Oxidative stress is a major source of chromosome single-strand breaks (SSBs), and the repair of these lesions is retarded in neurodegenerative disease. The rate of the repair of oxidative SSBs is accelerated by XRCC1, a scaffold protein that is essential for embryonic viability and that interacts with multiple DNA repair proteins. However, the relative importance of the interactions mediated by XRCC1 during oxidative stress in vivo is unknown. We show that mutations that disrupt the XRCC1 interaction with DNA polymerase β or DNA ligase III fail to slow SSB repair in proliferating CHO cells following oxidative stress. In contrast, mutation of the domain that interacts with polynucleotide kinase/phosphatase (PNK) and Aprataxin retards repair, and truncated XRCC1 encoding this domain fully supports this process. Importantly, the impact of mutating the protein domain in XRCC1 that binds these end-processing factors is circumvented by the overexpression of wild-type PNK but not by the overexpression of PNK harboring a mutated DNA 3'-phosphatase domain. These data suggest that DNA 3'-phosphatase activity is critical for rapid rates of chromosomal SSB repair following oxidative stress, and that the XRCC1-PNK interaction ensures that this activity is not rate limiting in vivo.

Oxidative stress can have a major influence on genome integrity and cell survival and is an etiological factor in a number of neurological human diseases. Of these, several are associated with defects in the repair of DNA damage, including xeroderma pigmentosum (XP), ataxia telangiectasia (A-T), ataxia oculomotor apraxia 1 (AOA1), and spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) (1, 28, 34, 37). The neuropathology evident in XP most likely reflects an inability to repair one or more single-strand oxidative adducts by nucleotide excision repair. In contrast, A-T is associated with cellular defects in the repair of DNA double-strand breaks (DSBs) and AOA1 and SCAN1 with defects in the repair of DNA single-strand breaks (SSBs). SSBs are the commonest DNA lesions arising in cells, and if they are not rapidly repaired they can inhibit transcription and/or generate replication-associated DSBs (3, 26, 59, 60). The repair of oxidative SSBs involves DNA damage detection by PARP-1 followed by recruitment of the enzymes required for subsequent steps of the repair process, which include DNA end processing, DNA gap filling, and DNA ligation (9, 19). Many of the enzymes implicated in these steps interact physically with XRCC1, including DNA polynucleotide kinase (PNK) (54), Aprataxin (APTX) (13, 14, 18, 31, 44), DNA polymerase β (Pol β) (10, 27), and DNA ligase IIIα (Lig3α) (11, 12). This has prompted the hypothesis that XRCC1 is a scaffold protein that recruits, stabilizes, and/or stimulates SSB repair (SSBR) enzymes at chromosomal SSBs, thereby accelerating the overall process (8, 9). While in vitro analyses generally are consistent with this idea, including the observation that XRCC1 mutation (50, 58), deletion (49), or depletion (6) retards the rate of chromosomal SSB by approximately fivefold following DNA oxidation or DNA base damage, the relative importance of the protein-protein interactions mediated by XRCC1 for SSBR is unclear.

Here, we have addressed the importance of the protein-protein interactions mediated by XRCC1 during the repair of oxidative SSBs. To do this, we have employed isogenic XRCC1 mutant CHO cells expressing recombinant derivatives of XRCC1 in which specific protein-protein interaction domains are mutated. We find that whereas the interactions between XRCC1 and either Pol β or Lig3α are dispensable for rapid rates of chromosomal SSBR in asynchronous populations of CHO cells following oxidative stress, SSBR rates are markedly slowed in cells expressing XRCC1 that cannot interact with PNK. Importantly, we show that the overexpression of wild-type recombinant PNK, but not 3'-phosphatase-dead PNK, can override the requirement for PNK interaction with XRCC1 for rapid rates of SSB following oxidative stress. These data indicate that DNA 3'-phosphatase activity is critical for rapid rates of chromosomal SSBR following oxidative stress, and that the XRCC1 interaction with PNK prevents this activity from becoming rate limiting.

