Solving $\overline{\partial}$ with prescribed support on Hartogs triangles in \mathbb{C}^2 and $\mathbb{C}P^2$

Christine Laurent-Thiébaut and Mei-Chi Shaw

In this paper we consider the problem of solving the Cauchy-Riemann equation with prescribed support. More precisely, let X be a complex manifold of complex dimension n and $\Omega \subset X$ a subdomain of X. We ask the following questions:

Let T be a $\overline{\partial}$-closed $(r,1)$-current, $0 \leq r \leq n$, on X with support contained in $\overline{\Omega}$, does there exist a $(r,0)$-current on X, with support contained in $\overline{\Omega}$, such that $\overline{\partial}S = T$?

If moreover $T = f$ is a smooth form or a C^k form or an L^p_{loc} form, can we find g with support contained in $\overline{\Omega}$ and with the same regularity as f such that $\overline{\partial}g = f$?

This leads us to introduce the Dolbeault cohomology groups with prescribed support in Ω. Let us denote by $H^{r,1}_{\overline{\Omega},\infty}(X)$ the quotient space

$$\left\{ f \in C^\infty_{r,1}(X) \mid \overline{\partial}f = 0, \text{supp} \, f \subset \overline{\Omega} \right\}/\overline{\partial}\left\{ f \in C^\infty_{r,0}(X) \mid \text{supp} \, f \subset \overline{\Omega} \right\}.$$

In the same way, we define $H^{r,1}_{\overline{\Omega},C^k}(X), H^{r,1}_{\overline{\Omega},L^p_{\text{loc}}}(X)$ and $H^{r,1}_{\overline{\Omega},\text{cur}}(X)$ for the C^k, L^p_{loc} and the current category.

The cohomology groups $H^{r,1}_{\overline{\Omega},\infty}(X), H^{r,1}_{\overline{\Omega},C^k}(X), H^{r,1}_{\overline{\Omega},L^p_{\text{loc}}}(X)$ and $H^{r,1}_{\overline{\Omega},\text{cur}}(X)$ describe the obstruction to solve the Cauchy-Riemann equation with prescribed support in $\overline{\Omega}$, respectively in the smooth or C^k or L^p_{loc} or current category. Their vanishing is equivalent to the solvability of the Cauchy-Riemann equation with prescribed support in $\overline{\Omega}$ in the corresponding category (see section 2 in [11] and [10]).

Note that, if Ω is a relatively compact domain with Lipschitz boundary, by the Serre duality, the properties of the groups $H^{r,1}_{\overline{\Omega},\infty}(X), H^{r,1}_{\overline{\Omega},L^p_{\text{loc}}}(X)$ and $H^{r,1}_{\overline{\Omega},\text{cur}}(X)$ are directly related to the properties of the Dolbeault cohomology groups $\check{H}^{n-r,n-1}(\Omega), \check{H}^{n-r,n-1}_{L^p_{\text{loc}}}(\Omega)$ of Dolbeault cohomology for extendable currents, L^p forms and of smooth forms up to the boundary.

If Φ is a family of supports in the complex manifold X, for example the family, usually denoted by c, of all compact subsets of X, we can consider the Dolbeault cohomology with support in Φ. The group $H^{r,q}_{\Phi,\infty}(X)$ is the quotient of the space of $\overline{\partial}$-closed, smooth (r,q)-forms on X with support in the family Φ by the range by $\overline{\partial}$ of the space of smooth $(r,q-1)$-forms on X with support in the family Φ. Similarly we can define the groups

Université Grenoble-Alpes, Institut Fourier, Grenoble, F-38041, France
CNRS UMR 5582, Institut Fourier, Saint-Martin d’Hères, F-38402, France
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA
$H^{r,q}_{\phi,C_k}(X), H^{r,q}_{\phi,L^p_{loc}}(X)$ and $H^{r,q}_{\phi,cur}(X)$. It follows from Corollary 2.15 in [7] and Proposition 1.2 in [10], that the Dolbeault isomorphism holds for the Dolbeault cohomology with prescribed support. This means that all these groups are isomorphic and we denote them by $H^{p,q}_\phi(X)$. In this paper, we will show that such Dolbeault isomorphism no longer holds when we change the condition supported in a family of sets in X to prescribed support. For Dolbeault cohomology groups with prescribed support, the following proposition is proved in Proposition 2.

Proposition 0.1. Let X be a complex manifold and $\Omega \subset X$ a domain in X. For any integer $0 \leq r \leq \dim \mathbb{C}X$, the natural morphisms from $H^{r,1}_{\Omega,\infty}(X)$ (resp. $H^{r,1}_{\Omega,C_k}(X)$, $k \geq 0$, $H^{r,1}_{\Omega,L^p}(X)$, $1 \leq p \leq +\infty$) into $H^{r,1}_{\Omega,cur}(X)$ are injective. In particular, if $H^{r,1}_{\Omega,cur}(X) = 0$, then $H^{r,1}_{\Omega,\infty}(X) = 0$, $H^{r,1}_{\Omega,C_k}(X) = 0$, $k \geq 0$, and $H^{r,1}_{\Omega,L^p}(X) = 0$.

When Ω is a Hartogs triangle type set in \mathbb{C}^2 or $\mathbb{C}P^2$, we show that the Dolbeault isomorphisms fail to hold for the cohomology with prescribed support. When Ω is an unbounded Hartogs triangle in \mathbb{C}^2, we get

Theorem 0.2. If $X = \mathbb{C}^2$ and $\Omega = \{(z, w) \in \mathbb{C}^2 \mid |z| > |w|\}$, then $H^{0,1}_{\Omega,\infty}(X) = 0$, but $H^{0,1}_{\Omega,C_k}(X) \neq 0$, $k \geq 0$, $H^{0,1}_{\Omega,cur}(X) \neq 0$ and $H^{0,1}_{\Omega,L^2}(X) \neq 0$.

In the case when Ω is a Hartogs triangle in $\mathbb{C}P^2$, we prove

Theorem 0.3. If $X = \mathbb{C}P^2$ and $\Omega = \{[z_0, z_1, z_2] \in \mathbb{C}P^2 \mid |z_1| > |z_2|\}$, then $H^{0,1}_{\Omega,\infty}(X) = 0$ and $H^{0,1}_{\Omega,C_k}(X) = 0$, $k \geq 0$, but $H^{0,1}_{\Omega,cur}(X)$ and $H^{0,1}_{\Omega,L^2}(X) \neq 0$ are infinite dimensional and Hausdorff.

The non-vanishing of $H^{0,1}_{\Omega,L^2}(\mathbb{C}P^2)$ is especially interesting since it is in sharp contrast to the case of solving $\overline{\partial}$ with compact support for a bounded Hartogs triangle in \mathbb{C}^2 (see Remark 1 at the end of the paper). The infinite dimensionality of $H^{0,1}_{\Omega,L^2}(\mathbb{C}P^2)$ gives the following result. Let $\overline{\partial}_s$ be the strong L^2 closure $\overline{\partial}_s : L^2_{2,0}(\Omega) \to L^2_{2,1}(\Omega)$, i.e., the completion of $\overline{\partial}$ on smooth forms up to the boundary in the graph norm. Let $H^{2,1}_{\overline{\partial}_s,L^2}(\Omega)$ be the quotient of the kernel of $\overline{\partial}_s$ over the range of $\overline{\partial}_s$, i.e. the Dolbeault cohomology with respect to the operator $\overline{\partial}_s$.

Corollary 0.4. The space $H^{2,1}_{\overline{\partial}_s,L^2}(\Omega)$ is infinite dimensional.

