Microbiome Signature and Diversity Profiling of Normal Skin of Human in Saudi Arabia

Hanan AlQattan 1,*, Sherif Edris 2,3,1, Aala A. Abulfaraj 4,*, Raed Albiheyri 5, Lojayn Tobbah 5, Mohammed Alghamdi. 1, Ahmed Bahieldin 1,2, Sameer Zimmo 5 and Rashad Al-Hindi 1

1 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
2 Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
3 Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
4 Department of Biological Sciences, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
5 Department of Dermatology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

* Corresponding author: Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. Email: halqattan0001@stu.kau.edu.sa, Tel: +966- 536935619
** Corresponding author: Department of Biological Sciences-Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Email: aaabulfaraj@kau.edu.sa

Received 2021 March 19; Revised 2021 April 27; Accepted 2021 April 28.

Abstract

Background: Studying human skin-associated bacterial communities is crucial to understanding human diseases, disease progression, and their role in maintaining human health.

Objectives: This study aimed to identify normal (healthy) skin microbiome signatures of eight individuals living in Jeddah, Makkah Al-Mukarramah region, Saudi Arabia.

Methods: The study involved the analysis of resident skin microbiome in inner elbow of the right arm after ethical approval is issued and an informed consent form is signed by participant individuals.

Results: Phylogenetic tree indicated the existence of four phyla, e.g., Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria. Firmicutes were shown to be the highest in abundance, while Bacteroidetes were the lowest. At the genus level, Staphylococcus was the highest in abundance, while Enterococcus was the lowest. At the species level, Bacillus cereus was the highest in abundance, while Roseomonas mucosa was the lowest. The analysis for the highly abundant operational taxonomic units (OTUs) indicated a dramatic difference between sexes referring to either genera or species of which Staphylococcus spp., Erwinia spp., Pseudomonas spp., Sphingomonas spp., Corynebacterium spp., Propionibacterium acnes, Kocuria palustris are higher in males, while Bacillus cereus, Bacillus sp., Erwinia sp., Corynebacterium sp., Micrococcus sp., Pseudomonas spp. are lower in males.

Conclusions: The study succeeded in detecting the skin microbiome of individuals in Saudi Arabia.

Keywords: Skin, Microbiome, 16S rRNA Gene, Swabbing, Next Generation Sequencing

1. Background

The human body is the home of more than one trillion microbes with a diverse variety of commensal microbes that play an important role in the health of the individual. These microbes inhabit diverse habitats such as the gut, skin, vagina, oral, etc. The human skin is the largest organ of the human body and plays an important role as the first line of defense against external environmental changes and invading pathogens (1). The skin is an ecosystem composed of microbial communities that inhabit a range of physiologically and topographically distinct niches, including sebaceous/non-sebaceous, hair-bearing/glabrous, moist/dry, and creased/non-creased regions (2, 3). Human microbiome in healthy skin and the overall well-being of the individual has been started to be appreciated since years ago (4). Cataloging the healthy microbiome is a mandatory first step toward identification and correction of the microbial configurations that are implicated in diseases (5). The analysis of the human skin microbiome helps detect the cause behind the occurrence of many complex diseases (6).

2. Objectives

The aim of this study was to identify normal skin microbiome signature of healthy Saudi individuals living in Jeddah, Saudi Arabia through the analysis of 16S rRNA of the resident skin microbiome.
3. Methods

Eight healthy volunteers from Saudi Arabia (4 males and 4 females), aged 20 to 37 years, were enrolled in the current study. The inclusion criteria were no history of dermatologic disorders or current skin infection (atopic dermatitis, psoriasis, and stasis eczema), use of no skin creams or moisturizer before sampling, no treatment with chemotherapy or radiation, or subjects treated with antibiotics within the last three months. Samples were collected by swabbing from inner elbow of the right arm for each subject with no prior cleaning or treatment of skin surface using ISWAB Microbiome Collection kit.

DNAs were extracted using the QIAamp® DNA Microbiome kit (Qiagen®51306; North Rhine-Westphalia, Germany) according to the manufacturer’s instructions. PCR of the V3-V4 regions of bacterial 16S rRNA using 338F and 806R primers was done following standard procedure (e.g., initial denaturation at 95°C for 5 min; 25 cycles of denaturation at 95°C for 30s, annealing at 56°C for 30s, and extension at 72°C for 40s, and final extension of 72°C for 10 min), while deep sequencing was done at Beijing Genome Institute (BGI), China using Illumina platform. Raw sequencing data were deposited in the European Nucleotide Archive (ENA) and received no. PRJNA609106. These data were analyzed using the Quantitative Insights Into Microbial Ecology 2 (QIME2) package v2.18.11; (https://qiime2.org). Subsequent bioinformatics analysis was done following Abuljadayel et al. (7).

