Data Article

Characterization and isotherm data for adsorption of Cd\(^{2+}\) from aqueous solution by adsorbent from mixture of bagasse-bentonite

Eko Prasetyo Kuncoro\(^{a,*}\), Dwi Ratri Mitha Isnadina\(^{a}\), Handoko Darmokoesoemo\(^{b}\), Fembriany Dzembarahmatiny\(^{a}\), Heri Septya Kusuma\(^{c,*}\)

\(^{a}\) Department of Biology, Faculty of Science and Technology, Airlangga University, 60115 Indonesia
\(^{b}\) Department of Chemistry, Faculty of Science and Technology, Airlangga University, 60115 Indonesia
\(^{c}\) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, 60111 Indonesia

A R T I C L E I N F O

Article history:
Received 4 October 2017
Received in revised form 13 November 2017
Accepted 16 November 2017
Available online 21 November 2017

Keywords:
Adsorption
Bagasse
Bentonite
Cd\(^{2+}\)
Composite adsorbent

A B S T R A C T

The usage of wastes of baggase would be admirable from environmental and solid waste management point of view. Thus, herein, this data set present a facile method for providing an adsorbent from mixture of bagasse-bentonite. The prepared adsorbent was applied to remove Cd\(^{2+}\) from aqueous solution. The characterization data of the adsorbent were analyzed using XRF and FTIR methods. The XRF test results showed the changes of elemental content in adsorbent after the adsorption indicated that adsorbent can absorb Cd\(^{2+}\). The FTIR test results showed that adsorbent has a functional group that is useful in adsorption process. It was conducted in laboratory scale and the adsorption technique was batch technique. The information regarding isotherms of cadmium ions adsorption were listed. The Langmuir isotherm was suitable for correlation of equilibrium data. The acquired data indicated that the adsorption of Cd\(^{2+}\) by the adsorbent prepared from mixture of bagasse-bentonite is a promising technique for treating Cd-bearing wastewaters.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Chemical Engineering
More specific subject area	Adsorption
Type of data	Table, image, figure
How data was acquired	- The uptake of Cd$^{2+}$ by the adsorbent (q_e) was determined based on the subtraction of the initial and final concentration of adsorbate
- Fourier transform infrared (FTIR) spectroscopy (Shimadzu, IRPrestige 21), X-ray fluorescence (PANalytical, Minipal 4) was used for determine the characteristics of the adsorbent
- The Cd$^{2+}$ concentration measurement was performed by Atomic Absorption Spectrophotometer (Shimadzu, AA-7000) |
| Data format | Analyzed |
| Experimental factors | - The adsorbent of bagasse-bentonite was prepared from mixture of bagasse and bentonite that have been weighed in accordance with the ratio of 1:1
- The adsorbent of bagasse-bentonite was heated in the oven at 105°C for 6 h until the mixture is already dry
- Data of bagasse-bentonite were acquired for Cd$^{2+}$ removal from aqueous solution |
| Experimental features | The adsorbent of bagasse-bentonite for Cd$^{2+}$ adsorption from aqueous solution |
| Data source location | Airlangga University, Surabaya, Indonesia |
| Data accessibility | Data are accessible with the article |

Value of the data

- The newly synthesized adsorbent has a good potential application in related of wastewater treatment
- The isotherm data will be informative and useful for predicting and modeling the adsorption capacity and mechanism of cadmium removal by the adsorbent
- The acquired data will be advantageous for the scientific community wanting to scale up and design an adsorption column with adsorbent of bagasse-bentonite as medium for the removal of Cd$^{2+}$-containing waters or wastewaters

1. Data

The XRF for the adsorbent from mixture of bagasse-bentonite before and after adsorption were given in Figs. 1 and 2. The FTIR for the adsorbent from mixture of bagasse-bentonite before and after adsorption at wave numbers from 400 to 4000 cm$^{-1}$ were given in Figs. 3 and 4. The pH of zero point charge, pH$_{ZPC}$, for mixture of bagasse-bentonite obtained is shown in Fig. 5. The optimum condition for Cd$^{2+}$ adsorption on mixture of bagasse-bentonite is presented in Table 1. The isotherms parameters were estimated using models listed in Table 2. The data of isotherms for adsorption of cadmium ions onto the mixture of bagasse-bentonite is presented Table 3.
2. Experimental design, materials and methods

2.1. Materials

The materials used in the present research are bagasse, bentonite, HCl 1 M, NaOH 1 M, aquademin, filter paper, label paper, Cd(NO3)2·4H2O. The tools used in the present research is the crusher (mortar and pestle), beaker glass, 100 mL measuring cup, 10 mL volume pipette, stirring rod, 1000 mL measuring flask, 200 mesh strainer, pH meter, oven, bottle sample, analytical balance, Buchner funnel, shaker, suction pump, desiccator, and glass bottle.

2.2. Preparation of bagasse adsorbents

The bagasse taken from the sugar mill is cleaned by washing it with running water until it is cleaned and soaked in aquadest for 48 h, by changing the academy every 12 h. The bagasse was then dried under the sun and dried in an oven at 90 °C for 24 h, then crushed and sieved to 200 mesh [2].

Fig. 1. The XRF spectrum for the adsorbent from mixture of bagasse-bentonite before adsorption.

Fig. 2. The XRF spectrum for the adsorbent from mixture of bagasse-bentonite after adsorption.
2.3. Preparation of bentonite adsorbents

The first step in making bentonite adsorbents is to prepare 200 mesh bentonite. Bentonite is then heated in an oven at 90 °C for 24 h. This is performed to remove water content in bentonite [3].

