Multiple attention-based encoder–decoder networks for gas meter character recognition

Weidong Li¹,², Shuai Wang¹,², Inam Ullah¹,², Xuehai Zhang¹,² & Jinlong Duan¹,²

Factories swiftly and precisely grasp the real-time data of the production instrumentation, which is the foundation for the development and progress of industrial intelligence in industrial production. Weather, light, angle, and other unknown circumstances, on the other hand, impair the image quality of meter dials in natural environments, resulting in poor dial image quality. The remote meter reading system has trouble recognizing dial pictures in extreme settings, challenging it to meet industrial production demands. This paper provides multiple attention and encoder–decoder-based gas meter recognition networks (MAEDR) for this problem. First, from the acquired dial photos, the dial images with extreme conditions such as overexposure, artifacts, blurring, incomplete display of characters, and occlusion are chosen to generate the gas meter dataset. Then, a new character recognition network is proposed utilizing multiple attention and an encoder–decoder structure. Convolutional neural networks (CNN) extract visual features from dial images, encode visual features employing multi-head self-attention and position information, and facilitate feature alignment using the connectionist temporal classification (CTC) method. A novel two-step attention decoder is presented to improve the accuracy of recognition results. convolutional block attention module (CBAM) reweights the visual features from the CNN and the semantic features computed by the encoder to improve model performance; long short-term memory attention (LSTM attention) focuses on the relationship between feature sequences. According to experimental data, our system can effectively and efficiently identify industrial gas meter picture digits with 91.1% identification accuracy, faster inference speed, and higher accuracy than standard algorithms. The accuracy and practicality of the recognition can fulfill the needs of instrument data detection and recognition in industrial production, and it has a wide range of applications.

Gas meters for industrial applications are broadly employed in national defense, transportation, gas, electric generation, and other industries¹. In recent years, the usage of meters in industrial production has increased dramatically due to the increased manufacturing scale. Due to their ease of installation and extended life cycle, mechanical gas meters are widely used in gas plants, water plants, substations, and other fields. However, the existing remote meter reading system has partially solved the problems of long cycle time and high cost of manual meter reading¹. It still cannot accurately and quickly identify dial characters in extreme imaging environments, which prevents factories from accurately grasping real-time data in industrial production and impedes the development and progress of industrial intelligence. Recognizing digital characters in meter images is crucial stage in industrial meters’ remote meter reading system. Researchers at home and abroad are presently exploring the application of meter character recognition using various strategies to increase the accuracy of gas meter character identification²–⁵. Although these algorithms can automatically yield more accurate instrument recognition results under ideal conditions, the process is time-consuming. The operating procedure is inefficient and difficult to promote, mainly because of the weak recognition effect under extreme environmental circumstances. Using the character recognition based on the template matching method as an example⁶, it is necessary to manually create a standard template identification library with the exact size specifications and then adjust the image size of the characters to be recognized to match the image size of the standard template library. After segmentation, calculate the similarity between each character to be recognized and all characters in the template library, get the recognition result based on the similarity size, and output the result. Although this method is inexpensive, it necessitates a significant amount of preceding work, the computation is time-consuming, and different dials are

¹Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China. ²College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China. ³email: moxistrive@gmail.com
required to create different character templates. Furthermore, the approach works well with meters with good
imaging quality and standardized characters. Its identification performance for dials with unusual characters is
low, and its imaging quality in meter images is poor. In recent years, due to the ability of computer vision methods
based on deep learning to eliminate inconsistencies and errors in these results, a large number of computer vision
methods have replaced traditional manual operations are widely used in various aspects, such as automatic
identification systems, defect detection, etc. For example, Litman et al. proposed a stacked architecture for the
encoder–decoder character recognition method. This method employs Bi-directional Long Short-Term Memory
(BiLSTM) as a stacking structure for the first time to compute contextual features repeatedly; nevertheless, the
stacking block is up to 12 layers thick, resulting in considerable computational overhead and sluggish inference.
Additionally, BiLSTM is only effective across a limited range of extensive distances.

Observation is the source of inspiration, and the attention mechanism is crucial in human vision. Character
recognition has been successfully applied using attention techniques. A novel encoder–decoder architecture
based on a multi-attention mechanism is proposed in this study. Unlike, our encoder comprises three encoder
blocks containing a multi-head self-attention layer and a feedforward neural network layer. A novel two-step
attention mechanism, incorporating CBAM attention and LSTM attention, constructs the decoder. The CTC
method is also used to increase the accuracy of gas meter character recognition by assisting with feature align-
ment. As a result, this research combines several attentions in a novel way to avoid the loss of relevant visual
and semantic characteristics while improving the accuracy of dial character identification under harsh settings;
simultaneously, it parallelizes the calculation to speed up inference. The main contributions of this paper are
summarized as follows.

