1. Introduction

In the absence of complete civil registration systems, birth and death rates in Low- and Middle-Income-Countries (LMICs) including India, are estimated from nationally representative surveys like the Sample Registration System (SRS) and the National Family Health Surveys (NFHS) (Alkema & You, 2012). The right to birth registration is pledged in the United Nations Convention on the Rights of the Child. Establishment of robust civil registration systems is also enlisted under the Sustainable Development Goals (SDGs). As the COVID-19 pandemic has illustrated only too well, reliable and timely statistics on birth and mortality rates can inform both population health policies and public discussion on social priorities, often in real time (AbouZahr et al., 2021; Banaji & Gupta, 2021; Jha et al., 2022). However, registration of births and deaths in India like many other LMICs, is incomplete, often delayed, and marked by widespread social inequities (Bhatia et al., 2019).

Can administrative datasets maintained by health systems overcome some limitations of incomplete and delayed data on vital registration in LMICs? India’s Health Management Information System (HMIS) was established in 2008 under India’s Ministry of Health and Family Welfare (Bodavala, n.d.). In the HMIS, sub-centers, primary health centers, and hospitals provide three types of data- 1) monthly counts of a spectrum of health service delivery indicators including reproductive, maternal, and child health indicators including facility reported births and deaths, immunization, family planning, among others, 2) quarterly trainings for health professionals, 3) annual infrastructure including staff strength, equipment and services like diagnostics and surgeries among others (Krishnan et al., 2010). These data are made available on a centralized online portal. Importantly, since the HMIS includes data from all reporting health facilities; these indicators are counts, unlike estimates from sample-based surveys (Rajesh Kumar, n.d.). With the potential to generate monthly updates, HMIS also provides the most updated available numbers on the health indicators it covers (Bodavala, n.d.). Furthermore, HMIS includes data from all states and union territories, including the north-eastern states, which are omitted from India’s Sample Registration System (SRS) (Bodavala, n.d.; Rajesh Kumar, n.d.) (Baviskar et al., 2020). It is also more granular, with data collated and available at the sub-district level (Bodavala, n.d.; Rajesh Kumar, n.d.) (Baviskar et al., 2020; Goli et al., 2021). HMIS data are also easily accessible via the public portal maintained by India’s health ministry (S, 2021).

Like other countries, India has multiple systems to measure and track health related indicators and outcomes, with varying strengths and limitations (Saikia & Kulkarni, 2016). Vital registration, although incomplete, is improving, and is embedded in a statutory identity framework (Gupta, 2020). In the absence of reliable mortality and fertility indicators from the Civil Registration System, the Sample Registration System provides annual estimates of vital rates at the state and national level (Mahapatra, 2010). This is supplemented by other periodic but intermittent surveys, such as the National Family Health Surveys, which collect richer contextual information, allowing scientific examination of the determinants of health (Gupta & Sudharsanan, 2020). Compared to these existing individual level data sources, the HMIS is a facility based administrative database, compiled in the course of service and healthcare delivery. The HMIS is finer in both geographic and periodic scales: data are compiled at the monthly frequency, and since they cover all facilities, can be aggregated to any geographic level. This key strength, helpful for internal planning as well as overall use for monitoring population health (Rajpal et al., 2021), is offset by the concern that vital events may be missed in this facility-based survey.

Our paper examines the extent to which this concern is true, by comparing the levels of births and child deaths in the HMIS to those of nationally representative surveys such as the Sample Registration System and the National Family Health System. We do this following a large
literature in the population and social science which seeks to understand the reliability of data sources by comparing them against multiple well-regarded sources (Brown et al., 2019; Hendi, 2017; Somanchi, 2021; Warren et al., 2017). Our goal is to examine the extent to which the HMIS misses births and child deaths. Because the HMIS is a facility-based survey, we expect the HMIS to miss births and deaths that were not in facilities. However, given that access to public health facilities has increased, we expect that the coverage of the HMIS, particularly of births and deaths close to births would have increased (Bhatia et al., 2019). We also expect the HMIS to have greater coverage in states with better functioning public health systems.

A small body of recent studies from India, restricted to some states and for service delivery indicators, has considered the quality of HMIS data for a range of health-service related indicators. Immunization data from HMIS in Haryana state in north India, had an average completeness record of 88.5%, ranging from 73% for ‘DPT1 vaccination date’ to 94.6% for ‘date of delivery’, compared to a cross-sectional survey in the state (Rajesh Kumar, n.d.). A temporal analysis of HMIS data from 2008 to 2018 in West Bengal’s South 24 Parganas district in eastern India identified discrepancies between HMIS, District Ledyd Household and Facility Survey (DLHS) in immunization data (Temporal Analysis of Infant and Child Health Indicators from Health Management and Information System of a Vulnerable District of India, Tracking the Road toward the Sustainable Development Goal-3.Htm, n.d.). A cross-sectional study comparing immunization trends across districts in Maharashtra in HMIS and NFHS (2015–16) found that immunization coverage reported by HMIS was 94.13%, against NFHS’s total estimated state level coverage of 56.3% during the same time, with high between district discrepancies in HMIS data within the same state (Baviskar et al., 2020). A study from a single district in Odisha state interviewed local health workers managing HMIS, while also comparing records in HMIS and the state’s Mother and Child Tracking System (MCTS), and identified under-reporting as well as discrepant reporting in the HMIS (Suhita Chopra Chatterjee, n.d.). Inadequate infrastructure, weak surveillance, poor reporting of risk factors during pregnancy were identified as shortcomings in HMIS (Suhita Chopra Chatterjee, n.d.).

