BACKGROUND: Access to a safe, adequate blood supply has proven challenging in sub-Saharan Africa, where systemic deficiencies spanning policy, collections, testing, and posttransfusion surveillance have long been recognized. Progress in transfusion safety in the early 2000s was in large part due to intervention by the World Health Organization and other foreign governmental bodies, coupled with an influx of external funding.

STUDY DESIGN AND METHODS: A review of the literature was conducted to identify articles pertaining to blood safety in sub-Saharan Africa from January 2009 to March 2018. The search was directed toward addressing the major elements of the blood safety chain, in the countries comprising the World Health Organization African region. Of 1380 articles, 531 met inclusion criteria and 136 articles were reviewed.

RESULTS: External support has been associated with increased recruitment of voluntary donors and expanded testing for the major transfusion-transmitted infections (TTIs). However, the rates of TTIs among donors remain high. Regional education and training initiatives have been implemented, and a tiered accreditation process has been adopted. However, a general decline in funding for transfusion safety (2009 onwards) has strained the ability to maintain or improve transfusion-related services. Critical areas of need include data collection and dissemination, epidemiological surveillance for TTIs, donor recruitment, quality assurance and oversight (notably laboratory testing), and hemovigilance.

CONCLUSION: Diminishing external support has been challenging for regional transfusion services. Critical areas of deficiency in regional blood transfusion safety remain. Nonetheless, substantive gains in education, training, and accreditation suggest durable gains in regional capacity.

INTRODUCTION

Blood transfusion is a lifesaving therapy that is included on the World Health Organization (WHO) list of essential medications. In sub-Saharan Africa (SSA), blood transfusion is critical to the treatment of diverse pathologies including malaria-associated anemia, obstetric hemorrhage, and trauma. However, access to a safe and adequate blood supply remains an enduring public health challenge in much of SSA.

A WHO strategy of universal safe blood transfusion has focused on five main areas: 1) development of nationally coordinated blood transfusion services, 2) exclusive collection from voluntary nonremunerated blood donors
(VNRBDs), 3) quality-assured donation testing, 4) reduction of inappropriate clinical use of blood, and 5) implementation of quality systems and standards. Efforts to address these areas of deficiency in the early 2000s were spurred by external funding, much of which was provided through the US President’s Emergency Plan For AIDS Relief (PEPFAR). Given increased exposure and robust external support, the outlook for transfusion safety in SSA from 2000–2010 appeared to be bright. We sought to review subsequent developments and challenges to regional transfusion safety in SSA.

METHODS

A literature search was conducted of the PubMed database to identify articles published January 2009 to March 2018 that address the major elements of the blood safety value chain in SSA (Fig. 1). This was achieved using the following search terms either alone or in combination: “sub-Saharan Africa,” “blood,” “transfusion-transmitted infections,” “transfusion guidelines,” and “hemovigilance.” Articles published in English were included in the primary analysis; older articles were included for background and historical perspective. SSA was defined as the WHO African region: the latter encompasses 47 African countries; 26 are categorized as low income, 13 as low middle income, 7 as upper middle income, and 1 as high income (e.g., Seychelles). The search was expanded to “gray literature” including websites of governing bodies (e.g., the WHO website). A total of 1380 articles were identified; 531 met inclusion criteria, and those abstracts were screened for relevance, yielding 136 articles that were reviewed in full, 100 of which were included in this analysis.

Fig. 1. Flowchart summary of selection process.
RESULTS
Organization and management: situational analysis and oversight

There have been continued gains toward establishment of national blood transfusion services (NBTSs) in SSA. However, national frameworks alone do not guarantee functionality: in 12 countries with NBTSs, only half had published standards for blood collections, processing, testing, and distribution. National guidelines and applicable blood safety policies and governmental and legislative support are still lacking in much of SSA.

Blood availability and donor recruitment

Blood shortages remain frequent in Africa, where more than 40 countries still fail to attain the WHO’s donation goal of 10 units/1000 population. Shortages occur despite a 19% increase in whole blood (WB) donation in 12 African countries from 2011 to 2014, posing complex health risks. Indeed, a quarter of peripartum maternal deaths in SSA have been ascribed to inadequate access to blood transfusion. Similarly, delayed transfusion has been associated with increased mortality in cases of pediatric malaria-associated anemia; one study reported a 52% mortality in severely anemic children who were not transfused within 8 hours of diagnosis (n = 3170). Nonetheless, the theoretical transfusion needs to contend with malaria-associated anemia in SSA alone would exceed the total estimated blood supply.

An increase in VNRBDs in SSA has occurred. However, even when increased, it has not necessarily been sustained. Replacement donation (RD), the major alternative to VNRBD, remains contentious given its presumptive elevated infectious risk. The WHO supports VNRBD exclusively, despite a voluntary donor pool that is insufficient to meet demand. Furthermore, the data supporting the use of VNRBDs over RDs may be confounded by donor status (i.e., first-time vs. repeat donation), where the probability of infection in a repeat donor is lower given prior screening for transfusion-transmitted infections (TTIs). Inclusion of repeat donors in analyses of VNRBDs artificially lowers the TTI prevalence, as illustrated by a Zimbabwe-based study where human immunodeficiency virus (HIV) rates in repeat VNRBDs were 0.42% compared to 1.29% in first-time VNRBDs. When controlling for repeat status, the prevalence of TTIs in first-time VNRBDs and RDs does not seem different, as observed in Cameroon, Ghana, and Guinea. With continued blood shortages and the high cost of VNRBD blood units (i.e., two to three times that of RD), this questions the ethics of abandoning RD in lieu of a viable alternative.

Donation in SSA is consistently dominated by males of secondary school age. This is ascribed to targeted recruitment in view of perceived good health and low infectious risk, which imposes recurrent shortages during school recesses. Women remain underrepresented in the donor pool, in part due to cultural perceptions that men are healthier and iron-deficiency anemia and pregnancy restrict donation capacity. Studies to characterize the sociocultural motivators for or deterrents against blood donation are few. Major drivers include altruism, family obligation, or monetary and nonmonetary incentives such as free health screenings or gifts. Regional health risks affect donor eligibility: in the South and East AFRO region, rates of deferral for medical conditions, for example, low weight and anemia (10.5%), exceed those for high-risk behaviors (1.5%). Although a pattern of medical deferral is not unique to SSA, its effect is more pronounced given higher rates of endemic anemia (e.g., due to malnutrition, iron deficiency, and parasitic infection).

Biological testing and pathogen reduction of blood products

Biological testing of blood donation for HIV, hepatitis B and C viruses (HBV, HCV), and syphilis has expanded greatly, in large part through external funding support. However, in 2016 only 6 of 46 surveyed African countries reported 100% screening coverage for the major TTIs; much of the testing was also performed using rapid diagnostic tests (RDTs).

Given the low cost and relative ease of use, RDTs are widely used for donor screening in SSA, despite being shown repeatedly to have lower sensitivities and specificities than enzyme immunosorbent assay and nucleic acid testing (NAT). In one study of 12 African countries, the average sensitivity for HBV RDT was reported to be 47.4%. Sensitivities of RDTs decrease proportionately to viral load; the respective sensitivities of HBV and HCV RDTs decreased from 93.8% to 51.5% and 90.6% to 40.6%, with sequential decrements in viral load. Low specificities of RDTs also contribute to unnecessary disposal of blood products. However, RDTs may still have a role in certain settings (e.g., trauma). High-performance serologic testing and NAT are the cornerstone of TTI screening. However, the associated costs and technical complexity have limited their use in SSA. Unlike serology, NAT has the ability to detect occult HBV infection as well as preserocconversion “window” phase infections. Cited costs of HIV, hepatitis B surface antigen, and HCV enzyme-linked immunosorbent assay are $5.7, $3.6, and $3.6/unit respectively; in contrast, corresponding RDTs cost $0.62, $0.50, and $0.40/unit. The cited costs do not factor in the purchasing power parity; that is, $5.7 in Nigeria is the equivalent of $97.38 in the United States. Namibia introduced NAT in 2004, contracting the South African Nation Blood Service for a fee. Following the relocation of NAT to Namibia in 2014, the Namibian Blood Transfusion Service estimated that 28% of blood service expenditure was diverted to NAT testing, spurring a budget crisis and downsizing of operations. The crisis could only be averted in 2017 following blood product price increases of up to 65%.

