Explicit Polynomials Having the Higman-Sims Group as Galois Group over $\mathbb{Q}(t)$

Dominik Barth and Andreas Wenz

Abstract. We compute explicit polynomials having the sporadic Higman-Sims group HS and its automorphism group Aut(HS) as Galois groups over the rational function field $\mathbb{Q}(t)$.

1. Introduction

From a theoretical perspective it is known that Aut(HS), the automorphism group of the sporadic Higman-Sims group HS, occurs as a Galois group over $\mathbb{Q}(t)$ since it has a rigid rational generating triple, see [2] and [5].

In order to find explicit polynomials with Galois group Aut(HS) over $\mathbb{Q}(t)$ one can compute a three-point branched covering, also called Belyi map, over $\mathbb{P}^1 \mathbb{C}$ whose ramification corresponds to these rigid rational triples.

For a thorough survey on computing Belyi maps refer to [6]. Recently, Klug et al. calculated a Belyi map of degree 50 with monodromy group isomorphic to $\text{PSU}_3(\mathbb{F}_5)$ using modular forms, see [3].

We developed another efficient method of computing certain Belyi maps of higher degree which we will explain in detail in an upcoming paper. The purpose of the current note is to present a Belyi map of degree 100 with monodromy group isomorphic to Aut(HS). As a consequence, we obtain polynomials having HS and Aut(HS) as Galois groups over $\mathbb{Q}(t)$.

2. Ramification Data and Computed Results

Our goal is to compute a Belyi map $f : \mathbb{P}^1 \mathbb{C} \to \mathbb{P}^1 \mathbb{C}$ of ramification type $(x, y, z) \in S^3_{100}$ given by

$$x = (1, 64, 8, 54, 37)(2, 20, 81, 42, 49)(3, 98, 32, 73, 89)(4, 96, 86, 15, 79)(5, 22, 28, 78, 48)(6, 67, 97, 40, 14)(7, 58, 82, 59, 18)(9, 16, 87, 85, 60)(10, 70, 41, 56, 55)(11, 77, 36, 25, 68)(12, 17, 19, 21, 80)(13, 35, 90, 33, 91)(23, 50, 66, 84, 27)(24, 72, 95, 52, 76)(26, 99, 100, 57, 93)(29, 71, 38, 69, 65)(30, 74, 94, 53, 51)(31, 45, 47, 75, 34)(43, 63, 44, 46, 62),$$

2010 Mathematics Subject Classification. 12F12.

Key words and phrases. Inverse Galois Problem, Belyi Maps, Higman-Sims Group.
\begin{align*}
y &= (1, 20)(2, 64)(3, 76)(4, 45)(5, 83)(6, 26)(7, 13)(8, 74)(9, 41)(10, 63)(11, 25) \\
&\quad (12, 66)(14, 21)(15, 52)(16, 62)(17, 33)(18, 35)(19, 42)(22, 60)(23, 58) \\
&\quad (24, 73)(28, 98)(29, 82)(30, 53)(31, 61)(32, 59)(34, 67)(36, 95)(37, 85) \\
&\quad (38, 47)(39, 51)(40, 80)(43, 92)(44, 78)(46, 99)(48, 55)(49, 94)(50, 91) \\
&\quad (54, 90)(65, 88)(69, 72)(71, 75)(77, 79)(81, 87)(84, 97)(86, 100)(93, 96), \\
z &= (1, 2)(13, 18)(21, 40)(47, 71)(25, 68)(15, 95, 77)(20, 37, 87)(39, 53, 51) \\
&\quad (49, 74, 64)(55, 78, 63)(57, 100, 96)(66, 80, 97)(73, 76, 89)(7, 91, 23) \\
&\quad (12, 50, 33)(22, 85, 54, 35, 59, 98)(24, 32, 82, 65, 88, 69) \\
&\quad (3, 52, 86, 99, 44, 28)(4, 31, 61, 34, 6, 93)(5, 83, 48, 56, 41, 60) \\
&\quad (8, 30, 94, 42, 17, 90)(9, 70, 10, 43, 92, 62)(11, 36, 72, 38, 45, 79) \\
&\quad (14, 19, 81, 16, 46, 26)(27, 84, 67, 75, 29, 58).
\end{align*}

This permutation triple is of the following type:

\[
\begin{array}{c|cc|c}
& x & y & z \\
\hline
\text{cycle structure} & 5^{19} \cdot 1^5 & 2^{47} \cdot 1^6 & 6^{10} \cdot 3^{10} \cdot 2^5
\end{array}
\]

With the help of Magma [1] we can easily verify:

- \(x \cdot y \cdot z = 1 \)
- \(\text{Aut}(\text{HS}) = \langle x, y \rangle \)
- \((x, y, z)\) is a rigid and rational triple of genus 0

Due to the rational rigidity criterion [7, p. 48] and a rationality consideration there exists a Belyi map \(f \in \mathbb{Q}(X) \) of degree 100 with monodromy group isomorphic to \(\text{Aut}(\text{HS}) \). Note that \(f \) is unique, up to inner and outer Möbius transformations.

