Newell, N., Little, J. P., Christou, A., Adams, M. A., Adam, C. J., & Masouros, S. D. (2017). Biomechanics of the human intervertebral disc: a review of testing techniques and results. Journal of the Mechanical Behavior of Biomedical Materials, 69, 420-434. DOI: 10.1016/j.jmbbm.2017.01.037

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1016/j.jmbbm.2017.01.037

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at http://www.sciencedirect.com/science/article/pii/S1751616117300449. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Biomechanics of the human intervertebral disc: A review of testing techniques and results

N. Newellaba, JP Littletb, A. Christoua, MA Adamsd, CJ Adamb, SD Masourosa

a Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
b Paediatric Spine Research Group, IHBI at Centre for Children’s Health Research, Queensland University of Technology, Brisbane, Australia
c Centre for Applied Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, United Kingdom

A R T I C L E I N F O

Keywords:
Intervertebral disc
Mechanical testing
Anulus fibrosus
Nucleus pulposus
Endplate
Material properties

A B S T R A C T

Many experimental testing techniques have been adopted in order to provide an understanding of the biomechanics of the human intervertebral disc (IVD). The aim of this review article is to amalgamate results from these studies to provide readers with an overview of the studies conducted and their contribution to our current understanding of the biomechanics and function of the IVD. The overview is presented in a way that should prove useful to experimentalists and computational modellers. Mechanical properties of whole IVDs can be assessed conveniently by testing ‘motion segments’ comprising two vertebrae and the intervening IVD and ligaments. Neural arches should be removed if load-sharing between them and the disc is of no interest, and specimens containing more than two vertebrae are required to study ‘adjacent level’ effects. Mechanisms of injury (including endplate fracture and disc herniation) have been studied by applying complex loading at physiologically-relevant loading rates, whereas mechanical evaluations of surgical prostheses require slower application of standardised loading protocols. Results can be strongly influenced by the testing environment, preconditioning, loading rate, specimen age and degeneration, and spinal level. Component tissues of the disc (anulus fibrosus, nucleus pulposus, and cartilage endplates) have been studied to determine their material properties, but only the anulus has been thoroughly evaluated. Animal discs can be used as a model of human discs where uniform non-degenerate specimens are required, although differences in scale, age, and anatomy can lead to problems in interpretation.

1. Introduction

Intervertebral discs (IVDs) are pads of fibrocartilage which lie between the vertebrae of the spine. They allow the vertebral column to bend and twist (Bogduk, 2005; Humzah and Soames, 1988), and distribute compressive loading on the adjacent vertebral bodies (Adams and Roughley, 2006). The mechanical properties of discs are important because human lumbar IVDs are often physically disrupted (Vernon-Roberts et al., 1997), which may give rise to degenerative changes (Adams and Dolan, 2012; Adams and Roughley, 2006; Ferguson and Steffen, 2003) and to chronic back pain (Cheung et al., 2009; de Schepper et al., 2010). Accurate mechanical characterisation of the IVD is required to analyse injury mechanisms, and to understand how ageing and degeneration can degrade the material properties of a disc’s component tissues (Ferguson and Steffen, 2003; Shan et al., 2015; Vernon-Roberts and Pirie, 1977), increasing vulnerability to injury. Other major motivations to study disc mechanics are to develop and test surgical implants such as prosthetic intervertebral discs (Cunningham et al., 2003; Lee and Goel, 2004; Lemaire et al., 1997), and to obtain accurate material properties for input into finite element models of the spine (Schmidt et al., 2013). A focus has also been on high strain-rate injuries, for example vehicle accidents, airplane ejections, and blast-related events (Panzer et al., 2011; Yoganandan et al., 1989).

The purpose of this article is to present our current understanding of the mechanical behaviour of the IVD, evaluate the methods used to test the IVD and its component tissues, and summarise the results of such tests in a manner that is useful to other experimentalists and computational modellers. The focus of the review is adult human lumbar discs. The very large number of studies concerning the human IVD poses a challenge of scale when conducting a review of this nature, and so for reasons of brevity we chose not to compare human and animal discs. However, we believe that studying animal tissues, which are often uniform and non-degenerated, can help in understanding how aspects of testing techniques (such as speed of loading, or complex loading) influence the results of experiments on human tissue, and for
this reason some data from animal studies are included here. Cadaveric discs remain the closest available representation of living human discs, and so results from cadaveric studies can most easily be translated into the clinical setting. Only meso- or macro-scale tests are considered, rather than nano- or molecular level tests.

2. Disc composition and functional anatomy

A motion segment consists of two vertebrae and an IVD (Fig. 1). The IVD has three main components (Fig. 2): a soft, deformable, nucleus pulposus (NP), which is surrounded by the fibrous concentric layers of the anulus fibrosus (AF), and bonded above and below to adjacent vertebral bodies (VBs) by the thin layers of the cartilaginous end plates (CEPs). Lumbar IVDs are the largest avascular organs in the human body. Each of the three component tissues will be considered in turn.

2.1. Nucleus pulposus (NP)

The NP is a gelatinous structure that accounts for 40–50% of the volume of the adult disc (Bayliss and Johnstone, 1992; Iatridis et al., 1996; Pooni et al., 1986) and 25–50% of the transverse cross-sectional area (Farfan et al., 1970; Nachemson, 1966; Perey, 1957). The NP has such a high water content that it exhibits a hydrostatic pressure which increases in response to compressive loading (Keyes and Compere, 1932; McNally and Adams, 1992), and this pressure generates tension in the surrounding AF (Nachemson, 1963). Its main constituents are proteoglycan, collagen, and water (Antoniou et al., 1996). Proteoglycan accounts for 35–65% of the dry weight of the NP, and is important for binding water into the tissue (Dickson et al., 1967; Iatridis et al., 1996; McDevitt, 1988). Fine collagen type II fibrils, which account for 5–20% of dry weight, provide a loose, 3-dimensional fibre network, which holds the nucleus together (Eyre, 1988; Inoue and Takeda, 1975). The remainder of the dry weight of the NP is non-collagenous proteins and elastin (Eyre, 1988). NP water content decreases with age, from approximately 90–70% from the ages of 1–80 years old (Antoniou et al., 1996; Gower and Pedrini, 1969; Kraemer et al., 1985), reflecting a similar decrease in proteoglycans.

