Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a >20S degradation complex

Smita Savant-Bhonsale and Don W. Cleveland
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 USA

Many short-lived mRNAs, including those encoding lymphokines, cytokines, and proto-oncogenes, contain an AU-rich sequence in their 3'-untranslated regions. These AU domains and, more specifically, AUUUA motifs within them, are widely thought to mediate the extreme instability of the corresponding mRNAs. This is most clearly true for granulocyte monocyte colony stimulating factor (GM–CSF) mRNA whose AUUUA motifs are conserved phylogenetically and whose presence in an otherwise stable β-globin mRNA results in a 50-fold decrease in accumulated mRNA level. We show that RNA instability conferred by the GM–CSF AU motif requires the mRNA to be actively translated and the AU motif to be within the 3'-untranslated region. By analysis of the sedimentation characteristics, we identify a large (>20S), divalent cation-independent complex found only on unstable RNAs. Like instability, complex formation (1) is dependent on translation of the RNA, (2) requires intact AUUUA motifs, and (3) is blocked by ribosome translocation across the AU-rich motif. We propose that RNA instability mediated by the AU motif is achieved through translation-dependent assembly of this large mRNA-destabilizing complex.

[Key Words: mRNAs; AUUUA motifs; GM–CSF; mRNA degradation]

Received June 4, 1992; revised version accepted July 23, 1992.

Many highly unstable mammalian mRNAs, including those encoding proto-oncogenes, cytokines, and lymphokines, contain within their 3'-untranslated regions a common AU-rich motif of 30–80 bases. In most of these regions, besides the high AU content, the most obvious sequence motif is a variable number [3–8] of AUUUA pentamers (Shaw and Kamen 1986). In the case of granulocyte monocyte colony stimulating factor (GM–CSF), this AU-rich domain is the most highly conserved region between mouse and human GM–CSF mRNAs (Gough et al. 1985; Wong et al. 1985). The importance of the AU domain in mediating mRNA instability has been shown previously in two ways. First, insertion of 14 G and C residues into the AU domain (specifically to disrupt all AUUUA motifs) results in >10-fold higher abundance of the mRNA, probably owing to changes in RNA stability (Shaw and Kamen 1986; Vakalopoulou et al. 1991). Second, the domain appears to contain a dominant, cis-acting element that can destabilize the otherwise very stable rabbit β-globin mRNA (Shaw and Kamen 1986). In other labile mRNAs, similar AU-rich domains have also been implicated in mediating mRNA instability. For fos, a 75-base AU domain (containing three AUUUA motifs) has been clearly demonstrated to destabilize the normally stable β-globin mRNA (Shyu et al. 1989). Evidence that the AUUUA repeats are important to instability mediated by this fos domain has also been provided by use of U → A substitutions to disrupt each motif: The resultant domain is inhibited dramatically in its ability to specify rapid degradation (Shyu et al. 1991).

Despite much preceding work, particularly on defining RNA domains that can destabilize other RNAs into which they are placed, the basic mechanics of the RNA destabilization machinery have yet to be defined for any higher eukaryotic mRNA. One approach to identification of the key components (the nucleases involved and mode of activation, the method and components that mediate RNA recognition, and the compartment in the cytoplasm where cleavage takes place) would be available if in vitro conditions could be identified where RNA instability reproduces the in vivo pathway. Efforts along these lines, primarily from Ross and colleagues (Brewer and Ross 1988, 1989; Bernstein et al. 1989, 1992, Brewer 1991) have characterized degradation of both histone and c-myc mRNAs in an in vitro system comprised of a ribosome-associated 3' → 5' exonuclease and polysome-bound RNAs. But the degree to which this is a faithful mimic of in vivo instability remains to be proven, for example, through the use of mutant RNAs known to be stable in vivo. A further difficulty is that addition of poly[A]-binding protein stabilizes RNAs in vitro (Bernstein et al. 1989), a finding apparently at odds with the...
Savan-Rhodes and Cleveland

demonstration in yeast that poly(A)-binding protein is necessary for poly(A) shortening [Sachs and Davis 1989].

An alternative approach has been to search for components that bind to specific sequence motifs, such as an AU-rich motif. Gel-shift and UV-cross-linking experiments have identified a 32-kD, predominantly nuclear, protein that binds to the GM-CSF, c-fos and c-myc AU-rich sequences [Vakalopoulou et al. 1991]. Two other factors have been found by a similar approach [Bohjanen et al. 1991]. One [AU-B] is an inducible cytoplasmic factor that interacts with the 3'-untranslated region of GM-CSF mRNA but not with c-myc mRNA. The other [AU-A] is a nuclear protein found in many cell types and binds equally to the GM-CSF and c-myc AU-rich 3'-untranslated regions. Malter [1989] reported AUBF, a set of three small lymphocyte proteins [similar to AU-A] that bind very tightly to an in vitro-synthesized target sequence consisting of four repeats of the AUUUA motif. The role of this factor in in vivo mRNA degradation is not known, but AUBF does bind to the AU-rich motifs of GM-CSF, c-fos, and v-myc [Gillis and Malter 1991]. Finally, a pair of 37- and 40-kD cytosolic proteins purified by their ability to enhance in vitro degradation of c-myc have been shown to bind to an AU-rich domain of c-myc RNA [Brewer 1991].

To compliment these in vitro efforts, we have now used an in vivo approach to focus on the mechanism of RNA degradation mediated by the 51-base GM-CSF AU-rich domain. We show that instability mediated by the AU motif requires translation of the RNA containing it and that the AU motif cannot destabilize an RNA if it is placed in a translated region. By analyzing the sedimentation of RNAs from cells transfected with a set of β-globin gene constructs that carry this AU domain, we document the translation-dependent assembly of a large complex onto all rapidly degraded RNAs that carry this GM-CSF destabilizing domain. Disruption of the AUUUA motifs by G or C insertion or ribosome translation across the AU domain blocks complex formation and the RNAs are stable. We propose that RNA instability mediated by the AU motif is achieved through translation-dependent assembly of this 20S mRNA-stabilizing complex.

