Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis

Richard Price intensivist¹, Graeme MacLennan senior statistician², John Glen intensivist³, on behalf of the SuDDICU collaboration

¹ Intensive Care Unit, Royal Alexandra Hospital, Paisley PA2 9PN, UK; ² Health Services Research Unit, Health Sciences Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; ³ Intensive Care Unit, Glan Clwyd Hospital, Bodelwyddan LL18 5UJ, UK

Abstract

Objectives To determine the effect on mortality of selective digestive decontamination, selective oropharyngeal decontamination, and topical oropharyngeal chlorhexidine in adult patients in general intensive care units and to compare these interventions with each other in a network meta-analysis.

Design Systematic review, conventional meta-analysis, and network meta-analysis. Medline, Embase, and CENTRAL were searched to December 2012. Previous meta-analyses, conference abstracts, and key journals were also searched. We used pairwise meta-analyses to estimate direct evidence from intervention-control trials and a network meta-analysis within a Bayesian framework to combine direct and indirect evidence.

Inclusion criteria Prospective randomised controlled trials that recruited adult patients in general intensive care units and studied selective digestive decontamination, selective oropharyngeal decontamination, or oropharyngeal chlorhexidine compared with standard care or placebo.

Results Selective digestive decontamination had a favourable effect on mortality, with a direct evidence odds ratio of 0.73 (95% confidence interval 0.64 to 0.84). The direct evidence odds ratio for selective oropharyngeal decontamination was 0.85 (0.74 to 0.97). Chlorhexidine was associated with increased mortality (odds ratio 1.25, 1.05 to 1.50). When each intervention was compared with the other, both selective digestive decontamination and selective oropharyngeal decontamination were superior to chlorhexidine. The difference between selective digestive decontamination and selective oropharyngeal decontamination was uncertain.

Conclusion Selective digestive decontamination has a favourable effect on mortality in adult patients in general intensive care units. In these patients, the effect of selective oropharyngeal decontamination is less certain. Both selective digestive decontamination and selective oropharyngeal decontamination are superior to chlorhexidine, and there is a possibility that chlorhexidine is associated with increased mortality.

Introduction

The bacterial ecology of the oropharynx of patients in intensive care units undergoes substantial alteration.¹ ² This can lead to ventilator associated pneumonia, other infections, and death. In an attempt to reduce the incidence of these complications, approaches to decontamination include various forms of antibiotic prophylaxis or the use of topical oropharyngeal antiseptic agents (mostly chlorhexidine). Antibiotic prophylaxis can include any combination of oropharyngeal, intragastric, and intravenous antibiotics. There are, however, two main approaches: selective digestive decontamination (SDD) and selective oropharyngeal decontamination (SOD).

Selective digestive decontamination consists of oropharyngeal and gastric application of non-absorbable antibiotics—often polymyxin, tobramycin, and amphoterin—in along with a short course of an intravenous antibiotic, often cefotaxime. Oropharyngeal antibiotics are applied as a paste, usually four times a day, during routine mouth care; gastric antibiotics are administered as a suspension through a nasogastric tube. Surveillance bacteriology, often twice a week, can be used to assess efficacy of decontamination. The choice of therapeutic antibiotics aims to minimise interference with the native anaerobic flora by avoiding agents such as broad spectrum penicillins. Selective oropharyngeal decontamination is the application of the topical antibiotic paste to the oropharynx only.
without enteral or empirical intravenous antibiotics. Chlorhexidine is applied as part of routine mouth care in gel or liquid form up to four times a day. There has been considerable debate about the role of antibiotic prophylaxis, and antibiotic prophylaxis is seldom used in the United Kingdom. Topical oropharyngeal antiseptic agents (usually chlorhexidine) have, by contrast, gained more widespread acceptance and appear as a key recommendation in UK, European, and US guidelines. Nevertheless, interest in this topic remains current.

Numerous meta-analyses of antibiotic and antiseptic prophylaxis have been published over the years. A 2009 Cochrane review suggested that mortality was significantly reduced by selective digestive decontamination. Another review and meta-analysis from 2007 concluded that mortality was unaffected by oropharyngeal antibiotic or antiseptic decontamination. More recent meta-analyses of oropharyngeal antiseptics (mostly chlorhexidine) have focused on the incidence of ventilator associated pneumonia, although some meta-analyses of oropharyngeal chlorhexidine have reported a trend towards increased mortality.

Despite the favourable results seen in meta-analyses of selective digestive decontamination, interpretation should be tempered by the use of standard care as a control group in the contributory trials. Given the likely widespread use of chlorhexidine, any putative mortality advantage of selective digestive decontamination or selective oropharyngeal decontamination needs to be re-defined. As we are not aware of any clinical trials directly comparing selective digestive decontamination or selective oropharyngeal decontamination with topical chlorhexidine, we aimed to use a network meta-analysis to compare the effect of these interventions on mortality. This required us to undertake an updated systematic review looking for randomised controlled trials reporting the effect of selective digestive decontamination, selective oropharyngeal decontamination, and topical chlorhexidine on mortality in adult patients in general intensive care units. We also wanted to update conventional intervention-control meta-analyses of the three interventions in light of any recent studies. We elected not to study the outcome of ventilator associated pneumonia as we consider mortality to be the most robust outcome, and this was the focus of recent large trials of selective digestive decontamination.