It is not known if $\overline{\partial}_s$ agrees with the weak L^2 extension or if the range of $\overline{\partial}_s$ is closed. If the domain Ω is bounded and Lipschitz, then the weak and strong closure are the same from the Friedrichs’ lemma. The Hartogs triangle is a candidate that the weak and strong closure of $\overline{\partial}$ might not be the same.

The vanishing of the Dolbeault cohomology groups with prescribed support in $\overline{\Omega}$ in bidegree $(0,1)$ is directly related to the extension of holomorphic functions defined on the complement of Ω. This implies the following result:
Proposition 0.5. Let X be a complex manifold and $\Omega \subset X$ a domain in X. Assume $H^{0,1}_{\Omega,\infty}(X) = 0$, then $X \setminus \Omega$ is connected. If moreover X is not compact, $H^{0,1}_{c}(X) = 0$ and Ω is relatively compact, then $H^{0,1}_{\Omega,\infty}(X) = 0$ if and only if $X \setminus \Omega$ is connected.

We also prove some characterization of pseudoconvexity in terms of Dolbeault cohomology with prescribed support.

Theorem 0.6. Let D be a bounded domain in \mathbb{C}^2 with Lipschitz boundary. Then the following assertions are equivalent:

(i) D is a pseudoconvex domain;

(ii) $H^{0,1}(D,\mathbb{C}^2) = 0$ and $H^{0,2}(D,\mathbb{C}^2)$ is Hausdorff.

The plan of this paper is as follows: In section 1, we recall some basic properties of the support and the uniqueness of the solution for $\overline{\partial}$. In section 2 we discuss solving $\overline{\partial}$ with prescribed support and its relations with the holomorphic extension of functions in various function spaces. In section 3, we study the non-vanishing of Dolbeault cohomology with prescribed support on the unbounded Hartogs triangle in \mathbb{C}^2. We analyse the Hartogs triangles in $\mathbb{C}P^2$ in section 4. Theorems 0.2 and 0.3 provide interesting examples which give the non-vanishing for the Dolbeault cohomology groups. This is in sharp contrast with the well-known results of solving $\overline{\partial}$ for $(0,1)$-forms with prescribed support for bounded domain in \mathbb{C}^n. We prove Corollary 0.4 using L^2 Serre duality. This gives us some insight about the intriguing problem on weak and strong extension of the $\overline{\partial}$ operator in the L^2 sense, when the domain is not Lipschitz. The unbounded Hartogs domain in \mathbb{C}^2 or Hartogs domains in $\mathbb{C}P^2$ provide us with new unexpected phenomena. Many open questions and remarks are given at the end of the paper.

Acknowledgements: Mei-Chi Shaw would like to thank Phil Harrington for helpful discussions on the extension of functions from the Hartogs triangle.

Both authors were partially supported by a grant from the AGIR program of Grenoble INP and Université Grenoble-Alpes, awarded to Christine Laurent-Thiébaut. Mei-Chi Shaw is partially supported by an NSF grant.

1 Properties of the support and uniqueness of the solution

Let X be a complex manifold of complex dimension n and T be a $\overline{\partial}$-exact $(0,1)$-current on X. We will describe some relations between the support of the current T and the support of the solution S of the Cauchy-Riemann equation $\overline{\partial}S = T$.

Proposition 1.1. Let X be a complex manifold of complex dimension n and T be a $\overline{\partial}$-exact $(0,1)$-current on X. If Ω^c denotes a connected component of $X \setminus \text{supp } T$ and if S is a distribution on X such that $\overline{\partial}S = T$, then either $\text{supp } S \cap \Omega^c = \emptyset$ or $\Omega^c \subset \text{supp } S$.

Proof. Note that, since $\overline{\partial}S = T$, S is a holomorphic function on $X \setminus \text{supp } T$ and in particular on the connected set Ω^c. Assume that the support of S does not contain Ω^c, then S vanishes on an open subset of Ω^c and by analytic continuation S vanishes on Ω^c, which means that $\supp S \cap \Omega^c = \emptyset$. \qed
Corollary 1.2. Let X be a complex manifold of complex dimension n and T be a $\overline{\partial}$-exact $(0,1)$-current on X. Assume that $X \setminus \text{supp } T$ is connected, then if S is a distribution on X such that $\overline{\partial}S = T$, then either $\text{supp } S = \text{supp } T$ or $\text{supp } S = X$.

Proof. The support of T is always contained in the support of S. If $\text{supp } S \neq X$, then the other inclusion holds by Proposition 1.1 since $X \setminus \text{supp } T$ is connected. \hfill \Box

Note that the difference between two solutions of the equation $\overline{\partial}S = T$ is a holomorphic function on X. Then analytic continuation implies the following uniqueness result.

Proposition 1.3. Assume that the complex manifold X is connected. Let T be a $\overline{\partial}$-exact $(0,1)$-current on X such that $X \setminus \text{supp } T \neq \emptyset$ and S and U two distributions such that

$$\overline{\partial}S = \overline{\partial}U = T$$

and the support of S and the support of U do not intersect on the same connected component Ω^{-}_p of $X \setminus \text{supp } T$, then $S = U$.

In particular, the equation $\overline{\partial}S = T$ admits at most one solution S such that $\text{supp } S = \text{supp } T$.

Remark 1.4. The equation $\overline{\partial}S = T$ may have no solution S with $\text{supp } S = \text{supp } T$. Consider for example a relatively compact domain D with C^∞-smooth boundary in a complex manifold X and a function $F \in C^\infty(D)$ which is holomorphic in D. Denote by f the restriction of F to the boundary of D and set $S = F\chi_D$, where χ_D is the characteristic function of the domain D. Then, by the Stokes formula, $\overline{\partial}S = f[\partial\overline{\partial}]^{0,1}$, where $[\partial\overline{\partial}]^{0,1}$ is the part of bidegree $(0,1)$ of the integration current over the boundary of D. Clearly the support of $T = f[\partial\overline{\partial}]^{0,1}$ is the boundary of D, but, by Proposition 1.3, S is the unique solution of $\overline{\partial}S = T$ whose support is contained in ∂D. So there is no solution whose support is equal to the support of T.

Let us end this section by considering the regularity of the solutions.

Proposition 1.5. Let X be a complex manifold and f a $(0,1)$-form with coefficients in $\mathcal{C}^k(X)$, $0 \leq k \leq +\infty$ (resp. $L^p_{loc}(X)$, $1 \leq p \leq +\infty$), which is $\overline{\partial}$-exact in the sense of currents. Then any solution g of the equation $\overline{\partial}g = f$ is in $\mathcal{C}^k(X)$, $0 \leq k \leq +\infty$ (resp. $L^p_{loc}(X)$, $1 \leq p \leq +\infty$).

Proof. By the regularity of the Cauchy-Riemann operator (injectivity of the Dolbeault isomorphism §11 and §13), if f has coefficients in $\mathcal{C}^k(X)$, $0 \leq k \leq +\infty$ (resp. $L^p_{loc}(X)$, $1 \leq p \leq +\infty$), then, since f is $\overline{\partial}$-exact in the sense of currents, the equation $\overline{\partial}S = f$ has a solution in $\mathcal{C}^k(X)$, $0 \leq k \leq +\infty$ (resp. $L^p_{loc}(X)$, $1 \leq p \leq +\infty$). The difference between two solutions of the equation $\overline{\partial}S = f$ being a holomorphic function on X, all the solutions have the same regularity. \hfill \Box

Associating Proposition 1.3 and Proposition 1.5 we get:

Corollary 1.6. Assume that the complex manifold X is connected. If f is a $(0,1)$-form such that $X \setminus \text{supp } f \neq \emptyset$, then the equation $\overline{\partial}g = f$ has at most one unique solution such that $\text{supp } g = \text{supp } f$ and this solution has the same regularity as f.