Results

Reduced accumulation of mRNAs containing the GM–CSF AU domain requires translation of those mRNAs

A wide series of preceding experiments on transiently expressed, unstable mRNAs have shown that translation inhibitors almost invariably increase abundance of the mRNA. More specifically, this property has been shown to be conferred to rabbit β-globin mRNA by introduction of a 51-base AU-rich destabilization domain from GM-CSF [to produce gene RβGAT1] but not to a control globin mRNA [RβGCC] in which the AUUUA motifs in the GM-CSF domain are disrupted by insertion of G and C residues [Fig. 1A, Shaw and Kamen 1986]. To address whether translation per se plays a role in controlling the level of RNAs containing this AU destabilizing domain, we prepared a series of genes based on the constructs of Shaw and Kamen but in which translation of the mRNA was altered either by premature termination or by translation into the destabilizing domain. Schematic drawings of these genes are displayed in Figure 1B. Positions of predicted translation initiation and termination are marked. In naming each construct, the superscript number refers to the predicted number of translated codons, and the superscript letters denote whether the AU domain is intact [AT] or has been disrupted by G and C residues [GC].

To test accumulated levels of each RNA after stable DNA transfection, polyclonal cell lines were generated by transfection of each construct into mouse L cells or tsA8 cells, a line of baby hamster kidney cells that contains a temperature-sensitive RNA polymerase II [Meiss and Basilico 1972; Rossini et al. 1980; Jaskulski and Baserga 1988]. After selection for G418 resistance, >200 colonies were pooled for each construct. Total cytoplasmic RNAs were prepared, and the amount of β-globin RNA accumulated from each transfected construct was determined with an RNase protection assay using a 32P-labeled β-globin RNA probe. As expected from the earlier work [Shaw and Kamen 1986], a large difference in abundance was seen when the RβGAT and RβGCC RNAs were compared [Fig. 2A–C]. The level of the AU-containing RNA was undetectable when 10 μg of RNA was assayed [Fig. 2A], although the comparable GC construct showed a strong signal. When 50 μg of RNA from cells transfected with RβGAT was analyzed, a signal could be detected, but even here it was only about one-tenth of the level of the GC construct. By analyzing dilutions of purified β-globin RNA to provide quantitation standards and an S1 nuclease assay for γ-actin RNA levels to ensure that comparable amounts of RNA had been analyzed, RβGAT RNAs in both tsA8 cells [Fig. 2B] and L cells [Fig. 2C] were seen to be 40- to 50-fold less abundant than their RβGCC counterparts. [Because of this large difference in accumulation, for all subsequent experiments we routinely analyzed five times more RNA from cells expressing the AU-containing gene constructs than we used for those expressing the homologous GC-containing constructs.]

When translation was shortened prematurely by introduction of a termination codon at position 100 of the 147-amino-acid β-globin sequence, again the AU-containing RNA accumulated to less than one-fortieth of the similarly terminated GC-containing control [Fig. 2B,C]. When a translation terminator was introduced at codon 22 [RβGAT22], this too yielded less than one-thirtieth of the level of the RβGCC22 control. These results indicate clearly that translation of the majority of the coding region of the mRNA is not required for the low RNA accumulation phenotype conferred by the AU motif of GM–CSF.

Blockage of translation by mutation of the ATG initiator methionine codon to a TAG [to produce construct RβGAT1], however, resulted in a 10-fold higher level of
A complex mediates AUUUA-dependent RNA stability

A

GM-CSF AT-62 GATCAATATTTTATATTTATATT

B

Figure 1. Sequence of the AU-rich motif from GM-CSF and schematic diagrams of β-globin genes carrying this motif in different positions. (A) The 62-base sequence containing the AU-rich motif from the 3'-untranslated region of GM-CSF mRNA and a similar sequence (denoted GC) in which all AUUUA motifs have been disrupted by 14 G or C substitutions. (B) Schematic drawings for the various β-globin genes used in this study. Plasmid names are shown at left, where AT/GC indicates the presence of either the 62-base AT-rich segment or the 62-base GC sequence, respectively, from A. (Solid area) exons; (open area) introns; (wavy lines) flanking sequences; (stippled area) inserted synthetic sequences (AT-62 or GC-62). (PyEP) Polyoma early promoter; (pA) the globin polyadenylation site. The predicted translation initiation codon and translation termination codons are marked; the numbers denote the respective codon positions. Arrows indicate the transcription initiation sites.

accumulation compared with the fully translated AU-containing RNAs [although the level was still only one-third of the homologous RβGGC1 control]. If all genes are transcribed at comparable rates [as expected], and the RβGAT1 construct does not initiate translation efficiently at an alternative site [considered in detail below], these results demonstrate that the GM–CSF AU domain confers a low RNA phenotype primarily through a translation-dependent mechanism.

Ribosome translocation across the GM–CSF AU motif blocks its ability to specify a low RNA phenotype

To test further the mechanism through which the AU motif confers a low RNA phenotype, we examined whether translation across the domain affected its ability to yield the low RNA phenotype. We did this in two ways. First, we constructed RβGAT156 by insertion of 4 bases at codon 121 of RβGAT. This produced a frameshift that extended translation to a TAA sequence that lies 26 bases within the AU motif. Despite the presence of an intact AU motif in essentially the same position of the mRNA, the AU domain no longer functioned to yield a low RNA phenotype; rather, the RβGAT156 RNA was >20 times more abundant than RβGAT RNA and only slightly less abundant than the RβGGC153 control (Fig. 2). Second, because the 51-base AU motif contains an open reading frame in reading frame 2, we tested whether it could confer a low RNA phenotype when moved to within the normal β-globin-translated domain. We ligated the AU domain at codon 99 of RβG, producing RβGATC, whose translation product ends at the normal β-globin terminator but carries 21 additional codons from insertion of the AU domain within the translated region. As seen in Figure 2, the AU element does not yield a low RNA phenotype when present in this actively translated domain.
Taken together, these experiments demonstrate that for the low RNA phenotype to be conferred by the AU domain, the RNA itself must be translated (e.g., the results of $\text{R[GAT1]$), but translation cannot extend into or across the AU motif (as shown by $\text{R[GAT1S6$ and $\text{R[GATC$).

