Increased Brain Fatty Acid Uptake in Metabolic Syndrome

Anna Karmi1, Patricia Iozzo1,3, Antti Viljanen1, Jussi Hirvonen1, Barbara A. Fielding6, Kirsi Virtanen1, Vesa Oikonen1, Jukka Kemppainen5, Tapio Viljanen1, Letizia Guiducci1,3, Merja Haaparanta-Solin1, Kjell Någren4, Olof Solin1, Pirjo Nuutila1,2

From the 1 Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; the 2 Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland; the 3 PET Centre, Institute of Clinical Physiology, National Research Council, Pisa, Italy; the 4 Department of Clinical Physiology and Nuclear Medicine, PET and Cyclotron Unit, Rigshospitalet, Copenhagen University; the 5 Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland.; the 6 Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom

Address for correspondence:
Professor Pirjo Nuutila MD, PhD
E-mail: pirjo.nuutila@utu.fi

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 30 January 2009 and accepted 14 June 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS), and whether weight reduction modifies it.

Research Design and Methods: We measured brain fatty acid uptake in a group of 23 patients with MS and seven age matched healthy subjects during fasting conditions using positron emission tomography (PET) with $[^{11}\text{C}]$-palmitate and $[^{18}\text{F}]$fluoro-6-thia-heptadecanoic acid ($[^{18}\text{F}]$-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention.

Results: At baseline brain global fatty acid uptake derived from $[^{18}\text{F}]$-FTHA was 50 % higher in MS compared with controls. The mean percentual increment was 130% in the white matter and 47% in the gray matter and uniform across brain regions. In the MS group, the non-oxidized fraction measured using $[^{1}\text{C}]$-palmitate was 86 % higher. Brain fatty acid uptake measured with $[^{18}\text{F}]$-FTHA-PET was associated with age, fasting serum insulin and HOMA-index. Both total and non-oxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%.

Conclusions: This is the first human study to our knowledge to observe enhanced brain fatty acid uptake in MS. Both fatty acid uptake and accumulation appears to be increased in MS and reversed by weight reduction.

Although brain does not use FFAs as energy source, recent evidence suggests that FFAs and specifically their intermediates could have a key role in central control of energy balance regulation and feeding (1-5). Both brain FFA uptake and metabolism are currently insufficiently defined, while the importance of FFAs in the pathogenesis of MS is demonstrated widely in the other organs (6;7). Animal studies have demonstrated that hypothalamic sensing of circulating fatty acids in general is believed to be important in controlling nutrient intake and thus energy balance. For example Pocai et al. showed that manipulation of central hypothalamic FFA metabolism normalizes energy and glucose homeostasis in overfed rats (5). These regulatory processes are difficult to address in humans in vivo, and most data in this regard have been demonstrated in small animals (1;4;5;8) Further work is needed to clarify the mechanisms behind the complex hypothalamic regulatory circuitry that regulates energy expenditure and feeding behavior. Positron emission tomography (PET) and other methods have been used to evaluate the fate of long-chain saturated fatty acid carbon-labelled-palmitate (9-12). PET provides a method for non-invasive, quantitative and regional measurement of FFA uptake thus making it ideal for studying metabolism in different tissues (13). The status of brain FFA metabolism in MS is currently unknown. Therefore our aim was to examine possible difference in the brain FFA uptake rates between MS patients and healthy individuals using PET.

RESEARCH DESIGN AND METHODS:

Subjects. Twenty-three subjects with MS (age 43±7 year, BMI 33.6±4.0 kg/m², 8 men and 15 women) and seven age-matched
healthy males (age 42±11 year, BMI 26.8±2.5 kg/m²) (Table 1) were recruited mostly from an occupational healthy service clinic. Healthy were non-obese and had normal oral glucose tolerance test, while 23 had MS according to the current IDF criteria (14) (Table 2). According to the criteria for a person to be defined as having MS they must have central obesity, defined as increased waist circumference plus at least any other two additional criteria (raised TG/blood pressure/fasting glucose or reduced HDL). Subjects were told not to use any alcohol during the study period. Smoking was an exclusion criterion. Out of 23 subjects, only one subject with MS had medication (ACE inhibitor for blood pressure). Written informed consent was obtained after explaining the purpose and potential risks of the study to the subjects. The study protocol was approved by the Ethics Committee of the Hospital District of Southwest Finland and conducted according to the principles of the declaration of Helsinki.

Study design. Study was designed to assess 1) the differences between MS patients and healthy individuals at baseline and 2) the effect of very low caloric diet (VLCD) in MS patients. Two PET studies were performed first with [11C]-palmitate and thereafter with [18F]-FTHA either during the same day or on separate days within one week. A subgroup of patients with MS (n=16) were prescribed a VLCD. All daily meals were replaced by diet products for 6 weeks (Nutrifast, Leiras, Finland 2.3 MJ, 4.5 g fat, 59 g protein, and 72 g carbohydrate per day). After the diet there was 1-week recovery with an isocaloric diet to avoid catabolic state. The isocaloric diet was based on estimation of energy expenditure and was introduced by phycisian. The assessments using PET were repeated. Magnetic resonance images were obtained for anatomical reference.

