ON THE TIMESCALE AT WHICH STATISTICAL STABILITY BREAKS DOWN.

NEIL DOBBS AND ALEXEY KOREPANOV

Abstract. In dynamical systems, understanding statistical properties shared by most orbits and how these properties depend on the system are basic and important questions. Statistical properties may persist as one perturbs the system (statistical stability is said to hold), or may vary wildly. The latter case is our subject of interest, and we ask at what timescale does statistical stability break down. This is the time needed to observe, with a certain probability, a substantial difference in the statistical properties as described by (large but finite time) Birkhoff averages.

The quadratic (or logistic) family is a natural and fundamental example where statistical stability does not hold. We study this family. When the base parameter is of Misiurewicz type, we show, sharply, that if the parameter changes by t, it is necessary and sufficient to observe the system for a time at least of the order of $|t|^{-1}$ to see the lack of statistical stability.

1. Introduction

In this paper, we investigate the timescale at which statistical stability of dynamical systems breaks down. We carry out this study in the quadratic family, a standard test-bed for new directions in dynamics. The main theorems are stated in §2.

A real-world system can be represented by a phase space X, the set of all possible configurations of the system. Its evolution, with discrete time-steps, is described by a map $f : X \to X$. Suppose X is a Riemannian manifold and f is continuous. If $x, y \in X$ are nearby points, their orbits $x, f(x), f^2(x), \ldots$ and $y, f(y), \ldots$ remain close for a time. If the map is expanding, these orbits diverge in a time of the order of $\log \text{dist}(x, y)^{-1}$ and may have very different properties. It is then natural to look at statistical properties of orbits, for example by studying Birkhoff averages

$$\underline{S}_n \varphi(x) = \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f^j(x),$$

where $\varphi : X \to \mathbb{R}$ is a continuous function (called an observable).

Perhaps surprisingly, in well-behaved systems, for a given φ, the Birkhoff averages may converge as $n \to \infty$ to the same limit for almost every x with respect to
the volume measure on X. Better still, there is a unique f-invariant probability measure μ with the property that the limit is $\int \varphi \, d\mu$ for every continuous φ.

1.1. Structural stability. Suppose we have a smooth one-parameter family of (discrete-time) maps $f_t : X \to X$ for t in a neighbourhood of 0. The dynamics of nearby maps is relevant to the resilience to perturbation or if there is some uncertainty as to the governing parameters. If

$$\text{dist}(f_t(x), f_0(x)) \approx t,$$

as is reasonable, the orbits of x under f_0 and f_t are expected to diverge in approximately $\log |t|^{-1}$ time steps. Thus, comparing orbits of the same point under nearby maps does not lead very far. To deal with this, Andronov and Pontryagin [4] introduced the notion of structural stability, when for each nearby map there exists a global homeomorphism which maps orbits of the nearby map to orbits of the original. This concept works well for flows on compact surfaces [28, 35] and more general Morse-Smale systems, for example.

Structural stability is a rather rigid property. A fundamental example where it fails is the family of quadratic (or logistic) maps

$$f_t : x \mapsto x^2 + (a + t),$$

where $a + t$ lies in the parameter interval $[-2, 1/4]$. From Jakobson’s Theorem [16], one deduces that the topological entropy of f_t is not locally constant at $t = 0$ for any a in a positive-measure set of parameters. In particular, structural stability does not hold.

1.2. Statistical stability. Even without structural stability, statistical properties may appear to persist. Suppose that X is compact and let m denote the volume measure on X, normalized so that $m(X) = 1$. An f-invariant probability measure μ on X is called physical, or Sinai-Ruelle-Bowen (SRB), if there exists $A \subset X$ with $m(A) > 0$ so that for all continuous $\varphi : X \to \mathbb{R}$ and $x \in A$,

$$\lim_{n \to \infty} \bar{S}_n \varphi(x) = \int \varphi \, d\mu.$$

If $m(A) = 1$, we say that μ is a global physical measure.

We say that the family f_t is statistically stable, if for every f_t there exists a global physical measure μ_t, and for each continuous $\varphi : X \to \mathbb{R}$,

$$\lim_{t \to 0} \int \varphi \, d\mu_t = \int \varphi \, d\mu_0.$$

Statistical stability has been studied by Keller [17], Dolgopyat [12], Alves and Viana [3]. Alves, Carvalho and Freitas [2]. Freitas and Todd [13] and others. The study of higher regularity properties was driven by Ruelle and Baladi, see [30, 31, 6] and references therein.

In the quadratic family, statistical stability holds at hyperbolic parameters (those corresponding to maps with periodic attractors). However, it does not hold everywhere, failing at most non-hyperbolic parameters [36] [11], even near the so-called Misiurewicz parameters [11]. Moreover, there are quadratic maps [15] for which there is no physical measure to begin with.

Remark 1.1. One can obtain highly non-trivial positive results concerning statistical stability [38] [13], and even Hölder continuity of the map $t \mapsto \int \varphi \, d\mu_t$ [6], if the parameter range is restricted to a nowhere dense, but positive measure, set.
1.3. The breakdown of statistical stability. Introducing t-dependence to our Birkhoff averages, we set

$$\bar{S}_{t,n}\varphi = \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f^j_t.$$

For each t, n, we view $\bar{S}_{t,n}\varphi$ as random a variable on the probability space (X, m). We suppose that f_0 admits a global physical measure μ_0, and we use μ_t to refer to the global physical measures for f_t, whenever they exist.

Consider the following diagram.

Following the lower-left path,

$$\lim_{n \to \infty} \lim_{t \to 0} \bar{S}_{t,n}\varphi(x) = \int \varphi \, d\mu_0 \quad m\text{-almost surely.}$$

Switch the order of limits and this will no longer hold. The measures μ_t need not exist, and even restricting to parameters for which they do, the integrals $\int \varphi \, d\mu_t$ need not vary continuously.

Now consider the diagonal arrow. Let $n(t)$ be an integer-valued function of t with $n(t) \to \infty$ as $t \to 0$. Intuitively, if $n(t) \ll -\log |t|$, then orbits of a point x under f_0 and under f_t do not have time to meaningfully diverge, so $\bar{S}_{t,n(t)}\varphi \approx \bar{S}_{0,n(t)}\varphi$ and

$$\lim_{t \to 0} \bar{S}_{t,n(t)}\varphi = \int \varphi \, d\mu_0 \quad m \text{ almost-surely.}$$

As a corollary,

$$\bar{S}_{t,n(t)}\varphi \to \int \varphi \, d\mu_0 \quad \text{in probability (w.r.t. } m), \text{ as } t \to 0.$$

The almost sure convergence (1.1) is a rather rigid concept, it is expected to break down once $n(t) \gg -\log |t|$, see [20] Section 7.

In this paper, we examine how fast $n(t)$ can grow without destroying the convergence in probability (1.2). Or, given the size of a small perturbation, we determine the minimum amount of observation time needed to discover instability in the statistical behaviour. Similarly, if we have some uncertainty in the parameter governing the system, the predicted statistical behaviour is valid up until some timescale.

For the quadratic family, if the base parameter is of Misiurewicz type, the statistical stability continues to hold as long as $n(t)$ grows more slowly than t^{-1}, see Theorem 2.6. This result is sharp: if $n(t)$ grows as fast as t^{-1}, continuity is lost, see Theorem 2.7. We say that, in this context,

statistical stability breaks down at the timescale $\frac{1}{t}$.
1.4. **Fast-slow systems.** A further motivation for our work was the study of fast-slow systems of the form:

\[
\begin{align*}
 s_{\varepsilon,n+1} &= s_{\varepsilon,n} + \varepsilon \varphi(x_{\varepsilon,n}), & s_{\varepsilon,0} = 0 \\
 x_{\varepsilon,n+1} &= f_\varepsilon(x_{\varepsilon,n}), & x_{\varepsilon,0} \sim m
\end{align*}
\]

with \(\varepsilon \in [0, \varepsilon_0] \). When the maps \(f_\varepsilon \) are nonuniformly expanding, under rather general assumptions it is proved \[20\] that as \(\varepsilon \to 0 \), the random process \(s_{\varepsilon,\lfloor \varepsilon^{-1} t \rfloor} \), \(t \in [0, 1] \), converges in distribution to the solution of the ordinary differential equation

\[
\dot{s} = \int \varphi \, d\mu_0, \quad s(0) = 0.
\]

In the case of logistic maps, to satisfy the assumption that the maps \(f_\varepsilon \) are nonuniformly expanding, the range of \(\varepsilon \) has to be restricted to a nowhere dense subset of \([0, \varepsilon_0] \). Still, for each \(\varepsilon > 0 \),

\[
s_{\varepsilon,\lfloor \varepsilon^{-1} t \rfloor} = \varepsilon \sum_{j=0}^{\lfloor \varepsilon^{-1} t \rfloor - 1} \varphi \circ f_\varepsilon^j
\]

is a finite sum, oblivious of possible complications in the long term dynamics, such as absence of the physical measures. It is an interesting question whether the restriction on the range of parameters can be lifted. The authors of \[20\] were asked this question by various people, including D. Dolgopyat and the anonymous referee of \[20\]. Our theorems respond to this question, showing that convergence breaks down without a restriction on the parameter range but, surprisingly, for all shorter (and less natural) timescales, one does have convergence.

1.5. **Stochastic stability.** In this paper we perturb a dynamical system by considering another one close to the original. Such perturbations are called deterministic. Another type is stochastic, where at each step a small perturbation is chosen randomly.

Suppose the base map has a physical measure \(\mu_0 \). If the statistics of stochastically perturbed systems can be described by measures \(\mu_\varepsilon \), where \(\varepsilon \) reflects the average strength of the perturbation, and if \(\mu_\varepsilon \to \mu_0 \) as \(\varepsilon \to 0 \), then the base map is stochastically stable. The question of stochastic stability has been treated successfully in \[1, 5, 7, 9, 17, 23, 33, 34\] among others.

In sharp contrast with statistical stability, almost every quadratic map is stochastically stable \[7, 9, 33, 24\].

1.6. **Organisation.** The paper is organized as follows. In \[2\] we give formal definitions and statements of our main results. In \[3\] we assemble various results about the maps \(f_t \) close to the base map \(f_0 \). In \[4\] we study statistical properties of first return maps to carefully chosen small neighbourhoods of the critical point.

In \[5\] we prove the lack of statistical stability on the timescale \(n(t) = t^{-1} \). We find parameters \(t_n \) with the critical point a super-attracting periodic point with period as short as possible. The size of the immediate basin of attraction of the critical point happens to be of the order of \(t_n \). For any \(C > 0 \), we show that a definite proportion of points fall into the basin in fewer than \(Ct_n^{-1} \) iterates, which is enough to obliterate statistical stability.

In \[6\] we prove statistical stability on shorter timescales. There is a natural argument which works on timescales up to \(t^{-1/2} \), but this is not optimal. To reach the optimal \(o(t^{-1}) \), we intricately construct an induced map. We use it to
approximate each f_t with a non-uniformly expanding map for which martingale approximations give strong control of statistical properties.

2. Statements

We shall often write Df for the derivative f' of a map f.

Definition 2.1. We say that a continuous map $f : I \to I$ defined on a compact interval I is unimodal if f has exactly one turning point c. We say f is a smooth unimodal map if, moreover, f is continuously differentiable and c is the unique (critical) point satisfying $f'(c) = 0$. The critical point and the map are non-degenerate if $f''(c) \neq 0$.

Definition 2.2. A map $f : I \to I$ is S-unimodal if it is a C^2 smooth unimodal map with critical point c, $|f'|^{-1/2}$ is convex on each component of $I \setminus \{c\}$, $f(\partial I) \subset \partial I$ and $|f'| > 1$ on ∂I.

