In-Range Farthest Point Queries and Related Problem in High Dimensions

Ziyun Huang
Department of Computer Science and Software Engineering, Penn State Erie, The Behrend College, Erie, United States

Jinhui Xu
Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, United States

Abstract

Range-aggregate query is an important type of queries with numerous applications. It aims to obtain some structural information (defined by an aggregate function $F(\cdot)$) of the points (from a point set P) inside a given query range B. In this paper, we study the range-aggregate query problem in high dimensional space for two aggregate functions: (1) $F(P \cap B)$ is the farthest point in $P \cap B$ to a query point q in \mathbb{R}^d and (2) $F(P \cap B)$ is the minimum enclosing ball (MEB) of $P \cap B$. For problem (1), called In-Range Farthest Point (IFP) Query, we develop a bi-criteria approximation scheme: For any $\epsilon > 0$ that specifies the approximation ratio of the farthest distance and any $\gamma > 0$ that measures the “fuzziness” of the query range, we show that it is possible to pre-process P into a data structure of size $\tilde{O}(\epsilon, \gamma)(dn^{1+\rho})$ in $\tilde{O}(\epsilon, \gamma)(dn^{1+\rho})$ time such that given any \mathbb{R}^d query ball B and query point q, it outputs in $\tilde{O}(\epsilon, \gamma)(dn^{\rho})$ time a point p that is a $(1-\epsilon)$-approximation of the farthest point to q among all points lying in a $(1+\gamma)$-expansion $B(1+\gamma)$ of B, where $0 < \rho < 1$ is a constant depending on ϵ and γ and the hidden constants in big-O notations depend only on ϵ, γ and Polylog(nd). For problem (2), we show that the IFP result can be applied to develop query scheme with similar time and space complexities to achieve a $(1+\epsilon)$-approximation for MEB. To the best of our knowledge, these are the first theoretical results on such high dimensional range-aggregate query problems. Our results are based on several new techniques, such as multi-scale construction and ball difference range query, which are interesting in their own rights and could be potentially used to solve other range-aggregate problems in high dimensional space.

2012 ACM Subject Classification Theory of Computation → Computational Geometry

Keywords and phrases Farthest Point Query, Range Aggregate Query, Minimum Enclosing Ball, Approximation, High Dimensional Space

Digital Object Identifier 10.4230/LIPIcs..2022.

Funding Jinhui Xu: The research of this author was supported in part by NSF through grant IIS-1910492 and by KAUST through grant CRG10 4663.2.

1 Introduction

Range search is a fundamental problem in computational geometry and finds applications in many fields like database systems and data mining [1, 2]. It has the following basic form: Given a set of n points P in \mathbb{R}^d, pre-process P into a data structure so that for any query range B from a certain range family (e.g., spheres, rectangles, and halfspaces), it reports or counts the number of the points in $P \cap B$ efficiently. Range search allows us to obtain some basic information of the points that lie in a specific local region of the space.

In many applications, it is often expected to know more information than simply the number of points in the range. This leads to the study of range-aggregate query [3, 4], which is a relatively new type of range search. The goal of range-aggregate query is to obtain more complicated structural information (such as the diameter, the minimum enclosing ball, and the minimum spanning tree) of the points in
In this paper, we study the range-aggregate query problem in high dimensions for spherical ranges. Particularly, we consider two aggregate functions for any \mathbb{R}^d query ball B: (1) $F(P \cap B)$ is the farthest point in $P \cap B$ to a query point q in \mathbb{R}^d and (2) $F(P \cap B)$ is the minimum enclosing ball (MEB) of $P \cap B$. We will focus in this paper on problem (1), called the In-Range Farthest Point (IFP) Query, and show that an efficient solution to IFP query also yields efficient solutions to the MEB problems. We start with some definitions.

Definition 1. (Approximate IFP (AIFP)) Let P be a set of n points in \mathbb{R}^d, q be a point and B be a d-dimensional (closed) ball. A point $p \in P$ is a bi-criteria (ϵ, γ)-approximate in-range farthest point (or AIFP) of $q \in P$ in B, if there exists a point set P' such that the following holds, where ϵ and γ are small positive constants, and $B(1 + \gamma)$ is the ball concentric with B and with radius $(1 + \gamma)r$: (1) $P \cap B \subseteq P' \subseteq P \cap B(1 + \gamma)$; (2) $p \in P'$; and (3) for any $p' \in P'$, $(1 - \epsilon)\|p' - q\| \leq \|p - q\|$.

Defining AIFP in this way enables us to consider all points in B and exclude all points outside of $B(1 + \gamma)$. Points in the fuzzy region $B(1 + \gamma) \setminus B$ may or may not be included in the farthest point query. Note that allowing fuzzy region is a commonly used strategy to deal with the challenges in many high dimensional similarity search and range query problems. For example, consider the classic near neighbor search problem, which is equivalent to spherical emptiness range search: Given a query sphere B in \mathbb{R}^d, report a data point p that lies in B if such a data point exists. In high dimensional space, obtaining an exact solution to such a query is very difficult. A commonly used technique for this problem is the Locality Sensitive Hashing (LSH) scheme [17]. Given a query ball B, LSH could report a data point in $B(1 + \epsilon)$ for some given factor $\epsilon > 0$. In other words, a fuzzy region $B(1 + \epsilon) \setminus B$ is allowed. Similarly, we can define approximate MEB for points in a given range with a fuzzy region.

Definition 2. (Minimum Enclosing Ball (MEB)) Let P be a set of n points in \mathbb{R}^d. A d-dimensional (closed) ball B is an enclosing ball of P if $P \subset B$ and B is the minimum enclosing ball (MEB) of P if its radius r is the smallest among all enclosing balls. A ball B' is a $(1 + \epsilon)$-approximate MEB of P for some constant $\epsilon > 0$ if it is an enclosing ball of P and its radius is no larger than $(1 + \epsilon)\text{Rad}(P)$, where $\text{Rad}(P)$ is the radius of the MEB of P.

Definition 3. (Approximate MEB (AMEB)) Let P be a set of n points and B be any ball with radius r in \mathbb{R}^d. A ball B' with radius r' is a bi-criteria (ϵ, γ)-approximate MEB (or AMEB) of P in range B, if there exists a point set P' such that the following holds, where γ and ϵ are small positive constants: (1) $P \cap B \subseteq P' \subseteq P \cap B(1 + \gamma)$; and (2) B' is a $(1 + \epsilon)$-approximate MEB of P'.

In this paper, we will focus on building a data structure for P so that given any query ball B and a point $q \in \mathbb{R}^d$, an AIFP of q in $P \cap B$ can be computed efficiently (i.e., in sub-linear time in terms of n). Below are the main theorems of this paper. Let $\epsilon > 0, \gamma > 0, 0 < \delta < 1$ be any real numbers.

Theorem 4. For any set P of n points in \mathbb{R}^d, it is possible to build a data structure of size $O_{\epsilon, \gamma}(dn^{1+p}\log\delta^{-1}\text{Polylog}(nd))$ in $O_{\epsilon, \gamma}(dn^{1+p}\log\delta^{-1}\text{Polylog}(nd))$ pre-processing time,
where $0 < \rho < 1$ is a small constant depending on ϵ and γ. With this data structure, it is then possible to find a (ϵ, γ)-AIFP of any given query point q and query ball B in $O_{\epsilon, \gamma}(dn^{\rho} \log \delta^{-1} \text{Polylog}(nd))$ time with probability at least $1 - \delta$.

Note: In the above result, the relationship between ρ and ϵ, γ has a rather complicated dependence on several constants of p-stable distribution, which is inherited from the underlying technique of Locality Sensitive Hashing (LSH) scheme [17]. This indicates that for any ϵ, γ, we have $0 < \rho < 1$ and ρ approaches 1 as ϵ, γ approach 0.

We will also show how to use the AIFP data structure to answer MEB queries efficiently.

Theorem 5. For any set P of n points in \mathbb{R}^d, it is possible to build a data structure of size $O_{\epsilon, \gamma}(dn^{1+\rho} \log \delta^{-1} \text{Polylog}(nd))$ in $O_{\epsilon, \gamma}(dn^{1+\rho} \log \delta^{-1} \text{Polylog}(nd))$ pre-processing time, where $0 < \rho < 1$ is a small constant depending on ϵ and γ. With this data structure, it is then possible to find a (ϵ, γ)-AMEB for any query ball B in $O_{\epsilon, \gamma}(dn^{\rho} \log \delta^{-1} \text{Polylog}(nd))$ time with probability at least $1 - \delta$.

To our best knowledge, these are the first results on such range-aggregate problems in high dimensions. Each data structure has only a near linear dependence on d, a sub-quadratic dependence on n in space complexity, and a sub-linear dependence on n in query time.

Our Method: The main result on AIFP is based on several novel techniques, such as multi-scale construction and ball difference range query. Briefly speaking, multi-scale construction is a general technique that allows us to break the task of building an AIFP query data structure into a number of “constrained” data structures. Each such data structure is capable of correctly answering an AIFP query given that some assumption about the query holds (for example, the distance from q to its IFP is within a certain range). Multi-scale construction uses a number of “constrained” data structures of small size to cover all possible cases of a query, which leads to a data structure that can handle any arbitrary queries. Multi-scale construction is independent of the aggregate function, and thus has the potential to be used as a general method for other types of range-aggregate query problems in high dimensional space. Another important technique is a data structure for the ball difference range query problem, which returns a point, if there is one, in the difference of two given query balls. The ball difference data structure is the building block for the constrained AIFP data structures, and is interesting in its own right as a new high dimensional range search problem.

Related Work: There are many results for the ordinary farthest point query problem in high dimensional space [18, 19, 20, 21]. However, to the best of our knowledge, none of them is sufficient to solve the IFP problem, and our result is the first one to consider the farthest point problem under the query setting. Our technique for the IFP problem also yields solutions to other range-aggregate queries problems, including the MEB query problem.

A number of results exist for various types of the range-aggregate query problem in fixed dimensional space. In [5], Arya, Mount, and Park proposed an elegant scheme for querying minimum spanning tree inside a query range. They showed that there exists a bi-criteria (ϵ_q, ϵ_w)-approximation with a query time of $O(\log n + (1/\epsilon_q \epsilon_w)^d)$. In [10], Nekrich and Smid introduced a data structure to compute an ϵ-coreset for the case of orthogonal query ranges and aggregate functions satisfying some special properties. Xue [22] considered the colored closest-pair problem in a (rectangular) range and obtained a couple of data structures with near linear size and polylogarithmic query time. Recently, Xue et al. [23] further studied more general versions of the closest-pair problem and achieved similar results. For the MEB problem under the range-aggregate settings, Brass et al. are the first to investigate the problem in 2D space, along with other types of aggregate functions (like width and the
size of convex hull) [6]. They showed that it is possible to build a data structure with \(O(n \cdot \log(n)) \) pre-processing space/time and \(O(\log(n)) \) query time.

All the aforementioned methods were designed for fixed dimensional space, and thus are not applicable to high dimensions. Actually, range aggregation has rarely been considered in high dimensions, except for a few results that may be viewed as loosely relevant. For example, Abbar et al. [24] studied the problem of finding the maximum diverse set for points inside a ball with fixed radius around a query point. Their ideas are seemingly useful to our problem. However, since their ball always has the same fixed radius, their techniques are not directly applicable. In fact, a main technical challenge of our problem is how to deal with the arbitrary radius and location of the query range, which is overcome by our multi-scale construction framework. Another related work by Aumüller et. al. [25] has focused on random sampling in a given range. The technique is also not directly applicable to IFP.

1.1 Overviews of the Main Ideas

Below we describe the main ideas of our approaches. For simplicity, in the following we ignore the fuzziness of the query range. We approach the AIFP query problem by first looking at an easier version: given ball \(B \) and point \(q \), find an approximate farthest point in \(P \cap B \) to \(q \), with the (strong) assumption that the radius of \(B \) is a fixed constant \(r_B > 0 \), and that the distance between \(q \) and its IFP in \(P \cap B \) is within a range of \([d_{\min}, d_{\max}]\), where \(d_{\max} > d_{\min} > 0 \) are fixed constants. We call such a problem a constrained AIFP problem. We use a tuple \((r_B, d_{\min}, d_{\max})\) to denote such a constraint.

To solve the constrained AIFP problem, we develop a data structure for the ball difference (BD) range query problem, which is defined as follows: given two balls \(B_{in} \) and \(B_{out} \), find a point that lies in \(P \cap B_{in} \setminus B_{out} \). With such a data structure, it is possible to reduce an AIFP query with constraint \((r_B, d_{\min}, d_{\max})\) to a series of BD queries. Below we briefly describe the idea. Let \(r_0 = d_{\min} \), and for \(i = 1, 2, 3 \ldots \), let \(r_i = (1 + \epsilon)r_{i-1} \), where \(\epsilon > 0 \) is an approximation factor. For \(i = 0, 1, \ldots \), we try to determine whether there is a point in \(P \cap B \) whose distance to \(q \) is larger than \(r_i \). Note that this can be achieved by a BD query with \(B_{in} := B \) and \(B_{out} \) being the ball centered at \(q \) and with radius \(r_i \). By iteratively doing this, eventually we will reach an index \(j \) such that it is possible to find a point \(p \in B \cap P \) that satisfies the condition of \(||p - q|| > r_j \), but no point lies in \(P \cap B \) whose distance to \(q \) is larger than \(r_{j+1} = (1 + \epsilon)r_j \). Thus, \(p \) is a \((1 - O(\epsilon))\)-approximate farthest point to \(q \) in \(P \cap B \). From the definition of constrained AIFP query, it is not hard to see that this process finds the AIFP after at most \(O(\log_1(\epsilon) d_{max}/d_{min}) \) iterations. Every BD data structure supports only \(B_{in} \) and \(B_{out} \) with fixed radii. This means that we need to build \(O(\log_1(\epsilon) d_{max}/d_{min}) \) BD data structures for answering any AIFP query with constraint \((r_B, d_{\min}, d_{\max})\).

With the constrained AIFP data structure, we then extend it to a data structure for answering general AIFP queries. Our main idea is to use the aforementioned multi-scale construction technique to build a collection of constrained data structures, which can effectively cover (almost) all possible cases of the radius of \(B \) and the farthest distance from \(q \) to any point in \(B \cap P \). More specifically, for any AIFP query, it is always possible to either answer the query easily without using any constrained data structures, or find a constrained data structure such that the AIFP query satisfies the constraint \((r_B, d_{\min}, d_{\max})\), and thus can be used to answer the AIFP query.

For AMEB query, we follow the main idea of Badoiu and Clarkson [20], and show that an AMEB query is reducible to a sequence of AIFP queries. More discussions are left to Section [5].
2 Constrained AIFP Query

In this section, we discuss how to construct a data structure to answer constrained AIFP queries. Particularly, given any ball \(B \) and point \(q \) satisfying the constraint \((r_B, d_{min}, d_{max})\),
- the radius of \(B \) is \(r_B \),
- the distance from \(q \) to its farthest point to \(P \cap B \) is within the range of \([d_{min}, d_{max}]\).

As mentioned in last section, it is possible to reduce a constrained AIFP query to a series through (approximate) BD query data structures, which have the following definition. Let \(\xi > 0 \) be any ball. For real number \(\epsilon, \gamma \), \(\delta > 0 \) be a factor controlling the query success probability. The main result of this section is summarized as the following lemma.

