CHARMLESS HADRONIC B DECAYS AT BELLE and $\bar{B}\Lambda\bar{B}\Lambda R$

F.F. WILSON

Rutherford Appleton Laboratory, Didcot, Chilton, Oxford, OX11 0QX, UK

I report on recent measurements from the Belle and $\bar{B}\Lambda\bar{B}\Lambda R$ collaborations on the decay of the B meson to hadronic final states without a charm quark.

1 Introduction.

The study of the branching fractions and angular distributions of B meson decays to hadronic final states without a charm quark probes the dynamics of both the weak and strong interactions, and plays an important role in understanding CP Violation (CPV) in the quark sector. CP Violation at the B factories is described graphically by a triangle with sides formed from the CKM matrix elements $V_{qd}V_{qb}^\ast (q = u, c, t)$ and internal angles α, β, γ (or ϕ_2, ϕ_1, ϕ_3). Discrepancies in the measured values of the sides and angles could be an indication of New Physics beyond the Standard Model (SM) due to enhanced branching fractions or modified CP asymmetries. The experimental measurements of branching fractions, CP asymmetries, polarization and phases (both weak and strong) can be compared to theoretical models based on, for example, QCD factorization, SU(3) symmetry and Lattice QCD.

The results presented below assume charge-conjugate states and all branching fraction upper limits (UL) are at the 90% confidence level (C.L.). The time-integrated CP asymmetry is defined as $A_{CP} = (N_b - N_{\bar{b}})/(N_b + N_{\bar{b}})$ where N_b ($N_{\bar{b}}$) is the number of B mesons containing a $b(\bar{b})$ quark. The latest results are based on a total dataset of $467 \times 10^6 B\bar{B}$ pairs for $\bar{B}\Lambda\bar{B}\Lambda R$ and $657 \times 10^6 B\bar{B}$ pairs for Belle, unless indicated.

2 Decays involving two-body final states.

The last few years have seen considerable advancement in the prediction of the branching fractions and polarizations of B meson decays to Vector-Vector (VV), Vector-Scalar (VS) and Vector-Tensor (VT) final states. In general, there has been good agreement between theory and experiment on branching fractions (with some notable exceptions) but the polarization measurements have presented a challenge. The VV states are expected to be almost fully longitudinally polarized ($f_L \sim 1$) and this should remain true in the presence of penguin loop decays. However, penguin-dominated decays seem to have a smaller f_L (e.g. $f_L \sim 0.5$ for $B \rightarrow \phi K^\ast$).

Belle has recently measured the decay $B^- \rightarrow K^{*0}K^-$ which is dominated by $b \rightarrow ds\bar{s}$ gluonic penguin diagrams. They measure a yield of 47.7 ± 11.1 events, corresponding to a branching fraction $B(B^- \rightarrow K^{*0}K^-) = (0.68 \pm 0.16 \pm 0.10) \times 10^{-6}$ with a 4.4σ significance. The event yield for $B^- \rightarrow K_{2}^{*0}(1430)K^-$ is measured to be 23.4 ± 12.1 with an upper limit on the branching fraction of $B(B^- \rightarrow K_{2}^{*0}(1430)K^-) < 1.1 \times 10^{-6}$. A similar analysis has
been done for B^0 decays to the VV final states $\rho^0 K^{*0}$ and $f_0 K^{*0}$. Unlike an earlier $B\bar{B}$ analysis, B Belle sees no evidence for $\rho^0 K^{*0}$ and $f_0 K^{*0}$ (and, consequently, do not measure f_L) but observes $B^0 \rightarrow \rho^0 K^+\pi^-$ and sees first evidence for $B^0 \rightarrow f_0 K^+\pi^-$ and $B^0 \rightarrow \pi^+\pi^- K^{*0}$, with branching fractions (significance) of $(2.8 \pm 0.5 \pm 0.5) \times 10^{-6}$ (5.0σ), $(1.4 \pm 0.4^{+0.3}_{-0.4}) \times 10^{-6}$ (3.5σ), and $(4.5^{+1.1+0.9}_{-1.0-1.6}) \times 10^{-6}$ (4.5σ), respectively. $B\bar{B}$ has measured B meson decay to an ω accompanied by a K^*, ρ or f_0. Five measurements have a significance above 5σ, with another two above 3σ. This has allowed $B\bar{B}$ to measure both f_L and A_{CP}. The VV branching fractions agree with theory predictions and the asymmetries are consistent with zero, as expected, while $f_L \sim 0.5$ except for $\omega \rho^+ \sim 0.9$. The results are summarized in Table 1.

