Charge and spin dynamics of interacting Fermions in a one dimensional harmonic trap

Lars Kecke and Hermann Grabert
Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

Wolfgang Häusler
Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany and Institut für Theoretische Physik, Universität Erlangen, Staudtstr. 7, D-91058 Erlangen, Germany

We study an atomic Fermi gas interacting through repulsive contact forces in a one dimensional harmonic trap. Bethe-Ansatz solutions lead to an inhomogeneous Tomonaga-Luttinger model for the low energy excitations. The equations of motion for charge and spin density waves are analyzed both near the trap center and near the trap edges. While the center shows conventional spin-charge separation the edges cause a giant increase of the separation between these modes.

PACS numbers: 73.22.Lp, 32.80.Pj

Recent advances in cooling technology have allowed to reach the degenerate regime of Fermionic quantum gases. Different hyperfine states effectively correspond to spin polarizations of spin-1/2 particles of respective densities \(n_\uparrow \) and \(n_\downarrow \). Furthermore, the spatial dimensionality of the gases can be reduced using either a hollow beam setup \(\mathbb{R}^2 \) or arrays of microtraps \(\mathbb{R}^3 \) so that one dimensional (1D) gases can be studied, where interaction effects are known to be most pronounced. As a consequence of pure s-wave scattering in 3D, the interaction is short ranged \(\mathbb{R}^3 \) and acts only between particles of opposite spins. Also, the strength of the forces can, in principle, be varied over wide ranges \(\mathbb{R} \) by tuning the Feshbach resonance \(\mathbb{R} \). An optical lattice along the trap can further enhance correlations by reducing the bandwidth and thus the kinetic energy \(\mathbb{R} \).

As opposed to higher dimensions, total charge (\(\rho = n_\uparrow + n_\downarrow \)) and relative spin (\(\sigma = n_\uparrow - n_\downarrow \)) density waves comprise the only low energy excitations in 1D; no Fermionic quasiparticles can be excited in this regime. The Tomonaga-Luttinger liquid (TLL) theory \(\mathbb{R} \) describes the properties of homogeneous 1D systems entailing that charge and spin modes move at different velocities when interactions are present. This spin-charge separation is considered as a hallmark of TLL behavior. A parabolic trap potential, however, causes the particle density to vary along the trap. To treat such an inhomogeneous gas cloud, new boson representations of the Fermi operators have been introduced \(\mathbb{R} \). Here, we follow the other route put forward recently by Feroci et al. \(\mathbb{R} \) and consider an inhomogeneous TLL \(\mathbb{R} \) with \(x \)-dependent parameters, assuming a trap potential which is slowly varying on the scale of the Fermi wavelength.

In the bulk of the gas cloud, away from the trap edges, interactions are sufficiently weak to justify perturbative estimates to the (local) TLL model parameters. In this regime, the picture of charge and spin waves moving at different velocities is recovered \(\mathbb{R} \). Near the trap edges, however, the gas density decreases and interactions become very strong. In this regime we employ the Bethe-Ansatz solution for spin-1/2 particles with contact forces \(\mathbb{R} \) to compute the TLL parameters exactly \(\mathbb{R} \). To leading order in the inverse interaction strength we can access the dynamics analytically. Charge modes are found to propagate in a similar way as in the bulk of the gas cloud. At the edges they are reflected and thus keep oscillating in the trap until damping processes become significant. Remarkably, spin density waves show an exponential slowing down of their velocity and, ultimately, accumulation at an edge without reflection. Thus, Fermionic 1D quantum gases in shallow confinements should exhibit a giant increase of spin-charge separation, much more pronounced than electrons in quantum wires \(\mathbb{R} \). The effect of spin accumulation should be detectable: one way would be to observe (e.g. by fluorescence measurements) the time evolution of an initial spin-up density peak containing charge and spin modes of equal amounts, \(\rho_\uparrow = (\rho + \sigma)/2 \).

