Proof-of-concept of polymetallic phyto-extraction of base metal mine tailings from Queensland, Australia

Philip Nti Nkrumah · Amelia Corzo Remigio · Antony van der Ent

Abstract

Purpose The increasing volumes of mine tailings that are being generated globally because of the rise in metal demand, whilst ore-grades continue to decline, call for novel sustainable management options. Phytoextraction using hyperaccumulator plant species may be one of such strategies to deal with these large volumes of contaminated materials. However, base metals (such as zinc, lead, copper) mine tailings are inherently polymetallic that necessitate targeting multiple metal(loid)s simultaneously for effective phytoextraction. The aim of this study was to conduct a proof-of-concept experiment for polymetallic phytoextraction of base metal mine tailings.

Methods Selected hyperaccumulator plants (Noccaea caerulescens targeting zinc, Biscutella laevigata and Silene latifolia targeting thallium, Phytolacca octandra targeting manganese, Pityrogramma calomelanos targeting arsenic) were grown in monocultures and mixed cultures for 12 weeks on tailings from the zinc-lead-copper Dugald River and Mt Isa Mines, Queensland, Australia.

Results Noccaea caerulescens accumulated zinc and manganese (up to ~1 wt% and ~1.4 wt%, respectively) with zinc-manganese co-localization at the leaf apex and margins. The monocultured B. laevigata exhibited severe toxicity symptoms, which were alleviated when co-cultured with N. caerulescens. Trichomes were important storage sites for zinc and manganese in B. laevigata. Silene latifolia accumulated higher thallium than B. laevigata, whilst P. octandra promoted thallium accumulation in S. latifolia.

Conclusions This proof-of-concept test of polymetallic phytoextraction provides a real-life demonstration of this innovative technology which could be adapted to further experiments at base metal mines around the world.

Keywords Hyperaccumulator plants · Elemental distribution · Metal uptake · Metal demand · Mine tailings · Polymetallic

Introduction

Global demand for metallic elements is surging because of the technological shift required for a net-zero carbon emission transition (European Commission 2020; IEA 2021; Mudd 2020; Xu et al. 2020). Base metal mining occurs around the world, with Australia being a major producer of lead (Pb), zinc...
(Zn), copper (Cu), silver (Ag) and nickel (Ni) (Mudd et al. 2017; Spitz and Trudinger 2019). There are >70 major base metal mines/fields across Australia (Mudd 2007). One of the most significant production centres are the Mt Isa deposits in northwest Queensland, which have the largest reserves of Pb, Zn and Ag in the world (Williams 1998) and hosts some of the leading global producers of base metals, including the Mt Isa Mines and Dugald River Mine. The tailings material generated from base metal mining generally contains high concentrations of potentially toxic trace elements, including arsenic (As), cadmium (Cd) and thallium (Tl). Large volumes of this potentially hazardous material is generated as ore-grades continue to decline whilst metal demand and production surge (Jowitt et al. 2020; Mudd 2020). Mine tailings management is one of the major issues confronting the mining industry, governments, and the society at large, with deleterious repercussions on the environment and public health if inappropriately managed (Entwistle et al. 2019). Environmentally friendly and cost-effective approaches are required to holistically address the increasing risk of tailings contamination from active and abandoned mines. However, in many mine tailings, their inherent geochemical characteristics present strong challenges for effective rehabilitation (Huang et al. 2012).

Hyperaccumulator plants have the unique ability to tolerate and accumulate high concentrations of potentially toxic trace elements into their shoots (Reeves 2006). Notional threshold values in dry shoot matter for recognition of hyperaccumulation are set at 100 μg g⁻¹ for Cd, selenium (Se) and Tl; 300 μg g⁻¹ for cobalt (Co) and Cu; 1000 μg g⁻¹ for As and nickel (Ni); 3000 μg g⁻¹ for Zn; and 10,000 μg g⁻¹ for manganese (Mn) (van der Ent et al. 2013). On this basis, there are currently 746 hyperaccumulator species known globally: 532 Ni, 53 Cu, 42 Co, 42 Mn, 41 Se, 20 Zn, seven Cd, five As, two Tl, and two rare earth elements (REEs) (Reeves et al. 2018a,b). Hyperaccumulation has both fundamental (e.g., understanding ion homeostasis in plants) and applied (e.g., development of phytoextraction and biofortification) importance (Chaney and Baklanov 2017; Clemens 2017; van der Ent et al. 2015, 2017).

Phytoextraction involves the in situ cultivation of selected hyperaccumulator plants on a metal-rich substrate followed by harvesting and subsequent processing of the metal-rich biomass to recover valuable metal(loid)s and/or to remove hazardous elements from their biomass for safe disposal (Anderson et al. 1999; Nkrumah et al. 2016, 2018, 2019). Phytoextraction can be cost-effective and environmentally friendly and potentially generate economic gains from valuable metals, such as Ni, Co, and Tl from unconventional resources such as mine tailings (Corzo Remigio et al. 2020; van der Ent et al. 2021). Production of high-purity metal salts from the harvested biomass may in the future partly meet the growing demand for critical metals required for the global net-zero carbon emission transition (Nkrumah et al. 2022). The main limitation of phytoextraction is the number of known hyperaccumulator plant species with the right combination of desirable traits, including high biomass production and a high accumulation capacity for the target element (Nkrumah et al. 2021). Furthermore, hyperaccumulator plant species typically tolerate and accumulate only one or two elements simultaneously (van der Ent et al. 2019). This presents a problem at many metal-contaminated sites, including base metal mine tailings, because they are intrinsically polymetallic. Considering the inherent polymetallic characteristics of most base metal mine tailings, it may not be useful to target single metal(loid) during phytoextraction. However, this drawback may be overcome by selecting a purposeful assemblage of hyperaccumulator plant species that in concert tolerate and accumulate multiple metal(loid)s thereby providing synergistic conditions for optimum growth and metal yield of all cultivated species.

Substantial unrealised opportunities exist in Australia for the discovery of hyperaccumulator plant species considering the high level of plant diversity and widespread metalliferous soils (Abubakari et al. 2021a,b; Lottermoser et al. 2008). However, the majority of the limited local hyperaccumulator plant species discovered so far either produce low biomass or are very slow growing and therefore, not suitable for economic phytoextraction (Batianoff et al. 1990; Bidwell et al. 2002; Fernando et al. 2009; Severne 1974). Recent field surveys have led to the discovery of Australian native species that may have greater potential. This includes the finding of one of the strongest Se hyperaccumulator plant species known in the world, *Neptunia amplifica* (Fabaceae) endemic to Central Queensland, which may open new opportunities
for a Se phytoextraction industry in regional Australia (Harvey et al. 2020). In addition, the discovery of the polymetallic (Zn-Cu-Cd) hyperaccumulator Crotalaria novaehollandiae (Fabaceae) from the Dugald River Zn-Pb gossan in Central Queensland may find applications in phytoremediation and possibly phytoextraction in Australia (Tang et al. 2022).

