WEIGHTED PLURIPOTENTIAL THEORY ON COMPLEX KÄHLER MANIFOLDS

MARITZA M. BRANKER AND MALGORZATA STAWISKA

ABSTRACT. We introduce a weighted version of the pluripotential theory on compact Kähler manifolds developed by Guedj and Zeriahi. We give the appropriate definition of a weighted pluricomplex Green function, its basic properties and consider its behaviour under holomorphic maps. We also establish a generalization of Siciak’s H-principle.

Introduction

Recently there has been significant progress in weighted pluripotential theory on \mathbb{C}^N which was originally developed in [Si1, Si2] and generalized to parabolic manifolds in [Ze]. Specifically, we refer to [BL, BI1, BI2, BZ, MS]. Concurrently, pluripotential theory on a compact Kähler manifold X based on quasip plurisubharmonic functions has been explored in [GZ1, GZ2, Ko] and [HKH] (see also applications in [Be1, Be2, BB]). The goal of our article is to develop a framework which would allow for a unified treatment of both generalizations of the classical theory and would also allow one to create an analog of the psh-homogeneous pluripotential theory. We will start by showing that a weighted pluripotential theory on \mathbb{C}^N extends naturally to a pluripotential theory on \mathbb{CP}^N with a suitably modified weight. In turn this extends to a homogeneous pluripotential theory in the universal line bundle over \mathbb{CP}^N, whose charts are biholomorphic to \mathbb{C}^{N+1}. We will generalize these results to projective algebraic manifolds.

We define a weighted pluricomplex Green function on a compact complex manifold X with a Kähler form ω. The definition is formulated in terms of a mild function (see Definition 1). However, many results of our theory hold without requiring that Q be mild. For a mild function Q and a Borel set $K \subset X$ the weighted pluricomplex Green function is

$$V_{K, \omega, Q} = \sup\{\phi \in PSH(X, \omega) : \phi \leq Q \text{ on } K\}.$$

Basic properties of $V_{K, \omega, Q}$ are stated and proved in Section 4 followed by the extension of the weighted pluripotential theory in \mathbb{C}^N to a suitable weighted pluripotential theory on \mathbb{CP}^N. We obtain more specific results, in particular a generalized Siciak’s H-principle and some approximation results, in the case when X admits a positive line bundle (which by Kodaira’s imbedding theorem is equivalent to X being projective algebraic).

2000 Mathematics Subject Classification. Primary: 32U05; Secondary: 32U35.

Key words and phrases. weights; Pluricomplex Green function; Kähler manifold; quasi-plurisubharmonic functions.

Preliminary version.
The initial motivation for our work was the similarity between Theorem 2.12 in [Bra] and Theorem 1 in [SH], both of which are generalized versions of Theorem 5.3.1 in [Kl]. We succeeded in proving the following result (Theorem 5, Section 2) which gives the above mentioned theorems as special cases.

Theorem: Let \((X,\omega)\) be a compact complex Kähler manifold and \(f : X \to X\) a holomorphic surjection. Assume that there exist \(\alpha\) and \(\beta\), \(1 < \alpha \leq \beta\), such that \(\alpha f_* (PSH(X,\omega)) \subset PSH(X,\omega)\) and \(f^* (PSH(X,\omega)) \subset \beta \cdot PSH(X,\omega)\). Then for every Borel set \(K \subset X\) and every mild function \(Q\) on \(X\),

\[
\alpha V_{f^{-1}(K),\omega,f \cdot Q/\alpha}(x) \leq V_{K,\omega, Q} \circ f(x) \leq \beta V_{f^{-1}(K),\omega,f \cdot Q/\beta}.
\]

1. **Weighted pluricomplex Green functions**

Throughout the paper we assume that \(X\) is a connected compact complex Kähler manifold. Therefore we have on \(X\) (cf. [GF], VI.3) the fundamental form \(\omega\) of a hermitian metric \(\Gamma\) on \(X\) with \(\omega = i \sum_j \gamma_j dz_j \wedge d\overline{z}_j\), satisfying \(d\omega = 0\). It follows that in each coordinate neighborhood in \(X\) we can define a \(C^\infty\) real-valued function \(\phi\) such that \(i \partial \overline{\partial} \phi = (1/2) d\omega\) on \(X\). The functions \(\phi\) are called local potentials of the Kähler metric \(\Gamma\). Existence of smooth local potentials is in fact equivalent to \(\Gamma\) being Kähler: if the fundamental form \(\omega\) of \(\Gamma\) satisfies \(i \partial \overline{\partial} \phi = d\omega\), then \(d\omega = 0\). For example, the Fubini-Study metric on \(\mathbb{C}P^n\) is Kähler, since it has local potentials given by \(\phi_j = \log(1 + \sum_{k \neq j} |z_{j,k}|^2)\) in the coordinate neighborhoods \(U_j = \{Z_j \neq 0\}\) with \(j = 0, 1, \ldots, N\). Here \([Z_0 : \ldots : Z_N]\) are homogeneous coordinates in \(\mathbb{C}P^N\) and \(z_{j,k} := Z_k/Z_j\) in \(U_j\). The set \(U_0\) is identified with \(\mathbb{C}^N\) and \(z_0, k = z_k, k = 1, \ldots, N\), are affine coordinates. We have \(\phi_0 = \log(1 + ||z||^2)\) for \(z \in \mathbb{C}^N\). Let \(\omega\) be a closed real \((1,1)\) current on \(X\) with continuous local potentials. From [GZII], the class of \(\omega\)-plurisubharmonic functions is defined as

\[
PSH(X,\omega) = \{v \in L^1(X,\mathbb{R} \cup \{-\infty\}) : dv \geq -\omega \text{ and } v \text{ is upper semicontinuous}\}.
\]

The \(\omega\)-pluricomplex Green function of a Borel set \(K \subset X\) is defined as

\[
V_{K,\omega}(x) = \sup \{v(x) : v \in PSH(X,\omega) : v|_K \leq 0\}
\]

Consider the class of \(PSH(X,\omega)\), where \(\omega\) is a Kähler form on \(X\) with local potentials \(\phi_j : U_j \to \mathbb{R}\), where \(\{U_j\}_{j=0}^m\) is an open cover of \(X\) by coordinate neighborhoods.

