A solution to energy and environmental problems of electric power system using hybrid harmony search-random search optimization algorithm

Vikram Kumar Kamboj1* and S.K. Bath2

Abstract: In recent years, global warming and carbon dioxide (CO2) emission reduction have become important issues in India, as CO2 emission levels are continuing to rise in accordance with the increased volume of Indian national energy consumption under the pressure of global warming, it is crucial for Indian government to impose the effective policy to promote CO2 emission reduction. Challenge of supplying the nation with high-quality and reliable electrical energy at a reasonable cost, converted government policy into deregulation and restructuring environment. This research paper presents aims to presents an effective solution for energy and environmental problems of electric power using an efficient and powerful hybrid optimization algorithm: Hybrid Harmony search-random search algorithm. The proposed algorithm is tested for standard IEEE-14 bus, -30 bus and -56 bus system. The effectiveness of proposed hybrid algorithm is compared with other well-known evolutionary, heuristics and meta-heuristics search algorithms. For multi-objective unit commitment, it is found that as there are conflicting relationship between cost and emission, if the performance in cost criterion is improved, performance in the emission is seen to deteriorate.

Keywords: harmony search (HS); multi-objective unit commitment (MOUC); pattern search (PS); random search (RS); environmental sustainability engineering

1. Introduction

Today’s power system is characterized by large proportions, high interconnections and high nonlinearities, as the size of the power system is growing exponentially due to heavy demand of power...
in all the sectors viz. agricultural, industrial, residential and commercial ones. Increase in the electrical energy demand and trends in privatization and deregulation result in overloading impact on electrical grids. The situation necessitates the development of electrical grid at the same pace as the demand increases, but economical commitment and scheduling has the ability to tackle the time-varying power demand, environmental constraints and led to the full exploitation of accessible grid. In the modern power system networks, there are various generating resources like thermal, hydro, nuclear, etc. Also, the load demand varies during a day and attains different peak values. Thus, it is required to decide which generating unit to turn on and at what time it is needed in the power system network and also the sequence in which the units must be shut down keeping in mind the cost-effectiveness of turning on and shutting down of respective units. The entire process of computing and making these decisions is known as unit commitment (UC). The unit which is decided or scheduled to be connected to the power system network, as and when required, is known to be committed unit. Unit commitment in power systems refers to the problem of determining the on/off states of generating units to minimize the operating cost for a given time horizon (Kamboj, 2015).

Generators cannot be immediately turned on to meet up power demand. So, it is required that the planning of generating units must be so prepared that there is enough generation available to fulfil the load demand along with an ample reserve generation to avoid failures and malfunctions under adverse conditions. Unit commitment knob the unit generation schedule in electric power system for minimizing operational and fuel cost and satisfying system and physical constraints such as load demand and system reserve requirements over a set of time periods (Zhu, 2009). Unit Commitment Problem (UCP) is basically about finding the most suitable schedule to turn on or turn off the generating units to meet the electric power demand and at the same time keep the cost of generation as much minimum as possible. UCP is a non-linear, large-scale, mixed integer constrained optimization problem (Rajan, Mohan, & Manivannan, 2002) and happens to belong to combinatorial optimization problems. There are many constraints involved in UCP, and hence, it is quite a complex and tedious task to compute or to find the optimal solution for UCP. The scheduling of the units together with the allocation of the generation quantities which must be scheduled to meet the demand for a specific period represents the UCP. The UCP is to determine a smallest cost turn-on and turn-off plan of a set of generating units to meet a power demand while satisfying system operational and physical constraints liked with various generating units. The production cost includes fuel, start-up, no load costs and shutdown cost. The operational constraints that must be taken into consideration comprise: (1) The total power generated must meet the power demand plus system losses. (2) There must be an adequate amount of spinning reserve to cover any shortfalls in power generation. (3) The loading of each unit must be within its minimum and maximum permissible rating. (4) The minimum up and down times of each unit must be pragmatic. The unit commitment is aimed to formulate a proper generator commitment schedule for electric power system over a period of one day to one week.

The main objective of unit commitment is to minimize the total production cost over the study period and to satisfy the system and physical constraints imposed on the system such as spinning reserve, power generation-load balance, operating constraints, minimum up time and minimum down time, etc. Several conventional methods are available to solve the UCP. But all these methods need the exact mathematical model of the system and there may be a chance of getting stuck at the local optimum (Kamboj, Bath, & Dhillon, 2016).

2. Literature review

Sriyanyong and Song (2005) proposed Particle Swarm Optimization (PSO) combined with Lagrange Relaxation method for solving UCP. Mallipeddi and Suganthan (2014) provided an extensive literature survey on the algorithms developed for UCP and tried to compare their performance on some standard benchmark problems. Jeong, Park, Jang, and Lee (2009) have discussed binary Particle Swarm optimization-based approach for solving the UC problems. Ge (2010) has proposed a new approach to solve ramp rate constrained UCP by improving the method of PSO. Borghetti et al. (2001) have suggested that there is no guarantee that the Tabu search will yield the global optimal result for large systems. There is a similar method named PSO proposed in Gaing (2003a). Rajan, Mohan, and Manivannan (2003) proposed Neural-based Tabu search algorithm for the UCP and developed
an improved version of Neural-based Tabu search approach (Rajan et al., 2002). Gaing (2003b) proposed binary particle swarm optimization (BPSO). The BPSO is used to solve the combinatorial unit on/off scheduling problem for operating fuel and transition costs. The ED subproblem is solved using the lambda iteration method for obtaining the total production cost. Zhao, Guo, Bai, and Cao (2006) presented an improved particle swarm optimization algorithm (IPSO) for UC which utilizes more particles information to control the process of mutation operation. For proper selection of parameters, some new rules are also proposed. The proposed method combines LR technique to 0–1 variable. Lee and Chen (2007) presented a new approach for UCP named the iteration particle swarm optimization (IPSO). The proposed method improves the quality of solution in terms of total production cost and also improves the computation efficiency. A standard 48 unit system has been tested for validation. Samudi, Das, Ojha, Sreeni, and Cherian (2008) have presented a new approach of PSO algorithm for short-term hydrothermal scheduling (HTS) problems. The proposed algorithm is ideally suitable for hydrothermal co-ordination problems, hydroeconomic dispatch problems with unit commitment, thermal economic dispatch with unit commitment problems and scheduling of hydraulically coupled plants. Yuan, Nie, Su, Wang, and Yuan (2009) proposed a new improved binary PSO (IBPSO). The standard PSO is improved using the priority list and heuristic search to improve the MUT and MDT constraints. The 10–100 units have been tested to validate the proposed approach. Numerical performance shows that the proposed approach is superior in terms of low total production cost and short computational time compared with other published results. Although no optimization algorithm can perform general enough to solve all optimizations problems, each optimization algorithm has their own advantages and disadvantages. PSO has simple concept, easy implementation, relative robustness to control parameters and computational efficiency (Mirjalili & Lewis, 2014), although it has numerous advantages, it get trapped in a local minimum, when handling heavily constrained problems due to the limited local/global searching capabilities (Dhillon & Kothari, 2010; Mirjalili, Mirjalili, & Lewis, 2014). The limitations of the numerical techniques (Guy, 1971; Hara, Kimura, & Honda, 1966; Kerr et al., 1966) and dynamic programming method (Hobbs et al., 1988; Lowery, 1966) are the size or dimensions of the problem, large computational time and complexity in programming. The mixed integer programming methods (Tao & Shahidehpour, 2005; Venkatesh, Jamtsho, & Gooi, 2007) for solving the economic load dispatch problem fail when the participation of number of units increases because they require a large memory and suffer from great computational delay. Gradient Descent method (Mohan et al., 2002) is distracted for Non-Differentiable search spaces. The Lagrangian Relaxation (LR) approach (Guan et al., 2003) fails to obtain solution feasibility and solution quality of problems and becomes complex if the number of units is more. The Branch and Bound (BB) method (Cohen & Yoshimura, 1983) employs a linear function to represent fuel cost, start-up cost and obtains a lower and upper bounds. The difficulty of this method is the exponential growth in the execution time for systems of a large practical size. An Expert System (ES) algorithm (Salam et al., 1991) rectifies the complexity in calculations and saving in computation time. But it faces the problem if the new schedule is differing from schedule in database. The fuzzy theory method (Kadam et al., 2009) using fuzzy set solves the forecasted load schedules error but it suffers from complexity. The Hopfield neural network technique (Yalcinoz et al., 1999) considers more constraints but it may suffer from numerical convergence due to its training process. The Simulated Annealing (SA) (Simopoulos & Contaxis, 2004) and Tabu Search (TS) (Mantawy et al., 1998) are powerful, general-purpose stochastic optimization technique, which can theoretically converge asymptotically to a global optimum solution with probability one. But it takes much time to reach the near-global minimum. Gravitational Search algorithm has the advantages to explore better optimized results, but due to the cumulative effect of the fitness function on mass, masses get heavier and heavier over the course of iteration. This causes masses to remain in close proximity and neutralize the gravitational forces of each other in later iterations, preventing them from rapidly exploiting the optimum (Mirjalili & Lewis, 2014). Therefore, increasing effect of the cost function on mass, masses get greater over the course of iteration and search process and convergence becomes slow. The harmony search (HS) algorithm proposed by Geem et al. (2001) is a recently developed meta-heuristics search algorithm inspired from the musical process of searching for a perfect state of harmony. HS has a novel stochastic derivative (Geem, 2008).
applied to discrete variables, which uses musician’s experiences as a searching direction and is free from divergence. It can handle discrete and continuous variables and do not require initial value setting for the variables. Also, it does not require differential gradients and has the ability to escape from local optima. HS has ability to overcome the drawback of GA’s building block theory and explicitly considers the relationship using ensemble operation (Geem, 2006a). Geem, Tseng, and Park (2005) proposed a Multi-pitch Adjusting Rate (multiple PAR) for Generalized Orienteering Problem. They proposed three PARs that are the rates of moving to nearest, second nearest and third nearest cities, respectively. Geem (2006b) presented the use of fixed parameter values, such as HMS, HMCR, PAR and NI, while bandwidth was set to a range from 1 to 10% of the total value data range. Mahdavi, Fesanghary, and Damangir (2007) proposed Improved Harmony Search (IHS) algorithm, which includes dynamic adaptation for both pitch adjustment rate (PAR) and bandwidth (bw) values. But it faces the difficulty of determining the lower and upper bound of automatic bandwidth (bw), which was overcome by Global-best harmony search (GHS) algorithm proposed by Omran and Mahdavi (2008). GHS algorithm incorporates the PSO concept, global best particle, by replacing the bw parameter altogether and adding a randomly selected decision variables from the best harmony vector in HM. Mukhopadhyay, Roy, Das, and Abraham (2008) suggested that bw will be the standard deviation of the current population when HMCR is close to 1. Degertekin (2008) proposed a new HM initialization technique that generated two times of HMS initial harmonies but placed only the best HMS of these into the initial HM. Chakraborty, Roy, Das, Jain, and Abraham (2009) proposed Differential Harmony Search algorithm, a new improvement to HS through inspiring the Differential Evolution (DE) mutation operator, which replaces the pitch adjustment operation in classical HS with a mutation strategy borrowed from the DE (DE/rand/1/bin class) algorithm. Hasançebi, Erdal, and Saka (2009) and Saka and Hasançebi (2009) proposed a new adaptation for HS by making both HMCR and PAR change dynamically during the improvisation process of HS. This step is to make the selection of these parameter values problem independent, therefore, improves the performance of HS in finding an optimal solutions. Kattan, Abdullah, and Salam (2010) used HS as a new training technique for feed-forward artificial neural networks (ANN). Wang and Huang (2010) proposed a new variation of HS algorithm that focuses on the dynamic selection of bw and PAR parameters. Al-Betar, Khader, and Liao (2010a) also proposed a Multi-pitch Adjusting Rate strategy for enhancing the performance of HS in solving course timetabling problem. They proposed eight procedures instead of using one PAR value, each of which is controlled by its PAR value range. Each pitch adjustment procedure is responsible for a particular local change in the new harmony. Furthermore, the acceptance rule for each pitch adjustment procedure is changed to accept the adjustment that leads to a better or equal objective function. Moved from these innovative ideas, the research proposal for hybrid combination of Harmony Search (HS) and Random Search Algorithm has been taken into consideration to solve the UCP of electric power system.

