Relaxation vs decoherence: Spin and current dynamics in the anisotropic Kondo model at finite bias and magnetic field

Mikhail Pletyukhov, Dirk Schuricht, and Herbert Schoeller
Institut für Theoretische Physik A, RWTH Aachen, 52056 Aachen, Germany and JARA-Fundamentals of Future Information Technology
(Dated: March 10, 2010)

Using a nonequilibrium renormalization group method we study the real-time evolution of spin and current in the anisotropic Kondo model (both antiferromagnetic and ferromagnetic) at finite magnetic field h_0 and bias voltage V. We derive analytic expressions for all times in the weak-coupling regime $\max(V, h_0, 1/t) \gg T_c$ (T_c = strong coupling scale). We find that all observables decay both with the spin relaxation and decoherence rates $\Gamma_{1/2}$. Various V-dependent logarithmic, oscillatory, and power-law contributions are predicted. The low-energy cutoff of logarithmic terms is generically identified by the difference of transport decay rates. For small times $t \ll \max(V, h_0)^{-1}$, we obtain universal dynamics for spin and current.

The real-time dynamics of small strongly interacting quantum systems coupled to several reservoirs (e.g. quantum dots, quantum impurities, or single molecules) is a fundamental nonequilibrium problem. The interest in this field stems from the experimental progress in controlling spin dynamics in quantum dots, and from the necessity to identify the qualitative dynamics for error correction schemes. The theoretical description of such situations remains a huge challenge. Numerical techniques like time-dependent numerical1,4 and density matrix renormalization group methods5, iterative path-integral methods6, and nonequilibrium Monte Carlo simulations7 have been developed to describe the time-evolution. However, the description of finite bias or the long-time limit is often difficult. Analytically very little is known, except for special models which can be solved exactly. For this reason, perturbative renormalization group (RG) methods have been developed for nonequilibrium problems5,8 to obtain results in the regime of weak coupling between dot and reservoirs. Concerning the time evolution, these methods have so far been applied to the spin boson model11,16 and to the Kondo model at zero voltage for special regimes17,18.

In this Letter, we will use a recently developed real-time RG method in frequency-space9,14,15 to calculate analytically the full time-evolution of the anisotropic Kondo model at finite voltage V and magnetic field h_0. This method has the particular advantage that the derived exact hierarchy of RG equations contains the full dynamics of local observables. In order to solve the RG equations systematically by expanding in the renormalized couplings, we will consider the weak-coupling regime where at least one physical low-energy scale is larger than the strong coupling scale T_c. For the Kondo model at zero temperature we consider

$$\Lambda_t = \max(V, h_0, 1/t) \gg T_c,$$

(1)

where $T_c = T_K$ (Kondo temperature) for the antiferromagnetic (AFM) and $T_c = 0$ for the ferromagnetic (FM) Kondo model. In this regime, the couplings $J \equiv J(\Lambda_t)$ can be chosen as expansion parameters, where $J(\Lambda)$ denotes the poor man scaling (PMS) solution at scale Λ (see 3 below). We find several interesting results which are proposed to be generic for any quantum dot in the Coulomb blockade regime where spin/orbital fluctuations dominate: 1. The voltage is an important energy scale for the dynamics which shows up in oscillatory, power-law, or logarithmic behavior. 2. In the long-time limit $t \gg 1/\max(V, h_0)$, we find generically, i.e. in all orders of perturbation theory, that all terms are exponentially decaying with the transport rates Γ_i. Furthermore, due to non-Markovian effects, each spin component and the current contain a sum of two terms, one decaying with the relaxation rate Γ_1 and the other with the decoherence rate Γ_2.

3. At finite voltage, resonances $V, h \gg |h - V| \rightarrow 0$ or $V \gg h \rightarrow 0$ (h is the renormalized magnetic field) are possible in the weak-coupling regime. In the limit $1/\max(V, h_0) \ll t \ll (\delta/t) \ln(\delta/t)$ for the transverse spin. In contrast to stationary quantities11,14,19, the cutoff scale of the logarithmic terms for $\delta \rightarrow 0$ is generically determined by the difference of decay rates $\Gamma_1 - \Gamma_2$. 4. In the short-time limit $t \ll 1/\max(V, h_0)$, we obtain universal dynamics for spin and current.

