An explicit formula for the A-polynomial of the knot with Conway’s notation \(C(2n, 3) \)

Ji-Young Ham\(^*\),\(^\dagger\) and Joongul Lee\(^\dagger\),\(^\S\)

\(^*\)Department of Science, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Korea

\(^\dagger\)Department of Mathematics Education, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Korea

jiyoungham1@gmail.com

\(^\S\)jglee@hongik.ac.kr

Received 21 January 2016
Accepted 8 June 2016
Published 20 July 2016

ABSTRACT

An explicit formula for the A-polynomial of the knot with Conway’s notation \(C(2n, 3) \) is obtained from the explicit Riley–Mednykh polynomial of it.

Keywords: A-polynomial; explicit formula; knot with Conway’s notation \(C(2n, 3) \); Riley–Mednykh polynomial.

Mathematics Subject Classification: 57M27, 57M25

1. Introduction

In 1994, the A-polynomial, \(A(L, M) \), of a compact 3-manifold \(N \) with a single torus boundary was introduced by Cooper, Culler, Gillet, Long and Shalen in [3]. It’s variables are eigenvalues of the meridian and the longitude under the representations from \(\pi_1 N \) into \(\text{SL}(2, \mathbb{C}) \). One of the main results of [3] is “boundary slopes are boundary slopes”. That is the boundary slope of the Newton polygon of \(A(L, M) \) is the boundary slope of an incompressible surface in \(N \). In 2001, it was shown that the Newton polygon of \(A(L, M) \) is dual to the fundamental polygon of the Culler–Shalen seminorm [1]. The Culler–Shalen seminorm [4] can be used to detect and classify the exceptional surgeries, which is a step toward another proof of the Poincare conjecture. A-polynomial also encodes the deformed structure of \(N \). For example, using the longitude \(L \) in [9, 11], the volumes of the deformed cone-manifolds are computed and in [8, 10], the Chern–Simons invariants [2, 12] of the deformed orbifolds are computed. The non-commutative A-polynomial \(A(L, M, q) \) of a knot is introduced and it is conjectured that
A(\(L, M, 1\)) = B(M)A(L, M^{1/2}) for some polynomial B(M) of M and the conjecture is called AJ conjecture [6]. AJ conjecture is proved for some knots. For example, our knot, the knot with Conway’s notation C(2n, 3) satisfies the AJ conjecture [14]. If AJ conjecture is true, then the colored Jones polynomial detects knottedness [5] as A-polynomial.

With today’s technology, A-polynomial is relatively difficult to compute. Recovering representations from a triangulation of \(N\) and compute a factor of the A-polynomial is another try to compute it [20]. By one by one computation, A-polynomials are known up to eight crossings and most nine crossings and many 10 crossings. For infinite families, recursively, A-polynomials are known for twist knots [13], \((-2, 3, 1 + 2n)\) pretzel knots [7, 19], \(J[m, 2n]\) [13] for \(m\) between 2 and 5 [17] and explicitly, for two-bridge torus knots [3, 13], iterated torus knots [16], and for twist knots [8, 15]. We record here that \(J[3, -2n]\) is the mirror image of \(C(2n, 3)\).

The main purpose of the paper is to find the explicit formula for the A-polynomial of the knot with Conway’s notation \(C(2n, 3)\). Let us denote the knot with Conway’s notation \(C(2n, 3)\) by \(T_{2n}\) and the A-polynomial of the knot with Conway’s notation \(C(2n, 3)\) by \(A_{2n}\). The following theorem gives the explicit formula for the A-polynomial of \(T_{2n}\).

