Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleo-cytoplasmic shuttling of SRP

M Panchal1,2; K Rawat1,2; G Kumar3; KM Kibria4; S Singh1; Md Kalamuddin1; A Mohmed1; P Malhotra5,1; and R Tuteja6,1

Signal recognition particle (SRP) is a ubiquitous ribonucleoprotein complex that targets proteins to endoplasmic reticulum (ER) in eukaryotes. Here we report that *Plasmodium falciparum* SRP is composed of six polypeptides; SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72 and a 303nt long SRP RNA. We generated four transgenic parasite lines expressing SRP-GFP chimeric proteins and co-localization studies showed the nucleo-cytoplasmic localization for these proteins. The evaluation of the effect of known SRP and nuclear import/export inhibitors on *P. falciparum* revealed that an inhibitor of importin α/β mediated nuclear import inhibited the nuclear import of PISRP polypeptides at submicromolar concentration, thereby killing the parasites. These findings provide insights into dynamic structure of *P. falciparum* SRP and also raise the possibility that ivermectin could be used in combination with other antimalarial agents to control the disease.

Cell Death and Disease (2014) 5, e994; doi:10.1038/cddis.2013.521; published online 16 January 2014

Subject Category: Experimental Medicine

The protein targeting in *Plasmodium falciparum* is a complex process that involves an extensive network of rough endoplasmic reticulum (ER), an unstacked Golgi situated anterior to the nucleus along with characteristic apicoplast complex organelles—rhoptries, micronemes and dense granules.1–4 The biogenesis of the secretory organelles, their relationship to the organelles of higher eukaryotes and various sorting events that allow the proteins to get targeted to the right place are poorly understood in *P. falciparum*. The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein complex, coordinates the targeting of nascent secretory as well as membrane proteins to the translocation machinery of the cells.5,6 In addition to the targeting function, SRP also does the elongation arrest or pausing function.7 SRPs have been identified from all the three kingdoms based on their phylogenetically conserved sequences and their structures.8 The eukaryotic SRP is composed of a ~300 nucleotide 7S RNA to which six distinct polypeptides; SRP9, 14, 19, 54, 68 and 72 are attached.9,10 SRPs of bacteria are far simpler than its eukaryotic counterpart. In *Escherichia coli*, SRP consists of a 4.5S RNA to which a single polypeptide, the SRP54 homologue Ffh is attached. SRP54 of *Leishmania major*, *Giardia lamblia* and *Trypanosoma brucei* contain SRP19, 54, 68 and 72 homologues but do not possess SRP9/14 homologues.10,11 The molecular and structural studies in mammalian cells have shown that SRP polypeptides; SRP-9, -14, -19, -68 and -72 are imported into the nucleus where they bind SRP RNA.12 The partially assembled SRP is exported out of nucleus in the cytoplasm and is joined by SRP54. The assembled SRP thereafter recognizes the under synthesized polypeptide resulting in elongation arrest.7 It has been shown that the binding of SRP19 to 7S RNA introduces some conformational changes in the RNA molecule, which enables SRP54 to bind it.13,14 SRP54 acts as a front runner protein in recognizing the signal sequence flaunted by newly synthesized polypeptide chain of translating ribosome. The phenomenon of elongation arrest is considered to be essential, as the cell has to keep pace with the limited number of SRP receptors available on the membrane. The elongation resumes only when the whole conglomeration is transferred to the Sec62 translocon. The importance of components of this protein translocation machinery has been well documented in humans, where mutations in the components of transport machinery have been shown to cause various human diseases, thereby suggesting that this is an important and vital pathway.15

In *P. falciparum*, although a number of studies have reported the identification of few major components of protein translocation pathway by *in silico* analysis using Plasmodb data base,16–18 however, till now *Plasmodium* protein translocation machinery has not been characterized. In the present study, we identified seven *P. falciparum* SRP constituents and characterized them biochemically as well as for their sub-cellular distribution at asexual blood stages by generating SRP-GFP transgenic parasite lines. We further investigated the effects of exportin/importin and SRP

1Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
2Corresponding author: P Malhotra or R Tuteja, Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. Tel: +91 11 26741358; Fax: +91 11 26742316; E-mail: pawanm@icgeb.res.in or renu@icgeb.res.in
3These authors contributed equally to this work.

