Assessment of Genetic Markers for the Determination of Coptotermes formosanus × Coptotermes gestroi (Isoptera: Rhinotermitidae) F1 Hybrids

Authors: Chouvenc, Thomas, Osorio, Stephanie, Chakrabarti, Seemanti, Helmick, Ericka E., Li, Hou-Feng, et al.

Source: Florida Entomologist, 100(3) : 657-659

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.100.0325
Assessment of genetic markers for the determination of *Coptotermes formosanus* × *Coptotermes gestroi* (Isoptera: Rhinotermitidae) F1 hybrids

Thomas Chouvenc1,*, Stephanie Osorio1, Seemanti Chakrabarti1, Ericka E. Helmick1, Hou-Feng Li2, and Nan-Yao Su1

The Formosan subterranean termite *Coptotermes formosanus* Shiraki and the Asian subterranean termite *Coptotermes gestroi* (Wasmann) (Isoptera: Rhinotermitidae) are 2 of the most invasive subterranean termite species in the world (Evans et al. 2013; Chouvenc et al. 2016a). These species are allopatric in their native area, but their distributions now overlap in a few locations with a subtropical climate, including Taiwan, Hawaii, Hainan, and south Florida (Grace 2014; Cao & Su 2015). Although both species are genetically distinct and the 2 lineages evolved independently for approximately 18 million yr (Bourguignon et al. 2015), it was recently shown that they had the potential for hybridization in Florida (Chouvenc et al. 2015). Interspecies mating between alates of both species was observed in the field in 2013, 2014, 2015, 2016, and 2017, and incipient F1 colonies were successfully established in the laboratory (T. Chouvenc, University of Florida, Institute of Food and Agricultural Sciences, Ft. Lauderdale Research and Education Center, Ft. Lauderdale, Florida). However, it is unknown if such F1 hybrids are established in the field, primarily because subterranean termites have a cryptic nest and the soldier morphology is highly conserved within the group (Scheffrahn & Su 2005), preventing rapid detection and identification from field samples.

These species have been introduced into Florida (1980–1990s), and we suspected that the potential for hybridization may have been limited to the past few years because the geographical overlap was first recorded in 2005 (Chouvenc et al. 2016b) and the first simultaneous dispersal flight was recorded in 2013. Currently, there are no reliable morphological markers to identify hybrids. Therefore, genetic markers that would allow for testing the potential hybridization in the field are needed. *Coptotermes* colonies mature 8 yr after initial foundation (Chouvenc & Su 2014), which implies that the detection of F1 hybrid colonies may only be possible years after the initial interspecies mating, and it may take decades before F2 may be recorded, if ever produced.

Gene flow among populations can be detected using microsatellite markers to determine if introgression events occurred in the past (Gaggiotti et al. 1999). The use of nuclear markers provides insight about the mating structures within a population that mitochondrial markers cannot, because the latter only provide information on maternal lineages. Creating a genetic library of nuclear markers for both *C. gestroi* and *C. formosanus* at overlapping locations would provide the background genetic information required to test for the detection of F1 hybrids as a diagnostic tool, with an initial emphasis on south Florida populations, the only location where interspecies mating was confirmed. However, the different genetic makeup of the 2 parental species implies that the nuclear markers used for genetic determination must be compatible for both species and their hybrids. Over the past few years, several studies have developed microsatellite primers to investigate genetic population structures of various *Coptotermes* species (Thompson et al. 2000; Vargo & Henderson 2000; Yeap et al. 2011; Liu et al. 2012) but it is unknown if a marker developed for one species would be compatible with another species and their potential hybrids.

We screened 42 microsatellite primers previously developed for *Coptotermes* and obtained a list of nuclear markers that can be used interchangeably among F1 individuals resulting from all mating combinations. Alates of *C. formosanus* and *C. gestroi* were collected during simultaneous swarming events in 2014 in Ft. Lauderdale, Florida. Pairings of males and females were placed in individual rearing units as described in Chouvenc et al. (2014), and all mating combinations were used for the establishment of incipient colonies: conspecific colonies (♀ *C. gestroi* × ♂ *C. gestroi*, ♀ *C. formosanus* × ♂ *C. formosanus*), and heterospecific colonies (♀ *C. gestroi* × ♂ *C. formosanus*, ♀ *C. formosanus* × ♂ *C. gestroi*). After 1 yr of rearing and colony growth in the laboratory, 5 workers from 5 colonies of each mating combination were sampled and processed for DNA extraction, as described in Chouvenc et al. (2015). In addition, 12 field samples from each parental species collected throughout south Florida were added to our laboratory samples to confirm that the alleles identified from our laboratory colonies matches the genetic diversity in the field.
Table 1. List of 6 nuclear markers that successfully displayed different size alleles in both termite species, Coptotermes formosanus and Coptotermes gestroi, and their hybrids. These markers can be used to build a standard allele library and as a diagnostic tool to detect potential F1 hybrid individuals from the field.

