Vegetation structure of wetlands in Eastern Himalayan Highlands of Gasa, Bhutan

Pema Tendar*a,b,∗, Kitichate Sriditha

a Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla 90110 Thailand
b Department of Science, Chundu Armed Forces Public School, Ministry of Education, Haa 15004 Bhutan

∗Corresponding author, e-mail: pematendar@gmail.com

Received 19 Mar 2020
Accepted 2 Nov 2020

ABSTRACT: The study was conducted on the unexplored wetland vegetation of the eastern Himalayan highlands of Gasa District, Northern Bhutan. A random quadrat sampling of 1×1 m² method was used to assess the presence-absence of species, including shrubs, trees, mosses, ferns, and climbers, that were occurring adjacent to plots. Altogether, 201 taxa from 81 families, distributed in 149 genera, were recorded. Among the total species, 6 bryophytes, 20 monilophytes, 2 gymnosperms, and 173 angiosperms species were found. The most abundant life forms represented were herbaceous (62%) and shrub (29%), followed by tree (7%) and climber (2%). The four unique vegetation structure (represented in schematic profile diagrams) of habitats: fresh water meadow, seasonally flooded basin of flat, shallow fresh marsh, and poor fen, were found. The study suggests protecting ecotone (a transition zone between the wetland and surrounding uplands) as part of the measures to protect wetlands and their vegetation in the Himalayas.

KEYWORDS: wetland, vegetation structure, schematic profile diagram, ecotone

INTRODUCTION

Wetlands are biologically diverse ecosystems that provide critical habitat to a wide range of plants and animals in the world. The ability of plants to inhabit wet places and represent a various grouping of species with different ecological tolerances, adaptations, and life history strategies that allows their existence in flooded or saturated soils are termed as wetland plants [1]. Further, wetland plants are defined by their ability to grow on a substrate or in water that is periodically lacking in oxygen due to excessive water content [2].

Wetland plants are interesting as they have unique evolutionary tactics for coping with life in a flooded environment and help us to identify the boundaries of a wetland [1]. These wetland plants occur mostly in heath forests, forest fragments and bottomlands surrounded by upland forests. These small wetland habitats provide unique combination of upland forest species and wetland specialist species with high plant diversity [3]. Further, Kent and Coker [4] claimed that these marginal species from the adjacent areas around the habitat or community type can greatly increase species diversity. Also, Van der Maarel [5], emphasized that transactional or ecotone areas are of great interest ecologically and deserve more attention in research.

The Himalayan Region is known as one of the worldwide significant biodiversity hotspots due to rich repository of native and endemic biodiversity [6]. As part of Eastern Himalaya, Flora of Bhutan documented 5603 species of vascular plants out of which approximately 94 percent are native species [7]. Eastern Himalaya, including Bhutan, is also a remarkable repository for fauna and flora [8,9]. Further, National Biodiversity Centre [10] recorded 144 species as currently endemic to Bhutan Himalaya, which is a remarkable diversity of endemism considering the size of the country. Of the total species recorded (144), about 49% (71) are incredibly recorded in Jigme Dorji National Park (JDNP). Hence, in order to ensure their conservation and management, study of the plants in such environments should be considered of key importance. Moreover, several natural habitats are at risk and the species within them experience potential extinction [11]. There is also massive habitat loss in the buffer zone that results in species destructions [12] and positioning numerous wetland species on threatened and endangered species lists. The lack of International Union for Conservation of Nature (IUCN) assessment further makes it challenging to understand the status of native species of national concern [7]. There was also no comprehensive study on the vegetation structure of
wetlands in Gasa, a part of JDNP, and therefore, objectives of the study were to: (1) provide a checklist of the freshwater wetland plants and (2) describe the structure of habitats in highland wetlands of Gasa, Bhutan.

MATERIALS AND METHODS

Study area

The study was conducted in Gasa, a part of JDNP, along the 28 km road stretch on the left side of Mochu River, that lies between 27°43′05″–28°09′35″ N (latitudes) and 89°45′33″–89°38′44″ E (longitude) (Fig. 1). The elevation ranges from 1597 to 2538 m above sea level. The vegetation type in the region is warm temperate forest [13]. The area experiences short summer and long winter with the mean annual rainfall over a decade (2008–2017) ranged from 498 to 1824 mm and heavy rainfall in the month of July to August. Similarly, air temperature of the region ranges from 5–16 °C [14]. The study areas were mostly occurred in the bottomlands, slopes, and forest fragments surrounded by natural vegetation.

