It is well known that the leading causes of death are now chronic diseases such as cancer, cerebrovascular problems and heart disease in developed countries, including Japan. They are related to daily lifestyle, including dietary habit, alcohol drinking, smoking, physical exercise, and factors for stress. Because dietary habit, in particular, appears to play a major role in their pathogenesis, batteries of tests to assess intake of foods/nutrients, including fats/fatty acids, antioxidants and dietary fibers, are needed for epidemiologic studies.

There are several tools available, including diet records (DRs)/weighed diet records (WDRs), 24-hour recall, food frequency questionnaires (FFQs), and duplicate methods.
these, the FFQ is most often employed to evaluate associations between long-term food intake and health/disease. We earlier developed a data-based semi-quantitative food frequency questionnaire (SQFFQ) using multiple regression analysis (MRA) as well as contribution analysis on the basis of WDRs, and conducted a calibration/validation and reproducibility study, as detailed elsewhere. However, the SQFFQ was primarily designed for the JADE (Japanese Dietitians’ Epidemiologic) Study. We recently evolved a self-administered brief FFQ according to MRA as described elsewhere for epidemiologic studies on lifestyle-related diseases of the middle-aged Japanese general populace.

In the present investigation, we carried out a relative validity study of intake of energy and 26 macro- and micro-nutrients measured with our FFQ versus reference values with three-day WDRs (3d-WDRs).

Subjects
We recruited 222 (83 males and 139 females) middle-aged volunteers (30 - 70 years of age) who were attending physical exercise classes in communities, or were parents of college students in Aichi prefecture, central Japan. Twenty individuals were excluded from this study because eight persons were under 30 or over 70 years old, eight had not complied with the research regimen and four whose responses for energy lay beyond 3 standard deviations (SDs) from the mean measured with the FFQ. Finally, 202 participants (73 males and 129 females) were thus included in the present analysis.

FFQ and 3d-WDRs
In February 2004, we first administered the FFQ to the subjects by mail. The questionnaire inquired about habitual dietary intake during the previous one year for 47 foods/recipes and frequency in eight categories: never or seldom, 1-3 times/month, 1-2 times/week, 3-4 times/week, 5-6 times/week, once/day, twice/day and more than three times/day. For staple foods, including rice, noodle and bread, the portion size/serving size was requested. Approximately one week later, we administered the 3d-WDRs (two-week-days and one weekend) and a disposable camera to photograph foods when eating out or take-out. Diet records not completed were checked and verified by research dietitians.

Nutrients selected
We earlier developed a brief FFQ for energy and 26 macro- and micro-nutrients, including protein, fat [saturated fatty acids (SFAs), mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFAs], n-6 PUFAs, n-3 PUFAs, n-3 HUFAs (highly-unsaturated fatty acids) and cholesterol, total dietary fiber (TDF) (soluble and insoluble), minerals (calcium and iron) and vitamins (carotene, and vitamins A, C, D and E), and added 6 nutrients of interest, including carbohydrate energy%, protein energy %, fat energy %, vitamin B1, vitamin B2 and folate.

Calculation of intake of nutrients
We computed the average daily consumption of energy and selected nutrients using information from the FFQ and lifestyle questionnaire, including consumption of alcohol. According to the regression analysis, selected nutrients were adopted as dependent parameters and foods/food groups consumed, intake frequency, portion size (in grams) from our database, or typical/standard values from the literature, nutrient contents per 100 grams of foods/food groups listed in the respective composition tables or of the model recipes were assumed to be independent variables. With the WDRs, we calculated mean daily intakes of selected nutrients by multiplying the consumption of foods/food groups (in grams) and nutrient contents per 100 grams of foods as listed in the composition tables or model recipes.

Validation
First, we compared mean daily intakes of energy and 26 selected nutrients gauged with the FFQ against those with the 3d-WDRs. Differences in means and ratios were computed with the FFQ vs. 3d-WDRs values, and examined by t-test using Excel® and the SPSS®-10.0 software package.

Second, we calculated crude Pearson’s correlation coefficients (CCs), log-transformed Pearson’s CCs, log-transformed and energy-adjusted Pearson’s CCs, and de-attenuated, log-transformed and energy-adjusted Pearson’s CCs between intakes of selected nutrients based on the FFQ and 3d-WDRs. Energy adjustment was executed using regression models. De-attenuated Pearson’s CCs were computed by partitioning within- and inter-individual variations by one way of analysis of variance according to the formula described elsewhere. Crude Spearman’s rank CCs and energy-adjusted Spearman’s rank CCs were also calculated. Statistical significance was verified with the 95% confidence interval.

