A comparative study on Internet of Things (IoT): Frameworks, Tools, Applications and Future directions

Mona Mohamed
The Higher Technological Institute, Information Systems Department, monmone87@hotmail.com

Abstract: The proliferation of smart and sensing devices in the field of communicating networks support in to develop the so-called Internet of Things (IoT). IoT considers a new paradigm for evolutionary of internet connectivity. IoT refers to connect objects around the real world with the Internet to accomplish the common goals and monitor these objects via wire/wireless communications. It plays a large and important role in human life through its use in many applications of human interest. Through using a variety of enabling wireless technologies as Wireless Sensor Networks (WSN), Radio Frequency Identification (RFID), Near Field Communication (NFC), and barcode in the applications. These technologies will support IoT to transform the internet into a fully integrated future internet. This paper attempts to provide a comprehensive survey of the available kinds of literature related to IoT technologies and its applications in many areas of modern-day living. Identify the trend and directions of future research in IoT applications, depend on a comprehensive literature review and the discussion of the achievements of the researchers.

Keywords: Internet of Things (IoT); Radio Frequency Identification (RFID); Near Field Communication (NFC)

1. Introduction

The next revolution in the era of smart computing is quite far from using the desktop and destined to the usage of the Internet at anywhere and at any time, controlling and monitoring the objects remotely refers to the so-called Internet of Things (IoT). IoT defines as connecting things to the internet and employee that connection to achieve the ability of remote monitoring and control these things. The objects can be supplied with sensing, identifying, networking, and processing capabilities that will allow them to communicate with each other to reach common goals.

Today it is considered a part of many enterprises to provide access to information. It has become the most extensive computing technology or intelligent technology. IoT use has been growing thanks to its technologies rapidly. IoT has the capability to collect data from the environment through sensors, operate and interact with the physical world through manipulating collected data, and use the Internet standards to communicate and analyze the data for more services.

It is vital at the personal and public level. At a personal level, it is serving personal purposes as controlling home appliances, controlling and monitoring health for patients and the elderly, etc. At a public level, it is serving general purposes where IoT applications are outspread from small object applications to large applications. These applications include smart industry, Smart connected vehicles, smart grid, agriculture, and other domain.

IoT was initially proposed to refer to uniquely identifiable objects (things) through using technologies as RFID is the most extensive use in IoT. RFID is used to determine things, retrieval of relevant information,
and protect properties from theft (especially in home). Smart sensors used in many domains as agriculture to observe and communicate soil formation and irrigation conditions to manage resources accurately as Wireless Sensor Network (WSN) used in many fields like monitoring, tracking, smart grid, smart water, and intelligent transportation systems. Capabilities of WSN and its advanced technologies in wireless communications, made WSN integrated with IoT. WSN and IoT deployments in marketing and other areas.

In this paper, we represent how IoT emerges and its origin (history), as shown in section two. We discuss several definitions and technologies used in applications of IoT; these technologies helped IoT to spread in many domains and applications as a representative in section three. By interfering and using IoT in many applications, we can identify future trends, and directions for IoT use in section four. Final section represents a conclusion.

2. History of IoT

In the 1970s, systems for remotely monitoring meters on the electrical grid via telephone lines were already in commercial use. In the 1990s, advances in wireless technology allowed "machine–to–machine" (M2M) enterprise, which used in industrial solutions for monitoring the equipment and operation to become widespread. But, this way suffers from limitations in performance and capabilities [1]. These previous issues had been tried to solve through wireless communications, and intelligent technologies have caused in developing miniature devices. These devices have the ability to sense, compute, and communicate wirelessly in short distances [2]. The sensors and communication wireless have a wide range for using in monitoring applications. All of these are due to the presence of "smart environment" or so-called IoT [3].

The term of IoT arises since 1999 by Kevin Ashton through using in supply chain management through using technology like RFID. In the past years, the definition of IoT could be exclusive how the computer used in many applications like healthcare, transportation... etc [4]. Currently, IoT defines as the ability to communicate, manage several automated remote devices over the Internet. Using embedded sensors that allow communicated devices and objects to send and receive data [3]. This technology saves an effort on the human by giving the human rights of opening and locking devices in the home and control it remotely without the movement and effort of human.

In 2011, the concept of a smart environment began to appear on the planet where the number of interconnected devices increased. This increase is associated with the use of terms that have been close to IoT but does not mean precisely the same thing as the following:

- Machine to machine communication (M2M): that means one-to-one connection, communicate one machine to another.

- Web of Things: this term focuses only on software engineering.

- Internet of Everything (IoE): it includes all kinds of communications that one can imagine.

- Pervasive computing (Ubiquitous Computing) [5]: they include embedded and devices and systems, wireless communications, and permit the user to access information services at any time and anywhere.