In a healthy lumbar disc, in vivo pressures in the nucleus are between 460 and 1330 kPa in the seated position, 500 and 870 kPa in the standing position, and 91 and 539 kPa when lying either prone or supine (Nachemson and Morris, 1964, 1963; Sato et al., 1999; Wilke et al., 1999). The highest pressure in the nucleus (2300 kPa) was recorded in a standing subject who was flexing forwards holding a 20 kg mass (Wilke et al., 1999).

2.2. Anulus fibrosus (AF)

The AF is made up of 15–25 concentric layers – the lamellae - which are approximately 0.05–0.5 mm thick, of increasing thickness from outer to inner (Cassidy et al., 1989; Inoue and Takeda, 1975; Marchand and Ahmed, 1990). Approximately 48% of the lamellar layers are circumferentially incomplete and the percentage of incomplete layers increases with age (Marchand and Ahmed, 1990). Each layer consists of coarse and strong collagen type I fibre bundles, as in tendon, with their orientation alternating between ±25–45° in relation to the transverse plane (Fig. 2c). The angle of inclination increases towards the centre of the disc (Cassidy et al., 1989; Horton, 1958; Hsu and Setton, 1999; Marchand and Ahmed, 1990; Pooni et al., 1986). A trans-lamellar, collagen-based bridging network provides shear resistance between adjacent lamellae (Adam et al., 2015; Melrose et al., 2008; Pezowicz et al., 2006; Schollum et al., 2008; Yu et al., 2007, 2005). The complex arrangement of collagen fibres in the AF enables it to develop tensile, ‘hoop’ – or circumferential – stress due to the pressure in the nucleus.

In the healthy IVD, the AF contains 65–70% water. Dry weight is approximately 20% proteoglycan, 50–70% collagen, and 2% elastin.
3. Factors that can influence the spine’s mechanical properties

3.1. Specimen harvesting and storage

Ideally, specimens will be harvested fresh immediately prior to testing. It is, however, common practice for specimens to be deep frozen for various amounts of time before testing. Generally, a single freeze-thaw cycle has little effect on the pressure in the NP, the stiffness or creep behaviour of the IVD (Dhillon et al., 2001; Nachemson, 1960; Panjabi et al., 1985; Smeathers and Joanes, 1988), and on the tensile behaviour of small samples of AF (Galante, 1967). After several freeze-thaw cycles, however, significant differences in joint flexibility can appear (Tan and Uppuganti, 2012). A number of animal studies have found significant mechanical differences between fresh and fresh-frozen IVDs (Bass et al., 1997; Callaghan and McGill, 1995; Sunni et al., 2014), but this may be attributable to the very high water content of young animal IVDs (Bass et al., 1997). To the authors’ knowledge, the effects of precise freezing temperature and duration on the behaviour of the IVD have not been investigated.

3.2. Testing environment

Temperature and hydration should be controlled to replicate the physiological environment. At 37 °C, compressive creep is approximately 10% more than at room temperature (Koeller et al., 1986), and immersion in fluid reduces an IVD’s stiffness in torsion, axial compression, and lateral bending by ~20–30% (Costi et al., 2002), possibly because of changes in inter-lamellar friction and/or hydraulic permeability. Specimen hydration during testing can be maintained by: 1) spraying water at regular intervals, 2) wrapping in saline soaked gauze, 3) testing in a humidity chamber, or 4) immersing in a saline bath. The last technique can cause problems, because cadaveric IVDs will swell by 20% if stored unloaded in a wet environment (McMillan et al., 1996), despite tension in the ligamentum flavum, which generates a pressure in the NP of approximately 70 kPa (Heuer et al., 2007; Nachemson and Evans, 1968). In vivo, there is a corresponding diurnal variation in hydration (and height) of the IVD of approximately 20% (Botsford et al., 1994). To allow for this, cadaveric specimens are often creep-loaded prior to testing to return the hydration of the IVD to within the physiological range (Adams, 1995; Pfaster et al., 1997; Race et al., 2000). Phosphate-buffered saline (PBS) with an osmolarity of 0.15 M achieves a stable tissue hydration ex vivo (Ebara et al., 1996), with IVD compressive stiffness increasing at higher osmolality (Bezci et al., 2015).

3.3. Strain rate, preload, and preconditioning

Strain rate affects the mechanical behaviour of the viscoelastic IVD (Holzapfel et al., 2005). Generally, the quicker an IVD is compressed or rotated, the stiffer it becomes (Costi et al., 2008; Kemper et al., 2007; Smeathers and Joanes, 1988; Yingling et al., 1997). The non-linear properties of a disc mean that stiffness also increases if a compressive preload is applied prior to another mode of loading (Janevic et al., 1991), so it is usual to apply a compressive preload to simulate superincumbent body weight during testing. In multisegmental specimens – which are prone to buckling – a preload of up to 1.2 kN (depending on the segments that are being tested) is often applied as a
Table 1
Overview of human axial IVD compression tests. Where numerical values were lacking, estimates have been taken from figures. Where healthy and degenerate discs have been tested, data from the healthy discs are recorded. Where there was more than one level of preload, data refer to the largest. Incremental loading refers to forces applied in discrete steps. *Only specimens tested in axial compression are included. **Maximum loads and displacements are taken from the static compression tests, not the fatigue tests. ***A compressive preload was only applied for the dynamic tests in this study. Maximum load and displacement are taken from static tests. Minimum age was between 0 and 10 years but 10 years was reported here. +Preconditioned to a displacement of 0.5 mm rather than a load, therefore data not presented. ++Compressive preload of 0.4 MPa.

