Slow waves promote sleep-dependent plasticity and functional recovery after stroke

https://doi.org/10.1523/JNEUROSCI.0373-20.2020

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.0373-20.2020
Received: 10 February 2020
Revised: 15 September 2020
Accepted: 24 September 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2020 Facchin et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
Title: Slow waves promote sleep-dependent plasticity and functional recovery after stroke

Running title: Slow waves promote functional stroke recovery

Authors and affiliations:
Laura Facchin1, Cornelia Schöne1, Armand Mensen2, Mojtaba Bandarabadi1, Federica Pilotto1, 3, Smita Saxena1, 3, Paul Antoine Libourel1, Claudio L.A. Bassetti1, 2\#, Antoine R. Adamantidis1, 2, 3\#*

1Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland.
2Department of Neurology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland.
3Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
4Centre de Recherche en Neurosciences de Lyon, University of Lyon, 69500 Bron, France.

\# equal contributions.
* correspondence should be addressed to:
Antoine Adamantidis, Department of Neurology, Inselspital University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland. e-mail: antoine.adamantidis.unibe.ch.
Claudio L.A. Bassetti, Department of Neurology, Inselspital University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland. e-mail: claudio.bassetti@insel.ch.

Number of pages: 45
Number of figures: 8
Number of words for:
abstract: 250
introduction: 493
discussion: 1474

Conflict of interest: The authors declare no competing financial interest.

Acknowledgment: We thank all members of the Adamantidis and Bassetti Labs and the technical assistance of Andrea Oberli and Joel Gyger. LF was supported by the Inselspital University Hospital of Bern and the SNF Sinergia (CRSII3_160803) grant. AA was supported by the Human Frontier Science Program (RGY0076/2012), Inselspital University Hospital of Bern, Swiss National Science Foundation (31003A_156156), European Research Council (725850), Sinergia (CRSII3_160803), the University of Bern and the Bern University Hospital.

Authors contribution: LF, FP, SS, CB and AA designed the research; LF and CS performed the research; LF, CS, AM, MB analyzed the data; PAL developed the sleep scoring system. All authors wrote the paper.
ABSTRACT

Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with low frequency high amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are reminiscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery, however, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5 ms optical activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200 ms silencing of Archeorhodopsin T-expressing pyramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous NREM SW in freely-moving mice. Importantly, we found that single optogenetically-evoked SW (SW^{opto}) in the peri-infarct zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sensorimotor stroke lesion site, as compared to spontaneous recovery and control conditions, while motor strength remained unchanged. In contrast, SW^{opto} during wakefulness had no effect. Furthermore, chronic SW^{opto} during sleep were associated with local axonal sprouting as revealed by the increase of anatomical pre- and post-synaptic markers in the peri-infarct zone and corresponding contra-lesional areas to cortical circuit reorganization during stroke recovery. These results support a role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically-relevant framework for rehabilitation strategies using neuromodulation during sleep.
SIGNIFICANCE STATEMENT

Brain stroke is one of the leading causes of death and major disabilities in elderly worldwide. A better understanding of the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of rehabilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically-induced sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for post-stroke intervention that promotes neuroplasticity and facilitates sensorimotor recovery.
INTRODUCTION

Stroke is an acute brain injury caused by a sudden decrease in cerebral blood flow, followed by local inflammation (Huang et al., 2006), excitotoxicity (Lai et al., 2014) and cell death (Small et al., 1999). Changes in neuronal excitability after stroke are thought to promote long-term plasticity in surviving neurons that contributes to the reorganization of cortical maps and to the underlying level of axonal sprouting supporting brain functions (Carmichael, 2012; van Meer et al., 2012; Silasi and Murphy, 2014), as observed in rodents (Nudo, 1997; Murphy and Corbett, 2009; Carmichael et al., 2017) and humans (Khedr et al., 2005; Lindenberg et al., 2010). To date, pharmacological treatments and non-invasive brain neuromodulation techniques hold promise in improving plasticity and functional recovery both in animal model (Zhang et al., 2007; Yoon et al., 2012) and human (Robinson et al., 2008; Ameli et al., 2009; Talelli et al., 2012), yet the underlying mechanisms remain unclear.

Post-stroke hyperexcitability of surviving neurons contributes to the transient low-frequency (~ 1 Hz, 200-500 ms in duration), high amplitude, rhythmic waves (also coined ‘bistable state’) originating in the peri-infarct zone and propagating to contra-lesional brain areas. This distinctive 1-Hz slow and synchronous neural activity in the peri-infarct zone shares similarities with slow waves (SW) typically recorded during non-rapid eye movement (NREM) sleep in rodents and human. Indeed, SW reflect bistable states of thalamocortical neuron populations, described as a switch between UP states where depolarised membrane potentials are accompanied by high spiking activity, and DOWN states during which cells are hyperpolarized and show low spiking activities in cats (Steriade et al., 1993), rodents (Vyazovskiy et al., 2009; Zucca et al., 2017), non-human primates (Xu et al., 2019) and human (Csercsa et al., 2010). These SW were hypothesized to guide axonal sprouting and...
circuit rewiring through the formation of new connections after brain lesions (Carmichael and Chesselet, 2002) facilitating recovery, however this has not been directly demonstrated.

Extensive experimental evidence suggests a fundamental role for intact sleep, and SW in particular, in enhancing brain plasticity during spontaneous sleep (Tononi and Cirelli, 2016; Timofeev and Chauvette, 2017) and stroke recovery (Duss et al., 2017). The detrimental effects of sleep disturbances (Kaneko et al., 2003; Baglioni et al., 2016) and the beneficial effect of pharmacological NREM sleep enhancement after stroke support the hypothesis that SW contribute to brain plasticity underlying post-stroke functional and cognitive recovery both in animal models (Gao et al., 2008; Hodor et al., 2014) and patients (Vock et al., 2002; Siccoli et al., 2008; Sarasso et al., 2014).

Here, we used an optogenetic approach inspired by global and local SW changes after stroke to rescue SW-like activity in freely-moving mice. Optogenetic activation of pyramidal neurons in the peri-infarct zone during NREM sleep improved fine motor movements as compared to experimental control conditions. In contrast, optogenetically-evoked SW (SW\text{opto}) during wakefulness had no effect. Importantly, SW\text{opto} evoked recovery after stroke was associated with axonal sprouting in the peri-infarct zone and corresponding contra-lesional areas.

MATERIALS AND METHODS

Animals

C57BL/6JRj male mice (https://www.janvier-labs.com/en/fiche_produit/c57bl-6jrj_mouse/) (5-6 weeks old, 23-30 grams) were used in the study. Animals were individually housed in
custom-designed polycarbonate cages (300 mm x 170 mm) under controlled conditions (regular circadian cycle of 12:12 h light:dark; light on at either 4 a.m. or 8 p.m. according to experimental design; constant temperature 22 ± 1 °C and humidity 30-50%). Throughout the experiment animals were freely-moving with *ad libitum* food and water. Animals were kept in groups of 2-5 per IVC cage before instrumentation and after viral injection surgery. Following implantation mice were all housed individually. Animals were tethered, allowed to adapt to the EEG/EMG and optic stimulation cables in their home cage for at least 5-7 days, and remained plugged for the duration of the experiment. Animals were detached from all tethers for 4 days following stroke or sham surgery and for the duration of behavioural testing. Animals were randomly assigned to eight experimental groups: Channelrhodopsin (ChR2) transfected animals subjected to stroke (ChR2stroke), ChR2 transfected animals subjected to stroke and optogenetically stimulated mainly during wakefulness (ChR2stroke_wake), Archaeorhodopsin (ArchT) transfected animals subjected to stroke (ArchTstroke), mCherry transfected animals subjected to stroke (mCherrystroke), mCherry transfected animals subjected to sham surgery (mCherrysham), Naive, Sham and Stroke. Animals that displayed baseline asymmetry in limb usage or did not show a drop in cerebral blood flow (CBF) by ~80% during middle cerebral artery occlusion (MCAo) surgery were excluded from further experimental tests. Viral injections were performed when animals were 5-6 weeks of age, instrumentation at 8 weeks of age and stroke/sham surgery at 10 weeks of age. Between surgeries and before being tethered, animals were let recover undisturbed for at least 7 days. Naive mice did not undergo any surgical procedures. An additional set of heterozygous Tg(VGAT-Cre) mice, (5-6 weeks old, 23-30 grams) was used for an optogenetic screening of slow waves-like oscillations inducing protocols. All animals were treated according to animal care laws and experimental procedures were approved by local
authorities (Veterinary Office, Canton of Bern, Switzerland; licence numbers BE 113/13 and BE 41/17).

Viral targeting

For a detailed description of the surgical procedure refer to Herrera et al., 2016. Briefly, 5-6 weeks old animals were anesthetized with isoflurane (4.0% induction; 1.0-1.5% maintenance). Body temperature was constantly monitored and kept at physiological range using a rectal thermoprobe and feedback-controlled heating system. Animals were fixed in a digital stereotaxic frame and analgesia was administered subcutaneously (Meloxicam, 5mg/kg). Animals were randomly assigned to receive 0.6 μL of recombinant AAV carrying either CaMKII-hChR2 (H134)-EYFP (activation), CaMKIIa-eArchT3.0-EYFP (silencing) or CaMKIIa-mCherry (control) respectively. Plasmids were stereotactically injected (0.1 μL/min infusion rate) through a 28 G needle (Plastic One), connected by a tubing to a 10 μL Hamilton syringe in an infusion pump (Model 1200, Harvard Apparatus). Injections were performed within the left (prospective ipsilateral) primary somatosensory forelimb cortex (iS1FL, AP: -0.10 mm; ML: -2.00 mm; DV: -0.7 mm). Animals were given 7 days of recovery prior to instrumentation surgery. Tg(VGAT:Cre) mice underwent identical surgical procedures as wild type animals, randomly assigned to receive 0.6 μL of recombinant AVV carrying Ef1α-DIO-ChR2-EYFP (activation), Ef1α-DIO-ArchT-EYFP (silencing) or Ef1α-DIO-EYFP (control) respectively. All plasmids were obtained from the University of North Carolina Vector Core Facility. Mice belonging to Sham, Stroke and Naive groups did not receive any AAV injection.

