Full Length Research Paper

Optimization by mixture design of the antimicrobial activities of five selected essential oils

Mikolo Bertin¹*, Moyen Rachel², Baloki Ngoulou Tarcisse² and Nguimbi Etienne²

¹Laboratory of Agroressources Valorization, National Higher Polytechnic School, Marien Ngouabi University, P. O. Box 69 Brazzaville, Republic of Congo.
²Laboratory of Cellular and Molecular Biology, Faculty of Sciences and Techniques, Marien NGOUABI University, P. O. Box 69 Brazzaville, Republic of Congo.

Received 24 July, 2020: Accepted 8 September, 2020

The individual antimicrobial activities of essential oils have been reported by many authors. However, there is little information about the effects of their mixtures in order to maximize their effect and reduce the growing resistance of pathogens to existing medicines. So, the aim of this work is to optimize the antibacterial and antifungal activities of essential oils from Plectranthus glandulosus, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus and Eucalyptus PF1. The mixtures of these essential oils were tested on seven bacterial and one fungal strain by employing the Mueller Hinton disc diffusion method. The diameters of the inhibition zones were measured after 24 h of incubation at 37°C. The results showed significant effects and regressions due to pure and composite mixtures on the response. The highest diameters of 30 and 27 mm were observed respectively with the pure essence of C. citratus on Candida albicans and the composite mixture. The binary mixtures showed more significant effects than the pure ones with the highest positive coefficient of regression 17.20 due to the Plectranthus glandulosus and Eucalyptus PF1 mixture on Pseudomonas aeruginosa. The growth inhibition data fitted the quadratic models for all individual strains except those of Staphylococcus aureus that better fitted the special cubic model. Some regression models of individual and combined microorganism responses have been proposed, as well as optimizations to maximize the inhibition zone diameters.

Key words: Essential oils, mixtures, modeling, optimization, anti-microbial.

INTRODUCTION

The use of plant derivatives to treat diseases is universal and dates back to immemorial times (Van Wyk and Wink, 2018). Plants contain active substances capable of inactivating pathogenic microorganisms and parasites and correcting physiological dysfunctions (Daniel, 2006). They treat cancers (Mukherjee et al., 2001; Cragg and Newman, 2005; Mohan et al., 2013), malaria (Krettli et al., 2001; Andrade-Neto et al., 2003, Negi et al., 2014), influenza (Phillipson and Wright, 1991; Wang et al., 2006; Mukhtar et al., 2008), diarrhea (Barbosa et al., 2007; Dubreuil, 2013) and many other diseases that rage around the world. All the underground and above ground parts of fresh or dried plants as well as sap are used in various forms, most often as a decoction or infusion.
in water or alcoholic beverage, sometimes in powder form. Plant products are ingested, inhaled or applied to the skin.

Research has allowed identifying numerous bioactive plants molecules, some of which are isolated and consumed directly as drugs and others serve as models for the synthesis of more active and inexpensive analogs (Dewick, 2002; Evidente and Kornienko, 2009; Roleira et al., 2018).

Among these plants are aromatic plants that produce essential oils, many of these plants belong to the families of Lamiaceae, Graminae and Myrtaceae. The essential oils produced by these plants are used in perfumery, cosmetics, phytopharmacy and medicine. Research has revealed the antimicrobial activities of essential oils (Seow et al., 2014). This is the case for oils of the genera Cymbopogon (Gonçalves et al., 2010; Hindumathy, 2011; Nyarko et al., 2012; Falcao et al., 2012; Gharbia et al., 2015; Singh et al., 2016: Abu; Kačániová et al., 2017; Nyamath and Karthikeyan, 2018), Ocimum (Nakamura et al., 1999; Iwalokun et al., 2001; Adebolu and Oladimeji, 2005; Junaid et al., 2006; Ait Ouazouzou et al., 2011; Aneke et al., 2019) and Eucalyptus (Damjanović-Vratnica et al., 2011). The reviews of these medicinal plant uses and antimicrobial activities can be found in Lukhoba et al. (2006); Prabhu et al. (2009); Manvitha and Bidya (2014) and Paton et al. (2018).

The microorganisms’ strains that are the subject of this study are responsible for toxic infections which can cause death in individuals of all ages (Morrison and Wenzel, 1984; Cross, 1985; Griffin and Tauxe, 1991; Kotiranta et al., 2000; Mavor et al., 2005; Skippen et al., 2006). These microorganisms, like other pathogens, develop resistance to existing drugs. This constitutes a risk with sometimes fatal consequences for patients in addition to unnecessary financial expenses. One way to overcome this obstacle is to design remedies that integrate active principles with complementary mechanisms. To this end, mixture design can help optimize the efficacy of these products. The aim of this work was to check whether there are significant interactions between essential oils from Plethranthus glandulosus, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus and Eucalyptus PF1 to improve their antimicrobial activity.

