Some Properties of Generalized Foulkes Module

Pál Hegedüś Sai Praveen Madireddi

July 2, 2024

Abstract

Describing the decomposition of Foulkes module F_{a}^{b} into irreducible Specht modules is an open problem for $a, b > 3$. In this article we provide a new approach for the Generalized Foulkes module F_{a}^{ν} (with arbitrary partition ν of b) through its restriction to a maximal Young subgroup $S_{b} \times S_{ab-b}$.

1 Introduction

The modules in this paper are defined over the complex numbers. For $a, b > 1$ integers, let $n = ab$. The Foulkes module F_{a}^{b} is the permutation module of S_{n} acting on the set of partitions of type (a^{b}), that is on partitions of $\{1, 2, \ldots, n\}$ into b sets of size a each.

The simple S_{b}-modules are parametrised by the partitions of b, the simple module corresponding to a partition $\nu \vdash b$ is the so-called Specht module, S_{ν}. In particular, $S_{(b)}$ is the trivial, while $S_{(1^{b})}$ is the sign module of S_{b}. The wreath product $S_{a} \wr S_{b} \leq S_{n}$ has a normal subgroup $S_{a} \times S_{a} \times \cdots \times S_{a}$ (b factors), called the base group, with factor group isomorphic to S_{b}, hence we may consider S_{ν} as an $S_{a} \wr S_{b}$-module with kernel containing the base group. This module is the inflated Specht module, denoted by $\text{Inf} S_{a} \wr S_{b} S_{\nu}$ is a simple modele of $S_{a} \wr S_{b}$.

The ν-generalized Foulkes module is the induced module of this inflation to S_{n}, in formula, $F_{\nu}^{a} = \text{Inf} S_{a} \wr S_{b} S_{\nu} \uparrow S_{n}$. When $\nu = (b)$, we recover the original Foulkes module, $F_{(b)}^{a} = F_{b}^{a}$. If, however, $a = 1$ then $S_{a} \wr S_{b} = S_{b}$ and $F_{\nu}^{1} = S_{\nu}$.

Thrall [1] decomposed the Foulkes module into simple components for $a = 2$ and for $b = 2$:

$$F_{b}^{2} = \bigoplus_{\lambda \vdash b} S^{2\lambda}; \quad F_{2}^{a} = \bigoplus_{\lambda \vdash a \lambda_{1}+\lambda_{2}=2a} S^{\lambda}.$$

Foulkes [2] conjectured that if $a \leq b$ then F_{b}^{a} can be embedded in F_{a}^{b}, for $a = 2$ this is an immediate consequence of Thrall’s result. Dent [3] decomposed the Foulkes module for F_{3}^{a} and F_{a}^{3} into Specht modules and verified the conjecture for $a = 3$. For $a > 3$ no full decomposition of the Foulkes module is known, albeit the conjecture is proven for $a \leq 5$, see [4] [5] [6]. For an integer $0 < k < n$ we define Ω_{k} as the set of partitions of k which are subpartitions of (a^{b}), that is all parts are of size less than or equal to a. Then the restriction of the generalized Foulkes module to $S_{k} \times S_{n-k}$ has a natural decomposition (see below, Definition 7) indexed by Ω_{k}:

$$F_{\nu}^{a} \downarrow_{S_{k} \times S_{n-k}} = \bigoplus_{\lambda \in \Omega_{k}} V_{\nu,a}^{\lambda}. \quad (1)$$

We are concerned mainly with the (1^{k})-component $U_{\nu,a} = V_{\nu,a}^{(1^{k})}$.
The main theorem of this paper is the following. Let μ^\perp denote the conjugate of the partition μ. In particular, $(1^b)^\perp = (b)$. For $\mu, \lambda, \nu \vdash b$ let $c_{\mu, \lambda}^{\nu} = c_{\lambda, \mu}^{\nu}$ denote the Kronecker coefficient, that is the multiplicity of S^ν in the tensor product $S^\mu \otimes S^\lambda$. For $0 < k < n$ any pair of S_k-module M and S_{n-k}-module N defines an $S_k \times S_{n-k}$-module $M \times N$. The simple modules of $S_k \times S_{n-k}$ are the ones $S^\mu \times S^\lambda$ coming from pairs of Specht modules.