Without parabolic confinement the quantum gas is described by the Hamiltonian \(\mathbb{R} \)

\[
H_{\text{hom}} = \frac{1}{2m} \left[\sum_{i=1}^{N} \left(\frac{\partial^2}{\partial x_i^2} + 2c \sum_{i<j} \delta(x_i - x_j) \right) + \sum_{i=1}^{N} -\frac{\partial^2}{\partial x_i^2} \right].
\]

Effectively, by virtue of the Pauli principle, only Fermions of opposite spins are interacting. As long as the 3D scattering length \(a \) is much smaller than the transversal width \(d \) of the gas cloud, the interaction strength \(c = 2a/d^2 \) \(\mathbb{R} \).

For given particle density \(n \), the ground state energy density \(\epsilon_{\text{hom}}(n) \) is obtained exactly from the Hamiltonian \(\mathbb{R} \) via the Bethe-Ansatz \(\mathbb{R} \). In presence of the longitudinal trap potential \(V(x) \), we determine the inhomogeneous profile of the particle density \(n(x) \) in the spirit of the local density approximation (LDA) \(\mathbb{R} \) by minimizing

\[
E[n] = \int dx \left[\epsilon_{\text{hom}}(n(x)) + V(x)n(x) - \mu n(x) \right].
\]

This is adequate for slow variations of \(V \) compared to the Fermi wavelength and for large particle numbers, \(N \gg 1 \),...
where we can ignore Friedel oscillations occurring on the scale of the Fermi wavelength $\pi/2k_F$. The chemical potential μ ensures that $N = \int dx \, n(x)$ and determines the length $2R$ of the gas cloud through $V(R) = \mu$, independent of $V(|x| < R)$ and the form of $\epsilon_{\text{hom}}(n)$, provided $\partial_n \epsilon_{\text{hom}}(n = 0) = 0$. Assume now a harmonic trap potential $V(x) = \frac{1}{2} \omega_T^2 x^2$ of frequency ω_T, one finds from Eq. (2)

$$\partial_n \epsilon_{\text{hom}}(n(x)) + \frac{m}{2} \omega_T^2 x^2 - \mu = 0 .$$

The resulting density profile $n(x)$ is depicted in Fig. 1.

To proceed we now focus on two regions of particular interest. Near the center of the trap, where the density n is large enough to validate perturbative expressions in the interaction strength, one finds to leading order in c/n

$$\epsilon_{\text{pert}}(n) = \frac{\pi^2 n^3}{24 m} \left(1 + \frac{c}{\pi^2 n}\right) .$$

Inserting (6) into (3) gives a modified Thomas-Fermi profile

$$n_{\text{pert}}(\xi) = \frac{2m}{\pi} \nu_0 \left(\sqrt{1 + u^2 - \xi^2} - u\right) .$$

Here we have introduced the dimensionless coordinate $\xi = x/R$ and interaction strength $u = c/m \nu_0 v_0$ where $v_0 = R \omega_T$ is the Fermi velocity of a homogeneous, non-interacting system at chemical potential μ. On the other hand, near the trap edges, $c \gg n$ so that we can evaluate the Bethe-Ansatz solution to leading order in n/c

$$\epsilon_{\text{edge}}(n) = \frac{\pi^2 n^3}{6 m} \left(1 - \frac{4m}{c} \ln 2\right) .$$

Inserting (6) into (3) gives

$$n_{\text{edge}}(\xi) = \frac{2m}{\pi} \nu_0 \left(\sqrt{1 - \xi^2} + \frac{8 \ln 2}{3\pi^2 u} (1 - \xi^2)\right) .$$

As seen in Fig. 1 the analytic forms (5) and (7) describe the trap density accurately in their regions of validity. We stress that $n_{\text{edge}}(\xi)$ vanishes with infinite slope at the edges $\xi \rightarrow \pm 1$, which is not seen from the perturbative expression $n_{\text{pert}}(\xi)$.

