SMOOTH APPROXIMATION OF THE MODIFIED CONICAL KÄHLER-RICCI FLOW

RYOSUKE TAKAHASHI

Abstract. We introduce the conical Kähler-Ricci flow modified by a holomorphic vector field. We construct a long-time solution of the modified conical Kähler-Ricci flow as the limit of a sequence of smooth Kähler-Ricci flows.

1. Introduction

Let M be an n-dimensional Fano manifold with a Kähler metric $\omega_0 \in 2\pi c_1(M)$. A Kähler metric $\omega \in 2\pi c_1(M)$ is called Kähler-Einstein if it satisfies $\text{Ric}(\omega) = \omega$. For a long while, it was conjectured that the existence of Kähler-Einstein metrics is equivalent to some algebro-geometric stability in the sense of Geometric Invariant Theory (Yau-Donaldson-Tian conjecture), which was recently solved by Chen-Donaldson-Sun [CDS15] and Tian [Tia15]. Their strategy was to study the existence problem of smooth Kähler-Einstein metrics on M by deforming the cone angle, i.e., study the Gromov-Hausdorff limit of conical Kähler-Einstein metrics with cone angle $2\pi \beta$ ($0 < \beta \leq 1$) along a smooth divisor $D \in | - K_M|:

$$\text{Ric}(\omega) = \beta \omega + (1 - \beta)[D]$$

when β goes to 1, where $[D]$ is the current of integration along D. Although YDT conjecture has been completely settled, the existence problem of conical Kähler-Einstein metrics itself is also an interesting problem and studied extensively by many experts (cf. [LS14], [SW16]).

Now we consider more general settings: we allow $D \in | - \lambda K_M|$ ($\lambda \in \mathbb{R}_+$) to be an \mathbb{R}-effective divisor with simple normal crossing support and write

$$D = \sum_{i=1}^{d} \tau_i D_i$$

where $\tau_i > 0$ and D_i are smooth components. We say that a Kähler current $\omega \in 2\pi c_1(M)$ is a conical Kähler metric along $(1 - \beta)D$ ($0 < \beta \leq 1$) if ω is smooth Kähler on $M \setminus D$, and asymptotically equivalent to the model conical Kähler metric near D: more precisely, near each point $p \in \text{Supp}(D)$ where $\text{Supp}(D)$ is cut out by the equation $\{z_1 \cdots z_r = 0\}$ ($r \leq d$) for some local holomorphic coordinates (z^i), ω satisfies

$$C^{-1}\omega_{\text{model}} \leq \omega \leq C\omega_{\text{model}}$$

2010 Mathematics Subject Classification. 53C25.

Key words and phrases. conical Kähler-Einstein metric, conical Kähler-Ricci soliton, conical Kähler-Ricci flow.

This work was supported by Grant-in-Aid for JSPS Fellows Number 16J01211.
for some constant $C > 0$, where
\[
\omega_{\text{model}} := \sqrt{-1} \sum_{i=1}^{r} |z^i|^{2(\beta - 1)} \tau_i dz^i \wedge d\bar{z}^i + \sqrt{-1} \sum_{i=r+1}^{n} dz^i \wedge d\bar{z}^i
\]
is the model conical Kähler metric with cone angles $2\pi (1 - (1 - \beta)\tau_i)$ along \(\{ z^i = 0 \} \).

Let \(X \) be a holomorphic vector field on \(M \) whose imaginary part \(\text{Im}(X) \) generates a torus action on the line bundles \(\mathcal{O}_M(D_i) \). Let \(H_i \) be \(\text{Im}(X) \)-invariant hermitian metrics on \(\mathcal{O}_M(D_i) \) such that the curvature of the induced hermitian metric \(H_D := \otimes_{i=1}^{d} H_i^{\tau_i} \) is \(\lambda \omega_0 \). Let \(s_i \) be the defining sections of \(\mathcal{O}_M(D_i) \) associated to \(D_i \), and set \(s_D := \otimes_{i=1}^{d} s_i^{\tau_i} \).

We define a Kähler current \(\omega^* \) as
\[
\omega^* := \omega_0 + k \sum_{i=1}^{d} \sqrt{-1} \partial \bar{\partial} |s_i|^{2(1 - (1 - \beta)\tau_i)} H_i^{\tau_i}
\]
for sufficiently small constant \(k > 0 \). Then \(\omega^* \) is a conical Kähler metric along \((1 - \beta)D\). According to [DGSW13], we say that a conical Kähler metric \(\omega \in c_1(M) \) is a conical Kähler-Ricci soliton if it satisfies
\[
\text{Ric}(\omega) = \gamma \omega + (1 - \beta)[D] + L_X \omega
\]
in the sense of distributions on \(M \), and
\[
\text{Ric}(\omega) = \gamma \omega + L_X \omega
\]
in the classical sense on \(M \setminus D \), where \(\gamma = \gamma(\lambda, \beta) := 1 - \lambda(1 - \beta) \geq 0 \) and \(L_X \omega \) is defined so that
\[
\int_M L_X \omega \wedge \zeta = - \int_M \omega \wedge L_X \zeta
\]
for any smooth \((n - 1, n - 1)\)-form \(\zeta \) on \(M \). The notion of conical Kähler-Ricci solitons is a generalization of classical Kähler-Ricci solitons (cf. [TZ00], [TZ02]) for the conical settings, and their examples in toric Fano manifolds are studied in [DGSW13] and [WZZ16].

In this paper, we introduce the following modified conical Kähler-Ricci flow (MCKRF):
\[
\begin{cases}
\frac{\partial \omega}{\partial t} = -\text{Ric}(\omega) + \gamma \omega + (1 - \beta)[D] + L_X \omega \\
\omega|_{t=0} = \omega^*.
\end{cases}
\]
Then conical Kähler-Ricci solitons with respect to \(X \) can be viewed as the stationary points of MCKRF. We say that \(\omega = \omega(t) \ (t \in [0, \infty)) \) is a long-time solution of the above MCKRF if \(\omega(t) \) is a conical Kähler metric along \((1 - \beta)D\) for each \(t \) which satisfies the equation (1.2) in the sense of distributions on \(M \times [0, \infty) \) and can be simplified to the classical modified Kähler-Ricci flow
\[
\frac{\partial \omega}{\partial t} = -\text{Ric}(\omega) + \gamma \omega + L_X \omega
\]
on \((M \setminus D) \times [0, \infty) \). If a long-time solution of the flow (1.2) converges to some Kähler current, it should be a conical Kähler-Ricci soliton with respect to \(X \). Thus the flow (1.2) provides a new standard method for studying the equation (1.1). In the case when \(X \equiv 0 \), Chen-Wang [CW15] established the short-time existence of the flow (1.2). Then Liu-Zhang [LZ17] and Wang [Wan16] showed the long-time

\[1\]More precisely, they dealt with the “strong” conical Kähler-Ricci flow (with some Hölder continuity assumptions for potential functions).
existence independently. On the other hand, in the general case, it seems that the flow (1.2) is considered only for $D = 0$ (cf. [TZ07], [PSSW11]).

Following the idea of [LZ17] and [Wan16], we will construct a long-time solution of (1.2) as the limit of a sequence of smooth Kähler-Ricci flows φ_ϵ, where φ_ϵ ($\epsilon > 0$) is a solution of the modified twisted Kähler-Ricci flow (MTKRF) defined in Section 2. Then we show the following:

Theorem 1.1. Assume that $|X(\log |s_D|^2_{H_D})| < C$ on $M \setminus D$ for some constant $C > 0$. Let $\omega_{\varphi_\epsilon}$ be a long-time solution of the modified twisted Kähler-Ricci flow (2.4). Then, by passing to a subsequence $\{\epsilon_i\}$ satisfying $\epsilon_i \to 0$ as $i \to \infty$, the Kähler metric $\omega_{\varphi_{\epsilon_i}}$ converges to a solution of the modified conical Kähler-Ricci flow:

$$\begin{cases}
\frac{\partial \omega_{\varphi}}{\partial t} = -\text{Ric}(\omega_{\varphi}) + \gamma \omega_{\varphi} + (1 - \beta)[D] + L_X \omega_{\varphi} \\
\omega_{\varphi}|_{t=0} = \omega^*
\end{cases}$$

as $i \to \infty$, where $\omega_{\varphi} := \omega^* + \sqrt{-1} \partial \bar{\partial} \varphi$, and for any $t \in [0, \infty)$, the potential function φ is Hölder continuous with respect to ω_0. This convergence holds in the sense of distributions on $M \times [0, \infty)$, and in the C^∞_{loc}-topology on $(M \setminus D) \times [0, \infty)$. In particular, there exists a long-time solution of the modified conical Kähler-Ricci flow.

Remark 1.1. (1) The assumption $|X(\log |s_D|^2_{H_D})| < C$ is a necessary condition for the existence of a conical Kähler-Ricci soliton with respect to X. In particular, this condition implies that X is tangent to $\text{Supp}(D)$ (cf. [JLZ16, Remark 4.2]). This assumption is used only for the uniform Laplacian estimate of MTKRF (cf. Proposition 3.2).

(2) We also note that when D is smooth and $\lambda \geq 1$, such a vector field X automatically becomes trivial (cf. [SW16, Theorem 2.1]). This is a reason why we allow D to have simple normal crossing support.

An advantage of our approach is that we do not rely on the linear theory for conical Laplacians established by Donaldson [Don12] and Chen-Wang [CW15]. At the same time, we should point out that Theorem 1.1 provides us not only the long-time existence of solutions, but also “the regularization method” to study the flow. The author expects that the conical Kähler-Ricci flow (and its regularization) method also works for the existence problem of conical Kähler-Ricci solitons. The arguments in this paper run closely in parallel to those of [LZ17] except some changes due to the modification X. Nevertheless, we will try to make the arguments reasonably self-contained for readers’ convenience.

The paper is organized as follows. We first review the regularization method and reduction to the Monge-Ampère flow in Section 2. Then we consider the uniform Laplacian estimate for MTKRF in Section 3. Finally, we establish the C^∞_{loc}-estimate of MTKRF and give the proof of Theorem 1.1 in Section 4.

Acknowledgements. The author would like to express his gratitude to his advisor Professor Shigetoshi Bando for useful discussions on this article. This research is supported by Grant-in-Aid for JSPS Fellows Number 16J01211.
2. Regularization and reduction to the Monge-Ampère flow

Let $\epsilon > 0$ be a small constant. As in [CPT6 Section 3.1], We define the function
\[
\chi_i(\epsilon^2 + u) := \frac{1}{1 - (1 - \beta)i} \int_0^u \frac{(\epsilon^2 + r)^{1 - (1 - \beta)i} - \epsilon^2(1 - (1 - \beta)i)}{r} dr
\]
for $i = 1, \ldots, d$ and $u \geq 0$. Then we see that the function $\chi_i(\epsilon^2 + u)$ is smooth for each ϵ, and there exists uniform constants (independent of ϵ) $C > 0$ and $\nu > 0$ such that for all i, we have
\[
0 \leq \chi_i(\epsilon^2 + u) < C
\]
provided that u belongs to a bounded interval, and
\[
\omega_\epsilon \geq \nu \omega_0.
\]
We also have the convergence
\[
\chi_i(\epsilon^2 + |s_i|^2_{H_\epsilon}) \xrightarrow{\epsilon \to 0} |s_i|^2_{H_0}
\]
in the C^∞_{loc}-topology on $M \setminus D_j$. Set $\chi := \sum_{i=1}^d \chi_i(\epsilon^2 + |s_i|^2_{H_\epsilon})$ and $\omega_\epsilon := \omega_0 + \sqrt{-1} \partial \bar{\partial} k \chi$. Then we have
\[
\omega_\epsilon \xrightarrow{\epsilon \to 0} \omega^*
\]
in the sense of distributions on M, and in the C^∞_{loc}-topology on $M \setminus D$. Meanwhile, since $[D] = \lambda \omega_0 + \sum_{i=1}^d \sqrt{-1} \tau_i \partial \bar{\partial} \log |s_i|^2_{H_\epsilon}$ by the Poincaré-Lelong formula, we observe that
\[
\eta_\epsilon := \lambda \omega_0 + \sum_{i=1}^d \sqrt{-1} \tau_i \partial \bar{\partial} \log(|s_i|^2_{H_\epsilon} + \epsilon^2) \xrightarrow{\epsilon \to 0} [D],
\]
again, this convergence holds in the sense of distributions on M, and in the C^∞_{loc}-topology on $M \setminus D$. Now We define the modified twisted Kähler-Ricci flow (MTKRF) with the twisted form η_ϵ:
\[
\begin{cases}
\frac{\partial \omega_{\phi_\epsilon}}{\partial t} = -\text{Ric}(\omega_{\phi_\epsilon}) + \gamma \omega_{\phi_\epsilon} + (1 - \beta) \eta_\epsilon + L_X \omega_{\phi_\epsilon} \\
\omega_{\phi_\epsilon}|_{t=0} = \omega_\epsilon,
\end{cases}
\]
where $\omega_{\phi_\epsilon} := \omega_\epsilon + \sqrt{-1} \partial \bar{\partial} \phi_\epsilon$. For an Im$(X)$-invariant Kähler metric $\omega \in 2\pi c_1(M)$, we also define an \mathbb{R}-valued function $\theta_X(\omega)$ by
\[
\begin{cases}
i_X \omega = \sqrt{-1} \partial \bar{\partial} \theta_X(\omega) \\
\int_M e^{\theta_X(\omega)} \omega^n = [\omega_0]^n.
\end{cases}
\]
In particular, we set $\theta_X := \theta_X(\omega_0)$. Then, from [TZ02 Proposition 1.1] and [Zhu00 Corollary 5.3] (or [BN14 Section 2.3]), we have the following:

Proposition 2.1. Let ϕ be a real-valued smooth function such that $\text{Im}(X)(\phi) = 0$ and $\omega_\phi := \omega_0 + \sqrt{-1} \partial \bar{\partial} \phi \geq 0$. Then we have
\[
\begin{enumerate}
\item $\theta_X(\omega_\phi) = \theta_X + X(\phi)$,
\item $\sup_M |X(\phi)| < C$ for some constant C which depends only on ω_0 and X.
\end{enumerate}
\]
Since MTKRF preserves the initial Kähler class $[\omega_0]$, we can reduce MTKRF to the Monge-Ampère flow:

(2.6) \begin{align*}
\frac{\partial \varphi_\epsilon}{\partial t} &= \log \frac{\omega_n}{\omega_0^n} + F_0 + \gamma(k\chi + \varphi_\epsilon) + \log(\prod_{i=1}^{d}(e^2 + |s_i|_{H_i}^2))^{(1-\beta)r_i} + \theta_X(\omega_{\varphi_\epsilon}) \\
\varphi_\epsilon|_{t=0} &= c_\epsilon 0,
\end{align*}

where $c_\epsilon 0$ is a real constant such that $c_\epsilon 0 \xrightarrow{t \to 0} c_0$ and F_0 is the Ricci potential with respect to ω_0:

(2.7) \begin{align*}
-Ric(\omega_0) + \omega_0 &= \sqrt{-1} \partial \bar{\partial} F_0 \\
\int_X e^{-F_0} \omega_0^n &= [\omega_0]^n.
\end{align*}

We often use the twisted Ricci potential F_ϵ defined by

$$F_\epsilon := F_0 + \log \left(\frac{\omega_n}{\omega_0^n} \cdot \prod_{i=1}^{d}(e^2 + |s_i|_{H_i}^2)^{(1-\beta)r_i} \right).$$

Remark 2.1. According to [CGP13], we see that F_ϵ is uniformly bounded.

Then the flow (2.6) can be written as

$$\begin{align*}
\frac{\partial \varphi_\epsilon}{\partial t} &= \log \frac{\omega_n}{\omega_0^n} + F_\epsilon + F_0 + \gamma(k\chi + \varphi_\epsilon) + \theta_X(\omega_{\varphi_\epsilon}) \\
\varphi_\epsilon|_{t=0} &= c_\epsilon 0.
\end{align*}$$

3. C^0-estimate, volume ratio estimate and uniform Laplacian estimate

In this section, we establish the uniform Laplacian estimate of MTKRF. First, we show the volume ratio estimate and C^0-estimate:

Proposition 3.1. Let φ_ϵ be the solution of (2.6). Then there exists a uniform constant C (independent of ϵ and t) such that

$$\sup_{M \times [0,T]} |\varphi_\epsilon| \leq C^{\gamma T},$$

$$\sup_{M \times [0,T]} |\dot{\varphi}_\epsilon| \leq C e^{\gamma T}.$$

Proof. Differentiating the equation (2.6) in t, we have

$$\frac{d\dot{\varphi}_\epsilon}{dt} = (\Delta_{\omega_{\varphi_\epsilon}} + X)\dot{\varphi}_\epsilon + \gamma \dot{\varphi}_\epsilon.$$

By the maximum principle, we have

$$|\dot{\varphi}_\epsilon(t)| \leq |\dot{\varphi}(0)| e^{\gamma t},$$

where $\dot{\varphi}(0) = F_\epsilon + \gamma(k\chi + c_\epsilon 0) + \theta_X + X(k\chi)$. Thus, by (2.2), Proposition 2.1 and Remark 2.1, we know that $|\dot{\varphi}(0)| \leq C$ for some uniform constant C. Then we have

$$|\dot{\varphi}_\epsilon(t)| \leq C e^{\gamma t}.$$

Integrating with respect to t, we get

$$|\varphi_\epsilon(t)| \leq C e^{\gamma t}$$

as desired. \qed
As in the arguments in [LZ17 Proposition 3.1] and [LLZ16 Theorem 4.3], we can show the uniform Laplacian estimate for MTKRF:

Proposition 3.2. Let φ_ϵ be a solution of (2.6). Assume that there exists a uniform constant $C > 0$ such that

1. $\sup_{M \times [0, T]} |\varphi_\epsilon| < C$,
2. $\sup_{M \times [0, T]} |\dot{\varphi}_\epsilon| < C$.

Then there exists a uniform constant $A = A(\lambda, \{\tau_i\}, \beta, \omega_0, X, C)$ such that

$$A^{-1} \omega_\epsilon \leq \omega_{\varphi_\epsilon} \leq A \omega_\epsilon.$$

Proof. We choose local normal coordinates (z^i) with respect to ω_ϵ where $\omega_{\varphi_\epsilon}$ is diagonal, and then reduce to local computation. Then we observe that

$$\left(\frac{d}{dt} - \Delta_{\omega_{\varphi_\epsilon}} \right) \log \text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon} = \frac{1}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \left(\Delta_{\omega_\epsilon} \left(\dot{\varphi}_\epsilon - \log \frac{\omega^n_\epsilon}{\omega^n_{\varphi_\epsilon}} + R_{\omega_\epsilon} \right) \right)$$

$$- \frac{1}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \left(g^{i\bar{j}}_{\varphi_\epsilon} g_{\varphi_\epsilon, i\bar{j}} R_{\omega_\epsilon}^{\bar{i}i} \right) + \left\{ \frac{g^{ik}_{\varphi_\epsilon} \partial_k \text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon} \partial_k \text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}}{(\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon})^2} - \frac{g^{ik}_{\varphi_\epsilon} \varphi_\epsilon^t \varphi_\epsilon s t^{p}}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \right\}.$$

The computation in [Tos15 Theorem 3.9] implies that

$$\frac{g^{ik}_{\varphi_\epsilon} \partial_k \text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon} \partial_k \text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}}{(\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon})^2} - \frac{g^{ik}_{\varphi_\epsilon} \varphi_\epsilon^t \varphi_\epsilon s t^{p}}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \leq 0.$$

Since

$$g^{i\bar{j}}_{\varphi_\epsilon} g_{\varphi_\epsilon, i\bar{j}} R_{\omega_\epsilon}^{\bar{i}i} = \frac{1 + \varphi_{\epsilon i\bar{i}}}{1 + \varphi_{\epsilon j\bar{j}}} R_{\omega_\epsilon}^{i\bar{i}},$$

$$n = \text{tr}_{\omega_\epsilon} \omega_0 + k \text{tr}_{\omega_\epsilon} (\sqrt{-1} \bar{\partial} \partial \chi) \geq k \Delta_{\omega_\epsilon} \chi,$$

$$\frac{\Delta_{\omega_\epsilon} \varphi_\epsilon}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} = \sum_i \varphi_{\epsilon i\bar{i}} \leq 1,$$

we have

$$\left(\frac{d}{dt} - \Delta_{\omega_{\varphi_\epsilon}} \right) \log \text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon} \leq - \frac{1}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \sum_{i,j} \frac{1 + \varphi_{\epsilon i\bar{i}}}{1 + \varphi_{\epsilon j\bar{j}}} R_{\omega_\epsilon}^{i\bar{i} j\bar{j}}$$

$$+ \frac{1}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \Delta_{\omega_\epsilon} (F_\epsilon + \gamma (k \chi + \varphi_\epsilon) + \theta \chi (\omega_{\varphi_\epsilon})) + R_{\omega_\epsilon}$$

$$\leq - \frac{1}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \sum_{i \leq j} \left(\frac{1 + \varphi_{\epsilon i\bar{i}}}{1 + \varphi_{\epsilon j\bar{j}}} + \frac{1 + \varphi_{\epsilon j\bar{j}}}{1 + \varphi_{\epsilon i\bar{i}}} - 2 \right) R_{\omega_\epsilon}^{i\bar{i} j\bar{j}}$$

$$+ \frac{1}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} (\Delta_{\omega_\epsilon} F_\epsilon) + \frac{\gamma n}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} + \gamma + \frac{1}{\text{tr}_{\omega_\epsilon} \omega_{\varphi_\epsilon}} \Delta_{\omega_\epsilon} \theta \chi (\omega_{\varphi_\epsilon}).$$

Let C_1 be a uniform constant such that

$$\sqrt{-1} \bar{\partial} \partial F_0 \geq -C_1 \omega_0.$$

Then, by (2.3), we have

$$0 \leq \text{tr}_{\omega_\epsilon} (\sqrt{-1} \bar{\partial} \partial F_0 + C_1 \omega_0) \leq \nu^{-1} \text{tr}_{\omega_0} (\sqrt{-1} \bar{\partial} \partial F_0 + C_1 \omega_0) = \nu^{-1} (C_1 n + \Delta_{\omega_0} F_0).$$
Hence we have the uniform bound of $\Delta_{\omega_1} F_0$:

$$-C_1 \nu^{-1} \leq -C_1 \text{tr}_{\omega_1} \omega_0 \leq \Delta_{\omega_1} F_0 \leq \nu^{-1} (C_1 n + \Delta_{\omega_1} F_0).$$

Now we recall the arguments in [GP16, Section 2, Section 3, Section 4]. We set

$$\chi_{\rho}(\epsilon^2 + u) = \frac{1}{\rho} \int_0^u (\epsilon^2 + r)^\rho - \epsilon^2 dr$$

and define the “auxiliary function” $\Psi_{\epsilon, \rho}$ by

$$\Psi_{\epsilon, \rho} := \tilde{C} \sum_{i=1}^d \chi_{\rho}(\epsilon^2 + |s_i|^2_H),$$

where $\tilde{C} > 0$ and $\rho > 0$ are constants. Then the function $\Psi_{\epsilon, \rho}$ is uniformly bounded.

