Cosmological structure problem of the ekpyrotic scenario

Jai-chan Hwang(a,b)
(a) Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Taegu, Korea
(b) Institute of Astronomy, Madingley Road, Cambridge, UK
(Received November 5, 2018)

We address the perturbation power spectrum generated in the recently proposed ekpyrotic scenario by Khoury et al. The issue has been raised recently by Lyth who used the conventional method based on a conserved variable in the large-scale limit, and derived different results from Khoury et al. The calculation is straightforward in the uniform-curvature gauge where the generated blue spectrum with suppressed amplitude survives as the final spectrum. Whereas, although the metric fluctuations become unimportant and a scale-invariant spectrum is generated in the zero-shear gauge the mode does not survive the bounce, thus with the same final result. Therefore, an exponential potential leads to a power-law expansion/contraction $a \propto |t|^p$, and the power p dictates the final power spectra of both the scalar and tensor structures. If $p \ll 1$ as one realization of the ekpyrotic scenario suggests, the results are $n_S - 1 \approx 2 \approx n_T$ and the amplitude of the scalar perturbation is suppressed relative to the one of the gravitational wave by a factor $\sqrt{p}/2$. Both results confirm Lyth’s. An observation is made on the constraint on the dynamics of the seed generating stage from the requirement of scale-invariant spectrum.

I. INTRODUCTION

The ekpyrotic universe scenario based on colliding branes imbedded in extra-dimensional bulk has been suggested recently by Khoury et al. in [1]. Perhaps because of its ambitious plan to explain the origin of the hot big bang, and also of its plan to generate the scale-invariant (Harrison-Zeldovich [2]) spectrum without resorting to the inflation-type accelerating stage [3], it has been under close examinations [4]. In particular, a quite different scalar spectrum, including both the amplitude and the slope, was derived by Lyth in [7] which is supposed to be fatally threatening the scenario as a viable addition to the early universe models, see also [6,7] for recent additional arguments against [1].

If the imbedded 3 space literally passes through the singularity during the collision phase of the branes, thus making the 3+1 dimensional equations obsolete, probably we do not have handle about how to calculate the generated spectra from the scenario. It is suggested that the ekpyrotic scenarios [1,2,8,9] in fact go through singularity in the viewpoint of our three space, and in such a case we anticipate serious problems associated with the breakdown of the basic equations we are using. In this sense, to address the structural seed generation mechanism properly in the ekpyrotic scenario, it is likely that we need to handle the perturbation analyses in the context of the higher dimension which is at the moment an unsettled issue. If we assume, however, that the 3+1 dimensional effective field theoretical description works, and the linear perturbation theory holds during the bouncing stage, we can apply some well known tools of the cosmological perturbations developed especially over the last two decades. The current controversy about the scalar spectrum is in this narrow context [4,9,11] which we will also accept in the following. The possibility of breakdown of the linear perturbation theory as the scale factor approaches singularity was pointed out by Lyth in [1]. If we agree, however, that we can handle the situation using the linear perturbation based on the 3+1 spacetime effective theory with nonsingular bounce, as we will show below, the results are already well known in the literature which are used to make correct estimations [10].

An exponential type potential leads to a power-law expansion [1]

$$a \propto |t|^p, \quad V = -\frac{p(1 - 3p)}{8\pi G} e^{-\sqrt{16\pi G/p} \phi},$$

which includes the contraction as well. With $p \ll 1$ this potential is an example of the ekpyrotic scenario considered in [1,11]. Assuming (i) both the scalar and the tensor perturbations were generated from quantum fluctuations (of the field and the metric) during such a power-law era, and were pushed outside horizon, the analytic forms of the spectra based on the vacuum expectation values are known in the literature, see eqs. (47,48) in [12] for a summary. Under the simplest vacuum state, we have

$$P_{\varphi}^{1/2} = \sqrt{4\pi G/2\pi} |H|^{2} \frac{1 - p}{p} \frac{\Gamma(3p/2)}{\Gamma(3/2)} \frac{\Gamma(3 - 3p/(21 - p))}{\Gamma(3 - 2p/(21 - p))} \times [k/(a|H|)]^{1-p},$$