- The suggested method employs computer vision and deep learning to identify gas meter characters under
harsh imaging conditions. It helps to advance the use of deep learning in manufacturing.
- A unique character recognition model is proposed based on a multi-attention and encoder–decoder architec-
ture. The encoder uses a multi-head self-attention mechanism to compute the image's semantic information,
which it then merges with visual features to increase character identification accuracy. Meanwhile, the CTC
method helps to align features and speed up model convergence.
- We present a novel two-step attention decoder. The initial step is CBAM attention, followed by LSTM atten-
tion. The two-step attention decoder can simultaneously pay attention to spatial, channel, and temporal
multidimensional information.
- Experimental results on gas meter datasets under difficult environmental circumstances and public datasets,
reveal that our technique delivers state-of-the-art character recognition performance. Its accuracy and prac-
ticality make it suitable for detecting and recognizing meter data in industrial operations.

Related works
The most critical step in the instrument recognition process is obtaining precise and trustworthy character
recognition results. Earlier studies focused on individual character studies, acquiring meter dial images,
segmenting them into individual characters, performing recognition, and eventually aggregating the recogni-
tion results into sequences as the final result, such as the template matching method employed in. Zhang et al.
concentrated on the structural characteristics of individual characters and described the critical strategies for
character recognition based on structural characteristics. The structural feature technique identifies characters
primarily based on their structural traits. To start with, the characters to be recognized must have distinct structural
characteristics. The greater the magnitude of such differences, the better; next, character comparison is
performed using the extracted differentiated features to generate character recognition results. However, during
the actual acquisition of gas meter dial images, various phenomena such as insufficient character differences, too
much character data, and character ghosting occur, resulting in a substantial reduction in the method's recogni-
tion accuracy. According to Jaderberg et al., the crucial issue of individual character identification is obtaining
the appropriate character cut-off region, cut-off recognition, and the accurate aggregation of characters into
sequences. Lee et al. used a sliding window approach in the character cutout candidate box, while Bai et al. used a
linked region method. These two strategies are simple to implement and are often employed by researchers.
However, these two approaches are only appropriate for characters with regular regions and considerable
chromaticity deviations from the character backdrop. Identifying cut-off region candidate boxes might be chal-
lenging in some complex cases, such as characters with similar backdrop colors and fuzzy characters.

Deep learning is a multi-level representation learning method in which simple but nonlinear modules
are combined to change a representation at one level (beginning from the original input) into a higher-level
abstract representation. Deep learning-based character recognition is a fundamental and challenging problem
in computer vision, and it is widely utilized in business offices, finance, medicine, automotive, and industrial.
The rich knowledge of context and structured prediction algorithms are combined in these systems to make significant improvements. Shi et al. suggested a CRNN network that uses a canonical convolutional neural network to extract input picture features. The technique employs BiLSTM to model the retrieved picture characteristics in time sequence, then uses the CTC algorithm to decode the best character
sequence, avoiding the need to segment the characters and normalize the character scaling. It can quickly process sequences of any length but it has the drawbacks of poor training convergence and erroneous recognition of letters with significant angular tilt. A scene text recognition model based on a visual attention mechanism was proposed by Wojna et al. The model initially utilizes CNN to extract image features and then uses LSTM to model the extracted image characteristics in time series to generate temporal features, with the attention model serving as a decoder. This technique outperforms prior best models on the FSNS dataset, with a correct rate of approximately 85%, but it is less robust and prone to noise. Yu et al. suggested an SRN model based
on ResNet5040 and transformer unit as the backbone network to extract the visual information from the input image. Then, a global semantic inference module was implemented to extract the semantic information from the input image, which combined the semantic and visual data to decode the character sequence. On the other hand, the model used a serial decoder, which produced a prediction efficiency that was far too low. Yang et al.41 introduced the HGA-STR model based on the transformer structure and used CNN to extract features, keeping the output 2-dimensional features and decoding with a bidirectional decoder. Noise is added in the feature extraction stage, despite the enhanced performance. Character recognition has also begun to use segmentation-based algorithms42,43 and target detection methods44–47.

In contrast to the previous models, Litman et al.10 proposed a stacked architecture encoder–decoder character recognition method that employs a stacked block architecture to train deep BiLSTM encoders, resulting in improved context-dependent coding and state-of-the-art performance in publicly available data sets. However, the approach has a significant computing overhead and slow inference, making it unsuitable for character recognition of characters captured under harsh conditions. Inspired by this, we present a novel encoder–decoder model based on the attention mechanism that focuses on the picture’s shallow visual aspects and deep semantic information, conserving more image details while boosting inference speed.