Instrumentation
Animals were chronically implanted with a unilateral optic fiber (200 μm in diameter) within the iS1FL (AP: -0.10 mm; ML: -2.00 mm; DV: -0.5 mm) and an electroencephalography (EEG)/electromyography (EMG) connector. As previously reported (Gent et al., 2018), animals received analgesia (Meloxicam, 5mg/kg), were anaesthetised with isoflurane and anchored to a stereotaxic frame. Five stainless steel EEG electrode screws were inserted through each animal’s skull; two screws over the frontal cortices (AP: +2 mm; ML: ±2mm), two screws over the posterior cortices (AP: -4 mm; ML: ±2 mm) and one screw over the olfactory bulb as ground. For the stimulation recordings, the EEG signals from the frontal and posterior channels were referenced to each other directly, leaving only two EEG traces, one per hemisphere. Finally, two bare-ended EMG wires were sutured to the neck muscles to record postural tone. A subset of animals was additionally implanted with four tetrodes to record local field potentials (LFPs) and single unit activity during optogenetic stimulation, as well as EEG/EMG signals. Tetrodes were constructed by twisting four tungsten wires together (10 μm in diameter, CFW0010954, California Fine Wire) and briefly heating them to favour the bond coating of each wire to another. Tetrodes were lowered within the iS1FL (AP: -0.10 mm; ML: -2.00 mm; DV: -0.5 mm), the ipsilateral primary motor cortex (iM1, AP: +1.10 mm; ML: -1.5 mm; DV: -1.20 mm), the contralateral S1FL (cS1FL, AP: -0.10 mm; ML: +2.00 mm; DV: -0.5 mm) and the contralateral M1 (cM1, AP: +1.10 mm; ML: +1.5 mm; DV: -1.20 mm) respectively. The tetrode positioned in iS1FL was glued to the optic fiber, where the tip of the tetrode extended for 0.2 mm beyond the end of the fiber (optrode). Optic fibers and implants were permanently secured to the skull with C&B Metabond (Patterson Dental) and methacrylate cement (Paladur). Animals were monitored post-operatively and left to recover undisturbed for at least 7 days. Animals were then plugged to the EEG/EMG/optic stimulation and tetrodes tethers (Neuralynx headstage). Black nail polish was applied at the connection point between optic fiber and patch cord to
limit laser light spreading during optogenetic stimulations. The implantation procedure for animals belonging to Sham and Stroke groups did not include either optic fiber or tetrodes placement.

Transient focal cerebral ischemic stroke

Mice underwent MCAo via intraluminal filament model (Doeppner et al., 2010) at around 10 weeks of age. To begin, mice were anaesthetised with isoflurane as previously described and placed in a prone position. Physiological temperature was maintained as mentioned above. The left common carotid artery (CCA) was dissected from the surrounding connective tissue. A monofilament suture (7-0 silicon rubber coated, coating length 5-6 mm, Doccol Corporation) was inserted in the CCA and introduced into the lumen of the MCA. The monofilament was left in place for 45 min to induce both striatal and cortical infarct and consequently withdrawn to allow the reperfusion of the territory targeted by the MCA. CBF was constantly monitored by a Laser Doppler probe (Moor Instrument, VMS-LDF2) glued to the skull above the MCA region. Ischemic stroke induction was considered successful when the CBF showed a ~ 80% reduction from baseline values, as well as reperfusion of the MCA territory. Following surgery, mice were daily checked for pain and weight loss, received mashed, watered food, subcutaneous analgesia and 0.9% saline. Animals belonging to the Naive group did not undergo stroke or sham surgery. No filament was inserted into the MCA during sham surgery. Following MCAo, 40% of animals assigned to the Stroke group and 33% of all animals allocated to optogenetic stimulations did not survive the post-operation phase.

Optogenetic stimulation
Lasers (Laserglow Technologies) attached to the unilateral fiber via patch cord (Thorlabs) were triggered through TTL with a pulse stimulator (Master - 9, AMPI), this latter controlled by a function generator (Agilent, 33220A 20MHz Function/Arbitrary Waveform Generator) to induce random pulse sequences. Animals received daily 2 h of randomly distributed single laser light pulses (inter-pulses interval 3-30 sec), from post-stroke day 5 until day 15. The random distribution of light pulses was selected to avoid hypersynchrony and entrainment of oscillatory activities which, *per se*, might influence the observed parameters. The optogenetic stimulation was semi-chronic: light pulses were distributed across sleep and wake states without simultaneous behavioural scoring by the experimenter and consequent state specific stimulation. Indeed, daily and chronic stimulation (11 days) of several animals (experimental and control were run in parallel) is not suited for a single experimenter. The specific time allocated for optogenetic intervention was therefore selected according to the natural distribution of the majority of NREM sleep and wakefulness episodes throughout the 12h light:dark cycle of the animals. Two stimulation protocols were employed: ChR2-expressing animals received 5 ms blue light pulses (473 nm wavelength), ArchT-expressing mice were stimulated with 200 ms green light pulses (532 nm wavelength) and mCherry-expressing animals were randomly subjected to either 200 ms or 5 ms light pulses. To assess whether the effect of SW_{opto} on functional recovery was specific to brain activity occurring during sleep, in a separate group of animals (ChR2stroke_wake) optogenetic stimulations were also delivered during the first part of the dark phase, when animals were mostly awake. Based on pre-instrumentation testing of both optic fiber and patch cord outputs, light power was set at 20-25 mW.

Data acquisition
EEG and EMG signals were amplified (Model 3500, AM System) and digitized at 512 Hz (NIDAQ 6363, National Instruments) using a sleep recording software (MATLAB written software, DaqReverse). A 24 h baseline of spontaneous sleep-wake behaviour was recorded for all animals. Stroke and Sham animals were recorded for 24 h at post-surgery days 1, 3, 5 and 10. All optogenetic stimulations took place between 9 a.m. and 2 p.m., with light on at 4 a.m. for ChR2stroke, ArchTstroke, mCherrystroke and mCherrysham. Since ChR2stroke and ArchTstroke animals showed similar functional outcomes upon neuronal manipulation during sleep, an additional ChR2-transfected set of animals received SWopto during animals’ active phase (between 9 a.m. and 2 p.m., lights on at 8 p.m., ChR2stroke_wake), from post-stroke day 5 until day 15. Animals’ spontaneous sleep was recorded for 18 h at post-stroke day 5, 6, 8, 12 and 14 respectively. LFPs and EEG/EMG signals were amplified and digitized at 32 kHz (Cheetah 5 acquisition software, Neuralynx, https://neuralynx.com/software/cheetah-5.0-legacy).

Behavioural tests

All animals were trained in four behavioural tests and engaged in daily training sessions for three consecutive days. Behavioural baselines were acquired prior to stroke/sham surgery. Functional outcomes were verified at post-stroke days 4, 7, 10 and 15. All behavioural tests were conducted at least 3 h apart from optogenetic stimulations and during animals’ active phase (between 5 p.m. and 8 p.m.). Test sessions were recorded with a picamera (Raspberry Pi) and scored in slow motion (VideoPad software, https://www.nchsoftware.com/videopad/index.html).

Balance beam test: To assess motor balance and coordination (Brooks and Dunnett, 2009) a round wooden beam (12 mm in diameter, 80 cm long) was positioned at an angle so that one end of the beam was 60 cm elevated from the working table. At the beam’s elevated end, the
animal’s home cage served as motivation to complete the task. Soft fabric placed beneath the beam avoided possible falling injuries. The number of ‘paw faults’ (forelimb or hindlimb slipping off the beam) were counted during a maximal testing time of 60 sec. Each animal underwent three trials per time point and means were calculated.

Tight rope test

To measure grip strength and endurance (Balkaya et al., 2013) animals were suspended on a fine rope (60 cm above the working table) between two platforms (80 cm apart from one another). Mice were positioned at the middle point of the rope exclusively with their forepaws. The average time needed to reach one of the two platforms was calculated between two trials. The maximum testing time was 60 sec.

Corner turn test

To evaluate the presence of unilateral abnormalities (Park et al., 2014) mice where placed in between two vertical boards forming a 30° angle. Animals left- or right-turn decision was recorded for a total of 10 trials per testing session. Laterality index was calculated as (number of left turns – number of right turns)/10.

Ladder walking rig test

The test was chosen to measure paw accurate placement (Cummings et al., 2007). The apparatus consisted of a ladder (80 cm long), suspended between two platforms (60 cm above the working table) with randomly spaced rungs. Paw faults were recorded as animals walked to reach the home cage at one end of the ladder. Mice performances were scored in slow motion and the mean of three trials calculated. The position of the rungs was randomly changed across trials to avoid learning.

Signal processing
As previously described (Jego et al., 2013), electrophysiological data were manually scored in 5 sec epochs and analysed using SlipAnalysis (custom written MATLAB program). Briefly, three vigilance state were identified based on EEG/EMG frequency and amplitude. Wakefulness was determined by low amplitude EEG and high activity EMG signals; NREM sleep as high amplitude and low-frequency EEG (0.5-4 Hz) paired with reduced EMG activity; REM was characterized by theta rhythm (6-9 Hz) EEG and flat EMG. Microarousals were defined and scored as cortical fast rhythm and EMG bursts of at least 1 sec. Sleep/wakefulness scoring was based on the visual characteristics of the contralateral EEG traces specifically. Electrophysiological analysis was completed using custom MATLAB scripts.

