The Role of Stereotactic Radiosurgery in Metastasis to the Spine

Seil Sohn, M.D., Chun Kee Chung, M.D., Ph.D.
Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea

Objective: The incidence and prevalence of spinal metastases are increasing, and although the role of radiation therapy in the treatment of metastatic tumors of the spine has been well established, the same cannot be said about the role of stereotactic radiosurgery. Herein, the authors present a systematic review regarding the value of spinal stereotactic radiosurgery in the management of spinal metastasis.

Methods: A systematic literature search for stereotactic radiosurgery of spinal metastases was undertaken. Grades of Recommendation, Assessment, Development, and Education (GRADE) working group criteria was used to evaluate the qualities of study datasets.

Results: Thirty-one studies met the study inclusion criteria. Twenty-three studies were of low quality, and 8 were of very low quality according to the GRADE criteria. Stereotactic radiosurgery was reported to be highly effective in reducing pain, regardless of prior treatment. The overall local control rate was approximately 90%. Additional asymptomatic lesions may be treated by stereotactic radiosurgery to avoid further irradiation of neural elements and further bone-marrow suppression. Stereotactic radiosurgery may be preferred in previously irradiated patients when considering the radiation tolerance of the spinal cord. Furthermore, residual tumors after surgery can be safely treated by stereotactic radiosurgery, which decreases the likelihood of repeat surgery and accompanying surgical morbidities. Encompassing one vertebral body above and below the involved vertebrae is unnecessary. Complications associated with stereotactic radiosurgery are generally self-limited and mild.

Conclusion: In the management of spinal metastasis, stereotactic radiosurgery appears to provide high rates of tumor control, regardless of histologic diagnosis, and can be used in previously irradiated patients. However, the quality of literature available on the subject is not sufficient.

Key Words: Radiosurgery · Spinal metastasis · Spine surgery · Radiation therapy · Local control · Spine tumors.
Table 1. Summary of the results of the systematic review conducted on stereotactic radiosurgery from 2007

Author	Description	No. of cases	Tech.*	Dose (Gy)	Complications	Outcomes	Quality of evidence	
Haley et al.	Retrospective study with matched controls	22 pairs	C	16 (14-20)	1 Gr. II nausea, vomiting	No difference with conventional RT	Low	
Gerszten et al.	Prospective cohort study	136	SL	16 (12-20)	No	Accurate, safe	Low	
Choi et al.	Retrospective study	42	C	20 (10-30)	1 Gr. IV neurotoxicity	87/81% at 6/12 months	Low	
Ryu et al.	Prospective cohort study	62	N	16 (12-20)	Transient grade I esophageal mucositis	80% response	Low	
Gerszten et al.	Case series	11	C	19 (16-22.5)	No	100% tumor control	Very low	
Sheehan et al.	Retrospective study	40	HT	17.3 (10-24)	73% segmental kyphosis	82% tumor control	Low	
Gagnon et al.	Prospective cohort study	151	C	26.4 (no previous RT), 21.05 (previous RT) in 3 fractions	1 wound breakdown, 2 vertebral fracture	84% symptom improved	Low	
Gibbs et al.	Case series	919	C	12.5-25	3 delayed myelopathy	96.8% local control	Very low	
Tsai et al.	Case series	69	C	15.5 (10-30)	50% fatigue, 27% nausea, 16% vomiting, 11% esophagitis, 3% diarrhea, 5% sore throat, 1% anemia, 2% thrombocytopenia, 4% neutropenia	No difference with RT in pain	Low	
Levine et al.	Clinical trial	10	C	30 (20-36) in 3 fractions	No	9 out of 10 was stable	89% in 1 year	Very low
Sahgal et al.	Retrospective study	39	C	24 (7-40) in 3 fractions	3 Gr. I/II nausea, 1 constipation, 3 transient increased pain	All except 4 were controlled	Very low	
Nelson et al.	Prospective cohort study	32	L	18 (14-30)	7 grade I nausea	98% local control	Very low	
Woonra et al.	Prospective case series	102	C	19.4 (15-24)	1 hemorraghe, 1 spinal instability	84% pain control	Low	
Ryu et al.	Case series	49	N	10-16	No	84% pain control	Very low	
Gagnon et al.	Matched pair	18 pairs	C	21-28 in 3 to 5 fractions	1 Gr. II nausea, 2 Gr. I fatigue, 2 Gr. I/II dysphagia, 1 Gr. II L/E numbness	No difference with RT in pain	Low	
Gibbs et al.	Prospective cohort study	74	C	16-25 in 1-5 fractions	3 myelopathy	84% symptom improved	Low	
Teh et al.	Retrospective study	80	N	6-12 for 3-5 fractions	No	All good pain, very high local control	Very low	
Gerszten et al.	Prospective cohort study	500	C	20 (12.5-25)	No	86% pain improvement, 88-90% local control	Low	
Ryu et al.	Prospective cohort study	177	N	8-18	1 myelopathy	NA	Low	

