On the Galerkin approximation and strong norm bounds for the stochastic Navier-Stokes equations with multiplicative noise

Igor Kukavica, Kerem Uğurlu, and Mohammed Ziane

Tuesday 1st March, 2022

Department of Mathematics, University of Southern California, Los Angeles, CA 90089
e-mails: kukavica@usc.edu, kugurlu@usc.edu, ziane@usc.edu

Abstract

We investigate the convergence of the Galerkin approximation for the stochastic Navier-Stokes equations in an open bounded domain O with the non-slip boundary condition. We prove that

$$E \left[\sup_{t \in [0,T]} \phi_1(\|u(t) - u^n(t)\|_V^2) \right] \to 0$$

as $n \to \infty$ for any deterministic time $T > 0$ and for a specified moment function $\phi_1(x)$ where $u^n(t, x)$ denotes the Galerkin approximation of the solution $u(t, x)$. Also, we provide a result on uniform boundedness of the moment $E[\sup_{t \in [0,T]} \phi(\|u(t)\|_V^2)]$ where ϕ grows as a single logarithm at infinity. Finally, we summarize results on convergence of the Galerkin approximation up to a deterministic time T when the V-norm is replaced by the H-norm.

Mathematics Subject Classification: 35Q30, 60H15, 60H30

Keywords: stochastic Navier-Stokes equations, moment estimates, Galerkin approximation

1 Introduction

In this paper, we address the convergence properties of the Galerkin approximation to the stochastic Navier-Stokes equations and obtain new estimates on the convergence in the strong norm.

The stochastic Navier-Stokes equations (SNSE) in a smooth bounded domain $O \subseteq \mathbb{R}^2$ with a multiplicative white noise read

$$du + ((u \cdot \nabla)u - \nu \Delta u + \nabla p)dt = f dt + g(u)dW$$
$$\nabla \cdot u = 0$$
$$u(0) = u_0$$

(1.1)
viscosity, whereas f stands for the deterministic force. Also, $g(u)W = \sum_k g_k(u)e_k W_k$ stands for an infinite dimensional Brownian motion, where each W_k is the standard one dimensional Brownian motion and $g_k(u)$ are the corresponding Lipschitz coefficients.

The study of the SNSSE was initiated by Bensoussan and Temam in 1973 [BT], and the equations have been extensively studied since then ([BF, F, GTW, Ku, KS, PR]). The well-posedness in L^2 was considered by Breckner [B], while the existence in Sobolev spaces $W^{1,p}$, where $p > 2$, was obtained by Brzezniak and Peszat [BP] as well as by Mikulevicius and Rozovsky [MR1]. Finally, the local existence in H^1 was proven in [GZ], where a method was introduced which extends also to less regular Sobolev spaces. For a comprehensive treatment of the subject of SNSSE, we refer the reader to the books by Vishik and Fursikov [FV], Capinski and Cutland [CC], and Flandoli [F].

As in the case of the deterministic NSE, the solutions are commonly constructed as a limit of solutions of the Galerkin system [BS, CF1, T]. In [B], Breckner proved that the solutions u of the SNSSE can be approximated by solutions u^n of the corresponding Galerkin systems. Namely, she proved that for all $t > 0$, we have
\[
E \left[\|u(t) - u^n(t)\|^2_H + \int_0^t \|u(s) - u^n(s)\|^2_V \, ds \right] \to 0
\] as $n \to \infty$ (cf. (2.1) and (2.2) for the definitions of the spaces H and V). In the absence of boundaries, her results extend easily to the case of stronger norms. More specifically, using the cancellation property
\[(B(u, u), Au) = 0\]
where B is the bilinear form and A the Stokes operator, which is valid in the case of periodic boundary conditions, one can easily obtain a stronger convergence result
\[
E \left[\|u(t) - u^n(t)\|^2_V + \int_0^t \|u(s) - u^n(s)\|^2_{H^2} \, ds \right] \to 0
\] as $n \to \infty$, under suitable assumptions on the noise.

