Respiratory syncytial virus-related death in children with Down syndrome
(the RSV GOLD study)

Löwensteyn, Yvette N. MD¹TPL; Phijffer, Emily W.E.M. MD¹TPL; Simons, Juliette V.L. BSc¹;
Scheltema, Nienke M. MD, PhD¹; Mazur, Natalie I. MD MSc¹; Nair, Harish MD, PhD²,³; Bont,
Louis J. MD, PhD¹,³; On behalf of the RSV GOLD study group⁴

TPL Shared first authorship

Affiliations:
¹Division of Infectious Diseases, Department of Pediatrics, University Medical Centre Utrecht,
Utrecht, Netherlands
²Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics,
University of Edinburgh, Edinburgh, UK
³Respiratory Syneytial Virus Network (ReSViNET) Foundation, Zeist, The Netherlands
⁴See Acknowledgements for collaborators and affiliations

Address for correspondence:
Corresponding author
Louis J. Bont, MD, PhD
Department of Paediatric Immunology and Infectious Diseases
Wilhelmina Children’s Hospital/University Medical Centre Utrecht
Room KC.02.066, PO Box 85090
3508 AB, Utrecht, The Netherlands
Conflicts of Interest:

LJB has regular interaction with pharmaceutical and other industrial partners. He has not received personal fees or other personal benefits. UMCU has received major funding (>€100,000 per industrial partner) for investigator initiated studies from AbbVie, MedImmune, Janssen, the Bill and Melinda Gates Foundation, Nutricia (Danone) and MeMed Diagnostics. UMCU has received major cash or in kind funding as part of the public private partnership IMI-funded RESCEU project from GSK, Novavax, Janssen, AstraZeneca, Pfizer and Sanofi. UMCU has received major funding by Julius Clinical for participating in the INFORM study sponsored by MedImmune. UMCU has received minor funding for participation in trials by Regeneron and Janssen from 2015-2017 (total annual estimate less than €20,000). UMCU received minor funding for consultation and invited lectures by AbbVie, MedImmune, Ablynx, Bavaria Nordic, MabXience, Novavax, Pfizer, Janssen (total annual estimate less than €20,000). LJB is the founding chairman of the ReSViNET Foundation. DEN has participated as a member of the speakers’ bureau of AbbVie and speakers’ bureau and advisory board for Sanofi Pasteur.

This study was supported by the Bill & Melinda Gates Foundation (grant OPP1148988). Data shared by DJN and colleagues have been collected in studies from Kilifi, Kenya, that received Wellcome Trust funding (102975; 203077).

Key Words: Down Syndrome, Respiratory Syncytial Virus, Acute Respiratory Tract Infection, Mortality
ABSTRACT

Background
Respiratory syncytial virus (RSV) is a major cause of mortality in children younger than 5 years worldwide. Systematic reviews have shown that Down syndrome (DS) is an independent risk factor for severe RSV infection. We aimed to describe demographic and clinical characteristics of children with DS who died with RSV infection.

Methods
We performed a retrospective case series in which data were shared by individual researchers, research networks and physicians worldwide as part of the RSV GOLD study. We included children with DS who died when younger than 5 years of age with laboratory-confirmed RSV-infection.

Results
We included 53 children with DS and RSV-related in-hospital mortality from 20 countries in 5 continents. Thirty-two (60.4%) children were from low and middle-income countries. Median age at time of death was 6.0 months (IQR: 3.0-12.0). Thirteen (24.5%) children were born term and had no other risk factors for severe RSV disease. In total, 36 (67.9%) children had congenital heart disease,
8 (15.1%) had chronic lung disease and 1 (1.9%) had congenital immunodeficiency. Duration of hospitalization was significantly longer for children with DS compared to children without DS (median length of stay 13 days (IQR 6.8-21.0) versus 8 days (IQR 3.0-18.5), p=0.005).

Conclusions

One-fourth of children with DS and RSV-confirmed death did not have risk factors for severe RSV disease, indicating that DS is an important risk factor for RSV-related mortality. Age distribution at time of death demonstrates that maternal vaccination would not be sufficient to protect children with DS against RSV-related mortality.

MANUSCRIPT

INTRODUCTION

Respiratory syncytial virus (RSV) is one of the leading pathogens causing lower respiratory tract infections (LRTI) in infants and young children and is a major cause of mortality in children younger than 5 years of age worldwide.1-3 Well known risk factors for severe RSV disease are prematurity, congenital heart disease (CHD) and chronic lung disease. In addition, our Dutch birth cohort comprising 395 children, revealed that Down syndrome (DS) is an independent risk factor of severe RSV-associated LRTI.4 This was subsequently confirmed in several other studies5-8 including the Danish national birth registry.9 Since DS is one of the most common genetic birth defects with a worldwide incidence of 1 in 800-1000 live births annually10-11, strategies that prevent severe RSV disease in this high-risk group could have global impact on RSV-related mortality.

