Salinity and Supplemental Calcium Influence Growth of Rabbiteye and Southern Highbush Blueberry

Glenn C. Wright
Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133

Kim D. Patten
Texas A&M University Agricultural Research and Extension Center at Overton, P.O. Drawer E, Overton, TX 75684

Malcolm C. Drew
Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133

Abstract. ‘Tifblue’ and ‘Brightwell’ rabbiteye blueberries (Vaccinium ashei Reade.) were subjected to 0, 25, or 100 mM Na+, as Na2SO4 or NaCl, and 0, 1, 3, or 10 mM supplemental Ca++, primarily as CaSO4, in an irrigated sand culture in the greenhouse. Additionally, the effect of NaCl on ‘Sharpleaf’ southern highbush blueberry (primarily V. corymbosum L.) was examined. For unsalinated plants, fastest growth occurred in plants not receiving supplemental Ca++. Root and shoot growth were depressed as salinity increased in plants lacking additional Ca++. With 100 mM Na+ as Na2SO4, ‘Tifblue’ root and shoot dry weight increases were only 37% and 25%, respectively, of the increase of unsalinated controls, while with 100 mM Na+ as NaCl, the corresponding shoot and root dry weight increases were only 38% and 43%, respectively. ‘Brightwell’ plants reacted similarly to ‘Tifblue’ in salinity treatments with Na2SO4 and NaCl, but ‘Sharpleaf’ plants were more severely affected by 100 mM NaCl than were the rabbiteye cultivars. In no case did addition of Ca++ have any ameliorative effect on either the dry weight of roots of plants exposed to 25 or 100 mM NaCl or on the shoot growth of plants exposed to NaCl. The inability of Ca++ to counter Cl- entry or toxicity may account for the lack of amelioration. In contrast, additional Ca++ did improve shoot growth of plants exposed to Na2SO4. For ‘Tifblue’ plants supplied with 25 mM Na+ as Na2SO4, growth increased by almost 25% in the presence of 10 mM Ca++, while for ‘Tifblue’ plants treated with 100 mM Na+ as Na2SO4, growth was more than three times greater in plants supplied with 1 mM Ca++ than in those not given any Ca++. Growth increase was primarily due to increased leaf area and number. Low (1 mM) concentrations of Ca++ were more effective in ameliorating the effects of 100 mM Na+ as Na2SO4 than were 3- and 10-mM Ca++ supplements, possibly because higher Ca++ additions lead to metabolic damage in these calcifuges Vaccinium species.

Rabbiteeye and southern highbush blueberries require good quality water to thrive and produce well. Many regions of the southeastern United States lack sufficient good quality water throughout the growing season. Saline ground water has emerged as a major difficulty limiting the expansion of the industry. Water pH < 7.0, total Na+, as Na2SO4 or NaCl, and 0, 1, 3, or 10 mM supplemental Ca++, primarily as CaSO4, in an irrigated sand culture in the greenhouse. Additionally, the effect of NaCl on ‘Sharpleaf’ southern highbush blueberry (primarily V. corymbosum L.) was examined. For unsalinated plants, fastest growth occurred in plants not receiving supplemental Ca++. Root and shoot growth were depressed as salinity increased in plants lacking additional Ca++. With 100 mM Na+ as Na2SO4, ‘Tifblue’ root and shoot dry weight increases were only 37% and 25%, respectively, of the increase of unsalinated controls, while with 100 mM Na+ as NaCl, the corresponding shoot and root dry weight increases were only 38% and 43%, respectively. ‘Brightwell’ plants reacted similarly to ‘Tifblue’ in salinity treatments with Na2SO4 and NaCl, but ‘Sharpleaf’ plants were more severely affected by 100 mM NaCl than were the rabbiteye cultivars. In no case did addition of Ca++ have any ameliorative effect on either the dry weight of roots of plants exposed to 25 or 100 mM NaCl or on the shoot growth of plants exposed to NaCl. The inability of Ca++ to counter Cl- entry or toxicity may account for the lack of amelioration. In contrast, additional Ca++ did improve shoot growth of plants exposed to Na2SO4. For ‘Tifblue’ plants supplied with 25 mM Na+ as Na2SO4, growth increased by almost 25% in the presence of 10 mM Ca++, while for ‘Tifblue’ plants treated with 100 mM Na+ as Na2SO4, growth was more than three times greater in plants supplied with 1 mM Ca++ than in those not given any Ca++. Growth increase was primarily due to increased leaf area and number. Low (1 mM) concentrations of Ca++ were more effective in ameliorating the effects of 100 mM Na+ as Na2SO4 than were 3- and 10-mM Ca++ supplements, possibly because higher Ca++ additions lead to metabolic damage in these calcifuges Vaccinium species.

Received for publication 30 Dec. 1991. Accepted for publication 27 Apr. 1992.

doi: 10.21273/JASHS.117.5.749-756.1992

J. Amer. Soc. Hort. Sci. 117(5):749-756. 1992.
addition was not harmful (Spiers, 1979). The question therefore arises as to whether Ca” might offer any effective protection against salinity in a calcifuge species like blueberry.