MATERIALS AND METHODS

DNA constructs. pCD2E-XH* was created by site-directed mutagenesis of the XRCC1 open reading frame (ORF) in pCD2E-XH (12) using a QuikChange mutagenesis kit (Stratagene) and the appropriate primers. pCD2E and pCD2E-XH were characterized previously (30, 46). To create pCD2E-XH*S, a XhoI fragment of XRCC1 from pCD2E-XH was replaced with the corresponding fragment in pET16b-XH*. (Richard Taylor, unpublished data). To create pCD2E-XH*S, a HindIII-BlnI fragment of XRCC1 from pCD2E-XH was replaced with the corresponding fragment in pCD2E-XH. To create pCD2E-PNK, the PKR ORF in pCD2E-PNK (30) was mutated by site-directed mutagenesis as described above.

* Corresponding author. Mailing address: Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom. Phone: 44 1273 877519. Fax: 44 1279 678121. E-mail: k.w.caldecott@sussex.ac.uk.
† Supplemental material for this article may be found at http://mbc.asm.org.
‡ Published ahead of print on 22 June 2009.
Cell lines. The XRCC1 mutant CHO cell line EM9 and derivatives were maintained as monolayers in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% (vol/vol) fetal calf serum, 100 U/ml penicillin, 2 mM glutamine, and 100 μg/ml streptomycin. Expression constructs were introduced into EM9 cells by calcium phosphate coprecipitation (EM9-XH/PKD) or by Genejuice (Novagen) transfection (EM9-XH/PKD, EM9-XH/PKD, EM9-XH/PKD, EM9-XH/PKD, and EM9-XH/PKD). Stable cell lines were prepared by the selection of transfected cell lines using 1.5 mg/ml G418 (Gibco-Invitrogen) for 7 days to obtain resistance.

Antibodies and immunoblotting. Cells were lysed in sodium dodecyl sulfate (SDS) loading buffer at 90°C, and whole-cell extracts from 5 to 10^7 to 2.5 to 10^9 cells were fractionated by SDS-polyacrylamide gel electrophoresis (PAGE). Proteins were transferred to nitrocellulose and immunoblotted with anti-XRCC1 mononal (clone 33.2.5), anti-XRCC1 polyclonal (SK188), anti-PNK (SK3195), anti-Lig3α polyclonal (TL25), anti-Polβ polyclonal (a kind gift from Grigory Dianov), and anti-β-actin monoclonal antibody (Sigma).

Yeast two-hybrid analyses. Saccharomyces cerevisiae strain Y190 cells were transformed with the indicated pAS and pACT constructs, and transformants were selected on yeast minimal medium plates (glucose plus yeast nitrogen base without amino acids) supplemented with adenine and histidine. Pooled populations of transformants were streaked onto minimal medium supplemented with either adenine and histidine for β-galactosidase colony-lift filter assays or adenine and 25 mM 3-amino-1,2,4-triazole for the histidine prototrophy.

