Abstract

Hydrological studies need an essential forward movement in the area of spatiotemporal modelling and data analysis. During the last years, there has been a significant increase in global spatial data available from different sources. This considerable amount of data is creating the need for a change in how to approach the spatiotemporal analyses of hydrological events (e.g., floods and droughts). Currently, ones often not consider the heterogeneity of the hydrological basins and the time dimension of the processes is also lacking. Hydrological requirements seem to fit clearly with the advances on hybrid data-driven, and physically-based models. This manuscript addresses the idea of spatiotemporal hydrological analysis by integrating the use of pattern recognition techniques and clustering and how this can is used for droughts and floods.

Introduction

Many studies have developed the concept of hydrology in space and time showing the need for this type of studies [1-7]. However, few have explored the development of the interactions between the spatial and temporal characteristics of the studied hydrological variable, i.e., its extent, severity (intensity), duration. Traditionally, this multivariate characterisation is conducted by developing curves that integrates three features of the analysed hydrological component, for instance, the severity-area-duration (SAD) curves [8]. Although these curves provide an overall overview of the hydrological phenomenon, the way in space-time characteristics develop and interact is not fully represented in these curves. When the data analysis is aggregated into statistical results, the hydrology often lacks of a clear framework of integration of characteristics, limitation and list of associated assumptions regarding the space and time [6-10]. Although the accuracy or applicability of the different products to different locations around the globe is a matter of studies, in this manuscript the opinion refers only to the analysis component. As it has been presented in many studies, the conventional approach to simply evaluate spatial information, after making monthly, seasonal or annual information, is limited. In the space and time analysis, the whole study region may be seen as a matrix of three dimensions (i.e., longitude, latitude, time), which can be used to schematize the spatiotemporal information available from a hydrological variable as follows:

1. Spatio-temporal analysis often is carried out by using hydrological time series (Figure 1 top). After characterising the hydrological events (e.g., floods, droughts), the spatial distribution is obtained by interpolation.

2. In a given instant of time, the hydrological variable is analysed, and after, regions with similar behaviour are clustered (Figure 1).

3. The proposed spatiotemporal approach makes use of two procedures (Figure 1).

One is the analysis of the total areas inside the region that are in the state of the event (above the threshold), and then average them with the total area. The event areas are added together without discriminated groups, so including all Non-Contiguous Areas (NCA). This result at each time step can be used to represent a percentage of area in event state [1-4,11-13]. This method was applied to quantify an extreme global event that related to El NINO and La NINA years [1]. The second procedure defines clusters (groups of cells) that can be linked (connected) into objects in three dimensions. These clusters in two or three dimensions (i.e., longitude, latitude, time) are calculated by using the algorithm called Connected Component Labelling [14]. Characteristics of the events and how they grow as objects can be studied. This concept is relatively new, and only a few studies have applied it [1,3,11,15].

Conclusion

The current trend of hydrology has an important area of opportunity in the spatiotemporal interpretation of its hydrological processes. Areas of important development are the inter-process scales interactions that occur in the hydrological events and the multivariable characterisation of event features, which relates to the location and time. This inter-process scales are interpreted here as the difference in the spatial scales of processes in hydrology as well as the time scale of the process. The spatial information, now supplied mainly by remote sensing and global hydrological models, requires a further development of how to approach the spatiotemporal analysis of hydrological events. These problems require the implementation of more time-dependent analysis.
Acknowledgment

Authors would like to thank editor and reviewers whose comments contributed to improving this manuscript. The study is been supported by the Colombian Administrative Department of Science, Technology and Innovation (COLCIENCIAS) under the grand number 646, as well as by the Mexican National Council for Science and Technology (CONACYT) through the scholarship number 217776.

Conflict of Interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter discussed in this manuscript.

References

1. Corzo Perez GA, Van Huijgevoort MHJ, Voß F, Van LHAJ (2011) On The Spatio-Temporal Analysis Of Hydrological Droughts From Global Hydrological Models. Hydrol Earth Syst Sci 15(9): 2963-2978.
2. Hannaford J, Lloyd HB, Keef C, Parry S, Prudhomme C (2011) Examining the Large-Scale Spatial Coherence of European Drought Using Regional Indicators of Precipitation and Stream flow Deficit. Hydrological Processes 25(7): 1146-1162.
3. Herrera EJE, Satoh Y, Sheffield J (2017) Spatio-Temporal Dynamics of Global Drought. Geophysical Research Letters 44(5): 2254-2263.
4. Lloyd HB (2012) A Spatio-Temporal Structure-Based Approach to Drought Characterization. International Journal of Climatology 32(3): 406-418.
5. Louvet S, Paturel JE, Mahé G, Rouché N, Koité M (2016) Comparison Of The Spatiotemporal Variability Of Rainfall From Four Different Interpolation Methods And Impact On The Result Of Gr2m Hydrological Modeling-Case Of Bani River In Mali, West Africa. Theoretical and Applied Climatology 123(1-2): 303-319.
6. Trambauer P, Maclay S, Werner M, Pappenberger F, Van BLPH, Ulhenskrook S (2014) Identification And Simulation Of Space-Time Variability Of Past Hydrological Drought Events In The Limpopo River Basin, Southern Africa. Hydrology and Earth System Sciences 18(8): 2925-2942.
7. Xu K, Yang D, Yang H, Li Z, Qin Y, et al. (2015) Spatio-Temporal Variation Of Drought In China During 1961-2012: A Climatic Perspective. Journal of Hydrology 526: 253-264.
8. Mishra AK, Singh VP (2011) Drought Modeling - A Review. Journal of Hydrology 403(1-2): 157-175.
9. Díaz MV, Corzo PG, Solomatine D, Van LHAJ (2016) Spatio-Temporal Analysis of Hydrological Droughts Using A Spatially-Distributed Hydrological Model. Procedia Engineering 154: 738-744.
10. Harding R, Best M, Blyth E, Hagemann S, Kabat P, et al. (2011) Watch: Current Knowledge of the Terrestrial Global Water Cycle. Journal of Hydrometeorology 12(6): 1149-1156.
11. Sheffield J, Andreadis KM, Wood EF, Lettenmaier DP (2009) Global and Continental Drought in the Second Half of the Twentieth Century: Severity-Area-Duration Analysis and Temporal Variability of Large-Scale Events. Journal of Climate 22(8): 1962-1981.
12. Van HMHJ, Hazenberg P, Van LHAJ, Teuling AJ, Clark DB, et al. (2013) Global Multimodel Analysis of Drought in Runoff For The Second Half Of The Twentieth Century. Journal of Hydrometeorology 14(5): 1535-1552.
13. Zaidman MD, Rees HG, Young AR (2001) Spatio-Temporal Development of Stream flow Droughts in North-West Europe. Hydrology and Earth System Sciences 5(4): 733-751.
14. Haralick RM, Shapiro LG (1992) Computer and Robot Vision I. Addison-Wesley Longman Publishing Co, USA.
15. Lloyd HB, Shaffrey LC, Vidale PL, Arnell NW (2013) An Evaluation Of The Spatiotemporal Structure Of Large-Scale European Drought Within The Higem Climate Model. International Journal of Climatology 33(8): 2024-2035.