Risk Factors of Infant Diarrhea and Under-five Children Diarrhea

Ardhiles Wahyu Kurniawan1,2,3, Nursalam Nursalam1,2, Shrimarti Rukmini Devy4, Ahsan Ahsan5, Erni Astutik6, Wiwit Nurbadriyah3,5, Apriyani Puji Hastuti3,5,6

1 Doctoral Student, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia; 2 Department of Medical-Surgical and Critical Nursing, Faculty of Nursing, Universitas Airlangga, Surabaya, Indonesia; 3 Department of Nursing, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; 4 Department of Nursing, Institute of Health Science of Kepanjen, Malang, Indonesia

Abstract

BACKGROUND: Infant and under-five children diarrhea in Indonesia is a health problem that seriously impacts death.

AIM: The main objective of this study was to determine the most significant factors that influence infant and under-five children diarrhea between the years 2012 and 2017.

METHODS: This study used data from the Indonesia Demographic and Health Survey of 2012 and 2017 with a cross-sectional design. We modeled the infant and under-five of age children diarrhea as categorical dependent variable (diarrhea vs. no diarrhea of the infant and under-five of age children). At the same time, 14 covariates are used as an independent variable using χ2 statistic and multiple logistic regression (MLR).

FINDINGS: For infant diarrhea, television as an information resources showed the highest positive coefficient (\(\beta = 1.966; \) and \(p = 0.001 \)) significant covariate for 2012. Higher mother education was negative correlation (\(\beta = -2.31 \) and \(p = 0.021 \)) for infant diarrhea in 2017. For under-five children diarrhea, reading newspaper and magazine \(< 1 \) a week showed positive coefficients (\(\beta = 3.35; \) and \(p = 0.001 \)) significant covariate for 2012. Sex of household head female showed the highest positive coefficient (\(\beta = 1.387; \) and \(p = 0.009 \)) for under-five children diarrhea in 2017.

CONCLUSIONS: The finding has important policy implications for infant and under-five of age diarrhea intervention programs. Thus, activities focus on the proper hygienic toilet, improving health information from newspapers, magazines, and TV.

Introduction

Indonesia is globally, with a population of 264 million spread across 34 provinces and 17,000 islands (Trading Economics. Indonesia – Economic Indicators [Trading Economics Website]., 2018) [1]. Infant and under-five mortality is critical in developing countries such as Indonesia. The infant mortality rate and the under-five mortality rate are the indicators included in the 2015–2019 Medium-Term National Development Plan (RPJMN) (National Population and Family Planning Board (BKKBN), Statistics Indonesia (BPS), Ministry of Health (Kemenkes), 2017) [2]. Diarrhea diseases remain among the most common causes of mortality and morbidity in children, particularly in low- and middle-income countries (Liu et al., 2015) [3]. Diarrheal is the second leading cause of death in children and is responsible for killing around 525,000 children every year (World Health Organization, 2017) [4]. Diarrhea accounts for an estimated 3.6% of the global disease burden, as expressed in disability-adjusted life years (Murray et al., 2012) [5].

Several factors affect the occurrence of diarrhea; these include a child of age, maternal education, household income, environmental sanitation, water availability, and quality (Anteneh et al., 2017; Azage et al., 2016; Tambe et al., 2015) [6], [7], [8]. Living in rural areas was associated with diarrhea disease (Workie et al., 2019) [9]. Shine et al., 2020 [10] showed an inverse relationship between birth order and diarrhea in children. Low maternal education and poor sanitation were significant predictors of diarrheal disease occurrence in children under 5 years (Gunsu et al., 2018; Melese et al., 2019) [11], [12].

The main objectives: (i) To determine the covariates that influence infant and under-five diarrhea using \(\chi^2 \) and multiple logistic regression (MLR), (ii) to compare infant and under-five children diarrhea between in 2012 and 2017, especially reading infant 12 versus infant 17 and under-five 12 against under-five 17,
and (iii) understanding the diarrhea risk factors for infant and under-five children.

Materials and Methods

Input IDHS data

The data sets used in this study were derived from the 2012 and 2017 surveys. The IDHS data set consisted of 16652 respondents, taken from 2012 and 15963 respondents, and taken from 2017. In 2012, 517 infant diarrhea and 1914 under 5 years of age diarrhea were among these. In 2017, 475 infant diarrhea and 1788 under 5 years of age had diarrhea. The sampling techniques, survey design, survey instruments, measuring system, and quality control have been discussed (IDHS data source: https://dhsprogram.com/data/dataset/Indonesia_Standard-DHS_2017.cfm?flag=0).