Automatic single SW detection

Individual SW were detected during NREM sleep epochs during the first 7 h of the lights ON period in MATLAB using the SWA-MATLAB toolbox (Mensen et al., 2016), with detection parameters adjusted to rodents from settings described in Panagiotou et al., 2017. Briefly, in a first-pass of the data, the negative envelope across the 4 EEG channels was calculated, filtered between 0.5 and 4 Hz (Chebyshev Type II filter design), and consecutive zero-crossings were detected. If the duration between successive downward (negative going) zero-crossing and upward zero-crossing was between 100 msec and 1 sec, then the peak negative amplitude was examined and was required to be at least 3 deviations from the median amplitude of all negative peaks in the recording. The amplitude threshold eliminates the potential individual differences of electrodes reference type, distance to those reference, and electrode depth that would affect the record amplitude. In a second-pass, the activity over all 4 channels was examined for each slow wave detected on the negative envelope to obtain individual channel data.
Single unit analysis

We performed spike detection and sorting as described previously (Gent et al., 2018). Briefly, we first extracted multiunit activity from band-pass filtered signals (600-4000 Hz, 4th-order elliptic filter, 0.1 dB passband ripple, -40 dB stopband attenuation), by applying a detection threshold of $7.5 \times$ the median of the absolute values of the filtered signal. We then extracted wavelet coefficients from the detected multiunit activity using a four-level discrete wavelet transform (Harr wavelet, ‘wavedec’, MATLAB), and subsequently sorted the coefficients using the super-paramagnetic clustering. We visually inspected the sorted units and excluded the clusters with a symmetric shape or an average firing rate less than 0.2 Hz from our analyses.

Optogenetic response analysis

We assessed the optogenetic response analysis for each vigilance state separately. For unit activity, we calculated mean firing rates during optogenetic perturbations by averaging firing rates across trials using a non-overlapping moving window of 5 ms. For LFP analysis, we averaged raw LFP signals across trials of each vigilance state.

Infarct volume evaluation and immunohistochemistry

Animals were sacrificed at post-stroke day 15 with 15 mg pentobarbital intraperitoneal injection (Esconarkon ad us. vet., Streuli Pharma) and transcardially perfused with 1x phosphate buffered saline (PBS) followed by 4% formalin. Brains were post-fixed overnight, cryoprotected in 30% sucrose (24-48 h at 4°C), frozen in 2-methyl-butane on dry ice and cut into 40 μm sections. Every third slice was mounted onto a glass slide, dried at room temperature (RT), rehydrated and processed for Nissl staining. Briefly, sections were immersed in Cresyl Violet (Klüver Barrera, Bio-Optica), washed in distilled water and
dehydrated in graded alcohols, cleared in Xylene (Sigma-Aldrich) and mounted (Eukitt mounting medium, Bio-Optica) on microscope slides. Stroke edges were delineated per section using Imagej software (https://imagej.nih.gov/ij/). The damaged area was measured in each brain slice and multiplied by the distance between brain sections. Stroke volume relative to the whole brain was calculated as follows: ((volume of contralesional hemisphere - volume of ipsilesional hemisphere)/2 * volume of contralesional hemisphere) * 100 (Lin et al., 1993).

Fluorescent immunohistochemical staining was performed with free-floating brain sections. Brain slices were washed in PBS-Triton (PBS-T) and incubated in blocking solution (1 h at RT; PBS-T with 4% of bovine serum albumin, SIGMA Life Science). Free-floating slices from ChR2- and ArchT-expressing animals were incubated in a primary antibody to GFP (chicken IgY fraction anti-GFP, 1:5000, Cat# A10262, RRID:AB_2534023, Life Technologies) in blocking solution (24-48 h at 4°C). Following repeated washes in PBS-T, sections were incubated with the secondary antibody (1:500, Cat# ab96947, RRID:AB_10681017, Abcam) in PBS-T (1 h at RT). Sections were then washed in PBS-T, mounted and covered on microscope slides.

Axonal sprouting quantification

Four brains per experimental group were randomly chosen for axonal sprouting evaluation. Brains were fixed, frozen and cut as previously described. Several 40 µm sections per brain were selected (approximately, from Bregma 1.10 mm to Bregma -0.70 mm) and stained for Vglut1, PSD-95 and DAPI. Floating sections were washed in PBS and blocked in PBS with 0.5% Triton X-100 and 10% normal donkey serum (NDS, Jakson ImmunoResearch Code: 017-000-121) (2 h at RT). Sections were then incubated with the following primary antibodies: chicken IgY fraction anti-GFP (ChR2stroke and ArchTstroke, Cat# A10262, RRID:AB_2534023, Life Technologies), rabbit anti-Vglut1 (ChR2stroke, ArchTstroke, mCherry-
expressing animals, 1:1000, Cat# 135303, RRID:AB_887875, SYSY), goat anti-PSD-95
(ChR2stroke, ArchTstroke, mCherry-expressing animals, 1:500, Cat# ab12093, RRID:AB_298846, Abcam) and mCherry respectively (mCherry-expressing animals, 1:1000, Cat# M11217, RRID:AB_2536611, Life Technologies) in PBS containing 3% NDS and
0.5% Triton X-100 solution (overnight at 4°C). Brain slices were repeatedly washed in PBS
and incubated with appropriate secondary antibodies (1:500, Alexa Fluor 488 Ab96947, Abcam; all others 1:1000, Invitrogen) in PBS containing 3% NDS and 0.5% Triton X-100 solution (2 h at RT). A negative control (no addition of primary antibody) was carried out to confirm the antibody selectivity. Sections were further stained for DAPI (1:500 in PBS, 10 minutes), washed in PBS, mounted on microscope slides and covered. Photomicrographs were acquired with Olympus Fluoview 1000-BX61 confocal microscope (Olympus, Tokyo) fitted with 60X oil-immersion objective (4x zoom, 0.5 μm step size). Three fields of interest (52.172 μm x 52.172 μm) within iS1FL and cS1FL were imaged in three sections per animal. Imaris software (Microscopy Image Analysis Software, Bitplane, https://imaris.oxinst.com/) was used to reconstruct the 3D view of the Z stacks and to evaluate pre- and post- synaptic compartments’ density and volume. Briefly, background subtraction, image smoothing via gaussian filtering and channel intensity adjustment were applied and maintained identical for all the acquired confocal images. A preliminary stack selection was carried out to localize puncta distributed within two consecutive stacks. A puncta diameter threshold was specified at 0.6 μm and when this value was exceeded, puncta were separated upon visual confirmation by the experimenter.

Statistical analysis

For the analyses of the 24 h recordings of stroke and sham animals, a two-level analysis was performed using linear mixed models. A first-level analysis on each animal and recording
day, including temporal predictors of recording time, time since last wake epoch in order to estimate the homeostatic effect on individual slow wave characteristics across the lights on period as well as the potential differences between the ipsi- and contralateral hemisphere. At the second level, the parameter estimates from the first level data for each animal for each day were used to examine the overall effects of stroke over the course of 10 days after stroke. The potential effects of days, stroke, stimulation group, on sleep parameters and behavioural outcomes were tested using linear mixed models. Sleep and behavioural values from day 0 was assigned as a baseline predictor, while those from day 4 were used as pre-stimulation baseline. Main effects and interactions were tested for significance using the log-likelihood ratio test between the full model and the model without the specific factor in question. The effects between the stimulation groups were examined by post-hoc t-tests within the linear mixed model. As an exploratory analysis, macro and micro sleep parameters during the stimulation time were included as a potential predictor of behavioural outcome: percentage of NREM, number of micro-arousals, NREM-to-wake transition ratio, wave incidence, wave amplitude, wave duration, positive and negative slope.

For the pre- and post-synaptic markers assessment, statistical comparisons were determined with Student’s t-test, one-way ANOVA, where corrections for multiple comparisons were carried out using Bonferroni correction, if not otherwise indicated (Prism 6 GraphPad; https://www.graphpad.com/scientific-software/prism/). Data are presented as mean ± standard error of the mean (s.e.m.) and levels of statistical significance were set at threshold p < 0.05 unless otherwise indicated. Sample sizes were defined based on previous studies (Gao et al., 2008; Jego et al., 2013; Herrera et al., 2016). For each experiment, sample numbers are indicated in the corresponding figure legends. Animals that did not perform behavioural testing were excluded from the analysis; as well as mice that lost EEG/EMG signals during longitudinal measurements. Data distribution was tested for normality using the Lilliefors test.
on the residuals from each linear mixed model calculated and found to be normally distributed. Experiments were not conducted in blinded fashion.

Data availability

Dataset and coding supporting the current study are available from the corresponding author upon request.

RESULTS

Stroke alters sleep architecture and SW profile

SWs-like oscillations are frequently observed in peri-infarct zone during NREM sleep and wakefulness (Yokoyama et al., 1996; Murri et al., 1998; Fernandez-Bouzas et al., 2002). To refine the characterization of brain activity after stroke, including SW features, we first quantified the changes of sleep-wake architecture and sleep quality from animals subjected to MCAo and sham surgeries (Fig. 1A, B). Animals were chronically implanted with EEG/EMG electrodes for longitudinal sleep recordings prior to, and at 1, 3, 5, and 10 days after MCAo (see Methods; Fig. 1C). To control for multiple comparisons between the 8 sleep metrics, the significance threshold was reduced to $p < 0.0063$ (i.e. $0.05/8$; Bonferroni correction). MCAo resulted in an initial increase of NREM sleep duration with group differences dampening over the days recorded (Figure 1E, Day by Stroke interaction: $LR(1) = 7.977, p = 0.0047$). Significant main effects of stroke were found for total wake duration (Figure 1D; $LR(2) = 22.385, p < 0.0001$); and wake bout duration ($LR(2) = 34.502, p < 0.0001$), but this general effect was not significantly different over the days after correction (Day by Stroke interaction: $LR(1) = 4.328, p = 0.0375$). No significant results were observed for REM sleep total duration (Fig. 1F). We further explored the potential effect of stroke size...
within the MCAo group on all sleep architecture measures but found no main effects or interaction effects with the day of recording (all p-values > 0.0063).