The goal of this paper is to address the convergence of the Galerkin approximation pointwise in time for the V norm in the case of the Dirichlet boundary conditions when the cancellation property does not hold. In this case, it is easy to obtain results in this direction up to a suitable stopping time. However, the finiteness of the expected value of the second moment of the norm $\|u(t)\|^2_V$ for any fixed non-random time t is an open problem. By the same token, it is not known whether the expected value of the supremum of $\|u(t) - u^n(t)\|^2_V$ up to a deterministic time converges to 0 as $n \to \infty$. A positive result in this direction was obtained in [KV], where it was proven that
\[
E \left[\sup_{0 \leq t \leq T} \hat{\phi}(\|u\|^2_V) \right] < \infty
\] where
\[
\hat{\phi}(\tau) = \log(1 + \log(1 + \tau)), \quad \tau \in (0, \infty).
\]

The aim of this paper is twofold. First, we strengthen the main result in [KV] by showing that holds with
\[
\phi(\tau) = \log(1 + \tau)
\]
instead of $\tilde{\phi}$ (cf. Theorem 3.2 below). The second goal is to obtain the convergence of the Galerkin approximation in the V norm. Namely, we prove that

$$E \left[\sup_{[0,T]} \phi(\|u - u^n\|_V^2)^{1-\epsilon} \right] \to 0 \quad (1.8)$$

as $n \to \infty$ for all $\epsilon > 0$.

The paper is organized as follows. In Section 2 we give the theoretical background along with the deterministic and the stochastic settings. In Section 3 we state the main results on the convergence of the Galerkin approximations in the V-norm and on the finiteness of the logarithmic moment functions. In Remark 3.3 we summarize results on convergence when the V-norm is replaced by the H-norm. Finally, Section 4 contains the proof of the convergence of the Galerkin approximation to the original solutions. The proof uses the new moment estimate provided in Theorem 3.2.

2 Functional Setting

First, we recall the deterministic and the probabilistic frameworks used throughout the paper.

2.1 Deterministic Framework

Let O be a smooth bounded open connected subset of \mathbb{R}^2, and let $V = \{ u \in C_0^\infty(O) : \nabla \cdot u = 0 \}$. Denote by H and V the closures of V in $L^2(O)$ and $H^1(O)$ respectively. The spaces H and V are identified by

$$H = \{ u \in L^2(O) : \nabla \cdot u = 0, u \cdot N|_{\partial O} = 0 \},$$

$$V = \{ u \in H_0^1(O) : \nabla \cdot u = 0 \}$$

(cf. [CF2, T]). Here N is the outer pointing normal to ∂O. On H we denote the $L^2(O)$ inner product and the norm as

$$\langle u, v \rangle = \int_O u \cdot v \, dx$$

$$\|u\|_H = \sqrt{\langle u, u \rangle}. \quad (2.3)$$

Let P_H be the Leray-Hopf projector of $L^2(O)$ onto H. Recall that for $u \in L^2(O)$ we have $P_H u = (1 - Q_H) u$ where $Q_H u = \nabla \pi_1 + \nabla \pi_2$ and $\pi_1, \pi_2 \in H^1(O)$ are solutions of the problems

$$\Delta \pi_1 = \nabla \cdot u \text{ in } O$$

$$\pi_1 = 0 \text{ on } \partial O \quad (2.4)$$

and

$$\Delta \pi_2 = 0 \text{ in } O$$

$$\nabla \pi_2 \cdot N = u - \nabla \pi_1 \text{ on } \partial O \quad (2.5)$$

(cf. [CF2, T]). Let

$$A = -P_H \Delta \quad (2.6)$$
be the Stokes operator with the domain $D(A) = V \cap H^2(\mathcal{O})$. The dual of $V = D(A^{1/2})$ with respect to H is denoted by $V' = D(A^{-1/2})$. Here A is defined as a bounded, linear map from V to V' via

$$\langle Au, v \rangle = \int_\mathcal{O} \nabla u \cdot \nabla v \, dx, \quad u, v \in V,$$

with the corresponding norm defined as

$$\|u\|^2_V = \langle Au, u \rangle = \langle A^{1/2}u, A^{1/2}u \rangle, \quad u \in V.$$

By the theory of symmetric, compact operators applied to A^{-1}, there exists an orthonormal basis $\{e_k\}$ for H consisting of eigenfunctions of A. The corresponding eigenvalues $\{\lambda_k\}$ form an increasing, unbounded sequence

$$0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \cdots.$$

We also define the nonlinear term as a bilinear mapping $V \times V$ to V' via

$$B(u, v) = \mathcal{P}_H(u \cdot \nabla v).$$

The deterministic force f is assumed to be bounded with values in H. Note that the cancellation property $\langle B(u, v), v \rangle = 0$ holds for $u, v \in V$.

