MINIMAL MODELS OF SOME DIFFERENTIAL GRADED MODULES

BERRİN ŞENTÜRK*, ÖZGÜN ÜNLÜ

Abstract. Minimal models of chain complexes associated with free torus actions on spaces have been extensively studied in the literature. In this paper, we discuss these constructions using the language of operads. The main goal of this paper is to define a new Koszul operad that has projections onto several of the operads used in these minimal model constructions.

1. **Introduction**

Let k be an algebraically closed field of characteristic 2 and G an elementary abelian 2-group of rank r. Considering the chain complexes associated with free G-spaces, one obtains an algebraic conjecture stronger than the Halperin-Carlsson rank conjecture about 2-torus actions (G-actions). For any chain complex C of k-modules, we denote the homology of C by $H(C)$.

Conjecture 1. If C is a finite chain complex of free kG-modules with $H(C) \neq 0$, then $\dim_k H(C)$ is at least 2^r.

Considering the polynomial ring $S := k[x_1, \ldots, x_r]$, an equivalent algebraic conjecture is given by Proposition II.1 and II.2 in [5]. We say (M, ∂) is a differential graded S-module (dg-S-module) if M is an S-module, and ∂ is an S-linear endomorphism of M that has degree -1 and satisfies $\partial^2 = 0$. Moreover, we say a dg-S-module is free if its underlying graded S-module is free.

Conjecture 2. [6, Conjecture II.8] Let $S = k[x_1, \ldots, x_r]$ be the polynomial algebra in r variables of degree -1 with coefficients in an algebraically closed field of characteristic 2. If (M, ∂) is a free, finitely generated dg-S-module with $0 < \dim_k H(M) < \infty$, then $\text{rank}_S M \geq 2^r$.

In the literature, bounds for the dimension of $H(C)$ in Conjecture 1 and for the rank of M in Conjecture 2 are obtained by studying minimal models of C and M. In [7], Carlsson showed the existence of minimal models of certain free differential graded S-modules. Here we give an explicit construction of these minimal models using operad theory. Again using operads we construct minimal models of chain complexes of Borel constructions of spaces with a free G-action. These minimal models are equivalent to minimal Hirsch-Brown models given by Allday-Puppe [1].

Note that Conjecture 1 holds if we further assume that the Euler characteristic of C is non-zero. More precisely,

$$\chi(C) = |G| \chi(k \otimes_{kG} C) = \chi(H(C)) = \sum_{i \geq 0} (-1)^i \dim_k H_i(C) \neq 0.$$
Hence the dimension of total homology \(\dim_k H(C) \geq |G| = 2^r \). Due to the equivalence of conjectures one could ask if a similar result holds for Conjecture 2. We prove the conjecture in the following case:

Theorem 1. Conjecture 2 holds if every integer \(n, m \) have the same parity whenever \(H_n(M) \neq 0 \) and \(H_m(M) \neq 0 \). In fact, \(\chi(H(M)) := \sum_{i \geq 0} (-1)^i \dim_k H_i(M) \neq 0 \) implies Conjecture 2.

When the characteristic of the field is odd, a result analogous to Theorem 1 is proved by Walker [15], [16].

Puppe [14] asserted that, given a certain multiplicative structure on the minimal Hirsch-Brown model for the equivariant cohomology of a space with a free torus action, these bounds can be tightened to verify the Halperin-Carlsson rank conjecture. The main goal of this paper is to put a multiplicative structure on minimal Hirsch-Brown models of \(G \)-spaces. Note that the group algebra \(kG \) is an exterior algebra since \(k \) is a characteristic 2 field. First we consider the group algebra \(kG \) and the polynomial algebra \(S = k[x_1, \ldots, x_r] \) as algebraic operads where all non-trivial operations are unary operations. Then to put multiplicative structures on our minimal models we define a new Koszul operad.

Theorem 2. Let \(k \) be an algebraically closed field of characteristic 2 and \(G \) an elementary abelian \(2 \)-group of rank \(r \). Then there exists an algebraic operad \(\mathcal{P} \) in the category of differential graded modules over \(k \) such that \(\mathcal{P} \) has the following properties:

(i) The unary operations of \(\mathcal{P} \) with the composition of \(\mathcal{P} \) considered as multiplication is isomorphic to the group algebra \(kG \);

(ii) \(\mathcal{P} \) has an associative binary operation \(\mu \);

(iii) \(\mathcal{P} \) is a Koszul operad;

(iv) The Koszul dual operad of \(\mathcal{P} \) has projections onto the associative operad \(\mathcal{A} \) and the polynomial algebra \(S = k[x_1, \ldots, x_r] \) as algebraic operads where all nontrivial operations are unary;

(v) For every \(G \)-space \(X \) the singular cochain complex \(C^*(X; k) \) has a \(\mathcal{P} \)-algebra structure whose restriction to the unary operations of \(\mathcal{P} \) gives the natural \(kG \)-module structure on \(C^*(X; k) \) and the action of \(\mu \) is the same as the dual of the Alexander-Whitney diagonal map.

Let \(\mathcal{P} \) be the operad in Theorem 2 and \(\iota : \mathcal{P} \to \Omega^{\mathcal{P}} \) be the universal twisting morphism. Given a space \(X \) that admits a free \(G \)-action, we will consider the bar construction \(B_\mathcal{P} H(C^*(X; k)) \) as the minimal Hirsch-Brown model of \(X \); see Section 4B.

Throughout this paper, \(k \) is an algebraically closed field of characteristic 2 and all (co)operads are non-symmetric (co)operads in the category of dg-modules over \(k \). In Section 2 we recall Puppe’s method to find lower bounds on total homology dimension of complexes with a free \(G \)-action and give an outline of our method. In Section 3 we recall definitions, notation, and well-known results about algebraic (co)operads. In Section 4 we discuss constructions of minimal models and prove Theorem 1. In Section 5 we prove the our main result Theorem 2 and its applications.

2. The Outline of an Application of Theorem 2

Assume that \(r \) is a positive integer and \(m \) is a nonnegative integer. Let \(S \) denote the polynomial algebra \(k[x_1, \ldots, x_r] \) with \(\deg(x_i) = -1 \) and \(\Lambda_m \) denote the exterior algebra \(\Lambda(z_1^{(m)}, \ldots, z_r^{(m)}) \) with \(\deg(z_i^{(m)}) = -m \) for all \(i \) in \(\{1, \ldots, r\} \). Note that according to our degree conventions Puppe
A minimal Hirsch-Brown model F is the field of fraction of γ: γ Puppe denotes the rank of γ.

For example, some selections of α fail for the associated minimal model of the free $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
action on $\mathbb{R}P^3$ induced by quotienting out the center of the free action of Q_8 on $Sp(1) \cong S^3$ by the left multiplication. Here we partially fill the gap by the following Proposition.

Proposition 1. Let G be an elementary abelian 2-group and act freely on a finite-dimensional simplicial set X. Assume \mathcal{P} is the operad in Theorem 2. Let \hat{M} denote the minimal Hirsch-Brown model of X; in other words $\hat{M} = B_{\gamma}(H(C^*(X;k)))$. Then there exists a positive integer m and \mathcal{P}^i-coalgebra morphisms α, β such that the composition

$$\hat{K}_r(m) \xrightarrow{\alpha} \hat{M} \xrightarrow{\beta} \hat{K}_r(0),$$

sends $K_r(m)$ to $K_r(0)$ and which induces the same map from $H(K_r(m))$ to $H(K_r(0))$ as i_m^* does.

