Biochemical and Genetic Interactions of Phospholipase D Alpha 1 and Mitogen-Activated Protein Kinase 3 Affect Arabidopsis Stress Response

Pavol Vadovič1†, Olga Šamajová1†, Tomáš Takáč1, Dominik Novák1, Veronika Zapletalová1, Jean Colcombet2 and Jozef Šamaj1*

1 Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia, 2 Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris Diderot, Sorbonne Paris Cité, Université Paris Saclay, Orsay, France

Phospholipase D alpha 1 (PLDα1, AT3G15730) and mitogen-activated protein kinases (MAPKs) participate on signaling-dependent events in plants. MAPKs are able to phosphorylate a wide range of substrates putatively including PLDs. Here we have focused on functional regulations of PLDα1 by interactions with MAPKs, their co-localization and impact on salt stress and abscisic acid (ABA) tolerance in Arabidopsis. Yeast two-hybrid and bimolecular fluorescent assays showed that PLDα1 interacts with MPK3. Immunoblotting analyses likewise confirmed connection between both these enzymes. Subcellularly we co-localized PLDα1 with MPK3 in the cortical cytoplasm close to the plasma membrane and in cytoplasmic strands. Moreover, genetic interaction studies revealed that pldα1mpk3 double mutant was resistant to a higher salinity and showed a higher tolerance to ABA during germination in comparison to single mutants and wild type. Thus, this study revealed importance of new biochemical and genetic interactions between PLDα1 and MPK3 for Arabidopsis stress (salt and ABA) response.

Keywords: abscisic acid, Arabidopsis thaliana, genetic interaction, localization, mitogen-activated protein kinase 3, phospholipase D alpha 1, protein interaction, salt stress

INTRODUCTION

Phospholipases D (PLDs) represent enzymes that catalyze hydrolysis of phospholipids by producing phosphatidic acid (PA) and respective head group. In Arabidopsis PLDs are widespread family which include 12 isoforms distributed into six categories (α-, β-, γ-, δ-, ε-, and ζ), built on protein structure homology and biochemical properties of particular members (Qin and Wang, 2002; Bargmann and Munnik, 2006; Hong et al., 2010; Hong et al., 2016). PLDα1 is the most abundant member of the PLD family (Fan et al., 1999). PLDs has been reported to be involved in signaling events occurring in response to a multitude of stimuli, e.g., freezing, wounding, plant-pathogen interactions, dehydration, and salt stress (Wang, 2005; Bargmann and Munnik, 2006; Hong et al., 2010;
Zhao, 2015). Earlier studies showed that PLDα1-derived PA plays a positive role in abscisic acid (ABA) mediated stomatal closure (Zhang et al., 2004; Jiang et al., 2014). PLDα1 also directly interacts with the Gα subunit of heterotrimeric G protein, to inhibit stomatal opening (Zhao and Wang, 2004; Mishra et al., 2006). In addition, PLDα1 is required for ethylene- and ABA-regulated leaf senescence (Fan et al., 1997) and PLDα1-derived PA inhibits CTR1 kinase activity, thus promotes ethylene response and activates mitogen-activated protein kinase (MAPK) cascade (Testerink et al., 2007; Li et al., 2009).

Mitogen-activated protein kinase signaling pathways are linked multi-enzyme complexes, whose members are phosphorylated sequentially, thereby transducing signals within the cell (Šamajová et al., 2013a,b; Komis et al., 2018). In all eukaryotes they are regularly organized into conserved three-tiered modules composed of MAPK kinase (MAPKKK), MAPK kinase (MAPKK), and MAPK. MAPKs, as the final kinases in the cascade, phosphorylate substrates which regulate diverse cellular and physiological processes (Lee et al., 2015). In Arabidopsis genome, approximately 110 genes of MAPK module components were identified: 60–80 genes for MAPKKK, 10 genes for MAPKK and 20 genes for MAPK (Jonák et al., 2002; MAPK Group, 2002; Docić et al., 2012).

Mitogen-activated protein kinases play an important role in plant adaptation and are involved in plant responses to hormones, biotic and abiotic stress (Colcombet and Hirt, 2008; Rodriguez et al., 2010; Sinha et al., 2011; Liu, 2012; Šamajová et al., 2013a; Směkalová et al., 2014; Latrasse et al., 2017). Signaling by MAPK pathway is also involved in the regulation of fundamental physiological processes such as cell division, growth, development, differentiation, cytoskeletal reorganization or programmed cell death (Takahashi et al., 2004; Franklin-Tong and Gourlay, 2008; Müller et al., 2010; Beck et al., 2011; Šamajová et al., 2013b; Komis et al., 2018).

Mitogen-activated protein kinase signaling specificity, amplitude and duration is regulated at several levels. These include the assembly and composition of a given MAPK module (Colcombet and Hirt, 2008), deactivation of single or multiple elements of a cascade by phosphatases (Maksiene et al., 1998, 2003; Ulm et al., 2002; Luan, 2003; Naoi and Hashimoto, 2004), and by specific spatial organization and subcellular localization of a particular MAPK module (Komis et al., 2011, 2018; Šamajová et al., 2013b).

Salt stress is considered as one of the major limiting factors in crop production. High salinity is a result of high concentrations of sodium and chloride ions in the soil resulting in hyperosmotic conditions which hinder the water and nutrients uptake by plants (Ismaiel et al., 2014; Selvakumar et al., 2014). So far, two MAPK pathways MEKK1-MKK2-MPK6 and MKK9-MPK3/MPK6 were identified to transduce salt stress triggered signaling in Arabidopsis (Teige et al., 2004; Xu et al., 2008). The latter one is also involved in ethylene and camalexin biosynthesis (Xu et al., 2008; Yoo et al., 2008). Previously, mpk3 mutant showed sensitivity to higher salinity conditions (Persak and Pitzschke, 2013; Pitzschke et al., 2014). On the other hand, mekk1 together with mkk9 mutants are more tolerant to the salt (Su et al., 2007; Yoo et al., 2008).