HMIS data has also been referenced by Indian policy makers to monitor trends in key health service indicators. The National Institution for Transforming India (NITI) Aayog, the policy think-tank of the Government of India since 2014, used HMIS data for its 2019 report on overall and incremental health performances of states and UTs. Using five upweighted indicators from HMIS for its analysis, the NITI Aayog identified over-reporting of antenatal care registrations in the first trimester by 53.5% in Jharkhand, 42.4% in West Bengal, 25.9% in Chhattisgarh, 18.4% in Rajasthan, Chhattisgarh, Madhya Pradesh, Andhra Pradesh, and Uttar Pradesh over-reported institutional deliveries by 22%-36% (Kole, 2019). Importantly, the NITI Aayog acknowledged “huge disparities in the data integrity measures across states and UTs” (Kole, 2019). More recently, HMIS has emerged as an important source of monitoring gaps in routine maternal, newborn and child health services like immunization, during the national lockdown for COVID-19 in India (Dreze & Paioka, 2020; Rukmini, 2020). It has also been used for assessing the overall mortality impact of the pandemic (Jha et al., 2022) and levels of maternal mortality at the district level (Goli et al., 2021).

Briefly, international assessments of HMIS data quality have also considered health-service indicators. For Rwandan districts, an evaluation of HMIS data over one-month period found variable data quality, with some indicators showing better quality and consistency across districts (Nshimiyirwo et al., 2020). Importantly, the study noted that over-reporting was observed for indicators with more complex calculations, including gestational age, scheduling to determine antenatal care visits (Nshimiyirwo et al., 2020). In Nigeria, studies have identified paucity of professional training, and, lack of policies and inadequate technological infrastructure as concerns with HMIS data (Ojo, 2018). However, comparisons of HMIS data with population level outcomes are lacking.

Importantly, several concerns have also been raised about the fidelity of HMIS data in India. Some of these include delays in reporting, over-reporting, inter-state variability on reporting, inadequate data management infrastructure, and lack of trained personnel for data entry (Rajesh Kumar, n.d.) (Baviskar et al., 2020) (Suhita Chopra Chatterjee, n.d.). HMIS data from its public platform (https://nrhm-mis.nic.in/hmisreports/frmstandard_reports.aspx) also requires considerable cleaning and wrangling for analysis (Rajesh Kumar, n.d.) (Suhita Chopra Chatterjee, n.d.) (Temporal Analysis of Infant and Child Health Indicators from Health Management and Information System of a Vulnerable District of India, Tracking the Road toward the Sustainable Development Goal-3.Htm, n.d.). Furthermore, indicators and their definitions are not consistent over time, making time series analysis difficult (Baviskar et al., 2020).

While there has been considerable discourse on HMIS data quality in recent years, it has largely focused on health-service delivery indicators. Besides recent work by Jha et al., 2022 and Goli et al., 2021, very little attention has been given to the institutional births and deaths data being collated on this platform. According to HMIS training manuals, for births in addition to monthly facility reporting, HMIS also includes lists of births and births attended by skilled birth attendants, entered by Auxiliary Nursing Midwives from the community (Government of India, 2021).

Therefore, we analyze the completeness and reliability of India’s HMIS specifically for birth and child mortality rates as important population health indicators, relative to two nationally representative datasets in India—the NFHS and the SRS. Given the differing objectives, geographies of representation, and sampling techniques, we compare selected vital statistics for annual periods at the national and sub-national level, over a five-year period when data across at least two of these sources are available. First, we estimate annual birth and mortality rates from counts provided in HMIS. We then compare annual rates and counts of births, neonatal, post-neonatal, infant and child deaths across HMIS, SRS and NFHS, nationally and across states. Given that HMIS is based on data reported from health facilities, we hypothesized that HMIS would be better at capturing institutional births. So, we also compare institutional births separately, across HMIS, SRS and NFHS.

2. Methods

Data: This analysis is based on four data sources. The HMIS provides monthly reporting of key reproductive, maternal, neonatal and child health outcomes from 2008 to 2020. Data from 2014 to 20 have been used in this analysis. The NFHS is a nationally representative cross-sectional survey of population health and nutrition in India. The NFHS was fielded in 1992–93, 1998–98, 2005–06, and 2015–16 (International Institute for Population Sciences, 2007). We use data from NFHS-4, which follows a multi-stage sampling procedure and has emerged as a reliable nationally representative dataset for monitoring population health trends (International Institute for Population Sciences, 2007). The NFHS follows a multi-stage sampling procedure and has emerged as a reliable nationally representative dataset for monitoring population health trends. NFHS-4 (2015–16) provides retrospective birth history for 699,686 women (aged 15–49 years) and is representative at the district level (International Institute for Population Sciences, 2007). The SRS, conducted by the Office of the Registrar General and Census Commissioner of India, provides estimates of key demographic indicators from a
nationwide representative panel of urban blocks and villages (Mahapatra, 2010). SRS estimates collated from SRS summary reports from 2014 to 2018, have been used in this analysis. Finally, the USAID and DHS’s spatial data repository (https://spatialdata.dhsprogram.com/home/) which provides district level annual estimates of total population and population between 0 and 5 years estimated by Leddy Jr (Leddy, n.d.) has been used to calculate the birth and mortality estimates. We use these data instead of India’s official population projections because the official projections do not provide state- and age-specific estimates of population for all the years we consider in our analysis. Previous work has shown that using the official estimates or those by the DHS makes little difference to demographic estimates (Gupta & Mani, 2023).

