ORDINARY REDUCTION OF K3 SURFACES

FEDOR A. BOGOMOLOV AND YURI G. ZARHIN

Let K be a number field and A an abelian variety of positive dimension over K. It is well known that A has good reduction at all but finitely many (non-archimedean) places of K. It is natural to ask whether among those reductions there is ordinary one. In the most optimistic form the precise question sounds as follows.

Is it true that there exists a finite algebraic field extension L/K and a density 1 set S of places of L such that $A \times L$ has ordinary good reduction at every place from S?

The positive answer is known for elliptic curves (Serre [21]), abelian surfaces (Ogus [19]) and certain abelian fourfolds and threefolds [15, 16, 25].

One may ask a similar question for other classes of (smooth projective) algebraic varieties. The aim of this note is to settle this question for K3 surfaces. Recall that an (absolutely) irreducible smooth projective surface X over an algebraically closed field is called a K3 surface if the canonical sheaf Ω^2_X is isomorphic to the structure sheaf \mathcal{O}_X and $H^1(X, \mathcal{O}_X) = \{0\}$.

Our main result is the following statement.

Theorem 0.1. Let X be a K3 surface that is defined over a number field K. Then there exists a finite algebraic field extension L/K and a density 1 set $\Sigma(L, X)$ of (non-archimedean) places of L such that $X \times_K L$ has ordinary good reduction at every place $v \in \Sigma(L, X)$.

Remark 0.2. The case of Kummer surfaces follows from the result of Ogus concerning the existence of ordinary reductions of abelian surfaces. When the endomorphism field E of $X \times_K \mathbb{C}$ [23, Th. 1.6] is totally real (e.g., the Picard number is odd), the assertion of Theorem 0.1 was proven by Tankeev [25].

Acknowledgements. The first named author (F.B.) would like to thank the Clay Institute for financial support and Centre Di Giorgi in Pisa for its hospitality during the work on this paper. The second named author (Y.Z.) would like to thank Courant Institute of Mathematical Sciences for its hospitality during his several short visits in the years 2006–2009.

After this paper had appeared on arXiv and was submitted, we received a letter from professor K. Joshi who brought to our attention his joint preprint with C.Rajan, http://arxiv.org/abs/math/0110070. Its Section 6 contained the proof of the existence of a positive density set of places with ordinary reduction for any K3-surface over a number field. Some of their arguments (but not all) are similar to the ones we used. Unfortunately, this result and its generalizations did not appear in the printed version [31].
1. K3 SURFACES OVER FINITE FIELDS

Let \(k \) be a finite field of characteristic \(p \), let \(\bar{k} \) be its algebraic closure, let \(Y \) be a K3 surface defined over \(k \) and \(\bar{Y} = Y \times \bar{k} \).

1.1. Let \(\ell \) be a prime different from \(p \) and
\[
P_2(Y, t) = 1 + \sum_{i=1}^{22} a_i t^i
\]
the characteristic polynomial of the Frobenius endomorphism \(\text{Fr} \) of \(\bar{Y} \) in the second \(\ell \)-adic cohomology group \(H^2(\bar{Y}, \mathbb{Z}_\ell) \). It is known (P. Deligne [6]; Piatetskii-Shapiro and I.R. Shafarevich [20]) that \(P_2(Y, t) \) lies in \(1 + t \mathbb{Z}[t] \) and does not depend on the choice of \(\ell \); in addition, all reciprocal roots of \(P_2(Y, t) \) have (archimedean) absolute value \(q = \#(k) \). It is also known [7, Cor. 1.10 on p. 63] that \(\text{Fr} \) acts on the \(\mathbb{Q}_\ell \)-vector space
\[
H^2(\bar{Y}, \mathbb{Q}_\ell) = H^2(\bar{Y}, \mathbb{Z}_\ell) \otimes \mathbb{Z}_\ell \mathbb{Q}_\ell
\]
as a semisimple (i.e., diagonalizable over an algebraic closure of \(\mathbb{Q}_\ell \)) linear operator.