4. Results

4.1. Raw Data Statistics

Statistics of raw data for eight healthy skin microbiome are shown in Table 1, and data were described in Appendix 1 and Appendix 2, while results of OTU annotation are shown in Appendix 20. Alpha diversity was applied to analyze the complexity of species. Shannon and Simpson indices (Alpha diversity measures) indicated no significant differences between male and female groups (Appendix 21 and Appendix 3). The results in Appendix 4 indicated that F1 and F3 subjects had the lowest richness as referred to by Shannon index, while M4 and F4 showed the highest (Appendix 4). As expected, the data of evenness for Simpson index indicated opposite results (Appendix 4). Plot of principal coordinate analysis (PCoA) (shown in Appendix 5) indicated separation between male and female samples. Rarefaction curves showed that the maximum permitted number of reads for further analysis was ~73,000 (Appendix 6).

4.2. Normal Skin Microbiome Signatures at the Phylum Up to Species Levels

A threshold of ≥ 10 reads was considered highly abundant (Appendix 20) that was met for a number of 21 out of the 28 OTUs (Appendix 22). These OTUs are described in Appendix 23. Phylogenetic tree indicated the existence of four phyla (Figure 1). They include Actinobacteria (six genera), Bacteroidetes (one genus), Firmicutes (four genera), and Proteobacteria (six genera). The results of Appendix 23 align with those of the heat maps at the different taxa levels (Appendix 742). Venn diagram showed 17 OTUs common in both male and female groups (Appendix 13), while five OTUs were unique in male (Curtobacterium spp1, Roseomonas mucosa, Corynebacterium spp4, Capnocytophaga spp1, and Mogibacteriaceae), and six in female (Agrobacterium spp1, Acinetobacter spp1, Enterococcus spp1, Gardnerella spp1, Lactobacillus spp1, and Corynebacterium spp5). The latter results were not considered for further analysis due to the low number of sequences for each OTU (Appendix 13).

4.3. Abundance of Different Microbes Across Sex

Abundance of microbes (weighted Unifrac diversity distances) of different subjects of male and female was studied at the phylum (Appendix 14), class (Appendix15), order (Appendix16), family (Appendix17), genus (Appendix 18), and species levels (Appendix 19). Weighted Unifrac diversity distances showed diversity in different microbiome signatures. Four phyla, four classes, seven orders, 10 families, 10 genera, and two species showed diversity in microbiomes of male and female (Appendix 14-19, respectively). The four phyla included Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Appendix 14). The four classes included Actinobacteria, Alphaproteobacteria, Bacilli, and Gammaproteobacteria (Appendix 15).

The seven orders consisted of Actinomycetales, Bacillales, Enterobacteriales, Lactobacillales, Pseudomonadales, Rhizobiales, and Rhodospirillales (Appendix 16). The 30 families included Acetobacteraceae, Bacillaceae, Corynebacteriaceae, Enterobacteriaceae, Enterococcaceae, Microbacteriaceae, Moraxellaceae, Pseudomonadaceae, Rhizobiaceae, and Staphylococcaceae (Appendix 17). The 10 genera included Acinetobacter, Agrobacterium, Bacillus, Corynebacterium, Curtobacterium, Enterococcus, Erwinia, Pseudomonas, Roseomonas, and Staphylococcus. (Appendix 18). The two species included Bacillus cereus and Roseomonas mucosa (Appendix 19). Highly abundant OTUs (15 OTUs with ≥ 10 reads) that appeared in all, or in at least three, subjects indicated dramatic difference between sexes. The 15 OTUs...
Table 1. Statistics of Data Generated from Deep Sequencing for Eight Saudi Individuals. M = Male, F = Female.

Sample ID	Reads Length (bp)	Raw Data (Mbp)	N Base (%)	Low Quality (%)	Clean Data (Mbp)	Data Utilization (%)	Raw Reads	Clean Reads	Read Utilization (%)
M1	297:297	53.65	0.049	1.966	51.6	96.62	90,265	87,190	94.30
M2	298:297	53.71	0.047	1.720	52.7	95.70	90,166	87,400	97.00
M3	294:297	54.62	0.051	1.823	52.46	96.22	92,056	89,220	96.22
M4	299:297	53.89	0.071	2.011	51.62	95.78	90,425	88,222	96.35
F1	300:297	53.27	0.067	2.044	51.68	95.97	89,911	86,556	96.38
F2	307:297	54.33	0.048	1.938	52.26	96.09	91,016	88,052	96.71
F3	297:300	54.50	0.067	2.173	52.82	94.72	90,285	87,405	95.84
F4	301:297	53.86	0.070	2.044	51.48	93.67	89,191	86,516	96.38