2.2 Stochastic Framework

In this section, we recall the necessary background material for stochastic analysis in infinite dimensions needed in this paper (cf. [DZ, DGT, F, PR]). Fix a stochastic basis $S = (\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}, \mathcal{W})$, which consists of a complete probability space (Ω, \mathbb{P}), equipped with a complete right-continuous filtration \mathcal{F}_t, and a cylindrical Brownian motion \mathcal{W}, defined on a separable Hilbert space U adapted to this filtration.

Given a separable Hilbert space X, we denote by $L_2(U, X)$ the space of Hilbert-Schmidt operators from U to X, equipped with the norm $\|G\|_{L_2(U, X)} = (\sum_k \|G_k\|^2_X)^{1/2}$ (cf. [DZ]). For an X-valued predictable process $G \in L^2(\Omega; L^2_{\text{loc}}([0, \infty]; L_2(U, X)))$, we define the Itô stochastic integral

$$\int_0^t G \, d\mathcal{W} = \sum_k \int_0^t G_k \, d\mathcal{W}_k \quad (2.7)$$

which lies in the space \mathcal{O}_X of X-valued square integrable martingales. We also recall the Burkholder-Davis-Gundy inequality: For all $p \geq 1$ we have

$$\mathbb{E} \left[\sup_{t \in [0, T]} \left\| \int_0^t G \, d\mathcal{W} \right\|^p_X \right] \leq C \mathbb{E} \left[\int_0^T \|G\|^2_{L_2(U, X)} \right]^{p/2} \quad (2.8)$$

for some $C = C(p) > 0$.

2.3 Conditions on the noise

Given a pair of Banach spaces X and Y, we denote by $\text{Lip}_u(X, Y)$ the collection of continuous functions $h: [0, \infty) \times X \to Y$ which are sublinear

$$\|h(t, x)\|_Y \leq K_Y (1 + \|x\|_X), \quad t \geq 0, x \in X \quad (2.9)$$
Assume that the initial data \(u \) with \(V \), square integrable in time with values in \(X \), and if \(v \) holds for every pathwise strong solution of the system if \(\tau \) is a strictly positive stopping time and there exists a non-decreasing sequence of stopping times \(\{ \tau_n \} \) on the set \(\{ \xi < \infty \} \). Such a solution is called global if \(P(\xi < \infty) = 0 \).
We proceed with the definition of the Galerkin system.

Definition 2.2. An adapted process u^n in $C([0, T]; H_n)$, where $H_n = L\{e_1, \ldots, e_n\}$, is a solution to the Galerkin system of order n if for any v in H_n

\[
\begin{align*}
d(u^n, v) + \langle \nu Au^n + B(u^n), v \rangle dt &= \langle f, v \rangle dt + \sum_{k=1}^{\infty} \langle g_k(u^n), v \rangle dW_k \\
\langle u^n(0), v \rangle &= \langle u_0, v \rangle.
\end{align*}
\] (2.19)

We may also rewrite (2.19) as equations in H_n, i.e.,

\[
\begin{align*}
du^n + (\nu Au^n + P_nB(u^n))dt &= P_n f dt + \sum_{k=1}^{\infty} P_n g_k(u^n)dW_k \\
u^n(0) &= P_n u_0 = u^n_0.
\end{align*}
\] (2.20)

3 The Main Results

Our main result establishes the convergence of Galerkin approximations in the V norm up to any deterministic time T.

Theorem 3.1. Let $\epsilon \in (0, 1)$ and let $T > 0$ be arbitrary. Suppose that u is a solution to the equation (1.1), and let u^n be the corresponding Galerkin approximation. Then we have

\[
E \left[\sup_{[0,T]} \phi_1(\|u - u^n\|^2_V) \right] \to 0
\] (3.1)

as $n \to \infty$, where $\phi_1(x) = (\log(1 + x))^{1-\epsilon}$.

The main tool used in the proof is the following improvement of the main result in [KV] of independent interest.

