Monolithic Finite Element Methods for the simulation of thixo-viscoplastic flows

N. Begum, A. Ouazzi, S. Turek
Institute of Applied Mathematics, LS III,
TU Dortmund University, Dortmund, Germany

6th ECCOMAS Young Investigators Conference YIC2021
7-9 July 2021, Valencia Spain
Motivation

Why “Thixotropic materials?"

- Processing of thixotropic materials relevant for industrial applications
 → Lubrication, asphalt, self-compacting concrete…

- Physically fascinating due to improved mechanical properties

Goal:

- Modern CFD methods with high accuracy, robustness and efficiency for thixotropic materials
 → Saving time, money and resources

Investigation of solid/liquid and liquid/solid transitions based on micro-structure
Introduction

- Thixotropy means
 - combination of two greek words
 - Thixis: shaking/stirring
 - trepo: turning/changing

- Thixotropy concept
 - Based on viscosity
 - Flow induced by time-dependent decrease of viscosity
 - The phenomena is reversible

- Rejuvenation / Breakdown
 - “Faster” flow: fluid rejuvenates
 Decreases of viscosity with acceleration of the flow

- Aging / Build-up
 - At rest or under slow flow: fluid ages
 Increases of the viscosity in time
Realization in FeatFlow

HPC features:
- Moderately parallel
- GPU computing
- Open source

Non-Newtonian flow module:
• generalized Newtonian model (Power-law, Carreau, Houska, …)
• viscoelastic differential model (Giesekus, FENE, Oldroyd, …)

Multiphase flow module (resolved interfaces):
• l/l – interface capturing (Level Set)
• s/l – interface tracking (FBM)
• s/l/l – combination of l/l and s/l

Numerical features:
• Higher order FEM in space & (semi-) Implicit FD/FEM in time
• Semi-(un)structured meshes with dynamic adaptive grid deformation
• Fictitious Boundary (FBM) methods
• Newton-Multigrid-type solvers

Hardware-oriented Numerics

Engineering aspects:
• Geometrical design
• Modulation strategy
• Optimization

Here: FEM-based tools for the accurate simulation of (thixotropic) flow problems, particularly with complex rheology

For details, please visit: www.featflow.de

Naheed Begum | YIC 7-9 July 2021
Starting point: Generalized Navier-Stokes equations (+initial and boundary conditions)

\[\rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} - \nabla \cdot \mathbf{\sigma} + \nabla p = \rho f, \]

\[\nabla \cdot \mathbf{u} = 0, \]

- velocity- and pressure field \(\mathbf{u} \) and \(p \)
- stress tensor \(\mathbf{\sigma} \)
- linear material behaviour - Newtonian fluids
 \[\mathbf{\sigma} = 2\eta_s D(\mathbf{u}) \quad : \quad \eta_s \text{ is constant viscosity} \]
- non-linear material behaviour - structurally viscous / viscoplastic
 \[\mathbf{\sigma} = 2\eta_s (D_\Pi, p, \Theta, \lambda) D(\mathbf{u}), \quad D_\Pi = \text{tr} \left(\frac{1}{2} D(\mathbf{u})^2 \right) \]
 - Power-law, Carreau, Bingham, Herschel-Bulkley, Houska, …
- structure parameter \(\lambda \)
Rheological Models

- **Archetypical thixotropic viscoplastic (TVP) models**

\[
\sigma = 2 \eta(D_\Pi, \lambda) D(u) + \sqrt{2} \tau(\lambda) \frac{D(u)}{\sqrt{D_\Pi}} \quad \text{if } D_\Pi \neq 0
\]
\[
\sigma_\Pi \leq \tau(\lambda) \quad \text{if } D_\Pi = 0
\]

- **Relations between rheological parameters and structural parameter**

	\(\eta(D_\Pi, \lambda)\)	\(\tau(\lambda)\)
Worrall and Tulliani\(^1\)	\(\lambda \eta_0\)	\(\tau_0\)
Coussot et al.\(^2\)	\(\lambda^a \eta_0\)	\(-\)
Houska\(^3\)	\((\eta_0 + \eta_1 \lambda) D_\Pi^{(n-1)}\)	\((\tau_0 + \tau_1 \lambda)\)
Mujumbar et al.\(^4\)	\((\eta_0 + \eta_1 \lambda) D_\Pi^{(n-1)}\)	\(\lambda^{a+1} G_0 \Lambda_c^*\)
Burgos et al.\(^5\)	\(\eta_0\)	\(\lambda \tau_0\)
Dullaert & Mewis\(^6\)	\(\lambda \eta_0\)	\(\lambda G_0 \left(\lambda D_\Pi^{\frac{1}{2}}\right) \Lambda_c^*\)

\(\Lambda_c^*\) is a constant/variable elastic strain.

