Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice

Masataka Ifuku1, Toshihiko Katafuchi1*, Shiro Mawatari2, Mami Noda3, Kiyotaka Miake4, Masaaki Sugiyama4 and Takehiko Fujino2

Abstract

Background: Neuroinflammation involves the activation of glial cells in neurodegenerative diseases such as Alzheimer’s disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes such as vesicular fusion and signal transduction.

Methods: In this study the preventive effects of Pls on systemic lipopolysaccharide (LPS)-induced neuroinflammation were investigated using immunohistochemistry, real-time PCR methods and analysis of brain glycerophospholipid levels in adult mice.

Results: Intraperitoneal (i.p.) injections of LPS (250 μg/kg) for seven days resulted in increases in the number of Iba-1-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes in the prefrontal cortex (PFC) and hippocampus accompanied by the enhanced expression of IL-1β and TNF-α mRNAs. In addition, β-amyloid (Aβ3–16)-positive neurons appeared in the PFC and hippocampus of LPS-injected animals. The co-administration of Pls (i.p., 20 mg/kg) after daily LPS injections significantly attenuated both the activation of glial cells and the accumulation of Aβ proteins. Finally, the amount of Pls in the PFC and hippocampus decreased following the LPS injections and this reduction was suppressed by co-treatment with Pls.

Conclusions: These findings suggest that Pls have anti-neuroinflammatory and anti-amyloidogenic effects, thereby indicating the preventive or therapeutic application of Pls against AD.

Keywords: Neuroinflammation, Phospholipids, Microglia, Alzheimer’s disease

Background

It has been demonstrated in mice and rats that the systemic administration of lipopolysaccharide (LPS) and polyriboinosinic-polyribocytidylic acid (poly I:C), ligands for toll-like receptor (TLR) 4 and TLR 3, respectively, induce neuroinflammation in the central nervous system (CNS), thus leading to neurodegeneration, the suppression of neurogenesis and the impairment of cognitive behavior [1-3]. One of the possible mechanisms of neuroinflammation may be the production of β-amyloid proteins (Aβ). For example, a single intraperitoneal (i.p.) injection of LPS increases the activity of β-secretase, a key rate-limiting enzyme that initiates Aβ formation, and the concentration of brain Aβ40 in adult but not young mice [1]. Furthermore, the intracellular accumulation of Aβ42 in hippocampal pyramidal neurons following daily injections of LPS for seven days has been immunohistochemically demonstrated [1]. Although the precise mechanisms underlying LPS-induced amyloidogenesis have not yet been determined, it is likely that proinflammatory cytokines such as IL-1β, TNF-α, IFN-γ, and reactive oxygen/nitrogen species (ROS/RNS) released from activated glial cells play significant roles in Aβ formation, which are suppressed by NSAIDs through the activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) [4-6].

Plasmalogens (Pls) are unique glycerophospholipids that contain a vinyl ether bond at the sn-1 position of the membrane.
glycerol moiety. They are found in all mammalian tissues, especially in the heart and brain, in which ethanolamine Pls (PlsEtn) are much more abundant than choline Pls (PlsCho) [7]. Pls release either docosahexaenoic acid (DHA) or arachidonic acid (ARA) from the sn-2 position through the activation of Pls-selective phospholipase A2 (Pls-PLA2) [8,9]. Pls are not only structural membrane components and reservoirs for second messengers, but they are also involved in membrane fusion, ion transport and cholesterol efflux [7]. In addition, the vinyl ether bond at the sn-1 position makes Pls more susceptible to oxidative stress than corresponding ester bonded glycerophospholipids, which act as antioxidants and protect cells from oxidative stress [10-13].

It has been shown that patients suffering from Alzheimer’s disease (AD) have reduced PlsEtn levels in the cortex and hippocampus [14-16]. The reduction of PlsEtn levels seems to be specific since other neurodegenerative diseases such as Huntington’s and Parkinson’s do not show decreases in corresponding affected brain regions (the caudate nucleus and the substantia nigra, respectively) [7,14,17]. Furthermore, circulating PlsEtn levels are also decreased depending on the severity of dementia [18,19]. It has been suggested that deficiencies of PlsEtn may lead to increases in the vulnerability of neural membranes to oxidative stress, destabilization of membranes, impairment of muscarinic cholinergic signals and abnormal amyloid precursor processing [7,17,20].

Although Pls are considered to be involved in the pathology of AD, the influence of Pls on Aβ accumulation has not been examined, probably due to the difficulty of extracting massive amounts of intact Pls. Recently, we developed a new method for preparing highly pure Pls [21], which enabled us to investigate this issue. In the present study, in order to elucidate the anti-neuroinflammatory/anti-amyloidogenic actions of Pls, we investigated the effects of co-administered Pls on the systemic LPS-induced changes in the morphology of glial cells, the expression of cytokines, the accumulation of Aβ and the levels of Pls in the prefrontal cortex (PFC) and hippocampus of adult mice.

