The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

Feng Chen¹, Rudolf Lucas¹² and David Fulton¹² *

¹ Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
² Department of Pharmacology, Georgia Regents University, Augusta, GA, USA

The endothelial production of nitric oxide (NO) mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle cell proliferation, and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS) through the conversion of its substrate, l-arginine, to l-citrulline. Reduced access to l-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2) metabolize l-arginine to generate l-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of l-arginine. Indeed, supplemental l-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, this simple relationship is complicated by observations that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. Accordingly, the subcellular compartmentalization of intracellular l-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of pools or pockets of l-arginine. In agreement with this, there is considerable evidence supporting the importance of the subcellular localization of l-arginine metabolizing enzymes. In endothelial cells in vitro and in vivo, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localization inside the cell. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, arginosuccinate lyase, co-localize with eNOS and facilitate NO release. Herein, we highlight the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

Keywords: eNOS, l-arginine, nitric, arginase, CAT-1, ASL, ASS, l-citrulline

ENDOTHELIAL DYSFUNCTION

The past three decades have provided unprecedented gains in our understanding of vascular biology. It is now hard to conceive of a time when the vascular endothelium was thought to be a simple barrier, an inert layer of cells lining the lumen of blood vessels. However this was the prevailing view prior to 1981 and the world of vascular biology was irrevocably changed with Furchgott’s discovery of an ability of the endothelium to direct changes in vasomotor function (1). In the time since, the depth and pace of research to understand the myriad functions of the endothelium has been remarkable. Not the least of these has been the discovery of endothelial nitric oxide synthase (eNOS) (2–4), an enzyme selectively expressed in the endothelial cells with the ability to generate nitric oxide (NO) and thus regulate blood vessel tone (5). Dysfunction of the vascular endothelium is considered to be the harbinger of cardiovascular disease and precedes the development of overt symptoms (6, 7). Given the importance of eNOS and endogenous NO production to endothelial function, it is not surprising that considerable effort has been focused on the mechanisms influencing eNOS activity in cardiovascular disease. The primary enzymatic function of eNOS is to catalyze the NADPH-dependent conversion of l-arginine into NO, a process shared by the two other NOS isoforms (8). Once formed, NO has an expansive array of cellular targets both locally in the endothelium to influence inflammatory signaling, metabolism, exocytosis, proliferation, motility, and survival, but also in adjacent cells such as vascular smooth muscle cells to decrease vasomotor tone, proliferation and migration, and in platelets to suppress aggregation (9). Loss of these functions promotes increased inflammation, thrombosis, high blood pressure, and vascular cell proliferation, processes that are intimately involved in the development of cardiovascular disease.

L-ARGININE

Because of the obligatory role of l-arginine in NO synthesis, considerable attention has been focused on the importance of
t-arginine availability in the vascular production of NO. Fueling this interest were early studies reporting that t-arginine could directly stimulate EDRF/NO synthesis (10–12) and that compromised endothelial function in cardiovascular disease states could be improved by supplementation with t-arginine both in animals (13–17), healthy humans (18) and those with high cholesterol (19–21), cardiac transplantation (22), peripheral artery disease (23), pulmonary hypertension (24), and angina (25). Considerable evidence pointed toward t-arginine deficiency being a major rate limiting step in the synthesis of NO. However, the affinity of eNOS for t-arginine is low (∼2–3 µM) (26) and the amount of t-arginine in endothelial cells is hundreds of times higher (∼840 µM) (27) suggesting that a substrate deficiency was an unlikely unitary cause of eNOS dysfunction and that additional mechanisms of dysfunction must exist.

**SUBCELLULAR LOCALIZATION OF eNOS**

The co-translational N-myristoylation (glycine 2) and post-translational cysteine palmitoylation of eNOS (cysteines 15 and 26) enable membrane binding and the discrete subcellular targeting (28). In the endothelial cell, eNOS can be found predominantly localized to the perinuclear Golgi (29) and microdomains of the plasma membrane, including caveolae and lipid rafts (30, 31). eNOS has also been reported in other compartments, such as the mitochondria, the nucleus and the cytoskeleton (32, 33). The importance of location to eNOS function and cellular NO release was first demonstrated by mutations that prevent both myristoylation and palmitoylation resulting in an enzyme that is catalytically competent in activity assays outside the cell, but exhibits dramatically reduced capacity to generate NO in intact cells (29). Furthermore, the relative activity of eNOS varies depending on its intracellular location with the highest activity observed from eNOS at the plasma membrane, followed by outer membranes of the cis-Golgi and very low activity in the cytosol, nucleus, and mitochondria (32, 34, 35). Given the dramatic ability of subcellular location to influence eNOS activity and NO release, it is not surprising that compartmentalization has been proposed as a major mechanism by which the local concentration of t-arginine can influence NO release (36).

