Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity

Sanjib BHATTACHARYA
West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata, West Bengal, India

ABSTRACT
Mercury is a heavy metal of considerable toxicity. Scientific literature reveals various plants and plant derived natural products, i.e., phytochemicals, which can alleviate experimentally induced mercury toxicity in animals. The present review attempts to collate those experimental studies on medicinal plants and phytochemicals with ameliorative effects on mercury toxicity. A literature survey was carried out by using Google, Scholar Google, Scopus and Pub-Med. Only the scientific journal articles found in the internet for the last two decades (1998–2018) were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. The literature survey revealed that in pre-clinical studies 27 medicinal plants and 27 natural products exhibited significant mitigation from mercury toxicity in experimental animals. Clinical investigations were not found in the literature. Admissible research in this area could lead to development of a potentially effective agent from the plant kingdom for clinical management of mercury toxicity in humans.

KEY WORDS: mercury; ascorbic acid; natural products; oxidative stress; quercetin

Introduction
The heavy metals are generally characterized as inorganic elements having specific gravity five times of that of water. Almost all the environmental components including biosphere have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in diverse ways (Singh et al. 2014).

Mercury is a substantially toxic heavy metal which is widely distributed in nature. It exists in the environment in three chemical forms: elemental mercury (poisonous as vapor), organic mercury (methyl mercury and ethyl mercury), and inorganic mercury (mercuric mercury). All these forms have toxic health effects. Mercury and its related compounds are circulated and concentrated in soil and distributed into the air via burning of fossil fuels, industrial furnaces or active volcanos. It then comes back to the soil, water bodies or living organisms. Recycling from atmospheric outflow, deposition in water reservoirs and bioaccumulation or biomagnifications in plants, animals and humans complete the mercury cycle in the environment (Rafati-Rahimzadeh et al. 2014).

Subjection to mercury occurs in two ways: through environmental and occupational exposure. Human exposure to mercury specifically takes place via consumption of mercury contaminated food, especially sea fish, water, dental care procedures (using amalgams in endodontics), using mercury based instruments (thermometers and sphygmomanometers), occupational exposure (e.g. mining) and others (using fluorescent light bulbs and batteries, industrial wastes/effluents). Mercury has no known beneficial effects in the human body yet it elicits different ill effects in the body according to its chemical forms. However, several reports point to a beneficial hormetic response promoted by mercury at a low dose in various in vitro and in vivo models (Helmcke & Aschner, 2010; Heinz et al. 2012; Zhang et al. 2013; Tan et al. 2018).

Exposure to mercury compounds leads to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin, which might become fatal. Different forms of mercury affect different vital organs of the body, causing damage or failure of these organs.
crucial for the body, which might cause the death of the individual. Mercury toxicity has been a serious environmental public health hazard worldwide provoking several disastrous incidents like Minamata disease in Japan during 1950–1960 (Bernhof, 2012; Mostafalou & Abdollahi, 2013).

The toxic effects of mercury in the human body and their conventional managements using putative complexing or chelating agents have so far been well studied and reviewed earlier (Bernhof, 2012; Sabarathinam et al., 2016). But there is no comprehensive account in the studies on alternative options for counteracting mercury toxicity.

The use of medicinal plants and natural products for treatment of ailments is as old as mankind (Kumar et al., 2015). The major merits of traditional or plant based medicine seem to be their perceived efficacy, low incidence of serious adverse reactions and comparatively low cost (Bhattacharya & Haldar, 2012a, b). Literature survey reveals that for the last 12 years only experimental research has been surged in pursuit of medicinal plants and their constituents, i.e. phytochemicals that could mitigate mercury toxicity in experimental animals. Various medicinal plants and natural products afforded significant alleviation from experimentally induced mercury toxicity in animal models. The objective of the present review is to overview and summarize apposite preclinical research findings in this arena.

