RESEARCH ARTICLE

Human CCL3L1 copy number variation, gene expression, and the role of the CCL3L1-CCR5 axis in lung function [version 2; peer review: 2 approved]

Adeolu B. Adewoye1, Nick Shrine2*, Linda Odenthal-Hesse1, Samantha Welsh3, Anders Malarstig4, Scott Jelinsky5, Iain Kilty5, Martin D. Tobin1,2,6, Edward J. Hollox1, Edward J. Hollox1, Louise V. Wain1,2,6*

1Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
2Department of Health Sciences, University of Leicester, Leicester, UK
3UK Biobank, Stockport, UK
4Pfizer Worldwide Research and Development, Stockholm, Sweden
5Pfizer Worldwide Research and Development, Cambridge, MA, USA
6National Institute of Health Research Biomedical Research Centre, University of Leicester, Leicester, UK

* Equal contributors

v2 First published: 21 Feb 2018, 3:13
https://doi.org/10.12688/wellcomeopenres.13902.1
Latest published: 30 Apr 2018, 3:13
https://doi.org/10.12688/wellcomeopenres.13902.2

Abstract

Background: The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic monoclonal antibodies are in development. Repositioning of drugs and targets into new disease areas can accelerate the availability of new therapies and substantially reduce costs. As it has been shown that drug targets with genetic evidence supporting their involvement in the disease are more likely to be successful in clinical development, using genetic association studies to identify new target repurposing opportunities could be fruitful. Here we investigate the potential of perturbation of the CCL3L1-CCR5 axis as treatment for respiratory disease. Europeans typically carry between 0 and 5 copies of CCL3L1 and this multi-allelic variation is not detected by widely used genome-wide single nucleotide polymorphism studies.

Methods: We directly measured the complex structural variation of CCL3L1 using the Paralogue Ratio Test and imputed (with validation) CCR5d32 genotypes in 5,000 individuals from UK Biobank, selected from the extremes of the lung function distribution, and analysed DNA and RNAseq data for CCL3L1 from the 1000 Genomes Project.

Results: We confirmed the gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA expression levels. We found no evidence for...
association of CCL3L1 copy number or CCR5d32 genotype with lung function.

Conclusions: These results suggest that repositioning CCR5 antagonists is unlikely to be successful for the treatment of airflow obstruction.

Keywords
copy number variation, lung function, CCL3L1, CCR5, CNV, UK Biobank
Introduction

Genome-wide association studies have identified thousands of disease-gene associations leading to new disease insight and potential new approaches to treatment. It has been shown that drug targets supported by genetic studies have an increased chance of success in clinical development. Even so, only a subset of candidate drugs will make it through to the clinic. Identifying opportunities for repositioning existing drugs and targets is therefore an appealing prospect and using genetic studies to define alternative indications for an already-approved drug is a promising approach.

The MIP-1alpha (encoded by CCL3 and CCL3L1)-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. It is perturbed by CCR5 antagonists such as Pfizer’s maraviroc, the only CCR5 antagonist to be approved by the United States Food and Drug Administration. Identification of a genetic association of variants within the genes involved (CCR5 and CCL3/CCL3L1) would strongly support the potential use of CCR5 antagonists in the treatment of respiratory conditions.

In mice, MIP-1alpha is implicated in virus-mediated inflammation of the lung, pulmonary eosinophilia following paramyxovirus infection, clearance of pulmonary infections, and in the response to respiratory syncytial virus infection. In humans, Mip-1alpha controls the recruitment of immune cells to inflammatory foci, and increased levels of MIP-1alpha mRNA are found in bronchial epithelial cells of COPD patients, and increased protein levels in the sputum of COPD patients where increased macrophage and neutrophil infiltration in the lung is a key pathology.

The CCR5 gene in humans has a 32bp exonic deletion allele (rs333, CCR5d32) with a minor allele frequency of between 5–15% in Europeans. This allele causes a translational frameshift and abrogates expression of the receptor at the cell surface, such that homozygotes for the deletion allele lack any functional CCR5 receptor. This variant has been strongly and repeatedly associated with resistance to HIV infection and slower HIV progression, as CCR5 is a common coreceptor for HIV entry into T-lymphocytes. The CCR5d32 allele has been suggested to confer a reduced risk of asthma in children in one study although this has not been replicated.

In humans, there are two isoforms of MIP-1alpha, the LD78a isoform encoded by the CCL3 gene and the LD78b isoform encoded by the paralogous CCL3L1 gene. The two isoforms differ by three amino acids, but only one of these small changes, a serine to proline change at position 2 of the mature protein, alters the affinity to the cell surface receptor CCR5, with the beta isoform (CCL3L1) having approximately six-fold greater affinity for CCR5 than the alpha isoform (CCL3).

The CCL3L1 gene is part of a complex structurally variable region, although the CCL3 gene is not. The CCL3L1 gene and the neighboring CCL4L1 gene are tandemly repeated with the total diploid copy number ranging from 0 copies to 6 copies in Europeans. Higher copy numbers are observed elsewhere, for example 10 in Tanzanian and 14 in Ethiopian populations. Previous studies have shown evidence of a gene dosage effect, with CCL3L1 gene dose reflected in mRNA levels as well as in the ability to chemoattract monocytes.