Most pathogen inactivation (PI) technologies (i.e., in high-income countries [HICs]) are approved for platelets and plasma. In contrast, WB and red blood cells (RBCs) constitute
the major prescribed products in SSA. Examples of PI use in SSA are few,36 having largely been confined to emergency use (e.g., Chikungunya outbreak in Reunion 200537). A clinical trial in Ghana demonstrated a significantly reduced incidence of transfusion-transmitted malaria (TTM) in those who received Mirasol (Terumo BCT)38 pathogen-inactivated WB (4%) as compared to untreated standard WB transfusions (22%).39 PI could benefit regional blood safety; however, obstacles to broader implementation include costs, infrastructure, technical complexity, and the need for skilled personnel.40

Transfusion-transmissible infectious disease marker rates (Table 1)

HIV

Despite being a major priority in SSA, the incidence of HIV attributable to transfusion in SSA is uncertain. Historically, a statistic of 5\% to 10\% of new cases was cited, a claim for which a 2016 review found no primary support.41 Instead, the findings suggested that only 1\% of new HIV infections are attributable to transfusion—a figure complicated by a lack of published HIV prevalence data in blood donors and deficient posttransfusion surveillance.41 Additionally, the rates of pre-seroconversion “window period infections” are not widely available yet, likely because new infections are given near exclusive reliance on antibody-based screening.42

Hepatitis viruses

Donor screening for HBV and HCV has increased since the early 2000s, with a concomitant decrease in donor prevalence.43 However, 23\% of global burden of HBV is in SSA.44 HBV-reactive donors are concentrated in West Africa, where six countries reported donor HBV prevalence above 10\%.42 Occult HBV infection, HBV DNA in the absence of detectable hepatitis B surface antigen, remains unaddressed, particularly given absent hepatitis B core antibody testing and NAT of blood donors in most of SSA.4 Reported rates of donor occult HBV infection range from 10.6\% to 17\% in Nigeria.32,44

From 2000 to 2011, regional decreases in HCV prevalence were observed. Nonetheless, 14 of 29 African countries reported an increase in donor HCV prevalence, despite dedicated donor selection and educational efforts.43 Hepatitis E virus, although not as common as HBV and HCV, is endemic throughout northern and eastern Africa. Donor seroprevalence is cited as 26\% in one South African study (n = 300).45 Hepatitis E virus is transfusion transmissible and can lead to fulminant hepatitis in high-risk groups (e.g., pregnant women and those with preexisting liver dysfunction).36,47

Human T-cell lymphotropic viruses 1 and 2

Human T-cell lymphotropic viruses 1 and 2 (HTLV1/2) are oncogenic retroviruses implicated in the development of adult T-cell leukemia/lymphoma and HTLV1-associated myelopathy/tropical spastic paraparesis.48 Few prevalence data are available for HTLV1/2 in SSA; when available, estimates are frequently based on accessible populations (e.g., blood donors and pregnant women).49 A review found that the HTLV1 prevalence in healthy volunteers ranged from 0\% (Zambia) to 13.07\% (Gabon); more recently, a seroprevalence of 2.1\% was reported among pregnant women in Gabon.51

The epidemiology of transfusion-associated HTLV1/2 in SSA is uncertain. However, evidence of transfusion transmission is suggested by the high seroprevalence among transfusion recipients in Mali, HTLV1 seroprevalence in multitransfused patients was 6.4\% higher than that observed in blood donors, and a dose-dependent increase in HTLV1 prevalence by number of transfusions was observed in recipients.48 Nonetheless, with the exception of Gabon, there is virtually no screening for HTLV1/2 in SSA.24 Such may be informed by a paucity of regional transmission data, limited surveillance that suggests low prevalence of HTLV1/2, and high rates of false positivity of enzyme immunosorbent assays (in part due to cross-reactivity with malarial antigens).52,53

Herpesviruses

Cytomegalovirus (CMV) is transfusion transmissible and can lead to serious and even fatal infection in immunocompromised hosts.54 Although CMV risk is largely eliminated by leukoreduction,55 neither leukoreduction of blood products nor CMV testing of blood donors is widely used in SSA.36 Furthermore, CMV testing is impractical given the high seroprevalence in the general population. In a Nigerian blood donor study (n = 184), 97.4\% of subjects were CMV immunoglobulin G positive and 52.6\% were CMV immunoglobulin M positive.57

Human herpesvirus type 8 (HHV8) is the causative agent for Kaposi sarcoma, multicentric Castleman disease, and primary effusion lymphoma. The prevalence of HHV8 in SSA was historically cited as 20\% to 80\%;56 recent estimates range from 17.6\% (South Africa) to 37.3\% (Uganda).59 Studies have produced contradictory results on its risk of transfusion transmission.58 Older studies have attributed seroconversion in transfusion patients to natural acquisition.50 However, a 2012 Ghanaian study documented seroconversion in a previously seronegative patient following transfusion of HHV8 contaminated WB.61

Chikungunya, Zika, and the Arboviruses

Only dengue virus, West Nile virus, and Ross River virus (not endemic to SSA) have been definitively shown to be transmitted by transfusion.52 Data pertaining to transfusion-associated arboviral risk in SSA are lacking, despite periodic regional outbreaks.63,64

Chikungunya virus (CHIKV) has raised intermittent concern for transfusion services, given frequent outbreaks in SSA during which modeling data have projected rates of viremic donations as high as 150 per 10,000.65 During a 2011 outbreak of CHIKV in Congo, 34.4\% of blood donors (n = 517) were shown to be CHIKV immunoglobulin G positive.66 Nonetheless, no cases of transfusion transmitted CHIKV have yet to be reported.
Current data suggest that Zika virus (ZIKV) does not pose significant risk to the blood supply in Africa. However, there are data that support virulence of the African strain, challenging previous assumptions that African ZIKV was low risk (cf. Asian strain). In Guinea-Bissau six infants with microcephaly were reported to be born to mothers who had been infected with an African ZIKV strain during pregnancy. No cases of transfusion-transmitted ZIKV have been reported in SSA, and donor screening is not currently being undertaken.

Table 1. HIV seroprevalence and epidemiological trends in the sub-Saharan blood donor population

Pathogen	Blood donor seroprevalence	Trends over time†	Scope of study	n	
HIV	Botswana - LNS: 1.4% (2014); 7.5% (2003)6	§	Country-wide	NA	
	Burkina Faso - Ouagadougou: 2.1% (2009)19		Multiple regional BBs	30,364	
	Burkina Faso - LNS: 1.8% (2009)101		Multiple regional BBs	31,405	
	Burkina Faso - Koudougou: 2.34% (2009)111		Single BB	4,520	
	Cameroon - Yaoundé: 2.9% (2009)19		Multiple regional BBs	2,887	
	Cameroon - Edéa: 4.1% (2011–2012)112		Single BB	543	
	Côte d’Ivoire - LNS: 0.3% (2014); 1.6% (2003)6	‡	Country wide	NA	
	DR Congo - Kinshasa: 0.8% (2009)19		Multiple regional BBs	480	
	DR Congo - Bukavu: 1.6% (2011)113		Multiple regional BBs	595	
Equatorial Guinea - Bioko Island: 7.83% (2011–2013)114		Multipl			
	Eritrea - LNS: 0.18% (2006–2009)115		Country-wide	29,501	
	Ethiopia - LNS: 0.8% (2014); 3.6% (2004)6	‡	Country wide	NA	
	Ethiopia - Jijiga: 1.4% (2014); 6.4% (2010)116	‡	Single BB	676 (2010); 2,752 (2014)	
	Ethiopia - Hawassa: 1.6% (2009–2013)17		Single BB	6,337	
	Ethiopia - Gonder District: 2.24% (2010–2012)117		Multipl		
Gabon - LNS: 2.54% (2009); 3.07% (2011)118	†	Single BB	7,570 (2009); 9,992 (2011)		
Ghana - Damongo: 3.9% (2009)119		Single hospital	846		
	Ivory Coast - Daloa: 3.48% (2009)19		Multiple regional BBs	14,257	
Kenya - LNS: 0.7% (2014); 1.5% (2003)6	‡	Country-wide	NA		
	Mali - Bamako: 2.58% (2009)19		Multipl		
Mozambique - LNS: 5.2% (2014); 8.6% (2003)6	‡	Country-wide	NA		
Mozambique - Tete: 8.5% (2009)120		Single hospital	679		
Namibia - LNS: 0.4% (2014); 0.6% (2003)6	‡	Country wide	NA		
Niger - Niamey: 1.4% (2009)19		Multiple regional BBs	2,962		
Nigeria - LNS: 1.6% (2014); 3.8% (2005)6	‡	Country-wide	NA		
	Nigeria - Osogbo: 3.1% (2007–2008)121		Single BB	1,410	
	Nigeria - Abeokuta: 6.2% (2013)6	‡	Single hospital	130	
Rwanda - LNS: 0.5% (2014); 1.1% (2003)6	‡	Country wide	NA		
Rwanda - Kigali: 1.0% (2009)19		Multipl			
South Africa - LNS: 1.13% (2012–2015)122	†,			Country-wide	397,640
Tanzania - LNS: 1.3% (2014); 4.8% (2005)6	‡	Country-wide	NA		
Uganda - LNS: 1.1% (2014); 2.0% (2003)6	‡	Country-wide	NA		
Zambia - LNS: 3.5% (2014); 6.9% (2003)6	‡	Country-wide	NA		

Specific locations are provided in italics if stated in the publication. Study interval included in parenthesis. † First-time donors. ‡ Trends over time are only included when seroprevalence was included at two time points within the same study. § † = seroprevalence increase; ‡ = seroprevalence decrease. †, || Nucleic acid testing data included. BB = blood bank; DRC = Democratic Republic of the Congo; LNS = location not specified; NA = not available.

