Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies

Tengxiang Lian 1,2, Yinghui Mu 1,2, Jian Jin 3, Qibin Ma 1,2, Yanbo Cheng 1,2, Zhandong Cai 1,2, Hai Nian Corresponding Author

1 The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
2 The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
3 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China

Corresponding Author: Hai Nian
Email address: hnian@scau.edu.cn

Sugarcane-soybean intercropping has been widely used to control disease and improve nutrition in the field. However, the response of the soil microbial community diversity and structure to intercropping is not well understood. Since microbial diversity corresponds to soil quality and plant health, a pot experiment was conducted with sugarcane intercropped with soybean. Rhizosphere soil was collected 40 days after sowing, and MiSeq sequencing was utilized to analyse the soil microbial community diversity and composition. Soil columns were used to assess the influence of intercropping on soil microbial activity (soil respiration and carbon-use efficiency : nitrogen-use efficiency ratio). PICRUSt and FUNGuild analysis were conducted to predict microbial functional profiling. Our results showed that intercropping decreased pH by approximately 8.9% and enhanced the soil organic carbon (SOC), dissolved organic carbon (DOC), and available nitrogen (N) by 5.5%, 13.4% and 10.0%, respectively. These changes in physicochemical properties corresponded to increased microbial diversity and shifts in soil microbial communities. Microbial community correlated significantly ($p < 0.05$) with soil respiration rates and nutrient use efficiency. Furthermore, intercropping influenced microbial functions, such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi. These overrepresented functions might accelerate nutrient conversion and control phytopathogens in soil.
Title: Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies

Tengxiang Lian¹,², Yinghui Mu¹,², Jian Jin³, Qibin Ma¹,², Yanbo Cheng¹,², Zhandong Cai¹,², Hai Nian¹,²*

¹.The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People’s Republic of China
².The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People’s Republic of China
³.Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China

*Corresponding author: Hai Nian

Corresponding address: No.483 Wushan Road, Guangzhou, Guangdong, 510642, China.

Tel.: +8602085288024
Fax: +8602085288024
Abstract

Sugarcane-soybean intercropping has been widely used to control disease and improve nutrition in the field. However, the response of the soil microbial community diversity and structure to intercropping is not well understood. Since microbial diversity corresponds to soil quality and plant health, a pot experiment was conducted with sugarcane intercropped with soybean. Rhizosphere soil was collected 40 days after sowing, and MiSeq sequencing was utilized to analyse the soil microbial community diversity and composition. Soil columns were used to assess the influence of intercropping on soil microbial activity (soil respiration and carbon-use efficiency : nitrogen-use efficiency ratio). PICRUSt and FUNGuild analysis were conducted to predict microbial functional profiling. Our results showed that intercropping decreased pH by approximately 8.9% and enhanced the soil organic carbon (SOC), dissolved organic carbon (DOC), and available nitrogen (N) by 5.5%, 13.4% and 10.0%, respectively. These changes in physicochemical properties corresponded to increased microbial diversity and shifts in soil microbial communities. Microbial community correlated significantly ($p < 0.05$) with soil respiration rates and nutrient use efficiency. Furthermore, intercropping influenced microbial functions, such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi. These overrepresented functions might accelerate nutrient conversion and control phytopathogens in soil.
1. Introduction

Sugarcane-soybean intercropping has been widely used to stabilize yields and reduce nitrogen leaching (Edwin et al., 2005; Xu et al., 2008; Li et al., 2013). N fixation associated with soybeans can improve soil fertility and field ecological conditions that favor sugarcane in the intercropping system (He et al., 2006). Intercropping of sugarcane with soybean, may also stimulate N fixation by the legume’s microbiome (Li et al., 2013).

In an intercropping system, the roots of different plant species interact directly with each other and subsequently affect root exudation, which undoubtedly alters the microbial diversity, structure, and activity (Zhou et al., 2011; Broeckling et al., 2008; Gomes et al., 2003). The changed microbial community and activity by intercropping could affect C and N dynamics (Kaur et al., 2000; Rowe et al., 2005; Sun et al., 2009), and this may be attributed to the ability of microbial communities to regulate carbon and nitrogen-use efficiency (Mooshammer et al., 2014). Thus, a comprehensive method that incorporates the carbon-use efficiency : nitrogen-use efficiency ratio and soil respiration could be used to evaluate the change in microbial activity caused by the microbial community (Zhong et al., 2015).