Data collections

Floristic inventory was done almost every month (February to November 2018) to assess the status and flowering seasons for detailed identification of plants. All collected plant materials were prepared according to the guidelines of herbarium handbook [15]. A random quadrat sampling of 1 x 1 m² method was used to assess the presence-absence of species. The number of quadrat samples taken from each site varied due to occurrence of different sizes in wetlands. The vegetation of each quadrat sample was identified in the field and recorded all species in that plot, including the ones (shrubs, trees, mosses, ferns, and climbers) occurring adjacent to the plots, in order to acquire the comprehensive list of plants within the wetlands. The life form group was followed with slight modifications [16]. The classification of wetland habitats according to Smith [17] was followed and later identified habitats [18] were represented in the form of schematic profile diagram to represent the vegetation structure in the region. Vegetation profile of representative sites (X and Y-axes) were drawn accounting the measurement of plant height [19] and length of site (measured using 100 m measuring tape). A graded bamboo stick was used to measure the depth of water in each site. All collected specimens were taken to the National Biodiversity Center, Thimphu, Bhutan for confirmation; and unknown species were identified in consultation with specialized literature and specialists in different taxonomic groups. Floras of Bhutan (including a record of plants from Sikkim [20–23], a record of plants from Sikkim and Darjeeling [24–26], the grasses of Bhutan [27], the orchids of Bhutan [28],
and eFloras of China [29]) were followed for the identification of species and families. The species' names and families were updated in an online data base, the Tropicos. The Angiosperm Phylogeny Group IV classification was followed for the classification of families [30]. All the voucher specimens were deposited at the Herbarium, National Biodiversity Center, Thimphu, Bhutan.

RESULTS

Floristic composition
A total of 201 species of plants, distributed in 149 genera and 81 families, of which 55% (111 species) were within quadrat (1 × 1 m²) sampling plots (226) and 45% (90 species) occurred adjacent to sampling plots (Tables 1 and S1). Among the total species, 6 species of bryophytes, 20 species of monilophytes, 2 species of gymnosperms, and 173 species of angiosperms (125 eudicots, 4 magnoliids, and 44 monocots) are presented in Table 1. The three most dominant families of eudicots were Ericaceae (17 species), Rosaceae (12 species), and Asteraceae (11 species) that comprised 8.5%, 6.0%, and 5.5% of the total flora, respectively. The three most diverse group of monocots were Cyperaceae (12 species), Poaceae (9 species), and Orchidaceae (7 species) that consisted of 6.0%, 4.5%, and 3.5% of the total recorded species, respectively. Dryopteridaceae (4 species, 2.0%), Polypodiaceae (4 species, 2.0%), and Selgeinellaceae (3 species, 1.5%) were the largest families represented in the group in monilophytes. In bryophytes group, single species was represented in each family. In the group of gymnosperms, Pinaceae and Taxaceae represented one species each. The six most dominant families are Ericaceae, Rosaceae, Cyperaceae, Asteraceae, Poaceae, and Orchidaceae (Fig. 2a). Altogether, they comprise about 34% of the total number of species in the studied areas. In this study, every species recorded is provided with taxonomic group, lifeform, flowering season, and voucher number (Table S2).

Lifeform and flowering seasons
The herbaceous and shrub lifeform were the most abundant species, recorded with 62% (125 species) and 29% (59 species), respectively; while the trees and climbers were least represented, at 7% (13 species) and 2% (4 species), respectively (Fig. 2b). The flowering for herbs mostly occurred in April to September, but peaked in July. The shrubs flowered mostly in April to July with the peak month in May. May and April months were the peak flowering seasons for trees and climbers, respectively (Fig. 2c).

The habitat types and vegetation
Based on the topographic features and vegetation of the wetlands, four most characteristic habitat types inhabited by plants were identified (Figs. 3 and 4).

Shallow fresh marsh was usually located near small streams and bottomlands. There is only one aquatic species, Potamogeton crispus L. occurred in such open pools (Fig. 3a). The characteristic species, i.e. Enkianthus deflexus (Griff.) C.K. Schneid., Persicaria nepalensis (Meisn.) H. Gross and Rhododendron dalhousieae var. rhabdotum (Balff. f. & R.E. Cooper) Cullen, were prominently found adjacent to the habitat. The Acorus calamus L. was abundant; and this characteristic species created a mat of vegetation that allowed small streams to run through channeling underneath. These channels
Table 1 Results showing the floristic composition in wetlands of Gasa.

Taxonomic group	Families	Genera	Species	Trees	Shrubs	Herbs	Climbers
Angiosperms	61	126	173	11	59	99	4
Gymnosperms	2	2	2	2	–	–	–
Bryophytes	6	6	6	–	–	6	–
Monilophytes	12	15	20	–	–	20	–
Total	**81**	**149**	**201**	**13**	**59**	**125**	**4**

Fig. 3 Schematic profile diagram at Gasa. (a) Flag marsh vegetation: 1. Acorus calamus, 2. Persicaria nepalensis, 3. firm mat of flag marsh vegetation with water channel underneath, 4. Enkianthus deflexus, 5. open pool with aquatic vegetation, 6. Potamogeton crispus, 7. Rhododendron dalhousieae var. rhadotum, 8. soil (organic matter) with firm mat of sweet flags' spreading rhizomes, 9. soil (loamy sand) with arrow showing the movement of underground water, and 10. channeled stream water and its movement (arrow showing its flow direction). (b) Carex diandra vegetation: 1. Carex diandra, 2. Schoenoplectus mucronatus, 3. Lyonia ovalifolia, 4. Acorus calamus, 5. Cymbidium iridioides, and 6. moderately decomposed sedge peat.

run on the side of the habitat ensuring minimal entry into the surface of habitat. During rainy seasons, these habitats were partially submerged, but well drained within few weeks.

