Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Antibody therapy is effective for treating infectious diseases. Due to the coronavirus disease 2019 (COVID-19) pandemic and the rise of drug-resistant bacteria, rapid development of neutralizing monoclonal antibodies (mAbs) to treat infectious diseases is urgently needed. Using a therapeutic human mAb with the lowest immunogenicity is recommended, because chimera and humanized mAbs are occasionally immunogenic. In order to directly obtain naïve human mAbs, there are three methods: phage display, B cell receptor (BCR) cDNA sequencing of a single cell, and antibody-encoding gene and amino acid sequencing of immortalized cells using memory B cells, which are isolated from human peripheral blood mononuclear cells of healthy, vaccinated, infected, or recovered individuals. After screening against the antigen and performing neutralization assays, a human neutralizing mAb is constructed from the antibody-encoding DNA sequences of these memory B cells. This review describes examples of obtaining human neutralizing mAbs against various infectious diseases using these methods. However, a few of these mAbs have been approved for therapy. Therefore, antigen characterization and evaluation of neutralization activity in vitro and in vivo are indispensable for the development of therapeutic mAbs. These results will accelerate the development of antibody drug as therapeutic agents.

© 2022 Published by Elsevier Inc.

Keywords: Antibody therapy; Antibody therapeutic agent; Human neutralizing monoclonal antibodies; Memory B cells; Infectious diseases; Viral infection; Bacterial infection.
1. Introduction

Antibodies were first discovered as antitoxins against tetanus and diphtheria, and it is a well-known fact that antibodies can control infectious diseases (Lu, Suscovich, Fortune, & Alter, 2018; Salazar, Zhang, Fu, & An, 2017). However, the development of therapeutic antibody agents to treat infectious diseases lags far behind that of those to treat cancer and autoimmune diseases (Castelli, McGonigle, & Hornby, 2019; Lu et al., 2018). Antibiotics are less expensive and easier to produce than the reagents for immunotherapies. Consequently, antibodies have been prioritized to treat bacterial infectious diseases (Pelfrene, Mura, Cavaleiro Sanches, & Cavaleri, 2019; Saylor, Dadachova, & Casadevall, 2009). For viral infectious diseases, it is often impossible to formulate a strategy to develop antibody drugs unless the mechanism of infection for a virus and a host cell has been clarified (Salazar et al., 2017). Viruses invade host cells to parasitize and replicate, making it difficult for the host immune system to recognize it as a foreign enemy. Moreover, in the case of dengue virus (DENV) infection, symptoms are sometimes exacerbated by vaccination due to antibody-dependent enhancement (ADE) (Dejnirattisai et al., 2010). Suboptimal antibodies bind to the virus, resulting in enhancement of its entry into host cells (Iwasaki & Yang, 2020). In order to use antibodies for therapy, it is essential to identify the epitope and to elucidate the mechanism by which the antibody affects the course of an infectious disease. Thus, research and development of antibody drugs require substantial cost and time (Saylor et al., 2009). In recent years, human mAb therapeutics have been attracting attention again because of the COVID-19 pandemic and rise of antimicrobial resistant bacteria (Jahanshahlu & Rezaei, 2020; Kaplon, Muralidharan, Schneider, & Reichert, 2020). In addition, it is much safer to administer a human mAb as therapy against infectious diseases than to administer attenuated or inactivated vaccine or immunoglobulin preparations (Marston, Paules, & Fauci, 2018). Moreover, the development of human neutralizing mAbs against infectious diseases has improved with technological advances with human immunoglobulin transgenic mice, single cell B cell receptor (BCR) DNA sequencing, and phage display (Salazar et al., 2017). Many successful cases have been reported in the past decade (Table 1).

2. Antibody therapeutic agents

Research and development of antibody therapeutic agents began with the hybridoma technique, which uses cell fusion between murine lymphocytes and myeloma cells. Firstly, mouse mAbs against various diseases pathogens including infectious diseases were made as therapeutic agents (Elgundi, Reslan, Cruz, Sfiriotos, & Kayser, 2017). However, when a mouse mAb is administered to a patient, it is recognized as foreign by the human immune system, resulting in production of antibodies against the mouse mAb (Goulet & Atkins, 2020; Lu et al., 2020). In addition, adverse effects such as excessive immune response are induced occasionally. It is difficult to use mouse mAbs for therapy in humans because of their high immunogenicity. To suppress immunogenicity, a chimeric antibody was made by replacing the constant regions (C\text{H} and C\text{L}) of a mouse antibody with those of a human antibody (Fig. 1) (Lu et al., 2020). In addition, humanized antibodies are constructed by inserting only the complementarity determining regions (CDR) of a mouse antibody into the human antibody frame (Fig. 1) (Castelli et al., 2019; Marston et al., 2018). However, chimeric and humanized antibodies are occasionally immunogenic (Lu et al., 2020). Until 2022, 11 therapeutic antibodies for infectious diseases have been approved in EU and US (Ecker, Jones, & Levine, 2015; Kaplon et al., 2020; Kaplon & Reichert, 2018, 2019, 2021; Reichert, 2016, 2017). Eight of them are human antibodies (Raxibacumab, Bezlotoxumab, mavtivimab + odesivimab-ebgn, Ansvimab, Regdanvimab, Sotrivimab, Tixagevimab + Cilgavimab, Casirivimab + imdevimab). Two are humanized antibodies (Palivizumab, Ibatalizumab). One is a chimeric antibody (Obiloxaximab). The recent reports regarding immunogenicity and approved therapeutic agents suggest an urgent need for further development of human mAbs. Indeed, 161 manuscripts about neutralizing mAbs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been published in 2020 and 2021. Moreover, the number of publications about neutralizing mAbs against various diseases in 2021 (4411 publications) is approximately twice more than that in 2018 (2366 publications) and 2019 (2409 publications).