Let us split \(P_2(Y, t) \) into a product of linear factors (over \(\mathbb{C} \))
\[
P_2(Y, t) = \prod_{i=1}^{22} (1 - \alpha_i t)
\]
where \(\alpha_i \) are the reciprocal roots of \(P_2(Y, t) \). Clearly,
\[
a_1 = -\sum_{i=1}^{22} \alpha_i.
\]

Let \(L = \mathbb{Q}(\alpha_1, \ldots, \alpha_{22}) \) be the splitting field of \(P_2(Y, t) \): it is a finite Galois extension of \(\mathbb{Q} \). We write \(\mathcal{O}_L \) for the ring of integers in \(L \). Clearly, all \(\alpha_i \in \mathcal{O}_L \). For each field embedding \(L \hookrightarrow \mathbb{C} \) the image of every \(\alpha_i \) has absolute (archimedean) value \(q \). This implies that if \(\alpha \) is one of the reciprocal roots then its complex-conjugate \(\bar{\alpha} = q^2/\alpha \) is also one of the reciprocal roots; in particular, \(q^2/\alpha \) also lies in \(\mathcal{O}_L \). It follows that if \(\mathfrak{B} \) is a maximal ideal in \(\mathcal{O}_L \) that does not lie above \(p \) then \(\alpha \) is a \(\mathfrak{B} \)-adic unit.

1.2. In order to describe the \(p \)-adic behavior of the reciprocal roots, one has to use their crystalline interpretation and use a variant of Katz’s conjecture proven in [3, Sect. 8]. Recall [7, Prop. 1.1 on p. 59] that
\[
h^{0,2}(\bar{Y}) = 1, h^{1,1}(\bar{Y}) = 20
\]
and the crystalline cohomology groups of \(\bar{Y} \) have no torsion. Combining Theorem 8.39 on p. 8-47 of [3] and Example 2 on p. 659 of [13], one concludes (2 Examples on pp. 90–91), [1] that there exists a certain invariant \(h = h(Y) \) of a K3 surface \(Y \) called its height that enjoys the following properties.

The height \(h \) is either a positive integer \(\leq 10 \) or \(\infty \). A K3 surface is called ordinary if \(h = 1 \) and supersingular if \(h = \infty \). Let \(\mathfrak{P} \) be (any) maximal ideal in \(\mathcal{O}_L \) that lies above \(p \) and let
\[
\text{ord}_{\mathfrak{P}} : L^* \rightarrow \mathbb{Q}
\]
be the discrete valuation map attached to \(\mathfrak{P} \) and normalized by condition
\[
\text{ord}_{\mathfrak{P}}(q) = 1.
\]
If \(h = \infty \) then every \(\text{ord}_p(\alpha) = 1 \). If \(h \leq 10 \) then the sequence
\[\text{ord}_p(\alpha_1), \ldots, \text{ord}_p(\alpha_{22}) \]
consists of rational numbers \((h - 1)/h, 1, (h + 1)/h\): both numbers \((h - 1)/h\) and \((h + 1)/h\) occur \(h \) times in the sequence while the number 1 occurs \((22 - 2h)\) times.

\textbf{Remark 1.3.} (i) Suppose that \(h = \infty \). If \(\alpha \) is one of the reciprocal roots then \(\alpha/q \) is a \(\mathcal{P} \)-adic unit for every \(\mathcal{P} \) dividing \(p \). It follows that \(\alpha/q \) is unit in \(\mathcal{O}_L \). On the other hand, since all archimedean absolute values of \(\alpha \) are equal to \(q \), we conclude that all archimedean absolute values of \(\alpha/q \) are equal to 1. By Kronecker’s theorem, \(\alpha/q \) is a root of unity.

(ii) If \(h \neq 1 \) then all \(\text{ord}_p(\alpha_i) \) are positive numbers and therefore all the reciprocal roots lie in \(\mathcal{P} \).

(iii) If \(h = 1 \) then \((h - 1)/h = 0\) and therefore there is exactly one reciprocal root \(\alpha \) that does not lie in \(\mathcal{P} \) and this root is simple.

