STAR OPERATIONS ON KUNZ DOMAINS

DARIO SPIRITO

Abstract. We study star operations on Kunz domains, a class of analytically irreducible, residually rational domains associated to pseudo-symmetric numerical semigroups, and we use them to refute a conjecture of Houston, Mimouni and Park. We also find an estimate for the number of star operations in a particular case, and a precise counting in a sub-case.

1. Introduction

Let \(D \) be an integral domain with quotient field \(K \), and let \(\mathcal{F}(D) \) be the set of fractional ideals of \(D \), i.e., the set of \(D \)-submodules \(I \) of \(K \) such that \(xI \subseteq D \) for some \(x \in K \setminus \{0\} \).

A star operation on \(D \) is a map \(\star : \mathcal{F}(D) \rightarrow \mathcal{F}(D) \), \(I \mapsto I^\star \), such that, for every \(I, J \in \mathcal{F}(D) \) and every \(x \in K \):

- \(I \subseteq I^\star \);
- if \(I \subseteq J \), then \(I^\star \subseteq J^\star \);
- \((I^\star)^\star = I^\star \);
- \(x \cdot I^\star = (xI)^\star \);
- \(D = D^\star \).

A fractional ideal \(I \) is \(\star \)-closed if \(I = I^\star \).

The easiest example of a non-trivial star operation is the \(v \)-operation \(v : I \mapsto (D : (D : I)) \), where if \(I, J \in \mathcal{F}(D) \) we define \((I : J) := \{ x \in K \mid xJ \subseteq I \} \). An ideal that is \(v \)-closed is said to be divisorial; if \(I \) is divisorial and \(\star \) is any other star operation then \(I = I^\star \). We denote by \(d \) the identity, which is obviously a star operation.

Recently, the cardinality of the set \(\text{Star}(D) \) of the star operations on \(D \) has been studied, especially in the case of Noetherian [6, 8] and Prüfer domains [5, 7]. In particular, Houston, Mimouni and Park started studying the relationship between the cardinality of \(\text{Star}(D) \) and the cardinality of \(\text{Star}(T) \), where \(T \) is an overring of \(D \) (an overring of \(D \) is a ring comprised between \(D \) and \(K \)) [3, 4]: they called a domain star regular if \(|\text{Star}(D)| \geq |\text{Star}(T)| \) for every overring of \(T \). While even simple domains may fail to be star regular (for example, there are domains with just one star operations having an overring

Date: June 1, 2018.

2010 Mathematics Subject Classification. 13A15, 13E05, 13G05.

Key words and phrases. Star operations; pseudo-symmetric semigroups; Kunz domains; star regular domains.
with infinitely many star operations [3, Example 1.3]), they conjectured that every one-dimensional local Noetherian domain D such that $1 < |\text{Star}(D)| < \infty$ is star regular, and proved it when the residue field of D is infinite [3, Corollary 1.18].

In this context, a rich source of examples are semigroup rings, that is, subrings of the power series ring $K[[X]]$ (where K is a field, usually finite) of the form $K[[S]] := K[[X^S]] := \{ \sum_{i} a_i X^i \mid a_i = 0 \text{ for all } i \notin S \}$, where S is a numerical semigroup (i.e., a submonoid $S \subseteq \mathbb{N}$ such that $\mathbb{N} \setminus S$ is finite). Star operations can also be defined on numerical semigroups [13], and there is a link between star operations on S and star operations on $K[[S]]$: for example, every star operation on S induces a star operation on $K[[S]]$, and $|\text{Star}(S)| = 1$ if and only if $|\text{Star}(K[[S]])| = 1$ [13, Theorem 5.3], with the latter result corresponding to the equivalence between S being symmetric and $K[[S]]$ being Gorenstein [2, 10]. A detailed study of star operations on some numerical semigroup rings was carried out in [14].

In this paper, we study of star operations on Kunz domains, which are, roughly speaking, a generalization of rings in the form $K[[S]]$ where S is a pseudo-symmetric semigroup (see the beginning of the next section for the definitions). We show that, if R is a Kunz domain whose residue field is finite and the length of R/R is at least 4 (where R is the integral closure of R) then R is a counterexample to Houston-Mimouni-Park’s conjecture; that is, R satisfies $1 < |\text{Star}(R)| < \infty$ but there is an overring T of R with more star operations than R. In Section 3, we also study more deeply one specific class of domains, linking the cardinality of $\text{Star}(R)$ with the set of vector subspaces of a vector space over the residue field of R, and calculate the cardinality of $\text{Star}(R)$ when the value semigroup of R is $\langle 4, 5, 7 \rangle$.

We refer to [12] for information about numerical semigroup, and to [1] for the passage from numerical semigroup to one-dimensional local domains.

2. Kunz Domains

Let S be a numerical semigroup, and let $g := g(S) := \sup(\mathbb{Z} \setminus S)$. We say that S is a pseudo-symmetric semigroup if g is even and, for every $a \in \mathbb{N}$, $a \neq g/2$, either $a \in S$ or $g - a \in S$. If a_1, \ldots, a_n are coprime integers, we denote by $\langle a_1, \ldots, a_n \rangle$ the numerical semigroup generated by a_1, \ldots, a_n, i.e., $\langle a_1, \ldots, a_n \rangle = \{ \lambda_1 a_1 + \cdots + \lambda_n a_n \mid \lambda_1, \ldots, \lambda_n \in \mathbb{N} \}$.

