Geosmithia Species Associated With Bark Beetles From Southern China, With the Description of Four New Species

Xiuyu Zhang
Shandong Normal University

You Li
Fujian Agriculture and Forestry University

Meixue Dai
Shandong Normal University

Hongli Si
Shandong Normal University

Guoyan Zhao
Shandong Normal University

Miroslav Kolářík
Czech Academy of Sciences: Akademie ved Ceske republiky

Jiří Hulcr
University of Florida

Xiaojian Jiang
Shandong Normal University

Runlei Chang (runlei.chang@163.com)
Shandong Normal University https://orcid.org/0000-0001-6613-9062

Research

Keywords: fungal community, symbiosis, four new taxa

Posted Date: May 26th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-558245/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Fungi of the genus *Geosmithia* are frequently associated with bark beetles that feed on phloem on various woody hosts. Most studies on *Geosmithia* were carried out in North and South America and Europe, with only two species were reported from Taiwan, China. The aim of this study was to investigate the diversity of *Geosmithia* species in southern China. Field surveys in Guangdong, Guangxi, Hunan, Jiangxi and Shanghai yielded a total of 76 fungal isolates from six beetle species. Isolates were grouped based on morphology. The ITS, β-tubulin and elongation factor 1-α gene regions of representatives of each group were sequenced. Phylogenetic trees were constructed based on those sequences. In total five species were identified, with one previously described species *G. putterilli* and four new species which were described as *G. jiulianshanensis*, *G. jiangxiensis*, *G. formosana*, and *G. pulvereae* (*Geosmithia* sp. 3 and *Geosmithia* sp. 23) sp. nov., in this paper.

Introduction

Members of *Geosmithia* are widely distributed fungal associates of phloem- and xylem-feeding beetles (Kolařík et al. 2007, 2017; Lin et al. 2016; Pitt 1979), such as species in *Bostrichidae* and *Curculionidae-Scolytinae* (Coleoptera) (Juzwik et al. 2015; Kolařík et al. 2017). *Geosmithia* species are predominantly isolated from phloem-feeding bark beetles on broadleaved and conifer trees although they have been documented from many other substrates including soil (Kolarík et al. 2004), seed-feeding beetles (Huang et al. 2017), animal skin (Crous et al. 2018), indoor environment (Crous et al. 2018), insect-free plant tissues (McPherson et al. 2013), and food materials (Pitt and Hocking 2012). To date, almost 60 phylogenetic, and 21 formally described *Geosmithia* species have been recognized (Strzalka et al. 2021).

Geosmithia is similar to *Penicillium* and *Paecilomyces* in morphology, but it can be distinguished by the combination of stipe with or without curved basal cell, verrucous conidiophores (incl. phialide), cylindrical phialide shape with very short and cylindrical neck (collula) and by ellipsoidal or cylindrical conidia (except of globose conidia in *G. eupagioceri* and *G. microcorthyli*). Colony color could be in shades of white, yellow, brown or red, but newer bluish green or green (Kolarík et al. 2004; Kolařík and Kirkendall 2010).

The spores of *Geosmithia* may be transmitted by attaching to the surface of beetle vector, but the ecological role of most *Geosmithia* species in symbiosis with bark beetles is still unclear. Some species serve as a main food source or supplementary nutrition for the beetles (Kolarík and Kirkendall 2010; Machingambi et al. 2014), but most are probably commensals with minimal or no benefit to the beetle (Veselská et al. 2019) because the vector beetles show neither any apparent morphological adaptation nor nutrient dependence (Huang et al. 2017; Huang et al. 2019). Some *Geosmithia* species exhibit extracellular antimicrobial and antifungal metabolites but their ecological implications are unknown (Stodůlková et al. 2009; Veselská et al. 2019).

Some *Geosmithia* species can cause serious tree diseases. One example is the Thousand cankers disease (TCD) of walnuts caused by *G. morbida* (Kolařík et al. 2011). Following high density colonization by its beetle vector, the walnut twig beetle (WTB, *Pityophthorus juglandis*), in the phloem of walnut (*Juglans* spp.) or wingnut (*Pterocarya* spp.) trees, *G. morbida* causes numerous small lesions which eventually girdle the vascular tissue (Hishinuma et al. 2015; Kolarík et al. 2011; Tisserat et al. 2009, Seybold et al. 2013; Utley et al. 2013). TCD has affected many walnut trees in North America, especially in the western United States (Tisserat et al. 2009; Tisserat et al. 2011), and has recently been detected in Europe (Montecchio et al. 2014). Another mildly pathogenic species *Geosmithia* sp. 41 causes mild pathogenicity in *Quercus argifolia* (Lynch et al. 2014).

After the discovery of the *Geosmithia*-beetle association (Kirschner 2001) there has been an accumulation of reports describing *Geosmithia* fungi from phloem-feeding bark beetles around the world (Huang et al. 2019; Jankowiak et al. 2014; Kolarík and Jankowiak 2013; Kolarík et al. 2004, 2005, 2007, 2008; Kubátová et al. 2004; Machingambi et al. 2014; McPherson et al. 2013; Pepori et al. 2015; Strzalka et al. 2021). Fungal communities associated with phloem-infected bark beetles are formed by a variety of biological and abiotic factors. The tree host is one of the most important selection factors (Skelton et al. 2019). Like other beetle-vectored fungi such as the ophiostomatoid fungi (Seifert et al. 2013), *Geosmithia* species display variable degrees of specificity to their beetle vectors and tree hosts, ranging from generalists to single-species specialists (Kolarík and Jankowiak 2013; Kolarík et al. 2008, 2017; Jankowiak et al. 2014; Veselská et al. 2019). Other factors affecting the fungal community structure include beetle ecology, the surrounding host tree community, and climatic factors (Jankowiak et al. 2014; Six and Bentz 2007). These factors also influence the communities of *Geosmithia*, most notably by the fact that different beetles coexisting the same host tree have similar *Geosmithia* assemblages (Kolarík et al. 2008; Machingambi et al. 2014).

At present, most studies of *Geosmithia* were conducted from North and South America and Europe, but the mycoflora of Asian bark beetles remains understudied. The purpose of this study is to investigate the *Geosmithia* species from southern China using phylogenetic analysis and morphological and physiological features to fill the gap in our understanding of the global *Geosmithia* diversity.

Materials and Methods

Sampling, isolating, and preserving of fungal isolates.

The beetle gallery samples were collected in Guangdong, Guangxi, Hunan, Jiangxi and Shanghai Province from plant hosts of *Altingia gracilipes* (*Altingiaceae*), *Gnetum luzhouense* (*Gnetaceae*), Lauraceae sp., *Liquidambar formosana* (*Altingiaceae*), *L. styraciflua* (*Altingiaceae*) and *Ulmus* sp. (*Ulmaceae*) and kept individually in sealable bags. Adult beetles were individually placed in Eppendorf tubes. Both galleries and adult beetles were kept at 4°C for further isolation. The beetle vectors were *Acanthotomus suenel* (*Curculionidae-Scolytinae*), *Scolytus jiulianshanensis* (*Curculionidae-Scolytinae*), *Crossotosaurus emancipatus* (*Curculionidae-Platypodinae*), *Dinoderus* sp. L489 (*Bostrichidae*), *Microperus* sp. L589 (*Curculionidae-Scolytinae*) and *Phloeosinus* sp. (*Curculionidae*) (Table 1). The fungal isolates were obtained by using method of scraping wood tissue from the beetle galleries and inoculated on 2% malt extract agar (MEA: 20 g agar [Solarbio, China], 20 g malt extract [Hopebio, China], 1 L deionized water). The cultures were purified by hyphal-tip subculturing and incubated at 25 °C. All the cultures obtained in this study were deposited in culture collection (SNM) of Shandong Normal University, Jinan, Shandong.
DNA extraction, amplification, and sequencing.

DNA was extracted by scraping fresh fungal tissue from pure cultures and adding to 50 µL extraction solution of the PrepMan Ultra Sample Preparation Reagent (Applied Biosystems, Foster City, CA). Samples were vortexed after incubated at 100 °C for 10 min and then centrifuged at 5000 rpm for 5 min. The supernatant was transferred to a new Eppendorf tube and used as template for polymerase chain reaction (PCR) amplification.