Methodological approach

Our methodology is based on the application of bivariate analysis, namely, χ^2 test, to examine various predictors and response variables using a single population. We used the STATA 15 software system for our research. The methodology used MLR, where the goal was to determine which predictor variables influence (a) infant diarrhea and (b) under-five diarrhea. The main predictor variables are the type of place, gender of the child, mother’s age, mother’s and father’s education, sex of household head, wealth index, birth order, type of toilet facility, radio, TV, newspaper or magazine, and province (Table 1).

Ethical review and consent

The IDHS in 2012 and 2017 obtained ethical permits from the Ministry of Health of Indonesia. All respondent identifiers were deleted from the data and written informed consents were provided by each participant. The ICF International, which is part of the DHS program, approved the use of such data in this study.

Results

Results using χ^2-test: Understanding associations

The χ^2-test shows the association between the selected covariates of infant and under-five diarrhea. Table 2 contains the results of the Chi-square test.

The first column of Table 2 represents the attributes of selected covariates sequentially for which the association is to be tested. Based on their respective p-values, in 2012, we say that mother’s age, father’s education, wealth index, birth order, radio, and province are significant covariates for infant diarrhea. Whereas, type of place, gender of the child, mother’s age, mother’s and father’s education, wealth index, type of toilet facility, source of water, radio, TV, reading newspaper or magazine, and province are also significant covariates for under-five diarrhea.

In 2017, the type of place, mother’s age, mother’s and father’s education, wealth index, type of toilet facility, TV, and reading newspaper or magazine were significant factors for infant diarrhea. Whereas, kind of place, gender of the child, mother’s age, mother’s and father’s education, wealth index, type of toilet facility, TV, and province are also significant factors for under-five diarrhea.

Results using MLR

We create Table 3 to show the logistic effect of the selected covariates on infant and under-five diarrhea. Table 3 have been selecting covariates and odds ratio (OR) which are statistically significant. Using the MLR, television showed the significant covariate (p=0.001) for 2012. The corresponding ORs were 1.966. While age of the mother 30-39 years (p=0.004) in 2012 and > 40 years (p=0.04) was significant covariates.

The sex of household head female (p=0.005) showed the most significant covariate for 2017. The corresponding OR was 1.387. Then, the second most significant covariate in 2017 was birth order 2-6 years (p= 0.009). The corresponding OR was 1.215. Information resources and reading magazine < 1 a week was significant (p= 0.038) for 2017. The corresponding OR was 1.167. The unprotected main water source (p=0.037) was significant. The corresponding OR was 1.148. While age of the mother > 40 years (p=0.005) was significant.

Discussion

Using the χ^2 test, we have got six significant covariates out of 14 covariates for infant diarrhea in 2012 and eight covariates in 2017. Using the χ^2 test, 12 significant covariates were in 2012 and 10 in 2017. This is shown in Table 2 in online supplementary document, using χ^2 for infants and under-five: 2012 versus 2017.

Table 2 in the Online Supplementary Document indicates that mother’s age, birth order, radio, and region are the first four top significant covariates for
Table 1: Background characteristics of child diarrhea in 2012 and 2017*