Measuring CCL3L1 multiallelic copy number variation has been challenging. Early studies used qPCR assays with a low signal:noise ratio, but assays based on the paralogue ratio test (PRT), allowed more accurate estimation of diploid copy number. Because of the challenges in measuring CCL3L1 copy number in sufficiently large and well-powered sample sizes, the effect of structural variation of the genes encoding the MIP-1alpha-CCR5 ligand-receptor pair has not been adequately explored.

In this study, we set out to confirm previous reports that CCL3L1 copy number is associated with CCL3L1 gene expression, then measure CCL3L1 copy number and CCR5d32 genotype in 5000 individuals from UK Biobank, and finally test for association with lung function. Furthermore, we validated our copy number typing approach and observed copy number frequencies using publicly available sequence data from the 1000 Genomes Project. For CCL3L1 copy number measurement in the 5000 individuals from UK Biobank, we used a triplex PRT, which is considered to be the gold standard approach for measurement of this copy number variation. For genotyping of CCR5d32 in UK Biobank, we used a standard genotype imputation approach with additional PCR validation. We tested for association with extremes of Forced Expired Volume in 1 second (FEV1) as a binary trait. This study is the largest analysis of the effect of CCL3L1 copy number and CCR5d32 genotypes on lung function undertaken to date.

Methods

Sample selection

Individuals were selected from the UK BiLEVE subset of UK Biobank. Data from the UK BiLEVE study are available at http://www.ukbiobank.ac.uk/data-showcase/. In brief, 502,682 individuals were recruited to UK Biobank of whom 275,939 were of self-reported European-ancestry, and had two or more measures of Forced Expired Volume in 1s (FEV1) and Forced Vital Capacity (FVC) measures (Vitalograph Pneumotrac 6800, Buckingham, UK) passing ATS/ERS criteria. Based on the highest available FEV1 measurement, 50,008 individuals with extreme low (n=10,002), near-average (n=10,000) and extreme high (n=5,002) % predicted FEV1 were selected from amongst never-smokers (total n=105,272) and heavy-smokers (mean 35 pack-years of smoking, total n=46,758), separately. For this study, we selected 2500 age-matched European-ancestry heavy smokers from the extreme high and extreme low % predicted FEV1 subsets defined for the UK BiLEVE study (Figure 1, Table 1).
DNA samples for these 5000 individuals were prepared by UK Biobank and provided back to the University of Leicester with new identification codes such that typing of \textit{CCL3L1} copy number and \textit{CCR5}d32 was blinded to lung function status. Positive control samples for the copy number typing were from the Human Random Control panel from Public Health England (C0075 – 1 copy, C0150 – 2 copies, C0007 – 3 copies, C0877 – 4 copies), as used previously\(^{26}\).

\textit{CCL3L1} copy number estimation in UK Biobank and 1000 Genomes Project samples using the paralogue ratio test (PRT)

\textit{CCL3L1} copy number was determined using a triplex paralogue ratio test (PRT) assay as used previously\(^{24,26}\). Briefly, PRT is a comparative PCR method that amplifies a test and reference locus using the same pair of primers, followed by capillary electrophoresis and quantification of the two products\(^{32,36}\). The triplex assay produced three independent estimates of copy number per test, of which the average was taken as a representative copy number value. The three values were consistent in 95\% of samples, however, for 5\% of samples the value from the LTR61A PRT assay was significantly lower than the other two PRT values, and an average of the two consistent PRTs was taken in these 5\% of samples. For each typing experiment, 4 positive controls of known copy number were also included, as previously\(^{26,37}\). The copy number values clustered about integer copy numbers, and a Gaussian mixture model was fitted to allow assignment of individuals to an integer copy number call using CNVtools\(^{38}\). For the 5000 individuals from UK Biobank, 58 individuals were selected by UK Biobank investigators as blind spiked duplicates as part of the quality control check to ensure genotyping accuracy. Copy numbers from UK Biobank samples are available from UK Biobank at http://www.ukbiobank.ac.uk/data-showcase/.

Gene expression levels in 1000 genomes project lymphoblastoid cell lines

Matched RNAseq data that is publically available for the 1000 genomes samples were grouped based on \textit{CCL3L1} copy number and analysed for their differential expression using Cufflinks.