Method

System overview. As illustrated in Fig. 1, our suggested model comprises three phases: feature extraction, encoder, and decoder. The backbone network for the feature extraction phase is pre-trained ResNet50. Conv1, conv2_x, conv3_x, conv4_x, and conv5_x are the five modules that make up ResNet50. We use the first four portions of ResNet50 to extract features of acceptable size: conv1, conv2_x, conv3_x, and conv4_x.

The model is fed a 644001 (HWC) grayscale image, and the features are extracted using a pre-trained ResNet50 to produce a 4251024 (HWC) feature map. The feature map is next reshaped and dimensionally altered to produce a feature map with a size of 1001024 (HWC). Meanwhile, a full connection to the feature map is established to finish the feature map’s embedding. The embedding vector is supplied to the model’s encoder, along with the position encoding, and the encoded output is acquired after three encoders. The decoder employs a new two-step attention decoder to decode the visual data derived from the CNN, the semantic information computed in the encoder. It can also concentrate on the internal links between feature sequences.

The inference flow of the model is as follows.

(1) Preprocessing: The input image is resized and converted to 64400 (HW) to a grayscale map in the pre-processing stage.

(2) Feature Extraction: Image features are extracted using pre-trained ResNet50 during the feature extraction stage.

(3) Encoder: The Embedding feature vector is encoded many times during the encoding phase, and the semantic features are extracted via a multi-headed self-attentive technique.
(4) Decoder: A novel two-step attention mechanism decoder is used in the decoder stage.

Preprocessing stage. The images acquired by the remote meter reading device are of various sizes; thus, we utilize K-means clustering to determine the most aggregated image size and exhibit the clustering results in Fig. 2. The cluster center is chosen as the image's fixed size during preprocessing, and the cluster center is around 64,400 (HW); therefore, the image is uniformly adjusted to this size.

Feature extraction stage. The feature extraction process extracts visual information from the input image using a convolutional neural network (CNN). By combining accuracy and speed factors, the pre-trained ResNet50 is chosen as the backbone network for image feature extraction in this article. The output of the feature extraction step is 256 channels by N columns. Specifically, the feature extractor gets an input image and outputs a feature map \(F = [f_1, f_2, \ldots, f_N] \). The attention map is generated after feature extraction using a fully connected layer. The visual features are then obtained by multiplying the feature vectors by the attention features using the mathematical formula \(V = [v_1, v_2, \ldots, v_N] \), where each column can represent a frame of the visual feature.

Encoder process. Instead of using a typical recurrent neural network (RNN), the model's encoder employs a multi-head self-attention layer, which can be computed in parallel, overcoming the problem that RNN networks cannot be parallelized and to save training and inference time. We then go through numerous aspects of the encoder phase in further detail.

(a) Input Embedding.
Features must be embedded before they can be entered into Encoder. The purpose of feature embedding is to reduce the computing effort by downscaling the features to the required size. This experiment uses a fully-connected layer to map a feature vector size 1024 to 256. This can minimize the features' dimensionality and speed up model training and inference.

(b) Positional Encoding.
To overcome the problem of the network being unable to model the input features as time series, resulting in the model being unable to understand the features' backward and forward sequential relationships. To discover the time-series link of the projected results, we must provide location information to the model in a certain way. Because the location encoding and the feature vector must be summed, the dimensionality of the position encoding and the feature vector are the same. A learnable position code and a position code constructed using sine and cosine functions of different frequencies are the two methods for constructing a position code. In this work, we employ the second, and the formulas are as follows:

\[
P_{E}(\text{pos}, 2i) = \sin \left(\text{pos}/10000^{2i/d_{\text{model}}} \right) \\
P_{E}(\text{pos}, 2i+1) = \cos \left(\text{pos}/10000^{2i/d_{\text{model}}} \right)
\]

where \(\text{pos} \) is the character's location in the string, \(i \) is the index of the feature vector dimension, and the \(d_{\text{model}} \) is the position encoding dimension. By using above mentioned formulas, the following are some of the advantages.