Elucidating elemental distribution at the organ, tissue, cellular or subcellular levels can provide insights into the mechanisms underlying the high tolerance and accumulation physiologies in these species (van der Ent et al. 2018). Synchrotron and laboratory-based micro-X-ray fluorescence technology permits mapping of a wide range of elements in plant organs and tissues (van der Ent et al. 2021). Information on elemental distribution coupled with elemental concentrations and growth data could aid in developing improved hyperaccumulator cultivars and optimising the agronomic parameters required for practical phytoextraction (Broadhurst et al. 2009; van der Ent et al. 2017). For example, the co-localization of Ni and Mn in the leaf tissues of Odontarrhena (Alyssum) species (Brassicaceae) suggests that employing this species for Ni phytoextraction on Mn-rich soils may affect Ni yields (Broadhurst et al. 2009).

This study aims to investigate the responses of model polymetallic hyperaccumulator plants to typical polymetallic tailings and to provide a proof-of-principle for polymetallic phytoextraction on Zn-Pb base metal mine tailings from Australian mines. Some of the species used in this study will not be suitable for application in the semi-arid tailings in Central Queensland. However, it is hoped that the proof-of-concept may ultimately be adopted employing local native species if they are discovered in Australia.

Materials and methods

Tailings material The tailings material used for this study included Zn-Pb base metal mine tailings from the Dugald River and Mt Isa Mines. The Mt Isa Mines commenced production in 1931 (Mudd 2007), whereas the Dugald River Mine became operational in 2017 (Creus et al. 2021). The chemical properties of the respective tailings materials are presented in Table 1. The Dugald River Mine tailings have high Mn, Zn, Cd, Ti and Pb total concentrations, whilst the Mt Isa Mine tailings also have high Cu, Co, As and TI concentrations, but lower Zn and Mn concentrations (see Table 1; Forsyth et al. 2015; Huang et al. 2015; Tang et al. 2022). Notably, the tailings from the Dugald River Mine are not yet weathered because they have only recently been produced, and this may influence the phytoavailable metal concentrations (e.g., Zn, see Table 1).

Plant species The selected model species included Noccaea caerulescens (Brassicaceae) targeting zinc, Biscutella laevigata (Brassicaceae) and Silene latifolia (Caryophyllaceae) targeting thallium, Phytolacca octandra (Phytolaccaceae) targeting manganese, and Pityrogramma calomelanos (Pteridaceae) targeting arsenic. Furthermore, we employed the well-known metal tolerant species capable of producing large

Table 1 Initial chemical properties of the substrates used in this study. The elemental concentrations of the solutions extracted by total and diethylenetriaminepentaacetic acid (DTPA) methods are given in mg kg⁻¹

Soil parameter	Dugald River Mine Tailings	Mt Isa Mine Tailings
pH	5.85 ± 0.35b	6.90 ± 0.10a
Total elemental concentration (mg kg⁻¹)		
Mn	3840 ± 180b	14,530 ± 1700a
P	725 ± 115a	305 ± 30b
K	1400 ± 110a	990 ± 65b
Cu	14,570 ± 825b	22,680 ± 2730a
Mn	2180 ± 195a	665 ± 65b
Fe	57,320 ± 8060a	51,570 ± 3880a
Cu	110 ± 5.0b	1220 ± 115a
Zn	15,750 ± 1480a	5400 ± 430b
As	190 ± 30b	390 ± 35a
Cd	35 ± 5.0a	20 ± 1.5b
Pb	4780 ± 280a	3020 ± 215b
Tl	5.0 ± 0.5b	20 ± 2.0a
DTPA-extractable concentrations (mg kg⁻¹)		
Mn	360 ± 90a	90 ± 15b
Cu	12.0 ± 0.8b	220 ± 10 a
Zn	655 ± 15a	690 ± 55a
As	2.01 ± 0.005b	2.35 ± 0.10a
Cd	4.5 ± 0.8b	10 ± 0.8a
Pb	220 ± 105a	345 ± 45a
Tl	0.5 ± 0.10b	1.5 ± 0.25a
amounts of carboxylate-rich root exudates, *Lupinus albus* (Fabaceae). The intensively studied hyperaccumulator *N. caerulescens* from Europe has the ability to hyperaccumulate Ni, Zn, Pb and Cd with accessions differing in their ability to tolerate and accumulate these metals (Assunção et al. 2003; Deng et al. 2014; Gonneau et al. 2014; Schwartz et al. 2003). The level of foliar accumulation in *N. caerulescens* is extreme as it can accumulate up to 52,000 µg g⁻¹ foliar Zn (Zhao et al. 2003), whilst it can also attain 3410 µg Tl g⁻¹ (Escarré et al. 2002). *Biscutella laevigata* can attain > 30,000 µg Tl g⁻¹ when growing on soils with ~400 µg Tl g⁻¹ (Pošćić et al. 2015) and *S. latifolia* up to 1500 µg Tl g⁻¹ (Escarré et al. 2011). *Pityrogramma calomelanos* is an As hyperaccumulator that can reach up to 8350 µg As g⁻¹ in its fronds (Franc-esconi et al. 2002). *Phytolacca octandra* and *L. albus* produce large amounts of root exudates rich in carboxylic acids, thereby increasing phytoavailable metal concentrations (Dinkelaker et al. 1989; Lambers et al. 2015). Moreover, *Phytolacca* species are Mn hyperaccumulators and may be beneficial in reducing Mn-toxicity to co-cultivated plants via the removal of available Mn from the rhizosphere (Pollard et al. 2009). Phytoavailability of the target metal(s) in the soil or substrate is a key consideration for the effectiveness of phytorextraction (Nkrumah et al. 2016, 2021) and we hypothesize that co-cultivating strong root exudates-producing plants with selected model hyperaccumulator plants could increase their metal accumulation, especially in relatively low phytoavailable metal substrates. Finally, as a legume, *L. albus* is a nitrogen-fixing species which may improve the fertility of the substrate for the co-cultivated hyperaccumulator plants.

