Alternative empiric therapy to carbapenems in management of drug resistant gram negative pathogens: a new way to spare carbapenems

Prashant Bhatia

Abstract

Background: Increasing prevalence of carbapenem resistance in Gram negative bacteria due to excessive and indiscriminate use of carbapenems has forced the medical fraternity to find out ways to spare carbapenems. This retrospective study was aimed to explore a new fixed dose combination (FDC) of ceftriaxone+sulbactam with adjuvant disodium edetate as a carbapenem sparing drug in the management of moderate to severe bacterial infections of lower respiratory tract infections (LRTIs), urinary tract infections (UTIs) and intra-abdominal infections (IAIs).

Methods: A retrospective analysis involves those patients in whom FDC or meropenem was used empirically for the management of these infections caused by multidrug resistant pathogens.

Results: The average age of evaluated patients was 58.17±13.98 years. Out of 107 patients, 95 patients selected for the evaluations in which LRTIs, UTIs and IAIs were diagnosed in 43 (45.26%), 32 (33.68%) and 20 (21.05%) patients, respectively. The most common pathogen was Escherichia coli (38.94%), followed by Klebsiella species (26.31%), Pseudomonas species (18.94%) and Acinetobacter species (15.78%). According to the susceptibility results, FDC appeared as the most active antibacterial agent against E. coli (94.54%) followed by Acinetobacter species (93.33%), Pseudomonas species (88.88%) and Klebsiella species (84%). On the other hand, meropenem susceptibility to E. coli was 86.47% followed by Acinetobacter species (78.57%), Pseudomonas species (66.66%) and Klebsiella species (64%). Further our results revealed that FDC has >75% clinical success compared to meropenem (~61% clinical success).

Conclusion: These results depict non-inferiority of new FDC in the treatment of moderate to severe Gram negative bacterial infections caused by carbapenem resistant organisms and therefore, it should be considered as an alternative to carbapenem for treating LRTIs, UTIs and IAIs.

Keywords: Ceftriaxone/sulbactam-EDTA, lower respiratory tract infections, urinary tract infections, retrospective study

Introduction

Hospital acquired or nosocomial infections (HAIs) are infections occurring during a stay in hospital that are not present at the time of hospital admission. Lower respiratory tract infections (LRTIs), urinary tract infections (UTIs) and intra-abdominal infections (IAIs) are amongst the most prevalent HAIs [26,36]. LRTIs are thought to be leading cause of death all over the world (WHO, 2008). UTIs are the most common infections among the women, particularly under 50 years of age [27]. IAIs, especially complicated IAIs, represent an important cause of morbidity and are frequently associated with poor prognosis [35]. A wide variety of bacterial pathogens are accounting for such infections including Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter spp., and coagulase-negative Staphylococci [21,27]. Empiric antibiotic therapy is commonly used for the treatment of these infections and is usually presumptive and instituted before knowledge of the etiology of specific disease. Among various classes of drugs, β-lactams are one of the most frequently prescribed empirical antimicrobial drugs for the treatment of such infections [24]. However, in recent years, rise in resistance to β-lactam drugs has been noticed because of the extended spectrum resistance
β-lactamases (ESBLs) enzymes which hydrolyse most of the β-lactam antibiotics [10,22,23].

To cater the antibiotic resistance due to extended spectrum beta-lactamases (ESBLs), carbapenem drugs have been introduced in clinical settings. Although, carbapenem drugs play a vital role in the management of the infections caused by ESBLs producing organisms due to their broad spectrum activity and stability to hydrolysis against ESBLs [31], carbapenem resistance among the members of the Enterobacteriaceae, Pseudomonas and Acinetobacter has been reported globally [11,15,22,30]. The common mechanisms of carbapenem resistance are carbapenem hydrolyzing enzymes, changes in outer membrane proteins, over expression of efflux pumps [32]. Carbapenem resistant organisms are associated with high mortality and morbidity rates and have the potential to spread widely [37]. Increasing use of carbapenem drugs has also a direct alliance with carbapenem resistant Gram negative bacteria [18]. Until recently, most of the older antibiotics have become less useful due to the spread of such carbapenem resistant bacteria. As a result of the increasing resistance towards antibiotics over the past few years, it is no wonder that we are now facing the prospect of losing the battle against many bacterial diseases. Although the new antibiotics have to come along to take their place, the drug development pipeline for new antibiotics has been drying out. The drying antibiotic pipeline particularly against Gram negative bacteria has forced us to look into opportunities for improving usage of the existing antimicrobial agents.