Study	Type of test	Specimen	Spinal level	Rate	Test environment	Precondition/preloading	Results														
	Incremental loading	VB-disc	VB only	Cervical	Thoracic	Lumbar	Quasistatic	Dynamic	Saline bath	Humidity chamber	37°C Air	Saline soaked gauze	Compressive preload (kN)	# Preconditioning cycles	Preconditioning load (kN)	Number of specimens	Age range	Max. load (kN)	Tested to failure?	Max. axial disp. (mm)	
Virgin (1951)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	51	–	4.4	☐	1.9
Ingelmark and Ekholm (1952)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	39	21–90	0.6	☐	0.7
Hirsch and Nachemson (1954)***	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	1.3	–	–	94	10–90	1.0	☐	1.8
Hirsch (1955)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	1.3	–	–	15	18–46	–	0.75	
Perey (1957)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	0.25	–	–	76	29–70	13.5	☐	–	
Brown et al. (1957)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	5	–	5.8	☐	2.5	
Bartolink (1957)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	10	60–80	6.2	☐	–	
Nachemson (1960)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	121	6–82	13.8	☐	–	
Rolander (1966)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	71	4–76	6.4	☐	–	
Markolf (1972)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	30	21–55	2.0	☐	13	
Plane et al. (1974)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	160	21–61	8.8	☐	–	
Markolf and Morris (1974)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	24	18–58	4.4	☐	1.6	
Kazarian (1975)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	32	20–65	0.5	☐	1.5	
Lin et al. (1976)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	19	44–81	5.8	☐	–	
Berthson et al. (1979)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	0.4	–	–	42	–	0.4	☐	0.5	
Adams and Hutton (1980)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	–	–	–	40	25–80	1.3	☐	1.7	
Hutton and Adams (1982)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	1	–	–	16	22–73	13.0	☐	–	
Tener et al. (1982)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	0.8	–	–	14	16–57	0.8	☐	1.3	
Koehler et al. (1984)	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	☐	0.01	–	–	123	16–41	1.5	☐	0.4	

(continued on next page)
Study	Type of test	Specimen	Spinal level	Rate	Test environment	Preconditioning/preloading	Results																		
	Incremental loading	Single compression cycle	Cyclic/vibration	Creep	Stress relaxation	VB-disc-VB only	VB-disc-only	Motion segment	Cervical	Thoracic	Lumbar	Quasistatic	Dynamic	Saline bath	Humidity chamber	37 °C Air	Saline soaked gauze	Preconditioning cycles	Compressive preload (kN)	# Preconditioning cycles	Number of specimens	Age range	Max. load (kN)	Tested to failure?	Max. axial disp. (mm)
Koeller et al. (1984b)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.01	–	–	48	13–49	2.2	1.6				
Burn et al. (1984)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	–	–	47	27–46	0.2	–				
Brinckmann and Hors (1985)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	–	–	42	18–57	8.9	–				
Koeller et al. (1984a)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.01	–	–	178	5–84	1.5	0.4				
Panjabi et al. (1984)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.01	2	0.05	18	42–70	0.05	0.7				
Keller et al. (1987)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	–	–	18	37–81	0.03	–				
Hanson et al. (1987)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	–	–	17	37–81	4.4	1.2				
Smeethers and Joanes (1988)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.02	1	1.0	7	27–75	1.0	0.6				
Brinckmann et al. (1988)**	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	1.0	–	–	105	19–78	5.2	1.9				
Moroney et al. (1988)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.05	–	–	35	–	0.1	0.1				
Yoganandan et al. (1989)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	–	–	9	25–86	11	4				
Kasa et al. (1992)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.68	–	0.04	7	41–85	0.7	–				
Asano et al. (1992)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	4	1.6	10	35–67	1.6	1.5				
Holmes et al. (1993)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	–	–	17	34–74	5.5	–				
Izambert et al. (2003)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.4	300	–	8	50–72	0.4	–				
Kemper et al. (2007)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.09	–	*	11	18–56	5	0.5				
O’Connell et al. (2007)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	–	–	–	0.02	7	22–77	1	1.9			
Costi et al. (2008)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	**	–	–	9	16–60	2.1	0.25				
O’Connell (2008)	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	0.02	–	–	20	22–77	2.0	2.0				

(continued on next page)
‘follower load’ along a path tangent to the curve of the spine (Patwardhan et al., 2003, 2000, 1999; Stanley et al., 2004). Preconditioning, meaning cyclic loading before the intended loading protocol is applied, alleviates the effects of freezing and prolonged immobility and so ensures reproducibility. Generally, three precycles are sufficient for the response of the IVD to be consistent (Wilke et al., 1998), although some studies have incorporated thousands of preloading cycles (Costi et al., 2014; Wilke et al., 2013).