Theorem 1. Let $k = b$ and as above, $U_{\nu, a} = V^{(1^b)}_{\nu, a}$. Then

$$U_{\nu, a} \cong \bigoplus_{\mu, \lambda \vdash b} c_{\mu, \lambda}^{\nu} S^\mu \times F^a_{\lambda}.$$

(2)

In particular, for $a = 2$

$$U_{\nu, 2} \cong \bigoplus_{\mu, \lambda \vdash b} c_{\mu, \lambda}^{\nu} S^\mu \times S^\lambda.$$

(3)

As noted above, $S^{(b)}$ is the trivial, while $S^{(1^b)}$ is the sign module of S_b. So $c_{(b), \nu}^{\nu} = 1$ and $c_{(1^b), \nu^\perp}^{\nu^\perp} = 1$. Hence the multiplicity of both $S^{(b)} \times S^\nu$ and $S^{(1^b)} \times S^{\nu^\perp}$ in $U_{\nu, 2}$ are 1. Two important special cases of the main theorem are the following.

Corollary 2. Let $a, b \in \mathbb{N}$. The (1^b)-summand of the Foulkes module $F^a_{(b)}$ restricted to $S_b \times S_{n-b}$ is

$$U_{(b), a} \cong \bigoplus_{\lambda \vdash b} S^\lambda \times F^a_{\lambda}.$$

In particular, for $a = 2$

$$U_{(b), 2} \cong \bigoplus_{\lambda \vdash b} S^\lambda \times S^\lambda.$$

Corollary 3. Let $a, b \in \mathbb{N}$. The (1^b)-summand of the generalized Foulkes module $F^a_{(1^b)}$ restricted to $S_b \times S_{n-b}$ is

$$U_{(1^b), a} \cong \bigoplus_{\lambda \vdash b} S^{\lambda^\perp} \times F^a_{\lambda}.$$

In particular, for $a = 2$

$$U_{(1^b), 2} \cong \bigoplus_{\lambda \vdash b} S^{\lambda^\perp} \times S^\lambda.$$

With the help of the so-called semistandard homomorphism de Boeck [7] proved that the multiplicity of $S^{\lambda + (b)}$ in $F^a_{(b)}$ is at least the multiplicity of S^λ in $F^a_{(b)}$ and the multiplicity of $S^{\lambda^\perp + (b^\perp)}$ in $F^a_{(1^b)}$ is equal to the multiplicity of S^λ in $F^a_{(1^b)}$. This we establish as a corollary of our results. See Corollary [13].

2 Preliminaries

Our main reference for the representations of the symmetric group is [8], recall especially the notions of the ν-tableau t, the tabloid $\{t\}$ and the polytabloid e_t. We call SYT(ν) the set of standard ν-tableaux.

Let $a, b \geq 2$ fixed integers and $n = ab$. Denote by $H = H^a_b$ the set of ordered partitions of $\{1, 2, \ldots, n\}$ into b sets of size a each. Clearly, S_n acts on H by permuting the letters. But S_b also acts on H by permuting the indices, that is, for $X = (X_1, \ldots, X_b) \in H^a_b$ we have $\sigma X = (X_{\sigma(1)}, \ldots, X_{\sigma(b)})$. Let $I = I^a_b$ be a set of representatives of S_b orbits. Therefore $|H| = n!/((a!)^b$ and $|I| = n!/((a!)^b b!$.

2
Lemma 5. The inflation $\text{Inf}^{S_a \wr S_b}_{S_a} S^\nu$ has basis $B_{\nu,X} = \{ e_{t_X} \mid t \in \text{SYT}(\nu) \}$ in the vector space V of ν-"polytabloids."

Before the proof we remark that the role of X in the definition is to fix the wreath product, which acts on the parts of X.

Proof. For $g \in S_a \wr S_b$ the image in $S_b \cong S_a \wr S_b / S^b_a$ is denoted by τ_g. Now $\tau_g \in S_b$ acts on the entries of t and on the indices of X and we have $(\tau_g t)_X = t_{\tau_g X}$ and therefore $g e_{t_X} = e_{(\tau_g t)_X} = e_{\tau_g X} = e_{t_X}$. The action of S_b on S^ν with respect to the basis $B_{\nu,X}$ is indeed inflated to the action of $S_a \wr S_b$ with respect to the basis $B_{\nu,X}$. The simple module $\text{Inf}^{S_a \wr S_b}_{S_a} S^\nu$ is generated by e_{t_X} for any tableau t like S^ν is generated by any e_t. □

Lemma 6. Fix a partition $\nu \vdash b$ and a ν-tableau t. Let $V_0 = \langle e_{t_X} \mid X \in H \rangle \leq V$. Then V_0 is S_n-invariant and as an S_n-module it is isomorphic to the generalized Foulkes module

