MCL-3D: a database for stereoscopic image quality assessment using 2D-image-plus-depth source

Rui Song, Hyunsuk Ko, C.C.Jay Kuo

Abstract.
A new stereoscopic image quality assessment database rendered using the 2D-image-plus-depth source, called MCL-3D, is described and the performance benchmarking of several known 2D and 3D image quality metrics using the MCL-3D database is presented in this work. Nine image-plus-depth sources are first selected, and a depth image-based rendering (DIBR) technique is used to render stereoscopic image pairs. Distortions applied to either the texture image or the depth image before stereoscopic image rendering include: Gaussian blur, additive white noise, down-sampling blur, JPEG and JPEG-2000 (JP2K) compression and transmission error. Furthermore, the distortion caused by imperfect rendering is also examined. The MCL-3D database contains 693 stereoscopic image pairs, where one third of them are of resolution \(1024 \times 728\) and two thirds are of resolution \(1920 \times 1080\). The pair-wise comparison was adopted in the subjective test for user friendliness, and the Mean Opinion Score (MOS) can be computed accordingly. Finally, we evaluate the performance of several 2D and 3D image quality metrics applied to MCL-3D. All texture images, depth images, rendered image pairs in MCL-3D and their MOS values obtained in the subjective test are available to the public (http://mcl.usc.edu/mcl-3d-database) for future research and development.

Keywords: stereoscopic images, 3D images, depth image based rendering, subjective quality, perceptual quality, image quality assessment, image quality database.

Address all correspondence to: Hyunusk Ko, University of Southern California, Ming Hsieh Department of Electrical Engineering, 3740 McClintock Avenue, Los Angeles, CA, United States, CA 90089-2564; Tel: 213-740-4622; E-mail: kosu9980@gmail.com

1 Introduction

Stereoscopic image/video contents become popular nowadays. Since the multi-view image format\(^1\) is costly for visual communication, the 2D-image-plus-depth format\(^2\) is proposed as an alternative, where a texture image and its associated depth image are recorded at a view point simultaneously. For stereoscopic display, the depth image-based rendering (DIBR) technique is applied to the texture and depth images to generate the proper left- and right-views. The 2D-image-plus-depth format has a few advantages, including bandwidth efficiency, interactivity and 2D/3D video content switch, etc\(^3\). A 3D video coding standard, called MPEG-C part 3\(^4\), has been developed using
the Multi-View-plus-Depth (MVD) format. In this work, we address the visual quality assessment problem using the 2D-image-plus-depth source. With the DIBR technology, the stereoscopic images rendered and displayed on the stereoscopic screen rely on the quality of texture images, depth maps and the rendering technology. Since discomfort caused by watching stereoscopic images may go beyond annoying and lead to psychological dizziness, we cannot over-emphasize the importance of the stereoscopic image/video quality assessment problem.

We show the processing flow of a stereoscopic visual communication system with the DIBR technology in Fig. 1. At the encoder end, the texture and depth images captured at one viewpoint (or multiple viewpoints) are compressed and transmitted separately. At the decoder end, texture and depth maps are decoded and a pair of stereoscopic images can be rendered. In this work, we follow a similar process to build a stereoscopic image quality assessment database and consider a wide range of distortion types occurring in video capturing, compression, transmission and rendering. The resulting database is called MCL-3D.

![Fig 1](image)

Fig 1 The processing flow of a stereoscopic visual communication system with the DIBR technology.

There are several publicly accessible stereoscopic image databases developed for the quality assessment purpose as listed in Table 1. Only symmetric distortions (i.e., the same distortion type and level) are applied to the left and right images in the LIVE Phase I database. Non-
symmetric distortions are considered in the LIVE Phase II database\(^5\) as a generalization. The IVC 3D database\(^7\) is similar to LIVE Phase I yet with a different set of source images. One common concern with these three databases is that the resolution of stereoscopic images is low. Images of higher resolution are adopted by the IVC DIBR\(^8\) and the EPFL databases.\(^9\) One unique feature of the EPFL database is that it examines the effect of different disparity values on the resulting visual quality so as to develop a guideline on disparity selection. A similar yet more delicate work is given in \([10]\), where the disparity effect on continuous video is analyzed so that some visual metrics can be fine-tuned for disparity selection in 3D films. The IVC DIBR database examined the visual quality of rendered stereoscopic pairs with various rendering mechanisms. However, no transmission distortion is considered. Furthermore, distortions were imposed on binocular images directly, which has a more restricted application constraint.

