Paired-end sequencing of Fosmid libraries by Illumina

Louise J.S. Williams, Diana G. Tabbaa, Na Li, Aaron M. Berlin, Terrance P. Shea, Iain MacCallum, Michael S. Lawrence, Yotam Drier, Gad Getz, Sarah K. Young, David B. Jaffe, Chad Nusbaum, and Andreas Gnirke

Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA

Eliminating the bacterial cloning step has been a major factor in the vastly improved efficiency of massively parallel sequencing approaches. However, this also has made it a technical challenge to produce the modern equivalent of the Fosmid- or BAC-end sequences that were crucial for assembling and analyzing complex genomes during the Sanger-based sequencing era. To close this technology gap, we developed Fossill, a method for converting Fosmids to Illumina-compatible jumping libraries. We constructed Fosmid libraries in vectors with Illumina primer sequences and specific nicking sites flanking the cloning site. Our family of pFossill vectors allows multiplex Fosmid cloning of end-tagged genomic fragments without physical size selection and is compatible with standard and multiplex paired-end Illumina sequencing. To excise the bulk of each cloned insert, we introduced two nicks in the vector, translated them into the inserts, and cleaved them. Recircularization of the vector via coligation of insert termini followed by inverse PCR generates a jumping library for paired-end sequencing with 101-base reads. The yield of unique Fosmid-sized jumps is sufficiently high, and the background of short, incorrectly spaced and chimeric artifacts sufficiently low, to enable applications such as mapping of structural variation and scaffolding of de novo assemblies. We demonstrate the power of Fossill to map genome rearrangements in a cancer cell line and identified three fusion genes that were corroborated by RNA-seq data. Our Fossill-powered assembly of the mouse genome has an N50 scaffold length of 17.0 Mb, rivalling the connectivity (16.9 Mb) of the Sanger-sequencing based draft assembly.

[Supplemental material is available for this article.]

Paired-end sequencing of large DNA fragments cloned in Fosmid (Kim et al. 1992) or BAC (Shizuya et al. 1992) vectors were a mainstay of genome projects during the Sanger-based sequencing era. The large spans, particularly of BAC ends, helped resolve long repeats and segmental duplications and provided long-range connectivity in shotgun assemblies of complex genomes (Adams et al. 2000; Venter et al. 2001; Waterston et al. 2002). Fosmids are shorter than BACs but much easier to generate. Their consistent, narrow insert-size distribution centered around 35–40 kb enabled the scanning of individual human genomes with read pairs to detect structural variation such as insertions, deletions, and inversions (International Human Genome Sequencing Consortium 2004; Tuzun et al. 2005; Kidd et al. 2008).

Massively parallel genome-sequencing technologies no longer rely on cloning DNA fragments in a bacterial host. The platforms currently on the market (454, Illumina, SOLID, Ion Torrent) replaced vectors with synthetic adapters and bacterial colonies with PCR-amplified “clones” of DNA fragments tethered to a bead (Margulies et al. 2005; McKeman et al. 2009) or with “colonies” of identical molecules grown by bridge PCR amplification on a solid surface (Bentley et al. 2008). However, none of these platforms can handle DNA molecules much longer than 1 kb. Consequently, paired-end sequencing of DNA fragments >1 kb by these technologies requires “jumping” constructs (Collins and Weissman 1984; Poustka et al. 1987): the ends of size-selected genomic DNA fragments are brought together by circularization, the bulk of the intervening DNA is excised, and the coligated junction fragments are isolated and end-sequenced.

Suitable protocols exist for converting sheared and size-selected DNA samples to jumping libraries and for generating read pairs that span several kb of genomic distance which is generally sufficient to fashion accurate and highly contiguous de novo assemblies of microbial genomes from massively parallel short sequencing reads (MacCallum et al. 2009; Nelson et al. 2010; Nowrousian et al. 2010). However, early short-read assemblies of complex genomes, including human genomes, turned out fragmented—despite jumps up to ~12 kb in length (Li et al. 2010a,b; Schuster et al. 2010; Yan et al. 2011). Without the equivalent of Fosmid or BAC end sequences, the N50 scaffold length (a measure of long-range connectivity) of these assemblies was <1.3 Mb. By comparison, largely owing to paired-end reads from large-insert clones, some of the best traditional Sanger-based mammalian draft assemblies had N50 scaffold lengths of ~40 Mb (Lindblad-Toh et al. 2005; Mikkelsen et al. 2007).

Constructing a jumping library entails numerous physical and enzymatic DNA manipulations. Several steps, notably size selection and circularization of genomic DNA fragments in vitro, become increasingly difficult and inefficient as the desired jump length, and hence, fragment length, goes up. In contrast, Fosmid cloning employs a sophisticated biological machinery to carry out these critical steps: Large fragments are size-selected (and short competing fragments excluded) by packaging in bacteriophage λ; once inside the Escherichia coli host, cohesive ends mediate efficient circularization—aided by the cellular machinery and a powerful selection for circular ampiclons.

To our knowledge, no jumping library constructed to date from uncloned DNA fragments has approached the average span (35–40 kb) and complexity (~10^5 independent clones per µg of input DNA) of a traditional Fosmid library. To close this technology...
gap, we and others have taken a hybrid approach wherein Fosmid libraries are constructed first and then converted to Fosmid-size jumps in vitro (Gnerre et al. 2011; Hampton et al. 2011).

Here, we present the experimental details of the “Fossil” concept (Gnerre et al. 2011) as well as extensive improvements of the original protocol. The term Fossil stands for paired-end sequencing of Fosmid libraries by Illumina, though we note that this approach should work for any massively parallel sequencing technology that can generate paired reads. We describe the methodology and novel cloning vectors that enable molecular barcoding of DNA inserts and multiplex Fosmid library construction without physical size selection of sheared genomic DNA. We demonstrate the power of Fossil to detect structural abnormalities in cancer genomes and to improve de novo assemblies of mammalian genomes from short reads.

Results

Modified Fosmid cloning vectors

To facilitate the conversion of Fosmids to Illumina-compatible Fossil jumping libraries, we modified the original Fosmid vector pFOS1 (Kim et al. 1992) such that the cloning site is flanked by Illumina forward and reverse sequencing primers and a pair of Nb.BbvCI nicking endonuclease sites (Fig. 1A). Our modified family of four pFosill vectors retains salient features of pFOS1 such as dual cos sites (Evans et al. 1989) and a pUC-derived pMB1 origin of replication which facilitates the preparation of large amounts of pFosill plasmid. In vitro packaging in bacteriophage λ removes the pUC portion of the plasmid, thereby rendering a single-copy amplicon under the control of the F-factor origin of replication oriS.

Genomic DNA fragments prepared by random shearing, end-repair, and size selection to ~35–45 kb can be inserted by blunt-end ligation between two Eco72I sites of pFosill-1 and -2, four bases downstream from the sequencing primers (Fig. 1B). Alternatively, using pFosill-3 and -4, DNA fragments can be ligated first to an excess of SapI adapters and then inserted by sticky-end ligation (Fig. 1C). The adapters serve two purposes: First, capping the ends with non-self-complementary three-base overhangs helps prevent coligation artifacts and enables Fosmid cloning of sheared genomic DNA without physical size selection; second, genomic fragments can be tagged with unique barcodes in the adapters, thereby allowing pooled Fosmid cloning of multiple DNA samples at once. pFosill vectors are equipped with either SBS-8 (pFosill-1 and -3) or SBS-12 (pFosill-2 and -4) reverse Illumina primer sequences. Thus, the system is compatible with single- and multiplex paired-end sequencing chemistries.