Review methodology

Internet associated literature survey was carried out by using Google, Scholar Google, Scopus and Pub-Med database search. Only the scientific journal articles published and/or abstracted in internet during the last two decades (1998–2018) were considered here. The experimental preclinical studies on medicinal plants (crude, semi-pure or enriched extracts thereof) and the constituents acquired from plants (including fixed and essential oils) were selected. Combination of phytochemicals was regarded as a separate study. Minerals and semi-synthetic or synthetic analogs of natural products were excluded from the present extent of compilation and review.

Results

Twenty-seven (27) medicinal plants were reported to possess ameliorative effect on mercury toxicity in experimental models of sub-chronic mercury toxicity. The details are summarized in Table 1. A substantial number of the studied plants are indigenous to the Indian subcontinent. These include certain putative medicinal plants recognized in Ayurveda, the traditional system of Indian medicine and worldwide, namely Zingiber officinalis, Bacopa monnieri, Tribulus terrestris, Allium sativum, Camellia sinensis, Vitis vinifera, Ocimum sanctum and Curcuma longa. The major dietary plants include Camellia sinensis, Vitis vinifera, Zanthoxylum piperitum, Triticum aestivum, Curcuma longa, Zingiber officinalis and Allium sativum. Most of the plants possess both dietary and medicinal values/usages.

The crude extracts of dried plant materials using suitable solvents like ethanol are used for the studies. In case of Camellia sinensis (tea leaf), Rheum palmatum (rhubarb), Zanthoxylum piperitum (Japanese/Korean pepper) and Vitis vinifera (grape seed) a specific chemical constituent or active principle enriched extracts were employed and found to have beneficial effects in ameliorating multiple organ toxicities in rodents. Twenty seven (27) plant derived natural products were found to demonstrate alleviative effects on mercury induced sub-chronic toxicity, mostly in intact rodent models. The details are given in Table 2. Among them two are vitamins, namely ascorbic acid (vitamin C) and α-tocopherol (vitamin E) and one is a pro-vitamin A (β-carotene). Two are fixed oils, viz. pomegranate oil, moringa oil; and two are essential oils namely argan oil and Selinium vaginatum oil. Ascorbic acid, α-tocopherol and quercetin are also used as reference compounds in the above mentioned studies on medicinal plant extracts for comparison/validation of experiments. β-carotene and α-tocopherol co-administration showed prominent ameliorative effect by recuperating oxidative stress, indicating the likelihood of this combination for clinical regimen.

Except the cells/cell lines or in vitro/ex vivo studies, most common in vivo intact models include rodents like mice and rats. Most commonly studied parameters are hematological and antioxidative parameters (biomarkers). Parameters specific for organs include those of liver, kidney, heart, brain, testes, with the liver and brain being the most common. Histopathological studies of these target organs were also performed in some cases. Measurement of mercury contents in concerned tissues was performed in a few cases. Mercury chelating activity in vitro was determined in one case. Urinary excretion study of mercury or its metabolites was not performed. Mercuric chloride (HgCl₂) was used most routinely as toxicant followed by methyl mercury (CH₃Hg).