After taking suitable uniform constants \tilde{C}, ρ and C_2, we have

$$- \sum_{i \geq j} \left(\frac{1 + \varphi_{eii}}{1 + \varphi_{eij}} + \frac{1 + \varphi_{ejj}}{1 + \varphi_{eii}} - 2 \right) R_{\omega_1}^{\tilde{H}} - \text{tr}_{\omega_1} \omega_1 \Delta_{\omega_1} F_1 + \Delta_{\omega_1} F_0 + C_2 \leq C_2 \sum_{i \leq j} \left(\frac{1 + \varphi_{eii}}{1 + \varphi_{eij}} + \frac{1 + \varphi_{ejj}}{1 + \varphi_{eii}} \right) + C_2 \text{tr}_{\omega_1} \omega_1 \cdot \text{tr}_{\omega_1} \omega_1 + \Delta_{\omega_1} F_0 + C_2.$$

Combining with the Cauchy-Schwartz inequality $n \leq \text{tr}_{\omega_1} \omega_1 \cdot \text{tr}_{\omega_1} \omega_1$, we get

$$\left(\frac{d}{dt} - \Delta_{\omega_1} \right) (\log \text{tr}_{\omega_1} \omega_1) \leq \frac{C_2}{\text{tr}_{\omega_1} \omega_1} \sum_{i \leq j} \left(\frac{1 + \varphi_{eii}}{1 + \varphi_{eij}} + \frac{1 + \varphi_{ejj}}{1 + \varphi_{eii}} \right) + \frac{C_3}{\text{tr}_{\omega_1} \omega_1} + C_2 \text{tr}_{\omega_1} \omega_1 + \frac{1}{\text{tr}_{\omega_1} \omega_1} \Delta_{\omega_1} \theta_X(\omega_1) + C_4 \leq \frac{C_2}{\text{tr}_{\omega_1} \omega_1} \left\{ \left(\sum_i \frac{1}{1 + \varphi_{eii}} \right) \left(\sum_j (1 + \varphi_{ejj}) \right) + n \right\} + \frac{C_3}{\text{tr}_{\omega_1} \omega_1} + C_2 \text{tr}_{\omega_1} \omega_1 + \frac{1}{\text{tr}_{\omega_1} \omega_1} \Delta_{\omega_1} \theta_X(\omega_1) + C_4 \leq C_5 \text{tr}_{\omega_1} \omega_1 + \frac{1}{\text{tr}_{\omega_1} \omega_1} \Delta_{\omega_1} \theta_X(\omega_1) + C_4.$$
Thus, if we set $B \in \mathbb{R}_{+}^{\rho,\theta}$, we have

$$\psi_{\varphi_{k}} \text{ is uniformly bounded since } \phi \text{ takes its maximum at } (x_0, t_0) \subset M \times [0, T].$$

According to [GP16, Section 4], we find that there exists a small uniform constant $k > 0$ such that $\omega_{k} + k' \sqrt{-1} \partial \bar{\partial} \phi_{\epsilon, \rho} \geq 0$. Thus, combining with Proposition 2.1 implies

$$|X(\varphi_{k})| \leq |X(k + \varphi_{k})| + |X(k)| \leq C_8,$$

$$|X(\psi_{\epsilon, \rho})| \leq C_9.$$
at \((x_0, t_0)\). Then we observe that
\[
\tr_{\omega, \omega_{\phi_{\epsilon}}}(x_0, t_0) \leq \frac{1}{(n-1)!}(\tr_{\omega_{\phi_{\epsilon}}, \omega_{\epsilon}})^{n-1}(x_0, t_0) \frac{\omega_{\phi_{\epsilon}}}{\omega_{\epsilon}}(x_0, t_0)
\leq \frac{C_{10}^{n-1}}{(n-1)!} \exp(\tilde{\phi}_{\epsilon} - F_{\epsilon} - \gamma(k\chi + \varphi_{\epsilon}) - \theta X(k\chi + \varphi_{\epsilon}))(x_0, t_0)
\leq C_{11}.
\]
Since \(F_{\epsilon}\) and \(\Psi_{\epsilon, \rho}\) are uniformly bounded, we find that
\[
\tr_{\omega, \omega_{\phi_{\epsilon}}} \leq C_{12}
onumber
\]
on the \(M\). Hence the flow equation (2.6) and the uniform bound of \(\varphi_{\epsilon}, \dot{\varphi}_{\epsilon}, F_{\epsilon}, X(k\chi + \varphi_{\epsilon})\) give the desired inequality (3.1) for some uniform constant \(A\). \(\Box\)

4. \(C^\infty_{\text{loc}}\)-estimate and completion of the proof of Theorem 1.1

In this section, we establish the \(C^\infty_{\text{loc}}\)-estimate of MTKRF. Let
\[
\phi_{\epsilon} := \varphi_{\epsilon} + k\chi.
\]
Then we have
\[
\omega_{\phi_{\epsilon}} := \omega_0 + \sqrt{-1}\partial\bar{\partial}\phi = \omega_{\phi_{\epsilon}}.
\]
In order to simplify the notation, we drop the explicit dependence of \(\epsilon\) and write \(\phi, \eta, \) etc. Then the equation of MTKRF can be written as
\[
\frac{\partial \omega_{\phi}}{\partial t} = -\text{Ric}(\omega_{\phi}) + \gamma \omega_{\phi} + \tilde{\eta} + LX_{\omega_{\phi}},
\]
where \(\tilde{\eta} := (1 - \beta)\eta \in (1 - \gamma)c_1(M),\) or equivalently,
\[
\frac{dg_{\phi k \bar{l}}}{dt} = -R_{\phi k \bar{l}} + \gamma g_{\phi k \bar{l}} + \tilde{\eta}_{k \bar{l}} + \nabla_{\phi k}X_{\bar{l}}.
\]
Then we can reduce the above equation to the Monge-Ampère flow:
\[
\frac{\partial \phi}{\partial t} = \log \frac{\omega_{\phi}}{\omega_0} + \gamma \phi + F + \theta X(\omega_{\phi}),
\]
where \(F\) is a twisted Ricci potential \(\sqrt{-1}\partial\bar{\partial}F = -\text{Ric}(\omega_0) + \gamma \omega_0 + \tilde{\eta}.\) Let \(\nabla_\phi\) (resp. \(\nabla_0\)) be the covariant derivative with respect to \(\omega_{\phi}\) (resp. \(\omega_0\)). We set
\[
S := |\nabla_0 g_\phi|_{\omega_{\phi}}^2 = g_{\phi i} g_{\phi j}^l g_{\phi k}^p \nabla_0 g_\phi g_{\phi q} \nabla_{\phi j} g_{\phi p \bar{l}}.
\]
If we put
\[
h^i_k := g^i_0 g_{\phi k},
\]
\[
U^k_{\bar{i}l} := (\nabla_{\phi i} h \cdot h^{-1})^k_{\bar{l}},
\]
then we have
\[
U^k_{\bar{i}l} = \Gamma^k_{\phi i l} - \Gamma^k_{0 i l},
\]
where \(\Gamma^k_{\phi i l}\) (resp. \(\Gamma^k_{0 i l}\)) is the Christoffel symbol of \(\omega_{\phi}\) (resp. \(\omega_0\)). The following proposition is an \(X\)-analogue of [LZ17, Proposition 3.3].
Proposition 4.1. Let $p \in M$ and ϕ be a solution of the Monge-Ampère flow $[4.3]$. We assume that there exists a constant $N > 0$ such that

$$N^{-1} \omega_0 \leq \omega_\phi \leq N \omega_0$$

on $B_r(p) \times [0, T]$, where $B_r(p)$ is a geodesic ball of radius $r > 0$ centered at p with respect to ω_0. Then there exists constants

$$C' = C'(N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^3(B_r(p))}, \|\tilde{\eta}\|_{C^1(B_r(p))})$$

and

$$C'' = C''(N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^3(B_r(p))}, \|\tilde{\eta}\|_{C^2(B_r(p))})$$

such that

$$S \leq C', \quad |\text{Rm}_\phi|^2_{\omega_\phi} \leq C''$$
on $B_{r/2}(p) \times [0, T]$. Moreover, for any $k \geq 0$ and $0 \leq \alpha < 1$, there exists constants

$$C_i^k = C_i^k(N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^{k+1}(B_r(p))}, \|\phi\|_{C^0(B_r(p) \times [0, T])}, \|\tilde{\eta}\|_{C^{k+2}(B_r(p))}, \|F\|_{C^0(B_r(p))}) \quad (i = 1, 2, 3)$$

such that

$$|D^k \text{Rm}_\phi|^2_{\omega_\phi} \leq C_i^1,$$

$$\|\phi\|_{C^{k+1, \alpha}} \leq C_i^2,$$

$$\|\phi\|_{C^{k+3, \alpha}} \leq C_i^3$$
on $B_{r/2}(p) \times [0, T]$.

Proof. We first establish the local version of Calabi’s C^3-estimates. A direct computation shows that

$$\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) S = \sum_{\alpha, q}^g m_\phi g_{\phi \beta \gamma} \bar{l}_\phi \left(g_{\phi \beta} \nabla_{\phi \gamma} \bar{\eta}_{\alpha q} - \nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} U_{m \alpha}^\beta + U_{\eta \alpha}^\beta \left(g_{\phi \beta} \nabla_{\beta \gamma} \bar{\eta}_{m \alpha} - \nabla_{\beta \gamma} R_{0 \beta \alpha \eta m} \right) \right)$$

$$- \sum_{\alpha, q}^g g_{\phi \beta \gamma} l_{\phi \alpha} \left(\bar{\eta}_{\beta \gamma} + \gamma S \right)$$

$$+ \sum_{\alpha, q}^g g_{\phi \beta \gamma} l_{\phi \alpha} \left(\bar{\eta}_{\beta \gamma} X^m \cdot U_{m \alpha}^\beta + g_{\phi \beta} \bar{\eta}_{\phi \alpha} \nabla_{\phi \beta} X^\alpha \cdot U_{m \alpha}^\beta \right)$$

$$- \sum_{\alpha, q}^g g_{\phi \beta \gamma} l_{\phi \alpha} \left(\nabla_{\phi \beta} X^m \cdot U_{m \alpha}^\beta \right)$$

$$= \sum_{\alpha, q}^g g_{\phi \beta \gamma} l_{\phi \alpha} \left(\nabla_{\phi \beta} X^m \cdot U_{m \alpha}^\beta \right)$$

where (X;I)-(X;V) are additional terms arising from the holomorphic vector field X. Since

$$\nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} = \nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} + U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m},$$

$$\nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} = \nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} + U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m},$$

$$\nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} = \nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} + U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m},$$

$$\nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} = \nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} + U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m},$$

$$\nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} = \nabla_{\phi \beta} R_{\alpha \beta \gamma \eta m} + U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m} - U_{\beta \gamma} R_{\alpha \beta \gamma \eta m}.$$
we have
\[g^m_{\phi} g^{\phi}_{\mu\beta} R^l_{\phi m} \left((g^m_{\phi} \nabla^{\alpha}_{\phi} \tilde{\eta}_{\alpha} - \nabla_{\phi} R^m_{\phi j m}) U^j_{\phi \alpha} + U^m_{\phi j m} (g^k_{\phi} \nabla^{\alpha}_{\phi} \tilde{\eta}_{\alpha} - \nabla_{\phi} R^k_{\phi \alpha}) \right) \]
\[- U^m_{\phi j m} (\tilde{\eta}_{pq} g^p_{\phi} g^r_{\phi} g^q_{\phi} g^r_{\phi} g^l_{\phi} - g^m_{\phi} \tilde{\eta}_{pq} g^l_{\phi} + g^m_{\phi} g^{\mu\beta}_{\phi} g^l_{\phi} g^l_{\phi}) - \gamma S \leq C_1 (S + 1), \]

where the constant \(C_1 \) depends only on \(N, \gamma, \omega_0 \) and \(||\tilde{\eta}||_{C^1(B_r(p))} \). On the other hand, since

\[\nabla_{\phi l} X^3 = \nabla_{0 l} X^3 + X^k U^3_{lk}, \]

\[\nabla_{\phi m} \nabla_{\phi l} X^3 = \nabla_{0 m} \nabla_{0 l} X^3 - \nabla_{0 p} X^3 \cdot U^p_{ml} + \nabla_{0 l} X^3 \cdot U^3_{pm} + \nabla_{\phi m} X^k \cdot U^3_{lk} + X^k \nabla_{\phi m} U^3_{lk}, \]

in the same way as \([\text{PSSW11}] \) Section 6], we observe that

\[|(X; I)| + |(X; II)| + |(X; V)| \leq C_2 S |\nabla_{\phi} X|_{\omega_0}, \]

\[|(X; I)| + |(X; II)| \leq C_3 (S + 1) + S |\nabla_{\phi} X|_{\omega_0} + |X|_{\omega_0} |U|_{\omega_0} |\nabla_{\phi} U|_{\omega_0} \]

\[\leq C_3 (S + 1) + S |\nabla_{\phi} X|_{\omega_0} + \frac{1}{2} |\nabla_{\phi} U|_{\omega_0}^2 + \frac{1}{2} |X|_{\omega_0}^2 |U|_{\omega_0}^2 \]

\[\leq C_4 (S + 1) + \frac{1}{2} |\nabla_{\phi} U|_{\omega_0}^2 + S |\nabla_{\phi} X|_{\omega_0}, \]

where \(C_4 \) depends only on \(X, \omega_0 \) and \(N \). Thus we have

\[\left(\frac{d}{dt} - \Delta_{\omega_0} \right) S \leq -\frac{1}{2} |\nabla_{\phi} U|_{\omega_0}^2 - |\nabla_{\phi} U|_{\omega_0}^2 + (C_2 + 1) S |\nabla_{\phi} X|_{\omega_0} + (C_1 + C_4) (S + 1). \]