Model. — The model consists of a single spin-$\frac{1}{2}$, which is coupled by longitudinal and transverse exchange couplings $J_{z,\perp}^{(0)}$ to the spins of two noninteracting reservoirs, see Fig. 1 for a sketch of the system. Experimental realizations of the model are provided by quantum dots20 and molecular magnets21. The Hamiltonian reads $H = H_{\text{ex}} + H_D + H_{\text{ez}}$, where $H_{\text{ex}} = \sum_{\alpha k} \epsilon_\alpha q_\alpha^* q_\alpha$ describes two noninteracting reservoirs labeled by $\alpha = L, R$ ($\sigma = \downarrow, \uparrow$ denotes the spin and k is the state index), $H_D = h_0 \hat{S}_z$ is the Hamiltonian of the local spin with Zeeman splitting, and

$$H_{\text{ez}} = J_{\perp}^{(0)} (\hat{S}_x \hat{s}_x + \hat{S}_y \hat{s}_y) + J_z^{(0)} \hat{S}_z \hat{s}_z$$

(2)

denotes the coupling22. We use the notation $\hat{s} = \frac{1}{2} \sum_{\alpha k \sigma \sigma'} \sigma_{\alpha k}^\dagger \sigma_{\alpha' k'} \alpha_{\alpha' \sigma' \sigma'}$ (the Pauli matrices). The reservoirs are kept at different chemical potentials $\mu_L/R = \pm V/2$ and are assumed to have a flat density of states in the band of width $2D$. Furthermore, we consider the most interesting case of zero temperature.
Method.—To study the dynamics of the local spin \(S(t) \) (or \(\hat{S}(t) \)) and the charge current \(I(t) = \langle \hat{J} \rangle(t) \), we switch on the coupling \(H_{ex} \) suddenly at the initial time \(t = 0 \). It means that we prepare the initial density matrix in the product form \(\rho(0) = \rho_D(0) \rho_L \rho_R \), where \(\rho_D(0) \) is the arbitrary density matrix for the local spin, and \(\rho_L/R \) are grand canonical distributions for the left and right reservoirs. For \(t > 0 \), we calculate the dynamics from a kinetic equation for the reduced density matrix \(\rho_D(t) = Tr_{L/R}[\rho(t)] \). Following Ref. \(3 \), one obtains in Laplace space and in Liouvillian notation \(\rho_D(z) = i/(z - L_D^{\text{eff}}(z)) \rho_D^{(0)} \), where \(L_D^{\text{eff}}(z) \) is an effective dot Liouvillian. The spin dynamics follows from \(S(t) = Tr_D \hat{S}_{D}(t) \), with \(\rho_D(t) = 1/2 \int dz e^{-izt} \rho_D(z) \). The current in Laplace space is given by \(I(z) = -i Tr_D \Sigma_t(z) \rho_D(z) \), where \(\Sigma_t(z) \) denotes the current kernel. \(L_D^{\text{eff}}(z) \) and \(\Sigma_t(z) \) have been calculated in Ref. \(13 \) for an arbitrary quantum dot in the Coulomb blockade regime with explicit formulas for the anisotropic Kondo model. The result is given by a systematic expansion in the dot-reservoir couplings from PMS cut off at scale \(\Lambda_z = \max(V, h_o, |z|) \gg T_c \). The PMS equations are well-known \(20 \) and given by \((d/d\Lambda) J_{z/\perp}(\Lambda) = -2 J_{\perp}(\Lambda) J_{z/\perp}(\Lambda) / \Lambda \), with the solution

\[
J_z(\Lambda) = c \frac{1 + (\frac{2c}{\Lambda})^{2c}}{1 - (\frac{2c}{\Lambda})^{2c}}, \quad J_{\perp}(\Lambda) = 2c \frac{1}{(\frac{2c}{\Lambda})^{2c}}, \tag{3}
\]

where \(c^2 = J_z^2 - J_{\perp}^2 \) and \(T_K \) are two invariants. In the isotropic case one obtains \(J_{z/\perp}(\Lambda) = 1/(2 \ln(\Lambda/T_K)) \). For a study of the time dynamics it appears to be more convenient to expand in the couplings cut off at the time-dependent scale \(\Lambda_t \) defined in \(11 \). We have proven that this expansion is well-defined in the weak-coupling regime \(\Lambda_t \gg T_c \), and equivalent to the expansion in \(J(\Lambda_z) \).