One recently introduced approach to improve the existing antimicrobial agents is the use of antibiotic adjuvant therapy, which potentiates the activity of antibiotics. Adjuvant therapies include antibiotic combinations, synergy between antibiotics and non-antibiotics, inhibition of resistance by altering the physiology of antibiotic-insensitive cells, such as those in biofilms.

Introduction of a novel AAE (antibiotic adjuvant entity) with use of EDTA as adjuvant for chelation and catalytic action to existing antibiotics has been seen as a ray of hope. A new FDC (ceftriaxone, sulbactam with adjuvant EDTA) a novel antibiotic adjuvant entity (AAE) has been reported to have proven efficacy in a wide range of infections [7,8].

This retrospective observational study was aimed to explore a new Fixed Dose Combination (FDC) of Ceftriaxone+Sulbactam with adjuvant Disodium edetate as a carbapenem sparing drug in the management of moderate to severe bacterial infections of LRTIs, UTIs and IAI.

Methods

Study design

This retrospective study was designed to evaluate the efficacy of new FDC in comparison to meropenem in the treatment of the patients who are diagnosed with moderate to severe Gram negative hospital acquired bacterial infections. It was conducted at Asian institute of medical sciences, Faridabad for a period of 18 months between June 2013 to December 2014. All patients admitted to the hospital for more than 48 hours with single pathogen infection and showing sensitivity towards new FDC or Meropenem were considered eligible for the study.

Hospital case sheet files of all the patients were reviewed to collect the necessary data like clinical signs and symptoms at the time of admission of patients and during the course of treatment and finally at the end of therapy. All the necessary lab investigations like sputum, bronchoalveolar lavage (BAL), endotracheal (ET) secretions, urine and blood culture and sensitivity reports, hematology, biochemistry and other relevant investigations carried out at baseline and end of treatment were evaluated from all the enrolled patients.

Bacterial identification

Identification of bacteria was carried out according to the methods described by Cheesbrough (2000).

Demographic analysis and antibiotic therapy

The detailed demographic and baseline characteristics of all patients including number of evaluable patients, age, types of infections who were analyzed in this study are given in Table 1. The patients were assigned to receive either meropenem (1.0 g, every 8 h) or new Elores, (ceftriaxone+sulbactam with adjuvant EDTA, 1.5 g or 3.0 g, every 12 h) through intravenous administration. For those patients who were more severe or failed to respond to FDC, colistin with a loading dose of 9 MIU followed by BD doses of 4.5 MIU were used along with previous antibiotic.

The antibiotic therapy of both of the drugs (FDC or meropenem) was initially started empirically based on the clinical symptoms and treating physicians decision and was continued or shifted to other therapy based on the in vitro microbiological susceptibility tests and clinical outcomes. Based on the in vitro antibiotic susceptibility, all the patients were divided into 3 groups for ease of evaluations:

Group-1 (G1): Patients with meropenem intermediate and FDC susceptible culture in whom FDC was used (n=20, 21.05%).

Group-2 (G2): Patients with meropenem and FDC susceptible culture (n=65, 68.42%).

Table 1. Demographics characteristics of the patients treated during the study period.
Characteristic
Evaluable patients
Age, mean year SD
Type of infection (%)
UTI
LRTI
IAI
Number of Infections with *Enterobacteriaceae* family pathogens
Number of Infections with non-*Enterobacteriaceae* family pathogens
A total of 107 patients' data were evaluated retrospectively. All isolates, recovered from all cultures, were subjected to in vitro antibiotic susceptibility testing in whom FDC used empirically (n=34, 35.78%). Group-3 (G3): Patients with meropenem and FDC intermediate culture in whom FDC was used empirically along with colistin (n=10, 10.52%).

In-vitro antibiotic susceptibility testing
All isolates, recovered from all cultures were subjected to susceptibility testing for FDC, meropenem, and colistin using the disk diffusion method according to the recommendations of CLSI (2013). The discs of meropenem (10 μg), FDC (45 μg) and colistin (10 μg) were obtained from Himedia (Mumbai, India). The zones of inhibition surrounding the various antibiotic discs were measured and compared with CLSI. Sensitivity of isolated organisms against antibiotics were reported as sensitive (S) and intermediate (I) based on the breakpoints.

Clinical evaluation of patients
The clinical efficacy of the therapy was evaluated and classified as cured (resolution of clinical signs and symptoms or improvement not requiring further antibacterial therapy), or failure (persistence of clinical signs and symptoms or worsening in signs and symptoms that required alternative antimicrobial therapy after 72 h of treatment). The overall efficacy rate was defined as the proportion of the patients cured. Bacterial efficacy was evaluated based on the following four categories: complete eradication if elimination of the original causative pathogens, persistence if the original causative pathogens were repeatedly isolated, substitution if new organisms were isolated on repeated culture and re-infection if re-appearance of the original causative pathogens after eradication and with clinical symptoms of infection.