Mode	Decay	$S(\sigma)$	\mathcal{B}	UL	f_L	A_{CP}
VV	ωK^{*0}	4.1	$2.2 \pm 0.6 \pm 0.2$	-	$0.72 \pm 0.14 \pm 0.02$	$+0.45 \pm 0.25 \pm 0.02$
VV	ωK^{*+}	2.5	$2.4 \pm 1.0 \pm 0.2$	7.4	$0.41 \pm 0.18 \pm 0.05$	$+0.29 \pm 0.35 \pm 0.02$
VS	$\omega(K\pi)_0^{*0}$	9.8	$18.4 \pm 1.8 \pm 1.7$	-	-	$-0.07 \pm 0.09 \pm 0.02$
VS	$\omega(K\pi)_0^{*+}$	9.2	$27.5 \pm 3.0 \pm 2.6$	-	-	$-0.10 \pm 0.09 \pm 0.02$
VT	$\omega K^0_2(1430)^0$	5.0	$10.1 \pm 2.0 \pm 1.1$	-	$0.45 \pm 0.12 \pm 0.02$	$-0.37 \pm 0.17 \pm 0.02$
VT	$\omega K^0_2(1430)^+$	6.1	$21.5 \pm 3.6 \pm 2.4$	-	$0.56 \pm 0.10 \pm 0.04$	$+0.14 \pm 0.15 \pm 0.02$
VV	$\omega \rho^0$	1.9	$0.8 \pm 0.5 \pm 0.2$	1.6	-	-
VV	ωf_0	4.5	$1.0 \pm 0.3 \pm 0.1$	1.5	-	-
VV	$\omega \rho^+$	9.8	$15.9 \pm 1.6 \pm 1.4$	-	$0.90 \pm 0.05 \pm 0.03$	$-0.20 \pm 0.09 \pm 0.02$

Table 1: Branching fraction central value (\mathcal{B}) and upper limit (UL) in units of 10^{-6}, significance S in standard deviations, longitudinal polarization (f_L) and CP asymmetry A_{CP} for the Vector-Vector (VV), Vector-Scalar (VS) and Vector-Tensor (VT) decays of $B \rightarrow \omega K^*$, ωf_0 and $\omega \rho$.

3 Decays involving three-body final states.

An interesting use of the decay to final states with three particles is the search by Belle for the exotic state $X(1812)$ in the decay $B^+ \rightarrow K^+ X(1812), X(1812) \rightarrow \omega \phi$. This is similar to the observation by Belle of the $Y(3940)$ resonance in $B^+ \rightarrow K^+ \omega \phi$. Belle observes $N_{K^+\omega\phi} = 22.1^{+8.3}_{-7.2}$ events leading to a branching fraction for the Dalitz plot of $\mathcal{B}(B^+ \rightarrow K^+ \omega \phi) = (1.15^{+0.43}_{-0.38} \pm 0.13) \times 10^{-6}$ (2.8σ) and an upper limit $< 1.9 \times 10^{-6}$. Assuming the $X(1812)$ masses and width from BES7, Belle searches for a near-threshold enhancement in the $M_{\pi^+\pi^-\pi^0 K^+K^-}$ mass spectrum. No significant yield is seen and an upper limit of 3.2×10^{-7} is placed on the product branching fraction $\mathcal{B}(B^+ \rightarrow K^+ X(1812), X(1812) \rightarrow \omega \phi)$.

$B\bar{B}$ has also looked at rare processes in Dalitz plots. Previous measurements have shown that almost 50% of the events in $B^0 \rightarrow K^+K^-\pi^+$ can be assigned to an ill-defined resonance, called $f_X(1500)$ by $B\bar{B}$. If this is an even-spin resonance, the rate for $f_X(1500) \rightarrow K^0_S K^0_S$ would be expected to be half the rate for $f_X(1500) \rightarrow K^+K^-$. They see 15 \pm 15 events in the whole Dalitz plot placing an upper limit on the total branching fraction of $\mathcal{B}(B^+ \rightarrow K^0_S K^0_S < 5.1 \times 10^{-7}$. This makes the even-spin hypothesis unlikely but interpretation is difficult as the exact quantum numbers of the $f_X(1500)$ are unknown.

Some MSSM models could enhance the branching fractions of SM-suppressed decays from the SM values of $\sim 10^{-16}$ to $\sim 10^{-6}$. $B\bar{B}$ has searched for $B^- \rightarrow K^+\pi^-\pi^-$ and $B^- \rightarrow K^-\pi^+\pi^+$ and placed upper limits of 9.5×10^{-7} and 1.6×10^{-7}, respectively, on the branching fractions.