On the other hand, the evolution equation of \(|X|_{\omega_0}^2 \) can be estimated as

\[\left(\frac{d}{dt} - \Delta_{\omega_0} \right) |X|_{\omega_0}^2 = \gamma |X|_{\omega_0}^2 + (\tilde{\eta}_{ij} + \nabla_{\phi i} X^j) X^i X^j \]

\[\leq - \frac{1}{2} |\nabla_{\phi} X|_{\omega_0}^2 + C_5. \]

Now we work in local normal coordinates \((z^i)\) with respect to \(\omega_0 \) where \(\omega_0 \) is diagonal. Since

\[0 \leq \text{tr} h \leq nN, \]

\[g^i_j g^j_q g^{mk}_{\phi} \phi^q_{jk} \phi_{smq} \geq \frac{1}{N} S, \]

\[|g^i_j \nabla_{\phi i} X^j| \leq \text{tr} h \cdot |\text{tr} \nabla_{\phi} X| \leq C_6 (S^{1/2} + 1) \leq \frac{1}{N + 1} S + C_7, \]

we observe that

\[\left(\frac{d}{dt} - \Delta_{\omega_0} \right) \text{tr} h = \gamma \text{tr} h + g^i_j (\tilde{\eta}_{ij} + \nabla_{\phi i} X^j) - g^i_j g^m_{\phi} g^{\alpha\beta}_{\phi} R^m_{\phi j m} - g^i_j g^m_{\phi} g^{\alpha\beta}_{\phi} \phi^q_{jk} \phi_{smq} \]

\[\leq C_8 - \frac{1}{N(N + 1)} S. \]

Let \(r \geq r_1 \geq r/2 \) and \(\kappa \) be a nonnegative smooth cut-off function that is identically equal to 1 on \(B_{r_1}(p) \) and vanishes on the outside of \(B_r(p) \). Furthermore, we assume that

\[|\partial \kappa|_{\omega_0}, \sqrt{-1} \partial \bar{\partial} \kappa |_{\omega_0} \leq C_9, \]

We consider the function

\[W := \kappa^2 \frac{S}{K - |X|_{\omega_0}^2} + \text{Atr} h, \]
where K is a uniform constant such that \(\frac{256}{207} K \leq K - |X|_{\omega_\phi}^2 \leq K \) and A is a uniform constant determined later. A direct computation shows that

\[
\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) W = (-\Delta_{\omega_\phi} \kappa^2) \frac{S}{K - |X|_{\omega_\phi}^2} - 4\text{Re} \left(\frac{\kappa \nabla_{\omega_\phi} \kappa}{K - |X|_{\omega_\phi}^2}, \nabla_{\omega_\phi} S \right)_{\omega_\phi} - 4\text{Re} \left(\kappa \nabla_{\omega_\phi} \kappa, \frac{S \cdot \nabla_{\omega_\phi} |X|_{\omega_\phi}^2}{(K - |X|_{\omega_\phi}^2)^2} \right)_{\omega_\phi} + \frac{\kappa^2}{K - |X|_{\omega_\phi}^2} \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) S + \frac{\kappa^2 S}{(K - |X|_{\omega_\phi}^2)^2} \frac{d}{dt} |X|_{\omega_\phi}^2 + \frac{2\kappa^2 \text{Re}(\nabla_{\omega_\phi} |X|_{\omega_\phi}^2, \nabla_{\omega_\phi} S)_{\omega_\phi}}{(K - |X|_{\omega_\phi}^2)^2} + A \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) \text{trh.}
\]

Using (4.8), (4.9) and the facts

\[
\begin{align*}
(4.11) & \quad |\nabla_{\omega_\phi} |X|_{\omega_\phi}^2|_{\omega_\phi} \leq |X|_{\omega_\phi} |\nabla_{\omega_\phi} X|_{\omega_\phi}, \\
(4.12) & \quad |\nabla_{\omega_\phi} S|_{\omega_\phi}^2 \leq 2S(\nabla_{\omega_\phi} U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2),
\end{align*}
\]

we observe that

\[
\left| \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) \frac{S}{K - |X|_{\omega_\phi}^2} \right| \leq C_{10} S,
\]

\[
\left| \text{Re} \left(\frac{\kappa \nabla_{\omega_\phi} \kappa}{K - |X|_{\omega_\phi}^2}, \nabla_{\omega_\phi} S \right)_{\omega_\phi} \right| \leq \frac{4\sqrt{2}}{K - |X|_{\omega_\phi}^2} \kappa |\nabla_{\omega_\phi} \kappa|_{\omega_\phi} S^{1/2} (|\nabla_{\omega_\phi} U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2)^{1/2} \leq C_{11} S + \frac{\kappa^2}{4(K - |X|_{\omega_\phi}^2)} (|\nabla_{\omega_\phi} U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2),
\]

\[
\left| \text{Re} \left(\kappa \nabla_{\omega_\phi} \kappa, \frac{S \cdot \nabla_{\omega_\phi} |X|_{\omega_\phi}^2}{(K - |X|_{\omega_\phi}^2)^2} \right)_{\omega_\phi} \right| \leq C_{12} S + \frac{\kappa^2 S |\nabla_{\omega_\phi} X|_{\omega_\phi}^2}{4(K - |X|_{\omega_\phi}^2)^2}.
\]

\[
\frac{\kappa^2}{K - |X|_{\omega_\phi}^2} \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) S \leq - \frac{\kappa^2}{2(K - |X|_{\omega_\phi}^2)^2} (|\nabla_{\omega_\phi} U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2) + \frac{(C_2 + 1)\kappa^2 S |\nabla_{\omega_\phi} X|_{\omega_\phi}^2}{K - |X|_{\omega_\phi}^2} + \frac{\kappa^2 (C_1 + C_4)}{K - |X|_{\omega_\phi}^2} (S + 1) \leq - \frac{\kappa^2}{2(K - |X|_{\omega_\phi}^2)^2} (|\nabla_{\omega_\phi} U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2) + \frac{\kappa^2 S |\nabla_{\omega_\phi} X|_{\omega_\phi}^2}{8(K - |X|_{\omega_\phi}^2)^2} + C_{13} (S + 1),
\]

\[
\frac{\kappa^2 S}{(K - |X|_{\omega_\phi}^2)^2} \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |X|_{\omega_\phi}^2 \leq - \frac{\kappa^2 S |\nabla_{\omega_\phi} X|_{\omega_\phi}^2}{2(K - |X|_{\omega_\phi}^2)^2} + C_{14} S,
\]

\[
\]
\[\left| 2\kappa^2 \text{Re}(\nabla_\phi |X|^2_{\omega_\phi}, \nabla_\phi S)_{\omega_\phi} \right| \leq \frac{2\sqrt{2}\kappa^2}{(K - |X|_{\omega_\phi}^2)^2} |X|_{\omega_\phi} |\nabla_\phi X|_{\omega_\phi} S^{1/2} (|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_\phi U|_{\omega_\phi}^2)^{1/2} \]

\[\leq \frac{\kappa^2 S |\nabla_\phi X|_{\omega_\phi}^2}{16(K - |X|_{\omega_\phi}^2)^2} + \frac{32\kappa^2 |X|_{\omega_\phi}^2 (|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_\phi U|_{\omega_\phi}^2)}{(K - |X|_{\omega_\phi}^2)^2} \]

\[\leq \frac{\kappa^2 S |\nabla_\phi X|_{\omega_\phi}^2}{16(K - |X|_{\omega_\phi}^2)^2} + \frac{\kappa^2}{8(K - |X|_{\omega_\phi}^2)} (|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_\phi U|_{\omega_\phi}^2) \]

(because \(\frac{256}{257} K < K - |X|_{\omega_\phi}^2 < K \)).

Hence, combining with (4.10), we get

\[\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) W \leq \left(C_{10} + C_{11} + C_{13} + C_{14} - \frac{A}{N(N + 1)} \right) S + C_{13}. \]

Let \((x_0, t_0)\) be the maximum point of \(W\) on \(B_{r}((p) \times [0, T]\). If \(t_0 = 0\), then \(S\) is bounded by the initial data \(\|\phi(\cdot, 0)\|_{C^3(B_r(p))}\). Moreover, we find that \(W \equiv Atrh\) on the boundary of \(B_r(p)\) where the function \(trh\) is uniformly controlled. Then we may assume that \(t_0 > 0\) and \(x_0\) does not lie in the boundary of \(B_r(p)\). By the maximum principle, we have

\[0 \leq \left(C_{10} + C_{11} + C_{13} + C_{14} - \frac{A}{N(N + 1)} \right) S(x_0, t_0) + C_{13}. \]

Taking \(A := N(N + 1)(C_{10} + C_{11} + C_{13} + C_{14} + 1)\), we conclude that \(S(x_0, t_0) \leq C_{13}\). Since \(0 \leq trh \leq nN\), we have

\[S \leq \frac{257}{256} C_{13} + AnNK \leq C_{15} \]

on \(B_{r/2}(p) \times [0, T]\), where the constant \(C_{15}\) depends only on \(N, \gamma, \omega_\phi, X, \|\phi(\cdot, 0)\|_{C^3(B_r(p))}\) and \(\|\tilde{\eta}\|_{C^1(B_r(p))}\). In particular, \(|\nabla_\phi X|_{\omega_\phi}^2\) is uniformly bounded.

Next, we establish the uniform bound of \(|\text{Rm}_\phi|_{\omega_\phi}^2\). The evolution equation of the full curvature tensor along MTKRF is

\[\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) R_{\phi\tilde{j}i\tilde{k}} = R_{\phi\tilde{j}i\tilde{l}} R_{\phi\tilde{l}k\tilde{d}} + R_{\phi\tilde{i}k\tilde{d}} R_{\phi\tilde{j}\tilde{l}\tilde{p}} - R_{\phi\tilde{j}p\tilde{q}} R_{\phi\tilde{i}q\tilde{k}} - R_{\phi\tilde{j}p\tilde{l}} R_{\phi\tilde{i}q\tilde{k}} \]

\[- R_{\phi\tilde{j}h\tilde{i}\tilde{k}} - \nabla_\phi \phi \nabla_\phi \nabla_\phi \phi \nabla_\phi \phi \cdot \nabla_\phi X_j - \nabla_\phi X_j \cdot R_{\phi\tilde{h}i\tilde{k}l}. \]

(4.13)

additional terms arising from \(X\)

By direct computations, we get

\[\nabla_{\phi\tilde{j}} \nabla_{\phi\tilde{l}} \tilde{\eta}_{ij} = \nabla_{\phi\tilde{j}} \nabla_{\phi\tilde{l}} \tilde{\eta}_{ij} = U_{ij}^s \nabla_{\phi\tilde{s}} \tilde{\eta}_{ij} - \nabla_{\phi\tilde{s}} U_{ij}^s \tilde{\eta}_{sj} - \nabla_{\phi\tilde{s}} U_{ji}^s \tilde{\eta}_{ij} + U_{ij}^s \tilde{\eta}_{ij}, \]

(4.14)

\[\nabla_{\phi\tilde{j}} U_{ij}^s = \nabla_{\phi\tilde{j}} U_{ij}^s = \delta_{ij} U_{j}^s - R_{\phi\tilde{j}k\tilde{l}} + R_{\phi\tilde{j}k\tilde{l}} \]