2 Solving $\overline{\partial}$ with prescribed support

Let X be a connected, complex manifold and Ω a domain such that $\overline{\Omega}$ is strictly contained in X and the interior of $\overline{\Omega}$ coincides with Ω. We set $\Omega^c = X \setminus \overline{\Omega}$, it is a non-empty open subset of X.

Let us denote by $H^{0,1}_{\Omega,\infty}(X)$ (resp. $H^{0,1}_{\Omega,cur}(X)$, $H^{0,1}_{\Omega,C^k}(X)$, $H^{0,1}_{\Omega,L^p_{loc}}(X)$) the Dolbeault cohomology group of bidegree $(0,1)$ for smooth forms (resp. currents, C^k-forms, $k \geq 0$, L^p_{loc}-forms, $1 \leq p \leq +\infty$) with support in $\overline{\Omega}$. The vanishing of these groups means that one can solve the $\overline{\partial}$ equation with prescribed support in $\overline{\Omega}$ in the smooth category (resp. the space of currents, the space of C^k-forms, the space of L^p_{loc}-forms).

It follows from Proposition 2.1, Proposition 2.2 and from the Dolbeault isomorphism with support conditions (Corollary 2.15 in \cite{7} and Proposition 1.2 in \cite{10}) that

Proposition 2.1. The natural morphisms from $H^{0,1}_{\Omega,\infty}(X)$ (resp. $H^{0,1}_{\Omega,cur}(X)$, $H^{0,1}_{\Omega,C^k}(X)$, $H^{0,1}_{\Omega,L^p_{loc}}(X)$, $1 \leq p \leq +\infty$) into $H^{0,1}_{\Omega,cur}(X)$ are injective. In particular, if $H^{0,1}_{\Omega,cur}(X) = 0$, then $H^{0,1}_{\Omega,\infty}(X) = 0$, $H^{0,1}_{\Omega,C^k}(X) = 0$ and $H^{0,1}_{\Omega,L^p_{loc}}(X) = 0$.

In the next sections, examples are given proving that there exist domains in \mathbb{C}^2 and $\mathbb{C}P^2$ such that $H^{0,1}_{\Omega,\infty}(X) = 0$, but $H^{0,1}_{\Omega,cur}(X) \neq 0$.

We will now consider the link between the vanishing of the group $H^{0,1}_{\Omega,cur}(X)$ and the extension properties of some holomorphic functions in Ω^c.

Proposition 2.2. Assume $H^{0,1}_{\Omega,cur}(X) = 0$, then any holomorphic function on $\Omega^c = X \setminus \overline{\Omega}$, which is the restriction to Ω^c of a distribution on X, extends as a holomorphic function to X.

Proof. Let $f \in \mathcal{O}(\Omega^c)$ and $S_f \in \mathcal{D}'(X)$ a distribution such that $S_f|_{\Omega^c} = f$. Consider the $(0,1)$-current $\overline{\partial}S_f$, it is closed and has support in $\overline{\Omega}$. Since $H^{0,1}_{\Omega,cur}(X) = 0$, there exists $U \in \mathcal{D}'(X)$, with support in $\overline{\Omega}$ such that $\overline{\partial}U = \overline{\partial}S_f$ in X. Set $h = S_f - U$, it is a holomorphic function on X and $h|_{\Omega^c} = S_f|_{\Omega^c} = f$. \(\square \)

In the same way, we can prove

Proposition 2.3. Assume $H^{0,1}_{\Omega,L^p_{loc}}(X) = 0$, $p \geq 1$, then any holomorphic function on $\Omega^c = X \setminus \overline{\Omega}$, which is the restriction to Ω^c of a form with coefficients in $W^{1,p}_{loc}(X)$, extends as a holomorphic function to X.

Proposition 2.4. Assume $H^{0,1}_{\Omega,C^k}(X) = 0$, $k \geq 0$, then any holomorphic function on $\Omega^c = X \setminus \overline{\Omega}$, which is of class C^{k+1} on $X \setminus \Omega = \Omega^c$, extends as a holomorphic function to X.

Proposition 2.5. Assume $H^{0,1}_{\Omega,\infty}(X) = 0$, then any holomorphic function on $\Omega^c = X \setminus \overline{\Omega}$, which is smooth on $X \setminus \Omega = \Omega^c$, extends as a holomorphic function to X.

Corollary 2.6. Assume $H^{0,1}_{\Omega,\infty}(X) = 0$, then $\Omega^c = X \setminus \overline{\Omega}$ is connected.
Proof. Assume Ω^c is not connected. Let f be a holomorphic function which is constant equal to 1 in one connected component of Ω^c and vanishes identically on all the other ones. By analytic continuation f cannot be the restriction to Ω^c of a holomorphic function on X, and by Proposition 2.5 we get $H^{0,1}_{\Omega,\infty}(X) \neq 0$. \hfill \square

Remark 2.7. Note that, by Proposition 1.1 \(H^{0,1}_{\Omega \text{cur}}(X) \neq 0 \) if and only if there exists at least one $\overline{\partial}$-exact $(0,1)$-current T with support contained in $\overline{\Omega}$ such that the support of each solution of the equation $\overline{\partial}S = T$ contains at least a connected component of Ω^c.

Let us give a partial converse to Corollary 2.6. Let $H^{0,1}_c(X)$ denote the Dolbeault cohomology group for $(0,1)$-forms with compact support in X.

Proposition 2.8. Assume Ω is relatively compact in a non-compact complex manifold X such that $H^{0,1}_c(X) = 0$. If $\Omega^c = X \setminus \overline{\Omega}$ is connected, then

$$H^{0,1}_{\Omega,\text{cur}}(X) = H^{0,1}_{\Omega,\infty}(X) = H^{0,1}_{\Omega,\text{cur}}(X) = H^{0,1}_{\Omega,\text{loc}}(X) = 0.$$

Proof. By Proposition 1.3 it suffices to prove that $H^{0,1}_{\Omega,\text{cur}}(X) = 0$. This vanishing result follows directly from Proposition 1.1. More precisely, if T is a $\overline{\partial}$-closed current on X with support contained in $\overline{\Omega}$, there exists a distribution S, with compact support such that $\overline{\partial}S = T$, since $H^{0,1}_c(X) = 0$. Then the support of S cannot contain the connected set Ω^c, otherwise $X = \overline{\Omega} \cup \text{supp} \ S$ would be compact, and hence $\text{supp} \ S$ is contained in $\overline{\Omega}$. \hfill \square

In particular, if X is a Stein manifold with $\dim_{\mathbb{C}} X \geq 2$ and Ω a relatively compact domain in X, then

$$H^{0,1}_{\Omega,\text{cur}}(X) = H^{0,1}_{\Omega,\infty}(X) = H^{0,1}_{\Omega,\text{cur}}(X) = H^{0,1}_{\Omega,\text{loc}}(X) = 0 \iff \Omega^c \text{ is connected.}$$

An immediate corollary of Proposition 2.8 and Proposition 2.2 is the following:

Corollary 2.9. Let X be a non-compact, connected complex manifold such that $H^{0,1}_c(X) = 0$, and Ω a relatively compact, open subset of X with connected complement, then any holomorphic function on Ω^c extends as a holomorphic function to X.

Proof. It is sufficient to apply Proposition 2.8 and Proposition 2.2 to a neighborhood D of $\overline{\Omega}$ with connected complement and to conclude by analytic continuation. \hfill \square

Corollary 2.9 is the classical Hartogs extension phenomenon. Note that all the previous results remain true if we replace the family of all compact subsets of a non-compact manifold by any family Φ of supports in a manifold X, different from the family of all closed subsets of X (see e.g. [14] for the definition of a family of supports).

