On a class of arithmetic convolutions involving arbitrary sets of integers

LÁSZLÓ TÓTH
University of Pécs,
Institute of Mathematics and Informatics,
Hungary, 7624 Pécs, Ifjúság u. 6,
E-mail: ltoth@ttk.pte.hu

Math. Pannonica 13 (2002), 249-263

Abstract

Let \(d, n \) be positive integers and \(S \) be an arbitrary set of positive integers. We say that \(d \) is an \(S \)-divisor of \(n \) if \(d \mid n \) and \(\gcd (d, n/d) \in S \). Consider the \(S \)-convolution of arithmetical functions given by (1.1), where the sum is extended over the \(S \)-divisors of \(n \).

We determine the sets \(S \) such that the \(S \)-convolution is associative and preserves the multiplicativity of functions, respectively, and discuss other basic properties of it. We give asymptotic formulae with error terms for the functions \(\sigma_S(n) \) and \(\tau_S(n) \), representing the sum and the number of \(S \)-divisors of \(n \), respectively, for an arbitrary \(S \). We improve the remainder terms of these formulae and find the maximal orders of \(\sigma_S(n) \) and \(\tau_S(n) \) assuming additional properties of \(S \). These results generalize, unify and sharpen previous ones.

We also pose some problems concerning these topics.

MSC 2000: 11A25, 11N37

Key Words and Phrases: arithmetic convolution, characteristic function, multiplicative function, completely multiplicative function, divisor function, Möbius function, asymptotic formula, maximal order

1 Introduction

Let \(\mathbb{N} \) denote the set of positive integers and let \(S \) be an arbitrary subset of \(\mathbb{N} \). For \(n, d \in \mathbb{N} \) we say that \(d \) is an \(S \)-divisor of \(n \) if \(d \mid n \) and \(\gcd (d, n/d) \in S \), notation \(d \mid_S n \). Consider the \(S \)-convolution of arithmetical functions \(f \) and \(g \) defined by

\[
(f *_S g)(n) = \sum_{d \mid_S n} f(d)g(n/d) = \sum_{d \mid n} \rho_S((d, n/d))f(d)g(n/d),
\]

where \(\rho_S \) stands for the characteristic function of \(S \).

Let \(\tau_S(n) \) and \(\sigma_S(n) \) denote the number and the sum of \(S \)-divisors of \(n \), respectively.

For \(S = \mathbb{N} \) we obtain the Dirichlet convolution and the familiar functions \(\tau(n) \) and \(\sigma(n) \). For \(S = \{1\} \) we have the unitary convolution and the functions \(\tau^*(n) \) and \(\sigma^*(n) \). These have been studied extensively in the literature, see for example [3] and its bibliography.

Among other special cases we mention here the following ones.
Let P be an arbitrary subset of the primes p and S be the multiplicative semigroup generated by $P \cup \{1\}$, i.e., $S = (P) \equiv \{1\} \cup \{n > 1 : p|n \Rightarrow p \in P\}$. Then the (P)-convolution is the concept of the cross-convolution, see [7], which is a special regular convolution of Narkiewicz-type [4].

If S is the set of k-free integers, $k \geq 2$, i.e., $S = Q_k \equiv \{1\} \cup \{n > 1 : p|n \Rightarrow p^k \not| n\}$, then the Q_k-divisors are the k-ary divisors and (1.1) is the k-ary convolution, see [5], [6].

Let L_k denote the set of k-full integers, i.e., $L_k \equiv \{1\} \cup \{n > 1 : p|n \Rightarrow p^k|n\}$, where $k \in \mathbb{N}, k \geq 2$. The L_k-convolution given by

$$
(f *_{L_k} g)(n) = \sum_{d|n} \frac{f(d)g(n/d)}{(d,n/d) \in L_k}
$$

seems to not have been investigated till now.

The aim of this note is to study some basic properties of the S-convolution, to give asymptotic formulae for the functions $\sigma_S(n)$ and $\tau_S(n)$ and to investigate the maximal orders of these functions.

Assuming that $1 \in S$ (then $1|sn$ and $n|sn$ for every $n \in \mathbb{N}$), we determine in Section 2 the subsets S such that the S-convolution is associative and preserves the multiplicativity of functions, respectively.

The most interesting property is that of associativity. It turns out that, for example, the Q_k-convolution with $k \geq 2$ is not associative, but the L_k-convolution is associative.

The L_k-convolution has also other nice properties, which are analogous to those of the Dirichlet convolution and of the unitary convolution. For example, the set of all complex valued arithmetical functions f with $f(1) \neq 0$ forms a commutative group under the L_k-convolution and the set of all nonzero multiplicative functions forms a subgroup of this group.

