The dehydrogenation of unactivated alkanes is an important transformation both in industrial and biological systems. Recent efforts towards this reaction have revolved around high temperature, organometallic C–H activation by noble metal catalysts that produce alkenes and hydrogen gas as the sole products. Conversely, natural desaturase systems proceed through stepwise hydrogen atom transfer at physiological temperature; however, these transformations require a terminal oxidant. Here we show combining tetra-n-butylammonium decatungstate (TBADT) and cobaloxime pyridine chloride (COPC) can catalytically dehydrogenate unactivated alkanes and alcohols under near-UV irradiation at room temperature with hydrogen as the sole by-product. This noble metal-free process follows a nature-inspired pathway of high- and low-energy hydrogen atom abstractions. The hydrogen evolution ability of cobaloximes is leveraged to render the system catalytic, with cooperative turnover numbers up to 48 and yields up to 83%. Our results demonstrate how cooperative base metal catalysis can achieve transformations previously restricted to precious metal catalysts.
Alkenes have long been recognized as powerful footholds in syntheses of complex natural products and pharmaceutical agents, with many targets containing the motif itself. One strategy that has been employed by both chemists and biological systems to introduce this essential functionality is the dehydrogenation of saturated alkyl motifs, a transformation that allows for almost unlimited flexibility in the placement of this unsaturation. Hydrogen production also remains an important challenge to this day, with the development of acceptorless (terminal oxidant free) methods possessing the added appeal of achieving this goal. While the literature pertaining to catalytic dehydrogenation is replete with metal catalysts that generate alkenes from alkanes through a coupling of this initial step with subsequent reductive elimination to liberate hydrogen as the sole by-product (Fig. 1a), these important transformations display high turnover numbers and function without a terminal oxidant, although they also require expensive noble metal catalysts and high temperatures to be efficient.

Photocatalytic systems based on iridium and rhodium are known and can be highly efficient; however, these processes still adhere to fundamentally organometallic mechanisms and typically have high-temperature requirements.

Nature employs an approach complementary to the organometallic activation strategy. Careful study of natural, iron-based desaturase systems has revealed that the first step involves a hydrogen atom transfer (HAT) from the substrate by a high-valent oxo species. Following this rate-determining step, either a second, rapid HAT (pictured, Fig. 1b) or stepwise electron transfer-proton transfer to the catalyst generates the desired olefin and a reduced equivalent of catalyst. Stoichiometric experiments by Breslow et al. showed that sequential HAT is a viable desaturation mechanism in synthetic contexts and, subsequently, bio-inspired catalytic systems have been developed. This enzymatic HAT strategy proceeds at low temperature using an earth-abundant metal; however, it is incapable of hydrogen-gas production and requires a stoichiometric oxidant to proceed.

We envisioned that a third mechanistic scenario (Fig. 1c), maintaining both the mild temperature requirements of enzymatic systems and the oxidant-free operation/hydrogen production ability of the noble metal strategy, should be attainable through judicious design of the reaction. Additionally, the relative rarity of noble metals led us to focus our thinking on base metal catalysts that are easily accessible from commodity materials, an important stipulation and remaining challenge in catalysis. In this design exercise, we took two key lessons from the desaturase systems: the amenability of radical dehydrogenation to mild temperature regimes and the marked difference in C–H bond strength between an unactivated alkane and a C–H bond β to an alkyl radical. Combining these with an awareness of the expanded reactivity possibilities of using cooperative catalysis, we considered whether two catalysts, one capable of activating a strong (~100 kcal mol\(^{-1}\)) C–H bond, (‘hard’ HAT, cat A, Fig. 1c), and another capable of activating a weakened (<50 kcal mol\(^{-1}\)) bond, (‘easy’ HAT, cat B) could be combined. Following this cooperative HAT (cHAT) sequence, it was imagined that each catalyst could donate a hydrogen atom equivalent to liberate \(\text{H}_2\) and turnover the system.