Figure 1. Genus level phylogenetic tree of normal skin microbiome. Genera with the same color belong to the same phylum.

referred to either genera or species of which *Staphylococcus* (spp.1 and spp.2), *Erwinia* spp.1, *Pseudomonas* spp.1, *Sphingomonas* spp.1, *Corynebacterium* spp.2, *Propionibacterium acnes*, *Kocuriapalustris* were higher in males (Figure 2), while *Bacillus* cereus, *Bacillus* spp.1, *Erwinia* spp.2, *Corynebacterium* (spp.1 & spp.3), *Micrococcus* spp.1, *Pseudomonas* spp.2 were lower in males (Figure 2).
5. Discussion

In the present study, healthy skin microbiome of Saudi residents indicated the presence of as little as six, out of 28 OTUs that were detected at species level. They refer to genera Bacillus (e.g., B. cereus), Roseomonas (e.g., P. mucosa), Kocuria (e.g., K. palustris), Propionibacterium (e.g., P. acnes), Pseudomonas (e.g., P. mendocina), and Corynebacterium (e.g., C. kroppenstedtii), respectively. These six genera belong to phyla Firmicutes (e.g., Bacillus), Proteobacteria (e.g., Roseomonas and Pseudomonas), and Actinobacteria (e.g., Propionibacterium, Kocuria, and Corynebacterium). There is one OTU (e.g., OTU26) that was detected only at family level, e.g., Mogibacteriaceae (Appendix 23). This family is part of phylum Firmicutes.

The other 21 OTUs refer to unassigned species of genera Staphylococcus (Staphylococcus spp.1 and spp.2), Bacillus (Bacillus spp.1), Enterococcus (Enterococcus spp.1), and Lactobacillus (Lactobacillus spp.1) of phylum Firmicutes, Agrobacterium (Agrobacterium spp.1), Sphingomonas (Sphingomonas spp.1), Erwinia (e.g., Erwinia spp.1 and spp.2), Pseudomonas (Pseudomonas spp.1 and spp.2), and Acinetobacter (Acinetobacter spp.1) of phylum Proteobacteria, Curtobacterium (Curtobacterium spp.1), Corynebacterium (Corynebacterium...
spp.1, spp.2, spp.3, spp.4 and spp.5), Micrococcus (Micrococcus spp.1), Gardnerella (Gardnerella spp.1) of phylum Actinobacteria, and Capnocytophaga (Capnocytophaga spp.1) of phylum Bacteroidetes (Appendix 23).

5.1. Race-specific Healthy Skin Microbiome Signatures

Consistent with Kim et al. (8), healthy skin microbiome in several populations at phylum level are Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. However, our results demonstrated the occurrence of the first three phyla, e.g., Firmicutes (342,875 reads), Actinobacteria (58,322 reads), Proteobacteria (234,757 reads), while low prevalence of Bacteroidetes (2 reads) in healthy skin microbiomes of individuals living in Saudi Arabia (Appendix 23). Results of several other studies (9) align with these of the present study in terms of abundance at the phylum level. Silva et al. (10) also reported an increased level of Firmicutes in healthy skin of different populations. These results align with those of the present study (Appendix 23). Meisel et al. (11) showed that S. epidermidis and S. hominis were prevalent for Staphylococcus. Our results align with those of Kim et al. (8) referring to genus Propionibacterium, while showed no existence of the two Staphylococci species. Interestingly, our results indicated the occurrence of two new unassigned species of Staphylococcus might have the same action of the two-missing species in microbiome signature of Saudi individuals.

5.2. Healthy Skin Microbiome and Gender

We suggest that differential abundance of microbes due to gender represents extra environmental factors, influencing such differences in microbiome signature. Previous studies indicated that Propionibacterium, Corynebacterium, and Staphylococcus were more abundant in males (12), while Enterobacteriales, Moraxellaceae, Lactobacillaceae, and Pseudomonadaceae (according to Fierer et al.) (13), and Lactobacillus, Enhydrobacter and Deinococcus (According to Ling et al.) (12) were higher in females. As women use cosmetics more frequently than men (in accordance with Fierer et al.) (13), thereby altering the microbial community structure and diversity of their skin may definitely affect microbe richness and relative abundance compared to men.

