DENDRITES AND CHAOS

TOMASZ DRWIĘGA

Abstract. We answer the two questions left open in [Z. Kočan, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, article id: 125025 (2012)] i.e. whether there is a relation between ω-chaos and distributional chaos and whether there is a relation between an infinite LY-scrambled set and distributional chaos for dendrite maps. We construct a continuous self-map of dendrite without any DC3 pairs but containing an uncountable ω-scrambled set. To answer for the second question we construct dendrite D and continuous dendrite map without an infinite LY-scrambled set but with DC1 pairs.

1. Introduction

Kočan in [10] studied relations between a variety of chaotic behavior of continuous maps on compact metric spaces leaving open problems in the case of dendrites. In this paper we focus on the relation between ω-chaos and distributional chaos on dendrites and we answer two of them. To construct appropriate example we use properties of spacing shifts (see [1]). In this paper after reviewing the basic definitions and properties of dynamical systems (Section 2) we recall a variety of definitions of chaos (Section 3). We also state a few useful properties about Gehman dendrite (Section 4). In Section 5 we construct the self-map of dendrite which does not have DC3 pairs, but has uncountable ω-scrambled set and in Section 6 of this article we show how construct extension of the shift without DC3 pairs to the mixing shift with no DC3 pairs. In the last Section 7 we show an example of shift with DC1 pair but without an infinite LY-scrambled set.

2. Definitions and notations

Throughout this paper \mathbb{N} denotes the set $\{1,2,3,\ldots\}$ and \mathbb{N}_0 denotes $\mathbb{N} \cup \{0\}$. By a dynamical system we mean a pair (X,f), where X is a compact metric space with a metric ρ and f is a continuous map from X to itself. The orbit of $x \in X$ is the set $O(x) := \{f^k(x) : k \geq 0\}$, where f^k stands for the k-fold composition of f with itself. For $x \in X$ the ω-limit set is the set

$$\omega_f(x) := \{y \in X : \exists \{n_k\}_{i=1}^{\infty}, n_k \nearrow \infty f^{n_k}(x) = y \}.$$

A set $A \subset X$ is invariant under f if $f(A) \subset A$ and minimal if it is nonempty, closed, invariant under f, and it does not contain any proper subset which satisfies these three conditions. We say that the dynamical system (X,f) is minimal if X is a minimal set. It is known that (X,f) is minimal if and only if each $x \in X$ has dense orbit or, equivalently, $\omega_f(x) = X$ for any $x \in X$. A point $x \in X$ is regularly recurrent if for any neighborhood U of x there exists $k \in \mathbb{N}$ such that, for any $i \in \mathbb{N}$
we have $f^k(x) \in U$. It is known (see [3]) that every regular recurrent point is an element of its own ω-limit set which is minimal. By I we denote the interval $[0, 1]$. An arc is any topological space homeomorphic to I. A continuum is a nonempty connected compact metric space. A dendrite is a locally connected continuum containing no subset homeomorphic to the circle. A point x of a continuum is its end point if for every neighborhood U of point x there exist a neighborhood V of x such that $V \subseteq U$ and boundary of V is a one-point set.

Now let us present some standard notation related to symbolic dynamics. Let A be any finite set (an alphabet) and let A^* denote the set of all finite words over A including the empty word. For any word $w \in A^*$ we denote by $|w|$ the length of w, that is the number of letters which form this word. If w is the empty word then we put $|w| = 0$. An infinite word is a mapping $w : \mathbb{N} \to A$, in other words it is an infinite sequence $w_1w_2w_3\ldots$ where $w_i \in A$ for any $i \in \mathbb{N}$. The set of all infinite words over an alphabet A is denoted by $A^\mathbb{N}$. By 0^∞ we will denote the infinite word $0^\infty = 000\cdots \in A^*$. If $x \in A^\mathbb{N}$ and $i, j \in \mathbb{N}$ with $i \leq j$ then we denote $x_{[i,j]} = x_ix_{i+1}\ldots x_{j-1}$ ($x_{[i,i]}$ is empty word) and given $X \subset A^\mathbb{N}$ by $\mathcal{L}(X)$ we denote the language of X, that is, the set $\mathcal{L}(X) := \{x_{[1,k]} : x \in X, k > 0\}$. We write $\mathcal{L}_n(X)$ for the set of all n-blocks contained in $\mathcal{L}(X)$. If a word $u \in A^*$ appears in $z \in A^\mathbb{N}$ (the same for $z \in A^*)$, then we denote it by $u \subset z$ and say that u is a subword of z. If u_k is a sequence of words such that $|u_k| \to \infty$ then we write $z = \lim_{k \to \infty} u_k$ if the limit $z = \lim_{k \to \infty} u_k 0^\infty$ exists in $A^\mathbb{N}$. By Σ_n^+ we denote the dynamical system $([0, \ldots, n-1]^\mathbb{N}, \sigma)$, where σ is a shift map defined by $(\sigma(x))_i = x_{i+1}$.

If $S \subset \Sigma_n^+$ is nonempty, closed and σ-invariant then the restriction $\sigma|_S : S \to S$ (or even the set S) is called a subshift of Σ_n^+. The set A is endowed with the discrete topology and A^n is endowed with the product topology that is metrizable by the metric $\rho : \Sigma_n^+ \times \Sigma_n^+ \to \mathbb{R}$

$$\rho(x, y) = \begin{cases} 2^{-k}, & \text{if } x \neq y, \\ 0, & \text{otherwise} \end{cases}$$

where k is the length of maximal common prefix of x and y, that is $k = \max\{i \geq 1 : x_{[1,i]} = y_{[1,i]}\}$.

Let X be a subshift. We say that (X, σ) is

(1) weakly mixing if for any $m > 0$ and any words u_1, u_2, v_1, v_2 length of m from $\mathcal{L}(X)$ there is $n > 0$ and a joining word w length of n such that $u_1wv_1, u_2wv_2 \in \mathcal{L}(X)$.

(2) mixing if for any $u, v \in \mathcal{L}(X)$ there is $N > 0$ such that for any $n \geq N$ there exists a word w of length n such that $uwv \in \mathcal{L}(X)$.

(3) exact if for any $u \in \mathcal{L}(X)$ there is $n > 0$ such that for every $v \in \mathcal{L}(X)$ there exists a word w of length n such that $uwv \in \mathcal{L}(X)$.

By $\mathcal{C}[w] = \{x \in X : x_{[0,|w|]} = w\}$ we denote an open set in X (the so-called cylinder set) and by $\mathcal{C}_A[w] = \mathcal{C}[w] \cap A$ we denote trace of cylinder set $\mathcal{C}[w]$ on X.

The collection of all cylinder sets form a basis of the topology of Σ_n^+.

Definition 2.1 (Number of occurrences). Let A be a finite alphabet and X be a shift space over A. For every symbol $a \in A$ and every point $x \in X$ we define number of occurrences $\|x\|_a$ of the symbol a in x. Let $x = x_1\ldots x_k$ and let $\|x\|_a$
DENDRITES AND CHAOS

3

denote the number of a’s in x, that is

\|x\|_a = |\{1 \leq j \leq k : x_j = a\}|.

Observe that x ∈ X is a minimal point for σ if for any open and nonempty
set U ⊆ X there exists a positive number m such that for any i > 0 there exists
j ∈ [i, i + m] such that σ^j(x) ∈ U. By N(U, V) we denote set of all positive numbers
i such that σ^i(U) ∩ V ≠ ∅.

For any P ⊆ N define

Σ_P = \{s ∈ Σ^+ : s = s_j = 1 ⇒ |i − j| ∈ P \cup \{0\}\}

which is a subshift. We will call a subshift defined in this way the spacing shift
since it is defined by restricting the spacings between 1’s (see [1]). A subset
P of N is called thick (or replete) if it contains arbitrarily long blocks of consecutive integers.
In other words

(∀ n ∈ N)(∃ m ∈ N){m, m + 1, ..., m + n} ⊆ P.

We recall that Σ_P is weakly mixing iff P is thick (see [13] or [1]).

We restate a version of Mycielski’s theorem ([18], Theorem 1) that will play a
crucial role in the proof of the main results Theorem 5.4.

Definition 2.2. Let X be a complete metric space. We call S ⊆ X a Mycielski
set if it has the form S = \bigcup_{j=1}^{∞} C_j with C_j a Cantor set for every j.

Theorem 2.3 (Mycielski). Let X be a perfect complete metric space and for each
n ∈ N let R_n ⊂ X^n be a residual subset of X^n. Then there is a dense Mycielski
set S ⊂ X such that (x_1, x_2, ..., x_n) ∈ R_n for any n ∈ N and any pairwise distinct
points x_1, x_2, ..., x_n ∈ S.

3. Definition of chaos

In the following, we provide definitions of some kinds of chaotic behavior of maps.

3.1. Topological chaos. Let ε > 0 and n ∈ N. A set A ⊆ X is an (f, n, ε)-separated if for each x, y ∈ A with x ≠ y there is an integer 0 ≤ i < n_0, such that
ρ(f^i(x), f^i(y)) > ε. Let s(f, n, ε) denote the maximal cardinality of an (f, n, ε)-separated set.