Towards pursuing this reaction manifold, a survey of the radical HAT literature immediately revealed cobaloximes as

\[
\text{[Fe]} + \text{H}_2 \xrightarrow{\beta\text{-hydride elimination}} \text{[H]} + \text{H}_2
\]

Figure 1 | Strategies for the dehydrogenation of alkanes. (a) acceptorless and organometallic (b) oxidative and enzymatic. We envisioned a third process (c) whereby the dehydrogenation proceeds under mild conditions as in b yet still evolves hydrogen as in a.
Our studies find that these catalysts can be productively combined to enable the acceptorless dehydrogenation of both alkanes and alcohols. Dehydrogenation product selectivities exhibit an interesting divergence from noble metal systems and radical coupling products are not observed. The reaction appears to proceed through the designed cHAT mechanism and presents a unique approach to dehydrogenative processes.

Results

Dehydrogenation of alkanes. Subjecting an acetonitrile solution of cyclooctane to near-UV irradiation in the presence of 1.5 mol% TBADT led to the formation of a trace (substoichiometric with respect to TBADT) amount of cyclooctene (Table 1, entry 1), a result in agreement with that of Hill et al.27. A similar treatment of a solution containing 0.75 mol% COPC and no TBADT led to no change to the starting alkane both with and without light (Table 1, entries 3 and 4). To our gratification, irradiation of a solution containing cyclooctane, TBADT and COPC produced cyclooctene in 23% yield, as well as hydrogen gas, with ~15 cooperative turnovers (Table 1, entry 5).

Further exploration of the reaction conditions found that TBADT, cobaloxime and light are all required for catalysis. The reaction may also be driven by solar irradiation, although an incandescent lamp was ineffective for reactivity. Increasing the catalyst loadings did not significantly increase the efficiency of the process and also led to the production of byproducts, 1-butene and tributylamine, from the known decomposition of the tetra-n-butyl ammonium cations.28 Interestingly, reducing...
both catalyst loadings to sub-mol% values did not negatively affect the progress of the reaction, with cooperative turnover numbers of up to 48 able to be achieved (Table 1, entry 9). Cyclopentane was successfully dehydrogenated to cyclopentene and cyclopentadiene, while cyclohexane was predominantly dehydrogenated to cyclohexene (Table 2, entries 2 and 3). The selectivity for cyclohexene over the aromatic benzene is striking in comparison to noble-metal systems, with cyclohexene itself being largely inert to the reaction conditions (Table 2, entry 4). The most contrasting result comes from ethyl isovalerate: with this substrate, only the skipped enone product was formed (Table 2, entry 5). As organometallic dehydrogenations proceed through isomerization-promoting metal-hydride intermediates, the production of this non-thermodynamic product selectively is a unique advantage of this catalyst system. Additionally, the tolerance of this process for such a chemically sensitive compound suggests that other functionalized and intricate substrates might also be amenable to a future iteration of this system. The relatively poor efficiency of these substrates compared with cyclooctane is unsurprising, as it is known that cyclooctane is a particularly well-behaved dehydrogenation substrate.

Dehydrogenation of alcohols

We hypothesized that a limiting factor of the reaction’s progress may be the inherent endothermicity of acceptorless dehydrogenation, with cyclooctane being most successful due to its low heat of hydrogenation (−23 kcal mol−1, Fig. 3) and its availability to studying it under our conditions. Initial experiments with 2-propanol (heat of hydrogenation − 13 kcal mol−1)2 confirmed this thinking, with yields of up to 63% being achievable through simple variation of reaction conditions (Table 3, entry 1 and Supplementary Table 2).