Methods

All experimental procedures involving the use of animals were approved by the Ethics Committee on Animal Experiments at Kyushu University and were in accordance with the Guiding Principles for the Care and Use of Animals of the Physiological Society of Japan. All efforts were made to minimize animal suffering and the number of animals used in the study.

Animals

Male C57/6j mice weighing 32 to 37 g (10 months old) were used in all experiments. The animals were housed five per cage at a temperature of 22 ± 2°C with 12 hour light/12 hour dark cycles (lights on at 8:00) with free access to laboratory food and water. The mice were randomly divided into four groups: control (Con), LPS, LPS + Pls and Pls. LPS (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in saline, while the Pls were dissolved in corn oil then sonicated to ensure complete solubilization. The LPS group received an i.p. injection of LPS (250 μg/kg) followed by corn oil in the morning (9:00 to 10:00) daily for seven days (days 1 to 7). The LPS + Pls group was treated with LPS followed by Pls (20 mg/kg) for seven days, while the Pls group was injected with saline and Pls. The Con group was given saline and corn oil for seven days. All animals were sacrificed on day 8. The body weights were measured in the morning before injection on day 1 to day 8.

Pl preparation

The Pls used in the present study were prepared from chicken breast muscle using a previously reported method [21]. A HPLC used for phospholipid separation [22] indicated that the purified Pls consisted of 47.6% PlsEtn, 49.3% PlsCho, 2.4% sphingomyelin (SM) and 0.5% other phospholipids. The composition of fatty acids of PlsEtn and PlsCho was analyzed using the previously described HPLC method [21], as shown in Table 1.

Immunohistochemistry and immunofluorescence

The mice were deeply anesthetized with pentobarbital (50 mg/kg) and transcardially perfused with PBS followed by 4% paraformaldehyde. For each animal, the brain was removed, post-fixed for 24 hours and then transferred successively to 20% and 30% sucrose solutions. Subsequently, the brains were frozen on a cold stage and sliced into 30 μm thicknesses using a cryostat. The sections were permeabilized with 0.3% Triton-X 100 (Sigma-Aldrich) in PBS for 15 minutes and blocked in PBS containing 1% BSA and 5% normal donkey serum (Jackson ImmunoResearch Lab., West Grove, PA, USA).

| Table 1 The fatty acid composition of the PlsEtn and PlsCho in the purified Pls |
|-----------------|-----------------|-----------------|
| Numerical symbol | PlsEtn (%)      | PlsCho (%)      |
| 16:0            | 3.6             | 20.5            |
| 18:0            | 2.2             | 12.4            |
| 18:1, n-9       | 26.3            | 20.1            |
| 18:2, n-6       | 4.1             | 10.1            |
| 18:3, n-3       | 7.2             | 3.8             |
| 20:4, n-6       | 24.9            | 17.2            |
| 22:6, n-3       | 186             | 2.3             |
| others          | 13.2            | 13.6            |
for 60 minutes at room temperature. The sections were incubated in blocking solution (Block Ace, Dainippon Pharmaceutical, Osaka, Japan) for 30 minutes at room temperature and then incubated with rabbit polyclonal antibodies against Iba-1 (1:10000; Wako Pure Chem. Indus., Osaka, Japan), which are known to have specific affinity for microglial Ca2+–binding proteins and are highly expressed by activated microglia, and anti-glial fibrillary acidic proteins (GFAPs) (1:3000; Sigma-Aldrich) for astrocytes in 10% Block Ace in PBS at 4°C overnight. Other sections were incubated with polyclonal antibodies against Aβ3–16 (1:1000; ab14220, Abcam, Cambridge, UK) and NeuN (1:1000; Millipore, Billerica, MA, USA). According to the manufacturer’s instructions, ab14220s react with all isoforms of mouse and rat Aβ. The rinsed sections were incubated for six hours with Alexa Fluor 488 goat anti-rabbit IgG or Alexa Fluor 568 goat anti-mouse immunoglobulin G (IgG) (1:1000; Invitrogen, Eugene, OR, USA) at room temperature. Every treatment was followed by washing three times for five minutes with PBS. The sections were then mounted in the perma fluoro aqueous mounting medium (Thermo Fisher Scientific, Waltham, MA, USA).

Quantitative analysis of fluorescence intensity
All samples were analyzed with a confocal laser-scanning microscope (LSM510 Meta; Carl Zeiss, Jena, Germany). The number of glial cells in 90 to 100 areas of 200 μm x 200 μm in four slices per brain was counted and the average number/4 x 10^4 μm^2 was obtained for each brain.