The topological entropy of f is

h(f) = \lim_{ε \to 0^+} \lim_{n \to \infty} \frac{1}{n} \log s(f, n, ε).

We say that f is topologically chaotic (abbreviated PTE) if f has positive topological entropy (see [4] and [6]).

3.2. Li-Yorke chaos. A set S ⊆ X is called LY-scrambled for f, if it contains at
least two points and for any x, y ∈ S with x ≠ y, we have

\lim_{n \to \infty} \rho(f^n(x), f^n(y)) = 0

and

\lim_{n \to \infty} \rho(f^n(x), f^n(y)) > 0.

If there is a two point, or an infinite, or an uncountable LY-scrambled set for
f, we say that f is LY_2, LY_∞ or LY_u chaotic, respectively (see [9]). We say that
Theorem: $X 	o X$ is ω-chaotic for f if it contains at least two points and for any $x,y \in S$ with $x \neq y$, we have:

1. $\omega_f(x) \setminus \omega_f(y)$ is uncountable,
2. $\omega_f(x) \cap \omega_f(y)$ is nonempty,
3. $\omega_f(x)$ is not contained in the set of periodic points.

We say that f is, respectively, ω_2, ω_∞, or ω_n-chaotic if there is a two-point, an infinite, or an uncountable ω-chaotic set for f. (see [9], [14]).

4. **Distributional chaos**. This type of chaos was introduced in [21]. Given f, $x,y \in X$ and a positive integer n, define a distribution function $F_{xy}^{(n)} : (0, \text{diam}X] \to [0,1]$ by

$$F_{xy}^{(n)}(t) = \frac{1}{n} \# \{ i : 0 \leq i < n \text{ and } \rho(f^i(x), f^i(y)) < t \}.$$

Then $F_{xy}^{(n)}$ is a left-continuous nondecreasing function. We define the lower distribution function F_{xy} and the upper distribution function F_{xy}^* generated by f, x and y by

$$F_{xy}(t) = \liminf_{n \to \infty} F_{xy}^{(n)}(t)$$

and

$$F_{xy}^*(t) = \limsup_{n \to \infty} F_{xy}^{(n)}(t).$$

We extend F_{xy} and F_{xy}^* to the whole real line by setting $F_{xy}(t) = F_{xy}^*(t) = 0$ for $t \leq 0$ and $F_{xy}(t) = F_{xy}^*(t) = 1$ for t which is strictly larger than the diameter of X. Clearly, $F_{xy}(t) \leq F_{xy}^*(t)$ for every $t \in \mathbb{R}$. We say that a pair $x,y \in X$ is:

DC1: if $F_{xy}^*(t) = 1$ for all $t > 0$ and there is $s > 0$ such that $F_{xy}(s) = 0$,

DC2: if $F_{xy}^*(t) = 1$ for all $t > 0$ and there is $s > 0$ such that $F_{xy}(s) < 1$,

DC3: if there are $a < b$ such that $F_{xy}^*(t) > F_{xy}(t)$ for every $t \in (a,b)$.

A set $S \subseteq X$ is distributionally chaotic for f, if it contains at least two points and for any $x,y \in S$ with $x \neq y$ is a DC1 pair

$$F_{xy}^* = 1 \text{ and } F_{xy} = 0 \text{ for some } t.$$

If there is a distributionally chaotic set for f, then we say that f exhibits distributional chaos, briefly, DC1-chaotic. Note that the weaker notions than DC1 distributional chaos denoted by DC2 and DC3 were introduced by Smítal and Štefánková (see [22]).

4. **Gehman Dendrite**

Let us recall the construction of a continuous dendrite map from [11]. Let G be the Gehman dendrite (see [8]). It is well-known that the Gehman dendrite can be written as the closure of the union of countably many arcs in \mathbb{R}^2: $B_0 = [p,p_0]$, $B_1 = [p,p_1]$, and for every $n \in \mathbb{N} \setminus \{0\}$, $B_{i_1i_2\ldots i_n} = [p_{i_1i_2\ldots i_n}p_{i_1i_2\ldots i_{n+1}}]$ where every i_k is either 0 or 1. Let E denote the set of end points of G. With every point $x \in E$ we can uniquely associate a sequence of zeros and ones $i_1i_2i_3\ldots$ in such way that the limit of the codes of the arcs converging to the point.

We define a continuous map g on a dendrite G in the following way. Let $g(B_0) = g(B_1) = \{p\}$. For every i_1,i_2,\ldots,i_n, let $g|_{B_{i_1i_2\ldots i_n}} : B_{i_1i_2\ldots i_n} \to B_{i_2i_3\ldots i_n}$ be
a homeomorphism such that \(g(p_{i_1,...,i_n}) = p_{i_2,...,i_n} \), and let \(g \) act on \(E \) as the shift map on the space \(\Sigma^+ \). Let \(X \) be a closed \(g \)-invariant subset of \(E \). Denote \(D_X = \bigcup_{x \in X} [x, \xi] \) and \(f = g|D_X \).

Lemma 4.1. A set \(D_X \) is subdendrite of \(G \) and \(D_X \) is an \(f \)-invariant subset of \(G \).

Proof. Let us notice that \(D_X \) is a union of arcs \([x, \xi] \) so it is a locally connected continuum and from the construction it is obvious that \(D_X \) does not contain subset homeomorphic to the circle. It shows that \(D_X \) is a subdendrite of the Gehman dendrite \(G \). To show that \(D_X \) is a closed \(f \)-invariant subset of \(E \) we get that \(X \) is \(f \)-invariant which completes the proof. \(\square \)

Lemma 4.2. Let \(X \) be closed and nonempty subset of \(\Sigma^+ \) without isolated points. Then the set \(D_X = \bigcup_{x \in X} [x, \xi] \subset G \) is the Gehman dendrite.

Proof. Let \(X \) be nonempty subset of \(\Sigma^+ \) homeomorphic to the Cantor set. Then the set \(D_X = \bigcup_{x \in X} [x, \xi] \) is subdendrite of \(G \) and has property that every ramification point of \(D \) has order \(3 \). Now using \(n = 3 \) in Theorem 4.1 in [5] we get that the set \(D_X \) is the Gehman dendrite which completes the proof. \(\square \)

5. **Uncountable \(\omega \)-scrambled set without \(DC3 \) pairs on dendrite**

Lemma 5.1. There is a Cantor set \(\Sigma \subset \Sigma^+ \) such that for any \(n \geq 2 \) and any distinct points \(x_1, x_2, ..., x_n \in \Sigma \) and any \(\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\} \) where \(k \in \{1, 2, ..., n\} \), there is \(j > 0 \) such that

\[
x_i(j) = 1 \quad \text{for} \quad i \in \{i_1, i_2, ..., i_k\}
\]

and

\[
x_i(j) = 0 \quad \text{for} \quad i \not\in \{i_1, i_2, ..., i_k\}.
\]

Proof. Fix \(n \geq 2, 1 \leq k \leq n \) and indices \(\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\} \). Define

\[R_n^{(i_1, i_2, ..., i_k)} \subset (\Sigma^+)^n\]

by

\[
R_n^{(i_1, i_2, ..., i_k)} = \{(x_1, x_2, ..., x_n) \in (\Sigma^+)^n : x_i(j) = 1 \quad \text{for} \quad i \in \{i_1, i_2, ..., i_k\} \}
\]

and \(x_i(j) = 0 \) for \(i \not\in \{i_1, i_2, ..., i_k\} \).

We claim that the set \(R_n^{(i_1, i_2, ..., i_k)} \) is open and dense in the product space \((\Sigma^+)^n\).

We endow \((\Sigma^+)^n\) with the maximum metric \(\rho_n \), i.e.

\[
\rho_n((x_1, ..., x_n), (y_1, ..., y_n)) = \max_{i=1,...,n} \rho(x_i, y_i).
\]

Observe that \(R_n^{(i_1, i_2, ..., i_k)} \) is open, since for every \(j \) there is \(\varepsilon > 0 \) such that if \(\rho_n((x_1, ..., x_n), (y_1, ..., y_n)) < \varepsilon \) then \(x_i(j) = y_i(j) \) for \(i = 1, ..., n \). It remains to prove that \(R_n^{(i_1, i_2, ..., i_k)} \) is also dense. Fix nonempty words \(w_i \) for \(i = 1, ..., n \) and put \(v_i = w_i w_{i+1} ... w_n w_1 ... w_{i-1} \). Note that \(|v_1| = |v_2| = \ldots = |v_n| \). We define

\[
u_i = \begin{cases} v_i 10^\infty, & \text{if } i \in \{i_1, i_2, ..., i_k\}, \\ v_i 0^\infty, & \text{otherwise.}\end{cases}
\]

Clearly,

\[
(u_1, ..., u_n) \in R_n^{(i_1, i_2, ..., i_k)} \cap (C[w_1] \times \ldots \times C[w_n]).
\]
which proves that \(R^{(i_1,\ldots,i_k)}_n \) is dense. It follows that for each \(n \) and \(\{i_1,\ldots,i_k\} \subseteq \{1,\ldots,n\} \) the set \(R^{(i_1,\ldots,i_k)}_n \) is residual in \((\Sigma^2_2)^n\). Given \(n \geq 2 \) let \(\Gamma_n \) be the set of all finite and nonempty subsets of \(\{1,\ldots,n\} \). Then the set
\[
R_n = \bigcap_{A \in \Gamma_n} R^A_n
\]
is also open and dense, hence is also residual in \((\Sigma^2_2)^n\). We constructed a sequence of residual relations, therefore by Mycielski Theorem there is a Cantor set of all finite and nonempty subsets of \(\{1,\ldots,n\} \) which proves that \(1 \).