C: Cyberknife (Accuracy Inc., Sunnyvale, CA, USA), N: Novalis (BrainLab Inc., Germany), L: linac, SL: Synergy S linac (Elekta Synergy S 6-MV LINAC), HT: helical tomotherapy, NA: not available, L/E: low extremity, RT: radiation therapy
The Role of Stereotactic Radiosurgery in Metastasis to the Spine | S Sohn and CK Chung

progression rather than stereotactic radiosurgery.

The current indications for the use of stereotactic radiosurgery as a treatment modality for metastatic spine disease include pain related to a specific involved vertebral body, radiographic tumor progression as a primary treatment modality for progressive neurologic deficits, and adjuvant therapy after open surgical intervention. These indications were grouped into four general categories, as described by Sahgal et al.40:

1. Unirradiated patients: spinal metastases in a previously unirradiated volume treated by SRS.
2. Reirradiated patients: spinal metastases in a previously irradiated volume now containing new, recurrent, or progressive metastatic disease treated by SRS.
3. Postoperative patients: spinal metastases treated with SRS after open surgical intervention, with or without spinal stabilization.
4. Mixed patients: mixed populations involving patients in the three previous categories.

RESULTS

Pain and quality of life

Pain is the most frequent indication for the treatment of spinal metastases, and radiation is well known to be effective as a treatment for pain associated with spinal malignancies. Furthermore, stereotactic radiosurgery has been reported to be highly effective at reducing pain associated with symptomatic spinal metastasis5,29, regardless of prior treatment by conventional fractionated radiotherapy, and to have an overall improvement rate of approximately 85-100%. Pain is reported to decrease usually within weeks after SRS and occasionally within days5,19,29,33.

Ryu et al.31 reported an overall pain control rate of 84% at 1 year after treatment in a series of 49 patients. Gerszten et al.11 reported on a mixed population that achieved an overall pain improvement rate of 86% (290 of 336 cases) depending on primary histopathology. Durable pain improvement was demonstrated in 96% of women with breast cancer, in 96% of melanoma cases, in 94% of cases with renal cell carcinoma, and in 93% of lung-cancer cases. Gibbs et al.16 reported that 84% of symptomatic patients experienced improvement or resolution of symptoms after treatment. In addition, excellent pain-control and quality-of-life results after spinal stereotactic radiosurgery have been reported by the Georgetown University Hospital6,35, and Haley et al.40 reported no statistically significant difference in pain between SRS and RT groups.

Local control

Local control rates are reported to be approximately 90%. De- gen et al.6 demonstrated a 95% local control rate for 58 lesions in a mean follow-up of 350 days, and Chang et al.3 reported a 1-year 84% progression free incidence in 74 lesions. Overall long-term radiographic tumor control for progressive spinal disease in a series of 500 cases was 88-90% during the median 21-month follow-up11. Radiographic tumor control rates were found to be dependent on primary pathology: breast (100%), lung (100%), renal cell (87%), and melanoma (75%)11.

