5. Harmonic analysis on algebraic groups over two-dimensional local fields of equal characteristic

Mikhail Kapranov

In this section we review the main parts of a recent work [4] on harmonic analysis on algebraic groups over two-dimensional local fields.

5.1. Groups and buildings

Let K ($K = K_2$ whose residue field is K_1 whose residue field is K_0, see the notation in section 1 of Part I) be a two-dimensional local field of equal characteristic. Thus K_2 is isomorphic to the Laurent series field $K_1((t_2))$ over K_1. It is convenient to think of elements of K_2 as (formal) loops over K_1. Even in the case where $\text{char } (K_1) = 0$, it is still convenient to think of elements of K_1 as (generalized) loops over K_0 so that K_2 consists of double loops.

Denote the residue map $\mathcal{O}_{K_2} \to K_1$ by p_2 and the residue map $\mathcal{O}_{K_1} \to K_0$ by p_1. Then the ring of integers O_K of K as of a two-dimensional local field (see subsection 1.1 of Part I) coincides with $p_2^{-1}(\mathcal{O}_{K_1})$.

Let G be a split simple simply connected algebraic group over \mathbb{Z} (e.g. $G = SL_2$). Let $T \subset B \subset G$ be a fixed maximal torus and Borel subgroup of G; put $N = [B, B]$, and let W be the Weyl group of G. All of them are viewed as group schemes.

Let $L = \text{Hom}(\mathbb{G}_m, T)$ be the coweight lattice of G; the Weyl group acts on L.

Recall that $I(K_1) = p_1^{-1}(B(\bar{\mathbb{F}}_q))$ is called an Iwahori subgroup of $G(K_1)$ and $T(\mathcal{O}_{K_1})N(K_1)$ can be seen as the “connected component of unity” in $B(K_1)$. The latter name is explained naturally if we think of elements of $B(K_1)$ as being loops with values in B.
Definition. Put
\[
D_0 = p_2^{-1} p_1^{-1}(B(\mathbb{F}_q)) \subset G(O_K),
\]
\[
D_1 = p_2^{-1}(T(O_{K_1}) N(K_1)) \subset G(O_K),
\]
\[
D_2 = T(O_{K_2}) N(K_2) \subset G(K).
\]

Then \(D_2 \) can be seen as the “connected component of unity” of \(B(K) \) when \(K \) is viewed as a two-dimensional local field, \(D_1 \) is a (similarly understood) connected component of an Iwahori subgroup of \(G(K_2) \), and \(D_0 \) is called a double Iwahori subgroup of \(G(K) \).

A choice of a system of local parameters \(t_1, t_2 \) of \(K \) determines the identification of the group \(K^*/O_K^* \) with \(\mathbb{Z} \oplus \mathbb{Z} \) and identification \(L \oplus L \) with \(L \otimes (K^*/O_K^*) \).

We have an embedding of \(L \otimes (K^*/O_K^*) \) into \(T(K) \) which takes \(a \otimes (t_1^i t_2^j) \), \(i, j \in \mathbb{Z} \), to the value on \(t_1^i t_2^j \) of the 1-parameter subgroup in \(T \) corresponding to \(a \).

Define the action of \(\hat{W} \) on \(L \otimes (K^*/O_K^*) \) as the product of the standard action on \(L \) and the trivial action on \(K^*/O_K^* \). The semidirect product
\[
\hat{W} = (L \otimes K^*/O_K^*) \rtimes W
\]
is called the double affine Weyl group of \(G \).

A (set-theoretical) lifting of \(W \) into \(G(O_K) \) determines a lifting of \(\hat{W} \) into \(G(K) \).

Proposition. For every \(i, j \in \{0, 1, 2\} \) there is a disjoint decomposition
\[
G(K) = \bigcup_{w \in \hat{W}} D_i w D_j.
\]
The identification \(D_i \backslash G(K)/D_j \) with \(\hat{W} \) doesn’t depend on the choice of liftings.

Proof. Iterated application of the Bruhat, Bruhat–Tits and Iwasawa decompositions to the local fields \(K_2, K_1 \).

For the Iwahori subgroup \(I(K_2) = p_2^{-1}(B(K_1)) \) of \(G(K_2) \) the homogeneous space \(G(K)/I(K_2) \) is the “affine flag variety” of \(G \), see [5]. It has a canonical structure of an ind-scheme, in fact, it is an inductive limit of projective algebraic varieties over \(K_1 \) (the closures of the affine Schubert cells).

