Electrical and histological remodeling of the pulmonary vein in 2K1C hypertensive rats: Indication of initiation and maintenance of atrial fibrillation

Pan-Pan Xia#, Lian-Jing Li1,#, Run-Di Qi, Jiao-Jiao Shi, Wei-Zhu Ju, Ming-Long Chen

Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University; Nanjing-China
1Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital with Nanjing Medical University of TCM; Nanjing-China

ABSTRACT

Objective: Hypertension is a significant risk factor for atrial fibrillation (AF). The role of pulmonary vein (PV) remodeling in the mechanistic association between hypertension and AF is not definitive. In this study, we aimed to identify changes in the electrophysiology and histology in PVS in two-kidney, one-clip (2K1C) hypertensive rats.

Methods: Fifty male Sprague-Dawley rats were classified into the 2K1C and sham-operated groups. The systolic blood pressure was measured every 2 weeks. The left atrial diameter was measured by transthoracic echocardiography. Left superior PV (LSPV) and left atrial (LA) fibrosis was evaluated by Masson's trichrome staining. The expression of fibrosis markers [angiotensin II (Ang II), transforming growth factor-β1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and collagen I (Col I)] and ion channels [Kir2.1, Kir2.3, Cav1.2, and Nav1.5] in LSPV was quantified by western blot. Conventional microelectrodes were used to record the action potential duration at 90% repolarization (APD90) and effective refractory period (ERP) in isolated LA.

Results: At 4 months, the 2K1C hypertensive rats developed LA dilation. Col deposition in LSPV and left atrium and expression of TGF-β1, MMP-2, and Col I in LSPV were significantly increased in 2K1C hypertensive rats. In addition, hypertension reduced the expression of Na,1.5 and Kir2.1, although there were no significant differences in APD90; ERP; and expression of Ang II, Kir2.3, and Ca,1.2 between the two groups.

Conclusion: Hypertension may lead to changes in the electrophysiology and histology of rats PVs, which is characterized by significant reduction in the expression of Na,1.5 and Kir2.1 and increase in interstitial fibrosis. These observations may clarify the role of PVs in the mechanistic association between hypertension and AF. (Anatol J Cardiol 2018; 19: 169-75)

Keywords: atrial fibrillation, fibrosis, hypertension, pulmonary vein, remodeling

Introduction

The relationship between atrial fibrillation (AF) and hypertension has been established in epidemiological as well as histological studies (1-5). Clinical and animal studies have shown that hypertension can lead to histological and electrophysiological remodeling of the atrial tissue, which results in easier maintenance of AF (1, 5). Previous studies have demonstrated that spontaneous ectopic activity in the pulmonary veins (PVs) plays a critical role in the initiation of AF (6-8). However, most previous studies on associations between hypertension and AF have specifically focused on the atria. There is currently a lack of data on the arrhythmogenic role of PVs in the direct link between hypertension and AF.

Histological and electrophysiological remodeling of PV has some links with AF, including PV interstitial fibrosis and altered expression or function of cardiac ion channels (9). Some cardiac diseases modify the operation of ion channels in a way that promotes the occurrence of cardiac rhythm disturbances; the process is termed as “arrhythmogenic remodeling” (10). Therefore, changes in the ion channels may play an important role during the arrhythmogenic process.

We hypothesized that hypertension leads to AF not only through atrial remodeling but also through PV arrhythmogenesis. We investigated the effects of hypertension on histological and electrical remodeling of PV in a rat model. It has been reported that expression of collagen I (Col I), matrix metalloproteinase-2
(MMP-2), and transforming growth factor-β1 (TGF-β1), which imply fibrosis of the tissue, and expression of Na, 1.5 and Kir2.1 channel protein are indicators of electrical remodeling. In the present study, interstitial fibrosis, indicated by the expression of Col I, MMP-2, and TGF-β1, and the cardiac ion channels level at PV were evaluated.

Methods

Animal model of hypertension
All experiments conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996). Male Sprague-Dawley rats (180–200 g, n=50) were maintained in a 12-h light/dark cycle at 22°C with free access to rat chow and water.