Applying our newly developed method we were able compute this Belyi map explicitly. The resulting function \(f : \mathbb{P}^1 \mathbb{C} \to \mathbb{P}^1 \mathbb{C} \) is of the form

\[
f(X) = \frac{p(X)}{q(X)} = 1 + \frac{r(X)}{q(X)}
\]

where

\[
p(X) = 3^3 \cdot (X^4 - 8X^3 - 6X^2 + 8X + 1)^5.
\]

\[
(3X^5 - 5X^4 + 50X^3 + 70X^2 + 25X + 3)^5.
\]

\[
(3X^5 - 5X^4 - 5X^3 + 35X^2 + 40X + 4)^5.
\]

\[
(9X^{10} - 30X^9 + 55X^8 - 200X^7 + 210X^6 + 924X^5 - 890X^4 - 360X^3 + 1925X^2 - 1070X + 291)^5,
\]

\[
q(X) = (3X^5 - 35X^4 + 90X^3 - 50X^2 + 15X + 9)^2.
\]

\[
(9X^{10} - 120X^9 + 10X^8 - 1960X^7 - 1090X^6 + 3304X^5 - 760X^4 - 920X^3 + 145X^2 + 80X + 6)^3.
\]

\[
(3X^{10} - 10X^9 - 65X^8 + 160X^7 - 90X^6 - 932X^5 - 330X^4 + 880X^3 + 1255X^2 + 830X + 27)^6.
\]
and
\[r(X) = p(X) - q(X) = 2^2 \cdot 3^{14} \cdot 5^3 \cdot (X - 1) \cdot r_5(X) \cdot r_{10}(X) \cdot r_{15}(X) \cdot r_{20}(X) \]
with irreducible monic polynomials \(r_j \) of degree \(j \).

From the factorizations of \(p, q, r \) and the Riemann-Hurwitz formula it is clear that \(f \) is indeed a three-point branched cover of \(\mathbb{P}^1 \mathbb{C} \), ramified over 0, 1 and \(\infty \).

3. VERIFICATION OF MONODROMY

We will present two proofs to verify that the monodromy group of our Belyi map \(f = p/q \) is isomorphic to \(\text{Aut}(\text{HS}) \).

First, one can compute the corresponding dessin d’enfant, i.e. the bipartite graph drawn on the Riemann sphere \(\mathbb{P}^1 \mathbb{C} \) obtained by taking the elements of \(f^{-1}(0) \) as black vertices, those of \(f^{-1}(1) \) as white vertices and the connected components of \(f^{-1}((0,1)) \) as edges, labelled from 1 to 100. A part of this bipartite graph is shown in Figure 1. Note that the poles of \(f \) are marked by ‘\(\times \)’. Listing the cyclic arrangement of adjacent edges around each black and white vertex, respectively, we obtain the cycles of \(x \) and \(y \), up to simultaneous conjugation. Thus the monodromy group of \(f \) is isomorphic to \(\text{Aut}(\text{HS}) \).

Figure 1. Dessin d’enfant corresponding to \(f \)
Another way to verify the monodromy can be done algebraically: The monodromy group of f can be viewed as the Galois group $\text{Gal}(p(X) - tq(X) \mid \mathbb{Q}(t))$ or equivalently $\text{Gal}(p(X) - f(t)q(X) \mid \mathbb{Q}(f(t)))$.

First note that $\text{Gal}(p(X) - f(t)q(X) \mid \mathbb{Q}(t))$ equals the point stabilizer of t in the permutation group $\text{Gal}(p(X) - f(t)q(X) \mid \mathbb{Q}(f(t)))$ acting transitively on the 100 roots of $p(X) - f(t)q(X)$.

As $p(X) - f(t)q(X)$ factorizes over $\mathbb{Q}(t)[X]$ into three irreducible polynomials of degrees 1, 22 and 77, respectively, we see that $\text{Gal}(p(X) - f(t)q(X) \mid \mathbb{Q}(f(t)))$ and thus also $G := \text{Gal}(p(X) - tq(X) \mid \mathbb{Q}(t))$ are rank 3 permutation groups of degree 100 with subdegrees 1, 22 and 77.

We now show that G is actually a primitive permutation group: Suppose $G \leq \text{Sym}(\Omega)$, $|\Omega| = 100$, has some non-trivial block Δ, i.e. $1 < |\Delta| < 100$, such that for each $g \in G$ either $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$. Now fix some $\omega \in \Delta$. Then the stabilizer G_ω must leave Δ invariant, and — as G is rank 3 group — G_ω has exactly the non-empty orbits $\{\omega\}$, $\Delta \setminus \{\omega\}$ and $\Omega \setminus \Delta$. Knowing the sizes of the suborbits we find that Δ has either length $1 + 22 = 23$ or length $1 + 77 = 78$. This is a contradiction as the size of a block must always divide the permutation degree, in our case 100.

