On links of certain semiprime ideals of a noetherian ring

C.L. Wangneo

95-C, UNOLane, Talab-Tillo
Jammu, J&K, India, 180002.

Abstract
In this paper we prove our main theorem, namely, theorem (8), which states that a link \(Q \to P \), of prime ideals \(Q \) and \(P \) of a noetherian ring \(R \) that are \(\sigma \)-semistable with respect to a fixed automorphism \(\sigma \) of \(R \), induces a link \(Q^0 \to P^0 \) of the semiprime ideals \(Q^0 \) and \(P^0 \) of the ring \(R \), where \(Q^0 \) and \(P^0 \) are the largest \(\sigma \)-invariant or \(\sigma \)-stable ideals contained in the prime ideals \(Q \) and \(P \). We also prove a converse to this theorem.
Introduction

In this paper we study the links of certain semiprime ideals of a noetherian ring R. Following the definition in [1], page 178, or from [3], we recall, there is a link from a prime ideal Q to a prime ideal P of a noetherian ring R (written as $Q \rightarrow P$), if there is an ideal A of R such that $QP \leq A < Q \cap P$ and the R- bi-module $Q \cap P / A$ is torsion free as a left R/Q - module and as a right R/P - module. Also following [2], we define the σ- invariant or the σ- stable part I^0 of an ideal I of R that is σ- semistable with respect to a fixed automorphism σ of R as the largest σ- invariant ideal contained in I. This definition immediately yields the fact that if Q and P are prime ideals of a Noetherian ring R that are σ- semistable with respect to a fixed automorphism σ of R, then Q^0 and P^0 are σ- invariant semiprime ideals of R. Following the above definition of a link of prime ideals as defined in [1] or [3], we define what we mean by the existence of a link between the semi prime ideals Q^0 and P^0 of a noetherian ring R, where Q^0 and P^0 are the σ- invariant parts of the prime ideals Q and P that are assumed to be semistable with respect to an automorphism σ of R. With these definitions in mind we prove our main theorem, namely, theorem (8), which
states that if R is a Noetherian ring, then a link $Q \to P$ of prime ideals Q and P of R, that are σ-semistable with respect to an automorphism σ of the ring R, induces a link $Q^0 \to P^0$ of the semiprime ideals Q^0 and P^0 of R. We also prove a converse to this theorem.

Definitions and Notation: To make mention of the source of our reference we state that throughout this paper we adhere to and adapt, as convenience and relevance permits, the notation and definitions of [1],[2], or [3] respectively. Thus, for example, for an ideal I of a noetherian ring R, which is σ-semistable with respect to a fixed automorphism σ of R, we denote by I^0, as in [2], lemma(6.9.9), the largest σ-invariant ideal contained in I and call it the σ-invariant part of I. For a right module or a bimodule M over a ring we denote by $|M|$ the right Krull dimension of the module M whenever this dimension exists. We must mention here that for a bimodule M over a ring R, we will again use the symbol $|M|$ to denote only the right Krull dimension of M unless otherwise stated. For the basic definition and results on Krull dimension we refer the reader to [1]. For a few more words about the terminology in this paper we mention
that a ring \(R \) is noetherian means that \(R \) is a left as well as right noetherian ring. If \(R \) is a ring and \(M \) is a right \(R \) module then we denote by \(\text{Spec} R \), the set of prime ideals of \(R \). Moreover \(r\text{-ann}.T \) denotes the right annihilator of a subset \(T \) of \(M \) and \(l\text{-ann}.T \) denotes the left annihilator of a left subset \(T \) of \(W \) in case \(W \) is a left \(R \) module. For two subsets \(A \) and \(B \) of a given set, \(A \leq B \) means \(B \) contains \(A \) and \(A < B \) denotes \(A \leq B \) but \(A \neq B \). For an ideal \(A \) of \(R \), \(c(A) \) denotes the set of elements of \(R \) that are regular modulo the ideal \(A \). Finally we mention that throughout all our rings are with identity element and all our modules are unitary.