3. UCP formulation

3.1. Cost minimization

The foremost objective of unit commitment is to find the optimal schedule for operating the available generating units to regulate the total operating and generation cost of electric power utilities. Total operating cost of power generation includes fuel cost, shutdown and start-up costs. The fuel costs are calculated using the data of generating unit characteristics such as fuel price information, heat rate of generating utilities, turn-on, turn-off and initial status of units, which is mathematically, a quadratic, non-smooth and non-convex equation of power output of each generator at each hour and can be determined by Economic Load Dispatch (ELD) (Kerr et al., 1966), as represented below:

\[F_{\text{cost}}(P_i) = a_i P_i^2 + b_i P_i + c_i \] \hspace{1cm} (1)

where \(a_i, b_i\), and \(c_i\) are the fuel cost coefficients of \(i\)th generating units.

The total fuel cost over the given time horizon “H” is
where $U_i(h)$ is the position or status of ith unit at hth hour. Start-up cost is warmth-dependent. Start-up cost is that cost which occurs while bringing the thermal generating unit online. It is expressed in terms of the time (in hours) for which the units have been shut down. On the other hand, shutdown cost is a fixed amount for each unit which is shut down. Mathematically, start-up cost can be expressed as:

$$TFC = \sum_{h=1}^{H} \sum_{i=1}^{G} \left[(a_i P_i^2 + b_i P_i + c_i) \ast U_i(h) + SUC_i(h) \ast (1 - U_{i,h-1}) \ast U_i(h)\right]$$ \hspace{1cm} (2)

where $U_i(h)$ is the position or status of ith unit at hth hour. Start-up cost is warmth-dependent. Start-up cost is that cost which occurs while bringing the thermal generating unit online. It is expressed in terms of the time (in hours) for which the units have been shut down. On the other hand, shutdown cost is a fixed amount for each unit which is shut down. Mathematically, start-up cost can be expressed as:

$$SUC_i(h) = \begin{cases} HSC_i; & \text{for } MDT_i \leq MDT_i^{ON} \leq (MDT_i + CSH_i) \\ CSC_i; & \text{for } MDT_i^{ON} < (MDT_i + CSH_i) \end{cases} (i \in G; h = 1, 2, 3, ..., H)$$ \hspace{1cm} (3)

where CSC_i and HSC_i are the cold start-up and hot start-up cost of ith unit, respectively, and MDT_i is the minimum downtime of ith unit, MDT_i^{ON} is the number of hours that ith unit has been online since it was turned ON earlier and CSH_i is the cold start hour of unit i. The various constraints linked with UCP are mentioned below.

3.1.1. Load balance or power balance constraints

The load balance or system power balance constraint requires that the sum of generation of all the committed units at hth hour must be greater than or equal to the demand at a particular hour “h”.

$$\sum_{i=1}^{NG} P_{i,h} U_{i,h} = D_h,$$ \hspace{1cm} (4)

3.1.2. Spinning reserve constraints

Considering the important aspect of reliability, there is a provision of excess capacity of generation which is required to act instantly when there is a failure of already running unit or sudden load demand. This excess capacity of generation is known as Spinning Reserve and mathematically given as:

$$\sum_{i=1}^{N} P_{i,max,h} U_{i,h} \geq D_h + R_h.$$ \hspace{1cm} (5)

3.1.3. Thermal constraints

A thermal generation unit needs to undergo gradual temperature changes and thus it takes some period of time to bring a thermal unit online. Also, the operation of a thermal unit is manually controlled. So a crew is required to perform the operation and maintenance of any thermal unit. This leads to many restrictions in the operation of thermal unit and thus it gives rise to many constraints.

3.1.4. Minimum uptime

If the units have already been shut down, there will be a minimum time before they can be restarted. This constraint is given as:

$$X_{i}^{on}(t) \geq MUT_i,$$ \hspace{1cm} (6)

where $X_{i}^{on}(t)$ is the duration for which unit i is continuously ON (in hrs) and MUT_i is the unit i minimum uptime (in hrs).

3.1.5. Minimum down time

Once the unit is decommitted, there is a minimum time before it can be recommitted. This constraint is given as:

$$X_{i}^{off}(t) \geq MDT_i,$$ \hspace{1cm} (7)

$$NG \times P_{i,h} U_{i,h} = D_h.$$ \hspace{1cm} (4)

$$\sum_{i=1}^{N} P_{i,max,h} U_{i,h} \geq D_h + R_h.$$ \hspace{1cm} (5)

$$X_{i}^{on}(t) \geq MUT_i,$$ \hspace{1cm} (6)

$$X_{i}^{off}(t) \geq MDT_i,$$ \hspace{1cm} (7)
where $X_i^{off}(t)$ is the duration for which unit i is continuously OFF (in hrs) and MDT_i minimum downtime (in hrs).

3.1.6. Crew constraints

If a plant consists of two or more units, they cannot be turned on at the same time since there are not enough crew members to attend both units while starting up.

3.1.7. Maximum and minimum power limits

Every unit has its own maximum/minimum power level of generation, beyond and below which it cannot generate.

$$P_{i,\text{min}} \leq P_{ih} \leq P_{i,\text{max}}.$$ \hfill (8)

3.1.8. Initial operating status of generating units

The initial operating status of every unit should take the last day’s previous schedule into account, so that every unit satisfies its minimum up/down time.

3.2. Emission minimization

To obtain the generation schedule that minimizes the total emission, the objective function described in (1) can be reformulated as:

$$F_{\text{total\ emission}}(P) = \alpha_i P_i^2 + \beta_i P_i + \gamma_i$$ \hfill (9)

where α_i, β_i, and γ_i are the emission coefficients of ith generating units.

