Exploration of nonlinear optical enhancement and interesting optical behavior with pyrene moiety as the conjugated donor and efficient modification in acceptor moieties

Muhammad Khalid1 · Muhammad Usman Khan2 · Nimra Azhar1 · Muhammad Nadeem Arshad3,4 · Abdullah M. Asiri3,4 · Ataualpa Albert Carmo Braga5 · Muhammad Nadeem Akhtar6

Received: 20 August 2021 / Accepted: 28 April 2022 / Published online: 6 June 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Herein, a series of new pyrene based hexylcyanoacetate derivatives (HPPC1–HPPC8) with A–π–D–π–D configuration were designed by end-capped modeling of non-fullerene acceptors on the structure of reference compound named dihexyl 3,3′-(pyrene-1,6-diylbis(4,1-phenylene))(2E,2′E)-bis(2-cyanoacrylate) HPPCR. Quantum chemical calculations of HPPCR and HPPC1–HPPC8 were accomplished at M06/6-31G(d, p) level. The stability of molecules due to the strongest hyper conjugative interactions in HPPCR and HPPC1–HPPC8 was estimated through NBO study. Interestingly, HOMO–LUMO band-gap of HPPC1–HPPC8 was found smaller than HPPCR which resulted in large NLO response. Among all the investigated compounds, HPPC7 showed the larger NLO response due to the presence of four cyanide (CN) groups which strengthens the bridge conjugation, and its band gap was found to be 2.11 eV, smaller as compared to band gap of HPPCR (3.225 eV). The absorption spectra of HPPC1–HPPC8 compounds showed maximum absorption wavelengths (483–707 nm) than HPPCR (471.764 nm). The designed compounds showed high NLO response than HPPCR. Amazingly, highest amplitude of linear polarizability (\(<\alpha > \)), first hyperpolarizability (\(\beta_{\text{total}} \)) and second hyperpolarizability (\(<\gamma > \) for...
HPPC7 were achieved to be 1331.191, $200,112.2$ and 4.131×10^7 (a.u), respectively. NLO response showed that the HPPC1–HPPC8 might be potential candidates for NLO applications.

Graphical abstract

Keywords Linear polarizability · First hyperpolarizability · Second hyperpolarizability · UV–Vis · FMO · End-capped moieties · Non-fullerene acceptors

1 Introduction

In recent era, it has become essential to turn our attention from electrons usage towards photon usage for ultra-fast technologies. Therefore, broad-spectrum investigations are carried out in several technological grounds including optical computing, data storage, optical switching and telecommunication (Thukral et al. 2017). Nowadays, photons are considered with great preference for the transfer of information (Northup and Blatt 2014). The non-linear optics (NLO) have attracted significant interest, especially during the last era due to the progression in experimental communities and molecular modelling (Jawaria et al. 2022; Concepcion et al. 2021; Adeel et al. 2021; Khalid et al. 2021; Ali et al. 2021). Molecules with large NLO response have gained notable significance (Garmire 2013; Guo et al. 2017). As a result, diverse efforts have been made to model innovative NLO materials have increased rapidly (Kanis et al. 1994). Organic NLO materials are preferred over the inorganic NLO materials due to their lower production costs, smaller dielectric constants, fast NLO response, higher second and third order hyperpolarizabilities and design flexibility (Khalid et al. 2020; Chemla 2012; Fuchs et al. 1989). NLO characteristics of conjugated organic materials can be efficiently enhanced via structural tailoring and doped with fullerene acceptors (Kamanina et al. 2012). Fullerene derivatives with greater photoinduced electron transfer and suitable charge separation property have been extensively used as electron acceptors for many years (Li et al. 2017a). Unfortunately, there are certain intrinsic drawbacks associated with fullerene acceptors; for example poor accepting power, visible range weak light absorption, and limited guideline on their molecular energy levels.
(Speller et al. 2019). Compared with fullerene derivatives, non-fullerene acceptors (NFAs) have exclusive benefits, such as transparency, easily-tuned energy levels, efficient light absorption, easy in fabrication, diverse chemical structures and flexibility (McAfee et al. 2015; Nielsen et al. 2015; Li et al. 2017b; Hou et al. 2018; Yang et al. 2016).

Literature study reveals that organic NFAs are used in organic solar cells but their usage in NLO materials has not been reported yet. We identified a compound HPPCR from literature (Nan et al. 2020) as reference compound and to the best of our knowledge, no systematic NLO study of HPPCR has been published yet. HPPCR is non-fullerene based (A-π-D-π-A) type compound which comprises of hexyl 2-cyanoacrylate as first and second acceptor, phenyl as first and second π-linker and pyrene core as a donor moiety. The literature survey revealed different types of donor acceptor moieties including donor–acceptor, donor-π-acceptor, donor-π-π-acceptor, donor–acceptor-π-acceptor, donor-donor-π-acceptor, donor-π-acceptor-π-donor and acceptor-π-donor-π-donor (Wielopolski et al. 2013; Katono et al. 2014; Panneerselvam et al. 2017; Namuangruk et al. 2012). Frequently, a push–pull model is used for designing of A-π-D-π-D type organic compounds. The NLO compounds with push pull schemes have drawn abundant attention for researchers because of remarkable NLO results (Khan et al. 2018, 2019a, 2019b, 2019c).

In the current study, we considered HPPCR as prototype and designed eight compounds (HPPC1–HPPC8) containing A–π–D–π–D architecture by structural tailoring with various halogenated non-fullerene-based acceptors. The donor and π-linker are kept preserved during the course of the designing while acceptor groups are modified. Different parameters, such as electronic properties, NBO analysis, absorption maximum, second and third order NLO, linear polarizability and dipole moment for all investigated compounds (HPPC1–HPPC8) and the reference compound HPPCR were computed to estimate the performance of the new engineered compounds as effective NLO materials. These findings will provide information for designing A–π–D–π–D configuration-based novel non fullerene organic entities and trigger experimental researchers for the synthesis of these molecules having exceptional NLO features.

2 Computational procedure

Entire calculations regarding computational analyses are carried out with aid of Gaussian 16 program (Frisch et al. 2016). The computations input files were developed using the Gauss View 6.0 program (Dennington et al. 2016). Geometrical optimization without symmetry restrictions of reference HPPCR molecule and HPPC1–HPPC8 are performed at DFT/M06/6-31G (d,p) level of theory. The same functional was utilized to investigate NBO and NLO properties. TD-DFT with aforesaid level was performed to investigate FMO and UV–Vis spectra of pyrene based compounds (HPPC1–HPPC8). The solvent (DCM) effect was calculated by means of conductor-like polarizable continuum (CPCM) model in all computational analyses (Barone and Cossi 1998). For interpretation of results from output files, Avogadro (Hanwell et al. 2012) and Chemcraft (Zhurko and Chemcraft 2014) were employed. Entire computational support is provided by A.A.C.B from IQ-USP Brazile.

