The upper logarithmic density of monochromatic subset sums

David Conlon∗ Jacob Fox† Huy Tuan Pham‡

Abstract

We show that in any two-coloring of the positive integers there is a color for which the set of positive integers that can be represented as a sum of distinct elements with this color has upper logarithmic density at least \((2 + \sqrt{3})/4\) and this is best possible. This answers a forty-year-old question of Erdős.

1 Introduction

For a set \(A\) of positive integers, the logarithmic density \(d_\ell (A; x)\) of \(A\) up to \(x\) is \(\frac{1}{\log x} \sum_{a \in A, a \leq x} 1/a\), where \(\log x\) denotes the natural logarithm of \(x\). The upper logarithmic density of \(A\) is then \(\bar{d}_\ell (A) = \limsup_{x \to \infty} d_\ell (A; x)\). Such logarithmic density functions arise very naturally in number theory. For instance, a classical result of Davenport and Erdős [2] (see also [6]) shows that any set of positive integers \(A\) with positive upper logarithmic density contains an infinite division chain, that is, an infinite sequence \(a_1 < a_2 < \cdots\) with \(a_j \in A\) and \(a_j | a_{j+1}\) for all \(j \geq 1\). Much more recently, the celebrated Erdős discrepancy problem was settled by Tao [8] using his progress [9] on a logarithmically-averaged version of the Elliott conjecture on the distribution of bounded multiplicative functions.

Our concern here will be with a problem of Erdős concerning subset sums. Given a set of integers \(A\), the set of subset sums \(\Sigma (A)\) is the set of all integers that can be represented as a sum of distinct elements from \(A\). That is,

\[
\Sigma (A) = \left\{ \sum_{s \in S} s : S \subseteq A \right\}.
\]

Suppose now that \(r \geq 2\) is an integer and consider a partition \(\mathbb{N} = A_1 \sqcup \cdots \sqcup A_r\) of the positive integers into \(r\) parts. In the problem papers [3, 4], Erdős noted that there must then be some \(i \in [r]\) such that the upper density of \(\Sigma (A_i)\) is 1 and the upper logarithmic density of \(\Sigma (A_i)\) is at least 1/2. He also observed that if \(A_2\) consists of those \(n\) for which \([\log_4 \log_2 n]\) is even and \(A_1\) is the complement of \(A_2\), then the upper logarithmic density of both \(\Sigma (A_1)\) and \(\Sigma (A_2)\) is less than one. In fact, one can check that in this example each of \(\Sigma (A_1)\) and \(\Sigma (A_2)\) has upper logarithmic density 14/15 [1]. Following this line of inquiry to its natural end, Erdős [3, 4] asked for a determination of \(c_2\), the largest real number such that every

∗Department of Mathematics, California Institute of Technology, Pasadena, CA 91125. Email: dconlon@caltech.edu. Research supported by NSF Award DMS-2054452.
†Department of Mathematics, Stanford University, Stanford, CA 94305. Email: jacobfox@stanford.edu. Research supported by a Packard Fellowship and by NSF Awards DMS-1855635 and DMS-2154169.
‡Department of Mathematics, Stanford University, Stanford, CA 94305. Email: huypham@stanford.edu. Research supported by a Two Sigma Fellowship.

1Erdős incorrectly implies in [3] that in his construction the upper logarithmic density of both \(\Sigma (A_i)\) is at most 3/4.
two-coloring of the positive integers has a color class such that the upper logarithmic density of its set of subset sums is at least c_2.

More generally, let c_r be the minimum, taken over all partitions of \mathbb{N} into r parts A_1, \ldots, A_r, of the maximum over $i = 1, \ldots, r$ of the upper logarithmic density of $\Sigma(A_i)$. That is,

$$c_r = \min_{N = A_1 \sqcup \cdots \sqcup A_r} \max_{i \in [r]} \tilde{d}_i(\Sigma(A_i)).$$

Here we give a general upper bound for c_r and, answering Erdős’ question, show that it is tight for $r = 2$. We suspect that our upper bound is also tight for all $r \geq 3$, but our methods do not seem sufficient for proving this. We refer the reader to the brief concluding remarks for a little more on this issue.

Theorem 1. For any integer $r \geq 2$, c_r is at most

$$\left(1 - \frac{1}{2b_0}\right) \left(1 + \frac{1}{2rb_0 - r}\right),$$

where b_0 is the unique root of the polynomial $b^r - 2rb + r - 1$ with $b > 1$, and this is tight for $r = 2$, where $c_2 = (2 + \sqrt{3})/4 \approx 0.93301$.

