A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals

Arno Förster,* Mirko Franchini, Erik van Lenthe, and Lucas Visscher

ABSTRACT: We report a production level implementation of pair atomic resolution of the identity (PARI) based second-order Møller–Plesset perturbation theory (MP2) in the Slater type orbital (STO) based Amsterdam Density Functional (ADF) code. As demonstrated by systematic benchmarks, dimerization and isomerization energies obtained with our code using STO basis sets of triple-ζ-quality show mean absolute deviations from Gaussian reference results of less than 1 kcal/mol. Furthermore, we introduce a quadratic scaling atomic orbital based spin-opposite-pair atomic resolution of the identity (PARI) based second-order (SOS)-MP2 approach with a very small prefactor. Due to a worst-case scaling of \(O(N^3) \), our implementation is very fast already for small systems and shows an exceptionally early crossover to canonical SOS-PARI-MP2. We report computational wall time results for linear as well as for realistic three-dimensional molecules and show that triple-ζ-quality calculations on molecules of several hundreds of atoms are only a matter of a few hours on a single compute node, the bottleneck of the computations being the SCF rather than the post-SCF energy correction.

1. INTRODUCTION

Spurred by the interest in large biomolecules and inorganic systems, the last decades have witnessed a tremendous effort in making accurate electronic structure methods routinely applicable to molecules and solids of ever increasing size. Due to its still unrivaled price/performance-ratio,1 Kohn–Sham (KS)2 density functional theory (DFT)3,4 has established itself as the workhorse of quantum chemistry for medium and large systems.5–11 Unfortunately, due to an insufficient description of electron correlation, state of the art semilocal12 or hybrid13 approximations to the exact exchange functional often fail to accurately account for London dispersion-type effects14 and noncovalent interactions.15 Both are of paramount importance for a thorough understanding of the properties and reactivity of biochemical systems and organometallic compounds.16–21

Wave function based ab initio methods, however, offer a systematic route toward the complete and explicit description of all dynamical correlation effects. As known only too well, this does not come for free: Expressed in terms of canonical orbitals, their steep computational scaling (\(N^6 \) \(N \) is a measure for the system size22) for second-order Møller–Plesset perturbation theory (MP2),23 \(N^6 \) for CC with singles and doubles excitations (CCSD),24–26 \(N^7 \) for CCSD with a perturbative treatment of triple excitations (CCSD(T)),27 respectively), their tremendous memory requirements in practical implementations,28 and their slow convergence to the basis set-limit29 complicate the application of these methods to large molecular systems.

The commonly realized concept of the locality of dynamical electron correlation has led to a family of low-scaling wave function based methods approaching the accuracy of their canonical counterparts. The field came to life when Pulay, Sæbo, and co-workers employed localized molecular orbitals (MO)30–36 and restricted excitations to local domains in configuration interaction (CI)37,38 and MP2.39–41 computations. Successfully transferred to the realms of highly accurate CC theory by Werner and co-workers,42 a plethora of low-scaling CC43–49 and MP251–55 codes has been developed. With the size of the excitation domains becoming a limiting factor, Neese and co-workers56–59 and others60–69 revived the decades ago developed70–83 pair natural orbital (PNO)84,85 approach to further compress the virtual subspaces. At the same time, relying on a physical partition of the system of flavors of fragment approaches76,78–80,86–91 the divide-and-conquer,92–98 and the divide-expand-consolidate99–106 approaches.

Received: August 27, 2019
Published: January 13, 2020

https://dx.doi.org/10.1021/acs.jctc.9b00854
J. Chem. Theory Comput. 2020, 16, 875–891
While having greatly extended the range of computationally tractable molecules, local CC methods can still not compete with the wall clock times of KS-DFT computations on the hybrid level. This is not necessarily the case for MP2, although less accurate than CCSD and higher CC methods, MP2 has been demonstrated to accurately describe properties such as dispersion interactions and hydrogen binding, especially in its spin-scaled variants. However, employing large sets of spatially extended orbitals based formalisms (the integral-direct formulation of the identity (RI) or density fitting approximation (DF) is the most popular technique to overcome the scaling of the fourth-order ERI tensor by decomposing it into third-order and second-order tensors and has been applied successfully to reduce the prefactor of canonical MP2.

Reformulating the energy denominator of canonical MP2 as an integral expression (often referred to as a Laplace fitting approximation (DF) is the most popular technique to overcome the scaling of the fourth-order ERI tensor by decomposing it into third-order and second-order tensors and has been applied successfully to reduce the prefactor of canonical MP2. The herein frequently appearing indices are summarized as follows:

- \(A, B, C, D \): indices denoting atomic centers, where \(A = 1, \ldots, N_a \) and \(N_a \) denotes the number of atoms in the system.
- \(\mu, \nu, \kappa, \lambda \): AO basis indices, where \(\mu = 1, \ldots, N_\alpha \), where \(N_\alpha \) denotes the number of basis functions \(N_\alpha \) centered on atom \(A \).
- \(\alpha, \beta, \gamma, \delta \): auxiliary basis indices, where \(\alpha = 1, \ldots, N_\alpha \) and \(N_\alpha \) is the number of auxiliary fit functions \(N_\alpha \) centered on atom \(A \).
- The following convention is always applied: \(\mu, \alpha \in A, \nu, \beta \in B, \gamma, \kappa \in C, \lambda, \delta \in D \), which means that the indices \(\mu, \alpha \) always imply that the corresponding functions are centered on atom \(A \).
- \(\bar{\mu} (\bar{\nu}) \) denote global AO basis indices (global auxiliary basis indices), ranging from 1 to \(N_{\alpha, \text{all}} \) (\(N_{\alpha, \text{all}} \) are the number of AO's (auxiliary fit functions) of the whole system.
- \(r \): Numerical quadrature point indices, ranging from 1 to \(N_{\text{quad}} \), where \(N_{\text{quad}} \) denotes the number of quadrature points.

2. THEORY
2.1. Pair Atomic Resolution of the Identity for the Exact Exchange. PARI (local pair fitting) is a quite...
extreme variant of the more general local domain-fitting approach. The general idea is to overcome the cubic scaling of global, Coulomb metric based DF using fit functions in the neighborhood of the target product only. When pair-atomic densities are chosen as local fitting domains, the PARI method is obtained. This approach is clearly more approximate than global DF but can be physically motivated as atom-centered basis functions generate strongly localized contributions to the total density; i.e., the AO pair density products \(\chi_\mu(\mathbf{r}) \chi_\nu(\mathbf{r}) \equiv \rho_{\mu\nu} \) are local in nature. Here, we only recapitulate shortly the concepts which are necessary to understand our MP2-HF implementation in a forthcoming publication.

Each atomic pair density with AOs centered on a certain pair of atoms \((A,B)\) is expanded in a local set of fit functions \(\{f_\alpha(\mathbf{r}), f_\beta(\mathbf{r})\} \),

\[
\rho_{\mu\nu} \approx \sum_\alpha c_{\mu\alpha} f_\alpha + \sum_\beta c_{\mu\beta} f_\beta \equiv \rho_{\mu\nu}^{\text{PARI}}
\]

(1)

where \((\text{in accordance with the convention introduced in section 1}) \) the fit functions are defined to be centered on the second atom for each pair product. Similarly to the global “RI-V” approach\(^{132,136}\) we define a residual vector

\[
|\varepsilon_{\mu\nu}\rangle = |\rho_{\mu\nu} - \rho_{\mu\nu}^{\text{PARI}}\rangle
\]

(2)

and minimize the self-repulsion of the residual, \((\varepsilon_{\mu\nu}|\varepsilon_{\mu\nu}\rangle) \). Essentially, this procedure minimizes the error in the electric field generated by the two charge distributions and consequently minimizes the error in the representation of the ERIs\(^{136}\). It leads to a set of linear equations for the determination of the fit coefficients (where the inverse of the matrix \(V \) can always be calculated in a numerically stable way using a singular value decomposition (SVD)),

\[
c_{\nu\mu\alpha} = \sum_\beta O_{\mu\beta \nu} |V^{-1}|_{\nu\beta}
\]

(3)

with the electrostatic interaction between the product of AOs and fit functions,

\[
O_{\mu\nu} = \int_{\text{RI}} d\mathbf{r} \chi_\mu(\mathbf{r}) \chi_\nu(\mathbf{r})
\]

(4)

and the electrostatic interaction (Coulomb overlap) between fit functions,

\[
V_{\alpha\beta} = \int_{\text{RI}} d\mathbf{r} v_\alpha(\mathbf{r}) f_\beta(\mathbf{r})
\]

(5)

where the electrostatic potential \(v \) due to the function \(f_\alpha \) has been introduced as

\[
v_\alpha(\mathbf{r}) = \int_{\text{RI}} d\mathbf{r'} f_\alpha(\mathbf{r'}) \frac{1}{|\mathbf{r} - \mathbf{r'}|}
\]

(6)

Using (1) and (5), the elements of the ERI tensor (in Mulliken notation) might be expressed as

\[
(\mu\nu|\lambda\kappa) = (\rho_{\mu\nu}|\rho_{\kappa\lambda}) \approx (\rho_{\mu\nu}^{\text{PARI}}|\rho_{\kappa\lambda}^{\text{PARI}})
\]

\[
= \sum_\beta c_{\mu\beta} V_{\beta\kappa}\delta_{\lambda\delta} + \sum_{\alpha\beta} c_{\mu\alpha} V_{\alpha\Phi}\delta_{\kappa\delta}
\]

\[
+ \sum_\beta c_{\mu\beta} V_{\beta\lambda}\delta_{\kappa\delta} + \sum_{\alpha\gamma} c_{\mu\alpha} V_{\alpha\gamma}\delta_{\kappa\delta}
\]

(7)

With the set of eqs 1–7, we have essentially expressed the fourth-order ERI tensor in terms of a set of third-order and second-order tensors of quadratically growing cardinality, where the number of elements of each tensor is small and independent of the system size. Compared to global DF, the complexity of computing the exact exchange regarding both CPU time and memory requirements is greatly reduced. First, the number of equations that have to be solved in the fitting procedure is equal to the number of negligible AO products,\(^{133}\) which always scales linearly with system size. Second, the memory requirements are brought down to quadratic and further to linear when insignificant pair densities are not fitted. Finally, the exact exchange matrix is evaluated in \(N^3 \); With eq 7, the elements of the exchange matrix \(K_{\mu\nu} \) might be expressed as

\[
K_{\mu\nu} = K_{\mu\kappa} \quad \forall A, C \in N_z
\]

