How to realize ”a sense of humour” in computers?

I. M. Suslov
P.L.Kapitza Institute for Physical Problems,
119337 Moscow, Russia
E-mail: suslov@kapitza.ras.ru

Abstract
Computer model of a ”sense of humour” suggested previously [1 – 3] is raised to the level of a realistic algorithm.

1. Introduction

In the previous papers of the present author [1, 2, 3], the general scheme of information processing was suggested, which naturally leads to a possible realization in computers of the simplest human emotions and, in particular, a ”sense of humour”. The aim of the present paper is to develop this general scheme to a level of a realistic algorithm.

Briefly, the previously formulated model [1] consists in the following. Let a succession of symbols (or ”words”) $A_1, A_2, A_3 \ldots$ is entering the input of a processor. Each word A_n is associated with a set of images $\{B_n\}$. The problem consists in the choice from each set $\{B_n\}$ of the single image B_{i_n}, which is implied in a given context. We consider that the text is ”understood”, if the succession of images $B_{i_1}^{1}, B_{i_2}^{2}, B_{i_3}^{3} \ldots$ is put in correspondence to the sequence of symbols $A_1, A_2, A_3 \ldots$; the former can be considered as a certain ”trajectory” (Fig. 1).

In principle, the algorithm consists in the following: (a) all possible trajectories are composed; (b) a certain probability is ascribed to each trajectory; (c) the most probable trajectory is chosen. Only step (b) is nontrivial, i.e. the algorithm for estimation of the probability for a given trajectory. Such algorithm should be based on the correlation of images, which can be studied in the process of ”learning” on a sufficiently long ”deciphered” text, i.e. the text written in images and not words.

Any specific realization of such algorithm needs a number of operations, exponentially growing with the length of the text; so the algorithm is able to treat the text, which contains not more than a certain number (L) of symbols. To deal with longer texts, one can suggest the following procedure. During processing of the first L words, one remembers not one but

\footnote{At this work, we have in mind the simplest samples of humour related with the primary processing of information. The higher levels of information processing can be treated similarly [3] but require more complicated constructions.}
Figure 1: The scheme of information processing: each symbol A_n is associated with a set of images $\{B_n\}$, from which a single image B_{in} should be chosen; succession $B_1^{i_1}, B_2^{i_2}, B_3^{i_3}, \ldots$ can be considered as a certain “trajectory”.

several (M) most probable trajectories. As the next step, the fragment of the text between the second and $(L + 1)$-th word is considered, and all possible continuations are composed for each of the M trajectories. Then again M most probable of them is remembered, and so on. In general, the process looks in the following manner (Fig.2,a): the trajectory is branched strongly near its front edge A, the branching is ended in a certain point B, and the deciphered part CD is transmitted to the output of a processor (with a certain delay AC).

At first sight, point C should always go behind point B or coincide with it. However, for a biological system a delay AC should have upper bound on the time scale, since information processing is carried out in subconsciousness and no information appears in consciousness before a deciphered trajectory CD has reached it. If a distance AB is sufficiently large, point C begins to outrun point B [1], i.e. the most probable trajectory is transmitted to consciousness, though the competing versions are still conserved in the operative memory. If, in the following, the probability of the transmitted trajectory becomes lesser than for one of competing versions, then a characteristic malfunction occurs, which can be identified with ”a humorous effect” on the psychological grounds.

It is easy to see, that to endow a computer by a ”sense of humour” one should be able to solve a ”linguistic problem”, i.e. recognition of a succession of polysemantic images, which also arises in the machine translation researches [4, 5]. This general problem can

2 In spite to similarity with the problem of machine translation, our aim is somewhat different; this difference is the main subject of subsequent discussion. Usual strategy of machine translation contains three stages (analysis of the source text, transfer to another language, and generation of the target text); we are interested only in the first of them but developed as far as possible. In existing programs this stage
Figure 2: A visual imagination of information processing: thin lines are the trajectories contained in the operative memory (or subconsciousness), A is a front edge, B is the point where branching is over, CD is a portion of a trajectory transmitted to the output of the processor (or consciousness).
be divided into several more specific problems:

(1) one should compose a list of images, which are actual for a population;
(2) each word of a given language should be associated with a certain set of images;
(3) one needs a sufficiently long text for learning, i.e. the text written in images and
not in words;
(4) one should formulate the educational algorithm, reducing to the study of correlations
between images;
(5) on the basis of this algorithm, a rule for estimating probability of a finite succession
of images should be worked out.