The convexity condition is equivalent ([27], [10, p. 266]), for C^3 maps, to having non-positive Schwarzian derivative, while strict convexity corresponds to negative Schwarzian derivative. Quadratic maps have negative Schwarzian derivative. A forward-invariant compact set X for f is hyperbolic repelling if there exists $k \geq 1$ with $|Df^k| \geq 2$ on X. The post-critical orbit is the set $\{f^n(f(c))\}_{n \geq 0}$.

Definition 2.3. A smooth unimodal map is called Misiurewicz if the closure of its post-critical orbit is a hyperbolic repelling set.

Misiurewicz maps have strong expansion properties which outweigh any contraction caused by passage close to the critical point. By Singer’s Theorem [10, Theorem III.1.6], all periodic points of an S-unimodal Misiurewicz map are hyperbolic repelling. We shall recall further properties anon.

Throughout the paper we fix $I = [-1, 1]$, and all our unimodal maps have the critical point at 0.

Definition 2.4. A Misiurewicz-rooted unimodal family is a family $\{f_t\}_{t \in [0, \varepsilon], \varepsilon > 0}$, of non-degenerate S-unimodal maps on I with the critical point 0. We require that f_0 is a Misiurewicz map and $f_t(x)$ is C^2 as a function of (x, t).

Definition 2.5. We say that a Misiurewicz-rooted unimodal family $\{f_t\}$ is transversal if

$$\sum_{j=0}^{\infty} \frac{\partial_t f_t(f_j(0))}{(f_0')'(f_0(0))} \neq 0.$$

Suppose that $\{f_t\}$ is a Misiurewicz-rooted unimodal family and let μ_0 be the unique f_0-invariant absolutely continuous probability measure [26]. Let $\varphi : I \to \mathbb{R}$ be a continuous observable and define

$$S_{t,n}\varphi := \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f_t^j.$$

Let $\bar{\varphi} = \int \varphi d\mu_0$. Let m denote the normalized to probability Lebesgue measure on I.

Theorem 2.6 (Persistence of statistical stability). For any function $n: \mathbb{R}^+ \to \mathbb{Z}^+$ such that $\lim_{t \to 0^+} n(t) = \infty$ and $\lim_{t \to 0^+} tn(t) = 0$,

$$\lim_{t \to 0^+} \int_I |S_{t,n(t)} \varphi - \bar{\varphi}| \, dm = 0.$$

Theorem 2.7 (Breakdown of statistical stability). Let $a > 0$. If the family $\{f_t\}$ is transversal, then there exists a continuous observable φ for which

$$\limsup_{t \to 0^+} \int_I |S_{t,\lceil a \rceil} \varphi| \, dm \neq 0.$$

Example 2.8. Let $g_t(x) = x^2 + t_0 + t$ be a parametrisation of the quadratic family, with t_0 a Misiurewicz parameter in $[-2,1/4]$ and $t \in [0,1/4 - t_0)$. Noting that $\partial_t g_t(x) \equiv 1$, transversality has been shown by Levin [22] (under more general summability conditions). This family does not leave $[-1,1]$ invariant, so it is not (quite) a Misiurewicz-rooted unimodal family. However, for every t there is the maximal interval $I_t = [-r_t, r_t]$ for which $g_t(I_t) \subset I_t$, and

$$t \mapsto r_t = 1 + \sqrt{1 - 4(t_0 + t)}$$

is smooth near 0. Rescaling by r_t, we obtain a conjugate quadratic family $f_t(x) = r_t^{-1} g_t(r_t x)$ which is a Misiurewicz-rooted unimodal family. Writing $F(x,t) = f_t(x)$, $G(x,t) = g_t(x)$ and using ∂_1, ∂_2 to denote the partial derivatives with respect to the first and second coordinates, we compute

$$\partial_2 F(x,t) = r_t^{-1} \partial_2 G(r_t x, t) + r_t' r_t^{-1} (x \partial_1 G(r_t x, t) - F(x,t)).$$

Calculation gives

$$\frac{\partial_2 F(f_t^j(0), t)}{Df_t^j(f_t(0))} = \frac{1}{Df_t^j(0)} + \frac{r_t'}{r_t} \left(\frac{f_t^j(0)}{Df_t^{j-1}(f_t(0))} - \frac{f_t^{j+1}(0)}{Df_t^j(0)} \right).$$

Summing with $t = 0$, the telescopic sum contributes zero, while $Df_0^j(x) = Dg_0^j(r_t x)$. Consequently transversality of G implies transversality of F, as one would expect. Hence Theorem 2.6 and Theorem 2.7 apply to F. One can then deduce corresponding statements for G.

3. Preliminaries

We shall use the notation $A(\cdot) = O(B(\cdot))$ and $A(\cdot) \lesssim B(\cdot)$ interchangeably, meaning that there exists a constant $C > 0$ such that $A(\cdot) \leq CB(\cdot)$ for all sufficiently large (or small) values of the argument. If both $A(\cdot) \lesssim B(\cdot)$ and $B(\cdot) \lesssim A(\cdot)$, we write $A(\cdot) \asymp B(\cdot)$.

Definition 3.1. Let W, V be open intervals. Suppose that $g: W \to V$ is a C^2 surjective diffeomorphism with $|Dg|^{-1/2}$ convex. Suppose that g can be extended to a C^2 surjective diffeomorphism $\hat{g}: W \to \hat{V}$ with $|D\hat{g}|^{-1/2}$ convex, where W, \hat{V} are intervals and \hat{V} compactly contains W.

In this setup we say that g is \hat{W}-extensible. When both connected components of $\hat{V} \setminus V$ have length at least $\delta |V|$ for some $\delta > 0$, we say that g is δ-extensible.
Lemma 3.2 (The Koebe Principle [10] Theorem IV.1.2, [20]). Suppose that $g : W \to V$ is a C^2 surjective diffeomorphism with $|Dg|^{-1/2}$ convex, and that g is δ-extensible. Then we have the distortion bound

$$\sup_{x,y \in W} \frac{Dg(x)}{Dg(y)} \leq \frac{(1+\delta)^2}{\delta^2}.$$

In addition, there exists a constant C depending only on δ, such that for all $x, y \in W$,

$$|\log |Dg(x)| - \log |Dg(y)|| \leq \frac{C}{|W|} |x - y|.$$

Let us fix a constant $\Delta > 1$ for which Δ-extensible maps have distortion bounded by 2.

Lemma 3.3. Suppose that $g, W, \hat{W}, V, \hat{V}$ are as in Definition 3.1 and that, additionally, each component of $\hat{V} \setminus V$ has length at least $10(1 + \Delta) |V|$ and $|V| > |\hat{W}|$. Then $|Dg| > 5$ on W.

Proof. There is an interval $V' \supset V$ with $|V'| = 10|V|$. Let $W' = g^{-1}(V')$. Each component of $\hat{V} \setminus V'$ has length at least $10\Delta |V| = \Delta |V'|$, so $g : W' \to V'$ is Δ-extensible. By Lemma 3.3, the distortion of g is bounded by 2 on W'. The result then follows from the estimate $|V'| = 10|V| > 10|W'|$. □

Suppose that $f : I \to I$ is a continuous map with $f(\partial I) \subset \partial I$.

Definition 3.4. We say that an interval $A \subset I$ is a pullback of an interval $U \subset I$ (under f), if A is a connected component of $f^{-n}(U)$ for some $n \geq 0$.

Definition 3.5. An open interval U is called regularly returning if $f^n(\partial U) \cap U = \emptyset$ for all $n \geq 0$.

This property is widely used [14, 23, 29] to simplify the study of induced maps thanks to the following elementary property.

Lemma 3.6. If U is regularly returning, then pullbacks of U are either nested or disjoint, that is, if A, B are pullbacks of U and if $A \cap B \neq \emptyset$, then either $A \subset B$ or $B \subset A$.

We shall use induced maps of the form $F(x) = f^{\tau(x)}(x)$ in much of the paper, where τ is an inducing time, defined on a disjoint union of open intervals, called branches, where τ is constant. A branch is full if its image equals the range of the induced map.

First entry maps and first return maps to a regularly returning interval U are primary examples of induced maps. The first entry time is

$$e(x) = \inf\{k \geq 0 : f^k(x) \in U\},$$

while the first return time is

$$r(x) = \inf\{k \geq 1 : f^k(x) \in U\} = 1 + e(f(x)).$$

The first entry map $x \mapsto f^{e(x)}(x)$ and the first return map $x \mapsto f^{r(x)}(x)$ are defined on the sets $\{x \in I : e(x) < \infty\}$ and $\{x \in I : r(x) < \infty\}$ respectively.

Since U is regularly returning, it follows from Lemma 3.6 that if W is a branch of the first entry of the first return map with the corresponding inducing time n_W, then $f^{n_W}(\partial W) \subset \partial U$.

ON THE TIMESCALE AT WHICH STATISTICAL STABILITY BREAKS DOWN. 7
Henceforth, suppose that \(\{f_t\} \) is a Misiurewicz-rooted unimodal family. As a Misiurewicz map, \(f_0 \) enjoys strong expansion properties:

Lemma 3.7 (II Theorem III.6.3). Given any sufficiently small neighbourhood \(U \) of 0, there exist \(C \in (0,1) \) and \(\lambda > 1 \) such that for each \(x \in I \)

- if \(f_0^j(x) \notin U \) for \(0 \leq j \leq k-1 \), then
 \[|Df_0^k(x)| \geq C\lambda^k; \]
- if \(f_0^k(x) \in U \), then
 \[|Df_0^k(x)| \geq C\lambda^k. \]

The maps \(f_t \) for \(t \neq 0 \) are not necessarily Misiurewicz, and Lemma 3.7 does not apply. Still, for \(t \) small enough, a similar statement holds:

Lemma 3.8 (II Theorem III.6.4). There exists \(C \in (0,1) \) and \(\lambda > 1 \) such that, given any sufficiently small neighbourhood \(U \) of 0, the following holds for all sufficiently small \(t \).

- If \(f_t^j(x) \notin U \) for \(0 \leq j \leq k-1 \), then
 \[|Df_t^k(x)| \geq C\lambda^k \inf_{0 \leq j < k} |Df_t(f_t^j(x))|. \]
- If \(f_t^j(x) \notin U \) for \(0 \leq j \leq k-1 \) and \(f_t^k(x) \in U \), then
 \[|Df_t^k(x)| \geq C\lambda^k. \]

Expansion entails a uniform distortion bound.

Lemma 3.9. Let \(U \) be a neighbourhood of 0. There is a constant \(C > 1 \) such that, for all \(t \) small enough, the following holds. If \(W \) is an open interval such that \(f_t^k(W) \cap U = \emptyset \) for \(0 \leq k < n \) and \(x, y \in W \), then

\[|\log |Df_t^k(x)| - \log |Df_t^k(y)|| \leq (\log C)|f_t^n(x) - f_t^n(y)|. \]

Proof. By Lemma 3.8, there is a constant \(C_0 > 0 \) (independent of \(t, W, n \)) such that, for all \(x, y \in W \),

\[\sum_{k=0}^{n-1} |f_t^k(x) - f_t^k(y)| \leq C_0 |f_t^n(x) - f_t^n(y)|. \]

Recall that \(f_t(x) \) is a \(C^2 \) function of \((x,t) \), so \(|D(\log |Df_t|)| \) is bounded by some \(C_1 > 0 \) on \(I \setminus U \) uniformly in \(t \). For \(x, y \in W \), we deduce

\[\frac{1}{\log |Df_t^n(y)| - \log |Df_t^n(x)|} = \left| \sum_{k=0}^{n-1} \int_{f_t^k(x)}^{f_t^k(y)} D(\log |Df_t|)(z) \, dz \right| \]

\[\leq C_1 \sum_{k=0}^{n-1} |f_t^k(x) - f_t^k(y)| \]

\[\leq C_0 C_1 |f_t^n(x) - f_t^n(y)|. \]

\(\square \)

The map \(f_0 \), being Misiurewicz, has an induced map with good properties.
Lemma 3.10 ([10], Proof of Lemma V.3.2)]. For the map f_0, there is an arbitrarily small regularly-returning open interval J such that, for each n, disjoint from the post-critical orbit, for which $f(\partial J)$ is a (single) periodic point. Each branch of the first return map is mapped diffeomorphically onto J. The complement in J of the domain of the first return map has zero Lebesgue measure. There is a uniform distortion bound for all iterates of the first return map.