- Each position has a unique position code.
- Suppose the maximum length feature in the current dataset is 10, and a feature of length 12 needs to be processed. In that case, the formula can be used to generate the last two position codes immediately, thus improving the fault tolerance and robustness of the model.
The relative position relationship between features can be easily determined during training and inference. The trigonometric function of PE_{pos+i} can be used to express information at any location pos, and the formulas are shown below:

$$\cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta)$$
$$\sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta)$$

(2)

Each feature position must have its position encoding in the form of a sine wave. The time and phase of the sine wave vary depending on the dimension of the feature. The letters pos and i represent the feature vector’s position and dimension. The sine and cosine functions of different frequencies are used to create a position code the same size as the feature vector, which is then superimposed on the feature vector and fed into the encoder, and the formula is as follows:

$$X_{emb} = X_{emb} + X_{pos}$$

(3)

(c) Multi-Head Self-attention.

Three matrices, Query, Key, and Value, are used as inputs to the multi-head attention mechanism. The three matrices are fed into the fully connected layer, which then performs a scaled dot-product attention operation. The process needs to be computed h times, the h-head attention mechanism. The weights of the input feature vectors determine the model’s attention, known as the self-attention mechanism, which allows the model to obtain correlations between the feature vectors and so preferentially focuses on the characteristics of interest. Query, Key, and Value (abbreviated as Q, K, and V) matrices, which represent query, key, and value, are the primary sources of attention. They have the same dimensions as the feature vector. Query, Key, and Value are obtained by multiplying the feature vector X_{emb} by the three weight matrices W_{Q}, W_{K}, and W_{V}, respectively, and the computation procedure is given in (4).

$$Q = X_{emb} \ast W_{Q}$$
$$K = X_{emb} \ast W_{K}$$
$$V = X_{emb} \ast W_{V}$$

(4)

The multi-head self-attention mechanism separates the feature vector X_{emb} into multiple parts equally, with each head representing one of the features. It should be noted that the number of heads must be divisible by the feature vector dimension. Assume the number of heads is h and the eigenvector dimension is d_{model}. Following multiple heads, Q, K, and V are trimmed into single-headed matrices, and their last dimension d_{k} is determined using Eq. (5).

$$d_{k} = d_{model} / h$$

(5)

After multiplying Q and K, we get the QK^T matrix, dividing by $\sqrt{d_{k}}$. The method of scaling dot product attention is the name of the process. Its function is to prevent the value after multiplication from becoming excessively large and act as a normalizer. All data are mapped to the $(0, 1)$ interval by the softmax activation function, resulting in a correlation of 1 between each feature and the other characteristics. The attention matrix is then obtained by multiplying by the V matrix. The computational formula is given by (6).

$$Attention(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_{k}}} \right) V$$

(6)

(d) Add & Norm.

The Add is a residual operation. The specific operation is to add the preceding layer’s input x and the output $SubLayer(x)$ to get $x + SubLayer(x)$. The addition of the residual operation is intended to mitigate the drawbacks of network degradation by learning the residuals. The attention module uses the formula (7) to calculate residuals.

$$X_{emb} + Attention(Q, K, V)$$

(7)

The encoder uses the LayerNormalization to alleviate the skew variable shift phenomenon, minimize computation, and improve data variability. On each dimension of the feature vector, the LayerNormalization executes a normalization operation. Furthermore, the feature vector conforms to the conventional normal distribution because the normalized expectation μ is 0, and the standard deviation σ is 1.

(e) Feedforward.

The feedforward neural network enhances the classification ability of the model. The network goes through two layers of a simple linear mapping W_{f}, which is then fed into a relu activation function with the formula shown in (8).

$$X_{hidden} + \text{Relu}(X_{hidden} \ast W_{1} \ast W_{1})$$

(8)

The above five components constitute the Encoder module of the model.

Decoder process. Figure 3 depicts our model’s utilization of a novel two-step attention mechanism decoder. The first phase is CBAM, a lightweight attention module that computes attention in the feature channel and spatial dimensions. The channel attention submodule and the spatial attention submodule determine the weights, reweighted to yield the attention features D'.
The channel attention submodule feeds the feature map F of HWC and uses a global average pooling and maximum pooling, respectively, to generate two 11C feature maps based on the height H and width W. The multilayer perceptron (MLP) then adds the two feature vectors element by element, and the weight coefficients W_C are produced using the sigmoid activation function. Finally, the original feature map F is multiplied by W_C weight coefficients. Adaptive feature refinement is used to create the new attentional feature map D. The equation is shown in (9).

$$D = F \times W_C$$

The spatial attention submodule receives the above-mentioned new feature map D as an input. After a global average pooling and maximum pooling, respectively, based on the latitude of the feature channels. We generate two corresponding feature maps of HW; then, after stitching these two feature maps together, we obtain the weight coefficients W_S using a convolution layer and a sigmoid activation function. Finally, we multiply the weight coefficients W_S by the input feature map D to get the attention features D'. The formula is shown in (10).

