5-1-2015

Increasing Adipocyte Lipoprotein Lipase Improves Glucose Metabolism in High Fat Diet-Induced Obesity

R. Grace Walton
University of Kentucky

Beibei Zhu
University of Kentucky, bzhu2@uky.edu

Resat Unal
Mugla Sitki Kocman University, Turkey

Michael Spencer
University of Kentucky, mike.spencer@uky.edu

Manjula Sunkara
University of Kentucky

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/diabetes_facpub

Part of the *Endocrinology, Diabetes, and Metabolism Commons*

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Walton, R. Grace; Zhu, Beibei; Unal, Resat; Spencer, Michael; Sunkara, Manjula; Morris, Andrew J.; Charnigo, Richard; Katz, Wendy S.; Daugherty, Alan; Howatt, Deborah A.; Kern, Philip A.; and Finlin, Brian S., "Increasing Adipocyte Lipoprotein Lipase Improves Glucose Metabolism in High Fat Diet-Induced Obesity" (2015). *Barnstable Brown Diabetes Center Faculty Publications*. 2.
https://uknowledge.uky.edu/diabetes_facpub/2

This Article is brought to you for free and open access by the Diabetes at UKnowledge. It has been accepted for inclusion in Barnstable Brown Diabetes Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Increasing Adipocyte Lipoprotein Lipase Improves Glucose Metabolism in High Fat Diet-Induced Obesity

Digital Object Identifier (DOI)
https://doi.org/10.1074/jbc.M114.628487

Notes/Citation Information
Published in The Journal of Biological Chemistry, v. 290, no. 18, p. 11547-11556.

This research was originally published in The Journal of Biological Chemistry. R. Grace Walton, Beibei Zhu, Resat Unal, Michael Spencer, Manjula Sunkara, Andrew J. Morris, Richard Charnigo, Wendy S. Katz, Alan Daugherty, Deborah A. Howatt, Philip A. Kern, and Brian S. Finlin. Increasing Adipocyte Lipoprotein Lipase Improves Glucose Metabolism in High Fat Diet-induced Obesity. The Journal of Biological Chemistry. 2015; 290:11547-11556. © the American Society for Biochemistry and Molecular Biology.

The copyright holder has granted the permission for posting the article here.

Authors
R. Grace Walton, Beibei Zhu, Resat Unal, Michael Spencer, Manjula Sunkara, Andrew J. Morris, Richard Charnigo, Wendy S. Katz, Alan Daugherty, Deborah A. Howatt, Philip A. Kern, and Brian S. Finlin

This article is available at UKnowledge: https://uknowledge.uky.edu/diabetes_facpub/2
Increasing Adipocyte Lipoprotein Lipase Improves Glucose Metabolism in High Fat Diet-induced Obesity*

R. Grace Walton‡, Beibei Zhu†, Resat Unal§, Michael Spencer‡, Manjula Sunkara*, Andrew J. Morris§, Richard Charnigo‡, Wendy S. Katz**, Alan Daugherty††, Deborah A. Howatt‡‡, Philip A. Kern†, and Brian S. Finlin†††

From the ‡Department of Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center, §Division of Cardiovascular Medicine, ‡Department of Biostatistics, College of Public Health, **Department of Pharmacology and Nutritional Sciences, and ‡‡Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky 40536 and the †††Department of Molecular Biology and Genetics, Faculty of Life Sciences, Mugla Sıtkı Kocman University, 48000 Mugla, Turkey

Background: Lipoprotein lipase regulates fat uptake into adipose tissue.

Results: A mouse model with increased adipose tissue lipoprotein lipase has improved glucose metabolism when challenged with a high fat diet.

Conclusion: Increasing adipose tissue lipoprotein lipase improves adipose tissue function.

Significance: Adipose tissue lipoprotein lipase protects against obesity-induced glucose and insulin intolerance.

Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism and adipose biology. LPL is synthesized and secreted by adipocytes and muscle and is transported to the capillary endothelium where it hydrolyzes the triglyceride (TG) core of circulating very low density lipoprotein (VLDL) and chylomicrons. The hydrolysis products are fatty acids and monoacylglycerol, which are taken up by the tissue. Depending upon the circumstance, such as the fed or fasting state, LPL delivers fatty acids to adipose tissue for storage or to heart and skeletal muscle as a fuel source. Therefore, LPL activity is highly regulated in these tissues, acting as a “metabolic gatekeeper” to ensure that fatty acids are delivered to the correct tissue depending upon the physiological state.

In obesity, adipose tissue lipid accumulates up to a point, and then lipid is stored in ectopic sites such as liver and muscle. This increases diacylglycerides (DAGs) and ceramides, which inhibit insulin receptor signaling in these tissues (3). The accumulation of these ectopic lipids is thus postulated to cause insulin resistance along with inflammation and endoplasmic reticulum stress (3–5). Consistent with its ability to promote ectopic lipid accumulation, tissue-specific transgenic expression of LPL in skeletal muscle and liver induces insulin resistance (6), and LPL deficiency in muscle protects against insulin resistance in that tissue (7). Adipose tissue protects against the accumulation of ectopic lipids in these peripheral tissues by storing fat as neutral lipid (triglyceride). Lipid diversion into adipose tissue is one of the mechanisms of insulin sensitization by thiazolidinediones (TZDs) (8, 9), and LPL is an important gene target of TZDs (10).

As expected, when there is insufficient adipose tissue to store lipid, such as in adipocyte-deficient mice and humans, insulin resistance develops (11–13). Together, these observations suggest that diversion of lipid from muscle and liver into adipose tissue is generally beneficial.

Lipoprotein lipase (LPL)2 is a central enzyme in lipid metabolism and adipose biology. LPL is synthesized and secreted by adipocytes and muscle and is transported to the capillary endothelium where it hydrolyzes the triglyceride (TG) core of circulating very low density lipoprotein (VLDL) and chylomicrons. The hydrolysis products are fatty acids and monoacylglycerol, which are taken up by the tissue. Depending upon the circumstance, such as the fed or fasting state, LPL delivers fatty acids to adipose tissue for storage or to heart and skeletal muscle as a fuel source. Therefore, LPL activity is highly regulated in these tissues, acting as a “metabolic gatekeeper” to ensure that fatty acids are delivered to the correct tissue depending upon the physiological state.

In obesity, adipose tissue lipid accumulates up to a point, and then lipid is stored in ectopic sites such as liver and muscle. This increases diacylglycerides (DAGs) and ceramides, which inhibit insulin receptor signaling in these tissues (3). The accumulation of these ectopic lipids is thus postulated to cause insulin resistance along with inflammation and endoplasmic reticulum stress (3–5). Consistent with its ability to promote ectopic lipid accumulation, tissue-specific transgenic expression of LPL in skeletal muscle and liver induces insulin resistance (6), and LPL deficiency in muscle protects against insulin resistance in that tissue (7). Adipose tissue protects against the accumulation of ectopic lipids in these peripheral tissues by storing fat as neutral lipid (triglyceride). Lipid diversion into adipose tissue is one of the mechanisms of insulin sensitization by thiazolidinediones (TZDs) (8, 9), and LPL is an important gene target of TZDs (10).

