Naturalness and superpartner masses

or

When to give up on weak scale supersymmetry

Greg W. Anderson[*] and Diego J. Castaño[†]

Center for Theoretical Physics
Laboratory for Nuclear Science
Massachusetts Inst. of Technology
Cambridge, MA 02139.

To appear in: Phys. Rev. D52, 1693 (1995)

Abstract

Superpartner masses cannot be arbitrarily heavy if supersymmetric extensions of the standard model explain the stability of the gauge hierarchy. This ancient and hallowed motivation for weak scale supersymmetry is often quoted, yet no reliable determination of this upper limit on superpartner masses exists. In this paper we compute upper bounds on superpartner masses

[*email address: anderson@fnth03.fnal.gov]
[†email address: castano@fshewj.hep.fsu.edu]
in the minimal supersymmetric model, and we identify which values of the superpartner masses correspond to the most natural explanation of the hierarchy stability. We compare the most natural value of these masses and their upper limits to the physics reach of current and future colliders. As a result, we find that supersymmetry could explain weak scale stability naturally even if no superpartners are discovered at LEP II or the Tevatron (even with the Main Injector upgrade). However, we find that supersymmetry cannot provide a complete explanation of weak scale stability, if squarks and gluinos have masses beyond the physics reach of the LHC. Moreover, in the most natural scenarios, many sparticles, for example, charginos, squarks, and gluinos, lie within the physics reach of either LEP II or the Tevatron. Our analysis determines the most natural value of the chargino (squark) (gluino) mass consistent with current experimental constraints is $\sim 50\ (250)\ ((250))\ \text{GeV}$ and the corresponding theoretical upper bound is $\sim 250\ (700)\ ((800))\ \text{GeV}$.
I. INTRODUCTION

As a candidate for physics beyond the standard model, weak scale supersymmetry has several appealing features: It provides an understanding of why a light weak scale is stable, it successfully predicts the value of $\sin^2 \theta_W$ assuming gauge unification, it predicts a top quark Yukawa coupling of order one, leading to a heavy M_t (assuming τ lepton and bottom quark Yukawa coupling unification), and it provides a natural cold dark matter candidate in the form of the lightest superpartner.

Despite these circumstantial arguments for weak scale supersymmetry, there is not a shred of direct experimental evidence to support it. Should we be surprised or discouraged that we have not yet found any supersymmetric partners to the standard model particles? To date, of the particles we believe to be fundamental, all those observed would be massless if the gauge symmetries of the standard model were unbroken.‡ Because the current, experimental probes only reach up through the lower fringes of the weak scale, it is not surprising that the fundamental particles discovered so far obtain masses as a consequence of spontaneously broken gauge symmetries. Their superpartners, by contrast, can have gauge invariant mass terms, provided supersymmetry is broken. Although they are not required to be light by gauge symmetries, there is a theoretical upper limit on their masses above which the weak scale does not arise naturally. As the scale of supersymmetry breaking is increased, the weak scale can only remain light by virtue of an increasingly delicate cancellation. Requiring that the weak scale arises naturally places an upper bound on superpartner masses.

In this paper, we attempt to quantify the relationship between naturalness and superpartner masses. Using recently formulated naturalness measures we compute the most natural

‡Only quite recently has there been experimental evidence for the top quark.
value of the superpartner masses, the extent to which naturalness is lost as experimental bounds on superpartner masses increase, and a theoretical upper limit to the masses of superparticles.

In section two we review the naturalness measures used in our study. Section three is devoted to a discussion of radiative electroweak symmetry breaking in the minimal supersymmetric extension of the Standard Model (MSSM) and to details of the numerical methods we employed in our analysis. The results, presented in section four, demonstrate that the MSSM can not accommodate the weak scale naturally if superpartner masses lie beyond the reach of LHC. Moreover, in the most natural cases, physics beyond the standard model has a good chance of being discovered at LEP II or the Tevatron.