Definition 1. Let \(Q : X \to \mathbb{R} \cup \{+\infty\}\) be a function such that \(\exp(-Q + \phi_j)\) is continuous in \(U_j, j = 1, \ldots, m\) and \(\{Q \neq +\infty\}\) is not a pluripolar subset of \(X\). We will call \(Q\) satisfying these assumptions a mild function.

Mild functions are necessarily lower semicontinuous.

Definition 2. For a mild function \(Q\) on \(X\) and for a Borel set \(K \subset X\) let us define the weighted \(\omega\)-pluricomplex Green function as

\[
V_{K,\omega,Q} = \sup \{\phi \in PSH(X,\omega) : \phi \leq Q \text{ on } K\}.
\]

The following properties are direct consequences of our definition of \(V_{K,\omega,Q}\).

Proposition 1. Let \(K, K_1, K_2\) be Borel subsets of \(X\) and \(Q, Q_1, Q_2\) be mild functions.

i) If \(Q_1 \leq Q_2\) on \(K\) then \(V_{K,\omega,Q_1} \leq V_{K,\omega,Q_2}\).
Recall that a set $\{\tilde{z} \mid \tilde{z} \in \mathbb{C} \}$ boundedness condition. The expression

\begin{align*}
\text{Recall that in the weighted theory on } \mathbb{C}^N \text{ one begins with an admissible weight function on a closed set } K \subset \mathbb{C}^N. \text{ An admissible weight } w \text{ is a nonnegative upper semicontinuous function } w \text{ on } \mathbb{C}^N \text{ with } \{z \in K : w(z) > 0\} \text{ non-pluriharmonic and satisfying the boundedness condition } \lim_{|z| \to \infty} |z|^2 w(z) = 0 \text{ if } K \text{ is an unbounded set (cf. [BL, BII, ST]). The weighted pluricomplex Green function of } K \text{ is defined as } \]

\[
V_{K,Q} = \sup\{u \in \mathcal{L} : u \leq Q \text{ on } K\},
\]

where $Q = -\log w$.

In the homogeneous coordinates $[Z_0 : \ldots : Z_N]$ on \mathbb{CP}^N (with the usual identification $\mathbb{C}^N \simeq \{Z_0 \neq 0\}$ and affine coordinates $z_j = Z_j/Z_0$, $j = 1, \ldots, N$) let \(\tilde{w}(Z_0 : \ldots : Z_N) = w(z_1, \ldots, z_N)/|Z_0| \in \{Z_0 \neq 0\}$, where w is nonnegative and upper semicontinuous with $\{w > 0\}$ non-pluriharmonic, but not necessarily satisfying the boundedness condition. The expression $W(Z) = ||Z||\tilde{w}(Z)$ defines a homogeneous function of order 0 in $\mathbb{C}^{N+1} \setminus \{Z_0 = 0\}$. We have $W(Z) = \varphi(z) + \log w(z)$ for $Z_0 \neq 0$, where $\varphi(z) = (1/2)\log(1 + |z|^2)$. We take

\[
\sqrt{|Z_1|^2 + \ldots + |Z_N|^2\tilde{w}(0 : Z_1 : \ldots : Z_N)} = \lim_{y_j \to 0,y_j \to Z_j} \sup_{y \neq y_0} ||Y||\tilde{w}(Y), Y = (Y_0, \ldots, Y_N)
\]
to obtain an upper semicontinuous function (still denoted by W) globally on \mathbb{CP}^N, with all values greater or equal to 0. The boundedness condition is equivalent to the property that this global function is identically zero on the hyperplane $\{Z_0 = 0\}$.

This is because $\lim_{|z| \to \infty} |z| w(z) = \lim_{|z| \to \infty} \sqrt{1 + |z|^2} w(z)$. We will assume a weaker condition, namely that W is bounded in \mathbb{CP}^N.

The following example demonstrates that the boundedness condition is too restrictive when constructing a weighted pluripotential theory on complex manifolds.

Example 1. Let ω_{FS} be the Fubini-Study Kähler form on $X = \mathbb{CP}^N$ with local potentials ϕ_j as above and let K be a subset of $\mathbb{CN} \subset \mathbb{CP}^N$. For $Z \in \mathbb{CP}^N$ define $Q_j(Z) = \phi_j(Z), \ j = 0, \ldots, N$, so that $Q_0(z) = (1/2) \log(\sqrt{1 + \|z\|^2})$ for $z \in \mathbb{CN}$.

The natural 1-to-1 correspondence between $PSH(X, \omega_{FS})$ and the class $L(\mathbb{CN})$ of plurisubharmonic functions with logarithmic growth at infinity, presented explicitly in Example 1.2 in [GZ1], gives the following:

$$V_{K,Q_0}(x) = \sup\{u(x) : u \in \mathcal{L}(\mathbb{CN}), u(z) \leq \log \sqrt{1 + \|z\|^2} \ \forall z \in K\}$$

$$= \sup\{u(x) : u \in \mathcal{L}(\mathbb{CN}), u(z) - (1/2) \log(1 + |z|^2) \leq 0 \ \forall z \in K\}$$

$$= \sup\{v(x) + (1/2) \log(1 + |x|^2), v \in PSH(\mathbb{CP}^N, \omega_{FS}) : v|_{K \leq 0}\}$$

$$= V_{K,\omega_{FS}}(x) + (1/2) \log(1 + |x|^2)$$

for every $x \in \mathbb{CN}$. Assume now that K is not $PSH(\mathbb{CP}^N, \omega_{FS})$-polar. Then $V_{K,\omega_{FS}} \in PSH(\mathbb{CP}^N, \omega_{FS})$ and $V_{K,Q_0} \in \mathcal{L}(\mathbb{CN})$. For a point Z on the hyperplane at infinity $\{Z_0 = 0\}$ we get

$$V_{K,\omega_{FS}}(Z) = \limsup_{x \to Z, x \in \mathbb{CN}} (V_{K,Q_0}(x) - (1/2) \log(1 + |x|^2)).$$