However, using the above proposition we cannot confirm the main result of Puppe using [14, Lemma 2.1.a] as our multiplicative structure does not have all the properties Puppe used in the proof of [14, Lemma 2.1.a]. On the other hand [14, Lemma 2.1.b] is proved by only using the differential graded S-module structure on these Koszul complexes. Hence to improve the results about bounds for the total dimension of the cohomology of a space that admits a free G-action, it is enough to consider maps between $\hat{K}_r(m)$ and $\hat{K}_r(0)$ and prove analogs of [14, Lemma 2.1.b]. The following proposition is similar to [14, Lemma 2.1.b] but proved using our setting where we fix an isomorphism $\hat{K}_r(m) \cong \mathcal{P}^i \Lambda_m$ with the composition \circ defined as in [11, Section 5.9.1].

Proposition 2. Let \mathcal{P} denote the operad in Theorem 2. Let m be a positive integer and $\gamma : K_r(m) \to K_r(0)$ be a S^r-coalgebra morphism which induces the same map from $H(K_r(m))$ to $H(K_r(0))$ as i_m^* does. Assume γ extends to a \mathcal{P}^i-coalgebra morphism $\tilde{\gamma} : \hat{K}_r(m) \to \hat{K}_r(0)$ whose restriction to $\mathcal{P}^i \circ 1$ is induced by the identity on \mathcal{P}^i. Then the linear map $F \otimes_S \gamma^*$ has rank at least $2r$ where F denotes the field of fractions of the ring S.

As discussed above Proposition 2 can be used to give lower bounds for the total homology of the finite dimensional complexes with a free G-action.

3. Definitions and Notation

We will take most of definitions and notation from [11] and [9].

3A. Free (co)operads. A dg-\mathbb{N}-module M is a sequence of differential graded k-modules

$$M = (M(0), M(1), M(2), \ldots).$$

A free operad over the dg-\mathbb{N}-module M is an operad $\mathcal{F}(M)$ together with a dg-\mathbb{N}-module morphism $i : M \to \mathcal{F}(M)$ such that if \mathcal{P} is an operad and $f : M \to \mathcal{P}$ is a dg-\mathbb{N}-module morphism then there exists a unique operad morphism $\bar{f} : \mathcal{F}(M) \to \mathcal{P}$ with $f = \bar{f} \circ i$.

There exists a free operad $\mathcal{F}(M)$ over every dg-\mathbb{N}-module M, see [11, Section 5.9.6]. Let $n(v)$ denote the number of leaves of a vertex v in a tree and $\tau(M)$ be the tensor product of $M(n(v))$’s as v ranges over the vertices of a tree τ. As a dg-\mathbb{N}-module, $\mathcal{F}(M)$ is the direct sum of $\tau(M)$’s where τ ranges over all planar trees. The operad composition of $\mathcal{F}(M)$ is given by grafting trees. Hence, as an operad $\mathcal{F}(M)$ is generated by $B^\mathcal{F}(M)$, that is,

$$\bigg\{ \begin{array}{c} b \mid b \in B_0 \\ \bullet \end{array} \bigg\} \bigcup \bigg\{ \begin{array}{c} b \mid b \in B_1 \\ \bullet \end{array} \bigg\} \bigcup \bigg\{ \begin{array}{c} b \mid b \in B_2 \\ \bullet \end{array} \bigg\} \bigcup \ldots$$

where B_j is a basis for $M(j)$ as a k-vector space. The dg-\mathbb{N}-module $\mathcal{F}(M)$ is always equipped with an extra grading, called the weight-grading. If M itself has no such extra grading, then the trees in $\mathcal{F}(M)$ with exactly n-vertices are said to have weight-grading n. If M already has
weight-grading, then the sum of weight-grades of elements in M used to label the vertices of a tree in $\mathcal{T}(M)$ is the weight-grade of that tree. Hence we have a decomposition of $\mathcal{T}(M)$ indexed by the weight-grading

$$\mathcal{T}(M) = \bigoplus_{n \geq 0} \mathcal{T}(M)^{(n)},$$

where each $\mathcal{T}(M)^{(n)}$ is a dg-\mathbb{N}-module.

Dually, we let $\mathcal{T}^c(M)$ denote the cofree cooperad over M. $\mathcal{T}^c(M)$ is isomorphic to $\mathcal{T}(M)$ as a weight-graded k-vector space, while as a cooperad $\mathcal{T}^c(M)$ is cogenerated by the generators of $\mathcal{T}(M)$ mentioned above.

Let sM denote the dg-\mathbb{N}-module M whose degree is shifted by 1, i.e., $sM_i(n) = M_{i-1}(n)$ for $n \in \mathbb{N}$ and $i \in \mathbb{Z}$. More generally, for any integer m, s^mM denotes the dg-\mathbb{N}-module M whose degree is shifted by m.

3B. Quadratic (co)operads. A pair (M, R) is called an operadic quadratic data pair if M is a dg-\mathbb{N}-module and R is a sub-dg-\mathbb{N}-module of $\mathcal{T}(M)^{(2)}$. The quadratic operad associated to the quadratic data pair (M, R) is

$$\mathcal{P}(M, R) := \mathcal{T}(M)/(R),$$

where (R) is the operadic ideal generated by $R \subseteq \mathcal{T}(M)^{(2)}$. In other words, $\mathcal{P}(M, R)$ is the largest quotient operad \mathcal{P} of $\mathcal{T}(M)$ for which the composite

$$R \rightarrow \mathcal{T}(M)^{(2)} \rightarrow \mathcal{T}(M) \rightarrow \mathcal{P}$$

is zero.

Dually, the quadratic cooperad $\mathcal{C}(M, R)$ associated to the quadratic data pair (M, R) is the largest subcooperad of $\mathcal{T}^c(M)$ for which the composite

$$\mathcal{C} \rightarrow \mathcal{T}^c(M) \rightarrow \mathcal{T}^c(M)^{(2)} \rightarrow \mathcal{T}^c(M)^{(2)}/R$$

is zero, see [11, Section 7.1] and [3, Section 6.3.1].

The Koszul dual cooperad of a quadratic operad $\mathcal{P} = \mathcal{P}(M, R)$ is

$$\mathcal{P}^! := \mathcal{C}(sM, s^2R),$$

where s^2R is the image of R under the natural map $\mathcal{T}(M)^{(2)} \rightarrow \mathcal{T}(sM)^{(2)}$. Similarly, the Koszul dual operad of a quadratic cooperad $\mathcal{C} = \mathcal{C}(M, R)$ is

$$\mathcal{C}^! := \mathcal{P}(s^{-1}M, s^{-2}R),$$

where $s^{-2}R$ is the image of R under the map $\mathcal{T}(M)^{(2)} \rightarrow \mathcal{T}(s^{-1}M)^{(2)}$ induced by the natural degree 1 dg-\mathbb{N}-module morphism M to sM, see [11, Section 7.4.7].

3C. The (co)bar construction. For an operad \mathcal{P}, let $\overline{\mathcal{P}}$ be the cokernel of the unit map $I \rightarrow \mathcal{P}$. If $\mathcal{P} = I \oplus \overline{\mathcal{P}}$ as dg-\mathbb{N}-modules, the bar construction $B\mathcal{P}$ of \mathcal{P} is the dg-cooperad $\mathcal{T}^c(s\overline{\mathcal{P}})$ with differential $d_1 + d_2$, where d_1 and d_2 are as in [11, Section 6.5.1].