Seasonally flooded basin of flat usually occurred in open bottomlands with floating mats dominated by Carex diandra Schrank. In fact, this habitat usually occurred in narrow zone where there is water underneath. This characteristic species was found only in the wettest part of this filled basin including Schoenoplectus mucronatus (L.) Palla (Fig. 3b). The Acorus calamus L. vegetation inhabited next to this C. diandra Schrank vegetation, followed by Lyonia ovalifolia (Wall.) Drude, Malus baccata (L.) Borkh, and Enkianthus deflexus (Griff.) C.K. Schneid towards edge of forest. The epiphytic orchid, Cymbid-
Sphagnum palustre above). Some patches of *Sphagnum palustre* L. vegetation were confined to this habitat and a thick layer of undecomposed peat within this vegetation was also prominent. Another characteristic species inhabited was *Osmunda japonica* Thunb. that occurred in some patches. The ericaceous shrubs were prominent in such habitats, e.g. *Rhododendron arboreum* Sm. and *Malus baccata* (L.) Borkh. (Fig. 4a).

The climber species, *Holboellia latifolia* Wall., was also recorded on the *M. baccata* (L.) Borkh. shrub that occurred in the open habitat. This vegetation was usually influenced by precipitation in the area lacking groundwater and upstream components.

Fresh water meadow usually occurred on the slopes, open heath forests and, sometimes, even in fallow lands. This habitat usually has no standing water but remained waterlogged most of the year. The diverse and characteristic species, such as *Lyonia villosa* (Wall. ex C.B. Clarke) Hand.-Mazz., *Spiranthes sinensis* (Pers.) Ames, *Matteuccia struthiopteris* (L.) Tod. and *Alnus nepalensis* D. Don, are inhabited in this habitat. Mostly the characteristic species of herbs in this habitat are stunted (Fig. 4b).

DISCUSSION

Most of represented families differed within Himalayan Regions. The topmost dominant family, Ericaceae with 17 species, comprised 21% of total species (81 species) in the country [23]. However, this family was not even appeared in top ten dominant families in the Western and Eastern Himalayas [31] indicating that this family occurred mostly in the wetlands and its surroundings (ecotone). These ericaceous shrubs may be acid loving plants since they are mostly inhabited in the acidic soil/peat of wetlands [32]. Therefore, the diversity of ericaceous shrubs is high and topped the family representation in the wetlands (Fig. 2a). This result is limited to present study and may not represent the actual status of ericaceous plant diversity in the country. Hence further study on quantitative assessment of wetland plants are required to further confirm this result in the country and the region. The second dominant family was Rosaceae (12 species) represented 8.5% of total species (141 species) of the flora of Bhutan. However, in the Eastern and Western Himalayas, the family dominance stood at eighth position and might be changed if similar studies are undertaken there. The third dominant family is Cyperaceae (12 species) which was fourth and fifth in the Eastern and Western Himalayas, respectively. This family has close affinity with the flora of western region and the family may have represented mostly from wetlands (Fig. 2a).

Asteraceae (11 species) represented fourth position in the Eastern Himalayas and, therefore, their suitable habitats could be in wetlands of lower montane areas in the region. In the Western Himalayas, this family represented second position and may indicate diverse habitat preferences. However, this family included one invasive species, *Ageratina adenophora* (Spreng.) R.M. King & H. Rob. which is almost a threat to wetlands; and habitat loss may occur, thereby, threatening many wetland species [7]. Fortunately, this species occurred only in one site due to anthropogenic disturbances since being closed to road and human settlement. Therefore, understanding plants and its habitats may be first step in combating species loses. Orchidaceae presented sixth position, which is topmost dominant family in the country as well as in the Eastern Himalayas (Fig. 2a). These orchids represented 1.5% (7 species) of the total orchids (469 species) in the country [28,33]. The wetland habitats have favored these epiphytic and ground orchids to inhabit in and around the wetlands, thereby diversifying species in the wetlands. Amongst the least represented families, Potamogetonaceae showed unique species in the region. *Potamogeton crispus* L. is only aquatic plant represented in the wetlands and inhabited in small pools and running stream. However, this species was found frequent in Western Himalaya [34]. Altogether, the diversity of species in the wetlands represented 14% of the total flora in Jigme Dorji National Park and 3.6% of flora of Bhutan (Table S2).

The proportion of abundant species in the lifeform group varied within the region. The proportion order of abundant species, i.e. herbs (62%), shrubs (29%), trees (7%), and climbers (2%) were recorded with similar pattern in the region (Fig. 2b). However, proportion of herbs and shrubs species were slightly higher compared to other parts of the country [16,35] and the Western Himalaya [36] that may be an indicator that the species representations are from wetlands including ecotone. Similarly, the proportion of trees and climbers under study are two to three folds lesser, as these wetlands usually are located at edge or open forest fragments, hence less trees and climbers (Fig. 2b).

The flowering seasons of lifeform groups also
varied in the wetlands. The peak flowering seasons for herbs, shrubs and trees, and climbers were in July, May and April months, respectively (Fig. 2c). These data may be useful for the science education programs (e.g. excursions) in schools and colleges to learn about pollination and floral ecology of diverse wetland plants.