Furthermore, let μ_k denote the inverse with respect the L_k-convolution of the constant 1 function. We call it ”k-full M"obius function”, which is multiplicative and for every prime power p^a, $\mu_k(p^a) = -1$ for $1 \leq a < 2k$ and $\mu_k(p^a) = \mu_k(p^{a-1}) - \mu_k(p^{a-k})$ for $a \geq 2k$.

Note that $\mu_1 \equiv \mu$ is the ordinary M"obius function. The function μ_2 takes the values $-1, 0, 1$.

We pose the following problems: Which are the values taken by μ_k? Investigate asymptotic properties of μ_k.

Note that the S-convolution is contained in the concept of the K-convolution to be defined in Section 2. Although there exist characterizations of basic properties of K-convolutions, see [2] and [3], Chapter 4, no study of (1.1) has been made in the literature.

Section 3 contains certain identities showing that for every S the S-convolution of two completely multiplicative functions can be expressed with the aid of their Dirichlet convolution and their unitary convolution, respectively.

Asymptotic formulae with error terms for the functions $\sigma_S(n)$ and $\tau_S(n)$, involving arbitrary subsets S, are given in Section 4. We show that the remainder terms can be sharpened assuming additional properties of S.

In Section 5 we determine the maximal order of $\sigma_S(n)$ assuming that S is multiplicative, i.e. $1 \in S$ and ρ_S is multiplicative, and give the maximal order of $\tau_S(n)$ for an arbitrary S with $1 \in S$.

What can be said on the maximal order of $\sigma_S(n)$ for an arbitrary subset S?

The results of Sections 4 and 5 are obtained by elementary methods, they generalize, unify and improve the corresponding known results concerning the functions $\sigma(n)$, $\tau(n)$,
their unitary analogues $\sigma^*(n)$, $\tau^*(n)$, those involving k-ary divisors and the functions $\sigma_A(n)$, $\tau_A(n)$ associated with cross-convolutions, see [3], [5], [6], [7], [8].

2 Properties of the S-convolution

It is immediate that the S-convolution is commutative and distributive with respect ordinary addition for every S.

Assume in this section that $1 \in S$. Then $1|Sn$ and $n|Sn$ for every $n \in \mathbb{N}$ and denoting $\delta \equiv \rho_{\{1\}}$, i.e. $\delta(1) = 1$ and $\delta(n) = 0$ for $n > 1$, we have $f \ast_S \delta = f$ for every function f. This means that δ is the identity element for \ast_S.

We say that S is multiplicative if $1 \in S$ and its characteristic function ρ_S is multiplicative.

The K-convolution of arithmetical functions f and g is given by

$$ (f \ast_K g)(n) = \sum_{d|n} K(n,d) f(d) g(n/d), $$

where K is a complex valued function defined on the set of all ordered pairs (n,d) with $n,d \in \mathbb{N}$ and $d|n$.

For $K(n,d) = \rho_S((d,n/d))$ (2.1) becomes (1.1), therefore the S-convolution is a special K-convolution.

Theorem 2.1 The S-convolution preserves the multiplicativity of functions if and only if S is multiplicative.

Proof. It is known ([3], Chapter 4) that the K-convolution preserves the multiplicativity if and only if

$$ K(mn,de) = K(m,d)K(n,e) $$

holds for every $m,n,d,e \in \mathbb{N}$ such that $(m,n) = 1$ and $d|m, e|n$.

Hence the S-convolution has this property if and only if

$$ (2.2) \quad \rho_S((de,mn/de)) = \rho_S((d,m/d))\rho_S((e,n/e)) $$

for every $m,n,d,e \in \mathbb{N}$ with $(m,n) = 1$ and $d|m, e|n$.

If S is multiplicative, then for every m,n,d,e given as above $(d,m/d)$ and $(e,n/e)$ are relatively prime, $(de,mn/de) = (d,m/d)(e,n/e)$ and we obtain (2.2).

Conversely, if (2.2) holds and $M,N \in \mathbb{N}$, $(M,N) = 1$ are given integers, then taking $d = M, m = M^2, e = N, n = N^2$ we obtain

$$ \rho_S(MN) = \rho_S(M)\rho_S(N), $$

showing that S is multiplicative. \Diamond

Remark. It follows that all the convolutions mentioned in the Introduction preserve the multiplicativity.