Currently, the number of interconnected devices have become 9 billion. That mean the new phenomena IoT is an attractive point in the next decade. The researchers expected that in 2020 that 25 billion devices...
will be communicated to the internet by using IoT [6]. Internet of Things consider as one of the emerging technologies in IT as mentioned in Gartner’s IT Hype Cycle, through measurements of the Google search trends during last years for the terms Internet of Things, Wireless Sensor Networks and Ubiquitous Computing as shown in figure 1[7-8].

![Evolutions of IoT over the years](image)

Figure 1. Google search trends in last years for terms Internet of Things, Wireless Sensor Network and ubiquitous computing [8]

3. **Definitions, Technologies, and Applications of IoT**

 In this section, we divide into three sections as the following:

 3.1 **Definition of IoT**

 Many researchers attempt to define and describe the concept of IoT through their side-view used in their work and application as the following. Internet of Things (IoT) is described as a combination of three paradigms are (1) internet-oriented (middleware), (2) things oriented (sensors) and (3) semantic-oriented (knowledge) as shown in figure 2 [9].
IoT is a new paradigm in information technology aimed at building up a dynamic global network infrastructure by connecting a variety of physical and virtual ‘things’ with the growing mobile and sensors [10]. IoT is a new technology for Internet access. Through IoT, objects recognize each other, and they can convey information about themselves [11]. The term IoT refers to this internet-based architecture, which encouraged the exchange of services, information, and data among billions of objects. It was first introduced by Kevin Ashton in 1998 and received a lot of interest in industry and academia [12]. IoT refers to devices or smart objects that are connected through the inter-networking between devices. These devices are able to collect and transmit data by technologies of the internet. IoT includes the technologies and solutions that enable the integration of data and facilities into information technologies (IT). It connects all things (objects) with the internet, so IoT sometimes called “internet of smart objects”. It enables the users to communicate with each other in a few time [13]. ToI is a new technology that is gaining ground due to the huge improvements in the electronics and wireless communications technologies through collecting the various information and analyzing it for application services [14]. It defines a new concept of helping items and sensors within or attaches to these items to connect to the internet by wireless and wired internet connections. It also refers to the use of connected devices and systems intelligently to benefit from data collected by embedded sensors, actuators, and other physical objects [15].

Other researchers describe IoT as following [16]:

- **Interconnectivity:** Anything can be associated with global information and communication infrastructure.
- **Things-related services:** IoT is able to provide services related to the thing within the constraints of things, such as protection of privacy and semantic consistency between physical things and their associated virtual things. To provide thing-related services within the constraints of things.
- **Heterogeneity:** The devices in IoT are heterogeneous based on different hardware platforms and networks. They can interact with other devices or service platforms across various networks.

![Internet of Things](image)
- Dynamic changes: Device status changes dynamically, e.g., connected and/or disconnected as well as the context of devices including location and speed. Further, the number of devices can change dynamically.
- Enormous scale: The number of devices that need to be managed and communicate with each other is massive.

3.2 Architecture of IoT

IoT consists of some elements, as shown in the following subsection. These elements are employed in the form of layers with different names according to each application.

3.2.1 IoT elements

There are three IoT component are:
- Hardware: represented in sensors and actuators, which embedded communication hardware.
- Middleware: responsible for analyzing the data.
- Presentation: easy to understand visualization tools which can be widely accessed on different platforms and which can be designed for various applications.

3.2.2 IoT layers

IoT consists of a set of layers; each layer includes one of the elements mentioned in the previous subsection. The layers of IoT differ from researcher to another based on an application which researcher applied IoT on it as shown in figure 3, 4, and 5.

Figure 2[15] IoT contains three layers as following:

- **The Application Layer**: This layer caters to application specific demands of the users by acting as a bridge linking the industrial technology with needs of humans.
- **The Network Layer**: It is the most important layer in IoT architecture. It’s role is to collect the data sent by perception layer and transmit it to application layer using wired or wireless media.
- **The Perception Layer**: This layer is the last layer of the IoT architecture. It is used to collect information from environment. It uses the data collected by RFID tags and sensors. The sensors collect information and pass this information to the network layer.

Figure 3. The architecture of the Internet of Things
Figure 4 [17] IoT in high-risk Environment, Health, and Safety (EHS) application consists of three-layer as the following:

![Diagram](https://example.com/diagram1.png)

Figure 4. The architecture of the Internet of Things

Figure 5[18] IoT in smart health application consists of three-layer as the following:

![Diagram](https://example.com/diagram2.png)

Figure 5. The architecture of the Internet of Things

This phenomenon is growing rapidly in many fields for human life through using many technologies are integrated into human activities. RFID and WSN represent a link between real-world and digital world.
3.3 Technologies of IoT