2.4. Preparation of adsorbent from mixture of bagasse-bentonite

The first step of preparing the adsorbent of bagasse-bentonite is to mix bagasse and bentonite that have been weighed in accordance with the ratio of 1:1. Then the mixture is added with aquademin, stirred until the mixed adsorbent is completely mixed. After mixing, the preheated mixture is heated in the oven at 105 °C for 6 h until the mixture is already dry. The dried mixture was then crushed and

Fig. 3. The FTIR spectrum for the adsorbent from mixture of bagasse-bentonite before adsorption.

Fig. 4. The FTIR spectrum for the adsorbent from mixture of bagasse-bentonite after adsorption.
Table 1
Optimum condition for Cd\(^{2+}\) adsorption on mixture of bagasse-bentonite (The concentration of Cd\(^{2+}\) solution is 100 mg/L).

Parameters	Optimum value	Adsorption efficiency (%)
Mixture ratio of bagasse and bentonite	1:1	93.13
pH	5	93.15
Time (min)	45	96.00
Average value		94.09

Table 2
Isotherm model/equations used in this data article [1].

Model	Functional form	Plotting
Langmuir	\(\frac{C_e}{q_e} = \frac{1}{q_m K_L} + \frac{1}{q_m} C_e\)	\(\frac{C_e}{q_e}\) vs C_e
Freundlich	\(\log q_e = \log K_f + \frac{1}{n} \log C_e\)	logq_e vs logC_e

\(C_e\) is concentration of adsorbate in the solution at equilibrium (mg/L), \(q_e\) is amount of adsorbate which adsorbed at equilibrium (mg/g), \(q_m\) is maximum adsorption capacity of the adsorbent (mg/g), \(K_L\) is Langmuir constant (L/mg), \(K_f\) is Freundlich constant (mg/g), and \(n\) is adsorption intensity.

Table 3
Isotherm data for Cd\(^{2+}\) adsorbed onto the adsorbent from mixture of bagasse-bentonite.

Parameter	Value
\(q_m\) (mg/g)	20.6186
\(K_L\) (L/mg)	0.0838
\(n\)	1.5434
\(K_f\) (mg/g)	1.9953

Fig. 5. pH\(_{final}\) vs. pH\(_{initial}\) for mixture of bagasse-bentonite.
sieved with mesh 200. The mixture was then dried again by means of an oven at 105 °C for several hours before being used as an adsorbent [4].

2.5. Adsorption experiments

Adsorption of Cd$^{2+}$ with the adsorbent of bagasse-bentonite was performed using batch adsorption technique. There are several experimental steps to determine the optimum condition of each variation. The shuffling of the sample was performed with a shaker at a speed of 150 rpm at room temperature. The water samples after shaking will be filtered using filter paper, then the sample water is tested with an Atomic Absorption Spectrophotometer (AAS) (repeated 3 times). The determination of adsorption isotherm type was performed by determining the adsorption capacity of Cd$^{2+}$ solution on different concentration variations of 20, 40, 80, and 160 mg/L. Adsorbents are used according to the optimum mixture ratio of bagasse-bentonite (1:1), optimum pH (pH 5), and optimum contact time (45 min).

2.6. Characterization of adsorbent from mixture of bagasse-bentonite

The characterization of adsorbent from mixture of bagasse-bentonite for before and after adsorption was carried out using X-ray fluorescence (XRF) and fourier transform infrared (FTIR). The characterization of adsorbent from mixture of bagasse-bentonite was carried out using X-ray fluorescence (XRF) which aimed to analyze and to find out the elemental composition on the surface of the adsorbent samples and fourier transform infrared (FTIR) which aimed to analyze and to find out the functional groups of adsorbent from mixture of bagasse-bentonite.

2.7. pHZPC analysis

To determine pHZPC of the samples, 0.15 g adsorbent was added to 50 mL sodium chloride (NaCl; 0.01 mol L$^{-1}$), and the solution pH was adjusted to the required pH in the range of 2–12 using hydrochloric acid (HCl; 0.1 mol L$^{-1}$) and/or NaOH (0.1 mol L$^{-1}$). Then, the mixture-containing Erlenmeyer flasks were agitated for 48 h at room temperature (28 °C) on a rotary shaker at 200 rpm.

2.8. Data analysis

The efficiency of Cd$^{2+}$ adsorption by adsorbent from mixture of bagasse-bentonite is calculated according to Eq. (1).

\[
\text{Efficiency}_{\text{adsorption}} = \frac{C_o - C_e}{C_o} \times 100\%
\]

where C_o is initial concentration (mg/L) and C_e is final concentration (mg/L).

While the adsorption capacity is calculated according to Eq. (2).

\[
q_e = \frac{V \times (C_o - C_e)}{m}
\]

where q_e is adsorption capacity per weight of the adsorbent (mg/g), V is volume of the solution (L), C_o is initial concentration of solution (mg/L), C_e is final concentration of solution (mg/L), m is mass of adsorbent (g).
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.11.060

References

[1] H.-K. Chung, W.-H. Kim, J. Park, J. Cho, T.-Y. Jeong, P.-K. Park, Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent, J. Ind. Eng. Chem. 28 (2015) 241–246.

[2] L.V.A. Gurgel, R.P. de Freitas, L.F. Gil, Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride, Carbohydr. Polym. 74 (2008) 922–929.

[3] M. Toor, B. Jin, S. Dai, V. Vimonnes, Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater, J. Ind. Eng. Chem. 21 (2015) 653–661.

[4] R. Donat, S. Aytaş, Adsorption and thermodynamic behavior of uranium(VI) on Ulva sp.-Na bentonite composite adsorbent, J. Radioanal. Nucl. Chem. 265 (2005) 107–114.