Let \(B(G, K_2/K_1) \) be the Bruhat–Tits building associated to \(G \) and the field \(K_2 \). Then the space \(G(K)/I(K_2) \) is a \(G(K) \)-orbit on the set of flags of type (vertex, maximal cell) in the building. For every vertex \(v \) of \(B(G, K_2/K_1) \) its locally finite Bruhat–Tits building \(\beta_v \) isomorphic to \(B(G, K_1/K_0) \) can be viewed as a “microbuilding” of the double Bruhat–Tits building \(B(G, K_2/K_1/K_0) \) of \(K \) as a two-dimensional local field constructed by Parshin ([7], see also section 3 of Part II). Then the set \(G(K)/D_1 \) is identified naturally with the set of all the horocycles \(\{ w \in \beta_v : d(z, w) = r \} \), \(z \in \partial \beta_v \) of the microbuildings \(\beta_v \) (where the “distance” \(d(z, \cdot) \) is viewed as an element of
Part II. Section 5. Harmonic analysis on algebraic groups

257

a natural \(L \)-torsor). The fibres of the projection \(G(K)/D_1 \to G(K)/I(K_2) \) are \(L \)-torsors.

5.2. The central extension and the affine Heisenberg–Weyl group

According to the work of Steinberg, Moore and Matsumoto [6] developed by Brylinski and Deligne [1] there is a central extension

\[1 \to K_1^* \to \Gamma \to G(K_2) \to 1 \]

associated to the tame symbol \(K_2^* \times K_2^* \to K_1^* \) for the couple \((K_2, K_1)\) (see subsection 6.4.2 of Part I for the general definition of the tame symbol).

Proposition. This extension splits over every \(D_i, \ 0 \leq i \leq 2 \).

Proof. Use Matsumoto’s explicit construction of the central extension.

Thus, there are identifications of every \(D_i \) with a subgroup of \(\Gamma \). Put

\[\Delta_i = O_{K_1}^* D_i \subset \Gamma, \quad \Xi = \Gamma/\Delta_1. \]

The minimal integer scalar product \(\Psi \) on \(L \) and the composite of the tame symbol \(K_2^* \times K_2^* \to K_1^* \) and the discrete valuation \(v_{K_1} : K^* \to \mathbb{Z} \) induces a \(W \)-invariant skew-symmetric pairing \(L \otimes K^*/O_K^* \times L \otimes K^*/O_K^* \to \mathbb{Z} \). Let

\[1 \to \mathbb{Z} \to \mathcal{L} \to L \otimes K^*/O_K^* \to 1 \]

be the central extension whose commutator pairing corresponds to the latter skew-symmetric pairing. The group \(\mathcal{L} \) is called the **Heisenberg group**.

Definition. The semidirect product

\[\widetilde{W} = \mathcal{L} \rtimes W \]

is called the **double affine Heisenberg–Weyl group** of \(G \).

Theorem. The group \(\widetilde{W} \) is isomorphic to \(L_{\text{aff}} \rtimes \mathcal{W} \) where \(L_{\text{aff}} = \mathbb{Z} \oplus L \), \(\mathcal{W} = L \rtimes W \) and

\[w \circ (a, l') = (a, w(l)), \quad l \circ (a, l') = (a + \Psi(l, l'), l'), \quad w \in W, \quad l, l' \in L, \quad a \in \mathbb{Z}. \]

For every \(i, j \in \{0, 1, 2\} \) there is a disjoint union

\[\Gamma = \bigcup_{w \in \widetilde{W}} \Delta_i w \Delta_j \]

and the identification \(\Delta_i \backslash \Gamma/\Delta_j \) with \(\widetilde{W} \) is canonical.
5.3. Hecke algebras in the classical setting

Recall that for a locally compact group Γ and its compact subgroup Δ the Hecke algebra $H(\Gamma, \Delta)$ can be defined as the algebra of compactly supported double Δ-invariant continuous functions of Γ with the operation given by the convolution with respect to the Haar measure on Γ. For $C = \Delta \gamma \Delta \in \Delta \backslash \Gamma / \Delta$ the Hecke correspondence $\Sigma_C = \{ (\alpha \Delta, \beta \Delta) : \alpha \beta^{-1} \in C \}$ is a Γ-orbit of $(\Gamma / \Delta) \times (\Gamma / \Delta)$.

For $x \in \Gamma / \Delta$ put $\Sigma_C(x) = \Sigma_C \cap (\Gamma / \Delta) \times \{ x \}$. Denote the projections of Σ_C to the first and second component by π_1 and π_2.