Currently, the only available strategy to protect children at risk against RSV infection is passive immunization by RSV-specific monoclonal antibodies (palivizumab). Other potential future strategies include infant and pediatric vaccination and passive immunization by maternal vaccination
or by extended half-life antibodies. Several vaccine candidates are under clinical development and a recent phase III maternal vaccine trial has shown promising results.

To guide policy makers on the implementation of perinatal immunization strategies, the efficacy of these strategies for the different target populations needs to be investigated. For this, information on age distribution and clinical manifestations of RSV-related mortality is of major importance.

Data on global RSV-related mortality in children with DS are absent. The aim of this study was to describe demographic and clinical characteristics of children with DS who died in hospital with RSV-confirmed infection younger than 5 years of age.

MATERIALS AND METHODS

Study design and study population

We performed a retrospective study involving a subgroup of children with DS derived from the RSV Global Online Database (GOLD). In short, RSV GOLD is an ongoing global study that retrospectively analyzes individual data of children who died with RSV infection. Collaborators can share cases through a link to an online questionnaire in Research Online, an electronic data capture platform. Each case is validated with the collaborator by RSV GOLD team members to ensure data quality. Detailed description of data collection and validation, and primary results have already been published. The initial results (GOLD I) included data from Jan 1, 1995 to Oct 31, 2015. The study was extended (GOLD II) and includes data from nosocomial infections as well as community acquired infections up to 2020. For the current study, we analyzed cases of children with DS from GOLD I (n=17) and new cases (GOLD II, n=36).

Data collection and case definition
Included were children with DS who died younger than 5 years of age with laboratory-confirmed RSV infection. Mortality cases that occurred before 1995 were excluded. We extracted the following demographic characteristics: gender, gestational age in weeks, prematurity and country of origin. Prematurity was defined as gestational age <37 weeks. Country of origin was categorized as lower-income, lower-middle-income, upper-middle-income and high-income based on the World Bank classifications for 2020. Clinical characteristics consisted of presenting signs and symptoms, length of stay in hospital, admission to an intensive care unit (ICU), ICU length of stay, the need for mechanical ventilation and the presence of comorbidities. The following comorbidities were distinguished: CHD, chronic lung disease, pulmonary hypertension, congenital hypothyroidism, immune disorder, neuromuscular disorder and cancer. When data for comorbidities or prematurity were not recorded, we performed data validation and inquired with the collaborators whether this information was available. If this was not the case, we assumed that the children were term and had no comorbidities besides DS. We compared demographic and clinical characteristics of children with DS with and without comorbidities. We also compared characteristics of children with DS from GOLD I and II to children without DS from GOLD I.

Age distribution at time of death

RSV GOLD was initiated to inform the maternal vaccine program. A maternal vaccine will provide only temporary protection of approximately 3 months after birth due to the gradual decline of maternally-derived antibodies. Therefore, we determined the proportion of children that died within the first 3 months after birth that could have been potentially prevented by a maternal vaccine. We distinguished additional risk factors for severe RSV disease, consisting of prematurity and the following comorbidities: CHD, chronic lung disease, immune disorder, and cancer. Age distribution at time of death was compared between children with DS and additional factors for severe RSV disease and children with DS without additional risk factors. We performed a sensitivity analysis
excluding cases with missing data for prematurity. Furthermore, we compared the age distribution at time of death between children with DS and without DS.

Statistical analysis

Continuous variables are presented as the median with interquartile ranges (IQR). Categorical variables are presented as numbers and percentages. A χ^2-test or Fisher’s exact test was used to determine statistical significance between groups in case of dichotomous parameters. A Mann-Whitney-U test was used for all continuous data, assuming a non-normal distribution. A p-value <0.05 was considered statistically significant. SPSS (version 21.0;IBM Corp, Armonk, NY) was used for all analyses.

Ethics statement

Since this is a retrospective study in which only anonymized secondary patient data were involved, parental informed consent was not deemed necessary by the institutional research board of the University Medical Centre Utrecht. Ethics approval was obtained for a few individual collaborating institutes when needed.

RESULTS

Fifty-three children with DS who died younger than 5 years of age with laboratory-confirmed severe RSV-infection were reported to the RSV GOLD registry between January 1, 1995 and June 21, 2019(Figure 1). The majority of cases occurred after 2010; median year of death was 2012.