Production and nature of radiotracers. The production of [11C]-palmitate (half-life 20.4 min) (15) and the production of [18F]-FTHA (half-life 109 min): (16) are described elsewhere. The radiochemical purity of the final product was > 98 % for both tracers. [18F]-FTHA ([18F]fluoro-6-thia-heptadecanoic acid) is a long-chain FA analogue, that has a sulphur-substitution in the sixth carbon and a radioactive fluorine-18 label. [18F]-FTHA which is taken up by tissues and subsequently either enters mitochondria or is incorporated into complex lipids (16). In mitochondria, [18F]FTHA undergoes initial steps of β-oxidation and is thereafter trapped, as further β-oxidation is blocked by its sulphur heteroatom (17). Due to these properties [18F]-FTHA has provided optimal target-to-background signal in PET images.

In vivo validation of biodistribution of [18F]-FTHA and [13C]-palmitate in pig brain. To validate the biodistribution of both [18F]-FTHA and [13C]-palmitate in brain, we used data from in vivo pig [18F]-FTHA biodistribution study (18), and completed the study by analyzing the biodistribution of stable [13C]-palmitate from freezeed brain samples obtained from the same animals. The study protocol and analysis of [18F]-FTHA has been described in detail elsewhere (18) and the palmitate part is provided in the online appendix which is available at http://diabetes.diabetesjournals.org. The results are provided in Table 3. Roughly 62% from [13C]-palmitate and 69% from [18F]-FTHA was found in brain lipids. Most of the [13C]-palmitate in brain lipids was found in phospholipids and only trace amounts was found in triglycerides and fatty acids. [18F]-FTHA was mostly found in triglycerides.

PET studies. Patients were scanned in fasting state and refrained from caffeine-containing drinks, smoking and all medications for 12 hours before the PET scan. Studies were performed in supine position. Two catheters were inserted in antecubital veins of different arms: one for saline infusion and tracer
injection, and another for blood sampling. \([{{{}^{11}}C}}\)-palmitate scan was performed before \([{{{}^{18}}F}}\]-FTHA. \([{{{}^{18}}F}}\]-FTHA scan was started after 7 half-lives of \([{{{}^{11}}C}}\)-palmitate had occurred. The mean doses of injected \([{{{}^{11}}C}}\]-palmitate and \([{{{}^{18}}F}}\]-FTHA were 312±148 MBq and 182±17 MBq. With \([{{{}^{11}}C}}\]-palmitate, dynamic brain scanning started immediately after injection (frames 8x15s, 2x30s, 2x120s, 1x180s and 2x300s. Healthy individuals and MS patients not subscribed to VLCD were scanned with \([{{{}^{18}}F}}\]-FTHA, immediately after injection (frames 3x60s, 1x120s, 5x300s, 2x600s). For MS patients subscribed to VLCD, \([{{{}^{18}}F}}\]-FTHA scanning started 70 minutes after injection, and was static (600s). During the scans, arterialized venous blood samples were drawn for the determination of plasma radioactivity (0, 15, 30, 45, 60, 75, 90, 105 seconds, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50 minutes for both \([{{{}^{11}}C}}\]-palmitate and \([{{{}^{18}}F}}\]-FTHA, and additional time points of 60, 70, 80 and 90 minutes for \([{{{}^{18}}F}}\]-FTHA). Serum FFAs, insulin and glucose concentrations were measured at 0, 10 and 30 minutes after the \([{{{}^{11}}C}}\]-palmitate injection and 0, 30, 60 and 90 minutes after the \([{{{}^{18}}F}}\]-FTHA injection.

Image acquisition, processing and corrections. Most studies were done using GE Discovery PET-CT STE (GE, Medical Systems, Milwaukee, WI, USA), but due to the short life-life of \([{{{}^{11}}C}}\)-palmitate, Siemens ECAT HR+ (Knoxville, TN) and GE Advance (GE, Medical Systems, Milwaukee, WI, USA) were in use when this tracer was divided. The second study was scanned with same camera-protocol as the first study. Data was corrected for dead-time, decay and photon attenuation. PET images were reconstructed in GE Advance using 128x128 matrix with 30 cm Field of View (FOV) in 3D Mode and FBP reconstruction, in Siemens HR+ using 128x128 matrix with zoom 2 (=28.8 cm FOV) in 3D mode and FBP reconstruction and in PET-CT using 128x128 matrix with 35 cm FOV in 3D mode and Iterative OSEM reconstruction (VUEPoint).

Calculation of the parametric fractional uptake rate (FUR) image. Brain fractional uptake index for \([{{{}^{11}}C}}\]-palmitate and for \([{{{}^{18}}F}}\]-FTHA was calculated by dividing the brain radioactivity by the integral of the plasma unmetabolized radioactivity curve at 15 minutes. The modeling gives results that are independent of the injected tracer dose. The FUR image from dynamic brain scanning was calculated from 10-20 minutes.

Analysis of PET images. The detailed description of regional and voxel level PET image analyses and statistical analyses of regional FUR estimates are provided in the online appendix. All values are expressed as mean ± standard deviation (SD). P values less than 0.05 are considered statistically significant.

Biochemical analyses. Details of biochemical analyses are provided in only appendix.