$$P_{C_{\alpha\beta}}^{1/2} = (2/\sqrt{p})P_{\varphi}^{1/2},$$

where $C_{\alpha\beta}$ is the tensor-type metric fluctuations, and $\varphi \equiv \varphi - (aH/k)v$ introduced by Lukash in [11] is a gauge-invariant combination which is proportional to the perturbed three-space curvature φ in the comoving gauge $(v \equiv 0)$; φ is also introduced as ϕ_m in [12], and is the same as R in [10]. For our notation, see [13].
Overhats indicate the spectra based on the vacuum expectation value of the quantum fluctuations of the field and the metric. Thus, assuming (ii) the scale stays outside horizon while there are transitions (like the inflation to the radiation dominated eras, and radiation to the matter dominated eras), due to the conservation property of the growing solutions of both φ_v and $C_{\alpha\beta}$ [see eqs. (24,25)] we can identify the above spectra P_φ_v and $P_{C_{\alpha\beta}}$ imprinted during the quantum generation stage just after the horizon crossing with the classical power spectra P_φ_v and $P_{C_{\alpha\beta}}$ based on on the spatial averages at the second horizon crossing epoch. Therefore, spectral indices for the scalar (S) and the tensor (T) structures, $n_S - 1 \equiv d\ln P_\varphi_v/d\ln k$ and $n_T \equiv d\ln P_{C_{\alpha\beta}}/d\ln k$, become

$$n_S - 1 = 2/(1 - p) = n_T. \quad (4)$$

Thus, in the power-law inflation limit with large p we have the scale-invariant spectra $n_S - 1 \simeq 0 \simeq n_T$.

In the ekpyrotic scenario, although no acceleration phase before the radiation dominated big bang stage, the two assumptions (i,ii) above apply as well; the growing solutions of φ_v and $C_{\alpha\beta}$ are conserved as long as we have the large-scale conditions (see later) are met, and we will see that these conditions are satisfied during the transition from the collapsing to the expanding phases in the ekpyrotic scenario. Thus, now with $p \ll 1$ we have $n_S - 1 \simeq 2 \simeq n_T$ which differs from the result in [13] for n_S. Besides the wrong spectral slope, eq. (4) shows that the amplitude of scalar structure is suppressed relative to the one of gravitational wave, which probably means that the scalar perturbation should be negligible as pointed out in [5].

We still observe the different opinions maintained in the literature: (i) the final scale-invariant spectrum from the scenario [13] (ii) the final blue spectrum with negligible amplitude when the bounce is nonsingular [21,22], and (iii) the breakdown of the linear theory in the singular bounce [14]. The issues are manifold involving different gauge conditions, different matching conditions used, and others. In the following we will address the issues involved in the differences and will indicate how the analyses consistently support (ii) or (iii) instead of (i). Since there is no controversy over the tensor spectrum, we will concentrate on the scalar spectrum.

II. QUANTUM GENERATION: TWO GAUGES

The different opinions between [21,22] and [13] can be partly traced to different generated spectra before the model makes the bounce. In a naive calculation ignoring the metric fluctuations, [13] showed a scale-invariant spectrum. In a rigorous calculation (based on $\delta \phi$ in the uniform-curvature gauge), [21,22], however, showed that including the metric fluctuation is important resulting in a blue spectrum with suppressed amplitude. Then, [21,22] showed that, in fact, in the zero-shear gauge the metric fluctuation becomes negligible, thus confirming the original scale-invariant spectrum; see below. Different results from different gauge conditions in the large-scale limit are not surprising because the metric fluctuations often dominate in that scale. Although the final observable result should be the same, the intermediate steps could depend on the gauge conditions we choose for the analyses. In the case of the uniform-curvature gauge the later evolution is simple as explained below eq. (3), and the generated spectrum simply survives as the final spectrum, whereas the analyses in the zero-shear gauge is somewhat intricate which we will explain in the following and the next section.

In order to clarify the situation, in this section we present the generated scalar perturbation during the quantum generation stage in the two gauge conditions. We introduce

$$\varphi_{\delta \phi} \equiv \varphi - (H/\dot{\phi})\delta \phi \equiv -(H/\dot{\phi})\delta \phi_v, \quad (5)$$

which are just different definitions of a gauge-invariant combination of φ and $\delta \phi_v$; $\varphi_{\delta \phi}$ can be interpreted as the φ in the uniform-field gauge ($\delta \phi = 0$), and $\delta \phi_v$ is the $\delta \phi$ in the uniform-curvature gauge ($\varphi = 0$); as $\nu = (k/a)\delta \phi_v/\dot{\phi}_v$ for the field, we have $\varphi_{\delta \phi} = \varphi_v$. The above relation is powerful in analyzing the classical evolution and the quantum generation of scalar perturbation, see [13] for a summary. Whereas, as we will explain later, using $\delta \phi_{\chi} \equiv \delta \phi - \dot{\phi}_\chi$, which is $\delta \phi$ in the zero-shear gauge ($\chi = 0$), the analysis becomes somewhat involved eventually leading to the same final result.