3. Development of human neutralizing mAbs against infectious diseases

Human mAb development consists of two methods, those with or without memory B cells isolated from human peripheral blood mononuclear cells (PBMCs) (Lu et al., 2020; Salazar et al., 2017). One strategy for identifying mAbs without memory B cells involves the use of human immunoglobulin transgenic mice (Elgundi et al., 2017). This method can rapidly obtain human mAbs when the conventional hybridoma technique is used (Lu et al., 2020). The greatest advantage of this method is that antibodies can be constructed against highly lethal pathogens such as Ebola virus (EBOV), SARS-CoV, Middle East respiratory syndrome-CoV, hepatitis C virus (HCV), influenza virus, and Staphylococcus aureus alpha toxin (Broering et al., 2009; Coughlin et al., 2007; Mendoza et al., 2018; Morin et al., 2012; Pascal et al., 2018; Tkaczyk et al., 2012). The disadvantage is that antibodies acquired using transgenic mice are not naïve human antibodies. Hence, the safety issue needs to be considered. On the other hand, the methods with memory B cells use phage display with a single-chain fragmented variable region (scFv) or a fragmented antigen binding region (Fab), BCR DNA sequencing of a single antigen-labeled memory B cell, memory B cells immortalized by Epstein Barr virus (EBV) infection, or human B cells hybridoma (Fig. 2) (Salazar et al., 2017; Yu, McGraw, House, & Crowe, 2008). These methods can directly result in naïve human mAb-encoding gene sequences. Since recombinant naïve human mAbs are expected to have the lowest immunogenicity and be the safest in humans, we will focus on the development of human mAbs for therapies using the methods with memory B cells and introduce neutralizing mAbs against various infectious diseases in the following sections.

3.1. Phage display

By employing bacteriophages, phage display is the most widely used method in the development of human neutralizing mAbs (Frenzel et al., 2017; Lu et al., 2020; Uchański et al., 2019). The genes of heavy chain (V\text{H}) and light chain (V\text{L}) variable regions are amplified using reverse transcription-polymerase chain reaction (RT-PCR) from the RNA of antigen-specific memory B cells, which are collected from those who have infected, recovered or vaccinated. scFv and Fab genes are cloned into a phagemid to generate a scFv or Fab library that contains >10^8 V\text{H} and V\text{L} combinations (DiGiandomenico et al., 2012; Kim et al., 2021; Parray et al., 2020; Throsby et al., 2008). This library is introduced into the phage and expressed on the surface. After 3–5 rounds of panning for a target antigen, phage clones are screened using an enzyme-linked immunosorbent assay (ELISA). The DNA sequences of immunopositive phage clones are analyzed to construct human immunoglobulin G (IgG) (Fig. 2a). In this application, predefined antigens are needed to pan the library. It is not suitable for identifying novel neutralizing epitopes (Salazar et al., 2017). This method has generated neutralizing mAbs against SARS-CoV, SARS-CoV-2, EBOV, HCV, influenza virus, DENV, botulinum neurotoxin (BTX), diphtheria toxin (DT), Pseudomonas aeruginosa exopolysaccharide Psl, and Staphylococcus aureus wall moiety protein A (Table 1) (Saylor et al., 2009; Yuan et al., 2021).
Virus	Antibody encoding strategy	KO (mM)	RBD	Epitope Method	Neutralization activity	Origin	Reference info
SARS-CoV-2	Antibody encoding strategy: Antibodies derived from hybridoma clones in vitro.	0.82	RBD	Single cell BCR DNA sequencing of Spike protein-specific B cell line in vitro	in vivo (hACE2 transgenic mice)	8 individuals infected with SARS-CoV-2 in Wuhan, China	Seth J. Zost et al. et al., 2020, Zost et al., 2020, Nature
SARS-CoV-2	Antibody encoding strategy: Antibodies derived from hybridoma clones in vitro.	6.3	RBD	Single cell BCR-seq of Spike protein-specific B cell line in vitro	Plague display in vitro	2 convalescing individuals who had been infected with SARS-CoV-2 in Wuhan, China	Naveenchandra Suryadevara et al. et al., 2021, Cell COV2–2489
	Antibody encoding strategy: Antibodies derived from hybridoma clones in vitro.	3.6	RBD	Single cell BCR-seq of Spike protein-specific B cell line in vitro	Plague display in vitro	2 convalescing individuals who had been infected with SARS-CoV-2 in Wuhan, China	Qi Zhang et al., 2021, Nature Comm
	Antibody encoding strategy: Antibodies derived from hybridoma clones in vitro.	5.14	RBD	Single cell BCR DNA sequencing of Spike protein-specific B cell line in vitro	Plague display in vitro	2 convalescing individuals who had been infected with SARS-CoV-2 in Wuhan, China	Qi Zhang et al., 2021, Nature Comm
Microbe	KD (nM)	Epitope	Neutralization activity	Origin	Reference info		
-------------------------------	---------	------------------	-------------------------	--	--		
SARS-CoV-2				4 individuals in North America with recent confirmed or suspected SARS-CoV-2 infections	R. Otsubo and T. Yasui Pharmacology & Therapeutics 240 (2022) 108233		
MCF-72							
H1N1 influenza virus	0.17	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H7N9 influenza virus	0.178	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (DBA/2 J mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H3N2 influenza virus	0.0194	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H5N1 influenza viruses	NA-80	NA (N9)	Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV in vitro and in vivo (BALB/c mice model)	Survivors of 1918 H1N1 influenza virus pandemic	Xiaocong Yu, et al., 2008, Nature Medicine		
H5N1 influenza viruses	NA-22	NA (N9)	Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV in vitro and in vivo (BALB/c mice model)	Survivors of 1918 H1N1 influenza virus pandemic	Xiaocong Yu, et al., 2008, Nature Medicine		
H1N1 and H2N2 influenza viruses							
H1N1 influenza virus	9.401	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H2N2 influenza virus	5.4	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H7N9 influenza virus	0.172	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H5N1 influenza viruses	1.20	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H3N2 influenza virus	1.12	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
H7N9 influenza virus	0.0178	HA	Antibody-encoding gene sequencing of HA-specific plasmablasts in vitro and in vivo (C57BL/6 mice model)	Volunteers recently vaccinated with the seasonal influenza vaccine (A/California/07/2009 (H1N1) pdm09-like virus, A/Texas/50/2012 (H3N2)-like virus, B/Massachusetts/2/2012-like virus, B/Brisbane/60/2008-like virus)	Ya Lin et al., 2020, J Rep		
Influenza H3N2