Demographic and clinical characteristics

Reported children originated from 20 different countries across the world (Supplemental Table 1, Supplemental Figure 1). Thirty-two (60.4%) children were from low- or middle-income countries.
Median gestational age was 37 weeks (IQR 35.8-38.2). Thirteen (24.5%) children were born prematurely (data on prematurity were missing for 14/53 children). The majority of children with DS were male (n=31, 58.5%). Main presenting signs and symptoms were difficulty with breathing (n=35/46, 76.1%), and coughing (n=27/43, 62.8%). Median length of hospital stay was 13 days (IQR 6.8-21.0). Forty (n=40/48, 83.3%) children were admitted to an ICU and 33 (n=33/51, 64.7%) children required mechanical ventilation for a median duration of 10 days (IQR 6.0-16.0). Median age at time of RSV-related death was 6 months (IQR 3.0-12.0). Comorbidities were reported for 39 (73.6%) children with DS. Nine children had more than 1 comorbidity. (Table 1). Data on administration of palivizumab were available for 13 children. Of these, only 1 child with DS and non-hemodynamically significant CHD had received palivizumab prophylaxis, consisting of 1 dose at the beginning of the RSV season. The child died at the end of the RSV season at the age of 5 months.

Proportion of RSV-related deaths aged 3 months or younger

Thirty-eight (71.7%) children were younger than 12 months at time of RSV-related death and 10 (18.9% of total) of these children were younger than 3 months at time of death. The distributions for gestational age and age at RSV-related death in children with DS younger than 12 months are shown in Figure 2.

Comparison between children with DS with and without risk factors for severe RSV disease

In total, 13 (24.5%) children were born term and had no risk factors for severe RSV disease other than DS. We compared age distribution at time of RSV-related death between children with DS younger than 12 months with (n=28) and without (n=10) additional risk factors for severe RSV disease (Figure 3) and for all reported cases (Supplemental Figure 3). There was no significant difference in age at time of death between groups (p=0.74 and p=0.56, respectively). A sensitivity
analysis excluding cases with missing data for gestational age and no additional risk factors (n=5) gave a similar result (p=0.59).

Comparison between children with and without DS

In Supplemental Table 2, we compared characteristics of children with DS and without DS (GOLD I, previously published). Children with DS had significantly less presenting signs and symptoms of respiratory tract infection (p<0.0005) but were hospitalized longer (median length of stay 13 days (IQR 6.8-21.0) versus 8 days (IQR 3.0-18.5), p=0.005). There was no statistical difference in age at time of death between groups (p=0.64, Supplemental Figure 4). We subsequently analyzed children with and without DS, without additional risk factors for severe RSV disease (Supplemental Figure 5). Again, there was no statistically significant difference in age at time of death between groups (p=0.95).

DISCUSSION

This study is the first global case series of children with DS who died with RSV-confirmed infection. We evaluated the demographic and clinical characteristics of these children and found that median age at death was 6 months. Median age at death was similar in children with and without risk factors other than DS for severe RSV disease and similar in children with and without DS.

This study adds to the existing literature by describing demographic and clinical characteristics from 53 children with DS from 20 different countries. LRTIs are the primary cause of hospitalization and form a major cause of mortality in children with DS. We have previously shown that DS is an independent risk factor for severe RSV infection and this was confirmed by others. In three meta-analyses, the relative risk for RSV hospitalization for children with DS was found to be 6-8 fold higher compared with children without DS and the relative risk of mortality was approximately
9-fold higher for children with DS. Increased susceptibility for severe LRTIs in this group may be explained by 3 factors. First, DS-associated airway malformations such as laryngotracheomalacia, alveolar and pulmonary hypoplasia, second, DS-associated comorbidities such as hemodynamically significant CHD, pulmonary hypertension, generalized hypotonia, swallowing dysfunction with increased risk of aspiration, and third, immunologic impairments such as decreased NK-cell activity, abnormal thymus function, lower numbers of T and B cells and decreased T-cell proliferation and cytotoxicity. Altogether, these factors accumulate to an increased risk of death in case of RSV infection.

When comparing children with DS to children without DS, we found that children with DS were hospitalized longer than children without DS. A possible explanation could be that physicians may tend to admit children with DS and RTI quicker than other children with RTI due to the presence of the above-mentioned risk factors for severe respiratory disease.

Prevention of RSV-related morbidity and mortality is needed for children with DS. To date, the only available RSV prophylaxis is palivizumab, a humanized monoclonal antibody which is administered monthly before the start of the RSV season. The efficacy of palivizumab is firmly established and routinely recommended for children with CHD, chronic lung disease or born prematurely. Some paediatricians advocate offering palivizumab to every child with DS up to 2 years of age, while others await the development of an RSV vaccine. Currently, most prophylaxis guidelines do not yet recommend palivizumab for children with DS since there are insufficient studies that address the efficacy and cost-effectiveness of palivizumab in children with DS without additional risk factors for severe RSV disease. The American Academy of Pediatrics states that children with DS without additional risk factors are generally older at RSV-related hospitalization compared with children with additional risk factors (median age 9 months versus 4 months). Therefore, immunoprophylaxis for the first year of life would be of limited effect. On the other hand, some countries have included DS
as possible indication for palivizumab prophylaxis in their guidelines, acknowledging that randomized controlled trials are challenging to conduct due to the projected large sample size and ethical concerns. Nevertheless, palivizumab is costly and therefore barely available in low- and middle income countries.