Keywords: signal recognition particle; nucleo-cytoplasmic shuttling; ER transport; ivermectin

Abbreviations: AFB1, aflatoxin B1; CQ, chloroquine; ER, endoplasmic reticulum; ELISA, enzyme-linked immunosorbent assay; GFP, green fluorescent protein; HDP, heme detoxification protein; IVM, ivermectin; LMB, leptomycin B; SRP, signal recognition particle

Received 25.9.13; revised 20.11.13; accepted 21.11.13. Edited by A Stephanou
assembly inhibitors on parasite growth in vitro and studied in detail the mode of action of ivermectin. Our results provide new insights into the molecular organization of *P. falciparum* SRP and set the stage to further analyze the antimalarial effect of ivermectin clinically.

Results

Identification of *P. falciparum* SRP components, characterization of PfSRP RNA and PfSRP 9, 14, and 54. The domain specific search of the recent *P. falciparum* data base using the amino acid sequences of the human SRP proteins and SRP RNA was performed. The query identified all the predicted human SRP homologues in *P. falciparum* genome with PlasmoDB numbers PF3D7_0729000 (PfSRP9), PF3D7_1203200 (PfSRP14), PF3D7_1216300 (PfSRP19), PF3D7_1450100 (PfSRP54), PF3D7_0621900 (PfSRP68), PF3D7_1136400 (PfSRP72) and (PfSRP RNA) (Figures 1a and b). PfSRP72 as well as PfSRP68 homologs were identified based on protein–protein and protein–RNA interaction motifs. The annotated PfSRP68 sequence possesses a conserved SRP72 interacting domain, FSPKMKSELNLPHIDMTQMYRSTSY of the form FSPKMKSELNLPHIDMTQMYR [TSYL] located at amino acid positions 728–753 in *P. falciparum*, which harbors the conserved aspartic acid shown to be important for binding of human SRP68 protein.19 PfSRP72 possesses a conserved 7SL RNA binding domain, PDPERWLPRLR of the form PDRPWLPKHEK located at amino acid positions 832–840 in *P. falciparum*. PfSRP72 also possesses the conserved tetrapeptide repeat motif (TPR) consisting of Y110, Q145 and Y153 which has been suggested to mediate interaction with SRP68 (Figure 1b). Together these results suggest that *P. falciparum* SRP is composed of a ~300 nt RNA and six polypeptides with masses 12.1, 11.8, 18, 55.9, 92.5 and 107.1 kDa. The coding sequences of predicted PfSRP54, PfSRP19, PfSRP14, PfSRP9 and PfSRP RNA were PCR amplified, cloned and sequenced. The sequence analysis of the PCR products showed no differences from the sequences in PlasmoDB data base.

Expression and purification of recombinant PfSRP polypeptide homologues. These genes were sub-cloned in *E. coli* expression vectors pET28a or pET28b. A moderate level of expression was seen for the four recombinant PfSRP proteins. The recombinant proteins were subsequently purified on a Ni-NTA + column under non-denaturing conditions. The apparent molecular masses of the recombinant proteins PfSRP9, PfSRP14 and PfSRP9 are ~19, ~14 and ~12 kDa respectively (Supplementary Figures S1b–d). In the case of PfSRP54, two additional bands of lower molecular weight were always seen along with the intact protein after purification and all three bands were recognized on a western blot by anti-His antibody, thereby suggesting that these two additional bands were the degradation product of the intact protein (Supplementary Figure S1a, iii). The purified recombinant PfSRP54 was unstable as no intact protein was detected after storage. Therefore, to characterize PfSRP54, two distinct domains covering the entire sequence of PfSRP54; a GTP binding domain (NG domain) and a methionine rich domain (M domain) were cloned in pET28a and expressed. Both the PfSRP54 domains; PfSRP-54NG and PfSRP-54M were purified on a Ni-NTA + column up to near homogeneity (Supplementary Figures S1a, i and ii). The purified recombinant PfSRP proteins were used to raise antibodies in mice and rats.

**Immunoblot analysis of *P. falciparum* 3D7 parasite lysate using anti-PfSRP54, -PfSRP19, -PfSRP14 and -PfSRP9 antibodies recognized their respective native proteins of ~54, ~19, ~12, and ~12 kDa corresponding to the actual size of the native proteins. Pre-immune sera failed to detect any band in *P. falciparum* lysate (Figures 1c, i–v). The specificity of the antibodies was further confirmed by immunolocalization study at asexual blood stages of the parasite. *P. falciparum* SRP polypeptides are expressed in all three blood stages; ring, trophozoite and schizont (Figures 1d, i–iv and Supplementary Figures S1e, i–iv). The staining was seen in the parasite cytoplasm and to some extent in the nucleus as well. No staining was observed in parasites with preimmune sera.