Theorem 2.2 The S-convolution is associative if and only if the following conditions hold:

1. S is multiplicative,
2. for every prime p and for every $j \in \mathbb{N}$ if $p^j \in S$, then $p^\ell \in S$ for every $\ell > j$.

Remark. Condition (2) is equivalent with the following: for every prime \(p \) one of the next statements is true:
(i) \(p^j \in S \) for every \(j \in \mathbb{N} \),
(ii) \(p^j \notin S \) for every \(j \in \mathbb{N} \),
(iii) there exists \(e = e(p) \in \mathbb{N} \) depending on \(p \) such that \(p^j \notin S \) for every \(1 \leq j < e \) and \(p^j \in S \) for every \(j \geq e \).

Proof. It is known ([3], Chapter 4) that the \(K \)-convolution is associative if and only if
\[
K(n,d)K(d,e) = K(n,e)K(n/e,d/e)
\]
holds for every \(n, d, e \in \mathbb{N} \) with \(d|n, e|d \).

Therefore the \(S \)-convolution is associative if and only if
\[
(2.3) \quad \rho_S((d,n/d))\rho_S((e,d/e)) = \rho_S((e,n/e))\rho_S((d/e,n/d))
\]
for every \(n, d, e \in \mathbb{N} \) with \(d|n, e|d \).

First we show that if *\(S \) is associative, then \(\rho_S \) is multiplicative. Suppose that (2.3) is satisfied, let \(M, N \in \mathbb{N} \), \((M,N) = 1 \) and take \(n = M^2N^2, d = MN, e = M \). Then we have
\[
\rho_S((MN, MN))\rho_S((M, N)) = \rho_S((M, MN^2))\rho_S((N, MN)),
\]
hence
\[
\rho_S(MN) = \rho_S(M)\rho_S(N).
\]
Assume now that \(S \) is multiplicative. Then, taking \(n = p^c, d = p^b, e = p^a \), (2.3) is equivalent to
\[
(2.4) \quad \rho_S((p^b,p^{a-b}))\rho_S((p^c,p^{b-c})) = \rho_S((p^c,p^{a-c}))\rho_S((p^{b-c},p^{a-b}))
\]
for every prime \(p \) and for every \(0 \leq c \leq b \leq a \). Note that it is sufficient to require (2.4) for every \(0 < c < b < a \).

Suppose that \(p^j \in S \), where \(j \in \mathbb{N} \) and let \(\ell > j \). We show that \(p^\ell \in S \).

Case 1. \(\ell < 2j \). Take \(a = \ell + 2j, b = \ell + j, c = \ell \). From (2.4) we obtain
\[
\rho_S((p^{\ell+j}, p^j))\rho_S((p^\ell, p^j)) = \rho_S((p^\ell, p^{2j}))\rho_S((p^j, p^j)),
\]
\[
\rho_S(p^\ell)p_S(p^j) = \rho_S(p^\ell)p_S(p^j),
\]
giving \(\rho_S(p^\ell) = 1 \).

Case 2. \(\ell \geq 2j \). Now let \(a = 2\ell, b = \ell, c = \ell - j \). From (2.4) we have
\[
\rho_S((p^\ell, p^\ell))\rho_S((p^{\ell-j}, p^j)) = \rho_S((p^{\ell-j}, p^{\ell+j}))\rho_S((p^j, p^\ell)),
\]
\[
\rho_S(p^\ell)p_S(p^j) = \rho_S(p^{\ell-j})p_S(p^j),
\]
thus
\[
(2.5) \quad \rho_S(p^\ell) = \rho_S(p^{\ell-j}).
\]

If \(\ell = kj + r \), where \(k \geq 2 \) and \(0 \leq r < j \), then applying (2.5) we have
\[
\rho_S(p^\ell) = \rho_S(p^{\ell-j}) = \rho_S(p^{\ell-2j}) = ... = \rho_S(p^{j+r}) = 1,
\]

4
where \(j \leq j + r < 2j \) and we use the result of Case 1.

In order to complete the proof we show that if \(S \) is multiplicative and condition (2) holds, then we have (2.4) for every \(0 < c < b < a \).

Consider the cases of the Remark of above. For (i) and (ii) (2.4) holds trivially. In case (iii) if \(p^j \not\in S \) for every \(1 \leq j \leq e - 1 \) and \(p^j \in S \) for every \(j \geq e \), then (2.4) means that the statements "\([b \geq e \text{ and } a - b \geq e]\) and \((c \geq e \text{ and } b - c \geq e)\)" and "\((c \geq e \text{ and } a - c \geq e)\) and \((b - c \geq e \text{ and } a - b \geq e)\)" are equivalent. A quick check shows that this is true.

