Fix, Blair

Article — Published Version

Energy, Hierarchy and the Origin of Inequality

PLoS ONE

Provided in Cooperation with:
The Bichler & Nitzan Archives

Suggested Citation: Fix, Blair (2019) : Energy, Hierarchy and the Origin of Inequality, PLoS ONE, ISSN 1932-6203, PLOS, San Francisco, CA, Vol. 14, Iss. 4, April, pp. 1-32, http://dx.doi.org/10.1371/journal.pone.0215692 , http://bnarchives.yorku.ca/597/

This Version is available at:
http://hdl.handle.net/10419/195951

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

https://creativecommons.org/licenses/by-nc-nd/4.0/
Energy, hierarchy and the origin of inequality

Blair Fix
York University, Toronto, Ontario, Canada
*blairfix@gmail.com

Abstract

Where should we look to understand the origin of inequality? I propose an unusual window of evidence—modern societies. I hypothesize that evidence for the origin of inequality is encoded in the institutional structure of industrial societies. To test this idea, I use a model to project modern trends into the past. This model takes the modern relation between energy, hierarchy, and inequality and creates a hindcast of the origin of inequality. The results are broadly consistent with the available evidence. The model predicts an explosion of inequality with the transition from hunter-gathering to agriculture, followed by a plateau. This finding potentially opens a new window of evidence into the origin of inequality.

1 Introduction

The origin of inequality is one of the great mysteries of human social evolution. For the vast majority of our history, we lived in small bands that were fiercely egalitarian [1]. But then around 10,000 years ago, something changed [2, 3]. For reasons that remain poorly understood, we began to abandon our ancestral state, and started allowing some individuals to command vastly more resources than others. At first inequality was the exception, but it soon spread until it became the most common form of organization.

This great transition has puzzled scientists for centuries [2–11]. But like the origin of life, the origin of inequality is frustratingly difficult to study. The problem is that origins remain locked in the past, meaning evidence is sparse. Still, we have made progress. With great effort, we have found three ‘windows’ of evidence into the origin of inequality: the archaeological record [10–19], surviving traditional societies [20–25], and the written record of inequality [26–30].

These windows focus either on societies that are long gone, or societies whose form is archaic. This is perfectly reasonable, but it also limits the evidence we can uncover. The archaeological and written record of inequality will always be sparse. And traditional societies are rapidly disappearing from the world. Given the limits of these windows, where else might we look to study the origin of inequality? I suggest we draw inspiration from evolutionary biology.

One of the great breakthroughs in studying the origin of life was the discovery that the DNA of living organisms contains a coded history of their evolution [31]. Might something similar be true of human societies? Might the social structure of modern societies contain a coded history of the origin of inequality? I test this possibility here. I use institutions as the social corollary of DNA. Institutions are systems of organizing that are passed between generations. I think we can use modern institutional trends to infer the origin of inequality.
Looking at modern societies, I find two important trends (Section 2). First, societies that use more energy tend to have larger institutions. Second, modern institutions are hierarchically organized and income increases rapidly with rank. How does this relate to the origin of inequality? The key is that the growth of institution size can be interpreted as the growth of hierarchy. The idea is that as hierarchy grows it concentrates resources at the top, potentially leading to greater inequality. The modern trend is towards greater energy use and greater hierarchy. To infer the origin of inequality, I propose that we reverse this trend and project it backwards in time. I call this the ‘energy-hierarchy-inequality’ (EHI) hypothesis:

Energy-hierarchy-inequality hypothesis

We can infer the origin of inequality from the modern relation between energy use, hierarchy, and inequality.

Like with DNA, these institutional trends do not give direct evidence of our past. Instead, they must be interpreted with a model. To test the EHI hypothesis, I use a model to project modern trends into the past (Section 3). The model gives a hindcast of the origin of inequality—a prediction that can be compared to empirical evidence. The results are promising (Section 4). Consistent with the available evidence, the model predicts an explosion of inequality during the energy transition from hunter-gathering to agriculture. As energy use increases beyond agrarian levels, the model predicts that inequality should plateau. Whether this plateau is consistent with evidence is less clear. Depending on the inequality metric used, there is evidence that inequality declines slightly with industrialization. This may be because hierarchies become less ‘despotic’ as energy use increases. Future research is needed to test this possibility.

The results suggest that institutional trends in modern societies provide a plausible window into the origin of inequality. I speculate about causal mechanisms in Section 5, but for now the evidence is too sparse to draw many conclusions. More importantly, this finding opens new doors for future research. It implies that looking to the past may not be the only way to understand the origin of inequality. Signs of humanity’s deep history may be encoded in the institutional structure of our own societies.

2 Energy, hierarchy, and inequality: The evidence

I review here the evidence linking energy, hierarchy, and inequality. The chain of reasoning (but not necessarily causation) is:

\[
\text{energy} \rightarrow \text{institution size} \rightarrow \text{hierarchy} \rightarrow \text{power} \rightarrow \text{income}
\]

I begin with energy because, like many scientists [32–41], I think social evolution is tied to energy use. The rationale is simple: according to the laws of thermodynamics, a non-equilibrium system must be supported by a flow of energy [42]. Since human societies are non-equilibrium systems, energy should play an important role in social evolution.

The link between energy and inequality has been proposed before [43–46], but this paper makes two new contributions. First, I explicitly link energy and inequality through social hierarchy. Second, I develop a formal model that hindcasts the origin of inequality.

2.1 Energy and institution size

The energy-hierarchy-inequality hypothesis begins with a link between energy and institution size. In modern societies, institution size is strongly correlated with energy use per capita [47, 48]. Fig 1 illustrates this effect using business firms. Fig 1A plots average firm size within different nations against their energy use per capita. Each point represents a country, with error
bars indicating the uncertainty in average firm size. As energy use per capita increases, average firm size increases as well.

The growth of average firm size is not caused by a horizontal shift in the distribution. Instead, it is caused by a fattening of the distribution tail. Fig 1B visualizes this behavior. Here I group the countries of the world into quintiles (5 groups) ranked by energy use. For each quintile, I plot the aggregate firm size distribution within each group. The inset graph shows average energy use per capita within each quintile. Here α refers to the estimated power-law exponent of the firm size distribution. For sources and methods, see Section 7.

![Fig 1. How firm size changes with energy use per capita.](https://doi.org/10.1371/journal.pone.0215692.g001)

The firm size distribution can be modeled by a power law \[48–51\]. This means that the probability of finding a firm of size \(x\) is roughly proportional to \(x^{-\alpha}\), where \(\alpha\) is the power-law exponent. A smaller power-law exponent indicates a fatter tail. As shown in Fig 1B, greater energy use is associated with a smaller power-law exponent for the firm size distribution. This provides a simple way to model the relation between energy use and firm size.

2.2 Institution size and hierarchy

The second step of the energy-hierarchy-inequality hypothesis is to connect institution size to hierarchy. I hypothesize that (virtually) all human institutions are hierarchically organized. This means they have a nested chain of command that grows with institution size. As the hierarchy grows, new ranks are added at a logarithmic rate \[52, 53\]. This scaling behavior has been observed in business firms \[54\], historical empires \[55\], and hunter-gather societies \[56\]. Hierarchical organization also means that elite ranks should become more common. Assuming that managers occupy top ranks, this implies that the management share of employment should increase with average firm size. This trend has been observed at the international level \[48\].

The most direct evidence for hierarchical organization comes from firm case studies \[57–62\]. Fig 2 shows the hierarchical structure of six case-study firms (which come from Britain, the Netherlands, Portugal, and the United States). Although the specific structure varies, all six
firms share the pyramid shape that we expect of a hierarchy. I use these case studies to inform the energy-hierarchy-inequality model (see Section 7 for details).

To summarize, the evidence suggests that institutions tend to become larger as energy use increases. If institutions are hierarchically organized, this implies that the growth of energy is associated with the growth of hierarchy.

2.3 Hierarchical power and income

The last component of the energy-hierarchy-inequality hypothesis is a relation between hierarchical power and income. The idea is that elites use their power within a hierarchy to gain preferential access to resources.

Why might this be the case? Our evolutionary background provides some hints. Virtually all social mammals form dominance hierarchies [63–68]. In these hierarchies, high social status allows greater access to resources, particularly sexual mates [69–74]. Given our evolutionary heritage, we expect that humans should exhibit similar behavior. Unsurprisingly, there is a strong link between human hierarchical status and reproductive success [75–79].

Is the same true for income? Evidence suggests so. But before looking at this evidence, I note a key difference between human and non-human hierarchies. All other animals form linear hierarchies—an ordinal ranking from top to bottom. But humans form branching hierarchies, in which each superior controls multiple subordinates. This has important consequences for income distribution. In a branching hierarchy, the number of subordinates grows exponentially with rank (Fig 3). If income stems from power over subordinates, than it too should increase exponentially with rank. This means that hierarchy can lead to vast inequalities.