Table 1	Summary of 3D Image Databases				
	LIVE\(_I\)	LIVE\(_II\)	IVC 3D	IVC DIBR	EPFL
Scenes	20	8	6	3	10
Resolution	640x360	640x360	512x448\(^1\)	1024x768	1920x1080
Distortion types	Blur, White noise, Fast fading, JPEG, JP2K	Blur, White noise, Fast fading	Blur, Holl filling	JPEG, JP2K	
Distortion Levels	\(^{-2}\)	\(^{-3}\)	\(^{-4}\)	\(^{7}\)	\(^{10}\)
Total Num	385	368	96	96	100

\(^1\) Image size is not identical in IVC 3D, 512x448 is the mean value provided in the corresponding paper.

\(^2\) Different distortion types have different levels in LIVE Phase I.

\(^3\) LIVE Phase II has complex level definitions for asymmetrical distortion types.

\(^4\) Different distortion types have different levels in IVC 3D database.

\(^5\) IVC DIBR database has 7 different hole filling algorithms, taken as 7 distortion levels.

\(^6\) 10 camera configurations, taken as 10 distortion levels.
In contrast, distortions are applied to either the texture image or the depth image before stereo-
oscopic image rendering in MCL-3D. The distortion types of consideration include: Gaussian
blur, additive white noise, down-sampling blur, JPEG and JPEG-2000 (JP2K) compression and
transmission error. The artifact caused by imperfect rendering is also considered. The pair-wise
comparison was adopted in the subjective test to be friendly to viewers, and the Mean Opinion
Score (MOS) was computed accordingly. All texture images, depth images, rendered image pairs
and their MOS values obtained from the subjective test in MCL-3D are available to the public
(http://mcl.usc.edu/mcl-3d-database/) for future research and development.

The rest of this paper is organized as follows. The source data, the DIBR rendering process
and distortions adopted by the MCL-3D database are detailed in Sec. 2. The human subject test
process is presented in Sec. 3. Then, we compare several existing 2D and 3D objective image
quality assessment methods against the MCL-3D database in Sec. 4. Finally, concluding remarks
and future work are given in Sec. 5.

2 Description of MCL-3D Database

2.1 Stereoscopic Image Pair Synthesis System

The stereoscopic image pair synthesis system used to create the MCL-3D database is shown in
Fig. 2, where characters O, D and R denote original input, distorted and rendered outputs, and
subscript characters T, D and V_L and V_R denote the texture image, depth map, rendered left-
view and right-view, respectively. First, the original texture image and its associated depth map
of three views, denoted by (O_{T1}, O_{D1}), (O_{T2}, O_{D2}), and (O_{T3}, O_{D3}), are obtained by selecting
key frames from 3DVC test sequences and used as the input. Distortions of different types and
levels were introduced to either the texture image or the depth map, and distorted texture images or
depth maps are used as the input to the view synthesis reference software (VSRS)[2] to render the distorted stereoscopic image pair. For the DIBR distortion, we take the original source O_{T2} and O_{D2} as the input, and use four different rendering algorithms to generate the stereoscopic image pair. The VSRS offers a near prefect stereoscopic image synthesis mechanism. If the original left- and right-views are given, the VSRS can output a near perfect rendered view in between. The rendered left-view and right-view using the original texture images and depth maps, denoted by R_{VL} and R_{VR}, will be taken as the reference for further analysis.

![Fig 2](image-url) The block-diagram of the stereoscopic image pair synthesis system used to create the MCL-3D database.
2.2 Image and Depth Source

The quality of a database is highly dependent on reference images. The selected images should be representative and with sufficient diversity. The test sequences used in the 3DVC standard can be good candidates, which provide a few multi-view sequences associated with depth maps. We removed those of uncommon spatial resolution and/or with a camera calibration problem from this candidate set and, finally, selected nine of them as the reference images in the MCL-3D database. They are shown in Fig. 3.

![Reference images in the MCL-3D database.](image)

Fig 3 Reference images in the MCL-3D database.
2.3 Distortion Types and Levels

In a communication system that adopts the 3DVC coding standard, distortions may come from various stages such as image acquisition, compression, transmission and rendering. Gaussian blur and additive noise may occur in the acquisition stage. The image and the depth map may be downsampled to accommodate multiple display devices before compression. For efficient transmission, all images should be compressed, which leads to blockiness and compression blur. Transmission errors may occur in the transmission stage. A rendering algorithm will be adopted to render multiple views for display. Some of these distortions were investigated before as shown in Table 1. We include distortions of all above-mentioned cases in the MCL-3D database.

![Diagram of precessing flow and corresponding distorted part for each database](image)

Fig 4 The entire precessing flow and the corresponding distorted part for each database

Based on the recommendations of ITU[13-15] and VQEG[16-17], we consider five quality levels in subjective tests. The original reference stereoscopic images have the “excellent” quality while the other 4-level distorted images correspond to “very good”, “good”, “fair” and “poor”, respectively. The distortion caused by imperfect rendering has not been well studied before. Typically, only the mid-view image and its depth map are taken as the input, and a stereoscopic image pair is rendered using a hole filling technique. In our experiment, we take O_{T2} and O_{D2} as the input to generate the stereoscopic image pair. Distortion types are summarized in Table 2 and explained below.
Table 2 Distortion generation mechanisms and the associated level parameters.