Dipole moment was determined by using Eq. (1) (Valverde et al. 2018).

\[\mu = \left(\mu_x^2 + \mu_y^2 + \mu_z^2 \right)^{1/2} \]
Average polarizability $<\alpha>$ determined with Eq. (2) (Barone and Cossi 1998).

\[
<\alpha> = \frac{1}{3}(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})
\]

(2)

The magnitude of total first hyperpolarizability (β_{tot}) was calculated via Eq. (3) (Barone and Cossi 1998).

\[
\beta_{total} = \left[(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{yyy} + \beta_{yzz} + \beta_{yxx})^2 + (\beta_{zzz} + \beta_{zxx} + \beta_{xyz})^2 \right]^{1/2}
\]

(3)

The second hyperpolarizability was determined by using the Eq. (4) (Valverde et al. 2018).

\[
<\gamma> = \frac{1}{5}\left[\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2(\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz}) \right]
\]

(4)

3 Results and discussion

Herein, the experimentally reported compound is taken as the reference HPPCR. The reference HPPCR compound consists of A–π–D–π–A configuration as shown in Fig. 1. The pyrene ring in reference compound is acting as a donor moiety which has electronic donating ability. Whereas, hexylcyanoacetate parts located at both ends consisting of electron
withdrawing capability regarded as acceptors. The pyrene ring and hexylcyanoacetate parts are coupled via phenyl \(\pi \)-linker. We exchanged the first acceptor moiety of the \textit{HPPCR} compound with various halogenated non-fullerene acceptors and second acceptor with the pyrene donor and also incorporated the thienyl with the second \(\pi \)-linker. By carrying out these modifications in the reference (\textit{HPPCR}) compound, we designed eight derivatives (\textit{HPPC1–HPPC8}) having A–\(\pi \)-D–\(\pi \)-D architecture as shown in Fig. 2. The aim of our current investigation is to design the innovative non-fullerene-based acceptor materials with notable optoelectronic properties. The detailed computations were achieved to reveal that how \(\pi \)-linkers and numerous accepters affect the HOMO/LUMO band gaps, ICT, absorption spectra, electronic properties, linear polarizability \(\langle \alpha \rangle \), first hyperpolarizability \(\langle \beta \rangle \) and second hyperpolarizability \(\langle \gamma \rangle \) as well as NBO investigation.

4 Electronic structures

The frontier molecular orbital (FMO) investigation is considered as vital tool in explaining UV–Vis analysis, kinetic stability, chemical reactions, optical and electronic properties of the molecule (Risser et al. 1993; Solomon et al. 2012). The LUMO, HOMO and their energy difference are essential pointers which are used to enhance and adjust the NLO characteristics of the molecule (Albayrak and Frank 2010). The band gap \((E_g) \) is a quite essential parameter to analyze the softness, hardness and intramolecular charge transfer (ICT) from end-capped donor moiety towards the electron-acceptor units via \(\pi \)-conjugated linker of the molecules (Solomon et al. 2012; Almutairi et al. 2017; Sajan et al. 2010). The molecules having larger band gap are considered hard and those with smaller band gap are called soft molecules. Hard compounds are less reactive, stable and having a lower polarizability (Maidur et al. 2017). On the other hand, soft molecules are highly reactive, unstable and more polarizable because they need less energy for excitation (Prasad et al. 2016). Generally, promising NLO response is originated with smaller energy gaps. Therefore, qualitative estimation for the NLO response of compounds is done from FMO band gap (Katariya et al. 2017). The FMO band gap of reference \textit{HPPCR} and designed compounds \textit{HPPC1–HPPC8} are tabulated in the Table 1.

Table 1 shows the HOMO/LUMO calculated values of reference compound is \(-5.755/-2.530 \text{ eV}\), which is very close to experimentally determined values \(-5.82/2.86 \text{ eV}\) (Nan et al. 2020) respectively. These results indicated that the implemented computational procedure was suitable to investigate \textit{HPPC1–HPPC8} compounds. All the investigated \textit{HPPC1–HPPC8} compounds exhibited smaller HOMO and LUMO values in 2.118–3.098 eV span in contrast to \textit{HPPCR} (3.225 eV) which might be owing to the extended conjugation factor. This energy gap value decreased to 3.098 eV in \textit{HPPC1} because of the replacement of second acceptor with pyrene donor, along with the incorporation of thienyl with second linker, which enhances the electron donating ability of donor group towards the acceptor group by generating push pull mechanism. This energy gap is further reduced in \textit{HPPC2} due to the substitution of non-fullerene acceptor group 2-(2-methylene-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile. The structure of \textit{HPPC3} is designed by substitution of two fluorine groups on the acceptor unit in \textit{HPPC2} derivative. The band gap of \textit{HPPC3} is lowered owing to the two F groups substituents which enhances the electron withdrawing nature of acceptor moiety. The \textit{HPPC4} and \textit{HPPC5} have a comparable HOMO and LUMO energies as \(-5.563/-3.196 \text{ and } -5.608/-3.233 \text{ eV}\), respectively. The
structure of HPPC4 is designed by incorporating the F group in the acceptor moiety of HPPC3 derivative. Among all the halogens F is highly electronegative and it increases the electron withdrawing capacity of acceptor group which might be the reason for

Fig. 2 Structure of (HPPCR) and designed compounds (HPPC1–HPPC8)
The reduction in the energy gap value 2.367 eV in HPPC4. The structure of HPPC5 is designed by replacing the three F groups with the two (–Cl) groups at the end capped acceptor moiety of HPPC4 derivative. The HPPC5 shows little bit more energy gap than HPPC4 because (–Cl) is less electronegative than (–F). The structure of HPPC6 is designed by substitution of (–Cl) group at the acceptor region of HPPC5 which might be the reason for lowering the band gap. Abundant HOMO/LUMO energy gap is observed at 2.118 eV in HPPC7. In fact, HPPC7 structure is designed by the replacing three (-Cl) group with the two cyano (–CN) groups on the acceptor unit in HPPC6 derivative. In HPPC7 the energy gap is reduced because of cyano (–CN) groups substitution on the acceptor region. These (–CN) groups have excellent electron withdrawing nature and can withdraw more electrons toward the acceptor region. Thus, this thing intensifies the transfer of charge and lowers its band gap. In the same way the HPPC8 is reported with a little bit more energy gap (E_{gap} = 2.444 eV) due the effect of acceptor group 2-(2-methylene-3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene) malononitrile. Therefore, the HOMO–LUMO energy gap was remarkably reduced in all the designed molecules. The band gap increasing order: HPPC7 < HPPC6 < HPPC4 < HPPC5 < HPPC3 < HPPC8 < HPPC2 < HPPC1 < HPPC8. This order shows that the incorporating various electronegative substituent in the designed compounds would be an outstanding feature to reduce the band gap results, hence, significant the NLO behavior (Fig. 3).

In the HPPC8 and HPPC1-HPPC8 charge distribution pattern depicted in the Fig. 4. The charge transfer phenomena indicated by electron density distribution pattern proved that investigated compounds would be the outstanding NLO material. In the reference compound, HPPC8 charge density is mostly situated over the donor region. While in LUMO, it is located above π-linker and minutely over donor segment. In the HOMO of HPPC7, charge density is mainly obtained above donor and π-spacers fragment, whereas the LUMO charge density spread over acceptor and π-spacer. In the designed compounds HPPC1–HPPC8, the large component of HOMOs was situated over donor portion while, small part on the π-spacers. Though, LUMOs are generally placed over the acceptor portion and partially over π-spacers. This shows that donor and acceptor units are linked with each other with the help of π-spacers, donor donates electron towards acceptor and π-spacers facilitate this transfer. This charge transfer

Compounds	E_{HOMO}	E_{LUMO}	Band gap
HPPC8	−5.590	−3.146	2.444
HPPC7	−5.647	−3.529	2.118
HPPC6	−5.597	−3.310	2.287
HPPC5	−5.608	−3.233	2.375
HPPC4	−5.563	−3.196	2.367
HPPC3	−5.560	−3.123	2.437
HPPC2	−5.595	−3.084	2.511
HPPC1	−5.593	−2.495	3.098
HPPC8	−5.755	−2.530	3.225

Units in eV
phenomena reveals that all the studied compounds might be considered as impressive NLO constituents.