We now turn our attention to our main contribution, the proof of the lower bound for c_2, which ultimately relies on an application of the Brouwer fixed-point theorem. We begin by proving a crucial lemma about monochromatic subset sums which may be of independent interest.
2 Intervals of monochromatic subset sums

In this section, we use a result from our recent paper [1] to prove the following key lemma on subset sums, which will be important in the proof of the lower bound for \(c_2 \). We note that a weaker version of this lemma, from which the bound \(c_r \geq 1/2 \) easily follows, was previously claimed by Erdős [1, Theorem 3], though the proof of this statement was never published.

Lemma 2. For every positive integer \(r \), there are positive constants \(C = C(r) \) and \(C' = C'(r) \) such that the following holds. For every \(N > 0 \) and every partition \(\mathbb{N} \cap [N, eN) = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_r \) into \(r \) color classes, there is some \(i \in [r] \) such that \(\Sigma(A_i) \) contains all positive integers in \([CN, C'N^2] \).

To state the result from [1] that we need for the proof of this lemma, we introduce the notation

\[
\Sigma^{[k]}(A) = \left\{ \sum_{s \in S} s : S \subseteq A, |S| \leq k \right\}.
\]

That is, \(\Sigma^{[k]}(A) \) is the set of subset sums formed by adding at most \(k \) distinct elements of \(A \).

Theorem 3 (Theorem 6.1 of [1]). There exists an absolute constant \(C > 0 \) such that the following holds. For any subset \(A \) of \([n] \) of size \(m \geq C \sqrt{n} \), there exists \(d \geq 1 \) such that, for \(A' = \{x/d : x \in A, d|x\} \) and \(k = 2^{30}n/m \), \(\Sigma^{[k]}(A') \) contains an interval of length at least \(n \). Furthermore,

\[
|A| - |A'| \leq 2^{30}(\log n)^3 + \frac{2^{30}n}{m}.
\]

We will also use the following observation of Graham [5]. Part (ii), which is the part we will use, follows from the elementary part (i) by induction.

Lemma 4 (Graham [5]). Let \(A \) be a set such that \(\Sigma(A) \) contains all integers in the interval \([x, x+y] \).

(i) If \(a \) is a positive integer with \(a \leq y \) and \(a \notin A \), then \(\Sigma(A \cup \{a\}) \) contains all integers in the interval \([x, x+y+a] \).

(ii) If \(a_1, \ldots, a_s \) are positive integers such that \(a_i \leq y + \sum_{j<i} a_j \) and \(a_i \notin A \) for \(i = 1, \ldots, s \), then \(\Sigma(A \cup \{a_1, a_2, \ldots, a_s\}) \) contains all integers in the interval \([x, x+y + \sum_{i=1}^s a_i] \).

We are now in a position to prove Lemma 2. Recall that a homogeneous progression is an arithmetic progression \(a, a+d, \ldots, a+kd \), where \(d \) divides \(a \) and, hence, every other term in the progression.

Proof of Lemma 2. Suppose, without loss of generality, that \(r \) is sufficiently large and \(N \) is sufficiently large in terms of \(r \). Let \(X \) be the set of elements of \(\mathbb{N} \cap [N, eN) \) which do not have any prime factor at most \(r^2 \). Let \(W = \prod_{p \leq r^2} p \) and note that the number of integers in an interval of length \(\ell \) which are coprime to \(W \) is at least \((1 - o(1))\ell\phi(W)/W \), where \(\phi \) is the Euler totient function. By Merten’s third theorem, \(\phi(W)/W = (e^{-\gamma} + o(1))/\log(r^2) \geq 1/(3.9 \log r) \) for \(r \) sufficiently large, where \(\gamma \) is the Euler–Mascheroni constant. Thus, as \(N \) is sufficiently large in terms of \(r \), we have

\[
|X| \geq (e-1)N \cdot 1/(4 \log r) \geq N/(4 \log r).
\]
Therefore, by the pigeonhole principle, there exists an index i such that $|A_i \cap X| \geq N/(4r \log r)$. Fix such an i and let A be an arbitrary subset of $A_i \cap X$ of size $N/(8r \log r)$.

By Theorem 3, there exists $d \geq 1$ and a subset A^* of A consisting of multiples of d such that

$$|A^*| \geq |A| - 2^{30}(\log(eN))^3 - \frac{2^{30}eN}{|A|} \geq |A|/2 \geq N/(16r \log r)$$

and, for $k = 2^{50}eN/|A|$, $\Sigma^{[k]}(A^*)$ contains a homogeneous progression of common difference d and length at least eN. If $d > 1$, then, since A does not contain multiples of any prime $p \leq r^2$, we must have $d \geq r^2$. But then $|A^*| \leq 1 + eN/r^2 < N/(16r \log r)$, a contradiction. We must therefore have that $d = 1$ and, hence, $\Sigma^{[k]}(A^*)$ contains an interval I of length at least eN.