Outcomes: We estimated the following indicators from HMIS, SRS and NFHS in 2014 and 2018:

- **Crude Birth Rate**, defined as the number of live births during the year per 1,000 population
- **Neonatal mortality rate (NMR)**, defined as the number of deaths of age less than 29 days during the year per 1,000 live births
- **Post neonatal mortality Rate**, or the number of deaths between ages 29 days to one year during the year per 1,000 live births
- **Infant mortality rate** or the number of infant deaths during the year (0–1 years) per 1,000 live births
- **Child mortality Rate** (0–4 years) or the age-specific mortality rate between ages 0 and 4, defined as the number of deaths among children aged 0–4 years per 1,000 population aged 0–4
- **Child mortality Rate** (1–4 years): the life table age-specific mortality rate between ages 1 to 4, defined as the number of deaths among children aged 1–4 per 1,000 population aged 1–4.

Given the objectives of the study to compare average trends in administrative and survey data on their capturing of births and deaths, we did not include any covariates in this analysis.

Statistical Analysis: For HMIS, we used state level counts of total live births, neonatal, infant and child deaths to estimate outcomes at 0–4 and 1–4 years for all years from 2014 to 2020. For ease of comparison with NFHS and SRS, HMIS data before 2014 was not included in the analysis. To estimate birth rates from HMIS, the total live births reported under HMIS were divided by the annual district level total population estimates from the Spatial Data Repository Program of the DHS and USAID (Leddy, n.d.).

For neonatal, post-neonatal, and infant mortality, total deaths in each population group from HMIS were divided by the total number of births from HMIS. These rates are case-fatality rates. For child mortality (0–4 years), the total number of deaths in this age group from HMIS were divided by population estimates of total children in this age group from DHS/USAID for each year of comparison. To estimate child mortality (1–4 years), we divided the difference between the child mortality (0–4 years) count and the infant mortality count with difference between DHS estimates of total child deaths (0–4 years) count and total live births as estimated under SRS. We used birth estimates from SRS instead of HMIS since HMIS underestimates total births based on comparisons of birth rates across HMIS, NFHS and SRS.

We use birth rates from Table 3 of the SRS annual reports (Mahapatra, 2010). Infant, neonatal, and post-neonatal mortality rates are from Table 9 of the SRS annual reports, and age-specific mortality rates between 0-4 and 1-4 years are from Table 8 of the SRS annual reports (Mahapatra, 2010). The proportion of births in institutional facilities is from Table 17 of the same report (Mahapatra, 2010).

For NFHS, we use standard procedures to estimate age-specific mortality rates and child mortality rates. It was not possible to estimate the birth rate from the NFHS birth history module. All other rates were calculated using the birth history module (International Institute for Population Sciences, 2007). For infant, neonatal, and post-neonatal mortality rates, we used live births as the denominator. For age-specific mortality rates between ages 0–4 and 1–4, we calculated mortality rates by calculating person-years lived in these ages. These approaches follow standard demographic procedures for birth history data (Moutrie et al., 2013). We also calculated accurate 95% Confidence Intervals for NFHS indicators, accounting for the clustering of observations within primary sampling units.

In 2014, rates from HMIS, the SRS, and the NFHS were available (Table 1). For 2018, rates from the SRS and the HMIS were available.

3. Results

National level: HMIS estimated birth rates of 16.8 and 15.9 per 1,000 in 2014 and 2018, compared to the SRS’s estimates of 21.0 and 20.0 births per 1,000 in 2014 and 2018- a difference of 4.2 and 4.1 percentage points respectively (Table 1). For mortality rates, in 2014, the HMIS recorded 6.1 infant deaths per 1,000 births as compared to 39.2 and 39 infant deaths per 1,000 births in the NFHS and SRS, respectively (Table 1). By 2018, the HMIS recorded 11.9 as compared to 32.0 infant deaths per 1,000 births in the SRS (Table 1). The levels of under-reporting in infant deaths in HMIS compared to the other data sources were slightly lower than that in the 1–4 age-group. Similar trends are observed for neonatal deaths (Table 1). In 2014, the HMIS recorded 4.4 neonatal deaths per 1,000 births as compared to 29.0 in the NFHS and 26.0 in the SRS (Table 1). In 2018, the HMIS recorded 8.6 neonatal deaths per 1,000 births, in contrast to 23.0 in the SRS (Table 1). Among the mortality indicators, neonatal mortality showed the highest discordance between HMIS, NFHS and SRS. Among the mortality indicators, neonatal mortality showed the highest discordance between HMIS, NFHS and SRS. Barring child mortality (1–4 years), all other infant and child mortality indicators increased between 2014 and 2018 in HMIS (Table 1).