PfSRP polypeptides show bi-compartmental (nucleo-cytoplasmic) localization. To decipher the sub-cellular localization of *P. falciparum* SRP polypeptides, four transgenic parasite lines expressing PfSRP54, PfSRP19, PfSRP14 and PfSRP9 as chimeric proteins with GFP were generated. Figures 2a–d, upper panels show the schematic of the PfSRP54-GFP, PfSRP19-GFP, PfSRP14-GFP and PfSRP9-GFP fusion constructs used for transfecting the parasite. The localizations of PfSRPs-GFP by fluorescence microscopy of live parasites were also investigated. At the early stage of development >20 h (ring stage), a crescent shaped staining was observed that changed into a ring of fluorescence around the nuclear envelop at the trophozoite stage (Figures 2a–d, lower panels i and ii). In later stages, staining was quite intense and spread through-out the cytoplasm (Figures 2a–d, lower panel iii). At schizont stage, extensive ER branching creating a mesh-like network in some sections was observed (Figures 2a–d, lower panel iii). The PfSRP54 staining was mainly observed in cytosol (Figure 2a, lower panels). In comparison to PfSRP54 distribution in the nucleus, staining for PfSRP19, PfSRP14 and PfSRP9 in subnuclear areas was quite intense at the asexual blood stages particularly at the trophozoite stage (Figures 2b–d, lower panel ii, Supplementary Figure S2). The inspection of transgenic parasites by confocal microscopy (mid-depth Z slice) also revealed the nucleo-cytoplasmic distribution of PfSRP-chimeric proteins (Figures 2c and d, lower panel iv). To further confirm the bi-compartmental localization of PfSRP polypeptides, co-localization experiments for the parasite SRP polypeptides with PINOP1, a known nucleolar marker20 or with PiBiP, an ER marker21 were performed with their respective antibodies. A considerable overlap in staining was observed between three PfSRP polypeptides; PfSRP19, -14, and -9 with PINOP1 and with PiBiP protein (Figures 3a and b, i–iv). Importantly, considerable co-localization of PfSRP54 with PINOP1 in early stages of parasite development i.e. merozoite and ring stages (Figure 3a, i and Supplementary Figure S3).
Figure 1 Schematic representation of domain architecture and expression of PfSRP polypeptides. (a) conserved domains of PfSRP54, PfSRP19, PfSRP14 and PfSRP9 predicted by CDART (http://www.ncbi.nlm.nih.gov/cdd). (b) Aligned representation of conserved domains of PfSRP72 and PfSRP68. Regions marked in yellow show conserved sequences. (c, i-iv) Western blot of expression of PfSRP54, PfSRP19, PfSRP14 and PfSRP9 in P. falciparum as detected by specific anti-PfSRP54, anti-PfSRP19 and anti-PfSRP14 and PfSRP9 sera in the parasite lysate. (c) v) Western blot with mice pre-immune sera (d) Immuno-fluorescence staining of PfSRP54, PfSRP19, PfSRP14 and PfSRP9 in P. falciparum detected by specific anti-PfSRP54, anti-PfSRP19 and anti-PfSRP14 and PfSRP9 sera.
Figure 2 Localisation of GFP fused PfSRP54, PfSRP19, PfSRP14 and PfSRP9 polypeptides. Upper panels of a, b, c and d show schematic representation of respective GFP fused PfSRP polypeptides. Lower panels show the expression of PfSRP polypeptides in three asexual blood stages of *P. falciparum* i.e. ring, trophozoite and schizont stage. Panel c(iv) and d(iv) show three dimensional reconstruction of confocal Z-stack merged images of GFP fused PfSRP19 and PfSRP14 (green), respectively, along with nuclear stain DAPI (blue).
was observed. In addition considerable co-localization between the GFP protein and the cytoplasmic marker Pfactin, along with ER tracker (invitrogen) was also observed (Figures 3c and d). These results collectively suggest that the parasite’s SRPs reside in nucleus and ER membrane.

PfSRP assembly involves protein–RNA and protein–protein interactions. In vitro binding studies in mammalian cells have revealed that SRP RNA is at the centre of structure of SRP complex. Protein–RNA interaction by an RNA binding assay and protein–protein interactions by bacterial two hybrid analysis were performed with PfSRP RNA and between PfSRP proteins to understand the assembly of \(P. falciparum \) signal recognition particle.