Now, combining the classification of all finite primitive rank 3 permutation groups (see e.g. [4]) with the subdegrees of G, only two possibilities remain: $G = \text{Aut}(\text{HS})$ or $G = \text{HS}$.

Since HS, in contrary to $\text{Aut}(\text{HS})$, is an even permutation group, it suffices to check whether the discriminant $\delta = u^2(t - 1)$ for some $u \in \mathbb{Q}(t)$ and therefore $\text{Gal}(p(X) - (t^2 + 1)q(X) \mid \mathbb{Q}(t)) = \text{HS}$.

Remark. By applying the previous arguments to $p(X) - (2t^2 + 1)q(X)$ we find $\text{Gal}(p(X) - (2t^2 + 1)q(X) \mid \mathbb{Q}(t))$ is either HS or $\text{Aut}(\text{HS})$. The discriminant, however, is a square now, thus $\text{Gal}(p(X) - (2t^2 + 1)q(X) \mid \mathbb{Q}(t)) = \text{HS}$.

4. Another Example

Essentially, $\text{Aut}(\text{HS})$ contains exactly two rigid rational generating triples of genus 0. The first one has been discussed in the previous section. The second triple $(x, y, z) \in S_{100}$ where

$$x = (1, 23, 53, 86)(2, 36, 29, 43)(3, 15, 46, 6)(4, 80, 71, 81)(5, 75, 16, 47)(7, 32, 60, 8)(9, 76, 100, 51)(10, 50, 49, 34)(11, 28, 74, 84)(12, 72, 37, 52)(13, 21, 96, 88)(14, 41, 40, 87)(17, 42, 45, 79)(18, 63, 19, 20)(22, 99, 39, 89)(24, 59, 77, 38)(25, 68, 26, 35)(27, 69, 73, 48)(30, 92, 33, 82)(31, 56, 93, 58)(44, 98, 67, 64)(54, 95, 85, 62)(55, 65, 94, 61)(57, 78, 83, 97)(66, 90, 70, 91),$$

$$y = (1, 75, 5, 71, 15)(2, 43, 52, 89, 39)(3, 18, 100, 33, 35, 26, 58, 32, 53, 23)(4, 81, 47, 16, 86, 7, 42, 38, 77, 59)(6, 41, 14, 87, 82, 76, 9, 19, 77, 163)(8, 60, 35, 16, 63, 36, 99, 70, 45)(10, 65, 55, 88, 12, 29, 94, 34, 49, 50)(11, 44, 64, 25, 92)(17, 72, 96, 69, 28, 30, 40, 46, 80, 24)(20, 83, 78, 57, 51)(21, 31, 68, 67, 98, 84, 74, 27, 48, 73)(22, 37, 79, 90, 66, 95, 54, 62, 85, 91),$$

and $z := (xy)^{-1}$.
of ramification type

cycle structure	x	y	z
	4^{25}	$10^8.5^4$	$2^{25}.1^{30}$

leads to the Belyi map

$$f(X) = \frac{p(X)}{q(X)} = 1 + \frac{r(X)}{q(X)}$$

where

$$p(X) = (7X^5 - 30X^4 + 30X^3 + 40X^2 - 95X + 50)^4 \cdot (2X^{10} - 20X^9 + 90X^8 - 240X^7 + 435X^6 - 550X^5$$
$$+ 425X^4 - 100X^3 - 175X^2 + 250X - 125)^4,$$

$$q(X) = 2^8 \cdot (X^4 - 5)^5 \cdot (X^8 - 20X^6 + 60X^5 - 70X^4 + 100X^2 - 100X + 25)^{10}.$$

Of course, it remains to verify that this rational function is indeed a three-point branched cover having the desired monodromy group. However, this can be done in the exact same way we already demonstrated in the previous section.

Acknowledgements

We would like to thank Peter Müller for introducing us to the subject of this work as well as for sharing some tricks to verify the monodromy algebraically, and Joachim König for providing us with the rigid rational permutation triples of Aut(HS) we realized as a Galois group over $\mathbb{Q}(t)$ in this paper.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).

[2] David C. Hunt. Rational rigidity and the sporadic groups. *J. Algebra*, 99:577–592, 1986.

[3] Michael Klug, Michael Musty, Sam Schiavone, and John Voight. Numerical calculation of three-point branched covers of the projective line. *LMS Journal of Computation and Mathematics*, 17(1):379–430, 001 2014.

[4] Martin W. Liebeck and Jan Saxl. The finite primitive permutation groups of rank three. *Bull. Lond. Math. Soc.*, 18:165–172, 1986.

[5] Gunter Malle and B. Heinrich Matzat. *Inverse Galois theory*. Berlin: Springer, 1999.

[6] Jeroen Sijsling and John Voight. On computing Belyi maps. In *Numéro consacré au trimestre “Méthodes arithmétiques et applications”, automne 2013*, pages 73–131. Besançon: Presses Universitaires de Franche-Comté, 2014.

[7] Helmut Völklein. *Groups as Galois groups: an introduction*. Cambridge: Cambridge Univ. Press, 1996.