3.3.1 Radio Frequency Identification (RFID)

Radio Frequency Identification (RFID) is a system that transfers the identification of an object via wireless by radio waves in the form of a serial number. RFID technology plays an important role in IoT to solve issues of identification of objects [6]. Also, it provides benefits, such as asset tracking, safety monitoring conditions, and assistance in preventing counterfeiting. It helps in the automatic identification of anything they are attached to acting as an electronic barcode. Where it is similar to barcode technology that requires particular optical sound reader and markings applied to the products. It requires reader equipment and special tags or cards attached to the products for tracking the products [19]. It is divided into two types. The first type is passive RFID tags are not needed battery-powered, and they use the power of the reader to communicate ID to the RFID reader. This type is used in retail and supply chain management. The second type is Active RFID reader has its battery supply. This type is used in port containers application [20]. RFID has components as a tag, reader, antenna, software, and server, as shown in figure 6 [21]. RFID tag communicates with an RFID reader via radio-frequency electromagnetic fields.

![Diagram of RFID system](image)

Figure 6. Block Diagram of Radio Frequency Identification

3.3.2 Internet Protocol (IP)

Internet Protocol (IP) is the major network protocol used on the internet, developed in 1970. IP is the principal communications protocol in the internet protocol suite for transmitting data units across network boundaries [21]. There are two versions of IP in use: IPv4 support to a group of cohabiting sensor devices that identified geographically, but not individually. IPv6 that mitigate some of the device identification problems, synchronous operations, and convergence of data from devices exacerbate the problem [22].

3.3.3 Electronic Product Code (EPC)
Electronic Product Code (EPC) is a 64 bit or 98-bit code electronically recorded on an RFID tag. It is a code number that gives the unique identification own to a given physical object. Information of the object can be stored in existing databases on the internet [23]. EPC composes of EPC tags, readers, EPC Savant, Object Name Service (ONS) server, Physical Markup Language (PML), Electronic Product Code - Information System (EPC-IS) servers, and Internet as shown in figure 7[24].

![Block Diagram of the Electronic Product Code](image)

Figure 7. Block Diagram of the Electronic Product Code

3.3.4 Barcode

Barcode is another way to encode numbers and letters using a set of bars and spaces with varying width [21]. It is machine-readable of data, where the data usually describes something about the object that carries the barcode. We can say that Barcodes are machine-readable optical labels attached to items that record information related to the item [25]. It becomes successful in commerce field which used to automate supermarket checkout systems. There are three types of barcodes of Alpha Numeric, Numeric, and two dimensional.

3.3.5 Wireless Fidelity (Wi-Fi)

Wireless Fidelity (Wi-Fi) is wireless technology that allows smart devices to connect to wireless networks and allows the transmission of data at high speed using radio waves over a short-range [26].

3.3.6 Bluetooth
Bluetooth is a wireless technology to exchange data over a short distance with a transfer speed of 720 Kbps data per second. It is cheap, short-range radio technology. It appears in 1994 by Ericson Mobile Communication Company [26-24].

3.3.7 ZigBee

ZigBee is one of the protocols developed for improving the characteristics of wireless sensor networks. In 2001 ZigBee Alliance has created ZigBee technology. ZigBee has some features as low cost, low data rate, relatively short transmission range, scalability, reliability, and flexible protocol design [24].

3.3.8 Near Field Communication (NFC)

It is a set of short-range wireless technology at 13.56 MHz, typically requiring a distance of 4 cm. This technology is convenient for consumers and considers simple connection method. It is complementary to Bluetooth. Philips and Sony companies develop it. NFC represents a link between smart devices of IoT and the internet; smart devices send the data to the server [21].

3.3.9 Wireless Sensor Networks (WSN)

A WSN is a wireless network consists of a separate distribution of independently devices using sensors to observe the physical and environmental conditions in a cooperative manner, such as temperature, sound, vibration, the pressure at different locations. The sensor nodes communicate and cooperate to achieve a particular goal. They can be used to collect and process data from the environments of mechanical, temperature, light, radiation, and optical readings [27].

3.3.10 Artificial Intelligence (AI)

Artificial Intelligence (AI) provides various techniques that present the intelligent behavior of IoT. In the realm of surrounding intelligence, devices work in coordination to support people in carrying out their activities and actions [24]. These devices allow the interactions of the users with the smart environment. These interactions enable consumers to get information anywhere and at any time [22]. AI includes many techniques can serve IoT as CI. This technique provides, as shown in figure 8, adaptive techniques that enhance the intelligence of the IoT system.
3.4 Applications of IoT

This section presents several application domains that IoT consider the main factor in these domains. Applications of IoT is divided into personal applications and general applications, as shown in figure 9.

3.4.1 Personal applications
The consumer use IoT as shown in fig 10 to control (1) home, (2) health for elderly, and (3) safety.