Recurrent spinal metastasis in previously irradiated lesions

Spine SRS is frequently used to treat radiographic tumor progression after conventional RT or after prior surgery. The majority of these lesions have undergone irradiation at significant spinal cord doses. Thus, further conventional irradiation delivery could not be indicated for them. However, currently, spine stereotactic radiosurgery is often being used as a “salvage” technique for those cases in which further conventional irradiation or open surgery are not appropriate.

Choi et al.4 recently reported 6 and 12 month local control rates of 87% and 81%, respectively, in previously irradiated patients, and Gerszten et al.11 reported an 88% radiographic con-
trol rate in patients, 69% of whom had previously received radiotherapy. Chang et al. reported a 1-year actuarial tumor progression-free incidence of 84% for fractionated SRS treatment; 56% of their patients received SRS as a retreatment.

Primary treatment modality

As greater experience is gained, stereotactic radiosurgery will probably evolve into an initial upfront treatment for spinal metastasis in certain cases, especially for cases of oligometastasis. This is similar to the evolution that occurred over the past decade for the treatment of intracranial metastases by radiosurgery. Additional asymptomatic lesions may be treated by SRS to avoid further irradiation to neural elements and further bone-marrow suppression and to permit subsequent systemic therapy.

Gagnon et al. reported a matched-pair analysis in which 18 patients with breast-cancer spinal metastases treated by SRS were compared to 18 matched patients that received conventional external beam radiation therapy (EBRT) upfront. This study concluded that salvage SRS is as efficacious as initial fractionated RT without added toxicity. Haley et al. recently reported that in terms of pain relief, SRS as a primary treatment modality in spinal metastasis was not different from EBRT. When used as a primary treatment modality, long term radiographic tumor control was demonstrated in 90% of cases of breast, lung, and renal cell carcinoma metastases and in 75% of melanoma metastases. Sheehan et al. reported a 100% tumor control rate in lesions that had not previously undergone irradiation, and Ryu et al. reported the results of a dose-escalation trial in which a series of 49 patients with lesions that had not previously undergone fractionated RT demonstrated good clinical outcomes. Illustrative case showed an example of good response as primary treatment (Fig. 1).

Adjuvant therapy after open surgery

Spinal tumors can be removed from neural structures, allowing immediate decompression. The spine can be instrumented if necessary, residual tumor can be safely treated later by SRS, and thus, the adjunctive SRS can reduce the chance of repeated surgery and possible morbidities from the second surgery. Furthermore, anterior corpectomy with reconstruction procedures in certain cases can be avoided successfully by posterior decompression and instrumentation alone followed by SRS to the remaining anterior lesion. Given the ability to perform spinal SRS effectively, the current surgical approach to these lesions might be changed. As SRS has the stiff falloff gradient of the target dose with negligible skin dose, such treatments can be given soon after surgery instead of after the usual significant delay before standard external beam RT is permitted. Open surgery for spinal metastases will likely evolve in a similar manner, whereby intracranial brain tumors are debulked in such a way as to avoid neurologic deficits and minimize surgical morbidity.

Rock et al. specifically evaluated the combination of open surgery followed by adjuvant SRS in a series of 18 patients and achieved a local control rate of 94%, whereas Gerszten et al. reported a series of 26 patients treated by SRS after vertebral body cement augmentation and achieved a local control rate of 92%.

Dose recommendation for spine stereotactic radiosurgery

The prescribed radiation dose to the tumor is determined based on tumor histology, spinal cord, or cauda equina tolerance and previous radiation dosage to normal tissue, especially to the spinal cord. No large-scale study has yet developed an optimal dose for spinal SRS, and no appropriate dose or fractionation schedule for metastatic tumors have been firmly established. However, spinal SRS has been found to be safe at doses comparable to those used for intracranial radiosurgery without the occurrence of radiation-induced neural injury.