Method
Sources of data
We searched Medline, Embase, and the Cochrane Register of Clinical Trials from 1984 until December 2012. We constructed a search strategy around patients in intensive care, intervention with antibiotic or antiseptic prophylaxis, and the outcome of death. The Medline search strategy is shown in the appendix and similar strategies were applied to the Embase and CENTRAL databases. There were no language restrictions. We screened results of the database searches by title and abstract. Given the extent of previous systematic reviews, we reviewed recent meta-analyses (published from 2005 to 2012) for included studies that were missed in database searches. Congress abstracts were searched from 2005 to 2012 for the European Society for Intensive Care Medicine, Society for Critical Care Medicine, Symposium of Intensive Care and Emergency Medicine, and Chest. The contents pages of the journals Intensive Care Medicine, Critical Care Medicine, Chest, Critical Care, American Journal of Respiratory and Critical Care Medicine, Journal of Hospital Infection, and Infection Control and Hospital Epidemiology were reviewed from January 2005 to December 2012. The website controlled-trials.com was used to search registers of clinical trials. We did not search for unpublished studies or contact experts in the field. We wrote to authors if indicated.

Inclusion criteria
We sought prospective randomised controlled clinical trials in adult patients in general intensive care units. We did not stipulate placebo control or blinding. We defined “selective digestive decontamination” as the application of a combination of poorly absorbable antibiotics to the oropharynx and the stomach combined with empirical intravenous antibiotics. “Selective oropharyngeal decontamination” was defined as the application of a combination of poorly absorbable antibiotics only to the oropharynx. “Chlorhexidine” was defined as the application of any concentration of chlorhexidine in any formulation to the oropharynx. The control group must have received only standard care or placebo.

Exclusion criteria
We excluded trials that recruited only children, populations not in intensive care, and specialised populations (such as cardiac surgery and liver transplantation). We excluded trials in which both groups received active topical drugs or in which the control group received empirical intravenous antibiotics. Finally we excluded studies combining oropharyngeal and gastric application of antibiotics or gastric or subglottic application alone from the selective oropharyngeal decontamination meta-analysis.

Quality assessment
We summarised potential biases with the Cochrane risk of bias tool. There are six domains: sequence generation; allocation concealment; blinding; if the outcomes reported were prespecified; completeness of outcome data; and other potential sources of bias. We have also presented information on each study to show potential issues of clinical heterogeneity.

Data extraction
Results were extracted from the included studies, from our own communication with authors, or from previous meta-analyses if intention to treat data had been verified with the original study authors.

Consensus
Two authors (RP, JG) independently performed study inclusion, data extraction, and quality assessment. Disagreement at the stage of abstract screening was resolved by inclusion of the full paper for review. Disagreement at later stages was resolved by discussion. Our approaches to studies with a three arm design are presented in the appendix.

Statistical methods
Intervention-control pairwise meta-analyses
We summarised data from each study with log odds ratios and 95% confidence intervals. This approach was used to allow the inclusion of the study by de Smet and colleagues, which used a cluster randomised crossover design analysed by the authors using multilevel logistic regression. We used the log odds ratios and standard errors that de Smet and colleagues reported and calculated the log odds ratios and standard errors for the remaining studies based on the reported events and sample sizes.
Forest plots are included as a visual aid to interpret the direct evidence. Pairwise meta-analyses were done in Review Manager (RevMan), version 5.0 (Cochrane Collaboration, 2008).

Network meta-analysis
We used a generalised linear modelling framework as outlined in Dias and colleagues to do a network meta-analysis. A “trial level” approach was used, in which the data modelled were the summary log odds ratios and standard errors for each trial as outlined above. All model parameters were estimated within a Bayesian framework with WinBUGS software. We present estimates of treatment effects as odds ratios and 95% central credible intervals (CrI). The credible interval shows the degree of uncertainty around estimated treatment effects.

We also calculated individual estimates of the probability of death for each intervention. These estimates were derived from the model by using a baseline distribution for the probability of death in the control group, in combination with the odds ratio between each intervention and control. We present distributions were used on the necessary parameters: the log odds ratios of intervention procedures versus control and the standard deviation between studies. A run-in period of 50 000 iterations was adequate to achieve convergence, and a further 100 000 samples were taken.

Results
Systematic review
We identified 29 studies as suitable for inclusion (figure 1). Tables 1-3 show the components of the Cochrane risk of bias tool for each intervention. Tables 4-6 show areas of potential clinical heterogeneity between the studies and our data source. Raw outcome data are presented in table A in the appendix.

Intervention-control pairwise meta-analyses
The random effects estimate for selective digestive decontamination compared with control on mortality gave an odds ratio of 0.73 (95% confidence interval 0.64 to 0.84), favouring selective digestive decontamination (fig 2). For selective oropharyngeal decontamination and chlorhexidine the odds ratios were 0.85 (0.74 to 0.97) and 1.25 (1.05 to 1.50), respectively (figs 3 and 4). The only direct evidence for selective digestive decontamination was from a single trial, which gave an odds ratio of 0.97 (0.79 to 1.18). Results are summarised in table 7.

Results of network meta-analyses
The odds ratios (95% credible interval) for mortality for active treatment compared with control were 0.74 (0.63 to 0.86) for selective digestive decontamination, 0.82 (0.62 to 1.02) for selective oropharyngeal decontamination, and 1.23 (0.99 to 1.49) for chlorhexidine (table 7). For the comparison between treatments, the odds ratios were 0.61 (0.47 to 0.78) for selective digestive decontamination compared with chlorhexidine and 0.67 (0.48 to 0.91) for selective oropharyngeal decontamination compared with chlorhexidine. There was uncertainty around the difference between selective digestive decontamination and selective oropharyngeal decontamination. Table 8 shows probabilistic ranking of interventions.

Discussion
Using a network meta-analysis to compare each intervention indirectly, we conclude that both selective digestive decontamination and selective oropharyngeal decontamination are superior to chlorhexidine in preventing death in adults in intensive care. This suggests that the mortality advantage of both these options remains relevant even if chlorhexidine is widely used. Any difference between these treatments is inconclusive, with considerable uncertainty.