Statistical analysis of biochemical and anthropometric data. Student t-test was used in baseline to compare results between MS – and healthy group. A paired Student t-test was used to compare changes in MS group before and after VLCD. Correlations were analyzed using SAS Enterprise Guide 4.1 (4.1.0.471; SAS Institute Inc., Cary, NC, USA.). The normality of variables was assessed by Shapiro-Wilkins test. Variable with normal distribution were calculated using Pearson correlation, with non-normal Spearman correlation was used. All values are expressed as mean ± standard deviation. P values less than 0.05 are considered statistically significant.

RESULTS

Metabolic characteristics during the study. Compared to the healthy subjects, patients with MS had higher fasting plasma glucose concentrations (Table 1) but otherwise no significant differences in OGTT results between healthy and MS was found. After
VLCD, subjects with MS lost weight ~11.1 kg (range 7.2-15.4 kg, p<0.0001) while total cholesterol (p<0.0001), LDL (p<0.0001) and triglycerides (p<0.002) also improved (Table 4). Changes in fasting plasma glucose concentration and in fasting insulin after VLCD were significant. The percentual decrease in fasting insulin was 37.4 %.

Brain fatty acid tracer accumulation over time. After injection [18F]-FTHA radioactivity in the brain increased over time (Figure 1A). As shown previously, plasma [18F]-FTHA and [11C]-palmitate concentration decreased fast after injection (9;19;20). The increase in tissue radioactivity over time with [18F]-FTHA reflects label trapping (Figure 1). As shown in an example of brain image after [18F]-FTHA injection (Figure 2) radioactivity was highest in the thalamus (the two largest gray matter nuclei in the center of the transaxial image), followed by high uptake in the basal ganglia and throughout the cerebral cortex.

Brain FFA uptake in healthy subjects and patients with MS. When brain FFA uptake was measured using [18F]-FTHA and the values of plasma FFA concentration during PET, the brain FFA uptake was significantly higher in patients with MS when compared to healthy subjects (Figure 2). The mean percentual increment was +130% in the white matter and +47% in the gray matter, respective standardized effect sizes being 1.83 and 0.88. The main effect of group was significant in the rmANOVA (F=7.38, p=0.012) whereas no effect of scanner was observed. In addition, the group × region interaction was significant (F=5.35, p=0.016), implicating that the group difference in [18F]-FTHA uptake was not uniform across brain regions. Regional ANOVAs indicated significant group differences in all regions: white matter (p=0.001), anterior cingulate (p=0.038), parietal (p=0.015), temporal (p=0.015), and prefrontal cortex (p=0.020), amygdala-hippocampal complex (p=0.014), striatum (p=0.019) and hypothalamus (p=0.007). The mean percentual increment in hypothalamic area was +52 % among the subjects with MS compared to healthy subjects. No scanner effects were seen in any region. A marked elevation was also found in the brain uptake of [11C]-palmitate in patients with MS when compared to healthy controls (Figure 2). The average increase was +83.8% in the white matter and +87.7% in the gray matter. The standardized effect sizes were of large magnitude, 1.24 both in the white- and grey matter. The rmANOVA also demonstrated a significant main effect of group (p=0.017) but no effects of scanner (p=0.959). The group × region interaction was also significant (p=0.016) suggesting that elevation of [11C]-palmitate uptake in the brain in patients with MS might vary across brain regions. In ANOVA models predicting regional [11C]-palmitate uptake with group status and scanner demonstrated significant group differences in all brain regions: white matter (p=0.021), anterior cingulate (p=0.028), parietal (p=0.011), temporal (p=0.013), and prefrontal cortex (p=0.015), amygdala-hippocampal complex (p=0.016), striatum (p=0.029) and hypothalamus (p=0.016). The mean percentual increment in hypothalamic area was +88 % among the subjects with MS compared to healthy subjects. The uptake of [18F]-FTHA correlated positively with [11C]-palmitate in all analyzed brain areas and all the correlations were statistically significant. For the hypothalamus the correlation r-value was 0.58 (p=0.003).

The effect of dieting on brain FFA uptake. There was a substantial reduction in the brain uptake of [18F]-FTHA in patients with MS following VLCD (Figure 3). The mean percentual decrement was -17.5% in the white matter and -17.6% in the grey matter. In the rmANOVA, the main effect of repetition was statistically significant (p=0.010) whereas the repetition × region interaction was not
The latter suggests that the decrease in tracer uptake was uniform across brain regions. Therefore, to avoid type 1 errors, regional changes were not assessed formally. This result was confirmed using a voxel-based mapping analysis (Figure 3). The change in [11C]-palmitate uptake was highly variable between individuals, average across regions ranging from -37% to +210% and average across individuals being +32% (SD 74%). The rmANOVA did not show any significant change in [11C]-palmitate uptake following VLCD (Figure 3, main effect of repetition: p=0.712, repetition × region interaction: p=0.676). The change in [18F]-FTHA uptake versus change in [11C]-palmitate correlated positively in all brain areas and all the correlations were statistically significant. For the hypothalamus the correlation r-value was 0.56 (p<0.05).

Fatty acid uptake and metabolic characteristics. Brain fatty acid uptake measured with [18F]-FTHA-PET was positively associated with age (p=0.007, r=0.52), fasting serum insulin (p<0.05, r=0.40) and HOMA-index (p=0.04, r=0.41) (Figure 4). The correlation between [18F]-FTHA and age persisted after the data was adjusted with BMI (p<0.03, r=0.46). Both total and non-oxidized fraction of fatty acid uptake were positively associated with the BMI (total: p=0.002, non-oxidized: p=0.004).