$$D' = D \times W_S$$

In the second step, the attention decoder decodes the attention feature D', and a character y_t is decoded at each time step t. The number of time steps equals the length of the longest string in the dataset plus one. The formula is given in (11), wherein $\alpha_i \in R^N$, α_i represents the attention of the decoder at time t, and R^N represents the attention of all time steps.

$$e_{t,i} = w^T \tanh \left(W_{i,t-1} + Vd'_i + b \right)$$
$$\alpha_{t,i} = \exp \left(e_{t,i} \right) / \sum_{i=1}^{n} e_{t,i}$$

where b, w, W, and V are trainable parameters, is the hidden state of the LSTM unit within the decoder at time t, and d' is a column of D'. The decoder linearly combines the columns of D' into a vector G, which is called a glimpse:

$$g_t = \sum_{i=1}^{n} \alpha_{t,i}d'_i$$

Then, the input of one LSTM unit of the decoder is shown in Eq. (13), where (g_t, y_{t-1}) denotes the connection between the One Hot codes of g_t and y_{t-1}.

$$(x_t, s_t) = \text{LSTMCell} \left(s_{t-1}, \left(g_t, f \left(y_{t-1} \right) \right) \right)$$

Finally, for each computational time step t, the probability $p(y_t)$ of the character is as follows:

$$p(y_t) = \text{softmax} \left(W_o x_t + b_o \right)$$

After decoding the above steps, the probability distribution of the characters can be obtained, and then the recognition results can be obtained.

Loss function. We need to avoid the problem of neighboring areas being recognized as the same character when recognizing input image features in regions due to variables such as character distortion. Therefore the CTC algorithm is employed in our model to align the input features to the data labels, and the features aligned by the CTC algorithm are used as the decoder’s input. The experiment used the CTC technique for additional train-
ing, which is the same as utilizing two loss functions: the CTC loss on the encoder side and the cross-entropy loss on the decoder side. The CTC loss accounts for γ times of the total loss, while the cross-entropy loss occupies $1 - \gamma$ times. The formula for the loss function is followed as:

$$L_{total} = \gamma L_{CTC} + (1 - \gamma)L_{CE}$$

(15)

Results and discussion

Datasets. The dataset utilized was obtained from photographs acquired by a remote meter reading device. It included a variety of scenes such as day, night, sunny day, lighting, different angles, etc. We chose 30,000-m photos with poor imaging conditions like dim light, artifacts, heavy shadows, blurring, reflections, etc. After completing hand annotation, we saved the results in an XML tag file, with each XML matching one image in the dataset. To improve the generalization ability and robustness of the model, thus making the model provides more accurate and reliable predictions. This paper uses data enhancement techniques such as salt & pepper noise, speckle noise, Gaussian noise, motion blur, random wipe, random crop, random flip, and random rotation to expand the dataset to 70,000. Then the dataset is randomly divided into 7:3:1 as the training set, validation set, and testing set, and each part contains corresponding labels.

The publicly available datasets IIIT5k, SVT, and ICDAR 2013 are also used in this paper to demonstrate further that our strategy is viable and successful. IIIT5k consists of 2000 training and 3000 testing images cropped from Google image searches. SVT is a dataset collected from Google Street View images and contains 257 training, and 647 testing word-box cropped images. ICDAR 2013 contains 848 training and 1015 testing word-box cropped images.

Implementation details. The experimental environment is Ubuntu 20.04 operating system, Intel® Core™ i9-9900K processor, 32 GB RAM, RTX 2080Ti*2 GPU, deep learning framework using Pytorch1.8, and general-purpose parallel computing architecture CUDA11.1.

We used the pre-trained ResNet50 from ImageNet as the backbone network in our studies. ResNet50 contains conv1, conv2_x, conv3_x, conv4_x, conv5_x. The first four components of ResNet50 were used: conv1, conv2_x, conv3_x, conv4_x. The images are uniformly processed into 64400 (HW) single-channel grayscale images during training and inference. The Adam optimizer is used to train the model in this paper. To regulate the weight distribution of momentum and current gradient, we set the exponential decay rate $\beta_1 = 0.9$; to control the contribution of the prior gradient squared, we set the exponential decay rate $\beta_2 = 0.98$. The training batch size is 64, and after 15,000 iterations, the training is completed, and the results are given.

The model outputs the conditional probability distribution of characters during the training inference phase. In this paper, we employ greedy search to decode characters. At each time step, we select the character with the highest probability and then intercept the string between the start and end characters as the character content recognized by the model.

