Characterization of triple χ^3 sequence spaces via Orlicz functions

N. Subramanian and A. Esi

Abstract. In this paper we study of the characterization and general properties of triple gai sequence via Orlicz space of χ^3_M of χ^3 establishing some inclusion relations.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w^3 for the set of all complex sequences $(x_{m,n,k})$, where $m, n, k \in \mathbb{N}$, the set of positive integers. Then, w^3 is a linear space under the coordinate wise addition and scalar multiplication.

We can represent triple sequences by matrix. In case of double sequences we write in the form of a square. In the case of a triple sequence it will be in the form of a box in three dimensional case.

Some initial work on double series is found in Apostol [1] and double sequence spaces is found in Hardy [5], Subramanian et al. [10-12], and many others. Later on investigated by some initial work on triple sequence spaces is found in Sahiner et al. [9], Esi et al. [2-4], Subramanian et al. [13-19] and many others.

Let $(x_{m,n,k})$ be a triple sequence of real or complex numbers. Then the series $\sum_{m,n,k=1}^\infty x_{m,n,k}$ is called a triple series. The triple series $\sum_{m,n,k=1}^\infty x_{m,n,k}$ is said to be convergent if and only if the triple sequence $(S_{m,n,k})$ is convergent, where

$$S_{m,n,k} = \sum_{i,j,q=1}^{m,n,k} x_{ijq} (m, n, k = 1, 2, 3, \ldots).$$

A sequence $x = (x_{m,n,k})$ is said to be triple analytic if

$$\sup_{m,n,k} |x_{m,n,k}|^{\frac{1}{m+n+k}} < \infty.$$
The vector space of all triple analytic sequences are usually denoted by Λ^3. A sequence $x = (x_{m,n,k})$ is called triple entire sequence if
$$|x_{m,n,k}|^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty.$$The vector space of all triple entire sequences are usually denoted by Γ^3. The space Λ^3 and Γ^2 is a metric space with the metric
$$d(x, y) = \sup_{m,n,k} \{|x_{m,n,k} - y_{m,n,k}|^{\frac{1}{m+n+k}} : m, n, k : 1, 2, 3, \ldots \}.$$for all $x = \{x_{m,n,k}\}$ and $y = \{y_{m,n,k}\}$ in Γ^3.

Let $\phi = \{\text{finite sequences}\}$. Consider a double sequence $x = (x_{m,n,k})$. The (m,n,k)th section $x^{[m,n,k]}$ of the sequence is defined by
$$x^{[m,n,k]} = \sum_{i,j,q} x_{ijq} \delta_{ijq}$$for all $m, n, k \in \mathbb{N}$, where δ_{ijq} denotes the triple sequence whose only non zero term is 1 in the (i,j,k)th position for each $i, j, k \in \mathbb{N}$.

Consider a triple sequence $x = (x_{m,n,k})$. The $(m,n,k)^{th}$ section $x^{[m,n,k]}$ of the sequence is defined by
$$x^{[m,n,k]} = \sum_{i,j,q} x_{ijq} \delta_{ijq}$$for all $m, n, k \in \mathbb{N}$; where δ_{ijq} denotes the triple sequence whose only non zero term is 1 in the $(i,j,k)^{th}$ place for each $i, j, k \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if (δ_{mnk}) is a Schauder basis for X, or equivalently $x^{[m,n,k]} \to x$.

An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings are continuous.

A sequence $x = (x_{m,n,k})$ is said to be triple gai sequence if
$$((m + n + k)! |x_{m,n,k}|)^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty.$$The triple gai sequences will be denoted by χ^3.

$$\delta_{mnk} = \begin{bmatrix} 0 & 0 & \ldots & 0 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \ldots & 1 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \end{bmatrix}$$with 1 in the $(m,n,k)^{th}$ position and zero other wise.

An FK-space(or a metric space) X is said to have AK property if (δ_{mnk}) is a Schauder basis for X, or equivalently $x^{[m,n,k]} \to x$.

An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings are continuous.

$$\delta_{mnk} = \begin{bmatrix} 0 & 0 & \ldots & 0 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \ldots & 1 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \end{bmatrix}$$with 1 in the $(m,n,k)^{th}$ position and zero other wise.