Experimental design The seed accession of *N. caerulescens* (Navacelles, France, non-metalliferous) was chosen purposefully because it has a particularly high Zn bioconcentration factor (ratio of shoot Zn concentrations to soil Zn concentrations) (Escarré et al. 2000). The seed accessions of *B. laevigata* and *S. latifolia* originated from Saint-Laurent-le-Minier, Southern France (Zn-Pb-Cd-Tl metalliferous site). Seeds of *P. octandra* were collected near Brisbane, Australia, while seeds of *L. albus* were purchased from a commercial supplier in Brisbane and *Pityrogramma calomelanos* sporelings were collected from north Queensland. The experiments were conducted in plastic boxes (45×30×12 cm, L, W, H) in which a 1 cm layer of plastic granules (for irrigation) was covered by a plastic mesh and then filled with tailings mixes consisting of 90:5:5 and 75:10:15 (w/w/w) tailings/peat moss/perlite for Dugald River Mine and Mt Isa Mine tailings, respectively. Seeds of *N. caerulescens*, *B. laevigata* and *S. latifolia* were germinated separately on Gelzan gel in 2 mL Eppendorf tubes (made from 0.5-strength Hoagland’s solution). The seeds were then vernalized for one week at 3 °C and acclimatized for four days at 25 °C (van der Zee et al. 2021). Seeds of *P. octandra* were treated with sulphuric acid for 15 min and rinsed with water before sowing in a 1:1 mix of perlite and vermiculite. The seedlings (approx. 1 cm in size) were transplanted to the boxes. Four treatments with 16 biological replicates were undertaken on the Dugald River Mine substrate: *B. laevigata* only (hyperaccumulation of Tl) (D_B only), *B. laevigata*+*N. caerulescens* (hyperaccumulation of Zn and Tl) (D_B+N), *B. laevigata*+*L. albus* (hyperaccumulation of Tl) (D_B+L) and *N. caerulescens* only (hyperaccumulation of Zn) (D_N only). In addition, seven treatments with 16 biological replicates were undertaken on the Mt Isa Mine substrate: *B. laevigata* only (hyperaccumulation of Tl) (M_B only), *B. laevigata*+*P. calomelanos* (hyperaccumulation of As and Tl) (M_B+P), *B. laevigata*+*L. albus* (hyperaccumulation of Tl) (M_B+L), *N. caerulescens* only (hyperaccumulation of Zn) (M_N only), *B. laevigata*+*P. octandra* (hyperaccumulation of Mn and Tl) (M_B+Phy), *S. latifolia* only (hyperaccumulation of Tl) (M_S only) and *S. latifolia*+*P. octandra* (hyperaccumulation of Mn and Tl) (M_S+Phy). In the case of polyculture, eight replicates of each species were used. The plants were grown for a total period of 12 weeks with 12 hours light/day (provided by LEDs B200, Valoya, 350 µmol m⁻² sec⁻¹ photosynthetic photon flux density) at 25–20°C day/night temperature, harvested, and then separated into root and shoot fractions for analysis as described below.

Bulk analysis of plant tissue samples All of the plant material samples were thoroughly washed with demineralised water and then oven dried at 70 °C for 3 days. The samples were weighed and then ground to a fine powder in an impact mill at 15,000 rpm (IKA Tube Mill 100 control with disposable cups with titanium blades) and then 100±5 mg of each sample was weighed into 6 mL polypropylene tubes. The samples were pre-digested using 2 mL HNO₃ (70%) for 24 h before digestion in a block heater (Thermo Scientific™ digital dry bath) for a 2-h programme (1 h at 70 °C followed by 1 h at 125 °C). The digestates were then brought to volume...
(10 mL) with ultrapure water before analysis with Inductively coupled plasma atomic emission spectroscopy (ICP-AES) with a Thermo Scientific iCAP 7400 instrument for macro-elements (Mg, P, S, K, Ca) and trace-elements (Mn, Fe, Cu, Zn, As, Cd, Ti, Pb) in radial and axial modes depending on the element and expected analyte concentration. All elements were calibrated with a 4-point curve covering analyte ranges in the samples.

Collection and analysis of tailings samples Samples of the respective substrates collected from 5–20 cm depth were air-dried and sieved through a 630 µm screen. The pH was measured in a 1:2.5 substrate to water slurry after 2 h mixing on an end-over-end shaker and a 1-h rest. Sub-samples were weighed (100±5 mg) in quartz digestion vessels and 5 mL HNO₃ (70%) and 2 mL HCL (37%) were added. The...
samples were then digested for 15 min at 80% power using a ColdBlock system (CB15S 15 channel system, ColdBlock Technologies Inc) which uses high-intensity infrared irradiation to aid rapid acid digestion (Wang et al. 2014). The digestates were quantitatively transferred to 50 mL tubes, brought to volume (40 mL) and filtered (Whatman® Grade 1 filter paper) before analysis with ICP-AES. As a means of estimating potentially phytoavailable trace elements, the DTPA-extractant was used according to Becquer et al. (1995), which was adapted from the original method by Lindsay and Norvell (1978), with the following modifications: excluding TEA, adjusted to pH 5.3, 5 g soil with 25 mL extractant, and extraction time of one hr. the extracts were then filtered (Whatman® Grade 1 filter paper) before analysis with ICP-AES.

micro-X-ray fluorescence elemental mapping The UQ micro-XRF facility is a custom-built system manufactured by IXRF which consists of two 50 kV sources (1000 μA) fitted with polycapillary focussing optics: XOS microfocus Mo-target tube producing 17.4 keV X-rays (flux of 2.2×10^8 ph s$^{-1}$) focussing to 25 μm and a Rh-target tube producing 20.2 keV (flux of 1.0×10^7 ph s$^{-1}$) focussing to 5 μm. The system is fitted with two silicon drift detectors (SDD) of 150 mm2 coupled to a XIA Mercury X4 signal processing unit. The fresh foliar samples were mounted between two sheets of 4 μm Ultralene thin film in a tight sandwich to limit evaporation and analysed within 10 min after excision. The mounted samples between Ultralene thin film were stretched over a Perspex frame magnetically attached to the x–y motion stage at atmospheric temperature (~20 °C). The UQ microXRF

![Fig. 2 Elemental concentrations A) Zn, B) Mn and C) Tl, and D) shoot biomass of Noccaea caerulescens grown on the Dugald River Mine and Mt Isa Mine substrates (Mono: monoculture and Poly: co-cultured with Biscutella laevigata).](image)

Key to symbols of boxplots: open squares are the mean, whiskers are ± standard deviation (SD), circles are outliers. Mean ± standard error followed by the same letter are not significantly different ($p > 0.05$) according to the Tukey test.
facility acquired the XRF spectra in mapping mode using the instrument control package, Iridium (IXRF systems), from the sum of counts at the position of the principal peak for each element. They were then exported into ImageJ as greyscale 8-bit TIFF files, internally normalised such that each image covered the full dynamic range and displayed using ImageJ’s “Fire” lookup table.

Statistical analyses

Statistical analyses were performed using OriginPro 2021 (https://www.originlab.com/). The elemental concentrations of the plant fractions were presented in Tables and plotted in Figures as mean±standard error or standard deviation. Significant differences were determined by ANOVA, separated by Tukey’s honestly significant difference (HSD) test ($p<0.05$) and indicated by different letters.

Results

Growth performance on the mine tailings

Noceca caerulescens grew well in all of the treatments (Fig. 1), but the biomass on the Mt Isa Mine substrate was significantly higher than that on the Dugald River Mine substrate ($p<0.05$) (Fig. 2D). On the Dugald River Mine substrate, the biomass of the monoculture treatment was not significantly different from the treatment co-cultured with *B. laevigata*

![Fig. 3 Elemental concentrations A) Tl, B) Zn and C) Mn, and D) shoot biomass of *Biscutella laevigata* grown on the Dugald River Mine and Mt Isa Mine substrates (Mono: monoculture, Poly BL: co-cultured with *Lupinus albus*, Poly BN: co-cultured with *Noceca caerulescens*). Key to symbols of boxplots: open squares are the ± mean, whiskers are ± standard deviation (SD), circles are outliers. Mean ± standard error followed by the same letter are not significantly different ($p>0.05$) according to the Tukey test.](image-url)
For *B. laevigata*, the growth was significantly reduced on the Dugald River Mine substrate, except when co-cultured with *N. caerulescens* (Fig. 1F, G, H, 3D). The plants in the Mt Isa Mine substrate grew well irrespective of the type of culture and the biomass production was similar to that co-cultured with *N. caerulescens* in the Dugald River Mine substrate (*p* > 0.05). The *S. latifolia* grew well in the Mt Isa substrate in both the monoculture treatment and co-culture with *P. octandra* and did not differ significantly from the biomass of *B. laevigata* growing on a similar substrate (*p* > 0.05) (Fig. 4D). *Lupinus albus* grew well in the Mt Isa Mine substrate but showed severe toxicity symptoms in the Dugald River Mine substrate (Fig. 1). *Phytolacca octandra* and *P. calomelanos* grew well in the Mt Isa Mine tailings.

