Pseudoscalar Meson and Decuplet Baryon Scattering Lengths

Zhan-Wei Liu
Department of Physics and State Key Laboratory of Nuclear Physics and Technology
Peking University, Beijing 100871, China

Yan-Rui Liu
Department of Physics, H-27, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

Shi-Lin Zhu
Department of Physics and State Key Laboratory of Nuclear Physics and Technology
and Center of High Energy Physics, Peking University, Beijing 100871, China

We have systematically calculated the S-wave pseudoscalar meson and decuplet baryon scattering lengths to the third order in the small scale expansion scheme of the heavy baryon chiral perturbation theory. We hope the future study may test the framework and the present predictions.

PACS numbers: 12.39.Fe, 13.75.Gx, 13.75.Jz
Keywords: Scattering length, heavy baryon chiral perturbation theory, decuplet

I. INTRODUCTION

The excited states of the nucleon and their strong interactions with various hadrons play an important role in our understanding of non-perturbative QCD. Generally speaking, their coupling with the pseudoscalar pion, kaon and eta is governed by chiral dynamics. The first excited state of the nucleon, \(J^P = 3/2^+ \) \(\Delta(1232) \), belongs to the lightest decuplet. It is degenerate with the nucleon in the large \(N_c \) limit \cite{1,2}. From the strong decay widths, one can extract the coupling constants of the pseudoscalar meson decuplet baryon interaction. Although it may be quite difficult to measure their scattering lengths experimentally, unlike in the pion-nucleon and kaon-nucleon cases \cite{3-5}, it is still interesting to study the scattering processes theoretically.

As two well-known non-perturbative approaches of QCD at low energy, chiral perturbation theory and lattice QCD have been widely used in studying meson-baryon interactions \cite{6-14}. With the explicitly consistent power counting scheme, the heavy baryon chiral perturbation theory (HB\(\chi \)PT) is a practical and useful tool in the study of the meson baryon scattering. The expansion is organized with \(p/\Lambda_{\chi} \), where \(p \) represents the momentum (mass) of the meson or the small residue momentum of the baryon in the non-relativistic limit, and \(\Lambda_{\chi} = 4\pi f_{\pi} \) is the scale of chiral symmetry breaking. Numerically it is around the baryon mass in the chiral limit. Because of the large mass of the strange quark, the chiral corrections from the kaon and eta meson loops are significantly larger than that from the pion loop, which leads to the worse convergence of the chiral expansion in the SU(3) case.

In HB\(\chi \)PT, the effects of excited baryons are encoded in the unknown low energy constants (LECs) in the Lagrangians. In the large \(N_c \) limit, one expects that the inclusion of the decuplet baryon contribution may partially cancel the octet contribution and be helpful to the chiral expansion. In order to investigate the contributions of the \(\Delta \), HB\(\chi \)PT with explicit spin-3/2 baryons and the small-scale expansion scheme have been developed in Refs. \cite{15,16}. Now the expansion is organized with \(\epsilon \), where \(\epsilon \) means \(p/\Lambda_{\chi} \) in HB\(\chi \)PT or the mass difference \(\delta \) between \(\Delta \) and the nucleon in the chiral limit, which is widely used in the exploration of the decuplet related processes \cite{17-21}. There exists another power counting scheme “\(\delta \) expansion” in the two-flavor case, where \(m_s \) scales as \(\delta^2 \) \cite{22,25}.

In our previous work \cite{21}, we studied the decuplet contributions to the pseudoscalar meson octet baryon scattering lengths, which is an important observable reflecting their strong interaction near the threshold. The inclusion of the decuplet baryons does not improve the convergence significantly. In this paper, we will study the scattering lengths of the pseudoscalar mesons and the light decuplet baryons in the framework of the SU(3) heavy baryon chiral perturbation theory with explicit decuplet baryons. We will explore whether the small scale expansion works well in this case.
This paper is organized as follows. We present the basic notations and definitions in Sec. II. In Sec. III we list the chiral corrections to the threshold T-matrices of the meson decuplet baryon scattering, which contains our main results. The LECs are estimated in Sec. IV. Finally, we give the numerical results and our discussions in Sec. V.

II. LAGRANGIANS

In the heavy baryon formalism, the chiral Lagrangians at the leading order are,

$$L^{(2)}_{\phi} = f^2 \text{Tr} \left(u_\mu u^\mu + \frac{\chi}{4} \right),$$ \hspace{1cm} (1)

$$L^{(1)}_{\phi B} = \text{Tr} \left(\tilde{B} (iv \cdot \partial B + [v \cdot \Gamma, B]) \right) + 2D \text{Tr} (B \{S \cdot u, B\}) + 2F \text{Tr} \left(\tilde{B} [S \cdot u, B] \right),$$ \hspace{1cm} (2)

$$L^{(1)}_{\phi BT} = -\tilde{T}^\mu (iv \cdot D - \delta) T_\mu + C (\tilde{T}^\mu u_\mu B + \tilde{B} u_\mu T^\mu) + 2H T^\mu S \cdot u T_\mu.$$ \hspace{1cm} (3)

Here f is the decay constant of the pseudoscalar meson in the chiral limit, v is the velocity of the baryon, S_μ is the spin operator, and δ is the mass difference between Δ and the nucleon. For the coupling constants, $D + F = g_A = 1.26$ where g_A is the axial vector coupling constant, $|C| = 1.5$, and $|H| = 1.9$. The D and F terms do not contribute to the threshold amplitudes we calculate. The superscript in the Lagrangians represents the corresponding chiral order.

The notations for the fields read

$$\Gamma_\mu = \frac{i}{2} [\xi^\dagger, \partial_\mu \xi], \quad u_\mu = \frac{i}{2} [\xi^\dagger, \partial_\mu \xi], \quad \xi = \exp(i\phi/2f),$$ \hspace{1cm} (4)

$$\chi = \frac{1}{2} (\xi^\dagger \partial_\mu \xi) = \frac{1}{2} (\xi \partial_\mu \xi), \quad \chi = \text{diag}(m_{\pi}^2 + m_{\pi}^2, m_{\pi}^2 - m_{\pi}^2),$$ \hspace{1cm} (5)

$$\phi = \sqrt{2} \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\pi^+}{\sqrt{2}} + \frac{\pi^-}{\sqrt{2}} + \frac{K^+}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{-\pi^0}{\sqrt{2}} + \frac{\pi^+}{\sqrt{2}} + \frac{\pi^-}{\sqrt{2}} + \frac{K^0}{\sqrt{2}} & 0 \\ 0 & 0 & \frac{K^-}{\sqrt{2}} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\Delta}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{-\pi^0}{\sqrt{2}} + \frac{\Delta}{\sqrt{2}} & 0 \\ 0 & 0 & \frac{\Delta}{\sqrt{2}} \end{pmatrix},$$ \hspace{1cm} (6)

$$iD_\mu T^\mu_{abc} = i\partial_\mu T^\mu_{abc} + (\Gamma_\mu)_{a} T^\mu_{bde} + (\Gamma_\mu)_{b} T^\mu_{ade} + (\Gamma_\mu)_{c} T^\mu_{abd},$$ \hspace{1cm} (7)

and

$$T_{111} = \Delta^{++}, \quad T_{112} = \Delta^{+}/\sqrt{3}, \quad T_{122} = \Delta^{0}/\sqrt{3}, \quad T_{222} = \Delta^{-}, \quad T_{113} = \Sigma^{++}/\sqrt{3},$$
$$T_{123} = \Sigma^{+}/\sqrt{3}, \quad T_{223} = \Sigma^{0}/\sqrt{3}, \quad T_{133} = \Sigma^{-}/\sqrt{3}, \quad T_{233} = \Omega^{-}. \hspace{1cm} (8)$$