Locus	Reference	Primer sequence	Motif	T_a (°C)	Target Qubit (ng/µL)	Allele size (bp) C. gestroi	Allele size (bp) C. formosanus
CopF6	Liu et al. 2012	F: CAGTGGCAGCGGTATA R: ATCTGGAGCTCTAAGGAC	(AC)_n(GC)_n AC(GA)_n	56.9	1.5	168, 174	176, 184
CopF14	Liu et al. 2012	F: CTAAAGGCTACCATCAGG R: GGAAGCGGAGCGGAT	(CT)_n	55.0	0.7	194	208, 226
CopF10	Liu et al. 2012	F: AGGTGTGATGGGCTGTT R: CCAAGGCTGCAGAAGAT	(AC)_n	61.4	1.5	302	326
Cg33	Yeap et al. 2011	F: TTTCTCAGAAAGTCAGG R: TGTGCTGAGAAGGATGT	(CAA)_n	56.0	1.5	202, 205, 208, 211	193
CF10-4	Vargo & Henderson 2000	F: GGTCATTTGGCAGTGAATAA R: TCAAGATGTCATCGGTT	(AGT)_n	61.4	3.0	162, 165, 168, 171	126, 150, 153
Clac1	Thompson et al. 2000	F: CAGAGTTGATCATGAAAATGG R: GCACATAAGGAAACCTGCTG	(AG)_n AA(AG)_n	53.0	1.5	186, 172, 175	191

Allele sizes displayed represent observed values from 12 specimens from each species collected in south Florida.

aF = forward primer, R = reverse primer
bT_a = annealing temperature

total 64 microsatellite primers were tested and optimized for PCR amplification from 4 original studies (Thompson et al. 2000; Vargo & Henderson 2000; Yeap et al. 2011; Liu et al. 2012). The primers were subjected to a series of gradient polymerase chain reactions (PCRs) to determine the best annealing temperature that would amplify products from both Coptotermes species as well as their respective hybrids. The PCRs were comprised of standard Taq buffer (New England Biolabs, Inc., Ipswich, Massachusetts), 0.25 U Taq DNA polymerase (New England Biolabs, Inc., Ipswich, Massachusetts), 200 mM each dNTP, 0.4 µM each primer, 2 µL of template DNA, and sterile molecular grade water to a final reaction volume of 50 µL. The microsatellite loci were amplified with either Mastercycler Gradient Thermocycler (Eppendorf North America, Hauppauge, New York) or Arktik Thermocycler (Thermo Fisher Scientific, Inc., Waltham, Massachusetts) using the following cycling conditions: initial denaturation step at 95 °C (90 s), followed by 34 cycles at 95 °C (30 s), annealing at 53 °C to 61.4 °C (60 s), 72 °C (2 min), and a final extension at 72 °C (8 min). Amplification products (5 µL) were separated on an 8% polyacrylamide gel using electrophoresis, stained with ethidium bromide and visualized using UV illumination.

Upon analysis, 6 primer pairs successfully provided polymorphic alleles for genotyping individuals from the 2 Coptotermes species and their F1 hybrids where the allele size was different in each parental species but expressed jointly in F1 hybrids. These markers can be used to build a standard allele library and as a diagnostic tool to detect potential F1 hybrid individuals from the field. Both species have been established in Taiwan for a much longer time than in Florida (Li et al. 2010), which implies that if hybridization also occurs there, it may be easier to detect (Su et al. 2017).

We thank Kelly Ugarelli and Charlie Barginda (University of Florida) for technical assistance.

