Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms

Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.

Introduction
Over the past decade, various types of cancer therapy (such as surgery, chemotherapy, radiotherapy, bone marrow transplantation, hormone therapy, targeted drug therapy and cryoablation treatment) have been applied to treat cancer, albeit these therapies are often associated with different side effects and limited responses in controlling tumor growth as reported in many clinical cases [1,2]. Moreover, patients’ immune system, which plays a crucial role in the progression of cancer, is not taken into consideration in these treatments. In recent years, cancer immunotherapy has been extensively studied in oncology and oncopharmacology research, and the recent success of immune checkpoint blockades (ICBs) and chimeric antigen receptor (CAR) T-cell therapy in the clinic also reveals the significance of cancer immunotherapy [3]. Currently, more than 3000 kinds of cancer immunotherapy, including ICBs, cancer vaccines, oncolytic...
Cancer Immunotherapy

Immune Checkpoint Blockades

ICBs are a new class of cancer immunotherapy drugs that are designed to increase anti-cancer effects in patients via suppressing multiple immune checkpoints, particularly in cytotoxic T lymphocytes. Apart from the former cell type, the immune checkpoints are also expressed in different immune cell types, including B cells, natural killer cells (NKs), monocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs). The immune checkpoints primarily exhibit immunosuppressive and effector functions, as well as reducing tissue damage due to uncontrolled T-cell responses\[23,24\]. Nonetheless, increasing evidences have revealed that the expression levels of various immune checkpoints, such as CTLA-4, PD-1, TIM-3, BTLA and LAG-3 were dysregulated in the tumor-infiltrated T cells\[25\]. As a result, the T cells were exhausted, and the anti-cancer functions of the immune system were weakened. ICBs could remove these inhibitory signals, restore the T cells from their exhausted status and recover their cytotoxicity on tumor cells\[26\].

Adaptive Cell Therapy

Adaptive cell therapy (ACT) is an immune cell-mediated immunotherapy that destructs tumor cells. In general, various immune cell subsets are isolated from patients or donors, genetically modified and expanded. Subsequently, these cells are transferred back to the patients to elicit the anti-cancer responses\[28,29\]. The initial study of the ACT was described in 1988, using the adoptive transfer of primary tumor-infiltrating lymphocytes (TILs) to treat patients with metastatic melanoma\[30,31\]. Over the past decades, several strategies have been developed and more diverse immune cell subsets, such as non-specific lymphokine-activated killer (LAK) cells, adoptive T cells, chimeric antigen receptor (CAR)-T, T cell receptor (TCR)-engineered T cells and CAR-NK cells are involved in the ACT\[32–34\]. Despite the promising therapeutic values of the ACT, the anti-tumor effects of the LAK cells and TILs are non-specific. In addition, the major obstacles of the ACT include limited expansion capacity and drug targeting efficiency of the effector cells. To overcome these barriers, TCR-engineered T cells, CAR-T and CAR-NK cells are developed, which target specific antigens on cancer cells\[35\]. TCR-engineered T cells are generated via transfecting cloned antigen-specific TCR genes into the T cells isolated from cancer patients, using either lentivirus or retrovirus, to eradicate specific tumor cells. Due to the expression of antigen-specific genes, TCR-T cells showed optimistic results in sarcoma, metastatic melanoma, lymphoma and leukemia patients\[36–41\]. Congruently, CAR-T cells are developed to overcome the limitations raised by MHC restriction in the TCR-based cancer immunotherapy. CAR-T cells compose of an antigen-binding single-chain variable fragment (scFv) domain, a signal transduction domain and a transmembrane domain, which allow the CAR-T cells to recognize tumor cells in MHC-unrestricted manner\[42,43\]. In addition to the advantages of CAR-T cells, CAR-NK cells have also attracted great interest in clinical settings due to their conceivable cytotoxicity against tumor cells, and
the infused CAR-NK cells will not induce graft-versus-host disease in cancer patients [34].

Cancer Vaccines
Cancer vaccines refer to the administration of tumor-associated antigens to restore and stimulate specific anti-cancer immune responses [44]. Based on their application, the vaccines can be divided into preventive or therapeutic vaccines [45], which can be further grouped into virus, peptide, DNA or DC vaccines, depending on the sources of the antigens [46–48]. Until now, FDA has approved several cancer vaccines for clinical uses such as Provenge, hepatitis B virus (HBV) vaccines and human papilloma virus vaccines. Meanwhile, many potential cancer vaccines are currently under investigation in clinical trials, including DNA-containing liposomes and nanoparticles (DNA vaccines), and gp100 peptide (peptide vaccines), which may lead to significant clinical benefits in the future [51–53].

Oncolytic Virus
Oncolytic virus immunotherapy represents a class of immunotherapy that utilizes genetically engineered or naturally occurring viruses. These viruses preferentially lyse cancer cells and elicit adaptive anti-tumor immunity by activating DCs with damage-associated molecular patterns and tumor-associated antigens, while causing minimal side effects to normal cells [54]. T-VEC is the most frequently used oncolytic virus for melanoma treatment in patients, which was approved by US FDA in 2015, and approved by Europe FDA in 2016 [55]. Recently, a growing number of oncolytic viruses have been investigated in clinical trials, and some of the viruses are pending for FDA approval [56–63].