Analysis of MAEDR model and MAEDR + CTC experimental results. The CTC algorithm is the primary variable in this section. The MAEDR model is combined with the CTC algorithm. The performance of the MAEDR model alone (Ours-1) and MAEDR + CTC (Ours-2) is next investigated. Figure 4 shows the accuracy of the test set when the CTC loss γ is equal to 0.2, 0.5, and 0.8.

As shown in Fig. 4, the accuracy of the MAEDR+CTC model (Ours-2) has significantly improved. The CTC algorithm aids the model in aligning the data labels, which boosts the model’s accuracy. The MAEDR model alone (Ours-1) obtains a maximum accuracy of 86.0%. However, the Ours-2 recognition accuracy outperforms
The MAEDR model alone for γ equal to 0.2, 0.5, and 0.8, respectively, with 90.9%, 90.1%, and 91.1% accuracy. Therefore, we choose CTC loss $\gamma = 0.8$.

Evaluation of character recognition. We did numerous trials on the gas meter data set and performed the experimental analysis in this section to evaluate the suggested algorithm’s validity, accuracy, and feasibility. As previously stated, the method’s accuracy and efficiency in harsh settings are critical characteristics. As a result, we use two quantitative criteria to evaluate the model’s performance: accuracy and inference time. We compare the recognition results with those of several advanced character recognition methods: SCATTER, CRNN, SRN, and HGA-STR.

Table 1 shows the recognition results of several algorithms for the gas meter dataset under harsh image conditions. Our method exceeds other well-known techniques not only in terms of accuracy but also in terms of inference speed. Both based on the encoder–decoder framework, SCATTER, and HGA-STR, perform poorly in accuracy and inference time. SCATTER uses a stacked repetitive processing architecture to increase the computational effort in extracting features, and the decoder is a selective decoder with low parallelism. The HGA-STR model extracts feature using CNN and preserve the output features as two-dimensional. The model employs pooling operations to acquire global information to generate one-dimensional vectors. The decoding technique is the same as the transformer structure, and the model uses two directions for decoding at more incredible speed. However, the global information obtained by the encoder introduces noise when the low-level features are gradually merged in the decoder. Unlike the encoder–decoder structure described above, our technique encodes convolutional features using a multi-head self-attention encoder. The encoder output’s high-level attention information lessens the effect of noise. Meanwhile, the CTC algorithm is used to solve the alignment of input features and output labels, which further reduces the impact of noise. Our innovative decoder is split into two halves. The first portion, which focuses on feature channels and spatial dimensions, employs a convolutional attention module (CBAM). The second half uses an LSTM attention module that focuses on the feature sequence’s associations. Based on the height and width of the feature map, the channel attention module considers a global average pooling and maximum pooling, respectively. This process is used to aggregate the spatial information of the feature maps, compress the spatial dimensions of the feature maps in a shared network, and sum the elements one by one. The spatial attention submodule compresses the channels in the feature channel dimension by using a global average pooling and maximum pooling. This process improves the overall recognition accuracy of the model by suppressing noise in the boundary and background information while preserving visual features and semantic information. The CBMA module does not significantly increase the number of parameters in the network. At the same time, it can use computing resources to improve the model effect by enhancing critical aspects and suppressing minor features. After getting the feature attention sequence, the LSTM module focuses on the sequence’s internal relationship and decodes the final string.

Our method likewise performs well compared to the non-encoder–decoder structures of the CRNN and SRN techniques. Even though the CRNN model can handle sequences of any length without character segmentation, scaling, or normalization, it transcribes the final result using the CTC algorithm, which inaccurately identifies characters with large angular tilt occlusion anomalies. Furthermore, the SRN model uses serial decoding, which leads to too low prediction efficiency.

To encode visual features, we employ multi-headed self-attention and location information encoding. It uses a CTC algorithm to tackle the alignment problem between input features and output labels and a two-step attention decoder that includes a CBAM module and an LSTM attention module. Our MAEDR model performs well in extreme conditions such as image overexposure, artifacts, blur, missing character display, and occlusion and has the most remarkable performance in two crucial metrics: accuracy and inference time. To assess the performance of the novel algorithm proposed in this paper on a dataset with poor imaging quality and to justify the proposed novel decoder, we created a dataset with even poorer imaging quality using data enhancement techniques such as adding noise, fogging, etc. and ran many more experiments with the best-performing CRNN model mentioned above. The results are shown in Table 2.

In terms of recognition accuracy and speed, our MAEDR + CTC (Ours-2) model surpasses the prior model after analysis. The MAEDR + CTC (Ours-2) model can recognize character content better in extreme circumstances, with superior robustness, generalization ability, and significant application value.