Theorem 1.1. A-polynomial \(A_{2n}(L, M)\) is given explicitly by

\[
A_{2n} = \begin{cases}
\displaystyle \sum_{i=0}^{2n} \left(n + \left[\frac{i}{2} \right] \right) \left(\frac{LM^{4n} - 1}{1 + LM^{2+4n}} \right)^i \left(\frac{1 + LM^{6+4n}}{M^2 + LM^{4+4n}} \right)^{\left\lfloor \frac{i+1}{2} \right\rfloor} M^{-2n} \left(1 + LM^{2+4n} \right)^{3n} & \text{if } n \geq 0 \\
\displaystyle \sum_{i=0}^{-2n-1} \left(-n + \left[\frac{i-1}{2} \right] \right) \left(\frac{(1 - M^2)(M^{-4n} - L)}{LM^2 + M^{-4n}} \right)^i \left(\frac{LM^6 + M^{-4n}}{LM^4 + M^{-2-4n}} \right)^{\left\lfloor \frac{i+1}{2} \right\rfloor} M^{8n+6} \left(LM^2 + M^{-4n} \right)^{-3n-1} & \text{if } n < 0.
\end{cases}
\]

One can consult [8] for solving the recurrence formula. Our writing is parallel with that in [15], which is based on [13].

2. **Proof of Theorem 1.1**

A knot \(K\) is a two bridge knot with Conway’s notation \(C(2n, 3)\), if \(K\) has a regular two-dimensional projection of the form in Fig. 1. Recall that, we denote it by \(T_{2n}\). Let us denote the exterior of \(T_{2n}\) by \(X_{2n}\). The following proposition gives the fundamental group of \(X_{2n}\) [9, 10, 13, 18].
Explicit formula for A-polynomial of $C(2n,3)$

![Figure 1](image)

Fig. 1. A two bridge knot with Conway's notation $C(2n,3)$ for $n > 0$ (left) and for $n < 0$ (right).

Proposition 2.1.

$$\pi_1(X_{2n}) = \langle s, t \mid swt^{-1}w^{-1} = 1 \rangle,$$

where $w = (ts^{-1}tst^{-1}s)^n$.

Given a set of generators, $\{s, t\}$, of the fundamental group for $\pi_1(X_{2n})$, we define a representation $\rho: \pi_1(X_{2n}) \to \text{SL}(2, \mathbb{C})$ by

$$\rho(s) = \begin{bmatrix} M & 1 \\ 0 & M^{-1} \end{bmatrix}, \quad \rho(t) = \begin{bmatrix} M & 0 \\ 2 - M^2 - M^{-2} - x & M^{-1} \end{bmatrix}.$$

Then ρ can be identified with the point $(M, x) \in \mathbb{C}^2$. When M varies, we have an algebraic set, whose defining equation is the following explicit Riley–Mednykh polynomial.

Lemma 2.2. ρ is a representation of $\pi_1(X_{2n})$, if and only if x is a root of the following Riley–Mednykh polynomial $P_{2n} = P_{2n}(x, M)$, which is given explicitly by

$$P_{2n} = \begin{cases}
\sum_{i=0}^{2n} \left(n + \begin{array}{c} i \\ \frac{1}{2} \end{array} \right) M^{4n}(M^2 + M^{-2} + x - 1)^{\lfloor \frac{1+i}{2} \rfloor} & \text{if } n \geq 0, \\
\sum_{i=0}^{-2n-1} \left(-n - \begin{array}{c} i \\ \frac{1}{2} \end{array} \right) M^{-4n-2}(M^2 - M^{-2} - x + 1)^{\lfloor \frac{1-i}{2} \rfloor} & \text{if } n < 0.
\end{cases}$$

Proof. In [9], P_{2n} is give by the following recursive formula.

$$P_{2n} = \begin{cases}
QP_{2(n-1)} - M^8 P_{2(n-2)} & \text{if } n > 1, \\
QP_{2(n+1)} - M^8 P_{2(n+2)} & \text{if } n < -1
\end{cases}$$

with initial conditions

$$P_{-2} = M^2x^2 + (M^4 - M^2 + 1)x + M^2, \\
P_0 = M^{-2} \quad \text{for } n < 0 \quad \text{and} \quad P_0 = 1 \quad \text{for } n > 0, \\
P_2 = -M^4x^3 + (-2M^6 + M^4 - 2M^2)x^2 + (-M^8 + M^6 - 2M^4 + M^2 - 1)x + M^4.$$
Case 2. $n < 0$. When $i > -2n - 1$ or $i < 0$, $\binom{n + \lfloor \frac{i}{2} \rfloor}{i}$ is undefined and can be considered as zero. Hence the finite sum can be regarded as an infinite sum. Direct computation shows that $f_0 = P_0$ and $f_2 = P_2$. Now, we only need to show that f_{2n} satisfies the recursive relation. We know that Q can be written as $M^4(-x(M^2 + M^{-2} + x - 1)^2 + 2)$.

\[
Q f_{2(n+1)} - M^8 f_{2(n+2)} = M^4(-x(M^2 + M^{-2} + x - 1)^2 + 2) = M^4(-x(M^2 + M^{-2} + x - 1)^2 + 2)
\]

three times.