The results of the first maternal RSV vaccine candidate reaching phase 3 showed prevention of severe RSV infection in babies born to vaccinated mothers, but the trial did not meet its primary endpoint. In the present study, approximately one-fifth of cases were younger than 3 months at time of death. This implies that maternal vaccination may not sufficiently protect all children with DS against life-threatening RSV-infection, given the fact that the level of maternally acquired RSV-specific antibodies declines over time after birth and will only provide temporary protection. As an alternative to palivizumab, which requires multiple dosing during the RSV season and is therefore costly, an extended half-life monoclonal antibody has been developed (nirsevimab, previously MEDI8897). This highly potent antibody has shown promising results in a phase IIb trial and was recently granted Breakthrough Therapy Designation by the FDA.

The strengths of this study consist of the global representation of RSV-related mortality in children with DS in our mortality registry. Large studies such as RSV GOLD are essential to obtain sufficient global data for this high-risk group. We have obtained good data quality by verifying each case directly with the RSV GOLD collaborators. Furthermore, we differentiated between children with DS with and without comorbidities and risk factors for severe RSV disease.

There are also limitations to this study. First, only 53 children with DS were reported to the RSV GOLD registry. This is a small proportion of all children with DS who died with RSV worldwide. We could not estimate the actual burden of RSV-related death in this high-risk group since the incidence of DS was not available for most countries. In addition, not all RSV-related mortality cases
that occurred in these countries have been shared with the GOLD registry. However, we believe that children with DS are overrepresented in the RSV GOLD mortality registry, since the proportion of children with DS reported to the registry is larger than the prevalence of DS in the general population (1:19 reported GOLD cases versus 1:1200 in the population41). Second, since we collected data from 20 different countries over a period of more than 25 years, quality of care might have differed substantially between cases. Third, data for prematurity and (severity of) comorbidities were often incomplete, such as type of CHD and whether the child underwent cardiac surgery prior to RSV infection. This could have resulted in an underestimation of the proportion of children with DS with additional comorbidities and children who were born prematurely. However, the estimated general incidence of CHD in children with DS is comparable to our results (50-66.6\%42-43 versus 67.9\%, respectively). Furthermore, since DS was already reported for these children, it is more likely that other comorbidities, if present, would also have been reported. Moreover, a sensitivity analysis excluding cases with missing data for gestational age gave similar results. Fourth, since nosocomial RSV-infection and stem cell transplantation were exclusion criteria for GOLD I, the proportion of children with nosocomial RSV-infections and of those who received stem cell transplantation is underrepresented in this study. Lastly, this study hardly represents children with DS from low- and lower-middle income countries. This is most likely due to a lack of RSV testing and to limited access to healthcare –leading to both early death in children with DS with underlying comorbidities before they become RSV infected and to RSV-related death in the community.

In conclusion, children with DS are at increased risk of RSV-related death and need adequate protection against RSV infection. Considering median age at death, maternal vaccination will not be sufficient for this high-risk group.
ACKNOWLEDGEMENTS

We thank our collaborators of the RSV GOLD study group for taking the time and effort to share cases with the RSV GOLD registry. We also thank Heather Zar, Daniel Feikin, Johan Vekemans, Naveen Thacker, Nicole Derksen, Michael Boele van Hensbroek and Christopher Gill for their scientific input as (former) members of the RSV GOLD independent scientific advisory board. Furthermore, we thank Prachi Vora, Niteen Wairagkar, Padmini Srikantiah and Leyla Kragten-Tabatae for their scientific advice. Lastly, we thank our (former) members of the RSV GOLD operations team Ichelle van Roessel, Rogina Roebaar, Dunja Scheepmaker, Trisja Boom, Femke Vernooij, Beverly de Leeuw, Jasper van der Kemp, Renske Bijl, Sophia van der Graaf, Sangeeta Bisheshar, Dora van Duijvendijk, Sophie Croon, Insaf Duale, Junhua Fang and Issam el Mansori for their hard work, enthusiasm, and valuable contributions.