Third, after categorizing daily intakes of nutrients quantified with the FFQ and 3d-WDRs into quartiles, we computed percentages of exact agreement, agreement within adjacent categories, and disagreement.

Ethical issues
Our study protocol was reviewed and approved by the Internal Review Board at Nagoya City University Graduate School of Medical Sciences. Written informed consent was obtained from each participant.

Profile of study subjects
The mean ages (standard deviations (SDs) (minimum - maximum) were 51.7 years (30 - 68) for females, and 49.6 years (30 - 68) for males, and 49.6 years (30 - 68) for females. The values for height, weight and body mass index (kg/m²) were 169.6 cm (± 6.6) for males, and 155.8 cm (± 5.2) for females. The values for height, weight and body mass index (kg/m²) were 65.5 kg (± 7.7) for females, and 22.7 (± 2.3) for males, and 35.1 kg (± 6.6) for females.
Table 1. Comparison of daily intakes of energy and 26 nutrients measured with three-day weighed diet records vs. food frequency questionnaire.

Nutrient	Male (n=73)	Female (n=129)				
	3d-WDRs Mean SD	FFQ Mean SD	3d-WDRs Mean SD	FFQ Mean SD	Ratio of FFQ to 3d-WDRs p	
Energy [kcal]	2342 469	1987 268	0.85 ***	1924 332	1639 186	0.85 ***
Protein [g]	88.4 22.1	60.8 10.2	0.69 ***	74.5 16.3	55.2 7.8	0.74 ***
Fat [g]	66.1 22.6	47.1 11.9	0.71 ***	59.2 16.5	48.4 9.6	0.82 ***
Carbohydrate [g]	312.7 57.7	293.0 51.7	0.94 *	264.5 50.0	226.6 36.1	0.86 ***
Protein energy% ^1	15.1 2.0	12.3 1.4	0.81 ***	15.5 2.0	13.5 1.5	0.87 ***
Fat energy% ^2	25.1 5.4	21.4 4.6	0.85 ***	27.5 5.1	26.7 4.9	0.97 ***
Carbohydrate energy% ^3	53.9 6.2	58.8 4.6	1.09 ***	55.2 6.1	55.2 5.0	1.00 ***
Saturated fatty acids [g]	16.6 6.6	11.3 2.0	0.68 ***	16.0 5.5	12.4 2.5	0.78 ***
Monounsaturated fatty acids [g]	23.1 9.3	17.5 4.4	0.76 ***	19.8 6.2	16.9 3.4	0.85 ***
Polyunsaturated fatty acids [g]	16.4 5.3	14.1 3.2	0.86 **	14.0 4.1	13.5 2.9	0.97 ***
n-6 Polyunsaturated fatty acids [g]	12.8 4.5	11.8 2.7	0.92 **	11.0 3.4	11.5 2.6	1.04 ***
n-3 Polyunsaturated fatty acids [g]	3.3 1.2	2.3 0.5	0.70 **	2.8 1.1	2.2 0.5	0.80 ***
n-3 Highly-unsaturated fatty acids [g]	1.1 0.9	0.7 0.3	0.66 **	0.9 0.7	0.7 0.2	0.78 ***
Cholesterol [mg]	424 176	274 64	0.65 ***	345 132	264 64	0.76 ***
Iron [mg]	9.8 2.4	7.7 1.9	0.79 ***	8.9 2.7	7.7 1.6	0.86 ***
Calcium [mg]	592 186	508 129	0.86 *	609 231	566 144	0.93 ***
Carotene [μg]	4244 1840	3229 1285	0.76 *	4241 2103	3550 1131	0.84 ***
Vitamin A [μgRE]	989 478	1052 384	1.06	1067 832	1052 422	0.99 ***
Vitamin D [μg]	9.4 5.4	7.4 3.4	0.79 **	8.0 5.9	7.2 2.6	0.91 ***
Vitamin E [μg-TE]	10.1 3.3	8.6 2.1	0.85 **	9.4 3.0	8.6 1.8	0.92 **
Vitamin B1 [mg]	1.18 0.4	0.69 0.08	0.58 ***	1.04 0.30	0.70 0.10	0.65 ***
Vitamin B3 [mg]	1.48 0.44	1.12 0.21	0.76 **	1.38 0.43	1.20 0.20	0.89 ***
Folate [μg]	417 148	357 109	0.86 **	409 164	384 93	0.94 ***
Vitamin C [μg]	123 57	103 34	0.84	136 69	122 34	0.90 ***
Soluble dietary fiber [g]	3.7 1.2	2.1 0.6	0.57 ***	2.4 0.7	2.3 0.5	0.61 ***
Insoluble dietary fiber [g]	12.1 3.2	8.0 2.2	0.66 ***	12.0 3.7	9.0 1.9	0.75 ***
Total dietary fiber [g]	16.6 4.4	11.4 3.1	0.69 ***	16.6 5.1	12.4 2.7	0.75 ***