Discussion

Mercury toxicity is known and has been reported historically. It results in multi-organ toxicity depending on age, organ and exposure factors. Chelating agents and combinations thereof and certain symptomatic supportive treatments have been conventionally utilized in treatment of mercury toxicity along with advocating avoiding environmental or occupational mercury exposure. Most of the investigators do not appear very confident to advocate any alternative options like supplementation of herbs or antioxidants in management of mercury toxicity; nevertheless, elicitation of oxidative stress by creation of free radicals during the metabolism of mercury in the body is considered to be one of the pertinent mechanisms of mercury toxicity (Rafati-Rahimzadeh et al., 2014; Afnian, 2015).
Sl. No.	Botanical name	Plant Part/Extractions used	Toxicant used	Experimental model	Organ(s)/system/cell line involved	Reference(s)
1	Zingiber officinale	Rhizome	HgCl₂	Rats	Liver, kidney	Joshi et al., 2017a
2	Paullinia cupana	Fruit	CH₃Hg	Round worm (Caenorhabditis elegans)	Whole organism	Arantes et al., 2016
3	Annona coriacea	Leaf	HgCl₂	Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa	Whole organism (cells)	Júnior et al., 2016
4	Lygodium venustum	Aerial parts	HgCl₂	Escherichia coli	Whole organism (cells)	Figueredo et al., 2016
5	Rheum palmatum	Total anthraquinone extract of root	HgCl₂	Rats	Kidney	Gao et al., 2016
6	Triticum aestivum	Aerial parts	HgCl₂	Rats	Liver, Haematological	Lakshmi et al., 2014
7	Dendropanax morbifera	Leaf	(CH₃)₂Hg	Rats	Brain	Kim et al., 2015
8	Zanthoxylum piperitum	Glycoprotein (2PDC)	HgCl₂	Mice	Liver, murine hepatocytes	Lee et al., 2014
9	Solanum sessiliflorum	Fruit	CH₃Hg	Rats	Testes	Frenedoso et al., 2014
10	Acacia arabica	Gum	HgCl₂	Rats	Kidney	Gado & Aldahmash, 2013
11	Bacopa monnieri	Aerial parts	CH₃Hg	Rats	Brain	Sumathi et al., 2012; Ayyathan et al., 2015
12	Camellia sinensis	Leaf polyphenol extract	HgCl₂	Rats	Kidney	Liu et al., 2011
13	Allium sativum	Bulb	CH₃Hg	Human	Peripheral leukocytes	Abdalla et al., 2010
14	Allium sativum	Bulb	CH₃Hg	Rats	Brain	Bellé et al., 2009
15	Tribulus terrestris	Fruit	HgCl₂	Mice	Kidney, Liver	Kavitha et al., 2006; Jaga-deesan et al., 2005; Jaga-deesan & Kavitha, 2006
16	Ginkgo biloba	Leaf	HgCl₂	Rats	Brain, lung, liver, and kidney	Sener et al., 2007
17	Eruca sativa	Seeds	HgCl₂	Rats	Kidney	Alam et al., 2007
18	Ocimum sanctum	Leaf	HgCl₂	Onion (Allium cepa)	Root tip cells (meristems)	Babu & Lima Maheswari, 2006
19	Ocimum sanctum	Leaf	HgCl₂	Mice	Hematological, Liver	Sharma et al., 2002
20	Halimeda incrassata	Whole plant	CH₃Hg	Rats, Mice	Hematological, GT1-7 mouse	Linares et al., 2004
21	Juglans sinensis	Leaf	HgCl₂	Rabbits	Kidney	Ahn et al., 2002
22	Vitis vinifera	Seed proanthocyanidin extract	CH₃Hg	Rats	Brain	Yang et al., 2012
23	Cucuma longa	Rhizome	HgCl₂	Rats	Liver	Joshi et al., 2017b
24	Artemisia absinthium	Aerial parts	HgCl₂	Rats	Brain	Hallal et al., 2016
25	Hygrophila auriculata	Whole plant	HgCl₂	Rat	Liver	Sridhar et al., 2013
26	Eugenia jambolana	Leaf	HgCl₂	Escherichia coli, lettuce (Lactuca sativa) seeds	–	Sobral-Souza et al., 2014
27	Eugenia uniflora	Leaf	HgCl₂	Escherichia coli, lettuce (Lactuca sativa) seeds	–	Cunha et al., 2016
28	Psidium guajava var. pomifera	Leaf	HgCl₂	Yeast (Saccharomyces cerevisiae)	–	Pinho et al., 2017
29	Launaea taraxacifolia	Leaf	HgCl₂	Rats	Brain	Owowe & Arinola, 2017

Copyright © 2018 SETOX & Institute of Experimental Pharmacology and Toxicology, CEM SASc.
Table 2. Natural products with mercury toxicity ameliorative potential.

