Research Article

Single-nucleotide polymorphism rs731384 is associated with plasma lipid levels and the risk of coronary artery disease in Chinese populations

Chenhui Zhao1,* , Mingyue Ji1,2,* , Jing Zhang1, Qiaowei Jia1, Jieyin Liu1, Fenghui An3, Zhaohong Chen3, Lihua Li3, Liansheng Wang1, Wenzhu Ma1, Zhijian Yang1 and En-Zhi Jia1

1Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; 2Lianshui County People’s Hospital, Huai’an, China; 3Department of Cardiovascular Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining 835000, China

Correspondence: En-Zhi Jia (enzhijia@njmu.edu.cn)

Aims: To investigate the relationship between the miR-130a polymorphism rs731384 and coronary artery disease (CAD) and to further explore the molecular mechanism of the pathogenesis of CAD, an observational single-center study was conducted. Method: A total of 876 subjects were recruited in the present study. Four milliliters of venous blood was drawn after 12 h of fasting to perform biochemical assays. CAD patients and controls were distinguished by coronary angiography. Rs731384 was genotyped on the Agena MassARRAY system according to the manufacturer’s user guide. Statistical analysis was conducted using SPSS 16.0 software. Results: The study found that the plasma levels of total cholesterol (TC) (P=0.006), low-density lipoprotein cholesterol (LDL-C) (P=0.030), apolipoprotein A (ApoA) (P=0.038), and apolipoprotein B (ApoB) (P=0.022) distributed differently in patients with various alleles. Additionally, the AA genotype of rs731384 was found to be a protective factor against CAD in a recessive model (AA:AG+GG, odds ratio (OR) = 0.408, 95% confidence interval (95% CI) = 0.171–0.973, P=0.043). A significant association was found between the gene–environment interaction and CAD risk. The AA genotype along with high-density lipoprotein cholesterol (HDL-C) level ≥ 1.325 mmol/l significantly decreased the CAD risk (AA:AG+GG, OR = 0.117, 95% CI = 0.023–0.588, P=0.009). Conclusion: The mutant AA genotype of rs731384 seems to be a protective factor against CAD, and rs731384 plays an important role in the human metabolism of plasma lipids.

Introduction
Cardiovascular diseases (CVDs), particularly coronary heart disease, lead to major human morbidities and mortalities worldwide [1]. In 2015, data indicated that 422.7 (95% confidence interval (95% CI: 415.53–427.87) million people were suffering from CVDs and 17.92 (95% CI: 17.59–18.28) million people died from coronary artery disease (CAD) [2]. The pathological foundation of CAD is generally considered to be coronary atherosclerosis, an inflammatory disorder caused by the formation of plaque and subsequent obstruction of the coronary arteries. However, the exact mechanism of this disease is still unclear. In recent years, genetic predisposition has been widely studied and was found to be closely associated with CAD [3,4].

miRNAs are short (20–24 nts) noncoding RNAs involved in the post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. The encoding gene of miR-130a is located in chromosome 11 and has a length of 89 nts. The sequence of miR-130a (Chr11: 57641198–57641286) is as follows: TGCTG CTGGC CAGAG CTCTT TTCAC.

* These authors contributed equally to this work.

Received: 29 August 2018
Revised: 31 October 2018
Accepted: 06 November 2018
Accepted Manuscript Online: 14 November 2018
Version of Record published: 18 December 2018
ATTGT GCTAC TGTCT GCACC TGTCA CTAGC AGTGC AATGT TAAAA GGGCA TTGGC CGTGT AGTG.

The mature products of miR-130a are segments with a length of 22 nts (miR-130a-3p and miR-130a-5p). Although only one exon is included, miR-130a has been identified to be significantly associated with familial hypercholesterolemia (FH), coronary atherosclerosis [5], CAD, and diabetes mellitus (DM) [6] in recent years.

In our previous studies, miR-221, miR-155, and miR-130a levels were found to be decreased in patients with CAD, and miR-130a may be an independent predictor for CAD [7]. Thus, in this study, a functional variant, rs731384, located in the promotor region of miR-130a, was selected to further investigate the molecular mechanism of CAD.

