miRNome and Functional Network Analysis of PGRMC1 Regulated miRNA Target Genes Identify Pathways and Biological Functions Associated With Triple Negative Breast Cancer

Diego A. Pedroza¹, Matthew Ramirez¹, Venkatesh Rajamanickam², Ramadevi Subramani¹,³, Victoria Margolis¹, Tugba Gurbuz³, Adriana Estrada³ and Rajkumar Lakshmanaswamy¹,³*

¹ Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States, ² Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States, ³ Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States

Background: Increased expression of the progesterone receptor membrane component 1, a heme and progesterone binding protein, is frequently found in triple negative breast cancer tissue. The basis for the expression of PGRMC1 and its regulation on cellular signaling mechanisms remain largely unknown. Therefore, we aim to study microRNAs that target selective genes and mechanisms that are regulated by PGRMC1 in TNBCs.

Methods: To identify altered miRNAs, whole human miRNome profiling was performed following AG-205 treatment and PGRMC1 silencing. Network analysis identified miRNA target genes while KEGG, REACTOME and Gene ontology were used to explore altered signaling pathways, biological processes, and molecular functions.

Results: KEGG term pathway analysis revealed that upregulated miRNAs target specific genes that are involved in signaling pathways that play a major role in carcinogenesis. While multiple downregulated miRNAs are known oncogenes and have been previously demonstrated to be overexpressed in a variety of cancers. Overlapping miRNA target genes associated with KEGG term pathways were identified and overexpression/amplification of these genes was observed in invasive breast carcinoma tissue from TCGA. Further, the top two genes (CCND1 and YWHAZ) which are highly genetically altered are also associated with poorer overall survival.

Conclusions: Thus, our data demonstrates that therapeutic targeting of PGRMC1 in aggressive breast cancers leads to the activation of miRNAs that target overexpressed genes and deactivation of miRNAs that have oncogenic potential.

Keywords: PGRMC1, miRNA, miRNome, TNBC, KEGG, REACTOME, Gene Ontology
INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in women in the U.S (1). Treatment for breast cancers are guided by the identification of hormone receptors, Estrogen receptor (ER), Progesterone receptor (PR), and Human Epidermal Growth Factor Receptor 2 (HER2) (2, 3). Based on receptor status, breast cancers are categorized into four major molecular subtypes: Luminal A, Luminal B, HER2-enriched, and triple negative/basal-like (3). Among these triple negative breast cancers (TNBCs) are the most aggressive breast cancers with an overall poorer prognosis compared to other subtypes (4, 5). Because TNBC lack ER, PR and HER2, endocrine and antibody-based therapy are ineffective (6–8). Therefore, it is important to identify novel molecular drivers that enable TNBC growth and metastasis and target or reprogram these markers to better treat patients with aggressive metastatic cancers.

Recent evidence in multiple cancers (9–13) including breast cancer (14–16) identify microRNAs (miRNAs) as novel gene expression regulators and potential biomarkers (17–19). miRNAs are small non-coding RNAs approximately 19 to 25 nucleotides in length; they control gene expression by targeting selective-sequences of mRNAs, inducing translational repression or complete mRNA degradation (20). miRNA expression profiles have the ability to identify molecular breast cancer subtypes (21, 22) and can differentiate between basal and luminal subtypes (23). Their effect on hormone receptor expression, regulation, and activity remains in its infant stage. Ongoing studies however, have a major focus for miRNAs that target genes that are altered in aggressive breast cancers while dysregulation of miRNAs has been directly linked to aggressive basal-like breast cancers (24–28). Although one miRNA can target hundreds of genes, treatments that can switch-on specific miRNAs could lead to direct targeted gene suppression of multiple genes that are overexpressed or have oncogenic potential.

PGRMC1 a member of the membrane-associated progesterone receptor (MAPR) family with the ability to initiate non-classical signaling has been described in breast cancers (29–33). PGRMC1 overexpression is observed in more aggressive phenotypes and is associated with poor prognosis in patients diagnosed with ER-negative breast cancers (34). In addition, in vitro and in vivo studies demonstrate that PGRMC1 possess the ability to promote the growth and survival of human breast cancer cells and xenografted breast tumors (35, 36). Although PGRMC1 expression has been observed in multiple cancers (36–40), it’s signaling mechanism remains unknown. Sequencing and microarray technology has opened new insights into the genetic and genomic landscape of all breast cancers including TNBC (41, 42). For example, amplification of MYC and loss-of-function mutation of BRCA1 are often described in TNBCs (43, 44). Further, the most frequently mutated or amplified genes in TNBCs include PI3KCA (55%), AKTI (13%) and CDH1 (13%) (45). These genes can activate downstream cell-cycle regulators that can either activate (cyclin D1) or repress (p53), leading to sustained proliferation and inhibition of apoptosis of breast cancers (46). Our recent work demonstrated that PGRMC1 activates EGFR and PI3K/AKT signaling pathways, leading to increased cell proliferation of TNBC cells (33). While, other studies have demonstrated cell-specific effects between PGRMC1 and AKT signaling (47–49). Historically, the PI3K/AKT pathway is one of the most altered signaling mechanisms in human cancers (50–53). It plays a key role in controlling cellular processes such as cell proliferation and tumor growth (54, 55). Although directly targeting amplified genes such as PI3KCA and AKT1 has proven to be difficult but promising (56, 57), novel genes that behave in a similar fashion should be identified.

To uncover genes and pathways associated with PGRMC1 in TNBCs we performed human miRNome profiling. We impaired PGRMC1 signaling using a chemical inhibitor and RNA interference. Whole human miRNome profiling identified miRNAs that were both up and down regulated following PGRMC1 impairment. Using an array of online databases and datasets we identified direct miRNA target genes. We proceeded to study these genes by identifying their involvement in the different signaling pathways that were altered following PGRMC1 suppression. More importantly, these genes were differentially expressed in human metastatic tumor samples. From all of the miRNA target genes observed, CyclinD1 (CCND1) and 14-3-3 protein zeta/delta (YWHAZ) had the highest gene expression in human tumors and were involved in various signaling pathways. Patient samples with high expression of either gene were associated with overall poorer survival probability. Increased relative gene expression and copy number variation of CCND1 and YWHAZ was observed in MDA-MB-468 breast cancer cells and silencing PGRMC1 reduced the expression of these genes. Interestingly, multiple miRNAs (miR-224, miR-550a, miR-181a, miR-664a, miR-30b, miR-345, miR-93) that were downregulated upon PGRMC1 impairment are known to be overexpressed in multiple cancers and are described as possible oncogenes. Our results demonstrate that targeting PGRMC1 regulates miRNAs that directly target amplified genes and downregulates oncogenic miRNAs in TNBCs.

MATERIALS AND METHODS

Cell Culture

MDA-MB-468 cells were obtained from the American Type Culture Collection (Manassas, VA, USA). Cells were cultured in RPMI-1640 media supplemented with 100 units/mL of penicillin, 100 μg/mL of streptomycin (Life Technologies, Grand Island, NY, USA), and 10% fetal bovine serum (FBS). Cells were incubated at 37°C in 5% CO2 and maintained at an atmosphere of 95% air.

Treatment With Small Molecule Inhibitor and Gene Silencing

MDA-MB-468 cells were plated in six-well plates at a density of 5x105 cells/well and allowed to attach overnight. Cells were then
either treated with 50 μM AG-205 for 24 h or transfected with PGRMC1 siRNA for 48 h. Using Mirus bio TransIT siQUEST transfection reagent (Mirus Bio) with either a control scrambled-sequence or siRNAs targeting PGRMC1-sequence (Origene). Three different siRNA sequences (A, B and C) and multiple concentrations ranging from 20 to 60 nM were used to effectively silence PGRMC1. To minimize toxicity, the ratio of siRNA to transfection reagent was maintained at 1:1, in accordance with the manufacturer’s protocol. siRNA sequences used were as follows:

SR323253A-rGrArUrCrArArCrUrUrUrArGrUrCrArUrGrArUrGrUrUUCT
SR323253B-rCrArUrUrGrArCrUrArGrUrGrArUrGrUrUUCT
SR323253C-rUrCrArArCrUrUrUrUrGrUrCrArUrGrArUrGrUrCrUGT

Quantitative RT-PCR

Total RNA was isolated from MDA-MB-468 breast cancer cells using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA was then reverse transcribed using the RT2 first strand kit (Qiagen; Cat. No. 330401). qRT-PCR was performed using the StepOnePlus real time PCR system (Applied Biosystems, Foster City, CA, USA). The comparative Ct (2-ΔΔCT) method was used to analyze the results. The primers used for PGRMC1, CCND1, YWHAZ and 18S are as follows:

PGRMC1
Forward: 5′-CGACGGGCGTCCAGGACCC-3′
Reverse: 5′-TCTTCTCTATCTGGATACACAG-3′
CCND1
Forward: 5′-ATGGAACATACGCTGCTGT-3′
Reverse: 5′-TCAGATGTCACATCCTCGGC-3′
YWHAZ
Forward: 5′-ATGGAACCAACACATCCTCTATC-3′
Reverse: 5′-GCATTATTAGCGTGCTGTCTT-3′
18S
Forward: 5′-GCATTATTAGCGTGCTGTCTT-3′

miRNome Profiling

Global microRNA profiling was generated using the SABiosciences PCR miScript PCR Array Human miRNome (Cat No. MIHS-216Z). Briefly, total RNA was extracted using TRIzol reagent (Life Technologies) from MDA-MB-468 cells treated with 50 μM AG-205 for 24 h or 48 h post siRNA transfection. Human miRNome array was performed following the synthesis of cDNA using miScript II RT kit (SABiosciences). miScript miRNA PCR array was performed using miScript SYBR Green PCR Kit (SABiosciences). All of the differentially expressed miRNAs were well-characterized in the human genome as annotated by miRNet (http://www.mirnet.ca/).

Identifying Pathways Altered by PGRMC1 Using KEGG, Gene Ontology and Reactome

Using KEGG and gene ontology terms we analyzed the signaling pathways that were significantly altered following PGRMC1 disruption. The Reactome Analysis Tool (http://reactome.org) (58, 59) was used to visualize the genome-wide hierarchy of enriched pathways in response to PGRMC1. The most significantly enriched pathways are represented as yellow and are maintained in the middle of the circular representation and the less or non-significantly enriched pathways are labeled in grey. A list of all the miRNA target genes was uploaded into the Reactome database and significantly enriched pathway analysis was defined by FDR < 0.05.