Since $k = 2^{50}eN/|A| \leq 2^{55}r \log r$, the smallest element of I is at most $2^{55}r \log r \cdot eN < 2^{57}Nr \log r$. Therefore, by Lemma 4, we see that $\Sigma(A^* \cup (A_i \setminus A))$ contains all integers between $2^{57}Nr \log r$ and $\sum_{x \in A_i \setminus A} x \geq N^2/(8r \log r)$, as required.

\[\Box\]

Remark 5. Alternatively, one can prove Lemma 2 by using Theorem 7.1 from Szemerédi and Vu’s paper [7]. This result says that there is a constant $C > 0$ such that if A is a subset of $[n]$ of size $m \geq C\sqrt{n}$ and $k \geq Cn/m$, then $\Sigma^{[k]}(A)$ contains an arithmetic progression of length at least n. If we apply this result rather than Theorem 3 to the set A, we find an arithmetic progression rather than an interval in $\Sigma(A)$. However, we may then use the fact that the elements of $A_i \cap X$ do not have small factors to expand this arithmetic progression to an interval. The remainder of the proof then proceeds as before.

3 Proof of the lower bound for c_2

Suppose $N = A_1 \sqcup \cdots \sqcup A_r$ is a partition of the positive integers into r color classes. Given this partition, we build an auxiliary r-coloring $\alpha : [n] \rightarrow [r]$ of the positive integers, where we set $\alpha(n) = i$ for some i such that the color class A_i of integers colored by i has the property that $\Sigma(A_i)$ contains all positive integers in the interval $[CN, C'N^2]$, where $N = e^n$ and C and C' are as in Lemma 2. Note that at least one choice for i always exists by Lemma 2.

From this auxiliary coloring α, we build another auxiliary coloring $\phi : [n] \rightarrow 2^{|r|}$ of the positive integers, where each positive integer now receives a set of at least one color. Explicitly, we place i in $\phi(n)$ if and only if there is some $n/2 \leq j \leq n$ such that $\alpha(j) = i$. Let $S(\phi, i)$ be the set of positive integers n such that $i \in \phi(n)$. The next lemma shows that the upper logarithmic density of $\Sigma(A_i)$ is at least the upper density of $S(\phi, i)$.

Lemma 6. The upper logarithmic density of $\Sigma(A_i)$ is at least the upper density of $S(\phi, i)$.

Proof. Let γ be a sufficiently large constant depending on C and C', where again C and C' are as in Lemma 2. Consider the coloring $\tilde{\phi} : [n] \rightarrow 2^{|r|}$ such that i is in $\tilde{\phi}(n)$ if and only if there is some $n/2 + \gamma \leq j \leq n - \gamma$ such that $\alpha(j) = i$. Then, if $n \in S(\tilde{\phi}, i)$, there exists $j \in [n/2 + \gamma, n - \gamma]$ such that $\alpha(j) = i$ and so, by definition, $\Sigma(A_i)$ contains $[Ce^j, C'e^{2j}]$. Hence, for γ sufficiently large, $\Sigma(A_i)$ contains $[e^n, e^{n+1}]$. Noting that $\sum_{e^n \leq x \leq e^{n+1}} 1/x = 1 + O(e^{-n})$, we obtain that the upper logarithmic density of $\Sigma(A_i)$ is at least the upper density of $S(\tilde{\phi}, i)$.

4
It remains to prove that the upper density of $S(\tilde{\phi}, i)$ is at least the upper density of $S(\phi, i)$. Partition the elements of $S(\tilde{\phi}, i)$ into disjoint intervals I_k, so that $\min(I_{k+1}) > 1 + \max(I_k)$ for any $k \geq 1$. Observe that $S(\tilde{\phi}, i)$ is the union of intervals of the form $[j+\gamma, 2j-2\gamma]$ where $\alpha(j) = i$. Thus, we must have $|I_k| \geq k - 3\gamma$. Similarly, $S(\phi, i)$ is the union of intervals of the form $[j, 2j]$ where $\alpha(j) = i$. Let $S_1(\phi, i)$ be the union of those intervals $[j, 2j]$ with $\alpha(j) = i$ and $j \leq 3\gamma$ and let $S_2(\phi, i) = S(\phi, i) \setminus S_1(\phi, i)$.