Similarly, for a cooperad \mathcal{C}, let $\overline{\mathcal{C}}$ denote the kernel of the counit map $\mathcal{C} \rightarrow I$. If $\mathcal{C} = I \oplus \overline{\mathcal{C}}$ as dg-\mathbb{N}-modules, the cobar construction $\Omega\mathcal{C}$ of \mathcal{C} is the dg-operad $\mathcal{T}(s^{-1}\overline{\mathcal{C}})$ with differential $d_1 + d_2$, where d_1 and d_2 are as in [11, Section 6.5.2].

Let (M, R) be an operadic quadratic data pair. The quadratic operad $\mathcal{P} = \mathcal{P}(M, R)$ is Koszul if the natural dg-cooperad morphism $\mathcal{P}^! \rightarrow B\mathcal{P}$ is a quasi-isomorphism of dg-cooperads, see [11, Theorem 7.4.2]. When \mathcal{P} is Koszul, we define the operad $\mathcal{P}_\infty := \Omega\mathcal{P}^!$.

3D. (Co)algebras over (co)operads. Let \mathcal{P} be an operad. A \mathcal{P}-algebra is a differential graded k-module A together with an operad morphism $\mathcal{P} \to \text{End}_A$, where $\text{End}_A(n) = \text{Hom}(A^\otimes n, A)$. Dually, for a cooperad \mathcal{C}, a \mathcal{C}-coalgebra is a differential graded k-module C together with an operad morphism $\mathcal{C}^* \to \text{coEnd}_C$, where \mathcal{C}^* is the dual of \mathcal{C} and $\text{coEnd}_C(n) = \text{Hom}(C, C^\otimes n)$. For differential graded k-module C, we define an operad morphism

$$\psi_C : \text{coEnd}_C \to \text{End}_{C^*}$$

which sends $\alpha : C \to C^\otimes n$ to the composition $(C^*)^\otimes n \xrightarrow{i_C} (C^\otimes n)^* \xrightarrow{\alpha^*} C^*$ where i_C is defined by

$$i_C(f_1 \otimes \cdots \otimes f_n)(v_1 \otimes \cdots \otimes v_n) = f_1(v_1) \cdots f_n(v_n)$$

for every $f_1, \ldots, f_n \in C^*$ and v_1, \ldots, v_n in C. Given a dg-\mathcal{C}-coalgebra C, we get dg-\mathcal{C}^*-algebra structure on C^* by the composition $\mathcal{C} \to \text{coEnd}_C \xrightarrow{\psi_C} \text{End}_{C^*}$.

A cooperad \mathcal{C} is called coaugmented if its counit map has a right inverse. Let C be a coalgebra over coaugmented cooperad \mathcal{C}. For $x \in C$, we define x_1, x_2, \ldots by

$$\Delta_C(x) = (x_1, x_2, \ldots) \in \prod_{n \geq 1} (\mathcal{C}(n) \otimes C^\otimes n),$$

where Δ_C denotes the structure map of the coalgebra C. We filter the coalgebra C by $F_r C := \{ x \in C \mid x_i = 0 $ for any $i > r \}$ for $r \geq 1$. If $C = \bigcup_{r \geq 1} F_r C$, then C is conilpotent, see [1] Section 5.8.4.

Let \mathcal{C} be a dg-cooperad, \mathcal{P} a dg-operad, and $\varphi : \mathcal{C} \to \mathcal{P}$ a twisting morphism as in [1] Section 11.1.1. The bar construction B_φ is a functor from the category of dg-\mathcal{P}-algebras to the category of conilpotent dg-\mathcal{C}-coalgebras, defined on a dg-\mathcal{P}-algebra A by

$$B_\varphi A := (\mathcal{C} \circ \varphi \mathcal{P}) \circ \mathcal{P} A,$$

where $\circ \varphi$ denotes the right-twisted composite product and $\circ \mathcal{P}$ denotes the relative composite product over \mathcal{P}, see [1] Sections 6.4.7 and 11.2.1.

Dually, the cobar construction Ω_φ is a functor from the category of conilpotent dg-\mathcal{C}-coalgebras to the category of dg-\mathcal{P}-algebras, defined on a conilpotent dg-\mathcal{C}-algebra C by

$$\Omega_\varphi C := (\mathcal{P} \circ \varphi \mathcal{C}) \circ \mathcal{C} C,$$

where $\circ \varphi$ denotes the left-twisted composite product and $\circ \mathcal{C}$ denotes the relative composite product over \mathcal{C}, see [1] Sections 6.4.7 and 11.2.1.

Let W, V be two \mathcal{P}_∞-algebras. Then an ∞-morphism $f : W \to V$ is a dg-\mathbb{N}-module morphism $\mathcal{P}_i \to \text{End}_V^W$, where $\text{End}_V^W(n) = \text{Hom}(W^\otimes n, V)$. Moreover, f is an ∞-quasi-isomorphism if f sends the counit in \mathcal{P}_i to a quasi-isomorphism in $\text{End}_V^W(1)$.

3E. Homotopy operadic algebras. Let (W, d_W) and (V, d_V) be chain complexes that are dg-k-modules. Assume i and p are chain maps and h is chain homotopy as in the diagram

$$h \begin{array}{c} \bigcap \end{array} (V, d_V) \xrightarrow{p} (W, d_W).$$

W is a homotopy retract of V if $\text{Id}_V - i \circ p = d_V \circ h + h \circ d_V$ and i is a quasi-isomorphism. Moreover, W is a deformation retract of V if we also have $\text{Id}_W = p \circ i$.

Theorem 3. [1] Theorem 10.3.1] Let \mathcal{P} be a Koszul operad and (W, d_W) a homotopy retract of (V, d_V). Any \mathcal{P}_∞-algebra structure on V can be transferred to a \mathcal{P}_∞-algebra structure on W such that i extends to an ∞-quasi-isomorphism.
This theorem, known as the Homotopy Transfer Theorem, is a generalization of [10, Theorem 1] and will be used in Sections 4 and 5 to construct minimal Hirsch-Brown models and minimal models discussed by Carlsson. In these constructions, we also use the following property of the bar construction:

Theorem 4. [11, Proposition 11.2.3] Let $\varphi : C \to \mathcal{P}$ be an operadic twisting morphism and A, A' dg-\mathcal{P}-algebras. If $f : A \to A'$ is a quasi-isomorphism, then f induces a quasi-isomorphism between the dg-\mathcal{C}-coalgebras $B\varphi A$ and $B\varphi A'$.

The bar and cobar constructions form adjoint functor pair.

Proposition 3. [11, Corollary 11.3.5] Let \mathcal{P} be a Koszul operad with canonical twisting morphism $\kappa : \mathcal{P}^i \to \mathcal{P}$. For every dg-$\mathcal{P}$-algebra A, the counit of the adjunction

$$\epsilon_\kappa : \Omega_\kappa B_\kappa A \to A$$

is a quasi-isomorphism of dg-\mathcal{P}-algebras. Dually, for every conilpotent dg-\mathcal{P}^i-coalgebra C, the unit of the adjunction

$$\nu_\kappa : C \to B_\kappa \Omega_\kappa C$$

is a quasi-isomorphism of dg-\mathcal{P}^i-coalgebras.