NREM sleep instability, describing the ratio between the animals’ capacity of remaining asleep compared to waking up, showed that stroke animals were significantly more likely to wake up (Fig. 1J; LR(2) = 14.918, p = 0.0006).

The number of microarousals, scored as single epoch of 1 sec (minimum) increased EMG signal within a NREM sleep episode, did not differ between Stroke and Sham (Fig. 1K; LR(2) = 4.651, p = 0.0977).

To assess SW features and changes after MCAo stroke, animals were prepared for simultaneous recordings of EEG/EMG, LFPs or single/multi-units activities in iS1FL, cS1FL, iM1 and cM1 layer V (see Methods and Fig. 2B for illustration). Clear periods of neuronal quiescence corresponding to cortical DOWN states confirmed the selectivity of our SW detection method (see Methods for detection criteria; Fig. 2A-D). Indeed, perilesional tetrodes recordings of unit activity in S1FL showed suppression, and subsequent increase, in neuronal activity (Fig. 2D, top), validating the average unit firing rate observed during the detected SW (Fig. 2D, bottom). Both local and global SW occurred across all recorded neocortical areas (Fig. 2A), consistent with previous reports in rodents and humans (Huber et al., 2004; Vyazovskiy et al., 2011). If individual waves are detected across the 24 h period, we observed a significant reduction of ipsilateral SW’s amplitude by -13.2 ± 7.3% after stroke as compared to sham controls that persisted for up to 10 days after stroke (Fig. 2F; day 10: -15.4 ± 6.4%; F(2, 70) = 13.82, p < 0.0001; two-way ANOVA, followed by Bonferroni post-hoc test). These findings are consistent with hemispheric stroke in rodents and human subjects (Ahmed et al., 2011; Poryazova et al., 2015). Moreover, the SW positive slope was reduced within the ipsilateral area of Stroke animals (Fig. 2G; F(2, 76) = 13.02, p < 0.0001),
whereas the negative slope increased (Fig. 2H; F(2, 76) = 15.89, p < 0.0001). No significant changes were found in the number of detected SW (Fig. 2I; F(2, 87) = 0.693, p = 0.503) or their duration (Fig. 2J; F(82, 83) = 0.744, p = 0.478; two-way ANOVA, followed by Tukey post-hoc test). When exploring for a homeostatic effect, we did not find differences in amplitude between Stroke and Sham for ipsi- and contralateral EEG traces (LR(2) = 0.940, p = 0.625) nor for time of night (LR(2) = 3.791, p = 0.150).

SWopto revealed a critical window of intervention after stroke

Here, we aimed at identifying the effect of optogenetically-induced SW (SW\(^\text{opto}\)) on the recovery of motor function following MCAo stroke in mice. Thus, we genetically targeted the expression of opsins to pyramidal neurons in layer V of the neocortex, given their implication in the generation of slow oscillations (McCormick et al., 2015; Beltramo et al., 2013). To achieve this, we stereotactically infused AAV2 viruses carrying ChR2, ArchT or mCherry gene cassettes under CaMKII promoter in iS1FL (Fig. 3A, B) before animals were chronically implanted with EEG/EMG electrodes, tetrodes in cS1FL, iM1 and cM1 cortices (layer V) and a single optrode in iS1FL (see above and Methods, Fig. 3A). We first optimized the frequency and duration of optogenetic stimulations to mimic NREM sleep SW in both wild type and VGAT-Cre transgenic mice to modulate excitatory or inhibitory neurons in iS1FL with 5 Hz, 1 ms light pulses (activation protocol) or 100, 200, 500 ms single pulses (silencing protocol) (Fig. 4). We found that 5 ms optogenetic activation of iS1FL ChR2-expressing pyramidal neurons induced a short UP-like state followed by a DOWN-like state, indistinguishable from spontaneous NREM sleep SW (Fig. 3C-E). Similar SW\(^\text{opto}\) waveform profiles were obtained upon 200 ms optogenetic silencing of iS1FL ArchT-expressing pyramidal neurons (Fig. 3F, I). In the latter condition, the duration of the optogenetic silencing of iS1FL ArchT-expressing pyramidal neurons corresponded to the average
duration of spontaneous NREM sleep DOWN states (Fig. 2C; duration: 205.2 ± 4.4 ms; Fig. 3H). Off-line analysis confirmed that SWopto duration, negative amplitude and slope were indistinguishable from naturally occurring NREM sleep SW from the same animal (Fig. 3E, I). SWopto propagated to contralateral recording sites, where SWopto of variable amplitudes were recorded in EEG, LFP and single activity traces (Fig. 3D, H and Fig. 5). No changes in EEG features were observed in control conditions (Fig. 3J-L).

To determine the optimal window for optogenetic intervention after MCAo, we evaluated the effect of this stimulation parameters on the survival rates of stroke animals. Strikingly, we observed that ChR2stroke animals had lower survival rate than ArchTstroke and mCherrystroke mice when the optogenetic manipulation started on post-stroke day 1 (single 5 or 200 ms light pulses, at 473 nm or 532 nm, respectively, randomly distributed over 2 h, daily; Fig. 6A; Chi square(2) = 7.941, p = 0.018; ChR2stroke: 30% survival; ArchTstroke: 75% survival; mCherrystroke: 77.7% survival; Log-rank Mantel-Cox test), as compared to day 5 (Fig. 6B; Chi square(4) = 6.383, P = 0.172; ChR2stroke: 60% survival; ArchTstroke: 70% survival; mCherrystroke: 70% survival; mCherrysham: 100 % survival; Naive: 100 % survival; Long-rank Mantel-Cox test). These findings are consistent with an increased excitotoxicity after stroke (Nudo, 2006; Allman et al., 2016), hence, all our optogenetic experiments started on day 5.

SWopto during sleep improves functional recovery

We next tested whether sleep-specific SWopto improves functional recovery after MCAo in mice. The expression of ChR2, ArchT and mCherry was genetically targeted to iS1FL pyramidal neurons as described above (Fig. 3A) before animals were chronically implanted with a unilateral optic fiber on iS1FL and EEG/EMG electrodes for simultaneous optogenetic control and polysomnographic recordings in freely moving mice (Fig. 7A; see Methods).
Sparse SWopto were randomly distributed during sleep starting 5 days after stroke until day 15
(single 5 or 200 ms light pulses, at 473 nm or 532 nm, respectively, randomly distributed
over 2 h, daily; n = ~300 optical stimuli; Fig. 7B, C).

Evaluation of the animals’ fine motor movements, coordination, strength and asymmetry at
post-stroke day 4 (Fig. 7B) showed severe behavioural deficits in all animals subjected to
MCAo. Indeed, on post-stroke day 4 stroke-induced animals were no longer able to finely
coordinate their grasping movements (Fig. 7D; LR(1) = 27.498, p < 0.0001; Fig. 7F; LR(1) =
32.205, p < 0.0001). As expected, no behavioural impairments were found in mCherrysham
and Naive animals (Fig. 7D; F, respectively, p > 0.05).

In the ladder walking rig test (Fig. 7D), a significant interaction between the stimulation
group and days was found (LR(5) = 11.976, p = 0.035). Post-hoc analysis revealed that the
ArchTstroke group recovered at a faster pace than ChR2stroke_wake (t(101) = 2.842, p = 0.005).
Generally all mice improved across days (LR(6) = 28.235, p < 0.001). Main effects of
stimulation group were also found (LR(10) = 42.949, p < 0.001). ChR2stroke, ChR2stroke_wake
were significantly different from mCherrystroke (t(101) = -2.430, p = 0.017; t(101) = -3.137, p
= 0.002). For the beam balance (Fig. 7F) we found a significant interaction effect of
stimulation group and day (LR(5) = 14.171, p = 0.015). mCherrystroke did not show a
significant improvement across days (t(152) = -1.671, p = 0.097). However, compared to
mCherrystroke, ArchTstroke mice showed significantly more improvement over the course of
days (t(110) = -2.866, p = 0.005). ChR2stroke mice also significantly improved across days
after stroke (t(152) = -4.168, p < 0.001), but this improvement was less than the ArchTstroke
group (t(110) = -2.285, p = 0.024) and on par with the mCherrystroke group (t(110) = 0.580, p
= 0.563). Comparisons of animal improvement between post-stroke day 4 and 15 confirmed
the functional recovery of ChR2stroke (Fig. 7E; t(14) = 3.46, p = 0.007; Fig. 7G; t(18) = 2.372,
p = 0.029) and ArchTstroke (Fig. 7E; t(14) = 3.083, p = 0.008; Fig. 7G; t(18) = 3.895 p = 0.002; one-way ANOVA), in comparison to mCherrystroke control. In contrast, optogenetic intervention after stroke did not lead to any improvement of motor endurance, strength (Fig. 7H) or asymmetry (Fig. 7I).

SWopto increases axonal sprouting

Stroke triggers a cascade of molecular and cellular changes including synaptogenesis, neurogenesis and axonal sprouting in peri-infarct zone and remote connected circuits (Nudo, 1997; Carmichael et al., 2017).