As expected, when there is insufficient adipose tissue to store lipid, such as in adipocyte-deficient mice and humans, insulin resistance develops (11–13). Together, these observations suggest that diversion of lipid from muscle and liver into adipose tissue is generally beneficial.

Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism and adipose biology. LPL is synthesized and secreted by adipocytes and muscle and is transported to the capillary endothelium where it hydrolyzes the triglyceride (TG) core of circulating very low density lipoprotein (VLDL) and chylomicrons. The hydrolysis products are fatty acids and monoacylglycerol, which are taken up by the tissue. Depending upon the circumstance, such as the fed or fasting state, LPL delivers fatty acids to adipose tissue for storage or to heart and skeletal muscle as a fuel source. Therefore, LPL activity is highly regulated in these tissues, acting as a “metabolic gatekeeper” to ensure that fatty acids are delivered to the correct tissue depending upon the physiological state.

In obesity, adipose tissue lipid accumulates up to a point, and then lipid is stored in ectopic sites such as liver and muscle. This increases diacylglycerides (DAGs) and ceramides, which inhibit insulin receptor signaling in these tissues (3). The accumulation of these ectopic lipids is thus postulated to cause insulin resistance along with inflammation and endoplasmic reticulum stress (3–5). Consistent with its ability to promote ectopic lipid accumulation, tissue-specific transgenic expression of LPL in skeletal muscle and liver induces insulin resistance (6), and LPL deficiency in muscle protects against insulin resistance in that tissue (7). Adipose tissue protects against the accumulation of ectopic lipids in these peripheral tissues by storing fat as neutral lipid (triglyceride). Lipid diversion into adipose tissue is one of the mechanisms of insulin sensitization by thiazolidinediones (TZDs) (8, 9), and LPL is an important gene target of TZDs (10).

As expected, when there is insufficient adipose tissue to store lipid, such as in adipocyte-deficient mice and humans, insulin resistance develops (11–13). Together, these observations suggest that diversion of lipid from muscle and liver into adipose tissue is generally beneficial.

2 The abbreviations used are: LPL, lipoprotein lipase; AdipoQ, adiponectin; PPAR, peroxisome proliferator-activated receptor; DAG, diacylglycerol; HFD, high fat diet; TG, triglyceride; WAT, white adipose tissue; BAT, brown adipose tissue; TZD, thiazolidinedione; NEFA, nonesterified fatty acid; ANOVA, analysis of variance.
Increasing Adipose LPL Improves Glucose Metabolism

In addition to lipid diversion, another predicted effect of increased adipose LPL is stimulation of PPAR transcription factors by the free fatty acids generated by lipoprotein hydrolysis. Depending upon the cell type and PPAR transcription factor expressed, activation of PPAR can have important physiological consequences. For instance, in macrophages or endothelial cells, LPL hydrolysis of VLDL activates PPAR transcription factors and has anti-inflammatory effects (14, 15). In muscle, LPL stimulates PPARδ, regulating mitochondrial biogenesis (16). In adipose tissue, LPL is in a positive feedback loop in which LPL stimulates PPARγ, and the LPL gene is induced by PPARγ (10). Activation of PPARγ in adipose tissue could result in numerous physiological outcomes, including insulin sensitization.

We have made a transgenic mouse in which the adiponectin promoter drives the expression of LPL in adipocytes, and these mice (Adipoq-LPL) have improved glucose tolerance and insulin tolerance when challenged with a high fat diet. We evaluated whether this was due to reduction of ectopic lipids in skeletal muscle and liver and/or activation of PPARγ in adipose tissue. We found that the adiponectin promoter used only modestly increased adipose tissue Lpl over endogenous levels, which was insufficient to cause a redistribution of lipid. However, there was sufficient expression of the transgene to improve the white adipose phenotype by increasing PPARγ and PPARγ-regulated genes such as adiponectin, resulting in an improved phenotype after HFD challenge.

EXPERIMENTAL PROCEDURES

Animal Studies—All of the studies involving mice were approved by the University of Kentucky Institutional Animal Care and Use Committee. The mice were housed in standard conditions at 22 °C, with a 14-h light and a 10-h dark cycle, and ad libitum access to standard rodent diet (Teklad Global 18% protein rodent diet; 2018; Teklad, Madison, WI) and water. Mice were given high fat diet (60% kcal from fat; D12492; Research Diets, New Brunswick, NJ) at the indicated age. Body composition was determined with an EchoMRI system (Echo Medical Systems, Houston, TX). Mice were evaluated by indirect calorimetry (TSE Systems, Chesterfield, MO). Wild-type female C57B6/J mice (The Jackson Laboratory, Bar Harbor, ME) were used for backcrossing.

Adipoq-LPL Transgenic Mouse—Human LPL was amplified by PCR using primers that added a 5′ HindIII site and a BamHI site in front of the stop codon using the LPL 3.6 plasmid (17) as a template. The PCR product was then subcloned into the HindIII and BamHI sites of pCMV-14 to add a C-terminal 3×FLAG epitope. Human LPL-3×FLAG was then amplified using a primer that added a Clal site and 10 bases of its 5′-untranslated region, which corresponds to a strong Kozak sequence, and a 3′ primer that added an EcoRV site after the FLAG epitope stop codon. This PCR product was subcloned into the Clal-EcoRV site of adiponectin 5.4, which is a construct that allows for very specific transgene expression in adipocytes using a modified adiponectin promoter, from Dr. Philip Scherer (18). The resultant plasmid was then digested with Xhol and KpnI to release the adiponectin 5.4 promoter-hLPL-3×FLAG construct. This was used by the transgenic mouse facility at the University of Kentucky to make Adipoq-LPL mice; there were several founder mice, but only one made detectable transgene protein. Studies in this work were from mice backcrossed 5–8 times into C57BL6 mice. Control mice were always littermate controls.

Glucose and Insulin Tolerance Tests—Blood glucose was measured using an AlphaTRAK glucometer (32004-02; Abbott). For glucose tolerance tests, mice were moved to the procedure room at least 4 h prior to the start of the procedure and fasted with free access to water. The animals were then weighed and intraperitoneally injected with d-(-)-glucose, 1 mg/kg body weight. Blood glucose levels were measured at baseline (immediately prior to injection), and at 30, 60, 90, and 180 min. For insulin tolerance tests, the mice were weighed, and 1.0–1.5 units Regular Human Insulin (Lilly) per kg of body weight was injected into the intraperitoneal cavity; blood glucose levels were determined at 0, 30, 60, 90, and 180 min.

Analysis of Serum—Adipoq-LPL was quantified with an ELISA from Alpco (Salem, NH). Insulin and leptin were quantified using Milliplex Multiplex assays (Merck) and imaged on a Magpix system. Cholesterol was measured with a kit from Pointe Scientific (Brussels, Belgium); NEFA and triglycerides were determined with kits from Wako (Osaka, Japan). Serum was also fractionated on a fast protein liquid chromatography system to resolve lipoproteins as described (19). We then determined the area under the curve for the VLDL, LDL, and HDL peaks.