The rDNA region of the ITS1-5.8S-ITS2, internal transcribed spacer (ITS), was amplified using the primer pair of ITS1-F (Gardes and Bruns 1993) and ITS4 (White et al. 1990). Translation elongation factor 1-α gene (TEF1-α) was amplified using primer pair of EF1-983F and EF1-2218R (Rehner and Buckley 2005). β-tubulin (TUB2) was amplified by using T10 and Bt2b (Glass and Donaldson 1995; O'Donnell and Cigelnik 1997). PCR amplification was carried out in a final 25 µL PCR reaction mixture consisting of 50–100 ng template DNA, 1.25 U Taq polymerase (Vazyme Biotech Co., Ltd, China), 200 µM dNTP, 0.5 µM of each primer, and 5% (v/v) dimethyl sulfoxide (DMSO). The PCR conditions were as follows: 95°C for 3 min, followed by 30 cycles of 95°C for 1 min, 50–55°C for 1 min, and 72°C for 1 min. The final extension step was 72°C for 10 min. The amplified products were sequenced in Sangon Biotech, Qingdao, Shandong province, China.

DNA sequence analyses

The sequences obtained using the forward and reverse primers were aligned in Geneious version 10.2.2 (Biomatters, Auckland, New Zealand). Reference sequences of Geosmithia species were retrieved from GenBank (Table 2). Emericellopsis pallida CBS 490.71 was chosen as the phylogenetic outgroup. Sequences were aligned by using the online version of MAFFT v. 7 (Katoh and Standley 2013) with default setting. The best nucleotide substitution model for each partition was determined in jModelTest v. 2.1.1 (Darriba et al. 2012). Maximum likelihood (ML) phylogenetic analyses were conducted in the CIPRES Science Gateway (Miller et al. 2010) using RAxML v. 8.2.2 (Stamatakis 2014) with recommended partition parameters to assess the tree topology and bootstrap values from 1000 replicate searches. Bayesian inference (BI) was estimated in the CIPRES Science Gateway (Miller et al. 2010) using MrBayes 3.2.7a (Ronquist et al. 2012). MCMC runs of four chains were executed simultaneously from a random starting tree for five million generations, every 100 generations were sampled resulting in 50000 trees, and 12500 trees were discarded during burn-in. Posterior probabilities were estimated from the retained 37500 trees. Phylogenetic trees were visualized and edited in FigTree v. 1.4.3. The final alignments used in this study have been submitted to TreeBase (https://www.treebase.org/, nos.: 28242).

Morphological study

Morphological characters were observed and recorded using the Olympus BX61 microscope (Olympus Corporation, Japan). The images were analyzed using ImageJ (https://imagej.net/). At least 50 measurements for each of the structures were measured. The results of the calculation are expressed as (minimum · mean minus standard deviation · mean plus standard deviation · (-maximum).

Growth study

Three independently isolated strains of each novel taxon were randomly selected for growth experiments. The active growing edge mycelia were inoculated at the centers of 90 mm Petri dishes containing 2% MEA and incubated in darkness at temperatures ranging from 5 to 35°C for 8 days at 5°C intervals, and each temperature has three duplicates. Colony diameters were measured every 2 days and then calculated the optimum temperature of growth for each species and the high and low temperature conditions of growth.

Results

Collection of samples and isolation of fungi

A total of 76 strains in the genus Geosmithia were isolated from 6 beetle species and their galleries. The 73 strains were from the galleries and three strains (SNM887, SNM886, SNM885) from the beetles. Sixty-three strains were from Jiangxi, nine from Shanghai, two from Guangxi, one from Guangdong and one from Hunan (Table 1).

Phylogenetic analysis

The preliminary classification was carried out by BLAST on NCBI GenBank using the ITS marker. Subsequently, 20 representative strains were selected for multi-gene phylogenetic analysis and 10 strains were screened for morphological studies (Table 2). Aligned sequences including gaps yielded 562 characters for ITS, 907 characters for TEF1-α, and 632 characters for TUB2. The best substitution model for ITS, TEF1-α and TUB2 was GTR + I + G. For all datasets (ITS, TUB2, TEF1-α), ML, MP and Bayesian inference produced nearly identical topologies, with slight variations in the statistical support for each of the individual sequence datasets. Phylograms obtained by ML are presented for all the individual datasets.

Taxonomy

Among the 76 strains obtained in this study, five species were identified. Four of these species are new to science, and are described as follows:

Geosmithia jiulianshanensis R. Chang & X. Zhang, sp. nov. (Fig. 4)

Mycobank MB839256
Etymology. *jiulianshanensis*, referring to the predominant beetle vector *Scolytus jiulianshanensis*.

Diagnosis

The stipe of *G. jiulianshanensis* is slightly thicker and shorter than that in other species. *Geosmithia jiulianshanensis* can grow at 5 and 35°C, even grow slowly at 37°C.

Type

CHINA. Jiangxi Province, Ganzhou City, Longnan county, Jiulianshan National Nature Reserve (24°34′1″N, 115°30′E), from gallery of *Scolytus jiulianshanensis* on *Ulmus* sp., 5 May, 2020, S. C. Lai, Y. Xu, S. Liao, Y. Wen & T. Li (HMAS 249919 - holotype, SNM261 = CGMCC3.20252 - ex-holotype culture).

Description

Sexual state not observed. Asexual state penicillium-like. Conidiophores borne mostly from aerial fungal hyphae, erect, determinate, solitary, sometimes funiculose, with all parts verrucose; base often consisting of curved and atypically branched cell, stipe (6.4) 11.3–40.1 (78.4) µm long, (1.5) 1.7–3.2 (6.0) µm wide; penicillus (19.0) 29.6–61.5 (85.0) µm long, biverticillate to quaterverticillate (penicilli of conidiophores on aerial funiculose mycelia are monoverticillate or biverticillate), symmetric or asymmetric, often irregularly branched, rami (1st branch) in whorls of X-Y, (4.1-) 5.2-7.0 (8.7) x (1.2) 1.7–2.5 (-3.2) µm, metulae (last branch) in whorls of X-Y, (4.0-) 4.9–6.5 (7.6) x (1.4) 1.8–2.3 (2.6) µm; phialides in whorls of X-Y, cylindrical, without or with short cylindrical neck and smooth to verruculose walls, (4.2-) 5.1–7.5 (10.2) x (1.1-) 1.5–2.3 (2.7) µm. Conidia hyaline to subhyaline, smooth, narrowly cylindrical to ellipsoidal, (2.3-) 2.9-4.0 (4.7) x (0.9-) 1.2–1.7(2.2) µm, produced in non-persistent conidial chains. Substrate conidia absent.

MEA, 8 d: Colony diam 59–64 mm at 20°C, 65–78 mm at 25°C, and 66–70 mm at 30°C. The hyphae grow slowly at 5 and 35°C. After 8 days of culture, the colony diameter was 1.5-4 mm and 11–14 mm respectively. The optimal temperature for growth was 25°C. Colonies at 25°C, 8 d were appressed, velutinous or occose with raised mycelial cords; colony margin smooth, lamentous, diffuse; aerial mycelium sparse; substrate mycelium sparse; conidiogenesis at 5 and 35°C. After 8 days of culture, the colony diam was 1.5-4 mm and 11–14 mm respectively. The optimal temperature for growth was 25°C. Conidia borne mostly from aerial fungal hyphae, erect, determinate, solitary, sometimes fuscous; base often consisting of curved and atypically branched cell, stipe (6.4) 11.3–40.1 (78.4) µm long, (1.5) 1.7–3.2 (6.0) µm wide; penicillus (19.0) 29.6–61.5 (85.0) µm long, biverticillate to quaterverticillate (penicilli of conidiophores on aerial funiculose mycelia are monoverticillate or biverticillate), symmetric or asymmetric, often irregularly branched, rami (1st branch) in whorls of X-Y, (4.1-) 5.2-7.0 (8.7) x (1.2) 1.7–2.5 (-3.2) µm, metulae (last branch) in whorls of X-Y, (4.0-) 4.9–6.5 (7.6) x (1.4) 1.8–2.3 (2.6) µm; phialides in whorls of X-Y, cylindrical, without or with short cylindrical neck and smooth to verruculose walls, (4.2-) 5.1–7.5 (10.2) x (1.1-) 1.5–2.3 (2.7) µm. Conidia hyaline to subhyaline, smooth, narrowly cylindrical to ellipsoidal, (2.3-) 2.9-4.0 (4.7) x (0.9-) 1.2–1.7(2.2) µm, produced in non-persistent conidial chains. Substrate conidia absent.

