Exactly solvable time-dependent non-Hermitian quantum systems from point transformations

Rebecca Tenney
City, University of London
Pseudo-Hermitian Hamiltonians in Quantum Physics

October 14, 2021
Exactly solvable time-dependent non-Hermitian quantum systems from point transformations

Rebecca Tenney
City, University of London
Pseudo-Hermitian Hamiltonians in Quantum Physics

October 14, 2021

Based on: A. Fring and R. Tenney, Phys. Lett. A. 410 127548 (2021)
Introduction

Time-dependent non-Hermitian quantum systems

Point transformations

Invariant, Dyson map and metric

Conclusions

Rebecca Tenney

Exactly solvable time-dependent non-Hermitian quantum systems from point transformations
Outline

Introduction

Time-dependent non-Hermitian quantum systems

Point transformations

Invariant, Dyson map and metric

Conclusions
Outline

- Introduction
- Time-dependent non-Hermitian quantum systems
 - Key equations
 - The Dyson map, the metric
 - Different solution procedures

Rebecca Tenney

Exactly solvable time-dependent non-Hermitian quantum systems from point transformations
2/19
Outline

Introduction

Time-dependent non-Hermitian quantum systems
 - Key equations
 - The Dyson map, the metric
 - Different solution procedures

Point transformations
Introduction

Time-dependent non-Hermitian quantum systems
 - Key equations
 - The Dyson map, the metric
 - Different solution procedures

Point transformations

Application to the Swanson Model
Outline

- Introduction
- Time-dependent non-Hermitian quantum systems
 - Key equations
 - The Dyson map, the metric
 - Different solution procedures
- Point transformations
- Application to the Swanson Model
- Conclusions
Hamiltonians need not be Hermitian to have real eigenvalues.
Hamiltonians need not be Hermitian to have real eigenvalues. If a Hamiltonian is \mathcal{PT}-symmetric it has real eigenvalues.

$$\mathcal{PT} : \quad p \rightarrow p, \quad x \rightarrow -x, \quad i \rightarrow -i$$
Introduction

Hamiltonians need not be Hermitian to have real eigenvalues. If a Hamiltonian is \mathcal{PT}-symmetric it has real eigenvalues.

$$\mathcal{PT} : \quad p \rightarrow p, \quad x \rightarrow -x, \quad i \rightarrow -i$$

$$H = p^2 + x^2(ix)^\varepsilon$$

$\varepsilon > 0 \rightarrow$ real eigenvalues

Figure 1: C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)
Two time-dependent Schrödinger equations for $h(t) = h^\dagger(t)$, $H(t) \neq H^\dagger(t)$

$$h(t)\psi(t) = i\hbar \partial_t \psi(t) \quad \text{and} \quad H(t)\phi(t) = i\hbar \partial_t \phi(t)$$
Two time-dependent Schrödinger equations for \(h(t) = h^\dagger(t), H(t) \neq H^\dagger(t) \)

\[
h(t)\Psi(t) = i\hbar \partial_t \Psi(t) \quad \text{and} \quad H(t)\phi(t) = i\hbar \partial_t \phi(t)
\]

Time-dependent Dyson map

\[
\Psi(t) = \eta(t)\phi(t)
\]

\[\implies\] Time-dependent Dyson equation (TDDE):

\[
h(t) = \eta(t)H(t)\eta(t)^{-1} + i\hbar \partial_t \eta(t)\eta(t)^{-1}
\]
Two time-dependent Schrödinger equations for $h(t) = h^\dagger(t)$, $H(t) \neq H^\dagger(t)$

\[
h(t)\Psi(t) = i\hbar\partial_t\Psi(t) \quad \text{and} \quad H(t)\phi(t) = i\hbar\partial_t\phi(t)
\]

Time-dependent Dyson map

\[
\Psi(t) = \eta(t)\phi(t)
\]

\implies Time-dependent Dyson equation (TDDE):

\[
h(t) = \eta(t)H(t)\eta(t)^{-1} + i\hbar\partial_t\eta(t)\eta(t)^{-1}
\]

\implies Time-dependent quasi-Hermiticity relation (TDQH):

\[
H^\dagger(t)\rho(t) - \rho(t)H(t) = i\hbar\partial_t\rho(t), \quad \text{where} \quad \rho(t) = \eta^\dagger(t)\eta(t)
\]
Observables $o(t)$ in Hermitian system are self-adjoint.
Observables $o(t)$ in Hermitian system are self-adjoint.
Observables $\mathcal{O}(t)$ in the non-Hermitian system are quasi-Hermitian.
Observables $o(t)$ in Hermitian system are self-adjoint.
Observables $\mathcal{O}(t)$ in the non-Hermitian system are quasi-Hermitian.

$$o(t) = \eta(t)\mathcal{O}(t)\eta(t)^{-1}$$
Observables $o(t)$ in Hermitian system are self-adjoint.
Observables $\mathcal{O}(t)$ in the non-Hermitian system are quasi-Hermitian.