The decay $B^+ \rightarrow \pi^+\pi^-\pi^-$ can in principle be used to extract the CKM angle γ by measuring the interference between $\pi^+\pi^-$ resonances and the χ_{c0} resonance which has no CP violating phase. It can also be helpful in understanding broad resonances and nonresonant backgrounds.
that are present in $B^0 \to \pi^+\pi^-\pi^0$ and so improve our measurement of the CKM angle α. $B\bar{B}$Ar's results for $B^+ \to \pi^+\pi^+\pi^-$ are summarized in Table 2. No significant direct CP asymmetry is measured and, although some resonances are significant, no evidence is found for χ_0 and χ_2, leading to branching fraction upper limits for $B^+ \to \chi_0\pi^+ < 1.5 \times 10^{-5}$ and $B^+ \to \chi_2\pi^+ < 2.0 \times 10^{-5}$, making the measurement of γ in this mode unlikely at Belle or $B\bar{B}$Ar.

Table 2: Branching fraction (B), CP asymmetry A_{CP}, and Fit Fraction for the decay $B^+ \to \pi^+\pi^+\pi^-$ with the resonance decaying to $\pi^+\pi^-$. The errors are statistical, systematic and model-dependent, respectively.

Decay	Fit Fraction (%)	$B \times 10^{-6}$	A_{CP} (%)
$\pi^+\pi^+\pi^-$ Total	-	15.2 ± 0.6 ± 1.2 $^{+0.4}_{-0.3}$	3.2 ± 4.4 $^{+2.5}_{-2.0}$
$\pi^+\pi^+\pi^-$ nonresonant	34.9 ± 4.2 ± 2.9 $^{+7.5}_{-3.4}$	5.3 ± 0.7 ± 0.6 $^{+1.1}_{-0.5}$	$-14 \pm 14 \pm 7^{+17}_{-3}$
$\rho^0(770)\pi^+\rho^0 \to \pi^+\pi^-$	53.2 ± 3.7 ± 2.5 $^{+1.3}_{-1.1}$	8.1 ± 0.7 ± 1.2 $^{+0.4}_{-1.1}$	$18 \pm 7 \pm 5^{+2}_{-3}$
$\rho^0(1540)\pi^+\rho^0 \to \pi^+\pi^-$	9.1 ± 2.3 ± 2.4 $^{+1.9}_{-1.5}$	1.4 ± 0.4 ± 0.4 $^{+0.8}_{-0.7}$	$-6 \pm 28 \pm 20^{+12}_{-35}$
$f_2(1270)\pi^+\pi^-f_2 \to \pi^+\pi^-$	5.9 ± 1.6 ± 0.4 $^{+2.0}_{-0.7}$	0.9 ± 0.2 ± 0.1 ± 0.3	$41 \pm 25 \pm 13^{+12}_{-8}$
$f_0(1370)\pi^+\pi^-f_0 \to \pi^+\pi^-$	18.0 ± 3.3 ± 2.6 $^{+4.3}_{-3.5}$	2.9 ± 0.5 ± 0.5 $^{+0.7}_{-0.5}$ (<4.0)	$72 \pm 15 \pm 14^{+6}_{-8}$
$\chi_0\pi^+\pi^+\chi_0 \to \pi^+\pi^-$	-	< 1.5	-
$\chi_2\pi^+\pi^+\chi_2 \to \pi^+\pi^-$	-	< 0.1	-

4 CP Violation and the CKM angle $\alpha(\phi_2)$.

The precision of the measurement of the CKM angle $\alpha(\phi_2)$ continues to improve. In the absence of penguin loops in the decays, the angle α can be measured in the time-dependent decay of $B^0 \to \rho\rho$ and $B^0 \to \pi\pi$. However the penguin contribution, particularly in $\pi^0\pi^0$, is not small and so the measured α_{eff} differs from the true α by $\Delta \alpha = \alpha - \alpha_{eff}$. $\Delta \alpha$ can be constrained by performing an Isospin analysis on the decays $B^0 \to \rho\rho$, $B^+ \to \rho^+\rho^0$ and $B^0 \to \rho^+\rho^-$. Table 3 summarizes the measurements from $B\bar{B}$Ar, where the CP parameters are quoted for the longitudinally polarized (CP-even) component of the VV decays. When combined, $\Delta \alpha$ is constrained to be between -1.8^o and 6.7^o (68% C.L.). The angle α is measured to be $(92.4^{+6.6}_{-6.5})^\circ$ and can be compared to the recent result from Belle 13 of $\alpha = (91.7^{+14.9}_{-14.9})^\circ$. A similar analysis using $B \to \pi\pi$ decays produces a looser constraint $|\Delta \alpha| < 43^\circ$, which results in an exclusion range for α between 23° and 43° at the 90% C.L. The result of combining these measurements using the CKMfitter programme 14 with earlier measurements of $B \to \pi\rho$ are shown in Fig. 11.

