β1 integrin and IL-3R coordinately regulate STAT5 activation and anchorage-dependent proliferation

Paola Defilippi,1 Arturo Rosso,2 Patrizia Dentelli,2 Cristina Calvi,2 Giovanni Garbarino,2 Guido Tarone,1 Luigi Pegoraro,2 and Maria Felice Brizzi2

1Department of Genetics, Biology and Biochemistry and 2Department of Internal Medicine, University of Torino, 10126, Torino, Italy

We previously demonstrated that integrin-dependent adhesion activates STAT5A, a well known target of IL-3–mediated signaling. Here, we show that in endothelial cells the active β1 integrin constitutively associates with the unphosphorylated IL-3 receptor (IL-3R) β common subunit. This association is not sufficient for activating downstream signals. Indeed, only upon fibronectin adhesion is Janus Kinase 2 (JAK2) recruited to the β1 integrin–IL-3R complex and triggers IL-3R β common phosphorylation, leading to the formation of docking sites for activated STAT5A. These events are IL-3 independent but require the integrity of the IL-3R β common. IL-3 treatment increases JAK2 activation and STAT5A and STAT5B tyrosine and serine phosphorylation and leads to cell cycle progression in adherent cells. Expression of an inactive STAT5A inhibits cell cycle progression upon IL-3 treatment, identifying integrin-dependent STAT5A activation as a priming event for IL-3–mediated S phase entry. Consistently, overexpression of a constitutive active STAT5A leads to anchorage-independent cell cycle progression. Therefore, these data provide strong evidence that integrin-dependent STAT5A activation controls IL-3–mediated proliferation.

Introduction

Adhesion of endothelial cells to extracellular matrix is mediated by the integrin family of cell surface receptors (Hynes, 2002). Integrins are heterodimers of an α and β subunit and their binding to matrix proteins triggers multiple signaling pathways, which regulate basic cell functions (Giancotti and Ruoslahti, 1999; Damsky and Ilic, 2002; Howe et al., 2002; Miranti and Brugge, 2002; Giancotti and Tarone, 2003). Integrin-induced signaling also affects gene expression (de Fougerolles and Koteliansky, 2002). Among the early genes responsive to growth signals, c-fos gene has been proposed as a mediator of cell cycle progression controlled by cell adhesion (Wary et al., 1996). The signaling pathway leading to integrin-dependent c-fos transcription is only partially known, and roles for the activated Erk1/Erk2 MAPK (Wary et al., 1996) and the transcriptional factor STAT5A have been proposed (Brizzi et al., 1999).

STAT5 is a known target of IL-3 (Ihle and Kerr, 1995; O’Shea, 1997; Grimley et al., 1999), a T cell–derived cytokine (Wimperis et al., 1989) that, besides promoting hematopoietic progenitor cell proliferation and differentiation, acts as an inducer of endothelial and smooth muscle cell migration and proliferation and as a promoter of neoangiogenesis (Brizzi et al., 1993, 2001; Korpelainen et al., 1995, 1996). Moreover, we reported that CD4/CD25/CD5 T cells infiltrating breast cancer tissues also express IL-3, which by stimulating endothelial cells can affect vessel assembly (Dentelli et al., 2004). IL-3 has also been found to act as survival factor for tumor-derived endothelial cells (Deregibus et al., 2002), suggesting a pleiotropic role for this cytokine in endothelial cell biology. IL-3 binds to a heterodimeric receptor consisting of a ligand binding α subunit and a β subunit that is shared with GM-CSF and IL-5 receptors and is denoted as β common (Reddy et al., 2000; Geijsen et al., 2001). The type I cytokine receptor β common has a large cytoplasmic domain that plays a pivotal role in downstream signal transduction (Kitamura et al., 1991). IL-3R, which lacks intrinsic kinase activity, interacts with and activates Janus Kinase 2 (JAK2) in response to ligand binding. As a consequence, the β common subunit undergoes tyrosine phosphorylation and cues signaling molecules such as MAPK, the phosphatidylinositol 3-kinase, and the STATs (Reddy et al., 2000; Geijseren et al., 2001). The STAT5 proteins consisting of STAT5A and STAT5B are the main targets of IL-3 signaling (Mui et al., 1995a; Ihle, 2001). Upon cytokine stimulation,
JAK2 phosphorlates STAT5 (Reddy et al., 2000) and the phosphorylated STAT5 proteins dimerize and translocate into the nucleus, where, by binding DNA, they activate target genes including c-fos (Mui et al., 1996). In addition to this JAK-catalyzed tyrosine phosphorylation, STAT5 may undergo serine phosphorylation in the carboxy-terminal P(M)SP site (Yamashita et al., 1998) in response to prolactin (Decker and Kovarik, 2000). However, functional studies of the effects of serine phosphorylation on STAT5’s transcriptional activity have not provided a consistent picture.

In addition to the role played by STAT5 in cytokine receptor signaling, we reported that STAT5A becomes activated in endothelial cells upon cell matrix adhesion (Brizzi et al., 1999). Also STAT1 has been implicated in regulation of cell adhesion, spreading, and migration (Xie et al., 2001), suggesting a pleiotropic role for the STAT pathway in adhesion-dependent signaling.

In nonadherent hematopoietic cells, STAT5 is required for IL-3-mediated cell proliferation (Mui et al., 1995b, 1996). In addition, IL-3 triggers endothelial cell proliferation (Brizzi et al., 1993; Mui et al., 1995b, 1996) and activates STAT5 to induce in vivo neangiogenesis (Dentelli et al., 1999, 2004), suggesting that STAT5 could also regulate IL-3-dependent cell cycle progression in vascular adherent cells. Here, we show that integrin-dependent JAK2 and STAT5A activation are prerequisites for IL-3-mediated endothelial cell proliferation.