Distortion type	Method	Level parameters
Gaussian blur	'GaussianBlur()' in OpenCV	Standard deviation of the function kernel, 11, 21, 31 and 41 for 4 levels
Additive white noise	'randn()' in OpenCV	Standard deviation parameter, 5, 17, 33 and 53 for 4 levels
Down-sampling blur	'resize()' in OpenCV	Sampling ratio, 5, 8, 11 and 14 for 4 levels
JPEG compression	'imencode()' in OpenCV	Quality level parameter, 30, 12, 8 and 5 for 4 levels
JPEG2000 compression	Kakadu package	Compression parameter, 200, 500, 900 and 1500 for 4 levels
Transmission error	OpenJPEG lib with JPWL mode	Different levels set by visual check
Rendering distortion	Different hole filling algorithms	4 algorithms corresponding to 4 cases

- Gaussian Blur

Many parameters have to be calibrated\(^9\) during the acquisition of high quality stereoscopic images, wherein the focal length is a critical one. Texture images from any view will be blurred due to an improper focal length. Depth maps could be either acquired by equipments\(^18,19\) or estimated by depth estimation algorithms\(^20\). It was claimed by some researchers\(^2,8\) that the visual experience can be improved by applying some blur to the depth map before rendering. Its effectiveness can be studied using MCL-3D. We used ‘GaussianBlur()’ function in the OpenCV\(^21\) library to add the Gaussian blur effect and controlled distortion levels by varying the standard deviation parameter of the kernel. Their values were set to 11, 21, 31, 41 for four distortion levels.

- Additive White Noise

In digital image capturing systems, CMOS or CCD sensors are used to capture R/G/B color light intensities. The intensity is later transformed to the voltage and quantized to digital pixel values. Interference is ubiquitous in electronic circuits. It appears in form of additive white noise in the texture or depth image. The ‘randn()’ function in the OpenCV library...
was used to generate additive noise whose levels were controlled by selecting four standard deviation values (5, 17, 33 and 53).

- **Down-sampling Blur**
 The captured image may be down-sampled to fit a different spatial resolution requirement. The ‘resize()’ function in OpenCV is used for down-sampling and up-sampling. Four different down-sampling blur levels with a sampling ratio of 5, 8, 11 and 14 were included.

- **JPEG and JP2K Compression**
 We applied JPEG and JP2K compression to source images. For JPEG compression, we utilized the ‘imencode()’ function in OpenCV with four quality levels (30, 12, 8 and 5). For JP2K compression, we utilized the Kakadu package with four compression parameters (200, 500, 900 and 1500) for four distortion levels.

- **Transmission Error**
 We used the OpenJPEG library to encode source images and then applied unequal protection and error correction codes in the JPWL mode. Some bit errors were added to the compressed bitstreams. At the decoder side, the errors were partly corrected. With the assistance of protection methods, it is difficult to build a simple relationship between the bit-error rate and the visual quality of the decoded image. Thus, we used 80 seeds to generate a group of error-corrupted images and selected 4 from them to obtain 4 transmission error levels.

- **Rendering Distortion**
 Stereoscopic images were rendered based on the texture and the depth map images using the DIBR technology. Typical rendering errors include the black hole and the boundary blur,
which tend to appear with imperfect rendering techniques. We selected several representative ones, including DIBR without hole filling, DIBR with filtering, and DIBR with inpainting, and DIBR with hierarchical hole filling.

3 Subjective Test

For the subjective test, the test environment was set up according to the ITU recommendations and a pairwise comparison method was adopted. Testing results were verified after the subjective test procedure.

ITU and VQEG are two organizations working on the standardization of subjective test methods. Both of them have published recommendations on subjective test procedure for 2D images, 2D videos and stereoscopic images. They can be roughly classified into four groups according to score levels and stimulus numbers as shown in Table 3.

| Table 3 Recommendations for subjective test methods |
|---------------------------------|------------------|-----------------|
| **Single Stimulus** | **Discrete Score** | **Continuous Score** |
| ACR, ACR-HR | SSCQE |
| **Double Stimulus** | DCR, DSIS, CCR, DSCQS, SAMVIQ |

1. ACR: Absolute Category Rating.
2. ACR-HR: Absolute Category Rating with Hidden Reference.
3. SSCQE: Single stimulus continuous quality evaluation.
4. DCR: Degradation category rating.
5. DSIS: Double Stimulus Impairment Scale.
6. CCR: Comparison Category Rating.
7. DSCS: Double Stimulus Comparison Scale.
8. DSCQS: Double Stimulus Continuous Quality Scale.
9. SAMVIQ: Subjective Assessment Methodology for Video Quality.