\begin{align*}
\text{Lemma 4.} \text{ For a partition } \nu \vdash b, \text{ a } \nu\text{-tableau } t, \text{ and } X \in H \text{ let } t_X \text{ be the } \nu\text{-shaped diagram with } X_l \text{ replacing } l \text{ in } t. \text{ Similarly, } \{ t_X \} \text{ is the "tableoid" where each } l \text{ in } \{ t \} \text{ is replaced by } X_l. \text{ If } g \in S_n \text{ then clearly } gt_X = t_{gX} \text{ and } g\{ t_X \} = \{ t_{gX} \}. \text{ Finally, a } \nu\text{-polytabloid, } e_t \text{ is a certain element of the vector space with the } \nu\text{-tableoids being a formal basis. The corresponding } \\
\nu\text{-"polytabloid" } e_{t_X}, \text{ is an element of the vector space } V \text{ having the } \nu\text-"tableoids" \text{ as a formal basis. Here again, the parts of } X \text{ are replacing the letters. We again have that for } g \in S_n, \\
g e_{t_X} = e_{t_{gX}}.
\end{align*}
\(F^a_\nu = \text{Inf}_{S_h} S^\nu \uparrow S_n \). Further, \(B^a_\nu = \{ e_{sZ} \mid Z \in I, s \in \text{SYT}(\nu) \} \) is a basis of \(V_0 \cong F^a_\nu \) such that if \(t \) is a \(\nu \)-tableau, \(X \in H \) and

\[e_{tX} = \sum_{e_{sZ} \in B^a_\nu} c_{s,Z} e_{sZ} \]

then \(c_{s,Z} = 0 \) unless \(X \) is in the \(S_b \)-orbit of \(Z \).

Proof. As \(g e_{tX} = e_{tBX}, V_0 \) is an \(S_n \)-invariant, so an \(S_n \)-module. Also, \(V_0 \) is generated by \(e_{tX} \) for any \(X \). Let us fix a \(W = S_{\alpha} \triangleleft S_h \leq S_n \) and \(Y \in H \) the corresponding partition. As \(e_{tY} \) generates \(V_0 \) as an \(S_n \)-module, by [9] Corollary 8.3] it is enough to confirm that

\[\dim V_0 = |S_n : W| |B_{\nu,Y}| = \frac{n!}{(a!)^b |b|!} |B_\nu| = |I| \text{ SYT}(\nu)|. \]

Pick \(Z \in I \) in the \(S_b \)-orbit of \(Y \). If \(Z = \sigma Y \) for a \(\sigma \in S_b \) then \(e_{tY} = e_{t\sigma Z} = e_{(\sigma)tZ} \). If

\[e_{\sigma t} = \sum_{s \in \text{SYT}(\nu)} c_s e_s \]

then

\[e_{tY} = e_{(\sigma)tZ} = \sum_{s \in \text{SYT}(\nu)} c_s e_{sZ}. \quad (4) \]

Suppose that

\[0 = \sum_{Z \in I} d_{s,Z} e_{sZ} = \sum_{Z \in I} \sum_{s \in \text{SYT}(\nu)} d_{s,Z} e_{sZ}. \]

If \(Z \neq Z' \) (so not in the same orbit) and \(s, t \in \text{SYT}(\nu) \) arbitrary then the “tabloids” occurring in \(e_{sZ} \) and \(e_{tZ} \) are distinct, so we must have

\[0 = \sum_{s \in \text{SYT}(\nu)} d_{s,Z} e_{sZ}, \forall Z \in I. \]

But \(B_{\nu,Z} \) is a basis whence \(0 = d_{s,Z} \) for every \(s \in \text{SYT}(\nu) \) and \(Z \in I \).

Therefore \(B^a_\nu = \{ e_{sZ} \mid Z \in I, s \in \text{SYT}(\nu) \} \) is indeed a basis of \(V_0 \), \(\dim V_0 = |B^a_\nu| = |I| \text{ SYT}(\nu)| \) and thus [4] is a unique expression so the last part of the Lemma also holds.

Let \(1 < k < ab \). We describe a decomposition of the restriction of the generalized Foulkes module to a maximal intransitive subgroup \(S_k \times S_{n-k} \). As above, \(\Omega_k \) is the set of those partitions of \(k \) that are subpartitions of \((ab)\). In the following notation the dependence on \(a \) is generally suppressed.

Definition 7. For \(\lambda \in \Omega_k \) let

\[P_\lambda = P^a_\lambda = \{ X \in H^a_0 \mid \lambda \text{ is the partition type of } \{1, 2, \ldots, k\} \cap X \} \]

and let the \(\lambda \)-component, \(V^\lambda_{\nu,a} \) be the \(S_k \times S_{n-k} \)-module generated by the \(S_k \times S_{n-k} \)-invariant set \(\{ e_{tX} \mid X \in P_\lambda \} \) for any \(t \) of shape \(\nu \).
Note that \(X \in P_\lambda, \sigma \in S_b \) implies \(\sigma X \in P_\lambda \), so \(I \cap P_\lambda \) is a set of representatives of \(S_b \)-orbits of \(H \) that lie in \(P_\lambda \). The set \(\{ e_{tx} \mid X \in I \cap P_\lambda, t \in \text{SYT}(\nu) \} \) is a basis of \(V^\lambda_{\nu,a} \). Indeed, the vector space they generate is \(S_k \times S_{n-k} \)-invariant and
\[
\bigcup_{\lambda \in \Omega_k} \{ e_{tx} \mid X \in I \cap P_\lambda, t \in \text{SYT}(\nu) \} = B^a_\nu.
\]
The mentioned decomposition is thus
\[
F^a_\nu \downarrow_{S_k \times S_{n-k}} = \bigoplus_{\lambda \in \Omega_k} V^\lambda_{\nu,a}. \tag{5}
\]

