Disability-Adjusted Life Years (DALYs) and Mortality Rate Attributed to Unsafe Sex and Drug Use for AIDS in the Middle East and North Africa Countries

Farid Najafi
Kermanshah University of Medical Sciences

Fatemeh Khoarravi
Kermanshah University of Medical Sciences

Mojtaba Ghalandari
Kermanshah University of Medical Sciences

Mitra Darbandi
Kermanshah University of Medical Sciences https://orcid.org/0000-0002-9173-8814

Research

Keywords: Global burden of disease, Mortality, Unsafe sex, HIV

DOI: https://doi.org/10.21203/rs.3.rs-60426/v1

License: © (This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License)
Abstract

Background: To reduce the burden of HIV/AIDS, it is important to identify and estimate the attributable burden of risk factors associated with HIV/AIDS. The present study aimed to estimate the attributable burden of unsafe sex and drug use in AIDS in the Middle East and North Africa (MENA) countries.

Methods: We used the data in Global Burden of Disease (GBD) 2017 to estimate the attributable burden of unsafe sex and drug use in AIDS in the MENA (22 countries) from 1990 to 2017 by sex and age. We estimated the attributable mortality and disability-adjusted life-years (DALYs) for the mentioned risk factors.

Results: The rate of DALYs/100,000 attributed to drug use for AIDS increased 1.10 (95% CI: 0.75-1.71) to 13.39 (95% CI: 9.98-18.17) in women of MENA countries from 1990 to 2017, and there is an increasing trend in DALY attributable to drug use for AIDS in men. The rate of DALYs/100,000 attributed to unsafe sex for AIDS increased in women of MENA countries, 5.15 (95% CI: 3.34-8.07) to 53.44 (95% CI: 38.79-75.89); and 10.06 (95% CI: 6.61-16.18) to 46.16 (95% CI: 31.30-72.66) in men. Age-standardized mortality rate attributed to drug use and unsafe sex for AIDS increased from 1990 to 2017 in both sex in MENA.

Conclusion: The rate of DALYs/100,000 and age-standardized mortality rate attributed to unsafe sex and drug use increased in MENA from 1990 to 2017. While most of such countries have traditional cultures with religious beliefs, such increase need to be addressed in more depth by all policy makers.

Background

The Middle East and North Africa (MENA), is one of few regions where the number of new HIV infections is increasing [1]. New HIV infections in the MENA region have increased by 31% since 2001, which is the highest increase among all regions in the world [2]. Between 2000 and 2015, the increase in the number of new infections was estimated at over a third, while that of AIDS-related deaths, at over threefold [3, 4]. However, the current prevalence of 0.1% is still among the lowest rates globally [2]. The majority of these infections seem to be occurring among key populations, including people who inject drugs (PWID), their sexual partners and sex workers (SWs). Studies have shown that transmission through unsafe sex and drug users is high and significant, and these are two important risk factors for HIV/AIDS [1, 5-7].

To reduce the burden of HIV/AIDS, it is important to identify and estimate the attributable burden of risk factors associated with HIV/AIDS. Globally, in 2013, more than 10 million DALYs were estimated to be attributable to previous exposure to HIV, HBV, and HCV via injecting drug use (IDU). This represents a four-times increase in DALYs since 1990 [7]. Injection drug use increases the risk of occurrence and AIDS-related deaths [8, 9]. The reasons for this are likely multifactorial and not entirely clear, but may be related to lifestyle behaviors more common in this population that are generally detrimental to overall health (e.g., alcohol and illicit substance abuse, tobacco smoking) [10, 11]. HIV continues to spread through sexual transmission worldwide. Studies indicate that a significant number of HIV positive individuals engage in high-risk sexual practices. Though many persons living with HIV/AIDS either abstain from sex or significantly reduce risky sexual behavior, a significant percentage of HIV positive persons (ranging from 10% to as high as 64%) continue to engage in risky sexual behaviors [12-16]. Many of people with HIV continue to engage in unprotected sexual behaviors that place others at risk for infection and place themselves at risk for contracting secondary infections (e.g., syphilis, gonorrhea, herpesvirus-6) that may accelerate HIV disease [17, 18].

Recognizing the attributable burden of risk factors will support the policy making for prevention, and control of HIV/AIDS. Drug use and unsafe sex are two major risk factors known to control that can reduce the burden of HIV/AIDS. The purpose of this study was to estimate the attributable burden of unsafe sex and drug use in AIDS in the MENA countries based on findings from the Global Burden of Disease (GBD) Study from 1990 to 2017.

Methods

This study is based on the data and measures of the GBD Study 2017 [19]. The GBD study series provides comprehensive global information about diseases and risk factors. This information is based on geographical areas investigating the incidence, prevalence and mortality, as well as disease burden attributable to risk factors by age and sex over time. For the purpose of this study, we collected information from the MENA countries, which included 21 countries (Afghanistan, Algeria, Bahrain, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Sudan, Syria, Tunisia, Turkey, United Arab Emirates, Yemen), by 1990, 2007 and 2017.