Results

The β common subunit of IL-3R stably interacts with the active β1 integrin

It is well established that integrins trigger specific signaling pathways by directly trans-activating growth factor receptors (Moro et al., 1998; Miranti and Brugge, 2002; Schwartz and Ginsberg, 2002; Giancotti and Tarone, 2003). We showed that in endothelial cells integrins induce ligand-independent STAT5A activation and c-fos gene expression (Brizzi et al., 1999). As shown in Table I, adhesion of endothelial cells to fibronectin (FN) in the absence of IL-3 is not sufficient to promote entry in the S phase of the cell cycle. Consistently, upon adhesion, unlike c-fos mRNA expression, which is strongly up-regulated (Fig. 1 A), cyclin D1 protein is not modified within 15 h of adhesion (Fig. 1 B, gray bars). Its expression is induced by serum in adherent cells (Fig. 1 B, black bars), confirming that in primary cells expression of G1 phase cyclins requires concomitant signals emanated from integrins and soluble ligands (Assoian and Schwartz, 2001). Endothelial cells plated on FN undergo both proliferation and migration in response to IL-3 treatment (Table I), suggesting that IL-3 and its receptor play a crucial role in regulating endothelial cell functions. The fact that STAT5 is a well defined target of IL-3R signaling in endothelial cells (Dentelli et al., 1999) prompted us to evaluate the involvement of the IL-3R in mediating integrin-dependent STAT5 activation. A likely mechanism through which integrins can activate STAT5A may depend on cross talk between β1 integrin and the IL-3R β common. To investigate this possibility, β1 integrin and IL-3R β common were immunoprecipitated (IP) from endothelial cell extracts and the immunoprecipitates were reciprocally immunoblotted (IB) as shown in Fig. 2 A (top panels). Cell extract from MO7-E cells was IP with an antiserum to IL-3R β common and used as positive control (+). These experiments demonstrate that β1 integrin associates with the IL-3R β common, both in cells kept in suspension or adherent to FN, indicating that these two molecules stably interact in endothelial cells independently from the adhesive state.

The specificity of the association was also demonstrated by the loss

Table I. IL-3 triggers endothelial cell proliferation and migration

	Control	IL-3	bFGF
Percentage of cells in S phase	6 ± 1	15 ± 2	18 ± 2
Number of cells counted upon 6 d of culture	3 ± 2	22 ± 2	39 ± 3
Number of cells migrated across the membrane	12 ± 2	48 ± 3	54 ± 4

Endothelial cells resuspended at 5 × 10⁶/ml were seeded on FN-coated dishes. For the determination of the percentage of cells in S phase, triplicate cultures (five individual experiments) were pulse labeled with [³H]TdR (4 μCi/ml) for 1 h the second day after the addition of 20 ng/ml IL-3 or 10 ng/ml bFGF, which was used as positive control, and processed by autoradiography (Brizzi et al., 1993). Cell proliferation was assessed 6 d after the addition of the indicated growth factors by direct cell count on triplicate wells. The numbers are the mean ± SD of labeled or counted cells. The migration assay was performed by the modified chambers technique (8-μm pore size filters FN coated) on endothelial cells untreated or treated with 20 ng/ml IL-3 or 10 ng/ml bFGF, which was used as positive control (Dentelli et al., 1999). The numbers represent the mean ± SD of cells counted per 10 fields (×200).

*aCells × 10⁴.

Figure 1. Adhesion-mediated c-fos gene mRNA and cyclin D1 protein expression. (A) RNA from endothelial cells kept in suspension (S) or adherent to FN for 30 min was subjected to Northern blot; c-fos mRNA level was quantified by densitometric analysis. (B) Cell extracts from endothelial cells kept in suspension (0) or let to adhere to FN in the presence or in the absence of FCS for the indicated times were subjected to 12% SDS-PAGE and IB with cyclin D1 antibodies. Cyclin D1 expression was quantified by densitometric analysis and reported as the mean ± SD of four independent experiments. *P < 0.05 FN versus FN + serum.
of signal when the same filter was IB with the IL-3 β common antiserum preadsorbed with the immunizing peptide (Fig. 2 A, bottom left). Moreover, no communoprecipitation of IL-3R β common was observed with a control antibody against β2 microglobulin (Fig. 2 A, bottom right).

To investigate further the molecular mechanisms leading to adhesion-independent constitutive association of IL-3R β common with β1 integrin, the hematopoietic MO7-E cells, which express both IL-3R (Brizzi et al., 1994) and β1 integrin, was used. Consistent with the fact that in these cells β1 integrin is present as an inactive form that can be activated by bivalent cations (Bazzoni et al., 1995; Mould et al., 1995; Humphries et al., 2003), we found that the β1 integrin was able to coimmunoprecipitate the IL-3R β common only in cells treated with Mn2+ (Fig. 3 A). These data suggest that activation of β1 integrin is a prerequisite for association with the IL-3R β common. Flow cytometry analysis using mAb 12G10, recognizing one epitope expressed only in the FN-competent β1 integrin (Mould et al., 1995), or mAb BV7, recognizing a constitutive β1 integrin epitope, was performed on MO7-E cells and endothelial cells. As shown in Fig. 3 B, mAb 12G10 binds to MO7-E cells only in the presence of the activating bivalent cation Mn2+ (Fig. 3 B, compare c and d). In contrast, in endothelial cells the 12G10-recognizing epitope was already exposed in the absence of any treatment (Fig. 3 B, e), indicating that a large majority of the β1 integrin expressed on the surface of endothelial cells was in the active state. No staining was observed by incubating cells with anti–IL-1β (Fig. 3 B, a) as well as with preimmune IgG (Fig. 3 B, a–e, left curve). Thus, IL-3R β common interacts with β1 integrin only in its active form, indicating that β1 integrin activation allows its association with the IL-3R.

Figure 2. FN-induced association of activated STAT5A with the constitutive β1 integrin–IL-3R β common complex. (A) Cell extracts from starved endothelial cells kept in suspension (S) or plated on FN-coated dishes for different times (20 min) were immunoprecipitated (IP) with mAb TS2/16 to the β1 integrin subunit, and the immunoprecipitates were divided in two aliquots. Western blot was performed with IL-3R β common antibodies (top left) or with the same antibodies preadsorbed on the recombinant IL-3R β common protein (bottom left). In the absence of the positive signal, to reveal IgG, the latter blot was performed with IL-3R common antibodies (bottom right). (B) Cell extracts from endothelial cells kept in suspension (S) or plated on FN-coated dishes (20 min) were immunoprecipitated (IP) with mAb TS2/16 to the β1 integrin subunit, and the immunoprecipitates were divided in two aliquots. Western blot was performed with IL-3R β common antibodies, the immunoprecipitation run on a 6% SDS-PAGE in non-reducing conditions, and IB with β1 integrin mAb (top right). Parallel experiments were IP with antiβ2 microglobulin antibodies. Filters were IB with IL-3R β common antibodies (bottom right). (C) Cell extracts from endothelial cells plated on FN-coated dishes for different times in the presence of 50 μM pervanadate were IP with IL-3R β common antibodies and IB with antiphosphotyrosine antibodies (α P; top) and reprobed with IL-3R β common antibodies (bottom). (D) Cell extracts treated as in A were IP with uncoupled or with STAT5A-coupled Sepharose protein A beads and IB with STAT5A antibody. MO7-E cell extracts were used as positive control (+). The results are representative of four independent experiments.