The influence of intercropping on the soil microbial communities have been studied in several intercropping systems, including mulberry–soybean, *Eucalyptus–Acacia mangium* and...
apple tree-crown vetch intercropping (Li et al., 2013; Li et al., 2016; Rachid et al., 2015, Zheng et al., 2018). For example, Li et al. (2016) investigated the effects of mulberry–soybean intercropping on the diversity and composition of the soil bacterial community in salt–alkali soil and found that intercropping increased the abundance of some phosphate solubilizing species. Moreover, Rachid et al. (2015) reported that Eucalyptus intercropped with Acacia mangium increased soil fungal community diversity and changed the fungal structure and Zheng et al. (2018) reported that intercropping of apple trees and crown vetch changed the soil bacterial structure but not diversity. In our study, the bacterial and fungal structure and activity in the intercropping and monoculture system were analysed. We hypothesized that intercropping improves soil properties, increases the microbial diversity, changes community structure and improves some microbial function (H1) and that change in microbial community will correlate with microbial activity (H2).

2. Materials and methods

2.1 Experimental design and plant materials

The intercropping experiment was established in March of 2016 with three replicates of three treatments in a randomized block design. The treatments included (1) sugarcane monoculture, (2) soybean monoculture and (3) sugarcane intercropped with soybean. The soil used in this study was classified as Ali-Udic Argosol with pH 5.1, soil organic carbon (SOC) 8.5 g kg\(^{-1}\), 0.41 g kg\(^{-1}\) total N and 0.42 g kg\(^{-1}\) total P.

The sugarcane variety ROC22 (Saccharum officinarum) and soybean variety HuaChun5
(Glycine max L.), which are widely grown in South China, were used in this study. Plants were grown in pots in the glasshouse at South China Agriculture University, Guangzhou, China. In brief, all plants within a pot (140 cm wide × 45 cm width × 45 mm high) were filled with 30 kg of sieved soil (< 2 mm) and considered as one replicate. Two sugarcane seedlings or three soybean seeds were planted in a pot under the monoculture system, or two sugarcane seedlings with three soybean seeds were planted under the intercropping system. The row space was 0.9 m for sugarcane and 0.3 m for soybean in all treatments. The water content of the soil was adjusted to 80% of field water capacity. Plants were harvested at the flowering stage.

2.2. Soil sampling and measurements

Rhizosphere soil was recovered separately on May 25th, 2016 (40 days after sowing) by shaking root for 3 min into a bag and mix thoroughly. Contact between samples was avoided. Approximately 5 g soil from each treatment was collected and stored at -80 °C for DNA extraction. Additionally, 100 g soil was collected and stored at 4 °C for analyses of microbial and soil physicochemical properties.

Soil pH was determined in a soil-water slurry (1:5 w:v) using a pH meter (FE20-FiveEasy™ pH, Mettler Toledo, German). Soil total nitrogen was measured using an elemental analyser (VarioEL III, Germany). Nitrate (NO$_3^-$) and ammonium (NH$_4^+$) were assayed using a continuous flow analytical system (SKALAR SAN++, The Netherlands). Soil organic carbon (SOC), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) were measured using a TOC analyser (Multi N/C 2100, Analytik Jena, Germany). Soil microbial biomass carbon
(MBC) and microbial biomass nitrogen (MBN) were measured by the chloroform-fumigation extraction method (Vance et al., 1987). The sum value of NO$_3^-$, NH$_4^+$ and DON was considered as available nitrogen (available N).

2.3. Soil incubation and respiration measurements

The methods of the incubation experiment were reported in our previous study (Lian et al., 2016). In brief, 20 g soil was collected from each treatment and placed into PVC cores (5 cm height, 2.5 cm diameter). The PVC core and a beaker with 10 ml 1M NaOH, which used to trap CO$_2$, were placed into a 0.5-L sealed container. The trapped CO$_2$ was precipitated with 0.5 M SrCl$_2$ and NaOH was neutralized with 0.1 M HCl. Soil respiration was estimated on 1, 3, 5, 7, 9, 11, 14, 18, 22, 26, 32, 39, 46, 53, and 60 days after incubation was initiated (Blagodatskaya et al. 2011).

2.4. DNA extraction and quantitative PCR (qPCR)

DNA was extracted using Fast DNA SPIN Kit for Soil (Qbiogene Inc., Carlsbad, CA, USA) according to the manufacturer’s instructions. Quantitative PCR (qPCR) was conducted by targeting bacterial 16S rRNA genes and fungal ITS1 region, using the primers 515F/907R (Osburn et al., 2011) and ITS1F/ITS2R (Yao et al., 2017), respectively, following the protocols reported previously (Liu et al. 2015).