The low RNA phenotype conferred by the GM–CSF AU motif is mediated by translation-dependent mRNA instability

The differences in mRNA accumulation among the various transcripts examined could be explained either by changes in cytoplasmic mRNA stability or if markedly different rates of RNA production were obtained in different stably transfected cells. Although this latter possibility seemed unlikely because the transcriptional control elements are the same in all of the genes and in all cases we analyzed pools representing >200 individual transformants, we directly tested transcription rates using isolated nuclei. Nuclei from all polyclonal pools were incubated in vitro with [α^{32}P]UTP to allow elongation of already initiated RNA transcripts. After isolation, the labeled RNAs were hybridized to immobilized, single-stranded DNAs specific for the transfected globin, endogenous β-actin, and endogenous β-tubulin RNAs. The resultant autoradiograms were quantified by densitometry. After normalizing to set actin transcription to a constant value in all cell lines, the relative transcription rate of each transfected AT- or GC-containing construct was measured and tabulated in Table 1. Transcription rates of the various transfected globin genes are similar in magnitude in all lines, with a maximum measured difference of only about twofold. (A similar fluctuation in the level of tubulin transcription was also seen, suggesting that the actual transcription differences among the various globin genes are less than twofold.) In any event, because differences in accumulated steady-state levels of the globin mRNAs are much larger than these modest transcriptional variations, differences in transcription cannot explain the marked changes in accumulated level.

To test directly whether the differences in RNA levels could be attributed to changes in cytoplasmic RNA stability, we followed the kinetics of RNA loss after inhibiting transcription either by adding actinomycin D or shifting tsAF8 derivatives from 34°C to 40.5°C to inactivate the temperature-sensitive polymerase II. For this latter approach, we first used two independent methods to verify that polymerase II activity in tsAF8 derivatives declines rapidly upon temperature shift. Using pulse-labeling with $[^3H]uridine$, we determined that overall

Figure 2. Relative steady-state levels of β-globin mRNAs containing an intact or disrupted AU motif from GM-CSF. (A) Levels of β-globin RNAs determined by RNase protection analysis of total cytoplasmic RNA isolated from pools of stably transfected derivatives of cell line tsAF8. (Lanes 1,2) 10 and 50 μg of RNA from $\text{R[GAT1$; (lane 3) 10 μg of RNA from $\text{R[GGC1$; (lanes 4,5) 10 and 50 μg of RNA from $\text{R[GAT1S6$; (lanes 7,8) 10 and 50 μg of RNA from $\text{R[GAT22$; (lane 9) 10 μg of RNA from $\text{R[GAT1S6$; (lanes 11,12) 10 and 50 μg of RNA from $\text{R[GATC$; (lane 13) 10 μg of RNA from $\text{R[GATC$; (lane 15) 10 μg of RNA from $\text{R[GCC$; (B) Relative RNA abundance was determined by densitometry of the analyses in A. (C) Relative RNA abundance was determined from RNase protection analyses similar to that in A, except that all cell lines were stable transformants of L cells.
RNA synthesis declines 40% within 2 hr after temperature shift. Because polymerases I and III usually account for >50% of overall RNA synthesis (e.g., Lewin 1980) and because we determined uridine incorporation in isolated nuclei to decline 40% after the addition of 5 μg/ml of α-amanitin to selectively inhibit polymerase II [not shown], the 40% decline must indicate a very significant, rapid inhibition of polymerase II activity. Second, we used RNA blotting to examine the well-studied, temperature-dependent, transcriptional induction of hsp70 RNA (for review, see Lindquist 1986). As shown in Figure 3, the fivefold increase in the hsp70 RNA level that occurs within 2 hr of shifting wild-type hamster cells to 40.5°C was inhibited completely in the tsAF8 mutant line. This must mean that within 2 hr after temperature shift, polymerase II activity declines by at least 80%. Taken together, we conclude that in the tsAF8 line, polymerase II activity is rapidly inactivated at the restrictive temperature.

Using either actinomycin D or the temperature shift to inhibit polymerase II, the abundance of RNAs from each RBG construct was assayed by RNase protection and quantified by densitometry. Each point represents the average of three measurements from two independent experiments. Both methods revealed that insertion of the AU domain into β-globin significantly lowered the RNA half-life to ~3 hr [Fig. 4A] compared with that of the RBG-GC control RNA, which did not diminish over a 6-hr time course. This half-life is similar to that documented previously [Shaw and Kamen 1986] for RBGAT RNA (although in this earlier study, RNA loss deviated significantly from a first-order decay). Like the initial RBGAT construct, RNAs bearing premature translation termination codons [RBGAT100 and RBGAT22] also showed apparent half-lives of ~3 hr [Fig. 4B,C], whereas the homologous GC-containing RNAs were completely stable over the 6-hr observation period. Although the precise magnitude of the difference in stability between the AU- and GC-bearing RNAs could not be assessed because the GC-containing RNAs did not decay measurably, these findings are consistent with the AU domain mediating cytoplasmic RNA degradation, in this instance lowering to ~3 hr. The ability of this AU-rich motif to destabilize β-globin RNA is, however, disrupted if ribosomes translocate across it. Movement of the AU motif to the translated domain [in RBGATc] yielded an RNA that remained fully stabilized [Fig. 4F], with no detectable loss after 6 hr.

Although RNA accumulation levels for the preceding RNAs can be explained easily by differences in half-lives, examination of the RBGAT and RBGAT156 RNAs yielded unexpected results. Because these RNAs are transcribed at rates comparable to the others [Table 1], but accumulate to levels between 10- and 30-fold higher than RBGAT, RBGAT22, and RBGAT100 RNAs [Fig. 2], correspondingly 10- to 30-fold longer half-lives would be needed to explain the differences in abundance. Although modestly extended apparent half-lives were measured [4.0–4.2 hr compared with 3 hr for those that accumulated to much lower levels; Fig. 4D,E], these differences are far too small to account for the marked differences in accumulation. Because in all cases blockage of temperature shift yielded indistinguishable decay kinetics, we do not believe that the quantitative disagreement results from an artifact of the temperature shift or of leaky polymerase II transcription. Rather, the simplest explanation is that both in the temperature-sensitive lines and in the L cells the AU motif-mediated RNA degradation pathway may require ongoing transcription, presumably because a short-lived RNA is involved [directly or indirectly] in the degradation pathway. In any event, we conclude that the AU motif can specify rapid RNA degradation, but only if (1) the mRNA containing it is translated, and (2) ribosomes do not translocate across the AU motif.

