An Abstraction-Based Framework for Neural Network Verification

Guy Katz

SAT/SMT/AR/CP Summer School
August 2022
Acknowledgements

- Based on CAV 2020 and SEFM 2022 papers

- Joint work with:

Yizhak Elboher Justin Gottschlich Elazar Cohen

An Abstraction-Based Framework for Neural Network Verification, Elboher, Gottschlich & Katz, CAV 2020
Neural Network Verification using Residual Reasoning, Elboher, Cohen & Katz, SEFM 2022
Recall: DNN Verification

- Given: network N, properties P and Q

- Q is the *negation* of the desired property
 - SAT: the discovered point is a counterexample
 - UNSAT: property holds
DNN Verification Complexity

- Many approaches have been proposed
 - Complete and incomplete

- Everyone is struggling with network sizes

- Problem is NP complete:
 - n neurons lead to 2^n operations

- So what can we do?
Abstraction

- Key idea: use a smaller network

Input Space

Output Space

P

N

$ar{N}$

Q
But why is this Sound?

- Network \overline{N} is related to N
 - It is an over-approximation

- Common theme in verification

- If $\langle P, \overline{N}, Q \rangle$ is UNSAT, then $\langle P, N, Q \rangle$ is also UNSAT

- And what if $\langle P, \overline{N}, Q \rangle$ is SAT?
 - Ambiguous
 - We will handle this case later
Over-Approximations

Input Space

Output Space

P S Q

\bar{R} R
Over-Approximations (cnt’d)

- Over-approximation has **all behaviors** of original system

- It is **simpler**, and easier to verify

- If over-approximation is safe, so is original
 - If over-approximation query is UNSAT, original query also UNSAT

- So how do we over-approximate neural networks?
Output Assumption

- Assume, without loss of generality:
 - Network N has single output, y
 - Output property $Q: y > c$

- Over-approximation network \overline{N}:

$$\forall x. \quad \overline{N}(x) \geq N(x)$$

- If over-approximate query is UNSAT, $\forall x. \overline{N}(x) \leq c$
 - And hence, $N(x) \leq c$
 - So original query also UNSAT
Constructing \overline{N}

- **Idea:** merge two neurons into one
 - And repeat

- **Input weight:** \text{max}
- **Output weight:** \text{sum}
- **Example:** $N(1) = 17 \leq \overline{N}(1) = 32$
Constructing \overline{N} (cnt’d)

- Why did it work?

\[
\bar{y} = (c + d) \cdot \text{ReLU}(\max(a, b) \cdot x)
\]

\[
= c \cdot \text{ReLU}(\max(a, b) \cdot x) + d \cdot \text{ReLU}(\max(a, b) \cdot x)
\]

- Works because:
 1. Weights c and d were positive
 2. We wanted \bar{y} to increase
Constructing \overline{N} (cnt’d)

- In order to merge two neurons:
 1. All outgoing edges must have same sign
 2. Next-layer neurons either need to increase, or decrease

- Four categories of neurons: $\{pos, neg\} \times \{inc, dec\}$

- Neurons from same category can be merged

- Input network not guaranteed to meet requirements
 - So we will preprocess them!
Preprocessing

- Part 1: all outgoing edges need to have same sign
 - We will double the network size
Preprocessing (cnt’d)

\[
\begin{align*}
 v_1 & \quad 1 \\
 v_1^+ & \quad 2 \\
 v_1^- & \quad -3 \\
 v_4 & \quad 1 \\
 v_5 & \quad 2 \\
 v_6 & \quad -3
\end{align*}
\]
Preprocessing (cnt’d)

- Assume all neurons are pos/neg

- Now classify as inc/dec
 - Inc: if neuron value increases, output neuron increases
 - Dec: if neuron value decreases, output neuron increases

- Start with output, work backwards

- Double neurons again, if needed
Preprocessing (cnt’d)

- All neurons classified as pos/neg, inc/dec
Preprocessing: Summary

- Mark output neuron as inc

- From the last-before-layer, **backwards:**
 - If neuron has positive and negative outgoing weights, double it (pos/neg)
 - If neuron is connected to inc and dec neurons, double it (inc/dec)