After cleaning the data, attributable mortality and Disability-adjusted life years (DALYs) to drug use and unsafe sex for AIDS was evaluated. The attributable number of DALY and death of the risk factors were estimated by multiplying DALYs/mortality rate from HIV/AIDS by the population attributable fraction for HIV/AIDS due to that risk factor.

Attributable burden of drug use and unsafe sex in AIDS reported for all countries in the MENA countries by sex. The trend of attributed burden was reported at three time points between 1990, 2007 and 2017 by sex and risk factor. The percent change was calculated at three time points. We report age-standardized estimates, and 95% confidence intervals (CI) for rates or numbers of DALYs or mortality. R software is used to design the graphs.

Results

The rate of DALYs/100,000 attributed to drug use for AIDS and percentage changes from 1990 to 2017 in MENA countries are shown in Table 1. In MENA countries, the rate of DALYs/100,000 attributed to drug use for AIDS in women, 1.10 (95% CI: 0.75-1.71) in 1990, 10.60 (95% CI: 10.6-15.27) in 2007 and 13.39 (95% CI: 9.98-18.17) in 2017.
Country	sex	DALY (Per 100000)	Percent change (%)	Age standardized Mortality Rate (Per 100000)	Percent change (%)																								
		1990	2007	2017	1990–2007	2007–2017	1990–2017	1990	2007	2017	1990–2007	2007–2017	1990–2017																
Afghanistan	F	1.30	3.15	3.57	142.31	13.33	174.62	0.02	0.06	0.06	200.00	0.00	200.00																
		(0.06–4.85)	(3.15–11.99)	(0.13–16.82)	0.00–0.09	0.00–0.24	0.00–0.35																						
	M	3.81	7.69	9.61	101.84	24.97	152.23	0.08	0.16	0.20	100.00	25.00	150.00																
		(0.31–14.18)	(0.98–30.27)	(0.28–59.05)	0.30–0.31	0.01–0.66	0.27–1.00																						
Algeria	F	1.11	5.28	4.13	375.68	-21.78	272.07	0.02	0.10	0.07	400.00	-30.00	250.00																
		(0.26–5.57)	(5.28–25.23)	(0.44–29.77)	0.00–0.11	0.01–0.51	0.64–0.00																						
	M	1.46	5.71	5.75	291.10	0.70	293.84	0.03	0.12	0.12	300.00	0.00	300.00																
		(0.21–7.35)	(0.68–24.19)	(0.43–25.83)	0.00–0.16	0.00–0.56	0.00–0.58																						
Bahrain	F	4.56	12.63	10.90	176.97	-13.70	139.04	0.09	0.26	0.22	188.89	-15.38	144.44																
		(3.52–5.41)	(12.63–15.15)	(8.54–13.55)	0.07–0.11	0.20–0.32	0.17–0.28																						
	M	34.58	37.31	16.56	7.89	-55.62	-52.11	0.81	0.96	0.41	18.52	-57.29	-49.38																
		(27.1–40.72)	(34.89–40)	(14.36–19.58)	0.65–0.94	1.89–0.03	0.35–0.48																						
Egypt	F	0.40	0.74	0.30	85.00	-59.46	-25.00	0.00	0.01	0.00	-100.00	-	-																
		(0.21–0.58)	(0.74–0.93)	(0.17–0.59)	0.00–0.01	0.01–0.01	0.00–0.01																						
	M	0.84	0.93	0.63	10.71	-32.26	-25.00	0.01	0.01	0.01	0.00	0.00	0.00																
		(0.41–1.16)	(0.69–1.27)	(0.41–0.96)	0.01–0.02	0.01–0.02	0.00–0.01																						
Iran	F	1.27	8.47	20.62	566.93	143.45	1523.62	0.02	0.18	0.47	800.00	161.11	2250.00																
		(1.05–1.47)	(8.47–9.02)	(17.31–24.01)	0.02–0.03	0.17–0.19	0.38–0.55																						
	M	5.59	27.53	33.52	392.49	21.76	499.64	0.11	0.56	0.69	409.09	23.21	527.27																
		(4.51–6.53)	(25.92–29)	(30.17–37.5)	0.08–0.13	0.53–0.58	0.62–0.78																						
Iraq	F	0.24	1.24	1.56	416.67	25.81	550.00	0.00	0.02	0.02	-	0.00	-																
		(0.14–0.37)	(1.24–1.59)	(1.07–2.18)	0.00–0.00	0.01–0.03	0.02–0.04																						
	M	0.2	1.04	1.24	420.00	19.23	520.00	0.00	0.02	0.02	-	0.00	-																
		(0.11–0.31)	(0.81–1.35)	(0.87–1.69)	0.00–0.00	0.01–0.02	0.01–0.03																						
Jordan	F	0.30	0.79	0.58	163.33	-26.58	93.33	0.00	0.01	0.01	-	0.00	-																
