Peripheral inflammation and depressed mood independently predict neurocognitive worsening over 12 years

Ronald J. Ellis a,*, Robert K. Heaton a, Bin Tang a, A.C. Collier b, Christina M. Marra b, Benjamin B. Gelman f, S. Morgello c, David B. Clifford e, N. Sacktor e, D. Cookson a, Scott Letendre a

a University of California San Diego, San Diego, CA, United States
b University of Washington, Seattle, WA, United States
c Icahn School of Medicine at Mount Sinai, New York, NY, United States
d Johns-Hopkins University, Baltimore, MD, United States
f Washington University, St Louis, MO, United States

1. Background

Neurocognitive (NC) impairment in people with HIV (PWH) is associated with important adverse outcomes, but no markers exist to predict long-term NC decline. We evaluated depressed mood and markers of persistent inflammation, oxidative stress and altered amyloid processing (all common in PWH) as predictors of NC worsening over 12 years.

Methods: PWH were enrolled and followed longitudinally in the CNS HIV Antiretroviral Effects Research (CHARTER) study at six US sites. At entry we quantified biomarkers in blood of inflammation: (interleukin-6 [IL-6], C-reactive protein [CRP], monocyte chemoattractant protein type 1 [MCP-1], D-dimer, soluble sCD14 (sCD14), soluble tumor necrosis factor receptor – type II [sTNFR-II], neopterin, and soluble CD40 ligand [sCD40L], oxidative stress (protein carbonyls, 8-oxo-2′-deoxyguanosine [8-oxo-dG]) and altered amyloid processing (amyloid beta [Aβ]42, soluble amyloid precursor protein-α [sAPPα]) using commercial immunoassays. The Beck Depression Inventory-II (BDI-II) assessed depressed mood at entry. NC decline over 12 years was evaluated using the published and validated summary (global) regression-based change score (sRBCS). A factor analysis reduced dimensionality of the biomarkers. Univariable and multiple regression models tested the relationship between baseline predictors and the outcome of neurocognitive decline.

Results: Participants were 191 PWH, 37 (19.4%) women, 46.6% African American, 43.5% non-Hispanic white, 8.83% Hispanic, 15.7% white, 1.6% other; at study entry mean (SD) age 43.6 (8.06) years, estimated duration of HIV infection (median, IQR) 9.82 [4.44, 14.5] years, nadir CD4 104/μL (19,205), current CD4 568/μL (356, 817), and 80.1% had plasma HIV RNA <50 c/mL. Participants were enrolled between 2003 and 2007; median (IQR) duration of follow-up 12.4 [9.69, 16.2] years. Three biomarker factors were identified: Factor (F)1 (IL-6, CRP), F2 (sTNFR-II, neopterin) and F3 (sCD40L, sAPPα). Participants with higher F1, reflecting worse systemic inflammation at baseline, and higher F3, had greater decline in global neurocognition (r = -0.168, p = 0.0205 and r = -0.156, p = 0.0309, respectively). Of the F1 components, higher CRP levels were associated with worse decline (r = -0.154, p = 0.0332), while IL-6 did not (r = -0.109, p = 0.135). NC change was not significantly related to F2, nor to demographics, nadir and current CD4, viral suppression or baseline NC comorbidity ratings. Individuals with worse depressed mood at entry also experienced more NC decline (r = -0.1734, p = 0.0006). Together BDI-II (p = 0.0290), F1 (p = 0.0484) and F3 (p = 0.0309) contributed independently to NC decline (p = 0.0028); their interactions were not significant. Neither CRP nor IL-6 correlated significantly with depression.

Conclusions: PWH with greater systemic inflammation and more depression at entry had greater NC decline over 12 years. Understanding the basis of this inflammatory state might be particularly important. These findings raise the possibility that targeted anti-inflammatory or antidepressant therapies may help prevent NC worsening in PWH with depression and inflammation.

© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
systemic inflammation (plasma CRP) on longitudinal profiles of neurocognition over and average of 33 months of follow-up in 143 PWH on ART (Saloner et al., 2020). Global cognition, processing speed, motor function, and attention/working memory all decreased as CRP increased, but only among PWH who exhibited moderate to severe depressive symptoms (BDI-II ≥ 22). Depression and inflammation are interrelated in HIV (Bryant et al., 2015; Matt and Gaskill, 2019) and in PWOH (Lee and Giuliani, 2019; Berk et al., 2013), and treatment-resistant depression is associated with a heightened inflammatory response (Yang et al., 2019). Further evaluating the conjoint impacts of depression, systemic and CNS inflammation and neurodegeneration on longitudinal NC outcomes would represent an important scientific advancement. We evaluated depressed mood and markers of persistent systemic inflammation, oxidative stress and altered amyloid processing (all common in PWH) as predictors of NC worsening over 12 years. We hypothesized that inflammation and depression together would contribute to poorer NC outcomes.

2. Methods

Participants. 191 PWH in the current study were enrolled and followed longitudinally in the CNS HIV Antiretroviral Effects Research (CHARTER) study at six US sites. Exclusion criteria were active neurological illnesses other than HIV, acute intoxication based on clinical judgment, and active psychiatric or substance use disorder (eg, psychosis) that might interfere with completing study evaluations. All participants signed a local IRB-approved informed consent document.

Clinical and laboratory evaluations. All participants underwent standardized evaluations as previously described. The Beck Depression Inventory – II (BDI-II) (Beck et al., 1996) assessed depressed mood at entry. The NC performance battery included tests of executive function, working memory, verbal fluency, processing speed, verbal and visual learning and delayed recall, and complex motor function (Heaton et al., 2004; Gonzalez et al., 2003). NC decline over 12 years was evaluated using the published summary (global) regression-based change score (sRBCS) (Cysique et al., 2011). Confounding neurocognitive conditions at baseline were judged by experienced HIV clinicians as Frascati NC comorbidity status incidental (not contributing to NC impairment), contributing (likely contributing to NC impairment, in addition to HIV itself) and confounding (the principal cause of NC impairment). These ratings showed good interrater agreement between clinicians (Heaton et al., 2010a). History of major depressive disorder (MDD) and substance use disorders were assessed using the computer-assisted Composite International Diagnostic Interview (CIDI) (Nelson, 1999), a structured instrument widely used in psychiatric research. The CIDI classifies current and lifetime diagnoses of mood disorders and substance use disorders, as well as other mental disorders. Additional assessments measured activities of daily living, disability, employment and quality of life. Quality of life was assessed using the Medical Outcomes Study HIV Health Survey Short Form 36 (MOS-HIV SF-36), a reliable and valid tool for assessing overall quality of life, daily functioning, and physical health (Wachtel et al., 1992; Wu et al., 1997). The MOS-HIV contains 36 questions that assess various physical and mental dimensions of health. Items are grouped into two overall categories (Physical and Mental Health), with 11 subcategories (Physical functioning, Role functioning, Pain, Social functioning, Emotional well-being, Energy/fatigue, Cognitive functioning, General health, Health distress, Overall QoL). These are scored as summary percentile scales ranging from 0 to 100, with higher scores indicating better health. Disability was assessed using the Karnofsky Scale (Mor et al., 1994). Dependence in instrumental activities of daily living (IADLs) was assessed with a modified version of the Lawton and Brody Scale (Lawton and Brody, 1969) that asks participants to rate their current and best lifetime levels of independence for 13 major IADLs such as shopping, financial management, transportation, and medication management (Heaton et al., 2004). An employment questionnaire asked about job loss, decreases in work productivity, accuracy, and quality, increased effort required to do one’s usual job, and increased fatigue with the usual workload (Heaton et al., 2010b). The Patient’s Assessment of Own Functioning (PAOF) (Chelune et al., 1986) was used to assess participant-rated judgments of neurocognitive difficulties.