Dose and fractionation schedules are different in each institution. Single-fraction SRS doses range from 8 to 24 Gy; while hypofractionated regimens consist of 4 Gy×5 fractions, 6 Gy×5 fractions, 8 Gy×3 fractions, or 9 Gy×3 fractions. Currently, there is no evidence to support one regimen over another. In one recent large series, 26.4 Gy in 3 fractions was prescribed to the 75% isodose surface for radiation-naïve lesions. Previously irradiated lesions were treated with a mean maximum dose of 20 Gy (range 12.5-25 Gy), a median dose 35 Gy (range 20-50.4 Gy), a median dose of 20 Gy in 5 fractions (range 20-30 Gy), and a median dose 20 Gy (range 10-30 Gy) in 1-5 fractions (median 2).

Adjacent level failure after stereotactic radiosurgery

One concern that has been raised regarding SRS for spinal metastases is whether adjacent levels are included in the radiation field. In the report of University of Pittsburgh Medical Center, no cases of tumor progression were encountered at immediate adjacent levels, thus justifying the treatment of the involved spine only. Although they reported failures in 3 out of 49 patients treated for solitary metastases, no failure was identified in adjacent untreated vertebrae. The implication of these findings is that progression in adjacent vertebral bodies is rare, and thus, they support SRS treatment of involved spinal levels only. Based on these findings, Sahgal concluded that it was possible that 1) failure in the epidural space may have been due to underdosing of the tumor because of strict spinal cord constraints, 2) uninvolved adjacent posterior elements should have been included in the target volume, and 3) encompassing one vertebral body above and below diseased vertebrae was unnecessary.

Safety and complications of stereotactic radiosurgery

Complications associated with SRS are generally self-limited and mild. The minor and limited toxicities reported for spine radiosurgery include esophagitis, dysphagia, diarrhea.
Radiation induced spinal cord injury is exceedingly rare, and only a small number of cases have been reported. An early series by Benzil et al.\(^6\) contained no radiation-induced spinal cord toxicity, and Gerszten et al.\(^1\) found no spinal cord toxicity after a follow-up of over 60 months. Ryu et al.\(^10\) specifically addressed the partial volume tolerance of the spinal cord and complications of single-dose SRS. They reported a single case of radiation-induced cord injury 13 months after SRS and concluded that, whereas the maximum spinal cord tolerance to single-dose radiation is unknown, partial volume tolerance of the human spinal cord is at least 10 Gy to 10% of the spinal cord volume, defined as 6 mm above and below the SRS target. In a recent multicenter study of 1075 cases\(^7\), only 6 patients developed delayed radiation-induced myelopathy at a mean of 6.4 months (range, 2-9 months) after spinal SRS. Recently, Haley et al.\(^18\) reported that RT had higher acute toxicity rates than SRS but encountered no late complications after either treatment modality.

DISCUSSION

From a historical viewpoint, modern LINAC is equipped for a wide variety of treatment modalities, including intensity-modulated radiation therapy, stereotactic treatment, and image-guided radiation therapy. These advances allow more precise target definition and conformality, which makes hypofractionation more feasible, and provide a potential means of reducing the toxicities often observed after administering large fraction sizes\(^19\).

The development of Gamma Knife SRS and LINAC-based radiosurgery allow the delivery of highly conformal doses of radiation in a single fraction. The first Cyberknife (Accuray) prototypes were used in the 1990s, and in 2001 the FDA granted clearance for treatment of extracranial lesions\(^15\).

The metastatic disease population is an inherently difficult group of patients to study, and patients typically have multiple disease sites, poor health, and quality of life. With limited follow-up and survival and other probable confounders such as high dose steroid use, retrospective datasets generally report better outcomes than reported by randomized trials.