Cytokine Therapy
Cytokine therapy can result in tumor destruction through different mechanisms. On one hand, the cytokines act on the tumor cells directly to inhibit their proliferation by inducing apoptosis, suppressing angiogenesis and modulation of their differentiation. On the other hand, the anti-cancer immune response can be triggered by the administration or blockade of specific cytokines which interfere with the corresponding signaling pathways [64,65]. Although cytokine therapy alone showed favorable anti-cancer responses in some studies, a combination of cytokine therapy with other immunotherapy, such as ICBs, adoptive cell therapy and cancer vaccines may plausibly improve the efficacy of the anti-cancer effects [66,67].

Targeting Immunosuppressive Tumor Microenvironment
Tumor microenvironment plays a crucial role in cancer growth, development and metastasis. Depleting various immunosuppressive cellular elements from the tumor microenvironment, such as tumor-specific regulatory T cells, type 2 helper T cells, regulatory B cells, innate lymphoid cells, type 2 granulocytes (Neu2), DC of type 2, TAM and MDSC were reported to restore and re-activate the anti-cancer immune responses [68–70].

Combinational Immunotherapy
Earlier clinical reports have demonstrated the capability of single cancer immunotherapy agent to treat patients, whereas a subgroup of patients with advanced stage of cancers may not respond well to the single-agent treatment. Hence, there is an increasing trend to combine different immunotherapy drugs, or treatments (chemotherapy and radiotherapy) to enhance the anti-tumor efficacy, through the possible synergistic effects of these treatments. Currently, different ICBs, such as anti-PD-1 and anti-CTLA4 antibodies were combined and administered to cancer patients. The results from these combinational therapies are encouraging and more combination regimens warrant further studies, which may improve the overall outcome of patients with multiple types of cancers [71,72].

Immuno-oncology Assay Platforms
Despite a vast number of drug candidates for cancer immunotherapy, it is challenging to identify the most efficacious drug and optimal dose to treat patients [73]. Moreover, the concept of personalized precision cancer treatment imposes another obstacle for the treatment option. Due to the heterogeneity of individual’s tumor, tumor microenvironment and the immune system, there is a considerable variation in individual’s responses, including the anti-cancer effects and the side effects towards the same treatment [74]. Therefore, continuous development and improvement of immuno-oncology assay methods are essential to expedite evaluation of single or combinational immunotherapy in cancer research, or predict the clinical outcome of an individual cancer patient.

In Vitro Platforms
Majority of cancer immunotherapy agents were first characterized and evaluated in vitro using 2D and 3D models [10]. Human cancer cell lines, cancer cells-derived organoids, primary tumor cells or patient-derived tumor organoids are either cultured alone, or co-cultured with human peripheral blood mononuclear cells (PBMCs), TILs, CAR-T, TCR-T or CAR-NK cells for screening the efficacy of the cancer immunotherapy (Figure. 1). For the 2D screening system, specific cancer cells or organoids are co-cultured with the immune cells on flat dishes [75,76]. Subsequently, cancer immunotherapy agents are added to examine the phenotypic modulation of cells and the underlying molecular mechanisms, through various immune cell assays (for T cells, NK cells, macrophages, DCs and neutrophils) and tumor cell assays. However, the 2D system represents an artificial and simplified cultural environment, while the 3D system is capable of reflecting the complexity of tumors in patients, since the tumors also consist of immune cells, stromal cells, epithelial cells and endothelial cells [77]. The 3D culture system can be classified as scaffold system and scaffold-free system. The former system supports cell growth, proliferation and survival through a specific extracellular matrix (ECM), such as hydrogel. The essential nutrients and growth factors are supplemented to the cells through some small pores in the ECM, which is similar to their primary microenvironment in vivo [78]. In contrast, 3D scaffold-free system generates spheroids and cell aggregates by forced-floating, hanging drop or agitation-based technology in the absence of ECM, which provides a better physiological model when compared to the scaffold system.

In Vivo Models
The aforementioned in vitro platforms allow us to promptly evaluate the efficacy of cancer immunotherapy drugs. However, the in vitro models barely reproduce the complexity of tumor microenvironment, which consists of human tumor cells, immune cells and stromal cells. Hence, there is an urgent need to develop sophisticated in vivo models that can mimic the tumor microenvironment in patients for the assessment of novel cancer immunotherapy agents (Figure. 1).
Over decades, syngeneic mouse tumor models are the major in vivo model for tumor immunology and immunotherapy studies, where these models are established by either subcutaneous or intravenous injection of mouse tumor cell lines into inbred mouse strains (immunocompetent mice) \[20,79,80\]. As a result, these models can be used for studying the efficacy of the anti-tumor immune responses, without the adoptive transfer of immune cells into the mice prior to the studies. The advantages of these models are that they are easy to be handled, can be rapidly and reproducibly expanded in large numbers, and produce relatively consistent results for the evaluation of various factors that influence the efficacy of immunotherapy \[79,80\].

Generation of genetically-engineered mouse tumor models require either tissue-specific promoters to drive the expression or activation of oncogenes (such as Kras) or recombinase enzymes (including Tet-on/off, tamoxifen-inducible Cre recombinase and CRISPR-Cas9 technology) that remove tumor suppressor genes (such as Tp53), and these models have been widely used to evaluate targeted therapy or other immunotherapeutic modalities \[20,81\]. Yet, a lack of genomic heterogeneity of the mouse tumors, and the discrepancy of tumor microenvironment between mouse and human are the major caveats of these models. Remarkably, significant differences exist between the immune system in mouse and human, which may possibly reduce the clinical relevance of the syngeneic and genetically

