Repurposing Chloroquine Against Multiple Diseases With Special Attention to SARS-CoV-2 and Associated Toxicity

Siya Kamat and Madhuree Kumari*

Department of Biochemistry, Indian Institute of Science, Bengaluru, India

Chloroquine and its derivatives have been used since ages to treat malaria and have also been approved by the FDA to treat autoimmune diseases. The drug employs pH-dependent inhibition of functioning and signalling of the endosome, lysosome and trans-Golgi network, immunomodulatory actions, inhibition of autophagy and interference with receptor binding to treat cancer and many viral diseases. The ongoing pandemic of COVID-19 has brought the whole world on the knees, seeking an urgent hunt for an anti-SARS-CoV-2 drug. Chloroquine has shown to inhibit receptor binding of the viral particles, interferes with their replication and inhibits “cytokine storm”. Though multiple modes of actions have been employed by chloroquine against multiple diseases, viral diseases can provide an added advantage to establish the anti-SARS-CoV-2 mechanism, the in vitro and in vivo trials against SARS-CoV-2 have yielded mixed results. The toxicological effects and dosage optimization of chloroquine have been studied for many diseases, though it needs a proper evaluation again as chloroquine is also associated with several toxicities. Moreover, the drug is inexpensive and is readily available in many countries. Though much of the hope has been created by chloroquine and its derivatives against multiple diseases, repurposing it against SARS-CoV-2 requires large scale, collaborative, randomized and unbiased clinical trials to avoid false promises. This review summarizes the use and the mechanism of chloroquine against multiple diseases, its side-effects, mechanisms and the different clinical trials ongoing against “COVID-19”.

Keywords: SARS-CoV-2, pH-dependent, autophagy, immunomodulatory, antiviral mechanism, toxicity

INTRODUCTION

Chloroquine, commonly known for the anti-malarial applications has evolved gradually as a magic medicine, effective against many diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple types of cancer and viruses. It has also been a molecule of choice among research community for studying the mechanism of autophagy, nanoparticles internalization, endocytosis and interlinked role of multiple signalling pathways in various diseases including cancer and autophagy (Pelt et al., 2018; Varisli et al., 2019).

Recent onset of the Coronavirus Disease-2019, a pandemic which has put the world on its knees, has again brought this “age-old drug” chloroquine and its derivatives into bright limelight. The disease has already spread worldwide and has killed more than 9,534,437 of the world population (Coronavirus...
Death Toll and Trends—Worldmeter, n.d.) and is still affecting millions. Multiple drugs are being tested, and the research community leaves no stone unturned to come up with an effective vaccine or drug to treat this wide-spread disease. Chloroquine and its derivatives have also emerged as a potential drug for effective treatment of this novel coronavirus (Smith et al., 2020; Touret and Lamballerie, 2020). Other potential drugs being tested for COVID-19 are remdesivir (GS-5734), lopinavir/ritonavir, Interferon alfacon-1 in conjunction with corticosteroids and Ribavirin in conjunction with corticosteroids (Smith et al., 2020; Wang M. et al., 2020). However, none of the drugs being researched has been approved by the World Health Organization (WHO) for the treatment of COVID-19 till now, keeping the room open for further research on chloroquine and the derivatives.

4-N-(7-chloroquinolin-4-yl)-1-N, 1-N-diethylpentane-1, 4-diamine, commonly known as chloroquine is a 4-aminoquinoline approved by FDA for treatment of malaria and inflammation–related diseases. It is a colorless and odourless crystal with a molecular mass of 319.9g/mol and available as a generic medicine (PubChem ID: 2719). Chloroquine is an inexpensive, water-soluble, weakly basic tertiary amine, which at physiological pH (7.2–7.4) is highly membrane permeable. However, inside the acidic organelles, it gets protonated and accumulates, raising the pH of the respective organelle. It can interfere with all the pH-dependent signalling and functioning of the endosome, lysosome, Golgi network, phagosome, and autophagosomes (Weyerhäuser et al., 2018). However, due to some side-effects of chloroquine, several derivatives, including hydroxychloroquine have been synthesized with similar efficacy but reduced toxicity.

Chloroquine and its derivatives (Figure 1), emerging as one of the most probable drugs alone or in combination against the battle of COVID-19, needs a detailed compilation and review so that the mechanisms elucidated by them against multiple diseases can be understood and co-related or used for the further vaccine and drug development for COVID-19. This review summarises chloroquine’s journey, from being an anti-malarial drug to a magic bullet against multiple diseases, its good and evil, results of clinical trials obtained so far and the future aspects, it holds along with its drawbacks as prophylaxis or drug to fight COVID-19.

CHLOROQUINE AS AN ANTI-MALARIA DRUG

Mechanism of Haemoglobin Degradation Inside the Human Body by the Malaria Parasite

To understand, how chloroquine inhibits malarial parasite, it is important to know the mechanism employed by *Plasmodium* sp. to hijack erythrocytes and use haemoglobin for their energy requirements. The *Plasmodium* sp. has a specialized acidic organelle known as digestive vacuole (DV) for degrading haemoglobin for its energy requirements following a cascade of protease activities (Pandey and Chauhan, 1998). The by-product of haemoglobin digestion is heme. Heme, when bound in haemoglobin is in the non-toxic ferrous form (Fe²⁺), but when free, it converts into very toxic ferric form (Fe³⁺) (Francis et al., 1994). To avoid toxicity, the parasite must evolve machinery to get rid of toxic heme, which is achieved by crystallization of heme called “hemozoin” or “malarial pigment” (Coronado et al., 2014). The formation of hemozoin takes place at considerably low pH where two heme units are linked together by iron carboxylate bonds. This unusual linkage is important for the synthesis and growth of an ordered insoluble crystal (Bohle et al., 1997; Coronado et al., 2014). Histidine rich protein (HRP) plays a vital role in the biocrystallization of hemozoin (Coronado et al., 2014). The hemozoin formed does not only detoxify the heme pigment for parasite but also adversely affects the human immune system, especially macrophages (Schwarzer et al., 2003).

![Figure 1 | Chemical structure of (A) chloroquine and (B) hydroxychloroquine](National Center for Biotechnology Information, 2004).
How Chloroquine Works Against the Malaria Parasite

There were several theories proposed regarding the mode of action of chloroquine to kill malaria pathogen as DNA binding agent (Parker and Irvin, 1952) protein synthesis inhibitor (Surolia and Padmanaban, 1991) polyamine metabolism inhibitor (Slater, 1993) and inhibitor of hemozoin crystallization (Orjih, 1997; Gorka et al., 2013). Most of the studies have shown chloroquine as a potent inhibitor of hemozoin crystallization. Sullivan et al. (1996) postulated that chloroquine inhibits hemozoin formation by inhibiting HRP II. Again, Sullivan et al. (1998) in their study concluded that chloroquine blocked the polymerization of free heme released during haemoglobin proteolysis in intraerythrocytic P. falciparum. Later in a review, Sullivan (2017) summarized that quinolones block every step of toxic heme crystal growth. DVs are acidic organelles with pH 5.0, where chloroquine can diffuse inside easily. However, the acidic pH yields diprotonation of the drug, inhibiting its movement out of the DV. The trapped diprotonic chloroquine inhibits the crystal growth of hemozoin, toxifying the malaria pathogen (Goldberg, 1993). Pandey and Tekwani et al. (1997) in their study established that chloroquine initiates a reverse reaction of conversion of hemozoin to monomeric heme (ferriprotoporphyrin IX) after interaction with malarial hemozoin, also termed as termed “hemozoin depolymerization”.

Developing Resistance by Plasmodium sp. Against Chloroquine and Alternative Strategies

Developing resistance by Plasmodium sp. against chloroquine attributes to a point mutation in the genes coding for the chloroquine resistance transporter (PfCRT) present in DV (Martin et al., 2009; Chinappi et al., 2010). This protein avoids the accumulation of chloroquine by facilitating the efflux of the diprotic chloroquine. However, the action of protein as a channel or a carrier is still debatable. Chinappi et al. (2010) in their study proposed that the protein acts as a carrier to exclude out both mono and diprotic chloroquine. Reiling et al. (2018) proposed that pharmacological responses of sensitive and resistant malaria parasite towards chloroquine are also different. Different strategies including alternative drugs, derivatives of chloroquine and combinational drug therapies have been used to combat the chloroquine-resistant malarial parasite. Clindamycin in combination with quinine was successfully used for the treatment of uncomplicated multidrug-resistant P. falciparum malaria in Thai patients (Pukrittayakamee et al., 2000). Artesunate-atovaquone-proguanil combination has proven successful for the treatment of the similar case of malaria (van Vugt et al., 2002). Primaquine, mefloquine, artesunate and artemisinins are some of the drugs used in the treatment of resistant malaria in India (Kalra et al., 2002). Treatment of chloroquine-resistant malaria using a combination of pyrimethamine, berberine, tetracycline or cotrimoxazole has been used successfully to treat chloroquine-resistant malaria in Africa (Sheng et al., 1997).