Determining PGRMC1-Induced Genetic Alterations Using In Silico Analysis

To study possible genetic alterations such as inframe, missense, truncating mutations as well as gene amplification and deep deletion of the miRNA target genes observed following PGRMC1 disruption. We uploaded the DEG dataset onto the cbioportal (http://www.cbioportal.org/) database and analyzed it in reference to the cancer genome atlas (TCGA). Oncoprint diagrams were used to visualize genetic alterations from invasive breast carcinoma samples (60). Because we impaired PGRMC1 in TNBC cells, using the xena platform (https://xenabrowser.net) database, we studied the altered gene expression in response to PGRMC1 disruption. More specifically we obtained data from the breast cancer cell line Heiser 2012 (54 breast and breast cancer cell lines), breast cancer cell line encyclopedia (68 breast and breast cancer cell lines) as well as TCGA Breast Cancer (BRCA) dataset (n = 1,247 samples).

Assessing PGRMC1 Signaling and Overall Survival in Breast Cancer Patients Using KM Plotter and Interaction of miRNA Target Genes Using Genemania

The cBioportal (http://www.cbioportal.org/) database was used to study overall cumulative survival of patients with high and low expression of the miRNA target genes observed following PGRMC1 impairment. Kaplan-Meier plots were generated from TCGA breast invasive carcinoma samples (n=817). To study the impact of individual genes on overall survival probability, we used the KM plotter (http://kmplot.com/) database and generated Kaplan-Meier plots from ER-negative/HER2-negative breast cancer samples (n=869). Finally, using genemania 3 (http://genemania.org) we explored the interconnection between miRNA target genes involved in the pathways that were significantly altered following PGRMC1 impairment.

Statistical Analysis

All data are expressed as the mean ± SD. The differences between control and experimental groups were compared using Student’s t-test. P < 0.05 was considered to be statistically significant. Statistical analysis was conducted using GraphPad Prism 7 software, version 7.0 (GraphPad Prism Software, San Diego, CA, USA).
RESULTS

Disrupting PGRMC1 Signaling the Human miRNome

To identify miRNAs regulated by PGRMC1, whole human miRNome profiling was performed using a miScript miRNA PCR array (miRNome V16) where a total of 1,084 mature miRNAs including their respective controls were measured. MDA-MB-468 breast cancer cells were treated with 50 µM AG-205. AG-205 is known to disrupt the downstream signaling of PGRMC1 possibly causing it to accumulate in the membrane. Therefore, it was not surprising to observe an increase in PGRMC1 mRNA expression (Figure 1A) as earlier studies have shown increased protein expression of PGRMC1 following AG-205 treatment (33, 38). Human miRNome profiling following AG-205 treatment identified alterations in the expression of various miRNAs (Figure 1B). The 20 most upregulated and downregulated miRNAs were observed (Figures 1C, D). Because AG-205 increased PGRMC1 mRNA expression, we proceeded to silence PGRMC1 to further study its impact on miRNA expression (Figure 1E). Following successful PGRMC1 silencing, human miRNome profiling identified alterations to 776 miRNAs (Figure 1F). Here again, the 20 most upregulated and downregulated miRNAs were identified (Figures 1G, H). We then identified the target genes for the 20 most altered miRNAs using the miRNet database. Following AG-205 treatment the 20 most upregulated miRNAs targeted 2,898 genes while the 20 most downregulated miRNAs targeted 2,501 genes (Figure 1I and Supplementary Tables 1, 2). Similarly, the top 20 most upregulated miRNAs accounted for 1,788 target genes. While, the 20 most downregulated miRNAs targeted 3,029 genes after PGRMC1 was silenced (Figure 1J and Supplementary Tables 3, 4).

PGRMC1 Signal Disruption Alters miRNAs Involved in Pathways Associated With Cancers

Since our earlier analysis with the top 20 miRNAs altered by PGRMC1 resulted in a large number of target genes, we proceeded to study the network analysis of the top 10 most upregulated and downregulated miRNAs following AG-205 treatment. Network analysis of the top 10 most upregulated miRNAs (hsa-miR-523-3p, hsa-miR-3167, hsa-miR-3176, hsa-miR-570-3p, hsa-miR-410-3p, hsa-miR-646, hsa-miR-1256, hsa-miR-576-3p, hsa-miR-378a-5p and hsa-miR-1224-5p) identified 1,479 target genes (Figure 2A and Supplementary Table 5) while the top 10 most downregulated miRNAs (hsa-miR-3681-5p, hsa-miR-3617-5p, hsa-miR-34a-5p, hsa-miR-101-5p, hsa-miR-224-5p, hsa-miR-550a-3p, hsa-miR-181a-3p, hsa-miR-1914-3p, hsa-miR-664a-3p and hsa-miR-3605-3p) targeted 1,402 genes (Figure 2B and Supplementary Table 6).
the top miRNAs made our study more focused on miRNAs that may be more effectively regulated by PGRMC1. To identify miRNA target genes that could have a significant impact, we narrowed down our search by performing KEGG and gene ontology analysis. KEGG terms of the computed 1,479 target genes allowed us to pin-point and identify target genes of PGRMC1 altered miRNAs that are uniquely involved within the top signaling pathways, which interestingly included, p53 signaling pathway, cell cycle and pathways in cancers (Figure 2C; Supplementary Figure 1 and Supplementary Table 7). Interestingly, the downregulated miRNAs also significantly altered pathways in cancer, cell cycle and p53 signaling pathways (Figure 2D; Supplementary Figure 2 and Supplementary Table 8). Further, gene functions including kinase binding, single-stranded DNA binding, gene silencing, intrinsic apoptotic signaling pathway, regulated program cell death, enzyme binding, and nucleotide binding were classified using gene ontology based molecular functions and biological processes of both up and downregulated miRNAs (Figures 2E, F). The candidate 10 most up and downregulated miRNAs following AG-205 treatment and their respective target genes were listed (Tables 1, 2).

miRNAs Regulated Signaling Pathways Identified Following PGRMC1 Silencing

Network analysis following PGRMC1 silencing identified 1,015 genes as targets of the 10 most upregulated miRNAs (hsa-miR-617, hsa-miR-3138, hsa-miR-3150b-3p, hsa-miR-101-5p, hsa-miR-483-5p, hsa-miR-1267, hsa-miR-221-5p, hsa-miR-3201, hsa-miR-1273d and hsa-miR-642b-3p) (Figure 3A and Supplementary Table 9). While, 2,010 genes were identified to be direct targets of the top 10 most downregulated miRNAs (hsa-miR-135a-5p, hsa-miR-3200-5p, hsa-miR-139-5p, hsa-miR-224-5p, hsa-miR-30b-3p, hsa-miR-181a-3p, hsa-miR-345-5p, hsa-miR-93-3p, hsa-miR-4291 and hsa-miR-128-3p) (Figure 3B and Supplementary Table 10). KEGG analysis of the upregulated (Figure 3C; Supplementary Figure 4 and Supplementary Table 11) and downregulated (Figure 3D; Supplementary Figure 5 and Supplementary Table 12) miRNAs following PGRMC1 silencing identified enrichment to similar KEGG terms observed in the AG-205 treatment group, such as p53 signaling pathway, cell cycle and pathways in cancers. Gene ontology terms, identified important molecular functions and biological processes including protein kinase binding, transcription factor binding, MAPK kinase activity, inactivation of MAPK activity, intrinsic apoptotic signaling pathway, purine nucleotide binding, adenyl nucleotide binding, protein phosphorylation, and regulation of phosphorylation (Figures 3E, F). The candidate 10 most up and downregulated miRNAs following PGRMC1 silencing and their respective target genes were listed (Tables 3, 4).

PGRMC1 Signal Disruption and Silencing Alters miRNAs That Target Genes Involved in Breast Cancers

Once we identified the altered pathways following PGRMC1 signal disruption by AG-205 treatment we wanted to identify if the genes that are directly involved within these pathways are observed in breast cancer patient samples. Therefore, the identified genes were taken and computed into the xenabrowser database. TCGA data
miRNA ID	Target Gene	Gene ID	Accession	Target ID	Experiment	PubMed ID
hsa-mir-3167	CALM2	805	MIMAT0015042	PAR-CLIP	23592263	
hsa-mir-3167	AURKA	6790	MIMAT0015042	PAR-CLIP	26701625	
hsa-mir-3167	VPS4A	27183	MIMAT0015042	PAR-CLIP	22012620	
hsa-mir-3167	WASF2	10163	MIMAT0015042	HITS-CLIP	23592263	
hsa-mir-3167	ZNF274	10782	MIMAT0015042	HITS-CLIP	23824327	
hsa-mir-3167	CYCS	54205	MIMAT0015042	HITS-CLIP	22012620	
hsa-mir-3167	TTC37	27183	MIMAT0015042	PAR-CLIP	23592263	
hsa-mir-3167	ANAPC7	51434	MIMAT0015042	HITS-CLIP	23824327	
hsa-mir-3167	LSM3	27258	MIMAT0015042	PAR-CLIP	23824327	
hsa-mir-3167	RAB11FIP4	84440	MIMAT0015042	PAR-CLIP	23824327	
hsa-mir-570-3p	HHIP	64399	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-570-3p	CALM3	808	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-570-3p	PMAIP1	5366	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-570-3p	TTC37	9652	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-570-3p	ANAPC7	10163	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-570-3p	LSM3	27258	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-570-3p	RAB11FIP4	84440	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-570-3p	ACTB	60	MIMAT0003235	PAR-CLIP	23592263	
hsa-mir-410-3p	VEGFA	7422	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	CRK	1398	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	PPP2R5E	5929	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	CDKN1A	1026	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	TPM3	3480	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	MDM2	4193	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	CDK1	983	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	LDLR	3949	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-410-3p	TFDP1	7027	MIMAT0002171	PAR-CLIP	23824327	
hsa-mir-646	ZMAT3	64399	MIMAT0003316	PAR-CLIP	23824327	
hsa-mir-646	CCND1	808	MIMAT0003316	PAR-CLIP	23824327	
hsa-mir-646	CRK	1398	MIMAT0003316	PAR-CLIP	23824327	

