THE MULTI-DIMENSIONAL DECOMPOSITION WITH
CONSTRAINTS

Ilgis Ibragimov, Elena Ibragimova

Elegant Mathematics LLC, 82834 WY USA &
Elegant Mathematics Ltd, 66564 Germany

e-mail: ii@elegant-mathematics.com

ABSTRACT

We search for the best fit in the Frobenius norm of $A \in \mathbb{C}^{m \times n}$ by a matrix product BC^*, where $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{n \times r}$, with $r \leq m$ so that $B = \{b_{ij}\}_{i=1, \ldots, m}^{j=1, \ldots, r}$ is defined by some unknown parameters $\sigma_1, \ldots, \sigma_k$, $k << mr$, and all partial derivatives of $\frac{\delta b_{ij}}{\delta \sigma_l}$ are definite, bounded, and can be computed analytically.

We show that this problem transforms to a new minimization problem with only k unknowns by the analytical computation of the gradient of the minimized function over all σ. The complexity of computation of this gradient is only 4 times greater than the complexity of computation of the function, and this new algorithm needs only $3mr$ additional words in memory.

We apply this approach for the solution of the three-way decomposition problem and obtain good result of convergence for the Broyden algorithm.

INTRODUCTION

Suppose we have $A \in \mathbb{C}^{m \times n}$. The idea is to find $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{n \times r}$, $r \leq m$ so

$$\min_{C,\sigma_1,\ldots,\sigma_k} ||A - B(\bar{\sigma})C^*||_F^2,$$

that $B = \{b_{ij}\}_{i=1, \ldots, m}^{j=1, \ldots, r}$ is defined by unknown parameters $\sigma_1, \ldots, \sigma_k$, $k << mr$, and all partial derivatives of $\frac{\delta b_{ij}}{\delta \sigma_l}$ are definite, bounded and can be computed analytically.

This problem occurs in statistics [1], nuclear magnetic resonance [2], spectroscopy and multi-dimensional decomposition [3]. Consider one popular application [4] — a low rank approximation of two and multidimensional data array with one factor matrix containing vectors formed as complex exponents:

$$\min_{B,\sigma} \sum_{j=1}^{J} \sum_{k=1}^{K} \left| \sum_{l=1}^{L} a_{jk} - \sum_{l=1}^{L} b_{jl} e^{i\sigma_k} \right|_2^2,$$
and

\[
\min_{B, \sigma} \sum_{j=1}^{J} \sum_{k=1}^{K} \left| a_{jk} - \sum_{l=1}^{L} b_{jl} e^{i\sigma_k l} \right|^2,
\]

Since the total amount of minimizing parameters \(\sigma \) usually is several orders less than the total amount of minimizing parameters in \(B \), it is highly desired to perform minimization over only \(\sigma \) to save computational complexity.

If we freeze \(B \), then this function is linear in \(C \), and \(C = A^* B (B^* B)^{-1} \). The problem (1) then turns into a new nonlinear problem with only \(k \) unknowns:

\[
\min_{\sigma_1, \ldots, \sigma_k} ||A - B(B^* B)^{-1} B^* A||_F = \min_{\sigma_1, \ldots, \sigma_k} \sqrt{||A||^2_F - ||A^* Q(B)||^2_F},
\]

where \(Q(B) \in \mathbb{C}^{m \times r} \) contains the orthonormal subspace from \(B \).

The main difficulty in applying minimization methods for (4) is the computation of the gradient of the function over all \(\sigma \). The finite difference method needs \(k^2 \) or \(2k^2 \) computations of this function for one evaluation of the gradient and cannot be considered accurate. There is a good alternative for it, Baur-Strassen (BS) method [6], which allows computing the gradient of a function using only \(5n \) operations if the original function can be computed by \(n \) simple arithmetical operations with no more than 2 operands. The big disadvantage of the BS method is its memory requirement: it needs \(\mathcal{O}(n) \) words in memory, which is too many for most applications.

We suggest a new approach for computing the gradient of a function. This approach contains Modified Gramm–Schmidt (MGS) orthogonalization with low memory requirements and is based on the BS method.

ALGORITHM

To compute (4), we perform the following steps:

1) create \(B \) from \(\sigma_1, \ldots, \sigma_k \);

2) compute orthonormal subspace \(Q \) in \(B \);

3) compute (4).

In this article, we discuss how to compute a gradient \(\hat{g} \in \mathbb{C}^{mr} \) of (4) over all entries of \(B \). We will use both \(G \in \mathbb{C}^{m \times r} \) and \(\hat{g} \) for the same data. Let the dependence of \(B \) on \(\sigma_1, \ldots, \sigma_k \) be so simple that one can compute the gradient of (4) by \(\sigma_1, \ldots, \sigma_k \) if \(G \) is known.

