Effects of Neoadjuvant FAC Chemotherapy response to CD4 + Serum Levels before and after chemotherapy in breast cancer patients local advanced stage at Dr. Mohammad Hoesin Palembang General Hospital

Ade Permana, Benny Kusuma, Nur Qodir, Erial Bahar

1 Department of General Surgery, Dr. Mohammad Hoesin Hospital, Palembang, Indonesia
2 Department of Anatomy, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia

E-mail : bennyk_onk@yahoo.com

Abstract. CD4+ T helper has an important role in maintain long-term antitumor effect. Aji Sadanuna reported that there was a significant decrease between CD4 values before and after chemotherapy. Researchers wanted to investigate the effects of neoadjuvant chemotherapy on CD4+ levels in patients with locally advanced breast cancer at Dr. Mohammad Hoesin Palembang. This study was a non-comparable clinical trial by looking at serum CD4+ levels in locally advanced breast cancer patients before and after neoadjuvant chemotherapy. There are 30 subjects the subject age range from 33-66 years with an average of 45 years. 29 patients with marital status (96.7%), 17 patients with contraception history (56.7%), 13 patients with family history of Breast Cancer (43.3%). 23 patients with good chemotherapy response (76.7%) and 7 patients who had poor chemotherapy response (23.3%). Statistical test results using paired t-test showed that there was a significant difference in mean CD4+ count before and after neoadjuvant chemotherapy. At the CD4+ level before chemotherapy 775.55 had a sensitivity of 60% and a specificity of 57% (cut of point). While CD4+ levels after chemotherapy 470.85 with sensitivity of 60% and specificity of 57%. CD4+ pre-chemotherapy examination had a sensitivity score of 60% and a specificity of 57%.

1. Introduction
Breast cancer is the most common malignancy in women with a WHO case number in 2012 of 1.67 million cases (25% of all malignancies). There are 883,000 cases in developing countries and 794,000 in developed countries. The number of breast cancer cases in Southeast Asia is 240,000 cases with a mortality rate of 110,000 cases [1].

Breast cancer is one of the most cancer types in Indonesia. Based on Pathological Based Registration in Indonesia, breast cancer is the number one with a relative frequency of 18.6%. (Cancer Data in Indonesia Year 2010, according to Histopathological data, Cancer Registry Agency of Indonesian Pathology Specialist Association (IPSA) and Indonesian Cancer Foundation (ICF). It is estimated that the incidence rate in Indonesia is 12/100,000 women, whereas in the United States are about 92/100,000 women with a high mortality of 27/100,000 or 18% of deaths found in women. In Indonesia, more than 80% of cases are found in advanced stage, so the treatment effort becomes difficult [2].
At Dr. Mohammad Hoesin Hospital (MHH) Palembang, the number of cases of breast cancer in 2013 is 832 cases and most of them is stage III or LABC, stage III A 26.53% and stage IIIB 48.98% [3].

Neoadjuvant chemotherapy is a treatment option for locally advanced breast cancer patients. The clinical response criteria used after neoadjuvant chemotherapy are RECIST (Response Evaluation Criteria In Solid Tumors), which are complete, partial, stable and progressive [4].

CD4+ serves as the basis of the immune/immune priming system of CTL cells. CD4+ T helper has an important role in immune system modulation especially maintaining a long-term antitumor effect [5].

AJ madu et al in his study reported that there was a significant decrease between CD4 values before and after chemotherapy [6]. Gabioglu et al also reported that patients with LABC who received Antracyclin-based neoadjuvant chemotherapy induced an increase in T-cells [7].

Given the role of immunity to tumor growth and the chemotherapy response in breast cancer, especially with CD4+ serum levels, we would like to investigate the effects of neoadjuvant chemotherapy on CD4+ levels in patients with locally advanced breast cancer at Dr. Mohammad Hoesin Palembang.

2. Methods

It is a non-comparable clinical trial by looking at CD4+ serum levels in patients with locally advanced breast cancer before and after neoadjuvant FAC chemotherapy at Dr. Mohammad Hoesin Hospital Palembang. The sample of this study at least 30 locally advanced breast cancer patients who meet the inclusion and exclusion criteria for the T test requirements.