Table 1. Current Humanized Mouse Tumor Models for Human Cancer Immunotherapy

Type of models	Main advantages	Main disadvantages	Applications in immunotherapy	
Humanized Oncology Models				
Human Tumor Cell Lines engrafted into immunodeficient mice	Easy to handle and can be rapidly and reproducibly expanded in large numbers.	Lack of human immune tumor microenvironment.	Adoptive cell therapy	
Human PDX Tumor engrafted into immunodeficient mice	Lower variants	Lack of human tumor heterogeneity.	Oncolytic virus	
	Patient tumor heterogeneity		Cytokine therapy	
	Similar responses as patients to certain anti-cancer drugs.		Adoptive cell therapy	
Humanized Immune-Oncology Models				
PBMCs & Tumor Cell Lines or PDX Tumor	Human immune tumor microenvironment	Graft-versus-host reaction (GVHR) and short survival time.	Cytokine therapy	
	Patient tumor heterogeneity		Immune checkpoint blockades	
	Same immune system from cancer patients		Cancer vaccines	
HSCs & Tumor Cell Lines or PDX Tumor	Human immune tumor microenvironment	High cost and limited number of HSCs.	Cytokine therapy	
	Patient tumor heterogeneity		Immune checkpoint blockades	
	Without risk of GVHR		Cancer vaccines	
Humanized Mice Models				
Mouse Models				
Syngeneic Models				
Human Cancer Line or PDX				
Human Cancer Line Organoids				
Human Primary Tumor Cell				
Human Primary Tumor Organoids				
engineered mouse tumor models in the cancer immunotherapy studies [82].

Humanized Mouse Tumor Models

Humanized mouse tumor models can be divided into humanized oncology models and humanized immune-oncology models (Table 1).

Humanized Oncology Models

The humanized oncology models are established by the injection or engraftment of human cancer cell lines (from human tumor or oncogene-generated) or human PDX tumor into immunodeficient mice, including but not limiting to athymic nude mice, severe combined immunodeficiency (SCID) mice, non-obese diabetic (NOD) mice and NOD scid gamma (NSG) mice [20,83,84]. Recently, the models have been used to screen the immunotherapy agents against cancers, such as monoclonal or bispecific antibody therapies, CAR-T cells, oncolytic virus and cytokine therapies [84–87]. In human CCR9⁺ T cell acute lymphoblastic leukemia (ALL) immunodeficient mouse model, 92R monoclonal antibody strongly inhibits tumor growth via binding to the CCR9 N-terminal domain [88]. In another study, human NPM1 gene in acute myeloid leukemia (AML) cells was genetically modified by lentiviruses and the mutant cells (NPM1c+) were engrafted into immunodeficient mice for evaluating the efficacy of CD3 and CD123 bispecific antibody conjugates [89]. Previous studies also demonstrated the anti-HCC effect of anti-GPC3 CAR-T cells therapy in immunodeficient mouse HCC-PDX model [90], and the efficacy of anti-CD19 CAR-T cells therapy against B-cell lymphoma in immunodeficient mice [91]. Similarly, anti-HER2 CAR-T cells therapy could be used to treat ICBs-resistance melanoma in mice [92]. Apart from CAR-T cells therapy, it was reported that the delivery of oncolytic virus, using modified neural stem cells was more efficient and able to extend the survival of mice in mouse glioma-PDX model (GBM43 and GBM) [93]. The interactions of multiple kinds of oncolytic vaccinia virus with tumor are also analyzed in A549-bearing immunodeficient mice [94]. It was also revealed that combination therapy using temozolomide (chemotherapy drug) and ibudliast (macrophage migration inhibitory factor inhibitor) prolonged the survival of mice in glioblastoma-PDX model [95]. However, the major drawback is that ICBs or cancer vaccines cannot be evaluated in these models due to the absence of human immune microenvironment. Therefore, there is a growing interest in developing human immune-oncology models for the studies of cancer immunotherapy.

Humanized Immune-Oncology Models

Humanized immune-oncology models are generated by the engraftment of human cancer cell lines or human PDX tumors into the immunodeficient mice bearing HLA-matched human immune system. The human immune system of these models could be generated by the transplantation of human PBMCs or hematopoietic stem cells (HSCs).

Human PBMCs Models

To reconstitute the human immune system, human PBMCs or mature immune cell subsets are injected into the irradiated NOG or NSG mice by intravenous injection. Human T cells, B cells, NK cells and DCs can be detected in the circulation, and monoclonal antibody, cytokine therapy (IL-2), ICBs and DC-based vaccine have been successfully evaluated in these models [22,96,97]. In PBMC-humanized mouse model (PBMCs from healthy donors), the administration of human monoclonal antibody anti-CDX, combined with IL-2 could inhibit the progression of renal cell carcinoma via inducing human NK and T cells responses [98]. Anti-tumor activity of nivolumab, atezolizumab, pembrolizumab and uredelumab was also observed in the PBMC-humanized mouse model [22,99,100]. Utilizing autologous PBMCs and glioma-PDX, personalized immune-oncology models were established and could be used for evaluating personalized ICBs [101]. Multiple DC vaccine formulations were compared in PBMC-humanized mouse model and assessed for MART-1-specific immune responses and suppressive functions on melanoma [102]. Nevertheless, the development of graft-versus host reaction (GVHR) and poor survival of the mice confines the use of these models to evaluate the effectiveness of cancer immunotherapy [103].