Upon adhesion, phosphorylated JAK2 and STAT5A associate with β1 integrin–IL-3R β common complex

To evaluate the role of the IL-3R β common in integrin-mediated STAT5A activation, endothelial cells were kept in suspension or plated on FN for different time intervals. Cell extracts were IP with antibodies to the IL-3R β common subunit and IB with antiphosphotyrosine antibodies. The 140-kD IL-3R β common became phosphorylated within 20 min of adhesion and coprecipitated with a phosphorylated band of ∼90 kD in the same conditions (Fig. 2 B), indicating that integrin-dependent adhesion triggers IL-3R β common activation. To identify the 90-kD phosphorylated band, the anti–IL-3R β common immunoprecipitates were divided in two aliquots, run on the same gel, and separately IB with anti–phospho-STAT5 and anti-STAT5A antibodies. As depicted in Fig. 2 C, the 90-kD protein coprecipitating with the IL-3R β common only in cells adherent to FN was most likely the phosphorylated STAT5A. Moreover, the observation that β1 integrin coprecipitated with IL-3R β common and STAT5A indicates that adhesion to FN led to the formation of a macromolecular β1 integrin–IL-3R β common–STAT5A complex (Fig. 2 C). The specificity of this interaction was confirmed by the inability of the antibody to STAT5A to recognize IP bands when beads bound only to Sepharose protein A and not antibody to IL-3R were used (Fig. 2 D). Thus, these data show that integrin-mediated adhesion by phosphorylating the IL-3R β common creates a docking site for the phosphorylated STAT5A.

As shown in Fig. 3 A, in MO7-E cells β1 integrin–IL-3R β common complex formation depends on integrin activation. Therefore, we use these cells as a suitable model to answer the question of whether or not β1 integrin–IL-3R β common interaction represents a prerequisite for the activation of STAT5A. The results reported in Fig. 3 C clearly show that STAT5A was phosphorylated only in cells pretreated with Mn2+, a condition required for activating β1 integrin and inducing its association with the IL-3R β common (Fig. 3 A). Thus, these data strongly support the possibility that at least in MO7-E cells, IL-3R–β1 integrin complex is essential for STAT5A activation.
Figure 3. The IL-3R β common subunit associates with the active form of β1 integrin. (A) Starved MO7-E cells incubated or not with 10 mM of bivalent Mn2+ cations (Mn) with (+) or without (−) IL-3 were detergent extracted. Cell extracts were IP with β1 integrin mAb or IL-3R β common antibodies and IB with IL-3R β common antibodies. (B) MO7-E cells untreated (a–c) or treated with 10 mM Mn2+ (d) were subjected to flow cytometry analysis with IL-1β mAb (a) or preimmune IgG (a–e, left curve) as negative controls, mAb BV7 (b) or mAb 12G10 (c and d). Endothelial cells were subjected to flow cytometry analysis with mAb 12G10 (e). The data expressed as relative cell number (y axis) plotted as a function of fluorescence intensity (x axis) are representative of three experiments. (C) Extracts from MO7-E cells left untreated (−) or treated with Mn2+ (+) were subjected to SDS-PAGE and IB with phospho-STAT5 antibody and STAT5A antibody. Similar results were obtained in four individual experiments.

On the contrary, the results obtained in endothelial cells shown in Fig. 2 indicate that IL-3R–β1 integrin complex is required but not sufficient for downstream signaling events.

We previously demonstrated that integrin-mediated adhesion triggered JAK2 activation (Brizzi et al., 1999). Here, we investigated the role of JAK2 in the formation of the β1 integrin–IL-3R β common–STAT5A complex (Fig. 2 C). As positive control for the inhibitory effect of the JAK2 inhibitor AG490, MO7-E cells were used (Fig. 4 A). Subsequently, endothelial cells pretreated with 100 nM were kept in suspension or plated on FN and cell extracts were IP with the antiserum to 1 integrin. FN-dependent STAT5A phosphorylation and recruitment to the JAK2 kinase activity regulates both STAT5 recruitment and activation (Fig. 4 B). Similarly, in the immunoprecipitates of the IL-3R β common, the phosphorylated bands corresponding to STAT5A and the IL-3R β common were not present when the cells were pretreated with AG490 (Fig. 4 C). Moreover, by immunoprecipitating with antibodies to the β1 integrin, JAK2 was found associated with the β1 integrin–IL-3R β common complex only in cells adherent to FN (Fig. 4 D). This supports the potential role of JAK2 in regulating both adhesion-mediated IL-3R β common phosphorylation and STAT5A recruitment and activation.

The intracellular domain of the IL-3R β common is required for STAT5A recruitment by cell adhesion

To evaluate whether or not the intracellular region of the IL-3R β common may act as a STAT5A docking site, HEK293 cells were stably transfected with the full-length IL-3R β common subunit or one of two Myc-tagged deletion mutants, the first lacking the entire intracellular domain including the juxtamembrane region corresponding to the docking sites for JAK and STAT proteins (Δ455) and the second the intracellular region corresponding to the amino acids 545–881 (Δ544), still able to activate receptor signaling (Sakamaki et al., 1992). The basal adhesion-dependent activation of STAT5A was first evaluated in Neo vector-transfected cells. As shown in Fig. 5 A, the anti–phospho-STAT5 IB of total cell extracts revealed a faint band corresponding to the activated STAT5, indicating that a minimal STAT5A activation is detectable in these cells upon adhesion.