Model	Accuracy (%)	FPS	Parameter number
CRNN	87.5	142	8317963
SCATTER	86.2	41	119373120
SRN	87.4	71	57199301
HGA-STR	83.4	17	33916725
MAEDR (Ours-1)	86.0	200	31437218
MAEDR + CTC (Ours-2)	91.1	200	31437218

Table 1. Recognition performances of our method compared with other baselines on the gas meter dataset. In each column, the best performing result is shown in bold, and the second best result is shown in underline.
Experimentation on public datasets. In addition to the gas meter table image dataset under extreme conditions, we also conducted experiments on publicly available datasets IIIT5k, SVT, and ICDAR2013 to further validate that our method is feasible and effective. We ran numerous experiments with earlier state-of-the-art algorithms on the public datasets: SCATTER, CRNN, SRN, RobustScanner, ABINet-LV, and PRENatal2D.

Table 3 demonstrates that our method achieves surprising performance on the SVT dataset collected from Google Street View. It contains a large amount of data under extreme conditions such as occlusion, reflection, and dark light. Our approach achieves the competition on the SVT dataset thanks to a novel two-step attention decoder that focuses on the channel and spatial information of the images and the links within the feature sequences. Notably, our technique achieves equivalent SOTA performance on the IIIT5K and ICDAR2013 regular text datasets.

In summary, our model achieves the best recognition performance on two of the three baselines and the second-best performance on the other baseline. The most significant difference with the other methods is that our method performs better on data with extreme conditions.

Ablation experiments. Furthermore, we conducted ablation studies on the CTC and CBAM modules to assess our proposed technique's performance, particularly the two modules that make up the decoder (i.e., CBAM and LSTM). The ablation experiments for our suggested model MAEDR+CTC were effective, and the comparison findings are provided in Table 4. The results show improved accuracy in each example, indicating that each module is useful. The CTC algorithm, in particular, aids in the resolution of the correspondence between the input sequence and the label because character recognition requires not only the labeling of

Test image	Ours-2 Pred	CRNN Pred	Ground truth
![Image](image.png)	02585402	02585462	02585402
	00584606	09584606	00584606
	4118170	44118176	4118170
	84791486	04791480	84791486
	05943880	05843880	05943880

Table 2. Recognition performances of our method compared with CRNN on the gas meter dataset.

Model	Test datasets & accuracy(%)		
	IIIT5K	SVT	ICD13
SCATTER	93.7	92.7	93.9
CRNN	82.9	81.6	89.2
SRN	94.8	91.5	95.5
RobustScanner	95.3	88.1	94.8
ABINet-LV	96.2	93.5	97.4
PRENatal2D	95.6	94.0	96.4
MAEDR (Ours-1)	95.1	94.1	95.2
MAEDR + CTC (Ours-2)	96.3	94.8	96.9

Table 3. Recognition performances of our method compared with SOTA on public datasets. In each column, the best performing result is shown in bold, and the second best result is shown in underline.

Methods	Test datasets & accuracy(%)			
	Our	IIIT5K	SVT	ICD13
MAEDR+CTC	91.1	96.3	94.8	96.9
Without CTC	86.0	95.1	94.1	95.2
Without CBAM	85.4	95.6	93.2	95.7
Without CTC & CBAM	84.2	94.3	92.5	94.1

Table 4. Comparison of results of ablation experiments. In each column, the best performing result is shown in bold.
characters but also the labeling of their positions, which can be difficult in some cases. CTC-assisted training solves this alignment problem. CBAM denoise low-level features such as background texture feature at the early stage. They then gradually focus on the exact target, a high-level semantic. As a result, the module can pay more attention to images' complex and detailed features and get better detection results. In other words, it proves that CBAM retains the essential information of images and suppresses the unnecessary ones, which results in a more discriminative feature for deep character recognition. Combining the two modules yielded the best results, demonstrating that our methodology is feasible and beneficial.

Conclusion
The poor recognition of dial pictures by remote meter reading systems in extreme instances is addressed in this research, which is challenging to meet industrial production needs. We offer a unique character recognition model based on a multi-attention mechanism and an encoder–decoder. Instead of using the usual RNN technique, the model's encoder employs a multi-head self-attention mechanism, which allows for parallel computing. A novel two-step attention machine decoder is also proposed, obtaining the attention feature map following the first attention mechanism. The second attention mechanism concentrates on the temporal relationship between the features in the sequence, decoding the string in the image after multiple time steps. In addition, on the encoder side of the model, a CTC algorithm is added to aid in training. This technique is applied to handle the alignment problem between input features and output labels and achieves a 5.1% improvement over the previous introduction. Experiments have shown that the model performs well in extreme scenarios such as overexposure, artifacts, blurring, missing character display, and picture occlusion, with an accuracy of 91.1% on a gas meter dataset with poor imaging quality. The model's accuracy and practicality make it suitable for instrument data detection and identification in industrial production, and it has a wide range of applications.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due we are doing research on half-character recognition for our dataset but are available from the corresponding author on reasonable request.