Human HSCs Models

The barriers of GVHR can be overcome by the establishment of human immune system using human CD34⁺ HSCs. The stem cells can adapt mouse environment under mouse MHC education and develop into a well-reconstituted human immune system without the risk of GVHR in immunodeficient mice. These mouse models have been used to generate more stable humanized immune-oncology models successfully [12,13]. In the FL (fetal liver)-HSC-generated humanized mice, human helper T cells, cytotoxic T cells, B cells, monocytes, NK cells and DCs were detected in the circulation [13]. The number and proportion of cytotoxic T cells and NK cells decreased during HCC-PDX progression [13]. Intriguingly, TILs isolated from the tumors displayed tumor-educated phenotypes, including increased immune checkpoints expression and an impaired cytokines and cytotoxic proteins production. The presence of more type 2 monocytes (M2) and multiple MDSCs could also mimic the immune responses in patients [13]. In the same study, the side effects of ICBs were demonstrated, which is in line with some of the clinical studies [13]. Alternatively, in the CB (Cord Blood)-HSC-generated humanized mouse model, nivolumab inhibited the growth of MDA-MB-231 cells and CRC172 cells by enhancing anti-tumor T cell response, increasing GrB⁺ or IFN-γ⁺ CD8⁺ cells in tumors and reducing frequency of HLA-DRlow myeloid cells in vivo [104]. Meanwhile, combination of HDAC inhibitors OKI-179 and nivolumab further inhibited tumor growth when compared to the administration of nivolumab alone, which also indicated that HDAC inhibitors could improve anti-tumor immune responses in vivo [104]. To date, a growing number of reports have shown that human PDX tumors were regress in the humanized mice following anti-PD1 and anti-CTLA4 therapies [12,13,22], suggesting that the humanized immune-oncology models may serve as the emerging platform for the study of cancer immunotherapy or combinational immunotherapy.

Future Directions of Studying and Developing Humanized Mouse Immune-Oncology Models

Future Applications of Humanized Mouse Immune-Oncology Models

The current humanized mouse cancer models are frequently used to examine the efficacy and the safety of ICBs. Beside T cells, multiple immune cell subtypes, such as monocytes and NK cells also showed the tumor-educated phenotypes in tumor microenvironment. These phenotypes may contribute to tumor progression and may plausibly be the drug targets in the future [13]. Moreover, these models can be
used to explore the potential combinations of immunotherapy to treat patients and predict the outcomes.

Next-Generation Humanized Mouse Immune-Oncology Models

The main drawback of the current human HSC-derived immune-oncology models is that the human tumor and immune system are not usually from the same donors, thus they are only HLA partially matched. We anticipate that the future directions for immune-oncology study and drug testing is to develop HLA fully matched and personalized humanized mouse models. The possible option is to match PDX tumors with the same patient derived HSCs. This requires the resources of human HSCs derived from induced pluripotent stem cells (iPSC), peripheral blood or bone marrow. Besides immune cells, iPSCs have the possibility to further differentiate into vascular cells and fibroblasts, which may increase the similarity of the patients’ tumor microenvironment in the humanized mice [105–108]. However, a major challenge of iPSC-derived HSCs is their low in vivo repopulating ability which results in the difficulty of forming functional immune system in immunodeficient mice [109,110]. In addition, it is imperative to develop fully HLA-matched humanized mouse immune-oncology models using patients’ HSCs from their PBMCs or bone marrow cells [111,112]. These models may reflect patients’ immune responses more accurately when compared to the current partially HLA-matched models. Nevertheless, human bone marrow cells have limited capacity to develop into immune cells in humanized mice, which may lead to insufficient number of fully HLA-matched humanized mice for cancer immunotherapy studies.

In addition, further improvement of mouse environment is warranted to optimize human immune cell development and functionality in humanized mice. For instance, many cytokines and growth factors do not cross react between mouse and human, which lead to the sub-optimal development of specific human immune cell types in humanized mice, such as human NK cells and macrophages due to the lack of human interleukin (IL)-15 and macrophage colony-stimulating factor (M-CSF), respectively [113]. Furthermore, the residual mouse immune components, which mainly consist of macrophages and granulocytes may also interfere the responses. Efforts have been made to improve the human immune elements in the humanized mice, such as transgenically expression of different human growth factors and cytokines [112,114], hydrodynamic tail vein injection of plasmid DNA encoding human cytokines [113], lentivirus or adeno-associated virus delivery of cytokines [115–117] and replacing the host genes with human counterparts [118–120]. Using genetically engineering technology, NSG-SGM3 mice (genetically engineered to produce IL-3, granulocyte/macrophage colony-stimulating factor (GM-CSF) and Steel factor (SF)), NSGW41 mice (KitW-41J allele), MISTRG (co-expressed M-CSF, IL-3, GM-CSF and thrombopoietin) and NSG-IL-15 (high expression of human IL-15) were established for improving the development and differentiation of HSCs, NKs and monocytes/macrophages [121,122]. Additionally, overexpression of human IL-2, IL-7, IL-15 and SF in humanized mice by hydrodynamic injection of vector, lentivirus or adeno-associated virus also contributes to the development of human HSCs [96,113,118]. Yet, there is still room for further characterization of these methods and exploration of new factors can help to achieve fully functional human immune system in humanized mice, which is valuable for the subsequent validation of single-agent or combinational immunotherapies in the humanized mouse immune-oncology models. Taken together, humanized mouse cancer models are becoming more and more commonly used to evaluate the efficacy and safety of cancer immunotherapy in vivo. Timely improvement of these models is essential as more novel immunotherapy drugs or combinations of immunotherapy have been explored. Besides, next generation humanized mouse-immuno-oncology models, which closely simulate the interaction between the tumor and immune system in cancer patients have to be generated, so as to increase the clinical relevance of immunotherapy and enhance the development of personalized precision medicines.

Conflict of Interest Statement

The authors declare that we have no conflict of interest.

References

[1] Aruabo M, Vilabsa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, and González-Fernández A (2011). Assessment of the evolution of cancer treatment therapies. *Cancer (Basel)* 3, 3279–3330.