To make this relation quantitative, I define ‘hierarchical power’ as:

$$\text{hierarchical power} = 1 + \text{number of subordinates}$$

(1)

The idea is that control over subordinates is a form of power—it increases “the possibility of imposing one’s will upon the behavior of other persons” [80]. All individuals start with a
baseline power of 1, indicating they have control over themselves. Hierarchical power then increases proportionally with the number of subordinates.

Is income within hierarchies a function of hierarchical power? Evidence from case-study firms suggests so. Fig 4 plots average income (relative to the bottom hierarchical level) against average hierarchical power for each rank in our six case-study firms. There is a strong correlation. A similar correlation exists between changes in income and changes in hierarchical power [81].
The power-income relation implies that inequality should increase as a hierarchy grows. This is because hierarchical power gets concentrated as a hierarchy gets larger (Fig 5). Importantly, this relation is non-linear. The initial growth of hierarchy rapidly concentrates power. But further growth of hierarchy leads to progressively slower growth of hierarchical-power concentration. If income scales with hierarchical power, the same should be true of inequality. As a hierarchy grows, inequality should explode and then plateau.

To summarize, modern evidence suggests a joint relation between energy use, hierarchy, and inequality. As energy use increases, societies become more hierarchical. If income is proportional to hierarchical power, this should cause an increase in income inequality. To investigate the origin of inequality, I propose that we extrapolate this relation back in time.

3 An energy-hierarchy-inequality model

To extrapolate the energy-hierarchy-inequality evidence, I create a numerical model. This model simulates the empirical relation between energy, hierarchy, and income. I discuss the basic components of the model below. For a technical discussion, see Section 7.

3.1 Model assumptions

The energy-hierarchy-inequality model extrapolates modern trends into the distant past. To do this, we assume the following:

Assumption 1. Institutions have a power-law size distribution. The growth of institution size is synonymous with a decline in the power-law exponent.

Assumption 2. Institutions are hierarchically organized with a structure equivalent to modern firm hierarchies.
Assumption 3. The modern trend between energy use per capita and institution size applies to all societies.

Assumption 4. Income scales with hierarchical power in all societies. The rate of scaling may vary over time and space.

Are these assumptions realistic? Regarding assumption 1, there is evidence that pre-capitalist societies had a power-law distribution of institution size. For instance, feudal manor size was roughly power-law distributed [82, 83]. Similarly, slave estate size in the antebellum American South was roughly power-law distributed (see S1 Fig). Evidence also suggests that hunter-gatherer settlement sizes had a power-law distribution tail [84]. The types of institution certainly vary across time and space. But regardless of type, the power-law distribution of institution size seems common.

Assumptions 2, 3 and 4 are speculative. But given empirical evidence, why not extrapolate it and see where it takes us?

3.2 Model structure

The energy-hierarchy-inequality model has four main steps, discussed below. For technical details, see Section 7.

Step 1: Generate the institution-size distribution. The model generates an institution size distribution using a discrete power law. The power-law exponent varies stochastically over different model iterations. This simulates changes in institution size.

Step 2: Estimate energy use from institution size. Energy use per capita \((E_{pc}) \) is modeled as a function of average institution size \(\bar{I} \):

\[
E_{pc} = c_1 \bar{I}^{c_2}
\]

The parameters \(c_1 \) and \(c_2 \) are determined from a regression on the international energy and firm data shown in Fig 1A.

Step 3: Create hierarchical structure. The model uses firm case-study data (Fig 2) to determine the hierarchical structure of institutions. All modeled institutions have the same 'shape', but the number of ranks varies with institution size.

Step 4: Endow individuals with income Individual income \(I \) scales with hierarchical power \(P \) as

\[
I \propto P^\beta \cdot \epsilon
\]

where \(\beta \) determines the rate of scaling and \(\epsilon \) is a noise factor. To simulate variation between societies, \(\beta \) varies stochastically between model iterations. I use case studies of modern firms, as well as an antebellum US slave estate, to determine a plausible range for this variation. The noise factor \(\epsilon \) adds a small amount of dispersion to the power-income relation. This is determined by income dispersion within hierarchical levels of the case-study firms. On its own, the noise factor corresponds to a Gini index of about 0.1.

Between-Institution Income Dispersion. The model excludes income dispersion between institutions. US evidence suggests that between-institution income dispersion accounts for a minority of total income dispersion (about 30%) [85]. I assume that the growth of between-institution dispersion is not important for the emergence of inequality. Future research can determine if this is an appropriate assumption.
3.3 Visualizing the energy-hierarchy-inequality model

Fig 6 visualizes the energy-hierarchy-inequality model as a landscape. Hierarchies appear as pyramids, with hierarchical rank indicated by height and color. On top is a subsistence society that consumes 5GJ of energy per capita per year. This is 3200 Kcal per day—not much above the metabolic needs of an average person. Hierarchical organization is negligible. Consequently, hierarchical power is very equally distributed, with a Gini index of 0.13. We expect very little inequality in this society.

On the bottom is an industrial society that consumes 500GJ of energy per capita per year—similar to modern Iceland or Qatar. Hierarchical organization is ubiquitous. Consequently,

Subsistence Society

Energy Use per Capita ~ 6 GJ per person
Gini Index of Hierarchical Power Concentration = 0.13

![Subsistence Society Landscape](https://doi.org/10.1371/journal.pone.0215692.g006)

Industrial Society

Energy Use per Capita ~ 850 GJ per person
Gini Index of Hierarchical Power Concentration = 0.8

![Industrial Society Landscape](https://doi.org/10.1371/journal.pone.0215692.g006)
hierarchical power is extremely concentrated, with a Gini index of 0.76. We expect significant inequality in this society.

4 Extrapolating the origin of inequality

I use the EHI model to extrapolate the origin of inequality. Fig 7 shows the predicted relation between energy use, the concentration of hierarchical power, and inequality. There are four notable predictions:

1. **Hierarchy vanishes at metabolic levels of energy use, causing a collapse of inequality.** Hierarchical organization disappears as energy use approaches metabolic levels (i.e. food energy only). Consequently, hierarchical-power concentration is eliminated and inequality becomes negligible.

2. **Inequality explodes during the transition to agriculture.** Virtually all increases in inequality occur during the transition from subsistence to agrarian levels of energy use. (In Fig 7, agrarian energy use is represented by Eastern Eurasia from 5,000 BCE to 1500 CE [86]).

3. **The range of inequality grows with energy use.** The transition to agriculture opens a huge range of ‘inequality space’. The governing factor is β—the rate that income scales with hierarchical power. Societies with low β remain equal during the transition to agriculture. But societies with high β experience an explosion of inequality.

4. **Energy growth beyond agrarian levels has little effect on inequality.** After the transition to agriculture, the concentration of hierarchical power plateaus. As a result, further increases in energy use have a negligible effect on inequality.

4.1 Testing the energy-hierarchy-inequality prediction

The EHI model predicts how the emergence and evolution of inequality should relate to energy use. Fig 8 compares this prediction to the available evidence.

Fig 8A compares the model to archaeological data for ancient societies. The caveat is that the archaeological data measures inequality using house size [18]. This is not strictly comparable to the ‘income inequality’ produced by the EHI model. Nonetheless I make a comparison. The archaeological data is grouped by societal adaptation. Horizontal error bars indicate the plausible range of energy use for each adaptation. Points represent the mean estimate. (For sources and methods, see Section 7). The model’s prediction is consistent with the archaeological evidence—inequality explodes during the transition to agriculture.

Fig 8B compares the model to data from pre-industrial societies [29]. Horizontal error bars show the uncertainty in energy use (which is estimated from GDP). Again, the model is consistent with the empirical data. In pre-industrial societies, inequality increases rapidly with energy use.

Fig 8C compares the model to modern evidence. The model’s range is consistent with the empirical data. But there is a downward trend in the empirical data that is not predicted by the model. I discuss possible interpretations of this trend below. Fig 8D also compares the model to modern evidence, but measures inequality using the top 1% income share. The empirical data is in a range that is consistent with the model. Again, there is a downward trend in the empirical data, but far less pronounced than in Fig 8C.

To summarize, EHI model predictions for the origin of inequality are consistent with the available evidence. But for industrial societies, the model predictions are more ambiguous. Modern evidence is within the range predicted by the model. However, the data shows a decline of inequality with energy use that is not predicted.
Fig 7. Extrapolating the origin of inequality with the EHI model. This figure shows the results of the energy-hierarchy-inequality model. Panel A shows how the concentration of hierarchical power changes with energy use per capita. Panel B shows the evolution of income inequality. Color indicates the scaling exponent β between hierarchical power and income (see Eq 3). Shaded regions show the energy use range for various societies throughout history. For sources and methods, see Section 7.

https://doi.org/10.1371/journal.pone.0215692.g007
4.2 The Kuznets curve: The decline of hierarchical despotism?