(Continued)
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID								
hsa-mir-646	MIMAT0003316	VEGFA	7422	HITS-CLIP/ PAR-CLIP	23592263	24398324	21572407	20371350	26701625				
hsa-mir-646	MIMAT0003316	BTG2	7832	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	PPP2R5C	5527	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	CSNK2A1	1457	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	ORC4	5000	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	PRKAR2A	5576	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	RBL1	5933	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	BIRC5	332	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	WEE1	7465	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	CDK6	1021	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	CSNK2A1	1457	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	ORC4	5000	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	PRKAR2A	5576	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	RBL1	5933	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	BIRC5	332	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	WEE1	7465	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	CDK6	1021	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	STK11	6794	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	PPP2R5C	5527	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	PPP2R5C	5527	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
hsa-mir-646	MIMAT0003316	PPP2R5C	5527	PAR-CLIP	21572407	20371350	22012620	23131552	24398324	23446348	21572407	20371350	27292025
from primary and metastatic tumor samples was downloaded and plotted. Genes from p53 signaling pathway, cell cycle neutrophin signaling pathways, pathways in cancer, adherens junction, insulin signaling pathway, oocyte meiosis, mTOR signaling pathway, RNA degradation, and endocytosis were differentially expressed in both metastatic and primary tumor tissue samples (Figure 4). Target genes of downregulated miRNAs were also differentially expressed in similar pathways including pathways in cancer, cell cycle, and p53 signaling pathway (Supplementary Figure 5). Identified genes involved within each pathway following PGRMC1 silencing were similarly computed into the xenabrowser database. TCGA data analyzed from metastatic tumor samples identified upregulated miRNA target genes to be involved in pathways in cancer, T cell receptor signaling pathway, cell pathway, p53 signaling pathway, B cell receptor signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, ErbB signaling pathway, NOD-like receptor signaling pathway, and mRNA surveillance pathway (Figure 5). Intriguingly, downregulated miRNAs had similarly altered miRNA target genes in pathways in cancer, p53 signaling pathway, T cell receptor signaling pathway and ErbB signaling pathway (Supplementary Figure 6). However, some miRNA target genes were also observed in adherens junctions, focal adhesion, neutrophin signaling pathway, regulation of actin cytoskeleton, aldosterone-regulated sodium reabsorption and chemokine signaling pathway (Supplementary Figure 6).

PGRMC1 Regulates miRNAs Involved in Cell Cycle, Disease Signal and Transduction Processes

Gene network analysis allowed us to identify novel target genes and we were able to classify them using KEGG term enrichment following AG-205 treatment of PGRMC1 silencing. We employed the Reactome database to study pathway-topology analysis using the miRNA target genes from KEGG and GO analysis. Using the Reactome pathway identifier we were able to observe genes that are mapped to pathways and over-represented within those pathways (58, 61). Following AG-205 treatment, we identified over-representation of miRNA target genes in pathways involved in cell cycle, gene expression (Transcription), disease, and signal transduction (Figure 6A). Similarly, following PGRMC1 silencing we observed over-representation of miRNA target genes in pathways involved in immune system, signal transduction, gene expression (transcription), and cell cycle (Figure 6B).

Functional Annotation Analysis of PGRMC1 Altered miRNA Target Genes in Invasive Breast Carcinomas Samples Using TCGA Dataset

TCGA data was used to study possible genetic alterations of the miRNA target genes due to miRNA alterations in response to PGRMC1 disruption. From the miRNA target genes observed, the top 22 that displayed increased mRNA expression within the spectrum of signaling pathways identified by KEGG were further analyzed. Using the cBioportal database we were able to observe and differentiate between the miRNA target genes based on genetic alteration. Using oncoprint we visualized the genetic alterations in the 22 miRNA target genes (CCND1, YWHAZ, TPM3, BTG2, PAPPC1, IGF1R, RAB11FIP1, PRKDC, MAPKAPK2, MAPK3, THBS1, CALM2, PIK3R1, RPS6, ACTB, PTPRF, ITGB1, RH0A, MAPK1, BCL2L1, RAC1 and PPP2R1A) (Figure 7A and Supplementary Figure 7). However, the percentage of genetic alteration varied within each gene and most miRNA target genes that displayed an alteration in > 5 percent were mainly amplified (Figure 7A). Patients that displayed high expression of these genes had a cumulative lower survival rate (Figure 7B). Network analysis by the Genemania database demonstrated that these amplified genes have tight interactions within signaling pathways. The light-red lines connect genes that are known to directly interact with one another within signaling pathways that are well studied (Figure 7C). Although, cumulatively these genes displayed a lower survival rate, only high expression of CCND1 and YWHAZ in ER-negative breast cancer patients displayed significant overall lower survival probability (Figure 7D and Supplementary Figure 8). Finally, gene expression data analysis from the breast cancer cell line dataset and copy number variation from the cancer cell line encyclopedia dataset similarly demonstrated increased expression/CN variation of CCND1 and YWHAZ in TNBC cell lines (Figure 7E). Further, we also confirmed the decreased expression of CCND1 and YWHAZ in PGRMC1 silenced MDA-MB-468 cells (Figure 7F). Overall, our in vitro and in silico analysis demonstrates that PGRMC1 plays a major role in influencing the miRNome in such a way that these alterations favor breast tumor growth and progression.

DISCUSSION

TNBCs account for approximately 12-14% of breast cancers diagnosed in the United States, with most exhibiting BRCA1/2
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID
hsa-mir-181a-3p	MIMAT0000270	ARHGDIA	396	PAR-CLIP	26701625
mir-3605-3p	None				
hsa-mir-664a-3p	MIMAT0005949	WNT7A	7476	PAR-CLIP	22012620
hsa-mir-664a-3p	MIMAT0005949	WEE2	494551	HITS-CLIP	23824327
hsa-mir-664a-3p	MIMAT0005949	CALM1	801	PAR-CLIP	21572407
hsa-mir-664a-3p	MIMAT0005949	RPS6KA5	9252	PAR-CLIP	21572407
hsa-mir-664a-3p	MIMAT0005949	YWHAE	7531	PAR-CLIP	23824327
hsa-mir-664a-3p	MIMAT0005949	PLCG1	5335	CLASH	23622248
hsa-mir-664a-3p	MIMAT0005949	E2F3	1871	PAR-CLIP	22929263
hsa-mir-664a-3p	MIMAT0005949	NRG4	145957	PAR-CLIP	23446348
hsa-mir-664a-3p	MIMAT0005949	CALM3	808	PAR-CLIP	26701625
hsa-mir-1914-3p	MIMAT0007890	YWHAE	7531	PAR-CLIP	23592263
hsa-mir-1914-3p	MIMAT0007890	PLCG1	5335	CLASH	23622248
hsa-mir-1914-3p	MIMAT0007890	E2F3	1871	PAR-CLIP	22929263
hsa-mir-1914-3p	MIMAT0007890	STAT5B	6776	PAR-CLIP	22291592
hsa-mir-1914-3p	MIMAT0007890	TAB2	23118	PAR-CLIP	23592263
hsa-mir-1914-3p	MIMAT0007890	NRG4	145957	PAR-CLIP	23446348
hsa-mir-1914-3p	MIMAT0007890	CALM3	808	PAR-CLIP	26701625
hsa-mir-3617-5p	MIMAT0017997	CDKN1A	1026	PAR-CLIP	26701625
hsa-mir-3617-5p	MIMAT0017997	CDKN2B	1030	HITS-CLIP	23313552
hsa-mir-3617-5p	MIMAT0017997	MAPK10	5602	HITS-CLIP	23824327
hsa-mir-3617-5p	MIMAT0017997	MDM2	4193	PAR-CLIP	21572407
hsa-mir-3617-5p	MIMAT0017997	CDK1	983	PAR-CLIP	21572407
hsa-mir-3617-5p	MIMAT0017997	PMAIP1	5366	PAR-CLIP	27292025
hsa-mir-224-5p	MIMAT0000281	CCND1	595	PAR-CLIP	26701625
hsa-mir-224-5p	MIMAT0000281	BCL2	596	Microarray//qRT-PCR//Western blot	22989374
hsa-mir-224-5p	MIMAT0000281	CASP3	836	Luciferase reporter assay//Western blot	26307684
hsa-mir-224-5p	MIMAT0000281	IGF1R	3480	PAR-CLIP	20371350
hsa-mir-224-5p	MIMAT0000281	SMAD4	4089	Luciferase reporter assay//qRT-PCR//Western blot	23446348
hsa-mir-224-5p	MIMAT0000281	CCND1	595	PAR-CLIP	26701625
hsa-mir-224-5p	MIMAT0000281	BCL2	596	Microarray//qRT-PCR//Western blot	22989374
hsa-mir-224-5p	MIMAT0000281	CASP3	836	Luciferase reporter assay//Western blot	26307684
hsa-mir-224-5p	MIMAT0000281	IGF1R	3480	PAR-CLIP	20371350
hsa-mir-224-5p	MIMAT0000281	MAPK3	5595	/Luciferase reporter assay//qRT-PCR//Western blot	27292025
hsa-mir-224-5p	MIMAT0000281	HSP90AA1	3320	PAR-CLIP	23446348
hsa-mir-224-5p	MIMAT0000281	MAPK2K2	5605	HITS-CLIP	23824327
hsa-mir-224-5p	MIMAT0000281	RAC1	5879	Luciferase reporter assay	27229231
hsa-mir-224-5p	MIMAT0000281	TPR	7175	PAR-CLIP	22229281
hsa-mir-224-5p	MIMAT0000281	GSK3B	2932	Luciferase reporter assay	25588771
hsa-mir-550a-3p	MIMAT0003257	MAPK3	5595	/Luciferase reporter assay//qRT-PCR//Western blot	22989374
hsa-mir-101-5p	MIMAT0004513	FOS	5386	Luciferase reporter assay	27292025
hsa-mir-101-5p	MIMAT0004513	VEGFA	7422	Luciferase reporter assay//qRT-PCR//Western blot	22989374
hsa-mir-101-5p	MIMAT0004513	STK4	472	Luciferase reporter assay//qRT-PCR	20617180
hsa-mir-101-5p	MIMAT0004513	PRKDC	5591	Luciferase reporter assay//qRT-PCR	20617180