In principle, problems 1 – 3 are trivial, but they need enormous amount of qualified work;
it is difficult to imagine that such work can be made specially for realization of a ”sense of
humour”. Below we consider the possibility to solve these problems in the automatic regime,
having in mind the linguistic information, which is gathered in the systems like ABBYY
Lingvo. Problems 4, 5 are more complicated: they cannot be solved pure theoretically and
require long period of experimentation by trial and error method. We suggest here only a
preliminary variant of their solution, having in mind to emphasize some essential points.
The practical algorithm can be formulated on the basis of approaches worked out in the
field of machine translation [4, 5].

2. Ideal language as a limiting case.

Suppose that there exists some language (let it be Latin, for definiteness), which in
a certain approximation can be considered as ideal. We define the ideal language as a
language, whose words are in one to one correspondence with images.

Then problems 1 – 3 are solved trivially. To compose a list of actual images (problem
1), it is sufficient to write down all Latin words; they can be numerated in alphabetical
order. If we want to recognize texts in English, then problem 2 is solved with a help of the
English – Latin dictionary: it is sufficient to write down all variants for a translation of a
given English word to Latin. As a text for learning (problem 3), one can take any literary
Latin text. Now let us discuss problems 4, 5.

Learning algorithm. A simplest algorithm for learning consists in construction of the
correlation matrix A_{ij} where indices i and j run all images in alphabetical order. We accept
that $A_{ij} \equiv 0$ before education. One step of education consists in the analysis of a separate
sentence. Each sentence by definition expresses a closed thought, and hence all words in
it are inter-related (words are equivalent to images in the ideal language). We increase
by unity an element A_{ij} of the correlation matrix for any pair (i, j) of words entering this
sentence (Fig. 3),

$$\Delta A_{ij} = 1,$$

is not very advanced (see Fig. 6.1 in [4]).
Figure 3: A change of the correlation matrix A_{ij} in the result of processing the sentence 4-2-1.
including a case \(i = j \) (see below). Of course, such learning rule leads to inevitable errors. Indeed, syntactic bonds in the sentence have a tree character (Fig.4), and the existence of associative links can be guaranteed only for syntactically connected images. However, absolutely uncorrelated images can appear in one sentence only with probability \(\sim (n/N)^2 \) (\(n \) is the number of words in a sentence, \(N \) is the number of words in a language), which should be compared with probability \(\sim k (n/N) \) for associatively related images (\(k \) is the correlation coefficient). Evidently, such procedure allows to reveal correlations effectively for a wide range of \(k \) values (\(1 \gtrsim k \gtrsim 10^{-3} \div 10^{-4} \)).

There is practically no alternative to this algorithm, since the syntactic analysis can be made by a computer only with large percentage of errors [4]. On the other hand, an educational algorithm based only on syntactic connections is also not very good: a sentence may contain description of oft-repeating situations (e.g. "A herdman drives a herd") where all images are associatively related. As the last argument, we can note that the syntactic analysis plays no essential role in human learning: the children and poorly-educated people are sufficiently good in conversational language, though they have no idea on syntax.

It is evident from the given estimates, that short sentences are more preferable for learning: the error is lesser for small \(n \), and the whole process is more effective. Indeed, treatment of two sentences consisting of 10 words requires consideration of \(10^2 \cdot 2 = 200 \) pair bonds (most of which are ineffective), while the analysis of one sentence containing 20 words deals with \(20^2 = 400 \) pair bonds. As for avoiding long sentences, it is not related with the essential waste of time or resources.
Probability of trajectory. When the correlation matrix A_{ij} is formed in the result of learning on a sufficiently long text, the probability of a finite succession of images can be defined as

$$p = \sum_{i,j \neq j} A_{ij}$$

where i and j run the images contained in this succession. The algorithm is based on the pure analog principle, so the combinations of images appear to be more probable if they frequently occur in the learning text. We have excluded the terms with $i = j$ from the sum in Eq.2, since the probability we are interested in should characterize the degree of connectedness of a given trajectory.