The vegetation structure of habitat indicates its uniqueness in supporting the diverse species in each habitat. The species represented in the figures are the ones that are unique and abundant in such habitats. These species differed among habitats may be due to different microhabitats supporting such unique species. Therefore, these natural vegetation profile clearly displayed various structures of the unique vegetation and species composition in each habitat (Figs. 3 and 4).

The only submerged species, Potamogeton crispus L., occurred only in Shallow fresh marsh (Fig. 3a) and, in open pools due to light reaching into the bottom (depth of approximately 1 to 1.5 m) of habitat. The continuous discharge of water from bottom of the pools indicated water table (arrow showing flow of water towards pool) connected by small stream flowing under the firm mat vegetation. This species also occurred in flowing water towards south of the pools indicating undisturbed vegetation. However, there were no ponds nor proper drainage for flowing water to support this species in other three sites of this type of habitat. The abundant and characteristic species, Acorus calamus L., had created a mat (0.1–0.4 m depth of peat and soil) of vegetation and the small stream flowing underneath the mat at few points (about 4 to 6 m distance) (Fig. 3a). This channel may minimize entry of excess water into the surface of habitat. The characteristic species, i.e. Enkianthus deflexus (Griff.) C.K. Schneid., Persicaria nepalensis (Meisn.) H. Gross, and Rhododendron dalhousiae var. rhabdotum (Balf. f. & R.E. Cooper) Cullen may have added local species richness in the wetlands. Therefore, such intact pools, stream running underneath of mat vegetation and adjacent (ecotone) vegetation may have supported diverse species in such habitats (Fig. 3a).

The seasonally flooded basin of flat habitat occurred where there is permanent water underneath that supported the floating mats (Carex diandra Schrank.) vegetation indicating specific habitat (narrow zone) (Fig. 3b). This characteristic species was found only in the wettest part of this filled basin with the depth of about 2 to 2.5 meters of moderately decomposed sedge peat. The Acorus calamus L. and other species inhabited towards edge of forest next to C. diandra Schrank vegetation, which may represent an ecotone for this habitat (Fig. 3b). Therefore, supported unique species may be available due to its differences in availability of water underneath, open space, and flat surface of habitats.

The poor fen habitat occurred slightly at higher elevations with thick layer of partial or undecomposed peat (about 0.4–0.8 m) of Sphagnum palustre L., which indicates the slower biological activity because of cold temperature (Fig. 4a). The ericaceous shrubs, Rhododendron arboreum Sm. and Malus baccata (L.) Borkh., were characteristic species in such habitat; and that may indicate unique composition of species. The Osmunda japonica Thunb. including ericaceous shrubs occurred in some patches that may indicate territorializing the wetland habitats and supporting diverse species.

The fresh water meadow usually occurred on the slopes and open heath forests indicating no standing water during growing seasons. Due to this unique habitat, diverse species of herbs, shrub and trees are supported, including characteristic species such as Spiranthes sinensis (Pers.) Ames, Matteucia struthiopteris (L.) Tod., Lyonia villosa (Wall. ex C.B. Clarke) Hand.-Mazz. and Alnus nepalensis D. Don (Fig. 4b). The characteristic species of herbs in this habitat, such as Equisetum ramosissimum Desf., Neanotis calycina (Wall. ex Hook. F.) W. H. Lewis, Galium aparine L., Iberidium beauverdianum (H. Lév.) Spring., Pedicularis gracilis subsp. stricta (Prain) P. Tsoong, and Spiranthes sinensis (Pers.) Ames, are stunted. This may be due to less nutrients in soil and anthropogenic disturbances since they are located close to human settlements.

CONCLUSION

Wetland study has seen few important implications for conservation and management of biodiversity. Firstly, it shows that wetlands within the heath forests, forest fragments and bottomlands are truly a valuable resource for the conservation of plant diversity due to presence of large number of local species richness and several local rare species. In addition, high conservation priority could be given for wetlands with indicator species in the sites. These small wetland habitats supported both upland forest species and wetland species, which upland landscapes would not support the wetland species. Therefore, such small wetland habitats deserve protection. Secondly, to protect these wetlands, ecotone should also be considered to keep
the wetlands functionally intact. The study suggests protecting ecotone as part of the measures to protect wetlands. Lastly, the lack of IUCN assessment makes it challenging to understand the status of the native species of national/international concern. Therefore, species-based conservation action plans are required to improve their conservation status in the country.

Appendix A. Supplementary data

Supplementary data associated with this article can be found at http://dx.doi.org/10.2306/scienceasia1513-1874.2021.007.

Acknowledgements: The Graduate School of Prince of Songkla University, Hat Yai, Songkhla, Thailand's Education Hub for ASEAN Countries and Center of Excellence on Biodiversity (BDC), Office of Higher Education Commission (BDC-PG3-160016), Ministry of Higher Education, Science, Research and Innovation, Thailand supported this research. Authors would like to extend appreciation to Mr. Kezang Tobgay, Herbarium, National Biodiversity Centre for helping in authentication of specimens, Mr. Sangay Namgay, teacher of Wanakha Centre School, Paro for preparing schematic profile diagrams, Mr. Tshering Dendup (CID-1090500086), teacher for preparing our study map and Mr. Sangay Tenzin (EiD-20190113354), teacher of CAFPS, Haa for his field assistance during sample collections.