Sl. No.	Name	Toxicant used	Experimental Model	Organ(s)/System/Cell line involved	Reference(s)
1	6-gingerol	HgCl₂	Rats	Liver, Kidney	Joshi et al., 2017a
2	*Moringa oleifera* oil	HgCl₂	Rats	Testes	Abarkwut et al., 2017
3	Schisandrin B	HgCl₂	Rats	Kidney	Liu et al., 2011
4	*Bixin*	CH₃Hg	Rats	Liver, Hematological	Barcelos et al., 2012
5	Norbixin	CH₃Hg	Rats	Liver, Hematological	Barcelos et al., 2012
6	β-carotene	HgCl₂	Nile tilapia (*Oreochromis niloticus*)	Hematological	Elseady et al., 2013
7	β-carotene + α-Tocopherol	CH₃HgCl	Mice	Liver, Brain, Kidney	Andersen & Andersen, 1993
8	α-Tocopherol	HgCl₂	Mice	Testes	Rao & Sharma, 2001
9	α-Tocopherol	HgCl₂	Rats	Liver, Kidney, Brain	Agarwal et al., 2010a
10	α-Tocopherol	CH₃Hg	Rats	Fetus	Abd El-Aziz et al., 2012
11	Ascorbic acid	HgCl₂	Human	Leucocytes	Rao et al., 2001
12	Ascorbic acid	HgCl₂	Olive flounder (*Paralichthys olivaceus*)	Kidney	Lee et al., 2016
13	Ascorbic acid	HgCl₂	Rats	Spleen, Hematological	Ibegbu et al., 2014
14	Astaxanthin	HgCl₂	Rats	Kidney	Augusti et al., 2008
15	Quercetin	CH₃Hg	Rats	Kidney	Shin et al., 2015
16	Quercetin	CH₃Hg	Rats	Hepatocytes, Leucocytes	Barcelos et al., 2011a
17	Quercetin	HgCl₂	Human	Leucocytes	Barcelos et al., 2011b
18	Lycopene	HgCl₂	Rats	Kidney, Liver	Augusti et al., 2007; Yang et al., 2011; Deng et al., 2012
19	Lycopene	HgCl₂	Mice	Hematological	Cavusoglu et al., 2009
20	Curcumin	HgCl₂	Rats	Liver, Kidney, Brain, Testes	Agarwal et al., 2010b; Tamer & Saad, 2013; Garcia-Nino & Pedraza-Chaverro, 2014; Joshi et al., 2017b, Liu et al., 2017
21	Coumarin	HgCl₂	Human	Peripheral lymphocytes	Patel & Rao, 2015
22	Andrographolide	HgCl₂	Human	Peripheral lymphocytes	Patel & Rao, 2015
23	Fisetin	CH₃Hg	Rats	Fetus brain	Jacob & Thangarajan, 2017
24	Naringin	HgCl₂	Human	Leucocytes	Harisa et al., 2014
25	Luteolin	HgCl₂ and CH₃HgNaO₄S^*	Human	Mast cells	Asadi et al., 2010
26	Luteolin	HgCl₂	Mice	Liver	Yang et al., 2016
27	Luteolin	HgCl₂	Rats	Liver	Zhang et al., 2017
28	Myricetin	CH₃Hg	Mice	Brain	Franco et al., 2010
29	Thymol	HgCl₂	Human	Hepatocarcinoma (HepG2) cell line	Shettigar et al., 2015
30	Vitamin K	CH₃Hg	Rats	Brain	Sakaue et al., 2011
31	Berberine	HgCl₂	Rats	Brain, Liver, Kidney	Othman et al., 2014; Moneim, 2015
32	Diallylsulphide	HgCl₂	Rats	Brain	Ansar, 2015
33	Pomegranate oil	HgCl₂	Rats	Kidney	Borouchaki et al., 2014
34	Hydroxytyrosol	HgCl₂	Human	Erythrocytes and neuroblastoma	Officiozo et al., 2016
35	Glucan	C₆H₅HgNaO₄S^* and Hg(O₂CCH₃)_₂	Mice	Immunological	Vetvicka & Vetvickova 2009
36	Selinium vaginatum oil	CH₃Hg	Rats	Brain	Thiagarajan et al., 2018
37	Argan oil	HgCl₂	Rats	Brain	Necib et al., 2013

