Acyclicity for Groups and Vector Spaces ∗†

M. ALIABADIa,1, H. JOLANYb,2, M. AMIN KHAJEHNEJADc,3, M. J. MOGHADDAMZADEHd,4, H. SHAHMOHAMADEe,5

aDepartment of Mathematics, Statistics, and Computer Science, University of Illinois, 851 S. Morgan St, Chicago, IL 60607, USA

bUniversité des Sciences et Technologic de Lille UFR de Mathématiques, Laboratoire Paul Painlevé, CNRS-UMR 8524 59655 Villeneuve d’Ascq Cedex/France

cDepartment of Electrical Engineering, California Institute of Technology, Pasadena CA 91125

dDepartment of Mathematical Sciences, Sharif University of Technology, P. O. Box 11365-9415, Tehran, IRAN

eSchool of Mathematical Sciences, RIT, Rochester, NY 14623, USA

1E-mail address: maliab2@uic.edu
2E-mail address: hassan.jolany@math.univ-lille1.fr
3E-mail address: amin@caltech.edu
4E-mail address: javad_mz123@yahoo.com
5E-mail address: hxssma@rit.edu

∗ Key Words: Acyclic matching property, Linear matching property, Torsion-free groups.
†AMS Mathematics Subject Classification (2000): 52B40, 90C27, 20B05
Abstract

A matching in an Abelian group G is a bijection f from a subset A to a subset B in G such that $a + f(a) \not\in A$, for all $a \in A$. This notion was introduced by Fan and Losonczy who used matchings in \mathbb{Z}^n as a tool for studying an old problem of Wakeford concerning canonical forms for symmetric tensors. The notion of acyclic matching property was provided by Losonczy and it was proved that torsion-free groups admit this property. In this paper, we introduce a duality of acyclic matching as a tool for classification of some Abelian groups; moreover, we study matchings for vector spaces and give a connection between matchings in groups and vector spaces. Our tools mix additive number theory, combinatorics and algebra.

1 Introduction

Let G be a group and A and B be two non-empty subsets of G. If $f : A \to B$ is a matching, we define $m_f : G \to \mathbb{Z} \cup \{\infty\}$ by $m_f(x) = \#\{a \in A : a + f(a) = x\}$. A matching f is called acyclic if for any matching $g : A \to B$ with $m_f = m_g$, we have $f = g$. A group G possesses the finite matching property if for every pair A and B of non-empty finite subsets satisfying $\#A = \#B$ and $0 \not\in B$, there exists at least one matching from A to B. Furthermore, G possesses the finite acyclic matching property, if for every pair A and B of non-empty finite subsets satisfying $\#A = \#B$ and $0 \not\in B$, there exists at least one acyclic matching from A to B. We say G fails to have the acyclic matching property at order $m \in \mathbb{N} \cup \{\infty\}$, if there exist subsets
Let A be a subset of \mathbb{Z}_p and $f : A \to A$ be a bijection, where p is prime. Then $\text{ord}_f(a)$ denotes the minimum positive integer n for which $f^n(a) = a$, where $a \in A$. Losonczy in [10] proved the following theorems:

Theorem 1.1. If G is an Abelian group, then G has the finite matching property if and only if G is torsion-free or cyclic of prime order.

Theorem 1.2. If G is an Abelian torsion-free group, then G has the finite acyclic matching property.

For more results on matchings see [2, 4, 5, 6, 7, 8, 10, 11 and 13]. Also, the interested reader is referred to [12] to see more details on Wakeford’s problem. Here, we prove the following theorem as a connection between acyclic matching property and its duality.

Theorem 1.3. Let G be an Abelian group and $G \neq \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5$. If G has the finite acyclic matching property, then it fails to have the acyclic matching property at order m, for some $m \in \mathbb{N} \cup \{\infty\}$.

2 Acyclic matching in a special case for some cyclic groups

In the following theorem, we show that \mathbb{Z}_p fails to have the acyclic matching property at order $\frac{p-1}{2}$ for $p > 5$.