\textbf{Lemma 1.4.} \(Y \) is ordinary if and only if \(a_1 \) is not divisible by \(p \).

\begin{proof}
Since \(a_1 = -\sum_{i=1}^{22} \alpha_i \), it follows from Remark 1.3 that \(a_1 \) does not lie in \(\mathcal{P} \) if and only if \(h = 1 \). Now one has only to recall that \(a_1 \in \mathbb{Z} \) and \(\mathbb{Z} \cap \mathcal{P} = p\mathbb{Z} \). \qed
\end{proof}

Additional information about \(K3 \) surfaces over finite fields could be found in [17, 18, 30, 27].

2. A TECHNICAL RESULT

Let \(K \) be a number field and \(\mathcal{O}_K \) its ring of integers. Let \(\bar{K} \) be an algebraic closure of \(K \). Let \(\text{Gal}(K) = \text{Gal}(\bar{K}/K) \) be the absolute Galois group of \(K \). Let \(X \) be a \(K3 \) surface that is defined over a number field \(K \) and let \(\bar{X} \) be the \(K3 \) surface \(X \times_K \bar{K} \) over \(\bar{K} \).

\textbf{Remark 2.1.} There exists a nowhere vanishing regular exterior 2-form on \(\bar{X} \) that is defined over \(K \). Indeed, pick any regular nowhere vanishing 2-form \(\bar{\omega} \) on \(\bar{X} \). Then for each \(\sigma \in \text{Gal}(K) \) the 2-form \(\sigma \bar{\omega} \) coincides with \(c_\sigma \cdot \bar{\omega} \) for a certain non-zero \(c_\sigma \in \bar{K}^* \). We get a Galois cocycle \(\sigma \mapsto c_\sigma \). By Hilbert’s Theorem 90, there exists \(a \in \bar{K}^* \) such that
\[c_\sigma = \sigma(a)/a \quad \forall \ \sigma \in \text{Gal}(K). \]
It follows that the 2-form \(\omega = a^{-1} \bar{\omega} \) is Galois-invariant. As a corollary, we obtain that the canonical (invertible) sheaf \(\Omega^2_{\bar{X}/\bar{K}} \) is isomorphic to the structure sheaf \(\mathcal{O}_{\bar{X}} \).

If \(S \) is a finite set of primes then let us consider the localization \(\Lambda = \Lambda_S \) := \(\mathcal{O}_K[S^{-1}] \) of \(\mathcal{O}_K \) with respect to \(S \). Clearly, \(\Lambda \) is a Dedekind ring, \(\mathcal{O}_K \subset \Lambda \subset K \) and \(\text{Spec}(\mathcal{O}_K) \setminus \text{Spec}(\Lambda) \) is a finite set of maximal ideals in \(\mathcal{O}_K \), whose residual characteristic lies in \(S \).

2.2. There exists a a finite set of primes \(S \) and a smooth projective morphism \(X \to \text{Spec}(\Lambda) \) that enjoy the following properties:
\begin{itemize}
 \item The generic fiber \(X_\Lambda \) coincides with \(X \).
 \item The invertible (canonical) sheaf \(\Omega^2_{X/\Lambda} \) is isomorphic to the structure sheaf \(\mathcal{O}_X \).
\end{itemize}
• The cohomology group $H^1(\mathcal{X}, \mathcal{O}_\mathcal{X})$ is a free \Lambda-module of finite rank.
• For every commutative \Lambda-algebra B the canonical map
 $$H^1(\mathcal{X}, \mathcal{O}_\mathcal{X}) \otimes_{\Lambda} B \to H^1(\mathcal{X}_B, \mathcal{O}_{\mathcal{X}_B})$$
 is an isomorphism. Here
 $$\mathcal{X}_B = \mathcal{X} \times_{\text{Spec}(\Lambda)} \text{Spec}(B).$$

Since $H^1(\bar{\mathcal{X}}, \mathcal{O}_{\bar{\mathcal{X}}}) = \{0\}$, we conclude that $H^1(\mathcal{X}, \mathcal{O}_\mathcal{X}) = \{0\}$ and therefore $H^1(\mathcal{X}_s, \mathcal{O}_{\mathcal{X}_s}) = \{0\}$ for any geometric point s of Spec(\Lambda). In particular, \mathcal{X}_s is a K3 surface.