*Thiomersal, ¶Mercury (II) acetate.
Higher plants, whether dietary or medicinal, and their constituents traditionally possessed an overriding impact in drug discovery and served as the basis of premature medicines (Das et al., 2013; Bhattacharya & Haldar, 2011). There is ample literature currently being available on usefulness of medicinal plants and constituents thereof against experimental mercury and other heavy metal/metalloid poisonings (Bhattacharya, 2017; 2018). Such reports of mercury are comparatively few as compared to those of lead, arsenic and cadmium. From the present literature survey it appears that medicinal plants have played a significant role in mitigation of experimentally induced mercury toxicity in animals. The crude or semi-pure plant extracts in general, exhibit antioxidant activities and thus show toxicity abrogative potential in reducing mercury induced oxidative insult. Besides, modulation of apoptosis is another less reported way of amelioration of mercury-induced organ toxicity by medicinal plant extracts. Mercury chelating property of plant extract in vitro is the least reported possible mechanism of protective effect operative along with antioxidant activity. Most of the literature neither discuss their possible clinical utility or ability in decreasing body mercury burden nor execute any endeavor to identify, isolate or characterize the active constituent(s). This is the major limitation of most of these works.

The present literature probe revealed that nearly all of the medicinal plants and natural products possessing preclinical mercury toxicity alleviative effects simultaneously revealed considerable innate antioxidant property by repression of mercury-induced oxidative stress by multimodal elevation of endogenous enzymatic and non-enzymatic fortification systems that resulted in mitigation of mercury-induced toxicity in animals. The 27 natural products tested are entrenched nutraceuticals or dietary supplements and these are all well described as natural antioxidants. This indicates the beneficial role of antioxidant supplementation and strongly corroborates the exhortation of antioxidant therapy to humans. At the experimental stage, a segment of researchers opines this respect (Patrick, 2002; Gupta et al., 2015; Officioso et al., 2016). Notwithstanding, the benefits of these compounds at organic and cellular level require validation in human subjects with mercury toxicity. So far no clinical study was found in the scientific literature where medicinal plants or phytochemicals suppressed any kind of mercury toxicity in humans. The inherent toxicity of mercury may be the limiting factor here.

Mercury chelating activity of plant extract in vitro, reported in a recent study (Pinho et al., 2017) appears to be a novel protective mechanism which requires further studies involving concurrence in vivo. Few plant extracts showing mercury toxicity protective effects in bacterial and plant models exhibited in vitro iron chelating effects along with antioxidant properties (Sobral-Souza et al., 2014; Cunha et al., 2016). Such plants should be further investigated for possible mercury chelating potential in pre-clinical set up.

Recent reviews suggest that people, who are at risk of arsenic, lead and cadmium exposure, should consume vitamin and antioxidant rich food on a regular basis for prevention of possible toxicity (Zhai et al., 2015; Bhattacharya, 2017; 2018). So far there is no work on the effect of dietary supplementation of edible or medicinal plants and/or their bioactive constituents in animals or humans with long-term and environmentally-relevant low levels of mercury exposure. Research work should be formulated in this facet.

The most studied natural products like ascorbic acid, α-tocopherol, quercetin, β carotene (Figures 1–4) in rodents require further comprehensive clinical
exploitation. More of such pre-clinically worthy phytochemicals could be introduced for clinical studies. These agents could be used alone, in combination, or concomitantly with mainstream or newer chelating agents. These agents thus may aid in disease reversal or may serve as auxiliary, complementary or disease modifying agents and hence could help in palliative therapy by reducing the patient’s agonies.

It is therefore hypothesized that the present facts and findings, although demonstrated principally in lower animal models, will have sustainable ameliorative potential against mercury toxicity and possible preventive mitigation to those subjects potentially susceptible to environmental mercury exposure. These apparently introductory studies could serve as pivot for further investigation which may lead to discovery of any potentially useful agent in clinical management of mercury toxicity in humans in due course, which may act by a distinct mode other than synthetic chelation, like modulation of oxidative stress, gene regulation or apoptosis. The material explored and presented in the current concise review appears to be quite motivating for further mechanistic pre-clinical and definitively designed clinical studies on dietary and medicinal plants and natural products in particular, for management of mercury toxicity hazard in humans.