(8)

\[
K_{\mu\nu} \approx \sum_{\iota,\lambda} P_{\mu\iota} \sum_\beta c_{\mu\beta} V_{\beta\Phi}\delta_{\iota\kappa}\delta_{\lambda\delta}
\]

\[
+ \sum_{\iota,\lambda} P_{\mu\iota} \sum_{\alpha\beta} c_{\mu\alpha} V_{\alpha\Phi}\delta_{\iota\kappa}\delta_{\lambda\delta}
\]

\[
+ \sum_{\iota,\lambda} P_{\mu\iota} \sum_{\alpha\gamma} c_{\mu\alpha} V_{\alpha\gamma}\delta_{\iota\kappa}\delta_{\lambda\delta}
\]

\[
= K_{\mu\kappa} + K_{\mu\kappa}^{\text{II}} (k_{\mu\kappa}^{\text{II}})^T + K_{\mu\kappa}^{\text{III}}
\]

(9)

where \(P_{\mu\iota} \) denotes elements of the density matrix. Cubic scaling is reached as it is possible to arrange all contractions in a way that never more than three atomic centers are involved. Taking into account distance effects, the scaling (with regard to both timing and memory) can be further brought down to linear as we will elaborate in section 2.5.

2.2. Numerical Considerations and Fit Set Quality.

Compression of the ERI tensor via auxiliary basis set expansions usually introduces fitting errors \(\varepsilon \) in the ERIs (see (2)), where \(\varepsilon \to 0 \) when the auxiliary basis approaches completeness. The rate of convergence of the auxiliary basis set expansion obviously depends strongly on the chosen fitting metric as well as on the nature of the fitting procedure: Robust fitting\(^{138}\)

\[
(\rho_{\mu\nu}|\chi_{\lambda\kappa}) \approx (\rho_{\mu\nu}^{\text{PARI}}|\chi_{\lambda\kappa}^{\text{PARI}}) + (\rho_{\mu\nu}^{\text{PARI}}|\psi_{\lambda\kappa}^{\text{PARI}}) - (\rho_{\mu\nu}^{\text{PARI}}|\psi_{\lambda\kappa}^{\text{PARI}})
\]

(10)

shows an error \(\varepsilon \) falling off bilinearly with the fitting error. However, due to its much lower computational complexity, we rely on nonrobust fitting instead,

\[
(\rho_{\mu\nu}|\chi_{\lambda\kappa}) \approx (\rho_{\mu\nu}^{\text{PARI}}|\chi_{\lambda\kappa}^{\text{PARI}})
\]

(11)

resulting in errors linear in the fitting error.\(^{189}\) Consequently, due to the small number of auxiliary fit functions used to expand the pair densities (when compared to global fitting approaches), one would expect rather large errors in the computed integrals. However, the PARi-ERIs are usually very accurate approximations to the ERIs obtained without DF.\(^{187}\) The exchange energy contribution (and consequently the HF/Hybrid-KS-DFT energy) from nonrobust fitting is unbounded from below,\(^{183}\) making the SCF variationally unstable especially for large basis sets; calculations using quadruple-\(c\)-quality basis sets are often unreliable. The procedure becomes numerically more stable when rather large auxiliary fit sets are used.\(^{186,189}\) In ADF, they are obtained as even-tempered series,\(^{192–194}\) where the quality is controlled by the number of fit functions placed within a given range from the atomic
The sum over \(r \) and the weight \(o_r \) in (16)–(18) result from the evaluation of (15) by numerical quadrature. The optimal values for the set of quadrature points \(\{ \alpha_r \}_{r=1}^N \) and weights \(\{ o_r \}_{r=1}^N \) can simply be obtained by least-squares minimization of the error distribution function

\[
\tilde{\eta}_k \{ x; \{ \alpha_r \}, \{ \tilde{\alpha}_r \} \} = \sum_r o_r e^{-x \alpha_r} - \frac{1}{x}
\]

(19)

however, the minimax approximation is a computationally more efficient approach. \((\mu V \xi \bar{\xi})^{(r)}\) is obtained by transformation of the AO-ERI tensor according to

\[
(\mu V \xi \bar{\xi})^{(r)} = \sum_{\mu \nu \kappa \lambda} P_{\mu \nu}^{(r)} Q_{\kappa \lambda}^{(r)} (\mu V \xi \bar{\xi})_{\mu \nu \kappa \lambda}
\]

(20)

employing the PDMS \(P^{(r)} \) and \(Q^{(r)} \), given as

\[
P_{\mu \nu}^{(r)} = \sum_{i} q_{\mu i} e^{-x \alpha_i} e_{\nu i},
\]

\[
Q_{\kappa \lambda}^{(r)} = \sum_{a} g_{\kappa a} e^{-x \alpha_a} e_{\lambda a}.
\]

(21)

The quality of MP2 energies can generally be improved by empirically scaling individual contributions to it, giving rise to the popular spin-component-scaled (SCS)\(^{115,197–199}\) and spin-opposite-scaled-(SOS)\(^{196,199}\) approaches, where SCS-MP2 is often more accurate than SOS-MP2. However, for SOS-MP2 the second term on the right-hand side of (16) is completely neglected and the SOS-MP2 energy is obtained from

\[
E_{\text{SOS-MP2}} = -c_{\text{SOS}} \sum_{r} o_r e^{(2) \gamma}_r
\]

(22)

where usually \(c_{\text{SOS}} = 1.3 \) is chosen.\(^{116}\) This part of the MP2 energy can be evaluated with considerably lower computational cost than the same-spin part as it factorizes in a more favorable way and tensor contraction techniques can be used more efficiently.\(^{116,184,185}\)

Given the fact that DHs based on SOS-MP2 usually come very close to the accuracies of SCS-MP2 based ones,\(^{127,202}\) the construction of fast SOS-MP2 methods alone seems to be highly desirable. Thus, in our efforts to develop a low-cost MP2 implementation, we have focused on the evaluation of \(e^{(2) \gamma} \) only. The resulting algorithm and its implementation will be the subject of the next sections.

2.4. SOS-AO-PARI-MP2 Equations. In the AO basis, \(E_{\text{MP2}} \) can be obtained from summing up the contributions from all pairs of atoms. Such a decomposition has already been suggested by Ayala and Scuseria nearly two decades ago.\(^{203}\)
here it arises quite naturally from the PARI approach. In particular, the Coulomb term can be obtained from
\[
\epsilon_{ij}^{(2)} = \sum_{AB} \epsilon_{ij}^{(2)AA}, \quad \epsilon_{ij}^{(2)A} = \epsilon_{ij}^{(2)AA}
\]
where \(\epsilon_{ij}^{(2)A} \) denotes the contribution to \(\epsilon_{ij}^{(2)} \) from atom pair (A, B). Inserting (7) into (17) and dropping the index \(\tau \) in the following, we obtain with the help of (20)
\[
\epsilon_{ij}^{(2)A} = \sum_{\alpha \beta} P_{\mu \nu} P_{\alpha \beta} Q_{\mu \alpha} Q_{\nu \beta} \times \left(\sum_{\delta \delta} \epsilon_{\mu \nu} V_{\beta \delta} S_{\delta \delta} \right) + \sum_{ab} \epsilon_{\mu \nu} V_{\beta \delta} S_{\delta \delta} + \sum_{a \alpha} \epsilon_{\mu \nu} V_{\alpha \beta} S_{\alpha \alpha}
\]
\[
\times \sum_{\delta \delta} \epsilon_{\mu \nu} V_{\beta \delta} S_{\delta \delta} + \sum_{\alpha \alpha} \epsilon_{\mu \nu} V_{\alpha \beta} S_{\alpha \alpha} + \sum_{\beta \beta} \epsilon_{\mu \nu} V_{\beta \delta} S_{\delta \delta} + \sum_{\alpha \alpha} \epsilon_{\mu \nu} V_{\alpha \beta} S_{\alpha \alpha}
\]
\[
\sum_{\beta \beta} \epsilon_{\mu \nu} V_{\beta \delta} S_{\delta \delta} + \sum_{\alpha \alpha} \epsilon_{\mu \nu} V_{\alpha \beta} S_{\alpha \alpha}
\]
(23)

Equation 23 factorizes (unlike the corresponding expressions for \(\epsilon_{ij}^{(2)A} \)) according to
\[
\epsilon_{ij}^{(2)A} = \sum_{a \beta} \left(\sum_{\alpha} q_{\mu \alpha} V_{\alpha \beta} \right) \left(\sum_{\beta} V_{a \beta} q_{\mu \alpha} \right)^T
\]
(24)
and \(q_{\mu \alpha} \) (with \(q \) we will denote the set of all tensors \(\epsilon_{ij}^{(2)A} \)) is given as
\[
q_{\mu \alpha} = \sum_{\mu \nu} \left[P_{\mu \nu} Q_{\mu \nu} \epsilon_{\mu \nu} + P_{\mu \nu} Q_{\nu \mu} \epsilon_{\nu \mu} \right] k_{\mu \nu}^2 - \sum_{\mu \nu} \left[P_{\mu \nu} Q_{\mu \nu} \epsilon_{\mu \nu} + P_{\mu \nu} Q_{\nu \mu} \epsilon_{\nu \mu} \right] k_{\mu \nu}^2
\]
(25)

Equation 24 can be computed in \(N^3 \), and the same is true for (25): We first evaluate the local PDMs (21) for each pair of atoms. Then we half-transform the fit coefficients according to
\[
e_{\nu \mu} = \sum_{\nu} P_{\nu \nu} q_{\mu \nu}, \quad f_{\nu \mu} = \sum_{\nu} Q_{\nu \nu} s_{\mu \nu}
\]
(26)