Elemental accumulation by the selected plant species

Noccaea caerulescens accumulated higher Mn and Zn concentrations in the Dugald River Mine substrate compared to the Mt Isa Mine substrate (> ten-fold, *p* < 0.05) (Fig. 2, Tables 2 and 3). On the Dugald River Mine substrate, the Mn and Zn concentrations in the monoculture treatment were significantly higher than when co-cultured with *B. laevigata* (> threefold; *p* < 0.05). *Biscutella laevigata* accumulated higher Tl concentrations on the Mt Isa Mine substrate than that on the Dugald River Mine substrate (> threefold, *p* < 0.05) (Fig. 3A, Tables 2 and 3). However, an opposite pattern to foliar Tl was observed for foliar Mn and Zn concentrations in the respective substrates (Fig. 3). In the Dugald River Mine substrate, the Mn and Zn

![Fig. 4](https://example.com/figure4.png)

Fig. 4 Elemental concentrations A) Tl, B) Zn and C) Mn, and D) shoot biomass of *Biscutella laevigata* and *Silene latifolia* grown on the Mt Isa Mine substrate (Mono B: monoculture *B. laevigata*, B + P: *B. laevigata* co-cultured with *Phytolacca octandra*, P Mono S: monoculture *S. latifolia*, S + P: *S. latifo-

lia co-cultured with *P. octandra*). Key to symbols of boxplots: open squares are the ± mean, whiskers are ± standard deviation (SD), circles are outliers. Mean ± standard error followed by the same letter are not significantly different (*p* > 0.05) according to the Tukey test
Table 2 Foliar elemental concentrations in mg kg$^{-1}$ (trace elements) in the respective treatments. There were 16 plants per box. Mean ± standard error for each element followed by the same letter are not significantly different ($p > 0.05$) according to the Tukey test. **deceased plants**

Substrate	Treatments	Mn	Fe	Cu	Zn	As	Cd	Tl	Pb
Dugald River	**B. laevigata** only	11,300 ± 755 a	320 ± 70 a	10 ± 2.0 bc	14,700 ± 940 a	0.45 ± 0.05 b	85 ± 8.85 ab	20 ± 1.45 cde	30 ± 4.5 cd
	B. laevigata (+ N. caerulescens)	4260 ± 520 b	95 ± 7.0 bc	3.9 ± 0.4 c	3370 ± 285 c	0.15 ± 0.05 b	20 ± 2.15 cde	20 ± 2.35 cde	60 ± 8.5 bc
	B. laevigata (+ L. albus)	6420 ± 775 b	300 ± 70 a	7.9 ± 1.3 bc	11,700 ± 1100 b	0.25 ± 0.05 b	55 ± 9.5 bc	10 ± 0.99 cde	9.0 ± 1.5 d
	L. albus (+ B. laevigata)	4980 ± 725 b	180 ± 65 abc	6.5 ± 1.5 bc	9690 ± 1520 b	0.25 ± 0.10 b	35 ± 9.5 cde	5.5 ± 0.95 de	8.5 ± 2.5 d
	N. caerulescens (+ B. laevigata)	1770 ± 450 c	180 ± 20 abc	6.5 ± 0.7 bc	3500 ± 825 c	0.50 ± 0.10 b	60 ± 15 bc	20 ± 15 cde	80 ± 20 b
	N. caerulescens only	5870 ± 470 b	195 ± 20 ab	10 ± 0.7 bc	10,200 ± 495 b	0.55 ± 0.05 b	110 ± 10 a	6.15 ± 0.45 e	130 ± 10 a
Mt Isa Mine	B. laevigata only	530 ± 65 c	95 ± 8.0 bc	8.5 ± 1.5 bc	490 ± 130 d	1.10 ± 0.10 b	5.70 ± 3.11 e	90 ± 10 bc	10 ± 2.0 d
	B. laevigata (+ L. albus)	545 ± 95 c	90 ± 9.0 bc	8.5 ± 1.6 bc	380 ± 50 d	1.15 ± 0.15 b	2.1 ± 0.25 de	95 ± 10 abcd	9.5 ± 1.5 d
	B. laevigata (+ P. calomelanos)	370 ± 70 c	65 ± 7.0 bc	7.5 ± 2.0 bc	375 ± 55 d	0.85 ± 0.05 b	1.2 ± 0.19 e	130 ± 35 ab	10 ± 1.5 d
	L. albus (+ B. laevigata)	1100 ± 145 c	35 ± 2.0 c	5.8 ± 0.5 c	320 ± 45 d	0.55 ± 0.05 b	1.0 ± 0.15 e	0.96 ± 0.12 e	3.0 ± 0.25 d
	P. calomelanos (+ B. laevigata)	100 ± 20 c	205 ± 65 abc	11 ± 2.0 bc	140 ± 30 d	35 ± 7.5 a	0.80 ± 0.07 e	8.25 ± 2.45 de	10 ± 4.65 d
	N. caerulescens only	255 ± 30 c	120 ± 10 bc	6.9 ± 0.4 c	900 ± 150 d	1.05 ± 0.15 b	35 ± 7.9 cd	2.45 ± 0.30 e	10 ± 1.70 d
	P. octandra (+ B. laevigata)	590 ± 105 c	165 ± 20 abc	100 ± 5.6 a	3370 ± 185 c	0.35 ± 0.20 b	50 ± 2.0 bc	25 ± 4.5 cde	9.5 ± 2.25 d
	P. octandra (+ S. latifolia)	1150 ± 240 c	215 ± 25 ab	115 ± 15 a	2530 ± 235 cd	0.80 ± 0.10 b	50 ± 6.0 bc	30 ± 2.25 cde	10 ± 0.85 d
	S. latifolia only	620 ± 130 c	190 ± 25 abc	20 ± 1.5 bc	550 ± 55 d	0.90 ± 0.15 b	0.60 ± 0.09 e	55 ± 10 bcde	10 ± 1.20 d
	S. latifolia (+ P. octandra)	665 ± 165 c	285 ± 25 a	25 ± 1.5 b	315 ± 50 d	2.5 ± 0.25 b	1.5 ± 0.25 e	180 ± 65 a	30 ± 3.0 cd
Table 3 Foliar elemental concentrations in g kg$^{-1}$ (macro elements) in the respective treatments. There were 16 plants per box. Mean ± standard error for each element followed by the same letter are not significantly different ($p > 0.05$) according to the Tukey test. **deceased plants**