Case 1. $n \geq 0$. When $i > 2n$ or $i < 0$, $\binom{n + \lfloor \frac{i}{2} \rfloor}{i}$ is undefined and can be considered as zero. Hence the finite sum can be regarded as an infinite sum. Direct computation shows that $f_0 = P_0$ and $f_2 = P_2$. Now, we only need to show that f_{2n} satisfies the recursive relation. We know that Q can be written as $M^4(-x(M^2 + M^{-2} + x - 1)^2 + 2)$.

\[
Q f_{2(n-1)} - M^8 f_{2(n-2)} = M^4(-x(M^2 + M^{-2} + x - 1)^2 + 2)
\]

\[
\times \sum_i \left(n - 1 + \frac{i}{2} \right) M^{4n-4}(M^2 + M^{-2} + x - 1)^i(-x)^{\frac{i+1}{2}}
\]

\[
- M^8 \sum_i \left(n - 2 + \frac{i}{2} \right) M^{4n-8}(M^2 + M^{-2} + x - 1)^i(-x)^{\frac{i+1}{2}}
\]

\[
= \sum_i \left[\left(n - 2 + \frac{i}{2} \right) + 2 \left(n - 1 + \frac{i}{2} \right) \right] M^4(M^2 + M^{-2} + x - 1)^i(-x)^{\frac{i+1}{2}}
\]

\[
= f_{2n}.
\]

In the last equality, we use the binomial relation

\[
\binom{a}{b} = \binom{a-1}{b-1} + \binom{a-1}{b}
\]

\[
\text{three times.}
\]
Explicit formula for A-polynomial of $C(2n, 3)$

$$
\times \sum_i \left(-n - 1 + \frac{\left(i - 1 \right)}{2} \right) M^{-4n-6}(M^2 + M^{-2} + x - 1)^i (-x)^{\frac{i+4}{2}}
$$

$$
- M^8 \sum_i \left(-n - 2 + \frac{\left(i - 1 \right)}{2} \right) M^{-4n-10}(M^2 + M^{-2} + x - 1)^i (-x)^{\frac{i+4}{2}}
$$

$$
= \sum_i \left(\left(-n - 2 + \frac{\left(i - 1 \right)}{2} \right) + 2 \left(-n - 1 + \frac{\left(i - 1 \right)}{2} \right) \right)
$$

$$
- \left(-n - 2 + \frac{\left(i - 1 \right)}{2} \right) M^{-4n-2}(M^2 + M^{-2} + x - 1)^i (-x)^{\frac{i+4}{2}}
$$

$$
= \sum_i \left(-n + \frac{\left(i - 1 \right)}{2} \right) M^{-4n-2}(M^2 + M^{-2} + x - 1)^i (-x)^{\frac{i+4}{2}}
$$

$$
= f_{2n}.
$$

In the last equality, we use the binomial relation

$$
\binom{a}{b} = \binom{a - 1}{b - 1} + \binom{a - 1}{b}
$$

three times, again.

Let $l = \text{ww}^*s^{-4n}$ [3, 13], where w^* is the word obtained by reversing w. Let $L = \rho(l)_{11}$. Then l is the longitude, which is null-homologus in X_{2n} (you can read a twisted longitude ww^* from the Schubert normal form of the knot $C(2n, 3)$ and multiply it by s^{-4n}, so that the exponent sum of l becomes 0). And, we have

Lemma 2.3 ([9, 10]).

