ON RYSER’S CONJECTURE

P.E. HAXELL AND A.D. SCOTT

Abstract. Motivated by an old problem known as Ryser’s Conjecture, we prove that for \(r = 4 \) and \(r = 5 \), there exists \(\epsilon > 0 \) such that every \(r \)-partite \(r \)-uniform hypergraph \(\mathcal{H} \) has a cover of size at most \((r - \epsilon)\nu(\mathcal{H})\), where \(\nu(\mathcal{H}) \) denotes the size of a largest matching in \(\mathcal{H} \).

1. Introduction

In this paper we are concerned with a packing and covering problem in hypergraphs. A hypergraph consists of a vertex set \(V \) and a set \(\mathcal{H} \) of edges, where each edge is a nonempty subset of \(V = V(\mathcal{H}) \). We say \(\mathcal{H} \) has rank \(r \) if the largest size of an edge is \(r \), and that \(\mathcal{H} \) is \(r \)-uniform if every edge has size \(r \). The packing number (also called matching number) \(\nu(\mathcal{H}) \) of \(\mathcal{H} \) is the size of a largest matching in \(\mathcal{H} \), where a matching is a set of pairwise disjoint edges in \(\mathcal{H} \). The covering number \(\tau(\mathcal{H}) \) of \(\mathcal{H} \) is the size of a smallest cover of \(\mathcal{H} \), where a cover is a subset \(W \subseteq V \) such that every edge of \(\mathcal{H} \) contains a vertex of \(W \). It is clear that if \(\mathcal{H} \) has rank \(r \) then \(\tau(\mathcal{H}) \leq r\nu(\mathcal{H}) \), and this is attained for example by the complete \(r \)-uniform hypergraph \(K_{2r-1}^r \) with \(2r - 1 \) vertices, which has \(\nu(K_{2r-1}^r) = 1 \) and \(\tau(K_{2r-1}^r) = r \).

Our focus here is on a long-standing open problem known as Ryser’s Conjecture, which states that if \(\mathcal{H} \) is an \(r \)-partite \(r \)-uniform hypergraph then \(\tau(\mathcal{H}) \leq (r - 1)\nu(\mathcal{H}) \) (see e.g. [4, 9]; a stronger version of the conjecture was proposed by Lovász [6]). Here \(\mathcal{H} \) being \(r \)-partite means that its vertex set has a partition \(V_1 \cup \cdots \cup V_r \) and every edge contains exactly one vertex of each \(V_i \). When \(r = 2 \) this is the classical theorem of König, and for \(r = 3 \), after a number of partial results [8, 10, 5], the conjecture was proved by Aharoni [1]. Apart from these two cases, very little is known about the problem. If true, the statement is best possible whenever \(r - 1 \) is a prime power (see e.g. [9]). Until now no nontrivial bound of the form \(\tau(\mathcal{H}) \leq (r - \epsilon)\nu(\mathcal{H}) \) for \(\epsilon > 0 \) and any \(r \geq 4 \) was known.

\textit{Date:} September 28, 2011.
\textit{Research of P. Haxell partially supported by NSERC.}
A hypergraph \(H \) is said to be \textit{intersecting} if \(\nu(H) = 1 \). Even for intersecting hypergraphs, Ryser’s Conjecture is open for all \(r \geq 6 \). There are many examples showing the result would be best possible in this case, and they can be quite sparse (see [7]). For \(r \leq 5 \), however, the conjecture has been proved in the special case of intersecting hypergraphs.

Theorem 1.1. (Tuza [9]) If \(H \) is an intersecting \(r \)-partite hypergraph of rank \(r \) and \(r \leq 5 \) then \(\tau(H) \leq r - 1 \).

Our aim in this paper is to prove the following theorem, the proof of which depends on Theorem 1.1, and thus give a nontrivial upper bound for Ryser’s problem in the cases \(r = 4 \) and \(r = 5 \).

Theorem 1.2. For each of \(r = 4 \) and \(r = 5 \), there exists a positive constant \(\epsilon \) such that \(\tau(H) \leq (r - \epsilon)\nu(H) \) for every \(r \)-partite \(r \)-uniform hypergraph \(H \).

2. General \(r \)

We begin the proof of Theorem 1.2 in this section, arguing in terms of general \(r \). We then complete the proof for \(r = 4 \) and \(r = 5 \) respectively in the next two sections.

Let \(J \) be an \(r \)-partite \(r \)-uniform hypergraph, with a fixed partition \(V_1 \cup \ldots \cup V_r \). Let \(B \) be a matching of size \(\nu(J) \) in \(J \). It is clear that \(\nu(B) \) is a cover of \(J \) of size \(\nu(B) \). For \(B_j \in B \) we let \(H_j \) denote the set of edges of \(J \) that intersect \(\nu(B) \) only in vertices of \(B_j \). Note then that \(H_j \) is intersecting and \(B_j \in H_j \).