The equation for the perturbed scalar field is simplest when viewed in the uniform-curvature gauge

$$\delta \ddot{\phi}_v + 3H \dot{\delta \phi}_v + \left(k^2/a^2 + V_{,\phi\phi} \right) \delta \phi_v + 2\frac{\ddot{H}}{H^2} \left(3H - \frac{\dddot{H}}{H} + 2\frac{\ddot{\phi}}{\dot{\phi}} \right) \delta \phi_v = 0, \quad (6)$$

where the terms in the second line come from the metric perturbations, compare eqs. (7, A9) in [13]; other gauge conditions cause more complicated contributions from the metric [13]. Calling the metric term a metric back-reaction could be misleading because the perturbed field excites/accompanies the metric fluctuations simultaneously. Keeping the contribution from the metric is necessary and makes the equation consistent and even simpler in the sense that we have a general large-scale solution, see eq. (24). When the background is supported by a near exponential expansion the whole term from the metric, and $V_{,\phi\phi}$ separately, nearly vanish; this explains why the original derivation of the inflationary spectra in [14,15] was successful even without fully considering the metric perturbations. However, situation could be different in other cases like the power-law expansion (contraction as well) where the ekpyrotic scenario based on exponential potential is one example. In the power-law
expansion in eq. [11] the metric term cancels with $V_{,\phi\phi}$ exactly, see eq. (22) in [14]. It happens that for $p \ll 1$ the $V_{,\phi\phi}$ term without the metric gives a contribution which can be translated to the $n_{\eta} \simeq 1$ scalar power spectrum; this was pointed out in [11]. However, this term should be cancelled exactly by the metric term. With this metric effect taken into account we end up with a massless free scalar field equation which can be translated to $n_{\eta} \simeq 3$ generated spectrum. As explained below eq. [13] this generated spectrum simply survives the later evolution, see next section.

In the zero-shear gauge the equation for $\delta \phi_\chi$ was derived in eq. (27) of [3]

$$\delta \ddot{\phi}_\chi + \left[3H + \frac{8\pi G (\ddot{\phi} + H \dot{\phi})}{H + k^2/a^2} \right] \delta \dot{\phi}_\chi + \left[\frac{k^2}{a^2} + V_{,\phi\phi} + 4\dot{H} - \frac{8\pi G (\ddot{\phi} + H \dot{\phi})}{H + k^2/a^2} \right] \delta \phi_\chi = 0,$$

which looks quite complicated compared with eq. [3]. In the small-scale limit, eqs. (11) both reduce to the massless and free scalar field equation. In the large-scale limit, we have

$$\delta \ddot{\phi}_\chi + 3H \delta \dot{\phi}_\chi + V_{,\phi\phi} \delta \phi_\chi + 4\dot{H} \delta \phi_\chi = 0.$$ (8)

Thus, in this limit, the only metric contribution which is the last term becomes simple. As we have $V_{,\phi\phi} = -2(1 - 3p)/t^2$ and $4\dot{H} = -p/t^2$, for $p \geq 0$ the metric contribution becomes negligible compared with $V_{,\phi\phi}$; this is in contrast with the uniform-covariance gauge case where the metric term cancels exactly with the $V_{,\phi\phi}$ term. The authors of [1] pointed out that the analysis in this gauge, which is rigorous, is the same as the one based on naive calculation simply ignoring the metric perturbations presented in [3]. Thus, the generated spectrum for $\delta \phi_\chi$ is scale-invariant, whereas the one for ϕ_δ is blue. Later, we will show how these two apparently different results lead to the same final observable spectrum in the expanding phase.

