The challenge of improving soil fertility in yam cropping systems of West Africa: a review

Emmanuel Frossard1*, Beatrice A. Aighewi2, Severin Aké3, Dominique Barjolle1, Philipp Baumann1, Thomas Bernet4, Dao Daouda5, Lucien Diby6, Anne Floquet7, Valerie K. Hgaza5, Léa J. Ilboudo6, Delwendé I. Kiba1,8, Roch L. Mongbo7, Hassan B. Nacro9, Gian L. Nicolay4, Esther Oka7, Florence Y. Ouattara7, Nestor Pouya9, Johan Six1, Isabelle Orokya Traoré9

1ETH Zurich, Switzerland, 2International Institute for Tropical Agriculture, Nigeria, 3Université Félix Houphouët Boigny, Côte d'Ivoire, 4Research Institute of Organic Agriculture, Switzerland, 5Swiss Centre for Scientific Research, Côte d'Ivoire, 6CIRAD, Côte d'Ivoire, 7Laboratoire d’Analyse des Dynamiques Sociales et du Développement, Université d’Abomey-Calavi, Benin, 8Institute of Environment and Agricultural Research (INERA), Burkina Faso, 9Université Nazi Boni, Burkina Faso

Submitted to Journal:
Frontiers in Plant Science

Specialty Section:
Agroecology and Land Use Systems

Article type:
Mini Review Article

Manuscript ID:
304872

Received on:
22 Aug 2017

Frontiers website link:
www.frontiersin.org
Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author contribution statement

EF led the review and all co-authors made substantial contributions to the conception, development and revision of this review during the various workshops of the YAMSY project. All coauthors approved the final version and agreed to be accountable for all aspects of this work.

Keywords

Dioscorea spp, soil fertility, interdisciplinarity, transdisciplinarity, Innovation Platforms

Abstract

Word count: 248

Yam (Dioscorea spp) is a tuber crop grown throughout the tropics for food security, income generation, and traditional medicine. This crop has also a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand of the past has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha\(^{-1}\), which is only 20\% of the yield potential. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are more and more degraded. The aims of this review were to introduce yam as an orphan crop, show the importance of soil fertility for yam production, discuss the potential of integrated soil fertility management, highlight the challenge for adoption of innovations in yam systems, present the concept of innovation platforms to foster collaborative innovation design and provide recommendations for future research. This review shows that the development of acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from problem identification, to the co-design of innovations and their evaluation. Finally, this research should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts.

Funding statement

This work has been done during the YAMSYS project (www.yamsys.org) funded by the food security module of the Swiss Programme for Research on Global Issues for Development (www.r4d.ch) (SNF project number: 400540_152017 / 1).
The challenge of improving soil fertility in yam cropping systems of West Africa: a review

Emmanuel Frossard¹, Beatrice Aighewi², Sévérin Aké³, Dominique Barjolle⁴, Philipp Baumann⁴, Thomas Berner⁵, Daouda Dao⁶, Lucien N Diby⁷, Anne Floquet⁸, Valérie K Hgaza⁶, Léa J Ilboudo⁷, Delwende I Kiba¹,⁹, Roch L Mongbo⁸, Hassan B Nacro¹⁰, Gian Nicolay⁵, Esther Oka⁸, Yabile F Ouattara⁸, Nestor Pouya¹⁰, Johan Six⁴, Orokya I Traoré¹⁰

¹Group of Plant Nutrition, Institute of Agricultural Sciences, ETH Zurich, Lindau, Switzerland
²International Institute for Tropical Agriculture, Abuja, Nigeria
³Laboratory of Plant Physiology, Université Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
⁴Group of Sustainable Agroecosystems, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
⁵Research Institute of Organic Agriculture, Frick, Switzerland
⁶Centre Suisse de Recherches Scientifiques, Abidjan, Côte d’Ivoire
⁷Côte d’Ivoire Country Programme, World Agroforestry Centre, Abidjan, Côte d’Ivoire
⁸Laboratoire d'Analyse des Dynamiques Sociales et du Développement, Université d'Abomey-Calavi, Benin
⁹Institut de l'Environnement et Recherches Agricoles, Ouagadougou, Burkina Faso
¹⁰Institut du Développement Rural, Université Nazi Boni, Bobo Dioulasso, Burkina Faso

* Correspondence:
Emmanuel Frossard
emmanuel.frossard@usys.ethz.ch

Running title: Soil Fertility Management in Yam (5 words, max allowed 5 words)

Keywords: 8 words (max 8 words)

Number of words in the abstract: 248 (max allowed 250)

Number of words in the main body of the text: 2999 (max allowed 3000)
The challenge of improving soil fertility in yam cropping systems of West Africa: a review

Emmanuel Frossard1*, Beatrice Aighewi2, Sévérin Aké3, Dominique Barjolle4, Philipp Baumann5, Thomas Bernet5, Daouda Dao6, Lucien N Diby7, Anne Floquet8, Valérie K Hgaza6, Léa J Ilboudo7, Delwende I Kiba1,9, Roch L Mongbo8, Hassan B Nacro10, Gian Nicolay5, Esther Oka8, Yabile F Ouattara8, Nestor Pouya10, Johan Six4, Orokya I Traoré10