Affinity purification of histidine-tagged XRCC1 protein complexes from CHO cells. For the analysis of the XRCC1-Polβ interaction, whole-cell extract was prepared from a confluent flask (T75) or plate (15 cm) of EM9-XH, EM9-XH/PKD, or EM9-V cells by resuspension in lysis buffer (25 mM HEPES, pH 8.0, 125 mM NaCl, 10% glycerol, 1 mM dithiothreitol [DTT], 25 mM imidazole, 1/100 dilution of mammalian protease inhibitor cocktail [Sigma]) at a density of 6 × 10^9 cells/ml and incubated on ice for 15 min. High-molecular-weight DNA was sheared by passage through a narrow-gauge needle, and extracts were clarified by centrifugation (8,832 × g) for 10 min at 2°C. For the analysis of the XRCC1-PNK interaction, EM9 cells were transiently transfected with 8 μg/dish each of pCD2E-PNK and either pCD2E-XH, pCD2E-PKD, pCD2E-PKD, pCD2E-PKD, pCD2E-PKD, pCD2E-PKD, pCD2E-PKD, or empty pCD2E using Genejuice (Novagen). Twenty-four hours later, transiently transfected cell populations were selected in medium containing 1.5 mg/ml G418 for 4 days. Cells (5 × 10^7) were harvested, washed, and resuspended in 0.3 ml lysis buffer (25 mM HEPES, pH 8.0, 325 mM sodium chloride, 10% glycerol, 1 mM DTT, 25 mM imidazole, 1/100 dilution of mammalian protease inhibitor cocktail [Sigma]) and sonicated (five 30-s pulses at high power using a Biorupter sonicator). XRCC1-His complexes then were purified from the clarified extract by metal-chelate affinity chromatography. Briefly, cell extract (0.3 to 1 ml) was incubated with 0.25 to 0.5 ml nickel-nitriotropic acid-agarose (Qiagen) for 20 min on ice with frequent mixing. The resulting suspension was added to a disposable 5-ml chromatography column (Polyprep; Bio-Rad), and the flow rate was adjusted to 1 ml/min. After treatment with H2O2 as described above. For exposure with gamma rays, cells were treated in suspension (4 × 10^6 cells/ml) in complete medium. After treatment with MMS, H2O2, or gamma irradiation (20 Gy), cells were washed once in ice-cold PBS and incubated in fresh drug-free medium for the desired repair period. Adherent cells were harvested in ice-cold PBS by scraping (1 ml/3.5-cm plate), and 0.2 ml of the cell suspension was analyzed by alkaline comet assay as previously described (7). For cells treated in suspension, 1-ml aliquots (4 × 10^6 cells) were analyzed as described above. For transient-transfection experiments, EM9 cells were transiently cotransfected in 10-cm dishes with 8 μg/dish of either pCD2E-XH, pCD2E-XH, pCD2E-XH, pCD2E-XH, pCD2E-XH, pCD2E-XH, or empty pCD2E and additionally with 24 μg/dish of either pCD2E-PNK, pCD2E-PNK, or empty pCD2E using Genejuice (Novagen). Twenty-four hours later cells were selected in medium containing 1.5 mg/ml G418 for 4 days and then H2O2 treated or not treated as described above.

RESULTS

XRCC1 interacts with polypeptide components of each of the three core stages of DNA processing during SSBR (Fig. 1A). However, the relative importance of these interactions for the repair of oxidative SSBs is unknown. To examine the requirement for XRCC1 interaction with Lig3α during DNA ligation, we employed XRCC1 mutant EM9 CHO cells stably expressing either wild-type recombinant human XRCC1-His (EM9-XH cells). XRCC1-His mutant EM9 CHO cells stably expressing either wild-type recombinant human XRCC1-His (EM9-XH cells). We conclude that the interaction between XRCC1 and Lig3α is dispensable for the repair of oxidative SSBs in proliferating CHO cells.

To examine the requirement for XRCC1 interaction with DNA Polβ, we employed EM9 cells expressing XRCC1 protein harboring the point mutation F67A (Fig. 2A). This mutation is located within the N-terminal domain (NTD) that binds Polβ and reduces the interaction of XRCC1 with the DNA polymerase in vitro (33). Consistent with this, the F67A mutation reduced Polβ binding by XRCC1 more than 25-fold in vivo, whereas the interaction with aprataxin (APTX), which is mediated by the C-terminal BRCT domain that binds Lig3α (36). Consistent with this, Lig3 levels were no higher in EM9-XH cells than in EM9-V cells, consistent with the requirement for interaction with XRCC1 for Lig3α stability (Fig. 1B) (11, 12). Notably, while EM9-V cells harboring empty vector were hypersensitive to H2O2-induced oxidative stress, the level of sensitivity of EM9-XH cells to H2O2 was similar to that of EM9-XH (Fig. 1C). To measure chromosomal SSBR rates, we employed alkaline comet assays. Although this assay can detect both SSBs and DSBs, the vast majority (>99%) of breaks induced by H2O2 are SSBs (4). Surprisingly, while EM9-V cells harboring empty vector exhibited reduced rates of global SSBR following H2O2-induced oxidative stress, SSB rates in EM9-XH cells were similar to those of EM9-XH (Fig. 1D). We conclude that the interaction between XRCC1 and Lig3α is dispensable for the repair of oxidative SSBs in proliferating CHO cells.
XRCC1 mutant cells, because H$_2$O$_2$-induced DNA breaks declined at normal rates in EM9-XHF67A cells compared to those of EM9-V cells (Fig. 2C). This result was not limited to H$_2$O$_2$-induced oxidative stress, because similar results were observed following ionizing radiation (Fig. 2D). Notably, in contrast to oxidative stress, XRCC1-HisF67A failed to fully correct cellular hypersensitivity and reduced repair rates in EM9 cells following methyl methanesulfonate (MMS) treatment, consistently with the established importance of the XRCC1-Pol β interaction during DNA base excision repair (BER) (15, 38, 56) (Fig. 2E and F). We conclude that while the XRCC1-Pol β interaction is required for efficient BER, it is dispensable for cell survival and rapid rates of chromosomal SSBR in proliferating cells following oxidative stress.