Proposition 2.10. Assume the complex manifold X satisfies $H^{0,1}(X) = 0$. If any holomorphic function on Ω^c, which is smooth on $X \setminus \Omega = \overline{\Omega}$, extends as a holomorphic function to X, then $H^{0,1}_{\Omega,\infty}(X) = 0$.

Proof. Let f be a smooth $\overline{\partial}$-closed form in X with support contained in $\overline{\Omega}$. Since $H^{0,1}(X) = 0$, there exists a function $g \in \mathcal{C}^\infty(X)$ such that $\overline{\partial}g = f$. Since the support of f is contained in $\overline{\Omega}$, g is holomorphic in Ω^c and by the extension property it extends as a holomorphic function \tilde{g} to X. Set $h = g - \tilde{g}$, then the support of h is contained in $\overline{\Omega}$ and $\overline{\partial}h = f$. \hfill \square
Similarly, since $H^{0,1}(X) = H^{0,1}_{\mathcal{C}^k}(X) = H^{0,1}_{\mathcal{L}_{loc}}(X) = H^{0,1}_{\mathcal{F}_{cur}}(X) = 0$ by the Dolbeault isomorphism, we have

Proposition 2.11. Assume the complex manifold X satisfies $H^{0,1}(X) = 0$. If any holomorphic function on Ω^c, which is of class \mathcal{C}^k, $k \geq 0$ on $X \setminus \Omega = \overline{\Omega}$, extends as a holomorphic function to X, then $H^{0,1}_{\mathcal{H}_{\mathcal{C}^k}}(X) = 0$.

Proposition 2.12. Assume the complex manifold X satisfies $H^{0,1}(X) = 0$. If any holomorphic function on $\Omega^c = X \setminus \overline{\Omega}$, which is the restriction to Ω^c of a function $L_{loc}^p(X)$, $p \geq 1$, extends as a holomorphic function to X, then $H^{0,1}_{\mathcal{H}_{\mathcal{L}_{loc}}^p}(X) = 0$.

Proposition 2.13. Assume the complex manifold X satisfies $H^{0,1}(X) = 0$. If any holomorphic function on $\Omega^c = X \setminus \overline{\Omega}$, which is the restriction to Ω^c of a distribution on X, extends as a holomorphic function to X, then $H^{0,1}_{\mathcal{H}_{\mathcal{F}_{cur}}}(X) = 0$.

Let us end this section by a characterization of pseudoconvexity in \mathbb{C}^2 by means of the Dolbeault cohomology with prescribed support.

Theorem 2.14. Let D be a bounded domain in \mathbb{C}^2 with Lipschitz boundary. Then the following assertions are equivalent:

(i) D is a pseudoconvex domain;
(ii) $H^{0,1}_{\mathcal{H}_{\mathcal{D}}}(\mathbb{C}^2) = 0$ and $H^{0,2}_{\mathcal{H}_{\mathcal{D}}}(\mathbb{C}^2)$ is Hausdorff.

Proof. By Serre duality (3 or Theorem 2.7 in [11]) assertion (ii) implies that $\tilde{H}^2,0(D)$ is Hausdorff, for all $1 \leq q \leq 2$ and moreover $\tilde{H}^{2,1}(D) = 0$ as the dual space to $H^{0,1}_{\mathcal{D}}(\mathbb{C}^2)$.

Let us prove now that the condition $\tilde{H}^{2,1}(D) = 0$ implies that D is pseudoconvex. We will follow the methods used by Laufer [9] for the usual Dolbeault cohomology and prove by contradiction.

Assume D is not pseudoconvex, then there exists a domain \tilde{D} strictly containing D such that any holomorphic function on D extends holomorphically to \tilde{D}. Since $\text{interior}(\overline{\tilde{D}}) = D$, after a translation and a rotation we may assume that $0 \in \tilde{D} \setminus \overline{\tilde{D}}$ and there exists a point z_0 in the intersection of the plane $\{(z_1, z_2) \in \mathbb{C}^2 \mid z_1 = 0\}$ with \tilde{D}, which belongs to the same connected component of the intersection of that plane with \tilde{D}.

Let us denote by $B(z_1, z_2)$ the $(0, 1)$-form defined by

$$B(z_1, z_2) = \frac{\overline{z}_1}{|z|^4} dz_2 - \frac{\overline{z}_2}{|z|^4} dz_1 \wedge dz_1 \wedge dz_2.$$

It is derived from the Bochner-Martinelli kernel in \mathbb{C}^2 and is a $\overline{\partial}$-closed form on $\mathbb{C}^2 \setminus \{0\}$. Then the L^1-form $\frac{\overline{z}_1}{|z|^2} \wedge dz_1 \wedge dz_2$ defines a distribution in \mathbb{C}^2 which satisfies

$$\overline{\partial}\left(\frac{\overline{z}_1}{|z|^2} dz_1 \wedge dz_2\right) = z_1 B(z_1, z_2) \quad \text{on} \quad \mathbb{C}^2 \setminus \{0\}.$$

On the other hand, if $\tilde{H}^{2,1}(D) = 0$, there exists an extendable $(2, 0)$-current ν such that $\overline{\partial} \nu = B$ on D and by the regularity of $\overline{\partial}$ in bidegree $(2, 1)$, ν is smooth on D, since B is smooth on $\mathbb{C}^2 \setminus \{0\}$. Set

$$F = z_1 \nu + \frac{\overline{z}_2}{|z|^2} \wedge dz_1 \wedge dz_2.$$
Then F is a holomorphic $(2, 0)$-form on D, so its coefficient F_1 should extend holomorphically to \bar{D}, but we have $F_1(0, z_2) = \frac{1}{z_2}$ on $D \cap \{z_1 = 0\}$, which is holomorphic and singular at $z_2 = 0$. This gives the contradiction since $0 \in \bar{D} \setminus D$. This proves that (ii) \Rightarrow (i).

For the converse, first note that if D is a pseudoconvex domain in \mathbb{C}^2, then $\mathbb{C}^2 \setminus D$ is connected and by Proposition 2.8, we have $H_{\bar{D}, \infty}^{0, 1}(\mathbb{C}^2) = 0$. Then we apply Theorem 5 in [4] to get that if D is pseudoconvex with Lipschitz boundary, then $H_{\infty}^{0, 1}(\mathbb{C}^2 \setminus D)$ is Hausdorff. Let us prove that if $H_{\infty}^{0, 1}(\mathbb{C}^2 \setminus D)$ is Hausdorff, then $H_{\bar{D}, \infty}^{0, 2}(\mathbb{C}^2)$ is Hausdorff.

Let f be a $\bar{\partial}$-closed $(0, 2)$-form on \mathbb{C}^2 with support contained in \bar{D} such that for any $\bar{\partial}$-closed $(2, 0)$-current T on D extendable as a current to \mathbb{C}^2, we have $< T, f > = 0$. Since $H^{0, 2}(\mathbb{C}^2) = 0$, there exists a smooth $(0, 1)$-form g on \mathbb{C}^2 such that $\bar{\partial}g = f$ on \mathbb{C}^2, in particular $\bar{\partial}g = 0$ on $\mathbb{C}^2 \setminus T$.

Let S be any $\bar{\partial}$-closed $(2, 1)$-current on \mathbb{C}^2 with compact support in $\mathbb{C}^2 \setminus D$, then, since $H_{\infty}^{0, 1}(\mathbb{C}^2) = 0$, there exists a compactly supported $(2, 0)$-current U on \mathbb{C}^2 such that $\bar{\partial}U = S$ and in particular $\bar{\partial}U = 0$ on D.