Median
Average
0.79
0.86
0.79
0.85

*: p<0.05, **: p<0.01, ***: p<0.001.

d: Percentage of energy from protein, fat or carbohydrate to total energy.

3d-WDRs: 3-day weighed diet records, FFQ: food frequency questionnaire, SD: standard deviation.
Table 2. Pearson’s and Spearman’s rank correlation coefficients (CCs) between intakes of energy and 26 nutrients measured with three-day weighed diet records and food frequency questionnaire for males.

Nutrient	Crude Pearson’s CCs	Log-transformed a	Log-transformed and energy-adjusted a	De-attenuated, log-transformed and energy-adjusted b (95% CI)	Spearman’s rank CCs	
Energy	0.41	0.40	1.4	0.49 (0.29 - 0.65) 0	0.36	
Protein	0.36	0.32	0.42	1.3	0.50 (0.25 - 0.71)	0.22 0.35
Fat	0.53	0.48	0.52	1.2	0.62 (0.39 - 0.80)	0.38 0.49
Carbohydrate	0.54	0.55	0.73	1.1	0.86 (0.71 - 0.96)	0.57 0.73
Protein energy%	0.45	0.45	0.42	1.3	0.51 (0.26 - 0.72)	0.38 0.35
Fat energy%	0.55	0.56	0.51	1.2	0.61 (0.38 - 0.79)	0.49 0.50
Carbohydrate energy%	0.68	0.70	0.74	1.1	0.86 (0.71 - 0.97)	0.68 0.76
Saturated fatty acids	0.50	0.43	0.55	1.0	0.64 (0.48 - 0.90)	0.35 0.52
Monounsaturated fatty acids	0.52	0.44	0.37	1.2	0.43 (0.15 - 0.55)	0.12 0.32
Polyunsaturated fatty acids	0.35	0.31	0.34	1.9	0.44 (0.14 - 0.61)	0.05 0.33
n-6 Polyunsaturated fatty acids	0.20	0.21	0.10	1.6	0.12 (-0.11 - 0.34)	0.20 0.13
n-3 Polyunsaturated fatty acids	0.35	0.36	0.41	2.5	0.55 (0.37 - 0.69)	0.37 0.37
n-3 Highly-unsaturated fatty acids	0.14	0.31	0.28	2.1	0.36 (0.14 - 0.55)	0.28 0.23
Cholesterol	0.35	0.25	0.10	2.1	0.13 (-0.16 - 0.38)	0.15 0.15
Calcium	0.32	0.34	0.42	1.0	0.49 (0.25 - 0.69)	0.38 0.43
Iron	0.25	0.26	0.49	1.2	0.58 (0.35 - 0.76)	0.21 0.50
Carotene	0.19	0.23	0.29	2.18	0.39 (0.09 - 0.65)	0.18 0.28
Vitamin A	0.18	0.16	0.21	2.25	0.27 (-0.03 - 0.55)	0.10 0.19
Vitamin D	0.34	0.40	0.45	3.21	0.65 (0.36 - 0.89)	0.33 0.35
Vitamin E	0.25	0.21	0.25	1.83	0.31 (0.02 - 0.57)	0.16 0.27
Vitamin B1	0.31	0.25	0.21	1.73	0.26 (-0.03 - 0.52)	0.19 0.19
Vitamin B2	0.35	0.31	0.48	1.11	0.57 (0.36 - 0.77)	0.34 0.53
Folate	0.12	0.17	0.33	0.72	0.36 (0.12 - 0.58)	0.21 0.41
Vitamin C	0.27	0.27	0.40	0.94	0.45 (0.21 - 0.66)	0.24 0.52
Soluble dietary fiber	0.04	0.07	0.21	1.38	0.25 (-0.03 - 0.50)	0.28 0.20
Insoluble dietary fiber	0.11	0.10	0.27	1.53	0.33 (0.06 - 0.58)	0.22 0.24
Total dietary fiber	0.12	0.12	0.30	1.44	0.36 (0.09 - 0.60)	0.34 0.27
Median	0.34	0.31	0.38	1.36	0.45	0.46 0.35
Average	0.33	0.32	0.38	1.54	0.46	0.29 0.37