Effect of cobalt ligand environment

Having demonstrated the mutual compatibility of TBADT and COPC in mild dehydrogenations of selected hydrocarbons and alcohols, we determined if the identity of the cobalt species is essential for reactivity. It is known from the polymerization literature34 that efficient HAT requires a planar, k-4 ligand (such as the dmgH motif). Moreover, glyoximes are known to be a privileged ligand framework for hydrogen evolution reactions23,25. The substitution of COPC by either cobalt(II) acetate or cobalt(II) acetoacetate in the cyclooctane reaction led to results identical to that of having no cobalt cocatalyst, while the inclusion of cobaloxime boron fluoride, a related, Co(II) complex, led to comparable results to those achieved with COPC (Supplementary Fig. 1). These experiments suggest that the identity of the cobalt ligand environment is relevant to the reaction, as all tested...
complexes are soluble in acetonitrile at the concentrations examined (1 mol%). While alkene was only produced in super-stoichiometric quantities in the presence of cobaloxime cocatalysts, conversion to undesired products was observed in all irradiated reactions containing TBADT.

Mechanistic considerations. Following these explorations, we returned to the question of reaction mechanism. Based on the design outlined in Fig. 1c, we envisioned a dehydrogenation through successive HATs to different catalysts (cHAT, Fig. 5a). An important aspect of this mechanistic scenario is that turnover is only possible if each catalyst accepts a hydrogen atom from the substrate; if disproportionation or radical coupling occurs, a cHAT process will stall.

An alternative mechanism would invoke the cobaloxime cocatalyst as a reoxidant for the quenched decatungstate species [WO]–H (Yamase/Hill mechanism, Fig. 5a), the operative mechanism for TBADT/heterogenous noble metal systems28. While we already had compelling evidence for a mechanistic divergence with the observed product ratios (1.3:1 cyclooctene/dicyclooctane for TBADT/Pt and no dicyclooctene observed under TBADT/COPC catalysis) and hydrogen stoichiometry (1:1 alkene/hydrogen), we set out to probe the potential relevance of this mechanism by selecting a reaction that can only advance via coupling, an example being the dimerization of toluene (Fig. 5b). This reaction is known using a combination of TBADT and RuO2 (ref. 35). In this study, when toluene was exposed to 2 mol% of decatungstate under UV irradiation with and without cobaloxime cocatalyst, an identical, substoichiometric formation of bibenzyl was observed, even after prolonged (72 h) irradiation. This experiment suggests that HAT from [WO]–H to the cobaloxime cocatalyst is not a dominant process. Additionally, continuous photolysis ultraviolet-visible experiments of both the cyclooctane and toluene reactions showed an accumulation of the efficient HAT species [Co II] when COPC was used as the catalyst (Supplementary Figs. 3–30). The concentration of this species remains significant throughout the course of the reactions, meaning that the rapid, second HAT of cHAT should occur readily in cases where it is possible. In both cases, it was observed that reduced TBADT accumulates in the presence of CoII; this is also inconsistent with the cobaloxime serving as a reoxidant for the reduced TBADT.

Discussion
Collectively, these experiments exemplify how inspiration from both synthetic and biological systems can guide the design of a mild, new method to dehydrogenate certain saturated hydrocarbons and alcohols with evolution of hydrogen gas. Our observations are consistent with a dehydrogenation process featuring a cHAT pathway, a mechanism that has no near neighbour in the catalysis literature. The combination of two base metal catalysts is shown to be a powerful method to achieve new transformations, and we expect many future developments using this strategy.

Methods
An oven-dried 17 × 60 mm (8 ml) borosilicate vial was equipped with a magnetic stir bar, TBADT (0.004–0.03 equiv), and COPC (0.004–0.015 equiv). Following the addition of methyl acetate (3–4 drops) and CD3CN (1.1 ml, ~0.65 M) the vial was fitted with a silicone septa screw cap and sparged with argon for 10 min. The substrate (0.65 mmol, 1 equiv, previously sparged with Ar) was added by syringe and stirred vigorously away from ultraviolet light sources. A t = 0 aliquot was then removed using a syringe for calibrating the internal standard and the vial was
Neither disproportionation nor radical coupling, with final products due to radical disproportionation or coupling, or the expected CHAT mechanism. Toluene can only be catalytic via the Yamase/Hill mechanism.