The aim of our research was to determine the extent of Na’ and Cl- damage at particular external salt concentrations on the growth of rabbiteye and southern highbush blueberries. Sodium sulfate was applied with the assumption that the SO\(_4^{\text{2-}}\), which is known to be absorbed slowly by roots of higher plants (Marchen, 1986), is relatively noninjurious to blueberries. Since we found no indication of SO\(_4^{\text{2-}}\) toxicity to blueberries in the literature, any damage would be due to the specific effect of Na’. Comparison with experiments using NaCl would then provide an indication of the additional effect of Cl-. A further objective was to evaluate the ability of supplemental Ca” to ameliorate salinity damage.

Materials and Methods

Sodium sulfate experiment. Dormant-potted ‘Tifblue’ and ‘Brightwell’ rabbiteye blueberries were received on 15 Mar. 1988. Shoots were pruned back to 40 cm to stimulate growth, flower buds were removed, and roots were rinsed with distilled water to remove as much peatmoss/shredded pine bark mulch potting medium as possible. Plants were transplanted into sterilized 5500-ml pots containing silica propping agent [man-made sand with a particle size between 0.635 and 1.270 mm (B.J. Titan, Bryan, Texas)] lined with fiberglass insulation (to prevent loss of medium) and placed in the greenhouse.

Plants were irrigated daily with 400 ml of a complete nutrient solution consisting of (in mM) 0.5 (NH\(_4\))\(_2\)SO\(_4\), 0.1 KH\(_2\)PO\(_4\), 0.72 K\(_2\)SO\(_4\), 0.5 CaSO\(_4\), 0.65 MgSO\(_4\), 0.125 Fe as ethylenediaminetetraacetic acid (I\(^{3+}\)) monosodium salt, and (in µm) 7.6 × 10\(^{-3}\) ZnSO\(_4\), 2.0 × 10\(^{-3}\) CuSO\(_4\), 10.9 MnSO\(_4\), 1.2 H\(_2\)BO\(_3\), and 1.34 × 10\(^{-3}\) (NH\(_4\))\(_2\)MoO\(_4\). Solution was supplied automatically via trickle irrigation. When tensiometers indicated that the xylem water potential (ψ\(_x\)) of the medium was more negative than –0.2 MPa, the irrigation rate was increased to ≈500 ml-day\(^{-1}\). Plants were maintained with the complete nutrient solution for 60 days, until new shoot and root growth was extensive.

Six plants of each cultivar were destructively harvested before experimental treatments were applied, to measure initial plant weight. Shoot and root fresh weight of each plant was determined, and shoot and root dry weights were also recorded after drying at 60°C for 48 h. Dry weights for all six plants of each cultivar were pooled, and average shoot and root dry weight was determined. These data were later used in the calculation of the shoot and root dry weight increase over the duration of the experiment.

Experimental treatments on 144 plants, began on 15 May 1988 and consisted of 0, 25, or 100 mM Na(a(0, 12.5, or 50 mM Na\(_2\)SO\(_4\)) and 0, 1, 3, or 10 mM Ca” applied with the remaining essential elements in the nutrient solution. Calcium and Na’ levels were crossed, forming 12 total treatments. Because of the low solubility of CaSO\(_4\), only 70% of each Ca” treatment was CaSO\(_4\), the remainder was made up of 20% from Ca(NO\(_3\)), and 10% from CaCl\(_2\). All treatments contained equal amounts of NO\(_3^-\), NH\(_4^+\), and K”. Plants received 400 or 500 ml experimental solution daily as described; this was sufficient for some solution to drain from the containers. Solution pH and electrical conductivity (EC, corrected to 25°C) were recorded when solutions were initially prepared and then again each time they were replenished. These values, along with solution composition and SAR are found in Table 1.

Plants were destructively harvested on 30 July 1988 following 76 days of treatment. Leaves and stems were separated from roots; and roots were rinsed with distilled water to remove as much silica as possible without causing damage, then were blotted dry. Root fresh weight was not determined because large amounts of silica remained within the root ball following washing (silica was easily removed following drying). Leaf and stem fresh weights for each plant were recorded, and a 20-leaf sample was removed at random from the total leaf mass of each plant. Fresh weight and total leaf area of the sample were determined, then the sample was reincorporated into the total leaf mass for the individual plant. Estimated total leaf count was calculated using the formula:

\[
\text{Est. total leaf count} = \frac{(\text{Sample leaf count}) \times (\text{Total leaf fresh weight})}{\text{Sample leaf fresh weight}}
\]

Plants were dried at 60°C for 48 h, then leaf, stem, and root dry weights were determined. Shoot : root ratio, leaf fresh weight : dry weight ratio, and specific leaf area (a measure of relative thickness) were also calculated.

The design was randomized complete block. Experiments involving ‘Tifblue’ and ‘Brightwell’ were 4 (Ca” levels) × 3 (Na’ levels) × 2 (cultivars) factorial with six replications, for a total of 144 plants. Data were analyzed using the General Linear Model procedure (PROC GLM) of the Statistical Analysis Service software package (SAS Inc., Cary, N.C.).