3
Theorem 2.1. Let $p > 5$ be a prime. Then \mathbb{Z}_p has the cyclic matching property of order $\frac{p-1}{2}$.

Proof. Choose a and $b \in \{1, \ldots, p-1\}$ such that $a \neq b$, \(\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right) = 1\) and \(\left(\frac{a+1}{p}\right) = \left(\frac{b+1}{p}\right) = -1\), where \(\left(\cdot\right)\) denotes Legendre symbol. See [3] for more results on quadratic residue modulo p. Set $A := \{n^2 : n \in \mathbb{Z}_p \setminus \{0\}\} \subseteq \mathbb{Z}_p$ and define the bijections f and $g : A \rightarrow A$ by $f(n^2) = an^2$ and $g(n^2) = bn^2$ for any $n \in \mathbb{Z}_p \setminus \{0\}$. Now it is clear that f and g are matchings with $m_f = m_g$. This follows \mathbb{Z}_p fails to have the acyclic matching property at order $\frac{p-1}{2}$ for $p > 5$. \Box

In the next section, we generalize Theorem 2.1 without invoking the results on quadratic residue.

3 The acyclicity in general case for some cyclic groups

Let $A \subseteq \mathbb{Z}_p \setminus \{0\}$ and $f : A \rightarrow A$ be a bijection. If $a \in A$, then $B = \{f^i(a) : i \in \mathbb{N}\}$ is invariant under f, i.e., $f(B) \subseteq B$. It is clear that there exist $a_1, \ldots, a_n \in A$ such that $A = \{f^i(a_j) : 1 \leq j \leq n, i \in \mathbb{N}\}$. Let $A \subseteq \mathbb{Z}_p \setminus \{0\}$ and $f : A \rightarrow A$ be a matching for which $f^2 \neq id_A$. There exists $a \in A$ with $\text{ord}_f(a) = m > 2$. Now, suppose there exists $b \in A$ such that $b \not\in \{f^i(a) : i \in \mathbb{N}\}$ and define $B = \{f^i(b) : i \in \mathbb{N}\}$. Then

$f|_{A \setminus B} : A \setminus B \rightarrow A \setminus B$ is a matching with $f \circ f|_{A \setminus B} \neq id_{A \setminus B}$.

In the following theorem, we show that the torsion groups \mathbb{Z}_p fail to have the acyclic matching property at order k, where $2 < k < p - 2$. It is a remarkable fact
that \(m_f = m_f^{-1} \), where \(f \) is a matching from a non-empty subset \(A \) of a group \(G \) to \(A \) and it is applied in the proof of the next theorem. Also, we already have seen in elementary group theory that if the distinct cyclic representation of a permutation \(\sigma \in S_n \) has a cycle with a length greater than \(2 \), then \(\sigma \neq \sigma^{-1} \).

Theorem 3.1. \(\mathbb{Z}_p \) fails to have the acyclic matching property at order \(k \) for \(2 < k < p - 2 \), where \(p \) is a prime greater than \(5 \).

Proof. First, we prove that \(\mathbb{Z}_p \) fails to have the acyclic matching property at order \(p - 3 \). Set \(A := \mathbb{Z}_p \setminus \{0, 1, p - 1\} \) and define \(f : A \to A \) by

\[
f = (4 \ p - 4)(5 \ p - 5) \cdots (\frac{p - 1}{2} \ \frac{p + 1}{2})(3 \ p - 3 \ 2 \ p - 2),
\]

where the notation \((a_1 a_2 \ldots a_n)\) denotes the permutation of the set \(\{a_1, a_2, \ldots, a_n\} \) with \(a_i \to a_{i+1} \) \(1 \leq i \leq n - 1 \) and \(a_n \to a_1 \).

