First Observation of the Σ_c^{*+} Baryon and a New Measurement of the Σ_c^+ Mass

CLEO Collaboration

(March 24, 2022)

Abstract

Using data recorded with the CLEO II and CLEO II.V detector configurations at the Cornell Electron Storage Ring, we report the first observation and mass measurement of the Σ_c^{*+} charmed baryon, and an updated measurement of the mass of the Σ_c^+ baryon. We find $M(\Sigma_c^{*+}) - M(\Lambda_c^+) = (231.0 \pm 1.1 \pm 2.0)\text{ MeV}$, and $M(\Sigma_c^+) - M(\Lambda_c^+) = (166.4 \pm 0.2 \pm 0.3)\text{ MeV}$, where the errors are statistical and systematic respectively.
R. Ammar,1 A. Bean,1 D. Besson,1 R. Davis,1 N. Kwao,1 S. Anderson,2 V. V. Frolov,2 Y. Kubota,2 S. J. Lee,2 R. Mahapatra,2 J. J. O’Neill,2 R. Poling,2 T. Riehle,2 A. Smith,2 C. J. Stepniak,2 J. Urheim,2 S. Ahmed,3 M. S. Alam,3 S. B. Athar,3 L. Jian,3 L. Ling,3 M. Saleem,3 S. Timm,3 F. Wappler,3 A. Anastassov,4 J. E. Duboscq,4 E. Eckhart,4 K. K. Gan,4 C. Gwon,4 T. Hart,4 K. Honscheid,4 D. Hufnagel,4 H. Kagan,4 R. Kass,4 T. K. Pedlar,4 H. Schwarzhoff,4 J. B. Thayer,4 E. von Toerne,4 M. M. Zoeller,4 S. J. Richichi,5 H. Severini,5 P. Skubic,5 A. Undrus,5 S. Chen,6 J. Fast,6 J. W. Hinson,6 J. Lee,6 D. H. Miller,6 E. I. Shibata,6 I. P. J. Shipsey,6 V. Pavlunin,6 D. Cronin-Hennessy,7 A. L. Lyon,7 E. H. Thorndike,7 C. P. Jessop,8 H. Marsiske,8 M. L. Perl,8 V. Savinov,8 X. Zhou,9 T. E. Coan,9 V. Fadeyev,9 Y. Maravin,9 I. Narsky,9 R. Stroynowski,9 J. Ye,9 T. Wlodek,9 M. Artuso,10 R. Ayad,10 C. Boulahouache,10 K. Bukin,10 E. Dambasuren,10 S. Karamov,10 G. Majumder,10 G. C. Moneti,10 R. Mountain,10 S. Schuh,10 T. Skwarnicki,10 S. Stone,10 G. Viehhauser,10 J. C. Wang,10 A. Wolf,10 J. Wu,10 S. Kopp,11 A. H. Mahmood,12 S. E. Csorna,13 I. Danko,13 K. W. McLean,13 Sz. Márka,13 Z. Xu,13 R. Godang,14 K. Kinoshita,14 I. C. Lai,14 S. Schrenk,14 G. Bonvicini,15 D. Cinabro,15 S. McGee,15 L. P. Perera,15 G. J. Zhou,15 E. Lipeles,16 S. P. Pappas,16 M. Schmidttler,16 A. Shapiro,16 W. M. Sun,16 A. J. Weinstein,16 F. Würthwein,16 D. E. Jaffe,17 G. Masek,17 H. P. Paar,17 E. M. Potter,17 S. Prell,17 V. Sharma,17 D. M. Asner,18 A. Eppich,18 T. S. Hill,18 R. J. Morrison,18 R. A. Briere,19 G. P. Chen,19 B. H. Behrens,20 W. T. Ford,20 A. Gritsan,20 J. Roy,20 J. G. Smith,20 J. P. Alexander,21 R. Baker,21 C. Bebek,21 B. E. Berger,21 K. Berkelman,21 F. Blanc,21 V. Boisvert,21 D. G. Cassel,21 M. Dickson,21 P. S. Drell,21 K. M. Ecklund,21 R. Ehrlich,21 A. D. Foland,21 P. Gaidarev,21 R. S. Galik,21 L. Gibbons,21 B. Gittelman,21 S. W. Gray,21 D. L. Hartill,21 B. K. Heltsley,21 P. I. Hopman,21 C. D. Jones,21 D. L. Kreinick,21 M. Lohner,21 A. Magerkurth,21 T. O. Meyer,21 N. B. Mistry,21 E. Nordberg,21 J. R. Patterson,21 D. Peterson,21 D. Riley,21 J. G. Thayer,21 D. Urner,21 B. Valant-Spaight,21 A. Warburton,21 P. Avery,22 C. Prescott,22 A. I. Rubiera,22 J. Yelton,22 J. Zheng,22 G. Brandenburg,23 A. Ershov,23 Y. S. Gao,23 D. Y.-J. Kim,23 R. Wilson,23 T. E. Browder,24 Y. Li,24 J. L. Rodriguez,24 H. Yamamoto,24 T. Bergfeld,25 B. I. Eisenstein,25 J. Ernst,25 G. E. Gladding,25 G. D. Gollin,25 R. M. Hans,25 E. Johnson,25 I. Karliner,25 M. A. Marsh,25 M. Palmer,25 C. Plager,25 C. Sedlack,25 M. Selen,25 J. J. Thaler,25 J. Williams,25 K. W. Edwards,26 R. Janicek,27 P. M. Patel,27 and A. J. Sadoff28