5 Global reactivity depicters

The global reactivity depicters are very useful tool for measuring the reactivity and stability of designed molecules HPPC1–HPPC8 (Dheivamalar et al. 2018). Global chemical reactivity descriptors, such as chemical potential (µ), global hardness (η), global softness (S), electronegativity (χ), electrophilicity (ω), ionization potential (IP) and electron affinity (EA) have been determined by utilizing the HOMO–LUMO band gap of designed compounds (Yousif and Fadhil 2021). The \(IP \) denotes the energy required for removal of electron from HOMO and \(EA \) describe the energy required to add an electron to the LUMO (Dheivamalar et al. 2018). \(IP \) and \(EA \) are calculated by using the Koopman’s equation (Koopmans 1933).

\[
IP = -E_{\text{HOMO}}
\]
Atoms and molecules chemical reactivity is depicted by ionization energy. High ionization energy means high stability, chemical inertness and vice versa. EA refers to the capability of acceptor group to accept electron from a donor (Meenakshi 2017). Table 2 reveals that IP values of designed compound are smaller and EA values are greater than the reference compound. These results showed that the HPPC1–HPPC8 might be soft, unstable and highly reactive compounds.

Global hardness (η) and global softness (σ) are calculated by using following equations (Pearson 1997).

$$EA = -E_{\text{LUMO}}$$ (6)

Fig. 4 HOMOs and LUMOs of (HPPCR) and designed molecules (HPPC1–HPPC8)
From Table 2, values of softness and hardness reveals that all the investigated compounds \textbf{HPPC1–HPPC8} are the reactive, soft and polarizable compounds relative to the reference compound. Amongst all designed compounds, \textbf{HPPC7} has lowest hardness value found to be 0.038 and highest softness value 12.845. Global hardness is decreased because of the substitution of (–CN) unit on end-capped moiety. These (–CN) groups enhance the electron withdrawing capacity of acceptor part and create a strong push pull mechanism within the compound, which in turn effects the stability of the compound and reduces its hardness.

The electronegativity of molecule is estimated by using the following equation (Pritchard and Skinner 1955).

\[
\eta = \frac{IP - EA}{2} = -\frac{E_{\text{LUMO}} - E_{\text{HOMO}}}{2} \tag{7}
\]

\[
\sigma = \frac{1}{2\eta} \tag{8}
\]

From Table 2, values of softness and hardness reveals that all the investigated compounds \textbf{HPPC1–HPPC8} are the reactive, soft and polarizable compounds relative to the reference compound. Amongst all designed compounds, \textbf{HPPC7} has lowest hardness value found to be 0.038 and highest softness value 12.845. Global hardness is decreased because of the substitution of (–CN) unit on end-capped moiety. These (–CN) groups enhance the electron withdrawing capacity of acceptor part and create a strong push pull mechanism within the compound, which in turn effects the stability of the compound and reduces its hardness.

The electronegativity of molecule is estimated by using the following equation (Pritchard and Skinner 1955).

\[
X = \frac{IP + EA}{2} = -\frac{E_{\text{LUMO}} + E_{\text{HOMO}}}{2} \tag{5}
\]

The electronegativity index signifies the electrons attraction by the functional group and atom, which results in the electronic transitions from lower to higher electronegative part of the molecule (Yousif and Fadhil 2021). The \(\mu \) is the opposite of \(\chi \). It is calculated by using the following equation (Parr et al. 1978).

\[
\mu = \frac{E_{\text{HOMO}} + E_{\text{LUMO}}}{2} \tag{6}
\]

More reactive compounds are those having larger chemical potential values. The electrophilicity index is described as a structural depicter for the analysis of the chemical reactivity of molecules. It measures the tendency of the species to accept electrons. A good, more reactive, nucleophile has a lower value of (\(\omega \)), in opposite a good electrophile has a high value of (\(\omega \)). The electrophilicity index values are calculated by equation (Maynard et al. 1998; Parr et al. 1999).

Compounds	\(IP \)	\(EA \)	\(X \)	\(\eta \)	\(\mu \)	\(\omega \)	\(\sigma \)
HPPCR	0.211	0.092	0.152	0.059	-0.152	0.195	8.438
HPPC1	0.205	0.091	0.148	0.056	-0.148	0.193	8.781
HPPC2	0.205	0.113	0.159	0.046	-0.159	0.275	10.836
HPPC3	0.204	0.114	0.159	0.044	-0.159	0.284	11.169
HPPC4	0.204	0.117	0.160	0.043	-0.160	0.297	11.497
HPPC5	0.206	0.118	0.162	0.043	-0.162	0.302	11.460
HPPC6	0.205	0.121	0.163	0.042	-0.163	0.318	11.896
HPPC7	0.207	0.129	0.168	0.038	-0.168	0.365	12.845
HPPC8	0.205	0.115	0.160	0.044	-0.160	0.286	11.136
\[\omega = \frac{\mu^2}{2\eta} \]

(7)

Table 2 reveals all the investigated compound has higher electrophilicity index. Electrophilicity is considered to be good if \(\eta \) is low and \(\mu \) value is high (Kumar et al. 2017).

Consequently, HPPC1–HPPC8 may hold potential NLO findings. Furthermore, these findings of the proposed compounds are linked with the energy gap values. Compounds with lower energy gap showed smaller values of hardness, chemical potential and larger value of softness hence, more reactive and vice versa. Consequently, this entire information illustrates that the compounds may be logically active and has noteworthy NLO characteristics.

6 UV–Vis analysis

In order to comprehend the different substituents effect on end-capped acceptor moiety, observed spectral properties of designed compounds have been calculated through TD-DFT/M06/6-311G(d,p) functional. These calculations were performed in DCM (dichloromethane) solvent for the approximation of six lowest singlet–singlet transitions. The computed absorption wavelengths (\(\lambda \)) are function of electron availability, oscillator strengths (\(f \)) and excitation energies (\(E \)) were also calculated for the same solvent of compounds (HPPCR) and (HPPC1–HPPC8) are presented in Table S23, while major values are collected in Table 3.

The \(\lambda_{\text{max}} \) of all the designed derivatives are observed in the range of 483–707 nm. The computed results revealed that the strong electron withdrawing end-capped moieties having more extended conjugation, resulting in a greater red shift in the \(\lambda_{\text{max}} \). The designed compounds have higher red shifted compared with reference HPPCR (\(\lambda_{\text{max}} = 471 \) nm) as can be seen in Table 3. The decreasing order of absorption wavelengths for all investigated compounds along with the reference compound are found to be HPPC7 > HPPC6 > HPPC4 > HPPC5 > HPPC3 > HPPC8 > HPPC2 > HPPC1 > HPPCR.

The decreasing order of absorption wavelengths and energy gap is obtained to be the same for all the studied molecules. In fact, these compounds (HPPCR–HPPC7) have low

Compounds	\(\lambda \) (nm)	E (eV)	\(f \)	MO contributions
HPPCR	471.764 (405) nm	2.628	1.085	H \(\rightarrow \) L (97%)
HPPC1	483.727	2.563	0.978	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (5%)
HPPC2	594.334	2.086	0.609	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (5%)
HPPC3	620.138	1.999	0.169	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (5%)
HPPC4	641.408	1.933	0.218	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (6%)
HPPC5	631.252	1.964	0.595	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (5%)
HPPC6	654.996	1.893	0.530	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (6%)
HPPC7	707.996	1.751	0.435	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (5%)
HPPC8	613.753	2.020	0.695	H \(\rightarrow \) L (92%), H-2 \(\rightarrow \) L (5%)

Values in parenthesis are experimental, (Nan et al. 2020) H = HOMO, H-2 = HOMO-2, L = LUMO, L-1 = LUMO-1
energy gaps and demands small energy for the electronic transitions. Indeed, red shifted absorption wavelengths were found in HPPCR–HPPC7 due to low energy transitions. Interestingly, HPPCR–HPPC7 are also found in the range of environment friendly compounds owing to absorbance in the UV region (Tomkinson et al. 2009; Bechtold and Mus-sak xxxx). It is expected that these compounds will immensely play a positive role in lowering the current global warming situation of the world. Moreover, the transition energy of all of the investigated compounds is obtained in the range of 2.628–1.751 eV. The lower transition energy is seen in HPPC7, due to the effect of strong end-capped acceptor unit. The increasing order of transition energies are such as HPPC7 < HPPC6 < HPPC4 < HPPC5 < HPPC3 < HPPC8 < HPPC2 < HPPC1 < HPPCR that is alike with oscillator strength. The molecular orbital calculations reveal that the visible region absorption maxima of studied compounds relate to the transition of electrons from HOMO to LUMO. Major contribution in these molecular orbital transitions belongs to H → L (92%). The molecular orbital transition reveals that maximum absorption spectra correlate with the transition from HUMO to LUMO. Furthermore, higher HOMO–LUMO compound shows deprived NLO response, while lowest HOMO–LUMO band gap compound HPPC7 establish maximum NLO response.