Results
Study design and demographic analysis
A total of 107 patients' data were evaluated retrospectively in this study. Variables of each patient such as age, causative agents, dosage and regime of antibiotic therapy were recorded. Out of these 107 patients, 95 patients with single bacterial infection were treated either FDC or meropenem. Twelve patients who were either culture negative or treatment failure or expired during course of study were excluded from the study. The average age of patients was 58.17±13.98 years.

In vitro antibiotic susceptibility
On evaluation of culture and sensitivity data, it was observed that clinical samples of the patients were cultured on an appropriate medium, and significant growth was found in 95 samples (88.78%) which yielded clinically significant pathogen that could be implied as a causative agent. Among bacterial infections, the most common pathogen that was isolated was *E. coli* which was isolated from 37 patients (38.94%), followed by *Klebsiella spp.* (n=25 patients, 26.31%), *Pseudomonas spp.* (n=18 patients, 18.94%) and *Acinetobacter spp.* (15 patients, 15.78%). Overall, 62 (65.26%) pathogens caused infections belonging to the *Enterobacteriaceae* family while 33 (34.73%) pathogens belonging to non-*Enterobacteriaceae* family.

The results of in vitro antimicrobial susceptibility test of FDC and meropenem are presented in Table 2. All the pathogens showed different susceptibility patterns towards FDC and meropenem. According to the susceptibility results, FDC appeared as the most active antibacterial agents against *E. coli* (94.54%) followed by *Acinetobacter spp.* (93.33%), *Pseudomonas spp.* (88.88%) and *Klebsiella spp.* (84%). On the other hand, high rates of susceptibility to meropenem were demonstrated by *E. coli* (86.47%) followed by Acinetobacter spp. (78.57%), *Pseudomonas spp.* (66.66%) and *Klebsiella spp.* (64%). Overall, out of 95 pathogens, majority of pathogens (n=85, 89.47%) were susceptible to FDC and the remaining 10 pathogens (10.52%) showed intermediate response to it.

Antibiotics treatment and their efficacy evaluation
On day 3 of treatment, progress of the therapy was measured in terms of improvement in the clinical signs and symptoms and microbiological results. Patient with susceptible pathogens with clinical improvement were continued on respective empirical therapies. Patients who were not showing response towards FDC, colistin was given as an add on therapy.

In G1, out of 20 patients which received FDC, 15 patients (75%) were clinically cured with complete bacteriological eradication within 7-8 days whereas 5 patients who failed to respond to FDC on day 3 were shifted to FDC+colistin combination therapy and all these patients got cured in additional 8 days therapy making a total of 11 days. The duration of antibiotic treatment in these 15 patients treated with FDC was 7.2±1.01 days (Table 3). In G2, among 65 patients whose pathogens were susceptible to both FDC and meropenem, 31 patients received meropenem (G2A) and 34 received FDC (G2B). The clinical assessment of meropenem receiving group (G2A) showed cure in 19 patients (61.29%) while 12 patients (38.70%) did not show any clinical improvement therefore colistin was added to ongoing therapy. On day 3,

Isolated pathogens	Number of individual isolates	FDC of Ceftriaxone+ Sulbactam+ Disodium edetate	Meropenem		
		Susceptibility %			
E. coli	37	94.54	5.4	86.47	23.53
Klebsiella sp.	25	84	16	64	36
Pseudomonas sp.	18	88.88	11.11	66.66	33.34
Acinetobacter sp.	15	93.33	6.66	78.57	21.43
Total	95	--	--	--	--
of these 12 patients, 7 patients (58.33%) were cured whereas 5 (41.66%) patients failed to respond and were shifted to combination therapy of FDC+colistin and all the patients achieved clinical success. The average duration of treatment was 8.58±0.96 days (Table 4). For 34 patients who received FDC, 26 patients (76.47%) showed satisfactory clinical cure while in 8 patients (23.52%) who did not show clinical response at 3 day, colistin was added to the treatment regime that resulted in clinical cure of all patients after additional 7 days. The mean treatment for these 26 cured patients was 8.58±0.9 days. The average treatment duration was 7.46±1.24 days for patients in the FDC treated group (Table 5).

Among those patients who did not respond to either meropenem or FDC, colistin was added to ongoing therapy and complete clinical success was observed treatment duration 8.67±0.71 days (Table 6 and Figure 1).