Thus

$$< S, g > = < \bar{\partial}U, g > = < U, \bar{\partial}g > = < U, f > = 0,$$

by hypothesis on f. Therefore the Hausdorff property of $H_{\infty}^{0, 1}(X \setminus D)$ implies there exists a smooth function h on $X \setminus D$ such that $\bar{\partial}h = g$. Let \tilde{h} be a smooth extension of h to \mathbb{C}^2, then $u = g - \bar{\partial}\tilde{h}$ is a smooth form with support in T and

$$\bar{\partial}u = \bar{\partial}(g - \bar{\partial}\tilde{h}) = \bar{\partial}g = f.$$

This proves that $H_{\bar{D}, \infty}^{0, 2}(\mathbb{C}^2)$ is Hausdorff, which proves that (i) \Rightarrow (ii).

3 The case of the unbounded Hartogs triangle in \mathbb{C}^2

In \mathbb{C}^2, let us define the domains \mathbb{H}^+ and \mathbb{H}^- by

$$\mathbb{H}^+ = \{(z, w) \in \mathbb{C}^2 \mid |z| < |w|\}$$
$$\mathbb{H}^- = \{(z, w) \in \mathbb{C}^2 \mid |z| > |w|\}$$

then $\mathbb{H}^+ \cap \mathbb{H}^- = \emptyset$ and $\mathbb{H}^+ \cup \mathbb{H}^- = \mathbb{C}^2$.

Let us denote by $H_{\mathbb{H}^+, \infty}^{0, 1}(\mathbb{C}^2)$ (resp. $H_{\mathbb{H}^+, \text{cur}}^{0, 1}(\mathbb{C}^2)$, $H_{\mathbb{H}^+, \text{loc}, \text{cur}}^{0, 1}(\mathbb{C}^2)$, $H_{\mathbb{H}^+, \text{loc}, \text{cur}}^{0, 1}(\mathbb{C}^2)$, $H_{\mathbb{H}^+, \text{loc}, \text{cur}}^{0, 1}(\mathbb{C}^2)$) the Dolbeault cohomology group of bidegree $(0, 1)$ for smooth forms (resp. currents, L^2-forms, C^k-forms) with support in \mathbb{H}^+.

The vanishing of these groups means that one can solve the $\bar{\partial}$ equation with prescribed support in \mathbb{H}^- in the smooth category (resp. the space of currents, the space of L^2-forms, the space of C^k-forms).

We can apply Propositions 2.5 and 2.10 for $\Omega = \mathbb{H}^-$, since $H^{0, 1}(\mathbb{C}^2) = 0$, and we get

Proposition 3.1. We have $H_{\mathbb{H}^+, \infty}^{0, 1}(\mathbb{C}^2) = 0$ if and only if any holomorphic function on \mathbb{H}^+ which is smooth on \mathbb{H}^+ extends as a holomorphic function to \mathbb{C}^2.
Proposition 3.2. Any holomorphic function on \mathbb{H}^+ which is smooth on \mathbb{H}^+ extends as a holomorphic function to \mathbb{C}^2.

Proof. Let $f \in C^\infty(\mathbb{H}^+) \cap O(\mathbb{H}^+)$. By Sibony’s result ([16], page 220), for any $R > 0$, the restriction of f to $\mathbb{H}^+ \cap \Delta(0, R) \times \Delta(0, R)$ extends holomorphically to the bidisc $\Delta(0, R) \times \Delta(0, R)$ and then by analytic continuation f extends holomorphically to \mathbb{C}^2. \blacksquare

It follows immediately from Proposition 3.1 and Proposition 3.2 that

Corollary 3.3. $H^{0,1}_{\mathbb{H},\infty}(\mathbb{C}^2) = 0$.

Let us consider now the case of currents. We can apply Proposition 2.4 to get

Proposition 3.4. Assume we have $H^{0,1}_{\mathbb{H},c^k}(\mathbb{C}^2) = 0$, $k \geq 0$ then any holomorphic function on \mathbb{H}^+, which is of class C^{k+1} on \mathbb{H}^+, extends as a holomorphic function to \mathbb{C}^2.

Theorem 3.5. For any $k \geq 0$, $H^{0,1}_{\mathbb{H},c^k}(\mathbb{C}^2) \neq 0$, and $H^{0,1}_{\mathbb{H},cur}(\mathbb{C}^2) \neq 0$.

Proof. Let us consider the function h define on \mathbb{H}^+ by $h(z, w) = z^l(\frac{z}{w})$, $l \geq 0$. It is of class C^{k+1} on \mathbb{H}^+, if $l \geq k + 2$, but does not extend as a holomorphic function to \mathbb{C}^2. In fact if h admits a holomorphic extension \tilde{h} to \mathbb{C}^2, then we would have

$$\tilde{h}(z, w) = z^l(\frac{z}{w}) \quad \text{on} \quad \mathbb{C}^2 \setminus \{w = 0\},$$

which is not bounded nearby $\{(z, w) \in \mathbb{C}^2 \mid z \neq 0, w = 0\}$. By Proposition 3.4, we get $H^{0,1}_{\mathbb{H},c^k}(\mathbb{C}^2) \neq 0$. Then using Proposition 2.4, it follows $H^{0,1}_{\mathbb{H},cur}(\mathbb{C}^2) \neq 0$. \blacksquare

Proposition 3.1 still holds if we replace smooth forms by W^1_{loc}-forms (for $D \subset \mathbb{C}^2$, $W^1_{loc}(\mathbb{D})$ is the space of functions which are in $W^1(\mathbb{D} \cap B(0, R))$ for any $R > 0$) in the following way

Proposition 3.6. We have $H^{0,1}_{\mathbb{H},L^2_{loc}}(\mathbb{C}^2) = 0$ if and only if any function $f \in O(\mathbb{H}^+) \cap W^1_{loc}(\mathbb{H}^+)$, which is the restriction to \mathbb{H}^+ of a form with coefficients in $W^1_{loc}(\mathbb{C}^2)$, extends as a holomorphic function to \mathbb{C}^2.

Theorem 3.7. $H^{0,1}_{\mathbb{H},L^2_{loc}}(\mathbb{C}^2) \neq 0$

Proof. Let us consider the function h defined on \mathbb{H}^+ by $h(z, w) = z^3(\frac{z}{w})$. It is of class C^2 on \mathbb{H}^+ and it is in $W^1_{loc}(\mathbb{H}^+)$ and extends as a C^2 funtion to \mathbb{C}^2 by the Whitney extension Theorem, but does not extend as a holomorphic function to \mathbb{C}^2. In fact if h would admit a holomorphic extension \tilde{h} to \mathbb{C}^2, then we would have

$$\tilde{h} = z^3(\frac{z}{w}) \quad \text{on} \quad \mathbb{C}^2 \setminus \{w = 0\},$$

which is not bounded nearby $\{(z, w) \in \mathbb{C}^2 \mid z \neq 0, w = 0\}$. By Proposition 3.6, we get $H^{0,1}_{\mathbb{H},L^2_{loc}}(\mathbb{C}^2) \neq 0$. \blacksquare
Remark: Note that if we replace H^{-} by the classical Hartogs triangle $T^{-} = H^{-} \cap \Delta \times \Delta$, where Δ is the unit disc in \mathbb{C}, then by Proposition 2.8 we have

$$H^{0,1}_{\bar{T}^{-},L^2_{loc}}(\mathbb{C}^2) = H^{0,1}_{\bar{T}^{-},L^2_{loc}}(\mathbb{C}^2) = H^{0,1}_{\bar{T}^{-},\infty}(\mathbb{C}^2) = 0.$$

So for solving the $\bar{\partial}$-equation with prescribed support, it is quite different to consider a bounded domain or an unbounded domain as support.