State level: State specific analysis presents five important insights. First, similar to national trends, in most states, HMIS under-reported birth and death rates, with under-reporting higher for deaths than births (Table 2). Second, as with the national estimates, we see improvement in the performance of the HMIS over time. Third, we observe a small number of states, such as Kerala in the south and Himachal Pradesh in the north, where the HMIS performs relatively well (Table 2). In Himachal Pradesh, the HMIS estimated the IMR to be 17 deaths per 1,000 births in 2018, while the SRS estimated an infant mortality rate of 19 deaths per 1,000 births (Table 2d). Fourth, in some

Table 1

Comparison of birth and mortality indicators in 2014 and 2018 at the national level, based on the Health Management Information System (HMIS), the National Family Health Survey (NFHS) and the Sample Registration Survey (SRS).

Indicator	2014	2018				
	HMIS	NFHS	SRS	HMIS	NFHS	SRS
Birth Rate	16.8	NA	21.0	15.9	NA	20.0
Neo-Natal Mortality Rate	4.4	31.5	26.0	8.6	NA	23.0
Post Neo-Natal Mortality Rate	1.8	8.6	13.0	3.3	NA	9.0
Infant Mortality Rate	6.1	40.1	39.0	11.9	NA	32.0
Child Mortality Rate ages 0-4	1.2	9.6	11.0	2.4	NA	9.0
Child Mortality Rate ages 1-4	0.2	2.0	1.7	0.4	NA	1.1
Proportion of institutional births (%)	68%	81	79	94	NA	83

Note: All rates are per 1,000. The proportion of institutional births in the HMIS is calculated using the total number of births estimated from the SRS. For NFHS, which is a multi-stage sample survey, 95% CIs were calculated using a cluster-bootstrap procedure. For the NFHS, the 95% CI for the proportion of births that are institutional is [0.8069 - 0.8189], for the neonatal mortality rate is [27.062-30.864], for the post-neonatal mortality rate is [9.156-11.321], for the infant mortality rate is [37.001-41.394], for the age-specific mortality rate between ages 0 and 4 was [9.103-10.136], and for the age specific mortality rate between ages 1 and 4 was [1.708-2.310]. Like the NFHS, the SRS is also a sample survey, but 95% CIs cannot be calculated because microdata from the SRS are not available to researchers.
Table 2
State wise comparison of India’s birth and mortality indicators in 2014 and 2018 in Health Management Information System (HMIS), National Family Health Survey (NFHS) and Sample Registration Survey (SRS).

(a): Birth Rates

State	HMIS 2014	SRS 2018	HMIS 2014	SRS 2018
India	16.8	21.0	15.9	20.0
A & N Islands	14.1	-	10.6	-
Andhra Pradesh	10.4	17.0	15.2	16.0
Arunachal Pradesh	11.1	-	11.9	-
Assam	19.2	22.4	17.4	21.1
Bihar	18.6	25.9	17.5	26.2
Chandigarh	24.1	-	25.8	-
Chhattisgarh	19.1	23.4	17.2	22.5
Dadra & Nagar Haveli	19.2	-	20.1	-
Daman & Diu	13.9	-	12.9	-
Delhi	14.8	16.8	15.1	14.7
Goa	11.9	-	12.4	-
Gujarat	18.8	20.6	17.5	19.7
Haryana	19.6	21.2	18.2	20.3
Himachal Pradesh	13.5	16.4	12.2	15.7
Jammu & Kashmir	14.8	16.8	14.2	15.4
Jharkhand	18.9	23.8	20.2	22.6
Karnataka	14.3	-	14.1	17.2
Kerala	15.2	14.8	14.6	13.9
Lakshadweep	10.2	-	13.1	-
Madhya Pradesh	18.2	25.7	17.0	24.6
Maharashtra	15.3	16.5	14.5	15.6
Manipur	13.7	-	11.4	-
Meghalaya	27.0	-	24.5	-
Mizoram	19.1	-	15.8	-
Nagaland	11.7	-	10.4	-
Odisha	16.6	19.4	14.5	18.2
Puducherry	31.4	-	30.5	-
Punjab	14.6	15.4	12.8	14.8
Rajasthan	20.2	25.0	18.1	24.0
Sikkim	12.7	-	11.3	-
Tamil Nadu	13.4	15.4	12.1	14.7
Telangana	12.2	18.0	17.2	16.9
Tripura	13.9	-	13.0	-
Uttar Pradesh	17.5	27.0	17.0	25.6
Uttarakhand	15.2	18.2	13.7	16.7
West Bengal	15.6	15.6	13.8	15.0