1Group of Plant Nutrition, Institute of Agricultural Sciences, ETH Zurich, Lindau, Switzerland
2International Institute for Tropical Agriculture, Abuja, Nigeria
3Laboratory of Plant Physiology, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
4Group of Sustainable Agroecosystems, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
5Research Institute of Organic Agriculture, Frick, Switzerland
6Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
7Côte d'Ivoire Country Programme, World Agroforestry Centre, Abidjan, Côte d'Ivoire
8Laboratoire d'Analyse des Dynamiques Sociales et du Développement, Université d'Abomey-Calavi, Benin
9Institut de l'Environnement et Recherches Agricoles, Ouagadougou, Burkina Faso
10Institut du Développement Rural, Université Nazi Boni, Bobo Dioulasso, Burkina Faso

* Correspondence:
Emmanuel Frossard
emmanuel.frossard@usys.ethz.ch

Keywords: Dioscorea spp, soil fertility, interdisciplinarity, transdisciplinarity, innovation platforms

Abstract

Yam (Dioscorea spp) is a tuber crop grown throughout the tropics for food security, income generation, and traditional medicine. This crop has also a high cultural value for some of the groups growing it. Most of the production comes from West Africa where the increased demand of the past has been covered by enlarging cultivated surfaces while the mean yield remained around 10 t tuber ha⁻¹, which is only 20% of the yield potential. In West Africa, yam is traditionally cultivated without input as the first crop after a long-term fallow as it is considered to require a high soil fertility. African soils, however, are more and more degraded. The aims of this review were to introduce yam as an orphan crop, show the importance of soil fertility for yam production, discuss the potential of integrated soil fertility management, highlight the challenge for adoption of innovations in yam systems, present the concept of innovation platforms to foster collaborative innovation design and provide recommendations for future research. This review shows that the development of acceptable soil management innovations for yam requires research to be conducted in interdisciplinary teams including natural and social sciences and in a transdisciplinary manner involving relevant actors from problem identification, to the co-design of innovations and their evaluation. Finally, this research
should be conducted in diverse biophysical and socio-economic settings to develop generic rules on soil/plant relationships in yam as affected by soil management and on how to adjust the innovation supply to specific contexts.

1 Introduction

Yam (Dioscorea spp) is a tuber crop grown by smallholders throughout the tropics (Andres et al., 2017). The most important species are D. alata (greater or water yam), D. rotundata (white guinea yam), and D. cayenensis (yellow guinea yam) (Arnau et al., 2010). Besides being a staple consumed by 155 million people, yam is grown as a cash crop and a medicinal plant (Lebot, 2009; Sangakkara and Frossard, 2014) and has a high cultural value for some of the groups growing it (Coursey, 1981). Despite its importance, yam remains an orphan crop (Kennedy, 2003; Naylor et al., 2004). As an illustration, the number of publications on yam (Dioscorea spp) listed in the Web of Science since 1970 amounted to 12'700 in June 2017 which can be compared to the 280’000 publications listed for the same period on maize (Zea mays).

West Africa produced 62 million tons of tuber (91% of world production) in 2014 (FAOSTAT, 2016). There yam is a staple for at least 60 million of people (Asiedu and Sartie, 2010). In the past, the increased tuber demand was achieved by enlarging cultivated surfaces from 0.9 million ha in 1961 to 7.0 million ha in 2014. In the meantime mean tuber yield increased only from 7.8 t ha⁻¹ in 1961 to 8.8 t ha⁻¹ (FAOSTAT, 2016), whereas the yield potential is probably higher than 50 t tuber ha⁻¹ (Lebot, 2009). The yam belt of West Africa spans from the humid forest to the northern Guinean savanna (Asiedu and Sartie, 2010). In the humid forest yam is cultivated for food security intercropped with other staple crops, whereas in the savanna, yam is also a cash crop, making it important for income generation. In the savanna, yam may also be cultivated in pure culture (Ndabalishye, 1995). Yam is traditionally planted as the first crop, after a long fallow as it is considered to be demanding in terms of soil fertility (Diby et al., 2011; O’Sullivan et al., 2008). In the following years, the field is cultivated with other staple crops (maize, cassava, groundnuts, cowpea or rice) and/or perennial crops such as cocoa (Theobroma cacao) in the humid forest, cashew (Anacardium occidentale) in the derived savanna zone and shea tree (Vitellaria paradoxa) in the northern Guinean savanna. Yam is usually grown without any external input using own tubers as planting material (so called yam seed). In areas where land is scarce, farmers grow yam after only a year of fallow or without fallow (Maliki et al., 2012a and 2012b). The main constraints of yam production are: bad quality yam seed, the large proportion of harvest used as yam seed, lack of improved cultivars, need for staking, weeds, pests and disease, low tuber storability, limited water availability, low soil fertility and inadequate plant nutrition (Abdoulaye et al., 2014). Other factors that limit production are the limited land available, complex and un-transparent markets and lack of processed products (Abdoulaye et al., 2014). Given the rapid population growth, the high proportion of population living with a very low income, the large surfaces of degraded land and the rapid ongoing climate change in Sub Saharan Africa (Montanarella et al., 2016; FAO, 2017); it becomes urgent for research to deliver feasible and efficient options to sustainably increase yam productivity.