Table 1. Transcription rates of rabbit β-globin mRNA by nuclear run-on assay

Cell lines	Transcription rate	Steady-state mRNA RNA		
actin	globin	tubulin		
RBGAT	1.0	0.6	0.24	1.0
RBGATCC	1.0	0.75	0.39	50.0
RBGAT100	1.0	0.85	0.31	0.6
RBGATC100	1.0	0.7	0.4	47.0
RBGAT22	1.0	0.5	0.24	1.7
RBGATC22	1.0	1.2	0.45	23.5
RBGAT156	1.0	0.9	0.31	11.0
RBGATC156	1.0	0.68	0.36	55.0
RBGAT100	1.0	0.5	0.2	25.0
RBGATC100	1.0	0.65	0.34	38.4
RBGATC100	1.0	0.45	0.2	59.6
RBGATC100	1.0	0.76	0.22	39.4

Transcription rates were measured by nuclear run-on assay in isolated nuclei. Quantitation of data was obtained by scanning the autoradiograph with a densitometer. Relative rate of transcription was calculated by setting the transcription rate of actin to be 1. Steady-state RNA levels were corrected for apparent transcription rate.

Figure 3. Rapid loss of RNA polymerase II activity blocks transcriptional induction of hsp70 mRNA in tsAF8 cells shifted to the restrictive temperature. Mutant [tsAF8] and parental [BHK-21] cells were grown at 34°C and shifted to 40.5°C for 2 hr. Total cytoplasmic RNA was extracted, and accumulated hsp70 RNA levels before and after temperature shift were examined by RNA blot analysis using a 32P-labeled human hsp70 probe [Wu et al. 1985].

A complex mediates AUUUA-dependent RNA stability
Figure 4. Stability of β-globin RNAs carrying the GM–CSF AU motif measured following inhibition of transcription using temperature shift or actinomycin D. Levels of β-globin RNA remaining following inhibition of transcription were measured using RNase protection to analyze total cytoplasmic RNA. Levels of globin mRNA were measured by densitometry, and the log of the amount remaining was plotted as a function of time [hr]. Each point represents the average of three measurements from two independent experiments. Transcription was inhibited in the tsAF8 polyclonal lines (described in the legend to Fig. 2) by shifting the cultures to the nonpermissive temperature (40.5°C). In L-cell derivatives, transcription was blocked by addition of actinomycin D. (A) RβG AT and RβG GC RNAs; (B) RβG AT1°° and RβG ccl°° RNAs; (C) RInG AT22 and RInG Gc22 RNAs; (D) RInG AT1 and RβG ccl RNAs; (E) RβG AT156 and RβG Gc153 RNAs; (F) RbcG ATc and RβG Gcc. (Boxes) GC RNA levels; (circles) AU RNA levels. (Solid symbols) Measurements following temperature shift of tsAF8 polyclones; (open symbols) measurements following addition of actinomycin D to L cell polyclones.

Selective translation-dependent assembly of a large, presumptive degradation complex onto unstable, AU motif-containing RNAs

To examine further the mechanism of translation-dependent RNA instability (and to verify the translated properties of each of our constructs), the distribution of each RβG mRNA in polyribosome profiles was examined. To do this, postnuclear cell lysates were centrifuged on sucrose gradients. Fractions were collected and RNA recovered from each was assayed by RNase protection. The results, shown in Figures 5 and 6, generally confirmed the predictions as to which RNAs would be translated efficiently. RNAs from RβG AT, RβG GC, RβG AT156,
A complex mediates AUUUA-dependent RNA stability

Figure 5. Detection of a rapidly sedimenting complex bound to unstable rabbit β-globin mRNAs carrying the GM-CSF AU motif. Polysome profiles were generated from lysates of tsAF8 polyclonal stable cell lines described in Fig. 2. The tops of the gradients are to the left. Positions of the 40S, 60S, and 80S ribosomal subunits are marked. Each fraction was treated with proteinase K (200 µg/ml), RNA was extracted and β-globin RNAs were identified by RNase protection. [A] RβGAT; [B] RβGGC; [C] RβGAT100; [D] RβGGC100; [E] RβGAT22; [F] RβGGC22.

RβGGC153, RβGATC, and RβGGCC were all found predominantly attached to multiple ribosomes. For example, RβGGCC mRNAs (which contain the entire 147-amino-acid β-globin-coding domain) were primarily associated with 6–8 ribosomes [Fig. 5B], as are those encoded by RβGGC153 (not shown). RNAs from RβGGCC,
which contains an additional 21 codons as a consequence of insertion of the AU motif into the translated domain, were attached to 7–8 ribosomes [Fig. 6D]. This is as expected for efficiently translated mRNAs with dense ribosome packing every 30 codons [Yonath et al. 1987]. For mRNAs with shorter translated domains [e.g., RβG\textsubscript{GCl100} (Fig. 5D) and RβG\textsubscript{GC22} (Fig. 5F)], appropriately fewer ribosomes were attached. A mutation of the initiating ATG codon in RβG\textsubscript{GC1} yielded an mRNA sedimenting primarily with the 80S peak [Fig. 6B], indicating at most a transient attachment to a single ribosome followed by rapid translation termination.

Compared with the corresponding GC-containing RNAs, however, all AU-containing RNAs that display the low RNA phenotype (i.e., RβG\textsubscript{AT}, RβG\textsubscript{AT100}, RβG\textsubscript{AT22}) showed a reproducible difference in their sedimentation characteristics: In each case, the AU-containing RNAs sedimented faster than the GC-containing RNA. For example, the distribution of RβG\textsubscript{AT} mRNAs was offset by one faster sedimenting fraction compared with the control RβG\textsubscript{GC} RNA (Fig. 5, cf. A and B). By examination of the accompanying absorbance profiles, this increase in the sedimentation coefficient corresponds roughly to that expected for attachment (on average) of ½–1 additional ribosome per RβG\textsubscript{AT} mRNA. A similar shift was observed for RβG\textsubscript{AT100} versus RβG\textsubscript{GC100} RNAs [Fig. 5C,D]. The majority of the RβG\textsubscript{GC100} RNA sedimented in fractions 6–7 [containing 3- to 5-mer polysomes], but about half of RβG\textsubscript{AT100} RNAs sedimented in fraction 8 (containing 6- to 7-mer polysomes). A shift in sedimentation was even more prominent in the case of RβG\textsubscript{AT22} [Fig. 5E] and RβG\textsubscript{GC22} RNAs [Fig. 5F]. Although the majority of RβG\textsubscript{GC22} RNAs sediment in fractions 4 and 5 (containing monoribosomes through 3-mer polysomes), almost all RβG\textsubscript{AT22} RNAs sediment with 3- to 4-mer polysomes (fraction 6). Because in each case ribosome packing on the GC-containing RNAs is as expected for efficiently translated RNAs, the increased sedimentation of the AU-containing RNAs demonstrates that there is an AU