II. MEASURING FINE TUNING

In this section we review the recently formulated naturalness measures we use in our analysis. A more detailed motivation and derivation of these criteria can be found in Ref. [1]. Any measure of naturalness contains assumptions about how the fundamental parameters of a Lagrangian are distributed. If we parameterize these assumptions, a quantitative measure of naturalness follows directly. Consider a Lagrangian density written in terms of fundamental couplings specified at the high energy boundary of the effective theory: $\mathcal{L}(a_1, a_2, \ldots a_n)$. At a low energy scale, we can write the Lagrangian in terms of physical observables X (e.g., $X = M_Z^2$). These observables will depend on the a_i through the renormalization group and possibly on a set of minimization conditions: $X = X(a)$. If we assume the probability distribution of a fundamental Lagrangian parameter a is given by

$$dP(a) = \frac{f(a)da}{\int f(a)da}, \quad (2.1)$$

a likelihood distribution for the low energy observable X follows

$$\int_{a_-}^{a_+} f(a)da = \int_{X(a_-)}^{X(a_+)} \rho(X) dX. \quad (2.2)$$
The value of an observable \(X \) is unnatural if it is relatively unlikely to end up in an interval \(u(X) \) about \(X \) compared to similarly defined intervals around other values of \(X \). The probability that \(X \) lies within an interval \(u(X) \) about \(X \) has weight \(u \rho \). So we define our quantitative measure of naturalness as

\[
\gamma = \frac{\langle u \rho \rangle}{u(X) \rho(X)},
\]

where

\[
\langle u \rho \rangle = \frac{\int u \rho \, da}{\int da}.
\]

The conventional sense of naturalness for hierarchy problems corresponds to an interval \(u = X \). With this prescription, fine tuning corresponds to \(\gamma \gg 1 \). The \(\gamma \) defined in Eq. (2.3) is proportional to the Barbieri-Giudice sensitivity parameter \(c(X, a) = |(a/X)(\partial X/\partial a)| \). We can use Eqs. (2.3-4) to define an average sensitivity \(\bar{c} \) through the relation

\[
\gamma = c/\bar{c}.
\]

This definition of \(\bar{c} \) gives

\[
1/\bar{c} = \frac{\int da \, a \rho(X; a)^{-1}}{\int da \, \rho(a)}.
\]

The naturalness measures defined by Eqs. (2.5-6) are a refinement of Susskind’s description of Wilson’s naturalness criteria. Observable properties of a system, \(i.e., \) \(X \), should not be unusually unstable with respect to minute variations in the fundamental parameters, \(a \). In other words, \(X(a) \) is fine tuned if the values of the fundamental parameters \(a \) are chosen

\(^8\) For example, in a theory of fundamental scalars, the scalar mass is related to the cut-off \(\Lambda \) and the bare term \(m_0 \) by: \(m_s^2 = g^2 \Lambda^2 - m_0^2 \). In this theory we must adjust \(g^2 \) with the same precision to place the scalar mass squared in a \(1 \, (\text{GeV})^2 \) window whether the scalar mass is \(O(\Lambda) \) or \(O(10^{-14}\Lambda) \). A small mass for the scalar is unnatural in the sense that a small change in \(g^2 \) leads to a large fractional change in \(m_s^2 \).
so that X depends on the a in an unusually sensitive manner when compared to other values of the fundamental parameters a. Sensitivity in this case is understood to mean that a small fractional change in a leads to a large fractional change in X. **

Returning to Eq. (2.4-2.6), we see that three choices need to be specified before we can make practical use of this prescription. First, the choice of $f(a)$ reflects our theoretical prejudice about what constitutes a natural value of the Lagrangian parameter a. We will make two different choices for $f(a)$ as an aid in determining how sensitively the bounds we derive depend on this theoretical prejudice: $f(a) = 1$ and $f(a) = 1/a$. We denote the corresponding naturalness measures by γ_1 and γ_2, respectively. The bounds we derive on superpartner masses in section four are fairly insensitive to this choice. Second, the conventional notion of naturalness for hierarchy problems is $u(X) = X^{[1]}$. This choice has already been made in Eq. (2.6) and it is implicit in the qualitative statement of naturalness written above. Finally, the range of integration (a_-, a_+) for the averaging must be chosen. This range will be discussed in section four.

III. THE MSSM

All the chiral interactions of the MSSM are described by its superpotential

$$W = \tilde{t}Y_u \hat{\Phi_u} \hat{Q} + \tilde{d}Y_d \hat{\Phi_d} \hat{Q} + \tilde{e}Y_e \hat{\Phi_d} \hat{L} + \mu \hat{\Phi_u} \hat{\Phi_d}.$$ (3.1)

The μ-term explicitly breaks the Peccei-Quinn symmetry and avoids a phenomenologically disastrous axion. In addition to all the particles of the SM, there are thirty-one new ones including three new Higgs bosons.