Proof. For every thick set \(P \) there are thick sets \(P_i \) such that \(P = \bigcup_{i \in \mathbb{N}} P_i \) and \(P_i \cap P_j = \emptyset \) provided that \(i \neq j \).

Proof. For any integer \(n \geq 2 \) take \(j_n \) such that \(Q_n = \{j_n,\ldots,j_n+n\} \subseteq P \). We may that \(j_{n+1} > j_n + n \). Put \(Q_1 = P \setminus \bigcup_{n=2}^{\infty} Q_n \). Take any bijection \(F : \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \). Let \(I_j = \{n \in \mathbb{N} : F(n) \in \{j\} \times \mathbb{N} \} \). For each \(j \in \mathbb{N} \) set \(P_j = \bigcup_{i \in I_j} P_i \). By the construction each \(P_j \) is a thick, set \(P_j \)'s are pairwise disjoint and \(P = \bigcup_{i \in \mathbb{N}} P_i \) which completes the proof.

Lemma 5.2. For every thick set \(P \) there are thick sets \(P_i \) such that \(P = \bigcup_{i \in \mathbb{N}} P_i \) and \(P_i \cap P_j = \emptyset \) provided that \(i \neq j \).

Proof. For any integer \(n \geq 2 \) take \(j_n \) such that \(Q_n = \{j_n,\ldots,j_n+n\} \subseteq P \). We may that \(j_{n+1} > j_n + n \). Put \(Q_1 = P \setminus \bigcup_{n=2}^{\infty} Q_n \). Take any bijection \(F : \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \). Let \(I_j = \{n \in \mathbb{N} : F(n) \in \{j\} \times \mathbb{N} \} \). For each \(j \in \mathbb{N} \) set \(P_j = \bigcup_{i \in I_j} P_i \). By the construction each \(P_j \) is a thick, set \(P_j \)'s are pairwise disjoint and \(P = \bigcup_{i \in \mathbb{N}} P_i \) which completes the proof.

Theorem 5.3. For every thick set \(P \) there exists a Cantor set \(\Gamma \subseteq \Sigma_P \) such that for any \(n \geq 2 \) any distinct points \(y_1, y_2, \ldots, y_n \in \Gamma \) and any choice of indexes \(\{i_1,\ldots,i_k\} \subseteq \{1,\ldots,n\} \) the set
\[
\bigcap_{i \in \{i_1,\ldots,i_k\}} \omega(y_i) \setminus \bigcup_{j \notin \{i_1,\ldots,i_k\}} \omega(y_j)
\]
contains an uncountable set \(D \) without minimal points.

Proof. Using Lemma 5.2 find a decomposition of \(P \) into pairwise disjoint thick sets \(P = \bigcup_{i \in \mathbb{N}} P_i \). Let \(\Sigma \) be provided by Lemma 5.1. For every \(x \in \Sigma \) denote
\[
Q_x = \bigcup_{x_n = 1} P_n \subseteq P.
\]
Clearly, each \(Q_x \) is thick, since every \(x \in \Sigma \) contains at least one symbol 1. Thus \(Q_x \) defines a weakly mixing spacing shift \(\Sigma_{Q_x} \) (see [13] or [1]) and so we can select a point \(z_x \in \Sigma_{Q_x} \) with a dense orbit in \(\Sigma_{Q_x} \). Denote
\[
\Gamma = \{z_x : x \in \Sigma\}.
\]
Fix any \(n \geq 2 \) and any \(\{i_1, i_2, \ldots, i_k\} \subseteq \{1,2,\ldots,n\} \). Pick any pairwise distinct points \(y_1, \ldots, y_n \in \Gamma \) and let \(x_1, x_2, \ldots, x_n \in \Sigma \) be such that \(y_i = z_{x_i} \). Then there is \(j > 0 \) such that \(x_i(j) = 1 \) for \(i \in \{i_1, i_2, \ldots, i_k\} \) and \(x_i(j) = 0 \) for \(i \notin \{i_1, i_2, \ldots, i_k\} \). This implies that \(P_j \subseteq Q_{x_i} \) for each \(i \in \{i_1, i_2, \ldots, i_k\} \) and \(P_j \cap Q_{x_i} = \emptyset \) for each \(i \notin \{i_1, i_2, \ldots, i_k\} \). Then
\[
\Sigma_{P_j} \subseteq \bigcap_{i \in \{i_1,\ldots,i_k\}} \omega(y_i) = \bigcap_{i \in \{i_1,\ldots,i_k\}} \Sigma_{Q_{x_i}}.
\]
Furthermore, if \(i \notin \{i_1,\ldots,i_k\} \) then in any point \(z \in \Sigma_{P_j} \cap \Sigma_{Q_{x_i}} \), the symbol 1 occurs at most once. There are at most countably many such points, and every weakly mixing spacing shift \(\Sigma_{P_j} \) is uncountable. Furthermore \(P_j \) has thick complement.
(e.g. contains P_{j+1} in its complement), hence Σ_{P_j} is proximal by [1]. But the only minimal point in a proximal system is the fixed point, hence

$$\bigcap_{i \in \{1, \ldots, i_k\}} \omega(y_i) \setminus \bigcup_{j \notin \{1, \ldots, i_k\}} \omega(y_j)$$

contains an uncountable set D without minimal points. \hfill \Box

Observe that the set Γ in Theorem 5.3 satisfies the following strong version of ω-chaos (in particular is ω-scrambled). In fact, conditions posed in (5.1) are among strongest possible dependences between n-tuples of ω-limit sets.

For any integer $n \geq 2$ let take j_n such that $Q_i = \{4^i, 4^i + 1, \ldots, 4^i + i - 1\}$. It is not hard to see that both sets P and $\mathbb{N} \setminus P$ are thick. Then combining Theorem 5.3 with [1] we obtain the following:

Theorem 5.4. There exists a spacing shift without DC3 pairs Σ_P and a Cantor set $\Gamma \subset \Sigma_P$ such that for any $n \geq 2$, any distinct points $y_1, y_2, \ldots, y_n \in \Gamma$ and any choice of indexes $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ the set

$$\bigcap_{i \in \{1, \ldots, i_k\}} \omega(y_i) \setminus \bigcup_{j \notin \{1, \ldots, i_k\}} \omega(y_j)$$

contains an uncountable set D without minimal points.

Lets us recall open questions formulated by Kočan in [10].

(1) Does the existence of uncountable ω-scrambled set imply distributional chaos?

(2) Does the existence of uncountable ω-scrambled set imply existence of an infinite LY–scrambled set?

(3) Does distributional chaos imply the existence of an infinite LY–scrambled set?

By our construction we immediately obtain a negative answer to the first one i.e. there is an uncountable ω–scrambled set which does not imply distributional chaos.

Corollary 5.5. There exists a continuous self-map f of Gehman dendrite such that:

(1) f does not have DC3 pairs,

(2) f has uncountable ω-scrambled set.

Proof. Let Σ_P be a spacing subshift provided by Theorem 5.4. By Lemma 4.1 we obtain a map $f: D \to D$ on Gehman dendrite D such that we may view $\Sigma_P \subset D$ as an invariant subset (up to conjugacy of these subsystems). Furthermore, there is a fixed point $p \in D \setminus \Sigma_P$ and for every $y \in D \setminus \{p\}$ there is $z \in \Sigma_P$ such that $\lim_{n \to \infty} d(f^n(y), f^n(z)) = 0$.

It is clear that (2) is satisfied, since (Σ_P, σ) is a subsystem of (D, f) containing an uncountable ω-scrambled set. Furthermore, if pairs (z_1, y_1), (z_2, y_2) are asymptotic then $F_{z_1, z_2} = F_{y_1, y_2}$ and $F_{z_1, z_2}^* = F_{y_1, y_2}^*$ (e.g. see [17, Lemma 5]). This shows that there is no DC3 pair in $D \setminus \{p\}$. But distance in D is given by arclength, hence we may assume that $p(x, x) = 1$ for every $x \in \Sigma_P$. This implies that (p, x) is not DC3 for any $x \in \Sigma_P$ and automatically (p, y) is not DC3 for any $y \in D \setminus \{p\}$. The proof is finished. \hfill \Box
6. Mixing

Remark 6.1. Let X be a shift. Note that $\rho(x, y) < 2^{-k}$ for some $k \geq 0$ implies that $\rho(x, y) \leq 2^{-k-1}$, hence $\rho(x, y) < t$ for every $t \in (2^{-k-1}, 2^{-k})$.