Let $\mathcal{F}(\Gamma / \Delta)$ be the space of continuous functions $\Gamma / \Delta \to \mathbb{C}$. The operator $\tau_C : \mathcal{F}(\Gamma / \Delta) \to \mathcal{F}(\Gamma / \Delta), \quad f \mapsto \pi_2 \pi_1^*(f)$ is called the Hecke operator associated to C. Explicitly,

$$(\tau_C f)(x) = \int_{y \in \Sigma_C(x)} f(y) d\mu_{C, x},$$

where $\mu_{C, x}$ is the $\text{Stab}(x)$-invariant measure induced by the Haar measure. Elements of the Hecke algebra $\mathcal{H}(\Gamma, \Delta)$ can be viewed as “continuous” linear combinations of the operators τ_C, i.e., integrals of the form $\int \phi(C) \tau_C dC$ where dC is some measure on $\Delta \backslash \Gamma / \Delta$ and ϕ is a continuous function with compact support. If the group Δ is also open (as is usually the case in the p-adic situation), then $\Delta \backslash \Gamma / \Delta$ is discrete and $\mathcal{H}(\Gamma, \Delta)$ consists of finite linear combinations of the τ_C.

5.4. The regularized Hecke algebra $\mathcal{H}(\Gamma, \Delta_1)$

Since the two-dimensional local field K and the ring O_K are not locally compact, the approach of the previous subsection would work only after a new appropriate integration theory is available.

The aim of this subsection is to make sense of the Hecke algebra $\mathcal{H}(\Gamma, \Delta_1)$.

Note that the fibres of the projection $\Xi = \Gamma / \Delta_1 \to G(K) / I(K_2)$ are L_{aff}-torsors and $G(K) / I(K_2)$ is the inductive limit of compact (profinite) spaces, so Ξ can be considered as an object of the category \mathcal{F}_1 defined in subsection 1.2 of the paper of Kato in this volume.

Using Theorem of 5.2 for $i = j = 1$ we introduce:

Definition. For $(w, l) \in \widehat{W} = L_{\text{aff}} \times \widehat{W}$ denote by $\Sigma_{w, l}$ the Hecke correspondence (i.e., the Γ-orbit of $\Xi \times \Xi$) associated to (w, l). For $\xi \in \Xi$ put

$$\Sigma_{w, l}(\xi) = \{ \xi' : (\xi, \xi') \in \Sigma_{w, l} \}.$$
The stabilizer \(\text{Stab}(\xi) \subseteq \Gamma \) acts transitively on \(\Sigma_{w,l}(\xi) \).

Proposition. \(\Sigma_{w,l}(\xi) \) is an affine space over \(K_1 \) of dimension equal to the length of \(w \in \hat{W} \). The space of complex valued Borel measures on \(\Sigma_{w,l}(\xi) \) is 1-dimensional. A choice of a \(\text{Stab}(\xi) \)-invariant measure \(\mu_{w,l,\xi} \) on \(\Sigma_{w,l}(\xi) \) determines a measure \(\mu_{w,l,\xi'} \) on \(\Sigma_{w,l}(\xi') \) for every \(\xi' \).

Definition. For a continuous function \(f: \Xi \rightarrow \mathbb{C} \) put

\[
(\tau_{w,l} f)(\xi) = \int_{\eta \in \Sigma_{w,l}(\xi)} f(\eta) d\mu_{w,l,\xi}.
\]

Since the domain of the integration is not compact, the integral may diverge. As a first step, we define the space of functions on which the integral makes sense. Note that \(\Xi \) can be regarded as an \(L_{\text{aff}} \)-torsor over the ind-object \(G(K)/I(K_2) \) in the category pro\((C_0)\), i.e., a compatible system of \(L_{\text{aff}} \)-torsors \(\Xi_\nu \) over the affine Schubert varieties \(Z_\nu \) forming an exhaustion of \(G(K)/I(K_1) \). Each \(\Xi_\nu \) is a locally compact space and \(Z_\nu \) is a compact space. In particular, we can form the space \(\mathcal{F}_0(\Xi_\nu) \) of locally constant complex valued functions on \(\Xi_\nu \) whose support is compact (or, what is the same, proper with respect to the projection to \(Z_\nu \)). Let \(\mathcal{F}(\Xi_\nu) \) be the space of all locally constant complex functions on \(\Xi_\nu \). Then we define \(\mathcal{F}_0(\Xi) = \lim_{\leftarrow} \mathcal{F}_0(\Xi_\nu) \) and \(\mathcal{F}(\Xi) = \lim_{\leftarrow} \mathcal{F}(\Xi_\nu) \). They are pro-objects in the category of vector spaces. In fact, because of the action of \(L_{\text{aff}} \) and its group algebra \(\mathbb{C}[L_{\text{aff}}] \) on \(\Xi \), the spaces \(\mathcal{F}_0(\Xi), \mathcal{F}(\Xi) \) are naturally pro-objects in the category of \(\mathbb{C}[L_{\text{aff}}] \)-modules.