Two-kidney, one-clip (2K1C) hypertension was induced in rats, as described previously (11). The rats were randomly assigned to 2K1C (n=30) and sham-operated (n=20) groups, and anesthetized using chloral hydrate (300 mg/kg, intraperitoneally). After a midline laparotomy, a silver clip with an internal diameter of 0.20 mm was placed around the left renal artery close to the aorta. Sham-operated rats underwent the same surgical procedure, except for the placement of the silver clip. Tail systolic blood pressure (SBP) was measured by tail-cuff plethysmography (BP-2000, Visitech Systems, USA) every 2 weeks. The mean of three or four measurements was used as the blood pressure estimate, and the rats were considered to be hypertensive if their SBP exceeded 160 mm Hg after 2 weeks of ligation (11). Approximately 20% of the operated rats failed to achieve this level of SBP.

Doppler echo study
Transsthoracic echocardiography was performed by independent, blinded to physicians. The rats were anesthetized with isoflurane, and transsthoracic echocardiography (70 Mhz, VisualSonics company, Canada, Toronto) was conducted at 2, 3, and 4 months postoperatively. Left atrial diameter (LAD), interventricular septal thickness (IVS; d), and left ventricular ejection fraction (EF %) were measured.

Histological study
LSPV tissue samples (n=6/group) were fixed in 4% polyformaldehyde for 36 h at room temperature and embedded in paraffin. Deparaffinized tissues were cut into sections (4 µm thick), which were mounted on glass slides and stained with Masson’s trichrome stain (Nanjing Jiancheng Technology Company, China) to evaluate the area occupied by Col fibers. With this technique, cardiomyocytes are stained bright red, whereas Col fibers are stained blue. Images were captured under a microscope, and quantitative analysis of interstitial fibrosis was performed using Image-Pro Plus 6.0 software (USA).

Western blotting
Immunoblotting was performed, as described previously (13). The LSPV tissue (approximately 40 mg) (n=6/group) was homogenized and cleared by ultracentrifugation (14,000×g) at 4°C for 15 min. Homogenates (containing 40 µg of protein) were subjected to 8% SDS-polyacrylamide gel electrophoresis (Beyotime, China) and transferred to PVDF membranes. Membranes were blocked in TBST containing 5% bovine serum albumin at room temperature for 1.5 h before incubation with corresponding primary antibodies: goat polyclonal anti-Col I and rabbit polyclonal anti-MMP-2 (1:200, Santa Cruz, Japan); rabbit monoclonal anti-Ang II (1:2,000, Abcam, UK), rabbit polyclonal anti-TGF-β1 (1:500, Abcam, UK); and rabbit polyclonal anti-Ki67 (1:2,000, Abcam, UK; and rabbit polyclonal anti-Kir2.1, rabbit monoclonal anti-Kir2.3, rabbit monoclonal anti-Cav1.2 and rabbit monoclonal anti-Nav1.5 (1:200, Alomone, Israel). Rabbit monoclonal anti-glyceraldehyde phosphate dehydrogenase (GAPDH; 1:1,000, CST, America) antibody was used as a protein loading control. After overnight incubation with primary antibodies at 4°C, the membranes were washed and incubated with anti-rabbit or anti-goat secondary antibodies (1:5,000, Immunology Consultants Laboratory, USA) for 2 h at room temperature. Membranes were washed, and immunodetection was visualized using an enhanced chemiluminescence method (Thermo, USA) and then developed using X-ray film. Resulting images were analyzed using a densitometer to quantify the protein expression after normalization to GAPDH (Image Lab, BIO-RAD, USA). Mean values of the 2K1C group were compared with the corresponding mean values of the sham-operated group.

Electrophysiological studies on LA
Electrophysiological studies on the LA tissue were performed, as previously described (14). Four months postoperatively, the rats (500–600 g; n=4 for the 2K1C group and n=3 for the sham-operated group) were anesthetized with sodium pentobarbital (45 mg/kg, intraperitoneally) and given heparin. Left atrium was rapidly removed and the endocardial surface was pinned open in a tissue bath. The atria were superfused with Tyrode’s solution containing KCl, 4.0; NaCl, 131; CaCl2, 1.8; NaHCO3, 24.9; MgSO4, 1.2; KH2PO4, 1.2; and dextrose, 11.1 mmol/L (T=36.5°C±0.5°C, pH 7.4). Bipolar stimulating electrodes were placed on the free wall of left atrium. Conventional microelectrode techniques were used to record action potential duration at 90% repolarization (APD90). Recording sites were located 3–4 mm from the stimulating electrodes. Af-
ter 20-min equilibration in Tyrode’s solution with pacing from the left atrium at cycle length (CL)=0.4 s, an intermittent burst pacing protocol was applied. This was developed to mimic an intermittently bursting focus in the left atrium. The period of intermittence started at 150 ms, until the atrial effective refractory period (AERP) was recorded and then decreased by 5 ms each time.