Proof. Indeed, for each $n \geq 1$, $k \geq 0$ and $t \in (2^{-k-1}, 2^{-k})$ we have
\[
\frac{1}{n} |\{0 \leq m < n : d(\sigma^m(x), \sigma^m(y)) < t\}| = \frac{1}{n} |\{0 \leq m < n : d(\sigma^m(x), \sigma^m(y)) \leq 2^{-k-1}\}| = \frac{1}{n} |\{0 \leq m < n : d(\sigma^m(x), \sigma^m(y)) < 2^{-k}\}|.
\]
It follows that $F_x^{(n)}(t) = F_x^{(n)}(2^{-k})$ for each $n \geq 1$, $k \geq 0$ and $t \in (2^{-k-1}, 2^{-k})$. Thus $F_{xy}(t) = F_{xy}(2^{-k})$ and $F_{xy}^*(t) = F_{xy}^*(2^{-k})$ for $t \in (2^{-k-1}, 2^{-k})$. In other words, F_{xy} and F_{xy}^* are piecewise constant functions. \(\square\)

Remark 6.2. Let X be a shift. Then $(x, y) \in \mathcal{X} \times \mathcal{X}$ is a $(DC3)$ pair if and only if there exist an integer $k \geq 0$ such that $F_{xy}(2^{-k}) < F_{xy}^*(2^{-k})$.

Proof. Assume first that $F_{xy}(2^{-k}) < F_{xy}^*(2^{-k})$ for some integer $k \geq 0$. Let $F_{xy}(2^{-k}) = \alpha \in (0, 1)$ and $F_{xy}^*(2^{-k}) = \beta \in (0, 1)$. Note that
\[
\frac{1}{n} |\{0 \leq m < n : d(\sigma^m(x), \sigma^m(y)) < 2^{-k}\}| = \frac{1}{n} |\{0 \leq m < n : d(\sigma^m(x), \sigma^m(y)) \leq 2^{-k-1}\}| = \frac{1}{n} |\{0 \leq m < n : d(\sigma^m(x), \sigma^m(y)) < t\}|.
\]
for $t \in [2^{-k-1}, 2^{-k})$. Now calculating $F_{xy}(t)$ and $F_{xy}^*(t)$ we get that $\alpha = F_{xy}(t) < F_{xy}^*(t) = \beta$, so (x, y) is a $(DC3)$ pair.

On the other hand, if (x, y) is a $(DC3)$ pair then there exists $(a, b) \subset [0, 1]$ such that $F_{xy}(t) < F_{xy}^*(t)$ for all $t \in (a, b)$. Let $k \geq 0$ be such that $2^{-k-1} < b \leq 2^{-k}$.

By Remark 6.1 we have also
\[
F_{xy}(t) = F_{xy}(2^{-k}) < F_{xy}^*(2^{-k}) = F_{xy}^*(t)
\]
for $t \in (2^{-k-1}, 2^{-k})$. Hence (x, y) is a $(DC3)$ pair. \(\square\)

Lemma 6.3. If X is a shift space such that for every $x \in X$ we have $d(\{i : x_i = 0\}) = 1$ then there is no DC3-pair in X.

Proof. Let $x, y \in X$. Then
\[
d(\{i : x_i \neq y_i\}) = d(x, y) \leq d(x, 0^\infty) + d(0^\infty, y) = d(\{i : x_i \neq 0\}) + d(\{i : y_i \neq 0\}) = 0.
\]
Thus $d(\{i : x_i = y_i\}) = 1$ which clearly implies that (x, y) is not a DC3 pair. \(\square\)

Remark 6.4. Let X be a shift space. Then $d(\{i : x_i = 0\}) = 1$ for every $x \in X$ if and only if the measure concentrated on 0^∞ is the only invariant measure for X (see [12]).

Lemma 6.5. Let X be a shift and $x \in X$ is such that $d(\{i : x_i = 0\}) = 1$. If (x, y) is a $(DC3)$ pair then $(0^\infty, y)$ is a $(DC3)$ pair.
Proof: By Remark 6.2 it is enough to check that \(F_{xy}(2^{-k}) < F_{xy}^*(2^{-k}) \) for some \(k \geq 0 \).

If \((x, y)\) is a \((DC3)\) pair then there exist an integer \(l > 0\), an increasing sequence \(\{s_i\}_{i=1}^\infty \) of positive integers and \(\gamma > 0\) such that

\[
\frac{1}{s_i} \left| \{0 \leq k < s_i : x[k+k+l] \neq y[k+k+l] \} \right| \geq \gamma.
\]

Observe that we can write the set \(\{0 \leq k < s_i : x[k+k+l] \neq y[k+k+l] \} \) as the disjoint union of

\[
\{0 \leq k < s_i : x[k+k+l] \neq y[k+k+l] \} \text{ and } \{0 \leq k < s_i : y[k+k+l] = 0^l\}.
\]

Now, \(d(\{i : x_i = 0\}) = 1 \) implies that for every \(k > 0\) we have

\[
d(\{i : x_{i+k} = 0^k\}) = 1.
\]

We get that for every \(\delta > 0 \) there exist \(N \) such that for all \(i > N \) we have

\[
\frac{1}{s_i} \left| \{0 \leq k < s_i : x[k+k+l] \neq y[k+k+l] \} \right| < \delta.
\]

From that we obtain

\[
\gamma \leq \frac{1}{s_i} \left| \{0 \leq k < s_i : x[k+k+l] \neq y[k+k+l] \} \right| \leq \frac{1}{s_i} \left| \{0 \leq k < s_i : y[k+k+l] = 0^l\} \right| \leq \frac{1}{s_i} \left| \{0 \leq k < s_i : y[k+k+l] = 0^l\} \right| + \delta\]

and finally

\[
\frac{1}{s_i} \left| \{0 \leq k < s_i : y[k+k+l] = 0^l\} \right| \geq \gamma - \delta.
\]

On the other hand there exist a decreasing sequence \(\{t_i\}_{i=1}^\infty \), \(l > 0 \) and \(0 < \alpha < \gamma \)

\[
\frac{1}{t_i} \left| \{0 \leq k < t_i : x[k+k+l] \neq y[k+k+l] \} \right| \leq \alpha.
\]

A similar calculations as above gives that

\[
\frac{1}{t_i} \left| \{0 \leq k < t_i : y[k+k+l] = 0^l\} \right| \leq \alpha + \varepsilon
\]

where \(\varepsilon > 0 \) is such that

\[
\frac{1}{t_i} \left| \{0 \leq k < t_i : x[k+k+l] = y[k+k+l] \} \right| \leq \varepsilon.
\]

Since \(\varepsilon \) and \(\delta \) can be arbitrarily small this completes the proof that \((0^\infty, y)\) is a \((DC3)\) pair.

\[\square\]

Theorem 6.6. Let \(X \) be a shift such that for every \(x \in X \) we have \(d(\{i : x_i = 0\}) = 1 \). Then there exists a mixing shift \(Y \) containing \(X \) such that there is no \((DC3)\) pair in \(Y \).

Proof. First, note that from Lemma 6.3 we have that there in no DC3-pair in \(X \). Now we inductively construct an increasing sequence of shift spaces \(X_0 \subset X_1 \subset \ldots \) and then define space \(Y \) as the closure of the union of all \(X_n \)'s i.e.

\[
Y = \bigcup_{n=0}^{\infty} X_n.
\]
Let \(X_0 = X \cup W \), where \(W \) is any weak mixing shift such that the only invariant measure for \(W \) is concentrated on \(0^\infty \). We define the set \(X_1 \) adding to \(X_0 \) orbits of points of the form
\[
0^a10^b10^\infty, \quad \text{where} \quad \alpha \geq 0, \quad \beta \geq 2.
\]
Note that every block added at first step has at most two occurrences of the symbol 1. Inductively, for given \(X_n \) and \(n \geq 0 \) we construct a shift space \(J_{n+1} \) and set \(X_{n+1} = X_n \cup J_{n+1} \), where
\[
J_{n+1} = \bigcup_{m=0}^{\infty} \sigma^m \left\{ 0^a u 0^b v 0^\infty : \alpha \geq 0, \ u, v \in \mathcal{L}(X_n), \ \beta \text{ such that } \phi_{\beta} > \phi_{2n} \right\}
\]
and \(\phi_n, \phi_n' \) denote the maximum number of occurrences of the symbol 1 among all blocks of length \(n \) in \(X \) and \(X_i \), respectively, that is,
\[
\phi_n = \max\{ \|w\|_1 : w \in \mathcal{L}(X) \}
\]
and
\[
\phi_n' = \max\{ \|w\|_1 : w \in \mathcal{L}(X_i) \}.
\]
Note that each \(X_n \) is a subshift and let us first notice that the sequence \(\{\phi_n\}_{n=1}^\infty \) is non-negative and subadditive (i.e. \(0 \leq \phi_{m+n} \leq \phi_m + \phi_n \)).