Study number	Covariates	2012 (a)	2017 (b)	
	Infant	No diarrhea (2925)	1435 (50.02)	205 (43.16)
	Under 5 years	(91296)	1542 (49.98)	270 (56.84)
	Infant	No diarrhea (475)	5378 (48.92)	967 (54.08)
	No diarrhea (10795)	9417 (51.30)	1217 (60.84)	
1	Type of place	Urban	1335 (45.64)	241 (82.45)
	Rural	1990 (54.36)	1140 (59.56)	
2	Gender of child	Male	1527 (52.21)	1123 (58.67)
	Female	1398 (47.79)	791 (41.33)	
3	Age of the mother	<20	259 (7.15)	61 (12.80)
	20-29	1437 (51.18)	7017 (44.11)	
	30-39	1101 (37.64)	716 (43.71)	
	40+	118 (4.03)	13 (7.21)	
4	Mother’s education	Under 5 years	331 (2.93)	
	5-9 years	6137 (56.85)	138 (26.69)	
	10-14 years	1527 (53.74)	797 (51.15)	
	15-19 years	5900 (53.03)	1643 (56.52)	
	20-29 years	208 (57.64)	252 (59.37)	
5	Father’s education	No diarrhea	1432 (47.82)	
	Yes	1908 (62.18)	308 (62.18)	
6	Sex of household head	Male	2697 (27.76)	
	Female	9410 (87.17)	369 (19.28)	
7	Wealth index	Poorest	1185 (2.20)	241 (4.82)
	Poorer	617 (21.09)	582 (11.61)	
	Middle	429 (14.65)	332 (21.35)	
	Richer	520 (17.78)	529 (18.21)	
8	Birth order (years)	1	1028 (35.15)	
	2-6	1572 (53.74)	1642 (53.97)	
	7 and above	572 (17.95)	572 (17.95)	
9	Type of toilet facility	Hygienic	1478 (75.65)	
	Unhygienic	1214 (41.44)	965 (48.69)	
10	Main source of water	Protected	2310 (78.09)	2053 (70.67)
	Unprotected	216 (7.03)	2484 (85.11)	
11	Information resources (radio)	No	2105 (71.97)	
	Yes	280 (8.23)	2465 (85.23)	
12	Information resources (TV)	No	563 (19.25)	
	Yes	1667 (55.10)	1526 (73.58)	
13	Reading newspaper or magazine	Not at all	15 (20.12)	
	<1 a week	1042 (35.62)	1085 (35.04)	
	≥1 a week	359 (12.27)	193 (5.97)	
14	Province	Aceh	102 (3.49)	17 (2.9)
	North sumatra	118 (4.03)	6 (1.10)	
	West sumatra	90 (3.08)	17 (2.9)	
	Java	105 (3.50)	32 (1.97)	
	Sumatra	73 (2.49)	12 (1.97)	
	Nusa tenggara	79 (2.70)	12 (1.97)	
	Kalimantan	83 (2.84)	12 (1.97)	
	Sulawesi	80 (2.74)	12 (1.97)	
	Nusa tenggara	83 (2.84)	12 (1.97)	
	Sulawesi	83 (2.84)	12 (1.97)	
	Bali	81 (2.77)	12 (1.97)	
	West nusa tenggara	83 (2.84)	12 (1.97)	
	East java	124 (4.24)	12 (1.97)	
	Banten	123 (4.21)	12 (1.97)	
	Bali	81 (2.77)	12 (1.97)	
	East java	124 (4.24)	12 (1.97)	
	Banten	123 (4.21)	12 (1.97)	
	Bali	81 (2.77)	12 (1.97)	
	West nusa tenggara	83 (2.84)	12 (1.97)	
	East java	124 (4.24)	12 (1.97)	
	Banten	123 (4.21)	12 (1.97)	
	Bali	81 (2.77)	12 (1.97)	

Infant diarrhea in 2012. The lower importance covariate is the wealth index. On the other hand, the Online Supplementary Document shows that mother’s and father’s education, wealth index, type of toilet, and reading newspaper or magazine are the first five top importance covariates for infant diarrhea in 2017.
Table 2: Association of infant diarrhea and under 5 years diarrhea to the selected covariates by χ²-test for 2012 and 2017

Number	Covariates	2012	χ²-test	p-value	2017	χ²-test	p-value				
1	Infant diarrhea				Under 5 years diarrhea						
2	Gender of child	-1.39	0.165	0.783	0.554	1.106	1.50	0.133	1.245	0.935	1.659
3	Age of the mother										
4	Mother’s education										
5	Father’s education										
6	Sex of household head										
7	Wealth index										
8	Birth order (years)										
9	Type of toilet facility										
10	Main source of water										
11	Information resources (radio)	11.388	0.001	11.645	0.001	0.879	0.348	0.660	0.417		
12	Information resources (TV)										
13	Information resources (reading newspaper or magazine)										
14	Region	63.032	0.001	130.091	0.000	39.872	0.191	77.082	0.000		

Table 3: Multiple logistic regression estimates for the effect of the selected covariates on infant diarrhea and under-five diarrhea in 2012 and 2017