Naheed Begum | YIC 7-9 July 2021
Rheological Models

- **General format of evolution equation for structural parameter:**

 \[\frac{\partial \lambda}{\partial t} + u \cdot \nabla \lambda = F_{\text{buildup}} - F_{\text{breakdown}} \]

- **Expressions for different thixotropic models:**

Model	F_{buildup}	$F_{\text{breakdown}}$
Worrall and Tulliani	$c_1 (1 - \lambda) D_{\text{II}}^{\frac{1}{2}}$	$c_2 \lambda D_{\text{II}}^{\frac{1}{2}}$
Coussot et al.	c_1	$c_2 \lambda D_{\text{II}}^{\frac{1}{2}}$
Houska	$c_1 (1 - \lambda)$	$c_2 \lambda^m D_{\text{II}}^{\frac{1}{2}}$
Mujumbar et al.	$c_1 (1 - \lambda)$	$c_2 \lambda D_{\text{II}}^{\frac{1}{2}}$
Burgos et al.	$c_1 (1 - \lambda)$	$c_2 \lambda D_{\text{II}}^{\frac{1}{2}} \exp(aD_{\text{II}}^{\frac{1}{2}})$
Dullaert & Mewis	$(c_1 + c_3 D_{\text{II}}^{\frac{1}{2}})(1 - \lambda)t^{-b}$	$c_2 \lambda D_{\text{II}}^{\frac{1}{2}} t^{-b}$
Viscoplastic (VP) flow

\[
\begin{cases}
\sigma = 2 \eta_0 D(u) + \sqrt{2} \tau_0 \frac{D(u)}{\sqrt{D}} & \text{if } D_{\Pi} \neq 0 \\
\sigma_{\Pi} \leq \tau_0 & \text{if } D_{\Pi} = 0
\end{cases}
\]

Thixo-viscoplastic (TVP) flow

\[
\begin{cases}
\sigma = 2 \eta(D_{\Pi}, \lambda) D(u) + \sqrt{2} \tau(\lambda) \frac{D(u)}{\sqrt{D}} & \text{if } D_{\Pi} \neq 0 \\
\sigma_{\Pi} \leq \tau(\lambda) & \text{if } D_{\Pi} = 0
\end{cases}
\]

Affine functions

\[
\begin{cases}
\eta(\lambda) = \eta_0 + \eta_1 \lambda \\
\tau(\lambda) = \tau_0 + \tau_1 \lambda
\end{cases}
\]

Structure evolution equation

\[
\frac{\partial \lambda}{\partial t} + u \cdot \nabla \lambda = a(1 - \lambda) - b\lambda D_{\Pi}^{\frac{1}{2}}
\]

\((a, b \text{ are structure parameters})\)
Viscosity model for TVP flow i.e. extended viscosity defined on all domains s.t.

\[
\begin{align*}
I. \quad \eta_s(D_{II}, \lambda) &= \eta(\lambda) + \frac{\sqrt{2}}{2} \tau(\lambda) \frac{1}{\sqrt{(D_{II} + (k^{-1})^2)}} \\
II. \quad \eta_s(D_{II}, \lambda) &= \eta(\lambda) + \frac{\sqrt{2}}{2} \tau(\lambda) \frac{1}{D_{II}^{\frac{1}{2}}} (1 - e^{-kD_{II}^{\frac{1}{2}}})
\end{align*}
\]

(k : regularization parameter)

Full set of equations

\[
\begin{align*}
\left(\frac{\partial}{\partial t} + u \cdot \nabla \right) u - \nabla \cdot \left(2 \eta_s(D_{II}, \lambda) D(u) \right) + \nabla p &= 0 \quad \text{in } \Omega \\
\nabla \cdot u &= 0 \quad \text{in } \Omega \\
\frac{\partial \lambda}{\partial t} + u \cdot \nabla \lambda - a(1 - \lambda) + b\lambda D_{II}^{\frac{1}{2}} &= 0 \quad \text{in } \Omega
\end{align*}
\]
Newton’s method

Let $\mathcal{U} = (\lambda, u, p)$, and $\mathcal{R}_\mathcal{U} (\mathcal{U})$ be the continuous or the discrete corresponding system’s residum.