Let (V, M_V) be a discrete valuation ring with associated valuation v. Let (R, M_R) be a local subring of V with the following properties:

- R and V have the same quotient field;
- the integral closure of R is V;
- R is Noetherian;
- the conductor ideal $(R : V)$ is nonzero;
the inclusion $R \rightarrow V$ induces an isomorphism of residue fields $R/M_R \rightarrow V/M_V$. Equivalently, let R be an analytically irreducible, residually rational one-dimensional Noetherian local domain having integral closure V. Note that for every such R the set $\mathfrak{v}(R) := \{v(r) \mid r \in R\}$ is a numerical semigroup. We state explicitly a property which we will be using many times.

Lemma 2.2. Let $\mathfrak{v}(R)$ be an analytically irreducible, residually rational one-dimensional Noetherian local domain having integral closure V. Then,

$\mathfrak{v}(R) = \mathfrak{v}(R) \cap \mathfrak{v}(\mathfrak{m}) = \mathfrak{v}(R)$

where for every such R the inclusion $R/M_R \rightarrow V/M_V$.

Proposition 2.1 ([11, Corollary to Proposition 1]). Let R be as above, and let $I \subseteq J$ be R-submodules of the quotient field of R. Then,

$$\ell_R(J/I) = |v(J) \setminus v(I)|,$$

where ℓ_R is the length of an R-module.

We say that R is a Kunz domain if $\mathfrak{v}(R)$ is a pseudo-symmetric semigroup [11 Proposition II.1.12].

From now on, we suppose that R is a Kunz domain, and we set $g := g(\mathfrak{v}(R))$ and $r := g/2$. The hypotheses on R guarantee that, if $x \in V$ is such that $v(x) > g$, then $x \in R$ [10, Theorem, p.749].

Lemma 2.2. Let $y \in V$ be an element of valuation g, and let $T := R[y]$. Then:

(a) T contains all elements of valuation g;
(b) $v(T) = \mathfrak{v}(R) \cup \{g\}$;
(c) $\ell_R(T/R) = 1$;
(d) $T = R + yR$.

Proof. Let $y' \in V$ be another element of valuation g. Then, $\mathfrak{v}(y/y') = 0$, and thus $y' := y/y'$ is a unit of V. Hence, there is a $c' \in R$ such that the images of c and c' in the residue field of V coincide; in particular, $c = c' + m$ for some $m \in M_V$. Hence,

$$y' = cy = (c' + m)y = c'y + my.$$

Since $c' \in R$, we have $c'y \in R[y]$: furthermore, $\mathfrak{v}(my) = \mathfrak{v}(m) + \mathfrak{v}(y) > \mathfrak{v}(y) = g$, and thus $my \in R$. Hence, $y' \in R[y]$, and thus $R[y]$ contains all elements of valuation g.

The fact that $\mathfrak{v}(T) = \mathfrak{v}(R) \cup \{g\}$ is trivial; hence, $\ell_R(T/R) = |\mathfrak{v}(T) \setminus \mathfrak{v}(R)| = 1$. The last point follows from the fact that $R + yR$ is an R-module, from $R \subseteq R + yR \subseteq T$ and from $\ell_R(T/R) = 1$. □

In particular, the previous proposition shows that T is independent from the element y chosen. From now on, we will use T to denote this ring.

We denote by $\mathcal{F}_0(R)$ the set of R-fractional ideals I such that $R \subseteq I \subseteq V$. If I is any fractional ideal over R, and $\alpha \in I$ is an element of minimal valuation, then $\alpha^{-1}I \in \mathcal{F}_0(R)$; hence, the action of any star operation is uniquely determined by its action on $\mathcal{F}_0(R)$. Furthermore, $V^* = V$ for all $\ast \in \text{Star}(R)$ (since $(R : (R : V)) = V$) and thus
$I^\ast \in \mathcal{F}_0(R)$ for all $I \in \mathcal{F}_0(R)$, i.e., \ast restricts to a map from $\mathcal{F}_0(R)$ to itself.

To analyze star operations, we want to subdivide them according to whether they close T or not. One case is very simple.

Proposition 2.3. If $\ast \in \text{Star}(R)$ is such that $T \neq T^\ast$, then $\ast = v$.

Proof. Suppose $\ast \neq v$; then, there is a fractional ideal $I \in \mathcal{F}_0(R)$ that is \ast-closed but not divisorial. By [1, Lemma II.1.22], $\nu(I)$ is not divisorial (in $\nu(R)$) and thus by [1, Proposition I.1.16] there is an integer $n \in \nu(I)$ such that $n + \tau \notin \nu(I)$.

Let $x \in I$ be an element of valuation n, and consider the ideal $J := x^{-1}I \cap V$: being the intersection of two \ast-closed ideals, it is itself \ast-closed. Since $\nu(x) > 0$, every element of valuation g belongs to J; on the other hand, by the choice of n, no element of valuation τ can belong to J.

Consider now the ideal $L := (R : M_R)$: then, L is divisorial (since M_R is divisorial) and, using [1, Proposition II.1.16(1)],

$$\nu(L) = (\nu(R) - \nu(M_R)) = \nu(R) \cup \{\tau, g\}.$$

We claim that $T = J \cap L$; indeed, clearly $J \cap L$ contains R, and if y has valuation g then $y \in J \cap L$ by construction; thus $T = R + yR \subseteq J \cap L$.

On the other hand, $\nu(J \cap L) \subseteq \nu(J) \cap \nu(L) = \nu(R) \cup \{g\}$, and thus $J \cap L \subseteq T$.

Hence, $T = J \cap L$; since J and L are both \ast-closed, so is T. Therefore, if $T \neq T^\ast$ then \ast must be the divisorial closure, as claimed. \hfill \square

Suppose now that $T = T^\ast$. Then, \ast restricts to a star operation $\ast_1 := \ast |_{\mathcal{F}(T)}$: the amount of information we lose in the passage from \ast to \ast_1 depends on the R-fractional ideals that are not ideals over T. We can determine them explicitly.