The results of protein/RNA interaction studies showed that PfSRP19 bound to the S domain of PfSRP RNA (Figure 4a) as well as to the full length SRP RNA (Figure 4b, lane E1). Similarly, PfSRP54 also bound the S domain and intact PfSRP RNA similar to PfSRP19 protein (Figure 4b, lanes E2 and E4). Moreover, PfSRP-9, -14, -19 and -54 together bound strongly to the intact full length PfSRP RNA (Figure 4b, lane E5). However, PfSRP RNA was unable to bind to a non-SRP protein, PfHDP (25 kDa) (Figure 4b, lane E3). These results support identification of PfSRP genes in the present study as the real constituents of the \(P. falciparum \) SRP machinery and further suggest that PfSRP RNA like its other homologs provides a backbone for the coordinated assembly of PfSRP proteins.

To know whether PfSRP assembly also involves protein–protein interactions besides protein–RNA interactions, direct interaction studies between PfSRP54, -19, -14 and -9 using an ELISA based approach or by a well established bacterial two-hybrid interaction approach were performed.
Varying degrees of interactions among the four SRP polypeptides were observed but no interaction between PfSRP19 and PfSRP54 was seen (Figures 4c–e and Supplementary Figure S4). The associations between these PfSRP proteins in vivo were also illustrated by the co-localization studies performed at asexual blood
stages of the parasite using their respective antibodies (Supplementary Figure S2).

Effect of aflatoxin B1, leptomycin B and ivermectin on PfSRP distribution and parasite growth. A number of inhibitors/drugs such as aflatoxin B1 (AFB1), leptomycin B (LMB) and ivermectin have been shown to either interact with SRP components or inhibit protein nuclear export/import machinery. We tested the effect of these inhibitors on transgenic parasite lines. AFB1 up to 5 μM and LMB up to 100 ng/ml had no significant effect on PfSRP9-GFP protein distribution and on parasite growth (Figures 5a and b and Supplementary Figures S5a and b). Ivermectin, an inhibitor of importin α/β, at 10 μM to 25 μM showed pronounced effects 24 h after the treatment on PfSRP9-GFP transgenic parasites (Figure 5c). The distribution of GFP-fused PfSRP9 chimeric protein was concentrated in parasite cytoplasm in the treated parasites, in comparison to the untreated parasite culture where the chimeric protein showed the nucleo-cytoplasmic distribution. The effect was more pronounced at 25 μM concentration of ivermectin (Figure 5c). The removal of ivermectin from the culture media after 24 h did not alter the growth of the parasite i.e. effect of the drug was irreversible. A similar block in nucleo-cytoplasmic shuttling

![Figure 5](https://example.com/figure5.png)

Figure 5 Effect of aflatoxin B1, leptomycin B and ivermectin, on nucleo-cytoplasmic shuttling of GFP fused PfSRP9. Synchronised ring stage infected erythrocytes at 2% initial parasitemia were treated with these inhibitors and imaged at different time intervals. (a) upper panel, DMSO treated control parasite after 24 h of treatment, lower panel, AflatoxinB1 (AFB1, 10 μM) treated parasite at 24 h after treatment. (b) LeptomycinB (LMB, 25 ng/ml) treated parasite at 24 h after treatment and (c) parasite after 24 h of ivermectin (IVM) treatment at 10 μM and 25 μM, respectively
was observed for GFP fused PISRP14 transgenic parasites (Figures 6b and c and supplementary videos 1 and 2). Subsequently, the effect of ivermectin on parasite growth was assessed by the SYBR green based assay on different P. falciparum drug resistant strains; chloroquine (CQ)/mefloquine resistant (DD2 and MCamp) along with a chloroquine sensitive strain P. falciparum 3D7. Ivermectin exhibited anti-plasmodial activity against all the three

![Figure 6](image_url)

Figure 6 Effect of Ivermectin on localisation of GFP fused PISRP14 and growth of parasite. (a) i and ii show three dimensional reconstruction of confocal Z-stack merged images of GFP fused control trophozoite with DAPI (blue) as nuclear marker merged with DIC. (b) and (c), show the three dimensional reconstruction of confocal Z-stack merged images of GFP fused PISRP14 with DAPI as nuclear marker merged with DIC in control and Ivermectin (10 μM) treated parasite at 24 h after treatment. (d) dose dependent effect of ivermectin on growth of P. falciparum 3D7, MCamp and Dd2 by SYBR Green assay (e) In-vivo effect of ivermectin against P. berghei in mice