Fosmid-to-Fossil conversion

The two Nb.BbvCI sites in the pFosill vectors are oriented such that digestion makes two symmetrical single-strand nicks, each located 5’ of the cloned fragment (Fig. 2A,B). Then, in the presence of dNTPs, DNA polymerase I translates the nicks in opposite directions into the insert (Fig. 2C). The insert is then fully cleaved at nicked sites using S1 nuclease which releases all but the ends of the cloned insert from the vector backbone (Fig. 2D). This is analogous to the nick-translation-directed cleavage event used to construct jumping libraries for SOLiD sequencing (McKernan et al. 2009). Note, BbvCI sites present in the cloned genome fragment are being nicked as well and give rise to fragments that are no longer attached to the vector.

Supplemental Table S1 summarizes the relevant features of all four pFosill vectors.

![Diagram of pFosill cloning vectors.](https://www.genome.org/)

Figure 1. pFosill cloning vectors. (A) General map of the pFosill family of modified pFOS1 Fosmid vectors. The cloning site for inserting the genomic DNA fragments is flanked by forward and reverse Illumina-primer sequences (ILMN-F and ILMN-R) and two Nb.BbvCI nicking endonuclease sites. Nicks (yellow triangles) are introduced on two different strands and are located 5’ of the cloning site. ILMN-F is the standard Illumina sequencing primer SBS-3. The reverse primer in pFosill-1 and pFosill-3 is the SBS-8 primer for standard paired-end sequencing. In pFosill-2 and pFosill-4, the reverse primer is SBS-12 for three-read multiplex paired-end sequencing. The pUC-derived portion between the two cos sites is not present in the final circularized Fosmids which replicate under the control of oriS and the F-factor functions repE and sopA-C that ensure proper partition of the Fosmid among the two daughter cells. Vectors are cut at the unique AatII site as well as two restriction sites at the cloning site and dephosphorylated. (B) Cloning site of pFosill-1 (SBS-8 version) and pFosill-2 (SBS-12). Sheared, end-repaired, and size-selected genomic insert fragments are inserted by blunt-end ligation between two dephosphorylated Eco72I sites 4 bp downstream from the ILMN sequencing primers. The SapI sites shown are not useful for cloning as pFosill-1 and -2 harbor three additional SapI sites. (C) pFosill-3 (SBS-8 version) and pFosill-4 (SBS-12) are digested with SapI which excises a single fragment that includes the 3’ ends of the sequencing primers. Sheared and end-repaired genomic insert fragments are ligated to an excess of adapters that provide an 8-bp barcode (orange), the 3’ end of the Illumina sequencing primers, and three non-self-complementary 5’ overhanging bases for sticky-end ligation to the SapI ends of the vector arms.
After circularization by intramolecular ligation (Fig. 2E), the coligated insert termini are flanked by Illumina forward and reverse sequencing primer binding sites and can be PCR-amplified using full-length enrichment primers that include the sequences required for bridge-amplification and paired-end sequencing of the coligated termini of the original Fosmid insert on the Illumina flow cell.

Testing and optimizing Fosill library construction

To test the Fosill strategy, we constructed a Fosmid library from 30 µg Schizosaccharomyces pombe genomic DNA. The library size, as estimated by plating small-scale test transductions on chloramphenicol plates, was 1.4 million colony-forming units (cfu). We performed a large-scale transduction with the remainder of the packaged library, amplified transductants in bulk by overnight liquid culture at 30°C, and prepared Fosmid DNA. We then converted 10 µg of Fosmid DNA to a Fosill jumping library, sequenced it in 2 × 101-base paired-end mode on a GAII instrument, and aligned the reads to the S. pombe reference genome sequence (Table 1, library S).

Of 18.1 million unambiguously placed read pairs, 17.1 million (94%) had the expected spacing (30–50 kb) and orientation (convergent). On average, these bona fide correct Fosmid jumps were 37.8 kb in length with a standard deviation of 3.4 kb. Less than 1% of the aligned read pairs were obvious chimeric artifacts that jumped wider than 100 kb or across chromosomes. The chimerism rate of the nonredundant set of unique read pairs (1.71 million) was higher (4.7%; Supplemental Table S1), presumably because singular artifacts and mapping errors have greater weight in this calculation. At this depth of sequencing (~12×), we recover essentially all unique 30- to 50-kb jumps present in the Fosill library. Accordingly, the total number of unique Fosmid-size jumps was 1.47 million, approximately the same as the estimated size of the original Fosmid library (1.4 million cfu).

A fraction (6.3%) of nonredundant read pairs mapped <1 kb apart (Fig. 3A). Manual inspection suggested that a majority of these represented “nonjumps,” i.e., single small contiguous genome fragments and unequal jumps with one of the coligated endfragments being too short to be aligned, possibly caused by uneven nick translation.

Whatever the exact molecular mechanism, we reasoned that these undesired side products would tend to be shorter than average and enriched in the lower half of the broad smear of PCR-amplified Fosills (Supplemental Fig. S1). We tested this hypothesis with our second test Fosmid library, ~6.7 million cfu generated from 60 µg of DNA from K-562, a well-studied human chronic myelogenous leukemia (CML) cell line (Lozzio and Lozzio 1975). We ran the PCR-amplified Fosills on a preparative gel, excised two size windows (450–700 bp and 700–900 bp) and sequenced them separately. As expected, the lower size cut contained a higher proportion of nonjumps (13.4% vs. 4.3%; Fig. 3B). The number of nonredundant 30- to 50-kb jumps within each fraction was 5.5 million and 3.8 million. Both size cuts combined had a complexity of 6.9 million correctly spaced unique read pairs (Table 1, libraries H1 and H2).

For our third test organism, mouse (library M), we sought to eliminate short nonjumps more thoroughly by repurifying the

Organism	S. pombe	Human (K-562)	Mouse	
Fosmids (million cfu)	1.4	6.6	7.5	
Fosill library	S	H1 Low range	H2 High range	
Size selection	1× Prep gel	2× Prep gel		
Total read pairs (million)	63.7	46.3	13.6	23.6
Unambiguously placed pairsab (million)	18.1	33.9	9.7	18.7
Correct jumpsab (million)	17.1	30.3	9.0	18.4
Unique unambiguously placed pairs (million)	1.71	6.96	4.25	5.87
Unique correct jumps (million)	1.47	5.51	3.79	5.63
Mean correct jump length ± s.d. (kb)	37.8 ± 3.4	38.6 ± 3.8	38.5 ± 3.6	38.4 ± 3.5
Physical genome coverage	>4000×	74×	51×	80×
Total unique correct jumpsab (million)	1.47	6.93	5.63	5.63

*aRead pairs with both reads aligned to a single region in the genome.
*bConvergent read pairs that aligned 30–50 kb apart.
*cAfter removal of all duplicate read pairs (within each Fosill library) with identical start sites of forward and reverse sequencing reads.
*dAfter removal of duplicate read pairs (for each organism) with identical start sites of forward and reverse sequencing reads.
Fosils (NA12892) amplification, thereby tagging different aliquots of a human K-562 library H1 (gray) and H2 (black) (B), and mouse C57BL/6J (C) in their respective reference genomes. (y-axis) Percentage of all unique read pairs that fall in the 1-kb bin indicated on the x-axis. The percentages of unique read pairs spanning <1 kb and 30–50 kb are indicated.