The inhomogeneous TLL Hamiltonian is of the form

$$H_{\text{TLL}} = \frac{1}{2} \sum_{\nu=\rho,\sigma} \int dx \left[v_{\nu}(x)(\Theta_\nu(x)')^2 + v_{N\nu}(x)(\Phi_\nu(x)')^2 \right] ,$$

where primes denote spatial derivatives, and Θ_ν and Φ_ν are the usual Bosonic phase fields in the charge ($\nu = \rho$) and spin ($\nu = \sigma$) sectors, obeying $[\Phi_\nu(x), \Theta_\nu(x')] = i\delta_{\nu'\nu} \delta(x-x')$. They define density excitations $\nu = \langle \Phi_\nu \rangle/\sqrt{\pi}$. The velocity parameters $v_{N\nu}(x)$ follow from exact compressibility relations

$$v_{N\nu} = \frac{2}{\pi} \frac{\partial^2 \epsilon_{\text{hom}}}{\partial \nu^2} ,$$

while symmetries fix the values of velocity parameters

$$v_{1\nu} = \frac{\pi n}{2m} \omega_T / \omega \equiv v_{1\mu} \quad \text{owing to Galilei invariance and}$$

$v_{1\sigma} = v_{N1\sigma}$ as a consequence of SU(2) invariance in the spin sector. The model (8) can be justified if $\nu \ll n$ which, evidently, fails too close to the trap edges where $n \rightarrow 0$, see below.

After separating off the time dependence $e^{i\omega t}$ in the Heisenberg equations of motion, the eigenvalue equations for the density excitations become

$$- v_{N\nu} v_{J\nu} \nu'' - (2v_{N\nu} v_{J\nu} + v_{N\nu} v_{1\nu}) \nu'$$

$$- (v_{N\nu} v_{J\nu} + v_{N\nu} v_{1\nu}) \nu = \omega^2 \nu .$$

As boundary conditions we require that charge and spin currents vanish at the trap edges, $v_{J\nu}(x = \pm R) = 0$. In view of (8) and the identity $J_{\nu} = \Theta_{\nu}/\sqrt{\pi}$, this boundary condition becomes $v_{J\nu} v_{N\nu} \nu + v_{N\nu} v_{1\nu} = 0$ at $\xi = \pm 1$ which, together with (11), governs the dynamics of density wave packets. In the homogeneous case $v_{1\nu}$ and $v_{(N1)\nu}$ vanish and (11) simplifies to a wave equation. In the inhomogeneous case, without interactions, all four TLL velocity parameters are equal and given by $v_\nu(\xi) = v_0 \sqrt{1 - \xi^2}$ which follows from Eqs. (3) and (6) for $\epsilon_{\text{hom}}(n) = \pi^2 n^3/24 m$. Then the solutions of (9)

$$v_{\text{homint}}(x, \omega) = \frac{1}{\sqrt{R^2 - x^2}} \cos (\omega \arccos \xi) ,$$

with integer $\omega = \omega/\omega_T$, constitute a complete orthonormal set with regard to the measure