MATERIALS AND METHODS

Essential oils extraction

The leaves of P. glandulosus, O. gratissimum, C. citratus, C. nardus were harvested in May 2019 in an experimental culture carried out in Douakani village. The specimens of this plant were identified at the National Herbarium, in Brazzaville. The Eucalyptus PF1 leaves were provided by the National Reforestation Service (SNR) based in Dolisie between January and February 2019. The specimens were identified by the engineers in this service. Eucalyptus PF1 is a natural hybrid between E. urophylla and two or three individuals of Eucalyptus alba (mother tree) and one group of poorly identified hybrid Eucalyptus (parent trees) that come from a Brazilian arboretum.

The essential oils were extracted by hydro-distillation using a man-made distiller. Three kilograms of dried leaves of P. glandulosus, O. gratissimum, C. citratus, C. nardus and Eucalyptus PF1 were placed in a 10 l boiler and water was added to 2/3 of the boiler that was then heated to boiling with firewood. Running water from a waterfall was used to cool water and oil vapors. Water was eliminated from the resulting two-phase liquid mixture by opening the tap of the separator funnel. The essential oil was then collected in a shade bottle, mixed with anhydrous sodium sulphate and stored at 4°C until required.

Mixtures design

The experiment was carried out in 3 replicates by applying a mixture design of experiment of extreme peaks of degree 1, with 5 components corresponding to the essential oils of P. glandulosus (X1), O. gratissimum (X2), C. nardus (X3), C. citratus (X4) and Eucalyptus PF1 (X5). The inferior and superior levels of the oil proportions have been fixed at 0 and 2.5 respectively, with a unique total of 2.5 ml. The plan was increased with the central point and the points on the axes and designed using Minitab 3.17.1. The mixtures were prepared in 5 ml shaded flasks. The matrix of this experiment is shown in Table 1.

Strains identification

Different selective culture media were used for the isolation and identification of the strains: 1) Salmonella-Shigella Agar (Bio RAD) for isolation of bacteria of the genus Salmonella whose colonies are black-centered (H2S+) and lactose-positive and the genus Shigella whose colonies were colorless (H2S−) and lactose-negative; 2) Cetrimide Agar (Bio RAD) for Pseudomonas aeruginosa, 3) Mannitol Salt Agar (Bio RAD) for isolation of bacteria of the genus Staphylococcus including mannitol positive Staphylococcus aureus, 4) Mossel Agar medium for Bacillus: 5) Sabouraud chloramphenicol (Bio RAD) for Candida albicans and 6) Methylene Blue Eosin Agar (Bio RAD) for the isolation of enterobacteria in which the major species is Escherichia coli that is characterized by a metallic sheen. Strains of Klebsiella spp and E. coli were identified by the Enterobacteri Sytem gallery.

Anti-microbial test

Microbial strain cultures

The strains were used isolated from the household wastewaters in Brazzaville neighborhoods. They were stored at 4°C in cryotubes containing Luria Bertani (LB) broth added with 20% glycerol. These strains were composed of: Klebsiella spp (K), P. aeruginosa (Pa), P. aeruginosain_1 (Pa_1), E. coli (Ec), Bacillus subtilis (Bs), Salmonella spp (Sal), S. aureus (Sa) and C. albicans (Ca). These strains were sub-cultured onto PCA agar to obtain a young culture (Mabika et al., 2020).

Essential oils antimicrobial activity evidence

Antimicrobial activity was assessed by the Mueller Hinton diffusion method (Prats et al., 2000; Matasyoh et al., 2007). An inoculum containing the strain to be tested was prepared from a pure and young colony. Its optical density was adjusted to 0.1 at a wavelength of 625 nm with a spectrophotometer which is equivalent to the cell density of 0.5 (Mac Farland No 0.5) (Boukhatem, 2013). The inhibition test was performed in Petri dish containing solid and sterile Mossel agar (Bin RAD) medium for the growth of Bacillus, Mueller-Hinton agar (MHA) medium for the other bacteria, and Sabouraud dextrose agar (SDA) for fungi, previously inoculated with 0.1 ml of microbial suspension. Using forceps, the oil-soaked
The mixture design of experiment matrix for one replicate (treatments in standard order).

Mixture	X1	X2	X3	X4	X5
E1	2.50	0.00	0.00	0.00	0.00
E2	0.00	2.50	0.00	0.00	0.00
E3	0.00	0.00	2.50	0.00	0.00
E4	0.00	0.00	0.00	2.50	0.00
E5	0.00	0.00	0.00	0.00	2.50
E6	1.50	0.25	0.25	0.25	0.25
E7	0.25	1.50	0.25	0.25	0.25
E8	0.25	0.25	1.50	0.25	0.25
E9	0.25	0.25	0.25	1.50	0.25
E10	1.50	0.25	0.25	0.25	1.50
E11	0.50	0.50	0.50	0.50	0.50

Wattman paper discs were placed on the medium. After 24 h of incubation at 37°C, the diameters of the observable zone of inhibition were measured.