2.5. Illumina MiSeq sequencing analysis

Illumina MiSeq sequencing of the 16S rRNA genes and fungal ITS1 region was performed to examine the structure of the soil bacterial and fungal community, respectively. The raw
sequences were processed and analysed using QIIME1 Pipeline Version 1.9.0. Multiple steps were conducted to remove low-quality sequences with lengths shorter than 200 bp and quality scores less than 20. For further analysis, the chimeric sequences were checked and removed using UCHIME algorithm. High-quality sequences were clustered into operational taxonomic units (OTUs) using RDP Classifier based on 97% sequence similarity. The OTUs were analysed using the SILVA and UNITE database for bacteria and fungi, respectively. Then, a phylogenetic tree was built using Fast Tree (Price et al., 2009). For a correct comparison between samples, rarefied subsequening numbers (14811 for bacterial and 29726 for fungi) were used for subsequent analysis. All sequences have been deposited into the GenBank short-read archive under accession SRP116883 (bacteria) and SRP129902 (fungi).

2.6. Statistical analysis

Using the program R (version 3.4.4, vegan package), principal coordinate analysis (PCoA) based on OTU level was processed to assess the patterns of similarity (Bray-Curtis similarity) in the composition of the microbial community between treatments. The Chao 1 index and Shannon richness were calculated to compare soil bacterial and fungal alpha diversity (Fig. S1). A canonical correspondence analysis (CCA) was conducted to reveal the association between soil property variables and microbial community structure. Spearman correlation analysis was conducted with SPSS 24.0 to identify correlation between microbial activity and structure. PICRUSt analysis and STAMP were conducted to predict and visualize bacterial functional profiling (Langille et al., 2013; Parks and Beiko, 2010). FUNGuild was used to identify fungi
ANOVA test was used with Genstat 13 (VSN International, Hemel Hemspstead, UK) to assess the effect of treatments on the SOC, total N, MBC, MBN, DOC, DON, NH$_4^+$-N, NO$_3^-$-N, pH, and the relative abundance of OTU inferred with FUNGuild. Furthermore, ANOVA test of least significant difference (LSD) was used to assess the different of respiration rate and cumulative respiration. Differences were considered statistically significant at level of $p < 0.05$.

The ratios of microbial community carbon-use efficiency and nitrogen-use efficiency were calculated as follows (Mooshammer et al., 2014):

$$\text{Carbon-use efficiency: Nitrogen-use efficiency} = \frac{B_{C:N}}{R_{C:N}}$$

where $B_{C:N}$ is the C:N ratio of the microbial community and $R_{C:N}$ is the C:N ratio of the soil.

3. Results

3.1 Effect of intercropping on soil physicochemical properties

Compared with monoculture treatments, intercropping decreased pH from 6.73 to 6.13 and from 5.97 to 5.45 for sugarcane and soybean, respectively. The SOC was higher in I-Sugarcane (intercropped sugarcane) and I-Soybean (intercropped soybean) than that in the M-Sugarcane (sugarcane monoculture) and M-Soybean (soybean monoculture). The concentration of SOC significantly increased under I-Sugarcane compared with that under M-Sugarcane. NH$_4^+$, DOC, DON, MBC, and MBN levels were significantly increased for the two plant species under intercropping compared with those for the monoculture ($p < 0.05$), while the NO$_3^-$ level showed
an opposite trend ($p < 0.05$) (Table 1).

3.2. Effect of intercropping on microbial activity

Soil respiration was enhanced in the intercropping system (Fig. 1). Respiration peaked on day one and then decreased exponentially; respiration did not differ significantly between treatments (Fig. 1a). During the incubation, the cumulative CO$_2$-C levels were 6.9% and 5.3% greater in the intercropping soil than those in the monoculture for sugarcane and soybean, respectively (Fig. 1b). Moreover, the I-Sugarcane and I-Soybean treatments showed higher ratios of carbon- and nitrogen-use efficiency than that for the M-Sugarcane and M-Soybean, respectively (Fig. 1c).

Intercropping significantly increased bacterial and fungal abundances in sugarcane. However, no significant difference was observed in the fungi : bacteria (F : B) ratios (Fig. 2). Moreover, intercropping increased Chao index of bacteria and fungi; however, significant higher Shannon richness was only observed in I-Soybean compared with M-Soybean (Fig. S1d). PCoA analysis showed that the bacterial and fungal communities from different treatments were clearly separated from each other (Fig. S2), which indicates crop species and culture mode influenced the soil microbial community. The dominant phyla, Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes for bacteria and Ascomycota, Zygomyctea and Basidiomycota for fungi, were the same across treatments (Fig. 3).

