Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in $B^+ \rightarrow 0K^*$ and $B^+ \rightarrow f_0(980)K^*$ decays

BABAR Collaboration; del Amo Sanchez, P; Snoek, H

Abstract: We present measurements of the branching fractions, longitudinal polarization, and direct CP-violation asymmetries for the decays $B^+ \rightarrow 0K^*$ and $B^+ \rightarrow f_0(980)K^*$ with a sample of $(467\pm 5) \times 10^6$ $B\bar{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory. We observe $B^+ \rightarrow 0K^*$ with a significance of 5.3 and measure the branching fraction $B(B^+ \rightarrow 0K^*) = (4.6\pm 1.0\pm 0.4) \times 10^{-6}$, the longitudinal polarization $f_L = 0.78\pm 0.12\pm 0.03$, and the CP-violation asymmetry $ACP = 0.31\pm 0.13\pm 0.03$. We observe $B^+ \rightarrow f_0(980)K^*$ and measure the branching fraction $B(B^+ \rightarrow f_0(980)K^*) \times B(f_0(980) \rightarrow \gamma\gamma) = (4.2\pm 0.6\pm 0.3) \times 10^{-6}$ and the CP-violation asymmetry $ACP = -0.15\pm 0.12\pm 0.03$. The first uncertainty quoted is statistical and the second is systematic.

DOI: https://doi.org/10.1103/PhysRevD.83.051101

Other titles: Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in $B \rightarrow \rho\ K^*$ and $B \rightarrow f_0(980)\ K^*$ decays

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-58688
Journal Article
Accepted Version

Originally published at: BABAR Collaboration; del Amo Sanchez, P; Snoek, H (2011). Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in $B^+ \rightarrow 0K^*$ and $B^+ \rightarrow f_0(980)K^*$ decays. Physical Review D, 83(5):051101.
DOI: https://doi.org/10.1103/PhysRevD.83.051101
Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in $B \to \rho K^*$ and $B \to f_0(980)K^*$ decays