- **Variant virus:** 6 clones of HA
- **Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV in vitro and in vivo (DBA/2 J mice model)**
- Healthy adult donors received 2 doses of subvirion H3N2 vaccine (15 μg of HA/dose) 21 days apart in an open-label trial.

Influenza A

- **Fl6 HA of all 16 subtypes**
- **Single cell antibody-encoding gene sequencing of plasma cells in vitro and in vivo (BALB/c mice and ferret models)**
- Healthy donors seven days after i.m. vaccination with seasonal influenza vaccine according to manufacturer instructions.

Ebola (EBOV)

- **EBOV mAb114 GP**
- **Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV in vitro and in vivo (rhesus macaques model)**
- Two survivors of the 1995 EVD outbreak in Kikwit, Two survivors of the 2014 EVD outbreak in the DRC and one survivor of the West African EVD epidemic.

Ebola (EBOV, BDBV and SUDV)

- **EBOV-526 GP**
- **Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV in vitro and in vivo (BALB/c mice model and rhesus macaques models)**
- Two human survivors of the 2014 EVD outbreak in the DRC and one survivor of the West African EVD epidemic.

Hepatitis C virus (HCV)

- **AR4A 2.9 ± 1.8 outside the CD81-binding site on the E1-E2 complex**
- **Phage display in vitro and in vivo**
- A 35-year-old female individual with Sjögren’s syndrome and chronic HCV (GT1a) infection.

Hepatitis B virus (HBV)

- **AR3A 1.3/1.7**
- **Phage display in vitro and in vivo (human liver-chimeric mice model)**
- A 35-year-old female individual with Sjögren’s syndrome and chronic HCV (GT1a) infection.

Zika virus (ZIKV)

- **ZIKV-117 E protein**
- **Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV in vitro and in vivo (IFNAR-blocking C57BL/6 mice model)**
- Healthy individuals who had previously been infected with ZIKV in diverse geographic locations.

Methods & Clinical Development

- **ZIKV 2F-8 E protein (DIII) Phage display in vitro and in vivo (Ifnar−/− mice model)**
- Two ZIKV-infected individuals at Seoul National University Hospital.

Additional Notes

- **Antonella Cerio, et al., 2015, PLoS ONE**
- **Isabelle Desombere et al., 2017, Antiviral Res**
- **Erick Giang et al., 2012, PNAS, and Rodrigo Velazquez-Moctezuma, et al., 2018, JID**
- **Mansun Law et al., 2008, Nature medicine**
- **Zachary A. Bornholdt et al., 2016, Science**
- **Andrew I. Flayk, et al., 2018, Nature microbe, and José H. Estrada, et al., 2020, Methods & Clinical Development**
- **Sang Il Kim et al., 2021, BBRC**