CHLOROQUINE AS AN ANTI-RHEUMATOID ARTHRITIS AND LUPUS ERYTHEMATOSUS DRUG

RA and LE are autoimmune diseases, where healthy tissues are attacked by the hyper-immune system causing inflammatory responses. RA is mainly characterized by pain, inflammation and stiffness around the joints, whereas LE is characterized in the early phase with arthritis, skin lesions, inflammation around the lungs and kidneys. Rhusus, is a syndrome which presents symptoms associated with both RA and LE (Macfarlane and Manzel, 1998; Thome et al., 2013).

Both chloroquine (CQ) and 4-hydroxychloroquine (HCQ) are extensively used as immune-modulators to treat RA and LE. There are evidence of both, pH-dependent and pH-independent role of chloroquine and its derivatives to inhibit the generation of autoantibodies and reducing the secretion of inflammatory cytokines (Macfarlane and Manzel, 1998; Thome et al., 2013).

CQ and HCQ both can enter acidic endosome and lysosome, remain there as CQ⁺ and CQ⁺⁺, elevate their pH from 4.5 to 6.0, and interfere with their functions (Mindell, 2012). By interfering with endosome functions, it inhibits TLR7 and nine signalling and thus inhibits dendritic cell maturation. By changing the acidity of lysosome of antigen-presenting cells, CQ and HCQ, inhibits the presentation of the major histocompatibility (MHC) complex peptides to T cells, thus inhibiting the production of T helper cells and cytokines (Thome et al., 2013; Ponticelli and Moroni, 2017). It also inhibits calcium-dependent signalling, toll-like receptor signalling pathways, and iron metabolism in macrophages, thus suppressing production of IL-6, IL-1 and tumor necrosis factor-alpha (TNF-α) (Ponticelli and Moroni, 2017; Schrezenmeier and Dörner, 2020). Rand et al. (2008) in their experiment using atomic force microscopy (AFM) observed that hydroxychloroquine interferes with binding of antiphospholipid antibody–β2-glycoprotein I complexes to phospholipid bilayers, thus lowering down inflammation. Oh et al. (2016) concluded in their study that chloroquine reduces inflammation through p21-mediated suppression of T cell proliferation and Th1 cell differentiation.

Though the development of resistance against disease-modifying anti-rheumatic drugs (DMARDs) including chloroquine, has not been studied much, the role of ATP binding cassette (ABC) proteins responsible for drug efflux cannot be neglected (Jansen et al., 2003). A better understanding is needed in this field to establish alternative strategies and drug combination therapy for RA and LE.

CHLOROQUINE AS AN ANTI-CANCER DRUG

How Chloroquine Works Against Cancer

Inhibition of cancer cell growth by chloroquine is a complex process. Table 1 summarizes the multi-ranged effects of chloroquine on multiple types of cancer cells. The primary mechanism employed by chloroquine and its derivative is...
TABLE 1 | Examples of chloroquine used in treatment of cancer.

S. No	Name of drug	Type of Cancer Cell	Concentration of chloroquine	Mechanism	Reference
1	Chloroquine with C2 ceramide	Lung Cancer H460 and H1299 Cells	10 µM	Inhibition of autophagosome maturation and degradation during autophagy progression	Chou et al. (2019)
2	Chloroquine with Luteolin	Squamous Cell Carcinoma Cells	50 µM	Blocked autophagy	Verschooten et al. (2012)
3	Chloroquine as an adjuvant	Gastric cells	5–20 µM	Blocked autophagy and modulated several metabolic pathways, deficient DNA repair	Weyerhäuser et al. (2018)
4	Chloroquine	Bladder cancer cells	20 µM	Inhibition of cholesterol metabolism	King et al. (2016)
5	Chloroquine and GXX15-070	Pancreatic cancer cells	20 µM	Blocked autophagy	Wang et al. (2014)
6	Chloroquine	Rat sarcoma	1–100 µM	Sensitized cells by inhibition of DNA repair and loss of mitochondrial potential	Eng et al. (2016)
7	Chloroquine with temozolomide	Glialoma cells	5–20 µM	Sensitizing glioma cells by autophagy inhibition	Yan et al. (2016)
8	Hydroxychloroquine with phytosterol	Lung cancer cell	20–120 µM	Autophagy inhibition	Elshazly et al. (2020)
9	Chloroquine with Tenovin-6	Gastric cancer	25–50 µM	Autophagy inhibition	Ke et al. (2020)
10	Hydroxychloroquine	HeLa cells	60 µg/ml	Loss of lysosome and mitochondrial membrane potential	Boya et al. (2003)
11	Chloroquine and NVP-BEZ235	Neuroblastoma cells	0–120 µM	Lysosome -mitochondria cross talk	Seitz et al. (2013)
12	Chloroquine	Pancreatic cancer	0.5–100 µg/ml	Inhibition of neutrophil extracellular traps	Boone et al. (2018)
13	Chloroquine	Prostate cancer	10–20 µM	Induces Par-4 response	Rangnekar (2019)
14	Chloroquine	Bladder cancer	10 µM	Enhances the radiosensitivity by inhibiting autophagy	Wang et al. (2018)
15	Chloroquine and oxaliplatin	Pancreatic cancer		Modulating activity of cytosolic HMGB1	Lee et al. (2018)

Inhibition of autophagy during cancer cell death. The pH-dependent accumulation of chloroquine inside lysosome leads to impairment of autophagosome degradation and thus inhibition of autophagy (Mauthe et al., 2018). It is also known to generate endoplasmic stress, lysosome and mitochondrial membrane depolarization in a reactive oxygen species (ROS) dependent manner, thus increasing apoptosis (Ganguli et al., 2014; Alam et al., 2016). Though chloroquine alone is not sufficient to depolarise membrane potential; it is generally used to sensitize chemo or radiotherapy, in an autophagy-dependent or independent manner (Maycotte et al., 2012; Makowska et al., 2016; Zhu et al., 2019). However, there are some severe kidney and organ injuries have also been reported after the use of chloroquine as the sensitizer to chemo and radiotherapy (Kimura et al., 2013).

Recent studies have revealed that chloroquine is also able to interfere with different metabolic pathways, including cholesterol, glucose, amino acids, and mitochondria metabolism (Weyerhäuser et al., 2018).

Chloroquine is also used to treat multidrug-resistant cancer by blocking drug extrusion by interfering with the ATP-binding cassette (ABC) transporter family and other transmembrane protein related to drug resistance (Szakács et al., 2006). A summary of mechanisms employed by chloroquine has been illustrated in Figure 2.

CHLOROQUINE AGAINST BACTERIAL AND FUNGAL DISEASES

Generally, in response to intracellular bacterial or fungal pathogens, the first-line antimicrobial defence is initiated by the phagocytes. After being internalised by the phagocyte, a phagosome forms which further fuses with lysosomes. Through oxygen dependent and independent mechanisms, the bacteria are killed. This acidifies the phagolysosome to pH 4.5 and activates lysosomal enzymes. Several intracellular pathogenic bacteria and fungi evade this line of defence through different mechanisms such as, they lack the lysosomal pathway (ex. *Bartonella* sp.), escape before the fusion of phagosome and lysosome and survive in the cytosolic region (ex. *Shigella* sp, *Rickettsia* sp.), block lysosomal fusion and multiply in the phagosome (ex. *Chlamydia* sp, *Salmonella* sp, *Mycobacterium* sp, *Yersinia* sp.), resistance to survival in phagolysosome (*Coxiella burnetii*, *Tropheryma whippelii*). Chloroquine treatment inhibits the growth of these intracellular pathogens by pH dependent iron deprivation and neutralising the phagolysosomal pH (Rolain et al., 2017). Lagier et al. (2014) reported the bactericidal combination treatment of doxycycline and hydroxychloroquine against the classic *Tropheryma whippelii* caused Whipple’s disease. The authors confirmed the effectivity of the combination treatment through *in vitro* studies and clinical trials (Lagier et al., 2014). Q fever, caused by *Coxiella burnetii* infection manifests into a severe complication of endocarditis. A combination of doxycycline and chloroquine derivatives has been reported to reduce the mortality rate and is a prominent therapeutic intervention for Q fever. The mechanism of action is under investigation; however, it can be presumed that chloroquine increases the lysosomal pH and enhances the antibacterial activity of doxycycline (Alegre et al., 2012; Lagier et al., 2014).
CHLOROQUINE AGAINST VIRAL DISEASES WITH SPECIAL ATTENTION TO SARS-COV-2

Viral Pathogenesis in Human With Special Attention to SARS-CoV-2

The catastrophic impact of viral diseases on human has been observed since ages. From Spanish flu to COVID-19, humankind has always struggled to make a way out of socio-economic burden slapped by viral pathogens. The COVID-19 pandemic crisis has worsened the economic and health condition worldwide to such a level that had not been observed in the last 70 years. The COVID-19 outbreak is detrimental to old age, immuno-suppressive people, and a significant economic burden on indigenous and poor people.

Each virus has a different virulence factor, and the pathological consequences also differ from virus to virus. The knowledge of viral pathogenesis is neither accurate nor complete for most viral infections, especially for SARS-CoV-2. Novel SARS-CoV-2 is an enveloped single-stranded RNA virus belonging to the family Coronaviridae (Zheng, 2020) responsible for ongoing pandemic COVID-19. The main symptoms of this disease include fever, cough and fatigue, and it can lead to severe complications, having a mortality rate of 5.7% (Lechien et al., 2020) 50% of the COVID-19 positive patients are asymptomatic. The main symptoms in the early stages are headache (70%) loss of smell, and nasal obstruction. Cough, fever and dyspnoea are a sign of late infection (8–10 days) (Lechien et al., 2020; Sajna and Kamat, 2020).