Obviously, \(f \) is a matching. If \(g = f^{-1} \), then \(f \neq g \) and \(m_f = m_g \). Now, we show that \(\mathbb{Z}_p \) fails to have the acyclic matching property at order \(p - 4 \). Let \(A = \mathbb{Z}_p \setminus \{0, 4, p - 4, p - 1\} \). Define \(f : A \to A \) by

\[
f = (5 \ p - 5)(6 \ p - 6) \cdots (\frac{p - 1}{2} \ \frac{p + 1}{2})(3 \ p - 3 \ 2 \ p - 2 \ 1).
\]

Thus \(f \) is a matching. Assume that \(g = f^{-1} \), then \(f \neq g \) and \(m_f = m_g \). This yields \(G \) fails to have the acyclic matching property at order \(p - 3 \) and \(p - 4 \). If we remove the transpositions of the distinct cyclic representation of \(f \), then \(f \) still remains a matching on the omitted subsets and if \(B_i \)'s are the omitted subsets, then \(f\big|_{A \setminus B_i} \neq id_{A \setminus B_i} \), for every \(i, 1 \leq i \leq n \). Suppose \(g_i = \left(f\big|_{A \setminus B_i} \right)^{-1} \), then \(f\big|_{A \setminus B_i} \neq g_i \) and \(m_f\big|_{A \setminus B_i} = m_{g_i} \). Hence \(\mathbb{Z}_p \) fails to have the acyclic matching property at orders \(p - 3 - 2k \) and \(p - 4 - 2k' \) for any \(1 \leq k \leq \frac{p - 7}{2} \) and \(1 \leq k' \leq \frac{p - 9}{2} \). Then \(\mathbb{Z}_p \) fails to
have the acyclic matching property at order \(k \), for \(3 < k < p - 2 \). For \(k = 3 \), define \(A = \{1, 2, 4\} \) and \(f : A \to A \) by \(f = (1 \ 2 \ 4) \). Assuming \(g = f^{-1} \) we get the desired result.

In the last theorem, we showed that \(\mathbb{Z}_p \) fails to have the acyclic matching property at order \(k \), where \(2 < k < p - 2 \). In the following theorem, we study its behavior at order \(p - 2 \).

Theorem 3.2. Let \(A \) be a subset of \(\mathbb{Z}_p \setminus \{0\} \) and \(\#A = p - 2 \). If \(f : A \to A \) is a matching, then \(f^2 = \text{id}_A \).

Proof. Let \(f^2 \neq \text{id}_A \) and choose \(a \in A \) and the positive integer \(m > 2 \), such that \(\text{ord}_f(a) = m \). Thus \(f^{i-1}(a) + f^i(a) \notin A \), for each \(i, 1 \leq i \leq m \). It is clear that \(f^{i-1}(a) + f^i(a) \neq f^i(a) + f^{i+1}(a) \) for any \(i, 1 \leq i \leq m \). Suppose \(m \) is even, since \(\#A = p - 2 \) and \(A \cap \{f^{i-1}(a) + f^i(a) : 1 \leq i \leq m\} = \emptyset \), then \(f^{i-1}(a) + f^i(a) = f^{i+1}(a) + f^{i+2}(a) \), for any \(i = 1, \ldots, m - 1 \). Let us \(a + f(a) = n \) and \(f(a) + f^2(a) = n' \), \(n = a + f(a) = f^2(a) + f^3(a) = \cdots = f^{m-1}(a) + f^m(a) = n \) and \(n' = f(a) + f^2(a) = f^3(a) + f^4(a) = \cdots = f^{m-2}(a) + f^{m-1}(a) = f^m(a) + a \). Therefore, \(\sum_{i=1}^{m} f^i(a) = (m + 1)n = (m + 1)n' \), so \(n = n' \) and it is a contradiction. If \(m \) is odd, there exists \(i, 1 \leq i \leq m \) for which \(f^{i-1}(a) + f^i(a) = f^i(a) + f^{i+1}(a) \). Since \(\# \{f^{i-1}(a) + f^i(a) : 1 \leq i \leq m\} \leq 2 \), therefore \(f^2(a) = a \), which is a contradiction.