$$
L = -M^{-4n-2}M^{-2} + x
$$

$$
x = -\frac{1 + LM^{6+4n}}{M^2(1 + LM^{2+4n})}.
$$

Now substituting $-\frac{1 + LM^{6+4n}}{M^2(1 + LM^{2+4n})}$ for x into P_{2n}, for $n \geq 0$, gives

$$
\sum_{i=0}^{2n} \left(n + \frac{i}{2} \right) M^{4n+i} \left(M^2 + M^{-2} - \frac{1 + LM^{6+4n}}{M^2(1 + LM^{2+4n})} - 1 \right)^i
$$

$$
\times \left(\frac{1 + LM^{6+4n}}{M^2(1 + LM^{2+4n})} \right)^{\frac{i+1}{4}}.
$$
J.-Y. Ham & J. Lee

We observe that
\[M^2 + M^{-2} = \frac{1 + LM^{6+4n}}{M^2(1 + LM^{2+4n})} - 1 = \frac{(LM^{4n} - 1)(1 - M^2)}{(1 + LM^{2+4n})}. \]

The resulting expression,
\[
\sum_{i=0}^{2n} \left(n + \left\lfloor \frac{i}{2} \right\rfloor \right) M^{4n} \left(\frac{(LM^{4n} - 1)(1 - M^2)}{1 + LM^{2+4n}} \right)^i \left(\frac{1 + LM^{6+4n}}{M^2 + LM^{4+4n}} \right)^{\left\lfloor \frac{i+1}{2} \right\rfloor}
\]

once denominators are cleared and some power of \(M \) is factored out to give a polynomial, gives the \(A \)-polynomial \(A_{2n}(L, M) \). We multiply it by \(M^{-2n}(1 + LM^{2+4n})^{4n} \), so that we have the claimed formula in Theorem 1.1. The following equality, which guarantees that the claimed formula has the constant term 1 and is a polynomial,
\[c_{2n} = \sum_{i=0}^{2n} \left(n + \left\lfloor \frac{i}{2} \right\rfloor \right) (M^2 - 1)^i \left(\frac{1}{M^2} \right)^{\left\lfloor \frac{i+1}{2} \right\rfloor} M^{-2n} = 1 \]
can be proved by induction,
\[c_{2n} = \frac{(M^2 - 1)^2 c_{2(n-1)}}{M^4} + \frac{2c_{2(n-1)}}{M^2} - \frac{c_{2(n-2)}}{M^4} \]
which is proven in the following. As in the case of the proof of Lemma 2.2, \(c_{2n} \) can be regarded as an infinite sum. Direct computation shows that \(f_2 = c_2 \) and \(f_4 = c_4 \). Let \(f_{2n} \) be the right side of the claimed formula. We will show that \(f_{2n} = c_{2n} \).

Again as in the case of the proof of Lemma 2.2, \(f_{2n} \) can be written as
\[
\sum_i \left[\left(n - 2 + \left\lfloor \frac{i}{2} \right\rfloor \right) + 2 \left(n - 1 + \left\lfloor \frac{i}{2} \right\rfloor \right) - \left(n - 2 + \left\lfloor \frac{i}{2} \right\rfloor \right) \right]
\]
\[\times (M^2 - 1)^i \left(\frac{1}{M^2} \right)^{\left\lfloor \frac{i+1}{2} \right\rfloor} M^{-2n}. \]

Hence as in the case of the proof of Lemma 2.2, by using the binomial relations three times, we have \(f_{2n} = c_{2n} \).

Similarly, for \(n < 0 \), substituting
\[\frac{1 + LM^{6+4n}}{M^2(1 + LM^{2+4n})} = -\frac{M^{-4n} + LM^6}{M^2(M^{-4n} + LM^2)} \]
for \(x \) into \(P_{2n} \) gives
\[
\sum_{i=0}^{-2n-1} \left(-n + \left\lfloor \frac{i - 1}{2} \right\rfloor \right) M^{-4n-2} \left(-M^2 - M^{-2} + \frac{M^{-4n} + LM^6}{M^2(M^{-4n} + LM^2)} + 1 \right)^i
\]
\[\times \left(\frac{M^{-4n} + LM^6}{M^2(M^{-4n} + LM^2)} \right)^{\left\lfloor \frac{i+1}{2} \right\rfloor}. \]
We observe that
\[-M^2 - M^{-2} + \frac{M^{-4n} + LM^6}{M^2(M^{-4n} + LM^2)} + 1 = \frac{(M^{-4n} - L)(1 - M^2)}{(M^{-4n} + LM^2)}.\]