Ebola

Cases of transfusion-transmitted Ebola have not been reported, likely due to donor self-deferral given the severity of clinical infection coupled with brief asymptomatic viremia. However, the scale of the 2014–2016 epidemic in West Africa highlights the potential threat to the blood supply as well as the role for transfusion services in outbreak responsiveness. Specifically, convalescent plasma was considered as a possible treatment for Ebola, illustrating the need to build capacity for collections, processing, and
testing ahead of outbreaks. However, given formidable cost and logistical barriers to sourcing convalescent plasma, this is unlikely to be adopted widely during future outbreaks.

Syphilis
The WHO recommends universal screening for Treponema pallidum; this has been questioned—at least in HICs—given the spirochete’s inability to survive beyond 4 days of cold storage. This argument may not hold true in SSA, where fresh WB transfusions occur frequently and transfusion-transmitted syphilis has been described. Following a case of transfusion-transmitted syphilis in Ghana in 2011, investigation showed that 57% of donations in that hospital were stored for less than 4 days.

Unreliable supply chains and fluctuating costs of reagents complicate T. pallidum screening. For example, 77% of Ghanaian services that do not screen for T. pallidum cite reagent costs as the major reason for failing to do so. RDTs in use for syphilis screening suffer from low specificity, contributing to unnecessary blood product disposal. After introduction of an RDT in a Ghanaian hospital led to a rise in product disposal, reflexive testing by rapid plasma reagin was implemented: only 29 of 182 RDT-positive products were confirmed by rapid plasma reagin, thus reducing the rate of unnecessary disposal by 79%.

Bacterial contamination
Bacterial contamination of blood products and associated septic transfusion reactions remains a major, unaddressed risk in SSA, where limited screening has been enacted. In one study in Zimbabwe, 3.1% of 196 products (e.g., RBCs, platelets, and WB) were found to be contaminated with various bacterial species (Staphylococci spp., Bacillus spp., and Escherichia coli). In seven studies in SSA published between 2009 and 2015, the rates of bacterial contamination ranged from 3.1% (Zimbabwe) to 17.5% (Ghana). Furthermore, a Ugandan study concluded that Gram stain, which is most commonly used for screening, is insensitive, thereby failing to identify clinically significant levels of bacterial contamination.

Malaria
Malaria is highly endemic in SSA, where repeat exposure induces “semi-immunity,” characterized by high-titer antibodies and low parasitemia. Semi-immunity does not necessarily extend to all transfusion recipients; a large proportion—notably children and the immunocompromised—lack sufficient antibodies to protect against TTM.

Donor screening is challenging. Donors are typically asymptomatic at time of donation. In Cameroon, 6.5% of asymptomatic donors were found to be parasitemic at the time of donation based on peripheral blood smear, a likely underestimate given the low sensitivity of microscopy. Although TTM incidence is largely unknown, a Ghanaian study showed the rate of transmission to previously uninfected transfusion recipients to be 28%. Laboratory measures, when undertaken, are typically performed by microscopy or RDT, neither of which is adequately sensitive. Highly sensitive serologic and molecular testing would increase cost up to 12 times that of microscopy and, given the high seroprevalence, would further erode the donor pool. Other strategies such as PI are promising but far exceed the resource capacity in much of SSA.

Filaria: the nematodes
Research regarding transfusion-related filariasis is scarce. A publication in 2010 contradicted Wiwantitkit prior suggestion that donor screening for microfilariae was necessary. A 2010 letter to the editor cited a pediatric case of transfusion-transmitted Mansonella perstans in Chad; the infection cleared expeditiously following transfusion without development of any symptoms. This suggests that adult worms rather than microfilariae (which are transfusion transmissible) are responsible for clinical infection. Given blood shortages and limited transfusion-associated risk, testing for nematodes in SSA is not indicated.

Rational blood use
Good clinical transfusion practice is impeded by a general lack of training and absence of guidelines, contributing to inappropriate or overtreatment. One study in Tanzania found that 17% of requested units were deemed inappropriate. A survey of seven African countries found that none of the participating countries had any personnel who were exclusively trained in transfusion medicine, and only one had standing operational protocols. The level of training among prescribers also varies greatly. In some cases, nurses act alone to prescribe transfusion.

Access to educational programs improves transfusion practices and helps to build a skilled workforce: One program in Tanzania increased the number of local hematologists from 1 to 18 within 10 years. Training programs are few in SSA, and access is limited to large urban centers (e.g., transfusion medicine diploma for physicians in South Africa and advanced diploma in donor care nursing in Ghana). The African Society for Blood Transfusion (AISBT) has promoted education and training over the past 5 years, having established a pool of educators to provide training on the AISBT standards, basics of blood safety, and to prepare transfusion services for accreditation.

Hemovigilance, quality assurance, and accreditation
Hemovigilance encompasses surveillance of all activities from donor recruitment through posttransfusion surveillance. Given limited resources, hemovigilance is a major challenge for transfusion services in SSA, where the tracking
Pathogen	Blood donor seroprevalence	Trends over time	Scope of study	n
HBV	Angola - LNS: 6.74% (2010/2011); 8.68% (2000/2004)	§	Country-wide	NA
	Benin - LNS: 1.65% (2010/2011); 7.51% (2000/2004)	▼	Country-wide	NA
	Botswana - LNS: 2.21% (2010/2011); 4.21% (2000/2004)	▼	Country-wide	NA
	Burkina Faso - Ouagadougou: 1.1.2% (2009)		Multiple regional	BB
	Burkina Faso - LNS: 13.4% (2009)		Multiple regional	BB
	Burkina Faso - Koudougou: 15.92% (2009)		Single BB	4,520
	Cameroon - LNS: 1.34% (2010/2011); 15.00% (2000/2004)	▼	Country-wide	NA
	Cameroon - Edéa: 10.1% (2011–2012)		Single BB	543
	Cameroon - Yaoundé: 10.3% (2009)		Multiple regional	BB
	Central African Republic - LNS: 10.45% (2000/2004)		Country-wide	NA
	Chad - LNS: 7.76% (2000/2004); 10.10% (2010/2011)	▼	Country-wide	NA
	Cote d’Ivoire - LNS: 5.31% (2010/2011); 6.93% (2000/2004)	▼	Country-wide	NA
	DRC - Kinshasa: 6.0% (2009)		Multiple regional	BB
	DRC - LNS: 3.43% (2010/2011); 7.31% (2000/2004)	▼	Country-wide	NA
	DRC - Bukavu: 4.8% (2011)		Multiple regional	BB
	Equatorial Guinea - Bioko Island: 10.01% (2011–2013)		Multiple regional	BB
	Eritrea - LNS: 2.27% (2010/2011); 3.60% (2000/2004)	▼	Country-wide	NA
	Eritrea - LNS: 2.58% (2006–2009)		Country-wide	29,501
	Ethiopia - LNS: 3.42% (2010/2011); 4.00% (2000/2004)	▼	Country-wide	NA
	Ethiopia - Gondar District: 3.6% (2010–2012)		Multiple regional	BB
	Ethiopia - Hawassa: 4.8% (2009–2013)		Single BB	6,337
	Ethiopia - Jigjiga: 6.0% (2014); 18.2% (2010)	▼	Single BB	676 (2010); 2,752 (2014)
	Gabon - LNS: 4.57% (2010/2011); 10.49% (2000/2004)	▼	Country wide	NA
	Gabon - LNS: 6.20% (2011); 8.84% (2009)	▼	Single BB	7,570 (2009); 9,992 (2011)
	Ghana - LNS: 6.58% (2010/2011); 11.75% (2000/2004)	▼	Country-wide	NA
	Ghana - Damongo: 7.5% (2009)		Single hospital	853
	Guinea-Bissau - LNS: 6.1% (2010/2011); 18.42% (2000/2004)	▼	Country-wide	NA
	Guinea - LNS: 9.79% (2010/2011); 11.20% (2000/2004)	▼	Country-wide	NA
	Ivory Coast - Daloa: 5.85% (2009)		Multiple regional	BB
	Kenya - LNS: 1.75% (2010/2011); 5.31% (2000/2004)	▼	Country wide	NA
	Lesotho - LNS: 0.90% (2010/2011); 1.37% (2000/2004)	▼	Country-wide	NA
	Liberia - LNS: 0.50% (2000/2004); 7.40% (2010/2011)	▼	Country-wide	NA
	Malawi - LNS: 3.43% (2010/2011); 6.90% (2000/2004)	▼	Country-wide	NA
	Mali - LNS: 11.35% (2000/2004); 14.27% (2010/2011)	▼	Country-wide	NA
	Mali - Bamako: 13.89% (2009)		Multiple regional	BB
	Mauritania - LNS: 18.82% (2010/2011); 21.00% (2000/2004)	▼	Country-wide	NA
	Mozambique - Tete: 10.6% (2009)		Single hospital	679
	Mozambique - LNS: 5.30% (2010/2011); 9.78% (2010/2011); 2.41% (2000/2004)	▼	Country-wide	NA
	Namibia - LNS: 9.78% (2010/2011); 2.41% (2000/2004)	▼	Country-wide	NA
	Niger - LNS: 11.78% (2010/2011); 20.00% (2000/2004)	▼	Country-wide	NA
	Niger - Niamey: 18.96% (2009)		Multiple regional	BB
	Nigeria - Abeokuta: 10% (2013)		Single hospital	130
	Nigeria - Osogbo: 18.6% (2007–2008)		Single BB	1,410
	Nigeria - LNS: 3.00% (2000/2004); 4.12% (2010/2011)	▼	Country-wide	NA
	Republic of the Congo - LNS: 6.40% (2000/2004); 7.35% (2010/2011)	▼	Country-wide	NA
	Rwanda - LNS: 1.75% (2010/2011); 4.39% (2000/2004)	▼	Country-wide	NA