Substrate	Treatments	Mg	P	S	K	Ca
Dugald River Mine	**B. laevigata only**	19 ± 1.5 bcd	3.0 ± 0.2 efg	55 ± 5.3 a	49 ± 3.2 abc	16 ± 1.0 cd
	B. laevigata (+N. caerulescens)	10 ± 0.6 efg	3.5 ± 0.3 cdef	14 ± 1.3 cd	45 ± 2.6 abcd	26 ± 2.0 b
	B. laevigata (+L. albus)	10 ± 1.0 cdefg	2.7 ± 0.2 egfh	32 ± 4.4 b	35 ± 2.6 bcdef	11 ± 0.9 defg
	L. albus (+B. laevigata)	9.5 ± 1.5 efgh	3.0 ± 0.4 defg	31 ± 4.7 b	26 ± 3.1 efgh	5.0 ± 0.6 g
	N. caerulescens (+B. laevigata)	7.9 ± 1.8 fg	4.3 ± 0.5 bcde	11 ± 1.5 cd	46 ± 3.7 abcd	15 ± 2.0 cde
	N. caerulescens only	11 ± 0.6 efg	5.0 ± 0.3 abc	12 ± 0.5 cd	54 ± 3.2 a	13 ± 0.6 defg
Mt Isa Mine	B. laevigata only	21 ± 1.8 b	4.6 ± 0.4 bcd	20 ± 1.5 bc	34 ± 1.6 de	21 ± 1.5 bc
	B. laevigata (+L. albus)	21 ± 2.5 b	6.0 ± 0.5 ab	18 ± 0.8 bcd	40 ± 3.6 bcde	26 ± 2.6 b
	B. laevigata (+P. calomelanos)	10 ± 0.5 efg	6.4 ± 0.8 a	13 ± 0.9 cd	39 ± 2.9 bcde	35 ± 2.5 a
	L. albus (+B. laevigata)	10 ± 1.1 defg	1.6 ± 0.1 fg	12 ± 1.4 cd	20 ± 2.4 fg	6.5 ± 0.8 fg
	P. calomelanos (+B. laevigata)	6.9 ± 0.8 g	6.0 ± 0.6 ab	7.8 ± 0.9 d	35 ± 1.9 cde	13 ± 2.5 defg
	N. caerulescens only	7.5 ± 1.5 g	2.5 ± 0.1 fg	7.1 ± 1.9 d	29 ± 1.5 efgh	7.9 ± 0.6 efgh
	P. octandra (+B. laevigata)	19 ± 3.0 bcd	0.7 ± 0.05 h	14 ± 1.1 cd	16 ± 2.0 g	12 ± 1.5 defg
	P. octandra (+S. latifolia)	40 ± 1.9 a	1.2 ± 0.05 gh	30 ± 1.9 b	19 ± 2.4 g	12 ± 1.3 defg
	S. latifolia only	20 ± 2.1 bc	1.8 ± 0.2 fg	10 ± 1.3 d	29 ± 2.5 efgh	14 ± 1.8 def
	S. latifolia (+P. octandra)	17 ± 2.7 bcd	3.1 ± 0.4 defg	16 ± 2.9 cd	51 ± 3.0 ab	8.2 ± 1.0 defg
concentrations in the monoculture treatment were significantly higher than that co-cultured with *N. caerulescens* (Fig. 3B, C). Co-culture with *P. octandra* significantly increased Tl concentrations in *S. latifolia* (*p* < 0.05), whereas the effect on Mn and Zn concentrations was not significant (*p* > 0.05) (Fig. 4, Tables 2 and 3). *Phytolacca octandra* accumulated considerable concentrations of Mn, Fe, Cu, Zn and Cd, whereas Mn and As were the only trace elements accumulated in relatively higher concentrations by *L. albus* and *P. calomelanos*, respectively (Tables 2 and 3). The treatment effects on the substrate DTPA-extractable trace elemental concentrations were not apparent (Table 4). For the macro elements, *B. laevigata* and *P. calomelanos* accumulated relatively higher P compared to *P. octandra* (Table 3). *Lupinus albus* and *P. octandra* had relatively lower K concentrations compared to *B. laevigata* (~twofold, *p* < 0.05). *Biscutella laevigata* accumulated significantly higher Ca than all the other species (*p* < 0.05).

Table 4 Final pH and diethylenetriaminepentaacetic acid (DTPA)-extractable trace elements concentrations in the soil of the respective treatments at harvest. The DTPA-extractable elemental concentrations are given in means±standard error in mg kg⁻¹. The extracts were analyzed by inductively-coupled plasma atomic emission spectroscopy (ICP-AES). Mean±standard error followed by the same letter are not significantly different (*p* < 0.05) according to the Duncan-Waller K-ratio t-test.

Substrate	Treatments	pH	Mn	Cu	Zn	As	Pb	Tl
Dugald River Mine	*B. laevigata + (+N. caerulescens)*	6.82 ± 0.03ab	70 ± 10a	10 ± 0.35b	515 ± 105a	0.015±0.0035a	645 ± 30a	0.10 ± 0.01b
Mt Isa Mine	*B. laevigata only*	6.97 ± 0.20ab	35 ± 5.25b	200 ± 9.0a	520 ± 50a	1.05 ± 0.55a	485 ± 35b	0.25 ± 0.03b
	L. albus (+ +B. laevigata)	6.97 ± 0.11ab	30 ± 3.50b	210 ± 3.5a	530 ± 50a	0.95 ± 0.45a	445 ± 20b	0.30 ± 0.07b
	N. caerulescens only	7.31 ± 0.10a	35 ± 3.5b	205 ± 7.05a	540 ± 55a	0.80 ± 0.30a	635 ± 20a	0.70 ± 0.40a
	P. calomelanos (+ + B. laevigata)	6.45 ± 0.15b	24 ± 1.5b	170 ± 20a	500 ± 65a	1.45 ± 0.25a	560 ± 50ab	0.10 ± 0.01b

Fig. 5 Manganese, zinc and thallium yields (kg ha⁻¹) of the respective treatments. The treatments included: Dugald River Mine substrate: *B. laevigata only* (D_B only), *B. laevigata + N. caerulescens* (D_B + N), *B. laevigata + L. albus* (D_B + L) and *N. caerulescens* only (D_N only); Mt Isa Mine substrate: *B. laevigata only* (M_B only), *B. laevigata + P. calomelanos* (M_B + P), *B. laevigata + L. albus* (M_B + L), *N. caerulescens* only (M_N only), *B. laevigata + P. octandra* (M_B + Phy), *S. latifolia* only (M_S only) and *S. latifolia + P. octandra* (M_S + Phy).
Metal yield per treatment

In the Dugald River Mine tailings substrates, the *N. caerulescens* only treatment had the highest Mn and Zn yields, followed by *B. laevigata* and *N. caerulescens* co-culture treatment, whereas in the Mt Isa Mine tailings substrates, *B. laevigata* and *P. octandra* co-culture treatment had the highest Mn and Zn yields, followed by *B. laevigata* only treatment (Fig. 5). Moreover, *B. laevigata* and *N. caerulescens* co-culture treatment had the highest Tl yield in the Dugald River Mine tailings, whereas *B. laevigata* and *P. calomelanos* co-culture treatment had the highest Tl yield in the Mt Isa Mine tailings substrates.