Declaration of interest. The author reports no conflict of interest. The author alone is responsible for the content and writing of this paper.

REFERENCES

Abarikwu SO, Benjamin S, Ebah SG, Obilor G, Agbam G. (2017). Oral administration of Moringa oleifera oil but not coconut oil prevents mercury-induced testicular toxicity in rat. Andrologia 49: e12397.

Abd El-Aziz GS, El-Fark MM, Saleh HA. (2012). The prenal toxic effect of methylmercury on the development of the appendicular skeleton of rat fetuses and the protective role of vitamin E. Anat Rec (Hoboken) 295: 939–949.

Abdalla FH, Bellé LP, De Bona KS, Bitencourt PE, Pigatto AS, Moretto MB. (2010). Allium sativum L extract prevents methyl mercury-induced cytotoxicity in peripheral blood leukocytes (LS). Food Chem Toxicol 48: 417–421.

Aflame I. (2015). Effect of heavy metal on malondialdehyde and advanced oxidation product concentrations: A focus on arsenic, cadmium, and mercury. J Med Bioengg 4: 332–337.

Agarwal R, Goel SK, Behari JR. (2010b). Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol 30: 457–68.

Agarwal R, Goel SK, Chandra R, Behari JR. (2010a). Role of vitamin E in preventing acute mercury toxicity in rat. Environ Toxicol Pharmacol 29: 70–78.

Ahn CB, Song CH, Kim WH, Kim YK. (2002). Effects of Juglans sinensis Dode extract and antioxidant on mercury chloride-induced acute renal failure in rabbits. J Ethnopharmacol 82: 45–49.

Alam MS, Kaur G, Jabbar Z, Javed K, Athar M. (2007). Erucic sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem Toxicol 45: 910–20.

Andersen HR, Anderson Q. (1993). Effects of dietary alpha-tocopherol and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice. Pharmacol Toxicol 73: 192–201.

Anasar S. (2015). Pretreatment with diallylsulphide modulates mercury-induced neurotoxicity in male rats. Acta Biochimica Polonica 62: 599–603.

Arantes LP, Peres TV, Chen P, Caiot S, Aschner M, Soares FA. (2016). Guarana (Paullinia cupana Mart.) attenuates methylmercury-induced toxicity in Cae- nohobditis elegans. Toxicol Res (Camb) 5: 1629–1638.

Asadi S, Zhang B, Weng Z, Angelidou A, Kempuraj D, Alysandratos KD, Theoharides TC. (2010). Luteolin and thiosalicylate inhibit Hg(II)Cl(2) and thimerosal-induced VEGF release from human mast cells. Int J Immunopharmacol Pharmacol 23: 1015–1020.

Augusti PR, Canteroto GM, Somacal S, Einsfeld L, Ramos AT, Hosomi FY, Graça DL, Emanueli T. (2007). Effect of lycopene on nephrotoxicity induced by mercuric chloride in rats. Basic Clin Pharmacol Toxicol 100: 398–402.

Augusti PR, Canteroto GM, Somacal S, Sobieski R, Spoehr PR, Torres JV, Charão MF, Muro AM, Rocha MP, Garcia SC, Emanueli T. (2008). Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats. Food Chem Toxicol 46: 212–219.

Ayyathan DM, Chandrasekar R, Thiagarajan K. (2015). Neuroprotective effect of Brahmi, an ayurvedic drug against oxidative stress induced by methyl mercury toxicity in rat brain mitochondria-enriched fractions. Nat Prod Res 29: 1046–1051.

Babu K, Uma Maheswari KC. (2006). In vivo studies on the effect of Ocimum sanctum L. leaf extract in modifying the genotoxicity induced by chromium and mercury in Allium root meristems. J Environ Biol 27: 93–95.

Barcos GR, Angeli JP, Serpeloni JM, Grotto D, Rocha BA, Bastos JK, Knasmüller S, Jünior FB. (2011b). Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutat Res 726: 109–115.