\textbf{Table 1. Demographics of selected UK Biobank cohort.}

	Low \(\text{FEV}_{1}\) (n=2500)	High \(\text{FEV}_{1}\) (n=2500)
n (%) male	1250 (50\%)	1250 (50\%)
Age	56.9 / 7.9 (40, 70)	56.9 / 7.9 (40, 70)
Pack-years	40.6 / 22.5 (10.8, 301.0)	29.37 / 13.4 (10.5, 134.0)
Pack-years as a propor-	0.96 / 0.47 (0.42, 7.00)	0.70 / 0.29 (0.42, 3.03)
tion of lifespan	(0.36, 3.38)	(0.36, 3.38)
\(\text{FEV}_{1}\) (litres)	1.50 / 0.47 (0.36, 7.00)	3.64 / 0.73 (2.02, 6.72)
Percent predicted \(\text{FEV}_{1}\)	51.4 / 11.0 (14.9, 74.5)	123.3 / 8.2 (112.8, 205.7)

Values are Mean / SD (range), unless stated.
v2.1.19. This allows measurement of the effect of genomic copy number of \textit{CCL3L1} on gene expression levels. The analyses were all performed on ALICE High Performance Computing Facility at the University of Leicester. The RNAseq data were downloaded from EBI ArrayExpress (accessions E-GEUV-1, E-GEUV-2, E-GEUV-3)41. Using Cufflinks, the fragments per kilobase of transcript per million fragments mapped (FPKM) values were estimated by applying a statistical model that normalises the mapped reads by length and their abundance. Briefly, the fragment reads are divided by transcript size and the total number of reads and then adjusted to 1 kb and 1 million reads.

Genotyping of \textit{CCR5d32} polymorphism

Imputation to 1000 Genomes Project Phase 1+UK10K reference panel42 and PCR were used to genotype the \textit{CCR5d32} polymorphism (rs333) in the 5000 UK Biobank individuals. Phasing and imputation were undertaken with SHAPEIT v2.r79043 and IMPUTE2 v2.3.143. For individuals with imputation posterior probability <0.95 (431 samples), and an additional 20 samples that were imputed as homozygous for the minor \textit{CCR5d32} allele, we validated the imputation results using direct PCR genotyping. Duplicates of a random selection of 28 of individuals were included as a quality control check for genotyping reproducibility (genotyping was also blinded to duplicate status). Genotypes from UK Biobank samples are available from UK Biobank at http://www.ukbiobank.ac.uk/data-showcase/.

\textit{CCL3L1} copy number estimation from sequencing data for 1000 Genomes Project individuals

1000 genomes phase 3 whole genome aligned Bam files generated from Illumina platforms available from the European Bioinformatics Institute were downloaded and the genomic region including \textit{CCL3L1} (hg19:chr17:33670000-35670000) was analysed using CNVrd244. Using 500bp window sequence read depth, the sequence read depth was calculated across the region for all 2502 genomes from 26 populations, and standard deviation/quantile calculated for each window. The segmentation scores obtained from this analysis were clustered into different groups using a Gaussian mixture model. A priori information for all populations was estimated using the expectation maximisation (EM) algorithm on a population group with clear clusters of segmentation scores. The prior information (means, standard deviations and proportions of the mixture components) was fed into a Bayesian model to infer \textit{CCL3L1} integer copy number in all populations. Copy number estimates are available from dbVar under study accession number nstd155.

Association analysis

We tested for association of \textit{CCL3L1} copy number and \textit{CCR5d32} genotype separately with lung function extremes (as a binary trait) using logistic regression in R v. 3.2.3 with pack-years of smoking and the first ten principal components (obtained previously using full genome-wide SNP genotyping data) to adjust for fine-scale population structure as covariates9. For \textit{CCR5d32}, a genotypic genetic model was assumed for the primary analysis. We then fitted a full linear regression model that included \textit{CCR5d32} genotype (genotypic mode), \textit{CCL3L1} copy number, pack years, 10 principal components and a term for the interaction of \textit{CCR5d32} and \textit{CCL3L1}.

A previous version of this manuscript is available on BioRxiv https://www.biorxiv.org/content/early/2018/01/17/249508

Results

Using CNVrd2, we typed \textit{CCL3L1} copy number from whole genome sequence alignments for 2502 individuals from the 1000 Genomes project (Figure 2a). The data were grouped into large superpopulations, as defined by the 1000 Genomes Project42, and our analysis confirmed previous observations that Europeans have the lowest \textit{CCL3L1} diploid copy number, ranging between 0 and 5 with a mean copy number of 1.97, and sub-Saharan Africans have the highest diploid copy number, ranging between 1 and 9 with a mean of 4.19, which is more than twice as high as Europeans (Table 2)32,35.

For 144 individuals from the CEU (n=96) and YRI (n=48) populations of the 1000 Genomes project, we also determined \textit{CCL3L1} copy number using the PRT approach (Figure 2b). There was strong concordance between results, with discrete clusters of raw data (Figures 2b and 2c), representing individual integer copy numbers, formed, particularly at low copy number. For the range seen in Europeans (copy numbers 0 to 5), there are seven clear discrepancies, which gives a joint error rate of 5%.

To confirm previous studies that reported an association between \textit{CCL3L1} copy number and \textit{CCL3L1} mRNA levels, we compared the 1000 Genomes Project \textit{CCL3L1} copy numbers with transcript levels of \textit{CCL3L1} and its non-copy number variable parologue \textit{CCL3}, as generated by RNAseq of the corresponding B-lymphoblastoid cell lines (Figures 3a and b). Comparison with transcript level estimates using RNAseq data showed a clear positive correlation between \textit{CCL3L1} copy number and expression level (Figure 3b, \(r^2=0.25, \text{slope}=6.9, p<2\times10^{-16}\)). We used the specific sequence changes between \textit{CCL3L1} and \textit{CCL3} to distinguish transcripts from either gene, and confirmed this by showing that \textit{CCL3} expression has no relationship with \textit{CCL3L1} copy number (Figure 3a, \(r^2=0.006, p=0.087\)), as well as showing that individuals with zero copies of \textit{CCL3L1} show no transcripts from \textit{CCL3L1} (Figure 3b).