Let $\theta_0 \in (0, \Delta^{-1})$ be small enough that for any neighbourhood U of 0 contained in $(-\theta_0, \theta_0)$, the conclusions of Lemma 3.7 and Lemma 3.8 hold.

Lemma 3.11. Let $J \subset (-\theta_0, \theta_0)$ be an interval given by Lemma 3.10. Periodic points of f_0 are dense in J. Preimages of any point in J are dense in J and hence in I.

Proof. Let $\phi: J \to J$ be the first return map to J under the iterations of f_0. The union of branches of ϕ^n has full Lebesgue measure in J for each n. Because of the uniform distortion and expansion bounds given by Lemmas 3.10 and 3.7, the maximal diameter of a branch of ϕ^n tends to 0 as $n \to \infty$.

Each branch A of ϕ^n is mapped by ϕ^n diffeomorphically onto J. Assuming that $\partial A \cap \partial J = \emptyset$, there is a point $x \in A$ such that $\phi^n(x) = x$. Thus all but at most two branches of ϕ^n contain a periodic point for f. It follows that periodic points are dense in J.

For $x \in J$, each branch of ϕ^n contains a preimage of x, so the preimages are dense in J. Further, intervals $A \subset I \setminus J$ such that $f^n: A \to J$ is a diffeomorphism are dense in I by expansion outside J (see Lemma 3.7). Therefore, preimages of x are dense in I.

Let Λ be a closed f_0-forward-invariant subset of I such that $0 \notin \Lambda$. We introduce the continuation of points in Λ (see [32, Lemma 3.1]). By Lemma 3.8, there is an $N \geq 1$ such that $g_t = f_t^N$ is expanding on a neighbourhood $B(\Lambda, \rho)$ of Λ, with $|Dg_t| > 2$ on the neighbourhood, for all t small enough. For $x \in \Lambda$, let $x_{t,n}$ be the unique point such that $g_t^n(x_{t,n}) = g_0^n(x)$ and $g_t^n(x_{t,n})$ and $g_0^n(x)$ have the same sign for each $0 \leq j \leq n$. There is a constant $C > 0$ such that, for t small enough,

$$|x_{t-1} - x| \leq Ct < \rho/2$$

for each $x \in \Lambda$. By expansion, it follows inductively that

$$g_t^n(x_{t,n}) \in B(g_0^n(x), 2Ct) \subset B(g_0^n(x), \rho)$$

for $0 \leq j \leq n$ and that $x_{t,n}$ exists and converges to a limit x_t. In particular, for each $x \in \Lambda$, we obtain a map $t \mapsto x_t$ with the same Lipschitz constant $2C$. Combining them generates a map $t \mapsto \Lambda_t$.

Definition 3.12 (Continuation). The map $t \mapsto x_t$ as above (or the point x_t) is called the continuation of $x = x_0$. Λ_t is called the continuation of $\Lambda = \Lambda_0$.

Lemma 3.13. Let $\theta \in (0, \theta_0)$. For sufficiently small t, there exist open intervals U_0, U_1, such that

(a) $0 \in U_1 \subset U_0 \subset (-\theta, \theta)$;
(b) for each j, the boundary ∂U_j varies continuously with t, and $f_t(\partial U_j)$ is a single point, preperiodic with respect to f_t;
(c) $f_t^n(\partial U_j) \notin U_0$ for all $k \geq 1$ and $j = 0, 1$;
(d) $|U_1| \leq \theta \text{ dist}(U_1, \partial U_0)$.
Proof. Suppose first that \(t = 0 \). Let \(J \subset (-\theta/2, \theta/2) \) be given by Lemma 3.11 and set \(U_0 = J \). Recall that \(f_0(\partial U_0) \) is a single periodic point whose orbit under \(f_0 \) is disjoint from \(U_0 \).

Let \(F: U_0 \to U_0 \) denote the first return map to \(U_0 \) under \(f_0 \). Branches of \(F \) accumulate on \(0 \), since \(0 \) never returns, and boundary points of branches get mapped by the corresponding iterate of \(f_0 \) to \(\partial U_0 \). Hence there are preperiodic points, arbitrarily close to \(0 \), which never return to \(U_0 \). Choose one, \(p < 0 \), such that \(p \) and its symmetric point \(p_* \) (in the sense \(f_0(p) = f_0(p_*) \)) lie in \(U_0 \) and such that

\[
|p_* - p| < \theta \text{dist}(\{p, p_*\}, \partial U_0)/2,
\]

and set \(U_1 = (p, p_*) \).

The boundaries of \(U_j, j = 0, 1 \), consist of preperiodic points whose forward orbits do not include \(0 \), hence they admit continuations, giving the sets \(U_j \) with the required properties for small enough \(t \).

Lemma 3.14. Let \(U_j \) denote the intervals from Lemma 3.13. Let

\[
E_n = \{ x \in I : f_1^n(x) \notin U_1 \text{ for all } k = 0, 1, 2, \ldots, n \},
\]

\[
R_n = \{ x \in I : f_1^n(x) \notin U_1 \text{ for all } k = 1, 2, \ldots, n \}.
\]

For \(t \) small enough, there are constants \(\alpha, C > 0 \) such that

\[
m(E_n) < C e^{-\alpha n} \quad \text{and} \quad m(R_n) < C e^{-\alpha n}
\]

for all \(n \geq 0 \).

Proof. Choose a neighbourhood of \(0 \) contained in \(U_1 \) for all small \(t \) and obtain a distortion bound \(C' > 1 \) from Lemma 3.13. Let us drop the dependence on \(t \) from notation, where appropriate.

Note that \(E_n \) is a finite union of closed intervals and \(E_{n+1} \subset E_n \). Let \(A \) be a connected component of \(E_n \). Then \(f^n \) is monotone on \(A \) and the boundary points of the interval \(f^n(A) \) are distinct elements of the preperiodic forward orbit of \(\partial U_1 \). Therefore, \(|f^n(A)| > \kappa_1 \), where \(\kappa_1 > 0 \) is independent of \(A, n \) and \(t \) (for \(t \) small enough). Hence there exists a number \(N \) (independent of \(A, n \) and \(t \)) such that \(f^{n+k}(A) \cap U_0 \neq \emptyset \) for some (minimal) \(k \leq N \). In fact, \(U_0 \subset f^{n+k}(A) \), because the boundary points of \(f^n(A) \) never return to \(U_0 \) under iteration of \(f \). Also, \(f^{n+k} : A \to f^{n+k}(A) \) is a diffeomorphism and \(A \setminus E_{n+k} \) is a subinterval of \(A \) such that \(f^{n+k}(A \setminus E_{n+k}) = U_1 \). The distortion of \(f^{n+k} \) is bounded by \(C' \) on \(A \), by Lemma 3.13. Consequently

\[
\frac{m(A \setminus E_{n+k})}{m(A)} \geq C' \frac{|U_1|}{|f^n(A)|}.
\]

Hence there exists \(\gamma \in (0, 1) \), independent of \(A, n, t \), for which

\[
m(A \cap E_{n+N}) \leq m(A \cap E_{n+k}) \leq \gamma m(A).
\]

Summing over all connected components of \(E_n \), we obtain that \(m(E_{n+N}) \leq \gamma m(E_n) \).

The result for \(m(E_n) \) follows by induction. Since \(f(R_n) \subset E_{n-1} \) and \(f \) has a quadratic critical point, \(m(R_n) \lesssim \sqrt{m(E_{n-1})} \), so we also obtain the result for \(m(R_n) \). \(\square \)

Denote \(f_1^{n+1}(0) \) by \(\xi_n(t) \). The proof of the following lemma is based on [37]; the ideas go back at least to [8].
Lemma 3.15. If \(\{f_t\} \) is transversal, there exist \(r_0 > 0 \), \(m_0 \geq 1 \) and a sequence of positive numbers \(\gamma_n, n \geq m_0 \) with

(a) \(\gamma_n/\gamma_{n+1} \simeq 1 \), \(\lim_{n \to \infty} \gamma_n = 0 \);
(b) \(\gamma^{-1}_n \simeq |D\xi_n(0)| \simeq |Df^0_0(f_0(0))| \);
(c) \(|\xi_n(\gamma_n) - \xi_n(0)| \geq r_0 \);
(d) for all \(m_0 \leq k \leq n \), the map \(\xi_k \) is monotone on \([0, \gamma_n] \) and has a distortion bound

\[
\log \frac{|D\xi_k(s)|}{|D\xi_k(t)|} \leq 1 \quad \text{for all } s, t \in [0, \gamma_n];
\]
(e) \(\log \frac{|Df^k_0(f_0(0))|}{|Df^k_t(f_t(0))|} \leq 1 \quad \text{for all } t \in [0, \gamma_n] \).

Proof. Recall from Lemma 3.7 that \(|Df^k_0(f_0(0))| \geq C_0 \lambda^k \). We use Tsujii [37] and only treat large \(n \). From [37] Equation 3.3,

\[
|Df^k_0(f_0(0))|^{-1} \simeq a^+(f_0(0), n; 0),
\]

where \(a^+(x, n; t) = (4\epsilon_\kappa^2 \sum_{j=0}^{n-1} \frac{|Df^j(x)|}{|Df^j(f_j(x))|})^{-1} \) and \(\kappa_1 > 1 \).

We choose \(\gamma_n \) equal to \(\gamma^{(n)}(0, n) \) in [37] Section 5. By [37] Lemma 5.2 and the preceding Remarks with \(t = 0 \),

- \(|D\xi_n(0)| \simeq |Df^0_0(f_0(0))| \);
- \(\gamma_n < |D\xi_n(0)|^{-1} \);
- \(\gamma_n \geq a^+(f_0(0), n; 0) \).

Hence we obtain (b) which in turn implies (a).

Bounds (d) and (e) correspond to [37] \(\Gamma_1 \) and \(\Gamma_2 \). Finally, (c) follows from \(\gamma_n \simeq |D\xi_n(0)|^{-1} \) and (d). \(\square \)

4. First return maps

We continue to suppose that \(\{f_t\} \) is a Misiurewicz-rooted unimodal family. Let \(\Lambda_0 \) be the closure of the post-critical orbit of \(f_0 \). Let \(\Lambda_t \) be its continuation, see Definition 3.12.

Where appropriate, we shall suppress the dependence on \(t \) from notation for better legibility.

Given the intervals \(U_j \), as in Lemma 3.13 we denote by \(\phi_j : U_j \to U_j \) the first return map under iteration by \(f_t \), and by \(\psi_j : I \to U_j \) the first entry map.