Our finding that selective digestive decontamination is associated with a survival benefit in adults in general intensive care units agrees with the conclusions of earlier meta-analyses, but we have now integrated the results of a large cluster randomised crossover trial. Results were similar with both conventional and Bayesian analysis. Selective oropharyngeal decontamination was associated with a reduction in death in the meta-analysis of direct evidence. Contrary to our expectations, use of oropharyngeal chlorhexidine was associated with an increase in mortality in adults in general intensive care units.

Limitations of our study
Despite our inclusion criteria, our results are limited by the inevitable heterogeneity among the included studies (tables 4-6), with some common themes.

Within the chlorhexidine studies, the concentration of chlorhexidine used varied from 0.12% to 2% and the number of daily applications varied from one to four. In addition, the duration of the course of treatment varied and in one study was limited to seven days.

Within the selective digestive decontamination studies, most were not blinded and were not placebo controlled. Of those that were blinded, only one explicitly reported concealment of microbial culture results. We consider that this lack of blinding would have had the least influence on the robust outcome of mortality. We could not find any suggestion of differential treatment of patients in the active treatment group over control patients, although we cannot entirely exclude it. Infected patients were excluded in three studies. There was some variability in the exact antimicrobial regimen used; the influence of different regimens has previously been discussed and has been shown to influence at least infective outcomes.

Two studies differed slightly in their protocols by locally decontaminating blind bowel loops and tracheal stomas and by treating persistent tracheal colonisation with aerosolised polymyxin or amphotericin.

For each included selective digestive decontamination study, the total proportion of patients in the intensive care unit that were included in the trial was generally unclear. The only included study to use a whole unit approach showed a mortality benefit that was greater than that seen in meta-analyses (although problems with this study have been highlighted). Thus the generalisability of these studies to a unit where selective digestive decontamination or selective oropharyngeal decontamination is applied to every patient needs to be considered as selective digestive decontamination can alter the ecology of the unit.

When we considered all studies, there was variability in the minimum predicted ventilator time or stay in the intensive care unit. The proportion of ventilated patients varied from 36% in one study to 100%.

A network meta-analysis rests on the comparability of a common control group. Given the temporal variation (year of publication ranging from 1989 to 2011) and wide geographic representation...
(tables 4-6), there is probably variation among the control groups of the included studies. Control group treatments were generally poorly detailed, although we have identified some variation—for example, the use of topical bicarbonate or potassium permanganate. When other control group treatments were described, they were generally limited to the use of gastric ulcer protection or non-pharmacological mouth care strategies.

When we considered the effect of chlorhexidine on mortality, mortality was not the primary outcome of any of the included studies and a significant increase in mortality was seen in only one of the 11 studies. Additionally, we are aware of one further study of the use of oropharyngeal chlorhexidine that could have fulfilled our inclusion criteria, but we were unable to include it as we could not obtain mortality data.

Implications of this study

In adult patients in general intensive care units, and within the limits of a network meta-analysis, we propose that both selective digestive decontamination and selective oropharyngeal decontamination are superior to chlorhexidine. In keeping with results of earlier studies, we have shown that selective digestive decontamination is associated with reduced mortality. We raise the possibility that oropharyngeal chlorhexidine might be associated with an increase in mortality, and we therefore question whether oropharyngeal chlorhexidine is “safe and effective.” Certainly our findings are at odds with the apparently favourable effects of chlorhexidine on the incidence of ventilator associated pneumonia. Although the attributable mortality of this might be small. We consider that the role of oropharyngeal chlorhexidine in these patients needs to be explored further. We agree that it would be appropriate to undertake additional prospective studies comparing selective digestive decontamination, selective oropharyngeal decontamination, and chlorhexidine as barriers to implementation or any further trials have been explored.

We thank Amanda Wright for librarian services, Silvia Hernandez for translation services and obtaining additional information from a study author, and Artur Pryn. We also thank Angela Berry, Cindy Munro, and Frank Scannapieco for providing additional data; and Fernando Bellissimo Rodrigues, Michele Darby, Mirelle Koeman, Mercedes Palomar, and Miguel Sanchez Garcia for providing additional information. Contributors: RP and GM designed the study, RP and JG did the literature search, reviewed studies for inclusion, assessed the included studies, and extracted data. GM analysed the data. All three authors wrote, reviewed, and then approved the manuscript. RP is guarantor.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coiDisclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Not required.

Data sharing: No additional data available.

Transparency: The lead author (the manuscript’s guarantor) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

1 Johanson WG, Pierce AK, Sanford JP, Thomas GD. Nosocomial respiratory infections with Gram negative bacilli: the significance of colonization of the respiratory tract. Ann Intern Med 1972;77:701-6.

2 Garroutte-Orgeas M, Chevoir S, Arlet G, Marie O, Rouveau M, Popoli N, et al. Oropharyngeal or gastric colonization and nosocomial pneumonia in adult intensive care unit patients a prospective study based on genomic DNA analysis. Am J Resp Crit Care Med 1997;154:167-59.

3 De Smet AM, Bonten MJ, Kuytmans JA. For whom should we use selective decontamination of the digestive tract? Clin Exp Immunol 2003;132:211-7.

4 Bonten MJ, Bruin-Buisson C, Weüstampa RA. Selective decontamination of the digestive tract: to stimulate or stiffle. Intensive Care Med 2003;29:672-6.

5 Van Saene HR, Peeters AJ, Ramsay D, Baxby D. All great truths are iconoclastic: selective decontamination of the digestive tract moves from heresy to level 1 truth. Intensive Care Med 2003;29:677-90.

6 Kufel NH. Selective digestive decontamination should not be routinely employed. Chest 2003;123:464-85.

7 Bastin AJ, Ryanna KB. Use of selective decontamination of the digestive tract in United Kingdom intensive care units. Anaesthesia 2009;64:46-9.