DISCUSSION

To our best knowledge this is the first study to investigate brain FFA uptake in obese subjects with MS. The main finding of the study is that patients with MS have higher FFA uptake in the brain compared with healthy subjects. Weight loss reduced FFA uptake more towards the healthy ones: this was more due to decreased FFA oxidation rather than decreased metabolic FFA utilization.

We and others have previously used [18F]-FTHA and PET to quantify regional FFA metabolism, especially in myocardium and skeletal muscle (18;20;21). Recently we have showed that [18F]-FTHA accumulates in the brain in significant amounts (18) thus making it a reliable tracer to quantify brain FFA uptake. The brain tissue-input ratio for [18F]-FTHA ratio was high, suggesting that [18F]-FTHA crosses the BBB and accumulates in a persistent fashion and in measurable amounts and more than half of the tracer was going into the lipids and less than half into the breakdown products (18). These breakdown products likely represent oxidation so study result suggests that [18F]-FTHA reflects total uptake. [11C]-palmitate has been showed to accumulate in monkey brain (9) and the extracted fraction is independent of cerebral flow (22). Palmitate accumulation in brain has also been verified in rats (11;23-25) and the flux is proportional to published values for regional brain oxidative metabolism (23). Long-chain saturated fatty acids such as [11C]-palmitate enter to a large extent (50-60%) via β-oxidation in mitochondria creating radioactive, aqueous metabolites, particularly glutamate, glutamine and aspartate while the other half is incorporated into lipids (22;26;27). After the fast oxidation of [11C]-palmitate, the remaining radioactivity thus enters the stable lipid pool of the brain representing non-oxidative residual. It has been suggested that 83 % of brain radioactivity is in stable compartments within 2 minutes after a steady-state level of plasma palmitate is achieved (9). Plasma [11C]-palmitate activity in our study was stable shortly after 5 minutes in each person. Because the analysis was done using time frames of 10-20 minutes the palmitate results from brain can be considered to represent incorporation to stable compartments and thus the so-called non-oxidative residual. We speculate that by combining the information from [18F]-FTHA and [11C]-palmitate it might be possible to estimate the brain FFA oxidative component as difference between
From our in vivo validation study we found that both 13C-palmitate and 18F-FTHA are incorporated into the brain in measurable amounts. The percentage found in the brain hydrophilic and lipid pool did not differ between tracers while a difference was seen in distribution within lipid pool. From both tracers, we found that more than 60% were found in lipid pool, 18F-FTHA was mainly in triglycerides while 13C-palmitate was mainly recovered from phospholipids. The conversion of 18F-FTHA to phospholipids might be different due to steric or charge hindrance. However the in vivo validation was to show that both tracers are stored in the brain in similar amounts. The distribution of tracers within lipid pool itself is not addressed since PET can not distinguish these storage forms.

The brain uptake of 18F-FTHA and 11C-palmitate was increased in patients with MS when compared to healthy individuals. The difference with 18F-FTHA was not uniformly increased in all brain areas. The total FFA uptake was significantly greater in the white matter among subjects with MS compared to healthy controls, and the increment appeared to be of larger magnitude than that in the grey matter. The increase in white matter 18F-FTHA uptake could contribute to previous finding of brain white matter expansion among obese subjects (28). The difference with 13C-palmitate between groups was more uniform and thus statistically significant in all analyzed areas. The hypothalamic area, nowadays associated with fatty acid sensing and regulation of energy balance and feeding (2;4), had also increased uptake of both 13C-palmitate and 18F-FTHA. The weight loss reduced the 18F-FTHA uptake uniformly in all brain regions, including hypothalamus. It is hypothesized that reduced 18F-FTHA uptake simultaneously with no change in 13C-palmitate uptake might reflect reduction in brain FFA oxidative component. This result is in line with a recent rodent study where inhibition of hypothalamic beta-oxidation normalized the energy homeostasis of the animals (5). Thus the changes in the oxidative component seem to be more related to weight control and satiety supporting our finding that oxidative metabolism is different in the obese MS group and could be partially reversed by weight loss. There was no statistically significant difference in non-oxidative storage component after weight loss, but the change in 13C-palmitate uptake was highly variable between individuals. The reason why a decrease was seen in 18F-FTHA uptake but not in 13C-palmitate could be that oxidative metabolism might be more flexible in nature, whereas the synthesis of complex lipids may be more preserved due to its important structural role in the brain. In addition, these studies were conducted under fasting conditions, which is characterized by activation of FFA oxidative metabolism. This may also contribute to explain why intervention-related differences in this process are more easily identified than those in storage. Dieting period did not affect fasting plasma FFA levels, thus multiplying image data with individual FFA level does not contribute to the observed decrease in FFA uptake.