Lemma 4.1. There are constants \(C > 1, \theta_1 \in (0, \theta_0) \) such that for \(\theta \in (0, \theta_1) \), if \(U_j, j = 0, 1 \), are given by Lemma 3.13, if \(t \) is small and if \(x \in U_j \) with \(|x| > Ct \), then

\[
|D\phi_j(x)| \geq 1000.
\]

Proof. Let \(\delta_0 = \frac{1}{4} \text{dist}(\Lambda_0, 0) \). Set \(y_0 = f_0(0) \in \Lambda_0 \) and let \(y_t \) denote the continuation of \(y_0 \). Suppose that \(x \) is small and \(f_t(x) \neq y_t \). Then

\[
|f_t(x) - y_t| \leq |f_t(x) - f_t(0)| + |f_t(0) - y_0| + |y_0 - y_t| \leq x^2 + t.
\]

Let \(W = (f_t(x), y_t) \) and set

\[
n = \inf\{k \geq 0 : |f^k_t(W)| \geq \delta_0\}.
\]
Since \(W^f(4.2) \)

Proof. As in the proof of Lemma 4.2, let \(\hat{\psi} \) be a non-central branch of \(\psi_1 \). Then there is an open interval \(\hat{W} \supset W \) with \(\hat{W} \supset W \supset U_0 \), mapped diffeomorphically by \(f^n_t \) onto \(U_0 \), where \(\psi_1 = f^n_t \) on \(W \).

Suppose \(0 \notin W \). Let \(W \supset W \) be the maximal open interval with \(f^n_t(W) \subset U_0 \). Since \(f^n_t(\partial U_1) \cap U_0 = \emptyset \) for \(k \geq 1 \),

\[
f^n_k(W) \cap \partial U_1 = \emptyset \quad \text{for all } 0 \leq j < n.
\]

Since \(n \) is the first entry time on \(W \),

\[
f^n_k(W) \cap U_1 = \emptyset \quad \text{for all } 0 \leq j < n.
\]

Hence \(f^n_t \) has no critical point in a neighbourhood of \(\hat{W} \), and maximality gives surjectivity.

If \(\phi_1 \) has a critical point, it is unique and equal to 0. Otherwise, \(\phi_1 \) is not defined at 0. A branch containing 0 is called central.

Lemma 4.3. Suppose that either 0 never returns to \(U_0 \) or the first return of 0 to \(U_0 \) lies in \(U_1 \). Let \(W \) be a non-central branch of \(\phi_1 \). Then there is an open interval \(W \), with \(W \subset W \subset U_1 \), mapped diffeomorphically by \(f^n_t \) onto \(U_0 \), where \(\phi_1 = f^n_t \) on \(W \). In case \(\phi_1 \) has a central branch, \(\hat{W} \) is disjoint from it. On the non-central branches, \(|D\phi_1| \geq 5 \).

Proof. As in the proof of Lemma 4.2, let \(\hat{W} \supset W \) be the maximal open interval with \(f^n_t(\hat{W}) \subset U_0 \). Then \(f^n_t(\hat{W}) \cap \partial U_1 = \emptyset \) for \(0 \leq j < n \), in particular, \(\hat{W} \subset U_1 \). Since \(n \) is the first return time on \(W \),

\[
f^n_k(\hat{W}) \cap U_1 = \emptyset \quad \text{for } 1 \leq j < n.
\]

Therefore \(0 \) is the only possible critical point of \(f^n_t \) on \(\hat{W} \).
Next we show that $0 \notin \hat{W}$. Indeed, suppose that $0 \in \hat{W}$. Then by (4.2) and by the first return hypothesis, $f_t^k(0) \notin U_0$ for $1 \leq k < n$, thus n is the first return time of 0 to U_0. Again by the first return hypothesis, $f_t^n(0) \in U_1$. Since 0 is the only critical point of f_t^n on \hat{W}, all points between 0 and W get mapped by f_t^n into U_1, so $0 \in W$, contradicting our assumption that W is non-central.

Since \hat{W} is the maximal open interval with $f_t^n(\hat{W}) \subset U_0$ and f_t^n has no critical points on W, it follows that $f_t^n(\hat{W}) = U_0$.

Now let us show that in case $\phi_{1,4}$ has a central branch, W is disjoint from it. Suppose that Z is the central branch with return time n_0 and that $\hat{W} \cap Z \neq \emptyset$. Since $0 \in Z$ and $0 \notin \hat{W}$, it follows that there is $x \in \partial \hat{W} \cap Z$. Then $f_t^n(x) \in \partial U_0$, so $f_t^n(x) \notin U_0$ for all $k \geq n$, thus $n_0 < n$. Hence, $f_t^n(\partial Z) \notin U_0$, so $\partial Z \cap W = \emptyset$. It follows that Z contains W and $n_0 = n$, which contradicts $n_0 < n$.

Given that $\theta < \frac{\ln(1+\Delta)}{\ln(1+\Delta)}$ and $|U_1| < \theta \text{dist}(U_1, \partial U_0)$, the derivative estimate follows from Lemma 3.3.

\[\square \]

5. Breakdown of statistical stability

In this section, we suppose that our Misiurewicz-rooted unimodal family is transversal and prove Theorem 2.7. We again let Λ_0 denote the closure of the post-critical set of f_0 and Λ_t the continuation of Λ_0. The absolutely continuous invariant probability measure for f_0 is μ_0.

Lemma 5.1. Given any $\varepsilon > 0$, there is a neighbourhood W_Λ of the post-critical set Λ_0 of f_0 and a smooth observable φ with $\varphi \geq 0$ for which

$$\varphi(x) = 1$$

for all $x \in W_\Lambda$ and for which

$$\int \varphi \, d\mu_0 < \varepsilon.$$

Proof. By Lemma 3.14, $m(\Lambda_0) = 0$. Since μ_0 is absolutely continuous, there exists a cover of Λ_0 by open balls whose union has μ_0-measure less than $\varepsilon/2$. Since Λ_0 is compact, one can extract a finite subcover of balls $B(x_i, r_i)$ with center x_i and radius r_i with $\bigcup_i B(x_i, r_i) = W_\Lambda$. For $\delta > 0$ small enough, the union of $B(x_i, r_i + \delta)$ will have measure at most ε, and there is a smooth function φ taking values in $[0, 1]$ with $\varphi = 1$ on W_Λ and zero on $I \setminus \bigcup_i B(x_i, r_i + \delta)$. \[\square \]

Showing Theorem 2.7 therefore reduces to proving the following proposition, whose proof takes the rest of this section.

Proposition 5.2. Let $a > 0$. There exists $\alpha_0 > 0$ such that, for any neighbourhood W_Λ of Λ_0 with the characteristic function χ_{W_Λ},

$$\limsup_{t \to 0^+} \int I S_{t, \lfloor at^{-1} \rfloor} \chi_{W_\Lambda} \, dm \geq \alpha_0.$$

Our strategy is to construct a sequence t_n with $\lim_{n \to \infty} t_n = 0$ such that: the maps f_{t_n} have 0 as a super-attracting periodic point; most of the immediate basin of attraction of the corresponding periodic orbit is contained in a small neighbourhood of Λ_0; a definite proportion of all points in I enter the immediate basin in fewer than $\lfloor t^{-1} \rfloor/2$ iterates.
Definition 5.3. The immediate basin of attraction of a periodic point is the union of
the connected components of the basin of attraction which contain points of the
periodic orbit.

Let \(r_0, (\gamma_n)_{n \geq m_0} \) be as in Lemma 3.15. Let \(\theta_1 > 0 \) be given by Lemma 4.1.

Lemma 5.4. There are \(N \geq 1, \theta \in (0, \theta_1) \) and a sequence of parameters \(t_n > 0 \)
such that

(a) \(t_n \approx \gamma_n \approx |Df^n_0(f_0(0))|^{-1} \approx |Df^n_0(f_0(0))|^{-1} \);

(b) for some \(p_n \in \mathbb{N}, f^{n_p}_0(0) = 0 \) and \(f^{k}_{t_n}(0) \notin (-\theta, \theta) \) for \(0 < k < p_n \).

Proof. From Lemma 3.7 and Lemma 3.15 it follows that, if \(\varepsilon_0 \in (0, 1) \) is small
enough, then

\[
\text{dist}(\xi_k([0, \varepsilon_0 \gamma_n])), 0) > \text{dist}(\Lambda_0, 0)/2 \quad \text{for all } k \leq n.
\]

By bounded distortion in Lemma 3.15 there is an \(\varepsilon_1 > 0 \) for which \(|\xi_n([0, \varepsilon_0 \gamma_n])| > \varepsilon_1 \) for all large \(n \). Note that \(\varepsilon_1 \leq \text{dist}(\Lambda_0, 0)/2 \). Fix \(N \) large so that

\[
Q_0 = \bigcup_{k=1}^{N-1} f^{-k}_0(0)
\]

is \(\varepsilon_1/3 \)-dense in \(I \), see Lemma 3.11. Let \(Q_t \) be the continuation of \(Q_0 \). For \(t \) small
this is \(\varepsilon_1/2 \)-dense. There is \(\theta \in (0, \theta_1) \) for which \(Q_t \cap (-\theta, \theta) = \emptyset \) for small \(t \).
Moreover \(\text{dist}(Q_t, \Lambda_0) \approx 1 \).

Define

\[
t_n = \min\{t \in [0, \gamma_n] : \xi_n(t) \in Q_t \}.
\]

By construction, \(0 < t_n < \varepsilon_0 \gamma_n \) and \(\bullet \) holds. By Lemma 3.15 \(\xi_n \) acts on \([0, \gamma_n]\)
as a diffeomorphism with bounded distortion. It follows from \(\text{dist}(\Lambda_0, Q_t) \approx 1 \) that
\(|\xi_n(t_n) - \xi_n(0)| \approx 1 \). Thus \(t_n \approx \gamma_n \); the remaining relations in \(\bullet \) follow from
Lemma 3.15. \(\square \)

We now work with the fixed map \(f = f_{t_n} \) where \(n \) is as large as necessary. Write
\(p = p_n \) for the period of \(0 \). Let the intervals \(U_j \) be given by Lemma 3.12 for \(\theta \) from
Lemma 4.4. Let \(\phi_1 \) denote the first return map to \(U_1 \). An example graph of \(\phi_1 \) is shown on Figure 3.

Lemma 5.4 guarantees that the first return of \(0 \) under \(f \) to \(U_0 \) is \(0 \in U_1 \), thus
by Lemma 4.3 \(\phi_1 \) restricted to \(U_1 \) has a unimodal central branch which we denote
by \(Z \); all other branches are full with a uniform distortion bound. On \(Z, \phi_1 = f^p \).
We denote the immediate basin of attraction (with respect to \(\phi_1 \)) of \(0 \) by \(V \).

Lemma 5.5. Given any neighbourhood \(W_\Lambda \) of \(\Lambda_0 \) and \(\varepsilon > 0 \), the following holds
for all \(n \) large enough. For all \(x \in V \) and \(k \geq 1 \), the Birkhoff average of the
characteristic function \(1_{W_\Lambda} \) of \(W_\Lambda \) satisfies

\[
\overline{\text{f}} \text{f}_k 1_{W_\Lambda} (f(x)) \geq 1 - \varepsilon.
\]

Proof. Note that \(\phi_1(V) \subset V \) and recall that the first return of \(0 \) to \(U_0 \) is at time \(p \)
with \(n + 1 \leq p \leq p + N \). Given \(\kappa > 0 \) we shall show, for large \(n \) and \(j < (1 - \kappa n) \),
that \(f^j(V) \) and \(\text{dist}(f^j(V), \Lambda_0) \) are small. From this, the Birkhoff estimate follows.

For \(j = 1, \ldots, n, f^j(V) \cap U_0 = \emptyset \). Lemma 5.4 implies that \(|f^j(V)| \) is exponentially
small in \(n - j \). By Lemma 3.7 \(|Df^n_0(f^0_0)| \leq \lambda^j < k \). With the estimates of
Lemma 5.4 one deduces that \(\text{dist}(f^j(0), \Lambda_0) = \text{dist}(\xi_j(t_n), \Lambda_0) \) is exponentially
small in \(n - j \). Thus so is \(\text{dist}(f^j(V), \Lambda_0) \). The proof is complete. \(\square \)
ON THE TIMESCALE AT WHICH STATISTICAL STABILITY BREAKS DOWN. 15

Figure 1. Graph of \(\phi_1: U_1 \rightarrow U_1 \) when 0 is a periodic point. Between every two branches there are countably many other branches; \(\phi_1 \) is uniformly expanding outside the small invariant interval in the middle.