Supersymmetry is explicitly broken in the MSSM using soft terms derived from the low energy limit of supergravity (SUGRA) theory. The form of the soft SUSY breaking potential

** In deriving the naturalness criteria Eqs (2.3-2.6), we have attempted to make explicit the discretionary choices inherent in any quantitative measure of naturalness. In any particular application, in order to obtain a reliable measure of naturalness, these choices must be made sensibly.
in the MSSM includes mass terms for all the scalars and for the gauginos as well as bilinear and trilinear terms following from the Kähler potential of the SUGRA theory in the low energy limit.

A generic feature of minimal low energy SUGRA models is universality of the soft terms. Universality implies that all the scalar mass parameters are equal to the gravitino mass, \(m_0 \), at some high energy scale which we take to be the scale of gauge coupling unification, \(M_X = 10^{16} \) GeV. All soft trilinear couplings share a common value, \(A_0 \), that can be related to the soft bilinear coupling, \(B_0 \), depending on the form of the Kähler potential. To some extent, universality in the soft breaking terms is required in order to avoid unwanted flavor changing neutral current effects. Since the gauge couplings unify, the gaugino mass parameters are assumed equal to a common value, \(m_{1/2} \), at \(M_X \). Consequently, the minimal model introduces five new parameters, \(m_0 \), \(A_0 \), \(m_{1/2} \), \(B_0 \), and \(\mu_0 \). However, it is very predictive since these account for the masses of thirty-one new particles [4].

In the MSSM, the electroweak symmetry is broken radiatively [5–8]. In our analysis, we use the 1-loop effective Higgs potential

\[
V_{\text{1-loop}} = V_0 + \Delta V_1 ,
\]

where the expression for the 1-loop correction is given by

\[
\Delta V_1 = \frac{1}{64\pi^2} \sum_i (-1)^{2s_i}(2s_i + 1)m_i^4(\ln \frac{m_i^2}{Q^2} - \frac{3}{2}) .
\]

The \(m_i \) represent the field dependent masses of the particles of the model and the \(s_i \) the associated spins. We include the contributions of all the MSSM particles in the 1-loop correction.

Using the renormalization group, the parameters are evolved to low energies where the potential attains validity. This RG improvement uncovers electroweak symmetry breaking. The exact low energy scale at which to minimize is unimportant as long as the 1-loop effective potential is used and the scale is in the expected electroweak range. The minimization scale will arbitrarily be taken to be \(M_Z \). If the electroweak symmetry is broken, minimization
yields non-zero values for the vacuum expectation values (VEVs) of the two Higgs fields, v_u and v_d, or equivalently $v = \sqrt{v_u^2 + v_d^2}$ and $\tan \beta = v_u/v_d$. The two minimization conditions may be expressed as follows

$$\mu^2(M_Z) = \frac{\overline{m}_{\Phi_d}^2 - \overline{m}_{\Phi_u}^2 \tan^2 \beta - \frac{1}{2} m_Z^2}{\tan^2 \beta - 1},$$ \hspace{1cm} (3.4)$$

$$B(M_Z) = \frac{(\overline{m}_{\Phi_u}^2 + \overline{m}_{\Phi_d}^2 + 2 \mu^2) \sin 2\beta}{2 \mu(M_Z)},$$ \hspace{1cm} (3.5)$$

where $\overline{m}_{\Phi_{u,d}}^2 = m_{\Phi_{u,d}}^2 + \partial \Delta V_1/\partial v_{u,d}^2$. In the process of integrating the 2-loop renormalization group equations, the threshold corrections due to all the light particles are implemented as step functions [3].

The procedure we follow to analyze the MSSM assumes the following 4+1 free input parameters: A_0, m_0, $m_{1/2}$, $\tan \beta_0$, and sign(μ) since it is undetermined from Eq. (3.4). The other parameters of the MSSM are fixed using the following constraints: Electroweak breaking in the form of two minimization conditions at M_Z, the physical masses of the bottom quark and τ lepton, and the value of the strong coupling at M_Z. Therefore, solutions for B_0, μ_0, $y_\tau(M_X)$, $\alpha_3(M_X)$, and M_t are found consistent with the RG, the above constraints, and specified values for the free input parameters. We take the value of the strong coupling at M_Z to be $\alpha_3(M_Z) = .118$. The corresponding value of the strong coupling at M_X is determined based on this low energy constraint. The values of $\alpha_1(M_X)$ and $\alpha_2(M_X)$ are set equal and fixed at $1/25.3$. This constant value for $\alpha_{1,2}$ at M_X never leads to more than about 1% and 3% error in α_{em} and $\sin^2 \theta_W$, respectively. The difference in $\alpha_3(M_X)$ and $\alpha_{1,2}(M_X)$ is at most 3% and can be accommodated using GUT thresholds.

