Genetic characterization of the hemagglutinin gene of influenza B virus which predominated in the 1985/86 Canadian influenza season

Shimian Zou PhD, Isabelle Prud’homme BSc, John M Weber PhD SCM(CCM)

OBJECTIVE: To characterize the hemagglutinin (HA) gene of B/Canada/3/85, a prototype strain of influenza B virus variants that emerged in the 1984/85 influenza season and predominated in the 1985/86 season in Canada.

DESIGN: Sequencing and comparison of the HA genes of B/Canada/3/85 and the vaccine strains for the 1985/86 season, B/USSR/100/83, and for the 1986/87 season, B/Ann Arbor/1/86.

RESULTS: B/Canada/3/85 was similar to B/Ann Arbor/1/86 and significantly different from B/USSR/100/83. Phylogenetic analysis of the HA1-coding sequences indicated that B/Canada/3/85 and several other 1985 strains isolated in distant parts of the world were very closely related and were early variants representing the emergence of a new lineage, the B/Victoria/2/87 lineage. B/Canada/3/85 differed from B/USSR/100/83 in nucleotide sequence by 3.44% and in amino acid sequence by 3.33%. There was also an insertion of two amino acids in the HA1 region of B/Canada/3/85.

CONCLUSIONS: B/Canada/3/85 was one of the herald strains for the 1985/1986 influenza B epidemic. The amino acid mutations and the two-codon insertion together may account for the observed antigenic changes in the HA of the influenza B variants.

Key Words: Antigenic drift, Evolution, Hemagglutinin, Influenza B virus

Caractérisation génétique du gène de hémaglutinine du virus grippe de type B ayant prédominé de la saison 1985/86 au Canada

OBJECTIF : Caractériser le gène de l’hémagglutinine d’une souche prototype pour des variants du virus grippe de type B, B/Canada/3/85 ayant émergé de la saison de grippe 1984/85 et prédominé lors de la saison 1985/86 au Canada.

DESIGN : Séquençage et comparaison du gène HA de B/Canada/3/85 B à ceux des souches vaccinales de la saison

voir page suivante

Influenza B virus is a member of the Orthomyxoviridae, which also includes influenza A and C viruses. Influenza A, B or C viruses have eight or seven negative sense RNA genome segments (1). The RNA polymerases encoded by these viruses lack proofreading activity, which gives rise to a high mutation rate and thus, at least in part, their characteristic antigenic drift. Because of the segmented nature of the genome, influenza A viruses also exhibit genome segment reassortment. This reassortment results in dramatic changes in antigenicity (antigenic shift), which may lead to influenza pandemics (2). However, a pandemic caused by antigenic shift has not been reported for influenza B and C viruses, probably because of the high rate of mutation and the absence of animal reservoirs. Different lineages of influenza B viruses, B/Victoria/2/87-like viruses and B/Yamagata/16/88-like viruses have been cocirculating worldwide (7), although the latter has accounted for the majority of isolates in most countries since the 1990/91 season (8,9).

Although no influenza B virus pandemic has been reported, the disease burden caused by this virus is significant. In Canada, influenza B accounted for 33% of laboratory-confirmed influenza infections between 1980/81 and 1992/93 (unpublished). Scrutiny of the data showed that in the 1985/86 season there were 759 laboratory-confirmed influenza B infections in Canada. Close to the number of laboratory-confirmed influenza A infections in the same period. None of the 759 influenza B isolates characterized was antigenically close to the vaccine strain for that season, B/Ann Arbor/1/86 (10).

To characterize further the hemagglutinin (HA) gene of the influenza B virus circulating during the 1985/86 season and to investigate the evolutionary biology of the virus, the HA gene of the prototype strain, B/Canada/3/85, was sequenced and compared with B/USSR/100/83 and another vaccine strain, B/Ann Arbor/1/86.

MATERIALS AND METHODS

The influenza virus B/Canada/3/85 was isolated in Winnipeg, Manitoba and submitted to Laboratory Centre for Disease Control (LCDC), Ottawa, Ontario in February 1985 and then passaged three times in embryonated hen eggs (10). The vaccine strain, B/USSR/100/83 and B/Ann Arbor/1/86, were received from the World Health Organization Collaborating Center for Influenza at Centers for Disease Control and Prevention, Atlanta, Georgia. Strains were antigenically characterized by the hemagglutination inhibition (HI) assay (11).

Viral RNA was extracted using the Trizol reagent and protocol from Gibco BRL, a method using guanidine isothiocyanate and phenol to dissociate RNA from proteins and to inhibit RNase activity (12). The RNA pellet was resuspended in RNase-free water and converted into cDNA in standard reverse transcription reactions (13) containing M-MLV reverse transcriptase (Gibco BRL) and primers specific for the conserved termini of the hemagglutinin gene of influenza B viruses. The cDNA was amplified by the polymerase chain reaction (PCR) in a Perkin Elmer 9600 thermocycler using Taq DNA polymerase (Boehringer Mannheim) and the specific primers.