Fig 9A aggregates all the empirical data in Fig 8A–8C to show the long-term trend between energy use and inequality. A Kuznets curve-like pattern [87] emerges (an inverted U-shaped relation). Inequality tends first to increase with energy use, and then decline. The increase is predicted by the model, but the decrease is not. Is the model wrong?

More evidence is required to answer this question. The problem is that the model predicts a huge range of ‘inequality space’ for industrial societies. The range of this space is determined by \(\beta \)—the scaling of income with hierarchical rank. I have assumed that the distribution of \(\beta \) is independent of energy use. But this could be wrong. To test the model, we need independent estimates of \(\beta \) in real-world societies. Such estimates do not presently exist.

While we cannot confirm or falsify the model, we can infer how \(\beta \) should behave if the model is correct. To do this, we match the empirical data to the best-fit model iteration. We
then assign the model’s β to the real-world society. The resulting inference is shown in Fig 9B. If the model is correct, β should decline with energy use.

Future research can test this inference. For now, I reflect on what it means. The parameter β determines how rapidly income scales with hierarchical power. I interpret β as an index of hierarchical despotism—it measures elites’ ability to use their hierarchical power to concentrate resources. A larger β indicates a more despotic hierarchy (greater returns to hierarchical power). The model predicts that hierarchical despotism declines as energy use increases.

This suggests that the Kuznets curve is created by two trends that accompany increases in energy: (1) the growth of hierarchy; and (2) the decline of hierarchical despotism. The first half of the Kuznets curve is created by the growth of hierarchy, which concentrates hierarchical power, leading to greater inequality. But hierarchical power concentration eventually plateaus. At this point, the decline in hierarchical despotism dominates the trend. This causes the second half of the Kuznets curve—inequality declines with greater energy use.

The decline of hierarchical despotism is an untested inference. But it seems plausible. History suggests that as societies develop, they introduce checks on power. These include the rule of law, democracy, and labor unions. Might these checks on power gradually reduce hierarchical despotism? Future research can test if this is true.

5 Discussion

The results of the model suggest that the energy-hierarchy-inequality hypothesis is plausible. By projecting modern trends into the past, we can accurately predict the origin of inequality. I discuss here some of the implications. I begin with the model’s limitations, and then speculate about causation and the role of hierarchy in the emergence of inequality.

5.1 Model limitations

The energy-hierarchy-inequality model is built on correlation and is not intended to answer questions of causation. This is a limitation, but is also the main reason the model provides insight.
The model takes two correlations as inputs: (1) the correlation between energy use and institution size; and (2) the correlation between hierarchical power and income. The model does not explain why these correlations exist. Instead, it explains why they might be important for the origin of inequality. The model indicates that if these trends existed in the past, they imply that inequality arose during the transition to agriculture.

Even though this operates at the level of correlation, it is an important insight. It suggests that modern trends provide a new window into the origin of inequality. The task for future research is to use this window to better understand the ultimate causes.

5.2 Causation

For the EHI hypothesis, understanding causation means explaining our two correlations. We want to know why the growth of energy use relates to the growth of hierarchy, and why income increases with hierarchical power. Answering these questions exceeds the scope of this paper. But I will speculate here.

I suspect that energy relates to hierarchy via a feedback loop, meaning causation runs both ways. I think this because different evidence suggests different causal directions. The collapse of the Soviet Union is one example where hierarchy seems to drive energy use. When the Soviet government collapsed, energy use in former Soviet states decreased dramatically [48]. Because there was no global energy shortage at the time, we can plausibly infer that the institutional collapse caused the decline in energy use.

But we can also think of reasons for the reverse causation—when energy drives (or limits) the growth of hierarchy. This ties into the surplus theory of social stratification [88–90]. In agrarian societies, the energy surplus of farmers is too small to support many non-farm workers [34]. Thus, there is little room for a managerial class. But if the surplus grew, it could loosen these limits and allow the growth of hierarchy [48, 91]. This suggests that energy growth could cause the growth of hierarchy.

These two examples suggest that causation can run both ways—energy can drive the growth of hierarchy and vice versa. Untangling this causal process is a difficult task for future research.

What causes the relation between income and hierarchical power? I think it is likely caused by many different factors. In despotic hierarchies (such as slave plantations), superiors may use coercion and brute force to derive their income. But in less despotic hierarchies, ideology is likely more important. The substance of these ideologies differs, but the function is always the same—to justify the power of elites. Traditional societies often justify power through kinship—tracing lineage to a founding ancestor [92, 93]. Feudal societies use religion, as in the divine right of kings [94]. Capitalist societies use ownership to justify power [95]. In each society, the ideology justifies both the authority of elites and their greater access to resources. To understand why income relates to hierarchical power, I think we must understand the ideologies that legitimize power. These ideologies have been well studied [95–111], but much remains to be learned.

We must also take seriously the social practices that evolve to check the power of elites. In modern societies, this would include labor unions and democratic oversight. There is strong evidence that labor unions limit inequality [112, 113]. This suggests that by organizing low-ranked individuals, unions check the power of elites. There is also evidence that democratic oversight limits the income of elites. For instance, US CEOs in industries that are regulated by government earn less than CEOs in non-regulated industries [114]. And elite compensation in the democratically-controlled public sector is far lower than in the private sector. As one example, the US president earns about 40 times less than CEOs in the largest US firms [115–117].
While there are many plausible causes for the power-income relation, studying them brings us back to the problem of measurement. I focused on hierarchical power because it was easy to quantify. But when we try to look under the hood of this power, measurement becomes difficult. For instance, how do we measure the effect of an ideology? To understand causation, we must wrestle with these difficulties. Again, this is a task for future research.

5.3 The emergence of hierarchy

Although we poorly understand the mechanisms at work, I want to speculate about the origin story told by the EHI model. It suggests that the origin of inequality can be reframed as the emergence of hierarchy. But this raises a question. After hundreds of thousands of years of living in (relatively) egalitarian societies, why would humans suddenly choose to organize in despotic hierarchies?

Scientists have long puzzled over this question. Was there an advantage to hierarchy, as functionalist theory contends [118, 119]? Or was it a matter of coercion, as conflict theory contends [102, 120–122]? Or did the emergence of hierarchy involve both function and coercion [101, 123–125]? I think the latter is most likely. Without a functional advantage, it is hard to understand why hierarchy would emerge. But without coercion, it is hard to understand the great inequalities that exist within hierarchies.

Let’s begin with the advantages of hierarchy. The modern evidence indicates that hierarchy increases with energy use. One interpretation is that hierarchy somehow enables, or is necessary for, greater energy use (for a different interpretation, see [91]). If this is true, then we need to ask two questions. First, why is using more energy advantageous? Second, why is hierarchy required to use more energy?

Regarding the first question, if life is the struggle for energy [35, 126], then using more energy may give a competitive advantage to an organism (or group of organisms). This is the idea behind the maximum power principle, which attempts to give an energetic basis to Darwinian fitness [127–129]. It proposes that organisms (and ecosystems) evolve to maximize power—the flow of energy per unit of time. While it has some empirical support [130, 131], the maximum power principle remains controversial.

Still, there are clear instances where using more energy is advantageous to human groups. The most conspicuous is warfare. The evolution of military armament moves towards increasingly devastating weaponry (bows and arrows, guns, missiles, and nuclear warheads). This reduces to energetics: the destructive capability of a weapon is proportional to the amount of energy it releases. We need only look at the history of European conquests to see how better armament led to a group advantage [132]. Greater energy use may also allow reproductive benefits. For instance, in existing traditional societies, agrarian societies tend to have higher fertility than hunter-gatherers and horticulturists [133]. To summarize, using more energy may be advantageous in inter-group competition. We can think of this as a form of ‘group selection’ [134, 135]. The idea is that groups that use more energy outcompete groups that use less energy.

But why is greater energy use associated with greater hierarchy? One possibility is that using more energy requires greater social coordination, and hierarchy is the most potent way to achieve this. Here is my reasoning. Increasing energy use involves profound technological changes. Most notably, the scale and complexity of technology increases [48]. I suggest that this increasing complexity requires more social coordination. This is where hierarchy comes in. While humans can organize without hierarchy, the scale appears limited. The problem is that human sociability likely has biological limits [136]. Individuals generally cannot maintain more than a few hundred social relations. Hierarchy sidesteps these limits [55]. A member of a
hierarchy needs to interact only with his direct superior and direct subordinates. This allows group size to grow without the need for more social interactions.

