Enzyme-like Regiodivergent Behavior of a Flavopeptide Catalyst in Aerobic Baeyer-Villiger Oxidation

Ken Yamanomoto*, Hazuki Kita*, Yukihiro Arakawa**, Keiji Minagawa*** and Yasushi Imada***

Abstract: We recently developed a flavopeptide immobilized on polystyrene resin, Fl-Pep-PS, that could realize the first N5-unmodified neutral flavin (Fl)-catalyzed aerobic oxygenation reactions under non-enzymatic conditions. Although a key active species is assumed to be the corresponding 4a-hydroperoxyflavin (Fl4aOOH) from the unprecedented activity and unique chemoselectivity, further circumstantial support would be helpful to be sure since spectroscopic evidence is difficult to obtain due to the compound’s insolubility. In this article, we report that the aerobic Baeyer-Villiger oxidation of a fused cyclobutanone, (±)-cis-bicyclo[3.2.0]hept-2-ene-6-one (1), can be promoted with Fl-Pep-PS in a FMO-like chemoselectivity and regiodivergent manner via Fl-related catalytic intermediates, which delivers strong evidence of the involvement of Fl4aOOH as an active species in Fl-Pep-PS-catalyzed aerobic oxygenation reactions.

Keywords: Aerobic oxygenation · Baeyer-Villiger oxidation · Biomimetic catalyst · Flavin · Peptide

Yukihiro Arakawa
received his BEng (2004), MEng (2006) and PhD (2009) from Toyohashi University of Technology under the supervision of Prof. Koichi Ito (BEng) and Prof. Shinichi Itsuno (MEng and PhD). During his PhD studies, he worked as a JSPS research fellow (DC2, 2007–2009) on the development of polymeric chiral catalysts for organic reactions in aqueous media. He was employed at Universität Basel (2009–2011) and ETH Zürich (2011–2013) as a postdoctoral fellow to work with Prof. Helma Wennemers and PhD (2009) from Institute of Liberal Arts and Sciences Tokushima University Minamijosanjima, Tokushima 770-8502, Japan

Ado-NH-PS (Fl-Pep-PS; 3-FIC2 = lumiflavin-3-acetic acid residue, Scheme 1), consisting of Fl, a tripeptide linker, and polystyrene (PS) resin.[4] We calculated the lowest energy conformation of Fl4aOOH that could be stabilized by the conjugated peptide through intramolecular hydrogen bonds, and demonstrated that Fl-Pep-PS could efficiently catalyze the electrophilic sulfoxidation of thioanisole as well as the nucleophilic Baeyer-Villiger oxidation of 3-phenylcyclobutanone using O3 as the terminal oxidant, in which the resin could play a crucial role probably as hydrophobic microenvironment in stabilizing the corresponding Fl4aOOH. Although spectroscopic evidence is not available due to the insolubility of the resin, the involvement of Fl4aOOH as well as the non-involvement of a peracid as the active species were supported by the unique chemoselectivity of Fl-Pep-PS, which was similar to that of FMO. For example, 3-phenylcyclobutanone was exclusively oxidized into β-phenylγ-butyrolactone in the presence of other reductive substrates such as thioanisole and cyclooctene under suitable conditions with Fl-Pep-PS, whereas such FMO-like chemoselectivity was not observed under typical mCPBA-based oxidation conditions.[4]

In this brief communication, we describe how the aerobic Baeyer-Villiger reaction of a fused cyclobutanone, (±)-cis-bicyclo[3.2.0]hept-2-ene-6-one (1), can be promoted with Fl-Pep-PS in a FMO-like chemoselectivity and regiodivergent manner, which can be strong evidence of the involvement of Fl4aOOH as a key active species in Fl-Pep-PS-catalyzed aerobic oxygenation reactions.