Figure 6. Absence of rapidly sedimenting complexes on stable RNAs that carry the GM–CSF AU motif. Polysome profiles and RNase protection assays were performed as in Fig. 5. (A) RβG\textsubscript{AT1}; (B) RβG\textsubscript{GC1}; (C) RβG\textsubscript{ATC}; (D) RβG\textsubscript{GCC}.
A complex mediates AUUUA-dependent RNA stability

motif-dependent assembly of a rapidly sedimenting complex whose presence correlates perfectly with the low RNA phenotype.

The differential sedimentation properties between GC and AU motif-bearing RNAs are dependent on RNA translation. The RβGAT1 mRNA carrying the authentic AU motif but whose translation is blocked by mutation of the AUG initiation codon to a UAG sediments indistinguishably from its translation-inhibited GC-containing control mRNA [Fig. 6A, B]. Nonetheless, despite the apparent requirement for translation, the complex responsible for the more rapid sedimentation of AU-bearing RNAs does not form efficiently if the AU domain is translocated from the 3'-untranslated region into the coding domain. When placed in the correct frame at codon 99, translation of the resultant mRNA (RβGATC) proceeds across the AU motif, stopping at the normal β-globin termination site. Not only do RβGATC RNAs and the control RβGCCC RNAs accumulate to similar levels [see Table 1], but they also sediment indistinguishably [Fig. 6, cf. C and D]. Similarly, no differences in sedimentation could be detected between RβGAT156 and RβGCCC RNAs in which translation extends into the AU motif (not shown). Clearly, in both of these latter cases in which the intact AU motif does not destabilize the mRNA, the AU-dependent complex fails to form, does so inefficiently, or is disrupted by ribosome transit across the AU domain.

Increased sedimentation of unstable, AU motif-containing RNAs is not due to changes in ribosome loading but is the result of a >20S complex whose binding is divalent cation independent

To examine the characteristics of the components responsible for the more rapid sedimentation of unstable, AU motif-bearing RNAs, we examined whether increased sedimentation was maintained following puromycin- or EDTA-induced ribosome release in vitro. Post-nuclear lysates of cells expressing RβGAT22 or RβGCCC were treated with puromycin or with EDTA and sedimented on sucrose gradients, and the positions of the corresponding RNAs were determined. Following release with puromycin, polysomes were dissociated completely as expected [Fig. 7A]. Even in the absence of bound ribosomes, however, the RβGAT22 RNA sedimented on average one fraction faster than the corresponding RβGCCC RNA (Fig. 7A). This difference in sedimentation was even more prominent when EDTA was used to remove the ribosomes and any other divergent cation-dependent binding proteins before sedimentation [Fig. 7B]. A high proportion of AU motif-containing RNAs again sedimented ~20S more rapidly than the analogous GC-containing RNA [Fig. 7B]. Indistinguishable results were found with RβGAT and RβGCC mRNAs. These findings eliminate the possibility that additional ribosomal loading can account for the shift in sedimentation of RβG RNAs that carry the AU motif-stabilizing domain, rather, the increase in sedimentation must represent binding of a large complex within the AU motif, and at least a portion of the complex must bind in an EDTA-insensitive manner. Furthermore, the complex remaining in EDTA is sufficiently large to alter RNA sedimentation by ~20S.

Discussion

Our studies provide evidence for formation of a large complex on translated mRNAs containing the GM-CSF AU-rich destabilizing element in their 3′-untranslated regions. Inhibition of translation by mutating the first methionine codon, moving the AU element into the translated region, or disrupting the AUUUA motifs results in inefficient formation or absence of the complex and a 30- to 40-fold increase in accumulated RNA levels. For most of these, direct measurement of RNA stability
demonstrates that much, and quite possibly all, of these changes in RNA abundance result from changes in stability.

Linkage of continued translation with RNA instability has been found repeatedly for short-lived mRNAs. Typically seen as an ~10-fold increase in mRNA abundance after the addition of protein synthesis inhibitors, this "superinduction" effect has been reported for c-myc (Linial et al. 1985), c-myb (Thompson et al. 1986), c-fos (Greenberg et al. 1986), and c-jun (Ryseck et al. 1988) and can be conferred to heterologous mRNAs by substituting the AU-rich domain from the 3'-untranslated region of GM-CSF (Shaw and Kamen 1986) or c-fos (Wilson and Treisman 1988; Koeller et al. 1991) but not c-myc (Wisdom and Lee 1991).

This linkage of continued translation with RNA instability could derive from either of two causes (which are not mutually exclusive). First, the RNA may be recognized as a substrate RNA only when that RNA is undergoing translation itself. We have shown this possibility to be true for instability mediated by the GM-CSF AU motif. Alternatively, RNA degradation may involve one or more highly unstable protein components whose abundance drops rapidly after the cessation of protein synthesis. There is now precedent for both of these possibilities in degradation of other eukaryotic mRNAs. β-Tubulin mRNAs (Pachter et al. 1987, Yen et al. 1988) and cell cycle-dependent histone mRNAs (Graves et al. 1987) have been reported to be degraded cotranslationally, possibly by a ribosome-bound nuclease (Cleveland 1988; Marzluff and Pandey 1988). For other transiently expressed, short-lived RNAs, a general conclusion cannot yet be drawn. For myc RNA, like GM-CSF, direct translation seems required for instability, because disruption of translation by mutation of the translation initiation codon yields a stable RNA. However, the only domain demonstrated in c-myc RNA to confer this cotranslational instability is a 105-codon segment from the carboxy-terminal translated region, rather than the AU-rich 3'-untranslated domain [Wisdom and Lee 1991]. Further complicating the issue is the situation for c-fos. Here, the 3'-untranslated region of c-fos RNA confers instability to transferrin receptor mRNA whether or not translation initiation of this mRNA is specifically blocked [Koeller et al. 1991]. fos mRNA increase following blockage of protein synthesis is thus most consistent with loss of a labile component of the degradative machinery.