3.4. Disc age and degeneration

Age-related biochemical changes stiffen cartilage at a materials level (Bank et al., 1998), and under shear and confined compression a degenerating AF becomes stiffer (Iatridis et al., 1999, 1998; O’Connell et al., 1999). In tension, however, the accumulation of small structural defects with degeneration probably explains why AF becomes softer and weaker (Shan et al., 2015). The proteoglycan and water concentration in the NP reduces in degenerate IVDs (Buckwalter, 1995), causing the nucleus pressure to fall (Adams et al., 1996; Satu et al., 1999). The sagittal diameter of the NP reduces by approximately 50%, and the NP begins to act more like a solid than a fluid (Adams et al., 1996; Iatridis et al., 1997a; Johanneden and Elliott, 2005) so that more compressive load-bearing is transferred to the AF (Adams et al., 1996; Nachemson, 1965). With increasing age, calcification of the CEP occurs, which may contribute to disc degeneration by reducing permeability and metabolite transport (Bernick and Cailliet, 1982; Nachemson et al., 1970; Roberts et al., 1996). A degenerated disc has lost height, and intervertebral ligaments have become slack (Adams et al., 1987), so the bending stiffness of motion segments decreases with level of degeneration, and therefore age (Moroney et al., 1988; Nachemson et al., 1979; Yoganandan et al., 1989; Zhao et al., 2005). In addition, their range of motion decreases, possibly because of osteophyte growth (Al-Rawahi et al., 2011). Such profound changes in the biomechanics of the IVD render assessing the level of disc degeneration before mechanical testing an important element of the experimental protocol. Published criteria allow IVD degeneration to be graded on the basis of MRI (Johannessen et al., 2006; Pfirrmann et al., 2001; Schneiderman et al., 1987), radiographic appearance (Gordon et al., 1991), or simply from visual appearance of IVDs sectioned in the sagittal or transverse plane (Galante, 1967; Thompson et al., 1990).

3.5. Spinal level

The size and shape of IVDs vary with spinal level (Pooni et al., 1986), giving rise to systematic changes in intradiscal stresses (Dolan et al., 2013). After normalisation for size, cervical motion segments are stronger in compression but weaker in bending compared to lumbar (Przybyla et al., 2007). Lumbar IVDs have been the focus of most investigations concerned with IVD degeneration or low back pain. The mechanical responses of the five lumbar IVDs are similar in extension, lateral bending, compression, and shear (Nachemson et al., 1979), although the thicker lower lumbar discs lose more height under creep loading (Hirsch and Nachemson, 1954), and show greater anterior bulging during axial dynamic compression (Koeller et al., 1984a). Torsional stiffness of whole motion segments increases at lumbar and lower thoracic levels because of increased vertebral size, and altered orientation of the zygapophysial joints in comparison to upper thoracic and cervical levels (Markolf, 1972; Panjabi et al., 1993).

4. Biomechanical testing of functional spinal units

Tests usually involve a functional spinal unit (FSU) – or motion segment – which comprises an intact IVD still connected to its two adjacent vertebrae, with all ligaments intact. The posterior ‘neural arch’ region of each vertebra articulates with adjacent neural arches by means of two sliding synovial joints, the zygapophysial joints, and these...
also are preserved in a motion segment (Fig. 1). It if is required to
distinguish the properties of the IVD itself from those of adjacent
ligaments and zygapophysial joints, then the neural arches can be
removed at the pedicles, leaving a VB-disc-VB specimen. Large speci-
mens comprising three or more vertebrae, with all posterior structures
intact, are sometimes tested because they allow adjacent-level effects to
be studied, or large prostheses or fixations to be evaluated. As the focus
of this review is the IVD, these experiments will not be included here.
Some studies have loaded the FSU to failure in order to determine its
strength for a particular mode of loading, whereas others have applied
sub-failure loads in order to simulate physiological conditions.
Although the two approaches have methodological differences, both
are important to characterise different aspects of the biomechanical
behaviour of the IVD.

Although the IVDs normally carry most of the compressive load,
more than 50% can be transmitted through the neural arch of the joint
complex (Pollintine et al., 2004). Load bearing by the neural arch is
greater when the spine is extended than when it is flexed (Adams and
Hutton, 1980; Asano et al., 1992; Hirsch and Nachemson, 1954;
Lorenz et al., 1983; Shirazi-Adl and Drouin, 1987; Yang and King,
1984) and is increased when the IVDs are narrowed, either by
preclinical loading or by degenerative changes (Pollintine et al., 2004).
To ensure that mechanical loading is applied appropriately to both
anterior (vertebral bodies and IVDs) and posterior (neural arch)
columns, it is important for motion segments to be secured in some
stiff fixative such as dental cement before testing.

Motion segments have been tested under uniaxial compression,
axial rotation, lateral bending, and flexion/extension. The following
sections are categorised according to these loading modes.

4.1. Uniaxial compression

The axial compressive characteristics of the IVD have most often
been investigated on lumbar VB-disc-VB specimens. A typical non-
linear, viscoelastic response is shown in Fig. 3. Other experiments have
considered creep (Burns et al., 1984; Hirsch, 1955; Hirsch and
Nachemson, 1954; Ingelmark and Ekholm, 1952; Kazarian, 1975;
Keller et al., 1987; Koeller et al., 1984a, 1984b; Markolf and Morris,
1974), stress relaxation (Markolf and Morris, 1974), vibration/dy-
namic compression (Asano et al., 1992; Costi et al., 2008; Hansson
et al., 1987; Izambert et al., 2003; Kasa et al., 1992; Koeller et al.,
1986, 1984a, 1984b; Marini et al., 2015; Smeathers and Joanes, 1988),
and high loading rate properties (Hirsch, 1955; Hirsch and
Nachemson, 1954; Hutton and Adams, 1982; Jamison et al., 2013;
Kemper et al., 2007; Koeller et al., 1984b; Marini et al., 2015; Perey,
1957).

Table 1 summarises the methods and results from previous
compression studies of the IVD. The most marked differences in
methods involve the testing environment.

4.2. Bending and axial rotation

Because spinal joints are subjected to complex three-dimensional
loading in vivo, a number of mechanical spine testers have been
devised which are capable of applying combinations of compression,
bending, and torsion to spinal segments ex vivo. Typical moment-
rotation graphs (Fig. 4) show marked non-linearity and hysteresis, and
do not necessarily start at the origin because of pre-conditioning.
Generally, resistance is greatest in axial rotation, followed by extension
(backwards bending), lateral bending, and finally flexion (forwards
bending) (Beaubien et al., 2005; Moroney et al., 1988; Schultz et al.,
1979).