If hierarchy confers energetic benefits (via coordination), we can imagine a feedback loop emerging: Hierarchical organization enables large-scale coordination that then enables greater energy use, that then enables more hierarchy (and so on). This explains why energy and hierarchy go together. But it leads to a problem. For the vast majority of human history, hierarchical organization was negligible. Clearly there was no energy-hierarchy feedback loop. What are we missing?

The missing ingredient is resource distribution within the hierarchy. The problem is that hierarchy is a double-edged sword. It allows greater coordination, but it also leads to despotism. The nested chain of command gives enormous power to top-ranked individuals. When this power is (predictably) used for personal gain, it leads to vast inequalities. This would explain why income scales with hierarchical power. The resulting inequality means that hierarchy may not benefit low-ranking individuals. If the material gains from coordination are monopolized by elites, low-ranking individuals may be better off leaving the hierarchy. The stability of a hierarchy thus depends on the net advantage for low-ranking individuals [125]. If there is no advantage, the hierarchy will be unstable.

For the majority of human history, the costs of hierarchical despotism likely outweighed any coordination benefits from hierarchy. We know that modern hunter-gatherers (and presumably ancient ones as well) aggressively suppress individuals with power-seeking tendencies [137, 138]. Without a concentrated energy source (such as agriculture) the benefits to large-scale coordination were likely marginal. Therefore, hierarchy was not tolerated because it conferred no advantage.

This likely changed during the Neolithic revolution. The details remain poorly understood, but we can guess that the benefits of large-scale coordination increased. This is likely related to sedentism and the development of agriculture [139, 140]. Irrigation likely also played an important role [141, 142]. I argue that during the Neolithic revolution, the energy-hierarchy feedback loop took hold. As a result, hierarchical power became more concentrated. Elites predictably used their power for personal gain, resulting in the emergence of inequality.

I have so far treated inequality as an effect of hierarchy. But it may actually play a role in the growth of hierarchy. I have argued that the growth of hierarchy depends on the net advantage to low-ranking individuals. One way to increase this advantage is to increase the returns to hierarchical coordination (through environmental or technological change). But another way to increase the net advantage is to decrease hierarchical despotism. If the gains of hierarchy are more equally distributed, the net benefit to low-ranking members is greater.

This reasoning means that inequality may play a causal role in the growth of hierarchy and the growth of energy use. This is speculation, but it fits with the inference that hierarchical despotism declines with energy use (Fig 9B). Perhaps limiting hierarchical despotism is a prerequisite for industrialization? Or put another way, is it possible to have an industrial economy built on slavery—the most despotic mode of human organization? These are open questions worth investigating.

To summarize, I think that understanding the energy-hierarchy-inequality relation requires merging both functional and conflict theories of social stratification. It requires understanding what Wilson calls the “fundamental problem of social life” [134]. The idea is that cooperative groups beat uncooperative groups. But selfish individuals beat unselfish individuals within groups. Hierarchy nicely highlights both aspects of this problem. It is a powerful tool for coordination, and thus has potential group benefits. But it is also predictably used for selfish gain, thus resulting in great inequality. Thinking in this way may provide an important tool for understanding the origin of inequality.
6 Conclusions

Origin questions are some of the most seductive in science. At the same time, they are among the most difficult questions to answer. The problem is that origins are always locked in the past, meaning evidence is frustratingly sparse. Scientific progress on origin questions happens when we find reliable windows into the past.

It is instructive to see how new windows of evidence have advanced other fields. In modern cosmology, the breakthrough came when Edwin Hubble discovered that galaxies are receding from us. Reversing this trend implied that the universe had once been smaller—perhaps infinitely so. And so the big bang theory was born [143]. In biology, the breakthrough came with the discovery of DNA. By comparing the DNA of different organisms, we can infer the history of evolution. It suggests that all life has a single origin [31].

What about the origin of inequality? Obviously we should continue to gather historical and archaeological evidence. But this evidence will always remain limited. We should also continue studying traditional societies. But these societies are rapidly disappearing from the world. That leaves modern societies as a source of evidence.

I have proposed that the institutional structure of modern societies contains a coded history of the origin of inequality. To test this idea, I used a model to project into the past the modern relation between energy use, hierarchy, and inequality. The model predictions are generally consistent with the evidence. This suggests we may have found a new window into the origin of inequality.

7 Methods

7.1 Data sources and methods

Sources for Fig 1. Data for firm size comes from the Global Entrepreneurship Monitor (GEM), series ‘omnowjob’. To calculate firm size, I merge all data over the years 2001-2014. Because the GEM data over-represents large firms, I use only firms with 1000 or fewer employees. For method details, see the Appendix in Ref. [48]. Uncertainty in average firm size is estimated using the bootstrap method. Firm size distribution power-law exponents are estimated using the R PoweRlaw package [144]. Energy data comes from the World Bank, series EG.USE.PCAP.KG.OE.

Sources for Figs 2 and 4. Firm case-study data comes from [57–62]. For a description of this data, see the Appendix in Ref. [145]. Hierarchical power is defined as $P = 1 + S$, where P is hierarchical power and S is the number of subordinates. Because the case studies provide data for aggregate hierarchical structure only (not the chain of command), I calculate average hierarchical power, $P_h = 1 + \bar{S}_h$. Here \bar{S}_h is the average number of subordinates below level h. It is defined as the sum of employment (E) in all subordinate levels, divided by employment in the level in question: $\bar{S}_h = \sum_{i=1}^{n} E_i / E_h$. Income is normalized relative to the average income in the base hierarchical level (in the year in question).

Sources for Fig 7. I assume that human metabolic needs range from 2000 Kcal to 2500 Kcal per day. Western and Eastern Eurasia energy use data comes from Morris [86]. US total energy consumption is from Historical Statistics of the United States, Tables Db164-171 (1900-1948) and Energy Information Agency Table 1.3 (1949-2000). US population is from Maddison [146]. Qatar data comes from the World Bank (series EG.USE.PCAP.KG.OE).

Sources for Fig 8. Fig 8A. Archaeological inequality data is from Kohler et al. [18] and is measured using house size. I estimate the energy use range for each adaptation using the data in Table 1. Results for this energy range are shown in Fig 10. Fig 8B. Pre-industrial inequality data is from Milanovic [29]. I estimate energy use from reported values of GDP per capita. To
do this, I extrapolate the modern international relation between real GDP per capita and energy use per capita. Data for this regression comes from the World Bank (series EG.USE.PCAP.KG.OE and NY.GDP.PCAP.PP.KD). Fig 8C. Inequality data comes from three sources: the World Inequality Database (Gini index calculated from Lorenz curves), the United Nations World Income Inequality Database, and the OECD. I merge all data into a single database and estimate the range of inequality from this data. Energy use data comes from the World Bank, series EG.USE.PCAP.KG.OE. Fig 8D. Top 1% income share data is from the World Inequality Database. Energy use data is from the World Bank, series EG.USE.PCAP.KG.OE.

Sources for Fig 9. Fig 9A. Merges all sources from Fig 8. Fig 9B. The hierarchical despotism index β is estimated by matching empirical data to the best fit model iteration. β is chosen by minimizing the following error function:

$$
\epsilon_i = \| \log E_r - \log E_{m,i} \| + \| G_r - G_{m,i} \|
$$

(4)

E_r and G_r are energy use per capita and the Gini index of inequality (respectively) in the real-world society. $E_{m,i}$ and $G_{m,i}$ are energy use per capita and the Gini index of inequality (respectively) in the model iteration i. I assign real-world societies the model parameter β_i associated with the best-fit model iteration i.

7.2 Hierarchy model equations

This section provides technical details for the algorithm used to generate institutional hierarchies. Notation is shown in Table 2.
7.2.1 Generating the employment hierarchy. To generate the hierarchical structure of an institution, we begin by defining the span of control (s) as the ratio of employment (E) between two consecutive hierarchical levels (h), where $h = 1$ is the bottom hierarchical level. It simplifies later calculations if we define the span of control in level 1 as $s = 1$. This leads to the following piecewise function:

$$s_h \equiv \begin{cases} 1 & \text{if } h = 1 \\ \frac{E_h}{E_{h-1}} & \text{if } h \geq 2 \end{cases}$$

The model assumes that the span of control is not constant; rather it increases exponentially with hierarchical level. I model the span of control as a function of hierarchical level (s_h) with

Table 2. Hierarchy model notation.