Main Theorem

To prove our main theorem we first define the \(\sigma \)-invariant (or the \(\sigma \)-stable) part of an ideal \(I \) that is \(\sigma \)-semistable with respect to an automorphism \(\sigma \) of the ring \(R \). Next as mentioned in the introduction, following the definition of a link between two prime ideals of a noetherian ring \(R \) as given in [3], for example, we give the definition of a link \(Q^o \to P^o \) where \(Q^o \) and \(P^o \) are the \(\sigma \) - invariant parts of the prime ideals \(Q \) and \(P \) of a Noetherian ring \(R \) which are \(\sigma \) - semi stable with respect to a fixed automorphism \(\sigma \) of \(R \). We then describe when these links exist.
Definition (1): Let R be a noetherian ring and let I be an ideal of R. Then following the definition (6.9.8) of [2], we say I is σ-semi-stable or σ-semi-invariant ideal of R if there exists an integer $n \geq 1$ such that $\sigma^n(I) = I$. I is said to be σ stable or σ invariant ideal of R if $\sigma(I) = I$.

With this definition we prove the following result below.

Proposition (2): Let R be a Noetherian ring with an automorphism σ of R. Then the following hold,

a) If I is a σ-semi stable ideal of R with $\sigma^n(I) = I, n \geq 1$ and if $I^\sigma = I \cap \sigma(I) \cap \sigma^2(I) \cap \sigma^3(I) \ldots \cap \sigma^{n-1}(I)$, than I^σ is the largest σ-invariant ideal of R contained in I. In case I is a prime ideal of R, then I^σ is a σ invariant semi prime ideal of R.

b) If I, J are σ-semistable ideals of R, then there exists a common integer $k \geq 1$ such that $\sigma^k(I) = I$ and $\sigma^k(J) = J$.

Prof: a) The proof of (a) is obvious (see; e.g.;[2], Lemma (6.9.9)(i)).

b) For the proof of (b) note that if m and n integers ($m, n \geq 1$) such that $\sigma^m(I) = I$ and $\sigma^n(J) = J$, then $k = mn$ implies that $\sigma^k(I) = I$ and $\sigma^k(J) = J$.

Notation (3): For an ideal I of R which is σ-semi stable with respect to an automorphism σ of R we will denote by I^σ the σ
invariant ideal of proposition (2). We also call I^σ the σ invariant part of the ideal I.

Definition (4): Let R be a Noetherian ring and let σ be an automorphism of R. Let $P, Q \in \text{Spec} (R)$ be prime ideals such that P and Q are σ-semistable prime ideals of R. Let P^σ and Q^σ be the σ-invariant parts of P and Q respectively. Then following the definition of a link between two prime ideals of a noetherian ring R as given, for example, in [3], we say that a link $Q^\sigma \to P^\sigma$ between the semi prime ideals Q^σ and P^σ exists if there exists a non zero bi-module $Q^0 \cap P^0/A$ with A an ideal of R such that $Q^\sigma P^\sigma \leq A < Q^\sigma \cap P^\sigma$ and $Q^0 \cap P^0/A$ is a left R/Q^0 torsionfree module and a right R/P^0 torsionfree module.

We now prove the result below regarding links of prime ideals of a noetherian ring whose use will become apparent as we proceed to prove our main theorem.

Proposition (5): Let R be a Noetherian ring with

$P, Q \in \text{Spec. } R$. Let $Q \to P$ be a link between the prime ideals Q and P. Then there exists a linking bi-module $Q \cap P/B$ with $QP \leq B < Q \cap P$ such that B is the unique minimal ideal such that a link $Q \to P$ exists via the ideal B.

Proof: Consider the set $S = \{A_i/A_i \text{ are ideals of } R \text{ with } QP \leq A < Q \cap P \text{ and such that a link } Q \to P \text{ exists via the ideal } A_i\}$. Let $B = \cap A_i$. Now consider the bi-module, $Q \cap P/B$.

6
Clearly $QP \leq B < Q \cap P$. We make the following claim:

$Q \cap P / B$ is a right R/P–torsionfree module.