To confirm that the requirement for XRCC1 for rapid rates of SSBR in asynchronous CHO cells did not require interac-

![Image](image-url)
tion with either Pol β or Lig3, we employed a truncated derivative of human XRCC1 (His-XRCC1¹⁶¹⁻⁵³³) lacking both the amino-terminal (NTD) and C-terminal domains that bind Pol β and Lig3, respectively (Fig. 3A). This protein mimics the native XRCC1 homolog that is present in the plant <i>Arabidopsis thaliana</i>, and it was expressed in EM9 cells at levels similar to those of wild-type human His-XRCC1 (Fig. 3B).

Notably, proliferating EM9-HX161-533 cells expressing the truncated protein exhibited both normal sensitivity (Fig. 3C) and normal rates of SSBR following H₂O₂ treatment (Fig. 3D and E). These data identify the region spanning amino acids 161 to 533 as sufficient for the ability of XRCC1 to maintain cell survival and rapid global rates of SSBR in proliferating CHO cells.

Residues 161 to 533 encompass the most evolutionarily conserved region of XRCC1 and include the inter-BRCT domain linker region of ~100 amino acids (Fig. 3A). This region, which is phosphorylated multiple times at CK2 consensus sites that are grouped into three clusters at residues 408/409/410, 485/488, and 518/519/523, mediates phosphorylation-specific interactions with the DNA end-processing factors PNK (30) and APTX (13, 31) and also with a recently identified protein of unknown function, denoted APLF (2, 22, 24). Previously, we mutated all eight of the predicted primary CK2 phosphorylation sites in XRCC1 and showed that the mutant protein (denoted XRCC1^{CKM}) was unable to support normal rates of SSBR following oxidative stress (30). However, whether the importance of this region for SSBR reflects the interaction with PNK or with APTX and/or APLF is unknown. To address this issue, we mapped the site of PNK interaction in detail by mutating each of the three clusters of CK2 phosphorylation sites separately and expressing the respective proteins, denoted XRCC1-His^{S408A/S409A/S410A}, XRCC1-His^{S485A/T488A}, and XRCC1-His^{S518A/T519A/T523A}, in EM9 cells (Fig. 4A). PNK
copurified with wild-type XRCC1-His, XRCC1-HisS408A/S409A/S410A, and XRCC1-HisS485A/T488A during affinity chromatography but failed to copurify with either XRCC1-HisCKM or XRCC1-HisS518A/T519A/T523A (Fig. 4B). Most of the recombinant XRCC1 recovered in these experiments was truncated by ~10 kDa due to the proteolytic removal of the labile amino-terminal domain. This did not affect interaction with PNK, however, which occurs toward the C terminus of XRCC1. We conclude