Here comes an example with \(a = 3, b = k = 4 \) and \(\nu = (2^2) \). We have \(\Omega_4 = \{(3, 1), (2^2), (2, 1^2), (1^4)\} \). Then \(V = V^{(2,1^2)}_{2},a \) is generated by the set \(\{ e_{tx} \mid X \in P(2,1^2), t \in \text{SYT}((2^2)) \} \). Let \(t \) be as before and let
\[
X = \{(1,2,5), (3,7,6), (4,8,9), (10,11,12), X \cap \{1,2,3,4\} = \{(1,2), (3), (4)\}.
\]

\[
e_{tx} = \begin{cases}
\{1\ 2\ 5\} \{3\ 6\ 7\} & - \{1\ 2\ 5\} \{10\ 11\ 12\} \\
\{4\ 8\ 9\} \{10\ 11\ 12\} & - \{4\ 8\ 9\} \{3\ 6\ 7\}
\end{cases} + \begin{cases}
\{4\ 8\ 9\} \{10\ 11\ 12\} & - \{1\ 2\ 5\} \{10\ 11\ 12\} \\
\{1\ 2\ 5\} \{3\ 6\ 7\} & - \{4\ 8\ 9\} \{3\ 6\ 7\}
\end{cases}
\]

For \(g = (14)(567) \in S_4 \times S_{12} \)
\[
g e_{tx} = \begin{cases}
\{2\ 4\ 6\} \{3\ 5\ 7\} & - \{2\ 4\ 6\} \{10\ 11\ 12\} \\
\{1\ 8\ 9\} \{10\ 11\ 12\} & - \{1\ 8\ 9\} \{3\ 5\ 7\}
\end{cases} + \begin{cases}
\{1\ 8\ 9\} \{10\ 11\ 12\} & - \{2\ 4\ 6\} \{10\ 11\ 12\} \\
\{2\ 4\ 6\} \{3\ 5\ 7\} & - \{2\ 4\ 6\} \{3\ 5\ 7\}
\end{cases}
\]

3 Properties of \(U_{\nu,a} \)

Here we focus on \(k = b \) and especially on \(U_{\nu,a} = V^{(1^b)}_{\nu,a} \). Recall from the discussion after Definition 7 that \(U_{\nu,a} \) has basis \(\{ e_{tx} \mid X \in I^a_b \cap P(t^b), t \in \text{SYT}(\nu) \} \). To prove Theorem 1 we first deal with the \(a = 2 \) case and then connect it to the arbitrary \(a > 2 \) case.

Definition 8. Let \(t \) be a \(\nu \)-tableau and \(\tau \in \text{Sym}(\{b+1, \ldots, 2b\}) \). We define the ordered partition \(T(\tau) = (\{1, \tau(b+1)\}, \{2, \tau(b+2)\}, \ldots, \{b, \tau(2b)\}) \in H^2_b \cap P^2_{(1^b)} \).

It is clear that the set \(\{ T(\tau) \mid \tau \in \text{Sym}(\{b+1, \ldots, 2b\}) \} \) is a full set of representatives of the \(S_b \) orbits of \(H^2_b \cap P^2_{(1^b)} \). So \(\{ e_{t_{T(\tau)}} \mid \tau \in \text{Sym}(\{b+1, \ldots, 2b\}), t \in \text{SYT}(\nu) \} \) is a basis of \(U_{\nu,2} \).

Lemma 9. Let \(a, b \in \mathbb{N}, \nu \) a partition of \(b \). Then
\[
U_{\nu,a} \cong \text{Inf}_{S_b \times S_{n-b}}^S U_{\nu,2} \uparrow_{S_b \times S_{n-b}}
\]