(Continued)
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature	PubMed ID			
hsa-miR-101-5p	MIMAT0004513	PMAIP1	5366	PAR-CLIP	23446348	2012620	2157240	23446348	2012620
hsa-miR-3681-5p	MIMAT0018108	FZD6	8323	HITS-CLIP//PAR-CLIP	15936157	25692263			
hsa-miR-3681-5p	MIMAT0018108	MALT1	10892	PAR-CLIP	25692263				
hsa-miR-3681-5p	MIMAT0000255	AKT1	207	Flow//qRT-PCR//Western blot	27073535				
hsa-miR-3681-5p	MIMAT0000255	BIRC2	329	PCR array	28097098				
hsa-miR-3681-5p	MIMAT0000255	BIRC3	330	Microarray//Northern blot	17540599				
hsa-miR-3681-5p	MIMAT0000255	XIAP	331	PCR array	28097098				
hsa-miR-34a-5p	MIMAT0000255	FASLG	356	PCR array	28097098				
hsa-miR-34a-5p	MIMAT0000255	AR	367	qRT-PCR//Western blot	23415211				
hsa-miR-34a-5p	MIMAT0000255	BAX	581	Luciferase reporter assay//Western blot	27610823				
hsa-miR-34a-5p	MIMAT0000255	CCND1	595	Reporter assay//Sequencing//Western blot	18406335[19461653]				
hsa-miR-34a-5p	MIMAT0000255	CDK2	596	//qRT-PCR//qRT-PCR//Reporter assay//Western blot	21240262[21128241]				
hsa-miR-34a-5p	MIMAT0000255	CDKn1B	1027	PAR-CLIP	19773441[21240262]				
hsa-miR-34a-5p	MIMAT0000255	CDK2	1029	Western blot	23035210[23592263]				
hsa-miR-34a-5p	MIMAT0000255	CSF1R	1436	Luciferase reporter assay//qRT-PCR	24198819				
hsa-miR-34a-5p	MIMAT0000255	CTNNB1	1499	Proteomics	2566225				
hsa-miR-34a-5p	MIMAT0000255	DAPK1	1612	PCR array	28097098				
hsa-miR-34a-5p	MIMAT0000255	E2F1	1869	Luciferase reporter assay//qRT-PCR//Western blot	1785987[21128241]				
hsa-miR-34a-5p	MIMAT0000255	E2F3	1871	//Microarray//PAR-CLIP//qRT-PCR//Western blot	2395432[212986779]				
hsa-miR-34a-5p	MIMAT0000255	ERBB2	2064	Luciferase reporter assay//Western blot	28097290[23839657]				
hsa-miR-34a-5p	MIMAT0000255	FOS	2353	ChIP//mRNA decay//qRT-PCR//Western blot	27513856				
hsa-miR-34a-5p	MIMAT0000255	GRB2	2885	Sequencing	20371350				
hsa-miR-34a-5p	MIMAT0000255	HDAC1	3065	//qRT-PCR//Reporter assay//Western blot	21566225[28836167]				
hsa-miR-34a-5p	MIMAT0000255	IGF1R	3480	CLASH	26362248				
hsa-miR-34a-5p	MIMAT0000255	ITGA6	3655	Proteomics	2566225				
hsa-miR-34a-5p	MIMAT0000255	KIT	3815	Luciferase reporter assay//Western blot	24009008[27056900]				
hsa-miR-34a-5p	MIMAT0000255	SMAD4	4089	//PAR-CLIP//qRT-PCR//Western blot	20371350[28348487]				
hsa-miR-34a-5p	MIMAT0000255	MET	4233	//Northern blot//qRT-PCR//Western blot	24983493[26313360]				
hsa-miR-34a-5p	MIMAT0000255	MYC	4609	//Reporter assay//Sequencing//TRAP//Western blot	26238271[27513895]				
hsa-miR-34a-5p	MIMAT0000255	NFkB1	4790	PCR array	21297663[22159222]				
hsa-miR-34a-5p	MIMAT0000255	PDGFRA	5156	//Microarray//qRT-PCR//Western blot	20371350[24510096]				
hsa-miR-34a-5p	MIMAT0000255	PDGFRB	5159	Luciferase reporter assay//qRT-PCR//Western blot	23805317[24837198]				
hsa-miR-34a-5p	MIMAT0000255	PKC3G	5294	Flow//qRT-PCR//Western blot	2566225				
hsa-miR-34a-5p	MIMAT0000255	PLCG1	5335	Proteomics	21128241[21128241]				
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID				
----------	-----------	-------------	-----------	------------	---------------------				
hsa-mir-34a-5p	MIMAT0000255	MAPK3	5595	CLASH	23622248				
hsa-mir-34a-5p	MIMAT0000255	MAP2K1	5604	Luciferase reporter assay/Northern blot/qRT-PCR/Western blot	20299489				
hsa-mir-34a-5p	MIMAT0000255	RALB	5899	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	SP11	6688	Luciferase reporter assay/Reporter assay	20598588				
hsa-mir-34a-5p	MIMAT0000255	STAT1	6772	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	TGF7	6932	Luciferase reporter assay/qRT-PCR/Western blot	25498980				
hsa-mir-34a-5p	MIMAT0000255	TGFB2R2	7048	PAR-CLIP	22012820				
hsa-mir-34a-5p	MIMAT0000255	TP53	7157	Northern blot/qRT-PCR/qRT-PCR/Western blot	26403328/26177460				
hsa-mir-34a-5p	MIMAT0000255	TRAF2	7186	PCR array	28097098				
hsa-mir-34a-5p	MIMAT0000255	TRAF3	7187	PCR array	28097098				
hsa-mir-34a-5p	MIMAT0000255	VEGFA	7422	ELISA/Luciferase reporter assay	18320040				
hsa-mir-34a-5p	MIMAT0000255	WNT1	7471	Luciferase reporter assay/Microarray/qRT-PCR/Western blot	19336450/19398721				
hsa-mir-34a-5p	MIMAT0000255	CCNE2	9134	Luciferase reporter assay/Microarray/PAR-CLIP/Western blot	19416565/19714404				
hsa-mir-34a-5p	MIMAT0000255	CYCS	54205	PCR array	28097098				
hsa-mir-34a-5p	MIMAT0000255	KRAS	3845	qRT-PCR/Western blot	23667495				
hsa-mir-34a-5p	MIMAT0000255	CCND3	896	Western blot	18406353				
hsa-mir-34a-5p	MIMAT0000255	CDC20	991	CLASH/Proteomics	21566225/23622248				
hsa-mir-34a-5p	MIMAT0000255	CDC25A	993	Western blot	18406353				
hsa-mir-34a-5p	MIMAT0000255	CDC25C	995	Microarray	19461653				
hsa-mir-34a-5p	MIMAT0000255	CDKN1B	1027	PCR array	23446348				
hsa-mir-34a-5p	MIMAT0000255	CDKN2A	1029	Western blot	21128241				
hsa-mir-34a-5p	MIMAT0000255	CDKN2C	1031	qRT-PCR/Reporter assay	21128241				
hsa-mir-34a-5p	MIMAT0000255	GADD45A	1647	PCR array	21566225/23622248				
hsa-mir-34a-5p	MIMAT0000255	E2F1	1869	Luciferase reporter assay/qRT-PCR/Western blot	20371350/28348487				
hsa-mir-34a-5p	MIMAT0000255	E2F5	1875	Microarray/PAR-CLIP/qRT-PCR/Reporter assay/Western blot	19461653/19714404				
hsa-mir-34a-5p	MIMAT0000255	E2F3	1871	Luciferase reporter assay/Microarray/PAR-CLIP/qRT-PCR/Western blot	21240262/21128241				
hsa-mir-34a-5p	MIMAT0000255	CDK6	1021	Microarray/PAR-CLIP/qRT-PCR/Reporter assay/Western blot	19461653/19714404				
hsa-mir-34a-5p	MIMAT0000255	CDK11B	1027	PAR-CLIP	23592263				
hsa-mir-34a-5p	MIMAT0000255	CDK2A	1029	Western blot	23448348				
hsa-mir-34a-5p	MIMAT0000255	CDK2C	1031	qRT-PCR/Reporter assay	23448348				
hsa-mir-34a-5p	MIMAT0000255	GADD45A	1647	PCR array	21566225				
hsa-mir-34a-5p	MIMAT0000255	E2F3	1871	Luciferase reporter assay/qRT-PCR/Western blot	21566225/23622248				
hsa-mir-34a-5p	MIMAT0000255	SFN	2810	Proteomics	26035691/28123637				
hsa-mir-34a-5p	MIMAT0000255	HDAC1	3065	/Proteomics/qRT-PCR/Reporter assay/Western blot	26035691/28123637				
hsa-mir-34a-5p	MIMAT0000255	SMAD4	4089	Luciferase reporter assay/PAR-CLIP/qRT-PCR/Western blot	23448348				
hsa-mir-34a-5p	MIMAT0000255	MOM2	4171	Proteomics	26077733				
hsa-mir-34a-5p	MIMAT0000255	MOM3	4172	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	MOM4	4173	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	MOM5	4174	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	MOM6	4175	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	MOM7	4176	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	CDC23	8697	Proteomics	21566225				
hsa-mir-34a-5p	MIMAT0000255	CCNE2	9134	Luciferase reporter assay/Microarray/PAR-CLIP/Western blot	19461653/19714404				
hsa-mir-34a-5p	MIMAT0000255	STAG2	10735	Proteomics	23448348				
hsa-mir-34a-5p	MIMAT0000255	FZR1	51343	PAR-CLIP	21566225				
hsa-mir-34a-5p	MIMAT0000255	ANAPC5	51433	CLASH	26076125				
hsa-mir-34a-5p	MIMAT0000255	CASP8	841	PCR array	23622248				
hsa-mir-34a-5p	MIMAT0000255	CASP9	842	PCR array	23622248				
hsa-mir-34a-5p	MIMAT0000255	TNFRSF10B	8795	PCR array	23622248				
hsa-mir-34a-5p	MIMAT0000255	CYCS	54205	PCR array	23622248				
hsa-mir-34a-5p	MIMAT0000255	AKT1	207	Flow/qRT-PCR/Western blot	27073535				

(Continued)
and p53 germline mutations (62, 63). TNBCs are the most aggressive type of breast cancer and most patients do not respond well to conventional chemotherapy (64, 65). The concept of gene therapy has been brought up as an alternative to chemotherapy to treat these aggressive cancers (66, 67). In this case RNAi could be used to target mutated proteins which are a product of missense mutations, leading to high constitutive expression of mutated proteins such as TP53 (68). However, suppressing genes with RNAi requires effective delivery methods, which have proven to be effective in some cases but difficult in both in vivo and in vitro systems (69–71). Therefore, other means of gene targeting therapies could be valued options.

miRNAs have emerged as important biological regulators of normal development (72) and evidence suggest that they play a major role in human cancers (73). miRNAs are abundantly found in multiple human cells and have the ability to regulate gene expression of approximately 60% of all mammalian genes (74, 75) hence they promote themselves as an attractive therapeutic option. Several miRNAs have been shown to be altered in TNBCs (24–28). Two examples of this are through the activation of STAT3, a transcription factor that is well documented in cancers (76). Activation of STAT3 is observed in TNBC tumors where epigenetic suppression of miR-146b leads to constitutive STAT3 activation and tumor growth (77, 78). Secondly, through the activation of the miRNA-200 family, these miRNAs are known to negatively regulate the epithelial to mesenchymal transition (EMT) and can specifically target ZEB1/2 (79, 80). Therefore, other means of gene targeting therapies could be valued options.

miRNAs have emerged as important biological regulators of normal development (72) and evidence suggest that they play a major role in human cancers (73). miRNAs are abundantly found in multiple human cells and have the ability to regulate gene expression of approximately 60% of all mammalian genes (74, 75) hence they promote themselves as an attractive therapeutic option. Several miRNAs have been shown to be altered in TNBCs (24–28). Two examples of this are through the activation of STAT3, a transcription factor that is well documented in cancers (76). Activation of STAT3 is observed in TNBC tumors where epigenetic suppression of miR-146b leads to constitutive STAT3 activation and tumor growth (77, 78). Secondly, through the activation of the miRNA-200 family, these miRNAs are known to negatively regulate the epithelial to mesenchymal transition (EMT) and can specifically target ZEB1/2 (79, 80). Thereby, leading to the question, if miRNAs such as miR-14b or the miR-200 family of miRNAs were to be up-regulated could they then target genes that are overexpressed or active like STAT3 and EMT inducers to inhibit tumor growth?