We confirmed an increase of one to two orders of magnitude for \textit{CCL3} transcript levels compared to \textit{CCL3L1} transcript levels in B-lymphoblast cells. Following normalization of the \textit{CCL3L1} expression levels to \textit{CCL3} expression levels, we show that \textit{CCL3L1} transcript levels are closely correlated with gene copy number (Figure 3c, \(r^2=0.5, \text{slope}=0.013, p<2\times10^{-16}\)).

Having confirmed a relationship between gene copy number and transcript levels of \textit{CCL3L1}, we investigated the relationships between \textit{CCL3L1} copy numbers, \textit{CCR5d32} genotype and...
Figure 2. CCL3L1 Copy number typing. (a) Histogram of raw copy number estimates of 1000 Genomes Project samples from sequence read depth represented as segmentation scores on the x axis, generated by CNVrd2, with higher scores reflecting higher copy number. (b) Validation of 144 1000 Genomes Project samples using PRT (x axis) against estimates made from sequence read depth. Colours/symbols in the scatterplot represent different integer copy numbers inferred from PRT clusters. (c) Histogram of raw copy number estimates using PRT for the UK Biobank cohort.
Table 2. CCL3L1 copy number frequency distributions in 1000 Genomes data.

Superpopulation	n	average copy number	minimum copy number	maximum copy number
AFR (Sub-Saharan African)	661	4.19	1	9
AMR (Admixed American)	347	2.71	0	8
EAS (East Asian)	504	3.52	0	9
EUR (European)	501	1.97	0	5
SAS (South Asian)	489	2.39	0	7

Figure 3. Copy number and expression level of CCL3L1 and CCL3 in lymphoblastoid cell lines. (a) CCL3 mRNA level (FPKM units) across different CCL3L1 copy numbers. (b) CCL3L1 mRNA level (FPKM units) across different CCL3L1 copy numbers. (c) CCL3L1:CCL3 mRNA ratio across different CCL3L1 copy numbers. Individual data points are shown, with red bars indicating median and interquartile ranges.
lung function in individuals selected from the extremes of the lung function distribution in UK Biobank. We typed 5000 UK Biobank samples using PRT, with 19 failures. The results showed a clear mixture of Gaussian distributions centered on each integer copy number (Figure 2c). All 58 duplicates were consistently typed, resulting in an error rate between 0% and 4.7%. We observed clear distances between the clusters, further suggesting that the measurement error rate for this cohort is likely to be low.

We estimated CCL3L1 integer copy numbers in all the samples using Gaussian mixture modelling (Table 3). The copy number range was consistent with previous observations in UK population, and with our estimation from the 1000 Genomes project samples. The two copy genotype was the most frequent with a frequency of 0.563. The CCL3L1 zero copy null genotype is uncommon, with a frequency of 2.5% in the UK. 4993 of the 5000 UK Biobank samples were genotyped for CCR5d32 by imputation with the genotypes for 474 individuals validated using direct PCR analysis. There was no evidence that the genotype frequencies departed from Hardy-Weinberg equilibrium (chi-squared test, p=0.35) and the observed CCR5d32 deletion allele frequency was 0.11, consistent with previous estimates.

Table 3. CCL3L1 copy number counts in UK Biobank data.

CCL3L1 diploid copy number	Number of samples	Frequency
0	127	0.025
1	1046	0.210
2	2806	0.563
3	853	0.171
4	128	0.026
5	21	0.004
Sum	4981	0.999

We fitted a full model with both CCR5 genotypes (genotypic model) and CCL3L1 copy number and an interaction term as described above. This was undertaken in order to identify whether particular combinations of CCL3L1 copy number and CCR5d32 genotype were differentially associated with lung function. Pack years of smoking and 10 principal components were included as covariates. No associations were significant (Table 5).

2486 samples with high FEV₁ and 2489 samples with low FEV₁, Covariates: smoking pack-years, 10 principal components of SNP genetic variation.

Table 4. CCR5d32 genotype counts by CCL3L1 copy number in UK Biobank data.

CCL3L1 copy number	CCR5d32 genotype	ref/ref	d32/ref	d32/d32
0		92	33	2
1		826	203	16
2		2197	574	31
3		662	181	9
4		99	28	1
5		15	6	0
Sum		3891	1025	59

Table 5. Association analysis of CCR5 genotype and CCL3L1 copy number with high vs low FEV₁.