We call an edge \(A \in J \) \textit{bad} if \(A \cap \nu(B) = \{v\} \) for some \(v \). The vertex \(v \) is also called \textit{bad}, and we say \(A \) is \textit{i-bad} where \(v \) is in the \(i \)th colour class \(V_i \) of the \(r \)-partition of \(J \). Note that each bad edge is in \(H_j \) for some \(j \). Let \(B_1 = \{B_j \in B : B_j \) has \(r \) bad vertices\}.

Lemma 2.1. If \(\tau(J) > (r - 1/2r)|B| \) then \(|B_1| > |B|/2 \).

\textit{Proof.} Suppose that \(|B_1| \leq |B|/2 \). Then there is a colour class \(i \) such that at least \(|B|/2r \) of the \(B_j \notin B_1 \) have no \(i \)-bad vertex. Let \(B^* \) denote the set of these \(B_j \). But then \(\bigcup_{B_j \notin B^*} B_j \cup \bigcup_{B_j \in B^*} B_j \forall V_i \) is a cover of \(J \) of size at most \(r(|B| - |B^*|) + (r - 1)|B^*| \leq (r - 1/2r)|B| \). \(\square \)

Lemma 2.1 indicates how our proof of Theorem 1.2 will proceed. Either \(J \) has a suitably small cover, or we can find a special subset of \(B \) whose size is a positive proportion of \(|B| \) (in this case \(B_1 \) which is at least half of \(B \)) about which we can make a further assumption. We may then cover all edges of \(J \) that intersect any edge of \(B \) that is not in the special subset by taking every vertex of every edge of \(B \).
not in the special subset. This will not change the hypergraphs \mathcal{H}_j, or the notion of bad, for the edges of \mathcal{J} that remain. We then focus on showing that the remaining edges have a suitably small cover (in this case of size at most $(r - \alpha)|B_1|$ for some fixed positive α). In our proof of Theorem 1.2 we will apply this procedure $r + 2$ times for $r = 4$, and $r + 3$ times for $r = 5$.

By Lemma 2.1 we may assume that $|B_1| > |B|/2$. As outlined in the previous paragraph, we let $\mathcal{J}_1 = \{A \in \mathcal{J} : A \cap B_j = \emptyset \text{ for all } B_j \in B \setminus B_1\}$. Then $\nu(\mathcal{J}_1) = |B_1|$, and $\tau(\mathcal{J}) \leq r(|B| - |B_1|) + \tau(\mathcal{J}_1)$.

Lemma 2.2. If $\tau(\mathcal{J}_1) > (r - 1/2)|B_1|$ then there is a matching of 1-bad edges in \mathcal{J}_1 of size at least $|B_1|/2r$.

Proof. Let $\mathcal{M} = \{M_1, \ldots, M_t\}$ be a maximum matching of 1-bad edges in \mathcal{J}_1. Note that since each \mathcal{H}_j is intersecting, all edges of \mathcal{M} are in distinct \mathcal{H}_j, say $\mathcal{H}_1, \ldots, \mathcal{H}_t$. Then

$$\bigcup_{j=1}^t (M_j \cup B_j) \cup \bigcup_{j>t} B_j \setminus V_1$$

is a cover of \mathcal{J}_1 of size at most $(2r - 1)|\mathcal{M}| + (r - 1)(|B_1| - |\mathcal{M}|) = (r - 1)|B_1| + r|\mathcal{M}|$. If $|\mathcal{M}| < |B_1|/2r$ then this is at most $(r - 1/2)|B_1|$. \square

By Lemma 2.2 we may assume that there is a matching \mathcal{M} of 1-bad edges in \mathcal{J}_1 of size at least $|B_1|/2r$. Let $\mathcal{B}_2 = \{B_j \in \mathcal{B}_1 : B_j \cap M_k \neq \emptyset \text{ for some } M_k \in \mathcal{M}\}$. Then $|\mathcal{B}_2| = |\mathcal{M}| \geq |B_1|/2r$. Let $\mathcal{J}_2 = \{A \in \mathcal{J}_1 : A \cap B_j = \emptyset \text{ for all } B_j \in B_1 \setminus B_2\}$. Then $\nu(\mathcal{J}_2) = |\mathcal{B}_2|$, and $\tau(\mathcal{J}_1) \leq r(|B_1| - |\mathcal{B}_2|) + \tau(\mathcal{J}_2)$. We may repeat this argument another $r - 1$ times for colour classes V_2, \ldots, V_r until we reach a hypergraph \mathcal{J}_{r+1} and a matching \mathcal{B}_{r+1} in \mathcal{J}_{r+1}, in which there exists a matching \mathcal{M}_i of i-bad edges with $|\mathcal{M}_i| = |\mathcal{B}_{r+1}|$ for each i. Each edge of \mathcal{M}_i is in a distinct \mathcal{H}_j, and $\nu(\mathcal{J}_{r+1}) = |\mathcal{B}_{r+1}|$. To prove Theorem 1.2 it will suffice to show that \mathcal{J}_{r+1} has a cover of size at most $(r - \alpha)|\mathcal{B}_{r+1}|$ for some fixed positive α.