![Diagram](image)

Figure 10. Personal applications of Internet of Things

- **Smart Home**

A smart home allows the user to access and change the status of his/her appliances, i.e., switches it on/off. It also provides an interface for remote household appliances to provide control and monitoring on a web browser [28]. The usage of the technologies become an essential factor in IoT, where researchers applied them in their experiments. Bluetooth wireless technology is used in home automation. It allows the user to access appliances in the home as well as device control commands, though The Bluetooth antenna picks up the packets sent from the cell phone. Later, these packets contain the status of the device [29]. Home Automation System (HAS) designed to help user especially elderly and disabled to control their home. The control system implements through wireless Bluetooth technology that provides remote access from PC/laptop or smartphone. The user can control his electrical appliances and appliances in the house using the user interface friendly [30]. The following table represents summarization of previous works for IoT.
Table 1. Summarization of previous works in IoT smart home

Ref #	Authors Name	Paper Name	Used Technology
[31]	Yepeng Ni, Fang Miao, Jianbo Liu, Jianping Chai.	“Implementation of Wireless Gateway for Smart Home”	ZigBee Wi-Fi network
[32]	Ming Wang, Guiqing Zhang, Chenghui Zhang, Jianbin Zhang, Chengdong Li.	“An IoT-based appliance control system for smart homes”	wireless sensor and actuator network (WSAN)
[33]	Yuanxin Lin, Rui Kong, Rongbin She and Shugao DengResearch	“Design and Implementation of Remote/Short-range Smart Home Monitoring System Based on ZigBee and STM32”	ZigBee
[34]	Dr. Sharon N. Panth, Mahesh Narandas Jivani	“Home Automation System (HAS) using Android for Mobile Phone”	Bluetooth
[35]	Rakesh Roshan, Abhay Kr. Ray	“Challenges and Risk to Implement IOT in Smart Homes: An Indian Perspective”	WiFi Sensors
Medical and health are one of the most attractive applications for the IoT. This technology has the ability to apply in many medical domains such as remote monitoring of health and fitness programs, chronic diseases, and care for the elderly [36]. IoT used in developing the medication control system. Using CogSense device which used to care the patients through monitoring the caretakers and the doctors for the status for the patients. CogSense device provided with a specific machine-learning engine to perform patient data analysis and suggest treatment outcomes. IoT device consists of three modules are data analysis module, a communication module, and sensor access and signal processing. This device used to meet the day-to-day needs of home telehealth users [37]. RFID is utilized to give identification own to the user. This technology permits the prescriber to distinguish the patient and to monitor him/her remotely [38]. Home Automation System (HAS) designed to help user especially elderly and disabled to control their home. The control system implements through wireless Bluetooth technology to provide remote access from a PC/laptop or smartphone. The user can control his electrical appliances and appliances in the house using the user interface friendly [39].
Table 2. Summarization of previous works in IoT smart Health

Ref #	Authors Name	Paper Name	Used Technology
[40]	Simarpreet Kaur, Kamaljeet Kaur	Future of RFID Technology in Health Care Systems: A Review Paper	RFID
[41]	Samuel Fosso, Wambaa, Abhijith Ananda, Lemuria Carter	A literature review of RFID-enabled healthcare applications and issues	RFID
[42]	Dr. Afsaneh Minaie,, Dr. Ali Sanati, Paymon Sanati-Mehrizy, and Dr. Reza Sanati-Mehrizy,	Application of Wireless Sensor Networks in Health Care System	WSN
[43]	B. Vijayalakshmi, C. Ram kumar	Patient monitoring system using Wireless Sensor based Mesh Network	WSN
Safety

IoT protects home and human from death and property damage. WSN designed using multiple sensors with Global System for Mobile Communications (GSM) for early detection of house fires to avoid false alarms [44].

3.4.2 General applications

Figure 11. General applications of Internet of Things
• Smart City

The growth of the Internet and Wi-Fi are making the world predict in 2025 that everything will be subject to intelligent technology (i.e., IoT). So that cities become smart through its components as building, homes, Transportation etc. Though using the above technologies, which help human to control anything anywhere and anytime.

• Transportation

IoT became important in the field of transportation systems. The transportation suffer from some problems as there is lack of information about the arrival time, the passengers do not have the possibility to know the capacity of the bus, they do not know how many additional people inside the bus so, there is Possibility of having no places so that, there are passenger standing. These problems can solve through using IoT. That seeks to gather, process, and present the relevant information of transportation for the user. Using ARDUINO, IR Sensor, and Global Positioning System (GPS) Module to develop an intelligent information system support passengers with information next location of bus and crowd inside the bus [45]. IoT attempt to solve another problem which facing the passengers is long waiting time at bus stops. That makes the passengers unwilling to take buses. To avoid such problem, IoT used to present a bus arrival time prediction system. This system developed based on mobile devices GPS enable feature to obtain the arrival time of Bus and predict bus arrival time at various bus stops [46].