We claim that \(\lim_{n \to \infty} \phi_n = \lim_{n \to \infty} \phi_n' \) for all \(l \geq 0 \) and \(n > 0 \). Indeed, from property that \(X \subset X_i \) we have that \(\phi_n \leq \phi_n' \). By the other hand note that if \(u \in X_{n+1} \) and \(|u| \geq \beta \) then either
\[
u \in \mathcal{L}(X_n)
\]
or
\[
\|u\|_1 \leq 2 \max\{ \|v\|_1 : v \in \mathcal{L}(X) \} \leq 2 \phi_n \leq \phi_n' \leq \phi_{|u|}.
\]
Therefore
\[
\phi_{n+1} \leq \phi_{|u|}.
\]
If \(|u| \leq \beta \) we have that \(u = 0^k w 0^s \) where \(k, s \geq 0 \). Since \(w \) is a word with length at most \(n \) from \(X_n \) so we get
\[
\|u\|_1 \leq \phi_n.
\]

Let us notice that the condition \(\lim_{n \to \infty} \phi_n = 0 \) is equivalent to \(d(\{i : x_i = 0\}) = 1 \) (see \cite{7}, Theorem 3).

Now if we denote
\[
Y_{n+1} = J_{n+1}
\]
we get equality
\[
X_{n+1} = X_n \cup Y_{n+1}.
\]
The set \(Y_{n+1} \) is shift invariant and points from \(Y_{n+1} \) guarantee that the mixing condition holds for pairs of blocks \(u, v \) from \(\mathcal{L}(X_n) \).

We claim that
\[
Y_{n+1} = J_{n+1} \cup \{ 0^a u 0^\infty : u \in \mathcal{L}(X_n) \} \cup \{ 0^\infty \}
\]
for all \(s \geq 0 \).

Indeed, let \(\{x_k\}_{k=1}^\infty \subset J_{n+1} \) for some sequence \(\{n_k\}_{k=1}^\infty \subset \mathbb{N} \) and fix \(x = \lim_{k \to \infty} x_k \). Without loss of generality we can assume that for positive integer \(k \) there exist \(m_k, \alpha_k, \beta_{nk} \geq 0 \) such that
\[
x_k = \sigma^{m_k} \left(0^{\alpha_k} u 0^{\beta_{nk}} v 0^\infty \right) \in \{ 0^{j_k} u 0^{\beta_{nk}} v 0^\infty, 0^{j_k} v 0^\infty, 0^\infty \}
\]
for \(j_k \leq \alpha_k \), \(s_k \leq \beta_n \) and where \(u, v \in \mathcal{L}_{\alpha_k}(X_{n_k}) \), \(\alpha_k \geq 0, \beta_n \geq 0 \) and such that
\[\varphi_B > \varphi_{2n_k}. \]

Let choose first \(x_k = 0^j u^0 \beta_k v^0 \). If \(j_k \) tends to infinity as \(k \to \infty \) then we get that
\[x = \lim_{k \to \infty} x^{(k)} = 0^\infty. \] If \(j_k \to j \neq \infty \) for some \(j \geq 0 \) then without loss of generality we can assume that
\[x_k = 0^j u^0 \beta_k v^0 \]
and now if \(\beta_n \to \infty \) we get \(x = 0^a v^0 \), but if \(\beta_n \to \beta \neq \infty \) we get that
\[x_k \to 0^j u^0 v^0 \infty \] as \(k \to \infty \) so it means that \(x \in J_{n_k + 1}. \)

Now, if we choose \(x_k = 0^a v^0 \infty \) and if \(s_k \to \infty \) we get that \(x = 0^\infty \), but on the other hand if \(s_k \to s \neq \infty \) we get \(x = 0^a v^0 \infty \). Finally if we choose \(x_k = 0^\infty \) then we get \(x = 0^\infty \).

Now we will prove that \(d(\{i : y_i = 1\}) = 0 \) for every \(y \in Y \). If \(y \in \bigcup_{n=0}^\infty X_n \) then \(y \in X_k \) for some \(k \) and then
\[\frac{1}{n} |\{0 \leq i < n : y_i = 1\}| \leq \frac{1}{n} \varphi_n \leq \frac{\varphi_n}{n} \to 0 \]
Now fix \(y \in Y \setminus \bigcup_{n=0}^\infty X_n \). Then there exists a sequence
\[x_k \in \bigcup_{n=0}^\infty X_n \]
such that
\[\lim_{k \to \infty} x_k = y \in Y \setminus \bigcup_{n=0}^\infty X_n. \]
For each \(n \) there exist \(N \geq 0 \) such that for all \(k \geq N \)
\[y_{(0,n)} = (x_k)_{(0,n)}. \]
Since \(x_k \in X_k \) we get that
\[|\{0 \leq i < n : (x_{(0,n)})_i = 1\}| \leq \varphi_n \leq \varphi_n. \]

The shift space \(Y \) is topologically mixing. Indeed, taking two nonempty blocks \(u, v \in \mathcal{L}(Y) \) there is \(k \geq 0 \) such that \(u, v \in \mathcal{L}(X_k) \). Therefore \(u^0 \in \mathcal{L}(X_k) \), \(u^1 \in \mathcal{L}(X_k) \) for all \(\alpha \geq 0 \) and it ends the proof that \(Y \) is topologically mixing.

\[\square \]

7. DISTRIBUTIONAL CHAOS WITHOUT AN INFINITE LY-SCRAMBLED SET

Denote \(I = [0, 1] \). We perform an inductive construction. In the initial step set \(m_0 = 1 \) and \(z_1^{(0)} = \frac{1}{2} \). Define \(Z^{(0)} = \{ z_1^{(0)} \} \), \(x_0^{(0)} = 0 \), \(x_1^{(0)} = z_1^{(0)} \), \(x_2^{(0)} = 1 \), and
\[l_0 = 1, l_{-1} = 0. \] Note that the sequence \((x_i^{(0)})_{i=0}^2 \) contains \(Z^{(0)} \), constructed so far, and endpoints of \([0, 1]\). Furthermore \(x_0^{(0)} < x_1^{(0)} < x_2^{(0)} \). For the inductive step denote for \(i \in \mathbb{N} \)
\[L_i = (l_{i-1} + 1)m_i \]
with
\[m_{i+1} \geq 2^{i}l_i \]
and assume that we have just constructed sets
\[Z^{(0)}, Z^{(1)}, \ldots, Z^{(n)} \subset I \]
where
\[|Z^{(i)}| = L_i \]
and
\[l_i = \sum_{j=0}^{i} |Z^{(j)}|. \]

In particular \(Z^{(i)} \cap Z^{(j)} = \emptyset \) for \(i \neq j \). Note that \(l_i \) and \(L_i \) are constructed in such a way that \(l_i + 1 \geq 2^i \) and \(L_i \geq 2^i \) for all \(i \in \mathbb{N} \cup \{0\} \). We also assume that all elements of set
\[\bigcup_{j=0}^{n} Z^{(j)} = \left(x^{(n)}_j \right)_{j=1}^{l_n} \]
were enumerated in such a way that
\[0 = x^{(n)}_0 < x^{(n)}_1 < \cdots < x^{(n)}_{l_n+1} = 1. \]

Additionally we also assume that sets \(Z^{(i)} = \{ z_1^{(i)}, \ldots, z_{L_i}^{(i)} \} \) are such that if we put \(z_0^{(i)} = 0 \) and \(z_{L_i+1}^{(i)} = 1 \) then \(|Z^{(i+1)} \cap \left(z_j^{(i)}, z_{j+1}^{(i)} \right)| = m_{i+1} \) for all \(i \in \mathbb{N}_0 \).

Fix any
\[m_{n+1} \geq 2^n l_n \]
and define
\[z^{(n+1)}_{i+m_{n+1}+k} = x^{(n)}_i + \frac{k}{m_{n+1}+1} \left(x^{(n)}_{i+1} - x^{(n)}_i \right) \]
for \(i = 0, 1, \ldots, l_n, k = 1, 2, \ldots, m_{n+1} \). Then put
\[Z^{(n+1)} = \{ z^{(n+1)}_j : j = 1, 2, \ldots, L_{n+1} \}. \]

Finally enumerate elements of set
\[\bigcup_{j=0}^{n+1} Z^{(j)} = \left(x^{(n+1)}_j \right)_{j=1}^{l_{n+1}} \]
in such a way that
\[0 = x^{(n+1)}_0 < x^{(n+1)}_1 < \cdots < x^{(n+1)}_{l_{n+1}+1} = 1. \]

Now we define the sequence of points
\[A_{n,k} = \left(z^{(n)}_k, \frac{1}{2^n} \right) \subset I \times I \]
for \(n \in \mathbb{N}_0 \) and \(k \in \{1, 2, \ldots, L_n\} \).