[2] Gortwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaranto S, Sabatos-Peyton C, and Petruzzelli L, et al. (2017). Prospects for combining targeted and conventional cancer therapy with immunotherapy. *Nat Rev Cancer* 17, 286–301.

[3] Del Paggio JC (2018). Immunotherapy: Cancer immunotherapy and the value of cure. *Nat Rev Clin Oncol* 15, 268–270.

[4] Yang Y (2015). Cancer immunotherapy: harnessing the immune system to battle cancer. *J Clin Invest* 125, 3335–3337.

[5] https://www.marketwatch.com/press-release/cancer-immunotherapy-market–is-determined-to-reach-us-173-billion-by-2024-2019-03-14.

[6] Ichim CV (2005). Revisiting immunosurveillance and immunostimulation: Implications for cancer immunotherapy. *J Transl Med* 3, 8.

[7] Adriani G, Pavesi A, Tan AT, Bertolotti A, Thiery JP, and Kamph RD (2016). Microfluidic models for adoptive cell-mediated cancer immunotherapies. *Drug Discov Today* 21, 1472–1478.

[8] Cerigoli F, Abassi YA, Lamarche BJ, Guenther G, Santa Ana D, Guimet D, Zhang W, Zhang J, and Xi B (2018). In vitro immunotherapy potency assays using real-time cell analysis. *PLoS One* 13:e0193498.

[9] Parlat o S, De Ninno A, Molfetta R, Toschi E, Salerno D, Mecartini A, Romagnoli G, Fragale A, Roccazzello L, and Buoncervello M, et al. (2017). 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. *Sci Rep* 7(1093).

[10] Sherman H, Gitschier HJ, and Rossi AE (2018). A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity. *Front Immunol* 9(857).

[11] Wang C, Hu W, Shen L, Dou R, Zhao S, Shan D, Yu K, Huang R, and Li H (2014). Adaptive antitumor immunotherapy in vitro and in vivo using genetically activated erbB2-specific T cells. *J Immunother* 37, 351–359.

[12] Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere White RW, and Airthar S, et al. (2018). Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. *FASEB J* 32, 1537–1549.

[13] Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY, Fan Y, Yang H, Lyer SG, and Bonezy GK, et al. (2018). Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. *Gut* 67, 1845–1854.

[14] Kenny HA, Lal-Nag M, White EA, Shen M, Chiang CY, Mitra A, Zhang Y, Curtis M, Schroyer EM, and Betti S, et al. (2015). Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. *Nat Commun* 6(6220).

[15] Yin X, Mead BE, Saafae H, Langer R, Karp JM, and Levy O (2016). Engineering stem cell organisms. *Cell Stem Cell* 18, 25–38.

[16] Enomoto M, Siow C, and Igaki T (2018). Drosophila as a cancer model. *Mol Cell Oncol* 1(1093).

[17] Gardner HL, Fenger JM, and London CA (2016). Dogs as a model for cancer. *Gut* 65, 1845–1854.

[18] Kyriakakis E, Markaki M, and Tavernarakis N (2014). *Caenorhabditis elegans* – a model to battle cancer. *J Clin Invest* 1537–1549.

[19] Zhi Q, Wang A, Qian Y, Yao J, and Zhang H, et al. (2017). 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. *Sci Rep* 7(1093).

[20] Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere White RW, and Airthar S, et al. (2018). Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. *FASEB J* 32, 1537–1549.

[21] Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY, Fan Y, Yang H, Lyer SG, and Bonezy GK, et al. (2018). Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. *Gut* 67, 1845–1854.

[22] Kenny HA, Lal-Nag M, White EA, Shen M, Chiang CY, Mitra A, Zhang Y, Curtis M, Schroyer EM, and Betti S, et al. (2015). Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. *Nat Commun* 6(6220).

[23] Yin X, Mead BE, Saafae H, Langer R, Karp JM, and Levy O (2016). Engineering stem cell organisms. *Cell Stem Cell* 18, 25–38.

[24] Enomoto M, Siow C, and Igaki T (2018). Drosophila as a cancer model. *Mol Cell Oncol* 1(1093).

[25] Gardner HL, Fenger JM, and London CA (2016). Dogs as a model for cancer. *Gut* 65, 1845–1854.

[26] Kyriakakis E, Markaki M, and Tavernarakis N (2014). *Caenorhabditis elegans* – a model to battle cancer. *J Clin Invest* 1537–1549.
Translational Oncology
Vol. 12, No. 7, 2019
Immunotherapies and Humanized Mouse Drug Testing Platforms
Chen et al.

[27] Ribas A and Wolchok JD (2018). Cancer immunotherapy using checkpoint blockade.

[25] Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, and Lou (2017). The oncogenic cancer model: an innovative large animal translational oncology platform. Front Oncol 7, 190.

[24] Lin S, Huang G, Cheng L, Li Z, Xiao Y, Deng Q, Jiang Y, Li B, Lin S, and Wang S, et al. (2018). Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs 10, 1301–1311.

[23] Dyck L and Mills KHG (2017). Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 47, 765–779.

[22] Pardoll DM (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252–264.

[21] Marin-Acevedo JA, Dholaria B, Soyan AE, Knutson KL, Chumsri S, and Lou Y (2018). Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11, 39.

[20] Wei SC, Duffy CR, and Allison JP (2018). Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8, 1069–1086.

[21] Ribas A and Wolchok JD (2018). Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355.

[22] Roahan MW, Wilgenhof S, and Haanen JJBAG (2019). Adoptive cellular therapies: the current landscape. Viruses Arch 474, 449–461.

