Inversion of two cyclotomic matrices

Kurt Girstmair

Abstract
Let \(n \geq 3 \) be a square-free natural number. We explicitly describe the inverses of the matrices
\[
(2 \sin(2\pi jk^*/n))_{j,k} \quad \text{and} \quad (2 \cos(2\pi jk^*/n))_{j,k},
\]
where \(k^* \) denotes a multiplicative inverse of \(k \mod n \) and \(j, k \) run through the set \(\{l; 1 \leq l \leq n/2, (l, n) = 1\} \). These results are based on the theory of Gauss sums.

1. Introduction and results

In the paper [3] Lehmer states that there are only few classes of matrices for which explicit formulas for the determinant, the eigenvalues and the inverse are known. He gives a number of examples of this kind. Further examples can be found in the papers [1], [5] and [4]. The closest analogue of the matrices considered here is contained in the article [4], namely, the matrix
\[
(\sin(2\pi jk/n))_{j,k},
\]
where \(1 \leq j, k \leq n, (jk, n) = 1 \). The author of [4] determines the characteristic polynomial of this matrix, the multiplicities of the eigenvectors being quite involved. In the present note we describe the eigenvalues of similar matrices \(S \) and \(C \). The main results, however, are explicit formulas for the inverses \(S^{-1} \) and \(C^{-1} \) in the cases when these matrices are invertible. This is in contrast to the papers we have quoted, since explicit formulas for inverses are scarcely given there.

Let \(n \geq 3 \) be a natural number. Let \(\mathcal{R} \) denote a system of representatives of the group \((\mathbb{Z}/zn)^\times/\{\pm 1\}\). Suppose that \(\mathcal{R} \) is ordered in some way. Typically, \(\mathcal{R} \) is the set \(\{k; 1 \leq k \leq n/2, (k, n) = 1\} \) with its natural order. For \(k \in \mathbb{Z}, (k, n) = 1 \), let \(k^* \) denote an inverse of \(k \mod n \) (so \(kk^* \equiv 1 \mod n \)). We define
\[
s_k = 2 \sin(2\pi k/n) \quad \text{and} \quad c_k = 2 \cos(2\pi k/n),
\]
where \(k \in \mathbb{Z}, (k, n) = 1 \). We consider the matrices
\[
S = (s_{jk^*})_{j,k \in \mathcal{R}} \quad \text{and} \quad C = (c_{jk^*})_{j,k \in \mathcal{R}},
\]
which we call the \textit{sine matrix} and the \textit{cosine matrix}, respectively.

We think that the matrices \(S \) and \(C \) deserve some interest not only because of their simple structure but also by reason of their connection with cyclotomy, in particular, with Gauss sums (see [6] for the history of this topic).

In order to be able to enunciate our main results, we define
\[
\lambda(k) = |\{q; q \geq 3, q \mod n, k \equiv 1 \mod q\}| \quad (1)
\]
for $k \in \mathbb{Z}$, $(k, n) = 1$. Furthermore, put
\[
\hat{s}_k = \frac{1}{n} \sum_{l \in \mathbb{R}} (\lambda(lk) - \lambda(-lk))s_l, \tag{2}
\]
for $k \in \mathbb{Z}$, $(k, n) = 1$. For the same numbers k put
\[
\hat{c}_k = \frac{1}{n} \sum_{l \in \mathbb{R}} (\lambda(lk) + \lambda(-lk) + \rho_n)c_l, \tag{3}
\]
with
\[
\rho_n = \begin{cases}
2, & \text{if } n \text{ is odd;} \\
4, & \text{if } n \text{ is even.}
\end{cases} \tag{4}
\]
Our main results are as follows.

Theorem 1 The sine matrix S is invertible if, and only if, n is square-free or $n = 4$. In this case
\[
S^{-1} = (\hat{s}_{jk^*})_{j,k \in \mathbb{R}},
\]
with \hat{s}_{jk^*} defined by (2).