Note that the function $w(z) = \exp(-Q_0(z))$ in our example does not satisfy the boundedness condition in \mathbb{CN}. Indeed, the function $\|Z\| w(z) = \exp(-Q_j(Z) + \phi_j(Z))$ for $Z \in U_j, \ j = 0, \ldots, N$ is a constant function 1 on \mathbb{CP}^N (which of course is continuous, but never 0). We draw the reader’s attention to the paper [B12], in which a relation between weighted theory in \mathbb{CN} and standard pluripotential theory in $\mathbb{CN}+1$ is outlined. Examples considered in the Section 5 of that paper deal with a weight function v which is given as the Hartogs radius of a domain with balanced fibers in $\mathbb{CN}+1$ (for the definition and basic properties, see [Sh]). Such a function is upper semicontinuous, but as shown in [B12], does not have to satisfy the boundedness condition on \mathbb{CN}. Furthermore, the results of [S22] as well as [MS] were obtained without assuming the boundedness condition. It thus seems reasonable to weaken this condition when working on complex manifolds. In [Gu] a notion of a ‘convex’ hull with respect to a closed real $(1,1)$-current T is considered where the functions f defining the hull satisfy the condition that $\exp(f + \phi)$ are continuous, with ϕ continuous local potentials for T. We adopted an analogous condition as a part of our definition of a mild function.

The method demonstrated in Example 1 can also be used to prove the following:

Proposition 4. Let $K \subset \mathbb{CN} \cong \{Z_0 \neq 0\}$. For a mild function Q on \mathbb{CP}^N with respect to $\omega = \omega_{FS}$ define

$$q(z_1, \ldots, z_N) = q(Z_1/Z_0, \ldots, Z_N/Z_0) = Q(Z) - \log(\|Z\|/|Z_0|), \ Z_0 \neq 0.$$
Conversely, for a lower semicontinuous \(q \) on \(\mathbb{C}^N \), consider

\[
Q(Z) = q(Z_{1}/Z_{0}, ..., Z_{N}/Z_{0}) + \log \| Z \| + \log \| Z_{0} \|,
\]

together with its lower semicontinuous regularization as \(Z_{0} \to 0 \). Then \(V_{K,q}(x) = V_{K,\omega,Q}(x) = (1/2) \log(1 + \| x \|^2), \quad x \in \mathbb{C}^N \).

Consider now a holomorphic line bundle \(L \) over a compact Kähler manifold \(X \). Recall that a (singular) metric on \(L \) can be given (cf. [De], [DPS]) by a collection of real-valued functions \(h = \{ h_{i} \} \) on \(X \), defined in a trivializing cover \(\{ U_{j} \} \), such that \(h_{j} = h_{i} + \log | g_{ij} | \), where \(g_{ij} \) are transition functions for \(L \). The metric is called positive if all \(h_{j} \) are plurisubharmonic. (The notion of positivity is used here in the weak sense.) In particular, a smooth metric \(\{ \phi_{j} \} \) such that \(\omega = dd^{c} \phi_{j} \) is a Kähler form will be positive.

If \(L \) is a positive line bundle and \(\omega = [c_{1}(L)] \), there is a 1-to-1 correspondence between the family of all positive metrics on \(L \) and the class \(\text{PSH}(X, \omega) \). In the case of \(X = \mathbb{P}^{N} \) with the Fubini-Study form \(\omega \), this correspondence is equivalent to the \(H \)-principle due to Siciak ([SZ]).

Proposition 5. (cf. [G], property (iv) pg 456): Let \(h \) be a logarithmically homogeneous plurisubharmonic nonnegative function on \(\mathbb{C}^{N+1} \). Then \(h \) defines a positive metric on \(\mathbb{C}^{N} \). Conversely, each positive metric on \(\mathbb{C}^{N} \) defines a logarithmically homogeneous \(\text{psh} \) function on \(\mathbb{C}^{N+1} \).

Proof. By logarithmic homogeneity we have,

\[
v(Z_{0}/Z_{1}, ..., 1, ..., Z_{N}/Z_{k}) = v(Z) - \log | Z_{k} | \quad \text{in} \quad \{ Z_{k} \neq 0 \}
\]

Hence \(v_{k} = v_{i} + \log | Z_{k}/Z_{i} | \) in \(U_{i} \cap U_{k} \) and all \(v_{i} \) are plurisubharmonic. To prove the converse, take \(h_{0} = h \mid v_{0} \). The function \(v(Z) = h_{0}(Z) + \log | Z_{0} | \) in \(U_{0} \), and \(v(0, Z_{1}, ..., Z_{N}) = \limsup_{\lambda \to 0} v(0, Z_{1}, ..., Z_{N}) \) is plurisubharmonic. Since it also satisfies \(v(\lambda Z) = v(Z) + \log | \lambda | \) for \(\lambda \in \mathbb{C} \) our proof is complete.

By Example 1.2 in [GZ], the class \(\mathcal{L}(\mathbb{C}^{N}) \) corresponds in a 1-to-1 manner with the class of \(\text{PSH}(\mathbb{C}^{N}, \omega) \) functions, which in turn correspond in a 1-to-1 manner with positive metrics on the (positive) hyperplane bundle over \(\mathbb{P}^{N} \). Thus Proposition 5 establishes a 1-to-1 correspondence between logarithmically homogeneous functions \(\tilde{v} \) on \(\mathbb{C}^{N+1} \) and functions \(v \) in the class \(\mathcal{L}(\mathbb{C}^{N}) \) so that \(\tilde{v}(1, z) = v(z) \) for \(z \in \mathbb{C}^{N} \), that is, the \(H \)-principle.

If \(L \) is a positive line bundle over \(X \), then its dual \(L' \) is negative (cf. [G], Prop. VI.6.1 and VI.6.2). Hence there exists a system of trivializations \(\theta_{i} : L' \mid U_{i} \to U_{i} \times \mathbb{C} \) with transition functions \(G_{ik} = g_{ik}^{-1} = g_{ki} \) and a smooth metric \(\{ h_{i} \} \) on \(L \) such that the smooth function \(\chi_{k} : L' \to \mathbb{R} \), defined as \(\chi_{k} \circ \theta_{k}^{-1}(x, t) = H_{i}(x) \cdot | t |^{2} \), is strictly plurisubharmonic outside the zero section of \(L' \), where \(H_{i}(x) = \exp 2h_{i}(x), \quad x \in U_{i} \). As a simple example of a negative line bundle we can take the universal line bundle over \(\mathbb{P}^{N} \), \(O(-1) := \{(Z, \xi) \in \mathbb{P}^{N} \times \mathbb{C}^{N} : \xi \in \mathbb{C} \cdot Z, | Z | \in \mathbb{C}^{N+1} \} \). That is, the fiber of \(O(-1) \) over a point \([Z] \in \mathbb{P}^{N} \) is the complex line in \(\mathbb{C}^{N+1} \) generated by \((Z_{0}, ..., Z_{N}) \). The function \(\chi \circ \theta_{1}^{-1}(Z, t) = | t |^{2} | Z_{i} |^{-2} | Z |^{2} \) for \(Z_{i} \neq 0 \), associated with the Fubini-Study metric on the dual line bundle \(O(1) \) over \(\mathbb{P}^{N} \), is plurisubharmonic.