Interestingly, PLDα1 and PA appear as important regulators of MAPK signaling. First, PLD-derived PA activates MAPK in response to wounding in soybean leaves (Lee et al., 2001). Second, PA produced by PLDα1 during salt stress, binds to MPK6 and stimulates its kinase activity, which in turn phosphorylates and activates SOS1 representing Na+/H+ antiporter (Yu et al., 2010). Coherently, pldα1 mutant which produces less PA, shows decreased MPK6 activity, higher intracellular accumulation of Na+ ions in leaves and higher susceptibility to salinity. On the other hand, MAPKs might regulate PLDα1, because this protein was overabundant in mpk6 mutant in a comparative proteomic study (Takač et al., 2016). PLDα1 was also predicted as a promising interaction and phosphorylation target of MAPKs, because it possesses a MAPK-specific phosphorylation site S481 as well as MAPK specific docking site in its amino acid sequence (Takač et al., 2016). This protein is phosphorylated during drought stress and ABA response in Arabidopsis at this particular phosphorylation site (Umezawa et al., 2013).

In this study, we further explored biochemical and genetic interactions of PLDα1 and MPK3, and investigated their relevance for plant resistance to salt and response to ABA.

MATERIALS AND METHODS

Plant Material, Mutant Screens, Characterization and Generation of Double Mutants

Seedlings were grown vertically on half-strength MS media (Murashige and Skoog, 1962) supplemented with 0.6% (w/v) gellan gum for 14 days in controlled environmental conditions with 21°C and a 16 h/8 h (light/dark) photoperiod. The illumination intensity was 150 μmol.m−2.s−1. Twelve to fifteen days old plants were transferred to soil and cultivated in growth chamber in controlled environmental conditions as specified above.

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used as the background in all mutant plants in this study. We have used T-DNA insertion line pldα1-1 (SALK_53785; Zhang et al., 2004) and the T-DNA insertion line mpk3-1 (SALK_151594; Wang et al., 2007).

The primers to check the T-DNA insertions in all Salk lines were designed according to the SIGnAL iSect Tool1, and polymerase chain reaction (PCR) was performed using genomic DNA from seedlings. The double homozygous mutants in PLDα1 and MPK3 genes used in this study were identified by PCR genotyping in the second generation of the progeny of a cross between single mutants.

To generate Gateway DONOR clones (pDONR) containing PLDα1 open reading frame (At3g15730), a PCR fragment was amplified from Col-0 cDNA using iProof enzyme (Bio-Rad) and primer pairs 5′-GGA GAT AGA ACC ATG GCG CAG CAT CTG TTT CAC-3′/5′-TCC ACC TCC GGA TCM CCT GCC TCC AAT CCT TAG AAC C-3′ and recombined

1http://signal.salk.edu/tdnaprimer/2.html
in pDONR207 using Gateway technology according to the manufacturer protocol (Invitrogen). Clones with and without the stop codon (referred as pDONR-PLDα1-TP and pDONR-PLDα1-END) were selected, allowing N- and C-terminal protein fusions. Clones were systematically sequenced. For functional studies, PLDα1 ORF was recombined using the LR enzyme mix following the manufacturer’s indications (Invitrogen™) in devoted plasmids.

Yeast Two-Hybrid Analysis

For yeast two-hybrid assays, PLDα1 ORF was recombined from pDONR-PLDα1-TP vector in pDEST22 Gateway vector via LR reaction (Invitrogen™). Both pDEST22-PLDα1 and pDEST32m-PLDα1/4/6 (Berriri et al., 2012) were co-transformed in the yeast two-hybrid reporter strain MaV203 (Vidal et al., 1996) using a classical lithium/polyethylene glycol/heat shock method (Schiestl and Gietz, 1989). Transformed colonies were selected on medium lacking Leu and Trp [SC with 0.2% dropout-L-W (United States Biological)] at 30°C for 2 days. Single colonies were grown overnight in the same medium without agar and then diluted 200 times, and 5 μL were spotted on an SC plate [SC with 0.2% dropout-L-W-U (United States Biological)]. After 11 days of cultivation we scanned and measured yeast density with Plan-Neofluar 10× (Carl Zeiss, Germany) objective. Cells were imaged with excitation laser 561 nm and with emission filter BP629/62 for mCherry, excitation laser 514 nm and with emission filter BP535/30 for YFP, excitation laser 639 nm and with emission filter BP690/50 for chlorophyll B.

Bimolecular Fluorescence Complementation Assay

Phospholipase D α1 ORF was recombined from pDONR-PLDα1-END vector in pBHiC2 and pBHiC4 Gateway vectors (Thermo Fischer Scientific) via LR reaction (Invitrogen™), allowing the C- and N-terminal fusion of PLDα1 with the N- and C-terminal YFP moieties, respectively (Azimzadeh et al., 2008). Agrobacterium tumefaciens C58C1 strain containing pGEMTeasy containing sequence of MPK3 gene with putative native promoter, proMPK3::MPK3::YFP construct using syringe. Such mixed cultures were infiltrated into 6 week old N. benthamiana leaves. After agroinfiltration, plants were covered for 24 h with transparent plastic bags and maintained in fytotron. After 48 h, co-transformed epidermal cells expressing both PLDα1-YFP and mCherry-PLDα1 constructs were observed on spinning disk microscope (Cell Observer SD, Carl Zeiss) equipped with EC Plan-Neofluor 40×/1.3 Oil DIC objective (Carl Zeiss, Germany). Cells were imaged with excitation laser 561 nm and with emission filter BP629/62 for mCherry, excitation laser 514 nm and with emission filter BP535/30 for YFP, excitation laser 639 nm and with emission filter BP690/50 for chlorophyll B.

Co-localization of mCherry-Tagged MPK3 With PLDα1-YFP

MPK3::mCherry and mCherry:MPK3 constructs driven by 1485 bp long native promoter sequence and complete coding region of MPK3 were prepared by MultiSite Gateway® technology. This constructs were cloned in to the pB7m34GW binary vector. YEB medium (5 ml) including appropriate selection antibiotics was individually inoculated with A. tumefaciens GV3101 previously transformed with binary vectors coding PLDα1-YFP, MPK3-mCherry and mCherry-MPK3 proteins. Cultures grown at 28°C, 220 rpm to OD660 0.4 were pelleted at 3000 g, 4°C for 10 min. Pellets were resuspended in 5 ml buffer including 10 mM MgCl2, 10 mM MES (pH 5.6) and 150 μM acetosyringone and subsequently incubated at room temperature for 2 h. Bacterial culture containing MPK3 construct was mixed with culture carrying PLDα1 construct using syringe. Such mixed cultures were infiltrated into 6 week old N. benthamiana leaves. After agroinfiltration, plants were covered for 24 h with transparent plastic bags and maintained in fytotron. After 48 h, co-transformed epidermal cells expressing both PLDα1-YFP and mCherry-PLDα1 constructs were observed on spinning disk microscope (Cell Observer SD, Carl Zeiss) equipped with EC Plan-Neofluor 40×/1.30 Oil DIC objective (Carl Zeiss, Germany). Cells were imaged with excitation laser 561 nm and with emission filter BP629/62 for mCherry, excitation laser 514 nm and with emission filter BP535/30 for YFP, excitation laser 639 nm and with emission filter BP690/50 for chlorophyll B.