PCR amplicons were separated on 1% low melting point agarose gel (BRL, Maryland) and purified using the Wizard PCR prep kit (Promega, Wisconsin). The amplicon was sequenced termini of the hemagglutinin gene of influenza B viruses, B/Ann Arbor/1/86.

TABLE 1
Cross reactivity between the hemagglutinins of three influenza B viruses
Hemagglutination inhibition titre of fowl antisera raised to antigens
Antigens
B/USSR/100/83
B/Canada/3/85
B/Ann Arbor/1/86

Can J Infect Dis Vol 8 No 5 September/October 1997
automatic sequencer (Perkins-Elmer) in the core facility of LCDC. All sequence data are results of at least two independent determinations.

Sequences were assembled and analyzed using the program PCGene (Intelligenetics, California) and CLUSTAL W (14). Phylogenetic trees were drawn with programs DRAWTREE and DRAWGRAM in the PHYLIP package (J Felsenstein, Department of Genetics, University of Washington, Seattle, Washington).

RESULTS

Comparison of B/Canada/3/85 with B/USSR/100/83 and B/Ann Arbor/1/86: The HI assay (11) was used to analyze the antigenicity of the three virus strains (Table 1). Antiserum to B/USSR/100/83 was eightfold less reactive with B/Canada/3/85 and B/Ann Arbor/1/86 than with the homologous strain. Reactivities of all antisera to B/Canada/3/85 and B/Ann Arbor/1/86 were essentially the same. Nucleotide sequences of the HA gene and the deduced amino acid sequences were obtained for the three influenza B strains. The nucleotide sequence of the HA gene of B/USSR/100/83 (SU/100/83) and that of the HA1 region of B/Ann Arbor/1/86 (AA/1/86) matched those available from Genbank (Maryland) (15), except for two synonymous substitutions in B/USSR/100/83. The last three nucleotides of the HA1 and the whole region of the HA2 of AA/1/86, which were not available from GenBank, were derived from the work reported in this paper. Comparison of nucleotide sequences is presented in Figure 1. The nucleotide and amino acid sequences of B/Canada/3/85 and B/Ann Arbor/1/86 differ only by 0.41% (seven of 1713) and 0.18% (one of 570), respectively; whereas those of B/Canada/3/85 and B/USSR/100/83 differ by 3.44% (59 of 1713) and 3.33% (19 of 570), respectively. The genetic differences are consistent with, but not necessarily directly related to, the identified antigenic diversity. The fact that B/Canada/3/85 was passaged three times in eggs should not have had a major impact on sequence differences. It is well established that in most instances the egg-adapted virus has a single base substitution when compared with either the corresponding cell culture isolate or virus in the original clinical specimens (16). The majority of the nucleotide and amino acid substitutions among the three strains cluster within the HA1 region. Between B/Canada/3/85 and B/USSR/100/83, 44 of 59 nucleotide substitutions and all 19 amino acid substitutions occurred in the HA1 region, including a two-codon insertion.

B/Canada/3/85 HA sublineage: To determine the position of B/Canada/3/85 in the evolutionary lineage of influenza B viruses, its HA1-coding region was aligned with those of 16 other influenza B viruses obtained from GenBank and from this work. A phylogenetic tree was constructed with the CLUSTAL W program, which uses the neighbour-joining method.
B/Canada/3/85 together with other 1985 and 1986 isolates form a sublineage that was close to the B/Victoria/2/87 lineage but distant from the B/Yamagata/16/88 lineage. However, B/USSR/100/83 was closer to B/Yamagata/16/88. Therefore, B/Canada/3/85 and other 1985 strains actually represented the emergence of a new lineage which was prominent between 1985 and 1989. One difference between B/Canada/3/85 and B/USSR/100/83 was a six-nucleotide insertion after nucleotide 494 (measuring from the start of the HA1-coding sequence) (Figure 1); B/Yamagata/16/88 does not have this insertion.

DISCUSSION

A unique challenge in the control of influenza is continually emerging new virus variants. The surveillance strategy has been to screen isolates worldwide and monitor emerging virus strains with antigenically different HA in order to predict the epidemic strains for the next season; these presumed epidemic strains are then included in the new influenza vaccines. This strategy has provided essential information for effective vaccine formulation changes. However, the predicted epidemic strains and vaccine component strains may not always match the predominating strains for the new season because of the failure to identify herald strains or identify the herald strains early enough. There is also the problem of determining which competing variant strains identified in different regions are most likely to become the epidemic strain continent-wide or across the globe. This was true for influenza B virus as illustrated by the Canadian 1985/86 influenza season when 759 laboratory confirmations of influenza B/Canada/3/85-like strains were documented, none of which were antigenically similar to that season’s vaccine strain, B/USSR/100/83. The 1985/86 season had one of the highest influenza B activities in recent Canadian history.

