ST-segment Elevation Myocardial Infarction in a Patient with Polycythemia Vera Managed with High-dose Tirofiban Pre-treatment, Aspiration Thrombectomy, and Paclitaxel-eluting Stent Implantation

Steve Attanasio, DO,1 Raed Al Dallow, MD1 and Sandeep Nathan, MD, MSc²

1. Rush University Medical Center; 2. University of Chicago Medical Center

Abstract

While acute coronary syndromes inclusive of ST-elevation myocardial infarction (STEMI) have been described in patients with polycythemia vera (PCV), optimal pharmacologic and interventional management strategies in the setting of drastically elevated platelet counts remain unclear. To our knowledge this is the first reported case of STEMI with massive thrombus burden in a patient with PCV treated successfully with high-dose tirofiban bolus and infusion, followed by staged aspiration thrombectomy and drug-eluting stent implantation. Whether a strategy of antiplatelet and antithrombotic pre-treatment prior to PCI with or without thrombectomy will consistently yield satisfactory outcomes in PCV patients presenting with acute coronary syndrome (ACS) or STEMI, remains a matter of speculation. Nevertheless, based on the relevant pathobiologic considerations and review of the available literature, we feel the strategy employed in this case to be a reasonable one when clinical circumstances render it feasible.

Keywords
Polycythemia vera (PCV), massive thrombus burden, aspiration thrombectomy, glycoprotein inhibitors, ST-segment myocardial infarction

Disclosure: Sandeep Nathan, MD, MSc, has provided consultancy services for sanofi-aventis. The remaining authors have no conflicts of interest to declare.

Received: November 15, 2010 Accepted: November 30, 2010 Citation: US Cardiology, 2011;8(1):66–9

Correspondence: Steve Attanasio, DO, Rush University Medical Center, Adult Section of Cardiology, 10 Jelke, 1633 West Congress Parkway, Chicago, IL. E: steve_attanasio@rush.edu
underwent repeat angiography. Subsequent angiography demonstrated flow improvement to TIMI 3 in the LAD and decrease in the thrombus burden, which now appeared organized, well circumscribed, and limited to the LAD with no side branch or LMCA extension. Percutaneous coronary intervention (PCI) was performed with aspiration thrombectomy using a 6 French (Fr) Medtronic Export catheter, with resultant removal of a significant amount of atherothrombotic debris and progressive angiographic improvement after 10 aspiration passes (see Figures 2 and 3). Histopathologic analysis of the aspirate subsequently demonstrated abundant aggregates of neutrophils, necrotic and degenerated cells, and fibrin, but notably, scant platelet aggregates. The residual 70% lesion was addressed with the implantation of a 3 x 32mm Taxus paclitaxel-eluting stent, deployed at 18ATM. Excellent results were noted in the treated segment of LAD by angiography and by intravascular ultrasound with no sidebranch compromise or evidence of distal embolization. (see Figure 4). Cardiac biomarkers drawn post-PCI, continued to decline. A pre-discharge transthoracic echocardiogram demonstrated a small area of hypokinesis at the apex, with normal overall left ventricular systolic function. Clinically, the patient did well for the remainder of the hospital course and was maintained on enteric-coated acetylsalicylic acid (ECASA) 325mg and clopidogrel 75mg daily following discharge. The patient has remained asymptomatic and free of cardiovascular events including stent thrombosis for over one year on dual antiplatelet therapy.

Discussion

Polycythemia vera is a myeloproliferative disorder characterized by the overproduction of various cell lines including leukocytes, erythrocytes, and platelets. Thrombotic complications, including MI, remain the primary cause of mortality and have been attributed to increased whole blood viscosity, quantitative, and perhaps qualitative platelet abnormalities, and to the presence of leukocytosis. While coronary thrombosis is the predominant mechanism of MI in patients with PCV, there is evidence that marked intimal proliferation may also play a role.5

