On stochastic heat equation with measure initial data

Jingyu Huang

June 27, 2018

Abstract

The aim of this short note is to obtain the existence, uniqueness and moment upper bounds of the solution to a stochastic heat equation with measure initial data, without using the iteration method in [1, 2, 3].

Keywords: stochastic heat equation, measure initial data, Lévy bridge.

AMS 2010 subject classification. Primary 60H15; Secondary 35R60, 60G60.

1 Introduction

Consider the stochastic heat equation

\[\frac{\partial u}{\partial t} = Lu + b(u) + \sigma(u) \dot{W} \]

for \((t, x) \in (0, \infty) \times \mathbb{R}^d (d \geq 1)\) where \(L\) is the generator of a Lévy process \(X = \{X_t\}_{t \geq 0}.\) \(\dot{W}\) is a centered Gaussian noise with covariance formally given by

\[\mathbb{E}(\dot{W}(t, x)\dot{W}(s, y)) = \delta(s - t)f(x - y), \]

where \(f\) is some nonnegative and nonnegative definite function whose Fourier transform is denoted by

\[\hat{f}(\xi) := \int_{\mathbb{R}^d} f(x)e^{-ix\xi}dx \]

in distributional sense, and \(\delta\) denotes the Dirac delta function at 0. For some technical reasons, we will assume that \(f\) is lower semicontinuous (see Lemma 4 below).

Let \(\Phi\) be the Lévy exponent of \(X_t\), we will assume that

\[\exp(-\text{Re}\Phi) \in L^t(\mathbb{R}^d) \text{ for all } t > 0. \]

Thus according to Proposition 2.1 in [5], \(X_t\) has a transition function \(p_t(x)\) and we can (and will) find a version of \(p_t(x)\) which is continuous on \((0, \infty) \times \mathbb{R}^d\) and uniformly continuous for all \((t, x) \in [\eta, \infty) \times \mathbb{R}^d\) for every \(\eta > 0\), and that \(p_t\) vanishes at infinity for all \(t > 0\).
The initial condition $u(0, \cdot)$ is assumed to be a (positive) measure $\mu(\cdot)$ such that
\[
\int_{\mathbb{R}^d} p_t(x - y) \mu(dy) < \infty \quad \text{for all } t > 0 \text{ and } x \in \mathbb{R}^d.
\]
(3)

To avoid trivialities, we assume that $\mu(\cdot) \neq 0$.

Using iteration method, the existence, uniqueness and some moment bounds of the solution have been obtained in [1, 2, 3] for the case $b \equiv 0$ and for some specific choice of L. However, these approaches rely on the structure (or asymptotic structure) of $p_t(x)$. In this article, we will study the equation (1) with also a Lipschitz drift term b and establish the existence, uniqueness and p-th moment upper bound, without using the iteration method in [1, 2, 3], also, our criteria only need some integrability of the Lévy exponent.

To state the result, let us recall that by a solution u to (1) we mean a mild solution. That is, (i) u is a predictable random field on a complete probability space (Ω, \mathcal{F}, P), with respect to the Brownian filtration generated by the cylindrical Brownian motion defined by $B_t(\phi) := \int_{[0,t] \times \mathbb{R}^d} \phi(y) W(ds, dy)$, for all $t \geq 0$ and measurable $\phi : \mathbb{R}^d \to \mathbb{R}$ such that \(\int_{\mathbb{R}^d \times \mathbb{R}^d} \phi(y) \phi(z) f(y - z) dydz < \infty \); and (ii) for any $(t, x) \in (0, \infty) \times \mathbb{R}^d$, the following equation holds a.s.
\[
\begin{align*}
\int_{\mathbb{R}^d} p_t(x - y) \mu(dy) + \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x - y) b(u(s, y)) dyds \\
+ \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x - y) \sigma(u(s, y)) W(ds, dy).
\end{align*}
\]
(4)
where $p_t(x)$ is the transition function for X_t and the stochastic integral above is in the sense of Walsh [6]. The following theorem is the main result of this paper.