Table 3: Branching fraction (B), longitudinal polarization (f_L), direct CP asymmetry (C_L), CP asymmetry in the interference between mixing and decay (S_L) and CP asymmetry A_{CP} for the decays $B^0 \to \rho^+\rho^-$, $B^0 \to \rho^0\rho^0$ and $B^+ \to \rho^+\rho^0$ measured by $B\bar{B}$Ar.

$B^0 \to \rho^+\rho^-$	$B^0 \to \rho^0\rho^0$	$B^+ \to \rho^+\rho^0$	
$B(\times 10^{-6})$	$B(\times 10^{-6})$	$B(\times 10^{-6})$	
$B^0 \to \rho^+\rho^-$	25.5 ± 2.1 $^{+3.6}_{-3.9}$	0.92 ± 0.32 ± 0.14	23.7 ± 1.4 ± 1.4
f_L	0.992 ± 0.024 $^{+0.026}_{-0.013}$	0.75 ± 0.14 ± 0.04	0.950 ± 0.015 ± 0.006
C_L	0.01 ± 0.15 ± 0.06	0.2 ± 0.8 ± 0.3	-
S_L	-10.17 ± 0.20 $^{+0.05}_{-0.06}$	0.3 ± 0.7 ± 0.2	-
A_{CP}	-	-	-10.054 ± 0.055 ± 0.01
Belle has seen direct CP in $B^0 \rightarrow \pi^+\pi^-$ but $\overline{\text{B}}A\overline{\text{B}}\text{A}R$ does not, reporting only that $C_{\pi^+\pi^-} = -0.25 \pm 0.08 \pm 0.02$ with a significance of just 2.2σ. However, both experiments see significant direct CP in $B^0 \rightarrow K^+\pi^-$ with $\overline{\text{B}}A\overline{\text{B}}\text{A}R$ reporting $A_{CP} = -0.107 \pm 0.016_{-0.006}^{+0.006}$ with 6.1σ significance, to be compared to $-0.094 \pm 0.018 \pm 0.008$ from Belle. Both experiments also measure A_{CP} for $B^\pm \rightarrow K^\pm \pi^0$ to be slightly positive but consistent with zero. A_{CP} should be similar for both $K\pi$ modes but Belle reports a 4.4σ difference and $\overline{\text{B}}A\overline{\text{B}}\text{A}R$ sees a similar discrepancy.\cite{15}

References

1. K.-F. Chen et al. (Belle Collaboration), \textit{Phys. Rev. Lett.} \textbf{94}, 221804 (2005); B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev. Lett.} \textbf{100}, 081801 (2008).
2. M. Iwasaki et al. (Belle Collaboration), to appear in ICHEP 2008 proceedings.
3. S.-H. Kyeong et al. (Belle Collaboration), arXiv:0905.0763.
4. B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev. Lett.} \textbf{97}, 201801 (2006).
5. B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev.} D \textbf{79}, 052005 (2009).
6. K. Abe et al. (Belle Collaboration), \textit{Phys. Rev. Lett.} \textbf{94}, 182002 (2005).
7. M. Ablikim et al. (BES Collaboration), \textit{Phys. Rev. Lett.} \textbf{96}, 162002 (2006).
8. C. Liu et al. (Belle Collaboration), arXiv:0902.4757v2.
9. B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev.} D \textbf{79}, 051101 (2009).
10. B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev.} D \textbf{78}, 091102 (2008).
11. B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev.} D \textbf{79}, 072006 (2009).
12. B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev.} D \textbf{76}, 052007 (2007); B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev. Lett.} \textbf{97}, 261801 (2006); B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev.} D \textbf{78}, 071104 (2008); B. Aubert et al. (BABAR Collaboration), arXiv:0708.1630; B. Aubert et al. (BABAR Collaboration), \textit{Phys. Rev. Lett.} \textbf{102}, 141802 (2009).
13. C.-C. Chang et al. (Belle Collaboration), \textit{Phys. Rev.} D \textbf{78}, 111102 (2008).
14. J. Charles et al. (CKMfitter Collaboration), \textit{Eur. Phys. J.} C \textbf{41}, 1-131 (2004) and updates at http://ckmfitter.in2p3.fr; M. Bona et al. (UTfit Collaboration), \textit{Journal of High Energy Physics} \textbf{0507}, 028 (2005) and updates at http://www.utfit.org.
15. B. Aubert et al. (BABAR Collaboration), arXiv:0807.4226v2; S.-W. Lin et al. (Belle Collaboration), \textit{Nature} \textbf{452}, 332-335 (2007).