MEA, 8 d: Colony diam 59–64 mm at 20°C, 65–78 mm at 25°C, and 66–70 mm at 30°C. The hyphae grow slowly at 5 and 35°C. After 8 days of culture, the colony diameter was 1.5-4 mm and 11–14 mm respectively. The optimal temperature for growth was 25°C. Colonies at 25°C, 8 d were appressed, velutinous or floccose with raised mycelial cords; colony margin smooth, filamentous, diffuse; aerial mycelium sparse; substrate mycelium sparse; conidiogenesis moderate; milky white to light yellow; absence of exudate; no soluble pigment. When incubated at 35 °C, colonies raised, slightly depressed at center, rugose or irregularly furrowed; margin undulate somewhat erosive; aerial mycelia sparse to moderate; substratum mycelia dense, forming a tough basal felt; the colony is darker and yellowish brown; soluble pigment is brown. MEA, 37°C, 8 d, germinating only.

Host. *Liquidambar formosana, Liquidambar styraciua, Ulmus* sp.

Beetle vectors. *Acanthotomicus suncei, Scolytus jiulianshanensis*.

Distribution

Currently only known from Jiangxi and Shanghai

Notes. *Geosmithia formosana, G. jiulianshanensis* and *G. jiangxiensis* are phylogenetically close to each other on ITS, TUB2 and TEF1-α trees. The colony morphology of *G. formosana, G. jiulianshanensis* and *G. jiangxiensis* are also similar, but there are many differences among those three species. First of all, their sequences are quite different (Table 3). And then, under the microscope, the morphological differences between them are more obvious. The spore of *G. jiangxiensis* is thicker than the other two species. The stipe of *G. formosana* is thinner and longer than other two species, the stipe of *G. jiulianshanensis* is obviously thicker than the other two species, and the stipe of *G. jiulianshanensis* is slightly thicker and shorter than that of *G. formosana*. Moreover, their growths at different temperatures are also different (Table 4). *Geosmithia formosana* cannot grow at 5 and 35°C while *G. jiulianshanensis* can grow at both temperatures, especially at 35°C, even grow slowly at 37°C. *Geosmithia jiangxiensis* only grows a little at 5°C, and grows slowly at 35°C. The growth speed of *G. jiulianshanensis* is faster than other two species (Table 4).

Additional cultures examined

CHINA. Jiangxi Province, Ganzhou City, Longnan county (24°52′4″N, 114°47′2.4″E), from gallery of *Acanthotomicus suncei* on *Liquidambar formosana*, 5 May, 2020, S. C. Lai (SNM260, SNM246).

CHINA. Jiangxi Province, Ganzhou City, Xunwu county (24°57′N, 115°38′2″E), from gallery of *Acanthotomicus suncei* on *Liquidambar formosana*, 5 May, 2020 (SNM287).

CHINA. Shanghai, from gallery of *Acanthotomicus suncei* on *Liquidambar styraciua*, April 2019, L. Gao (SNM210, SNM226, SNM285, SNM286, SNM287).

Geosmithia jiangxiensis R. Chang & X. Zhang, sp. nov. (Fig. 5)

MycoBank MB839257

Etymology: jiangxiensis, referring to the place where this species was isolated, Jiangxi Province.

Diagnosis

The spore and the stipe of *G. jiangxiensis* is thicker than close related species. *Geosmithia jiangxiensis* only grows a little at 5 and 35°C.

Type
Description

Sexual state not observed. Asexual state penicillium-like. Conidiophores borne from substrate or aerial hyphae, sometimes arising laterally from another conidiophore, erect, determinate, solitary, with all parts verrucose; stipe commonly (7.3-) 18.4–63.6 (-115.8) µm long, (1.6-) 2.1–3.8 (-5.9) µm wide, penicillus (22.6-) 35.6–85.7 (-119.3) µm long, with walls thick, septate; penicillus terminal, mostly biverticillate, rarely triverticillate, mostly symmetrical, rami (1st branch) in whorls of X-Y, (4.2-) 5.2–7.8 (-10.6) × (1.3-) 2.1–3.5 (-4.8) µm, metulae (last branch) in whorls of X-Y, (2.6-) 3.9–5.8 (-7.3) × (1.3-) 1.7–2.6 (-3.3) µm. Phialides in whorls of X-Y, (3.9-) 4.6–6.2 (-7.7) × (1.5-) 1.9–2.8 (-3.9) µm, cylindrical, without or with short cylindrical neck and smooth to verruculose walls. Conidia cylindrical to ellipsoidal, smooth, hyaline to subhyaline, (2.2-) 2.5–3.2 (-4.0) × (0.9-) 1.1–1.5 (-1.8) µm, formed in non-persistent conidial chains. Substrate conidia absent.

MEA, 8 d: Colony diam 50–58 mm at 20°C, 59–69 mm at 25°C, and 49–60 mm at 30°C. The hyphae grow slowly at 5 and 35°C. After 8 days of culture, the colony diameter was less than 1 mm and close to 0 mm, respectively. At 35°C, there was little or no growth. The optimal growth temperature is 25°C. Colonies

Host: Liquidambar formosana, Ulmus sp.

Beetle vectors: Acanthotomicus suncei, Scolytus jiulianshanensis.

Distribution

Jiangxi

Notes

See comparisons between Geosmithia jiulianshanensis, G. jiangxiensis and G. formosana below the description of G. jiulianshanensis.

Additional cultures examined

CHINA. Jiangxi Province, Ganzhou City, Longnan county, Jiulianshan National Nature Reserve (24°34′1″N, 114°30′E), from gallery of Scolytus jiulianshanensis on Ulmus sp., 5 May, 2020, S. C. Lai, Y. Xu, S. Liao, Y. Wen & T. Li (SNM280).

CHINA. Jiangxi Province, Ganzhou City, Xunwu county (24°57′N, 115°38′E), from gallery of Acanthotomicus suncei on Liquidambar formosana, 5 May, 2020 (SNM883, SNM884).

Geosmithia formosana R. Chang & X. Zhang, sp. nov. (Fig. 6)

MycoBank MB839258

Etymology. formosana, referring to the tree host of Liquidambar formosana where this species has been isolated.

Diagnosis

The stipe of G. formosana is thinner and longer than close related species. Geosmithia formosana cannot grow at 5 and 35°C.

Type

CHINA. Jiangxi Province, Ganzhou City, Longnan county (24°5′2.4″N, 114°47′2.4″E), from gallery of Acanthotomicus suncei on Liquidambar formosana, 5 May, 2020, S. C. Lai (HMAS 249921 - holotype, SNM256 = CGMCC3.20254 - ex-holotype culture).

Description

Sexual state not observed. Asexual state penicillium-like. Conidiophores borne from substrate or aerial mycelium, erect, determinate, solitary, with all parts verrucose; base often consisting of curved and atypically branched cell, stipe (9.2-) 16.7–62.6 (-108.0) × (1.0-) 1.7–3.0 (-3.5) µm; penicillus (21.2-) 41.0–88.8 (-113.9) µm long, long, penicillus terminal, biverticillate to quartermocillate, terminal, biverticillate to quaterverticillate (penicilli of conidiophores on aerial funiculose mycelia are monoverticillate or biverticillate), symmetric or asymmetric, often irregularly branched, rami (1st branch) in whorls of X-Y, (5.1-) 5.7–7.8 (-9.6) × (1.3-) 1.6–2.5 (-3.9) µm, metulae (last branch) in whorls of X-Y, (4.4-) 5.1–6.5 (-7.3) × (1.1-) 1.6–2.4 (-2.9) µm; phialides in whorls of X-Y, cylindrical, without or with short cylindrical neck and smooth to verruculose walls, (3.0-) 4.7–6.9 (-8.1) × (1.1-) 1.5–2.4 (-3.2) µm. Conidia hyaline to subhyaline, smooth, narrowly cylindrical to ellipsoidal, (2.3-) 2.7–3.7 (-4.4) × (0.8-) 1.2–1.8 (-2.2) µm, produced in non-persistent chains. Substrate conidia absent.

MEA, 8 d: Colony diam 50–54 mm at 20°C, 58–64 mm at 25°C, and 44–52 mm at 30°C. The hyphae grow slowly at 5 and 35°C. After 8 days of culture, the colony diameter was less than 1 mm and close to 0 mm, respectively. At 35°C, there was little or no growth. The optimal growth temperature is 25°C. Colonies
at 25°C, 8 d, appressed, white velutinous or flocose with raised mycelial cords; colony margin smooth, filamentous, diffuse, pale yellow; aerial mycelium hyaline, sparse; substrate mycelium hyaline, sparse; conidiogenesis moderate; light yellow to brown; absence of exudate; no soluble pigment. MEA, 37°C, 8 d: no growth.

Host: *Liquidambar formosana*.