Figure 4. FN-dependent STAT5A phosphorylation and recruitment to the IL-3R β common depends on integrin-mediated JAK2 kinase activity. (A) Extracts from MO7-E cells, untreated or treated with IL-3 with (+) or without (−) 100 nM of JAK2 kinase inhibitor AG490, were IP with JAK2 antibody, IB with anti-PY, and reimmunoblotted with JAK2 antibodies. (B and C) Extracts from endothelial cells kept in suspension or plated on FN-coated dishes with (+) or without (−) 100 nM AG490 were IP with IL-3R β common antibodies, divided in two aliquots, and run on 8% SDS-PAGE. (B) Filter was IB with phospho-STAT5 antibody or STAT5A antibody (top) and reimmunoblotted with JAK2 antibodies (bottom). (C) Immunoblotting was performed with anti-PY antibodies (top) or IL-3R β common antibodies (bottom). (D) Cell extracts from endothelial cells were IP with β1 integrin mAb TS2/16 and IB with JAK2 antibodies (top) or IL-3R β common antibody (bottom). (E) Cell extracts from endothelial cells with (+) or without (−) IL-3 were IP with JAK2 antibodies and subjected to SDS-PAGE. Filters were IB with anti-PY antibodies or JAK2 antibodies. The results are representative of three independent experiments.
The juxtamembrane domain of the IL-3R β common is required for STAT5A recruitment by cell adhesion. HEK293 cells expressing the Neo vector, the full-length IL-3R β common subunit (FL), and the myc-tagged Δ455 or Δ544 mutants of the IL-3R β common subunit were replated on FN-coated dishes for 20 min. (A) Cell extracts from Neo vector–transfected cells were IB with antibodies to phosphorylated STAT5A. (B and C) Cell extracts were IP with IL-3R β common antibodies (B) or mAb 9E10 to the Myc epitope tag (C), IB with phospho-STAT5 antibody or STAT5A antibodies (B) or mAb 9E10 (C). (D) Nuclear cell extracts from HEK293 FL or Δ455 mutant, kept in suspension or plated on FN, were subjected to EMSA analysis (left) and supershift assay (right). Arrows indicate the SIE complex and supershift species. (E) Extracts from FL or Δ455 mutant were IP with β1 integrin mAb and IB with mAb 9E10 (left) or IL-3R β common antibodies (right). As positive control (+), IL-3–treated M07E cells were used. The results are representative of three independent experiments.

IL-3–treated M07-E cells were used as positive control (Fig. 5 A, +). Subsequently, communoprecipitation experiments were performed on HEK293 cells expressing the full-length IL-3R β common or one of the two mutants. As shown in Fig. 5 B, in agreement with the data obtained in primary endothelial cells, in response to adhesion tyrosine-phosphorylated STAT5A commumoprecipitated with the IL-3R β common in HEK293 cells expressing the full-length receptor. In contrast, phosphorylated STAT5A was undetectable in the immunoprecipitates of the Δ455 truncated form of the IL-3R β common (Fig. 5 C). Also in these experiments IL-3–treated M07-E cells were used as positive control. Consistent with the ability of Δ544 mutant receptor to trigger intracellular signaling (Sakamaki et al., 1992), it was still able to recruit STAT5A (Fig. 5 C).

The transcriptional role of adhesion-induced STAT5A activation and recruitment to the β1 integrin–IL-3R β common complex was assayed by the electrophoretic mobility shift assay (EMSA) using the Sis-inducible element of c-fos (SIE) sequence as probe. The 32P-labeled SIE sequence was incubated with nuclear extracts prepared from HEK293 cells expressing the wild-type or the Δ455 truncated mutant plated on FN or kept in suspension. The results reported in Fig. 5 D demonstrate that only adhesion to FN induces the formation of a SIE-binding complex in nuclear extracts from HEK293 cells expressing the full-length IL-3R β common. The residual adhesion-dependent SIE-binding complex observed in nuclear extracts from cells expressing the Δ455 truncated form of the IL-3R β common is likely due to the basal level of STAT5 activation reported in Fig. 5 A.

Although the Δ455 truncated form of the IL-3R β common lacked the ability to recruit STAT5A in response to adhesion, it was still physically associated with the β1 integrin subunit (Fig. 5 E), suggesting that the interaction between these two molecules occurs through the extracellular or the transmembrane regions, as reported for the PDGF and VEGF receptors (Borges et al., 2000). Therefore, these data define the IL-3R β common subunit cytoplasmic domain as a docking site for the activated STAT5A in response to adhesion.

IL-3–dependent STAT5A activation requires cell adhesion

Our experiments, performed in the absence of IL-3, show that in response to adhesion, integrins by activating JAK2 cooperate with the IL-3R β common for the activation of STAT5A. However, when IL-3 was added to endothelial cells plated on FN, not only the level of JAK2 phosphorylation (Fig. 4 E) but also that of STAT5 increased (Fig. 6 A). Kinetics analysis shows that, although FN induced a transient STAT5 phosphorylation, IL-3 addition led to a persistent STAT5A phosphorylation, still detectable within 120 min of treatment (Fig. 6 B). Because it has been previously reported that in endothelial cells, upon IL-3 treatment, either STAT5A or STAT5B undergo activation (Dentelli et al., 1999), endothelial cells kept in suspension or adherent to FN were evaluated for STAT5A and STAT5B activation in response to IL-3. The results presented in Fig. 6 C show that the addition of IL-3 to adherent cells induced an increase in STAT5A phosphorylation, quantified by densitometric analysis (Fig. 6 C, top). Moreover, the amount of STAT5A coimmunoprecipitated with IL-3R β common was also increased in IL-3–treated cells (unpublished data), suggesting that the activation of STAT5A in the IL-3–mediated signaling is the result of a cooperative effect between adhesion and soluble ligand.

Unlike STAT5A, as we already showed (Brizzi et al., 1999), STAT5B was not phosphorylated by integrin-mediated adhesion, but underwent tyrosine phosphorylation when endothelial cells adherent to FN were further stimulated with IL-3 (Fig. 6 C, right). These results indicate that in contrast with STAT5A, whose activation depends on cell adhesion, STAT5B activation strictly depends on IL-3, suggesting that adhesion and IL-3 recruit different signaling targets to achieve IL-3–dependent full biological response. Consistent with this possibility, we found that IL-3, besides its ability to induce STAT5B tyrosine phosphorylation, also triggered serine phosphorylation of STAT5B. By contrast, neither adhesion alone nor adhesion plus IL-3 treatment were able to induce serine phosphorylation of STAT5A (Fig. 6 D).