In the present study, relative abundances of assigned species of genera Propionibacterium (e.g., Propionibacterium macer) and Kocuria (e.g., Kocuriapalustris) and unassigned species of genera Staphylococcus, Erwinia, Pseudomonas, Sphingomonas, and Corynebacterium are higher in male microbiome, while relative abundances of assigned (e.g., Bacillus cereus), and unassigned species of genus Bacillus and unassigned species of genera Erwinia, Corynebacterium, Micrococcus, Pseudomonas are lower in male microbiome (Appendix 22 and Figure 2). The results of Staphylococcus and Propionibacterium abundances in the present study are in agreement with those of Ling et al. (12) and Fierer et al. (13).

5.3. Conclusions

Overall, the study highlights skin microbiome signature of individuals in Saudi Arabia. This information will be helpful when studying skin microbiomes of patients with atopic dermatitis (AD), Psoriasis, or Acnevulgaris toward the detection of biomarkers of the different diseases.

Supplementary Material

Supplementary material(s) is available here [To read supplementary materials, please refer to the journal website and open PDF/HTML].

Acknowledgments

Authors thank authorities at the Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, for providing facilities and equipment to do this research.

Footnotes

Authors’ Contribution: Conceptualization: HA, SE, AB, SZ, RAH, Data collection: AH, LT, AA, RA, Methodology: AH, SE, LT, RA, AM, SZ, Writing the manuscript: HA, AA, AB, RAH, Review, editing, and correspondence: AA, AB.

Conflict of Interests: The authors declare no conflict of interest.

Ethical Approval: Ethical approval to conduct skin microbiome analysis was obtained from the Ethics Committee of King Abdulaziz University Hospital (KAUH), Saudi Arabia (ref. no. 165-18).

Funding/Support: Not applicable.

Informed Consent: A consent form was prepared and signed by volunteers or participants whose inclusion/exclusion criteria were applied.
References

1. Li H. The human skin microbiome in health and skin diseases. Metagenomics of the Human Body. 2011. p. 145–63.
2. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53. doi: 10.1038/nrmicro2537. [PubMed: 21407241]. [PubMed Central: PMC3535073].
3. Scharschmidt TC, Fischbach MA. What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech. 2013;10(3-4). doi: 10.1016/j.ddmec.2012.12.003. [PubMed: 24273587]. [PubMed Central: PMC3833721].
4. NIH Hmp Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23. doi: 10.1101/gr.096651.109. [PubMed: 19889907]. [PubMed Central: PMC2792171].
5. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. doi: 10.1186/s13073-016-0307-y. [PubMed: 27122046]. [PubMed Central: PMC4848870].
6. Russo E, Taddei A, Ringressi MN, Ricci F, Amedei A. The interplay between the microbiome and the adaptive immune response in cancer development. Therap Adv Gastroenterol. 2016;9(4):594–605. doi: 10.1177/1756283X16635082. [PubMed: 27366226]. [PubMed Central: PMC4913228].
7. Abuljadayel D, Atef A, Al-Matary M, Edris S, Al-Quwaie DAH, Alsabbi NH, et al. Detection of a negative biomarker for amebiasis (Entamoeba histolytica) in the human gut microbiome. Applied Ecology and Environmental Research. 2020;18(2):2363-94. doi: 10.45666/aeer/1802_23632394.
8. Kim HJ, Kim H, Kim J, Myeong NR, Kim T, Park T, et al. Fragile skin microbiomes in megacities are assembled by a predominantly niche-based process. Sci Adv. 2018;4(3). e701581. doi: 10.1126/sciadv.701581. [PubMed: 29532031]. [PubMed Central: PMC5842045].
9. Balato A, Cacciapuoti S, Di Caprio R, Marasca C, Masara A, Raimondo A, et al. Human Microbiome: Composition and Role in Inflammatory Skin Diseases. Arch Immunol Ther Exp (Warsz). 2019;67(1):3-18. doi: 10.1007/s00005-018-0528-4. [PubMed: 30302512].
10. Silva PE, Reis MP, Avila MP, Dias MF, Costa PS, Sahadolnik ML, et al. Insights into the skin microbiome dynamics of leprosy patients during multi-drug therapy and in healthy individuals from Brazil. Scientific Reports. 2018;8(1). doi: 10.1038/s41598-018-27074-0.
11. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin Microbiome Surveys Are Strongly Influenced by Experimental Design. J Invest Dermatol. 2016;136(5):947–56. doi: 10.1016/j.jid.2016.01.016. [PubMed: 26829018]. [PubMed Central: PMC4842136].
12. Ling Z, Liu X, Luo Y, Yuan L, Nelson KE, Wang Y, et al. Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics. 2013;14:390. doi: 10.1186/1471-2164-14-390. [PubMed: 23758874]. [PubMed Central: PMC3685588].
13. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008;105(46):17994-9. doi: 10.1073/pnas.0807920105. [PubMed: 19004754]. [PubMed Central: PMC2584701].