Symbol	Definition
a	span of control parameter 1
b	span of control parameter 2
E	employment
h	hierarchical level
n	number of hierarchical levels in an institution
s	span of control
T	total for institution
$\lfloor \cdot \rfloor$	round down to nearest integer
Π	product of a sequence of numbers
Σ	sum of a sequence of numbers
an exponential function, where \(a\) and \(b\) are free parameters:

\[
s_h = \begin{cases}
1 & \text{if } h = 1 \\
a \cdot e^{bh} & \text{if } h \geq 2
\end{cases}
\]

(6)

As one moves up the hierarchy, employment in each consecutive level \((E_h)\) decreases by \(1/s_h\). This yields Eq 7, a recursive method for calculating \(E_h\). Since we want employment to be whole numbers, we round down to the nearest integer (notated by \(\lfloor\cdot\rfloor\)). By repeatedly substituting Eq 7 into itself, we can obtain a non-recursive formula (Eq 8). In product notation, Eq 8 can be written as Eq 9.

\[
E_h = \lfloor E_{h-1} \rfloor / s_h \quad \text{for } h > 1
\]

(7)

\[
E_h = \lfloor E_1 \cdot \frac{1}{s_2} \cdot \frac{1}{s_3} \cdot \ldots \cdot \frac{1}{s_h} \rfloor
\]

(8)

\[
E_h = \lfloor E_1 \prod_{i=1}^{h} \frac{1}{s_i} \rfloor
\]

(9)

Total employment in the whole institution \((E_T)\) is the sum of employment in all hierarchical levels. Defining \(n\) as the total number of hierarchical levels, we get Eq 10, which in summation notation, becomes Eq 11.

\[
E_T = E_1 + E_2 + \ldots + E_n
\]

(10)

\[
E_T = \sum_{h=1}^{n} E_h
\]

(11)

In practice, \(n\) is not known beforehand, so we define it using Eq 9. We progressively increase \(h\) until we reach a level of zero employment. The highest level \(n\) will be the hierarchical level directly below the first hierarchical level with zero employment:

\[
\{ h \mid E_h \geq 1 \text{ and } E_{h+1} = 0 \}
\]

(12)

To summarize, the hierarchical employment structure of our model institution is determined by 3 free parameters: the span of control parameters \(a\) and \(b\), and base-level employment \(E_1\). Code for this hierarchy generation algorithm can be found in the C++ header files hierarchy.h and exponents.h, located in the Supplementary Material [158].

7.2.2 Calculating hierarchical power in the hierarchy model. I define an individual’s hierarchical power as one plus the number of subordinates \((S)\) under their control:

\[
P = 1 + S
\]

(13)

Because the hierarchy model simulates only the aggregate structure of institutions (employment by hierarchical level), hierarchical power is calculated as an average per rank. For hierarchical rank \(h\), the average hierarchical power \((\bar{P}_h)\) is defined as the average number of subordinates \((\bar{S}_h)\) plus 1:

\[
\bar{P}_h = 1 + \bar{S}_h
\]

(14)
Each individual with rank h is assigned the average power P_h. The average number of subordinates \bar{S}_h is equal to the sum of employment (E) in all subordinate levels, divided by employment in the level in question:

$$\bar{S}_h = \frac{\sum_{i=1}^{h-1} E_i}{E_h}$$

(15)

As an example, consider the hierarchy in Fig 11. The average number of subordinates below each individual in hierarchical level 3 (red) would be:

$$\bar{S}_3 = \frac{E_1 + E_2}{E_3} = \frac{16 + 8}{4} = 6$$

(16)

Therefore, these individuals would all be assigned a hierarchical power of 7.

7.3 Restricting model parameters

The model’s parameters are summarized in Table 3. My method for restricting these parameters is detailed below.

Parameter	Definition	Action	Scope
α	Institution size distribution exponent	Determines the skewness of the institution size distribution	—
a, b	Span of control parameters	Determines the shape of the institution hierarchy.	Identical for all institutions.
E_1	Employment in base hierarchical level	Used to build the employment hierarchy from the bottom up. Determines total employment.	Specific to each firm.
β	Power-income exponent	Determines scaling relation between income and hierarchical power.	Identical for all institutions.
σ	Noise parameter	Used to add noise to the power-income relation. It is the scale parameter of a lognormal distribution	Identical for all institutions.

Table 3. Model parameters.

https://doi.org/10.1371/journal.pone.0215692.t003
7.3.1 Institution size distribution power-law exponent. Recent studies have found that firm size distributions in the United States [49] and other G7 countries [51] can be modeled accurately with a power law. A power law has the simple form shown in Eq 17, where the probability of observation \(x \) is inversely proportional to \(x \) raised to the exponent \(\alpha \):

\[
p(x) \propto \frac{1}{x^\alpha}
\]

(17)

The hierarchy model assumes that all human societies have power-law institution size distributions. The model simulates different societies by allowing the power-law exponent \(\alpha \) to vary stochastically between different model iterations.

A characteristic property of power-law distributions is that as \(\alpha \) approaches 2, the mean becomes undefined. In the present context, this means that the model can produce institution sizes that are extremely large—far beyond anything that exists in the real world. To deal with this difficulty, I truncate the power-law distribution at a maximum institution size of 2.3 million. This is the present size of Walmart, the largest firm that has ever existed.

Code for the discrete power-law random number generator can be found in the C++ header file `rpld.h`, located in the Supplementary Material [158]. This code is an adaptation of Collin Gillespie’s [144] discrete power-law generator found in the R poweRlaw package (which is, in turn, an adaptation of the algorithm outline by Clauset [159]).

7.3.2 Span of Control Parameters. The parameters \(a \) and \(b \) together determine the shape of the model’s institutional hierarchies. These parameters are estimated from an exponential regression on firm case-study data (Fig 12A). The model assumes that these parameters are constant across all institutions. The resulting modeled hierarchy shape is shown in Fig 12B.

Because the case-study sample size is small, there is considerable uncertainty in the span of control parameters. I incorporate this uncertainty into the model using the bootstrap method [160], which involves repeatedly resampling the case-study data (with replacement) and then estimating the parameters \(a \) and \(b \) from this resample. I run the model many times, each time with \(a \) and \(b \) determined by a bootstrap resample of case-study data. The resulting variation in the shape of the model’s hierarchies is indicated by the error bars in Fig 12B. Code implementing this bootstrap can be found in the C++ header file `boot_span.h` located in the Supplementary Material [158].

7.3.3 Base-level employment. Given span of control parameters \(a \) and \(b \), each hierarchy is constructed from the bottom hierarchical level up. Thus, we must know base level employment. To get this value, I input a range of different base employment values into Eqs 6, 9, and 11 and calculate total employment for each value. The result is a discrete mapping relating base-level employment to total employment. I then use the C++ Armadillo interpolation function to linearly interpolate between these discrete values. This allows us to predict base level \(E_1 \), given total employment \(E_T \). Code implementing this method can be found in the C++ header file `base_fit.h`, located in the Supplementary Material [158].

7.3.4 Power-income exponent. The model assumes that income scales with hierarchical power as

\[
\frac{I_h}{I_1} = (P_h)^\beta \cdot \epsilon
\]

(18)

where \(I_h \) is income in hierarchical level \(h \), \(I_1 \) is income in the base hierarchical level, \(P \) is hierarchical power, and \(\epsilon \) is the stochastic noise factor.

To simulate variation between societies, I allow \(\beta \) to vary over different model iterations. I use two different data sources to determine a plausible range for this variation. The first is case-study data from modern firms [57–62]. I determine \(\beta \) from regressions on the data shown
For each case-study firm, I regress $\log(\frac{I_h}{I_1})$ onto $\log P_h$. The slope of the relation is the estimate for β. I estimate the uncertainty in β using the bootstrap method [160]. I repeatedly resample case-study data and re-run the regression to estimate β. The resulting probability distribution of β is shown in Fig 13A for each case-study firm.
The second data source is a case study of a US slave estate—Cannon’s Point Plantation [161]. I estimate β from the living standard of the plantation owner relative to his slaves. For this estimate, we solve the power-income relation for β:

$$
\beta = \frac{\log(I_h/I_s)}{\log(P_h)}
$$

(19)

Although we do not know the hierarchical structure of the slave estate, we know that the owner sits on top of the hierarchy. All of the slaves are his subordinates. Therefore the number of slaves (n_{slave}) gives us a rough estimate for the owner’s hierarchical power:

$$
P_{\text{owner}} \approx 1 + n_{\text{slave}}
$$

(20)

If we know the living standard of the owner (I_{owner}) and slaves (I_{slave}), we can combine Eqs 19 and 20 to get a rough estimate for β:

$$
\beta \approx \frac{\log(I_{\text{owner}}/I_{\text{slave}})}{\log(1 + n_{\text{slave}})}
$$

(21)

The living standard of the owner is equal to his income. But slaves have no income, so we must use another method to estimate their living standards. One way is to use the slave expenses paid by the owner. Another method is to compare the owner and slaves in terms of house size. The results for both methods are shown in Fig 13B. Again, I use the bootstrap technique to investigate the plausible range of β that is implied by the Cannon’s Point data. I sample different values for the owner’s income, the slaves’ income (living standard), and the number of slaves and put them repeatedly into Eq 21.