We establish properties of \(\phi_1 \) on \(Z \).

Lemma 5.6.

(a) \(|Z| \simeq t_n^{1/2} \) and \(|V| \simeq t_n \);
(b) there exists \(\eta > 0 \), independent of \(n \), such that \(|D\phi_1| > e^{n\eta} \) on \(Z \setminus \phi_n^{-1}(Z) \);
(c) \(\log |D\phi_1| > 1/2 \) on \(U_1 \setminus V \).

Proof. Since \(n + 1 \leq p \leq n + N \), \(|Df^p(f(0))| \simeq |Df^{p-1}(f(0))| \). Let \(\psi_1 \) be the first entry map to \(U_1 \). Its branches have bounded distortion (Lemma 4.2), so Lemma 5.4 entails that

\[
|\psi_1'(f(0))| \simeq |Df^{p-1}(f(0))| \simeq |Df^p(f(0))| \simeq t_n^{-1}.
\]

The critical point is non-degenerate, so \(|f(V)| \simeq |V|^2 \), while \(|\phi(V)| \simeq |V| \). Observe that \(f^p = \psi_1 \circ f \) on \(Z \). Hence

\[
|V| \simeq |\psi'(f(0))|^{-1} \simeq t_n.
\]

Meanwhile, \(|\phi(Z)| \simeq 1 \), so \(|f(Z)| \simeq t_n \) and \(|Z| \simeq t_n^{1/2} \). This proves (a).

Let \(I_1 = Z \cap \phi_1^{-1}(Z) \). By a similar argument,

\[
|I_1| \simeq \sqrt{t_n^{1/2}t_n} = t_n^{3/4}.
\]

Let \(J_0 \) be the union of the pair of symmetric intervals \(Z \setminus I_1 \), then \(\text{dist}(J_0, 0) \simeq t_n^{3/4} \) (non-degeneracy implies \(I_1 \) is roughly centred on 0). On \(J_0 \),

\[
|Df| \gtrsim t_n^{3/4}
\]

so, on the same set,

\[
|D\phi_1| \gtrsim t_n^{-1}t_n^{3/4} = t_n^{-1/4}.
\]
By Lemma 5.4, \(t_n^{-1} \simeq |Df_0^n(f_0(0))| \), and exponential growth of the latter implies the existence of an \(\eta > 0 \) for which \(t_n < \exp(-5n\eta) \) (for all \(n \)). Combined with the previous sentence, we obtain (b).

It remains to prove (c). On \(I_1 \), we claim

\[
(5.1) \quad \frac{D\phi_1(x)}{a_0 x D\psi_1(f(0))} = 1 + o(1),
\]

where \(a_0 = D^2f_0(0) \neq 0 \). Indeed, \(\phi_1(I_1) \) is mapped by \(\psi_1 \) onto \(Z \). We have \(|Z| < t_n^{1/3} \text{dist}(Z, \partial U_1) \) so, by the Koebe Principle, \(\psi_1 \) has distortion bounded by \(1+o(1) \). By continuity, \(D^2f(x) = a_0(1+o(1)) \). Integrating, \(Df(x) = a_0 x(1+o(1)) \), which gives the claim.

This time, integrate \(D\phi_1 \) to get

\[
\phi_1(x) = \frac{bx^2}{2}(1 + (o(1))
\]

with \(b = a_0 D\psi_1(f(0)) \). The fixed point \(y \) in \(\partial V \) satisfies

\[
|y| = |\phi_1(y)| = \frac{|b|y^2}{2}(1 + (o(1)) \text{,}
\]

so \(|y| = \frac{2}{|b|}(1 + o(1)) \). Inserting this in (5.1) gives \(|D\phi_1(y)|/2 = 1 + o(1) \) and

\[
D\phi_1(x) = \frac{x}{y} D\phi_1(y)(1 + o(1)).
\]

In particular, \(\log |D\phi_1(x)| > \log 2 - 1/10 > 1/2 \) on \(Z \setminus V \). \[\square \]

Let \(\chi: U_1 \setminus V \to U_1 \setminus Z \) be the first entry map to \(U_1 \setminus Z \). By Lemma 5.6, it is well-defined (almost surely). On \(U_1 \setminus Z \) it is identity, while on \(Z \setminus V \) it has countably many branches, each being mapped diffeomorphically onto a connected component of \(U_1 \setminus Z \).

We define \(F: U_1 \to U_1 \) by

\[
F(x) = \begin{cases}
\phi_1 \circ \chi(x), & x \in U_1 \setminus V, \\
A(x), & x \in V,
\end{cases}
\]

where \(A \) is an affine homeomorphism between \(V \) and \(U_1 \). Let \(\tau: U_1 \setminus V \to \mathbb{N} \) be the corresponding inducing time, so \(F(x) = f^{\tau(x)}(x) \), and set \(\tau = 1 \) on \(V \).

Lemma 5.7.

(a) All branches of all iterates of \(F \) have uniformly bounded distortion (independent of the iterate and of \(n \)). The image of such a branch is \(U_1 \).

(b) There exists a constant \(\alpha > 0 \), independent of \(n \), so that

\[
m(\tau = j) \lesssim \exp(-\alpha \sqrt{j}) \quad \text{for all } j.
\]

Proof. To prove (a) it is enough to show that branches of \(F \) other than \(V \) are mapped onto \(U_1 \) and are \(\Delta \)-extensible, with extension contained in \(U_1 \setminus V \). Let us do this. By Lemma 4.3, this holds for branches of \(\phi_1 \) contained in \(U_1 \setminus Z \). Each branch of \(\chi \) is mapped diffeomorphically by \(\chi \) onto a connected component of \(U_1 \setminus Z \) and (a) follows.

Now we prove (b). Set \(I_0 := Z \) and, inductively,

\[
I_{k+1} := \phi_1^{-1}(I_k) \cap Z.
\]
These are nested intervals whose intersection (over all \(k \)) is \(V \). Denote by \(J_k \) the pair of symmetric intervals \(I_k \setminus I_{k+1} \). On each \(J_k \), \(\chi = \phi_1^{k+1} = f^{p(k+1)} \). By Lemma 5.6, \(\log |D\phi_1| \gtrsim n \) on \(J_0 \) and \(\log |D\phi_1| > 1/2 \) on \(J_k \). Thus with some \(\alpha' > 0 \), on \(J_k \),

\[|D\chi| \gtrsim \exp(\alpha'(n+k)). \]

If we take \(\alpha' \) small enough, we also have, by Lemma 3.12,

\[m(\{ x \in U_1 \setminus Z : \tau(x) = j \}) \lesssim \exp(-\alpha' j). \]

Since \(F = \phi_1 \circ \chi^{k+1} = \phi_1 \circ f^{p(k+1)} \) on \(J_k \),

\[m(\{ x \in J_k : \tau(x) = j \}) \lesssim \exp(-\alpha'(n+k) - \alpha'(j - pk)) \]

\[= \exp(-\alpha'(n+j)) \exp(\alpha'(p-1)). \]

Taking the sum over \(k = 1 \ldots \lfloor j/p \rfloor \) and using \(n+1 \leq p \leq p+N \), we obtain

\[m(\{ x \in Z \setminus V : \tau(x) = j \}) \lesssim \exp(-\alpha'(n+j/n)) \]

\[\leq \exp(-2\alpha' \sqrt{j}). \]

This proves (b) \(\square \)

Lemma 5.8. For every \(C > 0 \), there is \(\delta > 0 \) such that for all sufficiently large \(n \),

\[m(\{ x \in U_1 : f^k(x) \in V \text{ for some } k \leq C t_n^{-1} \}) \geq \delta. \]

Proof. We redefine \(f \) on \(V = V_n \) so that \(f : V \to U_1 \) is the affine homeomorphism \(A \) as above. With this modification of \(f \), the map \(F \) is an induced map for \(f \) with inducing time \(\tau \). Let \(\tau_k = \sum_{j=0}^{k-1} \tau_j F^j \).

Let \(\nu \) be the Lebesgue measure on \(U_1 \), normalized so that \(\nu(U_1) = 1 \). Let

\[W_k = \{ x \in U_1 : f^j(x) \not\in V \text{ for all } j \leq k \}, \]

\[W_k' = \{ x \in U_1 : f^j(x) \not\in V \text{ for all } j \leq \tau_k \}. \]

By Lemma 5.7, all branches of \(F \) are full and have universally bounded distortion. Consequently, the set of points not entering \(V \) in \(k \) iters of \(F \) is exponentially small, namely

\[\nu(W_k') \leq (1 - C_1 |V|)^k, \]

where \(C_1 \) is a universal constant. Now, \(W_k \subset W_k' \cup \{ \tau_t > k \} \) for all \(\ell \geq 0 \). Hence

\[\nu(W_k) \leq \nu(W_k') + \nu(\{ \tau_t > k \}) \]

\[\leq (1 - C_1 |V|)^\ell + \nu(\{ \tau_t > k \}). \]

We claim that there exists a constant \(c > 0 \) such that \(\nu(\{ \tau_\ell > k \}) \to 0 \) as \(k \to \infty \), uniformly in \(n \). Suppose that the claim is true. Setting \(k = C t_n^{-1} \) and \(\ell = ck \), and using \(|V| \simeq t_n \), we obtain

\[\nu(W_{C t_n^{-1}}) \leq (1 - at_n)^{\beta + 1} + o(1) = e^{-ab} + o(1). \]

with some \(a, b > 0 \). This implies the result.

It remains to verify the claim. The map \(F : U_1 \to U_1 \) is Gibbs-Markov with full images. By Lemmas 3.3 and 5.7, the expansion and distortion bounds of \(F \) can be chosen independent of \(n \). Let \(\mu \) be the \(F \)-invariant absolutely continuous probability measure on \(U_1 \), and let \(\bar{\tau} = \int \tau d\mu \). Observe that \(\tau \) is constant on the branches of \(F \), and by Lemma 3.14, \(|\tau|_{L^2(\mu)} \simeq 1 \). It is standard (see Appendix A) that

\[|\tau_k - k \bar{\tau}|_{L^2(\mu)} \lesssim k^{-1/2}. \]
It is also standard that $d\mu/d\nu \simeq 1$, so $|\tau_k - k\bar{\tau}|_{L^2(\nu)} \lesssim k^{-1/2}$, which implies the claim.

Let $a > 0$ and take $C < a/2$. By the preceding lemma, there is a set of measure $\delta > 0$ of points which enter V in fewer than $at^{-1}/2$ iterates. Applying Lemma 6.2 $\mathbb{S}_{at^{-1}} \mathbb{W}_a(x) \geq (1-\varepsilon)/2$ for every x in this set, provided n is large enough. This proves Proposition 5.2 with $\alpha_0 = \delta(1-\varepsilon)/2$.

6. Persistence of statistical stability

In this section we prove Theorem 2.6. Our strategy is as follows:

- [Proposition 6.1 and 6.2] We construct a particular inducing scheme for f_t, which we use to approximate f_t with a nonuniformly expanding map \hat{f}_t which admits an absolutely continuous invariant probability measure $\hat{\mu}_t$. The construction is such that $\hat{f}_0 = f_0$ and $\hat{\mu}_0 = \mu_0$. The map \hat{f}_t has uniform in t bounds on return times, expansion and distortion.