**L-ARGININE TRANSPORTERS**

The concentration of t-arginine in human plasma is ∼100–200 µM (37) and higher concentrations, up to 840 µM (27) can be found within the endothelial cell reflecting the existence of transport processes. A number of distinct transmembrane transporters exist on the plasma membrane of endothelial cells that mediate the predominantly sodium independent import of t-arginine via y+ and y+ t transporters. The major genes involved in y+ import are CAT-1 (SLC7A1) and CAT-2 (SLC7A2), whereas for y+L import, LAT1 (SLC7A7 and SLC3A2) and LAT2 (SLC7A6 and SLC3A2) are required (36). The presence of CAT-1 in plasmalemma caveolae and the ability of extracellular t-arginine to stimulate NO release in cells with abundant t-arginine levels has led to the hypothesis that t-arginine exists in poorly interchangeable subcellular compartments and reaches eNOS in sufficient concentrations via metabolite channeling (36). While there is suggestive data for the existence of these pools (38), direct evidence and a mechanism for t-arginine sequestration is lacking. A further wrinkle to this story is that the cationic amino acid transporter, CAT-1 can stimulate eNOS activity via direct binding rather than delivering abundant t-arginine to its catalytic doorstep (39).

**L-ARGININE RECYCLING**

Endothelial cells can maintain their t-arginine levels despite the continuous release of NO (40), suggesting the existence of mechanisms to recover substrate. Indeed, t-citrulline, the byproduct of eNOS-dependent NO generation, can be converted back to t-arginine via the sequential actions of argininosuccinate synthase (ASS) and arginosuccinate lyase (ASL) (41). The co-localization of ASS/ASL with eNOS in plasma membrane caveolae suggests that t-arginine recycling from t-citrulline is a significant source of NO (42, 43). The importance of this pathway is revealed by impaired endothelium-dependent NO generation and increased blood pressure in humans and mice with ASL deficiency (44). Not only do ASL and ASS co-localize with eNOS, but they have been shown to bind directly and regulate eNOS activity (44). A caveat to these studies is that only a fraction of eNOS is present in plasma membrane caveolae and significant amounts of eNOS can be found on endomembranes such as the Golgi. It is not yet known if eNOS at the Golgi or other organelles are regulated by arginine regulatory enzymes in the same way as the plasma membrane/caveolae bound eNOS. t-arginine can also be generated from the breakdown of proteins via both proteosomal and lysosomal pathways, which liberates t-arginine (45). The breakdown of proteins also liberates asymmetric methylated arginines, monomethylarginine (MMA), and asymmetric dimethylarginine (ADMA) which are potent substrate inhibitors of eNOS activity. The methylation of proteins is increased in cardiovascular disease, providing a source for the increased levels of MMA and ADMA via proteolysis (46). Methylated arginines are metabolized by the dimethylarginine dimethylaminohydrolases (DDAH1 and DDAH2). DDAH is found primarily in the cytosol (47) although there are reports of expression in the mitochondria (47) and nucleus (48). Accumulation of asymmetric methylated arginines results in a degree of eNOS-inhibition that is proportional to the ratio of t-arginine/methylated arginine. The inhibition of eNOS can be relieved by supplementation with t-arginine leading to increased production of NO and improvement of endothelial function (49).

**ARGINASES**

Arginase I and Arginase II are homologous genes encoded by different chromosomes that share the catalytic function of converting l-arginine into urea and ornithine (50). A significant difference between Arginase I and Arginase II is their distinct subcellular distribution, with Arginase I detected predominantly in the cytosol and Arginase II within the mitochondria (51, 52). As enzymes that consume the substrate for eNOS, l-arginine, the arginases have been proposed as endogenous antagonists of eNOS. Increased expression and activity of Arginase I have been implicated in numerous cardiovascular diseases including diabetic retinopathy, asthma, coronary artery dysfunction during renovascular hypertension, and sickle cell disease (53–57) and Arginase
II has been shown to be specifically increased in retinopathy of prematurity, human pulmonary arterial endothelial cells during hypertension, atherosclerosis, and in diabetic renal injury (57– 60). Numerous studies have shown that increased expression of arginase correlates with impaired NO synthesis and that inhibition of arginase increases NO production (53, 61, 62). However, this seemingly simple relationship between eNOS and the arginases is complicated by enzyme kinetics and L-arginine concentrations. The affinity of eNOS for arginine is relatively high (K_m = 3 µM), the affinity of arginase for L-arginine relatively low (2 mM) and the concentrations of intracellular L-arginine (300– 800 µM) sufficient to support near maximal eNOS activity. Two explanations have been proposed to explain the inhibitory actions of arginase, one is the 1000-fold higher enzyme activity (V_max) and the other, the compartmentalization and regional deficiency of L-arginine (63). Vascular dysfunction achieved through the arginase-mediated depletion of L-arginine can be reversed with L-arginine supplementation (64) but this also drives increased arginase activity.