The total emission over the given time horizon “H” is

$$TFC = \sum_{h=1}^{H} \sum_{i=1}^{G} \left[(\alpha_i P_i^2 + \beta_i P_i + \gamma_i) \ast U_{ih} + \text{SUC}_{ih} \ast (1 - U_{ih-1}) \ast U_{ih} \right].$$ \hfill (10)

3.3. Multi-objective problem formulation

Many real-world applications involve simultaneous optimization of several objective functions, which are often competing or conflicting with each other, and subject to a number of equality and inequality constraints. In general, these multi-objective problems can be formulated as follows:

minimize $f_p(U)$, \hspace{1cm} $p = 1, 2, 3, ..., P$ \hfill (11)

Subject to

$$\begin{cases} v_q(U) = 0, & q = 1, 2, 3, ..., Q \\ w_r(U) \leq 0, & r = 1, 2, 3, ..., R \end{cases}$$ \hfill (12)

where $f_p(U)$ is the pth objective function, U is a decision vector that represents a solution, P is the number of objectives, v_q is the qth of the Q equality constraints and w_r is the Rth of the inequality constraints.

The objective functions $f_p(U)$ must be evaluated in correspondence of each decision variable vector U in the search space. The final goal is to identify a set of optimal decision variable vectors U_m, \hspace{1cm} $m = 1, 2, 3, ..., M$, instead of a single optimal solution. In this set of optimal solutions, no one can be regarded to be better than any other with respect to all the objective functions.

The comparison of solutions may be achieved in terms of the concepts of Pareto optimality and dominance (Montawy et al., 1998): taking a minimization problem as example, U_1 solution is regarded to dominate solution $U_2(U_1 > U_2)$ if both the following conditions are satisfied:
If any of the above two conditions is violated, the solution does not dominate the solution, and is said to be non-dominated by. The solutions that are non-dominated within the entire search space are denoted as Pareto-optimal and constitute the Pareto-optimal set, and the corresponding values of the objective functions form the so-called Pareto-optimal front in the objective functions space. The goal of a multi-objective optimization algorithm is to guide the search for finding solutions of the Pareto-optimal set.

MOUCP can be formulated as a non-linear mixed combinatorial and continuous multi-objective optimization problem, as follows:

\[
\text{minimize } [f_{\text{cost}}(P, U), f_{\text{Emission}}(P, U)]
\]

Subject to: \(v(P) = 0 \)

\[w(P, U) \leq 0\]

where \(P = (P_1^1, P_{21}^1, ..., P_{N1}^1, ..., P_{1P}^{T_{\text{max}}}, P_{2P}^{T_{\text{max}}}, ..., P_{NP}^{T_{\text{max}}}) \) is an \(N \times T_{\text{max}} \) matrix with the powers \(P_i^t \) as its elements and \(U = (U_1^1, U_{21}^1, ..., U_{N1}^1, ..., U_1^{T_{\text{max}}}, U_{21}^{T_{\text{max}}}, ..., U_{N1}^{T_{\text{max}}}) \) is an \(N \times T_{\text{max}} \) matrix with the commitment states \(U_i^t \) as its elements.

4. Materials and methods

4.1. Hybrid harmony search-random search algorithm

Harmony Search (HS) is a population-based meta-heuristics search algorithm inspired from the musical process of searching for a perfect state of harmony. HS has been proposed by Geem, Kim, and Loganathan (2001). The pitch of each musical instrument determines the aesthetic quality, just as the fitness function value determines the quality of decision variables. In the musical improvisation process, all players sound pitches within possible range together to make one harmony. If all the pitches make a good harmony, each player stores in his memory that experience and the possibility of making a good harmony is increased next time. The same thing in optimization, the initial solution is generated randomly from decision variables within the possible range. If the objective function values of these decision variables are good to make a promising solution, then the possibility to make a good solution is increased next time. Random Search Algorithm is a derivative-free method for continuous domain, which is based on direct search and most suitable for Stochastic and Global optimization problem. In the proposed algorithm, HS is combined with Random Search algorithm for random population search. The major steps of proposed hybrid algorithm are mentioned below:

- Initialization of harmony memory (HM)
- Harmony memory considering (HMC) rule
- Pitch adjusting rate (PAR)
- Random initialization rule
- Harmony memory updating
- Ensemble consideration
Step-I: Initialization of harmony memory (HM)

The initial population HM consists of HMS vectors is generated randomly (Figure 1). The Harmony Memory (HM) matrix is filled with HMS vectors as follows:

\[
\begin{bmatrix}
X_{11} & X_{12} & X_{13} & \cdots & X_{1G} \\
X_{21} & X_{22} & X_{23} & \cdots & X_{2G} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{HMS1} & X_{HMS2} & X_{HMS3} & \cdots & X_{HMSG} \\
\end{bmatrix}_{HMS \times G}
\]

where \(x_i = x_{ij} \); \(i \in \{1, 2, 3, ..., HMS\} \) and \(j \in \{1, 2, 3, ..., G\} \)

Step-II: Harmony memory considering (HMC) rule

For this rule, a new random number \(r_i \) is generated within the range \([0,1]\).

If \(r_i < \text{HMC} \), then the first decision variable in the new vector \(x_{ij}^{\text{new}} \) is chosen randomly from the values in the current HM as follows:

\[
HM = \begin{bmatrix}
X_{11} & X_{12} & X_{13} & \cdots & X_{1G} \\
X_{21} & X_{22} & X_{23} & \cdots & X_{2G} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{HMS1} & X_{HMS2} & X_{HMS3} & \cdots & X_{HMSG} \\
\end{bmatrix}_{HMS \times G}
\]
where HMCR is the Harmony Memory Consideration Rate (Figure 2).

\[X_{ij}^{\text{New}} = X_{ij}; \quad X_{ij} \in \{X_{1j}, X_{2j}, X_{3j}, ..., X_{HMSj}\} \quad (19) \]

Step-III: Pitch adjusting rate (PAR)

The obtained decision variables from the harmony memory consideration rule is further examined to determine if it needs to pitch adjustment or not (Figure 3).

Figure 3. Pitch adjustment rate.

Figure 4. Updation of worst harmony with best harmony.

Figure 5. Ensemble consideration.

Figure 6. Violated harmony consideration.
Figure 7. Recursive search procedure for hybrid harmony search-random search algorithm.

Figure 8. Convergence of DE-random search algorithm for 4- and 10-generating unit test system. (a) 4-Unit test system (b) 10-Unit test system (SR = 10%) (c) 10-Unit test system (SR = 5%).

Figure 9. Variation of cost and emission w.r.t. weights for IEEE-14, 30 and 56-bus system.

Table 1. Committed status and generation scheduling of 4-unit test system

Hour	U1	U2	U3	U4	U1	U2	U3	U4
1	1	1	0	0	300	150	0	0
2	1	1	1	0	300	205	25	0
3	1	1	1	1	300	250	30	20
4	1	1	1	0	300	215	25	0
5	1	0	1	1	300	0	80	20
6	1	0	1	0	255	0	25	0
7	1	0	1	0	265	0	25	0
8	1	1	0	0	300	200	0	0

Total cost ($) 74476.00
Time (Sec.) 22.863569
Table 2. Comparison of results for 4-generating unit system

Method	Generation cost ($)	Iteration time (sec.)				
	Best	Average	Worst	Best	Average	Worst
Improved Lagrangian Relaxation (ILR)	75,231.9	NA	NA	–	–	–
(Sriyanyong & Song, 2005)						
B. SMP (Khanmohammadi et al., 2010)	74,812	74,877	75,166	–	–	–
A. SMP (Khanmohammadi et al., 2010)	74,812	74,877	75,166	–	–	–
Lagrangian relaxation and PSO (LRPSO)	74,808	NA	NA	–	–	–
(Sriyanyong & Song, 2005)						
Binary differential evolution (BDE)	74,676	NA	NA	–	–	–
(Jeong, Lee, Kim, Park, & Shin, 2009)						
Genetic algorithm (GA) (Valenzuela & Smith, 2002)	74,675	NA	NA	–	–	–
HS and random search algorithm (Proposed algorithm)	74,476	74,476	74,476	20.68704	22.86357	22.9709

Table 3. Committed status of 10-unit test system (with 10% spinning reserve)

Hour	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
1	1	1	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	1	1	0	0	1	0	0	0	0	0
4	1	1	0	0	1	0	0	0	0	0
5	1	1	0	1	1	0	0	0	0	0
6	1	1	1	1	1	0	0	0	0	0
7	1	1	1	1	1	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0	0
9	1	1	1	1	1	1	0	0	0	0
10	1	1	1	1	1	1	1	0	0	0
11	1	1	1	1	1	1	1	1	0	0
12	1	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	0	0	0
14	1	1	1	1	1	1	1	0	0	0
15	1	1	1	1	1	0	0	0	0	0
16	1	1	1	1	1	0	0	0	0	0
17	1	1	1	1	1	0	0	0	0	0
18	1	1	1	1	1	0	0	0	0	0
19	1	1	1	1	1	0	0	0	0	0
20	1	1	1	1	1	1	1	0	0	0
21	1	1	1	1	1	1	1	0	0	0
22	1	1	0	0	1	1	0	0	0	0
23	1	1	0	0	0	1	0	0	0	0
24	1	1	0	0	0	0	0	0	0	0

Best generation cost($) = 563937.68748999
Best iteration time = 16.831236 Seconds
A new random vector \(r_2 \) is generated within the range [0,1].