We denote by \mathcal{C}_j the hypergraph consisting of the r edges of $\bigcup_{i=1}^r \mathcal{M}_i$ in \mathcal{J}_{r+1} that intersect B_j, together with the edge B_j itself. Then $\mathcal{C}_j \subset \mathcal{H}_j$.

Lemma 2.3. For each \mathcal{C}_j we have $\tau(\mathcal{C}_j) \geq 2$, and no cover of \mathcal{C}_j of size two consists of vertices from distinct colour classes.

Proof. If on the contrary $\tau(\mathcal{C}_j) = 1$ then without loss of generality we may assume that the vertex of B_j of colour 1 covers \mathcal{C}_j. But then the \mathcal{M}_2-edge in \mathcal{C}_j is not covered. Thus $\tau(\mathcal{C}_j) \geq 2$.

Suppose now that vertices \(v \in V_1 \) and \(w \in V_2 \) form a cover of \(C_j \). We may assume without loss of generality that \(v \) is in \(B_j \). Then the \(M_3 \) edge in \(C_j \) is not covered by \(v \), hence \(w \) must not be in \(B_j \). But then the \(M_2 \) edge in \(C_j \) is not covered by \(\{v, w\} \).

Next we would like to restrict to a hypergraph in which \(V(\mathcal{H}_j) \cap V(C_k) \neq \emptyset \) if and only if \(j = k \). To do this we will need to consider a more general setting in which our \(r \)-uniform hypergraph is replaced with a hypergraph of rank \(r \).

A sunflower with centre \(C \) in a hypergraph is a set \(S \) of edges such that \(S \cap S' = C \) for all \(S \neq S' \) in \(S \). Each edge of \(S \) is called a petal. A classical theorem of Erdős and Rado [3] tells us that every hypergraph of rank \(r \) with more than \((t - 1)^r r! \) edges contains a sunflower of size \(t \).

Let \(\mathcal{H} \) be a hypergraph of rank \(r \). We call a set \(S \) of \(t \) edges in \(\mathcal{H} \) a giant sunflower if it forms a sunflower and \(t \geq r(2r - 4) + 1 \). Note that since \(t > r \), if an intersecting hypergraph \(\mathcal{H} \) contains a giant sunflower \(S \) with centre \(C \), then \(\mathcal{H}' = \mathcal{H} \setminus S \cup \{C\} \) is also intersecting. We refer to the hypergraph \(\mathcal{H}' \) as the hypergraph obtained by picking the sunflower \(S \).

We apply the following procedure to each \(\mathcal{H}_j \) where \(B_j \in \mathcal{B}_{r+1} \). If \(\mathcal{H}_j = \mathcal{H}_j^0 \) contains a giant sunflower \(S_0 \), we pick it to obtain \(\mathcal{H}_j^1 \).

We repeat this process with the current hypergraph \(\mathcal{H}_j^k \) to get \(\mathcal{H}_j^{k+1} \), until for some \(u \) we obtain a hypergraph \(\mathcal{D}_j = \mathcal{H}_j^u \) that is free of giant sunflowers. Then in particular each \(\mathcal{D}_j \) is intersecting. Let \(J' = (J_{r+1} \setminus \bigcup_j \mathcal{H}_j) \cup \bigcup_j \mathcal{D}_j \). For every edge \(A \in \mathcal{H}_j \) there exists a unique edge \(\hat{A} \in J' \) and a sequence of edges \(A = A^0, \ldots, A^u = \hat{A} \) with \(A^k \in \mathcal{H}_j^k \) such that for \(i = 1, \ldots, u \), either \(A^i = A^{i-1} \) or \(A^i = A^{i-1} - 1 \) is a petal of \(S_{r-1} \) and \(A^i \) is its centre. We extend this definition to every \(A \in J_{r+1} \) by setting \(\hat{A} = A \) for each \(A \in J_{r+1} \) that is not in any \(\mathcal{H}_j \).

Note that \(J' \) has rank at most \(r \) but may not be \(r \)-uniform. Also, we do not know that \(\nu(J') \leq \nu(J_{r+1}) \).

Lemma 2.4. Any cover of \(J' \) is also a cover of \(J_{r+1} \).

Proof. Every edge \(A \) of \(J_{r+1} \) has a subset \(\hat{A} \) that is an edge of \(J' \). \(\Box \)

Thus to prove Theorem 1.2 it will suffice to find a cover of \(J' \) of size \((r - \alpha)|\mathcal{B}_{r+1}| \) for some \(\alpha > 0 \).