Histochemistry—Slides were deparaffinized and then incubated in Oil Red O (Sigma O0652; 0.3 g/ml in 60% isopropyl alcohol) for 30 min at room temperature. Slides were dipped in H2O and coverslipped using a generous amount of aqueous mounting media.

Gene Expression—Gene expression was determined by real time reverse transcriptase polymerase chain reaction, as described previously (20), except that a Qiagen lipid kit (74804) was used. Standard curves were made from a pool of the cDNA, and gene expression was normalized to 18 S. This allows for the measurement of relative changes in gene expression within the indicated experiment. The primer sequences are in Table 1.

LPL FLAG Expression and Activity—Protein extracts were made in 50 mm Tris, pH 7.4, 500 mm NaCl, 1% Nonidet P-40, 20% glycerol, 1 mm DTT, 10 mm sodium pyrophosphate, 100 mm potassium fluoride, 1 mm EDTA, 1× Calbiochem protease inhibitors. The protein concentration was determined with a Bradford assay using BSA as a standard, and 30 μg was run on a 10% SDS-polyacrylamide gel. The proteins were then transferred to nitrocellulose, immunoblotted with the indicated antibody, and quantified with an Odyssey imaging system (LI-COR Biosciences, Lincoln, NE) as described (21). The antibody against FLAG (2368) was from Cell Signaling (Danvers MA), and the antibody against actin (A1978) was from Sigma. Heparin release from minced adipose tissue and measurement of LPL activity were done as described (22).

Energy Metabolism Studies—Mice were placed on a high fat diet for 12 weeks. The mice were then placed in acclimation chambers for 1 week and recorded in a TSE indirect calorimetry system for 1 week. Resting energy expenditure and net food intake were determined for the mice during the middle 3 days and analyzed by an ANCOVA-like model in which energy
expenditure was regressed against the final lean mass of the mice and the genotype.

Mass Spectroscopy—Skeletal muscle (gastrocnemius) and liver lipids were extracted with acidified organic solvents and analyzed by HPLC/ESI tandem mass spectroscopy as described (23–25). There were only five control mice in this experiment because one mouse was an outlier.

Statistics—Except where otherwise indicated, data for the two groups of mice were analyzed by an unpaired, two-tailed Student’s t test. The weight gains on HFD and glucose and insulin tolerance tests were analyzed by repeated measures ANOVA. The resting energy expenditure and net food intake data were analyzed by ANCOVA-like model with data related to genotype and lean mass, augmented by random effects to capture correlations among the repeated measurements on any particular animal. Resting respiratory exchange ratio data were analyzed by ANCOVA. Statistical significance was defined by a p value less than 0.05. Data analyses were carried out using Version 9.3 of SAS software, Graph Pad Prism 5, and JMP Version 10 SAS Institute.

RESULTS

Generation of Adipocyte-specific LPL-expressing Transgenic Mice—We made a transgenic mouse that expresses human LPL under the regulation of the adiponectin 5.4-kb promoter (Fig. 1A), which was previously shown to drive gene expression in adipocytes in a highly specific manner (18). There were several founder mice that expressed the transgene mRNA, but only one expressed detectable protein and was phenotyped. The transgene mRNA is expressed specifically in white adipose tissue (WAT) depots, but not other tissues (Fig. 1B), and the FLAG-tagged LPL transgene protein is detected at 56 kilodaltons in gonadal fat (Fig. 1C). We expected some transgene expression in brown adipose tissue (BAT) (18), but there was a very low expression of the transgene in BAT at both the mRNA (Fig. 1B) and protein level (Fig. 1D; no expression detected above background). This low expression in BAT was not due to an unex-
Increasing Adipose LPL Improves Glucose Metabolism

FIGURE 2. Weight gain of control and Adipoq-LPL mice on HFD. Mice were fed a HFD as described under “Experimental Procedures” and weighed weekly. The data are presented as means ± S.E., and the results of a repeated measures ANOVA are indicated.

TABLE 2

Parameter*	Control	Adipoq-LPL	p
Serum			
Fasting glucose (mg/dl)	203.4 ± 3.5	183.1 ± 5.1	0.01
NEFA (mmol/liter)	0.695 ± 0.011	0.670 ± 0.081	0.77
Total triglycerides (mg/dl)	59.42 ± 2.98	50.58 ± 4.84	0.15
Total cholesterol (mg/dl)	166.3 ± 7.2	129.5 ± 4.8	0.01
Insulin (ng/ml)	2.5 ± 0.6	2.8 ± 0.8	0.76
Leptin (ng/ml)	6.9 ± 2.9	7.5 ± 1.4	0.85
Adiponectin (μg/ml)*	17.0 ± 1.1	20.9 ± 0.7	0.03

Mouse characterization

Parameter	Value
Weight at end of study	35.2 ± 1.0
Gonadal fat pad mass	1.04 ± 0.04
Fat mass (ECHO MRI)	13.2 ± 0.9
Lean mass (ECHO MRI)	18.9 ± 0.8
% fat (mean)	41 ± 2

Adipoq-LPL transgenic male mice and their littermate controls were characterized in a 19-week high fat (60% cal fat) feeding study (*n* = 6 control and *n* = 6 Adipoq-LPL per group). Data are represented as means ± S.E.

Table 2: Serum and mouse characterization of male mice

Significant *p* values are in boldface type.

We hypothesized that the endogenous adiponectin promoter, which drives the transgene in the Adipoq-LPL mice, because adiponectin mRNA expression was similar in control and Adipoq-LPL BAT (see BAT gene expression below). Thus, the Adipoq-LPL transgene is expressed in predominantly WAT depots.

Glucose and Insulin Tolerance—We hypothesized that the Adipoq-LPL mice would have an improved metabolic phenotype when challenged with a HFD. When challenged with a HFD (60% kcal fat), male Adipoq-LPL transgenic mice gained slightly less weight than their littermate controls (Fig. 2), but there was no statistically significant difference in weight gain when analyzed by repeated measures ANOVA (Fig. 2, *p* = 0.21) or in weight at the end of the study (Table 2; *p* = 0.36). The male Adipoq-LPL transgenic mice had improved glucose (Fig. 3A, *p* = 0.0028) and insulin (Fig. 3B, *p* = 0.028) tolerance. Female Adipoq-LPL mice had a trend for improved glucose tolerance (Fig. 3C, *p* = 0.06) but not improved insulin tolerance (Fig. 3D, *p* = 0.52). There was no statistically significant difference in glucose (*p* = 0.99) or insulin (*p* = 0.28) tolerance in male mice on a chow diet (Fig. 3, E and F).