4 The case of the Hartogs triangles in \mathbb{CP}^2

In \mathbb{CP}^2, we denote the homogeneous coordinates by $[z_0, z_1, z_2]$. On the domain where $z_0 \neq 0$, we set $z = \frac{z_1}{z_0}$ and $w = \frac{z_2}{z_0}$. Let us define the domains H^+ and H^- by

$$H^+ = \{[z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid |z_1| < |z_2|\}$$
$$H^- = \{[z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid |z_1| > |z_2|\}$$

then $H^+ \cap H^- = \emptyset$ and $H^+ \cup H^- = \mathbb{CP}^2$. These domains are called Hartogs’ triangles in \mathbb{CP}^2. The Hartogs triangles provide examples of non-Lipschitz Levi-flat hypersurfaces (see [6]).

For $k \geq 0$ or $k = \infty$, we denote by $H^{0,1}_{\bar{\partial},C^k}(\mathbb{CP}^2)$ (resp. $H^{0,1}_{\bar{\partial},cur}(\mathbb{CP}^2)$, $H^{0,1}_{\bar{\partial},L^2}(\mathbb{CP}^2)$) the Dolbeault cohomology group of bidegree $(0, 1)$ for C^k-smooth forms (resp. currents, L^2-forms) with support in \mathbb{CP}^2.

Again the vanishing of these groups means that one can solve the $\bar{\partial}$ equation with prescribed support in \mathbb{CP}^2 in the C^k-smooth category (resp. the space of currents, the space of L^2-forms).

We can also apply Propositions 2.5 and 2.10 for $\Omega = H^-$, since $H^{0,1}(\mathbb{CP}^2) = 0$, and we get

Proposition 4.1. We have, for $k \geq 0$ and for $k = \infty$, $H^{0,1}_{\bar{\partial},C^k}(\mathbb{CP}^2) = 0$ if and only if any holomorphic function on H^+ which is C^{k+1}-smooth on \mathbb{CP}^2 extends as a holomorphic function to \mathbb{CP}^2.

Proposition 4.2. Any holomorphic function on H^+ which is continuous on \mathbb{CP}^2 is constant.

Proof. Let $f \in \mathcal{C}(\mathbb{HP}^+) \cap \mathcal{O}(\mathbb{H}^+)$. Notice that the boundary bH^+ of H^+ is foliated by a family of compact complex curves described in non-homogeneous coordinates by

$$S_\theta = \{z = e^{i\theta} w\}, \quad \theta \in \mathbb{R}. \quad (4.1)$$

Restricted to each fixed θ, f is a continuous CR function on the compact Riemann surface S_θ. Thus f must be a constant on each S_θ. Since every Riemann surface S_θ contains the point $(0,0)$, this implies f must be constant on bH^+.

\square
Note that in the case of the unbounded Hartogs triangle in \mathbb{C}^2, the function f needs to be of class C^∞ on \mathbb{H}^+ to be extendable as a holomorphic function to \mathbb{C}^2 (see Proposition 3.1 and the beginning of the proof of Theorem 3.5). But in \mathbb{CP}^2, in contrary to \mathbb{C}^2 we get (compare to Corollary 3.3 and Theorem 3.5) from the previous propositions that

Corollary 4.3. For each $k \geq 0$, $H^{0,1}_{\mathbb{H}^+,\text{cur}}(\mathbb{CP}^2) = 0$ and $H^{0,1}_{\mathbb{H}^+,\text{cur}}(\mathbb{CP}^2) = 0$.

As in the case of \mathbb{C}^2, we get for extendable currents

Proposition 4.4. Suppose that $H^{0,1}_{\mathbb{H}^+,\text{cur}}(\mathbb{CP}^2) = 0$. Then any holomorphic function on \mathbb{H}^+, which is extendable in the sense of currents, is constant.

Theorem 4.5. $H^{0,1}_{\mathbb{H}^+,\text{cur}}(\mathbb{CP}^2)$ does not vanish and is Hausdorff.

Proof. Let us consider the function h defined on the open subset \mathbb{H}^+ of \mathbb{CP}^2 by $h([z_0 : z_1 : z_2]) = \frac{1}{z_0}$. It is holomorphic and bounded and hence defines an extendable current, but it is not constant, so by Proposition 4.4, we get $H^{0,1}_{\mathbb{H}^+,\text{cur}}(\mathbb{CP}^2) \neq 0$. By the Serre duality, to prove that $H^{0,1}_{\mathbb{H}^+,\text{cur}}(\mathbb{CP}^2)$ is Hausdorff, it is sufficient to prove that $H^{2,2}_{\mathbb{H}^+}(\mathbb{H}^+) = 0$.

Let f be a smooth $(2,2)$-form on \mathbb{H}^- and U be a neighborhood of \mathbb{H}^-, we can choose U such that \overline{U} is a connected proper subset of \mathbb{CP}^2. Then f extends as a smooth $(2,2)$-form on U, called \tilde{f}. By Malgrange’s theorem, the top degree Dolbeault cohomology group $H^{2,2}(U)$ vanishes since U is a non compact connected complex manifold. Thus there exists a smooth $(2,1)$-form u on U such that $\overline{\partial} u = \tilde{f}$ on U. Then $v = u_{\mathbb{H}^+}$ is a smooth form on \mathbb{H}^- which satisfies $\overline{\partial} v = f$ on \mathbb{H}^-. \hfill \square

Let us now consider the L^2 Dolbeault cohomology with prescribed support in an Hartogs triangle in \mathbb{CP}^2. As usual we endow \mathbb{H}^+ with the restriction of the Fubini-Study metric of \mathbb{CP}^2. The following proposition is already proved in Proposition 6 in [4].

Proposition 4.6. Let $\mathbb{H}^+ \subset \mathbb{CP}^2$ be the Hartogs’ triangle. Then we have the following:

1. The Bergman space of L^2 holomorphic functions $L^2(\mathbb{H}^+) \cap \mathcal{O}(\mathbb{H}^+)$ on the domain \mathbb{H}^+ separates points in \mathbb{H}^+.

2. There exist nonconstant functions in the space $W^1(\mathbb{H}^+) \cap \mathcal{O}(\mathbb{H}^+)$. However, this space does not separate points in \mathbb{H}^+ and is not dense in the Bergman space $L^2(\mathbb{H}^+) \cap \mathcal{O}(\mathbb{H}^+)$.\[2.\]

3. Let $f \in W^2(\mathbb{H}^+) \cap \mathcal{O}(\mathbb{H}^+)$ be a holomorphic function on \mathbb{H}^+ which is in the Sobolev space $W^2(\mathbb{H}^+)$. Then f is a constant.

Proposition 4.7. Let $\mathbb{H}^+ \subset \mathbb{CP}^2$ be the Hartogs’ triangle. Any function $f \in W^1(\mathbb{H}^+) \cap \mathcal{O}(\mathbb{H}^+)$ can be extended to a function in $W^1(\mathbb{CP}^2)$.

Proof. In the non-homogeneous holomorphic coordinates (z, w) for \mathbb{H}^+, any function $f \in W^1(\mathbb{H}^+) \cap \mathcal{O}(\mathbb{H}^+)$ has the form (see Proposition 6 in [4])

$$f_k(z, w) = \left(\frac{z}{w} \right)^k, \quad k \in \mathbb{N}.$$
It suffices to prove the proposition for each $f_k(z, w)$.

Let $\chi(t) \in C^\infty(\mathbb{R})$ be a function defined by $\chi(t) = 0$ if $t \leq 0$ and $\chi(t) = 1$ if $t \geq 1$. Let \tilde{f}_k be the function defined by

$$\tilde{f}_k(z, w) = \chi \left(1 + \frac{1}{3} \left(1 - \frac{|z|^2}{|w|^2}\right)\right) f_k(z, w). \quad (4.2)$$

On $|z| < |w|$, it is easy to see that $\tilde{f}_k = f_k$. Thus \tilde{f}_k is an extension of f_k to $\mathbb{C}P^2$.