Sodium chloride experiment. Dormant, bare-root ‘Tifblue’ and ‘Brightwell’ rabbiteye blueberries and ‘Sharptone’ southern highbush blueberries were planted on 15 Mar. 1988. The rabbiteye blueberries were handled in the same manner as in 1988, while the ‘Sharptone’ plants were transplanted into sterilized 2750-ml pots containing the fiberglass insulation and silica propping agent as described above. ‘Sharptone’ plants were pruned to a height of 20 cm. The irrigation regime was the same as that of 1988.

Six ‘Tifblue’ and six ‘Brightwell’ plants were again removed in 1989, before treatment. Leaf, stem, and root fresh and dry weights were measured and estimated total leaf count was determined as in 1988. Insufficient plant material prevented pre-treatment sampling of ‘Sharptone’.

Plants were maintained with the complete nutrient solution until 15 May 1989, when treatments commenced. All plants received 0, 25, or 100 mM NaCl, rather than Na\(_2\)SO\(_4\), as the Na’ source, but otherwise the compositions of the 12 nutrient solutions were the same as those of 1988 (Table 1). Solution pH and EC were again measured when the solutions were made and replenished. ‘Sharptone’ plants were only treated with those solutions containing 0 or 10 mM Ca” because insufficient plants were available to test all Ca” levels. Plants were destructively harvested on 17 July 1989, following 63 days of treatment. Harvest protocol was the same as that of the 1988 experiment.

The design and data analysis were the same as described above. The experiment involving ‘Sharptone’ was a 2 × 3 factorial with four replications, for a total of 24 plants.

Results

The blueberry cultivars responded differently to salinization with Na\(_2\)SO\(_4\) and NaCl. Furthermore, each cultivar performed differently with salinization, so that data could not be averaged over all cultivars. The principal effects of salinity on growth are described below (Tables 2-5), and interactions between salt concentration and Ca” are given graphically (Figs. 1 and 2).
Table 1. Composition, sodium adsorption ratio (SAR), pH, and electrical conductivity of nutrient solutions for blueberries.

Total Na⁺	Total Ca²⁺	CaSO₄	Ca(NO₃)₂	CaCl₂	KNO₃	(NH₄)₂SO₄	K₂SO₄	pH	EC (dS·m⁻¹)
(mm)	(mm)								
0	0	0.0	0.0	4.0	0.0	4.0	0.0	6.1	1.22
0	1	0.7	0.2	1.1	0.4	0.0	0.0	5.4	1.30
0	3	2.1	0.6	2.8	3.6	0.4	1.2	5.0	1.62
10	0	0.0	0.0	4.0	0.0	4.0	0.0	5.1	2.37
25	0	0.0	0.0	4.0	0.0	3.0	5.5	6.4	3.23
25	1	0.7	0.2	1.1	3.6	0.4	1.9	3.6	3.34
25	3	2.1	0.6	2.8	4.0	1.2	13.0	5.1	3.72
25	10	7.0	2.0	1.0	0.0	4.0	7.6	6.0	4.90
100	0	0.0	0.0	4.0	0.0	0.0	124.0	6.7	8.87
100	1	0.7	0.2	0.1	3.6	0.4	0.7	6.0	8.08
100	3	2.1	0.6	0.3	2.8	4.0	1.2	5.2	8.92
100	10	7.0	2.0	1.0	0.0	4.0	30.6	5.9	8.72

*Additionally, solutions contained 0.1 m K H₂PO₄, 0.65 m MgSO₄, 0.125 mm FeNa(O₂CCH₂),NCH₂CH₂N(CH₂CO₂)₂, 10.9 µM MnSO₄, 1.2 µM H₃BO₃, 0.2 µM CuSO₄, 0.076 µM ZnSO₄, and 15 µM (NH₄)₂MoO₄.

Total Na⁺ as Na₂SO₄ or as NaCl.

pH and EC values are means of at least three replications.

Dry weight increase of roots and shoots of both blueberry cultivars decreased linearly as Na⁺ concentration in the nutrient solution increased (Table 2), although only a small inhibition was found at 25 mm Na⁺. For 'Tifblue' plants, shoot and root dry weight increase of plants subject to 100 mm Na⁺ was only 37% and 25%, respectively, of the increase of unsalinized controls. The Na⁺ effect on 'Brightwell' was more severe. Dry weight increase of 'Brightwell' shoots and roots of plants treated with 100 mm Na⁺ was only 18% and 15%, respectively, of the increase of unsalinized controls.

The Ca²⁺ treatments had no significant main effect on the dry weight increase of 'Tifblue' shoots, but an interaction between the Ca²⁺ and Na₂SO₄ treatment effects was significant at P = 0.07 (Fig. 1A). The greatest shoot dry weight increase was with controls receiving no additional Ca²⁺. For plants treated with 25 mm Na⁺, those receiving 10 mm Ca²⁺ additions grew almost 25% more than those not supplied with additional Ca²⁺. For plants treated with 100 mm Na⁺, those that received 1 mm Ca²⁺ produced more than three times more growth than plants not receiving Ca²⁺. Salinity was most detrimental to dry weight increase when there was no supplemental Ca²⁺ (Fig. 1A).

