(4): 283–292. DOI: https://doi.org/10.1002/(SICI)1099-1417(199807/08)13:4<283::AID-JQS386>3.0.CO;2-A

Bobrowski, P and Sobkowiak-Tabaka, I. 2006. How far east did the Hamburgian culture reach? Arkæologisk Forum, 59: 11–20.

Boismier, WA. 1997. Modeling the effects of tillage processes on artifact distributions in the ploughsoil. A simulation study of tillage-induced pattern formation. British Archaeological Reports (International Series) 259. Oxford: Archeopress.

Brazaitis, D. 1998. Pyplių piliakalnio papėdės gyvenvietė. Lietuvos archeologija, 15: 87–102.

Breest, K and Gerken, K. 2008. Kulturelle Einflüsse und Beziehungen im Spätpaläolithikum Niedersachsens – Ein Diskussionsbeitrag Sassenholz 78 und 82, Ldkr. Rotenburg (Wümme). Die Kunde N.F., 59: 1–38.

Brinch Petersen, E. 1970. Le Brommeen et le cycle de Lyngby. Quartär, 21: 93–95.

Brinch Petersen, E. 2009. The human settlement of southern Scandinavia 12500-8700 cal BC. In: Street, M, Barton, RNE and Terberger, T (eds.), Humans, environment and chronology of the late glacial of the North European Plain, 89–129. Mainz: Verlag des Römisch-Germanischen Zentralmuseums.

Brendsted, J. 1938. Danmarks Oldtid I. Kobenhavn: Gyldendal.

Brøndsted, J. 2004. Founder of the School of Stone Age Explorations in Lithuania and the Eastern Baltic Region. Archaeologia Lituana, 17: 11–25. DOI: https://doi.org/10.15388/Archlit.2016.17.10679

Burdukiewicz, JM. 2001. The last Ice Age and settlement break in the northern part of Central Europe. Fontes Archaeologici Posnanienses, 39: 15–29.

Burdukiewicz, JM and Kobusiewicz, M. (eds.) 1987. Late Glacial in Central Europe. Culture and Environment. 5. Krakow: Prace Komisji Archeologicznej.

Burdukiewicz, JM and Ostrauskas, T. 1999. Tanged Points Cultures in Lithuania. In: Kozlowski, SK, Gurbu, J and zaliznyak, LL (eds.), Tanged Point Cultures in Europe. Read at the International Archaeological Symposium. Lublin, September, 13–16, 1993, 267–271. Lublin: Maria Curie Skłodowska University Press.

Clausen, I. 2004. The reindeer antler axe of the Alleröd period from Klappholz LA 63, Kreis Schleswig-Flensburg/Germany. Is it a relic of the Federmesser, Bromme or Ahrensburg culture? In: Terberger, T and Eriksen, BV (eds.), Hunters in a Changing World. Environment and Archaeology of the Pleistocene – Holocene Transition (c. 11000–9000 B.C. in Northern Central Europe), 141–164. Rahden: Verlag Marie Leidorf GmbH.

Crombé, PH, Robinson, E, Van Strydonck, M and Boudin, M. 2013. Radiocarbon dating of Mesolithic open-air sites in the coversand area of the north-west European Plain: Problems and prospects. Archaeometry, 55(3): 545–562. DOI: https://doi.org/10.1111/j.1475-4754.2012.00693.x

De Bie, M and Vermeersch, PM. 1998. Pleistocene-Holocene transition in the Benelux. Quaternary International, 49/50: 29–43. DOI: https://doi.org/10.1016/S1040-6182(97)00052-9

de Klerk, P. 2004. Confusing concepts in Lateglacial stratigraphy and geochronology: origin, consequences, conclusions (with special emphasis on the type locality Bollingø). Review of Palaeobotany and Palynology, 129: 265–298. DOI: https://doi.org/10.1016/j.revpalbo.2004.02.006

De Moly, JCM. 1954. The Bromme Culture. Notes on Denmark’s most ancient culture. Quartär, 6: 109–117.