To quantify the anatomical changes induced by chronic SWopto, we quantified the expression of pre-synaptic Vglut1 and post-synaptic PSD-95 proteins as a direct measurement of axonal sprouting in cortical layers V (Liu et al., 2007; Sun et al., 2017) and connected circuits in layers II (Binzegger et al., 2004; Adesnik and Naka, 2018) (Fig. 8A). Puncta density quantification in both iS1FL and cS1FL cortices revealed a significantly higher Vglut1 protein levels in ipsilateral layer II (Fig. 8B; F(3, 19) = 10.49, p = 0.0003), and layer V (Fig. 8C; F(3,18) = 16.02, p > 0.0001; one-way ANOVA) from ChR2stroke and ArchTstroke animals, as compared to mCherry controls. Consistently, analysis of Vglut1 positive puncta volume distribution revealed a significant increase of smaller, newly-formed puncta within ipsilateral layer V of both ArchTstroke and ChR2stroke as compared to mCherrystroke animals (Fig. 8E; F(2, 2111) = 75.13, p < 0.0001). This was also true for *ex novo* Vglut1 puncta in post-synaptic sites of layer II from ChR2stroke animals (Fig. 8D; mCherrystroke vs. ChR2stroke t(2070) = 4.181, p < 0.0001), but not ArchTstroke animals (mCherrystroke vs. ArchTstroke t(2070) = 3.015, p = 0.0078, ChR2stroke vs. ArchTstroke t(2070) = 0.903, p > 0.999; one-way ANOVA, followed by Bonferroni correction).
These pre-synaptic changes were concomitant to a significant decrease of post-synaptic PSD-95 protein expression in iS1FL layer II of both ChR2 and ArchT expressing animals when compared to control group (Fig. 8F; F(3, 23) = 8.609, p = 0.0005; one-way ANOVA), with no differences in layer V (Fig. 8G; F(3, 24) = 1.095, p = 0.370; one-way ANOVA). PSD-95 positive puncta volume were significantly larger iS1FL layer II (Fig. 8H; F(2, 625) = 85, p < 0.0001) and layer V from ChR2stroke animal as compared to mCherrystroke or ArchTstroke (Fig. 8I; (F(2, 2111) = 75.13), p < 0.0001; one-way ANOVA).

DISCUSSION

Stroke is a debilitating neurological disorder and one of the worldwide leading causes of adult disability and death in aging population. A better understanding of the complex pathophysiological mechanisms underlying the stroke event and the following brain plasticity warrants the improvement of existing strategies and the development of alternative therapies for stroke recovery (Feigin et al., 2017).

Here, we showed that MCAo induced an ipsilateral reduction of spontaneous SW amplitude, associated with sleep fragmentation and increased NREM sleep after stroke onset (Giubilei et al., 1992; Vock et al., 2002; Baumann et al., 2006; Hermann et al., 2008). Our results further indicate that sleep-specific optogenetic neuromodulation of brain activity after stroke had no effects on the sleep-wake cycle architecture, but it improved fine skilled motor movements in comparison to wakefulness interventions. These manipulations were accompanied by axonal sprouting of local and connected circuits, suggesting a direct role for SW in promoting anatomical and functional plasticity of neural circuit during sleep (Carmichael and Chesselet, 2002; Aeschbach et al., 2008; Tononi and Cirelli, 2014). Collectively, these findings emphasize a role for NREM sleep SW as a window of intervention during stroke recovery.
and a possible mechanism underlying the improvement of rehabilitative strategies using repetitive transcranial magnetic stimulation (rTMS) (Kim et al., 2006; Brodie et al., 2014) and transcranial direct current stimulation (tDCS) (Boggio et al., 2006; Lindenberg et al., 2010).

Spontaneous sleep SW are associated with neuroplastic changes (Tononi and Cirelli, 2006; Puentes-Mestril and Aton, 2017), inflammatory and immunological adaptative response (Irwin and Cole, 2011), protective functions during infection (Irwin, 2019), metabolic clearance (Xie et al., 2013). Clinical studies reported significant improvement in stroke rehabilitation upon non-invasive brain stimulation during sleep (Niimi et al., 2018) and SW enhancement (Ebajemito et al., 2016). We used physiologically-relevant stimulation protocols to avoid neuronal hypersynchrony, un-natural firing activities and circuit adaptation by using single optogenetic stimuli randomly distributed across sleep in freely-moving animals. These sparse optogenetics interventions induced SW^{opto} without perturbing sleep-wake cycle architecture. Our strategy contrasts from other studies that use long-lasting hypersynchronous optogenetic activation independently of the animal behaviour, sleep-wake states, or delivered during anaesthesia (Cheng et al., 2014; Shah et al., 2017; Tennant et al., 2017; Lu et al., 2017). Our findings show that sparse SW^{opto} delivered during sleep improved behavioural outcomes whereas SW^{opto} during wakefulness did not. An explanation for this striking difference is that low frequency, high amplitude waves during wakefulness represent dysfunctional waves, typical of pathological conditions that are often associated with functional abnormalities, including deafferentiated or lesioned thalamo-cortical circuits (Steriade et al., 1993; Butz et al., 2004). These results further emphasize the importance of sleep as a window for optimal modulation of brain activity that potentiates the effect of SW^{opto} on brain plasticity and behavioural outcomes (see below).
Alteration of sleep-wake cycle and slow wave

Our findings showed that stroke injury induces a dramatic increase in NREM sleep on the day following stroke. This effect is accompanied by transient perturbation of the circadian sleep distribution across the light/dark cycle. Although the causes of these transient changes remain unclear, they may result from a functional adaptation to the strong fragmentation of both NREM sleep and wakefulness.

Our experimental results are consistent with the sleep fragmentation, the increase in NREM sleep stages 1-2 and the decreased REM sleep observed during the first days following stroke in human (Giubilei et al., 1992; Vock et al., 2002). Sleep fragmentation may result from a lack of consolidated synchrony of neuronal activity amongst thalamo-cortical circuitries, as suggested by the decreased amplitude and positive slope of spontaneous SW after stroke observed in our study. These SW profiles are indicative of low spiking synchrony of thalamic and cortical neurons (Huber et al., 2004; Vyazovskiy et al., 2009), which may facilitate arousal upon wake-promoting inputs of sub-cortical origins (Adamantidis et al., 2007; Carter et al., 2010; Herrera et al., 2016; Gent et al., 2018). Whether the SW remaining after stroke are generated by a similar mechanism and support similar cortical functions, as the naturalistic SW recorded from an intact brain remains to be examined in light of the different cells types potentially implicated in SW generation (Gerashchenko et al., 2008; Cardin et al., 2009; Stroh et al., 2013; Jackson et al., 2016; Niethard et al., 2016). An important characteristic of spontaneous sleep SW is their propagation pattern across the brain cortex, originating at anterior regions and travelling to posterior directions (Massimini et al., 2004, Gent et al., 2018). Investigating SW’s traveling changes across the ipsi-lateral hemisphere and the peri-infarct zone specifically represents an interesting additional aspect to explore in
future work. The experimental preparation of the present study (single EEG trace per hemisphere) limited further SW analysis in this direction.

SWopto promotes behavioural recovery after stroke

Chronic SW**opto** over 11 days after stroke facilitated spontaneous functional recovery, while earlier interventions exacerbated brain injury and decreased the survival rate of the animals, possibly due to excessive glutamate release (Lai et al., 2014) leading to increased excitotoxicity (Nudo, 2006; Allman et al., 2016). This window of spontaneous recovery is limited to a month in rodents, and three months in humans, during which molecular and structural changes potentiate the responsiveness to rehabilitative treatments (Murphy and Corbett, 2009; Ng et al., 2015) and emphasize a crucial intervention timeframe (Dromerick et al., 2009). Although post-stroke excitotoxicity might be an accurate explanation for the detrimental effect observed in animals’ survival, additional studies are required to further scrutinize markers of excitotoxicity (e.g. levels of glutamate, NMDA receptors, AMPA receptors and their activation, caspases, reactive oxygen species) in combination with optogenetic intervention at several time points following stroke.

An interesting finding in our study is that SW**opto** had no direct effects on sleep architecture but induced a delayed increase of sleep duration. This result is in agreement with studies showing prolonged NREM sleep upon activation of somatostatin interneurons (Funk et al., 2017), and to a lesser extent pyramidal neurons (Rodriguez et al., 2016) in the neocortex. Noteworthy, increased NREM sleep following SW**opto** intervention was present only within the first two days of stimulation (not shown), presumably due to the brain recovery processes or the adaptation of the sleep-promoting circuits to the SW**opto**, or both. Although we cannot rule out a possible role of this transient NREM sleep increase on the sensorimotor
improvement of the animals, it is unlikely that these early and transient changes are responsible for the motor improvements observed at the end of the experiment.

Slow wave, plasticity and axonal sprouting

In our experiments, sensorimotor improvement after stroke was achieved by either chronic optogenetic activation, or silencing, of iS1FL pyramidal neurons in freely-moving mice, supporting an essential role for UP-DOWN states, rather than neuronal activation or silencing alone, in brain plasticity (Puentes-Mestril and Aton, 2017). These bistable states during NREM sleep (here, mainly SWopto) are associated with synaptic plasticity in local circuits and their postsynaptic targets, as observed for the beneficial effect of sleep low frequency stimulation of motor or somatosensory cortical circuits on perceptual learning (Miyamoto et al., 2016) or the formation of new dendritic spines in motor cortex (layer V) pyramidal neurons in mice (Yang et al., 2014). Furthermore, our results are in agreement with the finding that experimental disruption of cortical SW following learning impairs consolidation of visuomotor learning in human (Landsness et al., 2009).

The early stages of stroke recovery are classically attributed to brain oedema resorption and penumbra reperfusion, while later stages are associated with structural reorganization through axonal sprouting, synaptogenesis and neurogenesis (Nudo, 2006). Here, both ChR2-, and to a lesser extent ArchT-induced SWopto promoted an increase of pre- and post-synaptic markers in S1FL layers V and II respectively. Decreased PSD-95 density after SWopto is consistent with similar findings upon rTMS stimulation in rodents (Etiévant et al., 2015) that correlate with improved functional outcomes in non-human primates treated with PSD-95 inhibitors (Cook et al., 2012). Larger PSD-95 puncta were found within both layers II and V of ChR2stroke animals, suggestive of a stabilization of the functional synapse (Cane et al., 2014).
Thus, SW opto enhance UP/DOWN state network synchronization (Gent et al., 2018) and facilitate the formation of new synapses which are not restricted to targeted cortical circuits (i.e. pyramidal neurons in the peri-infarct zone) but also anatomically connected circuits located in ipsi- and contra-lateral hemispheres (Liu et al., 2009; Cui et al., 2013). Noteworthy, brain activity in other cortical and sub-cortical networks and other sleep oscillations including spindles participate to synaptic plasticity during NREM sleep (Rosanova and Ulrich, 2005; Chauvette et al., 2012) and may contribute to the behavioral outcome reported here.