Remark. From Theorem 2.2 we obtain that the \(Q_k \)-convolution \((k \geq 2)\) is not associative, but the \(L_k \)-convolution and the (P)-convolution defined in the Introduction are associative.

Theorem 2.3 If conditions (1) and (2) of Theorem 2.2 hold, then the set of all complex valued arithmetical functions forms a commutative (and associative) ring with identity with respect to ordinary addition and \(S \)-convolution (in particular \(L_k \)-convolution).

This ring has no divisors of zero if and only if \(S = \mathbb{N} \), i.e. \(*_S\) is the Dirichlet convolution.

Proof. The first part of this result follows at once from Theorem 2.2 and from the previous remarks.

Furthermore, it is well-known that for the Dirichlet convolution there are no divisors of zero. Conversely, suppose that \(S \not= \mathbb{N} \) satisfies conditions (1) and (2) of Theorem 2.2. Then there exists a prime \(p \) such that \(p \not\in S \) and the following functions are divisors of zero:

\[
 f(n) = g(n) = \begin{cases} 1, & \text{if } n = p, \\ 0, & \text{otherwise.} \end{cases}
\]

Theorem 2.4 If conditions (1) and (2) of Theorem 2.2 hold, then the set of all complex valued arithmetical functions \(f \) with \(f(1) \neq 0 \) forms a commutative group under \(S \)-convolution (in particular \(L_k \)-convolution) and the set of all nonzero multiplicative functions forms a subgroup of this group.

Proof. This yields in a similar manner as in case of the Dirichlet convolution and unitary convolution or in general for certain \(K \)-convolutions, see [3], Ch.4.

Consider now the "\(k \)-full"-convolution corresponding to \(S = L_k \), the set of \(k \)-full numbers. Let \(\mu_k \) denote the "\(k \)-full Möbius function", representing the inverse of the function \(I(n) = 1, n \in \mathbb{N} \) with respect to this convolution. According to Theorem 2.4 \(\mu_k \) is multiplicative and a short computation shows that for every prime power \(p^a \),

\[
 \mu_k(p^a) = -1, \quad 1 \leq a < 2k \quad \text{and} \quad \mu_k(p^a) = \mu_k(p^{a-1}) - \mu_k(p^{a-k}), \quad a \geq 2k.
\]

Observe that \(\mu_1 \equiv \mu \) is the ordinary Möbius function.

For the "squarefull Möbius function" \(\mu_2 \) (case \(k = 2 \)) we have \(\mu_2(p) = \mu_2(p^2) = \mu_2(p^3) = -1 \) and

\[
 \mu_2(p^a) = \mu_2(p^{a-1}) - \mu_2(p^{a-2}), \quad a \geq 4.
\]

Therefore, \(\mu_2(p) = \mu_2(p^2) = \mu_2(p^3) = -1, \mu_2(p^4) = 0, \mu_2(p^5) = \mu_2(p^6) = 1, \mu_2(p^7) = 0, \mu_2(p^8) = \mu_2(p^9) = -1, \mu_2(p^{10}) = 0, \ldots \).
The values taken by μ_2 are $-1, 0, 1$. This is not true for μ_3, since $\mu_3(p^a) = -1$ for $1 \leq a \leq 5$, $\mu_3(p^6) = 0, \mu_3(p^7) = 1, \mu_3(p^8) = \mu_3(p^9) = 2, \mu_3(p^{10}) = 1, \mu_3(p^{11}) = -1, \mu_3(p^{12}) = -3, \mu_3(p^{13}) = -4, \ldots$

We pose the following problems: Which are the values taken by μ_k? Investigate asymptotic properties of μ_k. Does it posses a mean value?

3 Identities

For an arbitrary $S \subseteq \mathbb{N}$ let μ_S be the Möbius function of S defined by

$$
\sum_{d|n} \mu_S(n) = \rho_S(n), \quad n \in \mathbb{N},
$$

see [1], therefore, by Möbius inversion,

$$
\mu_S(n) = \sum_{d|n} \rho_S(d) \mu(n/d), \quad n \in \mathbb{N},
$$

where $\mu \equiv \mu_{\{1\}}$ is the ordinary Möbius function.