[23] Perica K, Varela JC, Oelke M, and Schneck J (2015). Adoptive T cell immunotherapy for cancer. Ramah Maimonides Med 6, e60004.

[24] Sukari A, Nagasaka M, Al-Hadidi A, and Lum LG (2016). Cancer Immunology and Immunotherapy. Anticancer Res 36, 5593–5606.

[25] Schmitt TM, Stromnes IM, Chapuis AG, and Greenberg PD (2015). New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clin Cancer Res 21, 5191–5197.

[26] Zhang YW, Gu XD, Xiang JB, and Chen ZY (2014). Clinical application of adoptive T cell therapy in solid tumours. Med Sci Monit 20, 953–959.

[27] Rezvani K and Rouce RH (2015). The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol 6, 578.

[28] Mehra RS and Rezvani K (2018). Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol 9, 283.

[29] Iyer RK, Bowles PA, Kim H, and Dulgar-Tulloch A (2018). Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front Med (Lausanne) 5, 150.

[30] D’Angelo SP, Melchiori L, Merchant MS, Bernstein D, Gled J, Kaplan R, Grupp S, Tap WD, Chagin K, and Binder GK, et al. (2018). Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T Cells in synovial sarcoma. Cancer Discov 8, 944–957.

[31] Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Galili F, Riley L, Condon K, and Pockaj B, et al. (2011). gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364, 2119–2127.

[32] U’Ren L, Kedd R, and Dow S (2006). Vaccination with liposome-DNA complexes elicits enhanced antitumor immunity. Cancer Gene Ther 13, 1033–1044.

[33] Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, and Liu Z (2018). Cancer cell membrane-coated adapted nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 12, 5320–5326.

[34] Chang MH, Shau WY, Chen CJ, Wu TC, Kong MS, Liang DC, Hsu HM, Chen HL, Hsu HY, and Chen DS, et al. (2000). Hepatitis B vaccination and hepatocellular carcinoma rates in boys and girls. JAMA 284, 3040–3042.

[35] Schmaier AM, Lawson DH, Richards JM, Comy RM, Miller DM, Treisman J, Gallain F, Riley L, Condon K, and Pockaj B, et al. (2011), gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364, 2119–2127.

[36] Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, and ERRington F (2010). Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther 10, 1581–1588.

[37] Rebhan H, Silk AW, Kane MP, and Kaufman HL (2016). Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy, J Immunother Cancer 4, 53.

[38] Russell L and Peng KW (2018). The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol 7, 16.

[39] Goshima F, Esaki S, Luo C, Kamakura M, Kimura H, and Nishiyama Y (2014). Oncolytic viral therapy with a combination of HF10, a herpes simplex virus type 1 variant and granulocyte-macrophage colony-stimulating factor for murine ovarian cancer. Int J Cancer 134, 2865–2877.

[40] Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, Reddy SS, and Yu DC (2006). CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 12, 305–315.

[41] Fan J, Jiang H, Cheng L, and Liu R (2016). The oncolytic herp simplex virus vector, G47Δ, effectively targets tamoxifen-resistant breast cancer cells. Oncol Rep 35, 1741–1749.

[42] Noonan AM, Farren MR, Geyer SM, Huang Y, Tahiri S, Ahn D, Mikhail S, Ciombor KK, Pant S, and Apaso S, et al. (2016). Randomized Phase 2 Trial of the Oncolytic Virus Plerixafor (Reolysin) in UpFront Treatment of Metastatic Pancreatic Adenocarcinoma. Mol Ther 24, 1150–1158.

[43] Taguchi S, Fukushima H, and Todo T (2018). Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol. http://dx.doi.org/10.1093/jjco/hyy170.

[44] Tanoue K, Wang Y, Ikeda M, Misui K, Irie R, Setoguchi T, Komiya S, Natsugoe S, and Kosai K (2014). Survivin-responsive conditionally replicating adenovirus kills rhabdomyosarcoma stem cells more efficiently than their progeny. J Virol Med 12, 27.

[45] Saha K and Kaneda Y (2015). Oncolytic Sendai virus-based virotherapy for cancer: recent advances. Oncolytic Virol 4, 141–147.

[46] Schooltink H and Rose-John S (2002). Cytokines as therapeutic drugs. J Interferon Cytokine Res 22, 505–516.

[47] Feldmann M (2008). Many cytokines are very useful therapeutic targets. J Clin Invest 118, 5533–5536.
Immunotherapies and Humanized Mouse Drug Testing Platforms

Chen et al.

Translational Oncology Vol. 12, No. 7, 2019

[66] Ma Z, Li W, Yoshiya S, Xu Y, Hata M, El-Darawish Y, Markova T, Yamaniishi K, Yamashii H, and Tahara H, et al (2016). Augmentation of immune checkpoint cancer immunotherapy with IL18. *Clin Cancer Res* 22, 2969–2980.

[67] Dammeyer F, Lau SP, van Eijck CHJ, van der Burg SH, and Aerts JGJV (2017). Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. *Cytokine Growth Factor Rev* 36, 5–15.

[68] Arina A, Corrales L, and Bronve V (2016). Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. *Semin Immunol* 28, 54–63.

[69] Ghielmi C and Hagemann T (2013). Targeting immunosuppression for cancer therapy. *J Clin Invest* 123, 2355–2357.

[70] Allegra MJ and Conejo-García JR (2017). Targeted therapy and immunosuppression in the tumor microenvironment. *Trends Cancer* 3, 19–27.