$$o(t) = \eta(t)\mathcal{O}(t)\eta(t)^{-1}$$

Calculate observables:

$$\langle \Psi(t)|o(t)\Psi(t)\rangle = \langle \phi(t)|\rho(t)\mathcal{O}(t)\phi(t)\rangle$$
Observables $o(t)$ in Hermitian system are self-adjoint. Observables $O(t)$ in the non-Hermitian system are quasi-Hermitian.

$$o(t) = \eta(t)O(t)\eta(t)^{-1}$$

Calculate observables:

$$\langle \Psi(t) | o(t) \Psi(t) \rangle = \langle \phi(t) | \rho(t)O(t)\phi(t) \rangle$$

$H(t)$ not observable $\rightarrow \tilde{H}(t) = \eta(t)^{-1}h(t)\eta(t)$ is observable energy operator.
Observables $o(t)$ in Hermitian system are self-adjoint. Observables $O(t)$ in the non-Hermitian system are quasi-Hermitian.

$$o(t) = \eta(t)O(t)\eta(t)^{-1}$$

Calculate observables:

$$\langle \Psi(t)|o(t)\Psi(t)\rangle = \langle \phi(t)|\rho(t)O(t)\phi(t)\rangle$$

$H(t)$ not observable $\rightarrow \tilde{H}(t) = \eta(t)^{-1}h(t)\eta(t)$ is observable energy operator.

Must start by calculating $\rho(t)$ and $\eta(t)$!
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t) \rightarrow \rho(t) = \eta^\dagger(t) \eta(t)$

2. Solve TDQH directly for $\rho(t)$ -> harder to determine $\eta(t)$

3. Lewis-Riesenfeld invariants

\[\frac{dI_H(t)}{dt} = \partial_t I_H(t) - i \hbar [I_H(t), H(t)] = 0, \]

for $H = h = h^\dagger$, $H \neq H^\dagger$.

Invariants are quasi-Hermitian

\[I_h(t) = \eta(t) I_H \eta(t)^{-1} \]

Solution to TDSE:

\[I_H |\varphi_H(t)\rangle = \lambda |\varphi_H(t)\rangle, \]

\[|\Psi_H(t)\rangle = e^{i \hbar \alpha(t)} |\varphi_H(t)\rangle, \]

\[\dot{\alpha}(t) = \langle \varphi_H(t) | (i \hbar \partial_t - H) | \varphi_H(t) \rangle, \]

\[\dot{\lambda} = 0. \]

1. H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)
2. B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t)$

1. H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)
2. B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t) \rightarrow \rho(t) = \eta^\dagger(t)\eta(t)$

1. H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)

2. B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t) \rightarrow \rho(t) = \eta^\dagger(t)\eta(t)$
2. Solve TDQH directly for $\rho(t)$

1. H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)
2. B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t) \rightarrow \rho(t) = \eta^\dagger(t) \eta(t)$
2. Solve TDQH directly for $\rho(t) \rightarrow$ harder to determine $\eta(t)$

1. H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)
2. B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t) \rightarrow \rho(t) = \eta^\dagger(t)\eta(t)$
2. Solve TDQH directly for $\rho(t) \rightarrow$ harder to determine $\eta(t)$
3. Lewis-Riesenfeld invariants1:

$$\frac{dl_H(t)}{dt} = \partial_t l_H(t) - i\hbar [l_H(t), \mathcal{H}(t)] = 0, \text{ for } \mathcal{H} = h = h^\dagger, H \neq H^\dagger$$

1H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)

2B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t) \rightarrow \rho(t) = \eta(t)\eta(t)$
2. Solve TDQH directly for $\rho(t) \rightarrow$ harder to determine $\eta(t)$
3. Lewis-Riesenfeld invariants

$$\frac{dI_{\mathcal{H}}(t)}{dt} = \partial_t I_{\mathcal{H}}(t) - i\hbar [I_{\mathcal{H}}(t), \mathcal{H}(t)] = 0, \text{ for } \mathcal{H} = h = h^\dagger, H \neq H^\dagger$$

Invariants are quasi-Hermitian 2

$$I_h(t) = \eta(t)I_{\mathcal{H}}(t)^{-1}$$

1 H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)

2 B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
How do we calculate $\rho(t)$ and $\eta(t)$?

1. Solve TDDE directly for $\eta(t) \rightarrow \rho(t) = \eta^\dagger(t)\eta(t)$
2. Solve TDQH directly for $\rho(t) \rightarrow$ harder to determine $\eta(t)$
3. Lewis-Riesenfeld invariants1:

$$\frac{dl_{\mathcal{H}}(t)}{dt} = \partial_t l_{\mathcal{H}}(t) - i\hbar [l_{\mathcal{H}}(t), \mathcal{H}(t)] = 0, \text{ for } \mathcal{H} = h = h^\dagger, H \neq H^\dagger$$

Invariants are quasi-Hermitian2

$$l_h(t) = \eta(t)l_{\mathcal{H}}\eta(t)^{-1}$$

Solution to TDSE:

$$l_{\mathcal{H}} |\phi_{\mathcal{H}}(t)\rangle = \lambda |\phi_{\mathcal{H}}(t)\rangle, \quad |\Psi_{\mathcal{H}}(t)\rangle = e^{i\hbar\alpha(t)} |\phi_{\mathcal{H}}(t)\rangle$$

$$\dot{\alpha}(t) = \langle \phi_{\mathcal{H}}(t) | (i\hbar \partial_t - \mathcal{H}) |\phi_{\mathcal{H}}(t)\rangle, \quad \dot{\lambda} = 0$$