Steps 2 and 3 need \(mr \) additional words in memory and compute within \(2mr(r + n) \) arithmetical operations in the event that the MGS algorithm is used for step 2. The BS
algorithm can compute the gradient with the same order of arithmetical complexity but needs $4mr(r + n)$ additional words in memory.

Let us consider a computation of (4) from B. Let $B = [b_1, \ldots, b_k]$ be the initial matrix and $Q = [q_1, \ldots, q_k]$ the orthonormal subspace, which we are going to compute. Then

\[q_1 = \frac{b_1}{||b_1||_2}, \]

\[\text{do } i = 2, r \]
\[u = b_i, \]
\[\text{do } j = 1, i - 1 \]
\[u = u - q_jq_j^*u \]
\[\text{endo} \]
\[q_i = \frac{u}{||u||_2} \]
\[\text{endo} \]

\[f = \sqrt{||A||_F^2 - \sum_{i=1}^{r} ||A^*q_i||_2^2} \]

Let’s construct a gradient of f by B. We will call $dy_i \in \mathbb{C}^m$ the vector of derivatives — each k-th element of this vector contains the derivative of the k-th element of vector y_i.

Then there are the following formulas for the gradient:

\[dq_1 = \frac{1}{||b_1||_2}(I - q_1q_1^*)db_1 \]

\[\text{do } i = 2, r \]
\[u = b_i \]
\[\text{do } j = 1, i - 1 \]
\[du_{\text{new}} = (I - q_jq_j^*)du_{\text{old}} - (q_j^*u_{\text{old}}I + u_{\text{old}}q_j^*)dq_j \]
\[\text{endo} \]
\[dq_i = \frac{1}{||u||_2}(I - q_iq_i^*)du \]
\[\text{endo} \]

\[df = -\frac{1}{f} \sum_{i=1}^{r} q_i^*AA^*dq_i \]

We can write all these equations in matrix notation:

\[
\begin{pmatrix}
I_{mr \times mr} \\
F_{mr \times \frac{mr(r+1)}{2}} \\
0 \\
\frac{L_{mr(r+1) \times \frac{mr(r+1)}{2}}}{h_{mr(r+1) \times \frac{mr(r+1)}{2}}} \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
\frac{\delta}{\delta b_{ij}} \\
\frac{\delta}{\delta g^*}
\end{pmatrix}
= \begin{pmatrix} I_{mr \times mr} \\
0 \end{pmatrix}
\] or
\[
\begin{pmatrix}
I_{mr \times mr} & F^*_{mr \times \frac{mr(r+1)}{2}} & 0 \\
0 & L^*_{\frac{mr(r+1)}{2} \times \frac{mr(r+1)}{2}} & h_{\frac{mr(r+1)}{2}} \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\hat{g} \\
\ast \\
\ast
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
\vdots \\
0
\end{pmatrix},
\]

(5)

where \(L_{\frac{mr(r+1)}{2} \times \frac{mr(r+1)}{2}} \) is a lower block triangular matrix with block size \(m \times m \). This matrix has \(I_{m \times m} \) blocks on the diagonal. The block matrix \([F, L]\) contains no more than 3 nonzero blocks in each row (see Fig. 1 for one example with 4 vectors). We marked with \(\ast \) the elements that we are not interested in; \(\hat{g} \) is the vector of the gradient of the original function over all \(b_{ij} \). To compute \(\hat{g} \), we solve the linear system (5). If we create \(L \) and \(F \) matrices, then we need at least \(mr(r + 3) \) words to solve \(L \).

Figure 1 Shows the matrix \([F, L]\) when \(B \) has 4 vectors, here \(S = \frac{I - uu^*}{||u||_2}, V = q^*uI + uq^*, W = qq^* - I \).

We suggest an improvement where we need only \(4mr \) words to store some parts of \(L \) and \(F \) but still compute the solution. Let’s remark that in the loop for the variable \(j \), we update \((i - 1) \) times vector \(u \). If we store matrices \(B \) and \(Q \), we can recompute all updates of \(u \) from this loop for particular \(i \) with \(2(i - 1)M \) additional arithmetical operations and store them in one additional array \(T \in \mathbb{C}^{m \times r} \). Then, during backward substitution we recompute all updates of \(u \) only when we need it. Obviously, this occurs \(r - 1 \) times for all \(i = r, \ldots, 2 \). All multiplications to matrices \(S, V, \) and \(W \) need \(\mathcal{O}(m) \) arithmetical operations. Thus, we need only \(B, Q, T, \) and \(G \) arrays with size \(m \times r \) for this computation. Here is an algorithm:
\[G = -\frac{1}{f}AA^*Q \]