Remark 3.3. There is only one matching \(f \) from \(\mathbb{Z}_p \setminus \{0\} \) to \(\mathbb{Z}_p \setminus \{0\} \). Then \(\mathbb{Z}_p \) does not fail to have the acyclic matching property at order \(p - 1 \).
4 Acyclicity for Abelian torsion-free groups

Theorem 4.1. Let G be an Abelian group. If G is non-divisible and torsion-free, then it fails to have the acyclic matching property at order ∞.

Proof. Assume that n is the smallest positive integer such that $2nG \subsetneq G$. We break the proof into the following cases:

Case 1: If $n > 1$, then $G = 2G$. Choose $x \in G \setminus 2ng$ and let $2nG + x = \{2ng + x : g \in G\}$. Define $f, g : 2nG \to 2nG + x$ by $f(2nt) = 2nt + x$ and $g(2nt) = 2nt + (2n + 1)x$, for any $t \in G$. Since G is torsion-free, f and g are matchings.

Choose $g_0 \in G$ such that $x = 2g_0$ and define $A_t = \{y \in G : 4ny + x = t\}$ and $B_t = \{y \in G : 4ny + (2n + 1)x = t\}$, for any $t \in G$. So, $\varphi : A_t \to B_t$ with $\varphi(y) = y - g_0$ is a bijection. Now, since $m_f(t) = \#A_t$ and $m_g(t) = \#B_t$, then $m_f = m_g$ and G fails to have the acyclic matching property.

Case 2: If $n = 1$, choose $x \in G \setminus 2G$. The bijections $f, g : 2G \to 2G + x$ defined by $f(2t) = 2t + x$ and $g(2t) = 2t - 3x$ are matchings. Define $A_t = \{y \in G : 4y + x = t\}$ and $B_t = \{y \in G : 4y - 3x = t\}$, for any $t \in G$. Hence $\varphi : A_t \to B_t$ by $y \mapsto y + x$ is a bijection. This yields that $m_f = m_g$ and G fails to have the acyclic matching property at order ∞. \qed

Example 4.2. For any integer n, $n\mathbb{Z}$ fails to have the acyclic matching property at order ∞.

In the proof of the Theorem 4.4, the following result on divisible torsion-free groups will be used. See [9] for more details.

Theorem 4.3. Let G be an Abelian group. If G is divisible and torsion-free, then it
is a direct-sum of isomorphic copies of \mathbb{Q}.

By the aforementioned theorem, we can consider \mathbb{Q} as a subset of a group G under the suitable hypotheses on G and we get the following theorem:

Theorem 4.4. Let G be an Abelian group. If G is divisible and torsion-free, then it fails to have the acyclic matching property at order ∞.

Proof. By Theorem 4.3, \mathbb{Q} is embedded in G. Set $A := \{2k : k \in \mathbb{Z}\}$ and $B := \{2k+1 : k \in \mathbb{Z}\}$ as subsets of \mathbb{Q}. Define the bijections $f, g : A \to B$ by $f(2n) = 2n + 1$ and $g(2n) = 2n + 5$. It is clear that f and g are matchings. Now, if $x \in G \setminus \{4k + 1 : k \in \mathbb{Z}\}$, then $m_f(x) = m_g(x) = 0$. On the other hand, if $x \in \{4k + 1 : k \in \mathbb{Z}\}$, then $m_f(x) = m_g(x) = 1$ and then, in all cases $m_f = m_g$. □

Corollary 4.5. By Theorem 4.1 and Theorem 4.4, if G is an Abelian, torsion-free group then G fails to have the acyclic matching property at order ∞.

Example 4.6. Two additive groups \mathbb{R} and \mathbb{Q} fails to have the acyclic matching property at order ∞.

Now, our result regarding the connection of matching properties for Abelian groups.