Figure 3. Length distribution of genomic distance spanned by paired-end Fosill sequences. Shown are smoothed histograms of the spacing between unique read pairs in Fosill libraries from S. pombe 972h (A), human K-562 library H1 (gray) and H2 (black) (B), and mouse C57BL/6J (C) in their respective reference genomes. (y-axis) Percentage of all unique read pairs that fall in the 1-kb bin indicated on the x-axis. The percentages of unique read pairs spanning <1 kb and 30–50 kb are indicated.

size-selected PCR product on a second preparative gel. Only ~1% of nonredundant read pairs from these doubly size-selected Fosills aligned <1 kb apart (Fig. 3C); 96% (5.6 million distinct jumps) spanned 30–50 kb; 2.4% were classified as chimeric. The rate of chimerism for all unambiguously placed read pairs (18.7 million) was 1%. A detailed breakdown of the sequencing reads from all four test libraries is available in Supplemental Table S2.

To fine-tune the protocol, we used barcoded primers for PCR amplification, thereby tagging different aliquots of a human (NA12892) Fosill library. PCR products were size-selected separately and then combined and sequenced as a pool. Narrowing the size window by raising the lower size cut-off reduced the percentage of “nonjumps” from 1.8% to 0.5% while maintaining the total number of correct jumps (Supplemental Fig. S2A). We also found narrow automated size-fractionation on gel cartridges more effective than manual gel cuts (Supplemental Fig. S2B).

Fosmid library construction is a low-throughput process, and size selection of large DNA fragments on a pulsed-field gel is a particularly cumbersome step and often a source of sample loss. Multiplexing of samples prior to Fosmid library construction would increase throughput of the process and potentially reduce sample loss. To test multiplex Fosmid cloning of DNA fragments without prior size selection, we prepared four aliquots of sheared, end-repaired mouse DNA (starting with 2 μg of genomic DNA per aliquot) and ligated each separately to an excess of barcoded SapI adapters. We then combined the four tagged reactions, constructed a single, four-plex barcoded Fosmid library and converted it to Fosills.

Only 0.6% of all read pairs had discordant barcodes at the beginning of forward and reverse sequencing reads (Supplemental Table S3), suggesting a low rate of “recombination” between Fosmids during the conversion process. It should, therefore, be possible to construct tagged libraries in multiplex format for several genomes at once.

The total number of concordantly tagged and unambiguously mapped read pairs ranged from 4.8 to 8.9 million and represented 0.30 to 0.52 million unique correct jumps per sublibrary (Table 2), i.e., 0.15 to 0.26 million per μg of input DNA. Mean spacings and standard deviations of correct jumps were similar to those from size-selected genomic DNA fragments (see Supplemental Fig. S3 for a side-by-side comparison of jump-size distributions). The rate of chimerism (~2% for all mapped read pairs; 5%–6% for unique read pairs) was slightly higher than for the “traditional” mouse Fosill library (1% and 2.4%; Supplemental Table S2) but still acceptable. Based on these data, we conclude that multiplexed gel-free Fosmid cloning is a viable option for processing multiple DNA samples less hands-on and in a shorter amount of time.

Detection of structural rearrangements

To assess the power of Fosills to detect gross structural rearrangements, we searched for loci in the K-562 genome spanned by jumps which were aberrantly spaced or oriented or interchromosomal in the human reference genome. We identified 21 distinct rearrangements with 10 or more independent supporting read pairs (Supplemental Table S4). A subset that includes the three most frequently observed events is listed in Table 3. While the K-562 is a well-studied cancer cell line, and many structural abnormalities in its genome are known, the data analysis was performed in a blind fashion without explicit a priori expectations of structural variants.

The t(9;22) translocation that gives rise to the BCR-ABL1 fusion protein was framed by a total of 887 unique read pairs that appear chimeric when aligned to the reference genome. The large number of BCR-ABL1 hits is consistent with extensive amplification of this locus (Ross et al. 2009). Given the complexity (6.9 million) and average spacing (38.5 kb) of Fosill jumps, one would expect ~90-fold coverage for a single-copy locus.

We detected two more rearrangements, a tandem duplication on chromosome 6 and a second t(9;22) translocation, that could plausibly encode in-frame fusion proteins. Of note, chimeric transcripts supporting all three gene fusions (BCR-ABL1, BAT3-SKC44A4 and NUP214-XKR3) have been previously identified in the K-562 transcriptome by RNA-seq (Levin et al. 2009; Berger et al. 2010). We were able to pinpoint both the BCR-ABL1 and the BAT3-SKC44A4 junctions by 32 and seven “chimeric” single Fosill sequencing reads, respectively. The BCR-ABL1 junction matched the junction sequence reported in the literature (Chissoe et al. 1995; Shibata et al. 2010). Maps showing the location of breakpoints and read pairs implicating the three gene fusions and the other two rearrangements listed in Table 2 (an inversion and a deletion event) are available in Supplemental Figure S4.
Impact on de novo genome assemblies

To demonstrate the effect of Fossil jumps on the long-range connectivity of de novo genome assemblies, we performed three Illumina-based ALLPATHS-LG draft assemblies (Gnerre et al. 2011) of the mouse genome (Table 4). Assembly 1, without Fossils, had an N50 scaffold length of 2.8 Mb. Adding data from the Fossil library (80-fold physical coverage) improved the N50 scaffold length to 17.0 Mb, rivaling the long-range connectivity (16.9 Mb) of the capillary-sequencing-based draft assembly 3 (Waterston et al. 2002). The scaffold accuracy, defined as the percentage of pairs of loci that were 100 kb apart in the assembly and had matching spacing and orientation in the reference genome as described previously (MacCallum et al. 2009; Gnerre et al. 2011), was essentially the same for all three assemblies.

Discussion

Avoiding the cloning step in a microbial host has been a major factor in the efficiency and economy of massively parallel sequencing technologies. However, relying solely on enzymatic reactions in vitro to circularize and amplify genomic DNA fragments has made it a major technical challenge to produce the modern standard of secondary structure analysis of the Fragmid or BAC-end sequences that were crucial for assembling and analyzing complex genomes in the past. Fossil is a hybrid approach that employs packaging in bacteriophage λ and cloning in E. coli, followed by in vitro manipulations and PCR amplification to convert Fossmids to Fosmid-sized Illumina jumps. After library amplification by simple outgrowth in liquid culture, each Fosmid clone is represented multiple times. Hence, unavoidable DNA losses during the subsequent in vitro manipulations do not necessarily cause a concomitant drop in library complexity.