Lemma 2.4. Let $I \in \mathcal{F}_0(R)$, $I \neq R$. Then, the following are equivalent.

(i) $\nu(I) = \nu(R) \cup \{\tau\}$;
(ii) I does not contain any element of valuation g;
(iii) $TI \neq I$;
(iv) I is the canonical ideal of R.

Furthermore, in this case, $I^\ast = (R : M_R)$.

Proof. (i) \Rightarrow (ii): since $R \subseteq I$, there is an element x of I of valuation 0; hence, IT contains an element of valuation g, and thus $IT \neq I$.

(ii) \Rightarrow (iii) \Rightarrow (i): suppose there is an $x \in I$ such that $\nu(x) \notin \nu(R) \cup \{\tau\}$. Since $\nu(R)$ is pseudo-symmetric, there is an $y \in R$ such that $\nu(y) = g - \nu(x)$; hence, I contains an element (explicitly, xy) of valuation g and, by the proof of Lemma 2.2, it follows that it contains every element of valuation g.

Fix now an element \(y \in V \) of valuation \(g \). Since \(IT \neq I \), there are \(i \in I, t \in T \) such that \(it \notin I \). By Lemma 2.2 there are \(r, r' \in R \) such that \(t = r + yr' \); hence, \(it = i(r + yr') = ir + iyr' \). Both \(ir \) and \(iyr' \) are in \(I \), the former since it belongs to \(IR = I \) and the latter because its valuation is at least \(g \). However, this contradicts \(it \notin I \); therefore, \(v(I) \leq v(R) \cup \{ \tau \} \).

If \(v(I) = v(R) \), then we must have \(I = R \), against our hypothesis; therefore, \(v(I) = v(R) \cup \{ \tau \} \).

\[\text{(i)} \iff \text{(iv)} \] by \([9\text{, Satz 5}]\), \(I \) is the canonical ideal of \(R \) if and only if \(v(I) \) is the canonical ideal of \(v(R) \). The claim follows since \(v(R) \) is pseudo-symmetric and since the canonical ideal of a numerical semigroup \(S \) is \(S \cup \{ x \in \mathbb{N} \mid g(S) - x \notin S \} \), which in this case is \(S \cup \{ \tau \} \).

For the last claim, we first note that \((R : M_R)\) is divisorial (since \(M_R \) is divisorial) and that contains \(I \): indeed, if \(x \in I \) has valuation \(\tau \), and \(m \in M_R \), then \(xm \in M_R \), for otherwise \(m \notin R \) and thus \(R + mR \) would be an ideal properly between \(R \) and \(I \), against \(\ell_R(I/R) = 1 \).

Hence, \(I^v \) can only be \(I \) or \((R : M_R)\). However, \((R : I) \subseteq M_R \), and thus \(I^v = (R : (R : I)) \supseteq (R : M_R) \). Hence, \(I^v = (R : M_R) \).

Proposition 2.5. The map

\[
\Psi : \text{Star}(R) \setminus \{d, v\} \longrightarrow \text{Star}(T)
\]

\[\star \longmapsto \star|_{F(T)} \]

is well-defined and injective.

Proof. By Proposition 2.3 if \(\star \neq v \) then \(T = T^\star \), and thus \(\star|_{F(T)} \) is a star operation on \(T \); hence, \(\Psi \) is well-defined. We claim that it is injective: suppose \(\star_1 \neq \star_2 \). Then, there is an \(I \in F_3(R) \) such that \(I^\star_1 \neq I^\star_2 \). If \(I \) is a \(T \)-module then \(\Psi(\star_1) \neq \Psi(\star_2) \); suppose \(I \) is not a \(T \)-module.

By Lemma 2.4 \(I \) can only be \(R \) or a canonical ideal of \(R \). In the former case, \(R^\star_1 = R = R^\star_2 \), a contradiction. In the latter case, \(I^\star \) can only if \(I \) or \((R : M_R)\) (since \(\ell((R : M_R)/I) = 1 \)); suppose now that \(I^\star = I \) for some \(\star \in \text{Star}(R) \). By definition of the canonical ideal, \(J = (I : (I : J)) \) for every ideal \(J \); since \((I : L) \) is always \(\star \)-closed if \(I \) is \(\star \)-closed, it follows that \(\star \) must be the identity. Since \(\star_1, \star_2 \neq d \), we must have \(I^\star_1 = (R : M_R) = I^\star_2 \), against the assumptions. Thus, \(\Psi \) is injective. \(\square \)

An immediate corollary of the previous proposition is that \(|\text{Star}(R)| \leq |\text{Star}(T)| + 2 \). Our counterexample thus involves finding star operations of \(T \) that do not belong to the image of \(\Psi \); to do so, we restrict to the case \(\ell_R(V/R) \geq 4 \) or, equivalently, \(|\mathbb{N} \setminus v(R)| \geq 4 \). This excludes exactly two pseudo-symmetric numerical semigroups, namely \(\langle 3, 4, 5 \rangle \) and \(\langle 3, 5, 7 \rangle \).
Lemma 2.6. Let S be a pseudo-symmetric numerical semigroup, let $g := \max(\mathbb{N} \setminus S)$ and let $S' := S \cup \{g(S)\}$. If $|\mathbb{N} \setminus S| \geq 4$, then there are $a, b \in (S' - M_{S'}) \setminus S'$, $a \neq b$, such that $2a, 2b, a + b \in S'$.

Proof. We claim that $a := \tau$ and $b := g - \mu$ are the two elements we are looking for.