Cardiac catheterization and percutaneous coronary intervention in patients with PCV has reportedly been associated with acute total aortic occlusion and recurrent stent thrombosis. Other complications of PCV that have been reported include splenic rupture in the setting of peri-PCI use of glycoprotein IIb/IIIa inhibition, as well as ventricular septal rupture as a complication of a small anteroseptal MI in a patient with only minimal ectasia in the LAD. Varying degrees of thrombus burden have also been described in PCV patients presenting with acute coronary syndromes and acute MI. Angiographically evident intracoronary thrombus may be quantified via the TIMI scoring system and is divided into five grades. Per this schema, thrombus grade zero (G0) represents the absence of thrombus. In grade one (G1), possible thrombus is present with such angiographic characteristics as reduced contrast density, haziness, irregular lesion contour, or a smooth convex meniscus at the site of total occlusion suggestive, but not diagnostic of thrombosis. In thrombus grade two (G2), there is definite thrombus with greatest dimensions less than or equal to half the vessel diameter. In thrombus grade three (G3), there is definite thrombus with greatest linear dimension greater than half but <2 vessel diameters and in thrombus grade four (G4) there is definite thrombus with the largest dimension ≥2 vessel diameters. In thrombus grade five (G5) there is total thrombotic occlusion. A thrombus grade ≥4 as encountered in the case described implies a large thrombus burden. Contrast angiography has a sensitivity of 20% and a specificity approaching 100%. Percutaneous interventions of thrombotic lesions may be associated with such complications as distal embolization, no reflow, side branch occlusion, and abrupt vessel closure. Intracoronary infusions of fibrinolytic agents, adenosine, and verapamil have all been demonstrated in case reports and small studies to diminish no-reflow, however, few definitive data currently exist in support of these adjunctive therapies. Other pharmacologic therapies that have been studied include systemic, intracoronary, and site-specific delivery of glycoprotein IIb/IIIa inhibitors.

The central role of platelet activation and aggregation in the pathogenesis of vascular thrombosis has been extensively studied. The glycoprotein (Gp) IIb/IIIa (integrin \(\alpha_{\text{IIb}} \beta_{3} \)) receptor mediates the final common pathway for platelet aggregation via its interaction with soluble fibrinogen. Three parenteral Gp IIb/IIIa inhibitors (GPIs) are currently available for clinical use. Abciximab (c7E3) is a chimeric humanized murine monoclonal antibody fragment directed against the Gp IIb/IIIa receptor, but also binds vitronectin and Mac-1 receptors. Tirofiban and eptifibatide are high-affinity, semi-synthetic inhibitors that are often grouped together as ‘small-molecule GPIs’ in deference to their low molecular weights relative to abciximab. The small-molecule GPIs are associated with high levels of steady-state platelet inhibition especially during longer infusion periods. In contrast, Abciximab evidences
Case Report

excellent acute inhibition of platelet aggregation with a slow downward drift during the recommended 12-hour infusion period, with longer infusions rarely used today given data from Global utilization of strategies to open occluded arteries (GUSTO) IV ACS, suggesting higher rates of adverse events when abciximab is used in this capacity. The clinical benefits of the small-molecule inhibitors are most pronounced in patients undergoing early percutaneous intervention after a period of 48 hours. In the case described, the choice of high-dose tirofiban was deliberate and predicated on the previously detailed clinical and platelet inhibition data as well as on specific stoichiometric considerations. While the current abciximab bolus and infusion dosing strategy was developed to provide ≥80% inhibition of stimulated platelet aggregation in individuals with normal platelet counts, the ratio of abciximab molecules to glycoprotein receptor is relatively low (estimated at 2:1) and, therefore, may not provide adequate platelet inhibition in the setting of elevated
platelet count or super-normal receptor expression. In contrast, the analogous ratio with small-molecule GPIs has been estimated to be at least 50:1 but perhaps as high as several hundred to one. Therefore, it was postulated that a small molecule GPI used in the capacity of an aggressive dosing strategy and extended pre-PCI infusion might be a more attractive choice than abciximab in this setting. The near-absence of platelet aggregates upon histologic analysis of the aspirate ostensibly confirms the validity of this strategy. The aggressive use of aspiration thrombectomy facilitated retrieval of a considerable amount of atherothrombotic material with no side branch compromise by angiography and no vessel trauma by angiography and intravascular ultrasound (IVUS). Furthermore, little or no embolization was seen on the angiographic images or evidenced by biomarker release post-PCI.

Long-term management of patients with PCV includes use of low-dose aspirin, which has been shown to reduce the rate of major thrombus and cardiovascular death and is therefore recommended in all PCV patients in the absence of contraindications. However, no data exist with respect to dual antiplatelet therapy with aspirin plus a thienopyridine. There are also no established guidelines for treating patients with ACS or STEMI in the setting of PCV. Phlebotomy with volume replacement and close hemodynamic monitoring has been suggested as an adjunctive approach to standard treatments. Whether a strategy of antiplatelet and antithrombotic pre-treatment prior to PCI with or without thrombectomy will consistently yield satisfactory outcomes in PCV patients presenting with ACS or STEMI, remains a matter for speculation. Nevertheless, based on the relevant pathobiologic considerations and a review of the available literature, we feel the strategy employed in this case to be a reasonable one when clinical circumstances render it feasible. However, we acknowledge that the window of freedom from chest pain encountered in our patient was a fortunate, if uncommon occurrence in STEMI, which allowed us to extend the antiplatelet/antithrombotic pre-treatment regimen for 24 hours prior to definitive mechanical therapy for the infarct-related vessel.