This systemic literature review reveals the relative safety and efficacy of spinal SRS. Despite the significant clinical experience and widespread utilization of conventional RT for spinal metastases, stereotactic radiosurgery offers several theoretical advantages as a treatment modality for spinal tumors. Early treatment of these lesions before a patient becomes symptomatic and the stability of the spine is threatened is obvious advantageous\(^5\). Furthermore, conformal SRS avoids the need to irradiate large segments of the spinal cord. In addition, the early SRS treatment of spinal lesions may obviate the need for extensive spinal surgery for decompression and fixation in these already debilitated patients and may also avoid the need to irradiate large segments of the spinal column, which is known to have a deleterious effect on bone marrow reserve in these patients. The avoidance of open surgery and the preservation of bone-marrow function facilitate continuous chemotherapy in this patient population. Furthermore, improved local control, such as that demonstrated for intracranial radiosurgery, could translate into more effective palliation and potentially longer survival.

One advantage to patients offered by single-fraction SRS is that treatment can be completed in a single day rather than over the course of several weeks, which is not inconsequential for those with a limited life expectancy. Furthermore, the technique may be useful for capitalizing on the possible advantages of radiosensitizers\(^15\). In addition, cancer patients may have difficulty with access to a radiation-treatment facility for prolonged, daily fractionated therapy. Also, for certain tumors such as sarcomas, melanomas, and renal cell metastases, a single single fraction of irradiation may be radiobiologically advantageous compared to prolonged fractionated RT. As opposed to responses to conventional EBRT, responses to high-dose single-fraction radiation or SRS have been demonstrated to be histology independent, and excellent responses have been observed for radioresistant tumors. Clinical responses such as pain or neurologic deficit improvement might also be more rapid after SRS\(^12\).

Stereotactic radiosurgery for spinal metastasis has several limitations. First, the quality of literature on spinal SRS is poor; no randomized controlled study has been conducted. Second, SRS is more expensive than conventional RT; according to the US Medicare system, the cost of RT is about 80% that of SRS\(^19\). In the South Korea system, when Cyberknife stereotactic radiosurgery was done in 3 fractions and RT was done in 10 fractions, stereotactic radiosurgery is two times more expensive than 2D RT and similar to 3D RT. Although specific costs are likely to differ in other countries, a cost benefit study is required before the widespread adoption of SRS. Therefore, we suggest that SRS be initially used to treat spinal metastasis and chemoresistant tumors. Nonetheless, we believe that the usage of SRS will progress in the same manner as brain radiosurgery and that eventually it will be routinely used to treat spinal metastasis. However, further randomized controlled studies are required to compare spine SRS to conventional RT for the treatment of spinal metastasis.

CONCLUSION

In the management of spinal metastasis, stereotactic radiosurgery appears to provide high rates of tumor control, may be less affected by histology, and can be used in previously irradiated patients. However, the quality of available literature on spine SRS for metastasis is low or very low. Further high quality studies on SRS for spine metastasis are warranted.

- **Acknowledgements**
 This research was jointly supported by grants from the Brain Research Cen-
References