Theorem 3.2. Let u_0, f, and g be as in Definition 2.1 and suppose that u is the solution to the equation (1.1). Then we have

\[
E \left[\sup_{[0,T]} \phi(\|u\|^2_V) \right] \leq C(f, g, u_0, T),
\] (3.2)

where $\phi(x) = \log(1 + x)$.

Remark 3.3. When considering the convergence of the Galerkin approximations u^n in H, a stronger results may be obtained. Namely, let u be the solution to the equation (1.1), and let u^n be the corresponding Galerkin approximation. Assume that $f \in L^{2k}(\Omega; L^{2k}([0, \infty); V'))$ and $u_0 \in L^{2k+2}(\Omega; H) \cap L^2(\Omega; V)$ for all $k \in \mathbb{N}$. Then we have

\[
E \left[\sup_{[0,T]} \|u - u^n\|^m_{H} \right] \to 0 \quad \text{as} \quad n \to \infty, \quad m \in \mathbb{N}
\] (3.3)
for any deterministic time $T > 0$. Indeed, let $k \in \mathbb{N}$. By [FG], we have

$$E \left[\sup_{[0,T]} \| u \|_{H}^{2k} \right] + E \left[\int_{0}^{T} \| u \|_{V}^{2k} \| u \|_{H}^{2k-2} ds \right] \leq C(k, \| u_0 \|_{H}^{2k}, \| f \|_{V'}^{2k}, T).$$

(3.4)

Also, by the same argument applied to the Galerkin system, we get

$$E \left[\sup_{[0,T]} \| u^n \|_{H}^{2k} \right] + E \left[\int_{0}^{T} \| u^n \|_{V} \| u^n \|_{H}^{2k-2} ds \right] \leq C(k, \| u_0 \|_{H}^{2k}, \| f \|_{V'}^{2k}, T).$$

(3.5)

Then, we have using

$$\log(1 + x) \leq x, \quad x \geq 0 \quad (3.6)$$

Recall that, by [B], we have

$$P \left(\sup_{t \in [0,T]} \| u - u^n \|_{H} \geq \delta \right) \to 0 \quad (3.7)$$

while, by (3.4) and (3.5),

$$E \left[\sup_{[0,T]} \| u - u^n \|_{H}^{2k} \right] \leq 2^{2k} \left(E \left[\sup_{[0,T]} \| u \|_{H}^{2k} \right] + E \left[\sup_{[0,T]} \| u^n \|_{H}^{2k} \right] \right).$$

(3.8)

Using the uniform integrability principle with (3.7) and (3.8), we get

$$E \left[\sup_{[0,T]} \| u - u^n \|_{H}^{2k(1-\alpha)} \right] \to 0 \quad (3.9)$$

as $n \to \infty$, for every $k \in \mathbb{N}$ and $\alpha \in (0, 1)$, and (3.3) is proven.

It is possible to obtain more precise information regarding the convergence in H. Assume first that

$$\| g(t,x) \|_{H} \leq C. \quad (3.10)$$

Then estimating $E[\sup_{[0,T]} \| u \|_{H}^{2k}]$ for $k = 1, 2, 3, \ldots$ and keeping the dependence on k, we get

$$E \left[\sup_{[0,T]} \exp(\| u \|_{H}/K) \right] \leq C \quad (3.11)$$

for a sufficiently large constant K (cf. also [G] Lemma 3.1 and [KS] for a different approach). As in [B], we get

$$E \left[\sup_{[0,T]} \exp(\| u - u_n \|_{H}/K') \right] \to 0 \quad (3.12)$$

as $n \to \infty$, where K' is any constant larger than K. More generally, if

$$\| g(t,x) \|_{H} \leq C(1 + \| x \|_{H}^{\alpha}) \quad (3.13)$$

where $\alpha \in [0, 1)$, then instead

$$E \left[\sup_{[0,T]} \exp(\| u - u_n \|_{H}^{2(1-\alpha)}/K') \right] \to 0 \quad (3.14)$$

as $n \to \infty$. 7
4 Galerkin Convergence in V

In this section, we prove the first main result, Theorem 3.1. We first recall the existence result from [GZ].

