Water Quality Evaluation and Analysis of Main Pollutants Along the Weihe River

Haiou Zhang¹, ², *

¹Shaanxi Land Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering the Ministry of Land and Resources of China, Xi’an, Shaanxi 710075, China
²Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China

*Corresponding author e-mail: 244254409@qq.com

Abstract. Through the analysis of the water quality evaluation and the change of main pollutants along the course of 13 national control monitoring sections of Weihe river main stream (Shaanxi section), the theoretical basis is provided for the formulation of effective prevention and control measures. The chemical oxygen demand (COD) and ammonia nitrogen (NH₃-N) were determined by investigating and collecting water samples, and the trend curves of cod and NH3-N pollution were drawn. Results from 2006 to 2009, the main stream of Weihe river (Shaanxi section) 13 In addition to the water quality of the four sections from linjia village to changxingqiao, the water quality of the other nine sections exceeds the water quality function standard, and the water quality is worse than grade v, the pollution is very serious. Promote the Weihe river (Shaanxi section) industrial structure adjustment, strict sewage standards, strengthen the sewage treatment plant and urban environmental protection infrastructure construction and other five aspects of prevention and control measures.

1. Introduction

The Weihe River Basin is an important industrial, agricultural, scientific research and production base in Shaanxi Province with a dense population. However, the water quality of the dry and tributary rivers of the Weihe River has been deteriorating, and the living and production water of urban residents have been seriously affected. Therefore, the prevention and control of water pollution cannot be delayed. According to statistics, the amount of waste water flowing into the Weihe River accounts for about 80% of the Yellow River Basin in Shaanxi [1-3]. In order to ensure yellow water quality and water supply security, starting from the objectives of management requirements and water quality protection, based on a large number of survey data, the distribution of water pollution sources and characteristics of pollutants entering the river in the study area were analyzed, and the water quality monitoring data of the study area was analyzed. The evaluation of water quality in the water environment functional area has important scientific value for the water environment management, water pollution control and water resources protection planning of the Weihe River in Shaanxi [4-6].

In this study, we use the Shaanxi section of the Weihe River as a research section to collect data on socio-economic conditions, water quality status, development and utilization of water resources, carry...
out surveys of river discharge outlets and water quality monitoring, and conduct water quality assessment and trend analysis. This will provide a basis for the comprehensive management of the Weihe River basin and promote the sustainable development of the Guanzhong area.

2. Assessment section and water functional zoning

2.1. Evaluation section selection
Weihe River pollution mainly occurred in Shaanxi province, Shaanxi linjia village section upstream canyon, shoal, water flow is urgent, less industrial and agricultural pollution, river water quality is good. Therefore, in order to reflect the water environment pollution of Weihe River, 13 monitoring sections of Shaanxi section of Weihe River were selected as evaluation sections. These sections fully take into account the distribution of water systems, the location of major pollution sources and river functional zoning in the Weihe River basin, and can accurately represent the water quality status of the Weihe River mainstream.

2.2. Water function division and water quality objectives
The government of the People's Government of China and Shaanxi Province has divided water function zones in the Shaanxi section of the Weihe River basin. With reference to the Shaanxi Provincial Environmental Protection Bureau's water environment functional zoning, that is, “The Surface Water Function Regionalization Plan for the Weihe River Mainstream (Shaanxi Section)” (DB61-224-1996), the surface water environmental quality standard to be implemented is “Surface Water Environmental Quality Standard” (GB3838-2002), The division of the functional sections of the Shaanxi section of the Weihe River and the water quality target requirements are shown in Table 1.
Table 1. Water function section differentiation and water quality target of Shannxi reach of the Weihe River