Data analysis

Details of statistical methods used for data processing were found in Box and Draper (2007) and ReliaSoft (2015). The computing was done using the Minitab 3.17.1 software. The null hypotheses of equality of the means were tested by the analysis of variance (ANOVA) and the P-values at the significant level α of 0.05. The null hypothesis was rejected for a P-value<0.05. The P-value was used in order to know if the test statistic was just into the critical region or was far out into the region.

The data shown in Tables 3 to 6 result from the ANOVA test of the inhibition zone diameters of the raw data from Table 2 followed by a two by two comparison test of Tukey. The aim was to know if there were significant differences from the diameter means due to the mixtures, on one side, and to the strains on the other side. Tables 7 and 8 show the results of ANOVA used in order to assess the main effects and interactions of the mixtures as well as the regressions of the inhibition diameters as a function of the essential oil proportions for each of the strains. The issue was to test whether the coefficients were equal to 0 or not. So, some statistics such as the coefficients of regression and determination were calculated to estimate and validate the models. For this purpose, the diameters were transformed into natural logarithms (ln) in order to obtain the highest coefficient of determination values (R^2), as well as knowing that inhibiting the growth of microorganisms involves biochemical processes that generally follow logarithmic distributions. These results allowed us to suggest the models showed below. The combined and individual optimizations were carried out by selecting the response variables to be optimized. The goal was to maximize the response; the lower level and the target being fixed respectively at $\ln(Y) = 2.7$ ($Y = 14.88$ mm) and $\ln(Y) = 3$ ($Y = 20.08$ mm). Results showed in Table 9 were calculated automatically using the Minitab software.

RESULTS

Inhibition of the pathogens studied as a function of the mixtures

The inhibition zone diameters of the eight pathogen strains by essential oils are shown in Table 2. The maximum means from 25 to 29 mm were reached with the mixtures E4, E6, E8, E9 and E10 on P. aeruginosa_1 and C. albicans. According to the results of the analysis of variance, Table 3 ($P = 0.000$), there was at least one significant difference between the means at the significance level of alpha equal to 5%. The results of Tukey's two-by-two comparisons of the inhibition diameters (Table 4) classify the diameters obtained in three groups, A, B and C. The E6 and E10 mixtures yielded means of 14.46 and 14.83 mm, respectively higher than the others.

Studied strains sensitivity

In the ANOVA table (Table 5), the p-value (0.000) for strain indicates that at the 5% significance level, not all means are equal. Tukey's test provides grouping information and two sets of confidence intervals with multiple comparisons. The grouping table (Table 6) shows that group A includes the most sensitive strains overall, namely: P. aeruginosa_1, C. albicans and Bacillus subtilis while group B contains the less susceptible strains: E. coli, Salmonella, P. aeruginosa S. aureus and Klebsiella spp.

Modeling inhibition zone diameters

The estimates of the regression coefficients are shown in Table 7. They explain how well some mixtures have significant effects on the microorganism growth inhibition. The positive coefficients obtained from binary mixtures mean that the two components act in synergy or are complementary (Table 8). In other words, the inhibition zone diameter is greater than that obtained by calculating the mean of each pure mixture diameters. The synergism
Table 2. Diameters of the inhibition zones of 8 strains of pathogens in mm per mixture of essential oils (E1 to E11).

Strains	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11
Kl	10.0 ±0.5	8.7 ±0.3	10.3 ±0.3	6.3 ±0.3	11.3 ±0.3	6.0 ±0.0	6.0 ±0.0	6.7 ±0.3	8.3 ±0.3	11.0 ±0.6	7.0 ±0.6
Sa	11.0 ±0.6	7.0 ±0.6	11.0 ±0.6	7.3 ±0.3	7.3 ±0.6	7.7 ±0.3	8.3 ±0.7	6.0 ±0.0	10 ±0.6	7.3 ±0.3	10.7 ±0.3
Sal	14.7 ±0.3	6.0 ±0.0	7.3 ±0.3	12.3 ±0.9	11.7 ±0.3	10.7 ±0.3	6.7 ±0.3	6.7 ±0.3	8.0 ±0.6	10.0 ±0.6	9.3 ±0.3
Pa	9.3 ±0.3	6.7 ±0.3	6.7 ±0.3	13.3 ±0.8	6.0 ±0.0	11.7 ±0.9	9.3 ±0.3	9.0 ±0.6	6.3 ±0.3	6.7 ±0.3	8.0 ±0.6
Pa_1	19.3 ±0.3	9.0 ±0.6	21.3 ±0.8	22.7 ±0.9	6.0 ±0.0	22.3 ±0.3	15.7 ±0.3	25.0 ±0.6	25.0 ±0.6	26.0 ±0.6	21.7 ±3
Bs	17.3 ±1.4	15.3 ±0.3	15.0 ±0.6	11.0 ±0.6	11.3 ±0.8	20.3 ±0.3	10.7 ±0.3	21.0 ±0.6	21.0 ±0.6	21.7 ±0.3	19.7 ±0.3
Ec	16.0 ±0.6	6.0 ±0.0	13.0 ±0.6	13.7 ±0.9	6.3 ±0.3	12.3 ±0.9	6.7 ±0.3	10.0 ±0.6	11.3 ±0.9	10.7 ±0.3	11.3 ±0.3
Ca	6.0 ±0.0	13.7 ±0.3	24.0 ±0.6	29.6 ±0.6	6.0 ±0.0	26.0 ±0.6	18.3 ±0.3	21.0 ±0.6	21.0 ±0.6	25.3 ±0.9	18.3 ±0.3