PGRMC1 has been deemed a novel tumor biomarker due to its elevated levels in human cancers (49, 81–84). Because PGRMC1 plays a role in chemoresistance, tumor progression and growth it has become an attractive therapeutic target (36). Intriguingly, PGRMC1 is commonly observed in aggressive TNBC tissue (35). This is particularly interesting because TNBCs lack the classical signaling hormone receptors, ER and PR yet TNBCs that overexpress PGRMC1 could respond to steroid hormones via PGRMC1. Our previous studies showed that PGRMC1 is clearly overexpressed in the TNBC cell line MDA-MB-468 and using a known inhibitor (AG-205) and

FIGURE 3 | PGRMC1 silencing alters pathways that are have miRNA target genes involved. Silencing PGRMC1 upregulates different miRNAs (from AG-205 treatment) that target similar miRNA target genes which are upregulated in metastatic breast cancer samples. (A) Target genes highlighted in pink of the top ten most upregulated miRNAs highlighted in green. (B) The top ten most downregulated miRNAs highlighted in green and their direct targets highlighted in grey. (C) and (D) The top 10 most significantly enriched pathways (non-disease related) were identified by KEGG analysis, adjusted p < 0.05. (E, F) miRNA target genes show involvement in GO: terms Molecular functions and Biological process.

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID					
hsa-mir-34a-5p	MIMAT0000255	BIRC2	329	PCR array	28097098					
hsa-mir-34a-5p	MIMAT0000255	BIRC3	330	Microarray/Northern blot	17540599					
hsa-mir-34a-5p	MIMAT0000255	XIAP	331	PCR array	28097098					
hsa-mir-34a-5p	MIMAT0000255	FASLG	356	PCR array	28097098					
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID					
----------	-----------	-------------	-----------	------------	----------------------					
hsa-mir-617	MIMAT003286	PABPC1	26886	HITS-CLIP	19536157					
hsa-mir-3138	MIMAT0015006	PPP2RSE	5529	PAR-CLIP	23592263					
hsa-mir-3138	MIMAT0015006	PPP2R1A	5518	PAR-CLIP	26701625					
hsa-mir-3138	MIMAT0015006	CDC25A	993	PAR-CLIP	23592263					
hsa-mir-3138	MIMAT0015006	CDK6	1021	PAR-CLIP	26701625					
hsa-mir-3138	MIMAT0015006	FZD6	8323	HITS-CLIP//PAR-CLIP	24398324	21572407	23313552			
hsa-mir-3138	MIMAT0015006	PIAS4	5518	PAR-CLIP	26701625					
hsa-mir-3150b-3p	MIMAT0018194	CBL	867	PAR-CLIP	26701625					
hsa-mir-3150b-3p	MIMAT0018194	BBC3	27113	PAR-CLIP	23592263					
hsa-mir-3150b-3p	MIMAT0018194	WNT7B	7477	PAR-CLIP	23592263	26701625				
hsa-mir-3150b-3p	MIMAT0018194	RBM8A	9939	PAR-CLIP	23592263	23446348	22012620	20371350	26701625	27292025
hsa-mir-3150b-3p	MIMAT0018194	YWHAZ	7534	PAR-CLIP	26701625					
hsa-mir-3150b-3p	MIMAT0018194	SUGT1	10910	PAR-CLIP	23592263	20371350				
hsa-mir-3150b-3p	MIMAT0018194	RALBP1	10928	PAR-CLIP	26701625					
hsa-mir-3150b-3p	MIMAT0018194	PABPC1L2B	645974	PAR-CLIP	23592263					
hsa-mir-3150b-3p	MIMAT0018194	FZD7	8324	PAR-CLIP	26701625					
hsa-mir-3150b-3p	MIMAT0018194	IKBKG	8517	PAR-CLIP	24398324					
hsa-mir-3150b-3p	MIMAT0018194	PLK1	5347	PAR-CLIP	26701625					
hsa-mir-3150b-3p	MIMAT0018194	PABPN1	8106	PAR-CLIP	26701625					
hsa-mir-3150b-3p	MIMAT0018194	BCL2L1	598	PAR-CLIP	23592263	26701625				
hsa-mir-3150b-3p	MIMAT0018194	MAPK14	1432	PAR-CLIP	26697839					
hsa-mir-3150b-3p	MIMAT0018194	CRK	1398	PAR-CLIP	26697839					
hsa-mir-3150b-3p	MIMAT0018194	CDK4	1019	PAR-CLIP	26697839					
hsa-mir-3150b-3p	MIMAT0018194	SMAD2	4087	PAR-CLIP	27292025					
hsa-mir-3150b-3p	MIMAT0018194	RPS6KA5	9252	PAR-CLIP	23824327					
hsa-mir-3150b-3p	MIMAT0018194	CUL2	8453	PAR-CLIP	21572407					
hsa-mir-3150b-3p	MIMAT0018194	WEE1	7465	PAR-CLIP	27418678					
hsa-mir-3150b-3p	MIMAT0018194	NFkBIB	4793	PAR-CLIP	27418678					
hsa-mir-3150b-3p	MIMAT0018194	CDKN1B	1027	PAR-CLIP	23446348					

(Continued)
TABLE 3 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID			
hsa-mir-221-5p	MIMAT0004568	CDKN1B	1027	Chromatin immunoprecipitation//Co-immunoprecipitation//qRT-PCR//Western blot	26153983			
hsa-mir-221-5p	MIMAT0004568	ABL1	25	PAR-CLIP	26701625			
hsa-mir-221-5p	MIMAT0004568	CDKN1C	1028	Chromatin immunoprecipitation//Co-immunoprecipitation//qRT-PCR//Western blot	26153983			
hsa-mir-221-5p	MIMAT0004568	ITGB1	3688	PAR-CLIP	20371350			
hsa-mir-221-5p	MIMAT0004568	GRB2	2885	PAR-CLIP	26701625			
hsa-mir-221-5p	MIMAT0004568	CARD8	22900	HTS-CLIP	23313552			
hsa-mir-221-5p	MIMAT0004568	STAT2	6773	PAR-CLIP	20371350			
hsa-mir-221-5p	MIMAT0004568	FZD2	2535	HTS-CLIP	23824327			
hsa-mir-221-5p	MIMAT0004568	IL6R	3570	Luciferase reporter assay//qRT-PCR//Western blot	26645045			
hsa-mir-3201	MIMAT0015086	LAMC1	3915	PAR-CLIP	23446348	2021026020371350	26701625	27292025
hsa-mir-3201	MIMAT0015086	SPRED1	161742	PAR-CLIP	23592263			
hsa-mir-3201	MIMAT0015086	TNFRSF10B	8795	HTS-CLIP	23313552			
hsa-mir-3201	MIMAT0015086	PTEN	5728	PAR-CLIP	23592263			
hsa-mir-3201	MIMAT0015086	EGLN1	54583	PAR-CLIP	21572407			
hsa-mir-3201	MIMAT0015086	DUSP10	11221	HITS-CLIP	23824327			
hsa-mir-3201	MIMAT0015086	CD4	920	PAR-CLIP	23592263			
hsa-mir-3201	MIMAT0015086	VAV2	7410	PAR-CLIP	26701625			
hsa-mir-3201	MIMAT0015086	CDC25B	994	PAR-CLIP	23824327			
hsa-mir-3201	MIMAT0015086	CBL	867	HTS-CLIP	23824327			
hsa-mir-3201	MIMAT0015086	VAV2	7410	PAR-CLIP	26701625			
hsa-mir-3201	MIMAT0015086	CD4	920	PAR-CLIP	23592263			
hsa-mir-3201	MIMAT0015086	SERPINE1	5054	PAR-CLIP	22012620			
hsa-mir-642b-3p	MIMAT0018444	CAON1	774	HTS-CLIP	23824327			
hsa-mir-642b-3p	MIMAT0018444	CDC25B	994	PAR-CLIP	23592263			
hsa-mir-642b-3p	MIMAT0018444	SYK	6850	HTS-CLIP	240643019282157			
hsa-mir-642b-3p	MIMAT0018444	MAP3K5	4217	PAR-CLIP	21572407	27292025		
hsa-mir-642b-3p	MIMAT0018444	NRAS	4893	PAR-CLIP	21572407			
hsa-mir-642b-3p	MIMAT0018444	CDKN1A	1026	PAR-CLIP	26701625			

PGRMC1 silencing we demonstrated that it promotes TNBC cell proliferation through the EGFR/P13K/AKT pathway (33). However, our study also focused on signaling pathways associated with ER-positive breast cancers (33). Here, we mainly focused on TNBCs as alternative mechanisms regulated by PGRMC1 in TNBCs should be further explored. To study and uncover novel mechanisms behind PGRMC1 we performed miRNome profiling following AG-205 treatment and PGRMC1 silencing. Studying the human miRNome enabled us to identify miRNAs that were significantly altered following PGRMC1 signal disruption and silencing. This presents itself as an important way to identify signaling pathways and genes involved within these pathways that could be associated with PGRMC1.