• Traffic

This application can obtain traffic information such as states of traffic and locations by tracking location information for a large number of vehicles. Thus, the system helps the driver to select the most effective route [38].
Table 3. Summarization of previous works in IoT smart Transportation

Ref #	Authors Name	Paper Name	Used Technology
[47]	K. Kotis, and A. Katasonov	“Semantic Interoperability on the Web of Things: The Smart Gateway Framework”	WSN Sensor
[48]	Hasan Omar Al-Sakran	Intelligent Traffic Information System Based on Integration of Internet of Things and Agent Technology	RFID WSN
[49]	J. Gubbi	“Internet of Things (IoT): A vision, architectural elements, and future directions”, Future Generation Computer Systems	RFID wireless communication
[50]	Joshué Pérez, Fernando Seco, Vicente Milanés, Antonio Jiménez, Julio C. Díaz and Teresa de Pedro	An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals	RFID GPS
• Market and Management

The company can determine which product won the admiration of customers by using IoT technologies. Using Barcode which read identification code of product, protocols and using connectivity technology like wireless, which connect the company with its retailers. It allows the manager of the company to follow and monitor product demand. IoT support any company to make a decision about a particular product. Based on these monitoring and scan technologies the company can recommend other products for customers based on new product.

• Food Supply Chain (FSC)

IoT used in FSC applications through the supply chain from farm to branches. The chain means that farm production, food processing, packaging, sales & marketing, logistics and distribution, retail, interactions of consuming. This chain occur through five stages are produce, store, transport, sell and consume [51] as shown in figure 12.

![Figure 12. Food Supply Chain [52]](image-url)
- Retail

The retailers can use IoT technologies to improve (i) the inventory, (ii) store operations, and (iii) services offer to customer [53].

1. Inventory

Using technology like RFID or barcode to reduce handwork. In another meaning, shelves become smart shelves which help workers to take stock the goods through a smartphone. Through the take stock process store managers can make better decisions about orders and detect shrinkage and misplacements.

2. Store Operations

IoT technologies are helping to provides detailed sales data on an item. Such RFID allows the manager to monitor the products on the sales floor. The monitoring process contributes to efficient sales floor operations. This technology avoids making a mistake of existence the products in stock but not available on the sales floor in the shelf. Shelves with RFID (smart shelves) can automatically detect misplaced products and direct a worker to correct the placement, as shown in figure 13.

![Figure 13. Smart shelves with RFID [53]](image_url)
3. services offer to the customer

The customer can use pushcart provided with the device has an RFID reader. This device called "electronic shopping assistant" which help the consumer to get detailed information about products. This device makes suggestions about purchases that go along well with already selected items. Also, there are refrigerators equipped with RFID to provide service as observation track of the Purchased products, give warnings when the product becomes expired or close to expiration.
Table 4. Summarization of previous works in IoT smart Market and Management

Ref #	Authors Name	Paper Name	Used Technology
[51]	Sauro Longhi, Davide Marzioni, Emanuele Alidori, Gianluca Di Buò, Mario Prist, Massimo Grisostomi, and Matteo	Solid Waste Management Architecture Using Wireless Sensor Network Technology	WSN
[52]	Li Zhou, Alain Y.L. Chong, Eric W.T. Ngai	Supply chain management in the era of the internet of things	RFID
[53]	Andhe Dharani, Manjuprasad, Shantharam Nayak, Vijayalakshmi M. N.	Sensor Networks - An Insight on Market Perspective and Real Time Border Monitoring System	WSN
[54]	Tijun Fan, Feng Tao, Sheng Deng, Shuxia Li	Impact of RFID technology on supply chain decisions with inventory inaccuracies	RFID
• Industry

IoT allows the companies to optimize their performance by gathering and analyzing data through the whole product lifecycle. Using the monitoring technology as WSN. Using such technology which has sensor responsible for measuring the currents of the main motor drives, and measures the overall power consumption. The WSN is combined with the use of DIGI XBee ZigBee RF module. The selection of ZigBee over other wireless standards to its support to various network topologies [55].

4 Future Direction

IoT will be used increasingly over time and can combine with data science techniques to serve many domains in the future.

4.1 Agriculture

IoT can use in many directions in the agriculture domain.

The first direction, We can estimate future crops/planets based on many factors as determine the type of soil, climate statues in many areas based on parameters of weather as low temperature, high temperature, dew point, humidity,…etc as shown in figure 13.

Figure 14. Role of IoT in Estimating Crops

These parameters measure from different weather stations at various locations. The information about these factors can be collected through using IoT sensors devices used in perception layer. These sensors used to collect information remotely from different locations about the mentioned factors. Transmit the collected data via wireless communication in the network layer. In the data processing layer, applying CI techniques like machine learning to forecast weather in future time based on collected
time series for parameters of weather. Based on the weather forecasting, the type of crops shell be can be estimated.