Cloning of proMPK3::MPK3::YFP Constructs and Stable Plant Transformation

Two different vectors were used for preparing of proMPK3::MPK3::YFP construct, pGREEN 0229 containing genomic sequence of MPK3 gene with putative native promoter, and pGEMTeasy containing sequence of YFP gene. MPK3 gene with promoter was cleaved from pGREEN 0229 vector by BamHI, whereas YFP gene by combination of BamHI and BglII restriction enzymes. Restriction was verified by agarose electrophoresis and the required segments of DNA were cut from gel, purified and ligated by T4 DNA ligase (Invitrogen) according to relevant protocol. Newly formed construct was transformed to Escherichia coli strain DH5α by heat shock at 42°C and transformation was checked by restriction analysis. Correctness of proMPK3::MPK3::YFP construct was verified by sequencing. This vector was subsequently used for transformation of A. tumefaciens strain GV3101 by heat shock at 37°C. A. thaliana Col-0 plants were transformed by floral dip method according to Clough and Bent (1998). Transformated plants were selected on BASTA.

Whole Mount Immunofluorescence Labeling

Immunolocalization of microtubules, PLDα1 and MPK3 in root wholemounts was done as described previously
PLDα1 interacts with MPK3. (A) Yeast two-hybrid assay of PLDα1 and MPK3/4/6. PLDα1 full-length cDNA was cloned and transferred into yeast two-hybrid Gateway™ pDEST22 prey vector (Invitrogen™) and MPK3/4/6 were introduced into yeast two-hybrid Gateway™ pDEST32m bait vector (Berriri et al., 2012) (Invitrogen™). PLDα1 as a GAL4-activating domain (AD) and MPK3/4/6 as a GAL4-binding domain (BD) were co-transformed into yeast strain MaV 203. Interaction was monitored by measuring of yeast colonies growth intensity on selective plates (SC-L-W-U) and on control plates (SC-L-W). As a positive control was used MKK2 as an AD and MPK4 as a BD. Combinations of PLDα1 and MPK3/4/6 with corresponding empty vectors were considered as negative

![A Table showing the results of the yeast two-hybrid assay.](A)

![A Figure showing the yeast two-hybrid assay results.](B)

![A Figure showing the results of the yeast two-hybrid assay.](C)

![A Table showing the results of the yeast two-hybrid assay.](D)

FIGURE 1 | PLDα1 interacts with MPK3. (A) Yeast two-hybrid assay of PLDα1 and MPK3/4/6. PLDα1 full-length cDNA was cloned and transferred into yeast two-hybrid Gateway™ pDEST22 prey vector (Invitrogen™) and MPK3/4/6 were introduced into yeast two-hybrid Gateway™ pDEST32m bait vector (Berriri et al., 2012) (Invitrogen™). PLDα1 as a GAL4-activating domain (AD) and MPK3/4/6 as a GAL4-binding domain (BD) were co-transformed into yeast strain MaV 203. Interaction was monitored by measuring of yeast colonies growth intensity on selective plates (SC-L-W-U) and on control plates (SC-L-W). As a positive control was used MKK2 as an AD and MPK4 as a BD. Combinations of PLDα1 and MPK3/4/6 with corresponding empty vectors were considered as negative

(Continued)
(Šamajová et al., 2014). Samples were immunolabeled with rat anti-α-tubulin (clone YOL1/34; AbD Serotec), rabbit anti-phospholipase D alpha 1/2 (Agrisera, Sweden), rabbit anti-MPK3 (Sigma-Aldrich) primary antibodies diluted 1:300, 1:500, and 1:350, respectively in 3% (w/v) BSA in PBS at 4°C overnight. In the case of double co-immunolocalization a sequential immunolabeling was performed. Secondary antibodies including Alexa-Fluor 488 goat anti-rat and Alexa-Fluor 546 goat anti-mouse or Alexa-Fluor 488 goat anti-mouse and Alexa-Fluor 546 goat anti-rabbit IgGs were diluted 1:500 in PBS containing 3% (w/v) BSA for 3 h (1.5 h at 37°C and 1.5 h at room temperature). Where necessary, nuclei were counterstained with DAPI. Microscopic analysis of immunolabeled samples was performed with a Zeiss 710 Confocal Laser Scanning Microscope (CLSM) platform (Carl Zeiss, Jena, Germany), using excitation lines at 405, 488, and 561 nm from argon, HeNe, diode and diode pumped solid-state lasers. Images were processed using ZEN 2010 software (black edition), Photoshop 6.0/CS, and Microsoft PowerPoint.