Human	1	160	315	403	538	633
NTD						
BRCT I		**	**	**		
BRCT II						

FIG. 3. His-XRCC1¹⁶¹⁻⁵³³ restores cellular resistance and rapid SSBR rates in XRCC1 mutant CHO cells following oxidative stress. (A) Schematic depicting the evolutionarily conserved domains in XRCC1. XRCC1 homologues in *Homo sapiens*, *Drosophila melanogaster*, and *Arabidopsis thaliana* are shown, along with the truncated derivative of human XRCC1 employed here (denoted His-XRCC1¹⁶¹⁻⁵³³). Asterisks denote clusters of CK2 consensus phosphorylation sites. (B) XRCC1 protein levels in XRCC1 mutant CHO cells stably transfected with empty expression vector (EM9-V) or with expression constructs encoding either wild-type His-XRCC1 (EM9-HX) or mutant His-XRCC1 lacking the NTD and C-terminal BRCT II domain (EM9-HX¹⁶¹⁻⁵³³). Cell extracts from the indicated cell lines were fractionated by SDS-PAGE, transferred to nitrocellulose, and immunoblotted with anti-XRCC1 monoclonal, anti-Lig3 polyclonal, anti-Pol β polyclonal, or anti-β-actin monoclonal antibody. (C) Clonogenic sensitivity of the indicated cell lines to H₂O₂. Cells were treated for 15 min at room temperature with the indicated concentrations of H₂O₂ in PBS, and surviving colonies were stained and counted after 10 to 14 days. Data are the means (± standard errors of the means) of at least three independent experiments. (D) DNA strand break repair rates following H₂O₂ treatment as measured by alkaline comet assays. The indicated CHO cell lines were treated with 150 μM H₂O₂ for 20 min on ice and then incubated for the indicated repair periods in drug-free media. DNA strand breaks were quantified by alkaline comet assays as described in the legend to Fig. 1. (Left) Mean tail moments were quantified from ~100 cells/sample/experiment and are the averages (± standard errors of the means) of at least three independent experiments. (Right) The data in the left panel were plotted as the mean fractions of DNA strand breaks remaining at the indicated time points.
from these experiments that the interaction between XRCC1 and PNK requires only the cluster of CK2 phosphorylation sites at S518/T519/T523. Notably, this is the same cluster of CK2 phosphorylation sites that interacts with APTX (31).

None of the CK2 phosphorylation site mutations greatly affected the ability of XRCC1 to correct the hypersensitivity of EM9 cells to H2O2 (Fig. 4C). In contrast, global rates of SSBR were markedly slower in EM9-XH CKM and EM9-XHS518A/T519A/T523A cells than in EM9-XH, EM9-XHS408A/S409A/S410A, or EM9-XHS485A/T488A cells (Fig. 5A). This suggests that, of the three clusters of CK2 phosphorylation sites, only S518/T519/T523 is required for the rapid repair of oxidative SSBs. Although APTX also binds this region of XRCC1, we considered it more likely that the reduced SSBR rate in EM9-XH CKM and EM9-XHS518A/T519A/T523A cells resulted from the loss of PNK interaction. This is because, in our hands, the loss of APTX activity by itself does not affect global rates of SSBR following oxidative stress (17, 43), whereas the loss of PNK has been reported to slow the rate of the repair of oxidative SSBs (41). To examine directly whether the mutation of S518/T519/T523 slowed chromosomal SSBR rates by disrupting the XRCC1-PNK interaction, we examined whether normal rates of SSBR could be restored in EM9-XHS518A/T519A/T523A cells by PNK overexpression (Fig. 5B). Indeed, the rate of chromosomal SSBR observed in EM9-XH S518A/T519A/T523A cells was restored to normal by the transient overexpression of wild-type recombinant human PNK protein (Fig. 5C). In contrast, PNK D171N, harboring a mutated DNA 3′-phosphatase domain, was unable to complement the defect in SSBR in EM9-XH S518A/T519A/T523A cells. These data demonstrate, for the first time, that DNA 3′-phosphatase activity is critical for rapid global rates of chromosomal SSBR following oxidative stress, and they suggest that the XRCC1-PNK interaction ensures that this activity does not become rate limiting in vivo.

DISCUSSION

XRCC1 is a critical component of the SSBR machinery and functions as a molecular scaffold that interacts with multiple enzymatic components of the repair process (9). While numerous XRCC1 partners and their respective binding sites have been identified, it is unclear which of these interactions is important for rapid SSBR rates following oxidative stress in vivo. An understanding of the protein-protein interactions mediated by XRCC1 and their importance during oxidative stress is likely to affect our understanding of human disease, because oxidative stress is a major source of SSBs. Indeed, mutations in components of the SSBR machinery have been identified in...
two hereditary neurodegenerative diseases (recently reviewed in references 9 and 42).

