On the Continuous Cohomology of a semi-direct product Lie group

Naoya Suzuki

Abstract

Let G be a Lie group and H be a subgroup of it. We can construct a bisimplicial manifold $N(G \rtimes H)$ and the de Rham complex $\Omega^*(N(G \rtimes H))$ on it. This complex is a triple complex and the cohomology of its total complex is isomorphic to $H^*(B(G \rtimes H))$. In this paper, we show that the total complex of the double complex $\Omega^p(N(G \rtimes H))$ is isomorphic to the continuous cohomology $H^c_\ast(G \rtimes H; S^Q G^* \otimes S^Q H^*)$ for any fixed q.

1 Introduction

Let G be a Lie group. In the theory of simplicial manifold, there is a well-known simplicial manifold $N(G)$ called nerve of G. The de Rham complex $\Omega^*(N(G))$ on it is a double complex, and the cohomology of its total complex is isomorphic to $H^*(BG)$. In [2], Bott proved the cohomology of its horizontal complex $\Omega^p(N(G))$ is isomorphic to the continuous cohomology $H^c_\ast(G; S^Q G^*)$ for any fixed q.

On the other hand, for a subgroup H of G we can construct a bisimplicial manifold $N(G \rtimes H)$ and the de Rham complex $\Omega^*(N(G \rtimes H))$ on it. This complex is a triple complex and the cohomology of its total complex is isomorphic to $H^*(B(G \rtimes H))$ [10].

In this paper, we show that the total complex of the double complex $\Omega^p(N(G \rtimes H))$ is isomorphic to the continuous cohomology $H^c_\ast(G \rtimes H; S^Q G^* \otimes S^Q H^*)$ for any fixed q.

1
2 Review of the simplicial de Rham complex

In this section we recall the relation between the simplicial manifold NG and the classifying space BG. We also recall the notion of the equivariant version of the simplicial de Rham complex.

2.1 The double complex on simplicial manifold

For any Lie group G, we have simplicial manifolds NG, PG and simplicial G-bundle $\gamma: PG \to NG$ as follows:

For any simplicial manifold $\{X_{\ast}\}$, we can associate a topological space $\|X_{\ast}\|$ called the fat realization defined as follows:

$$
}\left(g_{2}, \ldots, g_{q} \right)
}_i=0
$$
$$
\left(g_{1}, \ldots, g_{i+1}, \ldots, g_{q} \right)
}_i=1, \ldots, q-1
$$
$$
\left(g_{1}, \ldots, g_{q-1} \right)
}_i=q
$$

$$
\left(\bar{g}_{1}, \ldots, \bar{g}_{q+1} \right)
$$

We define $\gamma: PG \to NG$ as $\gamma(\bar{g}_{1}, \ldots, \bar{g}_{q+1}) = (\bar{g}_{1}\bar{g}_{2}^{-1}, \ldots, \bar{g}_{q}\bar{g}_{q+1}^{-1})$.

For any simplicial manifold $\{X_{\ast}\}$, we can associate a topological space $\|X_{\ast}\|$ called the fat realization defined as follows:

$$
\left(g_{2}, \ldots, g_{q} \right)
\left(g_{1}, \ldots, g_{i+1}, \ldots, g_{q} \right)
\left(g_{1}, \ldots, g_{q-1} \right)
$$

$$
\left(\bar{g}_{1}, \ldots, \bar{g}_{1}, \bar{g}_{i+2}, \ldots, \bar{g}_{q+1} \right)
}_i=0, 1, \ldots, q
$$

$$
\left(\bar{g}_{1}, \ldots, \bar{g}_{q} \right)
$$

Here Δ^n is the standard n-simplex and ε^i is a face map of it. It is well-known that $\|\gamma\|:\|PG\|\to\|NG\|$ is the universal bundle $EG \to BG$ (see [5] [8] [9], for instance).

Now we introduce a double complex on a simplicial manifold.
Definition 2.1. For any simplicial manifold \(\{X_\ast\} \) with face operators \(\{\varepsilon_\ast\} \), we have a double complex \(\Omega^{p,q}(X) := \Omega^q(X_p) \) with derivatives as follows:

\[
\delta := \sum_{i=0}^{p+1} (-1)^i \varepsilon_i^*, \quad d' := (-1)^p \times \text{the exterior differential on } \Omega^*(X_p).
\]

For \(NG \) and \(PG \) the following holds.

Theorem 2.1 ([3] [5] [8]). There exist ring isomorphisms

\[
H^*(\Omega^*(NG)) \cong H^*(BG), \quad H^*(\Omega^*(PG)) \cong H^*(EG).
\]

Here \(\Omega^*(NG) \) and \(\Omega^*(PG) \) mean the total complexes.