Collectively, our findings support a role for NREM sleep SW in neuronal circuit plasticity and provide a clinically-relevant framework for developing sparse, non-invasive neuromodulation, including acoustic brain stimulations (Ngo et al., 2013), TMS or tDCS (Ebajemito et al., 2016; Niimi et al., 2018) for optimal recovery after brain injury.
REFERENCES

Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424.

Adesnik H, Naka A (2018) Cracking the Function of Layers in the Sensory Cortex. Neuron 100:1028–1043.

Aeschbach D, Cutler AJ, Ronda JM (2008) A Role for Non-Rapid-Eye-Movement Sleep Homeostasis in Perceptual Learning. J Neurosci 28:2766–2772.

Ahmed S, Meng H, Liu T, Sutton BC, Opp MR, Borjigin J, Wang MM (2011) Ischemic stroke selectively inhibits REM sleep if rats. Exp Neurol 232:168-75.

Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, Stagg CJ, Johansen-Berg H (2016) Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med 8:1–21.

Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, Fink GR, Nowak DA (2009) Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 66:298–309.

Asanuma H, Arissian K (1984) Experiments on functional role of peripheral input to motor cortex during voluntary movements in the monkey. J Neurophysiol 52:212–227.

Baglioni C, Nissen C, Schweinoch A, Riemann D, Spiegelhalder K, Berger M, Weiller C, Sterr A (2016) Polysomnographic characteristics of sleep in stroke: A Systematic review and meta-analysis. PLoS One 11:1–23.

Balkaya M, Kröber JM, Rex A, Endres M (2013) Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab 33:330–338.

Baumann CR, Kilic E, Petit B, Werth E, Hermann DM, Tafti M, Bassetti CL (2006) Sleep
EEG changes after middle cerebral artery infarcts in mice: Different effects of striatal and cortical lesions. Sleep 29:1339–1344.

Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, Tucci V, De Pietri Tonelli D, Fellin T (2013) Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 16:227–234.

Binzegger T, Douglas RJ, Martin KAC (2004) A Quantitative Map of the Circuit of Cat Primary Visual Cortex. J Neurosci 24:8441–8453.

Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F (2006) Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 25:123–139.

Brochier T, Boudreau MJ, Paré M, Smith AM (1999) The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip. Exp Brain Res 128:31–40.

Brodie SM, Meehan S, Borich MR, Boyd LA (2014) 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke. Front Hum Neurosci 8:1–10.

Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: A user’s guide. Nat Rev Neurosci 10:519–529.

Butz M, Gross J, Timmermann L, Moll M, Freund HJ, Witte OW, Schnitzler A (2004) Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Lett 355:93–96.

Cane M, Maco B, Knott G, Holtmaat A (2014) The Relationship between PSD-95 Clustering and Spine Stability In Vivo. J Neurosci 34:2075–2086.

Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
Carmichael ST (2012) Brain excitability in stroke: The yin and yang of stroke progression. Arch Neurol 69:161–167.

Carmichael ST, Chesselet M-F (2002) Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci 22:6062–6070.

Carmichael ST, Kathirvelu B, Schweppie CA, Nie EH (2017) Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol 287:384–394.

Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, DeLecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1535.

Chauvette S, Seigneur J, Timofeev I (2012) Sleep Oscillations in the Thalamocortical System Induce Long-Term Neuronal Plasticity. Neuron 75:1105–1113.

Cheng MY, Wang EH, Woodson WJ, Wang S, Sun G, Lee AG, Arac A, Fenno LE, Deisseroth K, Steinberg GK (2014) Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci 111:12913–12918.

Cook DJ, Teves L, Tymianski M (2012) Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483:213–217.

Csercsa R et al. (2010) Laminar analysis of slow wave activity in humans. Brain 133:2814–2829.

Cui L, Murikinati SR, Wang D, Zhang X, Duan WM, Zhao LR (2013) Reestablishing Neuronal Networks in the Aged Brain by Stem Cell Factor and Granulocyte-Colony Stimulating Factor in a Mouse Model of Chronic Stroke. PLoS One 8:2–12.

Cummings BJ, Engesser-Cesar C, Cadena G, Anderson AJ (2007) Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury. Behav Brain Res 177:232–241.
Doeppner TR, El Aanbouri M, Dietz GPH, Weise J, Schwarting S, Bähr M (2010) Transplantation of TAT-Bcl-xL-transduced neural precursor cells: Long-term neuroprotection after stroke. Neurobiol Dis 40:265–276.

Doyon J (2008) Motor sequence learning and movement disorders. Curr Opin Neurol 21:478–483.

Dromerick AW, Birkenmeier RL, Miller JP, Videen TO, Power WJ, Wolf SL, Edwards DF (2009) Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS). Neurology 73:195–201.

Duss SB, Seiler A, Schmidt MH, Pace M, Adamantidis A, Müri RM, Bassetti CL (2017) The role of sleep in recovery following ischemic stroke: A review of human and animal data. Neurobiol Sleep Circadian Rhythm 2:94–105.

Ebajemito JK, Furlan L, Nissen C, Sterr A (2016) Application of transcranial direct current stimulation in neurorehabilitation: The modulatory effect of sleep. Front Neurol 7:54.

Etiévant A, Manta S, Latapy C, Magno LA V., Fecteau S, Beaulieu JM (2015) Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation. Sci Rep 5:1–9.

Feigin VL, Norrving B, Mensah GA (2017) Global Burden of Stroke. Circ Res 120:439–448.

Fernández-Bouzas a, Harmony T, Fernández T, Aubert E, Ricardo-Garcell J, Valdés P, Bosch J, Casián G, Sánchez-Conde R (2002) Sources of Abnormal EEG Activity in Spontaneous Intracerebral Hemorrhage. Clin EEG Neurosci 33:70-76.

Funk CM, Peelman K, Bellesi M, Marshall W, Cirelli C, Tononi G (2017) Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves. J Neurosci 37:9132–9148.

Gao B, Kilic E, Baumann CR, Hermann DM, Bassetti CL (2008) Gamma-hydroxybutyrate accelerates functional recovery after focal cerebral ischemia. Cerebrovasc Dis 26:413–
Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR (2018) Thalamic dual control of sleep and wakefulness. Nat Neurosci 21:1–11.

Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T, de la Iglesia HO, Kilduff TS (2008) Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci 105:10227–10232.

Giubilei F, Iannilli M, Vitale A, Pierallini A, Sacchetti ML, Antonini G, Fieschi C (1992) Sleep patterns in acute ischemic stroke. Acta Neurol Scand 86:567–571.

Grefkes C, Fink GR (2014) Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13:206–216.

Hermann DM, Siccoli M, Brugger P, Wachter K, Mathis J, Achermann P, Bassetti CL (2008) Evolution of Neurological, Neuropsychological and Sleep-Wake Disturbances After Paramedian Thalamic Stroke. Stroke 39:62–68.

Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A (2016) Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19:702–715.

Hodor A, Palchykova S, Baracchi F, Noain D, Bassetti CL (2014) Baclofen facilitates sleep, neuroplasticity, and recovery after stroke in rats. Ann Clin Transl Neurol 1:765–777.

Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245.

Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81.

Irwin MR (2019) Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol 19:702–715.

Irwin MR, Cole SW (2011) Reciprocal regulation of the neural and innate immune systems.
Jackson J, Ayzenshtat I, Karnani MM, Yuste R (2016) VIP+ interneurons control neocortical activity across brain states. J Neurophysiol 115:3008–3017.

Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1643.

Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, Ando S, Bradley TD (2003) Cardiovascular Effects of Continuous Positive Airway Pressure in Patients with Heart Failure and Obstructive Sleep Apnea. N Engl J Med 348:1233–1241.

Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005) Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65:466–468.

Kielar A, Deschamps T, Chu RKO, Jokel R, Khatamian YB, Chen JJ, Meltzer JA (2016) Identifying dysfunctional cortex: Dissociable effects of stroke and aging on resting state dynamics in MEG and fmri. Front Aging Neurosci 8:40.

Kim YH, You SH, Ko MH, Park JW, Lee KH, Jang SH, Yoo WK, Hallett M (2006) Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 37:1471–1476.

Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol:157–188.

Landsness EC, Crupi D, Hulse BK, Peterson MJ, Huber R, Ansari H (2009) Sleep-Dependent Improvement in Visuomotor Learning: A Causal Role for Slow Waves. Sleep 32:123–184.

Liew S-L, Santarnecchi E, Buch ER, Cohen LG (2014) Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 8:378.
Lin TN, He YY, Wu G, Khan M, Hsu CY (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24:117–121.

Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G (2010) Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75:2176–2184.

Liu Z, Li Y, Qu R, Shen L, Gao Q, Zhang X, Lu M, Savant-Bhonsale S, Borneman J, Chopp M (2007) Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Res 1149:172–180.

Liu Z, Zhang RL, Li Y, Cui Y, Chopp M (2009) Remodeling of the corticospinal innervation and spontaneous behavioral recovery after ischemic stroke in adult mice. Stroke 40:2546–2551.

Lu Y, Jiang L, Qu M, Song Y, He X, Zhang Z, Yang G-Y, Wang Y (2017) Optogenetic inhibition of striatal neurons improves the survival of implanted neural stem cell and neurological outcomes after ischemic stroke in mice. Stem Cells Int 2017:11.

Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The Sleep Slow Oscillation as a Traveling Wave. J Neurosci Res 24:6862-6870.

McCormick DA, McGinley MJ, Salkoff DB (2015) Brain state dependent activity in the cortex and thalamus. Curr Opin Neurobiol 31:133–140.