Notably, the XRCC1 mutation F67A failed to prevent XRCC1 from restoring cellular resistance and normal SSBR rates in proliferating EM9 cells following H$_2$O$_2$ treatment or ionizing radiation, despite reducing the interaction with Pol β more than 26-fold. It is unlikely that this reflects residual levels of interaction, because this mutation results in cellular hyper-
sensitivity and reduced SSBR rates following treatment with MMS, which is consistent with the established requirement for this interaction during BER at sites of DNA alkylation (15, 38, 56). Also, His-XRCC1 C-terminal BRCT domain (BRCT II) that binds Lig3α also failed to significantly affect global SSBR rates in asynchronous CHO cells following oxidative stress (16, 39). This is because interaction with XRCC1 is required to stabilize the DNA ligase in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).

The phosphorylation of XRCC1 by CK2 within a 100-amino-acid region linking the internal (BRCT I) and C-terminal (BRCT II) BRCT domains is required both for PNK interaction and for rapid SSBR rates following oxidative stress (30). However, the phosphorylation of this linker region by CK2 facilitates in vivo, yet the cellular level of Lig3α is no higher in CHO cells expressing XRCC1 than in wild-type CHO cells (45). However, the 3′-hydroxyl terminus (16).
In summary, we demonstrate here for the first time that there is a critical requirement for DNA 3'-phosphatase activity during the repair of chromosomal SSBs following oxidative stress, and we suggest that the XRCC1 interaction with PNK ensures that this activity is not rate limiting in vivo.

ACKNOWLEDGMENTS

This work was funded by the MRC (G0600776), BBRC (BB/C516595/1), and CR-UK (C6563/A10192).