(Continues)
of patients, products, and outcomes remains deficient. As of 2013, only 13 of 46 African countries had established a national hemovigilance system. To be effective, the latter requires uniformity of reporting, widespread adoption, and the means to extract data to guide regional policies and interventions. To this end, published data are scant, offering little evidence that nascent hemovigilance systems in SSA are functional.

Proficiency testing is also limited. Several external quality assurance studies have demonstrated suboptimal performance of infectious testing at laboratories engaged in blood donor screening.\(^{25,27,28}\) One study extrapolated that 321 (5.6%) infectious units would have been missed due to their false-negative screening results.\(^{25}\)

The AfSBT has developed a tiered stepwise accreditation system for transfusion services based on infrastructure and capacity (i.e., low, intermediate, or high resourced). This system acknowledges the heterogeneous nature of SSA blood services and allows services of different levels to be considered for certification or accreditation, according to an expected standard for a given resource level. This also provides a structured path toward higher levels of accreditation. A pool of assessors has undergone training, and assessments have already begun. Namibia was the first to reach the highest level of accreditation (2013), followed by Rwanda (2017).\(^{105}\)

External funding for transfusion safety

From 2000 to 2015, $2.1 billion of international funding was directed toward transfusion capacity (technical support and economic aid) in SSA.\(^{101}\) By 2013, transfusion services in 36 of the AFRO region countries received foreign aid. In West Africa, external aid constituted 42% of total funding for transfusion services.\(^{4}\) The Centers for Disease Control and Prevention (through PEPFAR) dispersed funding to 19 countries in the AFRO region; other agencies also provided support, including the Global Fund, AABB, the Safe Blood for Africa Foundation, WHO, the United Nations Children’s Fund, and the United Nations Population Fund.\(^{4}\)

Despite regional transfusion services’ dependence on external support, that funding is currently in decline. The percentage of the PEPFAR budget allocated to blood safety decreased from approximately 4.5% in 2005 to less than 1% in 2014,\(^{102,103}\) highlighting the need for operational planning to buffer a continuing down trend.

The ethics of external aid to transfusion services has been questioned. Ala et al.\(^{12}\) argued that external funding has been unintentionally misdirected into ventures ill-suited for SSA that generate, at best, poorly understood and, at worst, harmful effects. One example is exclusive support for centralized blood systems, which neglects regional hospitals ensuring timely access to blood transfusion in remote areas. In a survey of Tanzanian transfusion services, 37.5% of blood components were issued by blood banks outside of the NBTS.\(^{104}\)

DISCUSSION

Blood transfusion safety in SSA over the past 8 years has had mixed developments (Table 2). Many of the challenges

TABLE 2. Continued

Pathogen	Blood donor seroprevalence	Trends over time‡	Scope of study	n
Rwanda - Kigali: 2.76% (2009)\(^{19}\)	Multiple regional BBs		Country-wide	37,000
Senegal - LNS: 10.50% (2000/2004); 10.51% (2010/2011)\(^{42}\)			Country-wide	NA
Sierra Leone - LNS: 5.73% (2000/2004); 11.60% (2010/2011)\(^{42}\)			Country-wide	NA
South Africa - LNS: 0.12% (2010/2011); 0.28% (2000/2004)\(^{42}\)			Country-wide	NA
South Africa - LNS: 0.66% (2012–2015)\(^{122,11}\)§			Country-wide	397,640
Swaziland - LNS: 3.11% (2010/2011); 4.81% (2000/2004)\(^{42}\)			Country-wide	NA
Tanzania - LNS: 5.11% (2010/2011); 11.00% (2000/2004)\(^{42}\)			Country-wide	NA
Togo - LNS: 3.46% (2010/2011); 11.48% (2000/2004)\(^{42}\)			Country-wide	NA
Tunisia - LNS: 1.46% (2010)\(^{123}\)			Country-wide	19,783
Uganda - LNS: 2.28% (2010/2011); 5.00% (2000/2004)\(^{42}\)			Country-wide	NA
Zambia - LNS: 6.02% (2010/2011); 7.56% (2000/2004)\(^{42}\)			Country-wide	NA
Zimbabwe - LNS: 0.92% (2010/2011); 1.56% (2000/2004)\(^{42}\)			Country-wide	NA

Specific locations are provided in italics if stated in the publication.

Study interval included in parenthesis.

‡ First-time donors.

† Trends over time are only included when seroprevalence was included at two time points within the same study.

§ \(\text{f}\) = seroprevalence increase; \(\text{i}\) = seroprevalence decrease.

|| Nucleic acid testing data included.

BB = blood bank; DRC = Democratic Republic of the Congo; HBV = hepatitis B virus; LNS = location not specified; NA = not available.
TABLE 3. HCV seroprevalence and epidemiological in the sub-Saharan blood donor population