Immunoblotting Analysis

Roots and above ground parts of 14 days old Col-0, plda1-2 and mpk3-1 single mutant and plda1-2mpk3-1 double mutant plants were homogenized in liquid nitrogen to fine powder and proteins were extracted in E buffer [50 mM HEPES (pH 7.5), 75 mM NaCl, 1 mM EGTA, 1 mM MgCl2, 1 mM NaF, 10% v/v glycerol], Complete™ EDTA-free protease inhibitor and PhosSTOP™ phosphatase inhibitor cocktails (both from Roche, Basel, Switzerland). Following centrifugation at 13000 g for 15 min at 4°C, supernatants were supplemented with 4 times concentrated SDS sample buffer [in final concentration 62.5 mM Tris–HCl (pH 6.8), 2% (w/v) SDS, 10% (v/v) glycerol, 300 mM 2-mercaptoethanol] and boiled at 95°C for 5 min. Proteins were separated by SDS–PAGE (MINI-Protein II cell system, Bio-Rad) on 10% gels. Identical protein concentrations were loaded for each sample. Proteins were transferred to polyvinylidene difluoride (PVDF) membranes (GE Healthcare) in a wet tank unit (Bio-Rad) overnight at 24 V using transfer buffer [25 mM Tris, 192 mM glycine, 10% (v/v) methanol]. For immuno-detection of proteins, the membranes were blocked in a mixture of 4% w/v low-fat dry milk and 4% w/v bovine serum albumin in Tween-20 supplemented Tris-buffered-saline (TBS, 100 mM Tris–HCl; 150 mM NaCl; pH 7.4, X% (v/v) Tween-20) at 4°C overnight. Afterward, membranes were incubated with anti-PLDα1/2 (Agrisera, Sweden; diluted 1:3000), anti-beta tubulin (Sigma-Aldrich, diluted 1:2000), anti-MPK3 (Sigma-Aldrich, diluted 1:3000), anti-MPK4 (Sigma-Aldrich, diluted 1:1000), anti-MPK6 (Sigma-Aldrich, diluted 1:15000) antibodies and polyclonal antibody against mammalian phosphorylated ERK1/2 [phospho-p44/42 (pERK); Cell Signaling; Danvers, ME, United States, diluted 1:1000]. Antibodies were diluted in TBS-T containing 1% w/v BSA and incubated at room temperature for 1.5 h (anti-PLDα1/2 and anti-beta tubulin) or overnight at 4°C. Following five washing steps in TBS-T, membranes were incubated with a horseradish peroxidase conjugated goat anti-rabbit IgG secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA, United States) and goat anti-mouse IgG secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA, United States), diluted 1:5000 in TBS-T containing 1% w/v BSA at room temperature for 1.5 h. After five washing steps in TBS-T, proteins were detected by incubating the membranes in Clarity Western ECL substrate (Bio-Rad, Hercules, CA, United States). Luminescence was detected using ChemiDoc MP documentation system (Bio-Rad). The band intensities were quantified using Image Lab Software (Bio-Rad) and the data were statistically evaluated using Student’s t-test. Immunoblot analyses were performed in three biological replicates.

Salt Sensitivity Assay

To study roles of PLDα1 and MPK3 in survival of Arabidopsis seedlings under salt stress conditions we used 4 days old seedlings of wild type (Col-0), plda1-2 and mpk3-1 single mutants and plda1-2mpk3-1 double mutants grown on half-strength MS media and transferred them on media supplemented with 150 mM NaCl. Together 48 seedlings from each genotype were monitored and the plant viability was determined as percentage of survival plants with green true leaves at 7, 14, and 21 days after transfer. Experiment was done in three biological replicates.

Germination Assay Under Salt Stress Conditions and ABA Treatment

Seeds from wild type (Col-0), plda1-2 and mpk3-1 single mutants and plda1-2mpk3-1 double mutant were sown on...
half-strength MS media containing 0, 100, 125, 150, and 175 mM NaCl or 0, 0.5, 1, 3, and 5 µM ABA, respectively. Plates were kept at 4°C for 48 h and transferred in growth chamber under standard conditions. Germination ratio (% of seeds with visible radicle to all examined seeds) was evaluated under stereomicroscope 24, 48, and 72 h after transfer to chamber. Experiment was repeated in three replicates.

RESULTS

MPK3 Physically Interacts With PLDα1
Phospholipase D alpha 1 is suspected to be phosphorylated by stress activated MAPks (Bargmann et al., 2009a). In order to investigate which of MPK3, MPK4, and MPK6 were able to interact with PLDα1, we carried out a pairwise yeast two-hybrid assay (Figure 1A). PLDα1 fused to GAL4 activation domain was co-expressed in yeast with MPK3, MPK4, and MPK6 proteins fused to the GAL4 binding domain. Combination of MKK2 and MPK4 genes was used as a positive control for testing interaction while combination of both empty vectors (EV) was used for subtraction of unspecific background. Viability and growth of yeast colonies carrying PLDα1/MPK4 and PLDα1/MPK6 plasmid combinations on selective plates was inhibited and in the case of PLDα1/MPK6 showed moderate growth (22 AU) after subtraction of single transformed EV with EV/MPK6 combination. EV/MPK4 plasmid combination showed some unspecific growth on selective plates (Figure 1A), and subtraction of this unspecific growth from PLDα1/MPK4 combination resulted in negative mean intensity (-2 AU). However, colonies carrying PLDα1/MPK3 plasmid combination exhibited strongest growth (44 AU) from all PLDα1 and MPKs combinations even after subtraction of unspecific growth of EV/MPK3 on selective plates (Figure 1A). These results indicated that PLDα1 is able to interact in yeast with MPK3 and weakly with MPK6 but likely not with MPK4.

To verify whether PLDα1 and MPK3 interact together also in planta, we performed bimolecular fluorescent complementation (BiFC) assay by using transient transformation of N. benthamiana leaves and spinning disc microscopy (Figures 1B,C). Measured picture mean intensity of YFP from two measurements was averaged and normalized according to chlorophyll intensity. Results showed strong normalized average mean intensity of YFP signal suggesting interaction of co-transformed PLDα1 and MPK3 (Figures 1B,D). Strong signal 3064 AU (after subtraction of unspecific background of empty vector PLDα1/GTW, Figures 1C,D) appeared near to the plasma membrane and around the nucleus of leaf epidermal cells. Much weaker normalized average mean intensity of YFP was observed (also after subtraction of unspecific background of empty vector PLDα1/GTW, Figure 1C) with PLDα1/MPK6 pair combination (933 AU, Figure 1D). Conversely PLDα1/MPK4 pair combination showed negative YFP signal (~201 AU, Figure 1D) after subtraction of unspecific background of empty vector in leaf epidermal cells. As a positive control, we have used a pair of interacting proteins, namely MKK2 and MPK4. MKK2 and PLDα1 protein pair was used as a negative control (Figure 1C). Based on the results of VLADOLJČ et al. Crosstalk Between PLDα1 and MPK3
both interaction assays we conclude that PLDα1 physically interacts with MPK3 under in vitro (Figure 1A) and in planta (Figure 1B) conditions.