Ectopic Lipid Distribution and Serum Lipids—One mechanism for the improved glucose tolerance could be that increased adipocyte LPL reduces ectopic lipid accumulation in liver and muscle by diverting it to fat. We stained liver and muscle from the HFD-fed male mice with Oil Red O and used mass spectroscopy to measure DAGs, TGs, and ceramides. As shown in Fig. 4, there was no qualitative difference in Oil Red O staining between the control and Adipoq-LPL mice in skeletal muscle (Fig. 4A) or in liver (Fig. 4B). Consistent with this, there was also no reduction in triglycerides, DAGs, or ceramides in these tissues in the Adipoq-LPL mice as measured by mass spectroscopy (Table 3), and the Adipoq-LPL mice in fact had an increase in liver TGs. There was also no evidence of increased fat mass or gonadal fat pad weights in the Adipoq-LPL mice after challenge with HFD (Table 2). Furthermore, serum NEFA and triglyceride levels were not significantly reduced in the Adipoq-LPL mice. Together, these results suggest that peripheral tissues are not protected from lipid accumulation in the Adipoq-LPL mice. Interestingly, the Adipoq-LPL mice had lower serum cholesterol levels (Table 2) and lower HDL (*p* < 0.05) when the sera were resolved by size exclusion chromatography (Fig. 5A). We also observed that triglycerides were reduced in the VLDL fraction (Fig. 5B, *p* < 0.05). Together, these data suggest that the Adipoq-LPL male mice have reduced lipoprotein levels, but this was not sufficient to protect peripheral tissues from lipid accumulation.

Improved Adipose Tissue Phenotype—An alternative mechanism of improved insulin sensitivity would be that increased adipocyte LPL stimulates PPAR transcription factors to improve adipose tissue function. Therefore, we measured the expression of PPAR transcription factors and well-characterized genes that are PPAR-regulated in epididymal adipose tissue. We found that PPARγ1/2, PPARγ2, and several known genes regulated by PPARγ (CD36, Adipoq, and Fabp4) were all higher in the epididymal fat of the Adipoq-LPL mice than control mice after a high fat diet (*p* < 0.05; Table 4). Endogenous Lpl, which is also PPARγ-regulated, was induced 1.3-fold, and when we measured total Lpl by using primers that reacted with both human and mouse Lpl, there was only a 1.6-fold induction; thus, the adiponectin promoter only modestly increased total Lpl mRNA, which could explain why the peripheral tissues were not protected from ectopic lipid accumulation (see above). We measured heparin releasable LPL activity and found that there was an increase in the Adipoq-LPL mice, but it was not significant (Fig. 6, *p* = 0.13).

Interestingly, neither PPARα- nor the PPARα-regulated genes Aco, Cpt-1, and Ucp-1 were up-regulated in the Adipoq-LPL mice (Table 4). PPARβ was induced, but Fiaf (Angptl4) and Sirt1, which are regulated by PPARβ, were not induced (Table 4). The expression of a number of mitochondrial genes was not altered (Table 4). Finally, a number of inflammatory genes (IL-1β, MCP-1, and F4/80) was reduced in the Adipoq-LPL male mice, but this did not reach significance (Table 4). Thus, the epididymal fat pads of the male Adipoq-LPL mice had a pattern of gene expression driven primarily by PPARγ, resulting in increased Adipoq and reduced inflammation. This pattern of gene expression was not observed in subcutaneous adipose tissue of the male mice, although Adipoq mRNA expression was higher in the SQ fat of the Adipoq-LPL mice (1.5-fold; *p* = 0.113). This together with the increased adiponectin expression in GO fat resulted in increased serum adiponectin in the male Adipoq-LPL mice (Table 2).

The female Adipoq-LPL mice did not have increased PPARγ or PPARγ-regulated gene (Adipoq and CD36) expression in their abdominal fat. In fact, endogenous Lpl was decreased in

staining between the control and Adipoq-LPL mice in skeletal muscle (Fig. 4A) or in liver (Fig. 4B). Consistent with this, there was also no reduction in triglycerides, DAGs, or ceramides in these tissues in the Adipoq-LPL mice as measured by mass spectroscopy (Table 3), and the Adipoq-LPL mice in fact had an increase in liver TGs. There was also no evidence of increased fat mass or gonadal fat pad weights in the Adipoq-LPL mice after challenge with HFD (Table 2). Furthermore, serum NEFA and triglyceride levels were not significantly reduced in the Adipoq-LPL mice. Together, these results suggest that peripheral tissues are not protected from lipid accumulation in the Adipoq-LPL mice. Interestingly, the Adipoq-LPL mice had lower serum cholesterol levels (Table 2) and lower HDL (*p* < 0.05) when the sera were resolved by size exclusion chromatography (Fig. 5A). We also observed that triglycerides were reduced in the VLDL fraction (Fig. 5B, *p* < 0.05). Together, these data suggest that the Adipoq-LPL male mice have reduced lipoprotein levels, but this was not sufficient to protect peripheral tissues from lipid accumulation.

Improved Adipose Tissue Phenotype—An alternative mechanism of improved insulin sensitivity would be that increased adipocyte LPL stimulates PPAR transcription factors to improve adipose tissue function. Therefore, we measured the expression of PPAR transcription factors and well-characterized genes that are PPAR-regulated in epididymal adipose tissue. We found that PPARγ1/2, PPARγ2, and several known genes regulated by PPARγ (CD36, Adipoq, and Fabp4) were all higher in the epididymal fat of the Adipoq-LPL mice than control mice after a high fat diet (*p* < 0.05; Table 4). Endogenous Lpl, which is also PPARγ-regulated, was induced 1.3-fold, and when we measured total Lpl by using primers that reacted with both human and mouse Lpl, there was only a 1.6-fold induction; thus, the adiponectin promoter only modestly increased total Lpl mRNA, which could explain why the peripheral tissues were not protected from ectopic lipid accumulation (see above). We measured heparin releasable LPL activity and found that there was an increase in the Adipoq-LPL mice, but it was not significant (Fig. 6, *p* = 0.13).

Interestingly, neither PPARα- nor the PPARα-regulated genes Aco, Cpt-1, and Ucp-1 were up-regulated in the Adipoq-LPL mice (Table 4). PPARβ was induced, but Fiaf (Angptl4) and Sirt1, which are regulated by PPARβ, were not induced (Table 4). The expression of a number of mitochondrial genes was not altered (Table 4). Finally, a number of inflammatory genes (IL-1β, MCP-1, and F4/80) was reduced in the Adipoq-LPL male mice, but this did not reach significance (Table 4). Thus, the epididymal fat pads of the male Adipoq-LPL mice had a pattern of gene expression driven primarily by PPARγ, resulting in increased Adipoq and reduced inflammation. This pattern of gene expression was not observed in subcutaneous adipose tissue of the male mice, although Adipoq mRNA expression was higher in the SQ fat of the Adipoq-LPL mice (1.5-fold; *p* = 0.113). This together with the increased adiponectin expression in GO fat resulted in increased serum adiponectin in the male Adipoq-LPL mice (Table 2).

The female Adipoq-LPL mice did not have increased PPARγ or PPARγ-regulated gene (Adipoq and CD36) expression in their abdominal fat. In fact, endogenous Lpl was decreased in
female Adipoq-LPL mice (Table 5). However, there were trends for decreased inflammatory gene expression, including IL-1β and MCP-1 (p = 0.08; Table 5), which were similar to the male mice. Also, there was no difference in the fat or lean mass of the control and Adipoq-LPL female mice at the end of the study (Table 6). These results suggest a different mechanism for the improved glucose tolerance observed in female Adipoq-LPL mice.