(6)
Proof. Fix a ν-tableau t. For $Y = \{Y_1, \ldots, Y_b\} \in H^a_{n} (\text{where the underlying set is } \{b+1, b+2, \ldots, n\})$ and $\sigma \in S_b$ let Y_{σ} be the ordered partition $(\sigma(1)) \cup Y_1, \ldots, \{\sigma(b)\} \cup Y_b) \in H^a_{n}$. Note that $Y_{\sigma} \in H^a_{n}$ and $\sigma Y \in H^a_{n}$ are different. As is Definition \Box for $\sigma = id$ put $T(Y) = Y_{id}$. Separating the smallest element of each part for $X \in P_{(1^b)}$ we see that $P_{(1^b)} = \{Y_{\sigma} \mid Y \in H^a_{n}, \sigma \in S_b\}$. Similarly, $P_{(1^b)} \cap I^n_a = \{T(Y) \mid Y \in H^a_{n-1}, \sigma \in S_b\}$. The module $U_{\nu, \alpha}$ is the $S_b \times S_{n-b}$-module generated by the $S_b \times S_{n-b}$-invariant set $\{e_{iX} \mid X \in P_{(1^b)}\} = \{e_{iY_{\sigma}} \mid Y \in H^a_{n-1}, \sigma \in S_b\}$ for any t of shape ν. Its basis is $\{e_{t_{(1)}} \mid Y \in H^a_{n-1}, t \in SYT(\nu)\}$.

Fix $Y \in H^a_{n-1}$ and with it a wreath product $S_{n-1} \triangleright S_b \leq S_{n-b}$. As before, for $g \in S_{n-1} \triangleright S_b$ the image in $S_b \cong S_{n-1} \triangleright S_b/S_{n-1}$ is denoted by τ_g. Now for any $\sigma \in S_b$ and $g \in S_{n-1} \triangleright S_b$ we get $(gY)_{\sigma} = (\tau_g Y)_{\sigma} = \{\{\sigma(1)\} \cup Y_{\sigma(1)}, \ldots, \{\sigma(b)\} \cup Y_{\sigma(b)}\}$. Denote by W the $S_b \times (S_{n-1} \triangleright S_b)$-module generated by the set $\{ge_{iY_{\sigma}} \mid \sigma \in S_b, g \in S_{n-1} \triangleright S_b\} = \{e_{t_{(1)}} \mid \tau, \sigma \in S_b\}$. Using the argument of Lemma \Box we obtain that W is the inflation of $U_{\nu, 2}$ to $S_b \times S_{n-1} \triangleright S_b$ and its basis is $\{e_{t_{(1)}} \mid \tau \in S_b, t \in SYT(\nu)\}$.

The argument of Lemma \Box now provides

$$U_{\nu, \alpha} \cong W \uparrow^{S_b \times S_{n-b}},$$

(7)

because the induction takes place only in the second component. \qed

Thus the study of $U_{\nu, 2}$ might give some interesting information on the generalized Foulkes module.

Now we are ready to prove our main theorem.

Proof of Theorem \Box. Denote by $G_1 = \text{Sym}\{1, \ldots, b\}$ and $G_2 = \text{Sym}\{b+1, \ldots, 2b\}$, both isomorphic to S_b. Recall that a basis of $U = U_{\nu, 2}$ is $\{e_{t_{(1)}} \mid \tau \in G_2, t \in SYT(\nu)\}$.

We determine the values of the $G_1 \times G_2$-character χ of U which then helps us to identify the decomposition of U into irreducible modules.

Let χ' denote the irreducible character of the Specht module S'. We claim that for $(g_1, g_2) \in G_1 \times G_2$

$$\chi(g_1, g_2) = \begin{cases} 0, & \text{if } g_1, g_2 \text{ are of different cycle structure;} \\
|C_{S_b}(g_1)|\chi'(g_1), & \text{if } g_1, g_2 \text{ are of the same cycle structure.}
\end{cases}$$

Since the character value is the sum of the coefficients of basis element $e_{t_{(1)}}$ in $(g_1, g_2)e_{t_{(1)}}$ we need to compute them in order to prove the claim. Let $h = (1, b+1)(2, b+2) \cdots (b, 2b)$ and $g_3 = h g_1 h$ be the shifted permutation to $(b+1, \ldots, 2b)$, that is g_3 sends $b+l$ to $b+k$ if and only if g_1 sends l to k. In particular, g_1 and g_3 have the same cycle structure. Clearly, $(g_1, g_2)e_{t_{(1)}} = e_{(g_1 t_{(1)} g_2 \cdot (g_3)^{-1})} = e_{s t_{(1)}}$ where $s = g_1 t$ and $g = g_2 \tau g_3^{-1} \in G_2$. Note that $s = g_1 t$ need not be standard so $e_{s t_{(1)}}$ might not be a basis element! However, if $g_1 e_t = e_s = \sum d_r e_r$ then

$$(g_1, g_2)e_{t_{(1)}} = e_{s t_{(1)}} = \sum d_r e_{r t_{(1)}}.$$ (8)

Therefore the coefficient of $e_{r t_{(1)}}$ in $e_{s t_{(1)}}$ is 0 unless $T(\tau) = T(g)$. In the latter case $\tau = \rho$. Hence $g_2 = \tau g_3^{-1}$ and $g_1 = h g_3 h$ must be conjugate, so of the same cycle structure.