(b) Neonatal Mortality Rates

State	HMIS 2014	NFHS 2014	SRS 2014	HMIS 2014	SRS 2014
India	4.4	29.0	26.0	8.6	23.0
A & N Islands	2.5	19.5	-	12.7	-
Andhra Pradesh	1.8	15.5	6.0	9.2	21.0
Arunachal Pradesh	1.1	12.2	-	6.1	-
Assam	4.7	28.6	26.0	13.7	21.0
Bihar	0.0	39.9	27.0	4.3	25.0
Chandigarh	43.6	27.1	-	25.9	-
Chhattisgarh	5.9	38.2	28.0	9.6	29.0
Dadra & Nagar Haveli	15.6	0.0	-	18.8	-
Daman & Diu	8.7	0.0	-	10.6	-
Delhi	8.5	6.0	13.0	13.3	10.0
Goa	1.0	0.0	-	5.7	-
Gujarat	5.2	25.7	24.0	13.4	19.0
Haryana	5.8	19.9	23.0	13.5	22.0
Himachal Pradesh	6.5	22.5	25.0	12.6	13.0
Jammu & Kashmir	0.8	24.8	26.0	8.6	17.0
Jharkhand	1.3	30.4	25.0	4.3	21.0
Karnataka	4.9	16.1	20.0	9.0	16.0
Kerala	0.8	3.0	6.0	3.0	5.0
Lakshadweep	1.5	55.6	-	4.8	-
Madhya Pradesh	6.3	37.3	35.0	17.0	35.0
Maharashtra	4.9	12.0	16.0	7.5	13.0
Manipur	0.5	12.2	-	1.3	-
Meghalaya	9.8	24.4	-	14.2	-
Mizoram	6.5	18.7	-	9.3	-
Nagaland	1.9	19.9	-	6.3	-
Odisha	14.9	22.4	36.0	15.0	31.0
Puducherry	0.3	7.3	-	8.5	-
Punjab	1.6	14.3	14.0	4.8	13.0

(c) Post-Neonatal Mortality Rates

State	2014	2018
Rajasthan	7.7	25.9
Sikkim	5.9	8.5
Tamil Nadu	7.2	14.4
Tripura	4.0	14.3
Uttarakhand	2.2	34.6
West Bengal	11.0	17.5

(d) Infant Mortality Rate

State	2014	2018
Rajasthan	7.7	25.9
Sikkim	5.9	8.5
Tamil Nadu	7.2	14.4
Tripura	4.0	14.3
Uttarakhand	2.2	34.6
West Bengal	11.0	17.5

(continued on next page)
Table 2 (continued)

(a) Birth Rates

State	2014	2018
Maharashtra	6.4	18.3
Manipur	1.2	17.3
Meghalaya	24.7	38.2
Mizoram	36.1	56.8
Nagaland	4.1	32.7
Odisha	21.4	36.7
Puducherry	0.4	7.2
Punjab	3.3	23.7
Rajasthan	10.6	35.7
Sikkim	14.4	21.3
Tamil Nadu	9.9	22.1
Telangana	1.5	38.1
Tripura	8.7	43.0
Uttar Pradesh	0.2	64.0
Uttarakhand	3.1	45.0
West Bengal	13.8	21.9

(e) Child Mortality Rate (0-4 years)

State	2014	2018
Andhra Pradesh	0.2	7.7
Arunachal Pradesh	0.4	13.7
Assam	1.5	10.1
Bihar	0.0	13.1
Chandigarh	16.9	4.7
Chhattisgarh	1.9	12.9
Dadra & Nagar Haveli	4.5	13.7
Daman & Diu	2.2	0.0
Delhi	2.6	3.4
Goa	0.6	0.0
Gujarat	1.5	7.7
Haryana	2.1	6.8
Himachal Pradesh	1.7	6.1
Jammu & Kashmir	0.2	8.6
Jharkhand	0.5	10.7
Karnataka	1.2	6.6
Kerala	0.2	1.0
Lakshadweep	0.8	15.7
Madhya Pradesh	1.8	12.6
Maharashtra	1.4	4.3
Manipur	0.3	4.3
Meghalaya	5.8	9.5
Mizoram	6.6	13.4
Nagaland	0.5	8.6
Odisha	4.5	9.3
Puducherry	0.3	1.7
Punjab	0.8	5.1
Rajasthan	2.2	9.9
Sikkim	2.8	4.1
Tamil Nadu	1.9	5.0
Telangana	0.3	6.1
Tripura	1.5	8.6
Uttar Pradesh	0.0	15.8
Uttarakhand	0.5	11.2
West Bengal	2.8	5.2

(f) Child Mortality Rate (1-4 years)

State	2014	2018
Andhra Pradesh	0.2	2.0
Arunachal Pradesh	0.1	0.7
Assam	0.1	1.8
Bihar	0.0	2.4
Chandigarh	0.0	0.0
Chhattisgarh	0.3	2.8
Dadra & Nagar Haveli	0.7	7.8
Daman & Diu	0.0	0.0
Goa	0.6	4.9
Gujarat	0.1	1.6

Note: 95% CIs for NFHS rates are available in the appendix.
from 6,193,934 to 2,009,351 births from 2014 to 2018 (Table 3a). Similar trends were observed for comparisons with NFHS. Thus, in 2018, the total number of institutional births recorded in the HMIS is very close to the estimated number of institutional births in the SRS (Table 3b).

4. Discussion

Our study has several important findings. We provide what is to the best of our knowledge, the first systematic estimates of vital statistics indicators from HMIS data in an LMIC at national and state levels, over a four-year period. Second, we compare these estimates with those from two publicly available, nationally representative surveys in India, at national and state levels – the NFHS and SRS, to systematically consider the possibility of using such administrative datasets for population health analysis in India and other LMICs, where civil registration remains incomplete and delayed. We find that while the Indian HMIS is performing relatively well on birth indicators for most states, and has been improving across states in infant and child mortality estimates over time, there is still considerable room to further improve reporting in the HMIS.

State level analysis reveals that nationally and at state levels, while the HMIS under-estimates birth and death rates in India, the degree of under-estimation is much less for births compared to deaths. Additionally, for a small number of states, HMIS captures similar mortality levels as the SRS and the NFHS. Nationally and at state level, HMIS provides
better concordance with institutional births from SRS and NFHS (Table 2). We also find variation between states, with some states such as Kerala and Himachal Pradesh having higher coverage in the HMIS than others (Table 2). These states are also among the better performing states on other national health indicators (Government of India, 2021).