Discussing complete progress details about the viral pathogenesis will be beyond this review, however, in general, pathogenic virus and in particular, SARS-CoV-2 follows the following events to cause an infection.

a. Entry inside the cells in an endocytosis-dependent or independent manner.

Most of the human viruses follow an endocytosis-dependent entry inside the cells. The envelope spike glycoprotein of SARS-CoV and SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) receptor on target cells to facilitate entry (Li et al., 2020; Zhang et al., 2020). The spike “S” protein is responsible for the ACE2 receptor binding, whereas the cellular serine protease TMPRSS2 is required to prime the “S” protein (Hoffmann et al., 2020).

Xu et al. (2020) in their study found that the 3D structure of the receptor-binding domain in both the viruses is identical. SARS-CoV followed direct membrane fusion between the virus
and plasma membrane as well as clathrin-dependent and -independent endocytosis mediated entry inside target cells (Wang et al., 2008; Kuba et al., 2010).

b. Viral replication inside target cells.

The replication mechanism of SARS-CoV and SARS-CoV2 is also found to be similar (Caly et al., 2020). After entry inside the target cells, the virus’s RNA genome is released in the cytoplasm, translated, and posttranslational modifications occur in endoplasmic-reticulum or Golgi apparatus. After the assembly of RNA and nucleocapsid proteins, the replicated virus particles are released by membrane fusion (Li et al., 2020).

c. Escaping immune surveillance

Most of the viral diseases survive inside human by escaping immune surveillance. Viruses of the family Coronaviridae are no exception. During the initial infection, the SARS-CoV-2 delays type 1 IFN production and avoids the recognition by pattern recognition receptors (PRRs), allowing uncontrolled viral replication, activating pro-inflammatory cytokines triggering "cytokine storm" (Huang et al., 2005; Li et al., 2020; Rothan and Byrareddy, 2020). Further, activation of specific Th1/Th17 enhances the inflammatory responses. SARS-CoV-2 escapes activation of adaptive immunity by interfering differentiation and function of dendritic cells and defensins and a severe decrease in CD4$^+$ and CD8$^+$ T cells (Li X. et al., 2020; Li G. et al., 2020).

How Chloroquine Works Against Viral Diseases

Chloroquine acts as a potent anti-viral agent by implying several mechanisms which have been listed in Table 2. The anti-viral
Examples of chloroquine used against viral diseases.

S. no	Drug	Viral Disease	Concentration	Mechanism	Reference
1	Chloroquine	Human Coronavirus OC43	15 mg of chloroquine per kg of body weight	Not established	Keyaerts et al. (2009)
2	Chloroquine	SARS-CoV	10–50 µM	Elevations of endosomal pH, terminal glycosylation of the cellular receptor, angiotensinconverting enzyme 2	Vincent et al. (2005)
3	Hydroxyferroquine Derivatives	SARS-CoV	IC₅₀ 0.3–1 µg/ml	Not established	Biot et al. (2006)
4	Chloroquine, 7,8-dihydroneopterin	SARS-CoV, MERS-CoV	EC₅₀ 3–8µmol/L, 4 mg/kg per day	Endosomal acidification	Al-Bari (2017)
5	Chloroquine	MERS-CoV	EC₅₀ of 3 µM	Inhibited replication	Liang et al. (2018)
6	Chloroquine	Zika virus	20 mg/kg of body weight	Protection against ZIKV-induced inflammatory changes	Li et al. (2017)
7	Chloroquine	Ebola virus	10 µM	Lysosome acidification. Was able to inhibit in vitro but failed in vivo	Dowail et al. (2015)
8	Chloroquine	Zika virus	5–40 µM	obstructs fusion of the flaviviral envelope protein with the endosomal membrane	Shiyav et al. (2017)
9	Chloroquine	Herpes simplex virus	15 µM	Interacts with endocytic viral entry	Dai et al. (2018)
10	Chloroquine	Influenza A virus	60 µM	Blocking autophagy	Caldenron et al. (2019)
11	Chloroquine	Zika virus	0–300 µM/l	Blocking autophagy	Zhang et al. (2019)
12	Hydroxy-chloroquine	Dengue virus	0–100 µM	Activating ROS and a MAVS mediated host IFN anti-viral pathway	Wang et al. (2015)
13	Hydroxy-chloroquine	Influenza A virus	3–30 µM	Blocking autophagy	Paton et al. (2013)
14	Chloroquine	Influenza A virus	500 mg/day for 1 week	Disrupts pH-dependent structural changes in viral-synthesized proteins	Martinson et al. (2011)
15	Chloroquine	HIV	100 µM	Interferes with innate immunity-induced immune hyperactivation	van Loosdregt et al. (2013)
16	Hydroxy-chloroquine	HIV	20 µM	Apoptosis in the memory T-cell compartment by inhibiting autophagy	Tsa et al. (1986)
17	Hydroxy-chloroquine	HIV	—	Induction of a defect in the maturation of the viral envelope glycoprotein gp120	—
18	Chloroquine	Chikungunya	250 mg/day	—	—
19	Chloroquine	Prion (scrapie-infected neuroblastoma (ScN2a))	100 µM	Acidification of lysosome	Chopra et al. (2014)
20	Chloroquine	Creutzfeldt-Jakob disease	0–1µM/L	reduce PrP^{Sc} formation via direct coupling with PrPC in prion-infected cells	Supattapone et al. (1999)
21	Chloroquine	Influenza B virus	0–10 µM	lysosomotropic alkalinizing agents (LAAs) and calcium modulators (CMs)	Marois et al. (2014)
22	SGI-1027 (Derivative of Chloroquine)	Human Papilloma Virus (HPV)	10 µM	Autophagy inhibition, inhibited the up-regulation of PD-L2	Baruah et al. (2020)
23	Chloroquine	Herpes simplex virus	50–400 µM	Inhibition of Lysosomal acidification	Wang et al. (2016)
24	Chloroquine and hydroxy-chloroquine	Human Papilloma Virus (HPV) (Cutaneous warts)	400 mg/day	Inhibition of Lysosomal acidification	Bhusan et al. (2014)
25	Hydroxy-chloroquine	SARS-CoV-2	EC₅₀ = 1.13µM	Interfering with the glycosylation of cellular receptors and endosome alkylatiation	Wang et al. (2020)
26	Hydroxy-chloroquine	SARS-CoV-2	400 mg given twice daily for 1 day, followed by 200mg twice daily for 4 more	Not established	Yao et al. (2020)
27	Hydroxy-chloroquine	SARS-CoV-2	CC₅₀ 249.50 µM	Inhibition of endocytosis	Liu et al. (2020)
28	Hydroxy-chloroquine	SARS-CoV-2	600 mg of hydroxychloroquine daily	Not established	Gauthret et al. (2020)
29	Chloroquine and hydroxy-chloroquine	SARS-CoV-2	In silico study	Inhibition of viral S protein to bind with gangliosides	Fantini et al. (2020)
30	Hydroxy-chloroquine	SARS-CoV-2	400 mg given twice daily for 1 day, followed by 200 mg twice daily for 4 more days	Not established	Clementi et al. (2020)
31	Chloroquine and hydroxy-chloroquine	SARS-CoV-2	IC₅₀ 46 and 11µM	Not established	Weston et al. (2020)
32	Hydroxy-chloroquine and azithromycin	SARS-CoV-2	1, 2 and 5 µM for 78 hydroxychloroquine and 2, 5 and 10 µM for azithromycin	Not established	Andreani et al. (2020)
33	Chloroquine	SARS-CoV-2	EC₅₀ of 1.13 µM	Not established	Gao et al. (2020)
mechanisms of chloroquine can further be exploited to develop it as a therapeutic agent against SARS-CoV-2.

Probable Mechanisms of Chloroquine Against SARS-CoV-2

Though studies are still ongoing on chloroquine as an inhibitor of SARS-CoV-2, the plausible mechanisms known from its use against various diseases can provide a substantial ground for further research and development of chloroquine as a potential drug against COVID-19. Multiple modes of actions of chloroquine against SARS-CoV-2 are as follows:

1. Inhibition of viral entry inside the target cells

Chloroquine can inhibit the binding of viral spike glycoprotein with ACE2 receptor on target cells to inhibit their entry. Chloroquine has shown potent inhibition of sugar modifying enzymes or glycosyltransferases and quinone reductase which have been involved in sialic acid biosynthesis of ACE2 receptor (Kwiek et al., 2004; Devaux et al., 2020). Wu et al. (2020) in their docking studies showed that chloroquine can potentially target Nsp3b or E-channel with the docking mScores of −130.355 and −107.889, respectively, though experimental results are yet to be verified.