2.2 Equivariant version

When a Lie group \(H \) acts on a manifold \(M \), there is the complex of equivariant differential forms \(\Omega^*_H(M) := (\Omega^*(M) \otimes \mathcal{SH}^*)^H \) with suitable differential \(d_H \) ([1] [4]). Here \(\mathcal{H} \) is the Lie algebra of \(H \) and \(\mathcal{SH}^* \) is the algebra of polynomial functions on \(\mathcal{H} \). This is called the Cartan Model. When \(M \) is a Lie group \(G \), we can define a double complex \(\Omega^*_H(NG(*)) \) below in the same way as in Definition 2.1.

\[
\begin{array}{ccc}
\Omega^p_H(G) & \xrightarrow{\delta} & \Omega^p_H(NG(2)) \\
\uparrow_{-d_H} & & \uparrow_{d_H} \\
\Omega^{p-1}_H(G) & \xrightarrow{\varepsilon_0^* - \varepsilon_1^* + \varepsilon_2^*} & \Omega^{p-1}_H(NG(2)) \\
\uparrow_{d_H} & & \\
\Omega^{p-2}_H(NG(2)) & & \\
\uparrow_{d_H} & & \\
\vdots & & \\
\Omega^1_H(NG(p)) & \xrightarrow{(-1)^p \delta} & \Omega^1_H(NG(p+1)) \\
\uparrow_{(-1)^p d_H} & & \\
\Omega^0_H(NG(p)) & \xrightarrow{\sum_{i=0}^{p+1} (-1)^i \varepsilon_i^*} & \Omega^0_H(NG(p+1)) \\
\end{array}
\]
3 The cohomology of the horizontal complex

At first, we recall the description of the cohomology of groups in terms of resolutions due to Hochschild and Mostow [7].

Theorem 3.1 ([7]). If G is a topological group and M is a topological G-module, then the continuous cohomology $H^c(G; M)$ is isomorphic to the cohomology of the invariant complex

$$\text{Inv}_GM \rightarrow \text{Inv}_GX_0 \rightarrow \text{Inv}_GX_1 \rightarrow \cdots$$

for any continuously injective resolution $M \rightarrow X_0 \rightarrow X_1 \rightarrow \cdots$ of M.

Now we recall the result of Bott in [2], which gives the cohomology of the horizontal complex of $\Omega^*(NG)$.

Theorem 3.2 (Bott,[2]). For any fixed q,

$$H^{p+q}_d(\Omega^q(NG)) \cong H^p_c(G; S^qG^*).$$

Here G^* is a \mathbb{R}-module of left-invariant 1-forms on G.

Proof. Let n denote the ordered set $\{0 < 1 < \cdots < n\}$ and n^\sharp the underlying set of it. We define $CZ(n) := \mathbb{Z}(n^\sharp)$ as a free group generated by n^\sharp then we have a natural arrow

$$r : CZ \rightarrow \mathbb{Z}$$

defined by

$$r(n) \left(\sum_{a = 0, \ldots, n} a_\alpha \alpha \right) = \sum a_\alpha, \quad a_\alpha \in \mathbb{Z}.$$

Bott called the kernel of r the suspension of \mathbb{Z} and denote it $\Sigma \mathbb{Z}$.

We define the suspension of G^* as $\Sigma G^* := CZ \otimes G^*$. Then there exists the following isomorphism:

$$\Omega^q(NG(n)) \cong \text{Inv}_G[k\{\Omega^0(PG(n)) \otimes \Lambda^q\Sigma G^*(n)\}].$$

Before we consider the cohomology of the horizontal complex $H^*_d(\text{Inv}_G[k\{\Omega^0(PG) \times \Lambda^q\Sigma G^*\}])$, we observe the complex $\mathfrak{F}^*_dG := k\{\Omega^0(PG(\ast)) \times \Lambda^q\Sigma G^*(\ast)\}$.

4
Lemma 3.1.

\[H_\delta(\Omega^0(PG(n))) \cong \begin{cases} \mathbb{R} & (n = 0) \\ 0 & \text{otherwise} \end{cases}, \quad H_\delta(\Lambda^qSG^*(n)) \cong \begin{cases} S^qG^* & (n = q) \\ 0 & \text{otherwise} \end{cases} \]

So

\[H^n_\delta(\mathcal{P}G) \cong \begin{cases} S^qG^* & (n = q) \\ 0 & \text{otherwise} \end{cases} \]

Since the cochain complex

\[\mathcal{P}G : \Omega^0(PG(0)) \otimes \Lambda^qSG^*(0) \xrightarrow{\delta_q} \Omega^0(PG(1)) \otimes \Lambda^qSG^*(1) \xrightarrow{\delta_{q+1}} \cdots \]

is continuously injective, we obtain the following continuously injective resolution of \(S^qG^* \) from Lemma 3.1.