Both transformations only involve three atomic centers, namely, A, B, and B'. Furthermore, \(f \) and \(g \) are two-center quantities and the memory required to store \(f \) and \(g \) (the set of all tensors \(f/g \) for all pairs of atoms (A, A')) scales quadratically with the number of atoms. Subsequently, the first term in (25) is evaluated according to
\[
m_{\alpha \beta} = \sum_{\mu \nu} \epsilon_{\mu \nu} Q_{\mu \nu} \epsilon_{\mu \nu} = \sum_{\mu \nu} \epsilon_{\mu \nu} \epsilon_{\mu \nu}
\]
\[
n_{\alpha \beta} = \sum_{\mu \nu} f_{\nu \mu} P_{\mu \nu} \epsilon_{\mu \nu} = \sum_{\mu \nu} f_{\nu \mu} \epsilon_{\mu \nu}
\]
(27)
and the second term as
\[
s_{\alpha \beta} = \sum_{\mu \nu} \epsilon_{\mu \nu} \epsilon_{\mu \nu}
\]
\[
h_{\alpha \beta} = \sum_{\mu \nu} f_{\nu \mu} \epsilon_{\mu \nu}
\]
(28)
resulting in
\[
q_{\mu \alpha} = m_{\mu \alpha} + n_{\mu \alpha} + s_{\mu \alpha} + (h)^T_{\mu \alpha}
\]
(29)

In fact, the chosen sequence of tensor contractions is closely related to a recent SOS-MP2 implementation by the Ochsenfeld group,164 being even more apparent if one considers a monatomic system only for which the local pair fitting approach is equivalent to global DF. In all contraction steps, at most three atomic centers are involved, implying cubically scaling computation of the SOS-AO-MP2-PARI energy without any further consideration of distance effects. Furthermore, the three-center quantities \(f \) and \(g \) are evaluated on the fly, so that the memory requirements of the algorithm scale quadratically. As will be discussed in the next section, taking into account distance effects scaling of computation time and memory can be reduced further. We note that PARI also allows for quartic scaling computation of the exchange-like term in \(E_{\text{corr}}^{\text{MP2}} \). At this point we want to emphasize the strong similarity of our algorithm to the THC-approach by Martinez and co-workers.174,175,180,204 Both methods exploit the locality in the atomic orbital basis set directly by decomposition of the ERI tensor into factor matrices that grow initially as \(N^2 \), and as \(N \) as a soon as a given system size is reached. Consequently, for the computation of \(E_{\text{corr}}^{\text{MP2}} \), the same formal scaling is reached: \(N^3 \) for \(\epsilon_{ij}^{(2)} \) and \(N^4 \) for \(\epsilon_{ij}^{(2)} \).

2.5. Distance Effects. As the basis functions \(\chi_{\alpha} \) are localized around their atomic centers, their overlap will decrease with increasing distance between the atoms on which they are centered. Consequently, the value of the overlap integral \(O_{\mu \nu} \) (eq 4) will approach zero with growing distance between the centers A and B. To exploit this behavior, we define a threshold \(\delta_{\text{DCAB}} \in \mathbb{R}^+ \) (we will refer to this approximation as distant centers approximation for basis functions (DCAB) in the following) and consider a basis function as negligible for \(|r| > d_{\mu} \)
\[
|\chi_{\mu}(r)| < \delta_{\text{DCAB}} \quad \forall \ |r| > d_{\mu}
\]
(30)
where \(d_{\mu} \) is some basis function dependent effective radius to be determined at runtime. The procedure is illustrated in Figure 1.

Consequently, we only compute the fit coefficient \(c_{\mu \alpha} \) when
\[
|\mathbf{R}_{\mu} - \mathbf{R}_{\alpha}| < d_{\mu} + d_{\alpha}
\]
(31)
In practice, we reorder the basis functions from the most diffuse (most slowly decaying) to the tightest one for each atom A, so that the dimension of the fit function tensor \(c_{ij} \) approaches 0 for
\[
|\mathbf{R}_{\mu} - \mathbf{R}_{\alpha}| \to \infty
\]
(32)
If
\[
|\mathbf{R}_{\mu} - \mathbf{R}_{\alpha}| > d_{\mu} + d_{\alpha} \quad \forall \ \mu, \nu
\]
(33)
all tensor contractions involving the fit coefficient tensor corresponding to the pair (A, B) will be skipped. In the same way, we are also skipping tensor contractions involving the tensor \(V_{ij}^{AB} \) if the range of the Coulomb potential due to A does
not overlap with any basis function on B (distant centers approximation for Coulomb potential (DCAC)). As the Coulomb potential decays only as |r|\(^{-1}\), this approach will only be effective for very large molecules. However, the Coulomb potential due to a pair density can be approximated using the well-known multipole expansion of the Coulomb operator.\(^{20}\) Thus, the interaction between two pair densities ρ\(_{\alpha\beta}\), ρ\(_{\gamma\delta}\) is evaluated via multipole expansion (recall that the fit functions are always assumed to be centered on the second atom of the pair) if

\[|\mathbf{R}_\beta - \mathbf{R}_\alpha| > d_\beta + d_\delta \quad \forall \beta, \delta \] \hspace{1cm} (34)

Similarly to the procedure for the basis functions, the actual values \(d_\alpha\) are controlled via a threshold \(\theta_{\text{MA}} \in \mathbb{R}\). Considering multipole moments of up to \(l_{\text{max}} = 3\), the dimension of the tensor \(V^{(3)}\) reduces to 16 × 16, for realistic fit sets being considerably lower than \(N^2_\alpha \times N^2_\beta\) (compare with Table 1). The multipole approximation (MA) as well as the DCAB and DCAF approximation are used to speed up the computation of the post-SCF energy correction and the SCF itself. Exclusively for the MP2 part, we exploit sparsity of the density matrix in a way that we avoid contractions with half-transformed fit function tensors if

\[\max_{\nu\mu\alpha} l_{\nu\mu\alpha} \leq \theta_{\text{NHF}} \quad \forall x_{\nu\mu\alpha} \in x, \theta_{\text{NHF}} \in \mathbb{R}, \quad x = f, g \] \hspace{1cm} (35)

We will refer to this approximation as neglect of half-transformed fit coefficient tensors (NHF) approximation. Clearly, as we do not use any localization techniques for the density matrix in our current implementation, this approximation can only be effective for spatially very extended systems. However, the density matrix and the half-transformed fit coefficient tensors show a high degree of sparsity, so that sparse matrix algebra techniques could efficiently be exploited here without a conceptual change of our implementation.

In practice, the efficiency of the possible screening options depends on thresholds, molecular geometry, and the diffuseness of the AO basis. Due to the rather large prefactor of \(N^2_\alpha N^2_\beta\), the scaling is dominated by steps 3a/3b, whereas the computational time for step 1 is always negligible. The asymptotic scaling of wall clock time and memory of our algorithm under consideration of screening effects is presented in Table 2.

A very important question regarding the feasibility of a local MP2 computation is its memory requirement. The half-transformed fit coefficient tensors \(f\) and \(g\) can be kept in memory for rather large molecules consisting of several hundreds of atoms. Although the memory requirements for these quantities is formally linearly scaling, they can hamper the application of our algorithm to very large systems. However, storage of \(f\) and \(g\) for each pair of atoms can be avoided if these quantities are recalculated prior to the contraction (28) (i.e., if step 2a/2b is repeated before 4a/4b) and with slight changes of the loop structure, storage of \(q\) can also be avoided. As the number of non-negligible fit coefficients and fit functions grows linearly, our algorithm is then order-N in memory. We also note that the practical memory bottleneck in our implementation is the storage of the untransformed fit coefficient tensors for compact systems. This can be attributed to our large auxiliary fit sets and we are planning further optimizations in this direction.

2.6. Loop Structure and Parallelization. Our algorithm is implemented by setting up two nested loops running over all pairs of atoms, which are closed whenever a quantity needs to be stored for each pair. Whenever we sum over a third center, a third loop over atomic shells is invoked. To be memory efficient, the loops need to be organized in a way that storage of three-index quantities is always avoided. The concept is demonstrated for the \(R^{\text{III}}\) contribution to the exact exchange matrix in Algorithm 1 (see eq 9).

![Figure 1. Schematic illustration of the dependence of \(d_\alpha\) on \(\theta_{\text{DCAB}}\) for two different types of functions. As a p-type function (blue) generally decays slower then an s-type one (red), its effective radius is larger.](https://dx.doi.org/10.1021/acs.jctc.9b00854)

Table 2. Outline of the Basic SOS-AO-PARI-MP2 Contraction Steps with Asymptotic Scaling (Big-O Notation Implied) and Memory Requirements under Consideration of Distinct Effects\(^{22}\)

Step	Asymptotic Scaling	Distance Effects	Memory
2a	\(c_{\nu,\mu} = P_{\nu} c_{\nu,\mu}\)	\(N^2\)	DCAB, \(P_{\nu}\)N\(N^{\text{III}}\)
2b	\(s_{\nu,\mu} = Q_{\nu} s_{\nu,\mu}\)	\(N^2\)	DCAF, \(Q_{\nu}\)N\(N^{\text{III}}\)
3a	\(m_{\nu,\mu} = c_{\nu,\mu} q_{\nu,\mu} c_{\nu,\mu}\)	\(N\)	on the fly
3b	\(n_{\nu,\mu} = s_{\nu,\mu} s_{\nu,\mu}\)	\(N^2\)	on the fly
4a	\(g_{\nu,\mu} = s_{\nu,\mu} m_{\nu,\mu}\)	\(N^2\)	\(P_{\nu}\)N\(N^{\text{III}}\)
4b	\(h_{\nu,\mu} = f_{\nu,\mu} s_{\nu,\mu}\)	\(N^2\)	\(Q_{\nu}\)N\(N^{\text{III}}\)
5	\(q_{\nu,\mu} = m_{\nu,\mu} + n_{\nu,\mu} + g_{\nu,\mu} + (h)_{\nu,\mu}\)	\(N^2\)	MA, DCAF
6	\(Z_{\nu,\mu} = q_{\nu,\mu} V_{\nu,\mu}\)	\(N^2\)	\(P_{\nu}\)N\(N^{\text{III}}\)
7	\(e^{(\text{III})}_{\nu,\mu} = Z_{\nu,\mu} (Z^T)_{\nu,\mu}\)	\(N^2\)	\(Q_{\nu}\)N\(N^{\text{III}}\)

\(^{22}\)For each step the employed distance effects are given. The Einstein sum convention is used, which here always involves summation over the respective atomic centers. The memory requirements given in brackets refer to the memory saving variant of our algorithm.
To rule out the possibility of numerical issues throughout our benchmark calculations, the numerical integration quality, as well as the quality of the DF for the Coulomb part, has been chosen to be better than default (Good quality, see refs 208 and 209) if not stated otherwise. For the SCF, the mixed ADII+SDII method has been employed.