B. Aubert, R. Barate, M. Bona, D. Boutigny, F. Coudert, Y. Karyotakis, J. P. Lees, V. Poireau, V. Tisserand, A. Zghiche, E. Grauges, A. Palano, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofte, B. Stugu, G. S. Abrams, M. Battaglia, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, M. S. Gill, Y. Groysman, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukurtsev, G. Lynch, L. M. Mir, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, W. A. Wenzel, P. del Amo Sanchez, M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson, T. Held, H. Koch, B. Lewandowski, M. Pelizaeus, K. Peters, T. Schroeder, M. Steinke, J. T. Boyd, J. P. Burke, W. N. Cottingham, D. Walker, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, A. Khan, P. Kyberd, M. Saleem, D. J. Sherwood, L. Teodorescu, V. E. Blinov, A. D. Bukin, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu Todorovsky, D. S. Best, M. Bondioli, M. Bruinsma, M. Chao, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, R. K. Mommens, W. Roethel, D. P. Stoker, S. Abachi, C. Buchanan, S. D. Foulkes, J. W. Gary, O. Long, B. C. Shen, K. Wang, L. Zhang, H. K. Hadavand, E. J. Hill, H. P. Paar, S. Rahatlou, V. Sharma, J. W. Berryhill, C. Campagni, A. Cunha, B. Dahmes, T. M. Hong, D. Kovalskyi, J. D. Richman, T. W. Beck, A. M. Eisner, C. J. Flacco, A. C. Heusch, J. Kroseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson, J. Albert, E. Chen, A. Dvoretskii, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, G. Mancinelli, B. T. Meadows, K. Mishra, M. D. Sokoloff, F. Blenc, P. C. Bloom, S. Chen, W. T. Ford, J. F. Hirscharer, A. Kreisel, M. Nagel, U. Nauenberg, A. Olivas, W. O. Ruddick, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zhang, A. Chen, E. A. Eckhart, A. Soffer, W. H. Toki, R. J. Wilson, F. Winkelmeyer, Q. Zeng, D. D. Altenburg, E. Feltresi, A. Hauke, H. Jasper, A. Petzold, B. Spaan, T. Brandt, V. Klose, H. M. Lacker, W. F. Mader, R. Nogowski, J. Schubert, K. R. Schubert, R. Schwier, J. E. Sundermann, A. Volk, D. Bernard, G. R. Bonneau, P. Grenier, E. Latour, Ch. Thiebaux, M. Verderi, P. J. Clark, W. Gradl, F. Muheim, S. Playfer, A. I. Robertson, J. Yie, M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, L. Luppi, M. Negri, A. Petrella, L. Piemontese, E. Prencipe, F. Amulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo, A. Buzzo, R. Capra, R. Contrri, M. L. Petere, M. M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, G. Brandenburg, S. K. Chaisanguth, M. Morii, J. Wu, R. S. Dubitsky, J. Marks, S. Schenk, U. Uwer, D. J. Bard, B. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, R. L. Flack, J. A. Nash, M. B. Nikolov, W. Panduro Vazquez, P. K. Behera, X. Chai, M. J. Charles, U. Mallik, N. T. Meyer, V. Ziegler, J. Cochran, H. B. Crawley, L. Dong, V. Eyges, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubini, A. V. Gritsan, A. G. Deniz, M. Fritsch, G. Schott, A. Arnaud, M. Davier, G. Grosdidier, H. Höcker, F. Le Diberder, V. Lepeltier, A. M. Lutz, O. Yanguren, S. Pruvo, M. H. Schune, A. Stocchi, W. F. Wang, G. Wormser, C. H. Cheng, D. J. Lange, P. M. Wright, C. A. Chavez, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, K. A. George, D. E. Hutchcroft, D. J. Payne, K. C. Schofield, C. Tournamanis, A. J. Bevan, F. Di Lodovico, W. Menges, R. Sacco, G. Cowan, H. U. Flecher, D. A. Hopkins, P. S. Jackson, T. R. McMahon, S. Ricciardi, F. Salvadori, A. C. Wren, D. N. Brown, C. Davis, J. Allison, N. R. Barlow, J. R. Barlow, Y. M. Chia, L. E. Edgar, D. G. Lafferty, M. T. Naisbit, J. C. Williams, I. J. Gi, C. Chen, W. D. Hulsbergen, A. Jawahery, C. K. Lae, D. A. Roberts, G. Simi, G. Blaylock, C. Dallapiccola, S. S. Hertzbach, X. Li, T. B. Moore, S. Saremi, H. Staengle, R. Cowan, G. Sciolla, S. J. Sekula, M. Spitznagel, F. Taylor, R. K. Yamamoto, H. Kim,
17 University of California at Santa Barbara, Santa Barbara, California 93106, USA
18 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
19 California Institute of Technology, Pasadena, California 91125, USA
20 University of Cincinnati, Cincinnati, Ohio 45221, USA
21 University of Colorado, Boulder, Colorado 80309, USA
22 Colorado State University, Fort Collins, Colorado 80523, USA
23 Universitä t Dortmund, Institut für Physik, D-44221 Dortmund, Germany