Fig. 6 Laboratory micro-X-ray fluorescence (µXRF) maps of Zn, Mn, K and Ca of hydrated leaves of *Noccaea caerulescens* (monoculture) grown on the a) Dugald River Mine substrate and b) Mt Isa Mine substrate
Micro-XRF analysis of foliar elemental distribution

In *N. caerulescens* Zn was strongly enriched in the margin, with excess distributed in the lamina, whereas the midrib and the veins were particularly depleted (Fig. 6). Similarly, Mn was enriched in margin, but depleted in midrib, veins, and lamina. In contrast, K was enriched in the midrib, veins and lamina but depleted in the margin. Calcium was enriched in the lamina but depleted in the midrib, veins, and margin. For *B. laevigata*, Zn was primarily in the midrib and veins, with excess stored in the base of the trichomes (Figs. 7, 8). However, the lamina and the margin were much lower in Zn. This pattern of Zn distribution is opposite to that of *N. caerulescens*. Manganese was mainly stored in the trichomes, with excess distributed to the margin and tips. However, the midrib and the veins were depleted in Mn. Thallium was distributed primarily in the midrib and margin, with excess in the veins. However, the lamina and the trichomes were depleted in Tl. The trichome rays were enriched in Ca compared to the trichome base, lamina, and veins. Potassium was enriched in the midrib and lamina but depleted in the tips and trichome rays (Fig. 7).

For *P. octandra*, Zn was enriched in the lamina, but depleted in the midrib, veins, and tip, opposite to the pattern observed for K (Fig. 9). Manganese was enriched in the margin compared to the lamina. The midrib and the veins were particularly depleted in Mn. Calcium was enriched in the lamina and leaf margins but depleted in the midrib and veins. For *L. albus*, Zn was depleted in the lamina but relatively enriched in the midrib, veins, and margin (Fig. 10). Manganese was enriched in the margin but depleted in the midrib.

Fig. 7 Laboratory micro-X-ray fluorescence (µXRF) maps of Zn, Mn, Tl and Ca of hydrated leaves of *Biscutella laevigata* (monoculture) grown on the a) Mt Isa Mine substrate and b) Dugald River Mine substrate
Fig. 8 Laboratory micro-X-ray fluorescence (µXRF) maps of Zn, Mn, K and Ca of hydrated leaves of *Biscutella laevigata* co-cultured with *Noccaea caerulescens* on the Dugald River Mine substrate.

Fig. 9 Laboratory micro-X-ray fluorescence (µXRF) maps of Zn, Mn, K and Ca of hydrated leaves of *Phytolacca octandra* grown on the Mt Isa Mine substrate.
veins, and lamina. A similar distribution pattern was observed for Ca but that of K was opposite. For *P. calomelanos*, Zn and K were enriched in the rachis and pinna but depleted in the pinnules; an opposite distribution pattern was observed for Ca (Fig. 10).

Discussion

Noccaea caerulescens performed well in all of the treatments in the Dugald River Mine and Mt Isa Mine substrates, including substrates with relatively higher Mn and Zn concentrations, and accumulated these metals at high concentrations in its leaves (reaching ~1 wt% Mn and ~1.4 wt% Zn) (Figs. 1, 2, Tables 2 and 3). This finding shows that *N. caerulescens* is highly tolerant to elevated Mn and Zn and is a prime candidate for phytoextraction on these substrates. The elemental maps reveal co-localization of Mn and Zn (together with Ca) in the leaf tips and margins (Fig. 5), suggesting similar storage mechanisms (Callahan et al. 2016). However, limited research exists on Zn distribution in *N. caerulescens* at the whole leaf level (Callahan et al. 2016; do Nascimento et al. 2021) as opposed to that at the cellular and sub-cellular levels (Küpper et al. 1999). Recent evidence suggests that the Zn distribution in

Fig. 10 Laboratory micro-X-ray fluorescence (µXRF) maps of Zn, Mn, K and Ca of hydrated leaves of 1) *Noccaea caerulescens* only on Mt Isa Mine substrate; 2) *Noccaea caerulescens* only on Dugald River Mine substrate; 3) *Noccaea caerulescens* co-cultured with *Biscutella laevigata* on Dugald River Mine substrate; 4, 11, 12) *Pityrogramma calomelanos* co-cultured with *B. laevigata* on Mt Isa Mine substrate; 5) *Lupinus albus* co-cultured with *B. laevigata* on Mt Isa Mine substrate; 6) *Biscutella laevigata* co-cultured with *P. calomelanos* on Mt Isa Mine substrate; 7) *Biscutella laevigata* co-cultured with *N. caerulescens* on Mt Isa Mine substrate; 8) *Biscutella laevigata* only on Mt Isa Mine substrate; 9) *Biscutella laevigata* only on Dugald River Mine substrate; 10) *Biscutella laevigata* (flower) on Mt Isa Mine substrate.© Springer
whole leaves of *N. caerulescens* may be accession dependent (van der Zee et al. 2021), with some accessions accumulating Zn in the cells surrounding the central and secondary veins (do Nascimento et al. 2021), whereas other accessions preferentially store Zn at the leaf tip (Callahan et al. 2016). The Mn localization in the margins of *N. caerulescens* is consistent with that of the Mn hyperaccumulator *P. octandria* (Fig. 9), Mn hypertolerant *L. albus* (Fig. 10; Blamey et al. 2018) and several other Mn hyperaccumulator plants, including *Gossia bidwillii, G. fragrantissima, Denhamia bilocularis, D. silvestris* and *P. americana* (Abubakari et al. 2021a,b, 2022; Xu et al. 2006). The Mn localization in the margins of these species is attributed to increasing transpiration rates closer to leaf margins which result in greater Mn accumulation in leaf marginal areas (Abubakari et al. 2021a,b).

The monocultured *B. laevigata* in the high Mn and Zn substrate (Dugald River Mine) exhibited severe toxicity symptoms (Fig. 1G). The elemental maps show preferential accumulation of elevated Zn in the base of the trichomes, similar to that of *Arabidopsis halleri* and sunflower (Küpper et al. 2000; Li et al. 2019, 2021; Sarret et al. 2009). The movement of excess Zn into the base of trichomes, likely into cell wall, lowers the Zn concentrations in the remainder of the leaf, which is an important Zn detoxification mechanism (Li et al. 2019, 2021). It is likely that continued Zn loading, in excess of trichome base storage capacity, of the monocultured *B. laevigata* on the Dugald River Mine substrate increased the Zn concentrations in the remainder of the leaf, thereby partly contributing to its toxicity (Fig. 6). Future dosing trials could test the Zn concentration threshold at which toxicity starts in *B. laevigata*. In addition, time-resolved µ-XRF techniques could clarify the mechanism of Zn toxicity in *B. laevigata*, as has been demonstrated for Mn toxicity in soybean and sunflower (van der Ent et al. 2020). The storage of Mn in trichomes is an important detoxification mechanism for several Mn hypertolerant plants (Blamey et al. 1986, 2015; Broadhurst et al. 2009; McNear and Küpper 2014). Excess Mn in the trichomes due to continued Mn loading starts to accumulate in the apoplastic space or walls of the surrounding cells, as observed in *Odontarrhena chalcidica* (*Alyssum murale*) and sunflower (Blamey et al. 1986, 2015; McNear and Küpper 2014). This mechanism may partly explain the toxicity symptoms in the monocultured *B. laevigata* in the Dugald River Mine substrate. However, the *B. laevigata* plants co-cultured with *N. caerulescens* on the high Mn and Zn substrate did not show any toxicity symptom. It is possible that *N. caerulescens* reduced Mn and Zn availability to *B. laevigata* (Fig. 8; Table 4). Moreover, the monoculture *B. laevigata* grown in the Mt Isa Mine substrate did not experience any toxicity symptom partly because all the Mn accumulated in the trichomes, whilst Zn accumulated in the midrib and veins (Fig. 7).