The H\(\chi\)PT Lagrangians consist of two parts at higher order \cite{34}: the recoil corrections and counter terms. The former part comes from the lower order relativistic chiral Lagrangians. The counter terms contain LECs and are constructed with respect to QCD symmetries. To $O(c^3)$, the following high order Lagrangians contribute in our calculation,

$$L^{(2)}_{\phi BT} = \frac{\mathcal{H}^2}{3M} T^{\mu ij} v \cdot u_i s v \cdot u_j T_{ijkl} + \frac{\mathcal{H}^2}{6M^2} T^{\mu ij} v \cdot u_i s v \cdot u_s T^\mu_{ijkl}$$
$$+ \left\{ d_1 T^{\mu ij} v \cdot u_i s v \cdot u_j T_{ijkl} + d_2 T^{\mu ij} v \cdot u_i s v \cdot u_s T^\mu_{ijkl} + d_3 T_{ijkl} v \cdot u_i s v \cdot u_j T^\mu_{ijkl} + d_4 T_{ijkl} \chi^{\dagger} + T^\mu v \right\},$$ \hspace{1cm} (9)

$$L^{(3)}_{\phi BT} = -\frac{\mathcal{H}^2}{6M^2} T^{\mu ij} v \cdot u_i s (iv \cdot D + \delta) v \cdot u_j T_{ijkl} - \frac{\mathcal{H}^2}{12M^2} T^{\mu ij} v \cdot u_i s (iv \cdot D + \delta) v \cdot u_s T^\mu_{ijkl}$$
$$+ \left\{ (h_1 T^{\mu ij} v \cdot u_i s u_j t \rho v^\rho T_{ijkl} + h.c.) + (h_2 T^{\mu ij} v \cdot u_i s u_j t \rho T_{ijkl} + h.c.) + h_3 T_{ijkl} t \rho v \cdot u_j T^\mu v \cdot u_j T^\mu \right\}.$$ \hspace{1cm} (10)

where $\chi = \frac{1}{2} \text{Tr}(\chi) \cdot (\chi)$ and M is the mass of the nucleon. In principle, the unknown coefficients in the Lagrangians could be determined from either QCD or the experimental measurements. Due to the difficulty in the non-perturbative region of QCD and the lack of experimental data, we will resort to the resonance saturation method when estimating LECs. \cite{32}.
III. THE T-MATRICES AT THRESHOLDS

The total S-wave scattering cross section near the threshold can be expressed in terms of the scattering length. It can also be calculated directly using the threshold T-matrix T_{PT}. To ensure the same total cross section in quantum mechanics, the scattering length a_{PT} is related with the threshold T-matrix T_{PT}: $T_{PT} = 4\pi (1 + \frac{m^2}{M_T}) a_{PT}$, where m and M_T are the masses of the pseudoscalar meson and the light decuplet baryon respectively. We use a convention that $a_{PT} > 0$ ($a_{PT} < 0$) if the interaction is attractive (repulsive). There are 27 independent isospin invariant amplitudes for the octet meson-decuplet baryon interactions. We list their explicit expressions in the following subsections. One may get any other amplitudes with the help of the isospin symmetry.

The first two order T-matrices are easy to derive from the Lagrangians (3) and (9). At the third order, loop corrections enter. There are 18 non-vanishing diagrams contributing to the threshold amplitudes, which are shown in Fig. III. We calculate the loop integrations with the dimensional regularization and modified minimal subtraction. The divergences from the loops can be absorbed through the LECs h_i,

$$h_1 = C^2 + h_i^r, \quad h_2 = \frac{1}{2} C^2 + h_i^r, \quad h_3 = -\frac{1}{3} C^2 + h_i^r, \quad h_4 = \frac{1}{8} C^2 + h_i^r, \quad h_5 = -\frac{9}{4} C^2 + h_i^r, \quad (11)$$

where

$$L = \frac{\lambda^{D-4}}{16\pi^2} \left\{ \frac{1}{D - 4} + \frac{1}{2} (\gamma_E - 1 - \ln 4\pi) \right\}, \quad (\text{Euler constant } \gamma_E = 0.5772157), \quad (12)$$

and λ is the scale from the dimensional regularization. To make the final expressions short, we introduce a constant and two functions,

$$J = \frac{C^2 m_K^2}{12\pi^2 f^4} \left\{ \frac{\delta^3 - \frac{3}{2} m_\eta^2 \delta}{\lambda} \log \frac{m_\eta}{\lambda} + \frac{9}{2} \frac{m_\pi^2 \delta - \delta^3}{\lambda} \log \frac{m_\pi}{\lambda} \right\},$$

$$- (\delta^2 - m_\pi^2)^{3/2} \left\{ \frac{\delta^3 - \delta}{\lambda} \log \frac{\delta^2 - m_\pi^2 + \delta}{m_\pi} - i\pi \right\} - \frac{m_\pi^2 - \delta^2}{\lambda} \cos^{-1} \left(\frac{\delta}{m_\eta} \right) \quad (13)$$

$$W(m) = \frac{C^2}{16\pi^2 f^4} \left\{ -2\sqrt{m^2 - \delta^2} \cos^{-1} \left(\frac{\delta}{m} \right) - 2\delta \log \frac{m}{\delta} + \delta \right\}.$$

$$V(m^2, \omega) = \frac{\omega^3 \log \frac{m}{\pi} - \omega^3}{2\pi^2 f^4} - \frac{\omega^3}{\pi^2 f^4} \left\{ -\sqrt{\omega^2 - m^2} \cos^{-1} \left(\frac{\omega}{m} \right) \right\}.$$

$$+ \frac{\omega^3}{\pi^2 f^4} \left\{ \sqrt{\omega^2 - m^2} \log \frac{\omega^2 - m^2 + \omega}{m} \right\}.$$

$$m > \delta, \quad m < \omega, \quad (14)$$

$$V(m^2, \omega) = \frac{\omega^3 \log \frac{m}{\pi} - \omega^3}{2\pi^2 f^4} - \frac{\omega^3}{\pi^2 f^4} \left\{ -\sqrt{\omega^2 - m^2} \cos^{-1} \left(\frac{\omega}{m} \right) \right\}.$$

$$+ \frac{\omega^3}{\pi^2 f^4} \left\{ \sqrt{\omega^2 - m^2} \log \frac{\omega^2 - m^2 + \omega}{m} \right\}.$$

$$m > \omega, \quad m < \omega, \omega < 0, \quad (15)$$

A. Pion-decuplet scattering

There are 9 independent T-matrices for the pion scattering due to the isospin symmetry. At the leading chiral order $O(\epsilon)$, only the simplest tree diagram from the Weinberg-Tomozawa terms is involved,

$$T^{(5/2)}_{\pi^0\Delta} = \frac{3m_\pi}{2f_\pi}, \quad T^{(3/2)}_{\pi^0\Delta} = \frac{m_\pi}{f_\pi} \quad T^{(1/2)}_{\pi^0\Delta} = \frac{5m_\pi}{2f_\pi}, \quad T^{(3/2)}_{\pi^0\Sigma^*} = \frac{m_\pi}{2f_\pi}, \quad T^{(1/2)}_{\pi^0\Sigma^*} = \frac{m_\pi}{f_\pi}, \quad T^{(1)}_{\pi^0\Omega} = 0, \quad (16)$$

where the superscript in the bracket represents the total isospin of the channel and f_π is the renormalized pion decay constant (similar to f_K, f_η in the following text). Since we express the T-matrices with f_π rather than f, the difference is of order $O(\epsilon^3)$.

The results at $O(\epsilon^2)$ also come from the tree diagram,

$$T^{(5/2)}_{\pi^0\Delta} = \frac{m_\pi^3 (3d_1 + 4d_2 - 3d_4)}{6f_\pi^2}, \quad T^{(3/2)}_{\pi^0\Delta} = \frac{m_\pi^3 (5d_1 + 3d_2 + 6d_3 - 4d_4)}{6f_\pi^2}, \quad T^{(1/2)}_{\pi^0\Delta} = \frac{m_\pi^3 (4d_1 - 3d_2 - 6d_3 + 4d_4)}{6f_\pi^2}. \quad (16)$$
where

\[\tilde{d}_1 = d_1 + \frac{\mathcal{H}^2}{3M}, \quad \tilde{d}_2 = d_2 + \frac{\mathcal{H}^2}{6M}. \]

At \(O(\epsilon^3) \), the \(T \)-matrices contain both loop and tree diagram contributions. Moreover, they receive contributions from the replacement of \(f \) with \(f_\pi \) in the \(O(\epsilon^1) \) magnitude. Just for the simplicity of the writing and the reuse of the expressions at \(O(\epsilon^2) \), we divide \(T \) into two parts at this order,

\[T = \tilde{T} + T_2. \]
One obtains T_2 from the $O(\ell^2)$ T-matrices (17) with the following replacements

$$
d_1 \to 2h_1^\Delta - \frac{\mathcal{H}^2\delta}{3M^2}, \quad d_2 \to 2h_2^\Sigma - \frac{\mathcal{H}^2\delta}{6M^2}, \quad d_3 \to h_3^\Sigma, \quad d_4 \to 2h_4^\Sigma. \quad (20)
$$