Role of ivermectin in blocking P. falciparum SRP

M Panchal et al

Cell Death and Disease
strains Dd2, MCamp and 3D7 in a dose dependent manner with IC$_{50}$ values of 2.85, 1.92 and 1.56 μM respectively (Figure 6d). We further tested the anti-malarial activity of ivermectin in vivo with P. berghei infected mice by administering a 0.5 mg/kg dose of ivermectin using a modified Thompson test (3 consecutive days of dosing). As seen in Figure 6e, ivermectin alone suppressed day 4 parasitemias by ~40% compared to placebo-treated controls. All four mice administered with ivermectin survived up to 23 days, while the control mice died on day 13 (Supplementary Figure S5c). Together these results suggest that ivermectin can be considered for the development as an antimalarial, which can be used in combination with other drugs.

Ivermectin is a known inhibitor of importin α/β mediated nuclear transport. $P. falciparum$ has only two important nuclear import factors; karyopherins α and β in its genome, while the human genome encodes numerous importins. We next analysed the sub-cellular distribution of karyopherin β in ivermectin treated asexual blood stages of $P. falciparum$ using anti-Pfkaryopherin β antibody. $P. falciparum$ β recognized the parasite specific karyopherin β in untreated parasites and staining was mainly seen in and around the nucleus (Figure 7a, i). Intriguingly, parasites treated with ivermectin for 2.5 hours at 100 μM concentration or with 5 μM concentration for 20 h showed restricted staining in the cytoplasm (Figure 7a, ii and supplementary Figures S6a and b). Faint or no staining for PfSRP9 protein was observed at 20 h post exposure to 25 μM of ivermectin, mainly because almost all the parasites were dead after this treatment (Supplementary Figure S6c). Together these results suggest

Figure 7 Effect of Ivermectin on localisation of karyopherin β, proposed mechanism of cargo import by karyopherin α-karyopherin β pathway and possible mode of action of ivermectin. (a, i), control parasite with karyopherin β (red) and DAPI (blue) and ii, ivermectin (100 μM) treated parasites after 2.5 hours. (b) Karyopherin α and β form a dimer and attach with the cargo and pass through the nuclear pore complex into nucleus where the cargo detaches itself from the karyopherins which are recycled into cytoplasm via RanGTP. SRP subunits join SRP RNA in the nucleus and the whole conglomerate is transported back to the cytoplasm where it becomes functional. Ivermectin blocks the parasite growth by inhibiting nucleo-cytoplasmic shuttling of SRPs essential for parasite survival either by affecting at the stage of karyopherin dimerisation or at the level of SRP attachment with Karyopherin dimer which inturn hampers the entry of SRP to its site of RNA assembly in the nucleus. Cell death occurs because of piling up of proteins in the cytoplasm.

$P. falciparum$ infected RBC in absence and presence of ivermectin
that ivermectin inhibits malaria parasite development by blocking nucleo-cytoplasmic shuttling of PISRP components.

Discussion

Recognition of the signal sequence in the ribosome nascent-chain (RNC) complex by SRP is the first step in protein secretion.26 SRP couples the synthesis of membrane/secretory proteins and their transport across the ER membrane in eukaryotes27,28 or across the bacterial plasma membrane8 and chloroplast thylakoid membranes.29 Considerable variations have been observed in the constituents of SRPs in different organisms.10 Among the protozoan parasites, \textit{T. brucei} and \textit{Leptomonas collosoma} possess an unusual SRP that comprises two SRP RNAs; 7SL RNA and a tRNA like molecule and three SRPs proteins; SRP19, SRP72 and SRP68, while the bacterial SRPs are of reduced complexity consisting of a small SRP RNA and a single protein SRP54, also referred as Ffh.10 In the present study, \textit{in silico} analysis revealed that the \textit{P. falciparum} SRP is more similar to the mammalian SRP as it consists of six polypeptides; PISRP72, PISRP68, PISRP54, PISRP19, PISRP14 and PISRP9 and a single 303 nucleotide long PISRP RNA. In comparison to the previous \textit{in silico} studies, in the present study two additional PISRP polypeptides; PISRP68 and PISRP72 were identified in the \textit{P. falciparum} genome. It is important to mention here that the other members of the Alveolata to which \textit{P. falciparum} belongs such as \textit{Theileria}, \textit{Eimeria} as well as members of the \textit{Euglenozoa} such as \textit{Trypanosoma} and \textit{Leishmania}, lack one or two of the six SRP polypeptides. For example SRP9/14 has not been identified in \textit{L. major}, \textit{T. cruzi}, \textit{Thelileria annulata}, and \textit{Giardia lamblia}.10,11