REFERENCES

1. Cronk JK, Fennessy MS (2001) Wetland Plants Biology and Ecology, Lewis Publishers, Boca Raton, London.
2. Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of Wetlands and Deepwater Habitats of the United States, US Department of the Interior, Fish and Wildlife Service, Washington DC, USA.
3. Flinn KM, Lechowicz MJ, Waterway MJ (2008) Plant species diversity and composition of wetlands within an upland forest. Am J Bot 95, 1216–1224.
4. Kent M, Coker P (1992) Vegetation Description and Analysis: A Practical Approach, John Wiley & Sons Ltd, Chichester.
5. Van der Maarel E (1990) Ecotones and ecoclines are different. J Vegetat Sci 1, 135–138.
6. Dar JA, Sundarapandian S (2016) Patterns of plant diversity in seven temperate forest types of Western Himalaya, India. J Asia Pac Biodivers 9, 280–292.
7. National Biodiversity Centre (2014) National Biodiversity Strategies and Action Plan of Bhutan, Ministry of Agriculture and Forests, Bhutan.
8. Kandel P, Gurung J, Chettri N, Ning W, Sharma E (2016) Biodiversity research trends and gap analysis from a transboundary landscape, Eastern Himalayas. J Asia Pac Biodivers 9, 1–10.
9. Namgay S, Sridith K (2020) Distribution pattern of the genus Rhododendron in Bhutan Himalayan range. ScienceAsia 46, 429–435.
10. National Biodiversity Centre (2015) Plants Endemic to Bhutan Himalaya, Ministry of Agriculture and Forests, Thimphu, Bhutan.
11. Bajpai O, Kumar A, Srivastav AK, Kushwaha AK, Pandey J, Chaudhary LB (2015) Tree species of the Himalayan Terai region of Uttar Pradesh, India. Check List 11, 1–15.
12. Bora A, Bhattacharyya D (2017) Phyto diversity of Barail wildlife sanctuary, Assam, India: field-based observations-I. Trees and lianas. Check List 13, 1037–1053.
13. Ohsawa M (1987) Life Zone Ecology of the Bhutan Himalaya, Chiba University, Japan.
14. National Center for Hydrology and Meteorology (2018) National Center for Hydrology and Meteorology, Thimphu, Bhutan.
15. Foreman L, Bridson D (1998) The Herbarium Handbook, 3rd edn, Whitstable Litho Printers Ltd, London.
16. Jamtsho T, Sridith K (2017) Species composition of the vegetation along the Sherichhu river, lower montane area of Eastern Bhutan. Songklanakarin J Sci Technol 39, 303–316.
17. Smith RL (1966) Ecology and Field Biology, Harper and Row, New York.
18. Tendar P, Cooper DJ, Sridith K (2020) Wetland plant communities of the Eastern Himalayan Highlands in Northern Bhutan. Wetlands.
19. Tobgye T (2015) Vegetation structure and vascular plant diversity of lower montane forest at Ko-rila, Mongar, eastern Bhutan. MSc thesis, Prince of Songkla Univ, Thailand.
20. Grierson AJC, Long DG (1983) Flora of Bhutan, vol 1(1), Royal Botanic Garden, Edinburgh.
21. Grierson AJC, Long DG (1984) Flora of Bhutan, vol 1(2), Royal Botanic Garden, Edinburgh.
22. Grierson, AJC, Long DG (1987) Flora of Bhutan, vol 1(3), Royal Botanic Garden, Edinburgh.
23. Grierson AJC, Long DG (1991) Flora of Bhutan, vol 2(1), Royal Botanic Garden, Edinburgh.
24. Grierson AJC, Long DG (1999) Flora of Bhutan, vol 2(2), Royal Botanic Garden, Edinburgh.
25. Grierson AJC, Long DG (2001) Flora of Bhutan, vol 2(3), Royal Botanic Garden, Edinburgh.
26. Noltie HJ (1990) Flora of Bhutan, vol 3(1), Royal Botanic Garden, Edinburgh.
27. Noltie HJ (1994) Flora of Bhutan, vol 3(2), Royal Botanic Garden, Edinburgh.
28. Noltie HJ (2000) Flora of Bhutan, vol 3(3), Royal Botanic Garden, Edinburgh.
29. eFloras (2008) Flora of China, Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA.
30. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181, 1–20.

31. Chawla A, Parkash O, Varun Sharma V, Rajkumar S, Lal B, Gopichand, Singh RD, Thukral AK (2012) Vascular plants, Kinnaur, Himachal Pradesh, India. Check List 8, 321–348.

32. Richardson JL, Vepraskas MJ (2001) Wetland Soils: Genesis, Hydrology, Landscapes, and Classification, Lewis Publishers, Boca Raton, London.

33. National Biodiversity Centre (2017) A Century of New Orchid Records in Bhutan, Kuensel Corporation Limited, Thimphu, Bhutan.

34. Adhikari BS, Babu MM (2008) Floral diversity of Baanganga Wetland, Uttarakhand, India. Check List 4, 279–290.

35. Tobgye T, Sridith K (2018) Preliminary notes on distribution of Himalayan plant elements: A case study from Eastern Bhutan. Songklanakarin J Sci Technol 40, 370–378.