- Update of the nonlinear iteration with the correction $\delta \mathcal{U}$ i.e.

$$\mathcal{U}^N = \mathcal{U} + \delta \mathcal{U}$$

- The linearization of the residual provides

$$\mathcal{R}_\mathcal{U} (\mathcal{U}^N) = \mathcal{R}_\mathcal{U} (\mathcal{U} + \delta \mathcal{U})$$

$$= \mathcal{R}_\mathcal{U} (\mathcal{U}) + \mathcal{J} (\mathcal{U}) \cdot \delta \mathcal{U}$$

- The Newton’s method assuming invertible Jacobian

$$\mathcal{U}^N = \mathcal{U} - \mathcal{J}^{-1} (\mathcal{U}) \mathcal{R}_\mathcal{U} (\mathcal{U})$$
Adaptive Newton’s method

Jacobian calculations

$$\mathbf{J}(\mathbf{U}) = \left(\frac{\partial \mathbf{R}_u(\mathbf{U})}{\partial \mathbf{U}} \right)$$

- Continuous Adaptive Newton based on a priori study of Jacobian’s properties and decompositions

$$\mathbf{J}(\mathbf{U}) = \left(\frac{\partial \mathbf{R}_u(\mathbf{U})}{\partial \mathbf{U}} \right) + \delta \left(\frac{\partial \mathbf{R}_u(\mathbf{U})}{\partial \mathbf{U}} \right)$$

- Discrete Adaptive Newton based on the rate of residuum’s convergence

$$\left(\frac{\partial \mathbf{R}}{\partial \mathbf{U}} \right)_{ij} \approx \left(\frac{\mathbf{R}_i(\mathbf{U} + \epsilon \mathbf{e}_j) - \mathbf{R}_i(\mathbf{U} - \epsilon \mathbf{e}_j)}{2\epsilon} \right)$$
Continuous thixotropic problem

• **Flow variables** \((\lambda, u, p)\)

 ➢ Set \(\mathbb{T} := L^2(\Omega), \mathbb{V} := [H^1_0(\Omega)]^2, \mathbb{Q} := L^2_0(\Omega)\)

 ➢ Set \(\tilde{\mathbb{u}} := (\lambda, u)\)

 ➢ Find \((\lambda, u, p) \in (\mathbb{T} \cap H^1(\Omega)) \times \mathbb{V} \times \mathbb{Q}\) s.t.

\[
\langle \mathcal{K}(\lambda, u, p), (\xi, v, q) \rangle = \langle \mathcal{L}, (\xi, v, q) \rangle, \quad \forall (\xi, v, q) \in \mathbb{T} \times \mathbb{V} \times \mathbb{Q}
\]

\[
\mathcal{K} = \begin{bmatrix}
\mathcal{A}\tilde{\mathbb{u}} & \mathcal{B}^T \\
\mathcal{B} & 0
\end{bmatrix}
\]

➢ **Compatibly constraints**

\[
\sup_{v \in \mathbb{V}} \frac{\langle \mathcal{B}v, q \rangle}{|v|_v} \geq \beta |q|_{\mathbb{Q}/\text{Ker}\mathcal{B}^T}, \quad \forall q \in \mathbb{Q}
\]
Numerical challenges

• Discretizations have to handle the following challenges
 ➢ Stable FEM spaces
 ➢ Non-symmetric, non-coercive and ill-posedness
 ➢ Convection and positivity preserving
 ➢ Locally adapted meshes for steep gradients

• Solvers have to deal with
 ➢ Different source of nonlinearities
 ➢ Strong coupling of equations
 ➢ Robustness and efficiency
Approximated problem

• Conforming approximations

\[T_h \subset T, \quad V_h \subset V, \quad Q_h \subset Q \]
\[A\tilde{u}_h = A\tilde{u}, \quad B_h = B \]