(continued on next page)
Microbe	Clone info (name)	KD (nM)	Epitope	Method	Neutralization activity	Origin	Reference info
ZIKV	ZKA64		E (DI/II)	Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV	in vitro and in vivo (A129 mice model)	Four ZIKV-infected individuals from the current epidemic, of which two were DENV-naïve and two had serological records of DENV infection	Karin Stettler et al., 2016, Science
ZIKV and DENV	MZ4	2.7/2.6	E protein (DI/II linker region) (ZIKV/DENV2)	Single cell BCR DNA sequencing of ZIKV E protein- and DENV E protein-specific B cells	in vitro and in vivo (ZIKV challenge: BALB/c mice model; DENV-2 challenge: Balb/c mice model)	A flavivirus-experienced individual enrolled in the ZPIV phase 1 vaccine clinical trial (NCT02837233) conducted at Beth Israel Deaconess Medical Center	Vincent Dussupt et al., 2020, Nature medicine
DENV	m366.6	0.27-1.9	E protein (DIII)	Phage display Single cell antibody-encoding gene sequencing of Plasmodium-specific plasmablasts	in vitro and in vivo (A129 mice model)	Individual who might have been infected during foreign travel.	Dan Hu et al., 2019, PLOS Pathogen
Parasite Malaria	OSI43	42	PfCSP	Antibody-encoding gene sequencing and cloning of Memory B cells immortalized by EBV	in vitro and in vivo (C57BL/6 mice model)	A malaria-naïve individual who received the PfSPZ vaccine	Neville K Kisalu et al., 2018, Nature medicine and Lawrence T. Wang et al., 2020, Immunity
Toxin	Clostridium tetani	8A7	TeNT (Hc)	Yeast display in vitro	A healthy individual belonging to a presumed population that has been vaccinated against tetanus	Takaharu Minamitani et al., 2021, Sci Rep	
		17F7	TeNT (Hc)	Anti-Toxoid	Three individuals received a regular booster immunization with an adsorbed diphtheria and tetanus vaccine	Yangfeng Fan et al., 2015, toxins	
		8D8	TeNT (Hn)	Anti-Toxoid	Three individuals received a regular booster immunization with an adsorbed diphtheria and tetanus vaccine	Esther Veronika Wenzel et al., 2020, Sci Rep	
	Clostridium botulinum	16E8	TeNT (Lc + Hn + Hc)	Anti-Toxoid	A healthy individual immunized with BONT/A-E Toxoid	Antonio DiGiancomo et al., 2012, JEM	
Bacterial components				Anti-TeNT	Phage display in vitro	Healthy individuals and patients convalescing from P. aeruginosa infections	Avaris K. Varshney et al., 2018, PLOS one
	Pseudomonas aeruginosa	Cm-003	144	Exopolysaccharide Psl	Phage display in vitro and in vivo (Mouse model)	Healthy individuals	Antonio DiGiancomo et al., 2012, JEM
	Cam-003	514G3	SpA	Phage display in vitro and in vivo	Healthy individuals	Antonio DiGiancomo et al., 2012, JEM	
4. Development of human neutralizing mAbs against viral infection

For the development of antibody therapeutics, viruses are classified by whether they have an envelope. Antibodies can recognize viral glycoproteins of the envelope on the surface of the virion as target antigens. A glycoprotein recognizes and interacts with a host cell receptor via a binding site on the glycoprotein (Ali et al., 2020; Walker & Burton, 2018). Subsequently, the viral envelope fuses with the host cellular membrane, allowing the capsid and viral genome to enter the host. Enveloped viruses include SARS-CoV, SARS-CoV-2, influenza virus, HCV, EBOV, ZIKV, CHIKV, and HIV. Neutralizing mAbs against enveloped viruses are created to block the binding of the glycoprotein to the host cell receptor in most cases (Ali et al., 2020). In contrast, non-enveloped viruses including adenovirus, norovirus, and rhinovirus enter the host via lysis of the membrane or making pore-like structures in the membrane without interaction between a viral glycoprotein and a host receptor. The development of antibodies against non-enveloped virus has not progressed much (Ali et al., 2020).

4.1. Human neutralizing mAbs against SARS-CoV-2

SARS-CoV-2 is a new coronavirus that causes COVID-19, an infectious disease that emerged in 2019. The development of therapeutic agents for COVID-19 has been progressing with the unprecedented speed. Nimatrelvir and monupiravir were approved for an emergency use authorization as the first oral antivirals by Food and Drug Administration. However, these drugs show effectiveness for the patients only when they are administered orally within 3–5 days after symptom onset. Therefore, there are no validated therapeutics against SARS-CoV-2 infection when the symptom onset over 5 days and the viral replication becomes dominant in the body (Cao et al., 2020; Parums, 2022). Accordingly, there is an urgent need to develop antibody drugs against COVID-19. The SARS-CoV-2 envelope has a spike (S) glycoprotein with two subunits, namely S1 and S2. S1 includes the N-terminal domain (NTD) and the receptor-binding domain (RBD). S2 promotes fusion of the viral and cellular membranes. S1 binds to the host angiotensin-converting enzyme 2 (ACE2) receptor via the RBD, resulting in viral entry (Fig. 3a) (Jahanshahlu & Rezaei, 2020). In 2020 and 2021, it has been reported that many neutralizing mAbs against SARS-CoV-2 were made using methods involving memory B cells from infected or recovered donors. The target of all these antibodies is the binding of S protein to ACE2 via the RBD of S1 (Table 1) (Huang et al., 2020). Most of these antibodies can recognize the RBD of S1 and inhibit the interaction between the S protein and ACE2, while a few binds to the NTD. Although these antibodies can suppress viral entry, the risk of ADE is a concern (Iwasaki & Yang, 2020). Indeed, Liu et al. have reported that some neutralizing mAbs that target S1 NTD enhance the infectivity of SARS-CoV-2. The interaction between the mAb and NTD leads to a structural open state of the RBD, which facilitates the binding of S protein to ACE2, resulting in ADE (Liu et al., 2021). This report illustrates that it is essential to identify an appropriate epitope and evaluate neutralization activity in vivo and in vitro when developing mAbs for therapies.

In 2004, the neutralizing mAb S309 against SARS-CoV was obtained from PBMCs of an individual who infected with SARS-CoV in 2003 (Traggiai et al., 2004). S309 has high affinity against both SARS-CoV and SARS-CoV-2 S protein since the SARS-CoV-2 S protein shares 77.5% homology with the SARS-CoV S protein (Pinto et al., 2020). In addition, the mAb S2X259 was isolated from an individual who had recovered from COVID-19. S2X259 has neutralizing activity against coronaviruses broadly, including SARS-CoV-2 (Tortorici et al., 2021).
These reports suggest that existing neutralizing mAbs might overcome unknown mutant strains of SARS-CoV-2.