Beetle vectors: Acanthotomicus suncei

Distribution
Jiangxi

Notes
See comparisons between *G. jiulianshanensis*, *G. jiangxiensis* and *G. formosana* below the description of *G. jiulianshanensis*.

Geosmithia pulverea R. Chang & X. Zhang, sp. nov. (Fig. 7)

MycoBank MB839259

Etymology: pulverea, powdery in Latin. On MEA medium, *G. pulverea* has powdery sporulation.

Diagnosis: *Geosmithia pulverea* produces long spore chain while its close related species does not.

Type

CHINA, Guangdong Province, Shenzhen City (22°37′54″N, 114°27′16″E), from gallery in the vine of *Gnetum luofuense*, 12 April, 2018, Y. Li (HMAS 249922 - holotype, SNM885 = CGMCC3.20255 - ex-holotype culture).

Description

Sexual state not observed. Asexual state penicillium-like. *Conidiophores* arising from substrate or aerial mycelium with all parts verrucose, 40–250 μm tall; base often consisting of curved and atypically branched cell; stipe (16.2-) 32.7–85.7 (-153.9) × (1.9-) 2.5–3.7 (-4.7) μm, penicillus (17.5-) 30.9–84.3 (-120.1) μm long, biverticillate to quaternverticillate, symmetric or asymmetric, often irregularly branched, 2–3×, rarely more, rami (1st branch) in whorls of X-Y, (8.2-) 10.2–14.4 (-18.9) × (2.2-) 2.5–3.3 (-3.9) μm, metulae (last branch) in whorls of X-Y, (6.3-) 7.5–10.9 (-15.8) × (1.8-) 2.1–2.8 (-3.5) μm; phialides X-Y, cylindrical or ellipsoidal, without or with short cylindrical neck and smooth to verrucose walls, (5.3-) 7.0-9.6 (-12.3) × (1.5-) 2.1–2.8 (-3.5) μm. Conidia hyaline, smooth, narrowly cylindrical to ellipsoidal, (2.1-) 2.5–3.4 (-5.1) × (1.1-) 1.2–1.6 (-2.0) μm. Conidia formed in long, non-persistent conidial chains. Substrate conidia narrow, with free or with short conidiophores arising from substrate or aerial mycelium with all parts verrucose, 40–250 μm tall; base often consisting of curved and atypically branched cell; stipe (16.2-) 32.7–85.7 (-153.9) × (1.9-) 2.5–3.7 (-4.7) μm, penicillus (17.5-) 30.9–84.3 (-120.1) μm long, biverticillate to quaternverticillate, symmetric or asymmetric, often irregularly branched, 2–3×, rarely more, rami (1st branch) in whorls of X-Y, (8.2-) 10.2–14.4 (-18.9) × (2.2-) 2.5–3.3 (-3.9) μm, metulae (last branch) in whorls of X-Y, (6.3-) 7.5–10.9 (-15.8) × (1.8-) 2.1–2.8 (-3.5) μm; phialides X-Y, cylindrical or ellipsoidal, without or with short cylindrical neck and smooth to verrucose walls, (5.3-) 7.0-9.6 (-12.3) × (1.5-) 2.1–2.8 (-3.5) μm. Conidia hyaline, smooth, narrowly cylindrical to ellipsoidal, (2.1-) 2.5–3.4 (-5.1) × (1.1-) 1.2–1.6 (-2.0) μm. Conidia formed in long, non-persistent conidial chains. Substrate conidia absent.

MEA, 8 d: Colony diam 23–29 mm at 20°C, 30–37 mm at 25°C, and 31–36 mm at 30°C. No grow at 5°C. At 35°C, mycelia grew slowly. After 8 days of culture, the colony diameter was 1.5-4 mm, with yellow soluble pigment. The optimal growth temperature is 25–30°C. Colonies at 25°C, 8 d, plane with radial rows and slightly raised centrally, texture velutinous (powdery); sporulation abundant, spore mass Light brownish yellow to buff; reverse yellowish to slightly avellaneous brown; soluble pigment and exudate absent. When incubated at 35°C, the colonies are the same as above. MEA, 37°C, 8 d: no growth.

Host: *Gnetum luofuense*, *Liquidambar formosana*.

Beetle vectors: *Acanthotomicus suncei*, *Crossotarsus emancipatus*, *Dinoderus sp.*, *Microperus sp.*

Distribution
Gungdong, Guangxi, Hunan, Jiangxi, Shanghai

Notes: Geosmithia pulverea colony was powdery and brown-yellow. One of the most obvious features is the long spore chain. According to the tree made by ITS sequence, SNM888, SNM885 and SNM248 was clustered with *Geosmithia* sp. 3, and SNM886, SNM887 and SNM270 were clustered with *Geosmithia* sp. 23 (Fig. 1). However, in the trees with TUB2 and TEF1-α, these strains did not have clear subclassification (Fig. 2 and Fig. 3). It was consequently recognized, using multigene phylogeny, together with *Geosmithia* sp. 23, as a well-defined phylogenetic species inside the *G. pallida* species complex (Kolařík et al. 2017; Huang et al. 2017). The colony of *G. pulverea* was very similar to *G. jiangxiensis* sp. 3 (Kolařík et al. 2004). In this study, we are providing a formal description for the Chinese strains related to *Geosmithia* sp. 3 and sp. 23 which are known to be distributed over various bark beetle hosts in the Temperate Europe in case of *Geosmithia* sp. 3 (Kolařík et al. 2004, 2008; Strzalka et al. 2021) or seems to have global distribution and many bark beetle hosts across Temperate Europe (Strzalka et al. 2021), Mediterranean basin (Kolařík et al. 2007), Northern America (Kolařík et al. 2017; Huang et al. 2017, 2019) and Seychelles (Kolařík et al. 2017). The further study is needed to assess the taxonomic relationships between *G. pulverea*, *Geosmithia* sp. 3 and *Geosmithia* sp. 23.

Additional cultures examined: CHINA, Guangxi Province, Shangsi City (21°54′12″N, 107°54′14″E), from body surface of *Crossotarsus emancipates*, 27 March, 2018, Y. Li (SNM887, SNM886).
China Hunan Province, Changsha City (28°10′56″N, 112°55′41″E), from gallery of Microperus sp. L589, 15 July, 2019, Y. Li (SNM888).

China Jiangxi Province, Ganzhou City, Longnan county (24°52.4″N, 114°47′2.4″E), from gallery of Acanthotomicus suncei on Liquidambar formosana, 5 May, 2020, S. C. Lai (SNM270).

China Shanghai, from gallery of Acanthotomicus suncei on Liquidambar styrraciflua, April 2019, L. Gao (SNM248).

Discussion

A total of 76 strains of Geosmithia were isolated in this study. Analyses of ITS, TUB2 and TEF1-α showed those isolates were separated into five taxa, with one of these strains has been named in previous, G. putterillii, and the other four were novel species, described as G. jiangxiensis, G. formosana and G. pulverea in this study. Those species were isolated from larvae, frass and wood dust in beetle galleries of dying, stressed or weakened broad-leaf tree host, such as Liquidambar spp. and Ulmus sp.

The dominant species obtained in this study were G. jiangxiensis and G. pulverea, with 38 and 18 strains respectively (Table 1). The reason for their abundance in our dataset is the fact that our study focused on sampling from Altinginaceae; it does not mean that the fungus is dominant in other tree taxa. Four species, G. putterillii, G. jiangxiensis and G. formosana have only been isolated in Jiangxi (Table 1). The samples collected from Guangdong, Guangxi and Hunan only yielded G. pulverea.

Geosmithia putterillii was isolated from bark beetles feeding on plants from the family of Rossaceae (Kolařík et al. 2008) and Lauraceae in Europe (Kolařík et al. 2004) and on various families of Angiosperms and Gymnosperms in the Western U.S. (Kolařík et al. 2017). The type strain was isolated from the timber in the New Zealand (Pitt 1979). In this study, G. putterillii was isolated from gallery of Phloeosinus sp. on Lauraceae sp. log (Jiangxi). This study is the first report of G. putterillii in China. It is becoming clear that G. putterillii is widely distributed globally, across many beetle hosts.

Most of G. jiangxiensis were isolated from the galleries of A. suncei (Table 1). Acanthotomicus suncei was recorded on Liquidambar in Fujian, Jiangsu, Jiangxi, Zhejiang, and Shanghai, China (Li et al. 2021). The hosts of this beetle were limited to sweet gum trees, such as L. styrraciflua and L. formosana. The beetle was recorded as an agent of great damage to the imported American sweetgum L. styrraciflua in Shanghai and neighbouring Jiangsu province (Gao and Cognato 2018). The role of the fungus in this outbreak and in the tree pathology remains uninvestigated, though the authors of this paper noted small lesions around the beetle galleries. The other five isolates were isolated from the galleries of Scolytus jiiulianshanensis on Ulmus sp, which suggests that G. jiangxiensis might colonize wide range tree hosts.