Mensen A, Riedner B, Tononi G (2016) Optimizing detection and analysis of slow waves in sleep EEG. J Neurosci Methods 274:1–12.

Miyamoto D, Jirai D, Fung CCA, Inutsuka A, Odagawa M, Suzuki T, Boehringer R, Adaikkan C, Matsubara C, Matsuki N, Fukai T, McHugh TJ, Yamanaka A, Murayama (2016) Top-down cortical input during NREM sleep consolidates perceptual memory. Science 352:1315-1318.

Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour.
Murri L, Gori S, Massetani R, Bonanni E, Marcella F, Milani S (1998) Evaluation of acute ischemic stroke using quantitative EEG: A comparison with conventional EEG and CT scan. Neurophysiol Clin 28:249-257.

Ng K, Gibson EM, Hubbard R, Yang J, Caffo B, O’Brien R, Krakauer JW, Zeiler SR (2015) Fluoxetine maintains a state of heightened responsiveness to motor training early after stroke in a mouse model Kwan. Stroke 46:2951–2960.

Ngo HV V., Claussen JC, Born J, Mölle M (2013) Induction of slow oscillations by rhythmic acoustic stimulation. J Sleep Res 22:22–31.

Niethard N, Hasegawa M, Itokazu T, Oyanedel CN, Born J, Sato TR (2016) Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition. Curr Biol 26:2739–2749.

Niimi M, Sasaki N, Kimura C, Hara T, Yamada N, Abo M (2018) Sleep during low-frequency repetitive transcranial magnetic stimulation is associated with functional improvement in upper limb hemiparesis after stroke. Acta Neurol Belg 119:1–6.

Nudo RJ (1997) Remodeling of cortical motor representations after stroke: implications for recovery from brain damage. Mol Psychiatry 2:188–191.

Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16:638–644.

Panagiotou M, Vyazovskiy V V., Meijer JH, Deboer T, Czeisler CA (2017) Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice. Sci Rep 7:43656.

Park SY, Marasini S, Kim GH, Ku T, Choi C, Park MY, Kim EH, Lee YD, Suh-kim H, Kim SS (2014) A method for generate a mouse model of stroke: evaluation of parameters for blood flow, behavior, and survival. Exp Neurobiol 23:104–114.

Poryazova R, Huber R, Khatami R, Werth E, Brugger P, Barath K, Baumann CR, Bassetti CL
(2015) Topographic sleep EEG changes in the acute and chronic stage of hemispheric stroke. J Sleep Res 24:54-65.

Puentes-Mestril C, Aton SJ (2017) Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 11:1–18.

Robinson RG, Jorge RE, Moser DJ, Acion L, Solodkin A, Small SL, Fonzetti P, Hegel M, Arndt S (2008) Escitalopram and problem-solving therapy for prevention of poststroke depression: A randomized controlled trial. JAMA - J Am Med Assoc 299:2391–2400.

Rodriguez A V, Funk CM, Vyazovskiy V V, Nir Y, Tononi G, Cirelli C (2016) Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep. J Neurosci 36:12436–12447.

Rosanova M, Ulrich (2005) Pattern-Specific Associative Long-Term Potentiation Induced by a Sleep Spindle-Related Spike Train. J Neurosci 25:9398–9405.

Sarasso S, Määttä S, Ferrarelli F, Poryazova R, Tononi G, Small SL (2014) Plastic Changes Following Imitation-Based Speech and Language Therapy for Aphasia. Neurorhabil Neural Repair 28:129–138.

Shah AM, Ishizaka S, Cheng MY, Wang EH, Bautista AR, Levy S, Smerin D, Sun G, Steinberg GK (2017) Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci Rep 7:46612.

Siccoli MM, Rölli-Baumeler N, Achermann P, Bassetti CL (2008) Correlation between sleep and cognitive functions after hemispheric ischaemic stroke. Eur J Neurol 15:565–572.

Silasi G, Murphy TH (2014) Stroke and the Connectome: How Connectivity Guides Therapeutic Intervention. Neuron 83: 1354-1368.

Small DL, Morley P, Buchan AM (1999) Biology of ischemic cerebral cell death. Prog Cardiovasc Dis 42:185–207.

Steriade M, Nuñez A, Amzica F (1993) A novel slow(<1 Hz) oscillation of
van Meer MPA, Otte WM, van der Marel K, Nijboer CH, Kavelaars A, van der Sprenkel JWB, Viergever MA, Dijkhuizen RM (2012) Extent of Bilateral Neuronal Network Reorganization and Functional Recovery in Relation to Stroke Severity. J Neurosci 32:4495–4507.

Vock J, Achermann P, Bischof M, Milanova M, Müller C, Nirkko A, Roth C, Bassetti CL (2002) Evolution of sleep and sleep EEG after hemispheric stroke. J Sleep Res 11:331–338.

Vyazovskiy V V, Faraguna U, Cirelli C, Tononi G (2009) Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J Neurophysiol 101:1921–1931.

Vyazovskiy V V., Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447.

Vyazovskiy V V., Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G (2009) Cortical Firing and Sleep Homeostasis. Neuron 63:865–878.

Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science (80-) 342:373–377.

Yang G, Lai C, Cichon J, Ma L, Li W, Gan W-B (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science (80-) 344:1173–1178.

Yokoyama E, Nagata K, Hirata Y, Satoh Y, Watahiki Y, Yuya H (1996) Correlation of EEG activities between slow-wave sleep and wakefulness in patients with supra-tentorial stroke. Brain Topogr 8:269-273.

Yoon KJ, Oh B-M, Kim D-Y (2012) Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after
cerebral ischemia in rats. Brain Res 1452:61–72.

Xu W, De Carvalho F, Jackson A (2019) Sequential neural activity in primary motor cortex during sleep. J Neurosci 39:3698–3712.

Zhang X, Mei Y, Liu C, Yu S (2007) Effect of transcranial magnetic stimulation on the expression of c-Fos and brain-derived neurotrophic factor of the cerebral cortex in rats with cerebral infarct. J Huazhong Univ Sci Technol 27:415–418.

Zucca S, D’Urso G, Pasquale V, Vecchia D, Pica G, Bovetti S, Moretti C, Varani S, Molano-Mazón M, Chiappalone M, Panzeri S, Fellin T (2017) An inhibitory gate for state transition in cortex. Elife 6:1–31.
FIGURE LEGENDS

Figure 1. Stroke alters sleep architecture. (A) Schematic of the Circle of Willis (CW) with highlighted common carotid artery (CCA), internal carotid artery (ICA), middle cerebral artery (MCA) involved in MCAo procedure and filament placement. (B) Coronal sections (40 μm) of a representative mouse 15 days after MCAo. Nissl staining. (C) Schematic representation of EEG and EMG electrodes placements relative to stroke. 24 h recordings of animals’ sleep-wake cycles were performed before stroke (Baseline) and again at post-stroke day 1, 3, 5 and 10 in Stroke (n = 11) and Sham (n = 9) animals. (D) Percentage changes of wakefulness, NREM sleep (E) and REM sleep (F) total durations from each animal’s baseline values. (G) Comparison between bout durations of wakefulness, NREM sleep (H) and REM sleep (I). (J) Ratio between NREM continuous episodes and transitions to wake. (K) Total number of microarousals in 24 h recordings. (L) Percentage of epochs spent in wake or sleep states for Stroke (blue table) and Sham (grey table) groups, respectively. Linear mixed model of 8 matrices: Wake duration changes; NREM duration changes; REM duration changes; Wake bout duration; NREM bout duration; REM bout duration; NREM stability; Microarousals. Data are represented as means ± s.e.m.; asterisks indicate significance *p < 0.0063.

Figure 2. Stroke alters SW profile. (A) Automatic detection of single slow waves (SW) from local field potential (LFP) recordings in ipsilateral primary somatosensory forelimb cortex (iS1FL), ipsilateral primary motor cortex (iM1), contralateral M1 (cM1), contralateral S1FL (cS1FL) and EEG traces from ipsilateral (iEEG) and contralateral (cEEG) hemispheres. Representative traces in black and detected SW in colours (top). Magnification of one episode of NREM sleep and detected SW (bottom). (B) Schematic of tetrodes and EEG/EMG electrode implantation. (C) Representative average SW from 24 h baseline EEG recording.
(D) Unit activity heat map of neurons recorded during detected SW; the graph shows neuronal activity suppression corresponding to the silent SW DOWN state (top). Average firing rate of single units recorded during the detected SW (bottom). (E) Schematic of EEG electrodes position. (F) SW peak to peak amplitude prior to (Baseline) and following MCAo or sham surgery (post stroke day 1, 3, 5 and 10). (G) SW positive slope. (H) SW negative slope. (I) Number of single SW detected. (J) SW duration. Stroke n = 11, Sham n = 9; two-way ANOVA, followed by Bonferroni post-hoc test. Data are represented as means ± s.e.m. Asterisks indicate significance *p < 0.05.

Figure 3. Optogenetic induction of SW-like bistable oscillations. (A) Scheme of a coronal brain section with AAV injection site (left), AAV structure (top) and optrode/EEG/EMG implantation representation (right). (B) Opsin distribution within the peri-infarct ipsilateral primary somatosensory forelimb cortex (iS1FL) following AAV injection of CaMKII-ChR2-EYFP. (C) Local field potential (LFP) traces, single unit activity and correspondent raster plot and mean spike rate upon optogenetic stimulation during wakefulness (left), NREM sleep (middle) and REM sleep (right) from one representative stimulation session. (D) Average ipsilateral (iEEG) and contralateral EEG (cEEG) traces response to activation (ChR2) of pyramidal neurons with 5 ms of single laser light pulses (473 nm). (E) Comparison between spontaneous and optogenetically-evoked SW (Swopto) duration (left), negative amplitude (middle) and slope (right) during NREM sleep for ChR2 stimulated animals; Wilcoxon rank sum test, statistically significant if p < 0.05. (F) ArchT distribution within iS1FL. (G) Representative EEG/EMG traces upon silencing of pyramidal neurons with 200 ms of single laser light pulses (532 nm) during NREM sleep. (H) Average iEEG and cEEG responses to ArchT stimulation. (I) Comparison between Swopto duration (left), negative amplitude (middle) and slope (right) during NREM sleep for ArchT stimulated animals;
Wilcoxon rank sum test, statistically significant if $p < 0.05$. (J) mCherry (control) expression in iS1FL; representative EEG/EMG responses during 5ms light pulse stimulation (top) and average EEGs (bottom). (L) Representative EEG/EMG traces response to 200ms pulse stimulation in one mCherry transfected mouse (top) and its average EEGs response.