Materials and methods

Study subjects

To evaluate the genetic predisposition of CAD, 876 consecutive patients (641 males and 235 females) aged 32–84 years, who underwent coronary angiography for suspected or known coronary atherosclerosis at the Friendship Hospital of Ili Kazakh Autonomous Prefecture in China from 1 March 2010 to 31 April 2015 were recruited for the present study. The exclusion criteria of the study were as follows: subjects with spastic angina pectoris, infectious processes within 2 weeks, heart failure, adrenal dysfunction, and thyroid dysfunction. The diagnosis of CAD was according to the results of coronary angiography, which was performed by at least two experienced doctors simultaneously. Coronary arteries were cannulated using either the Judkins technique [8] or through a radial artery approach with 6F catheters. CAD subjects were defined as having at least one major epicardial vessel with >50% stenosis; control subjects were defined as having all of the major epicardial vessels with <50% stenosis [9]. The study was approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University and the Friendship Hospital of Ili Kazakh Autonomous Prefecture in China. All subjects provided written informed consents.

Laboratory measurements

Four milliliters of venous blood was drawn after 12 h of fasting to perform biochemical assays on the second day of hospitalization. Laboratory measurements included the clinical parameters that have been reported to be associated with CAD [10–16]: total cholesterol (TC, mmol/l), triglyceride (TG, mmol/l), fasting blood glucose (FBG, mmol/l), creatine phosphokinase myoglobin isoenzyme (CKMB, U/l), fasting high-density lipoprotein cholesterol (HDL-C, mmol/l), fasting low-density lipoprotein cholesterol (LDL-C, mmol/l), apolipoprotein A (ApoA, g/l), and apolipoprotein B (ApoB, g/l) were determined by enzymatic procedures on an automated autoanalyzer (AU 2700 Olympus, 1st Chemical Ltd, Japan). The plasma preparation and RNA isolation were conducted according to previously reported protocols [17], and miR-130a was quantitated by RT-qPCR analysis [7].

SNP selection

In our previous study, miR-130a was identified to be significantly associated with CAD [7]. The basic information, including the target gene sequence and gene loci (Chr11:57641198-57641286), of miR-130a was obtained from the NCBI website (www.ncbi.nlm.nih.gov). The Ensembl genome browser (www.ensembl.org) was used to screen the SNP sites in the promoter of miR-130a. The minor allele frequency (MAF) values were accessed on the website www.internationalgenome.org, and the SNP sites with MAF values <0.05 were excluded. The rs731384 SNP that resides in the promoter of miR-130a was selected in the study, and its MAF was 0.141 (>0.05). The primer design, PCR protocol, and the single base extension of the primers were designed using AssayDesigner 3.1 software (Sequenom Inc., San Diego, CA, U.S.A.). The primers were synthesized by a professional biotechnology company. All the primers were diluted according to the manufacturer’s user guide.

Polymorphism genotyping

Genotypic polymorphisms were identified on the Agena MassARRAY system (Agena/Sequenom Inc., San Diego, CA, U.S.A.) according to manufacturer’s user guide.

The genomic DNA was extracted using a blood DNA extraction kit [Axygene Biotechnology (Hangzhou) Limited, Hangzhou City, China]. Quality control measures were conducted by 1.25% agarose gel electrophoresis (AGE), and the optical density (OD) values were detected using a Nanodrop 2000 spectrophotometer (Thermo, Wilmington, DE, U.S.A.). All the samples were stored at −20°C until use.