Geosmithia jiangxiensis was only isolated in samples from Jiangxi province, from two plant families: Altinginaceae and Ulmaceae (Table 1). The colony of G. jiangxiensis is similar to G. jiiulianshanensis in morphology, but the difference can be seen in the growth rate and micromorphology.

Geosmithia pulverea, is a species closely related to Geosmithia sp. 3 and Geosmithia sp. 23 which are know from various bark beetle hosts in Europa, USA and Seychelles (Kolařík et al. 2007, 2008, 2017; Huang et al. 2017, 2019), and further study need to clarify among these three lineages. In this study, we isolated G. pulverea from A. gracilipes, Gne. luofuense, L. formosana and Ulmus sp. (Table 1), which suggested that this species could colonize a very wide variety of plant hosts. It is also the most widely distributed species, isolated from Guangdong, Guangxi, Hunan, Jiangxi, and Shanghai (Table 1) and vectored by several beetle species, such as, S. jiiulianshanensis, A. suncei, C. emancipatus, Dinoderus sp. Microperus sp. and Phloeosinus sp. (Table 1). Moreover, the abundant of Geosmithia species associated with Acanthotomicus suncei in the current study was also consistent with the frequent occurrence in Shanghai and Jiangxi (Gao et al. 2021).

Conclusions

This study does not provide sufficient data to determine the structure of the Geosmithia community in southern China, as was inferred in Europe and USA after a significantly greater sampling effort (Kolařík et al. 2007, 2008, 2013, 2017; Huang et al. 2017, 2019; Jankowiak et al. 2014). Fungal communities are regulated by a number of factors, including geographic location, host tree species and bark beetle vectors, and further sampling is needed to understand the determinants (Veselská et al. 2019). It is clear, however, that the diversity of China's subcortical fungi is substantial. Fungal communities associated with trees need to be further investigated because many currently unknown species may cause plant diseases.

Abbreviations

BI: Bayesian inference; ITS: Nuclear ribosomal internal transcribed spacer; TEF1-α: Translation elongation factor 1-α; TUB2: β-tubulin ; ML: Maximum likelihood; PCR: Polymerase chain reaction; CGMCC: China General Microbiological Culture Collection Center; HMAS: Herbarium Mycologicum, Academiae Sinicae; TCD: Thousand cankers disease

Declarations

Acknowledgements

We would like to thank Ling Zhang, Shengchang Lai (Jiangxi Agricultural University), Dr. Yongying Ruan (Shenzhen Polytechnic) and Dr. Lei Gao (Shanghai Academy of Landscape Architecture Science and Planning) for assisting the insect collection, Dr. Sarah Smith and Prof. Anthony Cognato (Michigan State University) for assisting with beetle identification. Dr. Shuping Wang (Shanghai Entry-Exit Inspection and Quarantine Bureau) and Jue Wang (Beijing Forest
Adherence to national and international regulations

Not applicable.

Authors’ contributions

Runlei Chang Meixue Dai and You Li designed the research. You Li, Hongli Si and Gouyan Zhao collected samples. Xiuyu Zhang, Runlei Chang and You Li isolated and purified fungal cultures. Xiuyu Zhang, Runlei Chang and Xiaojian Jiang completed the data acquisition, analyses and interpretation. Xiuyu Zhang and Runlei Chang completed the writing of the paper. Miroslav Kolařík, Jiri Hulcr and You Li revised text, taxonomy and phylogeny. All authors approved the manuscript.

Availability of data and materials

The datasets generated for this study (Table 2) can be accessed via GenBank: https://www.ncbi.nlm.nih.gov/genbank/. Alignments used during the current study are available at TreeBase: https://www.treebase.org/.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Crous PW, Luangsa-Ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, Roux J, Barreto RW, Baseia IG, Cano-Lira JF, Martín MP, Morozova OV, Stchigel AM, Summerell BA, Brandrud TE, Dima B, Garcia D, Giraldo A, Guarro J, Gusmão LFP, Khamsuntorn P, Noordeloos ME, Nuankaew S, Pinruan U, Rodríguez-Andrade E, Souza-Motta CM, Thangavel R, van Iperen AL, Abreu VP, Accióy T, Alves JL, Andrade JP, Bahram M, Baral HO, Barbier E, Barnes CW, Bendiksen R, Bernard E, Bezerra JDP, Bezerra JL, Bizio E, Blair JE, Bulyonkova TM, Cabral TS, Caiafa MV, Cantillo T, Colmán AA, Conceição LB, Cruz S, Cunha AOB, Darveaux BA, da Silva AL, da Silva GA, da Silva GM, da Silva RMF, de Oliveira RJV, Oliveira RL, De Souza JT, Dueñas M, Evans HC, Epifani F, Felipe MTC, Fernández-López J, Ferreira BW, Figueiredo CN, Filippova NV, Flores JA, Gené J, Ghorbani G, Gibertoni TB, Glushakova AM, Healy R, Huhndorf SM, Iturrieta-González I, Javan-Nikkhah M, Jurjević Ž, Kachalkin AV, Keochanpheng K, Krisai-Greilhuber I, Li YC, Lima AA, Machado AR, Madrid H, Magalhães OMC, Marbach PAS, Melanda GCS, Miller AN, Mongkolsamrit S, Nascimento RP, Oliveira TGL, Ordoñez ME, Orzes R, Palma MA, Perace CJ, Pereira OL, Perrone G, Peterson SW, Pham THG, Pontelli E, Pordel A, Quijada L, Raja HA, Rosas de Paz E, Ryvarden L, Saitta A, Salcedo SS, Sandoval-Denis M, Santos TAB, Seifert KA, Silva BDB, Smith ME, Soares AM, Sommai S, Sousa JO, Suétrong S, Suscia A, Tedersoo L, Telleria MT, Thanakitpipattana D, Valenzuela-Lopez N, Visagie CM, Zapata M, Groenewald JZ (2018) Fungal Planet description sheets: 785–867. Persoonia 41: 238–417

2. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

3. Gao L, Cognato AI (2018) Acanthotomicus suncei, a new sweetgum tree pest in China (Coleoptera: Curculionidae: Scolytinae: Ipini). Zootaxa 4471:595–599

4. Gao L, Li Y, Wang ZX, Zhao J, Hulcr J, Wang JG, Li YZ, Ju RT (2021) Biology and associated fungi of an emerging bark beetle pest, the sweetgum inscriber Acanthotomicus suncei (Coleoptera: Curculionidae). J Appl Entomol 10.1111/jen.12861

5. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

6. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microb 61:1323

7. Hishinuma SM, Legg WD, Yaghmour MA, Zerillo MM, Parker CM, Roubtsova TV, Nguyen TL, Tisserat NA, Bostock RM, Flint ML et al. (2015) Wingnut (Juglandaceae) as a new generic host for Pityophthorus juglandis (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, Geosmithia morbida (Ascomycota: Hypocreales). The Can Entomol 148:83–91

8. Huang Y-T, Skelton J, Johnson AJ, Kolarik M, Hulcr J (2019) Geosmithia species in southeastern USA and their affinity to beetle vectors and tree hosts. Fungal Ecol 39:168–183

9. Huang YT, Kolarik M, Kasson MT, Hulcr J (2017) Two new Geosmithia species in G. pallida species complex from bark beetles in eastern USA. Mycologia 109:790–803