A sequence $x = (x_{m,n,k})$ is said to be triple gai sequence if
$$((m + n + k)! |x_{m,n,k}|)^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty.$$The triple gai sequences will be denoted by χ^3.

$$\delta_{mnk} = \begin{bmatrix} 0 & 0 & \ldots & 0 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \ldots & 1 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \end{bmatrix}$$with 1 in the $(m,n,k)^{th}$ position and zero other wise.

A sequence $x = (x_{m,n,k})$ is said to be triple gai sequence if
$$((m + n + k)! |x_{m,n,k}|)^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty.$$The triple gai sequences will be denoted by χ^3.

$$\delta_{mnk} = \begin{bmatrix} 0 & 0 & \ldots & 0 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \ldots & 1 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \end{bmatrix}$$with 1 in the $(m,n,k)^{th}$ position and zero other wise.

A sequence $x = (x_{m,n,k})$ is said to be triple gai sequence if
$$((m + n + k)! |x_{m,n,k}|)^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty.$$The triple gai sequences will be denoted by χ^3.

$$\delta_{mnk} = \begin{bmatrix} 0 & 0 & \ldots & 0 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \ldots & 1 & 0 & \ldots \\ 0 & 0 & \ldots & 0 & 0 & \ldots \end{bmatrix}$$with 1 in the $(m,n,k)^{th}$ position and zero other wise.
Consider a triple sequence \(x = (x_{mnk}) \). The \((m, n, k)^{th}\) section \(x^{m,n,k} \) of the sequence is defined by
\[
x^{m,n,k} = \sum_{i,j,q=0}^{m,n} x_{ijq} \mathcal{S}_{ijq}
\]
for all \(m, n, k \in \mathbb{N} \); where \(\mathcal{S}_{ijq} \) denotes the triple sequence whose only non-zero term is \(a_{ijq} \) in the \((i, j, k)^{th}\) place for each \(i, j, k \in \mathbb{N} \).

An FK-space (or a metric space) \(X \) is said to have AK property if \((\mathcal{S}_{m,n,k}) \) is a Schauder basis for \(X \), or equivalently \(x^{m,n,k} \to x \).

An FDK-space is a triple sequence space endowed with a complete, metrizable, locally convex topology under which the coordinate mappings are continuous.

If \(X \) is a sequence space, we give the following definitions:

(i) \(X' \) is continuous dual of \(X \);
(ii) \(X^\alpha = \{ a = (a_{m,n,k}) : \sum_{m,n,k=1}^{\infty} |a_{m,n,k} x_{m,n,k}| < \infty, \text{ for each } x \in X \} \);
(iii) \(X^\beta = \{ a = (a_{m,n,k}) : \sum_{m,n,k=1}^{\infty} a_{m,n,k} x_{m,n,k} \text{ is convergent, for each } x \in X \} \);
(iv) \(X^\gamma = \{ a = (a_{m,n,k}) : \sup_{m,n \geq 1} \left| \sum_{m,n,k=1}^{M,N,K} a_{m,n,k} x_{m,n,k} \right| < \infty, \text{ for each } x \in X \} \);
(v) Let \(X \) be an FK-space \(\supset \phi \); then \(X^f = \{ f(\mathcal{S}_{m,n,k}) : f \in X' \} \);
(vi) \(X^\delta = \{ a = (a_{m,n,k}) : \sup_{m,n,k} |a_{m,n,k} x_{m,n,k}|^{1/(m+n+k)} < \infty, \text{ for each } x \in X \} \).

\(X^\alpha, X^\beta, X^\gamma \) are called \(\alpha \)- (or Köthe-Toeplitz) dual of \(X \), \(\beta \)- (or generalized-Köthe-Toeplitz) dual of \(X \), \(\gamma \)-dual of \(X \), \(\delta \)-dual of \(X \) respectively. \(X^\alpha \) is defined by Gupta and Kamptan [10]. It is clear that \(X^\alpha \subset X^\beta \) and \(X^\alpha \subset X^\gamma \), but \(X^\alpha \subset X^\gamma \) does not hold.

2. Definitions and Preliminaries

A sequence \(x = (x_{m,n,k}) \) is said to be triple analytic if \(\sup_{m,n,k} |x_{m,n,k}|^{\frac{1}{m+n+k}} < \infty \). The vector space of all triple analytic sequences is usually denoted by \(\Lambda^3 \).