- Preprocessed network **completely equivalent** to original
 - Up to 4 times larger

- Wlog, assume input network is already preprocessed
Abstraction Operator

- Recall the pos/inc case:

$$
\bar{y} = (c + d) \cdot \text{ReLU}(\max(a, b) \cdot x)
$$

$$
= c \cdot \text{ReLU}(\max(a, b) \cdot x) + d \cdot \text{ReLU}(\max(a, b) \cdot x)
$$

$$
\geq c \cdot \text{ReLU}(a \cdot x) + d \cdot \text{ReLU}(b \cdot x)
$$

$$
= y
$$
Abstraction Operator (cnt’d)

- **Pos/dec** case:

\[
\begin{align*}
\bar{y} &= (c + d) \cdot \text{ReLU}(\min(a, b) \cdot x) \\
&= c \cdot \text{ReLU}(\min(a, b) \cdot x) + d \cdot \text{ReLU}(\min(a, b) \cdot x) \\
&\leq c \cdot \text{ReLU}(a \cdot x) + d \cdot \text{ReLU}(b \cdot x) \\
&= y
\end{align*}
\]
Current Abstraction Algorithm

- (Preprocess network)

- Apply abstraction to saturation
 - Each hidden layer has 4 nodes at most

- Verify abstract network \overline{N}
 - If UNSAT, original query is UNSAT
 - But what if SAT?
Coarse Abstractions

- Abstraction to saturation takes us to one extreme
 - Will likely be too coarse
Coarse Abstractions (cnt’d)

- Suppose we need to prove that $N(x) \geq 5$ is UNSAT

- We create abstract network, and get SAT
 - $\overline{N}(x_0) = 7$
 - But $N(x_0) = 3$
 - Spurious counter-example
 - Abstract network not suitable

- Create a slightly less abstract network, \overline{N}'
 - $\overline{N}'(x_0) = 4$
 - Maybe this is a better network to work with
Refinement

- The opposite of abstraction
 - Split previously-abstracted nodes

- Still an abstraction of the original network
 - But less abstract

- More formally:
 - Start with $N(x) \leq \bar{N}(x)$
 - Now: $N(x) \leq \bar{N}'(x) \leq \bar{N}(x)$
Refinement Operator

- Maintain a mapping from neuron to abstract neuron
- Edge weights re-computed

\[v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \tilde{v}_2 \rightarrow \tilde{v}_1 \]
Verification Algorithm

1. Generate initial abstraction \overline{N}
2. Verify \overline{N}
3. If UNSAT
 1) Stop and return UNSAT
4. If SAT
 1) Obtain counter example x
 2) Check whether x is a counter example for the original N
 3) If yes, stop and return SAT
 4) Else, refine \overline{N} and go to step 2

- The algorithm is guaranteed to converge
 - Sound and complete if underlying verifier is sound and complete
Which Node to Refine?

- In abstraction, we abstract to saturation

- What about refinement?
 - Want to refine as little as possible
 - But also want to rule out the spurious counter example x

- We will combine two criteria:
 - Weight-based
 - Counter-example guided
Weight-Based Refinement

- Look for coarse min/max abstractions
- Use refinement to make them more precise
Is Weight-Based Enough?

- It’s definitely a good start

- But, it doesn’t consider x

- Solution: maximize $|w_{max} - w_{min}| \cdot v(x)$

- Counter-example guided abstraction refinement
 - CEGAR
The ACAS Xu System

- Airborne Collision-Avoidance System for drones
- A new standard being developed by the FAA

Produce advisories:
1. Strong left (SL)
2. Weak left (L)
3. Strong right (SR)
4. Weak right (R)
5. Clear of conflict (COC)

- FAA considering an implementation that uses 45 deep neural networks
 - But wants to verify them!
The ACAS Xu System (cnt’d)

- Verified arbitrary properties of ACAS Xu
 - Similar to the ones specified by the FAA

![Graph showing sum query times for Marabou with abstraction]
The ACAS Xu System (cnt’d)

- 90 experiments total, 20 hour timeout

- Abstraction solved 58, vanilla just 35
 - Median query time for abstraction: 1045 seconds. Vanilla: 63671
 - Average final network size for abstraction: 385 nodes
 - Original networks: 310
 - But still faster
Adversarial Inputs