1H. Lewis and W. Riesenfeld, J. Math. Phys. 10, 1458-1473 (1969)

2B. Khantoul, A. Bounames and M. Maamache, The European Physical Journal Plus 132(6), 258 (2017).
Four step approach

For information on point transformations constructed between Hermitian Hamiltonians see\(^3\)

- Two time-dependent Schrödinger equations:

\[
H_0(\chi)\psi(\chi, \tau) = i\hbar \partial_\tau \psi(\chi, \tau) \quad \text{and} \quad H(x, t)\phi(x, t) = i\hbar \partial_t \phi(x, t)
\]

Reference Hamiltonian: \(H_0(\chi)\)
Target Hamiltonian: \(H(x, t) \neq H^\dagger(x, t)\)

\(^3\)K. Zelaya and O. Rosas-Ortiz, Physica Scripta \textbf{95}(6), 064004 (2020).
Four step approach

For information on point transformations constructed between Hermitian Hamiltonians see\(^3\)

- Two time-dependent Schrödinger equations:
 \[
 H_0(\chi)\psi(\chi, \tau) = i\hbar \partial_\tau \psi(\chi, \tau) \quad \text{and} \quad H(x, t)\phi(x, t) = i\hbar \partial_t \phi(x, t)
 \]

 Reference Hamiltonian: \(H_0(\chi) \)
 Target Hamiltonian: \(H(x, t) \neq H^\dagger (x, t) \)

- Point transformation \(\Gamma \):
 \[
 \Gamma : H_0 - \text{TDSE} \rightarrow H - \text{TDSE} \quad [\chi, \tau, \psi(\chi, \tau)] \rightarrow [x, t, \phi(x, t)]
 \]
 \[
 \chi = P(x, t, \phi) \quad \tau = Q(x, t, \phi) \quad \psi = R(x, t, \phi)
 \]

\(^3\)K. Zelaya and O. Rosas-Ortiz, Physica Scripta 95(6), 064004 (2020).
Framework to determine $\rho(t)$ and $\eta(t)$

The reference Hamiltonian

The target Hamiltonian

Constructing the point transformation

Four step approach

- Construction of invariant

$$\Gamma : H_0(x) \rightarrow I_H(x,t)$$
Four step approach

- Construction of invariant

\[\Gamma : H_0(x) \rightarrow I_H(x, t) \]

\[\frac{dI_H(x, t)}{dt} = i\hbar \partial_t I_H(x, t) + [I_H(x, t), H(x, t)] = 0 \]
Four step approach

- Construction of invariant

\[\Gamma : H_0(\chi) \rightarrow I_H(x, t) \]

\[\frac{dI_H(x, t)}{dt} = i\hbar \partial_t I_H(x, t) + [I_H(x, t), H(x, t)] = 0 \]

- Determine \(\eta(t) \) and \(\rho(t) \):

\[I_\hbar(t) = \eta(t) I_H(x, t) \eta(t)^{-1} \]
Four step approach

- Construction of invariant

\[\Gamma : H_0(\chi) \rightarrow I_H(x, t) \]

\[\frac{dI_H(x, t)}{dt} = i\hbar \partial_t I_H(x, t) + [I_H(x, t), H(x, t)] = 0 \]

- Determine \(\eta(t) \) and \(\rho(t) \):

\[I_h(t) = \eta(t) I_H(x, t) \eta(t)^{-1} \]

\[\Rightarrow h(t) = \eta(t) H(x, t) \eta^{-1} + i\hbar \partial_t \eta(t) \eta(t)^{-1} \]

\[\Rightarrow \rho(t) = \eta(t) \eta^\dagger(t) \eta(t) \]
Outline

Introduction

Time-dependent non-Hermitian quantum systems

Point transformations

Invariant, Dyson map and metric

Conclusions

The reference Hamiltonian

The target Hamiltonian

Constructing the point transformation

The reference Hamiltonian

Time-independent harmonic oscillator:

\[H_0(\chi) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2\chi^2, \]

\[\chi = \chi(x, t), \quad \tau(t), \quad \psi = A(x, t)\phi, \]

Simplify the calculation.

No \phi^2 x term so require \psi \phi \phi = 0.