• Discrete inf-sup condition

\[\sup_{\boldsymbol{v}_h \in V_h} \frac{\langle B_h \boldsymbol{v}_h, q_h \rangle}{\|\boldsymbol{v}_h\|_{\tilde{V}}} \geq \beta_h \|q_h\|_{Q/Ker B_h^T}, \quad \forall q_h \in Q_h \]
The family of conforming FEM $Q_r/Q_r/P_{r-1}^{\text{disc}}, r \geq 2$ for (λ, u, p) with stabilization

$$J_u(u_h, v_h) = \gamma_u \sum_{e \in \mathcal{E}_h} h^2 \int_e [\nabla u_h] : [\nabla v_h] \, d\Omega$$

$$J_\lambda(\lambda_h, \xi_h) = \gamma_\lambda \sum_{e \in \mathcal{E}_h} h \int_e [\nabla \lambda_h] : [\nabla \xi_h] \, d\Omega$$

- Inf-sup conditions is satisfied
- Discontinuous pressure
 - Good for the solver
 - Element-wise mass conservation
- Discrete problem is well-posed
- Highly consistent and symmetric stabilization
- Robust solver w.r.t. the monolithic approach
- Efficient solver w.r.t. multigird solver
Monolithic-multigrid linear solver

- Standard geometric multigrid solver for linearized system

- Full Q_r and P_{r-1}^{disc} restriction and prolongation

- Local Multilevel Pressure Schur Complement via Vanka-like smoother

\[
\begin{pmatrix}
\lambda_{l+1} \\
u_{l+1} \\
p_{l+1}
\end{pmatrix}
= \begin{pmatrix}
\lambda_{l} \\
u_{l} \\
p_{l}
\end{pmatrix} + \omega^l \sum_{T \in \mathcal{T}_h} \begin{pmatrix}
(K_h + J) |_{T}
\end{pmatrix}^{-1}
\begin{pmatrix}
\mathcal{R}_{\lambda^l} \\
\mathcal{R}_{u^l} \\
\mathcal{R}_{p^l}
\end{pmatrix} |_{T}
\]

Coupled Monolithic Multigrid Solver!
Starting point: consider flow in a cavity with unit height
- Steady, incompressible flow
- Constant speed at upper lid
- No-slip Dirichlet boundary conditions

Newtonian, Viscoplastic, and Thixo-viscoplastic (TVP)
Newtonian Lid-driven cavity flow

- **Point-wise convergence for Newtonian flow**

Re=1000
Re=5000
Re=10000

\begin{align*}
\text{Level 5} & \\
\text{Level 6} & \\
\text{Level 7} & \\
\text{Level 8} & \\
\text{Level 9} & \\
\end{align*}

\begin{align*}
\text{Level 5} & \\
\text{Level 6} & \\
\text{Level 7} & \\
\text{Level 8} & \\
\text{Level 9} & \\
\end{align*}

\begin{align*}
\text{Level 5} & \\
\text{Level 6} & \\
\text{Level 7} & \\
\text{Level 8} & \\
\text{Level 9} & \\
\end{align*}
Newtonian Lid-driven cavity flow

- Global and point-wise quantities and solver behaviour

Level	cells	$\text{Energy} \times 10^2$	N/M	$\text{Energy} \times 10^2$	N/M	$\text{Energy} \times 10^2$	N/M
5	1024	4.541506	5/1	6.082524	6/1	7.940472	7/1
6	4096	4.458877	5/1	4.955858	6/1	5.369527	6/1
7	16384	4.452357	3/1	4.768669	4/1	4.868399	5/1
8	65536	4.451904	3/1	4.744815	3/2	4.783917	4/2
9	262144	4.451846	3/1	4.742921	3/1	4.773500	3/2
10	1048576	4.451834	2/1	4.742815	3/1	4.772692	3/1

Ref. values \approx: 4.45 4.74 4.77

Level	ψ_{max}	$\psi_{\text{min}} \times 10^3$	ψ_{max}	$\psi_{\text{min}} \times 10^3$	ψ_{max}	$\psi_{\text{min}} \times 10^3$
6	0.1190073	-1.72813	0.1249471	-3.145666	0.1586626	-5.7535749
7	0.1189360	-1.72649	0.1225439	-3.077555	0.1236127	-3.2070181
8	0.1189361	-1.72851	0.1222499	-3.072411	0.1225210	-3.1831353
9	0.1189362	-1.72963	0.1222269	-3.073524	0.1224097	-3.1910101
10	0.1189366	-1.72965	0.1222259	-3.073589	0.1223892	-3.1797390

- Mesh convergence of the solutions irrespective of Re number
- Efficient non-linear solver
- Mesh independent linear solver