		(0.20–0.42)	(0.79–1.03)	(0.42–0.78)	0.00–0.00	0.01–0.02	0.00–0.01																						
	M	0.13	0.54	0.93	315.38	72.22	615.38	0.00	0.01	0.01	-	0.00	-																
		(0.01–0.18)	(0.41–0.7)	(0.48–1.46)	0.00–0.00	0.00–0.01	0.00–0.03																						
Kuwait	F	0.77	1.34	0.62	74.03	-53.73	-19.48	0.01	0.02	0.01	100.00	-50.00	0.00																
		(0.57–1.01)	(1.34–1.78)	(0.46–0.83)	0.01–0.02	0.01–0.03	0.00–0.01																						
	M	1.36	0.64	0.56	-52.94	-12.50	-58.82	0.02	0.01	0.01	-50.00	0.00	-50.00																
		(1.01–1.68)	(0.5–0.79)	(0.44–0.7)	0.02–0.03	0.00–0.01	0.00–0.01																						
Country	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	
--------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
Lebanon	5.36	6.33	5.96	18.10	-5.85	11.19	0.10	0.12	0.11	20.00	-8.33	10.00																	
(0.24–17.71)	(6.33–27.74)	(0.21–27.15)	(0.00–0.34)	(0.00–0.55)	(0.00–0.55)																								
Libya	1.09	5.94	8.28	444.95	39.39	659.63	0.02	0.11	0.16	450.00	45.45	700.00																	
(0.07–3.83)	(5.94–23.02)	(0.89–31.37)	(0.00–0.07)	(0.01–0.46)	(0.01–0.64)																								
Morocco	2.00	13.72	7.70	586.00	-43.88	285.00	0.03	0.26	0.14	766.67	-46.15	366.67																	
(0.13–6.38)	(13.72–61.9)	(0.48–44.44)	(0.00–0.13)	(0.01–0.04)	(0.01–0.06)																								
Oman	0.58	2.25	3.14	287.93	39.56	441.38	0.01	0.04	0.06	300.00	50.00	500.00																	
(0.42–0.79)	(2.25–3.11)	(1.59–5.87)	(0.00–0.01)	(0.02–0.06)	(0.02–0.11)																								
M	1.38	6.21	15.43	350.00	148.47	1018.12	0.03	0.13	0.35	333.33	169.23	1066.67																	
(1.01–1.75)	(4.47–8.28)	(7.56–24.01)	(0.02–0.03)	(0.09–0.17)	(0.16–0.55)																								
Palestine	0.07	0.95	1.30	1257.14	36.84	1757.14	0.00	0.01	0.02	-100.00	-																		
(0.05–0.09)	(0.95–1.21)	(0.99–1.71)	(0.00–0.00)	(0.01–0.02)	(0.01–0.03)																								
M	0.56	1.74	1.7	210.71	-2.30	203.57	0.01	0.03	0.03	200.00	0.00	200.00																	
(0.31–0.76)	(1.36–2.18)	(1.3–2.2)	(0.00–0.01)	(0.02–0.04)	(0.02–0.04)																								
Qatar	3.59	2.26	1.87	-37.05	-17.26	-47.91	0.06	0.04	0.03	-33.33	-25.00	-50.00																	
(2.47–4.89)	(2.26–3.18)	(1.24–2.58)	(0.04–0.09)	(0.03–0.06)	(0.02–0.05)																								
M	3.45	1.94	1.14	-43.77	-41.24	-66.96	0.07	0.04	0.02	-42.86	-50.00	-71.43																	
(2.41–4.66)	(1.47–2.49)	(0.88–1.47)	(0.04–0.09)	(0.03–0.05)	(0.01–0.03)																								
Saudi Arabia	2.74	10.44	10.19	281.02	-2.39	271.90	0.05	0.21	0.20	320.00	-4.76	300.00																	
(1.65–4.38)	(10.44–13.17)	(7.2–13.85)	(0.03–0.08)	(0.02–0.16)	(0.14–0.28)																								
M	3.15	8.82	7.69	180.00	-12.81	144.13	0.06	0.19	0.16	216.67	-15.79	166.67																	
(1.91–5.02)	(6.96–11.01)	(5.4–10.21)	(0.04–0.10)	(0.15–0.23)	(0.11–0.21)																								
Sudan	5.11	122.92	138.22	2305.48	12.45	2604.89	0.09	2.44	2.77	2611.11	13.52	2977.78																	
(2.94–10.43)	(122.92–186.15)	(90.81–201.91)	(0.05–0.19)	(1.56–3.62)	(1.84–4.00)																								
M	11.78	106.92	98.4	807.64	-7.97	735.31	0.22	2.19	2.02	895.45	-7.76	818.18																	
(6.71–24.04)	(68.56–162.06)	(64.05–154.16)	(0.12–0.47)	(1.42–3.30)	(1.30–3.16)																								
Syria	0.30	0.57	0.49	90.00	-14.04	63.33	0.00	0.01	0.00	-100.00	-																		
(0.21–0.42)	(0.57–0.80)	(0.31–0.80)	(0.00–0.00)	(0.00–0.01)	(0.00–0.01)																								
M	0.14	0.22	0.14	57.14	-36.36	0.00	0.00	0.00	-																				
(0.11–0.19)	(0.14–0.32)	(0.08–0.28)	(0.00–0.00)	(0.00–0.00)	(0.00–0.00)																								
Mortality Rates and DALYs