Since $a + M_S \subseteq S$ and $a + g > g$ (and so $a + g \in M_S$) we have $a \in (S' - M_{S'})$. Furthermore, since $|\mathbb{N} \setminus S| \geq 4$, we have $g > \mu$, and thus $b + m \geq g$ for all $m \in M_{S'}$.

By the previous point, $a + m, b + m \in S' \cup \{a, b\}$ for every $m \in M_{S'}$. We always have $2a \geq g$, and thus $2a \in S'$.

If $g > 2\mu$ then $a > \mu$, and so $a + b \geq g$, which implies $a + b \in S'$; moreover, also $b > \mu$, and thus $2b \in S'$.

If $g < 2\mu$, then g must be equal to $2\mu - 2$ or to $\mu - 1$; the latter case is impossible since $|\mathbb{N} \setminus S| \geq 4$. Hence, $b = \mu - 2$ and $a = \mu - 1$. Then, $2b = 2\mu - 4$ and $a + b = 2\mu - 3$; again since $|\mathbb{N} \setminus S| \geq 4$, we must have $\mu > 3$, and thus $2b > a + b \geq \mu$. Furthermore, in this case $S' = \{0, \mu, \ldots\}$, and so $a + b, 2b \in S'$, as claimed. \hfill \Box

Proposition 2.7. Let K be the residue field of R, and suppose that $\ell_{\mathfrak{p}}(V/R) \geq 4$. There are at least $|K| + 1$ star operations on T that do not close $(R : M_R)$.

Proof. We first note that $(R : M_R)$ is a T-module. Indeed, let $x \in (R : M_R)$ and $t \in T$; then, $t = r + ax$, with $r \in R$ and $v(y) = g$, and so $xt = xr + axy$. Both xr and axy belong to $(R : M_R)$, the former because $(R : M_R)$ is a R-module and the latter since its valuation is at least g: hence, $xt \in (R : M_R)$. Thus, it makes sense to ask if a star operation on T closes $(R : M_R)$. We also note that $T \subseteq (R : M_R) \subseteq (T : M_T)$, and thus $(R : M_R)^{\star_T} = (T : M_T)$ (where \star_T is the v-operation on T).

Let $S' := v(T)$: by Lemma 2.2 we can find $a, b \in (S' - M_{S'}) \setminus S'$ such that $2a, 2b, a + b \in S'$. Choose $x, y \in (T : M_T)$ such that $v(x) = a$ and $v(y) = b$ (and, without loss of generality, suppose $y \notin (R : M_R)$): they exist since $v((T : M_T)) = (S' - M_{S'})$ [H Proposition II.1.16].

Let $\{\alpha_1, \ldots, \alpha_q\}$ be a complete set of representatives of R/M_R (or, equivalently, of T/M_T), and let $T_i := T[x + \alpha_i y]$; then, by the choice of $v(x)$ and $v(y)$, we have $T_i = T + (x + \alpha_i y)T$, and in particular $T_i \subseteq (T : M_T)$. Define \ast_i as the star operation

$$I \mapsto I^{\ast_T} \cap IT_i.$$

We claim that \ast_i closes T_i but not T_j for $j \neq i$.

Indeed, clearly $T_i^{\ast_i} = T_i$. If $j \neq i$, then $T_i T_j$ contains both $x + \alpha_i y$ and $x + \alpha_j y$, and thus it contains their difference $(\alpha_i - \alpha_j)y$. Since α_i and α_j are units corresponding to different residues, it follows that $\alpha_i - \alpha_j$ is a unit of R, and thus of T; hence, $y \in T_i T_j$. By construction, $y \in (T : M_T)$; thus, $y \in T_i^{\ast_i}$. On the other hand, $y \notin T_i$, and thus $T_i^{\ast_i} \neq T_i.$
Thus, \(\{ \ast_1, \ldots, \ast_q \} \) are \(q = |K| \) different star operations. Furthermore, none of them closes \((R : M_R) \), since
\[
(R : M_R)^* = (T : M_T) \cap (R : M_R)T[x + a_i y]
\]
contains \(y \), while \(y \notin (R : M_R) \).

To conclude the proof, it is enough to note that none of the \(\ast_i \) are the divisorial closure (since they close one of the \(T_i \), none of which are divisorial), and thus we have another star operation that does not close \((R : M_R) \).

\[\square \]

We are now ready to show that \(R \) is the desired counterexample.

Theorem 2.8. Let \(R \) be a Kunz domain with finite residue field, and suppose that \(\ell_R(V/R) \geq 4 \). Then, \(1 < |\text{Star}(R)| < \infty \), but \(R \) is not star regular.

Proof. Since \(K \) is a finite field and \(R \) is not Gorenstein, by [6, Theorem 2.5] \(1 < |\text{Star}(R)| < \infty \), and the same for \(T \).

By Proposition 2.5 we have \(|\text{Star}(R)| \geq 2 + |\Psi(\text{Star}(R))| \); by Proposition 2.7 we have \(|\Psi(\text{Star}(R))| \leq |\text{Star}(T)| - |K| - 1 \). Hence,
\[
|\text{Star}(R)| \leq 2 + |\text{Star}(T)| - |K| - 1 = |\text{Star}(T)| - |K| + 1 < |\text{Star}(T)|
\]
since \(|K| \geq 2 \). The claim is proved. \[\square \]

3. The case \(v(R) = \langle n, n+1, \ldots, 2n-3, 2n-1 \rangle \)

In this section, we specialize to the case of Kunz domains \(R \) such that \(v(R) = \langle n, n+1, \ldots, 2n-1, 2n-3 \rangle = \{0, n, n+1, \ldots, 2n-1, 2n-3, \ldots \} \), where \(n \geq 4 \) is an integer. It is not hard to see that this semigroup is pseudo-symmetric, with \(g = 2n - 2 \) and \(\tau = n - 1 \).