Proof of the claim: Suppose $Q \cap P / B$ is not right R/P torsionfree module. Then there exists $f \in Q \cap P$ and $f \not\in B$ such that $fg \in B$, for some $g \in c(P)$. Now $f \not\in B$ implies that $f \not\in Aj$ for some j. Since $B \leq Aj$, so $fg \in B$ implies that $fg \in Aj$. Also $f \not\in Aj$ and $g \in c(P)$ then means that $Q \cap P / Aj$ is not a right R/P torsionfree module which contradicts that $Aj \in S$. hence $Q \cap P / B$ is a right R/P torsionfree module. This proves the claim. Similarly we can show that $Q \cap P / B$ is a left Q/R torsionfree module. Hence $Q \to P$ is a link via the ideal B. Moreover it is clear that B is the unique minimal ideal of R such that $Q \to P$ is a link via the ideal B because if $Q \to P$ is a link via an ideal A of R, then obviously $A \in S$. which yields that $B \leq A$.

Proposition (6): Let R be a noetherian ring. Let $Q, P \in \text{Spec. } R$, and let $Q \to P$ be a link via the unique minimal ideal A of R. If Q, P are σ- semistable prime ideals of R for an automorphism σ of R, then there exists an integer $n \geq 1$ such that $\sigma^n(p) = P$, $\sigma^n(Q) = Q$ and $\sigma^n(A) = A$.

Proof: First note that because of proposition (2) above there exists a common integer $n \geq 1$, such that $\sigma^n(p) = P$ and $\sigma^n(Q) =
Q. Now the link \(Q \rightarrow P \) via the ideal \(A \) implies that for any integer \(i \geq 0 \) there is a link \(\sigma^i(Q) \rightarrow \sigma^i(P) \) via the ideal \(\sigma^i(A) \). In particular \(\sigma^n(Q) \rightarrow \sigma^n(P) \) via \(\sigma^n(A) \) implies that there is a link \(Q \rightarrow P \) via the ideal \(\sigma^n(A) \). Hence by the hypothesis on \(A \), \(A \leq \sigma^n(A) \). We now work with the automorphism \(\sigma^{-1} \) and first observe that \(\sigma^{-n}(p) = P \) and \(\sigma^{-n}(Q) = Q \). The above argument now yields that \(A \subseteq \sigma^n(A) \) or \(\sigma^n(A) \subseteq A \). Thus we get that \(A = \sigma^n(A) \).

Proposition (7): Let \(R \) be a Noetherian ring. Let \(P \) and \(Q \) be prime ideals of \(R \) that are \(\sigma \)-semi stable with respect to an automorphism \(\sigma \) of \(R \) and let the prime ideal \(Q \) be linked to the prime ideal \(P \). Further (using proposition (5) and proposition (6) above) let \(Q \) be linked to \(P \) via a unique minimal ideal \(A \) and let \(m \) be the common integer such that \(\sigma^m(Q) = Q, \sigma^m(P) = P \) and \(\sigma^m(A) = A \). Let \(Q^0, P^0 \) and \(A^0 \) have the usual meaning. Then the following hold true:

1. The ring \(R \) has at most two prime ideals minimal over the ideal \(A \), namely, \(Q \) or \(P \). In case \(P \) is a minimal prime ideal over \(A \) such that \(|R/A| = |R/P| \), then \(P \) is also a prime ideal minimal over the ideal \(A^0 \).
2. If \(|R/Q| = |R/P| \), then both \(Q \) and \(P \) are minimal prime ideals over \(A \) as well as over the ideal \(A^0 \). Moreover in this case all
the components of the semiprime ideals Q^0 and P^0 are minimal prime ideals over A^0.

Proof:- First observe that it is given that A is the unique minimal ideal of R such that $Q \to P$ is a link via the ideal A. Also it is given that Q and P are σ- semistable prime ideals of R, hence, we get that there exists a common integer $m \geq 1$ such that $\sigma^m(Q) = Q$, $\sigma^m(p) = P$ and thus using proposition (6) above we have $\sigma^m(A) = A$. Let $A^0 = A \cap \sigma(A) \cap \ldots \cap \sigma^{m-1}(A)$. We now prove (1).