If, then the pitch adjustment decision variable is calculated as follows:

where, PAR is Pitch Adjustment Rate.

Pitch Adjustment Rate:

\[
X_{\theta}^{\text{New}} = X_{\theta} + r \pm (0, 1) \times BW
\] \hspace{1cm} (20)

where BW is a bandwidth factor, which is used to control the local search around the selected decision variable in the new vector.

Step-IV: Random initialization rule

If the condition \(r_1 < \text{HMCR} \) fails, the new first decision variable in the new vector \(X_{\theta}^{\text{New}} \) is generated randomly as follows:

Table 4. Generation scheduling of 10-unit test system (for 10% spinning reserve)

Hour	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
1	455	245	0	0	0	0	0	0	0	0
2	455	295	0	0	0	0	0	0	0	0
3	455	330	0	0	25	0	0	0	0	0
4	455	455	0	0	40	0	0	0	0	0
5	455	390	0	130	25	0	0	0	0	0
6	455	360	130	130	25	0	0	0	0	0
7	455	410	130	130	25	0	0	0	0	0
8	455	455	130	130	30	0	0	0	0	0
9	455	455	130	130	85	20	25	0	0	0
10	455	455	130	130	162	33	25	10	0	0
11	455	455	130	130	162	73	25	10	0	0
12	455	455	130	130	162	80	25	43	10	0
13	455	455	130	130	162	33	25	10	0	0
14	455	455	130	130	85	20	25	0	0	0
15	455	455	130	130	30	0	0	0	0	0
16	455	310	130	130	25	0	0	0	0	0
17	455	260	130	130	25	0	0	0	0	0
18	455	360	130	130	25	0	0	0	0	0
19	455	455	130	130	30	0	0	0	0	0
20	455	455	130	130	162	33	25	10	0	0
21	455	455	130	130	85	20	25	0	0	0
22	455	455	130	130	0	0	145	20	25	0
23	455	425	0	0	0	20	0	0	0	0
24	455	345	0	0	0	0	0	0	0	0

Best generation cost ($) = 563937.68748999

Best iteration time = 16.831236 Seconds
Table 5. Comparison of results for 10-generating unit system (for 10% spinning reserve)

S. No.	Method	Overall generation cost ($)	Average time (sec.)
1	Genetic based method (Maifeld & Sheble, 1996)	NA	–
2	Hybrid continuous relaxation and genetic algorithm (CRGA) (Tokoro, Masuda, & Nishino, 2008)	NA	–
3	Continuous relaxation and genetic algorithm (CRGA) (Tokoro, Masuda, & Nishino, 2008)	–	5,63,977
4	Integer coded genetic algorithm (ICGA) (Damousis, Bakirtzis, & Dakopoulos, 2004)	–	5,66,404
5	Lagrangian Search Genetic Algorithm (LSGA) (Sheblé, Maifeld, Brittig, Fahd, & Fukurozaki-Coppinger, 1996)	6,09,023.69	–
6	Improved binary particle swarm optimization (IBPSO) (Yuan et al., 2009)	5,99,782	–
7	New genetic algorithm (Ganguly, Sarkar, & Pal, 2004)	5,91,715	–
8	PSO (Grefenstette, 1986)	5,81,450	–
9	Binary Particle Swarm Optimization with bit Change Mutation (MPSO) (Lee, Park, & Jeon, 2007)	5,74,905	–
10	HPSO (Gaing, 2003d)	5,74,153	–
11	LCA-PSO (Wang, Li, & Watada, 2011)	5,70,006	–
12	Two-Stage Genetic Based Technique (TSGA) (Eladin, Elsayed, & Youssef, 2008)	5,68,315	–
13	Hybrid PSO-SQP (Victoire & Jeyakumar, 2004)	5,68,032.3	–
14	BCGA (Damousis et al., 2004)	5,67,367	–
15	SM (Simopoulos, Kavatza, & Vournas, 2006b)	5,66,686	5,66,787
16	LR (Simopoulos et al., 2006b)	5,66,107	5,66,493
17	GA (Simopoulos et al., 2006b)	5,65,866	5,67,329
18	Genetic Algorithm (GA) (Kazarlis et al., 1996)	5,65,852	–
19	Enhanced Simulated Annealing (ESA) (Simopoulos, Kavatza, & Vournas, 2006b)	5,65,828	5,65,988
20	Lagrangian Relaxation (LR) (Kazarlis et al., 1996)	5,65,825	–
21	Dynamic Programming (DP) (Kazarlis et al., 1996)	5,65,825	–
22	Improved Lagrangian Relaxation (ILR) (Sriyanyong & Song, 2005)	5,65,823.23	–
23	LRPSO (Sriyanyong & Song, 2005)	5,65,275.2	–
24	Lagrangian Relaxation and Genetic Algorithm (LRGA) (Cheng, Liu, & Liu, 2000d)	5,64,800	–
25	Evolutionary Programming (EP) (Juste, Kita, Tanaka, & Hasegawa, 1999)	5,64,551	5,65,352
26	EP (Simopoulos et al., 2006b)	5,64,551	5,65,352
27	Particle Swarm Optimization (PSO) (Zhao, Gua, Bai, & Cao, 2006)	5,64,212	5,65,103
28	Ant Colony Search Algorithm (ACSA) (Sum-im & Ongsakul, 2003)	5,64,049	–
29	Hybrid Ant System/Priority List (HASP) (Chusanappittut, Nuadhoong, Jantarang, & Phoomvuthisarn, 2008)	5,64,029	5,64,324
30	B. SMP (Khanmohammadi et al., 2010)	5,64,017.73	5,64,121.46

(Continued)
where P_{minij}, P_{maxij} are the lower and upper bounds for generating units and r and $(0, 1)$ is the random vector within the range $[0,1]$.

Step-V: Harmony memory updating

$$X_{ij}^{new} = P_{minij} + (P_{maxij} - P_{minij}) \cdot r$$

Table 5. (Continued)

S. No.	Method	Overall generation cost ($)	Average time (sec.)
31	Annealing Genetic Algorithm (AGA) (Cheng, Liu, & Liu, 2000b)	5,64,005	
32	Binary Differential Evolution (Jeong, Lee, et al., 2009)	5,63,997	
33	Social Evolutionary Programming (SEP) (Wang, Y., & Zhang, 2004)	5,63,987	
34	Methodological Priority List (MPL) (Tingfang & Ting, 2008)	5,63,977.1	
35	Genetic Algorithm (GA) (Kazarlis et al., 1996)	5,63,977	56,65,606
36	IBPSO (Yuan et al., 2009)	5,63,977	56,155
37	Genetic Algorithm Based on Unit Characteristics (UCC-GA) (Senjyu, Yamashiro, Uezato, & Funabashi, 2002)	5,63,977	
38	Enhanced Adaptive Lagrangian Relaxation (EALR) (Ongsakul & Petcharaks, 2004)	5,63,977	56,65,606
39	Local Search Method (LCM) (Fei & Jinghua, 2009)	5,63,977	
40	Quantum-Inspired Binary PSO (QBPSO) (Jeong, Park, Jang, & Lee, 2010)	5,63,977	
41	Binary PSO (Jeong, Park, et al., 2009)	5,63,977	
42	Quantum-Inspired Binary PSO (QIBPSO) (Jeong, Park, et al., 2009)	5,63,977	
43	Extended Priority List (EPL) (Senju et al., 2003)	5,63,977	
44	Muller Method (Chandram, Subrahmanyam, & Sydulu, 2011)	5,63,977	
45	Improved Particle Swarm Optimization (IPSO) (Zhao et al., 2006)	5,63,954	56,162
46	Advanced Fuzzy Controlled Binary PSO (AFBPSO) (Chakraborty, Ito, Senju, & Saber, 2012)	5,63,947	56,128
47	Hybrid PSO (HPSO) (Ting, Rao, & Lao, 2006)	5,63,947	56,477
48	Fuzzy Quantum Computation Based Thermal Unit Commitment (FQEA) (Chakraborty, Senju, Yona, & Funabashi, 2011)	5,63,942	
49	Advanced Quantum-Inspired Evolutionary Algorithm (AQEA) (Chung, Yu, & Wong, 2006)	5,63,938	
50	Particle Swarm-Based- Simulated Annealing (PSO-B-SA) (Sadati, Hajian, & Zamani, 2007)	5,63,938	56,411
51	QEA-UC (Chung et al., 2006)	5,63,938	56,4012
52	IGEA-UC (Chung et al., 2006)	5,63,938	56,3938
53	Gravitational Search Algorithm (Ray, 2013)	5,63,938	56,6008
54	A-SMP (Khanmohammadi et al., 2010)	5,63,937.26	56,4040.3
55	Harmony Search (HS) (Najafi & pourjamal, 2012)	5,64,367.69	
56	Harmony Search Algorithm (HAS) (Afkousi-Paqaleh & Rashidinejad, 2010)	5,63,977	56,168.6
57	HS- Random Search [Proposed Algorithm]	5,63,937.6875	56,965.31

$$X_{ij}^{new} = P_{minij} + (P_{maxij} - P_{minij}) \cdot r$$ and $(0, 1)$
After the Harmony Vector X_{ij}^{new} is generated, it will replace the worst harmony vector X_{ij}^{Worst} in the Harmony memory if its objective function value is better than the objective function value of the worst harmony vector (Figure 4). PSEUDO code for updation of Worst Harmony Vector (WHV) with new random harmony vector is mentioned below.