1. Introduction

Enzymes are specific and efficient in native organic reactions; therefore, their catalytic functions have often served as guides for the design of highly active, selective, and green artificial catalysts and reactions. Among diverse classes of enzymes, oxidoreductases employing the isoalloxazine ring system (Fl) (Scheme 1), found in flavin cofactors as an active center, are called flavoenzymes, which are responsible for various oxidative metabolic processes in nature.[1] A notable series of flavoenzymes is flavin-containing monoxygenases (FMO) that metabolize xenobiotic substrates through the activation of molecular oxygen (O2) followed by the donation of an oxygen atom to the substrate in mammalian liver. A key active species for the monooxygenation has been recognized to be 4a-hydroperoxy adducts of Fl (Fl4aOOH) and the catalytic cycle has long been well understood (Scheme 1, lower cycle).[2] Nevertheless, Fl as a simple non-enzyme organocatalyst had never been successfully employed for simulating the aerobic oxygenation ability of FMO due to the lability of Fl4aOOH, which readily decomposes into Fl and H2O2 under apoenzyme-free conditions (Scheme 1, upper cycle).[3] Recently, this long-standing challenge was overcome at last using our designed catalyst, 3-FIC2-Pro-Tyr-Asp-Ado-NH-PS (Fl-Pep-PS; 3-FIC2 = lumiflavin-3-acetic acid residue, Scheme 1), consisting of Fl, a tripeptide linker, and polystyrene (PS) resin.[4] We calculated the lowest energy conformation of Fl4aOOH that could be stabilized by the conjugated peptide through intramolecular hydrogen bonds, and demonstrated that Fl-Pep-PS could efficiently catalyze the electrophilic sulfoxidation of thioanisole as well as the nucleophilic Baeyer-Villiger oxidation of 3-phenylcyclobutanone using O3 as the terminal oxidant, in which the resin could play a crucial role probably as hydrophobic microenvironment in stabilizing the corresponding Fl4aOOH. Although spectroscopic evidence is not available due to the insolubility of the resin, the involvement of Fl4aOOH as well as the non-involvement of a peracid as the active species were supported by the unique chemoselectivity of Fl-Pep-PS, which was similar to that of FMO. For example, 3-phenylcyclobutanone was exclusively oxidized into β-phenylγ-butyrolactone in the presence of other reductive substrates such as thioanisole and cyclooctene under suitable conditions with Fl-Pep-PS, whereas such FMO-like chemoselectivity was not observed under typical mCPBA-based oxidation conditions.[4]

In this brief communication, we describe how the aerobic Baeyer-Villiger reaction of a fused cyclobutanone, (±)-cis-bicyclo[3.2.0]hept-2-ene-6-one (1), can be promoted with Fl-Pep-PS in a FMO-like chemoselectivity and regiodivergent manner, which can be strong evidence of the involvement of Fl4aOOH as a key active species in Fl-Pep-PS-catalyzed aerobic oxygenation reactions.

*Correspondence: Prof. Y. Arakawa
E-mail: arakawa.yukihiro@tokushima-u.ac.jp
Tokushima University
Minamijosanjima, Tokushima 770-8502, Japan
**Department of Applied Chemistry
Tokushima University
Minamijosanjima, Tokushima 770-8502, Japan
***Institute of Liberal Arts and Sciences
Tokushima University
Minamijosanjima, Tokushima 770-8502, Japan
****The Society of Polymer Science, Japan 2016.
2. Experimental

2.1 Materials

(Aminomethyl)polystyrene (70–90 mesh, 1% cross-linked, the N loading was determined by elemental analysis to be 1.24 mmol g⁻¹) was purchased from Sigma-Aldrich. 3-Methylumiflavin (LFI),[5] lumiflavin-3-acetic acid,[6] 5-ethyl-3-methylumiflavium perchlorate (LFI·EtClO₄),[5] and 3-FIC2-NH-PS[6] were prepared according to the literature procedures. Zinc dust was treated with 2N HCl aq. under ultrasonication for 15 minutes, washed with H₂O and acetone, and dried in vacuo to activate prior to use. All other reagents were purchased from commercial supplies and used without purification.

2.2 Synthesis of Fl-Pep-PS

To (aminomethyl)polystyrene (NH₂-PS, 250 mg, 0.31 mmol) pre-swollen in DMF was added a solution of Boc-(aminomethyl)polystyrene (NH₂-PS, 250 mg, 0.31 mmol) pre-swollen in DMF was added to H-Pro-Tyr(OrBu)-Ado-NH-PS via H-Tyr(OrBu)-Asp(OrBu)-Ado-NH-PS. Subsequently, a solution (prepared with a minimum amount of DMF) of lumiflavin-3-acetic acid (244 mg, 0.78 mmol), HCTU (321 mg, 0.78 mmol), and DIPEA (301 mg, 2.3 mmol) was added to H-Pro-Tyr(OrBu)-Asp(OrBu)-Ado-NH-PS pre-swollen in DMF, and the mixture was agitated for 2 h. The suspension was washed with DMF repeatedly until the solution layer becomes colorless, then with DMF/CH₂Cl₂ (4:1) (5x), and with CH₂Cl₂ (3x) to give 3-FIC2-Pro-Tyr-Asp-Ado-NH-PS (Fl-Pep-PS) as an orange-colored resin. The coupling reactions were monitored by qualitative Kaiser test[74] and chloranil test (secondary amine).[75] The loading of Fl-Pep-PS used in this study was determined as previously reported[4] to be 0.50 mmol g⁻¹.