Proof of (1):- We prove Q or P is a minimal prime ideal over A. To see this we first note that since we are given that $Q \to P$ is a link via the ideal A hence we have that $QP \leq A$ and this immediately implies that either Q or P is a prime ideal minimal over A. Now suppose that among the prime ideals minimal over A, P is a prime ideal minimal over A^0, such that $|R/P| = |R/A|$. Then obviously since $|R/A| = |R/A^0|$, hence P is a prime ideal minimal over the ideal A^0 as well.

Proof of (2):- Now we prove (2) under the assumption that $|R/Q| = |R/P|$. In this situation then it is clear that either $Q = P$ or Q and P are distinct incomparable prime ideals over the ideal A. Hence, since $QP \leq A$, it is not difficult to see that the set of minimal prime ideals of R/A consists of the
prime ideals \mathcal{Q}/\mathcal{A} and \mathcal{P}/\mathcal{A}. Assume that among the prime ideals of \mathcal{R} minimal over the ideal \mathcal{A}, \mathcal{P} is the prime ideal such that $|\mathcal{R}/\mathcal{P}| = |\mathcal{R}/\mathcal{A}| (= |\mathcal{R}/\mathcal{A}^0|)$ then by (1) above \mathcal{P} is the prime ideal minimal over the ideal \mathcal{A}^0 as well. But it is given that $|\mathcal{R}/\mathcal{Q}| = |\mathcal{R}/\mathcal{P}|$. Hence again using (1) above we get that \mathcal{Q} is also a prime ideal minimal over the ideal \mathcal{A}^0. The rest is obvious.

We are now ready to prove our main theorem.

Theorem (8): Let \mathcal{R} be a Noetherian ring. Let \mathcal{P} be a prime ideal of \mathcal{R} that is σ-semi-stable with respect to an automorphism σ of \mathcal{R}. Let \mathcal{Q} be a σ-semistable prime ideal that is linked to \mathcal{P}. Then the link $\mathcal{Q} \rightarrow \mathcal{P}$ of the prime ideals \mathcal{Q} and \mathcal{P} induces a link $\mathcal{Q}^\circ \rightarrow \mathcal{P}^\circ$ of the semi prime ideals \mathcal{Q}° and \mathcal{P}° of \mathcal{R}.

proof: By proposition (5) above we choose the unique minimal ideal \mathcal{A} of \mathcal{R} such that $\mathcal{Q} \rightarrow \mathcal{P}$ is a link via the ideal \mathcal{A}. By proposition (2), since \mathcal{Q} and \mathcal{P} are σ-semi-stable prime ideals of \mathcal{R} there exists a common integer $n \geq 1$ such that $\sigma^n(\mathcal{Q}) = \mathcal{Q}$, $\sigma^n(\mathcal{P}) = \mathcal{P}$ and in that case using proposition (6) we have $\sigma^n(\mathcal{A}) = \mathcal{A}$. Let $\mathcal{A}^\circ = \mathcal{A} \cap \sigma(\mathcal{A}) \cap \ldots \cap \sigma^{n-1}(\mathcal{A})$. We now prove that $\mathcal{Q}^\circ \rightarrow \mathcal{P}^\circ$ is a link via the ideal \mathcal{A}°.

For the proof we first assume by proposition (7) above that \(P \) is a minimal prime ideal over \(A \) as well over \(A^0 \).

We now make the claim: \(A^0 \neq Q^0 \cap P^0 \).

Proof of the claim:- For the proof of this claim we assume that \(A^0 = Q^0 \cap P^0 \). Then \(A^0 = Q^0 \cap P^0 \leq A < Q \cap P \), implies, that in the semi prime ring \(R/A^0 \), the prime ideal \(Q/A^0 \) is linked to the minimal prime ideal \(P/A^0 \) via the ideal \(A/A^0 \). But this contradicts lemma (11.17) of \([1]\). This proves the claim.

Hence we must have \(A^0 < Q^0 \cap P^0 \).