\[
\text{If } \left(X_{ij}^{new} < X_{ij}^{Worst} \right) \text{ then} \\
\text{Update the HM as } X_{ij}^{Worst} = X_{ij}^{new} \\
\text{end if}
\]

Step-VI: Ensemble consideration

After the new harmony $X_{ij}^{new} = X_{ij}^*; X_j \in \{ X_{1j}, X_{2j}, X_{3j}, ..., X_{HMSj} \}$ is obtained, one more operation can be considered from the relationship among decision variables. Just as a player has even stronger relationship with specific player in a music group, the new operation, ensemble consideration (Geem, 2006b), enables the algorithm to combine closely related variables together.

Step-VII: Violated harmony consideration

Once the new harmony is obtained using the above-mentioned rules, it is then checked whether it violates problem constraints. Although the new harmony violates the constraints, it has still
chance to be included in HM, just as rule-violated harmony was still used by musicians such as famous composer Ludwig van Beethoven (Geem, 2006b). Violated harmony can be considered by adding a penalty (Figures 5 and 6). The suitable penalty can be mathematically described as:

\[
\text{Penalty} = a \times (\text{ViolationAmount})^b \times c
\] \hspace{1cm} (22)

- **Randomization in harmony search algorithm**

Randomization in Harmony Search algorithm is to increase the diversity of the solutions. Although the pitch adjustment has a similar role, it is limited to certain area and thus corresponds to a local search. The use of randomization can drive the system further to explore various diverse solutions so as to attain the global optimality. The Pseudo code of Proposed Algorithm (Figure 7), the probability of randomization is

Hour	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
1	455	245	0	0	0	0	0	0	0	0
2	455	295	0	0	0	0	0	0	0	0
3	455	395	0	0	0	0	0	0	0	0
4	455	455	0	0	40	0	0	0	0	0
5	455	455	0	0	90	0	0	0	0	0
6	455	455	130	0	60	0	0	0	0	0
7	455	410	130	130	25	0	0	0	0	0
8	455	455	130	130	30	0	0	0	0	0
9	455	455	130	130	105	0	25	0	0	0
10	455	455	130	130	162	43	25	0	0	0
11	455	455	130	130	162	80	28	0	0	10
12	455	455	130	130	162	43	25	0	0	0
13	455	455	130	130	130	105	25	0	0	0
14	455	455	130	130	130	110	20	0	0	0
15	455	455	130	130	0	140	20	0	0	0
16	455	440	130	0	25	0	0	0	0	0
17	455	390	130	0	25	0	0	0	0	0
18	455	455	130	0	60	0	0	0	0	0
19	455	455	130	0	135	0	25	0	0	0
20	455	455	130	130	130	25	0	0	0	0
21	455	455	130	130	105	0	25	0	43	0
22	455	385	130	130	130	0	0	0	0	0
23	455	315	0	130	0	0	0	0	0	0
24	455	215	0	130	0	0	0	0	0	0
and the actual probability of the pitch adjustment is

\[P_{\text{Pitch}} = r_{\text{accept}} \times r_{\text{pa}} \]

where \(r_{\text{accept}} \) is the Harmony memory accepting rate and \(r_{\text{pa}} \) represents the Pitch Adjustment rate.

Table 8. Comparison of results for 10-generating unit system (for 5% spinning reserve)

Method	Overall generation cost ($)		
	Best cost ($)	Average cost ($)	Worst cost ($)
BPSO (Gaing, 2003c)	5,65,804	5,66,992	5,67,251
GA (Gaing, 2003c)	5,70,781	5,74,280	5,76,791
APSO (Pappala & Erlich, 2008)	5,61,586	-	-
BP (Pappala & Erlich, 2008)	5,65,450	-	-
TSGB (Eldin et al., 2008)	5,60,263.92	-	-
IPSO (Xiong, Li, & Cheng, 2008)	5,58,114.80	-	-
Hybrid PSO-SQP (Victoire & Jeyakumar, 2004)	5,68,032.30	-	-
B.SMP (Khanmohammadi et al., 2010)	5,58,844.76	5,55,937.24	5,59,154.98
HS-Random Search	5,57,905.6427	5,58,267.2	5,58,682.0107

Table 9. Conclusion of results for 4- and 10-units test system

No. of units	Generation cost ($)	Computational time (sec)				
	Best cost	Average cost	Worst cost	Best time	Average time	Worst time
4	74,476	74,476	74,476	20.68704	22.863569	22.9709
10 (SR = 10%)	5,63,937	5,63,965.3094	5,63,995.3262	16.831236	16.9158306	16.99832
10 (SR = 5%)	5,57,905.6427	5,58,267.2	5,58,682.0107	14.36105	15.88731	16.33696

Table 10. Comparison of proposed algorithm with other harmony search algorithms

Method	10-unit system	20-units system	40-units system					
	Best cost	Mean cost	Worst cost	Execution time	Best cost	Execution time	Best cost	Execution time
Harmony Search (Najafi & pourjamal, 2012)	5,64,367.69	-	-	-	11,27,377	92	2,25,0968	467
Harmony Search Algorithm (HAS) (Afkousi-Paqaleh & Rashidinejad, 2010)	5,63,977	5,64,168.6	-	3.00	11,24,715	24	22,48,740	78
Proposed Method	5,63,937.69	5,63,965.31	5,63,995.3262	16.831236	11,24,912.84	35.01579	22,48,653	179.66679
Table 11. Commitment and generation schedule for 14–bus system

Commitment schedule	Generation schedule									
Hour	U1	U2	U3	U4	U5	U1	U2	U3	U4	U5
1	1	0	0	0	0	148	0	0	0	0
2	1	0	0	0	0	173	0	0	0	0
3	1	0	0	0	0	220	0	0	0	0
4	1	1	0	0	0	104	140	0	0	0
5	1	1	0	0	0	119	140	0	0	0
6	1	1	0	0	0	108	140	0	0	0
7	1	0	0	0	0	227	0	0	0	0
8	1	0	0	0	0	202	0	0	0	0
9	1	0	0	0	0	176	0	0	0	0
10	1	0	0	0	0	134	0	0	0	0
11	1	0	0	0	0	100	0	0	0	0
12	1	0	0	0	0	130	0	0	0	0
13	1	0	0	0	0	157	0	0	0	0
14	1	0	0	0	0	168	0	0	0	0
15	1	0	0	0	0	195	0	0	0	0
16	1	0	0	0	0	225	0	0	0	0
17	1	1	0	0	0	104	140	0	0	0
18	1	1	0	0	0	101	140	0	0	0
19	1	1	0	0	0	90	140	0	0	0
20	1	0	0	0	0	210	0	0	0	0
21	1	0	0	0	0	176	0	0	0	0
22	1	0	0	0	0	157	0	0	0	0
23	1	0	0	0	0	138	0	0	0	0
24	1	0	0	0	0	103	0	0	0	0

4.2. Flow chart of proposed algorithm

In order to obtain the hybrid version of Harmony search–Random search algorithm, the general operators of harmony search algorithm and random search algorithm are integrated recursively. The flow chart of Harmony search algorithm and PSEUDO code for random search algorithm is shown in Figure 7.

4.3. Test systems

The simulation includes runs for IEEE-14 Bus, IEEE-30 Bus, IEEE-56 bus, 4-units and 10-units test systems. Scheduling periods are 8 h for 4-units test system and 24-h IEEE-14 bus, IEEE-30 bus, IEEE-56 bus and 10-units test system. The generating units characteristics and load demand data for 4-units test system are taken from Khanmohammadi, Amiri, and Haque (2010) and are shown in Tables 14 and 15, respectively. The characteristics of 10-units test system are taken from Khanmohammadi et al. (2010) and are shown in Table 16 and load demand pattern is shown in Table 17. The generating units characteristics along with emission coefficients and load demand for IEEE-14 Bus, IEEE-30 bus and IEEE 56-bus test systems are shown in Tables 18–26.
The corresponding results have been obtained using hybrid harmony search algorithm using population size of 40 and number of searches from 150 to 1,000 for 4- and 10-units test system. For multi-objective UCP, IEEE-14, 30 and 56 bus system is tested for number of searches of 30 and taking number of pareto 50. The recursive search procedure for proposed hybrid harmony search-random search algorithm is shown in Figure 7. The performance of the proposed algorithm is tested in MATLAB 2013a (8.1.0.604) software on Intel® core™ i-5–3470S CPU@ 2.90 GHz, 4.00 GB RAM system.