HIV disease was diagnosed by enzyme-linked immunosorbent assay with Western blot confirmation. HIV RNA concentration in plasma was measured using commercial assays and deemed undetectable at a lower limit of quantitation (LLQ) of 50 copies/ml CD4 T cells were measured by flow cytometry and nadir CD4 was assessed by self-report.

Biomarkers. We quantified biomarkers in blood at entry using commercial immunoassays. Markers of inflammation included C-reactive protein [CRP] (Laboratory Corporation of America, San Diego, CA), interleukin-6 [IL-6], soluble tumor necrosis factor receptor type II [sTNFR-II], and monocyte chemoattractant protein type 1 [MCP-1] (Meso Scale Discovery, Rockville, Maryland), D-dimer (BioMedica, Windsor, Nova Scotia, Canada), soluble CD14 [sCD14] (R&D, Minneapolis, Minnesota), neopterin (ALPCO, Salem, New Hampshire), and soluble CD40 ligand [sCD40L] (Millipore Sigma, Burlington, Massachusetts). Markers of oxidative stress included protein carbonyls (Sigma-Aldrich, St. Louis, Missouri) and 8-oxo-2′-deoxyguanosine (8-oxo-dG) (Tregiven, Gaithersburg, Maryland). Markers of altered amyloid processing included amyloid beta ([Aβ]-42), soluble amyloid precursor protein-a (sAPPα) (Meso Scale Discovery, Rockville, Maryland). All assay results were reviewed for quality assurance, and 10% of all assays were repeated to assess operator and batch consistency. Biomarker precision was ensured by assaying specimens in duplicate and repeating measurements with coefficients of variation greater than 20% or outliers that were more than 3 standard deviations (SDs) from the mean.

Statistics. A factor analysis with oblique Equamax rotation was conducted. Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. Factor analysis reduces dimensionality and controls false discovery. It is important to check the identified factors against known physiological relationships. To validate the factors, we examined intercorrelations between the biomarkers assigned to each factor. BDI-II values were square root-transformed and biomarkers were log transformed to improve the normality of their distribution for analyses. Simple Pearson correlations and multiple linear regression models tested the relationships between baseline predictors and outcomes. Secondary analyses evaluated correlations with quality of life (MOS-HIV), ADLs and employment status. We used multivariable linear regression models to test interaction effects. In the absence of an interaction, additive effects were tested. Analyses were conducted using JMP Pro® version 15.0.0 (SAS Institute Inc., Cary, NC, 2018).

3. Results

Participant characteristics. Participants were 191 PWH, 37 (19.4%) women, 46.6% African American, 43.5% non-Hispanic White, 8.3% Hispanic, 1.6% Other. They were enrolled between 2003 and 2007, and at study entry had mean (SD) age 43.6 (8.06) years, estimated duration of HIV infection (median, IQR) 9.82 [4.44, 14.5] years, nadir CD4 568/μL (19, 205), current CD4 568/μL (356, 817), 80.1% plasma HIV RNA <50 c/mL. Median [IQR] duration of follow-up 12.4 [9.69, 16.2] years. BDI-II depression severity median was 10 [4, 20] (for reference, scores of 14–19 are considered mild depression, 20–28 moderate and 29–63 severe). These and additional participant characteristics are detailed in Table 1. Participants with on anti-depressant medications at baseline had higher BDI-II scores, reflecting worse depressed mood (16.2 ± 10.5 versus 12.3 ± 11.0, p = 0.0307) (see Table 2).