1University of Kansas, Lawrence, Kansas 66045
2University of Minnesota, Minneapolis, Minnesota 55455
3State University of New York at Albany, Albany, New York 12222
4Ohio State University, Columbus, Ohio 43210
5University of Oklahoma, Norman, Oklahoma 73019
6Purdue University, West Lafayette, Indiana 47907
7University of Rochester, Rochester, New York 14627

*Permanent address: University of Cincinnati, Cincinnati, OH 45221

1Permanent address: Massachusetts Institute of Technology, Cambridge, MA 02139.
8Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
9Southern Methodist University, Dallas, Texas 75275
10Syracuse University, Syracuse, New York 13244
11University of Texas, Austin, TX 78712
12University of Texas - Pan American, Edinburg, TX 78539
13Vanderbilt University, Nashville, Tennessee 37235
14Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
15Wayne State University, Detroit, Michigan 48202
16California Institute of Technology, Pasadena, California 91125
17University of California, San Diego, La Jolla, California 92093
18University of California, Santa Barbara, California 93106
19Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
20University of Colorado, Boulder, Colorado 80309-0390
21Cornell University, Ithaca, New York 14853
22University of Florida, Gainesville, Florida 32611
23Harvard University, Cambridge, Massachusetts 02138
24University of Hawaii at Manoa, Honolulu, Hawaii 96822
25University of Illinois, Urbana-Champaign, Illinois 61801
26Carleton University, Ottawa, Ontario, Canada K1S 5B6
and the Institute of Particle Physics, Canada
27McGill University, Montréal, Québec, Canada H3A 2T8
and the Institute of Particle Physics, Canada
28Ithaca College, Ithaca, New York 14850
The Σ_c states consist of a charmed quark and two light (u or d) quarks, in an isospin one configuration. The $J^P=\frac{1}{2}^+$ states and Σ_c^+ have been observed for many years. Their isospin partner, the Σ_c^+, is more difficult to detect as it decays to the Λ_c^+ with the emission of a neutral, as opposed to charged, pion. Neutral pion detection is typically prone to higher backgrounds and poorer momentum resolution than charged pion detection. The Σ_c^+ was reported in one event in 1980 [1], and then in a peak of 111 events by the CLEO collaboration in 1993 [2]. This analysis updates the earlier CLEO measurement with a much larger data sample. This permits a more accurate comparison of the isospin splitting of the Σ_c states.