CCA analysis (Fig. 4) revealed a relationship between microbial community structure and soil property variables. Significance values for the overall solution and for the CCA1 and CCA2 axes were 0.035, 0.041, and 0.039 for the bacterial community and 0.005, 0.01, and 0.005 for the
fungal community, respectively. The soil pH, SOC, NO$_3^-$, DOC, MBC, and MBN ($p = 0.04$, 0.01, 0.03, 0.02, and 0.004, respectively, for the bacterial community; $p = 0.001$, 0.04, 0.04, 0.01, 0.003, and 0.02 for the fungal community) appeared to be strongly correlated with the microbial community.

The X-axis of the PCoA analysis of bacteria and fungi (Fig. S2) was used in the Spearman correlation analysis to detect the relationships between microbial activity and structure (Table 2). A significant relationship was observed between bacterial community and microbial activity; however, the fungal community was not significantly correlated with bacterial communities and microbial activity.

3.3 Effect of intercropping on microbial functional characteristics

Bacterial function predictions were categorized into KEGG pathways. In brief, pathways for nutrient cycles such as carbon fixation pathways in prokaryotes and citrate cycle (TCA cycle) significant increased, while lipid metabolism, sulfur metabolism and signal transduction mechanisms significant decreased in both I-Sugarcane and I-Soybean (Fig. 5, Table S1). For fungal function, 12 fungal functional guilds, such as wood saprotroph, plant pathogen, plant saprotroph, fungal parasite and endophyte were detected (Fig. 6a). Among the top 5 fungal functional guilds, the relative abundances of wood saprotroph significant increased in I-Sugarcane, and plant pathogen significant increased in I-Soybean (Table S2).

From the library generated with the ITS primer pair, more than 40 OTUs were detected and assigned to the functional group of wood saprotrophs. The top 4 OTUs belonged to the phylum...
Ascomycota, with relative abundance ranged from 6.21% to 18.38% (Table S3). Of these, the relative abundances of OTU133 (*Trichoderma*) in I-Sugarcane were significantly higher than M-Sugarcane. Relative abundances of OTU1092 (*Aspergillus*) and OUT126 (*Acremonium*) were significantly higher in both I-Sugarcane and I-Soybean (Fig. 6b). For the functional group of plant pathogen, the top 4 OTUs were belonged to the phylum Ascomycota. Among them, relative abundances of OTU745 (*Gibberella*), OTU1092 (*Clonostachys*) and OUT126 (*Gibellulopsis*) were general lower in intercropping system. Nevertheless, the relative abundance of OTU941 (*Gibellulopsis*) was significantly higher in both I-Sugarcane and I-Soybean (Fig. 6c, Table S4).

4. Discussion

4.1 Effect of intercropping on soil microbial communities

Intercropping of sugarcane with soybean improved microbial respiration, bacterial and fungal abundances and diversity, which is consistent with several previous studies (Sun et al., 2009; Kaur et al., 2000; Li et al., 2016). For soils collected from the intercropping or monoculture systems, nutrients and respiration decreased markedly from initial rates, which agrees with earlier studies (Lian et al., 2016) and the improvements in soil quality associated with intercropping appeared temporary. The higher respiration rates in the intercropped system could relate to nitrogen fixation by the legume, which may have stimulated soil respiration of the intercropped sugarcane (Qin et al., 2013). Higher bacterial and fungal abundances and diversity may reflect the direct contact of crop roots in the intercropping system which stimulates roots to...
release more nutrients (Song et al., 2007). Environmental factors, such as pH and SOC, often play important roles in shaping microbial community composition and diversity (Hartman et al., 2008; Tripathi et al., 2018; Ma et al., 2018). Soil pH influences the acid-base equilibrium of microbial cells or regulates the availability of soil nutrients (Zhalnina et al. 2015). In this study, soil pH in intercropped soybean soils decreased compared with that in monoculture soil. Additionally, CCA showed pH strongly correlated with ($p = 0.04$ and $p = 0.001$, for the bacterial and fungal community, respectively) the microbial community. Together, our data indicates that pH governed the microbial community.

SOC can also determine microbial community structure in natural environments (Sul et al., 2013; Ma et al., 2018), as increased SOC favors copiotrophes (Fierer et al., 2012; Waring et al., 2013; Luo et al., 2018). In this study, the significant increased SOC in intercropping system and the significant correlation ($p = 0.01$ and $p = 0.04$, for the bacterial and fungal community, respectively) between SOC and microbial community (Table 1 and Fig. 4) indicate that SOC shaped the structure of microbial community. NO$_3^-$, DOC, MBC, and MBN may also have significant impact on the shift of microbial community structure (Fig. 4). Shifting nutrients changes microbial communities (Sun et al., 2015; Ramirez et al., 2010), since increases in available substrates might increase the activity of copiotrophs in soil (Fierer et al., 2012).