Theorem 4.1. [GZ] Let \(\{u^n\} \) be the sequence of solutions of (2.19), and let \(u \) be the solution to the equation (1.1) with \(g, f, \) and \(u_0 \) as in Definition 2.1. Then there exists a global, maximal pathwise strong solution \((u, \xi)\). Namely, there exists an increasing sequence of strictly positive stopping times \(\{\tau_m\}_{m \geq 0} \) converging to \(\xi \), for which \(P(\xi < \infty) = 0 \). Moreover, there exists an increasing sequence of measurable subsets \(\{\Omega_s\}_{s \geq 1} \) with \(\Omega_s \uparrow \Omega \) as \(s \to \infty \) so that on any \(\Omega_s \) we have

\[
\lim_{n \to \infty} \mathbb{E} \left[1_{\Omega_s} \left(\sup_{t \in [0, \tau_m]} \|u - u^n\|_V^2 + \nu \int_0^{\tau_m} \|A(u - u^n)\|_H^2 dt \right) \right] = 0 \quad (4.1)
\]
as \(n \to \infty \) for any \(\tau_m \).

First, we establish the convergence of the Galerkin approximations in probability.

Lemma 4.2. Let \(u \) and \(u^n \) be defined as in Definitions 2.1 and 2.2. Then for any deterministic time \(T > 0 \), the Galerkin approximations \(u^n \) converge in probability with respect to the \(V \) norm to the solution of the equation (1.1), i.e., for any \(\delta > 0 \) we have

\[
P \left(\sup_{t \in [0, T]} \|u - u^n\|_V^2 \geq \delta \right) \to 0 \quad (4.2)
\]
as \(n \to \infty \).

Proof of Lemma 4.2. Let \(\epsilon > 0 \). With \(\{\tau_n\}_{n \geq 1} \) the stopping times as in Theorem 4.1 denote \(\tau_n = \tilde{\tau}_n \wedge T \). Then there exists \(N_0 \) such that \(P(\tau_{N_0} < T) \leq \epsilon/4 \). Now, choose an \(s \) such that \(P(\Omega_s) > 1 - \epsilon/2 \), where \(\Omega_s \) is as in Theorem 4.1. By Theorem 4.1 we have

\[
\lim_{n \to \infty} \mathbb{E} \left[1_{\Omega_s} \sup_{t \in [0, \tau_{N_0}]} \|u - u^n\|_V^2 \right] = 0 \quad (4.3)
\]
which implies the convergence in probability, i.e.,

\[
\lim_{n \to \infty} P \left(1_{\Omega_s} \sup_{t \in [0, \tau_{N_0}]} \|u - u^n\|_V^2 \geq \delta \right) = 0, \quad (4.4)
\]
for any \(\delta > 0 \). Hence, we have

\[
P \left(1_{\Omega_s} \sup_{t \in [0, T]} \|u - u^n\|_V^2 \geq \delta \right)
= P \left(\left\{ \sup_{t \in [0, T]} \|u - u^n\|_V^2 \geq \delta \right\} \cap \{\tau_{N_0} < T\} \cap \{\omega \in \Omega_s\} \right)
+ P \left(\left\{ \sup_{t \in [0, T]} \|u - u^n\|_V^2 \geq \delta \right\} \cap \{\tau_{N_0} = T\} \cap \{\omega \in \Omega_s\} \right)
\leq P(\tau_{N_0} < T) + P \left(1_{\Omega_s} \sup_{t \in [0, \tau_{N_0}]} \|u - u^n\|_V^2 \geq \delta \right) \quad (4.5)
\]
and thus
\[\mathbb{P} \left(\sup_{t \in [0,T]} \| u - u^n \|^2_V^T \geq \delta \right) \leq \mathbb{P} (\tau_{N_0} < T) + \mathbb{P} \left(\mathbb{1}_{\Omega_m} \sup_{t \in [0,\tau_{N_0}]} \| u - u^n \|^2_V \geq \delta \right) + \mathbb{P} (\Omega_s^c) \]
\[\leq \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon \]
(4.6)
for \(n \) sufficiently large, and the proof is concluded.