Lemma 2.5. Let \(\{A'_1, \ldots, A'_s\} \) be a matching of size \(s \leq 2r - 3 \) in \(J' \). Then there exists a matching \(\{A_1, \ldots, A_s \in J_{r+1}\} \) such that

- \(A'_i \subseteq A_i \) for each \(i \),
- if \(A'_i \in D_j \) then \(A_i \in \mathcal{H}_j \).
Proof. If every $A'_i \in \mathcal{J}_{r+1}$ then we set $A_i = A'_i$ for each i. Otherwise, since each D_j is intersecting, we may assume that $A'_1, \ldots, A'_{c-1} \in \mathcal{J}_{r+1}$, and that there are distinct D_i for $c \leq i \leq s$ such that $A'_i \not\in D_i$. Set $A_i = A'_i$ for each $1 \leq i \leq c - 1$.

Let A_i for $c \leq i \leq s$ be such that the following hold.

- $A'_i \subseteq A_i$ for each i,
- $A_i \in \mathcal{H}_{k_i}^i$ for some k_i,
- A_1, \ldots, A_s are all disjoint,
- $\sum_{i=c}^s k_i$ is as small as possible.

Such a choice of A_i exists because A'_c, \ldots, A'_s satisfy the conditions. We claim that $k_i = 0$ for each i, which implies the lemma.

Suppose on the contrary that $A_i \in \mathcal{H}_{k_i}^i$ for some i, where $k_i \geq 1$. Since $\sum_{i=c}^s k_i$ is as small as possible we know that $A_i \not\in \mathcal{H}_{k_i-1}^i$, which implies that it is the centre of a giant sunflower S in $\mathcal{H}_{k_i-1}^i$. Let $A^*_i \in \mathcal{H}_{k_i-1}^i$ be a petal of S that is disjoint from all of A_1, \ldots, A_{i-1} and all of A_{i+1}, \ldots, A_s. This is possible because the union of these edges has size at most $r(s-1) \leq r(2r-4)$, and S has at least $r(2r-4) + 1$ petals. But then replacing A_i by A^*_i gives a new family satisfying the conditions, contradicting the fact that $\sum_{i=c}^s k_i$ was as small as possible. Thus $k_i = 0$ for each i, completing the proof. □

In fact it follows from the proof of Lemma 2.5 that $A'_i = \hat{A}_i$ for each i.

Lemma 2.6. Each D_j has at most $r^{r+1}(2r-4)^{r!}$ vertices.

Proof. In particular there is no sunflower of size $r(2r-4) + 1$ in D_j, so by the Erdős-Rado theorem D_j has at most $(r(2r-4))^{r!}$ edges, and hence at most $r^{r+1}(2r-4)^{r!}$ vertices. □

Lemma 2.7. For each $B_j \in \mathcal{B}_{r+1}$ we have $\hat{B}_j = B_j$.

Proof. Suppose the contrary. Then for some k we have that B_j is a petal of a sunflower S_k in \mathcal{H}_k^j. We may assume without loss of generality that the centre C of S_k does not contain a vertex of colour 1. Let M be the M_1-edge in C_j. Then $M \cap C = \emptyset$, contradicting the fact that D_j is intersecting. □

Lemma 2.7 implies that if an edge $A \in \mathcal{J}'$ intersects exactly one $B_j \in \mathcal{B}_{r+1}$ then $A \in D_j$.

Lemma 2.8. $V(\mathcal{B}_{r+1})$ is a cover of \mathcal{J}'.

Proof. Suppose on the contrary that an edge $A \in \mathcal{J}'$ is disjoint from $V(\mathcal{B}_{r+1})$. Since each D_j is intersecting and $B_j \in D_j$, we know that
A \notin D_j \text{ for any } j, \text{ so } A \in J_{r+1}. \text{ But then since } V(B_{r+1}) \text{ is a cover of } J_{r+1} \text{ we find a contradiction.}\quad \Box

For each } j \text{ let } C'_j = \{ A : A \in C_j \}, \text{ so } C'_j \subseteq D_j \text{ for each } j. \text{ To restrict to our hypergraph in which } C'_j \text{ shares a vertex with } D_k \text{ if and only if } j = k, \text{ for convenience we define an auxiliary directed graph } G \text{ as follows. The vertex set of } G \text{ is } B_{r+1}. \text{ We put an arc from } B_k \text{ to } B_j \text{ if and only if } D_k \text{ and } C'_j \text{ share a vertex.}

\textbf{Lemma 2.9.} The graph } G \text{ has an independent set } B'' \text{ of vertices of size at least } |B_{r+1}| / (2r^{r+3}(2r - 4)^r! + 1). \text{ Thus for any } B_j, B_k \in B'', \text{ if } C'_j \text{ shares a vertex with } D_k \text{ then } j = k.