24 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25 Ecole Polytechnique, Laboratoire Leprince-Ringuet, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Iowa State University, Ames, Iowa 50011-3160, USA
35 Johns Hopkins University, Baltimore, Maryland 21218, USA
36 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
37 Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
38 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39 Queen Mary, University of London, E1 4NS, United Kingdom
40 University of Liverpool, Liverpool L69 7ZE, United Kingdom
41 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42 University of Louisville, Louisville, Kentucky 40292, USA
43 University of Manchester, Manchester M13 9PL, United Kingdom
44 University of Maryland, College Park, Maryland 20742, USA
45 University of Massachusetts, Amherst, Massachusetts 01003, USA
46 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47 McGill University, Montréal, Qu é bec, Canada H3A 2T8
48 Università di Milano, Dipartimento di Fisica e INFN, I-20133 Milano, Italy
49 University of Mississippi, University, Mississippi 38677, USA
50 Université de Montréal, Physique des Particules, Montréal, Qu é bec, Canada H3C 3J7
51 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52 Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
53 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54 University of Notre Dame, Notre Dame, Indiana 46556, USA
55 Ohio State University, Columbus, Ohio 43210, USA
56 University of Oregon, Eugene, Oregon 97403, USA
57 Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
58 Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
59 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60 Università di Perugia, Dipartimento di Fisica e INFN, I-06100 Perugia, Italy
61 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
62 Prairie View A&M University, Prairie View, Texas 77446, USA
63 Princeton University, Princeton, New Jersey 08544, USA
64 Università di Roma La Sapienza, Dipartimento di Fisica e INFN, I-00185 Roma, Italy
65 Universität Rostock, D-18051 Rostock, Germany
66 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
67 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
68 University of South Carolina, Columbia, South Carolina 29208, USA
69 Stanford Linear Accelerator Center, Stanford, California 94309, USA
70 Stanford University, Stanford, California 94305-4060, USA
71 State University of New York, Albany, New York 12222, USA
72 University of Tennessee, Knoxville, Tennessee 37996, USA
73 University of Texas at Austin, Austin, Texas 78712, USA
74 University of Texas at Dallas, Richardson, Texas 75083, USA
75 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
76 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
77 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
78 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
79 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
We report searches for B-meson decays to the charmless final states ρK^* and $f_0(980)K^*$ with a sample of 232 million $B\overline{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC. We measure the following branching fractions in units of 10^{-6}: $B(B^+ \rightarrow \rho^+ K^{*-}) = 3.6 \pm 1.7 \pm 0.8 (< 6.1), B(B^+ \rightarrow \rho^0 K^{*-}) = 9.6 \pm 1.7 \pm 1.5, B(B^0 \rightarrow \rho^+ K^{*-}) = 5.4 \pm 3.6 \pm 1.6 (< 12.0), B(B^0 \rightarrow \rho^0 K^{*-}) = 5.6 \pm 0.9 \pm 1.3, B(B^+ \rightarrow f_0(980)K^{*-}) = 5.2 \pm 1.2 \pm 0.5$, and $B(B^0 \rightarrow f_0(980)K^{*-}) = 2.6 \pm 0.6 \pm 0.9 (< 4.3)$. The first error quoted is statistical, the second systematic, and the upper limits, in parentheses, are given at the 90% confidence level. For the statistically significant modes we also measure the fraction of longitudinal polarization and the charge asymmetry: $f_L(B^+ \rightarrow \rho^+ K^{*-}) = 0.52 \pm 0.10 \pm 0.04, f_L(B^0 \rightarrow \rho^0 K^{*-}) = 0.57 \pm 0.09 \pm 0.08, A_{CP}(B^+ \rightarrow \rho^+ K^{*-}) = -0.01 \pm 0.16 \pm 0.02, A_{CP}(B^0 \rightarrow \rho^0 K^{*-}) = 0.09 \pm 0.19 \pm 0.02, A_{CP}(B^+ \rightarrow f_0(980)K^{*-}) = -0.34 \pm 0.21 \pm 0.03$, and $A_{CP}(B^0 \rightarrow f_0(980)K^{*-}) = -0.17 \pm 0.28 \pm 0.02$.