Based on time trends from 2014 to 2018 birth estimates from HMIS and SRS (the two datasets for which data are available for this period), have shown high concordance which has remained consistent over time, with the exception of Uttar Pradesh in north India. This is especially true of institutional births. Trends on institutional births are especially important to underscore, since HMIS as an administrative dataset, primarily captures facility level births and deaths (Government of India,
For births, HMIS also includes data reported by community health workers (Government of India, 2021). While all infant and child mortality estimates from HMIS and SRS continued to be discordant in the same period, the gap in estimates seems to have reduced over time (Fig. 2).

It is important to underscore that the three datasets we compare have very differing objectives, scope of representation and sampling techniques. While the HMIS is a collation of facility level counts of outcomes...
and service variables and therefore does not involve any sampling, the other two sources are nationally representative surveys. The NFHS is conducted every 5 years, is part of the Demographic Health Surveys, which are nationally representative household surveys on common health and societal indicators across births, deaths, nutrition, maternal and child health, among others, across many countries. It is based on multi-stage sampling design, in which villages or urban blocks are sampled based on decennial censuses. Households are then randomly selected within villages. The SRS, on the other hand, is a survey focused on annual, nationally representative estimates of vital statistics. It follows a sampling strategy similar to NFHS, except that it covers all households within a village.

Our analysis reveals some potential strengths of HMIS. HMIS unit-level data are available publicly, unlike the SRS, and even the CRS. As a high frequency dataset that is updated monthly on most indicators, the HMIS is timelier, compared to SRS, an annual survey, the last publicly released estimates for which are for 2018; and the 2015–16 iteration of NFHS, a five yearly survey. Furthermore, HMIS provides facility level
counts for all states and Union Territories of India. While iterations of the NFHS before 2015–16 were representative at the state and national levels, in 2015–16, for the first time, the NFHS was also representative at the district level. The SRS, also a survey, omits smaller states, including states in the north-east, but is representative at the state level for the larger Indian states.

However, HMIS has many limitations which are important to underscore. First, as this analysis elucidates, in addition to the inconsistencies in definitions of indicators in HMIS over time, levels of births and deaths are underestimated in HMIS. Furthermore, given that HMIS relies largely on facility level reporting, reporting discrepancies could be conflated with actual change in indicator values. While we focus on states, analysis at more granular levels, particularly assessments of time trends should be wary of administrative changes in district boundaries and the making of new districts. For example, in Uttar Pradesh state, Shamli spilt from Muzaffarnagar in 2012 and was included in HMIS as an independent district only from 2014. Third, given the discordance in counts between HMIS, SRS and NFHS, for the mortality indicators even in 2018, for now, HMIS might be useful to study trends in select states.

Importantly, in a comparison of datasets of this nature, it is important to acknowledge that transparency in sampling methods is desirable. Of the available sources, NFHS provides the most detail about its sampling strategy and design, as well as ease of use and accessibility of the data (International Institute for Population Sciences & ICF, 2017). It is also desired in SRS which despite being considered a standard source of demographic data in India, does not make its raw data available for analysis and interpretation (Mahapatra, 2017). More transparency in its sampling methods as well as estimation strategy for confidence interval estimates would be helpful.

Our analysis lends itself to some key policy implications. Since we find the degree of underreporting in HMIS is lower for births compared to deaths, HMIS is probably able to better capture births and incidents around births, compared to deaths. This could be due to poor reporting of deaths in health facilities, and/or inadequate capturing of death related data under HMIS. Thus, first, there is a need for facilities to better monitor and document deaths and events around deaths. Second, HMIS infrastructure needs to be augmented to better capture death related data more robustly. Importantly, we find that trends in reporting of births and deaths under HMIS have improved with time for some states but lagged for others. This demonstrates that while there may be important limitations in HMIS, it is possible to invest in infrastructure, training, and monitoring to improve data collection around deaths in HMIS. Exemplar states that have improved their reporting of deaths under HMIS over the years, should be studied as case studies, to see if their practices can be replicated in other states. Furthermore, if the mandate of HMIS could be expanded to include individual level data on key socioeconomic variables from facility level data, population health metrics could be monitored from an equity perspective and similarly targeted in policy. Thus, HMIS has the potential to develop into a data source to improve our understanding of patterns of inequities in births and deaths reporting in India, in a relatively timely manner. Finally, despite its limitations, our analysis shows that given the wide geographic coverage and relative timeliness of HMIS reporting compared to periodical national surveys, HMIS could be utilized for pragmatic, real time policy monitoring and decisions, provided it is used after accounting for important limitations highlighted in this paper. We saw a fleeting exemplification of this to some extent, around the COVID-19 outbreak in India in 2021, when HMIS data were increasingly used by journalists and practitioners to report on trends in deaths (Rukmini S, 2020).