Discussion
Carbapenems are β-lactam antimicrobial agents that are relatively resistant to hydrolysis by most β-lactamases including Amp-C and have been considered as the last resort drugs all over the world for the management of serious infections [1,39]. However, increasing carbapenem resistance among Gram negative bacteria has been documented greatly in recent years [16,17,22]. Amongst various mechanism of carbapenem resistance, acquired metallo-β-lactamases (MBL) have recently emerged as one of the most worrisome resistance mechanisms owing to their capacity to hydrolyze all β-lactams, including carbapenems [13].

To combat such increasing carbapenem resistance, novel beta-lactam and beta lactamase inhibitor combination (BL+BLI) has received much attention as a carbapenem alternative drug in recent past [9,12,15,20,33]. However, only BL+BLI combinations did not exhibit significant activity against some ESBLs and majority of MBL producing Gram negative organisms. Hence a novel antibiotic combination of ceftriaxone+sulbactam with adjuvant disodium edetate (proven for efficacy and safety to treat the patients with infections caused by such organisms has been used in current investigations.

In the present study, 95 culture positive patients in ICU with

Table 3. Summary of antibiotic therapy for the group G1 patients with cultures with intermediate resistance to meropenem and susceptible to FDC.

S. No	Age	Organism	FDC dose	Duration (days)	Clinical response	Colistin add on	Duration (days)	Clinical response
1	46	*E. coli*	1.5 g BID	6	Cured	NA	NA	NA
2	55	*E. coli*	3.0 g BID	7	Cured	NA	NA	NA
3	71	*Klebsiella* sp.	3.0 g BID	8	Cured	NA	NA	NA
4	68	*Klebsiella* sp.	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	6	Cured
5	49	*E. coli*	1.5 g BID	7	Cured	NA	NA	NA
6	71	*Pseudomonas* sp.	3.0 g BID	7	Cured	NA	NA	NA
7	63	*E. coli*	1.5 g BID	7	Cured	NA	NA	NA
8	52	*Pseudomonas* sp.	3.0 g BID	8	Cured	NA	NA	NA
9	54	*Pseudomonas* sp.	3.0 g BID	8	Cured	NA	NA	NA
10	59	*Klebsiella* sp.	3.0 g BID	9	Cured	NA	NA	NA
11	62	*E. coli*	1.5 g BID	5	Cured	NA	NA	NA
12	81	*Klebsiella* sp.	1.5 g BID	8	Cured	NA	NA	NA
13	72	*Pseudomonas* sp.	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured
14	66	*Acinetobacter* sp.	3.0 g BID	7	Cured	NA	NA	NA
15	50	*E. coli*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured
16	41	*Klebsiella* sp.	3.0 g BID	8	Cured	NA	NA	NA
17	76	*Pseudomonas* sp.	1.5 g BID	7	Cured	NA	NA	NA
18	39	*E. coli*	3.0 g BID	6	Cured	NA	NA	NA
19	54	*Acinetobacter* sp.	1.5 g BID	2	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	7	Cured
20	70	*E. coli*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured

Note: NA: Not applicable
moderate to severe infections treated with this new FDC or meropenem were retrospectively analyzed. The general distribution pattern of nosocomial infections that emerged in our study showed LRTIs (45.26%) to be the most common, followed by UTIs (33.68%) and IAIIs (21.05%). This is in agreement with the study performed by earlier researcher [14]. The most frequently isolated pathogen was *E. coli* (38.94%), followed by *Klebsiella spp.* (26.31%), *Pseudomonas spp.* (18.94%) and *Acinetobacter spp.* (15.78%). This data is in line with many previous studies where *E. coli*, *Klebsiella spp.*, *Pseudomonas spp.*, and *Acinetobacter spp.* were reported to be causative agents of LRTIs. UTIs and IAIIs [19,29].

In the present study, *in vitro* antimicrobial susceptibility results revealed that 84% to 91% of members of *Enterobacteriaceae* family and 86 to 94% of non-*Enterobacteriaceae* family members were sensitive to new FDC. Consistent with these results, earlier reports also demonstrated enhanced activity of this new FDC against members of *Enterobacteriaceae* and non-*Enterobacteriaceae* [4,34]. On other hands, 64% to 86% isolates of *Enterobacteriaceae* family whereas and 66% to 78% members of non-*Enterobacteriaceae* were susceptible to Meropenem, which is in accordance with previous observations [4,34].