SARS-CoV-2 particles significantly resemble the nanoparticles with a size of 60–140nm and are spherical. Nanoparticles are known to exhibit their desired results by cell internalization (Kumari et al., 2017) which can effectively be inhibited by chloroquine. Chloroquine inhibits nanoparticles internalization by suppression of phosphatidylinositol binding clathrin assembly protein (PICALM), thus inhibiting clathrin-dependent endocytosis (Hu et al., 2020). The same principle can be applied for stopping the internalization of SARS-CoV-2 particles inside the target cells. Chloroquine can also play a vital role in interfering with the endocytosis of viral particles by increasing the pH of endosomes which has been explained earlier (Touret and Lamballerie, 2020). Interaction of TMPRSS2 with the ACE2 receptor is essential for facilitating SARS-CoV-2 entry (Matsuyama et al., 2020). Application of chloroquine with a known serine protease inhibitor can weaken the viral entry inside the cells (Markus et al., 2020). Serine protease inhibitor camostat mesylate has been observed to blocks TMPRSS2 activity in SARS-CoV-2 (Hoffmann et al., 2020).

2. Inhibition of viral replication and posttranslational modifications (PTM)

Chloroquine inhibits acidification of endosome and lysosome, stalling the virus inside endosomes and inhibiting the release of the viral RNA genome in the cytosol. Inhibition of lysosome acidification further hampers the fusion of endosome with the lysosome and upstream trafficking essential for viral replication (Devaux et al., 2020; Hu et al., 2020; Wang et al., 2020).

Inhibition of acidification further continues to work in favour of chloroquine against SARS-CoV-2 as it inhibits posttranslational modification in trans Golgi network (TGN). Lack of low pH in TGN interferes with functional proteases and glycosyl-transferases resulting in impaired PTM or non-infectious viral particles (Devaux et al., 2020; Touret and Lamballerie, 2020).

3. Inhibition of autophagy

Many of the human viruses employ autophagy for their replication inside the target cells (Table 2) (Yan et al., 2013; Calderon et al., 2019; Zhang et al., 2019). Though the role of autophagy in the proper functioning of SARS-CoV-2 is still under investigation, several results claim that autophagy is crucial for SARS-CoVs replication (Brest et al., 2020; Yang and Shen, 2020). Prentice et al. (2004) demonstrated the critical role of endogenous LC-3, a protein marker for autophagosomes in the replication of SARS-CoV. Chloroquine, being a well-established autophagy inhibitor can be a potential candidate for suppression of COVID-19.

4. Immuno-modulator and inhibition of “cytokine storm”

Chloroquine is widely used for the treatment of RA and SE based upon its immune-modulatory properties. As discussed in earlier sections, chloroquine inhibits pH-dependent toll-like signalling pathway in the endosome and inhibits the inflammatory response “cytotoxic storm”. The inhibition of toll-like signalling pathway prevents the recognition of viral antigen by dendritic cells (Devaux et al., 2020). It also enhances cytotoxic CD8+ T cell responses against viral antigens and exports soluble antibodies into the cytosol of the dendritic cell to fight the viral antigen.

Chloroquine interferes with viral antigen presentation via the lysosomal pathway and thus inhibits MHC II recognition of antigen, modulating the elevation of inflammatory responses (Kearney, 2020). Inhibition of TNFa, TNF α receptors and TNF α signalling by chloroquine plays a vital role in the suppression of “cytokine storm” (Touret and Lamballerie, 2020).

5. Interference with the metabolic pathways

As it is already known from the use of chloroquine against glioblastoma, this can regulate metabolic pathways especially lipid metabolisms in cells. Lipid metabolic pathways play an important role in viral entry and replication inside the target cells. SARS-CoV-2 infection interfered with the regulation of lipid metabolism with the higher concentration of free fatty acids, lysophosphatidylcholine, lysophosphatidylethanolamine, and phosphatidylglyceroland significant lower concentration of total cholesterol (TC), HDL-cholesterol and LDL-cholesterol levels in serum (Hu et al., 2020; Zheng et al., 2020). As observed during treatment of glioblastoma and SLE, chloroquine can also regulate metabolic pathways during SARS-CoV-2 infection as its therapeutic mode of action.

CHLOROQUINE AGAINST OTHER DISEASES

Apart from being an FDA approved anti-malaria, anti-RA, and anti-LE drug, chloroquine has been investigated against several other
prevalent medical conditions. Table 3 summarises the use of chloroquine in the treatment of other diseases and its mode of action.

CHLOROQUINE TOXICITY

Chloroquine and the derivatives while using as an anti-malaria drugs in Mâncio Lima, Acre, Brazil, caused itching, stinging sensation, epigastric pain, and diarrhoea (Braga et al., 2015). It was explained by enhanced production of IgE, degranulation of mast cells and basophils creating allergy like reaction. However, severe side-effects including mental confusion, seizures, coma, and cardiovascular symptom, was not reported. Adedapo et al. (2009) observed that higher dosage of chlorpheniramine plus chloroquine (10 mg/kg daily for 3 days) in children below 5 years caused drowsiness and lower respiratory rates, though no additional benefits were obtained. Chloroquine is known to induce concentration-dependent cytotoxicity, which should always be optimized before finalizing the dosage.

Though optimized dosage and short-term treatment of RA with CQ and HCQ was considered safe, long-term use of CQ in a 64-year-old woman resulted in both restrictive and hypertrophic myocardiopathy auricular-ventricular blocks due to long term pH alteration in the lysosome (Cervera et al., 2001). Kelly et al. (1990) also focussed on the narrow margin between therapeutic uses of chloroquine against RA and the chloroquine poisoning. They reported the death of a 12-month-old infant after receiving 300 mg of chloroquine. They also highlighted the different dose optimization of chloroquine for adults and infants. Scherbel et al., (1965) in
their clinical trials found that out of 741 patients treated with chloroquine derivative for SLE, 31-68% developed retinopathy and marked destruction of rod and cone cells. However, no clear relationship between chloroquine dosage and retinal toxicity could be established. Lane et al., (2020) performed a multinational retrospective study to evaluate the risk of HCQ alone and in combination with azithromycin in 956,374 RA patients (18 years and above). It was observed that a 30-days dose of HCQ demonstrated no risk of adverse events. However, long term use of HCQ alone increased cardiovascular mortality. A combination of HCQ and azithromycin elevated the risk of heart failure even in the short term. Therefore, the authors suggest a careful consideration of benefit:risk ratio when starting HCQ treatment (Lane et al., 2020).

It is difficult to estimate the frequency of adverse events because many cases have been reported in more than one publication and lack a criterion for diagnosis (Scherbel et al., 1965). Hence, it is recommended to evaluate cardiac health with ECG and ophthalmological examinations for 6 months before prescribing a long-term treatment with chloroquine (Scherbel et al., 1965; Kelly et al., 1990; Cervera et al., 2001).

Chloroquine, as a chemotherapeutic agent against cancer, can act as a double-edged sword. It not only sensitizes the cancer cells but also the normal cells by blocking autophagy and impairing lysosome and endosomes’ function (Kimura et al., 2013; Choi et al., 2018). Kidney is the most critically affected organ during chemotherapy with chloroquine with significant nephrotoxicity (Klionsky et al., 2016; Wang B, et al., 2020). Evangelisti et al. (2015) also reviewed the substantial side effects of chloroquine while treating acute leukaemia. Repurposing chloroquine against cancer was generally considered safe for short term treatment with optimized dosage. However, patients suffering from glucose-6-dehydrogenase deficieny, impaired hepatic and kidney diseases should always be cautious while practising chloroquine and derivatives as a chemotherapeutic agent (Verbaanderd et al., 2017). A clinical trial (ClinicalTrials.gov ID NCT04201457) by “Pediatric Brain Tumor Consortium” is ongoing to assess the safety and efficacy of adding hydroxychloroquine to dabrafenib and/or trametinib in children with recurrent or progressive low grade or high-grade brain tumor with specific genetic mutations whose results are waited in February 2025 (https://clinicaltrials.gov/ct2/show/results/NCT04201457).

The standard and optimized dose of chloroquine as prophylaxis and during treatment of diseases do not bear significant toxicity, however, long term use of higher concentration of chloroquine can result in severe toxicity (Table 4). Use of less toxic derivatives such as hydroxychloroquine, optimized dosage, nanoencapsulation of the drug and combinational therapies have been used for reducing chloroquine toxicity and increasing efficacy (Amolegebe et al., 2018; Lima et al., 2018).

Hypokalemia toxicity is commonly observed in chloroquine and hydroxychloroquine overdose due to the intracellular shift of potassium. Clemessy et al. (1995), performed a retrospective study of 191 cases of chloroquine toxicity in which the initial clinical features included, gastro-intestinal disturbances, neurological impairment, and respiratory symptoms and eventual blockade of potassium channels contributed to hypokalaemia (Clemessy et al., 1995).

Neuropsychiatric manifestations including depression, psychosis, insomnia, agitation have also been reported due to acute or chronic use of chloroquine and hydroxychloroquine (Juurlink, 2020).

Hematologic toxicities are attributed to its long half-life in plasma which leads to accumulation in the blood cells. Lymphopenia, eosinophilia is typically observed immunologically mediated idiosyncratic drug reactions (Juurlink, 2020).