- Slight input perturbations cause misclassification

\[\text{Image} + \epsilon \times \text{Noise} = \text{Image} \]

- Can use verification to prove the absence of such inputs

Goodfellow et al., 2015
Adversarial Robustness

- Verified adversarial robustness properties of ACAS Xu
Adversarial Robustness (cnt’d)

- 900 experiments total, 20 hour timeout

- Abstraction solved 805, vanilla solved 893
 - Median query time for abstraction: 0.026 seconds. Vanilla: 15.07
 - 99% reduction in time
 - Average final network size for abstraction: 104.4 nodes
 - Original networks: 310
 - Much smaller
Residual Reasoning

- Common CEGAR work-flow:
 - Generate initial abstraction
 - Verify
 - Obtain spurious counter-example
 - Refine

- **Key observation**: each verification call is **oblivious** of the past

- Idea: **re-use** some information to expedite the process
Recap: Case Splitting

- Case splitting approach:
 - Fix *each* ReLU to a linear segment (active or inactive)
 - Solve the resulting linear problem
 - If property is violated for this configuration, stop
 - But if property holds, backtrack and try other option

\[
a + b + c = 5, b > c
\]

- State explosion: 300 ReLUs $\rightarrow 2^{300}$ checks
Remembering “Bad” Splits

- Observe neurons v_1, v_2 in abstract network
 - Associate v with Boolean variables l_{v_1}, l_{v_2}

- Consider the following scenario:
 - Verifier splits on v_1, v_2, sets both to inactive
 - $l_{v_1} \leftarrow F$, $l_{v_2} \leftarrow F$
 - Hits UNSAT
 - Then explores other splits, produces spurious SAT assignment
 - Performs refinement on v_2, splits it to \bar{v}_2^1, \bar{v}_2^2
Remembering “Bad” Splits (cnt’d)

- Already know: in \overline{N}, $\langle l_1 \lor l_2 \rangle$ is implied by the formula
 - Like learned clauses in SAT solving

- But what happens when we switch to $\overline{N'}$?
 - Can learn: $\langle l_1 \lor l_1^1 \lor l_2^2 \rangle$
 - Under some constraints…
Residual Reasoning Workflow

- Form of query: \(\langle P, N, Q, \Gamma \rangle \)
 - \(\Gamma \) is a **context**:
 - CNF formula, literals correspond to activation functions
 - \(\Gamma \) is implied by \(\langle P, N, Q \rangle \): satisfying assignments must satisfy \(\Gamma \)

- A solver can:
 - **Store information** in \(\Gamma \)
 - Record any list of splits that led to an UNSAT branch
 - **Read information** from \(\Gamma \) and perform unit-propagation
 - If \((v_1 \lor v_2) \in \Gamma \) and \(v_1 \) already false, set \(v_2 \) to true without splitting
 - Can implement this efficiently with **watch literals**
High-level Workflow
Limitations and Overhead

- The goal is to prevent case-splitting, but there are costs
 - Actual overhead of populating and reading from Γ
 - Need to instrument the solver
 - Unlike in previous abstraction/refinement work
 - Extra book-keeping when performing refinement
 - E.g., rename l_2 in Γ to $l_2^1 \lor l_2^2$

- Theoretical foundation: need to prove that clauses added to Γ are sound
 - Depends on abstraction scheme in use
 - Quite complex – see paper
Experiments on ACAS Xu

- AR^4: Abstraction-Refinement with Residual Reasoning for Reluplex
 - Implemented on top of the Marabou tool
 - Evaluated on ACAS Xu

	Adversarial	Safety	Total (Weighted)
	AR^4	AR^4	AR^4
Timeouts	95/900	7/180	102/1080
Instances solved more quickly	160	28	188
Uniquely solved	26	2	28
Visited tree states	6.078	3.569	5.634
Avg. instrumentation time	91.54	36.5	82.367
Next Steps

- Better initial abstraction (fewer refinement steps)
- Better refinement: split neuron into arbitrary subsets
- Better residual reasoning: populate Γ with more clauses
Thank You!

Questions