Figure 4. Optogenetic screening for slow waves induction in the peri-infarct zone. (A) Coronal section indicating the AAV injection site (left primary somatosensory forelimb cortex, S1FL) (top) and schematic of EEG/EMG/optic fiber/tetrodes implantation (bottom). (B) LFP recordings from S1FL upon laser light stimulation (500 ms, 5 Hz and 200 ms) of inhibitory (top) or pyramidal neurons (bottom) respectively.

Figure 5. SW$^{\text{opto}}$ oscillations travel across hemispheres. (A) Local field potential (LFP) traces, multi-unit activity from tetrodes placed in ipsilateral primary somatosensory forelimb cortex (iS1FL), contralateral S1FL (cS1FL), ipsilateral primary motor cortex (iM1) and contralateral M1 (cM1) and EEG/EMG traces recorded during one stimulating session showing the travelling characteristic of the evoked waves (SW$^{\text{opto}}$). (B) Raster plots corresponding to one single light pulse stimulation event during wakefulness, NREM and REM sleep as well as relative mean spike rate for iS1FL, cS1FL, cM1 respectively. No unit was found for iM1. (C) Average LFP traces during the stimulation events for the four recorded cortical areas respectively.

Figure 6. SW$^{\text{opto}}$ defines a critical window of intervention for stroke recovery. (A) When the stimulation protocol started at post-stroke day 1, ChR2$^{\text{stroke}}$ animals in particular showed lower survival percentage. (B) When the stimulation instead began at post-stroke day 5,
ChR2\textsubscript{stroke} animal showed an improvement in survival percentage. Asterisks indicate significance *p < 0.05.

Figure 7. SWopto during sleep improves functional recovery after stroke. (A) Schematics of optic fiber/EEG/EMG implantation with opsin expression site. (B) Experimental timeline. (C) Average number of single light pulses within sleep stages during the stimulation sessions of ArchT\textsubscript{stroke}, ChR2\textsubscript{stroke}, mCherry\textsubscript{stroke}, mCherry\textsubscript{sham} and ChR2\textsubscript{stroke_wake} respectively. (D) Stimulated animals showed better performances in the ladder walking rig test compared to mCherry-control animals (Naive n = 8, mCherry\textsubscript{sham} n = 8, ArchT\textsubscript{stroke} n = 4, ChR2\textsubscript{stroke} n = 7, mCherry\textsubscript{stroke} n = 6). Induction of slow waves mainly during wakefulness (ChR2\textsubscript{stroke_wake} n = 6) did not result in faster improvement of performance compared to ChR2\textsubscript{stroke} stimulated during NREM sleep. Linear mixed model. (E) Percentage of improvement from post-stroke day 4 to post-stroke day 15 for ChR2\textsubscript{stroke} groups and ArchT\textsubscript{stroke} compared to mCherry\textsubscript{stroke} control (one-way ANOVA). (F) Similar results was observed for performances in the balance test (Naive n = 8, mCherry\textsubscript{sham} n = 6, ArchT\textsubscript{stroke} n = 7, ChR2\textsubscript{stroke} n = 7, mCherry\textsubscript{stroke} n = 7, ChR2\textsubscript{stroke_wake} n = 6). (G) Balance beam percentage of improvement from post-stroke day 4 to post-stroke day 15 for ChR2\textsubscript{stroke} groups and ArchT\textsubscript{stroke} compared to mCherry\textsubscript{stroke} control (one-way ANOVA). (H) Tight rope test and corner test (I) did not show differences between stimulated and control groups (Naive n = 8, mCherry\textsubscript{sham} n = 6, ArchT\textsubscript{stroke} n = 7, ChR2\textsubscript{stroke} n = 6, mCherry\textsubscript{stroke} n = 8, ChR2\textsubscript{stroke_wake} n = 6). Asterisks indicate significances *p < 0.05.

Figure 8. SWopto increases axonal sprouting during stroke recovery. (A) Scheme of a brain coronal section 15 days after stroke (end point of experiment) representing tissue atrophy corresponding to the stroke area. Confocal micrography of iS1FL with 3D reconstruction of pre- and post-synaptic markers contact (right). Blue: DAPI staining; red: Vglut1 pre-synaptic.
marker; acquamarine: PSD-95 post-synaptic marker. (B) Comparison of Vglut1 puncta density between iS1FL and cS1FL cortical areas (mCherry
stroke n = 4, ChR2
stroke n = 4, ArchT
stroke n = 4, mCherry
sham n = 4) in ipsilateral (F (3, 19) = 10.49, p = 0.0003) and contralateral layers II (F (3, 19) = 1.069, p = 0.385), as well as in ipsilateral (F (3, 18) = 16.02, p < 0.0001) and contralateral layers V (F (3, 21) = 11.05, p = 0.0001) (C). (D) Vglut1 puncta volume distribution in iS1FL layer II (F (2, 1630) = 34.85, p < 0.0001) and layer V (E) summarized in bar graph (F (2, 1617) = 155, p < 0.0001). (F) Comparison of PSD-95 puncta density in ipsilateral (F (3, 23) = 8.609, p = 0.0005) and contralateral (F (3, 21) = 1.105, p = 0.369) layers II, as well as in ipsilateral (F (3, 24) = 1.095, p = 0.370) and contralateral (F (3, 24) = 2.498, p = 0.083) layers V (G). (H) PSD-95 puncta volume distribution in iS1FL layer II summarized in bar graph (F (2, 2070) = 9.164, p = 0.0001); (I) iS1FL layer V (F (2, 2111) = 75.13, p < 0.0001). One way-ANOVA. Data are represented as means ± s.e.m. Asterisks indicate significance *p < 0.05. n.s. = not significant.
Figure 2

A

B

C

D

E

F

G

H

I

J

Peri-slow wave unit activity

Average EEG SW

Peak to peak amplitude

Positive slope

Number of detected SW

Duration

Days after stroke
Figure 3

A. Diagram of electrode placements in the brain, with markers for Bregma and optrode ground.

B. Imaging of CaMKII-hChR2(H134)-EYFP expression in the brain.

C. Graphs showing voltage over time for different states (Wake, NREM, REM) with corresponding spike rate histograms.

D. Graph showing voltage over time for iEEG and cEEG signals.

E. Comparison of spontaneous SW and SW^pert at different p-values.

F. Imaging of CaMKIIa-ArchT3.0-EYFP expression in the brain.

G. Graph showing ArchT^pert 200 ms light pulse with iEEG, cEEG, and EMG recordings.

H. Graph comparing voltage over time for spontaneous SW and SW^pert.

I. Graphs showing relative number of SW with p-values for SW duration, amplitude, and slope.

J. Imaging of CaMKIIa-mCherry expression in the brain.

K. Graph showing mCherry^pert 5ms light pulse with iEEG, cEEG, and EMG recordings.

L. Graph showing mCherry^pert 200 ms light pulse with iEEG, cEEG, and EMG recordings.
Figure 4

A

Bregma -0.10

tetrodes
optic fiber
10 µm
Ref.
S1 Fl
EEGs
ground
EMGs

B

Inhibitory neurons

Pyramidal neurons

Voltage [uV]

0 500 1000

0 200 500

0 500 1000

Time [ms]
Figure 5
Figure 6

A) Percent survival over days after stroke for different groups: ArchT_{stroke}, ChR2_{stroke}, mCherry_{stroke}, Naive, mCherry_{sham}. The data points show decreasing survival rates with time.

B) Similar to Panel A, but for post-stroke day 5.

Days after stroke
Figure 7

B Sleep stimulation ▲ = light ON □ = light OFF
Wakefulness stimulation ▲ = Behavioural testing

-35 d - 28 d - 4 d - 1 d 0 4 d 7 d 10 d 15 d
Virus injection EEG/EMG optic fiber implant Behavioural training Baseline Stroke Optogenetic sessions Perfusion & Behavioural testing

C

ArchTstroke

ChR2stroke

mCherrystroke

mCherrysham

ChR2stroke_wake

Wake NREM REM Wake NREM REM Wake NREM REM Wake NREM REM Wake NREM REM

D Ladder walking rig

sleep stimulation ▼
wake stimulation ▼

Baseline Day 4

n of paw displacement

0 5 10 15 20 25 30 35

Baseline Day 4 Day 7 Day 10 Day 15

E Improvement [%] 100

Baseline Day 4 Day 7 Day 10 Day 15

F Beam balance

sleep stimulation ▼
wake stimulation ▼

Baseline Day 4

n of paw misplacement

0 1 2 3 4 5

Baseline Day 4 Day 7 Day 10 Day 15

G Improvement [%]

Baseline Day 4 Day 7 Day 10 Day 15

H Tight rope

sleep stimulation ▼
wake stimulation ▼

Baseline Day 4 Day 7 Day 10 Day 15

Duration [s]

0 10 15 20 25 30 35 40 45 50 55

Baseline Day 4 Day 7 Day 10 Day 15

I Corner

sleep stimulation ▼
wake stimulation ▼

Baseline Day 4 Day 7 Day 10 Day 15

Laterality index [0-1]

0 0.5 1 -0.5 -1