\[S^qG^* = \ker\delta_q / \text{Im}\delta_q \xrightarrow{\delta_q} (\Omega^0(PG(q + 1)) \otimes \Lambda^qSG^*(q + 1)) / \text{Im}\delta_q \]

\[\xrightarrow{\delta_{q+1}} \Omega^0(PG(q + 2)) \otimes \Lambda^qSG^*(q + 2) \xrightarrow{\delta_{q+2}} \cdots \quad (\text{exact}). \]

Therefore \(H^p_c(G; S^qG^*) \) is equal to the \(p \)-th cohomology of the complex below.

\[\text{Inv}_G S^qG^* \xrightarrow{\delta_q} \text{Inv}_G[\Omega^0(PG(q + 1)) \otimes \Lambda^qSG^*(q + 1)] / \text{Im}\delta_q \]

\[\xrightarrow{\delta_{q+1}} \text{Inv}_G[\Omega^0(PG(q + 2)) \otimes \Lambda^qSG^*(q + 2)] \xrightarrow{\delta_{q+2}} \cdots \]

So we obtain the following isomorphism.

\[H^p_c(G; S^qG^*) \cong H^{p+q}_\delta(\text{Inv}_G[k\{\Omega^0(PG) \times \Lambda^qSG^*\}]). \]

\[\square \]

Corollary 3.1 (Bott \([2]\)). If \(G \) is compact,

\[H^p_\delta(\Omega^q(NG)) \cong \begin{cases} \text{Inv}_G S^qG^* & (p = q) \\ 0 & \text{otherwise} \end{cases} \]
4 The triple complex on bisimplicial manifold

In this section we construct a triple complex on a bisimplicial manifold.

A bisimplicial manifold is a sequence of manifolds with horizontal and vertical face and degeneracy operators which commute with each other. A bisimplicial map is a sequence of maps commuting with horizontal and vertical face and degeneracy operators. For a subgroup H of G, we define a bisimplicial manifold $NG(*) \times NH(*)$ as follows:

$$NG(p) \times NH(q) := \overbrace{G \times \cdots \times G}^{p-times} \times \overbrace{H \times \cdots \times H}^{q-times}.$$

Horizontal face operators $\varepsilon^G_i : NG(p) \times NH(q) \to NG(p-1) \times NH(q)$ are the same as the face operators of $NG(p)$. Vertical face operators $\varepsilon^H_i : NG(p) \times NH(q) \to NG(p) \times NH(q-1)$ are

$$\varepsilon^H_i (\bar{g}, h_1, \cdots, h_q) = \begin{cases} (\bar{g}, h_2, \cdots, h_q) & i = 0 \\ (\bar{g}, h_1, \cdots, h_i h_{i+1}, \cdots, h_q) & i = 1, \cdots, q-1 \\ (h_q g h^{-1}_q, h_1, \cdots, h_{q-1}) & i = q. \end{cases}$$

Here $\bar{g} = (g_1, \cdots, g_p)$.

We define a bisimplicial map $\gamma_\times : PG(p) \times PH(q) \to NG(p) \times NH(q) as \gamma_\times (\bar{g}, \bar{h}_1, \cdots, \bar{h}_{q+1}) = (\bar{h}_{q+1}, \gamma_\times (\bar{g}) \bar{h}_q^{-1}, \gamma_\times (h_1, \cdots, h_{q+1}))$. Now we fix a semi-direct product operator \cdot_\times of $G \times H$ as $(g, h) \cdot_\times (g', h') := (ghg'h^{-1}, hh')$, then $G \times H$ acts $PG(p) \times PH(q)$ by right as $(\bar{g}, \bar{h}) \cdot (g, h) = (h^{-1} \bar{g}gh, \bar{h}h)$ and $\| \gamma_\times \|$ is a model of $E(G \times H) \to B(G \times H)$.

Definition 4.1. For a bisimplicial manifold $NG(*) \times NH(*)$, we have a triple complex as follows:

$$\Omega^{p,q,r}(NG(*) \times NH(*)) := \Omega^*(NG(p) \times NH(q))$$

Derivatives are:

$$\delta_G := \sum_{i=0}^{p+1} (-1)^i (\varepsilon^G_i)^*, \quad \delta_H := \sum_{i=0}^{q+1} (-1)^i (\varepsilon^H_i)^* \times (-1)^p$$

$$d' := (-1)^{p+q} \times \text{the exterior differential on } \Omega^*(NG(p) \times NH(q)).$$
Theorem 4.1 ([10]). If H is compact, there exist isomorphisms
\[H(Ω^*_H(NG)) \cong H(Ω^*(NG \rtimes NH)) \cong H^*(B(G \rtimes H)). \]

Here $Ω^*_H(NG)$ means the total complex in subsection 2.2 and $Ω^*(NG \rtimes NH)$ means the total complex of the triple complex.