Real-time PCR
Mice were deeply anaesthetized with pentobarbital and perfused transcardially with phosphate buffered saline, then the PFC and hippocampus were removed immediately. Total RNA was isolated from the samples using magnetic beads (MagExtractor system; Toyobo, Tokyo, Japan) after homogenizing the tissues. Primer pairs were chosen to flank at least one intron. The amount of total RNA was quantified by measuring the optical density 250 using a Nanodrop spectrophotometer (Nanodrop, Wilmington, DE, USA). For reverse transcription, 100 ng of total RNA was transferred to the reaction using an RNA PCR kit (AMV) (Takara Bio Inc., Otsu, Japan) after homogenizing the tissues. Primer pairs were used for PCR amplification. The data were analyzed using SYBR-Green real-time PCR (Applied Biosystems, Foster City, CA, USA) with ABI PRISM 7500 System software v2.0 (Applied Biosystems). All values of cytokines were normalized to the corresponding β-actin concentration obtained using the same method. The sequences of primers were follows: IL-1β, sense; 5′- CTCCATGAGTCTTGATACAAGG -3′, antisense; 5′- TGGCTGATGACCACTTTGGGG -3′; TNF-α, sense; 5′- CCACCACGTCTTCTGTCCTC -3′, antisense; 5′- TGGGCTACAGCTTGTACTC -3′ β-actin, sense; 5′- TTGCTGACAGGATGCGAAGAGGAG -3′, antisense; 5′- GTGGACAGTGGAGCCAGGAT -3′. The predicted sizes of the PCR products were 245 bp for IL-1β, 196 bp for TNF-α, and 127 bp for β-actin mRNA.

Measurement of the PI levels in the PFC and hippocampus
Mice were deeply anaesthetized with pentobarbital (50 mg/kg) and transcardially perfused with sterile PBS. For each animal, the brain was removed and the PFC and hippocampus were dissected in a dish filled with ice-cold PBS. The samples (300 mg to 500 mg) were stored at −80°C until PI measurement. Total lipids were extracted using the method of Folch and coworkers [23], and the relative composition of phospholipid classes, including PIs, was measured as previously reported [22].

Statistical analysis
The results are expressed as the mean ± SEM. The body weights (BW), numbers of Iba-1+ and GFAP+ cells and amounts of mRNAs were compared using one-way analysis of variance (ANOVA) followed by post hoc (Scheffe’s) test. Changes in the PlsEtn levels and the ratio of PlsEtn/Phosphatidyl Etn (PEtn) determined after LPS and PI injection were evaluated using the non-parametric Kruskal-Wallis test followed by the Steel test for multiple comparisons. Values of P < 0.05 were considered to be statistically significant.

Results

Body weight changes after LPS and PIs
The BWs of the mice in the LPS group started to decrease on day 2 and showed significant differences between groups on day 4 that lasted until day 8 (day 4: F(3,28) = 7.1, day 5: F(3,28) = 8.1, day 6: F(3,28) = 6.0, day 7: F(3,28) = 9.0 and day 8: F(3,28) = 9.4, P < 0.01, respectively, each group, n = 8). The post hoc test indicated that the BWs of the LPS group were different from those of the control (Con) group (day 4, 5, 7 and 8, P < 0.05) and the Pls group (from day 4 to 8, P < 0.01). However, the LPS + PIs group showed no significant differences between either the Con or PIs group in terms of BW at any point (Figure 1).

Suppression of glial activation by PIs
As shown in Figure 2Aa, the Con group that received saline and corn oil for seven days showed typical features of Iba-1-positive (green) resting microglia with small and compact soma bearing ramified processes (‘a’) in the PFC. GFAP was immunostained with weak fluorescence...
significant differences in the numbers of microglia (left: $F(3,28) = 10.7$, $P < 0.01$) and astrocytes (right: $F(3,28) = 11.2$, $P < 0.01$) between the groups (each bar, $n = 8$). LPS injection increased the numbers of microglia (left: $P < 0.01$) and astrocytes (right: $P < 0.01$). The increases were significantly suppressed by Pls to the levels of microglia and astrocytes observed in the Con and Pls groups (LPS + Pls group, $P < 0.05$, respectively).

As shown in Figure 4A, the dentate gyrus (DG) of the hippocampus also demonstrated LPS-induced increases in the number and intensity of immunostaining for Iba-1 in microglia (d) and GFAP in astrocytes (e) compared with that observed in the Con group (a and b). These increases were suppressed by simultaneous injection of Pls (g and f, respectively). One-way ANOVA indicated significant differences in the numbers of microglia (Figure 4B, left: $F(3,28) = 41.4$, $P < 0.01$) and astrocytes (right: $F(3,28) = 11.5$, $P < 0.01$) between the groups (each bar, $n = 8$). The differences in the numbers of microglia and astrocytes in the Con and Pls groups ($P < 0.01$) and the LPS + Pls group were significant ($P < 0.01$ and $P < 0.05$, respectively).