Conclusions

A major drawback with phytoextracting a targeted metal from polymetallic substrate is that there may be other non-targeted metals that may be toxic to the selected hyperaccumulator plants, in a process described as ‘co-metallic effect’ (Anderson et al. 2013). The discovery of a communalsistic relationship, at least in terms of growth, for these model hyperaccumulator plants overcomes this drawback, and suggests that, in principle, it may be possible to tailor-make a purposeful assemblage of hyperaccumulators for any polymetallic substrate. The facilitation of metal accumulation in selected hyperaccumulators by root-exudates producing species is also worth investigating further. We suggest that this nature-based metal phytoavailability enhancement may provide an alternative to the use of cost prohibitive and environmentally hazardous synthetic chelates, such as ethylene diamine tetraacetic acid (EDTA) (Grčman et al. 2001; Meers et al. 2005; Nowack et al. 2006). The relatively low foliar concentrations of Fe, Cu, As, Pb show the ability of the model species to biopurify the target metals, which is potentially beneficial in the eventual metal recovery process. The production of high purity metal salts could partly meet the growing demand for battery metals (Nkrumah et al. 2022). The findings in this study provide baseline information for developing in situ polymetallic phytoextraction of base metal mine tailings. However, long-term laboratory and field trials using a purposeful assemblage of hyperaccumulators for polymetallic mine tailings substrates under various climatic conditions are required to provide real-life polymetallic phytoextraction demonstration. Moreover, these long-term studies are needed to build economic viability of this approach while ascertaining the number of cropping years required to reduce the metals to acceptable concentrations. Apart from base metal mine tailings, other potential phytoextraction substrates are polymetallic in nature (e.g., ultramafic soils are usually enriched in Mn, Co and Ni) and could benefit from the same approach.
Acknowledgements We kindly acknowledge Lachlan Casey (Centre for Microscopy and Microanalysis, The University of Queensland) for assistance with the laboratory μ-XRF analysis. We thank the AMMRF at the Centre for Microscopy and Microanalysis at the University of Queensland for their support in the microanalysis. We thank Fuyao Chen and Roger H. Tang for assistance with the experiments. We also thank MMG Limited for supplying the Dugald River Mine tailings.

Author contributions PNN, ACR and AVDE designed and conducted the experiment. PNN collected the samples and undertook the chemical analysis of the samples. PNN and AVDE conducted the micro-XRF analysis. PNN, ACR and AVDE wrote the manuscript.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions This research was funded by the Queensland Department of Natural Resources, Mines and Energy project “Extracting Queensland’s Rare Earth Elements Sustainably” and the Sustainable Minerals Institute (UQ) Complex Orebodies strategic initiative program. Amelia Corzo Remigio is the recipient of an Australian Government Research Training Program Scholarship at The University of Queensland, Australia. This work was supported by the French National Research Agency through the national program “Investissements d’avenir” (ANR-10-LABX-21—RESSOURCES21).

Declarations

Conflicts of interest The authors declare no conflicts of interest relevant to the content of this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abubakari F, Nkrumah PN, Erskine PD, Brown GK, Fernando DR, Echevarria G, van der Ent A (2021a) Manganese (hyper) accumulation within Australian Denhamia (Celastraceae): an assessment of the trait and manganese accumulation under controlled conditions. Plant Soil 63:205–223
Abubakari F, Nkrumah PN, Fernando DR, Brown GK, Erskine PD, Echevarria G, van der Ent A (2021) Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt and zinc in the genus Gossia (Myrtaceae). Metallomics 3(4):mfab008
Abubakari F, Nkrumah PN, Fernando DR, Erskine PD, Echevarria G, van der Ent A (2022) Manganese accumulation and tissue-level distribution in the Australian hyperaccumulator Gossia bidwillii (Myrtaceae). Tropical Plant Biology. https://doi.org/10.1007/s12042-021-09307-1
Anderson CWN, Bhatti SM, Gardea-Torresdey J, Parsons J (2013) In vivo effect of copper and silver on synthesis of gold nanoparticules inside living plants. ACS Sustainable Chem Eng 1:640–648
Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415
Assunção AG, Bookum WM, Nelissen HJ et al (2003) Differential-metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytolet 159:411–419
Batianoff GN, Reeves RD, Specht RL (1990) Stockhausia tryonii Bailey: a nickel-accumulating serpentine-endemic species of Central Queensland. Aust J Bot 38:121–130
Becquer T, Bourdon E, Pétard J (1995) Disponibilité du nickel le long d’une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. Comptes rendus de l’Académie des sciences. Série 2. Sci de la terre et des planètes 321(7):585–592
Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905
Blamey FP, Joyce DC, Edwards DG, Asher CJ (1986) Role of trichomes in Sunflower tolerance to manganese toxicity. Plant Soil 91:171–180
Blamey FP, Hernandez-Soriano MC, Cheng M, Tang C, Patterson DJ, Lombi E, Wang WH, Scheekel KG, Koppitke PM (2015) Synchrotron-based techniques shed light on mechanisms of plant sensitivity and tolerance to high manganese in the root environment. Plant Physiol 169:2006–2020
Blamey FP, McKenna BA, Li C, Cheng M, Tang C, Jiang H, Howard DL, Paterson DJ, Kappen P, Wang P, Menzies NW (2018) Manganese distribution and speciation help to explain the effects of silicate and phosphate on manganese toxicity in four crop species. New Phytolet 217:1146–1160
Broadhurst CL, Tappero RV, Mauge TL, Erbe EF, Sparks DL, Chaney RL (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314:35–48
Callahan DL, Hare DJ, Bishop DP, Doble PA, Roessner U (2016) Elemental imaging of leaves from the metal hyperaccumulating plant Noccaea caerulescens shows different spatial distribution of Ni, Zn and Cd. RSC Adv 6:2337–2344
Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: status and promise. In: Cuypers A, Vangronsveld J (eds) Advances in botanical research, vol 83. Academic Press, pp 189–221
Clemens S (2017) How metal hyperaccumulating plants can advance Zn biofortification. Plant Soil 411:111–120
Creus PK, Sanislav IV, Dirks PH (2021) Application of SIMMVS for mining geology: Capture set-up and automated processing using the Dugald River Zn-Pb-Ag mine as a case study. Eng Geol 293:106314
Deng T-H-B, Cloquet C, Tang Y-T et al (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933
do Nascimento CW, Hesterberg D, Tappero R (2021) Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. J Hazard Mater 408:124813
Entwistle JA, Hursthouse AS, Reis PA, Stewart AG (2019) Metaliferous mine dust: Human health impacts and the potential determinants of disease in mining communities. Curr Pollut Rep 5(3):67–83
Escarré J, Lefèbvre C, Raboyeau S, Dossantos A, Gruber W, Entwistle JA, Hursthouse AS, Reis PA, Stewart AG (2019) Metaliferous mine dust: Human health impacts and the potential determinants of disease in mining communities. Curr Pollut Rep 5(3):67–83
Escarré J, Lefèbvre C, Gruber W, Cleyet Marel JC, Frérot H, Noret N, Mahieu S, Collin C, van Oort F (2011) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water, Air, Soil Pollut 216:485–504
Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metaliferous and nonmetaliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437
European Commission (2020) Critical Raw Materials (European Commission 2020) https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en. Accessed: 16 February 2022.
Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJ, Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot 103:931–939
Forsyth B, Edraki M, Baumgartl T (2015) The evolution of tailings seepage chemistry at one of Australia’s largest and longest operating mines. In:10th International Conference on Acid Rock Drainage and Annual IMWA Conference. Gecamin Digital Publications, pp. 1–11
Francesconi K, Visootviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35
Gonneau C, Genevois N, Frérot H, Noret N, Mahieu S, Collin C, van Oort F (2011) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water, Air, Soil Pollut 216:485–504
Gönülcan A, Genevois N, Frérot H, Noret N, Mahieu S, Collin C, van Oort F (2011) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water, Air, Soil Pollut 216:485–504
Grčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114
Harvey MA, Erskine PD, Harris HH, Brown GK, Pilon-Smits EA, Casey LW, Echevarria G, van der Ent A (2020) Distribution and chemical form of selenium in Neptunia amplifica from Central Queensland, Australia. Metallomics 12:514–527
Huang L, Baumgartl T, Mulligan D (2012) Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Ann Bot 110:223–238
Huang L, Li X, Nguyen TA (2015) Extremely high phosphate sorption capacity in Cu-Pb-Zn mine tailings. PLoS ONE 10:e0135364
International Energy Agency (IEA) (2021) Net zero by 2050: A roadmap for the global energy sector (IEA, 2021) https://www.iea.org/reports/net-zero-by-2050. (Accessed on 15 February 2022).
Jowitt SM, Mudd GM, Thompson JF (2020) Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun Earth Environ 1:1–8
Küpper H, Lombi E, Zhao F-J, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis haleri. Planta 212:75–84
Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311
Li C, Wang P, van der Ent A et al (2019) Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes. Ann Bot 123:57–68
Li C, Wu J, Blamey FP, Wang L, Zhou L, Paterson DJ, van der Ent A, Fernández V, Lombi E, Wang Y, Kopitkje PM (2021) Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. J Exp Bot 72:5079–5092
Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428
Lottermoser BG, Ashley PM, Munksgaard NC (2008) Biogeochemistry of Pb–Zn gossans, northwest Queensland, Australia: implications for mineral exploration and mine site rehabilitation. Appl Geochem 23:723–742
Meers E, Lesage E, Lamsal S, Hoggood M, Vervaeke P, Tack FM, Verloo MG (2005) Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int J Phytorem 7:129–142
Mudd GM (2007) An analysis of historic production trends in Australian base metal mining. Ore Geol Rev 32:227–261
Mudd GM (2020) Metals and elements needed to support future energy systems. Future Energy 1:711–726
Mudd GM, Jowitt SM, Werner TT (2017) The world’s lead-zinc mineral resources: scarcity, data, issues and opportunities. Ore Geol Rev 80:116–1190
Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69
Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018) Phytomining: using plants to extract valuable metals from mineralised wastes and uneconomic resources. In: Clifford MJ, Perrons RK, Ali SH, Grice TA (eds) Extracting Innovations: Mining, Energy, and Technological Change in the Digital Age. CRC Press, Boca Raton, FL, United States, pp 313–324
Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019) The first tropical ‘metal farm’: Some perspectives
from field and pot experiments. J Geochem Explor 198:114–122