a: For n=73, r > 0.24 (p<0.05), r > 0.31 (p<0.01), r > 0.39 (p<0.001).
b: All energy and nutrients intakes were loge-transformed to improve normality.
c: Energy intake was adjusted using residual model.
d: Ratio of within-person to between-person variance of nutrient intakes from three-day weighed diet records.
e: De-attenuated correlation coefficient is calculated using ratio of within- to between-person variation measured with three-day weighed diet records.
f: De-attenuation only.
CI: confidence interval.
Table 3. Pearson’s and Spearman’s rank correlation coefficients between intakes of energy and 26 nutrients measured with three-day weighed diet records and food frequency questionnaire for females.

Nutrient	Pearson’s CCs \(^*\)	Spearman’s rank CCs \(^*\)					
	Crude	Log-transformed \(\log_{e}\)	De-attenuated, log-transformed and energy-adjusted \((95\% \text{ CI})\)	Crude	Energy-adjusted		
Energy	0.38	0.38	0.97	0.44 (0.30 - 0.65) \(^0\)	0.37		
Protein	0.31	0.31	0.29	1.60	0.36 (0.25 - 0.62) \(^\dagger\)	0.30	0.33
Fat	0.29	0.29	0.40	1.32	0.48 (0.40 - 0.72) \(^\ddagger\)	0.22	0.38
Carbohydrate	0.48	0.52	0.55	1.05	0.64 (0.61 - 0.85) \(^\dagger\)	0.45	0.44
Protein energy\%	0.33	0.33	0.30	1.61	0.37 (0.26 - 0.63) \(^\dagger\)	0.37	0.34
Fat energy\%	0.36	0.37	0.40	1.33	0.48 (0.40 - 0.72) \(^\ddagger\)	0.33	0.37
Carbohydrate energy\%	0.55	0.57	0.57	1.07	0.66 (0.64 - 0.87) \(^\dagger\)	0.45	0.46
Saturated fatty acids	0.40	0.39	0.35	1.33	0.42 (0.32 - 0.66) \(^\dagger\)	0.35	0.34
Monounsaturated fatty acids	0.21	0.18	0.28	1.54	0.34 (0.22 - 0.60) \(^\dagger\)	0.12	0.26
Polyunsaturated fatty acids	0.09	0.13	0.20	1.73	0.25 (0.10 - 0.51) \(^\dagger\)	0.05	0.16
n-6 Polyunsaturated fatty acids	0.11	0.16	0.25	1.60	0.31 (0.14 - 0.46) \(^\dagger\)	0.20	0.22
n-3 Polyunsaturated fatty acids	0.09	0.12	0.17	2.50	0.23 (0.06 - 0.39) \(^\dagger\)	0.17	0.17
n-3 Highly-unsaturated fatty acids	0.17	0.27	0.27	2.10	0.35 (0.19 - 0.49) \(^\dagger\)	0.29	0.27
Cholesterol	0.13	0.15	0.14	2.42	0.19 (0.02 - 0.47) \(^\dagger\)	0.15	0.17
Calcium	0.48	0.52	0.52	0.85	0.59 (0.53 - 0.78) \(^\dagger\)	0.50	0.47
Iron	0.31	0.33	0.38	1.03	0.44 (0.34 - 0.66) \(^\dagger\)	0.33	0.37
Carotene	0.28	0.28	0.30	1.69	0.38 (0.28 - 0.65) \(^\dagger\)	0.31	0.30
Vitamin A	0.11	0.14	0.17	1.90	0.22 (0.06 - 0.48) \(^\dagger\)	0.22	0.24
Vitamin D	0.18	0.27	0.29	2.64	0.40 (0.33 - 0.73) \(^\dagger\)	0.25	0.26
Vitamin E	0.03	0.03	0.14	1.63	0.17 (0.00 - 0.41) \(^\dagger\)	0.00	0.14
Vitamin B1	0.11	0.09	0.08	2.12	0.10 (-0.10 - 0.35) \(^\dagger\)	0.13	0.11
Vitamin B2	0.42	0.37	0.37	1.05	0.43 (0.32 - 0.65) \(^\dagger\)	0.38	0.38
Folate	0.25	0.27	0.34	0.84	0.38 (0.25 - 0.59) \(^\dagger\)	0.29	0.36
Vitamin C	0.40	0.40	0.46	0.79	0.52 (0.43 - 0.71) \(^\dagger\)	0.43	0.43
Soluble dietary fiber	0.23	0.26	0.31	1.37	0.37 (0.25 - 0.62) \(^\dagger\)	0.28	0.36
Insoluble dietary fiber	0.31	0.30	0.37	1.35	0.46 (0.36 - 0.70) \(^\dagger\)	0.32	0.37
Total dietary fiber	0.33	0.34	0.40	1.23	0.47 (0.38 - 0.71) \(^\dagger\)	0.34	0.41
Median	0.29	0.29	0.31	1.37	0.38	0.30	0.34
Average	0.27	0.29	0.32	1.51	0.39	0.28	0.31