10. Jankowiak R, Kolarik M, Bilanski P (2014) Association of Geosmithia fungi (Ascomycota: Hypocreales) with pine- and spruce-infesting bark beetles in Poland. Fungal Ecol 11:71–79
11. Jankowiak R, Strzalka B, Bilański P, Linnakoski R, Aas T, Solheim H, Groszek M, de Beer ZW (2017) Two new Leptographium spp. reveal an emerging complex of wood-infecting species in the Ophiostomatidae. Anton Leeuw Int J G 110:1537–1553
12. Jankowiak R, Kolarik M (2010) Fungi associated with the fir bark beetle Cryptalus piceae in Poland. Forest Pathol 40:133–144
13. Juzwik J, Banik MT, Reed SE, English JT, Ginzel MD (2015) Geosmithia morbida Found on Weevil Species Stenonimus pallidus in Indiana. Plant Health Pro 16:7–10
14. Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 30:772–780
15. Kirschner R (2001) Diversity of filamentous fungi in bark beetle galleries incentral Europe. In: Misra JK, Horn BW (eds) Trichomyctetesand Other Fungal Groups. Trichomyctetes and Other Fungal Groups. Robert W Lichtwardt Commemoration Volume, Robert W, pp 175–196
16. Kolařík M, Freeland E, Utley C, Tisserat N (2011) Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia 103:325–332
17. Kolařík M, Hulcr J, Tisserat N, De Beer W, Kostovic M, Kolarikova Z, Seybold SJ, Rizzo DM (2017) Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia 109:185–199
18. Kolařík M, Jankowiak R (2013) Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe. Microb Ecol 66:682–700
19. Kolařík M, Kirkendall LR (2010) Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biol 114:676–689
20. Kolařík M, Kostovick M, Pazoutova S (2007) Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol Res 111:1298–1310
21. Kolařík M, Kuba Iova Á, Cepicka I, Pazoutova S, S’rutka P (2005) A complex of three new white-spored, sympatric, and host range limited Geosmithia species. Mycol Res 109:1323–1336
22. Kolařík M, Kubatova A, Hulcr J, Pazoutova S (2008) Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microb Ecol 55:65–80
23. Kolařík M, Kubátová A, Pažoutová S, Śrutka P (2004) Morphological and molecular characterisation of Geosmithia putterillii, G. pallida comb. nov. and G. flava sp. nov., associated with subcorticolous insects. Mycol Res 108:1053–1069
24. Kubátová A, Kolařík M, Prášil K, Novotný D (2004) Bark beetles and their galleries: well-known niches for little known fungi on the example of Geosmithia. Czech Mycol 56:1–18
25. Lin YT, Shih Hh, Huang YT, Lin CS, Chen CY (2016) Two species of beetle-associated Geosmithia in Taiwan. Fung Sci 31:29–36
26. Li Y, Wan Y, Lin W, Emstsons AS, Gao L (2021) Estimating Potential Distribution of Sweetgum Pest Acanthotomicus suscei and Potential Economic Losses in Nursery Stock and Urban Areas in China. Insects 155. doi: https://doi.org/10.3390/insects12020155
27. Lynch SC, Wang DH, Mayorquin JS, Rugman-Jones PF, Stouthamer R, Eskalen A (2014) First report of Geosmithia pallida causing Foamy Bark Canker, a new disease on Coast Live Oak (Quercus agrifolia), in association with Pseudopityophthorus pubipennis in California. Plant Dis 98:1276
28. Machingambé NM, Roux J, Dreyer LL, Roets F (2014) Bark and ambrosia beetles (Curculionidae: Scolytinae), their phoretic mites (Acanthotomicus) and associated Geosmithia species (Ascomycota: Hypocreales) from Virgilia trees in South Africa. Fungal Biol 118:472–483
29. McPherson BA, Erbilgin N, Bonello P, Wood DL (2013) Fungal species assemblages associated with Phytophthora ramorum-infected coast live oaks following bark and ambrosia beetle colonization in northern California. Forest Ecol Manag 291:30–42
30. Miller AN, Peiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In: Gateway computing environments workshop. (GCE) IEEE, New Orleans, pp 1–8
31. Montecchio L, Fanchin G, Simonato M, Faccoli M (2014) First Record of Thousand Cankers Disease Fungal Pathogen Geosmithia morbida and Walnut Twig Beetle Pityophthorus juglandis on Juglans regia in Europe. Plant Dis 98:1445–1445
32. O’Donnell K, Cigelnik E (1997) Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the Fungus Fusarium Are Nonorthologous. Mol Phylogenet Evol 7:103–116
33. Pepori AL, Kolarik M, Bettini PP, Vettraino AM, Santini A (2015) Morphological and molecular characterisation of Geosmithia species on European elms. Fungal Biol 119:1063–1074
34. Pitt J (1979) Geosmithia gen. nov. for Penicillium lavendulum and related species. Can J of Bot 57:2021–2030
35. Pitt J, Hocking A (2012) Fungi and food spoilage. Springer, New York, 519 p
36. Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps telemorphs. Mycologia 97:84–98
37. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst Biol 61:539–542
38. Skelton J, Jusino MA, Li Y, Bateman C, Thai PH, Lindner DL, Hulcr J (2018) Detecting symbioses in complex communities: the specialist and generalist fungal symbionts of beetles within dead Asian pines. Microb Ecol 76(3):839–850
39. Seifert KA, De Beer ZW, Wingfield MJ (2013) Ophiostomatoid fungi: expanding frontiers. Utrecht, Netherlands
40. Seybold SJ, Haugen D, O’Brien J, Graves AD (2013) Thousand Cankers Disease. USDA Forest Service, Northeastern Area State and Private Forestry Pest Alert. NA-PR-02e10, originally published May 2010
41. Six DL, Bentz BJ (2007) Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Microb Ecol 54:112–118
42. Six DL, Wingfield MJ (2010) The Role of Phytopathogenicity in Bark Beetle–Fungus Symbioses: A Challenge to the Classic Paradigm. Annu Rev Entomol 56:255–272
43. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313
44. Stodůlková E, Kolařík M, Křesinová Z, Kužma M, Šulc M, Man P, Novák P, Maršík P, Landa P, Olišovská J et al (2009) Hydroxylated anthraquinones produced by Geosmithia species. Folia Microbiol 54:179–187
45. Strzalka B, Kolarik M, Jankowiak R (2021) Geosmithia associated with hardwood-infesting bark and ambrosia beetles, with the description of three new species from Poland. Antonie Van Leeuwenhoek
46. Tisserat N, Cranshaw W, Leatherman D, Utley C, Alexander K (2009) Black Walnut Mortality in Colorado Caused by the Walnut Twig Beetle and Thousand Cankers Disease. Plant Health Pro 10
47. Tisserat N, Cranshaw W, Putnam ML, Pscheidt J, Leslie CA, Murray M, Hoffman J, Barkley Y, Alexander K, Seybold SJ (2011) Thousand Cankers Disease is Widespread in Black Walnut in the Western United States. Plant Health Pro 12
48. Utley C, Nguyen T, Roubtsova T, Coggeshall M, Grauke LJ, Graves AD, Leslie ChA, McKenna J, Woeste K, Yaghmour MA, Seybold SJ, Bostock RM, Tisserat N (2013) Susceptibility of walnut and hickory species to Geosmithia morbida. Plant Dis 97:601–607
49. Veselská T, Skelton J, Hulcr J, Chudíčková M, Vojtová T, Kostovc M, Cajthaml T, Baldrian P (2019) Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecol 41:165–176
50. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to the Methods and Applications, 18. Academic Press, New York, pp 315–322

Tables

Table 1 Distribution and number of species of Geosmithia among 76 isolated strains

Geosmithia specie	Location	Tree host	Beetle species	Number(76)
G. formosana (1)	Jiangxi	Liquidambar formosana	Acanthotomicus suncei	1
G. jiangxiensis (14)	Jiangxi	Liquidambar formosana	Acanthotomicus suncei	7
		Ulmus sp.	Scolytus jiulianshanensis	1
G. jiulianshanensis (38)	Jiangxi	Liquidambar formosana	Acanthotomicus suncei	25
		Ulmus sp.	Scolytus jiulianshanensis	5
	Shanghai	Liquidambar styraciflua	Acanthotomicus suncei	8
G. pulverea (18)	Guangdong	Gnetum luofuense	Dinoderus sp.	1
	Guangxi	unknown	Crossotarsus emancipatus	2
	Hunan	unknown	Microporus sp.	1
	Jiangxi	Liquidambar formosana	Acanthotomicus suncei	1
	unknown	unknown	Phloeosinus sp.	6
	Ulmus sp.	Scolytus jiulianshanensis	1	
	Altingia gracilipes	Acanthotomicus suncei	4	
G. putterillii (6)	Jiangxi	Laraceae	Phloeosinus sp.	6
	Shanghai	Liquidambar styraciflua	Acanthotomicus suncei	1