Lemma 6. Let \(P \) be a set of \(n \) points in \(\mathbb{R}^d \). It is possible to build a data structure for \(P \) with size \(O_{\epsilon, \gamma}(dn^{1+p} \log^{-1}(d_{max}/d_{min})) \) in \(O_{\epsilon, \gamma}(dn^{1+p} \log^{-1}(d_{max}/d_{min})) \) time, where \(0 < \rho < 1 \) is a real number depending on \(\epsilon \) and \(\gamma \), and the constants hidden in the big-O notation depend only on \(\epsilon, \gamma \). Given any query \((B, q)\) that satisfies the constraint of \((r_B, d_{min}, d_{max})\), with probability at least \(1 - \delta \), the data structure finds an \((\epsilon, \gamma)\)-AIFP for \(q \) in \(P \cap B \) within time \(O_{\epsilon, \gamma}(dn^{p} \log^{-1}(d_{max}/d_{min})) \).

In the following, we consider an AIFP query that satisfies constraint \((r_B, d_{min}, d_{max})\). As mentioned in last section, \(P \) is to be a determined approximation factor, and \(B_0 := B(q, d_{min}) \) is the ball centered at \(q \) with radius \(d_{min} \). For integer \(i > 0 \), let \(B_{i+1} = B_i(1 + \xi) \) which is the ball obtained by enlarging the radius of \(B_i \) by a factor of \((1 + \xi)\). For \(i = 0, 1, 2, \ldots \), repeatedly perform a BD query with \(B_{in} := B \) and \(B_{out} := B_i \), until an index \(j \) is encountered such that the BD query reports a point \(p_j \) that lies in \(B_{in} \setminus B_{out} \), but returns NULL when trying to find a point in \(P \cap B \setminus B_{out} \). If \(\xi \) is a small enough constant, it is not hard to see that \(p_j \) is a good approximation of the IFP to \(q \) in \(P \cap B \). Note that in this process, no more than \(\log_{1+\xi}(d_{max}/d_{min}) \) BD queries are required. This is because the region fuzziness and \(q \) in \(P \cap B \) is at most \(d_{max} \). Thus, it is not necessary to increase the radius of \(B_{out} \) to be more than \(d_{max} \) in the BD range query. The bound on the number of BD range queries then follows from the facts that the series of BD range queries starts with a \(B_{out} \) ball of radius \(d_{min} \) and each time the radius of \(B_{out} \) is increased by a factor of \((1 + \xi)\). This process is similar to peel a constant portion of \(B_{in} \) each time by \(B_{out} \). See Figure 1 for an illustration.

The above discussion suggests that a constrained AIFP data structure can be built through (approximate) BD query data structures, which have the following definition. Let \(\xi > 0 \) be an approximation factor. A data structure is called \(\xi \)-error BD for a point set \(P \), if given any balls \(B_{in} \) and \(B_{out} \), it answers the following query (with high success probability):

1. If there exists a point in \(P \cap (B_{in} \setminus B_{out}) \), the data structure returns a point in \(P \cap (B_{in}(1 + \xi) \setminus B_{out}((1 + \xi)^{-1})) \).
2. Otherwise, it returns a point in \(P \cap (B_{in}(1 + \xi) \setminus B_{out}((1 + \xi)^{-1})) \) or NULL.

\(\xi \) Throughout this paper we use similar notations. Let \(q \) be any point and \(x > 0 \) be real number. Then, \(B(q, x) \) denotes the ball centered at \(q \) and with radius \(x \). Let \(B \) be any ball. For real number \(y > 0 \), we let \(B(y) \) denote the ball obtained by enlarging (or shrinking if \(y < 1 \)) the radius of \(B \) by a factor of \(y \).
The details of how to construct a ξ-error BD data structure is left to the next subsection. Below is the main result of the BD query data structure for $\xi > 0$, fixed constant $r_{in} > 0$, $r_{out} > 0$ and success probability controlling factor $0 < \delta < 1$.

Lemma 7. It is possible to build a ξ-error BD query data structure of size $O_\xi(dn^{1+\rho}\log\delta^{-1})$ in $O_\xi(dn^{1+\rho}\log\delta^{-1})$ time, where $0 < \rho < 1$ depends only on ξ. The query time of this data structure is $O_\xi(dn^\rho\log\delta^{-1})$. For any pair of query balls B_{in} and B_{out} with radius r_{in} and r_{out}, respectively, the data structure answers the query with success probability at least $1 - \delta$.

Note that each BD query data structure works only for query balls B_{in} and B_{out} with fixed radii r_{in} and r_{out}, respectively. This means that the constrained AIFP data structure should consist of multiple BD data structures with different values of r_{in} and r_{out}.

From the above discussion, we know that a constrained AIFP data structure can be built by constructing a sequence of $\log(d_{max}/d_{min})$ BD data structures with $r_{in} := r_B$ and r_{out} being d_{min}, $(1 + \xi)d_{min}$, $(1 + \xi)^2d_{min}$, ... Such a data structure will allow us to answer constrained AIFP queries using the ball peeling strategy.

Given any constants $\epsilon > 0$, $\gamma > 0$, $0 < \delta < 1$, and constraint (r_B, d_{min}, d_{max}), the following Algorithm 1 builds a constrained AIFP data structure for a given point set P. The data structure is simply a collection of BD query data structures.

With such a collection of BD query data structures, we can answer any constrained AIFP query satisfying (r_B, d_{min}, d_{max}) by applying the ball peeling strategy mentioned before. The algorithm is formally described as the Algorithm 2 below.

By some simple calculation, we know that the probability that all the BD queries in Algorithm 2 are successful is at least $1 - \delta$, and when this happens, the output point p_{ans} is an (ϵ, γ)-AIFP of q in $B \cap P$. This is summarized as the following lemma.
2.1 The BD Query Scheme

In this subsection we present the BD query scheme. To our best knowledge, this is the first theoretical result to consider the BD range search problem. A very special case of BD query called the “annulus queries” where the two balls are co-centered is studied in [27]. Nonetheless, the technique is not directly applicable to general BD queries. Our BD range query scheme is based on the classic Locality Sensitive Hashing (LSH) technique [28, 29, 17] which has been a somewhat standard technique for solving the proximity problems in high dimensional space. The main idea of LSH is to utilize a family of hash functions (called an LSH family) that have some interesting properties. Given two points p and q in \mathbb{R}^d, if we randomly pick a function h from the LSH family, the probability that the event of $h(p) = h(q)$ happens will be high if $\|p - q\|$ is smaller than a threshold value, and the probability for the same event will be lower if $\|p - q\|$ is larger. Such a property of the LSH family allows us to develop hashing and bucketing based schemes to solve similarity search problems in high dimensional space. Below is the definition of an LSH family.

Definition 9. Let $0 < r_1 < r_2$ and $1 > P_1 > P_2 > 0$ be any real numbers. A family $\mathcal{H} = \{h: \mathbb{R}^d \rightarrow U\}$, where U can be any set of objects, is called (r_1, r_2, P_1, P_2)-sensitive, if for any $p, q \in \mathbb{R}^d$.

Algorithm 1 Build-CAIFP($P; \epsilon, \gamma, \delta; r_B, d_{min}, d_{max}$)

Input: A \mathbb{R}^d point set P with cardinality n. Constants $\epsilon > 0, \gamma > 0, 0 < \delta < 1$. Constraint tuple (r_B, d_{min}, d_{max}).

Output: A number of BD-Query data structures built with different parameters.

1. Let $\xi = \min\{(1-\epsilon)^{-1/2}-1, \gamma\}$. Construct a sequence of real numbers $r_0, r_1, r_2, \ldots, r_m$, by letting $r_0 = d_{min}, m$ be the integer such that $r_0(1+\xi)^{m-1} < d_{max}$ and $r_0(1+\xi)^m \geq d_{max}$, $r_i = (1+\xi)r_{i-1}$ for $i = 1, 2, \ldots, m$, and $\delta' = \delta/m$.
2. FOR $i = 0, 1, 2, \ldots, m$, build a ξ-error BD query data structure for query balls with radii $r_{in} = r_B$ and $r_{out} = r_i$, with query success probability at least $1 - \delta'$.

Algorithm 2 Query-CAIFP(B, q)

Input: A constrained AIFP query (B, q) with constraint (r_B, d_{min}, d_{max}).

Output: A point p_{ans} that is an approximate farthest point in $B \cap Q$ to p, or NULL if no such point exists.

1. Initialize variable $p_{ans} \leftarrow$ NULL.
 Note: In the following, we use m and r_i for $i = 0, 1, \ldots, m$ as in Algorithm 1
2. FOR i from 0 to m: Make a query $(B, B_{out,i})$ to the BD-Query data structure BD_i, by letting $B_{out,i} := B(q, r_i)$. If the query answer is NULL, Return p_{ans}. Otherwise update p_{ans} to be the query answer.
3. Return p_{ans}.

Lemma 8. With probability at least $1 - \delta$, Algorithm 2 outputs a point $p_{ans} \in B(1 + \gamma)$ such that for any $q \in B \cap P$, $\|p_{ans} - p\| \geq (1 - \epsilon)\|q - p\|$.

Next we analyze the space/time complexity of the AIFP scheme. The query data structure is a combination of $m = O_{\epsilon, \gamma}(\log(d_{max}/d_{min}))$ BD data structures. From the discussion of BD data structures (see Lemma 7), every BD query data structure we build has space/time complexity $O_{\epsilon, \gamma}(dn^{1+p}\log\delta^{-1})$ where $0 < p < 1$ depends only on ϵ, γ. Each BD query takes $O_{\epsilon, \gamma}(dn^p\log\delta^{-1})$ time. Lemma 6 then follows.
In-Range Farthest Point Queries in High Dimensions

1. If \(|p - q| \leq r_1\), then \(Pr_H[h(p) = h(q)] \geq P_1\).
2. If \(|p - q| > r_2\), then \(Pr_H[h(p) = h(q)] \leq P_2\).

It was shown in [17] that for any dimension \(d\) and any \(r > 0\), \(c > 1\), an \((r, cr, P_1, P_2)\)-sensitive family \(H\) exists, where \(1 > P_1 > P_2 > 0\) depends only on \(c\). Every hash function \(h(p) : \mathbb{R}^d \rightarrow \mathbb{Z}\) maps a point \(p\) in \(\mathbb{R}^d\) to an integer, and \(h(p)\) has the form \(h(p) = \lfloor \frac{ap + b}{r} \rfloor\) for some \(\mathbb{R}^d\) vector \(a\) and integers \(b, r\). It takes \(O(d)\) time to sample a hash function \(h\) from such a family and compute \(h(p)\). Our data structure will make use of two such families. Let \(H_{in}\) be an \((r_{in}, (1 + \xi)r_{in}, P_1, P_2)\)-sensitive family, and \(H_{out}\) be a \(((1 + \xi)^{-1}r_{out}, r_{out}, P_1, P_2)\)-sensitive family, where \(0 < P_1, P_2 < 1\) are constants depending only on \(\xi\), as described in [17].

Given any BD-query \((B_{in}, B_{out})\) with the centers of the balls being \(o_{in}, o_{out}\) respectively, the family \(H_{in}\) helps us to identify points that are close enough to \(o_{in}\) (and therefore lie in \(B_{in}\)), and \(H_{out}\) helps us to identify points that are far away enough from \(o_{out}\) (and therefore lie outside of \(B_{out}\)).

High level idea: Our approach is based on a novel bucketing and query scheme that utilizes the properties of the LSH family. Before presenting the technical details, we first illustrate the high level idea. For convenience, we assume for now that the functions in \(H_{in}\) and \(H_{out}\) have range \(\{0, 1\}\) (this is achievable by some simple modification to these hash function families). We use a randomized process to create a hybrid random hash function \(S(\cdot)\) that maps any point in \(\mathbb{R}^d\) to a bit string. Such a function \(S(\cdot)\) is a concatenation of a number of hash functions drawn from \(H_{in}\) and \(H_{out}\). Given \(p \in \mathbb{R}^d\), \(S(\cdot)\) applies the aforementioned hash functions (drawn from \(H_{in}\) and \(H_{out}\)) on \(p\) to obtain a bit-string. With such a function \(S(\cdot)\), consider comparing the bit-strings of \(S(p), S(q)\) for points \(p, q \in \mathbb{R}\). Intuitively, based on the properties of \(H_{in}\) and \(H_{out}\), we know that if \(p, q\) are close enough, \(S(p)\) and \(S(q)\) should have many common bits in positions that are determined by functions from \(H_{in}\). Contrarily, if \(p, q\) are far away, \(S(p)\) and \(S(q)\) should have only a few common bits in positions that are determined by functions from \(H_{out}\).

For every point \(p \in P\), we use \(S(p)\) to compute a bit-string label for \(p\), and put \(p\) into the corresponding buckets (i.e., labeled with the same bit-strings). To answer a given BD query \(B_{in}, B_{out}\) with centers of the balls being \(o_{in}, o_{out}\), respectively, we compute \(S(o_{in})\) and \(S(o_{out})\). Note that, based on the above discussion, we know that if a point \(p\) satisfies the condition of \(p \in B_{in} \setminus B_{out}\), then \(S(p)\) and \(S(o_{in})\) should have many common bits in the positions determined by \(H_{in}\), and \(S(p)\) and \(S(o_{out})\) should have few common bits in the positions determined by \(H_{out}\). Thus, by counting the number of common bits in the labels, we can then locate buckets that are likely to contain points close to \(o_{in}\) and far away from \(o_{out}\), i.e., points are likely to be in \(B_{in} \setminus B_{out}\). To achieve the desired outcome, we will create multiple sets of buckets using multiple random functions \(S(p)\).

Details of the Algorithms: After understanding the above general idea, we now present the data structure and the query algorithm along with the analysis. Let \(P'_1 = (1 + P_1)/2, P'_2 = (1 + P_2)/2, \eta = (P'_1 - P'_2)/3, a = \lfloor (2P'_1 \ln 3)/\eta^2 \rfloor, P''_1 = 2^{-2a+4}/9, P''_2 = 2^{-2a+3}, b = \lfloor \log_{1/P''_2} n \rfloor, \rho = \ln 1/\rho', c = \lceil n^\rho/P''_1 \rceil\). Let \(F_Z\) be a function that maps every element in \(\mathbb{Z}\) randomly to 0 or 1, each with probability 1/2. The following Algorithm [13] shows how to construct a \(\xi\)-error BD range query data structure for any point set \(P\) and radii \(r_{in}\) and \(r_{out}\). The data structure consists of \(c\) groups of buckets, each created using a random function \(S(p)\) that maps a point to a bit-string of total length \(2ab\).

With the BD range query data structure created by the Algorithm [13] we can use the Algorithm [14] below to answer a BD range query for any given pair of balls \((B_{in}, B_{out})\).

The main idea of the algorithm compute a bit-string label \(S\) for the query, then examine points in buckets with labels that satisfy certain properties (e.g., should have enough common
For any \(X \) the hash functions to determine each of the bits are drawn independently, an estimation \(P \) from one of the examined buckets will be high if there exists a point in \(Z \). Huang and J. Xu.

Proof.

Let \(P \) be the probability that the \(i \)-th bit of \(p \) is 1. For every point \(p \in P \) and \(i = 1, 2, \ldots, c \), \(p \) appears in one of the buckets in \(G_i \).