Barcos GR, Grotto D, Serpeloni JM, Aissa AF, Antunes LM, Knasmüller S, Barbosa F Jr. (2012). Bixin and norbixin protect against DNA-damage and alterations of redox status induced by methylmercury exposure in vivo. Environ Mol Mutagen 53: 353–541.

Barcos GR, Grotto D, Serpeloni JM, Angeli JP, Rocha BA, de Oliveira Souza VC, Vicentini JT, Emanueli T, Bastos JK, Antunes LM, Knasmüller S, Barbosa F Jr. (2011a). Protective properties of quercetin against DNA damage and oxidative stress induced by mercury in rats. Arch Toxicol 85: 1151–1157.

Bellé LP, De Bona KS, Abdalla FH, Pimentel VC, Pigatto AS, Moretto MB. (2009). Comparative evaluation of adenosine deaminase activity in cerebral cortex and hippocampus of young and adult rats: effect of garlic extract (Allium sativum L) on their susceptibility to heavy metal exposure. Basic Clin Pharmacol Toxicol 104: 408–413.

Bernhoff RA. (2012). Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012: Article ID 460508.

Bhattacharya S, Haldar PK. (2011). Trichosanthes dioica root extract induces tumor proliferation and attenuation of antioxidant system in albino mice bearing Ehrlich ascites carcinoma. Interdiscip Toxicol 4: 184–90.

Bhattacharya S, Haldar PK. (2012a). Trichosanthes dioica root possesses stimulant laxative activity in mice. Nat Prod Res 26: 952–957.

Bhattacharya S, Haldar PK. (2012b). Protective role of the triterpenoid-enriched extract of Trichosanthes dioica root against experimentally induced pain and inflammation in rodents. Nat Prod Res 26: 2348–2352.

Bhattacharya S. (2017). Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. Pharm Biol 55: 349–354.

Bhattacharya S. (2018). The role of medicinal plants and natural products in amelioration of cadmium toxicity. Oriental Pharm Exp Med 18 (3): pp 177–186.

Boroushaki MT, Mollazadeh H, Rajabian A, Dolati K, Hoseini A, Paseban M, Farzadnia M. (2014). Protective effect of pomegranate seed oil against mercuric chloride-induced nephrotoxicity in rat. Ren Fail 36: 1581–1586.

Cavusoglu K, Oruc E, Yasar K, Yalcin E. (2009). Protective effect of lycopene against mercury-induced cytotoxicity in albino mice: pathological evaluation. J Environ Biochem 30: 807–814.

Cunha FAB, Pinho AI, Santos JFS, Sobral-Souza CE, Leite NF, Albuquerque RS, Tintino SR, Costa MGM, Mattas EFF, Boligon AA, Wazuck EP, Rocha JBT, Posser T, Coutinho HD, Quintans-Junior LJ, Franco JL. (2016). Cytoprotective effect of Eugenia uniflora L. against the waste contaminated mercury chloride. Arabian J Chem http://dx.doi.org/10.1016/j.arabjc.2016.04.018.

Das SK, Bhattacharya S, Kundu A. (2013). Rationalized design, synthesis and pharmacological screening of amino acid linked spiro pyrroldine oxindole analogs through environment friendly reaction. J Adv Pharm Technol Res 4: 198–205.

Deng Y, Xu Z, Liu W, Yang H, Xu B, Wei Y. (2012). Effects of lycopene and proanthocyanidins on hepatotoxicity induced by mercuric chloride in rats. Biol Trace Elem Res 146: 213–223.