Let us notice that by our construction
\[\text{diam} \left(z^{(k+1)}_j, z^{(k+1)}_{j+1} \right) \leq \frac{1}{m_{k+1}+1} \text{diam} \left(z^{(k)}_j, z^{(k)}_{j+1} \right) \]
for any \(k \) and \(j \) (see 7.1).

If \(\pi \) denotes projection on the first coordinate, i.e. \(\pi(x, y) = (x, 0) \), we get that \(\pi(A_{n,i}) \neq \pi(A_{m,j}) \) for every \(n \neq m \) and every \(i \in \{1, 2, \ldots, L_n\}, j \in \{1, 2, \ldots, L_m\} \).
Lemma 7.1. The set
\[\mathcal{D} = (I \times \{0\}) \cup \bigcup_{n=0}^{\infty} \bigcup_{k=1}^{L_n} \left\{ \left(z_k^{(n)}, y \right) : y \in \left[0, \frac{1}{2^n} \right] \right\} \]
is a dendrite.

Proof. It is enough to show that \(\mathcal{D} \) is locally connected. Let \(x \in \mathcal{D} \setminus (I \times \{0\}) \) and let \(U \) be a non-empty open set such that \(x \in U \). There exist some \(t \geq 0 \) such that \(x = (a, b) \in I \times \left[\frac{1}{2^n}, \frac{1}{2^n} \right] \). Let \(\hat{\pi} \) be the projection such that \(\hat{\pi}(u, v) = u \) and let denote
\[\epsilon_1 = \min \left\{ \left| b - \frac{1}{2^n-1} \right|, \left| b - \frac{1}{2^n+2} \right| \right\} \]
and
\[\delta_t = \min_{n \leq t+1, \frac{1}{2^n} \leq \epsilon_1} \left\{ \left| \hat{\pi}(x) - \hat{\pi} \left(z_l^{(n)} \right) \right| : \hat{\pi}(x) \neq \hat{\pi} \left(z_l^{(n)} \right) \right\}. \]
Now taking \(\epsilon = \frac{1}{2} \min \{ \epsilon_1, \delta_t \} \) the set
\[V = \left((a - \epsilon, a + \epsilon) \times (b - \epsilon, b + \epsilon) \right) \cap \mathcal{D} \]
is connected because it is a segment \(\{a\} \times (b - \epsilon, b + \epsilon) \). Finally if \(x = (a, 0) \in I \times \{0\} \) then taking neighbourhood \((x - \epsilon_0, x + \epsilon_0) \times [0, \epsilon_0) \) for some \(\epsilon_0 > 0 \) we get connected set \(V \subset U \). It ends the proof. \(\square \)

Now we define map \(f : \mathcal{D} \to \mathcal{D} \) in the following way
(i) if \(n \) is even
\[f \left(\left(z_k^{(n)}, y \right) \right) = \begin{cases}
\left(z_{k+1}^{(n)}, \phi_n(y) \right) & \text{if } k = 1, 2, \ldots, L_n - 1, \\
\left(z_{L_n+1}^{(n+1)}, \frac{1}{2} \phi_n(y) \right) & \text{if } k = L_n.
\end{cases} \]
for \(y \in \left[\frac{3}{2^n+2}, \frac{1}{2^n} \right] \),
(ii) \[f \left((z_k^{(n)}, y) \right) = (\psi_n(y), 0) \quad \text{for } y \in \left[\frac{1}{2n+1}, \frac{3}{2n+1} \right], \]

(2) if \(n \) is odd

(i) \[f \left((z_{L_n+1-k}^{(n)}, y) \right) = \begin{cases} (z_{L_n-k}^{(n)}, \phi_n(y)) & \text{if } k = 1, 2, \ldots, L_n - 1, \\ (z_1^{(n+1)}, \frac{1}{2} \phi_n(y)) & \text{if } k = L_n. \end{cases} \]

for \(y \in \left[\frac{3}{2n+2}, \frac{1}{2n} \right] \),

(ii) \[f \left((z_k^{(n)}, y) \right) = \left(\psi_n(y), 0 \right) \quad \text{for } y \in \left[\frac{1}{2n+1}, \frac{3}{2n+1} \right], \]

(3) \[f \left((z_k^{(n)}, y) \right) = \pi(A_n, k) \]

for all \(y \in [0, 0] \) and any \(n \),

(4) \[f((x, 0)) = (x, 0) \quad \text{for all } x \in I, \]

where functions \(\phi_n, \psi_n \) and \(\hat{\psi}_n \) are increasing linear functions such that

\[
\phi_n \left(\left[\frac{3}{2n+2}, \frac{1}{2n} \right] \right) = \left[0, \frac{1}{2n} \right],
\]

\[
\psi_n \left(\left[\frac{1}{2n+1}, \frac{3}{2n+2} \right] \right) = \begin{cases} [z_k^{(n)}, z_{k+1}^{(n)}] & \text{if } k = 1, 2, \ldots, L_n - 1, \\ [z_{L_n+1}^{(n+1)}, z_{L_n+1}^{(n)}] & \text{if } k = L_n, \end{cases}
\]

\[
\hat{\psi}_n \left(\left[\frac{1}{2n+1}, \frac{3}{2n+2} \right] \right) = \begin{cases} [z_{L_n-k}^{(n)}, z_{L_n+1-k}^{(n)}] & \text{if } k = 1, 2, \ldots, L_n - 1, \\ [z_1^{(n+1)}, z_2^{(n+1)}] & \text{if } k = L_n. \end{cases}
\]

By \(I_k^n \) we denote the segment connecting points \((z_k^{(n)}, 0) \) and \(A_n, k \). Note that \(\text{diam } I_k^n = \frac{1}{2n} \) for all \(k \in \{1, 2, \ldots, L_n\} \).

Lemma 7.2. The map \(f \) is a continuous map on \(D \).

Proof. Let \(y \in D \) and \((y_n)_{n=1}^{\infty} \subset D \) be the sequence such that \(\lim_{n \to \infty} y_n = y \).

Let us consider the cases.

Case 1. Let \(y \in D \setminus (I \times \{0\}) \) i.e. \(y \in I_k^m \) for some \(m \in \mathbb{N} \) and \(k \in \{1, 2, \ldots, L_m\} \).

(1a) If we have that \(\rho(y_n, \pi(y_n)) > \frac{1}{2n+1} \) for all \(n \) then \(y_n \in \bigcup_{j \leq m} \bigcup_{i \leq L_j} I_j^n \). Since there are finitely many \(I_j^n \) we may assume that \(y_n \in I_j^n \) for some fixed \(j, r \) and all \(n \). But then \(r = m \) and \(j = k \) and by continuity of functions \(\phi_m, \psi_m \) and \(\hat{\psi}_m \) we get that \(f \) is continuous.
Figure 2. Sketch how the map f works

(1b) If $\rho(y, \pi(y)) \leq \frac{1}{2m+1}$. It means that there exists $t > m$ such that $y = (y_1, y_2) \in I^m_k \cap (I \times \left(\frac{1}{2^t}, \frac{1}{2^{t-1}}\right))$. Let us denote

$$\varepsilon_t = \min_{n \leq t+2} \min_{1 \leq l \leq L} \left\{ \left| \hat{\pi}(y) - \hat{\pi}(z_{j}^{(n)}) \right| : \hat{\pi}(y) \neq \hat{\pi}(z_{j}^{(n)}) \right\}$$

and

$$\delta_j = \left| y_2 - \frac{1}{2^j} \right|.$$

Now take

$$\varepsilon = \min \left\{ \frac{\varepsilon_t}{2}, \frac{\delta_{t-1}}{2}, \frac{\delta_{t+2}}{2} \right\}$$

and assume that $\rho(y_n, y) < \varepsilon$. We get that there exists $N \in \mathbb{N}$ such that for all $n > N$ we have $y_n \in I^m_k$ and

$$\text{diam}[y_n, \pi(y_n)] < \frac{1}{2m+1}$$

and therefore

$$\rho(f(y_n), f(y)) < \rho(y_n, y) \rightarrow 0$$

which proves that f is continuous.

Case 2. Let $y \in I \times \{0\}$ and $\rho(y_n, \pi(y_n)) < \frac{1}{2m+1}$ for all n.

(2a) If $f(y_n) = \pi(y_n)$ for all n then

$$\rho(f(y_n), f(y)) \leq \rho(\pi(y_n), y) < \rho(y_n, y) \rightarrow 0$$

so the f is continuous.

