Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Risk of infection and tracking of work-related infectious diseases in the funeral industry

Susan Salter Davidson, MS, MT (ASCP),a,b and William H. Benjamin Jr, PhDc
Birmingham, Alabama

This review demonstrates that funeral service professionals (FSPs) have a risk of exposure to bacterial and viral pathogens as well as to prion-mediated diseases. It reveals a lack of published studies focusing on the implementation and effectiveness of infection control policies for this occupational group as well as the difficulty involved in determining actual infection rates related to workplace exposure events. Possible reasons for this lack of data include the categorization of these workers by the Bureau of Labor Statistics Standard Occupational Classification System as service providers rather than health care professionals. (Am J Infect Control 2006;34:655-60.)

The routine tasks carried out by funeral service professionals (FSPs) would seem to put them at significant risk of exposure to several infectious agents. Exposure by way of splashes to the mucus membranes, inhalation of aerosolized body fluids, and direct inoculation can result in infectious diseases caused by multiple species of bacteria, viruses, and prions. The purpose of this review is to determine what is known of the risk of exposure to infectious agents that FSPs experience in the workplace, identify prevention and post-exposure strategies utilized in the funeral business, and determine occupationally acquired infection rates among this group.

METHODS

A literature search was carried out using the PubMed service of the National Library of Medicine (April 2006). Abstracts were reviewed, and applicable articles were obtained. Internet sources included the Web sites of the Centers for Disease Control and Prevention (CDC), the United States Department of Labor, the US Census Bureau, the National Funeral Directors Association (NFDA), and the American Board of Funeral Service Education.
the remains of individuals who expired in health care facilities and those who died in other settings.18,19 Group A streptococcus has been shown to survive on the cadavers of victims of invasive disease, presenting a serious infectious risk to the FSP because it may be transmitted by direct contact and as a result of direct inoculation following even minor nicks to the skin during autopsy.8,12,17,20-22

FSPs may be exposed to gastrointestinal organisms through direct contact with leaking fecal material when manipulating corpses, which can lead to transmission via the fecal-oral route.8 The 2 microorganisms of greatest concern for transmission are non-typhi Salmonella and hepatitis A, whereas Salmonella typhi, Shigella species, Cryptosporidia, Helicobacter pylori, and other microorganisms are less of a risk in the developed world.12,23-25 Another group of Enterobacteriaceae that have the potential to present a risk to FSPs are the extended-spectrum β-lactamase producers (ESBLs) because of their growing prevalence and refractoriness to treatment, resulting in higher mortality rates when responsible for bacteremia.56-28

Infectious agents transmitted primarily by the airborne route that should be of concern to the FSP include Mycobacterium tuberculosis and the virus responsible for severe acute respiratory syndrome (SARS).1,8,13,29,30 Tuberculosis is a leading cause of disease and death, with more than one third of the global population being infected. Attempts to control the infections are complicated by the high prevalence of multiple drug-resistant strains, which are common in some populations.51 The risk of exposure to Mycobacterium tuberculosis experienced by FSPs is documented for airborne transmission and through direct inoculation.1-6,8,10,32-34 SARS is a newly recognized infectious disease, and there are no published reports of transmission from cadavers to FSPs. Moore et al analyzed the data available on SARS and published guidelines for infection control in the health care setting, which were tested in Toronto.30 Others have also published reviews of the infection control literature concerning SARS, and the World Health Organization (WHO) has released guidelines addressing management of known or suspected cases.29,30,35,36 Because of the virulent and contagious nature of the SARS virus, it is of special concern to both the health care worker (HCW) and the FSP.29

The 3 most common bloodborne pathogenic viruses FSPs are at risk of exposure to are the hepatitis B virus (HBV), the hepatitis C virus (HCV), and the human immunodeficiency virus (HIV).1,8,9,11,12,15,37-42 The risk of exposure to blood and other body fluids for this occupational group has been the subject of a limited number of studies.9,11,37,42,43 Studies focusing on the occurrence of HBV among FSPs show that members of this occupational group have a higher rate of infection than control groups.1,6,9,12,37 However, widespread implementation of vaccination programs has dramatically lowered the infection rate among HCWs and FSPs.39,41,44 HCV is the most prevalent bloodborne pathogen in health care settings, with many chronically infected individuals being asymptomatic. Currently, there is no HCV vaccine available.12,45-48 The long-term viability of HIV in cadaver tissue is recognized, and the literature reports a documented case of seroconversion in a pathologist following necropsy, along with 2 possible and 1 documented seroconversions in FSPs.12,38,49-54 Thus, the importance of the prevention of transmission of HCV and HIV during the embalming procedure is clear, especially in light of these documented cases of transmission of HIV.