Next we establish a generalization of Siciak’s \(H \)-principle.
Theorem 1. (cf. [GF], Prop. VI.6.1): Let L be a positive line bundle over a compact Kähler manifold X and let $d > 0$. Let \mathcal{H}^+_d denote the family of all functions $\chi \in PSH(L')$ which are nonnegative, not identically 0 and absolutely homogeneous of order d in each fiber. Then there is a one-to-one correspondence between \mathcal{H}^+_d and the class of positive metrics on L.

Proof. Consider a system of trivializations $\theta_i : L'|_{U_i} \rightarrow U_i \times \mathbb{C}$ with transition functions $G_{ik} = g_{ik} = 1/g_{ik}$. Let $\chi \in \mathcal{H}^+_d$. For $x \in U_i$, $t \neq 0$ define
$$H_i(x) := \chi \circ \theta_i^{-1}(x, t)/|t|^d.$$
Note that this expression does not depend on t. We have $\chi \circ \theta_i^{-1}(x, t) = \chi \circ \theta_k^{-1}(x, G_{ik}(x)t)$, hence by absolute homogeneity of order d, $H_k(x) = |G_{ik}(x)|^d H_i(x)$ in $U_i \cap U_k$. Taking $h_i = (1/d) \log H_i$ in U_i we get a collection of plurisubharmonic functions satisfying $h_k = \log g_{ik} + h_i$, i.e., a positive metric on L. Conversely, let $\{h_i\}$ be a metric on L. The function χ on L' defined as $\chi \circ \theta_i^{-1}(x, t) = \exp(dh_i(x)) \cdot |t|^d$ is plurisubharmonic if and only if h_i are, so for a positive metric the associated function χ is in \mathcal{H}^+_d. \hfill \square

Unless otherwise indicated, we will work with $\mathcal{H}^+ := \mathcal{H}^+_1$. Note that if we take L' in Theorem 1 to be the universal line bundle \mathcal{U} over $\mathbb{C} \mathbb{P}^N$, then the trivialization $\theta_i : \pi^{-1}(U_i) \rightarrow U_i \times \mathbb{C}$ is given as $\theta_i(t(Z)) = ([Z_0 : ... : Z_N], tZ_i)$. Hence for a function $\chi \in \mathcal{H}^+$ we have $\chi \circ \theta_i^{-1}([Z_0 : ... : Z_N], t) = h_i([Z_0 : ... : Z_N]) + \log |Z_i| + \log |t|$ for $Z_i \neq 0$, where h_i define a metric on $\mathbb{C} \mathbb{P}^N$. By Proposition 5 over the chart $Z_0 \neq 0$ we get $\chi(tZ) = v(Z_1/Z_0, ..., Z_N/Z_0) + \log |t|$ for $t \neq 0$ with v plurisubharmonic. That is, χ defines a logarithmically homogeneous psh function on $\mathbb{C} \mathbb{P}^{N+1}$.

For a positive holomorphic line bundle L over a compact Kähler manifold X there is a precise relation between the weighted pluricomplex Green function with respect to $\omega = [c_1(L)]$ of a Borel set K in X and a \mathcal{H}^+-envelope of some associated set \tilde{K} in the dual bundle L'. It generalizes the formulas obtained by Bloom in ([B2]).

For the weight Q on X consider the collection $q_i = Q - \phi_i$, where $\omega = dd^c \phi_i$ in U_i and U_i form a trivializing cover for L. For $K \subset X$ define $\tilde{K} \subset L'$ by taking
$$\tilde{K} \cap \pi^{-1}(U_i) = \{\theta_i^{-1}(x, t) : x \in U_i \cap K, |t| = \exp(-q_i(x))\}.$$
This set is well defined, since $\theta_k^{-1}(x, t) = \theta_i^{-1}(x, G_{ik}(x)t)$. Hence if $x \in U_i \cap U_k \cap K$, then $|G_{ik}(x)|t| = \exp(-q_i(x))$ if and only if $|t| = \exp(-q_k(x))$. Consider
$$H_{\tilde{K}} = \sup\{u \in PSH(L') : \exp u \in \mathcal{H}^+, u |_{\tilde{K}} \leq 0\}.$$
The following theorem gives the relationship between functions $H_{\tilde{K}}$ and $V_{K, \omega, Q}.$

Theorem 2. (cf. [B2], Thm 2.1): For all i,
$$H_{\tilde{K}} \circ \theta_i^{-1}(x, t) = V_{K, \omega, Q}(x) + \log |t| + \phi_i(x)$$

Proof. By Theorem 1
$$H_{\tilde{K}} = \sup\{u : u \circ \theta_i^{-1}(x, t) = h_i(x) + \log |t|, u |_{U_i \cap K} \leq 0\}$$
$$= \sup\{u : u \circ \theta_i^{-1}(x, t) = h_i(x) + \log |t|, h_i(x) \leq q_i, \forall i\}$$
where \(h_i \) define a positive metric on \(L \). Hence, for such \(h_i \),
\[
H_K \circ \theta_i^{-1}(x, t) = \sup \{ h_i(x) : h_i(x) |_{K \cap U_i} \leq q_i \} + \log |t|
\]
\[
= \sup \{ \phi_i(x) : \phi_i(x) \in \text{PSH}(X, \omega), \phi_i \leq Q, \phi_i(x) \leq |t| \}
\]
\[
= \mathcal{V}_{K, \omega, Q}(x) + \log |t| + \phi_i(x), \quad \forall i.
\]

Theorem 2 allows us to study the behavior of the weighted pluricomplex Green functions as we vary the weight. Namely, we have the following:

Proposition 6. (cf. [B2], Cor 2.2): Let \(K \subset X \) be a Borel set. Suppose \(\{Q_n\}, Q \) are mild functions with \(Q_n \not\subset Q \). Then \(\lim_{n \to \infty} \mathcal{V}_{K, \omega, Q_n} = \mathcal{V}_{K, \omega, Q} \).