Proof of Theorem 3.2. From the infinite dimensional version of Itô’s lemma we get
\[d(\phi(\|u\|^2_V)) + 2\nu \phi'(\|u\|^2_V) \|Au\|^2_H dt \]
\[= \phi'(\|u\|^2_V) \left(2\langle f, Au \rangle - 2\langle B(u, u), Au \rangle + \phi'(|u|^2_V) \| g(u) \|^2_V \right) dt \]
\[+ 2\phi''(|u|^2_V) \sum_k (g_k(u), Au)^2 dt + 2\phi''(|u|^2_V) \langle g(u), Au \rangle dW. \]
(4.7)
We take the supremum up to the stopping time \(\tilde{\tau}_m = \tau_m \wedge T \), where \(\tau_m \) is introduced in Theorem 4.1. Denoting \(\Omega_m = \{ \omega \in \Omega : \tilde{\tau}_m = T \} \), we see that \(\Omega_m \uparrow \Omega \) as \(m \to \infty \) by Theorem 4.1. By taking the expectation on \(\Omega_m \) and, suppressing \(\mathbb{1}_{\Omega_m} \) for simplicity of notation, we get
\[\mathbb{E} \left[\sup_{[0,\tilde{\tau}_m]} \phi(|u|^2_V) \right] + 2\nu \mathbb{E} \left[\int_0^{\tilde{\tau}_m} \phi'(\|u\|^2_V) \|Au\|^2_H ds \right] \]
\[\leq \phi'(\|u_0\|^2_V) + \mathbb{E} \left[\int_0^{\tilde{\tau}_m} (T_1 + T_2 + T_3 + T_4) ds \right] + 2\nu \mathbb{E} \left[\sup_{s \in [0,\tilde{\tau}_m]} \left| \int_0^s T_0 dW \right| \right] \]
(4.8)
where we denoted
\[T_0 = 2\phi'(|u|^2_V) \langle g(u), Au \rangle \]
(4.9)
\[T_1 = 2\phi'(|u|^2_V) \langle B(u, u), Au \rangle \]
(4.10)
\[T_2 = 2\phi'(|u|^2_V) \langle f, Au \rangle \leq 2\phi'(|u|^2_V) \| f \|_H \| Au \|_H \leq C \phi'(|u|^2_V) \| f \|^2_H + \frac{\nu}{8} \phi'(|u|^2_V) \| Au \|^2_H \]
(4.11)
\[T_3 = \phi'(|u|^2_V) \langle g(u) \rangle \leq \phi'(|u|^2_V) (1 + \| u \|^2_V) \]
(4.12)
\[T_4 = 2\phi''(|u|^2_V) \langle g(u), Au \rangle \leq C \phi''(|u|^2_V) |u|^2_V (1 + \| u \|^2_V) \]
(4.13)
where \(C \) is allowed to depend on \(K_j, \) for \(j = 0, 1, 2, \) and \(K_Y. \) Appealing to the BDG inequality, we have
\[\mathbb{E} \left[\sup_{s \in [0,\tilde{\tau}_m]} \left| \int_0^s T_0 dW \right| \right] \leq C \mathbb{E} \left[\left(\int_0^{\tilde{\tau}_m} \phi'(|u|^2_V) |g(u)|^2 \|u\|^2_V ds \right)^{1/2} \right] \]
(4.14)
and thus, using the Lipschitz condition on \(g(u), \)
\[\mathbb{E} \left[\sup_{s \in [0,\tilde{\tau}_m]} \left| \int_0^s T_0 dW \right| \right] \leq C \mathbb{E} \left[\left(\int_0^{\tilde{\tau}_m} \frac{1}{(1 + \| u \|^2_V)^2} (1 + \| u \|^2_V) \|u\|^2_V ds \right)^{1/2} \right] \leq C(T). \]
(4.15)
Next, we estimate the term T_1 as
\[T_1 = 2\phi'(\|u\|^2_V) |(B(u, u), Au)| \]
\[\leq 2\phi'(\|u\|^2_V)\|u\|^1/2\|u\|^1/2\|u\|^1/2\|Au\|^3/2 \]
\[\leq C\phi'(\|u\|^2_V)\|u\|^1/2 + \frac{1}{4}\phi'(\|u\|^2_V)\|Au\|^3/2 \]
\[\leq C\|u\|^2_H\|u\|^1/2 + \frac{1}{4}\phi'(\|u\|^2_V)\|Au\|^3/2, \]
where we note that by (3.5)
\[E\left[\int_0^T \|u\|^2_V\|u\|^2_H dt \right] \leq M(\|u_0\|^4_H, \|f\|^4_V, T). \]
(4.17)