1. Initialize \(G_i, i = 1, 2, \ldots, c \), as empty sets. Each \(G_i \) will be used as a container for buckets.
2. Randomly sample \(abc \) functions from family \(H_{in} \), and also \(abc \) functions from family \(H_{out} \). Denote these functions as \(h_{in,i,j,k} \) and \(h_{out,i,j,k} \), for integers \(1 \leq i \leq a, 1 \leq j \leq b, 1 \leq k \leq c \). For every \(h_{in,i,j,k} \), \(h_{out,i,j,k} \) and every \(p \in P \), compute \(F_Z(h_{in,i,j,k}(p)) \) and \(F_Z(h_{out,i,j,k}(p)) \).
3. FOR \(k \) from 1 to \(c \):
 - For every point \(p \in P \), we create a bit-string \(S(p) \) that concatenates \(\text{LAB}_{in}(p, 1), \text{LAB}_{out}(p, 1), \text{LAB}_{in}(p, 2), \text{LAB}_{out}(p, 2), \ldots \), \(\text{LAB}_{in}(p, b), \text{LAB}_{out}(p, b) \): For \(j \) from 1 to \(b \), let \(\text{LAB}_{in}(p, j), \text{LAB}_{out}(p, j) \) be a pair of bit-strings of length \(a \), each with the \(i \)-th bit being \(F_Z(h_{in,i,j,k}(p)) \), \(F_Z(h_{out,i,j,k}(p)) \), respectively, for \(i = 1, 2, \ldots, a \).
 - IF there is already a bucket \(G \) in \(G_i \) with label \(S(G) = S(p) \), DO: Put \(p \) into \(G \).
 - ELSE, DO: Create a new bucket \(G \) and put \(p \) into \(G \), set the label of \(G \) as \(S(G) = S(p) \). Put \(p \) into \(G \).

Algorithm 3: CreateBuckets(\(P; \xi, r_{in}, r_{out} \))

Input: A point set \(P \). Parameters \(\xi > 0, r_{in} > 0, r_{out} > 0 \).

Output: \(G_1, G_2, \ldots, G_c \). Each \(G_i \) is a collection of buckets (i.e., sets of points of \(P \)). Each bucket \(G \in G_i \) is labeled with a bit-string, which is a concatenation of sub-bit-strings \(\text{LAB}_{in}(G, 1), \text{LAB}_{out}(G, 1), \text{LAB}_{in}(G, 2), \text{LAB}_{out}(G, 2), \ldots, \text{LAB}_{in}(G, b), \text{LAB}_{out}(G, b) \). For every \(p \in P \) and \(i = 1, 2, \ldots, c \), \(p \) appears in one of the buckets in \(G_i \).

In the following we show the correctness of Algorithm 4. Consider the for loop in Step 1 of Algorithm 4 when answering a query \((B_{in}, B_{out}) \). Using the notations from Algorithm 4 for any \(k \) from 1 to \(c \) in Step 1, we have the following lemma, which shows that if a point in \(P \) lies in (or outside of) the query range, the number of common bits between its bucket label and the label computed from the query would likely (or unlikely) be high, respectively.

Lemma 10. Let \(p \in P \) be a point that lies in \(B_{in} \backslash B_{out} \), and \(q \in P \) be a point that does NOT lie in \(B_{in}(1+\xi) \backslash B_{out}((1+\xi)^{-1}) \). Let \(S(p) = \text{LAB}_{in}(p, 1), \text{LAB}_{out}(p, 1), \text{LAB}_{in}(p, 2), \text{LAB}_{out}(p, 2), \ldots, \text{LAB}_{in}(p, b), \text{LAB}_{out}(p, b) \) and \(S(q) = \text{LAB}_{in}(q, 1), \text{LAB}_{out}(q, 1), \text{LAB}_{in}(q, 2), \text{LAB}_{out}(q, 2), \ldots, \text{LAB}_{in}(q, b), \text{LAB}_{out}(q, b) \) be the labels of the bucket in \(G_k \) that contains \(p \) and \(q \), respectively. For any \(j = 1, 2, \ldots, b \), the following holds.

- \(\text{Pr}[[\text{LAB}_{in}(p, j), \text{LAB}_{out}(o_{in}, j)] \geq t_1 \land \text{LAB}_{out}(o_{out}, j)] \geq t_2] \geq \frac{4}{9} \) \(\text{Pr}[[\text{LAB}_{in}(q, j), \text{LAB}_{out}(o_{in}, j)] \geq t_1 \land \text{LAB}_{out}(o_{out}, j)] \geq t_2] \leq \frac{1}{3} \).

Proof. Since \(p \in B_{in} \backslash B_{out} \), we have \(\| p - o_{in} \| \leq r_{in} \) and \(\| p - o_{out} \| \geq r_{out} \). For any hash function \(h_1 \in H_{in} \) and \(h_2 \in H_{out} \), \(\text{Pr}[h_1(p) = h_1(o_{in})] \geq P_1 \) and \(\text{Pr}[h_2(p) = h_2(o_{out})] \leq P_2 \). Thus, we have \(\text{Pr}[F_Z(h_1(p)) = F_Z(h_1(o_{in}))] \geq (P_1 + 1)/2 \) and \(\text{Pr}[F_Z(h_2(p)) = 1 - F_Z(h_2(o_{out}))] \leq (1 - P_2)/2 \). This means that for any \(i = 1, 2, \ldots, a \), the probability that the \(i \)-th bit of \(\text{LAB}_{in}(p, j) \) is the same as that of \(\text{LAB}_{in}(o_{in}, j) \) is at least \(P_1 = (P_1 + 1)/2 \). Since the hash functions to determine each of the bits are drawn independently, an estimation of \(X = \text{COM(\text{LAB}_{in}(p, j), \text{LAB}_{in}(o_{in}, j))} \) can be obtained by \(\text{Pr}[F_Z(h_1(p)) = F_Z(h_1(o_{out}))] \geq (P_1 + 1)/2 \) using the concentration inequalities for binomial distributions. Using a variant of
In-Range Farthest Point Queries in High Dimensions

Algorithm 4 BD-Query(B_{in}, B_{out})

Input: Two \mathbb{R}^d balls: B_{in} with center o_{in} and radius r_{in}, and B_{out} with center o_{out} and radius r_{out}. Assume that collections $G_1, G_2, \ldots G_c$ have already been generated by algorithm CreateBucket.

Output: A point $p \in Q$, or NULL.

Note: The algorithm probes a number of points in the buckets of $G_1, G_2, \ldots G_c$ until a suitable point is found as the output, or terminates and returns NULL when no such point can be found or the number of probes exceeds a certain limit.

1. Do the following, but terminate and return NULL when $3c$ points are examined: FOR k from 1 to c:
 - Create a bit string S that concatenates LAB$_{in}(o_{in}, 1)$, LAB$_{out}(o_{out}, 1)$, LAB$_{in}(o_{in}, 2)$, LAB$_{out}(o_{out}, 2)$, \ldots, LAB$_{in}(o_{in}, b)$, LAB$_{out}(o_{out}, b)$: For j from 1 to b, let LAB$_{in}(o_{in}, j)$, LAB$_{out}(o_{out}, j)$ be a pair of bit strings of length a, with the i-th bit of each string being $F_Z(h_{in,i,j,k}(o_{in}))$, $1 - F_Z(h_{out,i,j,k}(o_{out}))$, respectively, for $i = 1, 2, \ldots a$.
 - Create a bit string S' that concatenates LAB$'_{in}(1)$, LAB$'_{out}(1)$, LAB$'_{in}(2)$, LAB$'_{out}(2)$, \ldots, LAB$'_{in}(b)$, LAB$'_{out}(b)$: Each of these sub bit strings is a random bit string of length a, drawn uniformly randomly from $\{0, 1\}^a$.
 - If there exists some integer j such that COM(LAB$_{in}(o_{in}, j)$, LAB$'_{in}(j)$) $< t_1$ or COM(LAB$_{out}(o_{out}, j)$, LAB$'_{out}(j)$) $< t_2$, where COM(x, y) counts the number of common digits of 2 bit strings x, y, $t_1 = P'_1 a - \eta a, t_2 = (1 - P_2)a/2 - \eta a$ CONTINUE.
 - If there is no bucket in G_k that is labeled with S', CONTINUE.
 - Examine all the points in the bucket G in G_k that is labeled with S'. Stop when there is a point $p \in G$ such that $p \in B_{in}(1 + \xi) \setminus B_{out}((1 + \xi)^{-1})$. Return p.

2. Return NULL if no point is returned in the above process.

The Chernoff inequalities from [30], we have

$$\Pr[X \leq P'_1 a - \eta a] \leq e^{-\eta^2 a^2 / (2P'_1 a)}.$$

From the definition of the parameters, we know that $\Pr[X \leq P'_1 a - \eta a] \leq 1/3$ (by simple calculation). Thus, we have $\Pr[X \geq t_1] \geq 2/3$.

Let $Y = \text{COM}(\text{LAB}_{out}(p, j), \text{LAB}_{out}(o_{out}, j))$. From $\Pr[F_Z(h_2(p))] = 1 - F_Z(h_2(o_{out})) \leq (1 - P_2)/2$ and using a similar argument as above, we can also obtain $\Pr[Y \geq t_2] \geq 2/3$ (the details are omitted). Since the hash functions are drawn independently, we have $\Pr[X \geq t_1 \wedge Y \geq t_2] \geq 4/9$.

In the following we discuss the case that $q \notin B_{in}(1 + \xi) \setminus B_{out}((1 + \xi)^{-1})$. This means either $\|q - o_{in}\| \geq (1 + \xi)r_{in}$ or $\|q - o_{out}\| \leq (1 + \xi)^{-1}r_{out}$. We first consider the case $\|q - o_{in}\| \geq (1 + \xi)r_{in}$. For any hash function $h_1 \in \mathcal{H}_{in}, \Pr[h_1(q) = h_1(o_{in})] \leq P_2$. Thus, we have $\Pr[F_Z(h_1(q))] = F_Z(h_1(o_{in})) \leq (P_2 + 1)/2$. This means that for any $i = 1, 2, \ldots, a$, the probability that the i-th bit of LAB$_{in}(q, j)$ is the same as that of LAB$_{in}(o_{in}, j)$ is at most $P'_2 = (P_2 + 1)/2$. Again, we use a concentration inequality to obtain an estimation of $X = \text{COM}(\text{LAB}_{in}(q, j), \text{LAB}_{in}(o_{in}, j))$. Using a variant of the Chernoff inequalities from [30], we have

$$\Pr[X \geq P'_2 a + \eta a] \leq e^{-\eta^2 a^2 / (2P'_2 a + \eta a/3)}.$$

Note that $a = (2P'_1 \ln 3)/\eta^2 \geq ((2P'_2 + \eta/3) \ln 3)/\eta^2$, which implies that $e^{-\eta a^2 / (2P'_2 a + \eta a/3)} \leq 1/3$ (by simple calculation). Thus, we have $\Pr[X \geq P'_2 a + \eta a] \leq 1/3$. Also, since $P'_2 a + \eta a < P'_1 a - \eta a = t_1$, we get $\Pr[X \geq t_1] \leq 1/3$. This immediately implies that $\Pr(\text{COM}(\text{LAB}_{in}(q, j), \text{LAB}_{in}(o_{in}, j)) \geq t_1 \wedge \text{COM}(\text{LAB}_{out}(q, j), \text{LAB}_{out}(o_{out}, j)) \geq t_2) \leq 1/3$.

The probability for the case \(\|q - o_{\text{out}}\| \leq (1 + \xi)^{-1}r_{\text{out}}\) is similar. Thus, we omit it here. This completes the proof.

From the above lemma, we can conclude the following by basic calculation. For any \(k\) from 1 to \(c\) in Step 1 of Algorithm 4 (if the loop is actually executed), let \(p \in P\) be a point that lies in \(B_{\text{in}} \setminus B_{\text{out}}\), and \(q \in P\) be a point that does NOT lie in \(B_{\text{in}}(1 + \xi) \setminus B_{\text{out}}((1 + \xi)^{-1})\), we have the following.

\[\text{Lemma 11. Let } G_p \text{ and } G_q \text{ be the buckets in } G_k \text{ that contain } p \text{ and } q, \text{ respectively. The probability for } G_p \text{ to be examined is no smaller than } 2^{-2ab}(4/9)^b = (P_1^n)^b, \text{ and the probability for the event “ALL such } G_p \text{ for } k \text{ from } 1 \text{ to } c \text{ are NOT examined” is at most } (1 - (P_1^n)^b)^c \leq 1/e. \text{ The probability for } G_q \text{ to be examined is no larger than } 2^{-2ab}(1/3)^b = (P_2^n)^b \leq 1/n.\]

With the above lemma, we can obtain the following lemma using an argument similar to [28] for near neighbor search with LSH. This proves the correctness of the query scheme.

\[\text{Lemma 12. If there exists a point in } P \text{ that lies in } B_{\text{in}} \setminus B_{\text{out}}, \text{ with probability at least } 1/4, \text{ Algorithm 4 reports a point in } P \text{ that lies in } B_{\text{in}}(1 + \xi) \setminus B_{\text{out}}((1 + \xi)^{-1}).\]

The complexity of the data structure is \(O(dabcn)\), which is \(O_{\xi}(dn^{1+\rho} \log n)\) from \(a = O_{\xi}(1), b = O_{\xi}(\log n)\) and \(c = O_{\xi}(n^\rho)\), and \(p\) and the constant hidden in the big-O notation depends only on \(\xi\). The query time is \(O(abcd)\), which is \(O_{\xi}(dn^\rho \log n)\). To achieve \(1 - \delta\) success probability, it suffices to concatenate \(O(\log \delta)\) such data structures together.

We leave the proof of the above 2 lemmas and the full proof of Lemma 7 to the appendix for readability.

3 Multi-scale Construction

In this section, we present the multi-scale construction method, which is a standalone technique with potential to be used to other high dimensional range-aggregate query problems.

The multi-scale construction method is motivated by several high dimensional geometric query problems that share the following common feature: they are challenging in the general settings, but become more approachable if some key parameters are known in advance. The AIFP query problem discussed in this paper is such an example. In the previous section, we have shown how to construct an AIFP data structure if we fix the size of the query ball and know that the farthest distance lies in a given range.

The basic ideas behind multi-scale construction are the follows. Firstly, we know that if a problem is solvable when one or more key parameters are fixed, a feasible way to solve the general case of the problem is to first enumerate all possible cases of the problem defined by (the combinations of) the values of the parameters. Then, solve each case of the problem, and finally obtain the solution from that of all the enumerated cases. The multi-scale construction method follows a similar idea. More specifically, to obtain a general AIFP query data structure, the multi-scale construction method builds a set of constrained AIFP query data structures that cover all possible radii of \(B\) and farthest distance value. Secondly, since it is impossible to enumerate the infinite number of all possible values for these parameters, our idea is to sample a small set of fixed radii (based on the distribution of the points in \(P\)) and build constrained AIFP data structures only for the set of sampled values. This will certainly introduce errors. However, good approximations are achievable by using a range cover technique.