Proof. Consider the sets \(K_n, M_n \subset L' \), where

\[
M_n \cap \pi^{-1}(U_i) = \{ \theta_i^{-1}(x, t) : x \in U_i \cap K, |t| \leq \exp(-q_i(\nu(x))) \},
\]
\[
K_n \cap \pi^{-1}(U_i) = \{ \theta_i^{-1}(x, t) : x \in U_i \cap K, |t| = \exp(-q_i(\nu(x))) \}
\]

where \(q_i(\nu) = Q_n - \phi_i, n \geq 0 \). The sequence \(M_n \) is decreasing, with \(\bigcap_{n=1}^{\infty} M_n = \tilde{M}_0 \).

By maximum principle (applied in each fiber), \(H_{M_n} = H_{K_n}, n \geq 0 \) (here we use the assumption of all \(Q_n \) being mild). For a function \(u \in \mathcal{H}^+ \) such that \(u \leq 0 \) on \(M_0 \) and an arbitrary \(\varepsilon > 0 \), there exists an \(n_0 \) such that for all \(n \geq n_0 \) we have \(M_n \subset \{ u < \varepsilon \} \). The function \(u - \varepsilon \) is in \(\mathcal{H}^+ \) and for \(n \geq n_0 \) it satisfies \(u - \varepsilon \leq H_{M_n} \leq \lim_{n \to \infty} H_{M_n} \leq H_{M_0} \), hence \(\lim_{n \to \infty} H_{M_n} = H_{K_0} \). By Theorem 2

\[
\lim_{n \to \infty} \mathcal{V}_{K, \omega, Q_n} = \mathcal{V}_{K, \omega, Q_0}.
\]

Proposition 7. (cf. [B2], Cor 2.4) Let \(Q_n, n \geq 0 \) be mild functions on \(X \) such that \(Q_n \not\subset Q_0 \). Then \(\mathcal{V}_{K, \omega, Q_n} \to \mathcal{V}_{K, \omega, Q_0} \).

Proof. Since the potentials \(\phi_i \) of \(\omega \) are continuous, we have \(H_K^* \circ \theta_i^{-1}(x, t) = \mathcal{V}_{K, \omega, Q_0} + \log |t| + \phi_i \) for all \(i \). We can assume that the set \(\tilde{M}_1 \) (see Proposition 0) is not \(\omega \)-polar. By Proposition 2 \(H_K^* \) is plurisubharmonic on \(L' \). Let \(H = \lim_{n \to \infty} H_{M_n} \). The function \(H \) is in \(\mathcal{H}^+ \) and satisfies \(H \leq 0 \) on \(K_0 \setminus P \), where \(P \) is some pluripolar set. Hence \(H \leq \mathcal{V}_{K_0}^* \).

Corollary 1. Proposition 2 holds when the convergence \(Q_n \not\subset Q_0 \) takes place quasi-everywhere on \(X \), that is, outside some \(\omega \)-polar set.

Corollary 2. Proposition 2 holds when the convergence \(Q_n \not\subset Q_0 \) takes place quasi-everywhere on \(X \).

2. APPROXIMATION AND PULLBACKS BY HOLOMORPHIC MAPS

In standard pluripotential theory in \(\mathbb{C}^N \) and its weighted generalization there is a function \(\Phi_K \) such that \(\log \Phi_K = \mathcal{V}_{K, \omega, Q} \). The function \(\Phi_K \) is given as the supremum of certain functions with 'regular' growth, that is, polynomials (when \(Q \equiv 0 \)) or weighted polynomials (see Theorem 6.2 in [SI]). Theorem 2.8 in [B1], and Théorème 5.1 in [Z2]. In [Z1] it is proven that \(\mathcal{V}_{K, \omega, Q} = \sup \{ (1/n) \log \| s \|_{n, \omega} : n \geq 1, s \in \Gamma(X, L^n), \sup_K \| s \|_{n, \omega} \leq 1 \} \), where \(L \) is a positive holomorphic line bundle over a compact manifold \(X, \omega = dd^c \varphi \) in a trivializing cover \(U_j \) is a (global) Kähler form and the norm \(\| s \|_{n, \omega} \) of a section \(s \) of the tensor power \(L^n \) is
Theorem 3. Let \(K, \omega, \varphi, \omega \) be as above. Let \(Q \) be a mild function on \(X \) and let \(K \) be a compact subset of \(X \). Then

\[
V_{K, \omega, Q} = \log \Phi_{K, \omega, Q} \text{ where } \Phi_K(x) = \sup_{n \geq 1} (\Phi_n(x))^{1/n}
\]

with \(\Phi_n(x) = \sup_{s \in \Gamma(X, L^n), n \geq 1} \exp(-nQ)\|s\|_{n, \varphi} \leq 1 \).

Unlike [GZ1], in which the theorem was proved for \(Q \equiv 0 \), we will not use \(L^2 \)-estimates for the \(\bar{\partial} \)-operator. Instead, we will apply the following lemma (cf. [Ze], Lemma 5.2, [Bel], Lemma 2.1 and 3.2):

Approximation Lemma. Let \(X, \omega, L \) be as above and let \(v \in \text{PSH}(X, \omega) \cap C^\infty \) be such that \(dd^c v + \omega \) is strictly positive. Then for every \(\varepsilon > 0 \) and every compact \(K \subset X \) there exist \(N_1, \ldots, N_m \) and \(s_1, \ldots, s_m \) such that \(s_j \in \Gamma(X, L^{N_j}), j = 1, \ldots, m \) and

\[
v(x) - \varepsilon \leq \sup_{1 \leq j \leq m} (1/N_j) \log \|s_j(x)\|_{N_j, \varphi} \leq v(x) \text{ for all } x \in K
\]

where the norm of the section \(s_j \) is computed as above.