\textbf{Proof.} Since each } M_i \text{ is a matching, no vertex can be in more than } r + 1 \text{ edges of } \bigcup_j C'_j = \bigcup_j \{ B_j \} \cup \{ M : M \in M_i \text{ for some } 1 \leq i \leq r \}. \text{ By Lemma 2.6 each } D_k \text{ has fewer than } r^{r+1}(2r - 4)^r! \text{ vertices, and } B_k \text{ can share a vertex with at most } r^{r+3}(2r - 4)^r! \text{ of } C_j \text{'s. Thus the outdegree of } G \text{ is at most } r^{r+3}(2r - 4)^r!, \text{ which implies that it has an independent set of size at most } |V(G)| / (2r^{r+3}(2r - 4)^r! + 1).\quad \Box

Let } J'' = \{ A \in J' : A \cap B_j = \emptyset \text{ for all } B_j \in B_{r+1} \setminus B'' \}. \text{ Then } B'' \text{ is a matching in } J'' \text{ such that } V(B'') \text{ covers } J'', \text{ and to prove Theorem 1.2 it suffices to prove that } \tau(J'') < (r - \alpha)|B''| \text{ for some fixed positive } \alpha. \text{ One important consequence of the definition of } B'' \text{ is the fact that if } B_j, B_k \in B'' \text{ then } V(C'_j) \cap V(C'_k) = \emptyset.

\textbf{Lemma 2.10.} Every edge of } J'' \text{ contains a cover of } C'_j \text{ for some } j.

\textbf{Proof.} Suppose not. \text{ Then since the } C'_j \text{ are all vertex-disjoint, some edge } A \text{ together with an edge } A_j \text{ in } C'_j \text{ for each } j \text{ forms a matching of size } |B''| + 1 \text{ in } J''\text{. Except for the set } I \text{ of at most } r \text{ indices } j \text{ for which } A \cap V(C'_j) \neq \emptyset, \text{ we may assume } A_j = B_j. \text{ Then Lemma 2.5 applied to } A \text{ together with } \{ A_j : j \in I \} \text{ gives a matching in } J_{r+1} \text{ of size } |I| + 1, \text{ which by our construction of } J'' \text{ consists of edges that do not intersect any edge of } B_{r+1} \text{ except } \{ B_j : j \in I \}. \text{ But then together with } \{ B_j : j \notin I \} \text{ this forms a matching in } J_{r+1} \text{ of size } |B_{r+1}| + 1, \text{ a contradiction.}\quad \Box

Lemma 2.10 tells us that for every edge } A \in J'' \text{ there exists } j \text{ such that } A \text{ contains a cover of } C'_j. \text{ Since every cover of } C'_j \text{ is a cover of } C_j, \text{ Lemma 2.3 tells us that this cover is of size at least } 3. \text{ Thus } j \text{ is unique for } r = 4 \text{ and } r = 5. \text{ Let } C'_r = \{ A \in J'' : A \text{ contains a cover of } C'_j \}, \text{ so since } C'_j \text{ is intersecting we have } C'_j \subseteq C'_r. \text{ Then } J'' = \bigcup_j C'_j, \text{ where the union is a disjoint union.
Lemma 2.11. Suppose that $A \cap A' = \emptyset$ for $A, A' \in C_j^*$. Then there exists $k \neq j$ such that $A \cup A'$ contains a cover of C_k^*.

Proof. Suppose the contrary. Let I denote the set of at most $2(r-3)+1$ indices such that $(A \cup A') \cap V(C_j^*) \neq \emptyset$. Then A and A' together with an edge of C_k^* for all $k \in I \setminus \{j\}$ forms a matching of size $|I| + 1$, consisting of edges that are disjoint from each B_j with $j \notin I$. Then as in the proof of Lemma 2.10 this leads to a matching in J_{r+1} that is larger than B_{r+1}. This contradiction completes the proof. □

3. $r = 4$

We have now done essentially all the required work to prove Theorem 1.2 for $r = 4$.

Lemma 3.1. Suppose $r = 4$. Then each C_j^* is intersecting.

Proof. Suppose on the contrary that $A \cap A' = \emptyset$ where $A, A' \in C_j^*$. By Lemma 2.3, each of A and A' must have three vertices in $V(C_j^*)$. By Lemma 2.11 we know $A \cup A'$ covers C_k^* for some $k \neq j$. Since every cover of C_k^* is a cover of C_j, and $V(C_j^*) \cap V(C_k^*) = \emptyset$, we may assume that the vertices of colour 1 in A and A' form a cover of C_k^*. But then one of these vertices is not in B_k, so one of the edges, say A, contains 3 vertices of C_j^* and one vertex of C_k^* that is not in B_k. Thus $A \in H_j$, which implies $A \in D_j$. But then A cannot intersect C_k^* by Lemma 2.9. □

We close this section with the $r = 4$ case of Theorem 1.2.

Theorem 3.2. Suppose $r = 4$. Then there exists $\epsilon > 0$ such that $\tau(J) \leq (4 - \epsilon)\nu(J)$.

Proof. Since $J'' = \bigcup_j C_j^*$, by Lemma 3.1 we may apply Theorem 1.1 to conclude that each C_j^* has a cover of size 3. Therefore $\tau(J'') \leq 3|B''|$, completing the proof. □

4. $r = 5$

Our approach for the case $r = 5$ will be to start with the hypergraph J'' and the matching B'' as defined in Section 2, and restrict once more to a portion of J'' in which all the hypergraphs C_j^* are intersecting.