\(^*\): For \(n=129\), \(r > 0.20\) (p<0.05), \(r > 0.26\) (p<0.01), \(r > 0.32\) (p<0.001).

\(^\dagger\): All energy and nutrients intakes were \(\log_{e}\)-transformed to improve normality.

\(^\ddagger\): Energy intake was adjusted using residual model.

\(\dagger\): Ratio of within-person to between-person variance of nutrient intakes from three-day weighed diet records.

\(\ddagger\): De-attenuated correlation coefficient is calculated using ratio of within- to between-person variation measured with three-day weighed diet records.

\(\dagger\dagger\): De-attenuation only.

CI: confidence interval.
Table 4. Comparison of nutrient intakes between three-day weighed diet records and food frequency questionnaire according to quartile classification for males.

Nutrient	Crude (%)	Energy-adjusted (%)				
	Exact agreement	Agreement within adjacent categories	Disagreement	Exact agreement	Agreement within adjacent categories	Disagreement
Energy	33	74	3	29	75	5
Protein	33	66	8	42	84	3
Fat	32	75	8	42	92	0
Carbohydrate	41	85	0	42	77	4
Protein energy%	29	75	5	32	79	3
Fat energy%	45	79	4	41	79	3
Carbohydrate energy%	51	89	3	49	93	0
Saturated fatty acids	30	75	8	41	85	5
Monounsaturated fatty acids	33	73	7	29	71	4
Polyunsaturated fatty acids	27	71	5	32	74	7
n-6 Polyunsaturated fatty acids	29	71	11	26	62	17
n-3 Polyunsaturated fatty acids	25	74	12	28	71	15
n-3 Highly-unsaturated fatty acids	31	74	6	33	70	9
Cholesterol	32	70	4	25	70	12
Calcium	30	77	5	32	78	3
Iron	30	68	5	42	82	4
Carotene	32	68	10	37	66	10
Vitamin A	29	60	11	27	66	8
Vitamin D	37	74	4	38	75	7
Vitamin E	26	66	11	29	71	7
Vitamin B₁	23	66	7	36	66	5
Vitamin B₂	29	78	3	42	82	1
Folate	30	73	7	38	79	5
Vitamin C	33	67	5	33	74	3
Soluble dietary fiber	23	56	12	32	68	12
Insoluble dietary fiber	22	62	11	33	70	7
Total dietary fiber	26	62	10	26	70	5
Median	30	73	7	33	74	5
Average	31	71	7	34	75	6
Table 5. Comparison of nutrient intakes between three-day weighed diet records and food frequency questionnaire according to quartile classification for females.

Nutrient	Crude (%)		Energy-adjusted (%)			
	Exact	Agreement within adjacent categories	Disagreement	Exact	Agreement within adjacent categories	Disagreement
	agreement			agreement		
Energy	31	75	5	33	77	5
Protein	36	73	7	34	75	4
Fat	36	68	9	36	76	6
Carbohydrate	40	76	5	41	78	5
Protein energy%	35	78	5	35	77	3
Fat energy%	33	73	8	37	74	7
Carbohydrate energy%	40	78	5	40	81	5
Saturated fatty acids	33	74	6	39	79	9
Monounsaturated fatty acids	33	68	12	36	72	8
Polyunsaturated fatty acids	26	64	13	27	68	11
n-6 Polyunsaturated fatty acids	29	71	11	26	62	13
n-3 Polyunsaturated fatty acids	25	74	12	28	71	12
n-3 Highly-unsaturated fatty acids	31	74	6	33	70	7
Cholesterol	31	66	11	33	73	12
Calcium	38	81	5	36	83	5
Iron	33	72	7	35	77	5
Carotene	32	77	8	33	73	6
Vitamin A	29	68	6	33	73	9
Vitamin D	32	74	9	29	74	9
Vitamin E	22	63	14	26	67	9
Vitamin B₁	30	67	10	29	65	9
Vitamin B₂	35	76	6	35	75	5
Folate	32	74	9	40	74	7
Vitamin C	39	78	3	36	78	4
Soluble dietary fiber	33	72	5	29	76	4
Insoluble dietary fiber	39	74	9	40	77	5
Total dietary fiber	40	73	7	40	76	5
Median	33	73	7	35	76	6
Average	33	73	8	34	75	7
Table 6. Comparison of validity indices for selected nutrients of Japanese short food frequency questionnaires vs. diet records.