Country	Sex	Rate (per 100,000)	DALYs (per 100,000)	1990	2007	2017	Change			
Europe										
Tunisia										
F	0.17	1.67	3.74	882.35	123.95	2100.00	0.00	0.03	0.07	-133.33
M	2.06	10.45	15.43	407.28	47.66	649.03	0.04	0.02	0.32	-50.00
Turkey										
F	0.01	0.07	0.19	600.00	171.43	1800.00	0.00	0.00	0.00	-
M	0.02	0.16	0.29	700.00	81.25	1350.00	0.00	0.00	0.00	-
United Arab Emirates										
F	0.59	3.78	4.63	540.68	22.49	684.75	0.01	0.07	0.09	600.00
M	1.19	6.78	25.2	469.75	271.68	2017.65	0.02	0.14	1.05	600.00
Yemen										
F	0.45	0.98	0.91	117.78	-7.14	102.22	0.00	0.01	0.01	-
M	1.05	1.84	1.86	75.24	1.09	77.14	0.02	0.03	0.03	50.00
North Africa and Middle East										
F	1.10	10.60	13.39	863.64	26.32	1117.27	0.02	0.21	0.27	950.00
M	2.63	13	13.17	394.30	1.31	400.76	0.05	0.26	0.27	420.00

In men, there is an increasing trend from 1990 to 2017. The rate of DALYs/100,000 attributed to drug use for AIDS in men living in United Arab Emirates, and women living in Tanzania and Sudanese increased from 2007 to 2017, and these countries had the highest percentage of change.

In Iran, rate of DALYs/100,000 attributed to drug use for AIDS in men (27.53 to 33.52) and women (27.53 to 33.52) increased from 2007 to 2017, with percent change of 21.76% and 143.45% in men and women, respectively. The rate of DALYs/100,000 attributed to drug use for AIDS decreased from 2007 to 2017 in the Bahrain, Lebanon, Egypt, Morocco and Qatar.

Age-standardized mortality rate attributable to AIDS by drug use for AIDS increased from 1990 to 2017 in both sex in Iran. In MENA countries, age-standardized mortality rate increased from 1990 to 2017 in both sex (Fig. 1, 2).