4.4. Results and discussion

In order to stochastic nature of Hybrid HS-random Search algorithm, 50 test trials were made for each problem set, with each run starting with different initial populations. The Population size of 40 (for 4- and 10-units test system) was taken in all runs (Figure 8). The simulation results are shown in Table 1 through and Figure 9. As shown in comparison, Table 2 for 4-units test system, Table 5 for 10-Units test system with 10% spinning reserve, Table 8 for 10-Units test system with 5% spinning reserve shows that proposed hybrid Harmony Search-Random Search algorithm gives better solution in comparison with other well-known meta-heuristics algorithms. In comparison with the results produced by reported methods, the proposed method gives satisfactory solution in reasonable

Table 12. Commitment and generation schedule for 30-bus system
Commitment schedule
Hour
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Table 13. Commitment and generation schedule for 56-bus system

Commitment schedule	Generation schedule													
Hour	U1	U2	U3	U4	U5	U6	U7	U1	U2	U3	U4	U5	U6	U7
1	1	0	0	0	0	0	0	148	0	0	0	0	0	0
2	1	0	0	0	0	0	0	173	0	0	0	0	0	0
3	1	0	0	0	0	0	0	220	0	0	0	0	0	0
4	1	0	0	0	0	0	0	244	0	0	0	0	0	0
5	1	0	0	0	0	0	0	259	0	0	0	0	0	0
6	1	0	0	0	0	0	0	248	0	0	0	0	0	0
7	1	0	0	0	0	0	0	227	0	0	0	0	0	0
8	1	0	0	0	0	0	0	202	0	0	0	0	0	0
9	1	0	0	0	0	0	0	176	0	0	0	0	0	0
10	1	0	0	0	0	0	0	134	0	0	0	0	0	0
11	1	0	0	0	0	0	0	100	0	0	0	0	0	0
12	1	0	0	0	0	0	0	130	0	0	0	0	0	0
13	1	0	0	0	0	0	0	157	0	0	0	0	0	0
14	1	0	0	0	0	0	0	168	0	0	0	0	0	0
15	1	0	0	0	0	0	0	195	0	0	0	0	0	0
16	1	0	0	0	0	0	0	225	0	0	0	0	0	0
17	1	0	0	0	0	0	0	244	0	0	0	0	0	0
18	1	0	0	0	0	0	0	241	0	0	0	0	0	0
19	1	0	0	0	0	0	0	230	0	0	0	0	0	0
20	1	0	0	0	0	0	0	210	0	0	0	0	0	0
21	1	0	0	0	0	0	0	176	0	0	0	0	0	0
22	1	0	0	0	0	0	0	157	0	0	0	0	0	0
23	1	0	0	0	0	0	0	138	0	0	0	0	0	0
24	1	0	0	0	0	0	0	103	0	0	0	0	0	0

Computation time (Tables 9 and 10). Table 1 gives commitment and generation schedule for 4-units test system (Total Cost: $74476). Tables 3 and 4 give commitment and generation schedule for 10-units test system with 10% spinning reserve (Total Cost: $563937.6875). Tables 6 and 7 give commitment and generation schedule for 10-units test system with 5% spinning reserve (Total Cost: $557905.6427). The test data for IEEE-14, 30 and 56-bus systems along with load demand of 24-h are shown in Tables 14–17 and Commitment and generation schedule for IEEE-14, 30 and 56-bus system for multi-objective optimization are shown in Tables 11–13, respectively, and Figure 9 shows the variation of Cost and Emission w.r.t. weights for IEEE-14, 30 and 56-Bus systems.

5. Conclusion and future scope

In this paper, researchers have presented the solution of multi-objective UCP using Hybrid Harmony Search-Random Search Algorithm. The results for standard IEEE-14, 30 and 56-bus systems have been successfully evaluated for multi-objective UCP and the test systems consisting of 4 and 10 units are tested for single-objective evaluation using proposed hybrid algorithm. It has been observed that performance of proposed Hybrid algorithm is much better than other well-known and recently developed evolutionary, heuristics and meta-heuristics search algorithm. For Multi-Objective criterion, it has been found that as there is a conflicting relationship between cost and emission, if the performance in cost criterion is improved, performance in the emission is seen to deteriorate. Thus, to achieve best compromising solution with respect to cost and emission, suitable adjustment in weights is required.
Funding
The authors received no direct funding for this research.

Author details
Vikram Kumar Kamboj1
E-mail: vikram.davu@gmail.com
S.K. Bath1
E-mail: sjkbath@gmail.com
1 Department of Electrical Engineering, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India.
2 Department of Electrical Engineering, Gian Zail Singh Campus College of Engineering and Technology, Bathinda, Punjab, India.

Citation information
Cite this article as: A solution to energy and environmental problems of electric power system using hybrid harmony search-random search optimization algorithm, Vikram Kumar Kamboj & S.K. Bath, Cogent Engineering (2016), 3: 1175059.

References
Afkousi-Paqaleh, M., & Rashidinejad, M. (2010). An implementation of harmony search algorithm to unit commitment problem. Electrical Engineering, 92, 215–225. http://dx.doi.org/10.1007/s00202-010-0177

Al-Betar, M., Khader, A., & Liao, I. (2010). A harmony search with multi-pitch adjusting rate for the university course timetabling. In J. Kacprzyk (Ed.), Recent advances in Harmony search algorithm (pp. 147–161). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-04317-8

Borghetti, A., Frangioni, A., Lacalandra, F., Lodi, A., Martello, S., Nucci, C. A., & Trebbi, A. (2001). Lagrangian relaxation and Tabu search approaches for the unit commitment problem. In Proceedings of IEEE Power Tech Conference (Vol. 3, pp. 1–7). Porto.

Chakraborty, P., Roy, G. G., Das, S., Jain, D., & Abraham, A. (2009). An improved harmony search algorithm with differential mutation operator. Fundamenta Informaticae, 95, 1–26.

Chakraborty, S., Senjyu, T., Yona, A., & Funabashi, T. (2011, June 27-30). Fuzzy quantum computation based thermal unit commitment strategy with solar battery system injection. In 2011 IEEE International Congress on Fuzzy Systems. Taipei. http://dx.doi.org/10.1109/FUZZY.2011.607521

Chakraborty, S., Ito, T., Senjyu, T., & Saber, A. Y. (2012). Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm. International Journal of Electrical Power & Energy Systems, 43, 1072–1080. http://dx.doi.org/10.1016/j.ijepes.2012.06.014

Chandram, K., Subrahmanym, N., & Sydulu, M. (2011). Unit commitment by improved pre-prepared power demand table and Muller method. International Journal of Electrical Power & Energy Systems, 33, 106–114. http://dx.doi.org/10.1016/j.ijepes.2010.06.022

Cheng, C.-P., Liu, C.-W., & Liu, C.-C. (2000a). Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems, 15, 707–714. http://dx.doi.org/10.1109/59.867163

Cheng, C.-P., Liu, C.-W., & Liu, C.-C. (2000b). Unit commitment by annealing genetic algorithms. Electrical Power and Energy Systems, 24, 149–158.

Chung, C. Y., Yu, H., & Wong, K. P. (2006). An advanced quantum-inspired evolutionary algorithm for unit commitment. IEEE Transactions on Power Systems, 26, 847–854.

Chusanapiputt, S., Nualhong, D., Jantarang, S., & Phoomvuthisarn, S. (2008). A solution to unit commitment problem using hybrid ant system/priority list method. In IEEE 2nd International Conference on Power and Energy, PECon 08 (p. 1183e8). Malaysia.

Cohen, A. I., & Yoshimura, M. (1983). A branch-and-bound algorithm for unit commitment. IEEE Transactions on Power Apparatus and Systems, 102, 444–451. http://dx.doi.org/10.1109/TPAS.1983.137714

Damousis, I. G., Bakirtzis, A. G., & Dokopoulos, P. S. (2004). A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems, 19, 1165–1172. http://dx.doi.org/10.1109/TPWRS.2003.821625

Degertekin, S. (2008). Optimum design of steel frames using harmony search algorithm. Structural and Multidisciplinary Optimization, 36, 353–401. http://dx.doi.org/10.1007/s00158-007-0177-4

Dhillon, J. S., & Kothari, D. P. (2010). Power system optimization (2nd ed.). New Delhi: PHI.

Eldin, A. S., El-sayed, M. A. H., & Youssef, H. K. M. (2008). A two-stage genetic based technique for the unit commitment optimization problem. In 12th International Middle East Power System Conference, MEPCO (pp. 425–430). Aswan.