1. Wu CF, Armstrong GP, Henderson R, Ruggeri P, Polychymia Vera Preventing at ST-Elevation Myocardial Infarction, Heart, Lung and Circulation, 2005;14:51-3.
2. Gruppo Italiano Studio Polichimia, Polychymia Vera: The Natural History of 1213 patients followed for 20 years, Am J Med, 1995;122:656-66.
3. Schafer A, Molecular basis of the diagnosis and treatment of polychymia and essential thrombocytosis, Iszd 2006;109:2446-52.
4. Landolfi R, Di Genaro L, Barbui T, et al., Leukocytosis as a major thrombotic risk factor in patients with polychymia vera, Iszd, 2007;109(6):2446-52.
5. Hermanns B, Handt S, Kluiber J, Fuzesi L, Coronary vasculopathy in Polychymia Vera, Pathology Oncology Research, 1999;5(1):114-6.
6. Zinn P, Applegate RA, Wash RA, Acute total aortic occlusion during cardiac catheterization associated with polychymia vera, Cath Cardiol Diagn, 1999;46(2):108-10.
7. Friedrich EB, Kindermann M, Link A, Bohm M, Splenic rupture complicating percutenousenal glycoprotein IIb/IIIa antagist therapy for myocardial infarction in polychymia vera, Z Kardiolog, 2005;40(3):200-4.
8. Goethals P, Everard S, Dubuis C, Recurrent coronary stent thrombosis, Acta Cardiol, 2005;56(5):371-3.
9. Choy B, Burton JS, Perelisova PA, Taylor DA, Myocardial infarction complicated by ventricular septal rupture in a patient with polychymia vera and minimal coronary stasis, Can J Cardiol, 1994;10(6):1151-4.
10. Gibson CM, de Lemos JA, Murphy SA, et al., Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarction: a TIMI 18 substudy, Circulation, 2001;103:2540-4.
11. den Heijer P, Foley DP, Escaned J, et al., Angioscopic versus angiographic detection of intimal dissection and intracoronary thrombosis treated with abciximab (ReoPro) in a patient with polycythemia vera, Acta Cardiol, 2005;61(3):371-3.
12. Gibson CM, de Lemos JA, Murphy SA, et al., Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarction: a TIMI 18 substudy, Circulation, 2001;103:2540-4.
13. Jordan RE, Wagner CL, Mascioli M, et al., Preclinical development of C7E3 Fab, a mouse/human chimeric monoclonal antibody fragment that inhibits platelet function by blockade of GPIb/IIa receptors with observations on the immunogenicity of C7E3 Fab inhumans, In: Horton MD, ed., Adhesive Receptors as Therapeutic Targets, CRC, FL, CRC, Boca Raton, 1996;281–305.
14. Stone GW, Glycoprotein IIb/IIIa inhibitors:more different than alike?, Catheter Cardiac Interv, 2001;53:304-7.
15. Cannon CP, Small molecule glycoprotein IIb/IIIa receptor inhibitors as upstream therapy in acute coronary syndromes: Insights from the TACTICS TIMI 18 trial, J Am Col Cardiol, 2003;41:85-8.
16. Tcheng JE, Ellis SG, George BS, et al., Pharmacodynamics of chimeric glycoprotein IIb/IIa integrin antplatelet antibody Fab 7E3 in high-risk coronary angioplasty, Circulation, 1994;90:1732–4.
17. The GUSTO IV-ACS Investigators, Effect of glycoprotein IIb/IIa receptor blocker abciximab on outcome in patients with acute coronary syndromes without early coronary recanalisation: The GUSTO IV-ACS randomised trial, Lancet, 2001;357:2292-1995-24.
18. Cannon CP, Weintraub WS, Demopoulos LA, et al., for the TACTICS TIMI 18 Investigators. Comparison of early invasive versus early conservative strategies in patients with unstable angina and non-ST elevation myocardial infarction treated with early glycoprotein IIb/IIIa inhibition, J Engl Med, 2001;344(20):1879-88.
19. Zhao AK, Therasse P, Snaprin SM, Sax FL, Intracoronary thrombosis and platelet glycoprotein IIb/IIIa receptor blockade with trofiban in unstable angina or non-Q wave myocardial infarction. angiographic results from the PRISM-PLUS trial (Platelet receptor inhibition for ischemic syndrome management in patients limited by unstable signs and symptoms). PRISM-PLUS investigators, Circulation, 1999;100(15):1509-15.