(2b) If $f(y_n) \neq \pi(y_n)$ for all n then $y_n \in I^r_j$ for some $r > 0$ and $j \in \{1, 2, \ldots, L_r\}$ and $\text{diam} I^r_j < \frac{1}{2^m}$. It means that for even n we have

$$f(y_n) \in I^r_{j+1}$$

or

$$f(y_n) \in \left[z_{j}^{(r)}, z_{j+1}^{(r)}\right]$$

or

$$f(y_n) \in I^r_{L_r+1}$$

for $j = L_r$.
or
\[f(y_n) \in \left[z_{r+1}^{(r)}, z_{r+2}^{(r)} \right] \]
and by the other hand if \(r \) is odd we have
\[f(y_n) \in I_{r-1} \]
or
\[f(y_n) \in \left[z_{j-1}^{(r)}, z_{j}^{(r)} \right] \]
or
\[f(y_n) \in I_{r+1}^{n+1} \text{ for } j = 1 \]
or
\[f(y_n) \in \left[z_{1}^{(r+1)}, z_{1}^{(r)} \right] . \]

Now we get
\[\rho(f(y_n), f(y)) \leq \rho(f(y_n), y_n) + \rho(y_n, y). \]
If \(f(y_n) \in I_{j+1} \) then
\[\rho(f(y_n), y_n) \leq \frac{2}{r} + \frac{1}{l_r+1} \leq \frac{3}{2r} < \frac{1}{2r-2}. \]
and if \(f(y_n) \in I_{L+1}^{r+1} \) or \(f(y_n) \in I_{1}^{r+1} \) we get that
\[\rho(f(y_n), y_n) \leq \frac{1}{2r} + \frac{1}{l_r+1} + \frac{1}{2r+1} \leq \frac{3}{2r} < \frac{1}{2r-2}. \]
If \(f(y_n) \in I \times \{0\} \) we get
\[\rho(f(y_n), y_n) \leq \frac{1}{2r} + \frac{1}{l_r+1} \leq \frac{1}{2r-1} < \frac{1}{2r-2}. \]

Now we have that
\[\rho(f(y_n), f(y)) \leq \rho(f(y_n), y_n) + \rho(y_n, y) < \frac{1}{2r-2} + \rho(y_n, y) \to 0 \]
because if \(n \) grows then \(r \) also grows. Indeed, by contradiction suppose that there exists \(r(n) \) and subsequence \(\{y_{n_k}\}_{k=1}^{\infty} \) such that \(y_{n_k} \in I_j \) for all \(k \). We get that \(y \in I_j \) and
\[\rho(f(y_{n_k}), \pi(y_{n_k})) < \frac{1}{2r+1} \]
and it implies that \(f(y_{n_k}) = \pi(y_{n_k}) \) which is contradiction with assumptions that \(f(y_n) \neq \pi y_n \) in this case. So, the proof of continuity of the map \(f \) is complete.

Lemma 7.3. Let \(x, y \in D \). If for every positive integer \(n \) points \(f^n(x), f^n(y) \) are not fixed points of \(D \) then
\[\lim_{n \to \infty} \rho(f^n(x), f^n(y)) = 0. \]
Proof. Without loss of generality we may assume that there are \(m, i \geq 0 \) and \(k \geq 0 \) such that \(y \in I_i^m \) and \(f^k(x) \in I_i^m \). For all \(N \) there exist \(s \) and \(m' > N \) such that

\[
f^s(y) \in I_{i+k}^{m'},
\]

and

\[
\text{dist} \left(I_{i+k}^{m'}, I_i^{m'} \right) < \frac{k}{l_{m'} + 1},
\]

for \(i, i + k \in \{1, 2, \ldots, L_{m'}\} \).

Now we have

\[
\rho(f^s(x), f^s(y)) \leq \text{diam} I_{i+k}^{m'} + \text{dist} \left(I_{i+k}^{m'}, I_i^{m'} \right) + \text{diam} I_i^{m'} \leq \frac{1}{2^{m'-1}} + \frac{k}{l_{m'} + 1}.
\]

Let choose \(r > s \) and assume that \(f^r(x) \in I_j^{m''} \) for some \(j \) and \(m'' > m' \). Let us consider the cases.

(a) If \(r \) is even and \(f^r(y) \in I_j^{m''} \) for \(j + k \leq L_{m''} \) or if \(r \) is odd and \(f^r(y) \in I_j^{m''} \) for \(j - k \geq 1 \) we get that

\[
\rho(f^r(x), f^r(y)) \leq \text{diam} I_j^{m''} + \text{dist} \left(I_j^{m''}, I_i^{m''} \right) + \text{diam} I_i^{m''} \leq \frac{1}{2^{m''-1}} + \frac{k}{l_{m''} + 1} \leq \frac{1}{2^{m'''-1}} + \frac{k}{l_{m'} + 1}.
\]

(b) If \(j + k > L_{m''} \) and \(r \) is even then \(f^r(y) \in I_{L_{m''}+1}^{m''+1} + L_{m''} - j - k \) and we have

\[
\rho(f^r(x), f^r(y)) \leq \text{diam} I_{L_{m''}+1}^{m''+1} + L_{m''} - j - k + \text{dist} \left(I_{L_{m''}+1}^{m''+1}, I_{L_{m''}+1}^{m''} \right) + \text{dist} \left(I_{L_{m''}+1}^{m''}, I_j^{m''} \right) + \frac{1}{2^{m''}} \leq \frac{1}{2^{m''}} + \frac{j + k - L_{m''}}{l_{m''} + 1} + \frac{L_{m''} - j}{l_{m''} + 1} + \frac{1}{2^{m''}} \leq \frac{1}{2^{m''-1}} + \frac{k}{l_{m''} + 1} \leq \frac{1}{2^{m'''-1}} + \frac{k}{l_{m'} + 1}.
\]

(c) If \(f^r(y) \in I_{k-j}^{m''-1} \) for \(j - k < 1 \) and \(r \) is odd then in the similar way as above we get

\[
\rho(f^r(x), f^r(y)) \leq \text{diam} I_{k-j}^{m''-1} + \text{dist} \left(I_{k-j}^{m''-1}, I_j^{m''} \right) + \text{diam} I_j^{m''} \leq \frac{1}{2^{m''-1}} + \text{dist} \left(I_{k-j}^{m''-1}, I_j^{m''} \right) + \frac{1}{2^{m''}} \leq \frac{1}{2^{m''-1}} + \frac{k - j}{l_{m''-1} + 1} + \frac{j}{l_{m''-1} + 1} + \frac{1}{2^{m''}} \leq \frac{1}{2^{m'''-2}} + \frac{k}{l_{m'''-1} + 1} \leq \frac{1}{2^{m'''-1}} + \frac{k}{l_{m'} + 1}.
\]

Finally we get that for all \(r \geq s \)

\[
\rho(f^r(x), f^r(y)) \leq \frac{1}{2^{m'''-1}} + \frac{k}{l_{m'} + 1}.
\]
but \(m' \) can be arbitrarily large, thus
\[
\lim_{r \to \infty} \rho(f^r(x), f^r(y)) = 0
\]
and we get that \((x, y) \in \mathcal{D} \times \mathcal{D}\) is asymptotic. \(\square \)

Lemma 7.4. Let \(f : \mathcal{D} \to \mathcal{D} \) then there exists the sequence \((w_n)_{n=0}^{\infty}\) such that
\[
\lim_{n \to \infty} w_n = 0
\]
and for each even \(n \) and for \(j \in \{1, 2, \ldots, m_n + 1\} \)
\[
\rho\left(f^{l_n + j}\left(\frac{1}{2}, 1\right), (1, 0)\right) \leq w_n
\]
and for odd \(n \) we have
\[
\rho\left(f^{l_n + j}\left(\frac{1}{2}, 1\right), (0, 0)\right) \leq w_n.
\]

Proof. We claim that for even \(k \) we have
\[
\text{diam}\left(z^{(k)}_L, 1\right) \leq \frac{1}{l_k + 1}
\]
and for odd \(k \)
\[
\text{diam}\left(0, z^{(k)}_1\right) \leq \frac{1}{l_k + 1}.
\]
We will prove the claim by induction on \(k \). It is easy check that for \(k = 0 \) the inequality holds. If \(k = 1 \) then by (7.2) we have
\[
\text{diam}\left(0, z^{(1)}_1\right) \leq \frac{1}{m_0 + 1} \cdot \text{diam}\left(0, z^{(0)}_1\right) \leq \frac{1}{m_0 + 1} \cdot \frac{1}{l_0 + 1} = \frac{1}{l_1 + 1} \leq \frac{1}{4}.
\]
Now, assume that the claim holds for some even \(k > 0 \). By (7.1) we get that
\[
\text{diam}\left(z^{(k+2)}_{L_{k+2}}, 1\right) \leq \frac{1}{m_{k+2} + 1} \cdot \text{diam}\left(z^{(k+1)}_{L_{k+1}}, 1\right) \leq \frac{1}{m_{k+2} + 1} \cdot \frac{1}{m_{k+1} + 1} \cdot \text{diam}\left(z^{(k)}_L, 1\right)
\]
Now by induction assumptions on \(\text{diam}\left(z^{(k)}_L, 1\right)\) and property that \(L_{k+1} + l_k = l_{k+1} \) we have
\[
\text{diam}\left(z^{(k+2)}_{L_{k+2}}, 1\right) \leq \frac{1}{(m_{k+2} + 1)(m_{k+1} + 1)} \cdot \frac{1}{l_k + 1} = \frac{1}{m_{k+2} + 1} \cdot \frac{1}{m_{k+1} + 1} \cdot \frac{1}{l_k + 1} \leq \frac{1}{m_{k+2} + 1} \cdot \frac{1}{m_{k+1} + 1} \cdot \frac{1}{l_k + 1} = \frac{1}{l_{k+2} + 1}.
\]
So this case is proved. The case that \(k \) is odd is proved in the same way.