The zeta function ζ_S is defined by

$$
\zeta_S(z) = \sum_{n=1}^{\infty} \frac{\rho_S(n)}{n^z}.
$$

It follows that $\zeta_N \equiv \zeta$ is the Riemann zeta function and

$$
\sum_{n=1}^{\infty} \frac{\mu_S(n)}{n^z} = \frac{\zeta_S(z)}{\zeta(z)} \quad (z > 1).
$$

Theorem 3.1 If $S \subseteq \mathbb{N}$ and f and g are completely multiplicative functions, then for every $n \in \mathbb{N}$,

$$
(f \ast_S g)(n) = \sum_{d^2|n} \mu_S(d)f(d)g(d)(f \ast g)(n/d^2),
$$

where $\ast \equiv \ast_{\{1\}}$ is the Dirichlet convolution and

$$
(f \ast_S g)(n) = \sum_{d^2|n} \rho_S(d)f(d)g(d)(f \times g)(n/d^2),
$$

where $\times \equiv \ast_{\{1\}}$ is the unitary convolution.

Proof. Using (3.1) we have for every $n \in \mathbb{N}$,

$$
(f \ast_S g)(n) = \sum_{d|n} \rho_S((d,e))f(d)g(e) = \sum_{d|n} \left(\sum_{(d,e)} \mu_S(j) \right) f(d)g(e).
$$

Hence with $d = ja, e = jb$,

$$
(f \ast_S g)(n) = \sum_{j^2ab|n} \mu_S(j)f(ja)g(jb) = \sum_{j^2ab|n} \mu_S(j)f(j)f(a)g(j)g(b) =
$$
Theorem 4.1
If $\sum_{j^2 \ell = n} \mu_S(j) f(j) g(j) \sum_{ab = \ell} f(a) g(b) = \sum_{j^2 \ell = n} \mu_S(j) f(j) g(j) (f \ast g)(\ell)$, which is (3.4).

Furthermore,

$$(f \ast S g)(n) = \sum_{de = n} \rho_S((d, e)) f(d) g(e) = \sum_{a \in S} \sum_{de = n} f(d) g(e) =$$

$$= \sum_{a} \rho_S(a) \sum_{de = n} f(d) g(e).$$

With $d = ai, e = bj$ we get

$$(f \ast S g)(n) = \sum_{a^2b = n} \rho_S(a) f(a) g(a) f(i) g(j) = \sum_{a^2b = n} \rho_S(a) f(a) g(a) \sum_{ij = b} f(i) g(j) =$$

$$= \sum_{a^2b = n} \rho_S(a) f(a) g(a)(f \times g)(b),$$

giving (3.5). \Diamond

Theorem 3.2 If $S \subseteq N$, then for every $n \in N$,

$$\tau_S(n) = \sum_{d^2|n} \mu_S(d) \tau(n/d^2) = \sum_{d^2|n} \rho_S(d) \tau^*(n/d^2),$$

$$\sigma_S(n) = \sum_{d^2|n} \mu_S(d) d\sigma(n/d^2) = \sum_{d^2|n} \rho_S(d) d\sigma^*(n/d^2).$$

Proof. This yields at once from Theorem 3.1 applied for $f(n) = g(n) = 1$ and $f(n) = n, g(n) = 1$, respectively. \Diamond

Note that if S is multiplicative, then the functions $\tau_S(n)$ and $\sigma_S(n)$ are also multiplicative.

The generalized Euler function $\phi_S(n) = \#\{k \in N : k \leq n, (k, n) \in S\}$ was considered in [1] and one has $\phi_S = \mu_S * E = \rho_S * \phi$, where $E(n) = n, n \in N$ and $\phi \equiv \phi_{\{1\}}$ is the ordinary Euler function, see also [7].

4 Asymptotic formulae

The following asymptotic formulae generalize and improve the known formulae concerning the functions $\sigma(n)$, $\tau(n)$, their unitary analogues, those involving k-ary divisors and the functions $\sigma_A(n)$, $\tau_A(n)$ associated with cross-convolutions, cf. [3], Ch. 6; [5], Corollary 3.1.1; [6], Corollary 3.1; [7], Theorem 12; [8], Theorem 2; see also [9], Corollary 1.

Theorem 4.1 If $S \subseteq N$, then

$$\sum_{n \leq x} \sigma_S(n) = \frac{\zeta(2) \zeta_S(3)}{2\zeta(3)} x^2 + R_S(x),$$

where the remainder term can be evaluated as follows:

1. \(R_S(x) = O(x \log^{8/3} x) \) for an arbitrary \(S \),
2. \(R_S(x) = O(x \log^{5/3} x) \) for an \(S \) such that \(\sum_{n \in S} \frac{1}{n} < \infty \) (in particular for every finite \(S \) and for every multiplicative \(S \)),
3. \(R_S(x) = O(x \log^{2/3} x) \) for every multiplicative \(S \) such that \(\sum_{p \notin S} \frac{1}{p} < \infty \) (in particular if the set \(\{ p : p \notin S \} \) is finite).