Now, we present a rigorous derivation of the generated perturbation in the two gauges. Using Mukhanov’s notation in [18] we have, see also eqs. (46,47,68-70) in [13],

$$u = -\frac{4\pi G z}{k^2} \left(\frac{\nu}{z} \right)^2, \quad v = \frac{1}{4\pi G z} (zu)' \quad v' + \left[k^2 - \frac{z''}{z} \right] v = 0, \quad w'' + \left[k^2 - \frac{(1/z)''}{1/z} \right] u = 0,$$

$$v = a \delta \phi_\varphi, \quad u = -\varphi_\chi/\phi, \quad z = a \phi/H,$$

where $\varphi_\chi \equiv \varphi - H \chi$, and a prime indicates a time derivative based on η where $dt \equiv a d\eta$. We have

$$\delta \phi_\chi = \delta \phi_\varphi + (\dot{\phi}/H) \varphi_\chi,$$ (12)

which follows from eq. (3) evaluated in the zero-shear gauge. In the power-law case, using eqs. (7,8) of [3] we have ($p \neq 1$)

$$z'' = -p(1 - 2p)/p^3, \quad 1/z = \frac{p}{1 - (1 - p)^2/2},$$

Thus, in this limit, the only metric contribution which is the last term becomes simple. As we have $V_{,\phi\phi} = -2(1 - 3p)/t^2$ and $4\dot{H} = -p/t^2$, for $p \geq 0$ the metric contribution becomes negligible compared with $V_{,\phi\phi}$; this is in contrast with the uniform-covariance gauge case where the metric term cancels exactly with the $V_{,\phi\phi}$ term. The authors of [1] pointed out that the analysis in this gauge, which is rigorous, is the same as the one based on naive calculation simply ignoring the metric perturbations presented in [3]. Thus, the generated spectrum for $\delta \phi_\chi$ is scale-invariant, whereas the one for ϕ_δ is blue. Later, we will show how these two apparently different results lead to the same final observable spectrum in the expanding phase.

Now, we present a rigorous derivation of the generated perturbation in the two gauges. Using Mukhanov’s notation in [18] we have, see also eqs. (46,47,68-70) in [13],

$$u = -\frac{4\pi G z}{k^2} \left(\frac{\nu}{z} \right)^2, \quad v = \frac{1}{4\pi G z} (zu)' \quad v' + \left[k^2 - \frac{z''}{z} \right] v = 0, \quad w'' + \left[k^2 - \frac{(1/z)''}{1/z} \right] u = 0,$$

$$v = a \delta \phi_\varphi, \quad u = -\varphi_\chi/\phi, \quad z = a \phi/H,$$

where $\varphi_\chi \equiv \varphi - H \chi$, and a prime indicates a time derivative based on η where $dt \equiv a d\eta$. We have

$$\delta \phi_\chi = \delta \phi_\varphi + (\dot{\phi}/H) \varphi_\chi,$$ (12)

which follows from eq. (3) evaluated in the zero-shear gauge. In the power-law case, using eqs. (7,8) of [3] we have ($p \neq 1$)
III. CLASSICAL EVOLUTION AND FINAL SPECTRUM

Since the final scalar spectrum could be directly related to the large angular scale CMB anisotropies the final result should be physical, and the methods (involving the gauges, matching conditions, etc.) used to get the results should not affect the final results. In this section, assuming the linear perturbation theory is valid for scales we are interested in, we present the evolution of the perturbation generated during the collapsing phase as the background model goes through (smooth and non-singular) bounce into the expanding phase.

In the large-scale limit, thus ignoring k^2 terms, eq. (10) have general solutions

\[\varphi_\chi (k, t) = \frac{4\pi G\mu a^2}{k^2 - 3k} \delta v (k, t) \]
\[= 4\pi GC (k) \frac{H}{a} \int^t a (\mu + P) dt + \frac{H}{a} d(k), \]
\[\varphi_v (k, t) = C (k) - d(k) \frac{k^2}{4\pi G} \int^t dt \int^{k_0} dQ, \]
\[\varphi_\delta (k, t) = \varphi_v + \frac{1}{12\pi G (\mu + P)} \frac{k^2}{a^3} \varphi_\chi, \]

where $Q = \frac{\mu + P}{c^2 H^2}$ with $c^2_\chi \equiv \hat{P}/\mu$ for the fluid, and $Q = \frac{\phi^2}{H^2}$ for the field; for notations, see [13]. C and d are spatially dependent two integration constants. We call the term with coefficient C the C-mode and the other the d-mode. The C-mode is relatively growing and the d-mode is relatively decaying and the d-mode can grow in a contracting phase. We emphasize the general character of these solutions which are valid considering generally time-varying equation of state $P(\mu)$ or potential $V(\phi)$. Above results are valid for $K = 0$; for more general forms applicable to general K and Λ, see [14]. Notice that the d-modes of φ_v and φ_δ are already higher order in the large-scale expansion compared with the one of φ_χ.