The RSV GOLD collaborators for this study are:

Mejias, Asuncion MD, PhD⁵
Ramilo, Octavio MD⁵
Thorburn, Kentigern MD⁶
McNamara, Paul S. MD, PhD⁶
Chi, Hsin PhD⁷
Bashir Aamir, Uzma⁸
Pires, Márcia R.⁹
de-Paris, Fernanda⁹
Gentile, Angela MD¹⁰
Lucion, Maria F. MD¹⁰
De Andrade Nishioka, Sergio MD, PhD¹¹, on behalf of the Ministry of Health (Brazil)
Meggd, Orli MD¹²
Hessong, Danielle MPH¹³
Polack, Fernando P. MD
Noyola, Daniel E. MD, PhD
Das, Rashmi MD
O’Brien, Katherine L. MD, on behalf of the PERCH Study Group

Affiliations:

5 Department of Pediatrics, Division of Infectious Diseases, and Center for Vaccines and Immunity at Nationwide Children’s Hospital, Columbus, Ohio State, USA
6 Alder Hey Children’s hospital / The University of Liverpool, Liverpool, UK
7 Department of Pediatric Infectious Disease, MacKay Children's Hospital, Taipei, Taiwan
8 Department of Virology, National Institute of Health, Islamabad, Pakistan
9 Molecular Biology Laboratory and Infection Control Commission, Hospital de Clínicas de Porto Alegra, Bairro Santa Cecília, Porto Alegre, Brazil
10 Ricardo Gutiérrez Children’s Hospital, Buenos Aires, Argentina
11 Ministry of Health, Brasilia, Brazil
12 Shaare Zedek Medical Center, Jerusalem, Israel
13 Children's Hospital Colorado, Colorado, USA
14 Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Canada
15 Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children’s Hospital New York, USA
16 Instituto Nacional de Investigación en Salud Publica, Guayaquil, Ecuador and Universidad Agraria del Ecuador, Guayaquil, Ecuador
17 Instituto Nacional de Investigación en Salud Publica, Guayaquil, Ecuador
18 Ministerio de Salud Pública del Ecuador, Quito, Ecuador
19 St Mary's Hospital, Imperial NHS, London, UK
20 Kyorin University, Tokyo, Japan
21 Fundación Instituto para la Mejora de la Asistencia Sanitaria / Research Institute Gregorio Maranon, Madrid, Spain

22 University Hospital for Infectious Diseases, Zagreb, Croatia

23 Children's Hospital "P. & A. Kyriakou", Athens, Greece

24 Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

25 American University of Beirut Medical Center, Beirut, Lebanon

26 Kenya Medical Research Institute, Wellcome Trust Research Programme, Centre for Geographic Medicine Research - Coast, Kilifi, Kenya

27 Schneider Children’s Medical Center of Israel, Petah Tikwa, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

28 Hospital Pequeño Principe, Curitiba, Brazil

29 Fundación Infant, Buenos Aires, Argentina

30 Universidad Autonoma de San Luis Potosí, San Luis Potosí, Mexico

31 All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India

32 International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
REFERENCES

1. Breese Hall C, Weinberg GA, Iwane MK, et al. The burden of respiratory syncytial virus infection in young children. *N Engl J Med*. 2009;360:588-598. doi:10.1056/NEJMo0804877

2. Shi T, McAllister DA, O’Brien KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. *Lancet*. 2017;390(10098):946-958. doi:10.1016/S0140-6736(17)30938-8

3. Scheltema NM, Gentile A, Lucion F, et al. Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. *Lancet Glob Heal*. 2017;5(10):e984-e991. doi:10.1016/S2214-109X(17)30344-3

4. Bloemers BLP, van Furth AM, Weijerman ME, et al. Down Syndrome: A Novel Risk Factor for Respiratory Syncytial Virus Bronchiolitis A Prospective Birth-Cohort Study. *Pediatrics*. 2007;120(4):e1076-e1081. doi:10.1542/peds.2007-0788

5. Stagliano DR, Nylund CM, Eide MB, et al. Children with down syndrome are high-risk for severe respiratory syncytial virus disease. *J Pediatr*. 2015;166(3):703-709.e2. doi:10.1016/j.jpeds.2014.11.058

6. Chan M, Park JJ, Shi T, Martinón–Torres F, Bont L, Nair H. The burden of respiratory syncytial virus (RSV) associated acute lower respiratory infections in children with Down syndrome: A systematic review and meta–analysis. *J Glob Health*. 2017;7(2):1-10. doi:10.7189/jogh.07.020413

7. Sánchez-Luna M, Medrano C, Lirio J, et al. Down syndrome as risk factor for respiratory syncytial virus hospitalization: A prospective multicenter epidemiological study. *Influenza Other Respi Viruses*. 2017;11(2):157-164. doi:10.1111/irv.12431

8. Grut V, Söderström L, Naumburg E. National cohort study showed that infants with Down’s syndrome faced a high risk of hospitalisation for the respiratory syncytial virus. *Acta Paediatr Int J Paediatr*.
Kristensen K, Hjuler T, Ravn H, Simões EAF, Stensballe LG. Chronic diseases, chromosomal abnormalities, and congenital malformations as risk factors for respiratory syncytial virus hospitalization: A population-based cohort study. *Clin Infect Dis.* 2012;54(6):810-817. doi:10.1093/cid/cir928

Watts R, Vyas H. An overview of respiratory problems in children with down’s syndrome. *Arch Dis Child.* 2013;98(10):812-817. doi:10.1136/archdischild-2013-304611

World Health Organization. Genomic research centre. Genes and human disease: Genes and chromosomal diseases. Available from: https://www.who.int/genomics/public/geneticdiseases/en/index1.html. Accessed July 31, 2019.