In this respect, Fossils are similar to Fosmid “diTags” (Hampton et al. 2011). The principal advantage of our method is that it allows much longer sequencing reads (up to 2 × 101 bases in the current study, but even longer reads are possible), whereas the EcoP15I digest strictly limits the diTags to 2 × 26 bases. Fossil reads have therefore more power to discriminate between different instances of repeat elements or segmental duplications, a significant benefit for mapping and assembly, particularly of mammalian and human genomes. We optimized Fossil using genomic DNA from three organisms (fission yeast, mouse, and human) and carried out pilot studies to test its suitability for two key applications: identification and mapping of chromosomal rearrangements and de novo assembly of complex genomes.

In the first pilot study, we found 21 gross abnormalities in the well-studied CML cell line (K-562), each event supported by at least 10 unique jumps. Three of them give rise to gene fusions that are corroborated by RNA-seq data. Scanning a genome with Fossil read pairs requires fewer read pairs than with short-range jumps or by direct paired-end sequencing of fragments. For example, 7.4 million unique Fossil jumps contained 887 read pairs implicating the hallmark t(9;22) translocation in the K-562 genome. This structural variant can be detected by sequencing a standard ~300-bp fragment library. However, the detection sensitivity is ~400-fold lower (175 implicating hits in 611 million unique read pairs; C-Z Zhang and M Meyerson, pers. comm.). If we count all aligned read pairs, including duplicates, (43.6 million Fossil jumps vs. 685 million standard read pairs), Fossil sequencing is 80 times more sensitive. Perhaps more importantly, considering the low cost of sequencing, long-distance jumps can span breakpoints that are flanked by long stretches of repetitive sequence on either side. They are also more suitable for mapping insertion events via read pairs that are closer in the reference genome than expected for bona fide Fosmid ends (International Human Genome Sequencing Consortium 2004).

The impact of Fossil on de novo assemblies of the mouse genome was profound. It boosted the N50 scaffold length from 2.8 Mb to 17.0 Mb without compromising the scaffolding accuracy. By this measure, to our knowledge, our Fossil-powered assembly has better long-range connectivity than any Fossil-free de novo short-read assembly of a mammalian genome reported to date.

For these studies, we sequenced deeply and generated redundant read pairs to maximize the yield of unique Fossil jumps. This adds relatively little cost to a genome project, for the total number of Fossil reads is small compared to the required number of short-insert reads. In almost all cases, the yield of distinct jumps of the expected length corresponded well to the estimated size of the initial Fosmid library, indicating little, if any, loss of complexity during the conversion process.

Our current set of modified Fosmid vectors enables barcoding and multiplexing at two stages. Barcodes can be introduced during library preparation, perhaps has better long-range connectivity than any Fossil-free de novo short-read assembly of a mammalian genome reported to date.

Table 2. Barcoded Fossil jumps from a multiplex Fosmid library

Barcode (read 1/read 2)	A/A	B/B	C/C	D/D
Unambiguously placed pairsa (million)	8.8	6.3	9.5	8.1
Correct jumpsb (million)	8.2	5.9	8.9	7.5
Chimeric read pairsc (%)	2.0%	1.9%	1.9%	2.1%
Unique4 unambiguously placed pairs (million)	0.42	0.30	0.52	0.45
Unique correct jumps (million)	0.38	0.27	0.47	0.41
Chimeric uniquely placed read pairsd (%)	5.6%	5.3%	5.3%	5.7%

Mean correct jump length ± s.d. (kb) | 37.8 ± 3.6 | 37.5 ± 3.3 | 37.8 ± 3.6 | 37.8 ± 3.6 |

Fossil libraries prepared from sheared mouse DNA using barcoded SapI adapters and no size-selection before ligation to the cloning vector.

Impact on de novo genome assemblies

To demonstrate the effect of Fossil jumps on the long-range connectivity of de novo genome assemblies, we performed three Illumina-based ALLPATHS-LG draft assemblies (Gnerre et al. 2011) of the mouse genome (Table 4). Assembly 1, without Fossils, had an N50 scaffold length of 2.8 Mb. Adding data from the Fossil library (80-fold physical coverage) improved the N50 scaffold length to 17.0 Mb, rivaling the long-range connectivity (16.9 Mb) of the capillary-sequencing-based draft assembly 3 (Waterston et al. 2002). The scaffold accuracy, defined as the percentage of pairs of loci that were 100 kb apart in the assembly and had matching spacing and orientation in the reference genome as described previously (MacCallum et al. 2009; Gnerre et al. 2011), was essentially the same for all three assemblies.

Discussion

Avoiding the cloning step in a microbial host has been a major factor in the efficiency and economy of massively parallel sequencing technologies. However, relying solely on enzymatic reactions in vitro to circularize and amplify genomic DNA fragments has made it a major technical challenge to produce the modern equivalent of the Fosmid- or BAC-end sequences that were crucial for assembling and analyzing complex genomes in the past. Fossil is a hybrid approach that employs packaging in bacteriophage λ and cloning in E. coli, followed by in vitro manipulations and PCR amplification to convert Fossmids to Fosmid-sized Illumina jumps. After library amplification by simple outgrowth in liquid culture, each Fosmid clone is represented multiple times. Hence, unavoidable DNA losses during the subsequent in vitro manipulations do not necessarily cause a concomitant drop in library complexity.

In this respect, Fossils are similar to Fosmid “diTags” (Hampton et al. 2011). The principal advantage of our method is that it allows much longer sequencing reads (up to 2 × 101 bases in the current study, but even longer reads are possible), whereas the EcoP15I digest strictly limits the diTags to 2 × 26 bases. Fossil reads have therefore more power to discriminate between different instances of repeat elements or segmental duplications, a significant benefit for mapping and assembly, particularly of mammalian and human genomes. We optimized Fossil using genomic DNA from three organisms (fission yeast, mouse, and human) and carried out pilot studies to test its suitability for two key applications: identification and mapping of chromosomal rearrangements and de novo assembly of complex genomes.

In the first pilot study, we found 21 gross abnormalities in the well-studied CML cell line (K-562), each event supported by at least 10 unique jumps. Three of them give rise to gene fusions that are corroborated by RNA-seq data. Scanning a genome with Fossil read pairs requires fewer read pairs than with short-range jumps or by direct paired-end sequencing of fragments. For example, 7.4 million unique Fossil jumps contained 887 read pairs implicating the hallmark t(9;22) translocation in the K-562 genome. This structural variant can be detected by sequencing a standard ~300-bp fragment library. However, the detection sensitivity is ~400-fold lower (175 implicating hits in 611 million unique read pairs; C-Z Zhang and M Meyerson, pers. comm.). If we count all aligned read pairs, including duplicates, (43.6 million Fossil jumps vs. 685 million standard read pairs), Fossil sequencing is 80 times more sensitive. Perhaps more importantly, considering the low cost of sequencing, long-distance jumps can span breakpoints that are flanked by long stretches of repetitive sequence on either side. They are also more suitable for mapping insertion events via read pairs that are closer in the reference genome than expected for bona fide Fosmid ends (International Human Genome Sequencing Consortium 2004).