[71] Hassel JC, Heinzerling L, Aberle J, Bähr O, Eigentler TK, Grimm MO, Grünwold V, Leipe J, Reinnhut N, and Tietze JK, et al (2017). Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions. *Cancer Treat Rev* 57, 36–49.

[72] Schmidt C (2017). The benefits of immunotherapy combinations. *Nature* 552, 567–569.

[73] Deng X and Nakamura Y (2017). Cancer precision medicine: from cancer screening to drug selection and personalized immunotherapy. *Trends Pharmacol Sci* 38, 15–24.

[74] Maciejko L, Smalley M, and Goldman A (2017). Cancer immunotherapy and personalized medicine: emerging technologies and biomarker-based approaches. *J Mol Biomark Diagn* 8, 350.

[75] Giordano Attianese GM, Marin V, Hoyos V, Savoldo B, Pizzolita I, Tettamanti S, Agostoni V, Parma M, Ponsoni M, and Bertilaccio MT, et al (2011). In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. *Blood* 117, 4736–4745.

[76] Chakrabarti J, Holokai L, Syu L, Steele N, Chang J, Dlugosz A, and Zavros Y (2015). Establishment of a complex skin structure via layered co-culture of keratinocytes and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. *Blood* 117, 4736–4745.

[77] Zhou Y (2016). Understanding the cancer/tumor biology from 2D to 3D. *Exp Cell Res* 345, 13–14.

[78] Yoshiura K, Nishishita T, Nakaoka T, Yamashita N, and Yamashita N (2009). Antitumor effect of CAGγ5kRAG-KO transgenic NOD-scid IL-2 receptor knockout mouse generated using surplus neonatal tissue. *Translational Oncology* 2, 1066–1072.

[79] Hsu CL, Kuo YC, Huang Y, Huang YC, Liu LW, Chang KP, Lin TL, Fan HC, Lin AC, and Hsieh CH, et al (2015). Application of a patient-derived xenograft model in cytolytic viral activation therapy for nasopharyngeal carcinoma. *Oncotarget* 6, 31323–31334.

[80] Somovilla-Crespo B, Martín Monzón MT, Vela M, Corraliza-Gorjón I, Santamaria S, García-Sanz JA, and Kremer L (2018). 92R Monoclonal antibody inhibits human CCR0+ leukemia cells growth in NSG mice xenografts. *Front Immunol* 9, 77.

[81] Kaur M, Drake AC, Hu G, Rudnick S, Chen Q, Phennicie R, Attar R, Nemeth J, Gauder F, and Chen J (2019). Induction and therapeutic targeting of human NPM1c+ myeloid leukemia in the presence of autologous immune system in mice. *J Immunol* 202, 1885–1894.

[82] Jiang Z, Jiang X, Chen S, Lai Y, Wei X, Li B, Lin S, Wang S, Wu Q, and Liang Q, et al (2016). Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. *Front Immunol* 7, 690.

[83] Jin CH, Xia J, Rafiq S, Huang X, Hu Z, Zhou X, Brentjens RJ, and Yang YG (2017). Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. *EBioMedicine* 39, 173–181.

[84] Forssberg EMV, Lindberg MF, Jespersen H, Ahlén S, Bagge RO, Donia M, Svane IM, Nilsson O, Ny L, and Nilsson LM, et al (2019). HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy-resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mouse. *Cancer Res* 79, 899–904.

[85] Dey M, Yu D, Kanojia D, Li G, Sukhanova M, Spencer DA, Pintch KC, Zhang L, Han Y, and Ahmed AU, et al (2016). Intranasal oncolytic virotherapy with CCR4x-enhanced stem cells extends survival in mouse model of glioma. *Stem Cell Reports* 7, 471–482.

[86] Tsoneva D, Minev B, Frentzen A, Zhang Q, Wege AK, and Szalay AA (2017). Humanized mice with subcutaneous human solid tumors for immune response analysis of vaccinia virus-mediated oncolysis. *Mol Ther Oncolytics* 5, 41–61.

[87] Ha W, Sevim-Nalkiran H, Zaman AM, Matsuda K, Khsrawar M, Nowak AK, Chang L, Baxter RC, and McDonald KL (2019). Iludilistat sensitizes glioblastoma to temozolomide by targeting macrophage migration inhibitory factor (MIF). *Sci Rep* 9, 2905.

[88] Spranger S, Frankenberger B, and Schendel DJ (2012). NOD/scid IL-2R(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo. *J Transl Med* 10, 30.

[89] Pandey V, Oyer JL, Igarashi RY, Gitto SB,Copik AJ, and Aitomare DA (2016). Anti-viral tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells. *Oncotarget* 7, 7318–7328.

[90] Chang DK, Moniz RJ, Xu Z, Sun J, Signoretti S, Zhu Q, and Marasco WA (2015). Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. *Mol Cancer* 14 (119).

[91] Sanmamed MF, Rodríguez I, Schalper KA, Oñate C, Azpilkueta A, Rodriguez-Ruiz ME, Morales-Kastrensas A, Labiano S, Pérez-Gracia JL, and Martín-Algora S, et al (2015). Nivolumab and ibrutinib enhance antitumor activity of human t lymphocytes engrafted in Rag2-/- IL-2Rnull immunodeficient mice. *Cancer Sci* 75, 1375–1379.

[92] Ali N, Flutter B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, Capasso A, Lang J, Pitts TM, Jordan KR, Lieu CH, Davis SL, Diamond JR, Hu Z, Xia J, Fan W, Wargo J, and Yang YG (2016). Human melanoma tumor microenvironment inhibits human CCR9+ leukemia cells growth in NSG mice xenografts. *J Immunol* 197, 6448–6459.