8 National Institute for Health and Clinical Excellence. Tuberculosis primary care patient safety guidelines for treating respiratory tract infections in adults. www.nice.org.uk/nicemedia/pdf/ PS0002Guidance.pdf

9 Rello J, Lode H, Cornaglia G, Masterson R, A European care bundle for the prevention of ventilator associated pneumonia. Intensive Care Med 2010;36:773-80.

10 How-to Guide: prevent ventilator-associated pneumonia. Institute for Healthcare Improvement. 2012. www.ihi.org.

11 Waiden AP, Bonten MJ, Wise MP. Should selective digestive decontamination be used in critically ill patients? BMJ 2012;345:e6657.

12 Liberali A, D’Amico R, Pintof F, Torri L, Parmelli E. Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. Cochrane Database Syst Rev 2009;4:CD000022.

13 Chan EY, Rueli A, Meade MO, Cook DJ. Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ 2007;334:889-93.

14 Laebee SO, Van de Veyer K, Brusselaers N, Vogelaers D, Bilo SJ. Prevention of ventilator-associated pneumonia with oral antiseptics: a systematic review and meta-analysis. Lancer Infect Dis 2011;11:845-54.

15 Plegge C, Blanco A, Flota D, Notte GOA, Pavía M. Prevention of ventilator-associated pneumonia, mortality and all intensive care unit acquired infections by topically applied antimicrobial or antiseptic agents: a meta-analysis of randomized controlled trials in intensive care units. Crit Care 2011;15:R115.

16 Carvajal C, Pula B, Díaz E, Lisboa G, Alvarado M, van der Werf TS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 2009;360:20-31.

17 Chiébicki MP, Sattar N. Topical chlorhexidine for prevention of ventilator-associated pneumonia: a meta-analysis. Crit Care Med 2007;35:595-602.

18 Kolá A, Gašmeier P. Efficacy of oral chlorhexidine in preventing lower respiratory tract infections. Meta-analysis of randomized controlled trials. J Hosp Infect 2007;67:207-16.

19 Pineda LA, Saliba RG, El Soh AA. Effect of oral decontamination with chlorhexidine on the incidence of nosocomial pneumonia: a meta-analysis. Crit Care Med 2006;10:R35.

20 Schutzh M, Haas LE. Antibiotics or probiotics as preventive measures against ventilator-associated pneumonia: a literature review. Crit Care 2011;15:R18.

21 Silvestri L, van Saene HKF, Zandstra DF, Marshall JC, Gregori D, Gullo A. Impact of selective decontamination of the digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 2003;362:1011-6.

22 De Smet AM, Kuytmans JA, Cooper BE, MacIntyre MN, Bonus RV, de van der Weij TS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 2009;360:20-31.

23 Chiébicki MP, Sattar N. Topical chlorhexidine for prevention of ventilator-associated pneumonia: a meta-analysis. Crit Care Med 2007;35:595-602.

24 Kolá A, Gašmeier P. Efficacy of oral chlorhexidine in preventing lower respiratory tract infections. Meta-analysis of randomized controlled trials. J Hosp Infect 2007;67:207-16.

25 Pineda LA, Saliba RG, El Soh AA. Effect of oral decontamination with chlorhexidine on the incidence of nosocomial pneumonia: a meta-analysis. Crit Care Med 2006;10:R35.

26 Schutzh M, Haas LE. Antibiotics or probiotics as preventive measures against ventilator-associated pneumonia: a literature review. Crit Care 2011;15:R18.

27 Silvestri L, van Saene HKF, Zandstra DF, Marshall JC, Gregori D, Gullo A. Impact of selective decontamination of the digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Crit Care Med 2003;31:530-7.

28 Van Till JW, van Ruler O, Lamme B, Weber RJ, Boermeester MA. Single-drug therapy or selective decontamination of the digestive tract as antifungal prophylaxis in critically ill patients: a systematic review. Crit Care 2007;11:R126.

29 Dias S, Welton NJ, Sutton AJ, Ades AE. A generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. NICE DSU Technical Support Document 2. 2012. www.nicedsu.org.uk

30 Lunn DJ, Thomas A, Best N, Spiegelhalter DJ. WinBUGS—A Bayesian modeling framework: concepts, structure, and extensibility. Statistics Computing 2000;10:325-37.

31 Aerts JA, van Dalen R, Claeseni HA, Faiske J, van der Velden HJ, Volland R. Antibiotic prophylaxis of respiratory tract infection in mechanically ventilated patients: a prospective, blinded, randomised trial of a novel regimen. Chest 1991;100:783-91.

32 Blair P, Fowlers BJ, Lowey K, Webb A, Armstrong T, Stephenson M. Effectiveness of selective decontamination of the digestive tract in a mixed intensive care unit. Surgery 1991;110:303-10.

33 Boldt JP, Sadler DL, Stewart WA, Wood DJ, Zierck W, Snodgrass KR. Reduction of nosocomial respiratory tract infection in the multiple trauma patient requiring mechanical ventilation by selective parenteral and enteral antimicrobial regimen (SPEAR) in the intensive care unit. XVI Congress of Chemotherapy. 1994;10:937-40.

34 Cockerill FR, Muller SR, Arnott JP, Marsh HM, Farnell MB, Mupha P, et al. Prevention of infection in critically ill patients by selective decontamination of the digestive tract. J Hosp Infect 1992;19:209-23.

35 Jacob S, Fowkeser JE, Roberts SE. Effectiveness of selective decontamination of the digestive tract in an ICU with a policy encouraging a low gastric pH. Clin Infective Disease 1992;15:52-8.

36 Krueger WA, Lenhart FP, Neeser G, Ruckdeschel G, Schreckhase H, Eisenth H-J, et al. Influence of combined intravenous and topical antibacterial prophylaxis on the incidence of infections, organ dysfunctions and mortality in critically ill surgical patients: a prospective.