The rate of DALYs/100,000 attributed to unsafe sex for AIDS and percentage changes in MENA countries from 1990 to 2017 are shown in Table 2. The rate of DALYs/100,000 and age-standardized mortality rate attributed to unsafe sex for AIDS increased in Iran from 1990 to 2017. In some countries, such as Afghanistan, Bahrain, Kuwait, Egypt and Qatar attributable DALYs to unsafe sex increased 1990 to 2007 and then decreased in 2017. Age-standardized mortality rate has also shown a state of DALYs.
Country	sex	DALY (Per 100000)	Percent change (%)	Age standardized Mortality Rate (Per 100000)	Percent change (%)								
	1990	2007	2017	1990–2007	2007–2017	1990	2007	2017	1990–2007	2007–2017	1990–2017		
Afghanistan	F	6.66	16.55	20.05	148.50	21.15	201.05	0.13	0.34	0.03	161.54	11.76	192.31
M	19.24	39.51	51.16	105.35	29.49	165.90	0.44	0.90	0.12	104.55	24.44	154.55	
Algeria	F	5.52	26.94	21.54	388.04	-20.04	290.22	0.11	0.53	0.01	381.82	-22.64	272.73
M	7.43	30.07	31.38	304.71	4.36	322.34	0.16	0.69	0.93	331.25	5.80	356.25	
Bahrain	F	3.31	9.04	8.32	173.11	-7.96	151.36	0.07	0.20	0.18	185.71	-10.00	157.14
M	24.31	28.57	13.82	17.52	-51.63	-43.15	0.62	0.81	0.37	30.65	-54.32	-40.32	
Egypt	F	2.17	3.95	1.83	82.03	-53.67	-15.67	0.46	0.07	0.83	-84.78	-57.14	-93.48
M	4.50	4.93	3.48	9.56	-29.41	-22.67	0.10	0.10	0.06	0.00	-40.00	-40.00	
Iran	F	0.30	1.84	5.24	513.33	184.78	1646.67	0.00	0.04	0.11	566.67	175.00	1733.33
M	1.04	4.69	6.38	350.96	36.03	513.46	0.02	0.09	0.13	350.00	44.44	550.00	
Iraq	F	1.20	6.34	8.64	428.33	36.28	620.00	0.02	0.12	0.16	500.00	33.33	700.00
M	0.97	5.13	6.60	428.87	28.65	580.41	0.01	0.10	0.12	900.00	20.00	1100.00	
Jordan	F	1.95	5.59	4.46	186.67	-20.21	128.72	0.03	0.11	0.09	266.67	-18.18	200.00
M	1.11	4.85	8.64	336.94	78.14	678.38	0.02	0.10	0.19	400.00	90.00	850.00	
Kuwait	F	4.49	7.52	3.54	67.48	-52.93	-21.16	0.08	0.14	0.06	75.00	-57.14	-25.00
M	8.24	3.70	3.32	-55.10	-10.27	-59.71	0.17	0.06	0.06	-64.71	0.00	-64.71	
Country	Male M	Female F											
-----------	--------	----------											
Lebanon	26.98	33.72											
	(1.21-	(1.64-											
	81.92)	145.53)											
	(1.26-	(1.26-											
	141.93)	141.93)											
Libya	78.64	61.28											
	(7.93-	(5.07-											
	246.37)	300.57)											
Morocco	10.23	72.07											
	(0.73-	(4.23-											
	32.01)	331.16)											
Oman	13.41	79.30											
	(11.05-	(60.65-											
	15.26)	98.76)											
Palestine	0.32	4.66											
	(0.25-	(4.08-											
	0.39)	5.21)											
Qatar	17.42	12.13											
	(12.23-	(10.01-											
	21.54)	15.56)											
Saudi	14.08	53.30											
Arabia	(9.25-	(47.42-											
	20.89)	59.74)											
	(41.09-	(41.09-											
	67.90)	67.90)											
Sudan	58.40	513.81											
	(37.05-	(356.86-											
	115.57)	736.59)											
	(339.26-	698.76)											
Syria	1.67	3.41											
	(1.38-	(2.82-											
	1.92)	3.88)											
	(2.30-	(4.52)											
	2.42)												
		(75.69)											
		(27.67)											
		(27.07)											
		(0.03)											
		(0.06)											
		(0.03)											
		(100.00-											
		16.67)											
		66.67)											
		(100.00-											
		-50.00)											
		0.00)											

Page 7/13
The report from the World Health Organization (WHO) highlighted that the region ranked first in the speed of growing epidemic of HIV/AIDS, attributed to drug use. During the study period, the rate of DALYs/100,000 and age-standardized mortality rate attributed to drug use for AIDS increased during the study period in men and women.

The findings of this study showed the rate of DALYs/100,000 and age-standardized mortality rate attributed to risk factors (drug use and unsafe sex) underwent dramatic changes across the MENA countries over the period 1990 to 2017. The rate of DALYs/100,000 and age-standardized mortality rate attributed to drug use for AIDS increased during the study period in men and women.

In most MENA countries, the rate of DALYs/100,000 and age-standardized mortality rate attributed to unsafe sex for AIDS has increased in men and women (Fig. 3). Age trend of the mortality and burden of drug use and unsafe sex in AIDS at MENA countries both of sex are shown in Fig. 3 and Fig. 4. The rate of DALYs/100,000 of the two risk factors (unsafe sex and drug use) in Sudan was much higher than in other countries. Thus, it is not shown in Figs. 4 and 3.

Discussion

The findings of this study showed the rate of DALYs/100,000 and age-standardized mortality rate attributed to risk factors (drug use and unsafe sex) in all countries of the MENA, rate of DALYs/100,000 attributed to unsafe sex for AIDS is higher in men than in women except Qatar, Saudi Arabia and Sudan. Age-standardized mortality rate attributed to unsafe sex for AIDS is higher in men than in women except Saudi Arabia and Sudan.

In Iranian women, the rate of DALYs/100,000 attributed to unsafe sex for AIDS in 1990, 2007 and 2017 were 0.3 (0.23–0.36), 1.84 (1.62–2.11) and 5.24 (4.28–6.37), respectively; in men 1.04 (0.81–1.30), 4.69 (4.05–5.49) and 6.38 (5.37–7.56). Age-standardized mortality rate in 1990, 2007 and 2017 were 0.00 (0.00–0.00), 0.04 (0.03–0.04) and 0.11 (0.09–0.14) for Iranian women and 0.02 (0.01–0.02), 0.09 (0.08–0.14) and 0.13 (0.11–0.15) in Iranian men.