L-ARGININE SUPPLEMENTATION

The preceding evidence has emphasized the important role L-arginine plays in the maintenance of endothelial and cardiovascular function and is supported by studies showing that at least in the short-term; L-arginine supplementation can increase endothelial function and mitigate disease. However, more recent evidence suggests that chronic long term supplementation offers little benefit and may instead be harmful (65). The reasons for this are not well understood and likely to be numerous. Chronic exposure to high levels of NO can desensitize NO signaling, impair L-arginine import and increase vascular lesions and mortality (66–69). In contrast, inhibition of endogenous NO can increase sensitivity to NO donors and collectively this suggests that there is pushback when “pushing” NO signaling. Chronic supplementation with L-arginine can also influence other pathways including the greater activation of iNOS (70) which unlike eNOS, is primarily constrained by substrate availability, and the increased expression and catalytic activity of the arginases due to their higher K_m. A consequence of increased arginase activity is the production of ornithine and attendant elevation of L-proline and the polyamines which can promote cell proliferation and maladaptive vascular remodeling (71).

CONCLUSION

L-Arginine is a semi-essential amino acid with a number of important roles in the endothelium including the ability to drive NO production. The compartmentalization of arginine metabolizing and transporting enzymes has important ramifications for endothelial function and cardiovascular health. L-arginine transporters and recycling enzymes have been found in the same intracellular location as eNOS, and some have been found to directly bind eNOS. However, whether this proximity is necessary for providing eNOS with ready access to L-arginine is questionable. Catalytically inactive forms of ASL and substrate-inhibition of CAT-1 do not prevent the ability of these enzymes/transporters to stimulate NO release and this suggests they instead play a structural role in the activation of eNOS. The arginases, which compete for and metabolize L-arginine, particularly when L-arginine is in high abundance, do not reside in the same intracellular locations as eNOS (and presumably do not physically associate) and thus are unlikely to exclusively regulate L-arginine content in pools accessible to eNOS. Instead a more important role of the arginases may be to generate L-proline and polyamines that can negatively impact endothelial and vascular function. The accumulation of asymmetric methylated arginines occurs at the major sites of protein degradation, the proteasome and lysosome, and like the cytosolic DDAH, they are not thought to be in close proximity to eNOS. Frequently underappreciated is the important role eNOS subcellular location has on NO release. Targeting eNOS to the plasma membrane supports the highest levels of NO production followed by the Golgi and the cytoplasm (35). Rendering eNOS insensitive to calcium overrides the effects of intracellular location on eNOS activity and suggests that local calcium and not L-arginine, is the major determinant of efficient NO release (32, 72). While compartmentalization may not be a critical mechanism by which L-arginine influences eNOS activity, its ability to increase NO release is well documented. However, the failure of supplemental L-arginine to improve cardiovascular health may be considered another lesson learned of why too much of a good thing can be bad. Chronic high levels of NO can result in the refractoriness of its targets to respond and is well documented in vascular smooth muscle. Mechanisms that temporarily restrict eNOS activity such as caveolin-1 or the location of eNOS on membranes of the Golgi enable efficient production of NO in the right amount at the right time for the right response.