The assertion follows from general results about the existence of smooth projective models \cite{9} pp. 157–158, Prop. A.9.1.6] and base change theorems for Hodge cohomology \cite{10} Sect. 8, pp. 203–205] (see also \cite{14} Sect. 5).

We call such schemes $\mathcal{X} \to \text{Spec}(\Lambda)$ good models of \mathcal{X}.

3. ORDINARY REDUCTIONS

Let X be a K3 surface over a number field K. Let us pick a prime $\ell > 2 \cdot 22$ and consider the corresponding 22-dimensional ℓ-adic representation \cite{21} \cite{22}

$$\rho_{2,X} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}_\ell}(H^2(\bar{\mathcal{X}}, \mathbb{Z}_\ell)) \subset \text{Aut}_{\mathbb{Q}_\ell}(H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)).$$

We write $G_{\ell,X,K}$ for the image $\rho_{2,X}(\text{Gal}(K))$: it is a closed compact subgroup of $\text{Aut}_{\mathbb{Z}_\ell}(H^2(\mathcal{X}, \mathbb{Z}_\ell))$; in particular, it is an ℓ-adic Lie subgroup of $\text{Aut}_{\mathbb{Q}_\ell}(H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell))$.

One may view $G_{\ell,X,K}$ as the Galois group of the infinite Galois extension $\bar{K}^{\text{ker}(\rho_{2,X})}/K$ where $\bar{K}^{\text{ker}(\rho_{2,X})}$ is the subfield of $\text{ker}(\rho_{2,X})$-invariants in \bar{K}.

We write \text{Id} for the identity automorphism of $H^2(\bar{\mathcal{X}}, \mathbb{Z}_\ell)$. Then the set

$$\mathfrak{Z} := \{c \cdot \text{Id} \mid c \in \mathbb{Z}_\ell^\times\} \cap G_{\ell,X,K}$$

is a closed normal ℓ-adic Lie subgroup in $G_{\ell,X}$.

Lemma 3.1. The subgroup \mathfrak{Z} is not open in $G_{\ell,X,K}$. In particular, $\dim(\mathfrak{Z}) < \dim(G_{\ell,X})$.

Proof. Suppose that \mathfrak{Z} is open in $G_{\ell,X}$. Then it has finite index and there exists a finite Galois extension K'/K such that

$$G_{\ell,X,K'} = \rho_{2,X}(\text{Gal}(K')) = \mathfrak{Z},$$

i.e., $\text{Gal}(K')$ acts on $H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)$ via scalars. It follows that $\text{Gal}(K')$ acts on the twisted ℓ-adic cohomology group $H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)(1)$ also via scalars. This implies that $H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)(1)^{\text{Gal}(K')} = \text{either } H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)(1) \text{ or zero. However, it is known \cite{20} Th. 5.6 on p. 80] that }$

$$H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)(1)^{\text{Gal}(K')} = \text{NS}(\bar{\mathcal{X}})^{\text{Gal}(K')} \otimes \mathbb{Q}_\ell.$$

(This assertion is the Tate conjecture for K3 surfaces that follows from the corresponding results of Faltings concerning abelian varieties.)

Since the Néron–Severi group $\text{NS}(\bar{\mathcal{X}})$ of $\bar{\mathcal{X}}$ is a (non-zero) free commutative group of rank $\leq 20 < 22$, we conclude that

$$H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)(1)^{\text{Gal}(K')} \neq H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)(1)$$

and therefore

$$H^2(\bar{\mathcal{X}}, \mathbb{Q}_\ell)(1)^{\text{Gal}(K')} = \{0\}.$$
However, this is not the case, because there is a hyperplane section of X that is defined over K' (and even over K) and its ℓ-adic cohomology class is Galois-invariant and not zero. The obtained contradiction proves the Lemma. □

Remarks 3.2. Combining results of [6] and [4, 5], one may prove that $\dim(\mathbb{Z}) = 1$. We refer to [24] for other applications of the Tate conjecture [26] and its variants to arithmetic of K3 surfaces over number fields.