The aims of this review were to show the importance of soil fertility for yam, discuss the potential of integrated soil fertility management for this crop, highlight the challenge for adoption of innovations in yam, present the concept of innovation platforms as a tool to develop collaboration between actors for designing innovations in yam and provide recommendations for future research.
The importance of soil fertility for yam has been exemplified by Diby et al. (2011) who showed that tuber yields of improved cultivars of *D. alata* and *D. rotundata* grown after a fallow, under the same conditions and the same climate were 1.5 higher in a “forest” soil containing more clay and organic matter and having a higher pH than in a close by “savanna” soil. However, assessing the effect of soil properties on yam production by comparing results of different field experiments is often difficult as many factors, often not reported, affect tuber yield. These are weather conditions, cultivar, yam seed quality, seed weight, planting density, planting date, weeds, diseases and pests (Cornet et al., 2014 and 2016; Rodriguez-Montero et al., 2001). Some fertilization trials conducted with yam showed positive impacts of N, P and K inputs on tuber yields (responsive soils), while other trials did not show any impact of nutrient additions (non-responsive soils) (O’Sullivan et al., 2008). This suggests that responsive soils were not able to release sufficient nutrients to cover plant needs, while other factors limited yam response in non-responsive soils. These other soil-related problems can be the low organic matter content linked to the slash and burn practice (Nwaga et al., 2010) and the intensive soil preparation for preparing mounds in which seeds are planted, the change in arbuscular mycorrhizal population and the accumulation of pest and diseases during cultivation (Coyne et al., 2005; Tchabi et al., 2008 and 2009). Low soil organic matter content can lead to low water infiltration and to soil structural degradation impairing root and tuber growth. Finally, water erosion can damage soil surface before it becomes fully covered with vegetation.

Dansi et al. (2013) and Lebot (2009) report that producers perceive soil fertility decline as a key constraint for yam production. A recent global survey conducted by Abdoulaye et al. (2014) among yam experts classified the topic “Improving soil fertility (micronutrients, fertilizer, organic matter)” as the second most important topic to be addressed in research preceded by “Improving shelf life of yam tubers”. Although soil fertility degradation and inadequate plant nutrition are recognized problems (Asadu et al., 2013), little has been done to address them. In the first conference on yam held in 2013, only 7 presentations dealt with these issues (Abdoulaye et al., 2013; Asadu et al., 2013; Dansi et al., 2013; Ennin et al., 2013; Lawal et al., 2013; Maniyam et al., 2013; Tournebize et al., 2013) over a total of 115 presentations dealing mainly with plant genetics, food processing, and markets (IITA, 2013). Altogether, this demonstrates the need to work on soil fertility and nutrient management in yam.

3 Can the Integrated Soil Fertility Management framework be useful for yam systems?

The Integrated Soil Fertility Management (ISFM) framework is based on the combined use of organic and mineral nutrient sources in conjunction with appropriate crop varieties and adaptations to the local context (Chivenge et al., 2011; Kearney et al., 2012; Vanlauwe et al., 2010 and 2015) to improve soil fertility and crop production. Recent results suggest that the combined addition of mineral and organic fertilizers increases yam yields compared to non-fertilized controls (Ennin et al., 2013; Lawal et al., 2013; Tournebize et al., 2013; Susan John et al., 2016).

Mineral fertilizers might however have unexpected effects. Hgaza et al. (2012) observed in *D. alata* a strong increase in tuber yield following the addition of mineral NPK fertilizers to a low fertility savanna soil, but they also showed that this input had triggered an increased uptake of N derived from the soil by the crop. Since this input had not caused any change in root morphology and growth (Hgaza et al., 2011), the authors concluded that the NPK addition had increased the rate of soil organic matter mineralization. This phenomenon needs further investigation as it can have negative consequences on these soils, which have very low organic matter contents. Whether such an effect would also occur following organic fertilizer inputs should also be assessed. In the same study, Hgaza et al. (2012) showed that the maximum recovery of fertilizer N in the tuber was below 30%.
This limited recovery can be explained by the low planting density, which is typical for West Africa and by the coarse and superficial root system of *D. alata* (Hgaza *et al.*, 2011). This low recovery rate suggests high rates of N losses to the environment. Mineral fertilizer inputs have also been reported to increase tuber rotting during storage and to negatively affect the organoleptic properties of tubers (Vernier *et al.*, 2000). Such effects are known in potatoes (McGarry *et al.*, 1996) and the underlying mechanisms are probably similar in yams. Since fertilizers (organic and/or mineral) use will become unavoidable to increase yam productivity, the effects of fertilizer on tuber quality will need to be studied.

Intercropping or rotating yams with legumes are alternative ways to supply the crop with N. Intercropping yam with herbaceous legumes increases tuber yields and nutrient recycling rates (Maliki *et al.*, 2012a). Intercropping yam with the woody legume *Gliricidia sepium* is promising as it can be used as a stake for yam vines while providing N derived from the atmosphere (Budelmann, 1989 and 1990; O’Sullivan *et al.*, 2008). However, the additional labor required for pruning *G. sepium* can offset its positive impact on crops.

In Benin, farmers have developed strategies to cope with soil fertility depletion. These include the selection and cultivation of less demanding yam cultivars, the introduction of yam in rotations to benefit from the residual effect of fertilizers added to previous crops and decrease pests and diseases pressure, and the cultivation of yams in sites where water, organic matter and nutrients tend to accumulate such as lowlands and old cattle corrals (Floquet *et al.*, 2012). Another example of such adaptation is found in the province of Passoré (Burkina Faso) where yam is grown under semi-arid conditions (700 mm year⁻¹) on hydromorphic soils, in rotation with other staple crops and with the use of organic and mineral fertilizers (Dumont *et al.*, 2005; Tiama *et al.*, 2016). The impact on yam yield formation, nutrient dynamics and use efficiency of these adaptations have not yet been studied.