We note that this semigroup is pseudo-symmetric also if \(n = 3 \), for which the number of star operations has been calculated in [8, Proposition 2.10]: we have \(|\text{Star}(R)| = 4 \).

By Lemma 2.4 the only \(I \in \mathcal{F}_0(R) \) such that \(IT \neq I \) are \(R \) and the canonical ideals. From now on, we denote by \(\mathcal{G} \) the set \(\{ I \in \mathcal{F}_0(R) \mid IT = I \} \); we want to parametrize \(\mathcal{G} \) by subspaces of a vector space.

Lemma 3.1. Let \(K \) be the residue field of \(R \). Then, there is an order-preserving bijection between \(\mathcal{G} \) and the set of vector subspaces of \(K^{n-1} \).

Proof. Every \(I \in \mathcal{G} \) contains \(T \). The quotient of \(R \)-modules \(\pi : V \mapsto V/T \) induces a map
\[
\tilde{\pi} : \mathcal{G} \longrightarrow \mathcal{P}(V/T)
I \mapsto \pi(I),
\]
where \(\mathcal{P}(V/T) \) denotes the power set of \(V/T \). It is obvious that \(\tilde{\pi} \) is injective.
The map \(\pi \) induces on \(V/T \) a structure of \(K \)-vector space of dimension \(n - 1 \). If \(I \in \mathcal{G} \), then its image along \(\tilde{\pi} \) will be a vector subspace; conversely, if \(W \) is a vector subspace of \(V/T \) then \(\pi^{-1}(W) \) will be an ideal in \(\mathcal{G} \). The claim is proved. \(\square \)

For an arbitrary domain \(D \) and a fractional ideal \(I \) of \(D \), the star operation \emph{generated} by \(I \) is the map \[\star_I : J \mapsto (I : (I : J)) \cap J^v = J^v \cap \bigcap_{\gamma \in (I : J) \setminus \{0\}} \gamma^{-1}I; \]

this star operation has the property that, if \(I \) is \(\star \)-closed for some \(\star \in \text{Star}(R) \) and \(J \) is \(\star_f \)-closed, then \(J \) is also \(\star \)-closed. If \(\Delta \subseteq \mathcal{F}(S) \), we define \(\star_\Delta \) as the map \[\star_\Delta : J \mapsto \bigcap_{I \in \Delta} J^{\star_I}. \]

In the present case, we can characterize when an ideal is \(\star_\Delta \)-closed.

Proposition 3.2. Let \(I, J \in \mathcal{G} \) and let \(\Delta \subseteq \mathcal{G} \) be a set of nondivisorial ideals.

(a) \(I \) is divisorial if and only if \(n - 1 \in \mathfrak{v}(I) \);

(b) \(I^v = I \cup \{x \mid \mathfrak{v}(x) \geq n - 1\} \);

(c) if \(I, J \) are nondivisorial, then \(I = I^{\star_J} \) if and only if \(I \subseteq \gamma^{-1}J \) for some \(\gamma \) of valuation 0;

(d) if \(I \) is nondivisorial, then \(I \) is \(\star_\Delta \)-closed if and only if \(I \subseteq \gamma^{-1}J \) for some \(J \in \Delta \) and some \(\gamma \) of valuation 0.

Proof. (a) If \(I \) is divisorial, then (since \(I \neq R \)) we must have \((R : M_R) \subseteq I \); in particular, \(n - 1 \in \mathfrak{v}(I) \).

Suppose \(n - 1 \in \mathfrak{v}(I) \); since \(I \) contains every element of valuation at least \(n \), it contains also all elements of valuation \(n - 1 \). Let \(x \) be such that \(\mathfrak{v}(x) = n - 1 \); then, \(\mathfrak{v}(x + r) \geq n - 1 \) for every \(r \in V \), and thus \(x + I \subseteq I \). Hence, \(I \) is divisorial by \[\text{[II Proposition II.1.23]}. \]

(b) Let \(L := I \cup \{x \mid \mathfrak{v}(x) \geq n - 1\} \). If \(n - 1 \in \mathfrak{v}(I) \), then \(L = I \) and \(I^v = L \) by the previous point. If \(n - 1 \notin \mathfrak{v}(I) \), then (since \(I \) contains any element of valuation at least \(n \)), \(L \) is a fractional ideal of \(R \) such that \(\mathfrak{v}(L) = \mathfrak{v}(I) \cup \{n - 1\} \); hence, it is divisorial and \(\ell(L/I) = 1 \). It follows that \(L = I^v \), as claimed.

(c) Suppose \(I \subseteq \gamma^{-1}J \), where \(\mathfrak{v}(\gamma) = 0 \). Since \(J \) is not divisorial, \(n - 1 \notin \mathfrak{v}(J) = \mathfrak{v}(\gamma^{-1}J) \); hence, using the previous point, \(I = I^v \cap \gamma^{-1}J \) is closed by \(\star_J \).

Conversely, suppose \(I = I^{\star_J} \). Since \(I \) is nondivisorial, there must be \(\gamma \in (I : J), \gamma \neq 0 \) such that \(I \subseteq \gamma^{-1}J \) and \(I^v \nsubseteq \gamma^{-1}J \). If \(\mathfrak{v}(\gamma) > 0 \), then \(\gamma^{-1}J \) contains the elements of valuation \(n - 1 \); it follows that \(I^v \subseteq \gamma^{-1}J \) and thus that \(I^v \subseteq I^{\star_J} \), against \(I = I^{\star_J} \). Hence, \(\mathfrak{v}(\gamma) = 0 \), as claimed.

