Implications of the anomalous top quark couplings in $B_s - \bar{B}_s$ mixing, $B \to X_s \gamma$ and top quark decays

Jong Phil Lee
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

Kang Young Lee
Department of Physics, Korea University, Seoul 136-713, Korea
(Dated: June 13, 2008)

Combined analysis of recent measured $B_s - \bar{B}_s$ mixing and $B \to X_s \gamma$ decays provides constraints on the anomalous $\bar{t}sW$ couplings. We discuss the perspectives to examine the anomalous $\bar{t}sW$ couplings through CKM-suppressed $t \to sW$ decays at the LHC.

I. INTRODUCTION

The standard model (SM) has been demonstrated to be remarkably successful in describing present data. Most parameters of the SM has been directly measured with high accuracy at various experiments. The only unobserved ingredient of the SM is the Higgs boson responsible for the electroweak symmetry breaking and a few top quark couplings are not measured directly. However, it is not believed that the SM is the final theory of our universe since there are still many theoretical and experimental problems which could not be explained in the SM framework. It is natural to expect that the hint of the new physics beyond the SM would be found at the unexamined part of the SM.

The top quark has been discovered at the Tevatron and its mass and production cross section are measured [1]. We will be able to study the top quark couplings with more than 10^8 top quark pairs per year produced at the CERN Large Hadron Collider (LHC) [2, 3]. The dominant channel of the top quark decay is the $t \to bW$ channel in the SM and the $\bar{t}bW$ coupling will be measured at LHC with high precision to be directly tested. Other channels are highly suppressed by small mixing angles. The subdominant channel in the SM is the Cabibbo-Kobayashi-Maskawa (CKM) nondiagonal $t \to sW$ decay of which branching ratio is estimated as

$$Br(t \to sW) \sim 1.6 \times 10^{-3};$$

when $|V_{ts}| = 0.04$ is assumed in the SM. Although the branching ratio of this channel is rather small, the $t \to sW$ process may be detectable at the LHC due to the large number of top quark production and the $\bar{t}sW$ coupling be measured to provide a clue to new physics beyond the SM. Therefore the anomalous $\bar{t}sW$ coupling is worth examining at present. We do not specify the underlying model here but present an effective lagrangian to describe the new effects on the top quark couplings by introducing two parameters for each flavour. The relevant couplings are parametrized by the effective lagrangian as

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \sum_{q=d,s,b} V_{tq}^{\text{eff}} \bar{t} \gamma^\mu (P_L + \xi_q P_R) q W^{\pm}_{\mu} + H.c.,$$

where ξ_q are complex parameters measuring effects of the anomalous right-handed couplings while V_{tq}^{eff} measures the SM-like left-handed couplings. Effects of the anomalous top quark couplings have been studied in direct and indirect ways [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Particularly interesting is $b \to s$ transition in search of the anomalous top quark couplings. The radiative decay $B \to X_s \gamma$ is the first observation of $b \to s$ transition and provide strict constraints on the anomalous top quark couplings [4, 5]. Since no CP phase is involved in V_{ts} and V_{tb} in the SM, a large direct CP violation in $b \to s$ is an evidence of the new physics beyond the SM [6, 11]. Recently the first observation of the $B_s - \bar{B}_s$ mixing have been reported by the CDF [14] and D0 [15] collaborations with the results

$$\Delta M_s = (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1} \quad \text{(CDF)},$$

$$17 \text{ ps}^{-1} \leq \Delta M_s \leq 21 \text{ ps}^{-1} \quad \text{at 90\% C.L.} \quad \text{(D0)},$$

\[(3) \]
where the first error is statistical and the second is systematic. The $B_s - \bar{B}_s$ mixing arises through the box diagram with internal lines of W boson and u-type quarks in the SM. Since the top quark loop dominates the $B_s - \bar{B}_s$ mixing might be also a testing laboratory for the study of fW and tbW couplings.

In this work, we concentrate on tsW coupling and perform the combined analysis of $B_s - \bar{B}_s$ mixing and $B \to X_s \gamma$ to constrain the V^eff_{ts} and ξ_s. $B_s - \bar{B}_s$ mixing depends upon V^eff_{ts} and is insensitive to the right-handed couplings while $B \to X_s \gamma$ decay depends upon both of V^eff_{ts} and ξ_s. If we measure the subdominant decay $t \to sW$ at the LHC or other future colliders, it will be the direct test of the CKM matrix element V^eff_{ts} and we can determine the tsW couplings. This paper is organized as follows: In section II, the effective $\Delta B = 1$ Hamiltonian formalism with anomalous tsW couplings is given and the radiative $B \to X_s \gamma$ decays are studied. In section III, the analysis on the $B_s - \bar{B}_s$ mixing with anomalous tsW couplings is presented. We discuss the top quark decays in section IV. Finally we conclude in section IV.