Rebecca Tenney

Exactly solvable time-dependent non-Hermitian quantum systems from point transformations
The reference Hamiltonian

Time-independent harmonic oscillator:

\[H_0(\chi) = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 \chi^2, \quad P = -i\hbar \partial_\chi \]
The reference Hamiltonian

Time-independent harmonic oscillator:

\[H_0(x) = \frac{P^2}{2m} + \frac{1}{2} m \omega^2 x^2, \quad P = -i\hbar \partial_x \]

\[\chi = \chi(x, t), \quad \tau(t), \quad \psi = A(x, t)\phi, \]
The reference Hamiltonian

Time-independent harmonic oscillator:

\[H_0(\chi) = \frac{P^2}{2m} + \frac{1}{2}m\omega^2\chi^2, \quad P = -i\hbar\partial_{\chi} \]

\[\chi = \chi(x, t), \quad \tau(t), \quad \psi = A(x, t)\phi, \]

- Simplify the calculation.
The reference Hamiltonian

Time-independent harmonic oscillator:

\[H_0(\chi) = \frac{P^2}{2m} + \frac{1}{2} m \omega^2 \chi^2, \quad P = -i\hbar \partial_x \]

\[\chi = \chi(x, t), \quad \tau(t), \quad \psi = A(x, t) \phi, \]

- Simplify the calculation.
- No \(\phi_x^2 \) term so require \(\psi_{\phi\phi} = 0. \)
The Reference Hamiltonian

Compute the total derivatives:

\[
\frac{d\psi}{dx} = \psi_x \chi_x = A\phi_x + A_x \phi \\
\frac{d\psi}{dt} = \psi_x \chi_t + \psi_t \tau_t = A\phi_t + A_t \phi \\
\frac{d^2\psi}{dx^2} = \psi_{xx} \chi_x^2 + \psi_x \chi_{xx} = A\phi_{xx} x 2A_x \phi_x + \psi A_{x,x}
\]
Compute the total derivatives:

\[
\frac{d\psi}{dx} = \psi_x x_x = A\phi_x + A_x \phi
\]

\[
\frac{d\psi}{dt} = \psi_x x_t + \psi_\tau \tau_t = A\phi_t + A_t \phi
\]

\[
\frac{d^2\psi}{dx^2} = \psi_{x,x} x_x^2 + \psi_x x_{x,x} = A\phi_{x,x} 2A_x \phi_x + \psi A_{x,x}
\]

→ Solve for \(\psi_x, \psi_\tau\) and \(\psi_{x,x}\) and sub into TDSE for \(H_0(\chi)\)
Point transformed TDSE:

\[i\hbar \phi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi^2_x} \phi_{xx} + B_0(x, t) \phi_x - V_0(x, t) \phi = 0 \quad (*) \]

where

\[B_0(x, t) = -i\hbar \frac{\chi_t}{\chi_x} + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi^2_x} \left(2 \frac{A_x}{A} - \frac{\chi_{xx}}{\chi_x} \right) \]

\[V_0(x, t) = \frac{1}{2} m \omega^2 \tau_t \chi^2 - i\hbar \left(\frac{A_t}{A} - \frac{A_x \chi_t}{A \chi_x} \right) - \frac{\hbar^2}{2m} \frac{\tau_t}{\chi^2_x} \left(\frac{A_{xx}}{A} - \frac{A_x \chi_{xx}}{A \chi_x} \right) \]
Point transformed TDSE:

\[i\hbar \dot{\phi}_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \phi_{xx} + B_0(x, t) \phi_x - V_0(x, t) \phi = 0 \quad (*) \]

where

\[B_0(x, t) = -i\hbar \frac{\chi_t}{\chi_x} + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \left(2 \frac{A_x}{A} - \frac{\chi_{xx}}{\chi_x} \right) \]

\[V_0(x, t) = \frac{1}{2} m \omega^2 \tau_t \chi^2 - i\hbar \left(\frac{A_t}{A} - \frac{A_x \chi_t}{A \chi_x} \right) - \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \left(\frac{A_{xx}}{A} - \frac{A_x \chi_{xx}}{A \chi_x} \right) \]

→ Compare (*) directly with TDSE for target Hamiltonian \(H(x, t) \) and solve for \(A, \chi \) and \(\tau \).
The reference Hamiltonian - other choices

\[i\hbar \phi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi^2} \phi_{xx} + B_i(x, t) \phi_x - V_i(x, t) \phi = 0 \]
The reference Hamiltonian - other choices

\[i\hbar \dot{\phi} + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi^2} \phi_{xx} + B_i(x, t) \phi_x - V_i(x, t) \phi = 0 \]

\[H_0^{(1)}(\chi) = \frac{P^2}{2m}, \quad B_1(x, t) = B_0(x, t), \quad V_1(x, t) = V_0(x, t) - \frac{1}{2} m \omega^2 \chi^2 \tau_t \]
The reference Hamiltonian - other choices

\[i\hbar \phi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \phi_{xx} + B_i(x, t) \phi_x - V_i(x, t) \phi = 0 \]

\[H_0^{(1)}(\chi) = \frac{P^2}{2m}, \quad B_1(x, t) = B_0(x, t), \quad V_1(x, t) = V_0(x, t) - \frac{1}{2} m \omega^2 \chi^2 \tau_t \]

\[H_0^{(2)}(\chi) = H_0(\chi) + a \chi, \quad B_2(x, t) = B_0(x, t), \quad V_2(x, t) = V_0(x, t) + a \chi \tau_t \]
The reference Hamiltonian - other choices