Not all input values for the free parameters will yield adequate solutions, and the 4+1 dimensional parameter space must be explored and restricted using various criteria. Cases are rejected based on the existence of color/charge breaking vacua or a charged lightest supersymmetric particle (LSP). In arriving at the superpartner mass bounds, the fine tuning prescription, Eq. (2.3), is applied to all solutions found in a grid of approximately 2000 points bounded as follows: $|A_0| \leq 400$ GeV, $0 \leq m_0 \leq 400$ GeV, $|m_{1/2}| \leq 500$ GeV, $1 \leq \tan \beta(M_X) \leq 15$, and sign($\mu$) = ±.
IV. ANALYSIS

The essential, novel feature of the fine tuning measure \(\gamma \) is to evaluate the sensitivity, \(c \), of a physical quantity relative to a benchmark, \(\bar{c} \). We have derived a formula for this benchmark in section three and in Ref. [1]. This prescription for calculating \(\bar{c} \) requires us to choose a range of integration \((a_-, a_+)\). We use two conditions to define a suitable range of integration. First, we integrate over the all values of \(a \) where \(SU(3) \times SU(2) \times U(1) \) is broken to \(SU(3) \times U(1)_{em} \). The resulting limits on the range of integration generally come from two conditions on the value of \(M_Z \). The minimum value of \(M_Z \) cannot be less than 0, and its maximum value cannot exceed some upper bound, often set by the requirement that sneutrino squared masses be positive. Second, in our analysis we only consider points where we are able to find a significantly large range of integration. If the range of integration is not suitably large, we will fail in our attempt to compare the sensitivity of \(M_Z \), when \(a \) is chosen so that the value of \(M_Z \) is 91.2 GeV, to the average sensitivity. Inspection of Eq. (2.6) shows that in the limit of vanishing \((a_+ - a_-)\), \(\bar{c} \) approaches \(c \), and \(\gamma \) tends to one. To eliminate spurious calculations of \(\gamma \), we only consider cases were \(\delta a = a_+ - a_- \) exceeds \(a/4 \) or \(a/8 \) for \(M_Z(a) = 91.2 \) GeV. We find that typically this has the effect of removing points where \(SU(3) \) only remains unbroken as the result of a fine tuning.

Figures 2-9 display correlations between the superpartner masses and fine tuning. For each solution point, we computed the fine tuning with respect to the common scalar mass, the top quark Yukawa coupling, and the common gaugino mass. Then, for each individual solution, we define \(\tilde{\gamma} \) as the largest of these fine tunings. Many earlier studies of naturalness, as well as employing measures of sensitivity instead of fine-tuning, considered the naturalness of the \(Z \) mass with respect to individual parameters separately. This separation can lead to a significant underestimate of fine tuning. In particular, we have compared the lower

\[\dagger \dagger \text{In fact, the original bound of } c < 10 \text{ imposed by Barbieri and Giudice can no longer be satisfied.} \]
envelopes defined by scatter plots, and we find explicitly that, if fine tuning is plotted as
a function of a particular coupling or mass, the envelope defined by $\tilde{\gamma}$ cannot in general
be constructed from the individual envelopes for $\gamma(m_0)$, $\gamma(m_{1/2})$, and $\gamma(y_t)$. Figures 2-9 display the fine tuning measure $\tilde{\gamma}$ plotted against selected superpartner masses. The
individual points shown in these figures correspond to the grid of approximately 2000 points
discussed in section three. We caution the reader that the density of these points is not
an indication of how likely particular values of the superpartner masses or γ are. This is
because the grid we have used is not completely uniform, and more importantly because
the minimization conditions (3.4-5) have been used to determine the values of B_0 and μ_0.
The dashed and dotted curves in these figures show the minimum fine tuning necessary for
a particular value of the superpartner mass. The likelihood or naturalness of a particular
value of a superpartner mass scales like $1/\gamma$.

Figure 1 contrasts the sensitivity parameter c with our measure of fine tuning γ. We
see that currently viable solutions depend on at least one fundamental parameter in a fairly
sensitive manner, however the fine tuning curve, $\tilde{\gamma}$, shows that this sensitivity is not always
unusual.

