ERLC (Twin LC) and LHC/FCC Based eA Colliders

A. N. Akaya, B. Daglia, B. Ketenoglub,\ast, S. Sultansoya,c

aTOBB University of Economics and Technology, Ankara, Turkey
bDepartment of Engineering Physics, Ankara University, Ankara, Turkey
cANAS Institute of Physics, Baku, Azerbaijan
\astCorrespondence: bketen@eng.ankara.edu.tr

Abstract

Construction of the ERLC (twin LC) collider tangential to LHC or FCC will give opportunity to realize eA collisions at multi-TeV center-of-mass energies. Luminosity estimations show that values comparable with that of ERL60 based eA colliders are achievable while center of mass energies are essentially higher. Certainly, proposed eA colliders have great potential for clarifying QCD basics and nuclear structure.

Keywords: LHC, FCC, ERLC, Energy frontier eA colliders, Luminosity, QCD basics, Nuclear structure

1. Introduction

Recently, V. I. Telnov has proposed ERLC (twin LC) scheme to improve ILC luminosity by two orders \cite{1}. In previous paper we have considered possible use of the ERLC for HL-LHC, HE-LHC and FCC based ep colliders \cite{2}. It was shown that using ERLC is much more advantageous comparing to ERL60, which is considered as baseline option for HL/HE-LHC and FCC based lepton-hadron colliders \cite{3}.

In this paper, possible use of the ERLC for HL/HE-LHC and FCC based eA colliders have been considered. (for earlier eA collider proposals see review \cite{4} and references therein, as well as \cite{5} and \cite{6} for FCC and SppC, respectively) Main parameters of ERLC electron and LHC/FCC lead beams are presented in Section 2. In next section we evaluate parameters of corresponding eA colliders. In Section 4, we briefly discuss physics search potential of these machines. Our conclusion and recommendations are given in Section 5.

2. Parameters of ERLC, LHC and FCC

In this section, we present parameters of ERLC, HL-LHC, HE-LHC and FCC, which are used for estimation of main parameters of eA colliders in the following section. Parameters of ERLC and ILC are given in Table 1 (Table 2 of Reference \cite{1}). Table 2 presents parameters of HL-LHC, HE-LHC and FCC lead beams upgraded for ERL60 eA colliders (Table 9 in Reference \cite{3}).
Table 1. Main parameters of ERLC and ILC

Parameter [unit]	ERLC	ILC
Beam Energy [GeV]	125	125
N per bunch [10^10]	0.5	2.0
Norm. emit., $c_{x,z}$ [μm]	20	10
Norm. emit., $c_{y,n}$ [μm]	0.035	0.035
β_x at IP [cm]	25	1.3
β_y at IP [cm]	0.03	0.04
σ_x at IP [μm]	4.5	0.73
σ_y at IP [nm]	6.1	7.7
Rep. rate, f [Hz]	2x10^8	6560
Bunch distance [m]	1.5	166
Duty cycle	1/3	n/a

Last two rows are added by us. Then, energy value of lead beam for HE-LHC option is incorrect, real value is 1.11 PeV instead of 1.03 PeV.

3. Luminosity of eA Colliders

In this section luminosity, disruption and beam-beam tune shift parameters have been calculated using parameters of electron and nucleus beams given in previous section. Several years ago, the software AloHEP has been developed for estimation of main parameters of linac-ring type ep colliders [7, 8]. Recently, AloHEP has been upgraded [9] for all types of colliders (linear, circular and linac-ring) as well as colliding beams (electron, positron, muon, proton and nuclei).

Main parameters of HL-LHC, HE-LHC and FCC based eA colliders, calculated by using the AloHEP software and parameters of electron (lead) beam from Table 1 (Table 2), are presented in Table 3. It is seen that luminosity of ERLC based colliders is more than 2 orders higher comparing to luminosity of ILC based ones.

Table 2. LHC/FCC lead beam parameters upgraded for ERL60 based eA colliders

Parameter [unit]	HL-LHC	HE-LHC	FCC
E_p [P eV]	0.574	1.03 (1.11)	4.1
E_e [GeV]	60	60	60
$\sqrt{s_A}$ [TeV]	0.8	1.1	2.2
Bunch spacing [ns]	50	50	100
Number of Bunches	1200	1200	2072
Ions per Bunch [10^9]	1.8	1.8	1.8
Norm. emit., c_A [μm]	1.5	1.0	0.9
Electrons per bunch [10^9]	4.67	6.2	12.5
Electron current [mA]	15	20	20
IP beta function, β^*_A [cm]	7	10	15
Hourglass factor H_{geom}	0.9	0.9	0.9
Pinch Factor H_{b-b}	1.3	1.3	1.3
Bunch filling H_{coll}	0.8	0.8	0.8
L_{eN} [10^{12}cm^2s^{-1}]	7	18	54
$\sqrt{s_{eA}}$ [TeV]	3.7	5.1	9.9
L_{eA} (AloHEP) [10^{30}cm^2s^{-1}]	2.54	6.35	17.4
Table 3. eA collider parameters using nominal parameters from Tables 1 and 2

Lead beam	e-beam	L_{eA} [cm^{-2}s^{-1}]	\(\xi [10^{-4}]\)	\(D\)
HL-LHC	ILC	5.26x10^{27}	5.3x10^{-2}	0.4
	ERLC	9.03x10^{29}	1.3x10^{-2}	0.4
HE-LHC	ILC	1.00x10^{28}	8.0x10^{-2}	0.7
	ERLC	1.70x10^{30}	2.0x10^{-2}	0.7
FCC	ILC	2.96x10^{28}	8.9x10^{-2}	2.1
	ERLC	2.31x10^{30}	2.2x10^{-2}	2.1

Bunch distance of LHC/FCC lead beam (bunch spacing 50 ns corresponds to bunch distance 15 m) is 10 times higher than electron beam bunch distance (1.5 m). This means that only 1/10 of electron bunches take part in eA collisions. Therefore, one can consider following upgrade of ERLC parameters: 10 times lower repetition rate and 10 times higher number of electrons per bunch. With this upgrade, we have obtained parameters of eA collisions presented in Table 4. Let us mention that \(\xi\) values should be decreased by an order which can be handled by using of crab-waist scheme in collision region [10].