As we would expect, the resulting β for our slave estate is far higher than in our case-study firms. In a slave regime, the evidence suggests that β could approach 1. To put this in perspective, this means income scales linearly with hierarchical power. If this were the case in industrial societies, the CEO of Walmart would earn 2 million times that of an entry-level worker. Nothing like this exists in industrial societies—for good reason. They are not based on slavery. But slavery was ubiquitous in human history, so we need to allow for its existence in our model.

Based on the case-study data in Fig 13, I allow β to vary over the range $0.2 \leq \beta \leq 1$.

7.3.5 Power-income noise factor. Noise (ϵ) in the power-income relation is modeled with a lognormal random variate with dispersion determined by the parameter σ:

$$
\epsilon \sim \ln N(\sigma)
$$

(22)

The noise factor reproduces the average within-hierarchical level income dispersion in case-study firms [57–62]. The distribution of within-hierarchical level income dispersion is shown in Fig 14. To determine σ, we first calculate the mean Gini index (\bar{G}) of the case-study data shown in Fig 14. We then calculate σ using:

$$
\sigma = 2 \cdot \text{erf}^{-1}(\bar{G})
$$

(23)

This equation is derived from the definition of the Gini index of a lognormal distribution: $G = \text{erf}(\sigma/2)$. To incorporate uncertainty in the case-study data, each model iteration uses a different bootstrap resample to calculate \bar{G}. Code implementing this method can
be found in the C++ header file `boot_sigma.h`, located in the Supplementary Material [158].

7.3.6 Estimating energy use from average institution size.

The energy-hierarchy-inequality model assumes that energy use E_{pc} is proportional to average institution size I:

$$ E_{pc} = c_1 I^{c_2} $$

The parameters c_1 and c_2 are determined from regressions on the international firm data shown in Fig 1A.
Supporting information

S1 Fig. Distribution of slave ownership in the US South in 1860. The blue line shows the distribution of slave ownership in the US South. ‘Steps’ indicate the bins in the original data. The red line shows the best-fit power-law distribution, which has an exponent $\alpha = 2.7$. The shaded region indicates the range of uncertainty for a sample of 1 million. Slave-estate size roughly follows a power-law distribution. Data is from [163], as reported in [164]. The best-fit power law is determined using the methods in [165].

Acknowledgments

I would like to thank Jonathan Nitzan for his helpful discussions. Thank-you also to Ellie Perkins, Mark Thomas, and Steve Keen for comments on this research.

Author Contributions

Conceptualization: Blair Fix.
Data curation: Blair Fix.
Formal analysis: Blair Fix.
Investigation: Blair Fix.
Methodology: Blair Fix.
Software: Blair Fix.
Visualization: Blair Fix.
Writing – original draft: Blair Fix.
Writing – review & editing: Blair Fix.

References
1. Hayden B. Richman, poorman, beggarman, chief: The dynamics of social inequality. In: Archaeology at the Millennium. Springer; 2001. p. 231–272.
2. Mattison SM, Smith EA, Shenk MK, Cochrane EE. The evolution of inequality. Evolutionary Anthropology: Issues, News, and Reviews. 2016; 25(4):184–199. doi:10.1002/evan.21491
3. Scheidel W. The Great Leveler: Violence and the History of Inequality from the Stone Age to the Twenty-First Century. Harvard UP; 2017.
4. Rousseau JJ. Discourse on the Origin of Inequality. Hackett Publishing; 1992.
5. Flannery K. The creation of inequality: how our prehistoric ancestors set the stage for monarchy, slavery, and empire. Harvard University Press; 2012.
6. Gould RV. The origins of status hierarchies: A formal theory and empirical test. American journal of sociology. 2002; 107(5):1143–1178. doi:10.1086/341744
7. Landman G. The origin of the inequality of the social classes. Routledge; 2015.
8. Lee RB. Primitive communism and the origin of social inequality. Cambridge University Press; 1990.
9. Midlarsky MI. The evolution of inequality: war, state survival, and democracy in comparative perspective. Stanford University Press; 1999.
10. Price TD, Feinman GM. Foundations of social inequality. vol. 1. New York: Springer Science & Business Media; 1995.
11. Price TD, Feinman GM, editors. Pathways to power: New Perspectives on the Emergence of Social Inequality. New York: Springer; 2010.
12. Arnold JE. Labor and the rise of complex hunter-gatherers. Journal of Anthropological Archaeology. 1993; 12(1):75–119. doi:10.1006/jaap.1993.1003
13. Bar-Yosef O. From sedentary foragers to village hierarchies: the emergence of social institutions. In: PROCEEDINGS-BRITISH ACADEMY. vol. 110. OXFORD UNIVERSITY PRESS INC.; 2001. p. 1–38.
14. Boix C, Rosenbluth F. Bones of contention: the political economy of height inequality. American Political Science Review. 2014; 108(01):1–22. doi:10.1017/S0003055413000555
15. Blake M, Clark JE. The emergence of hereditary inequality: The case of Pacific coastal Chiapas, Mexico. Pacific Latin America in prehistory: the evolution of archaic and formative cultures. 1999; p. 55–73.
16. Cohen MN. The emergence of health and social inequalities in the archaeological record. In: Human biology and social inequality. vol. 39; 1998. p. 249.
17. Gilman A. The development of social stratification in Bronze Age Europe. Current anthropology. 1981; 22(1):1–23. doi:10.1086/202600
18. Kohler TA, Smith ME, Bogaard A, Feinman GM, Peterson CE, Betzenhauser A, et al. Greater post-Neolithic wealth disparities in Eurasia than in North America and Mesoamerica. Nature. 2017; 551 (7682):619–622. doi:10.1038/nature24646 PMID: 29143617
19. Prentiss AM, Lyons N, Harris LE, Burns MR, Godin TM. The emergence of status inequality in intermediate scale societies: A demographic and socio-economic history of the Keatley Creek site, British Columbia. Journal of Anthropological Archaeology. 2007; 26(2):299–327. doi:10.1016/j.jaa.2006.11.006
20. Mulder MB, Bowles S, Hertz T, Bell A, Beise J, Clark G, et al. Intergenerational wealth transmission and the dynamics of inequality in small-scale societies. Science. 2009; 326(5953):682–688. doi:10.1126/science.1178336
21. Mulder MB, Fazzio I, Irons W, McElreath RL, Bowles S, Bell A, et al. Pastoralism and wealth inequality. Current Anthropology. 2010; 51(1):35–48. doi:10.1086/648561
22. Bowles S, Smith EA, Borghoff Mulder M. The emergence and persistence of inequality in premodern societies: introduction to the special section. Current Anthropology. 2010; 51(1):7–17. https://doi.org/10.1086/649206

23. Gurven M, Borgheroff Mulder M, Hooper PL, Kaplan H, Quinlan R, Sear R, et al. Domestication alone does not lead to inequality: intergenerational wealth transmission among horticulturalists. Current Anthropology. 2010; 51(1):49–64. https://doi.org/10.1086/648587

24. Shenk MK, Borgheroff Mulder M, Beise J, Clark G, Irons W, Leonetti D, et al. Intergenerational wealth transmission among agriculturalists: foundations of agrarian inequality. Current Anthropology. 2010; 51(1):65–83. https://doi.org/10.1086/648658

25. Smith EA, Hill K, Marlowe FW, Nolin D, Wiessner P, Gurven M, et al. Wealth transmission and inequality among hunter-gatherers. Current Anthropology. 2010; 51(1):19–34. https://doi.org/10.1086/648530 PMID: 21151711

26. Milanovic B. Ancient inequality. NBER WORKING PAPER SERIES. 2008; Working Paper 13550.

27. Milanovic B. The inequality possibility frontier: extensions and new applications. World Bank Policy Research Working Paper. 2013; WPS6449.

28. Milanovic B, Lindert PH, Williamson JG. Pre-industrial inequality. The economic journal. 2011; 121(551):255–272. https://doi.org/10.1111/j.1468-0297.2010.02403.x

29. Milanovic B. Towards an explanation of inequality in premodern societies: the role of colonies, urbanization, and high population density. The Economic History Review. 2017;

30. Williamson JG. History without evidence: Latin American inequality since 1491. National Bureau of Economic Research; 2009.

31. Lane N. The vital question: energy, evolution, and the origins of complex life. New York: WW Norton & Company; 2015.

32. Adams RN. Energy and structure: a theory of social power. University of Texas Press; 1975.

33. Adams RN. The eighth day: social evolution as the self-organization of energy. University of Texas Press; 1988.

34. Cottrell F. Energy & Society (Revised): The Relation Between Energy, Social Change, and Economic Development. Bloomington: AuthorHouse; 2009.