Suppression of LPS-induced increases in cytokine mRNA by Pls

As shown in Figure 5A, the relative amounts of mRNAs for IL-1β (left) and TNF-α (right) in the PFC were significantly different (ANOVA test, $F(3,16) = 19.3$, $P < 0.01$, and $F(3,16) = 14.9$, $P < 0.01$, respectively) between the groups (each bar, $n = 5$). The post hoc test indicated that the levels of both IL-1β and TNF-α mRNAs in the LPS group were significantly higher than those observed in the other groups (Scheffe’s test, $P < 0.01$, respectively), while the levels in the LPS + Pls group were not different from those observed in the Con and Pls groups, suggesting that Pls have a suppressive effect on LPS-induced cytokine expression (Figure 5A).

Similar to the findings observed in the PFC, both cytokine mRNAs increased in the hippocampus in the LPS group (left: IL-1β, $F(3,16) = 10.1$, $P < 0.01$; right: TNF-α, $F(3,16) = 17.7$, $P < 0.01$) in comparison to that observed in the other three groups (Figure 5B, $P < 0.01$, respectively; each bar, $n = 5$).

Suppression of LPS-induced Aβ accumulation by Pls

The presence of LPS-induced amyloidogenesis in the PFC and hippocampus following LPS injection was investigated. As shown in Figure 6, a weak fluorescence for Aβ3–16 immunoreactivity (green) in the PFC of the control group (Con, b) was apparently increased in the LPS group (e). The increase in Aβ3–16 immunoreactivity was attenuated in the LPS + Pls group (h). Neurons in the cortex were stained with NeuN (red, a, d and g), and most of the Aβ3–16 fluorescence merged with the NeuN (red) in astrocytes (b). However, the i.p. administration of LPS (250 μg/kg/day) for seven days (LPS group, second row) resulted in neuroinflammation showing increased numbers of Iba-1-positive microglia and intense immunoreactivity (d) with activated phenotypes of marked cellular hypertrophy and retraction of cytoplasmic processes (d’). GFAP-positive astrocytes also increased in number and intensity (e). As shown in Figure 2Ag and h, the increases in the number of activated microglia and astrocytes in the PFC were suppressed by i.p. administration of LPS and Pls (20 mg/kg) (LPS + Pls group). Iba-1-positive microglia and GFAP-positive astrocytes did not merge with each other in all groups (c, f, i, and l). Figure 2B shows a summary of the LPS-induced increases in the number of glial cells and the suppression of this increase by Pls (each bar, $n = 8$). The number of microglia (left) and astrocytes (right) significantly increased following LPS injection ($F(3,28) = 38.4$, $P < 0.01$; $F(3,28) = 45.8$, $P < 0.01$, respectively). The multiple-range test indicated that the numbers of microglia and astrocytes in the LPS group were different from those in the Con and Pls, and LPS + Pls groups (Scheffe’s test, $P < 0.01$, respectively), while the LPS + Pls group did not differ from the Con or Pls groups for either microglia or astrocytes.

In the CA1 region of the hippocampus, both Iba-1-positive microglia and GFAP-positive astrocytes increased in number in the LPS group (Figure 3Aa and e) compared with that observed in the control group (a and b). Similar to that observed in the PFC, the increases in the number of activated glial cells were attenuated following the administration of Pls (g and h). As shown in Figure 3B, the statistical analysis indicated
immunoreactivity, indicating intracellular localization of Aβ (yellow in f).

Accumulations of Aβ were also observed in the CA1 region of the hippocampus in the LPS group (Figure 7, e). Similar to that observed in the PFC, enhanced Aβ3–16 immunoreactivity was markedly attenuated by Pl administration (LPS + Pls group, h). Again, the presence of intracellular accumulation of Aβ in the pyramidal neurons was detected using double staining for Aβ3–16 and NeuN (f and i).

**Figure 2** Activation of glial cells in the murine PFC following LPS injection (i.p.) performed on seven consecutive days and suppression by Pls applied immediately after each LPS injection. A, Iba-1-positive microglia (green) and GFAP-positive astrocytes (red). The number and intensity of immunoreactivity of microglia increased after LPS treatment (d) with hypertrophy (d') compared with that observed in the Con group (a and a') and was suppressed by application of Pls (g and g'). The Pls group (j and j') showed no differences from the Con group. GFAP-positive astrocytes also demonstrated increases in number and intensity due to LPS and suppression by Pls (middle column). Iba-1 and GFAP immunostaining did not merge with each other (f). Scale bar: low magnification, 100 μm, and high magnification, 20 μm. B, A summary of LPS-induced increases in the numbers of microglia (left) and astrocytes (right) and suppression by Pls (each bar, n = 8). **, P < 0.01, respectively. Con, control; GFAP, glial fibrillary acidic protein; LPS, lipopolysaccharide; PFC, prefrontal cortex; Pls, plasmalogens.
Changes in the PI levels in the brain after LPS and PI treatment