1. Benzil DL, Saboori M, Mogilner AY, Rocchio R, Moorothy CR: Safety and efficacy of stereotactic radiosurgery for tumors of the spine. J Neurosurg 101 Suppl 3: 413-418, 2004
2. Bernstein EE, Sullivan FJ, Mitchell JB, Salomon GD, Glatstein E: Biology of chronic radiation effect on tissues and wound healing. Clin Plast Surg 20: 435-453, 1993
3. Chang EL, Shiu AS, Mendel E, Mathews LA, Mahajan A, Allen PK, et al.: Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine 7: 151-160, 2007
4. Choi CY, Adler JR, Gibbs IC, Chang SD, Jackson PS, Minn AJ, et al.: Stereotactic radiosurgery for treatment of spinal metastases recurring in close proximity to previously irradiated spinal cord. Int J Radiat Oncol Biol Phys 78: 499-506, 2010
5. De Salles AA, Pedrosa AG, Medin P, Agazaryan N, Solberg T, Cabatan-Awang C, et al.: Spinal lesions treated with Novalis shaped beam intensity-modulated radiosurgery and stereotactic radiotherapy. J Neurosurg 101 Suppl 3: 435-440, 2004
6. Degen JW, Gagnon GJ, Voyerdjzis JM, McRae DA, Lunsden M, Dieiterich S, et al.: CyberKnife stereotactic radiosurgical treatment of spinal tumors for pain control and quality of life. J Neurosurg Spine 2: 540-549, 2005
7. Faul CM, Flickinger JC: The use of radiation in the management of spinal metastases. J Neurooncol 23: 149-161, 1995
8. Gagnon GJ, Henderson FC, Gehan EA, Sanford D, Collins BT, Moulds JC, et al.: Cyberknife radiosurgery for breast cancer spine metastases: a matched-pair analysis. Cancer 110: 1796-1802, 2007
9. Gagnon GJ, Nasr NM, Liao JJ, Molzhain I, Marsh D, McRae D, et al.: Treatment of spinal tumors using cyberknife fractionated stereotactic radiosurgery: pain and quality-of-life assessment after treatment in 200 patients. Neurosurgery 59: 297-306, discussion 306-307, 2006
10. Gerszten PC, Burton SA, Ozhasoglu C, Vogel WJ, Welch WC, Baar J, et al.: Stereotactic radiosurgery for spinal metastases from renal cell carcinoma. J Neurosurg Spine 3: 288-295, 2005
11. Gerszten PC, Burton SA, Ozhasoglu C, Welch WC: Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine (Phila Pa 1976) 32: 193-199, 2007
12. Gerszten PC, Mendel E, Yasuda Y: Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine (Phila Pa 1976) 34: S78-S92, 2009
13. Gerszten PC, Monaco EA 3rd: Complete percutaneous treatment of vertebral body tumors causing spinal canal compromise using a transpedicular cavitation, cement augmentation, and radiosurgical technique. Neurosurg Focus 27: E9, 2009
14. Gerszten PC, Novotny J Jr, Quader M, Dewald V, Flickinger JC: Prospective evaluation of a dedicated spine radiosurgery program using the Elekta Synergy S system. J Neurosurg 113 Suppl: 236-241, 2010
15. Gibbs IC: Frameless image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system. Cancer Radiother 10: 283-287, 2006
16. Gibbs IC, Kanmerduaphophon P, Ryu MR, Dodd R, Kiernan M, Chang SD, et al.: Image-guided robotic radiosurgery for spinal metastases. Radiother Oncol 82: 185-190, 2007
17. Gibbs IC, Patil C, Gerszten PC, Adler JR Jr, Burton SA: Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurgery 64: A67-A72, 2009
18. Haley ML, Gerszten PC, Heron DE, Chang YF, Atteberry DS, Burton SA: Efficacy and cost-effectiveness analysis of external beam and stereotactic body radiation therapy in the treatment of spine metastases: a matched-pair analysis. J Neurosurg Spine 14: 537-542, 2011
19. Hamilton AJ, Lulu BA, Fosmire H, Stea B, Cassidy JR: Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery 36: 311-319, 1995
20. Harel R, Angelov L: Spine metastases: current treatments and future directions. Eur J Cancer 46: 2696-2707, 2010
21. Hayat MJ, Howlader N, Reichman ME, Edwards BK: Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12: 20-37, 2007