The impact of Fossil on de novo assemblies of the mouse genome was profound. It boosted the N50 scaffold length from 2.8 Mb to 17.0 Mb without compromising the scaffolding accuracy. By this measure, to our knowledge, our Fossil-powered assembly has better long-range connectivity than any Fossil-free de novo short-read assembly of a mammalian genome reported to date.

For these studies, we sequenced deeply and generated redundant read pairs to maximize the yield of unique Fossil jumps. This adds relatively little cost to a genome project, for the total number of Fossil reads is small compared to the required number of short-insert reads. In almost all cases, the yield of distinct jumps of the expected length corresponded well to the estimated size of the initial Fosmid library, indicating little, if any, loss of complexity during the conversion process.

Our current set of modified Fosmid vectors enables barcoding and multiplexing at two stages. Barcodes can be introduced during

Table 3. Examples of rearrangements in the K-562 genome identified by Fossil

Supporting read pairsa	Rankb	Rearrangement	Affected chromosome(s)	In-frame protein fusion
887	1	Translocation	9;22	BCR-ABL1
131	2	Inversion	9	BAT3-3LC44A4
130	3	Tandem duplication	6	
55	7	Deletion	10	
18	15	Translocation	9;22	NUP214-XKR3

aUnique read pairs.
bRanked by number of supporting unique read pairs.
the final PCR amplification of the Fossil library for standard three-
read multiplex paired-end sequencing. “In-line” barcodes can be
added by ligating excess amounts of barcoded SapI adapters to tag
genomic DNA fragments before ligating them to the Fosmid
cloning vector. These adapters also help prevent co-cloning of un-
related DNA fragments and thus the formation of packageable
chimeric inserts. This is crucial for cloning inserts without running
a preparative gel or sucrose gradient, i.e., relying exclusively on bac-
teriophage λ for size selection. Based on our experience so far,
gel-free Fosmid cloning streamlines the process significantly, in-
creases the yield of Fosmid clones per microgram of input DNA and
produces Fossil libraries of acceptable size and quality.

We expect multiplex Fosmid-library construction from mul-
tiple DNA samples at once to be most useful for smaller genomes.
There are also less obvious benefits of pooling multiple differently
tagged aliquots of the same DNA sample, particularly for large ge-
nomes: First, a variety of “in-line” barcodes at the beginning of each
read improves the optical separation of adjacent clusters on the
Illumina flowcell and thus allows higher read densities; second,
filtering out read pairs with discordant barcodes may remove chi-
meric artifacts that arose downstream from Fosmid cloning.

Despite these improvements, Fosmid cloning remains low-
throughput and sensitive to the quantity and quality of the input
DNA. Fosmid libraries are also subject to cloning bias. While Fossil
appears to work for the extremely GC-rich (69%) genome of Rh-
obacter sphaeroides (not shown), we expect cloning problems for
extremely AT-rich DNA from organisms such as Dictyostelium dis-
coides or Plasmodium falciparum that proved recalcitrant to cloning
as Fosmids or BACs in the past (Gardner et al. 2002; Eichinger
et al. 2005). Nonetheless, we note that numerous large-insert clone
libraries have been made that were sufficiently deep, unbiased, and
comprensive to support successful and high-profile genome proj-
eces (Osoegawa et al. 2000, 2001; Wei et al. 2007) and that
sequencing libraries constructed without cloning have biases of
their own (Dohm et al. 2008; Kozarewa et al. 2009; Aird et al. 2011).

In principle, one can easily modify other cloning vectors, for
example, plasmid or BAC vectors, and generate shorter “Plasill” or
longer “BACill” jumps. The former may or may not be a practical
alternative to standard 3–10 kb in vitro jumping libraries. The
latter would extend the jump range up to ~200 kb. In routine
practice, considering the steep drop in cloning efficiency for DNA
fragments >150 kb, BACill jumps averaging ~10 kb may be a more
realistic proposition. We note, however, that BACs have a much
wider size distribution than Fosmids. Thus, in our view, Fosmid
jumps currently occupy the sweet spot, the best balance of cloning
efficiency and jump range. Not only do they help assemble ge-
nomes, their tight size distribution also allows genome-wide scans
of individuals by consistently spaced read pairs to analyze struc-
tural polymorphisms in the human population and to map gross
arrangements that cause or contribute to human disease.

Methods
Construc and preparatio of pFosill cloning vectors
pFosill-1 was constructed by inserting a cloned synthetic DNA
fragment (Bio Basic) between the HindIII and BamHI sites of pFOS1
(New England Biolabs [NEB]). Replacing pFosill-1 sequences be-
 tween the BamHI site and SfiI sites with Illumina SBS-12 primer
sequences and an Nb.BbvCI nicking site resulted in pfosill-2.
pFosill-3 is a derivative of pFosill-1 that has all Sapl sites (and
several other restriction sites) outside of the Illumina primer se-
quences removed. pfosill-4 is a derivative of pFosill-3 containing
Illumina SBS-12 instead of SBS-8 primer sequences.
pFosill plasmids were propagated in E. coli Stbl2 cells (Invi-
trogen) grown at 30°C in LB or TB broth containing 100 μg/mL
ampicillin and 15 μg/mL chloramphenicol. A 200-μg aliquot of a Qiagen plasmid mega preparation (Qiagen) was in-
cubated for 30 min at 37°C in 500 μL containing 300 units “plasmid-safe”
AT-dependent DNase (Epigenome) to remove contaminating linear
E. coli chromosomal DNA fragments. After heat inactivation
(30 min at 70°C), the reaction was cleaned up with a 1.8-fold vol-
ume of AMPure XP beads (Beckman Coulter Genomics). The beads
were washed according to the manufacturer’s protocol and the
plasmid DNA eluted in 200 μL T}_{10}F_{0.1} buffer.

Vectors were prepared for cloning as follows, using restriction
endonucleases from Fermentas. pFosill plasmid (50 μg) was dig-
gested with 200 units AatII and either 200 units Eco72I (pFosill-1
and pFosill-2) or 200 units LguI, a SapI isoschizomer (pFosill-3 and
pFosill-4). After 1 h at 37°C and heat inactivation for 20 min at
65°C, the reaction was cleaned up with a 1.8-fold volume of AMPure XP beads. The restriction fragments were eluted in 200 μL
T}_{10}F_{0.1} and dephosphorylated by a two-step incubation (1 h at 37°C
and 1 h at 55°C) with 2 × 25 units calf intestine alkaline phos-
phatase (NEB). The vector arms were cleaned up by two successive
extractions with phenol/chloroform/isoamyl alcohol, precipitated
with ethanol, and resuspended in T}_{10}F_{0.1}, to a final concentration
(f.c.) of 0.5 μg/μL.