We begin by fixing $B_j \in B''$, and considering how the edges in C_j^* can intersect other sets C_k^*. In particular, we will need some technical information on pairs of disjoint edges in C_j^*. We will make use of the following classical theorem of Bollobás [2].
Theorem 4.1. (Bollobás [2]) Suppose sets F_1, \ldots, F_m and F'_1, \ldots, F'_m satisfy $F_i \cap F'_i = \emptyset$ if and only if $i = h$. Then

$$\sum_{i=1}^{m} \left(\frac{|F_i| + |F'_i|}{|F_i|} \right) \leq 1.$$

We say that a set of vertices is multicoloured if no two of its elements come from the same partition class V_i. For $B_j \in \mathcal{B}''$, suppose (S, S') is a pair of disjoint multicoloured covers of C'_j. Since every cover of C'_j is a cover of C_j, by Lemma 2.3 we know each of S and S' has size at least three. Let

$$A(S, S') = \{(A, A') : A, A' \in C'_j, A \cap A' = \emptyset, A \cap V(C'_j) = S, A' \cap V(C'_j) = S'\}.$$

Our key lemma in this section is the following.

Lemma 4.2. Let $B_j \in \mathcal{B}''$, and suppose (S, S') is a fixed pair of disjoint multicoloured covers of C'_j. Let

$$U = \{B_k \in \mathcal{B}'' \setminus \{B_j\} : A \cup A' \text{ covers } C'_k \text{ for some } (A, A') \in A(S, S')\}.$$

Then there exist $B, B' \in \mathcal{B}'' \setminus \{B_j\}$ such that for all but at most 42 elements $B_k \in U$, if $A \cup A'$ covers C'_k where $(A, A') \in A(S, S')$ then $(A \cup A') \cap (B \cup B') \neq \emptyset$.

Proof. Note that $|S|, |S'| \geq 3$, for any $(A, A') \in A(S, S')$ we know that each of A and A' has at most two vertices outside $V(C'_j)$.

Let U_0 be the set of B_k in U for which there is some $(A, A') \in A(S, S')$ with $A \cup A'$ covering C'_k, such that $A \cup A'$ has at least 3 vertices in C'_k. Let $U_1 = U \setminus U_0$.

Suppose that $|U_0| \geq 3$. For each $B_k \in U_0$ pick $(A_k, A'_k) \in A(S, S')$ with $|(A_k \cup A'_k) \cap V(C'_k)| \geq 3$. Then one of A_k, A'_k must have 2 vertices in C'_k and the other must have at least 1. Without loss of generality, we may assume that there are at least two sets A_k, say A_1, A_2, such that A_k has 2 vertices in C'_k. In particular, for $i = 1, 2, A_i$ is contained in $S \cup V(C'_j)$. Now consider A'_3: if it has no vertex in C'_j then A'_3 and A_i are disjoint and contradict Lemma 2.11. On the other hand, A'_3 has at most one vertex outside $B_j \cup V(C'_j)$. So we must have $|U_0| \leq 2$.

Now we consider U_1. For each $B_k \in U_1$ and $(A_k, A'_k) \in A(S, S')$ that covers C'_k, by Lemma 2.3 we know that the vertices y_k and y'_k are of the same colour, where $A_k \cap V(C'_k) = \{y_k\}$ and $A'_k \cap V(C'_k) = \{y'_k\}$.

Case 1. Suppose that there exist $B_k \in U_1$ and associated (A_k, A'_k) such that for some $B_i \in \mathcal{B}'' \setminus \{B_j, B_k\}$, the vertices x_k and x'_k exist and are both in C'_i, where $\{x_k\} = A_k \setminus (V(C'_k) \cup V(C'_j))$ and $\{x'_k\} = A'_k \setminus (V(C'_k) \cup V(C'_j))$. We claim that $B = B_k$ and $B' = B_i$ satisfy the lemma in this case. To verify this, we first observe that by Lemma 2.3,
one of A_k and A'_k (say A_k) does not contain a vertex of B_k. If $x_k \in A_k$ is not a vertex of B_k, then since its other three vertices are in C'_j, and the C'_k are all vertex-disjoint, we find $A_k \in D_j$. But this contradicts Lemma 2.9. Therefore $x_k \in A_k \cap B_l$, so $\{x_k, x'_k\} \cap B_l \neq \emptyset$. We know $\{y_k, y'_k\} \cap B_l \neq \emptyset$ since $\{y_k, y'_k\}$ covers C'_l. Then to prove our claim we show that for every $B_l \in U_1$ and every associated (A_l, A'_l), if the colour of $\{y_l, y'_l\}$ is the same as the colour of $\{y_k, y'_k\}$ then $\{x_k, x'_k\} \subset A_l \cup A'_l$, and if the colour of $\{y_l, y'_l\}$ is not the same as the colour of $\{y_k, y'_k\}$ then either $\{y_k, y'_k\} \subset A_l \cup A'_l$ or $\{x_k, x'_k\} \cap B_l \subset A_l \cup A'_l$.