procedures of dietary records	sequence of two methods	sex	no. of subjects	male	female								
24-hour-recall x 12 months	24H-Rs	Male and Female	31	44	42	44	94	107	23	55	58	73	129
4-day WDRs x 4 seasons	FFQ:	Male	0.55	0.25	0.39	0.21	0.38	0.23	0.55	0.38	0.40	0.44	
7-day WDRs x 4 seasons	FFQ:	Female	0.57	0.39	0.24	0.46	0.53	0.45	0.57	0.43	0.86	0.64	

- WDR: weighed diet record, FFQ: food frequency questionnaire, DR: diet record.
Intake of nutrients

The intakes of energy and macro- and micro-nutrients gauged with the FFQ were generally lower than those with 3d-WDRs (Table 1). The ratios of nutrient consumption measured with the FFQ vs. 3d-WDRs (minimum- median- maximum) were distributed from 0.57 - 0.79 - 1.09 for males and 0.61 - 0.86 -1.04 for females.

De-attenuated, log-transformed and energy-adjusted Pearson's CCs between intakes of nutrients quantified with the FFQ and 3d-WDRs were distributed from 0.12 (n-6 PUFAs) - 0.45 (vitamin C) - 0.86 (carbohydrate and carbohydrate energy %) for males (Table 2), and energy-adjusted Spearman's rank CCs were distributed from 0.13 (n-6 PUFAs) - 0.35 (protein energy % and vitamin D) - 0.76 (carbohydrate energy %).

De-attenuated, log-transformed and energy-adjusted Pearson's CCs between intakes of nutrients quantified with the FFQ and 3d-WDRs were distributed from 0.10 (vitamin B1) - 0.38 (carotene and folate) - 0.66 (carbohydrate energy %) for females (Table 3), and energy-adjusted Spearman's rank CCs were distributed from 0.11 (vitamin B1) - 0.34 (protein energy % and SFAs) - 0.47 (calcium).

Median percentages of exact agreement, agreement within adjacent categories, and disagreement according to the quartile classification of energy-adjusted nutrient intakes quantified with the FFQ and 3d-WDRs were 33, 74, and 5 for males (Table 4), and 35, 76, and 7 for females (Table 5), respectively.

Because our FFQ is brief, covering 47 foods/food groups, the mean daily intakes of energy and 26 macro- and micro-nutrients determined with the FFQ were, as expected, generally smaller than those measured with the 3d-WDRs.\[1,\] De-attenuated, log-transformed and energy-adjusted Pearson's CCs between intakes of selected nutrients quantified with the FFQ and 3d-WDRs were distributed from 0.10 - 0.86 and energy-adjusted Spearman’s rank CCs were from 0.11 to 0.76. For most nutrients, fairly high relative validity values for the FFQ were achieved with reference to the 3d-WDRs. But the disagreement values for certain nutrients were not negligible and non-differential misclassification will unduly underestimate the risk.\[2\] Our FFQ thus should be deliberately applicable to rank individuals according to consumption of energy and nutrients selected for dietary studies in middle-aged Japanese.

Relative validity values are dependent on various parameters, such as person, place, time, and study protocols, which include the study subjects (e.g., people in the general population vs. dietitians/nurses), study devices adopted, interval between the two batteries of tests studied, sequence of the batteries, number of food items in the FFQ, procedures and days of DRs, and diversity of food intake (e.g. Japanese, Chinese and American diets).\[3\] Relative validity values for macronutrients and respective energy % were reasonably high, but those for some micronutrients, including cholesterol, vitamins, minerals and dietary fibers, were rather low because the two methods measured different profiles of dietary consumption. The former inquired about dietary habits during the preceding year, and the latter surveyed actual food intakes for 3 days. WDRs are accurate without recall bias, but do not necessarily indicate habitual food consumption. Naturally, the two values do not necessarily correlate well with each other. It is also well known that great intra-individual variation exists by day, week and season for micronutrients, including vitamins and minerals.\[4,\] Three days are not long enough to assess the actual consumption of those nutrients and relative validity indices are invariably low, particularly for nutrients with high within-individual variation. Thus, short-day WDRs cannot be accepted as the gold standard. Furthermore, the both values estimated with FFQ and 3d-WDRs appear underestimated partly because incompleteness of the database published.\[5,\] Accordingly, our investigation should rightly be called a "relative" validation study, and the indices need to be carefully evaluated.