Figures 2a-2b display the correlation between the gluino mass and the fine tuning param-
eters $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$. This plot and, unless otherwise noted, the following plots are constructed
from solution points consistent with the current LEP limits on superpartner masses [10]. We
have taken the limits on the sneutrino and the charged superpartner masses to be $M_{Z}/2$,
and the lower limit on the light Higgs mass as 60 GeV. If no superpartner masses lie below

A calculation of the sensitivity of the Z mass with respect to m_0, $m_{1/2}$, y_t, and g_3 gives $\tilde{c} > 30$
(see Fig. 1).

‡‡This is a reflection of the fact that because the Z mass depends on several parameters, even if
another variable is fixed, it is easy to find solutions where the Z boson’s dependence on an isolated
fundamental parameter is relatively insensitive.
these limits the most natural value of the gluino mass is about 260 GeV, above the published CDF limit of 141 GeV and also above the recently reported limit from DØ [11]. For potential, future search limits at the Tevatron see for example Ref. [12]. If we require that fine tunings are at most a part in ten, the gluino mass should lie below $\sim 600 - 800$ GeV, a value that should be easily accessible at the LHC [13].

Figures 3a-b displays the correlation between fine tuning and the lightest squark mass of the first and second generation. The analogous plots for the top squark mass are shown in Figs. 4a-b. The most natural value of the stop mass is around 220 GeV and for the lightest of the remaining squarks it is about 240 GeV. This is close to the preliminary mass limit reported by DØ at Glasgow [11]. If we require that fine tunings are at most a part in ten, the stop mass should lie below $\sim 500 - 600$ GeV and the lightest of the remaining squark masses should lie below $\sim 600 - 800$ GeV.

Figures 5a-b display the correlation between fine tuning and the lightest chargino mass. This plot displays solution points consistent with the LEP derived constraints on superpartner masses with the exception of the chargino mass. The most natural value of the lightest chargino mass, corresponding to the smallest $\tilde{\gamma}$, is around 50 GeV. Note that a significant region of the most natural solutions lie within the physics reach of LEP II, which should be able to search for charged particles up to the kinematic limit [14]. The lightest chargino mass should not exceed $\sim 200 - 300$ GeV if $\tilde{\gamma} < 10$.

Figures 6a-b display the correlation between fine tuning and the mass of the lightest superpartner. The most natural value of the LSP mass appears to be around 42 GeV, and the theoretically favored values of the LSP mass are concentrated below 70 GeV. The LSP can not be heavier than 150 GeV if $\tilde{\gamma} < 10$. This bound provides a more stringent limit than bounds set by the requirement that the LSP not over-close the universe.

Figures 7a-b summarizes the mass predictions for all the superpartners. The upper and lower ends of the bars correspond to $\tilde{\gamma} < 10$ and the current experimental limits, respectively. The diamond point represents the $\tilde{\gamma} < 5$ mass limit, and the square represents the most natural value for the respective sparticle mass.
Finally, for completeness we display the correlation between the lower bound on fine tuning and the fundamental parameters m_0 and $|\mu_0|$ in Figs. 8 and 9.

V. CONCLUSIONS

As the mass limits on superpartners increase, it becomes increasingly difficult to accommodate a light weak scale naturally. We have presented a detailed study of the relationship between superpartner masses and naturalness. This analysis demonstrates that supersymmetry can not accommodate the weak scale without significant fine tuning if superpartner masses lie beyond the physics reach of the LHC. In addition our analysis reveals that the most natural values of these masses often lie well below 1 TeV. We note that our limits are higher than those which would be obtained using conventional sensitivity criteria, but they lie below the bounds found in common folklore. In light of our results, we feel the potential for the discovery of physics beyond the standard model before the LHC is promising. However, this optimism should not be interpreted as a guarantee that LEP II or the Tevatron will see superpartners even in the case when supersymmetry is relevant to electroweak symmetry breaking. A more detailed application of these naturalness measures to collider SUSY discovery reaches is in progress [15].

ACKNOWLEDGMENTS

We would like to thank Howie Baer and Xeres Tata for providing us with updates on collider search reaches, and GA would like to thank the Institute for Theoretical Physics in Santa Barbara and the Aspen Center for Physics for their hospitality. This work was supported in part by funds provided by the U.S. Department of Energy (DOE) under cooperative agreement DE-FC02-94ER40818 and by the Texas National Research Laboratory Commission under grant RGFY932786.
REFERENCES

[1] G. W. Anderson and D. J. Castaño, Phys. Lett. B 347, 300 (1995) hep-ph/9409419.