Below we first briefly introduce two key ingredients of our method, Aggregation Tree and Range Cover, and then show how they can be used to form a multi-scale construction.
3.1 Aggregation Tree and Range Cover

In this subsection, we briefly introduce the two components of the multi-scale construction scheme: the *aggregation tree* and the *range cover* data structure. We first introduce aggregation tree, which is used in [31] as an ingredient of the range cover data structure. It is essentially a slight modification of the Hierarchical Well-Separated Tree (HST) introduced in [32]. Below is the definition of an aggregation tree: (1) Every node \(v \) (called aggregation node) represents a subset \(P(v) \) of \(P \), and the root represents \(P \); (2) Every aggregation node \(v \) is associated with a representative point \(r_e(v) \in P(v) \) and a size \(s(v) \). Let \(\text{Dia}(P(v)) \) denotes the diameter of \(P(v) \), \(s(v) \) is a polynomial approximation of \(\text{Dia}(P(v)) \): \(\text{Dia}(P(v)) \leq s(v) \), and \(s(v) \) is upper-bounded by a polynomial function \(\mathcal{P}_{\text{HST}}(n,d) \geq 1 \) (called distortion polynomial); (3) Every leaf node corresponds to one point in \(P \) with size \(s(v) = 0 \), and each point appears in exactly one leaf node; (4) The two children \(v_1 \) and \(v_2 \) of any internal node \(v \) form a partition of \(v \) with \(\max\{s(v_1), s(v_2)\} < s(v) \); and (5) For every aggregation node \(v \) with parent \(v_p \), \(\frac{s(v_p)}{r_{\text{out}}} \) is bounded by the distortion polynomial \(\mathcal{P}_{\text{HST}}(n,d) \geq 1 \), where \(r_{\text{out}} \) is the minimum distance between points in \(P(v) \) and points in \(P \setminus P(v) \).

The above definition is equivalent to the properties of HST in [32], except that we have an additional distortion requirement (Item 5). See Figure 2 for example of an aggregate tree.

![Figure 2](image.png)

An illustration of an aggregation tree built for 6 points.

An aggregation tree can be constructed in \(O(dn \log^2 n) \) time using the method in [32]. It is proved in [32] that the distortion polynomial is \(\mathcal{P}_{\text{HST}}(n,d) = dn \). In the rest of the paper, we always assume that the distortion of an aggregation tree is \(\mathcal{P}_{\text{HST}}(n,d) = dn \).

Algorithm 5 RangeCover\((T_P; \lambda, \Delta)\)

Input: An aggregation tree \(T_P \) built over a set \(P \) of \(n \) points in \(\mathbb{R}^d \), controlling factors \(0 < \lambda < 1 \) and an integer \(\Delta \geq 4\mathcal{P}_{\text{HST}}(n,d) \).

Output: A number of buckets, where each bucket stores a number of tree nodes. Each bucket \(B_t \) is indexed by an integer \(t \) and associated with an interval \(((1+\lambda)^t, (1+\lambda)^{t+1}] \).

1. For every integer \(t \) create an empty bucket \(B_t \) associated with interval \(((1+\lambda)^t, (1+\lambda)^{t+1}] \). (Note that \(B_t \) will not be actually created until some tree node \(v \) is inserted into it.)
2. For every non-root node \(v \) of \(T_P \), let \(v_p \) be its parent in \(T_P \), \(r_H \) be \(s(v_p)/\lambda \), and \(r_L \) be \(\max\{s(v)/\lambda, s(v_p)/\Delta\} \). Do
 - For every integer \(t \) satisfying inequality \(r_L \leq (1+\lambda)^t < r_H \), insert \(v \) into bucket \(B_t \).
In the following, we briefly introduce range cover. Range cover is a technique proposed in [31] for solving the truth discovery problem in high dimensions. We utilize it in a completely different way to form a multi-scale construction for the AIFP query problem. Below is the algorithm (Algorithm 5). Given an aggregation tree T_λ and real number parameters $\Delta \geq 8n$ and $0 < \lambda < 1$ (whose values will be determined later), the range cover algorithm creates a number of buckets for the nodes of T_λ. Each bucket B_t is associated with an interval of real numbers $((1 + \lambda)^t, (1 + \lambda)^{t+1}]$. If a value r lies in the interval of a bucket B_t, it can be shown that the diameter of every aggregation node v is small compared to r, and thus all points in $P(v)$ can be approximately viewed as one “heavy” point located at the representative point $re(v)$. Intuitively, every bucket from the range cover algorithm provides a view of P when observed from a distance r in the range of the bucket, where each node in the bucket represents a “heavy” point that is formed by the aggregation of a set of close (compared to the observing distance) clusters of points in P. Thus, the buckets of the range cover provides views of the input point set at different scales of observing distances (see Figure 3 for an illustration). The size of the output data structure is only $O(n \log n \Delta)$, as shown in [31].

![Figure 3 An illustration of range cover. The nodes in every bucket can be viewed as “heavy” points yielded by the aggregation of a set of close points. Every bucket provides a view of the input point set when observed from a certain distance. All the buckets jointly form a complete set of views of the input points at all possible scales.](image)

Note that for many problems, fixing some key parameters also means fixing the “observing distance” of P from the perspective of solving the problem. This allows us to solve the problem based on the view of P provided by the bucket associated with the corresponding observation distance. We will show that this idea also applies to the AIFP problem.

3.2 Multi-scale Construction for AIFP

In this subsection, we use AIFP problem as an example to show how to implement multi-scale construction using the range cover data structure.

We first observe that every bucket of the range cover can be used to solve a constrained AIFP problem (with the proof given later). Given an AIFP query (B, q), if the (approximate) distance from q to a point in $P \cap B$ is known and falls in the interval of $((1 + \lambda)^t, (1 + \lambda)^{t+1}]$, then the (approximate) distance from q to a point of $B_t \cap B$ (where every node v in B_t is viewed as a “heavy” point located at $re(v)$) is an AIFP of q in $P \cap B$. This means that B_t provides a good “sketch” of P that allows more efficient computation of the AIFP of q in $P \cap B$. This observation leads to the main idea of the multi-scale construction method. To obtain a general AIFP query data structure, for every bucket B_t, we construct a constrained AIFP data structure for B_t (viewed as a set of “heavy” points), exploiting the assumption
that the farthest distance is in the interval of $[(1 + \lambda)^t, (1 + \lambda)^{t+1}]$. To answer a general AIFP query, we can find the AIFP for every bucket by querying the constrained AIFP data structures associated with the bucket. In this way, we can compute AIFPs for all possible radii. When answering a general AIFP query, we first determine an approximate farthest distance of q to $P \cap B$, and then query the appropriate constrained AIFP data structures. Despite the necessity of building multiple constrained data structures, the complexity of the multi-scale construction is not high, as the total number of nodes in all buckets is only $\tilde{O}(n)$.

However, the above idea is hard to implement, because each bucket B_i is only responsible for a small range $[(1 + \lambda)^t, (1 + \lambda)^{t+1}]$ of the possible farthest distance from q to $P \cap P$. This means that we need an accurate estimation of this distance when answering the query, which is almost as hard as the query itself. We resolve this issue by merging multiple consecutive buckets into a larger one. The resulting bucket can account for a larger range of the possible farthest distances. We then build a constrained data structure for each bucket.

This leads to the following Multi-Scale algorithm. Let $\Gamma \geq 1$ be an integer constant to be determined, and \mathcal{A} be an algorithm for building a constrained data structure. In this algorithm, for each integer t, we try to merge the aggregation nodes in buckets $B_t, B_{t+1}, \ldots, B_{t+\Gamma}$ from the range cover (recall that these buckets are associated with farthest distance ranges $[(1 + \lambda)^t, (1 + \lambda)^{t+1}], [(1 + \lambda)^{t+1}, (1 + \lambda)^{t+2}], \ldots, [(1 + \lambda)^{t+\Gamma}, (1 + \lambda)^{t+\Gamma+1}]$, respectively) into one bucket B_t^+ that could account for a larger range $[(1 + \lambda)^t, (1 + \lambda)^{t+\Gamma+1}]$. We then use \mathcal{A} to build a data structure \mathcal{S}_t for every bucket B_t^+ (by viewing every node in B_t^+ as a point).

Algorithm 6 Multi-Scale($T_P; \lambda, \Delta, \Gamma; \mathcal{A}$)

Input: An aggregation tree T_P built over a set P of n points in \mathbb{R}^d; controlling factors $0 < \lambda < 1$, integer $\Delta \geq 4P_{HST}(n, d) = 4dn$, and integer $\Gamma \geq 1$. A routine \mathcal{A} which builds a constrained data structure for any given bucket B_t and point set $re(B_t^+) := \{re(v) \mid v \in B_t^+\}$.

Output: A number of buckets, with each storing a number of tree nodes. Each bucket B_t^+ is indexed by an integer t and associated with an interval $[(1 + \lambda)^t, (1 + \lambda)^{t+\Gamma+1}]$. Each bucket B_t^+ is associated with data structure \mathcal{S}_t built by \mathcal{A}.

1. Create a collection of buckets $\{B_t\}$ by calling RangeCover($T_P; \lambda, \Delta(1 + \lambda)^\Gamma$).
2. For each integer t create an empty bucket B_t^+ associated with $[(1 + \lambda)^t, (1 + \lambda)^{t+\Gamma+1}]$.
3. For every non-root node v of T_P, enumerated in a bottom-up manner in T_P so that the children of a node is always visited earlier than the parent node, put v into B_t^+ for every t such that the following is satisfied:

 \[s(v) \leq \lambda(1 + \lambda)^t, \quad v \text{ appears in } B_t \in \{B_t\} \text{ for some } t \leq t' \leq t + \Gamma, \text{ and none of } v \text{'s descendants are put in } B_t^+ \text{ previously.} \]

4. For every non-empty bucket B_t^+, create a data structure \mathcal{S}_t using \mathcal{A} for the point set $re(B_t^+) := \{re(v) \mid v \in B_t^+\}$.

For better understanding of this scheme, we first briefly discuss the geometric properties of the buckets created by Algorithm 6. Intuitively speaking, the aggregation nodes of every bucket provide a sketch of almost the whole input point set P, with the exception being points that satisfying some special isolation property. This can be briefly described as follows: (1) The diameter of each the aggregation node (viewed as a point set) should be small to the observation distances; (2) The aggregation nodes are mutually disjoint; and (3) Every point $p \in P$ is either in one of the nodes in the bucket, or it is in an aggregation node (not in the bucket) whose distance to other nodes is large. These properties are formalized as follows. (We leave the proofs of all the following claims and lemma to the full version of the paper.)

\[\text{Claim 13. Let } v \text{ be any aggregation node } v \text{ in a created bucket } B_t^+. \text{ Then, } s(v) \leq \lambda(1 + \lambda)^t. \]
Lemma 14. For any $p \in P$ and and bucket B_i^+ created by Algorithm 6, one of the following holds:
1. There exists exactly one aggregation node $v \in B_i^+$ such that $p \in P(v)$.
2. Either B_i^+ is empty or there exists no aggregation node $v \in B_i^+$ such that $p \in P(v)$. There exists an aggregation node v' in T_P such that $s(v')/\lambda \leq (1 + \lambda)^t$. Furthermore, let q be any point in $P \setminus P(v')$, then $\|p - q\| > (\Delta/d_n)(1 + \lambda)^{t+\Gamma}$.

Proof. Note that for any two nodes of the aggregation tree T_P, either the associated point sets of the two nodes are disjoint, or one of the node is a descendant of the other. Since in Algorithm 6, we avoid putting a node in B_i^+ when the node’s descendant is already in B_i^+. Thus the associated sets of the nodes in B_i^+ are disjoint. Clearly there exists no more than one $v \in B_i^+$ such that $p \in P(v)$.

In the following, we let v_0 be the leaf of T_P such that $P(v_0) = \{p\}$. Let v' be the farthest ancestor of v_0 in T_P such that $s(v')/\lambda \leq (1 + \lambda)^t$. We show that either $v' \in B_i^+$, or $\|p - q\| > (\Delta/d_n)(1 + \lambda)^{t+\Gamma}$ for any point q in $P \setminus P(v')$. We assume that v' is not the root of T_P, since otherwise we are done. Let v'' be the parent of v' in T_P. Let $\Delta' := \Delta \cdot (1 + \lambda)^t$ (i.e., Δ' is the third parameter passed to the call to RangeCover in Step 1 of Algorithm [3]). Clearly, $s(v'')/\lambda \leq (1 + \lambda)^t < s(v''')/\lambda$. We consider three cases: (1) $s(v''')/\lambda > (1 + \lambda)^t \geq s(v'')/\lambda \geq s(v''')/\Delta'$; (2) $s(v''')/\lambda > (1 + \lambda)^t \geq s(v'')/\Delta' > s(v'')/\lambda$; and (3) $s(v''')/\lambda > s(v'')/\Delta' > (1 + \lambda)^t \geq s(v''')/\lambda$.

Case (1) and (2). Clearly, in this case, $v' \in B_i$. Note that since $s(v'')/\lambda \leq (1 + \lambda)^t$, we know that any proper descendant of v' will not be put in a bucket B_i^t for any $t \geq t$. Thus, we have $v' \in B_i^+$.

Case (3). Assume that $v' \notin B_i^+$. From the output of the aggregation tree, we know that for any $q \in P \setminus P(v')$, $\|q - p\| \geq s(v'')/nd > (\Delta'/nd)(1 + \lambda)^t = (\Delta/nd)(1 + \lambda)^{t+\Gamma}$. This completes the proof.

Although the sketch does not fully cover P, in many problems (including AIFP) these points are either negligible or easy to handle by other means due to their special properties.

From [31], we know that the running time of Algorithm 5 and the space complexity of the output data structure is $O_3(n \log n \Delta)$ (where the hidden constant in the big-O notation depends only on λ). Algorithm 6 essentially merges Γ consecutive buckets B_i, B_{i+1}, \ldots, $B_{i+\Gamma}$ created by Algorithm 5 into one bucket B_i^+. Thus, we have the following lemma.

Lemma 15. Excluding the time it takes for A to process each B_i^+ in Step 4, the running time of Algorithm 6 and the total number of nodes in all buckets is $O_3(\Gamma^2 n \log n \Delta)$, where the hidden constant in big-O notation depends only on λ.

We conclude this subsection by providing a key lemma showing that, given a constrained AIFP query (B,q) satisfying constraint (r_B, d_{min}, d_{max}) with $d_{min} \leq r_B \leq d_{max}$, if there is a bucket B_i^+ such that $(1 + \lambda)^{t+1}/(1 - \lambda) < d_{min} < d_{max} \leq (1 + \lambda)^{t+\Gamma} - (2 + 2/\lambda)r_B$ (i.e. the range $[d_{min}, d_{max}]$ falls in interval $[(1 + \lambda)^t, (1 + \lambda)^{t+\Gamma} + 1]$ with some gap), then, with an easy-to-handle exception, an AIFP to q in B_i^+ (by viewing every node of B_i^+ as one point) in (slightly enlarged) range B is also an AIFP of q to $P \cap B$. Formally, let $re(B_i^+) := \{re(v) \mid v \in B_i^+\}$. Let p_i be the farthest point to q in $re(B_i^+) \cap B(1 + \lambda)$ if $re(B_i^+) \cap B(1 + \lambda) \neq \emptyset$, and p be a $(\lambda/6, \lambda/6)$-AIFP of q in $re(B_i^+) \cap B(1 + \lambda)$ [2]. Let p_N be a $(1 + \lambda)$-approximate nearest neighbor of q in P.