DNA samples were amplified via standard PCR. The primers of the target gene were designed using AssayDesigner 3.1 software (Sequenom Inc., San Diego, CA, U.S.A.) and were synthesized by a professional biotech company. Four microliters of PCR master mix was allocated into each well of 384-well plates and was mixed uniformly with
The plasma levels of TC (P=0.006), LDL-C (P=0.030), ApoA (P=0.038), and ApoB (P=0.022) distributed differently

Clinical parameter distributions in different genotypes and alleles

For further study, the subjects were divided into three groups according to different genotypes. AA represented the homozygote of minor alleles, AG represented the heterozygote, and GG represented the homozygote of major alleles. The plasma levels of TC (P=0.006), LDL-C (P=0.030), ApoA (P=0.038), and ApoB (P=0.022) distributed differently.
Table 2 Clinical parameters distributed in different genotypes and alleles

	AA (n=21)	AG (n=264)	GG (n=591)	P-value
Age (years)	58 (49.5–71.5)	60 (51–68)	61 (52–69)	0.282
Gender (male/female)	17/4	199/65	425/166	0.411
Smoking status (Yes/No)	8/13	131/133	258/333	0.215
Drinking status (Yes/No)	3/18	43/21	93/498	0.960
CKMB (U/l)	16 (13–20)	16 (13–21)	17 (13.4–22)	0.114
TC (mmol/l)	4.52 (3.53–5.43)	4.42 (3.62–5.30)	4.72 (4.03–5.53)	0.006
TG (mmol/l)	1.92 (1.53–5.43)	1.71 (1.15–2.28)	1.78 (1.24–2.49)	0.197
HDL-C (mmol/l)	2.43 (1.99–2.96)	2.65 (2.05–3.35)	2.80 (2.22–3.47)	0.030
ApoA (g/l)	1.23 (1.08–1.35)	1.30 (1.18–1.50)	1.29 (1.14–1.44)	0.038
ApoB (g/l)	0.92 ± 0.19	0.88 ± 0.24	0.93 ± 0.22	0.022
FBG (mmol/l)	5.2 (4.59–6.23)	5.08 (4.65–5.87)	5.08 (4.60–6.04)	0.987
MiR-130a	27.81 (26.53–28.74)	27.52 (26.65–28.24)	27.57 (26.63–28.62)	0.652
P-value for HWE	0.180			

Skewed data are presented as the medians (interquartile ranges), normal data are presented as the means ± S.D., and categorical data are presented as the absolute values. The plasma level of ApoB was examined by one-way ANOVA, and the rest of the baseline characteristics were examined by Kruskal–Wallis tests. Abbreviation: MiR-130a, the relative amount of miR-130a calculated by the 2−ΔΔcT method. Values in bold represent P-values of less than 0.05.

Table 3 Distributions of genotypes and alleles in the case and control populations

Genotypes	CADs (n=600)	Controls (n=276)	P-value
GG	403 (67.2%)	188 (68.1%)	0.781
GA	187 (31.2%)	77 (27.9%)	0.327
AA	10 (1.7%)	11 (4.0%)	0.037
P-value for HWE	0.025	0.385	
Alleles	CADs (n=600)	Controls (n=276)	P-value
G	207 (17.25%)	99 (17.93%)	0.726
A	993 (82.75%)	453 (82.07%)	

AA, the homozygote of minor alleles; AG, the heterozygote; GG, the homozygote of major alleles. Genotypes and alleles are presented as the frequencies (%).

in various alleles (Table 2), suggesting that the SNP site rs731384 plays an important role in the human metabolism of plasma lipids. However, the miR-130a levels showed no differences between various alleles (P=0.652). The allele frequency in participants was consistent with Hardy–Weinberg equilibrium (HWE) (P=0.180).

Genotype and allele distributions in the case and control populations

The genotype distribution of rs731384 is shown in Table 3. The frequency of the AA genotype in the case group was significantly lower than that in the control group (P=0.039). However, the allele distribution in the case group was not in HWE (P=0.025). A logistic regression analysis was conducted to investigate the relationship between the genotypes of rs731384 and CAD risk. The polymorphism frequencies were consistent with HWE in the control group. As is shown in Table 4, the allele distributions in the study populations were consistent with a recessive model, and the AA genotype was a protective factor against CAD risk (AA:AG+GG, adjusted odds ratio (AOR) = 0.374, 95% CI = 0.154–0.906, *P=0.029).