No	Grade 1 water function zone name	Secondary water function zone name	Starting section	End section	Length (km)	Water quality aims
1	Weihe Baoji, Weinan development and utilization zone	Weihe river Baoji agricultural water district	Yan Jiahe	Lin Jiacun	43.9	III
2	Weihe Baoji, Weinan development and utilization zone	Weihe Baoji Landscape	Lin Jiacun	Wolong Temple	20.0	III
3	Weihe Baoji, Weinan development and utilization zone	Weihe river Baoji	Wolong Temple	Guo Town	12.0	IV
4	Weihe Baoji, Weinan development and utilization zone	Weihe river Baoji	Guo Town	Cai Jiapo	22.0	IV
5	Weihe Baoji, Weinan development and utilization zone	Weihe river Baoji	Cai Jiapo	Yongan Village	44.0	III
6	Weihe Baoji, Weinan development and utilization zone	Weihe river Yangling agricultural water district	Yongan Village	Qishui River Entrance	16.0	III
7	Weihe Baoji, Weinan development and utilization zone	Weihe river Xianyang agricultural water district	Qishui River Entrance	Xianyang Highway Bridge	63.0	IV
8	Weihe Baoji, Weinan development and utilization zone	Weihe river Xianyang landscape entertainment water area	Xianyang Highway Bridge	Xianyang Railway Bridge	3.8	IV
9	Weihe Baoji, Weinan development and utilization zone	Weihe river Xianyang Sewage Disposal Control Area	Xianyang Railway Bridge	Fenghe River entrance	5.4	IV
10	Weihe Baoji, Weinan development and utilization zone	Weihe river Xianyang transitional area	Fenghe River entrance	Caotan town	19.0	IV
11	Weihe Baoji, Weinan development and utilization zone	Wei Xi'an Agricultural Water District	Caotan town	Zero River Entrance	56.4	IV
12	Weihe Baoji, Weinan development and utilization zone	Weihe river Weinan agricultural water area	Zero River Entrance	Luo River Entrance	96.8	IV
13	Weihe river Huayin buffer zone	Huayin into the yellow buffer	Luo River Entrance	Yellow entrance	29.7	IV

3. Water quality evaluation method
In order to evaluate the impact of multiple pollutants on the integrated pollution of water quality, comprehensive pollution index method was used to evaluate the selected areas [7]. Calculated as follows:

\[P_j = \frac{1}{n} \sum_{i=1}^{n} P_{ij} \] (1)
\[P_j = \frac{C_{ij}}{C_{i0}} \]

(2)

Where: \(P_j \) — j river water pollution composite index; \(P_{ij} \) — j river pollution index of the \(i \) pollution index; \(C_{ij} \) — i pollution index of the average concentration of each water period of the \(j \) river course; \(C_{i0} \) — Evaluation criteria value of the \(i \) pollution index of the 0 river course; \(n \) — Number of pollution indicators.

From the actual situation of rivers in China, when the comprehensive pollution index of the river is \(P \leq 2.0 \), the river is dominated by type I~II water, and the water quality is excellent; at \(2.0 < P \leq 4.0 \), the river is mainly type II~III water, and the water quality is good; at \(4.0 < P \leq 8.0 \), the river is dominated by Type IV water and its water quality is generally good. At \(8.0 < P \leq 12.0 \), the river is dominated by Type V water and the water quality is poor. At \(P > 12.0 \), the river is dominated by poor Type V water and the water quality is very poor.

When using the above formula, the following formula is used for DO with a decreasing degree of pollution as the concentration increases [8]:

\[P_{ij} = \frac{C_{\text{max}} - C_{ij}}{C_{\text{max}} - C_{i0}} \]

(3)

Where: \(C_{\text{max}} \) is the maximum possible DO concentration in water.

4. Evaluation Results and Analysis

According to the monitoring data of the major water quality sections from January 2012 to December 2014, the watershed period will be evaluated. The evaluation period of the Weihe River is divided into three periods of the year, the flood season, and the non-flood season. The water pollution process and control of the 13 sections in the Weihe River Basin are systematically studied. The site evaluation results are shown in Table 2.
Table 2. Surface water quality assessment of Weihe River sites

Section name	Water period	Water quality category	Excess factor
Wenfeng	annual	Inferior V	COD, Ammonia nitrogen
Wenfeng	flood season	Inferior V	COD, Ammonia nitrogen, BOD
Wenfeng	Non-flood period	Inferior V	Ammonia nitrogen
Wushan	annual	V	COD
Wushan	flood season	V	COD
Wushan	Non-flood period	V	COD
Gangu	annual	V	Volatile phenol
Gangu	flood season	V	COD, Total nitrogen
Gangu	Non-flood period	V	Volatile phenol
North	annual	Inferior V	Total nitrogen
North	flood season	Inferior V	Total nitrogen
North	Non-flood period	Inferior V	Ammonia nitrogen, Total nitrogen
Tuoshi	annual	IV	COD
Tuoshi	flood season	IV	COD
Tuoshi	Non-flood period	IV	COD
Linjia	annual	III	COD, Ammonia nitrogen
Linjia	flood season	III	COD, Ammonia nitrogen
Linjia	Non-flood period	III	COD, Ammonia nitrogen
Xianyang Highway Bridge	annual	Inferior V	COD, Ammonia nitrogen, BOD, Total nitrogen
Xianyang Highway Bridge	flood season	Inferior V	BOD, Total nitrogen
Xianyang Highway Bridge	Non-flood period	Inferior V	COD, Ammonia nitrogen, BOD, Total nitrogen, Permanganate index
Geng Town	annual	Inferior V	COD, Ammonia nitrogen, BOD, Total nitrogen
Geng Town	flood season	Inferior V	COD, Ammonia nitrogen, BOD, Total nitrogen
Geng Town	Non-flood period	Inferior V	COD, Ammonia nitrogen, BOD, Total nitrogen
Huaxian	annual	Inferior V	COD, Ammonia nitrogen, BOD, Total phosphorus, Permanganate index
Huaxian	flood season	Inferior V	Ammonia nitrogen
Huaxian	Non-flood period	Inferior V	COD, Ammonia nitrogen, BOD, Total phosphorus, Permanganate index
Suspension Bridge	annual	Inferior V	COD, Ammonia nitrogen
Suspension Bridge	flood season	Inferior V	Ammonia nitrogen
Suspension Bridge	Non-flood period	Inferior V	Ammonia nitrogen, Total phosphorus