Owing to vaccination with S protein–encoding RNA or DNA vaccines worldwide (Rogliani, Chetta, Cazzola, & Calzetta, 2021), it is expected that development of neutralizing mAbs against SARS-CoV-2 will be further promoted by using memory B cells from a vaccinated individual.

4.2. Human neutralizing mAbs against influenza virus

Influenza viruses are classified into three types: A, B, and C. In particular, influenza A and B have two glycoproteins, hemagglutinin (HA) and neuraminidase (NA). These influenza viruses are responsible for frequent seasonal epidemics. Genotypically, influenza A has 16 HA...
d) HCV

Fig. 3. Targets for human neutralizing mAb against infectious diseases.

a) SARS-CoV-2 infection. The S protein binds to ACE2 via the S1 RBD. The main target is S1. b) Influenza virus infection. The targets are HA and NA. HA interacts with host sialic receptor to facilitate host cell entry. c) EBOV infection. The target is the glycoprotein. d) HCV infection. The target is the E1-E2 complex, which will interfere with the interaction between the E2 and CD81. e) ZIKV and DENV infection. The target is the E protein containing DI, DII, and DIII. DIII is a better target for obtaining cross-reactive mAbs than DII. f) Bacterial toxins and other targets. The target is the E protein containing DI, DII, and DIII. DIII is a better target for obtaining cross-reactive mAbs than DII.

4.3. Human neutralizing mAbs against EBOV

EBOV causes severe disease in humans; fatality rates range from 25% to 90% depending on the virus, location, and other factors (Wec et al., 2017). The 2013–2016 Ebola virus disease (EVD) epidemic occurred in West Africa, resulting in 28,646 infections and 11,323 deaths (Gilchuk et al., 2018). There are five distinct species of EBOV including Zaire ebolavirus commonly known as EBOV, Bundibugyo ebolavirus (BDBV), Sudan ebolavirus (SUDV), Tai Forest ebolavirus (TAFV), and Reston ebolavirus (RESTV). EBOV, BDBV, and SUDV cause lethal disease in humans (Flyak et al., 2016; Gilchuk et al., 2018).

EBOV has a single glycoprotein that forms a trimer. The glycoprotein (GP), which consists of two subunits, GP1 and GP2, binds to the host cell receptor via GP1 and induces fusion between the viral and host cell membranes through GP2, resulting in endosomal entry into the host cell (Flyak et al., 2017). The glycoprotein is the main target for neutralizing antibodies (Table 1). The ZMapp cocktail, a mixture of therapeutic mAbs, is composed of three EBOV glycoprotein-specific chimeric antibodies; 2G4 and 4G7 recognize the base region of glycoprotein c13C6 targets the glycan cap. However, the ZMapp cocktail can only bind to the glycoprotein of EBOV, not BDBV or SUDV (Flyak et al., 2016; Wec et al., 2017). In order to acquire cross-reactive neutralizing mAbs against EBOV, BDBV, and SUDV, hundreds of glycoprotein-specific mAbs were isolated from survivors of the 2013–2016 EVD epidemic. The mAb BDBV223 can neutralize both EBOV and BDBV in vitro and in vivo (Table 1) (Flyak et al., 2016). On the other hand, several broad neutralizing mAbs have been obtained from human survivors of the 2014 EVD outbreak (Bornholdt et al., 2016). ADI-15742 and ADI-15878 interact with the glycoprotein fusion loop region and has high neutralization activity against EBOV, BDBV, and SUDV in vivo (Wec et al., 2017).

Interestingly, Yu et al. reported that the development of neutralizing mAbs against H1N1 influenza virus from memory B cells of an elderly survivor from the influenza pandemic in 1918 was traceable (Table 1) (Yu et al., 2008). This suggests that neutralizing mAbs against infectious diseases that younger generations have not yet experienced might be obtained from a healthy individual who was infected in the past.

Variations in HA and NA antigenicity often occur due to antigenic drift within the same subtype, which causes seasonal influenza epidemics every year. Therefore, cross-reactive neutralizing antibodies that can recognize HA s of various highly pathogenic influenza A subtypes are needed. Table 1 includes several antibodies acquired from volunteers recently vaccinated with the seasonal influenza vaccine. The mAb CR9114 has neutralization activity against both influenza A and B in vivo, while CR6261 can decrease mortality from infection against the H1N1 and H5N1 influenza A subtypes (Table 1) (Dreyfus et al., 2012; Throsby et al., 2008). In addition, the mAbs 70-1F02 and 9-3A01 can inhibit infection with two subtypes of H1N1/ H1N5 influenza A (Li et al., 2012; Nachbagauer et al., 2018). Moreover, MEDI8852 and Fi6 can recognize HA from all 16 subtypes in vitro and suppress various subtype infections in vivo (Corti et al., 2011; Kallewaard et al., 2016). These reports demonstrate that cross-reactive neutralizing antibodies against various subtypes of influenza A are rapidly and efficiently acquired from healthy donors vaccinated with the seasonal influenza vaccine.

4.4. Human neutralizing mAbs against HCV

HCV is associated with liver failure and cirrhosis (Zhu, Qian, Zhao, & Qi, 2014). HCV contains a 9.6-kb positive-stranded RNA genome with one open reading frame encoding a single polyprotein (Mesalam et al., 2018). The polyprotein is cleaved by viral and host cellular proteases
into 10 proteins including the envelope glycoprotein E1 and E2 proteins. E1 and E2 form a heterodimer on the virion and bind to CD81, claudin-1, scavenger receptor class B type I, and other targets to promote entry into host cells (Fig. 3d) (Mesalam et al., 2018). E2 is the major target for neutralizing antibodies (Table 1) (Kinchen, Cox, & Bailey, 2018).