In conventional perturbation theory one approximates \(L_D^{\text{eff}}(z) \approx L_D^{\text{eff}}(z = 0) \) (Markov approximation) and considers only the terms up to second order in the bare exchange couplings \(J_{z/\perp}^{(0)} \) (Born approximation). This approach fails to describe the current dynamics as well as yields simple exponential decay for the longitudinal (transverse) spin with the spin relaxation (decoherence) rate \(\Gamma \) (\(\Gamma \)). In contrast, in this Letter we include non-Markovian terms and use a systematic perturbative approach in the renormalized couplings \(J_{z/\perp}^{(0)} \). In particular, replacing the effective Liouvillian in the resolvent \(1/(z - L_D^{\text{eff}}(z)) \) by any of its nonzero eigenvalues \(\lambda_p(z) \) evaluated up to \(O(\Lambda^2) \), we obtain an expression of the generic form

\[
\bar{Z} = z - \bar{\Delta}_p + \sum_b c_b J_b^2 (z - z_b) \ln \frac{\Lambda_t}{i(z - z_b)} \tag{4}
\]

The pole of this resolvent is denoted by \(z_p = \lambda_p(z_p) \). For the Kondo model, there are three nonzero poles \((p = 1, \pm) \) at \(z_{\pm} = \pm h - i\Gamma_2 \), where \(\Gamma_1 = \pi J_z^2 (h + \max(V, h)) \) and \(\Gamma_2 = (\pi/2) J_z^2 V + \Gamma_1/2 \). The real parts of these poles up to \(O(J) \) determine the quantities \(\Delta_p \), i.e., \(\bar{\Delta}_\pm = \pm (1 - J_z + J_z^{(0)}) h_0 \) and \(\bar{\Delta}_0 = 0 \). Besides the appearance of renormalized quantities, there are two new important contributions in \(11 \). Firstly, the factor \(\bar{Z} = 1 - 2(J_z - J_z^{(0)}) \) occurs, which contains \(J_z = J_z(\Lambda_z) \) and thereby determines the universal non-exponential short-time behavior. Secondly, the logarithmic part is also of non-Markovian form. It induces branch cuts in the complex plane with branch points \(z_{\pm} \). The branch cuts lead to exponential behavior in the long-time evolution are cut off by the inverse Laplace transform in the lower half plane of \(z \). In contrast, in this Letter we include non-Markovian terms and use a systematic perturbative approach in the renormalized couplings \(J_{z/\perp}^{(0)} \). In particular, replacing the effective Liouvillian in the resolvent \(1/(z - L_D^{\text{eff}}(z)) \) by any of its nonzero eigenvalues \(\lambda_p(z) \) evaluated up to \(O(\Lambda^2) \), we obtain an expression of the generic form

\[
\bar{Z} = z - \bar{\Delta}_p + \sum_b c_b J_b^2 (z - z_b) \ln \frac{\Lambda_t}{i(z - z_b)} \tag{4}
\]

The pole of this resolvent is denoted by \(z_p = \lambda_p(z_p) \). For the Kondo model, there are three nonzero poles \((p = 1, \pm) \) at \(z_{\pm} = \pm h - i\Gamma_2 \), where \(\Gamma_1 = \pi J_z^2 (h + \max(V, h)) \) and \(\Gamma_2 = (\pi/2) J_z^2 V + \Gamma_1/2 \). The real parts of these poles up to \(O(J) \) determine the quantities \(\Delta_p \), i.e., \(\bar{\Delta}_\pm = \pm (1 - J_z + J_z^{(0)}) h_0 \) and \(\bar{\Delta}_0 = 0 \). Besides the appearance of renormalized quantities, there are two new important contributions in \(11 \). Firstly, the factor \(\bar{Z} = 1 - 2(J_z - J_z^{(0)}) \) occurs, which contains \(J_z = J_z(\Lambda_z) \) and thereby determines the universal non-exponential short-time behavior. Secondly, the logarithmic part is also of non-Markovian form. It induces branch cuts in the complex plane with branch points \(z_{\pm} \), where \(z_{\pm} = \pm h + nV - i\Gamma_2 \) (for \(p = 1 \)) and \(z_{\pm} = \pm h + nV - i\Gamma_1 \) or \(z_{\pm} = \pm h + nV - i\Gamma_1/2 \) (for \(p = \pm, \pm h \) and \(J_z = J_z(\Lambda_z) \) are the certain coefficients and couplings). The branch cuts lead to exponential behavior in the scale \(z_b, not \ z_p \), i.e., with oscillation frequencies involving the voltage as well as unexpected decay rates. These exponential terms are multiplied by additional power-law or logarithmic functions involving the voltage as well as unexpected decay rates. These exponential terms are multiplied by additional power-law or logarithmic functions involving the voltage as well as unexpected decay rates.
where $S_+ = S_x + iS_y$ and $\Gamma_{12} = \Gamma_1 - \Gamma_2$. The initial and the stationary magnetizations are denoted by $S_x(0) = S_x(0) = \frac{1}{2}$ and $S_{x}(0) = \frac{1}{2}$, $S_{\theta}(0) = 0$