To analyze further the role played by adhesion in IL-3–mediated activation of STAT5A and STAT5B, endothelial cells were treated with IL-3 both in suspension and in adherent conditions. As depicted in Fig. 6 E, we found that IL-3–dependent
tyrosine phosphorylation of STAT5A and STAT5B as well as their interaction with the IL-3R β common only occurred in cells adherent to FN.

Integrin-dependent STAT5A activation is essential for IL-3-mediated cell cycle progression in adherent cells

Cell adhesion to extracellular matrix is a prerequisite for cell cycle progression in non-transformed cells (Assoian, 1997). Although STAT5A has been reported to be involved in IL-3–dependent proliferation of hematopoietic cells (Mui et al., 1996), its role in proliferation of adherent cells has not yet been defined. To evaluate the role of STAT5A in regulating IL-3–dependent cell cycle progression in adherent cells, we reconstituted the IL-3R by transfecting the IL-3R α subunit cDNA into the HEK293 cells expressing the full-length IL-3R β common subunit (HEK293 IL-3R). As reported in the previous section for endothelial cells, also in these cells we were not able to detect STAT5A activation in response to IL-3 in cells kept in suspension (unpublished data). To assess whether or not HEK293 IL-3R cells stimulated with IL-3 progressed through the cell cycle, cells were detached from the plates and either kept in suspension or let to adhere to FN-coated dishes, and cell cycle progression was evaluated upon IL-3 stimulation. As shown in Table II, IL-3 treatment induced G1-S progression in FN-adherent cells (percentage of cells in S phase: 30.5% suspended cells vs. 40.4% adherent cells). Similar results were obtained when cell proliferation was assessed by direct cell count 3 d after the addition of IL-3 (unpublished data). In contrast, IL-3 treatment was unable to induce the G1-S progression in cells kept in suspension (percentage of cells in S phase: 27% untreated vs. 30.5% IL-3–treated), indicating that, consistent with adhesion-dependent STAT5A activation, IL-3–mediated cell cycle progression strictly depends on cell matrix adhesion.

To discriminate between STAT5A and STAT5B in mediating IL-3–dependent cell cycle progression, plasmids containing dominant-negative constructs of STAT5 proteins (Mui et al., 1996) or the Neo vector alone were transiently transfected into HEK293 IL-3R cells. As shown in Table III, analysis of the DNA content showed that expression of the dominant-negative STAT5B protein did not modify the percentage of cells in the different phases of the cell cycle if compared with the Neo vector–expressing cells. In contrast, IL-3 treatment was unable to induce the G1-S progression in cells expressing the full-length IL-3R β common subunit (HEK293 IL-3R). The numbers are the mean ± SD of three different experiments done on separate days, each performed in triplicate.

Table II. IL-3–mediated cell cycle progression of HEK293 IL-3R–expressing cells

	GO/G1	S	G2/M
(HEK293 IL-3R) S	65.5 ± 8	27 ± 4	6.5 ± 1.5
(HEK293 IL-3R) S + IL-3	64.7 ± 7	30.5 ± 5	4.8 ± 2
(HEK293 IL-3R) FN	61 ± 3.5	30.7 ± 5	8.3 ± 4
(HEK293 IL-3R) FN + IL-3	51.6 ± 6	40.4 ± 4.5	8 ± 3

Figure 6. IL-3–dependent STAT5 activation requires cell adhesion. (A) Extracts from endothelial cells kept in suspension or plated on FN-coated dishes with (+) or without (−) IL-3 were IB with phospho-STAT5 antibody or STAT5A antibody. Densitometric analysis of phospho-STAT5 is shown in the top panel. The results are the mean ± SD of four independent experiments; *, P < 0.05 control versus experimental groups. (B) Extracts were IP with STAT5A antibodies and IB with phospho-STAT5 antibody or STAT5A antibody. (C) Cell extracts were divided into two aliquots and IP with specific antibodies to STAT5A or STAT5B. The filters were IB with anti-PY and reimmunoblotted with the anti-STAT5A or the anti-STAT5B antibodies. Densitometric analysis of STAT5A phosphorylation, performed as in A, is reported in the top panel. The results are the mean ± SD of four independent experiments done on separate days; *, P < 0.05 control versus experimental groups. (D) Cell extracts were prepared and IP as in B. The filters were IB with a phospho-serine STAT5 antibody (top) that recognizes P-Ser725 on STAT5A or P-Ser730 on STAT5B (Pser) and reimmunoblotted with the anti-STAT5A or anti-STAT5B antibodies (bottom). Densitometric analysis of phospho-STAT5 was performed as in A. The results are representative of four independent experiments.
in suspension. HEK293 IL-3R-expressing cells were transfected with the constitutive activated STAT5A construct or with an empty vector, and a cell cycle progression assay was performed in cells kept in suspension. As shown in Table IV, HEK293 IL-3R cells transfected with the empty vector did not progress into cell cycle. In contrast, cells transfected with the constitutive active form of STAT5A acquired the ability to enter into the cell cycle in suspension (percentage of cells in S phase: 29.2% empty vector vs. 42% STAT5A-transfected), indicating that the presence of the active form of STAT5A is sufficient to trigger cell cycle progression to S phase in the absence of cell matrix adhesion and of IL-3. Indeed, when cells expressing the constitutive active form of STAT5A were kept in suspension or plated on FN, the addition of IL-3 was unable to further increase the percentage of cells in S phase (Table IV). Together our data show that adhesion-dependent STAT5A activation is a crucial event in the control of IL-3-mediated proliferation.

Discussion

IL-3 is a well known activator of STAT5 signaling pathway in hematopoietic cells (Mui et al., 1995b). Our previous data indicate that, in endothelial cells, STAT5A is a target of integrin-mediated cell matrix interaction (Brizzi et al., 1999), as well as of IL-3 (Dentelli et al., 1999). In the present study, we dissect the molecular mechanisms leading to integrin-dependent STAT5A activation and we demonstrate that, in endothelial cells, β1 integrin cooperates with the IL-3R β common to integrate adhesion- and cytokine-mediated signals. In particular, the IL-3R β common associates with the activated β1 integrin and, only upon adhesion, acquires the ability to recruit STAT5A. Cell matrix adhesion is also required to induce JAK2 tyrosine phosphorylation and recruitment to the β1 integrin–IL-3R β common complex. Moreover, we also identify STAT5A as a crucial molecular target of adhesion-dependent IL-3-mediated signaling leading to cell cycle entry.