From now on g_1 and g_2 be fixed and of the same cycle structure. For computing the character value we need to find the number of permutations τ and standard tableau t such that $e_{t_{(1)}}$ is a linear summand of $(g_1, g_2)e_{t_{(1)}} = e_{s t_{(1)}}$. This can only happen if e_t is a linear summand of $e_s = g_1 e_t$ and in that case $g = g_2 \tau g_3^{-1} = \tau$, in other words $\tau^{-1} g_2 = g_3$. The number of such τ is equal to the order of the centralizer $|C_{S_b}(g_3)| = |C_{S_b}(g_1)|$ which proves the claim.
Let $k_{g1} = b!/|C_{S_n}(g1)|$ denote the size of conjugacy class of $g1$. Then the multiplicity $d^\nu_{\mu,\lambda}$ of the simple module $S^\mu \times S^\lambda$ in U can be expressed as the inner product of characters of $S_b \times S_b$:

$$d^\nu_{\mu,\lambda} = \langle \chi^\mu \times \chi^\lambda, \chi \rangle = \frac{1}{(b!)^2} \sum g1 \chi^\mu(g1) \cdot \chi^\lambda(g2) \cdot |C_{S_b}(g1)| \cdot \chi^\nu(g1) \cdot |C_{S_b}(g1)| \cdot \chi^\nu(g1)$$

$$= \frac{1}{b!^2} \sum g1 \chi^\mu(g1) \cdot \chi^\lambda(g1) \cdot |C_{S_b}(g1)| \cdot \chi^\nu(g1)$$

$$= \frac{1}{b!} \sum g1 \chi^\mu(g1) \cdot \chi^\lambda(g1) \cdot \chi^\nu(g1)$$

$$= c^\nu_{\mu,\lambda},$$

the so called Kronecker coefficient, the multiplicity of S^ν in the S_b-module $S^\mu \otimes S^\lambda$.

Thus,

$$U \cong \bigoplus_{\mu,\lambda} c^\nu_{\mu,\lambda} S^\mu \times S^\lambda,$$

which is equation 3 of Theorem 1. Equation 2 of Theorem 1 follows now from Lemma 9.

Corollaries 2 and 3 follow from the observations

$$c^{(b)}_{\lambda,\lambda} = c^{(b)}_{\lambda,\lambda} = 1$$

and

$$b! = \sum_{\lambda \vdash b} \text{deg}(S^\lambda \otimes S^\lambda) = \sum_{\lambda \vdash b} \text{deg}(S^\lambda \otimes S^\lambda) \leq \text{deg}(U_{(b),2}) = \text{deg}(U_{(b+1),2}) = b!.$$

4 Consequences for the Generalized Foulkes Module

Lemma 10. The multiplicity of $S^{(1^b)} \times S^\mu$ in F^a_{μ} is equal to the multiplicity of $S^{(1^b)} \times S^\mu$ in $U_{\mu,a}$.

Proof. We need prove that $V^\lambda_{\nu,a}$ of 1 has no summand $S^{(1^b)} \times S^\mu$ unless $\lambda = (1^b)$.

As above, the basis of $V^\lambda_{\nu,a}$ is the set $B = B^\lambda_{\nu,a} = \{ e_{tx} \mid X \in I \cap P_\lambda, t \in SYT(\nu) \}$. Observe that if l_1 and l_2 belong to the same part, say X_k, in $X = \{ X_1, X_2, \ldots, X_b \}$ then the transposition $(l_1 l_2)$ fixes e_{tx}, that is, $(l_1 l_2)e_{tx} = e_{tx}$.

By contradiction, suppose that M is a submodule of $V^\lambda_{\nu,a}$ isomorphic to $S^{(1^b)} \times S^\mu$. Let $m \neq 0$ be an element of M. Then

$$m = \sum_{X \in I \cap P_\lambda, t \in SYT(\nu)} c_{tx} e_{tx}.$$

Choose t and Y such that $e_{ty} \neq 0$. As $\lambda \neq (1^b)$, there exist $l_1, l_2 \leq b$ such that l_1, l_2 belong to the same part of Y. Let $e_{sx} \in B \setminus \{ e_{ty} \}$ be arbitrary. If l_1, l_2 belong to the same part of X then $(l_1 l_2)e_{sx} = e_{sx} \in B$. If l_1, l_2 are in different parts then $(l_1 l_2)e_{sx} = e_{s_{l_1 l_2}} = e_{s_Z}$ for some $Z \in P_\lambda$. However, this Z and Y cannot be in the same orbit. By Lemma 5, $e_{tx} = (l_1 l_2)e_{tx}$ is not a summand of $(l_1 l_2)e_{sx}$ in either case. Therefore the coefficient of e_{ty} in $(l_1 l_2)m$ is also c_{tx}. However, $m \in M \cong S^{(1^b)} \times S^\mu$, so $(l_1 l_2)m = -m$, which implies that the coefficient of e_{ty} is $-c_{ty} \neq c_{ty}$, a contradiction.