2.3 Aerobic Baeyer-Villiger Oxidation of 1 Catalyzed by Fl-Pep-PS

To an acetonitrile–toluene–ethyl acetate mixed solvent (8:4:1, 0.9 ml) was added Fl-Pep-PS (10 mg, 5 µmol) and zinc dust (22.9 mg, 0.35 mmol), and the mixture was sonicated for 2 min before adding H₂O (36 µl) and a 1 M stock solution of I (0.1 ml, 0.1 mmol) in the same mixed solvent containing 10 mol% of dodecane as an internal standard, which was stirred at 35 °C for 7 h under an atmosphere of oxygen while protected from light. The reaction was evaluated by ¹H NMR spectroscopy of the crude mixture with reference to the published spectral data of 2 and 3,[8] in which the yields of 2 and 3 were estimated from the integration of peaks assignable to methyl protons of dodecane at 0.88 ppm and that assignable to a proton of the olefin moiety either at 5.58 ppm (for 2) or at 5.66 ppm (for 3).
activity and they should be arranged properly with each other. On the other hand, LFlEtClO$_4^-$, one of the most common conventional pseudo-flavin catalysts,[3] promoted the reaction as efficiently as Fl-Pep-PS to furnish 2 and 3 in 36% yield and 27% yield, respectively (entry 8), as expected from our previous reports on the Baeyer-Villiger oxidation with such artificial cationic flavins.[9]

Provided that the above reaction is carried out under the typical Baeyer-Villiger oxidation conditions, the formation of 2 via migration of the adjacent more substituted carbon in the Criegee intermediate should be kinetically favored. Indeed, the normal lactone 2 was preferentially obtained under mCPBA-based oxidation conditions in 78% yield along with the abnormal lactone 3 as well as an epoxidized by-product in 10% and 12% yield, respectively (Scheme 2a). Interestingly, such electronic limitations can be overcome under FMO-mediated enzymatic conditions, providing ‘normal’ and ‘abnormal’ lactones in a ratio of nearly 1:1,[10] and this regiodivergent behavior can be rationalized by fixation of Criegee intermediates as the corresponding 4-hydroxy-1,2,5-trioxane adducts formed from the ketone and Fl$_{4aOOH}$.[11] Thus we propose that the regioselectivity of Fl-Pep-PS (Table 1, entry 1) may also come from such FMO-like cyclic transition states including one that gives rise to abnormal migration (Scheme 2, the right transition state model), in which the corresponding Fl$_{4aOOH}$ should be necessarily involved as a key precursor. In other words, the present study provides strong evidence for the effective use of Fl$_{4aOOH}$ as the active species in the Fl-Pep-PS-catalyzed aerobic catalytic oxygenations (Scheme 1, lower cycle).

Table 1. Aerobic Baeyer-Villiger oxidation of 1 with flavin catalysts.

entry	catalyst	conversion [%]	yield [%]	yield [%]
1	Fl-Pep-PS	76	35	29
2	LFI	0	0	0
3	3-FlC2-NH-PS	0	0	0
4	Ac-Pro-Tyr-Asp-Ado-NH-PS	0	0	0
5	Ac-Pro-Tyr-Asp-Ado-NH-PS + 5 mol% LFI	0	0	0
6	3-FlC2-Pro-Tyr-Asp-Ado-NH$_2$	4	<1	<1
7	none	0	0	0
8	LFlEtClO$_4^-$	66	36	27

Scheme 2. The aerobic Baeyer-Villiger oxidation of 1 under conditions with (a) mCPBA and (b) Fl-Pep-PS, and plausible origins of each regioselectivity.
4. Conclusion

A flavopeptide catalyst, Fl-Pep-PS, recently designed by our group, was found to be effective for the aerobic Baeyer-Villiger oxidation of the fused cyclobutaneone 1, which could provide the normal lactone 2 and the abnormal lactone 3 in a nearly equal ratio via FMO-like Fl-related catalytic intermediates. All components of Fl-Pep-PS were demonstrated to be essential for the catalysis by some control experiments. These brief but significant results have led us to conclude that Fl$_{40OH}$ is the active species in the Fl-Pep-PS-catalyzed aerobic oxygenation system.