Prolongation of the QT interval due to both chloroquine and hydroxychloroquine has also been observed since the drugs interfere with vascular repolarization. It was observed that after a dose of 600 mg QTc increases 6.1 and 28 ms after a dose of 1,200 mg. However, this effect varied in younger age groups. In response to this treatment in COVID-19 patients, ventricular tachycardia and ventricular fibrillation and mortality were observed potentially due to the overdosage. Hence, in a COVID-19 setting FDA cautions the use of HCQ or CQ, but not in cases of malaria, lupus and RA (https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or). In severe COVID-19 cases where azithromycin was co-prescribed in combination with either chloroquine and hydroxychloroquine, Molina et al. (2020) reported no evidence of rapid anti-viral clearance or any associated clinical benefit in only 11 patients, possibly because they had significant comorbidities such as obesity, cancer, HIV infection (Molina et al., 2020). However, in a retrospective study 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Lagier et al. (2020) observed otherwise. Along with 3 days early treatment of HCQ-azithromycin resulting in faster viral load reduction, no cases of torsade de pointe or sudden death were observed. This could be because the patients belonged to mean age of 45 years, the treatment was initiated very early with a dosage of 200 mg of oral HCQ, three times daily for ten days and 500 mg of oral azithromycin on day 1 followed by 250 mg daily for the next four days, respectively.

Sacher et al., (2020) propose a pragmatic approach to mitigate the cardiac risk in the COVID-19 setting. The authors propose a cardiac algorithm for critically reviewing patient’s clinical history (use of other drugs that may extend QT interval, levels of serum K+, creatinine, and a recent 30 s ECG). In response to this treatment in COVID-19 patients, ventricular tachycardia and ventricular fibrillation and mortality were observed potentially due to the overdosage. Hence, in a COVID-19 setting FDA cautions the use of HCQ or CQ, but not in cases of malaria, lupus and RA (https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or). In severe COVID-19 cases where azithromycin was co-prescribed in combination with either chloroquine and hydroxychloroquine, Molina et al. (2020) reported no evidence of rapid anti-viral clearance or any associated clinical benefit in only 11 patients, possibly because they had significant comorbidities such as obesity, cancer, HIV infection (Molina et al., 2020). However, in a retrospective study 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Lagier et al. (2020) observed otherwise. Along with 3 days early treatment of HCQ-azithromycin resulting in faster viral load reduction, no cases of torsade de pointe or sudden death were observed. This could be because the patients belonged to mean age of 45 years, the treatment was initiated very early with a dosage of 200 mg of oral HCQ, three times daily for ten days and 500 mg of oral azithromycin on day 1 followed by 250 mg daily for the next four days, respectively.

Sacher et al., (2020) propose a pragmatic approach to mitigate the cardiac risk in the COVID-19 setting. The authors propose a cardiac algorithm for critically reviewing patient’s clinical history (use of other drugs that may extend QT interval, levels of serum K+, creatinine, and a recent 30 s ECG). In cases of QT intervals >500 ms, the authors recommend that a QT-prolonging drug should not be prescribed (Sacher et al., 2020).

Some rare immunologically mediated adverse reactions including Stevens-Johnson syndrome, toxic epidermal necrosis, DRESS (drug reaction with eosinophilia and systemic symptoms), have been implicated in chloroquine and hydroxychloroquine treatment against viral diseases. Although rare, these conditions turn into serious entities when accompanied by liver or kidney injury (Juurlink, 2020).

RESULTS OF CLINICAL TRIALS DONE SO FAR WITH CHLOROQUINE AGAINST COVID-19

Currently, there are multiple clinical trials underway to investigate the potential use of hydroxychloroquine and chloroquine alone or
TABLE 4 | Toxic effects of chloroquine.

S. no	Drug	Toxicity*	Concentration/Duration/Dosage	Reference
1	Chloroquine	Ocular toxicity	250 mg of chloroquine per day for 6 months-14 years	Puaavilai et al. (1999)
2	Hydroxy-chloroquine	Retinopathy	Inadequately Weight Adjusted Dosage	Arendt and Gerding (2017)
3	Hydroxy-chloroquine	Retinopathy	≥5 mg per kilogram per day	Zaidi et al. (2019)
4	Chloroquine	Neurotoxicity	Variable concentration in culture media	Estes et al. (1987)
5	Chloroquine	Neurotoxicity		Brunink et al. (1991)
6	Chloroquine	Renal toxicity	50 mg·kg⁻¹·kg for 4 weeks	Wang et al. (2020)
7	Chloroquine	Renal toxicity	—	Wwanantik (2015)
8	Chloroquine and hydroxychloroquine	Cutaneous toxicity	200–600 mg/day for 7 years	Martin-Garcia et al. (2003)
9	Hydroxy-chloroquine	Stevens-Johnson syndrome	40 mg/day for 2 weeks	Leckie and Rees (2002)
10	Amodiaquine	Hematological toxicity	—	Parhizgar and Tahghighi (2017)
11	Chloroquine	Leukemia	For several months	Nagaratnam et al. (1978)
12	Chloroquine	Hepatotoxicity	Combination of proguanil 200 mg and chloroquine 100 mg	Wielgo-Polanin et al. (2005)
13	Hydroxy-chloroquine	Ototoxicity	Hydroxychloroquine 5 mg/kg/day (400 mg/day)	Fernandes et al. (2018)
14	Chloroquine	Cardiotoxicity	250 mg/day for 9 years	Teixeira et al. (2002)
15	chloroquine	Alveolitis	For two weeks	Mitja et al. (2000)
16	Chloroquine and hydroxylchloroquine	Myopathy	3.5 mg/kg/day for chloroquine and 6.5 mg/kg/day for hydroxychloroquine for 40.4 months	Casado et al. (2006)
17	Chloroquine	Pruritus	—	Aghahowa et al. (2010)

*The frequency of chloroquine induced toxicity and adverse effects is difficult to estimate due to lack of common methods of diagnosis and metrics of evaluation.

in combination against SARS-CoV-2 (Table 5). Some of the in vitro and in vivo results obtained with chloroquine and hydroxychloroquine supported their anti-viral role against SARS-CoV-2. (Andreani et al., 2020; Clementi et al., 2020; Fantini et al., 2020; Gao et al., 2020; Gautret et al., 2020; Liu et al., 2020; Weston et al., 2020; Yao et al., 2020), however, results obtained with chloroquine in the in vivo studies and clinical trials to establish it as a safe and effective anti-SARS-CoV-2 drug.

The studies by Patel and coworkers (https://www.sciencemag.org/news/2020/06/mysterious-company-s-coronavirus-papers-top-medical-journals-may-be-unraveling; Mehra et al., 2020a; Mehra et al., 2020b), claimed to have performed a multinational registry analysis using a cloud-based health-care data analytics platform, Surgisphere Corporation, Chicago, IL, United States, on the usage of hydroxychloroquine or chloroquine with or without a macrolide for the treatment of COVID-19. They reported an increased risk of in-hospital mortality and de-novo ventricular arrhythmia in response to the treatment which led to the inference that hydroxychloroquine or chloroquine, when used alone or with a macrolide does not offer any benefit to the COVID-19 patients, which contributed to the halt in worldwide clinical trials by the WHO on May 25, 2020. The second study (Mehra et al., 2020b) claimed to negate the association of ACE inhibitors and angiotensin-receptor blockers (ARBs) with in-hospital COVID-19 deaths. Their analyses brought forth better survival rates due to the use of either ACE inhibitors or statins. However, the authors mentioned that since the study was not based on randomized trials, there could be a possibility of confounding and hence, concluded that an underlying cardiovascular disease is independently associated with an increased risk of in-hospital COVID-19 death.

Substantive red flags were raised by the rattled global scientific community because the doses in the reported cases were higher than those set by the United States FDA and discrepancies in the official COVID-19 mortality statistics, and sample size (https://www.sciencemag.org/news/2020/06/mysterious-company-s-coronavirus-papers-top-medical-journals-may-be-unraveling). Eventually, both the studies were retracted from the journals, The Lancet and The New England Journal of Medicine. Currently, clinical trials in various parts of the world have resumed to investigate the potential use of hydroxychloroquine in COVID-19 patients in response to WHO’s green signal (https://www.sciencemag.org/news/2020/06/mysterious-company-s-coronavirus-papers-top-medical-journals-may-be-unraveling). In another report by Geleris et al. (2020) reported no positive or negative observational effect of hydroxychloroquine on death or incubation risk on COVID-19 patients, however, this study did support the further randomized clinical trials of hydroxychloroquine testing its efficacy.

The United Kingdom’s mega RECOVERY trial (RECOVERY Collaborative Group, 2020) reported the ineffectiveness of hydroxychloroquine. The patients who received the treatment demonstrated a longer hospitalization duration, higher risk of mechanical ventilation or mortality than those who received the usual care. However, the study received sceptical reviews due to the high dosage issues: 800 mg at 0 and 6 h, followed by a 400 mg dose at 12 h and every 12 h thereafter for 9 days; which may have contributed to cardiovascular, neurological, and other toxicities. The authors chose this dosage based on extensive pharmacokinetic studies. On December 2nd, 2020, the WHO Solidarity Trial Consortium published the findings of their trials on...
TABLE 5 | Ongoing clinical trials to evaluate the potential of chloroquine and hydroxychloroquine against SARS-CoV-2.