(d) If \(I \subseteq \gamma^{-1}J \) for some \(J \in \Delta \) and some \(\gamma \) such that \(\mathfrak{v}(\gamma) = 0 \), then \(I^{\star_\Delta} \subseteq I^{\star_J} = I \), and thus \(I \) is \(\star_\Delta \)-closed.
Conversely, suppose \(I = I^*\Delta \). For every \(J \in \Delta \), the ideal \(I^*J \) is contained in \(I^* = I \cup \{ x \mid v(x) \geq n - 1 \} \); since \(\ell(I^n/I) = 1 \), it follows that \(I^*J \) is either \(I \) or \(I^n \). Since \(I = I^*\Delta \), it must be \(I^*J = I \) for some \(J \); by the previous point, \(I \subseteq \gamma^{-1}J \) for some \(\gamma \), as claimed. \(\square \)

An important consequence of the previous proposition is the following: suppose that \(\Delta \) is a set of nondivisorial ideals in \(\mathcal{F}_0(R) \) such that, when \(I \neq J \) are in \(\Delta \), then \(I \not\subseteq \gamma^{-1}J \) for all \(\gamma \) having valuation 0. Then, for every subset \(\Lambda \subseteq \Delta \), the set of ideals of \(\Delta \) that are \(\ast_{\Lambda} \)-closed is exactly \(\Lambda \); in particular, each nonempty subset of \(\Delta \) generates a different star operation.

We will use this observation to estimate the cardinality of \(\text{Star}(R) \) when the residue field is finite.

Proposition 3.3. Let \(R \) be a Kunz domain such that \(v(R) = \langle n, n + 1, \ldots, 2n - 3, 2n - 1 \rangle \), and suppose that the residue field of \(R \) has cardinality \(q < \infty \). Then,

\[
|\text{Star}(R)| \geq 2^\frac{q^{n-2} - 1}{q - 1} \geq 2^q^{n-3}.
\]

Proof. Let \(L := \{ x \in V \mid v(x) \geq n \} \); then, \(A := V/L \) is a \(K \)-algebra. Let \(e_1 \) be an element of valuation 1, and let \(e_i := e_1^i \); then, \(\{ 1 = e_0, e_1, \ldots, e_{n-1} \} \) projects to a \(K \)-basis of \(A \), which for simplicity we still denote by \(\{ e_0, \ldots, e_{n-1} \} \). The vector subspace spanned by \(e_0 \) is exactly the field \(K \).

Since \(V \) and \(L \) are stable by multiplication by every element of valuation 0, asking if \(\gamma I \subseteq J \) for some \(I, J \in \mathcal{F}_0(R) \) and some \(\gamma \) is equivalent to asking if there is a \(\gamma \in A \) of “valuation” 0 such that \(\gamma \mathcal{T} \subseteq \mathcal{J} \), where \(\mathcal{T} \) and \(\mathcal{J} \) are the images of \(I \) and \(J \), respectively, in \(A \). Hence, instead of working with ideals in \(\mathcal{F}_0(R) \) we can work with vector subspaces of \(A \) containing \(e_0 \).

Furthermore, if \(V \) is a vector subspace of \(A \) and \(\gamma \) has valuation 0, then \(\gamma V \) has the same dimension of \(V \); thus, if \(V \) and \(W \) have the same dimension, \(\gamma V \subseteq W \) if and only if \(\gamma V = W \). Let \(\sim \) denote the equivalence relation such that \(V \sim W \) if and only if \(\gamma V = W \) for some \(\gamma \) of valuation 0.

Let \(X \) be the set of 2-dimensional subspaces of \(A \) that contain \(e_0 \) but not \(e_{n-1} \). Then, the preimage of every element of \(X \) is a nondivisorial ideal.

An element of \(X \) is in the form \(\langle e_0, \lambda_1 e_1 + \cdots + \lambda_{n-1} e_{n-1} \rangle \), where at least one among \(\lambda_1, \ldots, \lambda_{n-2} \) is not 0; since \(\langle e_0, f \rangle = \langle e_0, \lambda f \rangle \) for all \(\lambda \in K, \lambda \neq 0 \), there are exactly \((q^{n-1} - q)/(q - 1) \) such subspaces.

Let \(V \in X \), say \(V = \langle e_0, f \rangle \), and consider the equivalence class \(\Delta \) of \(V \) with respect to \(\sim \). Then, \(W \in \Delta \) if and only if \(\gamma W = V \) for some \(\gamma \); since \(1 \in W \), it follows that such a \(\gamma \) must belong to \(V \). Since \(\gamma \) has valuation 0, it must be in the form \(\lambda_0 e_0 + \lambda_1 f \) with \(\lambda_0 \neq 0 \); furthermore,
if $\gamma' = \lambda \gamma$ then $\gamma^{-1}V = \gamma'^{-1}W$. Hence, the cardinality of Δ is at most
\[
\frac{q^{n-1} - q}{q - 1} = \frac{q^{n-2} - 1}{q - 1} \geq q^{n-3}
\]
equivalence classes; let X' be a set of representatives of such classes, and let Y be the preimage of X' in the power set of $\mathcal{F}_0(R)$. Then, every subset of Y generates a different star operation (with the empty set corresponding to the v-operation); it follows that
\[
|\text{Star}(R)| \geq 2^{\frac{q^{n-2} - 1}{q - 1}} \geq 2^{q^{n-3}},
\]
as claimed. \hfill \Box

For $n = 4$, we can even calculate $|\text{Star}(R)|$.