Ekholm, G. 1926. Lyngby-Kultur. In: Ebert, M (ed.), Reallexikon der Vorgeschichte. Band 7, 324–326. Berlin: Verlag Walter de Gruyter & Co.

Eriksen, BV. 1999. Late Palaeolithic settlement in Denmark – how do we read the record? In: Kobusiewicz, M and Kozlowski, JK (eds.), Post-Pleniglacial Re- Colonisation of the Great European Lowland, 157–174. Kraków: Polska Akademia Umiejetnosci.

Eriksen, BV. 2002. Reconsidering the geochronological framework of Lateglacial hunter-gatherer colonization of southern Scandinavia. In: Eriksen, BV and Bratlund, B (eds.), Recent studies in the Final Palaeolithic of the European plain, 25–42. Højbjerg: Jutland Archaeological Society.
Feurdean, A, Perćou, A, Tanţău, I, Stevens, T, Magyari, EK, Onac, BP, Marković, S, Andreič, M, Connor, S, Fărcaș, G, Gałąka, M, Gaudenzy, T, Hoek, W, Kolaczek, P, Kuneš, P, Lamentowicz, M, Marinova, E, Michczyńska, DJ, Perćou, I, Płociennik, M, Słowiński, M, Stančikaitė, M, Sumegi, P, Svensson, A, Tąma, T, Timar, A, Tonkov, S, Toth, M, Veski, S, Willis, KJ and Zernitskaya, V. 2014. Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. *Quaternary Science Reviews*, 106(Supplement C): 206–224. DOI: https://doi.org/10.1016/j.quascirev.2014.06.003

Fischer, A. 1985. Late Paleolithic Finds In: Kristiansen, K (ed.), *Archaeological Formations. The representativity of archaeological remains from Danish Prehistory*, 81–88. Copenhagen: Nationalmuseum.

Fischer, A, Mortensen, MF, Henriksen, PS, Mathiassen, DR and Olsen, J. 2013. Dating the Trollesgave site and the Bromme culture – conceptual fix-points for the Late-glacial settlement of Southern Scandinavia. *Journal of Archaeological Science*, 40(12): 4663–4674. DOI: https://doi.org/10.1016/j.jas.2013.06.026

Frenzel, B. 1983. Die Vegetationsgeschichte Süd-deutschlands im Eiszeitalter. In: Müller-Beck, H (ed.), *Urgeschichte in Baden-Württemberg, 91–166. Stuttgart: Theiss Verlag*.

Gaidamavičius, A, Stančikaitė, M, Kisielienė, D, Mažeika, J and Gryguc, G. 2011. Post-glacial vegetation and environment of the Labanoras Region, East Lithuania: implications for regional history. *Geological Quarterly*, 55(3): 269–284.

Galiński, T and Sulgostowska, Z. 2010. Younger Dryas tanged point key sites in western Pomerania. *Archaeologia Baltica*, 13: 43–57.

Gamble, CS, Davies, W, Pettitt, P and Richards, M. 2005. The Archaeological and Genetic Foundations of the European Population during the Late Glacial: Implications for ‘Agricultural Thinking’. *Cambridge Archaeological Journal*, 15(2): 193–223. DOI: https://doi.org/10.1017/S0959774305000107

Girinkas, A. 2000. Katos 1-oji gyvenvietė. *Archeologiniai tyrinėjimai Lietuvoje*, 198/1999: 12–14.

Girinkas, A. 2009. Lietuvos Archeologija/T:1. Akmens amžius. Vilnius: Versus aureus.

Girinkas, A. 2011. Baltu kulturos įstakos II. Klapeida: Klapėdios universiteto leidykla.

Girinkas, A, Rimkus, T, Slaš, G and Daugnora, L. 2017. Liungbiu tipo dirbinių Lietuvoje. *Istorija*, 105(1): 4–23. DOI: https://doi.org/10.15823/istorija.2017.01

Girinkas, A, Rimkus, T, Slaš, G, Daugnora, L, Stančikaitė, M and Zabiela, G. 2016. Liungby type artefacts of Lithuania in the context of the Stone Age in Europe: Multidisciplinary study. *Arheologija un etnografija*, 29: 13–30.