The interactions of environmental and genetic factors in CAD prevalence

A receiver operating characteristic curve analysis was conducted to predict the prevalence of CAD. The areas under curve (AUCs) were 0.587 for age ≥ 59.5 years (95% CI: 0.547–0.628, P<0.001); 0.570 for CKMB ≥ 25.9 U/l (95% CI: 0.531–0.609, P=0.010); 0.552 for HDL-C < 1.325 mmol/l (95% CI: 0.512–0.592, P=0.013); 0.617 for FBG ≥ 5.445 mmol/l (95% CI: 0.579–0.656, P<0.001); and 0.567 for the relative amount of miR-130a ≥ 6.521 (95% CI: 0.526–0.608, P=0.001) (Table 5). A crossover analysis was conducted to analyze the relationship between CAD risk and the interactions of environmental and genetic factors in a recessive model. As shown in Tables 6 and 7, the AA
Table 4 Logistic analysis on the association between SNP rs731384 and CAD risk

Rs731384 (G>A)	CAD (n=600)	Control (n=276)	OR (95% CI)	P-value	AOR* (95% CI)	*P-value
GG	403	188	1.000 (reference)	0.097	1.000 (reference)	0.114
AG	187	77	0.424 (0.177–1.016)	0.054	0.392 (0.161–0.956)	0.039
AA	10	11	1.133 (0.825–1.555)	0.440	1.170 (0.845–1.622)	0.345

Dominant model (GG compared with GA+AA)

| | 403/197 | 188/88 | 0.958 (0.706–1.299) | 0.781 | 0.936 (0.684–1.282) | 0.682 |

Recessive model (AA compared with GA+GG)

| | 10/590 | 11/265 | 0.408 (0.171–0.973) | 0.043 | 0.374 (0.154–0.906) | 0.029 |

AA represents the homozygote of minor alleles, AG represents the heterozygote, GG represents the homozygote of major alleles. Abbreviations: OR, odds ratio; HWE, P-value for the HWE test.

*Adjusted for age, gender.

Table 5 Receiver operating characteristic curve analyses, including the optimal cut-off value and the Youden index for predicting CAD prevalence

Variables	AUC (95% CI)	P-value	Cut-off	Sensitivity	Specificity	Youden index
Age (years)	0.587 (0.547–0.628)	<0.001	59.5	0.572	0.562	0.134
Gender (male/female)	0.431 (0.390–0.473)	0.001	-	-	-	-
Smoking status (Yes/No)	0.538 (0.497–0.580)	0.070	-	-	-	-
Drinking status (Yes/No)	0.506 (0.466–0.549)	0.722	-	-	-	-
CKM (U/l)	0.570 (0.531–0.609)	0.010	25.9	0.210	0.938	0.148
TC (mmol/l)	0.521 (0.481–0.561)	0.318	-	-	-	-
TG (mmol/l)	0.529 (0.487–0.570)	0.168	1.325	0.609	0.503	0.112
HDL-C (mmol/l)	0.552 (0.512–0.592)	0.013	1.325	0.609	0.503	0.112
LDL-C (mmol/l)	0.536 (0.498–0.579)	0.067	-	-	-	-
ApoA (g/l)	0.540 (0.499–0.580)	0.060	-	-	-	-
ApoB (g/l)	0.521 (0.480–0.561)	0.325	-	-	-	-
FBG (mmol/l)	0.617 (0.579–0.656)	<0.001	5.445	0.430	0.793	0.223
MiR-130a	0.567 (0.526–0.608)	0.001	6.521	0.304	0.817	0.121

The value of miR-130a means the relative amount calculated by the 2−ΔCt method. AUC, the closer the value is to 0.5, the less predictive it is.

Conclusion
In the present study, the results revealed that rs731384 plays an important role in the human metabolism of plasma lipids. The AA genotype was a protective factor against CAD compared with the AG+GG genotypes (AOR = 0.374, 95% CI = 0.154–0.906, *P=0.029), and the protective effect was significantly enhanced when the AA genotype was present with an HDL-C level ≥ 1.325 mmol/l (OR = 0.117, 95% CI = 0.023–0.588, *P=0.009). The results suggested that both environmental and genetic factors work together in the occurrence and development of CAD.