Proposition. If \(f = (f_\nu) \in \mathcal{F}_0(\Xi) \) then \(\text{Supp}(f_\nu) \cap \Sigma_{w,l}(\xi) \) is compact for every \(w, l, \xi, \nu \) and the integral above converges. Thus, there is a well defined Hecke operator

\[
\tau_{w,l} : \mathcal{F}_0(\Xi) \rightarrow \mathcal{F}(\Xi)
\]

which is an element of \(\text{Mor}(\text{pro}(\text{Mod}_{\mathbb{C}[L_{\text{aff}}]}) \). In particular, \(\tau_{w,l} \) is the shift by \(l \) and \(\tau_{w,l+l'} = \tau_{w,l} \circ \tau_{l,l'} \).

Thus we get Hecke operators as operators from one (pro-)vector space to another, bigger one. This does not yet allow to compose the \(\tau_{w,l} \). Our next step is to consider certain infinite linear combinations of the \(\tau_{w,l} \).

Let \(T_{\text{aff}}^\vee = \text{Spec}(\mathbb{C}[L_{\text{aff}}]) \) be the “dual affine torus” of \(G \). A function with finite support on \(L_{\text{aff}} \) can be viewed as the collection of coefficients of a polynomial, i.e., of an element of \(\mathbb{C}[L_{\text{aff}}] \) as a regular function on \(T_{\text{aff}}^\vee \). Further, let \(Q \subset L_{\text{aff}} \otimes \mathbb{R} \) be a strictly convex cone with apex 0. A function on \(L_{\text{aff}} \) with support in \(Q \) can be viewed as the collection of coefficients of a formal power series, and such series form a ring containing \(\mathbb{C}[L_{\text{aff}}] \). On the level of functions the ring operation is the convolution. Let \(\mathcal{F}_Q(L_{\text{aff}}) \) be the space of functions whose support is contained in some translation of \(Q \). It is a ring with respect to convolution.
Let $\mathbb{C}(L_{aff})$ be the field of rational functions on T'_{aff}. Denote by $F^\text{rat}_{Q}(L_{aff})$ the subspace in $F_{Q}(L_{aff})$ consisting of functions whose corresponding formal power series are expansions of rational functions on T'_{aff}.

If A is any L_{aff}-torsor (over a point), then $\mathcal{F}_{0}(A)$ is an (invertible) module over $\mathcal{F}_{0}(L_{aff}) = \mathbb{C}[L_{aff}]$ and we can define the spaces $\mathcal{F}_{Q}(A)$ and $\mathcal{F}^\text{rat}_{Q}(A)$ which will be modules over the corresponding rings for L_{aff}. We also write $\mathcal{F}^\text{rat}_{0}(A) = \mathcal{F}_{0}(A) \otimes_{\mathbb{C}[L_{aff}]} \mathbb{C}(L_{aff})$.

We then extend the above concepts “fiberwise” to torsors over compact spaces (objects of pro(C_{0})) and to torsors over objects of ind(pro(C_{0})) such as Ξ.

Let $w \in \widehat{W}$. We denote by $Q(w)$ the image under w of the cone of dominant affine coweights in L_{aff}.

Theorem. The action of the Hecke operator $\tau_{w,l}$ takes $\mathcal{F}_{0}(\Xi)$ into $\mathcal{F}^\text{rat}_{Q(w)}(\Xi)$. These operators extend to operators

$$\tau^\text{rat}_{w,l} : \mathcal{F}^\text{rat}_{0}(\Xi) \to \mathcal{F}^\text{rat}_{0}(\Xi).$$

Note that the action of $\tau^\text{rat}_{w,l}$ involves a kind of regularization procedure, which is hidden in the identification of the $\mathcal{F}^\text{rat}_{Q(w)}(\Xi)$ for different w, with subspaces of the same space $\mathcal{F}^\text{rat}_{0}(\Xi)$. In practical terms, this involves summation of a series to a rational function and re-expansion in a different domain.