□
Corollary 11. The multiplicity of \(S^{(1^b)} \times S^\mu \) in \(F^{a}_{\nu} \downarrow_{S_b \times S_a \times \nu} \) is the same as the multiplicity of \(S^\mu \) in \(F^{a-1}_{\nu} \).

Proof. By Lemma 10, the multiplicity of \(S^{(1^b)} \times S^\mu \) in \(F^{(a)}_{\nu} \downarrow_{S_b \times S_a \times \nu} \) is equal to its multiplicity in \(U_{\nu,a} \).

Let \(c_{\mu,\lambda}^{\nu} \) be the Kronecker coefficient of \(S^\nu \) in \(S^\mu \otimes S^\lambda \). By Theorem 1

\[
U_{\nu,a} = \bigoplus_{\mu,\lambda} c_{\mu,\lambda}^{\nu} S^\mu \times F^{a-1}_{\lambda}.
\]

Moreover \(c_{\mu,\lambda}^{\nu} = c_{\lambda,\mu}^{\nu} = c_{\mu,\nu}^{\lambda} \). Therefore \(c_{(1^b)\mu}^{\nu} = 0 \) unless \(\mu = \nu \), in which case \(c_{(1^b)\mu}^{\nu} = 1 \).

From the above discussion we get that \(S^{(1^b)} \times S^\mu \) can only be embedded in \(S^{(1^b)} \times F^{a-1}_{\nu} \) among the above summands of \(U_{\nu,a} \).

For a partition \(\mu \vdash n \) of length \(k \) and the Young subgroup \(S_\mu = S_{\mu_1} \times S_{\mu_2} \times \ldots \times S_{\mu_k} \), we define \(M^\mu \) as the permutation module \(1_{S_\mu} \uparrow^{S_n} \). In particular, \(M^{(n)} \) is the regular module and \(M^{(n)} \) is the trivial module. The following lemma is specific for the regular module.

Lemma 12. Let \(a, b \in \mathbb{N} \). Then

\[
\text{Inf}_{S_b} S^a M^{(1^b)} \uparrow S_{ab} \cong M^{(a^b)}.
\]

Proof. A basis of \(M^\mu \) is the set \(\{ \{ t \} \mid t \) is a \(\mu \)-tableau.\}. Choose \(X \in I \), then a basis of \(\text{Inf}_{S_b} S^a M^{(1^b)} \) is the set \(\{ \{ tX \} \mid t \) is a \((1^b) \)-tableau.\}. Therefore a basis for \(\text{Inf}_{S_b} S^a M^{(1^b)} \uparrow S_{ab} \) is the set \(\{ \{ tX \} \mid t \) is a \((1^b) \)-tableau, \(X \in I \) which is also a basis for \(M^{(a^b)} \).

Now we are ready to derive the following corollary.

Corollary 13. Let \(\mu' = \mu + (1^b) \). The multiplicity of \(S^{\mu'} \) in \(F^{a+1}_{\nu} \) is the same as the multiplicity of \(S^\mu \) in \(F^{a}_{\nu} \).

Proof. From Corollary 11, we know that the multiplicity of \(S^{(1^b)} \times S^\mu \) in \(F^{a}_{\nu} \downarrow_{S_b \times S_a \times \nu} \) is the same as the multiplicity of \(S^\mu \) in \(F^{a}_{\nu} \). We also know that \(S^\nu \) embeds into the regular module \(M^{(1^b)} \). Therefore

\[
\text{Inf}_{S_b} S^\nu \text{ embeds into } \text{Inf}_{S_b} S^a M^{(1^b)}.
\]

By the definition of the generalized Foulkes module and by Lemma 12

\[
F^{a}_{\nu} = \text{Inf}_{S_b} S^\nu \uparrow S_{ab} \text{ embeds into } \text{Inf}_{S_b} S^a M^{(1^b)} \uparrow S_{ab} \cong M^{(a^b)}.
\]

Since for all simple constituents \(S^\lambda \) of \(M^{(a^b)} \), \(\lambda \) has at most \(b \) parts, this also holds for \(F^{a}_{\nu} \). By the Littlewood-Richardson Principle, [8, Theorem 16.4], all the constituents of \(S^{(1^b)} \times S^\mu \uparrow S^{(a+1)n} \) have more than \(b \) parts except for \(S^{\mu+1(1^b)} \) which occurs with multiplicity 1.