36. Pal DK, Kumar A, Dutt B (2014) Floristic diversity of Theog Forest Division, Himachal Pradesh, Western Himalaya. Check List 10, 1083–1103.
Appendix A. Supplementary data

Table S1 Total plots sampled and species recorded (in 1 × 1 m² plot and adjacent plot) in each site.

Site/site code	Gasa1 (S1)	Gasa2 (S2)	Gasa3 (S3)	Damji1 (S4)	Damji2 (S5)	Damji3 (S6)	Tashithang (S7)	Total
Plots/site	44	31	45	48	22	18	18	226
Species/site	45	33	37	40	29	29	32	250

Species recorded from 7 sites (plot) 111
Species recorded from adjacent plots (including shrub, liana, fern and tree) 90

Table S2 List of wetland plant species recorded with taxonomic group, lifeform, flowering seasons and voucher number in Gasa, Bhutan. Species in the list are arranged in alphabetical order of families.

Scientific name	Family	Group	Life form	Flowering season	Voucher No.
Strobilanthes auriculata Nees	Acanthaceae	Eudicot	Shrub	Oct–Feb	PTndar211
Acorus calamus L.	Araceae	Monocot	Tree	Apr–Jul	PTndar003
Viburnum erubescens Wall.	Adoxaceae	Eudicot	Shrub	Apr–May	PTndar223
Viburnum mollula Buch.-Ham. ex D. Don	Adoxaceae	Eudicot	Shrub	Jul–Sep	PTndar225
Spatharia tengtsumensis H. Li	Gentianaeeae	L. Urb.	Eudicot	May–Aug	PTndar192
Centella asiatica (L.) Urb.	Apiceae	Eudicot	Herb	Mar–Apr	PTndar037
Oenanthe hookeri C.B. Clarke	Apiceae	Eudicot	Herb	Jul–Sep	PTndar137
Oenanthe javanica (Blume) DC.	Apiceae	Eudicot	Herb	Apr–Oct	PTndar138
Ariaema concinnum Schott	Araceae	Monocot	Herb	Apr–Jul	PTndar013
Ariaema flavum (Forssk.) Schott	Araceae	Monocot	Herb	Jun–Jul	PTndar014
Colocasia esculenta (L.) Schott	Araceae	Monocot	Herb	Jul–Sep	PTndar043
Hedera nepalensis K. Koch	Araceae	Monocot	Herb	Oct–Nov	PTndar094
Hydrocotyle nepalensis Hook.	Araceae	Monocot	Herb	May–Jul	PTndar098
Hydrocotyle sibthorpioides Lam.	Araceae	Monocot	Herb	Mar–Apr	PTndar099
Schefflera rauburghii Gamble	Araceae	Monocot	Herb	Apr–Jul	PTndar195
Ageratina adenophora (Spreng.) R.M. King & H. Rob.	Asteraceae	Eudicot	Shrub	Jan–Jun	PTndar005
Anisolea latifolia (D. Don) Sch. Bip.	Asteraceae	Eudicot	Herb	Mar–Jun	PTndar008
Anaphalis margaritacea (L.) Benth. & Hook. f.	Asteraceae	Eudicot	Herb	Jul–Dec	PTndar010
Artemisia indica Willd.	Asteraceae	Eudicot	Herb	Jul–Sep	PTndar015
Artemisia herbaovariana Y. Ling & Y.-R. Ling	Asteraceae	Eudicot	Herb	Aug–Oct	PTndar016
Aster neolelegans Grierson	Asteraceae	Eudicot	Herb	May–Sep	PTndar018
Cirsium falconeri (Hook. fil.) Petr.	Asteraceae	Eudicot	Herb	Jul–Oct	PTndar040
Crassocephalum crepidioides (Benth.) S. Moore	Asteraceae	Eudicot	Herb	Apr–Dec	PTndar048
Impatiens racemosa DC.	Asteraceae	Eudicot	Herb	May–Nov	PTndar108
Berberis aristata DC.	Berberidaceae	Eudicot	Shrub	Apr–May	PTndar020
Mahonia nepalensis DC.	Berberidaceae	Eudicot	Shrub	Apr	PTndar131
Alnus nepalensis D. Don	Betulaceae	Eudicot	Tree	Jul–Oct	PTndar009
Cyroglossum lanceolatum Forssk.	Boraginaceae	Eudicot	Herb	Year round	PTndar051
Cirrhophyllum sp.	Brachytheciaceae	Moss	Herb	PTndar039	
Cardamine flexuosa With.	Brassicaceae	Eudicot	Herb	Jan–Jun	PTndar027
Nasturtium officinale W.T. Aiton	Brassicaceae	Eudicot	Herb	Jun	PTndar134
Rhodobryum giganteum (Schwägr.) Paris	Brassicaceae	Eudicot	Herb	PTndar174	
Sarcoocca hookeriana Bail.	Buxaceae	Eudicot	Shrub	Apr–Jun	PTndar194
Lobelia erecticula H.Hara	Campanulaceae	Eudicot	Herb	Jul–Sept	PTndar125
Cannabis sativus L.	Cannabaceae	Eudicot	Herb	Jun–Aug	PTndar026
Dipascas inermis Wall.	Caprifoliaceae	Eudicot	Herb	Aug–Sep	PTndar191
Spatharia tengtsumensis H. Li	Caryophyllaceae	Eudicot	Herb	May–Jun	PTndar210
Stellaria reticulivena Hayata	Caryophyllaceae	Eudicot	Herb	Apr–May	PTndar044
Commelina diffusa Burm. f.	Commelinaceae	Eudicot	Herb	PTndar044	
Commelina paludosa Blume	Commelinaceae	Eudicot	Herb	May–Nov	PTndar045
Cygniis vulgaris (Lour.) Roem. & Schult.	Commelinaceae	Eudicot	Herb	Jun–Oct	PTndar030
Toricellia tilifolia DC.	Cornaceae	Eudicot	Shrub	Apr–May	PTndar216
Carex condensata Nees	Cyperaceae	Eudicot	Herb	Apr–Aug	PTndar028
Carex filicina Nees	Cyperaceae	Eudicot	Herb	Apr–Aug	PTndar029
Carex capillacea Boott	Cyperaceae	Eudicot	Herb	Apr–Jul	PTndar030
Carex diandra Schrank	Cyperaceae	Eudicot	Herb	May–Jun	PTndar031
Carex rara Boott	Cyperaceae	Eudicot	Herb	Apr–Jul	PTndar034
Carex rostrata Hoppe ex Schkuhr	Cyperaceae	Eudicot	Herb	Apr–Aug	PTndar035
Carex setigera D. Don	Cyperaceae	Eudicot	Herb	Apr	PTndar036
Timbrystis ovata (Burm. f.) J. Kern	Cyperaceae	Eudicot	Herb	Aug–Sep	PTndar079
Table S2 Continued...