All dimerization energies have been computed using the counterpoise (CP) method of Boys and Bernardi to correct the basis set superposition error (BSSE). For all systems involving transition metals, relativistic effects have been treated with the zero-order regular approximation (ZORA) in conjunction with ZORA-optimized basis sets and the minimum of neutral atomic potential approximation (MAPA).

If not stated otherwise, we used $N_{\text{aux}} = 6$ for all SOS-AO-PARI-MP2 calculations, where the numerical quadrature has been performed with a code developed by Helmhich-Paris. For the evaluation of the exact exchange as well as for all SOS-AO-PARI-MP2 calculations, the default screening thresholds are

$$\theta_{\text{Hf}} = 1 \times 10^{-10},$$
$$\theta_{\text{Ma}} = 3 \times 10^{-2},$$
$$\theta_{\text{DcaF}} = 1 \times 10^{-3},$$
$$\theta_{\text{DcaB}} = 1 \times 10^{-3} \quad (36)$$

All calculations presented in this work were performed on a 2.2 GHz intel Xeon (E5-2650 v4) with 24 cores and 128 GB RAM. All binaries have been created using the GNU Fortran compiler.

3.2. Accuracy and Convergence with Basis Set Size.

In this section we want to assess (a) the error introduced by the PARI-approach compared to that introduced by canonical DF-MP2, (b) the numbers of auxiliary fit functions required for accurate results as well as for a numerically stable SCF, and (c) the quality of our standard, non-correlation consistent STO basis sets. To this end, we performed benchmark calculations on different popular test sets: These are the s66 test set of weak intermolecular interactions and test sets of relative conformational energies from the GMTKN30 database.

To assess the accuracy of our implementation in conjunction with an approximate treatment of relativistic effects, we calculated the HEAVY28 test sets of noncovalent interactions between heavy element hydrides. We also report results for the L2320 test set of weak intermolecular interactions with dimers of between roughly 50–120 atoms to assess the performance of our SOS-AO-PARI-MP2 implementation for large molecules. The entirety of all these test sets comprises of 187 data points.

We calculated the s66 test set of weak intermolecular interactions (London dispersion, hydrogen binding, $\pi-\pi$ interactions) using TZP (triple-ζ with single shell of polarization functions) and TZ2P (triple-ζ with two shells of polarization functions) basis sets in conjunction with the Normal auxiliary fit set (see Table 1 for the number of auxiliary fit functions for selected atoms). Figure 2 shows deviations from our results to DF-MP2/CBS reference values for all individual data points as well as mean absolute deviations (MAD) for each basis set. It is well-known that extrapolation to the basis set limit is only possible when correlation consistent basis sets of systematically increasing size are employed. As a consequence, comparison of PARI-MP2/
TZP (TZ2P) calculations to DF-MP2/CBS results cannot reveal if deviations can be attributed to basis set completeness or to the local pair fitting approach. To obtain a clearer idea about the reasons for the observed deviations from the DF-MP2/CBS results, we also compare our computed energies to DF-MP2/aug-cc-pVDZ and DF-MP2/cc-pVTZ reference values. Both basis sets are comparable in size with TZP and TZ2P, with cc-pVTZ being the largest basis set with three shells of polarization functions, and TZP the smallest one, and the only one with only one shell of polarization functions. Figure 2 clearly demonstrates that calculations on PARI-MP2/ TZ2P/Normal-level yield results comparable to those of DF- MP2/aug-cc-pVDZ and DF-MP2/cc-pVTZ, with a MAD slightly better than DF-MP2/cc-pVTZ and slightly worse than DF-MP2/aug-cc-pVDZ. Also the sign-corrected maximum errors are with 2.8 kcal/mol for TZP and 2.3 kcal/mol for TZ2P in line with the two Gaussian type orbital (GTO) basis sets for which Figure 2 also shows maximum errors considerably larger than 2 kcal/mol. Although the computed energies are on average very close to reproducing the DF- MP2/CBS references within a chemical accuracy of 1 kcal/ mol, the PARI-MP2/TZP results are generally inferior to their TZ2P counterparts, which can safely be attributed to the smaller number of polarization functions.

From the good agreement of our PARI-MP2 results with DF-MP2 for basis sets of comparable size, we conclude that the PARI-approximation does not seem to considerably degrade the accuracy of DF-MP2 dimerization energies. Furthermore, our findings suggest that our non-correlation consistent STO-type basis sets can compete with larger correlation consistent GTO-type basis sets with more shells of polarization functions.

A factor, not having been discussed so far, is the size of the auxiliary fit sets. As already pointed out, a larger fit set should help to ensure variational stability of the HF energy in the SCF. To this end, we computed the relative conformational energies in the GNTKM30 database (the ACONF, SCONF, PCONF, CyCONF, and ISO34 subsets) with Normal and VeryGood fit set for both HF and PARI-MP2 and also recalculated the s66 dimerization energies with the larger auxiliary fit set. Somewhat surprisingly, we found that the larger auxiliary fit set sometimes led to deteriorated PARI-MP2 energies, especially for the s66 test set, whereas the HF energies remained essentially unchanged (as expected). This observation is directly opposed to the fact that larger fit sets should generally improve any DF approximation.

We then carried out calculations where we retained the VeryGood fit set for the SCF but used the Normal fit set for the evaluation of the MP2 energy correction; i.e., we recalculated the ERIs after convergence of the SCF using a smaller fit set. The results are summarized in Figure 3.

Figure 2. Deviations from basis set extrapolated DF-MP2/CBS reference values (in kcal/mol) for different basis sets for each data point in the s66 test set of weak intermolecular interactions. The aug-cc-pVDZ and cc-pVTZ reference values have been computed with DF-MP2, whereas the TZP and TZ2P values have been obtained with our PARI-MP2 code, using the Normal fit set for both HF and MP2. MADs are given with respect to DF-MP2/CBS.

Figure 3. PARI-MP2 results (in kcal/mol) for selected test sets of isomerization energies from the GNTKM30 benchmark set as well as for the s66 test set. The MADs for each data set with respect to DF-MP2/CBS, as well as the MADs for the entirety of all test sets (in total 152 data points) are given. Key: basis set/HF auxiliary fit set/MP2 auxiliary fit set.

Clearly, for almost all test sets, the computed energies are nearly independent of the auxiliary fit set employed in the SCF. This is reflected in the MADs over all test sets, where literally no difference can be observed between Normal and VeryGood. Only for the SCONF test set, the VeryGood fit set is slightly inferior to Normal.

As recalculation of the ERIs after the SCF seems to cure the problems in the computation of the PARI-MP2 energy for the VeryGood fit set, one must conclude that neither the MOs nor the orbital energies resulting from the use of this fit set are problematic for the computation of ExactMP2, but rather the fitting errors in the ERIs themselves. Due to the fact that for some test sets the VeryGood fit set yielded (rather small) improvements over the Normal one, we do not suspect a fundamental issue with the PARI approximation here but rather a numerical one. Clearly, the large number of auxiliary fit functions for the expansion of each pair of basis functions leads to linear dependencies in the fit set that might cause numerical problems due to overfitting. We emphasize that the VeryGood fit set is usually not inferior to the Normal one. However, the latter one seems to be numerically more stable for PARI-MP2 calculations and also completely sufficient for the purpose of the present study. Optimizing fit sets specifically for correlation methods seems to be highly promising for even more accurate PARI-MP2 energies but is out of the scope of this work.

The clearly improved results over the TZP basis set when TZ2P is used for the s66 test set can generally not be observed for the test sets of conformers. For the ACONF (alkane conformers) and PCONF (tripeptide conformers) test sets, the
TZP energies are even slightly better than the TZ2P ones. This can only be explained with error cancellation: It is well-known that MP2 often tends to overestimate correlation energies,211 so that a more incomplete basis set might yield better results for certain systems. Only for CYCONF (cysteine conformers) and ISO34 (isomerization energies of organic molecules), a clear improvement over TZP can be observed when TZ2P is used instead. As the overall MADs over all 152 data points reveal, all considered combinations of basis and fit sets reproduce the DF-MP2/CBS reference within chemical accuracy on average, where the TZ2P basis set is in many (but not all) cases superior to TZP.

As shown in Table 3, we find only moderate maximum errors for the CYCONF and ACONF test sets with 0.5 and 0.7 kcal/mol, respectively for the TZP basis set and 0.3 and 0.9 kcal/mol, respectively, for the TZ2P one. For the SCONF and PCONF test sets we find larger maximum errors of over three kcal/mol irrespective of basis set and fit set and nearly 4 kcal/mol for the ISO34 test set with the TZP basis set, reflecting the slow basis set convergence of MP2 correlation energies.

As our findings show that the more expensive VeryGood fit set yields no improvement over the Normal one, we strongly recommend using the latter one. Considered error cancellation between \(\varepsilon^{(2)}\) and \(\varepsilon^{(3)}\) as highly unlikely, our findings also apply to all spin-scaled variants of MP2.

For heavy elements we found excellent agreements to the CCSD(T)/CBS reference values for the HEAVY28 test set.219 Already on the TZP/Normal/ZORA-level, our results show a MAD of only 0.30 kcal/mol. This is actually better than DF-MP2/CBS for which a MAD of 0.41 kcal/mol has been reported when TZ2P is used instead. As shown in the lower half of Figure 4, using smaller thresholds leads to an artificial improvement of the dimerization energies: MP2 often exaggerates correlation effects as its double excitations do not couple.221 Lowering the cutoff thresholds, however, corresponds to the neglect of correlation from distant pairs. Thus, the underestimation of dispersion interactions due to the neglect of long-range correlation effects partly compensates for the overestimation of the correlation energy within MP2, explaining the trend in the observed reaction energies.