(4.15)

\[\nabla_{\phi\tilde{j}} \nabla_{\phi\tilde{j}} \nabla_{\phi\tilde{j}} X_i = - \nabla_{\phi\tilde{j}} X^k \cdot R_{\phi\tilde{j}k\tilde{l}} - X^k \nabla_{\phi\tilde{j}} R_{\phi\tilde{j}k\tilde{l}} - \nabla_{\phi\tilde{j}} X^p \cdot R_{\phi\tilde{j}k\tilde{l}} + \nabla_{\phi\tilde{s}} X_i \cdot R_{\phi\tilde{s}j\tilde{l}}. \]

(4.16)
Hence, using the uniform bound of S, $|X|^2_{\omega_\phi}$ and $|\nabla_\phi X|^2_{\omega_\phi}$, we have
\[
\left| \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) \operatorname{Rm}_\phi \right|_{\omega_\phi} \leq C_{16}(|\operatorname{Rm}_\phi|^2_{\omega_\phi} + |\operatorname{Rm}_\phi|_{\omega_\phi} + 1) + C_{17}|\nabla_\phi \operatorname{Rm}_\phi|_{\omega_\phi}.
\]
Thus, by the uniform bound of $|\nabla_\phi X|^2_{\omega_\phi}$ and the equation (4.2), we obtain
\[
\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |\operatorname{Rm}_\phi|^2_{\omega_\phi} \leq C_{18}(|\operatorname{Rm}_\phi|^3_{\omega_\phi} + |\operatorname{Rm}_\phi|^2_{\omega_\phi}) + 2 \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |\operatorname{Rm}_\phi|_{\omega_\phi} - |\nabla_\phi \operatorname{Rm}_\phi|^2_{\omega_\phi} - \left| \nabla_\phi \operatorname{Rm}_\phi \right|_{\omega_\phi}^2
\]
\[
(4.17) \leq C_{19}|\operatorname{Rm}_\phi|^3_{\omega_\phi} + 1 - \frac{1}{2} \left| \nabla_\phi \operatorname{Rm}_\phi \right|_{\omega_\phi}^2 - \left| \nabla_\phi \operatorname{Rm}_\phi \right|_{\omega_\phi}^2.
\]
Now we take a smaller radius r_2 satisfying $r_1 > r_2 > r/2$ and show that $|\operatorname{Rm}_\phi|^2_{\omega_\phi}$ is uniformly bounded on $\overline{B_{r_2}(p)}$. Let μ be a nonnegative smooth cut-off function that is identically equal to 1 on $\overline{B_{r_2}(p)}$, vanishes on the outside of $B_{r_1}(p)$ and satisfies
\[
|\nabla \mu|_{\omega_\phi}, \ |\nabla^2 \mu|_{\omega_\phi} \leq C_{20}.
\]
Let L be a uniform constant satisfying $\frac{5}{12} L \leq L - S \leq L$. We consider the function
\[
G := \mu^2 \frac{|\operatorname{Rm}_\phi|^2_{\omega_\phi}}{L - S} + BS
\]
where B is a uniform constant determined later. By computing, we have
\[
\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) G = (-\Delta_{\omega_\phi} \mu^2) \frac{|\operatorname{Rm}_\phi|^2_{\omega_\phi}}{L - S} - 4\Re \left(\frac{\mu \nabla_\phi \mu}{L - S}, \nabla_\phi |\operatorname{Rm}_\phi|^2_{\omega_\phi} \right)_{\omega_\phi}
\]
\[
- 4\Re \left(\mu \nabla_\phi \mu, \frac{|\operatorname{Rm}_\phi|^2_{\omega_\phi}}{(L - S)^2} \right)_{\omega_\phi} + \mu^2 \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |\operatorname{Rm}_\phi|^2_{\omega_\phi}
\]
\[
+ \frac{\mu^2 |\operatorname{Rm}_\phi|^2_{\omega_\phi}}{(L - S)^2} \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) S - \frac{2\mu^2 |\operatorname{Rm}_\phi|^2_{\omega_\phi}}{(L - S)^3} |\nabla_\phi S|^2_{\omega_\phi}
\]
\[
- 2\Re \left(\mu^2 \left(\frac{\nabla_\phi S}{(L - S)^2}, \nabla_\phi |\operatorname{Rm}_\phi|^2_{\omega_\phi} \right)_{\omega_\phi} \right) + B \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) S.
\]
Then, by (4.8), (4.12), (4.17) and
\[
(4.18) \quad |\nabla_\phi |\operatorname{Rm}_\phi|^2_{\omega_\phi} |_{\omega_\phi} \leq |\operatorname{Rm}_\phi|_{\omega_\phi} (|\nabla_\phi \operatorname{Rm}_\phi|_{\omega_\phi} + |\nabla_\phi \operatorname{Rm}_\phi|_{\omega_\phi})
\]
we know that
\[
\left| (-\Delta_{\omega_\phi} \mu^2) \frac{|\operatorname{Rm}_\phi|^2_{\omega_\phi}}{L - S} \right| \leq C_{21}|\operatorname{Rm}_\phi|^2_{\omega_\phi},
\]
\[
4\Re \left(\frac{\mu \nabla_\phi \mu}{L - S}, \nabla_\phi |\operatorname{Rm}_\phi|^2_{\omega_\phi} \right)_{\omega_\phi} \leq \frac{4}{L - S} |\nabla_\phi \mu|_{\omega_\phi} |\operatorname{Rm}_\phi|_{\omega_\phi} (|\nabla_\phi \operatorname{Rm}_\phi|_{\omega_\phi} + |\nabla_\phi \operatorname{Rm}_\phi|_{\omega_\phi})
\]
\[
\leq C_{22}|\operatorname{Rm}_\phi|^2_{\omega_\phi} + \frac{\mu^2}{4(L - S)} (|\nabla_\phi \operatorname{Rm}_\phi|^2_{\omega_\phi} + |\nabla_\phi \operatorname{Rm}_\phi|^2_{\omega_\phi}),
\]
\[
\left| 4\text{Re} \left(\mu \nabla_\phi \mu, \frac{|\text{Rm}_\phi|^2}{|\omega_\phi|^2} \nabla_\phi S \right) \right|_{\omega_\phi} \leq \frac{4\sqrt{2} |\text{Rm}_\phi|^2}{(L - S)^2} \mu \left| \nabla_\phi \mu \right|_{\omega_\phi} S^{1/2} \left(|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2 \right)^{1/2} \\
\leq C_{23} |\text{Rm}_\phi|^2_{\omega_\phi} + \frac{\mu^2 |\text{Rm}_\phi|^2_{\omega_\phi}}{4(L - S)^2} \left(|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2 \right),
\]

\[
\frac{\mu^2}{L - S} \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |\text{Rm}_\phi|^2_{\omega_\phi} \leq \frac{C_{19} \mu^2}{L - S} |\text{Rm}_\phi|^3_{\omega_\phi} - \frac{\mu^2}{2(L - S)} \left(|\nabla_\phi \text{Rm}_\phi|^2_{\omega_\phi} + |\nabla_{\omega_\phi} \text{Rm}_\phi|^2_{\omega_\phi} \right) + C_{24}
\]

\[
\leq \frac{\mu^2 |\text{Rm}_\phi|^4_{\omega_\phi}}{8(L - S)^2} + C_{25} \mu^2 |\text{Rm}_\phi|^2_{\omega_\phi} - \frac{\mu^2}{2(L - S)} \left(|\nabla_\phi \text{Rm}_\phi|^2_{\omega_\phi} + |\nabla_{\omega_\phi} \text{Rm}_\phi|^2_{\omega_\phi} \right)
\]

\[
\leq C_{26} |\text{Rm}_\phi|^2_{\omega_\phi} + \frac{\mu^2 |\text{Rm}_\phi|^2_{\omega_\phi}}{8(L - S)^2} \left(|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2 \right)
\]

\[
- \frac{\mu^2}{2(L - S)} \left(|\nabla_\phi \text{Rm}_\phi|^2_{\omega_\phi} + |\nabla_{\omega_\phi} \text{Rm}_\phi|^2_{\omega_\phi} \right) + C_{24}
\]

\[
\text{(where we used (4.15) in the last inequality)},
\]

\[
\frac{\mu^2 |\text{Rm}_\phi|^2_{\omega_\phi}}{(L - S)^2} \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) S \leq C_{27} |\text{Rm}_\phi|^2_{\omega_\phi} - \frac{\mu^2 |\text{Rm}_\phi|^2_{\omega_\phi}}{2(L - S)^2} \left(|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2 \right),
\]

\[
2\text{Re} \left(\frac{\mu^2}{(L - S)^2} \nabla_\phi \left| \text{Rm}_\phi \right|^2_{\omega_\phi} \right) \leq \frac{2 \sqrt{2} \mu^2}{(L - S)^2} S^{1/2} \left(|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2 \right)^{1/2}.
\]

\[
\left| \text{Rm}_\phi \right|^2_{\omega_\phi} \left(|\nabla_\phi \text{Rm}_\phi|_{\omega_\phi} + |\nabla_{\omega_\phi} \text{Rm}_\phi|_{\omega_\phi} \right) \leq \frac{64 \mu^2 S}{(L - S)^2} \left(|\nabla_\phi \text{Rm}_\phi|^2_{\omega_\phi} + |\nabla_{\omega_\phi} \text{Rm}_\phi|^2_{\omega_\phi} \right)
\]

\[
+ \frac{\mu^2 |\text{Rm}_\phi|^2_{\omega_\phi}}{16(L - S)^2} \left(|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2 \right)
\]

\[
\leq \frac{\mu^2}{8(L - S)^2} \left(|\nabla_\phi \text{Rm}_\phi|^2_{\omega_\phi} + |\nabla_{\omega_\phi} \text{Rm}_\phi|^2_{\omega_\phi} \right)
\]

\[
+ \frac{\mu^2 |\text{Rm}_\phi|^2_{\omega_\phi}}{16(L - S)^2} \left(|\nabla_\phi U|_{\omega_\phi}^2 + |\nabla_{\omega_\phi} U|_{\omega_\phi}^2 \right)
\]

\[
\text{(because } \frac{512}{513} L < L - S < L)\).
\]

As in the previous part, we may only consider an inner point \((x_0, t_0)\) which is a maximum point of \(G\) achieved on \(B_{r_1}(p) \times [0, T]\). By the maximum principle, we have

\[
0 \leq \left(C_{21} + C_{22} + C_{23} + C_{26} + C_{27} - \frac{B}{2} \right) |\text{Rm}_\phi|^2_{\omega_\phi}(x_0, t_0) + C_{28}.
\]

Now we set \(B := 2(C_{21} + C_{22} + C_{23} + C_{26} + C_{27} + 1)\). Then we obtain

\[
|\text{Rm}_\phi|^2_{\omega_\phi}(x_0, t_0) \leq C_{28}.
\]

Since \(S\) is uniformly bounded, this implies

\[
|\text{Rm}_\phi|^2_{\omega_\phi} \leq C_{29}.
\]
on $\overline{B_r^2(p)} \times [0, T]$, where C_{29} depends only on $N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^4(B_r^2(p))}$ and $\|\hat{\eta}\|_{C^2(B_r^2(p))}$.

Following [LZ17], we say that ϕ is $C^{k,\alpha}$ if its $C^{k,\alpha}$ norm can be controlled by a constant depending only on $N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^{k+1}(B_r^2(p))}$, $\|\hat{\eta}\|_{C^{k-1}(B_r^2(p))}$ and $\|F\|_{C^0(B_r^2(p))}$. Likewise, we say that ϕ is $C^{k,\alpha}$ if its $C^{k,\alpha}$ norm can be controlled by a constant depending only on $N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^{k+1}(B_r^2(p))}$, $\|\hat{\eta}\|_{C^{k-1}(B_r^2(p))}$ and $\|F\|_{C^0(B_r^2(p))}$. Since $|\text{Rm}_\phi|_{\omega_0}^2$ and $|\nabla X|_{\omega_0}^2$ are uniformly bounded, we know that ϕ is $C^{1,\alpha}$. Differentiating the equation (4.3) with respect to z^k, we get

$$
\frac{d}{dt} \frac{\partial \phi}{\partial z^k} = (\Delta \omega_0 + X) \frac{\partial \phi}{\partial z^k} + g_{ij} \frac{\partial g_{0ij}}{\partial z^k} - g_{ij} \frac{\partial g_{0ij}}{\partial z^k} + \frac{\partial F}{\partial z^k} + \gamma \frac{\partial \phi}{\partial z^k} + \frac{\partial \theta X}{\partial z^k} \frac{\partial \phi}{\partial z^k}.
$$

From the above Calabi’s C^3-estimate, we know that ϕ is $C^{2,\alpha}$ and then the coefficients of $\Delta \omega_0$ are $C^{0,\alpha}$. Since F is the twisted Ricci potential, taking the trace with respect to ω_0 yields

$$
\Delta \omega_0 F = -\text{tr}_{\omega_0} \text{Ric}(\omega_0) + \gamma + \text{tr}_{\omega_0} \hat{\eta}.
$$

Hence the $C^{1,\alpha}$-norm of F on $B_r^2(p)$ only depends on ω_0, $\|\hat{\eta}\|_{C^0(B_r^2(p))}$ and $\|F\|_{C^0(B_r^2(p))}$. By the standard elliptic Schauder estimates, we conclude that ϕ is $C^{3,\alpha}$ on $B_r^3(p) \times [0, T]$, where $r_2 > r_3 > r/2$.