Discussion
The association between miR-130a and CAD has been widely investigated. In previous studies, miR-130a was found to be an important angiogenic miRNA, and its dysregulation might contribute to endothelial progenitor cell (EPC) dysfunction in CAD patients [18,19]. Endothelial cells comprise the continuous monolayer of cells covering the inner surfaces of vessels and have significant biological functions, including regulation of thrombosis and coagulation, dilation of vascular smooth muscle, suppression of platelet adhesion and aggregation [20,21], secretion of vasoactive substances and regulation of angiostasis [22]. Studies have found that normal endothelial cells help prevent lipid
CAD incidence by interactions with environmental factors such as age, gender, smoking status, drinking status, the plasma level of CKMB, HDL-C, FBG, and miR-130a

Characteristics	GG+AG	Recessive model of rs731384	AA	
Age (years)				
<59.5	1.000 (Reference)		0.840 (0.282–2.694)	0.769
≥59.5	1.774 (1.324–2.377)		0.300 (0.074–1.217)	0.092
Gender				
Male	1.000 (Reference)		0.414 (0.157–1.092)	0.075
Female	0.509 (0.371–0.696)		0.123 (0.013–1.189)	0.070
CKMB (U/l)				
<25.9	1.000 (Reference)		0.537 (0.220–1.307)	0.170
≥25.9	4.226 (2.457–7.270)		-	-
HDL-C (mmol/l)				
<1.325	1.000 (Reference)		0.561 (0.179–1.752)	0.320
≥1.325	0.640 (0.477–0.860)		0.117 (0.023–0.588)	0.009
FBG (mmol/l)				
<5.445	1.000 (Reference)		0.346 (0.114–1.047)	0.060
≥5.445	2.866 (2.048–4.022)		1.558 (0.300–8.102)	0.598
miR-130a				
<6.521	1.000 (Reference)		0.439 (0.157–1.227)	0.116
≥6.521	0.518 (0.371–0.724)		0.192 (0.035–1.057)	0.058

miR-130a, the relative amount calculated by the $2^{-\Delta C_t}$ method. Values in bold represent P-values of less than 0.05.

The indexes of the synergistic effects between the recessive model of rs731384 and risk factors

Variables	S	AP	AP*	RERI
HDL-C	1.105	–0.718	0.095	–0.084

Abbreviations: AP, attributable proportion of interaction; AP*, the attributable proportion of interaction caused only by gene and environment; RERI, relative excess risk of interaction; S, Rothman’s synergy index for an interaction.

miR-130a, the relative amount calculated by the $2^{-\Delta C_t}$ method. Values in bold represent P-values of less than 0.05.

Table 7 The indexes of the synergistic effects between the recessive model of rs731384 and risk factors

Variables	S	AP	AP*	RERI
HDL-C	1.105	–0.718	0.095	–0.084

Abbreviations: AP, attributable proportion of interaction; AP*, the attributable proportion of interaction caused only by gene and environment; RERI, relative excess risk of interaction; S, Rothman’s synergy index for an interaction.
Figure 1. Transcription factor prediction by the PROMO database

Additionally, another transcription factor prediction by the PROMO database showed that Forkhead Box P3 (FOXP3) is also a possible target of rs731384 (Figure 1). FOXP3 is closely related to the function of regulatory T cells (Tregs), and reduced expression of FOXP3 and decreased Treg levels have been observed in CAD patients in recent studies [30–33]. A study implied that the FOXP3 gene may exert an influence on immune responses and result in unstable plaques in CAD patients [34].

We hypothesize that the SNP rs731384 may have the potential to reduce the occurrence and development of CAD by regulating human lipid metabolism via binding the YY1 transcription factor. However, an individual SNP site is not strong enough to make a difference between CAD patients and healthy people. More studies covering novel SNP sites need to be conducted. Our study first investigated the relationship between rs731384 and CAD and the role rs731384 plays in lipid metabolism amongst Chinese populations. It confirms a previous study that found that lipometabolism regulated by gene expression may be a potential risk factor and predictor of CAD [35,36].