Accurate, robust and efficient Monolithic Multigrid Solver

Naheed Begum | YIC 7-9 July 2021
• Boundary limit for rigid-zone w.r.t regularization k

$$\quad \begin{align*}
(a) \quad \tau_0 &= 2.0 \\
(b) \quad \tau_0 &= 5.0
\end{align*}$$

• Accurate track of interface requires
 ✓ larger k solutions
 ✓ finer mesh refinement

• Existence of pair (k, L) beyond which no further improvement in solutions is expected
Viscoplastic flow in Lid-driven cavity

- progressive growth of unyielded zones for non-thixotropic (Bingham Plastic) flow

✓ Unyielded zones’s shape and extent is in agreement with Ref. Results
Solver behaviour w.r.t. Regularization and mesh refinement

| $k \backslash L$ | $\tau_0 = 1$ | | | $\tau_0 = 2$ | | | $\tau_0 = 5$ | | |
|----------------|------------|------------|------------|------------|------------|------------|
| | 5 | 6 | 7 | 5 | 6 | 7 | 5 | 6 | 7 |
| 1×10^1| 3/1 | 3/1 | 3/1 | 3/1 | 3/1 | 3/1 | 4/1 | 4/1 | 4/1 |
| 5×10^1| 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 2/1 | 3/1 | 3/1 | 3/1 |
| 1×10^2| 3/1 | 3/1 | 3/1 | 3/1 | 3/1 | 3/1 | 4/1 | 4/1 | 4/1 |
| 5×10^2| 3/1 | 2/1 | 2/1 | 3/1 | 2/1 | 3/1 | 3/1 | 3/1 | 3/1 |
| 1×10^3| 2/2 | 3/2 | 3/1 | 3/1 | 3/1 | 4/1 | 4/1 | 5/2 | 5/2 |
| 5×10^3| 2/1 | 2/1 | 4/1 | 3/1 | 3/2 | 6/2 | 4/1 | 8/2 | 6/1 |
| 1×10^4| 2/1 | 2/2 | 5/1 | 3/1 | 3/1 | 6/1 | 4/1 | 5/4 | 6/3 |
| | $\tau_0 = 10$ | | | $\tau_0 = 20$ | | | $\tau_0 = 50$ | | |
| 1×10^1| 5/1 | 5/1 | 5/1 | 6/1 | 6/1 | 6/1 | 5/1 | 7/1 | 7/1 |
| 5×10^1| 4/1 | 3/1 | 3/1 | 4/1 | 4/1 | 3/2 | 5/4 | 4/2 | 4/2 |
| 1×10^2| 5/2 | 4/1 | 4/1 | 5/2 | 5/2 | 5/1 | 6/5 | 5/4 | 5/1 |
| 5×10^2| 5/3 | 3/2 | 3/1 | 4/4 | 3/4 | 4/3 | 5/4 | 4/2 | 4/3 |
| 1×10^3| 5/2 | 7/4 | 9/1 | 5/5 | 7/2 | 8/1 | 5/5 | 9/2 | 9/2 |
| 5×10^3| 5/1 | 7/3 | 8/2 | 6/3 | 6/4 | 6/4 | 6/4 | 7/2 | 8/2 |
| 1×10^4| 6/1 | 7/2 | 8/3 | 6/3 | 5/5 | 7/3 | 6/3 | 7/3 | 8/2 |

- Efficient non-linear solver
- Mesh independent linear solver
- Solutions are obtained with continuation strategy w.r.t. k
- Integration of continuation strategy w.r.t. k in the solver
• Impact of thixotropic yield stress on morphology of unyielded zones in TVP flow

✓ Main rheological characteristics of materials with yield stress is preserved
• **Solver behaviour w.r.t. Regularization and mesh refinement**

