Sitosteroolemia is a rare inherited disease characterized by increased levels of plant sterols, such as sitosterol. The cause of this disease is ATP-binding cassette (ABC) subfamily G member 5 or member 8 (ABCG5 or ABCG8, respectively) gene mutations. Recent advances in genetics have revealed that the prevalence of subjects with deleterious mutations in ABCG5 and/or ABCG8 genes could be more than 1 in ~200,000 individuals among the general population. Furthermore, accumulated evidence, including infantile cases exhibiting progression/regression of systemic xanthomas associated with LDL cholesterol levels, have shown that the elevation of LDL cholesterol seems to be the major cause of development of atherosclerosis and not the elevation of sitosterol. Regarding therapies, LDL apheresis, as well as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, could be useful for sitosteroolemia, in addition to ezetimibe and/or colestimide. In this study, we provide the current understanding and future perspectives of sitosteroolemia, which is currently considered an extremely rare disorder but is expected to be much more prevalent in clinical settings.

Key words: Sitosteroolemia, ABCG5, ABCG8, Familial hypercholesterolemia

Introduction

Familial hypercholesterolemia (FH) is a common inherited disorder of plasma lipoprotein metabolism and is characterized by an elevated level of LDL cholesterol, tendon xanthomas, and premature coronary artery disease1). The monogenic causes of FH involve gene mutations such as LDL receptor, apolipoprotein B-100, and proprotein convertase subtilisin/kexin type 9 (PCSK9)2). On the other hand, sitosteroolemia (OMIM #210250) is a rare, inherited, autosomal recessive disorder of lipid metabolism characterized by increased absorption and decreased biliary excretion of plant sterols and cholesterol, thus resulting in prominently elevated serum concentrations of plant sterols, such as sitosterol and campesterol3). Subjects suffering from sitosteroolemia primarily present with tendinous and tuberous xanthomas and premature coronary atherosclerosis, such as FH4-7). LDL cholesterol levels are more variable in sitosteroolemia than in other genetic hyperlipidemias but can be extremely elevated in some patients, particularly in infants; the reason for this phenomenon still remains unclear8). This disease is caused by mutations in either ATP-binding cassette (ABC) subfamily G member 5 or member 8 (ABCG5 and ABCG8, respectively). In this paper, we provide the current understanding and future perspectives of sitosteroolemia, which is currently considered an extremely rare disorder but is expected to be much more prevalent in clinical settings.

Epidemiology

Sitosteroolemia is now considered an extremely rare disorder. Approximately 100 patients have been reported to have sitosteroolemia thus far. However, according to The Exome Aggregation Consortium (ExAC) exome browser, 1 in ~220 individuals have loss of function (LOF) mutations in ABCG5 or ABCG8 genes9); therefore, the rough estimation of the number of pa-
sitosterolemic patients. Accordingly, ABCG8 and ABCG5 gene mutations should be examined if sitosterolemia is suspected regardless of ethnicity. Furthermore, the ABCG5 and ABCG8 proteins form heterodimers and act in coordination as a complex. We recently observed a sitosterolemia case caused by combinations of ABCG5 and ABCG8 gene mutations (data not shown). Moreover, we recently published a paper regarding the prevalence of oligogenic FH with deleterious mutations in FH genes and the ABCG5/8 genes. We found that additional mutation(s) in the ABCG5/8 genes significantly affected LDL cholesterol level and coronary artery disease prevalence. These findings and a recent study revealed that ABCG5/8 genetic mutations significantly affected LDL cholesterol levels in the general population; this information supports the notion that there are many heterozygous carriers of this disease among patients with hypercholesterolemia. The mutations that could cause sitosterolemia and polymorphisms are illustrated in Fig. 2.

Clinical Manifestations

The variations in phenotypic severities of this
disease have been reported. We previously described a case with sitosterolemia in a 26-year-old lady exhibiting premature myocardial infarction\(^7\). Other studies have showed sitosterolemic cases without any apparent atherosclerosis\(^{14}\). Regarding this information, several infantile cases, including ours, have exhibited severe hyperLDL cholesterolemia during breastfeeding\(^4, 10\). Moreover, LDL cholesterol levels in adult sitosterolemic patients are more variable than that in other genetic hyperlipidemias\(^{15}\). These facts suggest that sitosterolemic patients are vulnerable to diet-induced hypolipidemia. Thus, we speculated that LDL cholesterol associated with dietary habits are quite important for the prevention of atherosclerosis in this disease.