3. Gray, H. B. Powering the planet with solar fuel.

4. Janowicz, A. H. & Bergman, R. G. C–H activation in completely saturated hydrocarbons: direct observation of M + R–H → M(R)(H).

5. Hoyano, J. K. & Graham, W. A. Oxidative addition of carbon–hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex.

6. Beadry, D., Ephritikhine, M., Felkin, H. & Holmes-Smith, R. The selective catalytic conversion of cycloalkanes into cycloalkenes using a soluble rhenium polyhydride system.

7. Burk, M. J., Crabtree, R. H. & McGrath, D. V. Thermal and photochemical catalytic dehydrogenation of alkanes with [IrH2(CF3CO2)(PR3)2](R = C6H4F–P and cyclohexyl).

8. Maguire, J. A., Boese, W. T. & Goldman, A. S. Photochemical dehydrogenation of alkanes catalyzed by trans-carbonylchlorobis(trimethylphosphine)rhodium: aspects of selectivity and mechanism.

9. Xu, W.-W., et al. Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor. Chem. Commun. 2273–2274 (1997).

10. Gunanathan, C. & Målstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712 (2013).

11. Nomura, K. & Saito, Y. n-Alkene and dihydrogen formation from n-alkanes by photocatalysis using carbonyl(chloro)phosphine-rhodium complexes. J. Chem. Soc. Chem. Commun. 161–162 (1988).

12. Sakakura, T., Sodeyama, T., Tokunaga, Y. & Tanaka, M. Highly catalytic dehydrogenation of alkanes to olefins via C–H activation in the presence of RhCl(CO)(PMe3)2 under irradiation. J. Am. Chem. Soc. 111, 7088–7093 (1989).

13. Chowdhury, A. D. & et al. Towards a practical development of light-driven acceptorless dehydrogenation. Angew. Chem. Int. Ed. 53, 6477–6481 (2014).

14. Buist, P. H. Fatty acid desaturation: selecting the dehydrogenation channel. Nat. Prod. Rep. 21, 249–262 (2004).

15. Breslow, R. et al. Remote oxidation of steroids by photolysis of attached benzophenone groups. J. Am. Chem. Soc. 95, 3251–3262 (1973).

16. Bigi, M. A., Reed, S. A. & White, M. C. Diverting non-haem iron catalysed aliphatic C–H hydroxylations towards desaturations. Nat. Chem. 3, 216–222 (2011).

17. Zhang, X.-M. Homolytic bond dissociation enthalpies of the C–H bonds adjacent to radical centers. J. Org. Chem. 63, 1872–1877 (1998).

18. Lee, J. M., Na, Y., Han, H. & Chang, S. Cooperative multi-catalyst systems for one-pot organic transformations. Chem. Soc. Rev. 33, 302–312 (2004).

19. Gridnev, A. A. & Ittel, S. D. Catalytic chain transfer in free-radical polymerizations. Chem. Rev. 101, 3611–3659 (2001).