Elseady Y, Zahran E. (2013). Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus). Fish Physiol Biochem 39: 1031–1041.
Solanum sessiliflorum, Mus musculus Léveille var. liver. (Linn.) liver tissue by Kavitha AV, Jagadeesan G. (2006). Role of Joshi D, Mittal DK, Shukla S, Srivastav SK, Dixit VA. (2017b). Ibegbu AO, Micheal A, Abdulrazaq AA, Daniel B, Sadeeq AA, Peter A, Ham Helmcke KJ, Aschner M. Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA. Harisa GI, Mariee AD, Abo-Salem OM, Attiaa SM. (2014). Erythrocyte nitric ox Hallal N, Kharoubi O, Benyettou I, Tair K, Ozaslan M, Aoues Gupta VK, García-Niño WR, Pedraza-Chaverrí J. (2014). Protective effect of curcumin Frenedoso da Silva R, Missassi G, dos Santos Borges C, Silva de Paula E, Hor Carmen MF, Grotto D, Barbosa Junior F, De Grava Kempinas W. (2014). Nutritional aspects of food toxica Moneim AEA. (2015). The neuroprotective effect of berberine in mercury-in MtDNA).}
Shin YJ, Kim JJ, Kim YJ, Kim WH, Park EY, Kim IV, Shin HS, Kim KS, Lee EK, Chung KH, Lee BM, Kim HS. (2015). Protective effects of quercetin against HgCl₂-Induced nephrotoxicity in Sprague-Dawley rats. J Med Food 18: 524–534.

Singh KP, Bhattacharya S, Sharma P. (2014). Assessment of heavy metal contents of some Indian medicinal plants. American-Eurasian J Agric Environ Sci 14: 1125–1129.

Sobral-Souza CE, Leite NF, Cunha FAB, Pinho AI, Albuquerque RS, Carneiro JNP, Menezes IRA, Costa JGM, Franco JL, Coutinho HDM. (2014). Cytoprotective effect against mercury chloride and bioinsecticidal activity of Eugenia jambolana Lam. Arabian J Chem 7: 165–170.

Sridhar MP, Nandakumar N, Rengarajan T, Balasubramanian MP. (2013). Amelioration of mercuric chloride induced oxidative stress by Hygrophila auriculata (K. Schum) Heine via modulating the oxidant – antioxidant imbalance in rat liver. J Biochem Tech 4: 622–627.

Sumathi T, Shobana C, Christinal J, Anusha C. (2012). Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats. Cell Mol Neurobiol 32: 979–87.

Tamer M, Saad M. (2013). Effect of curcumin on some heavy metals induced renal and testicular injuries in male rats. Egyptian J Hosp Med 53: 770–781.

Tan Q, Liu Z, Li H, Liu Y, Xia Z, Xiao Y, Usman M, Du Y, Bi H, Wei L. (2018). Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/ MAPKs and JAK/STAT3 signaling pathways. Toxicol 408: 62–69.

Thiagarajan K, Gamit N, Mandal S, Chandrasekaran R. (2018). Amelioration of methylmercury induced neural damage by essential oil of Selunum vaginatum (Edgew) C. B. Clarke. Pak J Pharm Sci 31: 399–404.

Vetvicka V, Vetvickova J. (2009). Effects of glucan on immunosuppressive actions of mercury. J Med Food 12: 1098–104.

Yang D, Tan X, Lu Z, Liu B, Baiyun R, Lu J, Zhang Z. (2016). Regulation of Sirt1/ Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Scientific Reports 6: 37157.

Yang H, Xu Z, Liu W, Deng Y, Xu B. (2011). The protective role of procyanidins and lycopene against mercuric chloride renal damage in rats. Biomed Environ Sci 24: 550–559.

Yang H, Xu Z, Liu W, Wei Y, Deng Y, Xu B. (2012). Effect of grape seed proanthocyanidin extracts on methylmercury-induced neurotoxicity in rats. Biol Trace Elem Res 147: 156–164.

Zhai Q, Narbad A, Chen W. (2015). Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 7: 552–571.

Zhang H, Tan X, Yang D, Lu J, Liu B, Baiyun R, Zhang Z. (2017). Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/ NF-κB/P53 signaling pathway in rats. Oncotarget 8: 40982–40993.

Zhang Y, Lu R, Liu W, Wu Y, Qian H, Zhao X, Wang S, Xing G. (2013). Hormetic effects of acute methylmercury exposure on GRP78 expression in rat brain cortex. Dose-Response 11: 109–120.