The following statement and its proof are inspired by results of N. Katz and A. Ogus [19, Prop. 2.7.2 on p. 371].

Lemma 3.3. Suppose that a prime p and an element $u \in G_{\ell,X,K}$ enjoy the following properties:

(i) $p - 1$ is divisible by ℓ.
(ii) $u \in \text{Id} + \ell \cdot \text{End}_{\mathbb{Z}_\ell}(H^2(\bar{X}, \mathbb{Z}_\ell))$.
(iii) The characteristic polynomial
\[P_u(t) = \det(1 - tu, H^2(\bar{X}, \mathbb{Q}_\ell)) = 1 + b_1t + \cdots + b_{22}t^{22} \]
lies in $\mathbb{Z}[t]$.
(iv) Let us split $P_u(t)$ into a product of linear factors
\[P_u(t) = \prod_{i=1}^{22}(1 - \beta_i t). \]
Then all the reciprocal roots $\beta_1, \ldots, \beta_{22}$ of $P_u(t)$ have the same archimedean absolute value p.
(v) b_1 is divisible by p.

Then $p^{-1}u$ is a unipotent linear operator in $H^2(\bar{X}, \mathbb{Q}_\ell)$. In particular, if u is semisimple then $u = p \cdot \text{Id}$.

Proof. So, $-b_1 = pc$ for some integer c. Notice that $\beta_1, \ldots, \beta_{22}$ are the eigenvalues of u and $-b_1 = \sum_{i=1}^{22} \beta_i$ is the trace of u.

The congruence condition for u implies that all $(\beta_i - 1)/\ell$ are algebraic integers and therefore the integer $-b_1 = pc$ is congruent to 22 modulo ℓ. Since $p - 1$ is divisible by ℓ, it follows that c is congruent to 22 modulo ℓ.

It is also clear that the absolute value of $-b_1$ does not exceed $22 - p$ and therefore $|c| \leq 22$. Taking into account that $\ell > 2 \cdot 22$ and c is congruent to 22 modulo ℓ, we conclude that $c = 22$, i.e., $-b_1 = 22 \cdot p$. Since $-b_1$ is a sum of 22 complex numbers $\beta_1, \ldots, \beta_{22}$ of absolute value p, it follows that all $\beta_i = p$, i.e., all eigenvalues of u are equal to p, which means that $p^{-1}u$ is unipotent. □

3.4. Choose a good model $\mathcal{X} \to \text{Spec}(\Lambda)$ of X (as in Sect. 2). Let $v \in \text{Spec}(\Lambda)$ be a closed point, whose residual characteristic $p = p(v)$ is different from ℓ. Then $\rho_{2,X}$ is unramified at v and one may associate to v a Frobenius element $\text{Fr}_v \in G_{\ell,X,K}$ (21, 22, 29 Sect. 4) that is defined up to conjugacy. Let us consider the corresponding closed fiber $\mathcal{X}(v)$, which is a K3 surface over the (finite) residue field $k(v)$. Let $k(v)$ be an algebraic closure of $k(v)$ and $\mathcal{X}(v) = \mathcal{X}(v) \times_{k(v)} \overline{k(v)}$. The Frobenius endomorphism $\text{Fr}: \overline{\mathcal{X}(v)} \to \overline{\mathcal{X}(v)}$ acts on $H^2(\overline{\mathcal{X}(v)}, \mathbb{Q}_\ell)$ and there exists an isomorphism of \mathbb{Q}_ℓ-vector spaces
\[H^2(\overline{\mathcal{X}(v)}, \mathbb{Q}_\ell) \cong H^2(\bar{X}, \mathbb{Q}_\ell) \]
such that the action of Fr becomes the action of Fr^{-1} (\cite{21, 22, 29} Sect. 4); in particular, we have the coincidence of the corresponding characteristic polynomials, i.e.,

$$P_2(X(v), t) = \det(1 - t\text{Fr}, H^2(X(v), \mathbb{Q}_\ell))) = \det(1 - t\text{Fr}^{-1}, H^2(\bar{X}, \mathbb{Q}_\ell)).$$