We now show that \(Q^0 \rightarrow P^0 \) is a link via the ideal \(A^0 \). But first observe that \(Q \rightarrow P \) is a link via the ideal \(A \) implies also that \(\sigma^i(Q) \rightarrow \sigma^i(P) \) is a link via the ideal \(\sigma^i(A) \) for any integer \(i \geq 1 \).

We now make the claim: \((Q^0 \cap P^0)/A^0 \) is a right \(R_{P^0} \) torsionfree module and a left \(R_{Q^0} \) torsionfree module.

Proof of the claim: Suppose first that \((Q^0 \cap P^0)/A^0 \) is not a right \(R_{P^0} \) torsionfree module. Then there exists \(f \in Q^0 \cap P^0 \), \(f \not\in A^0 \) and a \(g \in c(P^0) \) such that \(fg \in A^0 \). Now \(f \not\in A^0 \) implies that there exists an integer \(m \geq 1 \) such that \(f \not\in \sigma^m(A) \). However, \(f \in Q^0 \cap P^0 \) implies that \(f \in \sigma^m(Q) \cap \sigma^m(P) \) and \(fg \in A^0 \) implies that \(fg \in \sigma^m(A) \). Observe that \(g \in c(P^0) \) means that \(g \in C[\sigma^m(P)] \). All this means that \(\sigma^m(Q)\cap\sigma^m(P)/\sigma^m(A) \) is not right \(R/\sigma^m(P) \) torsionfree module contradicting our earlier observation that
\(\sigma^m (Q) \to \sigma^m (P) \) is a right link via the ideal \(\sigma^m (A) \). Hence we must have that \((Q^0 \cap P^0)/A^0 \) is a right \(\mathbb{R}_{/P^0} \) torsionfree module. Similarly we can show that \((Q^0 \cap P^0)/A^0 \) is a left \(\mathbb{R}_{/Q^0} \) torsionfree module. Hence \(Q^0 \to P^0 \) is a link via the ideal \(A^0 \).

There is a converse to the above result which we shall state and prove now. We mention at the outset of this theorem that we shall adapt and mimic, the proof of theorem(11.2)of [1] and hence while doing this we will adapt(without further mention)as much as possible the terminology that is used in the proof of theorem (11.2) of [1].

Theorem (9): Let \(R \) be a Noetherian ring and let \(\sigma \) be an automorphism of \(R \). Let \(Q, P \) be \(\sigma \)- semi stable prime ideals of \(R \). Then a (right) link \(Q^0 \to P^0 \) of semi prime ideal \(Q^0 \) and \(P^0 \) of \(R \) implies that for any integer \(i \geq 0 \) there exists an integer \(j \geq 0 \) such that \(\sigma^j(Q) \to \sigma^j(P) \) is a (right) link.

Proof: As stated earlier we will give a sketch of the proof which is on the same lines as the proof of theorem (11.2) of [1]. Since we are given \(Q^0 \to P^0 \) is a (right) link via an ideal \(A \), thus following [1], theorem (11.2), we assume without loss of generality that \(A=0 \). So we may assume \(Q^0 P^0=0 \) and \(Q^0 \cap P^0 \) is a
nonzero torsionfree right R/P^o-module and a torsionfree left R/Q^o-module. Since $l\text{-ann.}(Q^o \cap P^o) = Q^o$, we conclude that $l\text{-ann}(Q^o) \leq Q^o$.