35. Georgescu-Roegen N. The entropy law and the economic process. Cambridge, MA: Harvard University Press; 1971.

36. Hall C, Tharakan P, Hallock J, Cleveland C, Jefferson M. Hydrocarbons and the evolution of human culture. Nature. 2003; 426(6964):318–322. https://doi.org/10.1038/nature02130 PMID: 14628060

37. Ostwald W. Der energetische Imperativ. BoD—Books on Demand; 2016.

38. Rosa EA, Machlis GE, Keating KM. Energy and Society. Annual Review of Sociology. 1988; 14(1):149–172. https://doi.org/10.1146/annurev.so.14.080188.001053

39. Ruyle EE. Energy and culture. In: Bernardi B, editor. The concept and dynamics of culture. The Hague: Mouton; 1977.

40. Saddy F. Virtual Wealth and Debt: the Solution of the Economic Paradox. London: George Allen & Unwin; 1926.

41. White LA. Energy and the evolution of culture. American Anthropologist. 1943; 45(3):335–356. https://doi.org/10.1525/aa.1943.45.3.02a00010

42. Kondepudi DK, Prigogine I. Modern Thermodynamics: from Heat Engines to Dissipative Structures. Chicester: John Wiley & Sons; 1998.

43. Illich I. Energy and equity. London: Harper & Row; 1974.

44. Khan F, Heinecker P. Inequality and energy: Revisiting the relationship between disparity of income distribution and energy use from a complex systems perspective. Energy Research & Social Science. 2018; 42:184–192. https://doi.org/10.1016/j.erss.2018.03.026

45. Nielsen F. Income inequality and industrial development: Dualism revisited. American Sociological Review. 1994; 59(5):654–677. https://doi.org/10.2307/2096442

46. Ruyle EE. Slavery, surplus, and stratification on the Northwest Coast: The ethnoenergetics of an incipient stratification system. Current Anthropology. 1973; 14(5):603–631. https://doi.org/10.1086/201394

47. Fix B. Rethinking Economic Growth Theory from a Biophysical Perspective. Hall C, editor. New York: Springer; 2015.

48. Fix B. Energy and Institution Size. PLOS ONE. 2017; 12(2):e0171823. https://doi.org/10.1371/journal.pone.0171823 PMID: 28178339
49. Axtell RL. Zipf distribution of US firm sizes. Science. 2001; 293:1818–1820. https://doi.org/10.1126/science.1062081 PMID: 11546870

50. Fujiwara Y, Aoyama H, Di Guilmi C, Souma W, Gallegati M. Gibrat and Pareto–Zipf revisited with European firms. Physica A: Statistical Mechanics and its Applications. 2004; 344(1-2):112–116. https://doi.org/10.1016/j.physa.2004.06.098

51. Gaffeo E, Gallegati M, Palestrini A. On the size distribution of firms: additional evidence from the G7 countries. Physica A: Statistical Mechanics and its Applications. 2003; 324(1–2):117–123. https://doi.org/10.1016/S0378-4371(02)01890-3

52. Fix B. Putting Power Back into Growth Theory. Review of Capital as Power. 2015; 1(2):1–37.

53. Simon HA. The compensation of executives. Sociometry. 1957; 20(1):32–35. https://doi.org/10.2307/2786111

54. Child J. Predicting and understanding organization structure. Administrative Science Quarterly. 1973; 18(2):168–185. https://doi.org/10.2307/2392061

55. Turchin P, Gavrilets S. Evolution of complex hierarchical societies. Social Evolution and History. 2009; 8(2):167–198.

56. Hamilton MJ, Mlne BT, Walker RS, Burger O, Brown JH. The complex structure of hunter–gatherer social networks. Proceedings of the Royal Society London B: Biological Sciences. 2007; 274 (1622):2195–2203. https://doi.org/10.1098/rspb.2007.0564

57. Audas R, Barmby T, Treble J. Luck, effort, and reward in an organizational hierarchy. Journal of Labor Economics. 2004; 22(2):379–395. https://doi.org/10.1086/381254

58. Baker G, Gibbs M, Holmstrom B. Hierarchies and compensation: A case study. European Economic Review. 1993; 37(2-3):366–378. https://doi.org/10.1016/0014-2921(93)90025-6

59. Dohmen TJ, Kriechel B, Pfann GA. Monkey bars and ladders: The importance of lateral and vertical job mobility in internal labor market careers. Journal of Population Economics. 2004; 17(2):193–228. https://doi.org/10.1007/s00148-004-0191-4

60. Lima F. Internal Labor Markets: A Case Study. FEUNL Working Paper. 2000; 378.

61. Morais F, Collias NE, Allee WC. Mating behavior and the social hierarchy in small flocks of white leghorns. Applied Animal Behaviour Science. 2000; 69(1):35–53. https://doi.org/10.1016/S0168-1591(00)00113-1 PMID: 10856783

62. Girman DJ, Mills MGL, Geffen E, Wayne RK. A molecular genetic analysis of social structure, dispersal, and interpack relationships of the African wild dog (Lycaon pictus). Behavioral Ecology and Sociobiology. 1997; 40(3):187–198. https://doi.org/10.1007/s002650050332
73. Gerloff U, Hartung B, Fruth B, Hohmann G, Tautz D. Intracommunity relationships, dispersal pattern and paternity success in a wild living community of Bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proceedings of the Royal Society of London B: Biological Sciences. 1999; 266(1424):1189–1195. https://doi.org/10.1098/rspb.1999.0762

74. Wroblewski EE, Murray CM, Keele BF, Schumacher-Stankey JC, Hahn BH, Pusey AE. Male dominance rank and reproductive success in chimpanzees, Pan troglodytes schweinfurthii. Animal Behaviour. 2009; 77(4):873–885. https://doi.org/10.1016/j.anbehav.2008.12.014 PMID: 19498952

75. Betzig LL. Despotism and differential reproduction: A cross-cultural correlation of conflict asymmetry, hierarchy, and degree of polygyny. Ethology and Sociobiology. 1982; 3(4):209–221. https://doi.org/10.1016/0162-3095(82)90050-4

76. Betzig L. Means, variances, and ranges in reproductive success: comparative evidence. Evolution and Human Behavior. 2012; 33(4):309–317. https://doi.org/10.1016/j.evolhumbehav.2011.10.008

77. Betzig LL. Despotism, Social Evolution, and Differential Reproduction. Routledge; 2018.

78. Cronk L. Wealth, status, and reproductive success among the Mukogodo of Kenya. American Anthropologist. 1991; 93(2):345–360. https://doi.org/10.1525/aa.1991.93.2.02a00040

79. Kahan A, Hellie R. The plow, the hammer, and the knout: An economic history of eighteenth-century Russia. Chicago: University of Chicago Press; 1985.

80. Bendix R. Max Weber: an intellectual portrait. vol. 2. Psychology Press; 1998.

81. Fix B. Personal Income and Hierarchical Power. SocArXiv. 2018.

82. Hegyi G, Neda Z, Santos MA. Wealth distribution and Pareto’s law in the Hungarian medieval society. Physica A: Statistical Mechanics and its Applications. 2007; 380(1):271–277. https://doi.org/10.1016/j.physa.2007.02.094

83. Angle J. The surplus theory of social stratification and the size distribution of personal wealth. Social Forces. 1986; 65(2):293–326. https://doi.org/10.1093/sf/65.2.293

84. Berle AA, Means GGC. The modern corporation and private property. Transaction Books; 1932.

85. Commons JR. Legal foundations of capitalism. Transaction Publishers; 1924.

86. Dugger WM. Corporate hegemony. vol. 97. Praeger Pub Text; 1989.

87. Galbraith JK. The anatomy of power. Boston, Mass.: Houghton Mifflin Co.; 1985.

88. Lenski GE. Power and privilege: A theory of social stratification. UNC Press Books; 1966.

89. Mills CW. The power elite. Oxford University Press; 1956.
103. Munkirs JR. The transformation of American capitalism: From competitive market structures to centralised private sector planning. ME Sharpe Inc; 1985.

104. Peach JT. Distribution and economic progress. Journal of Economic Issues. 1987, 21(4):1495–1529. https://doi.org/10.1080/00213624.1987.11504713

105. Sidanius J, Pratto F. Social dominance: An intergroup theory of social hierarchy and oppression. Cambridge University Press; 2001.