Our findings are consistent with recent studies implicating the role of hypothalamic fatty acid sensing and their role in regulation of feeding, energy balance (2;4;5) and peripheral physiologic processes (29). The normalization of hypothalamic lipid sensing has been linked to normalization of energy and glucose homeostasis (5). From our study results, it seems that the normal catabolic effect of central FFAs is disturbed in obesity and this is at least partially reversible after weight loss. Peripheral insulin resistance contributing to MS could also affect the brain. In healthy pigs, hyperinsulinemia induced approximately
20-50 % decrease in brain $[^{18}\text{F}]$-FTHA radioactivity compared to fasting state (18). The hypothesized central insulin resistance could interfere with brain glucose utilization, thus resulting in compensatory increased FFA uptake and FFA oxidation. Weight loss is known to improve insulin sensitivity and plasma lipid profile (30). The beneficial effect of weight loss was observed in our study among MS patients: in addition to beneficial peripheral effects FFA uptake in brain was uniformly decreased due to decrease in FFA oxidation. The correlations from our study corroborate this line of interference: FFA uptake was positively correlated with BMI, plasma insulin and HOMA-index: from these, BMI had the strongest correlation. Brain FFA uptake also increased with ageing, suggesting that ageing is related to degenerative changes in metabolic processes and reinforcing the idea that age is a risk factor for MS.

Given that the activation of hypothalamic nuclei can result in changes in sympathetic tone and that hypothalamus is a key regulator in feeding and energy balance, it is interesting to hypothesize that central FFAs could contribute to increased sympathetic tone in obesity. Previous studies support both positive and negative effects of central lipids in sympathetic tone. It has been reported that central lipid infusion resulting in increased brain lipids might modulate sympathoadrenal response (31) and that intracerebrovascular infusion of fatty acids might lower sympathetic activity. Unfortunately we did not have any direct measurements to address this question.

Limitations in this study are the small number of subjects in the healthy group and that all the healthy subjects were males. If sex is taken in the statistical model as a covariate, the group difference in $[^{18}\text{F}]$-FTHA uptake persists in the white matter (group × region: $F=6.72$, $p=0.007$; main effect of group in the white matter: $F=4.92$, $p=0.037$) but not in other brain regions, and no significant effects are seen with $[^{18}\text{F}]$-palmitate. In addition, female patients with MS had higher uptake values for both radioligands than male patients with MS. Future studies including healthy females should establish whether a significant interaction exists between sex and disease status, such that female patients would be more severely affected than male patients, as current data suggest. However, we think that a simple confounding main effect of sex is unlikely to explain the current results, based on three facts. First, $[^{18}\text{F}]$-FTHA uptake is increased in MS in white matter even when sex is taken into account. Second, significant correlations were seen between fatty acid uptake and clinical variables, such as BMI and fasting plasma glucose, suggesting that increased fatty acid uptake is more likely related to metabolic abnormalities than to merely sex. Third, the significant decrease in fatty acid uptake after weight loss argues against a main effect of sex because such main effect would not be reversible. Nevertheless, we acknowledge the skewed sex distribution as a limitation to the interpretation of the results, and recommend that sex be taken into account in future studies. The number of subjects having MS differs in cross-section versus VLCD intervention. The first phase of the study was only cross-sectional. After having positive results from phase 1, we wanted to study more in detail the possibility that brain FFA uptake is related to weight. The more comprehensive phase 2 (VLCD intervention) was introduced in the study protocol and the last 16 subjects out of 23 took part in this phase. Another limiting factor is that the brain kinetics of $[^{18}\text{F}]$-FTHA is not known so well as in other organs and was assumed to be taken up as natural palmitate. Although the in vivo biodistribution of $[^{18}\text{F}]$-FTHA in the brain suggests that $[^{18}\text{F}]$-FTHA represents total uptake it does not prove that it equals uptake of natural FFAs. In our study the total oxidation of $[^{11}\text{C}]$-palmitate was found to be
less than 50%. In the animal studies it has been found that ~60% of the \([^{11}C]\)-palmitate enters to beta-oxidation (9). It is possible that the kinetic properties of \([^{18}F]\)-FTHA differ slightly from our assumption explaining the slight difference between our study and animal studies. Nevertheless this would not affect the differences found between the two groups. The dosages of injected tracers did not explain the findings even when weight was taken into account. In addition the isocaloric diet was not controlled but the subjects were free to eat what they wanted. So the quality and the quantity of the foods probably differ between subjects.

To conclude, we have found that patients fulfilling the IDF criteria of metabolic syndrome have increased brain FFA uptake when compared to healthy. Weight loss is able to partly reverse this abnormality. These novel findings highlight the possible role of brain FFAs in regulation of body weight. It seems that the normal catabolic effect of central FFAs is disturbed in MS and this is partially reversed after weight loss.

Author contributions: AK wrote manuscript, researched data, contributed to discussion, reviewed/edited manuscript. PI contributed to discussion, reviewed/edited manuscript. AV researched data. JH researched data, wrote manuscript, reviewed/edited manuscript. BF researched data, contributed to discussion. KV researched data. VO researched data. JK researched data. TV researched data. LG researched data. M H-S researched data. KN reviewed manuscript. OS researched data, reviewed manuscript. PN contributed to discussion, reviewed/edited manuscript.

ACKNOWLEDGEMENTS
The study was conducted in within the Finnish Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research, supported by the Academy of Finland, University of Turku, Turku University Hospital, and Åbo Academy University. Support was also received by grants from the HEPADIP EU FP6 program, the Novo Nordisk foundation and Hertta and Veikko Valtonen foundation.