To see that \tilde{f}_k is in $W^1(\mathbb{C}P^2)$, we first note that the function

$$\chi \left(1 + \frac{1}{3} \left(1 - \frac{|z|^2}{|w|^2}\right)\right) = 0$$

when restricted to $\{|z| \geq 2|w|\}$. Thus it is supported in $\{|z| \leq 2|w|\}$. On its support, the function $\frac{|z|}{|w|}$ is bounded. Using this fact and differentiating under the chain rule, we have that

$$|\nabla \chi \left(1 + \frac{1}{3} \left(1 - \frac{|z|^2}{|w|^2}\right)\right)| \leq C(\sup |\chi'|) \frac{1}{|w|} \leq C \frac{1}{|w|}. \quad (4.3)$$

Repeating the arguments as before, we see that the function $\frac{1}{|w|}$ is in L^2 on $\{|z| \leq 2|w|\}$.

Since the function f_k is bounded on the set $\{|z| \leq 2|w|\}$, we conclude from (4.3) that the derivatives of \tilde{f}_k is in $L^2(\mathbb{C}P^2)$. Thus \tilde{f}_k is an extension in $W^1(\mathbb{C}P^2)$ of f_k.

\[\square \]

Remark. Suppose D is a bounded domain with Lipschitz boundary, then any function $f \in W^1(D)$ extends as a function in $W^1(\mathbb{C}P^2)$. It is not known if this is true for the Hartogs triangle \mathbb{H}^+. In the proof of Proposition 4.7, we have used the fact that the function f_k are in $W^1(\mathbb{H}^+)$ and bounded on \mathbb{H}^+.

Theorem 4.8. Let $\mathbb{H}^- \subset \mathbb{C}P^2$ be the Hartogs’ triangle. Then the cohomology group $H^{0, 1}_{\mathbb{H}^-, L^2} (\mathbb{C}P^2) \neq 0$ and is infinite dimensional.

Proof. We recall that $\mathbb{H}^+ = \mathbb{C}P^2 \setminus \mathbb{H}^-$. From Proposition 4.6, the space of holomorphic functions in $W^1(\mathbb{H}^+) \cap \mathcal{O}(\mathbb{H}^+)$ is infinite dimensional. In the non-homogeneous coordinates, consider the holomorphic functions of the type $f_k = (\frac{z}{w})^k$, $k \in \mathbb{N}$.

We define the operator $\overline{\partial}_c$ as the weak minimal realization of $\overline{\partial}$, then the domain of $\overline{\partial}_c$ is the space of L^2 forms f in $\mathbb{C}P^2$ with support in \mathbb{H}^- such that $\overline{\partial} f$ is also an L^2 form in $\mathbb{C}P^2$.

Using Proposition 4.7, each holomorphic function f_k can be extended to a function $\tilde{f}_k \in W^1(\mathbb{C}P^2)$. Suppose that $H^{0, 1}_{\mathbb{H}^-, L^2} (\mathbb{C}P^2) = 0$. Then we can solve $\overline{\partial}_c u_k = \overline{\partial} f_k$ in $\mathbb{C}P^2$ with prescribed support for u_k in \mathbb{H}^-. Let $H_k = \tilde{f}_k - u_k$. Then H_k is a holomorphic function in $\mathbb{C}P^2$, hence a constant. But $H_k = f_k$ on \mathbb{H}^+, a contradiction. This implies that the space $H^{0, 1}_{\mathbb{H}^-, L^2} (\mathbb{C}P^2)$ is non-trivial.

Next we prove that $H^{0, 1}_{\mathbb{H}^-, L^2} (\mathbb{C}P^2)$ is infinite dimensional. Each function \tilde{f}_k corresponds to a $(0, 1)$-form $\overline{\partial} \tilde{f}_k$. We set $g_k = \overline{\partial} \tilde{f}_k$. Then g_k is in $\text{Dom}(\overline{\partial}_c)$ and satisfies $\overline{\partial}_c g_k = 0$. Thus it induces an element $[g_k]$ in $H^{0, 1}_{\mathbb{H}^-, L^2} (\mathbb{C}P^2)$. To see that $[g_k]$’s are linearly independent,
let \(N > 1 \) be a positive integer and \(F_N = \sum_{k=1}^N c_k f_k \), where \(c_k \) are constants. Set \(G_N = \sum_{k=1}^N c_k g_k \). Suppose that \([G_N]\) = 0, then we can solve \(\overline{\partial} u = G_N \) and the function \(F_N \) holomorphic in \(\mathbb{H}^+ \) extends holomorphically to \(\mathbb{C}P^2 \). Thus \(F_N \) must be a constant and \(c_1 = \cdots = c_N = 0 \). Thus \([g_k]\)'s are linearly independent. This proves that \(H^{0,1}_{\mathbb{H}^+} \mathbb{L}^2(\mathbb{C}P^2) \) is infinite dimensional. \(\square \)

Remark. It follows from Proposition 2.1 and Theorem 4.8 that \(H^{0,1}_{\mathbb{H}^+} \mathbb{L}^2(\mathbb{C}P^2) \) is also infinite dimensional.

Lemma 4.9. The range of the strong \(\mathbb{L}^2 \) closure of \(\overline{\partial} \)

\[
\overline{\partial}_s : L^2_{2,1}(\mathbb{H}^-) \rightarrow L^2_{2,2}(\mathbb{H}^-)
\]

is closed and equal to \(L^2_{2,2}(\mathbb{H}^-) \).

Proof. It is clear that \(\overline{\partial} \) has closed range in the top degree and the range is \(L^2_{2,2}(\mathbb{H}^-) \). Let \(f \in L^2_{2,2}(\mathbb{H}^-) \). We extend \(f \) to be zero outside \(\mathbb{H}^- \). Let \(U \) be an open neighbourhood of \(\mathbb{H}^- \), then \(f \) is in \(L^2_{2,2}(U) \). We can choose \(U \) such that \(\overline{U} \) is a proper subset of \(\mathbb{C}P^2 \) and \(U \) has Lipschitz boundary. Since one can solve the \(\overline{\partial} \) equation for top degree forms on \(U \), there exists \(u \in L^2_{2,1}(U) \) such that

\[
\overline{\partial} u = f
\]

in the weak sense.

It suffices to show that \(f \) is in the range of \(\overline{\partial}_s \). Since \(U \) has Lipschitz boundary, using Friedrichs' lemma, there exists a sequence \(u_\nu \in C^\infty(\overline{U}) \) such that \(u_\nu \to u \) and \(\overline{\partial} u_\nu \to f \) in \(L^2_{2,2}(U) \). Restricting \(u_\nu \) to \(\mathbb{H}^- \), we have that \(u \) is in the domain of \(\overline{\partial}_s \) and

\[
\overline{\partial}_s u = f.
\]

Thus the range of \(\overline{\partial}_s \) is equal to \(L^2_{2,2}(\mathbb{H}^-) \). The lemma is proved. \(\square \)

Corollary 4.10. The cohomology group \(H^{0,1}_{\mathbb{H}^+} \mathbb{L}^2(\mathbb{C}P^2) \) is Hausdorff and infinite dimensional.

Theorem 4.11. Let us consider the Hartogs' triangle \(\mathbb{H}^- \subset \mathbb{C}P^2 \). Then the cohomology group \(H^{2,1}_{\overline{\partial}_s} \mathbb{L}^2(\mathbb{H}^-) \) is infinite dimensional.