The $J^P=\frac{3}{2}^+$ states are more difficult to observe than the $J^P=\frac{1}{2}^+$ states because of the larger natural width, which leads to a poorer signal to noise ratio. The Σ_c^{*+} and Σ_c^{*0} have now been identified in $\Lambda_c^+\pi^\pm$ final states, and their masses and widths measured [3]. This analysis shows the first observation of their isospin partner, the Σ_c^{*+}, observed by its decay to $\Lambda_c^+\pi^0$. This observation completes the spectroscopy of the seven $L=0$ Λ_c and Σ_c baryons predicted by the quark model.

The data presented here were taken with the CLEO II and CLEO II.V detector configurations operating at the Cornell Electron Storage Ring (CESR). The data sample used in this analysis corresponds to an integrated luminosity of 13.7 fb$^{-1}$ taken on the $\Upsilon(4S)$ resonance and in the continuum at energies just below the $\Upsilon(4S)$. Of this data, 4.7 fb$^{-1}$ was taken with the CLEO II configuration [4]. We detected charged tracks with a cylindrical drift chamber system inside a 1.4T solenoidal magnet, and we detected photons using an electromagnetic calorimeter consisting of 7800 cesium iodide crystals. The remainder of the data was taken with the CLEO II.V configuration [5], which has upgraded charged particle measurement capabilities, but the same same cesium iodide array to observe photons.

In order to obtain large statistics we reconstructed the Λ_c^+ baryons using 15 different decay modes [6]. Measurements of the branching fractions into these modes have previously been presented by the CLEO collaboration [7], and the general procedures for finding those decay modes can be found in those references. For this search and data set, the exact analysis used has been optimized for high efficiency and low background. Briefly, particle identification of p, K^-, and π candidates was performed using specific ionization measurements in the drift chamber, and, when present, time-of-flight measurements. Hyperons were found by detecting their decay points separated from the main event vertex.

We reduce the combinatorial background, which is highest for charmed baryon candidates with low momentum, by applying a cut on x_p, where $x_p = p/p_{max}$, p is the momentum of the charmed baryon candidate, $p_{max} = \sqrt{E_{beam}^2 - M^2}$, and E_{beam} is the beam energy, and M is the reconstructed mass of the candidate. Using a cut of $x_p > 0.5$ (charmed baryons produced from decays of B mesons near the $B\bar{B}$ threshold are kinematically limited to $x_p < 0.4$), we fit the invariant mass distributions for these modes to a sum of a Gaussian signal and a low-order polynomial background. Combinations within 1.6σ of the mass of the Λ_c^+ in each decay mode are taken as Λ_c^+ candidates, where the resolution of each decay mode is taken from a Monte Carlo simulation (for the CLEO II and CLEO II.V datasets separately). In this x_p region, we find a total yield of $\approx 58,000$ combinations, and a signal-to-background ratio $\approx 1 : 1.2$.

*Charge conjugate modes are implicit throughout.
Photons were detected by their energy deposition in the crystal calorimeter. Each photon candidate was required to be well isolated from charged particles, and to have an energy profile consistent with being due to a single photon. To ensure good signal to noise ratio, the transition \(\pi^0 \) candidates were made from the combination of two photons each from the central part of the detector \((\theta < 0.7)\), which has the best energy resolution. The calculated invariant mass of the photon pair was required to be within 2.5 standard deviations of the known \(\pi^0 \) mass, and the momentum of the \(\pi^0 \) candidate was required to be greater than 150 MeV/c. This momentum cut was optimized to maximize the signal to noise ratio of a resonance in the expected \(\Sigma^*_c\) mass range using a Monte Carlo simulation. The \(\pi^0 \) candidates were then kinematically fit to the \(\pi^0 \) mass, a procedure that improves the mass resolution of the \(\Sigma^*_c\) by around twenty percent.

