Insight into the resistome and quorum sensing system of a divergent Acinetobacter pittii isolate from an untouched site of the Lechuguilla Cave

Han Ming Gan1,2,3*, Peter Wengert4, Hazel A. Barton5, André O. Hudson4 and Michael A. Savka4

1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong 3220, Victoria, Australia
2 Deakin Genomics Centre, Deakin University, Geelong 3220, Victoria, Australia
3 School of Science, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
4 Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
5 Department of Biology, University of Akron, Akron, Ohio, USA

*Corresponding author
Name: Han Ming Gan
Email: han.gan@deakin.edu.au

Key words
Acinetobacter, quorum sensing, antibiotic resistance

Abstract
Acinetobacter are Gram-negative bacteria belonging to the sub-phyla Gammaproteobacteria, commonly associated with soils, animal feeds and water. Some members of the Acinetobacter have been implicated in hospital-acquired infections, with broad-spectrum antibiotic resistance. Here we report the whole genome sequence of LC510, an Acinetobacter species isolated from deep within a pristine location of the Lechuguilla Cave. Pairwise nucleotide comparison to three type strains within the genus Acinetobacter assigned LC510 as an Acinetobacter pittii isolate. Scanning of the LC510 genome identified two genes coding for β-lactamase resistance, despite the fact that LC510 was isolated from a portion of the cave not previously visited by humans and protected from anthropogenic input. The ability to produce acyl-homoserine lactone (AHL) signal in culture medium, an observation that is consistent with the identification of the luxI and luxR homologs in its genome, suggests that cell-to-cell communication remains important in an isolated cave ecosystem.

Introduction
The identification and functionality of antibiotic-resistant and quorum sensing genes from bacteria isolated from pristine environments (areas previously not visited by humans) have raised questions about their origins and natural functions in the environment (1, 2). For example, several bacterial strains isolated from an extremely isolated, hyper-oligotrophic underground ecosystem, Lechuguilla Cave, were shown to harbor antibiotic-resistant genes, including nine previously unrecognized mechanisms of antibiotic resistance (1). In 2014, a total of 93 LC strains (33% Gram-positive and 63% Gram-negative) were reported by Bhullar et al and were phylogenetically classified based on sequencing of the 16S rRNA gene (3). In recent years, the taxonomic assignment of some LC strains has been revised mostly at the species level following whole-genome sequencing and genome-based phylogeny (4, 5). In addition, new luxI homologs have also been identified in the sequenced strains following genome annotation (4, 5).

Of the 93 LC strains reported, LC510 stood out due to its initial species designation as *Acinetobacter calcoaceticus* that is associated with nosocomial infections. LC510 was isolated from a site deep within the Capitan Formation proximal to the region named “Deep Secrets” at a depth below the surface of approximately 400 m (3). Although most members of *Acinetobacter* are found in soils, waters and occasionally animal feeds, some *Acinetobacter* species are known to infect humans with broad-spectrum antibiotic resistance and such environmental isolates may serve as a reservoir for additional resistance determinants (6, 7). In this study, we characterized LC510 using whole-genome sequencing, biochemical assays, and bioinformatic tools, providing insights into its taxonomic affiliation, resistome and quorum sensing potential.

Materials and Methods:

DNA extraction and whole-genome sequencing

The isolation, antibiotic characterization and 16S rRNA gene-based identification of strain LC510 have been described previously (3). For gDNA extraction, a single plate colony of LC510 was inoculated into 50 mL of sterile ½ strength tryptic soy broth (TSB) and grown overnight at 30°C with shaking at 150 rpm. The overnight culture was pelleted by centrifugation at 10,000 × g for 10 minutes. Genomic DNA (gDNA) extraction was performed on the pelleted cells using the QIAamp DNA Mini kit (Qiagen, Germany) according to the manufacturer’s instructions. The purified gDNA was quantified using the Qubit BR Assay (Invitrogen, Santa Clara, CA, USA) and normalized to 0.2 ng/µL for Nextera XT library preparation (Illumina, San Diego, CA, USA). The constructed library was sequenced on an Illumina MiSeq (2 x 151 bp run configuration) located at the Monash University Malaysia Genomics Facility that routinely sequences metazoan mitogenomes (8-10) and occasionally viral and microbial genomes (11, 12) with no prior
history of processing any member from the genus Acinetobacter, or more broadly the family Moraxellaceae.

De novo assembly and genome-based species classification

Raw paired-end reads were adapter-trimmed using Trimmomatic v0.36 (13) followed by de novo assembly using Unicycler v0.4.7 (default setting with minimum contig length set to 500 bp) (14). We then used JSpecies v1.2.1 (15) to calculate the pairwise average nucleotide identity (ANI) of LC510 against the type strain genomes of Acinetobacter pittii (WGS Project: BRST01), Acinetobacter lactucae (WGS Project: LRPE01) and Acinetobacter calcoaceticus (WGS Project: AIEC01).