HCV has seven genotypes. Direct acting antivirals (DAAs), which target multiple steps in the HCV replication life cycle, are highly effective against various HCV genotypes, including genotype 1, which is resistant to interferon therapy (Ecker et al., 2015). However, many DAAs induce drug-drug interactions, making it difficult for some patients to continue with therapy. Cross-reactive neutralizing mAbs have been isolated from memory B cells of an individual with chronic HCV infection (Table 1). Some specific mAbs, namely AR3A and AR3B, can neutralize genotype 1a/2a/4/5 pseudotype HCV particles in vitro (Law et al., 2008). AR4A can recognize the exterior of the CD81-binding site on the E1-E2 complex and suppress entry of cell culture–produced HCV genotype 1a/1b/2a/3a/4a/5a/6a into host cells in vitro (Giang et al., 2012; Velázquez-Moctezuma, Galli, Law, Bulkh, & Prentoe, 2018). These studies suggest that the neutralizing mAbs that recognize less well-known epitopes may contain highly cross-reactive antibodies.

4.5. Human neutralizing mAbs against ZIKV and DENV

ZIKV is an enveloped positive-stranded RNA virus in the Flavivirus genus of the Flaviviridae family. ZIKV is associated with neurological pathology and congenital neurological defects (Dussupt et al., 2020). Other major human pathogens include DENV, West Nile virus, yellow fever virus, Japanese encephalitis virus, and tick-borne encephalitis virus (Long et al., 2019). ZIKV’s 11 kb genome encodes a single polyprotein that can be cleaved into 10 proteins. The glycoprotein E protein consists of DI, DII, and DIII domains and induces entry into host cells. Thus, the E protein is the main target for neutralizing antibodies (Fig. 3e) (Kim et al., 2021). The DI/II domain–specific mAb ZKA78 obtained from ZIKV-infected individuals inhibits ZIKV infection in vitro and in vivo. The cross-reactivity against the E protein of DENV in vitro was also validated. However, the cause of ADE in patients with DENV infection was also reported (Table 1) (Stettler et al., 2016). On the other hand, the DI/II linker region–specific mAb MZ4 isolated from an individual who experienced DENV infection was enrolled in the 2001 Zika purified inactivated virus phase 1 vaccine clinical trial. MZ4 has neutralization activity against both ZIKV and DENV in vivo and does not induce ADE (Table 1) (Dussupt et al., 2020). Taken together, it is absolutely necessary to confirm whether cross-reactive neutralizing mAbs have in vivo neutralization activity against each virus.

5. Development of neutralizing mAbs against bacterial infections

Bacteria have more complicated structures than viruses. Therefore, fewer therapeutic neutralizing mAbs against bacterial infection have been developed. Depending on the type of Bacteria, the major components include DNA, RNA, cytoplasm, cell membranes, and cell walls. Some bacteria have appendages such as flagella, pili, and capsules. Furthermore, gram-negative bacteria have an outer membrane outside of the cell wall (Motley & Fries, 2017).

Toxins including BTX, TeNT, and DT are virulence factors in bacterial infection. Toxins, which are produced extracellularly by bacteria, can bind to the host cell receptor, and subsequently enter the cell, resulting in cell death (Fig. 3f). Many neutralizing antibodies against toxins have been developed to inhibit the interaction between the toxin and its receptor (Motley, Banerjee, & Fries, 2019; Saylor et al., 2009). BTX, which is produced by Clostridium botulinum is the most lethal substance. All of the serotypes of BTXs are composed of two polypeptide chains. The heavy chain contains the C-terminal receptor binding domain (Hc) and the N-terminal translocation domain (Hn), while the light chain (Lc), which has the zinc protease catalytic activity, is responsible for vesicle fusion and acetylcholine vesicle release (Fan et al., 2015). Fan et al. isolated 19 Lc-specific mAbs using phage display method. 11 of them inhibits Lc proteolytic activity in vitro (Fan et al., 2015). Their study indicates that Lc plays an important role as an antigen in obtaining neutralizing antibodies against BTXs. Secreted by Corynebacterium diphtheriae, DT is another bacterial toxin consists of a catalytic (C) domain, transmembrane (T) domain, and receptor binding (R) domain. Wenzel et al. obtained 19 mAbs against DT with neutralization activity in vitro. Of these 19 antibodies, 9 have an epitope in the C domain, 7 in the R domain, and 2 in the T domain (Wenzel et al., 2020). This suggests that the C domain has the highest antigenicity, followed by the R and T domains. On the other hand, TeNT, which is released by Clostridium tetani, causes a fatal disease. TeNT cleaves by bacterial and host proteases into two chains linked by a single disulide bridge. As in the case of BTXs, TeNT consists of Lc and Hn. Minamitani et al. have isolated several neutralizing mAbs against TeNT from memory B cells of healthy individuals (Minamitani et al., 2021). Hn has the lowest antigenicity, followed by Lc and Hn. The Hn-specific mAb S8 has the highest neutralization activity in vivo. This report suggests that the region of an antigen with high antigenicity might not correspond to the epitope with high neutralizing activity recognized by the relevant mAbs.