Grigaliūnas, M. 2013. The first Palaeolithic and Mesolithic settlements in Aukštumala, Šilutė district, the Nemunas river delta. *Archaeologica Baltica*, 20: 174–189.

Grimm, SB, Jensen, DS and Weber, M-J. 2012. A lot of good points – Havelte points in the context of Late Glacial tanged points in Northwestern Europe. In: Niekus, M, Barton, RNE, Street, M and Terberger, T (eds.), *A mind set on flint. Studies in honour of Dick Staprof*. Groningen: Barkhuis. 251–266. DOI: https://doi.org/10.2307/j.ctt272864.21

Grimm, SB and Weber, M-J. 2008. The chronological framework of the Hamburgian in the light of old and new 14C dates. *Quartär*, 55: 17–40. DOI: https://doi.org/10.7485/QU55_02

Holm, J and Rieck, F. 1983. Jels 1 – the First Danish Site of the Hamburgian Culture. A Preliminary Report. *Journal of Danish Archaeology*, 2: 7–11.

Holm, J and Rieck, F. 1987. Die Hamburger Kultur in Dänemark. *Archäologisches Korrespondenzblatt*, 17(2): 151–168.

Holm, J and Rieck, F. (Eds.) 1992. *Istidsjægerevel Jesloerne*. Monografi i serien Skrifter fra Museumsrådet for Sonderjyllands Amt 5. Haderslev: Museumsrådet for Sonderjyllands Amt.

Houtsmra, P, Kramer, E, Newell, RR and Smit, JL. 1996. *The Late Palaeolithic Habitation of Haule V: From Excavation Report to the Reconstruction of Federmesser Settlement Patterns and Land-Use. Assen: Van Gorcum*.

Kabacinski, J and Kobusiewicz, M. 2007. Kragola near Kolo (Central Poland) – the easternmost settlement of the Hamburgian Culture. In: Kobusiewicz, M and Kabacinski, J (eds.), *Studies in the Final Palaeolithic settlement of the Great European Plain*, 21–52. Poznan: Institute of Archaeology and Ethnology, Polish Academy of Sciences (Poznan Branch).

Kabacinski, J and Sobkowiak-Tabaka, I. 2012. The ‘Eastern extension’ – New data on the Hamburgian in Poland. In: Niekus, M, Barton, RNE, Street, M and Terberger, T (eds.), *A mind set on flint. Studies in honour of Dick Staprof*, 217–234. Groningen: Barkhuis. DOI: https://doi.org/10.2307/j.ctt272864.19

Kobusiewicz, M. 2002. Ahrensburgian and Svidarian: two different modes of adaptation? In: Eriksen, BV and Bratlund, B (eds.), *Recent studies in the final Palaeolithic of the European plain: proceedings of a U.I.S.P.P. symposium, Stockholm, 14–17 October 1999*, 117–122. Hojbjerg: Jutland Archaeological Society.

Kobusiewicz, M. 2009a. Whether the Bromme culture existed? *Folia Praehistorica Posnaniensia*, XV: 75–91.

Kobusiewicz, M. 2009b. The Lyngby point as a cultural marker. In: Street, M, Barton, RNE and Terberger, T (eds.), *Humans, environment and chronology of the late glacial of the North European Plain*, 169–178. Mainz: Verlag des Römisch-Germanischen Zentralmuseums.
Ivanovaitė and Riede: The Final Palaeolithic Hunter-Gatherer Colonisation of Lithuania in Light of Recent Palaeoenvironmental Research

1936. Przemysl swiderski stanowiskań, 27(2): 111–144.

1968. Concerning shouldered points in... Köln: Böhlau Verlag.

1901. Poszukiwania archeologiczne... 112(27): 8232–8237. DOI:

2012. Nemun, 3: 3–29.

1999. Ėū, 53–66.