As shown in Table 2, the levels of PlsEtn were much higher than those of PlsCho both in the PFC and the hippocampus, although more than 60% of the phospholipids were diacylglycerophospholipids (PEtn, PCho, PS and PI). The relative levels of PlsEtn in the PFC significantly changed following LPS injection (Table 2, upper, **P < 0.01).
Kruskal-Wallis test, $\chi^2(3) = 10.7$, $P < 0.05$). A multiple comparison analysis using the Steel test revealed that the amount of PlsEtN significantly decreased in the LPS group in comparison to that observed in the control group ($P < 0.05$); however, the levels in the LPS + Pls group were not different from those observed in the control group (each group: $n = 5$). Therefore, the ratio of PlsEtN/PEtn significantly decreased following LPS

**Figure 4** Activation of glial cells following LPS (i.p.) injection and suppression by Pls in the murine dentate gyrus of the hippocampus. A. Iba-1-positive microglia (green) and GFAP-positive astrocytes (red). The number and intensity of immunoreactivity of microglia and astrocytes increased following LPS treatment (d and e) compared with that observed in the Con group (a and b) and was suppressed by Pls (g and h). They did not merge with each other (right column). GCL: granule cell layer. Scale bar: 100 μm. B. A summary of LPS-induced increases in the numbers of microglia (left) and astrocytes (right) and suppression by Pls (each bar, $n = 8$). **, $P < 0.01$. Con, control; GFAP, glial fibrillary acidic protein; i.p., intraperitoneal; LPS, lipopolysaccharide; Pls, plasmalogens.
Mechanisms of LPS-induced accumulation of Aβ

It is well known that the activation of microglia and astrocytes plays an important role in neuroinflammation induced by systemic LPS by enhancing the secretion of cytokines, prostanooids, ROS/RNS and related substances. In the present study, i.p. injection of LPS for seven days induced morphological activation and increased the number of glial cells in the PFC and hippocampus (Figures 2–4). The amounts of IL-1β and TNF-α mRNAs, which are considered to be derived primarily from glial cells, also increased following LPS injection (Figure 5). Furthermore, LPS injection resulted in the intracellular accumulation of Aβ proteins in both regions (Figures 6 and 7). It has been reported that i.p. injection of LPS induces deficits in spatial learning in mice [24,25] that may be due to the enhancement of Aβ generation in the hippocampus [1].

It is known that β-secretase is involved in amyloidogenic processing of amyloid precursor proteins at the first step, while γ-secretase yields Aβ isoforms such as the more prevalent Aβ40 and aggregation-prone Aβ42 at the last step [26]. It has been recently shown that the activities of β- and γ-secretase are increased in the cortex and hippocampus following systemic injection of LPS [1]. It is possible that microglia play important roles in this phenomenon since proinflammatory cytokines, as well as ROS/RNS, released from activated microglia augment Aβ formation by upregulating β-secretase mRNA and enzymatic activity [5,27]. Microglia are activated further through receptors for advanced glycation end products (RAGE), which bind to Aβ and induce phagocytosis of Aβ, thereby amplifying the generation of ROS/RNS and cytokines [26].

Changes in the PI levels during neuroinflammation

In addition to observing the activation of glial cells and Aβ accumulation, we found that the PI levels in the PFC and hippocampus decreased following LPS administration (Table 2). It is possible that the decreases in the amount of PIs during neuroinflammation are due to the anti-oxidant properties of PIs. It has been shown that the PI-specific vinyl ether bond at the sn-1 of the glycerol backbone is targeted by a variety of oxidants, including ROS/RNS [10,11,13], and oxidative stress preferentially oxidizes PIs over phosphatidyl ethanolamine (PEtn) [28,29], resulting in the disruption of vesicular fusion in the synaptosomes and the decrease in acetylcholine release [30]. This may at least partly explain why AD patients show decreases in PI levels in the brain [14–16]. It has been suggested that abnormal membrane lipid compositions, namely decreases in the ratio of PI to non-PI ethanolamine glycerophospholipids, cause membrane instability in AD, which may contribute to amyloidogenesis by cooperatively acting with amyloid...
cascade mechanisms [14]. Furthermore, since PIsEtn are major endogenous lipid constituents that facilitate membrane fusion of synaptic vesicles associated with neurotransmitter release [31,32], pathological and/or age-related alterations in the Pl levels may be attributed to neurological disorders including AD [7]. In accordance with this, it has been reported that decreases in the amount of Pls are closely correlated with the severity of dementia in humans [18,19].