For the designing of NLO active materials with outstanding NLO response involves strong electronic coupling between donor and acceptor. Based on above discussion, (a) absorption spectra, (b) transition energy and (c) oscillator strength of designed compounds (HPPC1–HPPC8) are much better than the reference compound HPPCR. These results proposed that, these type (A–π–D–π–D) of designed compounds have marvelous NLO properties. The usage of the substituents has (–I) effect on acceptor moiety is a substantial approach. We anticipate that the effect of these non-fullerene acceptor units on NLO materials will be applied to design the NLO materials which performs a vital role in applied sciences.

7 NBO analysis

The natural bond orbital analysis was achieved by utilizing Gaussian NBO 6.0 program package (Glendening et al. 2013) and M06/6-31G(d,p) level of theory. NBO analysis allows us to evaluate: (i) the interaction between donor unit (D) and acceptor unit (A); (ii) the electronic excitation; and (iii) the electron delocalization (Ans et al. 2018). The studied compounds are divided into D, π (linker group) and A parts, although NBO analysis explains the transfer of charge density from donor(i) to acceptor (j) and π-linker acts as a conveyor for ICT charge transfer (Bribes et al. 1991). The stabilization energy $E^{(2)}$ for delocalization can be attained by Eq. 12:

$$E^{(2)} = q_I \left(\frac{F_{ij}}{\epsilon_j - \epsilon_i} \right)^2$$

whereas q_i is donor orbital occupancy, ϵ_j and ϵ_i are off-diagonal and F_{ij} is diagonal NBO Fock matrix elements (Liu et al. 2005). The NBO analysis offers useful understandings for analyzing the inter and intra-molecular hydrogen bonding, hyper conjugative interactions, charge transference between D and A units (Ans et al. 2018; Liu et al. 2005). The designed compounds NBO analysis parameters are listed in the Table S11-S19 while major values are put in Table 4.
Compounds	Donor(i)	Type	Acceptor(j)	Type	E(2)\(^a\)	E(J)E(i)\(^b\)	F(i,j)\(^c\)
HPPCR							
C25–C26	π	C28–C32	π*		27.13	0.29	0.079
C77–O78	π	C77–O78	π*		0.71	0.43	0.017
C72–H73	σ	C74–C77	σ*		7.41	0.96	0.076
C90–C93	σ	C93–H97	σ*		0.50	1.04	0.020
O79	LP(2)	C77–O78	π*		52.51	0.36	0.124
O79	LP(2)	C63–C65	π*		0.54	0.38	0.013
HPPC1							
C2–C3	π	C1–C6	π*		23.77	0.29	0.075
C35–C37	π	C35–C37	π*		1.70	0.33	0.021
C92–H103	σ	C86–C93	σ*		4.70	1.10	0.064
C95–H96	σ	C83–C95	σ*		0.66	1.07	0.024
O42	LP(2)	C40–O41	σ*		52.15	0.36	0.124
O42	LP(1)	C43–H46	σ*		0.93	1.01	0.027
HPPC2							
C92–C94	π	C23–C73	π*		25.81	0.29	0.081
C82–N83	π	C84–N85	π*		0.78	0.47	0.017
C23–C79	σ	C73–C74	σ*		7.98	0.98	0.080
C92–H96	σ	C23–C79	σ*		0.67	0.96	0.023
S36	LP(2)	C37–C39	π*		23.31	0.29	0.073
O86	LP(1)	C67–C74	σ*		1.35	1.19	0.036
HPPC3							
C24–C25	π	C27–C30	π*		25.84	0.29	0.077
C91–N92	π	C89–N90	π*		0.59	0.47	0.015
C89–N90	σ	C88–C89	σ*		6.30	1.57	0.089
C89–N90	σ	C84–C88	σ*		0.52	1.64	0.026
S46	LP(2)	C47–C49	π*		23.31	0.29	0.073
O93	LP(2)	C33–H87	σ*		0.59	0.70	0.019
HPPC4							
C24–C26	π	C29–C30	π*		26.23	0.29	0.077
C90–N91	π	C88–N89	π*		0.57	0.47	0.015
C33–H86	σ	C83–C84	σ*		9.50	1.01	0.088
C3–C7	σ	C7–CH18	σ*		0.80	1.13	0.027
O92	LP(2)	C76–C82	σ*		23.67	0.74	0.120
F95	LP(2)	C80–C81	σ*		0.51	0.98	0.020
HPPC5							
C78–C80	π	C83–C85	π*		28.83	0.28	0.080
C93–N94	π	C91–N92	π*		0.71	0.46	0.016
C34–H37	σ	C33–S35	σ*		5.26	0.75	0.056
C3–C6	σ	C6–H17	σ*		0.80	1.13	0.027
S35	LP(2)	C33–C34	π*		23.32	0.29	0.073
C176	LP(2)	C65–C70	σ*		0.55	0.91	0.020
HPPC6							
C78–C80	π	C83–C85	π*		29.12	0.28	0.081
C91–N92	π	C93–N94	π*		0.78	0.46	0.017
C93–N94	σ	C89–C93	σ*		6.27	1.57	0.089
C3–C6	σ	C3–H17	σ*		0.80	1.13	0.027
O90	LP(2)	C66–C73	σ*		23.57	0.74	0.119
C176	LP(2)	C65–C70	σ*		0.57	0.91	0.020
Typically, remarkable four types of molecular transitions were noticed; $\sigma \rightarrow \sigma^*$, $\pi \rightarrow \pi^*$, LP$\rightarrow \sigma^*$ and LP$\rightarrow \pi^*$. Transitions $\pi \rightarrow \pi^*$ was considered most significant, $\sigma \rightarrow \sigma^*$ was considered slightest and LP$\rightarrow \sigma^*/$LP$\rightarrow \pi^*$ were considered a little dominating transition. The extended conjugation and charge transfer in the designed molecules can be explained with $/u1D70B\rightarrow /u1D70B^*$ transitions. The most noteworthy electronic interactions in terms of $\pi \rightarrow \pi^*$ such as π(C25–C26)$\rightarrow \pi^*(C25–C28)$, π(C93–N94)$\rightarrow \pi^*(C91–N92)$, π(C35–H88)$\rightarrow \pi^*(C85–C86)$, π(C24–C26)$\rightarrow \pi^*(C29–C30)$, π(C24–C25)$\rightarrow \pi^*(C27–C30)$, π(C25–C27)$\rightarrow \pi^*(C25–C28)$, π(C24–C26)$\rightarrow \pi^*(C29–C30)$, π(C72–H73)$\rightarrow \pi^*(C74–C77)$, π(C90–N91)$\rightarrow \pi^*(C88–N89)$, π(C92–H96)$\rightarrow \pi^*(C93–H97)$, π(C92–H96)$\rightarrow \pi^*(C23–C79)$, π(C89–N90)$\rightarrow \pi^*(C84–C88)$, π(C3–C7)$\rightarrow \pi^*(C7–C18)$, π(C3–C6)$\rightarrow \pi^*(C6–C17)$, π(C3–C6)$\rightarrow \pi^*(C3–H17)$, π(C5–C16)$\rightarrow \sigma^*(C16–H17)$, and π(C5–C16)$\rightarrow \sigma^*(C16–H17)$. π(C3–C6)$\rightarrow \pi^*(C6–C17)$, π(C3–C6)$\rightarrow \pi^*(C3–H17)$, π(C5–C16)$\rightarrow \sigma^*(C16–H17)$, and π(C5–C16)$\rightarrow \sigma^*(C16–H17)$.