Although in most cases we have demonstrated AU motif-dependent changes in mRNA stability, we cannot be certain whether instability can quantitatively account for all of the differences in accumulated RNA levels mediated by the GM-CSF AU motif. This is most clearly true for RβGAT and RβGAT156, each of which accumulates to a level 10-fold higher than predicted from the measured half-lives. We believe that the most likely possibility to explain the quantitative discrepancy is that half-life measurements are themselves suspect after inhibition of polymerase II transcription. An alternative possibility, proposed previously for dihydrofolate reductase (Urlaub et al. 1989) and triose phosphate isomerase [Cheng et al. 1990] mRNAs, which were found to accumulate only to low levels when their translation terminated prematurely, is that translation near to the end of the mRNA is necessary for proper nuclear splicing and/or RNA transport. Although such a scenario could explain the low accumulation of RβGAT156, this seems unlikely because premature translation termination in RβGAT156 would also be predicted to yield low accumulation. This latter RNA accumulates to a level similar to that of the fully translated β-globin RNA. Furthermore, this processing/transport model certainly cannot account for the low RNA accumulation of RβGAT156 in which translation is prolonged.

In any event, the perfect correlation between the presence of the complex responsible for the more rapid sedimentation and the lower steady-state level only of translated RNAs bearing the GM-CSF AU motif in the 3'-untranslated region suggests that formation of the complex is an early step in the control of RNA instability mediated by this AU domain. That complex formation is disrupted by ribosome translocation through the AU domain is easily understood. Less obvious is why translation is required for complex formation. One possibility is that translation-dependent displacement of cytoplasmic ribonucleoproteins may make the AU domain accessible to components of the complex. Alternatively, one or more factors may themselves be peripheral ribosomal components that transfer efficiently to the mRNA only during translation.

Both the identity of the factors that assemble into this translation-dependent complex and the mechanism through which instability is conferred remain to be identified. For both c-fos and c-myc, deadenylation has been argued to precede degradation of the body of the mRNA [Laird-Offringa et al. 1990, Shyu et al. 1991]. We have tried to determine whether there is a corresponding deadenylation of unstable mRNAs bearing the GM-CSF AU domain, but their low abundance has precluded a careful examination thus far [S. Savant-Bhonsale and D.W. Cleveland, unpubl.]. In any event, whether poly[A] loss is linked to rapid RNA turnover in vivo is not firmly established: Deadenylated c-myc RNAs turn over no more rapidly than those with normal poly[A] tails [Laird-Offringa et al. 1990], and mutations in the fos AU motif that have no effect on the rate of poly[A] shortening stabilize the RNA [Shyu et al. 1991], a finding fully consistent with the absence of linkage of tail loss and instability.

With regard to identifying degradation components, a telling clue may have emerged from our finding that inhibition of transcription, either by use of actinomycin D or inactivation of a temperature-sensitive polymerase II mutant, yields measured half-lives that cannot account for differences in RNA accumulation. The simplest resolution is that ongoing transcription may be required for the rapid mRNA degradation pathway, presumably because a short-lived RNA is involved directly or indirectly in the AU-mediated degradation pathway. If so, then the apparent half-lives of RNAs RβGAT, RβGAT100, and
RBGAT22 will obligatorily be overestimated by any method that inhibits transcription. Consistent with this view is the original evidence of Shaw and Kamen (1986), who used actinomycin D to block transcription: RBGAT RNA loss in their cells did not follow a first-order decay and plateaued at 20–30% of the initial level. The requirement for a nucleic acid component has also been supported experimentally during in vitro degradation of c-myc mRNA: A soluble factor responsible for accelerated loss of c-myc RNA was shown to be sensitive to micrococcal nuclease digestion (Brewer and Ross 1989).

The combination of the potential of an RNA component in AU-dependent mRNA degradation and an apparently large degradation complex are reminiscent of one preceding example of an RNA-dependent cleavage complex. Mammalian RNase P, which cleaves sequences from the 5’ ends of precursors of tRNAs to produce the mature 5’ termini of the tRNAs (Altman et al. 1986), is a labile, ~15S nuclear complex that can be dissociated into and reconstituted from RNA and protein components (Gold and Altman 1986; Pace and Smith 1990). With this example in mind, key questions now remaining are identification of the components of the AU-binding complex and determination of whether it contains any nucleic acid component.

Materials and methods

Cell culture and transformations

The baby hamster kidney cell line tsAF8 [Rossini et al. 1980, obtained from J. Corden, Johns Hopkins University School of Medicine, Baltimore, MD] was maintained at 34°C in Dulbecco’s modified Eagle medium (DMEM) with 1 gram/liter of glucose and supplemented with 10% fetal calf serum and 10% newborn calf serum and supplemented with 10% foetal calf serum. Colonies were selected in DMEM containing 10% fetal calf serum and 0.5 μg/ml of G418 (GIBCO), and pooled after 14 days.

Plasmid construction and DNA probes

The plasmids pNeoRBGAT and pNeoRBGGC (renamed pRBGAT and pRBGGC) were gifts from R. Kamen (Shaw and Kamen 1986). Site-directed mutagenesis of pRBGAT and pRBGGC was used to prepare plasmids pRBGAT1, pRBGGC1 and pRBGAT2, pRBGGC2. To do this, appropriate domains were subcloned into M13 and, the uracil incorporation method described by Graham and van der Eb (1973). Colonies were selected in DMEM containing 10% fetal calf serum and 0.5 μg/ml of G418 (GIBCO), and pooled after 14 days.