Pathogen	Blood donor seroprevalence	Trends over time†	Scope of study	n
HCV				
Angola - LNS	0.57% (2010/2011)	§	Country-wide	NA
Benin - LNS	0.53% (2010/2011); 3.82% (2000/2004)		Country-wide	NA
Botswana - LNS	0.34% (2000/2004); 0.48% (2010/2011)		Country-wide	NA
Burkina Faso - Ouagadougou	3.2% (2009)		Multiple regional BBs	30,364
Burkina Faso - LNS	4.58% (2000/2004); 5.21% (2010/2011)	†	Country-wide	NA
Burkina Faso - LNS	6.3% (2009)		Multiple regional BBs	31,405
Burkina Faso - LNS	8.92% (2009)		Single BB	4,520
Burundi - LNS	1.41% (2000/2004); 1.54% (2010/2011)	†	Country-wide	NA
Cameroon - LNS	0.76% (2010/2011); 10.00% (2000/2004)	†	Country-wide	NA
Cameroon - Yaoundé	3.9% (2009)		Multiple regional BBs	2,887
Cameroon- Edéa	4.8% (2011–2012)	†	Single BB	543
Central African Republic - LNS	1.20% (2000/2004)		Country-wide	NA
Chad - LNS	0.20% (2000/2004); 0.51% (2010/2011)	†	Country-wide	NA
Cote d'Ivoire - LNS	1.56% (2010/2011); 2.29% (2000/2004)	†	Country-wide	NA
DRC - Kinshasa	2.0% (2009)	†	Multiple regional BBs	480
DRC - LNS	1.46% (2010/2011); 7.20% (2000/2004)	†	Country-wide	NA
DRC - Bukavu	3.9% (2011)	†	Multiple regional BBs	595
Equatorial Guinea - Bioko Island	3.71% (2011–2013)		Multiple regional BBs	2,937
Eritrea - LNS	0.53% (2010/2011); 0.88% (2000/2004)	†	Single BB	29,501
Ethiopia - Hawassa	0.6% (2009–2013)		Single BB	6,337
Ethiopia - Gonder District	0.8% (2010–2012)		Multiple regional BBs	6,471
Ethiopia - Jigjiga	0.8% (2014); 2.1% (2010)		Single BB	676 (2010); 2,752 (2014)
Ethiopia - LNS	0.47% (2010/2011); 2.00% (2000/2004)		Country-wide	NA
Gabon - LNS	0.77% (2010/2011); 5.39% (2000/2004)	†	Country-wide	NA
Gabon - LNS	1.19% (2009); 6.04% (2011)	†	Single BB	7,570 (2009); 9,992 (2011)
Ghana - LNS	2.40% (2010/2011); 1.00% (2000/2004)	†	Country-wide	NA
Ghana - Damongo	6.1% (2009)	†	Single hospital	819
Guinea-Bissau - LNS	0.70% (2000/2004); 0.80% (2010/2011)		Country-wide	NA
Guinea - LNS	0.60% (2000/2004); 1.07% (2010/2011)	†	Country-wide	NA
Ivory Coast - Daloa	6.98% (2009)		Multiple regional BBs	14,257
Kenya - LNS	0.70% (2000/2004); 0.78% (2010/2011)	†	Country-wide	NA
Lesotho - LNS	0.81% (2010/2011)	†	Country-wide	NA
Liberia - LNS	2.30% (2010/2011)	†	Country-wide	NA
Malawi - LNS	2.00% (2000/2004); 2.00% (2010/2011)	†	Country-wide	NA
Mali - LNS	1.00% (2000/2004); 2.20% (2010/2011)	†	Country-wide	NA
Mali - Bamako	3.25% (2009)	†	Multiple regional BBs	17,880
Mauritania - LNS	0.02% (2010/2011); 1.78% (2000/2004)	†	Country-wide	NA
Mozambique - LNS	0.91% (2010/2011)	†	Country-wide	NA
Namibia - LNS	0.03% (2000/2004); 0.09% (2010/2011)	†	Country-wide	NA
Niger - Niamey	1.42% (2009)	†	Multiple regional BBs	2,962
Niger - LNS	2.02% (2010/2011)	†	Country-wide	NA
Nigeria - Osogbo	6.0% (2007–2008)	†	Single BB	1,410
Nigeria - LNS	1.31% (2010/2011); 1.50% (2000/2004)	†	Country-wide	NA
Nigeria - Abeokuta	1.5% (2013)	†	Single hospital	130
Republic of the Congo - LNS	0.40% (2000/2004); 1.98% (2010/2011)		Country-wide	NA
Rwanda - LNS	1.97% (2010/2011); 2.83% (2000/2004)	†	Country-wide	NA
Rwanda - Kigali	3.13% (2009)	†	Country-wide	NA

(Continues)
of the preceding decade remain. Withdrawal of external aid has imposed new obstacles, with a growing need for operational sustainability in the absence of external support. Data collection and dissemination continues to mar objective assessment and evidence-based policy and practice. Despite formidable challenges, there have been positive gains, notably surrounding educational efforts and the development of accreditation standards that are tailored specifically for SSA.

External funding has enabled expanded infectious testing, establishment of nationalized transfusion services, and increased blood donation. However, these gains are not universal. Furthermore, there is a reliance on operational rather than performance indicators, detracting from what one can infer from the stated intent of regional strategies. Even with the infusion of funds, challenges that existed a decade ago (i.e., deficiencies in infectious testing, blood shortages, paucity of hemovigilance) still remain.

The high cost of blood renders safe blood to be a major burden on health services and drives decision making, independent of safety. Continued RDT use (suboptimal) and inability to implement PI (transformative yet cost prohibitive) are two examples of this. Given diminishing external aid, creative local strategies are needed to finance blood services. Given that national transfusion services are often closely associated with governmental agencies (e.g., ministries of health), taxes and health insurance could be considered as one avenue to support transfusion services indirectly.

The outcomes of external aid have been measured narrowly against the policies they sought to support. Instead, an evaluation of the impact on regional transfusion safety is needed. One example is exclusive support of VNRBDs despite inability to meet transfusion demands, coupled with evidence suggesting comparable infectious risk of RD after controlling for first-time versus repeat donor status. Efforts could be directed toward converting replacement donors to repeat donors pending expansion of the voluntary donor pool. Policy decisions, originating in HICs, may not be locally applicable or are nuanced with potential detrimental effects.

Data collection, capture, and dissemination are a major challenge. Such pertain to the composition of the donor pool (i.e., VNRBD vs. replacement), collections (i.e., by product type), infrastructure (e.g., personnel, facilities, equipment), epidemiology of the major TTIs, blood utilization and practices, and surveillance of adverse events (both donors and recipients). Even when data are available, they are often too localized to inform general policy decisions. TTI incidence and prevalence data are limited, often reflecting only single blood centers, and rates of transfusion transmission are virtually nonexistent. Estimates are often based on historical estimates that are not supported by contemporary surveillance and therefore may no longer hold true. In some cases, outdated or unsubstantiated statistics have been used to support policy decisions. The absence of accurate data weakens any economic foundation for policy change while transfusion recipients remain at unquantified risk. Region-specific research is needed, as was highlighted at a workshop in 2017 at the National Heart Lung and Blood Institute.

TABLE 3. Continued

Pathogen	Blood donor seroprevalence	Trends over time†	Scope of study	n
Senegal - LNS	0.63% (2010/2011); 12.00%	I	Country-wide	NA
	(2000/2004)			
Sierra Leone - LNS	0.67% (2000/2004); 2.20%	I	Country-wide	NA
	(2010/2011)			
South Africa - LNS	0.01% (2010/2011); 0.04%	I	Country-wide	NA
	(2000/2004)			
South Africa - LNS	0.03% (2012–2015)	I	Country-wide	397,640
Swaziland - LNS	0.01% (2000/2004); 0.25%	I	Country-wide	NA
	(2010/2011)			
Tanzania - LNS	0.55% (2010/2011); 8.00%	I	Country-wide	NA
	(2000/2004)			
Togo - LNS	1.83% (2010/2011); 8.04%	I	Country-wide	NA
	(2000/2004)			
Tunisia - LNS	0.37% (2010)	I	Country-wide	NA
	(2012)			
Uganda - LNS	0.75% (2000/2004); 1.71%	I	Country-wide	NA
	(2010/2011)			
Zambia - LNS	0.93% (2010/2011)	I	Country-wide	NA
	(2000/2004)			
Zimbabwe - LNS	0.03% (2000/2004); 0.34%	I	Country-wide	NA
	(2010/2011)			

Specific locations are provided in italics if stated in the publication.
Study interval included in parenthesis.
† First-time donors.
‡ Trends over time are only included when seroprevalence was included at two time points within the same study.
§ I = seroprevalence increase; | = seroprevalence decrease.
|| Nucleic acid testing data included.
BB = blood bank; DRC = Democratic Republic of the Congo; HCV = hepatitis C virus; LNS = location not specified; NA = not available.
There are educational and training initiatives under way. The AfSBT has broadened its efforts, striving to provide stakeholder expertise in all of the areas of deficiency across the transfusion landscape (e.g., quality assurance, data collection, rational blood use). These actions capitalize on the knowledge of those with firsthand experience of the nuanced challenges in SSA. However, access remains a barrier to education: Most training opportunities are focused in major urban centers, inadvertently excluding those residing in areas that are most in need (i.e., remote or rural settings). Lack of coordination among emerging programs also risks redundancy and fails to optimize limited resources.

This review has limitations. Foremost, it is constrained by the availability of formal, published analyses: The review may be overly reliant on a relatively small number of sources. There is also an inherent reporting bias toward those transfusion services that have the ability to publish, reflecting capacity for data collection, analysis, and reporting, which is a different level of functioning than those services that are not represented. Although of variable quality and scope, some publications were included to ensure regional representation. We acknowledge that the available data lack granularity. Use of gray literature (e.g., WHO reports) also has limitations; for example, WHO data are often based on self-reporting. In short, any review without formal engagement of regional transfusion services and public health agencies is unlikely to be comprehensive. Additionally, there is a risk that publications were missed or omitted, reflecting reviewer bias.