Mazur NI, Higgins D, Nunes MC, et al. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. *Lancet Infect Dis.* 2018;18(10):e295-e311. doi:10.1016/S1473-3099(18)30292-5

Modjarrad K, Giersing B, Kaslow DC, Smith PG, Moorthy VS. WHO consultation on Respiratory Syncytial Virus Vaccine Development Report from a World Health Organization Meeting held on 23-24 March 2015. *Vaccine.* 2016;34(2):190-197. doi:10.1016/j.vaccine.2015.05.093

Novavax Presentation. Swamy GK, Munoz FM, Polack F, Madhi SA, Trenholme AA, Simoes EAF, et al. Safety of Third Trimester Immunization with a Respiratory Syncytial Virus (RSV) F Protein Vaccine and Protection of Infants over the First 180 Days of Life Against All-Cause Lower Respiratory Tract Infection. Available from: https://www.novavax.com/download/files/20190808-IDSOG-Presentation.pdf. Accessed October 1st, 2019.

Muñoz FM, Swamy GK, Hickman SP, Agrawal S, Piedra PA, Glenn GM, et al. Safety and immunogenicity of a respiratory syncytial virus fusion (F) protein nanoparticle vaccine in healthy third-trimester pregnant women and their infants. *J Infect Dis.* 2019 Oct 22;220(11):1802-1815.
16. Langley GF, McCracken J, Arvelo W, et al. The epidemiology and clinical characteristics of young children hospitalized with respiratory syncytial virus infections in Guatemala (2007-2010). Pediatr Infect Dis J. 2013;32(6):629-635. doi:10.1097/INF.0b013e318289e3be

17. Scheltema NM, Kavelaars XM, Thorburn K, et al. Potential impact of maternal vaccination on life-threatening respiratory syncytial virus infection during infancy. Vaccine. 2018;36(31):4693-4700. doi:10.1016/j.vaccine.2018.06.021

18. Research Online. Available from: https://www.researchonline.info/en-us/. Accessed January 27, 2020.

19. The World Bank. World Bank Country and Lending Groups. Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519. Accessed July 31, 2019.

20. Chu HY, Englund JA. Maternal Immunization. Clin Infect Dis. 2014;59(4):560-568. doi:10.1097/AOG.0000000000003161

21. Bloemers BLP, Van Furth AM, Weijerman ME, et al. High incidence of recurrent wheeze in children with down syndrome with and without previous respiratory syncytial virus lower respiratory tract infection. Pediatr Infect Dis J. 2010;29(1):39-42. doi:10.1097/INF.0b013e3181b34e52

22. Beckhaus AA, Castro-Rodriguez JA. Down Syndrome and the Risk of Severe RSV Infection: A Meta-analysis. Pediatrics. 2018;142(3):e20180225. doi:10.1542/peds.2018-0225

23. Mitra S, El Azrak M, McCord H, Paes BA. Hospitalization for Respiratory Syncytial Virus in Children with Down Syndrome Less than 2 Years of Age: A Systematic Review and Meta-Analysis. J Pediatr. 2018;203:92-100.e3. doi:10.1016/j.jpeds.2018.08.006

24. Bertrand P, Navarro H, Caussade S, Holmgren N, Sánchez I. Airway anomalies in children with Down syndrome: Endoscopic findings. Pediatr Pulmonol. 2003;36(2):137-141. doi:10.1002/ppul.10332

25. Schloo BL, Vawter GF, Reid LM. Down syndrome: Patterns of disturbed lung growth. Hum Pathol. 1991;22(9):919-923. doi:10.1016/0046-8177(91)90183-P

26. Bloemers BLP, Broers CJM, Bont L, Weijerman ME, Gemke RJBJ, van Furth AM. Increased risk of
respiratory tract infections in children with Down syndrome: The consequence of an altered immune system. *Microbes Infect*. 2010;12(11):799-808. doi:10.1016/j.micinf.2010.05.007

27. Ram G, Chinen J. Infections and immunodeficiency in Down syndrome. *Clin Exp Immunol*. 2011;164(1):9-16. doi:10.1111/j.1365-2249.2011.04335.x

28. FDA. SYMAGIS ® (PALIVIZUMAB) for Intramuscular Administration. 1996.

29. The IMpact-RSV Study Group. Palivizumab, a Humanized Respiratory Syncytial Virus Monoclonal Antibody, Reduces Hospitalization From Respiratory Syncytial Virus Infection in High-risk Infants. *Pediatrics*, 1998;102(3), 531–537. https://doi.org/10.1542/peds.102.3.531

30. Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory Syncytial Virus and Recurrent Wheeze in Healthy Preterm Infants. *N Engl J Med*. 2013;368(19):1791-1799. doi:10.1056/nejmoa1211917