II. $B \to X_s \gamma$

The $\Delta B = 1$ effective Hamiltonian for $b \to s \gamma$ process is given by

$$
\mathcal{H}^\Delta B = \frac{4G_F}{\sqrt{2}} V^\ast_{ts} V_{tb} \sum_{i=1}^{8} (C_i(\mu)O_i(\mu) + C'_i(\mu)O'_i(\mu)),
$$

(4)

where the dimension 6 operators O_i constructed in the SM are given in the Ref. [16], and O'_i are their chiral conjugate operators. Matching the effective theory (5) and the lagrangian (4) at $\mu = m_W$ scale, we have the Wilson coefficients $C_i(\mu = m_W)$ and $C'_i(\mu = m_W)$. Although we will consider the anomalous tsW couplings only, we present the full formalism including tsW and tbW couplings. In the SM, we have the Wilson coefficients

$$
\begin{align*}
C_2(m_W) &= -1, \quad C_7(m_W) = F(x_t), \quad C_8(m_W) = G(x_t), \\
C_i(m_W) &= C'_i(m_W) = 0, \quad \text{otherwise},
\end{align*}
$$

(5)

where $F(x)$ and $G(x)$ are the well-known Inami-Lim loop functions [16, 17]. Let us switch on the right-handed tbW and tsW couplings. Keeping the effects of ξ_s in linear order, we obtain the modified Wilson coefficients

$$
\begin{align*}
C_7 &\to C_7^{\text{SM}} + \xi_s \frac{m_t}{m_b} F_R(x_t), \\
C_8 &\to C_8^{\text{SM}} + \xi_s \frac{m_t}{m_b} G_R(x_t),
\end{align*}
$$

(6)

and the new Wilson coefficients

$$
\begin{align*}
C'_7 &= \xi_s \frac{m_t}{m_b} F_R(x_t), \\
C'_8 &= \xi_s \frac{m_t}{m_b} G_R(x_t),
\end{align*}
$$

(7)

where the new loop functions

$$
\begin{align*}
F_R(x) &= \frac{-20 + 31x - 5x^2}{12(x-1)^2} + \frac{x(2-3x)}{2(x-1)^3} \ln x, \\
G_R(x) &= -\frac{4 + x + x^2}{4(x-1)^2} + \frac{3x}{2(x-1)^3} \ln x,
\end{align*}
$$

(8)

agree with those in Ref. [18].

The branching ratio of $B \to X_s \gamma$ process with the right-handed interactions at next-leading-order (NLO) is given by

$$
\text{Br}(B \to X_s \gamma) = \text{Br}(B \to X_s \ell \bar{\nu}) \frac{10.5\%}{10.5\%} \left[B_{22}(\delta) + B_{77}(\delta) |r_7|^2 + |r'_7|^2 \right] + B_{88}(\delta) |r_8|^2 + |r'_8|^2 \\
+ B_{27}(\delta) Re(\tau_7) + B_{28}(\delta) Re(\tau_8) + B_{78}(\delta) \left[Re(\tau_7 r'_7) + Re(\tau_8 r'_8) \right],
$$

(9)

where the ratios r_i and r'_i are defined by

$$
\begin{align*}
r_i &= \frac{C_i(m_W)}{C_i^{\text{SM}}(m_W)} = 1 + \xi_s \frac{m_t}{m_b} \frac{F_R(x_t)}{F(x_t)}, \\
r'_i &= \xi_s \frac{m_t}{m_b} \frac{F_R(x_t)}{F(x_t)},
\end{align*}
$$

(10)
The components $B_{ij}(\delta)$ depends on the kinematic cut δ, of which numerical values are given in the Ref. [19]. We obtain the branching ratio in terms of ξ_s and ξ_b as

$$\text{Br}(B \to X_s\gamma) = \text{Br}^{\text{SM}}(B \to X_s\gamma) \left(\frac{|V_{ts}|^2|V_{tb}|^2}{0.0404} \right)^2 \left[1 + \text{Re}(\xi_s) \frac{m_t}{m_b} \left(0.68 \frac{F_R(x_t)}{F(x_t)} + 0.07 \frac{G_R(x_t)}{G(x_t)} \right)
ight.
\left. + (|\xi_b|^2 + |\xi_s|^2) \frac{m_t^2}{m_b^2} \left(0.112 \frac{F_R^2(x_t)}{F^2(x_t)} + 0.002 \frac{G_R^2(x_t)}{G^2(x_t)} + 0.025 \frac{F_R(x_t)G_R(x_t)}{F(x_t)G(x_t)} \right) \right], \quad (11)$$