Age-standardized mortality rate attributed to unsafe sex for AIDS increased by 550% in men and 11733% in women; attributable DALYs/100,000 due to unsafe sex increased by 350% in men and 513% in women from 1990 to 2017 in Iran.

According to the report from world health organization (WHO), this region has the first rank in the speed of growing epidemic of HIV/AIDS in the world [13]. The most changes occurred in men of the United Arab Emirates, Tanzanian men and Sudanese women. The rate of DALYs/100,000 attributable to these two risk factors (unsafe sex and drug use) in Sudan was much higher than in other countries.
In the study of Degenhardt L et al. (2013) more than 10 million DALYs was estimated to be attributable to previous exposure to HIV, HBV, and HCV via IDU [7]. Study by Singh K et al. (2019) has shown PWID are at a disproportionately increased risk of death due to overdose and suicide [20]. However, the increased risk of death can be related to other causes associated with intravenous drug abuse rather than HIV [21]. Therefore, determination of the cause of death in such individuals is important and somewhat difficult.

Our findings showed the rate of DALYs/100,000 and age-standardized mortality rate attributed to unsafe sex for AIDS increased in MENA and Iran from 1990 to 2017. In some countries, such as Afghanistan, Bahrain, Kuwait, Egypt and Qatar DALYs attributable to unsafe sex increased 1990 to 2007 and then decreased in 2017. In all countries of the MENA, DALYs/100,000 and mortality rate attributed to unsafe sex in men is more than women.

In most countries, HIV epidemics often spread initially among key populations like PWID or Women sex workers (FSWs) and men who have sex with men (MSM). FSWs usually have high numbers of sexual partners and transmit the disease to other key populations (PWID and pimps) and to their clients [22]. Though FSWs have been shown to use condoms more often in commercial than in private sexual contacts [22], it should be noted that unprotected sex involving FSWs remains common in certain regions [23]. Fifteen percent of the global HIV burden is due to unsafe sex in women who have chosen sex with multiple men as a job, resulting in more than 100,000 deaths per year [24]. In Cotonou, the capital of Benin, it was assumed that nearly all HIV infections in women and 76% in men were due to sexual contacts with FSWs [25, 26]. The rapid and early spread of HIV in some Asian countries like Cambodia and Thailand has been associated with a high use of commercial sex [27]. A Indian nationally survey found that about 4% of Indian men visited a FSW in the previous year with much higher percentages in regions with high HIV prevalence [28]. Women sex work is an important factor to HIV transmission and the global HIV burden [24].

A study in South Africa, drinking alcohol has introduced as a mediator variable between unsafe sex and AIDS. Evidence has shown that drinking alcohol independently affects people's sexual performance, and undermines skills for condom negotiation and correct use [29]. A study using structural-environmental model has shown association between alcohol and the risk of HIV/AIDS by sexual contact in Latino Migrant Day Laborers; as discrimination and working conditions worsen, contact with family decreases, drinking becomes more problematic, and sexual risk increases [30]. The association between alcohol and unsafe sex has been observed among American college students [31]. A meta-analysis study has reported, people who consume alcohol had significantly multiple partners, sex without a condom or inconsistent use of condoms [32].

Suárez-García I et al, reported patients who acquired HIV by sexual transmission compared with who acquired HIV infection through use of injected drugs has higher risk of late presentation, delayed antiretroviral therapy (ART) initiation, higher mortality and risk of progression to AIDS [33]. Therefore, in examining the risk factors for AIDS, it is also important to pay attention to the mediator factors; which can reduce or increase DALYs and mortality rate attributed to AIDS.

For the purpose of this study we used data from Global Burden of Disease (GBD) study which is based on all available information on incidence, prevalence and mortality of different conditions. Therefore, such estimate might be different from the real scenario where there is no information for some low-income countries. However, use of exact and modern statistical methods provides the best estimate for all included countries. For conditions such as drug use and unsafe sex in MENA countries where there is more sever social stigma and legal ban, the confidence about such data might be under more question. However, our main objective was to investigate the trends which might provide more valid presentation than the exact value of each year.

Conclusion

Given the rapid increase in the burden of HIV/AIDS related to unsafe sex and drug use in MENA, with recent political instability in some countries in this region in addition to lower available resources because of economical constrain due to epidemic of COVID-19, one can expect to observe the greater burden related to these two risk factors in near future in all the world and MENA countries. Therefore, it is quite necessary to address the size of real psychosocial burden of drug use and unsafe sex for all policy makers to provide, continue and improve the previous public health plans related to HIV/AIDS in MENA.

Abbreviations

DALYs: Disability adjusted life years; GBD: Global burden of disease; IDU: Injecting drug use; MENA: Middle east and north Africa; PWID: Including people who inject drugs, SWs: Sex workers; WHO: World health organization.