Table 4 (continued)

Compounds	Donor(i)	Type	Acceptor(j)	Type	$E(2)^a$	$E(J)$	$E(i)^b$	$F(i,j)^c$
HPPC7	C25–C27	π	C25–C28	π^*	29.59	0.28	0.081	
	C93–N94	π	C91–N92	π^*	0.73	0.46	0.016	
	C35–H88	σ	C85–C86	σ^*	7.86	0.98	0.079	
	C5–C16	σ	C16–H17	σ^*	0.93	1.13	0.029	
S48	LP(2)		C46–C47	π^*	23.24	0.29	0.073	
	O89	LP(1)	C79–C86	σ^*	1.39	1.17	0.036	
HPPC8	C24–C26	π	C29–C30	π^*	28.45	0.28	0.080	
	C90–N91	π	C88–N89	π^*	0.73	0.46	0.016	
	C47–H50	σ	S46–C49	σ^*	5.28	0.75	0.056	
	C3–C7	σ	C7–H18	σ^*	0.80	1.13	0.027	
	S46	LP(2)	C47–C49	π^*	23.26	0.29	0.073	
	O86	LP(1)	C77–C83	σ^*	1.44	1.19	0.037	

$aE(2)$ means energy of hyper conjugative interaction (stabilization energy in kcal/mol). bEnergy difference between donor and acceptor i and j NBO orbitals, cF(i,j) is the Fock matrix element between i and j NBO orbitals.
σ(C3–C7) → σ*(C7–H18) with 0.50, 0.66, 0.67, 0.52, 0.80, 0.80, 0.93, and 0.80 kcal/mol stabilization energies were found least values among all σ → σ* transitions in HPPCR and HPPC1–HPPC8, respectively.

Furthermore, some important interactions were observed like LP2 (O79) → π*(C77–O78), LP2(O42) → π*(C40–O41), LP2(S36) → π*(C37–C39), LP2(S46) → π*(C47–C49), LP2 (O92) → σ*(C76–C82), LP2(S35) → π*(C33–C34), LP2(O90) → σ*(C66–C73) LP2(S48) → π*(C46–C47), and LP2(S46) → π*(C47–C49) contained 52.51,52.15, 23.31, 23.31, 23.67, 23.32,23.57,23.24 and 23.26 kcal/mol in HPPCR and HPPC1–HPPC8, respectively. Furthermore, some important interactions were observed like LP2 (O79) → π*(C77–O78), LP2(O42) → π*(C40–O41), LP2(S36) → π*(C37–C39), LP2(S46) → π*(C47–C49), LP2 (O92) → σ*(C76–C82), LP2(S35) → π*(C33–C34), LP2(O90) → σ*(C66–C73) LP2(S48) → π*(C46–C47), and LP2(S46) → π*(C47–C49) contained 52.51,52.15, 23.31, 23.31, 23.67, 23.32,23.57,23.24 and 23.26 kcal/mol in HPPCR and HPPC1–HPPC8, respectively.

These LP → π* were collected as highest values among all of LP → π* transitions. On the other hand, LP2 (O79) → σ* (C63–C65), LP1(O42) → σ* (C43–H46), LP1(O86) → σ* (C67–C74), LP2(O93) → σ* (C33–H87), LP2(F95) → σ*(C80–C81), LP2(C176) → σ*(C65–C70), LP2(C176) → σ*(C65–C70),LP1(O89) → σ* (C79–C86), and LP1(O86) → σ* (C77–C83) contained 0.54, 0.93, 1.35, 0.59, 0.51, 0.55, 0.57, 1.39 and 1.44 kcal/mol in HPPCR and HPPC1–HPPC8, respectively. These LP → π* were collected as least values in terms of magnitudes among all of LP → π* transitions. The NBO results show the conjugation, hyperconjugation and intramolecular charge transfer (ICT) phenomena is found in our HPPCR and HPPC1–HPPC8. Moreover, these NBO results also support NLO responses of the studied molecules (Khan et al. 2020).

8 Nonlinear optical properties

Nonlinear materials along their investigations are gathering significance in various scientific aspects because of their huge role in an extensive diversity of applications ranging from lasers to signal processing and optical sensing devices (Muthu and Maheswari 2012; Govindarasu and Kavitha 2014a; Govindarasu et al. 2014). We have computed the dipole moment (µtotal), linear polarizability (α), first (β), and second (γ) hyperpolarizabilities of the designed compounds HPPC1–HPPC8 at M06/6-311 g(d, p). These are the important parameters which indicate their usefulness as NLO active materials (Govindarasu and Kavitha 2014b). They are theoretically calculated by employing x, y, z tensors presented in Eqs. (1–4). The strength of the optical response correlate directly with the electronic properties and these properties are in good agreement. The computed µ, α, β and γ values exhibited in Table 5, and their contributing tensors are mentioned in Tables S20-S22.

At molecular level, the dipole moment is an important parameter to determine the role of acceptor group and also used to quantify the response of an isolate compound in an

Compounds	µtotal	<α>	βtotal	<γ> × 10.7
HPPCR	4.275	854.100	8501.7	0.555
HPPC1	3.537	1089.330	37,856.5	0.796
HPPC2	2.687	1230.656	98,320.3	1.955
HPPC3	1.955	1161.027	38,409.2	1.050
HPPC4	2.006	1177.857	56,003.9	1.364
HPPC5	3.308	1296.011	127,270.7	2.656
HPPC6	2.942	1323.223	141,902.9	3.033
HPPC7	5.666	1331.191	200,112.2	4.131
HPPC8	2.842	1344.056	120,047.7	2.653

Table 5 Dipole polarizability (µtotal), average polarizability < α > , first hyperpolarizability (βtotal), and second hyperpolarizability < γ > of the studied compounds
applied electric field. The non-zero values of μ_{total} depicts the dipolar character of investigated compounds. There are three tensors of the dipole polarizability (µ) along the directions of x, y and z axes. Table S20 reveals that μ_x tensor of HPPCR, HPPC1–HPPC4 and HPPC8 consisting of most significant values. Moreover, HPPC5–HPPC7 consist of most significant values of μ_x. However, all HPPCR and HPPC1–HPPC8 molecules comprise of lowest value of μ_y. The dipole moment values of reference compound HPPCR along with the designed compounds HPPC1–HPPC8 in DCM solvent are found to be 4.275, 3.537, 2.687, 1.955, 2.006, 3.308, 2.942, 5.666 and 2.842 respectively.