	OR (95% CI)	P value
CCR5d32 deletion heterozygote main effect	0.84 (0.57-1.23)	0.38
CCR5d32 deletion homozygote main effect	0.29 (0.07-1.30)	0.11
CCL3L1 copy number main effect	1.00 (0.92-1.09)	0.97
CCR5d32 deletion heterozygote interaction with CCL3L1 copy number	1.11 (0.93-1.32)	0.27
CCR5d32 deletion homozygote interaction with CCL3L1 copy number	1.74 (0.83-3.64)	0.14

Discussion
Our study provides robust large-scale confirmation of a gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA levels, and also emphasises the strong dependence of CCL3L1:CCL3 mRNA ratio on copy number, with CCL3L1 copy number accounting for 50% of total variation. Although it is clear that CCL3L1 is expressed at much lower levels than CCL3, the MIP-1alpha isoform encoded by CCL3L1 (LD78beta) has a much stronger affinity to the CCR5 receptor than MIP-1alpha isoform CCL3 (LD78alpha). It therefore seems likely that the CCL3L1 copy number variation mediates a biological effect in vivo. It should be noted that the expression data are from transformed
B-lymphoblastoid cell lines, but a gene dosage effect is consistent with a study using fresh monocytes from 55 different individuals stimulated with bacterial lipopolysaccharide.

Our analysis provides evidence that there is no effect of either CCL3L1 copy number or CCR5d32 genotype, or any combinations of genotypes at the two loci, on lung function. This suggests that, although the MIP-1alpha-CCR5 signaling axis can be disrupted by artificial CCR5 antagonists, there is no evidence that this axis has a functional effect on lung function and that development of new drugs to target this axis, or repurposing of existing drugs, might be of little or no therapeutic benefit in treating COPD.

We analysed approximately 5000 individuals. Whilst this represents a large sample size for labour-intensive PRT assays, it is a modest sample size in comparison with those employed in GWAS. That said, power was boosted by selecting from the extremes of the lung function distribution in the very large (n~500,000) UK Biobank.

We reported PRT error rates of 2.5% for the 144 1000 Genomes Project samples and between 0% and 4.75% for the 4981 UK Biobank participants. A previous study using this PRT approach estimated an error rate of less than 0.1%,

The exact boundaries of the CCL3L1 CNV have yet to be determined with precision but it is known to include the CCL4L1 gene, which encodes MIP-1beta.

The human genome assembly GRCh38 shows a single copy CCL3L1/CCL4L1 repeat unit, and also includes the TBC1D3 gene, encoding TBC1 Domain Family Member 3.

The GRCh38 alternative assembly chr17_KI270909v1_alt shows two repeat units, both including TBC1D3. However an earlier assembly shows a complete contig with two repeat units carrying CCL3L1/CCL4L1, only one of which carries TBC1D3. ArrayCGH and fiber-FISH both confirm this is real heterogeneity by showing that the TBC1D3 gene is included in some, but not all, tandemly repeated units in some individuals, together with CCL3L1 and CCL4L1.

Throughout this paper, and in most of the literature, CCL3L1 CNV is used as a shorthand to describe the CNV of this complex repeat unit.

Given the gene content of this repeat unit, we would expect a gene dosage effect for CCL4L1 and TBC1D3, in addition to CCL3L1, but this has not yet been confirmed. Our data do, however, show no effect of CCL3L1 copy number on expression levels of its close paralogue, CCL3, which is immediately proximal to the CNV. This difference shows that the considerable variation in genome structure distal to the CCL3 gene does not affect overall levels of CCL3 expression.

In summary, we selected individuals from the extremes of the lung function distribution of a very large general population cohort. We found no association of CCL3L1 copy number, nor of the CCR5d32 variant with lung function, as defined by FEV1.

Data availability
UK Biobank data are available upon application to the UK Biobank (https://www.ukbiobank.ac.uk/) to all bona fide researchers. Access details can be found at: http://www.ukbiobank.ac.uk/register-apply/.

Data from the UK BiLEVE study are available at http://www.ukbiobank.ac.uk/data-showcase/.

Competing interests
AM, SJ and IK are employees of Pfizer, Inc. All other authors have no competing interests.

Grant information
This work was supported by the Wellcome Trust [202849], Investigator Award to MDT; Pfizer, Inc. to MDT, LVW and EJH; partially funded by the National Institute for Health Research (NIHR); The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Single nucleotide polymorphism genotyping of the UK BiLEVE subset of UK Biobank was funded by a Medical Research Council strategic award to MDT, IPH, DPS and LVW (MC_PC_12010; UK Biobank Application Number 648).

LVW holds a GSK / British Lung Foundation Chair in Respiratory Research.

Acknowledgements
This research has been conducted using the UK Biobank Resource under Application Number 7140.