Proof. (of the Approximation Lemma): Let \(\varphi_i \) be local potentials for the Kähler form \(\omega \) and let \(h = \{h_i = v + \varphi_i\} \) be the positive metric corresponding to \(v \). The inequality in the statement of the lemma is equivalent to

\[
h_i - \varepsilon \leq \sup_{1 \leq j \leq m} (1/N_j) \log |s_j(x)| \leq |h_i(x)|, \quad x \in K \cap U_i, \quad i = 1, \ldots, l
\]

where \(|\cdot| \) is the usual absolute value of a complex number. Let \(r \in (0, 1) \) and \(\chi_r \) be the function in the class \(\mathcal{H}^+ \) on \(L' \) associated with the metric \(r \cdot h \). For every \(r \) the set \(\Omega_r = \{\chi_r < 1\} \) is a strictly pseudoconvex neighborhood of the zero section in \(L' \) (cf. [GR], VI.6.1). Fix a point \(x_0 \in K \) and \(\zeta_0 = \theta_r^{-1}(x_0, 1) \). Then \(|t| < \chi_r(\zeta_0) \) if and only if \((x_0, t) \in \Omega := \Omega_r \). The function \(f(t) = \sum_{n=1}^\infty (\chi_r(\zeta_0))^n t^n \), \(|t| < 1/\chi_r(\zeta_0) \), \(f(0) = 0 \) is holomorphic on the analytic set \((\Omega \cap L'_{x_0}) \cap X \) and is identically 0 on \(X \). We consider the Remmert reduction of \(\Omega \) (see [G], Satz 1, or [P], Theorem 2.7 and preceding discussion). That is, we have a Stein space \(Y \) and a proper surjective holomorphic map \(\Phi : \Omega \rightarrow Y \) with the following properties: (i) \(\Phi \) has connected fibers; (ii) \(\Phi_* (O_{\Omega}) = O_Y \); (iii) the canonical map \(O_Y(Y) \rightarrow O_{\Omega}(\Omega) \) is an isomorphism; (iv) if \(\sigma : \Omega \rightarrow Z \) is a holomorphic map into a Stein space \(Z \) then there exists a uniquely determined holomorphic map \(\tau : Y \rightarrow Z \) such that \(\tau \circ \Phi = \sigma \). The map \(\Phi \) blows down the zero section of \(L' \). Note that the set \(A = \Phi(L'_{x_0} \cup X) = \Phi(L'_{x_0}) \) is analytic in \(Y \) (by Remmert’s Proper Mapping Theorem) and the function \(f(\Phi(t)) := f(t) \) is holomorphic on \(A \) (by property (ii) of Remmert’s reduction). Every analytic set in a compact space is the support of a closed complex subspace (cf. [GR], A.3.5), so we can apply Theorem V.4.4 in
to conclude that the function \(\tilde{f} \) is the restriction to \(A \) of a function \(\tilde{F} \) that is holomorphic on the Stein space \(Y \). By the properties (ii) and (iii) above, there exists a function \(F \) holomorphic on \(\Omega \) such that \(\tilde{F} \circ \Phi = F \). For \(t \neq 0 \) one can represent \(F \) as \(F = \tilde{G} \circ \theta_t^{-1}(x,t) = \sum_{n=1}^{\infty} F_n^{(i)}(x)t^n \), with \(F_n^{(i)} \) holomorphic in \(U_i \). We have \(F \circ \theta_t^{-1}(x,t) = F \circ \theta_t^{-1}(x,G(t,x)) \), which gives \(F_n^{(i)}(x) = (g_{ik}(x))^{n} F_n^{(k)}(x) \), i.e., \(F_n \) are cocycles corresponding to holomorphic sections of the tensor product \(L^n \) over \(\Omega_t \). Considering the domain of convergence of the representation for \(F \circ \theta_t^{-1} \), \(k = 1, \ldots, l \), we get

\[
\limsup_{n \to \infty} |F_n(x)|^{1/n} \leq \exp{rh(x)}, x \in X.
\]

By Hartogs’s lemma, there exists an \(n_\delta > 1 \) such that \((1/n) \log |F_n(x)| \leq r \cdot h(x) + \delta, \quad x \in K, n \geq n_\delta \). For the estimate from below, note that \(F_n(x_0) = \chi_r(\zeta_0) = rh(x_0) \) for all \(n \). Since \(rh = r(v + \varphi) \) is continuous, there exists an \(n_0 \geq n_\delta \) and a neighborhood \(W_{x_0} \) of \(x_0 \) such that \((1/n_0) \log |F_n(x_0)| > rh(x) - \delta, \quad x \in W_{x_0} \). Compactness of \(K \) and suitable relations between \(\epsilon, \delta \) and \(r \) give holomorphic sections satisfying the conclusion of the lemma.

Proof. (of Theorem 9): We mimic the method of proof of Theorem 2.8i in [Bl1]. Let \(u \in PSH(X,\omega) \). By Theorem 7.1 in [GZ2], there is a sequence \(u_k \in PSH(X,\omega) \cap C^\infty(X) \) such that \(u_k \downarrow u \). Let \(\epsilon > 0 \). By Dini’s theorem, there exists an integer \(k_0 \) such that \(u(x) \leq u_k(x) \leq Q(x) + \epsilon \) for all \(x \in K, k \geq k_0 \). By adding a small multiple of a local Kähler potential in some coordinate neighborhood, we can assume that \(d\omega u_k + \omega \) is strictly positive. By the Approximation Lemma, \(\exists s_j^{(k)} \in \Gamma(X, L_j^{(k)}) \), \(j = 1, \ldots, m_k \) such that

\[
\sup_{j=1, \ldots, m_k} (\log |\exp(-2N_j^{(k)} \epsilon s_j^{(k)})|)/(N_j^{(k)}) \leq (1/n) \log \Phi_n(x),
\]

where \(n = \max_j N_j^{(k)} \), \(j = 1, \ldots, m_k \). Hence \(u - 4\epsilon \leq \log \Phi \). The reverse inequality is obvious, since \((1/N) \log \|s\|_\nu \) defines a positive singular metric on \(L \).