S. no	Clinical trial no	Location	Details	Dosage	Current status	Results	Reference
1	NCT04328493 (April 7, 2020)	Vietnam	Randomized trial, 250 participants	250 mg chloroquine tablet Adult ≥53 kg: 4 tabs Adult 45–52 kg: 3.5 tabs Adult <38 kg: 2.5 tabs efficacy of hydroxychloroquine (HQ) and azithromycin (Azi) Day 0: HQ 400 mg (200 + 200) + Azi 500 mg (250 + 250) orally Day 1–6: HQ 200 mg (twice/day) + Azi 250 mg (4 days)	Phase 2	Expected by April 1, 2022	https://clinicaltrials.gov/ct2/show/NCT04328493
2	NCT04358068 (May 1, 2020)	United States	Randomized, 2,000 participants	HQ loading dose on day 1, maintenance dose till day 9	Phase 2	Expected by March 5, 2021	https://clinicaltrials.gov/ct2/show/NCT04358068
3	NCT04333654 April 12, 2020	United States, Belgium, France, Netherlands	Randomized, 210 participants	HQ monotherapy (600 mg) and in combination With Azi (200 mg) HQ (800 mg) with or without Azi (500 mg)	Phase 1	Expected by August 2020	https://clinicaltrials.gov/ct2/show/NCT04333654
4	NCT04358081May 1, 2020	United States	Randomized, 444 participants	Oral dose Initial: 800 mg, 6h: 800 mg, 12h:400 mg, 24h: 400 mg, every 12h thereafter for 9 days: 400 mg	Phase 3	Expected by July 24, 2020	https://clinicaltrials.gov/ct2/show/NCT04358081
5	NCT04381936 (March 19, 2020)	United Kingdom	Randomized, 12,000 participants	Oral dose Initial: 800 mg, 6h: 800 mg, 12h:400 mg, 24h: 400 mg, every 12h thereafter for 9 days: 400 mg	Stopped	No clinical benefit. Out of 1,542 patients administered with hydroxychloroquine, no significant difference in primary endpoint of 28-days mortality. (25.7% HQ as compared with 23.5% usual care alone)	https://clinicaltrials.gov/ct2/show/record/NCT04381936; https://www.recoverytrial.net/files/hcq-recovery-statement-050620-final-002.pdf
6	NCT04308668 (March 17, 2020)	United States, Canada	Randomized, 3,000 participants	Oral dose 200 mg tab Initial: 800 mg orally once every 6–8 h	Phase 3	After high or moderate risk exposure to COVID-19, HQ did not prevent illness when used as postexposure prophylaxis within 4 days after exposure	https://clinicaltrials.gov/ct2/show/NCT04308668
7	NCT04304053 (March 18, 2020)	Spain	Randomized, 2,250 participants	Testing, treatment and prophylaxis of SARS-CoV-2 Oral dose 200 mg tabs Day 1: 800 mg Oral dose Day 2–7: 400 mg Contacts Day 1: 800 mg Day 2–4: 400 mg	Phase 3	No significant results	https://clinicaltrials.gov/ct2/show/NCT04304053; https://www.sciencemag.org/news/2020/06/three-big-studies-dim-hopes-hydroxychloroquine-can-treat-or-prevent-covid-19
8	NCT04303507 (April 29, 2020)	Thailand, United Kingdom	Randomized, 40,000 participants	Prophylaxis Study Loading dose: 4 tabs of 155 mg/60 kg body weight 90 days: 155 mg daily	Not mentioned	Expected by April 2021	https://clinicaltrials.gov/ct2/show/NCT04303507

repurposed anti-viral drugs for COVID-19 (NCT04315948). The drugs included hydroxychloroquine, remdesivir, lopinavir, and interferon beta-1a in hospitalized COVID-19 patients. The randomized trials were evaluated for death rate according to age and requirement of mechanical ventilation. Like the RECOVERY trials, this one too reported negligible effect on mortality, ventilation, and hospitalization duration of COVID-19 patients (WHO Solidarity Trial Consortium, 2020).

POINTS TO BE CONSIDERED IN THE CURRENT PANDEMIC TIME WITH CHLOROQUINE AS A THERAPEUTIC

Several ongoing clinical trials against COVID-19 with chloroquine/hydroxychloroquine alone or in a combination of drugs are the outcome of promising in vitro results and the hype created worldwide over the drug (Cortegiani et al., 2020).
too much of attention by the scientific community generates false promises and hampers the path of other potential drugs against COVID-19 in this pandemic era. Simultaneously, no negative feedback against chloroquine should be postulated without confirming the clinical trial results. Chloroquine being an age-old drug, has already been used against multiple diseases. If found effective, its inexpensive nature and already documented toxicity profile and dosage optimization can save time and a million lives. Though mixed results of chloroquine against COVID-19 have been obtained so far, there is an urgent need to test their effects and toxicity as a prophylactic drug, in mildly ill patients and severely ill patients of COVID-19. Moreover, one should never forget the thin line between chloroquine as a therapeutic agent and chloroquine poisoning (Kelly et al., 1990). An in-depth toxicity analysis of chloroquine and derivatives is required before confirming any comment for/against its use in time of COVID-19. The poor methods of clinical trials and its reporting has thus far been inadequate in proving the effective nature of hydroxychloroquine.

Ferner and Aronson (2020) claim that the overuse of hydroxychloroquine will result in rare buy harmful cutaneous adverse reactions, hepatic problems and ventricular arrhythmias when prescribed in combination with azithromycin. In a recent study, Haque et al. (2021) reported the changes in purchasing patterns and pricing of hydroxychloroquine since March 2020 in India states. While no price and utilization changes were observed, hydroxychloroquine shortages were encountered due to the misinformation and management of COVID-19.

Among the rapidly changing guidelines in this pandemic era of COVID-19, WHO has revoked the ban on clinical trials with chloroquine against COVID-19 (https://www.sciencemag.org/news/2020/06/mysterious-company-s-coronavirus-papers-top-medical-journals-may-be-unraveling), however, FDA has cautioned its use outside of the hospital setting or a clinical trial due to risk of heart rhythm problems (https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or). Though the preventive or prophylactic potential of chloroquine and the derivatives are yet to be confirmed against COVID-19, extensive, collaborative, unbiased and random clinical trials are required instead of small and individual trials to conclude. Results of unprejudiced, statistically significant and ethical outcomes of clinical trials are eagerly awaited before sealing the fate of this age-old drug against COVID-19.

CONCLUSION AND FUTURE ASPECTS

The “age-old” drug used to treat multiple diseases has generated mixed therapeutic responses against “COVID-19.” Chloroquine has been recognized as a miracle medicine to treat malaria, autoimmune diseases, cancer, viral, dermatological, and fungal infections. Different in vitro and in vivo studies have suggested the positive, neutral, and negative role of chloroquine and derivatives against SARS-CoV-2. Though some studies are still ongoing, different probable mechanisms have been reported in literature employed by chloroquine to inhibit SARS-CoV-2 infection or cause more harm than good. In this difficult situation where an effective anti-viral drug is urgently needed, a biased decision against or in favour of chloroquine can either generate a false sense of security or can add more anxiety in an already worse situation. However, the previous research done on chloroquine against multiple diseases can help establish its anti-SARS-CoV-2 mechanism, precautions to be taken to avoid chloroquine’s toxicity, and dosage–optimization to reach any conclusion.

AUTHOR CONTRIBUTIONS

MK conceptualized the idea. The manuscript was written, literature was collected and finalized by SK and MK.

ACKNOWLEDGMENTS

MK is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi and SK is grateful to University Grant Commission (UGC), New Delhi for providing the Senior Research Fellowship. Authors are also thankful to Anup Prasad, Scientist, Defence Research and Development Organization (DRDO) for critically reviewing the manuscript draft and providing his valuable inputs.