Repository: No commercial reuse: See rights and reprints http://www.bmj.com/permissions Subscribe: http://www.bmj.com/subscribe
What is already known on this topic
Numerous studies and meta-analyses have shown a mortality benefit with use of selective digestive decontamination in patients in intensive care.

What this paper adds
This network meta-analysis showed that both selective digestive decontamination and selective oropharyngeal decontamination confer a mortality benefit when compared with chlorhexidine in adults in general intensive care units.

In these patients, selective digestive decontamination was associated with reduced mortality, as in earlier meta-analyses, but the current analysis integrated a large recent cluster crossover study.

It is possible that use of chlorhexidine is associated with an increase in mortality.

Stratified, randomised, double-blind placebo-controlled clinical trial. Am J Respir Crit Care Med 2002;166:1029-37.
37 Pakoman M, Alvarez-Lerma F, Jordi R, Bermejo J. Prevention of nosocomial infection in mechanically ventilated patients: selective digestive decontamination versus sucralfate. Clin Infective Care 1997;2:228-35.
38 Rocha LA, Martin MJ, Pita S, Paz J, Seco C, Margarino L, et al. Prevention of nosocomial infection in critically ill patients by selective decontamination of the digestive tract: a randomised, double-blind, placebo-controlled trial. Intensive Care Med 1992;18:398-404.
39 Sanchez Garcia M, Cambriero Goraleja JA, Lopez Diaz J, Gerda Cerdas E, Rubio Blasco J, Gomez Aguina MA, et al. Effectiveness and cost of selective decontamination of the digestive tract in critically ill intubated patients: a randomised, double-blind, placebo-controlled multicentre trial. Am J Respir Crit Care Med 1999;159:908-18.
40 Stoutenbeek CP, van Saene HK, Little RA, Whitehead A. The impact of oral health and 0.2% chlorhexidine oral gel on the prevalence of nosocomial infections in surgical intensive care patients: a randomized placebo controlled study. Intensive Care Med 2007;33:261-70.
41 Ulrich C, Harwick-de Weard JF, Bakker NC, Jazz K, Doornbos L, de Ridder VA. Selective decontamination of the digestive tract with norfloxacin in the prevention of ICU acquired infections: a prospective randomised study. Intensive Care Med 1989;15:424-31.
42 Verwaest C, Verhaegen J, Ferdinande P, Schetz M, van den Berghe G, Verbist L, et al. Randomised, controlled trial of selective digestive decontamination in 600 mechanically ventilated patients in a multidisciplinary intensive care unit. Crit Care Med 1997;25:63-71.
43 Winter R, Humphreys H, Pick A, MacCormick AP, Williams JM, Spellberg DC. A controlled trial of selective decontamination of the digestive tract in intensive care and its effect on nosocomial infection. J Antimicrob Chemother 1992;30:73-87.
44 Bergmansen DC, Bonten MJ, Gallard CA, Pralig JG, van der Geest S, van Tiel FH, et al. Prevention of ventilator-associated pneumonia by oral decontamination: a prospective, randomised, double-blind, placebo-controlled study. Am J Crit Care Med 2001;164:382-9.
45 Pugin J, Aukenahler R, Lew DP, Suter PM. Oropharyngeal decontamination decreases incidence of ventilator-associated pneumonia. JAMA 1991;265:2704-10.
46 Rico F, Maslin B, Saeco Valiente A, Galante A, Coles Camarero P, Aguilar F. Prevention of ventilator associated pneumonia (VAP) by oral decontamination (CD). Prospective, randomised, double-blind, placebo-controlled study. Proceedings of the American Thoracic Society 2006;A820.
47 Bellostasso-Rodrigues F, Bellostasso-Rodrigues WT, Viana JM, Teixeira GC, Niconili E, Auxiliadora-Martins M, et al. Effectiveness of oral rinse with chlorhexidine in preventing nosocomial respiratory tract infections among intensive care unit patients. Infect Control Hosp Epidemiol 2009;30:926-8.
48 Berry AM, Davidson PM, Masters J, Rolls K, Olterton R. Effects of three approaches to standardized oral hygiene to reduce bacterial colonization and ventilator associated pneumonia in mechanically ventilated patients: a randomised controlled trial. Int J Nursing Stud 2011;48:681-8.
49 Cabro T, Marcan D, Husadovickov I, Sirklin-Subij J, Bosnjak D, Sostan-Cnek S, et al. The impact of oral health and 0.2% chlorhexidine oral gel on the prevalence of nosocomial infections in surgical intensive care patients: a randomized placebo controlled study. Wien Klin Wochenschr 2010;122:397-404.
50 Fourrier F, Cau-Pottier E, Boutigny H, Roussel-Delvallez M, Jourdain M, Chopin C. Effects of dental plaque antiseptic decontamination of bacterial colonization and nosocomial infections in critically ill patients. Intensive Care Med 2000;26:1298-47.
51 Fourrier F, Dubois D, Pronnier P, Herbecq P, Loryo O, Desmettre T, et al. Effect of gingival and dental plaque antiseptic decontamination on nosocomial infections acquired in the intensive care unit: a double-blind placebo-controlled multicenter study. Crit Care Med 2003;31:1728-35.
52 Koeman M, van der Ven AJ, Hak E, Joore KC, Kaaijager K, de Smet AM, et al. Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia. Am J Respir Crit Care Med 2006;173:1348-55.
53 MacNaughton PD, Bailey J, Dornin N, Brantfield P, Williams A, Rowsewell H. A randomised controlled trial assessing the efficacy of oral chlorhexidine in ventilated patients. Intensive Care Med 2004;30:512.
54 Munro CL, Grap MJ, Jones DJ, McIlraith DK, Sessler CN. Chlorhexidine, toothbrushing and preventing ventilator associated pneumonia in critically ill adults. Am J Crit Care Med 2009;18:428-36.
55 Paxencha NB, Gangayach N, Krishnan A, Kothari VM, Karnataka D. Oropharyngeal cleansing with 0.2% chlorhexidine for prevention of nosocomial pneumonia in critically ill patients. Curr Med Res Opin 2009;25:1515-6.
56 Stannappacca FP, Yu J, Raghavendra K, Vacara A, Owens SJ, Wood K, Mykle JM. A randomized trial of chlorhexidine gluconate on oral bacterial pathogens in mechanically ventilated patients. Crit Care Med 2009;37:R117.
57 Tantraporn H, Merkhoarenpong C, Jauyingek S, Thamkritik V. Randomised controlled trial and meta-analysis of oral decontamination with 2% chlorhexidine solution for the prevention of ventilator associated pneumonia. Infect Control Hospital Epidemiology 2008;29:131-4.
58 Van Saene HK, Stoutenbeek CP, Stoker JK. Selective decontamination of the digestive tract in the intensive care unit: current status and future prospects. Crit Care Med 1992;20:691-703.
59 Verbrugh HA. Selective decontamination of digestive tract in intensive care. Lancet 2003;362:2117-8.
60 De Jonge E, Schultz M, Spanjaard L, Bossuyt PM, Kesslag R, Selective decontamination of digestive tract in intensive care: an update. Lancet 2003;362:2119-20.
61 Bonten MJ, Gallard CA, Johanson WG, van Tiel FH, Smeets HG, van der Geest S, et al. Colonisation in patients receiving and not receiving topical antinocortic prophylaxis. Am J Respir Crit Care Med 1999:160:1332-40.
62 Humphreys H, Winter R, Pilk A. The effect of selective decontamination of the digestive tract on gastrointestinal enterococcal colonisation in ITU patients. Intensive Care Med 1992:18:459-63.
63 Tad Y, Souiedat A, Tehrani H, Visconte E, Bakos I, El Kossi G, et al. Efficacy of chlorhexidine oral decontamination in the prevention of ventilator-associated pneumonia. Chest 2007;132:499a.
64 Bekker M, Timist J, Vansleefand S, Duyepet D, Vesin A, Garroutte-Orgeais M, et al. Cost-benefit analysis of selective digestive decontamination in ventilated patients. Crit Care Med 2009;37:1333-9.
65 Oostdijk EA, Wittekamp BH, Brun-Buisson C, Bonten MJ. Selective decontamination in European intensive care patients. Intensive Care Med 2012;38:533-8.
66 Cuthbertson BH, Francis J, Campbell MK, MacIntyre L, Seppelt I, Grinshaw J. A study of the perceived risks, benefits and barriers to the use of SDD in adult critical care units (the SuDUCU study). Trials 2010;11:117.