\tilde{T} are listed below,

$$\tilde{T}_{\pi\Delta}^{(5/2)} = \frac{3}{16} V(m_\pi^2, -m_\pi) - \frac{15}{16} V(m_\pi^2, m_\pi) - \frac{9}{16} \eta V(m_\pi^2, m_\pi) - \frac{5\mathcal{H}^2 m_\pi m^2_\pi}{1728\pi f^4_\pi} + \frac{5\mathcal{H}^2 m^2_\pi}{192\pi f^4_\pi} + \frac{4\tilde{h}_5 m^3_\pi}{f^2_\pi},$$

$$\tilde{T}_{\pi\Delta}^{(3/2)} = -\frac{1}{32} V(m_\pi^2, -m_\pi) - \eta V(m_\pi^2, m_\pi) - \frac{1}{4} \eta V(m_\pi^2, m_\pi) - \frac{5\mathcal{H}^2 m_\pi m^2_\pi}{1728\pi f^4_\pi} + \frac{5\mathcal{H}^2 m_\pi m^2_\pi}{1728\pi f^4_\pi} + \frac{5}{6} m^2_\pi W(m_\pi),$$

$$\tilde{T}_{\pi\Delta}^{(1/2)} = \frac{1}{16} V(m_\pi^2, -m_\pi) - \frac{5}{16} V(m_\pi^2, m_\pi) - \frac{1}{16} \eta V(m_\pi^2, m_\pi) - \frac{25}{16} \eta V(m_\pi^2, m_\pi) - \frac{5\mathcal{H}^2 m_\pi m^2_\pi}{1728\pi f^4_\pi} + \frac{125\mathcal{H}^2 m^2_\pi}{1728\pi f^4_\pi} + \frac{5}{6} m^2_\pi W(m_\pi),$$

$$\tilde{T}_{\pi\Sigma^*}^{(1/2)} = -\frac{5}{16} V(m_\pi^2, -m_\pi) - \frac{1}{16} V(m_\pi^2, m_\pi) - \frac{5}{16} \eta V(m_\pi^2, m_\pi) - \frac{1}{16} \eta V(m_\pi^2, m_\pi) + \frac{5\mathcal{H}^2 m^2_\pi}{432\pi f^4_\pi} + \frac{5}{12} m^2_\pi W(m_\eta),$$

$$\tilde{T}_{\pi\Sigma^*}^{(1/4)} = -\frac{3}{16} V(m_\pi^2, -m_\pi) - \frac{3}{16} V(m_\pi^2, m_\pi) - \frac{3}{16} \eta V(m_\pi^2, m_\pi) - \frac{3}{16} \eta V(m_\pi^2, m_\pi) - \frac{5\mathcal{H}^2 m^2_\pi}{108\pi f^4_\pi} + \frac{5}{12} m^2_\pi W(m_\eta),$$

$$\tilde{T}_{\pi\Sigma^*}^{(3/2)} = -\frac{1}{8} V(m_\pi^2, -m_\pi) - \frac{3}{8} V(m_\pi^2, m_\pi) - \frac{3}{8} \eta V(m_\pi^2, m_\pi) - \frac{3}{8} \eta V(m_\pi^2, m_\pi) + \frac{5\mathcal{H}^2 m^2_\pi}{576\pi f^4_\pi} + \frac{5\mathcal{H}^2 m_\pi m^2_\pi}{1728\pi f^4_\pi} + \frac{5\mathcal{H}^2 m^2_\pi}{1728\pi f^4_\pi} + \frac{5}{12} m^2_\pi W(m_\eta),$$

$$\tilde{T}_{\pi\Sigma^*}^{(1/2)} = -\frac{7}{32} V(m_\pi^2, -m_\pi) - \frac{11}{32} V(m_\pi^2, m_\pi) - \frac{7}{32} \eta V(m_\pi^2, m_\pi) - \frac{11}{32} \eta V(m_\pi^2, m_\pi) + \frac{5\mathcal{H}^2 m_\pi m^2_\pi}{1728\pi f^4_\pi} + \frac{5\mathcal{H}^2 m^2_\pi}{1728\pi f^4_\pi} + \frac{1}{12} m^2_\pi W(m_\eta),$$

$$\tilde{T}_{\pi\Pi^*}^{(1/2)} = -\frac{3}{16} V(m_\pi^2, -m_\pi) - \frac{3}{16} V(m_\pi^2, m_\pi) - \frac{5\mathcal{H}^2 m_\pi m^2_\pi}{432\pi f^4_\pi}, \quad (21)$$

where

$$\tilde{h}_5 = h_5^\ell - \frac{\mathcal{H}^2}{96M^2}. \quad (22)$$

B. Kaon-decuplet scattering

At the leading order, there are 14 independent T-matrices, which are

$$T_{K\Delta}^{(2)} = \frac{3m_K}{2f_K}, \quad T_{K\Delta}^{(1)} = \frac{m_K}{2f_K}, \quad T_{K\Sigma^*}^{(3/2)} = \frac{m_K}{2f_K}, \quad T_{K\Sigma^*}^{(1/2)} = \frac{m_K}{f_K}, \quad T_{K\Xi^*}^{(1/2)} = \frac{m_K}{f_K}.$$
\[T_{K^*}^{(0)} = \frac{3m_K}{2f_K}, \quad T_{K^*}^{(1/2)} = \frac{3m_K}{2f_K}, \quad T_{K^*}^{(2)} = 0, \quad T_{K^*}^{(1)} = \frac{2m_K}{f_K}, \quad T_{K^*}^{(3/2)} = -\frac{m_K}{2f_K}, \]
\[T_{K^{*\star}}^{(1/2)} = \frac{m_K}{f_K}, \quad T_{K^{*\star}}^{(1)} = -\frac{m_K}{f_K}, \quad T_{K^{*\star}}^{(0)} = 0, \quad T_{K^{*\star}}^{(2)} = -\frac{3m_K}{2f_K}. \]

At the next-leading order, we have
\[T_{K^*}^{(2)} = -\frac{m_K^2(3d_2 + 6d_3 - 4d_4)}{6f_K^2}, \quad T_{K^*}^{(1)} = \frac{m_K^2(d_2 - 6d_3 - 12d_4)}{6f_K^2}, \quad T_{K^{*\star}}^{(3/2)} = -\frac{m_K^2(2d_1 + 3d_2 + 6d_3 - 4d_4)}{6f_K^2}, \]
\[T_{K^{*\star}}^{(1/2)} = \frac{m_K^2(d_1 - 6d_3 - 8d_4)}{6f_K^2}, \quad T_{K^{*\star}}^{(2)} = -\frac{m_K^2(2d_1 + 3d_2 + 6d_3 - 4d_4)}{3f_K^2}, \quad T_{K^{*\star}}^{(0)} = \frac{m_K^2(d_1 - 2d_2 - 6d_3 - 4d_4)}{6f_K^2}, \]
\[T_{K^{*\star}}^{(1)} = -\frac{m_K^2(2d_2 + 3d_3 - 4d_4)}{3f_K^2}. \]