106. Tool MR, Samuels WJ. The economy as a system of power. New Brunswick, NJ: Transaction Books; 1989.

107. Tool M. The discretionary economy: A normative theory of political economy. New York: Routledge; 2017.

108. Veblen T. The Theory of Business Enterprise. New York: Martino Fine Books; 1904.

109. Veblen T. Absentee ownership: business enterprise in recent times: the case of America. Transaction Pub; 1923.

110. Weber M. Economy and society: An outline of interpretive sociology. Univ of California Press; 1978.

111. Wright EO. Class structure and income determination. vol. 2. New York: Academic Press; 1979.

112. Huber E, Huo J, Stephens JD. Power, policy, and top income shares. Socio-Economic Review. 2017; 0(0):1–23. https://doi.org/10.1093/ser/mwx027

113. Brennan J. The Power Underpinnings, and Some Distributional Consequences, of Trade and Investment Liberalisation in Canada. New Political Economy. 2013; 18(5):715–747. https://doi.org/10.1080/13563467.2013.736955

114. Joskow P, Rose N, Shepard A, Meyer JR, Peltzman S. Regulatory constraints on CEO compensation. Brookings Papers on Economic Activity Microeconomics. 1993; 1993(1):1–72. https://doi.org/10.2307/2534710

115. United States Government US. The Official Role of the United States President—2015: U.S.C. Title 3. 1st ed. Policy Reference Press; 2014.

116. Mishel L, Davis A. CEO pay continues to rise as typical workers are paid less. Issue Brief. 2014; 380.

117. Mishel L, Schieder J. Stock market headwinds meant less generous year for some CEOs: CEO pay remains up 46.5% since 2009. Washington, D.C.: Economic Policy Institute; 2016. 109799.

118. Davis K, Moore WE. Some principles of stratification. American Journal of Sociology. 1940; 45(6):841–862. https://doi.org/10.1086/218489

119. Hooper PL, Kaplan HS, Boone JL. A theory of leadership in human cooperative groups. Journal of Theoretical Biology. 2010; 265(4):633–646. https://doi.org/10.1016/j.jtbi.2010.05.034 PMID: 20665973

120. Spencer CS. Human agency, biased transmission, and the cultural evolution of chiefly authority. Journal of Anthropological Archaeology. 1993; 12(1):41–74. https://doi.org/10.1006/jaar.1993.1002

121. Powers ST, Lehmman L. An evolutionary model explaining the Neolithic transition from egalitarianism to leadership and despotism. Proc R Soc B. 2014; 281(1791):20141349. https://doi.org/10.1098/rspb.2014.1349 PMID: 25100704

122. Schrodinger E. What is life?: With mind and matter and autobiographical sketches. Cambridge University Press; 1992.

123. Hall CA. The continuing importance of maximum power. Ecological modelling. 2004; 178(1):107–113. https://doi.org/10.1016/j.ecolmodel.2004.03.003

124. Lotka AJ. Contribution to the energetics of evolution. Proceedings of the National Academy of Sciences. 1922; 8(6):147–151. https://doi.org/10.1073/pnas.8.6.147

125. Odum HT, Pinkerton RC. Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems. American Scientist. 1955; 43(2):331–343.

126. DeLong JP. The maximum power principle predicts the outcomes of two-species competition experiments. Oikos. 2008; 117(9):1329–1336. https://doi.org/10.1111/j.0030-1299.2008.16832.x

127. Hall CA. Maximum power: the ideas and applications of HT Odum. University Press of Colorado; 1995.
132. Diamond JM. Guns, Germs, and Steel: The Fates of Human Societies. New York: W. W. Norton & Company; 1999.

133. Bentley GR, Goldberg T, Jasińska Gy. The fertility of agricultural and non-agricultural traditional societies. Population Studies. 1993; 47(2):269–281. https://doi.org/10.1080/0032472031000147006

134. Wilson DS, Wilson EO. Rethinking the theoretical foundation of sociobiology. The Quarterly review of biology. 2007; 82(4):327–348. https://doi.org/10.1086/522809 PMID: 18217526

135. Wilson EO. The social conquest of earth. WW Norton & Company; 2012.

136. Dunbar RI. Neocortex size as a constraint on group size in primates. Journal of Human Evolution. 1992; 22(6):469–493. https://doi.org/10.1016/0047-2484(92)90081-J

137. Boehm C, Barclay HB, Dentan RK, Dupre MC, Hill JD, Kent S, et al. Egalitarian behavior and reverse dominance hierarchy [and comments and reply]. Current Anthropology. 1993; 34(3):227–254. https://doi.org/10.1086/204166

138. Boehm C. Hierarchy in the forest: The evolution of egalitarian behavior. Cambridge, MA: Harvard University Press; 2009.

139. Price TD. Social Inequality at the Origins of Agriculture. In: Foundations of Social Inequality. New York: Plenum Press; 1995.

140. Price TD, Bar-Yosef O. Traces of inequality at the origins of agriculture in the ancient Near East. In: Pathways to Power. Springer; 2010. p. 147–168.

141. Carballo DM, Roscoe P, Feinman GM. Cooperation and Collective Action in the Cultural Evolution of Complex Societies. Journal of Archaeological Method and Theory. 2014; 21(1):98–133. https://doi.org/10.1007/s10816-012-9147-2

142. Wittfogel KA. Oriental despotism: A comparative study of total power. London: Yale University Press; 1959.

143. Sanders RH. Deconstructing cosmology. Cambridge University Press; 2016.

144. Gillespie CS. Fitting heavy tailed distributions: the poweRlaw package. arXiv preprint arXiv:14073492. 2014.;

145. Fix B. Hierarchy and the Power-Law Income Distribution Tail. Journal of Computational Social Science. 2018; 1(2):471–491. https://doi.org/10.1007/s42001-018-0019-8

146. Maddison A. Statistics on World Population, GDP and Per Capita GDP, 1-2008 AD; 2008. Available from: http://www.ggdc.net/maddison/Maddison.htm.

147. Briscoe J. Energy use and social structure in a Bangladesh village. Population and Development Review. 1979; 5(4):615–641. https://doi.org/10.2307/1971974

148. Cusso X, Garrabou R, Tello E. Social metabolism in an agrarian region of Catalonia (Spain) in 1860–1870: flows, energy balance and land use. Ecological Economics. 2006; 58(1):49–65. https://doi.org/10.1016/j.ecolecon.2005.05.026

149. Kuskova P, Gingrich S, Krausmann F. Long term changes in social metabolism and land use in Czechoslovakia, 1830–2000: an energy transition under changing political regimes. Ecological Economics. 2006; 68(1-2):394–407. https://doi.org/10.1016/j.ecolecon.2006.04.006

150. Warde P. Energy consumption in England and Wales, 1560-2000; 2007. Available from: http://www.histeco.mgdl.cam.ac.uk/history-sust/energyconsumption/.

151. Kandcr A, Malanima P, Warde P. Power to the people: energy in Europe over the last five centuries. Princeton: Princeton University Press; 2014.

152. Cook E. The flow of energy in an industrial society. Scientific American. 1971; 225(3):134–147. https://doi.org/10.1038/scientificamerican0971-134

153. Malanima P. Energy Consumption in the Roman World. In: The Ancient Mediterranean Environment between Science and History. Boston: Brill; 2013. p. 13–36.

154. Haberl H. The energetic metabolism of societies: Part II: Empirical examples. Journal of Industrial Ecology. 2001; 5(2):71–88. https://doi.org/10.1162/10881980152830141

155. Haberl H. The global socioeconomic energetic metabolism as a sustainability problem. Energy. 2006; 31(1):87–99. https://doi.org/10.1016/j.energy.2004.04.045

156. Smil V. Energy transitions: history, requirements, prospects. Santa Barbara: Praeger; 2010.

157. Pimentel D. Energy flow in the food system. In: Food and energy resources; 1984. p. 1–23. https://doi.org/10.1016/8978-0-12-556560-8.50006-1

158. Fix B. Supplementary Materials for Energy, Hierarchy and the Origin of Inequality. 2018.

159. Clauset A, Shalizi CR, Newman ME. Power-law distributions in empirical data. SIAM review. 2009; 51(4):661–703. https://doi.org/10.1137/070710111
160. Efron B, Tibshirani RJ. An introduction to the bootstrap. London: CRC press; 1994.
161. Otto JS. Cannon’s Point Plantation, 1794-1860: Living Conditions and Status Patterns in the Old South. Toronto: Academic Press Inc.; 1984.
162. Grund C. The wage policy of firms: comparative evidence for the US and Germany from personnel data. The International Journal of Human Resource Management. 2005; 16(1):104–119. https://doi.org/10.1080/0958519042000295975
163. Soltow L. Men and wealth in the United States, 1850-1870. Yale University Press; 1975.
164. Williamson S, Cain L. Measuring the Value of a Slave; 2018. Available from: https://wwww.measuringworth.com/slavery.php#foot18.
165. Virkar Y, Clauset A. Power-law distributions in binned empirical data. The Annals of Applied Statistics. 2014; 8(1):89–119. https://doi.org/10.1214/13-AOAS710