Proof. We have from (3.7),

\[
\sum_{n \leq x} \sigma_S(n) = \sum_{d \leq \sqrt{x}} \mu_S(d) \sum_{e \leq x/d^2} \sigma(e).
\]

Applying now the well-known result of Walfisz [10],

\[
\sum_{n \leq x} \sigma(n) = \frac{\zeta(2)}{2} x^2 + O(x \log^{2/3} x)
\]

we obtain

\[
\sum_{n \leq x} \sigma_S(n) = \sum_{d \leq \sqrt{x}} \mu_S(d) \left(\frac{\zeta(2)}{2d^2} x^2 + O \left(\frac{x}{d^2} (\log x)^{8/3} \right) \right) = \frac{\zeta(2)}{2} \sum_{d=1}^{\infty} \frac{\mu_S(d)}{d^3} x^2 + O \left(\frac{x^2}{\sqrt{x}} \sum_{d \leq \sqrt{x}} \frac{|\mu_S(d)|}{d^3} \right) + O \left(x(\log x)^{2/3} \sum_{d \leq \sqrt{x}} \frac{|\mu_S(d)|}{d} \right).
\]

For the main term apply (3.3) and the given error term yields from the next statements:

(a) For an arbitrary \(S \subseteq \mathbb{N} \), \(|\mu_S(n)| \leq \sum_{d|n} \rho_S(d) \leq \tau(n) \) for every \(n \in \mathbb{N} \) and

\[
\sum_{n \leq x} \frac{|\mu_S(n)|}{n} \leq \sum_{d \leq x} \frac{\rho_S(d)}{d} \sum_{e \leq x/d^2} \frac{1}{e} = O \left(\log x \sum_{d \leq x} \frac{\rho_S(d)}{d} \right) = \begin{cases} O(\log x), & \text{if } \sum_{n=1}^{\infty} \frac{\rho_S(n)}{n} < \infty, \\ O(\log^2 x), & \text{otherwise.} \end{cases}
\]

(b) If \(S \) is multiplicative, then \(\mu_S \) is multiplicative too, \(\mu_S(p^a) = \rho_S(p^a) - \rho_S(p^{a-1}) \) for every prime power \(p^a \) \((a \geq 1) \) and \(\mu_S(n) \in \{-1, 0, 1\} \) for each \(n \in \mathbb{N} \).

(c) Suppose \(S \) is multiplicative. Then

\[
\sum_{p} \sum_{k=1}^{\infty} \frac{|\mu_S(p^k)|}{p^k} \leq \sum_{p} \left(\frac{|\rho_S(p) - 1|}{p} + \sum_{k=2}^{\infty} \frac{1}{p^k} \right) = \sum_{p \in S} \frac{1}{p(p-1)} + \sum_{p \notin S} \frac{1}{p-1} \leq 2 \left(\sum_{p \in S} \frac{1}{p^2} + \sum_{p \notin S} \frac{1}{p} \right) < \infty \text{ if } \sum_{p \notin S} \frac{1}{p} < \infty.
\]

It follows that in this case the series \(\sum_{n=1}^{\infty} \frac{|\mu_S(n)|}{n} \) is convergent.

Theorem 4.2 If \(S \) is an arbitrary subset of \(\mathbb{N} \), then

\[
(4.2) \quad \sum_{n \leq x} \tau_S(n) = \frac{\zeta_S(2)}{\zeta(2)} x \log x + 2\gamma - 1 + \frac{2\zeta_S(2)}{\zeta(2)} - \frac{2\zeta'(2)}{\zeta(2)} + O(\sqrt{x} \log^2 x),
\]

where \(\gamma \) is the Euler constant and \(\zeta_S'(z) \) is the derivative of \(\zeta_S(z) \).
This result follows applying the first identity of (3.6) and using Dirichlet’s formula
\[\sum_{n \leq x} \tau(n) = x(\log x + 2\gamma - 1) + O(x^{\alpha}). \]

The remainder term of (4.2) can be improved assuming further properties of \(S \). For example, if \(S \) is multiplicative, then the error term is \(O(\sqrt{x}\log x) \) and if \(S \) (i.e. \(\rho_S \)) is completely multiplicative and \(\{p : p \notin S\} \) is a finite set, then the error term is \(O(x^{\alpha}) \). We do not go into details.