By combining all the estimates and writing out \mathbb{I}_{Ω_m} explicitly, we obtain
\[E\left[\mathbb{I}_{\Omega_m} \sup_{[0, \tau_m]} \phi(\|u\|^2_V) \right] \leq C(f, g, u_0, T). \]
(4.18)

By letting $m \to \infty$ and appealing to the monotone convergence theorem, we get
\[E\left[\sup_{[0, T]} \phi(\|u\|^2_V) \right] \leq C(f, g, u_0, T) \]
(4.19)
and the proof is concluded. \hfill \square

Lemma 4.3. Let u^n be as in Definition 2.2. Then we have
\[E\left[\sup_{[0, T]} \log(1 + \|u^n\|^2_V) \right] \leq C(f, g, u_0, T) \]
(4.20)
and
\[E\left[\sup_{[0, T]} \log(1 + \|u - u^n\|^2_V) \right] \leq C(f, g, u_0, T), \]
(4.21)
for all $n \in \mathbb{N}$.

Proof of Lemma 4.3. The proof of (4.20) follows the same steps as the proof of Theorem 3.1 and it is thus omitted. The inequality (4.21) is a consequence of (3.2) and (4.20). \hfill \square

Now, we are ready to prove the first stated main result, Theorem 3.1.

Proof of Theorem 3.1. Let $\epsilon \in (0, 1)$. By (4.21), we have
\[\sup_{[0, T]} \log(1 + \|u - u^n\|^2_V)^{1-\epsilon} \to 0 \]
(4.22)
in probability as $n \to \infty$. Moreover, using Lemma 4.3
\[E\left[\sup_{[0, T]} \log(1 + \|u - u^n\|^2_V) \right] \leq M(u_0, f, g, T). \]
(4.23)
Denoting
\[U_n = \sup_{[0,T]} \log(1 + \|u - u^n\|_V^2)^{1-\epsilon} \]
we have by (4.23)
\[\mathbb{E} \left[U_n^{1/(1-\epsilon)} \right] \leq M(u_0, f, g, T) \]
while (4.21) gives
\[U_n^{1/(1-\epsilon)} \to 0 \]
in probability. Using the de la Vallée-Poussin criterion for uniform integrability (see e.g. [D]), we get that
\[U_n \to 0 \text{ in } L^1 \text{ as } n \to \infty \] and Theorem 3.1 is proven. \(\square\)

Acknowledgments

We would like to thank R. Mikulevicius for many useful comments and discussions. I.K. was supported in part by the NSF grant DMS-1311943, while K.U. and M.Z. were supported in part by the NSF grant DMS-1109562.

References

[B] H. Breckner, Galerkin approximation and the strong solution of the Navier-Stokes equation, J. Appl. Math. Stochastic Anal. 13 (2000), no. 3, 239–259.

[BF] A. Bensoussan and J. Frehse, Local solutions for stochastic Navier Stokes equations, M2AN Math. Model. Numer. Anal. 34 (2000), no. 2, 241–273, Special issue for R. Temam’s 60th birthday.

[BS] H. Bessaih and H. Schurz, Upper bounds on the rate of convergence of truncated stochastic infinite-dimensional differential systems with H-regular noise, J. Comput. Appl. Math. 208 (2007), no. 2, 354–361.

[BKL] J. Bricmont, A. Kupiainen, and R. Lefevere, Probabilistic estimates for the two-dimensional stochastic Navier-Stokes equations, J. Statist. Phys. 100 (2000), no. 3-4, 743–756.

[BP] Z. Brzeźniak and S. Peszat, Strong local and global solutions for stochastic Navier-Stokes equations, Infinite dimensional stochastic analysis (Amsterdam, 1999), Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., vol. 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 85–98.

[BT] A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Functional Analysis 13 (1973), 195–222.

[CF1] P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math. 38 (1985), no. 1, 1–27.
[CF2] P. Constantin and C. Foias, *Navier-Stokes equations*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.