Theorem 4.7. Suppose G is an Abelian group and $G \neq \mathbb{Z}_2, \mathbb{Z}_3$ and \mathbb{Z}_5. If G has the finite acyclic matching property, then it fails to have the acyclic matching property at order m for some $m \in \mathbb{N} \cup \{\infty\}$.

We will see the proof of this theorem in section 7.
5 Linear version of acyclicity for subspaces in a field extension

Let G be an Abelian group and f and $g : A \to B$ be two matchings where A and B are non-empty finite subsets of G and $m_f = m_g$. For any $x \in G$, define $A_f^x = \{a \in A : a + f(a) = x\}$, $A_g^x = \{a \in A : a + g(a) = x\}$, $\mathcal{A}_f = \{A_f^x : m_f(x) \neq 0\}$ and $\mathcal{A}_g = \{A_g^x : m_g(x) \neq 0\}$. It is clear that \mathcal{A}_f and \mathcal{A}_g are distinct decompositions for A and $\#\mathcal{A}_f < \infty$, $\#\mathcal{A}_g < \infty$. Define the function $\varphi : A \to A$ by the following method:

Define $\mathcal{A}_f = \{A_f^x_1, A_f^x_2, \ldots, A_f^x_m\}$. Since $m_f = m_g$, then $\mathcal{A}_g = \{A_g^x_1, A_g^x_2, \ldots, A_g^x_m\}$.

Assume that $a_1 \in A_f^x_1$, choose an arbitrary element b_1 of $A_g^x_1$ and put $\varphi(a_1) = b_1$.

If a_2 is another element of $A_f^x_1$, choose another arbitrary element b_2 of $A_g^x_1 \setminus \{b_1\}$ and put $\varphi(a_2) = b_2$. We can continue this procedure to define φ on $A_f^x_1$, and by the similar way, we can define the function f on whole A which is bijective and satisfies $a + f(a) = \varphi(a) + g(\varphi(a))$ for any $a \in A$.

Conversely, assume that f and g are two matchings from A to B and there exists a bijection $\varphi : A \to A$ for which $a + f(a) = \varphi(a) + g(\varphi(a))$, for any $a \in A$. We claim that $m_f = m_g$. Let us x be an arbitrary element of G. We have the following cases:

Case 1: If $x \in A$, according to the definition of matching, $m_f(x) = m_g(x) = 0$.

Case 2: If $x \not\in A$, then $m_f(x) = \#\{a \in A : a + f(a) = x\} = \#\{a \in A : \varphi(a) + g(\varphi(a)) = x\} = \#\{a \in A : a + g(a) = x\} = m_g(x)$. So, $m_f = m_g$, as claimed.

So we get the following theorem:

Theorem 5.1. Let A, B, f and g be as above. Then, $m_f = m_g$ if and only if there
exists a bijection $\varphi : A \to A$ such that $a + f(a) = \varphi(a) + g(\varphi(a))$, for any $a \in A$.

By the aforementioned theorem, a natural generalization for the acyclic matching in vector spaces is inspired. To see this concept, we need to present some definitions from [5].

Definition 5.2. Let $K \subseteq L$ be a field extension and A, B be n-dimensional K-subspaces of the field extension L. Let $\mathcal{A} = \{a_1, \ldots, a_n\}$ and $\mathcal{B} = \{b_1, \ldots, b_n\}$ be bases of A and B, respectively. It is said \mathcal{A} is matched to \mathcal{B} if

$$a_i b \in A \Rightarrow b \in \langle b_1, \ldots, \hat{b}_i, \ldots, b_n \rangle$$

for all $b \in B$ and $i = 1, \ldots, n$, where $\langle b_1, \ldots, \hat{b}_i, \ldots, b_n \rangle$ is the hyperplane of B spanned by the set $\mathcal{B} \setminus \{b_i\}$; moreover, it is stated that A is matched with B if every basis \mathcal{A} of A can be matched to a basis \mathcal{B} of B. It is said that L has the linear matching property if, for every $n \geq 1$ and every n-dimensional subspaces A, B of L with $1 \notin B$, the subspace A is matched with B. A strong matching from A to B is a linear isomorphism $\varphi : A \to B$ such that any basis \mathcal{A} of A is matched to the basis $\varphi(\mathcal{A})$ of B.