Genome annotation and detection of antibiotic resistance genes

Genome annotation used Prokka v1.13 (16) and the predicted protein-coding genes were used as the input for Abricate v0.8.7 (https://github.com/tseemann/abricate) to search for antibiotic resistance genes against the ResFinder database (minimum query length coverage and nucleotide identity of 90%) (17). The alignment of blaOXA proteins used MUSCLE followed by maximum likelihood tree construction with FastTree2 (1000) (18).

Acyl-homoserine lactone bioassay

A single ½ strength tryptic soy agar plate colony of LC510 was inoculated into 50 mL of sterile ½ strength tryptic soy broth and grown overnight at 30°C with shaking at 150 rpm. An equal volume of ethyl acetate (EtOAc) was added to the culture followed by shaking at 50 rpm on an orbital shaker for one hour. The EtOAc layer (upper layer) containing the extracted AHL was evaporated to dryness with a vacuum concentrated and resuspended in fresh EtOAc to make a 20× concentrated extract. Then, 25 µl of the extract was spotted (2 µl/transfer) onto a reverse-phase thin layer chromatography silica gel 60 RP-18 sheet (Merck, Kenilworth, NJ, USA). In addition to the LC510 AHL extract, six synthetic AHL standards were also spotted in separate lanes for comparison. The chromatography was carried out with a 70%:30% methanol:water mobile phase. The TLC was subsequently dried and overlaid with 1X AB agar medium containing TraR-dependent lacZ Agrobacterium tumefaciens reporter strain and X-gal as previously described (19). After an overnight incubation at 30°C, visualization and identification of the AHL separated on the TLC were carried out.

In-silico analysis of the homoserine lactone synthase gene
Proteins were scanned using HMMsearch v3.1b1 with an E-value cutoff of 1E-5 for the presence of Pfam profile PF00765 (https://pfam.xfam.org/family/Autoind_synth) that contains the probabilistic model used for the statistical inference of LuxI-type family of autoinducer synthases (20, 21). The gene organization of contigs containing the luxI and luxR homolog was visualized using Easyfig (BLASTn setting) (22).

Results and Discussion

Genome statistics and taxonomic assignment
The assembled LC510 genome was contained in 115 contigs (N50 length of 66.9 kb) with a total length and GC content of 3,767,126 bp and 38.63%, respectively. Based on 16S rRNA gene identification, strain LC510 was previously assigned to the species Acinetobacter calcoacticus (See Table S2 in (3)). However, it only exhibited a pairwise ANI of 90% to Acinetobacter calcoacticus DSM30006T, a value that is far below the established threshold required for species assignment (15). Expanding the ANI calculation to other closely related species of A. calcoacticus showed that strain LC510 should instead be assigned to the species A. pittii, given its >95% pairwise ANI to A. pittii DSM25618T and A. pittii PHEA-2 (Figure 1).

Identification of beta-lactamase-producing genes
LC510 was previously shown to exhibit resistance against ampicillin and cephalxin (See Figure 3 in (3)). Scanning of its genome identified two genes coding for beta-lactamases namely blaOXA-213-like (locus tag: YA64_005895) and blaADC (locus tag: YA64_000855). The blaOXA-213-like gene is commonly found among members of Acinetobacter calcoacticus and Acinetobacter pittii (Figure 2) with demonstrated resistance to ampicillin through heterologous expression in Escherichia coli host (23). A conserved penicillin-binding domain was identified in the blaOXA-213-like protein of LC510 which provides additional support to its role in conferring resistance to ampicillin. The resistance of LC510 to cephalxin is likely explained by the presence and expression of a blaADC gene encoding for AmpC beta-lactamase (24). Cloning and regulated expression of these two bla genes will be instructive to verify their in-silico predicted role in hydrolyzing beta-lactam drugs (24). The presence of blaADC and blaOXA-213-like genes in cave isolate LC510 that has no prior history of anthropogenic exposure supports previous work claiming that these genes contribute to the intrinsic antibiotic resistance in A. pittii (6, 23). The intrinsic ampicillin resistance of A. pittii can be suppressed with sulbactam, a beta-lactamase inhibitor (25),
making ampicillin-sulbactam an effective antibiotic for the treatment of carbapenem-resistant *A. pittii* (7, 26).