The factor analysis identified three baseline factors: F1 (IL-6, CRP), F2 (sTNFR-II, neopterin) and F3 (sCD40L, sAPPα). Higher IL-6 levels correlated with higher CRP levels (r = 0.427, p = 1.10e-9), higher of sTNFRII correlated with higher levels of neopterin (r = 0.618, p < 0.0001); and higher levels of sCD40L correlated with higher sAPPα levels (r = 0.389, p < 0.0001). Participants with higher F1, reflecting worse
systemic inflammation at baseline, and higher F3, had greater decline in global neurocognitive worsening (r = –0.168, p = 0.0205 and r = –0.156, 0.0309, respectively, Fig. 1). Of the F1 components, higher CRP levels were associated with worse decline (r = –0.154, p = 0.0332), while IL-6 did not (r = –0.109, p = 0.135). NC change was not significantly related to F2, nor to demographics, nadir and current CD4, viral suppression or baseline Frascati NC comorbidity ratings (incidental, contributing, confounding). Individuals with worse depressed mood at entry also experienced more NC decline (r = –0.143, p = 0.0484, Fig. 1). Together BDI-II (p = 0.0290), F1 (p = 0.0484) and F3 (p = 0.0309) contributed independently to NC decline (p = 0.0028); their interactions were not significant. Older participants had greater NC decline (r = 0.147, p = 0.0420). NC decline was not significantly related to the other Factors, nor to other demographic factors, nadir and current CD4, viral suppression or Frascati NC comorbidity ratings (incidental, contributing, confounding). None of inflammation factors were related to viral suppression (ps > 0.20). Use of anti-depressant medications or anti-inflammatory medications was not related to the biomarker Factors.

Potential confounds (covariates). Those with and without lifetime MDD did not differ on global neurocognitive worsening (−0.337 ± 0.71 versus −0.301 ± 0.598, p = 0.712). However, current MDD at the baseline visit did associate with neurocognitive decline (Current MDD, N = 21, mean ± SD sRBBCS −0.641 ± 0.795 versus no current MDD N = 168, −0.278 ± 0.625, p = 0.1518). Global neurocognitive worsening did not correlate with education (r = −0.0359, p = 0.6224), female sex (−0.308 ± 0.652 versus −0.316 ± 0.658, p = 0.939), ethnicity (non hispanic white vs. other (−0.374 ± 0.072 versus −0.269 ± 0.063 p = 0.276), nadir CD4 (r = −0.0754, p = 0.300), current CD4 (r = −0.0150, p = 0.837), being on ART versus off (n = 142, −0.29 ± 10.661 versus n = 49, −0.323 ± 0.655, p = 0.772), having an undetectable plasma viral load (−0.350 ± 0.641 versus 0.672 ± 0.466, p = 0.669), lifetime substance use disorder −0.364 ± 0.654 versus 0.149 ± 0.636, p = 0.0555), diabetes −0.257 ± 0.365 versus −0.318 ± 0.669, p = 0.389, hypertension (−0.320 ± 0.519 versus −0.313 ± 0.683, p = 0.954), or hyperlipidemia (−0.298 ± 0.545 versus −0.317 ± 0.706, p = 0.905). Change in viral suppression did not associate with neurocognitive decline (p = 0.675), nor did viral suppression status at baseline and follow-up (ps > 0.50). Change in CD4, which on average increased by a median (IQR) 101 (−78, 299) cells/ul, did not relate significantly to neurocognitive decline (r = 0.0489, p = 0.503).

Impact of NC worsening on participant functional status. To evaluate how NC worsening affected participants’ overall health, we assessed several variables reflecting functional status. Participants with greater global NC worsening at follow-up had worse scores on the HIV Medical Outcomes Survey General Health, Physical Health and Mental Health subscales (r = 0.244, p = 0.0008). Similarly, those with global NC worsening had more PAOFI cognitive symptoms (r = −0.320, p = 6.670e-6) and were less likely to be employed (unit odds ratio 0.456, p = 0.0037).

4. Conclusions

Participants with higher plasma CRP, IL-6, sCD40L, sAPP and worse depressed mood at entry had greater NC decline over 12 years, and both of these correlated with worse health-related quality of life, functional status and employment. The relationships were not abrogated by age or other demographic or clinical factors, including comorbidities. It is particularly intriguing that these factors predict outcomes many years later, suggesting a possible causal relationship or a potentially shared etiology. An abundant literature demonstrates the adverse impact of systemic and neuroinflammation on brain structure and function in HIV (Pinheiro et al., 2016; Dos Reis et al., 2020; Kallianpur et al., 2020). It is likely that common mechanisms underlie cognitive impairment and depressed mood (Formanek et al., 2020; Pan et al., 2019), raising the possibility that both might be ameliorated by anti-inflammatory medications.