Further, in FDC treated patients an overall success rate was >75% against ~61% in meropenem treated. In G1 15/20 patients and in G2B 26/34 (75.9%) who were susceptible to FDC and were administered with FDC achieved clinical and microbiological success suggesting the consistency in *in vitro* and *in vivo* results. On the other hand, 5/20 in G1 and 8/34 in G2B (24%) pathogens who did not respond to FDC in first 3 days were successfully treated when colistin was given with FDC, exploring the new therapeutic options in these failure cases. In G2A to whom meropenem was given empirically, only 19/31 patients (61.29%) achieved clinical cure whereas 12 patients failed to respond to meropenem indicating false susceptibility of carbapenem *in vitro* which is in agreement with previous reports where false susceptibility of carbapenems has been observed in MBL producing strains [5,25]. Another possibility of the decreased susceptibility of meropenem to members to these isolates implied the presence of outer membrane protein mutation [2,28]. Further when these patients were shifted to Meropenem+Colistin, 5/12 patients (41.67%) showed no improvement and were cured when shifted to FDC+Colistin thus indicating presence of MBL strains to which FDC is reported to be active [4,34]. This data advocates use of this new FDC as a better alternative to meropenem. Overall, our results indicate the approximately 17% superiority of new FDC alone over meropenem therapy. It
Table 4. Summary of antibiotic therapy for the group G2A (Empirical-Meropenem) patients with cultures showing susceptibility to both FDC and meropenem.

S. No	Age	Organism	Meropenem dose	Duration (days)	Clinical response	Colistin add on	Duration (days)	Clinical response	FDC+colistin Duration (days)	Clinical response	
1	57	Acinetobacter sp.	1 g TID	8	Cured	NA	NA	NA	NA	NA	
2	48	E. coli	1 g TID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	6	Cured	NA	NA	
3	68	Pseudomonas sp.	1 g TID	7	Cured	NA	NA	NA	NA	NA	
4	61	Klebsiella sp.	1 g TID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	2	Deteriorated	FDC+Colistin (9 MIU loading and 4.5 MIU BID)	6	Cured
5	53	Klebsiella sp.	1 g TID	9	Cured	NA	NA	NA	NA	NA	
6	74	E. coli	1 g TID	8	Cured	NA	NA	NA	NA	NA	
7	55	E. coli	1 g TID	7	Cured	NA	NA	NA	NA	NA	
8	62	Acinetobacter sp.	1 g TID	3	Deteriorated	3.0 g BID	7	Cured	NA	NA	
9	83	E. coli	1 g TID	3	Deteriorated	3.0 g BID	7	Cured	NA	NA	
10	40	Pseudomonas sp.	1 g TID	10	Cured	NA	NA	NA	NA	NA	
11	76	Klebsiella sp.	1 g TID	10	Cured	NA	NA	NA	NA	NA	
12	54	Acinetobacter sp.	1 g TID	8	Cured	NA	NA	NA	NA	NA	
13	68	Klebsiella sp.	1 g TID	2	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	2	Deteriorated	FDC+Colistin (9 MIU loading and 4.5 MIU BID)	6	Cured
14	39	E. coli	1 g TID	8	Cured	NA	NA	NA	NA	NA	
15	70	Pseudomonas sp.	1 g TID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	2	Deteriorated	FDC+Colistin (9 MIU loading and 4.5 MIU BID)	7	Cured
16	42	Pseudomonas sp.	1 g TID	9	Cured	NA	NA	NA	NA	NA	
17	64	Acinetobacter sp.	1 g TID	9	Cured	NA	NA	NA	NA	NA	
18	37	Acinetobacter sp.	1 g TID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured	NA	NA	
19	78	E. coli	1 g TID	8	Cured	NA	NA	NA	NA	NA	
20	66	Klebsiella sp.	1 g TID	9	Cured	NA	NA	NA	NA	NA	
21	59	Klebsiella sp.	1 g TID	2	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured	NA	NA	
22	40	E. coli	1 g TID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	2	Deteriorated	FDC+Colistin (9 MIU loading and 4.5 MIU BID)	7	Cured
23	59	Acinetobacter sp.	1 g TID	8	Cured	NA	NA	NA	NA	NA	
24	60	Klebsiella sp.	1 g TID	8	Cured	NA	NA	NA	NA	NA	
25	47	E. coli	1 g TID	2	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured	NA	NA	
26	70	Pseudomonas sp.	1 g TID	10	Cured	NA	NA	NA	NA	NA	
27	46	E. coli	1 g TID	8	Cured	NA	NA	NA	NA	NA	
28	51	Klebsiella sp.	1 g TID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	9	Cured	NA	NA	
29	60	E. coli	1 g TID	9	Cured	NA	NA	NA	NA	NA	
30	72	Pseudomonas sp.	1 g TID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIU BID)	2	Deteriorated	FDC+Colistin (9 MIU loading and 4.5 MIU BID)	6	Cured
31	48	E. coli	1 g TID	10	Cured	NA	NA	NA	NA	NA	

Note: NA: Not applicable
Table 5. Summary of antibiotic therapy for the group G2B (Empirical–FDC) patients with cultures showing susceptibility to both FDC and meropenem.