Theorem 1. Assume that the initial condition satisfies (3) and assume that
\[
\Upsilon(\beta) := \sup_{t > 0} \int_0^t \int_{\mathbb{R}^d} \exp \left[-2s \text{Re} \Phi \left((1 - \frac{s}{t}) \xi \right) - 2(t - s) \text{Re} \Phi \left(\frac{s}{t} \xi \right) \right] e^{-2\beta(t-s)} \hat{f}(\xi) d\xi ds < \infty
\]
and
\[
\bar{\Upsilon}(\beta) := \int_{\mathbb{R}^d} \frac{\hat{f}(\xi) d\xi}{\beta + \text{Re} \Phi(\xi)} < \infty
\]
for any $\beta > 0$. And assume that σ and b are Lipschitz functions with Lipschitz coefficients $L_{\sigma}, L_b > 0$ respectively. Then there exists a unique mild solution to equation (1). Moreover, define
\[
\bar{\gamma}(p) := \limsup_{t \to \infty} \frac{1}{t} \sup_{x \in \mathbb{R}^d} \log \left\| \frac{u(t, x)}{\tau + p_t * \mu(x)} \right\|_{L^p(\Omega)},
\]
(7)
where
\[
\tau = \max \left\{ \frac{|b(0)|}{L_b}, \frac{|\sigma(0)|}{L_{\sigma}} \right\}.
\]
(8)

Then,
\[
\bar{\gamma}(p) \leq \inf \{ \beta > 0 : B(\beta, p) < 1 \} \quad \text{for all integers } p \geq 2,
\]
(9)
where
\[B(\beta, p) := \frac{L_b}{\beta} + \frac{z_p L_{\sigma}}{(2\pi)^{d/2}} \left(\sqrt{\frac{\tilde{Y}(\beta)}{2}} + \sqrt{Y(\beta)} \right), \]
and \(z_p \) denotes the largest positive zero of the Hermite polynomial \(H_{\nu} \).

Remark 2. If we choose \(\mathcal{L} \) to be the generator of an \(a \)-stable Lévy process \(D_\theta^a \) for \(1 < a < 2 \), where \(\theta \) is the skewness and \(|\theta| < 2-a \) (see [2]), or the Laplacian \(\frac{1}{2} \Delta \) \((a = 2) \), then the classical Dalang’s condition
\[\int \hat{f}(d\xi) \frac{1}{1 + |\xi|^a} < \infty \] \tag{11}
implies condition (5), since in this case \(\text{Re}\Phi(\xi) = C|\xi|^a \) for some \(C > 0 \). Also, in the case \(d = 1 \) and \(\hat{W} \) is a space-time white noise, that is, \(f(\xi) \equiv 1 \), condition (6) clearly guarantees that (2) holds.

Remark 3. (Borrowed from [5, Remark 1.5]). Recall that
\[H_k(x) = 2^{-k/2} H_k(x/\sqrt{2}) \quad \text{for all integers } k \geq 0 \text{ and } x \in \mathbb{R}, \]
where \(\{H_k\}_{k=0}^\infty \) is defined uniquely via the following:
\[e^{-2xt-t^2} = \sum_{k=0}^\infty \frac{t^k}{k!} H_k(x) \quad (t > 0, x \in \mathbb{R}). \]

2 Proof of Theorem 1

In the proof of Theorem 1 we will need two results about taking Fourier transforms, which we now state.

Lemma 4 (Corollary 3.4 in [5]). Assume that \(f \) is lower semicontinuous, then for all Borel probability measures \(\nu \) on \(\mathbb{R}^d \),
\[\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x-y) \nu(dx) \nu(dy) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(\xi) |\hat{\nu}(\xi)|^2 d\xi. \]

Lemma 5. If \(f \) is lower semicontinuous, then
\[\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} p_{t-s}(x-y_1)p_s * \mu(y_1)p_{t-s}(x-y_2)p_s * \mu(y_2)f(y_1-y_2)dy_1dy_2 \]
\[\leq \frac{[p_t * \mu(x)]^2}{(2\pi)^d} \int_{\mathbb{R}^d} \exp \left[-2s\text{Re}\Phi \left((1 - \frac{s}{t})\xi \right) - 2(t-s)\text{Re}\Phi \left(\frac{s}{t}\xi \right) \right] \hat{f}(\xi) d\xi. \]