$$\frac{2R}{\pi} \sqrt{R^2 - x^2}$$

Near the trap center, we obtain from Eqs. (5) and (7) to leading order in u

$$v_{1\nu} = v_F = v_0 \left(\sqrt{1 + u^2 - \xi^2} - u\right)$$

FIG. 1: LDA density profile of interacting Fermions in a trap of length $2R$ for dimensionless interaction strength $u = 0.3$, using the full Bethe-Ansatz equations numerically (solid line), Eq. (4) (dashed line), and Eq. (6) (dotted line); $n_0 = \frac{3}{2m} \nu_0 R^2 \omega_T$ is the density of a non-interacting Fermi gas at the same μ.
\begin{align}
v_{\nu,\rho} &= v_F + uv_F = v_{F0}\sqrt{1 + u^2 - \xi^2} \quad (13) \\
v_\sigma &= \sqrt{v_F(v_F - uv_F)} \approx v_{\sigma0}\sqrt{1 - x^2/R^2} \quad (14)
\end{align}
where \(v_{\sigma0} = v_{F0}\sqrt{1 - 3u}\) and \(R_\sigma = R\sqrt{1 - 3u/2}\). The solutions of (10) now become
\begin{align}
\rho_n(x) &= \frac{n/2}{\sqrt{(1 + u^2)R^2 - x^2}} C_n^{(h)}(x) \quad (15) \\
\sigma_n(x) &= \frac{1}{\sqrt{R^2_\sigma - x^2}} \cos \left(n\arccos \frac{x}{R_\sigma}\right) \quad (16)
\end{align}
where the \(C_n^{(a)}\) denote ultraspherical polynomials, \(R_2 = R\sqrt{1 - u/2}\), \(h = u/(2 - u)\), and the eigenfrequencies are \(\omega_{\rho,n} = \omega_T\sqrt{n(n + h)/(1 + h)}\), \(\omega_{\sigma,n} = \omega_Tn\sqrt{(1 - 3u)(1 - 3u/2)}\). Thus, in the charge sector the spectrum is no more equidistant (see also Refs. [8, 27], although the lowest mode \((n = 1)\) remains unaffected by interactions in accordance with Kohn’s theorem [28]. Eqs. (15) and (16) describe how weak interactions smoothly deform the non-interacting solution (11); note that \(C_n^{(a)}(\xi) = \frac{\alpha}{\xi}\cos(n\arccos \xi)\). The inequalities \(R_2\omega_{\rho,n} > n\nu_{F0}\) and \(R_2\omega_{\sigma,n} < n\nu_{F0}\) reflect the enhanced and suppressed dynamics of charges and spins, respectively.

Near the trap edges, in the non-perturbative regime where \(\sqrt{R^2 - x^2} \ll uR\) (but still \(R - |x| \gg k_F^{-1}\)), interactions alter the above picture, even qualitatively. Using Eqs. (10) and (17), and employing the Bethe-Ansatz result by Coll [19], we get from (9) to leading order in \(u^{-1}\sqrt{1 - \xi^2}\)
\begin{align}
v_{\nu,\rho} &= v_{F0}\sqrt{1 - \xi^2/2 + \beta(1 - \xi^2)/2} \quad (17) \\
v_{\nu,\sigma} &= v_{F0}\sqrt{1 - \xi^2/2 - 4\beta(1 - \xi^2)} \quad (18) \\
v_\sigma &= \frac{4\pi\nu_{F0}^2}{3c} = \frac{v_{F0}}{3u}(1 - \xi^2) \quad (19)
\end{align}
where \(\beta = 8\ln 2/(3\pi^2u)\). Disregarding for the moment subleading terms \(\propto \beta\) in Eqs. (17) and (18), we see that the charge sector exponent \(K_\rho = \sqrt{v_{\nu,\rho}/v_{\nu,\sigma}}\) approaches the value 1/2 close to the edges, which is consistent with the limiting value of \(K_\rho\) in the Hubbard model when the filling goes to zero [29]. The plasmon velocity \(\sqrt{v_{\nu,\rho}v_{\nu,\sigma}}\), on the other hand, takes exactly the same value of the non-interacting system [cf. Eqs. (12) and (13) for \(u \to 0\)]. This amazing property originates from the fact that the particle density is reduced by a factor 1/2 at infinite interactions, compared to the non-interacting system. Furthermore, since Eq. (14) only contains products \(v_{\nu,\rho}v_{\nu,\sigma}\) and their spatial derivatives, we conclude that even the whole charge dynamics coincides exactly with the non-interacting dynamics (11) sufficiently close to the trap edges.