Co-localization of PLDα1 and MPK3

In order to test whether MPK3 co-localizes with PLDα1 in planta we transiently co-transformed leaves of *N. benthamiana*...
with *A. tumefaciens* containing combinations of constructs PLDα1:YFP with MPK3:mCherry and PLDα1:YFP with mCherry:MPK3. Both MPK3-mCherry and mCherry-MPK3 protein fusions were localized in nuclei, cytoplasmic strands and cortical cytoplasm close to the plasma membrane (Figure 2). Co-localization of PLDα1 with MPK3 has been documented similarly in the cortical cytoplasm close to the plasma membrane and in cytoplasmic strands (Figure 2). In planta co-localization of PLDα1 and MPK3 corroborated above-mentioned interaction studies (Figure 2). In planta co-localization of PLDα1 and MPK3 is documented close to the plasma membrane of epidermal root cells (Figure 2). Quantitative analysis of fluorescence confirmed positive co-localization of PLDα1 and MPK3 (Pearson’s coefficient $R = 0.88$; Figures 3C–E).

Additionally, MPK3-YFP was found in nuclei and nucleoli (Supplementary Figure S1).

To test whether the native PLDα1 and MPK3 also co-localize in Arabidopsis, we performed immunofluorescence labeling using anti-PLDα1/2 and anti-MPK3 antibodies (Figures 3A,B). The anti-PLDα1/2 recognizes both PLDα1 and PLDα2. Since PLDα2 is pollen specific, this antibody recognizes only PLDα1 in other plant organs. CLSM analysis on immunofluorescently labeled Arabidopsis root tips showed punctate labeling of both PLDα1 and MPK3 with close association or partial co-localization in the cortical cytoplasm close to the plasma membrane of epidermal root cells (Figure 3A). Quantitative analysis of fluorescence confirmed positive co-localization of PLDα1 and MPK3 (Pearson’s coefficient $R = 0.88$; Figures 3C–E).

Additionally, MPK3 was localized close to the plasma membrane...
in root epidermal cells (Figure 3B). Further no differences in the distribution pattern of MPK3 as well as possible association with cortical microtubules was found in immunolabeled epidermal root cells of *pld*α1-2 mutant in comparison to the wild type control (Supplementary Figure S2).

Abundance and Phosphorylation of MPK3 Requires the Presence of PLDα1 in Arabidopsis

It is known that MPK6 is activated by PLDα1-produced PA in response to the salt stress (Yu et al., 2010). To monitor the impact of PLDα1 deficiency on abundances of MPK3 and MPK6, we performed an immunoblotting analysis using anti-MPK3, anti-MPK4, anti-MPK6 and anti-phospho-p44/42 MAPK (Erk1/2) antibodies in above ground parts of *pld*α1-2 mutant. The anti-phospho-p44/42 MAPK (Erk1/2) antibody recognizes phosphorylated forms of MPK3 and MPK6 in Arabidopsis (Frei dit Frey et al., 2014; Takáč et al., 2016). We observed a significant decrease in abundances of MPK3, MPK4, and MPK6 in *pld*α1-2 (Figures 4A–E). Phosphorylation of both MPK3 and MPK6 was substantially reduced in *pld*α1-2 mutants as well (Figures 4A,B,F,G). Images of the entire immunoblots are presented in Supplementary Figures S3–S6. These results show that similarly to the previously published data on MPK6 (Yu et al., 2010), PLDα1 deficiency negatively affects the abundance and phosphorylation of MPK3.

The *pld*α1-2mpk3-1 Double Mutant Is More Tolerant to the Salt Stress

In order to investigate the genetic interaction between PLDα1 and MPK3, we prepared double mutant plants by crossing *pld*α1-2 and *mpk3* T-DNA insertion mutants (Supplementary Figure S7). We confirmed the absence of PLDα1 and MPK3 proteins in the above ground parts and roots of homozygous double mutants by immunoblotting analyses using anti-PLD alpha 1/2 and anti-MPK3 antibodies (Figure 5 and Supplementary Figures S8, S9). The analysis also showed the presence of PLDα1 in *mpk3* and MPK3 in *pld*α1-2 mutant plants, respectively (Figure 5). Images of the entire immunoblots are presented in Supplementary Figures S8, S9. Consistently with published data, seedlings of *pld*α1 single mutant showed no obvious phenotypical differences in comparison to the wild type control.
FIGURE 6 | Germination of PLDa1 and MPK3 single and double mutant seeds under salt stress and abscisic acid (ABA) treatment. Seeds of wild type (Col-0), plda1-2, mpk3-1, and plda1-2mpk3-1 were germinated on ¼ MS media supplemented with different concentrations of NaCl and ABA, respectively. (A,C) Germination rate of seeds under salt stress condition (A) and ABA treatment (C) were evaluated for radicle emergence at 24, 48, and 72 h. Germination was figured as a percentage of the total number of seeds (n = 100). Graphs represent average of three independent experiments. Note that error bars indicate the mean ± SD. Asterisks indicate statistically significant differences in viability of the plants exposed to higher salinity conditions (two-tailed paired t-test, *p < 0.05, **p < 0.01, ***p < 0.001). (B,D) Most abundant germination stages of wild type (Col-0), plda1-2, mpk3-1, and plda1-2mpk3-1 under salt stress (B; 100 and 150 mM NaCl) and ABA treatment (D; 1 and 5 μM). Pictures were taken 48 h (B) or 72 h (D) after transfer of plates to growth chamber. Scale bar = 200 μm.
(Bargmann et al., 2009b; Uraji et al., 2012; Zhang et al., 2012; Supplementary Figure S7). Similarly, plda1-2mpk3-1 double mutants grown under standard conditions exhibited no obvious morphological phenotypes (Supplementary Figure S7). To shed more light on genetic interaction between PLDa1 and MPK3 we have tested the response of plda1-2mpk3-1 double mutant to the salt stress and ABA treatment. First, we have tested germination of wild type (Col-0), single plda1-2 and mpk3-1 mutants and plda1-2mpk3-1 double mutant exposed to different concentrations of NaCl (0, 100, 125, 150, and 175 mM). Under control conditions, germination ratio of double mutant line was more than 80% after 24 h (Figures 6A,B). Germination of plda1-2 and mpk3-1 single mutants as well as wild type seeds on control media within 24 h was delayed. After 48 h on control media, however, almost all examined seeds germinated (Figure 6A) and reached the same stage of seed germination (Figure 6B). We found that germination rate of double mutant is much higher if compared to both single mutants and wild type. Nevertheless, increasing salt concentration reduced the germination ratio as well as inhibited elongation growth of single mutants and wild type radicles more intensively as compared to the double mutant (Figures 6A,B). Germination ratio of wild type seeds was higher compared to single mutants (Figures 6A,B). These data suggest that seeds of plda1-2mpk3-1 double mutant line are more tolerant to salinity in comparison to plda1-2 and mpk3-1 single mutants as well as wild type during germination.