Preparation of genomic DNA fragments
S. pombe strain 972h was a kind gift of Nick Rhind (U. Mass.
Medical School). K-562 cells were kindly provided by Robyn Issner
(Epigenomics Program, Broad Institute). DNA from Mus musculus
strain C57BL/6j was from the Jackson Laboratory. DNA from a
normal human lymphoblastoid cell line (NA12892) was from the
Coriell Institute. The preparation of genomic DNA fragments for
Fosmid cloning was a modification of established protocols.
Briefly, genomic DNA (typically two 15-μg aliquots in 125 μL
T}_{10}F_{0.1}) was HydroSheared (Digilab) by 60 passages at speed code
15 through a 0.006” shearing assembly (Bird Precision). The
fragments were end-repaired for 30 min at 20°C in 175 μL containing
1× T4 DNA ligase buffer, 0.25 mM dNTPs, 15 units T4 DNA
polymerase, 50 units T4 polynucleotide kinase, and 5 units Klenow

| Table 4. Long-range connectivity of three de novo draft assemblies of the mouse genome |
Assembly	1	2	3
Sequecng platform	Illumina	Illumina	ABI3730
XL jumps	None	Fossil	Fosmid, BAC
Physical coverage by XL jumps	N/A	80×	9.3× (Fosmid) 13.7× (BAC)
N50 scaffold length (Mb)	2.8	17.0	16.9
Scaffold accuracy	99.1% 99.0% 99.1%		

aAssembly based on paired-end reads from ~180-bp fragment libraries and jumping constructs spanning up to 10 kb.
bLiterature data (Waterston et al. 2002).
cNonredundant set of unique jumps.
dUngapped scaffold lengths, i.e., total length of contigs within each scaffold.
ePercentage of randomly chosen pairs of loci that spanned 100 kb in the assembly that had essentially the same spacing and orientation in the reference genome.

S. pombe strain 972h was a kind gift of Nick Rhind (U. Mass.
Medical School). K-562 cells were kindly provided by Robyn Issner
(Epigenomics Program, Broad Institute). DNA from Mus musculus
strain C57BL/6j was from the Jackson Laboratory. DNA from a
normal human lymphoblastoid cell line (NA12892) was from the
Coriell Institute. The preparation of genomic DNA fragments for
Fosmid cloning was a modification of established protocols.
Briefly, genomic DNA (typically two 15-μg aliquots in 125 μL
T}_{10}F_{0.1}) was HydroSheared (Digilab) by 60 passages at speed code
15 through a 0.006” shearing assembly (Bird Precision). The
fragments were end-repaired for 30 min at 20°C in 175 μL containing
1× T4 DNA ligase buffer, 0.25 mM dNTPs, 15 units T4 DNA
polymerase, 50 units T4 polynucleotide kinase, and 5 units Klenow
fragment (all from NEB). The reaction was stopped by adding EDTA to a f.c. of 50 mM and heat inactivation for 10 min at 70°C.

For Fosmid cloning of size-selected DNA, 7.5 μg end-repaired fragments were loaded into a 42-mm-wide well on a 1% SeaPlaque GTG (Lonza) 0.5× TBE agarose gel and run at 14°C on a CHEF-DR IIi system (BioRad) set to 6 V/cm, 120°, and a switching time ramped from 1.2 to 6 sec over 19 h, along with 8.3 kb to 48.5 kb DNA size markers (BioRad). Marker lanes were cut from the gel and stained with SYBR green I (Invitrogen). The gel was reassembled on a Dark Reader Transilluminator (Clare Chemicals) and a gel slice between the positions of the 33.5 kb and 48.5 kb size markers excised from the unused preparative portion of the gel. The gel slice was equilibrated twice against two volumes of 1× β-agarase buffer (NEB) supplemented with 40 mM NaCl for 30 min each on ice, the buffer removed, and the agarose melted at 70°C for 10 min. After cooling to 42°C, the agarose was digested at 42°C by two successive 2-h incubations using 1/100th gel volume of 1 unit/μl β-agarase (NEB) each. After heat inactivation at 70°C for 10 min, the tube was chilled on ice for 5 min and centrifuged at 4°C for 20 min at 10,000 rpm. The volume of the supernatant (~2 ml) was reduced to ~350 μl by centrifugal ultrafiltration at 2000g using an Amicon Ultra, 0.5-ml 100K concentrator (Millipore). The size-selected genomic DNA was cleaned up by two successive extractions with phenol/chloroform/isoamylalcohol, ethanol precipitated, and resuspended overnight in 20 μl T₁₀fof1.<nubbox>

For multiplex Fosmid cloning without size selection, barcoded SapI adapters were annealed from oligonucleotide pairs 5’-[PHOS]GATCTXXXXXXXX and 5’-[PHOS]XXXXXXXXXAG, where X_D denotes the eighth-base barcode. Aliquots (500 ng) of end-repaired fragments were heated at 70°C for 10 min, spun on Amicon Ultra 0.5-ml 100K centrifugal concentrators, and cleaned up by three washes with 500 μl T₁₀fof1 (~10 min at 2000g for each step). Concentrated fragments (~30 μl) were ligated to 115 ng of pre-annealed barcoded SapI adapter at 16°C for 2 h in 100 μl containing 1× T4 DNA ligase buffer (NEB) and 1000 units T4 DNA ligase (NEB). The ligation reactions were incubated at 70°C for 10 min, pooled, cleaned up, and concentrated to ~30 μl on Amicon Ultra 0.5-ml 100K centrifugal concentrators spun at 2000g as described above.

Fosmid library construction

All Fosmid libraries were made by a unified protocol using pFosill-1 and pFosill-2 for cloning size-selected DNA fragments and pFosill-3 and pFosill-4 for cloning non-size-selected, SapI-adapter-ligated DNA fragments. The number of ligation reactions depended on the total amount of insert DNA fragments. Each 10-μl ligation contained 250 ng inserts, 500 ng cut and dephosphorylated pFosill vector, 1× T4 DNA ligase buffer, and 2000 units T4 DNA ligase (NEB), and was incubated overnight at 25°C. The ligations were heat-inactivated at 70°C for 10 min, split into 2 × 5 μl, and packaged using MaxPlax λ packaging extracts (Epipcentre). Each 5-μl aliquot was packaged by two successive additions of 25 μl packaging extract and 90-min incubations at 30°C. After adding 940 μl Phage dilution buffer (SM buffer with 0.01% gelatin) and 70 μl DMSO (Sigma-Aldrich), packaged Fosmid libraries were titrated and stored at ~80°C.

Batches of λ-competent T1-resistant E. coli GC10T1 cells, frozen and stored at OD₉₀₀ -0.1, were prepared by standard protocols (Garnes et al. 2003). Thawed cells (1 ml) were mixed with 9 ml 10 mM MgSO₄ and 1 ml packaged Fosmid library. After 20 min at room temperature, 40 ml of prewarmed (37°C) LB broth was added and the incubation continued for 45 min. at 37°C with shaking at 225 rpm. The number of Fosmid clones was estimated by platting 40 μl of the 51-ml culture onto LB agar plates supplemented with 15 μg/ml chloramphenicol. Three 51-ml cultures were combined into a 2-L flask containing 600 ml 2× YT media supplemented with 15 μg/ml chloramphenicol and grown overnight at 30°C with shaking. Fosmid DNA was isolated from the 750-ml culture using Qiagen’s QIAfilter Plasmid Mega Purification kit.