Table 2 Cultures examined in this study and their GenBank accession numbers
Species	Isolation no	Beetle vectors	Tree host	ITS	TEF1-α	TUB2	GenBank accession no	Referen
G. brunnea	CBS 142634	*Xylosandrus compactus*	Liquidambar styraciflua	KY872741	KY872746	KY872751	KY872741, KY872746, KY872751	Present study
	CBS 142635	*X. compactus*	*L. styraciflua*	KY872742	KY872747	KY872752	KY872742, KY872747, KY872752	Present study
	CBS 142633	Hypothenemus dissimilis	*Quercus sp.*	KY872743	KY872748	KY872753	KY872743, KY872748, KY872753	Present study
G. cnesini	CCF 3753	*Cnesinus lecontei*	*Croton draco*	AM947670	LR535705		AM947670	Kolařík al. (201)
	MK 1820	*C. lecontei*	*C. draco*	AM947671	LR535705		AM947671	Kolařík al. (201)
G. eupagioceri	MKA1-b	*Eupagiocerus dentipes*	*Paulinia renesi*	AM947666	LR535705		AM947666	Kolařík al. (201)
	CCF 3754			LR535705			LR535705	Kolařík al. (201)
G. fagi	CCF 6235	*Taphrotrychus bicolor*	*Fagus sylvatica*	LR812775	LR813193	LR813119	LR812775, LR813193, LR813119	Strzałka al. 2021
	21114TBb	*T. bicolor*	*F. sylvatica*	LR812776	LR813120		LR812776, LR813120	Strzałka al. 2021
	CCF 6234	*T. bicolor*	*F. sylvatica*	LR812785	LR813129		LR812785, LR813129	Strzałka al. 2021
G. fassatiae	AK 31/98	*S. intricatus*	*Quercus sp.*	AM421039	MH580557		AM421039	Kolařík al. (200)
	CCF 4331			HF546239	KF853894		HF546239	Kolařík al. (200)
	CCF 4340			HF546247	KF853895		HF546247	Kolařík al. (200)
	CCF 3334		*Quercus pubescens*	MH580530	LR535705		MH580530	Kolařík al. (200)
G. flavia	CCF 3333	*Xiphydria sp.*	*Castanea sativa*	AJ578483	MH580541		AJ578483	Kolařík al. (200)
	CCF4337	*Cerambycidae sp.*	*Pseudotsuga menziesii*	HF546244	MH580542	KF853897	HF546244	Kolařík al. (200)
G. formosana	SNM256=	A. suncei	L. formosana	MW222401	MW592423	MW592403	MW222401, MW592423, MW592403	Kolařík al. (200)
	CGMCC3.20254						SNM256=CGMCC3.20254	Kolařík al. (200)
G. jiangxiensis	SNM279=	A. suncei	L. formosana	MW222397	MW592420	MW592402	MW222397, MW592420, MW592402	Kolařík al. (200)
	CGMCC3.20253						SNM279=CGMCC3.20253	Kolařík al. (200)
S. jiulianshanensis	SNM280	S. jiulianshanensis	Ulmus sp.	MW222396	MW592409	MW592401	MW222396, MW592409, MW592401	Kolařík al. (200)
A. suncei	SNM883	L. formosana		MW222407	MW592412	MW592399	MW222407, MW592412, MW592399	Kolařík al. (200)
A. suncei	SNM884	L. formosana		MW222406	MW592411	MW592400	MW222406, MW592411, MW592400	Kolařík al. (200)
S. jiulianshanensis	SNM261=	S. jiulianshanensis	Ulmus sp.	MW222399	MW592410	MW592395	MW222399, MW592410, MW592395	Kolařík al. (200)
	CGMCC3.20252						SNM261=CGMCC3.20252	Kolařík al. (200)
Acanthotomicus suncei	SNM246	A. suncei	Liquidambar formosana	MW222403	MW592425	MW592393	MW222403, MW592425, MW592393	Kolařík al. (200)
A. suncei	SNM260	L. formosana		MW222400	MW592422	MW592394	MW222400, MW592422, MW592394	Kolařík al. (200)
A. suncei	SNM226	L. styraciflua		MW222404	MW592426	MW592392	MW222404, MW592426, MW592392	Kolařík al. (200)
A. suncei	SNM210	L. styraciflua		MW222405	MW592427	MW592391	MW222405, MW592427, MW592391	Kolařík al. (200)
A. suncei	SNM285	L. styraciflua		MW222395	MW592408	MW592396	MW222395, MW592408, MW592396	Kolařík al. (200)
A. suncei	SNM286	L. styraciflua		MW222394	MW592407	MW592397	MW222394, MW592407, MW592397	Kolařík al. (200)
A. suncei	SNM287	L. styraciflua		MW222393	MW592406	MW592398	MW222393, MW592406, MW592398	Kolařík al. (200)
A. suncei	SNM882	L. formosana		MW222408	MW592413	MW592390	MW222408, MW592413, MW592390	Kolařík al. (200)
G. lavendula	CCF 3051	Laboratory	AF033385		LR535705		AF033385	Kolařík al. (200)

Page 11/22
Species	Accession Numbers	Authors
Carphoborus vestitus	CCF 3394	Hulcr et al. (2007)
Pistacia terebinthus		
AM421098		
Pistacia terebinthus		Hamelin et al. (2011)
CCF 4336		
Carphoborus vestitus	CCF 3322T	Kolařík et al. (2020)
Scolytus intricatus		
Quercus robur	KF808297	
HG799876	HG799877	
Picea abies	HE604124	
P. pityographus		Strzalki et al. 2021
Pityophthorus pityographus		
RJ278m		
P. abies	HE604154	
LR813194	LR813140	
Microcorthylus sp.	CCF 3861T	Kolařík et al. (2020)
Cassia grandis		
FM986798	FM986793	
J. nigra	FN434081	
Kolařík et al. (2020)		
Pityophthorus juglandis	CCF 3881	Kolařík et al. (2020)
J. nigra	FN434082	
MHS80543	KF853911	
P. juglandis	CCF 4576	Kolařík et al. (2020)
J. nigra		
MHS80544		
Q. robur	CCF 3422	Kolařík et al. (2020)
S. intricus		
Carpinus betulus	CCF 3425	Kolařík et al. (2020)
AM181460	MHS80540	
Kolařík et al. (2000)		
Hylesinus omi	MK 1707	Kolařík et al. (2020)
Fraxinus sp.		
AM181452	MHS80558	
Kolařík et al. (2000)		
Phloeotribus frontalis	CCF 3324	Kolařík et al. (2020)
Acer negundo		
Aj578486		
Kolařík et al. (2000)		
Dinoderus sp.	SNM885	Kolařík et al. (2000)
Gnetum luofuense		
MW222410	MW592415	
Kolařík et al. (2001)		