This research used the ALICE and SPECTRE High Performance Computing Facilities at the University of Leicester. We would like to thank Gurdeep Lall and Amelia Veselis for technical support.
References

1. Nelson MR, Johnson T, Warren L, et al.: The genetics of drug efficacy: opportunities and challenges. Nat Rev Genet. 2016; 17(4): 197–206.
2. Menten P, Wang T, Van Damme J: Macrophage inflammatory protein-1, Cytokine Growth Factor Rev. 2002; 13(6): 455–81.
3. Carter Ph: Chemokine receptor antagonism as an approach to anti-inflammatory therapy: ‘just right’ or plain wrong? Curr Opin Chem Biol. 2002; 6(4): 510–25.
4. Lieberman-Blum SS, Fung HB, Bandres JC: Mariviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther. 2008; 30(7): 1228–50.
5. Koelink PJ, Overbeek SA, Braber S, et al.: Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther. 2012; 133(1): 1–18.
6. Cook DN, Beck MA, Coffman TM, et al.: Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science. 1995; 269(5250): 1583–5.
7. Lindel DM, Standford TJ, Mancuso P, et al.: Macrophage inflammatory protein 1 alpha/CCL3 is required for clearance of an acute Klebsiella pneumoniae pulmonary infection. Infect Immun. 2001; 69(10): 6364–9.
8. Domachowske JB, Bonville CA, Gao JL, et al.: Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum. Respir Res. 2014; 15(1): 103.
9. Martinson JJ, Chapman NH, Rees DC, et al.: Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 1997; 17(1): 101–03.
10. Tregoning JS, Prübl PK, Pennycook AM, et al.: The chemokine MIP1alpha/CCL3 determines pathology in primary RSV infection by regulating the balance of T cell populations in the murine lung, PLoS One. 2010; 5(2): e9381.
11. Fuke S, Satsuyoshi T, Nasuhara Y, et al.: Chemokines in bronchial epithelium in the development of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2004; 31(4): 405–12.
12. Ravi AK, Khatuna S, Lemon J, et al.: Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum. Respir Res. 2014; 15(1): 103.
13. Martinson JJ, Chapman NH, Rees DC, et al.: Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 1997; 17(1): 101–03.
14. Liu P, Paxton WA, Choie S, et al.: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection, Cell. 1996; 86(3): 367–77.
15. Samson M, Libert F, Doranz BJ, et al.: Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature. 1996; 382(6593): 722–5.
16. Naborhia V, Carrington M: Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics. 2017; 69(6–9): 489–98.
17. Halt IP, Wheatley A, Christie G, et al.: Association of CCR5 delta32 with reduced risk of asthma. Lancet. 1999; 354(9166): 1264–6.
18. Mitchell TJ, Walley AJ, Pease JE, et al.: Delta 32 deletion of CCR5 gene and association with asthma or atopy. Lancet. 2000; 356(9240): 1491–2.
19. Song GG, Kim JH, Lee YH: The chemokine receptor 5 delta32 polymorphism and type 1 diabetes, Behcet’s disease, and asthma: a meta-analysis. Immunol Invest. 2014; 43(2): 123–36.
20. Irving SG, Zipfel PF, Balke J, et al.: Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q, Nucleic Acids Res. 1990; 18(11): 3261–70.
21. Nakao M, Nomiya H, Shymada K: Structures of human genes coding for cytokine LD78 and their expression, Mol Cell Biol. 1990; 10(7): 3646–58.
22. Nibbs RJ, Yang J, Landau NR, et al.: LD78beta, a non-allelic variant of human MIP-1alpha (LD78alpha), has enhanced receptor interactions and potent HIV suppressive activity, J Biol Chem. 1999; 274(25): 17478–83.
23. Field SF, Howson JM, Maier LM, et al.: Experimental aspects of copy number variant assays at CCL3L1, Nat Med. 2009; 15(10): 1115–7.
24. Walker S, Janyankhentu S, Armour JA: Multiplex Paralogue Ratio Tests for accurate measurement of multiallelic CHVs. Genomics. 2009; 93(1): 98–103.
25. Carpenter D, Fänter A, Roohi I, et al.: CCL3L1 copy number and susceptibility to malaria, Infect Genet Evol. 2012; 12(5): 1147–54.
26. Akullu E, Odenthal-Hessey L, Bowrey J, et al.: CCL3L1 copy number, HIV load, and immune reconstitution in sub-Saharan Africans. BMC Infect Dis. 2013; 13(1): 536.
27. Townson JR, Barcellos LF, Nibbs RJ, et al.: Gene copy number regulates the production of the human chemokine CCL3L1, Eur J Immunol. 2002; 32(10): 3016–26.
28. Carpenter D, McIntosh RS, Pleass RJ, et al.: Functional effects of CCL3L1 copy number. Genes Immun. 2012; 13(5): 374–9.
29. Cantaisnier S, Western PS, Baird PN, et al.: Technical considerations for genotyping multi-allelic copy number variation (CNV), in regions of segmental duplication, BMC Genomics. 2014; 15(1): 329.
30. Gao JL, Boville CA, Gao JL, et al.: The influence of CCL3L1 gene-containing segmental duplications on HIV/AIDS susceptibility. Science. 2005; 307(5714): 1434–40.
31. Urban TJ, Weintrob AC, Feltly J, et al.: CCL3L1 and HIV/AIDS susceptibility. Nat Med. 2009; 15(10): 1110–2.
32. Armstrong JA, Palla R, Zeeuwen PL, et al.: Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats. Nucleic Acids Res. 2007; 35(3): e19.
33. Wain LV, Shiree N, Miller S, et al.: Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015; 3(10): 769–81.
34. Wain LV, Shiree N, Artigas MS, et al.: Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017; 49(3): 416–25.
35. Miller MR, Hankinson J, Brussac V, et al.: Standardisation of spirometry, Eur Respir J. 2005; 26(2): 319–28.
36. Wain LV, Shiree N, Artigas MS, et al.: Genome-wide association analyses for lung function and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015; 3(10): 769–81.
37. Miller MR, Hankinson J, Brussac V, et al.: Standardisation of spirometry, Eur Respir J. 2005; 26(2): 319–28.
38. Wain LV, Shiree N, Miller S, et al.: Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015; 3(10): 769–81.
39. Howie BN, Donnelly P, Marchini J: A flexible and accurate genotype imputation method for whole-genome association studies. Nat Genet. 2009; 41: 33–9.
40. Delaneau O, Zagury JF, Marchini J: A fast and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2010; 6(e1000529).
41. Delaneau O, Zagury JF, Marchini J: A fast and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2010; 6(e1000529).
42. Delaneau O, Zagury JF, Marchini J: A fast and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2010; 6(e1000529).
43. Delaneau O, Zagury JF, Marchini J: A fast and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2010; 6(e1000529).
44. Delaneau O, Zagury JF, Marchini J: A fast and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2010; 6(e1000529).
45. 1000 Genomes Project Consortium, Auton A, Brooks LD, et al.: A global reference for human genetic variation. Nature. 2015; 526(7571): 68–74. PubMed Abstract | Publisher Full Text | Free Full Text