Observe that if $x \in S(\phi, i) \setminus S(\tilde{\phi}, i)$, then either $x \in S_1(\phi, i)$ or there exists k such that $x \in [\min I_k - \gamma, \min I_k) \cup (\max I_k, \max I_k + 2\gamma)$. Let t be a sufficiently large positive integer and let ℓ be the number of intervals I_k intersecting $[t]$. We then have that $|S(\phi, i) \cap [t]| \setminus (S(\tilde{\phi}, i) \cap [t])| \leq 3\gamma(\ell + 1) + (3\gamma + 1)^2/2$, where we used that $|S_1(\phi, i)| \leq \sum_{j \leq 3\gamma} j < (3\gamma + 1)^2/2$. Using that $|I_k| \geq k - 3\gamma$, we have $\ell + 1 \leq 2\sqrt{t}$ for t sufficiently large and, hence,

$$\frac{|S(\phi, i) \cap [t]| - |S(\tilde{\phi}, i) \cap [t]|}{t} \leq \frac{6\gamma}{\sqrt{t}} + \frac{(3\gamma + 1)^2}{2t} \leq \frac{12\gamma}{\sqrt{t}}.$$

Thus,

$$\limsup_{t \to \infty} \frac{|S(\phi, i) \cap [t]|}{t} = \limsup_{t \to \infty} \frac{|S(\tilde{\phi}, i) \cap [t]|}{t}.$$

The next lemma therefore completes the proof of the lower bound for c_2 by showing that, for $r = 2$, the upper density of $S(\phi, i)$ is at least $f_2 := \inf_{x \in [0,1)} \frac{1-x/2}{\sqrt{2-x}} = (2 + \sqrt{3})/4$ for either $i = 1$ or 2. It is worth noting that, from this point on, the argument only depends on our choice for the auxiliary coloring α and not on the original coloring of N. Thus, the following lemma holds true for the set-valued coloring ϕ derived from any coloring $\alpha : \mathbb{N} \to [r]$.

Lemma 7. For $r = 2$, the upper density of $S(\phi, 1)$ or $S(\phi, 2)$ is at least f_2.

Proof. Suppose, for the sake of contradiction, that there exists some $\epsilon > 0$ and a coloring α such that $S(\phi, 1)$ and $S(\phi, 2)$ each have density at most $f_2 - \epsilon$ in $[n]$ for all n sufficiently large. Without loss of generality, suppose that $\alpha(1) = 1$. Define H_i to be the first integer with α-color different from 1 and, for each $i \geq 2$, define H_i to be the first integer greater than H_{i-1} with α-color different from H_{i-1}.

First, we claim that there exists such a coloring with the property that $H_{i+2} > 2(H_{i+1} - 1)$ for all $i \geq 0$. Indeed, suppose that i is the smallest non-negative integer for which $H_{i+2} \leq 2(H_{i+1} - 1)$. Consider a new coloring α' where we change the α-color of every integer in $[H_{i+1}, H_{i+2})$ to $\alpha(H_i)$, while fixing the color of all other integers. Let ϕ' be the coloring associated to α'. We can verify that $\phi'(x) = \phi(x)$ for all $x \leq H_{i+1} - 1$ and $x > 2(H_{i+2} - 1)$, while $\phi'(x) \subseteq \phi(x) = \{\alpha(H_i), \alpha(H_{i+1})\}$ for $x \in [H_{i+1}, 2(H_{i+2} - 1)]$. Thus, $\phi'(x) \subseteq \phi(x)$ for all x, so the coloring α' also has the property that $S(\phi', 1)$ and $S(\phi', 2)$ each have density at most $f_2 - \epsilon$ in $[n]$ for all n sufficiently large.

It therefore suffices to consider the case where there exist $1 = H_0 < H_1 < \cdots$ such that $H_i \geq 2H_{i-1} - 1$ for all $i \geq 1$ and all elements in $[H_j, H_{j+1})$ receive color $(j + 1) \pmod{2}$. Note that $1 \in \phi(x)$ if and only if $x \in \bigcup_{j=0 \pmod{2}} [H_j, 2(H_{j+1} - 1)]$ and $2 \in \phi(x)$ if and only if $x \in \bigcup_{j \equiv 1 \pmod{2}} [H_j, 2(H_{j+1} - 1)]$. Let \bar{a}_n be the density of $S(\phi, n \pmod{2})$ in the interval $[2(H_n - 1)]$. Then

$$\bar{a}_n = \frac{\sum_{i \equiv n \pmod{2}, i \leq n} (2(H_i - 1) - (H_{i-1} - 1))}{2(H_n - 1)} = \frac{2 \sum_{i \equiv n \pmod{2}, i \leq n} (H_i - 1) - \sum_{i \not\equiv n \pmod{2}, i \leq n} (H_i - 1)}{2(H_n - 1)}.$$
Let $z_n = \frac{H_n - 1}{H_n} \leq \frac{1}{2}$ and $\bar{b}_n = a_{n-1} z_n$, noting that \bar{b}_n is at most the density of $S(\phi, n - 1 \mod 2)$ in the interval $[2(H_n - 1)]$. Observe that