Declarations

Acknowledgments

The authors would like to thank Kermanshah University of Medical Sciences for their financial support of the study.

Ethics approval and consent to participate

We use the data from Global Burden of Disease study shared by Institute for Health Metrics and Evaluation (IHME) and under its terms and conditions for use of such data provided at: http://www.healthdata.org/about/terms-and-conditions. The ethical committee review all procedures and questionnaire and approved the research (KUMS.REC.1398.1200). Informed consent was not needed as this study used GBD online data.

Authors' contributions

FN generated the initial idea for the study, carried out all analyses and visualization of the results. MD drafted the manuscript with assistance from FKH and MGH. All authors provided critical input into the interpretation of the results, revisions to the manuscript and approved the final draft.
Funding
This study was supported by the Kermanshah University of Medical Sciences, Kermanshah, Iran (grant number 990126).

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. UNAIDS. Prevention Gap Report. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2016 [cited 2018 Mar 19]. Available from http://www.unaids.org/sites/default/files/media_asset/2016-prevention-gap-report_en.pdf.
2. Gökengin D, Doroudi F, Tohme J, Collins B, Madani N. HIV/AIDS: trends in the Middle East and North Africa region. International Journal of Infectious Diseases. 2016;44:66-73.
3. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS update 2016. UNAIDS.Geneva;2016.
4. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS update 2018. UNAIDS.Geneva; 2018.
5. Chemaityelli H, Weiss HA, Calvert C, Harfouche M, Abu-Raddad LJ. HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: systematic review, meta-analyses, and meta-regressions. BMC Med. (2019);17(1):119.
6. Munttaz GR, Awad SF, Feizzadeh A, Weiss HA, Abu-Raddad LJ. HIV incidence among people who inject drugs in the Middle East and North Africa: mathematical modelling analysis. Journal of the International AIDS Society. 2018;21(3):e25102.
7. Degenhardt L, Charlson F, Stanaway J, Lamey S, Alexander LT, Hickman M, et al. Estimating the burden of disease attributable to injecting drug use as a risk factor for HIV, hepatitis C, and hepatitis B: findings from the Global Burden of Disease Study 2013. The Lancet infectious diseases. 2016;16(12):1385-98.
8. Buchanan AL, Hudgens MG, Cole SR, Lau B, Adimora AA, Study WsIH. Worth the weight: using inverse probability weighted Cox models in AIDS research. AIDS Res Hum Retroviruses. (2014);30(12):1170-7.
9. Lesko CR, Edwards JK, Moore RD, Lau B. A longitudinal, HIV care continuum: 10-year restricted mean time in each care continuum stage after enrollment in care, by history of injection drug use. AIDS. 2016;30(14):2227.
10. Chander G, Lau B, Moore RD. Hazardous alcohol use: a risk factor for non-adherence and lack of suppression in HIV infection. J Acquir Immune Defic Syndr. (2006);43(4):411.
11. Howe CJ, Cole SR, Ostrow DG, Mehta SH. A prospective study of alcohol consumption and HIV acquisition among injection drug users. AIDS. 2011;25(2):221.
12. Ciccarone DH, Kanouse DE, Collins RL, Mui A, Chen JL, Morton SC, et al. Sex without disclosure of positive HIV serostatus in a US probability sample of persons receiving medical care for HIV infection. American Journal of Public Health. 2003;93(6):949-54.
13. Crepaz N, Marks G. Towards an understanding of sexual risk behavior in people living with HIV: a review of social, psychological, and medical findings. Aids. 2002;16(2):135-49.
14. Parsons JT, Halkitis PN, Wolitski RJ, Gómez CA, Study Team TSUMs. Correlates of sexual risk behaviors among HIV-positive men who have sex with men. AIDS Education Prevention. 2003;15(5):383-400.
15. Parsons JT, Schrimshaw EW, Wolitski RJ, Halkitis PN, Purcell DW, Hoff CC, et al. Sexual harm reduction practices of HIV-seropositive gay and bisexual men: serosorting, strategic positioning, and withdrawal before ejaculation. Aids. 2005;19:S13-S25.
16. Siegel K, Schrimshaw EW, Lekas H-M. Diminished sexual activity, interest, and feelings of attractiveness among HIV-infected women in two eras of the AIDS epidemic. Archives of sexual behavior. 2006;35(4):437-49.
17. Blázquez MV, Madueño JA, Jurado R, Fernández-Arcás N, Munoz E. Human herpesvirus-6 and the course of human immunodeficiency virus infection. J Acquir Immune Defic Syndr HDR. 1995;9(4):389-94.
18. Fleming DT, Wasserheit JN. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sexually transmitted infections. 1999;75(1):3-17.
19. Reilly T, Woodruff SJ, Smith L, Clapp JD, Cade J. Unsafe sex among HIV positive individuals: cross-sectional and prospective predictors. Journal of community health. 2010;35(2):115-23.
20. Singh K, Chander G, Lau B, Edwards JK, Moore RD, Lesko CR. Association of History of Injection Drug Use with External Cause-Related Mortality Among Persons Linked to HIV Care in an Urban Clinic, 2001–2015. AIDS and Behavior. 2019;23(12):3286-93.
21. Larsen MV, Omland LH, Gerstoft J, Larsen CS, Jensen J, Obel N, et al. Impact of injecting drug use on mortality in Danish HIV-infected patients: a nationwide population-based cohort study. Addiction. 2010;105(3):529-35.
22. UNAIDS, World Bank (2010) New HIV Infections by mode of transmission in West Africa: A Multi-Country Analysis.