At first sight, the analog character of the algorithm requires to introduce the condition $i \neq j$ also in the learning rule (1). In fact, it is not so, since learning and recognition are carried out in somewhat different conditions: we use only closed sentences for learning, while any fragment of text can be given for recognition, independently on the bounds of sentences. If the condition $i \neq j$ is introduced in (1), then self-correlation of images appear to be practically zero: repeated use of the same word is usually considered as a stylistic mistake and practically never occurs in the literary text. It is evident from the general principles, that correlation of an image with itself should be maximal: it is provided by inclusion of the case $i = j$ in the learning rule (1). In the course of recognition, self-correlation of images plays essential role: the connected fragment of the text contains usually some kind of the "main hero", whose image is present in almost any sentence. As a result, existence of the same image in two neighbouring sentences is rather typical, and its self-correlation is important for an adequate estimation of the connectedness of the text.

3. Real language: nobody wanted "as worse".

Of course, any real language is very far from ideal: almost any word is associated with a lot of images, while any image can be described by different words. It looks, as if some evil spirit interfered in human life and spoiled specially all existing languages. In fact, nobody wanted "as worse" and nobody was specially entangling the situation: ambiguity of real languages is a natural consequence of their evolution.

The first words of the ancient man were formed according to a principle "I sing what I see": e.g. words "fox", "wolf", "bear" arised from the shouts of hunters warning about appearance of the corresponding animal. These words had clear associations and did not possess any ambiguity (Fig.5,a). When inter-relations between people became more complicated, some interest arised to the problems of social behavior: the words like "manner",
Figure 5: (a) The first stage in evolution of language: words and images are in one to one correspondence. (b) The next stage of evolution: the main mechanism of arising ambiguity is shown. For clarity, images are given in square frames.
"character" came to life. Combination of these words with already existing led to appearance of complex images: "fox manner", "wolf manner", "bear manner"; these notions appeared to be useful and was denoted by special words: "cunning", "cruelty", "clumsiness" (Fig. 5,b). One can see, that the language adequately reacted on the change of the situation: arised new images gave birth to new words, and the total number of words remained in correspondence with the number of images (Fig. 5,b). The entanglement of language appears already at this primitive stage: on one hand, the synonym ambiguity arises (one can say "cunning" or "fox manner"), on the other hand, old words acquire new meanings (the word "fox" now denotes not only "a red thing with a big tail" but also "cunning aunt Mary"). We see, that ambiguity of language is inavoidable consequence of its development: initially new images are explained by old words, but later on the special names are invented for them; however, associative relations with the old words nobody is able to abolish.

Fortunately, the entanglement of language related with its development is easily removable. It is possible to distinguish the main meaning for each word (solid arrows in Fig.5,b and below) and its secondary meanings (dotted arrows). If each word is ascribed to an image, associated with its main meaning, then one to one correspondence between words and images is restored (Fig. 5,b).

Unfortunately, there are another reasons for arising ambiguity, which are external from viewpoint of language. If in two provinces the same image was named by the different words, then unification of these provinces in one state makes both words to be admissible. As a result, irreducible synonyms arise (Fig.6,a), under which we understand the words with the same main meaning; they are opposite to reducible synonyms (Fig.6,b), whose main meanings are different. The same effect is produced by the social segregation of society: for example, the sexual objects are associated with the sleng words by poorly educated people, while the neutral names are given to them in the aristocratic circles, and the scientific terms of the Latin origin are suggested by a medical society. The same mechanism can work in the opposite direction: if one word was used as a name for completely different images (e.g. word "like" in English), then homonyms arise, i.e. the words with several main meanings.

Irreducible synonyms and homonyms are in fact the defects of language: they arise by occasional reasons and there is no convincing motivation for their existence.

4. Real language instead of ideal.

The analysis given in Sec.3 allows to understand, what kind of corrections should be introduced in the algorithm, if we want to use the real language (let it be German) instead of ideal (Latin in Sec.2).