Proof. We begin by noting that
\[\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} p_{t-s}(x-y_1)p_s * \mu(y_1)p_{t-s}(x-y_2)p_s * \mu(y_2)f(y_1-y_2)dy_1dy_2 \]
\[= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{p_{t-s}(x-y_1)p_s(y_1-z_1)p_{t-s}(x-y_2)p_s(y_2-z_2)}{p_t(x-z_1)p_t(x-z_2)} f(y_1-y_2)dy_1dy_2 \]
\[\times p_t(x-z_1)p_t(x-z_2)\mu(dz_1)\mu(dz_2), \]
We first show that whenever \(\beta \) fields

\[
\text{Proof of Theorem}
\]

and as a function of \(y \), the quotient \(\frac{p_{t-s}(x-y)p_s(y-z)}{p_t(x-z)} \) is the probability density of the Lévy bridge \(\tilde{X}_{z,t} = \{\tilde{X}_{z,t}(s)\}_{0 \leq s \leq t} \) which is at \(z \) when \(s = 0 \) and at \(x \) when \(s = t \). Actually, \(\tilde{X}_{z,t}(s) \) can be written as

\[
\tilde{X}_{z,t}(s) = X_s - \frac{s}{t}X_t + z + \frac{s}{t}(x-z)
\]

hence by the independence of increment of Lévy process, we have

\[
\text{E}e^{i\xi \tilde{X}_{z,t}(s)} = \exp \left(-s\Phi \left(\frac{(1 - \frac{s}{t})}{\xi} \right) - (t-s)\Phi \left(\frac{-\frac{s}{t}}{\xi} \right) \right) e^{i(z + \frac{s}{t}(x-z))}.
\]

Thus, an application of Lemma 4 to \(\nu_j(dy) = \frac{p_{t-s}(x-y)p_s(y-z)}{p_t(x-z)} \) for \(j = 1, 2 \), yields

\[
\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{p_{t-s}(x-y_1)p_s(y_1-z_1)}{p_t(x-z_1)} \frac{p_{t-s}(x-y_2)p_s(y_2-z_2)}{p_t(x-z_2)} f(y_1-y_2)dy_1dy_2
\]

\[
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \text{E}e^{i\xi \tilde{X}_{z,t}(s)} \text{E}e^{i\xi \tilde{X}_{z,t}(s)} f(\xi) d\xi
\]

\[
\leq \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp \left[-2s\text{Re}\Phi \left(\frac{(1 - \frac{s}{t})}{\xi} \right) - 2(t-s)\text{Re}\Phi \left(\frac{-\frac{s}{t}}{\xi} \right) \right] f(\xi) d\xi,
\]

which proves the lemma.

To prove Theorem 1, we first define a norm for all \(\beta, p > 0 \) and all predictable random fields \(v := v(t, x) \),

\[
\|v\|_{\beta,p} = \sup_{t>0} \sup_{x \in \mathbb{R}^d} ||v(t, x)||_{L_p(\Omega)}.
\]

(12)

Let \(B_{\beta,p} \) denote the collection of all predictable random fields \(v := \{v(t, x)\}_{t \geq 0, x \in \mathbb{R}^d} \) such that \(\|v\|_{\beta,p} < \infty \). We note that after the usual identification of a process with its modifications, \(B_{\beta,p} \) is a Banach space (see Section 5 in [5]).

Proof of Theorem 1. We use Picard iteration. Set

\[
u^0(t, x) := p_t * \mu(x),
\]

\[
u^{n+1}(t, x) := p_t * \mu(x) + \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x-y)b(u^n(s, y))dyds
\]

\[
+ \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x-y)\sigma(u^n(s, y))W(ds, dy).
\]

We first show that whenever \(\beta \) is chosen such that \(B(\beta, p) < 1 \), where \(B(\beta, p) \) is defined in (10), then, for any \(n \geq 1 \),

\[
\left\| \frac{\tau + |u^n|}{\tau + p * \mu} \right\|_{\beta, p} < \infty.
\]

(13)

Note that by the dominated convergence theorem, the condition \(B(\beta, p) < 1 \) can be achieved if \(\beta \) is sufficiently large.
Recall that \(\tau \) is defined in (8). We start with the inequality
\[
\frac{\tau + |u^{n+1}(t, x)|}{\tau + p_t \ast \mu(x)} \leq 1 + \int_0^t \int \frac{p_{t-s}(x-y)\tau + p_s \ast \mu(y)}{\tau + p_t \ast \mu(x)} \frac{b(u^n(s, y))}{\tau + p_s \ast \mu(y)} dy ds \\
+ \int_0^t \int \frac{p_{t-s}(x-y)\tau + p_s \ast \mu(y)}{\tau + p_t \ast \mu(x)} \frac{\sigma(u^n(s, y))}{\tau + p_s \ast \mu(y)} W(ds, dy).
\]