Calcium treatments affected growth of 'Brightwell' shoots, being significant at close to P = 0.10, but there was no sig-

Table 2. Effect of Na₂SO₄ or NaCl and Ca²⁺ treatments on dry weight increase of rabbiteye blueberry plants.

Ion and concn (mm)	1988 Na₂SO₄ study	1989 NaCl study						
	Tifblue	Brightwell	Tifblue	Brightwell				
Na⁺								
0	59.1	17.9	48.5	17.8	44.4	12.9	50.0	18.2
25	55.3	16.5	41.7	16.0	40.5	13.1	39.3	15.0
100	21.7	4.5	8.6	2.6	17.1	5.5	22.0	7.5
Ca²⁺								
0	41.7	12.5	26.8	9.0	36.2	11.1	37.5	13.6
1	50.0	14.3	34.5	12.9	33.5	9.0	39.2	14.3
3	39.0	9.0	35.4	12.9	32.8	10.7	38.2	15.4
10	47.2	14.7	34.0	13.4	33.1	10.8	33.2	11.5

Source*: Na⁺ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Ca²⁺ 0.1036 NS NS NS NS NS NS NS NS
Ca²⁺ × Na⁺ 0.0639 NS NS NS NS NS NS NS NS

Linear Na⁺ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Linear Ca²⁺ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
None of the Ca²⁺ contrasts were significant.

'Shoot dry weight increase = [leaf dry weight + stem dry weight] - shoot dry weight before treatment initiation.

Root dry weight increase = [root dry weight - root dry weight before treatment initiation].

Probability of significant F value, NS = nonsignificant.
with unsalinized controls, and an appreciably greater reduction took place at 100 mM Na\(^+\). Effective in alleviating Na\(^+\) uptake was the most effective calcium treatment for both attributes showed a distinct response to salinity. For unsalinated plants, leaf dry weight at the end of the experiment was more than three times higher and leaf area was ≈50% higher, both compared with the 0 mM Ca\(^+\) treatment. Estimated leaf count was highest in plants treated with 1 mM Ca\(^+\) (Table 3). A gray leaf necrosis appeared on older leaves of some plants treated with 100 mM Na\(^+\) and was more extensive on plants not supplied with Ca\(^+\). The lower leaf fresh weight : dry weight ratio of plants subject to 100 mM Na\(^+\) was at least partially because of the tissue necrosis. ‘Tifblue’ stem fresh and dry weights and root dry weight were not affected by Ca\(^+\) treatment.

‘Brightwell’ plants responded to Na\(_2\)SO\(_4\) salinity in essentially the same way as did ‘Tifblue’ plants (data not shown). Specific leaf area was not affected by Na\(^+\) or Ca\(^+\) treatments. There were decreases in leaf and stem fresh weights, leaf stem and root dry weights, estimated leaf count, leaf fresh weight : dry weight ratio, shoot : root ratio and average leaf area with increasing Na\(^+\) concentrations in the external solution. ‘Brightwell’ plants treated with any concentration of Ca\(^+\) showed improved leaf fresh weight, dry weight, and estimated leaf count. Like ‘Tifblue’, when ‘Brightwell’ plants were subjected to 25 and 100 mM Na\(^+\), supplemental Ca\(^+\) led to a larger average leaf area than in those not supplied with Ca\(^+\) (data not shown).

Sodium chloride experiment. The Ca\(^+\) \times\) Na\(^+\) interaction effect on shoot and root dry weight increase was not significant, but shoot and root dry weight increase was slowed as Na\(^+\) increased in the external solution (Table 2), and the relationship between dry weight increase and external Na\(^+\) concentration was linear. For ‘Tifblue’ plants, shoot and root dry weight increase of plants subject to 100 mM NaCl was only 38% and 43%, respectively, of the increase of unsalinated controls.

The inhibitory effect of Na\(^+\) on dry weight increase of ‘Brightwell’ was similar to the effect on ‘Tifblue’. Dry weight increase of ‘Brightwell’ shoots and roots exposed to 100 mM Na\(^+\) was 44% and 42%, respectively, of the dry weight increase of the controls.

Calcium treatments had no significant influence on the dry weight increase of ‘Tifblue’ or ‘Brightwell’ shoots and roots exposed to Na\(^+\).

All ‘Tifblue’ growth measurements decreased linearly as Na\(^+\) increased in the external solution (Table 4). Treatment with 1 mM Ca\(^+\) led to increased leaf fresh weight : dry weight and shoot : root ratios and to larger average leaf area. A tan leaf necrosis that appeared on plants provided 100 mM Na\(^+\) as NaCl was more extensive than on plants treated with 100 mM Na\(^+\) as Na\(_2\)SO\(_4\) Calcium treatments had no significant influence on the other growth parameters.

For ‘Brightwell’ plants, growth was also retarded by Na\(^+\) in the external solution: leaf and stem fresh weight, estimated leaf count, leaf, stem, and root dry weight, leaf fresh weight : dry weight ratio, shoot : root ratio, and average leaf area all decreased (data not shown), and a negative linear relationship was found between each characteristic and Na\(^+\) concentration. Calculated treatments had no influence on growth characteristics, nor were there any significant Ca\(^+\) \times\) Na\(^+\) interactions. Tan leaf necrosis also appeared on 100 mM Na\(^+\)-treated plants.