Human miRNome profiling identified alteration of 1,008 miRNAs following AG-205 treatment and 776 miRNAs after PGRMC1 siRNA transfection. Using a variety of gene mining platforms (miRNet, xenobrowser, cbioportal, Reactome, Kaplan-Meier plotter and GeneMANIA) we identified miRNA-mRNA network hubs that are altered when PGRMC1 is impaired. Network analysis by miRNet, an all in one, high-performance, analytics tool was used to predict PGRMC1 altered miRNAs targets (85). miRNet, incorporates data from TarBase, miRTarBase, starBase, Epimir, Pharmacomir, SM2mir, Phenomir, HMD2, miR2Disease, miRanda and miRecords making it a reliable data mining source (86). The top 10 most upregulated and downregulated miRNAs following AG-205 treatment and PGRMC1 silencing were identified. KEGG pathway analysis identified matching enriched pathways between the two treatment groups which included, pathways in cancer, cell cycle and p53 signaling pathway. In addition, TCGA derived gene expression data analysis taken from metastatic tissue identified the 22 most overexpressed genes in response to PGRMC1 signaling inhibition and silencing. Based on the above data, miRNAs that were upregulated following PGRMC1 impairment directly target and have the capability to suppress genes that are overexpressed in TNBC patient samples. However, because of their function we proceeded to study the downregulated miRNAs but considered them to be possible biomarkers. Interestingly, miR-30b, miR-664a-3p and miR-93-3p, miR-224-5p all which were downregulated following PGRMC1 impairment are commonly observed in multiple cancers including ovarian (87), prostate (88), gastric (89) and metastatic breast cancer (90–92). Furthermore, miR-181a-3p, miR-224-5p, miR-345-5p and miR-93-3p act like oncogenes and all have been associated with chemoresistance, migration, metastasis and stemness (87, 88, 91, 93). Based on the available literature disrupting PGRMC1 downregulates miRNAs that display oncogenic potential.

To get a better understanding of the signaling mechanism involved within the upregulated miRNA target genes we employed the Reactome pathway analyzer. This enabled us to study different signaling pathways that are not associated with the KEGG analysis from the miRNet database. We observed the upregulated genes to be involved in cell cycle and signal transduction mechanisms. This agrees with our previous findings of cell cycle involvement;
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID		
hsa-miR-139-5p	MIMAT0000250	BCL2	596	Luciferase reporter assay/qRT-PCR/Western blot	27244080		
hsa-miR-139-5p	MIMAT0000250	FOS	2353	qRT-PCR/Western blot	23001723	27668889	
hsa-miR-139-5p	MIMAT0000250	HRAS	3265	Luciferase reporter assay	24158791		
hsa-miR-139-5p	MIMAT0000250	HSP90AA1	3320	PAR-CLIP	21572407		
hsa-miR-139-5p	MIMAT0000250	IGF1R	3480	Luciferase reporter assay/qRT-PCR/Western blot	2258005	124942287	26097570
hsa-miR-139-5p	MIMAT0000250	JUN	3725	Luciferase reporter assay/qRT-PCR/Western blot	25499265		
hsa-miR-139-5p	MIMAT0000250	MET	4233	Luciferase reporter assay/qRT-PCR/Western blot	26497851		
hsa-miR-139-5p	MIMAT0000250	NFKB1	4790	Luciferase reporter assay	24158791		
hsa-miR-139-5p	MIMAT0000250	PIK3CA	5290	Luciferase reporter assay	24158791		
hsa-miR-139-5p	MIMAT0000250	WNT1	7471	Luciferase reporter assay/Western blot	25529604		
hsa-miR-139-5p	MIMAT0000250	IGF1R	3480	Luciferase reporter assay/qRT-PCR/Western blot	2258005	124942287	26097570
hsa-miR-139-5p	MIMAT0000250	MET	4233	Luciferase reporter assay	26497851		
hsa-miR-139-5p	MIMAT0000250	BCL2	596	Luciferase reporter assay/qRT-PCR/Western blot	27244080		
hsa-miR-139-5p	MIMAT0000250	HRAS	3265	Luciferase reporter assay	24158791		
hsa-miR-139-5p	MIMAT0000250	IGF1R	3480	Luciferase reporter assay/qRT-PCR/Western blot	2258005	124942287	26097570
hsa-miR-139-5p	MIMAT0000250	JUN	3725	Luciferase reporter assay/qRT-PCR/Western blot	25499265		
hsa-miR-139-5p	MIMAT0000250	MET	4233	Luciferase reporter assay/qRT-PCR/Western blot	26497851		
hsa-miR-139-5p	MIMAT0000250	PIK3CA	5290	Luciferase reporter assay	24158791		
hsa-miR-139-5p	MIMAT0000250	RAP1B	5908	PAR-CLIP//qRT-PCR/Western blot	24942287	23592263	
hsa-miR-139-5p	MIMAT0000250	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	BCL2	596	Microarray/qRT-PCR/Western blot	22989374		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	HRAS	3265	Luciferase reporter assay	26037864		
hsa-miR-224-5p	MIMAT0000281	CASP3	836	Luciferase reporter assay/Western blot	20023766	17777217	22989374
hsa-miR-224-5p	MIMAT0000281	CDC42	998	Microarray/qRT-PCR/Western blot	27315344		
hsa-miR-224-5p	MIMAT0000281	MTOR	2475	Luciferase reporter assay/qRT-PCR/Western blot	27315344		
hsa-miR-224-5p	MIMAT0000281	GSK3B	2932	Luciferase reporter assay	25588771		
hsa-miR-224-5p	MIMAT0000281	KRAS	3845	qRT-PCR/Western blot	23667495		
hsa-miR-224-5p	MIMAT0000281	PIK3CA	5290	Luciferase reporter assay	24158791		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
hsa-miR-224-5p	MIMAT0000281	ROCK2	9475	Luciferase reporter assay/qRT-PCR/Western blot	24942287		
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature PubMed ID		
----------	-----------	-------------	-----------	------------	---------------------		
hsa-mir-135a-5p	MMAT0000428	NRF2	4306	Luciferase reporter assay/qRT-PCR	19944075		
hsa-mir-128-3p	MMAT0000424	CASP3	1871	Luciferase reporter assay	18810376	19013014	
hsa-mir-128-3p	MMAT0000424	MTOR	5979	Luciferase reporter assay	22853714		
hsa-mir-128-3p	MMAT0000424	BAX	581	Luciferase reporter assay	23526655		
hsa-mir-128-3p	MMAT0000424	RUNX1	861	Luciferase reporter assay	23313552		
hsa-mir-128-3p	MMAT0000424	PTEN	5728	Luciferase reporter assay	24132591	25250865	
hsa-mir-128-3p	MMAT0000424	PTGS2	5743	Luciferase reporter assay	17612493		
hsa-mir-128-3p	MMAT0000424	MAP2K1	5604	Luciferase reporter assay	20371350		
hsa-mir-128-3p	MMAT0000424	PTEN	5728	Luciferase reporter assay	24132591	25250865	
hsa-mir-128-3p	MMAT0000424	PTGS2	5743	Luciferase reporter assay	17612493		
hsa-mir-128-3p	MMAT0000424	MAP2K1	5604	Luciferase reporter assay	20371350		
hsa-mir-128-3p	MMAT0000424	PTEN	5728	Luciferase reporter assay	24132591	25250865	
hsa-mir-128-3p	MMAT0000424	PTGS2	5743	Luciferase reporter assay	17612493		
hsa-mir-128-3p	MMAT0000424	MAP2K1	5604	Luciferase reporter assay	20371350		

(Continued)
miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature	PubMed ID	
hsa-mir-128-3p	MMAT0000424	EGFR	1956	Western blot	22853714		
hsa-mir-128-3p	MMAT0000424	PIK3R1	5295	Luciferase reporter assay/Microarray/qRT-PCR	27903811		
hsa-mir-128-3p	MMAT0000424	MAP2K1	5604	Sequencing	23313552		
hsa-mir-128-3p	MMAT0000424	SOS1	6654	HITS-CLIP	23313552		
hsa-mir-128-3p	MMAT0000424	MAP2K1	5604	Sequencing	20371350		
hsa-mir-128-3p	MMAT0000424	WASL	8976	PAR-CLIP	23622248		
hsa-mir-128-3p	MMAT0000424	GNG12	55970	PAR-CLIP	24398324	21572407	
hsa-mir-93-3p	MMAT0004509	CDC42	998	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	MAP2K1	5604	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	HSP90AB1	3326	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	LAMA4	3910	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	STAT5B	6777	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	NCOA4	8031	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	CUL2	8453	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	SUFU	51684	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	CYGS	54205	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	FYN	3326	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	ACTB	60	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	FER	87	CLASH	23622248		
hsa-mir-93-3p	MMAT0004509	PARD3	56288	HITS-CLIP	23824327		
hsa-mir-93-3p	MMAT0004509	PPP1R12A	4659	HITS-CLIP	23622248		
hsa-mir-93-3p	MMAT0004509	IRAK1	3654	HITS-CLIP	23622248		
hsa-mir-93-3p	MMAT0004509	EIF4EBP1	1978	HITS-CLIP	23622248		
hsa-mir-93-3p	MMAT0004509	CDKN1A	1026	HITS-CLIP	23622248		
hsa-mir-93-3p	MMAT0004509	XIAP	331	HITS-CLIP/PAR-CLIP	23446384	23824327	
hsa-mir-30b-3p	MMAT0004589	IGF1	3479	HITS-CLIP	23313552		
hsa-mir-30b-3p	MMAT0004589	CDKN1A	1026	HITS-CLIP	23622248		
hsa-mir-30b-3p	MMAT0004589	XIAP	331	HITS-CLIP/PAR-CLIP	23313552		
hsa-mir-30b-3p	MMAT0004589	BCL2L1	598	PAR-CLIP	26701625		
hsa-mir-30b-3p	MMAT0004589	CRKL	1399	HITS-CLIP	23824327		
hsa-mir-30b-3p	MMAT0004589	ITGA3	3675	HITS-CLIP	23701625	23313552	
hsa-mir-30b-3p	MMAT0004589	MDM2	4193	PAR-CLIP	27920225		
hsa-mir-30b-3p	MMAT0004589	PDGFRA	5156	HITS-CLIP/PAR-CLIP	23463848	23313552	
hsa-mir-30b-3p	MMAT0004589	RARA	5914	PAR-CLIP	23592263		
hsa-mir-30b-3p	MMAT0004589	CTNND1	1500	PAR-CLIP	23592263	26701625	
hsa-mir-30b-3p	MMAT0004589	COL5A1	1289	PAR-CLIP	23592263		
hsa-mir-30b-3p	MMAT0004589	ITGB3	3690	HITS-CLIP	23824327		
hsa-mir-30b-3p	MMAT0004589	TNN1	7094	HITS-CLIP	23824327		
hsa-mir-30b-3p	MMAT0004589	YWAH4	7554	PAR-CLIP	23824327		
hsa-mir-30b-3p	MMAT0004589	YWAH4	7554	PAR-CLIP	27920225		
hsa-mir-30b-3p	MMAT0004589	IRAK3	11213	HITS-CLIP/PAR-CLIP	21572407	20371350	23824327