Statistical analysis

All data are presented as mean±standard deviation (SD) and analyzed using unpaired Student’s t-test in GraphPad Prism 5.0 (GraphPad Software, USA). The Kolmogorov–Smirnov test was used to identify whether data were normally distributed. P<0.05 was considered to indicate statistical significance.

Results

Systolic blood pressure in 2K1C hypertensive rats

Clipping the left renal artery (2K1C) induced a marked rise in SBP (mm Hg), which was clearly observed, and reached a plateau at 2 weeks postoperatively. Table 1 showed SBP measured using the tail-cuff method at 2 weeks and 1, 2, 3, and 4 months postoperatively.

LA remodeling during the development of 2K1C hypertension

Hypertension-induced morphological alterations in the left atrium of 2K1C hypertensive rats. Increased LAD was observed 3 months postoperatively in the 2K1C groups compared with that in the sham-operated groups (Table 2; p=0.002). However, at 4 months postoperatively, there were no significant differences in heart weight/body weight ratio, (IVS; d) and EF% between the groups (Table 2).

APD90 and ERP were recorded in the excised, perfused LA tissue from the rats in the 2K1C and sham-operated groups. There were no significant differences between 2K1C hypertensive and sham-operated rats in terms of APD90 and ERP (Table 2 and Fig. 1).

LA fibrosis was examined by Masson’s trichrome staining of tissue sections. At 4 months, the degree of LA fibrosis was markedly greater in the 2K1C group than in the sham-operated group (Fig. 2a). The mean percentage of fibrosis in sections from the 2K1C group was also greater than that observed in the sham-operated group (Fig. 2b; 16.96%±3.57% vs. 4.32%±1.98%; p=0.012).

Table 1. Comparison of SBP in different time periods between two groups

	2K1C	Sham	P
Two weeks	168.60±21.28	121.20±11.12	<0.001
One month	170.10±15.11	121.20±12.23	<0.001
Two months	170.20±24.42	125.40±13.59	<0.001
Three months	177.70±21.62	130.70±9.94	<0.001
Four months	176.60±22.20	127.30±17.59	<0.001

Data are expressed as mean±SD (n=15). SBP - systolic blood pressure

Table 2. Effects of hypertension on cardiac remodeling at four months after surgery

	2K1C	Sham	P
2-month LAD (mm)	5.13±0.51	4.48±0.36	0.099
3-month LAD (mm)	5.63±0.29	4.32±0.41	0.002
4-month LAD (mm)	6.01±0.29	4.78±0.51	0.002
Heart/body weight (%)	0.33±0.07	0.27±0.02	0.132
IVS; d (mm)	1.83±0.09	1.76±0.13	0.589
EF (%)	62.83±4.53	63.98±8.75	0.818
APD90 (ms)	29.53±9.84	43.5±14.24	0.399
ERP (ms)	56±24	38±14	0.499

N=6 for LAD, Heart weight/body weight ratio, (IVS; d) and EF%. N=4 for 2K1C group and N=3 for sham group for APD90, ERP of LA. Data are expressed as mean±SD. APD90 - action potential duration at 90% repolarization; (EF , %) - left ventricular ejection fraction; ERP - effective refractory period; (IVS; d) - interventricular septal thickness; LAD - left atrial diameter

Table 3. Comparison of protein expression between two groups

	2K1C	Sham	P
Col1	0.37±0.11	0.19±0.06	<0.001
TGF-β1	0.25±0.08	0.09±0.03	0.029
MMP-2	0.31±0.17	0.12±0.03	0.029
AngII	0.99±0.27	1.11±0.47	0.574
Na1.5	0.40±0.20	1.08±0.52	0.032
Kir2.1	0.78±0.15	1.11±0.27	0.041
Ca1.2	0.25±0.05	0.30±0.02	0.4
Kir2.3	2.78±0.47	2.65±0.81	0.691