\[\begin{align*}
 i\hbar \phi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \phi_{xx} + B_i(x, t) \phi_x - V_i(x, t) \phi = 0 \\
 H_0^{(1)}(\chi) = \frac{P^2}{2m}, \quad B_1(x, t) = B_0(x, t), \quad V_1(x, t) = V_0(x, t) - \frac{1}{2} m \omega^2 \chi^2 \tau_t \\
 H_0^{(2)}(\chi) = H_0(\chi) + a \chi, \quad B_2(x, t) = B_0(x, t), \quad V_2(x, t) = V_0(x, t) + a \chi \tau_t \\
 H_0^{(3)}(\chi) = H_0(\chi) + a \{ \chi, P \}, \quad B_3(x, t) = B_0(x, t) + \frac{2ia\hbar\chi \tau_t}{\chi_x}, \quad V_3(x, t) = V_0(x, t) - \frac{2ia\chi_x \tau_t}{A_{\chi_x}} - ia\hbar \tau_t
\end{align*} \]
The time-dependent Swanson model

\[\tilde{H}_S(t) = \omega(t) \left(a^\dagger a + 1/2 \right) + \bar{\alpha}(t) a^2 + \bar{\beta}(t) \left(a^\dagger \right)^2, \quad \bar{\alpha} \neq \bar{\beta}^* \]

\[a = (x + ip)/2, \quad a^\dagger = (x - ip)/2 \]
The time-dependent Swanson model

\[
\tilde{H}_S(t) = \omega(t) \left(a^\dagger a + 1/2 \right) + \tilde{\alpha}(t) a^2 + \tilde{\beta}(t) \left(a^\dagger \right)^2, \quad \tilde{\alpha} \neq \tilde{\beta}^* \\
 a = (x + ip)/2, \quad a^\dagger = (x - ip)/2
\]

\[\tilde{\alpha} = \frac{M\Omega^2}{4} - \frac{1}{4M} + \alpha, \quad \tilde{\beta} = \frac{M\Omega^2}{4} - \frac{1}{4M} - \alpha, \quad \omega = \frac{M\Omega^2}{2} + \frac{1}{2M},\]

\[H_S(x, t) := \tilde{H}_S(t) - \frac{\omega(t)}{2} = \frac{p^2}{2M(t)} + \frac{M(t)}{2} \Omega(t)^2 x^2 + i\alpha(t)\{x, p\}, \quad M, \Omega \in \mathbb{R}, \ \alpha \in \mathbb{C}\]
The time-dependent Swanson model

\[\tilde{H}_S(t) = \omega(t) \left(a^\dagger a + 1/2 \right) + \tilde{\alpha}(t) a^2 + \tilde{\beta}(t) \left(a^\dagger \right)^2, \quad \tilde{\alpha} \neq \tilde{\beta}^* \]

\[a = (x + ip)/2, \quad a^\dagger = (x - ip)/2 \]

\[\tilde{\alpha} = \frac{M\Omega^2}{4} - \frac{1}{4M} + \alpha, \quad \tilde{\beta} = \frac{M\Omega^2}{4} - \frac{1}{4M} - \alpha, \quad \omega = \frac{M\Omega^2}{2} + \frac{1}{2M}, \]

\[H_S(x, t) := \tilde{H}_S(t) - \frac{\omega(t)}{2} = \frac{p^2}{2M(t)} + \frac{M(t)}{2} \Omega(t)^2 x^2 + i\alpha(t)\{x, p\}, \quad M, \Omega \in \mathbb{R}, \quad \alpha \in \mathbb{C} \]

\[\mathcal{PT} : x \rightarrow -x, \quad p \rightarrow p, \quad i \rightarrow -i, \quad (M, \Omega, \alpha) \rightarrow (M, \Omega, \alpha), \quad \alpha = \alpha_r + i\alpha_i \]

\[\alpha_r \rightarrow \alpha_r, \quad \alpha_i \rightarrow -\alpha_i \]
Point transformation $\Gamma^S_0 : H_0(\chi) \rightarrow H_s(x, t)$

Point transformed TDSE:

$$i\hbar \psi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \phi_{xx} + B_0(x, t)\phi_x - V_0(x, t)\phi = 0 \quad (*)$$

TDSE for $H_s(x, t)$:

$$i\hbar \phi_t + \frac{\hbar^2}{2M(t)} \phi_{xx} - 2\hbar\alpha(t)x \phi_x - \hbar\alpha(t)\phi - \frac{1}{2} M(t)\Omega(t)^2 x^2 \phi = 0, \quad (\circ)$$
Point transformation $\Gamma^S_0 : H_0(\chi) \rightarrow H_s(x, t)$

Point transformed TDSE:

$$i\hbar \psi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \phi_{xx} + B_0(x, t)\phi_x - V_0(x, t)\phi = 0 \quad (*)$$

TDSE for $H_s(x, t)$:

$$i\hbar \phi_t + \frac{\hbar^2}{2M(t)} \phi_{xx} - 2\hbar\alpha(t)x\phi_x - \hbar\alpha(t)\phi - \frac{1}{2} M(t)\Omega(t)^2x^2\phi = 0, \quad (\circ)$$

Compare $(*)$ and (\circ):

$$\frac{\tau_t}{m\chi_x^2} = \frac{1}{M(t)},$$
Point transformation $\Gamma^S_0 : H_0(\chi) \rightarrow H_s(x, t)$