For ‘Sharpsblue’ plants, increasing Na\(^+\) concentrations in the external solution caused decreases in all characteristics measured (Table 5). Estimated leaf count of plants given 100 mM Na\(^+\) was less than half the leaf count of those plants not under Na\(^+\) treatment. Leaf dry weight and leaf area of the 100 mM NaCl-salinized plants were only 21% and 29%, respectively, of leaf dry weight and leaf area of the nontreated plants, and root dry weight of the 100-mM plants was only 26% of the control plants. Tan leaf necrosis appeared on some plants treated with 25 mM Na\(^+\), and was more severe on plants supplied with 100

Fig. 1. Shoot dry weight increase of ‘Tifblue’ (A) and ‘Brightwell’ (B) rabbiteye blueberries treated with Na\(_2\)SO\(_4\) and Ca\(^+\). Vertical bars indicate SE.
Table 3. Influence of Na$_2$SO$_4$ and Ca$^{2+}$ treatments on growth parameters of ‘Tifblue’ rabbiteye blueberry plants.

Ion and concn (µM)	Fresh wt (g)	Estimated leaf count	Dry wt (g)	Leaf fresh wt : Shoot dry wt ratio	Avg leaf area (cm2)
	Leaf	Stem	Leaf	Stem	Root
Na$^+$ (Na$_2$SO$_4$)					
0	112.3	63.7	319	41.1	24.0
25	106.7	60.7	300	38.3	22.9
100	39.4	26.1	136	16.6	11.2
Ca$^{2+}$					
0	76.8	46.0	216	29.3	18.3
1	97.4	54.6	284	35.3	20.6
10	84.6	53.3	246	32.5	20.7

Source:

- Na$^+$: 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001
- Ca$^{2+}$: 0.389, NS, 0.0868, NS, NS, NS
- Na$_2$SO$_4$: 0.0889

Contrasts:

- Linear Na$^+$: 0.0001, 0.0001, 0.0001, 0.0001
- Quadratic Ca$^{2+}$: NS, NS, 0.0005

All fresh and dry weight values are reported as grams per plant.

Probability of a significant F value, NS = nonsignificant.

Linear Ca$^{2+}$ contrasts were nonsignificant.

Effects of the higher concentration of Na$^+$ as NaCl on growth were more severe than the effects of the higher concentration of Na$_2$SO$_4$ at equimolar concentrations of Na$^+$.

Discussion

Salinization with Na$_2$SO$_4$ or NaCl retarded vegetative growth of ‘Tifblue’, ‘Brightwell’, and ‘Sharpblue’ blueberries, although plants appeared to tolerate the lower concentration (25 vs. 100 mM Na$^+$). Supplemental Ca$^{2+}$ appeared to offset salinity damage to ‘Tifblue’ plants but did not with Na$^+$ as NaCl.

Sodium or NaCl application depressed root growth. Root growth was not improved by Ca treatments, regardless of Na$^+$ concentration, a result that contrasts with studies indicating Ca$^{2+}$ amelioration of NaCl inhibited root growth, using comparable concentrations of Na$^+$, in species as diverse as cotton (Cramer et al., 1987), barley (Hordeum vulgare L.) (Cramer et al., 1989), and bean (LaHaye and Epstein, 1971).

LaHaye and Epstein (1971) found with brittle wax bean (Vigna unguiculata L.) that dry weights of stem and leaves of NaCl-stressed plants increased as the CaSO$_4$ concentration of the solution was raised from 1 to 10 mM. Similar results have been reported on Leucaena leucocephala (Hansen and Munns, 1988), and sour orange (Citrus aurantium L.) (Zekri and Parsons, 1990). The presence of Ca$^{2+}$ is necessary to maintain K$^+$/Na$^+$ selectivity, to maintain the Ca$^{2+}$ status of developing leaves, and to prevent the harmful displacement of Ca$^{2+}$ by Na$^+$ from the cell membranes and intercellular pools (Lauchli, 1990). Adequate Ca$^{2+}$ is necessary to maintain cell growth. Zhong and Lauchli (1988) reported that 150 mM NaCl severely inhibits the incorporation of glucose into cellulose, an inhibition that is reversed by 10 mM Ca$^{2+}$ supplementation. However, in our experiments, supplemental Ca$^{2+}$ inhibits root growth and had no ameliorative effect on salinity damage to ‘Sharpblue’ plants.

Fig. 2. Leaf dry weight of ‘Tifblue’ rabbiteye blueberries treated with Na$_2$SO$_4$ and Ca$^{2+}$. Vertical bars indicate SE.

J. Amer. Soc. Hort. Sci. 117(5):749-756. 1992.
Table 4. Influence of NaCl and Ca\(^{2+}\) treatments on growth characteristics of ‘Tifblue’ rabbiteye blueberry plants.