5 Maximal orders

Generalizing the result of Gronwall concerning the function \(\sigma(n) \) we prove the following theorem.

Theorem 5.1 Let \(S \) be an arbitrary multiplicative subset. Denote by \(P \) the set of primes \(p \) such that \(p^j \in S \) for every \(j \in \mathbb{N} \). For every \(p \notin P \) let \(s(p) \in \mathbb{N} \) denote the least exponent \(j \) such that \(p^j \notin S \) (i.e. \(p^j \in S \) for every \(1 \leq j < s(p) \) and \(p^k(p) \notin S \)).

Then
\[\limsup_{n \to \infty} \frac{\sigma_S(n)}{n \log \log n} = e^\gamma \prod_{p \notin P} \left(1 - \frac{1}{p^{2s(p)}} \right). \]

Proof. For every \(p \in P, a \in \mathbb{N} \) and for every \(p \notin P, a < 2s(p) \) the \(S \)-divisors of \(p^a \) are all divisors \(1, p, p^2, \ldots, p^a \). Hence \(\sigma_S(p^a) = \sigma(p^a) = 1 + p + p^2 + \ldots + p^a \).

For every \(p \notin P \) and \(a \geq 2s(p) \) the numbers \(p^a(p) \) and \(p^{a-s(p)} \) are certainly not \(S \)-divisors of \(p^a \), since \((p^{a-s(p)}, p^{s(p)}) = p^{s(p)} \notin S \). Therefore \(\sigma_S(p^a) < (1 + p + p^2 + \ldots + p^{a-s(p)-1}) + (p^{a-s(p)+1} + \ldots + p^a) < p^{a-s(p)} + p^{a-s(p)+1} + \ldots + p^a \leq p^{a-2s(p)+1} + p^{a-2s(p)+2} + \ldots + p^a \).

We obtain that
\[\frac{\sigma_S(p^a)}{p^a} \leq 1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^{2s(p)+1}} \]
holds for every prime power \(p^a \) with \(p \notin P \) with equality for \(a = 2s(p) - 1 \).

Also, for every \(p \in P, a \in \mathbb{N} \),
\[\frac{\sigma_S(p^a)}{p^a} < \left(1 - \frac{1}{p} \right)^{-1}. \]

We show that
\[\frac{\sigma_S(n)}{n} \leq e^\gamma \prod_{p \notin P} \left(1 - \frac{1}{p^{2s(p)}} \right) \log \log n(1 + o(1)) \quad \text{as} \quad n \to \infty. \]

Using (4.3) and (4.4) we have for every \(n \geq 1 \),
\[\frac{\sigma_S(n)}{n} \leq \prod_{p^l(p)/p^l} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p^{l/p}/p} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^{2s(p)-1}} \right) = \prod_{p^{l/p}/p} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p^{l/p}/p} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^{2s(p)-1}} \right) \times \]
\[
\prod_{p \leq \log n \atop p \not\in P} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^{2s(p)-1}} \right) \leq \\
\prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p \leq \log n \atop p \not\in P} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^{2s(p)-1}} \right) \times \\
\prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p} \right)^{-1} = \\
\prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p^{2s(p)}} \right) \prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p} \right)^{-1} \leq \\
\prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p^{2s(p)}} \right) \prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{p} \right)^{-1} \prod_{p \leq \log n \atop p \not\in P} \left(1 - \frac{1}{\log n} \right)^{-1} = \\
\left(1 - \frac{1}{\log x} \right) \log \log n (1 + o(1)),
\]

applying Mertens’ theorem \(\prod_{p \leq x} (1 - \frac{1}{p}) = \frac{e^{-\gamma}}{\log x} (1 + o(1)) \) as \(x \to \infty \), and the fact that \(\# \{ p : p|n, p > \log n \} \leq \frac{\log n}{\log \log n} \).

Now we show that this upper bound is asymptotically attained.