REFERENCES

1. Barzilai, A., S. Biton, and Y. Shilo. 2008. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amsterdam) 7:1010–1027.
2. Bekker-Jensen, S., K. Fugger, J. R. Danielsen, I. Gromova, M. Sehested, J. Celis, J. Bartek, J. Lukas, and N. Mailand. 2007. Human Xpf (C2orf11) is a novel regulator of cellular responses to DNA strand breaks. J. Biol. Chem. 282:5797–5805.
3. Bendixen, C., B. Thomsen, J. Alsner, and O. Westergaard. 2008. Involvement of DNA polymerase beta in protection against the cytotoxicity of oxidative DNA damage. DNA Repair (Amsterdam) 7:317–329.
4. Bensimon, A., Y. Ziv, N. Belasco, Y. Shiloh, J. L. Zaret, and J. L. Radding. 1996. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both DNA ligases I and II. DNA Repair (Amsterdam) 5:760–766.
5. Benno, Y., O. J. Becherer, A. W. Kijas, P. Chen, O. Howe, J. H. Rudolph, R. Gatti, H. Date, O. Onodera, G. Taucner-Scholz, and M. F. Lavin. 2004. Apoptin, a novel protein that protects against genotoxic stress. Hum. Mol. Genet. 13:1081–1093.
6. Beghe, M. L., T. K. Hazra, and S. Mitra. 2008. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Cycle 7:2106–2110.
7. Henner, W. D., M. S. Grunberg, and W. A. Haselstein. 1982. Sites and structure of gamma radiation-induced DNA strand breaks. J. Biol. Chem. 257:11750–11754.
8. Horton, J. K., A. Baker, B. B. Berg, R. W. Sobol, and S. H. Wilson. 2002. Involvement of DNA polymerase beta in protection against the cytotoxicity of oxidative DNA damage. DNA Repair (Amsterdam) 1:317–333.
9. Iles, N., S. Rulthen, S. F. El-Khamisy, and K. W. Caldecott. 2007. APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol. Cell. Biol. 27:3793–3803. (Erratum, 28:3561, 2008.)
10. Jilani, A., D. Ramotar, C. Slack, C. Ong, X. M. Yang, S. W. Scherer, and D. D. Lasko. 1999. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3'-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem. 274:24176–24186.
11. Kanno, S., H. Kuzusuka, S. Sasa, Z. Hong, L. Lan, S. Nakaokibe, and A. Yasaki. 2007. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses. EMBO J. 26:2094–2103.
12. Karimi-Busheri, F., G. Daly, P. Robins, B. Canas, D. J. Pappin, J. Sguoros, G. G. Miller, H. Fahkrai, E. M. Davis, M. M. Le Beau, and M. Weinfield. 1999. Molecular characterization of a human DNA kinase. J. Biol. Chem. 274:24187–24194.
13. Katre, S. D., G. P. Shen, and S. S. Wallace. 2004. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 279:18551–18560.
14. Kubota, Y., R. A. Nash, A. Kunglund, P. Schar, D. E. Barnes, and T. Lindahl. 1996. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 15:6662–6670.
15. Lavin, M. F., N. Gueven, and P. Grattan-Smith. 2008. Defective responses to DNA single- and double-strand breaks in spinocerebellar ataxia. DNA Repair (Amsterdam) 7:1061–1076.
16. Levinsky, D. S., A. E. McKenna, T. A. Motyczka, Y. Matsumoto, and A. E. Tomkinson. 2000. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base excision repair. Curr. Biol. 10:1919–1922.
17. Lis, J. S., S. F. El-Khamisy, A. Zlatanov, D. J. Moore, D. W. Chan, J. Qin, S. Sarno, F. Meggio, L. A. Pinna, and K. W. Caldecott. 2004. The protein kinase CK2 facilitates repair of oxidative DNA single-strand breaks. Cell 117:17–28.
18. Lavin, M. F., W. Chan, T. Yang, M. Rodriguez, B. P. Chen, M. Leng, J. J. Mu, D. C. Glenn, Z. Songyang, Y. Wang, and J. Qin. 2004. A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment. Mol. Cell. Biol. 24:8336–8345.
19. Marintchev, A., M. R. Gryk, and G. P. Mullen. 2007. Site-directed mutagenesis analysis of the structural interaction of the single-strand-break repair protein, X-ray cross-complementing group 1, with DNA polymerase beta. Nucleic Acids Res. 35:580–588.
20. McKinnon, P. J., and K. W. Caldecott. 2007. DNA strand break repair and human genetic diseases. Hum. Genet. 121:43–58.
21. Mantle, J. B., C. E. Cass, and M. Weinfield. 2007. XRCC1 stimulates polynucleotide kinase by enhancing its damage discrimination and displacement from DNA repair intermediates. J. Biol. Chem. 282:28004–28013.
22. Matzke, M. A., L. T. Jr, K. A. Matzke, M. A., and K. W. Caldecott. 2004. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem. J. 456:1–11.
23. Matzke, M. A., and K. W. Caldecott. 2004. The protein kinase CK2 facilitates repair of oxidative DNA single-strand breaks. Cell 117:17–28.
24. Matzke, M. A., L. T. Jr, K. A. Matzke, M. A., and K. W. Caldecott. 2004. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem. J. 456:1–11.
25. Matzke, M. A., and K. W. Caldecott. 2004. The protein kinase CK2 facilitates repair of oxidative DNA single-strand breaks. Cell 117:17–28.
26. Matzke, M. A., L. T. Jr, K. A. Matzke, M. A., and K. W. Caldecott. 2004. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem. J. 456:1–11.
27. Matzke, M. A., and K. W. Caldecott. 2004. The protein kinase CK2 facilitates repair of oxidative DNA single-strand breaks. Cell 117:17–28.
28. Matzke, M. A., L. T. Jr, K. A. Matzke, M. A., and K. W. Caldecott. 2004. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem. J. 456:1–11.
single-strand break repair in ataxia oculomotor apraxia-1. Biochem. Soc. Trans. 37:577–581.

44. Sano, Y., H. Date, S. Igarashi, O. Onodera, M. Oyake, T. Takahashi, S. Hayashi, M. Morimatsu, H. Takahashi, T. Makifuchi, N. Fukuhara, and S. Tsuji. 2004. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann. Neurol. 55:241–249.

45. Sossou, M., C. Flohr-Beckhaus, I. Schulz, F. Daboussi, B. Epe, and J. P. Radicella. 2005. APE1 overexpression in XRCC1-deficient cells complements the defective repair of oxidative single strand breaks but increases genomic instability. Nucleic Acids Res. 33:298–306.