DNA preparation and analysis

Total cytoplasmic RNA was prepared by a modification of the method of Favaloro et al. (1980). Cells were washed (twice) with ice-cold, phosphate-buffered saline and scraped in 200 μl/100-mm plate of lysis buffer (0.14 M NaCl, 1.5 mM MgCl2, 10 mM Tris·Cl at pH 8.6, 0.5% NP-40, 10 mM vanadyl–ribonucleoside complex). The resultant cell suspension was vortexed briefly and cell debris and nuclei were pelleted by centrifugation at 2000g for 2 min at 4°C. The supernatant was recovered and diluted with an equal volume of a proteinase K solution (0.2 M Tris·Cl at pH 7.5, 25 mM EDTA, 0.3 M NaCl, 2% [wt/vol] SDS) and 200 μg/ml of proteinase K. After incubating at 37–45°C for 30 min, proteins were extracted first with phenol–chloroform and, finally, with chloroform alone. The aqueous phase containing the total cytoplasmic RNA was precipitated using 0.3 M sodium acetate (pH 5.2) and 2.5 volumes of cold ethanol. RNA was resuspended in H2O, and the concentration was determined by A260 and stored at ~80°C.

S1 nuclease mapping was done essentially as described previously [Gay et al. 1987]. DNA probes were 5’-end-labeled with 32P and hybridized in 80% formamide, 40 mM PIPES (pH 6.4), 1 mM EDTA, and 0.4 μg/ml of NaCl at 50°C overnight. The hybridization mixture was diluted 10-fold by the addition of ice-cold S1 nuclease buffer [0.2 M NaCl, 30 mM sodium acetate at pH 4.5, 5 mM ZnCl2, 50 μg/ml of denatured salmon sperm DNA] and incubated at room temperature in the presence of 100 units of S1 nuclease (BRL) for 60 min. The protected fragments were resolved on 9 M urea/6% polyacrylamide gels and visualized by autoradiography. To measure γ-actin levels, plasmid mAc [Gay et al. 1989] was digested with Asp718, dephosphorylated by treatment with alkaline phosphatase, and end-labeled with [γ-32P]ATP for use in protection analyses.

RNase protection analyses were done according to Melton et al. [1984]. An RNA probe specific for globin sequences was obtained by subcloning the 490-bp Xhol–BamHI fragment of the rabbit β-globin gene (containing codons 1–99) into pGEM-2 to create pGEM-β-globin. After cleavage with BamHI, a uniformly labeled RNA transcript was synthesized with SP6 polymerase. Each sample RNA to be analyzed was mixed with probe, evaporated to dryness, and redissolved in 20 μl of 80% formamide, 40 mM PIPES (pH 6.4), 1 mM EDTA, 0.4 μg/ml of NaCl. This mixture was heated to 85°C for 5 min [to denature the RNA], transferred rapidly to 54°C, and incubated overnight. Ribonuclease digestion was carried out for 1 hr at 30°C in 10 mM Tris·Cl (pH 7.5), 300 mM NaCl, 5 mM EDTA containing 40 μg/ml of ribonuclease A and 2 μg/ml of ribonuclease T1. Following RNase treatment, proteinase K was added for 15 min at 37°C, and protein was extracted with phenol–chloroform. RNA was precipitated...
Savant-Bhonsale and Cleveland
tated with ethanol and analyzed on a denaturing 9 M urea/6% polyacrylamide gel.

For RNA blot analysis, total cytoplasmic RNA was electrophoresed on a 1% formaldehyde-agarose gel. RNA was blotted onto GeneScreen Plus (DuPont) and hybridized to the 32P-labeled human hsp70 DNA probe in the hybridization buffer (33% formamide, 500 mM phosphate buffer at pH 7.2, 1 mM EDTA, 1% albumin, 7% SDS) at 42°C for 16 hr. The blot was washed once with 2× SSC (1× SSC = 15 mM sodium citrate, 150 mM NaCl), 0.1% SDS for 30 min at room temperature, washed twice with 0.2× SSC, 0.1% SDS, at 55°C (30 min each wash), and then exposed to X-ray film.

Nuclear run-on assay to measure transcription rates
Nuclear run-on assays and isolation of nuclei were performed according to Banerji et al. (1984). Briefly, to isolate the nuclei, ~106 cells were harvested and lysed in several volumes of lysis buffer [10 mM NaCl, 3 mM MgCl2, 10 mM Tris-Cl at pH 7, 4, 0.5% NP-40] by vortexing briefly. Nuclei were pelleted by centrifugation, and the supernatant was discarded. The nuclei were resuspended in equal volumes of nuclear storage buffer (40% glycerol, 50 mM Tris-Cl at pH 8, 5 mM MgCl2, 0.1 mM EDTA). The nuclei were then incubated in 25 mM HEPES (pH 7.4), 2.5 mM MgCl2, 2.5 mM dithiothreitol, 75 mM KCl, and 5% glycerol in the presence of 0.35 mM each of ATP, GTP, CTP and 0.4 μM UTP plus 200 μCi of [α-32P]UTP. The reaction was stopped by adding DNase I and incubating at 37°C for 10 min. Proteins in the reaction mixture were digested with proteinase K and extracted with phenol–chloroform. Nucleic acids were ethanol precipitated and resuspended in 10 mM Tris, 1 mM EDTA, and 0.5% SDS.

Single-stranded DNA probes for nuclear run-on transcription assays were (1) for β-globin, the 1240-bp Xhol–HindIII fragment [beginning at position −10 in the β-globin gene and extending to the 3′-untranslated region] was isolated from pNeoR[βG AT and pNeoR[βG Gc, R. Hardison for providing plasmids pUK4.7, N. Theodorakis for help in producing high-resolution polyribosome profiles, R. Baserga and J. Corden for providing the tsAF8 cell line, and B. Sollner-Webb for many helpful suggestions. This work has been supported by National Institutes of Health (NIH) grant GM 34231 to D.W.C. S.S.-B. has been supported by an NIH postdoctoral fellowship.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References
Altman, S., M. Baer, C. Guerrier-Takada, and A. Vioque. 1986. Enzymatic cleavage of RNA by RNA. Trends Biochem. Sci. 11:515–518.
Banerji, S.S., N.G. Theodorakis, and R.I. Morimoto. 1984. Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Mol. Cell. Biol. 4:2437–2448.
Bernstein, P., S.W. Peltz, and J. Ross. 1989. The poly(A)–poly(A)– binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9:659–670.
Bernstein, P.L., D.J. Herrick, R.D. Prokopenko, and J. Ross. 1992. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes & Dev. 6:642–674.
Blobel, G. and D. Sabatini. 1971. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc. Natl. Acad. Sci. 68:390–394.
Bohajanen, P.R., B. Petryniak, C. H. June, C. B. Thompson, and T. Lindstein. 1991. An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 3′-untranslated region of lymphokine mRNA. Mol. Cell. Biol. 11:3288–3295.
Brewer, G. 1991. An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 5:2460–2466.
Brewer, G. and J. Ross. 1988. Poly(A) shortening and degradation of the 3′ A + U rich sequence of human c-myc mRNA in a cell free system. Mol. Cell. Biol. 8:1697–1708.
———. 1989. Regulation of mRNA degradation in vitro by a labile destabilizer with an essential nucleic acid component. Mol. Cell. Biol. 9:1966–2006.
Cheng, J., M. Fogel-Petrovic, and L.E. Maquat. 1990. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triphosphatase isomerase mRNA. Mol. Cell. Biol. 10:5215–5225.
Cleveland, D.W. 1988. Autosynthesized instability of tubulin mRNA: A novel eukaryotic regulatory mechanism. Trends Biochem. Sci. 13:339–343.
Gay, D.A., S.S. Sisodia, and D.W. Cleveland. 1989. Autoregulatory control of β-tubulin mRNA stability is linked to translation elongation. Proc. Natl. Acad. Sci. 86:5763–5767.
A complex mediates AUUU-A-dependent RNA stability