[CG] M. Capiński and D. Gatarek, *Stochastic equations in Hilbert space with application to Navier-Stokes equations in any dimension*, J. Funct. Anal. 126 (1994), no. 1, 26–35.

[CP] M. Capiński and S. Peszat, *Local existence and uniqueness of strong solutions to 3-D stochastic Navier-Stokes equations*, NoDEA Nonlinear Differential Equations Appl. 4 (1997), no. 2, 185–200.

[C] A.B. Cruzeiro, *Solutions et mesures invariantes pour des équations d’évolution stochastiques du type Navier-Stokes*, Exposition. Math. 7 (1989), no. 1, 73–82.

[CC] M. Capinski and NJ. Cutland, *Nonstandard Methods for Stochastic Fluid Mechanics*, World Scientific, Singapore, 1995.

[D] R. Durrett, *Probability: Theory and Examples*, Cambridge University Press, Cambridge, 2013.

[DGT] A. Debussche, N. Glatt-Holtz, and R. Temam, *Local martingale and pathwise solutions for an abstract fluids model*, Physica D (2011), (to appear).

[DD] G. Da Prato and A. Debussche, *Ergodicity for the 3D stochastic Navier-Stokes equations*, J. Math. Pures Appl. (9) 82 (2003), no. 8, 877–947.

[DZ] G. Da Prato and J. Zabczyk, *Stochastic equations in infinite dimensions*, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.

[F] F. Flandoli, *An introduction to 3d stochastic fluid dynamics*, SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Mathematics, vol. 1942, Springer Berlin / Heidelberg, 2008, pp. 51–150.

[FG] F. Flandoli and D. Gatarek, *Martingale and stationary solutions for stochastic Navier-Stokes equations*, Probab. Theory Related Fields 102 (1995), no. 3, 367–391.

[FR] F. Flandoli and M. Romito, *Partial regularity for the stochastic Navier-Stokes equations*, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2207–2241 (electronic).

[FV] A.V. Fursikov and MJ. Vishik, *Mathematical Problems in Statistical Hydromechanics*, 1988, Kluwer, Dordrecht.

[G] N. Glatt-Holtz, *Notes on statistically invariant states in stochastically driven fluid flows*, arXiv:1410.8622.

[GTW] N. Glatt-Holtz, R. Temam, and C. Wang, *Time discrete approximation of weak solutions for stochastic equations of geophysical fluid dynamics and application*, arXiv:1404.2973v1.

[GV] N. Glatt-Holtz and V. Vicol, *Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise*, The Annals of Probability 42 (2014), no. 1, 80–145.
[GZ] N. Glatt-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Advances in Differential Equations 14 (2009), no. 5-6, 567–600.

[Ku] S.B. Kuksin, Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2006.

[KS] S.B. Kuksin and A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Mathematics, no. 194, Cambridge University Press, 2012.

[KV] I. Kukavica and V. Vicol, On moments for strong solutions of the 2D stochastic Navier-Stokes equations in a bounded domain, Asymptotic Analysis 90 (2014), no. 3-4, 189–206.

[M] J.C. Mattingly, The dissipative scale of the stochastics Navier-Stokes equation: regularization and analyticity, J. Statist. Phys. 108 (2002), no. 5-6, 1157–1179, Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays.

[MR1] R. Mikulevicius and B.L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows, SIAM J. Math. Anal. 35 (2004), no. 5, 1250–1310.

[MR2] R. Mikulevicius and B.L. Rozovskii, Global L_2-solutions of stochastic Navier-Stokes equations, Ann. Probab. 33 (2005), no. 1, 137–176.

[MS] J.-L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes equation, Applied Mathematics and Optimization, vol. 46, no. 1, pp. 3153, 2002.

[O] C. Odasso, Spatial smoothness of the stationary solutions of the 3D Navier-Stokes equations, Electron. J. Probab. 11 (2006), no. 27, 686–699.

[PR] C. Prévôt and M. Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007.

[S] A. Shirikyan, Analyticity of solutions and Kolmogorov’s dissipation scale for 2D Navier-Stokes equations, Evolution equations (Warsaw, 2001), Banach Center Publ., vol. 60, Polish Acad. Sci., Warsaw, 2003, pp. 49–53.

[T] R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, Reprint of the 1984 edition.