Equations (4)-(7) provide the time dynamics up to $O(J^2)$ in all crossover regimes. We stress that all observables decay both with the relaxation and decoherence rates. Correction terms $\sim O(J^2)$ oscillate with frequencies $h \pm V$, and, additionally, with $h (nV; n = 0, \pm 1)$ for the longitudinal (transverse) spin. From an experimental point of view these oscillations along with the occurrence of both decay rates are our most important results. Examples for the time evolution in the isotropic case $J_3 = J_\perp$ are shown in Figs. 2 and 3. We now illustrate the results in different time regimes.

Long-time limit, off-resonance.—For large times $t \gg \max\{V, h_0\}^{-1}$, we have $\Lambda_t = \Lambda_t \equiv \max\{V, h_0\}$ and $J_{z/\perp} \equiv J_z/\perp(\Lambda_t)$. In the off-resonance case $V, h, |h| \pm V \sim \Lambda_t$, we get typical power-law behavior from the asymptotic expansions $F_1(x) \approx -ix/2$ and $F_2(x) \approx 1/x^2$, for $|x| \gg 1$. Besides the exponential decay, this gives additional factors $\sim 1/(at)^k$, with $k = 1$ for the current and $k = 2$ for the spin. For the transverse spin we obtain, for example,

$$S_{x}(t) \approx S_{x}(0) e^{-\Gamma_{x,t}} e^{iht} \left[Z - J_z^2 \cos(Vt) \sqrt{4\pi t^2} \right]$$

and

$$S_{\theta}(t) \approx S_{\theta}(0) J_z^2 \sqrt{\pi} e^{-\Gamma_{\theta,t}} \left[\frac{2}{h^2 t^2} + \frac{e^{iVt}}{(h + V)^2 t^2} + \frac{e^{-iVt}}{(h - V)^2 t^2} \right],$$

with $Z = Z J_z^2 \ln(\Lambda_t t) + J_z J_z \left[2 - \Theta(V - h) \right]$. To identify the different time scales from the exponential decay explicitly, situations where Γ_1 and Γ_2 differ significantly are of particular interest.

}$
FIG. 4: (Color online) $\log_{10}(\langle S_x(t) \rangle)$ in the anisotropic Kondo model for $V = 2t_0 = 100 T_K$ and various values of the anisotropy $c^2 = (J_z^{(0)})^2 - (J_{\perp}^{(0)})^2$, with $S_z(0) = 1/2$, $S_y(0) = 0$. The dips have their origin in the oscillations of $S_x(t)$.

with $c = \sqrt{(J_z^{(0)})^2 - (J_{\perp}^{(0)})^2}$. For $|(T_K t) c| \gg 1$ (FM case), we have to replace $c \rightarrow -c$. As a result, universal power laws are predicted in the short-time limit on the scale of the Kondo temperature. We note that for the FM Kondo model with $V = t_0 = 0$ a power law has also been found for $S_z(t)$ in Ref. 17. Here, we have found a complete analytic expression in terms of the PMS solution, together with results for the AFM model, the transverse spin, and the current. Furthermore, we identified the validity range for finite Λ_c by $t \ll \Lambda_c^{-1}$. In the isotropic case ($c = 0$), we obtain $J^t = -1/(2 \ln(T_K t))$ leading to $\langle S_x(t) \rangle = \langle S_x(0) \rangle (1 + 2t_0^{(0)} + 1/\ln(T_K t))$ and $G(t) = (e^2/h)3\pi^2/(8 \ln^2(T_K t))$ for both AFM and FM models. In this case, universal logarithmic terms occur, which have also been found for $S_z(t)$ in Refs. 14, 17.

Summary.—We found complex dynamics for a spin coupled to fermionic reservoirs held at finite bias and for the current across it. The results go beyond Markovian theories and, in a well-controlled weak-coupling regime, are presented in closed analytic form covering all time regimes. Due to the generic form of Eq. (4), we propose our main conclusions to be generic for quantum dots in the Coulomb blockade regime. From Ref. 14 it follows that the branch points of the logarithmic terms are generically given by $z_b = z_p + nV$, where z_p is any pole of the leading order exponential decay, and $n = 0, \pm 1, \pm 2, \ldots$. Therefore, we find in all orders of perturbation theory that all terms are exponentially decaying, all transport rates occur in principle in the decay of each observable, and the voltage appears in the oscillation frequencies. We have shown this explicitly for the Kondo model and revealed that the bias voltage is an important energy scale for the time evolution showing up in unexpected oscillation frequencies and in various power-law and logarithmic contributions.