- [Lemma 6.5] Suppose that $\varphi: I \to \mathbb{R}$ is Lipschitz. We show that for all $n \geq 1$,

$$\int_{I_t} \left| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ \hat{f}_t^j \right| \, dm \leq C n^{-1/2} |\varphi|_{\text{Lip}},$$

where the constant C does not depend on t and $|\cdot|_{\text{Lip}}$ is the Lipschitz norm,

$$|\varphi|_{\text{Lip}} = \sup_{x \in I} |\varphi(x)| + \sup_{x \neq y \in I} \frac{|\varphi(x) - \varphi(y)|}{|x - y|}.$$

- [Lemma 6.6] We show that f_t agrees with \hat{f}_t on time horizons smaller than t^{-1}, namely that if $n(t) = o(t^{-1})$, then

$$\lim_{t \to 0} n \{ x \in I: f_t^j(x) = \hat{f}_t^j(x) \text{ for all } j \leq n(t) \} = 1.$$

For a bounded observable $\varphi: I \to \mathbb{R}$, this naturally implies that

$$\lim_{t \to 0} \int_{I_t} \left| \frac{1}{n(t)} \sum_{j=0}^{n(t)-1} \varphi \circ f_t^j - \frac{1}{n(t)} \sum_{j=0}^{n(t)-1} \varphi \circ \hat{f}_t^j \right| \, dm = 0.$$

- [Lemma 6.7] Using continuity of the map $(x, t) \mapsto f_t(x)$ and (6.1), we prove that

$$\int \varphi \, d\hat{\mu}_t \to \int \varphi \, d\mu_0 \quad \text{as} \quad t \to 0.$$

From this point, all is straightforward. By (6.1) and (6.3), if $n(t) \to \infty$ as $t \to 0$,

$$\lim_{t \to 0} \int_{I_t} \left| \frac{1}{n(t)} \sum_{j=0}^{n(t)-1} \varphi \circ f_t^j - \int \varphi \, d\mu_0 \right| \, dm = 0.$$

Combining this with (6.2), we obtain that for all Lipschitz $\varphi: I \to \mathbb{R}$ and $n(t)$ with $\lim_{t \to 0} n(t) = \infty$ and $n(t) = o(t^{-1})$,

$$\lim_{t \to 0} \int_{I_t} \left| \frac{1}{n(t)} \sum_{j=0}^{n(t)-1} \varphi \circ f_t^j - \int \varphi \, d\mu_0 \right| \, dm = 0.$$
This gives the result of Theorem 4.1 for Lipschitz observables. Generalisation to the class of continuous observables is automatic: every continuous observable can be arbitrarily well approximated by a Lipschitz observable in the uniform topology.

In the rest of this section we implement the strategy above. Where there is no ambiguity, we suppress the dependence on t.

6.1. Inducing scheme. Recall that $\phi_1: U_1 \to U_1$ is the first return map under f. It is constructed to have countably many branches, and all non-central branches (i.e. not containing 0) are mapped by ϕ_1 to U_1 diffeomorphically.

Let $V = (-Ct, Ct)$, where C is the constant from Lemma 5.1. Then $|D\phi_1| > 1000$ on $U_1 \setminus V$.

Proposition 6.1. For small enough t, there exists a partition \mathcal{P} of U_1 into open intervals, modulo a zero measure set. Each interval $J \in \mathcal{P}$ is coloured blue or red, and there is a function $\rho: U_1 \to \mathbb{N} \cup \{0\}$, constant on each J with value $\rho(J)$, such that:

(a) if J is red, then $f^{\rho(J)}(J) \subset V$;
(b) if J is blue, then $\rho(J) > 0$ and $f^{\rho(J)}: J \to U_1$ is a diffeomorphism with universally bounded distortion;
(c) $\min(J \in \mathcal{P}: J \text{ is red}) \geq t$;
(d) $\int_{U_1} \rho^2 \, dm \simeq 1$.

The proof of Proposition 6.1 takes the rest of this subsection. To simplify notation, if W is a branch of ϕ_1 intersecting ∂V, we consider the connected components of $W \setminus \partial V$ as separate branches of ϕ_1. In particular, if W' is a branch of ϕ_1^k, then $\phi_1^p(W') \cap \partial V = \emptyset$ for $0 \leq p < k$.

Let $\tau_1: U_1 \to \mathbb{N}$ be the first return time,

$$\tau(x) = \inf\{k \geq 1: f^k(x) \in U_1\},$$

so $\phi_1 = f^{\tau}$. Let $\tau_k = \sum_{j=0}^{k-1} \tau \circ \phi_1^j$. Note that if W is a branch of ϕ_1^k, then for each $j \leq \tau_k(W)$ either $f^j(W) \subset U_0$ or $f^j(W) \cap U_0 = \emptyset$.

We construct a nested sequence of partitions $\mathcal{P}_k, k \geq 0, of U_1$ into open intervals. To each interval we assign a colour (yellow, blue or red), an index and a height (integers). Let $\mathcal{P}_0 = \{U_1\}$ be the trivial partition. We set the height of its only element to 0, index to 0 and colour it yellow. For $k \geq 1$, we construct \mathcal{P}_k as a refinement of \mathcal{P}_{k-1} inductively:

- We leave the blue and red intervals intact, with the same height and index.
- We partition each yellow $J \in \mathcal{P}_{k-1}$ into the branches of the map $\phi_1^k: J \to U_1$. For each such new element W of \mathcal{P}_k:
 - If $\phi_1^{-1}(W) \subset V$, then we colour W red. Otherwise, $\phi_1^{-1}(W) \cap V = \emptyset$.
 - If $\phi_1^k: W \to U_1$ is a U_0-extensible diffeomorphism, we colour W blue. Otherwise we colour W yellow.
 - We set
 $$\text{height}(W) = \begin{cases} k - 1, & \text{W is red} \\ k, & \text{otherwise} \end{cases}$$
 and
 $$\text{index}(W) = \#\{0 < j \leq \text{height}(W): f^j(W) \subset U_0\}.$$
\[\sum_{k \geq 0} \# \{ J \in \mathcal{P}_k : J \text{ is yellow with index } \ell \} \leq 6^{\ell}. \]

\[\sup_{k \geq 0} \# \{ J \in \mathcal{P}_k : J \text{ is red with index } \ell \} \leq 6^{\ell}. \]

Proof. Suppose that \(J \in \mathcal{P}_{k-1} \) is yellow with index \(\ell \). In \(\mathcal{P}_k \) it is partitioned into subintervals. We claim that among these:

(a) there is at most 1 red interval, its index is \(\ell \);

(b) all yellow intervals have index at least \(\ell + 1 \), and there are at most 4 of them with index \(\ell + j \) for each \(j \geq 1 \).

A recursive estimate then implies that the number of yellow intervals contributing to the above sum is bounded by \(6^{\ell} \). The same estimate holds then for red intervals and the result follows. We justify the claim now.

To each branch of \(\phi_k^1 \) contained in \(J \) corresponds a branch of the restriction \(\phi_1: \phi_k^{k-1}(J) \to U_1 \). The red interval corresponds to \(V \) intersected with \(\phi_k^{k-1}(J) \).

The statement of \(\boxed{[a]} \) is immediate.

Let \(\hat{J} \) be a connected component of \(\phi_k^{k-1}(J) \setminus V \). Let \(W \) be a branch of the restriction \(\phi_1: \phi_k^{k-1}(J) \to U_1 \) with \(\tau = n \) on \(W \). To \(W \) corresponds the element \(\hat{W} := \phi_1^{-1}(W) \cap J \) of \(\mathcal{P}_k \), which is yellow or blue.

We call \(W \) unobstructed if \(f^n: W \to U_1 \) is a diffeomorphism and there is an open interval \(W_0 \subset \hat{J} \), compactly containing \(W \), such that \(f^n: W_0 \to U_0 \) is a diffeomorphism. Otherwise \(W \) is obstructed. Note that obstruction depends on \(\hat{J} \) and that \(W \) can only be yellow if \(W \) is obstructed.

Let us examine the case when \(W \) is obstructed. There are \(w \in \partial W \) and \(v \in \hat{J} \setminus W \) with \([w, v] \cap W = \emptyset \) such that (noting \(v \) and \(w \) may coincide)

- \(f^n \) is monotone on \(W \cup [w, v] \),
- \(f^n([w, v]) \) does not contain a connected component of \(U_0 \setminus U_1 \),
- either \(Df^n(v) = 0 \) or \(v \in \partial \hat{J} \).

Since \(f^n([w, v]) \) does not contain a connected component of \(U_0 \setminus U_1 \), it follows that \(f^n([w, v]) \) does not contain a point of \(\partial U_0 \cup \partial U_1 \) for all \(0 < p < n \). This implies that \(f^n([w, v]) \cap U_1 = \emptyset \) for all \(0 < p < n \). Therefore \(Df^n(v) \neq 0 \), so \(v \in \partial \hat{J} \).

As \(f^n \) is monotone on \(W \cup [w, v] \), there is a one-to-one correspondence between obstructed branches \(W \subset \hat{J} \) of \(\phi_1 \) and a subset of the set of pairs \((v, n) \in \partial J \times \mathbb{N}\) for which \(f^n(v) \in U_0 \). For each such \(W \) and associated \((v, n)\), there is a unique \(j(v, n) := \# \{ 0 \leq p < n : f^p(v) \in U_0 \} \). Moreover, for \(0 \leq p \leq n \), either \(f^p(W \cup [w, v]) \subset U_0 \) or \(f^p(W \cup [w, v]) \cap U_0 = \emptyset \), from which it follows that

\[j(v, n) = \# \{ 0 \leq p \leq n : f^p(W) \subset U_0 \}. \]

Hence to each yellow element \(\hat{W} \subset \hat{J} \) in \(\mathcal{P}_k \), there is a unique obstructed branch \(W \) with associated \(\hat{J} \) and pair \((v, n)\). The index of \(W \) is \(\ell + j(v, n) \). With at most two ways to choose \(\hat{J} \) as a connected component of \(\phi_k^{k-1}(J) \setminus V \), and two possibilities for \(v \in \partial \hat{J} \), the claim and \(\boxed{[b]} \) follow. \(\square \)

Lemma 6.3.

\[\sup_{n \geq 0} \sum_{J \in \mathcal{P}_n, J \text{ is red}} |J| \lesssim t \quad \text{and} \quad \sum_{n \geq 0} \sum_{J \in \mathcal{P}_n, J \text{ is yellow}} |J| \lesssim 1. \]

Proof. Suppose that \(J \in \mathcal{P}_n \) is an interval with index \(\ell \) and height \(h \). By Lemma 4.1, first return map to \(U_0 \), restricted to \(U_0 \setminus V \), is expanding by a factor of at least 1000. By construction, \(\phi_k^1(J) \) does not intersect \(V \) for \(k < h \). Thus:
ON THE TIMESCALE AT WHICH STATISTICAL STABILITY BREAKS DOWN. 21

• $|D\phi^h_1| \geq 100^\ell$ and $\phi^h_1(J) \subset U_1$, so
 $|J| \lesssim 1000^{-\ell}$;

• moreover, if J is red, then $\phi^h_1(J) \subset V$, so
 $|J| \lesssim 1000^{-\ell}|V| \lesssim 1000^{-\ell}$.

Note that a red interval in P_n has height $k - 1$ and is an element of P_k for some $k \leq n$. Lemma 6.2 gives that in all of P_n there are at most 7^ℓ yellow or red intervals with index ℓ. The statement follows. \hfill \square

Let $P = \vee_n P_n$. By Lemma 6.3, P is a partition of U_1 into open intervals (blue and red), modulo a zero measure set. For $J \in P$, let $\rho(J) = \tau_{\text{height}(J)}$. This defines $\rho: U_1 \to \mathbb{N}$ with value $\rho(J)$ on each $J \in P$.