Our analysis has important limitations. First, we use estimated population numbers, as reported by the USAID/DHS. To our knowledge, these are the only estimates of age-specific annual population counts for each of India’s states. Second, since HMIS data are aggregated from facility level counts of births and deaths, with no information on individual socioeconomic or demographic characteristics of patients, we are unable to do more granular analyses of trends in births and deaths across important social strata, or explore trends in how HMIS captures different social groups compared to national surveys. Third, as noted previously, since HMIS comprises of facility level births and deaths, births and deaths that occurred outside of facilities are not captured in the dataset,
leading us to hypothesize that HMIS underestimates national births and deaths. Fourthly, we note that our HMIS estimates are case-fatality rates, where the denominators are births, rather than total births. If total births are used as the denominator, the HMIS under-reporting would be expected from a database which collates largely facility reported data to the exclusion of home births and deaths, this underestimation is much less in the case of vital birth statistics data.

Future research should also study whether state reporting trends for births and mortality indicators in HMIS seen in this study, are reflected in other outcomes, particularly health service-related variables. Extending this analysis to include additional years, particularly years after the COVID-19 pandemic, would also be valuable. In strengthening the HMIS, learning from better performing states and capturing non-institutional demographic events may also be a priority. The HMIS could also be augmented by making available more information on the characteristics of births and deaths at the individual level, to better understand service access and disparities thereof. Ultimately, given that the HMIS records data from health facilities, improving access to health, and the learning from better performing states may be the most important tools to help the HMIS become a continuous mortality surveillance tool.

5. Conclusion

While Indian HMIS is performing relatively well on birth indicators for most states, and has been improving across states in infant and child mortality estimates over time, there is still room to further improve reporting in the HMIS. Without due intervention, the HMIS cannot serve
as a robust monitoring tool for routine public health statistics. However, with some diligence in accounting for its limitations, HMIS can still provide signals for real time policy analysis, especially in case of shocks or outbreak events, when regularly updated administrative data can provide important insights about deviations from routine trends. With efforts to address the limitations of HMIS underlined in previous sections, the administrative dataset can emerge as a treasure trove of publicly available, real-time data to understand population level vital statistics in a timely manner in India. As initial steps towards this overhaul, future research should examine why the HMIS performs relatively better in some states over others, and pilot interventions to improve the coverage of the HMIS in underperforming states. Finally, expanding HMIS data to include key socioeconomic variables at individual or aggregated levels from facility data could allow for more policy relevant comparisons of birth and mortality trends across social groups in India.

Funding source
None.

Author statement
Conceptualization and Design: PC, AG, SVS.
Data Acquisition and Analysis: PC, AG.
Data Interpretation: PC, AG, SVS.
Drafting of the Manuscript: PC, AG.
Critical revisions to Manuscript: PC, AG, SVS.
Overall Supervision: SVS.

Declaration of competing interest
None.

Appendix 1. Counts of birth and mortality indicators in 2014 and 2018 at the national level, based on the Health Management Information System (HMIS), the National Family Health Survey (NFHS) and the Sample Registration Survey (SRS)

Indicator	2014	2018			
	HMIS NFHS	SRS	HMIS SRS		
Live births	20,801,010	–	25,963,237	20,666,307	25,936,681
Institutional Births	14,187,207	21,030,222	20,381,141	19,388,411	21,397,762
Neonatal deaths	90,539	751,974	675,044	177,082	596,544
Post neonatal deaths	36,511	265,823	337,522	69,176	233,430
Infant deaths	127,050	1,017,796	1,012,566	246,258	829,974
Child deaths (0–4)	142,354	1,132,688	1,295,253	281,554	1,050,149
Child deaths (1–4)	15,304	114,892	282,687	35,296	220,175
Appendix 2. State specific estimates and 95% Confidence Intervals in 2014 for a) Neonatal Mortality Rates, b) Post Neonatal Mortality Rates, c) Infant Mortality Rates, d) age-specific mortality rate between ages 0 and 4, and d) age specific mortality rate between ages 1 and 4

Note: 95% CIs account for clustering of observations within primary sampling units. CIs are not estimated for states and union territories where no neonatal deaths are observed. For some states, 95% CI values exceed the plot range.
Post-neonatal mortality rate (per 1,000 births)

Note: 95% CIs account for clustering of observations within primary sampling units. CIs are not estimated for states and union territories where no post-neonatal deaths are observed. For some states, 95% CI values exceed the plot range.
Infant mortality rate (per 1,000 births)