REFERENCES
1. Obici,S, Feng,Z, Morgan,K, Stein,D, Karkanias,G, Rossetti,L: Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51:271-275, 2002
2. Lopez,M, Lelliott,CJ, Vidal-Puig,A: Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. Bioessays 29:248-261, 2007
3. Lopez,M, Lage,R, Saha,AK, Perez-Tilve,D, Vazquez,MJ, Varela,L, Sangiao-Alvarellos,S, Tovar,S, Raghay,K, Rodriguez-Cuenca,S, Deoliveira, RM, Castaneda,T, Datta,R, Dong,JZ, Culler,M, Sleeman,MW, Alvarez,CV, Gallego,R, Lelliott,CJ, Carling,D, Tschop,MH, Dieguez,C, Vidal-Puig,A: Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7:389-399, 2008
4. Lam,TK, Schwartz,GJ, Rossetti,L: Hypothalamic sensing of fatty acids. Nat.Neurosci. 8:579-584, 2005
5. Pocai,A, Lam,TK, Obici,S, Gutierrez-Juarez,R, Muse,ED, Arduini,A, Rossetti,L: Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J.Clin.Invest 116:1081-1091, 2006
6. Miranda,PJ, DeFronzo,RA, Califf,RM, Guyton,JR: Metabolic syndrome: definition, pathophysiology, and mechanisms. Am.Heart J. 149:33-45, 2005
7. Eckel,RH, Grundy,SM, Zimmet,PZ: The metabolic syndrome. Lancet 365:1415-1428, 2005

9
8. Morgan, K., Obici, S., Rossetti, L.: Hypothalamic responses to long-chain fatty acids are nutritionally regulated. *J. Biol. Chem.* 279:31139-31148, 2004

9. Arai, T., Wakabayashi, S., Channing, M.A., Dunn, B.B., Der, M.G., Bell, J.M., Herscovitch, P., Eckelman, W.C., Rapoport, S.I., Chang, M.C.: Incorporation of [1-carbon-11]palmitate in monkey brain using PET. *J. Nucl. Med.* 36:2261-2267, 1995

10. Kimes, A.S., Sweeney, D., Rapoport, S.I.: Brain palmitate incorporation in awake and anesthetized rats. *Brain Res.* 341:164-170, 1985

11. Miller, J.C., Gnaedinger, J.M., Rapoport, S.I.: Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways. *J. Neurochem.* 49:1507-1514, 1987

12. Tabata, H., Kimes, A.S., Robinson, P.J., Rapoport, S.I.: Stability of brain incorporation of plasma palmitate in unanesthetized rats of different ages, with appendix on palmitate model. *Exp. Neurol.* 102:221-229, 1988

13. Knuuti, J.: Positron emission tomography--molecular imaging of biological processes. *International Congress Series* 1265:248-254, 2004

14. Alberti, K.G., Zimmet, P., Shaw, J.: The metabolic syndrome--a new worldwide definition. *Lancet* 366:1059-1062, 2005

15. Padgett, H.C., Robinson, G.D., Barrio, J.R.: [1-(11)C]palmitic acid: improved radiopharmaceutical preparation. *Int. J. Appl. Radiat. Isot.* 33:1471-1472, 1982

16. DeGrado, T.R., Coenen, H.H., Stocklin, G.: 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. *J. Nucl. Med.* 32:1888-1896, 1991

17. DeGrado, T.R., Wang, S., Holden, J.E., Nickles, R.J., Taylor, M., Stone, C.K.: Synthesis and preliminary evaluation of (18)F-labeled 4-thia palmitate as a PET tracer of myocardial fatty acid oxidation. *Nucl. Med. Biol.* 27:221-231, 2000

18. Guiducci, L., Gronroos, T., Jarvisalo, M.J., Kiss, J., Viljanen, A., Naum, A.G., Viljanen, T., Savunen, T., Knuuti, J., Ferrannini, E., Salvadori, P.A., Nuutila, P., Iozzo, P.: Biodistribution of the fatty acid analogue 18F-FTHA: plasma and tissue partitioning between lipid pools during fasting and hyperinsulinemia. *J. Nucl. Med.* 48:455-462, 2007

19. Ebert, A., Herzog, H., Stocklin, G.L., Henrich, M.M., DeGrado, T.R., Coenen, H.H., Feinendegen, L.E.: Kinetics of 14(R,S)-Fluorine-18-Fluoro-6-Thia-Heptadecanoic Acid in Normal Human Hearts at Rest, During Exercise and After Dipyridamole Injection. *J Nucl Med* 35:51-56, 1994

20. Iozzo, P., Turpeinen, A.K., Takala, T., Oikonen, V., Solin, O., Ferrannini, E., Nuutila, P., Knuuti, J.: Liver uptake of free fatty acids in vivo in humans as determined with 14(R, S)-[18F]fluoro-6-thia-heptadecanoic acid and PET. *Eur. J. Nucl. Med. Mol. Imaging* 30:1160-1164, 2003