Now we prove that $|\nabla X|_{\omega_0}^2 \phi \omega_0$ is uniformly bounded. First we compute the evolution equation of U as

\begin{equation}
(\frac{d}{dt} - \Delta \omega_0) U_{\beta \gamma}^\beta = \nabla \omega_0 (\hat{\eta}_{\beta l} + \nabla \phi X^\beta) - \nabla \phi R_{0 \beta l} \tilde{\phi} m.
\end{equation}

Since $\hat{\eta}$, Rm_0 and X are t-independent tensors, we know that

\begin{equation}
|\nabla \phi \hat{\eta}|_{\omega_0} \leq C_{30},
\end{equation}

\begin{equation}
|\nabla \phi \nabla \text{Rm}_0|_{\omega_0} + |\nabla \phi X|_{\omega_0} \leq C_{31} (1 + |\nabla \phi U|_{\omega_0}),
\end{equation}

\begin{equation}
|\nabla \phi X|_{\omega_0} \leq C_{32} (1 + |\nabla \phi U|_{\omega_0} + |\nabla \phi U|_{\omega_0}).
\end{equation}

On the other hand, by the Ricci identity, we have

\begin{equation}
(\frac{d}{dt} - \Delta \omega_0) \nabla \phi U = \nabla \phi \left(\frac{d}{dt} - \Delta \omega_0 \right) U + U * \nabla \phi (\text{Rm}_0 + \hat{\eta} + \nabla \phi X) + \text{Rm}_0 * \nabla \phi U,
\end{equation}

where $*$ means the general pairs of tensors. Thus we obtain

\begin{equation}
(\frac{d}{dt} - \Delta \omega_0) |\nabla \phi U|_{\omega_0}^2 \leq C_{33} (|\nabla \phi U|_{\omega_0}^2 + 1 + |\nabla \phi \text{Rm}_0|_{\omega_0}^2 - \frac{1}{2} |\nabla \phi \nabla \phi U|_{\omega_0}^2 - |\nabla \phi \nabla \phi U|_{\omega_0}^2).
\end{equation}

Now we set $r_3 > r'_3 > r/2$ and take a smooth cut-off function φ such that

$$
|\partial \varphi|_{\omega_0}, |\sqrt{-1} \partial \overline{\partial} \varphi|_{\omega_0} \leq C_{34},
$$

and set

$$
I := \varphi^2 |\nabla \phi U|_{\omega_0}^2 + ES + 2 |\text{Rm}_\phi|_{\omega_0}^2,
$$

where E is a uniform constant determined later. Then we see that

$$
\left(\frac{d}{dt} - \Delta_{\omega_t} \right) I \leq (-\Delta_{\omega_t}e^2)|\nabla_{\phi} U|^2_{\omega_t} - 4\text{Re}(g\nabla_{\phi} \theta, \nabla_{\phi} \nabla_{\phi} U^2_{\omega_t}) + e^2 \left(\frac{d}{dt} - \Delta_{\omega_t} \right) |\nabla_{\phi} U|^2_{\omega_t} + E \left(\frac{d}{dt} - \Delta_{\omega_t} \right) S + 2 \left(\frac{d}{dt} - \Delta_{\omega_t} \right) |\text{Rm}_{\phi}|^2_{\omega_t}.
$$

The first and second term of the RHS are estimated as

$$
|(-\Delta_{\omega_t}e^2)|\nabla_{\phi} U|^2_{\omega_t} | \leq C_{35} |\nabla_{\phi} U|^2_{\omega_t},
$$

$$
|4\text{Re}(g\nabla_{\phi} \theta, \nabla_{\phi} \nabla_{\phi} U^2_{\omega_t}) | \leq C_{36} |\nabla_{\phi} U|^2_{\omega_t} + \frac{e^2}{4} (|\nabla_{\phi} \nabla_{\phi} U|^2_{\omega_t} + |\nabla_{\phi} \nabla_{\phi} U|^2_{\omega_t}).
$$

Thus, combining with (4.8) and (4.17), we obtain

$$
\left(\frac{d}{dt} - \Delta_{\omega_t} \right) I \leq \left(C_{33} + C_{35} + C_{36} - \frac{E}{2} \right) |\nabla_{\phi} U|^2_{\omega_t} + C_{37}.
$$

Hence, if we set $E := 2(C_{33} + C_{35} + C_{36} + 1)$, the maximum principle implies the uniform bound of $|\nabla_{\phi} U|^2_{\omega_t}$ on $B_{r_t}^G(p) \times [0,T]$. Let D denote the real covariant derivative with respect to ω_t (extended linearly on the space of complex tensors). Combining with the uniform bound of $|\text{Rm}_{\phi}|^2_{\omega_t}$ and (4.15), we have

$$
|DU|^2_{\omega_t} \leq C_{38}
$$
on $B_{r_t}^G(p) \times [0,T]$, where the constant C_{38} depends only on $N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^4(B_r(p))}$ and $\|\eta\|_{C^2(B_r(p))}$. In particular, we find that $|D^2X|^2_{\omega_t}$ is uniformly bounded. Applying ∇_{ϕ} to (4.13), we see that

$$
|\nabla_{\phi} \left(\frac{d}{dt} - \Delta_{\omega_t} \right) \text{Rm}_{\phi} \right|_{\omega_t} \leq C_{39} (|\nabla_{\phi} \text{Rm}_{\phi}|_{\omega_t} + |\nabla_{\phi} \nabla_{\phi} \nabla_{\phi} \eta|_{\omega_t} + |\nabla_{\phi} \nabla_{\phi} \nabla_{\phi} X|_{\omega_t}).
$$

Applying ∇_{ϕ} to (4.14) and (4.16), and using the uniform bound of $|DU|^2_{\omega_t}$, we have

$$
|\nabla_{\phi} \nabla_{\phi} \nabla_{\phi} \eta|_{\omega_t} \leq C_{40} (1 + |\nabla_{\phi} \text{Rm}_{\phi}|_{\omega_t}),
$$

$$
|\nabla_{\phi} \nabla_{\phi} \nabla_{\phi} X|_{\omega_t} \leq C_{41} (1 + |\nabla_{\phi} \text{Rm}_{\phi}|_{\omega_t} + |\nabla_{\phi}^2 \text{Rm}_{\phi}|_{\omega_t}).
$$

Combining with

$$
\left(\frac{d}{dt} - \Delta_{\omega_t} \right) \nabla_{\phi} \text{Rm}_{\phi} = \nabla_{\phi} \left(\frac{d}{dt} - \Delta_{\omega_t} \right) \text{Rm}_{\phi} + \text{Rm}_{\phi} * \nabla_{\phi} (\text{Rm}_{\phi} + \eta + \nabla_{\phi} X),
$$

we find that

$$
\left(\frac{d}{dt} - \Delta_{\omega_t} \right) |\nabla_{\phi} \text{Rm}_{\phi}|^2_{\omega_t} \leq C_{42} (|\nabla_{\phi} \text{Rm}_{\phi}|^2_{\omega_t} + 1) - \frac{1}{2} |\nabla_{\phi} \nabla_{\phi} \text{Rm}_{\phi}|^2_{\omega_t} - |\nabla_{\phi} \nabla_{\phi} \text{Rm}_{\phi}|^2_{\omega_t}.
$$

Now we take a smaller radius $r_t' > r_t > r/2$ and a smooth cut-off function σ that is identically equal to 1 on $B_{r_t'}(p)$, vanishes on the outside of $B_{r_t'}(p)$ and satisfies

$$
|\partial \sigma|_{\omega_0}, \sqrt{-1} \partial \bar{\partial} \sigma|_{\omega_0} \leq C_{43}.
$$

We apply the maximum principle to the function $\sigma^2|\nabla_{\phi} \text{Rm}_{\phi}|^2_{\omega_0} + P|\text{Rm}_{\phi}|^2_{\omega_0}$ (where P is a suitable uniform constant). Then, as in the previous argument, we find that $|\nabla_{\phi} \text{Rm}_{\phi}|^2_{\omega_0}$ is uniformly bounded on $B_{r_t'}(p) \times [0,T]$. Thus we have

$$
|\text{D}\text{Rm}_{\phi}|^2_{\omega_0} \leq C_{44}
$$
on $\overline{B_{r_3}(p)} \times [0, T]$, where C_{44} depends only on N, γ, ω_0, X, $\|\phi(\cdot, 0)\|_{C^5(B_r(p))}$ and $\|\tilde{\eta}\|_{C^4(B_r(p))}$.

Applying D to the equation (4.2), we have

$$D\sqrt{-1}\partial\bar{\partial}\phi = DRic(\omega_\phi) + D\tilde{\eta} + D(\nabla_\phi X^\flat),$$

where $X^\flat_j := g_{\phi ij} X^i$. Taking the trace, we have

$$|\Delta_{\omega_\phi} D\phi|_{\omega_\phi} \leq |D\Delta_{\omega_\phi} \phi|_{\omega_\phi} + |DRm_\phi \ast \phi|_{\omega_\phi} + |Rm_\phi \ast D\phi|_{\omega_\phi} \leq C_{45}(|DRm_\phi|_{\omega_\phi} + |D\tilde{\eta}|_{\omega_\phi} + |D^2X|_{\omega_\phi} + |DRm_\phi|_{\omega_\phi} \phi| + |Rm_\phi|_{\omega_\phi} |D\phi|_{\omega_\phi}).$$

From the above computations and the fact that ϕ is $C^{1,\alpha}$, we find that $D\phi$ is $C^{1,\alpha}$, which implies that ϕ is $C^{2,\alpha}$. Differentiating the equation (4.3) two times and using the elliptic Schauder estimates, we have ϕ is $C^{1,\alpha}$ on $B_{r_4}(p) \times [0, T]$, where $r_3'' > r_4 > r/2$.