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

The study of B-meson decays to charmless hadronic final states plays an important role in understanding CP violation. The charmless decays $B \rightarrow \rho K^*$ proceed through dominant penguin loops and Cabibbo-suppressed tree processes ($B^+ \rightarrow \rho^+ K^0$ is pure penguin) to two vector particles (VV). A large longitudinal polarization fraction f_L (of order $1 - 4m^2_{fL}/m^2_{\rho}$) ~ 0.9 is predicted for both tree and penguin dominated VV decays. However, recent measurements of the pure penguin VV decays $B \rightarrow \phi K^*$ indicate $f_L \sim 0.5$. Several attempts to understand this small value of f_L within or beyond the Standard Model (SM) have been made. Further information about $SU(3)$-related decays may provide some insight into this polarization puzzle. Characterization of the four $B \rightarrow \rho K^*$ modes can also be used within the SM framework to help constrain the angles α and γ of the Unitarity Triangle.
B-meson candidates are characterized by the energy difference \(\Delta E = E_B - \sqrt{s}/2 \) and the energy-substituted mass \(m_{\text{ES}} = \sqrt{[\sqrt{s}/2 + \vec{p}_i \cdot \vec{p}_B]^2/E_B^2 - \vec{p}_B^2}^{1/2} \), where \((E_i, \vec{p}_i)\) and \((E_B, \vec{p}_B)\) are the four-momenta of the \(Y(4S) \) and B candidate respectively, and the asterisk denotes the \(Y(4S) \) frame. Our signal lies in the region \(|\Delta E| \leq 0.1 \text{ GeV} \) and \(5.27 \leq m_{\text{ES}} \leq 5.29 \text{ GeV} \). Sidebands in \(m_{\text{ES}} \) and \(\Delta E \) are used to characterize the continuum background. The average number of signal B candidates per selected data event ranges from 1.05 to 1.27, depending on the final state. A single candidate per event is chosen as the one with the smallest B vertex-fit \(\chi^2 \) for \(\rho^0 K^{*0} \) and \(\rho^0 K^{*0} \), the smallest value of \(\chi^2 \) constructed from deviations of reconstructed \(\pi^0 \) masses from the expected value \((\rho^0 K^{*0}) \), or randomly \((\rho^0 K^{*0}) \). Monte Carlo (MC) simulation shows that to 38% (23%) of longitudinally (transversely) polarized signal events are misreconstructed with one or more tracks originating from the other B in the event.

To reject the dominant \(q \bar{q} \) continuum background we require \(|\cos \theta_T| < 0.8 \), where \(\theta_T \) is the c.m. frame angle between the thrust axes of the B-candidate and that formed from the other tracks and neutral clusters in the event. We also use as discriminant variables the polar angles of the B-momentum vector and the B-candidate thrust axis with respect to the beam axis, and the two Legendre moments \(L_0 \) and \(L_2 \) of the energy flow around the B-candidate thrust axis in the c.m. frame. These variables are combined in a Fisher discriminant \(F(\rho^0 K^{*0}) \) or a neural network (NN) (other modes). Finally, we suppress background from B decays to charmed states by removing signal candidates that have decay products consistent with \(D^0 \to K^+ \pi^-(\pi^0) \) and \(D^- \to K^{+}\pi^-\pi^- \) decays.

We use an extended (not extended in the \(\rho^0 K^{*0} \) mode) unbinned maximum-likelihood (ML) fit to extract signal yields, asymmetries, and angular polarizations simultaneously. We define the likelihood \(L_i \) for each event candidate \(i \) as the sum of \(n_j P_j(\vec{x}_i; \vec{a}) \) over hypotheses \(j \) (signal, \(q \bar{q} \) background, and several \(B \bar{B} \) backgrounds discussed below), where the \(P_j(\vec{x}_i; \vec{a}) \) are the probability density functions (PDFs) for the measured variables \(\vec{x}_i \) and \(n_j \) are the yields for the different hypotheses. The quantities \(\vec{a} \) represent parameters in the expected distributions of the measured variables for each hypothesis. They are extracted from MC simulation and \((m_{\text{ES}}, \Delta E) \) sideband data. They are fixed in the fit except for some shape parameters of the continuum \(\Delta E \) and \(m_{\text{ES}} \) distributions. The extended likelihood function for a sample of \(N \) candidates is \(L = \exp(- \sum n_j) \prod_{i=1}^{N} L_i \).