Contamination
CGMCC3.20255	SNM270	A. suncei	L. formosana	MW222398	MW592421	MW592387	
SNM248	A. suncei	L. styraciflua	MW222402	MW592424	MW592386		
SNM886	Crossotarsus emancipatus	MW222411	MW592416	MW592385			
SNM887	C. emancipatus	MW222412	MW592417	MW592384			
SNM888	Microperus sp.	Choerospondias axillaris	MW222409	MW592414	MW592389		
G. putterillii	CCF 3052	Beilschmiedia tawa	AF033384	HG799853	HG799816	Kolarík et al. (2017)	
U 307	B. tawa	HF546306	MH580529	Kolarík et al. (2017)			
SNM402	Phloeosinus sp.	MW584874	MW592419	MW592405			
SNM436	Phloeosinus sp.	MW584873	MW592418	MW592404			
G. rufescens	MK 1800	C. lecontei	C. draco	AM947667	Kolarík et al. (2017)		
MK 1803	C. lecontei	C. draco	AM947668	Kolarík et al. (2017)			
MK 1821	C. lecontei	C. draco	AM947669	Kolarík et al. (2017)			
CCF 3752	LRI55709	Kolarík et al. (2017)					
G. ulmacea 13	CCF 3559	S. multistriatus	Ulmus sp.	AM181439	MH580535	Kolarík et al. (2017)	
1226	S. schevyrwi	Ulmus sp.	KJ716463	Zerillo et al. (20)			
CNR23	U. minor	KP990560	Alessia et al. (2015)				
CNR24	U. minor	KP990561	Alessia et al. (2015)				
G. sp. 2	U107	Scolytys rugulosus	Prunus sp.	HF546256	HG799855	HG799818	Kolarík et al. (201)
MK 642	H. orni	Fraxinus orinus	HG799852	Kolarík et al. (201)			
G. sp. 3	CCF 4298	S. intricatus	Quercus dalechampii	AM181436	HG799851	HG799814	Kolarík et al. (2017)
CCF 3481	Scolytus carpini	C. betulus	AM181467	HG799842	HG799805	Kolarík et al. (2017)	
G. sp. 4	CCF 4278	Pteleobius vittatus	Ulmus laevis	AM181466	HG799850	HG799813	Kolarík et al. (2017)
G. sp. 5	CCF 3341	S. intricatus	Quercus petraea	AJ578487	HG799837	HG799801	Kolarík et al. (2017)
CCF 4215	P. pityographus	P. abies	HE604117	Kolarík and Jankowiak (201)			
AK192/98	S. intricatus	Q. robur	HG799835	Kolarík et al. (201)			
G. sp. 8	CCF 3358	S. intricatus	Q. petraea	AM181421	MH580559	FM986788	Kolarík et al. (2017)
G. sp. 9	CCF 3564	AM181428	Kolarík et al. (201)				
CCF 3702	AM746018	Kolarík and Jankowiak (201)					
RJ0266	Ips cembrae	Larix decidua	MH580551	Kolarík and Jankowiak (201)			
G. sp. 11	CCF 3555	S. intricatus	Q. pubescens	AM181419	MH580545	KF853931	Kolarík et al. (201)
CCF 3556	S. intricatus	Q. pubescens	AM181418	Kolarík et al. (201)			
G. sp. 12	CCF 4320	Hylesinus oregonus	Fraxinus sp.	HF546229	MH580532	KF853932	Kolarík et al. (201)
CCF 3557	Leperisinus orni	F. excelsior	AM181431	MH580531	Kolarík et al. (201)		
G. sp. 16	CCF 4201	P. pityographus	P. abies	HE604146	HE604206	HE604181	Kolarík and Jankowiak (2013)
RJ34m	P. pityographus	P. abies	HE604182	Kolarík and Jankowiak (201)			
G. sp. 19	CCF 3658	Hypoborus ficus	Ficus carica	AM421085	MH580546	Kolařík et al. (2015)	
G. sp. 20	CCF 3655	H. ficus	F. carica	AM421075		Kolařík et al. (2015)	
G. sp. 21	CCF 4316	Phloeosinus fulgens	Calocedrus decurrens	HF546226	MH580547	Kolařík et al. (2015)	
	U193	Scolytus scheidwieri	Ulmus pumila	HF546287	MH580548	Kolařík et al. (2015)	
G. sp. 22	CCF 4196	Scolytus oregoni	P. menziesii	HF546289	MH580534	Kolařík et al. (2015)	
	CCF 4200	H. ficus	F. carica	AM421049	MH580533	Kolařík et al. (2015)	
G. sp. 23	CCF 4206	Phloeotribus scarabeoides	Olea europaea	AM421061	MH580552	Kolařík et al. (2015)	
	CCF 3654	Scolytus rugulosus	P. menziesii	AM421062	MH580553	Kolařík et al. (2015)	
	CCF 3652	P. scarabeoides	O. europaea	AM421062	MH580553	Kolařík et al. (2015)	
G. sp. 24	CCF 4218	Scolytus multistriatus	P. sylvestris	HE604168	HG799838	Kolařík et al. (2015)	
	U160	Scolytus multistriatus	U. pumila	HF546284		Kolařík et al. (2015)	
G. sp. 25	MB136	Orthotomicus erosus	Pinus halepensis	KP691926	KP691936	Dori-Bachash et al. (2015)	
	MB242	Pityogenes calcaratus	Pinus brutia	KP691927	KP691937	Dori-Bachash et al. (2015)	
	MB222	O. erusus	P. brutia	KP691928	KP691938	Dori-Bachash et al. (2015)	
	CCF 4294	Pityogenes quadridens	P. sylvestris	HE604165	MH580555	Kolařík and Jankowiak (2017)	
	MK1772	P. pitiographus	P. sylvestris	HE604164	MH580556	Kolařík and Jankowiak (2017)	
G. sp. 26	CCF 4205	Cryphalus abietis	Abies alba	HE604128	HE604218	HE604186	Kolařík and Jankowiak (2017)
	CCF 4222	Pinus sylvestris	A. alba	HE604127	HE604219	HE604187	Kolařík and Jankowiak (2017)
G. sp. 27	CCF 4206	Phloeosinus bidentatus	P. sylvestris	HE794978	HG799839	Kolařík et al. (2017)	
	CCF 4605	Pityophthorus sp.	Pinus ponderosa	HF546309	HG799827	Kolařík et al. (2017)	
G. sp. 28	CCF 4221	C. piceae	A. alba	HE604125	HE604233	HE604184	Kolařík and Jankowiak (2017)
G. sp. 29	CCF 4228	I. cembrae	L. decidua	HE604132	HE604216	HE604193	Kolařík and Jankowiak (2017)
G. sp. 30	CCF 4196	Phloeosinus thuje	Chamaeyparis pisifera	AM181426	HG799874	HG799885	Kolařík et al. (2017)
	CCF 4605	Phloeosinus sequiae	S. serpervirens	HF546265	HG799873	HG799886	Kolařík et al. (2017)
G. sp. 31	CCF 4598	Cryphalus piceae	P. menziesii	HF546231	HG799869	HG799831	Kolařík et al. (2017)
G. sp. 32	CCF 4604	Phloeotribus pubipennis	P. menziesii	HF546295	HG799866	HG799826	Kolařík et al. (2017)
G. sp. 33	CCF 4598	Scolytus praeceps	A. concolor	HF546331	HG799869	HG799831	Kolařík et al. (2017)
G. sp. 34	U193	S. praeceps	A. concolor	HF546330	HG799868	HG799830	Kolařík et al. (2017)
G. sp. 35	CCF 4238	Pityophthorus sp.	Pinus murticata	HF546236		Kolařík et al. (2017)	
	MK1814	C. atlantica			MH580538		present study
G. sp. 36	U79	Pseudopityophthorus pubipennis	Notolithocarpus densiflorus	HF546346	MH580537	Kolařík et al. (2017)	

Page 14/22
Table 3 Summary of the variability between species of the *Geosmithia jiulianshanensis* species complex. Numbers of changes (substitutions and indels) and corresponding relative percentage dissimilarity values are presented.

Species	ITS rDNA (531 bp)	TEF1-α (899 bp)	TUB2 (496 bp)
G. formosana	5 (0.94 %)	4 (0.75 %)	5-6 (0.56-0.67 %)
G. jiulianshanensis	5 (0.56 %)	3 (0.60 %)	4 (0.81 %)
Emericellopsis pallida	8-9 (0.89-1.0 %)	4 (0.81 %)	

Note. Isolates recovered in present study are in bold. a G. pallida selected as outgroup of phylogenies. T = ex-type isolates.

Table 4 After 8 days of culture in MEA medium, the colony diameter (unit: mm) of *Geosmithia jiulianshanensis* species complex and *Geosmithia pulverea* at different temperatures.
Species/T	G. formosana	G. jiangxiensis	G. jiulianshanensis	G. pulverea
5°C	1	1	1.5-4	0
20°C	50-54	50-58	59-64	23-29
25°C	58-64	59-69	65-78	30-37
30°C	44-52	49-60	66-70	31-36
35°C	≈0	1-4	11-14	1.5-4
37°C	0	0	1	0

Figures

Figure 1

ML tree of Geosmithia generated from the ITS sequence data. Sequences generated from this study are printed in bold. Bold branches indicate posterior probability values ≥ 0.9. Bootstrap values of ML/MP $\geq 75\%$ are recorded at the nodes. T = ex-type isolates.
Figure 2

ML tree of Geosmithia generated from the TUB2 sequence data. Sequences generated from this study are printed in bold. Bold branches indicate posterior probability values ≥ 0.9. Bootstrap values of ML/MP ≥ 75% are recorded at the nodes. T = ex-type isolates
Figure 3

ML tree of Geosmithia generated from the TEF1-α sequence data. Sequences generated from this study are printed in bold. Bold branches indicate posterior probability values ≥ 0.9. Bootstrap values of ML/MP ≥ 75% are recorded at the nodes. T = ex-type isolates
Figure 4

Morphological characters of Geosmithia jiulianshanensis sp. nov. (CGMCC3.20252) a. 8 days old culture on 2% MEA; b–e. Conidiophores and conidia. Scale bars: b–e=10μm
Figure 5

Morphological characters of Geosmithia jiangxiensis sp. nov. (CGMCC3.20253) a. 8 days old culture on 2% MEA; b–e. Conidiophores and conidia. Scale bars: b–d=10μm, e=20μm
Figure 6

Morphological characters of Geosmithia formosana sp. nov. (CGMCC3.20254) a. 8 days old culture on 2% MEA; b–e. Conidiophores and conidia. Scale bars: b–e=10μm
Figure 7

Morphological characters of asexual structures of Geosmithia pulvorea sp. nov. (CGMCC3.20255) a. 8 days old culture on 2% MEA; b–e. Conidiophores and conidia. Scale bars: b–e=10μm