Table 3. Analysis of variance for E1; E2; E3; E4; E5; E6; E7; E8; E9; E10; E11.

Source	DF	SS	MS	F	P-Value
Mixture	10	1279	127.92	3.57	0.000
Error	253	9076	35.87		
Total	263	10355			

Table 4. Grouping information using Tukey's method and 95% confidence level for essential oils.

Factor	N	Means	Group
E10	24	14.83	A
E6	24	14.63	A
E4	24	14.46	A, B
E9	24	13.88	A, B
E3	24	13.58	A, B, C
E11	24	13.25	A, B, C
E8	24	13.17	A, B, C
E1	24	12.958	A, B, C
E7	24	10.208	A, B, C
E2	24	9.042	B, C
E5	24	8.250	C

Means not sharing any letters are significantly different.
Table 5. Analysis of variance for the strains.

Source	DF	SS	MS	F	P-value
Strain	7	27.92	3.9884	32.81	0.000
Error	256	31.12	0.1215		
Total	263	590.4			

Table 6. Grouping information using Tukey's method and 95% confidence level for strains.

Factor	N	Means	Group
*Pseudomonas aeruginosa*_1	33	19.00	A
Candida albicans	33	18.70	A
Bacillus subtilis	33	16.73	B
Escherichia coli	33	10.58	B
Salmonella spp	33	9.36	B
Pseudomonas aeruginosa	33	9.364	B
Staphylococcus aureus	33	8.394	B
Klebsiella spp	33	8.273	B

Table 7. Estimates of regression coefficients (component proportion).

Terms	*Klebsiella spp*	S. aureus	*Salmonella spp*	*P. aeruginosa*	*P. aeruginosa* _1_	B. subtilis and	E. coli	C. albicans								
	Coeff	P														
X1	2.302	2.40	2.680	2.24	2.97	2.85	2.819	1.810								
X2	2.157	1.94	1.786	2.03	2.20	2.73	1.785	2.633								
X3	2.266	2.26	1.934	1.90	2.88	2.69	2.396	3.030								
X4	1.842	1.98	2.457	2.55	3.13	2.40	2.604	3.385								
X5	2.426	1.98	2.450	1.80	1.80	2.42	1.837	1.810								
X1*X2	-7.383	0.000	-6.36	0.009	2.446	0.066	8.58	0.000	-10.23	0.000	-14.13	0.000	-4.478	0.006	2.430	0.286
X1*X3	-6.423	0.000	-16.01	0.000	0.974	0.449	9.15	0.000	-7.64	0.000	-0.13	0.878	-2.490	0.104	1.61	0.607
X1*X4	3.379	0.000	6.25	0.000	-4.374	0.001	-10.05	0.000	3.14	0.007	8.73	0.000	-0.234	0.855	-3.057	0.125
X1*X5	2.671	0.001	0.20	0.891	0.198	0.858	-1.46	0.199	17.20	0.000	9.10	0.000	6.327	0.000	16.437	0.000
X2*X3	1.075	0.145	-3.42	0.135	-3.701	0.004	-5.67	0.000	13.29	0.000	5.96	0.000	1.888	0.179	-0.670	0.749
X1*X2*X3	128	0.000														
of the mixture $X_1^*X_5$ is the most important on 4 out of 8 strains (B. subtilis, E. coli P. aeruginosa _1 and C. albicans). Negative coefficients mean that the two components are antagonistic. Thus, the mean of the inhibition zone diameter is less than the one obtained by calculating the mean of each pure mixture diameters. This was observed particularly for interactions $X_1^*X_2$ and $X_1^*X_3$ on 5 out of 8 strains followed by $X_1^*X_4$. The mixtures $X_1^*X_2$, $X_1^*X_3$, $X_1^*X_4$, $X_1^*X_5$ and, X_2X_3 are the only mixtures with two components and $X_1^*X_2^*X_5$ with three components giving significant results ($p <0.05$). The following terms could not be estimated; they were deleted: $X_2^*X_4$, X_2A_5, $X_3^*X_4$, $X_3^*X_5$ and $X_4^*X_5$.