[2] R. Barbieri and G. F. Giudice, Nucl. Phys. B306, 63 (1988); J. Ellis, K. Enqvist, D.V. Nanopoulos, and F. Zwirner, Mod. Phys. Lett. A1, 57 (1986).

[3] K. Wilson, as quoted by L. Susskind, Phys. Rev. D20, 2619 (1979); G.’t Hooft, in Recent developments in gauge theories, ed by G. ’t Hooft et al. (Plenum Press, New York, 1980)p. 135.

[4] See for example S. Martin and P. Ramond, Phys. Rev. D48, 5365 (1993).

[5] L. Ibáñez and G.G. Ross, Phys. Lett 110B, 215 (1982).

[6] K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 68, 927 (1982).

[7] L. Alvarez-Gaumé, M. Claudson, and M. B. Wise, Nuc. Phys. B207, 96 (1982); L. Alvarez-Gaumé, J. Polchinski, and M. B. Wise, Nuc. Phys. B221, 495 (1983).

[8] J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and K. Tamvakis, Phys. Lett. 125B, 275 (1983).

[9] See for example D. J. Castaño, E. J. Piard, and P. Ramond, Phys. Rev. D49, 4882 (1994).

[10] D. Decamp et. al. (ALEPH Collaboration), Phys. Rep. 216, 253 (1992); P. Abreu et. al. (DELPHI Collaboration), Phys. Lett. B247, 157 (1990); O. Adriani et. al. (L3 Collaboration), Phys. Rep 236, 1 (1993); M. akrawy et. al. (OPAL Collaboration), Phys. Lett. B240, 261 (1990); G. Giacomelli and P. Giacomelli, Riv. Nuovo Cim. 16, 1 (1993).

[11] S. Hagopian FERMILAB-CONF-94-331-E, Oct 1994. 4pp., hep-ex/9410003; F. Abe et. al. (CDF Collaboration), Phys. Rev. Lett. 69, 3439 (1992); Phys. RevD45, 3921 (1992).
[12] T. Kamon, J. Lopez, P. McIntyre and J. White, CTP-TAMU-19/94 (1994); H. Baer, C. Kao and X. Tata, Phys. Rev. D48, R2978 (1993).

[13] Report of the Supersymmetry Working Group (C. Albarjar et. al.) Proc of ECFA-LHC Workshop (CERN 90-10), Vol II, 606-683 (1990).

[14] See for example J. Feng, and M. Strassler, hep-ph/9408359 SLAC-PUB-6497, RU-94-67; H. Baer, C. Kao, and X. Tata, Phys. Rev. d48, 5175 (1993); M. Chen, C. Dionisi, M. Martinez and X. Tata, Phys. Rep. 159, 201 (1988).

[15] G. W. Anderson and D. J. Castaño, MIT-CTP-2464 hep-ph/9509212.
Figure 1: Curves representing the lower envelope of regions defined by
\[\bar{c} = \max \{ c(m_{1/2}), c(m_0), c(y_t), c(g_3) \} \] and
\[\bar{\bar{\gamma}}_{1,2} = \max \{ \gamma_{1,2}(m_{1/2}), \gamma_{1,2}(m_0), \gamma_{1,2}(y_t), \gamma_{1,2}(g_3) \} \] plotted as a function of \(\tan \beta \). The upper curve represents the amount of sensitivity required by current experimental superpartner limits, and the lower curves display the amount of fine tuning.

Figures 2a-b: The fine tuning measures \(\gamma_{1,2} \) as a function of the gluino mass.

Figures 3a-b: The fine tuning measures \(\gamma_{1,2} \) as a function of the lightest squark mass of the first two generations.

Figures 4a-b: The fine tuning measures \(\gamma_{1,2} \) as a function of the lightest top squark mass.

Figures 5a-b: The fine tuning measures \(\gamma_{1,2} \) as a function of the lightest chargino mass.

Figures 6a-b: The fine tuning measures \(\gamma_{1,2} \) as a function of the lightest sparticle mass.

Figures 7a-b: Superpartner mass ranges. The upper and lower ends of the bars correspond to \(\bar{\bar{\gamma}} < 10 \) and the current experimental limits, respectively. The diamond (square) represents the limit \(\bar{\bar{\gamma}} < 5 \) (the most natural value).

Figures 8a-b: The fine tuning measures \(\gamma_{1,2} \) as a function of the common scalar mass \(m_0 \).

Figures 9a-b: The fine tuning measures \(\gamma_{1,2} \) as a function of the mixing parameter \(|\mu_0| \).