N=6 for each group. AngII - Angiotensin II; Ca1.2 - L-type Ca2+-subunit; Col1 - collagenI; Kir - Inward rectifying potassium channel; MMP-2 - matrix metalloproteinase-2; Na1.5 - Voltage-gated sodium channel subunit; TGF-β1 - transforming growth factor-β1
Histological and electrophysiological remodeling in LSPV

Increased interstitial fibrosis in LSPV was detected by Masson’s staining in 2K1C hypertensive rats compared with that in sham-operated rats (Fig. 3; 27.55%±2.20% vs. 12.71%±9.09%; p=0.016). Expression of Col I (0.37±0.11 vs. 0.19±0.06; p<0.001), TGF-β1 (0.25±0.08 vs. 0.09±0.03; p=0.029), and MMP-2 (0.31±0.17 vs. 0.12±0.03; p=0.029) were increased, while expression of Ang II was unchanged in 2K1C hypertensive rats compared with that in sham-operated rats (p=0.574) (Table 3; Fig. 4). Changes in ion channel protein were detected as decreased expression of Na,1.5 (0.40±0.20 vs. 1.08±0.52; p=0.032) and Kir2.1 (0.78±0.15 vs. 1.11±0.27; p=0.041), although no major changes in the expression of Ca,1.2 and Kir2.3 were observed (p=0.4, p=0.691) (Table 3; Fig. 5).

Discussion

In this study, we demonstrated structural and electrophysiological remodeling in PVs in a rat model of hypertension. This shows a newly discovered mechanistic association between hypertension and AF, beyond atrial remodeling, which has been established as an arrhythmogenic substrate for AF (15).

Mechanism of PV arrhythmogenicity

It has been nearly 20 years since Haissaguerre found that ectopic activity originated from PVs accounts for initiation of paroxysmal AF (6). Since then, numerous studies have focused on electro-anatomic features of PVs. Triggered automaticity has
been implicated as possible mechanisms of PV firing (16-18). In addition, PV fibrosis may maintain a possible re-entry in the development of AF through impaired anisotropic conductions (9, 19).

Structural and electrical remodeling of the atrium and PV in 2K1C hypertensive rats

In our study, we attempted to elucidate changes in fibrosis and expression of ion channel proteins within PV in 2K1C hypertensive rats. Experimental 2K1C hypertension led to marked histological and electrophysiological remodeling of LSPV; the former refers to changes in fibrosis associated with increased expression of Col I, TGF-β1, and MMP-2, whereas the latter is involved in downregulation of the expression of Nav1.5 and Kir2.1 channel proteins. To date, these hypertension-related changes in PVs remain unclear.

The precise mechanism leading to the onset and persistence of AF has not been completely elucidated. Structural remodeling, particularly atrial fibrosis, is regarded as the major mechanism accounting for AF persistence (20). In addition to fibrosis, atrial dilatation has also been associated with heterogeneity of conduction (21). Previous studies have also indicated that structural remod-
Pulmonary vein in 2K1C rats

In our study, we observed decreased expression of the ion channel proteins Na\textsubscript{1.5} and Kir2.1 in LSPV in 2K1C hypertensive rats compared with that in sham-operated rats. It is reported that reduction in the expression of I\textsubscript{Na} not only contributes to conduction retardation, which favors re-entry (34), but also promotes early afterdepolarization (35). The 2K1C hypertensive rats in the present study exhibited reduced expression of the Kir2.1 protein compared with that in sham-operated rats, while no significant differences in the expression of Kir2.3 protein were observed. Kir2.1 and Kir2.3 encode the principal cardiac inward-rectifier I\textsubscript{i K} subunit. Previous studies have shown that reduction in I\textsubscript{i K} causes increased membrane resistance, leading to a larger voltage deflection for a given quantity of depolarizing membrane current; this may be an important mechanism underlying the promotion of afterdepolarization-induced arrhythmias (26, 36). Decreased expression of the protein may implicate a decrease in the relevant channel function. However, the direct functional link between expression of the protein and ion channels needs to be further studied.

Conclusion

Hypertension is associated with histological and electrophysiological PV remodeling characterized by fibrosis and some changes in the expression of the ion channel protein. These observations provide new mechanistic association between hypertension and AF beyond the previously well-established role of atrial remodeling.