Ion and concn (mM)	Fresh wt (g)	Estimated leaf count	Dry wt (g)	Leaf	Stem	Root	Avg leaf area (cm\(^2\))		
	Leaf	Stem	Root	Leaf	Stem	Root	Leaf	Stem	Root
Na\(^+\) (NaCl)									
0	87.9	56.8	409	28.6	22.4	16.7	3.1	3.1	10.0
25	73.8	54.4	383	25.5	21.6	16.9	2.8	2.9	8.8
100	29.2	29.0	223	10.4	13.2	9.3	2.7	2.6	5.9
Ca\(^{2+}\)									
0	65.7	48.4	348	22.7	20.2	14.9	2.8	2.8	8.0
1	66.6	44.8	337	21.2	18.9	12.8	3.1	3.3	8.9
5	62.7	46.4	365	21.6	17.8	14.5	2.8	2.7	7.5
10	59.0	46.8	301	20.5	19.2	14.6	2.8	2.7	8.4

Source\(^x\):

- Na\(^+\): 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
- Ca\(^{2+}\) × NaCl: 0.0881 NS NS NS NS NS NS NS NS

Contrasts:

- Linear Na\(^+\): 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

\(^{x}\)All fresh and dry weight values are reported as grams per plant.

\(^{y}\)Probability of a significant F value, NS = nonsignificant.

\(^{z}\)Both linear and quadratic Ca\(^{2+}\) contrasts were nonsignificant.

Table 5. Influence of NaCl and Ca\(^{2+}\) treatments on growth characteristics of ‘Sharpblue’ southern highbush blueberry plants.

Ion and concn (mM)	Fresh wt (g)	Estimated leaf count	Dry wt (g)	Leaf	Stem	Root	Avg leaf area (cm\(^2\))		
	Leaf	Stem	Root	Leaf	Stem	Root	Leaf	Stem	Root
Na\(^+\) (NaCl)									
0	59.9	26.0	177	20.2	8.7	12.9	2.9	2.3	18.4
25	41.4	19.0	124	12.9	6.8	8.4	3.2	2.5	16.6
100	8.9	7.2	72	4.2	3.2	3.3	1.2	2.0	5.4
Ca\(^{2+}\)									
0	36.0	16.6	141	11.5	6.2	7.6	2.7	2.4	12.8
10	35.5	17.4	124	12.7	6.1	8.4	2.1	2.1	13.7

Source\(^x\):

- Na\(^+\): 0.0001 0.0002 0.0440 0.0001 0.00067 0.0004 0.0001 NS 0.0002
- Ca\(^{2+}\) × NaCl: NS NS NS NS NS NS NS NS

Contrast

- Linear Na\(^+\): 0.0001 0.0001 0.0556 0.0001 0.0022 0.0002 0.0001 NS 0.0001

\(^{x}\)All fresh and dry weight values are reported as grams per plant.

\(^{y}\)Probability of a significant F value, NS = nonsignificant. The Ca\(^{2+}\) × Na\(^+\) interaction was nonsignificant.

could not ameliorate the detrimental effects of 100 mM Na\(^+\) as NaCl on blueberry growth.

The inability of Ca\(^{2+}\) to limit NaCl salinity damage may be related to the specific ion effects of NaCl salinity. Since SO\(_2^2\)_ is not known to be damaging to blueberries, the shoot growth depression caused by Na\(_2\)SO\(_4\) salinity may be due chiefly to Na\(^+\), and the greater depression caused by NaCl salinity, relative to Na\(_2\)SO\(_4\), may be due at least partially to the added effect of the Cl\(^-\). Therefore, a plausible explanation of the inability of Ca\(^{2+}\) treatments to offset NaCl salinity damage is that Ca\(^+\) cannot restrict the entry of Cl\(^-\) or overcome its effects in Cl\(^-\)-sensitive species. In fact, Brown et al. (1953) proposed that Ca\(^+\) facilitates Cl\(^-\) uptake in various Prunus spp., all of which are sensitive to high levels of Cl\(^-\), but Ehlig (1965) did not find that Ca\(^+\) enhanced Cl\(^-\) uptake in raspberries (Rubus idaeus L.). This question remains to be investigated in blueberry.

Additionally, the higher Ca\(^{2+}\) treatments may have been detrimental to unsalinized blueberries because excessive Ca\(^+\) has been shown to limit growth by reducing cell wall expansion in some species. Hansen and Munns (1988) found that for Leucaena leucocephala, high CaSO\(_4\) levels depressed growth of unsalinized plants. Ekland and Eliasson (1990) demonstrated that cellulose deposition in spruce (Picea abies (L.) Karst.) was inhibited by high Ca\(^+\). Calcium supplements decreased the plastic extensibility of soybean (Glycine max (L.) Merr.) hypocotyl cell walls (Virk and Cleland, 1988). Calcium may also directly inhibit cell wall growth by displacing H\(^+\) from the Donnan Free Space near the cell wall, thus inhibiting enzymes responsible for wall loosening that have acidic pH optima (Cleland et al., 1990). Furthermore, high Ca\(^+\) may adversely affect cell metabolism in calcifuge species, such as blueberries, which are efficient Ca\(^{2+}\) accumulators, as high Ca\(^+\) disrupts metabolic processes in other species (Brauer et al., 1990). Calcium levels within the cytoplasm must remain
low to avoid precipitation of inorganic phosphorus, competition with Mg$^+$ and inadvertent activation or inactivation of enzyme systems (Marschner, 1986).