In particular, the reciprocal roots of $P_2(X(v), t)$ are exactly the eigenvalues of Fr^{-1}; in addition, it follows from the semisimplicity of the Frobenius endomorphism (Subsect. 1.1) that Fr^\ast and (therefore) Fr_v are semisimple linear operators in $H^2(\bar{X}, \mathbb{Q}_\ell)$. So, if

$$P_2(X(v), t) = 1 + \sum_{i=1}^{22} a_i(v)t^i \in \mathbb{Z}[t]$$

then the integer $-a_1(v)$ coincides with the trace of Fr^{-1} in $H^2(\bar{X}, \mathbb{Q}_\ell)$. It follows from Lemma 1.4 that $X(v)$ is ordinary if and only if $a_1(v)$ is not divisible by $p(v)$.

3.5. Suppose that

$$G_{\ell, X, K} \subset \text{Id} + \ell \text{End}_{\mathbb{Z}_\ell}(H^2(\bar{X}, \mathbb{Z}_\ell)),$$

K contains a primitive ℓth root of unity. Suppose also that the residue field $k(v)$ is a prime (finite) field \mathbb{F}_p of characteristic $p = p(v)$. Then $p - 1$ is divisible by ℓ.

Let us assume that $a_1(v)$ is divisible by p. Using the results of Subsect. 1.1 and 3.4, we may apply Lemma 3.3 to $u = \text{Fr}^{-1}$ and conclude that $\text{Fr}^{-1} = p \cdot \text{Id}$, i.e., $\text{Fr}_v = p^{-1} \cdot \text{Id} \in \mathfrak{S}$.

This proves that if (instead) we assume that Fr_v does not belong to \mathfrak{S} then $a_1(v)$ is not divisible by p and, thanks to the last assertion of Subsect. 3.4, $X(v)$ is ordinary.

It is well-known [12, Theorems 1.112 and 1.113 on p. 83] that the set of v’s with prime residue fields has density one. On the other hand, a result of Serre [23] Sect. 4.1, Cor. 1 applied to $G = G_{\ell, X, K}$ and $C = \mathfrak{S}$ and combined with Lemma 3.1 implies that the set of v’s with $\text{Fr}_v \in \mathfrak{S}$ has density zero. It follows that (under our assumptions on K) the set of v’s with ordinary reduction $X(v)$ has density one.

Proof of Theorem 0.1 So, K is an arbitrary number field. There exists a finite Galois extension L/K such that L contains a primitive ℓth root of unity and

$$G_{\ell, X, L} \subset \text{Id} + \ell \cdot \text{End}_{\mathbb{Z}_\ell}(H^2(\bar{X}, \mathbb{Z}_\ell)).$$

Now the result follows from the last assertion of Subsect. 3.5 applied to L (instead of K.)

References

[1] M. Artin, *Supersingular K3 surfaces*. Ann. Sci. Ec. Norm. Sup., 4° serie, 7 (1974), 543–568.

[2] M. Artin, B. Mazur, *Formal groups arising from algebraic varieties*. Ann. Sci. Ec. Norm. Sup., 4° serie, 10 (1977), 87–132.

[3] P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton University Press, Princeton, 1978.

[4] F.A. Bogomolov, *Sur l’algébricité des représentations ℓ-adiques*. C.R.A.S Paris, Sér. A-B 290 (1980), A701–A703.

[5] F. A. Bogomolov, *Points of finite order on abelian varieties*. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 782–804; Math. USSR Izv. 17 (1981), 55–72.

[6] P. Deligne, *La conjecture de Weil pour les surfaces K3*. Invent. Math. 15 (1972), 206-226.