In order to obtain the list of images, it is sufficient (in the first approximation) to write down all German words and associate them with their main meanings (i.e. a word is considered as a symbolic name for an image, which corresponds to its main meaning). In fact, the whole algorithm of Sec.2 remains unchanged in the first approximation: a set of
Figure 6: (a) Words A and B are irreducible synonyms, since their main meanings correspond to the same image γ. (b) Words A and B are synonyms in respect to the image β, but they are reducible, since their main meanings are different. (c) The perfect synonyms have coinciding both main and secondary meanings.
images associated with an English word is obtained with the help of the English–German dictionary, the learning is carried out on the German texts, etc. The main error, intrinsic for such procedure, consists in the fact that correlations between images are replaced by the correlations between German words. However, it looks possible to ignore this error, because a man acts in the same manner. In human practice it is not customary to compose the lists of images, while the lists of words (dictionaries) are known to everybody. No long texts written in images are available, though long texts written in words (books) are well-known. As a result, replacement of images by the corresponding words becomes inevitable in human education. Comparatively small error of such education is related with the following:

(a) For most words, their ”main meanings” are indeed main, i.e. words are used in this sense with overwhelming probability;

(b) The secondary meanings of a word are logically related with the main one (see Fig. 5,b), and correlations of the whole conglomerate of meanings with other words are close to correlations for the main meaning;

(c) It is customary in human practice, that learning is carried out on a standard set of ”classical” texts. It is assumed that the ”classic” writers express their thoughts more clearly in comparison with other people, and the implied image is usually denoted by the word, which has this image as a main meaning. In any case, learning on the same texts leads to the same education for different people; so the people are able to understand each other, even if such education is far from ideal.

Let us discuss now, what kind of corrections can be really made to take into account non-ideality of language.

Irreducible synonyms. Existence of irreducible synonyms is displayed in the fact that in our list of images some of them will be repeated by several times. To regulate a situation, it is convenient to accept a viewpoint that the perfect synonyms (Fig. 6,c) practically do not exist: if, in some moment, words A and B were equivalent (coinciding both in the main and secondary meanings), then their equivalence is spoiled with a flow of time: they are differently overgrown by new meanings (Fig. 6,a) and begin to use in different contexts. From this point of view, irreducible synonyms mark small variations of the main meaning and correspond to close but different images.

Correlations of these slightly different objects with other images are described adequately by the matrix A_{ij} obtained in accordance with the learning rule (1) (since in fact correlations are studied between words). Some problems arise in respect to correlations between synonyms themselves; they are analogous to the problems related with self-correlation of images (Sec. 2). The use of two synonyms in one short sentence is not desirable in the same sense, as a repeated use of the same word. As a result, the learning procedure of Sec. 2 will lead to the practical absence of correlations between close images, while such correlation is large from the general principles.

As a model for irreducible synonyms one can accept that appearing image is denoted

\[\text{[For a situation in Fig. 6,a: if both images } \alpha \text{ and } \gamma \text{ can appear in some context, then image } \gamma \text{ should be denoted by word } B, \text{ while the use of word } A \text{ leads to real ambiguities.}] \]
by word A with probability p_A, by word B with probability p_B, by word C with probability p_C, etc. Then it is easy to show (see Appendix) that the block of the correlation matrix, corresponding to synonyms A, B, C, ..., should have a following structure

$$
\begin{pmatrix}
S_{AA} & \sqrt{S_{AA}S_{BB}} & \sqrt{S_{AA}S_{CC}} & \cdots \\
\sqrt{S_{BB}S_{AA}} & S_{BB} & \sqrt{S_{BB}S_{CC}} & \cdots \\
\sqrt{S_{CC}S_{AA}} & \sqrt{S_{CC}S_{BB}} & S_{CC} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{pmatrix}.
$$

In the learning process according to rule (1), diagonal elements S_{AA}, S_{BB}, S_{CC} ... are determined correctly, while off-diagonal elements appear to be practically zero; however, they can be corrected artificially in accordance with the matrix (3). We see that ”teaching to synonyms” is carried out separately, as it is customary in human practice.