$$\bar{a}_n = \frac{2 \sum_{i \equiv n \mod 2, i \leq n} (H_i - 1) - \sum_{i \equiv n \mod 2, i \leq n} (H_i - 1)}{2(H_n - 1)}$$

$$= \frac{2 \sum_{i \equiv n \mod 2, i \leq n-2} (H_i - 1) - \sum_{i \equiv n \mod 2, i \leq n-2} (H_i - 1)}{2(H_n - 1)} \cdot \frac{H_n - 2 - 1}{H_n - 1} + \frac{2(H_n - 1) - (H_n - 1)}{2(H_n - 1)}$$

$$= \bar{a}_{n-2} z_{n-1} + 1 - z_n/2$$

$$= \bar{b}_{n-1} z_n + 1 - z_n/2.$$

Thus,

$$(\bar{a}_n, \bar{b}_n) = (\bar{b}_{n-1} z_n + 1 - z_n/2, \bar{a}_{n-1} z_n).$$

Let $B = [0, f_2 - \epsilon]^2$. For $S \subseteq [0, 1]^2$, define

$$g(S) = \{ (bz + 1 - z/2, az) : (a, b) \in S, z \in \{0, 1/2\} \} \cap B.$$

Since there is a coloring such that both $S(\phi, i)$ have density at most $f_2 - \epsilon$ in $[n]$ for all n sufficiently large, letting $(a, b) = (\bar{a}_t, \bar{b}_t)$ for t sufficiently large, we have, by induction, that $(\bar{a}_{t+k}, \bar{b}_{t+k}) = (\bar{b}_{t+k-1} z_{t+k} + 1 - z_{t+k}/2, \bar{a}_{t+k-1} z_{t+k}) \in g^k(S)$ for all $k \geq 1$. Thus, there is a point (a, b) such that $g^k(\{(a, b)\})$ is non-empty for all $k \geq 1$. Let S_0 be the set of points $(a, b) \in B$ such that $g^k(\{(a, b)\})$ is non-empty for all k. For each natural number K, let S_K be the set of points $x_0 = (a_0, b_0) \in B$ for which there exists $z_k \in [0, 1/2]$ for each $1 \leq k \leq K$ such that $x_k = (a_k, b_k) = (b_{k-1} z_k + 1 - z_k/2, a_{k-1} z_k) \in B$. Observe that $S_0 = \bigcap_{K \geq 1} S_K$.

In the following claim, we show that S_0 is convex and closed.

Claim 8. S_0 is convex and closed.

Proof. Since $S_0 = \bigcap_{K \geq 1} S_K$, it suffices to show that S_K is convex and closed for each K.

First, we show that S_K is convex. Indeed, assume that $x_0 = (a_0, b_0)$ and $x_0' = (a_0', b_0')$ are in S_K and $y_0 = (c_0, d_0) = \alpha_0 x_0 + (1 - \alpha_0) x_0'$ for some $\alpha_0 \in [0, 1]$. As x_0 and x_0' are in S_K, we have that $x_0, x_0' \in B$ and there exist z_k and z_k' in $[0, 1/2]$ for each positive integer $k \leq K$ such that $x_k = (a_k, b_k) = (b_{k-1} z_k + 1 - z_k/2, a_{k-1} z_k)$ and $x_k' = (a_k', b_k') = (b_{k-1}' z_k + 1 - z_k'/2, a_{k-1}' z_k')$ are in B. Since B is convex, $y_0 \in B$. We will show by induction that for each positive integer $k \leq K$ there exists $w_k \in [0, 1/2]$ such that $y_k = (c_k, d_k) = (d_{k-1} w_k + 1 - w_k/2, c_{k-1} w_k)$ is a convex combination of x_k and x_k' and, hence, $y_k \in B$. This shows that $y_0 \in S_K$.

We will need the following simple observation: any points t, u, u', v, \tilde{u} and \tilde{u}' in \mathbb{R}^2 such that v is on the segment between u and u', \tilde{u} is on the segment between t and u and \tilde{u}' is on the segment between t and u' have the property that the segment between \tilde{u} and \tilde{u}' intersects the segment between t and v.