The fit input variables \(\vec{x}_i \) are \(m_{\text{ES}}, \Delta E, \text{NN or } F \), invariant masses of the candidates \(\rho \) (f0(980)) and \(K^* \), and helicity angles \(\theta_\rho \) and \(\theta_K^* \). We study large control samples of \(B \to D \pi \) decays of similar topology to verify the simulated resolutions in \(\Delta E \) and \(m_{\text{ES}} \), adjusting the PDFs to account for any difference found.

Since almost all correlations among the fit input variables are found to be small, we take each \(P_j \) to be the product of the PDFs for the separate variables with the following exceptions where we explicitly account for correlations: the correlation between the two helicity angles in signal, the correlation due to misreconstructed events in signal, and the correlation between mass and helicity in backgrounds. The effect of neglecting other correlations is evaluated by fitting ensembles of simulated experiments in which we embed the expected numbers of signal and charmed B-background events, randomly extracted from fully-simulated MC samples.

We use MC-simulated events to study backgrounds from other B decays. Charmless B-backgrounds are grouped into up to 11 classes with similar topologies depending on the mode. Yields for decays with poorly known branching fractions are varied in the fit with those remaining kept fixed to their measured values. One to four additional classes account for neutral and charged B decays to final states with charm. Up to 6 classes account for misreconstructed events in signal. We also introduce components for non-resonant backgrounds such as \(\pi \pi K^* \), \(\rho K \pi \), \(f_0(980) K \pi \), and \(f_0(1370) K \pi \), which differ from signal only in resonance mass and helicity distributions. The magnitudes of these components are determined by extrapolating from fits performed on a wider mass range reaching to higher mass values and are fixed in the fit. Fig. 1 shows the sPlots for the invariant mass of \(K \pi \) and \(\rho \pi \) in the \(\rho^0 K^{*0} \) and \(\rho^0 K^{*0} \) modes, respectively. The data events are weighted by their probability to be signal, calculated from the signal and backgrounds PDFs of the \(\Delta E, m_{\text{ES}}, \text{and NN variables} \).

The results of the ML fits are summarized in Table 1. For the branching fractions, we assume equal production rates of \(B^+ B^- \) and \(B^0 \bar{B}^0 \). The significance \(S \) of a signal is defined by \(\Delta \ln L = S^2/2 \), where \(\Delta \ln L \) represents...
the change in likelihood from the maximal value when the number of signal events is set to zero, corrected for the systematic error defined below. We find significant signals for \(\rho^+ K^{*0} \), \(\rho^0 K^{*+} \), and \(f_0(980) K^{*+} \), and some evidence for \(f_0(980) K^{*0} \). For the modes with significance smaller than five standard deviations we also measure the 90% confidence level (C.L.) upper limit, taking into account the systematic uncertainty. Fig. 2 shows projections of the fits onto \(m_{ES} \).

A source of systematic error is related to the determination of the PDFs and is due to the limited statistics of the Monte-Carlo and to the uncertainty on the PDF shapes. We obtain variations in the yields ranging from 1 to 18%, depending on the mode. The systematic error due to the non-resonant background extrapolation and interference with signal is in the range 6–21%. Event yields for \(B \)-background modes fixed in the fit are varied by their respective uncertainties. This results in a systematic uncertainty of 2–12%. We evaluate and correct for possible fit biases with MC experiments. We assign a systematic uncertainty of 1–7% for this.

The reconstruction efficiency depends on the decay polarization. For the \(\rho^0 K^{*+} \) mode we calculate the efficiency using the measured polarization (combined for the two \(\rho^0 K^{*+} \) modes) and assign a systematic uncertainty corresponding to the total polarization measurement error (9 and 20% for each mode respectively). For the other modes we exploit the correlation between \(B \) and \(f_L \) and obtain the values of \(B \) from fits where \(B \) and \(f_L \) are free parameters. Fig. 3 shows the behavior of \(-2 \ln L(f_L, B)\) for the modes with significant signal.