Sampling is done by consecutive sampling, all subjects that come and meet the criteria of sample selection are included in the study until the required number of subjects is accomplished. All patients were given informed consent prior to participate in the study.

CD4+ blood samples taken and examined with flow cytometry BD FACSCanto. Characteristics of breast cancer patients are divided over age, family planning history, family history, and clinicopathology are described descriptively and data are presented in table form and analyzed using paired T test to determine effectiveness with SPSS version 21 program.

3. Results

Based on age, the mean age of advanced breast cancer patients is 45.97 ± 10.526 years old with age range 30-66 years, age ≥ 40 years is 19 people (63.3%) and age <40 years is 11 (36.7%). The majority of patients with locally advanced stage breast cancer already have a child (96.7%) and only 1 (3.3%) have no children. Locally advanced breast cancer patients with birth control history is 17 (56.7%) and 13 (43.3%) had no birth control history. A total of 13 people (43.3%) of patients with advanced breast cancer have a history of the same disease in the family.

Table 1. General characteristic.

Characteristic	n	%
Age		
≥ 40 years	19	63.3
< 40 years	11	36.7
Birth control history		
Yes	17	56.7
No	13	43.3
Marital status		
Married	19	63.3
Single	11	36.7
Family History		
Yes	13	43.3
No	17	56.7

In this study there were ER positive of 20 people (66.7%), PR positive of 25 people (83.3%) and Her2/Neu positive of 9 people. Her2/Neu +++ of 4 people (13.3%), Her2/++ of 3 people and Her2 + of 2 people (6.7%). Ki67 levels of both ≥ 20% and <20% obtained as much, ie 15 people. Of the 30 patients of advanced stage breast cancer patients received a good chemotherapy response of 23 people (76.7%) and patients with poor response of 7 people (23.3%).
Table 2. Clinicopathology characteristic.

Characteristic	N	%
ER Positive	20	66.7
Negative	10	33.3
PR Positive	25	83.3
Negative	5	16.7
HER2 Positive 1(+)	4	13.3
2(+++)	3	10.0
3(+++)	2	6.7
Negative	21	70.0
Ki67 ≥ 20%	15	50.0
< 20%	15	50.0
Chemotherapy response		
Poor	7	23.3
Good	23	76.7

From the statistical analysis, it was found that there was a difference of CD4+ serum levels before and after chemotherapy (p = 0.000) in which CD4+ serum levels after chemotherapy decreased significantly compared to before chemotherapy.

The value of CD4+ before chemotherapy of 775.55 had a sensitivity of 60% and a specificity of 57% (cut of point). While CD4+ levels after chemotherapy of 470.85 with sensitivity of 60% and specificity of 57%. The result can be seen in figure 1 and figure 2.

Table 3. Chemotherapy response to CD4+ before & after chemotherapy.

Chemotherapy Response	Paired Differences	95% Confidence Interval of The Difference	t	df	Sig. (2-tailed)				
	Mean	Std. Deviation	Std. Error Mean	Lower	Upper				
Before chemotherapy	-859,813	393,859	71,908	-1006,883	-712,744	-11,957	29	.000	
After chemotherapy	-605,263	334,629	61,095	-730,216	-480,311	-9,907	29	.000	

4. Discussions

Breast cancer is the most common malignancy in women with the number of cases by WHO in 2012 of 1.67 million cases (25% of malignancy). There are 883,000 cases in developing countries and 794,000 in developed countries. The number of breast cancer cases in Southeast Asia is 240,000 cases with a mortality rate of 110,000 cases [1].

The incidence of breast cancer increases with age, every 10 years, the risk of cancer increases twice among menopause women. The average incidence of breast cancer is among women aged 45 years and over.13 In this study of 30 subjects, we obtained age ranged from 30-66 years with a mean of 44.97 ± 10,206 years. There are 17 patients with birth control history (56.7%), 13 patients with family history of Breast Cancer (43.3%).