The set of points $(b_{k-1} z + 1 - z/2, a_{k-1} z)$ for $z \in [0, 1/2]$ is a segment with one endpoint at $(1, 0)$ and the other endpoint at $\frac{1}{2}(b_{k-1} - 1 - z/2, a_{k-1} - z)$, similarly, the set of points $(b_{k-1}' z + 1 - z/2, a_{k-1}' z)$ is a segment with one endpoint at $(1, 0)$ and the other endpoint at $\frac{1}{2}(b_{k-1}' - 1 - z/2, a_{k-1}' - z)$, noting that $(a, b) \rightarrow \frac{1}{2}(b - 1/2, a) + (1, 0)$ is a linear map, we have, since (c_k, d_k) is a convex combination of (a_k, b_k) and (a_k', b_k') by the induction hypothesis, that the point $\frac{1}{2}(d_{k-1} - 1/2, c_{k-1}) + (1, 0)$ is a convex combination of $\frac{1}{2}(b_{k-1} - 1/2, a_{k-1}) + (1, 0)$ and $\frac{1}{2}(b_{k-1}' - 1/2, a_{k-1}') + (1, 0)$. Therefore, by the observation above, for
any $z, z' \in [0, 1/2]$, the segment through $(b_{k-1}z + 1 - z/2, a_{k-1}z)$ and $(b'_{k-1}z' + 1 - z'/2, a'_{k-1}z')$ intersects the segment of points $(d_{k-1}z'' + 1 - z''/2, c_{k-1}z'')$ with $z'' \in [0, 1/2]$. Thus, there exists $w_k \in [0, 1/2]$ such that $y_k = (d_{k-1}w_k + 1 - w_k/2, c_{k-1}w_k)$ is a convex combination of x_k and x'_k, as required.

Next, we verify that S_K is closed. Let x_0^i be a sequence of points in S_K converging to x_0. Then we have $x_0 \in B$, since $x_0^i \in B$ for all i and B is closed. Since $x_0^i \in S_K$, there exists $z_k^i \in [0, 1/2]$ for $1 \leq k \leq K$ such that $x_0^i = (a_k^i, b_k^i) = (b_{k-1}^i z_k^i + 1 - z_k^i/2, a_{k-1}^i z_k^i)$ is in B. Since $[0, 1/2]^K$ is compact, the Bolzano–Weierstrass Theorem implies that there exists a subsequence i_j such that $(z_k^i)_{k \leq K}$ converges to a limit $(z_k)_{k \leq K}$. For $1 \leq k \leq K$, define $x_k = (a_k, b_k) = (b_{k-1} z_k + 1 - z_k/2, a_{k-1} z_k)$ in B. We now prove by induction on $0 \leq k \leq K$ that $x_k = \lim_{j \to \infty} (a_{i_j}^j, b_{i_j}^j)$. Indeed, this holds for $k = 0$. Furthermore, if $x_{k-1} = \lim_{j \to \infty} (a_{i_{k-1}}^j, b_{i_{k-1}}^j)$, then, as $\lim_{j \to \infty} z_{i_j}^j = z_k$, we have

$$
\lim_{j \to \infty} (a_{i_j}^j, b_{i_j}^j) = \lim_{j \to \infty} (b_{i_j}^j z_{i_j}^j + 1 - z_{i_j}^j/2, a_{i_j}^j z_{i_j}^j) = (b_{k-1} z_k + 1 - z_k/2, a_{k-1} z_k) = x_k,
$$
as required. Since $x_{i_j}^j \in B$ for all j and B is closed, we have that $x_k \in B$ for all $k \leq K$. In particular, $x_0 \in S_K$. Hence, S_K is closed.

For each $x = (a, b) \in S_0$, let $t(x) = (bz + 1 - z/2, az)$, where z is the largest element of $[0, 1/2]$ such that $(bz + 1 - z/2, az) \in S_0$. It is clear that such a z exists for $x \in S_0$ by the definition of S_0 and the fact that S_0 is closed. We next show that $t(x)$ is a continuous map. For $x = (a, b) \in S_0$, there exists $z \in [0, 1/2]$ such that $bz + 1 - z/2 \leq f_2$. Thus, $b \leq 2(f_2 - 3/4) < 1/2$. In particular, S_0 is a subset of $[0, 1] \times [0, 2(f_2 - 3/4)]$. Define the function $\pi(x) = (a/(2a - 2b + 1), a/(2a - 2b + 1))$ for $x = (a, b) \in [0, 1] \times [0, 2(f_2 - 3/4)]$ and note that π is continuous on its domain. Let I be the image $\pi(S_0)$ of S_0, which is a closed interval consisting of points $x = (a, a)$ where $0 \leq a \leq 1/(3 - 4(f_2 - 3/4)) < 1/2$. For $x = (a, b) \in \pi^{-1}(I)$, define the function $v(x) = \sup\{z \geq 0 : (bz + 1 - z/2, az) \in S_0\}$. Observe that $(a/(2a - 2b + 1) - 1/2, a/(2a - 2b + 1)) = \frac{1}{2a - 2b + 1}(b - 1/2, a)$. Thus, for all $x = (a, b) \in \pi^{-1}(I)$,

$$
v(\pi(x)) = \sup \left\{z \geq 0 : (1, 0) + \frac{z}{2a - 2b + 1}(b - 1/2, a) \in S_0 \right\} = (2a - 2b + 1)v(x).
$$