Gay, D.A., T.J. Yen, J.T.Y. Lau, and D.W. Cleveland. 1987. Sequences that confer β-tubulin autoregulation through modulate mRNA stability reside within exon 1 of a β-tubulin mRNA. *Cell* 50: 671–679.

Gillis, P. and J.S. Malter. 1991. The adenine uridine binding factor recognizes AU-rich elements of cytokine, lympho-kine, and oncogene mRNAs. *J. Biol. Chem.* 266: 3172–3177.

Favaloro, J., R. Treisman, and R. Kamen. 1980. Transcription maps of polynoma virus-specific RNA: Analysis by two-di-mensional nuclease S1 gel mapping. *Methods Enzymol.* 65: 718–749.

Gold, H.A. and S. Altman. 1986. Reconstitution of RNAase P activity using inactive subunits from E. coli and Hela cells. *Cell* 44: 234–249.

Gough, N.M., D. Metcalf, J. Gough, D. Grail, and A.R. Dunn. 1985. Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor. *EMBO J.* 4: 645–653.

Graham, F.L. and A.J. Van der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. *Virology* 52: 456–467.

Graves, R.A., N.B. Pandey, N. Chodchoy, and W.F. Marzluff. 1987. Translation is required for regulation of histone mRNA degradation. *Cell* 48: 615–627.

Greenberg, M.E., A.L. Hermanowski, and E.B. Ziff. 1986. Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription. *Mol. Cell. Biol.* 6: 1050–1057.

Gunning, P., T.J. Yen, and D.W. Cleveland. 1988. Autoregulation of tubulin expression is achieved through specific deg-radation of polysomal tubulin mRNAs. *Cell* 51: 283–292.

Rossini, M., S. Baserga, C.H. Huang, C.J. Ingles, and R. Baserga. 1980. Changes in RNA polymerase II in a cell cycle-specific temperature-sensitive mutant of hamster cells. *J. Cell. Physiol.* 103: 97–103.

Ryseck, R.P., S.I. Hirai, M. Yaniv, and R. Bravo. 1988. Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. *Nature* 334: 535–537.

Sachs, A.B. and R.W. Davis. 1989. The poly(A)-binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. *Cell* 58: 857–867.

Shaw, G. and R. Kamen. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. *Cell* 46: 659–667.

Shyu, A., J.G. Belasco, and M.E. Greenberg. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenyla-tion as a first step in rapid mRNA decay. *Genes & Dev.* 5: 221–231.

Shyu, A., M.E. Greenberg, and J.G. Belasco. 1989. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. *Genes & Dev.* 3: 60–72.

Sullivan, K.F. and D.W. Cleveland. 1986. Identification of conserved isotype-defining variable region sequences for four vertebrate β tubulin polypeptide classes. *Proc. Natl. Acad. Sci.* 83: 4327–4331.

Thompson, C.B., P.B. Challoner, P.E. Neiman, and M. Groudine. 1986. Expression of the c-myc proto-oncogene during cellular proliferation. *Nature* 319: 374–380.

Uriaub, G., P.J. Mitchell, C.I. Cuidad, and L.A. Chasin. 1989. Nonsense mutations in the dihydrodiformate reductase gene affect RNA processing. *Mol. Cell. Biol.* 9: 2868–2880.

Vakalopoulou, E., J. Schaack, and T. Shenk. 1991. A 32-kilodal-ton protein binds to AU-rich domains in the 3′ untranslated regions of rapidly degraded mRNAs. *Mol. Cell. Biol.* 11: 3355–3364.

Wilson, T. and R. Treisman. 1988. Removal of poly(A) and con-sequent degradation of c-fos mRNA facilitated by AU-rich sequences. *Nature* 336: 396–399.

Wisdom, R. and W. Lee. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. *Genes & Dev.* 5: 232–243.

Wong, G.G., J.S. Witek, P.A. Temple, R.M. Wilkens, A.C. Leary, D.P. Luxenberg, S.S. Jones, E.L. Brown, R.M. Kary, E.C. Orr, C. Shoemaker, D.W. Golde, E.A. Wang, and S.C. Clark. 1985. Human GM-CSF: Molecular cloning of the complementary DNA and purification of the natural and recombinant pro-teins. *Science* 228: 810–815.

Wu, B., C. Hunt, and R.I. Morimoto. 1985. Structure and expression of the gene encoding the major heat shock protein hsp70. *Mol. Cell. Biol.* 5: 330–341.

Yen, T.J., P.S. Machlin, and D.W. Cleveland. 1988. Authoregu-la-tated instability of β-tubulin mRNAs by recognition of the nascent amino terminus of β-tubulin. *Nature* 334: 580–585.

Yonath, A., K.R. Leonard, and H.G. Wittman. 1987. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. *Science* 236: 813–816.
Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a > 20S degradation complex.

S Savant-Bhonsale and D W Cleveland

Genes Dev. 1992, 6:
Access the most recent version at doi:10.1101/gad.6.10.1927

References
This article cites 50 articles, 26 of which can be accessed free at:
http://genesdev.cshlp.org/content/6/10/1927.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.