4.2. Effect of intercropping on microbial activity

Carbon-use efficiency, which can be calculated as $C_{growth}/(C_{growth} + C_{respiration})$ has a positive correlation with microorganism growth and a negative correlation with respiration rates (Spohn
et al., 2016). The increased microbial abundance, without a change in available N, may explain
the increase in carbon-use efficiency and not much change in nitrogen-use efficiency. Therefore,
the increased ratios of carbon- and nitrogen-use efficiency in this study may be caused by
carbon-use efficiency. However, respiration and the ratios of carbon- and nitrogen-use efficiency,
which represent the microbial activity, both increased in the intercropping system in this research.
This may be correlated with the nonlinear relationship between microbial growth and respiration
(Sinsabaugh et al., 2013). There have many other factors that affect the carbon-use efficiency
such as environmental constraints and resource (Sinsabaugh et al., 2013).

Carbon-use efficiency is positively correlated with nutrient availability. Bacterial carbon-use
efficiency tends to increase more markedly with nutrient availability than that with fungi
(Keiblinger et al., 2010), as bacteria and fungi are usually considered copiotrophic (r-selected)
and oligotrophic (K-selected) groups (Geyer et al., 2016). Additionally, the ratio of fungi and
bacteria might shift soil microbial community carbon-use efficiency (Sinsabaugh et al., 2013). In
our research, the abundance of bacteria and fungi were significant higher in the I-Soybean
system. However, the fungi : bacteria ratio did not differ among treatments. Together, more
bacteria and fungi abundance and the improved nutrient availability, such as SOC and DOC, in
intercropping system may lead to an increase carbon-use efficiency, which subsequently
increased the ratios of carbon-use efficiency and nitrogen-use efficiency. Additionally, better
nutrient availability in the plant-soil-microbial system could improve the plant growth. The
subsequent release of exudates increases soil microbial activity (Zhong et al., 2015; Levy et al.,
4.3. The relationship between microbial activity and microbial structure

The changed microbial community structure may result in increased microbial activity in the intercropping system. Analysing dozens of species soil samples from a wide range of ecosystems across America, Fierer et al. (2007) generalized that C mineralization predicts bacterial phyla abundances. Thus, we assumed that the changed microbial activity may be caused by the shift in the structure of microorganisms. The correlation between the microbial activity and community structure showed that the bacterial community was significantly correlated with ratios of carbon- and nitrogen-use efficiency and respiration. However, this significant correlation was not observed with the fungal community, which may be attributed to bacteria were hundred times more abundance than fungi (Fig. 2). Therefore, compared to bacteria, the changed fungal community might have a less effect on microbial activity. Nevertheless, the dormancy rates of bacteria are generally higher than fungi (Jones and Lennon 2010). When the dormancy rate reaches a certain level, the quantitative advantage of bacteria cannot explain the high microbial activity and this requires further verification and research. In this study, pH, NO$_3^-$, MBN, and SOC play important roles in the change in community structure. Our findings indicate that intercropping altered the availability of carbon in the soil. The changed nutrient subsequently allowed bacteria to affect the carbon- and nitrogen-use efficiency of the microorganisms.

4.4. Effect of intercropping on soil functional microorganisms

In general, the prediction of functional microorganisms matched well with our expectations.
Functions such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi were higher in the intercropping system. In contrast, plant pathogens were slightly lower in the intercropping system. The result indicated that the overrepresented functions in intercropping system potentially leading to an accumulation of metabolic products and nutrients. For example, the increased carbon fixation pathways in prokaryotes and citrate cycle (TCA cycle) suggested an acceleration of nutrient conversion (Shi et al. 2017), which might be trigged by the increased microbial activity. Furthermore, the increased OTU133 (Trichoderma) belong to wood saprotrophs in intercropped sugarcane may control a wide range of phytopathogens because Trichoderma secretes chitinases and cellulases, which can hydrolyse pathogen cell walls (Bae et al., 2015).

5. Conclusions

In conclusion, sugarcane-soybean intercropping in acidic soil increased microbial diversity and shifted soil microbial communities and soil physicochemical properties (pH, SOC, NO$_3^{-}$, DOC, MBC and MBN). The changed bacterial community correlated to higher soil respiration rates and nutrient use efficiency. Furthermore, intercropping influenced microbial functions, such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi. These overrepresented functions may accelerate nutrient conversion and control phytopathogens in soil.