The Marburg and Ebola hemorrhagic fever viruses are not endemic in the United States, but the continuing sporadic outbreaks on the African continent, the previous occurrence of infection in European countries, the ease and speed of international travel, and their classification as category A bioterrorism agents warrant their inclusion in a discussion of potential exposure risks for FSPs.7,55-57 Secondary transmission of these 2 viruses is known to occur following unprotected exposure to patients and cadavers through mucocutaneous contact and blood and body fluid exposure.7,58,59 Aerosolization cannot be definitively excluded as a mode of transmission.58,60 Guidelines have been published for the management of suspected or confirmed cases of these viral infections and include postmortem instructions.7,56-58,61

Another important group of infectious diseases of concern to FSPs are the transmissible spongiform encephalopathies (TSEs) or Creutzfeldt-Jakob disease (CJD) in humans, including kuru, iatrogenic, and new variant CJD (vCJD).62-64 The mode of transmission of prions is not completely understood, with 85% of patients showing no recognizable pattern of transmission, but it is known that iatrogenic CJD has been passed from cadavers to recipients of human growth hormone, dura mater, and corneal grafts as well as between living patients following use of contaminated neurosurgical equipment.62-64 Bloodborne transmission has been implicated in 2 cases of secondary vCJD infections in the United Kingdom, prompting concern that the blood supply could be contaminated with the responsible prion because of asymptomatic donor contributions.65-68 Because prions are not destroyed by formaldehyde or glutaraldehyde and because their concentration is highest in cerebrospinal fluid and nervous system tissue, embalming is not recommended for autopsied or traumatized bodies, but, if the procedure is necessary, the CDC suggests following the WHO guidelines.62,69

Although most cases of TSE have been located in countries other than the United States, the government is
vigilant in monitoring CJD and vCJD cases and has taken steps to prevent an outbreak.\footnote{64} Transmission of TSE between patients, to HCW, and to FSP is a major concern because supportive treatment is all that can be done for victims because these diseases are invariably fatal.\footnote{63,64}

The potential for transmission of multiple infectious agents while engaging in the routine tasks of FSPs has been demonstrated. The nation’s primary source of occupational information is the Occupational Information Network (O*NET) sponsored by the US Department of Labor Employment and Training Administration, and their Summary Report for Embalmers and Funeral Directors provides a detailed description of the tasks performed by FSPs that place them at risk.\footnote{70} There have been a limited number of published studies documenting actual exposure events.\footnote{1,9,11,37,55} The use of sharp implements during the embalming procedure places the FSP at risk of bloodborne pathogen exposure via needlestick, cuts, and splashes. The routine aspiration of blood and other body fluids carries the risk of aerosolization of droplet nuclei. The collection of fluid in the chest cavity of the deceased because of the putrefaction of tissue can lead to frothing and gurgling through the nose and mouth of the corpse.\footnote{1,9,11}

**Exposure prevention and management strategies**

Evaluation of exposure prevention and postexposure strategies utilized in the funeral business is difficult. There are few published references focusing on infection control in this setting.\footnote{1,9,11,37,42} Funeral homes fall under the mandates of the Occupational Safety Hazard Association’s Bloodborne Pathogens Standard (number 1910.13100), which requires that employers have a written exposure control plan and meet the methods of compliance.\footnote{71} These methods include the practice of universal precautions, the implementation of engineering and work practice controls, and the provision of personal protective equipment. There does not appear to be a monitoring system in place to determine the effectiveness of adherence to the standard by tabulating exposure events or infection rates among FSPs.\footnote{71} The CDC maintains the National Surveillance System for Health Care Workers, which is a voluntary program that monitors exposure events among hospital-based HCWs to HIV, HBV, HCV, and *Mycobacterium tuberculosis* to assess trends, prevention strategies, and postexposure prophylaxis, but funeral homes are not part of this surveillance program.\footnote{72}

A further reason evaluation is difficult is the absence of infection control activities in funeral homes analogous to those found in most health care facilities. These activities are implemented to analyze policies and procedures to control infectious disease transmission. Although compliance among FSPs has not been studied to the degree that it has for HCWs, much of the data from the HCWs can be applied to the funeral business. It is known that compliance is greater if employees feel that their organization is interested in safety, if they have current and correct knowledge of the availability of personal protective equipment, and if they perceive that compliance is mandatory.\footnote{30} There has been speculation concerning the usefulness of disclosing to FSPs the specific infectious nature of particular cadavers, but it has been shown that this knowledge does not affect compliance in a significant percentage of employees.\footnote{10} The autonomous nature of the work performed by FSPs might be a factor contributing to noncompliance issues. Postexposure actions followed by the FSP might be less than those of the HCW because of the expectation and relative ease of reporting exposure events and receiving postexposure care in most health care settings.