(13) is clearly true for \(n = 0 \). Using induction, assume (13) is true for some \(n \), using \(\text{Burkholder inequality} \) (see [4]) and the assumption on \(\sigma \) and \(b \), we obtain
\[
\left\| \frac{\tau + |u^{n+1}(t, x)|}{\tau + p_t \ast \mu(x)} \right\|_{L^p(\Omega)} \leq 1 + L \int_0^t \int \frac{p_{t-s}(x-y)\tau + p_s \ast \mu(y)}{\tau + p_t \ast \mu(x)} \left\| \frac{\tau + |u^n(s, y)|}{\tau + p_s \ast \mu(y)} \right\|_{L^p(\Omega)} dy ds \\
+ z_p L_\sigma \left(\int_0^t \int \int \frac{p_{t-s}(x-y)\tau + p_s \ast \mu(y_1)}{\tau + p_t \ast \mu(x)} \frac{p_{t-s}(x-y_1)\tau + p_s \ast \mu(y_1)}{\tau + p_t \ast \mu(x)} \frac{p_{t-s}(x-y_1)\tau + p_s \ast \mu(y_1)}{\tau + p_t \ast \mu(x)} \left\| \frac{\tau + |u^n(s, y_1)|}{\tau + p_s \ast \mu(y_1)} \right\|_{L^p(\Omega)} \left\| \frac{\tau + |u^n(s, y_2)|}{\tau + p_s \ast \mu(y_2)} \right\|_{L^p(\Omega)} f(y_1 - y_2) dy_1 dy_2 ds \right)^{1/2},
\]

multiplying both sides by \(e^{-\beta t} \) and applying Minkowski’s inequality to the third summand above we obtain
\[
e^{-\beta t} \left\| \frac{\tau + |u^{n+1}(t, x)|}{\tau + p_t \ast \mu(x)} \right\|_{L^p(\Omega)} \leq 1 + L \int_0^t \int \frac{e^{-\beta(t-s)}p_{t-s}(x-y)\tau + p_s \ast \mu(y)}{\tau + p_t \ast \mu(x)} dy ds \\
+ z_p L_\sigma \left(\int_0^t \int \int e^{-2\beta(t-s)}p_{t-s}(x-y_1)p_{t-s}(x-y_2)f(y_1 - y_2) dy_1 dy_2 ds \right)^{1/2} \\
+ z_p L_\sigma \left(\int_0^t \int \int e^{-2\beta(t-s)}p_{t-s}(x-y_1)p_{t-s}(x-y_2)p_{t-s}(x-y_2)f(y_1 - y_2) dy_1 dy_2 ds \right)^{1/2} \\
\cdot \left(\int_0^t \int \int e^{-2\beta(t-s)}p_{t-s}(x-y_1)p_{t-s}(x-y_2)p_{t-s}(x-y_2)f(y_1 - y_2) dy_1 dy_2 ds \right)^{1/2} \\
:= 1 + I_1 + I_2 + I_3,
\]

where in obtaining \(I_2 \) and \(I_3 \) above, we have used the bound
\[
\frac{p_{t-s}(x-y)\tau}{\tau + p_t \ast \mu(x)} \leq p_{t-s}(x-y) \quad \text{and} \quad \frac{p_{t-s}(x-y)p_s \ast \mu(y)}{\tau + p_t \ast \mu(x)} \leq \frac{p_{t-s}(x-y)p_s \ast \mu(y)}{p_t \ast \mu(x)}.
\]

