Insight towards the conserved water mediated recognition of catalytic and structural Zn$^{2+}$ ions in human Matrix Metalloproteinase-8 enzyme: A study by MD-simulation methods

Bornali Chakrabarti1, Hridoy R Bairagya1, Deepak K R Mishra1, Pradip Kumar Chatterjee2 & Bishnu P Mukhopadhyay1*

1Department of Chemistry, National Institute of Technology, Durgapur – 713 209, W.B. India; 2Thermal Engineering Department, Central Mechanical Engineering Research Institute, Durgapur – 713209, W.B., India; Bishnu P Mukhopadhyay – Email: bpmk2@yahoo.com; Phone: +91- 03432547074; Fax: 91-(0343) 2547375; *Corresponding author

Received January 07, 2013; Accepted January 10, 2013; Published February 06, 2013

Abstract: Human matrix metalloproteinase-8 (hMMP-8) plays an important role in the progression of colorectal cancer, metastasis, multiple sclerosis and rheumatoid arthritis. Extensive MD-simulation of the PDB and solvated structures of hMMP-8 has revealed the presence of few conserved water molecules around the catalytic and structural zinc (Zn$^\text{C}$ and Zn$^\text{S}$) ions. The coordination of two conserved water molecules (W and W$^\text{S}$) to Zn$^\text{S}$ and the H-bonding interaction of W$^\text{S}$ to S$^\text{151}$ have indicated the plausible involvement of that metal ion in the catalytic process. Beside this the coupling of Zn$^\text{C}$ and Zn$^\text{S}$ metal ions (Zn$^\text{C}$–W$^\text{H}$(W$^\text{1}$)…..W$^\text{2}$….H$^\text{162}$–Zn$^\text{S}$) through two conserved hydrophilic centers (occupied by water molecules) may also provide some rational on the recognition of two zinc ions which were separated by ~13 Å in their X-ray structures. This unique recognition of both the Zn$^{2+}$ ions in the enzyme through conserved water molecules may be implemented/exploited for the design of antiproteolytic agent using water mimic drug design protocol.

Key words: Matrix Metalloproteinase, MD simulation, Zn ions, Catalytic mechanism.

Background: The matrix metalloproteinases (hMMPs) of human are zinc containing endopeptidases and they play some important roles in ovulation, embryonic growth, tumor growth, metastasis, multiple sclerosis, rheumatoid arthritis etc [1]. The human neutrophil collagenase (HNC) or hMMP-8 is mainly produced by neutrophils and involves in colorectal cancer [2]. The biological role of hMMP-8 and its actual function/mechanism is incompletely understood. So, hMMP-8 is one of the attractive target for design the inhibitors of extracellular matrix degradation in colorectal cancer and antiproteolytic drug for inflammatory diseases [1, 3]. The hMMP-8 is structurally homologous to all other MMPs, consisting of defined functional domains. The crystallographic structures (1BZS, 1JAP, 1ZP5, 1ZVX, 1ZSO) [4-8] of hMMP-8 Table 1 (see supplementary material) have explored the presence of two (catalytic and structural) zinc ions in catalytic domains of enzyme. Catalytic zinc ion (Zn$^\text{C}$) is bound to three histidine residues (H$^\text{197}$, H$^\text{201}$, H$^\text{207}$) and different inhibitors (BS1Z50, HOA4, 2NI128, FIN994, EIN994 respectively), whereas the structural zinc (Zn$^\text{S}$) is coordinated by three histidine residues (H$^\text{147}$, H$^\text{162}$, H$^\text{175}$) and one aspartic acid (D$^\text{149}$) which are given in Table 2 (see supplementary material). The catalytic domain also has two calcium ions which are thought to involve in the structural function of enzyme. Furthermore, regarding the mechanism of activity of different hMMPs, the catalytic role of Zn$^\text{C}$ is well...
known [9]; however, the participation of other zinc ion (Zn₅) in the catalytic process has also been indicated in MMP-13 [10].

In this work we perform long time MD simulations in order to study the dynamics of water molecules and their interaction with catalytic and structural zinc (ZnC and ZnS) centers. Beside these, the role of Zn₅ (structural zinc ion) in the catalytic mechanism / process of hMMP-8 can also be investigated through computational dynamic of solvated enzyme. In addition the simulation could also shade some light on the water mediated recognition between the two zinc centers and their conjugal involvement in the catalytic process. All the results may provide further complementary information on the inhibitor binding chemistry and also enrich the biochemical insight of hMMP-8 enzyme which may be useful for the development of inhibitor topology of hMMP-8.

Methodology:
X-ray structures of hMMP-8 (1BZS, 1JAP, 1ZPS, 1ZVX, 1ZSO) were taken from Protein Data Bank [11-13]. All the five structures are monomer and are bonded by several inhibitors (BSI250, HOA4, 2N128, FIN994, EIN994) given in Table 2. From all the structures, protein, Zn ions and water molecules were isolated using Swiss PDB viewer program [14, 15]. The inhibitors were removed from all the structures.

Solvation
All the hMMP-8 structures were solvated using the program CHAS(A) (Conditional Hydrophobic Accessible Surface Area) [16] without implying Periodic Boundary Condition (PBC). The explicit hydration have been employed on each structure where approx ~ 800-1000 water molecules have been used to immerse molecules by TIP3 water model.

Energy minimization of the structures
All the five modified PDB and solvated structures were energy minimized by GROMOS 96 force field [17] (500 steps of steepest decent followed by 1000 cycles of conjugate gradient) in the Swiss PDB Viewer program with 10 Å cut-off distance [18] for nonbonded interaction, using a distance dependent dielectric constant. At the initial stage of energy minimization, the protein was kept fixed and the water molecules were only allowed to move freely. Optimization released the local constraints from the structures, the energy minimization was again followed (1000 cycles) by allowing the protein and water molecules to move freely.

Molecular dynamics structures
For investigating the role of water molecules, solvation of native PDB structures was done by creating a water box of dimension 10 × 10 × 10 Å³, using solvate 1.2 plugin within the Visual Molecular Dynamics v. 1.8.6. program [19] and MD simulations were followed. Total ~ 2196 water molecules (TIP3 water model) were used to immerse each molecule. The molecular dynamics of each structure was performed by converting the solvated and PDB structures to Protein Structure File (PSF) using the tool Automatic PSF Generation Plugin-1.0.v by applying CHARMM force field [20, 21] within the Visual Molecular Dynamics v. 1.8.6. All the ten (five PDB and their solvated) structures were simulated. All the structures were initially energy minimized (100 cycles to eliminate initial contacts which would destabilize the system) using CHARMM force field. After energy minimization all the structures were simulated using Auto Interactive Molecular Dynamics (IMD) v.1.8.6 and Nanoscale Molecular Dynamics v.2.6. [22]. During simulation, the whole system was allowed to move freely [23]. The molecular simulations were followed up to 5 ns for each structure (where time step was 2fs) at 300K temperature by means of Langevin dynamics [24]. The whole system was converged within 500ps and the simulation was adequately converged within 2ns (Figure 1). During the dynamics, several snapshots were recorded (every 2ps) to investigate the detail coordination or interaction of water molecules with the Zinc (ZnC / ZnS) ions.

Identification of conserved water molecules
To identify the conserved water molecules in hMMP-8, the five different X-ray crystal structures of the protein (1BZS, 1JAP, 1ZPS, 1ZVX, 1ZSO) were compared using 1BZS as template. All the other structures were superimposed one by one on the template structure by a standard least-square fitting algorithm using Swiss PDB Viewer program. The fit was initially optimized on the backbone atoms and the RMSD values were ~0.5-0.6 Å. After superimposing the concerned structure on the template, the conserved water molecular sites were compared and located between the two respective structures. Water molecules that were found to be within 1.5Å [25, 26] in between the two structures (template and concerned reference structures) were taken as conserved.

Results:
X-ray Structural information
In this work the catalytic and structural zinc ions are designated by ZnC and ZnS. Throughout the work the water molecules which are directly coordinated to ZnC are abbreviated as W₁ and W₂. The W₁ (Trans to ZnC bound H₂O) is thought to involve in the hydrolysis of substrate [28]. The W₂ (Trans to ZnC bound H₁₉₀) is in close proximity to inhibitor binding site. In the five PDB structures coordination of residues (H₁₉₀, H₁₉₀, H₂₀₃) to ZnC is same. In these structures ZnC is also bonded to a competitive inhibitor. (BSI250, HOA4, 2N128, FIN995, EIN994 open access
Figure 1: The binding free energy of Znc and Zns in 1 BZS structure during 5ns MD Simulation.

Binding free energy and electrostatic free energy of Zn ions
Binding free energy and electrostatic free energy of both the Zn ions in the PDB and MD simulated hMMP-8 structures were calculated by FOLDX program [27]. The temperature, ionic strength, pH and VDW (parameters of FOLDX) were assigned as 300K, 0.05 (M), 7.0 and 2.0 Å.

Results:
X-ray Structural information
In this work the catalytic and structural zinc ions are designated by ZnC and ZnS. Throughout the work the water molecules which are directly coordinated to ZnC are abbreviated as W₁ and W₂. The W₁ (Trans to ZnC bound H₂O) is thought to involve in the hydrolysis of substrate [28]. The W₂ (Trans to ZnC bound H₁₉₀) is in close proximity to inhibitor binding site. In the five PDB structures coordination of residues (H₁₉₀, H₁₉₀, H₂₀₃) to ZnC is same. In these structures ZnC is also bonded to a competitive inhibitor. (BSI250, HOA4, 2N128, FIN995, EIN994 open access
Figure 1: The binding free energy of Znc and Zns in 1 BZS structure during 5ns MD Simulation.

Binding free energy and electrostatic free energy of Zn ions
Binding free energy and electrostatic free energy of both the Zn ions in the PDB and MD simulated hMMP-8 structures were calculated by FOLDX program [27]. The temperature, ionic strength, pH and VDW (parameters of FOLDX) were assigned as 300K, 0.05 (M), 7.0 and 2.0 Å.

Results:
X-ray Structural information
In this work the catalytic and structural zinc ions are designated by ZnC and ZnS. Throughout the work the water molecules which are directly coordinated to ZnC are abbreviated as W₁ and W₂. The W₁ (Trans to ZnC bound H₂O) is thought to involve in the hydrolysis of substrate [28]. The W₂ (Trans to ZnC bound H₁₉₀) is in close proximity to inhibitor binding site. In the five PDB structures coordination of residues (H₁₉₀, H₁₉₀, H₂₀₃) to ZnC is same. In these structures ZnC is also bonded to a competitive inhibitor. (BSI250, HOA4, 2N128, FIN995, EIN994 open access
respective). In the structures 1JAP, 1ZVX, 1ZSO the inhibitor molecule has two donor centers, whereas in 1BZS and 1ZPS the inhibitors have only one donor center. However, the structural zinc ion (Zn$_{\text{H}}$) is coordinated by three histidines (H$_{147}$, H$_{160}$, H$_{175}$) and one aspartic acid (D$_{160}$).

Analysis of energy minimized structures
During energy minimization of all the PDB structures, the coordination number of Zn$_{\text{C}}$ changes due to the bonding of incoming water molecules to this metal ion. In the energy minimised native 1BZS, 1JAP, 1ZVX crystal structures, two incoming water molecules (W$_{\text{H}}$ and W$_{\text{L}}$) form bond with Zn$_{\text{C}}$, and W$_{\text{H}}$ also forms H–bond to E$_{198}$ (2.5 to 3.5 Å). Whereas in the PDB structures of 1ZPS and 1ZSO only one incoming water molecule (W$_{\text{L}}$) is bonded to Zn$_{\text{C}}$. However, no such water molecular interaction is observed at Zn$_{\text{S}}$. All the distances are included in Table 3 (see supplementary material). Again, after energy minimization of the two (1BZS, 1JAP) solvated PDB structures two incoming water molecules are observed at the same hydrophilic W$_{\text{H}}$ and W$_{\text{L}}$ sites which are included in Table 3. In the rest three (1ZPS, 1ZVX, 1ZSO) solvated structures, only one water molecule appears at W$_{\text{S}}$ site and coordinated to Zn$_{\text{S}}$. However no water molecular coordination is observed at the structural zinc ion (Zn$_{\text{S}}$).

![Figure 2: Water mediated recognition of the catalytic and structural zinc ions (ZnC and ZnS) after MD simulation.](image)

Analysis of MD simulated structures
MD simulation of the different X-ray and solvated structures has also revealed the presence of water molecules at the W$_{\text{H}}$ and W$_{\text{L}}$ hydrophilic centres. Within 500ps, both the water molecules (present at the two hydrophilic centres) and one glutamic acid residue (E$_{198}$) are appeared to coordinate with Zn$_{\text{C}}$. In every structure the W$_{\text{H}}$ water molecule forms H–bond to E$_{198}$ (OE1) (~2.1 to 2.6 Å). During 5ns simulation, the trigonal geometry around Zn$_{\text{C}}$ has changed to distorted octahedral and the coordination number changed from 3 to 6 Table 3 (see supplementary material) (Figure 2). In the simulated PDB structures, the average Zn$_{\text{C}}$...W$_{\text{S}}$, W$_{\text{H}}$...W$_{\text{L}}$ and W$_{\text{H}}$...H$_{162}$ distances are 2.07 – 2.17, 2.14 – 2.80 and 2.23 – 2.87 Å respectively. In all the simulated X-ray and solvated structures of hMMP-8 (1BZS, 1JAP, 1ZPS, 1ZVX, 1ZSO) the Zns atom is coordinated by two positionally conserved water molecule (W and W$_{\text{S}}$) and three histidine and one aspartic acid residue. Among the two water molecule one (W$_{\text{S}}$) also bonded to S$_{\text{131}}$. Within 500ps, these two water molecules appear to coordinate with Zn$_{\text{S}}$ and S$_{\text{131}}$ also bonded to W$_{\text{S}}$. In the simulated X-rays structures the average Zn$_{\text{S}}$...W and Zn$_{\text{S}}$...W$_{\text{S}}$ distances are 2.08 – 2.15 and 2.02 – 2.21 Å, however in the solvated structures the values are 2.01 – 2.27 and 2.06 – 2.62 Å. Moreover, after 2ns, the Zn$_{\text{S}}$ bound W$_{\text{H}}$ / W$_{\text{L}}$ water molecule bridges to Zn$_{\text{S}}$ bound H$_{162}$ through another W$_{\text{S}}$ water molecule (Zn – W$_{\text{H}}$ (W$_{\text{S}}$)...W$_{\text{L}}$...H$_{162}$ - Zn$_{\text{S}}$). The H–bonding distances are given in (Figure 2) Table 5 (see supplementary material).

The average binding free energy of Zn$_{\text{C}}$ and Zn$_{\text{S}}$ ions in the five PDB structures (1BZS, 1JAP, 1ZPS, 1ZVX, 1ZSO) are 23.88 and 137.1 Kcal/mole, whereas after simulation the values are reduced to -75.7 and -34.5 Kcal/mole. After solvation, the average binding free energy reduced to -511 and -483 Kcal/mole (Figure 1) Table 6 (see supplementary material). The average electrostatic binding free energy of Zn$_{\text{C}}$ and Zn$_{\text{S}}$ ions of the five PDB structures (1BZS, 1JAP, 1ZPS, 1ZVX, 1ZSO) are -0.846 and -0.682 Kcal/mole respectively, whereas after simulation the values are -6.0 and -10.2 Kcal/mole. After solvation, the average electrostatic binding free energy of Zn$_{\text{C}}$ and Zn$_{\text{S}}$ -8.26 and 13.6 Kcal/mole, whereas after simulation of solvated structures the values are reduced to -14.43 and -26.45 Kcal/mole Table 6.

Discussion:
The hydrophilic center around both the zinc ions (ZnC and ZnS) in hMMP-8 structures seems to be interesting. The coordination of water molecules present at W$_{\text{H}}$ hydrophilic site which forms H–bond to E$_{198}$ around Zn$_{\text{C}}$ ion in three Emin X-ray structures (1BZS, 1JAP, 1ZVX) and all MD simulated structures are observed to be conserved. Furthermore, the coordination of W$_{\text{S}}$ water molecule in two Emin X-ray structures (1ZPS, 1ZSO) and all MD simulated structures is also conserved. The presence of W$_{\text{H}}$ and W$_{\text{S}}$ hydrophilic centers has been revealed during the simulation of hMMP-8 PDB and solvated structures. These two conserved water molecules may provide some stability to Zn$_{\text{C}}$. Nevertheless, in all the MD simulated X-ray and solvated structures, the Zn$_{\text{S}}$ bound two water molecules occupying the same hydrophilic centers (trans to H$_{162}$, H$_{175}$), indicate the possibilities of variable hydration susceptibility of catalytic and structural zinc ions (Zn$_{\text{C}}$ and Zn$_{\text{S}}$) in the hMMP-8 dynamical structures Table 4. The shift or fluctuation of binding and electrostatic free energy of both the zinc ions in the X-ray and simulated structures may imply some possibility of Zn$_{\text{S}}$ centre to act as a catalytic partner.

The variation of coordination geometry from tetrahedral to distorted octahedral through the interaction of two water molecule (W and W$_{\text{S}}$) directly to Zn$_{\text{S}}$ in all the PDB and solvated MD–simulated structures and the H–bonding of W$_{\text{S}}$ with S$_{\text{131}}$(OG) Table 7 (see supplementary material) indicated the possible involvement of metal ion and S$_{\text{131}}$ to the catalytic process. Furthermore, the recognition of the Zn$_{\text{C}}$ and Zn$_{\text{S}}$ (which are ~13 Å apart) through two conserved water molecules (W$_{\text{H}}$ / W$_{\text{L}}$ and W$_{\text{S}}$) and the observation of similar type of water mediated conjugation of metal ions in different synthetic Zn–complexes [29, 30] may also support the role of two Zn centres in the function and mechanism of enzyme (Figure 2 & 3). Based on the dynamical results of this work the participation of Zn$_{\text{S}}$ in the collagenolysis mechanism of hMMP-8 may be proposed (Figure 3). The Zn$_{\text{S}}$ directly binds to substrate and polarize it and subsequently activate the water molecule which may then act as a nucleophile. The Zn$_{\text{S}}$ bound W$_{\text{S}}$ (water molecule) and S$_{\text{131}}$(OG) may also thought to activate the metal ion in the intermediate transition steps of the photolytic mechanism.
Possible involvement of that metal ion in the catalytic process. The differential coordination dynamics of the metal ions around the zinc ions seem to be important for activity and ligand recognition. Possibly, heterocyclic ligand with flexible structure containing two aliphatic short chains with suitable spacer length may be implemented / exploited.

Possibly, heterocyclic ligand with flexible structure containing two aliphatic short chains with suitable spacer length may be implemented / exploited.

Conclusion:
The MD-simulation of the PDB and solvated structures of hMMP-8 have revealed the presence of few conserved water molecules (W and Ws) around the catalytic and structural zinc (ZnC and ZnS) ions, which are mostly inaccessible in X-rays structures. The coordination of these two conserved water molecules to ZnC and the H-bonding interaction of Ws to Sws have indicated the plausible involvement of that metal ion in the catalytic process. The differential coordination dynamics of the ligands (water molecules) around both the zinc ions seem to be an interesting feature of hMMP-8. Beside this the coupling of ZnC and ZnS metal ions through two conserved hydrophilic centers (occupied by water molecules) may also provide some rational clues on the recognition of two zinc ions which were separated by ~13 Å in their X-ray structures. Possibly, the biochemical signal between the two Zn2+ ions may be transmitted through W1 and W2 water centers in enzyme.

The unique recognition and stereospecific interaction of both the Zn2+ ions through conserved water molecules of both the Zn2+ ions in the enzyme (ZnC – W11 (W1).....W2H162 - ZnS) seem to be important for activity and ligand recognition. Possibly, the geometrical and electronic consequences of conserved water molecular interaction W and Ws are very limplicative for design the topology of hMMP-8 inhibitor which may be implemented / exploited for the design of antiproteolytic agent using water mimic drug design protocol. Possibly, heterocyclic ligand with flexible structure containing two aliphatic short chains with suitable spacer length may be suggested to design selective inhibitor for hMMP-8.

Acknowledgement:
B.P.M. and B.C. thank and acknowledge National Institute of Technology-Durgapur for providing the research facility in the Department of Chemistry.

References:
[1] Gayle R Pelman et al. J Biol Chem. 2005 280: 2370 [PMID: 15533938]
[2] Aschi M et al. J Comput Aided M ol Des. 2002 3: 213 [PMID: 12363219]
[3] Verma Rajeshwar P & Crowin Hansch J, Bioorg and Med Chem. 2007 15: 2223 [PMID: 17275314]
[4] Bode Wet al. EM BO J. 1994 13:1263 [PMID: 8137810]
[5] Campeste C et al. Bioorg M ed Chem Lett. 2006 16: 20 [PMID: 16242329]
[6] Pochetti G et al. J M ed Chem. 2006 49: 923 [PMID: 16451058]
[7] Campeste C et al. Bioorg M ed Chem Lett. 2006 16: 20 [PMID: 16242329]
[8] Holmes MA et al. Acta Crystallogr. 2006 62: 180 [PMID: 16511296]
[9] LA de Roberto Sergio, Edet Quim. 2009 34 http://dx.doi.org/10.1590/s0100-46702009004000008
[10] Chakrabarti B et al. J Biomol Struct Dyn. 2011 28: 503 [PMID: 21142220]
[11] Berman Helen et al. Nucleic Acids Res. 35: 301 [PMID: 10592235]
[12] Berman HM et al. Nucleic Acids Res. 2000 28: 235 [PMID: 10592235]
[13] Bernstein FC et al. J M ol Biol. 1977 112:535 [PMID: 875032]
[14] Guex N et al. Glaxo Smith Kline R & D. 2001
[15] Guex N & Peitsch MC, Electrophoresis. 1997 15: 2714 [PMID: 9504803]
[16] Fleming PJ. et al. Protein Sci. 2005 14: 111 [PMID: 15576559]
[17] Gunsteren van WF & Berendsen HJC Angew, Chem Int Ed Engl. 1990 29: 992 [DOI: 10.1002/anie.199009921]
[18] Pisabarro MT et al. Proteins. 1994 20: 203 [PMID: 7892170]
[19] Humphrey W et al. J M ol Graph. 1996 14: 33 [PMID: 8744570]
[20] Brooks BR et al. J Comp Chem. 1983 4: 187 [DOI: 10.1002/jcc.540040211]
[21] MacKerell AD et al. J Phys Chem. 1998 102: 3586 [DOI: 10.1021/jp973084f]

[22] Kalé L et al. J Comput Phys. 1999 15: 283 [PMC: 2486339]

[23] Leroux V et al. Theor Chem J Mol Struct. 2007 806: 51 [ISSN: 0166-1280 DOI: 10.1016]

[24] Gullingsrud J et al. Biophys J. 80: 2074 [PMID:11325711]

[25] Mustata G & Briggs JM, Protein Eng Des Sel. 2004 17: 223 [PMID: 15115851]

[26] Nandi TK et al. J Biosci. 2009 1: 27 [PMID: 19430116]

[27] Joost Schymkowitz et al. Nucleic Acid Res. 2005 33: 382 [DOI: 10.1093/nar/gki387]

[28] Rush TS & R Powers R, Curr Top Med Chem. 2004 4: 1311 [PMID: 15320728]

[29] Weston Jennie, Chem Rev. 2005 105: 2151 [PMID:15941211]

[30] Strater Norbert et al. Chem Int Ed Engl. 1996 35: 2024 [DOI: 10.1002/anie.199620241]

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
Supplementary material:

Table 1: Preliminary X-ray structural data of hMMP-8

PDB ID	No. of protein molecule in asymmetric unit	Number of total amino acid in each chain	N	Number of water molecules	Name of inhibitor	R factor	Resolution (Å)	
1BZS	1	165	208		^BSI250	0.192	1.70	4
1JAP	1	157	148		^HOA4	0.194	1.82	5
1ZP5	1	163	125		^2N1128	0.219	1.80	6
1ZVX	1	163	144		^FIN94	0.209	1.87	7
1ZSO	1	163	244		^EIN94	0.210	1.56	8

\(^a \): 2-(biphenyl-4-sulfonyl)-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid.

\(^b \): N-\{(4'-cyano-1,1'-biphenyl-4-yl)oxy\}-n'-hydroxy-n'-methylurea.

\(^c \): (1R)-1-\{(4'-methoxy-1,1'-biphenyl-4-yl)sulfonyl\}amino-2-methylpropylphosphonic acid.

\(^d \): (1S)-1-\{(4'-methoxy-1,1'-biphenyl-4-yl)sulfonyl\}amino-2-methylpropylphosphonic acid.

Table 2: The residues / Inhibitor (I) forms bond to catalytic and structural zinc atoms (ZnC and ZnS) in X-ray structures of hMMP-8 and their distances in Å

PDB ID	Residues coordinated to ZnC	Residues coordinated to ZnS
1BZS	H 197 2.12	H 147 2.16
	H 201 2.08	H 162 2.19
	H 207 2.17	H 175 2.23
	I 1.97	D 149 1.93
1JAP	H 197 2.00	H 147 1.94
	H 201 2.12	H 162 2.04
	H 207 2.25	H 175 2.11
	I 1.91	D 149 1.78
	I 2.18	
1ZP5	H 197 2.08	H 147 2.08
	H 201 2.06	H 162 2.05
	H 207 2.11	H 175 2.07
	I 2.26	D 149 1.98
1ZVX	H 197 2.13	H 147 2.05
	H 201 2.09	H 162 2.10
	H 207 2.15	H 175 3.50
	I 1.98	D 149 2.13
	I 3.47	
1ZSO	H 197 2.08	H 147 2.09
	H 201 2.10	H 162 2.05
	H 207 2.16	H 175 2.13
	I 3.27	D 149 2.01
	I 3.22	

Table 3: Water (WI, WH) molecules interact at the ZnC atom and their distances (Å) in the energy minimized (Emin) PDB and solvated hMMP-8 structures.

PDB ID	X-ray structures	Energy minimized structures
	X-ray	
1BZS		^W1 W 207 2.08 W1
		^W1 W 69 2.22 W1
1JAP		^W1 W 23 1.94 W1
		^W1 W 43 2.04 W1
1ZP5		^W1 W 69 1.75 W1
		^W1 W 69 1.75 W1

© 2013 Biomedical Informatics
aW1 indicate the water molecule trans to ZnC bound H197.
bW1 indicate the water molecule trans to ZnC bound H207.

Table 4: Recognition of the residues and water molecules to ZnC and ZnS atoms in the 5ns simulated X-ray and solvated structures. All the distances are in Å.

PDB ID	Distances of the Zn...W / E198 and ZnS...W/W	X-ray structures	Solvated structures	
	ZnC...W / E198	ZnC...W/W	ZnC...W / E198	ZnS...W/W
1BZS	W 162	W 93(Ws)	W 140	W 41(Ws)
	2.06	2.02	2.04	2.09
	W 69	W 33(W)	W 69	W 33(W)
	2.17	2.08	2.07	2.12
	E198		E198	
	1.95		1.99	
1JAP	W 25	W 81(Ws)	W 25	W 4611(W)
	2.04	2.02	2.13	2.23
	W 23		W 5409	
	2.09		2.15	
	E198		E198	
	1.99		1.99	
1ZP5	W 69	W 23(Ws)	W 76	W 114(Ws)
	2.09	2.14	2.75	2.62
	W 49	W 3(W)	W 554	W 736(W)
	2.14	2.08	2.32	2.01
	E198		E198	
	2.01		2.11	
1ZVX	W 9	W 60(Ws)	W 205	W 668(Ws)
	2.11	2.08	2.81	2.17
	W 144	W 63(W)	W 674	W 1484(W)
	2.12	2.15	2.04	2.35
	E198		E198	
	2.05		2.81	
1ZSO	W 49	W 14(Ws)	W 642	W 1004(Ws)
	2.07	2.09	2.12	2.06
	W 71	W 48(W)	W 965	W 1513(W)
	2.18	2.15	2.14	2.27
	E198		E198	
	1.94		2.45	

* The residential frequency of all the water molecules is 0.75. The water molecule which involves in the interaction with S151 and is coordinate to the ZnS (S151.....WS.....ZnS) is designated by WS.

Table 5: Water mediated (W1, W2) interaction and the distances (Å) between catalytic zinc (ZnC) and H162 (bonded to ZnS) in the MD simulated PDB structures of hMMP-8.

PDB ID	W1/ZnC---W1(W2) Distance	W2/W1----W2	W2----H162 (ZnS)
1BZS	W 69	W 207	2.23
	2.17	2.31	
1ZP5	W 49	W 86	2.87
	2.14	2.66	
1ZVX	W 9	W 115	2.65
	2.11	2.73	
1ZSO	W 149	W 116	2.42
	2.07	2.80	
Table 6: The binding free energy and electrostatic free energy (in Kcal/mol) of the PDB and simulated (X-ray and solvated) structures.

PDB ID	X-ray structures	MD Simulated (5 ns) structures				
	Zn_C	Zn_S	Zn_C	Zn_S	Zn_C	Zn_S
1BZS	32 /	39.2	-15.5	-17.2	-10.2	-8.9
	-0.6	-1.83	-1.8	-1.79	-1.94	-4.17
1JAP	28.4 / -1.13	26.8 / -1.97	-9.2	-14.8	-9.2	-12.5 / -
	-0.66	-12.74	-2.75	4.74		
1ZP5	29 /	35.6	-12.6	6	-6.4	-5.7
	-0.67	-0.9	-1.79	-1.00	-3.54	-6.24
1ZVX	22.6 / -0.79	28.7 / -0.9	-4.8	9	-10.5	-14.4
	-0.86	-2.02	-2.83	-3.04	-6.18	
1ZSO	7.4 /	6.8	-16.8	17.5	-14.8	-6.8
	-0.98	2.08	-1.05	-1.84	-3.16	-5.12

Table 7: Distances (Å) of S151…ZnS, ZnS…WS, and S151(OH)…WS in the X-ray and MD simulated structures of hMMP-8.

PDB ID	X-ray	MD Simulated (X-ray structures)	MD Simulated (Solvated structures)					
	S151…ZnS	.ZnS	WS	S151… .ZnS	.ZnS	S151(OH)…WS	S151… .ZnS	S151(OH)…WS
1BZS	6.05	W 93	3.92	W 93	4.08	W 41		
	7.67		3.04		2.60			
1JAP	6.82	W 81	3.72	W 81	3.99	W 4611		
	7.14		2.88		2.75			
1ZP5	6.81	W 23	3.89	W 23	4.21	W 114		
	12.76		2.72		3.12			
1ZVX	6.60	W 60	4.25	W 60	3.88	W 668		
	17.12		3.14		3.10			
1ZSO	6.93	W 14	4.10	W 14	4.19	W 1004		
	7.97		3.02		2.95			

* The ZnS…WS distances in the MD simulated X-ray and solvated structure is given in Table 4.