The second direction, IoT, will help in monitoring the state of crops and health of it in the presentation layer. IoT sensors are capable of supplying farmers and agricultural Engineers with information about the crop. IoT supply agriculture domain in many directions, as shown in figure 14.

1. IoT can manage and help farmers to control and monitoring level of water to Irrigation Process. When the level of water reaches to determine the level, the farmer sends the order to stop the irrigation process remotely. That can do through using wireless communication as WSN.
2. Farmer monitor and follow the state of the weather and make a decision to protect the crops.
3. Technologies as sensors and RFID help farmers and agriculture engineers to identify diseases in plants and crops. RFID tags send the EPC (information) to the reader and share it via the internet. The farmer or agriculture engineers can access this information from a remote place and take necessary actions; automatically; crops can protect crops from diseases.

The third direction, the former can control in the Irrigation machines without interference from humans. These machines can irrigate the plants, and the process of irrigation is stopped by order of the farmer or agricultural engineer remotely.

![Figure 15. Role of IoT in the agriculture domain](image-url)
4.2 Military

Military applications are very closely related to wireless sensor networks which use in many directions in that domain.

The first direction, in the field of air defense. The officers can monitor borders to protect the airspace of the state.

The second direction, the generals can be monitoring the state of the military battalions.

The third direction, in cases of wars, the generals can monitor the battlefield remotely and give the orders based on their monitoring for the battle.

Fourth direction, Discovery of internationally banned gases through using sensors which has the responsibility to detect such gases to protect the countries and soldiers.

Fifth direction, using computational intelligent (ci) with IoT to recognize the enemy during the war. Applying the face recognition where the generals can follow up the face of their soldiers on the battlefield through RFID. This technology sends its tags to the reader to identify if the soldier belongs to them or the enemy. RFID help the soldiers on the battlefield to prevent the suicide of personal enemies soldiers. Using such technology help them to differentiate between their warriors from the self-sacrificing enemies and their warriors through military uniform.

Sixth direction, using sensors embedded in the military tank to sense the mine areas.

4.3 Market and managements

Using technology such as barcode and RFID support manager of the company to monitor and follow sells of the product in different retail stores. These technologies benefit the manager in many directions:

The first direction, through sales of a product, the manager can make a decision to increase or decrease the amount of product for the retailers.

The second direction, the manager can use CI techniques to predict the future profit from sales for certain products through Product turnout.

5 Conclusion

We provided a global overview and works of its usage in our life. IoT allows machine enabled decision making with minimal or without human intervention. It has the ability to collect data from sensors, RFID, Barcode, and other technologies mentioned above. These technologies located in the perception layer. The collected data passes via wire/wireless in the network layer to the application layer. We demonstrated how this new phenomenon used in many applications through using its technologies, as shown in table 1, table 2, table 3, and table 4.

For example, in the field of marketing and management, IoT support to make a decision about many products and saving money and time. Through using any of technology as Barcode or RFID which attempt to change the way that we shop usually. In case all of the products in retail are tagged, and the facility is equipped with reader technology, it becomes easier to manage inventory and work at much lower costs than it is today.
Through future direction, we can say that smart farming is important and necessary. IoT works in the agriculture sector to improve the efficiency of time, administration of water, monitoring of crop, control of insecticides and pesticides which cause disaster. These disasters affect productivity in the country. It minimizes human efforts; smart farming can help the market to grow for a farmer with minimum efforts.

From our study for related works about IoT, we concluded that IoT technology offers benefits and facilities for any applier to technologies of IoT.
References

[1] Jim Chase, The Evolution of the Internet of Things, Texas Instruments. September 2013.

[2] Jayavardhana Gubbia, Rajkumar Buyyab, Slaven Marusic, and Marimuthu Palaniswami, Internet of Things (IoT): A vision, architectural elements, and future directions, Future Generation Computer Systems, 2013.

[3] David Fletcher, Internet of Things, Springer International Publishing Switzerland, 2015.

[4] K. Ashton, “Internet of Things” thing, RFID Journal (2009).

[5] Stan Kurkovsky, Pervasive Computing: Past, Present and Future, IEEE, June 2014.

[6] Rivera J, van der Meulen R, Gartner Newsroom, Gartner, 11 Nov 2014. [Online]. Available: http://www.gartner.com/newsroom/id/2905717. Accessed Feb 2015.

[7] Gartner’s hype cycle special report for 2011, Gartner Inc., 2012. http://www.gartner.com/technology/research/hype-cycles/.

[8] Google Trends, Google (n.d.). http://www.google.com/trends.

[9] Luigi Atzori, Antonio Iera, Giacomo Morabito, “The Internet of Things: A survey,” Computer Networks ELSEVIER, 2010.

[10] D. Giusto, A. Iera, G. Morabito, L. Atzori (Eds.), The Internet of Things, Springer, 2010.