To leading non-trivial order in \(\beta\), Eq. (11) can be transformed into a damped Mathieu equation, that is solved by
\begin{align}
\rho_n(x) &= \exp\left[\frac{3}{2} \beta \sqrt{1 - \xi^2}\right] \begin{cases}
se_{2n}(q, \frac{1}{2} \arccos \xi), n \text{ odd} \\
cc_{2n}(q, \frac{1}{2} \arccos \xi), n \text{ even}
\end{cases} \quad (20)
\end{align}
with the Mathieu functions \(se_n\) and \(cc_n\). The eigenenergies \(\omega_n\) follow from the characteristic values \(27\) \(\omega_{2n}(q_n) = 4\omega_n^2 - 9\beta^2\) of the Mathieu functions while \(q_n = -\beta(2\omega_n^2 - 1)\). When \(\beta\sqrt{1 - \xi^2} \to 0\), the \(\rho_n(x)\) turn into the non-interacting solutions (11), in agreement with the above observations for the vicinity of the trap edges.

In the spin sector the corresponding solutions,
\begin{align}
\sigma(x, \omega) &= \frac{R}{R^2 - x^2} \begin{cases}
sin \left(\frac{3\omega}{\omega_T} \text{Atanh} \xi\right), \quad \omega > 0 \\
\sin \left(-\frac{3\omega}{\omega_T} \text{Atanh} \xi\right), \quad \omega < 0
\end{cases}
\end{align}
differ qualitatively from the non-interacting solutions (11), as well as from the weakly interacting ones (10). They are rapidly oscillating near the trap edges which manifests extremely slow spatial propagation of spin density waves, as we discuss now.

With the eigenfunctions for charge and spin densities at hand, we are in the position to solve for the time evolution of an initial wave packet \(\rho_0(x)\) in the trap center, or near the edge. After preparation, the packet splits into left- and right moving parts, \(\rho_+\) and \(\rho_-\), and the charge and spin constituents separate. Near the edge the time evolution follows
\begin{align}
\rho_\pm(x, t) &= \frac{1}{2} \sqrt{\frac{R^2 - x^2}{R^2 - x^2 + \omega_T^2}} \begin{cases}
\rho_0(x') \quad x' = R\cos(\arccos \xi \pm \omega_T t), \quad (22) \\
\rho_0(x') \quad x' = R\tan(\text{Atanh} \xi \pm \omega_T/3t), \quad (23)
\end{cases}
\end{align}
Subleading corrections of order \(\beta\) require a summation over the eigenfunctions (20) and can no longer be expressed in the simple form (22).

It follows from Eq. (22) that the charge density exhibits a temporal evolution that roughly resembles that in the absence of interactions: the right moving part of the initial wave packet slows down somewhat due to the decreasing Fermi velocity, and then is reflected at the edge (cf. Fig. 2a). We thus expect charge density excitations to keep oscillating in the trap, before damping mechanisms set in. On the contrary, the right moving part of the spin density wave is slowed down even exponentially fast, see Eq. (23) and is not reflected (cf. Fig. 2b). We mention that for long times Eq. (23) gives \(\sigma_\pm(x, t \to \infty) \to A_0\delta(x \pm R)\) where \(A_0 = \int dx \sigma_0(x)\) is the conserved magnitude of the initial spin wave packet. This follows from the finite slope of \(v_\sigma\) at \(\xi = \pm 1\), as opposed to the infinite slope \(v_\rho\) at \(\xi = \pm 1\) in the charge sector. However, our analysis is only valid up to times of order \(t_c \approx \frac{\omega_T}{\omega_T} \ln \left(\frac{3\pi R_\rho c}{\nu_{F0}(\xi_0^0)} \sqrt{1 - \xi_0^0} + 3\ln \frac{2}{1 + \xi_0}\right)\) since
then $\sigma_{\pm}(x, t > t_c)$ exceeds $n(x)$. This time is large for small initial displacements σ_0 so that a dramatic separation of the spin and charge peaks will have occurred well before effects on the length scale of the Fermi wavelength, that have been disregarded here, become relevant.