Altogether, there is a potential for ISFM in yam systems but this needs to be linked to farmers’ options and preferences and to the demand expressed by the different actors along the value chain. The implementation of ISFM will however be challenging. For instance, for producers having still access to older woody fallow, even though such fallows are becoming scant and remote from villages, is ISFM be more efficient in terms of returns to labor? Moreover, in situations where land is scarce and continuously cropped, is it be still possible to mobilize organic resources for ISFM at reasonable opportunity costs?

4 The challenge for adoption of innovations in yam systems

There is little information on the economic and social acceptance of soil management practices for yam (Maliki *et al.*, 2012b) and more generally on the adoption of new technologies in yam systems (Dao *et al.*, 2003; Soro *et al.*, 2010). In communities where yam is grown as a cash crop, farmers might be interested to take up innovations contributing to increase income. But in communities where yam is grown for self-consumption, there might be less interest in adopting such innovations.

To our knowledge, these hypotheses have not been tested yet. Overall, the adoption of new technologies in yam seems limited. For instance, the minisett technology that uses small and healthy tuber parts, which was developed decades ago (Aighewi *et al.*, 2014), has not been widely adopted (Okoro and Ajieh, 2015). Similarly, high yielding yam varieties tolerant to disease and growing without staking have not been widely adopted (Alène *et al.*, 2015). Notable exceptions have been the large adoption in Ivory Coast of the *D. alata* varieties Florido and C18, which are easy to grow while showing good resistance to diseases (Doumbia *et al.*, 2004 and 2014). Moreover, C18 is well appreciated for cooking “foutou”, a yam-based dish (Doumbia *et al.*, 2014), which is a driver for
Soil Fertility Management in Yam technology adoption in West Africa, as food quality is very important to producers and consumers (Adesina and Baidu-Forson, 1995).

The adoption of ISFM practices is influenced by the socio-economic status of farmers. Maryena and Barrett (2007) studying Kenyan smallholders suggest that farmers with the least financial resources are less adopting ISFM techniques. Indeed, those farmers are generally quartered on “non-responsive” soils (Vanlauwe et al., 2015) where the addition of fertilizer does not pay off (Maryena and Barrett, 2009), thus limiting their adoption.

Most of the internal (labour, organic matter from planted fallow or mixed agroforestry component) and external (mineral fertilizers, herbicides, improved planting materials) resources needed to implement ISFM may require high investments from the individual farmer or the community which could limit the return on investment and thus the adoption of ISFM practices. Indeed, technology adoption is hypothesized to be influenced by expectations to gain additional income, mainly through increased productivity or improved access to remunerative markets. In contrast, land use insecurity is an important disincentive to invest in any land improving measures (Saidou et al., 2007), as producers may not reap the benefits of their investments. Overall, finding out the right mix of ISFM measures requires a high level of collaboration between actors to define a joint intervention strategy and activities to generate scalable outputs built on farmers’ experiences and perceptions and suited to the diversity of local contexts.

5 Innovation platforms as a tool to foster collaborative design of innovations

Low adoption rates of soil improving options are often linked to the fact that researchers neither pay sufficient attention to the multitude of problems farmers really face (Ramisch, 2014; Nederlof and Dangbégnon, 2007), nor build on the diversity of problem-solving practices developed by farmers in their diverse biophysical and socio-economic contexts (Fujisaka, 1994). Furthermore, many constraints are out of the range of the relationship between farmers and researchers and concern input supply, land tenure, market access, ability to negotiate fairer prices or better adjust to new consumers’ or processing units’ demand (Cheesman et al., 2017). Since the eighties, farming system research made the point that producers are operating in diverse and risk-prone environments under numerous constraints, so that a one-fit-for-all technology cannot be relevant. New approaches have to be implemented within farmers’ contexts so that they can make the best possible use of existing human and natural resources, cope with specific constraints, and take into account a range of tradeoffs (Giller et al., 2011).

Innovation platforms (IPs) are organizational set up which foster innovation. “Innovation platforms are a way of organizing multi-stakeholder interactions, marshalling ideas, people and resources to address challenges and opportunities embedded in complex settings” (Davies et al., 2017).

Innovation platforms are often organized around a farm product and include relevant stakeholders connecting households and community operational settings with state policies and institutions. Experiences with such a sociotechnical design in Africa reveal that local IPs both affect market connections and technological knowledge within the product value chain (Adekunle et al., 2012). Jiggins et al. (2016) summarizing the results from a range of well documented IPs in West Africa pinpoint the importance of building trust for shared action and of shared learning in experimental processes of change. Hounkonnou et al. (2016) conclude from their experiences with nine IPs that the design can help leverage institutional constraints and create favorable niches of change. Whether such niches can trigger changes in the technological and institutional regimes still needs to be proven. There are few published reports on how the work of IPs can be used to foster sustainable soil fertility.
management. For instance, Tittonell et al. (2012) showed how IPs could be used to discuss and understand the implementation of conservation agriculture principles by African smallholders. But, no publication was found on how IPs could foster sustainable soil fertility management in tropical root and tuber crops.