References

Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S. 2015. Trichoderma metabolites
control phytopathogens of phytophthora blight. Biological Control 92: 128-138.

Blagodatskaya E, Yuyukina T, Blagodatsky S, and Kuzyakov Y. 2011. Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biology and Biochemistry 43:159-166 DOI: 10.1016/j.soilbio.2010.09.028.

Broeckling CD, Broz AK, Bergelson J. Manter DK. 2008. Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology 74: 738-744, DOI:10.1128/AEM.02188-07.

Brookes PC, Landman A, Pruden G, Jenkinson D. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17: 837-842 DOI: 10.1016/0038-0717(85)90144-0.

Fierer N, Bradford MA, and Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88: 1354-1364.

Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal 6: 1007-1017.

Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. 2016. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127: 173-188 DOI: 10.1007/s10533-016-0191-y.
Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K. 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied and Environmental Microbiology 69: 3758-3766 DOI: 10.1128/AEM.69.7.3758-3766.2003.

Hartman WH, Richardson CJ, Vilgalys R, Bruland GL. 2008. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences 105: 17842–17847 DOI: 10.1073/pnas.0808254105.

He JF, Huang GQ, Liao P, Liu XY, Su YH. 2006. Effects on disaster reduction of maize/soybean intercropping ecological system on upland red soil. Meteorology and Disaster Reduction Research 29: 31–35 (in Chinese).

Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of microbial diversity. Proceedings of the National Academy of Sciences 107: 5881-5886. DOI: 10.1073/pnas.0912765107.

Kaur B, Gupta SR and Singh G. 2000. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Applied Soil Ecology 15: 283-294 DOI: 10.1016/S0929-1393(00)00079-2.

Keiblinger KM, Hall EK, Wanek W, Szukics U, H€ ammerle I, Ellersdorfer G, Bock S, Strauss J, Sterflinger K, and Richter, A. 2010. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology 73: 430-440 DOI:
Langille MGI., Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE., Thurber RLV., Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31: 814–821. DOI: 10.1038/nbt.2676.

Levy A, Salas IG, Mittelviefhaus M, Clingenpeel S, Herrera S P, Miao J, Wang K, Devescovi G, Stillman K, Monteiro M, Alvarez BR, Lundberg DS, Lu TY, Lebeis S, Jin Z, McDonald M, Klein AP, Feltcher ME, Rio TG, Grant SR, Doty SL, Ley RE, Zhao BY, Venturi V, Pelletier DA, Vorholt JA, Tringe SG, Woyke T, Dangl JL. 2018. Genomic features of bacterial adaptation to plants. Nature Genetics, 50: 138.DOI: 10.1038/s41588-017-0012-9.

Li X, Mu Y, Cheng Y, Liu X and Nian H. 2013. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. *Acta Physiologica Plantarum* 35:1113-1119 DOI: 10.1007/s11738-012-1148-y.

Li X, Sun M, Zhang, H, Xu N, and Sun G. 2016. Use of mulberry–soybean intercropping in salt–alkali soil impacts the diversity of the soil bacterial community. *Microbial Biotechnology* 9: 293-304 DOI: 10.1111/1751-7915.12342.

Lian T, Wang G, Yu Z, Li YS, Liu XB and Jin J. 2016. Carbon input from 13C-labelled soybean residues in particulate organic carbon fractions in a Mollisol. Biology and Fertility of Soils 52: 331-339 DOI: 10.1007/s00374-015-1080-6.
Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH. 2015. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology and Biochemistry 83: 29–39 DOI: 10.1016/j.soilbio.2015.01.009.

Luo S, Wang S, Tian L, Shi S, Xu S, Yang, F., Li X, Wang Z, Tian C. 2018. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 329: 108-117. DOI: 10.1016/j.geoderma.2018.05.023.

Ma B, Lv X, Cai Y, Chang SX, Dyck MF. 2018. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biology and Biochemistry 123: 45-53. DOI: 10.1016/j.soilbio.2018.05.003.

Maciávicente JG, Rosso LC, Ciancio A, Jansson HB and Lopezllorca LV. 2009. Colonisation of barley roots by endophytic fusarium equiseti and pochonia chlamydosporia: effects on plant growth and disease. Annals of Applied Biology 155: 391-401 DOI: 10.1111/j.1744-7348.2009.00352.x.

Mooshammer, M., Wanek, W., Hammerle, I., Fuchslueger, L., Hofhansl, F., € Knoltsch, A., Schnecker J, Takriti M, Watzka M and Wild B. 2014. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature Communications 5: 3694 DOI: 10.1038/ncomms4694.