Developing neutralizing mAbs that target other components of bacteria is very difficult because the relationship between bacteria and host cells is not as simple as the relationship between viral glycoproteins and host cell receptors. Nevertheless, DiGiandomenico et al. have developed a neutralizing mAb, Cam-003, against exopolysaccharide Psl using phage display (DiGiandomenico et al., 2012). Two libraries were prepared from a healthy individual and a patient at 7–10 days after documented _P. aeruginosa_ infection. _P. aeruginosa_ whole cells were used in panning to screen for _P. aeruginosa_-specific scFvs. To identify Psl-specific scFvs, four strains were employed as antigens for screening: O-antigen deficient, O-antigen and alginate deficient, O-antigen and truncated outer core of lipopolysaccharide, and O-antigen and truncated inner core and Psl-specific scFvs. Psl-specific mAbs have neutralization activity in vitro and in vivo. Neutralizing mAbs as therapy for bacterial infections are still in the development stage. It is expected that mAbs with higher neutralization activity will be obtained after elucidating the mechanism of infection between a bacterium and the host cell.

6. Conclusions and perspectives

Two points in the strategy to develop therapeutic human neutralizing mAbs need to be considered. One is to thoroughly characterize the antigen. It is necessary to clarify which domain yields the mAb with the highest neutralization activity because mAbs acquired via highly antigenic antigens do not always have high neutralization activity. Moreover, obtaining mAbs against various epitopes is also important to enhance neutralization activity. In some cases, neutralization activity can be dramatically improved by making a cocktail containing multiple mAbs with different targets. When developing a cross-reactive neutralizing mAb, it is suitable to use an antigen containing a sequence that is conserved across different species not only in the primary structure but also in the tertiary structure. Another point is to evaluate the neutralization activity in vitro and in vivo. AED must always be considered when developing human mAb therapeutic agents.

Some mAbs in Table 1 have a low frequency of somatic hypermutation (Kallevaard et al., 2016; Wec et al., 2017; Zhang et al., 2021). This suggests that effective antibodies are produced without repeated sensitization to the antigen in the human body. It might be possible to obtain therapeutic neutralizing mAbs not only from infected or vaccinated individuals but also from healthy individuals. In addition, neutralizing mAbs derived from individuals with prior infection might respond to novel infectious diseases. For these reasons, it is helpful to further promote the development of therapeutic human neutralizing mAbs using method involving memory B cells. Moreover, the use of...
existing human neutralizing mAbs will lead to lower development costs. These are expected to bring great benefits to the development of human mAb therapeutic agents.

Author contributions
R.O. and Y.T. conceived the work and decided the topic. R.O. described the manuscript, generated the figures and table and found the references. Y.T. supervised the work.

Declaration of Competing Interest
The authors have no conflicts of interest.

Acknowledgments
This work was supported by the Japan Agency for Medical Research and Development of Japan (AMED) Grants 21fk0108467h0001 (to T.Y.) and Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) 21k08503 (to T.Y.) and Grant-in-Aid for Early-Career Scientists 19K16641 (to R.O.). We thank Dr M. Leong and Dr B. E. Grewuzz for support of proofreading.

References
Ali, M. G., Zhang, Z., Gao, Q., Pan, M., Rowan, E. G., & Zhang, J. (2020). Recent advances in therapeutic applications of neutralizing antibodies for virus infections: An overview. Immunological Reviews 168, 325–339.
Bangaru, S., Nieves, T., Kose, N., Thornburg, N. J., Finn, J. A., Kaplan, B. S., King, H. G., Singh, V., Lampley, R. M., Sapparwar, G., et al. (2016). Recognition of influenza H3N2 variant virus by human neutralizing antibodies. JCI Insight 1.
Bangaru, S., Zhang, H., Gilchuk, I. M., Voss, T. G., Irving, R. P., Gilchuk, P., … Nieves, T., et al. (2018). A multifunctional human neutralizing antibody that targets a unique conserved epitope on influenza HA. Nature Communications 9, 2609.
Barnes, C. O., Jette, C. A., Abernathy, M. E., Dam, K. A., Esswein, S. R., Gristick, H. B., … DiGiandomenico, A., Warrener, P., Hamilton, M., Guillard, S., Ravn, P., Minter, R., … Lin, J., et al. (2012). Neutralization of SARS coronavirus using XenoMouse. Nature Medicine 18, 1413–1422.

Boutz, D. R., Horton, A. P., Wine, Y., Lavinder, J. J., Georgiou, G., & Marcotte, E. M. (2014). The therapeutic monoclonal antibody market. mAbs 7, 9–14.
Eckert, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. mAbs 7, 649–664.

DiGiandomenico, A., Warrener, P., Hamilton, M., Guillard, S., Ravn, P., Minter, R., … Lin, J., et al. (2012). Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopilase/acid phosphatase PU by phage display screening. The Journal of Experimental Medicine 209, 1273–1287.
Dreyfus, C., Laursen, N. S., Kwaks, T., Zuidergeest, D., Khayat, R., Eikert, D. C., Lee, J. H., Mettetal, Z., Bujny, M. V., Jongeneelen, M. J., et al. (2012). High conserved protective epitope on influenza B virus. Nat Immunol 13, 1343–1348.

Dussutoy, V., Santhala, S. R., Gromowski, G. D., Donofrio, G., De la Barrera, R. A., Larocca, R. A., … Davidson, E. D., et al. (2020). Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine 26, 225–235.

Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. mAbs 7, 9–14.
Elgundi, Z., Reslan, M., Cruz, E., Sifistiotis, V., & Kayser, V. (2017). The state-of-play and future of antibody therapeutics. Advanced Drug Delivery Reviews 122, 2–19.
Erasmus, J. H., Archer, J., Fuente-Soto, J., Khondkar, A. P., Voigt, E., Granger, R. L., … Durnell, L. A., et al. (2020). Intranasal delivery of replicon RNA encoding ZIKV-117 human monoclonal antibodies protects against Zika virus infection. Mol Ther Methods Clin Dev 7, 402–412.

Facial recognition of convalescent Patients
Rogliani, P., Chetta, A., Cazzola, M., & Calzetta, L. (2021). SARS-CoV-2 neutralizing antibodies: A network Meta-analysis across vaccines. Vaccines (Basel) 9.
Salazar, G., Zhang, N., Fu, T. M., & An, Z. (2017). Antibody therapies for the prevention and treatment of viral infections. Vaccine 35, 6214–6224.
Sapparapu, G., Fernandez, E., Kose, N., Bin, C. F., Bomardi, R. G., Zhao, H., Nelson, C. A., Bryan, A. L., Barnes, T. et al. (2016). Neutralizing human antibodies prevent Zika virus replication and disease in vivo. PLoS Negl. Trop. Dis. 10, e0004582.
Sato, C., Nose, S., Apollo, L., Beudet, J. G., Ramenali, R. K., Zhang, X., ... Polakiewicz, R. D. (2012). Proteomically-directed cloning of circulating antiviral human monoclonal antibodies. Nature Biotechnology 30, 1039–1043.
Taylor, C., Dadachova, E., & Casadevall, A. (2009). Monoclonal antibody-based therapies for microbial diseases. Vaccine 27(Suppl 6), G28–G46.
Seydoux, E., Homad, I. J., Macamy, A. J., Parks, K. R., Hurlbut, N. K., Jennewein, M. E., ... Feng, J. et al. (2020). Analysis of a SARS-CoV-2 spike-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunity 53 (5), Article e10571.
Stertler, K., Beltramello, M., Espinosoa, D. A., Graham, V., Cassotta, A., Bianchi, S., Vanfazta, F. M., Minola, A., Jacson, S., Mele, F. et al. (2016). Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353, 823–826.
Walker, L. M., Bhogat, S. K., Chan-Hui, P. -Y., Wagner, D., Phung, P., Goss, J. L., ... Mitcham, J. (2020). Broad and potent neutralizing human antibodies from 1918 inactivated influenza virus. Nature 584, Article e105592.
N. Kisalu, N. K., Idris, A. H., Weidle, C., Flores-Garcia, Y., Flynn, B. J., Sack, B. K., ... Francica, J. R., Liu, Y., Soh, W. T., Kishikawa, J. I., Hirose, M., Nakayama, E. E., Li, S., ... Arakawa, A., et al. (2020). Broadly reactive human monoclonal antibodies elicited from a vaccine-like particle e0190537.
Edupuganti, S., et al. (2012). Pandemic H1N1 inactivation of a human monoclonal antibody targeting the N-terminal domain of the SARS-CoV-2 spike protein. Cell 184, 3267–3278.
Ahmed, R., et al. (2018). Broadly reactive human monoclonal antibodies elicited from a vaccine-like particle e0190537.
Nogales, A., Piepenbrink, M. S., Wang, J., Ortega, S., Basu, M., Fucile, C. F., ... Keefer, M. C., Nachbagauer, R., Shore, D., Yang, H., Johnson, S. K., Gabbard, J. D., Tompkins, S. M., ... Reichert, J. M. (2016). Antibodies to watch in 2016. Trends in Microbiology 24, 33–39.
Velázquez-Moctezuma, R., Gallardo, M. A., Víquez-Ibarra, N., U-play, S. M., et al. (2019). Monoclonal antibodies for emerging infectious diseases: A promising future? Biochemical and Biophysical Research Communications 545, 1–5.
Kisalu, N. K., Idris, A. H., Weidle, C., Flores-Garcia, Y., Flynn, B. J., Sack, B. K., ... Francica, J. R., Liu, Y., Soh, W. T., Kishikawa, J. I., Hirose, M., Nakayama, E. E., Li, S., ... Arakawa, A., et al. (2020). Monoclonal antibodies to watch in 2020. Trends in Microbiology 28, 23–29.
Kisalu, N. K., Idris, A. H., Weidle, C., Flores-Garcia, Y., Flynn, B. J., Sack, B. K., ... Francica, J. R., Liu, Y., Soh, W. T., Kishikawa, J. I., Hirose, M., Nakayama, E. E., Li, S., ... Arakawa, A., et al. (2020). Monoclonal antibodies to watch in 2020. Trends in Microbiology 28, 23–29.
Zhang, Q., Ju, B., Ge, J., Chan, J. F., Cheng, L., Wang, R., ... Zhou, B., et al. (2021). Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. *Nature Communications* 12, 4210.

Zhu, Y. Z., Qian, X. J., Zhao, P., & Qi, Z. T. (2014). How hepatitis C virus invades hepatocytes: The mystery of viral entry. *World Journal of Gastroenterology* 20, 3457-3467.

Zost, S. J., Gilchuk, P., Case, J. B., Binshtein, E., Chen, R. E., Nikoleta, J. P., Schäfer, A., Reidy, J. X., Trivette, A., Nargi, R. S., et al. (2020). Potently neutralizing and protective human antibodies against SARS-CoV-2. *Nature* 584, 443-449.

Zost, S. J., Gilchuk, P., Chen, R. E., Case, J. B., Reidy, J. X., Trivette, A., ... Chen, E. C., et al. (2020). Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. *Nature Medicine* 26, 1422-1427.