It was mentioned in [27] and [28] that the continuous scale score does not improve the precision of test results. For the ACR method, the same score may have a different meaning for a different assessor. Even for the same assessor, the rating criteria may vary along test time. For this reason, we focus on methods with double stimulus and discrete scores.
Furthermore, we adopted the pairwise comparison method in the MCL-3D database. The pairwise comparison method has solid mathematical foundation and is extensively used for resource ranking and recommendation systems. Generally speaking, two stereoscopic image pairs are viewed by an assessor simultaneously and, then, the assessor selects the preferred one so as to assign a point score. The point score of a stereo image pair will accumulate across multiple rounds of pairwise competition, and the final point score is properly normalized to yield the final opinion score for the same assessor. The opinion scores of multiple assessors are averaged to result in the final mean opinion score (MOS) for each stereoscopic image pair.

The subjective test environment is described below. The display equipment was 46.9” LG 47LW5600. Assessors were seated 3.2 meters away from the display screen as shown in Fig. 5. During the test, two stereoscopic image pairs were shown on the screen simultaneously. The images were resized to adapt to the display, and the gap between two images was padded with grey levels as specified in [14]. With pair-wise comparison, only the relative quality of the two pairs was annotated by the assessor and the resize operation had little affect on the final result.

Fig 5 Illustration of the subjective test environment.
We developed a program with a proper GUI interface to control the quality assessment process for each assessor. For each image set, the test time ranged from 12 to 15 minutes so as to comply with the recommendation in ITU-R Rec. BT.500. After the subjective test, we conducted a short interview with the assessor for their evaluation experience. The assessors were students from the University of Southern California in USA. Among the 270 assessors, there were 170 males (63%) and 100 females (37%). In order to investigate the score difference between experts and non-experts, we asked assessors about their familiarity on stereoscopic images. Among them, 34 (or 13%) were experts and 236 (or 87%) were non-experts. The age distribution of the assessors is given in Fig. 6.

Each assessor conducted the evaluation of all distorted images for one reference image in one test session. We collected 30 opinion scores for every distorted image pair. The subjective test results were further filtered by a screening process. In building the MCL-3D database, the highest 10% and the lowest 10% scores for each image were treated as outliers and discarded. The final
MOS was calculated as the mean of remaining 24 opinion scores. The recommended number of assessors is 15 by ITU and 24 by VQEG for images. Bose tested the number of assessors for the subjective test for synthesized 3D view and concluded that the minimum number is 32 for ACR and less than 24 for pairwise comparison. Thus, our MOS calculation does meet the requirements of all above recommendations.

A summary of the MCL-3D database is given in Table 4.

Main Characters	MCL-3D database
Scenes	9
Image resolution	6 with 1920x1080
	3 with 1024x768
Distortion types	Gaussian blur, Down-sampling blur, Additive white noise JPEG compression, JP2K compression, Transmission error, Rendering algorithm
Distortion levels	4
Total num of image pairs	693
Subjective test method	pair-wise comparison
No. of assessors	270
Scale of MOS	0...9

4 Performance Comparison of Objective Quality Indices

In this section, we compare the performance of several objective quality indices against the MCL-3D database.

4.1 Performance of 2D IQA Indices

There are quite a few 2D image quality assessment methods proposed in literature. Traditionally, image distortion indices focus on fidelity by measuring the exact difference between the dis-
torted and the reference images; e.g. the mean-squared error (MSE), the Peak Signal to Noise Ratio (PSNR), etc. The fidelity concept has been scrutinized and challenged by researchers recently. New image quality indices were proposed. Examples include the Noise Quality Measure (NQM), the Universal Quality Index (UQI), the Structural Similarity Index (SSIM), the Multiscale Similarity Index (MS-SSIM), the Feature Similarity Index, the visual information fidelity (VIF), the pixel-based VIF (VIFP), the visual signal-to-noise ratio (VSNR), the image fidelity criterion (IFC), PSNR-HVS and C4.

We applied these quality indices to the left- and the right-views of the stereoscopic image pairs and obtained their mean as the quality score. We conducted this test on the MCL-3D database as well as two other stereoscopic image databases; namely, LIVE Phase I and IVC 3D. The Pearson Correlation Coefficient (PCC), the Spearman rank order correlation coefficient (SROCC) and the mean-squared-error (MSE) between the MOS and the objective scores are shown in Table 5. We see that both the PCC and SROCC values of these indices are less than 90% against MCL-3D. There is certainly room for further improvement.