[11] Jun Qi, Po Yang, Geyong Min, Oliver Amft, Feng Dong, and Lida Xu, Advanced internet of things for personalised healthcare systems: A survey, ELSEVIER, P.P.132–149, 2017.

[12] Santucci G. From internet of data to internet of things. In Paper for the International Conference on Future Trends of the Internet 2009.

[13] Sarbjeet Singh, Mohit Malik, IOT WITH ADVANCE USES AND LIMITATIONS OF SMART OBJECT, International Journal of Engineering Applied Sciences and Technology (IJEAST), 2016.

[14] KATSUHIRO NAITO, A Survey on the Internet of Things: Standards, Challenges and Future Prospects, Journal of Information Processing, Jan 2017.

[15] G.Sriranjani Iyer, A.M.I.E.T.E, Internet of Things — A Dynamic Global Network Infrastructure, International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), January 2018.

[16] Aggarwal, R. and Lal Das, M, RFID Security in the Context of “Internet of Things”. First International Conference. on Security of Internet of Things, Kerala, p.p. 51-56, August 2012., http://dx.doi.org/10.1145/2490428.2490435.

[17] Montbel Thibaud, Huihui Chi, Wei Zhou, and Selwyn Piramuthu, Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review, Decision Support Systems, 2018.

[18] Kewei Sha, Wei Wei, T. Andrew Yang, Zhiwei Wang, and Weisong Shi, On security challenges and open issues in Internet of Things, Future Generation Computer Systems, 2018.

[19] Chunling Sun, Application of RFID Technology for Logistics on Internet of Things, AASRI Conference on Computational Intelligence and Bioinformatics ELSEVIER, P.P. 106 – 111, 2012.
[20] A. Juels, RFID security and privacy: a research survey, IEEE Journal on Selected Areas in Communications P.P. 381–394, 2006.

[21] Somayya Madakam, R. Ramaswamy, Siddharth Tripathi, Internet of Things (IoT): A Literature Review, Journal of Computer and Communications, 3, P.P. 164-173, 2015.

[22] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, Marimuthu Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, 2013.

[23] Isabel Laranjo, Joaquim Macedo, Alexandre Santos, Internet of Things for Medication Control: Service Implementation and Testing, CENTERIS 2012 - Conference on ENTERprise Information Systems / HCIST 2012 – International Conference on Health and Social Care Information Systems and Technologies ELSEVIER, P.P. 777 – 786, 2012.

[24] Xian-Yi Chen, Zhi-Gang Jin, Research on Key Technology and Applications for Internet of, International Conference on Medical Physics and Biomedical Engineering ELSEVIER, 33, P.P. 561 – 566, 2012.

[25] Shubhalika Dihulia, Tanveer Farooqui, A Literature Survey on IoT Security Challenges, International Journal of Computer Applications, 169, July 2017.

[26] Shruti G Hegde , Soumyalatha, Internet of Things (IoT): A study on Architectural elements, Communication Technolgies and Applications, International Journal of Advanced Research in Computer and Communication Engineering(IJARCCE), 5, September 2016.

[27] Muhammad Usama and Fahad T. BinMuhaya, Framework for Secure Wireless Communication in Wireless Sensor Networks, International Journal of Distributed Sensor Networks, 2013.

[28] Dhakad Kunal, Dhake Tushar , Undegaonkar Pooja , Zope Vaibhav, and Vinay Lodha, Smart Home Automation using IOT, International Journal of Advanced Research in Computer and Communication Engineering(IJARCCE), 5, February 2016.

[29] Rajeev Piyare, Bluetooth based home automation system using cell phone, IEEE Transactions on Consumer Electronics · June 2011.

[30] R.A. Ramlee, M.A. Othman, and M.H. Leong, Smart home system using android application, International Conference of Information and Communication Technology (IColICT), March 2013, Indonesia.

[31] Yepeng Ni, Fang Miao, Jianbo Liu, Jianping Chai. “Implementation of Wireless Gateway for Smart Home”, Communications and Network, pp. 16-20, 2013.

[32]Ming Wang, Guiqing Zhang, Chenghui Zhang, Jianbin Zhang, Chengdong Li. “An IoT-based appliance control system for smart homes”, Fourth International Conference on Intelligent Control and Information Processing (ICICIP), pp. 744 – 747, June 2013.

[33] Yuanxin Lin, Rui Kong, Rongbin She and Shugao DengResearch, “Design and Implementation of Remote/Short-range Smart Home Monitoring System Based on ZigBee and STM32”, Journal of Applied Sciences, Engineering and Technology, Vol.5, pp. 2792-2798, 2013.

[34] Dr. Sharon N. Panth, Mahesh Narandas Jivani, Home Automation System (HAS) using Android for Mobile Phone, International Journal of Electronics and Computer Science Engineering November 2013.