Limitations

Several limitations existed in the present study. First, the sample size of subjects with the AA genotype was small, and the genotype distribution was not in HWE in the case group. More specimens are needed for further investigation. Second, only one SNP site was focussed on in the present study, meaning that the range of study was relatively narrow. Third, the absence of further functional validation made the results less convincing.

Funding

This work was supported by the National Natural Science Foundations of China [grant numbers 81170180, 30400173, 30971257]; the Priority Academic Program Development of Jiangsu Higher Education Institutions; and an Assistant Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Author contribution

As the guarantor, En-Zhi Jia conceived the study. Jiejin Liu, Fenghui An, Zhaohong Chen and Liuhua Li collected the data. Chenhui Zhao, Jing Zhang and Qiaowei Jia analysed the data. Chenhui Zhao and Mingyue Ji initially drafted the paper. Liansheng Wang, Wenzhu Ma and Zhijian Yang monitored the study.

Abbreviations

ApoA, apolipoprotein A; ApoB, apolipoprotein B; AOR, adjusted odds ratio; AUC, area under curve; CAD, coronary artery disease; CeRNA, competing endogenous ribonucleic acid; CircRNA, circular ribonucleic acid; CKMB, creatine phosphokinase myoglobin isoenzyme; CVD, cardiovascular disease; FBG, fasting blood glucose; FOXP3, Forkhead Box P3; FXR, Farnesoid X receptorin; HDL-C, high-density lipoprotein cholesterol; HWE, Hardy–Weinberg equilibrium; LDL-C, low-density lipoprotein cholesterol; MAF, minor allele frequency; OR, odds ratio; PTEN, phosphatase and tensin homolog deleted on chromosome ten; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; SAP, shrimp alkaline phosphatase; SHP, small
heterodimer partner; SNP, single nucleotide polymorphism; TC, total cholesterol; TG, triglyceride; TRPM3, transient receptor potential melastatin 3; 95% CI, 95% confidence interval.