The resulting expression,
\[-2n-1 \sum_{i=0}^{i} \left(-n + \left\lfloor \frac{(i - 1)}{2} \right\rfloor \right) M^{-4n-2} \left(\frac{(1 - M^2)(M^{-4n} - L)}{LM^2 + M^{-4n}} \right)^i \left(\frac{LM^6 + M^{-4n}}{LM^4 + M^{-4n-2}} \right)^{\lfloor \frac{i+1}{2} \rfloor} \times \frac{2^{n+4}}{LM} \left(L + M^{-4n-2} \right)^{-3n-1},\]

once denominators are cleared and some power of M is factored out to give a polynomial, gives the A-polynomial $A_{2n}(L, M)$. We multiply it by $M^{12n+8}(LM^2 + M^{-4n})^{-3n-1}$, so that we have the claimed formula in Theorem 1.1:
\[-2n-1 \sum_{i=0}^{i} \left(-n + \left\lfloor \frac{(i - 1)}{2} \right\rfloor \right) \left(\frac{(1 - M^2)(M^{-4n} - L)}{LM^2(L + M^{-4n-2})} \right)^i \left(\frac{M^2(L + M^{-4n-6})}{L + M^{-4n-2}} \right)^{\lfloor \frac{i+1}{2} \rfloor} \times \frac{2^{n+4}}{LM} \left(L + M^{-4n-2} \right)^{-3n-1}.\]

Now we want to show that the claimed formula does not have fractions. For $n = -1$, by direct computation, one can show that the claimed formula does not have fractions. For each $n < -1$, fractions can only occur in the following sums.
\[-2n-1 \sum_{i=0}^{i} \left(-n + \left\lfloor \frac{(i - 1)}{2} \right\rfloor \right) \left((1 - M^2)(-L) \right)^i L^{\frac{i+1}{2}} \times M^{2n+4-2i+2\lfloor \frac{i+1}{2} \rfloor} L^{-3n-1-i-\lfloor \frac{i+1}{2} \rfloor} = \sum_{i=0}^{i} \left(-n + \left\lfloor \frac{(i - 1)}{2} \right\rfloor \right) (M^2 - 1)^i M^{2n+4-2i+2\lfloor \frac{i+1}{2} \rfloor} L^{-3n-1}.\]

Let c_{2n} be the coefficient of L^{-3n-1} of the above sum. Then, one can prove that $c_{2n} = M^4$ by the following recurrence relation,
\[c_{2n} = \frac{(M^2 - 1)^2 c_{2(n+1)}}{M^4} + \frac{2c_{2(n+1)}}{M^2} - \frac{c_{2(n+2)}}{M^4},\]

which can be proved as in the case of $n > 0$.

Now, we are going to compute a part of the coefficient of L^{-3n-2}. For each $n < 0$, the term $-L^{-3n-2}$ exists:
\[-2n-1 \sum_{i=-2n-2}^{i} \left(-n + \left\lfloor \frac{(i - 1)}{2} \right\rfloor \right) M^{2n+4-2i+2\lfloor \frac{i+1}{2} \rfloor}.\]
$(-L)^i \left(\frac{1+i}{2} \right) L^{\left\lfloor \frac{1}{2}(i-1) \right\rfloor} M^{-4n-6} L^{-3n-1-i-\left\lfloor \frac{1}{2}i \right\rfloor}$

$= \sum_{i=-2n-2}^{-2n-1} \left(\frac{1+i}{2} \right) L^{-3n-2}.$

And now, we are going to compute a part of the coefficient of L^0. For each $n < 0$, the term $M^{12n^2+14n+6}$ exists:

$\sum_{i=-2n-2}^{-2n-1} \left(-n + \left\lfloor \frac{i-1}{2} \right\rfloor \right) M^{2n+4-2i+2\left\lfloor \frac{i}{2} \right\rfloor}$

$\times (M^{-4n})(M^{-4n-6})^{\left\lfloor \frac{i}{2} \right\rfloor} (M^{-4n-2})^{-3n-1-i-\left\lfloor \frac{i}{2} \right\rfloor}$

$= \sum_{i=-2n-1}^{-2n-1} M^{12n^2+12n+6-2i+\left\lfloor \frac{i}{2} \right\rfloor}.$

Hence there does not exist redundant L or M factors.