The relation between ∞-quasi-isomorphisms and quasi-isomorphisms is given by the following:

Theorem 5. [11, Theorem 11.4.9] Let \mathcal{P} be a Koszul operad and A, A' dg-\mathcal{P}_∞-algebras. There exists an ∞-quasi-isomorphism of dg-\mathcal{P}_∞-algebras $A \to A'$ if and only if there exists a zigzag of quasi-isomorphisms of dg-\mathcal{P}_∞-algebras $A \leftarrow \bullet \to \bullet \leftarrow \bullet \to \bullet \ldots \to A'$.

Such a zigzag of quasi-isomorphism will be written $A \leftrightarrow \cdots A'$.

3F. The Poincaré-Birkhoff-Witt basis. We already defined Koszul duality for an operad by using bar construction. The non-derived Koszul duality was introduced by Priddy [13] for algebras and generalized by Hoffbeck [9] for operads by considering the existence of a certain basis, called Poincaré-Birkhoff-Witt (PBW) basis. Hoffbeck’s criterion asserts that an operad is Koszul if it admits a PBW basis.

In order to define a PBW basis for an operad \mathcal{P}, we consider the path sequence of the tree monomials of \mathcal{P} as in [3, Definition 3.4.1.2]. Then we order the path sequences corresponding to the trees by the graded path lexicographic order [3, Definition 3.4.1.7]. Briefly, given two path sequences p and p' of the same arity, we have $p < p'$ if and only if either

(i) the longer sequence is bigger,

or

(ii) if they have the same length, then we compare the first (leftmost) letters where they differ.

For instance, suppose that we have tree monomials a, b, c equipped with a monomial order $a < b < c$. Let us consider the following tree monomials:
The path sequences correspond to the tree monomials have the order \((ba,b)\prec(ba,ba)\) and \((bc,bc,b)\prec(cb,cb,c)\). In other words, \((b;a,1)\prec(b;a,a)\) and \((b;c,c,1)\prec(c;b,b,1)\). For more details, see [3, Chapter 2.3, 3.4].

For the next notion, we refer the reader to [9]. For every tree \(\tau\), let \(B_{\tau}(M)\) be a monomial basis of \(\tau(M)\) such that each element is a tensor product of elements in \(B_{M}\). A PBW basis of a non-symmetric quadratic operad \(P\) is a set \(B_P\subset\mathcal{F}(M)\) of representatives of a base of the module \(\mathcal{P}\), containing 1 and \(B_{M}\) and for all tree \(\tau\) a subset \(B_P\tau\subset B_{\tau}(M)\) satisfying the following conditions:

- For \(\alpha\in B_P\sigma\) and \(\beta\in B_P\tau\), either the partial composition product \(\alpha\circ_\tau\beta\) is in \(B_P\sigma\circ_\tau\tau\) or the elements of the basis \(\gamma\in B_P\) which appear in the unique decomposition \(\alpha\circ_\tau\beta=\sum c_\gamma\gamma\), satisfy \(\gamma\succ\alpha\circ_\tau\beta\) in \(\mathcal{F}(M)\).

- Suppose that \(\alpha|_{\tau_e}\) denotes the restriction of a treewise tensor \(\alpha\) to a subtree \(\tau_e\) generated by an edge \(e\); in other words \(\alpha|_{\tau_e}\) is the smallest piece of tree that includes the edge \(e\) and so it has 2 vertices. A treewise tensor \(\alpha\) is in \(B_P\tau\) if and only if for every internal edge \(e\) of \(\tau\), the restricted treewise tensor \(\alpha|_{\tau_e}\) lie in \(B_{\tau_e}\).

Moreover, by the second condition, a treewise tensor is in the basis if and only if every subtensor generated by an edge is in the basis. Hence, it is enough to set the quadratic part of the basis to determine the basis completely. Then we have the following result:

Theorem 6. [9, Theorem 6.6] A non-symmetric operad endowed with a non-symmetric PBW basis is Koszul.

We use this fact in the proof of Koszulness of the operad in Theorem 2.

4. Minimal Models

In this section, \(r\) denotes a positive integer. Here we discuss Hirsch-Brown Models in view of the Homotopy Transfer Theorem.

4A. Unary quadratic (co)operads

Let \((M,R)\) be the quadratic data pair

\[M = (0, kv_1 \oplus kv_2 \oplus \cdots \oplus kv_r, 0, 0, \ldots)\]

and

\[R = \{ v_i \otimes v_i \mid 1 \leq i \leq r \} \cup \{ v_i \otimes v_j + v_j \otimes v_i \mid 1 \leq i < j \leq r \}.\]

We define a quadratic operad \(\mathcal{W}\) and a quadratic cooperad \(\mathcal{I}\) as follows:

\[\mathcal{W} := \mathcal{P}(M,R) \quad \text{and} \quad \mathcal{I} := \mathcal{C}(sM, s^2 R).\]

Then considering the identifications

\[t_i = \begin{array}{c}
\vdots \\
v_i \\
\vdots
\end{array} \quad \text{and} \quad x_i^* = \begin{array}{c}
\vdots \\
sv_i \\
\vdots
\end{array}\]

for \(i\) in \(\{1,2,\ldots,r\}\), the operad \(\mathcal{W}\) is isomorphic to \((0,\Lambda,0,0,\ldots)\) where \(\Lambda\) is the exterior algebra \(\Lambda(t_1,t_2,\ldots,t_r)\) and the cooperad \(\mathcal{I}\) is isomorphic to \((0,S^*,0,0,\ldots)\) where \(S\) is the polynomial algebra \(k[x_1,\ldots,x_r]\).
4B. Minimal Hirsch-Brown models. First note that we consider cochain complexes as chain complexes after multiplying the grading by -1. In other words, there exists a categorical isomorphism between the category of chain complexes and the category of cochain complexes by identifying a chain complex (C, ∂) and a cochain complex $(D, \bar{\partial})$ if $C_{-i} = D^i$ and $\bar{\partial}_{-i} = \bar{\partial}^i$. From now on we only work with chain complexes. The cohomology of a simplicial set X will be denoted by $H^\bullet(X; k)$ which corresponds to $\bigoplus_{m=0}^{\infty} H^m(X; k)$ under the isomorphism mentioned above. Hence, $H^\bullet(X; k)$ is trivial in all positive degrees.

Let G be an elementary abelian 2-group of rank r with generator set $\{g_1, \ldots, g_r\}$. Then we can identify the group algebra kG with the exterior algebra Λ by identifying $1 + g_i$ with t_i. Moreover, the group cohomology $H^\bullet(BG; k)$ is isomorphic to the polynomial algebra S as graded k-algebras. Assume that G acts freely on a simplicial set X. The goal of this section is to use the techniques discussed in the previous section to give a construction of the minimal Hirsch-Brown model of X which is equivalent to the one constructed in \[.\] In other words, we define a differential graded S-module denoted by $H^\bullet(BG; k) \otimes H^\bullet(X; k)$ so that $H^\bullet(BG; k) \otimes H^\bullet(X; k)$ is isomorphic to $H^\bullet(BG; k) \otimes H^\bullet(BG; k)$ as a left S-module, and there exists a zig zag of quasi-isomorphisms between $H^\bullet(BG; k) \otimes H^\bullet(X; k)$ and a differential graded S-module which is chain homotopy equivalent to the cochain complex of the Borel construction $EG \times_G X$.