Homonyms. From the linguistic point of view, homonyms are considered as different words, and this fact is clearly marked in dictionaries (usually by Roman numerals, e.g. like I, like II, etc.). Therefore, no problems arise with homonyms, when a list of images is composed; they are naturally registered as different objects. However, in written and conversational text homonyms are indistinguishable, and the problems arise in the learning process.

For a given situation, it means that ”teaching to homonyms” should be carried out ”by hand”: if the computer meets in the learning text one of the registered homonyms, it should ask the operator, which of them is implied in the given sentence. However, such ”by hand” stage may be not very long: when a minimal statistics is obtained for a correlation matrix A_{ij}, identification of homonyms can be trusted to the computer. As a rule, homonyms are used in entirely different contexts, and their associative links are clearly different.

Absence of images. Our list of images may be somewhat incomplete: certain images may be absent in it, if no special words are invented for them: as a rule, it concerns new or not very wide-spread images. The latter means that an image is not sufficiently actual for a population and a lot of people have no idea of it; so we can forgive a computer, if it does not know such image.

Of course, such images can be introduced in our list ”by hand”, if we ascribe them to some groups of words. Unfortunately, learning also should be produced by hand: the computer should ask, does the found combination of words correspond to the given image, or this combination occured in the sentence accidently.

5. Conclusion

In the previous sections we suggested a possible variant of solution for problems 1 – 5, formulated in Introduction. Considering the first three problems, we have in mind a

8 Such model implies that the difference between close images has a symbolical character and no attention is given to it in human practice.
linguistic information contained in the systems like ABBYY Lingvo. Such systems clearly
distinguish the main meaning of a word (it is referred there as “the first meaning”) and its
secondary meanings; a list of synonyms is also attached. Of course, the latter should be
tested on reducibility, but an algorithm for such test is evident from the discussion. The
ABBY Lingvo system contains also many combinations of words, some of which correspond
to original images; unfortunately, their separation requires additional work.

We have suggested also the analog algorithm for learning and recognition (problems 4, 5), which should be considered as preliminary: it can be developed to a practical level in
the course of experiments based on existing programs for machine translation [4, 5]. We
hope that a given analysis suggests a sufficient material for beginning of such experiments,
and realization of a ”sense of humour” in computers may already occur in the nearest
future.

Appendix. Correlation of irreducible synonyms

It is clear from the text, that irreducible synonyms are described by a model, according
to which the appearing image is denoted by word A with probability p_A, by word B with
probability p_B, by word C with probability p_C, etc. The repeated appearance of the same
image in a short sentence is rather improbable, and a typical situation corresponds to
existence of two coinciding images in the neighbouring sentences. The probabilities of the
configurations AA, AB, \ldots are equal to $p_A^2, p_A p_B, \ldots$ correspondingly and associated with
a correlation matrix

$$
\begin{pmatrix}
 p_A^2 & p_A p_B & p_A p_C & \cdots \\
p_B p_A & p_B^2 & p_B p_C & \cdots \\
p_C p_A & p_C p_B & p_C^2 & \cdots \\
 \cdots & \cdots & \cdots & \cdots
\end{pmatrix}, \tag{4}
$$

which differs by a constant factor from the matrix (3) due to arbitrariness in normalization
of the latter. The diagonal elements $S_{AA}, S_{BB}, S_{CC} \ldots$ of the matrix (3) can be considered
as known, since they are correctly determined by the learning rule (1). The off-diagonal
elements can be established from correspondence of (3) and (4).

References

[1] I.M. Suslov, Biofizika SSSR 37, 318 (1992) [Biophysics 37, 242 (1992)]; arXiv: 0711.2058.

[2] I.M. Suslov, Biofizika SSSR 37, 325 (1992) [Biophysics 37, 249 (1992)]; arXiv: 0711.2061.

[3] I.M. Suslov, Computer Chronicle (Moscow), 1994, issue 1; arXiv: 0711.2270.
[4] J.W.Hutchins, S.L.Harold. An Introduction to Machine Translation, London, Academic Press, 1992.

[5] Detailed bibliography on machine translation can be found on the web-site by John Hutchins, www.hutchinsweb.me.uk.