$k \div L$	5	6	7	5	6	7	5	6	7
$\tau_1 = 0.5$									
1×10^1	5/2	5/3	6/2	5/2	5/2	9/1	5/2	5/2	9/1
5×10^1	4/2	4/2	4/2	3/2	3/3	7/1	3/2	3/3	8/1
1×10^2	4/1	4/2	5/1	4/1	4/2	7/1	4/2	4/2	8/1
5×10^2	4/1	4/1	5/1	3/1	4/1	6/1	4/1	6/1	7/1
1×10^3	4/1	4/1	4/1	4/2	4/2	8/1	4/4	6/1	7/1
5×10^3	4/1	4/1	3/2	7/1	9/1	5/1	6/1	9/1	8/1
1×10^4	4/1	4/2	4/2	5/1	7/1	4/1	7/1	10/1	8/2
$\tau_1 = 5.0$									
1×10^1	6/2	6/2	10/1	11/1	8/2	11/1	10/1	9/2	11/1
5×10^1	4/2	3/2	11/1	11/1	4/2	7/1	12/1	5/3	9/1
1×10^2	4/2	5/2	11/1	10/1	5/3	8/1	12/1	6/3	10/1
5×10^2	5/2	4/2	10/1	9/1	5/3	5/1	8/1	5/5	11/1
1×10^3	5/2	9/1	10/1	10/1	9/1	7/1	8/2	9/1	9/2
5×10^3	5/1	5/1	5/1	8/1	8/2	6/1	8/1	7/1	11/1
1×10^4	5/1	5/2	5/1	8/3	7/1	5/1	8/2	7/1	9/1
$\tau_1 = 10.0$									
1×10^1									
5×10^1									
1×10^2									
5×10^2									
1×10^3									
5×10^3									
1×10^4									
$\tau_1 = 20.0$									

✓ Efficient non-linear solver
✓ Mesh independent linear solver
✓ Solutions are obtained with continuation strategy w.r.t. k
⇒ Integration of continuation strategy w.r.t. k in the solver
• Material micro-structural level w.r.t. breakdown parameter

• Interplay of yield stress and thixotropy
 ✓ Structuring level is predicting shape and extent of rigid zones
 ✓ Induction of more breakdown layers
 ✓ Shear localization
 ✓ Shear band
Thixo-viscoplastic flow in Couette

Continuous axial-Flow Couette device:

- The material is sheared in the annulus between the interior and exterior cylinder shells of radii r_{in} and r_{out} respectively.
 - Concentric cylinders
 - Rotating inner cylinder with $\omega_{in} = 1 \text{rads}^{-1}$
 - Stationary outer cylinder
 - Vertical flow super-imposed in radial direction

Investigations of thixo-viscoplastic phenomena
- Shear localization
- Shear banding
- Consistent transition points between velocity and structure
Thixo-viscoplastic flow in Couette

- Velocity profile at cut-line positions $c; c \in [0, 2\pi]$ in a Couette device w.r.t breakdown parameter

✓ Localization
✓ Shear banding
Thixo-viscoplastic flow in Couette

- Shear rate at cut-line positions $c; c \in [0, 2\pi]$ in a Couette device w.r.t breakdown parameter

 ✓ Smooth and sharp transition are possible
 ✓ Transition point matches with the velocity
Thixo-viscoplastic flow in Couette

- **Structure parameter at cut-line positions** \(c; c \in [0, 2\pi] \) **in a couette w.r.t.** breakdown parameter

✓ Transition point matches with the velocity
✓ Structuring level is predicting shape and extent of rigid zones
• 2D-FEM simulation results for thixo-viscoplastic flow- validation of 1D tool
• Specifying the “unidirectional profiles as boundary Data” in 2D for contraction
Thixo-viscoplastic flow in curved contractions

- 2D-FEM simulation results for thixotropic flow - validation of 1D tool
- Specifying the “1D-profiles as boundary Data” in 2D simulations for contraction domain
As predicted \((u, \lambda, p)\) solutions

Structuring level is predicting shape and extent of rigid zones
Thixo-viscoplastic flow in curved contractions

- progressive growth of unyielded zones (shaded)

(a) $\tau_1 = 0.125$

(b) $\tau_1 = 0.25$

(c) $\tau_1 = 0.50$

(d) $\tau_1 = 2.0$

Unyielded zones in upstream and downstream are not merging
• Material micro-structural level w.r.t. breakdown

(i) Upstream channel & Entrance zone

(ii) Downstream channel

• Inherent thixotropy speed-up the breakdown
 ✓ Appearance of more breakdown layers
 ✓ Applications: restart pressure in pipelines should not be over-estimated

“Further investigation” regarding material structuring in thixo-elasovisoplastic
An accurate, robust, and efficient numerical solver for TVP flows is developed using

- Higher order finite element method
- Monolithic Newton-multigrid
 - Adaptive discrete Newton’s method with global convergent property
 - Geometric multigrid with local MPSC

To analyze the quasi-Newtonian model for TVP materials for different flow simulations

- Newtonian, VP, and TVP flow in Lid-driven cavity
- TVP flow in Couette devices
- TVP flow in curved contractions
1. Worrall, W. E., Tuliani, S., Viscosity changes during the ageing of clay-water suspensions. *Transactions and journal of the British Ceramic Society*, **63**, 167-185, 1964.