Neuroinflammation-Aß-Pls loop

There seems to be a causes/consequences loop involving neuroinflammation that includes cytokine and ROS/RNS production, Aß accumulation and decreases in the amount of Pls. LPS-induced activation of ß-secretase [1], which is predominantly localized in cholesterol-rich lipid rafts [33,34], causes accumulation of Aß proteins. Aß-induced production of ROS/RNS that enhance lipid peroxidation [35,36] may decrease Pl levels, as mentioned above. In addition, increases in Aß, cytokines and ROS/RNS reduce the expression of alkyl-dihydroxyacetone phosphate-synthase, a rate-limiting enzyme for Pl de novo synthesis, by inducing the dysfunction of peroxisomes, where Pls are biosynthesized, resulting in decreases in the Pl levels [37]. It has also been reported that TNF-α down regulates another key enzyme in Pl biosynthesis in peroxisomes, glycerol-3-phosphate-O-acyltransferase [38], and up regulates myeloperoxidase, which generates one of the reactive species, hypochlorous acid (HOCl), in the brain, targeting Pls to be oxidized [39]. Finally, Pls-PLA2, which degrades Pls to release DHA or ARA from the sn-2 position of the glycerol moiety, is possibly activated by ceramide produced under inflammatory conditions, and contributes to the loss of Pls in the brain [9,40].

It is well known that the generation and clearance of Aß are affected by cholesterol metabolism, as evidenced by the identification of a variant gene of apolipoprotein E, a cholesterol transporter, as a major genetic risk factor for AD [26,41,42]. It has been shown that decreases in the amount of Pls induce a decreased rate of intracellular cholesterol transport from cell membranes to the endoplasmic reticulum, which increases the cholesterol levels in cell membranes [43]. Mankidy et al. further indicated that esterification of cholesterol, an obligate step that occurs prior to efflux from cells, is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing PIsEtn present in the membrane with
increasing levels of the membrane-bound cholesterol-processing enzyme, sterol-O-acyltransferase-1 [44]. Increases in the cholesterol levels promote the secretion of Aβ [41,42,45], while depletion of cholesterol inhibits the generation of Aβ [46,47]. Furthermore, it has been shown that membrane Pls block cholesterol-mediated increases in β-secretase activity and directly increase the activity of α-secretase, which is known to promote non-amyloidogenic processing of amyloid precursor proteins [48]. Therefore, a vicious circle in which LPS-induced Aβ accumulation decreases the Pl levels, which further enhances the generation of Aβ may be involved in the pathological conditions of neuroinflammation.

**Ameliorative effects of Pls on neuroinflammation**

In the present study, we showed that LPS-induced activation of glial cells (Figures 2–4), expression of IL-1β and TNF-α mRNAs (Figure 5), accumulation of Aβ proteins (Figures 6 and 7) and decreases in the PlsEtn levels (Table 2) in the PFC and hippocampus are all prevented by co-administration of Pls. Although the precise mechanisms underlying the effects of Pls in this study are not known, supplementation with Pls could improve pathological disorders. The most important question may be whether peripheral Pls can enter into the brain. So far, there are no reports indicating that Pls directly cross the blood–brain barrier (BBB). Therefore, it is not excluded that the anti-oxidative effects of Pls are exerted outside the brain in order to suppress primary inflammation induced by peripheral LPS. However, it has been shown that the PIs levels in sera are decreased in parallel with or even at earlier times than decreases in the brain Pl levels in AD patients [18,19]. Furthermore, our results showed that LPS-induced decreases in the PIs levels in the PFC and hippocampus are corrected with peripheral administration of PIs (Table 2). Therefore, it is possible that peripheral supplementation with PIs would have effects on the CNS by changing the Pl levels in the brain.

Another question is whether the effective molecules in our experiment are PUFAs, not PIs, which PIs must carry at the sn-2 position. Several lines of evidence show that n-3 PUFAs, such as eicosapentaenoic acid, DHA, and its derivative, neuroprotectin D1, have anti-inflammatory and neuroprotective effects [49-52]. Furthermore, DHA has been reported to suppress the production of Aβ proteins through multiple mechanisms, including inhibition...
Table 2 The changes in the phospholipid levels in the PFC and hippocampus following LPS and Pl injection