Summary

This study investigated nuclear markers in Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Isoptera: Rhinotermitidae) that can be used as a diagnostic tool to detect F1 hybrids from field samples. Six microsatellite markers were compatible for both parental species and hybrid termites and were optimized so that a standard gene library can be built for the south Florida Coptotermes populations.

Key Words: termite; microsatellite; interspecies; optimization

Sumario

Este estudio investigó marcadores nucleares en Coptotermes gestroi y C. formosanus que pueden ser utilizados como una herramienta de diagnóstico para detectar híbridos de F1, a partir de muestras de campo. Seis marcadores de microsatélites fueron compatibles tanto para las especies parentales y las termitas híbridas y se optimizaron para que una biblioteca de genes estándar pueda ser construida para poblaciones de Coptotermes en el sur de Florida.

Palabras Clave: termita; microsatélite; intraespecies; mejoramiento

References Cited

Bourguignon T, Lo N, Cameron Sl, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution 32: 406–421.

Cao R, Su NY. 2016. Temperature preferences of four subterranean termite species (Isoptera: Rhinotermitidae) and temperature-dependent survivorship and wood-consumption rate. Annals of the Entomological Society of America 109: 64–71.
Chouvenc, T, Su NY. 2014. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Sociaux 61: 171–182.

Chouvenc T, Helmick EE, Su NY. 2015. Hybridization of two major termite invaders as a consequence of human activity. PloS One 10: e0120745.

Chouvenc T, Li H-F, Austin, J, Bordereau C, Bourguignon T, Cameron SL, Cancelli EM, Constantino R, Costa-Leonard AM, Eggleton P, Evans TA, Forschler B, Grace JK, Husseineder C, Křeček J, Lee C-Y, Lee T, Lo N, Messenger M, Mullins A, Robert A, Roisin Y, Scheffrahn RH, Sillam-Dussés D, Sobotník J, Szalnaski A, Takematsu Y, Vargo EL, Yamada A, Yoshimura T, Su N-Y. 2016a. Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Systematic Entomology 4: 299–306.

Chouvenc T, Scheffrahn RH, Su NY. 2016b. Establishment and spread of two invasive subterranean termite species (Coptotermes formosanus and C. gestroi; Isoptera: Rhinotermitidae) in metropolitan southeastern Florida (1990–2015). Florida Entomologist 99: 187–191.

Evans TA, Forschler BT, Grace JK. 2013. Biology of invasive termites: a worldwide review. Annual Review of Entomology 58: 455–474.

Gaggiotti, OE, Lange O, Rasmann K, Gliddon, C. 1999. A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Molecular Ecology, 8: 1513–1520.

Grace JK. 2014. Invasive termites revisited: Coptotermes gestroi meets Coptotermes formosanus, pp 1–7 In Forschler BT (eds.) Proceedings of the 10th Pacific-Rim Termite Research Group Conference, Kuala Lumpur, Malaysia https://www.ctahr.hawaii.edu/gracek/pdfs/285.pdf (last accessed 23 Apr 2017).

Li HF, Su NY, Wu WJ. 2010. Solving the hundred-year controversy of Coptotermes taxonomy in Taiwan. American Entomologist 56: 222–227.

Liu BR, Zhong JH, Guo MF, Li ZQ, Zen WH. 2012. Development and isolation of 17 polymorphic microsatellite loci in Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 59: 1151–1155.

Scheffrahn RH, Su NY. 2005. Distribution of the termite genus Coptotermes (Isoptera: Rhinotermitidae) in Florida. Florida Entomologist 88: 201–203.

Su NY, Chouvenc T, Li HF. 2017. Potential hybridization between two invasive termite species, Coptotermes formosanus and C. gestroi (Isoptera: Rhinotermitidae), and its biological and economic implications. Insects 8: 1–14.

Thompson GJ, Lenz M, Crozier RH. 2000. Microsatellites in the subterranean, mound building termite Coptotermes lacteus (Isoptera: Rhinotermitidae). Molecular Ecology 9: 1932–1934.

Vargo EL, Henderson G. 2000. Identification of polymorphic microsatellite loci in the Formosan subterranean termite Coptotermes formosanus Shiraki. Molecular Ecology 9: 1935–1938.

Yeap BK, Othman AS, Lee CY 2011. Genetic analysis of population structure of Coptotermes gestroi (Isoptera: Rhinotermitidae) in native and introduced populations. Environmental Entomology 40: 470–476.