(Continued)
TABLE 4 | Continued

miRNA ID	Accession	Target Gene	Target ID	Experiment	Literature	PubMed ID	
hsa-mir-345-5p	MIMAT0000772	NTRK3	4916	Luciferase reporter assay		19370765	
hsa-mir-4291	MIMAT0016922	CDKN1A	1026	PAR-CLIP		26701625	
hsa-mir-4291	MIMAT0016922	LAMA4	3910	PAR-CLIP		23592263	
hsa-mir-4291	MIMAT0016922	CDK6	1021	PAR-CLIP		23446348[21572407	20371350
hsa-mir-4291	MIMAT0016922	FGF2	2247	PAR-CLIP		23592263[23446348	20371350
hsa-mir-4291	MIMAT0016922	LAMA4	3910	PAR-CLIP		23592263	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	VASP	7408	PAR-CLIP		26701625	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-4291	MIMAT0016922	RAF1	5894	PAR-CLIP		21572407	
hsa-mir-181a-3p	MIMAT0000772	ARHGDIA	396	PAR-CLIP		26701625	

FIGURE 4 | Network analysis identified miRNA target genes to be upregulated in breast cancers following AG-205 treatment. miRNAs target differentially expressed genes miRNA target genes that are upregulated in metastatic breast tumor samples. A Log2 (normalized_counts) expression of upregulated miRNA target genes in metastatic breast tumor samples downloaded from TCGA database. miRNA target genes are involved in term pathways identified by KEGG analysis and are direct targets of the top miRNAs.
Interestingly upregulated genes involved in signal transduction mechanisms could be directly regulated by PGRMC1, as signal transduction mechanisms are known to be directly involved in cellular membranes where PGRMC1 is primarily located (94). To further study the clinical impact of these genes, we studied genetic alterations using OncoPrint. It was particularly interesting to see that only 10 genes displayed significant genetic alteration among the 22 genes that were overexpressed. However, of the ten genes the top two most genetically altered, \textit{CCND1} and \textit{YWHAZ} seemed to be overexpressed due to amplification and had overall lower survival probability. \textit{CCND1} has long been considered an oncogene and has been demonstrated to be amplified in 10-20\% in one study while in another study \textit{CCND1} amplification was seen in 78.6\% of breast cancer cases (95–97). \textit{CCND1} is thought to play a major role in ER-positive but not in ER-negative breast cancers (98). One of the reasons could be because it is a known downstream target of PR that can promote breast cancer cell proliferation (99, 100). One interesting thought could be that in TNBCs that overexpress PGRMC1, it could be enhancing the transcription of \textit{CCND1} even in tumors that lack ER and PR making it a potential target in TNBCs. The \textit{YWHAZ} gene has been described in multiple cancers including non-small lung cancer (101), hepatocellular carcinoma (102), gastric cancer (103), bladder cancer (104), and in breast cancers (105). Overexpression of \textit{YWHAZ} in breast cancers has been associated with chemoresistance to anthracyclines particularly associated with metastatic recurrence (105). This is also extremely interesting as PGRMC1 has been linked to chemoresistance (106) and it would be strongly warranted to further explore the possibility of a PGRMC1/YWHAZ axis in metastatic breast cancers that do not respond to chemotherapy.

CONCLUSION

In summary, our study identified that impairing PGRMC1 can alter miRNAs, specifically hsa-mir-646 that directly targets \textit{CCND1} (107) as well as hsa-mir-410-3p and hsa-mir-3150b-3p.
which target YWHAZ (108–113). Interestingly, both genes were amplified in patients with aggressive TNBCs and patients that express high levels of either gene have lower overall survival probability. Lastly, PGRMC1 impairment downregulates oncogenic miRNAs (miR-30b, miR-664a-3p and miR-93-3p, miR-224-5p, miR-181a-3p and miR-345-5p) in TNBC cells. Therefore, targeting PGRMC1 with AG-205 or a novel compound that can downregulate PGRMC1 expression could

FIGURE 6 | Reactome pathway analysis of the genes identified by KEGG term analysis. (A) Reactome pathways analysis of the miRNA target genes (n = 112) identified following AG-205 treatment illustrates increased pathway involvement. (B) Top pathways involved within the miRNA target genes (n = 84) observed following PGRMC1 silencing were also mapped. Over-represented pathways are highlighted in yellow. All overexpressed pathways are from gene lists of formerly annotated and published signatures.
be potential therapeutic options for TNBC patients that overexpress PGRMC1.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conception and design: RL and DP. Methodology was developed by DP and VR. Data acquisition: DP, MR, and VR. Data was interpreted by RL, DP, MR, VR, RS, and AE. The manuscript was written and/or revised by DP, MR, RS, VM, TG, and RL. This study was supervised by RL. All authors contributed to the article and approved the submitted version.

FUNDING

Breast Cancer Discretionary Fund from Texas Tech University Health Sciences Center El Paso.

ACKNOWLEDGMENTS

We would like to thank Texas Tech University Health Sciences Center El Paso for supporting this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.710337/full#supplementary-material

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. *CA Cancer J Clin* (2020) 70(1):7–30. doi: 10.3322/caac.21590
2. Prat A, Perou CM. Deconstructing the Molecular Portraits of Breast Cancer. *Mol Oncol* (2011) 5(1):5–23. doi: 10.1016/j.molonc.2010.11.003
3. Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular Subtyping of DCIS: Heterogeneity of Breast Cancer Reflected in Pre-Invasive Disease. *Br J Cancer* (2011) 104(1):120–7. doi: 10.1038/sj.bjc.6606021
4. McGuire A, Lowery AJ, Kell MR, Kerin MJ, Sweeney KJ. Locoregional Recurrence Following Breast Cancer Surgery in the Trastuzumab Era: A Systematic Review by Subtype. *Ann Surg Oncol* (2017) 24(11):3124–32. doi: 10.1245/s10434-017-6021-1
5. Cheang MC, Martin M, Nielsen TO, Prat A, Voduc D, Rodriguez-Lescure A, et al. Defining Breast Cancer Intrinsic Subtypes by Quantitative Receptor Expression. *Oncologist* (2015) 20(5):474–82. doi: 10.1634/theoncologist.2014-0372
6. Jhan JR, Andrechek ER. Triple-Negative Breast Cancer and the Potential for Targeted Therapy. *Pharmacogenomics* (2017) 18(17):1595–609. doi: 10.2217/ pgp-2017-0117
16. Sherafatian M. Tree-Based Machine Learning Algorithms Identify Novel Biomarkers for Breast Cancer Diagnosis and Molecular Subtyping. *Int J Exp Pathol* (2016) 97:262–71. doi: 10.1016/j.ijep.2016.03.021

17. Wang C, Liu Y, Cao JM. G Protein-Coupled Receptors: Extracellular Mediators for the non-Genomic Actions of Steroids. *Int J Mol Sci* (2014) 15:1542–25. doi: 10.3390/ijms15091542

18. Zhang Y, Ruan X, Mi X, Mueck AO. Expression of PGRMC1 in Paraffin-Embedded Tissues of Breast Cancer. *Int J Clin Exp Pathol* (2016) 9:4319. doi: 10.18632/ijnm.3953

19. Nandy SB, Subramani R, Lakshmanaswamy R. Classical and Non- Classifying Progesterone Receptor Molecule 1 (PGRMC1) in Cancer Biology. *Frontiers in Oncology* (2021) 11:1183. doi: 10.3389/fonc.2021.67500

20. Pasek S, Gabbio N, Barnai E, Szybka M, Morawiec J, Kolaczkis A, et al. Dysregulation of microRNAs in Triple-Negative Breast Cancer. *Ginekol Pol* (2017) 88:530–6. doi: 10.5603/GP.a2017.0097

21. Yokoi A, Matsuji K, Yoneoka Y, Takahashi K, Shimi H, et al. Integrated Extracellular microRNA Profiling for Ovarian Cancer Screening. *Nat Commun* (2018) 9:4319. doi: 10.1038/s41467-018-06344-4

22. Le Rhun E, Seoane J, Salzet M, Sofic E, Yokoi A, Matsuzaki J, Yamamoto Y, Yoneoka Y, Takahashi K, Shimizu H, et al. Glucose Insult Elicits Hyperactivation of Cancer Stem Cells Through miR-424-cdc42-prdm14 Signalling Axis. *Br J Cancer* (2014) 111(8):1572–80. doi: 10.1038/bjc.2014.454

23. Nandy SB, Subramani R, Arumugam A, Pedroza D, Hernandez K, Saltzstein E, et al. miRNA-based Diagnostic Model Predicts Resectable Lung Cancer in Humans With High Accuracy. *Commun Biol* (2020) 3:134. doi: 10.1038/s42003-020-0863-y

24. Lü L, Mao X, Shi P, He B, Xu K, Zhang S, et al. MicroRNAs in the Prognosis of Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. *Cancer Biol Ther* (2017) 16:7605. doi: 10.1016/j.cbt.2017.09.001

25. Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC, et al. Deregulated miRNAs in Triple-Negative Breast Cancer Revealed by Deep Sequencing. *Mol Cancer* (2015) 14:36. doi: 10.1186/s12943-015-0301-9

26. Le Rhun E, Seoane J, Salzet M, Sofic E, Yokoi A, Matsuzaki J, Yamamoto Y, Yoneoka Y, Takahashi K, Shimizu H, et al. Glucose Insult Elicits Hyperactivation of Cancer Stem Cells Through miR-424-cdc42-prdm14 Signalling Axis. *Br J Cancer* (2014) 111(8):1572–80. doi: 10.1038/bjc.2014.454

27. Nandy SB, Subramani R, Arumugam A, Pedroza D, Hernandez K, Saltzstein E, et al. miRNA-125A Influences Breast Cancer Stem Cells by Targeting Leukemia Inhibitory Factor Receptor Which Regulates the Hippo Signaling Pathway. *OncoTarget* (2015) 6:17366–78. doi: 10.18632/oncotarget.3953