We will estimate \(I_1, I_2, I_3 \) separately. For \(I_1 \), the semigroup property of \(p_t(x) \) yields
\[
I_1 \leq \frac{L}{\beta} \left\| \frac{\tau + |u^n|}{\tau + p \ast \mu} \right\|_{L^p(\Omega)}.
\]
For I_2, an application of Lemma 4 to $\nu(dy) = p_{t-s}(x-y)dy$ yields
\[
\int_0^t \int_{\mathbb{R}^d} e^{-2\beta(t-s)} p_{t-s}(x-y_1)p_{t-s}(x-y_2)f(y_1-y_2)dy_1dy_2ds
= \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} e^{-2\beta(t-s)} Re\Phi(\xi) \hat{f}(\xi) d\xi e^{-2\beta(t-s)} ds \leq \frac{1}{2(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(\xi) d\xi \beta + Re\Phi(\xi),
\]
thus we obtain
\[
I_2 \leq z_p L_\sigma \left(\frac{1}{2(2\pi)^d} \tilde{\Upsilon}(\beta) \right)^{1/2} \left\| \frac{\tau + |u^n|}{\tau + p*\mu} \right\|_{\beta,p}.
\]
Finally, an application of Lemma 5 yields
\[
I_3 \leq z_p L_\sigma \left\| \frac{\tau + |u^n|}{\tau + p*\mu} \right\|_{\beta,p} \left(\frac{1}{2(2\pi)^d} \Upsilon(\beta) \right)^{1/2}.
\]
Combining the estimates for I_1, I_2, I_3, we arrive at
\[
\left\| \frac{\tau + |u^{n+1}|}{\tau + p*\mu} \right\|_{\beta,p} \leq 1 + B(\beta,p) \left\| \frac{\tau + |u^n|}{\tau + p*\mu} \right\|_{\beta,p},
\]
where $B(\beta,p)$ is defined in (10). Using the iteration, we see that (13) holds for all $n \geq 1$ if $B(\beta,p) < 1$.

The same technique applied to $\frac{u^{n+1}(t,x) - u^n(t,x)}{\tau + pt*\mu(x)}$ yields that
\[
\left\| \frac{u^{n+1} - u^n}{\tau + p*\mu} \right\|_{\beta,p} \leq B(\beta,p) \left\| \frac{u^n - u^{n-1}}{\tau + p*\mu} \right\|_{\beta,p},
\]
and if β is chosen such that $B(\beta,p) < 1$, we will obtain that
\[
\sum_{n=1}^{\infty} \left\| \frac{u^n - u^{n-1}}{\tau + p*\mu} \right\|_{\beta,p} < \infty.
\]
Therefore, we can find a predictable random field $u^\infty \in \mathcal{B}_{\beta,p}$ such that $\lim_{n \to \infty} u^n = u^\infty$ in $\mathcal{B}_{\beta,p}$. It is easy to see that this u^∞ is a solution to equation (4), and uniqueness is checked by a standard argument.

To prove (9), we note that since $u \in \mathcal{B}_{\beta,p}$ for those β such that $B(\beta,p) < 1$,
\[
\sup_{x \in \mathbb{R}^d} \left\| \frac{u(t,x)}{\tau + pt*\mu(x)} \right\|_{L^p(\Omega)} \leq \sup_{x \in \mathbb{R}^d} \frac{\tau}{\tau + pt*\mu(x)} + Ce^{\beta t}
\]
for some $C > 0$ which does not depend on t, thus (9) is proved and the proof of Theorem 1 is complete.

3 Acknowledgement

The author thanks Davar Khoshnevisan and David Nualart for stimulating discussions and encouragement.
References

[1] Le Chen and Robert Dalang: Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. *Annals of Probability*, Vol. 43, No. 6, 3006-3051, 2015.

[2] Le Chen and Robert Dalang: Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation. *Stoch. Partial Differ. Equ. Anal. Comput.* 3 (2015), no. 3, 360-397.

[3] Le Chen and Kunwoo Kim: Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency. *arXiv preprint* https://arxiv.org/abs/1510.06046

[4] Burgess Davis: On the L^p norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976), no. 4, 697-704.

[5] Mohammud Foondun and Davar Khoshnevisan: On the stochastic heat equation with spatially-colored random forcing. *Trans. Amer. Math. Soc.* 365 (2013), no. 1, 409-458.

[6] John Walsh: *An Introduction to Stochastic Partial Differential Equations*. École d’été de probabilités de Saint-Flour XIV (1984) 265-439. In: Lecture Notes in Math. 1180 Springer, Berlin.

Jingyu Huang
Department of Mathematics
University of Utah
Salt Lake City, UT 84112-0090
Email: jhuang@math.utah.edu
URL: http://www.math.utah.edu/~jhuang/