Theorem 2 The cosine matrix C is invertible if, and only if, n is square-free. In this case
\[
C^{-1} = (\hat{c}_{jk^*})_{j,k \in \mathbb{R}}
\]
with \hat{c}_{jk^*} defined by (3).

The entries of S have the form $\pm s_l$, $l \in \mathbb{R}$. This is due to the fact that
\[
s_{jk^*} = \varepsilon s_l
\]
with $\varepsilon \in \{\pm 1\}$, $l \in \mathbb{R}$, if $jk^* \equiv \varepsilon l \mod n$. In the same way we have
\[
\hat{s}_{jk^*} = \varepsilon \hat{s}_l
\]
if $jk^* \equiv \varepsilon l \mod n$. This means that it suffices to compute the numbers \hat{s}_l only for $l \in \mathbb{R}$ in order to write down the matrix S^{-1}. Indeed, this matrix arises from S if we replace each entry εs_l of S by the respective entry $\varepsilon \hat{s}_l$.

The same procedure works in the case of the cosine matrix, whose entries have the form c_l, $l \in \mathbb{R}$.

Example. Let $n = 15$ and $\mathbb{R} = \{1, 2, 4, 7\}$. Then S can be written
\[
S = \begin{pmatrix}
 s_1 & -s_7 & s_4 & -s_2 \\
 s_2 & s_1 & -s_7 & -s_4 \\
 s_4 & s_2 & s_1 & s_7 \\
 s_7 & -s_4 & -s_2 & s_1
\end{pmatrix} \tag{5}
\]
Theorem\[yields $\hat{s}_1 = (3s_1 - s_2 + s_7)/15$, $\hat{s}_2 = (-s_1 - s_4 - 3s_7)/15$, $\hat{s}_4 = (-s_2 + 3s_4 + s_7)/15$, and $\hat{s}_7 = (s_1 - 3s_2 + s_4)/15$. We obtain S^{-1} if we put a circumflex on each s occurring in (5).
Remark. If $n = p$ is a prime, Theorem 1 shows that S^{-1} is particularly simple, namely, $S^{-1} = \frac{1}{p} S^t$ (S^t is the transpose of S). There is no analogue for the cosine matrix. For instance, if $p = 7$ and $\mathcal{R} = \{1, 2, 3\}$, we have $\hat{c}_1 = (3c_1 + 2c_2 + 2c_3)/7$. The prime number case of the sine matrix can also be settled by means of a simple trigonometric argument. This, however, seems to be hardly possible if n consists of at least two prime factors $p > q \geq 3$.

2. Proofs

First we prove Theorem 1, then we indicate the changes required by the proof of Theorem 2. Let \mathcal{X} denote the set of Dirichlet characters mod n, and \mathcal{X}^- and \mathcal{X}^+ the subsets of odd and even characters, respectively. The matrix S is connected with \mathcal{X}^-, whereas C is connected with \mathcal{X}^+. We note the orthogonality relation

$$\sum_{\chi \in \mathcal{X}^-} \chi(k) = \begin{cases} 0, & \text{if } k \not\equiv \pm1 \mod n; \\ \varphi(n)/2, & \text{if } k \equiv 1 \mod n; \\ -\varphi(n)/2, & \text{if } k \equiv -1 \mod n, \end{cases}$$

(6)

see [2, p. 210]. Here $(k, n) = 1$ and φ denotes Euler’s function.

Suppose that the set \mathcal{X}^- is ordered in some way. Then we can define the matrix

$$X = \sqrt{n/\varphi(n)}(\chi(k))_{k \in \mathcal{R}, \chi \in \mathcal{X}^-}.$$

Since $|\mathcal{R}| = |\mathcal{X}^-| = \varphi(n)/2$, X is a square matrix. We note the following lemma.

Lemma 1 The matrix X is unitary, i.e., $X^{-1} = X^t$ (the transpose of the complex-conjugate matrix).