Heterozygous Mutation Carriers

Although sitosterolemia is now considered a “recessive” disorder, recent studies have revealed the fact that heterozygous mutation carriers also exhibit milder manifestations\(^{18, 19}\). We previously showed that a portion of hypercholesterolemia other than FH could be explained by a deleterious mutation in the \(ABCG8\) gene\(^20\). We also showed that single deleterious mutations affected LDL cholesterol levels by 18 mg/dL among individuals exhibiting severe hyperLDL cholesterolemia\(^{12}\). Another group showed that a portion of hypercholesterolemia other than FH could be explained by a deleterious mutation in \(ABCG5\) or \(ABCG8\) gene\(^{14}\). These results collectively suggested that heterozygous mutation carriers in the \(ABCG5/8\) genes could be one of the major genetic causes of hyper...
Sitosterolemia has been described as “Pseudo FH,” particularly infant cases, on the basis of phenotype, such as hyper LDL cholesterolemia, as well as tendon xanthomas21) (Fig. 3). Previous studies have shown multiple infant cases of sitosterolemia with extreme hyper LDL cholesterolemia associated with breastfeeding4,10). Interestingly, weaning can reduce their LDL cholesterol level substantially but will not affect their sitosterol level (Fig. 4). The detailed mechanism of this extreme situation is still unclear; however, the disturbance of postprandial remnant lipoprotein fractions seems to be one of the factors that contribute to this situation17).

Pseudo Familial Hypercholesterolemia

Sitosterolemia is known to show elevated sitosterol and LDL cholesterol levels. In contrast to LDL cholesterol, the pathogenicity of sitosterol on the development of atherosclerosis still remains unclear. Regarding this point, only a few studies have systematically investigated this issue, and serum sitosterol level itself does not seem to be the causal factor22, 23). Further studies with larger sample sizes are needed to elucidate this issue. On the other hand, a recent clinical trial has shown that serum sitosterol level could be a good biomarker of ezetimibe efficacy24). Serum sitosterol has been shown as a surrogate marker of cholesterol absorption25). This result may reflect the fact that ezetimibe could be more effective in patients with increased cholesterol absorption due to primary or secondary causes. Accordingly, serum sitosterol measurements could be used not only for the clinical diagnosis of sitosterolemia but also for the prediction of ezetimibe efficacy.
cholestimide have been described as appropriate therapies\(^9\). It is true that ezetimibe and colestimide are effective in reducing cholesterol and sitosterol, and HMG-CoA reductase inhibitors (statins) are effective in reducing LDL cholesterol in sitosterolemic patients\(^{28, 30}\). In addition to those established approaches, we experienced a sitosterolemia case wherein PCSK9 inhibition had great effect for reducing LDL cholesterol (data not shown). As stated above, the efficacy of reducing sitosterol levels for the prevention of atherosclerosis is still controversial. PCSK9 inhibitors and statins with robust evidence for the reduction of atherosclerotic events could also be considered for patients with sitosterolemia\(^31\). For patients with advanced atherosclerotic regions, LDL apheresis could be considered if applicable\(^6\).

Conclusions and Perspectives

It is true that sitosterolemia as a monogenic disorder is rather rare; however, the prevalence of this disorder is currently underestimated. Furthermore, relatives of sitosterolemia patients or those with heterozygous mutation carriers usually exhibit elevated

Clinical Phenotypes of Sitosterolemia Other Than Atherosclerotic Disease

It has been shown that some patients with sitosterolemia suffer from hematologic abnormalities, including abnormal erythrocyte shape, thrombocytopenia, and arthritis\(^{26, 27}\). This phenomenon is now being investigated because of the accumulation of elevated plant sterols. However, we previously showed a unique case complicated by arthritis due to a combination disease of sitosterolemia and familial Mediterranean fever, whose typical manifestation includes arthritis\(^5\). This case shows a recessive disorder that is usually associated with consanguineous marriage; hence, another recessive disorder could occur with these other phenotypes. Comprehensive genetic analysis for such cases should be quite useful for uncovering the potential cause of those situations.