A generalized form of Corollary 13 has been proven recently by de Boeck, Paget and Wildon [10]. Their technique is much different.
5 Concluding remarks and questions

There have been many advances in the study of the Generalized Foulkes Module. One such result is given by Paget and Wildon [11]. They give a description of minimal and maximal Specht modules with respect to the dominance order on partitions.

Another result related to the Kronecker coefficients is given by Ikenmeyer, Mulmuley and Walter [12]. They proved that deciding whether a Kronecker coefficient is zero is an NP-hard problem. Bürgisser and Ikenmeyer [13] showed that computing Kronecker coefficients is $\#$P-hard. Theorem 1 gives a weak relationship between Kronecker coefficients and Foulkes modules which makes us wonder whether similar statements can be said for the multiplicity of S^λ in F^a_ν.

Question 14. What is the computational complexity of the coefficient of S^λ in F^a_ν?

There are many approaches to study the properties of F^a_ν but the problem of its decomposition into Specht modules still remains widely open. Studying the properties of the Generalized Foulkes module restricted to some small and large subgroups $G \leq S_n$, $F^a_\nu \downarrow_G$, might give some interesting information on the properties of F^a_ν and in turn help us understand its decomposition.

The generalized Foulkes module F^a_ν can be further generalized using a parameter $\lambda \vdash a$ to obtain F^λ_ν. A description of such a generalization is given in [11].

Question 15. Find the analogue of (1) for $F^\lambda_\nu \downarrow_{S_k \times S_{n-k}}$. Ideally, there should exist a distinguished component of $F^\lambda_\nu \downarrow_{S_k \times S_{n-k}}$ with description similar to the one in Theorem 1.

In fact, the decomposition (1) of the restricted generalised Foulkes module is the Mackey decomposition, see [9, Lemma 8.7]. For more on this — for the classical Foulkes module — we refer to Definition 2.9 in [14], the proof of Theorem 6.3 and the discussion before Lemma 6.8 in [15].

6 Acknowledgement

The present work was part of the PhD thesis of Sai Praveen Madireddi at Central European University. He would like to acknowledge the support he received.

Here we would also like to acknowledge the useful comments of Erzsébet Horváth to whose memory we dedicate this article.

Pál Hegedűs was partially supported by Hungarian National Research, Development and Innovation Office (NKFIH), Grant No. 138596. The project leading to this application has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, Grant agreement No. 741420

References

[1] R. M. Thrall. On symmetrized Kronecker powers and the structure of the free Lie ring. Amer. J. Math., 64:377–388, 1942.

[2] H.O. Foulkes. Concomitants of the Quintic and Sextic Up To Degree Four in the Coefficients of the Ground Form. Journal of the London Mathematical Society, s1-25:205–209, 1950.
[3] S.C. Dent. On a Conjecture of Foulkes. *Journal of Algebra*, 226:236–249, 2000.

[4] T. McKay. On Plethysm conjectures of Stanley and Foulkes. *Journal of Algebra*, 319:2050–2071, 2008.

[5] J. Müller and M. Neunhöffer. Some computations regarding Foulkes’ Conjecture. *Experiment. Math.*, 14:277–283, 2005.

[6] M.W. Cheung, C. Ikenmeyer, S. Mkrtchyan. Symmetrizing tableaux and the 5th case of the Foulkes conjecture. *Journal of Symbolic Computation*, 80:833–843, 2017.

[7] M. de Boeck. On the structure of Foulkes modules for the symmetric group. *Doctor of Philosophy (PHD) Thesis, University of Kent*, 2015.

[8] G.D. James. *Representation Theory of The Symmetry Groups*. Springer-Verlag, 1978.

[9] J.L. Alperin. *Local Representation Theory*. Cambridge University Press, 1986.

[10] M. de Boeck and R. Paget and M. Wildon. Plethysms of symmetric functions and highest weight representations. *Transactions of the American Mathematical Society*, 2021.

[11] R. Paget and M. Wildon. Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions. *Proc. London Math.*, 118:1153–1187, 2019.

[12] C. Ikenmeyer, K. D. Mulmuley and M. Walter. On vanishing of Kronecker coefficients. *Computational Complecity*, 26:949–992, 2017.

[13] P. Bürgisser and C. Ikenmeyer. The complexity of computing Kronecker coefficients. *FPSAC 2008*, pages 357–368, 2008.

[14] E. Giannelli. On the decomposition of the Foulkes module. *Archiv der Mathematik*, 100 (3):201–214, 2013.

[15] R. M. Adin and P. Hegedüs and Y. Roichman. Higher Lie characters and cyclic descent extension on conjugacy classes. *Algebraic Combinatorics*, 6(6):1557–1591, 2023.