In retrospect, B/Canada/3/85, the herald strain for the 1985/1986 season in Canada, was serologically distinct from B/USSR/100/83 as seen by an eightfold difference in their HI titres and a 3.33% difference at the amino acid level. There was also an insertion mutation of two amino acids in B/Canada/3/85, compared with B/USSR/100/83. These facts should be considered important indicators for future influenza B surveillance, although other factors such as immunity level of the population and strain transmissibility are also important considerations. With the availability of facilities for genetic characterization of influenza variants at LCDC, future isolates that belong to the same sublineage were isolated in distant parts of the world in 1985: Canada (B/Canada/3/85), Finland (B/Finland/24/85), Japan (B/Ibaraki/2/85) and Australia (B/Victoria/3/85). Either the variants emerged in different places, or more likely, variants that had previously deviated from the original dominant lineage developed and spread before becoming the dominant influenza B strain in Canada in 1985/86. Nevertheless, the vaccine component for the 1985/86 season was still B/USSR/100/83, and both Canada and United States experienced very strong influenza B epidemic activity. This experience stressed the importance of effective surveillance for antigenic drift of influenza B infections and illustrated that when strains emerge to produce early activity within a country or continent, an effective vaccine may not be available to protect against the first wave of major activity.
have significantly different antigenicity or are hard to cultivate will be subject to genetic analysis. Accumulation of information about genotypic sequence variations and comparison with corresponding antigenic heterogeneity and other epidemiologic data may allow the assessment of the effect of specific sequence changes on antigenic expression and possibly on epidemic pattern. Such information may help in the identification of herald strains for vaccine strain selection.

ACKNOWLEDGEMENTS: Carol Stansfield assisted in cell culture and virus growth. Primers were synthesized and the sequencing work was done by the Core Facility, Bureau of Microbiology, Laboratory Centre for Disease Control. Dr EG Brown, University of Ottawa, Ottawa, Ontario gave valuable advice. Drs EG Brown and H Artsob critically reviewed the manuscript. Drs M Montpetit and M Coulthart provided help with the CLUSTAL W and PHYLIP programs.

REFERENCES
1. Lamb RA. Genes and proteins of the influenza viruses. In: Krug RM, Fraenkel-Conrat H, Wagner RR, eds. The Influenza Viruses. New York: Plenum Press, 1989:1-88
2. Lamb RA, Krug RM. Orthomyxoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, et al, eds. Fields Virology, 3rd edn. Philadelphia: Lippincott-Raven Publishers, 1996:1353-95.
3. Xu X, Guo Y, Rota P, Hemphill M, Kendal A, Cox N. Genetic reassortment of human influenza virus in nature. In: Hannoun C, Kendal AP, eds. Options for the Control of Influenza II. Amsterdam: Excerpta Medica, 1992:203-7.
4. Peng G, Hongo S, Muraki Y, et al. Genetic reassortment of influenza C viruses in man. J Gen Virol 1994;75:3619-22.
5. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992;56:152-79.
6. Rida H, Ito T, Yasuda J, et al. Potential for transmission of avian influenza viruses to pigs. J Gen Virol 1994;75:2183-8.
7. Rota PA, Walls TR, Harmon MW, Rota JS, Kendall AP, Nerome K. Cocirculation of two distinct evolutionary lineages of influenza B virus since 1983. Virology 1990;175:59-68.
8. Rota PA, Hemphill ML, Whistler T, Regnery HL, Kendal AP. Antigenic and genetic characterization of the hemagglutinins of recent cocirculating strains of influenza B virus. J Gen Virol 1992;73:2737-42.
9. Cox NJ, Bender CA. The molecular epidemiology of influenza viruses. Semin Virol 1995;6:359-70.
10. Weber JM. Update: influenza virus activity in Canada. Can Dis Wkly Rep 1986;12:239-41.
11. Noble GR, Kaye HS, Varbridge WB, et al. Measurement of hemagglutination-inhibiting antibody to influenza virus in the 1976 influenza vaccine program: Methods and test reproducibility. J Infect Dis 1977;136:5429-34.
12. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156-9.
13. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory Press, 1989:8.60-8.63.
14. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80.
15. Bootman JS, Robertson JS. Sequence analysis of the hemagglutinin of B/Ann Arbor/1/86, an epidemiologically significant variant of influenza B virus. Virology 1988;166:271-4.
16. Robertson JS. Clinical influenza virus and the embryonated hen’s egg. Med Virol 1993;3:97-106.
17. Centers for Disease Control and Prevention. Influenza – United States, 1985-1986 season. MMWR 1986;35:470-9.