Point transformed TDSE:

$$i\hbar \psi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \phi_{xx} + B_0(x, t) \phi_x - V_0(x, t) \phi = 0 \quad (*)$$

TDSE for $H_s(x, t)$:

$$i\hbar \phi_t + \frac{\hbar^2}{2M(t)} \phi_{xx} - 2\hbar \alpha(t) x \phi_x - \hbar \alpha(t) \phi - \frac{1}{2} M(t) \Omega(t)^2 x^2 \phi = 0, \quad (\circ)$$

Compare $(*)$ and (\circ):

$$\frac{\tau_t}{m\chi_x^2} = \frac{1}{M(t)}, \quad B(x, t) = -2\hbar \alpha(t) x,$$
Point transformation $\Gamma^S_0 : H_0(\chi) \to H_s(x, t)$

Point transformed TDSE:

$$i\hbar \psi_t + \frac{\hbar^2}{2m} \frac{\tau_t}{\chi_x^2} \phi_{xx} + B_0(x, t)\phi_x - V_0(x, t)\phi = 0 \quad (*)$$

TDSE for $H_s(x, t)$:

$$i\hbar \phi_t + \frac{\hbar^2}{2M(t)} \phi_{xx} - 2\hbar\alpha(t)x\phi_x - \hbar\alpha(t)\phi - \frac{1}{2} M(t)\Omega(t)^2 x^2 \phi = 0, \quad (\circ)$$

Compare $(*)$ and (\circ):

$$\frac{\tau_t}{m\chi_x^2} = \frac{1}{M(t)}, \quad B(x, t) = -2\hbar\alpha(t)x, \quad V(x, t) = \frac{1}{2} M(t)\Omega(t)^2 x^2 + \hbar\alpha(t)$$

Rebecca Tenney
Solution:

\[M(t) = m \sigma^{-r-2s}, \quad \tau(t) = \int_0^t \sigma(y)^r \, dy, \quad \chi(x, t) = \frac{x + \gamma(t)}{\sigma(t)^s} \]
Point transformation $\Gamma_0^S : H_0(\chi) \rightarrow H_s(x, t)$

Solution:

$M(t) = m\sigma^{-r-2s}$, \quad $\tau(t) = \int_{0}^{t} \sigma(y)^{r} dy$, \quad $\chi(x, t) = \frac{x + \gamma(t)}{\sigma(t)^s}$

$\gamma = 0$:

$A(x, t) = \exp \left\{ \frac{i m \sigma^{-1-r-2s}}{\hbar} \left[\left(i \alpha \sigma - \frac{1}{2} s \sigma_t \right) x^2 + \delta(t) \right] \right\}$

$\delta(t) = \sigma^{1+r+2s} \left(c_1 - \frac{i s \hbar}{2m} \log \sigma \right)$
Point transformation $\Gamma^S_0 : H_0(\chi) \to H_s(x, t)$

Solution:

$$M(t) = m\sigma^{-r-2s}, \quad \tau(t) = \int^t \sigma(y)^r\,dy, \quad \chi(x, t) = \frac{x + \gamma(t)}{\sigma(t)^s}$$

$\gamma = 0$:

$$A(x, t) = \exp\left\{ \frac{i\sigma^{-1-r-2s}}{\hbar} \left[\left(i\alpha\sigma - \frac{1}{2}s\sigma_t \right)x^2 + \delta(t) \right]\right\}$$

$$\delta(t) = \sigma^{1+r+2s} \left(c_1 - \frac{ish}{2m} \log \sigma \right)$$

\mathcal{PT}-symmetry:

$$\alpha_i = \frac{1}{4} \partial_t \ln \left(\frac{\sigma^{r+2s}}{\alpha_r} \right)$$
Point transformation $\Gamma_0^S : H_0(\chi) \rightarrow H_s(x, t)$

Solution:

$$M(t) = m\sigma^{-r-2s}, \quad \tau(t) = \int_0^t \sigma(y)^r dy, \quad \chi(x, t) = \frac{x + \gamma(t)}{\sigma(t)^s}$$

$\gamma = 0$:

$$A(x, t) = \exp \left\{ \frac{i m \sigma^{-1-r-2s}}{\hbar} \left[\left(i\alpha \sigma - \frac{1}{2} s \sigma_t \right) x^2 + \delta(t) \right] \right\}$$

$$\delta(t) = \sigma^{1+r+2s} \left(c_1 - \frac{i \hbar}{2m} \log \sigma \right)$$

\mathcal{PT}-symmetry:

$$\alpha_i = \frac{1}{4} \partial_t \ln \left(\frac{\sigma^{r+2s}}{\alpha_r} \right) \rightarrow \alpha_i \propto \partial_t$$
Point transformation $\Gamma_0^S : H_0(\chi) \rightarrow H_s(x, t)$

Solution:

$$M(t) = m\sigma^{-r-2s}, \quad \tau(t) = \int_0^t \sigma(y)^r dy, \quad \chi(x, t) = \frac{x + \gamma(t)}{\sigma(t)^s}$$