REFERENCES

1. Furchgott RF, Zawadski JV. The obligatory role of the endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (1980) 288:373–6. doi:10.1038/288373a0
2. Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest (1992) 90(5):2092–6. doi:10.1172/JCI116092
3. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A (1992) 89(14):6348–52. doi:10.1073/pnas.89.14.6348
4. Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D’Angelo DD, et al. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem (1992) 267(22):15274–6.
5. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J (2012) 33(7):829–37. doi:10.1093/eurheartj/ehr304.837a-837d,
6. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OL, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet (1992) 340(8828):1111–5. doi:10.1016/0140-6736(92)93147-F
7. Drexler H. Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis (1997) 39(4):287–324. doi:10.1016/S0033-0620(97)80030-8
8. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J (2001) 357(Pt 3):593–615. doi:10.1042/0264-6021:3570593
supplementation improves small-vessel coronary endothelial function in humans. Circu-
lation (1998) 97(21):2123–8. doi:10.1161/01.CIR.97.21.2123
19. Drexler H, Zeiher AM, Meinerz K, Just H. Correction of endothe-
elial dysfunction in coronary microcirculation of hyper-
cholesterolemic patients by L-arginine. Lancet (1991)
338(8782–8783):1546–50. doi:10.
1016/0140-6736(91)92372-9
20. Creager MA, Gallagher SJ, Gir-
erd XI, Colerman SM, Dzau VI, Cooke JP. L-arginine improves endothelium-
dependent vasodilation in hypercholesterolemic humans. J Clin Invest (1992)
90(4):1243–8. doi:10.1172/JCI11987
21. Clarkson P, Adams MR, Powe AI, Donald AE, McDreie C, Robinson J, et al. Oral L-
arginine improves endothelium-
dependent dilation in hyper-
cholesterolemic young adults. J Clin Invest (1996) 98(8):1989–94.
doi:10.1172/JCI118632
22. Drexler H, Fischell TA, Pinto FJ, Chenzbraun A, Botas J, Cooke JP, et al. Effect of L-arginine on coro-
nary endothelial function in car-
diac transplant recipients. Rela-
tion to vessel wall morphology. Circulation (1994) 89(4):1615–23.
doi:10.1161/01.CIR.89.4.1615
23. Lekakis JP, Papathanasi-
siou S, Papaianni TG, Papamichal CM, Zakopoulos N, Kotisis V, et al. Oral L-
arginine improves endothelo-
dial dysfunction in patients with essential hypertension. Int J Cardiol (2002) 86(2–
3):317–23. doi:10.1016/S0167-
5270(02)00413-8
24. Nagaya N, Uematou M, Oya H, Sato N, Sakamaki F, Kyotani S, et al. Short-term oral admi-
istration of L-arginine improves hemodynamics and exercise capacity in patients with precipapillary pulmonary hyper-
tension. Am J Respir Crit Care Med (2001) 163(4):887–91.
doi:10.1164/rccm.163.4.2007116
25. Piatti P, Fragnasso G, Monti LD, Setola E, Lucotti P, Fermo D, et al. Acute intravenous L-
arginine infusion decreases endothelin-I levels and improves endothelial function in patients with angi-
na pectoris and normal coronary arteriograms: correlation with asymmet-
ric dimethylarginine levels. Circulation (2003) 107(3):429–36.
doi:10.1161/01.CIR.0000048479.24563.79
26. McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmod-
ulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem (2000) 275(9):6112–8.
doi:10.1074/jbc.275.9.61123
27. Baydoun AR, Emery PW, Pear-
son JD, Mann GE. Substrate-
dependent regulation of intra-
cellular amino acid concentra-
tions in cultured bovine aor-
tic endothelial cells. Biochem Biophys Res Commun (1990) 171(3):940–8. doi:10.1006/bbrc.1990.
219x5876
28. Liu J, Hughes TE, Sessa WC. The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothe-
lium nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J Cell Biol (1997) 137:1525–35. doi:10.1083/jcb.137.7.1525
29. Sessa WC, Garcia-Cardenas G, Liu K, Akih, Pollock JS, Bradley J, et al. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J Biol Chem (1995) 270(3):17641–
4. doi:10.1074/jbc.270.30.17641
30. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, J, Keh A, Pollock JS, Bradley J, et al. L-arginine transporter enhances the Golgi association of endothelial nitric oxide synthase with the CAT-1 arginine transporter: implications for the biosynthe-
sis of nitric oxide and superoxide generation beyond. Biochem Biophys Res Commun (1990) 171(3):940–8. doi:10.1006/bbrc.1990.
219x5876
properties of arginases. Comp Biochem Physiol B Biochem Mol Biol (1996) 114(1):107–32. doi:10.1016/0305-0491(95)02138-8

52. Morris SM Jr, Bhamidipati D, Keppa-Lenhart D. Human type II arginase: sequence and tissue-specific expression. Gene (1997) 193(2):157–61. doi:10.1016/S0378-1119(97)00099-1

53. Romero MJ, Ildings JA, Plant DH, Ali MI, Cederbaum SD, Stepp DW, et al. Diabetes-induced vascular dysfunction involves arginase I. Am J Physiol Heart Circ Physiol (2011) 302(1):H159–66. doi:10.1152/ajpheart.00774.2011

54. Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V, et al. Dysregulated arginase metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA (2005) 294(1):81–90. doi:10.1001/jama.294.2.19243-b

55. Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest (2003) 111(12):1863–74. doi:10.1172/JCI17912

56. Zhang C, Hein TW, Wang A, Miller MW, Fossum TW, McDonald MM, et al. Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arteries. Hypertension (2004) 44(6):935–43. doi:10.1161/01.HYP.0000146097.82869.E2

57. Morris SM Jr, Gao T, Cooper TK, Keppa-Lenhart D, Awd Asad. Arginase-2 mediates diabetic renal injury. Diabetes (2011) 60(11):3015–22. doi:10.2337/db11-0901

58. Xu W, Kaneko FT, Zheng S, Comhair SA, Ianocha AJ, Goggins T, et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J (2004) 18(14):1746–8.