Proposition 3.4. Let R be a Kunz domain such that $v(R) = \langle 4, 5, 7 \rangle$, and suppose that the residue field of R has cardinality $q < \infty$. Then,
\[
|\text{Star}(R)| = 2^{q^2} + 3.
\]

Proof. Consider the same setup of the previous proof. We start by claiming that two vector subspaces W_1, W_2 of A of dimension 3 that contain e_0 but not e_3 are equivalent under \sim.

Indeed, any such subspace must have a basis of the form $\{e_0, e_1 + \theta_1 e_3, e_2 + \theta_2 e_3\}$, and different pairs (θ_1, θ_2) induce different subspaces; let $W(\theta_1, \theta_2) := \langle e_0, e_1 + \theta_1 e_3, e_2 + \theta_2 e_3 \rangle$. To show that two such subspaces are equivalent, we prove that they are all equivalent to $W(0, 0)$. Let $\gamma := e_0 - \theta_2 e_1 - \theta_1 e_2$: we claim that $\gamma W(\theta_1, \theta_2) = W(0, 0)$. Indeed,
\[
\gamma (e_1 + \theta_1 e_3) = e_1 + \theta_1 e_3 - \theta_2 e_2 - \theta_1 e_3 = e_1 - \theta_2 e_2 \in W(0, 0),
\]
and likewise
\[
\gamma (e_2 + \theta_2 e_3) = e_2 + \theta_2 e_3 - \theta_2 e_3 = e_2 \in W(0, 0).
\]
Hence, $W(\theta_1, \theta_2) \sim W(0, 0)$.

Consider now the set Δ of nondivisorial ideals in $\mathcal{F}_0(R)$. By Lemma 2.2 and Proposition 3.2, Δ is equal to the union of the set of the canonical ideals and the set \mathcal{G} of the $I \in \mathcal{F}_0(R)$ such that $IT = T$. By Lemma 3.1 and Proposition 3.2, the elements of the latter correspond to the subspaces of V/T containing e_0 but not e_3: hence, we can write $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3$, where \mathcal{G}_i contains the ideals of \mathcal{G} corresponding to subspaces of dimension i.

Given $\star \in \text{Star}(R)$, let $\Delta(\star) := \{I \in \Delta \mid I = I^\star\}$. We claim that $\Delta(\star)$ is one of the following:

- \mathcal{G};
- $\Delta \setminus \{J\}$;
- $\Lambda \cup \{T\}$ for some $\Lambda \subseteq \mathcal{G}_2$;
By Proposition 2.3 if $T \neq T^*$ (i.e., if $T \notin \Delta(\star)$) then $\star = v$, and
$\Delta(\star) = \emptyset$.

If $\Delta(\star)$ contains a canonical ideal then \star is the identity, and thus $\Delta(\star) = \Delta$.

If I is \star-closed for some $I \in G_3$, then every element of G_3 must be closed, since any other $I' \in G_3$ is in the form γI for some γ of valuation 0 (by the first part of the proof); furthermore, every element of G_2 is the intersection of the elements of G_3 containing it, and thus it is \star-closed. It follows that $\Delta(\star) = \Delta \setminus \{J\}$; in particular, there is only one such star operation.

Let \star be any star operation different from the three above. Then, $\Delta(\star)$ must contain T and cannot contain any canonical ideal nor any element of G_3. Hence, $\Delta(\star)$ must be equal to $\Lambda \cup \{T\}$ for some $\Lambda \subseteq G_2$. Moreover, $\Lambda \cup \{T\}$ is equal to $\Delta(\star)$ for some \star if and only if Λ is the (possibly empty) union of equivalence classes under \sim. It follows that $|\text{Star}(R)| = 2^x + 3$, where x is the number of such equivalence classes.

By the proof of Proposition 3.3 the image of an element of G_2 is in the form (e_0, f), where $f = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3$ with at least one between λ_1 and λ_2 nonzero. Let $V(\lambda_1, \lambda_2, \lambda_3)$ denote the subspace (e_0, f); clearly, $V(\lambda_1, \lambda_2, \lambda_3) = V(c\lambda_1, c\lambda_2, c\lambda_3)$ for every $c \in K \setminus \{0\}$. The subspaces equivalent to V must have the form $(e_0 + \theta f)^{-1}V$ for some $\theta \in K$, and, by using the basis $\{e_0, e_0 + \theta f\}$ of V, we see that $(e_0 + \theta f)^{-1}V(\lambda_1, \lambda_2, \lambda_3) = (e_0, (e_0 + \theta f)^{-1})$. If $\theta = 0$, then $e_0 + \theta f = e_0$, and thus $(e_0 + \theta f)^{-1}V(\lambda_1, \lambda_2, \lambda_3) = V(\lambda_1, \lambda_2, \lambda_3)$; suppose, from now on, that $\theta \neq 0$.

To calculate $(e_0 + \theta f)^{-1} = e_0 + \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$, we can simply expand the product $(e_0 + \theta f)(e_0 + \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3)$, using $e_i = 0$ for $i > 3$, and then impose that the coefficients of e_1, e_2 and e_3 are zero; we obtain
\[
\begin{align*}
\alpha_1 &= -\theta \lambda_1 \\
\alpha_2 &= -\theta (\lambda_1 \alpha_1 + \lambda_2) \\
\alpha_3 &= -\theta (\lambda_1 \alpha_2 + \lambda_2 \alpha_1 + \lambda_3).
\end{align*}
\]

Since $\theta \neq 0$, the set $\{e_0, (e_0 + \theta f)^{-1} - e_0\}$ is a basis of $(e_0 + \theta f)^{-1}V(\lambda_1, \lambda_2, \lambda_3)$; hence, $(e_0 + \theta f)^{-1}V(\lambda_1, \lambda_2, \lambda_3) = V(\alpha_1, \alpha_2, \alpha_3)$. We distinguish two cases.