Table 5 Performance comparison of 2D objective quality indices applied to MCL-3D, LIVE Phase I and IVC databases.

Indices	MCL-3D	LIVE Phase I	IVC						
	PCC	SROCC	MSE	PCC	SROCC	MSE	PCC	SROCC	MSE
C4	0.8683	0.8690	0.6452	0.9078	0.9144	0.0596	0.7874	0.7304	0.1700
IFC	0.7395	0.7398	0.8757	0.5466	0.9071	0.0700	0.7051	0.6135	0.1955
MS-SSIM	0.8656	0.8763	0.6514	0.7382	0.6093	0.0972	0.7676	0.6919	0.1767
NQM	0.8684	0.8694	0.6451	0.8349	0.8461	3.3030	0.6816	0.5973	0.2018
PSNR_HVS	0.8783	0.8857	0.6220	0.7563	0.8042	3.4906	0.7089	0.6374	0.1945
PSNR	0.8320	0.8405	0.7218	0.6482	0.6529	3.9963	0.5843	0.5554	0.2238
SSIM	0.7654	0.7834	0.8372	0.6977	0.6616	0.1391	0.6817	0.6478	0.2017
UQI	0.7372	0.7551	0.8789	0.9007	0.8974	0.0750	0.5706	0.5244	0.2265
VIFP	0.7770	0.7897	0.8188	0.8266	0.8681	0.0660	0.7355	0.6869	0.1868
VIF	0.7762	0.7929	0.8202	0.8883	0.9002	0.0664	0.7971	0.7083	0.1665
VSNR	0.8289	0.8370	0.7277	0.7317	0.7847	5.0763	0.6723	0.6110	0.2041
4.2 Performance of 3D IQA Indices

Several IQA indices have been developed to target at stereoscopic image pairs. Campisi40 conducted a preliminary test on the acuity difference between different eyes and found no apparent difference. Ryu41 proposed an extended version of the SSIM index based on a binocular model. Their index uses a fixed set of parameters and is not adaptive to asymmetric distortions. Ko42 introduced the structural distortion parameter (SDP), which varies according to different distortion types. The SDP was employed as a control parameter in a binocular perception model to provide robust QA results for both symmetric and asymmetric distortions. Gorley43 used the difference of relative contrast between the reference image pair and distorted image pair to derive the quality index. Benoit7 extracted the disparity maps from both the reference and the distorted image pairs, calculated the distortion between them, and integrated it with other factors to form the final quality index. Sazzad44 exploited the disparity map and performed several integration methods to derive the quality index.

We evaluated the following four indices against the MCL-3D, the LIVE Phase I, and the IVC databases:

- Method A41
- Method B7
- Method C40
- Method D42

The PCC, SROCC and MSE results are shown in Table 6. We see that these 3D IQA indices do not show much superiority over 2D IQA indices. How to derive a better 3D IQA index is still a
challenging problem.

Table 6 Benchmarks of 3D quality assessment metrics

Metric	MCL-3D	PCC	SROCC	MSE	LIVE Phase I	PCC	SROCC	MSE	IVC	PCC	SROCC	MSE
Method A	0.8419	0.8503	0.7020	0.6775	0.6075	0.1286	0.7579	0.6869	0.1799			
Method B	0.7545	0.7672	0.8537	0.8174	0.8493	0.0930	0.2851	0.4916	0.2643			
Method C	0.8683	0.8690	0.6452	0.9067	0.9133	0.0600	0.7873	0.7295	0.1700			
Method D	0.8910	0.8880	0.6055	0.9080	0.9050	6.8870	0.8410	0.8030	11.1200			

5 Conclusion and Future Work

In this work, a detailed description of a stereoscopic image quality assessment database called MCL-3D was given, and the performance benchmarking of several known 2D and 3D image quality metrics using the MCL-3D database were presented. Distortions applied to the texture image or the depth image before stereoscopic image rendering include: Gaussian blur, additive white noise, down-sampling blur, JPEG and JPEG-2000 (JP2K) compression and transmission error. Furthermore, we evaluated the performance of several 2D and 3D image quality metrics applied to MCL-3D. The MCL-3D database is available to the public for future research and development.

Based on the experimental results, we see that none of the existing objective quality metrics can provide satisfactory performance for several stereoscopic image quality databases, including MCL-3D. It is still an open problem to design a good objective quality method for 3D images. The learning-based methodology in [45] and [46] offers an effective solution to the 2D image quality assessment problem. We currently focus on the design of a good stereoscopic image quality metric along the same direction.
Acknowledgments

This project is funded by the China Scholarship Council and the Samsung Advanced Institute of Technology. The author would like to thank Mathieu Carnec, Mashhour M. Solh, and Seungchul Ryu for providing their codes to test the MCL-3D database. Computation for the work described in this paper was supported by the University of Southern California Center for High-Performance Computing and Communications.