S. No	Age	Organism	FDC dose	Duration (days)	Clinical response	Colistin add on	Duration (days)	Clinical response
1	7	*Acinetobacter sp.*	1.5 g BID	7	Cured	NA	NA	NA
2	81	*E. coli*	1.5 g BID	6	Cured	NA	NA	NA
3	65	*E. coli*	1.5 g BID	7	Cured	NA	NA	NA
4	80	*Pseudomonas sp.*	3.0 g BID	9	Cured	NA	NA	NA
5	72	*Klebsiella sp.*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	7	Cured
6	65	*E. coli*	1.5 g BID	5	Cured	NA	NA	NA
7	40	*Acinetobacter sp.*	3.0 g BID	6	Cured	NA	NA	NA
8	62	*Klebsiella sp.*	1.5 g BID	8	Cured	NA	NA	NA
9	51	*E. coli*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	7	Cured
10	39	*E. coli*	1.5 g BID	8	Cured	NA	NA	NA
11	35	*Pseudomonas sp.*	3.0 g BID	8	Cured	NA	NA	NA
12	47	*Pseudomonas sp.*	1.5 g BID	9	Cured	NA	NA	NA
13	55	*Klebsiella sp.*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	6	Cured
14	70	*Pseudomonas sp.*	3.0 g BID	9	Cured	NA	NA	NA
15	61	*E. coli*	3.0 g BID	8	Cured	NA	NA	NA
16	45	*E. coli*	1.5 g BID	6	Cured	NA	NA	NA
17	66	*Klebsiella sp.*	1.5 g BID	2	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	7	Cured
18	76	*E. coli*	1.5 g BID	6	Cured	NA	NA	NA
19	49	*Acinetobacter sp.*	3.0 g BID	9	Cured	NA	NA	NA
20	71	*E. coli*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	7	Cured
21	62	*Pseudomonas sp.*	3.0 g BID	10	Cured	NA	NA	NA
22	68	*E. coli*	1.5 g BID	7	Cured	NA	NA	NA
23	50	*Acinetobacter sp.*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	8	Cured
24	53	*E. coli*	1.5 g BID	7	Cured	NA	NA	NA
25	40	*E. coli*	3.0 g BID	7	Cured	NA	NA	NA
26	38	*Klebsiella sp.*	3.0 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	6	Cured
27	72	*Klebsiella sp.*	3.0 g BID	8	Cured	NA	NA	NA
28	44	*E. coli*	1.5 g BID	7	Cured	NA	NA	NA
29	46	*Pseudomonas sp.*	1.5 g BID	3	Deteriorated	Colistin (9 MIU loading and 4.5 MIUBID)	7	Cured
30	57	*E. coli*	1.5 g BID	7	Cured	NA	NA	NA
31	68	*Klebsiella sp.*	3.0 g BID	9	Cured	NA	NA	NA
32	75	*E. coli*	1.5 g BID	6	Cured	NA	NA	NA
33	60	*Acinetobacter sp.*	1.5 g BID	8	Cured	NA	NA	NA
34	44	*Klebsiella sp.*	3.0 g BID	7	Cured	NA	NA	NA

Note: NA: Not applicable
Table 6. Summary of antibiotic therapy for the group G3 patients with cultures showing intermediate resistance to FDC and Meropenem.

S. No	Age	Organism	FDC+Colistin dose	Duration (days)	Clinical response
1	79	*E. coli*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured
2	41	*Klebsiella sp.*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured
3	65	*E. coli*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	9	Cured
4	82	*E. coli*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	9	Cured
5	66	*Klebsiella sp.*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	10	Cured
6	74	*Klebsiella sp.*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	9	Cured
7	50	*Pseudomonas sp.*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured
8	43	*Klebsiella sp.*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured
9	71	*Acinetobacter sp.*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	9	Cured
10	36	*Acinetobacter sp.*	3.0 g FDC+Colistin (9 MIU loading and 4.5 MIU BID)	8	Cured

has been noticed that 15 to 20% mortality rates in patients of nosocomial infections has been associated [14]. However, this percentage was very low in our case. There was no significant difference in treatment regimen of two therapies however, dosing frequency and cost of drug was lower in FDC treated group as compared to meropenem treated.

Conclusion

Our data showed that FDC can be a good option as carbapenem sparing drug and combination of FDC and colistin can successfully treat complicated multi drug resistant cases of LRTIs, UTIs, and IAIs without mortality within 8-11 days.

Competing interests

The author declares that he has no competing interests.

Acknowledgement

The author would like to thank all patients, paramedical staff, critical care and microbiology teams for assisting in collection of data and preparation of the manuscript.