In contrast to its ineffective protection from NaCl salinity, and possible detrimental effects on unsalinized plants, Ca$^{2+}$ was often able to ameliorate the detrimental effects of Na$^+$ as Na$_2$SO$_4$ on blueberry shoot growth. In 'Tifblue' plants this resulted mainly from greater leaf fresh and dry weight, probably because of greater leaf area and the emergence of new leaves on Ca$^{2+}$-treated plants. Under Na$_2$SO$_4$ salinization (25 mM Na$^+$), 3 and 10 mM Ca$^{2+}$ appeared to be optimal for growth of blueberries. These treatments were equivalent to Na$^+$: Ca$^{2+}$ ratios of 8.3:1 and 2.5:1. While little work has been done using Na$_2$SO$_4$, other research indicates that growth of plants exposed to NaCl is least affected by salinity under similar Na$^+$: Ca$^{2+}$ ratios; growth of NaCl-treated sour orange was optimal at a ratio of 8:1 (Zekri and Parsons, 1990), and dry weight of NaCl-treated bean with a Na$^+$: Ca$^{2+}$ ratio of 16.7:1 almost equalled the dry weight of control plants (LaHaye and Epstein, 1971). With 50 mM Na$_2$SO$_4$, the optimum Ca$^{2+}$ concentration was 1 mM. This contrasts with barley, where Cramer et al. (1989) found that shoot growth of NaCl-stressed plants was optimal at 10 mM Ca$^{2+}$. A similar positive response to high Ca$^{2+}$ for plants salinized with NaCl was previously reported with *L. leucocephala* (Hansen and Munns, 1988), sour orange (Zekri and Parsons, 1990), and bean (LaHaye and Epstein, 1971), but none of the above species are calcifuge.

Why might 'Tifblue' blueberry react differently than other species to high and low supplemental Ca$^{2+}$ concentrations under high Na$_2$SO$_4$ salinity? At Ca$^{2+}$ concentrations > 1 mM, an ameliorative effect in relation to Na$^+$ may be offset by the detrimental effect of Ca$^{2+}$ on the metabolism of the calcifuge blueberry. Such a harmful effect may be exacerbated because of the presence of high Na$^+$. This relationship suggests that management of Ca$^{2+}$ in blueberry plants exposed to salinity requires the maintenance of low but appreciable amounts of Ca$^{2+}$ in the rooting zone.

The ameliorative effects of Ca$^{2+}$ appear to be cultivar specific, since no single Ca$^{2+}$-treatment led to significantly improved 'Brightwell' shoot growth at high Na$^+$ as Na$_2$SO$_4$ concentrations, and Ca$^{2+}$ had no ameliorative effect on 'Sharpblue' growth. Thus, 'Brightwell' and 'Sharpblue' may be more sensitive to high concentrations of Na$_2$SO$_4$ than 'Tifblue', or, alternatively, the former cultivars may be more sensitive to excess Ca$^{2+}$.

In conclusion, rabbiteye and southern highbush blueberries are sensitive to a high level (100 mm Na$^+$) of salinity, which causes severe depression of growth of shoots and roots, whereas there was much less effect at 25 mm Na$^+$). Root growth was depressed more than shoot growth, regardless of the Na$^+$-salt applied. Supplemental Ca$^{2+}$ did not ameliorate NaCl salinity damage to shoots on any cultivar, possibly because of the inability of Ca$^{2+}$ to counter the toxic effects of Cl$^{-}$. This lack of effect suggests that blueberries are especially sensitive to Cl$^{-}$. Under moderate Na$_2$SO$_4$ salinity treatment (25 mm Na$^+$), supplemental Ca$^{2+}$ (3 or 10 mM) successfully ameliorated salinity damage by improving leaf growth. Under high Na$_2$SO$_4$ salinity treatment (100 mm Na$^+$), 1 mM Ca$^{2+}$ produced optimum leaf growth, possibly because application of higher concentrations of Ca$^{2+}$ were detrimental to the metabolism of the calcifuge blueberry.

Literature Cited

Austin, M.E., T.P. Gaines, and R.E. Moss. 1986. Influence of soil pH on soil nutrients, leaf elements, and yield of young rabbiteye blueberries. HortScience 21:443-445.

Ballinger, W.E. 1962. Studies of sulfate and chloride ion effects upon 'Wolcott' blueberry growth and composition. Proc. Amer. Soc. Hort. Sci. 80:331-339.

Ballinger, W.E., A.L. Kenworthy, H.K. Bell, E.J. Benne, and S.T. Bass. 1958. Production in Michigan blueberry plantations in relation to nutrient-element content of the fruiting-shoot leaves and soil. Michigan Quart. Bul. 40:896-905.

Bongi, G. and F. Loreto. 1989. Gas-exchange properties of salt-stressed olive (*Olea europea* L.) leaves. Plant Physiol. 90:1408-1416.

Brauer, M., D. Sanders, and M. Stitt. 1990. Regulation of photosynthetic sucrose synthesis: A role for calcium? Planta 182:236-243.