Note that
\[
\pi\left(f^{l_n + j}\left(\frac{1}{2}, 1\right)\right) \in \left(z^{(n)}_{L_n}, 1\right) \times \{0\} \subset I \times \{0\}
\]
for \(j = 1, \ldots, m_{n+1} \) and \(n \) even. Now we have
\[
\rho \left(f^{l_n+j} \left(\frac{1}{2}, 1 \right), (1,0) \right) \leq \rho \left(f^{l_n+j} \left(\frac{1}{2}, 1 \right), \pi \left(f^{l_n+j} \left(\frac{1}{2}, 1 \right) \right) \right) + \rho \left(\pi \left(f^{l_n+j} \left(\frac{1}{2}, 1 \right) \right), (1,0) \right) \leq \frac{1}{2^n} + \text{diam} \left(z^{(n)}_{1_n}, 1 \right) \leq \frac{1}{2^n} + \frac{1}{l_n + 1}.
\]
When \(n \) is odd we have that
\[
\pi \left(0, f^{l_n+j} \left(\frac{1}{2} \right) \right) \in \left(0, z_1^{(n)} \right) \times \{0\} \subset I \times \{0\}
\]
for all \(j \in \{1, 2, \ldots, m_{n+1} \} \) and
\[
\rho \left(f^{l_n+j} \left(\frac{1}{2}, 1 \right), (0,0) \right) \leq \frac{1}{2^n} + \frac{1}{l_n + 1}.
\]
It is enough to take
\[
w_n = \frac{1}{l_n + 1} + \frac{1}{2^n}
\]
for all \(n \in \mathbb{N} \cup \{0\} \).

Lemma 7.5. The map \(f : \mathbb{D} \to \mathbb{D} \) has DC1 pair.

Proof. We will show that points \(\left(\frac{1}{2}, 1 \right) \) and \((1,0) \) form a (DC1) pair i.e.
\[
\liminf_{n \to \infty} \frac{1}{n} \left| \left\{ 0 \leq m \leq n - 1 : \rho \left(f^m \left(\frac{1}{2}, 1 \right), (1,0) \right) < s \right\} \right| = 0
\]
for some \(s > 0 \) and
\[
\limsup_{n \to \infty} \frac{1}{n} \left| \left\{ 0 \leq m \leq n - 1 : \rho \left(f^m \left(\frac{1}{2}, 1 \right), (1,0) \right) < t \right\} \right| = 1
\]
for all \(t > 0 \).

From lemma 7.4 we have for each even \(n \) and for \(j \in \{1, 2, \ldots, m_{n+1} \} \)
\[
\rho \left(f^{l_n+j} \left(\frac{1}{2}, 1 \right), (1,0) \right) \leq w_n
\]
and for all sufficiently large odd \(n \) we have
\[
\rho \left(f^{l_n+j} \left(\frac{1}{2}, 1 \right), (1,0) \right) > \frac{1}{2}.
\]

Now if we fix sufficiently large \(N = N(t) \in \mathbb{N} \) then for all odd \(n \geq N \) inequality holds
\[
\left| \left\{ 0 \leq j \leq l_n + m_{n+1} - 1 : \rho \left(f^j \left(\frac{1}{2}, 1 \right), (1,0) \right) < w_N < t \right\} \right| \geq \frac{l_n + m_{n+1}}{t_n + m_{n+1}} \geq 1 - \frac{l_n}{m_{n+1}} \geq 1 - \frac{l_n}{2^n l_n} = 1 - \frac{1}{2^n} \to 1.
\]
To show the second property of (DC1) let \(s = \frac{1}{2} \) and then for all even \(n \geq N \) we get
\[\left| \{ 0 \leq j \leq l_n + m_{n+1} - 1 : \rho \left(f^j \left(\frac{1}{n}, 1 \right), (1, 0) \right) < \frac{1}{2n} \} \right| \leq \]
\[\leq 1 - \frac{m_{n+1}}{l_n + m_{n+1}} \leq \frac{l_n}{l_n + m_{n+1}} \leq \frac{l_n}{2^nl_n} = \frac{1}{2^n} \to 0. \]

It completes the proof. \qed

Theorem 7.6. There exists a continuous self-map \(f \) of dendrite such that:

1. \(f \) has DC1 pair,
2. \(f \) does not have an infinite LY-scrambled set.

Proof. From lemma 7.5 we have that \(f \) has (DC1) pair and from Lemma 7.3 we get that there is no \((x, y, z) \) scrambled set. Indeed, let assume that \(f^n(x) \notin I \) for all \(n \in \mathbb{N} \). Now, if \((x, y) \) and \((x, z) \) are a LY-pairs then exist \(n, m \in \mathbb{N} \) such that \(f^n(y) \in I \) and \(f^m(z) \in I \). We get that \((y, z) \) is not LY-pair because if \(f^n(y) \neq f^m(z) \) then the distance between them is always positive and by the other hand if \(f^n(y) = f^m(z) \) then the distance is always zero. \qed

References

[1] J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley & B. Trotta *Dynamics of spacing shifts*, Discrete Contin. Dyn. Sys., 33 (2013), 4207–4232.

[2] F. Blanchard, E. Glasner, S. Kolyada & A. Maass *On Li–York pairs*, J. Reine Angew. Math. 547 (2002), 51–68.

[3] L. S. Block, W. A. Coppel, *One-Dimensional Dynamics*, Lecture Notes in Math., Vol. 1513, Springer-Verlag, Berlin, 1992.

[4] R. Bowen, *Entropy for group endomorphisms and homogeneous spaces*, Trans. Amer. Math. Soc. 153 (1971), 401–414.

[5] D. Arevalo, W. J. Chaaratonik, P. Pellicer Covarrubias & L. Simón *Dendrites with a closed set of end points*, Topology Appl. 115 (2011), 1–17.

[6] E. I. Dinaburg, *A correlation between topological entropy and metric entropy*, Dokl. Akad. Nauk. SSSR 190 (1970), 19–22.

[7] F. Falinowski, M. Kulczycki, D. Kwietniak & J. Li *Two results on entropy, chaos and independence in symbolic dynamics*, Discrete and Contin. Dyn. Syst. Ser. B, 20 no. 10 (2015), 3487–3505.

[8] H. M. Gehman, *Concerning the subsets of a plane continuous curve*, Ann. Math. 27 (1925), 29–46.

[9] J. L. G. Guirao, M. Lampart *Relations between distributional, Li-Yorke and \(\omega \)-chaos*, Chaos Solit. Fract. 28 (2006), 788–792.

[10] Z. Kočan, *Chaos on one-dimensional compact metric spaces*, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, article id: 125025 (2012).

[11] Z. Kočan, Z. Kornecká-Kurková & M. Málek *Entropy, horseshoes and homoclinic trajectories on tree, graphs and dendrites*, Ergod. Th. Dyn. Sys. 31, (2011) 165–175, Erratum: 177–177.

[12] D. Kwietniak *Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts*, Discrete Contin. Dyn. Syst. 33, (2013), no. 6, 2451–2467.

[13] K. Lau and A. Zame *On weak mixing of cascades*, Math. Systems Theory 6, (1972/73), 307–311.

[14] S. H. Li, *\(\omega \)-chaos and topological entropy*, Trans. Amer. Math. Soc. 339 (1993), 243–249.

[15] T. Y. Li, J. Yorke, *Period three implies chaos*, Amer. Math. Monthly 82 (1975), 985–992.

[16] J. F. Liao, Q. Fan *Minimal subshift which display Schweizer - Smítal chaos and have zero topological entropy of the interval*, Sci. in China Ser. A 41 (1998), 33–38.

[17] Málek, Michal; Oprocha, Piotr. On variants of distributional chaos in dimension one. Dyn. Syst. 26 (2011), no. 3, 273–285.

[18] J. Mycielski, *Independent sets in topological algebras*, Fund. Math. 55 (1964), 137–147.
[19] P. Oprocha, *Minimal Systems and Distributionally Scrambled Sets*, Bull. Soc. math. France **140** (3) (2012), 401–439.
[20] R. Pikula, *On some notions of chaos in dimension zero*, Colloq. Math. **107**, (2007), 167–177.
[21] B. Schweizer, J. Smítal, *Measures of chaos and spectral, decomposition of dynamical systems on the interval*, Trans. Amer. Math. Soc. **334** (1994), 737–754.
[22] J. Smítal and M. Štefánková, *Omega-chaos almost everywhere*, Discrete Contin. Dyn. Sys. **9** (2003), 1323–1327.

(T. Drwięga) AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland

E-mail address: drwiega@agh.edu.pl