Based on obtained results we next tested effect of ABA treatment on germination ratio of plda1-2mpk3-1 double mutant as well as plda1-2 and mpk3-1 single mutant seeds. It is known that accumulation of ABA caused by higher salinity results in germination inhibition (Fujii et al., 2007; Zhu et al., 2007). In our experiments, the highest inhibition of germination was observed with seeds of single mutants and wild type on media containing high ABA concentration (3 and 5 µM) after 48 h (Figure 6C). On the other hand, seeds of plda1-2mpk3-1 double mutant showed lowest inhibition of germination in response to ABA. After 72 h, more dramatic inhibition of germination (more than 50%) was observed in the case of both single mutants and wild type on media supplemented with higher concentrations of ABA (3 and 5 µM; Figures 6C,D). The highest tolerance to the high ABA concentration was again observed with seeds of double mutant with only 30% reduction of germination ratio in comparison to the control conditions (Figures 6C,D).

In the second set of experiments we examined survival of double mutant seedlings under salt stress conditions. Four days old seedlings of all plant lines have been grown either on control media or on media supplemented with 150 mM NaCl for next 21 days. Seedlings of plda1-1 and mpk3-1 single mutants were most susceptible to the salt stress leading to the rapid decrease of plant viability observed after 7 DAT as well as 21 DAT (Figure 7). Importantly, double mutant plda1-1mpk3-1 showed the best survival ratio during long term cultivation under higher salinity and achieved nearly 80% viability (Figure 7). Thus, the plants of plda1-1mpk3-1 double mutant line showed approximately three times higher survival ratio on 150 mM NaCl stress media in comparison to both single mutant lines. These new finding can be connected with the involvement of both proteins in the same signaling pathways.

DISCUSSION

Abiotic stresses such as high salinity, drought and low temperature determine productivity of crops and are responsible for high crop losses worldwide. It is necessary to better understand plant adaptation processes in order to cope with climate changes and their negative impacts on plants (Munns and Tester, 2008). Such adaptation processes include MAPK and phospholipid signaling networks (Munnik and Testerink, 2009; Šamajová et al., 2013a,b). In this study we found direct connection between PLDa1 and MPK3 and revealed its functional importance in salt stress and ABA responses of Arabidopsis.

There are several ways how PLDa1 might affect salt stress responses of plants. In Arabidopsis PLDa1 produces more PA, which interacts with and stimulates the activity of MPK6 under salt stress conditions. MPK6 in turn phosphorylates plasma membrane Na+/H+ antiporter (SOS1) which transports Na+ ions from cytoplasm to apoplast and maintain ion concentration homeostasis (Yu et al., 2010; Yang and Guo, 2018). This suggests a tight connection between MAPK and PA signaling. Concerning Arabidopsis MAPK pathways participating on salt stress signaling two major cascades were described: MEKK1-MKK2-MPK4/MPK6 and MKK9-MPK3/MPK6, the second one involved also in ethylene signaling (Teige et al., 2004; Xu et al., 2008). According to our results MPK3 could also connect MAPK and PLDa1 signaling.
Binding of the ethylene to ETR1 receptor inactivates constitutive triple response 1 (CTR1), a Raf-like MAPKKK, and thereby activates MKK9-MPK3/MPK6 signaling cascade (Yoo et al., 2008). Moreover, salt stress triggers PA production by PLDα1 and PA binds and inhibits CTR1 and blocks interaction between ETR1 and CTR1 (Testerink et al., 2007). Published data showed that plda1 mutant is sensitive to the stress caused by NaCl (Yu et al., 2010) while sensitivity of mpk3 mutant to NaCl likely depends on the place of T-DNA insertion in the MPK3 gene (Persak and Pitzschke, 2013; Pitzschke et al., 2014; Zhou et al., 2017). Our results show biochemical and genetic interactions between MPK3 and PLDα1. Interestingly, plda1-2mpk3-1 double mutant plants are more resistant to NaCl similarly to ctr1-1 and mkk-9 single mutant plants (Yoo et al., 2008; Jiang et al., 2013). We suggest that MPK3, as a downstream target of the CTR1-MKK9 signaling, regulates the response of the Arabidopsis plant to the salt stress by binding and perhaps subsequent phosphorylation of PLDα1. From the previous studies on PA signaling in Arabidopsis it is known that the same impulse (ABA or salicylic acid) can either activate or suppress PA production through PLD or PI-PLC/DGK pathway, respectively (Zhang et al., 2004; Krinke et al., 2009; Kalachova et al., 2016; Pokotylo et al., 2018). We suppose that MPK3 through the binding to PLDα1 can either activate or inhibit its activity. Such evidence was reported in mammalian cells, where protein kinase Cα phosphorylates PLD1 and thus inhibits its activity (Hu and Exton, 2003). Our study provides the first evidence of direct biochemical interaction between MPK and PLDα1 but to unravel the exact roles of MPK3 and PLDα1 in the salt stress signaling pathway will require more functional studies.

Transient co-expression of PLDα1 with MPK3 showed accumulation and co-localization of these proteins close to the plasma membrane which supports the potential interaction between them. This is in accordance with PLDα1 localization in the vicinity of plasma membrane (Novák et al., 2018). Such co-localization may indicate that MPK3 regulates PLDα1 in order to support its phospholipid hydrolyzing activity. In addition, MPK3 and PLDα1 show common tissue specific expression in root cap cells, trichoblast cells and root hairs as shown by recent study (Novák et al., 2018) and Genevestigator transcriptomic data (Brady et al., 2007). This again shows that these two proteins may commonly contribute to developmental processes ongoing in these tissues.