References
1. Nishiguchi, T., Imanishi, T. and Akasaka, T. (2015) MicroRNAs and cardiovascular diseases. *Biomed. Res. Int.* **2015**, 682857, https://doi.org/10.1155/2015/682857
2. Roth, G.A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S.F., Abyu, G. et al. (2017) Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. *J. Am. Coll. Cardiol.*, https://doi.org/10.1016/j.jacc.2017.04.052
3. Feng, L., Nian, S.Y., Hao, Y.L., Xu, W.B., Ye, D., Zhang, X.F. et al. (2014) A single nucleotide polymorphism in the stomatal cell-derived factor 1 gene is associated with coronary heart disease in Chinese patients. *Int. J. Mol. Sci.* **15**, 11054–11063, https://doi.org/10.3390/ijms15061054
4. Kanu, J.S., Gu, Y., Zhi, S., Yu, M., Lu, Y., Cong, Y. et al. (2016) Single nucleotide polymorphism rs3774261 in the AdipoQ gene is associated with the risk of coronary heart disease (CAD) in Northeast Han Chinese population: a casecontrol study. *Lipids Health Dis.* **15**, 6, https://doi.org/10.1186/s12944-015-0173-4
5. De Gonzalo-Calvo, D., Cenarro, K., Garlaschelli, K., Pellegratto, F., Vilades, D., Nasarre, L. et al. (2017) Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. *J. Mol. Cell Cardiol.* **106**, 55–67, https://doi.org/10.1016/j.yjmcc.2017.03.005
6. Balakumar, P. (2014) Implications of fundamental signalling alterations in diabetes mellitus-associated cardiovascular disease. *Indian J. Biochem. Biophys.* **51**, 441–448
7. Jia, Q.W., Chen, Z.H., Ding, X.Q., Liu, J.Y., Ge, P.C., An, F.H. et al. (2017) Predictive effects of circulating miR-221, miR-130a and miR-155 for coronary heart disease: a multi-ethnic study in China. *Cell. Physiol. Biochem.* **42**, 808–823, https://doi.org/10.1007/s00018-017-1513-2
8. Judkins, M.P. (1967) A percutaneous transfemoral technique. *Radiology* **89**, 815–821, https://doi.org/10.1148/89.5.815
9. Sun, X., Zhang, M., Sanagawa, A., Mori, C., Ito, S., Iwaki, S. et al. (2012) Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL-C cholesterol. *Thromb J.* **10**, 16, https://doi.org/10.1186/1477-9560-10-16
10. Lawler, P.R., Filion, K.B., Tourian, T., Atalah, R., Garfinkle, M. and Eisenberg, M.J. (2013) Anemia and mortality in acute coronary syndromes: a systematic review and meta-analysis. *Am. Heart J.* **165**, 143–153.e5, https://doi.org/10.1016/j.ahj.2012.10.024
11. O’Connor, N., Cederholm-Williams, S., Copper, S. and Cotter, L. (1984) Hypercoagulability and coronary artery disease. *Br. Heart J.* **52**, 614–616, https://doi.org/10.1136/hrt.52.6.614
12. Ireland, S., Matta, M.M., Mora, S., Pedersen, T.R., LaRosa, J.C., Nestel, P.J. et al. (2012) Association of LDL-C cholesterol, non-HDL-C cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. *JAMA* **307**, 1302–1309, https://doi.org/10.1001/jama.2012.366
13. Tsimikas, S. and Hall, J.L. (2012) Lipoprotein (a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. *J. Am. Coll. Cardiol.* **60**, 716–721, https://doi.org/10.1016/j.jacc.2012.04.038
14. Wang, C., Yang, C., Chen, X., Yao, B., Yang, C., Zhu, C. et al. (2011) Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. *Clin. Chem.* **57**, 1722–1731, https://doi.org/10.1373/clinchem.2011.169714
15. May, A.L., Kuklina, E.V. and Yoon, P.W. (2012) Prevalence of cardiovascular disease risk factors among US adolescents, 1999-2008. *Pediatrics* **129**, 1035–1041, https://doi.org/10.1542/peds.2011-1082
16. Boomholdt, S.M., Arsenault, B.J., Mora, S., Pedersen, T.R., LaRosa, J.C., Nestel, P.J. et al. (2012) Association of LDL-C cholesterol, non-HDL-C cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. *JAMA* **307**, 1302–1309, https://doi.org/10.1001/jama.2012.366
17. Kannel, W. and McGee, D. (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. *Diabetes Care* **2**, 120–126, https://doi.org/10.2337/diacare.2.2.120
18. Hulley, S.B., Rosenman, R.H., Bawol, R.D. and Brand, R.J. (1980) Epidemiology as a guide to clinical decisions. The association between triglyceride and coronary heart disease. *N. Engl. J. Med.* **302**, 1389–1399
19. Hulley, S.B., Rosenman, R.H., Bawol, R.D. and Brand, R.J. (1980) Epidemiology as a guide to clinical decisions. The association between triglyceride and coronary heart disease. *N. Engl. J. Med.* **302**, 1389–1399
20. Wang, C., Yang, C., Chen, X., Yao, B., Yang, C., Zhu, C. et al. (2011) Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. *Clin. Chem.* **57**, 1722–1731, https://doi.org/10.1373/clinchem.2011.169714
21. Staszel, T., Zapala, B., Polus, A., Sadakierska-Chudy, A., Kiec-Wilko, B., Stapiew, E. et al. (2011) Role of microRNAs in endothelial cell pathophysiology. *Pol. Arch. Med. Wewn.* **121**, 361–366
22. Zhang, Q., Kandic, I. and Kutryk, M.J. (2011) Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. *Biochem. Biophys. Res. Commun.* **405**, 42–46, https://doi.org/10.1016/j.bbrc.2010.12.119
23. Tasaki, H. (2003) Low-density lipoprotein apheresis in the prevention of recurrent coronary heart disease: a review. *Ther. Apher. Dial.* **7**, 408–412, https://doi.org/10.1046/j.1046-1096.2003.00076.x
24. Lemesle, G., Bauters, A. and Bauters, C. (2015) Antithrombotic therapy in diabetic patients with coronary artery disease. *Thromb. Res.* **134**, 151–157, https://doi.org/10.1016/j.thromres.2013.06.007
25. De Gonzalo-Calvo, D., Cenarro, K., Garlaschelli, K., Pellegratto, F., Vilades, D., Nasarre, L. et al. (2017) Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. *J. Mol. Cell Cardiol.* **106**, 55–67, https://doi.org/10.1016/j.yjmcc.2017.03.005
26. Pan, R.-Y., Liu, P., Zhou, H.-T., Sun, W.-X., Song, J., Shu, J. et al. (2017) Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. *Oncotarget* **8**, 60280–60290, https://doi.org/10.18632/oncotarget.19941
27 Her, G.M., Pai, W.Y., Lai, C.Y., Hsieh, Y.W. and Pang, H.W. (2013) Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. *Biochim. Biophys. Acta* 1831, 1037–1051, https://doi.org/10.1016/j.bbalip.2013.02.002