As shown in the lower half of Figure 4, using smaller thresholds leads to an artificial improvement of the dimerization energies: MP2 often exaggerates correlation effects as its double excitations do not couple.221 Lowering the cutoff thresholds, however, corresponds to the neglect of correlation from distant pairs. Thus, the underestimation of dispersion interactions due to the neglect of long-range correlation effects partly compensates for the overestimation of the correlation energy within MP2, explaining the trend in the observed reaction energies.

As shown in the lower half of Figure 4, using smaller thresholds leads to an artificial improvement of the dimerization energies: MP2 often exaggerates correlation effects as its double excitations do not couple.221 Lowering the cutoff thresholds, however, corresponds to the neglect of correlation from distant pairs. Thus, the underestimation of dispersion interactions due to the neglect of long-range correlation effects partly compensates for the overestimation of the correlation energy within MP2, explaining the trend in the observed reaction energies.
However, this is significantly better than full DF-MP2/CBS calculations for which a MAD of 6.58 kcal/mol has been reported in the literature. To conclude this section, we think that the presented data clearly demonstrates (i) that our default fit set is completely sufficient to compute accurate PARI-MP2 energies in a numerically stable way, (ii) that the deviation from the DF-MP2/CBS reference values can (at least to a great extent) be attributed to the basis set error, (iii) that our PARI-MP2 implementation used with non-correlation consistent basis sets of triple-ζ quality yields errors comparable to the ones from DF-MP2 with correlation consistent basis sets of the same size, and finally, (iv) that our implementation also yields accurate and reliable energies for large systems when rather conservative default screening thresholds are used.

3.3. Performance and Timing

We analyzed the performance of our SOS-AO-PARI-MP2 implementation on a series of linear alkane chains as an optimum-case for local correlation methods. Our results are summarized in Table 5.

Table 5. CPU Times and Scaling Behavior with Respect to the Systems Size Relative to the Previous Calculation (in Parentheses) in Terms of the Polynomial Coefficient x in N^x

no. of	no. of	timing	MP2 time [% of full calc]			
units	bf	total	MP2 alone			
n(C_{n}H_{2n+2})						
20	632	23.5	3.9	16.6		
40	1252	76.8	(1.70)	17.5	(2.16)	22.8
80	2492	255.3	(1.79)	75.3	(2.11)	29.5
160	4972	907.3	(1.83)	323.6	(2.10)	35.6
n(C_{n}H_{2n+2})						
20	1084	41.7	8.4	20.1		
40	2144	139.4	(1.74)	37.4	(2.15)	26.8
80	4264	473.0	(1.76)	156.0	(2.06)	33.0
160	8504	1811.2	(1.94)	752.3	(2.27)	41.5

*Calculated with the more memory efficient variant of the algorithm.

In all computations, the evaluation of the MP2 correlation energy only accounts for between 20 and 42% of the total wall clock time. Thus, the overall scaling is dominated by the HF part, reaching subquadratic scaling already for the shortest chains considered here, whereas for the computation of the post-SCF energy correction quadratic scaling is observed for both basis sets. This can be attributed to the rather conservatively chosen screening thresholds due to which NHP screening becomes practically irrelevant, even for large and spatially extended systems. It should also be emphasized that the scaling is not strongly affected by the number of diffuse functions in the basis set. For the TZ2P basis set containing a larger number of diffuse polarization functions, the scaling is even slightly better than for the TZP basis set. Due to the huge memory requirements to store f and g, we have been forced to switch to the slightly slower, but more memory efficient variant of our algorithm for the computation of C_{1600}H_{322}, explaining the comparatively high increase in wall clock time for this step.

The excellent scaling behavior of our method for relatively small systems is also reflected in the early crossover point with respect to canonical SOS-PARI-MP2; for C_{40}H_{82}, the SOS-AO-PARI-MP2 energy correction alone is computed in 45 s on the TZP-level of theory, while the respective canonical calculation already takes 93 s.

On the example of C_{60}H_{32}, in the TZP basis, we give an estimate on the efficiency of our parallelization strategy: Comparing wall clock times obtained with 1, 8, and 24 cores on the same node, we find parallel speedups of 6.4 and 15.8, respectively. Parallel timing results are also presented for stacks of backbone-free DNA in Table 6.

Table 6. CPU Times and Scaling Behavior with Respect to the Systems Size Relative to the Previous Calculation (in Parentheses) in Terms of the Polynomial Coefficient x in N^x

no. of	no. of	timing	MP2 time [% of full calc]			
units	bf	total	MP2 alone			
1	848	4.1	0.7	17.1		
2	1696	20.1	(2.29)	4.3	(2.62)	21.2
4	3392	79.7	(1.99)	20.9	(2.28)	26.2
6	5088	185.1	(2.08)	52.1	(2.25)	28.1

Here, each unit consists of an adenine—guanine and a cytosine—thymine base pair, separated by 3.4 Å. Although these systems are still spatially extended, they are considerably more compact as linear alkanes. For the largest of these systems considered here with 354 atoms and 5088 basis functions, the SOS-AO-PARI-MP2 energy can be evaluated in approximately 3 h on a single compute node, with the computation of the SOS-MP2 energy only accounting for 28% of the total elapsed time. Although the overall scaling is slightly worse than for the linear alkane chains, one still discovers the onset of subquadratic scaling for the whole calculation and convergence to quadratic scaling for the SOS-MP2 calculation only.

The efficiency of our implementation is illustrated on different types of realistic, compact systems (see Figure 5) in Table 7, where we give detailed timings for the most expensive steps of the SOS-AO-PARI-MP2 calculations from Table 2.

The most expensive part for each calculation is the SCF. The wall clock time for the calculation of the SOS-AO-PARI-MP2 energy correction is clearly dominated by step 3a/3b, whereas the cubic scaling evaluation of the PDMs (step 1) is negligible. Step 3a/3b is also the part of our algorithm that would probably profit most from the exploitation of sparsity in the half-transformed fit coefficient tensors. For the very compact systems (S_{8})_{20} (compound e in Figure 5) and Au_{21}S(SCH_{3})_{15} (f in Figure 5), the half-transformation of the fit coefficients (step 2a/2b) also consumes a considerable share of the total wall clock time as distance effects do not come into play here. As the majority of the individual tensor contractions scale as N_{2}^5 in the SCF and in the MP2 part, the large number of basis functions and auxiliary fit functions for the gold atoms (see Table 1) makes the computation for this system particularly slow. The efficiency of step 6 is more or less independent from the molecular geometry, best seen on the example of the water cluster, indicating that the multipole
expansion does not lead to large computational savings for these compact systems.

In the end, we comment on the memory requirements of our code. The computation of the SOS-AO-PARI-MP2 energy for C_{160}H_{322} in TZ2P quality with roughly 8500 AOs could only been achieved by using our more memory efficient implementation, even when 128 GB memory is used and calculations on even larger systems are impossible due to the memory requirements of the SCF. Although we do not think that molecules of this size will be the main target of our implementation, this is currently a severe drawback of our algorithm and we are planning further optimization in this direction.

4. CONCLUSION

We have demonstrated on test sets of collectively 187 data points that dimerization energies and conformational energies from PARI-MP2 deviate from their DF-MP2/CBS counterparts by less than 1 kcal/mol on average, when non-correlation consistent STO-type basis sets of triple-ζ quality and our default auxiliary fit sets are used. We have also demonstrated the accuracy of this approach for large systems of more than 100 atoms and shown that our implementation reproduces CCSD(T)/CBS reference values better than DF-MP2/CBS for the HEAVY28 test set of noncovalent interaction energies between heavy element hydrides where relativistic effects are approximated on the ZORA/MAPA level.

Comparison to DF-MP2 calculations on the S66 test set shows that the error of our calculations is of the same order of magnitude as the basis set incompleteness error of GTO-type basis sets of comparable size. The maximum deviation observed is below 4 kcal/mol for the TZP basis set with only a single polarization function per atom and considerably lower than 1 kcal/mol for some of the investigated test sets. We expect significant improvement of these values by employing fit sets optimized for correlation methods as it is common practice for DF-MP2 with GTOs. To the best of our knowledge, such fit sets have not been designed for STO based PARI yet and research in this direction is currently being pursued by our group.

Additionally, we have presented a quadratic scaling SOS-AO-PARI-MP2 algorithm. The overall evaluation of the SOS-MP2 energy scales quadratically and the post-SCF energy correction is computed considerably faster than the SCF itself for all system considered herein. Among others, we have demonstrated the efficiency of our approach on a very compact cluster of 160 sulfur atoms with 4480 basis functions, and a cluster of 142 water molecules with 4544 basis functions: Each all-electron calculation could be performed in approximately 3 h on a single compute node. Another attractive feature of our implementation is its early crossover to canonical SOS-PARI-MP2 in terms of wall clock time: For a linear alkane chain with only 10 carbon atoms, our AO based algorithm is already twice as fast as our MO based one. As a consequence, our algorithm is fast for medium and large compact systems of up to several hundreds of atoms, the bottleneck, with regard to both memory and wall clock time, being the SCF rather than the MP2 calculation. As we are mostly avoiding disk I/O, our approach is particularly appealing if the calculations are run on a machine with relatively slow disks, such as the nowadays ubiquitous computer clusters with external storage devices.

At the moment, the post-SCF energy correction does not scale as favorably as the SCF itself. Using sparse matrix algebra, we could possibly turn our current implementation into a truly linear scaling one. However, one might legitimately argue that this would not bring much additional value. Even if one could speed up the MP2 calculation alone by a factor of 2, the overall performance of our method to address really large systems.