Values of $p <0.05$ were obtained for the special cubic regression model for S. aureus and quadratic for the other seven strains of pathogens, indicating that the models estimated by the regression procedure are significant at the 0.05 alpha level. This means that at least one coefficient is different from zero. The importance of the coefficients in the five pure mixtures indicates that the essential oils of P. glandulosus (1.810-2.970), O. gratissimum (1.785-2.633), C. nardus (1.900-3.030), C. citratus (1.842-3.385) and of Eucalyptus PF1 (1.842-3.385) give significant inhibition zone diameters (Table 7).

The R^2 values in Table 8 indicate that the predictors explain 79.51 to 95.10% of the variance in the diameter of the inhibition zone; those of R^2 (prev) from 64.64 to 89.09% indicate that the quadratic regression models predict correctly the responses of the new observations for all the strains, except for the special cubic regression of the data obtained with S. aureus that gave a slightly lower value of R^2 (prev) equal to 53.8 %. The R^2 (fitted) values varying between 70.19 and 92.51%, showing that the theoretical data actually fit the models. All the quadratic models are written as:

$$
\beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_1 X_2 + \beta_7 X_1 X_3 + \\
\beta_8 X_1 X_4 + \beta_9 X_2 X_3 + \beta_{10} X_2 X_4 + \beta_{11} X_2 X_5 + \beta_{12} X_3 X_4 + \beta_{13} X_3 X_5 + \\
\beta_{14} X_4 X_5
$$

For example, using the coefficients of the terms shown in Table 8, the quadratic regression model equation for the diameter of the Klebsiella inhibition zone is:

$$
Y = \ln (d) = 0.92X_1 + 0.86X_2 + 0.91X_3 + 0.74X_4 + 0.97A_5 - \\
1.21X_1X_2 - 1.055X_1X_3 + 0.53X_1X_4 + 0.48X_1X_5 + 0.19X_2X_3
$$

where d is the diameter in mm.

Inhibition zone diameters optimization

The combined optimizations allowed examining the combinations of essential oil proportions that simultaneously optimize multiple responses to meet the requirements for all responses in the set, with the individual and composite desirabilities (d) of the response variables equal to 1.0. To simultaneously inhibit P. aeruginosa _1, B. subtilis and C. albicans, a combination of $X_1 (1.22 \text{ ml})$, $X_2 (0 \text{ ml})$, $X_3 (0 \text{ ml})$, $X_4 (0 \text{ ml})$ and $X_5 (1.24 \text{ ml})$, yields the following responses: 6.7115 (821.80 mm) for P. aeruginosa _1, 4.9116 (135.86 mm) for B. subtilis and 5.9191 (372.08 mm). A combination of $X_1 (1.6162 \text{ ml})$, $X_2 (0.2946 \text{ ml})$, $X_3 (0 \text{ ml})$, $X_4 (0.2503 \text{ ml})$ and $X_5 (0.33389 \text{ ml})$ provides the following responses for Klebsiella spp: 2, 1601 (8.7 mm), Salmonella spp: 2.4531 (11.6 mm), P. aeruginosa: 2.0250 (7.6 mm), P. aeruginosa _1: 3.6168 (37.2 mm), B. subtilis: 3.0176 (20.4 mm), C. albicans: 3.4926 (32.87 mm) and S. aureus: 2.1819 (8.86 mm). The optimizations of the individual responses are shown in Table 9. It is observed that the binary mixtures make it possible to obtain inhibition diameters of the germs studied from 19 to 410 mm. That is, the growth of certain strains such as P. aeruginosa _1, B. subtilis and C. albicans should be completely inhibited.

DISCUSSION

It appears from this work that some pure and composite mixtures of tested essential oils are capable of inhibiting the growth of the microbial strains studied. This is justified by the average inhibition zone diameters observed ranging from 10 to 19 mm. The maximums diameters up to 30 mm were reached with the essential oils of C. nardus and C. citratus on Candida albicans. There were significant differences between the means of the inhibition zone diameters for the mixtures and the strains. The mean highest diameter of inhibition zone was given by the mixtures and E10. There was also significant difference in the sensitivity of the strains to essential oils. Three strains were more sensitive namely: P. aeruginosa _1, B. subtilis and C. albicans; the others being less sensitive. These diameters of inhibition are close to those reported by Leopold et al. (2002) and Naik et al. (2010) and Leopold et al. (2002). However, Kon and Rai (2012) obtained the inhibition zone diameter reaching 64 mm with Cinnamomum zeylonicum essential oil.