46. Hodzic D, Kong C, Wainszelbaum MJ, et al.: TBC1D3, a hominoid oncoprotein, is encoded by a cluster of paralogues located on chromosome 17q12. Genomics. 2006; 88(6): 731–6. PubMed Abstract | Publisher Full Text

47. Wainszelbaum MJ, Charron AJ, Kong C, et al.: The hominoid-specific oncogene TBC1D3 activates Ras and modulates epidermal growth factor receptor signaling and trafficking. J Biol Chem. 2008; 283(19): 13233–42. PubMed Abstract | Publisher Full Text | Free Full Text

48. Frittoli E, Palamidessi A, Pizzigoni A, et al.: The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell. 2008; 19(4): 1304–16. PubMed Abstract | Publisher Full Text | Free Full Text

49. Perry GH, Yang F, Marques-Bonet T, et al.: Copy number variation and evolution in humans and chimpanzees. Genome Res. 2008; 18(11): 1698–710. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 1

Reviewer Report 03 April 2018

https://doi.org/10.21956/wellcomeopenres.15113.r32277

© 2018 Sudmant P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peter H. Sudmant

Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

In this manuscript Adewoye, Shrine, and colleagues report on genotyping of 5000 individuals from the UK Biobank for CCL3L1 copy number and CCR5d32 genotype using the paralog ratio test and imputation, respectively. These loci are of biomedical interest due to their role in MIP-1alpha signaling and inflammatory response pathways. The manuscript confirms the association of CCL3L1 copy number with mRNA levels using 1000 Genomes Individuals and goes on to test if CCL3L1 or CCR5d32 genotypes correlate with high/low FEV in heavy smokers from UK Biobank. No association is found with FEV and CCL3L1/CCR5d32 genotype. Overall the manuscript is very clear and well written and represents an important and useful research contribution.

- In Table 1, it would be helpful to have the footnote (“Values are Mean / SD (range)”) in the legend instead of as a footnote.
- What criteria was used to throw out the third inconsistent PRT? It says “significantly lower than the other two PRT values,” though it's not really clear what this means.
- I don't understand why the authors report the mRNA ratio between CCL3L1 and CCL3 (Figure 3C). What is the significance of this? The variance decreases, but, it's not clear to me why? If the authors are trying to show the impact of CCL3L1 mRNA levels on CCL3 levels it would be better shown by a scatter plot of CCL3L1 mRNA vs CCL3 mRNA
- In the methods it says that Cufflinks was used to estimate FPKMs, but in the main text it states "We used the specific sequence changes between CCL3L1 and CCL3 to distinguish transcripts from either gene." Was an additional procedure beyond Cufflinks used here? It is not clear. If so, this procedure should be described in the methods.
- The authors report figure 3 before figure 2c. It would be helpful to the reader to just mention 2c in passing at least before figure 3.
- In Figure 3 it would be nice to have the p-values and R^2 values in addition to the slopes of the lines reported on the graphs. The slopes are interesting as they appear to be <1, indicating that there isn't quite a perfect relationship between increased copy and increased mRNA dosage.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 25 Apr 2018

Ed Hollox, University of Leicester, Leicester, UK

We thank the reviewer for his comments. In response to his original points (which are highlighted in italics):

In Table 1, it would be helpful to have the footnote (“Values are Mean / SD (range)”) in the legend instead of as a footnote.

In this journal's format, table legends have been converted to footnotes.

What criteria was used to throw out the third inconsistent PRT? It says “significantly lower than the other two PRT values,” though it’s not really clear what this means.

In some samples the LTR61A test amplicon from the LTR61A PRT was split into two separate peaks, with only one peak called by the Genemapper software. This may be due to a small indel in same samples. This resulted in the LTR61A value being significantly below that expected given the values for the other two PRTs. These samples were identified by manual inspection of the capillary electropherograms, and for these samples only CCL3 and CCL4 PRT results were used.