[7] P. Deligne (édité par L. Illusie), *Relèvement des surfaces K3 en caractéristique nulle*. In: Surfaces Algébriques, Springer Lecture Notes in Math. 868 (1981), 58–79.
ORDINARY REDUCTION OF K3 SURFACES

[8] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent.Math. 73 (1983), 349-366; Erratum 75 (1984), 381.

[9] M. Hindry, J.H. Silverman, Diophantine geometry, An Introduction. GTM 201, Springer, 2000.

[10] N. Katz, Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Publ. Math. IHES 39 (1970), 175-232.

[11] N. Katz, W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73-77.

[12] H. Koch, Number Theory II (Algebraic Number Theory). Encyclopedia of Mathematical Sciences 62, Springer Verlag, Berlin Heidelberg, 1992.

[13] B. Mazur, Frobenius and the Hodge filtration. Bull. Amer. Math. Soc. 78 (1972), 653-667.

[14] D. Mumford, Abelian varieties, Second Edition, Oxford University Press, London, 1974.

[15] R. Noot, Abelian varieties—Galois representation and properties of ordinary reduction. Compositio Math. 97 (1995), no. 1-2, 161–171.

[16] R. Noot, Abelian varieties with ℓ-adic Galois representation of Mumford’s type. J. reine angew. Math. 519 (2000), 155-169.

[17] N. Nygaard, The Tate conjecture for ordinary K3 surfaces over finite fields. Invent. Math. 74 (1983), 213–237.

[18] N. Nygaard, A. Ogus, Tate’s conjecture for K3 surfaces of finite height. Ann. of Math. 122 (1985), 461–597.

[19] A. Ogus, Hodge cycles and crystalline cohomology. In: Springer Lecture Notes in Math. 900 (1982), 357–414.

[20] I.I. Piatetski-Shapiro, I.R. Shafarevich, Arithmetical of K3 surfaces. Trudy Mat. Inst. Steklov 132 (1973), 44-54; Proc. Steklov. Math. Inst. 132 (1975), 45–57.

[21] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, Second Edition, Addison-Wesley, 1989.

[22] J.-P. Serre, Représentations ℓ-adiques, in Algebraic Number Theory (Proceedings of the International Taniguchi Symposium, Kyoto, 1976) (S. Iyanaga, ed.), Japan Society for the Promotion of Science, Tokyo, 1977, pp. 177-193.

[23] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Publ. Math. IHES 54 (1981), 323-401.

[24] A.N. Skorobogatov, Yu. G. Zarhin, A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces. J. Algebraic Geometry 17 (2008), 481–502.

[25] S.G. Tankeev, On weights of the ℓ-adic representation and arithmetic of Frobenius eigenvalues. Izvestiya Akad. Nauk, Ser. Mat. 63 (1999), 185–224; Izvestiya Mathematics 63 (1999), 181–218.

[26] J. Tate, Conjectures on algebraic cycles in ℓ-adic cohomology. Motives (Seattle, WA, 1991), pp. 71-83, Proc. Sympos. Pure Math. 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.

[27] J.-D. Yu, N. Yui, K3 Surfaces of Finite Height over Finite Fields. J. Math. Kyoto Univ. 48 (2008), 499–519.

[28] Yu. G. Zarhin, Hodge groups of K3 surfaces. J. reine angew. Math. 341 (1983), 193–220.

[29] Yu. G. Zarhin, Weights of simple Lie algebras in the cohomology of algebraic varieties. Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984) 264-304; Math. USSR Izv. 24 (1985) 245-282.

[30] Yu. G. Zarhin, Transcendental cycles on ordinary K3 surfaces over finite fields. Duke Math. J., 72 (1993), 65-83.

[31] K. Joshi, C. S. Rajan, Frobenius splitting and ordinarity. Int. Math. Res. Not. 2003, no. 2, 109–121.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NY 10012, USA

E-mail address: bogomolo@cims.nyu.edu

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802, USA

E-mail address: zarhin@math.psu.edu