Detection of quorum-sensing signal molecules and identification of an autoinducer synthase gene in *Acinetobacter pittii* LC510

Given the demonstrated ability of several *Acinetobacter* strains to produce quorum-sensing signals that are implicated in the regulation of virulence factors and cell motility, we used both *in silico* and *in vivo* approaches to assess the presence of a quorum-sensing system in strain LC510. Under the described culturing condition, LC510 strain appears to produce a medium-length AHL signal that exhibits a migration rate between C6-OH and C8-OH (Figure 3). The *luxI* and *luxR* homologs in LC510 were localized on contigs 41 and 18, respectively that exhibit strikingly high synteny to the *luxI/luxR* gene cluster in *A. pittii* PHEA-2 (Figure 4). Such a gene organization was similarly found in *Acinetobacter baumannii* M2 (27), hinting the conservation of this gene cluster and its quorum sensing (QS)-regulated genes among members of *Acinetobacter*. Transposon disruption of the *luxI* homolog (*abaI*) in strain M2 led to a substantial reduction in motility that could be rescued with the supplementation of its cognate AHL signal in the media (27). The presence of this gene cluster in LC510 may suggest that the role of quorum sensing in regulating the motility of LC510 in its cave environment. The construction of *luxI* mutant for LC510, using either transposon mutagenesis or homologous recombination (28, 29), followed by transcriptome sequencing (30) will be extremely useful not only for validating the role of QS in cell motility but also in discovering other genes and phenotypes that may be regulated by QS.

Conclusions

The whole-genome sequence of a Lechuguilla Cave isolate (LC510) belonging to the species *Acinetobacter pittii* was presented in this study. The identification of two *bla* genes in the annotated genome of isolate LC510 that has no prior history of anthropogenic exposure supports previous work claiming that these genes contribute to the intrinsic antibiotic resistance in members of the species *A. pittii*. In addition, LC510 still retains the ability to engage in cell-to-cell communication in an isolated cave ecosystem as evidenced by the presence of a *luxI* homolog in its genome and its ability to accumulate of N-acyl-homoserine lactones in culture medium.

Data Availability
This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession LBHY00000000. The version described in this paper is LBHY02000000. Raw paired-end sequencing reads and sample metadata have been deposited into the NCBI public database under the BioProject ID PRJNA281683 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA281683/).

Acknowledgments

PD, TP, AOH, and MAS acknowledge the College of Science and the Thomas H. Gosnell School of Life Sciences for support.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Figure Legends

Figure 1. Heatmap showing the clustering of *Acinetobacter* isolates based on their pairwise average nucleotide identity as indicated by the numerical values in the boxes.

Figure 2. Maximum likelihood tree depicting the evolutionary relationships of *bla* proteins found in *Acinetobacter* species. Boxed clades indicate the OXA-231-like proteins from *Acinetobacter pittii* and the tree were rooted with OXA-143-like and OXA-235-like proteins as the outgroup (31). Tip labels were formatted as “GenBank Accession Number”~“OXA variant”_“[strain species and ID]”. Branch lengths indicate the number of substitutions per site.

Figure 3. Thin Layer Chromatography of AHL signal extract of LC510 and known AHL standards separated using 70:30 Methanol:Water and overlaid with *Agrobacterium tumefaciens* biosensor in the presence of β-galactosidase substrate, X-Gal (19). Lanes 1 to 3 consist of known AHL standards while Lane 4 consists of 25 µl of 20 × ethyl acetate culture extract equivalent to 400 mL of the overnight LC510 culture. C6, N-Hexanoyl-L-homoserine lactone; C8, N-octanoyl-L-Homoserine lactone; C6-oxo, N-β-oxo-Hexanoyl-L-homoserine lactone; C8-oxo, N-β-oxo-octanoyl-L-Homoserine lactone; C6-OH, N-(3-hydroxy-hexanoyl)-L-homoserine lactone; C8, N-(3-hydroxy-octanoyl)-L-Homoserine lactone.
Figure 4. Linear genome comparison of the LC510 contigs containing the luxR and luxI homologs with closely related Acinetobacter pittii PHEA-2 strain. The directions of the arrows indicate transcription orientation. Note: LC510 contigs 41 and 18 contain luxI and luxR homolog, respectively.