①Through the comprehensive analysis of dissolved oxygen (DO), permanganate index, BOD, ammonia nitrogen (NH3-N), volatile phenol, petroleum and other six indicators, the pollution status of
the Weihe River in Shaanxi was classified and evaluated. In the cross sections, with the exception of the Linjia Village section, the comprehensive evaluation of other sections was inferior V class, accounting for 78% of the evaluation section, and it was a serious pollution.

②Through the statistical analysis of the indexes in wet season, flat water period and dry season, it is shown that the proportion of dry seasons reaching poor V category is much higher than that of wet season, and the proportion of permanganate index in dry season accounts for 61.2% of the controlled river length. The wet period is 30.2%. The reason for the increased pollution is mainly due to the reduction of the amount of ecological water in the river course and the decrease in self-purification capacity, that is, the pollution in the dry season is even more serious.

③Through the analysis of the pollution sources in each section of the river basin, the non-point source pollution in the river basin is considered to be the main cause of ammonia nitrogen pollution. The amount of ammonia released is 76.54%, while the ammonia emission from point sources only accounts for 23.46%. The permanganate index is mainly caused by point source pollution, that is, the pollution of industrial wastewater and urban domestic sewage.

5. Conclusion
The basic requirement of river water quality assessment is to understand the law of movement of major river pollutants [9]. Therefore, it is necessary to master the dynamic changes of pollutants in different periods and seasons in time; in the space, it is necessary to grasp the environmental changes of different river sections, different parts of upstream and downstream, and the contrast of quality changes. Only by understanding and mastering these basic laws can the river water quality evaluation be typical and representative, so as to accurately reflect the basic characteristics of different river water quality.

References
[1] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.
[2] Wang Lingling, Zhang Bingjie, et al. Analysis of Water Quality Variation Trend in Weihe Main Stream of Shaanxi Province during 2010–2014. Shaanxi Water Resources, 2017, (5):55-57.
[3] Guo Wei. Integrated evaluation of water quality and quantity in Weihe River reach of Shaanxi Province. Journal of Water Resources & Water Engineering, 2011, 22 (5):115-120,125.
[4] Wang QS, Sun DB, Hao WP, et al. Human activities and nitrogen in waters. Acta Ecologica Sinica. 2012:174-179.
[5] Gao Fei, Xue Ke-sheng, Wei Xue-dong, et al. The characteristics of water pollution and control measures in Weihe River main stream (Shaanxi section). Journal of Northwest University (Natural Science Edition), 2013, 43 (2):319-323.
[6] Wei Xue-dong, Gao Fei, Liu Peng, et al. The ammonia nitrogen pollution in the section from Baoji to Xianyang of the Weihe River. Journal of Northwest University (Natural Science Edition), 2011, 41 (5):913-916.
[7] Wang Tai-ran, Sun Gen-nian, Liu Shun-yan. Relationship between Spatiotemporal Variation of Water Pollution and Runoff Volume of Mainstream Section of the Weihe River in Shaanxi Province. Arid Zone Research, 2011, 28 (4):609-615.
[8] Zhang Li, Xie Baomin. The characteristics of water environment in Shaanxi sub-basin of Weihe River. Journal of Taiyuan University of Technology, 2007, 38 (5):428-430.
[9] Song Jinxi, Cao Mingming, Li Hua’en, et al. Water requirements of the streams self purification of the Weihe River in Shaanxi Province. Scientia Geographica Sinica, 2005, 25 (3): 310-316.