6 Conclusions and future directions

This review demonstrated the necessity to develop feasible and acceptable soil management practices in yam. The following recommendations for future research can be derived from this review. Research must be conducted in a transdisciplinary manner involving the relevant actors from the practice, from the problem definition, to the co-design of soil management innovations, the evaluation of research results and their communication (Baveye et al., 2014). In order to reach this goal, the research should foster IPs including beside producers also actors involved in the yam value chain (agricultural inputs traders, transporters, yam traders and processors) as well as authorities, the media, microcredit organisations and agricultural extension agencies as all these systems and actors will influence the decision of farmers to implement innovative soil management (Figure 1). The research should be conducted by interdisciplinary teams including experts in natural sciences (soil and plant sciences) and in social sciences (anthropology, sociology, and agricultural economics). The co-designed soil management innovations should be tested following the mother/baby trials scheme (Snapp et al., 2002). The scientist-managed mother trials would allow testing soil options and obtaining robust data on their impacts on soil properties and plant production, which is essential for an orphan crop like yam. Farmers would then be able to select options they are interested in and test them in baby trials showing how they would adapt these options to fit their constraints and opportunities. This work should be done in sites showing a large diversity in terms of their biophysical and socio-economic characteristics to derive generic rules on soil/plant relationships in yam as affected by soil management and on how to develop and adjust the innovation supply to specific contexts. Working on such a large scale will require the use of techniques allowing high throughput soil and plant analyses as infrared spectroscopy (Shepherd and Walsh, 2007), and non-destructive image analyses techniques to analyse yam foliar surface or the leaf nitrogen content in the field (Walter et al., 2015). Modelling approaches will be needed to predict yam growth and development under different conditions (Marcos et al., 2009) and to predict farm income (Bernet et al., 2001) as affected by the implementation of innovations. Finally, research will have to trigger collaboration with so-called organizations of change such as national institutions of agricultural extension to out and upscale the approach and options developed by research and anchor the acquired knowledge in the agricultural knowledge system.

7 Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

8 Author Contributions

EF led the review and all co-authors made substantial contributions to the conception, development and revision of this review during the various workshops of the YAMSY project. All coauthors approved the final version and agreed to be accountable for all aspects of this work.

9 Funding
Soil Fertility Management in Yam

This work has been done during the YAMSYS project (www.yamsys.org) funded by the food security module of the Swiss Programme for Research on Global Issues for Development (www.r4d.ch) (SNF project number: 400540_152017 / 1).

10 Acknowledgments

The authors warmly thank Dénis Ouédraogo and François Lompo from INERA (Burkina Faso) for their inputs in the discussion.

11 References

Abdoulaye, T., Rusike, J., Arega, A., Hareau, G., Kleinwechter, U., Creamer, B., Pemsl, D., Kirsch, H., Mignouna, D., and Adebayo, A. (2013). R4D priority for yam improvement: summary of yam survey results. Book of abstracts of the First Global Conference on Yam, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA), 24.

Abdoulaye, T., Alene, A., Rusike, J., and Adebayo, A. (2014). Results of a global online expert survey: Major constraints, opportunities, and trends for yam production and marketing and priorities for future RTB yam research. CGIAR Research Program on Roots, Tubers and Bananas (RTB), RTB Working Paper 2014-3. Available online at: www.rtb.cgiar.org

Adekunle, A. A., Ellis-Jones, J., Ajibefun, I., Nyikal, R. A., Bangali, S., Fatunbi, O., and Ange, A. (2012). Agricultural innovation in sub-Saharan Africa: experiences from multiple-stakeholder approaches. Forum for Agricultural Research in Africa (FARA), Accra, Ghana.

Adesina, A. A., and Baidu-Forson, J. (1995). Farmers’ perceptions and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guinea, West Africa. Agric. Econ. 13, 1–9.

Aighewi, B. A., Maroya, N. G., and Asiedu, R. (2014). Seed yam production from minisetts: A training manual. IITA, Ibadan.

Alene, A.D., Abdoulaye, T., Rusike, J., Manyong, V., and Walker, T.S. (2015). The Effectiveness of Crop Improvement Programmes from the Perspectives of Varietal Output and Adoption: Cassava, Cowpea, Soybean and Yam in Sub-Saharan Africa and Maize in West and Central Africa, in Crop Improvement, Adoption and Impact of Improved Varieties in Food Crops in Sub-Saharan Africa, eds. T. S. Walker, and J. Alwang (CGIAR and CAB International), 74-122.

Andres, C., AdeOluwa, O. O., and Bhullar, G. S. (2017). Yam (Dioscorea spp.), in Encyclopedia of Applied Plant Sciences, Vol 3, eds. B. Thomas, B. G. Murray, and D. J. Murphy (Waltham, MA, Academic Press), 435–441.

Arnau, G., Abraham, K., Sheela, M.N., Chair, H., Sartie, A., and Asiedu, R. (2013). Yams, in Root and Tuber Crops, Handbook of Plant Breeding 7, ed. J. E. Bradshaw (Springer Science + Business Media) 127-148.