The SM branching ratio is predicted to be $\text{Br}(B \to X_s\gamma) = (3.15 \pm 0.23) \times 10^{-4}$ for $E_\gamma > 1.6$ GeV at next-to-next-to-leading order (NNLO) [20]. The current world average value of the measured branching ratio is given by [21]

$$\text{Br}(B \to X_s\gamma) = (3.55 \pm 0.24^{+0.09}_{-0.10} \pm 0.03) \times 10^{-4}, \quad (12)$$

with the same photon energy cut. The allowed parameter sets of $(|\xi_s|, |V_{ts}^{\text{eff}}|)$ are depicted in Fig. 1 by green (grey) area at 95% C.L..

III. $B_s - \bar{B}_s$ MIXING

A B_s meson can oscillate into its antiparticle \bar{B}_s^0 via flavour-changing processes of $B_s - \bar{B}_s$ mixing. The oscillation is represented by the mass difference between the heavy and light B_s states,

$$\Delta M_s \equiv M_{B_s} - M_{\bar{B}_s} = 2|\text{Re}(\xi_s)|, \quad (13)$$

where the $\Delta B = 2$ transition amplitudes given by

$$\langle B_s^0 | H^{\Delta B=2}_s | \bar{B}_s^0 \rangle = M_{12}^s, \quad (14)$$
is obtained by the box diagrams with internal lines of W boson and up-type quarks in the SM. The new contributions to $B_s - \bar{B}_s$ mixing with anomalous top quark couplings given in Eq. (1) would be examined with the $B_s - \bar{B}_s$ mixing data. The $B_s - \bar{B}_s$ mixing is also described by the width difference of the mass eigenstates

$$\Delta \Gamma_s \equiv \Gamma^s_L - \Gamma^s_H = 2 \text{Re} \frac{\Gamma_{12}^s}{M_{12}^s},$$

(15)

where the decay widths Γ_L and Γ_H are corresponding to the physical eigenstates B_L and B_H. Since the decay matrix elements Γ^s_{12} is derived from the SM decays $b \rightarrow cc\bar{s}$ at tree level, it is hardly affected by the new physics. We consider the new effects of the anomalous top couplings only in M_{12}^s. Since ξ_q are complex parameters, the new physics effects arise in both magnitude and phase of M_{12}^s in general. In this analysis, we just consider the mass difference. Effects of the phase and CP violation in M_{12}^s have been measured [22], although not very accurately, and discussed in several literatures [23].

Including the odd number of right-handed couplings in the box diagram does not contribute to the transition amplitude M_{12}^s due to vanishing the loop integral of the odd number of momentum. Thus the leading contribution of the anomalous right-handed top couplings to the $B_s - \bar{B}_s$ mixing is quadratic order of ξ_q. Calculating box diagrams including the anomalous couplings, the transition amplitude is given by

$$M_{12}^s = \frac{G_F^2 m_b^2}{12\pi} m_{B_s} \eta_B \delta \hat{B}_{B_s} \bar{B}_{B_s} S_0(x_1) \left(\frac{|V^*_{ts}| |V^*_{tb}|}{0.0404} \right)^2 \times \left(1 + \frac{S_3(x_1)}{S_0(x_1)} \frac{\xi_2^2}{4} \frac{(bP_R)(\bar{b}P_R)}{(b\gamma\mu P_L)(b\gamma\mu P_L)} + \frac{\xi_3^2}{2} \frac{(bP_L)(\bar{b}P_R)}{2(b\gamma\mu P_L)(b\gamma\mu P_L)} + \frac{\xi_6^2}{4} \frac{(bP_L)(\bar{b}P_L)}{4(b\gamma\mu P_L)(b\gamma\mu P_L)} \right),$$

(16)

where η_B is the perturbative QCD correction to the $B - \bar{B}$ mixing [24]. The Inami-Lim loop functions are given by

$$S_0(x) = \frac{4x - 11x^2 + x^3}{4(1 - x)^2} - \frac{3x^3}{2(1 - x)^2} \log x,$$

$$S_3(x) = 4x^2 \left(\frac{2}{(1 - x)^2} + \frac{1 + x}{(1 - x)^3} \log x \right).$$