The results of the regression analyses showed that the effects of certain essential oil mixtures were significant. Some synergistic and antagonistic effects were observed. The inhibition was greater with binary mixtures which showed the highest regression coefficients. The $X_1^*X_5$ combination of P. glandulosus and Eucalyptus PF1 gave coefficients of 17.20 and 16.43 mm on P. aeruginosa _1 and C. albicans, respectively, showing the existence of a synergistic or additive effect. This mixture is therefore justified by the average inhibition zone diameters up to 30 mm. It is observed that the active ingredient will probably be diluted with the growth of other strains. This was observed particularly for interactions $X_1^*X_2$ and $X_1^*X_3$ on 5 out of 8 strains followed by $X_1^*X_4$. The mixtures $X_1^*X_2$, $X_1^*X_3$, $X_1^*X_4$, $X_1^*X_5$ and, X_2X_3 are the only mixtures with two components and $X_1^*X_2^*X_5$ with three components giving significant results ($p <0.05$). The following terms could not be estimated; they were deleted: $X_2^*X_4$, X_2A_5, $X_3^*X_4$, $X_3^*X_5$ and $X_4^*X_5$.

Values of $p <0.05$ were obtained for the special cubic regression model for S. aureus and quadratic for the other seven strains of pathogens, indicating that the models estimated by the regression procedure are significant at the 0.05 alpha level. This means that at least one coefficient is different from zero. The importance of the coefficients in the five pure mixtures indicates that the essential oils of P. glandulosus (1.810-2.970), O. gratissimum (1.785-2.633), C. nardus (1.900-3.030), C. citratus (1.842-3.385) and of Eucalyptus PF1 (1.842-3.385) give significant inhibition zone diameters (Table 7).

The R^2 values in Table 8 indicate that the predictors explain 79.51 to 95.10% of the variance in the diameter of the inhibition zone; those of R^2 (prev) from 64.64 to 89.09% indicate that the quadratic regression models predict correctly the responses of the new observations for all the strains, except for the special cubic regression of the data obtained with S. aureus that gave a slightly lower value of R^2 (prev) equal to 53.8 %. The R^2 (fitted) values varying between 70.19 and 92.51%, showing that the theoretical data actually fit the models. All the quadratic models are written as:

$$
\beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_1 X_2 + \beta_7 X_1 X_3 + \\
\beta_8 X_1 X_4 + \beta_9 X_2 X_3 + \beta_{10} X_2 X_4 + \beta_{11} X_2 X_5 + \beta_{12} X_3 X_4 + \beta_{13} X_3 X_5 + \\
\beta_{14} X_4 X_5
$$

For example, using the coefficients of the terms shown in Table 8, the quadratic regression model equation for the diameter of the Klebsiella inhibition zone is:

$$
Y = \ln (d) = 0.92X_1 + 0.86X_2 + 0.91X_3 + 0.74X_4 + 0.97A_5 - \\
1.21X_1X_2 - 1.055X_1X_3 + 0.53X_1X_4 + 0.48X_1X_5 + 0.19X_2X_3
$$

where d is the diameter in mm.
synergistic effect of binary essential oil mixtures was reported by Quedrhi et al. (2016) on *B. subtilis* and *S. aureus*, Fadil et al. (2018) on *Salmonella typhimurium*, Falleh et al. (2019) on *Escherichia coli*. The synergism of antibacterial activities of essential crude oils or their compounds was also reported by authors such as Wang et al. (2006), Bassolé and Juliani (2012), Zengin and Baysal (2014), Semeniuc et al. (2017) and Gadisa et al. (2019). A single ternary mixture gave significant results on *S. aureus*. Most of the available reports deal with binary mixtures. The authors reporting results of the tests of more than two component mixtures like Baj et al. (2018) are rare.

The most antagonistic effect was observed on the X1*X3 mixture composed of *P. glandulosus* and *C. nardus* on *S. aureus*, giving a regression coefficient of -16.01. The combinations X1*X2, X1*X3 and X1*X4 that showed antagonistic effects on 4-5 strains out of 8 should be avoided for inhibiting most of the microorganisms studied. What is important in these results is not the size of the inhibition zone diameter, but the regression coefficient and the degree of correlation between the input variables and the responses allowed to explain the variability of the response and to predict responses of untested factor levels. In fact, the size of the inhibition diameter depends both on the concentration of the active principle in the ingredient and on its efficacy. However, the degree of correlation between the variable and the response depends on the effectiveness of the growth inhibition. Thus, an essential oil that will give higher coefficients and values of R^2 will probably contain the most effective molecule to

Table 8. Estimates of regression coefficients (component quantity)

| Strains | Model | P value | R^2 (%) | R^2 (prev) | R^2 (adjust) | X1 | X2 | X3 | X4 | X5 | X1X2 | X1X3 | X1X4 | X1X5 | X2X3 | X1X2X3 |
|-----------------|--------|---------|---------|------------|--------------|-----|----|----|----|----|------|------|------|------|------|------|--------|
| *Klebsiella sp* | Quadratic | 0.000 | 94.61 | 88.17 | 92.51 | 0.92| 0.86| 0.91| 0.74| 0.97| -1.21| -1.05| 0.53 | 0.48 | 0.19 |
| *Salmonella spp*| Quadratic | 0.006 | 91.05 | 82.57 | 87.55 | 1.07| 0.71| 0.77| 1.00| 0.98| 0.41 | 0.18 | -0.74| 0.06 | -0.58 |
| *P. aeruginosa* | Quadratic | 0.000 | 89.50 | 78.65 | 85.39 | 0.89| 0.81| 0.76| 1.04| 0.72| 1.32 | 1.41 | -1.66| -0.22| -0.84 |
| *P. aeruginosa* | Quadratic | 0.000 | 89.77 | 78.21 | 85.76 | 1.19| 0.88| 1.09| 1.25| 0.72| -1.77 | -1.10 | 0.51 | 2.76 | 2.27 |
| *B. subtilis* | Quadratic | 0.000 | 95.10 | 89.21 | 93.19 | 1.14| 1.09| 1.07| 0.96| 0.97| -2.26 | -0.02 | 1.40 | 1.46 | 0.95 |
| *E. coli* | Quadratic | 0.000 | 83.75 | 64.64 | 77.40 | 1.14| 0.71| 0.92| 1.04| 0.73| -0.8 | -0.32 | -0.03| 1.02 | 0.39 |
| *C. albicans* | Quadratic | 0.000 | 93.91 | 89.09 | 91.53 | 0.72| 1.05| 1.21| 1.35| 0.72| 0.39 | 0.19 | -0.49| 2.63 | -0.11 |
| *S. aureus* | Cubic spécial | 0.000 | 79.51 | 53.89 | 70.19 | 0.96| 0.78| 0.9 | 0.8 | 0.79| -1.02 | -2.56 | 1.00 | 0.03 | -0.55 | 8.22 |

Table 9. Results of the individual optimizations of the responses for each of the germ strains

Strains	X1	X2	X3	X4	X5	Diameter (mm)	Desirability
Klebsiella sp	1.19	0.00	0.00	0.00	1.31	22.66	1.00
S. aureus	0.72	0.98	0.80	0.00	0.00	65.90	1.00
Salmonella spp	1.68	0.82	0.00	0.00	0.00	19.10	0.83
P. aeruginosa	1.29	0.00	1.21	0.00	0.00	71.74	1.00
P. aeruginosa	0.00	1.21	1.29	0.00	0.00	410.51	1.00
B. subtilis	1.31	0.00	0.00	0.00	1.19	136.26	1.00
E. coli	1.45	0.00	0.00	0.00	1.05	53.02	1.00
C. albicans	1.25	0.00	0.00	0.00	1.25	372.22	1.00
inhibit the growth of the tested germ even if the diameters values are low.

The tests of the regression validation led to select the quadratic model for all the strains except one, *S. aureus*, the data of which better fitted the special cubic model. Optimization was done to maximize the diameter of individual or group of germs. Individual or combined optimizations yielded combinations of essential oils that would significantly inhibit the growth of the tested strains. The combination of essential oils of *P. glandulosus* and *Eucalyptus PF1* was the one that gave the best results on *P. aeruginosa_1*, *B. subtilis* and *C. albicans*. Forecast diameters of the order of 400 mm simply mean that microorganisms can be completely inhibited, depending on the proportion and diffusivity of the ingredient.

Conclusion

The blending design allowed 88 combinations of essential oils and microbial strains to be tested in one experiment. Statistical analyses of the obtained results made it possible to identify both the most effective combinations of essential oils and the most sensitive microbial strains. It should be noted, as revealed by other authors, that it is the binary mixtures that indicate the most important positive and negative interactions. The most significant positive and negative interactions were observed respectively with the combinations, X1*X5 (P. glandulosus + Eucalyptus PF1) and X1*X2 (P. glandulosus and *O. gratissimum*).

Analyses of the obtained data allowed the selection of the mathematical models best adapted to the variation of the diameter of the inhibition zones of the microbial strains according to the proportions of essential oils in the mixtures. Data from all strains were more suitable for quadratic regression except for *Staphylococcus* that was better adapted to the special cubic model. This led to optimizations of the individual and combined responses of the essential oils to obtain the proportions of essential oils that would maximize the growth inhibition diameters of the microbial strains. Finally, this is the first time that the antimicrobial activity of the essential oil of the PF1 clone of Eucalyptus has been demonstrated.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Abu-Gharbia MA, Agban MN, El-Ghadban EA, Abdelmasieh RZ (2015). Antibacterial activity of *Cymbopogon citratus* and *Rosmarinus officinalis* essential oil against carbapenem resistant *Klebsiella pneumonia* strains (as nosocomial pathogen) isolated from intensive care units of two hospitals. Global Advanced Research Journal of Medicine and Medical Science 4(1):947-950.