Funding: This work was supported by the Natural Science Foundation for Young Investigators of Jiangsu Province (BK2012487).

Conflict of interest: None declared.

Peer-review: Externally peer-reviewed.

Authorship contributions: Concept – W.Z.J.; Design – W.Z.J.; Supervision – W.Z.J.; Materials – P.P.X., L.J.L.; Data collection &/or processing – R.D.Q., J.J.S.; Analysis &/or interpretation – P.P.X., R.D.Q.; Literature search – M.L.C.; Writing – P.P.X., L.J.L.; Critical review – W.Z.J.

References

1. Lau DH, Shipp NJ, Kelly DJ, Thanigaimani S, Neo M, Kuklik P, et al. Atrial arrhythmia in ageing spontaneously hypertensive rats: unraveling the substrate in hypertension and ageing. PLoS One 2013; 8: e72416.

2. Haywood LJ, Ford CE, Crow RS, Davis BR, Massie BM, Einhorn PT, et al. Atrial fibrillation at baseline and during follow-up in ALLHAT (An-
with and without atrial fibrillation. J Am Coll Cardiol 2003; 42: 1108-14.

20. Gai P, Marrouche NF. Magnetic resonance imaging of atrial fibrillation: redefining atrial fibrillation to a syndrome. Eur Heart J 2017; 38: 14-19.

21. Chang SL, Chen YC, Chen YJ, Wangcharoen W, Lee SH, Lin CI, et al. Mechanoelectrical feedback regulates the arrhythmic activity of pulmonary veins. Heart 2007; 93: 82-8.

22. De Jong AM, Maass AH, Oberdorff-Maass SJ, Van Veldhuisen DJ, Van Gilst WH, Van Gelder IC. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res 2011; 89: 754-65.

23. Lader JM, Vasquez C, Bao L, Maass K, Qu J, Kefalogianni E, et al. Remodeling of atrial ATP-sensitive K(+) channels in a model of salt-induced elevated blood pressure. Am J Physiol Heart Circ Physiol 2011; 301: H964-74.

24. Lau DH, Mackenzie L, Kelly DJ, Psaltis PJ, Brooks AG, Worthington M, et al. Hypertension and atrial fibrillation: evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model. Heart Rhythm 2010; 7: 1282-90.

25. Lau DH, Mackenzie L, Kelly DJ, Psaltis PJ, Worthington M, Rajendram A, et al. Short-term hypertension is associated with the development of atrial fibrillation substrate: a study in an ovine hypertensive model. Heart Rhythm 2010; 7: 396-404.

26. Choisy SC, Arberry LA, Hancock JC, James AF. Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts. Hypertension 2007; 49: 498-505.

27. Kistler PM, Sanders P, Dodic M, Spence SJ, Samuel CS, Zhao C, et al. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur Heart J 2006; 27: 3045-56.

28. Ceron CS, Rizzi E, Guimauresa DA, Martins-Oliveira A, Cau SB, Ramos J, et al. Time course involvement of matrix metalloproteinases in the vascular alterations of renovascular hypertension. Matrix Biol 2012; 31: 261-70.

29. Badyal DK, Lata H, Dadich AP. Animal Models of Hypertension and Effect of Drugs. Indian J Pharmacol 2003; 35: 349-62.

30. Verheule S, Sato T, Everett T 4th, Engle SK, Otten T, Rubart-von der Lohe M, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res 2004; 94: 1458-65.

31. Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 2006; 118: 10-24.

32. Castro MM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinases: targets for doxycycline to prevent the vascular alterations of hypertension. Pharmacol Res 2011; 64: 567-72.

33. Odenbach J, Wang X, Cooper S, Chow FL, Oka T, Lopaschuk G, et al. MMP-2 mediates angiotensin II-induced hypertension under the transcriptional control of MMP-7 and TACE. Hypertension 2011; 57: 123-30.

34. Melnyk P, Ehrlich JR, Pourrier M, Villeneuve L, Cha TJ, Nattel S. Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc Res 2005; 65: 104-16.

35. Undrovinas AI, Malteev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current. Cell Mol Life Sci 1999; 55: 494-505.

36. Li D, Zhang L, Kneller J, Nattel S. Potential ionic mechanism for repo-
larization differences between canine right and left atrium. Circ Res 2001; 88: 1168-75.