References

1 P. Merkle, K. Muller, A. Smolic, and T. Wiegand, “Efficient Compression of Multi-View Video Exploiting Inter-View Dependencies Based on H.264/MPEG4-AVC,” in 2006 IEEE International Conference on Multimedia and Expo, 1717–1720, IEEE (2006).

2 C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” in Proceedings of SPIE - The International Society for Optical Engineering, 5291, 93–104, (San Jose, CA, United states) (2004).

3 M. Solh and G. Alregib, “Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video,” IEEE Journal on Selected Topics in Signal Processing 6(5), 495–504 (2012).

4 W. H. A. Bruis, C. Varekamp, R. K. Gunnewiek, B. Barenbrug, and A. Bourge, “Enabling introduction of stereoscopic (3D) video: Formats and compression standards,” in Proceedings - International Conference on Image Processing, ICIP, 1, I89 – I92, (San Antonio, TX, United states) (2006).

5 A. K. Moorthy, C.-C. Su, A. Mittal, and A. C. Bovik, “Subjective evaluation of stereoscopic image quality,” Signal Processing: Image Communication 28, 870–883 (2013).
6 M.-J. Chen, C.-C. Su, D.-K. Kwon, L. K. Cormack, and A. C. Bovik, “Full-reference quality assessment of stereopairs accounting for rivalry,” *Signal Processing: Image Communication* **28**(9), 1143–1155 (2013).

7 A. Benoit, P. Le Callet, P. Campisi, and R. Cousseau, “Quality Assessment of Stereoscopic Images,” *EURASIP Journal on Image and Video Processing* **2008**, 1–13 (2008).

8 E. Bosc, R. Peepion, P. Le Callet, M. Koppel, P. Ndjiki-Nya, M. Pressigout, and L. Morin, “Towards a new quality metric for 3-D synthesized view assessment,” *IEEE Journal on Selected Topics in Signal Processing* **5**(7), 1332–1343 (2011).

9 L. Goldmann, F. D. Simone, and T. Ebrahimi, “Impact of acquisition distortions on the quality of stereoscopic images,” in *Fifth International Workshop on Video Processing and Quality Metrics for Consumer Electronics-VPQM 2010*, 1–6 (2010).

10 A. Voronov, D. Vatolin, D. Sumin, V. Napadovsky, and A. Borisov, “Methodology for stereoscopic motion-picture quality assessment,” in *Proceedings of SPIE-IS and T Electronic Imaging - Stereoscopic Displays and Applications XXIV*, **8648**, 864810, SPIE, (Burlingame, CA, United states) (2013).

11 ISO/IEC JTC1/SC29/WG11, “Call for Proposals on 3D Video Coding Technology,” in *MPEG output document N12036*, MPEG output document N12036 (2011).

12 M. Tanimoto, T.Fujii, and K.Suzuki, “View synthesis algorithm in view synthesis reference software 3.5 (VSRS3.5),” (2009).

13 ITU, “Recommendation ITU-T P.910, Subjective video quality assessment methods for multimedia applications,” tech. rep., ITU-T, Geneva (1996).
14 ITU, “Rec ITU-R BT.1438, Subjective assessment of stereoscopic television pictures,” tech. rep. (2000).

15 ITU, “BT.500-11: Methodology for the subjective assessment of the quality of television pictures,” tech. rep. (2002).

16 Video Quality Expert Group (VQEG), “Final report from the video quality experts group on the validation of objective models of video quality assessment, phase I,” tech. rep. (2000).

17 Video Quality Expert Group (VQEG), “Final report from the video quality experts group on the validation of objective models of video quality assessment, phase II,” tech. rep. (2003).

18 S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera,” in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, 559–568, ACM, (New York, NY, USA) (2011).

19 H. Du, P. Henry, X. Ren, M. Cheng, D. B. Goldman, S. M. Seitz, and D. Fox, “Interactive 3D Modeling of Indoor Environments with a Consumer Depth Camera,” in Proceedings of the 13th International Conference on Ubiquitous Computing, UbiComp ’11, 75–84, ACM, (New York, NY, USA) (2011).

20 M. Tanimoto, T. Fujii, K. Suzuki, N. Fukushima, and Y. Mori, “Depth estimation reference software (DERS) 5.0,” tech. rep., ISO/IEC JTC1/SC29/WG11 M 16923, Lausanne, Switzerland (2009).

21 G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools 25(11), 122–125 (2000).
22 D. Taubman, “Kakadu software 6.4,” (2012).

23 D. Tian, P.-L. Lai, P. Lopez, and C. Gomila, “View synthesis techniques for 3D video,” (2009).

24 A. Telea, “An Image Inpainting Technique Based on the Fast Marching Method,” Journal of Graphics Tools 9, 23–34 (2004).