|        | Con | LPS | LPS + Pls | Pls |
|--------|-----|-----|-----------|-----|
| **1) PFC** |     |     |           |     |
| PlsEtn | 16.40 ±0.59 | 13.41 ±0.73* | 16.29 ±0.53 | 17.81 ±0.32 |
| PEt | 21.92 ±0.63 | 22.66 ±0.65 | 22.48 ±0.26 | 22.65 ±0.22 |
| PlsCho | 0.20 ±0.03 | 0.19 ±0.03 | 0.21 ±0.03 | 0.28 ±0.04 |
| PCho | 44.04 ±1.12 | 47.73 ±1.04 | 43.73 ±0.97 | 46.74 ±0.85 |
| SM | 3.72 ±0.20 | 3.13 ±0.31 | 3.47 ±0.24 | 3.31 ±0.15 |
| PS | 11.88 ±0.27 | 11.08 ±0.30 | 12.03 ±0.22 | 10.58 ±0.56 |
| PI | 1.86 ±0.12 | 1.80 ±0.07 | 1.87 ±0.21 | 1.64 ±0.31 |
| PlsEtn/PEtn ratio | 0.75 ±0.02 | 0.59 ±0.03* | 0.73 ±0.03 | 0.79 ±0.05 |
| **2) Hippocampus** |     |     |           |     |
| PlsEtn | 24.18 ±0.64 | 20.29 ±0.31* | 22.88 ±0.45 | 22.68 ±0.39 |
| PEt | 20.38 ±0.43 | 22.07 ±0.62 | 22.61 ±0.41 | 20.80 ±0.57 |
| PlsCho | 0.49 ±0.06 | 0.42 ±0.04 | 0.45 ±0.05 | 0.41 ±0.03 |
| PCho | 36.90 ±1.74 | 39.39 ±0.86 | 37.64 ±1.37 | 39.0±0.94 |
| SM | 5.24 ±0.67 | 5.71 ±0.64 | 5.17 ±0.64 | 4.13 ±0.68 |
| PS | 11.73 ±0.86 | 10.94 ±0.25 | 11.71 ±0.61 | 10.59 ±0.34 |
| PI | 1.59 ±0.10 | 1.63 ±0.16 | 1.72 ±0.06 | 1.48 ±0.16 |
| PlsEtn/PEtn ratio | 0.79 ±0.05 | 0.92 ±0.03* | 1.14 ±0.04 | 1.09 ±0.05 |

The values are expressed as the mean ± SEM (n = 5) of the % level of the phospholipids, except for the last row. * P <0.05 compared to the Con group (Steel test for multiple comparisons). Con, control; PCho, phosphatidyl choline; PlsEtn, phosphatidyl ethanolamine; PFS, prefrontal cortex; LPS, lipopolysaccharide; PI, phosphatidyl inositol; Pls, plasmalogens; PCho, choline plasmalogens; PlsEtn: ethanolamine plasmalogens; Pls-PLA2: plasmalogens-selective phospholipase A2; poly I:C; polyinosinic:polycytidylic acid; PPAR-γ: peroxisome proliferator-activated receptor-γ; Pls: phosphatidyl serine; PUFAs: polyunsaturated fatty acids; RAGE: receptors for advanced glycation end products; ROS/RNS: reactive oxygen/nitrogen species; SM: sphingomyelin: TLR: toll-like receptor; TNF-α: tumor necrosis factor-α.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MI prepared the manuscript and performed the behavioral tests, immunohistochemistry and real-time PCR. TK designed the studies, performed the statistical analysis and wrote the manuscript. SM measured the levels of the brain Pls and analyzed the fatty acid composition of the Pls. MN assisted with manuscript preparation and discussed the data. KM and MS together prepared the purified Pls. TF designed the studies and reviewed the data. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Brian Quinn, Editor-in-Chief, Japan Medical Communication for linguistic advice on our manuscript. This work was supported by Grants-in-Aid for Scientific Research (22590025) to TK from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author details
1Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan. 2Institute of Rheological Function of Food, Kasuya-gun, Fukuoka 811-2501, Japan. 3Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan. 4Central Research Institute, Marudai Food Co. Ltd, Osaka 569-8577, Japan.

Received: 18 April 2012 Accepted: 25 July 2012 Published: 13 August 2012

References
1. Lee, JW, Lee, YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of β-amyloid generation. J Neuroinflammation 2008, 5:37.
2. Deledi M, Hallett PJ, Koprich JB, Chung CY, Isacson O: The Toll-like receptor-3 agonist polyinosinic:polycytidylic acid triggers nigrosstriatal dopaminergic degeneration. J Neurosci 2010, 30:16091–16101.
3. Okun E, Griffoom K, Barak S, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, Mattson MP: Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 2010, 107:15625–15630.
4. Blasko I, Apochal A, Bocek G, Hartmann T, Gruber-Koebenstein B, Ransmayr G: Ilupofen decreases cytokine-induced amyloid β production in neuronal cells. Neurobiol Dis 2001, 8:109–110.
5. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, Heneka MT: Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J Neurosci 2003, 23:9796–9804.
Plasmalogens: workhorse lipids of membranes

Farooqui AA, Horrocks LA: Alzheimer

Ifuku

Engelmann B: 9. Farooqui AA:

Farooqui AA, Horrocks LA: Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 2001, 16:263–272. discussion 279–284.

Farooqui AA: Studies on plasmalogen-selective phospholipase A2 in brain. Mol Neurobiol 2010, 41:267–273.

Kaselev N, Murphy RC: Susceptibility of plasmalogen glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. Free Radic Biol Med 1999, 26:275–284.

Engelmann B: Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans 2004, 32:147–150.