31. Huggard D, Molloy EJ. Question 1: Palivizumab for all children with Down syndrome? *Arch Dis Child*. 2019;104(1):94-97. doi:10.1136/archdischild-2018-316140

32. Paes B, Mitra S. Palivizumab for children with Down syndrome: Is the time right for a universal recommendation? *Arch Dis Child*. 2018;14-16. doi:10.1136/archdischild-2018-316408

33. American Academy of Pediatrics. Updated Guidance for Palivizumab Prophylaxis Among Infants and Young Children at Increased Risk of Hospitalization for Respiratory Syncytial Virus Infection. *Pediatrics*. 2014;134(2):e620-e638. doi:10.1542/peds.2014-1666

34. Van Beek D, Paes B, Bont L. Increased risk of RSV infection in children with down’s syndrome: Clinical implementation of prophylaxis in the European union. *Clin Dev Immunol*. 2013;2013. doi:10.1155/2013/801581

35. Paes B, Mitchell I, Yi H, Li A, Lanctôt KL. Hospitalization for respiratory syncytial virus illness in down syndrome following prophylaxis with palivizumab. *Pediatr Infect Dis J*. 2014;33(2):29-33. doi:10.1097/INF.0000000000000019
36. Zachariah P, Ruttenber M, Simões EAF. Down syndrome and hospitalizations due to respiratory syncytial virus: A population-based study. *J Pediatr*. 2012;160(5):827-832. doi:10.1016/j.jpeds.2011.11.004

37. Simon A, Gehrmann S, Wagenpfel G, Wagenpfel S. Palivizumab use in infants with Down syndrome-report from the German SynagisTM Registry 2009-2016. *Eur J Pediatr*. 2018;177(6):903-911. doi:http://dx.doi.org/10.1007/s00431-018-3142-x

38. Ochola R, Sande C, Fegan G, et al. The level and duration of RSV-specific maternal IgG in infants in kilifi Kenya. *PLoS One*. 2009;4(12):4-9. doi:10.1371/journal.pone.0008088

39. Taleb SA, Al Thani AA, Al Ansari K, Yassine HM. Human respiratory syncytial virus: pathogenesis, immune responses, and current vaccine approaches. *Eur J Clin Microbiol Infect Dis*. 2018;37(10):1817-1827. doi:10.1007/s10096-018-3289-4

40. AstraZeneca Press Release. Available from: https://www.astrazeneca.com/media-centre/press-releases/2019/us-fda-grants-breakthrough-therapy-designation-for-potential-next-generation-rsv-medicine-medi8897.html. Accessed July 31, 2019.

41. Centers for Disease Control and Prevention. Data and statistics on down syndrome. Available from: https://www.cdc.gov/ncbddd/birthdefects/downsyndrome/data.html. Accessed July 31, 2019.

42. Morales-Demori R. Congenital heart disease and cardiac procedural outcomes in patients with trisomy 21 and Turner syndrome. *Congenit Heart Dis*. 2017;12(6):820-827. doi:10.1111/chd.12521

43. Martin T, Smith A, Breatnach CR, et al. Infants Born with Down Syndrome: Burden of Disease in the Early Neonatal Period. *J Pediatr*. 2018;193:21-26. doi:10.1016/j.jpeds.2017.09.046
FIGURE LEGENDS

Figure 1. Inclusion of children with Down syndrome from the RSV GOLD I and II registry

Figure 2. Distribution of gestational age (N = 34*) and age in weeks at time of RSV-related death for children with Down syndrome <12 months (N = 38)

Figure 3. Distribution of age in weeks at time of RSV-related death for children with Down syndrome with (N = 28) and without (N = 10) additional risk factors for severe RSV disease <12 months
TABLES AND FIGURES
Figure 1. Inclusion of children with Down syndrome from the RSV GOLD I and II registry

GOLD I
N = 358

GOLD II
N = 647

Excluded: no Down syndrome diagnosis
N = 952

Down syndrome
N = 53

Additional risk factors
N = 40

No additional risk factors
N = 13

Age at death <12 months
N = 28

Age at death <12 months
N = 10

N = 53

N = 40

N = 13

N = 28

N = 10

N = 358

N = 647

N = 952
Table 1. Demographic characteristics, clinical characteristics and comorbidity status of children with Down syndrome under 5 years of age who died with laboratory-confirmed RSV infection