A sequence \(x = (x_{m,n,k}) \) is called triple entire sequence if \(|x_{m,n,k}|^{\frac{1}{m+n+k}} \to 0 \) as \(m, n, k \to \infty \). The vector space of triple entire sequences is usually denoted by \(\Gamma^3 \). A sequence \(x = (x_{m,n,k}) \) is called triple gai sequence if \((m+n+k)! |x_{m,n,k}|^{\frac{1}{m+n+k}} \to 0 \) as \(m, n, k \to \infty \). The vector space of triple gai sequences is usually denoted by \(\chi^3 \). The space \(\chi^3 \) is a metric space with the metric
\[
d(x, y) = \sup_{m,n,k} \left\{ \left((m+n+k)! |x_{m,n,k} - y_{m,n,k}| \right)^{\frac{1}{m+n+k}} \right\},
\]
for all \(x = \{x_{m,n,k} \} \) and \(y = \{y_{m,n,k} \} \) in \(\chi^3 \).

Let \(w^3 \) denote the set of all complex double sequences \(x = (x_{m,n,k})_{m,n,k=1}^\infty \) and \(M : [0, \infty) \to [0, \infty) \) be an Orlicz function. Given a triple sequence,
Characterization of triple χ^3 sequence spaces via Orlicz functions

$x \in w^3$. Define the sets

$$\chi_M^3 = \{ x \in w^3 : \left(M \left(\frac{(m+n+k)! |x_{mnk}|}{\rho^{\frac{1}{m+n+k}}} \right) \right) \to 0, \quad \text{as } m, n, k \to \infty \text{ for some } \rho > 0 \}$$

and

$$\Lambda_M^3 = \{ x \in w^3 : \sup_{m,n,k \geq 1} \left(M \left(\frac{|x_{mnk}|}{\rho^{\frac{1}{m+n+k}}} \right) \right) < \infty \text{ for some } \rho > 0 \}.$$

The space Λ_M^3 is a metric space with the metric

$$d(x,y) = \inf \left\{ \rho > 0 : \sup_{m,n,k \geq 1} \left(M \left(\frac{|x_{mnk} - y_{mnk}|}{\rho^{\frac{1}{m+n+k}}} \right) \right) \leq 1 \right\}$$

The space χ_M^3 is a metric space with the metric

$$\tilde{d}(x,y) = \inf \left\{ \rho > 0 : \sup_{m,n,k \geq 1} \left(M \left(\frac{(m+n+k)!(x_{mnk} - y_{mnk})}{\rho^{\frac{1}{m+n+k}}} \right) \right) \leq 1 \right\}.$$

This paper is a study of the characterization and general properties of gai sequences via triple Orlicz space of χ_M^3 of χ^3 establishing some inclusion relations.

3. Main Results

Proposition 3.1. If M is a Orlicz function, then χ_M^3 is a linear set over the set of complex numbers \mathbb{C}.

Proof. It is trivial. Therefore, the proof is omitted. \qed

Proposition 3.2. $(\chi_M^3)^\delta \subsetneq \Lambda_M^3$

Proof. Let $y \in \delta$– dual of χ_M^3. Then $\left(M \left(\frac{|x_{mnk}y_{mnk}|}{\rho^{\frac{1}{m+n+k}}} \right) \right) \leq M^{m+n+k}$ for some constant $M > 0$ and for each $x \in \chi_M^3$. Therefore, $\left(M \left(\frac{|y_{mnk}|}{\rho^{\frac{1}{m+n+k}}} \right) \right) \leq M^{m+n+k}$ for each m,n,k by taking $x = (\exists_{mnk})$. This implies that $y \in \Lambda_M^3$. Thus,

$$(3) \quad (\chi_M^3)^\delta \subset \Lambda_M^3.$$

We now choose $M = \text{id}$ and define the triple sequences (y_{mnk}) and (x_{mnk}) by $(y_{mnk}) = 1$ for all m,n and k, and by

$$(m+2)!x_{m1} = 2^{(m+2)^2} \quad \text{and} \quad (m+n+k)!x_{mnk} = 0(n, k \geq 2) \text{ for all } m = 1, 2, \ldots$$

Obviously, $y \in \Lambda_M^3$ and since $(m+n+k)!x_{mnk} = 0$ for all $m,n,k \geq 0$, $(m+n+k)! (x_{mnk})$ converges to zero. Hence, $x \in \chi_M^3$. But

$$((m+2)!|a_{m1}x_{m11}|)\frac{1}{\rho^{\frac{1}{m+n+k}}} = 2^{m+2} \to \infty \text{ as } m \to \infty,$$
hence
\begin{equation}
(4) \quad x \notin (\chi^3_M)^\delta.
\end{equation}

From (3) and (4), we are granted \((\chi^3_M)^\delta \subseteq \Lambda^3_M\).
This completes the proof. \hfill \square

Proposition 3.3. The dual space of \(\chi^3_M\) is \(\Lambda^3_M\). In other words \((\chi^3_M)^* = \Lambda^3_M\).