Here plasma CRP, IL-6, sCD40L and sAPP were particularly strongly associated with decline in the domains of speed-of-information processing and executive function as compared to other domains. These domains are selectively affected by HIV brain disease (Kanmogne et al., 2018; Naveed et al., 2021; Haase et al., 2014) and in the modern treatment era are strongly associated with markers of vascular disease (Montoya et al., 2017; Becker et al., 2009) and inflammation (Rubin et al., 2020; Monnig et al., 2017).

This study has several strengths, including the large cohort, extensive clinical characterization, and longitudinal design, yielding findings consistent with forward causation. Limitations include the observational nature of the data and the possibility of unobserved causal factors explaining the interrelationships between the predictors and the outcomes.

We propose that future studies evaluate the potential effectiveness of anti-inflammatory strategies such as curcumin and cannabinoids, as well as anti-depressants, to ameliorate cognitive impairment and HIV.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements and funding

The CNS HIV Anti-Retroviral Therapy Effects Research was supported by awards N01 MH22005, HHSN27120100036C, HHSN271201000030C and R01 MH107345 from the National Institutes of Health.

The CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) group is affiliated with Johns Hopkins University; the Icahn School of Medicine at Mount Sinai; University of California, San Diego; University of Texas, Galveston; University of Washington, Seattle; Washington University, St. Louis; and is headquartered at the University of California, San Diego and includes: Directors: Robert K. Heaton, Ph.D., Scott L. Letendre, M.D.; Center Manager: Donald Franklin, Jr.; Coordinating Center: Brookie Best, Pharm.D., Debra Cookson, M.P.H, Clint Cushman, Matthew Dawson, Ronald J. Ellis, M.D., Ph.D., Christine Fennema Notestine, Ph.D., Sara Gianella Weibel, M.D., Igor Grant, M.D., Thomas D. Marcotte, Ph.D., Jennifer Marquie-Beck, M.P.H., Florin Vaida, Ph.D.; Johns Hopkins University Site: Ned Sacktor, M.D. (P.I.), Vincent Rogalski; Icahn School of Medicine at Mount Sinai Site: Susan Morgello, M.D. (P.I.), Letty Mintz, N.P.; University of California, San Diego Site: J. Allen McCutchan, M.D. (P.I.); University of Washington, Seattle Site: Ann Collier, M.D. (Co-P.I.) and Christina Marra, M.D. (Co-P.I.); Sher Storey, PA-C.; University of Texas, Galveston Site: Benjamin Gelman, M.D., Ph.D. (P.I.); University of Texas, Galveston Site: Benjamin Gelman, M.D., Ph.D. (P.I.); Eleanor Head, R.N., B.S.N.; and Washington University, St. Louis Site: David Clifford, M.D. (P.I.), Mengesha Teshome, M.D.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Government.

References

Alakkas, A., Ellis, R.J., Watson, C.W., et al., 2019. White matter damage, neuroinflammation, and neuronal integrity in HAND. J. Neurovirol. 25, 32-41.
Beck, A.T., Steer, R.A., Ball, R., Ranieri, W., 1996. Comparison of Beck depression inventories—IA and—II in psychiatric outpatients. J. Pers. Assess. 67, 588-597.
Becker, J.T., Kingsley, L., Mullen, J., et al., 2009. Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology 73, 1292-1299.
Berk, M., Williams, L.J., Jacka, F.N., et al., 2013. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 11, 200.
Bryant, A.K., Ellis, R.J., Umlauf, A., et al., 2015. Antiretroviral therapy reduces neurodegeneration in HIV infection. AIDS 29, 323-330.