22. Heidecke V, Rainov NG, Burkert W: Results and outcome of neurosurgical treatment for extradural metastases in the cervical spine. Acta Neurochir (Wien) 145: 873-880, discussion 880-881, 2003
23. Kim YH, Fuyos JY: Radiation tolerance of the cervical spinal cord. Radiol 139: 473-478, 1991
24. Levine AM, Coleman C, Horasek S: Stereotactic radiosurgery for the treatment of primary sarcomas and sarcoma metastases of the spine. Neurosur 64: A54-A59, 2009
25. McPhee IB, Williams RP, Swanson CE: Factors influencing wound healing after surgery for metastatic disease of the spine. Spine (Phila Pa 1976) 23: 726-732, discussion 732-733, 1998
26. Nelson JW, Yao DS, Sampson JH, Isaacs RE, Larrier NA, Marks LB, et al.: Stereotactic body radiotherapy for lesions of the spine and paraspinal regions. Int J Radiat Oncol Biol Phys 73: 1369-1375, 2009
27. Ortiz Gómez JA: The incidence of vertebral body metastases. Int Orthop 19: 309-311, 1995
28. Rock JP, Ryu S, Shukairy MS, Yin FF, Sharif A, Schreiber E, et al.: Post-operative radiotherapy for malignant spinal tumors. Neurosur 58: 891-898; discussion 891-898, 2006
29. Ryu S, Fang Yin F, Rock I, Zhu J, Chu A, Kagan E, et al.: Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 97: 2013-2018, 2003
30. Ryu S, Jin YJ, Jin R, Rock J, Ajlouni M, Movsas B, et al.: Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109: 628-636, 2007
31. Ryu S, Jin R, Jin YJ, Chen Q, Rock J, Anderson J, et al.: Pain control by image-guided radiosurgery for solitary spinal metastasis. J Pain Symptom Manage 35: 292-298, 2008
32. Ryu S, Rock J, Jain R, Lu M, Anderson J, Jin YJ, et al.: Radiosurgical decompression of metastatic epidural compression. Cancer 116: 2255-2267, 2010
33. Ryu S, Rock J, Rosenblum M, Kim JH: Patterns of failure after single-dose radiosurgery for spinal metastasis. J Neurosurg Spine 14: 402-405, 2004
34. Sahgal A, Ames C, Chou D, Ma L, Huang K, Xu W, et al.: Stereotactic body radiotherapy is effective salvage therapy for patients with prior radiation of spinal metastases. Int J Radiat Oncol Biol Phys 74: 723-731, 2009
35. Schüeemann HJ, Jaechke R, Cook DJ, Bria WF, Ernst A, et al.: An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Crit Care Med 174: 605-614, 2006
36. Sheehan JR, Shaffrey CI, Schlesinger D, Williams BJ, Arlet V, Larner J: Radiosurgery in the treatment of spinal metastases: tumor control, survival, and quality of life after helical tomotherapy. Neurosur 65: 1052-1061; discussion 1061-1062, 2009
37. Sundaresan N, Digiacinto GV, Hughes JE, Cafferty M, Vallejo A: Treatment of metastatic epidural spinal cord compression: results of a prospective study. Neurosurg 29: 645-650, 1991
38. Teh BS, Paulino AC, Lu FH, Chiu JK, Richardson S, Chiang S, et al.: Versatility of the Novalis system to deliver image-guided stereotactic
body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat 6: 347-354, 2007
39. Tibbs MK : Wound healing following radiation therapy : a review. Radiother Oncol 42: 99-106, 1997
40. Tsai JT, Lin JW, Chiu WT, Chu WC : Assessment of image-guided CyberKnife radiosurgery for metastatic spine tumors. J Neurooncol 94: 119-127, 2009
41. Wong DA, Fornasier VL, MacNab I : Spinal metastases : the obvious, the occult, and the impostors. Spine (Phila Pa 1976) 15: 1-4, 1990
42. Wowra B, Zausinger S, Drexler C, Kufeld M, Muacevic A, Staehler M, et al.: CyberKnife radiosurgery for malignant spinal tumors : characterization of well-suited patients. Spine (Phila Pa 1976) 33: 2929-2934, 2008
43. Yamada Y, Lovelock DM, Yenice KM, Blisky MH, Hunt MA, Zatcky J, et al.: Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors : a preliminary report. Int J Radiat Oncol Biol Phys 62: 53-61, 2005