Conversion of Fosmids into Fosills

Ten μg of Fosmid DNA were nicked for 1 h at 37°C in 250 μl containing 1× Nco Buffer 2 (NEB), 1× BSA (NEB), and 50 units Nb.BbvCl (NEB). Products were cleaned up using 1.8-fold volume AMPure XP beads (Beckman Coulter). Nicked Fosmids (800 ng) were incubated on ice for 45–55 min in 200 μl containing 1× NEB2 (NEB), 0.25 mM dNTP, and 50 units DNA polymerase I (NEB). The nick translation was stopped by adding EDTA to a f.c. of 50 mM. Products were cleaned up using 1.8-fold volume AMPure XP beads. Nicks were cleaved at 37°C for 15 min in 50 μl containing 300 mM NaCl, 1× S1 buffer, and 200 units nuclease S1 (Invitrogen). The reaction was stopped by adding EDTA (50 mM f.c.) and cleaned up using 1.8-fold volume AMPure XP beads. Ends were repaired at 20°C for 30 min in 100 μl containing 1× T4 Ligase Buffer, 0.25 mM dNTP, 9 units T4 DNA polymerase, 30 units T4 PNK, and 5 units klenow DNA polymerase (all from NEB). After adding EDTA to 50 mM f.c., DNA was cleaned up using 1.0× AMPure beads and recircularized overnight at 16°C in 500 μl containing 1× T4 Ligase buffer and 4000 units T4 ligase (NEB). Products were purified using a Qiagen PCR clean-up kit and eluted in 50 μl T₁₀fof1. To determine the optimal number of PCR cycles for Fosill-library amplification, 50-μl test PCR reactions were set up containing 1× Phusion HF Mastermix (NEB), 2 μl of circularized DNA, and 0.5 μM PCR primers: PE1.0 and PE2.0 primers (Illumina) for single-plex Illumina paired-end sequencing runs (i.e., Fosills derived from pFosill-1 and pFosill-3); 5’- AATGATACGGCGACACCGAGATCTACACTCTTTCCCTA CACGACGC and 5’- CAACGGAGAAGGGCGAGATGTACCCTTXXXXT XXXXGGTACCTGGACTACGTCAGGTGC for three-read multiplex paired-end sequencing runs with X₄ denoting the eight-base barcode (i.e., Fosills derived from pFosill-2 and pFosill-4). The 50-μl PCR reactions were split into four 10-μl aliquots and run on GeneAmp 9700 thermocyclers (Applied Biosystems) as follows: 98°C for 30 sec; 12, 15, 18, or 21 cycles of 98°C for 10 sec, 65°C for 30 sec, and 72°C for 30 sec; and a final extension for 7 min at 72°C. PCR products were run on Criterion 0.6% agarose 1% agarose gels (Bio-Rad) and stained with SYBR Green I. The optimal number of PCR cycles determined from this gel was used for amplification of the remaining library in a 600-μl PCR reaction containing 48 μl circularized DNA, 1× Phusion HF Mastermix (NEB), and 0.25 μM of appropriate PCR primers. Thermocycling in 50-μl aliquots was as follows: 98°C for 3 min; N cycles of 98°C for 120 sec, 65°C for 30 sec, and 72°C for 30 sec; and a final extension at 72°C for 7 min. The PCR product was purified using 1.8-fold volume AMPure XP beads and eluted in 30 μl T₁₀fof1. The PCR product was size-selected on a standard preparative 1.5% agarose DNA gel containing 1× TBE polyacrylamide gels (Bio-Rad) and stained with SYBR Green I. The optimal number N of PCR cycles determined from this gel was used for amplification of the remaining library in a 600-μl PCR reaction containing 48 μl circularized DNA, 1× Phusion HF Mastermix (NEB), and 0.25 μM of appropriate PCR primers. Thermocycling in 50-μl aliquots was as follows: 98°C for 3 min; N cycles of 98°C for 120 sec, 65°C for 30 sec, and 72°C for 30 sec; and a final extension at 72°C for 7 min. The PCR product was purified using 1.8-fold volume AMPure XP beads and eluted in 25 μl T₁₀fof1. Fosill libraries were sequenced by paired-end sequencing chemistry on Illumina GAII or HiSeq instruments.

Sequence analysis

Paired 76-base or 101-base Illumina reads were aligned to the S. ponie 9729 genome (NC_0032424.2, NC_0032423.2, NC_0032421.2), Mus
musculus C57BL/6j (NCBI37/mm9), or Homo sapiens (GRCh37/hg19) reference genome sequences by BWA v0.5.9 (Li and Durbin 2009). Each read was aligned independently with bwa aln (-q 5 -l 32 -k 2 -a 4 -o 1), and then the paired alignments were combined using bwa sampe (-a 100000). MergeBAMAlignments, from the picard package (http://picard.sourceforge.net/) v1.59, was used to return the unmapped reads to the aligned BAM file. A custom picard module was used to classify the reads based on the following definitions: (1) unambiguously mapped read pairs: pets with both reads aligning with a mapping quality score >0 as assigned by BWA; (2) duplicate read pairs: pets where both reads have identical start sites of forward and reverse sequencing reads; (3) correct jumps: read pairs where the reads face each other and are aligned 30–50 kb apart; (4) chimeric jumps: (a) pairs with unexpected orientation (inverted read pairs facing away from each other, and tandem reads aligning to the same strand in the same orientation), and (b) pairs with unexpected spacing (>100 kb or aligning to different contigs in the reference genome sequence, usually different chromosomes). “In-line” barcodes in *Fossili* read pairs derived from Sap1 cloning adapters were identified and quantified by comparing to the first eight bases of each read and requiring a perfect match to the expected barcode sequence. Chromosomal rearrangements were identified by dRanger (MS Lawrence, Y Drier, C Stewart, SB Gabriel, ES Lander, and G Getz, in prep.) as read pairs that map to different chromosomes or with unexpected spacing (>50 kb) or orientation. Single reads aligning to either side of a dRanger breakpoint were identified by BreakPointer (Y Drier, MS Lawrence, SL Carter, C Stewart, SB Gabriel, ES Lander, M Meyerson, R Beroukhim, and G Getz, in prep.). A high-level description of these tools can be found in Berger et al. (2011).

Data access

Cloning vectors described in this work are available to academic researchers upon request. Vector sequences have been deposited in GenBank (http://www.ncbi.nlm.nih.gov/genbank) under accession numbers JX069761 (pFossil-1), JX069762 (pFossil-2), JX069763 (pFossil-3), and JX069764 (pFossil-4). Illumina sequencing reads have been submitted to the NCBI Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under BioProject ID 40079, accession number SRX116276 for library S, ID 52009 (SRX029163, SRX029164) for library M, ID 82383 (SRX118840 and SRX118399) for libraries H1 and H2, respectively, ID 50209 for barcoded human NA12892 libraries (SRX118354, SRX118355, and SRX118352 for 450, 500, and 550 lower size cut-offs; SRX116629, SRX116621, and SRX116628 for 2× gel, 1× gel, and Pippin), and ID 51977 (SRX115463) for inline-barcoded libraries from mouse. ALPPATHS-LG mouse genome assembly 2 has been deposited in GenBank under accession number AEKQ02000000 and is available at ftp://ftp.broadinstitute.org/pub/papers/assembly/Williams2012/.