Let \mathcal{H}_{\pre} be the space of finite linear combinations $\sum_{w,l} a_{w,l} \tau_{w,l}$. This is not yet an algebra, but only a $\mathbb{C}[L_{aff}]$-module. Note that elements of \mathcal{H}_{\pre} can be written as finite linear combinations $\sum_{w \in \widehat{W}} f_{w}(t) \tau_{w}$ where $f_{w}(t) = \sum_{l} a_{w,l} t^{l}$, $t \in T'_{aff}$, is the polynomial in $\mathbb{C}[L_{aff}]$ corresponding to the collection of the $a_{w,l}$. This makes the $\mathbb{C}[L_{aff}]$-module structure clear. Consider the tensor product

$$\mathcal{H}_{\text{rat}} = \mathcal{H}_{\pre} \otimes_{\mathbb{C}[L_{aff}]} \mathbb{C}(L_{aff}).$$

Elements of this space can be considered as finite linear combinations $\sum_{w \in \widehat{W}} f_{w}(t) \tau_{w}$, where $f_{w}(t)$ are now rational functions. By expanding rational functions in power series, we can consider the above elements as certain infinite linear combinations of the $\tau_{w,l}$.

Theorem. The space \mathcal{H}_{rat} has a natural algebra structure and this algebra acts in the space $\mathcal{F}^\text{rat}_{0}(\Xi)$, extending the action of the $\tau_{w,l}$ defined above.

The operators associated to \mathcal{H}_{rat} can be viewed as certain integro-difference operators, because their action involves integration (as in the definition of the $\tau_{w,l}$) as well as inverses of linear combinations of shifts by elements of L (these combinations act as difference operators).

Definition. The regularized Hecke algebra $\mathcal{H}(\Gamma, \Delta_{1})$ is, by definition, the subalgebra in \mathcal{H}_{rat} consisting of elements whose action in $\mathcal{F}^\text{rat}_{0}(\Xi)$ preserves the subspace $\mathcal{F}_{0}(\Xi)$.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
5.5. The Hecke algebra and the Cherednik algebra

In [2] I. Cherednik introduced the so-called double affine Hecke algebra Cher_q associated to the root system of G. As shown by V. Ginzburg, E. Vasserot and the author [3], Cher_q can be thought as consisting of finite linear combinations $\sum_{w \in \hat{W}_{\text{ad}}} f_w(t)[w]$ where W_{ad} is the affine Weyl group of the adjoint quotient G_{ad} of G (it contains \hat{W}) and $f_w(t)$ are rational functions on T_{aff}^{\vee} satisfying certain residue conditions. We define the modified Cherednik algebra $\hat{\text{H}}_q$ to be the subalgebra in Cher_q consisting of linear combinations as above, but going over $\hat{W} \subset \hat{W}_{\text{ad}}$.

Theorem. The regularized Hecke algebra $H(\Gamma, \Delta_1)$ is isomorphic to the modified Cherednik algebra $\hat{\text{H}}_q$. In particular, there is a natural action of $\hat{\text{H}}_q$ on $\mathcal{F}_0(\Xi)$ by integro-difference operators.

Proof. Use the principal series intertwiners and a version of Mellin transform. The information on the poles of the intertwiners matches exactly the residue conditions introduced in [3].

Remark. The only reason we needed to assume that the 2-dimensional local field K has equal characteristic was because we used the fact that the quotient $G(K)/I(K_2)$ has a structure of an inductive limit of projective algebraic varieties over K_1. In fact, we really use only a weaker structure: that of an inductive limit of profinite topological spaces (which are, in this case, the sets of K_1-points of affine Schubert varieties over K_1). This structure is available for any 2-dimensional local field, although there seems to be no reference for it in the literature. Once this foundational matter is established, all the constructions will go through for any 2-dimensional local field.

References

[1] J.-L. Brylinski and P. Deligne, Central extensions of reductive groups by \mathcal{X}_2, preprint of IAS, Princeton, available from P. Deligne’s home page at <www.math.ias.edu>.

[2] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. Math. 141 (1995), 191–216.

[3] V. Ginzburg and M. Kapranov and E. Vasserot, Residue construction of Hecke algebras, Adv. in Math. 128 (1997), 1–19.

[4] M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields, preprint [math.AG/9812021], to appear in Journal of the AMS.
[5] G. Lusztig, Singularities, character formula and q-analog of weight multiplicity, Astérisque 101-102 (1983), 208–222.

[6] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. ENS, 2 (1969), 1–62.

[7] A. N. Parshin, Vector bundles and arithmetic groups I: The higher Bruhat-Tits tree, Proc. Steklov Inst. Math. 208 (1995), 212–233, preprint [alg-geom/9605001].

Department of Mathematics University of Toronto
Toronto M5S 3G3 Canada
E-mail: kapranov@math.toronto.edu