If $\lambda_1 = 0$, then $\lambda_2 \neq 0$, and so we can suppose $\lambda_2 = 1$. Then, we have
\[
\begin{align*}
\alpha_1 &= 0 \\
\alpha_2 &= -\theta \\
\alpha_3 &= -\theta \lambda_3.
\end{align*}
\]
and so $(e_0 + \theta f)^{-1}V(0, 1, \lambda_3) = V(0, -\theta, -\theta \lambda_3) = V(0, 1, \lambda_3)$ since $\theta \neq 0$. It follows that the only subspace equivalent to $V(0, 1, \lambda_3)$ is
$V(0, 1, \lambda_3)$ itself; since we have q choices for λ_3, this case gives q different equivalence classes.

If $\lambda_1 \neq 0$, we can suppose $\lambda_1 = 1$. Then, we get

$$
\begin{align*}
\alpha_1 &= -\theta \\
\alpha_2 &= -\theta(\alpha_1 + \lambda_2) = -\theta(-\theta + \lambda_2) \\
\alpha_3 &= -\theta(-\theta(-\theta + \lambda_2) - \theta\lambda_2 + \lambda_3).
\end{align*}
$$

Since $\theta \neq 0$, we can divide by $-\theta$, obtaining

$$(e_0 + \theta f)^{-1}V(1, \lambda_2, \lambda_3) = V(1, -\theta + \lambda_2, \theta^2 - 2\theta\lambda_2 + \lambda_3).$$

Since $-\theta + \lambda_2 \neq -\theta' + \lambda_2$ if $\theta \neq \theta'$, we have $(e_0 + \theta f)^{-1}V(1, \lambda_2, \lambda_3) \neq (e_0 + \theta' f)^{-1}V(1, \lambda_2, \lambda_3)$ for all $\theta \neq \theta'$; thus, every equivalence class is composed by q subspaces. Since there are q^2 such subspaces, we get other q equivalence classes.

Therefore, G_2 is partitioned into $2q$ equivalence classes, and so $|\text{Star}(R)| = 2^{2q} + 3$, as claimed. \hfill \Box

Remark 3.5.

(1) The estimate obtained in Proposition 3.3 grows very quickly; for example, if q is fixed, it follows that the double logarithm of $|\text{Star}(R)|$ grows (at least) linearly in $n = \ell(V/R) + 1$. This should be compared with [8, Theorem 3.21], where the authors analyzed a case where the growth of $|\text{Star}(R)|$ was linear in $\ell(V/R)$.

(2) Thanks to Theorem 2.8, Proposition 3.3 also gives lower bounds for the cardinality of the set of star operations of $T := R \cup \{x \in V \mid v(x) = 2n - 2\}$. If $V = K[[X]]$ is the ring of power series, then T will be equal to $K + X^nK[[X]]$. In particular, for $n = 4$, we have $|\text{Star}(T)| \geq 2^{2q} + 3$, which is an estimate pretty close to the precise cardinality of $\text{Star}(T)$, namely $2^{2q+1} + 2^{q+1} + 2$ [14, Corollary 4.1.2].

References

[1] Valentina Barucci, David E. Dobbs, and Marco Fontana. Maximal properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem. Amer. Math. Soc., 125(598):x+78, 1997.

[2] Hyman Bass. On the ubiquity of Gorenstein rings. Math. Z., 82:8–28, 1963.

[3] Evan Houston, Abdeslam Mimouni, and Mi Hee Park. Star operations on overrings of Noetherian domains. J. Pure Appl. Algebra, 220(2):810–821, 2016.

[4] Evan Houston, Abdeslam Mimouni, and Mi Hee Park. Star operations on overrings of Prüfer domains. Comm. Algebra, 45(8):3297–3309, 2017.

[5] Evan G. Houston, Abdeslam Mimouni, and Mi Hee Park. Integral domains which admit at most two star operations. Comm. Algebra, 39(5):1907–1921, 2011.

[6] Evan G. Houston, Abdeslam Mimouni, and Mi Hee Park. Noetherian domains which admit only finitely many star operations. J. Algebra, 366:78–93, 2012.
[7] Evan G. Houston, Abdeslam Mimouni, and Mi Hee Park. Integrally closed domains with only finitely many star operations. Comm. Algebra, 42(12):5264–5286, 2014.
[8] Evan G. Houston and Mi Hee Park. A characterization of local noetherian domains which admit only finitely many star operations: The infinite residue field case. J. Algebra, 407:105–134, 2014.
[9] Joachim Jäger. Längenberechnung und kanonische Ideale in eindimensionalen Ringen. Arch. Math. (Basel), 29(5):504–512, 1977.
[10] Ernst Kunz. The value-semigroup of a one-dimensional Gorenstein ring. Proc. Amer. Math. Soc., 25:748–751, 1970.
[11] Tadayuki Matsuoka. On the degree of singularity of one-dimensional analytically irreducible noetherian local rings. J. Math. Kyoto Univ., 11:485–494, 1971.
[12] José Carlos Rosales and Pedro A. García-Sánchez. Numerical Semigroups, volume 20 of Developments in Mathematics. Springer, New York, 2009.
[13] Dario Spirito. Star Operations on Numerical Semigroups. Comm. Algebra, 43(7):2943–2963, 2015.
[14] Bryan White. Star Operations and Numerical Semigroup Rings. PhD thesis, The University of New Mexico, 2014.

Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Roma, Italy
E-mail address: spirito@mat.uniroma3.it