25 M. Solh and G. AlRegib, “Depth adaptive hierarchical hole filling for DIBR-based 3D videos,” in Proceedings of SPIE - The International Society for Optical Engineering, 8290, 829004, SPIE, (Burlingame, CA, United states) (2012).

26 M. Solh and G. AlRegib, “Hierarchical Hole-Filling(HHF): Depth image based rendering without depth map filtering for 3D-TV,” in 2010 IEEE International Workshop on Multimedia Signal Processing, MMSP2010, 87–92, IEEE Computer Society, (Saint Malo, France) (2010).

27 T. Tominaga, T. Hayashi, J. Okamoto, and A. Takahashi, “Performance comparisons of subjective quality assessment methods for mobile video,” in 2010 2nd International Workshop on Quality of Multimedia Experience, QoMEX 2010, 82–87, IEEE Computer Society, (Trondheim, Norway) (2010).

28 M. D. Brotherton, Q. Huynh-thu, D. S. Hands, and K. Brunnstrom, “Subjective Multimedia Quality Assessment,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, 2920–2932 (2006).

29 W. Lin and C.-C. J. Kuo, “Perceptual visual quality metrics: A survey,” Journal of Visual Communication and Image Representation 22(4), 297–312 (2011).

30 N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality
assessment based on a degradation model.” *IEEE transactions on image processing* **9**, 636–50 (2000).

31 Z. Wang and A. C. Bovik, “A universal image quality index,” *IEEE Signal Processing Letters* **9**(3), 81–84 (2002).

32 Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity.” *IEEE transactions on image processing* **13**, 600–12 (2004).

33 Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity for image quality assessment,” in *the 37th Asilomar Conference on Signals, Systems and Computers*, **Vol.2**, 1398–1402, IEEE, (Pacific Grove, CA, USA) (2003).

34 L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment.” *IEEE transactions on image processing* **20**, 2378–86 (2011).

35 H. R. Sheikh and A. C. Bovik, “Image information and visual quality.” *IEEE transactions on image processing* **15**, 430–44 (2006).

36 D. M. Chandler and S. S. Hemami, “VSNR: a wavelet-based visual signal-to-noise ratio for natural images.” *IEEE transactions on image processing* **16**, 2284–98 (2007).

37 H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An information fidelity criterion for image quality assessment using natural scene statistics,” *IEEE Transactions on Image Processing* **14**(12), 2117–2128 (2005).

38 N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, and V. Lukin, “On between-coefficient contrast masking of DCT basis functions,” in *the Third International Workshop on Video Processing and Quality Metrics*, (1), 1–4 (2007).
39 M. Carnec, P. Le Callet, and D. Barba, “An image quality assessment method based on perception of structural information,” in IEEE International Conference on Image Processing, 3, 185–188, Institute of Electrical and Electronics Engineers Computer Society, (Barcelona, Spain) (2003).

40 P. Campisi, P. Le Callet, and E. Marini, “Stereoscopic images quality assessment,” in 15th European Signal Processing Conference, EUSIPCO 2007, 2110–2114, EUSIPCO, (Poznan, Poland) (2007).

41 S. Ryu, D. H. Kim, and K. Sohn, “Stereoscopic image quality metric based on binocular perception model,” in 19th IEEE International Conference on Image Processing, ICIP 2012, 609–612, IEEE, (Lake Buena Vista, FL, United states) (2012).

42 H. Ko, C.-S. Kim, S. Y. Choi, and C.-C. Kuo, “3D image quality index using SDP-based binocular perception model,” in 2013 IEEE 11th IVMSP Workshop: 3D Image/Video Technologies and Applications, 1–4, IEEE Computer Society, (Seoul, Korea, Republic of) (2013).

43 P. Gorley and N. Holliman, “Stereoscopic image quality metrics and compression,” in Proceedings of SPIE - The International Society for Optical Engineering, 6803, 680305, SPIE, (San Jose, CA, United states) (2008).

44 Z. M. P. Sazzad, R. Akhter, J. Baltes, and Y. Horita, “Objective No-Reference Stereoscopic Image Quality Prediction Based on 2D Image Features and Relative Disparity,” Advances in Multimedia 2012(2012), 1–16 (2012).

45 T.-J. Liu, W. Lin, and C.-C. J. Kuo, “Image quality assessment using multi-method fusion,” IEEE transactions on image processing 22, 1793–807 (2013).