Note: 95% CIs account for clustering of observations within primary sampling units. CIs are not estimated for states and union territories where no infant deaths are observed. For some states, 95% CI values exceed the plot range.
References
Ahouzahr, C., Bratelski, M. W., Cerrone, E., Mangharam, A., Savigny, D. de, Dincu, I., Forsingdal, A. B., Joos, O., Kamal, M., & Fat, D. M. (2021). The COVID-19 pandemic: Effects on civil registration of births and deaths and on availability and utility of vital events data. American Journal of Public Health, 111(6), 1122–1131.
Alkema, L., & You, D. (2012). Child mortality estimation: A comparison of UN IGME and IHME estimates of levels and trends in under-five mortality rates and deaths. PLoS Medicine, 9(8), Article e1001288.
Barnaji, M., & Gupta, A. (2021). India: Notes on estimates of crude death rate and registration coverage [Technical Document]. IndiaCOVIDMapping.org https://www.indiacovidmapping.org/reports/mortality/IndiaRegistrationNotes.pdf.
Baviskar, V., Patil, R., Roy, S., Doiphode, S., Dhongade, A., & Juvekar, S. (2020). Comparison of immunization coverage status reported through NFHS coverage evaluation survey and HMIS in Maharashtra. Indian Journal of Public Health Research & Development, 11(1), 732. https://doi.org/10.37506/v11/1/2020/ijphrd/193912
Bhatia, A., Krieger, N., Beckfield, J., Barros, A. J., & Victora, C. (2019). Are inequities decreasing? Birth registration for children under five in low-income and middle-income countries, 1999–2016. BMJ Global Health, 4(6).
Bodavala, R. (n.d.). Evaluation of health management information system in India. 37.
Brown, D. C., Lariscy, J. T., & Kalousov. 2021). The COVID-19 pandemic: Are inequities decreasing? Birth registration for children under five in low-income and middle-income countries, 1999–2016. BMJ Global Health, 4(6).
Dr. Government of India. (2021). Hmis 2019-20: An analytical report. Moultrie, T. A., Dorrington, R. E., Hill, A. G., Hill, K., Timaeus, I. M., & Zaba, B. (2013). The uneven decline of health services across states during lockdown (The Wire).
Goli, S., Puri, P., Salve, P. S., Pallikkadavath, S., & James, K. S. (2021). Comparison of immunization coverage status reported through NFHS coverage evaluation survey and HMIS in Maharashtra. Indian Journal of Public Health Research & Development, 11(1), 732. https://doi.org/10.37506/v11/1/2020/ijphrd/193912
Hendi, A. S. (2017). Trends in education-specific life expectancy, data quality, and shifting education distributions: A note on recent research. Demography, 54(3), 1203–1213.
International Institute for Population Sciences. (2007). National family health survey (NFHS-3). 2005-06: India. International Institute for Population Sciences.
International Institute for Population Sciences (IIPS) & ICF. (2017). National family health survey (NFHS-4). 2015-16: India. Mumbai: IIPS.
Jha, P., Deshmukh, Y., Tumbe, C., Suraweera, W., Bhovmick, A., Sharma, S., Novoaed, P., Fu, S. H., Newcombe, L., & Gelband, H. (2022). COVID mortality in India: National survey data and health facility deaths. Science. eaum5154.
Kole, S. K. (2019). NITI aayog’s health index. Economic and Political Weekly, 54(42), 13, Krishnan, A., Nongkynrih, B., Yadav, K., Singh, S., & Gupta, V. (2010). Evaluation of computerized health management information system for primary health care in rural India. BMC Health Services Research, 10(1), 1–13.
Leddy, R. M. (n.d.). Methods for calculating 5-YEAR age group population estimates by sex for subnational areas. 13.
Mahapatra, P. (2010). An overview of the sample registration system in India (pp. 27–30).
Mahapatra, P. (2017). The sample registration system (SRS) in India, an overview, as of 2017. Prince Mahidol Award Conference and Global Health Information Forum.
Moultrie, T. A., Dorrington, R. E., Hill, A. G., Hill, K., Timaeus, I. M., & Zaba, B. (2013). Tools for demographic estimation. International Union for the Scientific Study of Population.
Nithiyiroyo, A., Kirk, C. M., Sauer, S. M., Ntawwirusha, E., Muhire, A., Sayinzoga, F., & Hedi-Gauthier, B. (2020). Health management information system (HMIS) data verification: A case study in four districts in Rwanda. PLoS One, 15(7). Article e0235823.
Ojo, A. I. (2018). Repositioning health information management practice in Nigeria: Suggestions for Africa. Health Information Management Journal, 47(3), 140–144.
Rajesh Kumar, A. S. (n.d.). Quality of Health Management Information System for Maternal & Child Health Care in Haryana State, India. PLoS One. https://doi.org/10.1371/journal.pone.0148449
Rajesh, S., Kim, J., Joe, W., Kim, R., &subramanian, S. V. (2021). Small area variation in child undernutrition across 640 districts and 543 parliamentary constituencies in India. Scientific Reports, 11(1), 4588. https://doi.org/10.1038/s41598-021-83992-6
Rao, C., & Gupta, M. (2020). The civil registration system is a potentially viable data source for reliable subnational mortality measurement in India. BMJ Global Health, 5(8), Article e002586. https://doi.org/10.1136/bmjgh-2020-002586.
August 27 Rukmini, S. (2020). COVID-19 disrupted India’s routine health services. https://www.indiaspend.com/covid-19-disrupted-indias-routine-health-services/.
IndiaSpend.
Saikia, N., & Kulkarni, P. M. (2016). Data for research into health inequality in India: Do we have enough? *Economic and Political Weekly*, 111–116.

Somaschi, A. (2021). *Missing the poor, big time: A critical assessment of the consumer pyramids household survey*.

Suhita Chopra Chatterjee, R. K. D. (n.d.). *Assessment of health management information system for monitoring of maternal health in Jaleswar Block of Balasore District, Odisha, Indi*.* Indian Journal of Public Health*. https://doi.org/10.4103/ijph.IJPH_203_17.

Temporal analysis of infant and child health indicators from health management and information system of a vulnerable district of India, tracking the Road toward the sustainable development goal-3.html. (n.d.).

Warren, J. R., Milesi, C., Grigorian, K., Humphries, M., Muller, C., & Grodsky, E. (2017). Do inferences about mortality rates and disparities vary by source of mortality information? *Annals of Epidemiology*, 27(2), 121–127.