Publication history

EIC: Ishtiaq Qadri, King Abdul Aziz University, Saudi Arabia. Received: 10-Jun-2015 Final Revised: 11-Jul-2015 Accepted: 13-Jul-2015 Published: 20-Jul-2015

References

1. Amjad A, Mirza I, Abbasi S, Farwa U, Malik N and Zia F. Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran J Microbiol. 2011; 3:189-93. | PubMed Abstract | PubMed Full Text

2. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ and Busk H. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother. 1997; 41:563-9. | Article | PubMed Abstract | PubMed Full Text

3. Cheesbrough M. Biochemical tests to identify bacteria. In: District laboratory practice in tropical countries. 2nd edition. Cambridge University Press, UK. 2000; 178-187.

4. Chaudhary M, Kumar S and Payasi A. Prevalence and antimicrobial sensitivity of extended spectrum beta-lactamase producing Gram negative bacteria from clinical settings in India from 2010-2012. Int J Med Med Sci. 2013; 46:1212-1217. | PubMed Abstract | PubMed Full Text

5. Chaudhary M and Payasi A. False susceptibility of antibiotics to carbapenemase producers and means to overcome. IOSR J Phar Biol Sci. 2014; 9:155-161.

6. Clinical Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Clinical Laboratory Standard Institute. Wayne, Pennsylvania, USA. 2013; 32.

7. Chaudhary M and Payasi A. A randomize, open label prospective, multicenter phase-III clinical trial of Elores in lower respiratory tract and urinary tract infections. J. Pharmacy Res. 2013; 6:409-414. | Article

8. Chaudhary M and Payasi A. Clinical, microbial efficacy and tolerability of Elores, a novel antibiotic adjuvant entity in ESBL producing pathogens: Prospective randomized controlled clinical trial. J Pharmacy Res. 2013; 6:275-280. | Article

9. Chakraborty D, Basu S and Das S. A study on infections caused by metallo-beta-lactamase producing Gram-negative bacteria in intensive care unit patients. Am J Infect Dis. 2010; 6:34-9. | Pdf

10. Cornaglia G and Rossolini GM. The emerging threat of acquired carbapenemases in Gram-negative bacteria. Clin Microbiol Infect. 2010; 16:99-101. | Article | PubMed

11. Chitnis AS, Caruthers PS, Rao AK, Lamb J, Lurvey R, Beau De Rochars V, Kitchel B, Cancio M, Torok TJ, Guh AV, Gould CV and Wise MF. Breakout of carbapenem-resistant enterobacteriaceae at a long-term acute care hospital: sustained reductions in transmission through active surveillance and targeted interventions. Infect Control Hosp Epidemiol. 2012; 33:984-92. | Article | PubMed

12. Datta S, Wattal C, Goel N, Oberoi JK, Raveendran R and Prasad KJ. A ten year analysis of multi-drug resistant blood stream infections caused by Escherichia coli & Klebsiella pneumoniae in a tertiary care hospital. Indian J Med Res. 2012; 135:907-12. | Article | PubMed Abstract | PubMed Full Text

13. Deshmukh DG, Damle AS, Bajaj JK, Bhakre JB and Patwardhan NS. Metallo-beta-lactamase-producing clinical isolates from patients of a tertiary care hospital. J Lab Physicians. 2011; 3:93-7. | Article | PubMed Abstract | PubMed Full Text

14. Ding JG, Sun QF, Li KC, Zheng MH, Miao XH, Ni W, Hong L, Yang JX, Ruan ZW, Zhou RW, Zhou HJ and He WF. Retrospective analysis of nosocomial infections in the intensive care unit of a tertiary hospital in China during 2003 and 2007. BMC Infect Dis. 2009; 9:115. | Article | PubMed Abstract | PubMed Full Text