Number	Covariates	2012	Coefficient (β)	95% CI for OR	2017	Coefficient (β)	95% CI for OR		
	Infant diarrhea				Under 5 years diarrhea				
1	Type of place	-1.39	0.165	0.783	1.106	1.50	0.133		
2	Gender of child	-1.39	0.165	0.783	1.106	1.50	0.133		
3	Age of the mother								
4	Mother’s education								
5	Father’s education								
6	Sex of household head								
7	Wealth index								
8	Birth order (years)								
9	Type of toilet facility								
10	Main source of water								
11	Information resources (radio)	11.388	0.001	11.645	0.001	0.879	0.348	0.660	0.417
12	Information resources (TV)								
13	Information resources (reading newspaper or magazine)								
14	Region	63.032	0.001	130.091	0.000	39.872	0.191	77.082	0.000

(Contd...)
Table 3: (Continued)

Number	Covariates	2012 Coefficient (β)	p	95% CI for OR	2017 Coefficient (β)	p	95% CI for OR
		Lower	Upper		Lower	Upper	
5	Father’s education	-	-	1.000	-	-	1.000
	Primary	-	-	-	-	-	-
	Secondary	-0.59	0.555	0.951	0.806	1.122	0.046
	Higher	-0.92	0.356	0.855	0.614	1.191	1.84
6	Sex of household head	Male	-	1.000	-	-	1.000
	Female	-0.49	0.623	0.934	0.712	1.225	2.82
7	Wealth index	Poorer	-0.21	0.831	0.976	0.783	1.217
	Middle	-0.64	0.525	0.922	0.719	1.183	0.88
	Richer	-1.28	0.201	0.628	0.620	1.106	1.54
	Richest	-1.54	0.123	0.754	0.527	1.079	0.34
8	Birth order (years)	1	-	1.000	-	-	1.000
	2-6	1.00	0.319	1.089	0.920	1.290	2.60
	7 and above	-1.19	0.233	0.752	0.471	1.201	-0.90
9	Type of toilet facility	Hygienic	-	1.000	-	-	1.000
	Unhygienic	1.06	0.288	1.114	0.913	1.360	1.41
	Main source of water	Protected	-	1.000	-	-	1.000
	Unprotected	0.98	0.326	1.112	0.899	1.376	2.09
11	Information resources (radio)	No	-	1.000	-	-	1.000
	Yes	0.52	0.606	1.048	0.876	1.252	0.93
12	Information resources (TV)	No	-	1.000	-	-	1.000
	Yes	-0.76	0.455	0.922	0.749	1.134	-1.32
13	Information resources (reading newspaper or magazine)	No at all	1.000	1.000	1.000	1.000	
	Not at all	<1 a week	2.62	0.009	1.059	1.061	1.496
	1-7 a week	-0.55	0.583	0.622	0.626	1.305	0.17

OR: Odds ratio, CI: Confidence interval.

Table 2 in Online Supplementary Document indicates that type of place, gender of the child, mother’s age, mother’s and father’s education, wealth index, type of toilet, source of water, TV, reading newspaper or magazine, and region are the first 11 top importance covariates for under-five diarrhea in 2012. On the other way, mother’s age, mother’s and father’s education, wealth index, type of toilet, and region are the first six top importance covariates for under-five diarrhea in 2017.

Table 3 in the online supplementary document shows that the first top significant covariate is watching TV and it was high importance covariates for infant diarrhea in 2012. We have only one covariate; reading newspapers or magazines was an important covariate for under-five diarrhea in 2012. In 2017, we had three significant covariates for under-five diarrhea in online supplementary document. Among them, the female sex of household head was the highest importance covariates for under-five diarrhea. The lower risk significant factors are: Birth order 2–6 years and reading newspapers or magazines in 2012, whereas we had only 11 important covariates out of 14 in 2017.

Television is an important covariate for infant diarrhea in 2012, reading newspaper or magazines as significant covariates for under-five diarrhea in 2012 and 2017. Our studies also found radio associated with diarrhea pada infants and under-five in 2012. Women who read newspapers/magazines were more likely to provide sufficient fluids and food, and those exposed to the TV were more likely to provide zinc supplementation. Since mothers’ exposure to newspaper/magazines, TV, and radio showed associations with some recommended practices for treating childhood diarrhea, mass media has the potential to improve diarrhea management practices (Alam et al., 2019) [13]. Mass media has disseminated several public messages regarding various social and medical issues. Studies have been conducted to determine whether there is an association between mass media exposure and people’s knowledge, practice, and health outcomes (Naugle and Hornik, 2014) [14].