28. Piva R, Spandidos DA, Gambari R. From microRNA Functions to microRNA Therapeutics: Novel Targets and Novel Drugs in Breast Cancer Research and Treatment (Review). *Int J Oncol* (2015) 47(4):1203–10. doi: 10.3892/ijo.2015.3129

29. Ivanov Y, Pleshakova T, Malagkova K, Kurbatov A, Shimi H, et al. Detection of Marker Mirnas, Associated With Prostate Cancer, in Plasma Using SOI-NW Biosensor in Direct and Inversion Modes. *Sensors* (Basel) (2015) 15(3):2325248

30. Blenken C, Michel EA. miRNAs in Cancer: Approaches, Aetiology, Diagnostics and Therapy. *Hum Mol Genet* (2007) 16 Spec No 1:R106–13. doi: 10.1093/hmg/ddm056

31. Van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H, et al. Glucose Insult Elicits Hyperactivation of Cancer Stem Cells Through miR-424-cdc42-prdm14 Signalling Axis. *Br J Cancer* (2017) 117(11):1665–75. doi: 10.1038/bjc.2017.335

32. Sherafatian M. Tree-Based Machine Learning Algorithms Identified Minimal Set of miRNA Biomarkers for Breast Cancer Diagnosis and Molecular Subtyping, *Gene* (2018) 677:111–8. doi: 10.1016/j.gene.2018.07.057

33. Nandy SB, Orosco A, Lopez-Valdez R, Roberts R, Subramani R, Arumugam A, et al. Glucose Insult Elicits Hyperactivation of Cancer Stem Cells Through miR-424-cdc42-prdm14 Signalling Axis. *Br J Cancer* (2017) 117(11):1665–75. doi: 10.1038/bjc.2017.335

34. Blenken C, Michel EA. miRNAs in Cancer: Approaches, Aetiology, Diagnostics and Therapy. *Hum Mol Genet* (2007) 16 Spec No 1:R106–13. doi: 10.1093/hmg/ddm056

35. Piva R, Spandidos DA, Gambari R. From microRNA Functions to microRNA Therapeutics: Novel Targets and Novel Drugs in Breast Cancer Research and Treatment (Review). *Int J Oncol* (2013) 43:985–94. doi: 10.3892/ijo.2013.2059

36. van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H, Van Dam PA, et al. Expression Profiling of Cancerous and Normal Breast Tissues Identifies microRNAs That are Differentially Expressed in Serum From Patients With (Metastatic) Breast Cancer and Healthy Volunteers. *Breast Cancer Res Treat* (2012) 141(3):834. doi: 10.1007/s10549-012-1414-1

37. Van der Auwera I, Yu W, Sano L, Van Neste L, Van Dam P, Van Marck EA, et al. Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination. *PLoS One* (2010) 5(9):e12616. doi: 10.1371/journal.pone.0012616

38. Van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in Breast Cancer and Their Potential Role as Prognostic and Predictive Biomarkers in Patient Management. *Breast Cancer Res Treat* (2015) 151(3):217–21. doi: 10.1007/s10549-015-0526-y

39. Pasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in Regulation of Triple-Negative Breast Cancer Progression. *J Cancer Res Clin Oncol* (2018) 144(3):11–11. doi: 10.1007/s00432-018-2689-2

40. Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC, et al. Deregulated microRNAs in Triple-Negative Breast Cancer Revealed by Deep Sequencing. *Mol Cancer* (2015) 14:36. doi: 10.1186/s12943-015-0301-9
87. Zhao H, Bi T, Qu Z, Jiang J, Cui S, Wang Y. Expression of miR-224-5p is Associated With the Original Capstatin Resistance of Ovarian Papillary Serous Carcinoma. *Nat Struct Mol Biol* (2010) 17(6):659–65. doi: 10.1038/nsmb.1844

88. Ahlin C, Lundgren C, Embrete

89. Wang L, Li B, Zhang L, Li Q, He Z, Zhang X, et al. miR-664a-3p Functions as an Oncogene by Targeting Hippo Pathway in the Development of Gastric Cancer. *Cell Prolif* (2019) 52(3):e12567. doi: 10.1111/cpr.12567

90. Wu L, Li Y, Li M, Darcin. miR-664 Targets Insulin Receptor Substrate 1 to Suppress Cell Proliferation and Invasion in Breast Cancer. *Oncol Res* (2019) 27(4):459–67. doi: 10.3727/096504018x15193500663936

91. Li HY, Liang JL, Kuo YL, Lee HH, Calkins MJ, Chang HT, et al. miR-105-93-3p Promotes Chemoresistance and Circulating miR-105-93-3p Acts as a Diagnostic Biomarker for Triple Negative Breast Cancer. *Breast Cancer Res* (2017) 19(1):133. doi: 10.1186/s13058-019-0118-2

92. Estevão-Pereira H, Lobo J, Salta S, Amorim M, Lopes P, Cantante M, et al. Overexpression of Circulating miR-30b-5p Identifies Advanced Breast Cancer. *J Transl Med* (2019) 17(1):435. doi: 10.1186/s12967-019-02193-y

93. Lu Q, Chen Y, Sun D, Wang S, Ding K, Liu M, et al. MicroRNA-181a Functions as an Oncogene in Gastric Cancer by Targeting Caprin-1. *Front Pharmacol* (2018) 9:1565. doi: 10.3389/fphar.2018.01565

94. Groves JT, Kuijten J. Molecular Mechanisms in Signal Transduction at the Membrane. *J Cell Biochem* in press

95. Gillett C, Fanič V, Smith R, Fisher C, Bartek J, Dickson C, et al. Amplification and Overexpression of Cyclin D1 in Breast Cancer Detected by Immunohistochemical Staining. *Cancer Res* (1994) 54(7):1812–7.

96. Zhang SY, Caamaño J, Cooper F, Guo X, Klein-Szanto A. Immunohistochemistry of Cyclin D1 in Human Breast Cancer. *Am J Clin Pathol* (1994) 102(5):695–8. doi: 10.1093/ajcp/102.5.695

97. Mohammadizadeh F, Hani M, Raane M, Bagheri M. Role of Cyclin D1 in Breast Carcinoma. *J Res Med Sci* (2015) 18(12):1021–5.

98. Ahlin C, Lundgren C, Embrete

99. Giulianelli S, Vaqué JP, Soldati R, Wargon V, Vanzulli SI, Martins R, et al. Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting With Progesterone Receptors at the Cyclin D1/MYC Promoters. *Cancer Res* (2012) 72(9):2416–27. doi: 10.1158/0008-5472.CAN-11-3290

100. Deep CH, Ahrendt H, Lange CA. Progesterone Induces Progesterone Receptor Gene (PGR) Expression Via Rapid Activation of Protein Kinase Pathways Required for Cooperative Estrogen Receptor Alpha (ER) and Progesterone Receptor (PR) Genomic Action at ER/PR Target Genes. *Steroids* (2016) 114:48–58. doi: 10.1016/j.steroids.2016.09.004

101. Deng Y, Zheng J, Ma J. The Clinical and Prognostic Significance of YWHAZ in Non-Small-Cell Lung Cancer Patients: Immunohistochemical Analysis. *J Cell Biochem* (2012) 120(4):6290–8. doi: 10.1002/jcb.27915

102. Zhao JP, Zhao Q, Hu H, Liao JZ, Lin JS, Xia C, et al. The ASH1-miR-375-YWHAZ Signaling Axis Regulates Tumor Properties in Hepatocellular Carcinoma. *Mol Ther Nucleic Acids* (2018) 11:538–53. doi: 10.1016/j.omtn.2018.04.007

103. Guo F, Jiao D, Sui GQ, Sun LN, Gao YJ, Fu QF, et al. Anticancer Effect of YWHAZ Silencing Via Inducing Apoptosis and Autophagy in Gastric Cancer Cells. *Neoplasia* (2018) 20(7):863–70. doi: 10.1016/j.neo.2018.07.003

104. Liu S, Jiang H, Wen H, Ding Q, Feng C. Knockdown of Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Zeta (YWHAZ) Enhances Tumorigenesis Both In Vivo and In Vitro in Bladder Cancer. *Oncol Rep* (2018) 39(5):2127–35. doi: 10.3892/or.2018.6294

105. Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Desmedt C, et al. Amplification of LAPTM4B and YWHAZ Contributes to Chemotherapy Resistance and Recurrence of Breast Cancer. *Nat Med* (2010) 16(2):214–8. doi: 10.1038/nm.2090

106. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiyra U, Harada E, et al. Haem-Dependent Dimerization of PGRMC1/Signa-2 Receptor Facilitates Cancer Proliferation and Chemoresistance. *Nat Commun* (2016) 7:10130. doi: 10.1038/ncomms11030

107. Farazi TA, Ten Hoeve JJ, Brown M, Mihajlovic A, Horlings HML, van de Vijver MJ, et al. Identification of Distinct miRNA Target Regulation Between Breast Cancer Molecular Subtypes Using AGO2-PAR-CLIP and Patient Datasets. *Genome Biol* (2014) 15(1):R9. doi: 10.1186/gb-2014-15-1-r9

108. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a Large Class of Animal RNAs With Regulatory Potency. *Nature* (2013) 495:333–8. doi: 10.1038/nature11928

109. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A Quantitative Analysis of CLIP Methods for Identifying Binding Sites of RNA-binding Proteins. *Nat Methods* (2011) 8(7):559–64. doi: 10.1038/nmeth.1608

110. Hafner M, Landthaler M, Burger L, Khorsid M, Haussler J, Berninger P, et al. Transcriptome-Wide Identification of RNA-binding Protein and microRNA Target Sites by PAR-CLIP. *Cell* (2010) 141(1):129–41. doi: 10.1016/j.cell.2010.03.009

111. Karginov FV, Hannon GJ. Remodeling of Ago2-miRNA Interactions Upon Cellular Stress Reflects miRNA Complementarity and Correlates With Altered Translation Rates. *Genes Dev* (2013) 27(14):1624–32. doi: 10.1101/gad.215939.113

112. Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, et al. Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-regulated microRNA Circuits. *Cell* (2013) 152(1–2):82–96. doi: 10.1016/j.cell.2012.11.045

113. Tang YT, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, et al. PAQR Proteins: A Novel Membrane Receptor Family Defined by an Ancient 7-Transmembrane Pass Motif. *J Mol Evol* (2005) 61(3):372–80. doi: 10.1007/s00239-004-0375-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Pedroza, Ramirez, Rajamanickam, Subramani, Margolis, Garibuz, Estrada and Lakshmanaswamy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.