Mechanism of Insulin Sensitization, Similar to TZD Treatment?—The increase in PPARγ-regulated genes observed in the Adipoq-LPL mice is similar to pioglitazone treatment (26). However, there was no increase in weight or adipose mass (an undesirable side effect of TZD treatment) of the mice (Table 2), which would be expected if LPL hydrolysis products stimulated PPARγ as potently as TZDs. Because the free fatty acids produced by LPL are likely weak PPARγ agonists (14), we...
Increasing Adipose LPL Improves Glucose Metabolism

TABLE 3

Lipid	Wild type	Adipoq-LPL transgenic	p
Muscle	2.81 ± 0.73	1.97 ± 0.55	0.37
TG	0.0036 ± 0.0012	0.0028 ± 0.0009	0.58
DAG	0.28 ± 0.04	0.40 ± 0.04	0.06
Liver	0.10 ± 0.02	0.34 ± 0.09	0.04
TG	0.0006 ± 0.0003	0.00044 ± 0.00014	0.22
Ceramide	0.0059 ± 0.0005	0.0057 ± 0.006	0.88

* Transgenic mice (Table 4), suggesting that LPL selectively modulates (27–29). These were not up-regulated in the determined whether the Adipoq-LPL mice and their littermate controls were extracted for lipids and the extracts analyzed by mass spectrometry for lipids from the liver and muscle as indicated after the 19-week high fat (60% kcal fat) feeding study (n = 5 control and n = 6 Adipoq-LPL per group). The data are means ± S.E. The values are picomoles/µmol total phosphate.

![FIGURE 5](image-url)

FIGURE 5. FPLC size exclusion chromatography analysis of sera from control and Adipoq-LPL mice. The sera from the male mice in Fig. 2 were resolved by size exclusion chromatography, and cholesterol (A) and triglycerides (B) were measured as described under “Experimental Procedures”; the raw absorbance values are shown. Asterisk above the peaks indicates p < 0.05.

![FIGURE 6](image-url)

FIGURE 6. Heparin-releasable LPL activity of epididymal fat of control and Adipoq-LPL mice. The heparin-releasable LPL activity in the epididymal fat of male mice fed an HFD was measured as described under “Experimental Procedures.” The data are presented as means ± S.E.

TABLE 4

Gene	Control	Adipoq-LPL	Fold change	
PPARα	1.0 ± 0.1	1.2 ± 0.0	1.2	0.47
PPARγ	0.9 ± 0.1	1.2 ± 0.1	1.4	0.03
PPARγ1/2	0.7 ± 0.0	1.4 ± 0.1	2.0	<0.01
PPARγ-2	0.9 ± 0.1	1.2 ± 0.0	1.4	<0.01
Aco	1.0 ± 0.1	1.0 ± 0.1	1.0	0.53
Cpt-1	1.0 ± 0.1	1.0 ± 0.2	1.0	0.38
Total Lpl	0.8 ± 0.0	1.3 ± 0.2	1.6	0.02
Mouse Lpl	0.9 ± 0.0	1.2 ± 0.1	1.3	0.04
CD36	0.8 ± 0.1	1.4 ± 0.4	1.9	0.02
Fabp4	0.8 ± 0.0	1.3 ± 0.0	1.6	<0.01
Adiponectin	0.8 ± 0.1	1.4 ± 0.1	1.9	<0.01
Ucp3	1.0 ± 0.1	1.7 ± 0.1	1.7	0.08
Scf-1	0.8 ± 0.1	1.3 ± 0.2	1.8	0.02
Pepeck	0.8 ± 0.2	1.6 ± 0.5	1.9	0.06
Angptl4	1.0 ± 0.1	1.2 ± 0.2	1.2	0.38
Sirt1	0.9 ± 0.1	1.2 ± 0.1	1.3	0.21
Ucp1	0.8 ± 0.1	0.8 ± 0.1	0.8	0.38
Pgc1a	1.2 ± 0.1	1.3 ± 0.1	1.0	0.91
Glycolysis	1.6 ± 0.0	1.0 ± 0.2	0.6	0.40
Oxidized LDL receptor	1.2 ± 0.0	1.0 ± 0.2	0.9	0.58
F3/80	1.5 ± 0.2	0.9 ± 0.0	0.6	0.18
IL-1β	2.7 ± 2.0	1.0 ± 0.0	0.5	0.37
Mcp-1	2.3 ± 2.1	1.0 ± 0.1	0.5	0.36
Atg5a	0.9 ± 0.1	1.2 ± 0.1	1.3	0.20
Cytb	1.0 ± 0.1	1.2 ± 0.0	1.2	0.40
Silh	0.9 ± 0.1	1.2 ± 0.1	1.3	0.11
Vdac1	1.0 ± 0.1	1.1 ± 0.1	1.2	0.22

* lipid profiles of the control group were characterized after 19 weeks of a high fat (60% kcal fat) feeding study (n = 5 control and n = 6 Adipoq-LPL per group). The data are presented as means (arbitrary units) ± S.E.; the p value is for the difference in the mean.

* Data were measured with a primer set that recognizes human (LPL transgene) and mouse (endogenous) Lpl. 3′UTR.

* Data were measured with a primer set that recognizes mouse (endogenous) Lpl.
resistance in those tissues (6). In the muscle-LPL and liver-LPL models, the increased tissue lipid led to an increase in DAGs and ceramides in the muscle and liver, respectively. Thus, one mechanism that we evaluated was whether the Adipoq-LPL mice had reduced ectopic lipids. However, we found no difference in Oil Red O staining; TG, DAG, and ceramide levels as measured by mass spectroscopy; or plasma TG and NEFA. Consistent with this, there was no increase in fat mass or gonadal fat pad weight. The lack of lipid redistribution is likely due to the fact that although the transgene is readily detectable at both the message and protein level, it is only increasing the overall message level modestly over endogenous Lpl (Table 4), and we were not able to demonstrate a significant increase in heparin releasable activity (Fig. 6). Thus, our transgene expression is not high enough to cause ectopic lipid redistribution. Others have shown that increasing LPL globally in rabbits improves glucose metabolism by reducing serum free fatty acids (31).

Despite the fact that we did not see a lipid redistribution effect, we did observe reduced cholesterol. A similar observation was made by Levak-Frank et al. (32), who found that increasing muscle LPL expression increased HDL turnover. It will be interesting to explore the mechanism in the future in the Adipoq-LPL model because there have been different reports of the effect of increasing LPL on HDL in other models, with some models of LPL overexpression having no change in HDL (31, 33, 34) and one model reporting an increase in HDL (35).

To determine the mechanism for improved glucose metabolism, we evaluated whether the Adipoq-LPL transgene could improve the WAT phenotype next. We extensively characterized gene expression in the WAT of the mice because LPL hydrolysis products could stimulate PPAR transcription factors. Activation of these transcription factors in adipocytes could promote insulin sensitivity by different mechanisms. Stimulation of PPARα could promote insulin sensitivity by increasing adiponectin expression and/or other genes involved in glucose homeostasis (36). PPARα and PPARδ could promote insulin sensitivity by stimulating the β-oxidation of fat (37, 38).