At the next-next-leading order, we just list \(\tilde{T} \) here. One may get the total \(T \)-matrices from Eqs. (19) and (20).
\[\tilde{T}_{K^*}^{(2)} = -\frac{3}{4} V(m_K^2, -m_K) - \frac{9}{16} V(m_K^2, m_K) - \frac{9}{32} V(m_\eta^2, -m_K) - \frac{3}{32} V(m_\eta^2, m_K) + \frac{5\pi^2 m_K^2 m_\pi^2}{432 \pi f_K^4 (m_\eta + m_\pi)} \]
\[+ \frac{4\bar{\hbar} m_K^3}{288 \pi f_K^4} + \frac{4\bar{\hbar} m_K^3}{f_K^2}, \]
\[\tilde{T}_{K^*}^{(1)} = \frac{1}{4} V(m_K^2, -m_K) - \frac{1}{16} V(m_K^2, m_K) + \frac{3}{32} V(m_\eta^2, -m_K) - \frac{7}{32} V(m_\eta^2, m_K) - \frac{25\pi^2 m_K^2 m_\pi^2}{1296 \pi f_K^4 (m_\eta + m_\pi)} \]
\[- \frac{35\pi^2 m_K^2 m_\pi^2}{2592 \pi f_K^4} + \frac{4\bar{\hbar} m_K^3}{3 f_K^2}, \]
\[\tilde{T}_{K^{*\star}}^{(3/2)} = -\frac{3}{16} V(m_K^2, m_K) + \frac{3}{16} V(m_K^2, -m_K) - \frac{5}{16} V(m_\eta^2, -m_K) - \frac{1}{4} V(m_\eta^2, m_K) + \frac{J}{3} - \frac{1}{6} m_K^2 W(m_\eta) - \frac{8\bar{\hbar} m_K^3}{3 f_K^2}, \]
\[\tilde{T}_{K^{*\star}}^{(1/2)} = -\frac{1}{8} V(m_K^2, m_K) - \frac{1}{16} V(m_K^2, -m_K) - \frac{9}{32} V(m_\eta^2, -m_K) - \frac{3}{32} V(m_\eta^2, m_K) - \frac{1}{4} V(m_\eta^2, m_K) \]
\[- \frac{5\pi^2 m_K^2 m_\pi^2}{1296 \pi f_K^4 (m_\eta + m_\pi)} + \frac{5\pi^2 m_K^2 m_\pi^2}{2592 \pi f_K^4} - \frac{J}{6} - \frac{1}{6} m_K^2 W(m_\eta) - \frac{4\bar{\hbar} m_K^3}{3 f_K^2}, \]
\[\tilde{T}_{K^{*\star}}^{(0)} = -\frac{3}{8} V(m_K^2, -m_K) - \frac{9}{16} V(m_K^2, m_K) + \frac{9}{32} V(m_\eta^2, -m_K) - \frac{9}{32} V(m_\eta^2, m_K) - \frac{3}{8} V(m_\eta^2, m_K) \]
\[+ \frac{5\pi^2 m_K^2 m_\pi^2}{432 \pi f_K^4 (m_\eta + m_\pi)} + \frac{5\pi^2 m_K^2 m_\pi^2}{288 \pi f_K^4} + \frac{J}{2} - \frac{1}{6} m_K^2 W(m_\eta) - \frac{4\bar{\hbar} m_K^3}{f_K^2}, \]
\[\tilde{T}_{K^\Delta}^{(2)} = -\frac{9}{16} V(m_K^2, -m_K) - \frac{9}{16} V(m_K^2, m_K) - \frac{9}{32} V(m_\eta^2, m_K) - \frac{9}{32} V(m_\eta^2, m_K) + \frac{5\pi^2 m_K^2 m_\pi^2}{216 \pi f_K^4} - \frac{4\bar{\hbar} m_K^3}{f_K^2}, \]
\[\tilde{T}_{K^\Delta}^{(1)} = \frac{3}{16} V(m_K^2, -m_K) - \frac{3}{16} V(m_K^2, m_K) - \frac{5\pi^2 m_K^2 m_\pi^2}{432 \pi f_K^4 (m_\eta + m_\pi)} - \frac{5\pi^2 m_K^2 m_\pi^2}{864 \pi f_K^4}, \]
\[\tilde{T}_{K^\Delta}^{(1)} = -\frac{11}{16} V(m_K^2, -m_K) - V(m_K^2, m_K) - \frac{3}{8} V(m_\eta^2, m_K) - \frac{1}{16} V(m_\eta^2, m_K) + \frac{25\pi^2 m_K^2 m_\pi^2}{1296 \pi f_K^4 (m_\eta + m_\pi)} \]
\[+ \frac{65\bar{\hbar} m_K^3}{2592 \pi f_K^4} - \frac{16\bar{\hbar} m_K^3}{3 f_K^2}. \]
\[
\tilde{T}^{(3/2)}_{K\Sigma} = -\frac{3}{16} V(m_K^2, -m_K) - \frac{1}{16} V(m_K^2, m_K) - \frac{3}{32} V(m_\pi^2, -m_K) - \frac{7}{32} V(m_\pi^2, m_K) - \frac{1}{4} V(m_\pi^2, m_K) + \frac{J}{6} \\
- \frac{1}{6} m_K^2 W(m_\eta) + \frac{4 h_5 m_\eta^3}{3 f_K}, \\
\tilde{T}^{(3/2)}_{K\Xi} = -\frac{1}{4} V(m_K^2, m_K) - \frac{3}{8} V(m_\eta^2, -m_K) - \frac{9}{16} V(m_\eta^2, m_K) - \frac{1}{8} V(m_\pi^2, -m_K) - \frac{1}{16} V(m_\pi^2, m_K) - \frac{J}{3} \\
- \frac{1}{6} m_K^2 W(m_\eta) - \frac{8 h_5 m_\eta^3}{3 f_K}, \\
\tilde{T}^{(1)}_{K\Xi} = -\frac{5}{16} V(m_K^2, -m_K) - \frac{1}{4} V(m_K^2, m_K) - \frac{3}{16} V(m_\eta^2, -m_K) - \frac{5}{16} V(m_\eta^2, m_K) - \frac{3}{16} V(m_\pi^2, m_K) \\
+ \frac{5 H^2 m_K^2 m_\eta^2}{1296 \pi f_K^4 (m_\eta + m_\pi)} + \frac{25 H^2 m_K^2 m_\eta^2}{2592 \pi f_K^4} + \frac{J}{6} - \frac{1}{6} m_K^2 W(m_\eta) + \frac{8 h_5 m_\eta^3}{3 f_K}, \\
\tilde{T}^{(0)}_{K\Xi} = \frac{3}{16} V(m_K^2, m_K) - \frac{9}{16} V(m_\eta^2, m_K) - \frac{3}{16} V(m_\pi^2, m_K) - \frac{5 H^2 m_K^2 m_\eta^2}{432 \pi f_K^4 (m_\eta + m_\pi)} \\
- \frac{5 H^2 m_K^2 m_\eta}{864 \pi f_K^4} - \frac{J}{2} - \frac{1}{6} m_K^2 W(m_\eta), \\
\tilde{T}^{(1/2)}_{K\Omega} = -\frac{9}{16} V(m_K^2, -m_K) - \frac{9}{16} V(m_K^2, m_K) - \frac{9}{32} V(m_\eta^2, -m_K) - \frac{9}{32} V(m_\eta^2, m_K) + \frac{5 H^2 m_K^2 m_\eta}{216 \pi f_K^4} \\
+ \frac{4 h_5 m_\eta^3}{f_K}. \\
\] (25)

C. Eta-decuplet scattering

Eta and decuplet-baryon T-matrices start at the second chiral order,

\[
T^{(3/2)}_{\eta\Delta} = -\frac{\langle \tilde{d}_1 + \tilde{d}_2 + 6d_3 + 8d_4 \rangle m_\eta^2}{6 f_\eta^2} + \frac{2d_4 m_\eta^2}{3 f_\eta^2}, \quad T^{(1)}_{\eta\Sigma} = \frac{\langle \tilde{d}_1 - 2\tilde{d}_2 - 6d_3 \rangle m_\eta^2}{6 f_\eta^2}, \\
T^{(1/2)}_{\eta\Xi} = -\frac{\langle 3\tilde{d}_2 + 6d_3 - 8d_4 \rangle m_\eta^2}{6 f_\eta^2} - \frac{2d_4 m_\eta^2}{3 f_\eta^2}, \quad T^{(0)}_{\eta\Omega} = -\frac{\langle 2\tilde{d}_1 + 2\tilde{d}_2 + 3d_3 - 8d_4 \rangle m_\eta^2}{3 f_\eta^2} - \frac{4d_4 m_\eta^2}{3 f_\eta^2}. \\
\] (26)

At the third order, we have

\[
\tilde{T}^{(3/2)}_{\eta\Delta} = -\frac{9}{32} V(m_K^2, -m_\eta) - \frac{9}{32} V(m_K^2, m_\eta) + \frac{5 H^2 m_\eta^3}{1432 \pi f_\eta^4} - \frac{5 H^2 m_K^2 m_\eta}{324 \pi f_\eta^4} + \frac{35 H^2 m_\eta m_\pi^2}{5184 \pi f_\eta^4} - \frac{25 H^2 m_\eta^3}{1728 \pi f_\eta^4} - \frac{1}{3} m_\eta^2 W(m_K) \\
+ \frac{1}{6} m_K^2 W(m_\pi), \\
\tilde{T}^{(1)}_{\eta\Sigma} = -\frac{3}{4} V(m_K^2, -m_\eta) - \frac{3}{4} V(m_K^2, m_\eta) + \frac{5 H^2 m_\eta^3}{162 \pi f_\eta^4} - \frac{5 H^2 m_K^2 m_\eta}{648 \pi f_\eta^4} + \frac{4}{9} m_K^2 W(m_\eta) - \frac{2}{9} m_\eta^2 W(m_K) - \frac{7}{36} m_\eta^2 W(m_\eta) \\
+ \frac{5}{36} m_\pi^2 W(m_\pi), \\
\tilde{T}^{(1/2)}_{\eta\Xi} = -\frac{27}{32} V(m_K^2, -m_\eta) - \frac{27}{32} V(m_K^2, m_\eta) + \frac{5 H^2 m_\eta^3}{144 \pi f_\eta^4} - \frac{5 H^2 m_K^2 m_\eta}{324 \pi f_\eta^4} + \frac{35 H^2 m_\eta m_\pi^2}{5184 \pi f_\eta^4} - \frac{5 H^2 m_\eta^3}{1728 \pi f_\eta^4} + \frac{4}{9} m_K^2 W(m_\eta) \\
- \frac{1}{3} m_K^2 W(m_\pi) - \frac{7}{36} m_\eta^2 W(m_\eta) + \frac{1}{12} m_\pi^2 W(m_\pi), \\
\tilde{T}^{(0)}_{\eta\Omega} = -\frac{9}{16} V(m_K^2, -m_\eta) - \frac{9}{16} V(m_K^2, m_\eta) + \frac{5 H^2 m_\eta^3}{216 \pi f_\eta^4} - \frac{5 H^2 m_K^2 m_\eta}{81 \pi f_\eta^4} + \frac{35 H^2 m_\eta m_\pi^2}{1296 \pi f_\eta^4} - \frac{2}{3} m_K^2 W(m_\eta). \\
\] (27)