$\gamma = 0$:

$$A(x, t) = \exp\left\{ \frac{i m \sigma^{-1-r-2s}}{\hbar} \left[\left(i\alpha \sigma - \frac{1}{2} s_\sigma t \right) x^2 + \delta(t) \right] \right\}$$

$$\delta(t) = \sigma^{1+r+2s} \left(c_1 - \frac{ish}{2m} \log \sigma \right)$$

\mathcal{PT}-symmetry:

$$\alpha_i = \frac{1}{4} \partial_t \ln \left(\frac{\sigma^{r+2s}}{\alpha_r} \right) \quad \rightarrow \quad \alpha_i \propto \partial_t \quad \rightarrow \quad \mathcal{PT} : \alpha_i \rightarrow -\alpha_i$$
Point transformation $\Gamma^S_0 : H_0(\chi) \rightarrow H_s(x, t)$

Auxiliary equation:

$$\sigma_{tt} = \sigma \left[\frac{2\alpha_r(2\Omega^2\alpha_r + 8\alpha_r^3 + (\alpha_r)_{tt}) - 3(\alpha_r)^2_t}{2r\alpha_r^2} \right] + \frac{(\frac{r}{2} + 1)\sigma_t^2}{\sigma} - \frac{2\omega^2\sigma^{2r+1}}{r}$$

4. V. Ermakov, Univ. Izv. Kiev. 20, 1-19 (1880).
5. E. Pinney, Proc. Amer. Math. Soc 1, 681(1) (1950).
Point transformation $\Gamma_0^S : H_0(\chi) \to H_s(x, t)$

Auxiliary equation:

$$\sigma_{tt} = \sigma \left[\frac{2\alpha_r(2\Omega^2\alpha_r + 8\alpha_r^3 + (\alpha_r)_{tt}) - 3(\alpha_r)^2_t}{2r\alpha_r^2} \right] + \frac{(r/2 + 1)\sigma_t^2}{\sigma} - \frac{2\omega^2\sigma^{2r+1}}{r}$$

Many choices for r, s and α_r, for example:

Time-independent mass:

- $\alpha_r = c_2\sigma^{r+2s}$, $r = -2s$, $s = 1 \rightarrow \alpha_i = 0$, α is time-independent,
- $\sigma_{tt} = -c_2^2\sigma + \frac{\omega^2}{\sigma^3} - \sigma\Omega^2$

4. V. Ermakov, Univ. Izv. Kiev. **20**, 1-19 (1880).
5. E. Pinney, Proc. Amer. Math. Soc **1**, 681(1) (1950).
Point transformation $\Gamma^S_0 : H_0(\chi) \rightarrow H_s(x, t)$

Auxiliary equation:

$$\sigma_{tt} = \sigma \left[\frac{2\alpha_r(2\Omega^2\alpha_r + 8\alpha_r^3 + (\alpha_r)_{tt}) - 3(\alpha_r)_t^2}{2r\alpha_r^2} \right] + \frac{(r + 1)\sigma^2_t}{\sigma} - \frac{2\omega^2\sigma^{2r+1}}{r}$$

Many choices for r, s and α_r, for example:

Time-independent mass:

- $\alpha_r = c_2\sigma^{r+2s}$, $r = -2s$, $s = 1 \rightarrow \alpha_i = 0$, α is time-independent,

- $\sigma_{tt} = -c_2^2\sigma + \frac{\omega^2}{\sigma^3} - \sigma\Omega^2$

α complex:

- $\alpha_r = \sigma^{-2-r}$, $r = 0$

- $\sigma_{tt} = \frac{4}{\sigma^3} + \sigma(\Omega^2 - \omega^2)$

σ : non-linear Ermakov-Pinney equation

4. V. Ermakov, Univ. Izv. Kiev. 20, 1-19 (1880).

5. E. Pinney, Proc. Amer. Math. Soc 1, 681(1) (1950).
Construct non-Hermitian invariant from the point transformation:

$$\Gamma_0^S : H_0(\chi) \rightarrow I_H(x, t)$$
Construct non-Hermitian invariant from the point transformation:

\[\Gamma^S_0 : H_0(\chi) \rightarrow \hat{l}_H(x, t) \]

\[\hat{l}_H(x, t) = \frac{\sigma^{2s}}{2m} p^2 + \frac{\sigma^{-r-1} (4i\sigma \alpha_r^2 + r\alpha_r\sigma_t - \sigma \alpha_{rt})}{4\alpha_r} \{x, p\} \]

\[+ \frac{\sigma^{-2(r+s+1)} [4m\omega^2 \alpha_r^2 \sigma^{2r+2} - m (4\sigma \alpha_r^2 - i\alpha_r\sigma_t + i\sigma \alpha_{rt})^2]}{8\alpha_r^2} x^2 \]
Construct non-Hermitian invariant from the point transformation:

\[\Gamma^S_0 : H_0(\chi) \rightarrow I_H(x, t) \]

\[
\hat{I}_H(x, t) = \frac{\sigma^{2s}}{2m} p^2 + \frac{\sigma^{-r-1}}{4\alpha_t} \left(4i\sigma\alpha_t^2 + r\alpha_t\sigma_t - \sigma\alpha_{rt} \right) \{x, p\}
\]

\[
+ \frac{\sigma^{-2(r+s+1)}}{8\alpha_t^2} \left[4m\omega^2\alpha_t^2\sigma^{2r+2} - m \left(4\sigma\alpha_t^2 - ir\alpha_t\sigma_t + i\sigma\alpha_{rt} \right)^2 \right] x^2
\]