Acknowledgments

The authors would like to thank Hyuk Kim, Yi Ni, Daniel Mathews and anonymous referees. The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Nos. NRF-2008-341-C00004 and NRF-R01-2008-000-10052-0). The second author was supported by 2016 Hongik University Research Fund.

References

[1] S. Boyer and X. Zhang, A proof of the finite filling conjecture, J. Differential Geom. 59(1) (2001) 87–176.
[2] S. S. Chern and J. Simons, Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Nat. Acad. Sci. USA. 68 (1971) 791–794.
[3] D. Cooper, M. Culler, H. Gillet, D. D. Long and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118(1) (1994) 47–84.
[4] M. Culler, C. McA. Gordon, J. Luecke and P. B. Shalen, Dehn surgery on knots, Ann. Math. (2) 125(2) (1987) 237–300.
[5] N. M. Dunfield and S. Garoufalidis, Non-triviality of the A-polynomial for knots in S^3, Algebr. Geom. Topol. 4 (2004) 1145–1153.
[6] S. Garoufalidis, Knots and tropical curves, in Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory, Contemporay Mathematics, Vol. 541 (American Mathematical Society Providence, 2011), pp. 83–101.
[7] S. Garoufalidis and T. W. Mattman, The A-polynomial of the $(-2, 3, 3 + 2n)$ pretzel knots, New York J. Math. 17 (2011) 269–279.
Explicit formula for A-polynomial of $C(2n, 3)$

[8] J.-Y. Ham and J. Lee, Explicit formulae for Chern–Simons invariants of the twist knot orbifolds and edge polynomials of twist knots, *Mat. Sb* **287**(9) (2016).

[9] J.-Y. Ham and J. Lee, The volume of hyperbolic cone-manifolds of the knot with Conway’s notation $C(2n, 3)$, *J. Knot Theory Ramifications* **25**(6) (2016); Article ID:1650030.

[10] J.-Y. Ham and J. Lee, Explicit formulae for Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation $C(2n, 3)$, Preprint, 2016, arXiv:1601.00723.

[11] J.-Y. Ham, A. Mednykh and V. Petrov, Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds, *J. Knot Theory Ramifications* **23**(12) (2014) 16; Article ID: 1450064.

[12] H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, On volumes and Chern–Simons invariants of geometric 3-manifolds, *J. Math. Sci. Univ. Tokyo* **3**(3) (1996) 723–744.

[13] J. Hoste and P. D. Shanahan, A formula for the A-polynomial of twist knots, *J. Knot Theory Ramifications* **13**(2) (2004) 193–209.

[14] T. T. Q. Le and A. T. Tran, On the AJ conjecture for knots, *Indiana Univ. Math. J.* **64**(4) (2015) 1103–1151. with an appendix written jointly with Vu Q. Huynh.

[15] D. V. Mathews, An explicit formula for the A-polynomial of twist knots, *J. Knot Theory Ramifications* **23**(9) 2014.

[16] Y. Ni and X. Zhang, Detection of knots and a cabling formula for A-polynomials, Preprint, 2014, arXiv:1411.0353.

[17] K. Petersen, The A-polynomial of a family of two-bridge knots, *New York J. Math.* **21** (2015) 847–881.

[18] R. Riley, Parabolic representations of knot groups. I, *Proc. Lond. Math. Soc.* (3) **24** (1972) 217–242.

[19] N. Tamura and Y. Yokota, A formula for the A-polynomials of $(-2, 3, 1 + 2n)$-pretzel knots, *Tokyo J. Math.* **27**(1) (2004) 263–273.

[20] C. Zickert, Ptolemy coordinates, Dehn invariant and the A-polynomial, *Math. Z.* **283**(1–2) (2016) 515–537.