20. Tumurkaya T, Arslan U, Baloglu S, Turkoglu S, Long term trofiban infuse before percutaneous coronary intervention in patients with angiographically massive intramural thrombus, Saudi J Med, 2008;29(1):42-7.
21. Gibson CM, Singh KP, Murphy SA, et al., Association between duration of Tirofiban therapy before percutaneous intervention and tissue level perfusion (A TACTICS-TIMI 18 Substudy), Am J Cardiol, 2004;94:492-4.
22. Schneider D, Hermann H, Liakos N, et al., Increased concentrations of trofiban in blood and their correlation with tissue levels of the antithrombotic agent, J Engl Med, 2003;348(9):334-33.
23. Valgimigli M, Perocco G, Barbieri D, et al., The additive value of trofiban administered with the high dose-high dose antiplatelet therapy: bleeding, reversal, pharmacodynamics and tissue level perfusion (A TACTICS-TIMI 18 Substudy), Am J Cardiol, 2004;94:492-4.
24. Mardikar HM, Hiremath MS, Moliterno DJ, et al., Optimal platelet inhibition in patients undergoing PCI: Data from the Multicenter Registry of High-Risk Percutaneous Inhibition (MR PCI), Catheter Cardiovasc Interv, 2008;71(1):84–91.
25. Margheri M, Iwton G, Cheeth T, et al., Thrombosis aspiration with export catheter in ST elevation myocardial infarction, J Interv Cardiol, 2007;20(1):38–43.
26. De Luca G, Sunaripanana H, Stone GW, et al., Adjunctive mechanical devices to prevent distal Embolization in patients undergoing mechanical recanalization for acute myocardial infarction. A meta analysis of randomized trials, Ahv, 2007;343-53.
27. Sanda-S, Mancone M, Nguyen BL, et al., The effect of thrombectomy on myocardial blush in primary angioplasty: the randomized evaluation of thrombectomy aspiration by two thrombectomy devices in acute myocardial infarction (RSTAM trial, Catheter Cardiovasc Interv, 2008;71(1):38-941.
28. Ali A, Cox D, Dob D, et al., Angioplasty in acute myocardial infarction trial, J Am Coll Cardiol, 2006;48:244-52.
29. Pate G, Lewis K, Kucharla A, et al., Procedural efficacy and complications of X-Sizer thrombectomy in de novo and stented lesions. Catheter Cardiovasc Interv, 2004;62(2):177-82.
30. van’T Hof AW, Ten Berg J, Heestermans T, et al., Prehospital thrombectomy during percutaneous coronary intervention improves long-term outcome in high-risk patients with acute myocardial infarction, J Interv Cardiol, 2007;20(6):293-8.
31. Svilaas T, Vlaar P, Van der Horst J, et al., Thrombectomy during percutaneous coronary intervention, N Engl J Med, 2008;359(6):557-67.
32. Jordan RE, Wagner CL, Mascioli M, et al., Preclinical development of C7E3 Fab, a mouse/human chimeric monoclonal antibody fragment that inhibits platelet function by blockade of GPIb/IIa receptors with observations on the immunogenicity of C7E3 Fab inhumans, In: Horton MD, ed., Adhesive Receptors as Therapeutic Targets, CRC, FL, CRC, Boca Raton, 1996;281–305.
33. Simonos M, de Boer M, van den Brand MJ, et al., Randomized trial of GPIb/IIa platelet receptor blocker in refractory unstable angina, J Am Coll Cardiol, 1996;45:492-4.
34. Kohn DW, Slawk KI, Kassam S, et al., High-dose abciximab during coronary angioplasty in a patient with essential thrombocythemia, J Invasive Cardiol, 1998;10(7):6-6.
35. Michaels AD, Whisenant B, MacGregor JS, Multivessel coronary thrombosis treated with abciximab (ReoPro) in a patient with polycythemia vera, Circulation, 2005;112:305-311.
36. Stone GW, Glycoprotein IIb/IIIa inhibitors:more different than alike?, Catheter Cardiac Interv, 2001;53:304-7.