In conclusion, we have studied interacting Fermionic atoms of two spin species in an effectively one dimensional harmonic trap by exploiting solvability by the Bethe-Ansatz for contact forces. We have evaluated the particle density profile within the local density approximation. Near the trap center we confirm the occurrence of spin-charge separation. Near the trap center we confirm the occurrence of spin-charge separation. Near the edges of the trap information. Near the trap center we confirm the occurrence of spin-charge separation. Near the edges of the trap, in both the bulk and near the edge of the trap.

We thank R. Egger, A. Komnik and W. Zwerger for valuable comments.

[1] B. DeMarco and D.S. Jin, Science 285, 1703 (1999); S.R. Granade et al., Phys. Rev. Lett. 88, 120405 (2002); K.M. O’Hara et al., Science 298, 2179 (2002).
[2] K. Bongs et al., Phys. Rev. A 63, 031602(R) (2001).
[3] J. Reichel et al., Applied Physics B, 72, 81 (2001); J. Reichel and J.H. Thywissen, cond-mat/0310330.
[4] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998); T. Bergeman, M.G. Moore, and M. Olshanii, Phys. Rev. Lett. 91, 163201 (1998); cf. also C. Mora et al., Phys. Rev. Lett. 93, 170403 (2004).
[5] For long range interactions cf. G. Morigi and S. Fishman, cond-mat/0407675.
[6] T. Loftus et al., Phys. Rev. Lett. 88, 173201 (2002).
[7] H. Feshbach, D.C. Peaslee, and V.F. Weisskopf, Phys. Rev. 71, 145 (1947); E. Tiesinga, B.J. Verhaar, and H.T.C. Stoof, Phys. Rev. A 47, 4114 (1993).
[8] A. Recati et al., Phys. Rev. Lett. 90, 020401 (2003) and J. Optics B 5, S55 (2003).
[9] H. Moritz et al., Phys. Rev. Lett. 91, 250402 (2003); T. Stoferle et al., Phys. Rev. Lett. 92, 130403 (2004); B. Peredes et al., Nature 429, 277 (2004).
[10] S. Tomonaga, Prog. Theo. Phys. 5, 544 (1950); J.M. Luttinger, J. Math. Phys. 4, 1154 (1963).
[11] F.D.M. Haldane, J. Phys. C 14, 2585 (1981).
[12] W. Wonneberger, Phys. Rev. A 63, 063607 (2001); G. Xianlong et al., Phys. Rev. A 67, 023610 (2003).
[13] I. Safi and H.J. Schulz, Phys. Rev. B 52, R17040 (1995); D.L. Maslov and M. Stone, Phys. Rev. B 52, R5359 (1995).
[14] E.A. Jagla, K. Hallberg, and C.A. Balseiro, Phys. Rev. B 47, 5849 (1993).
[15] C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
[16] E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[17] M. Takahashi, Prog. Theo. Phys. 44, 348 (1970).
[18] H. Shiba, Phys. Rev. B 6, 930 (1972).
[19] C.F. Coll, Phys. Rev. B 9, 2150 (1974).
[20] J. Voit, Rep. Prog. Phys. 58, 977 (1995).
[21] G.E. Astrakharchik et al., Phys. Rev. Lett. 92, 030402 (2004) and cond-mat/0312538.
[22] For Bosons a similar calculation based on the Bethe-Ansatz has been carried out by V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86, 5413 (2001).
[23] G. D. Mahan, Many Particle Physics, Plenum Press, New York, 1991.
[24] W. Häusler, L. Kecke, and A.H. MacDonald, Phys. Rev. B 65, 085104 (2002).
[25] A. Minguzzi et al., Phys. Rev. A 64, 033605 (2001).
[26] Note that the eigenvalue problem of Eq. (10) is not of the Sturm-Liouville type.
[27] M. Abramowitz, I.A. Stegun (eds.), Handbook of mathematical functions, Plenum Press, New York, 1981.
[28] W. Kohn, Phys. Rev. 123, 1242 (1961).
[29] H.J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).