2 Note p could be NULL here. This could happen when bucket B_i^+ is empty or $re(B_i^+) \cap B(1 + \lambda) = \emptyset$.
Lemma 16. One of the following holds: (1) \(p_N \) is a \((2\lambda,2\lambda)\)-AIFP of \(q \) in \(P \cap B \), or (2) \(p_t \) exists and \((1 + \lambda)^t \leq \|q - p_t\| \leq (1 + \lambda)^{t + \Gamma + 1} \), and \(p \) is a \((2\lambda,2\lambda)\)-AIFP of \(q \) in \(P \cap B \).

Proof. We first consider the case where there exists a point \(p \in P \cap B \), such that there does NOT exist \(v(p) \in B_t^+ \) with \(p \in P(v(p)) \). We will show that in this case, item (1) of the lemma holds.

If such a \(p \) exists, by Lemma 14, we know that there exists an aggregation node \(v' \) such that \(p \in P(v') \), \(s(v') \leq \lambda(1 + \lambda)^t < \lambda d_{\min} \), and for any \(p' \in P \setminus P(v') \), \(||p - p'|| > (\Delta/dn)(1 + \lambda)^{t + \Gamma} \geq 4(\lambda d_{\max} + (2 + 2\lambda)r_B) \geq 4(||p - q|| + (2 + 2\lambda)r_B) \). Since \(p \) lies in \(B \), it is not hard to see that \(p' \) does not lie in \(B(1 + \lambda) \). This implies if a point lies in \(P \cap B \), then it is in \(P(v') \). Let \(p_f \) be the farthest point to \(q \) in \(B \cap P \). Thus \(p_f \in P(v') \). For any point \(p'' \in P(v') \), we have \(||p'' - p_f|| \leq s(v') \leq \lambda d_{\min} \leq \lambda ||q - p_f|| \), therefore \(||q - p'|| \leq ||q - p_f|| - ||p'' - p_f|| \geq (1 - \lambda)||p - p_f|| \). Also we have \(||p'' - p_f|| \leq \lambda d_{\min} \leq \lambda r_B \). Since \(p_f \in B \), it is not hard to see \(p'' \in B(1 + \lambda) \). We have shown that any point \(p'' \in P(v') \) is an \((\lambda,\lambda)\)-AIFP of \(q \) in \(B \cap P \). Next, we show that \(P_N \in p(v) \). Recall that for any \(p' \in P \setminus P(v') \), \(||p - p'|| \geq 4(||p - q|| + (2 + 2\lambda)r_B) \). We have \(||p - p'|| \geq ||q - p'|| \geq 3(\lambda d_{\min} + (2 + 2\lambda)r_B) \). On the other hand, since \(p_f \in B \), we have \(||q - p|| \leq ||q - p_f|| + ||q - p'|| \leq 2d_{\max} + ||p - q|| \). Therefore, \(||p_f - q|| < ||p - p'||/2 \), thus \(p' \) cannot be a \((1 + \lambda)\)-approximate nearest neighbor of \(q \) in \(P \). We have proved item (1) of the lemma in this case.

In the following, we assume that for any \(p \in P \cap B \), there exist \(v(p) \in B_t^+ \) with \(p \in P(v(p)) \). We prove item (2) of the lemma holds in this case.

Let \(p_f \) be the farthest point to \(q \) in \(B \cap P \). (Note we can assume that \(p_f \) exists, otherwise \(B \cap P = \emptyset \), which means any point in \(P \) is an AIFP of \(q \), and item (1) of the lemma trivially holds.) We first show \(p_t \) exists and \(||q - p_t|| \geq (1 + \lambda)^t \). Let \(v_f \in B_t^+ \) be the node such that \(p_f \in P(v_f) \). We have \(||p_f - re(v_f)|| \leq s(v_f) \leq \lambda(1 + \lambda)^t \leq \lambda r_B \). Since \(p_f \in B \), we have \(re(v_f) \in B(1 + \lambda) \). This means \(B(1 + \lambda) \cap re(B_t^+) \) is non-empty, thus \(p_t \) exists. Also, since \(re(v_f) \in re(B_t^+) \), from the definition of \(p_t \), we have \(||q - p_t|| \geq ||q - re(v_f)|| \). Thus \(||q - p|| \geq \lambda d_{\min} + (1 + \lambda)^t/2 \). Clearly both \(p_f \) and \(p_t \) are in \(B(1 + \lambda) \), thus \(||q - p|| \leq (1 + \lambda)^{t + \Gamma + 1} \). We have \(||q - p_t|| \leq ||q - p_f|| + ||p_f - p_t|| \leq (2 + 2\lambda)r_B \leq (1 + \lambda)^{t + \Gamma + 1} \).

Finally, we prove that \(p \) is a \((\lambda/6,\lambda/6)\)-AIFP of \(q \) in \(P \cap B(1 + \lambda) \), is a \((2\lambda,2\lambda)\)-AIFP of \(q \) in \(P \cap B \). Note \(p \in B((1 + \lambda) \cdot (1 + \lambda/6)) \subset B(1 + 2\lambda) \). Also, note \(||p_f - re(v_f)|| \leq s(v_f) \leq \lambda(1 + \lambda)^t \leq \lambda d_{\min} \leq \lambda ||q - p_f|| \). Thus \(||q - re(v_f)|| \geq (1 - \lambda)||q - p|| \). For any \(p_B \in P \cap B \), We have \(||q - p|| \geq (1 - \lambda/6)||q - re(v_f)|| \geq (1 - \lambda/6)(1 - \lambda)||q - p_f|| \geq (1 - \lambda/6)(1 - \lambda)||q - p|| \geq (1 - 2\lambda)||q - p_B|| \). We have proved \(p \) is a \((2\lambda,2\lambda)\)-AIFP of \(q \) in \(P \cap B \).
4 General AIFP Query

In this section, we present a general (ϵ, γ)-AIFP query scheme. We first establish several facts for better understanding of the query scheme. In the following, let B be a closed ball with radius $r_B > 0$ and q be an arbitrary point. Let $0 < \epsilon < 1$ and $0 < \gamma < 1$ be any pair of constants and $\lambda := \min(\epsilon, \gamma)/512$. We assume that r_B is λ-aligned, which means that $r_B = (1 + \lambda)^t$ for some integer t. The alignment assumption makes it easier to implement the multi-scale construction. Note that if r_B is not λ-aligned, we can always enlarge B a little to make r_B aligned and still obtain a good approximation with carefully chosen parameters.

Our main idea is to convert each query (B, q) into one or more AIFP queries (B', q') such that it is possible to find a lower bound d'_{\min} and an upper bound d'_{\max} on the farthest distance between q and a point in $B' \cap P$. With such bounds, the AIFP can then be found by querying a pre-built constrained AIFP data structure. To ensure efficiency, the gap between d_{\max} and d'_{\min} cannot be too large, i.e., d_{\max}/d_{\min} should be bounded by a polynomial of n and d. Since the complexity of a constrained data structure depends on d_{\max}/d'_{\min}, a small gap will also enable us to control the size of the data structure. We start with a simple claim.

\>

Claim 17. If the distance between q and the center o_B of B is very large compared to r_B, i.e. $\|q - o_B\| \geq (3 + \gamma)e^{-1}r_B$, then any point in $B(1 + \gamma/2)$ is an (ϵ, γ)-AIFP of q in $P \cap B$.

This claim suggests that we can safely assume that the farthest distance between q and $P \cap B$ is not too large (compared to r_B), as otherwise the AIFP can be easily found. This helps us establish an upper bound on the farthest distance. In the following, we let $d_{\max} := (4 + 2\epsilon)e^{-1}r_B$, and assume that $\|q - o_B\| \leq (3 + \gamma)e^{-1}r_B$. From simple calculation, this implies that for any $p \in P \cap B(1 + \gamma)$, we have $\|p - q\|\leq d_{\max}$.

Next, we try to find a lower bound for the farthest distance. This process is much more complicated. We need an aggregation tree T_P with distortion polynomial $P_{HST}(n, d) = nd$. Later, we will use this T_P to construct the query data structure. Let $p_N \in P$ be a 2-nearest neighbor of q in P (i.e. for any $p' \in P$, $\|p_N - q\| \leq 2\|p' - q\|$), and $r_N := \|p_N - q\|$.

\>

Claim 18. If node v does not exist, for any $p \in P$, $\|q - p\| \geq \gamma r_B/256nd$; Otherwise, for any $p_{out} \in P \setminus P(v)$, $\|q - p_{out}\| \geq \gamma r_B/256nd$.

The following two claims assume that v does exist.

\>

Claim 19. If $\|o_B - q\| > (1 + \gamma/64)r_B$, then for every $p \in P(v)$, $p \notin B$.

For any positive real number x, let $[x]_\lambda$ denote the smallest real number that can be written as $(1 + \lambda)^t$ for some integer t such that $(1 + \lambda)^t \geq x$.

\>

Claim 20. Let $r^- := r_N + s(v)$ and $r_B^{(2)} := [(1 + \gamma/16)r_B]_\lambda$. If $\|o_B - q\| \leq (1 + \gamma/64)r_B$, and $P \cap B \neq \emptyset$ then

1. If $r^- \geq \gamma r_B/512n^2d^2$, there exists $p_1 \in B(o_B, r_B^{(2)}) \cap P$ such that $\|p_1 - q\| \geq \gamma r_B/2048n^3d^3$.
2. If $r^- \leq \gamma r_B/512n^2d^2$, the following holds, where $r_B^{(3)} := [r^-]_\lambda$: (a) $B(q, r_B^{(3)}) \subset B(1 + \gamma/32)$; (b) For every $p \in P(v)$, $p \in B(q, r_B^{(3)})$ and for every $p \in P \setminus P(v)$, $p \notin B(q, (1 + \gamma)r_B^{(3)})$; (c) There exists $p' \in P(v)$ such that $\|p' - q\| \geq r_B^{(3)}/8nd$.

The above facts allow us to reduce the AIFP query to a constrained query with an estimated lower bound on the farthest distance. We assume $P \cap B \neq \emptyset$, otherwise the query
In-Range Farthest Point Queries in High Dimensions

becomes trivial. Let \(p_F \) be the farthest point to \(q \) in \(P \cap B \). Note that there are three possible cases: \(p_F \in P(v) \), \(p_F \in P(v) \setminus P(v) \), or \(v \) does not exist. If \(p_F \in P(v) \setminus P(v) \) or \(v \) does not exist, from Claim 18 we know that \((B,q)\) satisfies the constraint of \((r_B^{(i)} ,d_{min}^{(i)} ,d_{max}^{(i)})\), where \(r_B^{(i)} := r_B , d_{min}^{(i)} := \gamma r_B/256nd \) and \(d_{max}^{(i)} := d_{max} \). Thus, these two cases can be captured by performing a constrained AIFP query to the pre-built data structures. Also note that \(d_{max}^{(i)}/d_{min}^{(i)} = 256(4+2\gamma)nd/\epsilon \), which is a polynomial of \(n \) and \(d \). This means that the space complexity of the pre-built data structures can be bounded.

Next, we consider the case of \(p_F \in P(v) \). Note that if \(\|o_B - q\| > (1 + \gamma/64)r_B \), from Claim 19 we know that all points in \(P(v) \) are not in \(B \), which is a contradiction. Thus, we can assume that \(\|o_B - q\| \leq (1 + \gamma/64)r_B \), which leads to two sub cases discussed in Claim 20 (1) \(r^- > \gamma r_B/512n^2d^2 \), and (2) \(r^- \leq \gamma r_B/512n^2d^2 \).

For sub-case (1), we first let \(d_{min}^{(2)} := \gamma r_B/2048n^3d^3 \). Then, from Claim 20 we know that the farthest distance between \(q \) and a point in \(P \cap B(o_B,r_B^{(2)}) \) is at least \(d_{min}^{(2)} \). From previous discussion and the fact that \(B(o_B,r_B^{(2)}) \subset B(1+\gamma) \), we also know that this farthest distance is at most \(d_{max} \). Let \(d_{max}^{(2)} := d_{max} \). The problem of finding the farthest point \(p'_F \) to \(q \) from all points in \(P \cap B(o_B,r_B^{(2)}) \) satisfies the constraint of \((r_B^{(2)}, d_{min}^{(2)}, d_{max}^{(2)})\), and is thus solvable by querying a constrained AIFP data structure. Since the ball range \(B(o_B,r_B^{(2)}) \) only slightly enlarges \(B \) and \(B(q,r_B^{(2)}) \subset B(1+\gamma) \), with properly selected approximation factors, it can be shown that the found \(p'_F \) is a \((\epsilon,\gamma)\)-AIFP of \(q \) in \(B \cap P \). In this case we also have \(d_{min}^{(2)}/d_{max}^{(2)} \) bounded by a polynomial \(2048(4+\gamma)n^3d^3/\epsilon \).

For sub-case (2), we let \(r_B^{(3)} := d_{min}^{(3)} := r_B^{(3)} \) and \(d_{min}^{(i)} := r_B^{(3)/8nd} \). From Claim 20 we know that if \(p_F \in P(v) \), \(p_F \) is also the farthest point to \(q \) in \(P \cap B(q,r_B^{(3)}) \). An \((\epsilon,\gamma)\)-AIFP of \(q \) in \(P \cap B \) can then be found by identifying an AIFP of \(q \) in \(P \cap B(q,r_B^{(3)}) \). Note that this query satisfies the constraint of \((r_B^{(3)}, d_{min}^{(3)}, d_{max}^{(3)})\), with \(d_{max}^{(3)}/d_{min}^{(3)} \) bounded by a polynomial of \(n \) and \(d \).

From the above discussions, we know that given any AIFP query \((B,q)\) (with radius of \(B \) aligned), it is possible to reduce it to a constrained AIFP query with constraint \((r_B^{(i)}, d_{min}^{(i)}, d_{max}^{(i)})\), which satisfies the inequality of \(d_{min}^{(i)} \leq r_B^{(i)} \leq d_{max}^{(i)} \) and \(d_{max}^{(i)}/d_{min}^{(i)} \) is bounded by a polynomial \(P_{gap}(n,d) := 2048(4+2\gamma)n^3d^3/\epsilon \), and \(r_B^{(i)} \) is aligned. In the following, we will show how to use multi-scale construction to build a data structure that supports all such constrained AIFP queries.

4.1 Multi-scale Construction for General AIFP Query

In this subsection, we show how to build a Multi-Scale data structure to answer general AIFP queries. Our goal is to choose the appropriate parameters \(\Gamma \geq 1, 0 < \lambda < 1 \) and \(\Delta \geq 4nd \) for Algorithm 6 so that for every AIFP query with constraint \((r_B^{(i)}, d_{min}^{(i)}, d_{max}^{(i)})\), there exists a bucket \(B^+_i \) whose range \((1 + \lambda)^i(1 + \lambda)^{i+\Gamma+1}\) wholly covers the interval \([d_{min}^{(i)}, d_{max}^{(i)}]\), and the constrained AIFP data structure built for the bucket with \(d_{min} := (1 + \lambda)^i \) and \(d_{max} := (1 + \lambda)^{i+\Gamma+1} \) can be used to answer the query. Note that we have already defined \(\lambda := \min(\epsilon,\gamma)/512 \) and \(\Delta := 4nd \). The remaining task is to determine the value of \(\Gamma \).