(17)

Using the vacuum insertions, we calculate

$$\frac{\langle B_s^0 | (\bar{b}P_R)(\bar{b}P_R) | \bar{B}_s^0 \rangle}{\langle B_s^0 | (b\gamma\mu P_L)(b\gamma\mu P_L) | B_s^0 \rangle} = \frac{5}{8} \left(\frac{m_{B_s}}{m_b + m_s} \right)^2,$$

$$\frac{\langle B_s^0 | (b\gamma\mu P_L)(b\gamma\mu P_L) | \bar{B}_s^0 \rangle}{\langle B_s^0 | (bP_R)(bP_R) | B_s^0 \rangle} = \frac{3}{4} \left(\frac{1}{6} - \left(\frac{m_{B_s}}{m_b + m_s} \right)^2 \right),$$

$$\frac{\langle B_s^0 | (b\gamma\mu P_L)(b\gamma\mu P_L) | B_s^0 \rangle}{\langle B_s^0 | (bP_R)(bP_R) | B_s^0 \rangle} = \frac{\langle B_s^0 | (b\gamma\mu P_L)(b\gamma\mu P_L) | B_s^0 \rangle}{\langle B_s^0 | (b\gamma\mu P_L)(b\gamma\mu P_L) | B_s^0 \rangle},$$

(18)

and

$$\frac{\langle B_s^0 | (\bar{b}P_R) | (b\gamma\mu P_L) | \bar{B}_s^0 \rangle}{\langle B_s^0 | (bP_R) | (b\gamma\mu P_L) | B_s^0 \rangle} = \frac{8}{3} m_{B_s} \delta \hat{B}_{B_s} f_{B_s}^2,$$

(19)

where \hat{B}_{B_s} is the Bag parameter and $f_{B_s}^2$ the decay constant.

We show the allowed parameter sets $(|\xi_3|, V^*_{ts})$ in Fig. 1 by black area at 95% C.L. We use the SM prediction $\Delta m_s = 19.3 \pm 6.74 \text{ps}^{-1}$ given in Ref. [23]. The conservative bounds $|\xi_3| < 0.027$ and $|V^*_{ts}| > 0.017$ are obtained from this analysis. The correlated results between observables, $\text{Br}(B \rightarrow X_s \gamma)$ and ΔM_s are shown in Fig. 2 with allowed parameters given in Fig. 1 (black area).

IV. TOP QUARK DECAYS

The flavour-diagonal $t \rightarrow bW$ decay dominates, $\text{Br}(t \rightarrow sW) \approx 1$. The branching ratio of the CKM-suppressed decays are given by

$$\text{Br}(t \rightarrow sW) = |V^*_{ts}|^2 (1 + |\xi_3|^2).$$

(20)
FIG. 2: Correlation of $\text{Br}(B \to X_s\gamma)$ and ΔM_s with allowed values of $(|\xi_s|, |V_{ts}^{\text{eff}}|)$.

Since there is no enhancement factor involved, the branching ratio is insensitive to ξ_s and determined by V_{ts}^{eff}. The predictions of $\text{Br}(t \to sW)$ is depicted in Fig. 3 with respect to the allowed values of ξ_s. We find that large deviation of $\text{Br}(t \to sW)$ from the SM prediction is possible. The correlation between ΔM_s and $\text{Br}(t \to sW)$ are shown in Fig. 4 with allowed parameters given in Fig. 1 (black area). Both observables of ΔM_s and $\text{Br}(t \to sW)$ crucially depend on V_{ts}^{eff} but are insensitive to ξ_s. Since the value of V_{ts}^{eff} will be strongly constrained by $\text{Br}(t \to sW)$, the right-handed coupling ξ_s will be also constrained through $B \to X_s\gamma$ decay if we measure the branching ratio of $t \to sW$ at the LHC or the future colliders.

V. CONCLUDING REMARKS

We consider the anomalous top quark coupling which are not direct measured yet. The $\bar{t}sW$ coupling is parametrized by V_{ts}^{eff} and ξ_s. Combined analysis of $B_s - \bar{B}_s$ mixing and $B \to X_s\gamma$ decay gives strong constraints on by V_{ts}^{eff} and ξ_s. The prediction of the branching ratio of the top decay $\text{Br}(t \to sW)$ is given and it is shown that both of ΔM_s and $\text{Br}(t \to sW)$ depend only on V_{ts}^{eff}. In conclusion, we can examine the anomalous $\bar{t}sW$ coupling through $B_s - \bar{B}_s$ mixing and $B \to X_s\gamma$ decay and will test it more by the $t \to sW$ decay in the future colliders.
FIG. 3: Prediction of $\text{Br}(t \rightarrow sW)$ with respect to $|\xi_s|$.