REFERENCES

Adedapo, A. D. A., Ademowo, O. G., Adedapo, K. S., Demissie, K., and Osinubi, O. Y. O. (2009). Potential toxicity of chlorpheniramine plus chloroquine for the treatment of childhood malaria. Niger. J. Clin. Pract. 12 (3), 252–257.
Aghahowa, S. E., Obianwu, H. O., Isah, A. O., and Arhewoh, I. M. (2010). Chloroquine-induced pruritus. Indian J. Pharm. Sci. 72 (3), 283–289. doi:10. 4103/0250-474X.70471
Alam, M. M., Kariya, R., Kawaguchi, A., Matsuda, K., Kudo, E., and Okada, S. (2016). Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress. Apoptosis 21, 1191–1201. doi:10.1007/s10495-016-1277-7
Al-Bar, M. A. A. (2017). Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect. 5 (1), e00293. doi:10.1002/prp2.293
Alegre, P., da-Silva, A., Caminha, C., Lul, R. M., Kirshnich, L. S., and Galperin, B. (2012). Case report whipple’s disease: rare disorder and late diagnosis. Rev. Inst. Med. Trop. Sao Paulo 54 (5), 293–297. doi:10.1590/S0036-46652012000500010
Amolegbe, S. A., Hirano, Y., Adebayo, J. O., Ademowo, O. G., Balogun, E. A., Obaleye, J. A., et al. (2018). Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance. Sci. Rep. 8, 3078. doi:10.1038/s41598-018-21351-8
Andreani, J., Le Bideau, M., Duflot, J., Jardot, P., Rolland, C., Boxberger, M., et al. (2020). In vitro testing of hydroxychloroquine and azithromycin on SARS-CoV-2 shows 2 synergistic effect. Microb. Pathog. 145, 104228. doi:10.1016/j.micpath.2020.104228
Arendt, P., and Gerding, H. (2017). Chloroquine retinopathy under inadequately weight adjusted dosage: early detection by multimodal imaging. Klin. Monbl. Augenheilkd. 234 (4), 543–545. doi:10.1055/s-0042-121573
Baruah, P., Bollenkamp, J., WilsonLee, P. O. G., Lee, M., Kaski, J. C., and Dumitriu, I. E. (2019). TLR9 mediated tumor-stroma interactions in human papilloma virus (HPV)-positive head and neck squamous cell carcinoma up-regulate PD-L1 and PD-L2. Front. Immunol. 10, 1644. doi:10.3389/fimmu.2019.01644
results of an open-label non-randomized clinical trial. *Int. J. Antimicrob. Agents* 56, 105949. doi:10.1016/j.ijantimicag.2020.105949

Geleris, J., Sun, Y., Platt, J., Zucker, J., Baldwin, M., Hricak, G., et al. (2020). Observational Study of hydroxychloroquine in hospitalized patients with Covid-19. *N. Engl. J. Med.* 382, 2411–2418. doi:10.1056/NEJMoa2012410

Gilmour, A. L., Shackell, K. R., Goldman, D. F., Sale, G. E., Krallo, M. D., Chen, Z., et al. (2012). Randomized trial of hydroxychloroquine for newly diagnosed chronic graft-versus-host disease in children: a Children’s Oncology Group study. *Biol. Blood Marrow Transplant.* 18 (1), 84–91. doi:10.1016/j.bbmt.2011.05.016

Goldberg, D. E. (1993). Hemoglobin degradation in *Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, J., Juurlink, D. N. (2020). Safety considerations with chloroquine, hydroxychloroquine and ACTG trial 50356, 105949. doi:10.1016/j.ijantimicag.2020.105949

Klonovsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abolshav, H., Arzona, A. A., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy. *Autophagy* 12 (1), 1–222. doi:10.1080/15548627.2016.1139264

Kuba, K., Imai, Y., Ohto-Nakanishi, T., and Penninger, J. M. (2010). Triloy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. *Pharmacol. Ther.* 128, 119–128. doi:10.1016/j.pharmthera.2010.06.003

Kumar, M., Shukla, S., Pandey, S., Giri, V. P., Bhatia, A., Tripathi, T., et al. (2017). Enhanced cellular internalization: a bacterialicid mechanism more relative to biogenic nanoparticles than chemical counterparts. *ACS Appl. Mater. Interfaces* 9, 4519–4533. doi:10.1021/acsami.6b15473

Kwiek, J. J., Haystead, T. A., and Rudolph, J. (2004). Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the anti-malarial quinolines. *Biochemistry* 43, 4538–4547. doi:10.1021/bi035923w

Lagier, J. C., Fenollor, F., Lepidi, H., Giorgi, R., Million, M., and Raoult, D. (2014). Treatment of classic Whipple’s disease: from in vitro results to clinical outcome. *J. Antimicrob. Chemother.* 69, 219–227. doi:10.1093/jac/dkt310

Lagier, J. C., Million, M., Gauguet, P., Colson, P., Cortadorena, S., Giraud-Gatineau, A., et al. (2020). Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Paris, France: a retrospective analysis. *Travel Med. Infect. Dis.* 36, 101791. doi:10.1016/j.tmid.2020.101791

Lane, J. C. E., Weaver, J., Kostka, K., Duarte-Salles, T., Abrahao, M. T. F., Alghoul, H., et al. (2020). Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study. *Lancet Rheumatol.* 2 (11), e698–e711. doi:10.1016/s2665-9913(20)30276-9

Lechien, J. R., Chiesa-Estomba, C. M., Place, S., Laethem, Y. V., Cabarrus, P., Mat, Q., et al. (2020). Clinical and epidemiological characteristics of 1,420 European patients with mild-to-moderate coronavirus disease 2019. *J. Intern. Med.* 288 (3), 335–344. doi:10.1111/joim.13089

Leckie, M. J., and Rees, R. G. (2002). Stevens-Johnson syndrome in association with hydroxychloroquine treatment for rheumatoid arthritis. *Rheumatology* 41, 473–474. doi:10.1093/rheumatology/41.4.473

Lee, S., Kim, K. P., Yoo, C., Kim, D., Kim, C., Chae, H., et al. (2018). Autophagy inhibitor, chloroquine synergize oxaliplatin by modulating activity of cytotoxic HMGB1 in pancreatic cancer. *Cancer Res.* 78 (13, Suppl.), 1347. doi:10.1158/1558-7645.AM2018-1347

Li, C., Zhu, X., Jia, X., Quanquin, N., Deng, Y.Q., Tian, M., et al. (2017). Chloroquine, a FDA-approved drug, prevents zika virus infection and its associated congenital microcephaly in mice. *EBioMedicine* 24, 189–194. doi:10.1016/j.ebiom.2017.09.034

Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., et al. (2020). Coronavirus infections and immune responses. *J. Med. Virol.* 92, 424–432. doi:10.1002/jmv.25685

Li, X., Geng, M., Peng, Y., Meng, L., and Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. *J. Pharma. Anal.* 10, 102–108. doi:10.1016/j.jpha.2020.03.001

Liang, R., Wang, L., Zhang, N., Deng, X., Su, M., Su, Y., et al. (2018). Development of small-molecule MERS-CoV inhibitors. *Viruses* 10 (12), 721. doi:10.3390/v10120721

Lima, T. L., Fettosa, R. D., Santos-Silva, D. E., Santos-Silva, M. A., Siqueira, E. M., et al. (2018). Improving encapsulation of hydrophilic chloroquine diphasosphate into biodegradable nanoparticles: a promising approach against Herpes Virus Simplex-1 Infection. *Pharmaceutics* 10, 255. doi:10.3390/pharmaceutics10040255

Liu, D., Li, X., Zhang, Y., Kwong, J. S. W., Li, L., Zhang, Y., et al. (2018). Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: a systematic review and meta-analysis. *Drug Des. Devel. Ther.* 12, 1685–1695. doi:10.2147/DDDT.S166893

Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., et al. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. *Cell Discov.* 6, 16. doi:10.1038/s41421-020-0156-0

Lorigera, J., Calvo-Rio, V., Mata, C., Ortiz-Sanjuán, F., González-López, M. A., Alvarez, L., et al. (2014). Urticarial vasculitis in northern Spain: clinical study of 21 cases. *Med. (Baltimore)* 93 (1), 53–60. doi:10.1097/MD.0000000000000113
Macfarlane, D. E., and Manzel, L. (1998). Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. *J. Immunol.* 160, 1122–1131.

Makowska, A., Elbe, M., Prescher, K., Hoß, M., and Konnfy, U. (2016). Chloroquine sensitises nasopharyngeal carcinoma cells but not nasoepithelial cells to irradiation by blocking autophagy. *PLoS One* 11 (11), e0166766. doi:10.1371/journal.pone.0166766

Markus, D., Gottfried, L., Markus, M., Marina, R., Dario, B., and Danielle de V. (2020). Aplasia and transporters.

Mauthe, M., Orhon, İ., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., et al. (2018). Chloroquine and nanoparticle drug delivery: a promising combination. *Pharmacol. Ther.* 191, 43–49. doi:10.1016/j.pharmthera.2018.06.007

Ponticelli, C., and Moroni, G. (2017). Hydroxychloroquine in systemic lupus erythematosus (SLE). *Expert Opin. Drug Saf.* 16, 411–419. doi:10.1080/14788641.2017.1269168

Prantice, E., McAuliffe, J., Lu, X., Subbarao, K., and Denison, M. R. (2004). Identification and characterization of severe acute respiratory syndrome coronavirus replicate proteins. *J. Virol.* 78, 9977–9986. doi:10.1128/JVI.78.18.9977-9986.2004

Puivilai, S., Kunavisarut, S., Vatanasak, M., Timpatanapong, P., Siriwong, S. T., Janjuntarajjeet, S., et al. (1999). Ocular toxicity of chloroquine among Thai patients. *Int. J. Trop. Med.* 38, 934–937. doi:10.1046/j.1173-299X.1999.01121.x

Purkittayakamme, S., Chantra, A., Vanjianonta, S., Clemens, R., Loaeroesuwon, S., and White, N. I. (2001). Therapeutic responses to quinine and clindamycin in multidrug-resistant falciparum malaria. *Antimicrob. Agents Chemother.* 44 (9), 2395–2398. doi:10.1128/AAC.44.9.2395-2398.2000

Rand, J. H., Wu, X. X., Quinn, A. S., Chen, P. P., Hathcock, J. J., and Taatjes, D. J. (2008). Hydroxychloroquine directly reduces the binding of antiphospholipid antibodybeta2-glycoprotein I complexes to phospholipid bilayers. *Blood* 112 (5), 1687–1695. doi:10.1182/blood-2008-03-144204

Reingraber, V. M. (2019). Chloroquine induction par-4 and treatment of cancer. *U.S Patent No 10,512,641 10, 641.