21. Takala, T.O., Nuutila, P., Pulkki, K., Oikonen, V., Gronroos, T., Savunen, T., Vahasilta, T., Luotolahti, M., Kallajoki, M., Bergman, J., Forsback, S., Knuuti, J.: 14(R,S)-[18F]Fluoro-6-thia-heptadecanoic acid as a tracer of free fatty acid uptake and oxidation in myocardium and skeletal muscle. *Eur. J. Nucl. Med. Mol. Imaging* 29:1617-1622, 2002

22. Robinson, P.J., Noronha, J., DeGeorge, J.J., Freed, L.M., Narai, T., Rapoport, S.I.: A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. *Brain Res. Brain Res. Rev.* 17:187-214, 1992
23. Kimes, AS, Sweeney, D, London, ED, Rapoport, SI: Palmitate incorporation into different brain regions in the awake rat. *Brain Res.* 274:291-301, 1983

24. Gnaedinger, JM, Miller, JC, Latker, CH, Rapoport, SI: Cerebral metabolism of plasma [14C]palmitate in awake, adult rat: subcellular localization. *Neurochem. Res.* 13:21-29, 1988

25. Robinson, PJ, Rapoport, SI: A method for examining turnover and synthesis of palmitate-containing brain lipids in vivo. *Clin. Exp. Pharmacol. Physiol.* 16:701-714, 1989

26. Chang, MC, Wakabayashi, S, Bell, JM: The effect of methyl palmoxirate on incorporation of [U-14C]palmitate into rat brain. *Brain Res.* 274:291-301, 1983

27. Chang, MC, Grange, E, Rabin, O, Bell, JM: Incorporation of [U-14C]palmitate into rat brain: effect of an inhibitor of beta-oxidation. *J. Lipid Res.* 38:295-300, 1997

28. Haltia, LT, Viljanen, A, Parkkola, R, Kemppainen, N, Rinne, JO, Nuutila, P, Kaasinen, V: Brain white matter expansion in human obesity and the recovering effect of dieting. *J. Clin. Endocrinol. Metab.* 92:3278-3284, 2007

29. Pocai, A, Obici, S, Schwartz, GJ, Rossetti, L: A brain-liver circuit regulates glucose homeostasis. *Cell Metab.* 1:53-61, 2005

30. Shadid, S, LaForge, R, Otvos, JD, Jensen, MD: Treatment of obesity with diet/exercise versus pioglitazone has distinct effects on lipoprotein particle size. *Atherosclerosis* 188:370-376, 2006

31. Haywood, SC, Bree, AJ, Puente, E, Daphna-Iken, D, Fisher, S: Central, but not Systemic Lipid Infusion, Augments the Counterregulatory Response to Hypoglycemia. *Am. J. Physiol Endocrinol. Metab.* 2009

TABLE 1 Baseline Anthropometric and Metabolic Characteristics

	Metabolic Syndrome	Healthy	P value
Number of subjects (Female/Male)	23 (15/8)	7 (-/-7)	
Age, years	43 ± 7	42 ± 11	NS
Weight, kg	98.7± 12.1	84.9 ± 8.6	0.009
BMI, kg/m²	33.6 ± 4.0	26.8 ± 2.5	<0.0003
Fasting glucose, mg/dL	109.8 ± 12.6	97.2 ± 3.6	<0.02
OGTT glucose, 60 min, mg/dL	156.6 ± 54.0	176.4 ± 12.6	NS
OGTT glucose, 120 min, mg/dL	129.6 ± 52.2	100.8 ± 19.8	NS
Fasting insulin, mU/L	6.8 ±2.6	3.9 ± 1.6	0.02
Total Cholesterol, mg/dL	185.6 ± 34.8	170.1 ± 23.2	NS
HDL-cholesterol, mg/dL	50.3 ± 11.6	50.3 ± 7.7	NS
Triglycerides, mg/dL	115.1 ± 53.1	88.6 ± 53.1	NS
LDL-cholesterol, mg/dL	112.1 ± 34.8	100.5 ± 23.2	NS
HOMA index*	1.8 ± 0.7	0.9 ± 0.4	0.02

Data are mean ± SD. P-values obtained from Student T-test. NS= Not Significant.

*HOMA (Homeostasis Model Assessment) index calculated (fasting insulin × fasting glucose)/22.5

Fasting insulin values are from PET-scanning day.
TABLE 2 Characteristics of MS group according to IDF criteria

Metabolic Syndrome	
Number of subjects (Female/Male)	23 (15/8)
Increased waist circumference (women ≥ 80 cm, men ≥ 94 cm)	23 (15/8)
Raised triglycerides (>150.6 mg/dL)	4 (2/2)
Lowered HDL-cholesterol (women <49.9 mg/dL, men <39.8 mg/dL)	7 (5/2)
Raised systolic blood pressure (>130 mmHg)	14 (10/4)
Raised diastolic blood pressure (>85 mmHg)	15 (11/4)
Raised fasting plasma glucose (≥ 100.8 mg/dL)	18 (12/6)

TABLE 3 Percentual distribution of brain $[^{13}\text{C}]-\text{palmitate}$ and $[^{18}\text{F}]-\text{FTHA}$ uptake in vivo