Now, we are in the situation to give the linear version of acyclicity.

Definition 5.3. Let $K \subseteq L$ be a field extension and A and B be two n-dimensional K-subspaces in L such that $n > 1$. Let f, $g : A \to B$ be two strong matchings. We say f is equivalent to g and denote it by $f \sim g$ if there exists a linear isomorphism $\varphi : A \to A$ such that $af(a) = \varphi(a)g(\varphi(a))$, for any $a \in A$; moreover, we state that the strong matching $f : A \to B$ is linear acyclic matching if for any strong matching $g : A \to B$, if $f \sim g$, then $f = cg$, for some $c \in K$. We say $K \subseteq L$ fails to have the linear acyclic matching property at order $m \in \mathbb{N}$, if there exist K-subspaces A
and B in L and strong matchings f and $g : A \to B$ such that $f \neq g$, $f \sim g$ and $\dim_K A = \dim_K B = m$.

Eliahou and Lecouvey in [5] proved the following theorems. The interested reader is also referred to [1].

Theorem 5.4. Let $K \subset L$ be a field extension. Then K has the linear matching property if and only if L contains no proper finite-dimensional extension over K.

Theorem 5.5. Let $K \subset L$ be a field extension and A and B be n-dimensional K-subspaces distinct from $\{0\}$. There is a strong matching from A to B if and only if $AB \cap A = \{0\}$. In this case, any isomorphism $\varphi : A \to B$ is a strong matching.

Now, our result regarding the connection of the linear matching properties for field extensions.

Theorem 5.6. Let $K \subsetneq L$ be a field extension admit the linear matching property and $\#K \geq 5$. Then it fails to have the linear acyclic matching property at order m, for some $m \in \mathbb{N}$.

We will see the proof of this theorem in section 7.

6 The linear acyclicity of a given order

In this section, we study the linear acyclicity for finite field extensions.

Theorem 6.1. Let $K \subsetneq L$ be a field extension with $[L : K] = n$, $\#K \geq 5$ and no
proper intermediate subfield. Then $K \subset L$ fails to have the linear acyclic matching property at order m, for any $1 \leq m \leq (n + 1)/4$.

Proof. Choose $m \in \mathbb{N}$ and $a \in L \setminus K$ for which $m \leq (n + 1)/4$. Set $A_m := \langle a, a^3, \ldots, a^{2m-1} \rangle$. Then $A_m \cap A_m^2 = \{0\}$, because $K(a) = L$, for any $A \in L \setminus K$. Using Theorem 5.5, there exists a strong matching $f_m : A_m \to A_m$. Next, set $g_m := f_m^{-1}$. One more time using Theorem 5.5, follows that f_m^{-1} is a strong matching. Now, if $f_m \circ f_m \neq id_{A_m}$, then $f_m \neq g_m$ and $f_m \sim g_m$. On the other hand, if $f_m \circ f_m = id_{A_m}$, choose $c \in K$ such that $c^2 \notin \{0, 1\}$. Set $h_m := c^{-2}g_m$, then h_m is a strong matching. We claim $f_m \sim h_m$. In order to prove, define $\varphi_m := cf_m$. We get $af_m(a) = \varphi_m(a)h_m(\varphi_m(a))$, for any $a \in A_m$. This tells us $f_m \sim h_m$, as claimed. \[\square \]

Theorem 6.2. Let $K \subset L$ be a purely transcendental extension. Then, it fails to have the linear acyclic matching property at order m, for any $m \in \mathbb{N}$.