Acknowledgements

This work was supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (C), no. 18K05108).

Received: July 25, 2018

[1] a) T. C. Bruce, Acc. Chem. Res. 1980, 13, 256; b) C. Walsh, Acc. Chem. Res. 1980, 13, 148; c) D. P. Ballou, ‘Flavoprotein Monoxygenases’ in ‘Flavins and Flavoproteins’, Eds. V. Massey, C. H. Williams, Elsevier: New-York, 1982; d) ‘Chemistry and biochemistry of flavoenzymes’, Ed. F. Müller, CRC Press: Boston, 1991; e) R. B. Silverman, Acc. Chem. Res. 1995, 28, 335; f) N. M. Kamerbeek, D. B. Janssen, W. J. H. van Berkel, M. W. Fraaije, Adv. Synth. Catal. 2003, 345, 667; g) ‘Flavins–photochemistry and photobiology’, Eds. E. Silva, A. M. Edwards, Royal Society of Chemistry: Cambridge, 2006; h) M. W. Fraaije, D. B. Janssen, ‘Biocatalytic scope of Baeyer-Villiger Monoxygenases’ in ‘Modern biooxidation: enzymes, reactions and applications’, Eds. R. D. Schmid, V. B. Urlacher, Wiley-VCH: Weinheim, 2007; i) M. Insiriska-Rak, M. Sikorski, Chem. Eur. J. 2014, 20, 15280.

[2] a) L. L. Poulsen, D. M. Ziegler, J. Biol. Chem. 1979, 254, 6449; b) V. Massey, P. Hemmerich, Biochem. Soc. Trans. 1980, 8, 246; c) N. B. Beaty, D. P. Ballou, J. Biol. Chem. 1980, 255, 3817.

[3] a) H. Iida, Y. Imada, S.-I. Murahashi, Org. Biomol. Chem. 2015, 13, 7599; b) R. Cibulka, Eur. J. Org. Chem. 2015, 915; c) G. de Gonzalo, M. W. Fraaije, ChemCatChem 2013, 5, 403; d) Y. Imada, T. Naota, Chem. Rec. 2007, 7, 354; e) F. G. Gelachta, Chem. Rev. 2007, 107, 3338; f) J.-E. Bäckvall in ‘Modern oxidation methods’, Ed. J.-E. Bäckvall, Wiley-VCH: Weinheim, 2004.

[4] Y. Arakawa, K. Yamanomoto, H. Kita, K. Minagawa, M. Tanaka, N. Haraguchi, S. Itsuno, Y. Imada, Chem. Sci. 2017, 8, 5468.

[5] Y. Imada, H. Iida, S. Ono, Y. Masui, S.-I. Murahashi, Chem. Asian J. 2006, 1, 136.

[6] H. Ikeda, K. Yoshida, M. Ozeki, I. Saito, Tetrahedron Lett. 2001, 42, 2529.

[7] a) E. Kaiser, R. L. Colescott, C. D. Bossinger, P. I. Cook, Anal. Biochem. 1970, 34, 595; b) T. Vojkovsky, Pept. Res. 1995, 8, 236.

[8] S. Xu, Z. Wang, X. Zhang, K. Ding, Eur. J. Org. Chem. 2011, 110.

[9] a) S.-I. Murahashi, S. Ono, Y. Imada, Angew. Chem. Int. Ed. 2002, 41, 2366; b) Y. Imada, H. Iida, S.-I. Murahashi, T. Naota, Angew. Chem. Int. Ed. 2005, 44, 1704.

[10] a) V. Alphand, R. Furstoss, J. Org. Chem. 1992, 57, 1306; b) F. Petit, R. Furstoss, Tetrahedron: Asymmetry 1993, 4, 1341; c) M. D. Mihovilovic, B. Müller, P. Stanetty, Eur. J. Org. Chem. 2002, 3711.

[11] D. R. Kelly, Tetrahedron: Asymmetry 1996, 7, 1149.