An FFQ covering 47 foods/food groups may not be adequate for accurately assessing consumption of energy and 26 macro- and micro-nutrients. We formerly developed an SQFFQ with 118 foods/food groups. Its relative validity indices against 28d-WDRs (consecutive 7 day-WDRs x 4 seasons) were more favorable than with the short FFQ,\[6\] which may be partly explained by the number of included foods/food groups. In general, the greater the number of foods/food groups listed in the FFQ, the higher the relative validity values, but the lower the compliance among study subjects.\[7,\] In addition, the fact that portion/serving size is requested by the SQFFQ, but not by the FFQ, except for staple foods, may be another reason for variation in the relative validity indices.

Because our long SQFFQ was applied to Japanese dietitians,\[8\] it is also plausible that the relative validity indices were more favorable than with subjects from the general populace. Reducing the study subjects' burden appears critical and questionnaires should be designed to be reasonably short when self-administered by the general public, especially for large-scale epidemiological studies. We thus had to shorten our questionnaire to maintain high compliance and still be able to rank the study subjects according to their nutrient intakes.

The sequence of application of study devices also appears crucial.\[9\] The FFQ should be first administered and relative validity figures then evaluated with DRs/WDRs distributed later because FFQs are delivered to the study subjects in the actual dietary epidemiology settings. With the reverse order, DRs/WDRs invariably yield education/memory effects, by which relative validity values are artificially improved, particularly when the interval between the two batteries of tests is short.

Here, we compared the relative validity values for a short FFQ with less than 100 food items applied to the Japanese general populace. Egami et al.\[10\] earlier administered a 97-item FFQ before...
WDRs (Table 6) and their relative validity indices were almost equivalent to those of our questionnaire, with values for macronutrients also consistently greater than those for micronutrients, including vitamins and minerals. Other DRs/WDRs were delivered prior to respective FFQs, but as discussed earlier, the figures should be carefully interpreted. The relative validity values for most nutrients in our questionnaire nonetheless stand comparison not only with Japanese data but also with those for brief FFQs employed elsewhere in the world.19,21

In conclusion, relative validity values were rather low for several nutrients, but satisfactorily high figures were obtained with most nutrients for our FFQ against the 3d-WDRs values. The questionnaire thus seems applicable to rank individuals according to consumption of energy and nutrients selected in dietary studies in the middle-aged Japanese. Bearing in mind these strengths and weaknesses of our FFQ, it can be administered to the general populace, with caution, to investigate possible associations between dietary intake and disease/health in case-control and cohort studies.

The authors thank the volunteers for their participation in the present study, and express their appreciation to Ms. Y. Miyai and Ms. M. Sato for their technical assistance in preparing this manuscript.