It is known that plda1 mutants are ABA insensitive and they are defective in stomatal movements in response to ABA (Zhang et al., 2004). Salt-induced ABA accumulation inhibits seed germination in plants (Fuji et al., 2007; Zhu et al., 2007) while ABA is capable to trigger PA accumulation (most likely through PLDs) which in turn regulates ABI4 to inhibit germination (Katagiri et al., 2005). It is expected that PLDα1 deficiency would reduce ABA signaling toward germination inhibition of seeds. Nevertheless, plda1 mutants showed delayed germination upon salt stress indicating that PLDα1 likely regulates seed germination under salt stress in ABA independent manner. This is emphasized also by the finding that plda1 mutants unlike mpk3 mutant exhibit wild type-like germination rate in response to ABA (Persak and Pitzschke, 2013; Choudhury and Pandey, 2016; our study). In contrast, simultaneous genetic depletion of both PLDα1 and MPK3 genes substantially accelerates seed germination under salt conditions. This resembles seed germination of ABA insensitive mutants (Yao et al., 2015). ABA insensitivity of the double mutant was experimentally confirmed in our study. Therefore, we suggest that MPK3 deficiency in absence of PLDα1 hinders the ABA dependent inhibition of seed germination.

Abscisic acid signaling is important for activation of genes involved in salt tolerance (Nakashima and Yamaguchi-Shinozaki, 2013). Simultaneously, such plants can activate the expression of defense genes in ABA independent mechanism, where a cis-acting element, termed dehydration-responsive element/cold-responsive element or C-repeat (DRE/CRT), plays an important role (Roychoudhury et al., 2013). From previous research it is known that MAPK cascades play a role in ABA signaling (Danquah et al., 2014). ABA induces transcriptional upregulation of PLDα3 and other MAPKs (Wang et al., 2011). Similarly to germination, double mutant plants are more tolerant to salt stress as compared to single mutants and WT. It is likely, that simultaneous inhibition of both genes promotes ABA independent induction of salt stress responsive genes in Arabidopsis.

Previously, MPK3 was shown to phosphorylate lipid transfer protein AZI1 which is able to transfer lipids between membranes in vitro (Pitzschke et al., 2014). Here we report PLDα1 as MPK3 interacting protein which modulates salt stress tolerance and ABA response in Arabidopsis.

DATA AVAILABILITY

All datasets generated for this study are included in the manuscript and/or the Supplementary Files.

AUTHOR CONTRIBUTIONS

PV, DN, OŠ, TT, and JC conducted the experiments. OŠ and DN made image post acquisition analyses. PV, OŠ, TT, DN, and JŠ wrote the manuscript with input from all co-authors. JŠ proposed the experiments, supervised this study, participated on data interpretation, and finalized the manuscript.

FUNDING

This work was supported by the Czech Science Foundation GACR (Grant No. 16-22044S) and by ERDF project “Plants as a tool for sustainable global development” (No. CZ.02.1.01/0.0/0.0/16_019/0000827).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2019.00275/full#supplementary-material
REFERENCES

Azimzadeh, J., Nacy, P., Christodoulidou, A., Drevensek, S., Camilleri, C., Amiouri, N., et al. (2008). Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with cenin. Plant Cell 20, 2146–2159. doi: 10.1105/tpc.108.065812

Bargmann, B. O., and Munnik, T. (2006). The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9, 515–522. doi: 10.1016/j.pbi.2006.07.011

Bargmann, B. O., Laxalt, A. M., ter Riet, B., Testerink, C., Merquiol, E., Mosblech, A., et al. (2009a). Reassessing the role of phospholipase D in the Arabidopsis wound response. Plant Cell Environ. 32, 837–850. doi: 10.1111/j.1365-3040.2009.01962.x

Bargmann, B. O., Laxalt, A. M., ter Riet, B., van Schooten, B., Merquiol, E., Testerink, C., et al. (2009b). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50, 78–89. doi: 10.1093/pcp/pcn173

Beck, M., Komis, G., Zei mann, A., Menzel, D., and Samaj, J. (2011). Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol. 189, 1069–1083. doi: 10.1111/j.1469-8137.2010.03565.x

Berriri, S., Garcia, A. V., Frei dit Frey, N., Garcia, A. V., Bigeard, J., Zaag, R., Bueso, E., Garmier, M., et al. (2015). New evidence for ABA-induced stomatal closure in Arabidopsis. Planta 239, 565–575. doi: 10.1007/s00026-015-1999-5

Caldavera, T., Puga-Feitas, R., Kravets, V., Sougibou-Taconnat, L., Repellin, A., Balzeruge, S., et al. (2016). The inhibition of basal phosphoinositide-dependent phospholipase C activity in Arabidopsis suspension cells by absciscic or salicylic acid acts as a signaling hub accounting for an important overlap in transcriptome remodeling induced by these hormones. Environ. Exp. Bot. 123, 37–49. doi: 10.1016/j.envexpbot.2015.11.003

Katagiri, T., Ishiyama, K., Kato, T., Tabata, S., Kobayashi, M., and Shinozaki, K. (2005). An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J. 43, 107–117. doi: 10.1111/j.1365-313X.2005.02431.x

Köm, G., Illés, P., Beck, M., and Samaj, J. (2011). Microtubules and mitogen-activated protein kinase signalling. Curr. Opin. Plant Biol. 14, 650–657. doi: 10.1016/j.molp.2011.07.008

Köm, G., Samájová, O., Ovečka, M., and Samaj, J. (2018). Cell and developmental biology of plant mitogen-activated protein kinases. Annu. Rev. Plant Biol. 69, 237–265. doi: 10.1146/annurev-arplant-042817-040314

Krinke, O., Flemr, M., Vergnolle, C., Collin, S., Renou, J. P., Taconnat, L., et al. (2009). Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiol. 150, 424–436. doi: 10.1104/pp.108.133595

Latrasse, D., Jégut, T., Li, H., de Zelicourt, A., Raynaud, C., Legras, S., et al. (2017). MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biol. 18:131. doi: 10.1186/s13059-017-1261-8

Lee, J., Eschen-Lippold, L., Lassowskat, I., Bottcher, C., and Scheel, D. (2015). Cellular reprogramming through mitogen-activated protein kinases. Front. Plant Sci. 6:940. doi: 10.3389/fpls.2015.00940

Lee, S., Hirt, H., and Lee, Y. (2001). Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J. 26, 479–486. doi: 10.1042/j.1365-313X.2001.01037.x

Li, M., Hongs, Y., and Wang, X. (2009). Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim. Biophys. Acta 1791, 927–935. doi: 10.1016/j.bbapal.2009.02.017