In particular, $v(x)$ is well-defined and finite for $x \in \pi^{-1}(I)$, as, for any such x, there exists a point y of S_0 for which $\pi(x) = \pi(y)$ and, since $v(y)$ is finite, $v(\pi(x)) = v(\pi(y))$ is finite and so is $v(x)$. For $x \in \pi^{-1}(I)$, define $u(x) = (bv(x) + 1 - v(x)/2, av(x))$. We then have

$$
u(\pi(x)) = (1, 0) + \frac{v(\pi(x))}{2a - 2b + 1}(b - 1/2, a) = (1, 0) + v(x)(b - 1/2, a) = u(x).
$$

Noting that $I \subseteq \pi^{-1}(I)$, let $\bar{v} : I \to \mathbb{R}$ be the restriction of v to I and $\bar{u} : I \to \mathbb{R}^2$ the restriction of u to I. The next claim shows that \bar{v} is continuous on I.

Claim 9. The function \bar{v} is continuous on I.

Proof. Recall that, for any $x = (a, a) \in I$, we have $a \leq 1/(6 - 4f_2) < 1/2$. Since $S_0 \subseteq B = [0, f_2 - \varepsilon]^2$, we have $1 + \bar{v}(x)(a - 1/2) \geq 0$ and so $\bar{v}(x) \leq 1/(1/2 - 1/(6 - 4f_2))$ for all $x \in I$. Similarly, $1 + \bar{v}(x)(a - 1/2) \leq f_2$ and $\bar{v}(x) \geq 2(1 - f_2)$ for all $x \in I$. Thus, there exist constants $\lambda, \Lambda > 0$ such that $\lambda < \bar{v}(x) < \Lambda$ for all $x \in I$.

7
Let \(i_1 = (a_1, a_1), \ i_3 = (a_3, a_3) \in I \) and \(i_2 = (a_2, a_2) \), where \(a_2 = ca_1 + (1 - c)a_3 \) is a convex combination of \(i_1 \) and \(i_3 \). Let \(c' = \frac{c\tilde{v}(i_1)}{c\tilde{v}(i_3) + (1-c)v(i_1)} \). We claim that \(\tilde{v}(i_2) \geq c'\tilde{v}(i_1) + (1-c')\tilde{v}(i_3) \). Let \(z = c'\tilde{v}(i_1) + (1-c')\tilde{v}(i_3) \). Then

\[
c' a_1 \tilde{v}(i_1) + (1-c')a_3 \tilde{v}(i_3) = \frac{\tilde{v}(i_1)\tilde{v}(i_3)(ca_1 + (1-c)a_3)}{c\tilde{v}(i_3) + (1-c)v(i_1)} = a_2 z
\]

and

\[
c'(a_1 - 1/2)\tilde{v}(i_1) + (1-c')(a_3 - 1/2)\tilde{v}(i_3) = \frac{\tilde{v}(i_1)\tilde{v}(i_3)(c(a_1 - 1/2) + (1-c)(a_3 - 1/2))}{c\tilde{v}(i_3) + (1-c)v(i_1)} = (a_2 - 1/2) z.
\]

Therefore, writing \(p_1 = (a_1 \tilde{v}(i_1) - \tilde{v}(i_1))/2 + 1, a_1 \tilde{v}(i_1)) \) and \(p_3 = (a_3 \tilde{v}(i_3) - \tilde{v}(i_3))/2 + 1, a_3 \tilde{v}(i_3)) \), we have that \((a_2 - 1/2)z + 1, a_2 z) = c'p_1 + (1-c')p_3 \). Since \(S_0 \) is convex and \(p_1, p_3 \in S_0 \), we thus have that \((a_2 - 1/2)z + 1, a_2 z) \in S_0 \). In particular, \(\tilde{v}(i_2) \geq z = c'\tilde{v}(i_1) + (1-c')\tilde{v}(i_3) \). Hence, since \(c' = \frac{c\tilde{v}(i_1)}{c\tilde{v}(i_3) + (1-c)v(i_1)} \geq 1 - \frac{(1-c)A}{\lambda} \), for all points \(i_1, i_2 \in I \) such that there exists \(i_3 \) with \(i_2 = ci_1 + (1-c)i_3 \), we have

\[
\tilde{v}(i_2) \geq \left(1 - \frac{(1-c)A}{\lambda}\right)\tilde{v}(i_1).
\]

Using this, we now show that \(\tilde{v} \) is lower semi-continuous on \(I \). Indeed, assume otherwise that there exists a sequence of points \(x_i \in I \) converging to \(x = (a, a) \in I \) with \(\liminf \tilde{v}(x_i) = w < \tilde{v}(x) \). For any \(\eta > 0 \), there exists \(\delta > 0 \) such that if \(|x_i - x| < \delta \), then we can write \(x_i = cx + (1-c)y \) with \(y \in I \) and \(c > 1 - \eta \). By \([1]\) we therefore have

\[
\tilde{v}(x_i) \geq \left(1 - \frac{(1-c)A}{\lambda}\right)\tilde{v}(x) \geq \left(1 - \frac{\eta A}{\lambda}\right)\tilde{v}(x).
\]

But, for \(\eta \) sufficiently small, this contradicts our assumption that \(\liminf \tilde{v}(x_i) = w < \tilde{v}(x) \).