References

1. World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition and the Prevention of Cancer: a Global Perspective. Washington, DC: American Institute for Cancer Research, 1997.
2. Thompson FE, Byers T. Dietary assessment resource manual. J Nutr 1994; 124: S2245-S2317.
3. Willett W. Nutritional Epidemiology, 2nd Edition. New York: Oxford University Press, 1998.
4. Margetts BM, Nelson M. Design Concepts in Nutritional Epidemiology. Oxford: Oxford University Press, 1999.
5. Tokudome S, Ikeda M, Tokudome Y, Imaeda N, Kitagawa I, Fujiwara N. Development of data-based semi-quantitative food frequency questionnaire for dietary studies in middle-aged Japanese. Jpn J Clin Oncol 1998; 28: 679-87.
6. Tokudome S, Imaeda N, Tokudome Y, Fujiwara N, Nagaya T, Sato J, et al. Relative validity of a semi-quantitative food frequency questionnaire versus 28 day weighed diet records in Japanese female dietitians. Eur J Clin Nutr 2001; 55: 735-42.
7. Imaeda N, Fujiwara N, Tokudome Y, Ikeda M, Kuriki K, Nagaya T, et al. Reproducibility of a semi-quantitative food frequency questionnaire in Japanese female dietitians. J Epidemiol 2002; 12: 45-53.
8. Tokudome S, Goto C, Imaeda N, Tokudome Y, Ikeda M, Maki S. Development of a data-based short food frequency questionnaire for assessing nutrient intake by middle-aged Japanese. Asian Pacific J Cancer Prev 2004; 5: 40-3.
9. Science and Technology Agency, Japan. Standard Tables of Food Composition in Japan. The Fourth Edition. Tokyo: Ministry of Finance, 1982. (in Japanese)
10. Science and Technology Agency, Japan. Standard Tables of Food Composition in Japan. The Fifth Edition. Tokyo: Ministry of Finance, 1993. (in Japanese)
11. Science and Technology Agency, Japan. Standard Tables of Food Composition in Japan. The Sixth Edition. Tokyo: Ministry of Finance, 1998. (in Japanese)
12. Science and Technology Agency, Japan. Standard Tables of Food Composition in Japan. Tokyo: Ishiyaku Shuppan, 1992. (in Japanese)
13. Imaeda N, Tokudome Y, Fujiwara N, Nagaya T, Kamae M, Tsunekawa S, et al. Data checking and standardization in a weighed food dietary record survey. Jpn J Nutr 2000; 58: 67-76. (in Japanese)
14. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 1986; 124: 17-27.
15. Liu K, Stamler J, Dyer A, McKeever J, McKeever P. Statistical methods to assess and minimize the role of intra-individual variability in obscuring the relationship between dietary lipids and serum cholesterol. J Chron Dis 1978; 31: 399-418.
16. Beaton GH, Milner J, Corey P, McGuire V, Cousins M, Stewart E, et al. Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Am J Clin Nutr 1979; 32: 2456-9.
17. Rosner B, Willett WC. Interval estimates for correlation coefficients corrected for within-person variation: implications for study design and hypothesis testing. Am J Epidemiol 1988; 127: 377-86.
18. Thompson RL, Margetts BM. Comparison of a food frequency questionnaire with a 10-day weighed record in cigarette smokers. Int J Epidemiol 1993; 22: 824-33.
19. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985; 122: 51-65.
20. Yarnell JWG, Fehily AM, Milbank JE, Sweetnam PM, Walker CL. A short dietary questionnaire for use in an epidemiological survey: comparison with weighed dietary records. Human Nutr Applied Nutr 1983; 37A: 103-12.
21. Johansson I, Hallmans G, Wikman A, Biessy C, Riboli E, Kaaks R. Validation and calibration of food-frequency questionnaire measurements in the Northern Sweden Health and Disease cohort. Public Health Nutr 2002; 5: 487-96.
22. Rothman KJ, Greenland S. Modern Epidemiology, 2nd ed. Philadelphia: Lippincot-Raven, 1998.
23. Tokudome Y, Imaeda N, Nagaya T, Ikeda M, Fujiwara N,
Sato J, et al. Daily, weekly, seasonal, within- and between-
individual variation in nutrient intake according to four sea-
son consecutive 7 day weighed diet records in Japanese
female dietitians. J Epidemiol 2002; 12: 85-92.
24. Egami I, Wakai K, Kato K, Lin Y, Kawamura T, Tamakoshi
A, et al. A simple food frequency questionnaire for Japanese
diet: Part II. Reproducibility and validity for nutrient intakes.
J Epidemiol 1999; 9: 227-34.
25. Takatsuka N, Kawakami N, Kawai K, Okamoto Y, Ishiwata
K, Shimizu H. Validation of recalled food intake in the past
in a Japanese population. J Epidemiol 1996; 6: 9-13.
26. Tsubono Y, Kobayashi M, Sasaki S, Tsugane S, JPHC.
Validity and reproducibility of a self-administered food fre-
quency questionnaire used in the baseline survey of the JPHC
Study Cohort I. J Epidemiol 2003; 13 (Suppl I): S125-33.
27. Lee KY, Uchida K, Shirota T, Kono S. Validity of a self-
administered food frequency questionnaire against 7-day
dietary records in four seasons. J Nutr Sci Vitaminol 2002;
48: 467-76.
28. Ogawa K, Tsubono Y, Nishino T, Watanabe Y, Ohkubo T,
Watanabe T, et al. Validation of a food-frequency question-
naire for cohort studies in rural Japan. Public Health Nutr
2003; 6: 147-57.