In conclusion, many of the challenges to blood transfusion services in SSA remain. Data collection and reporting is critically lacking. Multicenter studies are needed to monitor key indicators of blood safety, as literature review is inadequate to understand real-time changes. Technological advances in HICs have outpaced the financial reserve of much of SSA, stalling the ability to contend with established risks. External funding has been instrumental to the development of many transfusions services; however, the impact of waning support is uncertain, and sustainability of previous gains are now called into question. Ultimately, this illustrates the need for regional investment to be tailored to resource limitations from the outset, while extant advances

Pathogen	Blood donor seroprevalence	Trends over time†	Scope of study	n
T. pallidum	Burkina Faso - Ouagadougou: 1.2% (2009)19	Multiple regional	BBs	30,364
	Burkina Faso - LNS: 2.1% (2009)108†	Multiple regional	BBs	31,405
	Burkina Faso - Koumbou: 8.92% (2009)111†	Single BB	4,520	
	Cameroon - Edéa: 5.7% (2011–2012)122†	Single BB	543	
	Cameroon - Yaoundé: 9.5% (2009)19	Multiple regional	BBs	2,887
	Equatorial Guinea - Bioko Island: 21.52% (2011–2013)114	Multiple regional	BBs	2,937
	Eritrea - LNS: 0.49% (2006–2009)115	Single BB	29,501	
	Ethiopia - Hawassa: 0.5% (2009–2013)17	Single BB	6,337	
	Ethiopia - Jimma: 0.6% (2014); 2.4% (2010)116	Single BB	676 (2010); 2,752 (2014)	
	Ghana - LNS: 3.7% (2014–2015)75	Country-wide	91,386	
	Ghana - Damongo: 4.7% (2009)19	Single hospital	468	
	Ivory Coast - Daloa: 4.54% (2009)19	Multiple regional	BBs	14,257
	Mali - Bamako: 0.3% (2009)19	Multiple regional	BBs	25,543
	Mozambique - Tete: 1.2% (2009)120	Single hospital	679	
	Niger - Niamey: 1.88% (2009)19	Multiple regional	BBs	2,962
	Nigeria - Abeokuta: 0% (2013)18	Single hospital	130	
	Nigeria - Osogbo: 1.1% (2007–2008)121	Single BB	1,410	
	Rwanda - Kigali: 0.6% (2009)19	Multiple regional	BBs	37,000
	Tunisia - LNS: 0.13% (2010)123	Country-wide	19,783	

Specific locations are provided in italics if stated in the publication. Study interval included in parenthesis.

† First-time donors.

Trends over time are only included when seroprevalence was included at two time points within the same study.

‡ = seroprevalence decrease.

BB = blood bank; LNS = location not specified; NA = not available.
TABLE 5. Major advances and continued challenges across the transfusion landscape in Africa

TTI epidemiology	Blood product testing and pathogen reduction	Quality assurance	Education and accreditation	External funding and technical support
Advances:	Advances:	Challenges:	Advances:	Advances:
• Regional decrease in donor seroprevalence rates (see Table 1)	• Regional increases in blood product testing4,8,24,42	Suboptimal testing platforms still in use (e.g., RDTs)	• Multifaceted educational initiatives96–100	• Regional increases in many blood safety initiatives4,6,42
	• Proof of concept application of pathogen reduction/inactivation strategies39	Limited ability to adopt high performance alternative testing strategies given financial constraints39,33,35,105	• Development of regional tiered accreditation system100	
	• Molecular testing remains the exception	• Limited access to educational programs37,99		
Challenges:	• Unreliable supply chains/procurement of screening reagents34,75	Variable and unknown quality of hemovigilance data	Lack of coordination of educational activities	
• Incomplete epidemiological understanding (see Table 1; most based on limited data sets)		Monitoring and evaluation using operational rather than performance indices	Approach to prioritization of need unclear and not assessed objectively and/or systematically	
• Absence of posttransfusion surveillance with uncharacterized transfusion transmission risk41		Few examples of initiatives that target rural areas where there is unaddressed need	Impact assessment of decline in support has not been undertaken, formally19	
• Limited surveillance outside major TTIs				

QA = quality assurance; RDTs = rapid diagnostic tests; TTIs = Transfusion transmitted infections.

in education and accreditation could prove instrumental in the years ahead.

CONFLICT OF INTEREST

AART and PMN received travel support from Terumo BCT; PMN is on an advisory board for Terumo BCT and is a consultant for Bio-Merieux, Inc. EMB is a co-investigator on a Terumo-sponsored clinical trial in the United States. EMB, PMN, and AART are investigators on a US government-sponsored grant to evaluate feasibility of implementation of Mirasol (whole blood pathogen reduction) in Uganda. EMB, JBT, and CTT all have affiliations with the African Society of Blood Transfusion.

REFERENCES

1. WHO. 19th WHO model list of essential medications (April 2015). WHO; 2015. [accessed 2018 Jan 20] Available from http://www.who.int/medicines/publications/essentialmedicines/en/.
2. Idro R, Aloyo J. Manifestations, quality of emergency care and outcome of severe malaria in Mulago Hospital. Uganda. Afr Health Sci 2004;4:50-7.
3. Scott GB, Brogly SB, Muenz D, et al. International Maternal Pediatric Adolescent ACTGPST. Missed opportunities for prevention of mother-to-child transmission of human immunodeficiency virus. Obstet Gynecol 2017;129:621-8.
4. World Health Organization. Current status on blood safety and availability in the WHO African region—report of the 2013 survey. Geneva: World Health Organization; 2017:1-20. Licence: CC BY-NC-SA 3.0 IGO.
5. WHO. WHO global strategic plan, 2008–2015: universal access to safe blood transfusion. Geneva WHO, 2007. [accessed 2017 Dec 12] Available from http://www.who.int/bloodsafety/StrategicPlan2008-2015AccessSafeBloodTransfusion.pdf.
6. Chevalier MS, Kuehnert M, Basavaraju SV, et al. Progress toward strengthening national blood transfusion services – 14 countries, 2011–2014. MMWR Morb Mortal Wkly Rep 2016;65:115-9.
7. Sibinga CT. Existing and recommended legislative framework for a National Blood Transfusion Policy. Glob J Transfus Med 2017;2:89-96.
8. Bates I, Chapotera GK, McKew S, et al. Maternal mortality in sub-Saharan Africa: the contribution of ineffective blood transfusion services. BJOG 2008;115:1331-9.
9. Kiguli S, Maitland K, George EC, et al. Anaemia and blood transfusion in African children presenting to hospital with severe febrile illness. BMC Med 2015;13:21.
10. Lund TC, Hume H, Allain JP, et al. The blood supply in Sub-Saharan Africa: needs, challenges, and solutions. Transfus Apher Sci 2013;49:416-21.
11. WHO Guidelines approved by the guidelines review committee towards 100% voluntary blood donation: a global framework for action. Geneva: World Health Organization; 2010.
12. Ala F, Allain JP, Bates I, et al. External financial aid to blood transfusion services in sub-Saharan Africa: a need for reflection. PLoS Med 2012;9:e1001309.
26. Prugger C, Laperche S, Murphy EL, et al. Screening for transfusion transmissible infections using rapid diagnostic tests in Africa: a potential hazard to blood safety? Vox Sang 2016;110:196-8.

27. Laperche S, Boukatou G, Kouegnigan L, et al. Transfusion safety on the African continent: an international quality control of virus testing in blood banks. Transfusion 2009;49:1600-8.

28. Bloch EM, Shah A, Kaidarova Z, et al. Anglophone Africa Transfusion Research Group. A pilot external quality assurance study of transfusion screening for HIV, HCV and HBsAg in 12 African countries. Vox Sang 2014;107:333-42.

29. Mbanya D. Use of quality rapid diagnostic testing for safe blood transfusion in resource-limited settings. Clin Microbiol Infect 2013;19:416-21.

30. WHO Guidelines approved by the guidelines review committee screening donated blood for transfusion-transmissible infections: recommendations. Geneva: World Health Organization; 2009.

31. Osaro E, Mohammed N, Zama I, et al. Prevalence of p24 antigen among a cohort of HIV antibody negative blood donors in Sokoto, North Western Nigeria—the question of safety of blood transfusion in Nigeria. Pan Afr Med J 2014;18:174.

32. Oluyinka OO, Tong HV, Bui Tien S, et al. Occult hepatitis B virus infection in Nigerian blood donors and hepatitis B virus transmission risks. PLoS One 2015;10:e0131912.

33. Shittu AO, Olawumi HO, Adewuyi JO. Pre-donation screening of blood for transfusion transmissible infections: the gains and the pains—experience at a resource limited blood bank. Ghana Med J 2014;48:158-62.