Asadu, C.L.A., Hauser, S., and Unagwu, S.O. (2013). Research gaps in yam production environment: a review. Book of abstracts of the First Global Conference on Yam, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA), 47.
Soil Fertility Management in Yam

Asiedu, R., and Sartie, A. (2010). Crops that feed the World 1: Yams. Yams for income and food security. *Food Secur.*, 2, 305-315.

Baveye, P.C., Palfreyman, J., and Otten, W. (2014). Research Efforts Involving Several Disciplines: Adherence to a Clear Nomenclature Is Needed. *Water Air Soil Pollut.* **225**: 1997. doi: 10.1007/s11270-014-1997-7.

Bernet, T., Ortiz, O., Estrada, R. D., Quiroz, R., and Swinton, S. M. (2001). Tailoring Agricultural Extension to Different Production Contexts: A User-friendly Farm-Household Model to Improve Decision-making for Participatory Research. *Agric. Syst.* **69**, 183-198.

Budelman, A. (1989). Effect of the application of the leaf mulch of *Gliricidia sepium* on early development, leaf nutrient contents and tuber yields of water yam (*Dioscorea alata*). *Agrofor. Syst.* **8**, 243-256.

Budelman, A. (1990). Woody legumes as live support systems in yam cultivation: II. The yam–*Gliricidia sepium* association. *Agrofor. Syst.* **10**, 61–69.

Cheesman, S., Andersson, J. A., and Frossard, E. (2017). Do closing knowledge gaps close yield gaps? On-farm Conservation Agriculture trials and adoption dynamics in three smallholder farming areas in Zimbabwe. *J. Agric. Sci. Cam.* **155**, 81-100.

Chivenge, P., Vanlauwe, B., and Six, J. (2011). Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. *Plant Soil* **342**, 1-30.

Cornet, D., Sierra, J., Tournebize, R., and Ney, B. (2014). Yams (*Dioscorea* spp.) plant size hierarchy and yield variability: Emergence time is critical. *Eur. J. Agron.* **55**, 100–107.

Cornet, D., Sierra, J., Tournebize, R., Gabrielle, B., and Lewis, F. I. (2016). Bayesian network modeling of early growth stages explains yam interplant yield variability and allows for agronomic improvements in West Africa. *Eur. J. Agron.* **75**, 80–88.

Coursey, D. G. (1981). The interactions of yam and man. *J. Agric. Tradit. Bot. Appl.* **1**, 5-21.

Coyne, D. L., Tchabi, A., Bainey, H., Labuschagne, N., and Rotifa, I. (2006). Distribution and prevalence of nematodes (*Scutellonema bradys* and *Meloidogyne* spp.) on marketed yam (*Dioscorea* spp.) in West Africa. *Field Crops Res.* **96**, 142-150.

Dansi, A., Dantsey-Barry, H., Agré, A. P., Dossou-Aminin, I., Assogba, P., Loko, Y. L., N’Kpenu, E. K., Kombaté, K., Dansi, M., and Vodouhè, R. (2013). Production constraints and farmers’ cultivar preference criteria of cultivated yams (*Dioscorea cayenensis* - *D. rotundata* complex) in Togo. *Book of abstracts of the First Global Conference on Yam, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA), 123.*

Dao, D., Girardin, O., N’go, A. G., Zoungранa, P., Tschanneen, A., Nindjin, C., and Lehmann, B. (2003). Technologies post récoltes de l’igname: déterminants de facteurs d'adoption d'innovations post-récoltes en culture d’igname au nord de la Côte d'Ivoire. *Agron. Afr.* (Côte d’Ivoire) **4**, 91-98.

Davies, J., Maru, Y., Hall, A., Abdourhamane, I. K., Adegbidi, A., Carberry, P., Dorai, K., Ennin, S. A., Etwire, P. M., McMillan, L., Njoya, A., Ouedraogo, S., Traoré, A., Traoré–Gué, N. J., and
Soil Fertility Management in Yam

Watson I. (2017). Understanding innovation platform effectiveness through experiences from west and central Africa. *Agric. Syst.* DOI: 10.1016/j.agsy.2016.12.014.

Diby, L. N., Hgaza, V. K., Tié, T. B., Assa, A., Carsky, R., Girardin, O., Sangakkara, U. R. and Frossard, E.: (2011). How does soil fertility affect yam growth? *Acta Agr. Scand. B S. P.* 448-457.

Doumbia, S., Tshiunza, M., Tollens, E., and Stessens, J. (2004). Rapid spread of the Florido yam variety (*Dioscorea alata*) in Ivory Coast - Introduced for the wrong reasons and still a success. *Outlook Agric.* 33, 49-54.

Doumbia, S., Koko, L., and Aman, S.A. (2014). L’introduction et la diffusion de la variété d’igname C18 en région centre de Côte d’Ivoire. *J. Appl. Biosci.* 80, 7121-7130.

Dumont, R., Dansi, A., Vernier, P., and Zoundjihekpon, J. (2005). Biodiversité et domestication des ignames en Afrique de l’ouest : pratiques traditionnelles conduisant à *Dioscorea rotundata*. CIRAD, IPGRI.

Ennin, S. A., Owusu Danquah, E., and Acheampong, P. P. (2013). Chemical and integrated nutrient management options for sustainable yam production. *Book of abstracts of the First Global Conference on Yam*, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA), 23.

FAO (2017). *The future of food and agriculture – Trends and challenges*. Rome.

FAOSTAT (2016) http://www.fao.org/faostat/en/#home.