Accepted: 03 March 2014

Cite this as: BMJ 2014;348:g2197

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/.

No commercial reuse: See rights and reprints http://www.bmj.com/permissions Subscribe: http://www.bmj.com/subscribe
Tables

Table 1 Methodological aspects of included trials on effect of selective digestive decontamination (SDD) for prevention of death in adults in intensive care

Adequate sequence generation	Allocation concealment	Blinding	Outcome prespecified	Incomplete outcome data addressed	Other bias
Aerdtz	Yes	No	Per protocol mortality reported in published paper	Intention to treat analysis possible from previous communication with authors*	—
Blair	Unclear	No	Mortality reported	Intention to treat analysis possible from data provided	—
Boland	Yes*	Unclear	Yes	Mortality not reported	—
Cockerill	Yes	Yes	No	Study powered for mortality. Mortality reported	Active and control ICUs, potential for other differences in care
De Jonge	Yes	Yes	No	Study powered for mortality. Mortality reported	—
De Smet	Yes	Yes	No	Study powered for mortality. Mortality reported	Statistical correction of baseline differences discussed
Jacobs	Unclear	Yes	No	Mortality reported	Uncorrected relevant baseline imbalance
Kreuger	Yes	Yes	Yes	Mortality reported	—
Palomar	Yes	Yes	No	Per protocol mortality reported in published paper	—
Rocha	Yes	Yes	Yes	Per protocol mortality reported in published paper	—
Sanchez-Garcia	Yes	Yes	Yes	Mortality defined secondary endpoint. Mortality reported	—
Stoutenbeek	Yes	Yes	No	Mortality primary endpoint. Mortality reported	Minor baseline imbalances.
Ulrich	Unclear	Yes	No	Mortality reported (incomplete)	—
Verwaest	Yes	No	Mortality a defined endpoint. Mortality reported	—	
Winter	Yes	Yes	No	Mortality reported	—

Information taken from Cochrane or Chan after their correspondence with authors.
Table 2 | Methodological aspects of included trials on effect of selective oropharyngeal decontamination (SOD) for prevention of death in adults in intensive care

Bergmans*	De Smet*	Pugin*	Rios*		
Adequate sequence generation	Allocation concealment	Blinding	Outcome prespecified	Incomplete outcome data addressed	Other bias
Unclear	Yes	Yes	Mortality defined secondary endpoint. Mortality reported	226/245 patients analysed	—
Yes	Yes	No	Study powered for mortality. Mortality reported	Adjusted 28 day mortality used: 1979/1990 in standard care; 1886/1904 in SOD	Statistical correction of baseline differences discussed
Unclear	Yes*	Yes	Per protocol mortality reported in published paper	Intention to treat analysis possible from previous communication with authors*	—
Unclear	Unclear	Yes	Per protocol mortality reported in published paper	96/116 patients analysed	Published only in abstract form

*Information taken from Cochrane or Chan after their correspondence with authors.
Table 3 Methodological aspects of included trials on effect of topical oropharyngeal chlorhexidine for prevention of death in adults in intensive care