We observed that the Adipoq-LPL mice have increased gene expression of a subset of PPAR-regulated genes. Absent from this subset are genes that require the high affinity agonism of TZDs such as glycerol kinase (28, 29). Glycerol kinase produces glycerol 3-phosphate, which can then be used to re-esterify fatty acids for storage as triglyceride, promoting weight gain. Glycerol kinase is not up-regulated in the adipose of Adipoq-LPL mice; whereas it is up-regulated in the adipose of TZD-treated mice (29). Also, Ucp1, which is induced by TZDs, was not up-regulated in the Adipoq-LPL mice. However, Fabp4 (AP2) does not require high affinity ligands for its expression to be induced (28), and Fabp4 was up-regulated in the Adipoq-LPL transgenic male mice (Table 4). The results of our studies suggest that the induction of LPL in adipose tissue increases a select subset of endogenous PPARγ ligands to promote insulin sensitivity without the side effects of high affinity TZD agonists. This in part explains one of the remarkable features of the Adipoq-LPL mice; after high fat diet challenge, their fat mass is not higher than the controls, which is a predicted side effect of TZDs and an anticipated phenotype if increasing adipose LPL.

TABLE 5

Relative gene expression in perigonadal fat from female mice

Significant p values are presented in boldface type.

Gene*	Control	Adipoq-LPL	Fold change	p
PPARα	1.5 ± 0.4	0.8 ± 0.1	0.6	0.06
PPARγ	1.5 ± 0.3	0.8 ± 0.1	0.6	0.05
PGC-1α	0.5 ± 0.2	0.3 ± 0.0	0.6	0.12
CD36	1.1 ± 0.1	1.0 ± 0.2	0.9	0.45
Fabp4	1.9 ± 0.5	0.8 ± 0.2	0.4	0.07
Adiponectin	1.2 ± 0.1	0.8 ± 0.2	0.8	0.33
F4/80	0.3 ± 0.0	0.3 ± 0.1	1.0	0.98
IL-1β	5.5 ± 1.2	3.0 ± 0.7	0.5	0.08
Mcp-1	0.3 ± 0.1	0.3 ± 0.3	0.4	0.08

* Perigonadal fat pads from female Adipoq-LPL transgenic mice and their littermate controls were characterized after 19 weeks of a high fat (60% kcal fat) feeding study (n = 6 control; n = 8 Adipoq-LPL). The data are presented as means (arbitrary units) ± S.E.; the p value is for the difference in the mean.

TABLE 6

Serum and mouse characterization of female mice

Parameter*	Control	Adipoq-LPL	p
Serum			
Fasting glucose (mg/dl)	197 ± 4.8	195.8 ± 9.9	0.88
Total triglycerides (mg/dl)	204 ± 3.0	161.8 ± 21.4	0.26
Total cholesterol (mg/dl)	153.0 ± 1.9	128.9 ± 12.0	0.33
Insulin (ng/ml)	0.53 ± 0.09	0.73 ± 0.17	0.37
Mouse characterization			
Weight at end of study	36.3 ± 1.8	34.5 ± 3.0	0.65
Fat mass (ECHO MRI)	16.9 ± 1.3	15.0 ± 2.3	0.53
Lean mass (ECHO MRI)	16.1 ± 0.6	16.1 ± 0.7	0.66
% Fat (mean)	50.9 ± 2.9	46.2 ± 3.4	0.27

* Adipoq-LPL female transgenic mice and their littermate controls were characterized in a 21-week high fat (60% cal fat) feeding study (n = 6 control and n = 8 Adipoq-LPL per group) that started at age 5 weeks. The data are presented as means ± S.E.; the p value is for the difference in the mean.

8D, p = 0.001). The resting respiratory exchange ratio was not different between genotypes (p = 0.39).

DISCUSSION

Because LPL generates free fatty acids for TG synthesis in adipocytes, an expected phenotype of the Adipoq-LPL mice would be increased adipose mass and relief of lipotoxicity in a high fat diet challenge. The Adipoq-LPL mice display no phenotype on chow and are protected against insulin and glucose intolerance when challenged with a high fat diet. The mechanism of improvement does not involve reduction of ectopic lipid accumulation in skeletal muscle or liver; plasma triglycerides and NEFAs were also not reduced in the Adipoq-LPL mice. Furthermore, the Adipoq-LPL mice do not accumulate more fat mass than the control mice; thus there is no evidence for lipid diversion, which is most likely explained by the modest increase in total LPL mRNA by the adiponectin promoter. Rather, the Adipoq-LPL mice have beneficial adipose tissue phenotype that is characterized by increased expression of adiponectin and reduced adipose inflammation. The gene expression profile of the epididymal fat suggests that the LPL transgene selectively modulates PPARγ activity. This modified adipose phenotype produces a systemic improvement in metabolism when the mice are challenged with a high fat diet.

The results of this study suggest that increasing adipocyte LPL in WAT results in improved glucose and insulin tolerance in high fat diet-induced obesity. This is the opposite phenotype of transgenic mice in which LPL was specifically induced in muscle (muscle-LPL) or liver (liver-LPL), leading to insulin resistance in those tissues (6). In the muscle-LPL and liver-LPL models, the increased tissue lipid led to an increase in DAGs and ceramides in the muscle and liver, respectively. Thus, one mechanism that we evaluated was whether the Adipoq-LPL mice had reduced ectopic lipids. However, we found no difference in Oil Red O staining; TG, DAG, and ceramide levels as measured by mass spectroscopy; or plasma TG and NEFA. Consistent with this, there was no increase in fat mass or gonadal fat pad weight. The lack of lipid redistribution is likely due to the fact that although the transgene is readily detectable at both the message and protein level, it is only increasing the overall message level modestly over endogenous Lpl (Table 4), and we were not able to demonstrate a significant increase in heparin releasable activity (Fig. 6). Thus, our transgene expression is not high enough to cause ectopic lipid redistribution. Others have shown that increasing LPL globally in rabbits improves glucose metabolism by reducing serum free fatty acids (31).
Increasing Adipose LPL Improves Glucose Metabolism

FIGURE 7. 24-h energy metabolism data from control and Adipoq-LPL mice during HFD challenge. The mice were fed a high fat diet (60% calories from fat) for 12 weeks prior to placing them in calorimetry chambers; the data were analyzed as described under “Experimental Procedures.” The mean data for the control and Adipoq-LPL mice are plotted as a function of time.

FIGURE 8. Characterization of control and AdipoQ-LPL mice in calorimetry chambers during HFD challenge. A, data from Fig. 7 were filtered by time and activity and analyzed with respect to the lean mass of the mice. Resting energy expenditure was plotted against post-lean mass; *, p = 0.044. B, average activity of the mice. C, weight of the mice after the study; *, p = 0.016. D, net food intake during the study; *, p = 0.001.
After 12 weeks of HFD challenge, the AdipoQ-LPL mice had higher energy expenditure than the controls. This response to the increased LPL could be the result of adipose tissue trying to defend its own mass (39) by increasing energy expenditure. The increased energy expenditure does not involve increased activity. It also does not involve browning of the WAT depots because Pgc1α and Ucp1 were not increased there. Nor does it involve BAT activation because Pgc1α and Ucp1 are not increased in that depot. Also, unexpectedly, the LPL transgene was not expressed in BAT, suggesting that diversion of lipid to BAT is not occurring in the Adipoq-LPL mice. Of note, there was no difference in weight loss while in the acclimation chambers or weight gain while in the metabolic chambers. One possibility for the increase in energy expenditure would be that the improved WAT phenotype leads to this by an adipokine such as adiponectin, which causes increased energy expenditure (40, 41). However, the anti-inflammatory phenotype could be involved in this. This increase in energy expenditure is the opposite phenotype to knocking down LPL in neurons (30), but we did not find the transgene expressed in the brain, so the mechanism remains to be determined. In addition to the increase in energy expenditure, the Adipoq-LPL mice consumed more of the high fat diet. Thus, there is a futile cycle of increased energy expenditure and increased food intake. Nevertheless, this mouse model could thus be a useful tool to address the mechanism by which adipose defends its own mass by increasing energy expenditure in response to increased LPL in future studies.