Integrins and tyrosine kinase receptors, such as PDGF, insulin, and EGF receptors, physically interact on the cell membrane, as indicated by formation of macromolecular complexes (Vuori and Ruoslahti, 1994; Miyamoto et al., 1996; Sundberg and Rubin, 1996; Schneller et al., 1997; Moro et al., 2002). Our data first report the association of β1 integrin and the IL-3 cytokine receptor, indicating that also receptors devoid of tyrosine kinase activity can cross talk with integrins. β1 integrin specifically associates with the IL-3R β common in an adhesion-independent stable complex in the absence of IL-3. Although we cannot exclude that additional membrane molecules may interplay with this complex, our experimental conditions (i.e., serum deprivation, absence of soluble growth factors) ruled out the possibility that exogenous soluble factors can trigger this association. Moreover, the finding that the β1 integrin–IL-3R β common complex is found in primary cells indicates that this event represents a physiological condition. The truncated form of the IL-3R β common, which lacks the cytoplasmic domain (Δ455), is still able to interact with the β1 integrin subunit, suggesting that this interaction might occur either through the transmembrane or the extracellular domains, as described by the model proposed for the constitutive interaction of β3 integrin subunit with the PDGF or VEGF receptors (Borges et al., 2000). However, comparing the expression of the activated epitope of the β1 integrin in MO7-E cells with endothelial cells, we can conclude that the activation state of β1 integrin is an essential step for its association with the IL-3R β common. These data provide the first evidence of the relevance of β1 integrin activation in mediating the interaction with other membrane-associated receptors.

Integrin growth factor receptor cooperation has been extensively demonstrated, showing that integrins can regulate receptor functions including transactivation, receptor coordination and compartmentalization, and downstream signaling.

Table III. Effect of dominant-negative STAT5A and STAT5B expression on IL-3-mediated HEK293 IL-3R cell cycle progression

	G0/G1 (%)	S (%)	G2/M (%)
(HEK293 IL-3R + Neo vector) FN	61 ± 2	31 ± 3	8 ± 2
(HEK293 IL-3R + Neo vector) FN + IL-3	53 ± 3	38.5 ± 4	8.5 ± 2
(HEK293 IL-3R + Δ STAT5A) FN	62.5 ± 3	30 ± 2	7.5 ± 1.5
(HEK293 IL-3R + Δ STAT5A) FN + IL-3	63.3 ± 1	29.2 ± 2	8.5 ± 3
(HEK293 IL-3R +Δ STAT5B) FN	60 ± 2	30.5 ± 2.5	9.5 ± 2
(HEK293 IL-3R +Δ STAT5B) FN + IL-3	51.6 ± 1	39 ± 4	9.4 ± 2

HEK293 IL-3R cells, transiently transfected with the empty vector (Neo vector) or with dominant-negative STAT5A (ΔSTAT5A) or STAT5B (ΔSTAT5B) constructs, were serum starved for 24 h and let to adhere to FN-coated plates in the absence or presence of 20 ng/ml IL-3. After 18 h of stimulation, the cells were fixed with ethanol and DNA was stained with propidium iodide. The fluorescence related to DNA content was evaluated as described in Table II. The numbers are the mean ± SD of three different experiments done on separate days, each performed in triplicate.

Table IV. The constitutive active 1*6 STAT5A protein induces adhesion-independent cell cycle progression

	G0/G1 (%)	S (%)	G2/M (%)
(HEK293 IL-3R + Neo vector) S	63.3 ± 8	29.2 ± 4	7.5 ± 1.5
(HEK293 IL-3R + 1*6 STAT5A) S	53.2 ± 7	42 ± 5	4.8 ± 2
(HEK293 IL-3R + 1*6 STAT5A) S + IL-3	52.3 ± 5	44.9 ± 4	2.9 ± 3
(HEK293 IL-3R + 1*6 STAT5A) FN	57.5 ± 6	40.2 ± 3	2.3 ± 2
(HEK293 IL-3R + 1*6 STAT5A) FN + IL-3	58 ± 5	39.7 ± 4	2.3 ± 2

HEK293 IL-3R cells, transfected with the empty vector (Neo vector) or with the constitutive activated STAT5A construct (1*6 STAT5A), were serum starved for 24 h and kept in suspension or let to adhere to FN-coated plates in the presence or absence of 20 ng/ml IL-3. Cell cycle progression was assayed on ethanol-fixed cells. DNA was stained with propidium iodide. The fluorescence related to DNA content was evaluated as described in Table II. The numbers are the mean ± SD of three different experiments done on separate days, each performed in triplicate.
Our data show that JAK2, the IL-3R \(^{\text{common}}\) subunit, and STAT5A are phosphorylated by integrin-dependent adhesion and IL-3. Moreover, expression of the constitutive active form of STAT5A rescues cell cycle progression in cells kept in suspension, indicating that STAT5A renders the cells independent from the adhesive signaling required for ligand-induced biological response. Thus, STAT5A activation is a crucial step in the cooperative pathways leading to anchorage-dependent IL-3-mediated cell growth.

The present work, focused on the cooperative role of integrins in cytokine receptor signals in adherent cells, provides a molecular mechanism to explain how integrins control cell cycle progression in response to the ligand by cross talking with the IL-3R. In addition, we demonstrate that activation of STAT5A overcomes the requirement of cell adhesion and IL-3 stimulation to induce proliferative signals in adherent cells, providing evidence that dysregulation of STAT5A activation, by overcoming anchorage dependence, may induce inappropriate proliferative signals and favor tumorigenesis.