Figure 5 | Potential mechanisms for the TBADT/COPC-catalyzed dehydrogenation of alkanes. (a) The process might proceed through either the Yamase/Hill mechanism, with final products due to radical disproportionation or coupling, or the expected CHAT mechanism. (b) The dimerization of toluene can only be catalytic via the Yamase/Hill mechanism. (c) The dimerization of toluene is not catalytic using the TBADT/COPC catalyst system, suggesting that CHAT might be operative.
20. Li, G., Pulling, M. E., Estes, D. P. & Norton, J. R. Cobaloxime-mediated radical cyclization under H2: evidence for formation of a Co–H bond and kinetics of H+ transfer. J. Am. Chem. Soc. 134, 14662–14665 (2012).
21. Lacy, D. C., Roberts, G. M. & Peters, J. C. The cobalt hydride that never was: revisiting schrazer’s ‘hydridocobaloxime.’ J. Am. Chem. Soc. 137, 4860 (2015).
22. Estes, D. P., Grills, D. C. & Norton, J. R. The reaction of cobaloximes with hydrogen: products and thermodynamics. J. Am. Chem. Soc. 136, 17362–17365 (2014).
23. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).
24. Dempsey, J. L., Winkler, J. R. & Gray, H. B. Mechanism of H2 evolution from a photogenerated hydridocobaloxime. J. Am. Chem. Soc. 132, 16774–16776 (2010).
25. Tzirakis, M. D., Lyakis, I. N. & Orfanopoulos, M. Decatungstate as an efficient photocatalyst in organic chemistry. Chem. Soc. Rev. 38, 2609–2621 (2009).
26. Fihri, A. et al. Cobaloxime-based photocatalytic devices for hydrogen production. Angew. Chem. Int. Ed. 47, 564–567 (2008).
27. Renneke, R. F., Pasquali, M. & Hill, C. L. Polyoxometalate systems for the catalytic selective production of nonthermodynamic alkenes from alkanes: nature of excited-state deactivation process and control of subsequent thermal processes in polyoxometalate photoreduction chemistry. J. Am. Chem. Soc. 112, 6585–6594 (1990).
28. Yamase, T., Takabayashi, N. & Kaji, M. Solution Chemistry of Tetrakis(tetrabutylammonium) Decatungstate(VI) and Catalytic Hydrogen Evolution from Alcohols. J. Chem. Soc. Dalton Trans. 793–800 (1984).
29. Turner, R. B. & Meador, W. R. Heats of hydrogenation. IV. hydrogenation of some cis- and trans- cycloolefins. J. Am. Chem. Soc. 79, 4133–4136 (1957).
30. Jhang, J. et al. Electron rich, bulky ruthenium PNP-type complexes. acceptorless catalytic alcohol dehydrogenation. Organometallics 23, 4026–4033 (2004).
31. Nielsen, M. et al. Efficient hydrogen production from alcohols under mild reaction conditions. Angew. Chem. Int. Ed. 50, 9593–9597 (2011).
32. Lide, D. R. & Frederiksen, H. P. R. in CRC Handbook of Chemistry and Physics 75th edn (CRC Press, 1994).
33. Esposti, S., Dondi, D., Fagnoni, M. & Albini, A. Acylation of electrophilic olefins through decatungstate-photocatalyzed activation of aldehydes. Angew. Chem. Int. Ed. 46, 2531–2534 (2007).
34. Goncharov, A. V., Gridnev, A. A., Lampeka, Ya. D. & Gavrish, S. P. Catalyst of chain transfer to monomer in radical polymerization: catalyst structure and donor–acceptor and redox properties. Theor. Exp. Chem. 25, 642–648 (1989).
35. Yamase, T. & Usami, T. Photocatalytic dimerization of olefins by decatungstate(IV), [W10O32]4– in acetonitrile and magnetic resonance studies of photoreduced species. J. Chem. Soc. Dalton Trans. 183–191 (1988).

Acknowledgements
This paper is dedicated with admiration to Albert Eschenmoser on the occasion of his 90th birthday. Financial support was provided by the National Institute of General Medical Sciences (R01 GM065483), Princeton University and National Science Foundation Graduate Research Fellowship to J.G.W (DGE 1148906). We thank Prof. Andrew Bocarsly for the use of his GC/TCD instrument. We would like to thank Prof. B.R. Knowles at Princeton University and Prof. H.B. Gray at Caltech for useful discussions during the course of this project. Finally, we would like to thank the members of the National Science Foundation CCI Center for Selective C–H Functionalization (CHE-1205646) for inspiring our interest in C–H functionalization chemistry and useful discussions throughout our studies.

Author contributions
J.G.W. discovered and developed the reaction. J.G.W., D.H. and E.J.S. conceived and designed the investigations. J.G.W. and E.J.S. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: West, J. G. et al. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6:10093 doi: 10.1038/ncomms10093 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/