Among HPPCR and HPPC1–HPPC8, HPPC7 has the highest value of μ_{total} is owing to the strong electron withdrawing effect of non-fullerene acceptor moiety. The computed dipole moment of all the designed compounds is larger as compared to HPPCR. The total dipole polarizability (µ) decreasing trend is found to be HPPC7 > HPPCR > HPPC1 > HPPC5 > HPPC6 > HPPC8 > HPPC2 > HPPC4 > HPPC3, disclosed that all the designed compounds have significantly polar behavior. Hence, it is clear from the result that larger the values of dipole moment greater will be the ICT charge transfer and therefore greater electron mobility. Therefore, all our studied compounds are enriched in this aspect. Linear polarizability (α) has three tensors in the directions of x, y and z axes. Table S20 reveals that α_{xx} tensor of HPPCR, HPPC1–HPPC8 consist of most significant values. However, all HPPC1–HPPC8 molecules comprise of the lowest values of μ_{xx} and HPPCR comprise of lowest values of μ_{yy}. The HPPCR (α) value was found to be 854.10(a.u) and designed HPPC1–HPPC8 compounds have values: 1089.330, 1230.656, 1161.027, 1177.857, 1296.011, 1323.223, 1331.191 and 1344.056 a.u respectively. Linear polarizability trend was found to be HPPC8 > HPPC7 > HPPC6 > HPPC5 > HPPC2 > HPPC4 > HPPC3 > HPPC1 > HPPCR, revealed that all the designed compounds are more effective than the reference compound in terms of linear polarizability (α) responses.

The first hyperpolarizability is represented by a third rank tensor by characterizing the response of a system in an applied electric field (Kleinman 1962). Table S21 reveals that β_{xxx} tensor of HPPCR, HPPC1–HPPC8 consist of most significant values. Moreover, β_{xyy} also consist of significant values but less than β_{xxx}. Therefore, main charge transfers in HPPCR, HPPC1–HPPC8 are found in the direction of x-axis. Moreover, Table S21, all HPPC1–HPPC8 have significant values of second order polarizability tensors as compared to HPPCR. This data suggests that the studied systems (HPPC1–HPPC8), other than reference system (HPPCR), have strong second-order polarizability responses. Second-order polarizabilities (β) exemplify the NLO responses in which HPPC7 exhibited highest 200,112.2 a.u and found least as 8501 a.u by HPPCR. In HPPC7, four CN groups on the acceptor moiety enhance the charge transfer ability by lowering the transition energy which in turn increases the NLO response of first hyperpolarizability. Large values in β_{total} are observed to be 37,856.5, 98,320.3, 38,409.2, 56,003.9, 127,270.7, 141,902.9, 200,112.2, and 120,047.7 a.u for HPPC1–HPPC8, respectively as compared to HPPCR (8501.7). This data proved that the efficacy of strong acceptor moieties was noticed remarkably in HPPC1–HPPC8. Moreover, linear polarizability and β values of our designed compounds are found remarkably greater than urea, as a reference compound for the estimation of NLO response (Shelton and Rice 1994). The β values of HPPCR, HPPC1, HPPC2, HPPC3, HPPC4, HPPC5, HPPC6, HPPC7 and HPPC8 were 197 times, 880 times, 2286 times, 893 times, 1302 times, 2959 times, 3300 times, 4653 and 2791 times greater than urea, respectively, indicating high performance NLO active compounds. Indeed, second order NLO response correlate with the ICT in which electrons migrated through π-bridge towards the x-axis. However, higher delocalization of π-electrons decreased the band gaps, which in turn increased NLO response for the compounds (Kumar et al. 2014). The
exploration of nonlinear optical enhancement and interesting…

second hyperpolarizability (γ) is often thought as two-photon absorption (TPA) phenomenon in NLO compounds. Table S22 reveals that γ_X tensor of HPPCR, HPPC1–HPPC8 consist of most significant values. However, γ_z consist of lowest values for HPPCR, HPPC1–HPPC8. Therefore, main charge transfer in HPPCR–HPPC8 is found in the direction of x-axis. The amplitude of γ_X tensor for HPPC2–HPPC8 has greater magnitude than HPPC1 and HPPCR. All the investigated molecules show high third-order NLO response as compared to HPPCR. Third-order polarizability values of reference and designed compounds are 0.555, 0.796, 1.955, 1.050, 1.364, 2.656, 3.033, 4.131 and 2.653 all values of 10^7 a.u respectively. All designed compounds are in the following decreasing order: HPPC7 > HPPC6 > HPPC5 > HPPC8 > HPPC2 > HPPC4 > HPPC3 > HPPC1 > HPPCR.

Based on the above discussion, dipole moment, polarizability and hyperpolarizability of all the designed compounds are greater than the reference compound. This increase is owing to the incorporation of electron withdrawing groups on accepter unit. These electron loving groups attract the electrons from the donor unit through \(\pi\)-spacers by lowering the transition energy, band gap and enhance the NLO response.

The investigated NLO results are compared with reported NLO results. Mehmood et al. reported the carbazole like groups effect on the NLO properties (Mahmood et al. 2017). Our reported NLO results are found 177 times greater than their reported NLO values. The β_{total} value of HPPC7 is found greater than the reported benzoazole based dyes with D-\(\pi\)-A-A configuration with $\beta_{\text{total}}=124,711.72$ a.u results (Janjua 2017). Overall, the designed compounds exhibited promising NLO features with respect to published experimental results and also theoretical results (Migalska-Zalas et al. 2008; Popczyk et al. 2021, 2019; Guezguez et al. 2014; Karakas et al. 2013; Mydlova et al. 2018; Ouazzani et al. 2011). So, we conclude that the designed compounds show promising NLO properties which provides basis for future studies.

9 Conclusion

In this work, the structural tailoring with acceptor groups remarkably affects the NLO properties of compounds has been reported. A series of chromophores (HPPC1–HPPC8) with A–\(\pi\)–D–\(\pi\)–D architecture have been designed via different end-capped acceptor moieties, where pyrene ring acts as a donor unit and phenyl as well as thienyl act as \(\pi\)-bridges. The computed data for excitation energies reveals that all the investigated compounds have extensive electron delocalization as compared to the HPPCR. The band gap is ascertained in the range of 3.225–2.118 eV for HPPC1–HPPC8. This energy difference communicated a clue about the stability and chemical reactivity of designed molecules. NBO result illustrates the charge transfer phenomena anticipated in HPPC1–HPPC8. In dichloromethane (DCM), the maximum bathochromic shift is observed as 707.996 nm for HPPC7 and has the smallest band gap is established as 2.118 eV. Consequently, HPPC7 has a more promising NLO than HPPCR and HPPC1–HPPC8. The total dipole polarizability (μ) trend is found to be HPPC7 > HPPCR > HPPC1 > HPPC5 > HPPC6 > HPPC8 > HPPC2 > HPPC4 > HPPC3, disclosed that all the designed compounds have significantly polar behavior. Trend of linear polarizability (α) and first hyperpolarizability (β) was found to be HPPC8 > HPPC7 > HPPC6 > HPPC5 > HPPC2 > HPPC4 > HPPC3 > HPPC1 > HPPCR. All designed molecules are in the following decreasing order of second hyperpolarizability (γ): HPPC7 > HPPC6 > HPPC5 > HPPC8 > HPPC2 > HPPC4 > HPPC3 > HPPC1.
HPPCR. Overall, all investigated compounds (HPPC1–HPPC8) have shown marvelous NLO response in the range of 37,856–200,112 a.u as compared to HPPCR ($\beta_{\text{total}} = 8501$ a.u). Overall, proposed compound HPPC7 displayed highest first and second order NLO response values 200,112 a.u and 0.555×10^7 respectively. The proposed compounds are recommended for future NLO applications in optical computing, data storage, optical switching and telecommunication.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11082-022-03782-w.

Acknowledgements This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-246-130-1443). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Funding The funding was provided by Muhammad Nadeem Arshad, Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Grant No. D-246-130-1443.

