A 67-year-old patient underwent robotic-assisted laparoscopic radical prostatectomy and experienced right ureteral lesion. The laceration was recognized intraoperatively and immediately repaired over the ureteral double J stent. The wire and the stent were first advanced distally to the bladder. Then the wire was pulled with its soft end, cranially through one of the side holes of the proximal end of the stent toward the kidney allowing exact positioning of the stent. Postoperative hospitalization was similar to a classic laparoscopic robotic-assisted prostatectomy. Robotic approach and the “side hole” technique represent an accurate and safe option in case of ureteral laceration management.

A 67-year-old patient underwent robotic-assisted laparoscopic radical prostatectomy and experienced right ureteral lesion. The laceration was recognized intraoperatively and immediately repaired over the ureteral double J stent. The wire and the stent were first advanced distally to the bladder. Then the wire was pulled with its soft end, cranially through one of the side holes of the proximal end of the stent toward the kidney. The tip of the wire was then placed in a retrograde fashion in the renal pelvis allowing exact positioning of the stent. Four interrupted 4-0 vicryl stitches were placed on the cut ureter until the lumen was closed. We then reflected the overlying peritoneum to isolate the repair. Postoperative hospitalization was similar to a classic laparoscopic robotic-assisted prostatectomy and the patient was discharged home on postoperative day 1. Patient’s pain was mild after surgery and he required short term of analgesics and antibiotic prophylaxis. The estimated blood loss was <200 mL. Patient was allowed to rise, drink and eat liberally on postoperative day 1 (POD) one and he was discharged home on the same day. One month later, the ureteral stent was removed by flexible cystoscopy. The CT-Scan performed 3 months later showed no stricture and no hydronephrosis.
risk of ureteral complication during the pelvic surgery, the num-
ber of papers discussing laparoscopic or robotic repair are small
because traditionally, ureteral lesions were treated by laparotomy.
We believe that a minimally invasive surgeon should be able to
repair the ureteral lesion laparoscopically or robotically. Mini-
mally invasive surgery using the robotic system is a safe and
feasible procedure to treat the iatrogenic ureteral lesions espe-
cially when the laceration is intraoperatively recognized and
immediately repaired. The easiest way to repair the laceration is
using a double J stent and the data from the literature confirm
that outcome of lacerations treated by a suture over a stent is
superior to stenting only. We consider the robotic approach as an
accurate and safe option in case of ureteral laceration manage-
ment. The “side hole” technique represents an easy trick to place
the ureteral stent correctly.

Informed consent

Informed consent was obtained from the patient included in the
study.

Conflict of interest

Author CF, Author VP, Author FS, Author EL and Author MB
declare that they have no conflict of interest.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.eucr.2016.08.007.

References

1. Cirstoiu M, Munteanu O. Strategies of preventing ureteral iatrogenic injuries in
obstetrics-gynecology. J Med Life. 2012 Sep 15;5(3):277–279.
2. Packiam VT, Cohen AJ, Pariser JJ, et al. The impact of minimally invasive surgery
on major iatrogenic ureteral injury and subsequent ureteral repair during hys-
terectomy: a national analysis of risk factors and outcomes. Urology. 2016 Jul 5.
http://dx.doi.org/10.1016/j.urology.2016.06.041 [pii: S0090-4295(16)30370-3].
3. Menderes G, Clark LE, Azodi M. Incidental ureteral injury and repair during
robotic-assisted total laparoscopic hysterectomy. J Minim Invasive Gynecol. 2015
Mar-Apr;22(3):320.
4. De Cicco C, Ret Davalos ML, Van Cleynenbreugel B, et al. Iatrogenic ureteral le-
sions and repair: a review for gynecologists. J Minim Invasive Gynecol. 2007;14:
428–435.