Received: 20 January 2022; Accepted: 7 June 2022
Published online: 20 June 2022

References
1. Jiang, H. Application of automatic control pressure instrumentation in industrial production. Modern Ind. Econ. Inform. 9, 82–83 (2019).
2. Bai, Q., Zhao, L., Zhang, Y. & Qi, Z. Research of automatic recognition of digital meter reading based on intelligent image processing. In 2010 2nd International Conference on Computer Engineering and Technology, Vol. 5, V5-619–V5-623. https://doi.org/10.1109/ICCEET.2010.5486243 (2010).
3. Song, R. et al. LCD detecting method of smart electricity meter based on template matching. Electr. Meas. Instrum. 53, 43–46 (2016).
4. Yang, F., Jin, L., Lai, S., Gao, X. & Li, Z. Fully convolutional sequence recognition network for water meter number reading. IEEE Access 7, 11679–11687. https://doi.org/10.1109/ACCESS.2019.2891767 (2019).
5. Feng, Y., Hou, J. & Gu, L. Research on automatic identification of gas meter based on Tesseract-OCR. Electron. Meas. Technol. 42, 82–86 (2019).
6. Chen, W., Yan, J., Jing, Z., Yang, Q. & Amp, C. Research of mechanical meter character locating and segmenting algorithm based on image processing. Electron. Meas. Technol. 40, 132–135 (2017).
7. Singhal, A. et al. A review on optical character recognition. IJITM J. Manag. IT 10, 15–19 (2019).
8. Huang, J., Wang, J., Tan, Y., Wu, D. & Cao, Y. An automatic analog instrument data detection and identification in industrial production, and it has a wide range of applications.

14. Tu, Z. Y., Ning, F. H. & Yu, W. J. Study about digit recognition algorithm for automatic meter reading system. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11962–11972. https://doi.org/10.1109/CVPR2020.2020.01198 (2020).
15. Pereira, F. J. & Castelhano, M. S. Attentional capture is contingent on scene region: Using surface guidance framework to explore attentional mechanisms during search. Psychonom. Bull. Rev. 26, 1273–1281. https://doi.org/10.3758/s13423-019-01610-x (2019).
16. Song, Q., Jiang, Q., Li, N., Zhang, R. & Wei, X. Reads: A rectified attentional double supervised network for scene text recognition. In 2020 25th International Conference on Pattern Recognition (ICPR), 1649–1658 (IEEE, 2021).
17. Woo, S., Park, J., Lee, J.-Y. & Kweon, I. S. CBam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), 3–19 (2018).
18. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 (1997).
19. Jiale, H., En, L., Bingjie, T. & Ming, L. Reading recognition method of analog measuring instruments based on improved Hough transform. In IEEE 2011 10th International Conference on Electronic Measurement & Instruments, Vol. 3, 337–340 (IEEE, 2011). https://doi.org/10.1109/ICEMI.2011.6037919.
20. Tu, Z. Y., Ning, F. H. & Yu, W. J. Study about recognition of digital meter dial reading based on SVM. In Applied Mechanics and Materials, Vol. 615, 194–197 (Trans Tech Publications, 2014).
21. Liu, H. Research on the methods to reading pointer instrument based on machine vision. In 2015 International Conference on Electrical, Electronics and Mechatronics, 134–136 (2015).
22. Zhang, Z., Chen, G., Li, J., Ma, Y. & Ju, N. The research on digit recognition algorithm for automatic meter reading system. In 2010 8th World Congress on Intelligent Control and Automation, 5399–5403 (IEEE, 2010). https://doi.org/10.1109/WCICA.2010.555504.
23. Iaderberg, M., Vedaldi, A. & Zisserman, A. Deep features for text spotting. In European Conference on Computer Vision, 512–528 (Springer, 2014). https://doi.org/10.1007/978-3-319-10593-2_34.
Author contributions
W.L. made intellectual suggestions for the writing of this paper. S.W. conceptualized, designed, analyzed, and wrote up the article. I.U. prepared all the figures. X.Z. and J.D. made some helpful suggestions. All authors reviewed the manuscript.
Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022