RECOVERY Collaborative Group (2020). Effect of hydroxychloroquine in hospitalized patients with Covid-19. *N. Engl. J. Med.* 383, 2030–2040. doi:10.1056/NEJMoa2002926

Reiling, S. J., Krohne, G., Friedrich, O., Geary, T. G., and Rohrbach, P. (2018). Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites. *Sci. Rep.* 8, 11137. doi:10.1038/s41598-018-29422-6

Robert, D., Jester, A., Southwood, T., Johnson, K., and Oestrech, K. (2018). Multifocal avascular necrosis of the lunate and triquetrum in a child with systemic lupus erythematosus. *J. Rheum. Dis.* Treat. 4, 63. doi:10.23937/2469-7516/15010063

Rodríguez-Caruncho, C., and Bielsa Marsol, I. (2014). Antimalarials in dermatology: mechanism of action, indications, and side effects. *Actas Dermosifilograf.* 105 (3), 243–252. doi:10.1053/ s41598-018-29422-6

Roberts, D., and Roab, P., and Raoult, D. (2017). Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. *Int. J. Antimicrob. Agents* 30, 297–308. doi:10.1016/j.ijantimicag.2007.05.015

Rothan, H. A., and Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) Outbreak. *J. Autoimmun.* 109, 102433. doi:10.1016/j.jaut.2020.102433

Sacher, F., Fauchier, L., Boveda, S., de Chillou, C., Defaye, P., Deharo, J. C., et al. (2020). Use of drugs with potential cardiac effect in the setting of SARS-CoV-2 infection. *Arch. Cardiovasc. Dis.* 113 (5), 293–296. doi:10.1016/j.acvd.2020.04.003
Sajna, K., and Kamat, S. (2020). Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. *Cytotoxicity* 23, 101–110. doi:10.1016/j.jcyt.2020.08.009

Scherbel, A. L., Mackenzie, A. H., Nousek, J. E., and Atjdian, M. (1965). Ocular lesions in rheumatoid arthritis and related disorders with particular reference to retinopathy. *N. Engl. J. Med.* 273 (7), 360–366. doi:10.1056/nejm196508122730704

Scholnick, P. L., Epstein, J., and Marver, H. S. (1973). The molecular basis of the mechanism for blockade of heme polymerization by anti-malarial quinolones. *Proc. Natl. Acad. Sci. U.S.A.* 70 (11), 4460–4464. doi:10.1073/pnas.70.11.4460

Schrezenmeier, E., and Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. *Nat. Rev. Rheumatol.* 16, 155–166. doi:10.1038/s41584-020-03572-x

Schulz, K. R., Su, W. N., Hsiao, C.-C., Doho, G., Jeon, G., Bader, S., et al. (2002). Chloroquine prevention of murine MHC-disparate acute graft-against-host disease correlates with inhibition of splenic response to CpG oligodeoxynucleotides and alterations in T-cell cytokine production. *Bioll. Blood Marrow Transplant.* 8 (12), 648–653. doi:10.1053/bbmt.2002.v8.ab080648

Schwarzer, E., Kühn, H., Valente, E., and Arese, P. (2003). Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. *Blood* 101, 722–728. doi:10.1182/blood-2002-03-0979

Seitz, C., Hugle, M., Cristofanon, S., Tchoghandjian, A., and Fulda, S. (2013). The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. *Int. J. Cancer* 132, 2682–2693. doi:10.1002/ijc.27935

Sharma, O. P. (1998). Effectiveness of chloroquine and hydroxychloroquine in treating selected patients with sarcoidosis involving lung tissue. *Arch. Neurol.* 55 (9), 1248–1254. doi:10.1001/archneur.55.9.1248

Shiryaev, S. A., Mesci, P., Pinto, A., Fernandes, I., Sheets, N., Shresta, S., et al. (2012). Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. *PLoS One* 7 (10), e84264. doi:10.1371/journal.pone.0084264

Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., et al. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. *Virology* 32, 1453–1461. doi:10.1016/j.virol.2004.12.017

Wang, T., and Lim, W. (2016). What is the role of hydroxychloroquine in reducing thrombotic risk in patients with antiphospholipid antibodies? *Hematol. Am. Soc. Hematol. Educ. Program* 2016 (1), 714–716. doi:10.1182/asheducation.2016.1.714

Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., et al. (2008). SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. *Cell Res.* 18, 290–301. doi:10.1038/cr.2008.15

Wang, G., Chen, S., Edwards, H., Cui, X., Cui, L., and Ge, Y. (2014). Combination of chloroquine and GX15-070 (obatinol) results in synergistic cytotoxicity against pancreatic cancer cells. *Oncol. Rep.* 32, 2789–2794. doi:10.3892/or.2014.3525

Wang, L. F., Lin, Y. S., Huang, N. C., Yu, C. Y., Tsai, W. L., Chen, J. J., et al. (2015). Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. *J. Interferon Cytokine Res.* 35 (3), 143–156. doi:10.1089/jir.2014.0038

Wang, H., Liu, Y., Yu, F., and Lu, L. (2016). Disruption of clathrin-dependent trafficking results in the failure of grass carp reovirus cellular entry. *Virology* 13, 25. doi:10.1128/12985-016-0485-7

Wang, F., Tang, J., Li, P., Shi, S., Yu, H., Yang, X., et al. (2018). Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis. *Cell Physiol. Biochem.* 45, 54–66. doi:10.1159/000486222

Wang, B., Guo, H., Ling, L., Ji, L., Niu, L., and Gu, Y. (2020). The chronic adverse effect of chloroquine on kidney in rats through an autophagy dependent and independent pathways. *Nephron* 144, 96–108. doi:10.1159/0005003882

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res.* 30 (3), 269–271. doi:10.1038/s41422-020-0282-0

Weston, S., Coleman, C. M., Haupt, R., Logue, J., Matthews, K., and Friedeman, M. (2020). FDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro. *bioRxiv.* doi:10.1101/2020.03.25.088482

Weyerhäuser, P., Kanelhardt, S. R., and Kim, A. L. (2018). Re-purposing chloroquine for gliblastoma: potential merits and confusing variables. *Front. Oncol.* 8, 335. doi:10.3389/fonc.2018.00335

WHO Solidarity Trial Consortium (2020). Repurposed anti-viral drugs for COVID-19—interim WHO SOLIDARITY trial results. *N. Eng. J. Med.* 384, 497–511. doi:10.1056/NEJMoa2023184
Wielgo-Polanin, R., Lagarce, L., Gautron, E., Diquet, B., and Lainé-Cessac, P. (2005). Hepatotoxicity associated with the use of a fixed combination of chloroquine and proguanil. *Int. J. Antimicrob. Agents* 26, 176–178. doi:10.1016/j.ijantimicag.2005.04.019

Wiano, V. (2015). Antimalarial drug and renal toxicity. *J. Nephropharmacol.* 5 (1), 11–12.

Wondafrash, D. Z., Desalegn, T. Z., Yimer, E. M., Tsige, A. G., Adamu, B. A., and Zewdie, K. A. (2020). Potential effect of hydroxychloroquine in diabetes mellitus: a systematic review on preclinical and clinical trial studies. *J. Diabetes Res.* 2020, 5214751. doi:10.1155/2020/5214751

Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., et al. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its Spike protein for risk of human transmission. *Sci. China Life Sci.* 63, 457–460. doi:10.1007/s11427-020-1637-5

Yan, Y., Zou, Z., Sun, Y., Li, X., Xu, K.-F., Wei, Y., et al. (2013). Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. *Cell Res.* 23, 300–302. doi:10.1038/cr.2012.165

Yan, Y., Xu, Z., Dai, S., Qian, L., Sun, L., and Gong, Z. (2016). Targeting autophagy to sensitive glioma to temozolomide treatment. *J. Exp. Clin. Cancer Res.* 35, 23. doi:10.1186/s13046-016-0303-5

Yang, N., and Shen, H.-M. (2020). Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. *Int. J. Biol. Sci.* 16 (10), 1724–1731. doi:10.7150/ijbs.45498

Zhang, S., Yi, C., Li, C., Zhang, F., Peng, J., Wang, Q., et al. (2019). Chloroquine inhibits endosomal viral RNA release and autophagy-dependent viral replication and effectively prevents maternal to fetal transmission of Zika virus. *Antiviral Res.* 169, 104547. doi:10.1016/j.antiviral.2019.104547

Zheng, J. (2020). SARS-CoV-2: an emerging coronavirus that causes a global threat. *Int. J. Biol. Sci.* 16 (10), 1678–1685. doi:10.7150/ijbs.45053

Zhu, B., Li, S., Yu, L., Hu, W., Sheng, D., Hou, J., et al. (2019). Inhibition of autophagy with chloroquine enhanced sinoporphyrin sodium mediated photodynamic therapy-induced apoptosis in human colorectal cancer cells. *Int. J. Biol. Sci.* 15 (1), 12–23. doi:10.7150/ijbs.27156

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.