Adebolu TT, Oladimeji SA (2005). Antimicrobial activity of leaf extracts of *Ocimum gratissimum* on selected diarrhoea causing bacteria in southwestern Nigeria. African Journal of Biotechnology 4(7):682-684.

Ait-Ouazzou A, Lorán S Bakalli M, Laglaoui A, Rotà C, Herrera A, Conchello P (2011). Chemical composition and antimicrobial activity of essential oils of *Thymus algeriensis*. *Eucalyptus globulus* and *Rosmarinus officinalis* from Morocco. Journal of the Science of Food and Agriculture 91(14):2643-2651.

Andrade-Neto VF, Brandão MGL, Stehmann, JR Oliveira LA, Krettli AU (2003). Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. Journal of Ethnopharmacology 87(2-3):253-256.

Ankele CI, Nwogugwucc CU, Ugocohuku ICI, Chah KF (2019). Antifungal activity of ethanolic extracts of *Ocimum gratissimum* and *Vernonia amygdalina* leaves against dermatomycotic agents isolated from domestic animals in South Eastern Nigeria. Comparative Clinical Pathology 28(6):1791-1795.

Bai T, Baryluk A and Sieniawaska E (2018). Application of mixture design for optimum antioxidant activity of essential oils from *Ocimum basilicum L.*, *Origanum majorana L.* and *Rosmarinus officinalis* L. Industrial Crops and Products 115:52-61.

Barbosa E, Calzada F and Campos R (2007). In vivo antiardiarial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diabetes. Journal of Ethnopharmacology 109(3):552-554.

Bassolé IHN, Juliani HR (2012). Essential oils in combination and their antimicrobial properties. Molecules 17(4):3989-4006.

Boukhatem L (2013). Etude de la sensibilité aux antibiotiques des bacilles Gram négatif non fermentateur isolées au n* du service de réanimation du CHU de Tiemen. Master thesis, Aboubakr Belkaid University of Tiemen.

Box GEP, Draper NR (2007). Response Surfaces, Mixtures, and Ridge Analyses. 2nd Edition. John Wiley & Sons, Inc.:857p.

Cragg GM, Newman DJ (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology 100(1-2):72-79.

Cross AS (1985). Evolving epidemiology of *Pseudomonas aeruginosa* infections. European Journal of Clinical Microbiology 4(2):156-159.

Damjanovic-Vratinica B, Đakov T, Šuković D, Damjanovic J (2011). Antimicrobial effect of essential oil isolated from *Eucalyptus globulus* Labill. from Montenegro. Czech Journal of Food Sciences 29(3):277-284.

Daniel M (2006). Medicinal plants: chemistry and properties. CRC Press, 266p.

Dewick PM (2002). Medicinal natural products:a biosynthetic approach, 3rd Edition. John Wiley and Sons, 550p.

Dubreuil JD (2013). Antibacterial and antidiarrheal activities of plant products against enterotoxinogenic *Escherichia coli*. Toxins 5(11):2009-2041.

Evidente A, Kornienko A (2009). Anticaner evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives. Phytochemistry Reviews 8(2):449-459.

Fadil M, Fikri-Benbrahim K, Rachiq S, Ihsane B, Lebrazi S, Chralbi M and Farah A (2018). Combined treatment of *Thymus vulgaris* L., *Rosmarinus officinalis* L. and *Myrtus communis* L. essential oils against *Salmonella typhimurium* Optimization of antibacterial activity by mixture design methodology. European Journal of Pharmaceutics and Biopharmaceutics 126:211-220.

Falcao MA, Fianco AL, Lucas AM, Pereira MA, Torres FC, Vargas RM, Cassel E (2012). Determination of antibacterial activity of vacuum distillation fractions of lemongrass essential oil. Phytochemistry Reviews 11(4):405-412.

Falleh H, Ben Jemaa M, Djebari K, Abid S, Saada M, Ksouri R (2019). Application of the mixture design for optimum antimicrobial activity:Combined treatment of *Syzygium aromaticum*, *Cinnamomum zeylanicum*, *Myrtus communis* and *Lavandula stoechas* essential oils against *Escherichia coli*. Journal of Food Processing and Preservation 43(12):1-11.

Gadisa E, Weidelaregay G, Desta K, Tsegaye G, Hailu S, Jote K, Takele A (2019). Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary and Alternative Medicine 19(1):1-9.

Gonçalves TB, Sousa EOD, Rodrigues FF, Costa JGMD (2010).