Scientific name	Family	Group	Life form	Flowering season	Voucher No.
Pycreus flavidus (Retz.) T. Koyama	Cyperaceae	Monocot	Herb	Jun–Jul	PTndar169
Pycreus sanguinolentus (Vahl) Nees ex C.B. Clarke	Cyperaceae	Monocot	Herb	Jul–Sep	PTndar170
Schoenoplectus mucronatus (L.) Palla	Cyperaceae	Monocot	Herb	May–Jun	PTndar197
Scirpus wuchurai Kom.	Cyperaceae	Monocot	Herb	Jul–Aug	PTndar198
Acystopteris sp.	Cystopteridaceae	Monilo	Herb	PTndar004	
Daphniphyllum himalayense (Miq.) T. C. Huang	Daphniphyllaceae	Eudicot	Tree	May–Sep	PTndar056
Daphniphyllum himalayense	Daphniphyllaceae	Eudicot	Tree	PTndar106	
Pieridium revolutum (Blume) Nakai	Daphniphyllaceae	Eudicot	Tree	PTndar167	
Dryopteris juxtaposita Christ	Dryopteridaceae	Monilo	Herb	PTndar063	
Dryopteris sp.	Dryopteridaceae	Monilo	Herb	PTndar064	
Dryopteris uniformis (Makino) Makino	Dryopteridaceae	Monilo	Herb	PTndar066	
Polycthon piceopaleaceum Tag.	Dryopteridaceae	Monilo	Herb	PTndar157	
Elaphoglossus parvifolia Wall. ex Royde	Elaphoglossaceae	Eudicot	Herb	Apr–Jun	PTndar067
Equisetum ramosissimum Desf.	Equisetaceae	Monilo	Herb	PTndar073	
Enkianthus deflexus (Griff.) C.K. Schneider	Ericaceae	Eudicot	Shrub	May–Jun	PTndar070
Gaultheria semi-infera (C.B. Clarke) Airy Shaw	Ericaceae	Eudicot	Shrub	Aug–Sep	PTndar083
Gaultheria nummularioides D. Don	Ericaceae	Eudicot	Shrub	Jun–Aug	PTndar121
Leucothoe griffithiana	Ericaceae	Eudicot	Shrub	PTndar028	
Sm.	Ericaceae	Eudicot	Shrub	PTndar150	
Lyonia villosa (Wall.) Drude	Lyoniaceae	Eudicot	Shrub	PTndar127	
Lyonia ovalifolia	Lyoniaceae	Eudicot	Shrub	Jun–Aug	PTndar128
Rhododendron virgatum	Ericaceae	Eudicot	Shrub	Jun–Sep	PTndar063
Rhododendron retusum	Ericaceae	Eudicot	Shrub	Apr–Jun	PTndar222
Eriocaulon viride Körn.	Eriocaulaceae	Eudicot	Herb	Jul–Oct	PTndar074
Macaranga postulata King ex Hook.f.	Euphorbiaceae	Eudicot	Tree	Nov–Mar	PTndar129
Parochetus communis Buch.-Ham. ex D. Don	Fabaceae	Eudicot	Herb	Mar–Sep	PTndar142
Trifolium repens L.	Fabaceae	Eudicot	Herb	Apr–Jun	PTndar217
Quercus griffithii Hook.f. & Thomson ex Miq.	Fagaceae	Eudicot	Tree	Apr–May	PTndar171
Gentiana cephalodes Edgew.	Gentianaceae	Eudicot	Herb	Aug–Oct	PTndar084
Gentiana capitata Buch.-Ham. ex D. Don	Gentianaceae	Eudicot	Herb	Feb–Jun	PTndar085
Gentiana subalpina (Wall. ex D. Don) Griseb.	Gentianaceae	Eudicot	Herb	Apr–Jun	PTndar086
Gentiana pedatulata (Wall. ex D. Don) Griseb.	Gentianaceae	Eudicot	Herb	May–Sep	PTndar093
Halenia elliptica D. Don	Gentianaceae	Eudicot	Herb	Jul–Oct	PTndar212
Swertia immaculata (Siebold & Zucc.) Hook. f. & Thomson ex C.B. Clarke	Gentianaceae	Eudicot	Herb	Jul–Oct	PTndar080
Geranium lamarkianum Sweet	Geraniaceae	Eudicot	Herb	Jul–Sep	PTndar083
Geranium procurrens (Siebold & Zucc.) Hook. f. & Thomson ex C.B. Clarke	Geraniaceae	Eudicot	Herb	Jul–Sep	PTndar122
Geranium rhabdotum	Geraniaceae	Eudicot	Herb	Jul–Sep	PTndar088
Jasminum humile L.	Oleaceae	Eudicot	Shrub	May–Jul	PTndar113
Juncus bufonius L.	Juncaceae	Monocot	Herb	Apr–Aug	PTndar072
Hypericum hookerianum G. Forst.	Hypericaceae	Eudicot	Herb	Jun–Aug	PTndar063
Hypericum petiolulatum	Hypericaceae	Eudicot	Herb	Jul–Aug	PTndar101
Hypericum perfoliatum Hook. f. & Thomson ex Dyer	Hypericaceae	Eudicot	Herb	Jul–Aug	PTndar103
Hypericum sp.	Hypericaceae	Eudicot	Herb	Jul–Aug	PTndar071
Juglans regia L.	Juglandaceae	Eudicot	Tree	Apr–May	PTndar114
Juncus furcatus L.	Juncaceae	Monocot	Herb	Apr–Aug	PTndar115
Juncus inflexus L.	Juncaceae	Monocot	Herb	Apr–Aug	PTndar116
Luzula effusa Buchenau	Luzulaceae	Monocot	Shrub	Aug–Oct	PTndar069
Elsholtzia fruticosa (D. Don) Rehder	Lamiaceae	Eudicot	Herb	Oct–Nov	PTndar110
Phlomis macrophylla Benth.	Lamiaceae	Eudicot	Herb	Jul–Aug	PTndar149
Picea seed	Pinaceae	Conifer	Conifer	PTndar062	
Prunella vulgaris L.	Lamiaceae	Eudicot	Herb	May–Aug	PTndar165
Holboellia latifolia Wall.	Lardizabalaceae	Eudicot	Herb	Apr–Jun	PTndar96
Leucaena leucocephala (Nees) Hook. f.	Leguminosae	Eudicot	Shrub	Apr–Jun	PTndar024
Urticaria bifida L.	Urticaceae	Eudicot	Shrub	Jul–Sep	PTndar219
Scurfuca elata (Edgew.) Danser	Scurfuaceae	Eudicot	Shrub	Apr–Jun	PTndar199
Magnolia campbellii Hook.f. & Thomson	Magnoliaceae	Eudicot	Tree	May–Mar	PTndar130
Leucopilus acanthocephala (Schwagr.) Lindb.	Mimosaceae	Eudicot	Herb	Apr–Jun	PTndar123
Lignum humile L.	Oleaceae	Eudicot	Shrub	Apr–Jun	PTndar139
Lignum undulata (Willd.) Ching	Oleaceae	Eudicot	Herb	Jul–Sep	PTndar071
Table S2 Continued . . .