Observe that \(d_{max}^{(i)}/d_{min}^{(i)} \) is bounded by a polynomial \(P_{gap}(n,d) := 2048(4+2\gamma)n^3d^3/\epsilon \). Let \(\Gamma := \lceil \log_4 \lambda P_{gap}(n,d) \rceil \), and \(\Gamma_L \geq \Gamma \) and \(\Gamma_R \geq \Gamma \) be integer parameters to be determined later. Denote by \(\Gamma \) the sum of \(\Gamma_L \) and \(\Gamma_R \), i.e., \(\Gamma := \Gamma_L + \Gamma_R \). For every integer \(t \), define \(r_{mid}^t := (1 + \lambda)^{t+\Gamma} \). Therefore, we have \(r_{mid}^t/(1 + \lambda)^t \geq (1 + \lambda)^{\Gamma_L} \geq P_{gap}(n,d) \) and \((1 + \lambda)^{t+\Gamma}/r_{mid}^t \geq (1 + \lambda)^{\Gamma_R} \geq P_{gap}(n,d) \). For any AIFP query \((B,q)\) with constraint \((r_B^{(i)}, d_{min}^{(i)}, d_{max}^{(i)})\), it is always possible to find a bucket \(B^+_t \) such that \(r_B^{(i)} = r_{mid}^t \). Clearly,
The algorithm then produces the data structure for

If a constrained AIFP data structure is constructed for \(B^+ \) with constraint \((1 + \lambda)r_{mid}(t), (1 + \lambda)^t, (1 + \lambda)^{t+\Gamma+1}\), it can be used to answer the AIFP query \((B, q)\). (See Lemma 16)

To summarize the above discussions, we set the parameters of Algorithm 6 as the following. The algorithm then produces the data structure for \((\epsilon, \gamma)\)-AIFP query. Assume that a real number \(0 < \delta < 1\) is given and we would like to achieve \(1 - \delta\) query success probability.

- \(\lambda := \min(\epsilon, \gamma)/512, \Gamma_L := \Gamma' + \log_{1+\lambda} 8, \Gamma_R := \Gamma' + \log_{1+\lambda} 4, \Gamma := \Gamma_L + \Gamma_R, \Delta := 4nd. \)
- Routine A: Given a non-empty bucket \(B^+ \), \(A \), it uses Algorithm 6 to creates a constrained \((\lambda/6, \lambda/6)\)-AIFP data structure for point set \(r(c(B^+_T) \) for constraint \((1 + \lambda)r_{mid}(t), (1 + \lambda)^t, (1 + \lambda)^{t+\Gamma+1}\), with success probability at least \(1 - \delta/4\).

Note that we let \(\Gamma_L := \Gamma_R := \Gamma' + \log_{1+\lambda} 8 \). This allows more gap when fitting the interval \([d^{(i)}_{min}, d^{(i)}_{max}]\) in \((1 + \lambda)^t, (1 + \lambda)^{t+\Gamma+1}\), which is required by Lemma 16.

With the multi-scale data structure constructed by Algorithm 6 using the above parameters, we are able to answer any general AIFP query by reducing it to constrained AIFP queries with constraints \((r^{(i)}_{B^+_T}, d^{(i)}_{min}, d^{(i)}_{max}), i = 1, 2, 3\). The detailed algorithm is described as the following Algorithm 7 (for align query ball radius) and Algorithm 8 (for any radius). Besides the multi-scale structure built using the parameters \(\lambda, \Gamma, \Delta \) and \(A \) as described above, a \((1 + \lambda)\)-nearest neighbor data structure from [28], with success probability \(1 - \delta/4\) is also used.

Algorithm 7 Query-AIFP-ALIGNED\((B, q)\)

Input: A query ball \(B \) with \(\lambda \)-aligned radius \(r_B \) and centered at \(o_B \). A query point \(q \).

Output: An \((\epsilon, \gamma/2)\)-AIFP of \(q \) in \(P \cap B \).

1. If \(\|q - o_B\| \geq (3 + \gamma)c^{-1}r_B \). Find a \((1 + \gamma/2)\)-approximate nearest neighbor \(p_o \in P \) of \(o_B \).
 (Note this can be done using the \((1 + \lambda)\)-approximate nearest neighbor data structure, since \(1 + \lambda < 1 + \gamma/2\).) If \(p_o \in B(1 + \gamma/2) \), return \(p_o \), otherwise return NULL.
2. Initialize a point set \(Q := \{\} \).
3. Let \(t_1 \) be the integer such that \(r_{mid}(t_1) = r_B \). Query the constrained AIFP data structure for bucket \(B_{t_1}^+ \) with \((B, q)\) (using Algorithm 2). Let \(p_1 \) be the result and put \(p_1 \) into \(Q \).
4. Find \(p_N \in P \) which is a \((1 + \lambda)\)-nearest neighbor of \(q \) in \(P \). Denote \(r_N := \|p_N - q\| \), and put \(p_N \) into \(Q \).
5. Let \(v \) be the lowest (closest to a leaf) node of \(T_P \) such that \(p \in P(v) \) and \(s(v) + r_N \leq r_B/64\gamma \). (Such \(v \) can be found by binary search on the tree path.) If \(v \) does not exist, GOTO step 7.
6. Denote \(r^{(2)}_B := [(1 + \gamma/16)r_B]_\lambda \). Let \(t_2 \) be the integer such that \(r_{mid}(t_2) = r^{(2)}_B \). Query the constrained AIFP data structure for bucket \(B_{t_2}^+ \) with \((B(o_B, r^{(2)}_B), q)\). Let \(p_2 \) be the result and put \(p_2 \) into \(Q \).
7. Denote \(r^{(3)}_B := [r_N + s(v)]_\lambda \). Let \(t_3 \) be the integer such that \(r_{mid}(t_3) = r^{(3)}_B \). Query the constrained AIFP data structure for bucket \(B_{t_3}^+ \) with \((B(q, r^{(3)}_B), q)\). Let \(p_3 \) be the result and put \(p_3 \) into \(Q \).
8. From \(Q \), pick the one that lies in \(B(1 + \gamma/2) \) and the distance to \(q \) is the farthest. If no such point exists, return NULL.

We then present AIFP query algorithm for \(B \) with arbitrary radius. The algorithm simply enlarges \(B \) a little to make the radius aligned, then call the above Algorithm 7 to handle it.
Algorithm 8 Query-AIFP(B, q)

Input: A query ball B with radius r_B and center o_B. A query point q.

Output: An (ϵ, γ)-AIFP of q in $P \cap B$.

1. Let $r'_B := |r_B|_\lambda$. Make a query $\mathcal{B}(o_B, r'_B, q)$ using Algorithm 7 and return the result.

It is worth noting that since we reduce a general query to at most three constrained AIFP queries, from Lemma 6 and the fact that the ratio $d_{\text{max}}/d_{\text{min}}$ satisfies $d_{\text{max}}/d_{\text{min}} = (1 + \lambda)t^{t+1}/(1 + \lambda)^t = (1 + \lambda)^{t+1}$, which is bounded by a polynomial of n, d, we know that $\log d_{\text{max}}/d_{\text{min}}$ is $O_{\epsilon, \gamma}(\log nd)$ and the query time is sub-linear. In the next subsection we provide the detailed analysis of the algorithms and prove Theorem 4.

4.2 The Analysis of the AIFP Algorithms

In this subsection, we analyze the algorithms for AIFP and prove Theorem 4, the main result of this paper. We first prove the correctness of Algorithm 7.

Lemma 21. With probability at least $1 - \delta$, Algorithm 7 returns a $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$.

Proof. We assume that all the constrained AIFP queries and nearest neighbor queries are successful. It is easy to see that this happens with probability at least $1 - \delta$.

We decompose the discussion into several cases.

Case 1: $\|q - o_B\| \geq (3 + \gamma)\epsilon^{-1}r_B$. In this case, the algorithm return a point $p_o \in P \cap B(1 + \gamma/2)$ in Step 1, or return NULL, which only happens when there does not exist points in $P \cap B$ and NULL is a correct answer in this case. From our earlier proof of Claim 17, we have shown any point in $P \cap B(1 + \gamma/2)$ is a $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$. This case is proved.

In the following, we assume that $\|q - o_B\| < (3 + \gamma)\epsilon^{-1}r_B$. We would show that in each of the following cases, a correct $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$ would be put into the set Q. Thus an $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$ would be returned in Step 8.

Case 2: The node v in Step 5 does not exists, or $p_F \in P \setminus P(v)$ where p_F is the farthest point to q in $P \cap B$. From the discussion in Section 4, query (B, q) satisfies a constraint $(r_B^{(1)}, d_{\text{min}}^{(1)}, d_{\text{max}}^{(1)})$ so that it can be answered by the bucket $B_{t_1}^{1+}$ in Step 3. From Lemma 16, either the point p_1 obtained in Step 1, or p_N obtained in Step 4, would be a $(2\lambda, 2\lambda)$-AIFP of q in $P \cap B$, and is clearly a $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$.

In the following, we exclude the scenario where p_N is a $(2\lambda, 2\lambda)$-AIFP of q for a constrained query we make in Step 6 or 7. Indeed this scenario is handled well since p_N is already put into Q.

Case 3: v exists and $p_F \in P(v)$. From the discussion in Section 4, one of the following holds.

(a) Item 1 of Claim 20 holds, and the query $(B(o_B, r_B^{(2)}), q)$ satisfies a constraint $(r_B^{(2)}, d_{\text{min}}^{(2)}, d_{\text{max}}^{(2)})$ so that it can be answered by the bucket $B_{t_2}^{1+}$ in Step 6;

(b) Item 2 of Claim 20 holds, and the query $(B(q, r_B^{(3)}), q)$ satisfies a constraint $(r_B^{(3)}, d_{\text{min}}^{(3)}, d_{\text{max}}^{(3)})$ so that it can be answered by the bucket $B_{t_3}^{1+}$ in Step 7.

For sub-case (a), p_2 is a $(2\lambda, 2\lambda)$-AIFP of q in $P \cap B(2\lambda)$. Thus $p_2 \in B(o_B, (1+2\lambda)r_B^{(2)})$. From some simple calculation, we know that $(1+2\lambda)r_B^{(2)} \leq (1+\gamma/2)r_B$. Also $B \subset B(o_B, r_B^{(2)})$. Thus p_2 is a $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B.$
Finally, for sub-case (b), p_3 is a $(2\lambda, 2\lambda)$-AIFP of q in $P \cap B(q, r_B^{(3)})$. Note since $p_F \in P(v) \subset B(q, r_B^{(3)})$, we have $\|q - p_3\| \geq (1 - 2\lambda)\|q - p_F\| \geq (1 - \epsilon)\|q - p_F\|$. Also $\|q - p_3\| \leq (1 + 2\lambda)r_B^{(3)} \leq (1 + \gamma)r_B^{(3)}$, thus $p_3 \in P(v) \subset B(q, r_B^{(3)}) \subset B(1 + \gamma/2)$. Thus p_3 is a $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$.

We have proved that in any case, some point in Q would be a $(\epsilon, \gamma/2)$ of q in $P \cap B$. The proof is complete.

In the following we prove the correctness of Algorithm 8. We show that Algorithm 8 returns (ϵ, γ)-AIFP of q in $P \cap B$ with probability at least $1 - \delta$.

Proof. Assume the call to Algorithm 7 is successful, which happens with probability at least $1 - \delta$. Let p be the result of the call to Algorithm 7. Then $\|o_B - p\| \leq (1 + \gamma/2)r_B \leq (1 + \gamma/2)(1 + \lambda)r_B$. Also for any $p' \in B \cap P \subset B(o_B, r_B') \cap P$, we have $(1 - \epsilon)\|q - p'\| \leq \|q - p\|$. Thus p is an (ϵ, γ)-AIFP of q in $P \cap B$.

In the following, we analyze the space and time complexity of the query scheme.

Pre-processing Time and Space. The AIFP query data structure consists of three parts: An aggregation tree, a multi-scale data structure and a $(1 + \lambda)$-nearest neighbor data structure. Using the technique in [28], an aggregation tree takes $O(dn \log^2 n)$ time to build and takes $O(dn)$ space. A $(1 + \lambda)$-nearest neighbor data structure takes $O_c(dn^{1+1/\epsilon} \cdot \text{Polylog}(n))$ time to build and uses $O_c(dn^{1+1/\epsilon} \cdot \text{Polylog}(n))$ space, where $c := 1 + \lambda$ and the constant hidden by the $O_c(\cdot)$ notation depends only on c. For the multi-scale data structure, note that the total number of nodes in all buckets is $O_{\lambda/6}(1^2 n \cdot \text{log}(n \Delta))$. From the values of λ, Γ, Δ, we know the total number of nodes is $O_{\epsilon, \gamma}(n \cdot \log n \cdot \log^2(n d))$. For each bucket, we build a constraint $(\lambda/6, \lambda/6)$-AIFP data structure with query success probability $1 - \delta/4$, and we have $\log(d_{\text{max}}/d_{\text{min}}) = O_{\epsilon, \gamma}(\log nd)$. From Lemma 3 the total preprocessing time and space for these data structures would be $O_{\epsilon, \gamma}(d \cdot [n \cdot \log n \cdot \log(nd)]^{1+\rho} \cdot \log^{-1} \cdot \log^2 nd)$, for some constant $0 < \rho < 1$ which depends on ϵ, γ. The space/time bound can be simplified as $O_{\epsilon, \gamma}(dn^{1+\rho} \cdot \log^{-1} \cdot \log^5 nd)$. Adding the complexity for each part together, it is not hard to see the total space/time complexity for preprocessing is $O_{\epsilon, \gamma}(dn^{1+\rho} \cdot \log^{-1} \cdot \text{Polylog}(nd))$ for some $0 < \rho < 1$ which depends on ϵ, γ.

Query Time. The query algorithm consists of constant number of nearest neighbor search and constrained AIFP queries. Each nearest neighbor search takes $O_c(dn^{1/\epsilon} \cdot \text{Polylog}(n))$ where $c := 1 + \lambda$ and the constant hidden by the $O_c(\cdot)$ notation depends only on c. For constrained AIFP queries, note each bucket has no more than n nodes, from Lemma 6 the query time is $O_{\epsilon, \gamma}(dn^p \cdot \log^{-1} \cdot \log(nd))$ for some constant $0 < \rho < 1$ which depends on ϵ, γ. To summarize, the query time is $O_{\epsilon, \gamma}(dn^p \cdot \log^{-1} \cdot \text{Polylog}(nd))$ for some constant $0 < \rho < 1$ which depends on ϵ, γ.

Combining all the above arguments, Theorem 4 is proved.

5 MEB Range Aggregate Query

Given any query ball B, we find the AMEB of $P \cap B$ using an iterative algorithm by Badoiu and Clarkson [26]. Their algorithm was originally designed for finding an approximate MEB for a fixed point set P. With careful analysis we show that their approach, after some modifications, can still be used to find AMEB in any given range B. Briefly speaking, our idea is to construct a small-size coreset of $P \cap B$. The MEB of the coreset is then a
(1 + ϵ)-approximate MEB of $P \cap B$. The algorithm selects the coreset in an iterative fashion. It starts with an arbitrary point p from P. Each iteration, it performs the following operation to add a point to the coreset: (1) Compute an (approximate) MEB of the current coreset; (2) Identify the IFP in P to the center of the current MEB, and add it to the coreset. We show that after $O_t(\log n)$ iterations, the MEB of the coreset is then a $(1 + \epsilon)$-AMEB of $P \cap B$.

Let $0 < \epsilon, \gamma, \delta < 1$ be any small constants. Below we discuss the details of how to use an AIFP data structure built with appropriate parameters to answer (ϵ, γ)-AMEB with success probability at least $1 - \delta$.