5 Main theorem

Theorem 5.1. For any fixed q,
\[H^{δ+q}_δ(Ω^q(NG \rtimes NH)) \cong H^p_c(G \rtimes H; S^qG^* \otimes S^qH^*). \]
Here $δ := δ_G + δ_H$.

Proof. We identify $Ω^q(NG(n) \rtimes NH(m))$ with $\text{Inv}_{G \rtimes H}[Ω^0(\Omega^G(n)) \otimes Λ^qΣG^*(n) \otimes Ω^0(\Omega^H(m)) \otimes Λ^qΣH^*(m)]$.

Before we deal with the cohomology $H^*_δ(\text{Inv}_{G \rtimes H}[k\{Ω^0(\Omega^G) \times Λ^qΣG^* \times Ω^0(\Omega^H) \times Λ^qΣH^*\}])$, we observe the total complex of the double complex
\[Ω^q_{δ_G} G \otimes Ω^q_{δ_H} H = k\{Ω^0(Ω^G) \times Λ^qΣG^* \times Ω^0(Ω^H) \times Λ^qΣH^*\}. \]

From Lemma 3.1, we obtain:
\[H^n(Ω^q_G \otimes Ω^q_H) \cong \begin{cases} S^qG^* \otimes S^qH^* & (n = q) \\ 0 & \text{otherwise.} \end{cases} \]

Since the total complex
\[k_δ(Ω^qG \times Ω^qH)(0) \xrightarrow{δ_0} k_δ(Ω^qG \times Ω^qH)(1) \xrightarrow{δ_1} \cdots \]
is continuously injective, we obtain the following continuously injective resolution of $S^qG^* \otimes S^qH^*$.
\[S^qG^* \otimes S^qH^* = \text{Ker}δ_q/\text{Im}δ_{q-1} \xrightarrow{δ_q} k_δ(Ω^qG \times Ω^qH)(q + 1)/\text{Im}δ_q \xrightarrow{δ_{q+1}} k_δ(Ω^qG \times Ω^qH)(q + 2)/\text{Im}δ_{q+1} \cdots \text{(exact)}. \]
Therefore $H^p_c(G \rtimes H; S^qG^* \otimes S^qH^*)$ is equal to the p-th cohomology of the complex below.

$$\text{Inv}_{G \rtimes H}(S^qG^* \otimes S^qH^*) \xrightarrow{\delta_q} \text{Inv}_{G \rtimes H}[k_\delta(\mathfrak{P}^qG \times \mathfrak{P}^qH)(q + 1)/\text{Im}\delta_q]$$

$$\xrightarrow{\delta_{q+1}} \text{Inv}_{G \rtimes H}[k_\delta(\mathfrak{P}^qG \times \mathfrak{P}^qH)(q + 2)] \xrightarrow{\delta_{q+2}} \cdots$$

So we obtain the following isomorphisms.

$$H^p_c(G \rtimes H; S^qG^* \otimes S^qH^*) \cong H^{p+q}_\delta(\text{Inv}_{G \rtimes H}[k_\delta(\mathfrak{P}^qG \times \mathfrak{P}^qH)])$$

$$\cong H^{p+q}_\delta(\Omega^q(NG \rtimes NH)).$$

\begin{flushright}
\square
\end{flushright}

Corollary 5.1. If G is compact,

$$H^p_\delta(\Omega^q(NG \rtimes NG)) \cong \begin{cases}
\text{Inv}_{G \times G}(S^qG^* \otimes S^qG^*) & (p = q) \\
0 & \text{otherwise.}
\end{cases}$$

References

[1] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Grundlehren Math. Wiss. 298, Springer-Verlag, Berlin, 1992.

[2] R. Bott, On the Chern-Weil homomorphism and the continuous cohomology of the Lie group, Adv. in Math. 11 (1973), 289-303.

[3] R. Bott, H. Shulman, J. Stasheff, On the de Rham Theory of Certain Classifying Spaces, Adv. in Math. 20 (1976), 43-56.

[4] H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie, CBRM Bruxelles, 1950, pp. 57-71.

[5] J.L. Dupont, Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer Verlag, 1978.

[6] E. Getzler, The equivariant Chern character for non-compact Lie groups, Adv. Math. 109(1994),no.1,88-107.
[7] G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367-401.

[8] M. Mostow and J. Perchick, Notes on Gel’fand-Fuks Cohomology and Characteristic Classes (Lectures by Bott). In Eleventh Holiday Symposium, New Mexico State University, December 1973.

[9] G. Segal, Classifying spaces and spectral sequences. Inst.Hautes Études Sci.Publ.Math.No.34 1968 105-112.

[10] N. Suzuki, The equivariant simplicial de Rham complex and the classifying space of a semi-direct product group. Math. J. Okayama Univ. 57 (2015), 123-128.