As the large-scale power spectra in eqs. (15-16) are time-independent, these can be identified with the constant C-modes of φ_v and φ_χ in eqs. (14); in our power-law background we have $\delta \phi_v \propto \varphi_v$ and $\delta \phi_\chi \propto \varphi_\chi$ which follow from eqs. (13). Thus, for $p \gg 1$, eqs. (13-17) both give the same final scale-invariant spectra in eq. (14). Whereas, notice the time dependences of eqs. (14-15) which are proportional to $|t|/a^3$ and $|H|/a$. These can be identified with the d-modes of φ_v and φ_χ in eqs. (24-25); the latter one was correctly pointed out in [3], and a scale-invariant case with $p = \frac{4}{3}$ for φ_v, corresponds to the d-mode, thus not interesting. For the ekpyrotic scenario with $p \ll 1$ we have eq. (15) for $\delta \phi_v$ thus φ_v, and eq. (13) for $\delta \phi_\chi$ thus φ_χ. Hence, while the power spectrum for φ_v contributes to the C-mode, the one for φ_χ contributes to the d-mode. As will be further explained later, despite its apparent growth in time the d-mode generated in a contracting phase is not interesting because it will affect only the d-mode which is a real decaying mode in the later expanding phase.

In the case of $p < 1$, since $\frac{H}{t^{1-p}} \approx |\eta| \propto |t|^{1-p}$ becomes small as we approach the bouncing epoch, the large-scale general solutions in eqs. (19-21) are well valid considering time-varying $P(\mu)$ or $V(\phi)$ including sudden jumps. Since the solution is valid considering general time-varying equation of state or potential, the vanishing potential near bounce in [3] will not affect the final result as long as the scale remains in the large-scale.

As we already have the general solutions the matching approximation is unnecessary for the case which is supposed to be an approximation. However, since [3] employed some ad hoc matching conditions to make the scale-invariant spectrum of φ_χ to survive as the dominant mode in the expanding phase, in the following we will explain how the proper matching conditions lead to a consistent result with the one based on the general solutions in eqs. (19-21).

In [23] two gauge-invariant joining variables were derived which are continuous at the transition accompanying a discontinuous change in pressure assuming perfect fluids. These are

\[\varphi_\chi, \varphi_\delta. \]

These are shown to be continuous for general K and Λ in arbitrary scale. Instead of φ_χ we can use δ_v in eq. (14) as the continuous variable as well. The transitions between scalar fields, and between the fluid and the field are treated separately, see below eq. (15) of [23]. For the background, a and \dot{a} should be continuous at the transition. Consider two phases I and II with different equation of states, making a transition at t_1. In the large-scale limit by matching φ_χ and φ_δ in eqs. (19-21) we can see that to the leading order in the large-scale expansion we have

\[C_{II} = C_1. \]
This is consistent with the result in eq. (17) of [20]. Thus, to the leading order in the large-scale expansion the C-mode of φ_v remains the same, whereas the d-mode of φ_χ is affected by the transition and also the previous history of the d- and C-modes [20]. Thus, the evolution of the C-mode does not depend on the intermediate stages while the perturbations are in the large-scale. While in the super-horizon scale the effect of the entropic term of the scalar field is negligible, thus the same conclusions apply to the case including the field as well.

These results from the joining method coincide with the general large-scale conservation solutions in eqs. (19-21) which are valid for the time varying equation of state $P(\mu)$ or potential $V(\phi)$. Thus, our joining method simply confirms that by using the proper joining variables we can recover the correct results. We note that the results based on the integral solutions or the joining methods are not sensitive to whether the background is expanding or collapsing. Only condition required is the large-scale condition where we could ignore the k^2-term in the perturbation equation. Analyses made in [3] confirm our general conclusions above in the specific situation of the ekpyrotic scenario.