One key decision when applying moments to spinal joints is
whether to rotate about a fixed axis, or allow the rotation axis to move
and thus minimise shear. These two strategies are often described as
being equivalent to ‘displacement control’ or ‘moment control’, respec-
tively. Moments (or displacements) can be applied in a quasi-static
manner by means of suspended dead-weights, or dynamically either
using servo-hydraulic or electric actuators that apply moments via
cables or by offsetting a compressive load. Table 2 summarises
previous spinal flexion-extension, lateral bending, and axial rotation
tests performed on single motion segments. Note that a number of the
studies included in Table 2 have combined different modes of loading,
for example Adams and Hutton (1981) combined compression and
torsion, Gordon et al. (1991) combined flexion, rotation and compres-
sion, and Adams and Dolan (1996) combined compression and
bending. Although not reported in Table 2, in order to reduce
viscoelastic effects, specimens are often preconditioned for a number
of cycles – usually 3 – until a reproducible result is achieved.

4.3. IVD injuries

Compressive overload always damages the BEP first, and vertical
herniation of the NP can create Schmorl’s nodes (Adams and Dolan,
2012; Brinckmann et al., 1988; Hamanishi et al., 1994). The resulting
decompression of the NP may lead to internal collapse of the AF
(Adams and Dolan, 2012; Gunzburg et al., 1992). For herniation to
occur through the AF the IVD needs to be flexed or overloaded in

Fig. 4. (a) Typical non-linear responses of VB-disc-VB specimens subjected to bending or torsion. Note the marked hysteresis and the region of minimal sti-
ness (the ‘neutral zone’ NZ). (b) Typical curves for axial rotation, lateral bending and flexion-extension (negative rotation indicates flexion). Responses depend on spinal level, and whether the neural arches are removed.
Table 2
Summary of human flexion-extension, lateral bending, and axial rotation tests on single motion segments. If a test involved more than one level of compressive preload, data refer to the largest. *Average maximum moments and rotations are not presented as the loading protocol included a combination of compression, flexion, bending or rotation. + In this study the lamina were removed but the facet joints were left intact.

Average	Flexion	6.5	2.1	2.5	8.4	5.5	5.8	2.9	14.8	11.2	1	10	10.4	5.3	2	7.1	5.2	5							
Max. Extension	8.3	3	3	3	3.2	1.8	1	1	8.3	5.3	2	4.9	3.4	2											
Rotati- (degrees)	5.8	2.9	14.8	11.2	1	2	7.1	5.2	2																
Lateral bending	5.5	22.6	1.3	1.5	1	5.5	8.4	1.8	3	3	3.2	1.8	1	8.3	5.3	2	4.9	3.4	2						
Axial rotation	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32			
Average Moment	2	–	6.8	8.5	49	–	10.6	8.7	59	–	7.5	8	–	17.6	10	7.5	13								
Max. Moment	8.3	3	3	3	3.2	1.8	1	1	8.3	5.3	2	4.9	3.4	2											
Motions	5.8	2.9	14.8	11.2	1	2	7.1	5.2	2																
Axial rotation	5.5	22.6	1.3	1.5	1	5.5	8.4	1.8	3	3	3.2	1.8	1	8.3	5.3	2	4.9	3.4	2						
Static	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32	6.0	32					
Pre load (kN)	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–				
Tested to failure	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑					
Age range	16–83	27–86	21–55	21–60	18–71	18–77	12–57	48–83	18–65	16–74	–	–	19–87	17–58	45–63	–	29–54	16–60	38–59	38–59	64–93	64–93			
Number of specimens	27	66	112	11	27	25	42	61	41	35	14	13	45	8	5	7	7	9	9	8	6	14	14		
Control Displacement	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Loading system	Cable Driven System	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Hanging weights and pulleys	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
6-axis testing machine	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Offset compressive loading	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Torque motors	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Load app-	Constant rate loading	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑
Spine segment	Cervical	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑
Thoracic	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Lumbar	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Type of specimen	VB-disc-VB	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑
With posterior elements	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	
Loading mode	Flexion-Extension	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑	☑
multiple modes simultaneously; the likelihood of herniation to occur under load is higher at high loading rates (Adams and Hutton, 1982; Wade et al., 2014, 2015). Excessive torsion damages the neural arch (Adams and Hutton, 1981), and may cause delamination of the outer annulus (Farfan et al., 1970). Complex loading in bending and compression can lead to radial fissures (Adams and Hutton, 1983), and disc prolapse (‘slipped disc’), either in a single loading cycle (Adams and Hutton, 1982), or by fatigue failure (Adams and Hutton, 1985). Axial rotation probably enhances the vulnerability of the posterior portions of the IVD to damage, and reduces the load required to cause disc failure (Callaghan and McGill, 2001; Drake et al., 2005; Gordon et al., 1991; Pearcy and Hindle, 1991; Shirazi-Adl et al., 1986; Veres et al., 2010).

5. Material properties of IVD constituent tissue

To gain a full understanding of the mechanical behaviour of the IVD as a whole, it is important to understand the behaviour of its component tissues.

5.1. Nucleus pulposus (NP)

Material properties of the NP are poorly characterised, reflecting the fact that it is extremely difficult to test in isolation. There is even debate as to whether it behaves predominantly as a solid or a liquid, with solid behaviour being more apparent under dynamic conditions (Iatridis et al., 1996). In tension, the tissue is so non-linear that it has been likened to a `tethered fluid’ (Skrzypiec et al., 2007a; Wade et al., 2012a). NP properties have been measured in confined compression (Johannessen and Elliott, 2005; Yang and Kish, 1988), unconfined compression (Cloyd et al., 2007), and shear (Bodine et al., 1982; Iatridis et al., 1997b). In confined compression, reported effective modulus of human, non-degenerate NP is 1 MPa (Johannessen and Elliott, 2005), and bulk modulus is 1720 MPa (Yang and Kish, 1988). Although the behaviour of the NP is not linearly elastic, Cloyd et al. (2007) reported a modulus from the ‘linear’ region of the stress-strain response in unconfined compression of 5.4 kPa. Shear moduli have been reported between 7 and 50 kPa (Bodine et al., 1982; Iatridis et al., 1997b).