23. Magnani R, Riono P, Saputro E, Mustikawati D, Anartati A, Prabawanti C, et al. Sexual risk behaviours, HIV and other sexually transmitted infections among female sex workers in Indonesia. Sexually transmitted infections. 2010;86(5):393-9.

24. Prüss-Ustün A, Wolf J, Driscoll T, Degenhardt L, Neira M, Calleja JMG. HIV due to female sex work: regional and global estimates. PloS one. 2013;8(5).

25. Alary M, Lowndes CM. The central role of clients of female sex workers in the dynamics of heterosexual HIV transmission in sub-Saharan Africa. AIDS. (2004) Apr 9;18(6):945-7. PubMed PMID: 15060443.

26. Lowndes C, Alary M, Meda H, Gnintoungbe C, Mukenge-Tshibaka L, Adjovi C, et al. Role of core and bridging groups in the transmission dynamics of HIV and STIs in Cotonou, Benin, West Africa. Sexually transmitted infections. 2002;78(suppl 1):i69-i77.

27. Ruxrungtham K, Brown T, Panuphak P. Hiv/aids in asia. The Lancet. 2004;364(9428):69-82.

28. Gaffey MF, Venkatesh S, Dhingra N, Khera A, Kumar R, Arora P, et al. Male use of female sex work in India: a nationally representative behavioural survey. PLoS One. 2011;6(7).

29. Chersich M, Rees H. Causal links between binge drinking patterns, unsafe sex and HIV in South Africa: its time to intervene. Int J STD AIDS. (2010);21(1):2-7. http://doi.org/10.1258/ijsa.2000.009432.

30. Organista KC, Jung W, Neilands TB. A Structural-Environmental Model of Alcohol and Substance-Related Sexual HIV Risk in Latino Migrant Day Laborers. AIDS Behav http://doi.org/10.1007/s10461-020-02876-4. (2020) Apr 18. PubMed PMID: 32306212. Epub 2020/04/20. eng.

31. Pedersen ER, D'Amico EJ, LaBrie JW, Klein DJ, Farris C, Griffin BA. Alcohol and Sexual Risk among American College Students Studying Abroad. Prev Sci http://doi.org/10.1007/s11121-020-01149-9. 2020 Jul 18. PubMed PMID: 32683572. Epub 2020/07/20. eng.

32. Okoro UJ, Carey KB, Johnson BT, Carey MP, Scott-Sheldon LAJ. Alcohol Consumption, Risky Sexual Behaviors, and HIV in Nigeria: A Meta-Analytic Review. Current drug research reviews. (2019);11(2):92-110. http://doi.org/10.2174/187473712666190114141157. PubMed PMID: 31875782. Pubmed Central PMCID: PMC7289068. Epub 2019/12/27. eng.

33. Suárez-García I, Sobrino-Vegas P, Dalmau D, Rubio R, Iribarren JA, Blanco JR, et al. Clinical outcomes of patients infected with HIV through use of injected drugs compared to patients infected through sexual transmission: late presentation, delayed anti-retroviral treatment and higher mortality. Addiction. 2016;111(7):1235-45.

Figures

![Figure 1](image-url)

Trend of the attributable mortality and burden of drug use in AIDS at MENA countries, a) DALY in Women, b) DALY in Men, c) Age Standardized Mortality Rate in Women, d) Age Standardized Mortality Rate in Men
Figure 2
Trend of the attributable mortality and burden of unsafe sex in AIDS at MENA countries, a) DALY in Women, b) DALY in Men, c) Age Standardized Mortality Rate in Women, d) Age Standardized Mortality Rate in Men

Figure 3
Age trend of the attributable mortality and burden of drug use in AIDS at MENA countries, a) DALY in Women, b) DALY in Men, c) Age Standardized Mortality Rate in Women, d) Age Standardized Mortality Rate in Men

Figure 4
Age trend of the attributable mortality and burden of unsafe sex in AIDS at MENA countries, a) DALY in Women, b) DALY in Men, c) Age Standardized Mortality Rate in Women, d) Age Standardized Mortality Rate in Men