The \(\Lambda^+_c\) candidates were combined with each \(\pi^0 \) candidate in the event and the mass difference
\[
M(\Lambda^+_c\pi^0) - M(\Lambda^+_c) = \text{calculated}.
\]
Our requirement on the fractional momentum, \(x_p > 0.6, \) is placed on the \(\Lambda^+_c\pi^0 \) combination, not on the \(\Lambda^+_c\) itself. Given the energetics of the decays to \(\Lambda^+_c\pi^0, \) such a criterion corresponds roughly to \(x_p > 0.5 \) for the \(\Lambda^+_c \) daughters. The mass difference spectrum, shown in Figure 1, shows two clear peaks. The first, near 167 MeV, is due to \(\Sigma^+_c\) decays. The second, near 230 MeV, we identify as the \(\Sigma^*_c\) signal. If we fit this distribution to the sum of a third-order Chebychev polynomial distribution and two Gaussian signals, we obtain a yield of 661 \((166 \pm 0.24) \) MeV for the \(\Sigma^+_c\) and a yield of \((327 \pm 78) \) events and \(\sigma = (5.6 \pm 1.4) \) MeV for the second peak. The widths of these Gaussian signals are greater than the detector resolution, calculated from a GEANT-based Monte Carlo simulation program, of 1.90 and 3.55 MeV, respectively, in the relevant mass regions, indicating the likelihood that the particles have non-negligible intrinsic widths. If we fit the distribution instead to a sum of two p-wave Breit-Wigner functions convoluted with Gaussian resolution functions, we obtain values of the intrinsic width, \(\Gamma, \) of \((3.1^{+0.9}_{-0.8}) \) MeV, and \((7^{+6}_{-5}) \) MeV respectively, for which the errors are statistical only. The pole masses obtained from this fit are
\[
\begin{align*}
M(\Sigma^+_c) - M(\Lambda^+_c) &= (166.44 \pm 0.24) \text{ MeV} \\
M(\Sigma^*_c) - M(\Lambda^+_c) &= (231.0 \pm 1.1) \text{ MeV}
\end{align*}
\]
where again the quoted errors are from the statistical errors in the fit. It is this second fit, which has a \(\chi^2 \) of 73.3 for 93 degrees of freedom, which is shown in Figure 1. If the \(\Sigma^*_c \) signal were not included in the fit, it would have a \(\chi^2 \) of 123 for 96 degrees of freedom. To obtain an estimate of the relative cross sections for \(\Lambda^+_c, \Sigma^+_c \) and \(\Sigma^*_c \) baryons, we find the yield each of the three states with an \(x_p \) cut on each candidate of 0.6. After correcting for the efficiency of the transition \(\pi^0, \) we find the ratio
\[
N(\Sigma^+_c):N(\Lambda^+_c) = 0.116^{+0.016}_{-0.014} \pm 0.022 \text{ and } N(\Sigma^*_c):N(\Lambda^+_c) = 0.043^{+0.016}_{-0.012} \pm 0.007,
\]
where the errors are statistical and systematic respectively. The systematic uncertainty includes the uncertainty in the \(\pi^0 \) reconstruction efficiency and differences in the yield obtained with different signal shapes. We note that we are not calculating the production ratios of these states, as we are unable to measure their full momentum spectra.