In the methods it says that Cufflinks was used to estimate FPKMs, but in the main text it states “We used the specific sequence changes between CCL3L and CCL3 to distinguish transcripts from either gene.” Was an additional procedure beyond Cufflinks used here? It is not clear. If so, this procedure should be described in the methods.
No additional procedure was used beyond Cufflinks. Because the CCL3L and CCL3 transcripts can be distinguished by multiple specific sequence changes, they are mapped to CCL3L and CCL3 specifically using Cufflinks. We verified this by examining the alignments manually using the IGV browser.

The authors report figure 3 before figure 2c. It would be helpful to the reader to just mention 2c in passing at least before figure 3.

Agreed, this has been modified.

In Figure 3 it would be nice to have the p-values and R^2 values in addition to the slopes of the lines reported on the graphs. The slopes are interesting as they appear to be <1, indicating that there isn’t quite a perfect relationship between increased copy and increased mRNA dosage.

We disagree with placing these values on the graph as the relationships are clear, we wanted to minimise excess information on the graph, and these numbers are given in the text. We have added the value of the slope to the text. We agree that there is not a perfect relationship between copy number and mRNA levels, and this is presumably due to other factors that influence transcription levels of these genes.

Competing Interests: No competing interests were disclosed.

Reviewer Report 08 March 2018

https://doi.org/10.21956/wellcomeopenres.15113.r31105

© 2018 Armour J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

John A. L. Armour

School of Life Sciences, Medical School, Queen’s Medical Centre, University of Nottingham, Nottingham, UK

This exploration of association between lung function and CCL3L1 copy number and CCR5 deletion status has the interesting motivation that if the CCR5 signalling axis is associated with lung function, CCR5 antagonists might be repurposed for treatment of respiratory disease. I thought that the methods adopted were well-powered, the analyses appropriate and the conclusions drawn well justified. The mix of information from different cohorts and different genetic analyses was carefully handled to allow powerful conclusions to be derived from high-throughput data sources, while at the same time ensuring that genotypes and copy numbers were properly substantiated by direct DNA typing.

CNVrd2 does a good job of extracting copy number states for CCL3L1/CCL4L1 from 1000 Genomes
Project sequence data, and the concordance in directly typed samples (Figure 1) is impressive. The clustering of the results from the UK Biobank samples is also very clear, validating the precision and accuracy of the Gaussian mixture models extracted by CNVtools.

For the gene expression analyses at the RNA level I would agree with the conclusions stated in the first paragraph of the Discussion, that although the transcription level for CCL3L1 is much lower than for CCL3, the greater biological effect of each CCL3L1 protein molecule is likely to mean that the variation attributable to CNV has genuine function effect.

Overall, I think this is an interesting study carried out to a high standard of technical accuracy and robustness, and I have no suggestions for its improvement. One suggestion I offer the authors for their consideration is the possibility of using local SNPs to impute CCL3L1 CN from Biobank data. Clearly, any imputation of a multiallelic CNV from diallelic SNPs is likely to have limited power, but even incomplete imputation of CCL3L1 CN from SNP data alone may unlock power by allowing analysis of many more samples. The CCL3L1 CNV has no simple relationships with flanking SNPs, but the availability of CN measurements for 5000 Biobank samples may allow the exploration of SNP-CNV phasing, to ask whether phased haplotypes could form the basis of partial SNP-CNV imputation, or whether there is essentially complete linkage equilibrium between CNV and flanking SNPs. We have had some (unpublished) successes with the alpha-defensins using MOCSphaser (Kato et al. 2008, Bioinformatics’), and it could be useful to ask whether samples typed only at SNPs could be included in association analyses. Having said that, our own experience has been that the UK Biobank Axiom chip has sparse representation of SNPs around the amylase CNV, and it may be that the density of local SNPs near CCL3L1 may also be low because of the difficulties caused by local paralogy and CNV.

Minor typos (it would be much easier to specify these if the manuscript had line numbers):
Introduction, paragraph 3 has “In humans, Mip1apha...”
There is variation throughout in the name given to the 32bp deletion in CCR5, and in particular whether the CCR5 component is italicised, and whether d or del is used.
In the Methods, section “CCL3L1 copy number estimation ...”, I wasn't sure what the intended meaning was for the sentence beginning “A prior information...”. Unless “an information” is a technical term I don't know, presumably this should either be “Prior information...” or “A priori information...”. The following sentence should read “was fed into a Bayesian model...”.

References
1. Kato M, Nakamura Y, Tsunoda T: MOCSphaser: a haplotype inference tool from a mixture of copy number variation and single nucleotide polymorphism data. Bioinformatics. 2008; 24 (14): 1645-6 PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature? Yes

Is the study design appropriate and is the work technically sound? Yes

Are sufficient details of methods and analysis provided to allow replication by others? Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 25 Apr 2018

Ed Hollox, University of Leicester, Leicester, UK

We thank the reviewer for his comments and helpful suggestions. We have corrected the typographical errors in our revised manuscript.

Competing Interests: No competing interests were disclosed.