Maeba R, Ueta N: Ethanolamine plasmalogen and cholesterol reduce the total membrane oxidizability measured by the oxygen uptake method. Biochim Biophys Acta 2003, 1602:265–270.

Yavin E, Gatt S: Oxygen-dependent cleavage of the vinyl – ether linkage of plasmalogens. 2. Identification of the low-molecular-weight active component and the reaction mechanism. Eur J Biochem 1972, 25:437–446.

Ginsberg L, Rafter KE, Xueber JH, Rapoport SI, Gershfeld NL: Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer's disease brain. Brain Res 1995, 698:223–226.

Guan Z, Wang Y, Carnei NJ, Lantos P, Gallner P, Sindelar P: Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 1999, 58:740–747.

Han X, Holtzman DM, McKeel DW Jr Jr: Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 2001, 77:1168–1180.

Ginsberg L, Xueber JH, Gershfeld NL: Membrane instability, plasmalogen content, and Alzheimer's disease. J Neurochem 1998, 70:2533–2538.

Goodenowe DB, Cook LL, Liu J, Liu Y, Jayingseke DA, Ahiahounu PW, Heath D, Yamazaki Y, Flax J, Krentske KY, Sparks DL, Lemer A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL: Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. J Lipid Res 2007, 48:2485–2498.

Wood PL, Manikdy R, Ritchie S, Heath D, Wood JA, Flax J, Goodenowe DB: Circulating plasmalogen levels and Alzheimer Disease Assessment Scale-Cognitive scores in Alzheimer patients. J Psychiatr Res 2010, 44:59–62.

Perichon R, Moser AB, Wallace WC, Cunningham SC, Roth GS, Moser HW: Peroxidial disease cell lines with cellular plasmalogen deficiency have impaired muscarinic cholinergic signal transduction activity and amyloid precursor protein secretion. Biochim Biophys Acta 1998, 1385:57–61.

Mawatari S, Yurikoka K, Sugiyama M, Fujino T: Simultaneous preparation of purified plasmalogens and sphingomyelin in human erythrocytes with phospholipase A1 from Aspergillus oryzae. Biosci Biotechnol Biochem 2009, 73:2621–2625.

Mawatari S, Okuna Y, Fujino T: Separation of intact plasmalogens and all other plaspholipids by a single run of high-performance liquid chromatography. Anal Biochem 2007, 370:54–59.

Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957, 226:497–509.

Boehm GW, Sparkman NL, Martin LA, Calvert WS: Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice. Behav Brain Res 2005, 159:145–151.

Shaw KN, Connors S, O'Mara SM: Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 2001, 124:47–54.

Querfurth HW, LaFerla FM: Alzheimer's disease. N Engl J Med 2010, 362:29–344.

Blasko I, Frank F, Steiner E, Hartmann T, Gubeck-Loeckenstein B: TNFα plus IFNγ induce the production of Alzheimer β-amyloid peptides and decrease the secretion of APPs. FASEB J 1999, 13:63–68.

Reiss D, Beyer K, Engelmann B: Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J 1997, 323:807–814.
50. Calon F, Lim GP, Yang F, Morioka T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N Jr, Aske KH, Frautschy SA, Cole GM: Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron 2004, 43:633–645.

51. Palacios-Pelaez R, Lukiv WJ, Bazan NG: Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol Neurobiol 2010, 41:367–374.

52. Schmitz G, Ecker J: The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 2008, 47:147–155.

53. Grimm MOW, Kuchenbecker J, Gronigen S, Burg VK, Hundsdorfer B, Rothhaar TL, Friess P, de Wilde MC, Broersen LM, Penke B, Peter M, Vigh L, Grimm HS, Hartmann T: Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J Biol Chem 2011, 286:14028–14039.

54. Walsh DM, Selkoe DJ: Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004, 44:181–193.

55. Oksman M, Ikonen H, Hoynes E, Amtul Z, Penke B, Leenders L, Broersen L, Lutjohann D, Hartmann T, Tanila H: Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on β-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol Dis 2006, 23:563–572.

56. Scott BL, Bazan NG: Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci U S A 1989, 86:2903–2907.

57. Bernoud N, Fenart L, Moliere P, Dehouck MP, Lagarde M, Cecchelli R, Lecerf J: Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood–brain barrier over unesterified docosahexaenoic acid. J Neurochem 1999, 72:338–345.

58. Wood PL, Khan MA, Smith T, Ehrmantraut G, Jin W, Cui W, Braverman NE, Goodenove DB: In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor. Lipids Health Dis 2011, 10:182.

59. Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G, Cecchelli R, Fenart L: Physiological pathway for low-density lipoproteins across the blood–brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium 2008, 15:254–264.

doi:10.1186/1742-2094-9-197

Cite this article as: Ifuku et al.: Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. Journal of Neuroinflammation 2012 9:197.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit