A CHARACTERIZATION OF ZONOIDS

YOSSI LONKE

1. Introduction

A function defined on the n-dimensional sphere \mathbb{S}^{n-1} will be called zonal if its value at a point $x \in \mathbb{S}^{n-1}$ depends only on the angle between x and a fixed axis. Thus if u is a unit vector in the direction of the fixed axis, then a function is zonal with respect to u if its value at x depends only on the standard inner product $\langle x, y \rangle$. A natural way to generate zonal functions is as follows. Let $f \in C(\mathbb{S}^{n-1})$, and fix a direction $u \in \mathbb{S}^{n-1}$. Let $(O(u), m)$ denote the subgroup of orthogonal transformations which keep the point u fixed, equipped with the normalized Haar measure, m. Define

$$(S_u f)(x) = \int_{O(u)} f(Tx) \, dm(T)$$

Clearly, the function $S_u f$ is zonal. Applying this procedure to support functions leads to the following definition.

Definition 1.1. Suppose $u \in \mathbb{S}^{n-1}$ and K is a centrally symmetric convex body, with support function h_K. The u-spin of K is the convex body K_u whose support function is $S_u h_K$.

For example, computing the e_n-spin of the unit cube in \mathbb{R}^n, gives:

$$(S_{e_n} h_{B_\infty^n})(x) = \int_{O(e_n)} \|Tx\|_1 \, dm(T) = c_n \left(\sum_{i=1}^n x_i^2 \right)^{1/2} + |x_n|,$$

(c_n is a positive number depending on n), which is the support function of a cylinder. This illustrates the choice of the word 'spin'.

Thus, with each body there is associated a system of rotation-bodies, one for each possible direction. Since $S_u f(u) = f(u)$ for each $u \in \mathbb{S}^{n-1}$ and every function f, a body is seen to be uniquely defined by its spins. The main result of this note is the following.

Theorem 1.2. A centrally symmetric convex body is a zonoid if and only if all its spins are zonoids.

Date: February 2020.
2. Preliminaries

$C^\infty(S^{n-1})$ is the Frechet space of functions on S^{n-1} that have derivatives of every order. Elements of this space are called test functions. Its dual space, denoted $D(S^{n-1})$, is the space of distributions on S^{n-1}. If a subscript e is added to any of the above spaces, it is to designate the subspace of even objects.

The cosine transform is the operator $C : C^\infty_e(S^{n-1}) \to C^\infty_e(S^{n-1})$ defined by:

$$(Cf)(x) = \int_{S^{n-1}} |\langle x, y \rangle| f(y) \, d\sigma_{n-1}(y),$$

where σ_{n-1} is the normalized rotation-invariant measure on the sphere. It is well known that C is a continuous bijection of $C^\infty_e(S^{n-1})$ onto itself, and that it can be extended by duality to a bi-continuous bijection of the dual space $D_e(S^{n-1})$. Hence, if ρ is a distribution and $f \in C^\infty_e(S^{n-1})$ is a test function, then

$$\langle C\rho, f \rangle = \langle \rho, Cf \rangle$$

Since $C^\infty_e(S^{n-1})$ and its dual space, the even measures, are both naturally embedded in $D_e(S^{n-1})$, it makes sense to speak about the cosine transform of a measure, or of a continuous function. A fundamental connection between distributions and centrally symmetric convex bodies was discovered by Weil, in [1]. Weil proved that for every centrally symmetric convex body $K \subset \mathbb{R}^n$ there corresponds a unique distribution ρ_K (called the generating distribution of K) such that $C\rho_K = h_K$, where h_K is the support function of K. Suppose $f \in C^\infty(S^{n-1})$. Then for every direction $u \in S^{n-1}$, the function $S_u f$ also belongs to $C^\infty(S^{n-1})$. Therefore, S_u can be defined to act on distributions by duality:

$$\langle S_u \rho, f \rangle = \langle \rho, S_u f \rangle, \quad \rho \in D(S^{n-1}), \quad f \in C^\infty(S^{n-1})$$

A routine verification shows that the transforms S_u and C commute on test functions, and therefore also as transforms of distributions.

3. Proof of Theorem 1.1

If K is a zonoid, then $h_K = C\mu$ for some positive measure μ, and for every $u \in S^{n-1}$,

$$S_u h_K = S_u (C(\mu)) = C(S_u \mu)$$

Since $S_u \mu$ is a positive measure for every μ, every spin of K is a zonoid. This proves the easy part of the theorem.

Suppose K is a centrally symmetric convex body every spin of which is a zonoid. That is, for each direction $u \in S^{n-1}$ there exists a positive measure μ_u such that $S_u h_K = C\mu_u$. There exists a distribution ρ such that $h_K = C\rho$, and so the assumption reduces to $C(S_u \rho) = C\mu_u$, where the commuting of S_u and C was used. Since C is one-to-one, the distribution ρ is seen to satisfy $S_u \rho = \mu_u$ for every $u \in S^{n-1}$. It therefore remains to prove:

Lemma 3.1. A distribution is positive if and only if $S_u \rho$ is positive for every $u \in S^{n-1}$.

Proof. The “only if” part is obvious. Suppose \(\rho \in \mathcal{D}(\mathbb{S}^{n-1}) \) is a distribution such that \(S_u \rho \) is positive for every \(u \in \mathbb{S}^{n-1} \). Then \(\langle \rho, f \rangle \geq 0 \) for every positive zonal test function \(f \). Therefore if \(g = \sum_{i=1}^{m} a_i f_i \), where \(a_i \geq 0 \) and \(f_i \) are positive zonal test functions, then also \(\langle \rho, g \rangle \geq 0 \).

Choose a positive test function \(f \in C^\infty(\mathbb{S}^{n-1}) \) and write its Poisson integral:

\[
P_r f(x) = \int_{\mathbb{S}^{n-1}} \frac{1 - r^2}{\|x - ry\|^n} f(y) \, d\sigma_{n-1}(y)
\]

It is well known that \(\lim_{r \to 0^+} P_r f = f \) in the topology of \(C^\infty(\mathbb{S}^{n-1}) \). Therefore, if \(\langle \rho, P_r f \rangle \geq 0 \) for every \(0 < r < 1 \) and every positive test function \(f \), then \(\rho \) is positive, by continuity.

Fix a sequence of convex combinations of Dirac measures of the form

\[
(1) \quad \nu_N = \sum_{i \geq 1} \lambda_i N \delta_{y_i}, \quad y_i \in \mathbb{S}^{n-1}
\]

such that \(\nu_N \to \sigma_{n-1} \) in the \(w^* \) topology of measures. If \(\varphi \) is a test function, then

\[
(2) \quad \int_{\mathbb{S}^{n-1}} \frac{1 - r^2}{\|x - ry\|^n} \varphi(y) \, d\nu_N(y) \to \int_{\mathbb{S}^{n-1}} \frac{1 - r^2}{\|x - ry\|^n} \varphi(y) \, d\sigma_{n-1}(y) = P_r \varphi(x)
\]

If \(F(x, y) \) is a continuous function on \(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1} \) then for every test function \(\varphi \), the integrals \(\langle F(x, y) \varphi(y), \nu_N \rangle \) converge to the integral \(\langle F(x, y) \varphi(y), \sigma_{n-1} \rangle \) uniformly in \(x \). Therefore, the sequence of functions of the variable \(x \) in the l.h.s of (2) converge to the r.h.s in the topology of \(C^\infty(\mathbb{S}^{n-1}) \), because the function \(\|x - ry\|^{-n} \) for fixed \(y \) and \(0 < r < 1 \) is \(C^\infty \) with respect to \(x \). Moreover, the distribution \(\rho \) is positive on every term of the l.h.s of (2), because for each \(y_i \) appearing in (1) one has

\[
\|x - ry_i\|^{-n} = \int_{O(y_i)} \|Tx - ry_i\|^{-n} \, dm(T), \quad \forall x
\]

so

\[
\langle \rho, \|x - ry_i\|^{-n} \rangle = \langle \rho, S_{y_i}(\|x - ry_i\|^{-n}) \rangle = \langle S_{y_i} \rho, \|x - ry_i\|^{-n} \rangle \geq 0
\]

Hence by continuity \(\rho \) is also positive of the r.h.s of (2) as well. It follows that \(\rho \) is a positive distribution.

It is well known that a positive distribution is in fact a positive measure, that is, it satisfies \(|\rho(f)| \leq \rho(1) \|f\|_{\infty} \) for every test function, where \(1 \) is the constant function \(1 \). Consequently, there is a unique extension of \(\rho \) to a bounded linear functional on \(C_c(\mathbb{S}^{n-1}) \), and so in this sense it represents a measure. This completes the proof of the theorem.

References

[1] Weil, W., Centrally symmetric convex bodies and distributions, Israel J. Math., 24, 352–367 (1976)