[93] Emens LA, Braithe FS, Cassier P, Delord J-P, Eder JP, Fasso M, Xiao Y, Wang Y, Molinero L, and Chen DS, et al (2015). inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). *Cancer Sci* 75 (Abstract 2859).

[94] Chiachiaza I, Izuka A, Nonomura C, Kondou R, Macca C, Miyata H, Sugino T, Misyoo K, Hayashi N, and Nakanu Y, et al (2017). Antitumor effect of programmed death-1 (PD-1) blockade in humanized the NOG-MHC double knockout mouse. *Clin Cancer Res* 23, 149–158.

[95] Hu Z, Xia J, Fan W, Wargo J, and Yang YG (2016). Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice. *OncoTarget* 7, 6448–6459.

[96] Ali N, Flutten B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, Lombardi G, and Nettle FO (2012). Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rnull mice display a T-effector memory phenotype. *PloS One* 7e44219.

[97] Capasso A, Lang J, Pitts TM, Jordan KR, Lieu CH, Davis SL, Diamond JR, Kopezt S, Barber J, and Peterson J, et al (2019). Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematologic malignancy humanized mice implanted with tumor xenografts. *J Immunother Cancer* 7(37).

[98] Brown ME, Zhou Y, McIntosh BE, Norman IG, Lou HE, Biermann M, Sullivan JA, Kamp TJ, Thomson JA, and Anagnostopoulos PV, et al (2018). A humanized mouse model generated using surplus neonatal tissue. *Stem Cell Reports* 10, 1175–1183.

[99] Kim Y, Park N, Rim YA, Nam Y, Jung H, Lee K, and Ju JH (2018). Establishment of a complex skin structure via layer co-culture of keratinocytes
and fibroblasts derived from induced pluripotent stem cells. *Stem Cell Res Ther* **9**, 217.

[107] Zhao T, Zhang ZN, Westenskow PD, Todorova D, Hu Z, Lin T, Rong Z, Kim J, He J, and Wang M, et al (2015). Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. *Cell Stem Cell* **17**, 353–359.

[108] Kooreman NG, de Almeida PE, Stack JP, Nelakanti RV, Diecke S, Shao NY, Swijnenburg RJ, Sanchez-Freire V, Matsa E, and Liu C, et al (2017). Alloimmune responses of humanized mice to human pluripotent stem cell therapeutics. *Cell Rep* **20**, 1978–1990.

[109] Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S, Otsu M, and Nakauchi H (2013). Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. *Mol Ther* **21**, 1424–1431.

[110] Espinoza JL, Elbadry MI, Chonabayashi K, Yoshida Y, Katagiri T, Harada K, Nakagawa N, Zaimoku Y, Imi T, and Takamatsu H, et al (2018). Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. *Blood Adv* **2**, 390–400.

[111] Wiekmeijer AS, Pike-Overzet K, Brugman MH, Salvatori DC, Egeler RM, Bredius RG, Fibbe WE, and Staal FJ (2014). Sustained engraftment of cryopreserved human bone marrow CD34(+) Cells in Young Adult NSG Mice. *Biores Open Access* **(3)**, 110–116.

[112] Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wettmore A, Gott B, Herlihy M, Ignozzi R, and Dunn R, et al (2012). Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2r(-/-) null mice is enhanced by transgenic expression of membrane-bound human SCF. *Blood* **119**, 2778–2788.

[113] Chen Q, Khoury M, and Chen J (2009). Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. *Proc Natl Acad Sci USA* **106**, 21783–21788.

[114] Askmyr M, von Pafly S, Hansen N, Landberg N, Högberg C, Rissler M, Ågerstam H, and Fioretos T (2017). Transgenic expression of human cytokines in immunodeficient mice does not facilitate myeloid expansion of BCR-ABL transduced human cord blood cells. *PLoS One* **12**(e0186035).

[115] Durost PA, Aryee KE, Manzoor F, Tisch RM, Mueller C, Jurczyk A, Shultz LD, and Brehm MA (2018). Gene therapy with an adeno-associated viral vector expressing human interleukin-2 alters immune system homeostasis in humanized mice. *Hum Gene Ther* **29**, 352–365.

[116] Frecha C, Fuehl F, Cosset FL, and Verhoeyen E (2011). In vivo gene delivery into hCD34+ cells in a humanized mouse model. *Methods Mol Biol* **737**, 367–390.

[117] Frecha C, Costa C, Nègre D, Amirache F, Trono D, Rio P, Bueren J, Cosset FL, and Verhoeyen E (2012). A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice. *Blood* **119**, 1139–1150.

[118] O’Connell RM, Balazs AB, Rao DS, Kivork C, Yang L, and Baltimore D (2010). Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. *PLoS One* **5**(e12009).

[119] Yong KSM, Her Z, and Chen Q (2018). Humanized mice as unique tools for human-specific studies. *Arch Immunol Ther Exp (Warsz)* **66**, 245–266.

[120] Drake AC, Chen Q, and Chen J (2012). Engineering humanized mice for improved hematopoietic reconstitution. *Cell Mol Immunol* **9**, 215–224.

[121] Sippel TR, Radvke S, Olsen TM, Kiem HP, and Rongvaux A (2019). Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models. *Blood Adv* **3**, 268–274.

[122] Aryee KE, Burzenski L, Greiner DL, Welsh RM, Shultz LD, Keck JG, and Brehm MA (2018). Transgenic expression of human IL15 in NOD-scid IL2rnull (NSG) mice enhances the development and survival of functional human NK cells. *Cancer Res* **78** [Abstract 5674].