Table 7. Detailed Wall Clock Times (in min) for SOS-AO-PARI-MP2 Calculations on Selected Realistic 3D Systems on the TZP/Normal Level of Theory on a Single Node with 24 Cores

	4b	7b	(H_2O)_{142}	DNA_4	(S_8)_{20}	Au_{21}S(SCH_3)_{15}
no. of atoms	158	153	426	260	160	97
no. of bf	2768	2248	4544	3638	4480	2414
total	76.2	40.3	186.0	104.3	177.9	269.2
total MP2	15.6	9.4	56.7	28.7	75.5	106.7
step 1'	0.06	0.04	0.21	0.10	0.19	0.05
step 2a/2b	2.4	1.4	6.63	3.6	11.8	19.62
step 3a/3b	10.0	5.7	36.0	16.4	49.6	75.6
step 6	2.2	1.6	18.0	6.8	6.2	6.3

"The first two structures are taken from the S30L test set, structures 3–5 are from the Ochsenfeld and co-workers and the structure of the last molecule has been taken from Jones et al. Relativistic effects have been treated on the ZORA/MAPA level of theory. Due to the small HOMO–LUMO gap, N_{eq} = 8 was chosen. Numbering of steps refers to Table 2."
wall clock time for the computation of the SOS-MP2 energy for the sulfur cluster (where the MP2 is particularly slow compared to the SCF) would only be reduced by 20%. In other words, major efficiency gains can only be achieved when the bottleneck of the computation, the computation of the exact exchange in the SCF, is optimized.

Although larger computational savings could possibly be achieved for systems much larger than the ones presented herein, we do not think that even then these large systems would be a probable target of our algorithm. Furthermore, application of our algorithm to these systems is hampered by its rather unfavorable memory requirements (if one wants to avoid disk I/O) and further development of the code will rather focus on improvements in this direction. We are also planning to extend our implementation to periodic systems and to implement gradients as well.

Although we think that accurate and fast MP2 correlation energies are highly desirable in themselves, they are arguably most relevant in the framework of double-hybrid density functional approximations. At the moment, we are working on a comprehensive benchmark of state-of-the-art SOS based double hybrids for small as well as for large molecules. As shown only recently, this class of double hybrids is in almost all cases not inferior to SCS-MP2 based ones, especially if the correction219,231,232 is used.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acs.jctc.9b00854.

Exponents of all auxiliary fit functions used in our calculations, individual reaction energies referred to herein as well as bonding energies with respect to atomic fragments for all single-point calculations performed, all structures used for the calculations in this work; all information related to the computed energies in CSV format (ZIP)

■ AUTHOR INFORMATION

Corresponding Author
Arno Förster – Theoretical Chemistry, Vrije Universiteit, NL-1081 HV Amsterdam, The Netherlands; orcid.org/0000-0002-0957-4081; Email: a.l.foerster@vu.nl

Authors
Mirko Franchini – Theoretical Chemistry, Vrije Universiteit, NL-1081 HV Amsterdam, The Netherlands; Scientific Computing & Modelling NV, NL-1081 HV Amsterdam, The Netherlands
Erik van Lenthe – Scientific Computing & Modelling NV, NL-1081 HV Amsterdam, The Netherlands
Lucas Visscher – Theoretical Chemistry, Vrije Universiteit, NL-1081 HV Amsterdam, The Netherlands; orcid.org/0000-0002-7748-6243

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jctc.9b00854

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This research received funding from The Netherlands Organisation for Scientific Research (NWO) in the framework of the Innovation Fund for Chemistry and from the Ministry of Economic Affairs in the framework of the “TKI/PPS-Toeslagregeling”.

■ REFERENCES

(1) Rubensson, E. H.; Rudberg, E.; Salek, P. Linear-Scale Techniques in Computational Chemistry and Physics; Springer, 2011; pp 263–300.
(2) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133.
(3) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, 864–871.
(4) Levy, M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 6062–6065.
(5) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320.
(6) Pribram-Jones, A.; Gross, D. A.; Burke, K. DFT: A Theory Full of Holes? Ann. Rev. Phys. Chem. 2015, 66, 283–304.
(7) Becke, A. D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014, 140, 18A301.
(8) Jones, R. O. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897.
(9) Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372.
(10) Gould, T. What Makes a Density Functional Approximation Good? Insights from the Left Fukui Function. J. Chem. Theory Comput. 2017, 13, 2373–2377.
(11) Goerigk, L.; Mehta, N. A Trip to the Density Functional Theory Zoo: Warnings and Recommendations for the User. Aust. J. Chem. 2019, 72, 563.
(12) Becke, A. D. Density functional calculations of molecular bond energies. J. Chem. Phys. 1986, 84, 4524–4529.
(13) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
(14) Johnson, E. B.; Woltkow, R. A.; Dilabio, G. A. Application of 25 density functionals to dispersion-bound homomolecular dimers. Chem. Phys. Lett. 2004, 394, 334–338.
(15) Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. General performance of density functionals. J. Phys. Chem. A 2007, 111, 10439–10452.
(16) Schreiner, P. R. Relative energy computations with approximate density functional theory - A caveat! Angew. Chem., Int. Ed. 2007, 46, 4217–4219.
(17) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167.
(18) Boese, A. D. Density functional theory and hydrogen bonds: Are we there yet? ChemPhysChem 2015, 16, 978–985.
(19) Hollman, D. S.; Simmonett, A. C.; Schaefer, H. F. The benzene +OH potential energy surface: Intermediate and transition states. Phys. Chem. Chem. Phys. 2011, 13, 2214–2221.
(20) Hohenstein, E. G.; Parrish, R. M.; Sherrill, C. D.; Turney, J. M.; Schaefer, H. F. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions. J. Chem. Phys. 2011, 135, 174107.
(21) de la Roza, A. O.; Dilabio, G. A. Non-covalent Interactions in Quantum Chemistry and Physics: Theory and Applications; Elsevier Inc., 2017.
(22) The notion of N^0 always implies $O(N^0)$. That is, the function f, mapping the system size to the runtime of an algorithm, does not grow asymptotically faster than N^0.
(23) Møller, C.; Plesset, M. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622.
(24) Čížek, J.; Paldus, J. Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodist. Int. J. Quantum Chem. 1971, 5, 359–379.
(25) Purvis, G. D.; Bartlett, R. J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918.
(26) Bartlett, R. J. Coupled-cluster approach to molecular structure and spectra: A step toward predictive quantum chemistry. J. Phys. Chem. 1989, 93, 1697–1708.
(27) Raghavachari, K.; Trucks, G.; Pople, John A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483.
(28) Neece, F.; Wennmohs, F.; Hansen, A. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. J. Chem. Phys. 2009, 130, 114108.
(29) Klopper, W.; Manby, F. R.; Ten-No, S.; Ochsenfeld, C. Tighter multipoole-based integral estimates and parallel implementation of linear-scaling AO–MP2 theory. Phys. Chem. Chem. Phys. 2008, 10, 3335–3344.
(30) El Azhary, A.; Rauhut, G.; Pulay, P.; Werner, H. J. Analytical energy gradients for local second-order Møller-Plesset perturbation theory. J. Chem. Phys. 1998, 108, 5185–5193.
(31) Hetzer, G.; Pulay, P.; Werner, H. J. Multipole approximation of distant pair energies in local MP2 calculations. Chem. Phys. Lett. 1998, 290, 143–149.
(32) Schuett, M.; Hetzer, G.; Werner, H. J. Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J. Chem. Phys. 1999, 111, 5691–5705.
(33) Pulay, P.; Saebø, S. Orbital-invariant formulation and second- and third-order Møller-Plesset perturbation theory using density fitting approximations. J. Chem. Phys. 2004, 121, 737–750.
(34) Kutzschke, Y.; Yang, J.; Chan, G. K. P. Manby, F. R. Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. J. Chem. Phys. 2012, 136, 124105.
(35) Kossmann, S.; Neece, F. Correlated ab initio spin densities for larger molecules: Orbital-optimized spin-component-scaled MP2 method. J. Phys. Chem. A 2010, 114, 11768–11781.
(36) Reiher, C.; Sandhoefer, B.; Hansen, A.; Neece, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101.
(37) Reiher, C.; Pulay, P.; Hansen, A. F. Sparse maps – A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 2015, 143, 034108.
(38) Yang, J.; Chan, G. K. L.; Manby, F. R.; Schütz, M.; Werner, H. J. The orbital-specific virtual local coupled cluster singles and doubles method. J. Chem. Phys. 2012, 136, 144105.
(39) Hättig, C.; Tew, D. P.; Helmich, B. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals. J. Chem. Phys. 2012, 136, 204105.
(40) Schmitz, G.; Hättig, C.; Tew, D. P. Explicitly correlated MP2 and PNO-CCSD and their application to the S66 set and large molecular systems. Phys. Chem. Chem. Phys. 2014, 16, 22167–22178.
(41) Schmitz, G.; Hättig, C.; Tew, D. P. Scalable electron correlation methods I: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors. J. Chem. Theory Comput. 2015, 11, 484–507.
(42) Schmitz, G.; Hättig, C.; Tew, D. P. Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size. J. Chem. Theory Comput. 2015, 11, 5291–5304.
(67) Nagy, P. R.; Samu, G.; Källay, M. An Integral-Direct Linear-Scaling Second-Order Møller-Plesset Approach. J. Chem. Theory Comput. 2016, 12, 4897–4914.
(68) Ma, Q.; Schwilk, M.; Köpf, C.; Werner, H. J. Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). J. Chem. Theory Comput. 2017, 13, 4871–4896.
(69) Nagy, P. R.; Källay, M. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triplets correction using Laplace transform. J. Chem. Phys. 2017, 146, 214106.
(70) Ahlrichs, R.; Kutzelnigg, W. Ab initio calculations on small hydrides including electron correlation - I. The BeH2 molecule in its ground state. Theor. Chim. Acta 1968, 10, 377–387.
(71) Junge, M.; Ahlrichs, R. Ab initio calculations on small hydrides including electron correlation - III. A study of the valence shell intrapair and interpair correlation energy of some first row hydrides. Theor. Chim. Acta 1970, 17, 339–347.
(72) Meyer, W. Ionization energies of water from PNO-CI calculations. Int. J. Quantum Chem. 1971, 5, 341–348.
(73) Meyer, W. PNO-CI and CEPA studies of electron correlation effects - II. Potential curves and dipole moment functions of the OH radical. Theor. Chim. Acta 1974, 35, 277–292.
(74) Ahlrichs, R.; Driessler, F.; Lischka, H.; Staemmler, V.; Kutzelnigg, W. PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, B2H, BH3, CH4, CH3-, NH3 (planar and pyramidal), H2O, OH3-, HF. J. Chem. Phys. 1975, 62, 1235–1247.
(75) Taylor, P. R.; Backay, G. B.; Hush, N. S.; Hurley, A. C. The coupled-pair approximation in a basis of independent-pair natural orbitals. Chem. Phys. Lett. 1976, 41, 444–449.
(76) Rosmus, P.; Meyer, W. PNO-CI and CEPA studies of electron correlation effects. VI. Electron affinities of the first-row and second-row diatomic hydrides and the spectroscopic constants of their negative ions. J. Chem. Phys. 1978, 69, 2745–2751.
(77) Taylor, P. R.; Backay, G. B.; Hush, N. S.; Hurley, A. C. Unlinked cluster effects in molecular electronic structure. I. The HCN and HNC molecules. J. Chem. Phys. 1978, 69, 1971–1979.
(78) Ahlrichs, R. Many body perturbation calculations and coupled electron pair models. Comput. Phys. Commun. 1979, 17, 31–45.
(79) Taylor, P. R. A rapidly convergent CI expansion based on several reference configurations, using optimized correlating orbitals. J. Chem. Phys. 1981, 74, 1256–1270.
(80) Staemmler, V.; Jaquet, R. CEPA calculations on open-shell molecules. I. Outline of the method. Theor. Chim. Acta 1981, 59, 487–500.
(81) Koch, S.; Kutzelnigg, W. Comparison of CEPA and CP-ME1 methods. Theor. Chim. Acta 1980, 59, 387–411.
(82) Ahlrichs, R.; Scharf, P.; Ehrhardt, C. The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional. J. Chem. Phys. 1985, 82, 890–898.
(83) Pulay, P.; Saeb, S. Variational CEPA: Comparison with different Many-Body Methods. Chem. Phys. Lett. 1985, 117, 37–41.
(84) Edmiston, C.; Krauss, M. Configuration-Interaction Calculation of H3 and H2. J. Chem. Phys. 1965, 42, 1119–1120.
(85) Edmiston, C.; Ruedenberg, K. Localized Atomic and Molecular Orbitals. II. J. Chem. Phys. 1965, 43, 97–116.
(86) Friedrich, J.; Hanath, M.; Dolg, M. Fully automated implementation of the incremental scheme: Application to CCSD energies for hydrocarbons and transition metal compounds. J. Chem. Phys. 2007, 126, 154110.
(87) Friedrich, J.; Dolg, M. Fully Automated Incremental Evaluation of MP2 and CCSD(T) Energies: Application to Water Clusters. J. Chem. Theory Comput. 2009, 5, 287–294.
(88) Raghavachari, K.; Saha, A. Accurate Composite and Fragment based Quantum Chemical Models for Large Molecules. Chem. Rev. 2015, 115, 5643–5677.
(89) Li, W.; Piechuch, P.; Gour, J. R.; Li, S. Local correlation calculations using standard and renormalized coupled-cluster approaches. J. Chem. Phys. 2009, 131, 114109.
(90) Rolik, Z.; Szegedy, L.; Ladjánszki, I.; Ladóczki, B.; Källay, M. An efficient linear-scaling CCSD(T) method based on local natural orbitals. J. Chem. Phys. 2013, 139, 094105.
(91) Källay, M. Linear-scaling implementation of the direct random-phase approximation. J. Chem. Phys. 2015, 142, 204105.
(92) Yang, Wei Tao Direct Calculation of Electron Density in Density-Functional Theory. Phys. Rev. Lett. 1991, 66, 1438–1441.
(93) Yang, W.; Lee, T. S. A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J. Chem. Phys. 1995, 103, 5674–5678.
(94) Li, W.; Li, S. Divide-and-conquer local correlation approach to the correlation energy of large molecules. J. Chem. Phys. 2004, 121, 6649–6657.
(95) Flocke, N.; Bartlett, R. J. A natural linear scaling coupled-cluster method. J. Chem. Phys. 2004, 121, 10935–10944.
(96) Kobayashi, M.; Imamura, Y.; Nakai, H. Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method. J. Chem. Phys. 2007, 127, 074103.
(97) Kobayashi, M.; Nakai, H. Extension of linear-scaling divide-and-conquer based correlation method to coupled cluster theory with singles and doubles excitations. J. Chem. Phys. 2008, 129, 044103.
(98) Kobayashi, M.; Nakai, H. Divide-and-conquer based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. J. Chem. Phys. 2009, 131, 114108.
(99) Ziolkowski, M.; Jansik, B.; Kjærgaard, T.; Jorgensen, P. Linear scaling coupled cluster method with correlation energy based error control. J. Chem. Phys. 2010, 133, 014107.
(100) Kristensen, K.; Ziolkowski, M.; Jansik, B.; Kjærgaard, T.; Jorgensen, P. A locality analysis of the divide-expand-consolidate coupled cluster amplitude equations. J. Chem. Theory Comput. 2011, 7, 1677–1694.
(101) Kristensen, K.; Jorgensen, P.; Jansik, B.; Kjærgaard, T.; Reine, S. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. J. Chem. Phys. 2012, 137, 114102.
(102) Høyrvik, I. M.; Kristensen, K.; Jansik, B.; Jorgensen, P. The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order Møller-Plesset perturbation theory. J. Chem. Phys. 2012, 136, 014105.
(103) Kristensen, K.; Kjærgaard, T.; Høyrvik, I. M.; Ettenhuber, P.; Jorgensen, P.; Jansik, B.; Reine, S.; Jakowski, J. The divide-expand-consolidate MP2 scheme goes massively parallel. Mol. Phys. 2013, 111, 1196–1210.
(104) Eriksen, J. J.; Baudin, P.; Ettenhuber, P.; Kristensen, K.; Kjærgaard, T.; Jorgensen, P. Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide-Expand-Consolidate CCSD(T) Model. J. Chem. Theory Comput. 2015, 11, 2984–2993.
(105) Baudin, P.; Ettenhuber, P.; Reine, S.; Kristensen, K.; Kjærgaard, T. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model. J. Chem. Phys. 2016, 144, 054102.
(106) Kjærgaard, T. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J. Chem. Phys. 2017, 146, 044103.
(107) Nagy, P. R.; Samu, G.; Källay, M. Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. J. Chem. Theory Comput. 2018, 14, 4193–4215.
(108) Jurečka, P.; Šponer, J.; Černý, J.; Hobza, P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 2006, 8, 1985–1993.
(110) Zhao, Y.; Truhlar, D. G. Density functionals for noncovalent interaction energies of biological importance. J. Chem. Theory Comput. 2007, 3, 289–300.