The chain complex $C = C(X; k)$ is a $dg\cW$-algebra by the morphism from $kG \otimes C$ to C which sends $g \otimes \sigma$ to $g \sigma$ for any $g \in G$, $\sigma \in C$. Moreover, we have $\mathcal{I} = \mathcal{W}$ and $\mathcal{W}_\infty = \Omega^\mathcal{I}$. Let j denote the inclusion of $dg\cW$-algebras into $dg\cOmega\mathcal{I}$-algebras. Since $H(C)$ is a deformation retract of $j(C)$ as $dg\cK$-modules, by Theorem \[\] there exists a $\Omega\cOmega\mathcal{I}$-algebra structure on $H(C)$ such that $H(C)$ and $j(C)$ are ∞-quasi-isomorphic as $\Omega\cOmega\mathcal{I}$-algebras. We know that \mathcal{W} is also a Koszul operad. Then by Theorem \[\] there exists a zig zag of quasi-isomorphisms of $dg\cOmega\mathcal{I}$-algebras $H(C) \sim j(C)$.

Note that \mathcal{I} is a connected cooperad, so it is conilpotent. Let $\iota : \mathcal{I} \rightarrow \Omega\mathcal{I}$ be the universal twisting morphism. By Theorem \[\] there is a zig zag of quasi-isomorphisms $B_\iota H(C) \sim (B_\iota j)(C)$ as \mathcal{I}-coalgebras. As graded \mathcal{N}-modules, we have the following isomorphism:

$$B_\iota H(C) = (\mathcal{I} \circ_\iota \Omega\mathcal{I}) \circ_\Omega\mathcal{I} H(C) \cong S^* \otimes H(C).$$

This isomorphism induces a differential on $S^* \otimes H(C)$. We denote the new differential graded \mathcal{N}-module by $S^* \otimes H(C)$.

We consider the \mathcal{I}-algebra $(B_\iota H(C))^*$ as a version of the minimal Hirsch-Brown model because

$$(B_\iota H(C))^* \cong (S^* \otimes H(C))^*$$
$$\cong S^* \otimes (H(C))^*$$
$$\cong H^\bullet(BG; k) \otimes H^\bullet(X; k).$$

Let $\kappa : \mathcal{I} \rightarrow \mathcal{W}$ be the canonical twisting morphism. Note that $C(EG; k)$ is kG-chain homotopy equivalent to $S^* \otimes kG := \mathcal{I} \circ_\kappa \mathcal{W}$, where both are considered as differential graded right kG-modules. Also we have $(B_\iota \circ_\kappa j) = B_\kappa$. Hence

$$((B_\iota \circ_\kappa j)(C))^* \cong (S^* \otimes kG \otimes_k C)^*$$
$$\cong (C(EG; k) \otimes_k C)^*$$
$$\cong C(EG \times_G X; k)^*$$
$$= C^*(EG \times_G X; k).$$
where the last equality is due to our conventions about cochain complexes and the second homotopy equivalence follows from the homotopy equivalence $C(EG \times G X; k) \simeq C(EG; k) \otimes_{kG} C$ proved in [11] proof of Theorem 1.2.8 and [8] VI.12.

We can also consider the chain complex $C = C(X; k)$ as a dg-\mathcal{W}^*-coalgebra by the morphism from C to $kG \otimes C$ which send σ to $\sum_{g \in G} g^* \otimes g^{-1} \sigma$. Hence C^* is a dg-\mathcal{W}-algebra as discussed in Section 3D. Hence the \mathcal{S}-coalgebra $B_\kappa H(C^*)$ is another version of the minimal Hirsch-Brown model. In fact this second version is what we use in Section 5.

4C. The Minimal model of Carlsson. Let N be a differential graded S-module, so it is a dg-\mathcal{S}^*-algebra. We view N as a dg-\mathcal{S}-coalgebra. The goal of this section is to construct Carlsson’s minimal model [7] for N. We construct a dg-\mathcal{S}-coalgebra that is quasi-isomorphic to N and has zero differential when tensored with k over \mathcal{S}.

We have $F = F_2(N)$ in the filtration from Section 3D so the coalgebra N is conilpotent. As a dg-k-module $H(N)$ is a deformation retract of N. We obtain the following deformation retract of dg-k-modules by applying the functor Ω_κ, where $\kappa : \mathcal{S} \to \mathcal{S}^1$ is the canonical twisting morphism

$$\Omega_\kappa(h) \Omega_\kappa(N) \xrightarrow{\Omega_\kappa(p)} \Omega_\kappa H(N).$$

By Theorem 3, $\Omega_\kappa N \xleftarrow{\Omega_\kappa(i)} \Omega_\kappa H(N)$ extends to an ∞-quasi-isomorphism of dg-$\Omega_\mathcal{S}$-algebras. Furthermore, we have another deformation retract

$$(h') \Omega_\kappa H(N) \xrightarrow{\nu'} \Omega_\kappa H(N).$$

and so $\Omega_\kappa H(N) \xleftarrow{\nu'} H(\Omega_\kappa H(N))$ extends to an ∞-quasi-isomorphism of dg-$\Omega_\mathcal{S}$-algebras by Theorem 3. Combining these two ∞-quasi-isomorphisms, we have an ∞-quasi-isomorphism of dg-$\Omega_\mathcal{S}$-algebras $\Omega_\kappa N \xleftarrow{\nu'} H(\Omega_\kappa H(N))$. Thus by Theorem 5 there is a zigzag of quasi-isomorphisms as dg-$\Omega_\mathcal{S}$-algebras

$$\Omega_\kappa N \leftrightarrow H(\Omega_\kappa H(N)).$$

Then by Theorem 4 we have a zigzag of quasi-isomorphisms of dg-\mathcal{S}-coalgebras

$$B_\kappa \Omega_\kappa N \leftrightarrow B_\kappa H(\Omega_\kappa H(N)).$$

There is a quasi-isomorphism of dg-\mathcal{S}-coalgebras $N \to B_\kappa \Omega_\kappa N$ by Proposition 3. Therefore, we obtain a zigzag of quasi-isomorphisms of dg-\mathcal{S}-coalgebras

$$N \leftrightarrow B_\kappa H(\Omega_\kappa H(N)).$$

Note that $k \otimes S B_\kappa H(\Omega_\kappa H(N))$ has zero differential. Hence we call the dg-\mathcal{S}-coalgebra $B_\kappa H(\Omega_\kappa H(N))$ the Carlsson minimal model of N.

4D. A special case of Carlsson’s conjecture. The following is equivalent to Theorem 11.

Theorem 7. Let k be an algebraically closed field of characteristic 2 and S the polynomial algebra in r variables of degree -1 with coefficients in k. Assume (M, ∂) is a free dg-S-module and $0 < \dim_k H(M) < \infty$. Further assume that $\chi(H(M)) \equiv \sum_{i \geq 0} (-1)^i \dim_k H_i(M)$ is non-zero. Then $2^r \leq \text{rank}_S M$.
Proof. We can consider \(M \) as a dg-\(\mathcal{I} \)-coalgebra. As in Section 4C we have a zigzag of quasi-isomorphism of dg-\(\mathcal{I} \)-coalgebras

\[
M \rightsquigarrow B_\kappa \mathrm{H}(\Omega_\kappa \mathrm{H}(M)),
\]
where each middle term in this zigzag is free.

If \(f : K \to L \) is a quasi-isomorphism of bounded-below complexes of free modules, then the mapping cone of \(f \) is a bounded-below acyclic complex of free modules. Therefore, the mapping cone is contractible and \(f \) is split, so \(f \) is a homotopy equivalence \[4\], Proposition 0.3, Proposition 0.7\]. This implies the following zigzag of quasi-isomorphism:

\[
k \otimes S M \rightsquigarrow k \otimes S B_\kappa \mathrm{H}(\Omega_\kappa \mathrm{H}(M)) \cong \mathrm{H}(\Omega_\kappa \mathrm{H}(M)).
\]

Also notice that

\[
\chi(\mathrm{H}(\Omega_\kappa \mathrm{H}(M))) = \chi(\Omega_\kappa \mathrm{H}(M)) = 2^r \chi(\mathrm{H}(M)) \neq 0,
\]

Thus,

\[
2^r \leq \dim_k(\mathrm{H}(\Omega_\kappa \mathrm{H}(M))) = \dim_k(\mathrm{H}(k \otimes S M)) \leq \dim_k(k \otimes S M) = \text{rank}_S(M).
\]

\(\square \)

5. Multiplicative Structures on Minimal Hirsch-Brown Models

In this section, we will prove that the operad \(\mathcal{W} \) defined in Section 5B is an operad that satisfies the properties listed in Theorem 2.

5A. The operad \(\mathcal{W} \) in the case \(r = 1 \). Consider the associative operad that is generated by a binary operation \(\mu_0 \), that satisfies the associativity relation \((\mu_0; \mu_0, 1) = (\mu_0; 1, \mu_0) \). In terms of trees, we have

\[
\mu_0 \bullet = \begin{array}{c} \mu_0 \\ \mu_0 \end{array}
\]

with the relation

\[
\begin{array}{c} \mu_0 \\ \mu_0 \end{array} = \begin{array}{c} \mu_0 \\ \mu_0 \end{array}.
\]

Similarly, for an exterior algebra of a single variable, we have an unary operation \(t \);

\[
t \bullet = \begin{array}{c} t \\ t \end{array}
\]

with the relation

\[
\begin{array}{c} t \\ t \end{array} = 0.
\]

In the case \(r = 1 \), we define a quadratic operad \(\tilde{\mathcal{W}} \) by setting generating operations as

\[
t \bullet = \begin{array}{c} t \\ t \end{array}, \quad \mu_0 \bullet = \begin{array}{c} \mu_0 \\ \mu_0 \end{array} \quad \text{and} \quad \mu_1 \bullet = \begin{array}{c} \mu_1 \\ \mu_1 \end{array}
\]

The relations of \(\tilde{\mathcal{W}} \) are as follows:

\[
R_1 : \begin{array}{c} t \\ t \end{array} = 0, \quad R_2 : \begin{array}{c} t \\ \mu_1 \end{array} = 0,
\]

\[
R_3 : \begin{array}{c} \mu_0 \\ \mu_0 \end{array} = \begin{array}{c} \mu_0 \\ \mu_0 \end{array}, \quad R_4 : \begin{array}{c} \mu_1 \\ \mu_1 \end{array} = \begin{array}{c} \mu_1 \\ \mu_1 \end{array}.
\]
\[R_5: \quad \mu_0 t = \mu_0 t + \mu_0 t + \mu_1 t, \]
\[R_6: \quad \mu_1 \mu_0 = \mu_0 \mu_1, \quad R_7: \quad \mu_1 = t, \]
\[R_8: \quad \mu_0 = \mu_1 + \mu_0 + \mu_1. \]

Please see Lemma 1 in Section 5D to understand where these relations come from.

Now consider the graded path lex order on all quadratics; firstly there is only one 1-ary quadratic operation and it is represented by \(t \). Secondly, we sort all 2-ary operations:

\[
\begin{align*}
\mu_0 &\prec \mu_1 \\
t &\prec t \\
\mu_0 &\prec \mu_1 \\
\mu_1 &\prec \mu_0 \\
t &\prec t \\
\mu_0 &\prec \mu_1.
\end{align*}
\]

Correspondingly, path sequences of the planar rooted trees are

\[
(\mu_0, \mu_0 t) \prec (\mu_1, \mu_1 t) \prec (t \mu_0, t \mu_0) \prec (t \mu_1, t \mu_1) \prec (\mu_0 t, \mu_0).
\]

Then we sort all 3-ary operations:

\[
\begin{align*}
\mu_0 &\prec \mu_1 \\
\mu_0 &\prec \mu_1.
\end{align*}
\]

Correspondingly, path sequences of the planar rooted trees are

\[
(\mu_0, \mu_0^2, \mu_0^2) \prec (\mu_0, \mu_0 \mu_1, \mu_0 \mu_1) \prec (\mu_1, \mu_1 \mu_0, \mu_1 \mu_0) \prec (\mu_1, \mu_1^2, \mu_1^2) \\
\prec (\mu_0^2, \mu_0^2, \mu_0) \prec (\mu_0 \mu_1, \mu_0 \mu_1, \mu_0) \prec (\mu_1 \mu_0, \mu_1 \mu_0, \mu_1) \prec (\mu_1^2, \mu_1^2, \mu_1).
\]

Hence, the quadratic part of a non-symmetric PBW basis is given by

\[
\begin{align*}
\mu_0 t, \quad \mu_0 t, \quad \mu_0 t, \quad \mu_0 t, \quad \mu_0 t, \quad \mu_0 t, \quad \mu_0 t, \quad \mu_0 t.
\end{align*}
\]

Correspondingly, path sequences of the quadratic part of the basis is given by

\[
(\mu_0, \mu_0 t) \prec (\mu_1, \mu_1 t) \prec (t \mu_0, t \mu_0) \prec (\mu_0, \mu_0^2, \mu_0^2) \prec (\mu_0, \mu_0 \mu_1, \mu_0 \mu_1) \\
\prec (\mu_1, \mu_1 \mu_0, \mu_1 \mu_0) \prec (\mu_1, \mu_1^2, \mu_1^2).
\]

The other way around those trees correspond to the elements;

\[
(\mu_0; 1, t) \prec (\mu_1; 1, t) \prec (t; \mu_0) \prec (\mu_0; 1, \mu_0) \prec (\mu_0; 1, \mu_1) \prec (\mu_1; 1, \mu_0) \prec (\mu_1; 1, \mu_1).
\]
5B. The operad \tilde{W} in general. For a positive integer r, let (M, R) be the quadratic data pair consists of

$$M = (0, \bigoplus_{i=1}^{r} k v_i, \bigoplus_{L \subseteq T} k \mu_L, \ldots)$$

and

$$R = \{ R^1_i, R^2_{i,j}, R^3_{K,L}, R^4_{i,K} \mid i, j \in T \text{ and } K, L \subseteq T \} \cup \{ R^5_{i,K} \mid i \in K \subseteq T \} \cup \{ R^6_{i,j,K} \mid j \in K \subseteq T \text{ and } i \notin K \}$$

where $T = \{1, \ldots, r\}$ and for $i, j \in T$ and $K, L \subseteq T$ with

\begin{align*}
R^1_i: & \quad t_i t_i = 0 , \\
R^2_{i,j}: & \quad t_i t_j = t_j t_i , \\
R^3_{K,L}: & \quad \mu_K \mu_L = \left\{ \begin{array}{ll}
\mu_0 + \mu_K + \mu_L & \text{if } L = \emptyset \text{ or } K \cap L \neq \emptyset \\
\mu_{K \cup L} & \text{if } L \neq \emptyset \text{ and } K \cap L = \emptyset ,
\end{array} \right.
\end{align*}

\begin{align*}
R^4_{i,K}: & \quad \mu_K t_i = \left\{ \begin{array}{ll}
\mu_K t_i & \text{if } i \in K \\
\mu_K + \mu_K + \mu_K_{0 \cup \{i\}} & \text{if } i \notin K ,
\end{array} \right.
\end{align*}

\begin{align*}
R^5_{i,K}: & \quad t_i \mu_K = 0 \text{ if } i \in K ,
\end{align*}

\begin{align*}
R^6_{i,j,K}: & \quad t_i \mu_K = t_j \mu_K \left\{ \begin{array}{ll}
\mu_{\{K \setminus \{j\}\} \cup \{i\}} & \text{if } i \notin K, j \in K .
\end{array} \right.
\end{align*}

We define a quadratic operad and a quadratic cooperad as follows:

$$\tilde{W} := \mathcal{P}(M, R) \quad \text{and} \quad \tilde{S} := \mathcal{C}(sM, s^2R).$$

5C. The PBW basis of \tilde{W}. In order to define a PBW basis for the operad \tilde{W}, we consider the graded path lexicographic order given in Section 3F. It is straightforward to check that the
quadratic part of the basis of \mathcal{W} is given by the following set of trees:

$$
\left\{ \begin{array}{l}
\bullet_{t_j} \qquad j \in T \\
\mu_K \\
\end{array} \right\} \bigcup \left\{ \begin{array}{l}
\bullet_{\mu_K} \qquad j \notin K \\
\bigcup \quad K \subseteq T \\
K \bigcup T \end{array} \right\}
$$

Note that every composition of the above operations can be rewritten by a unique basis element.

5D. **Multiplicative structure on minimal Hirsch-Brown models.** Let G, X, and C be as in Section 4B. Let $\Delta : C \to C \otimes C$ denote the Alexander-Whitney diagonal map. For g in G, let $g : C \to C$ denote the multiplication by g from the left. The map Δ is coassociative as in [12] and by naturality we have

$$
\Delta \circ g = (g \otimes g) \circ \Delta
$$

for any g in G. Hence for g in G, if $t = 1 + g$ then we have

$$
\Delta \circ t = \Delta \circ (1 + g) = (\Delta \circ 1) + (\Delta \circ g) = (1 \otimes 1) \circ \Delta + (g \otimes g) \circ \Delta = ((1 \otimes 1) + (g \otimes g)) \circ \Delta = ((t \otimes 1) + (t \otimes t)) \circ \Delta.
$$

Hence, we have a operad morphism defined as follows

$$
\mathcal{W} \longrightarrow \text{coEnd}_C
$$

$$
t_i \mapsto 1 + g_i
$$

$$
\mu_I \mapsto \left(\prod_{i \in I} (1 + g_i) , 1 \right) \circ \Delta
$$

for i in T and $I \subseteq T$. By abuse of notation, we will denote the image of t_i and μ_I under this operad morphism by t_i and μ_I. Hence t_i and μ_I will be considered as operations in coEnd_C.

In the following lemma, we assume $r = 1$, and hence $T = \{1\}$. In this case instead of g_1, t_1, μ_0, μ_1 we write g, t, μ_0, μ_1 respectively.

Lemma 1. Assume that $r = 1$. Then the operations t, μ_0 and μ_1 in coEnd_C satisfy the relations R_1, \ldots, R_8 in Section 5A.

Proof. We need to prove the following equations:

$$
R_1 : (t; t) = 0,
R_2 : (\mu_1; t, 1) = 0,
R_3 : (\mu_0; \mu_0, 1) = (\mu_0; 1, \mu_0),
R_4 : (\mu_1; \mu_1, 1) = (\mu_1; 1, \mu_1),
R_5 : (t; \mu_0) = (\mu_0; t, 1) + (\mu_0; 1, t) + (\mu_1; 1, t),
R_6 : (\mu_0; \mu_1, 1) = (\mu_1; 1, \mu_0),
R_7 : (t; \mu_1) = (\mu_1; 1, t),
R_8 : (\mu_1; \mu_0, 1) = (\mu_0; \mu_1, 1) + (\mu_0; 1, \mu_1) + (\mu_1; 1, \mu_1).
$$

First notice we have $\mu_1 = ((1 + g), 1) \circ \Delta = (\mu_0; t, 1)$ in coEnd_C. We will call this equation R_0.

The first equation $(t; t) = 0$ holds since $t = 1 + g, g^2 = 1$ and $(1 + g)^2 = 1 + 2g + g^2 = 0$ in a characteristic 2 field. The second equation $(\mu_1; t, 1) = ((\mu_0; t, 1); t, 1) = (\mu_0; t^2, 1) = 0$ follows from R_0 and R_1. By associativity of the operation μ_0, we have the equation R_3. The equation R_5 is given by the Equation [11].
The equation R_4 follows from R_0, R_5, R_1 and R_3. More precisely, one can obtain $(\mu_1; \mu_1, 1) = (\mu_0; (t; \mu_1), 1) = (\mu_0; (t; (\mu_0; t, 1)), 1)$ by R_0. Then

$$(\mu_1; \mu_1, 1) = (\mu_0; (\mu_0; t^2, 1), 1) + (\mu_0; (\mu_0; t, 1)) + (\mu_0; (\mu_0; t, t), 1)$$

by R_5, R_1, R_3, and R_4, respectively.

The equation R_6 can be seen as

$$(\mu_0; \mu_1, 1) = (\mu_0; (\mu_0; t, 1), 1) = ((\mu_0; \mu_0; 1); t, 1, 1)$$

by R_0, R_3, $(\mu_0; t, \mu_0; 1, 1)$, and $((\mu_0; t, 1); \mu_0; 1, 1)$. R_0.

The equation R_7 follows from R_0, R_5, and R_1:

$$(t; \mu_1) = (t; (\mu_0; t, 1)) = (\mu_0; t^2, 1) + (\mu_0; t) + (\mu_0; t^2, t) = (\mu_0; t, t) = (\mu_1; t, t).$$

The last equation R_8 follows from R_0, R_5, R_7, R_3 and R_4. More precisely,

$$(\mu_1; \mu_0, 1) = ((\mu_0; t, 1); \mu_0, 1)$$

by R_0,

$$(\mu_0; (t; \mu_0), 1),$$

by R_5.

The last equation R_8 follows from R_0, R_5, R_7, R_3 and R_4. More precisely,

$$(\mu_1; \mu_0, 1) = ((\mu_0; t, 1); \mu_0, 1)$$

by R_0,

$$(\mu_0; (t; \mu_0), 1),$$

by R_5.

The last equation R_8 follows from R_0, R_5, R_7, R_3 and R_4. More precisely,

$$(\mu_1; \mu_0, 1) = ((\mu_0; t, 1); \mu_0, 1)$$

by R_0.

Lemma 2. The operations t_1, t_2, \ldots, t_r and μ_L for $L \subseteq T = \{1, \ldots, r\}$ in coEnd_C satisfy the equations $R_1^1, R_1^2, R_3^3, R_5^5, R_5^6$ and R_4^6 listed in Section 5B.

Proof. In the operad coEnd_C, we have $\mu_L = \left(\mu_0; \prod_{i \in L} t_i, 1\right)$. Hence Lemma 1 can be repeatedly applied for t_i at a time to prove this lemma.

Note that by Equation 2, we can consider C as a dg-$\hat{\mathcal{H}}$-coalgebra and hence C^* as a dg-$\hat{\mathcal{H}}$-algebra. We will call the \mathcal{H}-coalgebra $B_i H(C^*)$ the minimal Hirsch-Brown model as at the end of Section 4B. Now, note that the inclusion $A_S \rightarrow A_S^*$, induces $A_S^i \rightarrow \mathcal{H}$, and so it induces $\mathcal{H}^* \rightarrow (A_S^i)^* = A_S$. We also have surjective morphism $\mathcal{H} \rightarrow A_S$ obtained by sending t_i to 0 for $i \in T$ and μ_L to 0 for $\emptyset \neq L \subseteq T$. This induces $\mathcal{H} \rightarrow A_S^i$, and so it induces $A_S = (A_S^i)^* \rightarrow \mathcal{H}^*$. Notice that the composition

$$A_S \rightarrow \mathcal{H}^* \rightarrow A_S$$

is the identity morphism on A_S. So this means we have a multiplicative structure on duals of these minimal Hirsh-Brown models. Unfortunately, this multiplicative structure does not have all the properties of the multiplicative structure used by Puppe, therefore we cannot repeat the proof of [14, Lemma 2.1.a] to obtain an equivalent result. We hope that results stronger than
Lemma 2.1.b] can be proved to tighten the bounds mentioned in Section 1. The reason for this hope is because we also know that the composition

\[J^* \hookrightarrow J^* \xrightarrow{\gamma} J^* \]

is the identity morphism on \(J^* \), where the first morphism is induced by sending \(\mu_L \) to 0 for \(L \subseteq T \) and the second morphism comes from the inclusion \(A \hookrightarrow \mathcal{W} \). Hence we have an \(S \)-module structure, which is enough to prove [14 Lemma 2.1.b].

Proof of Theorem 2. Take \(\mathcal{P} = \mathcal{W} \) where \(\mathcal{W} \) is the operad constructed in Section 5B. Hence \(\mathcal{P} \) is a Koszul operad by Theorem 6 and Section 5C. Notice that the Koszul dual operad of \(\mathcal{P} \) is \(\mathcal{J}^* \). Hence the other properties of \(\mathcal{P} \) are proved in Section 5D.

Proof of Proposition 1. Let \(\mathcal{P} \) denote the operad in Theorem 2. \(m \) be a positive integer and \(\gamma : K_r(m) \to K_r(0) \) be a \(S^* \)-coalgebra morphism which induces the same map from \(H(K_r(m)) \) to \(H(K_r(0)) \) as \(i^*_m \) does. Assume \(\gamma \) extends to a \(\mathcal{P}^I \)-coalgebra morphism \(\tilde{\gamma} : K_r(m) \to K_r(0) \) whose restriction to \(\mathcal{P}^I \circ 1 \) is induced by the identity on \(\mathcal{P}^I \). Set \(T = \{ 1, \ldots, r \} \). For \(U \subseteq T \) and \(n \in \{ 0, m \} \), let \(z_U^{(n)} \) denote \(\prod_{i \in U} z_i^{(n)} \) and \(x_U \) denote \(\prod_{i \in U} x_i^m \). Since \(\gamma \) induces the same map from \(H(K_r(m)) \) to \(H(K_r(0)) \) as \(i^*_m \) does, \(\gamma^* \) sends \([1 \otimes z_T^{(0)}] \) to \([x_T \otimes z_T^{(m)}] \). Since \(\gamma \) extends to \(\mathcal{P}^I \)-coalgebra map whose restriction to \(\mathcal{P}^I \circ 1 \) is induced by the identity on \(\mathcal{P}^I \), we can say that \(\gamma^* \) sends \(x_U \otimes z_U^{(0)} \) to \(x_T \otimes z_T^{(m)} + e \) where \(e \) contains only terms in the form \(f \otimes z_L \) such that \(T - U \) is a proper subset of \(L \) and \(L \) is a subset of \(T \). Hence \(F \otimes \gamma^* \) sends \(z_0, z_1, \ldots, z_r, z_{(1,2)}, \ldots, z_{(1, r)} \) to linearly independent vectors in \(F \otimes S (K_r(m))^* \). Then the linear map \(F \otimes S \gamma^* \) has rank at least \(2r \), where \(F \) denotes the field of fractions of the ring \(S \).

Acknowledgments. We would like to thank Marc Stephan for helpful discussions.

References

[1] C. Allday and V. Puppe. *Cohomological methods in transformation groups*, volume 32 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1993.

[2] G.E. Bredon. *Equivariant Cohomology Theories*. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2006.

[3] Murray R. Bremner and Vladimir Dotsenko. *Algebraic operads*. CRC Press, Boca Raton, FL, 2016. An algorithmic companion.

[4] K.S. Brown. *Cohomology of Groups*. Graduate Texts in Mathematics. Springer, 1982.

[5] G. Carlsson. On the homology of finite free \((\mathbb{Z}/2)^n \)-complexes. *Invent. Math.*, 74(1):139–147, 1983.

[6] Gunnar Carlsson. Free \((\mathbb{Z}/2)^k \)-actions and a problem in commutative algebra. In *Transformation groups, Poznań 1985*, volume 1217 of *Lecture Notes in Math.*, pages 79–83. Springer, Berlin, 1986.

[7] Gunnar Carlsson. Free \((\mathbb{Z}/2)^k \)-actions on finite complexes. In *Algebraic topology and algebraic K-theory (Princeton, N.J., 1983)*, volume 113 of *Ann. of Math. Stud.*, pages 332–344. Princeton Univ. Press, Princeton, NJ, 1987.
[8] A. (Albrecht) Dold. *Lectures on algebraic topology*. Berlin: Springer, 1995. "Reprint of the 1972 edition."

[9] Eric Hoffbeck. A Poincaré-Birkhoff-Witt criterion for Koszul operads. *Manuscripta Math.*, 131(1-2):87–110, 2010.

[10] T. V. Kadeishvili. On the theory of homology of fiber spaces. *Uspekhi Mat. Nauk*, 35(3(213)):183–188, 1980. International Topology Conference (Moscow State Univ., Moscow, 1979).

[11] Jean-Louis Loday and Bruno Vallette. *Algebraic operads*, volume 346 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer, Heidelberg, 2012.

[12] S. MacLane. *Homology*. Classics in Mathematics. Springer Berlin Heidelberg, 2012.

[13] Stewart B. Priddy. Koszul resolutions. *Trans. Amer. Math. Soc.*, 152:39–60, 1970.

[14] Volker Puppe. Multiplicative aspects of the Halperin-Carlsson conjecture. *Georgian Math. J.*, 16(2):369–379, 2009.

[15] Mark E. Walker. Total Betti numbers of modules of finite projective dimension. *Ann. of Math. (2)*, 186(2):641–646, 2017.

[16] Mark E. Walker. Total Betti numbers of modules of finite projective dimension. version 1 of https://arxiv.org/abs/1702.02560, 2017.