34. The World Bank; 2018. [Accessed 2018 March 16] Available from http://blogs.worldbank.org/ppps/category/countries/nigeria.

35. Gouws CNAMBTS. South African Blood Transfusion Congress. Sun City, South Africa 2017.

36. Ware AD, Iacquot C, Tobian AA, et al. Pathogen reduction and blood transfusion safety in Africa: strengths, limitations and challenges of implementation in low-resource settings. Vox Sang 2018;113:3-12.

37. Economopoulou A, Dominguez M, Helync B, et al. Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on reunion. Epidemiol Infect 2009;137:534-41.

38. Owusu-Ofori S, Kusi J, Owusu-Ofori A, et al. Treatment of whole blood with riboflavin and UV light: impact on malaria parasite viability and whole blood storage. Shock 2015;44–(Suppl 1):33-8.

39. Allain JP, Owusu-Ofori AK, Assennato SM, et al. Effect of Plasmodium inactivation in whole blood on the incidence of blood transfusion-transmitted malaria in endemic regions: the African Investigation of the Mirasol System (AIMS) randomised controlled trial. Lancet 2016;387:1753-61.

40. Drew VI, Barro L, Seghatchian J, et al. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries. Blood Transfus 2017;15:512-21.

41. Morar MM, Pitman JP, McFarland W, et al. The contribution of unsafe blood transfusion to human immunodeficiency virus incidence in sub-Saharan Africa: reexamination of the 5% to 10% convention. Transfusion 2016;56:3121-32.
infection: sub-Saharan Africa, 2000–2011. MMWR Morb Mortal Wkly Rep 2014;63:613-9.
43. Organization WH. Global hepatitis report, 2017. Geneva: World Health Organization; 2017 [accessed 2018 Feb 5]. Available from http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/.
44. Nna E, Mbamalu C, Ekejindu I. Occult hepatitis B viral infection among blood donors in South-Eastern Nigeria. Pathog Global Health 2014;108:223-8.
45. Lopes T, Cable R, Pistorius C, et al. Racial differences in seroprevalence of HAV and HEV in blood donors in the Western Cape, South Africa: a clue to the predominant HEV genotype? Epidemiol Infect 2017;145:1910-2.
46. Al-Sadeq DW, Majdalawieh AF, Nasrallah GK. Seroprevalence and incidence of hepatitis E virus among blood donors: a review. Rev Med Virol 2017;27:e1937.
47. Boon D, Redd AD, Laeyendecker O, et al. Rakai Health Sciences P. Hepatitis E virus seroprevalence and correlates of anti-HEV IgG antibodies in the Rakai District, Uganda. J Infect Dis 2018;217:785-9.
48. Diarra AB, Kouriba B, Guindo A, et al. Prevalence of HTLV-1 virus in blood donors and transfusion in Mali: implications for blood safety. Transfus Clin Biol 2014;21:139-42.
49. Watanabe T. Current status of HTLV-1 infection. Int J Hematol 2011;94:430-4.
50. Fox JM, Mutalima N, Molyneux E, et al. Seroprevalence of HTLV-1 and HTLV-2 amongst mothers and children in Malawi within the context of a systematic review and meta-analysis of HTLV seroprevalence in Africa. Trop Med Int Health 2016;21:312-24.
51. Etnna SL, Caron M, Besson G, et al. New insights into prevalence, genetic diversity, and proviral load of human T-cell leukemia virus types 1 and 2 in pregnant women in Gabon in equatorial central Africa. J Clin Microbiol 2008;46:3607-14.
52. Mahieux R, Horal P, Mauclere P, et al. Racial differences in seroprevalence of human T-cell lymphotropic virus type-1 gag indeterminate western blot patterns in Central Africa: relationship to Plasmodium falciparum infection. J Clin Microbiol 2000;38:4049-57.
53. Murphy EL. Infection with human T-lymphotropic virus types-1 and -2 (HTLV-1 and -2): implications for blood transfusion safety. Transfus Clin Biol 2016;23:13-9.
54. Emery VC. Investigation of CMV disease in immunocompromised patients. J Clin Pathol 2001;54:84-8.
55. Bowden RA, Slichter SJ, Sayers M, et al. A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant. Blood 1995;86:3598-603.
56. Ziemann M, Thiele T. Transfusion-transmitted CMV infection - current knowledge and future perspectives. Transfus Med 2017;27:238-48.
57. Bolatinnwa RA, Donbraye E, Ademosu AA, et al. Prevalence and associated characteristics of cytomegalovirus (Cmv) immunoglobulin antibodies among blood donors at a University Teaching Hospital in Nigeria. East Afr Med J 2014;91:385-90.
58. Vamvakas EC. Is human herpesvirus-8 transmitted by transfusion? Transfus Med Rev 2010;24:1-14.
59. Dollard SC, Butler LM, Jones AM, et al. Substantial regional differences in human herpesvirus 8 seroprevalence in sub-Saharan Africa: insights on the origin of the “Kaposi’s sarcoma belt”. Int J Cancer 2010;127:2395-401.
60. Hladik W, Dollard SC, Mermin J, et al. Transmission of human herpesvirus 8 by blood transfusion. N Engl J Med 2006;355:1331-8.
61. Gobbinin F, Owusu-Ofori S, Marcelin AG, et al. Human herpesvirus 8 transfusion transmission in Ghana, an endemic region of West Africa. Transfusion 2012;52:2294-9.
62. Shang G, Biggerstaff BJ, Richardson AM, et al. A simulation model to estimate the risk of transfusion-transmitted arboviral infection. Transfus Apher Sci 2016;55:233-9.
63. Baba M, Wllinger J, Masiga DK. Repetitive dengue outbreaks in East Africa: a proposed phased mitigation approach may reduce its impact. Rev Med Virol 2016;26:183-96.
64. Otshudiema JO, Ndakala NG, Mawanda EK, et al. Yellow fever outbreak – Kongo Central Province, Democratic Republic of the Congo, August 2016. MMWR Morb Mortal Wkly Rep 2017;66:335-8.
65. Petersen LR, Stramer SL, Powers AM. Chikungunya virus: possible impact on transfusion medicine. Transfus Med Rev 2010;24:15-21.
66. Moyen N, Thiberville SD, Pastortino B, et al. First reported Chikungunya fever outbreak in the Republic of Congo, 2011. PLoS One 2014;9:e115938.
67. Jimenez A, Shaz BH, Bloch EM. Zika virus and the blood supply: what do we know. Transfus Med Rev 2017;31:1-10.
68. Simonin Y, Lousatlo F, Desmetz C, et al. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine 2016;12:161-9.
69. Nutt C, Adams P. Zika in Africa-the invisible epidemic? Lancet 2017;389:1595-6.
70. Abdullah S, Karunamoorthi K. Ebola and blood transfusion: existing challenges and emerging opportunities. Eur Rev Med Pharmacol Sci 2015;19:2983-96.
71. van Griensven J, De Weiggheleire A, Delamou A, et al. The Ebola outbreak: a clue to the predominant HEV genotype? Transfus Med Rev 2010;24:1-14.
72. Burnouf T, Emmanuel J, Mbanya D, et al. Ebola: a call for vigilance: recognition description and diagnosis. London, United Kingdom: InTech; 2011.
73. Owusu-Ofori AK, Parry CM, Bates I. Transfusion-transmitted syphilis in teaching hospital, Ghana. Emerg Infect Dis 2011;17:2080-2.
75. Sarkodie F, Hassall O, Owusu-Dabo E, et al. Syphilis screening practices in blood transfusion facilities in Ghana. Int J Infect Dis 2016;43:90-4.
76. Sarkodie F, Ullum H, Owusu-Dabo E, et al. A novel strategy for screening blood donors for syphilis at Komfo Anokye Teaching Hospital, Ghana. Transfus Med 2016;26:63-6.
77. Makuni N, Simango C, Mavenyengwa RT. Prevalence of bacterial contamination in blood and blood products at the National Blood Service Zimbabwe. J Infect Dev Ctries 2015;9: 421-4.
78. Hume HA, Ddungu H, Angom R, et al. Platelet transfusion therapy in sub-Saharan Africa: bacterial contamination, recipient characteristics, and acute transfusion reactions. Transfus 2016;56:1951-9.
79. Bolarinwa RAAO, Odeloyin BW, Adegunloye AB. Bacterial contamination of blood and blood components in a tertiary hospital setting in Nigeria. Int J Infect Control 2011;7:1-6.
80. Adjei AA, Kuma GK, Tettey Y, et al. Bacterial contamination of blood and blood components in three major transfusion centers, Accra. Ghana. Jpn J Infect Dis 2009;62:265-9.
81. Hassall O, Maitland K, Pole L, et al. Bacterial contamination of pediatric whole blood transfusions in a Kenyan hospital. Transfusion 2009;49:2594-8.
82. Opoku-Okrah C, Feglo P, Amidu N, et al. Bacterial contamination of donor blood at the Tamale Teaching Hospital, Ghana. Afr Health Sci 2014;5:176-9.
83. Esmael ADZ, Degu G. Bacterial Contamination of Stored Blood Ready for Transfusion at a Referral Hospital in Ethiopia. J Clin Res Bioeth 2014;5:176-9.
84. Matte Aloysius GJB, Apecu R, Yap B, et al. Bacterial Contamination of blood and blood products at Mbarara Regional blood bank in rural South Western Uganda. Adv Infect Dis 2013;3:205-9.
85. Owusu-Ofori AK, Parry C, Bates I. Transfusion-transmitted malaria in countries where malaria is endemic: a review of the literature from sub-Saharan Africa. Clin Infect Dis 2010; 51:1192-8.
86. Bloch EM, Vermeulen M, Murphy E. Blood transfusion safety in Africa: a literature review of infectious disease and organizational challenges. Transfus Med Rev 2012;26:164-80.
87. Allain JP, Assennato SM, Osei EN, et al. Characterization of posttransfusion Plasmodium falciparum infection in semi-immune nonparasitemic patients. Transfusion 2016;56:2374-83.
88. Nouhouosossie D, Tagny CT, Same-Ekobo A, et al. Asymptomatic carriage of malaria parasites in blood donors in Yaounde. Transfus Med 2012;22:63-7.
89. Freimanis G, Sedeagah M, Owusu-Ofori S, et al. Investigating the prevalence of transfusion transmission of Plasmodium within a hyperendemic blood donation system. Transfusion 2013;53:1429-41.
90. Ayogu EE, Ukwe CV, Nna EO. Assessing the reliability of microscopy and rapid diagnostic tests in malaria diagnosis in areas with varying parasite density among older children and adult patients in Nigeria. J Postgrad Med 2016;62:150-6.
91. Allain JP. Malaria and transfusion: a neglected subject coming back to the forefront. Clin Infect Dis 2010;51:1199-200.
92. Bregani ER. Filariasis due to blood transfusion. Blood Transfus 2010;8:129.
93. Wiwanitkit V. Filariasis due to blood transfusion: a topic in tropical medicine. Blood Transfus 2009;7:151.
94. Bregani ER, Balzarini L, Ghiringhelli C, et al. Transfusional Mansonella perstans microfilariaisis. Parasitologia 2003;45: 71-2.
95. Apata IW, Drammeh B, De AK, et al. Diagnoses and ordering practices driving blood demand for treatment of anemia in Tanzania. Transfus 2018;58:379-89.
96. Nebie K, Ouattara S, Sanou M, et al. Poor procedures and quality control among nonaffiliated blood centers in Burkina Faso: an argument for expanding the reach of the national blood transfusion center. Transfusion 2011;51:1613-8.
97. Smit Sibinga CT, Adejumo OH, Eichbaum Q, et al. A global survey of clinicians’ awareness, accessibility, utilization of e-continuous education, and quality of clinical blood use: policy considerations. Int J Clin Transfus Med 2017;5:69-82.
98. Makani J, Lyimo M, Magesa P, et al. Strengthening medical education in haematology and blood transfusion: postgraduate programmes in Tanzania. Br J Haematol 2017;177:838-45.
99. Bloch E. African Society for Blood Transfusion Education Committee South African Blood Transfusion Conference. Sun City, South Africa 2017.
100. African Society for Blood Transfusion. 2016. [accessed 2018 Feb 10] Available from https://afsbt.org/.
101. Ifland L, Bloch EM, Pitman JP. Funding blood safety in the 21st century. Transfusion 2017;58:105-12.
102. PEPFAR. 2017. [accessed 2018 Jan 24] Available from https://www.pepfar.gov/.
103. Coordinator USGA. PEPFAR Dashboards. Wasington, DC: PEPFAR [accessed 2018 Jan 24] Available from: https://data.pepfar.net/global.
104. Drammeh B, De A, Bock N, et al. Estimating Tanzania’s national met and unmet blood demand from a survey of a representative sample of hospitals. Transfus Med Rev 2018;32:36-42.
105. Mafrikureva N, Nyoni H, Nkomo SZ, et al. The costs of producing a unit of blood in Zimbabwe. Transfusion 2016;56: 628-36.
106. Bates I, Hassall O, Mapako T. Transfusion research priorities for blood services in sub-Saharan Africa. Br J Haematol 2017; 177:855-63.
107. Custer B, Zou S, Glynn SA, et al. Addressing gaps in international blood availability and transfusion safety in low- and middle-income countries: a NHLBI workshop. Transfusion 2018;58:1307-17.
108. Murphy EI, McFarland W, Lefrere JJ. Teaching transfusion medicine research methods in the developing world. Transfusion 2009;49:1532-4.
109. Sibinga CT. Filling a gap in transfusion medicine education and research. Transfus Med Rev 2009;23:284-91.
110. Nagalo BM, Bisseye C, Sanou M, et al. Seroprevalence and incidence of transfusion-transmitted infectious diseases among blood donors from regional blood transfusion centres in Burkina Faso, West Africa. Trop Med Int Health 2012;17:247-53.