A number of structural and protein–RNA interactions studies for \textit{E. coli} and mammalian SRPs have provided insights into the assembly of SRPs and also delineated the interaction motifs (residues) between SRP54 and SRP RNA.30–32 However, our understanding of SRPs in lower eukaryotes has been limited. Here we identified and report some of the essential features of \textit{P. falciparum} SRP. The results demonstrate that all the components of mammalian SRP are conserved in the \textit{P. falciparum} genome. We further show that \textit{Plasmodium} SRP assembly process appears to be similar to that of human SRP assembly. The binding of PISRP19 to PISRP RNA most likely induces conformational changes in PISRP RNA that subsequently binds to other components; such as PISRP54, PISRP14 and PISRP9. Additionally, we demonstrate that during PISRP assembly various PISRP proteins also interact with each other, presumably to stabilize the PISRP.

The sub-cellular localization studies performed for PISRP proteins showed a clear nucleolar as well as cytoplasmic distribution for PISRP9, PISRP14 and PISRP19 polypeptides at asexual blood stages by anti-PISRP antibodies and by GFP fluorescence analysis in transgenic lines. This was further confirmed by co-localization experiments with the nucleolar and ER markers. Importantly, PISRP54 also showed nucleoplasmic distribution, although its level in the nucleus was low in comparison to other PISRP polypeptides. Significantly, we could also observe PISRP54 co-localization with PINOP1, a nucleolar marker especially in earlier stages of development. It has been proposed that nucleolus is the site of assembly and/or interaction between the families of mammalian ribonucleoproteins involved in protein synthesis, in addition to ribosomes themselves.33–35 However, in mammalian cells, SRP54 does not seem to have a nucleolar phase.12 Based on these findings, it has been suggested that in mammalian cells, SRP is partially assembled in the nucleus and it is piggybacked with ribosomal units for export from the nucleus.36 In the cytoplasm, the partially assembled SRP is joined by SRP54 that recognizes the nascent signal sequence.33 Based on the data for the localization of PISRP proteins and mammalian SRP proteins, it seems more likely that in the case of PISRP, complete assembly may occur in nucleus and this assembled complex is then transported to cytoplasm to perform ER targeting.

The movement of proteins between the nucleus and cytoplasm is an essential process and has been shown to be critical for the disease states such as parasitic diseases, viral diseases and oncogenesis. Although seven importin \textit{α} and >20 importin \textit{β} have been described in human along with a wide range of NLS/NES sequences that are required for this transport, functional role(s) of each transporter in specific protein shuttling across nuclear membrane is not still understood.23 Currently, the exportin/CRM1 inhibitor, Leptomycin B and importin \textit{α}/\textit{β} inhibitor, ivermectin are the only accepted inhibitors being used to inhibit nuclear transport in mammalian cells. We used these inhibitors along with aflatoxin B\textsubscript{1} to study their effect on PISRP polypeptides and their nucleo-cytoplasmic shuttling. Importantly, neither Leptomycin B, nor aflatoxin B\textsubscript{1} affected the localization and distribution of PISRP-GFP polypeptides and these treated parasites grew normally in \textit{in vitro} culture. In comparison, ivermectin, a specific inhibitor of importin \textit{α}/\textit{β} blocked the nucleo-cytoplasmic shuttling of SRP polypeptides; PISRP9-GFP and PISRP14-GFP chimera proteins were mainly seen in the parasite cytoplasm in the ivermectin treated parasites. Ivermectin showed a potent inhibition in the growth of \textit{P. falciparum} 3D7 as well as other drug resistant strains, Mcamp and DD2. Ivermectin treated \textit{P. falciparum} parasites also showed a dramatic change in the level as well as the distribution of karyopherin \textit{β}. Limited \textit{in vivo} studies in a \textit{P. berghei} model further demonstrated the antimalarial effect of ivermectin.