Proof. We recall that
\[
\mathfrak{I}_{mnk} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \cdots & \frac{1}{(m+n+k)!} & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots
\end{pmatrix}
\]
with \(\frac{1}{(m+n+k)!}\) in the \((m,n,k)th\) position and zero’s else where, with
\[
x = \mathfrak{I}_{mnk},
\]
\[
\left\{ M \left(\frac{(m+n+k)! |x_{mnk}|}{\rho} \right) \right\} =
\begin{pmatrix}
M(0^{1/3}/\rho) & M(0^{1/1+n+k}/\rho) \\
\vdots & \ddots \\
M(0^{1/m+4}/\rho) & M(\left(\frac{1}{(m+n+k)!}\right)^{1/m+n+k}/\rho) & M(0^{1/m+n+k+2}/\rho) \\
M(0^{1/m+4}/\rho) & \cdots & M(0^{1/m+n+k+4}/\rho)
\end{pmatrix}
\]
\[
\begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & M(\left(\frac{1}{(m+n+k)!}\right)^{1/m+n+k}/\rho) & 0 \\
0 & \cdots & 0
\end{pmatrix}
\]
which is a triple gai sequence. Hence, \(\mathfrak{I}_{mnk} \in \chi^3_M\), \(f(x) = \sum_{m,n,k=1}^{\infty} x_{mnk}y_{mnk}\)
with \(x \in \chi^3_M\) and \(f \in (\chi^3_M)^*\), where \((\chi^3_M)^*\) is the dual space of \(\chi^3_M\).

Take \(x = (x_{mnk}) = \mathfrak{I}_{mnk} \in \chi^3_M\). Then,
\begin{equation}
(5) \quad |y_{mnk}| \leq ||f|| d(\mathfrak{I}_{mnk},0) < \infty \quad \forall m,n,k.
\end{equation}

Thus, \((y_{mnk})\) is a bounded sequence and hence an triple analytic sequence. In other words, \(y \in \Lambda^3_M\). Therefore \((\chi^3_M)^* = \Lambda^3_M\). This completes the proof. \hfill \square
Proposition 3.4. \((\Lambda_M^3)\beta \subsetneq \chi_M^3\)

Proof. Step 1: Let \((x_{mnk}) \in (\Lambda_M^3)\beta\),

\[
\sum_{m,n,k=1}^{\infty} |x_{mnk}y_{mnk}| < \infty \forall (y_{mnk}) \in \Lambda_M^3.
\]

Let us assume that \((x_{mnk}) \notin \chi_M^3\). Then, there exists a strictly increasing sequence of positive integers \((m_p + n_p + k_p)\) such that

\[
\left(M \left(\frac{(m_p + n_p + k_p)! |x_{(m_p+n_p+k_p)}|}{\rho} \right) \right) > \frac{1}{2(m_p+n_p+k_p)}, \quad (p = 1, 2, 3, \ldots).
\]

Let

\[
\begin{align*}
(m_p + n_p + k_p)! y_{(m_p+n_p+k_p)} &= 2^{(m_p+n_p+k_p)} & \text{for } (p = 1, 2, 3, \ldots), \\
y_{mnk} &= 0 & \text{otherwise}.
\end{align*}
\]

Then \((y_{mnk}) \in \Lambda_M^3\). However,

\[
\sum_{m,n,k=1}^{\infty} \left(M \left(\frac{|x_{mnk}y_{mnk}|}{\rho} \right) \right) = \\
= \sum_{p=1}^{\infty} \left(M \left(\frac{(m_p + n_p + k_p)! |x_{(m_p+n_p+k_p)}y_{(m_p+n_p+k_p)}|}{\rho} \right) \right) > \\
> 1 + 1 \ldots
\]