Let $\epsilon_A := \gamma_A := \min(\epsilon/18, \gamma/18)$. Define parameters $\epsilon_0 = \epsilon^2/1600$ and $\epsilon' = \min((1 - \epsilon_0)^{-1} - 1, (1 - \epsilon^2/100)^{-1/2} - 1, \epsilon/3)$. Let \mathcal{S} be a data structure that is capable of answering (ϵ_A, γ_A)-AIFP with success probability at least $1 - \delta \epsilon_0^2/16$. We show that with \mathcal{S} and a $(1 + \gamma_A)$-nearest neighbor data structure, given any query ball B (with query success probability $1 - \delta/2$), the following Algorithm 9 output an AMEB with desired approximation quality and success probability.

The algorithm follows the main idea of the coreset algorithm in [20]: We first construct an initial coreset P_{init}. This can be done by finding an arbitrary point in $P_1 \in B(1 + \gamma)$, then find another point p_2 which is an AIFP of P_1 in $P \cap B$, then let $P_{\text{init}} := \{p_1, p_2\}$. We compute the MEB of P_{init}; In each iteration, we find the approximate farthest point in $P \cap B$ to the center of the previous MEB, add it to the coreset, and then update the MEB of the coreset; We output the last found MEB if after one update, the size of MEB remains roughly the same.

Algorithm 9 AMEB-Query(B)

Input: A query ball B centered at o_B with radius r_B.

Output: A ball B_{MEB}, which is a (ϵ, γ)-AMEB of $P \cap B$.

1. Find a $(1 + \gamma_A)$-nearest neighbor of o_B in P and let p_a be the result. If $p_a \notin B(1 + \gamma_A)$, return NULL.
2. Find an (ϵ_A, γ_A)-AIFP of q in $P \cap B$ and let p_b be the result. If p_b is NULL, return NULL. Otherwise let $P_{\text{init}} := \{p_a, p_b\}$
3. Initialize a set P_{core} as P_{init}. Compute a the MEB of P_{core} (Note currently P_{core} contains only two points so the MEB can be found easily). Initialize B_0 to be the computed MEB. Let c_0 be the center of B_0.
4. Let $w = \lceil 4/\epsilon_0^2 \rceil$. For i from 1 to w, do the following:
 4.1 Try to find an (ϵ_A, γ_A)-AIFP of c_{i-1} in $B \cap P$ and denote the result as p_i. Let p'_i be the farthest point in P_{core} to c_{i-1}. If p_i is NULL or $\|c_{i-1} - p_i\| \leq \|c_{i-1} - p'_i\|$, return $B_{i-1}((1 - \epsilon_A)^{-1})$ as the result.
 4.2 Add p_i to P_{core}.
 4.3 Compute a $(1 + \epsilon')$ approximate MEB of P_{core} and denote the result as B_i. (We use the approximate MEB algorithm in [33].) Let c_i be the center of B_i, and r_i be the radius of B_i.
 4.4 Let r_i and r_{i-1} be the radius of B_i and B_{i-1}, respectively. If $r_i \leq (1 + \epsilon_0)r_{i-1}$, return $B_i(1 + \epsilon/3)$ as the result.
5. return $B_w(1 + \epsilon/3)$ as the result.

We show that the query algorithm output an (ϵ, γ)-AMEB of $B \cap P$ with probability at least $1 - \delta$. This proves the correctness of the algorithm.

Proof. In the following we assume that the w AIFP queries and the nearest neighbor query are all successful. By simple calculation, we know that this happens with probability at least
Assume that P_i denote the set P_{core} after the i-th iteration in Step 2 of Algorithm 9 and $P_0 = P_{init}$. Let $P_i = P_i \cup (P \cap B)$.

Next, we show that the output ball is always an (ϵ, γ)-AMEB of P in B. We consider 5 cases, depending on where the algorithm returns: (1) Step 1, (2) Step 2, (3) Step 4.1, (4) Step 4.4 and (5) Step 5.

Case (1): If p_a is a $(1 + \gamma_A)$-nearest neighbor and $p_a \notin B(1 + \gamma_A)$, this implies $P \cap B = \emptyset$. In this case, NULL is a valid answer for an AMEB of $P \cap B$.

Case (2): This case also only happens when $P \cap B = \emptyset$, thus NULL is a valid answer.

Case (3): In this case, for every point $p \in B \cap P$, we have $p \in B_{i-1}((1 - \epsilon_A)^{-1})$. Also, it is clear that $P'_i \subset B(1 + \gamma_A)$. Thus, $B_{i-1}((1 - \epsilon_A)^{-1})$ is a $(1 + \epsilon')(1 - \epsilon_A)^{-1}$-approximate MEB of P'_i, where $P \cap B \subseteq P'_i \subseteq P \cap B(1 + \gamma_A) \subseteq P \cap B(1 + \gamma)$. By simple calculation, we know that $B_{i-1}((1 - \epsilon_A)^{-1})$ is a (ϵ, γ)-AMEB of P in B.

Case (4): To show this case, we need the following claim. Let i be any positive integer, and q_i be the point on the ray (c_{i-1}, c_i) whose distance to c_{i-1} is $\|c_{i-1} - q_i\| = \sqrt{1 - (1 + \epsilon')^{-2} r_{i-1}}$. Assume that $\|c_{i-1} - c_i\| \geq \|c_{i-1} - q_i\|$ (The case where $\|c_{i-1} - c_i\| < \|c_{i-1} - q_i\|$ will be discussed later in the proof). Let H_i be the hyperplane that passes through c_i and is orthogonal to (c_i, c_{i-1}). Let H_i be the closed half-space bounded by H_i and containing c_{i-1}. Let $B^{-}(q_i, (1 + \epsilon')^{-1}r_{i-1})$ be an open ball centered at q_i and with radius $(1 + \epsilon')^{-1}r_{i-1}$.

\triangleright Claim 22. There exists a point $p'_{i-1} \in P_{i-1}$ such that $p'_{i-1} \in H_i \setminus B^{-}(q_i, (1 + \epsilon')^{-1}r_{i-1})$.

\square Figure 4 An illustration for Claim 22 and its related arguments.

Proof of Claim 22. See Figure 4 for a better understanding of the configuration. Assume by contradiction that the claim does not hold. Then, it is not hard to see that $B^{-}(q_i, (1 + \epsilon')^{-1}r_{i-1})$ contains every point in P_{i-1}. Since $B^{-}(q_i, (1 + \epsilon')^{-1}r_{i-1})$ is an open ball, it is possible to slightly shrink the ball to obtain a closed enclosing ball of P_{i-1} whose radius is strictly smaller than $(1 + \epsilon')^{-1}r_{i-1}$. However, since B_{i-1} is a $(1 + \epsilon')$-approximate MEB of P_{i-1} of radius r_{i-1}, any enclosing ball of P_{i-1} would have a radius at least $(1 + \epsilon')^{-1}r_{i-1}$. This is a contradiction, and thus the claim is true.

We first show that $\|c_i - c_{i-1}\| \leq (\epsilon/10)r_{i-1}$. To demonstrate this, we first consider the case where $\|c_i - c_{i-1}\| \geq \sqrt{1 - (1 + \epsilon')^{-2} r_{i-1}} = \|c_{i-1} - q_i\|$. Let $x_i = \|c_i - c_{i-1}\|/r_{i-1}$, and
p'_{i-1} be the point that satisfies the above claim. Then, we have
\[
\|p'_{i-1} - c_i\|^2 \geq (1 + \epsilon')^{-2}r^2_{i-1} + (\|c_i - c_{i-1}\| - \sqrt{1 - (1 + \epsilon')^{-2}}r_{i-1})^2
\]
\[
= (1 + \epsilon')^{-2} + (x_i - \sqrt{1 - (1 + \epsilon')^{-2}})^2r^2_{i-1}. \tag{1}
\]

Since B_i is an approximate MEB of P_i and $p'_{i-1} \in P_{i-1} \subset P$, we have $\|p'_{i-1} - c_i\| \leq r_i \leq (1 + \epsilon_0)r_{i-1}$. Combining this with the above inequality, we get
\[
(1 + \epsilon_0)^2 \geq (1 + \epsilon')^{-2} + (x_i - \sqrt{1 - (1 + \epsilon')^{-2}})^2.
\]

From the definition of ϵ' and ϵ_0 and some calculation, we know that $x_i = \sqrt{(1 + \epsilon_0)^2 - (1 + \epsilon')^{-2}} + \sqrt{1 - (1 + \epsilon')^{-2}} \leq 2\sqrt{(1 + \epsilon_0)^2 - (1 + \epsilon')^{-2}} \leq 2\sqrt{(1 + \epsilon_0)^2 - (1 - \epsilon_0)^2} = 4\sqrt{\epsilon_0} \leq \epsilon/10$. This means that $\|c_i - c_{i-1}\| \geq (\epsilon/10)r_{i-1}$. For the case $\|c_i - c_{i-1}\| < \sqrt{1 - (1 + \epsilon')^{-2}}r_{i-1} = \|c_{i-1} - q\|$, from the definition of ϵ', we have $\epsilon' \leq (1 - \epsilon_0^2/100)^{-1/2} - 1$. Thus, $\sqrt{1 - (1 + \epsilon')^{-2}} \leq \epsilon/10$. Combining the two cases, we conclude that $\|c_i - c_{i-1}\| \leq (\epsilon/10)r_{i-1}$.

Let p be an arbitrary point in $P \cap B$. Then, we have $\|p - c_{i-1}\| \geq (1 - \epsilon_A)\|p - c_{i-1}\|$. Thus,
\[
\|p - c_i\| \leq \|p - c_{i-1}\| + \|c_{i-1} - c_{i-1}\| \leq (1 - \epsilon_A)^{-1}\|p - c_{i-1}\| + (\epsilon/10)r_{i-1} \leq (1 - \epsilon_A)^{-1}\|p - c_i\| + (1 - \epsilon_A)^{-1}(\epsilon/10)r_{i-1}. \tag{2}
\]
From the definition of ϵ_A, ϵ', we get that $\|p - c_i\| \leq (1 + \epsilon/3)r_i$. This means that for any $p \in B \cap P, p \in B_i(1 + \epsilon/3)$. Since B_i is a $(1 + \epsilon/3)$-approximate MEB of $P_i, B_i(1 + \epsilon/3)$ is a $(1 + \epsilon/3)^2$-approximate MEB of $P_i^* = P_i \cup (B \cap P)$, and thus a $(1 + \epsilon)$-approximate MEB. Clearly, we have $B \cap P \subseteq P_i^* \subseteq B(1 + \gamma) \cap P$. Therefore, $B_i(1 + \epsilon/3)$ is a (ϵ, γ)-AMEB of P in B.

Case (5): Note that for any $i = 0, 1, \ldots, w - 1$, we have $r_{i+1} \geq (1 + \epsilon_0^2)r_i$. Also note $w = [4/\epsilon_0^2]$. Thus we have $r_w \geq (1 + \epsilon_0)^wr_0 \geq 4\epsilon_0/\epsilon_0$. For any $p' \in B \cap P$, we claim that $p' \in B_w(1 + \epsilon/3)$. To see this, note clearly $r_0 = \|p_a - p_b\|/2$, and $(1 - \epsilon_A)\|p' - p\| \leq \|p_a - p_b\|$. Thus $\|p' - p\| \leq 2(1 - \epsilon_A)^{-1}r_0 \leq ((1 - \epsilon_A)^{-1}/2)\epsilon_0r_w \leq \epsilon_0r_w$. Thus $p' \in B_w(1 + \epsilon_0) \subseteq B_w(1 + \epsilon/3)$.

Since B_w is a $(1 + \epsilon')$-approximate enclosing ball of a subset $P' \cap B(1 + \gamma) \subset P \cap B(1 + \gamma)$, by simple calculation, we know that $B_w(1 + \epsilon/3)$ is an $(1 + \epsilon)$-approximate MEB of P'. Since $P \cap B \subset B_w(1 + \epsilon/3)$, we know $B_w(1 + \epsilon/3)$ is an $(1 + \epsilon)$-approximate MEB of $P' \cup (P \cap B)$, and clearly $P \cap B \subseteq P' \cup (P \cap B) \subset P \cap B(1 + \gamma)$. Thus $B_w(1 + \epsilon/3)$ is an (ϵ, γ)-AMEB of $B \cap P$.

\[\Box\]

Complexity Analysis. The nearest neighbor data structure takes $O_{\epsilon, \gamma}(dn^{1+\rho})$ time to build where $0 < \rho < 1$ depends on ϵ, γ. Algorithm \[\] makes one nearest neighbor search (which takes $O_{\epsilon, \gamma}(dn^{\rho})$ time), and $O_{\epsilon, \gamma}(1)$ AIFP queries. Combining the result of AIFP query (Theorem \[\]), Theorem \[\] follows.

References

1. Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its relatives. *Contemporary Mathematics*, 223:1–56, 1999.

2. Yufei Tao, Xiaokui Xiao, and Reynold Cheng. Range search on multidimensional uncertain data. *ACM Transactions on Database Systems (TODS)*, 32(3):15–es, 2007.
Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D Mehrabi. Range-clustering queries. *arXiv preprint arXiv:1705.06242*, 2017.

Pankaj K Agarwal, Lars Arge, Sathish Govindarajan, Jun Yang, and Ke Yi. Efficient external memory structures for range-aggregate queries. *Computational Geometry*, 46(3):358–370, 2013.

Sunil Arya, David M Mount, and Eunhui Park. Approximate geometric mst range queries. In *31st International Symposium on Computational Geometry (SoCG 2015)*. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

Peter Brass, Christian Knauer, Chan-Su Shin, Michiel Smid, and Ivo Vigan. Range-aggregate queries for geometric extent problems. In *Proceedings of the Nineteenth Australasian Theory Symposium-Volume 141*, pages 3–10, 2013.

Prosenjit Gupta, Ravi Janardan, Yokesh Kumar, and Michiel Smid. Data structures for range-aggregate extent queries. *Computational Geometry*, 47(2):329–347, 2014.

Sankalp Khare, Jatin Agarwal, Nadeem Moidu, and Kannan Srinathan. Improved bounds for smallest enclosing disk range queries. In *CCCG*. Citeseer, 2014.

Zhe Li, Tsz Nam Chan, Man Lung Yiu, and Christian S Jensen. Polyfit: Polynomial-based indexing approach for fast approximate range aggregate queries. *arXiv preprint arXiv:2003.08031*, 2020.

Yakov Nekrich and Michiel HM Smid. Approximating range-aggregate queries using coresets. In *CCCG*, pages 253–256, 2010.

Saladi Rahul, Haritha Bellam, Prosenjit Gupta, and Krishnan Rajan. Range aggregate structures for colored geometric objects. In *CCCG*, pages 249–252, 2010.

Saladi Rahul, Ananda Swarup Das, KS Rajan, and Kannan Srinathan. Range-aggregate queries involving geometric aggregation operations. In *International Workshop on Algorithms and Computation*, pages 122–133. Springer, 2011.

Xiaochun Yun, Guangjun Wu, Guangyan Zhang, Keqin Li, and Shupeng Wang. Fastraq: A fast approach to range-aggregate queries in big data environments. *IEEE Transactions on Cloud Computing*, 3(2):206–218, 2014.

Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant. Range queries in olap data cubes. *ACM SIGMOD Record*, 26(2):73–88, 1997.