Method	Adequate sequence generation	Allocation concealment	Blinding	Outcome prespecified	Incomplete outcome data addressed	Other bias
Bellissimo-Rodrigues et al.	Unclear	Yes	Yes	Mortality a defined secondary endpoint. Mortality reported	194/200 patients analysed. Reasons for exclusions discussed	—
Berry et al.	Yes	Yes	No	Mortality not reported	Intention to treat data obtained from author	—
Cabov et al.	Yes	Unclear	Yes	Mortality reported	Intention to treat analysis performed	—
Fourrier 2000	Yes	Unclear	Partial	Mortality reported	Intention to treat analysis performed	—
Fourrier 2005	Unclear	Yes	Yes	Mortality a defined secondary endpoint. Mortality reported	Intention to treat analysis performed	Censored at 28 days
Koeman et al.	Yes	Unclear	Yes	Mortality defined secondary endpoint. Mortality reported as hazard ratio only	Intention to treat analysis possible from previous communication with authors¹¹	—
MacNaughton et al.	Unclear	Unclear	Yes	Mortality not reported	Unclear	Published only in abstract form
Munro et al.	Yes	Unclear	No	Mortality reported (subgroup of total population)	Intention to treat data obtained from author	Stopped intervention at day 7
Panchabhai et al.	Unclear	Unclear	No	Mortality a defined secondary endpoint. Per protocol mortality reported	471/512 patients analysed. Reasons for exclusions discussed	—
Scannapieco et al.	Yes	Yes	Yes	Mortality a defined secondary endpoint. Mortality reported	Intention to treat data obtained from author	Censored at 21 days
Tantipong et al.	Unclear	Unclear	No	Mortality reported	Intention to treat analysis performed	—

^{*Information taken from Cochrane¹⁰ or Chan¹¹ after their correspondence with authors.}
Study	Topical drugs	Intravenous drugs	Control group	Accrual period	Population	Place study undertaken	Projected ventilator or ICU time	Timing of outcome
Aerds¹⁰	Polymyxin, Norfloxacin, Ampicillin	Cefotaxime 500 mg TDS/5 days	No antibiotic prophylaxis	May 1986-Sep 1987	Nijmegen, Netherlands	>5 days of mechanical ventilation	ICU discharge	
Blair²⁰	Polymyxin, Tobramycin, Amphotericin	Cefotaxime 50 mg/kg/day/4 days	Standard antibiotic therapy	Sep 1988-Jan 1990	Belfast, UK	>48 hr in ICU	ICU discharge	
Boland⁴⁰	Polymyxin, Tobramycin, Nystatin	Cefotaxime 5 days	Placebo	Not specified	Multiple trauma, all ventilated	>5 days intubated	ICU discharge	
Cockerill⁴⁰	Polymyxin, Gentamicin, Nystatin	Cefotaxime 1 g TDS/3 days	No antibiotic prophylaxis	1986-1989	Rochester, MN, US	>3 days in ICU	ICU discharge	
De Jonge⁴⁰	Polymyxin, Tobramycin, Amphotericin	Cefotaxime 1 g QDS/4 days, or none.	No antibiotic prophylaxis	May 2004-Jul 2006	Multiple sites (13), Netherlands	>48 hr of mechanical ventilation or 3 days in ICU	ICU discharge	
De Smet⁴⁰	Polymyxin, Tobramycin, Amphotericin	Cefotaxime 1 g QDS/4 days	No antibiotic prophylaxis	Sep 1999- Dec 2001	Amsterdam, Netherlands	>48 hr of mechanical ventilation or 3 days in ICU	ICU discharge	
Jacobs⁴⁰	Polymyxin, Tobramycin, Amphotericin	Cefotaxime 50 mg/kg/day/4 days	Normal management, Low gastric pH encouraged.	July 1989-Aug 1990	Cardiff, UK	>3 days in ICU	Unclear	
Kreuger⁴⁰	Polymyxin, Gentamicin (Vancomycin & Amphotericin)	Ciprofloxacin 400 mg BD/4 days	Placebo	2.5 yr, dates not given (published 2002)	2 sites, Tübingen, Germany	>48 hr in ICU	ICU discharge	
Palomar⁴⁰	Polymyxin, Tobramycin, Amphotericin	Cefotaxime 1 g TDS/4 days	No antibiotic prophylaxis	July 1989- July 1991	Multiple sites (10), Catalonia, Spain	>4 days of mechanical ventilation	ICU discharge	
Rocha⁴⁰	Polymyxin, Tobramycin, Amphotericin	Cefotaxime 2 g TDS/4 days	Placebo	14 months, dates not given (published 1992)	La Coruna, Spain	>3 days of mechanical ventilation and > 5 days ICU stay	ICU discharge	
Sanchez-Garcia⁴⁰	Polymyxin, Gentamicin, Amphotericin	Ceftriaxone 2 g OD/3 days	Placebo	Not stated (published 1998)	Multiple sites (5), Madrid, Spain	>48 hr of intubation	ICU discharge	
Stoutenbeek⁴⁰	Polymyxin, Tobramycin, Amphotericin	Cefotaxime 1 g QDS/4 days	Standard antibiotic therapy for each centre	Oct 1991-June 1994	Blunt multi trauma, all ventilated	Not a criterion	ICU discharge or up to 2 weeks following ICU discharge	
Ulrich⁴⁰	Polymyxin, Norfloxacin, Ampicillin	Trimethoprim 500 mg OD/3 days	Appropriate perioperative prophylaxis	Oct 1986-Sep 1987	Hague, Netherlands	>5 days in ICU	ICU discharge	
Verwaest⁴⁰	Ofloxacin, Amphotericin	Ofloxacin 200 mg OD/4 days	Conventional antibiotic policy	19 months, dates not given (published 1997)	Leuven, Belgium	>48 hr of mechanical ventilation	ICU discharge	
Winter⁴⁰	Polymyxin, Tobramycin, Amphotericin	Cefazidime 50 mg/kg/day/3 days	Nothing specified	22 months, dates not given (published 1992)	Bristol, UK	>48 hr in ICU	Hospital discharge	
Study	Topical drugs	Control group	Accrual period	Population	Place study undertaken	Projected ventilator or ICU time	Timing of outcome	
-------	---------------	---------------	----------------	------------	------------------------	-------------------------------	------------------	
Bergmans⁴⁴	Gentamicin, Polymyxin, Vancomycin / QDS	Placebo	Sep 1994-Dec 1996	Mixed ICU, all ventilated	Multiple sites (3), Netherlands	>48 hr of mechanical ventilation	ICU discharge	
Pugin⁴⁵	Polymyxin, Neomycin, Vancomycin / 4 hourly	Placebo	Apr-Nov 1989	Surgical ICU, all ventilated	Geneva, Switzerland	>48 hr of intubation	Hospital discharge	
Rios⁴⁶	Polymyxin, Gentamicin / TDS	Placebo	Uncertain	Uncertain	Buenos Aires, Argentina	>4 days of mechanical ventilation	Unclear	
Study	Chlorhexidine	Control group	Accrual period	Population	Place study undertaken	Projected ventilator or ICU time	Timing of outcome	
-------	---------------	---------------	----------------	------------	------------------------	---------------------------------	------------------	
Bellissimo-Rodrigues⁵⁵	0.12% solution TDS	Placebo	Mar 2006-Feb 2008	Mixed ICU, 69% ventilated	Sao Paulo, Brazil	>48 hr in ICU	ICU discharge	
Berry²⁵	0.2% solution BD	Either water or bicarbonate mouth rinses	Uncertain, 15 month recruitment period	Mixed ICU, 100% ventilated	Sydney, Australia	Not specified	ICU discharge	
Cabov⁵⁶	0.2% gel TDS	Placebo	Mar 2008-Dec 2008	Surgical ICU, 100% ventilated	Zagreb, Croatia	>3 days in ICU and requiring mechanical ventilation	ICU discharge	
Fourrier 2000⁵⁷	0.2% gel TDS	Bicarbonate mouth rinses	June 1997-July 1998	Mixed ICU, 100% ventilated	Lille, France	>5 days in ICU and requiring mechanical ventilation	Unclear	
Fourrier 2005⁵⁸	0.2% gel TDS	Placebo	Jan 2001-Sep 2002	Mixed ICU, 100% ventilated	Lille, France	>5 days in ICU and requiring mechanical ventilation	28 days	
Koeman⁵⁹	2% gel QDS	Placebo	Feb 2001-Mar 2003	Multiple sites (7), Netherlands	Multiple sites (6), France	>48 hr of mechanical ventilation	ICU discharge	
MacNaughton⁶⁰	0.2% BD	Placebo	Uncertain	Mixed ICU, 100% ventilated	Plymouth, UK	>48 hr of mechanical ventilation	ICU discharge	
Munro⁶¹	0.12% solution BD	Either usual care or toothbrushing groups	Uncertain	Mixed ICU, 100% ventilated	Richmond, VA, US	Not specified	Hospital discharge	
Panchabhai⁶²	0.12% solution BD	0.01% potassium permanganate	Uncertain, 8 month recruitment period	Mediconeuro ICU, 171/471 ventilated	Mumbai, India	>48 hr in ICU	ICU discharge	
Scannapieco⁶³	0.12% solution OD or BD	Placebo	Mar 2004-Nov 2007	Trauma ICU, 100% ventilated	Buffalo, NY, US	Not specified	21 days	
Tantipong⁶⁴	2% solution QDS	Normal saline	Jan 2006-Mar 2007	Surgical or medical ICU or general medical ward, 100% ventilated	Bangkok, Thailand	Not specified	Unclear	
Table 7 | Results of meta-analyses of effect of selective digestive decontamination (SDD), selective oropharyngeal decontamination (SOD), and topical oropharyngeal chlorhexidine for prevention of death in adults in intensive care