[35] Rakesh Roshan, Abhay Kr. Ray, Challenges and Risk to Implement IOT in Smart Homes: An Indian Perspective, International Journal of Computer Applications, November 2016.

[36] Shanzhi Chen,Hui Xu, Dake Liu,Bo Hu, and Hucheng Wang, A Vision of IoT: Applications, Challenges, and Opportunities With China Perspective, IEEE INTERNET OF THINGS JOURNAL, VOL. 1, AUGUST 2014.
[37] Salah Al-Majeed, and J. R. Karam, Home telehealth by Internet of Things (IoT), Canadian Conference on Electrical and Computer Engineering, June 2015.

[38] Samir V. Zanjala, and Girish. R. Talmale, Medicine Reminder and Monitoring System for Secure Health Using IoT, International Conference on Information Security & Privacy (ICISP2015), 11-12 December 2015, Nagpur, INDIA.

[39] Alumona T.L., Idigo V.E., and Nnoli K.P., Remote Monitoring of Patients Health using Wireless Sensor Networks (WSNs), International Journal of Electronics & Communication (IIJEC), September 2014.

[40] Simarpreet Kaur, Kamaljeet Kaur, Future of RFID Technology in Health Care Systems: A Review Paper, IJCSET, 2, P.P. 1373-1376, August 2012.

[41] Samuel Fosso, Wambaa, Abhijith Ananda, Lemuria Carter, A literature review of RFID-enabled healthcare applications and issues, International Journal of Information Management, October 2013.

[42] Dr. Afsaneh Minaie, Dr. Ali Sanati-Mehrizy, Paymon Sanati-Mehrizy, and Dr. Reza Sanati-Mehrizy, Application of Wireless Sensor Networks in Health Care System, ASEE Annual conference & Exposition, 2013.

[43] B. Vijayalakshmi, C. Ram kumar, Patient monitoring system using Wireless Sensor based Mesh Network, Third International Conference on Computing Communication & Networking Technologies (ICCCNT), 2012, Coimbatore, India.

[44] Faisal Saeed, Anand Paul, Abdul Rehman, Won Hwa Hong, and Hyuncheol Seo, IoT-Based Intelligent Modeling of Smart Home Environment for Fire Prevention and Safety, Journal of Sensor and Actuator Networks, March 2018.

[45] Lavanya R, Sheela Sobana Rani K, Gayathri R, and Binu D, A Smart Information System for Public Transportation Using IoT, International Journal of Recent Trends in Engineering & Research (IJRTER), 3, April 2017.

[46] Suvarna C. Pawar, Aishwarya R. Alavekar, Vibhavari S. Patil, Shivani M. Sasane, Ritesh V. Rananavare, and Kekade Mandar, Predicting Bus Arrival Time with Mobile Phone Based Participatory Sensing, International Journal of Engineering Science and Computing (IJESC), April 2017.

[47] K. Kotsis, & A. Katasonov, —Semantic Interoperability on the Web of Things: The Smart Gateway Framework I, In Proceedings of the Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2012), Palermo, 2012.

[48] Hasan Omar Al-Sakran, Intelligent Traffic Information System Based on Integration of Internet of Things and Agent Technology, International Journal of Advanced Computer Science and Applications (IJACSA), 2015.

[49] J. Gubbi “Internet of Things (IoT): A vision, architectural elements, and future directions”, Future Generation Computer Systems, pp. 1645-1660, (2013).

[50] Joshué Pérez, Fernando Seco, Vicente Milanés, Antonio Jiménez, Julio C. Diaz and Teresa de Pedro, An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals, Sensors 2010.

[51] Sauro Longhi, Davide Marzioniy, Emanuele Alidoriy, Gianluca Di Bu’o, Mario Prist, Massimo Grisostomi and Matteo, Solid Waste Management Architecture using Wireless Sensor Network technology, IEEE, 2012.

[52] Antonis Tzounis, Nikolaos Katsoulas, Thomas Bartzanas, and Constantinos Kittas, “Internet of Things in agriculture, recent advances and future challenges,” Elsevier, 2017.
[53] Sergei Evdokimov, Benjamin Fabian, Oliver Günther, Lenka Ivantysynova and Holger Ziekow, “RFID and the Internet of Things: Technology, Applications, and Security Challenges,” Foundations and Trends Technology, Information and Operations Management, Vol. 4, 2010.

[54] Li Zhou, Alain Y.L. Chong, Eric W.T. Ngai, Supply chain management in the era of the internet of things, Int. J. Production Economics, 2015.

[55] Andhe Dharani1, Manjuprasad B., Shantharam Nayak, Vijayalakshmi M. N., Sensor Networks - An Insight on Market Perspective and Real Time Border Monitoring System, International Journal of Sensors and Sensor Networks, P.P. 18-23, 2015.