Let $B_l \neq B_k$ in U_1 be given, and first assume that the colour of $\{y_l, y'_l\}$ (say 2) is the same as the colour of $\{y_k, y'_k\}$. Then A_k and A'_k are both in C'_j. If they are not disjoint then A'_l must contain x_k. Suppose they are disjoint. Then by Lemma 2.11 the vertex x'_l where $A'_l = S' \cup \{y'_k\} \cup \{x'_k\}$ must exist and $\{x_k, x'_k\}$ must cover C'_l, and hence x_k and x'_l are the same colour (say 1). (Note that $\{y_k, x'_k\}$ cannot cover C'_l because they are different colours, contradicting Lemma 2.3.) But then since $A'_l = S' \cup \{y'_k\} \cup \{x'_k\}$ and y'_k has colour 2, we see that x'_l has colour 1. Therefore $x'_l = x'_k$, since otherwise there is an edge of C'_l containing $x'_l \in V(C'_l)$ that is not covered by $\{x_k, x'_k\}$. Thus $x'_l \in A'_l$. Now the same argument applies to the pair A'_k and A_l. Therefore since $A_l \cap A'_l = \emptyset$ we find that $\{x_k, x'_l\} \subset A_l \cup A'_l$.

If the colour of $\{y_l, y'_l\}$ (say 2) is not the same as the colour of $\{y_k, y'_k\}$ (say 1) then both elements of $\{x_k, x'_l\}$ also have colour 2. If $C'_l \neq C'_j$ then consider A_k and A'_l. If they are disjoint then, since $A_k \cap V(C'_l) = \emptyset$, by Lemma 2.11 they must cover C'_k. Thus $y'_k \in A'_l$. If they are not disjoint then $y_k \in A'_l$. The same argument applies to A'_k and A_l, then since $A_l \cap A'_l = \emptyset$ we conclude $\{y_k, y'_l\} \subset A_l \cup A'_l$. If $C'_l = C'_j$, recall that one of x_k and x'_l is the vertex of colour 2 in B_l. But then since $\{y_l, y'_l\}$ covers C'_l it must contain the vertex of colour 2 in B_l. Therefore $\{x_k, x'_l\} \cap B_l \subset \{y_l, y'_l\} \subset A_l \cup A'_l$. This finishes the proof for Case 1.

Case 2. Suppose that for each $B_k \in U_1$ and associated (A_k, A'_k), the vertices x_k and x'_k (if they exist) do not lie in a common C'_l. To finish the proof we will show that $|U_1| \leq 40$. Suppose not, then there is a subset U_2 of U_1 of size at least 21 in which all $\{y_k, y'_k\}$ are the same colour. For each x_k that exists and lies in a cover of size two of the C'_l it is in, set z_k to be the other vertex of the cover. Note that z_k is unique by Lemma 2.3. Define z'_k similarly for each x'_k. Define $F_k = (A_k \setminus S) \cup \{z_k\}$ and $F'_k = (A'_k \setminus S') \cup \{z'_k\}$ for each k (if z_k or z'_k do not exist then simply set $F_k = (A_k \setminus S)$, $F'_k = (A'_k \setminus S')$). We claim that these pairs of sets satisfy the conditions for Theorem 4.1. Since x_k and x'_k do not lie in a common B_l, we have that $F_k \cap F'_k = \emptyset$ for each k. Suppose that
that C_i follows. Consider a vertex B of size at least three (and at most four), and let U be the set defined in Lemma 4.2 for this choice of B. If $|U| \leq 42$ then we put an arc (B, B_k) for each $B_k \in U$. If $|U| \geq 43$ then, for B, B' guaranteed by Lemma 4.2, we put arcs (B_j, B) and (B_j, B'), and an arc (B_j, B_k) for each $B_k \in U$ that fails to satisfy the conclusion of Lemma 4.2. We do this for each B_j and each pair (S, S') of disjoint multicoloured covers of C_j.

Lemma 4.3. The directed graph G has outdegree less than $44(5)^{16}$, and hence has an independent set \mathcal{B}^\dagger of size at least $|\mathcal{B}''|/100(5)^{16}$.

Proof. Since $|V(C_j)| \leq r^2$, the number of distinct choices of (S, S') in C_j is less than $(|V(C_j)|)^2 < (\frac{r^2}{4})^2 < r^{16} = 5^{16}$. Thus the outdegree of G is less than $49(5)^{16}$. Therefore G has an independent set of size at least $|V(G)|/(98(5)^{16} + 1) < |\mathcal{B}''|/100(5)^{16}$.