Liu, Y. (2012). Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep. 31, 1–12. doi: 10.1007/s00299-011-1130-y

Luan, S. (2003). Protein phosphatases in plants. Annu. Rev. Plant Biol. 54, 63–92. doi: 10.1146/annurev.arplant.54.031902.134743

MAPK Group (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301–308. doi: 10.1016/s1360-1385(02)02302-6

Meskiene, I., Baudouin, E., Schweighefer, A., Lwowski, A., Jonak, C., Rodríguez, P. L., et al. (2003). Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J. Biol. Chem. 278, 18945–18952. doi: 10.1074/jbc.M300782000

Müller, J., Beck, M., Mettbach, U., Komis, G., Hause, G., Menzel, D., et al. (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localize to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61, 234–248. doi: 10.1111/j.1365-313X.2009.04046.x
Munnik, T., and Testerink, C. (2009). Plant phospholipid signaling “in a nutshell”. J. Lipid Res. 50, S260–S265. doi: 10.1194/jlr.R800098-JLR200

Munnis, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi:10.1146/annurev.arplant.59.032607.092911

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. doi:10.1111/j.1399-3054.1962.tb0052x

Nakashima, K., and Yamaguchi-Shinozaki, K. (2013). ABA signaling in stress-response and seed development. PLoS Cell. 32, 95–970. doi: 10.1007/ s00292-013-1418-1

Naoi, K., and Hashimoto, T. (2004). A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16, 1841–1853. doi:10.1105/tpc.104.021865

Novak, D., Václav, O., Ovčárka, M., Šmáková, O., Komis, G., Kolcombet, I., et al. (2018). Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 9:371. doi: 10.3389/fpls.2018.00371

Persak, H., and Pitzschke, A. (2013). Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 9:57547. doi: 10.1371/journal.pone.0057547

Pitzschke, A., Datta, S., and Persak, H. (2014). Salt stress in Arabidopsis: lipid transfer protein AZII and its control by mitogen-activated protein kinase MPK3. Mol. Plant. 7, 722–738. doi:10.1093/mp/ssu157

Pokotylo, I., Kravets, V., Martinec, J., and Ruelland, E. (2018). The phosphatidic acid paradox: too many actions for one molecule class? Lessons from Plants.Prog. Lipid Res. 71, 43–53. doi:10.1016/j.plipres.2018.05.003

Qin, C., and Wang, X. (2002). The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDct with distinct regulatory domains. Plant Physiol. 128, 1057–1068. doi:10.1104/pp.1010928

Rodríguez, M. C., Petersen, M., and Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621–649. doi:10.1146/annurev-plant-042809-112252

Roychoudhury, A., Paul, S., and Basu, S. (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 32, 985–1006. doi:10.1007/s00299-013-1414-5

Šmáková, O., Komis, G., and Šamaj, J. (2014a). Immunofluorescent localization of Arabidopsis phosphatidic acid binding to and inhibits the activity of Arabidopsis CTR1. J. Exp. Bot. 59, 3905–3914.

Ulrich, R., Yizhikera, M., Mizoguchi, T., Peck, S. C., Zhu, T., Wang, X., et al. (2002). Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J. 21, 6483–6493. doi:10.1093/emboj/cdf646

Umeyama, T., Sugiyama, N., Takashashi, F., Anderson, J. C., Ishihama, Y., Peck, S. C., et al. (2013). Genes and phosphoproteomics reveal a protein phosphorilation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 6(285). doi:10.1126/scisignal.2003509

Uraji, M., Katagiri, T., Okuma, E., Y., W., Hossain, M. A., Masuda, C., et al. (2012). Cooperative function of PLDδ and PLDβ1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159, 450–460. doi:10.1104/pp.112.1957

Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E., and Boeke, J. D. (1996). Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. U.S.A. 93, 10315–10320. doi: 10.1073/pnas.93.19.10315

Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., and Zhang, S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19, 63–73. doi:10.1105/tpc.106.064289

Wang, R. S., Pandey, S., Li, S., Gookin, T. E., Zhao, Z., Albert, R., et al. (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12:216. doi:10.1186/1471-2164-12-216

Wang, X. (2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139, 566–573. doi:10.1104/pp.105.068809

Xu, J., Li, Y., Wang, Y., Liu, H., Lei, L., Yang, H., et al. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 283, 26996–27006. doi:10.1074/jbc.M801392200

Yang, Y., and Guo, Y. (2018). Unraveling salt stress signaling in plants. Integr. Plant Biol. 60, 796–804. doi:10.1111/tpb.12689

Yao, X., Li, J., Liu, J., and Liu, K. (2015). An Arabidopsis mitochondria-localized RRI protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving AB14. J. Exp. Bot. 66, 6431–6445. doi:10.1093/jxberv536

Yoo, S. D., Cho, Y. H., Ten, G., Xiong, Y., and Sheen, J. (2007). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2HZ signalling. Nature 451, 789–795. doi:10.1038/nature06543

Yu, L., Nie, J., Cao, C., Jin, Y., Yan, M., Wang, F., et al. (2010). Phosphatidic acid mediates salt stress response by regulation of MPKδ6 in Arabidopsis thaliana. Plant Physiol. 188, 762–773. doi:10.1104/pp.110.190702

Zhang, L., Liu, F., Mao, T., Nie, J., Yan, M., Yuan, M., et al. (2012). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555–4576. doi:10.1105/tpc.112.104182

Zhang, W., Qin, C., Zhao, J., and Wang, X. (2004). Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U.S.A. 101, 9508–9513. doi:10.1073/pnas.0402112101

Zhu, J. (2015). Phospholipase D and phosphatidic acid in plant defense response: from protein-protein and lipid-protein interactions to hormone signaling. J. Exp. Bot. 66, 1–16. doi:10.1093/jxb/erv540
Zhao, J., and Wang, X. (2004). Arabidopsis phospholipase D alpha 1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279, 1794–1800.

Zhou, S., Chen, Q., Li, X., and Li, Y. (2017). MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. Plant Sci. 264, 112–121. doi: 10.1016/j.plantsci.2017.09.004

Zhu, S. Y., Yu, X. C. H., Wang, X. J., Zhao, R., Li, Y., and Fan, R. C. H. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19, 3019–3036. doi: 10.1105/tpc.107.050666

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Vadovič, Šamajová, Takáč, Novák, Zapletalová, Colcombet and Šamaj. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.