Nkrumah PN, Chaney RL, Morel JL (2021) Agronomy of ‘metal crops’ used in agromining. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer, Cham, pp 23–46

Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2022) Farming for battery metals. Sci Tot Environ. https://doi.org/10.1016/j.scitotenv.2022.154092

Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in Phytolacca americana L. from the Southeastern United States. Northeast Nat 16:155–162

Pošćić F, Fellet G, Vischi M, Casolo V, Schat H, Marchiol L (2015) Variation in heavy metal accumulation and genetic diversity at a regional scale among metallogelicous and non-metallogelicous populations of the facultative metallophyte Biscutella laevigata subspp. laevigata. Int J Phytoremed 17:464–475

Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, Netherlands, pp 25–52

Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018a) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

Reeves RD, van der Ent A, Baker AJM (2018b) Global distribution and ecology of hyperaccumulator plants. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 75–92

Sarret G, Willems G, Iساء MP, Marcus MA, Fakra SC, Frerot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P (2009) Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol 184:581–595

Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249(1):27–35

Severne B (1974) Nickel accumulation by Hybanthus floribundus. Nature 248:807–808

Spitz K, Trudinger J (2019) Mining and the environment: from ore to metal, 2nd edn. CRC Press, London

Tang RH, Erskine PD, Nkrumah PN, Echevarria G, van der Ent A (2022) Soil-plant relationships of metallophytes of the zinc-lead-copper Dugald River gossan, Queensland, Australia. Plant Soil 471:227–245

van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonott M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mul- ligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 49(8):4773–4780

van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1):319–334

van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Barnabas A, Harris HH (2017) Nickel biopaths in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:1–21

van der Ent A, Ocenar A, Tisserand R, Sugau JB, Echevarria G, Erskine PD (2019) Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58

van der Ent A, Przybyłowicz WJ, de Jonge MD, Harris HH, Ryan CG, Tylko G, Paterson DJ, Barnabas AD, Kopitke PM, Mesjasz-Przybyłowicz J (2018) X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol 218:432–452

van der Ent A, Casey LW, Blamey FP, Kopitke PM (2020) Time-resolved laboratory micro-X-ray fluorescence reveals silicon distribution in relation to magnesium toxicity in soybean and sunflower. Ann Bot 126:331–341

van der Ent A, Parbhakar-Fox A, Erskine PD (2021) Treasure from trash: Mining critical metals from waste and unconventional sources. Sci Total Environ 758:143673

van der Zee L, Corzo Remigio A, Casey LW, Purwadi I, Yamjabok J, van der Ent A, Kootstra G, Aarts MGM (2021) Quantification of spatial metal accumulation patterns in Noccaea caerulescens by X-ray fluorescence image processing for genetic studies. Plant Methods 17:86

Wang Y, Kanipayor R, Brindle ID (2014) Rapid high-performance sample digestion for ICP determination by Cold-Block™ digestion: part 1 environmental samples. J Anal at Spectrum 29:162–168

Williams PJ (1998) Metallogenic evolution of the Mt Isa eastern succession, Queensland. Aust J Earth Sci 45:329–341

Xu C, Dai Q, Gaines L, Hu M, Tukker A, Steubing B (2020) Future material demand for automotive lithium-based batteries. Commun Mater 1:1–10

Xu X, Shi J, Chen Y, Chen X, Wang H, Perera A (2006) Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285:323–331

Zhao F, Lombi E, McGrath S (2003) Assessing the potential for zinc and cadmium phytoextraction with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.