59. Narayanan SP, Suwanpradit J, Saul A, Xu Z, Still A, Caldwell RW, et al. Arginase 2 deletion reduces neuro-glial injury and improves retinal function in a model of retinitis pigmentosa with PMD. PLoS ONE (2011) 6(7):e22460. doi:10.1371/journal.pone.0022460

60. Ryo Y, Berkowitz DE, Lim HK. Endothelial arginase II and atherosclerosis. Korean J Anesthesiol (2011) 61(1):3–11. doi:10.4909/jkae.2011.61.1.3

61. Berkowitz DE, White R, Li D, Minhas KM, Cernetic A, Kim S, et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation (2003) 108(16):2000–6. doi:10.1161/01.CIR.0000092948.04444.C7

62. Ryo Y, Gupta G, Benjo A, Lim HK, Camara A, Sikka G, et al. Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res (2008) 102(9):923–32. doi:10.1161/CIRCRESAHA.107.19573

63. Morris SM Jr. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol (2009) 157(6):922–30. doi:10.1111/j.1476-5381.2009.02278.x

64. Johnson FK, Johnson RA, Peyton KJ, Durante W. Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension. Am J Physiol Regul Integr Comp Physiol (2005) 288(4):R1057–62. doi:10.1152/ajpregu.00738.2004

65. Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation (2007) 116(2):188–95. doi:10.1161/CIRCULATIONAHA.106.683656

66. Abou-Mohamed G, Kaesemeyer WH, Caldwell RB, Caldwell RW. Role of L-arginine in the vascular actions and development of tolerance to nitroglycerin. Br J Pharmacol (2000) 130(3):211–8. doi:10.1038/sj.bjp.0703293

67. Bult H, De Meyer GR, Herman AG. Influence of chronic treatment with a nitric oxide donor on fatty streak development and reactivity of the rabbit aorta. Br J Pharmacol (1995) 114(7):1371–82. doi:10.1111/j.1476-5381.1995.tb13358.x

68. De Meyer GR, Bult H, Kockx MM, Herman AG. The effect of chronic treatment with NO donors during intimal thickening and fatty streak formation. Biofactors (1997) 6(2):209–15. doi:10.1002/bio.6520060215

69. Stayer LT, Danenberg AL, Thun M, Reeve G, Bloom TF, Boeniger M, et al. Cardiovascular mortality among munitions workers exposed to nitroglycerin and dinitrotoluene. Scand J Work Envi- ron Health (1992) 18(1):34–43. doi:10.5271/sjevh.1610

70. Chen J, Kuhlenordt P, Urano F, Ichinose H, Astern J, Huang PL. Effects of chronic treatment with L-arginine on atheroscle- rosis in apoE knockout and apoE/inducible NO synthase double-knockout mice. Arterioscler Thromb Vasc Biol (2003) 23(1):97–103. doi:10.1161/ 01.ATV.0000040223.74235.5A

71. Tetelink T. Letter by Tetelink regarding article. “L-arginine supplementation in peripheral arterial disease: no benefit and possible harm.” Circulation (2008) 117(6):e137. doi:10.1161/CIRCULATIONAHA.107.729830 author reply e158.

72. Church JE, Fulton D. Differences in ENOS activity because of subcellular localization are dictated by phosphorylation state rather than the local calcium environment. J Biol Chem (2006) 281(7):1477–88. doi:10.1074/jbc.M509682200

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential con- flict of interest.

Received: 13 April 2013; accepted: 24 June 2013; published online: 09 July 2013. Citation: Chen F, Lucas R and Fulton D (2013) The subcellular compartmental- ization of arginine metabolizing enzymes and their role in endothelial dysfunction. Front. Immunol. 4:184. doi: 10.3389/fimmu.2013.00184

This article was submitted to Frontiers in Inflammation, a specialty of Frontiers in Immunology.

Copyright © 2013 Chen, Lucas and Fulton. This is an open-access article distributed under the terms of the Creative Com- mons Attribution License, which per- mits use, distribution and reproduction in other forums, provided the original authors and source are credited and sub- ject to any copyright notices concerning any third-party graphics etc.