Floquet, A. B., Maliki, R., Tossou, R.C. and Tokpa, C. (2012). Évolution des systèmes de production de l’igname dans la zone soudano-guinéenne du Bénin. *Cah. Agric.* 21, 427-37.

Fujisaka, S. (1994). Learning from Six Reasons Why Farmers Do Not Adopt Innovations Intended to Improve Sustainability of Upland Agriculture. *Agr. Syst.* 46, 409-425.

Giller, K.E., Tittonell, P., Rufino, M.C., van Wijk, M.T., Zingore, S., Mapfumo, P., Adjei-Nsiahe, S., Herrero, M., Chikowo, R., Corbeels, M., Rowe, E.C., Baijukya, F., Mwijage, A., Smith, J., Yeboah, E., van der Burg, W.J., Sanogo, O.M., Misiko, M., de Ridder, N., Karanja, S., Kaizzi, C., K’ungu, J., Mwale, M., Nwaga, D., Pacini, C., and Vanlauwe, B. (2011). Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. *Agric. Syst.* 104, 191–203.

Hgaza, V.K., Diby, L.N., Tié, T.B., Tschannen, A., Aké, S., Assa, A., and Frossard, E. (2011). Growth and distribution of roots of *Dioscorea alata* L. do not respond to mineral fertiliser application. *Open Plant Sci. J.* 5, 14-22.

Hgaza, V.K., Diby, L.N., Oberson, A., Tschannen, A., Tié, B.T., Sangakkara, U.R., Aké, S., and Frossard, E. (2012). Nitrogen use by yam as affected by mineral fertilizer application. *Agron. J.* 104, 1558-1568.

Hounkonnou, D., Brouwers, J., van Huis, A., Jiggins, J., Kossou, D., Röling, N., Sakyi-Dawson, O., and Traoré, M. (2016). Triggering regime change: A comparative analysis of the performance of...
Soil Fertility Management in Yam

innovation platforms that attempted to change the institutional context for nine agricultural domains in West Africa. Agric. Syst. doi: 10.1016/j.agsy.2016.08.009

IITA (2013). Book of abstracts of the First Global Conference on Yam, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA).

Jiggins, J., Hounkonnou, D., Sakyi-Dawson, O., Kossou, D., Traoré, M., Röling, N., and van Huis, A. (20016). Innovation platforms and projects to support smallholder development - experiences from Sub-Saharan Africa. Cah. Agric., 25, 64002. doi: 10.1051/cagri/2016051.

Kearney, S., Fonte, S.J., Salomon, A., Six, J., and Scow, K.M. (2012). Forty percent revenue increase by combining organic and mineral nutrient amendments in Ugandan small-holder market vegetable production. Agron. Sustain. Dev. 32, 831-839.

Kennedy, D. (2003). Editorial, Agriculture and the Developing World Science. Science, 302, 17, 357.

Lawal, O.I., Adeoye, G.O., Asiedu, R., Ojeniyi, S.O., and Akinbile, L.A. (2013). Agronomic evaluation of white yam (Dioscorea rotundata Poir.) under organo-mineral fertilizer treatment in southern Nigeria. Book of abstracts of the First Global Conference on Yam, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA), 136.

Lebot, V. (2009). Tropical root and tuber crops cassava, sweet potato, yams and aroids (Crop production science in horticulture 17, CABI Wallingford UK).

Maliki, R., Toukourou, M., Sinsin, B., and Vernier, P. (2012a). Productivity of yam-based systems with herbaceous legumes and short fallows in the Guinea-Sudan transition zone of Benin. Nutrient Cycl. Agroecosys. 92, 9-19.

Maliki, R., Sinsin, B., and Floquet, A. (2012b). Evaluating yam-based cropping systems using herbaceous leguminous plants in the savannah transitional agroecological zone of Benin. J. Sustain. Agr. 36, 440-460.

Maniyam, N. (2013). Management of greater yam + maize intercropping system for productivity and livelihood improvement of smallholder farmers. Book of abstracts of the First Global Conference on Yam, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA), 106.

Marcos, J., Lacointe, A., Tournebize, R., Bonhomme, R., and Sierra, J. (2009). Water yam (Dioscorea alata L.) development as affected by photoperiod and temperature: Experiment and modeling. Field Crops Res. 111, 262–268.

Marenya, P. P., and Barrett, C. B. (2007). Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya. Food Policy 32, 515–536.

Marenya, P. P., and Barrett, C. B. (2009). Soil quality and fertilizer use rates among smallholder farmers in western Kenya. Agr. Econ. 40, 561–572.

McGarry, A., Hole, C. C., Drew, R. L. K., and Parsons, N. (1996) Internal damage in potato tubers: A critical review. Postharvest Biol. Tec. 8, 239-258.
Soil Fertility Management in Yam

Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., Black, H., Krasiñnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nøttergææe, F., and Vargas, R. (2016). World's soils are under threat. *SOIL* 2, 79-82. doi:10.5194/soil-2-79-2016.

Naylor, R. L., Falcon, W. P., Goodman, R. M., Jahn, M. M., Sengooba, T., Tefera, H., and Nelson, R. J. (2004). Biotechnology in the developing world: a case for increased investments in orphan crops. *Food Policy* 29, 15–44.