The role continuing education plays in compliance among FSPs is another area that appears not to have been evaluated fully. The American Board of Funeral Service Education, the accrediting agency for schools offering degrees in funeral service, requires students to complete successfully the basic science courses, including microbiology and pathophysiology, and the examinations for licensure administered by each state include sections covering these subjects.\footnote{73,74} More than 30 states require annual continuing education credits for licensed funeral directors and embalmers, but there are no specific requirements for infection control subject matter.\footnote{73,74} Studies have suggested a need for continuing education to ensure adherence to infection control policies.\footnote{29,30,75}

**Occupationally acquired infection rates**

It is difficult to determine the occupationally acquired infection rate among FSPs. One possible explanation for the apparent underrepresentation of FSP in the infection control literature could be that embalmers and funeral directors are placed under the Personal Care and Service Occupations group rather than being included in the Healthcare Practitioners and Technical Occupations or Healthcare Support Occupations group in the Bureau of Labor Statistics Standard Occupational Classification (SOC) System.\footnote{76} This SOC system is consistent with the Census 2000 Alphabetical Indexes of Industries and Occupations used in coding information gathered by governmental and private agencies for statistical reporting programs.\footnote{76,77} Another contributing factor is the lack of standardized coding on death certificates for the occupation of the decedent, although multiple governmental agencies are working together to make improvements in the
coding system to standardize this data. Underreporting of exposure events by individual employees along with the lack of infection control oversight programs in the funeral business could also be factors making this determination difficult.

An additional topic that is worthy of mention is the exposure risk experienced in countries other than the United States and Canada, which are the only 2 countries that routinely embalm the deceased. Other countries have various types of funeral services available, but embalming is reserved for cases requiring a prolonged viewing period or for shipment of the corpse. In most areas, family members wash the dead and prepare them for internment, and only rudimentary steps are taken to prevent the spread of communicable disease if it is known to be present. According to the WHO mortality records, worldwide, there were 10,903,977 deaths attributed to infectious and parasitic diseases in 2002, and the majority of these deaths occurred in areas other than the United State and Canada. Thus, as with many issues related to infectious diseases, the developing world could benefit from better surveillance as well as implementation of controls to prevent transmission related to handling of the dead.

**DISCUSSION**

This review of published literature demonstrates that FSPs have a risk of exposure to bacterial and viral pathogens as well as to prion-mediated diseases. It reveals a lack of published studies focusing on the implementation and effectiveness of infection control policies for this occupational group as well as the difficulty involved in determining actual infection rates related to workplace exposure events. Questions that should be the focus of future studies include determining the level of employee compliance with existing infection control policies, accessing factors that influence compliance, and evaluating the effectiveness of existing policies in preventing exposure events and actual infections as well as implementing better systems to determine the infection rates of the various agents in this occupational group.