For a given \(\varepsilon > 0 \) choose \(t \) so large such that

\[
\prod_{p > t} \left(1 - \frac{1}{p^a} \right) \geq 1 - \varepsilon.
\]

For this \(t \) choose an exponent \(a \geq 1 \) such that

\[
\prod_{p \leq t} \left(1 - \frac{1}{p^a} \right) \geq 1 - \varepsilon.
\]

Consider the sequence \((n_k)_{k \geq 1} \) given by

\[
n_k = \prod_{p \leq t} p^{a-1} \prod_{p \leq e^k} p^{2s(p)-1} \prod_{t < p \leq e^k} p.
\]

We obtain

\[
\sigma_S(n_k) / n_k = \prod_{p \leq t} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^{a-1}} \right) \times \\
\prod_{p \leq t} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^{2s(p)-1}} \right) \prod_{t < p \leq e^k} \left(1 + \frac{1}{p} \right) \geq \\
\prod_{p \leq t} \left(1 - \frac{1}{p^a} \right) \prod_{p \leq e^k} \left(1 - \frac{1}{p^{2s(p)}} \right) \prod_{p > t} \left(1 - \frac{1}{p^2} \right) \prod_{p \leq e^k} \left(1 - \frac{1}{p} \right)^{-1} \geq
\]
\[
\geq (1 - \varepsilon)^2 \prod_{p \not \in P} \left(1 - \frac{1}{p^{2s(p)}} \right) e^\gamma k(1 + o(1)) \quad \text{as} \quad k \to \infty,
\]

applying Mertens’ theorem again.

Furthermore, considering the Chebysev function \(\theta(x) = \sum_{p \leq x} \log p \) and using the elementary estimate \(\theta(x) = O(x) \), we get

\[
\log n_k \leq O(1) + \theta(e^k) = O(e^k).
\]

Hence, for sufficiently large \(k \),

\[
\log \log n_k \leq O(1) + k < (1 + \varepsilon)k.
\]

Therefore

\[
\limsup_{k \to \infty} \frac{\sigma_S(n_k)}{n_k \log \log n_k} \geq \frac{(1 - \varepsilon)^2}{1 + \varepsilon} e^\gamma \prod_{p \not \in P} \left(1 - \frac{1}{p^{2s(p)}} \right),
\]

and the proof is complete. ♦

A direct consequence of Theorem 5.1 is the following result.

Theorem 5.2 Let \(S \) be an arbitrary multiplicative subset and suppose that there exists \(s \in \mathbb{N} \) such that for every prime \(p \), \(p^j \in S \) for every \(1 \leq j < s \) and \(p^s \not \in S \). Then

\[
\limsup_{n \to \infty} \frac{\sigma_S(n)}{n \log \log n} = \frac{e^\gamma}{\zeta(2s)}.
\]

This result can be applied for \(S = Q_k \) (case \(s = k \geq 1 \)), for \(S = L_k \) (case \(s = 1 \)).

What is the maximal order of \(\sigma_S(n) \) for an arbitrary subset \(S \) ?

Theorem 5.3 Let \(S \) be an arbitrary subset such that \(1 \in S \). Then

(4.5)

\[
\limsup_{n \to \infty} \frac{\log \tau_S(n) \log \log n}{\log n} = \log 2.
\]

Proof. It is well-known that this result holds for the function \(\tau(n) \) (case \(S = \mathbb{N} \)) and that for the sequence \(n_k = p_1p_2...p_k \), where \(p_i \) is the \(i \)-th prime,

\[
\lim_{k \to \infty} \frac{\log \tau(n_k) \log \log n_k}{\log n_k} = \log 2.
\]

Taking into account that if \(1 \in S \), then \(\tau_S(n) = \tau(n) \) for every squarefree \(n \) and \(\tau_S(n) \leq \tau(n) \) for every \(n \in \mathbb{N} \), (4.5) follows at once. ♦

References

[1] E. Cohen, *Arithmetical functions associated with arbitrary sets of integers*, Acta Arith., 5 (1959), 407-415.

[2] T. M. K. Davison, *On arithmetic convolutions*, Canad. Math. Bull., 9 (1966), 287-296.
[3] P. J. McCarthy, *Introduction to Arithmetical Functions*, Springer Verlag, New York - Berlin - Heidelberg - Tokyo, 1986.

[4] W. Narkiewicz, *On a class of arithmetical convolutions*, Colloq. Math., 10 (1963), 81-94.

[5] D. Suryanarayana, *The number of k-ary divisors of an integer*, Monatsh. Math., 72 (1968), 445-450.

[6] D. Suryanarayana, *Some theorems concerning the k-ary divisors of an integer*, Math. Student, 39 (1971), 384-394.

[7] L. Tóth, *Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, I. Divisor-sum functions and Euler-type functions*, Publ. Math. Debrecen, 50 (1997), 159-176.

[8] L. Tóth, *Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, II. The divisor function*, Studia Univ. Babeș - Bolyai, Math., 42 (1997), 105-110.

[9] L. Tóth, *Sum functions of certain generalized divisors*, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 41 (1998), 165-180.

[10] A. Walfisz, *Weylsche Exponentialsummen in der neueren Zahlentheorie*, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.