5.2. Anulus fibrosus (AF)

Table 3 summarises mechanical characterisation studies of the human AF according to test protocol, type of specimen, loading rate, direction of loading, and method of gripping. Galante (1967) also tested multiple lamina specimens at various angles, including across fibre, however these results have not been included in Table 3 in order to avoid confusion with results obtained from single layer cross-fibre and in-line-with-fibre specimens.

A number of studies in Table 3 found that the outer and anterior regions of the AF were considerably stiffer than the inner and posterior regions of the AF (Ebara et al., 1996; Elliott and Setton, 2001; Holzapfel et al., 2005; Shan et al., 2015; Skaggs et al., 1994). In tension, the AF is stiffer along the axis of the fibres (average modulus=183 MPa), followed by the circumferential direction (16 MPa), and finally the radial, axial and cross fibre directions (where average moduli were 0.3, 2.6 and 0.2 MPa, respectively). In circumferential tension the average failure stress was 2.7 MPa and the average failure strain was 0.3. The maximum strain rate at which the tensile behaviour of the AF has been investigated is 4%/s which may be considered to be relatively low compared to the strain rates expected in many physiological activities and indeed in injurious scenarios. The tensile properties of small annulus specimens also depend on specimen size, because small excised specimens sustain proportionally greater disruption to the collagen network (Adams and Green, 1993).

Gripping small excised specimens of soft tissue is a challenge,
Table 3
Overview of tensile tests on the human AF. Where specimens from different regions of the AF were included, an average is recorded. Where numerical data were not presented, values have been estimated from figures. *Circumferential failure stress (strain) is reported here, the along fibre (multiple lamella) failure stress was higher at 8.8 MPa and the failure strain was lower at 0.25. +Along fibre, rather than radial failure stress and failure strain is reported here, radial failure stress was lower and failure strain was higher (0.187 MPa and 1.61).

Results	Strain rate (%)	0.8	0.14	–	0.08	–	–	–	–	0.01	0.01	0.5	0.01	–	–	–	–	–	0.05	0.01	0.01	0.01	0.01	0.01	0.15	0.25	0.01	4.00	0.2												
Av. failure strain	MPa																																								
Stress (MPa)	3.4*	0.3	0.25	–	0.6	–	0.4	0.12	0.13	0.2	0.13	0.8	–	–	–	–	–	–	–	–	0.1	0.45	–	–	–	–	–	0.49	–	–	–	0.44									
Radial modulus (MPa)	–				0.16	–	–	–	–	0.4	–	0.5	–	–	–	–	–	–	–	–	0.1	0.15	–	–	–	–	–	0.22	0.32	–	–	–	–								
Circ. modulus (MPa)	28	–	–		17.2	–	–	–	–	–	0.5	0.15	0.06	0.12	0.09	1.2	–	–	–	–	–	50.2	–	–	–	–	–	0.22	–	–	–	–									
Axial modulus (MPa)	–				–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–								
Along fibre mod. (MPa)	410	–	–		90	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	50.2	–	–	–	–	–	–	–	–	–	–										
Cross fibre mod. (MPa)	–				–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–								
Age range (years)	19–71	20–30	30–39	19–71	30–45	–	2–88	50–70	12–83	–	35–71	21–41	72–78	50–38	30–79	–	48–91	16–87	36–80	25–80	25–64	–	–	–	–	–	–	–	–	–											
Num. of specimens	592	30	8	168	11	22	6	59	48	60	183	44	13	86	32	60	5	11	46	14	132	32	13	8	1969	30															
Gripping method	Other	Bone-Disc	Bone-Dis-	Rake/hooks	Cyanoacrylate	Sand/polishing paper	Loaded clamps	Radical	Circumferential	Axial	Along fibre axis	Cross fibre	Rate of testing	Quasistatic	Dynamic	Single Lamella	Multiple Lamellae	Type of specimen	Type of test	Tension	Compression	Shear	GalanteWu et al. (1967) and Yao (1978)	Marchand and Ahmed (1989)	Adams et al. (1993)	Green and Best et al. (1994)	Skaggs et al. (1995)	Anzorglu et al. (1996)	Fujita et al. (1997)	Iatridis et al. (1998)	Fujita et al. (2000)	Kisch and Elliott et al. (2001)	Bass et al. (2004)	Wagner et al. (2005)	Holzapfel et al. (2006)	Guerin and Elliott (2007b)	Skrzypiec et al. (2008)	Smith et al. (2009)	O’Connell et al. (2009)	Sen et al. (2012)	Shen et al. (2015)
particularly in uniaxial tension tests where slippage is common. Loaded clamps are often used, particularly in combination with sandpaper or polishing paper, and cyanoacrylate glue (Fujita et al., 2000, 1997; Shan et al., 2015; Skaggs et al., 1994; Skrzypiec et al., 2007b; Smith et al., 2008). Tungsten rakes, wire rods pierced through the specimen, and aluminium rings clamped around the specimen have also been used (Bass et al., 2004; Wagner and Lotz, 2004). Slippage can give rise to large errors if specimen strain is calculated from displacement of the clamps. Measuring strain optically eliminates this problem, and enables regional variations in strain to be studied (Masouros et al., 2009). Diagrammatic representations of common gripping methods are presented in Fig. 5.