Acknowledgments

We thank the staff of the Broad Institute Sequencing Platform for generating sequencing data, Jim Bochicchio and Carsen Russ for catalyzing project and data submissions, Nick Rhind for *S. pombe* 972h, Robyn Issner for K-562 cells, and Oleg Lartchuk who suggested converting Fosmid libraries to Illumina jumping libraries more than five years ago. This project has been funded in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272200900018C, and with funds from the National Human Genome Research Institute (HG003067-05 through HG003067-10).

Author contributions: L.J.S.W. and A.G. conceived and designed experiments. L.J.S.W., D.T., and N.L. performed laboratory experiments. L.J.S.W., A.M.B., T.P.S., and S.K.Y. analyzed sequence data and calculated library metrics, I.M. and D.B.J. assembled genomes, M.S.L., Y.D., and G.G. mapped chromosome rearrangements, C.N. and A.G. coordinated and directed the project, and L.J.S.W. and A.G. wrote the paper. L.J.S.W. and A.G. are listed as inventors on a related patent application filed by the Broad Institute.

References

Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galipe RF, et al. 2000. The genome sequence of *Drosophila melanogaster*. *Science* 287: 2185–2195.

Aird D, Ross MG, Chen WS, Daniellson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnikke A. 2011. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. *Genome Biol* 12: R18. doi: 10.1186/gb-2011-12-2-r18.

Bentley DR, Balasubramaniam S, Seward HF, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell GR, et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. *Nature* 456: 51–56.

Berger MF, Levin JZ, Vijaykundan K, Sivachenko A, Adiconis X, Maguire J, Johnson LA, Robinson J, Verhaak RG, Sougnez C, et al. 2010. Integrative analysis of the melanoma transcriptome. *Genome Res* 20: 413–427.

Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AV, Shobern A, Esquiva R, Pflueger D, Sougnez C, et al. 2011. The genomic complexity of primary human prostate cancer. *Nature* 470: 214–220.

Chissoe SL, Bodenieceh A, Wang YF, Wang YP, Burian D, Cliftion SW, Crabtree J, Freeman A, lyer K, Jian J, et al. 1995. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. *Genomics* 27: 67–82.

Collins FS, Weisman SM. 1984. Directional cloning of DNA fragments at a large distance from an initial probe: A circulationulation method. *Proc Natl Acad Sci* 81: 6812–6816.

Dohm JC, Lottza C, Borodina T, Himmelbauer H. 2008. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. *Nucleic Acids Res* 36: e105. doi: 10.1093/nar/gkn245.

Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sivachenko M, Song J, Olsen R, Szafrański K, Xu Q, et al. 2005. The genome of the social amoeba *Dicyostelium discoideum*. *Nature* 435: 43–57.

Evans GA, Lewis K, Rothenberg BE. 1989. High efficiency vectors for cosmid microcloning and genomic analysis. *Gene* 79: 9–20.

Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Calarton JM, Pain A, Nelson KE, Bowman S, et al. 2002. *Genome sequence of the human genome sequencing using reversible terminator chemistry. Genomes* 108: 53–92. Horizon Scientific Press, Wymondham, Norfolk, UK.

Gnirke A, Maccallum I, Prezybinska D, Byfield D, Turner JT, Walker B, Sharpe T, Hall G, Shea TP, Sykes S, et al. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. *Proc Natl Acad Sci* 108: 1513–1518.

Hammar CA, Miller CA, Koriabine M, Li J, Den Hollander P, Carbone L, Nefedov M, Ten Hallsers BE, Lee AV, De Jong PJ, et al. 2011. Long-range massively parallel mate pair sequencing detects distinct mutations and similar patterns of structural mutability in two breast cancer cell lines. *Cancer Genet* 204: 447–457.

International Human Genome Sequencing Consortium. 2004. Finishing the euchromatic sequence of the human genome. *Nature* 431: 931–945.

Kidd JM, Cooper GM, Donahue WF, Hayden RS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, et al. 2008. Mapping and sequencing of structural variation from eight human genomes. *Nature* 453: 56–64.

Koboldt DC, Shiu H, de Jong PJ, Birren B, Simon MI. 1992. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. *Nucleic Acids Res* 20: 1083–1085.

Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ. 2009. Amplification-free illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. *Nat Methods* 6: 291–295.

Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T, Nusbaum C, Garraway LA, Gnikke A. 2009. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. *Genome Biol* 10: R115. doi: 10.1186/gb-2009-10-10-r115.

Li A, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25: 1754–1760.
Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, et al. 2010a. The sequence and de novo assembly of the giant panda genome. *Nature* **463**: 311–317.

Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al. 2010b. De novo assembly of human genomes with massively parallel short read sequencing. *Genome Res* **20**: 265–272.

Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JI, Kibokas EJ III, Zody MC, et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. *Nature* **438**: 803–819.

Lozzi CB, Lozzi BB. 1975. Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. *Blood* **45**: 321–334.

MacCallum I, Przybylinski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, Malek Lozzio CB, Lozzio BB. 2010. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: *Sordaria macrospora*, a model organism for fungal morphogenesis. *PLoS Genet* **6**: e1000891. doi: 10.1371/journal.pgen.1000891.

Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, de Jong PJ. 2001. A bacterial artificial chromosome library for sequencing the complete human genome. *Genome Res* **11**: 483–496.

Poustka A, Pohl TM, Barlow DP, Frischau AM, Lehrach H. 1987. Construction and use of human chromosome jumping libraries from NotI-digested DNA. *Nature* **325**: 353–355.

Ross DM, Scharfaneck L, Hughes TP, Nicolia M, Branford S, Score J. 2009. Genomic translocation breakpoint sequences are conserved in BCR-ABL1 cell lines despite the presence of amplification. *Cancer Genet Cytogenet* **189**: 138–139.

Schuster SC, Miller W, Ratan A, Tomsho LP, Giardine B, Kasson LR, Harris RS, Petersen DC, Zhao F, Qi J, et al. 2010. Complete kloisian and Bantu genomes from southern Africa. *Nature* **465**: 943–947.

Shibata Y, Malhotra A, Dutta A. 2010. Detection of DNA fusion junctions for BCR-ABL translocations by Anchored ChromPET. *Genome Med* **2**: 70. doi: 10.1186/gm191.

Shizuya H, Birren B, Kim UJ, Mancino V, Slupak T, Tachiiri Y, Simon M. 1992. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in *Escherichia coli* using an F-factor-based vector. *Proc Natl Acad Sci USA* **89**: 8794–8797.

Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Haugen E, Hayden H, Albertson D, Pinkel D, et al. 2005. Fine-scale structural variation of the human genome. *Nat Genet* **37**: 727–732.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al. 2001. The sequence of the human genome. *Science* **291**: 1304–1351.

Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexander D, et al. 2002. Initial sequencing and comparative analysis of the mouse genome. *Nature* **420**: 520–562.

Wei F, Cao E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, et al. 2007. Physical and genetic structure of the maize genome reflects its complex evolutionary history. *PLoS Genet* **3**: e123. doi: 10.1371/journal.pgen.0030123.

Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, Cooper DN, Li Q, Li Y, van Goor AJ, et al. 2011. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. *Nat Biotechnol* **29**: 1019–1023.

Received February 9, 2012; accepted in revised form June 25, 2012.