2. Coussot, P., Nguyen, Q. D., Huynh, H. T., Bonn, D., Viscosity bifurcation in thixotropic, yielding fluids, *Journal of Rheology*, **46**(3), 573-589, 2002.

3. Houska, M., *Engineering aspects of the rheology of thixotropic liquids*. PhD thesis, Faculty of Mechanical Engineering, Czech Technical University of Prague, (1981).

4. Ashutosh Mujumdar, Antony N. Beris, Arthur B. Metzner, Transient phenomena in thixotropic systems, *Journal of Non-Newtonian Fluid Mechanics*, **102**(2), 157-178, 2002.

5. Gilmer Burgos, Andreas N Alexandrou, Vladimir Entov, Thixotropic rheology of semisolid metal suspensions, *Journal of Materials Processing Technology*, **110**(2), 164-176, 2001.

6. Dullaert, K. and Mewis, J. A Structural Kinetics Model for Thixotropy. *Journal of Non-Newtonian Fluid Mechanics*, **139**, 21-30, 2006.

7. Kheiripour Langroudi, M., Turek, S., Ouazzi, A., Tardos, G.I. An investigation of frictional and collisional powder flows using a unified constitutive equation. *Powder Technology*, **197**, 91-101, 2010.

8. Jenny, M., Kiesgen de Richter, S., Louvet, N., Skali-Lami, S. Dossmann, Y. , Taylor-Couette instability in thixotropic yield stress fluids. *Phys. Rev. Fluids* (2017) **2**:023302–023323.

9. Ouazzi, A., Begum, N., Turek, S. Newton-multigrid FEM solver for the simulation of quasi-newtonian modeling of thixotropic flows. *Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 635*, Fakultät für Mathematik, TU Dortmund University 638, 2021.

10. Turek, S., Ouazzi, A. Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations. *Journal of Numerical Mathematics* **15**(4), 299-322, 2007

11. Burman, E., Stabilized Finite Element Methods for Nonsymmetric, Noncoercive, and Ill-Posed Problems. Part II: Hyperbolic Equations, *SIAM J. Sci. Comput.*, **36**(4), A1911–A1936.

12. Kuzmin, D.; Löhner, R.; Turek, S. *Flux-Corrected Transport*, Scientific Computation, Springer, Subtitle: Principles, Algorithms and Applications, 3-540-23730-5, 2005.

13. Kuzmin, D.; Löhner, R.; Turek, S. *Flux-Corrected Transport*, Springer, 2nd edition, 978-94-077-4037-2, 2012

14. Ouazzi, A. *Finite Element Simulation of Nonlinear Fluids: Application to Granular Material and Powder*, Shaker Verlag Aachen, ISBN 3-8322-5201-0, 2006.
15. Ghia, U., Ghia, KN. and Shin, CT. High-resolutions for incompressible flows using Navier-Stokes equations and a multigrid method. *Journal of Computational Physics* **48**, 387–411, 1982.

16. Vanka, S. P., Block–implicit multigrid solution of Navier–Stokes equations in primitive variables, *Journal of Computational Physics* **65**, 138-158, 1986.

17. Botella, O. and Peyret, R. Benchmark spectral results on the lid-driven cavity flow. *Computers & Fluids* **27**, 421-433, 1998.

18. Bruneau, C. and Saad, M., The 2D lid-driven cavity problem revisited. *Computers & Fluids*, **35**, 326-348, 2006.

19. Schreiber, R. and Keller, HB. Driven cavity flows by efficient numerical techniques. *Journal of Computational Physics*, **49**, 310-333, 1983.

20. Goodrich, U. An unsteady time-asymptotic flow in the square driven cavity. *In: IMACS 1st International Conference on Computational Physics*, 1990.

21. Kupperman, R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. *SIAM J. Sci. Comp.*, **23**, 2001.

22. Pan, TW. and Glowinski, R. A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. *Comp Fluid Dyn. J.* **92** 2000.