5.3. Cartilaginous (CEP) and bony (BEP) endplates

The CEP has not been studied extensively either, possibly because the tissue layer is so thin rendering it difficult to harvest. CEP fragments often appear in IVD herniations, which may be because the CEP-vertebra junction is very weak or because the CEP-NP integration is relatively strong (Lama et al., 2014; Wade et al., 2014). CEP strength has been characterised by a number of studies in order to understand failure mechanisms and to help design interbody implants or grafts (Grant et al., 2001; Perey, 1957). Although the properties of the CEP are not linearly elastic, a modulus value has been estimated as 23.8 MPa (Yamada, 1970).

Indentation tests show that the underlying BEP is stiffest and strongest around the periphery of the VB, with stiffness of healthy BEPs in the region of 75–175 N/mm (Grant et al., 2001; Liu et al., 2016). Stiffness and strength both decrease in the presence of IVD degeneration (Liu et al., 2016). Deflection of whole lumbar endplates BEPs has also been studied during compression of VB-disc-VB specimens where, at the centre of the caudal endplate; the compliance is approximately 0.1 mm/kN (Holmes et al., 1993). Failure is more common in the weaker cranial BEP, because it is 14% thinner than the caudal BEP and supported by less dense trabecular bone (Zhao et al., 2009).

6. Discussion

This paper has provided a detailed review of the techniques used, and results obtained by, studies that have attempted to characterise mechanically the IVD. The IVD is a complex structure which changes quite markedly with age and degeneration, and IVD dysfunction can adversely affect quality of life. Disc mechanical responses are sensitive to the testing environment and boundary conditions applied, so care must be taken to ensure that applied loading is appropriate for each specific research question. A wide range of testing techniques have been used, but a consensus is emerging regarding such details as the need to precondition specimens to obtain a more repeatable response during testing, and the need to take account of posture, loading rate, and disc age and degeneration when comparing results between experiments. Future experimental studies will benefit from finding a similar consensus regarding testing environment (humidity, temperature) and methods of pre-test storage. We suggest that future work is required in the following specific research areas: 1) the influence of spinal level on the mechanical properties of constitutive components of the motion segment; 2) the responses of the IVD to complex (combined) loading modes, particularly in relation to injury mechanisms; 3) mechanical properties of the nucleus pulposus at varying strain rates and levels of degeneration; and 4) high strain-rate material properties of the annulus fibrosus.

It was apparent when performing this review that breakthroughs in our understanding of the biomechanics of the IVD often coincided with the introduction of a new measuring capability or technology. For example, new techniques for imaging the disc, for applying complex loading to cadaveric specimens, and for quantifying stress and strain distributions within discs have contributed greatly to our understanding of how discs function and fail. This effect is likely to continue into the future, and it emphasises the importance of understanding variations in past techniques in order to develop new ones.

Acknowledgements

This work was supported by the EPSRC, First Grant Scheme, EP/M022242/1. Contributions to this work were made under the auspices of The Royal British Legion Centre for Blast Injury Studies at Imperial College London; therefore the financial support of the Royal British Legion for AC and SM is gratefully acknowledged.

References

Acaroglu, E.R., Iatridis, J.C., Setton, L.A., Foster, R.J., Mow, V.C., Weidenbaum, M., 1995. Degeneration and aging affect the tensile behavior of human lumbar annulus fibrosus. Spine (Phila. Pa. 1976) 20, 2690–2701.
intervertebral disc? Eur. Spine J. 6, 385–389.

Roberts, S., Menage, J., Urban, J., 1989. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila. Pa. 1976) 14, 71–104.

Roberts, S., Urban, J.P., Evans, H., Eisenstein, S.M., 1996. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine (Phila. Pa. 1976) 21, 415–420.

Rignon, J.A., Wade, K.R., Thumbyah, A., Broom, D.N., 2012. Micromechanics of annulus-end plate integration in the intervertebral disc. Spine J. 12, 143–150.

Rolander, S.D., 1996. Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion. An experimental study on autopsy specimens. Acta Orthop. Scand. 7, 1–14.

Sato, K., Kikuchi, S., Yonezawa, T., 1999. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila. Pa. 1976) 24, 2468–2474.

Schmidt, H., Galbusera, F., Rohmln, A., Shirazi-Adl, A., 2013. What have we learned from a finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech Eng. 46, 2342–2355.

Shan, Z., Lin, G., Flannigan, J., Kinghorn, S., Thomas, J., Dillin, W., Watkins, R., 1987. Magnetic resonance imaging in the diagnosis of disc degeneration correlation with discography. Spine (Phila. Pa. 1976) 12, 276–281.

Scholmeier, G., Lahr-Eugen, R., Lewandowski, K.U., 2000. Observations on fiber-fusing collagen in the annulus fibrosus. Spine (Phila. Pa. 1976) 25, 2766–2781.

Schollum, M.F., Robertson, P.A., Broom, D.N., 2008. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus. Spine (Phila. Pa. 1976) 33, 7202–7210.

Schulte, A.B., Berkson, M.H., 1979. Mechanical properties of human lumbar spine motion segments: influences of age, sex, disc level, and degeneration. Spine (Phila. Pa. 1976) 4, 1–8.

Schröder, A., S. Konrad, C., 1996. Three-dimensional flexibility and stiffness properties of the human thoracic spine. J. Biomech. 19, 85–193.

Senior, S., L., Liu, J., Mammel, T., Kinghorn, S., Thomas, J., Dillin, W., Watkins, R., 1987. Magnetic resonance imaging in the diagnosis of disc degeneration correlation with discography. Spine (Phila. Pa. 1976) 12, 276–281.

Scholmeier, G., Lahr-Eugen, R., Lewandowski, K.U., 2000. Observations on fiber-fusing collagen in the annulus fibrosus. Spine (Phila. Pa. 1976) 25, 2766–2781.

Schollum, M.F., Robertson, P.A., Broom, D.N., 2008. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus. Spine (Phila. Pa. 1976) 33, 7202–7210.