(111) Gauss, J. Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts. J. Chem. Phys. 1993, 99, 3629–3643.

(112) Shettle, D. P.; Rice, J. E. Measurements and Calculations of the Hyperpolarizabilities of Atoms and Small Molecules in the Gas Phase. Chem. Rev. 1994, 94, 3–29.

(113) Friese, D. H.; Winter, N. O. C.; Balzerowski, P.; Schwan, R.; Hättig, C. Large scale polarizability calculations using the approximate coupled cluster model CC2 and MP2 combined with the resolution-of-the-identity approximation. J. Chem. Phys. 2012, 136, 174106.

(114) Burns, L. A.; Marshall, M. S.; Sherrell, C. D. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. J. Chem. Phys. 2014, 141, 23A111.

(115) Kesharwani, M. K.; Karton, A.; Martin, J. M. Benchmark ab Initio Conformational Energies for the Proteinogenic Amino Acids through Explicitly Correlated Methods. Assessment of Density Functional Methods. J. Chem. Theory Comput. 2016, 12, 444–454.

(116) Grimme, S. Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 2003, 118, 9095–9102.

(117) Jung, Y.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon, M. Scaled opposite-spin second order moller-plesset correlation energy: An economical electronic structure method. J. Chem. Phys. 2004, 121, 9793–9802.

(118) Lochan, R. C.; Jung, Y.; Head-Gordon, M. Scaled opposite spin second order Møller-Plesset theory with improved physical description of long-range dispersion interactions. J. Phys. Chem. A 2005, 109, 7591–7605.

(119) Janesko, B. G.; Scuseria, G. E. Coulomb-only second-order perturbation theory in long-range-corrected hybrid density functionals. Phys. Chem. Chem. Phys. 2009, 11, 9677–9686.

(120) Grimme, S.; Heese, T. G.; Klamt, M.; Klinzing, G. P. Optimization of different density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(121) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(122) Grimme, S.; Heese, T. G.; Klamt, M.; Klinzing, G. P. Optimization of different density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(123) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(124) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(125) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(126) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(127) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(128) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.