Proof. Suppose that \(\overline{\partial}_s : L^2_{2,0}(\mathbb{H}^-) \rightarrow L^2_{2,1}(\mathbb{H}^-) \) does not have closed range. Then \(H^{2,1}_{\overline{\partial}_s} \mathbb{L}^2(\mathbb{H}^-) \) is non-Hausdorff, hence infinite dimensional.

Suppose that \(\overline{\partial}_s : L^2_{2,0}(\mathbb{H}^-) \rightarrow L^2_{2,1}(\mathbb{H}^-) \) has closed range. Using Lemma 4.9, \(\overline{\partial}_s : L^2_{2,0}(\mathbb{H}^-) \rightarrow L^2_{2,1}(\mathbb{H}^-) \) has closed range. From the \(L^2 \) Serre duality, \(\overline{\partial}_E : L^2(\mathbb{H}^-) \rightarrow L^2_{0,1}(\mathbb{H}^-) \) and \(\overline{\partial}_E : L^2_{0,1}(\mathbb{H}^-) \rightarrow L^2_{0,2}(\mathbb{H}^-) \) both have closed range. Furthermore,

\[
H^{2,1}_{\overline{\partial}_s} \mathbb{L}^2(\mathbb{H}^-) \cong H^{0,1}_{\mathbb{H}^+} \mathbb{L}^2(\mathbb{C}P^2).
\]

Thus from Theorem 4.8 it is infinite dimensional. \(\square \)
Remarks:

1. Let $T = \{ (z_1, z_2) \in \mathbb{C}^2 \mid |z_2| < |z_1| < 1 \}$ be the Hartogs triangle in \mathbb{C}^2. Then by Proposition 2.8, $H^{0,1}_{\bar{\partial}_c, L^2}(T) = H^{0,1}_{\bar{\partial}, L^2}(\mathbb{C}^2) = 0$.

This is in sharp contrast to Corollary 4.10.

It is well-known that $H^{0,1}_{\bar{\partial}_c}(T) = 0$ since T is pseudoconvex, but $H^{0,1}_{\bar{\partial}, L^2}(T)$ (cohomology with forms smooth up to the boundary) is infinite dimensional (see [16]). In fact, $H^{0,1}_{\bar{\partial}, L^2}(T)$ is even non-Hausdorff (see [12]). We also refer the reader to the recent survey paper on the Hartogs triangle [15].

2. If D is a domain in $\mathbb{C}\mathbb{P}^n$ with C^2 boundary, then we have L^2 existence theorems for $\bar{\partial}$ on D for all degrees (see [1] [6], [2]). This follows from the existence of bounded plurisubharmonic functions on pseudoconvex domains in $\mathbb{C}\mathbb{P}^n$ with C^2 boundary (see [13]). This is even true if D has only Lipschitz boundary (see [5]).

3. Suppose that D is a pseudoconvex domain in $\mathbb{C}\mathbb{P}^n$ with Lipschitz boundary, we have $H^{p, q}_{L^2}(D) = 0$ for all $q > 0$. By the L^2 Serre duality (see [4]), we have $H^{0,1}_{\bar{\partial}_c, L^2}(D) = H^{0,1}_{\bar{\partial}, L^2}(\mathbb{C}\mathbb{P}^n) = 0$. Corollary 4.10 shows that the Lipschitz condition cannot be removed.

4. From a result of Takeuchi [17], \mathbb{H}^- is Stein. It is well-known that for any p, $0 \leq p \leq 2$, $\bar{\partial} : L^2_{p,0}(\mathbb{H}^-, \text{loc}) \to L^2_{p,1}(\mathbb{H}^-, \text{loc})$ has closed range (see [8]) and the cohomology $H^{p,1}_{L^2_{\text{loc}}}(\mathbb{H}^-)$ in the Frechet space $L^2_{0,1}(\mathbb{H}^-, \text{loc})$ is trivial.

5. The (weak) L^2 theory holds for any pseudoconvex domain without any regularity assumption on the boundary for $(0, 1)$-forms. The (weak) L^2 Cauchy-Riemann operator $\bar{\partial} : L^2(\mathbb{H}^-) \to L^2_{0,1}(\mathbb{H}^-, \text{loc})$ has closed range and $H^{0,1}_{L^2}(\mathbb{H}^-) = 0$ (see [6] or [2]).

6. For $p = 1$ or $p = 2$, it is not known if the Cauchy-Riemann operator $\bar{\partial} : L^2_{p,0}(\mathbb{H}^-) \to L^2_{p,1}(\mathbb{H}^-)$ has closed range. It is also not known if $\bar{\partial}$ in the weak sense is equal to $\bar{\partial}_s$.

7. It is not known if the strong L^2 Cauchy-Riemann operator $\bar{\partial}_s : L^2_{2,0}(\mathbb{H}^-) \to L^2_{2,1}(\mathbb{H}^-)$ has closed range.

References

[1] B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), 1–10.

[2] J. Cao, M.-C. Shaw, and L. Wang, Estimates for the $\bar{\partial}$-Neumann problem and nonexistence of C^2 Levi-flat hypersurfaces in $\mathbb{C}\mathbb{P}^n$ Math. Zeit. 248 (2004) 183–221 (Erratum: Math. Zeit. 248 (2004), 223–225.)

[3] A. Cassa, Coomologia separata sulle varietà analitiche complesse, Ann. Scuola Norm. Sup. Pisa 25 (1971), 290–323.
Solving with prescribed support on Hartogs triangles

[4] D. Chakrabarti and M.-C. Shaw; L^2 Serre duality on domains in complex manifolds and applications Trans. A.M.S. 364 (2012), 3529–3554.

[5] P. S. Harrington, Bounded plurisubharmonic exhaustion functions for Lipschitz pseudoconvex domains in \mathbb{CP}^2. Preprint.

[6] G. M. Henkin and A. Iordan, Regularity of $\bar{\partial}$ on pseudoconcave compacts and applications, Asian J. Math., 4 2000, 855–884 (Erratum: Asian J. Math., 7, (2003) No. 1, pp. 147-148).

[7] G. M. Henkin and J. Leiterer, Andreotti-Grauert theory by integral formulas, Progress in Math., vol. 74, Birkhaüser, Basel, Boston, Berlin, 1988.

[8] L. Hörmander, L^2 estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math. 113 (1965), 89–152.

[9] H. B. Laufer, On sheaf cohomology and envelopes of holomorphy, Ann. of Math. 84 (1966), 151–177.

[10] C. Laurent-Thiébaut, Théorie L^p pour l’équation de Cauchy-Riemann, Ann. Fac. Sc. Toulouse 24 (2015), 251–279.

[11] C. Laurent-Thiébaut and M.-C. Shaw, On the Hausdorff property of some Dolbeault cohomology groups, Math. Zeitschrift 274 (2013), 1165–1176.

[12] C. Laurent-Thiébaut and M.-C. Shaw, Non-closed range property for the Cauchy-Riemann operator, Analysis and Geometry, Springer Proceedings of the conference held in Tunisia in the memory of Salah Baouendi, 127 (2015) 207–218.

[13] T. Ohsawa and N. Sibony, Bounded P.S.H functions and pseudoconvexity in Kähler manifolds, Nagoya Math. J. 149 (1998), 1–8.

[14] J.P. Serre, Un théorème de dualité, Comment. Math. Helv. 29 (1955), 9–26.

[15] M.-C. Shaw The Hartogs triangle in complex analysis, Contemporary Math. Proceedings of Midwest Geometric Conference 646 (2015) 105–116.

[16] N. Sibony, Prolongement des fonctions holomorphes bornées et métrique de Carathéodory, Inventiones math. 29 (1975), 205–230.

[17] A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan 16 (1964), 159–181.