We have checked that our results satisfy the SU(3) symmetry and the crossing symmetry. Moreover, we have calculated the T-matrices of all 80 channels explicitly.
IV. LOW-ENERGY CONSTANTS

Before the numerical calculation, we have to determine the coupling constants in the Lagrangian. For those in the leading order, we use \[33, 34\]

\[
\begin{align*}
m_\pi &= 139.57 \text{ MeV}, & m_K &= 493.68 \text{ MeV}, & m_\eta &= 547.75 \text{ MeV}, & \delta &= 294 \text{ MeV}, \\
f_\pi &= 92.4 \text{ MeV}, & f_K &= 113 \text{ MeV}, & f_\eta &= 1.2f_K, \\
C &= -1.5, & H &= -1.9.
\end{align*}
\] (28)

At the second chiral order, \(d_4\) could be determined from the mass splitting of the light decuplet,

\[
d_4 = \frac{3(m_\Delta - m_{\Sigma^+})}{4(m_\pi^2 - m_K^2)} = 0.51 \text{ GeV}^{-1}.
\] (29)

Other LECs cannot be determined from the available experimental data. Thus we try to estimate them with the resonance saturation method, which was originally used in the meson case \[27\] and applied to the pion nucleon interaction latter \[27\]. According to this method, the effects from higher resonances are encoded in the LECs. Here we consider contributions from baryon resonances below 1.6 GeV and ignore contributions from higher baryons.

The first baryon multiplet contributing to LECs is the \(J^P = 3/2^-\) octet, which contains \(N(1520), \Lambda(1690), \Sigma(1670),\) and \(\Xi(1820)\). We simply denote it as \(N_{1520}^\mu\) here. The relevant interacting Lagrangian is

\[
L_{N_{1520}} = i G_{N(1520)}(\bar{N}_{1520}^\mu \gamma_5 T_\mu - \bar{T}_\mu \gamma_5 N_{1520}^\mu).
\] (30)

For the complete relativistic Lagrangian, additional terms may be constructed according to the point transformation \[28\]. Because we are considering the case at threshold and the external baryons are on shell, such terms do not contribute and we ignore them here. By integrating out \(N_{1520}\), one gets

\[
L_{\text{eff}}^{N(1520)} \sim \frac{G_{N(1520)}^2}{m_{N_{1520}} - m_\Delta} (\bar{T}_{ijk} v \cdot u_i s v \cdot u_j \gamma_5 T_\mu - \bar{T}_{\mu}^{ijk} v \cdot u_i s v \cdot u_j T_{\mu ij}).
\] (31)

The \(J^P = 3/2^+\) decuplet containing \(\Delta(1600)\) is the lightest one contributing to LECs, and is denoted as \(T_{1600}\) here. The interacting Lagrangian reads

\[
L_{T_{1600}} = G_{\Delta(1600)}(\bar{T}_{1600}^\mu \gamma_5 T_\mu + \bar{T}_\mu \gamma_5 T_{1600}).
\] (32)

The contribution to LECs may be derived from the resultant effective term,

\[
L_{\text{eff}}^{\Delta(1600)} \sim \frac{G_{\Delta(1600)}^2}{m_{T_{1600}} + m_\Delta} \frac{2}{3} (\bar{T}_{ijk} v \cdot u_i s v \cdot u_j \gamma_5 T_\mu - \bar{T}_{\mu}^{ijk} v \cdot u_i s v \cdot u_j T_{\mu ij}).
\] (33)

Recall the fact that the time component of the on-shell Rarita-Schwinger field vanishes in the static limit, there is no chiral coupling with \(J = 1/2\) baryon and pion at threshold. For the \(\pi N\) interaction \[27\], both the intermediate \(\Delta\) and \(N^*\) baryons contribute to LECs because they are off-shell. In the present case, the external \(J = 3/2\) baryon is on-shell and static and the intermediate excited \(J = 1/2\) baryons do not contribute. As a result, we only need to consider the intermediate \(J = 3/2\) baryons.

Besides the baryon resonances, the scalar meson \(\sigma\) would also contribute to LECs through t-channel. From the Lagrangians,

\[
\begin{align*}
L_{\sigma \pi \pi} &= \hat{c}_d \text{Tr}(u \cdot u) \sigma + \hat{c}_m \text{Tr}(\chi_+) \sigma, \\
L_{\sigma \Delta \Delta} &= g_{\sigma} \bar{T}_\mu T^\mu \sigma,
\end{align*}
\] (34)

we get

\[
L_{\sigma} \sim \frac{2g_{\sigma}\hat{c}_d}{m_{\rho}^2} - \frac{8g_{\sigma}\hat{c}_m}{m_{\rho}^2} \text{Tr}(v \cdot u v \cdot u) \bar{T}_\mu T^\mu.
\] (35)

Similarly, the scalar octet containing \(\kappa(800), a_0(980)\) and \(f_0(980)\) may also be considered. We denote it as \(\kappa\). The corresponding Lagrangians are

\[
\begin{align*}
L_{\kappa \pi \pi} &= c_d \text{Tr}(u \cdot u \kappa) + c_m \text{Tr}(\chi_+ \kappa),
\end{align*}
\]
\[
\mathcal{L}_{\kappa \Delta \Delta} = g_{\kappa} \tilde{T}_{\mu} T^{\mu},
\]
from which one obtains
\[
\mathcal{L}_{\text{eff}}^\kappa \sim \frac{2g_{\kappa}c_d}{m_{500}^2} \bar{\mu}_{ijk} v_i u_i v_j u_j \tilde{T}_{\mu}^{ijk} \tilde{T}_{\mu}^{ijk} - \frac{2g_{\kappa}c_d}{3m_{500}^2} \text{Tr}(v \cdot u v \cdot u) \tilde{T}_{\mu}^{ijk} \tilde{T}_{\mu}^{ijk} + \frac{2g_{\kappa}c_m}{m_{800}^2} \tilde{T}_{\mu}^{j\kappa} T^{\mu}.
\]
In the pion-nucleon case, the vector meson \(\rho\) does not contribute because the contraction of the \(\rho\)-meson propagator with the corresponding \(\rho \pi \pi\) matrix element vanishes in the forward direction \cite{27}. Here the vector mesons do not contribute because of the same reason.