By construction, ρ satisfies (a), (b) and (c) of Proposition 6.1. It remains to prove (d).

Lemma 6.4. $\int_{U_1} \rho^2 \ dm \simeq 1$.

Proof. It is clear that $\int_{U_1} \rho^2 \ dm \gtrsim 1$.

Let $J \in P$, so J is red or blue. Let $h = \text{height}(J)$ and for $k \leq h$, let J_k be the element of P_k containing J. Each $J_k, k < h$, is yellow, while J_h is yellow or blue. Then

$$
\rho(J) = \sum_{k=0}^{h-1} \tau \circ \phi^k_1(J_{k+1}).
$$

Define ρ_i at a point x by: $\rho_i(x) = \tau \circ \phi^k_1(x)$ if x is contained in a yellow interval $J' \in P_k$ with index i and height k, for some k, but x is not contained in a red interval of height k (in P_{k+1}), and $\rho_i(x) = 0$ otherwise. Then

$$
\rho = \sum_{i=0}^{\infty} \rho_i.
$$

Let $J \in \bigcup_{n \geq 0} P_n$ be yellow. The map $\phi^\text{height}(J): J \to U_1$ is monotone and, following the proof of Lemma 6.3, it is expanding by a factor of at least $1000^{\text{index}(J)}$. Using Lemma 3.14

$$
\int_J \tau^2 \circ \phi^\text{height}(J) \ dm \lesssim 1000^{-\text{index}(J)} \int_{U_1} \tau^2 \ dm \lesssim 1000^{-\text{index}(J)}.
$$

Let $i \geq 0$. Let $A_i := \{J \in \bigcup_{n \geq 0} P_n : J \text{ is yellow with index } i\}$. By Lemma 6.2

$\#A_i \leq 7^i$. Observe that

$$
\rho_i = \sum_{J \in A_i} \tau \circ \phi^\text{height}(J) \big|_J.
$$

The elements of A_i are pairwise disjoint, thus

$$
\int_{U_1} \rho^2_i \ dm = \sum_{J \in A_i} \int_J \tau^2 \circ \phi^\text{height}(J) \ dm \lesssim 7^i \cdot 1000^{-i} \lesssim 100^{-i}.
$$

Finally,

$$
\left[\int_{U_1} \rho^2 \ dm \right]^{1/2} \lesssim \sum_{i=0}^{\infty} \left[\int_{U_1} \rho^2_i \ dm \right]^{1/2} \lesssim 1.
$$

\hfill \square
6.2. Approximation with nonuniformly expanding map. Let \(\mathcal{P} \) be the partition given by Proposition 6.1. For an interval \(J \subset U_1 \), let \(\hat{f}_J : J \rightarrow U_1 \) be a linear bijection. Define \(\hat{f} : I \rightarrow \mathbb{R} \) and \(\hat{\rho} : U_1 \rightarrow \mathbb{N} \),

\[
\hat{f}(x) = \begin{cases}
\hat{f}_J(x), & \text{if } x \in J, J \in \mathcal{P} \text{ is red}, \\
\hat{f}(x), & \text{else},
\end{cases}
\]

\[
\hat{\rho}(x) = \begin{cases}
1, & \text{if } x \in J, J \in \mathcal{P} \text{ is red}, \\
\rho(x), & \text{else}.
\end{cases}
\]

Let \(\hat{F} : U_1 \rightarrow U_1 \), \(\hat{F}(x) = \hat{f}^{\hat{\rho}(x)}(x) \). In particular, \(\hat{F} \) coincides with \(f^\rho \) on all blue elements of \(\mathcal{P} \). Our construction ensures that there are constants \(C > 0 \) and \(\lambda > 1 \), independent of \(t \), such that for every \(J \in \mathcal{P} \) and \(x, y \in J \):

- the restriction \(\hat{F} : J \rightarrow U_1 \) is a bijection;
- \(|\hat{F}(x) - \hat{F}(y)| \geq \lambda|x - y| \);
- \(|\log |D\hat{F}(x)|| - \log |D\hat{F}(y)|| \leq C|\hat{F}(x) - \hat{F}(y)| \);
- \(|\hat{f}^j(x) - \hat{f}^j(y)| \leq C|\hat{F}(x) - \hat{F}(y)| \) for all \(0 \leq j \leq \hat{\rho}(J) \);
- \(\int_{U_1} \hat{\rho}^2 \, dm \leq C \).

That is, \(\hat{f} \) is a nonuniformly expanding map as in Appendix A. There is a unique absolutely continuous \(\hat{f} \)-invariant probability measure \(\hat{\mu} \).

Lemma 6.5. For all Lipschitz \(\varphi : I \rightarrow \mathbb{R} \) and \(n \geq 1 \),

\[
\int \left| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ \hat{f}^j - \int \varphi \, d\hat{\mu} \right| \, dm \leq Cn^{-1/2}||\varphi||_{\text{Lip}},
\]

where the constant \(C \) does not depend on \(t \).

Proof. By Lemma A.3

\[
\int \left| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ \hat{f}^j - \int \varphi \, d\hat{\mu} \right| \, dm \lesssim n^{-1/2}||\varphi||_{\text{Lip}}.
\]

Note that the integral is taken with respect to the invariant measure \(\hat{\mu} \) rather than \(m \). It remains to establish an appropriate connection between \(m \) and \(\hat{\mu} \). For this, we follow [18].

Let \(\psi_1 : I \rightarrow U_1 \) be the first entry map for \(f \) (the same as for \(\hat{f} \)) and \(\tau : I \rightarrow \mathbb{N} \cup \{0\} \),

\[
\tau(x) = \inf\{k \geq 0 : f^k(x) \in U_1\},
\]

so that \(\psi_1(x) = \hat{f}^{\tau(x)}(x) = f^{\tau(x)}(x) \).

It follows from Lemma 3.12 that \(\int_I \tau \, dm \lesssim 1 \). Since \(f(\partial I) \subset \partial I \) and \(f^j(\partial U_1) \cap U_1 = \emptyset \) for all \(j \), every branch of \(\psi_1 \) is mapped diffeomorphically on \(U_1 \). By Lemma 3.9 \(\psi_1 \) has universally bounded distortion.

Write \(m = \sum_{J \in B} m(J)m_J \), where \(B \) is the set of all branches of \(\psi_1 \) and \(m_J \) is the normalized to probability restriction of \(m \) to \(J \). For each \(J \), the probability measure \(f^\tau(J)m_J \) is supported on \(U_1 \), and due to the bounded distortion, it is regular in the sense of [18], with the regularity constant \((R') \) in [18] independent of \(t \). Thus \(m \) is forward regular. The jump function \(\tau : B \rightarrow \mathbb{N} \cup \{0\} \) has bounded (uniformly in \(t \)) first moment: \(\sum_{J \in B} m(J)\tau(J) \lesssim 1 \).
Let X_n and Y_n the the discrete time random processes given by $\sum_{j=0}^{n-1} \varphi \circ \hat{f}_j$ on the probability spaces (I, m) and $(I, \hat{\mu})$ respectively. By [18 Thm. 2.5], there is a coupling of X_n and Y_n, that is, there exists a probability space Ω supporting random processes $\{X'_n\}$ and $\{Y'_n\}$, equal in distribution to $\{X_n\}$ and $\{Y_n\}$ respectively, such that

$$E \left(\sup_{n \geq 0} |X'_n - Y'_n| \right) \lesssim \sup_I |\varphi|.$$

(6.5)

Bound (6.5), together with (6.4), implies our result. \hfill \Box

Let $I_r = \cup \{J \in P : J \text{ is red} \}$.

Lemma 6.6. There is a constant $C > 0$, independent of t, such that for all $n \geq 0$,

$$m\{x \in I : f^j(x) \notin I_r \text{ for all } j \leq n\} \gtrsim (1 - Ct)^n.$$

In particular, if $n(t) = o(t^{-1})$, then

$$\lim_{t \to 0} m\{x \in I : f^j(x) = \hat{f}^j(x) \text{ for all } j \leq n(t)\} = 1.$$

Proof. Let $\tau : I \to \mathbb{N},$

$$\tau(x) = \inf\{k \geq 1 : f^k(x) \in U_1\}$$

and $g : I \to U_1$, $g(x) = f^\tau(x)(x)$.

Observe that

$$m\{x \in I : f^j(x) \notin I_r \text{ for all } j \leq n\} \geq m\{x \in I : g^j(x) \notin I_r \text{ for all } j \leq n\}.$$

By Proposition 6.1 all branches of the map g in $U_1 \setminus I_r$ are mapped diffeomorphically and with uniformly bounded distortion onto U_1. So are the branches in $I \setminus U_1$, following the argument for the first entry map ψ_1 in the proof of Lemma 6.3.

Proposition 6.1 guarantees that $m(I_r) \lesssim t$. Therefore,

$$m\{x \in I : g^n(x) \in I_r \text{ if } g^j(x) \notin I_r \text{ for all } j < n\} \lesssim \frac{m(I_r)}{m(U_1)} \lesssim t.$$

The result follows. \hfill \Box

Lemma 6.7. For all Lipschitz $\varphi : I \to \mathbb{R}$, we have $\int \varphi \, d\hat{\mu}_t \to \int \varphi \, d\mu_0$ as $t \to 0$.

Proof. For every (fixed) $n \geq 1$, the map $(x, t) \mapsto f^*_n(x)$ is continuous. Thus

$$\sup_I \left| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f^*_j - \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f^j_0 \right| \to 0 \quad \text{as } t \to 0.$$

By Lemma 6.6 as $t \to 0$,

$$\int_I \left| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ \hat{f}^*_j - \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ \hat{f}^j_0 \right| \, dm \leq \sup_I \left| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f^*_j - \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f^j_0 \right|$$

$$+ 2 \sup_I |\varphi| \, m\{x \in I : f^*_j(x) = \hat{f}^*_j(x) \text{ for all } j \leq n\} = o(1).$$
By Lemma \ref{lem:6.5}

\[
\left| \int \varphi \, d\mu_0 - \int \varphi \, d\mu \right| \\
\lesssim \int \left| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f_j^\ell - \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ f_0^\ell \right| \, dm + n^{-1/2} |\varphi|_{\text{Lip}} \\
= o(1) + n^{-1/2} |\varphi|_{\text{Lip}}.
\]

Since we can fix \(n\) arbitrarily large, the result follows. \(\square\)

Appendix A. Moment estimates for nonuniformly expanding maps

Let \((M,d)\) be a bounded metric space with a map \(f: M \to M\). Suppose that \(Y \subset M\) and \(m\) is a Borel probability measure on \(Y\). Suppose that \(\alpha\) is a finite or countable partition of \(Y\) (up to a zero measure set) with \(m(a) > 0\) for all \(a \in \alpha\).

We require that there exist an integrable function \(\tau: Y \to \{1, 2, \ldots\}\), constant on each \(a \in \alpha\) with value \(\tau(a)\), and constants \(\lambda > 1, K > 0\) and \(\eta \in (0,1]\) such that for each \(a \in \alpha\),

- \(F = f^\tau\) restricts to a (measure-theoretic) bijection from \(a\) to \(Y\);
- \(d(F(x), F(y)) \geq \lambda d(x, y)\) for all \(x, y \in a\);
- \(d(f^\ell(x), f^\ell(y)) \leq K d(F(x), F(y))\) for all \(x, y \in a\) and \(0 \leq \ell \leq \tau(a)\);
- the inverse Jacobian \(\lambda \leq \frac{d\mu}{dm} \leq K\) of the restriction \(F: a \to Y\) satisfies

\[
|\log \xi(x) - \log \xi(y)| \leq K d(F(x), F(y))^\eta
\]

for all \(x, y \in a\).