References

1. Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD. A diverse intrinsic antibiotic resistome from a cave bacterium. Nature communications. 2016;7:13803.
2. Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology. 2018;9(2928).
3. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome. PLOS ONE. 2012;7(4):e34953.
4. Gan HM, Wengert PC, Barton HA, Hudson AO, Savka MA. Draft Genome Sequences of Five Proteobacteria Isolated from Lechuguilla Cave, New Mexico, USA, and Insights into Taxonomy and Quorum Sensing. Microbiology Resource Announcements. 2019;8(40):e00913-19.
5. Gan HY, Gan HM, Tarasco AM, Busaire NI, Barton HA, Hudson AO, et al. Whole-Genome Sequences of Five Oligotrophic Bacteria Isolated from Deep within Lechuguilla Cave, New Mexico. Genome announcements. 2014;2(6):e01133-14.
6. Cho G-S, Li B, Rostalsky A, Fiedler G, Rösch N, Igbinosa E, et al. Diversity and Antibiotic Susceptibility of Acinetobacter Strains From Milk Powder Produced in Germany. Frontiers in microbiology. 2018;9:536-.
7. Gonzalez C, Garcia A, Urrea R, del Solar E, Bello H, Zemelman R. A combination of ampicillin and sulbactam: effect on aerobic and anaerobic gram-negative bacteria. Revista medica de Chile. 1990;118(5):548-54.
8. Grandjean F, Tan MH, Gan HM, Lee YP, Kawai T, Distefano RJ, et al. Rapid recovery of nuclear and mitochondrial genes by genome skimming from Northern Hemisphere freshwater crayfish. Zoologica Scripta. 2017;46(6):718-28.
9. Tan MH, Gan HM, Schultz MB, Austin CM. MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. Molecular Phylogenetics and Evolution. 2015;85:180-8.
10. Martins RF, Fickel J, Le M, van Nguyen T, Nguyen HM, Timmins R, et al. Phylogeny of red muntjacs reveals three distinct mitochondrial lineages. BMC Evolutionary Biology. 2017;17(1):34.
11. Dhanoa A, Hassan SS, Ngim CF, Lau CF, Chan TS, Adnan NAA, et al. Impact of dengue virus (DENV) coinfection on clinical manifestations, disease severity and laboratory parameters. BMC Infectious diseases. 2016;16(1):406.
12. Gan HY, Gan HM, Savka MA, Triassi AJ, Wheatley MS, Smart LB, et al. Whole-genome sequences of 13 endophytic bacteria isolated from shrub willow (Salix) grown in Geneva, New York. Genome Announc. 2014;2(3):e00288-14.
13. Bolger AM, Lohse M, Usadel B. Trimomatic: a flexible trimer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20.
14. Wick RR, Judell LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS computational biology. 2017;13(6):e1005595.
15. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2015;32(6):929-31.
16. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068-9.
17. Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage. 2014;4(2):e27943.
18. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one. 2010;5(3):e9490.
19. Lowe N, Gan HM, Chakravarty V, Scott R, Szegedi E, Burr TJ, et al. Quorum-sensing signal production by Agrobacterium vitis strains and their tumor-inducing and tartrate-catabolic plasmids. FEMS microbiology letters. 2009;296(1):102-9.
20. Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC bioinformatics. 2010;11(1):431.
21. Gan HM, Gan HY, Ahmad NA, Hudson AO, Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Frontiers in cellular and infection microbiology. 2015;4:188.
22. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009-10.
23. Périchon B, Goussard S, Walewski V, Krizova L, Cerqueira G, Murphy C, et al. Identification of 50 Class D β-Lactamases and 65 Acinetobacter-Derived Cephalosporinases in Acinetobacter spp. Antimicrobial Agents and Chemotherapy. 2014;58(2):936-49.
24. Lopes B, Amyes S. Role of ISAba1 and ISAba125 in governing the expression of blaADC in clinically relevant Acinetobacter baumannii strains resistant to cephalosporins. Journal of medical microbiology. 2012;61(8):1103-8.
25. Yamamoto M, Nagao M, Matsumura Y, Hotta G, Matsushima A, Ito Y, et al. Regional dissemination of Acinetobacter species harbouring metallo-beta-lactamase genes in Japan. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2013;19(8):729-36.
26. Kamolvit W, Derrington P, Paterson DL, Siddabat HE. A case of IMP-4-, OXA-421-, OXA-96-, and CARB-2-producing Acinetobacter pittii sequence type 119 in Australia. Journal of clinical microbiology. 2015;53(2):727-30.
27. Clemmer KM, Bonomo RA, Rather PN. Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology (Reading, England). 2011;157(Pt 9):2534-44.
28. Marx CJ. Development of a broad-host-range sacB-based vector for unmarked allelic exchange. BMC research notes. 2008;1(1):1.
29. Gan HM, Ibrahim Z, Shahir S, Yahya A. Identification of genes involved in the 4-aminobenzenesulfonate degradation pathway of Hydrogenophaga sp. PBC via transposon mutagenesis. FEMS microbiology letters. 2011;318(2):108-14.
30. Gao R, Krysciol D, Petersen K, Upateli C, Knapp A, Schmeisser C, et al. Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae PG1 strain. Appl Environ Microbiol. 2015;81(3):793-8007.
31. Evans BA, Amyes SG. OXA β-lactamases. Clinical microbiology reviews. 2014;27(2):241-63.