We have considered many different possible sources of systematic uncertainty in the measurements of the masses and widths of these resonances. We have checked the consistency of the results obtained with each of the two detector configurations separately, as well as with a variety of different background and signal shapes, different criteria on the \(\pi^0 \) momenta, and different \(\Lambda^+_c \) decay modes. We find the dominating systematic uncertainties in the mass measurement of the \(\Sigma^+_c \) to be due to signal shape (0.2 MeV) and the uncertainty in the \(\pi^0 \) momentum measurement (0.2 MeV). These combine to give a total systematic uncertainty in the measurement of \(M(\Sigma^+_c) \) of 0.3 MeV. In the case of the \(\Sigma^*_c \), the mass measurement is sensitive to both the shape of the signal and also to the shape of the background function used, and we estimate a total systematic uncertainty of 2 MeV in the measurement of the pole mass. Although the intrinsic width measurement of the
\(\Sigma^+_c \) is statistically nearly four standard deviations from 0, there should also be added a systematic uncertainty which we estimate to be 0.8 MeV, due mostly to uncertainties in the energy resolution of the transition pion. The combination of statistical and systematic uncertainties lead us to set an upper limit of 4.6 MeV (at the 90% confidence level) on \(\Gamma(\Sigma^+_c) \). The width of the \(\Sigma^{*+}_c \) is particularly sensitive to the parameterization of the background shape, and we estimate a systematic uncertainty of 5 MeV in the measurement of \(\Gamma(\Sigma^{*+}_c) \) mostly from this source. This, combined with the statistical error, leads to a 90% confidence level limit of \(\Gamma < 17 \) MeV.

Our result for the mass of the \(\Sigma^+_c \) is rather lower than the previous CLEO measurement which was based upon a small subset of these data, and lower than the measured masses of the \(\Sigma^{++}_c \) and \(\Sigma^0_c \), for which more experimental data is available \[8\]. This is consistent with the theoretical expectations for this isospin splitting \[9\]. The mass of the \(\Sigma^{*+}_c \) is also lower than that of its isospin partners, but the experimental errors are too large for this splitting to be significant.

In conclusion, we have made a new measurement of the mass of the \(\Sigma^+_c \) and find \(M(\Sigma^+_c) - M(\Lambda^+_c) = (166.4 \pm 0.2 \pm 0.3) \) MeV. We report the first observation of the \(\Sigma^{*+}_c \) and find \(M(\Sigma^{*+}_c) - M(\Lambda^+_c) = (231.0 \pm 1.1 \pm 2.0) \) MeV. These measurements are consistent with expectations based upon the previously observed isospin partners of these two particles.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Research Corporation, the Natural Sciences and Engineering Research Council of Canada, the A.P. Sloan Foundation, the Swiss National Science Foundation, the Texas Advanced Research Program, and the Alexander von Humboldt Stiftung.
REFERENCES

[1] WA-024 Collaboration, M. Calicchio et al., Phys. Lett. B93, 521 (1980).
[2] CLEO Collaboration, G. Crawford et al., Phys. Rev. Lett. 71, 3259 (1993).
[3] CLEO Collaboration, G. Brandenberg et al., Phys. Rev. Lett. 78, 2304 (1997).
[4] CLEO Collaboration, Y. Kubota et al., Nucl. Instrum. and Meth. A320, 66 (1992).
[5] CLEO Collaboration, T. Hill et al., Nucl. Instrum. and Meth. A418, 32 (1998).
[6] CLEO Collaboration, P. Avery et al., Phys. Rev. D43, 3599 (1991); P. Avery et al., Phys. Rev. Lett. 71 2391 (1993); P. Avery et al., Phys. Lett. B235 257 (1994); M.S. Alam et al., Phys. Rev. D57 4467, (1998).
[7] R. Brun et al., GEANT 3.15, CERN Report No. DD/EE/84-1 (1987).
[8] Particle Data Group, D. Groom et al., Eur. Phys. J C15, 1 (2000), FOCUS Collaboration, J. Link et al., FERMILAB-PUB-00-112-E, submitted to Phys. Lett. B.
[9] J. Franklin, Phys. Rev. D59:117502, (1999).
FIG. 1. Mass difference spectrum, $M(\Lambda_c^+ \pi^0) - M(\Lambda_c^+)$. The solid line fit is to a third-order polynomial background shape and two p-wave Breit-Wigner functions smeared by Gaussian resolution functions for the two signal shapes. The dashed line shows the background function.