Declarations

Conflict of interest The authors have not disclosed any conflict of interest.

References

Prasad, A., Kalainathan, S., Meenakshisundaram, S.P.: Supramolecular architecture of third-order nonlinear optical ammonium picrate: crystal growth and DFT approach. Optik 127(15), 6134–6149 (2016). https://doi.org/10.1016/j.ijleo.2016.04.060

Adeel, M., Khalid, M., Ullah, M.A., Muhammad, S., Khan, M.U., Tahir, M.N., Khan, I., Asghar, M., Mughal, K.S.: Exploration of CH⋯F & CF⋯H mediated supramolecular arrangements into fluorinated terphenyls and theoretical prediction of their third-order nonlinear optical response. RSC Adv. 11(14), 7766–7778 (2021)

Albayrak, Ç., Frank, R.: Spectroscopic, molecular structure characterizations and quantum chemical computational studies of (E)-5-(diethylamino)-2-[(2-fluorophenylimino)methyl]phenol. J. Mol. Struct. 984(1–3), 214–220 (2010). https://doi.org/10.1016/j.molstruc.2010.09.030

Ali, B., Khalid, M., Asim, S., Usman Khan, M., Iqbal, Z., Hussain, A., Hussain, R., Ahmed, S., Ali, A., Hussain, A.: Key electronic, linear and nonlinear optical properties of designed disubstituted quinoline with carbazole compounds. Molecules 26(9), 2760 (2021)

Almutairi, M.S., Xavier, S., Sathish, M., Ghabbour, H.A., Sebastian, S., Periandy, S., Al-Wabli, R.I., Attia, M.I.: Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: a potential precursor to biologically active molecules. J. Mol. Struct. 1133, 199–210 (2017). https://doi.org/10.1016/j.molstruc.2016.12.004

Ans, M., Iqbal, J., Ahmad, Z., Muhammad, S., Hussain, R., Eliasson, B., Ayub, K.: Designing three-dimensional (3D) non-fullerene small molecule acceptors with efficient photovoltaic parameters. ChemistrySelect 3(45), 12797–12804 (2018)

Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102(11), 1995–2001 (1998)

Bechtold, T., Mussak, R.: Handbook of Natural Colorants. Wiley, London (2009)

Bribes, J.L., El Boukari, M., Maillols, J.: Application of Raman spectroscopy to industrial membranes. Part 2–Perfluorosulphonic membrane. J. Raman Spectrosc. 22(5), 275–279 (1991)

Chemla, D.S.: Nonlinear Optical Properties of Organic Molecules and Crystals V1. Elsevier, London (2012)

Concepcion, O., Ali, A., Khalid, M., de la Torre, A.F., Khan, M.U., Raza, A.R., Kamal, G.M., Rehman, M.F.U., Alam, M.M., Imran, M.: Facile synthesis of diversely functionalized peptoids, spectroscopic characterization, and DFT-based nonlinear optical exploration. ACS Omega 6(40), 26016–26025 (2021)

Dennington, R., T.A. Keith, J.M. Millam, GaussView, version 6.0. 16. Semiche Inc. Shawnee Mission KS (2016)
Dheivamalar, S., Sugi, L., Ravichandran, K., Sriram, S.: Adsorption of alanine with heteroatom substituted fullerene for solar cell application: a DFT study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 202, 333–345 (2018)

El Ouazzani, H., Iliopoulos, K., Pranaitis, M., Krupka, O., Smokal, V., Kolendo, A., Sahraoui, B.: Second-and third-order nonlinearities of novel push–pull azobenzene polymers. J. Phys. Chem. B 115(9), 1944–1949 (2011)

Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G., Nakatsuji, H.: Gaussian Inc, Wallingford, CT, USA (2016)

Fuchs, B.A., Syn, C.K., Velsko, S.P.: Diamond turning of L-arginine phosphate, a new organic nonlinear crystal. Appl. Opt. 28(20), 4465–4472 (1989)

Garmire, E.: Nonlinear optics in daily life. Opt. Express 21(25), 30532–30544 (2013)

Glendening, E.D., Landis, C.R., Weinhold, F.: NBO 6.0: natural bond orbital analysis program. J. Comput. Chem. 34(16), 1429–1437 (2013)

Govindarasu, K., Kavitha, E.: Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4′-Nitrobiphenyl by density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 133, 799–810 (2014b)

Govindarasu, K., Kavitha, E.: Molecular structure, vibrational spectra, NBO, UV and first order hyperpolarizability, analysis of 4-Chloro-dl-phenylalanine by density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 133, 799–810 (2014a)

Guo, S.-P., Chi, Y., Guo, G.-C.: Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 335, 44–57 (2017)

Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 4(1), 1–17 (2012)

Hou, J., Inganäs, O., Friend, R.H., Gao, F.: Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17(2), 119–128 (2018)

Janjua, M.R.S.A.: Computational study on non-linear optical and absorption properties of benzothiazole based dyes: tunable electron-withdrawing strength and reverse polarity. Open Chem. 15(1), 139–146 (2017)

Jawaria, R., Khalid, M., Khan, J., Khan, M.U., Braga, A.A.C., Zahoor, S., Alam, M.M., Imran, M.: A facile synthesis and structural elucidation for furfural based chromophores: prediction of linear and nonlinear optical properties. J. Mol. Struct. 1249, 131543 (2022)

Kamanina, N.V., Serov, S., Shurpo, N., Likhomanova, S., Timonin, D., Kuzhakov, P., Rozhkova, N., Kityk, I., Plucinski, K., Uskokovic, D.: Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J. Mater. Sci. Mater. Electron. 23(8), 1538–1542 (2012)

Canis, D.R., Ratner, M.A., Marks, T.J.: Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94(1), 195–242 (1994)

Karaka, A., Migalska-Zalas, A., El Kouari, Y., Gozutok, A., Karakaya, M., Touihroud, S.: Quantum chemical calculations and experimental studies of third-order nonlinear optical properties of conjugated TTF–quinones. Coord. Chem. Rev. 36(1), 22–26 (2013)

Katariya, S., Rhyman, L., Alswaidan, I.A., Ramasami, P., Sekar, N.: Triphenylamine-based fluorescent styryl dyes: DFT, TD-DFT and non-linear optical property study. J. Fluoresc. 27(3), 993–1007 (2017). https://doi.org/10.1007/s10895-017-2034-1

Katono, M., Wielopolski, M., Marszalek, M., Bessho, T., Moser, J.-E., Humphry-Baker, R., Zakeeruddin, S.M., Grätzel, M.: Effect of extended π-conjugation of the donor structure of organic D–A–π–A dyes on the photovoltaic performance of dye-sensitized solar cells. J. Phys. Chem. C 118(30), 16486–16493 (2014)

Khalid, M., Lodhi, H.M., Khan, M.U., Imran, M.: Structural parameter-modulated nonlinear optical amplitude of acceptor–π–D–π–donor-configured pyrene derivatives: a DFT approach. RSC Adv. 11(23), 14237–14250 (2021)

Khalid, M., Ali, A., Jawaria, R., Asghar, M.A., Asim, S., Khan, M.U., Hussain, R., ur Rehman, M.F., Ennis, C.J., Akram, M.S.: First principles study of electronic and nonlinear optical properties of A-D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv. 10(37), 22273–22283 (2020)
Khan, M.U., Khalid, M., Ibrahim, M., Braga, A.A.C., Safdar, M., Al-Saadi, A.A., Janjua, M.R.S.A.: First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J. Phys. Chem. C 122(7), 4009–4018 (2018)

Khan, M.U., Ibrahim, M., Khalid, M., Qureshi, M.S., Gulzar, T., Zia, K.M., Al-Saadi, A.A., Janjua, M.R.S.A.: First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem. Phys. Lett. 715, 222–230 (2019a)