Radioactivity distribution from total lipids + Aq*	$[^{13}\text{C}]-\text{palmitate}$	$[^{18}\text{F}]-\text{FTHA}$	Student paired T-test
Aq* %	$37.7 \pm 0.0^{\star}$	30.9 ± 9.7	NS
All lipids %	62.3 ± 0.0	69.1 ± 9.7	NS
- Triglycerides %	0.6 ± 0.2	53.4 ± 11.3	p = 0.0001
- Fatty acids %	2.2 ± 0.1	6.3 ± 3.3	NS
- Phospholipids %	59.4 ± 0.3	9.4 ± 3.2	p < 0.0001

*Aq = Hydrophilic phase

* the hydrophilic phase of $[^{13}\text{C}]-\text{palmitate}$ is estimated based on tracer brain distribution curve at 3 hour time point, published by Miller et al. (11)
| TABLE 4 Anthropometric and Metabolic Characteristics after VLCD* |
|---|
| **Before VLCD*** | **After VLCD*** | **P value** |
| Weight, kg | 100.4 ± 11.7 | 89.4 ± 11.1 | <0.0001 |
| BMI, kg/m² | 34.0 ± 3.9 | 30.2 ± 3.9 | <0.0001 |
| Fasting glucose, mg/dL | 180.0 ± 10.8 | 102.6 ± 9.0 | 0.02 |
| OGGT glucose, 60 min, mg/dL | 138.6 ± 39.6 | 117.0 ± 36.0 | NS |
| OGGT glucose, 120 min, mg/dL | 111.6 ± 27.0 | 104.4 ± 23.4 | NS |
| Fasting insulin, mU/L | 6.8 ± 2.6 | 4.6 ± 2.2 | <0.0001 |
| Total Cholesterol, mg/dL | 189.5 ± 30.9 | 143.1 ± 23.2 | <0.0001 |
| HDL-cholesterol, mg/dL | 50.3 ± 11.6 | 50.3 ± 7.7 | NS |
| Triglycerides, mg/dL | 106.3 ± 44.3 | 79.7 ± 26.6 | <0.002 |
| LDL-cholesterol, mg/dL | 116.0 ± 30.9 | 81.2 ± 19.3 | <0.0001 |
| HOMA index† | 1.8 ± 0.7 | 1.2 ± 0.7 | <0.0002 |
| Free fatty acids, mmol/L | 0.61 ± 0.17 | 0.56 ± 0.14 | NS |

Number of subjects = 16 of which 11 females and 5 males. Data are mean ± SD. P-values obtained from paired Student T-test. *VLCD=Very Low Calorie Diet. NS= Not Significant.
†HOMA (Homeostasis Model Assessment) index calculated (fasting insulin × fasting glucose)/22.5
Fasting insulin values are from PET-scanning day.

FIG. 1. An example of a time course of brain tissue radioactivity after intravenous injection of [¹⁸F]-FTHA and [¹¹C]-palmitate from one non-obese healthy subject and one obese subject with metabolic syndrome. The values are given as standardized uptake values (SUVs) values are normalized to the dose (MBq), and body weight (kg). The resulting SUV value has been multiplied with individual blood FFA level. The increase in brain radioactivity over time with [¹⁸F]-FTHA reflects tracer trapping. Black circles = healthy. White circles = MS.
FIG. 2.
Left: Baseline brain white and grey matter uptake rates of $[^{18}F]$-FTHA (A) and $[^{11}C]$-palmitate (B). P-values calculated using Student t-test. * denotes p value of 0.01, ** denotes p-value of 0.0006. NS = not significant. White bars = healthy. Black bars = MS.
Right: Transaxial, coronal and sagittal sections of group-wise $[^{18}F]$-FTHA-PET and $[^{11}C]$-palmitate-PET images of the brain in healthy controls (A, C) and MS patients (B, D).
A = $[^{18}F]$-FTHA-PET healthy control.
B = $[^{18}F]$-FTHA PET MS.
C = $[^{11}C]$-palmitate-PET healthy control.
D = $[^{11}C]$-palmitate-PET MS.
Images represents average spatially normalized uptake images, and the scale is mmol/(100g ×min). In the PET images the highest activity is shown in red as an index of tracer accumulation. The difference between $[^{18}F]$-FTHA and $[^{11}C]$-palmitate is that $[^{18}F]$-FTHA is metabolically trapped while $[^{11}C]$-palmitate is not. Higher activity of $[^{18}F]$-FTHA reflects the accumulation of the tracer in the brain tissue.
FIG. 3.
Left: The results of brain white and grey matter uptake of $[^{18}F]$-FTHA and $[^{11}C]$-palmitate in the metabolic syndrome group before and after very low calorie diet (VLCD). P-values calculated using paired Student t-test. * denotes p value less than 0.02, ** denotes p-value of 0.009. NS = not significant. Black bars = before VLCD. White bars = after VLCD.

Right: Results from the voxel-based mapping analysis. Results are rendered on an anatomical brain model, where red areas illustrate brain regions where $[^{18}F]$-FTHA uptake was significantly reduced following dieting among MS patients (T$_{max}$=4.21 at [-66, -22, 48], kE=161 315, cluster-level corrected p<0.0005).
FIG. 4. The brain uptake of 18F-FTHA representing total brain FFA uptake positively correlated with fasting insulin ($p<0.05$, $r=0.40$) and age ($p=0.007$, $r=0.52$). Fasting insulin values are taken from OGTT.