Ivermectin has been shown to inhibit replication of HIV-1 and Dengue virus by blocking the shuttling of nuclear proteins mediated by importin \textit{α}/\textit{β}. In nematodes, ivermectin is known to bind and activate chloride ion channels,37 a phenomenon which has been shown to be responsible for its anti-parasitic effect. Ivermectin also causes cell death in leukemia cells by inducing the chloride dependent membrane hyperpolarization. Based on these studies, it has been proposed that ivermectin affects the shuttling of importin \textit{α}/\textit{β} by inducing the chloride dependent polarization of parasite nuclear membrane that in turn inhibits the nuclear import of SRP polypeptides. Since karyopherin \textit{α}/\textit{β} are the only known importins present in \textit{P. falciparum}, it is likely that ivermectin treatment is arresting parasite growth by blocking the shuttling of SRP polypeptides and some other nuclear proteins (Figure 7b). Ivermectin has recently been shown to inhibit the sporogony of \textit{P. falciparum} in \textit{Anopheles gambiae}.38 Although a detailed \textit{in vivo} analysis will be required for the use of ivermectin as an antimalarial
agent, however given the prior use of ivermectin and its safety record in humans and animals, it can be considered in combination therapy with other antimalarials. In conclusion, the results presented here provide insights into the malaria parasite PISRPs and show that ivermectin is an anti-parasitic has the potential to treat multi-drug resistant malaria.

Materials and Methods

Generation of PISR-P-GFP lines. To generate P. falciparum’s SRPs-GFP lines, genes corresponding to PISRPs were PCR amplified and cloned into pSSFP2. The plasmids were transfected into P. falciparum 3D7 line and transfected cells were selected as described in detail in SI text.

Analysis of protein–RNA and protein–protein interactions.

In-vitro interactions between PISRPs and PISR RNA were performed using well established RNA binding assay as described in SI text. Protein–protein interactions between four PISR components were performed using bacterial two hybrid system and ELISA as described in SI text.

Effect of inhibitors on PISR-GFP transgenic lines. P. falciparum culture was synchronised by two consecutive sorbitol treatments at an interval of four hours. The parasite culture was incubated with different concentrations of leptomycinB, aflatoxin B1 and ivermectin as described in SI text.

Growth inhibition assay on P. falciparum 3D7, Dd2 and mCAMP strains. Parasite culture with an initial parasitemia of 0.8% was treated with different doses of leptomycin B, aflatoxin B1 and ivermectin in 96 well plate and new ring formation was monitored as described in SI text.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements

We thank Christen M Klinger, University of Alberta, Canada for help with the SRP68 and SRP72 sequence alignment. This work is partially supported by Department of Science and Technology grant. Infra-structural support from the Department of Biotechnology, Government of India is gratefully acknowledged.