Table 4. eA collider parameters for upgraded ERLC

Parameter [unit]	HL-LHC	HE-LHC	FCC
\(\sqrt{S_{eA}}\) [TeV]	16.9	23.5	45.3
L_{eA} [cm^{-2}s^{-1}]	9.04x10^{30}	1.70x10^{31}	2.32x10^{31}
\(\sigma_{x,y}\) at IP [\(\mu\)m]	5.94x10^{-6}	4.33x10^{-6}	2.52x10^{-6}
Disruption, \(D\)	0.4	0.7	2.1
Tune Shift, \(\xi\)	1.3x10^{-1}	2.0x10^{-1}	2.2x10^{-1}

Finally, luminosity of the ERLC based eA colliders can be further improved using dynamic focusing scheme [11]. After all, \(L_{eA} \approx 10^{32}\text{cm}^{-2}\text{s}^{-1}\) seems achievable for all options with reasonable modifications of ERLC and LHC/FCC parameters.

4. Physics Potential

Energy frontier eA colliders are a must to providing precision PDFs for adequate interpretation of LHC/FCC pA and AA experimental data. On the other hand, construction of lepton-nucleus colliders is very important for clarifying QCD basics and nuclear structure. Physics search program of eA colliders were widely discussed within LHeC [12] and EIC [13] projects. Several examples are following: physics of non-linear color fields and gluon saturation, particle propagation through matter and transport properties of nuclei, parton fragmentation, production mechanism for quarkonia, confinement mechanism and so on.

Obviously, ERLC is more advantageous than ERL60 for both luminosity and center-of-mass energy aspects. Let us emphasize that ERLC will provide opportunity to increase the electron
beam energy by extending the length of linacs. For instance, 1 TeV e^+e^- will enhance the $\sqrt{S_{eA}}$ by a factor of two, which allows investigation of 4-times smaller values of x_{Bjorken} (one order smaller x_{Bjorken} comparing to ERL60 based eA colliders).

5. Conclusion

Certainly, the ERLC [1] opens new horizons for linear e^+e^- colliders. It seems that the ERLC may have essentially impact on future linac-ring type lepton-hadron colliders, too. The ERLC and LHC/FCC based lepton-hadron colliders will essentially enlarge physics search potential of the LHC and FCC for both the SM and BSM phenomena.

Keeping in mind potential of proposed colliders for SM and BSM searches, we invite HEP community to start systematic studies of accelerator, detector and physics search aspects of ERLC and LHC/FCC based ep and eA colliders.

Acknowledgement

The authors are grateful to U. Kaya and B. B. Oner for useful discussions.

References

[1] V. I. Telnov. “A high-luminosity superconducting twin e^+e^- linear collider with energy recovery”, arXiv:2105.11015.

[2] B. Dagli, B. Ketenoglu, S. Sultansoy, “ERLC (Twin LC) and LHC/FCC Based Electron-Proton Colliders”, e-Print: 2107.04850 [hep-ex]

[3] F. Bordry et al “Machine Parameters and Projected Luminosity Performance of Proposed Future Colliders at CERN”, arXiv:1810.13022.

[4] A. N. Akay, H. Karadeniz and S. Sultansoy, “Review of Linac-Ring Type Collider Proposals”, International Journal of Modern Physics A, vol. 25, no. 25, pp. 4589-4602, 2010. DOI: 10.1142/S0217751X10049165, arXiv:0911.3314 (2009).

[5] Y. C. Acar et al., “Future circular collider based lepton–hadron and photon–hadron colliders: Luminosity and physics”, Nucl. Instrum. Meth. A871 (2017) 47, DOI: 10.1016/j.nima.2017.07.041, e-Print: arXiv:1608.02190.

[6] B. Ketenoglu, “Main parameters of SppC-based “linac-ring eA” and “ring-ring µA” colliders” Can. J. Phys. 99 (2021) 259-262.
[7] http://yef.etu.edu.tr/ALOHEP_eng.html

[8] https://alohep.hepforge.org

[9] B. B. Oner, B. Dagli, S. Sultansoy and B. Ketenoglu, “Beam-Beam Simulations for Lepton-Hadron Colliders: ALO-HEP Software”, International Particle Accelerator Conference (IPAC21) Proceedings, WEPAB278, Campinas, SP, Brazil, 2021.

[10] S. Verdu´-Andrés, S. Belomestnykh, I. Ben-Zvi, R. Calaga, Q. Wu, and B. Xiao, “Crab cavities for colliders: Past, present and future,” Nuclear and Particle Physics Proceedings, vol. 273-275, pp. 193–197, 2016.

[11] R. Brinkmann and M. Dohlus. “A Method to overcome the bunch length limitations on Beta(p)* for electron-proton colliders”, Report number: DESY-M-95-11.

[12] J. L. Abelleira Fernandez et al., “A Large Hadron Electron Collider at CERN”, Journal of Physics G- Nuclear and Particle Physics 39 (2012) 075001. DOI:10.1088/0954-3899/39/7/075001.

[13] R. Abdul Khalek et al., “Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report”, e-Print: 2103.05419 [physics.ins-det]