Different reference Hamiltonians \(\rightarrow \) different invariants.
The Dyson map and metric

All invariants can be written as \((\gamma \neq 0) \)

\[
l_H = a_r p^2 + b_r p + (c_r + i c_i) \{ x, p \} + (d_r + i d_i) x^2 + (e_r + i e_i) x + f_r,
\]
The Dyson map and metric

All invariants can be written as ($\gamma \neq 0$)

$$I_H = a_r p^2 + b_r p + (c_r + ic_i) \{x, p\} + (d_r + id_i) x^2 + (e_r + ie_i) x + f_r,$$

Property:

$$\frac{e_i}{2b_r} = \frac{d_i}{4c_r} = \frac{c_i}{2a_r} = m_{\alpha r} \sigma^{-r-2s}.$$
The Dyson map and metric

All invariants can be written as ($\gamma \neq 0$)

$$I_H = a_r p^2 + b_r p + (c_r + i c_i) \{x, p\} + (d_r + i d_i) x^2 + (e_r + i e_i) x + f_r,$$

Property:

$$\frac{e_i}{2b_r} = \frac{d_i}{4c_r} = \frac{c_i}{2a_r} = m \alpha_r \sigma^{-r-2s}. \rightarrow \eta(t) = \exp \left[-m \alpha_r \sigma^{-r-2s} x^2 \right],$$
All invariants can be written as \((\gamma \neq 0)\)

\[
I_H = a_r p^2 + b_r p + (c_r + ic_i) \{x, p\} + (d_r + id_i) x^2 + (e_r + ie_i) x + f_r,
\]

Property:

\[
\frac{e_i}{2b_r} = \frac{d_i}{4c_r} = \frac{c_i}{2a_r} = m\alpha r^{-r-2s}. \rightarrow \eta(t) = \exp \left[-m\alpha r^{-r-2s} x^2 \right],
\]

Substitute \(\eta(t)\) into TDDE

\[
h = \frac{\sigma^{r+2s}}{2m} p^2 + \left(2m\alpha^2 \sigma^{-r-2s} + \frac{1}{2} m\sigma^{-r-2s} \Omega^2 \right) x^2 + \frac{1}{4} \partial_t \ln \left(\frac{\sigma^{r+2s}}{\alpha_r} \right) \{x, p\}.
\]
Point transformations can be used to construct non-Hermitian invariants for time-dependent non-Hermitian systems.

6 A. Fring and R. Tenney, arXiv:2108.06793 [quant-ph]

7 A. Fring and R. Tenney, Phys. Lett. A. 410 127548 (2021)
Conclusions

- Point transformations can be used to construct non-Hermitian invariants for time-dependent non-Hermitian systems.
- Increase number of steps to obtain Dyson map, bypass ansatz for invariant.

6 A. Fring and R. Tenney, arXiv:2108.06793 [quant-ph]
7 A. Fring and R. Tenney, Phys. Lett. A. 410 127548 (2021)
Conclusions

- Point transformations can be used to construct non-Hermitian invariants for time-dependent non-Hermitian systems.
- Increase number of steps to obtain Dyson map, bypass ansatz for invariant.
- Easier to determine Dyson maps \rightarrow easier to determine multiple maps \rightarrow construct an infinite series of Dyson maps\(^6\).

\(^6\) A. Fring and R. Tenney, arXiv:2108.06793 [quant-ph]

\(^7\) A. Fring and R. Tenney, Phys. Lett. A. 410 127548 (2021)
Point transformations can be used to construct non-Hermitian invariants for time-dependent non-Hermitian systems.

Increase number of steps to obtain Dyson map, bypass ansatz for invariant.

Easier to determine Dyson maps \rightarrow easier to determine multiple maps \rightarrow construct an infinite series of Dyson maps6.

Reference Hamiltonian need not be exactly solvable to obtain invariant for target Hamiltonian. Reference Hamiltonian doesn’t need to be Hermitian7.

6 A. Fring and R. Tenney, arXiv:2108.06793 [quant-ph]

7 A. Fring and R. Tenney, Phys. Lett. A. 410 127548 (2021)
Conclusions

- Point transformations can be used to construct non-Hermitian invariants for time-dependent non-Hermitian systems.
- Increase number of steps to obtain Dyson map, bypass ansatz for invariant.
- Easier to determine Dyson maps \rightarrow easier to determine multiple maps \rightarrow construct an infinite series of Dyson maps6.
- Reference Hamiltonian need not be exactly solvable to obtain invariant for target Hamiltonian. Reference Hamiltonian doesn’t need to be Hermitian7.
- Apply technique to determine Dyson maps for more complicated systems.

Thank you for your attention.

6 A. Fring and R. Tenney, arXiv:2108.06793 [quant-ph]

7 A. Fring and R. Tenney, Phys. Lett. A. 410 127548 (2021)