We note that in the collapsing background, the d-modes in eq. (19) grows in time; it is called the growing solution in [3]. We have shown that the leading order scale-invariant spectrum of $\delta \phi_\chi$ generated in the collapsing phase with $p \ll 1$ should be identified as the d-mode. Despite its apparent growth in time we are not interested in this d-mode based on the following reasons. Firstly, eq. (19) is a general solution valid for time-varying equation of state or potential, thus independently of whether the time-dependence is growing or decaying the d-mode remains as the d-mode which decays in the eventual expanding phase. Secondly, by using the sudden jump approximation we have shown that the d-mode does not influence the C-mode which is the proper relatively growing mode in expanding phase. Thus, d-mode is uninteresting afterall; it dies away in a few Hubble expansion as the model enters the expanding phase.

In [3] the authors proposed to use the non-divergent variables at the transition as the joining variable, and arrived at matching the two coefficients of a variable δ_v, see below eq. (43) of [3]. In a single component situation we need two matching conditions, and we should use the matching conditions on two independent variables, not on the two coefficients of one variable. The matching conditions proposed in [3] are different from the ones in eq. (22) and we doubt their validity. Near bounce of ekpyrotic scenario, as the potential nearly vanishes (see (3)) we have $p \approx \frac{1}{3}$ and the d-modes of φ_χ, φ_v and φ_δ in eqs. (19,20) diverge whereas δ_v is finite due to multiplication of a vanishing factor $1/(\mu a^2)$ in eq. (19). In passing we note that the corresponding solution of the gravitational wave is [3]

$$C^\alpha_{\beta}(k,t) = c^\alpha_{\beta}(k) - d^\alpha_{\beta}(k) \int \frac{dt}{a^3},$$

where the d^α_{β}-mode also diverges logarithmically in the same manner as φ_v and φ_δ. The singular divergences occur if we reach a singularity at the bouncing epoch with vanishing scale-factor a.

IV. CONCLUSION

Our analyses and results are based on two important assumptions: (i) the contracting and the expanding phases are smoothly (a and \dot{a} are continuous) connected by a non-singular bounce, and (ii) the linear theory is valid. The generated spectrum during collapsing phase with $p \approx 0$ shows blue spectrum for $\delta \phi_\chi$ which is identified as the C-mode. Authors of [3] find that $\delta \phi_\chi$ has a scale-invariant spectrum, but we and [3] have shown that it should be identified as the d-mode which shows apparent growth in the contracting phase, but decays as the model enters the expanding phase, thus uninteresting; the matching conditions also show that C-mode in expanding phase is not affected by any d-mode in previous history as long as the large-scale condition is met. Although, this may sound strange (because the growing solution in contracting phase is feeded into the decaying one in expanding phase) it is actually apparent in the general large-scale solutions in eqs. (19,20).

However, as the ekpyrotic scenario encounters a singular ($a = 0$) bounce [3,4], we are not sure whether the above analyses based on classical gravity can survive such a bounce. This does not mean that the other case suggested in [3], that through the bounce the d-mode in contracting phase is switched into the C-mode in the expanding phase, is plausible at all; notice that C and d are coefficients of the two independent solutions. Especially, we note that the matching conditions used in [3] are ad hoc and inconsistent with the known matching conditions in the literature. [3] pointed out that as mode approaches the singular epoch the d-mode fluctuation grows large enough that the linear theory could break down. If the bouncing universe is at all possible in future string theory context as conjectured in [3], and if it involves the singular transition, the fate of perturbations should be handled in the context of that string theory. Thus, our conclusion is that either the final spectrum is blue with suppressed amplitude or the issue should be handled in the future string theory context with a concrete mechanism for the bounce. In either case we find no supporting argument to accept the final scale-invariant spectrum based on the analyses made in [1,4].
V. DISCUSSIONS

As in the pre-big bang scenario which also gives very blue spectra $n_S - 1 \simeq 3 \simeq n_T$ \cite{21,22}, in order to become a viable model to explain the large-scale structures and the cosmic microwave background radiation anisotropy the ekpyrotic scenario should resort to the other mechanism which is unknown at the moment; perhaps one can find suitable parameter space in the isocurvature modes by considering multi-components as in the pre-big bang scenario \cite{23}. In contrast with the pre-big bang scenario where the amplitudes of the scalar and tensor structures are comparable, see eq. (42) in \cite{22}, since the scalar structure in the ekpyrotic scenario is suppressed relative to the tensor one, the isocurvature possibility to generate the observed structures is more plausible, except that pure isocurvature modes are unfavored by the large-scale structure and the cosmic microwave background anisotropy observations \cite{24}.