Khan, M.U., Ibrahim, M., Khalid, M., Braga, A.A.C., Ahmed, S., Sultan, A.: Prediction of second-order nonlinear optical properties of D–π–A compounds containing novel fluorene derivatives: a promising route to giant hyperpolarizabilities. J. Cluster Sci. 30(2), 415–430 (2019b). https://doi.org/10.1007/s10876-018-01489-1

Khan, M.U., Ibrahim, M., Khalid, M., Jamil, S., Al-Saadi, A.A., Janjua, M.R.S.A.: Quantum chemical designing of indolo [3, 2, 1-jk] carbazole-based dyes for highly efficient nonlinear optical properties. Chem. Phys. Lett. 719, 59–66 (2019c)

Kleinman, D.: Nonlinear dielectric polarization in optical media. Phys. Rev. 126(6), 1977 (1962)

Koopmans, T.: Ordering of the wave functions and eigenenergies to the individual electrons of an atom. Physica 1, 104–113 (1933)

Kumar, V.K., Sangeetha, R., Barathi, D., Mathammal, R., Jayamani, N.: Vibrational assignment of the spectral data, molecular dipole moment, polarizability, first hyperpolarizability, HOMO–LUMO and thermodynamic properties of 5-nitroindan using DFT quantum chemical calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 663–671 (2014)

Liu, J.-N., Chen, Z.-R., Yuan, S.-F.: Study on the prediction of visible absorption maxima of azobenzene compounds. J. Zhejiang Univ. Sci. B 6(6), 584 (2005)

Maynard, A., Huang, M., Rice, W., Covell, D.: Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc. Natl. Acad. Sci. 95(20), 11578–11583 (1998)

McAfee, S.M., Topple, J.M., Hill, I.G., Welch, G.C.: Key components to the recent performance increases of solution processed non-fullerene small molecule acceptors. J. Mater. Chem. A 3(32), 16393–16408 (2015)

Meenakshi, R.: Spectral investigations, DFT based global reactivity descriptors, Inhibition efficiency and analysis of 5-chloro-2-nitroanisole as π-spacer with donor-acceptor variations effect for DSSCs performance. J. Mol. Struct. 1127, 694–707 (2017)

Migalska-Zalas, A., Kityk, I.-V., Bakasse, M., Sahraoui, B.: Features of the alkynyl ruthenium chromophore with modified anionic subsystem UV absorption. Spectrochim. Acta A Mol. Biomol. Spectrosc. 92, 154–163 (2012)

Mydlova, L., Taboukhat, S., Ayadi, A., Migalska-Zalas, A., El-Ghayoury, A., Zawadzka, A., Makowska-Janusik, M., Sahraoui, B.: Theoretical and experimental investigation of multifunctional highly conjugated organic push-pull ligands for NLO applications. Opt. Mater. 86, 304–310 (2018)
Namuangruk, S., Fukuda, R., Ehara, M., Meeprasert, J., Khanasa, T., Morada, S., Kaewin, T., Jungsuttiwong, S., Sudyoadsuk, T., Promarak, V.: D-D− π–A-Type organic dyes for dye-sensitized solar cells with a potential for direct electron injection and a high extinction coefficient: synthesis, characterization, and theoretical investigation. J. Phys. Chem. C 116(49), 25653–25663 (2012)
Nan, M.I., Lakatos, E., Giurgi, G.-I., Szolga, L., Po, R., Terec, A., Jungsuttiwong, S., Grosu, I., Roncali, J.: Mono- and di-substituted pyrene-based donor-π-acceptor systems with phenyl and thienyl π-conjugating bridges. Dyes Pigm. 181, 108527 (2020)

Northup, T., Blatt, R.: Quantum information transfer using photons. Nat. Photonics 8(5), 356–363 (2014)

Panneerselvam, M., Kathiravan, A., Solomon, R.V., Jacob, M.: The role of π-linkers in tuning the optoelectronic properties of triphenylamine derivatives for solar cell applications—a DFT/TDDFT study. Phys. Chem. Chem. Phys. 19(8), 6153–6163 (2017)

Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68(8), 3801–3807 (1978)

Parr, R.G., Szepnetaly, L.V., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121(9), 1922–1924 (1999)

Parr, R.G.: Chemical Hardness. Wiley, London (1997)

Popczyk, A., Aamoun, A., Migalska-Zalas, A., Płociennik, P., Zawadzka, A., Mysliwiec, J., Sahraoui, B.: Selected organometallic compounds for third order nonlinear optical application. Nanomaterials 9(2), 254 (2019)

Popczyk, A., Grabarz, A., Cheret, Y., El-Ghayoury, A., Mysliwiec, J., Sahraoui, B.: Tailoring the acceptor moiety of novel thiophene-based chromophores: conjoined experimental and theoretical study on the nonlinear optical properties. Dyes Pigm. 196, 109789 (2021)

Pritchard, H., Skinner, H.: The concept of electronegativity. Chem. Rev. 55(4), 745–786 (1955)

Risser, S.M., Beratan, D.N., Marder, S.R.: Structure-function relationships for beta., the first molecular hyperpolarizability. J. Am. Chem. Soc. 115(17), 7719–7728 (1993)

Sajan, D., Veerapandian, P., Vedha, S.A., Venuvanalingam, P.: Tuning nonlinear optical and optoelectronic properties of vinyl coupled triazene chromophores: a density functional theory and time-dependent density functional theory investigation. J. Phys. Chem. A 116(18), 4667–4677 (2012). https://doi.org/10.1021/jp302276w

Shelton, D.P., Rice, J.E.: Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chem. Rev. 94(1), 3–29 (1994)

Solomon, R.V., Veerapandian, P., Vedha, S.A., Venuvanalingam, P.: Tuning nonlinear optical and optoelectronic properties of vinyl coupled triazene chromophores: a density functional theory and time-dependent density functional theory investigation. J. Phys. Chem. A 116(18), 4667–4677 (2012). https://doi.org/10.1021/jp302276w

Speller, E.M., Clarke, A.J., Luke, J., Lee, H.K.H., Durrant, J.R., Li, N., Wang, T., Wong, H.C., Kim, J.-S., Tsoi, W.C.: From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7(41), 23361–23377 (2019)

Thukral, K., Vijayan, N., Vij, M., Nagaraja, C., Jayaramakrishnan, V., Jayalakshmy, M., Kant, R.: Analyses of significant features of L-prolinium picate single crystal: an excellent material for non linear optical applications. Mater. Chem. Phys. 194, 90–96 (2017)

Tomkinson, J., Bacci, M., Picollo, M., Colognesi, D.: The vibrational spectroscopy of indigo: a reassessment. Vib. Spectrosc 50(2), 268–276 (2009)

Valverde, C., Castro, S.A.D.L., Vaz, G.R., de Almeida Ferreira, J.L., Baseia, B., Osório, F.A.: Third-order nonlinear optical properties of a carboxylic acid derivative. Acta Chimica Slovenica 65(3), 739–749 (2018)

Wielopolski, M., Kim, J.-H., Jung, Y.-S., Yu, Y.-J., Kay, K.-Y., Holcombe, T.W., Zakeeruddin, S.M., Grätzl, M., Moser, J.-E.: Position-dependent extension of π-conjugation in D–π–A dye sensitzers and the impact on the charge-transfer properties. J. Phys. Chem. C 117(27), 13805–13815 (2013)

Yang, Y., Zhang, Z.-G., Bin, H., Chen, S., Gao, L., Xue, L., Yang, C., Li, Y.: Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells. J. Am. Chem. Soc. 138(45), 15011–15018 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.