Demographic characteristics	All cases (N = 53)	Comorbidities (N = 39)	No comorbidities (N = 14)	P-value
Male gender, N/T (%)	31/53 (58.5)	18/39 (46.2)	4/14 (28.6)	0.35
Gestational age in weeks, median (IQR); N	37.0 (35.8-38.2); 22	37.0 (35.5-38.4); 17	37.0 (34.0-39.0); 5	0.87
Prematurity, N (%)	13 (24.5)	11 (28.2)	2 (14.3)	0.47
Country of origin				
Low-income, N/T (%)	2/53 (3.8)	1/39 (2.6)	1/14 (7.1)	0.46
Lower-middle-income, N/T (%)	3/53 (5.7)	1/39 (2.6)	2/14 (14.3)	0.17
Upper middle-income, N/T (%)	27/53 (50.9)	23/39 (59.0)	4/14 (28.6)	0.07
High-income, N/T (%)	21/53 (39.6)	14/39 (35.9)	7/14 (50.0)	0.36
Clinical characteristics				
Difficulty with breathing, N/T (%)	35/46 (76.1)	26/32 (81.3)	9/14 (64.3)	0.27
Coughing, N/T (%)	27/43 (62.8)	20/30 (66.7)	7/13 (53.8)	0.50
Fast breathing, N/T (%)	26/44 (59.1)	18/30 (60.0)	8/14 (57.1)	0.86
Chest indrawing, N/T (%)	16/46 (34.8)	14/32 (43.8)	2/14 (14.3)	0.09
Fever, N/T (%)	20/52 (38.5)	15/38 (39.5)	5/14 (35.7)	0.81
Severe respiratory distress', N/T (%)	10/41 (24.4)	6/28 (21.4)	4/13 (30.8)	0.70
Inability to drink, N/T (%)	6/38 (15.8)	5/25 (20.0)	1/13 (7.7)	0.64
Central cyanosis, N/T (%)	8/41 (19.5)	7/28 (25.0)	1/13 (7.7)	0.40
Length of stay in hospital in days, median (IQR); N	13.0 (6.8-21.0); 50	12.0 (7.0-21.0); 39	14.0 (3.0-21.0); 11	0.80
ICU admission, N/T (%)	40/48 (83.3)	32/38 (84.2)	8/11 (72.7)	0.22
ICU length of stay in days, median (IQR); N	11.0 (6.0-16.3); 28	11 (6.0-18.0); 25	12.0 (3.0-N/A); 3	0.74
Mechanical ventilation, N/T (%)	33/51 (64.7)	28/37 (75.7)	5/14 (35.7)	0.02
Duration of mechanical ventilation in days, median (IQR); N	10.0 (6.0-16.0); 27	10.0 (6.25-16.75); 24	12.0 (3.0-N/A); 3	0.64
Age at time of death in months, median (IQR); N	6.0 (3.0-12.0); 53	6.0 (3.0-12.0); 39	6.5 (2.0-13.25) 14	0.77

Comorbidity status*

Congenital heart disease, N (%)	36 (67.9)	36 (92.3)	N/A	N/A
Chronic lung disease, N (%)	8 (15.1)	8 (20.5)	N/A	N/A
Immunodeficiency, N (%)	1 (1.9)	1 (2.6)	N/A	N/A
Neuromuscular disorder, N (%)	2 (3.8)	2 (5.1)	N/A	N/A
Other*	4 (7.5)	4 (10.3)	N/A	N/A

*Considered absent when missing

b e.g. grunting, very severe chest indrawing

*c Congenital hypothyroidism (N = 1), cancer (N = 2) and pulmonary hypertension (N = 1)

d For 1 case from Mali, there was no ICU available

N, number; T, total
Figure 2. Distribution of gestational age (N = 34*) and age in weeks at time of RSV-related death for children with Down syndrome <12 months (N = 38)

*4 cases were excluded because they were born prematurely with unknown GA
Figure 3. Distribution of age in weeks at time of RSV-related death for children with Down syndrome with (N = 28) and without (N = 10) additional risk factors for severe RSV disease <12 months.
Supplemental Digital Content

FIGURE LEGENDS

Supplemental Digital Content 1. Table 1. Country where RSV-related death occurred

Supplemental Digital Content 2. Figure 1. Global distribution of included children with Down syndrome and RSV-related death

Supplemental Digital Content 3. Table 2. Demographic characteristics, clinical characteristics and comorbidity status of children with (N = 53) and without (N = 342) Down syndrome younger than 5 years of age who died with laboratory-confirmed RSV infection

Supplemental Digital Content 4. Figure 2. Distribution of gestational age (N = 49*) and age in months at time of RSV-related death for children with Down syndrome (all included cases, N = 53)

Supplemental Digital Content 5. Figure 3. Distribution of age in months at time of RSV-related death for children with Down syndrome with (N = 40) and without (N = 13) additional risk factors for severe RSV disease

Supplemental Digital Content 6. Figure 4. Distribution of age in months at time of RSV-related death for children with Down syndrome (N = 53) and children without Down syndrome (N = 342)

Supplemental Digital Content 7. Figure 5. Distribution of age in months at time of RSV-related death for children without additional risk factors for severe RSV disease, Down syndrome (N = 13) versus no Down syndrome (N = 203)