**References**

1. Creely KS. Infection risks and embalming. Institute of Occupational Medicine. 2004. Available at: http://www.iom-world.org/pubs/IOM_TMO401.pdf. Accessed April 1, 2005.
2. National Center for Health Statistics. Death: final data for 2003. National Vital Statistics Reports 2006. Available at: http://www.cdc.gov/nchs/data/hestat/finaldeaths03_tables.pdf. Accessed January 28, 2006.
3. National Funeral Directors Association. National Funeral Directors Association fact sheet 2005. Available at: http://www nfdafactsheets.php. Accessed July 27, 2005.
4. Rose GW, Hockett RN. The microbiologic evaluation and enumeration of postmortem species from human remains. Health Lab Sci 1971;8:75-8.
5. Hinson MR. Final report on literature search on the infectious nature of dead bodies for the Embalming Chemical Manufacturers Association. Embalming Chemical Manufacturers Association 1968. In: Mayer RG, editor. Embalming history, theory, and practice. 3rd ed. New York: McGraw Hill; 2000. p. 649-52.
6. Rendon LR. Dangers of infection. In: Mayer RG, editor. Embalming history, theory, and practice. 3rd ed. New York: McGraw Hill; 2000. p. 652-4.
7. Nolte KB, Taylor DG, Richmond JY. Biosafety considerations for autopsy. Am J Forensic Med Pathol 2002;23:107-22.
8. Healing TD, Hoffman PN, Young SE. The infection hazards of human cadavers. Commun Dis Rep CDR Rev 1995;5:R61-8.
9. Gershon RR, Vlahov D, Farzadegan H, Alter MJ. Occupational risk of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infections among funeral service practitioners in Maryland. Infect Control Hosp Epidemiol 1995;16:194-7.
10. Gershon RR, Vlahov D, Escamilla-Cejojo JA, Badawi M, McDermid M, Karkashian C, et al. Tuberculosis risk in funeral home employees. J Occup Environ Med 1998;40:497-503.
11. Nwananywu OC, Tabasari TH, Harris GR. Exposure to and precautions for blood and body fluids among workers in the funeral home franchises of Fort Worth, Texas. Am J Infect Control 1989;17:208-12.
12. Burton JL. Health and safety at necropsy. J Clin Pathol 2003;56:254-60.
13. Morgan O. Infectious disease risks from dead bodies following natural disasters. Rev Panam Salud Publica 2004:15:307-12.
14. Hanzlick R. Embalming, body preparation, burial, and disinterment: an overview for forensic pathologists. Am J Forensic Med Pathol 1994;15:122-31.
15. Claydon SM. The high-risk autopsy: recognition and protection. Am J Forensic Med Pathol 1993;14:253-6.
16. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 2005;352:1436-44.
17. O'Brien KL, Beall B, Barnett NL, Cieslak PR, Reingold A, Farley MM, et al. Epidemiology of invasive group A streptococcal disease in the United States, 1995-1999. Clin Infect Dis 2002:35:268-76.
18. Kuehnert MJ, Hill HA, Kupronis BA, Tokars JI, Solomon SL, Jernigan DB. Methicillin-resistant-Staphylococcus aureus hospitalizations, United States. Emerg Infect Dis 2005;11:868-72.
19. Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998;339:520-2.
20. Greene CM, Van Beneden CA, Javadi M, Skoff TH, Beall B, Facklam R, et al. Cluster of deaths from group A streptococcus in a long-term care facility—Georgia, 2001. Am J Infect Control 2005;33:108-13.
21. Centers for Disease Control and Prevention. Active Bacterial Core Surveillance (ABCs) Report Emerging Infections Program Network: group A streptococcus, 2004—provisional. 2005. Available at: http://www.cdc.gov/ncidod/dbmd/abcs/surveuiperts/gas04prelim.pdf. Accessed January 28, 2006.
22. Hawkey PM, Pedler SJ, Southall PJ. Streptococcus pyogenes: a forgotten occupational hazard in the mortuary. Br Med J 1980;281:1058.
23. Sepkowitz KA.Occupationally acquired infections in health care workers. Part II. Ann Intern Med 1996;125:917-28.
24. Swaminathan B, Barrett TJ, Fields P. Surveillance for human Salmonella infections in the United States. J AOAC Int 2006;89:553-9.
25. Niyogi SK. Shigellosis. J Microbiol 2005;43:133-43.
26. Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Jernigan DB. Would gastroenteritis be a public health problem if it were caused by group A streptococcus? Emerg Infect Dis 2002;8:535-9.
27. Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Jernigan DB. Would gastroenteritis be a public health problem if it were caused by group A streptococcus? Emerg Infect Dis 2002;8:535-9.
28. Moolman GJ, Jankowits CE, Bezuidenhout S, Pitout JD. Beta-lactamases in Enterobacteriaceae—an ever-present threat. S Afr Med J 2006;96:331-4.
74. Bureau of Labor Statistics, US Department of Labor. Occupational outlook handbook, 2004-05 edition. Available at: http://www.bls.gov/oco/ocos011.htm. Accessed May 21, 2005.

75. Berhe M, Edmond MB, Bearman GM. Practices and an assessment of health care workers' perceptions of compliance with infection control knowledge of nosocomial infections. Am J Infect Control 2005;33:55-7.

76. US Department of Labor Standard Occupational Classification System. Available at: http://www.bls.gov/soc/home.htm. Accessed May 21, 2005.

77. US Census Bureau, Housing and Household Economics Statistics Division. 2004. Available at: gov/hhes/www/ioindex/overview.html. Accessed May 13, 2005.

78. Department of Health and Human Services. Mortality by occupation, industry, and cause of death: 24 reporting states (1984-1988). 1997. Available at: http://www.cdc.gov/niosh/bk97114.html. Accessed March 25, 2005.

79. Habenstein RW, Lamers WM. Funeral customs the world over. 4th ed. Milwaukee, WI: Bulfin Printers, Inc; 1994.

80. WHO. Burden of disease estimates by region in 2002. World Health Report; 2004.