Schulte, A.B., Berkson, M.H., 1979. Mechanical properties of human lumbar spine motion segments: influences of age, sex, disc level, and degeneration. Spine (Phila. Pa. 1976) 4, 1–8.

Schröder, A., S. Konrad, C., 1996. Three-dimensional flexibility and stiffness properties of the human thoracic spine. J. Biomech. 19, 85–193.

Senior, S., L., Liu, J., Mammel, T., Kinghorn, S., Thomas, J., Dillin, W., Watkins, R., 1987. Magnetic resonance imaging in the diagnosis of disc degeneration correlation with discography. Spine (Phila. Pa. 1976) 12, 276–281.

Scholmeier, G., Lahr-Eugen, R., Lewandowski, K.U., 2000. Observations on fiber-fusing collagen in the annulus fibrosus. Spine (Phila. Pa. 1976) 25, 2766–2781.

Schollum, M.F., Robertson, P.A., Broom, D.N., 2008. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus. Spine (Phila. Pa. 1976) 33, 7202–7210.

Schulte, A.B., Berkson, M.H., 1979. Mechanical properties of human lumbar spine motion segments: influences of age, sex, disc level, and degeneration. Spine (Phila. Pa. 1976) 4, 1–8.

Schröder, A., S. Konrad, C., 1996. Three-dimensional flexibility and stiffness properties of the human thoracic spine. J. Biomech. 19, 85–193.

Senior, S., L., Liu, J., Mammel, T., Kinghorn, S., Thomas, J., Dillin, W., Watkins, R., 1987. Magnetic resonance imaging in the diagnosis of disc degeneration correlation with discography. Spine (Phila. Pa. 1976) 12, 276–281.

Scholmeier, G., Lahr-Eugen, R., Lewandowski, K.U., 2000. Observations on fiber-fusing collagen in the annulus fibrosus. Spine (Phila. Pa. 1976) 25, 2766–2781.

Schollum, M.F., Robertson, P.A., Broom, D.N., 2008. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus. Spine (Phila. Pa. 1976) 33, 7202–7210.

Schulte, A.B., Berkson, M.H., 1979. Mechanical properties of human lumbar spine motion segments: influences of age, sex, disc level, and degeneration. Spine (Phila. Pa. 1976) 4, 1–8.

Schröder, A., S. Konrad, C., 1996. Three-dimensional flexibility and stiffness properties of the human thoracic spine. J. Biomech. 19, 85–193.

Senior, S., L., Liu, J., Mammel, T., Kinghorn, S., Thomas, J., Dillin, W., Watkins, R., 1987. Magnetic resonance imaging in the diagnosis of disc degeneration correlation with discography. Spine (Phila. Pa. 1976) 12, 276–281.
Wade, K.R., Robertson, P.A., Broom, N.D., 2012a. On the extent and nature of nucleus-annulus integration. Spine (Phila. Pa. 1976) 37, 1826–1833.
Wade, K.R., Robertson, P.A., Broom, N.D., 2012b. On how nucleus-endplate integration is achieved at the fibrillar level in the ovine lumbar disc. J. Anat. 221, 39–46.
Wade, K.R., Robertson, P.A., Thambiyah, A., Broom, N.D., 2015. “Surprise” loading in flexion increases the risk of disc herniation due to annulus-endplate junction failure: a mechanical and microstructural investigation. Spine (Phila. Pa. 1976) 40, 891–901.
Wade, K.R., Robertson, P.A., Thambiyah, A., Broom, N.D., 2014. How healthy discs herniate. Spine (Phila. Pa. 1976) 39, 1018–1028.
Wagner, D.R., Lotz, J.C., 2004. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. J. Orthop. Res. 22, 901–909.
White, A.A., III, 1969. Analysis of the mechanics of the thoracic spine in man: an experimental study of autopsy specimens. Acta Orthop. 40, 1–105.
Wilke, H.J., Neef, P., Caimi, M., Hoogland, T., Claes, L.E., 1999. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila. Pa. 1976) 24, 755–762.
Wilke, H.J., Ressel, L., Heuer, F., Graf, N., Rath, S., 2013. Can prevention of a reherniation be investigated? Establishment of a herniation model and experiments with an annular closure device. Spine (Phila. Pa. 1976) 38, E587–E593.
Wilke, H.J., Wenger, K., Claes, L., 1998. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur. Spine J. 7, 148–154.
Wu, H.C., Yao, R.F., 1976. Mechanical behavior of the human annulus fibrosus. J. Biomech. 9, 1–7.
Yamada, H., 1970. Strength of Biological Materials. Williams & Wilkins, Baltimore, MD, USA.
Yang, K.H., King, A.L., 1984. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine (Phila. Pa. 1976) 9, 557–565.
Yang, K.H., Kish, V.L., 1988. Compressibility measurement of human intervertebral nucleus pulposus. J. Biomech. 21, 865.
Yingling, V.R., Collaghan, J.P., McGill, S.M., 1997. Dynamic loading affects the mechanical properties and failure site of porcine spines. Clin. Biomech. 12, 301–305.
Yoganandan, N., Ray, G., Pintar, F.A., Myklebust, J.B., Sances, A., 1989. Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. J. Biomech. 22, 155–162.
Yu, J., Fairbank, J.C.T., Roberts, S., Urban, J.P.G., 2005. The elastic fiber network of the annulus fibrosus of the normal and scoliotic human intervertebral disc. Spine (Phila. Pa. 1976) 30, 1815–1820.
Yu, J., Tirlapur, U., Fairbank, J., Handford, P., Roberts, S., Winlove, P.P., Cui, Z., Urban, J., 2007. Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J. Anat. 210, 460–471.
Zhao, F., Pollintine, P., Hole, B.D., Adams, M.A., Dolan, P., 2009. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44, 372–379.