Ndabalishye, I. (1995). *Agriculture vivrière ouest-africaine à travers le cas de la Côte d'Ivoire* (Institut des savanes, Bouaké, Côte d'Ivoire).

Nederlof, E.S., and Dangbégnon, C. (2007). Lessons for farmer-oriented research: Experiences from a West African soil fertility management project. *Agr. Hum. Values* 24, 369-387.

Nwaga, D., Jansa, J., Abosso Amu, M., and Frossard, E. (2010). The Potential of Soil Beneficial Microorganisms for Slash-and-Burn Agriculture in the Humid Forest Zone of Sub-Saharan Africa. in *Soil Biology and Agriculture in the Tropics*, ed P. Dion (Springer), Chapter 5: 81-107.

O'Sullivan, J. N., Ernest, J., Melteras, M., Halavatau, S., Holzknecht, P., and Risimeri, J. (2008). *Yam nutrition and soil fertility management in the pacific. Project final report. ACIAR, Canberra, Australia.*

Okoro, B. O., and Ajieh, P. C. (2014). Farmers' perception and adoption of yam miniset technology in Anambra State, Nigeria. *Agricultura - Revista de Stiinta si Practica Agricola* 24, 83-87.

Ramisch, J. J. (2014). They don't know what they are talking about: Learning from the dissonances in dialogue about soil fertility knowledge and experimental practice in western Kenya. *Geoforum* 55, 120-132.

Rodriguez-Montero, W., Hilger, T. H., and Leihner, D. E. (2001). Effects of seed rates and plant populations on canopy dynamics and yield in the greater yam (*Dioscorea alata* L.). *Field Crop Res.* 70, 15-26.

Snapp, S. (2002). Quantifying Farmer Evaluation of Technologies: The Mother and Baby Trial Design, in *Quantitative Analysis of Data from Participatory Methods in Plant Breeding*, eds M. R. Bellon and J. Reeves (Mexico, DF, CIMMYT), 9-17.
Soro, D., Dao, D., Girardin, O., Tié, T. B., and Tschannen, A. B. (2010). Adoption d’innovations en agriculture en Côte d’Ivoire: cas de nouvelles variétés d’igname. *Cah. Agric.* 19, 403–410.

Susan John, K., George, J., Shanida Beegum, S. U., and Shivay, Y. S. (2016). Soil fertility and nutrient management in tropical tuber crops—An overview. *Ind. J. Agronomy* 61, 263-273.

Tchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A., and Oehl, F. (2008). Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. *Mycorrhiza* 18, 181–195.

Tchabi, A., Burger, S., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A., Oehl, F. (2009). Promiscuous arbuscular mycorrhizal symbiosis of yam (*Dioscorea* spp.), a key staple crop in West Africa. *Mycorrhiza* 19, 375–392.

Tiama, D., Zoundjihekpon, J., Bationo Kando, P., Sawadogo, N., Nebie, B., Nanema, R.K., Traore, E.R., Tao, I., Sawadogo, M., and Zongo, J.D. (2016). Les ignames « Yuya » de la province de Passore au Burkina Faso. *I.J.I.A.S.* 14, 1075-1085.

Tittonell, P., Scopel, E., Andrieu, N., Posthumus, H., Mapfumo, P., Corbeels, M., van Halsema, G.E., Lahmar, R., Lugandu, S., Rakotoaarisoa, J., Mtambanengwe, F., Pound, B., Chikowo, R., Naudin, K., Triomphe, B., and Mkomwa, S. (2012). Agroecology-based aggradation-conservation agriculture (ABACO): Targeting innovations to combat soil degradation and food insecurity in semi-arid Africa. *Field Crop Res.* 132, 168–174.

Tournebize, R., Cornet, D., Sierra, J., Bussière, F., Kelemen, J.L., Osseux, J., and Barlagne, C.: Sustainable yam management in Guadeloupe (French West Indies). *Book of abstracts of the First Global Conference on Yam*, 3-6 October 2013, Accra, Ghana, International Institute of Tropical Agriculture (IITA), 100.

Vanlauwe, B., Bationo, A., Chianu, J., Giller, K.E., Merckx, R., Mokwunye, U., Ohiokpehiai, O., Pypers, P., Tabo, R., Shepherd, K.D., Smaling, E.M.A., Woomer, P.L. and Sanginga, N. (2010). Integrated soil fertility management, Operational definition and consequences for implementation and dissemination. *Outlook Agric.* 39, 17–24.

Vanlauwe, B., Descheemaeker, K., Giller, K.E., Huising, J., Merckx, R., Nziguheba, G., Wendt, J., and Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. *SOIL* 1, 491–508. doi: 10.5194/soil-1-491-2015.

Vernier, P., Dossou, R.A., and Letourmy, P. (2000). Influence de la fertilisation chimique sur les qualités organoleptiques de l’igname. *Cah. Agric.* 9, 131-134.

Walter, A., Liebisch, F., Hund, A. (2015). Plant phenotyping: from bean weighing to image analysis. *Plant Methods* 14, 1-11.
Figure 1. Systems to be captured and actors to be addressed to develop feasible and acceptable integrated soil fertility management options for yam systems that can be communicated to stakeholders. (A) Represents the biophysical, economic and institutional drivers (macro level), (B) the yam value chain (meso socio-economic level), (C) the household level (micro socio-economic level), and (D) the yam system (micro level in the field).