In summary, increasing LPL in adipocytes improves adipose function and protects against glucose and insulin intolerance in diet-induced obesity. This occurs by the selective induction of PPARγ-regulated genes that lead to systemic improvements in metabolism and increased energy expenditure. Identifying these pathways and deciphering their contribution to regulation of metabolism is an important future goal. We are currently studying the acute response of this mouse model to high fat diet using microarrays to better understand the mechanism of the improved adipose phenotype.

Acknowledgments—We thank Randi Narkевич for excellent technical assistance and colony management during the study. We thank Dr. Charlotte Peterson for useful discussions throughout the development of this project. The adiponectin 5.4-kb promoter plasmid was from Dr. Philip Scherer.

Table 7

Gene	Control	Adipoq-LPL	Fold change	TG/Control	P
PPARα	1.2 ± 0.3	1.5 ± 0.6	1.3	0.62	
PPARβ	1.0 ± 0.1	1.2 ± 0.2	1.2	0.39	
PPARγ	0.2 ± 0.4	1.6 ± 0.6	1.4	0.50	
Pgc1α	0.9 ± 0.3	1.4 ± 0.3	1.5	0.29	
Adiponectin	1.2 ± 0.4	2.0 ± 0.7	1.3	0.60	
Ucp1	1.6 ± 0.4	2.0 ± 0.7	1.3	0.60	
Ucp3	0.9 ± 0.1	1.2 ± 0.2	1.2	0.29	

* Epstein-didal fat pads from Adipoq-LPL transgenic mice and their littermate controls were characterized after 19 weeks of a high fat (60% kcal fat) feeding study (n = 6 control; n = 6 Adipoq-LPL). The data are presented as means (arbitrary units) ± S.E.; the P value is for the difference in the mean.

References

1. Greenwood, M. R. (1985) The relationship of enzyme activity to feeding behavior in rats: lipoprotein lipase as the metabolic gatekeeper. *Int. J. Obes.* 9, 67–70
2. Wang, H., and Eckel, R. H. (2009) Lipoprotein lipase: from gene to obesity. *Am. J. Physiol. Endocrinol. Metab.* 297, E271—E288
3. Samuel, V. T., and Shulman, G. I. (2012) Mechanisms for insulin resistance: common threads and missing links. *Cell* 148, 852—871
4. Olefsky, J. M., and Glass, C. K. (2010) Macrophages, inflammation, and insulin resistance. *Annu. Rev. Physiol.* 72, 219–246
5. Gregor, M. F., and Hotamisligil, G. S. (2011) Inflammatory mechanisms in obesity. *Annu. Rev. Immunol.* 29, 415–445
6. Kim, J. K., Fillmore, J. J., Chen, Y., Yu, C., Moore, I. K., Pypaert, M., Lutz, E. P., Kako, Y., Velez-Carrasco, W., Goldberg, I. J., Breslow, J. L., and Shulman, G. I. (2001) Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. *Proc. Natl. Acad. Sci. U.S.A.* 98, 7522–7527
7. Wang, H., Knaub, L. A., Jensen, D. R., Young Jung, D., Hong, E. G., Ko, H. J., Coates, A. M., Goldberg, I. J., de la Houssaye, B. A., Janssen, R. C., McCurdy, C. E., Raheman, S. M., Lee, C. H., Goldberg, I. J., Kim, J. K., et al. (2009) Skeletal muscle deletion of lipoprotein lipase enhances insulin signaling in skeletal muscle but causes insulin resistance in liver and other tissues. *Diabetes* 58, 116–124
8. Rangwala, S. M., and Lazar, M. A. (2004) Peroxisome proliferator-activated receptor γ in diabetes and metabolism. *Trends Pharmacol. Sci.* 25, 331–336
9. Rasouli, N., Raue, U., Miles, L. M., Lu, T., Di Gregorio, G. B., Elbein, S. C., and Kern, P. A. (2005) Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. *Am. J. Physiol. Endocrinol. Metab.* 288, E930–E934
10. Schoonjans, K., Pienard-Asnouze, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., Staels, B., and Auwerx, J. (1996) PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. *EMBO J.* 15, 5336–5348
11. Kim, J. K., Gavrila, O., Chen, Y., Reitman, M. L., and Shulman, G. I. (2000) Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. *J. Biol. Chem.* 275, 8456–8460
12. Petersen, K. F., Oral, E. A., Dufour, S., Befroy, D., Arinian, C., Yu, C., Cline, G. W., DePaoli, A. M., Taylor, S. I., Gorden, P., and Shulman, G. I. (2002) Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. *J. Clin. Invest.* 109, 1345–1350
13. Reue, K., Xu, P., Wang, X. P., and Slavin, B. G. (2000) Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. *J. Lipid Res.* 41, 1067–1076
14. Zouzenkova, O., Perrey, S., Asatryan, L., Hwang, J., MacNaul, K. L., Moller, D. E., Rader, D. J., Sevianian, A., Zechner, R., Hoeffer, G., and Plutzky, J. (2003) Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. *Proc. Natl. Acad. Sci. U.S.A.* 100, 2730–2735
15. Chawla, A., Lee, C. H., Barak, Y., He, W., Rosenfeld, J., Liu, D., Han, J., Kang, H., and Evans, R. M. (2003) PPARδ is a very low-density lipoprotein sensor in macrophages. *Proc. Natl. Acad. Sci. U.S.A.* 100, 1268–1273
16. Mori, K., Petersen, K. F., Sono, S., Choi, C. S., Samuel, V. T., Lin, A., Gallo, A., Zhao, H., Kashiwagi, A., Goldberg, I. J., Wang, H., Eckel, R. H., Maegawa, H., and Shulman, G. I. (2012) Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes. *Diabetes* 61, 877–887
17. Ranganathan, G., Onj, M. Y., Yuki, H., Saghizadeh, M., Simosolo, R. B., Pauer, A., and Kern, P. A. (1995) Tissue-specific expression of human lipoprotein lipase. Effect of the 3′-untranslated region on translation. *J. Biol. Chem.* 270, 7149–7155
18. Wang, Z. V., Deng, Y., Wang, Q. A., Sun, K., and Scherer, P. E. (2010) Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression. *Endocrinology* 151, 2933–2939
19. Daugherty, A., and Rateri, D. L. (1994) Presence of LDL receptor-related protein α2-macroglobulin receptors in macrophages of atherosclerotic
Increasing Adipose LPL Improves Glucose Metabolism

lesions from cholesterol-fed New Zealand and heterozygous Watanabe heritable hyperlipidemic rabbits. *Arterioscler. Thromb.* **14**, 2017–2024.