Under the assumptions of Theorem 8 we also have the following:

Proposition 8. Let \(\Psi(x) = \lim_{n \to \infty} \psi_n(x) = \sup_{n \geq 1} \psi_n(x) \), with \(\psi_n(x) = \sup\{\|s\|_\nu | s \in \Gamma(X, L^n) \}, \sup^*_K(\exp(-nQ) \|s\|_\nu) \leq 1 \). If \(P \subset K, P \) is \(PSH(X,\omega) - polar \). Then

\[
V^*_K,\omega,Q = (\log \Psi_K)^*.
\]

The proof proceeds exactly like that of [Bl1], Theorem 2.8(ii), provided we have the domination principle on a compact Kähler manifold of dimension \(N \) (cf. [K]), cor. 3.7.5 and prop.5.5.1 [BT2], cor.4.5, [La], for versions on open subsets of \(\mathbb{C}^N \). In our proof we will assume that one of functions is in \(L^\infty(X) \), since this is the case we need. A more general version was recently proved independently as Proposition 2.7 in [BH].

Proposition 9. If \(K \) is not \(PSH(X,\omega) - polar \) and \(Q \) is continuous, then \(V^*_K,\omega,Q \in PSH(X,\omega) \cap L^\infty(X) \). In particular, the complex Monge-Ampère operator \((\omega_{V,K,Q})^n \) is well defined and satisfies \((\omega_{V,K,Q})^n = 0 \) in \(X \setminus K \).
Proof. The proof proceeds as that of GZ1, Theorem 4.2.2, and uses Proposition 2.

Now we may state and prove the required domination principle.

Theorem 4. (Domination Principle): Let $u, v \in \text{PSH}(X, \omega)$ with $v \in L^\infty(X)$ be such that

$$\int_{\{u < v\}} (\omega + dd^c u)^N = 0.$$

Then $u \geq v$ in X.

Proof. The following argument was communicated to us by Ahmed Zeriahi as a replacement for an earlier incorrect proof. It is enough to prove that $u \geq v$ on a set of full ω-volume in X. We can assume that v is negative everywhere on X. Then for all $s, t > 0$, \{ $u - v \leq -s - t$ \} \subset \{ $u - v \leq -s - tv$ \}, which for small t is still a subset of \{ $u - v < 0$ \}. Then, by Lemma 2.2 in EGZ, $0 = \int_{\{u - v < -s - tv\}} (\omega + dd^c u)^N \geq t^N \text{Cap}\{u - v \leq -s - t\}$, where Cap is the Monge-Ampere capacity defined in GZ1 (Definition 2.4). Proposition 2.5(1) in GZ1 implies that $\text{Vol}\{u - v \leq -s - t\}$ for $s, t > 0$, t small, hence $\text{Vol}\{u - v < 0\} = 0$. □

Finally, we are interested in how weighted pluricomplex Green functions change under a holomorphic map $f : X \to X$, where X is a compact Kähler manifold (not necessarily projective algebraic) with a closed real $(1,1)$-current ω on X with continuous local potentials (not necessarily a Kähler form). Proposition 4.4.5 in GZ1 states that if $f : X \to X$ is holomorphic, and $K \subset X$ is a Borel set, then $V_{f^{-1}(K), \omega} f \circ f \leq V_{K, f^* \omega}$. The proof applies also to the weighted pluricomplex Green function and gives the following:

Proposition 10. Let X, ω, K be as above and let Q be a mild function on X. Then $V_{f^{-1}(K), \omega, Q} f \circ f \leq V_{K, f^* \omega, Q} f$ in X.

Below, we establish a relation between the pullback of $V_{K, \omega, Q}$ by a surjective holomorphic map $f : X \to X$ and $V_{f^{-1}(K), \omega, Q}$ with an appropriate function Q. For a function $u : X \to \mathbb{R} \cup \{-\infty\}$ let us define $f_*u(x) = \sup\{u(y) : y \in f^{-1}(x)\}$. This is a well defined function, since $f^{-1}(x)$ is compact. Also, let $f^*u = u \circ f$. The following theorem generalizes Theorem 2.12 in Bra and Theorem 1 in St1 (it yields both as special cases):

Theorem 5. Assume that there exist α and β, $1 < \alpha \leq \beta$, such that

$$\alpha f_*(\text{PSH}(X, \omega)) \subset \text{PSH}(X, \omega)$$

and

$$f^*(\text{PSH}(X, \omega)) \subset \beta \cdot \text{PSH}(X, \omega).$$

Then for every Borel set $K \subset X$ and every mild function Q on X,

$$\alpha V_{f^{-1}(K), \omega, f^*Q/\alpha} f \leq V_{K, \omega, Q} f \leq \beta V_{f^{-1}(K), \omega, f^*Q/\beta} f.$$
Proof. Let \(u \in PSH(X, \omega) \) be such that \(\alpha u \leq f^*Q \) on \(f^{-1}(K) \). Then \(v = \alpha f_*u \) is in \(PSH(X, \omega) \) and satisfies \(v \leq Q \) on \(X \). Moreover, \(\alpha u(x) \leq \nu(f(x)) \leq V_{K, \omega, Q}(f(x)) \), which gives the first inequality. For the second one, if \(u \in PSH(X, \omega) \) satisfies \(u \leq Q \) on \(K \), then by assumption \((1/\beta)f^*u \) is in \(PSH(X, \omega) \) and \((1/\beta)f^*u \leq (1/\beta)f^*Q \) on \(f^{-1}(K) \), which gives the conclusion.

On \(X = \mathbb{CP}^N \), the assumptions of Theorem 5 are equivalent to assumptions about growth of \(f \) made in Theorem 2.12 in [Bra] or its unweighted counterpart, Theorem 5.3.1 in [Kl]. Details may be found in Theorem 1 in [St1] and its proof. The main theorem in [St2] has conditions equivalent to the assumption \(\alpha f_*PSH(X, \omega) \subset PSH(X, \omega) \) when \(X \hookrightarrow \mathbb{CP}^N \) is a projective algebraic manifold and \(\omega \) is the pullback of the Fubini-Study form by the embedding \(\hookrightarrow \). One of the conditions is that \(f \) has an attracting divisor in \(X \), so in fact the assumption is quite strong.