2002. Lyngby Points in Eastern Europe. Ė, 27(1): 127–147. DOI:

2010. The Late... Museum of Natural History.

2016. 2D geometric...:

1945. The principles of classification and a... 146195719900200302

1999. Stone Age Settlement in the Lega...nu/10.1016/j.qua.2014.01.024

1999. Stone Age Settlement in the Lega... DOI: https://doi.org/10.1016/j.qua.2014.01.024

2014. Sink the Mousterian? Named stone tool... https://doi.org/10.1016/j.quaint.2010.12.002

2015. Lateglacial and early Holocene environmental changes in northeastern Lithuania. Quaternary International, 207(1): 80–92. DOI: https://doi.org/10.1016/j.qua.2008.10.009

2015. Lateglacial and early Holocene environmental dynamics in northern Lithuania: A multi-proxy record from Ginkūnai Lake. Quaternary International, 357(Supplement C): 44–57. DOI: https://doi.org/10.1016/j.qua.2014.08.036

Stančikaitė, M, Šinkūnas, P, Šeirienė, V and Kisieliienė, D. 2008. Patterns and chronology of the Lateglacial environmental development at Pamerkiai and Kašučiai, Lithuania. Quaternary Science Reviews, 27(1): 127–147. DOI: https://doi.org/10.1016/j.quascirev.2007.01.014

Straus, LG, Eriksen, BV, Erlandson, JM and Yesner, D R. (Eds.) 1996. Humans at the End of the Ice Age. The Archaeology of the Pleistocene-Holocene Transition. New York, NY: Plenum Press.

Szkiewicz, W. 1901. Poszukiwania archeologiczne w powiatach Lidzkim i Trockim (gub. Wileńska). Światowit, 3: 3–29.

Tallavaara, M, Luoto, M, Korhonen, N, Järvinen, H and Seppä, H. 2015. Human population dynamics in Europe over the Last Glacial Maximum. Proceedings of the National Academy of Sciences, 112(27): 8232–8237. DOI: https://doi.org/10.1073/pnas.1503784112

Taute, W. 1968. Die Stielspitzen-Gruppen im nördlichen Mitteleuropa. Ein Beitrag zur Kenntnis der späten Altsteinzeit. Köln: Böhlau Verlag.

Terberger, T and Street, M. 2002. Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity, 76: 691–698. DOI: https://doi.org/10.1017/S0003598X00091134

Vashanau, A. 2010. Concerning shouldered points in the south-western Belarus. Acta Archaeologica Albaruthenica, VI: 22–28.

Veil, S. 2006. Are Stone Age ploughzone sites third class monuments? Some insights from investigations on Stone Age surface sites in Lower Saxony, Germany. In: Rensink, E and Peeters, H (eds.), Preserving the Early Past: Investigation, selection and preservation of Palaeolithic and Mesolithic sites and landscapes, 107–126. Amersfoort: Rijksdienst voor het Oudheidkundig Bodemonderzoek.

Vermersch, PM. 1977. Die stratigraphischen Probleme der postglazialen Kulturen in Dünengebi- eten. Quartär, 27/28: 103–109.

Weber, M.-J. 2012. From technology to tradition – Re-evaluating the Hamburgian-Magdalenian relationship. Untersuchungen und Materialien zur Steinezeit in Schleswig-Holstein und im Ostseeraum, Band 5. Neumünster: Wachholtz.

Weber, M.-J, Grimm, SB and Baales, M. 2011. Between warm and cold: Impact of the Younger Dryas on human behavior in Central Europe. Quaternary International, 242(2): 277–301. DOI: https://doi.org/10.1016/j.qua.2010.12.002

Wygat, BA and Heidenreich, SM. 2014. Deglaciation and human Colonization of Northern Europe. Journal of World Prehistory, 27(2): 111–144. DOI: https://doi.org/10.1007/s10963-014-9075-z

Zaliznyak, LL. 1999. Final Palaeolithic in the North-west of Eastern Europe. Kiev: National University of Kyiv-Mohyla Academy.