111. Nagalo MB, Sanou M, Bisseye C, et al. Seroprevalence of human immunodeficiency virus, hepatitis B and C viruses and syphilis among blood donors in Koudougou (Burkina Faso) in 2009. Blood Transfus 2011;9:419-24.

112. Noubiap JJ, Joko WY, Nansseu JR, et al. Sero-epidemiology of human immunodeficiency virus, hepatitis B and C viruses, and syphilis infections among first-time blood donors in Edea, Cameroon. Int J Infect Dis 2013;17:e832-7.

113. Kabinda JM, Michele DW, Donnen P, et al. Factors for viral infection in blood donors of South Kivu in the Democratic Republic of Congo. Pan Afr Med J 2014;19:385.

114. Xie DD, Li J, Chen JT, et al. Seroprevalence of human immunodeficiency virus, hepatitis B virus, Hepatitis C virus, and Treponema pallidum infections among blood donors on Bioko Island, Equatorial Guinea. PLoS One 2015;10:e0139947.

115. Fessehaye N, Naik D, Fessehaye T. Transfusion transmitted infections - a retrospective analysis from the National Blood Transfusion Service in Eritrea. Pan Afr Med J 2011;9:40.

116. Abate M, Wolde T. Seroprevalence of human immunodeficiency virus, hepatitis B virus, hepatitis C virus, and syphilis among blood donors at Jigjiga Blood Bank, Eastern Ethiopia. Ethiop J Health Sci 2016;26:153-60.

117. Biadgo B, Shiferaw E, Woldu B, et al. Transfusion-transmissible viral infections among blood donors at the North Gondar district blood bank, northwest Ethiopia: a three year retrospective study. PLoS One 2017;12:e0180416.

118. Rerambiah LK, Rerambiah LE, Bengone C, et al. The risk of transfusion-transmitted viral infections at the Gabonese National Blood Transfusion Centre. Blood Transfus 2014;12:330-3.

119. Kubio C, Tierney G, Quaye T, et al. Blood transfusion practice in a rural hospital in Northern Ghana, Damongo, West Gonja District. Transfusion 2012;52:2161-6.

120. Stokx J, Gillet P, De Weggheleire A, et al. Seroprevalence of transfusion-transmissible infections and evaluation of the pre-donation screening performance at the Provincial Hospital of Tete, Mozambique. BMC Infect Dis 2011;11:141.

121. Buseri FI, Muhibi MA, Jeremiah ZA. Sero-epidemiology of transfusion-transmissible infectious diseases among blood donors in Osogbo, south-west Nigeria. Blood Transfus 2009;7:293-9.

122. Vermeulen M, Swanewelder R, Chowdhury D, et al. Use of blood donor screening to monitor prevalence of HIV and hepatitis B and C viruses, South Africa. Emerg Infect Dis 2017;23:1560-3.

123. Ben Jemia R, Gouider E. Seroprevalency of transfusion-transmitted infections in first-time volunteer and replacement donors in Tunisia. Transfus Clin Biol 2014;21:303-8.

124. Allain JP. Volunteer safer than replacement donor blood: a myth revealed by evidence. ISBT Sci Ser 2010;5:169-75.