This work was supported by the DFG-FG 723 and 912.

1. P. F. Braun et al., Phys. Rev. Lett. 94, 116601 (2005); K. C. Nowack et al., Science 318, 1430 (2007); M. Atat"ur"e et al., Nat. Phys. 3, 101 (2007).
2. J. Preskill, in Introduction to Quantum Computation and Information (H.-K. Lo, S. Popescu, and T. Spiller, World Scientific, Singapore, 1998) p. 213; D. P. Di Vincenzo and D. Loss, Phys. Rev. B 71, 035318 (2005); J. Fischer and D. Loss, Science 324, 1277 (2009).
3. F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005); ibid., Phys. Rev. B 74, 245113 (2006); F. B. Anders, R. Bulla, and M. Vojta, Phys. Rev. Lett. 98, 210402 (2007).
4. D. Roosen, M. R. Wegewijs, and W. Hofstetter, Phys. Rev. Lett. 100, 087201 (2008).
5. A. Daley et al., J. Stat. Mech.: Theor. Exp. P04005 (2004); S. R. White and A. Feiguin, Phys. Rev. Lett. 93, 076401 (2004); P. Schmitteckert, Phys. Rev. B 70, 121302 (2004); F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev. B 79, 235336 (2009).
6. S. Weiss et al., Phys. Rev. B 77, 195316 (2008).
7. T. L. Schmidt et al., Phys. Rev. B 78, 235110 (2008).
8. F. Lesage and H. Saleur, Phys. Rev. Lett. 80, 4370 (1998); A. Schiller and S. Hershfield, Phys. Rev. B 62, R16271 (2000); A. Komnik, Phys. Rev. B 79, 245102 (2009).
9. H. Schoeller, Eur. Phys. J. Special Topics 168, 179 (2009).
10. H. Schoeller, in Low-Dimensional Systems (ed. T. Brandes, Lect. Notes Phys. Vol. 544, Springer, 2000) p. 137; H. Schoeller and J. König, Phys. Rev. Lett. 84, 3686 (2000); S. G. Jakobs, V. Meden, and H. Schoeller, Phys. Rev. Lett. 99, 150603 (2007).
11. A. Rosch et al., Phys. Rev. Lett. 90, 076804 (2003); ibid., J. Phys. Soc. Jpn. 74, 118 (2005).
12. S. Kehrein, Phys. Rev. Lett. 95, 056602 (2005).
13. A. Hackl and S. Kehrein, Phys. Rev. B 78, 092303 (2008).
14. H. Schoeller and F. Reininghaus, Phys. Rev. B 80, 045117 (2009); ibid. Phys. Rev. B 80, 209901(E) (2009).
15. D. Schuricht and H. Schoeller, Phys. Rev. B 80, 075120 (2009).
16. M. Keil and H. Schoeller, Phys. Rev. B 63, 180302(R) (2001).
17. A. Hackl et al., Phys. Rev. Lett. 102, 219902 (2009); A. Hackl, M. Vojta, and S. Kehrein, Phys. Rev. B 80, 195117 (2009).
18. D. Lobaskin and S. Kehrein, Phys. Rev. B 71, 193303 (2005).
19. L. I. Glazman and M. Pustilnik, in Nanophysics: Coherence and Transport (H. Bouchiat et al., Elsevier, 2005) p. 427.
20. D. Goldhaber-Gordon et al., Nature (London) 391, 156 (1998); S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998).
21. C. Remeik et al., Phys. Rev. Lett. 96, 196601 (2006); H. B. Heersche et al., Phys. Rev. Lett. 96, 206801 (2006); M.-H. Jo et al., Nano Lett. 6, 2014 (2006).
22. We assume the exchange couplings to be independent of the reservoir index. Other cases can be equally well treated.
23. J. Solyom and A. Zawadowski, J. Phys. F: Metal Phys. 4, 80 (1974).
24. At ultra-short times $t \ll D^{-1}$ an expansion in $J_x^{(0)}$ and $D t$ is applicable. The scale T_K is invisible in this regime.