We know that the infinite series \(1 + 1 + 1 + \ldots\) diverges. Now we choose \(M = id\), where id is the identity and hence \(\sum_{m,n,k=1}^{\infty} (M (|x_{mnk}y_{mnk}|/\rho))\) diverges. This contradicts (6). Hence \((x_{mnk}) \in \chi_M^3\). Therefore,

\[
(\Lambda_M^3)\beta \subset \chi_M^3.
\]

If we now choose \(M = id\), where id is the identity and \(y_{1nk} = x_{1nk} = 1\) and \(y_{mnk} = x_{mnk} = 0\) \((m > 1)\) for all \(n, k\), then obviously \(x \in \chi_M^3\) and \(y \in \Lambda_M^3\), but \(\sum_{m,n,k=1}^{\infty} x_{mnk}y_{mnk} = \infty\). Hence,

\[
y \notin (\Lambda_M^3)\beta.
\]

From (8) and (9), we are granted \((\Lambda_M^3)\beta \subsetneq \chi_M^3\).

This completes the proof. \(\square\)
Definition 3.5. Let \(p = (p_{mnk}) \) be a triple sequence of positive real numbers. Then

\[
\chi_M^3(p) = \left\{ x = (x_{mnk}) : \left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right) \right)^{p_{mnk}} \to 0, \quad (m, n, k \to \infty) \right\}
\]

(10)

for some \(\rho > 0 \). Suppose that \(p_{mnk} \) is a constant for all \(m, n, k \) then \(\chi_M^3(p) = \chi_M^3 \).

Proposition 3.6. Let \(0 \leq p_{mnk} \leq q_{mnk} \) for all \(m, n, k \in \mathbb{N} \) and let \(\left\{ \frac{q_{mnk}}{p_{mnk}} \right\} \) be bounded. Then \(\chi_M^3(q) \subset \chi_M^3(p) \).

Proof. Let

\[
x \in \chi_M^3(q),
\]

then

\[
\left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right) \right)^{q_{mnk}} \to 0, \text{ as } m, n, k \to \infty.
\]

(11)

Let \(t_{mnk} = \left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right)^{q_{mnk}} \right), \) and let \(\gamma_{mnk} = \frac{p_{mnk}}{q_{mnk}} \). Since \(p_{mnk} \leq q_{mnk} \), we have \(0 \leq \gamma_{mnk} \leq 1 \). Let \(0 < \gamma < \gamma_{mnk} \), then

\[
u_{mnk} = \begin{cases} \gamma_{mnk} & \text{if } (t_{mnk} \geq 1) \\ 0 & \text{if } (t_{mnk} < 1) \end{cases}
\]

(12)

\[
u_{mnk} = \begin{cases} t_{mnk} & \text{if } (t_{mnk} \geq 1) \\ 0 & \text{if } (t_{mnk} < 1) \end{cases}
\]

(13)

\[
u_{mnk} = \begin{cases} u_{mnk} & \text{if } (t_{mnk} \geq 1) \\ v_{mnk} & \text{if } (t_{mnk} < 1) \end{cases}
\]

Now, it follows that

\[
u_{mnk}^{\gamma_{mnk}} \leq u_{mnk} \leq t_{mnk}, \quad v_{mnk}^{\gamma_{mnk}} \leq u_{mnk}^{\gamma_{mnk}}.
\]

(14)

Since \(t_{mnk}^{\gamma_{mnk}} = u_{mnk}^{\gamma_{mnk}} + v_{mnk}^{\gamma_{mnk}} \), we have \(t_{mnk}^{\gamma_{mnk}} \leq t_{mnk} + v_{mnk}^{\gamma_{mnk}} \). Thus,

\[
\left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right)^{q_{mnk}} \right) \gamma_{mnk}^{\gamma_{mnk}} \leq \left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right)^{q_{mnk}} \right) \gamma_{mnk},
\]

(15)

\[
\left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right)^{q_{mnk}} \right)^{p_{mnk}/q_{mnk}} \leq \left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right)^{q_{mnk}} \right)^{q_{mnk}},
\]

which yields

\[
\left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{1/m+n+k}}{\rho} \right)^{p_{mnk}} \right)^{q_{mnk}}.
\]
\[\leq \left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{q_{mnk}}. \]

However,
\[\left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{q_{mnk}} \to 0 \quad \text{(by (12))}. \]

Thus,
\[\left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{p_{mnk}} \to 0 \text{ as } m, n, k \to \infty. \]

Hence,
\[(16) \quad x \in \chi^3_M(p). \]

Hence (11) and (16), we are granted
\[(17) \quad \chi^3_M(q) \subset \chi^3_M(p). \]

This completes the proof. \(\square \)

Proposition 3.7. (a) Let \(0 < \inf p_{mnk} \leq p_{mnk} \leq 1 \), then \(\chi^3_M(p) \subset \chi^3_M \).