Now we establish the $C^{k,\alpha}$-estimate for ϕ. For this, we set the following induction hypothesis:

$$(H_k) \begin{cases} |D^jRm|_{\omega_\phi}^2 \leq C_j^1 \phi \in C^{j+1,\alpha} \\ \phi \in C^{j+3,\alpha} \end{cases} \text{ on } \overline{B_{r_{j+3}}(p)} \times [0, T] \text{ for all } j = 0, 1, \ldots k,$$

where $r > r_1 > \cdots > r_{k+2} > r_{k+3} > r/2$ and the constant C_j^1 depends only on N, γ, ω_0, X, $\|\phi(\cdot, 0)\|_{C^{j+1}(B_r(p))}$, $\|\phi\|_{C^0(B_r(p) \times [0, T])}$, $\|\tilde{\eta}\|_{C^{j+2}(B_r(p))}$ and $\|F\|_{C^0(B_r(p))}$. We have already seen that this statement is established for $k = 0, 1$. Now we assume that the induction hypothesis (H_k) holds for some $k \geq 1$. Since ϕ is $C^{k+3,\alpha}$, we observe that

$$|D^jU|_{\omega_\phi}^2 \leq C_{46} \text{ for } j = 0, 1, \ldots, k.$$

In particular, for any t-independent tensor A, we find that $|D^jA|_{\omega_\phi}^2$ is uniformly bounded for $j = 0, 1, \ldots, k + 1$. We first show the uniform bound of $|D^{k+1}U|_{\omega_\phi}^2$. Let r, s ($r + s = k + 1$) are non-negative integers. Then any $(k+1)$-derivative of U differs from $\nabla_\phi^s \nabla_\phi U$ by a linear combination of $D^iU \ast D^{r+s-2-i}Rm_\phi$ ($0 \leq i \leq r + s - 2$), which has been already estimated by the induction hypothesis (H_k). Thus we may only consider $\nabla_\phi^s \nabla_\phi U$. Moreover, the equation (4.15) and (H_k) indicate that we should only consider $\nabla_\phi^{k+1}U$. Using the Ricci identity repeatedly, we have

$$\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) \nabla_\phi^{k+1}U = \nabla_\phi^{k+1} \left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) U + \sum_{\begin{subarray}{l} p \geq 0, q \geq 1 \\ p + q = k + 1 \end{subarray}} \nabla_\phi^p U \ast \nabla_\phi^q (Rm_\phi + \tilde{\eta} + \nabla_\phi X)$$

$$\quad + \sum_{\begin{subarray}{l} p \geq 0, q \geq 1 \\ p + q = k + 1 \end{subarray}} \nabla_\phi^p Rm_\phi \ast \nabla_\phi^q U.$$

By (4.19) and (H_k), we observe that

$$|\nabla_\phi^{k+1}U|_{\omega_\phi} \leq C_{47}(1 + |\nabla_\phi^{k+1}U|_{\omega_\phi} + |\nabla_\phi^{k+2}U|_{\omega_\phi}),$$

where $\nabla_\phi^{k+1}U$ and $\nabla_\phi^{k+2}U$ are non-negative integers. Therefore, $\nabla_\phi^{k+1}U$ is uniformly bounded by $C_{47}(1 + |\nabla_\phi^{k+1}U|_{\omega_\phi} + |\nabla_\phi^{k+2}U|_{\omega_\phi})$. We conclude that ϕ is $C^{k,\alpha}$ on $B_{r_{k+4}}(p) \times [0, T]$ for all $k \geq 0, 1$.
\[|(\nabla^{k+1}U;\text{II})|_{\omega_\phi} \leq C_{48}(1 + |\nabla^{k+1}_{\phi}Rm_{\phi}|_{\omega_\phi} + |\nabla^{k+1}_{\phi}U|_{\omega_\phi}), \]

\[|(\nabla^{k+1}U;\text{III})|_{\omega_\phi} \leq C_{49}(1 + |\nabla^{k+1}_{\phi}Rm_{\phi}|_{\omega_\phi}). \]

Thus the evolution equation of \(|\nabla^{k+1}_{\phi}U|_{\omega_\phi}^2\) can be estimated as

(4.23)
\[\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |\nabla^{k+1}_{\phi}U|_{\omega_\phi}^2 \leq -\frac{1}{2} |\nabla^{k+2}_{\phi}U|_{\omega_\phi}^2 - |\nabla_{\phi} \nabla^{k+1}_{\phi}U|_{\omega_\phi}^2 + C_{50} |\nabla^{k+1}_{\phi}U|_{\omega_\phi} + |\nabla^{k+1}_{\phi}Rm_{\phi}|_{\omega_\phi}^2. \]

Hence we should compute the evolution equation of \(|\nabla^{k}_{\phi}U|_{\omega_\phi}^2\) and \(|\nabla^{k}_{\phi}Rm_{\phi}|_{\omega_\phi}^2\), and add them to the above equation. It is not hard to see that

(4.24)
\[\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |\nabla^{k}_{\phi}U|_{\omega_\phi}^2 \leq C_{51} - \frac{1}{2} |\nabla^{k+1}_{\phi}U|_{\omega_\phi}^2 - |\nabla_{\phi} \nabla^{k}_{\phi}U|_{\omega_\phi}^2. \]

(4.25)
\[\left(\frac{d}{dt} - \Delta_{\omega_\phi} \right) |\nabla^{k}_{\phi}Rm_{\phi}|_{\omega_\phi}^2 \leq C_{52} - \frac{1}{2} |\nabla^{k+1}_{\phi}Rm_{\phi}|_{\omega_\phi}^2 - |\nabla_{\phi} \nabla^{k}_{\phi}Rm_{\phi}|_{\omega_\phi}^2. \]

Actually, we can compute the first item in the same way as (4.23). For the second item, one should refer to the computation of (4.28). Hence we take a smooth cut-off function \(\varsigma\) and apply the maximum principle to the function \(\varsigma^2 |\nabla^{k+1}_{\phi}U|_{\omega_\phi}^2 + Q|\nabla^{k}_{\phi}U|_{\omega_\phi}^2 + 2|\nabla^{k}_{\phi}Rm_{\phi}|_{\omega_\phi}^2\) (for a suitable uniform constant \(Q\)) to get the uniform control of \(|\nabla^{k+1}_{\phi}U|_{\omega_\phi}^2\) in \(\bar{B}_{r'}(p) \times [0, T]\) with a smaller radius \(r_{k+3} > r'_{k+3} > r/2\). Thus we have

\[|D^{k+1}U|_{\omega_\phi}^2 \leq C_{53} \]

on \(\bar{B}_{r_{k+3}'}(p) \times [0, T]\), where the constant \(C_{53}\) depends only on \(N, \gamma, \omega_\phi, X, \|\phi(\cdot, 0)\|_{C^{k+4}(B_{r}(p))}, \|\phi\|_{C^0(B_r(p) \times [0,T])}, \|\eta\|_{C^{k+2}(B_r(p))}\) and \(\|F\|_{C^0(B_r(p))}\). In particular, we find that \(|D^{k+2}X|_{\omega_\phi}^2\) is uniformly bounded.

Next, we establish the uniform estimate for \(|D^{k+1}Rm_{\phi}|_{\omega_\phi}^2\). As in the previous case, we may only consider the tensor of the form \(\nabla_{\phi} \nabla_{\phi} Rm_{\phi}\) for non-negative integers \(r, s\) such that \(r + s = k + 1\). Moreover, by the symmetries of \(Rm_{\phi}\), we may also assume that \(r \neq 0\).

Case 1: \(r, s \neq 0\).
Using the Ricci identity repeatedly, we have
\[
\left(\frac{d}{dt} - \Delta \omega \right) \nabla^s_\phi \nabla_\phi \nabla s \phi = \nabla^s_\phi \nabla_\phi \nabla s \phi \left(\frac{d}{dt} - \Delta \omega \right) \nabla s \phi
\]
\[
+ \sum_{p \geq 0, q \geq 1} \nabla^p_\phi \nabla s_\phi \nabla^q \phi \left(\nabla s \phi + \nabla s \phi X \right)
\]
\[
+ \sum_{p \geq 0, q \geq 1} \nabla^p_\phi \nabla s_\phi \nabla^q \phi \left(\nabla s \phi + \nabla s \phi X \right)
\]
\[
+ \sum_{p \geq 0, q \geq 1} \nabla^p_\phi \nabla s_\phi \nabla^q \phi \left(\nabla s \phi + \nabla s \phi X \right)
\]
\[
+ \sum_{p \geq 0, q \geq 1} \nabla^p_\phi \nabla s_\phi \nabla^q \phi \left(\nabla s \phi + \nabla s \phi X \right)
\]
\[
+ \sum_{p \geq 0, q \geq 1} \nabla^p_\phi \nabla s_\phi \nabla^q \phi \left(\nabla s \phi + \nabla s \phi X \right)
\]
By (4.13), (4.14), (4.15), (4.16) and the uniform bound of \(|D^{k+1}U|_{\omega s}^2 \), we can estimate the first term as follows:
\[
|\left(\nabla^r \nabla^s \nabla \phi \right)\omega s| \leq C_{54}(1 + |\nabla^r \nabla^s \nabla \phi \left(\nabla \phi + \nabla \phi X \right)|_{\omega s}) + |\nabla^r \nabla^s \nabla \phi \left(\nabla \phi + \nabla \phi X \right)|_{\omega s} + |\nabla^r \nabla^s \nabla \phi \left(\nabla \phi + \nabla \phi X \right)|_{\omega s} + |\nabla^r \nabla^s \nabla \phi \left(\nabla \phi + \nabla \phi X \right)|_{\omega s}.
\]
By the used the Ricci identity and \((H_k)\).
Other terms are easier and estimated as follows:
\[
|\left(\nabla^r \nabla^s \nabla \phi \right)\omega s| + |\left(\nabla^r \nabla^s \nabla \phi \right)\omega s| \leq C_{58},
\]
\[
|\left(\nabla^r \nabla^s \nabla \phi \right)\omega s| + |\left(\nabla^r \nabla^s \nabla \phi \right)\omega s| \leq C_{59}(1 + |\nabla^r \nabla^s \nabla \phi \left(\nabla \phi + \nabla \phi X \right)|_{\omega s}).
\]
Hence we have
\[
(4.26)
\]
We can estimate the evolution equation of $|\nabla^{r-1}_\phi \nabla^2_\phi Rm_\phi|^2_{\omega_\phi}$ in a similar way to get (4.27)
\[
\left(\frac{d}{dt} - \Delta_{\omega_\phi}\right) |\nabla^{r-1}_\phi \nabla^2_\phi Rm_\phi|^2_{\omega_\phi} \leq C_{61} - \frac{1}{2} |\nabla^{r-1}_\phi \nabla^2_\phi Rm_\phi|^2_{\omega_\phi} - |\nabla_\phi \nabla^{r-1}_\phi \nabla^2_\phi Rm_\phi|^2_{\omega_\phi}.
\]
We take a smooth cut-off function τ that is identically equal to 1 on $B_{r_{k+3}}(p)$, vanishes on the outside of $B_{r_{k+3}}(p)$ and satisfies
\[
|\partial \tau|_{\omega_\phi}, \sqrt{-1} \partial \bar{\partial} \tau|_{\omega_\phi} \leq C_{62},
\]
where $r'_{k+3} > r''_{k+3} > r/2$. Applying the maximum principle to the function $\tau^2 |\nabla^{r-1}_\phi \nabla^2_\phi Rm_\phi|^2_{\omega_\phi} + A_1 |\nabla^{r-1}_\phi \nabla^2_\phi Rm_\phi|^2_{\omega_\phi}$ (for a suitable uniform constant A_1), we get
\[
|\nabla^{r-1}_\phi \nabla^2_\phi Rm_\phi|^2_{\omega_\phi} \leq C_{63}
\]
on $B_{r_{k+3}}(p) \times [0,T]$.

Case 2: $s = 0$.

Using the Ricci identity repeatedly, we have
\[
\left(\frac{d}{dt} - \Delta_{\omega_\phi}\right) \nabla^{k+1}_\phi Rm_\phi = \nabla^{k+1}_\phi \left(\frac{d}{dt} - \Delta_{\omega_\phi}\right) Rm_\phi + \sum_{p \geq 0, q \geq 1} \nabla^p_\phi Rm_\phi \ast \nabla^q_\phi (Rm_\phi + \tilde{\eta} + \nabla_\phi X)
\]
\[
+ \sum_{p \geq 0, q \geq 1} \nabla^p_\phi Rm_\phi \ast \nabla^q_\phi Rm_\phi.
\]
By (4.13), (4.14), (4.15), (4.16) and the uniform bound of $|D^{k+1}U|^2_{\omega_\phi}$, we can estimate these terms as
\[
|\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} \leq C_{64}(1 + |\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} + |\nabla^{k+2}_\phi Rm_\phi|^2_{\omega_\phi}),
\]
\[
|\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} + |\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} \leq C_{65}(1 + |\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi}).
\]
Thus we have
(4.28)
\[
\left(\frac{d}{dt} - \Delta_{\omega_\phi}\right) |\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} \leq C_{66}|\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} - \frac{1}{2} |\nabla^{k+2}_\phi Rm_\phi|^2_{\omega_\phi} - |\nabla_\phi \nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi}.
\]
Now we use the same cut-off function τ constructed in Case 1, and consider the function $\tau^2 |\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} + A_2 |\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi}$ (for a suitable uniform constant A_2). Since the evolution equation of $|\nabla^{k}_\phi Rm_\phi|^2_{\omega_\phi}$ has been already estimated in (4.25), the maximum principle implies that
\[
|\nabla^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} \leq C_{67}
\]
on $B_{r_{k+3}}(p) \times [0,T]$. Combining with Case 1, we have
\[
|D^{k+1}_\phi Rm_\phi|^2_{\omega_\phi} \leq C_{68}
\]
on $\overline{B_{r_{k+4}}(p)} \times [0, T]$, where the constant C_{68} depends only on $N, \gamma, \omega_0, X, \|\phi(\cdot, 0)\|_{C^{k+5}(B_r(p))}, \|\phi\|_{C^0(B_r(p) \times [0, T])}, \|\tilde{\eta}\|_{C^{k+3}(B_r(p))}$ and $\|F\|_{C^0(B_r(p))}$.