Proof. This is an immediate consequence of the orthogonality relation (6) (observe that $\chi^* = \chi^t$).

Let $\zeta_n = e^{2\pi i/n}$ be the standard primitive nth root of unity. For $\chi \in \mathcal{X}^-$ let

$$\tau(\chi) = \sum_{k=1}^{n} \chi(k)\zeta_n^k$$

(7)

the corresponding Gauss sum, see [2, p. 445]. We consider the diagonal matrix

$$T = \text{diag}(\tau(\chi))_{\chi \in \mathcal{X}^-}.$$

Proposition 1 The sine matrix S is normal. Indeed,

$$\overline{X^t}SX = -iT.$$

Proof. We show $XT\overline{X} = iS$. Obviously, the entry $(XT\overline{X})_{j,k}$ equals

$$\frac{2}{\varphi(n)} \sum_{\chi \in \mathcal{X}^-} \chi(j)\tau(\chi)\overline{\chi(k)} = \frac{2}{\varphi(n)} \sum_{\chi \in \mathcal{X}^-} \chi(jk^*) \sum_{(l,n)=1} \chi(l^*) \zeta_n^l,$$
where the index l satisfies $1 \leq l \leq n$, $(l, n) = 1$. This can be written

$$\frac{2}{\varphi(n)} \sum_{l=1}^{\varphi(n)} \zeta_n^l \sum_{\chi \in \mathcal{X}} \chi(jk^*l^*).$$

Now the orthogonality relation (6), together with $\zeta_n^l - \zeta_n^{-l} = is_l$, shows that this is just is_{jk^*}.

In order to study the vanishing of the eigenvalues of S, we use the reduction formula

$$\tau(\chi) = \mu \left(\frac{n}{f_\chi} \right) \tau_f \left(\frac{n}{f_\chi} \right) \tau(\chi_f),$$

(8) see [2, p. 448]. Here μ means the Möbius function, f_χ the conductor of the character χ, χ_f the primitive character belonging to χ (which is a Dirichlet character mod f_χ) and $\tau(\chi_f)$ the Gauss sum

$$\sum_{k=1}^{f_\chi} \chi_f(k) \zeta_{f_\chi}^k.$$

Since

$$\tau(\chi_f) \tau(\chi_f) = -f_\chi$$

(9) (see [2, p. 269]), formula (8) shows when the eigenvalue $-i\tau(\chi)$ vanishes. We obtain the following result.

Proposition 2 The matrix S is invertible if, and only if, n is square-free or $n = 4$.

Proof. If n is square-free, then n/f_χ is square-free and $(f_\chi, n/f_\chi) = 1$. By (8) and (9), all Gauss sums $\tau(\chi)$ are different from 0. If $n = 4$ and $\chi \in \mathcal{X}^-$, then $f_\chi = 4$ and $n/f_\chi = 1$.

Conversely, suppose that n is not square-free and different from 4. Then one of the following three cases occurs. There is a prime $p \geq 3$ such that $p^2 \mid n$, or $4p \mid n$, or $8 \mid n$. In the first and the second case there is a character $\chi \in \mathcal{X}^-$ with $f_\chi = p$. Accordingly, $\chi_f(n/f_\chi) = 0$ or $\mu(n/f_\chi) = 0$. In the third case there is a character $\chi \in \mathcal{X}^-$ with $f_\chi = 4$. Therefore, $\chi_f(n/f_\chi) = 0$. □

Lemma 2 Let n be square-free or equal to 4. For $k \in \mathbb{Z}$, $(k, n) = 1$, we have

$$\sum_{\chi \in \mathcal{X}^-} \frac{\chi(k)}{f_\chi} = \frac{\varphi(n)}{2n} \left(\lambda(k) - \lambda(-k) \right),$$

the λ’s being defined by (1).

Proof. Obviously,

$$\sum_{\chi \in \mathcal{X}^-} \frac{\chi(k)}{f_\chi} = \sum_{d \mid n} \frac{1}{d} \sum_{\chi \in \mathcal{X}^-} \chi(k).$$

Möbius inversion gives

$$\sum_{\chi \in \mathcal{X}^-} \chi(k) = \sum_{d \mid n} \mu \left(\frac{d}{q} \right) \sum_{f_\chi = d} \chi(k).$$
Here we note that the characters \(\chi \in \mathcal{X}^- \) with \(f_x \mid q \) are in one-to-one correspondence with the odd Dirichlet characters mod \(q \). Indeed, if \(\chi \in \mathcal{X}^- \), one defines the Dirichlet character \(\chi_q \) mod \(q \) in the following way. If \((j,q) = 1\), there is an integer \(l \) with \((l,n) = 1\) such that \(l \equiv j \mod q \). Then \(\chi_q(j) = \chi(l) \), see [2, p. 217]. Accordingly,

\[
\sum_{f_x \mid q} \chi(k) = \sum_{\chi_q} \chi_q(k).
\]

From (6) we obtain

\[
\sum_{\chi_q} \chi(k) = \begin{cases}
0, & \text{if } q \leq 2 \text{ or } q \geq 3 \text{ and } k \not\equiv \pm 1 \mod q; \\
\frac{\varphi(q)}{2}, & \text{if } q \geq 3 \text{ and } k \equiv 1 \mod q; \\
-\frac{\varphi(q)}{2}, & \text{if } q \geq 3 \text{ and } k \equiv -1 \mod q
\end{cases}
\]

(10)

(observe that there are no odd characters \(\chi_q \) if \(q \leq 2 \)). Therefore, we have

\[
\sum_{\chi \in \mathcal{X}^-} \frac{\chi(k)}{f_x} = \sum_{q \mid d,q \geq 3, k \equiv \pm 1 \mod q} \pm \mu \left(\frac{d}{q} \right) \frac{\varphi(q)}{2},
\]

where the \(\pm \) sign in the summand corresponds to the respective sign in the summation index. If we write \(d = q \cdot r \), we have

\[
\sum_{\chi \in \mathcal{X}^-} \frac{\chi(k)}{f_x} = \sum_{q \mid n,q \geq 3, k \equiv \pm 1 \mod q} \pm \frac{\varphi(q)}{2} \sum_{r \mid n,q} \frac{\mu(r)}{qr}.
\]

Since

\[
\sum_{r \mid n,q} \frac{\mu(r)}{r} = \prod_{p \mid n,q} \left(1 - \frac{1}{p} \right) = \frac{\varphi(n)/q}{n/q}
\]

we obtain

\[
\sum_{\chi \in \mathcal{X}^-} \frac{\chi(k)}{f_x} = \sum_{q \mid n,q \geq 3, k \equiv \pm 1 \mod q} \pm \frac{\varphi(q)}{2q} \cdot \frac{\varphi(n)/q}{n/q}.
\]

(11)

However, \(n \) is square-free or equal to 4, and so \(\varphi(q)\varphi(n/q) = \varphi(n) \). This implies

\[
\sum_{\chi \in \mathcal{X}^-} \frac{\chi(k)}{f_x} = \frac{\varphi(n)}{2n} (\lambda(k) - \lambda(-k)).
\]

\[\Box \]

Proof of Theorem 4 By Proposition 4 \(S^{-1} = iXT^{-1}X^* \), which means that the entry \((S^{-1})_{j,k} \), \(j,k \in \mathcal{R} \), of \(S^{-1} \) is given by

\[
(S^{-1})_{j,k} = \frac{2i}{\varphi(n)} \sum_{\chi \in \mathcal{X}^-} \chi(j)\tau(\chi)^{-1} \tau(\chi(k)).
\]

From (8) and (9) we obtain

\[
\tau(\chi)^{-1} = \frac{\mu(n/f_x)\chi_f(n/f_x)\tau(\chi_f)}{-f_x} = -\frac{\tau(\chi)}{f_x}.
\]
Therefore,

\[(S^{-1})_{j,k} = \frac{-2i}{\varphi(n)} \sum_{\chi \in \mathcal{X}^-} \frac{\chi(jk^*)}{f_\chi} \tau(\chi).\]

Now (7) yields

\[(S^{-1})_{j,k} = \frac{-2i}{\varphi(n)} \sum_{(l,n)=1} \zeta_n^l \zeta_n^{-l} \sum_{\chi \in \mathcal{X}^-} \frac{\chi(ljk^*)}{f_\chi}.\]

By Lemma 2

\[(S^{-1})_{j,k} = \frac{-2i}{\varphi(n)} \sum_{(l,n)=1} \zeta_n^l \varphi(n) \frac{\varphi(n)}{2n} (\lambda(ljk^*) - \lambda(-ljk^*)).\]

Altogether, we have

\[(S^{-1})_{j,k} = \frac{-i}{n} \sum_{(l,n)=1} \zeta_n^l (\lambda(ljk^*) - \lambda(-ljk^*)).\]

On observing that \(s_l = -i(\zeta_n^l - \zeta_n^{-l})\), we obtain Theorem 1.

\[\square\]

The setting of the proof of Theorem 2 is slightly different. Indeed, the unitary matrix \(X\) is defined by

\[X = \sqrt{n/\varphi(n)}(\chi(k))_{k \in \mathbb{R}, \chi \in \mathcal{X}^+}.\]

The cosine matrix \(C\) is normal, and \(X^t CX = T\), with \(T = \text{diag}(\tau(\chi))_{\chi \in \mathcal{X}^+}\). In this case it is easy to see that \(T\) (and, hence, \(C\)) is invertible if, and only if, \(n\) is square-free. Instead of (9) we have

\[\tau(\chi_f)\tau(\chi_f) = f_\chi.\]

The analogue of Lemma 2 reads

\[\sum_{\chi \in \mathcal{X}^+} \frac{\chi(k)}{f_\chi} = \frac{\varphi(n)}{2n} (\lambda(k) + \lambda(-k) + \rho_n) \quad (12)\]

with \(\rho_n\) as in (11). This is due to the fact that the counterpart of formula (10) takes the form

\[\sum_{\chi} \chi(q) = \begin{cases}
1, & \text{if } q \leq 2; \\
0, & \text{if } q \geq 3 \text{ and } k \not\equiv \pm1 \text{ mod } q; \\
\varphi(q)/2, & \text{if } q \geq 3 \text{ and } k \equiv \pm1 \text{ mod } q.
\end{cases}\]

Accordingly, formula (11) has the equivalent

\[\sum_{\chi \in \mathcal{X}^+} \frac{\chi(k)}{f_\chi} = \sum_{\varphi(q) \mid n, q \geq 3} \frac{\varphi(q)}{2q} \cdot \frac{\varphi(n/q)}{n/q} + \sum_{d\mid n, 2\mid d} \frac{\mu(d)}{d},\]

which gives (12). Up to these differences, the proof follows the pattern of the proof of Theorem 1.
References

[1] L. Carlitz, Some cyclotomic matrices, Acta Arith. 5 (1959), 293–308.

[2] H. Hasse, Vorlesungen über Zahlentheorie (2nd ed.), Springer, Berlin 1964.

[3] D. H. Lehmer, On certain character matrices, Pacif. J. Math. 6 (1956), 491–499.

[4] G. Molteni, About two trigonometric matrices, Lin. Alg. Appl. 382 (2004), 39–59.

[5] P. Morton, On the eigenvectors of Schur’s matrix, J. Number Th. 12 (1980), 122–127.

[6] A. Weil, La cyclotomie jadis et naguère, Sém. Bourbaki 1973-74, exp. nr. 452, 318–338.

Kurt Girstmair
Institut für Mathematik
Universität Innsbruck
Technikerstr. 13/7
A-6020 Innsbruck, Austria
Kurt.Girstmair@uibk.ac.at