(129) Klamt, M.; Klinzing, G. P. The optimization of density functionals by a systematic approach: Improving the correlation part of the Hartree-Fock density functional. J. Chem. Phys. 2003, 119, 7605–7614.
(151) Häser, M.; Almlof, J. Laplace transform techniques in Möller-
Plesset perturbation theory. J. Chem. Phys. 1992, 96, 489–494.
(152) Häser, M. Möller-Plesset (MP2) perturbation theory for
large molecules. Theor. Chem. Acta 1993, 87, 147–173.
(153) Häser, M.; Ahrichs, R. Improvements on the direct SCF
method. J. Comput. Chem. 1989, 10, 104–111.
(154) Lambrecht, D. S.; Ochsenfeld, C. Multipole based integral
estimates for the rigorous description of distance dependence in two-
electron integrals. J. Chem. Phys. 2005, 123, 184101.
(155) Lambrecht, D. S.; Dozer, B.; Ochsenfeld, C. Rigorous integral
screening for electron correlation methods. J. Chem. Phys. 2005, 123,
184102.
(156) Maurer, S. A.; Lambrecht, D. S.; Flág, D.; Ochsenfeld, C.
Distance-dependent Schwarz based integral estimates for two-electron
integrals: Reliable tightness vs. Rigorous upper bounds. J. Chem. Phys.
2012, 136, 144107.
(157) Ayala, P. Y.; Scuseria, G. E. Linear scaling second-order Möll-
er-Plesset theory in the atomic orbital basis for large molecular
systems. J. Chem. Phys. 1999, 110, 3660–3671.
(158) Scuseria, G. E.; Ayala, P. Y. Linear scaling coupled cluster and
perturbation theories in the atomic orbital basis. J. Chem. Phys. 1999,
111, 8330–8343.
(159) Dozer, B.; Lambrecht, D. S.; Kussmann, J.; Ochsenfeld, C.
Linear-scaling atomic orbital based second-order Möller-Plesset
perturbation theory by rigorous integral screening criteria. J. Chem.
Phys. 2009, 130, 064107.
(160) Dozer, B.; Zienau, J.; Clin, L.; Lambrecht, D. S.; Ochsenfeld, C.
A linear-scaling MP2 method for large molecules by rigorous integral-
screening criteria. Z. Phys. Chem. 2010, 224, 397–412.
(161) Maurer, S. A.; Lambrecht, D. S.; Kussmann, J.; Ochsenfeld, C.
Efficient distance-including integral screening in linear-scaling Möller-
Plesset perturbation theory. J. Chem. Phys. 2013, 138, 014101.
(162) Maurer, S. A.; Beer, M.; Lambrecht, D. S.; Ochsenfeld, C.
Linear-scaling symmetry-adapted perturbation theory with scaled dispersion. J. Chem. Phys. 2013, 139, 184104.
(163) Pulay, P.; Saebø, S.; Wolinski, K. Efficient calculation of
canonical MP2 energies. Chem. Phys. Lett. 2001, 344, 543–552.
(164) Maurer, S. A.; Kussmann, J.; Ochsenfeld, C. Communication:
A reduced scaling J-engine based reformulation of SOS-MP2 using
graphics processing units. J. Comput. Chem. 2012, 33, 1494–1509.
(165) Bock, H.; Sánchez De Merás, A.; Pedersen, T. B. Reduced scaling
in electronic structure calculations using Cholesky decompositions.
J. Chem. Phys. 2003, 118, 9481–9484.
(166) Aquilante, F.; Lindh, R.; Bondo Pedersen, T. Unbiased auxiliary
basis sets for accurate two-electron integral approximations. J. Chem.
Phys. 2007, 127, 114107.
(167) Boman, L.; Koch, H.; Sánchez De Merás, A.; Pedersen, T. B.
Cholesky decomposition for Coulomb and exchange energies. J. Chem.
Phys. 2008, 129, 134107.
(168) Aquilante, F.; Gagliardi, L.; Pedersen, T. B.; Lindh, R. Atomic
Cholesky decompositions: A route to unbiased auxiliary basis sets for
density fitting approximation with tunable accuracy and efficiency. J.
Chem. Phys. 2009, 130, 154107.
(169) Schweizer, S.; Dozer, B.; Ochsenfeld, C. An atomic orbital
based reformulation of energy gradients in second-order Möller-
Plesset perturbation theory. J. Chem. Phys. 2008, 128, 154101.
(171) Zienau, J.; Clin, L.; Dozer, B.; Ochsenfeld, C. Cholesky-
decomposed densities in Laplace based second-order Möller-Plesset
perturbation theory. J. Chem. Phys. 2009, 130, 204112.
(172) Maurer, S. A.; Clin, L.; Ochsenfeld, C. Cholesky-decomposed
density MP2 with density fitting: Accurate MP2 and double-hybrid
DFT energies for large systems. J. Chem. Phys. 2014, 140, 224112.
(173) Vogler, S.; Ludwig, M.; Maurer, M.; Ochsenfeld, C. Low-
scaling first-order properties within second-order Möller-Plesset
perturbation theory using Cholesky decomposed density matrices. J.
Chem. Phys. 2017, 147, 024101.
(174) Hohenstein, E. G.; Parrish, R. M.; Martinez, T. J. Tensor
hypercorrection density fitting. I. Quartic scaling second- and third-
order Möller-Plesset perturbation theory. J. Chem. Phys. 2012, 137,
044103.
(175) Parrish, R. M.; Hohenstein, E. G.; Martinez, T. J.; Sherrill, C.
D. Tensor hypercorrection. II. Least-squares renormalization. J.
Chem. Phys. 2012, 137, 224106.
(176) Hohenstein, E. G.; Parrish, R. M.; Sherrill, C. D.; Martinez, T.
J. Communication: Tensor hypercorrection. III. Least-squares tensor
hypercorrection for the determination of correlated wavefunctions. J.
Chem. Phys. 2012, 137, 221101.
(177) Hohenstein, E. G.; Kokkila, S. I.; Parrish, R. M.; Martinez, T.
J. Quartic scaling second-order approximate coupled cluster: Electronic excitation energies in O (N4) time. J. Phys. Chem. B 2013, 117, 12972–12978.
(178) Hohenstein, E. G.; Kokkila, S. I.; Parrish, R. M.; Martinez, T.
J. Tensor hypercorrection equation-of-motion second-order approximate
coupled cluster: Electronic excitation energies in O (N4) time. J.
Phys. Chem. B 2013, 117, 12972–12978.
(194) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-Consistent Molecular-Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements. J. Am. Chem. Soc. 1982, 104, 2797–2803.

(195) Takatsuka, A.; Ten-no, S.; Hackbusch, W. Minimax approximation for the decomposition of energy denominators in Laplace-transformed Moller–Plesset perturbation theories. J. Chem. Phys. 2008, 129, 044112.

(196) Helmich-Paris, B.; Visscher, L. Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators. J. Comput. Chem. 2016, 321, 927–931.

(197) Gerkenkamp, M.; Grimme, S. Spin-component scaled second-order Moller-Plesset perturbation theory for the calculation of molecular geometries and harmonic vibrational frequencies. Chem. Phys. Lett. 2004, 392, 229–235.

(198) Grimme, S. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. J. Phys. Chem. A 2005, 109, 3067–3077.

(199) Fink, R. F. Spin-component-scaled Moller - Plesset (SCS-MP) perturbation theory: A generalization of the MP approach with improved properties. J. Chem. Phys. 2010, 133, 174113.

(200) Jung, Y.; Head-Gordon, M. A fast correlated electronic structure method for computing interaction energies of large van der Waals complexes applied to the fullere-ophorpyrin dimer. Phys. Chem. Chem. Phys. 2006, 8, 2831–2840.

(201) Lochan, R. C.; Head-Gordon, M. Orbital-optimized opposite-spin scaled second-order correlation: An economical method to improve the description of open-shell molecules. J. Chem. Phys. 2007, 126, 164101.

(202) Kozuch, S.; Martin, J. M. Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. J. Comput. Chem. 2013, 34, 2327–2344.

(203) Ayala, P. Y.; Scuseria, G. E. Atom pair partitioning of the correlation energy. Chem. Phys. Lett. 2000, 322, 213–218.

(204) Kokkila Schumacher, S. I.; Hohenstein, E. G.; Parrish, R. M.; Wang, L. P.; Martinek, T. J. Tensor Hypercontraction Second-Order Moller-Plesset Perturbation Theory: Grid Optimization and Reaction Energies. J. Chem. Theory Comput. 2015, 11, 3042–3052.

(205) Jackson, J. D. Classical electrodynamics, 3rd ed.; John Wiley & Sons: New York, 1999.

(206) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 941–967.

(207) ADF2018; SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, https://www.scm.com.

(208) Franchini, M.; Philipson, P. H. T.; Van Lente, E.; Visscher, L. Accurate Coulomb potentials for periodic and molecular systems through density fitting. J. Chem. Theory Comput. 2014, 10, 1994–2004.

(209) Franchini, M.; Philipson, P. H. T.; Visscher, L. The becke fuzzy cells integration scheme in the amsterdam density functional program suite. J. Comput. Chem. 2013, 34, 1819–1827.

(210) Hu, X.; Yang, W. Accelerating self-consistent field convergence with the augmented Roothaan-Hall energy function. J. Chem. Phys. 2010, 132, 054109.

(211) Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566.

(212) Van Lente, E.; Baerends, E. J.; Snijders, J. G. Relativistic regular two-component hamiltonians. J. Chem. Phys. 1993, 99, 4597.

(213) Van Lente, E.; Head-Gordon, M.; Snijders, J. G. Relativistic total energy using regular approximations. J. Chem. Phys. 1994, 101, 9783–9792.

(214) Van Lente, E.; Snijders, J. G.; Baerends, E. J. The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 1996, 105, 6505–6516.

(215) Van Lente, E.; Ehlers, A.; Baerends, J. E. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 1999, 110, 8943–8953.

(216) Source code available on https://github.com/bhelmichparis/laplaceminmax.

(217) Rezac, J.; Riley, K. E.; Hobza, P. S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput. 2011, 7, 2427–2438.

(218) Goerigk, L.; Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688.

(219) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

(220) Sókula, R.; Janowski, T.; Pitoňák, M.; Řezáč, J.; Pulay, P.; Hobza, P. Accuracy of quantum chemical methods for large noncovalent complexes. J. Chem. Theory Comput. 2013, 9, 3364–3374.

(221) Cremer, D. Moller-Plesset perturbation theory: From small molecule methods to methods for thousands of atoms. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 509–530.

(222) Metz, B.; Stoll, H.; Dolg, M. Small-core multiconfiguration-Dirac-Hartree-Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J. Chem. Phys. 2000, 113, 2563–2569.

(223) Peterson, K. A.; Figgens, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 2003, 119, 11113–11123.

(224) Sure, R.; Grimme, S. Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes. J. Chem. Theory Comput. 2015, 11, 3785–3801.

(225) Jones, T. C.; Sementa, L.; Stener, M.; Gagnon, K. J.; Thanthiranke, V. D.; Ramakrishna, G.; Fortunelli, A.; Dass, A. Auz215(SAdm)15: Crystal Structure, Mass Spectrometry, Optical Spectroscopy, and First-Principles Theoretical Analysis. J. Phys. Chem. C 2017, 121, 10865–10869.

(226) Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175–3183.

(227) Hättig, C. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple-ζ basis sets for H to Ar and ZQVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 2005, 7, 59–66.

(228) Hill, J. G.; Platt, J. A. Auxiliary basis sets for density fitting-MP2 calculations: Nonrelativistic triple- all-electron correlation consistent basis sets for the 3d elements Sc-Zn. J. Chem. Phys. 2008, 128, 044104.

(229) Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 2017, 147, 034112.

(230) Caldeweyher, E.; Ehler, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.

(231) Stefan, G. J.; Stephan, E.; Lars, G. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

(232) Smith, D. G.; Burns, L. A.; Patkowski, K.; Sherrill, C. D. Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. J. Phys. Chem. Lett. 2016, 7, 2197–2203.