Adding the above effective Lagrangians \(31\), \(33\), \(35\), and \(37\) together, we have
\[
\mathcal{L}_{\text{eff}} = \left(\frac{G_{N(1520)}^2}{m_{1520} - m_{\Delta}} + \frac{2G_{\Delta(1600)}^2}{3m_{1600} + m_{\Delta}} \right) \tilde{T}_{\mu}^{ijk} v_i u_i v_j u_j \tilde{T}_{\mu}^{ijk} + \left(\frac{G_{\Delta(1600)}^2}{m_{1600} - m_{\Delta}} - \frac{G_{N(1520)}^2}{3m_{1600} + m_{\Delta}} + \frac{2g_{\kappa}c_d}{m_{500}^2} \right) \tilde{T}_{\mu}^{ijk} v_i u_i v_j u_j \tilde{T}_{\mu}^{ijk} + \frac{2g_{\kappa}c_m}{m_{800}^2} \text{Tr}(v \cdot u v \cdot u) \tilde{T}_{\mu}^{ijk} \tilde{T}_{\mu}^{ijk} + \frac{2g_{\kappa}c_m}{m_{800}^2} \tilde{T}_{\mu}^{j\kappa} T^{\mu}.
\]
Now one estimates the LECs by comparing it with the Lagrangian \(39\),
\[
d_1 = \frac{G_{N(1520)}^2}{m_{1520} - m_{\Delta}} + \frac{2G_{\Delta(1600)}^2}{3m_{1600} + m_{\Delta}}, \quad d_2 = \frac{G_{\Delta(1600)}^2}{m_{1600} - m_{\Delta}} - \frac{G_{N(1520)}^2}{3m_{1600} + m_{\Delta}} + \frac{2g_{\kappa}c_d}{m_{500}^2},
\]
\[
d_3 = \frac{2g_{\kappa}c_d}{m_{500}^2} - \frac{8g_{\sigma}c_m}{m_{500}^2} - \frac{2g_{\kappa}c_d}{m_{800}^2}, \quad d_4 = \frac{2g_{\kappa}c_m}{m_{800}^2}.
\]
It is not difficult to determine the coupling constant \(G_{N(1520)}\) according to the decay width. From the Lagrangian \(30\) and the decay to \(\pi \Delta\), one deduces
\[
G_{N(1520)}^2 = \frac{36\pi\Gamma(N(1520) \rightarrow \Delta \pi)m_{1520}m_{\Delta}^{-2}f_\pi^2}{|p_d|^2 (m_{1520} - m_{\Delta})^2 (E_{\Delta} + m_{\Delta})^2 (2E_{\Delta} + 2E_{\Delta}m_{\Delta} + 5m_{\Delta}^2)}.
\]
Here \(p_d\) is the decay momentum, \(E_\pi = \sqrt{p_d^2 + m_\pi^2}\), and \(E_\Delta = \sqrt{p_d^2 + m_{\Delta}^2}\). From the PDG \(33\), one derives
\[
G_{N(1520)}^2 = \frac{m_{1520} - m_{\Delta}}{m_{1520} + m_{\Delta}} = 0.27 \text{ GeV}^{-1}.
\]
With the same procedure, we derive the coupling constant \(G_{\Delta(1600)}\),
\[
G_{\Delta(1600)}^2 = \frac{m_{1600} + m_{\Delta}}{m_{1600} + m_{\Delta}} = 0.46 \text{ GeV}^{-1}.
\]
For the coupling constants \(c_d\) and \(c_m\), we use \(32\)
\[
|c_d| = 3.2 \times 10^{-2} \text{ GeV}, \quad |c_m| = 4.2 \times 10^{-2} \text{ GeV}, \quad c_d c_m > 0.
\]
Although there is no empirical value of \(g_{\kappa}\), one may estimate it by comparing \(d_4\) obtained with the resonance saturation method in \(39\) with that from the mass splitting in \(29\),
\[
|g_{\kappa}| = 3.9, \quad g_{\kappa} c_m > 0.
\]
In addition, the coupling constants should obey the nonet relations in the large \(N_c\) limit,
\[
\tilde{c}_d = \frac{\zeta}{\sqrt{3}} c_d, \quad \tilde{c}_m = \frac{\zeta}{\sqrt{3}} c_m, \quad g_{\sigma} = \frac{\zeta}{\sqrt{3}} g_{\kappa}, \quad \zeta = \pm 1.
\]
By combining the above relations, the estimated LECs at \(O(c^2)\) are
\[
d_1 = 0.58 \text{ GeV}^{-1}, \quad d_2 = 0.28 \text{ GeV}^{-1}, \quad d_3 = -1.11 \text{ GeV}^{-1}, \quad d_4 = 0.51 \text{ GeV}^{-1}.
\]
In a similar way, one may consider the high order corrections and estimate the \(O(c^3)\) LECs \(h_1-h_5\). Due to the uncertainty of this method, we tend to neglect these counter terms in the following calculation. This assumption was adopted in the study of the meson-baryon scattering lengths in Refs. \(8, 26\). The counter terms of the \(\pi N\) scattering lengths are found to be much smaller than the loop contributions at this order in Ref. \(27\). However, to explore the orders of the counter terms, we have made a very crude estimate about these LECs \(h_1-h_5\), which are collected in the Appendix \(A\).
The future investigation of the higher order recoil corrections and LECs etc may answer whether similar features might worsen the convergence. Another reason probably comes from the heavy hadron framework itself. In the bad convergence may be mainly due to the large mass of kaon and eta [6, 8, 19, 20]. Inaccurate determination of somehow their results are consistent with ours.

V. NUMERICAL RESULTS AND DISCUSSIONS

We set λ at $4\pi f_\pi$, $4\pi f_K$ and $4\pi f_\eta$ respectively for the pion, kaon and eta-scattering in our numerical analysis. The results for the T-matrices and the scattering lengths at different orders are shown in Table I, II and III. The positive sign of $a^{(3/2)}_\pi$, $a^{(1)}_\pi$, $a^{(0)}_\pi$, $a^{(1)}_K$, $a^{(0)}_K$, $a^{(1)}_\Sigma$, $a^{(0)}_\Sigma$, $a^{(1)}_\Omega$, $a^{(0)}_\Omega$, $a^{(1)}_{\pi\Delta}$, $a^{(0)}_{\pi\Delta}$, $a^{(1)}_{K\Delta}$, $a^{(0)}_{K\Delta}$, $a^{(1)}_{K^*\Delta}$, $a^{(0)}_{K^*\Delta}$, $a^{(1)}_{\eta\pi}$. $a^{(0)}_{\eta\pi}$ indicates that the strong interactions for these channels are attractive.

In Ref. [35], the authors used the extended NJL model and got the following $\pi\Delta$ scattering lengths:

$$a^{5/2}_\pi = -0.258 m_\pi^{-1} = -0.364 \text{ fm}, \quad a^{3/2}_\pi = 0.172 m_\pi^{-1} = 0.242 \text{ fm}, \quad a^{1/2}_\pi = 0.429 m_\pi^{-1} = 0.604 \text{ fm}.$$ (47)

Somehow their results are consistent with ours.

From the data, one easily sees that the third order contributions are large and the T-matrices do not converge. The bad convergence may be mainly due to the large mass of kaon and eta [6, 8, 19, 20]. Inaccurate determination of LECs might worsen the convergence. Another reason probably comes from the heavy hadron framework itself. In the meson-baryon case [25] and the meson-heavy meson case [30, 31], it was found that the recoil corrections are sizable. The future investigation of the higher order recoil corrections and LECs etc may answer whether similar features

$O(c^+)$	$O(c^+)$	$O(c^+)$	Total	Scattering Length
$T_0^{(1)}$	-0.173	0.338+3.76i	0.165+3.76i	0.00909+0.207i
$T_0^{(2)}$	3.58	1.79+9.96i	5.37+9.96i	0.306+0.506i
$T_0^{(3)}$	4.34	1.23+11.2i	5.57+11.2i	0.326+0.655i
$T_0^{(4)}$	2.1	-1.35+7.44i	0.756+7.44i	0.0453+0.446i

TABLE I: Pion-light decuplet baryon threshold T-matrices order by order in unit of fm.

$O(c^+)$	$O(c^+)$	$O(c^+)$	Total	Scattering Length	
$T_0^{(1)}$	-11.4	3.73	-9.27	-17.	-0.965
$T_0^{(2)}$	3.81	0.917	3.67	8.4	0.477
$T_0^{(3)}$	-3.81	1.39	-9.44+6.77i	-11.9+6.77i	-0.696+0.397i
$T_0^{(4)}$	7.63	2.79	10.1+11.5i	20.5+11.5i	1.2+0.673i
$T_0^{(5)}$	3.81	1.39	-3.22+10.9i	1.98+10.9i	0.119+0.658i
$T_0^{(6)}$	11.4	4.66	16.4+17.2i	32.5+17.2i	1.95+1.04i
$T_0^{(7)}$	11.4	3.73	9.4+12.5i	24.6+12.5i	1.51+0.768i
$T_0^{(8)}$	0	1.62	-2.85+8.34i	-1.23+8.34i	-0.6097+0.474i
$T_0^{(9)}$	15.3	4.43	14.6+2.78i	34.3+2.78i	1.95+0.158i
$T_0^{(10)}$	-3.81	2.32	-4.01+11.3i	-5.5+11.3i	-0.323+0.662i
$T_0^{(11)}$	7.63	0.92	-0.775+2.42i	7.77+2.42i	0.456+0.142i
$T_0^{(12)}$	-7.63	3.02	-5.33+8.51i	-9.93+8.51i	-0.598+0.512i
$T_0^{(13)}$	0	-0.249	-9.72+0.533i	-9.97+0.533i	-0.6+0.032i
$T_0^{(14)}$	-11.4	3.73	-6.8	-14.5	-0.892

TABLE II: Kaon-light decuplet baryon threshold T-matrices order by order in unit of fm.

$O(c^+)$	$O(c^+)$	$O(c^+)$	Total	Scattering Length	
$T_0^{(1)}$	-1.37	-5.76	-0.412		
$T_0^{(2)}$	3.23	-0.253	-0.901-1.02i	2.07-1.02i	0.148+0.0728i
$T_0^{(3)}$	8.06	1	1.44+0.814i	10.5+0.814i	0.751+0.0582i
$T_0^{(4)}$	-3.23	0.361	-2.52-0.102i	-5.38-0.102i	-0.389-0.00736i
$T_0^{(5)}$	3.23	0.0819	-1.8-0.509i	1.51-0.509i	0.109-0.0368i
$T_0^{(6)}$	6.45	0.781	-0.412+0.509i	6.82+0.509i	0.493+0.0368i
$T_0^{(7)}$	-1.61	0.277	-2.69-0.102i	-4.02-0.102i	-0.293-0.00742i
$T_0^{(8)}$	3.23	0.277	-1.89-0.102i	1.61-0.102i	0.118-0.00742i

TABLE III: Eta-light decuplet baryon threshold T-matrices order by order in unit of fm.
We hope the future lattice simulation or experimental measurements may test the predictions.