46 T.-J. Liu, W. Lin, and C.-C. J. Kuo, “A multi-metric fusion approach to visual quality assess-
Rui Song received his Bachelor degree in Telecommunications, Master and Ph.D. degrees in Signal and Information Processing from Xidian University, Xi’an, China, in 2003, 2006 and 2009, respectively. From 2013 to 2014, he is a Postdoctoral Scholar in Professor C.-C. Jay Kuo’s Group, Ming Hsieh Department, Viterbi School of Electric Engineering, University of Southern California, USA. Since 2010, Dr. Rui Song has been an Associate Professor in School of Telecommunication Engineering at Xidian University, Xian, China. He is now a member of Image and Video Processing Lab in State Key Laboratory of Integrated Service Networks, and is responsible for video group. His research interests include pre- and post-processing of high definition camera, image and video quality assessment, video coding algorithms, VLSI architecture design for image and video processing, architecture design of video codec IP. He has published 20 research papers which are indexed by SCI or EI and has got 4 patents. For more detailed information about Professor Rui Song, please refer to http://web.xidian.edu.cn/songrui/en/index.html.

Hyunsuk Ko received the B.S. and M.S. degrees from the Department of Electrical Engineering, Yonsei University, Seoul, Korea, in 2006 and 2009, respectively. From 2009 to 2010, he was a software engineer at Samsung Electronics, Suwon, Korea. He is currently working toward the Ph.D. degree in the Department of Electrical Engineering, University of Southern California, Los Angeles. His research interests include 3D image/video processing, quality assessment, big data analysis, and machine learning.
Dr. C.-C. Jay Kuo received the B.S. degree from the National Taiwan University, Taipei, in 1980 and the M.S. and Ph.D. degrees from the Massachusetts Institute of Technology, Cambridge, in 1985 and 1987, respectively, all in Electrical Engineering. From October 1987 to December 1988, he was Computational and Applied Mathematics Research Assistant Professor in the Department of Mathematics at the University of California, Los Angeles. Since January 1989, he has been with the University of Southern California (USC). He is presently Director of the Multimedia Communication Lab. and Professor of Electrical Engineering and Computer Science at USC.

His research interests are in the areas of multimedia data compression, communication and networking, multimedia content analysis and modeling, and information forensics and security. Dr. Kuo has guided 118 students to their Ph.D. degrees and supervised 23 postdoctoral research fellows. Currently, his research group at USC has around 30 Ph.D. students, which is one of the largest academic research groups in multimedia technologies. He is co-author of about 220 journal papers, 850 conference papers and 12 books. He delivered around 550 invited lectures in conferences, research institutes, universities and companies. He ranks as the top advisor in the Mathematics Genealogy Project in terms of the number of supervised PhD students. Dr. Kuo is a Fellow of AAAS, IEEE and SPIE. He is Editor-in-Chief for the IEEE Transactions on Information Forensics and Security and Editor Emeritus for the Journal of Visual Communication and Image Representation (an Elsevier journal). He was Editor-in-Chief for the Journal of Visual Communication and Image Representation in 1997-2011. He was on the Editorial Board of the IEEE Signal Processing Magazine in 2003-2004, IEEE Transactions on Speech and Audio Processing in 2001-2003, IEEE Transactions on Image Processing in 1995-98 and IEEE Transactions on Circuits and Systems for Video Technology in 1995-1997.
Dr. Kuo received the National Science Foundation Young Investigator Award (NYI) and Presidential Faculty Fellow (PFF) Award in 1992 and 1993, respectively. He received the Northrop Junior Faculty Research Award from the USC Viterbi School of Engineering in 1994. He received the best paper awards from the Multimedia Communication Technical Committee of the IEEE Communication Society in 2005, from the IEEE Vehicular Technology Fall Conference (VTC-Fall) in 2006, and from IEEE Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP) in 2006. He was an IEEE Signal Processing Society Distinguished Lecturer in 2006, a recipient of the Okawa Foundation Research Award in 2007, the recipient of the Electronic Imaging Scientist of the Year Award in 2010, the holder of the Fulbright-Nokia Distinguished Chair in Information and Communications Technologies from 2010-2011, and a recipient of the Pan Wen-Yuan Outstanding Research Award in 2011. He is President of Asia Pacific Signal and Information Processing Association (APSIPA) from 2012 to 2014.

List of Figures

1. The processing flow of a stereoscopic visual communication system with the DIBR technology.
2. The block-diagram of the stereoscopic image pair synthesis system used to create the MCL-3D database.
3. Reference images in the MCL-3D database.
4. The entire precessing flow and the corresponding distorted part for each database.
5. Illustration of the subjective test environment.
6. The age distribution of assessors.
List of Tables

1 Summary of 3D Image Databases
2 Distortion generation mechanisms and the associated level parameters.
3 Recommendations for subjective test methods
4 Summary of MCL-3D database
5 Performance comparison of 2D objective quality indices applied to MCL-3D, LIVE Phase I and IVC databases.
6 Benchmarks of 3D quality assessment metrics