(b) If \(1 \leq p_{mnk} \leq \sup p_{mnk} < \infty \), then \(\chi^3_M \subset \chi^3(p) \).

Proof. The above statements are special cases of Proposition 3.6. Therefore, it can be proved by similar arguments. \(\square \)

Proposition 3.8. If \(0 < p_{mnk} \leq q_{mnk} < \infty \) for each \(m, n, k \) then \(\chi^3_M(p) \subset \chi^3(q) \).

Proof. Let \(x \in \chi^3_M(p) \), then
\[(18) \quad \left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} \right) \right)^{p_{mnk}} \to 0, \text{ as } m, n, k \to \infty. \]

This implies that \(\left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right) \leq 1 \) for sufficiently large \(m, n, k \). Since \(M \) is non-decreasing, we get
\[(19) \quad \left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{q_{mnk}} \leq \left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{p_{mnk}}, \]

then \(\left(M \left(((m + n + k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{q_{mnk}} \to 0 \text{ as } m, n, k \to \infty \) (by using (18)).

Let \(x \in \chi^3_M(q) \). Hence, \(\chi^3_M(p) \subset \chi^3(q) \). This completes the proof. \(\square \)

Competing Interests: The authors declare that there is no conflict of interests regarding the publication of this research paper.

Acknowledgement: The authors thank the referee’s for his careful reading of the manuscript and comments that improved the presentation of the paper.
References

[1] T. Apostol, Mathematical Analysis, Addison-Wesley, London, 1978.

[2] A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1(2), (2014), 16-25.

[3] A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2(1), (2014), 6-10.

[4] A. Esi and E. Savaş, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. and Inf. Sci., 9 (5), (2015), 2529-2534.

[5] G.H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.

[6] P.K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.

[7] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1986), 161-166.

[8] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors in bounded, Canad. J. Math., 25(1973), 973-978.

[9] A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., Vol. 8, No. 2 (2007), 49-55.

[10] N. Subramanian and U.K. Misra, Characterization of gai sequences via double Orlicz space, Southeast Asian Bulletin of Mathematics, (revised).

[11] N. Subramanian, B.C. Tripathy and C. Murugesan, The double sequence space of Γ^2, Fasciculi Math., 40 (2008), 91-103.

[12] N. Subramanian, B.C. Tripathy and C. Murugesan, The Cesáro of double entire sequences, International Mathematical Forum, Vol. 4, No. 2 (2009), 49-59.

[13] N. Subramanian and A. Esi, The generalized triple difference of χ^3 sequence spaces, Global Journal of Mathematical Analysis, 3 (2) (2015), 54-60.

[14] N. Subramanian and A. Esi, The study on χ^3 sequence spaces, Songklanakarin Journal of Science and Technology, under review.

[15] N. Subramanian and A. Esi, Some New Semi-Normed Triple Sequence Spaces Defined by a Sequence Of Moduli, Journal of Analysis & Number Theory, 3 (2) (2015), 79-88.

[16] T.V.G. Shri Prakash, M. Chandramouleswaran and N. Subramanian, The Triple Almost Lacunary Γ^3 sequence spaces defined by a modulus function, International Journal of Applied Engineering Research, Vol. 10, No. 80 (2015), 94-99.

[17] T.V.G. Shri Prakash, M. Chandramouleswaran and N. Subramanian, The triple entire sequence defined by Musielak Orlicz functions over $p-$ metric space, Asian Journal of Mathematics and Computer Research, International Press, 5 (4) (2015), 196-203.
[18] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The Random of Lacunary statistical on Γ^3 over metric spaces defined by Musielak Orlicz functions, *Modern Applied Science*, in press.

[19] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The Triple Γ^3 of tensor products in Orlicz sequence spaces, *Mathematical Sciences International Research Journal*, Vol. 4, No. 2 (2015), 162-166.

N. Subramanian
Department of Mathematics
SASTRA University
Thanjavur-613 401
India
E-mail address: nsmaths@yahoo.com

A. Esi
Adiyaman University
Adiyaman
Turkey
E-mail address: aesi23@hotmail.com