Immunohistochemical characteristics of breast cancer patients in this study are included ER positive of 66.7%, PR positive of 83.3% and Her2/Neu +1, +2 and +3 of 13.3%, 10% and 6.7 %, respectively. Ki67 levels ≥ 20% in breast cancer patients in this study were similar to KI67 <20%. Immunohistochemistry is used not only for prognosis but also determines the therapy given to breast cancer patients [8].

There are 23 patients with a good chemotherapy response (76.7%) and 7 patients with poor chemotherapy response after neoadjuvant chemotherapy (23.3%). CD4+ has an important role in immune system modulation especially in long-term anti-tumor effects.10 In this study, CD4+ before neoadjuvant chemotherapy, there are 6 (20%) patients with low CD4+ and 18 (60%) patients with normal CD4+ and there are 6 (20%) patients with high CD4+ count.
Figure 1. Curve of intersection sensitivity and specificity on CD4+ value prior to chemotherapy of locally advanced breast cancer patients.

Figure 2. Curve of intersection sensitivity and specificity on CD4+ value after chemotherapy of locally advanced breast cancer patients.

After neoadjuvant chemotherapy there were 15 (50%) patients with low CD4+ count and 13 (43.3%) patients with normal CD4+ count and 2 (6.7%) patients with high CD4+. Overall, there was a decrease in CD4+ levels after chemotherapy, which could decrease the function of CD4+ T as a helper or cell effector for anti-tumor response [8].

Statistical test results using paired t-test showed that there was a significant difference in mean CD4+ count before chemotherapy neoadjuvant against the chemotherapy response. Similarly, with CD4+ after neoadjuvant chemotherapy there was a significant difference in mean CD4+ count after neoadjuvant chemotherapy on chemotherapy response. This is consistent with the study conducted by Madu AJ et al, in his study there were significant differences in CD4 T levels before and after chemotherapy, especially in the cyclophosphamide and adriamycin regimens, and combinations of cyclofofamide, vincristine, pro-carbazine and prodnisolone (COPP) [6].

To assess whether the CD4+ is an accurate tool in predicting chemotherapy response, a diagnostic test with gold standard on chemotherapy response is required. At the CD4+ level before chemotherapy of 775.55 had a sensitivity of 60% and a specificity of 57% (cut of point). While CD4+ levels after chemotherapy of 470.85 with sensitivity of 60% and specificity of 57%.
5. Conclusions
CD4+ pre-chemotherapy examination had a sensitivity score of 60% and a specificity of 57% in predicting neoadjuvant chemotherapy response.

6. References
[1] Organization W H Breast Cancer Estimated Incidence, Mortality and Prevalence Worldwide in 2012. 2012 URL http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp [WebCite Cache ID 6aKrqTle9]
[2] Khatcheressian J L, Hurley P, Bantug E, Esserman L J, Grunfeld E, Halberg F, Hantel A, Henry N L, Muss H B and Smith T J 2012 Breast cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical practice guideline update J Clin Oncol. 30 1-6
[3] Basyar R, Saleh A Z, Sastradinata I and Yuwono Y 2016 p53 Gene Codon 72 Polymorphisms among Cervical Carcinoma Patients Indones. J. Obstet. Gynecol. 3 165-9
[4] Eisenhauer E A, Therasse P, Bogaerts J, Schwartz L H, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S and Mooney M 2009 New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur. J. Cancer 45 228–47
[5] Toes R E M, Ossendorp F, Offringa R and Melief C J M 1999 CD4 T cells and their role in antitumor immune responses J. Exp. Med. 189 753–6
[6] Madu A J, Ocheni S, Ibegbulam O G, Aguwa E N and Madu K A 2013 Pattern of CD4 T-lymphocyte Values in Cancer Patients on Cytotoxic Therapy Ann. Med. Health Sci. Res. 3 198–503
[7] Predina J D, Judy B, Kapoor V, Blouin A, Aliperti L A, Levine D, Okusanya O T, Quatromoni J, Fridlender Z G and Singhal S 2012 Characterization of surgical models of postoperative tumor recurrence for preclinical adjuvant therapy assessment Am. J. Transl. Res. 4 206
[8] Weigel M T and Dowsett M 2010 Current and emerging biomarkers in breast cancer: prognosis and prediction Endocr. Relat. Cancer 17 R245–62