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological
guild. Fungal Ecology 20: 241–248. DOI: 10.1016/j.funeco.2015.06.006.

Osburn MR, Sessions AL, Pepe-Ranney C, Spear JR. 2011. Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities. Geochimica et Cosmochimica Acta 75: 4830–4845 DOI: 10.1016/j.gca.2011.05.038.

Parks DH and Beiko RG. 2010. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26: 715–721. DOI: 10.1093/bioinformatics/btq041.

Price MN, Dehal PS, Arkin AP. 2009. Fast Tree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution 26: 1641-1650. DOI: 10.1093/molbev/msp077.

Qin AZ, Huang GB, Chai Q, Yu AZ, Huang P. 2013. Grain yield and soil respiratory response to intercropping systems on arid land. Field Crops Research 144: 1-10. DOI: org/10.1016/j.fcr.2012.12.005.

Rachid CTCC, Balieiro FC, Fonseca ES, Peixoto RS, Chaer GM, Tiedje JM, Rosado AS. 2015. Intercropped silviculture systems, a key to achieving soil fungal community management in Eucalyptus plantations. PloS one 10: e0118515 DOI: org/10.1371/journal.pone.0118515.

Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. 2010. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 91: 3463-3470. DOI: 10.1890/10-0426.1.

Rowe EC, Van Noordwijk M, Suprayogo D and Cadisch G. 2005. Nitrogen use efficiency of
monoculture and hedgerow intercropping in the humid tropics. Plant and Soil 268: 61-74 DOI: 10.1007/s11104-004-0227-2.

Shi L, Huang Y, Zhang M, Yu Y, Lu Y, Kong F. 2017. Bacterial community dynamics and functional variation during the long-term decomposition of cyanobacterial blooms in-vitro. Science of the Total Environment 598: 77-86. DOI: 10.1016/j.scitotenv.2017.04.115.

Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A. 2013. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters 16: 930-939. DOI: 10.1111/ele.12113.

Song YN, Marschner P, Li L, Bao XG, Sun JH and Zhang FS. 2007. Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils 44:307-314 DOI: 10.1007/s00374-007-0205-y.

Spohn M, Klaus K, Wanek W, Richter A. 2016. Microbial carbon use efficiency and biomass turnover times depending on soil depth - Implications for carbon cycling. Soil Biology and Biochemistry 96, 74–81. DOI: 10.1016/j.soilbio.2016.01.016.

Sul WJ, Asuming-Brempong S, Wang Q, Tourloussé DM, Penton CR, Deng Y, Rodrigues J.L., Adiku SG, Jones JW and Zhou J. 2013. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biology and Biochemistry 65: 33-38 DOI: 10.1016/j.soilbio.2013.05.007.
Sun R, Zhang XX, Guo X, Wang D, Chu H. 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry 88: 9-18. DOI: 10.1016/j.soilbio.2015.05.007.

Sun YM, Zhang NN, Wang ET, Yuan HL, Yang JS and Chen WX. 2009. Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus sibiricus L.). FEMS Microbiology Ecology 70: 218-226 DOI: 10.1111/j.1574-6941.2009.00752.x.

Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM and Lee YK. 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME Journal 12 DOI: 10.1038/s41396-018-0082-4.

Vance E, Brookes P and Jenkinson D. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19: 703-707 DOI: 10.1016/0038-0717(87)90052-6.

Waring BG, Averill C, Hawkes CV. 2013. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology Letters 16: 887-894 DOI: 10.1111/ele.12125.

Xu BC, Li FM and Shan L. 2008. Switchgrass and milkvetch intercropping under 2:1 row-replacement in semiarid region: northwest China: aboveground biomass and water use efficiency. European Journal of Agronomy 28:485-492 DOI: 10.1016/j.eja.2007.11.011.
Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X and Wang GH. 2017. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast china. Soil Biology and Biochemistry 110: 56-67 DOI: 10.1016/j.soilbio.2017.03.005.

Zhalnina K. Dias R, Quadros PDD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW. 2015. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology 69: 395–406 DOI: 10.1007/s00248-014-0530-2.

Zheng W, Gong Q, Zhao Z, Liu J, Zhai B, Wang Z, Li Z. 2018. Changes in the soil bacterial community structure and enzyme activities after intercrop mulch with cover crop for eight years in an orchard. European Journal of Soil Biology 86, 34-41. DOI: 10.1016/j.ejsobi.2018.01.009.

Zhong Y, Yan W and Shangguan Z. 2015. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biology and Biochemistry 91:151-159 DOI: 10.1016/j.soilbio.2015.08.030.