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund KRF-2007-C00145) and the BK21 program of Ministry of Education (K.Y.L.).

[1] F. Abe et al., CDF Collaboration, Phys. Rev. Lett. 73, 225 (1994); Phys. Rev. Lett. 74, 2626 (1995); Phys. Rev. Lett. 80, 2767 (1998); Phys. Rev. Lett. 80, 2773 (1998); S. Abachi et al., D0 Collaboration, Phys. Rev. Lett. 74, 2632 (1995); Phys. Rev. Lett. 79, 1197 (1997); Phys. Rev. Lett. 79, 1203 (1997); D. Abbott et al., D0 Collaboration, Phys. Rev. Lett. 80, 2063 (1998); Phys. Rev. Lett. 82, 271 (1999); Phys. Rev. D 58, 052001 (1998); Phys. Rev. D 60, 052001 (1999); ibid. 2779.

[2] M. Beneke et al., hep-ph/0003033.
[3] W. Bernreuther, hep-ph/0805.1333.
[4] F. Larios, M.A. Perez, and C.P. Yuan, Phys. Lett. B 457, 334 (1999).
[5] K. Y. Lee and W. Y. Song, Phys. Rev. D 66, 057901 (2002); Nucl. Phys. Proc. Suppl. 111, 288 (2002).
[6] J. P. Lee and K. Y. Lee, Euro. Phys. J. C 29, 373 (2003).
[7] K. Y. Lee, Phys. Lett. B 632, 99 (2006).
[8] J. P. Lee, Phys. Rev. D 69, 014017 (2004).
[9] E. Boos, A. Pukhov, M. Sachwitz, and H.J. Schreiber, Phys. Lett. B 404, 119 (1997); E. Boos, M. Dubinin, M. Sachwitz, and H.J. Schreiber, Euro. Phys. J. C 16, 269 (2000).
[10] S.D. Rindani, Pramana 54, 791 (2000).
[11] A. Abd El-Hady and G. Valencia, Phys. Lett. B 414, 173 (1997).
[12] C.-X. Yue, G.-R. Lu, and W.-B. Li, Chinese Phys. Lett. 18, 349 (2001).
[13] T. G. Rizzo, Phys. Rev. D 58, 055009 (1998).
[14] A. Abulencia et al., CDF collaboration, Phys. Rev. Lett. 97, 242003 (2006)[arXiv: hep-ex/0609040].
[15] D0 collaboration.
[16] A.J. Buras, hep-ph/0806471; G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[17] T. Inami and C.S. Lim, Prog. Theo. Phys. 65, 297 (1981).
FIG. 4: Correlation of ΔM_s and $\text{Br}(t \to sW)$ with allowed values of $(|\xi_s|, |V_{ts}^{\text{eff}}|)$.

[18] P. Cho and M. Misiak, Phys. Rev. D 49, 5894 (1994).
[19] A.L. Kagan and M. Neubert, Euro. Phys. J. C 7, 5 (1999).
[20] M. Misiak and M. Steinhauser, Nucl. Phys. B764, 62 (2007); M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007).
[21] Heavy Flavor Averaging Group, arXiv: hep-ex/0505100 [http://www.slac.stanford.edu/xorg/hfag/].
[22] V. M. Abazov et al., D0 Collaboration, Phys. Rev. D 76, 057101 (2007); T. Aaltonen et al., CDF Collaboration, arXiv:0712.2397 [hep-ex]; V. M. Abazov et al., D0 Collaboration, arXiv:0802.2255 [hep-ex].
[23] U. Nierste, Int. J. Mod. Phys. A 22, 5986 (2008); P. Ball, hep-ph/0703214; M. Blanke, A. J. Buras, S. Recksiegel and C. Tarantino, arXiv:0805.4393 [hep-ph]; J. Hisano and Y. Shimizu, arXiv:0805.3327 [hep-ph]; P. Ko, Nucl. Phys. Proc. Suppl. 163, 185 (2007); J. K. Parry and H. h. Zhang, arXiv:0710.5443 [hep-ph]; F. J. Botella, G. C. Branco and M. Nebot, arXiv:0805.3995 [hep-ph].
[24] A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B347, 491 (1990).
[25] A. Lenz and U. Nierste, JHEP 06, 072 (2007).