Note that $l\text{-ann.}(P^o) = Q^o$ because $Q^o P^o = 0$. We first show that Q^o is essential as a right ideal of R. To see this suppose I is a nonzero right ideal of R. If $I Q^o = 0$, then $I \leq l\text{-ann.}(Q^o) \leq Q^o$. Hence $I \cap Q^o \neq 0$. Now clearly if $IQ^o \neq 0$, then obviously $I \cap Q^o \neq 0$. Hence Q^o is essential as a right ideal of R. Next note that $Q^o \cap P^o$ is a torsionfree right R/P^o-module and since $Q^o/Q^o \cap P^o$ is isomorphic to a right ideal of R/P^o, thus $Q^o/Q^o \cap P^o$ is torsionfree as a right R/P^o-module hence Q^o is torsionfree as a right R/P^o-module. Thus by proposition (6.18) of [1], Q^o has an essential submodule isomorphic to a finite direct sum of uniform right ideals of R/P^o. Since Q^o_R is essential as a right submodule of R_R, thus $E(Q^o)_R \approx E(R)_R$, where $E(Q^o)_R$ and $E(R)_R$ are the injective hulls of Q^o and R as right R modules. Now since the components of the semiprime ring R/P^o are isomorphic to each other, we must have that $E(R)_R \approx E^n_R$, where E is the injective hull of a uniform right ideal of R/P^o and $n = \text{rank}(R)_R$. Following the argument exactly as in proposition (6.23) of [1], we note that E is independent of the choice of a uniform right ideal of R/P^o. Obviously E has an essential submodule which is a torsionfree R/P^o-module. Thus $\text{ann.}_E(P^o)$ is torsionfree as a R/P^o module. Since
l-\text{ann}_R(P^o) = Q^0, as seen in the first para above, it follows that
Q^o = R \cap \text{ann}_{E(R)}(P^o). Hence, if W = \text{ann}_{E(R)}(P^o), then
\frac{R}{Q^o} = R/R \cap W \cong W + R/W \leq E(R)/W \cong E^n/\text{ann}_{E}(P^o).

Now observe that \(E^n/\text{ann}_{E}(P^o) \cong (E/\text{ann}_{E}(P^o))^n \). Hence \(R/Q^o \) embeds in \((E/\text{ann}_{E}(P^o))^n \). It thus follows that any uniform right ideal of \(R/P^o \) embeds in \(E/\text{ann}_{E}(P^o) \).

Now, let K be a submodule of E such that \(\text{ann}_{E}(P^o) < K \) and \(K/\text{ann}_{E}(P^o) \) is isomorphic to a uniform right ideal of \(R/Q^o \). Choose an element \(x \) in K not annihilated by \(P^o \). Let \(M = xR \) and let \(U = \text{ann}_M(P^o) \). Clearly \(M + U/U \) is isomorphic to a uniform right ideal of \(R/Q^0 \) and by an argument similar to cor.(6.20) of [1],

U is isomorphic to a uniform right ideal of \(R/P^o \). Since E is uniform, so is M, and it is clear from the definition of U that \(0 < U < M \) is an affiliated series for M. As a consequence there exist integers \(m \) and \(n \) such that \(U \) is \(R/\sigma^m(P) \)-torsionfree and \(M/U \) is \(R/\sigma^n(Q) \)-torsionfree modules. Again by an argument similar to theorem (11.2) of [1], we get that \(\sigma^n(Q) \rightarrow \sigma^m(P) \). Now applying \(\sigma \) repeatedly to the link \(\sigma^n(Q) \rightarrow \sigma^m(P) \) and observing that \(Q \) is \(\sigma \)-semistable, we get that, for any integer \(i \geq 1 \) there is a link \(\sigma^i(Q) \rightarrow \sigma^j(P) \) for some \(j \geq 1 \). This completes the proof of the theorem.

Remark:- We remark that theorem(11.2)of [1] that we have used in the proof of theorem(9) above actually is proved in [1] to
give a characterization of the existence of links between two prime ideals in a noetherian ring and in fact this theorem tells how links really arise in the study of finitely generated modules over a noetherian ring. In this context, thus, our proof of theorem (9) given above is circular. We mention that a direct and a much easier proof of theorem (9), namely one, which does not use theorem (11.2) of [1], may be possible. But we have not verified the same.

References
(1) K.R. Goodearl and R.B. Warfield, JR; An introduction to noncommutative noetherian rings; L.M.S. Student texts. 16; Cambridge university press, Cambridge, 1989.
(2) J.C. McConnell and J.C. Robson; Noncommutative Noetherian Rings; John Wiley; 1987
(3) C.L. Wangneo: Prime ideals in noetherian rings; 2011, arXiv, 1111.6141v1[Math.RA]