Analysis of Diouf et al. (2014) [15] and de Oliveira Borba Vasconcelos et al. (2018) [16] shows that a mother’s age has a significant risk of diarrhea in children. This study shows that the mother’s age significantly influences diarrhea in infants under-five between 2012 and 2017. In our research, \(\chi^2 \)-test indicates a relationship between the gender of a child with under-five diarrhea in 2012 and 2017. From the results of multiple logistic regression, it was found that the sex of toddler girls is lower the risk of diarrhea than boys in 2012. While researching de Oliveira Borba Vasconcelos et al. (2018) [16] and Melese et al. (2019) [12], there is no relationship between sex and the incidence of diarrhea in infants. Diarrhea in boys under five may be caused by their activities outside the home, playing in the field or playing with dirt in a dirtier condition, while toddler girls play more in the house with cleaner conditions.

Our results from the result of the \(\chi^2 \)-test showed a relationship of type of place with under-five diarrhea in 2012 and 2017. There was a relationship between the type of residence and diarrhea in infants in 2012. Workie et al. (2019) [9] found that living in the rural has a higher risk of under-five diarrhea than in the rural.
urban. In contrast, in the study data, de Oliveira Borba Vasconcelos et al. (2018) [16], living in cities is more at risk of diarrhea in infants in 1997 and living in villages is more at risk of diarrhea in infants in 2006.

The result of the \(\chi^2 \)-test shows that there is a relationship between a mother’s education with infant diarrhea in 2017. There is a relationship between a mother’s education with under-five diarrhea in 2012 and 2017. Father’s education significantly affected diarrhea in infants and under-five in 2012 and 2017. Results research Mulatya and Ochieng (2020) [17] parents or caregivers with lower education were twice likely to predispose their children to a diagram, which is consistent with other findings. Lower educated parents have limited knowledge and awareness on appropriate child care as they are less likely to access health-care services and messaging than higher educated counterparts. Mother’s literacy influences hygienic practices, child feeding, weaning, and sanitation practices, essential factors for childhood diarrhea.

The results of the \(\chi^2 \)-test show that the type of toilet facility was associated with diarrhea in infants in 2012 and under-five in 2012 and 2017. The MLR test shows that hygiene toilets significantly caused diarrhea in under-five in 2017. The results of this study are in line with the findings of de Oliveira Borba Vasconcelos et al. (2018) [16] unsanitary hygiene habit significantly caused diarrhea in children in 1997 and 2006. The type of toilet facility had a significant association with diarrheal morbidity. Children from households who have no toilet facilities have 6 times more risk for having diarrhea than children from families who have toilet facilities (Mihrete et al., 2014) [18].

The primary water source is associated with diarrhea in the under-five of 2012 and 2017. On the contrary, MLR shows no link between the utilization of different water sources or improved sanitation and diarrhea prevalence. Research result Diouf et al. (2014) [15] shows no relationship between water source and diarrhea. Instead, research Otsuka et al. (2019) [19] children from households using open containers for water storage were significantly associated with diarrheal morbidity. Children from households who have open containers for water storage are more at risk of diarrhea in infants in 1997 and living in villages is more at risk of diarrhea in infants in 2006.

The region was associated with diarrhea in infants in 2012 and under-five in 2012 and 2017. West Java had the highest diarrhea in infants and under-five diarrhea in 2017, Banten with the highest infant diarrhea in 2012, West Kalimantan with under-five diarrhea the highest in 2012.

Conclusions

In 2012, in Online Supplementary Document, significant covariates were: Mother’s age, father’s education, wealth index, birth order, radio, and province are significant covariates for infant diarrhea. Whereas, type of place, gender of the child, mother’s age, mother’s and father’s education, wealth index, type of toilet facility, source of water, radio, TV, reading newspaper or magazine, and province are also significant covariates for under-five diarrhea. In 2017, type of place, mother’s age, mother’s and father’s education, wealth index, type of toilet facility, TV, and reading newspaper or magazine are significant factors for infant diarrhea. Whereas, type of place, gender of child, mother’s age, mother’s and father’s education, wealth index, type of toilet facility, TV, and province are also significant factors for under-five diarrhea. This study allows policy makers to make appropriate decisions to reduce infant and under-five diarrhea in Indonesia.