Comparison	OR (95% CI/CrI)	Direct evidence	Mixed (direct and indirect) evidence
Chlorhexidine v control	1.25 (1.05 to 1.50)	1.23 (0.99 to 1.49)	
SDD v control	0.73 (0.64 to 0.84)	0.74 (0.63 to 0.86)	
SOD v control	0.85 (0.74 to 0.97)	0.82 (0.62 to 1.02)	
SDD v chlorhexidine	—	0.61 (0.47 to 0.78)	
SOD v chlorhexidine	—	0.67 (0.48 to 0.91)	
SDD v SOD	0.97 (0.79 to 1.18)	0.91 (0.70 to 1.19)	
Table 8 Probabilistic ranking of interventions and estimated probability of death in adults in intensive care treated with selective digestive decontamination (SDD), selective oropharyngeal decontamination (SOD), or topical oropharyngeal chlorhexidine

Intervention	Rank	Estimated probability of death	Probability of intervention being best
SDD	1	0.213	0.740
SOD	2	0.228	0.260
Control	3	0.266	<0.001
Chlorhexidine	4	0.305	<0.001
Figures

Fig 1 Inclusion of studies in analysis of effect of selective digestive decontamination (SDD), selective oropharyngeal decontamination (SOD), and topical oropharyngeal chlorhexidine for prevention of death in adults in intensive care

Fig 2 Forest plot of intervention-control pairwise meta-analysis of selective digestive decontamination v control in adult patients in intensive care
Fig 3 Forest plot of intervention-control pairwise meta-analysis of selective oropharyngeal decontamination v control in adult patients in intensive care

Fig 4 Forest plot of intervention-control pairwise meta-analysis of chlorhexidine v control in adult patients in intensive care