Before we have the fully considered perturbations both in the brane and the bulk, the results based on the effective field theory should be regarded as preliminary ones. This is an unsettled issue at the moment and whether the resulting spectra from full consideration could be scale-invariant is far from clear. Similar anticipation is made about whether more complete consideration of the quantum corrections (which is actually required as we approach the transition epoch) can make the pre-big bang scenario a less blue and eventually scale-invariant spectra; there is a signature in the right direction, but not enough at the moment \cite{25}.

Based on the above results, we can make the following observation. Assuming power-law expansion/contraction $a \propto |t|^p$ during the seed generating stage from quantum fluctuations, the observational requirement of the scale-invariant spectrum for the scalar structure requires $p \gg 1$, thus $-1 < w \ll -\frac{1}{3}$. Thus, for an expanding phase we need accelerated expansion, whereas for a contracting phase we need a damped collapse. During the damped collapse, however, we have $\frac{a(t)}{a_0}$ becoming large as we approach the bouncing epoch $t \to -0$, thus violating the large-scale condition we used; this can introduce a scale dependent damping in the final spectra. As we have mentioned, in an undamped contraction with $p < 1$ we have the large-scale condition well met during the transition, but the resulting spectrum is not scale-invariant.

We thank Robert Brandenberger, Christopher Gordon, Justin Khoury, and David Wands for useful discussions. We also thank Paul Steinhardt and Neil Turok for clarifying talks and explanations about their theory during the M-theory meeting in Cambridge. We acknowledge Robert Brandenberger for showing us the early draft of \cite{6} before publication, and Andrei Linde for sharing his opinion on the issue during COSMO-01 conference in Rovaniemi. We wish to appreciate Neil Turok for clarifying discussions on several aspects of the ekpyrotic sce-

\begin{thebibliography}{99}
\item J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, hep-th/0103239.
\item E. R. Harrison, Phys. Rev. D 1, 2726 (1970); Ya. B. Zeldovich, Mon. Not. R. Astron. Soc. 160, 1p (1972).
\item J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, hep-th/0109050.
\item R. Kallosh, L. Kofman, and A. Linde, hep-th/0104073.
\item J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, hep-th/0105212.
\item D. H. Lyth, hep-th/0106153.
\item R. Brandenberger and F. Finelli, hep-th/0109004.
\item D. H. Lyth, hep-th/0110007.
\item J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt, and N. Turok, hep-th/0108187.
\item N. Turok, private communication.
\item F. Lucchin, and S. Matarrese, Phys. Rev. D 32, 1316 (1985).
\item E. D. Stewart, and D. H. Lyth, Phys. Lett. B 302, 171 (1993), gr-qc/9302010.
\item V. N. Lukash, Sov. Phys. JETP Lett. 31, 596 (1980); Sov. Phys. JETP 52, 807 (1980).
\item J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
\item H. Noh, and J. Hwang, Phys. Lett. B 513, 231 (2001), astro-ph/0107069.
\item J. Hwang, Phys. Rev. D 48, 3544 (1993).
\item J. Hwang, Astrophys. J. 427, 542 (1994).
\item A. H. Guth, and S. Pi, Phys. Rev. Lett. 49, 1110 (1982) S. W. Hawking, Phys. Lett. B 115, 295 (1982); A. A., Starobinsky, Phys. Lett. B 117, 258 (1982).
\item J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D 28, 679 (1983).
\item V. F. Mukhanov, Sov. Phys. JETP 68, 1297 (1988).
\item J. M. Bardeen, in Cosmology and Particle Physics, eds., Fang, L, and Zee, A., (Gordon and Breach, London, 1988), 1.
\item J. Hwang, and E. T. Vishniac, Astrophys. J. 382, 363 (1991).
\item R. Brustein, M. Gasperini, M. Giovannini, V. Mukhanov, and G. Veneziano, Phys. Rev. D 51, 6744 (1995), hep-th/9501066.
\item J. Hwang, Astropart. Phys. 8, 201 (1998), hep-th/9608041.
\item E. J. Copeland, J. E. Lidsey, and D. Wands, Phys. Lett. B 443, 97 (1998), hep-th/9809105.
\item G. Efstathiou, and J. R. Bond, Mon. Not. R. Astron. Soc. 218, 103 (1986); M. Bucher, K. Moodley, and N. Turok, astro-ph/0007364.
\item C. Cartier, J. Hwang, and E. Copeland, Phys. Rev. D 64, 103504 (2001), astro-ph/0106197.
\end{thebibliography}