![FIG. 2: Projections of the multidimensional fit onto \(m_{ES} \) for events passing a signal-to-total likelihood probability ratio cut with the plotted variable excluded for (a) \(\rho^0 K^{*+} \), (b) \(\rho^0 K^{*0} \), (c) \(\rho^0 K^{*+} \), (d) \(\rho^0 K^{*0} \), (e) \(f_0(980) K^{*+} \), and (f) \(f_0(980) K^{*0} \). The points with error bars show the data; the solid, dashed and dotted lines show the total, background, and continuum PDF projections respectively.]

In summary, we have searched for \(B \to \rho K^* \) and \(B \to f_0(980) K^* \) decays. We observe \(B^+ \to \rho^+ K^{*0} \), \(B^0 \to \rho^0 K^{*0} \), \(B^+ \to f_0(980) K^{*+} \), and \(B^0 \to f_0(980) K^{*0} \) with 7.1, 5.3, 5.0, and 3.5 \(\sigma \) significance respectively. We measure the branching fractions or 90% C.L. upper limits, the fractions of longitudinal polarization, and the charge asymmetries, summarized in Table II. The measured polarization in the \(\rho^0 K^{*0} \) and \(\rho^0 K^{*0} \) modes agrees with values measured in \(\phi K^* \) decays.

We thank I. Bigi, S. Descotes-Genon, O. Pène, and M. Pennington for their advice on the treatment of non-resonant backgrounds. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
TABLE II: Summary of results for the measured B-decay modes: signal yield n_{sig} and its statistical uncertainty, reconstruction efficiency ε, daughter branching fraction product $\prod B_i$, significance S (systematic uncertainties included), measured branching fraction B_i (90\% C.L. upper limit in parentheses), measured longitudinal polarization f_L (for the modes with non-significant signals the numbers, in brackets, are not quoted as measurements) and charge asymmetry A_{CP}.

Mode	n_{sig}	ε (%)	$\prod B_i$ (%)	$S(\sigma)$	$B(10^{-6})$	f_L	A_{CP}
$\rho^0 K^{*+}$	2.5	$3.6^{+1.5}_{-1.6}$	0.8 (6.1)	[0.9 ± 0.2]	–	–	–
$\rightarrow \rho^0 K^{*+}_{J=0}^{+}$	19$^{+16}_{-15}$	7.9	2.1	$3.2^{+2.7}_{-2.4}$	± 0.9	–	–
$\rightarrow \rho^0 K^{*+}_{J=0}^{+}$	32$^{+19}_{-17}$	15.8	2.3	$3.8^{+2.2}_{-2.1}$	± 0.9	–	–
$\rho^0 K^{*+}_{J=0}^{+}$	194 ± 29	13.5	7.1	9.6 ± 1.7	± 0.04	± 0.01 ± 0.16 ± 0.02	–
$\rho^0 K^{*+}_{J=0}^{+}$	60 ± 22	15.2	32.5	5.4 ± 6.7	± 1.6	12.0	–
$\rho^0 K^{*+}_{J=0}^{+}$	185 ± 30	22.9	66.7	5.6 ± 0.9	± 1.3	0.57 ± 0.09 ± 0.08	± 0.09 ± 0.19 ± 0.02
$f_0(980) K^{*+}$	5.0	5.2 ± 1.2 ± 0.5	–	–	0.34 ± 0.21 ± 0.03	–	–
$\rightarrow f_0(980) K^{*+}_{J=0}^{+}$	40$^{+13}_{-12}$	8.5	3.8	6.2 ± 2.1	± 0.7	–	– 0.50 ± 0.29 ± 0.03
$\rightarrow f_0(980) K^{*+}_{J=0}^{+}$	37$^{+14}_{-13}$	16.6	3.2	4.2 ± 1.5	± 0.5	–	– 0.13 ± 0.30 ± 0.01
$f_0(980) K^{+}$	83 ± 19	21.7	66.7	3.5	2.6 ± 0.6	± 0.9 (4.3)	– 0.17 ± 0.28 ± 0.02

* Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy

[1] A. Ali et al., Z. Phys. C 1, 269 (1979); M. Suzuki, Phys. Rev. D 66, 054018 (2002).
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 231804 (2004); Belle Collaboration, K.-F. Chen et al., Phys. Rev. Lett. 94, 221804 (2005).
[3] A. Kagan, Phys. Lett. B 601, 151 (2004); C. Bauer et al., Phys. Rev. D 70, 054015 (2004); P. Colangelo et al., Phys. Lett. B 597, 291 (2004); M. Ladisa et al., Phys. Rev. D 70, 114025 (2004); H. Li and S. Mishima, Phys. Rev. D 71, 054025 (2005); M. Beneke et al., Phys. Rev. Lett. 96, 141801 (2006).
[4] D. Atwood and A. Soni, Phys. Rev. D 65, 073018 (2002); M. Beneke et al., [hep-ph/0606405](http://arxiv.org/abs/hep-ph/0606405) submitted to Phys. Lett. B.
[5] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003); Belle Collaboration, J. Zhang et al., Phys. Rev. Lett. 95, 141801 (2005); CLEO Collaboration, R. Godang et al., Phys. Rev. Lett. 88, 021802 (2002).
[6] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect A 479, 1 (2002).
[7] G. Kramer and W.F. Palmer, Phys. Rev. D 45, 193 (1992).
[8] E.M. Aitala et al., Phys. Rev. Lett. 86, 765 (2001).
[9] W.-M. Yao et al., J. Phys. G 33, 1 (2006).
[10] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 70, 032006 (2004).
[11] M. Pvik and F. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect A 555, 356 (2005).
Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in $B \rightarrow \rho K^*$ and $B \rightarrow f_0(980)K^*$ decays

We report searches for B-meson decays to the charmless final states ρK^* and $f_0(980)K^*$ with a sample of 232 million $B\overline{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC. We measure the following branching fractions in units of 10^{-6}:
$B(B^+ \rightarrow \rho^0 K^{*+}) = 3.6 \pm 1.7 \pm 0.8 (< 6.1)$,
$B(B^+ \rightarrow \rho^+ K^{*0}) = 9.6 \pm 1.7 \pm 1.5$,
$B(B^0 \rightarrow \rho^0 K^{*+}) = 5.4 \pm 3.6 \pm 1.6 (< 12.0)$,
$B(B^0 \rightarrow \rho^0 K^{*0}) = 5.6 \pm 0.9 \pm 1.3$,
$B(B^+ \rightarrow f_0(980)K^{*+}) = 5.2 \pm 1.2 \pm 0.5$,
and
$B(B^0 \rightarrow f_0(980)K^{*0}) = 2.6 \pm 0.6 \pm 0.9 (< 4.3)$. The first error quoted is statistical, the second systematic, and the upper limits, in parentheses, are given at the 90% confidence level. For the statistically significant modes we also measure the fraction of longitudinal polarization and the charge asymmetry:
$f_L(B^+ \rightarrow \rho^+ K^{*0}) = 0.52 \pm 0.10 \pm 0.04$,
$f_L(B^0 \rightarrow \rho^0 K^{*0}) = 0.57 \pm 0.09 \pm 0.08$,
$A_{CP}(B^+ \rightarrow \rho^+ K^{*0}) = -0.01 \pm 0.16 \pm 0.02$,
$A_{CP}(B^0 \rightarrow \rho^0 K^{*0}) = 0.09 \pm 0.19 \pm 0.02$,
$A_{CP}(B^+ \rightarrow f_0(980)K^{*+}) = -0.34 \pm 0.21 \pm 0.03$, and
$A_{CP}(B^0 \rightarrow f_0(980)K^{*0}) = -0.17 \pm 0.28 \pm 0.02$.