TABLE IV: Pion-light decuplet baryon threshold T-matrices at $O(\epsilon^2)$ in unit of fm.

Loop:	Octet Contribution	Decuplet Contribution	Total	Only Recoil Correction	Total
$T^{(5/2)}$	0	-1.41	-1.41	0.0345	-1.37
$T^{(3/2)}$	-0.518+1.02i	-0.586	-1.16-1.02i	0.203	-0.901+1.02i
$T^{(1/2)}$	0.414+0.814i	1.08	1.49+0.814i	-0.0575	1.44+0.814i
$T^{(0)}$	-0.129+1.02i	-2.41	-2.54+1.02i	0.023	-2.52+1.02i
$T^{(2)}$	-0.337+0.599i	-1.56	-1.9+0.599i	0.0977	-1.8+0.599i
$T^{(3/2)}$	0.181+0.599i	-0.548	-0.366+0.599i	-0.046	-0.41+0.599i
$T^{(1/2)}$	-0.129+1.02i	-2.57	-2.7-1.02i	0.0115	-2.69+1.02i
$T^{(3)}$	-0.129+1.02i	-1.78	-1.91-1.02i	0.0222	-1.89-1.02i
$T^{(5)}$	0	-1.87	-1.87	0	-1.87

TABLE V: Kaon-light decuplet baryon threshold T-matrices at $O(\epsilon^3)$ in unit of fm.

Loop:	Octet Contribution	Decuplet Contribution	Total	Only Recoil Correction	Total
$T^{(2)}$	0	-9.33	-9.33	0.0607	-9.27
$T^{(3/2)}$	0	3.69	3.69	-0.0292	3.67
$T^{(3/2)}$	0.778+1.78i	-11.66+6.95i	-10.2+6.77i	0.777	-9.44+6.77i
$T^{(1/2)}$	0.666+0.355i	9.47+11.1i	10.1+11.5i	-0.0405	10.14+11.5i
$T^{(1)}$	-0.178+1.78i	-4.99+11.1i	-4.21+10.9i	0.989	-3.22+10.9i
$T^{(0)}$	0.628+0.533i	15.8+16.7i	16.4+17.2i	-0.0607	16.4+17.2i
$T^{(2)}$	0	8.7+12.5i	8.7+12.5i	0.696	9.4+12.5i
$T^{(3)}$	0	-2.85+8.34i	-2.85+8.34i	0	-2.85+8.34i
$T^{(1/2)}$	0.703+0.178i	-4.73+11.1i	-4.03+11.3i	0.0202	-4.01+11.3i
$T^{(1)}$	0.816+0.355i	-3.06+2.78i	-2.25+2.42i	1.47	-0.775+2.42i
$T^{(2)}$	0.703+0.178i	-6.07+8.34i	-5.37+8.51i	0.0405	-5.33+8.51i
$T^{(3/2)}$	0.854+0.533i	-12.1	-11.2+0.533i	1.51	-9.72+0.533i
$T^{(1)}$	0	-6.86	-6.86	0.0607	-6.8

Occur in the meson-decuplet cases.

We also show different contributions of the T-matrices at $O(\epsilon^2)$ in Table IV and V. From the values we observe that the loop corrections from the intermediate decuplet states dominate. In the pion scattering channels, only loop diagrams containing the octet baryons could generate the imaginary part. The contributions from the intermediate octet and decuplet baryons have opposite signs in many channels, which is beneficial for the convergence. The consideration of the recoil corrections increases the convergence in most channels.

We compare $T^{(2,1.0)}_{\pi\Sigma}$, $T^{(3/2,1/2)}_{\pi\Sigma}$, $T^{(3/2,1/2)}_{K\Sigma}$, $T^{(3,1/2)}_{K\Sigma}$, $T^{(1,0)}_{K\Sigma}$, and $T^{(1,0)}_{K\Sigma}$, with the corresponding $T^{(2,1.0)}_{\pi\Xi}$, $T^{(3/2,1/2)}_{\pi\Xi}$, $T^{(3/2,1/2)}_{K\Xi}$, $T^{(3,1/2)}_{K\Xi}$, $T^{(1,0)}_{K\Xi}$, and $T^{(1,0)}_{K\Xi}$ obtained in Refs. 21, 22, and find that the results of each pair are equal at the leading order, but different at higher order. We also check the following quantities at the leading order,

$$T_{\pi+\Delta} = T_{\pi+\Delta}, \quad T_{\pi+\Delta^0} = T_{\pi+\Delta}, \quad T_{K+\Delta} = T_{K+\Delta}, \quad T_{K^0\Delta^+} = T_{K^0\Delta^+}, \quad T_{K^0\Delta^0} = T_{K^0\Delta^0}. \quad (48)$$

These relations are easy to understand with the Weinberg-Tomazawa formula: $T \sim I_{tot}(I_{tot}+1) - I_B(I_B+1) - I_M(I_M+1)$ where I_{tot}, I_B, and I_M are the total, baryon, and meson isospin, respectively.

In summary, we have calculated the S-wave scattering lengths of the pseudoscalar mesons and light decuplet baryons to the third order in the framework of heavy baryon chiral perturbation theory. We estimate LECs with the resonance saturation method. Our results may be helpful to the model construction of the meson-decuplet baryon interactions. We hope the future lattice simulation or experimental measurements may test the predictions.
TABLE VI: Eta-light decuplet baryon threshold T-matrices at $O(\epsilon^2)$ in unit of fm.

Loop:	Octet Contribution	Decuplet Contribution	Total	Only Recoil Correction
$T_{\omega}^{(3/2)}$	0.493+0.0439i	-0.479+3.72i	0.0145+3.76i	0.324
$T_{\omega}^{(1)}$	-0.548+0.0366i	2.33+9.92i	1.79+9.96i	0
$T_{\omega}^{(1/2)}$	-0.403+0.0219i	1.3+11.2i	0.902+11.2i	0.324
$T_{\omega}^{(0)}$	0.93	-3.57+7.44i	-2.64+7.44i	1.29

Acknowledgments

This project is supported by the National Natural Science Foundation of China under Grants No. 10625521, No. 10721063, No. 10805048 and the Ministry of Science and Technology of China (2009CB825200). YRL was supported by the Japan Society for the Promotion of Science KAKENHI (Grant No. 21.09027).

Appendix A: Rough estimation of the $O(\epsilon^3)$ counter terms

At this order, the excited baryons contribute to LECs through both tree diagrams and loop diagrams. Here we assume the former contribution is much smaller than the latter one. This assumption for the estimation is similar to the one used in studying the meson-baryon scattering lengths in Refs. [8, 26] and the above numerical calculation. For a very rough estimate at $O(\epsilon^3)$, we only consider the octet resonance containing $N(1440)$, denoted by R.

The diagrams one needs to calculate are similar to those in the last column of Fig. 1. A new Lagrangian should be introduced,

$$L_{\phi TR} = Tr \left(\hat{R} (iv \cdot \partial - \delta_R) R + \hat{R} [v \cdot \Gamma, R] \right) + G_N(1440) (T^\mu u_\mu R + \hat{R} u_\mu T^\mu) + ...$$

where $\delta_R \sim 500$ MeV is the mass difference between $N(1440)$ and the nucleon. In our calculation, we need $\delta_R = 208$ MeV, which is the mass difference between $N(1440)$ and Δ.

The T-matrices can be obtained by replacing J and $W(m)$ in Eqs. (12) and (13) with

$$J_{\text{new}} = J + J_R, \quad W_{\text{new}}(m) = W(m) + W_R(m), \quad \text{(A2)}$$

where

$$J_R = \frac{G_N(1440)^2 m_R^2}{12\pi^2 f^4 (m_\eta^2 - m_\pi^2)} \left[\left(\frac{\bar{\delta} R}{\delta R} - \frac{3}{2} \frac{m_\eta^2}{m_\pi^2} \bar{\delta} R \right) \log \frac{m_\pi}{\lambda} + \left(\frac{3}{2} \frac{m_\eta^2}{m_\pi^2} \delta R - \frac{\bar{\delta} R}{\delta R} \right) \log \frac{m_\pi}{\lambda} \right. \right.$$

$$\left. + \left(\frac{\bar{\delta} R}{\delta R} - \frac{m_\eta^2}{m_\pi^2} \right)^{3/2} \log \frac{\bar{\delta} R}{m_\pi} - \left(\frac{\bar{\delta} R}{\delta R} - \frac{m_\eta^2}{m_\pi^2} \right)^{3/2} \cos^{-1} \left(\frac{\bar{\delta} R}{m_\eta} \right) \right.$$

$$\left. + \left(\frac{\bar{\delta} R}{\delta R} - m_\eta^2 \bar{\delta} R \right) \right], \quad \text{(A3)}$$

$$W_R(m) = \frac{G_N(1440)^2}{16\pi^2 f^4} \left[-2 \sqrt{\frac{m^2 - \bar{\delta} R}{m}} \cos^{-1} \left(\frac{\bar{\delta} R}{m} \right) - 2 \bar{\delta} R \log \frac{\bar{\delta} R}{m} + \bar{\delta} R \quad m > \bar{\delta} R \right]$$

$$\left. - 2 \bar{\delta} R \log \frac{\bar{\delta} R}{m} + 2 \sqrt{\frac{\bar{\delta} R}{m}} - \frac{\bar{\delta} R}{m} \right] \right. \right. \right.$$

$$W_R(m) = \frac{G_N(1440)^2}{16\pi^2 f^4} \left[-2 \sqrt{\frac{m^2 - \bar{\delta} R}{m}} \cos^{-1} \left(\frac{\bar{\delta} R}{m} \right) - 2 \bar{\delta} R \log \frac{\bar{\delta} R}{m} + \bar{\delta} R \quad m \leq \bar{\delta} R \right] \right. \right. \right.$$

We show the numerical results at order $O(\epsilon^3)$ in Tables VII, VIII and IX. The roughly estimated LECs are $h_1^3 = -1.7$ GeV$^{-2}$, $h_2^3 = -4.4$ GeV$^{-2}$, $h_3^3 = 3.3$ GeV$^{-2}$, $h_4^3 = -0.8$ GeV$^{-2}$, and $h_5^3 = 0.0$ at around the scale $4\pi f_\pi$. From the tables, we see that the contribution due to the intermediate $N(1440)$ octet increases the convergence of the chiral expansion in most channels slightly.

[1] G. ’t Hooft, Nucl. Phys. B 72, (1974).
[2] E. Witten, Nucl. Phys. B 160, 57 (1979).
[3] R. Koch and E. Pietarinen, Nucl. Phys. A 336, 331 (1980).
TABLE VII: Pion-light decuplet baryon threshold T-matrices considering $N(1440)$ octet baryon contribution in unit of fm.

$O(e^+)$	$O(e^-)$	$O(e^+)$: i)	$O(e^-)$: ii)	$O(e^+)$: Total, New	
$T^{(3/2)}_{1/2}$	-4.84	0.445	-1.37	0	1.37
$T^{(1/2)}_{1/2}$	3.23	-0.253	0.374	0	0.374
$T^{(1/2)}_{3/2}$	8.06	1.44	1.44+0.814i	1.44+0.814i	
$T^{(3/2)}_{3/2}$	-2.23	0.361	2.56-0.102i	-2.56-0.102i	
$T^{(1/2)}_{1/2}$	3.23	0.0819	-0.0434	-0.0434	
$T^{(3/2)}_{1/2}$	6.45	0.781	-0.412+0.509i	-0.412+0.509i	
$T^{(1/2)}_{3/2}$	3.23	0.277	-1.89-0.102i	-1.89-0.102i	
$T^{(1)}_{0}$	0	0.194	-1.87	-1.87	

TABLE VIII: Kaon-light decuplet baryon threshold T-matrices considering $N(1440)$ octet baryon contribution in unit of fm.

$O(e^+)$	$O(e^-)$	$O(e^+)$: i)	$O(e^-)$: ii)	$O(e^+)$: Total, New	
$T^{(3/2)}_{K}$	-11.4	3.73	-9.27	0	9.27
$T^{(1/2)}_{K}$	3.81	0.917	3.67	0	3.67
$T^{(3/2)}_{K}$	-3.81	1.39	-9.44+6.77i	6.77i	
$T^{(1/2)}_{K}$	7.63	2.79	10.1+11.5i	-5.58i	
$T^{(1)}_{K}$	3.81	1.39	-3.22+10.9i	1.62	
$T^{(0)}_{K}$	11.4	4.66	16.4+17.2i	15.1+17.2i	
$T^{(1/2)}_{K}$	11.4	3.73	9.4+12.5i	9.4+12.5i	
$T^{(3/2)}_{K}$	0	1.62	-2.85+8.34i	0	-2.85+8.34i
$T^{(1)}_{K}$	15.3	4.43	14.6+2.78i	14.6+2.78i	
$T^{(0)}_{K}$	-3.81	2.32	-4.01+11.3i	0.168	
$T^{(1/2)}_{K}$	7.63	0.92	-0.775+2.42i	2.35	
$T^{(3/2)}_{K}$	-7.63	3.02	-5.33+8.51i	0.168	
$T^{(1)}_{K}$	0	-0.249	-9.72-0.533i	3.07	
$T^{(0)}_{K}$	-11.4	3.73	-6.8	0	-6.8

TABLE IX: Eta-light decuplet baryon threshold T-matrices considering $N(1440)$ octet baryon contribution in unit of fm.

$O(e^+)$	$O(e^-)$	$O(e^+)$: i)	$O(e^-)$: ii)	$O(e^+)$: Total, New
$T^{(3/2)}_{\eta}$	0	-0.173	0.338+3.76i	0.814
$T^{(1)}_{\eta}$	0	3.58	1.79+9.96i	-0.686
$T^{(0)}_{\eta}$	0	4.34	1.23+11.2i	-0.402
$T^{(1/2)}_{\eta}$	0	2.1	-1.35+7.44i	1.67

[4] R. A. Arndt, I. I. Strakovsky, R. L. Workman, and M. M. Pavan, Phys. Rev. C 52, 2120 (1995).
[5] B. Martin, Nucl. Phys. B 94, 413 (1975); 179, 33 (1981).
[6] C.-H. Lee, H. Jung, D.-P. Min, and M. Rho, Phys. Lett. B 326, 14 (1994).
[7] M. Mojzis, Eur. Phys. J. C 2, 181 (1998).
[8] N. Kaiser, Phys. Rev. C 64, 045204 (2001).
[9] G. Meng, C. Miao, X. Du, and C. Liu, Int. J. Mod. Phys. A 19, 4401 (2004).
[10] T. D. Cohen and R. F. Lebed, Phys. Rev. D 74, 056006 (2006).
[11] V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008).
[12] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003) [arXiv: hep-ph/0210398].
[13] A. Tokor, et al., Phys. Rev. D 81, 074506 (2010).
[14] S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, arXiv: 1004.2935.
[15] T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Lett. B 395, 89 (1997).
[16] T. R. Hemmert, B. R. Holstein, and J. Kambor, J. Phys. G 24, 1831 (1998).
[17] T.R. Hemmert, B.R. Holstein, J. Kambor, and G. Knochlein, Phys. Rev. D 57, 5746 (1998).
[18] N. Fettes, Ulf-G. Meißner, Nucl. Phys. A 679, 629 (2001).
[19] S.-L. Zhu, S. Puglia, and M. J. Ramsey-Musolf, Phys. Rev. D 63, 034002 (2001).
[20] S.-L. Zhu, G. Sacco, and M. J. Ramsey-Musolf, Phys. Rev. D 66, 034021 (2002).
[21] Y.-R. Liu and S.-L. Zhu, Eur. Phys. J. C 52, 177 (2007).
[22] V. Pascalutsa and D. R. Phillips, Phys. Rev. C 67, 055202 (2003).
[23] V. Pascalutsa and M. Vanderhaeghen, Phys. Rev. Lett. 94, 102003 (2005).
[24] V. Pascalutsa and M. Vanderhaeghen, Phys. Rev. Lett. 95, 232001 (2005).
[25] V. Pascalutsa, Prog. Part. Nucl. Phys. 61, 27 (2008).
[26] Y.-R. Liu and S.-L. Zhu, Phys. Rev. D 75, 034003 (2007).
[27] V. Bernard, N. Kaiser, Ulf-G. Meißner, Phys. Lett. B 309, 421 (1993).
[28] H.B. Tang, P.J. Ellis, Phys. Lett. B 387, 9 (1996).
[29] M. Mai, P.C. Bruns, B. Kubis, and Ulf-G. Meißner, Phys. Rev. D 80, 094006 (2009).
[30] Y.-R. Liu, X. Liu, and S.-L. Zhu, Phys. Rev. D 79, 094026 (2009).
[31] L.S. Geng, N. Kaiser, J. Martin-Camalich, W. Weise, Phys. Rev. D 82, 054022 (2010).
[32] G. Ecker, J. Gasser, A. Pich, and E. D. Rafael, Nucl. Phys. B 321, 311 (1989).
[33] K. Nakamura, et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[34] E. Jenkins and A. V. Manohar, Phys. Lett. B 259, 353 (1991).
[35] P. Bicudo, M. Faria, G. M. Marques, and J. E. Ribeiro, Nucl. Phys. A 735, 138 (2004).