Fei, L., & Jinghua, L. (2009, October 16–18). A solution to the unit commitment problem based on local search method. 2009 International Conference on Energy and Environment Technology, Proceeding International Conference on Energy and Environment Technology, 2009 (ICEET’09) (Vol.2, pp. 51–56). Guillin. http://dx.doi.org/10.1109/ICEET.2009.249

Gaing, Z. L. (2003a). Discrete particle swarm optimization algorithm for unit commitment. In Proceedings of IEEE Power Engineering Society General Meeting (Vol. 1, pp. 418–424). Toronto.

Gaing, Z. L. (2003b, July 13–17). Discrete particle swarm optimization algorithm for unit commitment. IEEE Power Engineering Society General Meeting, 1, 418–424.

Gaing, Z. L. (2003c). Discrete particle swarm optimization algorithm for unit commit-ment. IEEE Power Engineering Society General Meeting, 1, 13–17.

Gaing, Z. L. (2003d). Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Transactions on Power Systems, 18, 1187–1195. http://dx.doi.org/10.1109/TPWRS.2003.814889

Ganguly, D., Sarkar, V., & Pal, J. (2004). A new genetic approach for solving the unit commitment problem. 2004 International Conference on Power System Technology-POWERCON 2004 (pp. 542–547, 21–24). Singapore.

Ge, W. (2010). Ramp rate constrained unit commitment by improved priority list and enhanced particle swarm optimization. In Proceedings of 2010 International Conference on Computational Intelligence and Software Engineering (ICSE 2010) (pp. 1–8). Wuhan.

Geem, Z. M. (2006a). Improved harmony search from ensemble of music players. Lecture Notes in Computer Science, 4251, 86–93. doi:10.1007/11892960_11

Geem, Z. M. (2006b). Improved harmony search from ensemble of music players. In B. Gabrys, R. J. Howlett, & L. Jain (Eds.), Knowledge-based intelligent information and engineering systems (pp. 86–93). Heidelberg: Springer. http://dx.doi.org/10.1007/11892960

Geem, Z. M. (2008). Novel derivative of harmony search algorithm for discrete design variables. Applied Mathematics and Computation, 199, 223–230. doi:10.1016/j.amc.2007.09.049

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76, 60–68. http://dx.doi.org/10.1177/003768110107600201

Geem, Z. W., Tseng, C. L., & Park, Y. (2005). Harmony search for generalized orienteering problem: Best touring in china. In L. Wang, K. Chen, & Y. Ong (Eds.), Advances in natural computation (pp. 741–750). Berlin: Springer. http://dx.doi.org/10.1007/11539902

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems,
Kamboj & Bath, Cogent Engineering (2016), 3: 1175059
http://dx.doi.org/10.1080/23311916.2016.1175059

Man, and Cybernetics, 16, 122–128.
http://dx.doi.org/10.1109/SMC.1986.289288

Guo, X., Zhai, Q., & Papalexopoulos, A. (2003). Optimization based methods for unit commitment: Lagrangian relaxation versus genetic algorithm. Proceedings of IEEE Power Engineering Society General Meeting (Vol. 2, pp. 1095–1100). Toronto.

Guy, J. D. (1971). Security constrained unit commitment. IEEE Transactions on Power Apparatus and Systems, PAS-90, 1385–1390. http://dx.doi.org/10.1109/TPAS.1971.292942

Har, K., Kimura, M., & Honda, N. (1966). A method for planning economic unit commitment and maintenance of thermal power systems. IEEE Transaction on Power Apparatus and Systems, 85, 421–436.

Hasanbeigi, O., Erdal, F., & Saka, M. P. (2009). An adaptive harmony search method for structural optimization. Journal of Structural Engineering, 136, 419–431.

Hobbs, W. J., Herman, G., Warner, S., & Sheble, G. B. (1988). An enhanced dynamic programming approach for unit commitment. IEEE Transactions on Power Systems, 3, 1201–1205. http://dx.doi.org/10.1109/59.14588

Jeong, Y. W., Park, J. B., Jong, S. H., & Lee, K. Y. (2009). A new quantum-inspired binary PSO for thermal unit commitment problems. In Proceedings of 15th International Conference on Intelligent System Applications to Power Systems (pp. 1–6). Curitiba.

Jeong, Y.-W., Lee, W.-N., Kim, H.-H., Park, J.-B., & Shin, J.-R. (2009). Thermal Unit Commitment Using Binary Differential Evolution. Journal of Electrical Engineering & Technology, 4, 323–329.

Jeong, Y., Park, J., Jong, S., & Lee, K. Y. (2010). A new quantum-inspired binary PSO: Application to unit commitment problems for power systems. IEEE Transactions on Power Systems, 25, 1486–1495.

Juste, K. A., Kita, H., Tanaka, E., & Hasegawa, J. (1999). An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems, 14, 1452–1459.

Kadam, D. P., Sonwane, P. M., Dhote, V. P., Kushe, B. E. (2009). Fuzzy logic algorithm for unit commitment problem. In Proceedings of International Conference on Control, Automation, Communication and Energy Conversation (INCACEC-2009) (pp. 1–4). Erode.

Kamboj, V. K. (2015). A novel hybrid PSO-GWO approach for unit commitment problem. Neural Computing and Applications. ISSN 0941-0643. doi: 10.1007/s00521-015-1962-4

Kamboj, V. K., Bath, S. K., & Dhillon, J. S. (2015). Implementation of hybrid harmony search/random search algorithm for single area unit commitment problem. International Journal of Electrical Power & Energy Systems, 77, 228–249. ISSN 0142-0615. doi: http://dx.doi.org/10.1016/j.ijepes.2015.11.045

Kattan, A., Abdullah, R., & Salam, R. A. (2010). Harmony search based supervised training of artificial neural networks. In International Conference on Intelligent Systems, Modelling and Simulation (ISMS) (pp. 105–110). Liverpool.

Kazirzi, S. A., Bakirtzis, A. G., & Petridis, V. (1996). A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems, 11, 83–92. http://dx.doi.org/10.1109/59.485989

Kerr, R. H., Scheidt, J. L., Fontanna, A. J., & Wiley, J. K. (1966). May. Unit commitment. IEEE Transactions on Power Apparatus and Systems, PAS-85, 417–421.
http://dx.doi.org/10.1109/TPAS.1966.291678

Khanmohammadi, S., Arnini, M., & Haque, M. (2010). A new three-stage method for solving unit commitment problem. Energy, 3072–3080. doi: http://dx.doi.org/10.1016/j.energy.2010.03.049

Lee, S. J., & Chen, C. L. (2007). Unit commitment with probabilistic reserve: An IPSO approach. Energy Conversion and Management, 48, 486–493. http://dx.doi.org/10.1016/j.enconman.2006.06.015
Roy, P. K. (2013). Solution of unit commitment problem using gravitational search algorithm. Electrical Power and Energy Systems, 53, 85–94.

Sadati, S., Hajian, M., & Zamani, M. (2007). Unit commitment using particle swarm based simulated annealing optimization approach. In Proceeding of the IEEE Swarm Intelligence Symposium (SIS2007) (pp. 297–302), Piscataway, NJ.

Saka, M., & Hasançebi, O. (2009). Adaptive harmony search algorithm for design code optimization of steel structures. In J. Kacprzyk (Ed.), Harmony search algorithms for structural design optimization (pp. 79–120). Berlin: Springer-Verlag.

Salam, M. S., Hamdan, A. R., & Nor, K. M. (1991). Integrating an expert system into a thermal unit-commitment algorithm. IEE Proceedings - C, 138, 553–559.

Samudi, C., Das, G. P., Ojha, P. C., Sreeni, T. S., & Cherian, S. (2006). Solving unit commitment problem using genetic algorithm with penalty methods and a comparison of Lagrangian search and genetic algorithm—economic dispatch example. International Journal of Electrical Power & Energy Systems, 18, 339–346.

Simopoulos, D. N., Kavatza, S. D., & Vournas, C. D. (2006a). A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems, 21, 411–418.

Simopoulos, D. N., Kavatza, S. D., & Vournas, C. D. (2006b). Hydro-thermal scheduling using particle swarm optimization. In IEEE/PES Transmission and Distribution Conference and Exhibition (pp. 1–5).

Senju, T., Yamashiro, H., Uezato, K., & Funabashi, T. (2002). A unit commitment problem by an enhanced simulated annealing algorithm. Proceeding 2002 IEEE Power Engineering Society Winter Meeting, 1, 58–63.

Sheblé G. B., Maifeld, T. T., Brittig, K., Fahd, G., & Fukurozaki-Tokoro, K.-i., Masuda, Y., & Nishino, H. (2008, August 20–22). Solving unit commitment problem by combining of continuous relaxation method and genetic algorithm. SICE Annual Conference 2008. The University Electro-Communications, Tokyo, Japan.

Senju, T., Shimabukuro, K., Uezato, K., & Funabashi, T. (2003). A fast technique for unit commitment problem by extended priority list. IEEE Transaction on Power System, 18, 882–888.