Brown, J.W., C.H. Wadleigh, and H.E. Hayward. 1953. Foliar analysis of stone fruit and almond trees on saline substrates. Proc. Amer. Soc. Hort. Sci. 61:49-54.

Cleland, R.E., S.S. Vink, D. Taylor, and T. Björkman. 1990. Calcium, cell walls and growth, p. 2-1-2-13. In: M.L. Baker, K.D. Patten, E.W. Neuen- dorff, and C. Lyons (eds.). Texas blueberry handbook-Production and marketing. Texas Agr. Ext. Serv., Texas Agr. Ext. Sta. and Texas A&M Univ., College Station.

Cramer, G.R., E. Epstein, and A. Läuchli. 1988. Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. J. Expt. Bot. 39:1513-1522.

Cramer, G. E. Epstein, and A. L. Luchi. 1989. Na-Ca interactions in barley seedlings: relationships to ion transport and growth. Plant Cell & Environment. 12:551-558.

Cramer, G.R., J. Lynch, A. Lauchli, and E. Epstein. 1987. Influx of Na+, K+ and Ca+ into roots of salt-stressed cotton seedlings. Plant Physiol. 83:510-516.

Downton, W.J.S. 1977. Photosynthesis in salt-stressed grapevines. Austral. J. Plant Physiol. 4:183-192.

Ehlig, C.F. 1965. Salt tolerance of raspberry, boysenberry, and blackberry. Proc. Amer. Soc. Hort. Sci. 85:318-324.

Eklund, L. and L. Eliasson. 1990. Effects of calcium ion concentration on cell wall synthesis. J. Expt. Bot. 41:863-867.

Haby, V.A. and H.D. Pennington. 1988. Irrigation water source and quality, p. 2-1-2-13. In: M.L. Baker, K.D. Patten, E.W. Neuen-dorff, and C. Lyons (eds.). Texas blueberry handbook-Production and marketing. Texas Agr. Ext. Serv., Texas Agr. Ext. Sta. and Texas A&M Univ., College Station.

Haby, V.A., K.D. Patten, D.L. Cawthon, B.B. Kresja, E.W. Neuen-dorff, and C. Lyons (eds.). Texas blueberry handbook-Production and marketing. Texas Agr. Ext. Serv., Texas Agr. Ext. Sta. and Texas A&M Univ., College Station.

Hansen, E.H. and L. Eliasson. 1990. Effects of calcium ion concentration on cell wall synthesis. J. Expt. Bot. 41:863-867.

Hansen, E.H. and D.N. Munns. 1988. Effect of CaSO$_4$ and NaCl on growth and nitrogen fixation of *Leucaena leucocephala*. Plant & Soil 107:95-99.

Hope-Simpson, J.F. 1938. A chalk flora of the Lower Greensand; its uses in interpreting the calcicole habit. J. Ecol. 26:218-235.

LaHaye, P.A. and E. Epstein. 1969. Salt toleration by plants: Enhancement with calcium. Science 166:395-396.

LaHaye, P.A. and E. Epstein. 1971. Calcium and salt toleration by bean plants. Physiol. Plant. 25:213-218.

Lauchli, A. 1990. Calcium, salinity and the plasma membrane, p. 26-35. In: R.T. Leonard and P.K. Hepler (eds.). Calcium in plant growth and development. Amer. Soc. Plant Physiol. Symp. Ser. vol. 4. Amer. Soc. Plant Physiol., Rockville, Md.

Maas, E.V. and C.M. Grieve. 1987. Sodium-induced calcium deficiency in salt-stressed corn. Plant Cell & Environment. 10:559-564.

Manchanda, H.R. and S.K. Sharma. 1989. Tolerance of chloride and sulphate salinity in chickpea (*Cicer arietinum*). J. Agr. Sci., Cambridge 113:407-410.

Marschner, H. 1986. Mineral nutrition in higher plants. Academic, London.

Patten, K.D., E.W. Neundorff, A.T. Leonard, and V.A. Haby. 1988.
Mulch and irrigation placement effects on soil chemistry properties and rabbiteye blueberry plants irrigated with sodic water. J. Amer. Soc. Hort. Sci. 113:4-8.

Spiers, J.M. 1979. Calcium and nitrogen nutrition of ‘Tifblue’ rabbiteye blueberry in sand culture. HortScience 14:523-525.

Spiers, J.M. 1983. Influence of N, K and Na-concentration on growth and leaf element content of ‘Tifblue’ rabbiteye blueberry. HortScience 18:223-224.

Texas Department of Health. 1990. Chemical analysis of public water systems. Stock no. 2-123, Texas Dept. Health, Austin.

Virk, S.S. and R.L. Cleland. 1988. Calcium and the mechanical properties of soybean hypocotyl cell walls: Possible role of calcium and protons in cell wall loosening. Planta 176:60-67.

Zekri, M. and L.R. Parsons. 1990. Calcium influences growth and leaf mineral concentrations of citrus under saline conditions. HortScience 25:784-786.

Zhong, H. and A. Lauchli. 1988. Incorporation of $[^{14}]C$glucose into cell wall polysaccharides of cotton roots: Effects of NaCl and CaCl,

Plant Physiol. 88:511-514.