Proof. Let a be an element of $L \setminus \{0, 1\}$ and set $A_m := \langle a, a^3, \ldots, a^{2m-1} \rangle$. Then $A_m \cap A_m^2 = \{0\}$ and by Theorem 5.5, there exists a strong matching f_m from A_m to A_m. By the same method in the previous theorem we can conclude that $K \subset L$ fails to have the acyclic linear matching property at order m, for any $m \in \mathbb{N}$. \[\square \]

Remark 6.3. If a field extension $K \subseteq L$ has no finite-dimensional proper intermediate field extension and $\#K \geq 5$. Then, it fails to have the acyclic matching property at order m, for some $m \in \mathbb{N}$.

Proof. This is a direct consequence of Theorems 6.1 and 6.2. \[\square \]
7 Main results

Theorem 7.1. Suppose G is an Abelian group and $G \neq \mathbb{Z}_2, \mathbb{Z}_3$ and \mathbb{Z}_5. If G has the finite acyclic matching property, then it fails to have the acyclic matching property at order m for some $m \in \mathbb{N} \cup \{\infty\}$.

Proof. Assume G has the finite acyclic matching property. Then G has the finite matching property. Using Theorem 1.1, G is cyclic of prime order or torsion-free. Invoking Corollary 4.5 and Theorem 2.1, G fails to have the acyclic matching property at order m for some $m \in \mathbb{N} \cup \{\infty\}$.

Theorem 7.2. Let $K \subset \mathbb{L}$ be a field extension admit the linear matching property and $\#K \geq 5$. Then it fails to have the linear acyclic matching property at order m, for some $m \in \mathbb{N}$.

Proof. If $K \subset L$ has the linear matching property, so Theorem 5.4 yields it has no proper finite-dimensional K-subspaces and by Remark 6.3, $K \subset L$ fails to have the acyclic matching property at order m, for some $m \in \mathbb{N}$.

Acknowledgement: The authors are thankful to Professors Noga Alon and Saieed Akbari for providing useful comments and discussions.

References

[1] S. Akbari, M. Aliabadi, Erratum to: Matching subspaces in a field extension, preprint.
[2] M. Aliabadi, M. R. Darafsheh, On maximal and minimallinear matching property, *Algebra and Discrete Mathematics*. Volume 15 (2013). Number 2. pp. 174-178.

[3] W. W. Adams, L. J. Goldstein, *Introduction to Number Theory*. Prentice-Hall, Inc, 1976.

[4] N. Alon, C. K. Fan, D. Kleitman, and J. Losonzcy, Acyclic matchings, *Adv. Math*. 122 (1996), 234-236.

[5] S. Eliahou, C. Lecouvey, Mathching subspaces in a field extension, *J. Algebra*. 324 (2010), 3420-3430.

[6] S. Eliahou, C. Lecouvey, Mathching in arbitrary groups, *Adv in Appl. Math*. 40 (2008), 219-224.

[7] C. K. Fan, J. Losonzcy, Matchings and canonical forms for symmetric tensors, *Adv. Math*. 117 (1990), 228-238.

[8] Y. O. Hamidoune, *On group bijection φ with $\varphi(B) = A$ and $\forall a \in B$, $a\varphi(a) \notin A*, preprint, arXiv:0812.2522 v1 [math. Co].

[9] T. W. Hungerford, *Algebra*, New York: Hdt, Rinehart and Winston, 1974.

[10] J. Losonzcy, On matchings in groups, *Adv. In Appl, Math*. 20 (1998), 385-391.

[11] J. Losonzcy, *Combinatorial aspects of theory of canonical forms*, B. A., Summa Cum Laude, New York University (1989).

[12] E. K. Wakeford, On canonical forms, *Proc. London Math, Soc*. 18 (1918-1919), 403-410.

[13] R. Zaare-Nahandi, Perfect matchings in groups, an approach via Grobner basis, *Southeast Asian Bulletin of Mathematics*, Vol 30 (2006), 341-345.