Sheblé G. B., Maifeld, T. T., Brittig, K., Fahd, G., & Fukurozaki-Tokoro, K.-i., Masuda, Y., & Nishino, H. (2008, August 20–22). Solving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In SICE Annual Conference (p. 3474e68). The University Electro-Communications.

Valenzuela, J., & Smith, A. E. (2002). A seeded memetic algorithm for large unit commitment problems. Journal of Heuristics, 8, 173–195.

Venkatesh, B., Jamtsho, T., & Gooi, H. B. (2007). Unit commitment a fuzzy mixed integer Linear Programming solution. IET Generation, Transmission & Distribution, 1, 836–846.

Victoire, T. A. A., & Jeyakumar, A. E. (2004). Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 71, 51–59.

Wang, C. M., & Huang, Y. F. (2010). Self-adaptive harmony search algorithm for optimization. Expert Systems with Applications, 37, 2826–2837.

Wang, Z., Yu, Y., & Zhang, H. (2004). Social evolutionary programming based unit commitment[J]. Proceedings of CSEE, 24, 24–28.

Wang, B., Li, Y., & Watada, J. (2011, June). Re-scheduling the unit commitment problem in fuzzy environment. In 2011 IEEE International Conference on Fuzzy Systems (pp. 27–30). Taipei.

Xiong, W., Li, M. J., & Cheng, Y. L. (2008). An improved particle swarm optimization algo-rithm for unit commitment. In Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation (Vol. 01, pp. 21–25), Los Alamitos, CA.

Yalcinoz, T., Short, M. J., & Cory, B. J. (1999). Application of neural networks to unit commitment. IEEE Transactions on Power Systems, 2, 649–654.

Yuan, X., Nie, H., Su, A., Wang, L., & Yuan, Y. (2009). An improved binary particle swarm optimization for unit commitment problem. Expert Systems with Applications, 36, 8049–8055.

Zhao, B., Gao, C. X., Bai, B. R., & Cao, Y. J. (2006). An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power & Energy Systems, 28, 642–649.

Zhu, J. (2009). “Unit Commitment”, In optimization of power system operation (1st ed., Chapter 7, pp. 251–293). Hoboken, NJ: Wiley- IEEE Press.
Table 14. Four-unit test system (Khanmohammadi et al., 2010)

Unit No.	p_{max}^ih	p_{min}^ih	α ($$/\text{MW}^2 \text{ h}$$)	β ($$/\text{MWh}$$)	γ ($$/\text{h}$$)	MUT$_i$	MDT$_i$	HSC$_i$	CSC$_i$	CSH$_i$	IS$_i$
U1	300	75	684.74	16.83	0.0021	5	4	500	1100	5	8
U2	250	60	585.62	16.95	0.0042	5	3	170	400	5	8
U3	80	25	213	20.74	0.0018	4	2	150	350	4	−5
U4	60	20	252	23.6	0.0034	1	1	0	0.02	0	−6

Table 15. Load demand for four-unit test system

Hour	1	2	3	4	5	6	7	8
Load demand	450	530	600	540	400	280	290	500

Table 16. Test data for 10-unit system (Khanmohammadi et al., 2010)

Unit No.	p_{max}^ih	p_{min}^ih	α ($$/\text{MW}^2 \text{ h}$$)	β ($$/\text{MWh}$$)	γ ($$/\text{h}$$)	MUT$_i$	MDT$_i$	HSC$_i$	CSC$_i$	CSH$_i$	IS$_i$
U1	455	150	1,000	16.19	0.00048	8	8	4,500	9,000	5	8
U2	455	150	970	17.26	0.00031	8	8	5,000	10,000	5	8
U3	130	20	700	16.6	0.002	5	5	550	1,100	4	−5
U4	130	20	680	16.5	0.00211	5	5	560	1,120	4	−5
U5	162	25	450	19.7	0.00398	6	6	900	1,800	4	−6
U6	80	20	370	22.26	0.00712	3	3	170	340	2	−3
U7	85	25	480	27.74	0.000799	3	3	260	520	2	−3
U8	55	10	660	25.92	0.00413	1	1	30	60	0	−1
U9	55	10	665	27.27	0.00222	1	1	30	60	0	−1
U10	55	10	670	27.79	0.00173	1	1	30	60	0	−1
Table 17. Load demand pattern for 24 h for 10-unit system

Hour	Demand
1	700
2	750
3	850
4	950
5	1,000
6	1,100
7	1,150
8	1,200
9	1,300
10	1,400
11	1,450
12	1,500
13	1,400
14	1,300
15	1,200
16	1,050
17	1,000
18	1,100
19	1,200
20	1,400
21	1,300
22	1,100
23	900
24	800

Table 18. Test data for IEEE 14-Bus System

Unit No.	P_{max}	P_{min}	Minimum up-down time	Start-up costs	CSH_i	IS_i
	P_{max}	P_{min}	MUT_i, MDT_i, HSC_i, CSC_i			
U1	250	10	1, 1	70, 176	2	1
U2	140	20	2, 1	74, 187	2	3
U3	100	15	1, 1	50, 113	1	2
U4	120	10	1, 2	110, 267	1	3
U5	45	10	1, 1	72, 180	1	-2
Table 19. Emission and fuel cost coefficients for IEEE 14–bus system

Unit No.	Fuel cost coefficients	Emission coefficients				
	a ($/MW^2$)	b ($$/MWh$)	c ($$/h$)	α	β	γ
U1	0.00375	2.00	0	22.983	−0.90	0.0126
U2	0.01750	1.75	0	25.313	−0.10	0.0200
U3	0.06250	1.00	0	25.505	−0.01	0.0270
U4	0.00834	3.25	0	24.900	−0.005	0.0291
U5	0.02500	3.00	0	24.700	−0.004	0.0290

Table 20. Load demand for 24 h

Hour	Demand
1	148
2	173
3	220
4	244
5	259
6	248
7	227
8	202
9	176
10	134
11	100
12	130
13	157
14	168
15	195
16	225
17	244
18	241
19	230
20	210
21	176
22	157
23	138
24	103

Table 21. Test data for IEEE 30-bus system

Unit No.	P_{max}	P_{min}	P_{min}	Minimum up-down time	Start-up cost	CSH$_i$	IS$_i$		
	P_{max}	P_{min}	P_{min}	MUT$_i$	MDT$_i$	HSC$_i$	CSC$_i$		
U1	200	50	2	1	1	70	176	2	−1
U2	80	20	2	2	2	74	187	1	−3
U3	50	15	2	1	1	50	113	1	2
U4	35	10	2	1	2	110	267	1	3
U5	30	10	2	1	1	72	180	1	−2
U6	40	12	2	1	1	40	113	1	2
Table 22. Emission and fuel cost coefficients for IEEE 30-bus system

Unit No.	Fuel cost coefficients	Emission coefficients				
	a ($/MW^2$)	b ($/MWh$)	c ($$/h$)	α	β	γ
U1	0.00375	2	0	22.983	−0.9	0.0126
U2	0.0175	1.75	0	25.313	−0.1	0.02
U3	0.0625	1	0	25.505	−0.01	0.027
U4	0.00834	3.25	0	24.9	−0.005	0.0291
U5	0.025	3	0	24.7	−0.004	0.029
U6	0.025	3	0	25.3	−0.0055	0.0271

Table 23. Load demand for 24 h

Hour	Demand
1	148
2	173
3	220
4	244
5	259
6	248
7	227
8	202
9	176
10	134
11	100
12	130
13	157
14	168
15	195
16	225
17	244
18	241
19	230
20	210
21	176
22	157
23	138
24	103
Table 24. Test data for IEEE 56-Bus System

Unit No.	P_{max}	P_{min}	Minimum up-down time	Start-up cost	$C_{\text{SH}i}$	$C_{\text{SI}i}$
U1	576	50	3	70	176	3
U2	100	10	3	74	187	2
U3	140	20	2	50	113	3
U4	100	10	4	110	267	1
U5	550	40	1	72	180	1
U6	100	10	1	40	113	1
U7	410	30	2	70	176	2

Table 25. Emission and fuel cost coefficients for IEEE 57-bus system

Unit No.	Fuel cost coefficients	Emission coefficients				
	a ($$/\text{MW}^2$)	b ($$/\text{MWh}$)	c ($$/\text{h}$)	α	β	γ
U1	0.0017	1.7365	0	22.983	-0.9	0.0126
U2	0.01	10	0	26.313	-0.1	0.021
U3	0.0071	7.1429	0	25.888	-0.2	0.0194
U4	0.01	10	0	26.313	-0.1	0.021
U5	0.0018	1.81	0	23.104	-0.82	0.0134
U6	0.01	10	0	26.313	-0.1	0.021
U7	0.0024	2.439	0	23.736	-0.76	0.0152
Hour	Demand					
------	--------					
1	148					
2	173					
3	220					
4	244					
5	259					
6	248					
7	227					
8	202					
9	176					
10	134					
11	100					
12	130					
13	157					
14	168					
15	195					
16	225					
17	244					
18	241					
19	230					
20	210					
21	176					
22	157					
23	138					
24	103					