Zhou X, Yu G and Wu F. 2011. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. European Journal of Soil Biology 47: 279-287 DOI: 10.1016/j.ejsobi.2011.07.001.
Figure 1

Respiration rates, cumulative respiration and the ratios of carbon-use efficiency and nitrogen-use efficiency

Respiration rates (a) and cumulative respiration (b) each treatment and the ratios of carbon-use efficiency and nitrogen-use efficiency (c). M-Sugarcane, sugarcane monoculture; I-Sugarcane, intercropped sugarcane. M-Soybean, soybean monoculture; I-Soybean, intercropped soybean.
Figure 2

Bacterial and fungal abundances, and the relative ratio of the fungi and bacteria

Bacterial abundances (a) and fungal abundances (b) and relative ratio of the fungi and bacteria (c) in each treatment. M-Sugarcane, sugarcane monoculture; I-Sugarcane, intercropped sugarcane. M-Soybena, soybean monoculture; I-Soybean, intercropped soybean.
Figure 3

Relative abundance of bacterial and fungal phyla

Phylogenetic relationships of bacterial (a) and fungal (b) communities shown with the relative abundances of different phyla. M-Sugarcane, sugarcane monoculture; I-Sugarcane, intercropped sugarcane. M-Soybean, soybean monoculture; I-Soybean, intercropped soybean.
Figure 4

Canonical correspondence analysis (CCA) of bacterial and fungal communities

Canonical correspondence analysis (CCA) of bacterial (a) and fungal (b) communities changes with environmental variables M-Sugarcane, sugarcane monoculture; I-Sugarcane, intercropped sugarcane. M-Soybean, soybean monoculture; I-Soybean, intercropped soybean.
Figure 5

Relative abundance of predicted soil bacterial functions

Relative abundance of predicted soil bacterial functions in sugarcane (a) and soybean (b) system predicted by PICRUSt using KEGG Orthologs. Pathways presented here are relevant to soil ecosystem function, full data supplied in Table S1. M-Soybean, soybean monoculture; I-Soybean, intercropped soybean.
Figure 6

Relative abundance of predicted soil fungal functions

Relative abundance of predicted soil fungal functions (a) and relative abundance of fungal functional OTUs inferred by FUNGuild belong to wood saprotrophs (b) and plant pathogens (c). Full data supplied in Table S2-S4. I-Sugarcane, intercropped sugarcane. M-Soybean, soybean monoculture; I-Soybean, intercropped soybean.
Soil physiochemical properties at different culture mode

The soil physiochemical properties and microbial biomass carbon (MBC) and nitrogen (MBN) in each soil are shown in the table. Values are the means ± SE (n=3). M-Sugarcane, sugarcane monoculture; I-Sugarcane, intercropped sugarcane. M-Soybean, soybean monoculture; I-Soybean, intercropped soybean.
	pH	SOC (g kg\(^{-1}\))	TN (g kg\(^{-1}\))	NH\(_4^+\)-N (mg kg\(^{-1}\))	NO\(_3^-\)-N (mg kg\(^{-1}\))	DOC (mg kg\(^{-1}\))	DON (mg kg\(^{-1}\))	MBC (mg kg\(^{-1}\))	MBN (mg kg\(^{-1}\))	Available N (mg kg\(^{-1}\))
M-Sugarcane	6.73±0.06a	16.25±0.28c	0.73±0.06b	5.66±0.66c	2.02±0.19a	97.67±2.51b	0.91±0.01b	131±21.66b	6.40±0.57ab	8.58±0.48b
I-Sugarcane	6.13±0.15b	17.15±0.21a	0.81±0.01a	8.10±0.25b	0.42±0.10d	109±3.61a	0.79±0.03b	198±13.08a	8.12±0.51a	9.65±0.08b
M-Soybean	5.97±0.21b	16.30±0.57bc	0.81±0.02a	6.68±0.87bc	2.00±0.29b	90.33±1.52c	0.62±0.10c	133±26.46b	5.60±0.06c	12.30±0.58a
I-Soybean	5.45±0.06c	16.93±0.08ab	0.77±0.03ab	10.35±1.18a	1.17±0.18c	106±3.61ba	1.10±0.14a	234±27.62a	6.69±0.40a	12.62±0.51a
Table 2 (on next page)

Spearman's correlations between microbial community structure and microbial activity.

P < 0.01 and *P < 0.05 indicate significant correlations
	Fungal community	Ratio of carbon- and nitrogen-use efficiency	Soil respirations
Bacterial Community	-0.034	0.787**	0.609*
Fungal Community	-0.392		0.537