28 Lu, Y., Ma, Z., Zhang, Z., Xiong, X., Wang, X., Zhang, H. et al. (2014) Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. *Gut* 63, 170–178, https://doi.org/10.1136/gutjnl-2012-303150

29 Wu, G.Y., Rui, C., Chen, J.Q., Zuo, E., Zhan, S.S., Yuan, X.W. et al. (2017) MicroRNA-122 inhibits lipid droplet formation and hepatic triglyceride accumulation via yin yang 1. *Cell Physiol. Biochem.* 44, 1651–1664, https://doi.org/10.1159/000485765

30 Shateri, H., Fadaei, R., Najafi, M., Vatannejad, A., Teimouri, M., Zali, F. et al. (2018) Circulating levels of IL-35 and gene expression of FoxP3 in coronary artery disease: is there any interplay between them and 25-hydroxyvitamin D3? *Clin. Lab.* 64, 483–490

31 Emoto, T., Sasaki, N., Yamashita, T., Kasahara, K., Yodoi, K., Sasaki, Y. et al. (2014) Regulatory/effector T-cell ratio is reduced in coronary artery disease. *Circ. J.* 78, 2935–2941, https://doi.org/10.1253/circj.CJ-14-0644

32 Jia, L., Zhu, L., Wang, J.Z., Wang, X.J., Chen, J.Z., Song, L. et al. (2013) Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. *Atherosclerosis* 228, 346–352, https://doi.org/10.1016/j.atherosclerosis.2013.01.027

33 Emoto, T., Sasaki, N., Yamashita, T., Kasahara, K., Yodoi, K., Sasaki, Y. et al. (2014) Regulatory/effector T-cell ratio is reduced in coronary artery disease. *Circ. J.* 78, 2935–2941, https://doi.org/10.1253/circj.CJ-14-0644

34 Gholami, M., Esfandiary, A., Vatanparast, M., Mirmokhtari, R., Hosseini, M.M. and Ghafouri-Fard, S. (2016) Genetic variants and expression study of FOXP3 gene in acute coronary syndrome in Iranian patients. *Cell Biochem. Funct.* 34, 158–162, https://doi.org/10.1002/cbf.3174

35 Lu, Y., Liu, Y., Li, Y., Zhang, H., Yu, M., Kanu, J.S. et al. (2015) Association of ATP-binding cassette transporter A1 gene polymorphisms with plasma lipid variability and coronary heart disease risk. *Int. J. Clin. Exp. Pathol.* 8, 13441–13449

36 Wu, D.-F., Yin, R.-X., Cao, X.-L., Huang, F., Wu, J.-Z. and Chen, W.-X. (2016) MADD-FOLH1 polymorphisms and their haplotypes with plasma lipid levels and the risk of coronary heart disease and ischemic stroke in a Chinese Han population. *Nutrients* 8, 208, https://doi.org/10.3390/nu8040208