15. Deshpande P, Rodrigues C, Shetty A, Kapadia F, Hedge A and Soman R. New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae:
treatment options with carbapenems compromised. J Assoc Physicians India. 2010; 58:147-9. | PubMed
16. Francis RO, Wu F, Della-Latta P, Shi J and Whittier S. Rapid detection of Klebsiella pneumoniae carbapenemase genes in enterobacteriaceae directly from blood culture bottles by real-time PCR. Am J Clin Pathol. 2012; 137:627-32. | Article | PubMed
17. Grundmann H, Livermore DM, Giske CG, Canton R, Rossolini GM, Campos J, Vatopoulos A, Gniadkowski M, Toth A, Pfeifer Y, Jarlier V and Carmeli Y. Carabapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveill. 2010; 15:46. | Article | PubMed
18. Goel N, Watral C, Oberoi JK, Raveendran R, Datta S and Prasad KJ. Trend analysis of antimicrobial consumption and development of resistance in non-fermenters in a tertiary care hospital in Delhi, India. J Antimicrob Chemother. 2011; 66:1625-30. | Article | PubMed
19. Haddad M. Antimicrobial resistance of uropathogens and rationale for empirical therapy in Jordan. Biomed Biopharmacol J. 2014; 7:1-8. | Pdf
20. Hodiwala A, Dhoke R and Urhekar AD. Incidence of metallo-beta-lactamase producing Pseudomonas, Acinetobacter & Enterobacteriaceae isolates in hospitalised patients. Int J Pharm Biol Sci. 2013; 3:79-83. | Article
21. Horvath DJ, Jr., Dabdoub SM, Li B, Vanderbrink BA and Justice SS. Carbapenem-non-susceptible Enterobacteriaceae from a tertiary care hospital in Shanghai, China: carbapenem-resistant clinical Enterobacteriaceae isolates from a teaching hospital in Shanghai, China. J Med Microbiol. 2012; 61:132-6. | Article | PubMed
22. Hu F, Chen S, Xu X, Guo Y, Liu Y, Zhu D and Zhang Y. Emergence of carbapenem-resistant clinical Enterobacteriaceae isolates from a teaching hospital in Shanghai, China. J Med Microbiol. 2012; 61:132-6. | Article | PubMed
23. Jalalpour S and Ebadi AG. Role of nano structure of crystalline layer and beta-lactamase nano enzyme in antibiotics resistant bacteria. Afr J Pharm Pharmacol. 2012; 6:113-118. | Pdf
24. Khajuria A, Praharaj AK, Kumar M and Grover N. Carbapenem Resistance among Enterobacter Species in a Tertiary Care Hospital in Central India. Chemother Res Pract. 2014; 2014:972646. | Article | PubMed Abstract | PubMed Full Text
25. Lee K, Lim YS, Yong D, Yum JH and Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003; 41:4623-9. | Article | PubMed Abstract | PubMed Full Text
26. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyatagi G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE and Fridkin SK. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014; 370:1198-208. | Article | PubMed
27. Minardi D, d’Anzeo G, Cantoro D, Contestabile M and Muzzonigro G. Urinary tract infections in women: etiology and treatment options. Int J Gen Med. 2011; 4:333-43. | Article | PubMed | PubMed Abstract | PubMed Full Text
28. Modakkas EM and Sanyal SC. Imipenem resistance in aerobic gram-negative bacteria. J Chemother. 1998; 10:97-101. | Article | PubMed
29. Oksesa AO and Ige OM. Trends in bacterial pathogens of lower respiratory tract infections. Indian J Chest Dis Allied Sci. 2008; 50:269-72. | Pdf | PubMed
30. Perez F and Van Duin D. Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med. 2013; 80:225-33. | Article | PubMed | PubMed Abstract | PubMed Full Text
31. Pravin KN and Michelle SV. Prevalence of carbapenem resistant Enterobacteriaceae from a tertiary care hospital in Mumbai, India. J Microbiol Infect Dis. 2013; 3:207-210. | Pdf
32. Rodrigues C. Carbapenem-resistant enterobacteriaceae: a reality check. Reg Health Forum. 2011; 15:83-86. | Pdf
33. Rodriguez-Bano J, Navarro MD, Retamar P, Picon E and Pascual A. beta-Lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis. 2012; 54:167-74. | Article | PubMed
34. Sahu M, Sanjith S, Bhalekar P and Keny D. Waging war against extended spectrum Beta lactamase and metallobeta-lactamase producing pathogens- novel adjuvant antimicrobial agent cse1034- an extended hope. J Clin Diagn Res. 2014; 8:DC09-3. | Article | PubMed Abstract | PubMed Full Text
35. Sartelli M. A focus on intra-abdominal infections. World J Emerg Surg. 2010; 5:9. | Article | PubMed Abstract | PubMed Full Text
36. Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJ, Baron EJ, O’Neill PJ, Chow AW, Dellinger EP, Chennujati SR, Gorbach S, Hilfiker M, May AK, Nathens AB, Sawyer RG and Bartlett JG. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis. 2010; 50:133-64. | Article | PubMed
37. Toolkit CRE. CDC-Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE). 2012. | Pdf
38. World Health Organization. The 10 leading causes of death by broad income group. 2008. | Pdf
39. Zavascki AP, Carvalhaes CG, Picao RC and Gales AC. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther. 2010; 8:71-93. | Article | PubMed

Citation:
Bhatia P. Alternative empiric therapy to carbapenems in management of drug resistant gram negative pathogens: a new way to spare carbapenems. Res J Infect Dis. 2015; 3:2.
http://dx.doi.org/10.7243/2052-5958-3-2