Managements for Sitosterolemia

Several medications for reducing LDL cholesterol and sitosterol have been introduced for sitosterolemic patients\(^{28, 29}\). Among these medications, ezetimibe and cholestimide have been described as appropriate therapies\(^9\). It is true that ezetimibe and colestimide are effective in reducing cholesterol and sitosterol, and HMG-CoA reductase inhibitors (statins) are effective in reducing LDL cholesterol in sitosterolemic patients\(^{28, 30}\). In addition to those established approaches, we experienced a sitosterolemia case wherein PCSK9 inhibition had great effect for reducing LDL cholesterol (data not shown). As stated above, the efficacy of reducing sitosterol levels for the prevention of atherosclerosis is still controversial. PCSK9 inhibitors and statins with robust evidence for the reduction of atherosclerotic events could also be considered for patients with sitosterolemia\(^31\). For patients with advanced atherosclerotic regions, LDL apheresis could be considered if applicable\(^6\).

![Fig. 4.](image-url) Representative infantile case with breastfed sitosterolemia

The clinical course of the infantile case with sitosterolemia (13-month-old girl). Closed black circle indicates sitosterol, and closed orange triangle indicates LDL cholesterol. Closed red square indicates triglyceride. Closed blue rhombus indicates high-density lipoprotein cholesterol.
sitosterol and LDL cholesterol levels. Moreover, such mutations affect the phenotype of FH. Considering the potential mechanism of elevation of such sterols in this situation, including heterozygous mutation carriers, ezetimibe should be the best treatment; however, statins and PCSK9 inhibitors could be considered if the LDL cholesterol level is very high. The evidence suggests that LDL cholesterol rather than sitosterol should be treated despite the name of this disease. The accurate prevalence data of this disease and clinical insurance and comprehensive genetic analyses are needed to further elucidate the clinical importance of this disease.

Acknowledgments and Notice of Grant Support

None

Conflicts of Interest

None

References

1) Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. In The Metabolic and Molecular Bases of Inherited Diseases. 8th edition. Scrivener CR, Beaudet AL, Sly WS, Valle D, editors. McGraw-Hill, New York. 2001; 2863-2913

2) Soutar AK, Naoumova RP. Mechanisms of Disease: genetic causes of familial hypercholesterolemia. Nat Pract Cardiovasc Med. 2007; 4: 214-225

3) Escolà-Gil JC, Quesada H, Julve J, Martín-Campos JM, Cedó L, Blanco-Vaca F. Sitosterolemia: diagnosis, investigation, and management. Curr Atheroscler Rep. 2014; 16: 424

4) Tada H, Kawashiri MA, Takata M, Matsunami K, Imamura A, Matsuyama M, Sawada H, Nunoii H, Konno T, Hayashi K, Nohara A, Inazu A, Kobayashi J, Mabuchi H, Yamagishi M. Infantile Cases of Sitosterolemia with Novel Mutations in the ABCG5 Gene: Extreme Hypercholesterolemia is Exacerbated by Breastfeeding. JIMD Rep. 2015; 21: 115-122

5) Tada H, Kawashiri MA, Okada H, Endo S, Toyoshima Y, Konno T, Nohara A, Inazu A, Takao A, Mabuchi H, Yamagishi M, Hayashi K. A Rare Coincidence of Sitosterolemia and Familial Mediterranean Fever Identified by Whole Exome Sequencing. J Atheroscler Thromb. 2016; 23: 884-890

6) Sakuma N, Tada H, Mabuchi H, Hibino T, Kasuga H. Lipoprotein Apheresis for Sitosterolemia. Ann Intern Med. 2017; 167: 896-899

7) Kawamura R, Saiki H, Tada H, Hara A. Acute myocardial infarction in a 25-year-old woman with sitosterolemia. J Clin Lipidol. 2018; 12: 246-249

8) Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiaiten T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Nata-rajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruan-Rubio V, Rose SA, Rudfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weiss-burd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Eloaua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laasko M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Paleotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JC, Daly MJ, MacArthur DG; Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536: 285-291

9) Tsubakio-Yamamoto K, Nishida M, Nakagawa-Toyama Y, Masuda D, Ohama T, Yamashita S. Current therapy for patients with sitosterolemia—effect of ezetimibe on plant sterol metabolism. Atherosclerosis. 2010; 167: 896-899

10) Park JH, Chung IH, Kim DH, Choi MG, Garg A, Yoo EG. Sitosterolemia presenting with severe hypercholesterolemia and intertriginous xanthomas in a breastfed infant: case report and brief review. J Clin Endocrinol Metab. 2014; 99: 1512-1518

11) Yu XH, Qian K, Jiang N, Zheng XL, Cayabayab FS, Tang CK. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta. 2014; 428: 82-88