20. Finlin, B. S., Zhu, B., Starnes, C. P., McGehee, R. E., Jr., Peterson, C. A., and Kern, P. A. (2013) Regulation of thrombospondin-1 expression in alternatively activated macrophages and adipocytes: role of cellular cross-talk and ω-3 fatty acids. *J. Nutr. Biochem.* **24**, 1571–1579.

21. Finlin, B. S., Varma, V., Nolen, G. T., Dubé, J., Starnes, C. P., Rasouli, N., Kern, P. A., and Peterson, C. A. (2012) DHA reduces the atrophy-associated Fn14 protein in differentiated myotubes during coculture with macrophages. *J. Nutr. Biochem.* **23**, 885–891.

22. Ranganathan, G., Kaakaji, R., and Kern, P. A. (1999) Role of protein kinase C in the transregulational translation of lipoprotein lipase in adipocytes. *J. Biol. Chem.* **274**, 9122–9127.

23. Deevska, G., Sunkara, M., Karakashian, C., Peppers, B., Morris, A. J., and Nikolova-Karakashian, M. N. (2014) Effect of procollastatin on aging-associated changes in hepatic GSH and SMase: evidence for transcriptional regulation of smd3. *J. Lipid Res.* **55**, 2041–2052.

24. Salous, A. K., Panchatcharam, M., Sunkara, M., Mueller, P., Dong, A., Wang, Y., Graf, G. A., Smyth, S. S., and Morris, A. J. (2013) Mechanism of rapid elimination of lysophosphatidic acid and related lipids from the circulation of mice. *J. Lipid Res.* **54**, 2775–2784.

25. Deevska, G. M., Sunkara, M., Morris, A. J., and Nikolova-Karakashian, M. N. (2012) Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr −/− mice fed on a high-fat diet. *Biosci. Rep.* **32**, 479–490.

26. Sugii, S., Olson, P., Sears, D. D., Saberi, M., Atkins, A. R., Barish, G. D., Hong, S. H., Castro, G. L., Yin, Y. Q., Nelson, M. C., Hsiao, G., Greaves, D. R., Downes, M., Yu, R. T., Olefsky, J. M., and Evans, R. M. (2009) PPARγ activation in adipocytes is sufficient for systemic insulin sensitization. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 22504–22509.

27. Chui, P. C., Guan, H. P., Lehrke, M., and Lazar, M. A. (2005) PPARγ regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. *J. Clin. Invest.* **115**, 2244–2256.

28. Guan, H. P., Ishizuka, T., Chui, P. C., Lehrke, M., and Lazar, M. A. (2005) Corepressors selectively control the transcriptional activity of PPARγ in adipocytes. *Genes Dev.* **19**, 453–461.

29. Guan, H. P., Li, Y., Jensen, M. V., Newgard, C. B., Steppan, C. M., and Lazar, M. A. (2002) A futile metabolic cycle activated in adipocytes by antidiabetic agents. *Nat. Med.* **8**, 1122–1128.

30. Wang, H., Astarita, G., Taussig, M. D., Bharadwaj, K. G., DiPatrizio, N. V., Nave, K. A., Piomelli, D., Goldberg, I. J., and Eckel, R. H. (2011) Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. *Cell Metab.* **13**, 105–113.

31. Koike, T., Liang, J., Wang, X., Ichikawa, T., Shiomi, M., Liu, G., Sun, H., Kitajima, S., Morimoto, M., Watanabe, T., Yamada, N., and Fan, J. (2004) Overexpression of lipoprotein lipase in transgenic Watanabe heritable hyperlipidemic rabbits improves hyperlipidemia and obesity. *J. Biol. Chem.* **279**, 7521–7529.

32. Levak-Frank, S., Weinstock, P. H., Hayek, T., Verdery, R., Hofmann, W., Ramakrishnan, R., Sattler, W., Breslow, J. L., and Zechner, R. (1997) Induced mutant mice expressing lipoprotein lipase exclusively in muscle have subnormal triglycerides yet reduced high density lipoprotein cholesterol levels in plasma. *J. Biol. Chem.* **272**, 17182–17190.

33. Hosseini, M., Ehrhardt, N., Weissglas-Volkov, D., Lai, C. M., Mao, H. Z., Liao, L. I., Nikkola, E., Lenssoudon, A., Taskinen, M. R., Doolittle, M. H., Pajukanta, P., and Pétérffy, M. (2012) Transgenic expression and genetic variation of Lmfl affect LPL activity in mice and humans. *Arterioscler. Thromb.* **32**, 1204–1210.

34. Ichikawa, T., Kikuta, S., Liang, J., Koike, T., Wang, X., Sun, H., Okazaki, M., Morimoto, M., Shikama, H., Watanabe, T., Yamada, N., and Fan, J. (2004) Overexpression of lipoprotein lipase in transgenic rabbits leads to increased small dense LDL in plasma and promotes atherosclerosis. *Lab. Invest.* **84**, 715–726.

35. Shimada, M., Shimo, H., Gotoda, T., Yamamoto, K., Kawamura, M., Inaba, T., Yazaki, Y., and Yamada, N. (1993) Overexpression of human lipoprotein lipase in transgenic mice. Resistance to diet-induced hypertriglyceridemia and hypercholesterolemia. *J. Biol. Chem.* **268**, 17924–17929.

36. Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., and Evans, R. M. (2013) PPARγ signaling and metabolism: the good, the bad and the future. *Nat. Med.* **19**, 557–566.

37. Lodhi, I. J., Yin, L., Jensen-Urstad, A. P., Funai, K., Colemain, T., Baird, J. H., El Ramahi, M. K., Razani, B., Song, H., Fu-Hsu, F., Turk, J., and Semenkovich, C. F. (2012) Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity. *Cell Metab.* **16**, 189–201.

38. Wang, Y. X., Lee, C. H., Tiep, S., Yu, R. T., Ham, J., Kang, H., and Evans, R. M. (2003) Peroxisome-proliferator-activated receptor δ activate fat metabolism to prevent obesity. *Cell* **113**, 159–170.

39. Ravussin, Y., Leibel, R. L., and Ferrante, A. W., Jr. (2014) A missing link in body weight homeostasis: the catabolic signal of the overfed state. *Cell Metab.* **20**, 565–572.

40. Qi, Y., Takahashi, N., Hileman, S. M., Patel, H. R., Berg, A. H., Pajvani, U. B., Scherer, P. E., and Ahima, R. S. (2004) Adiponectin action in mice decreases body weight. *Nat. Med.* **10**, 524–529.

41. Holland, W. L., Adams, A. C., Brzonicz, J. T., Bui, H. H., Miyachishi, Y., Kusminski, C. M., Bauer, S. M., Wade, M., Singhall, E., Cheng, C. C., Volk, K., Kuo, M. S., Gordinio, R., Kharitonenkov, A., and Scherer, P. E. (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. *Cell Metab.* **17**, 790–797.