46. Takayama, K., E. P. Salazar, A. Lehmann, M. Stefanini, L. H. Thompson, and C. A. Weber. 1995. Defects in the DNA repair and transcription gene ERCC2 in the cancer-prone disorder xeroderma pigmentosum group D. Cancer Res. 55:5656–5663.

47. Tano, K., J. Nakamura, K. Asagoshi, H. Arakawa, E. Sonoda, E. K. Braithwaite, R. Prasad, J. M. Buerstedde, S. Takeda, M. Watanabe, and S. H. Wilson. 2007. Interplay between DNA polymerases beta and lambda in repair of oxidation DNA damage in chicken DT40 cells. DNA Repair (Amsterdam) 6:869–875.

48. Taylor, R. M., D. J. Moore, J. Whitehouse, P. Johnson, and K. W. Caldecott. 2000. A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair. Mol. Cell. Biol. 20:735–740.

49. Tebbs, R. S., M. L. Flannery, J. J. Meneses, A. Hartmann, J. D. Tucker, L. H. Thompson, J. E. Cleaver, and R. A. Pedersen. 1999. Requirement for the Xrec1 DNA base excision repair gene during early mouse development. Dev. Biol. 208:513–529.

50. Thompson, L. H., K. W. Brookman, L. E. Dilthey, A. V. Carrano, J. A. Mazarimas, C. L. Mooney, and J. L. Minkler. 1982. A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Mutat. Res. 95:427–440.

51. Vermeulen, C., B. Bertocci, A. C. Begg, and C. Vens. 2007. Ionizing radiation sensitivity of DNA polymerase lambda-deficient cells. Radiat. Res. 168:683–688.

52. Vermeulen, C., M. Verwijs-Janssen, A. C. Begg, and C. Vens. 2008. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation. Radiother. Oncol. 86:391–398.

53. Vermeulen, C., M. Verwijs-Janssen, P. Cramers, A. C. Begg, and C. Vens. 2007. Role for DNA polymerase beta in response to ionizing radiation. DNA Repair (Amsterdam) 6:202–212.

54. Whitehouse, C. J., R. M. Taylor, A. Thistlethwaite, H. Zhang, F. Karimi-Busheri, D. D. Lasko, M. Weinfield, and K. W. Caldecott. 2001. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104:107–117.

55. Wiederhold, L., J. B. Leppard, P. Kedar, F. Karimi-Busheri, A. Rasouli-Nia, M. Weinfield, A. E. Tomkinson, T. Izumi, R. Prasad, S. H. Wilson, S. Mitra, and T. K. Hazra. 2004. AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell 15:209–220.

56. Wong, H. K., and D. M. Wilson III. 2005. XRCC1 and DNA polymerase beta interaction contributes to cellular alkylating-agent resistance and single-strand break repair. J. Cell Biochem. 95:794–804.

57. Yoshimura, M., M. Kohzaki, J. Nakamura, K. Asagoshi, E. Sonoda, E. Hou, R. Prasad, S. H. Wilson, K. Tano, A. Yasui, L. Lan, M. Seki, R. D. Wood, H. Arakawa, J. M. Buerstedde, H. Hochegger, T. Okada, M. Hiraoka, and S. Takeda. 2006. Vertebrate POLQ and POLbeta cooperate in base excision repair of oxidative DNA damage. Mol. Cell 24:115–125.

58. Zdzienicka, M. Z., G. P. Vanderschans, A. T. Natarajan, L. H. Thompson, I. Neuteboom, and J. W. I. M. Simons. 1992. A Chinese-hamster ovary cell mutant (Em-c-11) with sensitivity to simple alkylating-agents and a very high-level of sister chromatid exchanges. Mutagenesis 7:265–269.

59. Zhou, W., and P. W. Doetsch. 1993. Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases. Proc. Natl. Acad. Sci. USA 90:6601–6605.

60. Zhou, W., and P. W. Doetsch. 1994. Transcription bypass or blockage at single-strand breaks on the DNA template strand: effect of different 3′ and 5′ flanking groups on the T7 RNA polymerase elongation complex. Biochemistry 33:14926–14934.