Let $\mathcal{J}^\dagger = \{A \in \mathcal{J}'' : A \cap B_j = \emptyset \text{ for all } B_j \in \mathcal{B}'' \setminus \mathcal{B}^\dagger\}$. Then \mathcal{B}^\dagger is a matching in \mathcal{J}^\dagger such that $V(\mathcal{B}^\dagger)$ covers \mathcal{J}^\dagger, and to prove Theorem 1.2 for $r = 5$ it suffices to prove that $\tau(\mathcal{J}^\dagger) < (r - \alpha)|\mathcal{B}^\dagger|$ for some fixed positive α.

Lemma 4.4. Each $C_j^* \cap \mathcal{J}^\dagger$ is intersecting.

Proof. Suppose on the contrary that A and $A' \in C_j^*$ are edges of \mathcal{J}^\dagger that do not intersect. We know by Lemma 2.11 that $A \cup A'$ covers some C_k^*, $k \neq j$. Since then $(A \cup A') \cap V(C_j^*) = \emptyset$, it must be true that $B_k \in \mathcal{B}^\dagger$. Let $S = A \cap V(C_j^*)$ and $S' = A' \cap V(C_j^*)$. Since $B_j, B_k \in \mathcal{B}^\dagger$, there cannot be an arc (B_j, B_k) in G. The construction of G implies then that for this choice of B_j and (S, S'), the set U satisfies $|U| \geq 47$ and that B and B' exist satisfying the conclusion of Lemma 4.2. Since \mathcal{B}^\dagger is an independent set in G and $B_j \in \mathcal{B}^\dagger$ we know that $B, B' \notin \mathcal{B}^\dagger$. But then by Lemma 4.2 one of A and A' intersects B or B', and hence it is not an edge of \mathcal{J}^\dagger by definition. This contradiction completes the proof.

The $r = 5$ case of Theorem 1.2 follows.

Theorem 4.5. Suppose $r = 5$. Then there exists a fixed $\epsilon > 0$ such that $\tau(\mathcal{H}) \leq (5 - \epsilon)\nu(\mathcal{H})$.

\[F_k \cap F'_k = \emptyset. \] Then A_k and A'_k are disjoint edges in C_j^* that do not cover any C_k^*, contradicting Lemma 2.11. Therefore by Theorem 4.1 we find that $|U_2| \leq (\frac{5}{2}) = 20$. This contradiction completes the proof. \[\square \]

We define an auxiliary directed graph G on the vertex set \mathcal{B}'' as follows. Consider a vertex B_j and a pair (S, S') of disjoint multicoloured covers of C_j^* of size at least three (and at most four), and let U be the set defined in Lemma 4.2 for this choice of B_j and (S, S'). If $|U| \leq 42$ then we put an arc (B_j, B_k) for each $B_k \in U$. If $|U| \geq 43$ then, for B, B' guaranteed by Lemma 4.2, we put arcs (B_j, B) and (B_j, B'), and an arc (B_j, B_k) for each $B_k \in U$ that fails to satisfy the conclusion of Lemma 4.2. We do this for each B_j and each pair (S, S') of disjoint multicoloured covers of C_j^*.
Proof. Since $J^\dagger = \bigcup_j C_j^* \cap J^\dagger$, by Theorem 1.1 we conclude that each $C_j^* \cap J^\dagger$ has a cover of size 4. Therefore $\tau(J^\dagger) \leq 4|B^\dagger|$, completing the proof. □

We end with the remark that for each of $r = 4$ and $r = 5$, an explicit lower bound for ϵ could be computed by following the steps of our proof. However, as this value is probably very far from the truth we make no attempt to do this here.

References

[1] R. Aharoni, Ryser’s Conjecture for tripartite 3-graphs, *Combinatorica* 21 (2001), 1–4
[2] B. Bollobás, On generalized graphs, *Acta Math. Acad. Sci. Hungar.* 16, (1965) 447–452
[3] P. Erdős and R. Rado, Intersection theorems for systems of sets, *J. London Math. Soc.* 35 (1960), 85–90
[4] Z. Füredi, Matchings and covers in hypergraphs, *Graphs Comb.* 4 (1988), 115–206
[5] P. Haxell, A note on a conjecture of Ryser, *Period. Math. Hungar.* 30 (1995), 73–79
[6] L. Lovász, A kombinatorika minimax tételeiről (On minimax theorems in combinatorics), *Matematikai Lapok* 26 (1975), 209–264.
[7] T. Mansour, C. Song, and R. Yuster, A comment on Ryser’s conjecture for intersecting hypergraphs, *Graphs Comb.* 25 (2009), 101–109
[8] E. Szemerédi and Zs. Tuza, Upper bound for transversals of tripartite hypergraphs, *Periodica Math. Hung.* 13 (1982), 321–323
[9] Zs. Tuza, Ryser’s conjecture on transversals of r-partite hypergraphs, *Ars Combinatoria* 16(B) (1983), 201–209
[10] Zs. Tuza, On the order of vertex sets meeting all edges of a 3-partite hypergraph, *Ars Combinatoria* 24(A) 59–63, 1987

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

E-mail address: pehaxell@math.uwaterloo.ca

Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, UK

E-mail address: scott@maths.ox.ac.uk