1. Lingelbach KR. Plasmodium falciparum: a molecular view of protein transport from the parasite into the host erythrocyte. Exp Parasitol 1993; 76: 318–327.
2. Van Dooren GG, Waller RF, Joiner KA, Roos DS, McFadden GI. Traffic jams: protein transport in Plasmodium falciparum. Parasitol Today 2000; 16: 421–427.
3. Nacer A, Berry L, Slomianny C, Mattei D. Annu Rev Cell Dev Biol 1999; 15: 455–55.
4. Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. J Cell Biol 2008; 177: 744–756.
5. Gasparri AA, Przybylski M. The long and winding road: protein trafficking mechanisms in the Plasmodium falciparum infected erythrocyte. Mol Biochem Parasitol 2006; 147: 1–8.
6. Walter P, Blobel G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polypeptides synthesizing secretory protein. J Cell Biol 1981; 89: 551–556.
7. Walter P, Blobel G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 1981; 89: 557–561.
8. Lalkarajuk A, Mary C, Scherrer A, Johnson AE, Strub K, SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 2008; 133: 440–451.
9. Keenan RJ, Freymann DM, Stroud RM, Walter P. The signal recognition particle. Annu Rev Biochem 2001; 70: 755–775.
10. Gundelfinger ED, Di Carlo M, Zopf D, Meck M. Structure and evolution of the 7SL RNA component of the signal recognition particle. EMBO J 1994; 3: 2325–2332.
11. Pool MR. Signal recognition particles in chloroplasts, bacteria, yeast and mammals. Mol Membr Biol 2002; 22: 3–15.
12. Lustig Y, Goldsmith H, Ulle S, Michaeli S. The Trypanosoma brucei signal recognition particle lacks the Ala-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi. J Cell Sci 2003; 116: 4551–4562.
13. Oubridge C, Kuglstatter A, Jovine L, Nagai K. Crystal structure of SRP19 in complex with the S domain of SRP RNA and its implication for the assembly of the signal recognition particle. Mol Cell 2002; 9: 1251–1261.
14. Hanzl T, Huang S, Sauer-Eriksson AE. Structure of the SRP19 RNA complex and implications for signal recognition particle assembly. Nature 2002; 417: 767–771.
15. Zimmermann R, Muller L, Wuilich B. Protein transport into the endoplasmic reticulum: mechanisms and pathologies. Trends Mol Med 2006; 12: 567–573.
16. Tuteja R. Unravelling the components of protein translocation pathway in human malaria parasite Plasmodium falciparum. Arch Biochem Biophys 2007; 467: 249–260.
17. Rosenthal MA, Zwieb C, Samuelson T. Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi. BMC Genomics 2004; 5: 5.
18. Andersen ES et al. The tmRDB and SRPDB resources. Nucleic Acids Res 2006; 34: 163–168.
19. Iqbal E, Hinck CS, Hinck AP, Zwieb C. Characterization of the SRP68/72 interface of human signal recognition particle by systematic site-directed mutagenesis. Protein Sci 2009; 18: 2183–2195.
20. Figueroed LM, Rocha EP, Manco-Silva L, Prevost C, Hernandez-Verdun D, Schifer A. The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus. Nucleic Acids Res 2005; 33: 1111–1122.
21. Kumar N, Koski G, Harada M, Akawa M, Zheng H. Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasitol 1991; 48: 47–58.
22. Singh J, Singh S, Dani HM, Sharma R, Steinberg P. Interactions of alfalfa B1 with SRP components can disrupt protein targeting. Cell Biochem Funct 2003; 21: 3–13.
23. Alavain CN, Politz JC, Lewandowski LB, Powers CM, Pederson T. Nuclear export of signal recognition particle RNA in mammalian cells. Biochem Biophys Res Commun 2004; 313: 51–55.
24. Wagstaff KM, Svakumarian H, Heaton SM, Harich D. Jans DA. Ivermectin is a specific inhibitor of importin-α/β-mediated nuclear import in order to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443: 851–856.
25. Mohmmed A, Kishore S, Patra KP, Dasraddi P, Malhotra P, Chauhan VS. Identification of karyopherin beta as an immunogenic antigen of the malaria parasite using immune mice and human sera. Parasite Immunol 2005; 27: 157–203.
26. Walter P, Lingappa VR. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu Rev Cell Biol 1986; 2: 499–516.
27. Kurzchala TV, Wiedmann M, Girishov AS, Bothkaeva ES, Belika H, Rapport TA. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. Nature 1986; 320: 634–636.
28. High S, Flint N, Dobberstein B. Requirements for the membrane insertion of signal-anchor type proteins. J Cell Biol 1991; 113: 25–34.
29. Schuenemann D, Gupta S, Pesnelle-Carleaux F, Kimyuk VI, Jones JD, Nussaume L et al. A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Plant Nat Acad Sci USA 1998; 95: 10312–10316.
30. Yoshida M, Kabe Y, Wada T, Asai A, Handa H. A new mechanism of 6-(2, 3-dimethylamo)ethyl)(amino)-3-hydroxy-4H-chromene-2(1H)-quinolin-7-one dhydorochloride (TAS-103) action discovered by target screening with drug-immobilized affinity beads. Mol Pharmacol 2008; 78: 587–604.
31. Aida SE, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA et al. The crystal structure of the signal recognition particle complex with its receptor. Science 2011; 331: 881–886.
32. Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 2004; 427: 838–844.
33. Ciufod LF, Brown JD. Nuclear export of yeast signal recognition particle lacking Srp54p by the Xpo1p/Crm1p NES-dependent pathway. Curr Biol 2000; 10: 1256–1264.
34. Siegel V, Walter P. Functional dissection of the signal recognition particle. Trends Biochem 1998; 13: 314–316.
35. Phillips GP, Sihlavy TJ. The E. coli ffh gene is necessary for viability and efficient protein export. Nature 1992; 359: 744–746.
36. Jacobson MR, Pederson T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci USA 1998; 95: 7981–7985.
37. Ottesen EA, Campbell WC. Ivermectin in human medicine. J Antimicro Chemother 1994; 34: 195–203.
38. Kobylinski KC, Foy BD, Richardson JH. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae. Malar J 2012; 11: 381.

Role of ivermectin in blocking P. falciparum SRP M Panchal et al

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)