We say that \(f: M \to M\) as above is a nonuniformly expanding map. We refer to \(Y\) as the inducing set, to \(\tau\) as the inducing time and to \(F\) as the induced map.

We assume that \(\int_Y \tau^2 \, dm < \infty\). We use \(C\) to denote various positive constants which depend continuously (only) on \(\eta, K, \lambda, \text{diam}\, M\) and \(\int_Y \tau^2 \, dm\).

Lemma A.1 \cite[Prop. 2.5]{19}. There exists a unique \(F\)-invariant probability measure \(\mu_Y\) on \(Y\), absolutely continuous with respect to \(m\), and

\[
C^{-1} \leq \frac{d\mu_Y}{dm} \leq C.
\]

Define a Young tower

\[
\Delta = \{(y, \ell) \in Y \times \mathbb{Z}: 0 \leq \ell < \tau(y)\}
\]

with a tower map \(T: \Delta \to \Delta\),

\[
T(y, \ell) = \begin{cases} (y, \ell + 1), & \ell < \tau(y) - 1, \\ (F(y), 0), & \ell = \tau(y) - 1, \end{cases}
\]

and a projection \(\pi: \Delta \to M\), \(\pi(y, \ell) = f^\ell(y)\). Then \(\pi\) is a semi-conjugacy between \(T: \Delta \to \Delta\) and \(f: M \to M\), i.e. \(\pi \circ T = f \circ \pi\).

The measure

\[
\mu_\Delta = \frac{\mu_Y \times \text{counting}}{\int \tau \, d\mu_Y}
\]

is a \(T\)-invariant probability measure on \(\Delta\), and \(\mu = \pi_* \mu_\Delta\) is an \(f\)-invariant probability measure on \(M\).
Suppose that \(\varphi: M \to \mathbb{R} \). Define \((A.1)\)
\[
|\varphi|_\eta = \sup_{x \neq y \in M} \frac{|\varphi(y) - \varphi(x)|}{d(x, y)^\eta}, \quad |\varphi|_\infty = \sup_{x \in M} |\varphi(x)|, \quad \|\varphi\|_\eta = |\varphi|_\eta + |\varphi|_\infty.
\]
We define similarly \(|\cdot|_\eta, |\cdot|_\infty \) and \(\|\cdot\|_\eta \) for functions \(\varphi: Y \to \mathbb{R} \).

Lemma A.2. Let \(\tau = \int_Y \tau \, d\mu_Y \) and \(\tau_k = \sum_{j=0}^{k-1} \tau \circ F \). Then
\[
|\tau_k - k\bar{\tau}|_{L^2(\mu_Y)} \leq Ck^{-1/2}.
\]

Proof. Let \(P: L^1(\mu_Y) \to L^1(\mu_Y) \) denote the transfer operator corresponding to \(F \) and \(\mu_Y \), so \(\int_Y v \circ F \, d\mu_Y = \int_Y v \, Pw \, d\mu_Y \) for all \(v \in L^\infty \) and \(w \in L^1 \).

Let \(\varphi = \tau - \bar{\tau} \). It is a direct verification that \(\|P^k\varphi\|_\eta \leq C\gamma^k \) for all \(k \geq 1 \), where \(\gamma \in (0, 1) \) depends only on \(\lambda, K, \eta \) and \(\text{diam } M \).

Finally,
\[
\int_Y \left(\sum_{j=0}^{k-1} \varphi \circ F \right)^2 \, d\mu_Y \leq k \int_Y \varphi^2 \, d\mu_Y + 2k \sum_{j=1}^{\infty} \left| \int_Y \varphi \circ F^j \varphi \, d\mu \right| \leq Ck.
\]
The result follows. \(\square \)

Lemma A.3 \((\text{[21, Cor. 2.10]}))\). For all \(\varphi: M \to \mathbb{R} \) and \(n \geq 0 \),
\[
\left| \sup_{k \leq n} \sum_{j=0}^{k-1} \varphi \circ f^j - k \int \varphi \, d\mu \right|_{L^2(\mu)} \leq C\|\varphi\|_\eta n^{1/2}.
\]

Observe that \(\frac{d\mu}{dm} \leq C \). Thus

Corollary A.4. For all \(\varphi: M \to \mathbb{R} \) and \(n \geq 0 \),
\[
\left| \sup_{k \leq n} \sum_{j=0}^{k-1} \varphi \circ f^j - k \int \varphi \, d\mu \right|_{L^2(\mu)} \leq C\|\varphi\|_\eta n^{1/2}.
\]

We define a metric \(d_\Delta \) on \(\Delta \) by
\[
d_\Delta((y, \ell), (y', \ell')) = \begin{cases} d(y, y'), & \ell = \ell'; \\
\text{diam } M, & \text{otherwise.} \end{cases}
\]

Define \(|\cdot|_\eta, |\cdot|_\infty \) and \(\|\cdot\|_\eta \) for functions on \(\Delta \) similarly to \(A.1 \).

Remark A.5. \(T: \Delta \to \Delta \) is itself a nonuniformly expanding map. Thus for all \(\psi: \Delta \to \mathbb{R} \),
\[
\left| \sup_{k \leq n} \sum_{j=0}^{k-1} \psi \circ T^j - k \int \psi \, d\mu_\Delta \right|_{L^2(\mu_\Delta)} \leq C\|\psi\|_\eta n^{1/2}.
\]

References

[1] J. F. Alves and H. Vilarinho. Strong stochastic stability for non-uniformly expanding maps. *Ergodic Theory Dynam. Systems*, 33(3):647–692, 2013.

[2] J. F. Alves, M. Carvalho, and J. M. Freitas. Statistical stability for Hénon maps of the Benedicks-Carleson type. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 27(2):595–637, 2010.

[3] J. F. Alves and M. Viana. Statistical stability for robust classes of maps with non-uniform expansion. *Ergodic Theory Dynam. Systems*, 22(1):1–32, 2002.

[4] A. A. Andronov and L. Pontryagin. Systems grossiers. In *Dokl. Akad. Nauk. USSR*, volume 14, pages 247–251, 1937.
[5] V. Baladi, M. Benedicks, and V. Maume-Deschamps. Almost sure rates of mixing for i.i.d.
unimodal maps. *Ann. Sci. École Norm. Sup. (4)*, 35(1):77–126, 2002.

[6] V. Baladi, M. Benedicks, and D. Schnellmann. Whitney-Hölder continuity of the SRB measure
for transversal families of smooth unimodal maps. *Invent. Math.*, 201(3):773–844, 2015.

[7] V. Baladi and M. Viana. Strong stochastic stability and rate of mixing for unimodal maps.
Ann. Sci. École Norm. Sup. (4), 29(4):483–517, 1996.

[8] M. Benedicks and L. Carleson. The dynamics of the Hénon map. *Ann. of Math. (2)*, 133(1):73–
169, 1991.

[9] M. Benedicks and L.-S. Young. Absolutely continuous invariant measures and random per-
turbations for certain one-dimensional maps. *Ergodic Theory Dynam. Systems*, 12(1):13–37,
1992.

[10] W. de Melo and S. van Strien. One-dimensional dynamics, volume 25 of *Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].*
Springer-Verlag, Berlin, 1993.

[11] N. Dobbs and M. Todd. Free energy jumps up. *Preprint* [arXiv:1512.09245], 2015.

[12] D. Dolgopyat. On dynamics of mostly contracting diffeomorphisms. *Comm. Math. Phys.*,
213(1):181–201, 2000.

[13] J. M. Freitas and M. Todd. The statistical stability of equilibrium states for interval maps.
Nonlinearity, 22(2):259–281, 2009.

[14] J. Graczyk, D. Sands, and G. Świątek. Metric attractors for smooth unimodal maps. *Ann. of Math. (2)*, 159(2):725–740, 2004.

[15] F. Hofbauer and G. Keller. Quadratic maps without asymptotic measure. *Comm. Math. Phys.*,
127(2):319–337, 1990.

[16] M. V. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-
dimensional maps. *Comm. Math. Phys.*, 81(1):39–88, 1981.

[17] G. Keller. Stochastic stability in some chaotic dynamical systems. *Monatsh. Math.*, 94(4):313–
333, 1982.

[18] A. Korepanov. Equidistribution for nonuniformly expanding dynamical systems, and appli-
cation to the almost sure invariance principle. *Comm. Math. Phys.*, 359(3):1123–1138, 2018.

[19] A. Korepanov, Z. Kosloff, and I. Melbourne. Explicit coupling argument for nonuniformly
hyperbolic transformations. *Proc. Edinb. Math. Soc.*, to appear, 2016.

[20] A. Korepanov, Z. Kosloff, and I. Melbourne. Averaging and rates of averaging for uniform
families of deterministic fast-slow skew product systems. *Studia Math.*, 238(1):59–89, 2017.

[21] A. Korepanov, Z. Kosloff, and I. Melbourne. Martingale–coboundary decomposition for fam-
ilies of dynamical systems. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 35(4):859–885, 2018.

[22] G. Levin. On an analytic approach to the Fatou conjecture. *Fund. Math.*, 171(2):177–196,
2002.

[23] S. Li and Q. Wang. The slow recurrence and stochastic stability of unimodal interval maps
with wild attractors. *Nonlinearity*, 26(6):1623–1637, 2013.

[24] M. Lyubich. Almost every real quadratic map is either regular or stochastic. *Ann. of Math. (2)*, 156(1):1–78, 2002.

[25] M. Martens. Distortion results and invariant Cantor sets of unimodal maps. *Ergodic Theory
Dynam. Systems*, 14(2):331–349, 1994.

[26] M. Misiurewicz. Absolutely continuous measures for certain maps of an interval. *Inst. Hautes
Études Sci. Publ. Math.*, (53):17–51, 1981.

[27] T. Nowicki and D. Sands. Non-uniform hyperbolicity and universal bounds for S-unimodal
maps. *Invent. Math.*, 132(3):633–680, 1998.

[28] M. M. Peixoto. Structural stability on two-dimensional manifolds. *Topology*, 1:101–120, 1962.

[29] F. Przytycki and J. Rivera-Letelier. Geometric pressure for multimodal maps of the interval.
Accepted, Memoirs of the AMS. Preprint [arXiv:1405.2443], 2014.

[30] D. Ruelle. Differentiating the absolutely continuous invariant measure of an interval map
with respect to f. *Comm. Math. Phys.*, 258(2):445–453, 2005.

[31] D. Ruelle. Structure and f-dependence of the A.C.I.M. for a unimodal map f is Misiurewicz
type. *Comm. Math. Phys.*, 287(3):1039–1070, 2009.

[32] D. Sands. Misiurewicz maps are rare. *Comm. Math. Phys.*, 197(1):109–129, 1998.

[33] W. Shen. On stochastic stability of non-uniformly expanding interval maps. *Proc. Lond.
Math. Soc. (3)*, 107(5):1091–1134, 2013.
[34] W. Shen and S. van Strien. On stochastic stability of expanding circle maps with neutral fixed points. Dyn. Syst., 28(3):423–452, 2013.

[35] S. Smale. What is global analysis? Amer. Math. Monthly, 76:4–9, 1969.

[36] H. Thunberg. Unfolding of chaotic unimodal maps and the parameter dependence of natural measures. Nonlinearity, 14(2):323–337, 2001.

[37] M. Tsujii. Positive Lyapunov exponents in families of one-dimensional dynamical systems. Invent. Math., 111(1):113–137, 1993.

[38] M. Tsujii. On continuity of Bowen-Ruelle-Sinai measures in families of one-dimensional maps. Comm. Math. Phys., 177(1):1–11, 1996.

UNIVERSITY COLLEGE DUBLIN, IRELAND.
E-mail address: neil.dobbs@ucd.ie

EXETER UNIVERSITY, UK.
E-mail address: a.korepanov@exeter.ac.uk