Next, we show that \(\tilde{v} \) is upper semi-continuous on \(I \). Indeed, assume otherwise that there is a sequence of points \(x_i \in I \) converging to \(x = (a, a) \in I \) with \(\limsup \tilde{v}(x_i) = w > \tilde{v}(x) \). We can then extract a subsequence \(x_{i_j} \) for which \(\tilde{v}(x_{i_j}) \) converges to \(w \). But then, by the fact that \(S_0 \) is closed, \((aw + 1/2, aw) \in S_0 \) and, hence, \(\tilde{v}(x) \geq w \), a contradiction.

Therefore, since \(\tilde{v} \) is both lower and upper semi-continuous on \(I \), it is continuous on \(I \).

Since \(\tilde{v} \) is continuous on \(I \), we obtain that \(\tilde{u} \) is also continuous on \(I \). Then, by the continuity of \(\pi \) on \(S_0 \) and the fact that \(u(x) = u(\pi(x)) = \tilde{u}(\pi(x)) \), \(u \) is continuous on \(S_0 \) and, hence, \(v \) is continuous on \(S_0 \).

Thus, \(x \mapsto t(x) = (1, 0) + \min(1/2, v(x))(b - 1/2, a) \) for \(x = (a, b) \) is also continuous on \(S_0 \).

Since \(t \) is a continuous map from \(S_0 \) to itself and \(S_0 \) is bounded, closed and convex, we may apply the Brouwer fixed-point theorem to conclude that \(t \) has a fixed point \(x_0 \). Let \(x_0 = (a_0, b_0) \). We then have, for some \(z \in [0, 1/2] \), that

\[
b_0 z + 1 - z/2 = a_0, \quad a_0 z = b_0.
\]

Thus,

\[
a_0 = \frac{1 - z/2}{1 - z^2} \geq \inf_{z \in [0, 1/2]} \frac{1 - z/2}{1 - z^2} \geq f_2.
\]

However, this is a contradiction, since \(a_0 \leq f_2 - \epsilon \) for \(x_0 = (a_0, b_0) \in S_0 \).
4 Concluding remarks

We conjecture that our upper bound for c_r is also tight for three or more colors.

Conjecture 10. For any integer $r \geq 3$, c_r is equal to

$$\left(1 - \frac{1}{2b_0}\right)\left(1 + \frac{1}{2rb_0 - r}\right),$$

where b_0 is the unique root of the polynomial $b^r - 2rb + r - 1$ with $b > 1$.

We have explored this conjecture in some detail ourselves, but were unable to establish the optimality of our upper bound for c_r without additional assumptions. For instance, it seems that our methods do apply if the auxiliary coloring α defined in Section 3 is assumed to be cyclic, by which we mean that the ith monochromatic interval in α has color i (mod r) for all $i \geq 1$. Since every two-coloring of the positive integers is automatically cyclic in this sense, this restriction does not hamper us in that case.

References

[1] D. Conlon, J. Fox and H. T. Pham, Subset sums, completeness and colorings, preprint available at arXiv:2104.14766 [math.CO].

[2] H. Davenport and P. Erdős, On sequences of positive integers, *Acta Arith.* 2 (1936), 147–151.

[3] P. Erdős, Some new problems and results in number theory, in Number theory (Mysore, 1981), 50–74, Lecture Notes in Math., 938, Springer, Berlin-New York, 1982.

[4] P. Erdős, Miscellaneous problems in number theory, *Congr. Numer.* 34 (1982), 25–45.

[5] R. L. Graham, Complete sequences of polynomial values, *Duke Math. J.* 31 (1964), 275–285.

[6] H. Halberstam and K. F. Roth, *Sequences*, Second edition, Springer-Verlag, New York-Berlin, 1983.

[7] E. Szemerédi and V. H. Vu, Long arithmetic progressions in sumsets: thresholds and bounds, *J. Amer. Math. Soc.* 19 (2006), 119–169.

[8] T. Tao, The Erdős discrepancy problem, *Discrete Anal.* 2016, Paper No. 1, 29 pp.

[9] T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, *Forum Math. Pi* 4 (2016), e8, 36 pp.