Acknowledgments: The authors thank Thomas Bloom, Finnur Lárusson, Ragnar Sigurdsson and Ahmed Zeriahi for helpful comments on previous drafts of this paper. In addition, the second named author thanks the DFG Research Center Matheon, in particular Professor Volker Mehrmann, for making it possible for her to stay and work in Berlin in the academic year 2007/08.

References

[BB] R. Berman, S. Boucksom: Capacities and weighted volumes of line bundles, preprint, arXiv:0803.1950v1
[Be1] R. Berman: Bergman kernels and equilibrium measures for line bundles over projective manifolds, preprint, arXiv:0710.4375
[Be2] R. Berman: Bergman kernels and equilibrium measures for ample line bundles, preprint, arXiv:0704.1640
[Bll] T. Bloom: Appendix B in [ST]
[Bl1] T. Bloom: Weighted polynomials and weighted pluripotential theory, preprint, arXiv:math.CV/0610330 v2, to appear
[BL] T. Bloom, N. Levenberg: Weighted pluripotential theory in \(\mathbb{C}^N \), Amer. J. Math. 125(2003), 57-103
[Bra] M. M. Branker: Approximation by weighted polynomials in \(\mathbb{R}^k \), Ann. Polon. Math. 85(2005), no. 3, 261-279
[Bre] H.J. Bremermann: On the conjecture of equivalence of the plurisubharmonic functions and the Hartogs functions, Math. Ann.131(1956), 76-86
[BT1] E. Bedford, B.A. Taylor: The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math.37(1976), 1-44
[BT2] E. Bedford, B.A. Taylor: A new capacity for plurisubharmonic functions, Acta Mathematica 149(1982), 1-40
[De] J.-P. Demailly: Singular Hermitian metrics on positive line bundles, in: Proc. Algebraic Geom. Bayreuth 1990, Lecture Notes in Math. 1507, p. 87-104, Springer-Verlag 1992
[DPS] J.-P. Demailly, T. Peternell, M. Schneider: Pseudo-effective line bundles on compact Kähler manifolds, International Journal of Mathematics, Vol. 12, No. 6(2001), 689-741
[EGZ] P. Eyssidieux, V. Guedj, A. Zeriahi: Singular Kähler-Einstein metrics, preprint, arXiv:math/060343v1
[G] H. Grauert: Über Modifikationen und exceptionelle analytische Mengen, Math. Ann. 146(1962), 331-368
[GF] H. Grauert, K. Fritzsche: From Holomorphic Functions to Complex Manifolds, Graduate Texts in Mathematics 213, Springer-Verlag New York- Berlin- Heidelberg 2002
[GR] H. Grauert, R. Remmert: Theory of Stein Spaces, Grundlehren des mathematische Wissenschaften 236, Springer-Verlag Berlin- Heidelberg- New York 1979
[Gu] V. Guedj: Approximation of currents on complex manifolds, *Math. Ann.* 313(1999), no.3, 437-474

[GZ1] V. Guedj, A. Zeriahi: Intrinsic capacities on compact Kähler manifolds, *J. Geom. Anal.* 15(2005), no. 4, 607-639

[GZ2] V. Guedj, A. Zeriahi: The weighted Monge- Ampère energy of quasipseudosubharmonic functions, *J. Funct. Anal.* 250(2007), no.2, 442-482

[KH] Le Mau Hai, Nguyen Van Khue, Pham Hoang Hiep: ω pluripolar sets and subextensions of ω plurisubharmonic functions on compact Kähler manifolds, *Ann. Polon. Math.* 91(2007), no.1, 25-41

[Kl] M. Klimek: *Pluripotential Theory*, Oxford-Clarendon Press, 1991

[Ko] S. Kołodziej: The Complex Monge- Amandère Equation and Pluripotential Theory, Mem. of the AMS, vol. 178, no. 840, 2005

[MS] B. S. Magnusson, R. Sigurdsson: Disc formulas for the weighted Siciak-Zahariuta extremal function, *Ann. Polon. Math.* 91(2007), vol.2-3, 241-247

[P] Th. Peternell: Pseudoconvexity, the Levi Problem and Vanishing Theorems, in: H. Grauert, Th. Peternell, R. Remmert (Eds.): *Several Complex Variables VII: Sheaf-Theoretical Methods in Complex Analysis*, Springer-Verlag Berlin- Heidelberg 1994

[Sh] B. V. Shabat: *Introduction to Complex Analysis. Part II. Functions of Several Variables*. Translated from the third (1985) Russian edition by J.S. Joel. *Translations of Math. Monographs*, 110, Amer. Math. Soc., Providence, RI 1992

[Si1] J. Siciak: On some extremal functions and their applications in the theory of analytic functions of several complex variables, *Trans. Amer. Math. Soc.* 105(1962), 322–357

[Si2] J. Siciak: Extremal plurisubharmonic functions in \mathbb{C}^N, *Ann. Polon. Math.* XXXIX(1981), 175–211

[Si3] J. Siciak: A remark on Tchebyseff polynomials in \mathbb{C}^N, *Univ. Iag. Acta Math.* XXXV(1997), 37-45

[ST] E. Saff, V. Totik: *Logarithmic Potentials with External Fields*, Grundlehren Math. Wiss. 316, 1997, Springer- Verlag, Berlin

[St1] M. Stawiska: Holomorphic maps on \mathbb{C}^k with attracting hypersurfaces and pluricomplex Green functions for their repellers, *Complex Var. Elliptic Eq.*, vol. 51, no. 7, July 2006, 675–681

[St2] M. Stawiska: Attracting divisors on projective algebraic varieties, *Ann. Polon. Math.* 91(2007), vol.2-3, 263-270

[Ta] B.A. Taylor: An estimate for an extremal plurisubharmonic functions on \mathbb{C}^n, Séminaire P. Lelong, P. Dolbeault, H. Skoda, 1982-1983, *Lecture Notes in Math.* 1028(1983), 318-328

[Ze] A. Zeriahi: Fonction de Green pluricomplexe à pôle à l’infini sur un espace de Stein parabolique et applications, *Math. Scand.* 69(1991), 89-126

Department of Mathematics, Niagara University, NY 14109

E-mail address: mbranker@niagara.edu

DFG Research Center Matheon, Technische Universität Berlin, Berlin, Germany

E-mail address: stawiska@priort.math.tu-berlin.de