\[\text{do } i = r, 1, -1 \]
\[t_1 = b_i \]
\[\text{do } j = 1, i - 1 \]
\[z_j = q_j^*t_j \]
\[t_{j+1} = t_j - z_j q_j \]
\[\text{endo} \]
\[g_i = \frac{g_i - g_i q_i^* g_i}{\|t_i\|_2} \]
\[\text{do } j = i - 1, 1, -1 \]
\[\alpha = q_j^* g_i \]
\[g_j = g_j - z_j^* g_i - \alpha^* t_j \]
\[g_i = g_i - \alpha q_j \]
\[\text{endo} \]

Here we use the \(Z = (z_1, \ldots, z_r) \in \mathbb{C}^r \) array with only \(r \) elements for better performance.

The total arithmetical complexity of the computation of the gradient is \(4mr(2r + n) \) operations. If we compare this with MGS (\(2mr(r + n) \)), it is less than 4 times greater.

We obtain similar results for the Gramm-Schmidt (not MGS) orthogonalization: it needs \(3mr + \frac{r(r+1)}{2} \) words in memory and works with \(2mr(3r + 2n) \) operations, but because of stability issues we do not recommend using it.

NUMERICAL EXPERIMENTS

First we compare the general characteristics of our new approach with those of well-known approaches. We create the complex matrices \(A \) and \(B \) with random numbers, compute derivatives for different sizes of the problems by our new methods based on Gramm-Schmidt (AGS) and Modified Gramm-Schmidt (AMGS) algorithms, and compare our methods with the finite difference (FD) and Baur-Strassen (BS) methods (Tables 1, 2).

Furthermore, we show how those algorithms work. We perform a set of experiments and check the number of iterations for convergence of the Broyden method \[7\]. In this set of experiments, the matrix \(B \) is a real matrix with \(b_i = p_i \otimes q_i \in \mathbb{R}^{n^2} \), \(i = 1, \ldots, R \), where \(\otimes \) is the Kronecker product of vectors and \(p_i, q_i \in \mathbb{R}^n \) are unknown vectors. We change \(n \in [2, 20] \) and \(r \in [2, 20] \) (Table 3). This problem occurs in the three-way decomposition \[3, 5\].

Hence, our new method (AMGS) is stable enough (like the BS method), yet also up to a thousand times faster than BS and FD methods and does not require much additional memory (only 4 times more than FD).
Table 1. Memory requirements (in words) for FD, BS, AGS, and AMGS methods.

m	n	r	FD	BS	AGS	AMGS
2	1	1	4	152	12	14
10	2	2	40	2.5k	92	124
100	10	10	1.9k	619k	4.1k	5.9k
1000	100	100	195k	610m	410k	586k
1000	100	100	195k	33.5m	410k	586k

Table 2. Computational time of FD, BS, AGS, and AMGS methods.

m	n	r	FD	BS	AGS	AMGS
10	2	2	30us	10us	30us	10us
100	10	10	209ms	5.5us	160us	110us
1000	100	100	9.5h	6.4s	175ms	208us
1000	100	100	.92h	359us	9.2ms	9.3ms
1000	10	100	.5h	3.9s	154ms	205ms

Table 3. The dependence of the total number of iterations in the Broyden method on the method of gradient computation and problem size for the first series of experiments (N_u is the total number of unknowns).

m	n	r	N_u	FD	BS	AGS	AMGS
2	2	2	8	4	4	4	4
5	5	5	125	244	238	521	238
10	10	10	1000	3061	1581	>5000	1581
20	20	20	8000	>5000	2464	>5000	2464

References

[1] Harshman R., Ladefoged P. and Goldstein L., Factor analysis of tongue shapes, *J. Acoust. Soc. Am.*, 1977, 62:693.
[2] Jaravine V, Ibraghimov I, Orekhov V. Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. *Nature*, 2006, 3:605–607.
[3] Ibraghimov I., A new approach to solution of SVD-like approximation problem. *ENU-MATH 99*, 2000, 548–555.
[4] Ibragimova, Ibragimov. The ELEGANT NMR Spectrometer. [arXiv:1706.00237], 2017.
[5] Ibragimov I. Application of the three-way decomposition for matrix compression. *Numer. Lin. Alg. Appl.*, 2002, 9:551–565.
[6] Baur W., Strassen V., The complexity of partial derivatives. *Theor. Comput. Sci.*, 1983, 22:317–330.
[7] Dennis J.E., Schnabel R.B., Numerical methods for unconstrained optimization and nonlinear equations. *Prentice-Hall*, 1983.