Jeffrey Scott Vitter and Min Wang. Approximate computation of multidimensional aggregates of sparse data using wavelets. *Acm Sigmod Record*, 28(2):193–204, 1999.

Eugene Wu and Samuel Madden. Scorpion: Explaining away outliers in aggregate queries. 2013.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In *Proceedings of the twenty-first annual symposium on Computational geometry*, pages 253–262, 2004.

Ryan R Curtin and Andrew B Gardner. Fast approximate furthest neighbors with data-dependent candidate selection. In *International Conference on Similarity Search and Applications*, pages 221–235. Springer, 2016.

Qiang Huang, Jianlin Feng, and Qiong Fang. Reverse query-aware locality-sensitive hashing for high-dimensional furthest neighbor search. In *2017 IEEE 33rd International Conference on Data Engineering (ICDE)*, pages 167–170. IEEE, 2017.

Piotr Indyk. Better algorithms for high-dimensional proximity problems via asymmetric embeddings. In *Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms*, pages 539–545, 2003.

Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala. Approximate furthest neighbor in high dimensions. In *International Conference on Similarity Search and Applications*, pages 3–14. Springer, 2015.

Jie Xue. Colored range closest-pair problem under general distance functions. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 373–390. SIAM, 2019.
23 Jie Xue, Yuan Li, and Ravi Janardan. Approximate range closest-pair queries. *Computational Geometry*, 90:101654, 2020.

24 Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, Sepideh Mahabadi, and Kasturi R Varadarajan. Diverse near neighbor problem. In *Proceedings of the twenty-ninth annual symposium on Computational geometry*, pages 207–214, 2013.

25 Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and Francesco Silvestri. Sampling a near neighbor in high dimensions—who is the fairest of them all? *arXiv preprint arXiv:2101.10905*, 2021.

26 Mihai Badoiu and Kenneth L Clarkson. Smaller core-sets for balls. In *SODA*, volume 3, pages 801–802, 2003.

27 Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Francesco Silvestri. Distance-sensitive hashing. In *Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems*, pages 89–104, 2018.

28 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards removing the curse of dimensionality. *Theory of computing*, 8(1):321–350, 2012.

29 Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive hashing. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pages 1018–1028. SIAM, 2014.

30 Michael Mitzenmacher and Eli Upfal. *Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis*. Cambridge university press, 2017.

31 Ziyun Huang, Hu Ding, and Jinhui Xu. A faster algorithm for truth discovery via range cover. *Algorithmica*, 81(10):4118–4133, 2019.

32 Sariel Har-Peled. *Geometric approximation algorithms*. Number 173. American Mathematical Soc., 2011.

33 Piyush Kumar, Joseph SB Mitchell, and E Alper Yildirim. Computing core-sets and approximate smallest enclosing hyperspheres in high dimensions. *algorithms*, 22:26.
Appendix

A.1 Proof of Lemma 8

Proof. In the following we assume that all the BD queries are successful. By simple calculation, we know that this happens with probability at least \(1 - \delta\).

We first note that the return value would not be NULL if \((B, q)\) satisfies the constraint \((r_B, d_{\min}, d_{\max})\), since this only happens when the BD query \((B, B_{out,0})\) returns a NULL, which implies there is no point in \(P\) that lies in \(B \setminus B_{out,0}\). This means there is no point in \(P \cap B\) whose distance to \(q\) is at least \(r_0 = d_{\min}\), contradicting our assumption.

Next we consider the case where the algorithm returns at Step 3. Clearly \(p_{\text{ans}} \in B(1 + \xi) \setminus B_{out,m}(1 + \xi)^{-1}\). Thus \(\|p_{\text{ans}} - q\| \geq d_{\max}/(1 + \xi)\). Note for any \(p \in P \cap B\), \(\|q - p\| \leq d_{\max}\) from the constraint. The proof of this case is therefore complete.

Finally we consider the case that the algorithm returns at Step 2. There exists \(i\) such that \(p_{\text{ans}} \in B(1 + \xi) \setminus B_{out,i}(1 + \xi)^{-1}\), and the BD query \((B, B_{out,i+1})\) returns a NULL. We know that there does not exist a point in \(P \cap B \setminus B_{out,i+1}\). Thus, let \(p\) be any point in \(P \cap B\), we have \(p \in B_{out,i+1}\), which means \(\|q - p\| \leq r_{i+1} = (1 + \xi)r_i\). Since \(p_{\text{ans}} \notin B_{out,i}(1 + \xi)^{-1}\), we have \(\|p_{\text{ans}} - q\| \geq (1 + \xi)^{-1}r_i\). Thus \(\|p_{\text{ans}} - q\| \geq (1 + \xi)^{-2}\|p - q\| \geq (1 - \epsilon)\|p - q\|\). This completes the proof.

A.2 Missing Proofs in Section 2.1

The following is the proof of Lemma 1.

Proof. In order for \(G_p\) to be examined, for every \(j = 1, 2, \ldots, b\), the following two (independent) events have to happen: (1) \(\text{COM}(\text{LAB}_i(p, j), \text{LAB}_o(o_{in}, j)) \geq t_1 \land \text{COM}(\text{LAB}_o(p, j), \text{LAB}_i(o_{out}, j)) \geq t_2\), which happens with probability at least \(4/9\), and (2) \(\text{LAB}_o(p, j) = \text{LAB}_i'(j)\) and \(\text{LAB}_i(o_{out}, j) = \text{LAB}''_o(j)\), which happens with probability \(2^{-2a}\). Thus, the probability of the above two events happen is \([4/9(2^{-2a})]^b\). This proves the lemma for \(G_p\). The case for \(G_q\) can also be proved in a similar manner.

With the above two lemmas, we can obtain the following lemma. The argument has some similarity with some proofs in [28] for near neighbor search with LSH.

The following is the proof of Lemma 2.

Proof. For ease of analysis, we consider a modified version of Algorithm 4: we assume that the algorithm does not terminate after \(3c\) points are examined, and it does not return even after a point in \(B_{in}(1 + \xi) \setminus B_{out}(1 + \xi)^{-1}\) is found. Consider the following event:

- \(E\): Among the first \(3c\) examined points, there exists one point that is in \(P \cap (B_{in}(1 + \xi) \setminus B_{out}(1 + \xi)^{-1})\).

We prove that event \(E\) happens with probability at least \(1/4\). The lemma will then follows.

Let \(p \in P\) be a point that lies in \(B_{in} \setminus B_{out}\). Consider the following 2 events:

- \(E_1\): \(p\) is examined.
- \(E_2\): The number of points \(q \notin (B_{in}(1 + \xi) \setminus B_{out}(1 + \xi)^{-1})\) such that \(q\) is examined is strictly less than \(3c\).

If both of the events occur, then clearly \(E\) happens. Thus, we only need to prove that with probability \(1/4\) both \(E_1\) and \(E_2\) happen.
We first consider E_1. Note that for every $k = 1, 2, \ldots, c$, the probability that p is examined in the for loop of Step 1 of Algorithm 4 is at least $(P''_1)^b$. Note that

$$(P''_1)^b \geq (P''_1)^{1+\log_3/\rho n} = P''_1^{\rho n - e}.$$

The probability that E_1 does not happen is at most $(1 - (P''_1)^b)^c \leq (1 - P''_1^{\rho n - e})^c \leq (1 - P''_1^{\rho n - e})^{\rho n / 3} \leq 1/e$. Thus, we have $\Pr[E_1] \geq 1 - 1/e$.

Next, we consider event E_2. Let q be any point that lies outside of $B_{in}(1 + \xi) \setminus B_{out}((1 + \xi) - 1)$. We call such a q a “bad” point. For any bad point q, the probability that q is examined in the for loop of Step 1 of Algorithm 3 is at most $(P'_2)^b \leq 1/n$. Thus, the expected number of examined bad point in each iteration of the loop is at most 1. Let X denote the number of examined bad points after all the c iterations. Then, we have $E[X] \leq e$. By Markov’s inequality, we get $\Pr[X \geq 3c] \leq 1/3$. Hence, $\Pr[E_2] = \Pr[X < 3c] \geq 2/3$.

The probability that both E_1 and E_2 happen is thus no less than $(1 - 1/e) + 2/3 - 1 \geq 1/4$. This completes the proof.

In the following we analyze the space/time complexity of the BD query scheme and prove Lemma 7. We first consider the process of creating the BD data structure in Algorithm 3. The algorithm creates c groups of buckets. For each group, every point in P is hashed into one bucket. In order to create these buckets, we sample a total of $2abc$ hash functions from LSH families H_{in} and H_{out}, and apply them to every point in P to determine the buckets it belongs to. The total running time for this is $O(dabc)$. Since $a = O(\xi n)$, $b = O(\xi \log n)$ and $c = O(\xi n^2)$, where ρ and the constant hidden in the big-O notation depends only on ξ. Thus, the preprocessing time and the space complexity of the ξ-error BD query data structure is $O(\xi (dn^2 + \rho \log n))$.

Next, we analyze the query process, i.e., Algorithm 4. The main loop has at most c iterations. In each iteration, we first determine the bucket to examine, which takes $O(dab)$ time to compute the labels. Also, note that the process will terminate after $3c$ points are examined. Thus, the total running time for the query algorithm is $O(abed)$, which is $O(\xi (dn^2 \log n))$.

Note that it is easy to see that a BD query data structure with query success rate $1 - \delta$ can be obtained by combining $O(\log \delta^{-1})$ BD structures with query success rate $1/4$. Lemma 7 then follows, which concludes this subsection.

A.3 Missing Proofs in Section 4

Proof of Claim 17.

Proof. Indeed, we will prove a slightly stronger version of Claim 17. If $\|q - o_B\| \geq (3 + \gamma)\epsilon^{-1}r_B$, then any point p in $B(1 + \gamma/2)$ is an $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$.

Let p' be arbitrary point in $P \cap B$, then $\|p' - p\| \leq (2 + \gamma)\epsilon^{-1}r_B$. Note $\|p' - q\| \geq \|q - o_B\| - \|p' - o_B\| \geq (3 + \gamma)\epsilon^{-1}r_B - r_B \geq (2 + \gamma)\epsilon^{-1}r_B$. Therefore $\|p' - p\| \leq \epsilon\|p' - q\|$. Thus $\|p - q\| \geq \|p' - q\| - \|p' - p\| \geq (1 - \epsilon)\|p' - q\|$. Since p is in $B(1 + \gamma/2)$, we conclude that p is an $(\epsilon, \gamma/2)$-AIFP of q in $P \cap B$.

Proof of Claim 18.
Proof. If v does not exist, then $r_N > \gamma r_B/64$. Since p_N is a 2-nearest neighbor, for any $p' \in P$, we have $\|p' - q\| \geq r_N/2$. Thus $\|p' - q\| > \gamma r_B/128$, and the claim follows easily in this case.

In the following, let v_p denote the parent node of v (if v_p does not exist, i.e. v is the root of T_P, then the claim is trivial). Then from the definition of v, we know that $s(v_p) + r_N \geq \gamma r_B/64$. From the property of T_P, for any $p_{\text{out}} \in P \setminus P(v)$, $s(v_p) \leq \|p_{\text{out}} - q\|$. Thus $\|p_{\text{out}} - q\| nd + r_N \geq \gamma r_B/64$. Therefore, either $r_N \geq \gamma r_B/128$ or $\|p_{\text{out}} - q\| nd \geq \gamma r_B/128$.

Note that if $r_N \geq \gamma r_B/128$, then the claim follows easily, since p_N is a 2-nearest neighbor of q in P. So we assume $\|p_{\text{out}} - q\| nd \geq \gamma r_B/128$, which gives us $\|p_{\text{out}} - q\| \geq \gamma r_B/128 nd$. The proof is complete.

\section*{Proof of Claim 19}

\textbf{Proof.} Assume $\|o_B - q\| > (1 + \gamma/64)r_B = r_B + \gamma r_B/64$. Note $s(v) + r_N \leq \gamma r_B/64$, and $s(v)$ is an upper bound of the diameter of $P(v)$, then for any $p \in P(v)$, we have $\|p - q\| \leq \gamma r_B/64$. Therefore $p \notin B$.

\section*{Proof of Claim 20}

\textbf{Proof.} We first consider case $r^- = r_N + s(v) > \gamma r_B/512n^2d^2$. Then either (a) $r_N > \gamma r_B/1024n^2d^2$, or (b) $s(v) > \gamma r_B/1024n^2d^2$. For case (a), let p_1 be arbitrary point in $P \cap B \subset P \cap B(o_B, r_B^{(2)})$, since p_N is a 2-nearest neighbor, we have $\|p_1 - q\| \geq r_N/2 \geq \gamma r_B/2048n^2d^2$. For case (b), note $s(v)$ is not larger than nd times the diameter of $P(v)$, thus there exists $p_1, p_2 \in P(v)$, such that $s(v) \leq \|p_1 - p_2\| nd$. Thus $\|p_1 - p_2\| \geq \gamma r_B/1024n^3d^3$. Thus at least one of p_1 or p_2, just say p_1, would satisfy $\|p_1 - q\| \geq \gamma r_B/2048n^3d^3$. Also $p_1 \in B(o_B, r_B^{(2)})$. In fact, for any point $p' \in P(v)$, $\|o_B - p'\| \leq \|o_B - q\| + \|q - p'\| \leq (1 + \gamma/64)r_B + (r_N + s(v)) \leq (1 + \gamma/64)r_B + r_B + \gamma r_B/64 = (1 + \gamma/32)r_B$, which implies $p' \in B(o_B, r_B^{(2)})$. We have proved item 1 of the claim.

Now assume $r^- = r_N + s(v) \geq \gamma r_B/512n^2d^2$. For every $p \in P(v)$, we have $\|p - q\| \leq r_N + s(v) = r^- \leq |r^-|$, thus $p \in B(o_B, r_B^{(3)})$. Also from Claim 18 for any $p_{\text{out}} \in P \setminus P(v)$, we have $\|q - p_{\text{out}}\| \geq \gamma r_B/256 nd$. From this, it is hard to see by calculation that p_{out} lies outside of $p \in B(o_B, (1 + \gamma)r_B^{(3)})$.

Note clearly $s(v) + r_N = r^- \geq (1 + \lambda)^{-1}r_B^{(3)} \geq r_B^{(3)}/2$. If $r_N \geq r_B^{(3)}/4$, then we have $\|q - p_N\| = r_N \leq r_B^{(3)}/4$ and $p_N \in P(v)$, and the claim is proved in this case. Assume $r_N < r_B^{(3)}/4$, then $s(v) \geq r_B^{(3)}/4$. Now let $p_1, p_2 \in P(v)$ such that $\|p_1 - p_2\|$ is the diameter of $P(v)$. Thus $r_B^{(3)}/4 \leq s(v) \leq nd\|p_1 - p_2\|$. Thus $\|p_1 - p_2\| \geq r_B^{(3)}/4 nd$. Then for at least one of p_1, p_2, its distance to q is at least $r_B^{(3)}/8 nd$. The proof is complete.

For any $p' \in B(o_B, r_B^{(3)})$, $\|o_B - p'\| \leq \|o_B - q\| + \|q - p'\| \leq (1 + \gamma/64)r_B + r_B + \gamma r_B/256n^2d^2 \leq (1 + \gamma/32)r_B$. Thus $B(o_B, r_B^{(3)}) \subset B(1 + \gamma/32)$.