Materials and methods

Reagents and antibodies

FN was purified from human plasma as previously described (Defilippi et al., 1994). M199 medium (endotoxin tested), BSA, and protein A–Sepharose were all obtained from Sigma-Aldrich. Bovine colostrum (endotoxin tested) was obtained from Hyclone. RPMI medium, G418, and lipofectamine were all obtained from Invitrogen. Trypsin was obtained from Trypsin-EDTA, and HRP-conjugated secondary antibodies were purchased from Amersham Biosciences. The mAb TS2/16 (American Type Culture Collection), BV7 (Immunological Science), and 12G10 (gift of M. Humphries).
University of Manchester, Manchester, UK) to the human β1 integrin subunit and mAb 9E10 to the Myc epitope tag (American Type Culture Collection) were affinity purified on protein A-Sepharose and their purity was more than 95%. mAb PY20 to phosphotyrosine was purchased from Transduction Laboratories (Becton Dickinson). The anti-phospho-STAT5 (tyrosine 694/699) antibody was obtained from Cell Signaling and the anti–phospho-STAT5 (serine/25,733) antibody was obtained from Upstate Biotechnology. The antibody to cyclin D1, JAK2, IL-1β, and β2 microglobulin were purchased from Santa Cruz Biotechnology, Inc.

Cell culture and transfection
Endothelial cells were isolated from human umbilical cord vein as described previously (Brizzi et al., 1993). MO7E were grown as reported in Brizzi et al. (1993). HEK293 human epithelial cells (American Type Culture Collection) were stably transfected with Neo vector, the full-length IL-3Rα β common deleted mutants Δ544 and Δ455; gifts of A. Miyajima, Teikyo University Biotechnology Research Center, Kanagawa, Japan; Sakamaki et al., 1992) by the lipofectin methods and selected with G418. Full-length IL-3Rα β common-expressing cells were also transfected with the cDNA for the IL-3Rα subunit (Kitamura et al., 1991; provided by T. Kitamura, Tokyo University of Science, Tokyo, Japan) and selected with puromycin (HEK293 IL-3Rα). Activated form of STAT5 (1*-STAT5A; Onishi et al., 1998) or dominant-negative STAT5A or STAT5B constructs (Mui et al., 1996) were transiently transfected.

Evaluation of cell surface expression of active β1 integrin subunit
MO7E and confluent endothelial cells were starved for 18 h, put in suspension by 10 mM EDTA treatment, labeled with 10 μg/ml mAb 12G10, mAb BV7, mAb to IL-1β (negative control), or with a preimmune mAb for 30 min at 4°C, washed twice in PBS, and incubated with 10 μg/ml of fluorescein-labeled anti-mouse IgG for the same time. Cell surface expression of β1 integrin subunit was evaluated by flow cytometry (FACScan; Becton Dickinson).

Adhesion experiments
Tissue culture plates were coated with 20 μg/ml FN by overnight incubation as described previously (Moro et al., 1998). Stroked HEK293 and endothelial cells were detached by 10 mM EDTA treatment and immediately plated on the tissue culture plates for the indicated times (Moro et al., 2002). When indicated, 50 μM pervanadate was added. Cells were detached in lysis buffer (1% Triton X-100, 50 mM Pipes, pH 6.8, 100 mM NaCl, 5 mM MgCl2, 300 mM sucrose, 5 mM EGTA, 2 mM sodium orthovanadate, 1 mM PMSF, 10 μg/ml leupeptin, 0.15 U/ml trypsin inhibitor U/ml aprotinin, and 1 μg/ml pepstatin).

Immunoprecipitation, SDS-PAGE, and immunoblotting
Equal amounts of cell extracts were subjected to SDS-PAGE or IP with the indicated antibodies and processed as previously described (Brizzi et al., 1993). The blots were incubated overnight with the indicated antibodies and revealed by HRP-conjugate/chemiluminescent detection method ECL.

Preparation of nuclear extracts and gel retardation assay
Nuclear extracts from transfected HEK293 cells were prepared as described by Sadowski et al. (1993). EMSA analysis was performed as described in Brizzi et al. (1999). The oligonucleotides used were as follows: G GGG CAT TTC CCG TAA ATE and G GGG CAT TTA CGG GAA AATG corresponding to the SIE (Zhong et al., 1994).

Northern blot analysis of c-fos mRNA expression
Cytoplasmic RNA was isolated according to Chomczynski and Sacchi (1987) and Northern blot analysis was performed according to standard methods (Brizzi et al., 1993). c-fos hybridization was quantified by densitometric analysis using a molecular imager (model GS-250; BioRad Laboratories).

Cell proliferation and migration assays
Cell proliferation and migration assays reported in Table I were performed as described previously (Brizzi et al., 1993; Dentelli et al., 1999).

Cell cycle analysis
Endothelial and HEK293 IL-3R cells were kept in suspension or to let adh here to FN-coated dishes with or without IL-3 or bFGF (positive control). After 18 h, cells were fixed with 70% ethanol, processed for propidium iodide fluorescence, and analyzed with FACScan.

Statistical analysis
The results are representative of at least three independent experiments performed in triplicate. Densitometric analysis using a molecular imager was used to calculate differences in the fold induction of protein activation or expression. Significance of differences between experimental and control values was calculated using ANOVA with Newman-Keuls multiple-comparison test.

We thank Dr. M. Humphries for the kind gift of mAb 12G10, Sara Cabodi for critically reading the manuscript, and Laura Damiano for help in the experiments. This work was supported by grants of Associazione Italiana per la Ricerca sul Cancro to P. Defilippi and M.F. Brizzi; Ministero dell’Istruzione, dell’Università e della Ricerca to P. Defilippi, G. Tarone, and L. Pegoraro; and Special Project Oncology, Compagnia San Paolo/Fondazione Internazionale in Medicina Sperimentale, to P. Defilippi and G. Tarone.

Submitted: 19 May 2004
Accepted: 31 December 2004

References
Aplin, A.E., S.A. Stewart, R.K. Assoian, and R.L. Juliano. 2001. Integrin-mediated adhesion regulates Rho kinase translocation and phosphorylation of Elk-1. J. Cell Biol. 153:273–282.

Assoian, R.K. 1997. Anchorage-dependent cell cycle progression. J. Cell Biol. 136:1–4.

Assoian, R.K., and M.A. Schwartz. 2001. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr. Opin. Genet. Dev. 11:48–53.

Avanzi, G.C., M.F. Brizzi, J. Giannoni, A. Cirletta, Y.C. Yang, L. Pegoraro, and S.C. Clark. 1990. M-07e human leukemic factor transduction and phosphorylation of STAT5A and STAT5B constructs (Mui et al., 1996) were transiently transfected.