Scientific name	Family	Group	Life form	Flowering season	Voucher No.
Epilobium wallachianum Hausskn.	Onagraceae	Eudicot	Herb	Jul–Sep	PTndar072
Matteuccia struthiopteris (L.) Tod.	Onocleaceae	Monilophytes	Herb	PTndar133	
Buddleja globiflora (Trin.) H. Gross	Verbenaceae	Eudicot	Shrub	PTndar024	
Cotoneaster franchetii (L.) Rchb. f.	Rosaceae	Eudicot	Shrub	PTndar019	
Salix adenochlaena (Wall.) W. H. Lewis	Salicaceae	Eudicot	Shrub	PTndar214	
Taxus baccata L.	Taxaceae	Gymnosperm	Tree	PTndar213	
Smilax perfoliata L.	Smilacaceae	Monocot	Liana	PTndar203	
Girardinia diversifolia (Link) Friis	Urticaceae	Eudicot	Herb	PTndar090	
Siphonochlaena spiralis var. *rigida* Nottie	Smilacaceae	Monocot	Shrub	PTndar205	
Sphenophyllum stricta (Mart.) Nilsson	Xyridaceae	Eudicot	Shrub	PTndar081	

Abbreviation for group: Monilophytes; Gymnosperm; and Magnoliids.