References

1. Trading Economics. Indonesia-economic Indicators Trading Economics; 2018. Available from: https://www.tradingeconomics.com/indonesia/%0Aindicadores. [Last accessed on 2020 Jan 24].
2. National Population and Family Planning Board (BKKBN), Statistics Indonesia (BPS), Ministry of Health (Kemenkes), and I. Indonesia: Indonesia 2017 DHS; 2017.
3. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post 2015 priorities: An updated systematic analysis. Lancet. 2015;385(9966):430-40.
4. World Health Organization. Diarrhoeal Disease. Geneva: World Health Organization; 2017.
5. Murray CJL, Vos T, Lohanguy D, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2197-223. https://doi.org/10.1016\%0S0140-6736(12)61689-4 PMid:22345608
6. Anteneh ZA, Andargie K, Tarekegn M. Prevalence and determinants of acute diarrhea among children younger than five years old in Jabihennan District, Northwest Ethiopia, 2014. BMC Public Health. 2017;17(1):99.
7. Azage M, Kurniawan M, Worku A, Bagtizoglou AC. Childhood diarrhea in high and low hotspot districts of Amhara region, Northwest Ethiopia: A multilevel modeling. J Health Popul Nutr. 2016;35(1):13. https://doi.org/10.1186/s41043-016-0052-2 PMid:27184552
8. Tambe A, Nzefa L, Nicoline NA. Childhood diarrhea determinants in sub-Saharan Africa: A cross sectional study of Tiko-Cameroon. Challenges. 2015;6(2):229-43. https://doi.org/10.3390/challe6020029
9. Workie GY, Akalu TY, Baraki AG. Environmental factors affecting childhood diarrheal disease among under-five children in Jamma district, South Wello zone, Northeast Ethiopia. BMC Infect Dis.
10. Shine S, Muhumud S, Adanew S, Demelash A, Abate M. Prevalence and associated factors of diarrhea among under-five children in Debre Berhan town, Ethiopia 2018: A cross sectional study. BMC Infect Dis. 2020;20(1):174. https://doi.org/10.1186/s12879-020-4905-3

11. Gunsu GG, Rodamo KM, Desalegn D. Determinants of acute diarrhoea among children aged 6-59 months in Chire district, Southern Ethiopia: Unmatched case-control study. J Gynecol Obstet. 2018;6(2):15-25.

12. Melese B, Paulos W, Astawesegn FH, Gelgelu TB. Prevalence of diarrheal diseases and associated factors among under-five children in Dale District, Sidama zone, Southern Ethiopia: A cross-sectional study. BMC Public Health. 2019;19(1):1-10. https://doi.org/10.1186/s12889-019-7579-2

13. Alam Z, Higuchi M, Sarker MA, Hamajima N. Mass media exposure and childhood diarrhea: A secondary analysis of the 2011 Bangladesh demographic and health survey. Nagoya J Med Sci. 2019;81(1):31-40. https://doi.org/10.18999/nagjms.81.1.31

14. Naugle DA, Hornik RC. Systematic review of the effectiveness of mass media interventions for child survival in low-and middle-income countries. J Health Commun. 2014;19(1):190-215. https://doi.org/10.1080/10810730.2014.918217

15. Diouf K, Tabatabai P, Rudolph J, Marx M. Diarrhoea prevalence in children under five years of age in rural Burundi: An assessment of social and Behavioural factors at the household level. Global Health Action. 2014;7:24895. https://doi.org/10.3402/gha.v7.24895

16. de Oliveira Borba Vasconcelos MJ, Rissin A, Figueiraoa JN, de Lira PI, Filho MB. Factors associated with diarrhea in children under five years old in the state of Pernambuco, according to surveys conducted in 1997 and 2006. Rev Saude Publica. 2018;52:48. https://doi.org/10.11606/S1518-8787.2018052016094

17. Mulatya DM, Ochieng C. Disease burden and risk factors of diarrhoea in children under five years: Evidence from Kenya’s demographic health survey 2014. Int J Infect Dis. 2020;93:359-66. https://doi.org/10.1016/j.ijid.2020.02.003

18. Mihrete TS, Alemie GA, Tefera AS. Determinants of childhood diarrhea among underfive children in Benishangul Gumuz Regional State, North West Ethiopia. BMC Pediatr. 2014;14(1):102. https://doi.org/10.1186/1471-2431-14-102

19. Otsuka Y, Agestika L, Widyarani, Sintawardani N, Yamauchi T. Risk factors for undernutrition and diarrhea prevalence in an urban slum in Indonesia: Focus on water, sanitation, and hygiene. Am J Trop Med Hyg. 2019;100(3):727-32. https://doi.org/10.4269/ajtmh.18-0063

PMid:30693865