Applying D^{k+1} to the equation (4.2) and taking the trace, we have

$$|\Delta_{\omega_\phi} D^{k+1} \dot{\phi}|_{\omega_\phi} \leq |D^{k+1} \Delta_{\omega_\phi} \dot{\phi}|_{\omega_\phi} + C_{69} \sum_{i=0}^{k+1} |D^i Rm_{\phi}|_{\omega_\phi} |D^{k+1-i} \dot{\phi}|_{\omega_\phi}$$

$$\leq C_{70} \left(|D^{k+1} Rm_{\phi}|_{\omega_\phi} + |D^{k+1} \tilde{\eta}|_{\omega_\phi} + |D^{k+2} X|_{\omega_\phi} + \sum_{i=0}^{k+1} |D^i Rm_{\phi}|_{\omega_\phi} |D^{k+1-i} \dot{\phi}|_{\omega_\phi} \right).$$

From the above estimates and (H_k), we know that $|\Delta_{\omega_\phi} D^{k+1} \dot{\phi}|_{\omega_\phi}$ is uniformly bounded. Hence $D^{k+1} \dot{\phi}$ is $C^{1,\alpha}$, which implies $\dot{\phi}$ is $C^{k+2,\alpha}$. Differentiating the equation (4.3) $(k+2)$-times and applying the elliptic Schauder estimates, we find that ϕ is $C^{k+4,\alpha}$ on $B_{r_{k+4}}(p) \times [0, T]$ where $r_{k+4} > r_{k+4} > r/2$. Thus we have the statement (H_{k+1}) as desired. This completes the proof of Proposition 4.1. \hfill \Box

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Let $T > 0$ be a constant. By Proposition 3.1 we know that

$$\sup_{M \times [0, T]} |\varphi_\epsilon|, \sup_{M \times [0, T]} |\dot{\varphi}_\epsilon| < C(T)$$

for some constant $C(T)$ (independent of ϵ). Thus Proposition 3.2 implies that

$$A(T)^{-1} \omega_t \leq \omega_{\varphi_\epsilon} \leq A(T) \omega_t$$

(4.29)

on M for some constant $A(T)$ (independent of ϵ). We exhaust $M \setminus D$ by a sequence of compact subsets K, and $[0, \infty)$ by a sequence of closed intervals $[0, T]$. From (4.29), we know that

$$N^{-1} \omega_0 \leq \omega_{\varphi_\epsilon} \leq N \omega_0$$

on $K \times [0, T]$, where the constant N only depends on K and T. Moreover, the initial data $k \chi + c_0, (1 - \beta) \eta_\epsilon, F_\epsilon$ are uniformly bounded in the C^∞_{loc}-topology on $K \times [0, T]$. Thus Proposition 4.1 together with the diagonal argument implies that there exists a subsequence $\varphi_{\epsilon_t}(t)$ which converges to a function $\varphi(t)$ that is smooth on $M \setminus D$. Then, by (4.29), we also know that φ_ϵ is a conical Kähler metric along $(1 - \beta)D$. Now we will check that φ_ϵ satisfies the equation (1.2). Let $\zeta = \zeta(x, t)$ be any smooth $(n-1, n-1)$-form on $M \times [0, \infty)$ with compact support $\text{Supp}(\zeta)$. Without loss of generality, we assume that $\text{Supp}(\zeta) \subset [0, T)$. Since $F_\epsilon, \chi, \varphi_\epsilon$ are uniformly bounded on $M \times [0, T]$, for $t \in [0, T]$, dominated convergence theorem
implies that
\[
\int_M \frac{\partial \omega_{\varphi_\epsilon}}{\partial t} \wedge \zeta = \int_M \sqrt{-1} \partial \bar{\partial} \left(\log \left(\frac{\omega_{\varphi_\epsilon}^n}{\omega_0^n} \cdot \prod_{i=1}^d \left(\epsilon^2 + |s_i|_{H_i}^2 \right)^{(1-\beta)r_i} \right) + F_0 + \gamma (\kappa \chi + \varphi_\epsilon) \right) \wedge \zeta \\
+ \int_M L_X \omega_{\varphi_\epsilon} \wedge \zeta \\
= \int_M \left(\log \left(\frac{\omega_{\varphi_\epsilon}^n}{\omega_0^n} \cdot \prod_{i=1}^d \left(\epsilon^2 + |s_i|_{H_i}^2 \right)^{(1-\beta)r_i} \right) + F_0 + \gamma (\kappa \chi + \varphi_\epsilon) \right) \wedge \sqrt{-1} \partial \bar{\partial} \zeta \\
- \int_M \omega_{\varphi_\epsilon} \wedge L_X \zeta \\
\xrightarrow{\epsilon_i \to 0} \int_M \left(\log \left(\frac{\omega_{\varphi_\epsilon}^n}{\omega_0^n} + F_0 + \gamma (\kappa \chi + \varphi_\epsilon) + \log |s_D|_{H_D}^{2(1-\beta)} \right) \right) \wedge \zeta \\
- \int_M \omega_{\varphi_\epsilon} \wedge L_X \zeta \\
= \int_M \sqrt{-1} \partial \bar{\partial} \left(\log \left(\frac{\omega_{\varphi_\epsilon}^n}{\omega_0^n} + F_0 + \gamma (\kappa \chi + \varphi_\epsilon) + \log |s_D|_{H_D}^{2(1-\beta)} \right) \right) \wedge \zeta \\
+ \int_M L_X \omega_{\varphi_\epsilon} \wedge \zeta \\
= \int_M \left(-\text{Ric}(\omega_{\varphi_\epsilon}) + \gamma \omega_{\varphi_\epsilon} + (1-\beta)[D] + L_X \omega_{\varphi_\epsilon} \right) \wedge \zeta,
\]

On the other hand, as in the proof of [LZ17, Theorem 4.1], we have
\[
\int_M \frac{\partial \omega_{\varphi_\epsilon}}{\partial t} \wedge \zeta = \int_M \frac{\partial \omega_{\varphi_\epsilon}}{\partial t} \wedge \zeta.
\]

Hence, on \([0, T]\), we find that
\[
\frac{\partial}{\partial t} \int_M \omega_{\varphi_\epsilon} \wedge \zeta = \int_M \left(-\text{Ric}(\omega_{\varphi_\epsilon}) + \gamma \omega_{\varphi_\epsilon} + (1-\beta)[D] + L_X \omega_{\varphi_\epsilon} \right) \wedge \zeta \\
+ \int_M \omega_{\varphi_\epsilon} \wedge \frac{\partial \zeta}{\partial t}.
\]

Integrating the above equation on \([0, \infty)\), we get
\[
\int_{M \times [0, \infty)} \frac{\partial \omega_{\varphi_\epsilon}}{\partial t} \wedge \zeta dt = \int_0^\infty \left(\frac{\partial}{\partial t} \int_M \omega_{\varphi_\epsilon} \wedge \zeta - \int_M \omega_{\varphi_\epsilon} \wedge \frac{\partial \zeta}{\partial t} \right) dt \\
= \int_{M \times [0, \infty)} \left(-\text{Ric}(\omega_{\varphi_\epsilon}) + \gamma \omega_{\varphi_\epsilon} + (1-\beta)[D] + L_X \omega_{\varphi_\epsilon} \right) \wedge \zeta dt.
\]

Since \(\zeta\) is arbitrary, \(\omega_{\varphi_\epsilon}\) satisfies the equation (1.2) in the sense of distributions on \(M \times [0, \infty)\). Meanwhile, the equation (2.6) can be written as
\[
\frac{(\omega_0^\epsilon + \sqrt{-1} \partial \bar{\partial} \phi_\epsilon)^n}{\omega_0^n} = \exp(\phi_\epsilon - F_0 - \gamma \phi_\epsilon - \theta_X - X(\phi_\epsilon)) \cdot \prod_{i=1}^d \left(\epsilon^2 + |s_i|_{H_i}^2 \right)^{(1-\beta)r_i},
\]
where ϕ_t, $\dot{\phi}_t$ and $X(\phi_t)$ are uniformly bounded, which implies that the L^p-norm of the RHS is uniformly bounded for some $p > 1$ since $\beta \in (0, 1]$. Thus the Hölder continuity of φ with respect to ω_0 is a direct consequence from Kolodziej’s work [Kol08, Theorem 2.1]. This completes the proof of Theorem 1.1. □

References

[BN14] R. J. Berman and D. W.Nyström, Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons, 2014, arXiv:1401.8264.

[CDS15] X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2π and completion of the main proof, J. Am. Math. Soc. 28 (2015), 235–278.

[CGP13] F. Campana, H. Guenancia and M. Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Scient. Éc. Norm. Sup. 46 (2013), 879–916.

[CW15] X. Chen and Y. Wang, Bessel functions, heat kernel and the conical Kähler-Ricci flow, J. Funct. Anal. 269 (2015), 551-632.

[DGSW13] V. Datar, B. Guo, J. Song and X. Wang, Connecting toric manifolds by conical Kähler-Einstein metrics, 2013, arXiv:1308.6781.

[Don12] S. Donaldson, Kähler metrics with cone singularities along a divisor, in: P.M. Pardalos, et al. (Eds.), Essays on Mathematics and Its Applications, Springer, 2012, 49–79.

[GP16] Henri Guenancia and Mihai Păun, Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors, Diff. Geom. 103 (2016), 15–57.

[JLZ16] X. Jin, J. Liu and X. Zhang, Twisted and conical Kähler-Ricci solitons on Fano manifolds, J. Funct. Anal. 271 (2016), 2396–2421.

[Kol08] S. Kolodziej, Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in L^p: the case of compact Kähler manifolds, Math. Ann. 342 (2008), 379–386.

[LS14] C. Li and S. Sun, Conical Kähler-Einstein metrics visited, Commun. Math. Phys. 331 (2014), 927–973.

[LZ17] J. Liu and X. Zhang, Conical Kähler-Ricci flows on Fano manifolds, Adv. Math. 307 (2017), 1324–1371.

[PSSW11] D. H. Phong, J. Song, J. Strum and B. Weinkove, On the convergence of the modified Kähler-Ricci flow and solitons, Comment. Math. Helv. 86 (2011), 91–112.

[SW16] J. Song and X. Wang, The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality, Geom. Topol. 20 (2016), 49–102.

[Tia15] G. Tian, K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math. 68 (2015), 1085–1156.

[Tos15] V. Tosatti, KAWA lecture notes on the Kähler-Ricci flow, 2015, arXiv:1508.04823, to appear in Ann. Fac. Sci. Toulouse Math.

[TZ00] G. Tian and X. H. Zhu, Uniqueness of Kähler-Ricci solitons, Acta Math. 184 (2000), 271-305.

[TZ02] G. Tian and X. H. Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment. Math. Helv. 77 (2002), 297–325.

[TZ07] G. Tian and X. H. Zhu, Convergence of Kähler-Ricci flow, J. Amer. Math. Soc. 20 (2007), 675–699.

[Wan16] Y. Wang, Smooth approximation of the conical Kähler-Ricci flows, Math. Ann. 365 (2016), 835–856.

[WZZ16] F. Wang, B. Zhou and X. Zhu, Modified Futaki invariant and equivariant Riemann-Roch formula, Adv. Math. 289 (2016), 1205–1235.

[Zhu00] X. Zhu, Kähler-Ricci soliton typed equations on compact complex manifolds with $c_1(M) > 0$, J. Geom. Anal. 10 (2000), 759–774.

Mathematical Institute, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
E-mail address: ryosuke.takahashi.a7@tohoku.ac.jp