12) Tada H, Kawashiri MA, Nomura A, Teramoto R, Hosomichi K, Nohara A, Inazu A, Mabuchi H, Tajima A, Yamagishi M. Oligogenic Familial Hypercholesterolemia, LDL Cholesterol, and Coronary Artery Disease. Circulation. 2017; 136: A1731

13) Lamiquiz-Moneo I, Baila-Rueda L, Bea AM, Mateo-Gallero R, Pérez-Calahorra S, Marco-Benedí V, Martín-Navarro A, Ros E, Cofán M, Rodríguez-Rey JC, Pocovi M, Cenarro A, Giveira F. ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols. J Clin Lipidol. 2017; 11: 1432-1440

14) Hansel B, Carrié A, Brun-Druc N, Leclert G, Chantepie E, Fennell T, O’Donnell-Luria AH, Bea AM, Mateo-Gallero R, Pérez-Calahorra S, Marco-Benedí V, Martín-Navarro A, Ros E, Cofán M, Rodríguez-Rey JC, Pocovi M, Cenarro A, Giveira F. ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols. J Clin Lipidol. 2017; 11: 1432-1440

15) Wang J, Joy T, Mymin D, Frohlich J, Hegele RA. Phenotypic heterogeneity of sitosterolemia. J Lipid Res. 2004; 45: 2361-2367

16) Nomura A, Tada H, Nohara A, Kawashiri MA, Yamagishi M. Oral Fat Tolerance Test for Sitosterolemia and Familial Hypercholesterolemia: A Study Protocol. J Atheroscler Thromb. 2018; 25: 741-746

17) Tada H, Nomura A, Nohara A, Inazu A, Mabuchi H, Yamagishi M, Kawashiri M. Post-prandial Remnant Lipoprotein Metabolism in Sitosterolemia. J Atheroscler Thromb. 2018 Jul 12. doi: 10.5551/jat.44768. [Epub ahead of print]
18) Hidaka H, Nakamura T, Aoki T, Kojima H, Nakajima Y, Kosugi K, Hatanaka I, Harada M, Kobayashi M, Tamura A, Fujii T, Shigeta Y. Increased plasma plant sterol levels in heterozygotes with sitosterolemia and xanthomatosi. J Lipid Res. 1990; 31: 881-888
19) Bardawil T, Rebeiz A, Chaabouni M, El Halabi J, Kambris Z, Abbas O, Abou Hassan O, Hamie L, Bitar F, Ghani Kibbi A, Nemer G, Kurban M. Mutations in the ABCG8 gene are associated with sitosterolemia in the homozygous form and xanthelasmas in the heterozygous form. Eur J Dermatol. 2017; 27: 519-523
20) Miwa K, Inazu A, Kobayashi J, Higashikata T, Nohara A, Kawashiri M, Katsuda S, Takata M, Koizumi J, Mabuchi H. ATP-binding cassette transporter G8 M429V polymorphism as a novel genetic marker of higher cholesterol absorption in hypercholesterolaemic Japanese subjects. J Lipid Res. 2005; 109: 183-188
21) Yoshida A, Naito M, Miyazaki K. Japanese sisters associated with pseudohomozygous familial hypercholesterolemia and sitosterolemia. J Atheroscler Thromb. 2000; 7: 33-38
22) Genser B, Silbernagel G, De Backer G, Bruckert E, Carmena R, Chapman MJ, Deanfield J, Descamps OS, Rietzschel ER, Dias KC, März W. Plant sterols and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J. 2012; 33: 444-451
23) Silbernagel G, Chapman MJ, Genser B, Kleber ME, Fauler G, Scharnagl H, Grammer TB, Boehm BO, Mäkelä KM, Kähönen M, Carmena R, Rietzschel ER, Bruckert E, Deanfield JE, Miettinen TA, Raitakari OT, Lehtimäki T, März W. High intestinal cholesterol absorption is associated with cardiovascular disease and risk alleles in ABCG8 and ABO: evidence from the LURIC and YFS cohorts and from a meta-analysis. J Am Coll Cardiol. 2013; 62: 291-299
24) Hagiwara N, Kawada-Watanabe E, Koyanagi R, Arashi H, Yamaguchi J, Nakao K, Tobaru T, Tanaka H, Oka T, Endoh Y, Saito K, Uchida T, Matsui K, Ogawa H. Low-density lipoprotein cholesterol targeting with pitavastatin + ezeti-