Bazzoni, G., D.T. Shih, C.A. Buck, and M.E. Hemler. 1995. Monoclonal antibody 9E11 defines a novel beta 1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J. Biol. Chem. 270:25570–25577.

Borges, E., Y. Jan, and E. Ruoslahti. 2000. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J. Biol. Chem. 275:39867–39875.

Brizzi, M.F., G. Garbarino, P.R. Rossi, G.L. Pagliardi, C. Arundo, G.C. Avanzi, and L. Pegoraro. 1993. Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells. J. Clin. Invest. 91:2887–2892.

Brizzi, M.F., M.G. Zini, M.G. Aronica, J.M. Blechman, Y. Yarden, and L. Pegoraro. 1994. Convergence of signaling by interleukin-1, granulocyte macrophage colony-stimulating factor, and mast cell growth factor on JAK2 and STAT5A activation: role in the control of c-fos gene expression. Mol. Biol. Cell. 10:3463–3471.

Brizzi, M.F., L. Formato, P. Dentelli, A. Rosso, M. Pavan, G. Garbarino, M. Pegoraro, C. Amussi, and L. Pegoraro. 2001. Interleukin-3 stimulates migration and proliferation of vascular smooth muscle cells: a potential role in atherogenesis. Circulation. 103:549–554.

Chin, H., N. Nakamura, R. Kamiyama, N. Miyasaka, J.N. Ihle, and O. Miura. 1996. Physical and functional interactions between Stat5 and the tyrosine-phosphorylated receptors for erythropoietin and interleukin-3. Blood. 88:4415–4425.

Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

Damsky, C.H., and D. Ilic. 2002. Integrin signaling: it’s where the action is. Curr. Opin. Cell Biol. 14:594–602.

de Fougerolles, A.R., and V.E. Koteliansky. 2002. Regulation of monocyte gene expression by the extracellular matrix and its functional implications. Immunol. Rev. 186:208–220.

Decker, T., and P. Kovarik. 2000. Serine phosphorylation of STATs. Oncogene. 19:2628–2637.

Defilippi, P., C. Bozzo, G. Volpe, G. Romano, M. Venturino, L. Silengo, and G. Tarone. 1994. Integrin-mediated signal transduction in human endothelial cells: analysis of tyrosine phosphorylation events. Cell Adhes. Commun. 2:75–86.

Del Pozo, M.A., W.B. Kiosses, N.B. Ahders, N. Meller, K.M. Hahn, and M.A. Schwartz. 2002. Integrins regulate GTP-Rac localized effector interac-
tions through dissociation of Rho-GDI. *Nat. Cell Biol.* 4:232–239.

Dentelli, P., L. Del Sorbo, A. Rosso, A. Molinar, G. Garbarino, G. Camussi, L. Pegoraro, and M.F. Brizzi. 1999. Human IL-3 stimulates endothelial cell motility and promotes in vivo new vessel formation. *J. Immunol.* 163:2151–2159.

Dentelli, P., A. Rosso, C. Calvi, B. Ghiringhelli, G. Garbarino, G. Camussi, L. Pegoraro, and M.F. Brizzi. 2004. IL-3 affects endothelial cell-mediated smooth muscle cell recruitment by increasing TGF beta activity: potential role in tumor vessel stabilization. *Oncogene.* 23:1681–1692.

Deregibus, M.C., V. Cantaluppi, S. Doublier, M.F. Brizzi, I. Deambrosis, A. Albin, and G. Camussi. 2002. HIV-1-Tat protein activates phosphatidylinositol 3-kinase/ AKT-dependent survival pathways in Kaposi’s sarcoma cells. *J. Biol. Chem.* 277:25195–25202.

Durst, M., R.C. Inhorn, and J.D. Griffin. 1996. Tyrosine phosphorylation of Shc is not required for proliferation or viability signaling by granulocyte-macrophage colony-stimulating factor in hematopoietic cell lines. *J. Immunol.* 157:534–540.

Geijsen, N., L. Koenderman, and P.J. Coffet. 2001. Specificity in cytokine signal transduction: lessons learned from the IL-3/IL-5/GM-CSF receptor family. *Cytokine Growth Factor Rev.* 12:19–25.

Giacottiri, F.G., and G. Tarone. 2003. Positional control of cell fate through joint integrin/receptor protein kinase signaling. *Annu. Rev. Cell Dev. Biol.* 19:173–206.

Grimley, P.M., F. Dong, and H. Rui. 1999. Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. *Cytokine Growth Factor Rev.* 10:131–137.

Howe, A.K., A.E. Aplin, and R.L. Juliano. 2002. Anchorage-dependent ERK signaling—mechanisms and consequences. *Curr. Opin. Genet. Dev.* 12:30–55.

Humphries, M.J., P.A. McEwan, S.J. Barton, P.A. Buckley, J. Bella, and A. Paul Mould. 2003. Integrin structure: heady advances in ligand binding, but activation still makes the knees wobble. *Trends Biochem. Sci.* 28:313–320.

Hynes, R.O. 2002. Integrins: bidirectional, allosteric signaling machines. *Curr. Opin. Genet. Dev.* 12:30–35.

Lopez. 1995. Interferon-gamma upregulates interleukin-3 (IL-3) receptor CSF receptor.

Miyamoto, S., H. Teramoto, J.S. Gutkind, and K.M. Yamada. 1996. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. *J. Cell Biol.* 135:1633–1642.

Moro, L., M. Venturino, C. Bozzo, L. Silengo, F. Altura, L. Beguinot, G. Tarone, and P. Defilippi. 1998. Integrins induce activation of EGFR receptor: role in MAP kinase induction and adhesion-dependent cell survival. *EMBO J.* 17:6622–6632.

Moro, L., L. Dolce, S. Cabodi, E. Bergato, E.B. Erba, M. Smeriglio, E. Turco, S.F. Retta, M.G. Giuffrida, M. Venturino, et al. 2002. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. *J. Biol. Chem.* 277:9405–9414.

Mould, A.P., A.N. Garratt, J.A. Askari, S.K. Akiyama, and M.J. Humphries. 1995. Identification of a novel anti-integrin monoclonal antibody that recognizes a ligand-induced binding site epitope on the beta 1 subunit. *FEBS Lett.* 363:118–122.