The prognostic significance of long noncoding RNAs in bladder cancer: A meta-analysis

Yuexin Xia¹*, Zhiyuan Liu²*, Weijian Yu¹, Shihang Zhou¹, Linnan Shao¹, Wenqian Song¹, Ming Liu³*

¹ Dalian Blood Center, Dalian, Liaoning, China, ² Biomedical Business Department, Panasonic Appliances Cold Chain (Dalian)co., Ltd, Dalian, Liaoning, China, ³ Department of Cell Biology, Dalian Medical University, Dalian, Liaoning, China

☯ These authors contributed equally to this work.
* liuminglinxi@163.com

Abstract

Introduction
Bladder cancer (BC) is one of the most common urologic malignancies and it is urgently needed to identify novel potential prognostic biomarkers for predicting prognosis and progression of patients with BC in clinical practice. Previous research has revealed that long noncoding RNAs (lncRNAs) played critical roles in BC, and may serve as novel potential prognostic biomarkers in patients with BC. Therefore, we conducted this meta-analysis to clarify the prognostic potential of lncRNAs in BC patients.

Methods
A comprehensive search was performed in PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI). According to the predefined exclusion and inclusion criteria, a total of 9 recently published articles comprising 13 lncRNAs and 666 BC patients were included into this meta-analysis. We analyzed the hazard ratios (HRs) and 95% confidence intervals (CIs) to determine the relationship between lncRNAs expression and survival outcomes. We also analyzed the odds ratio (ORs) and 95% confidence intervals (CIs) to assess the association between lncRNAs expression and clinicopathologic characteristics, including histological grade, gender, multifocality, tumor size, and tumor stage.

Results
Our results revealed that high lncRNAs expression was associated with shorter overall survival in Asian BC patients (pooled HR = 2.32, 95% CI: 1.35–4.00, P = 0.002, random-effect). High lncRNAs expression levels were significantly associated with histological grade (G2-G3 vs. G1: OR = 3.857, 95%CI: 1.293–11.502, P = 0.015, random-effect).

Conclusions
In summary, this meta-analysis has demonstrated that lncRNAs could be used as potential prognostic markers for BC and high lncRNAs expression could predict poor prognosis among Asian BC patients.
Introduction

Bladder cancer (BC) is one of the most common urologic malignancies, with nearly 430,000 new cases diagnosed in 2012 worldwide [1]. Overall, 75% of the patients with BC are categorized as non-muscle-invasive bladder cancer (NMIBC) [2], which is associated with a high risk of recurrence and may progress to muscle invasive bladder cancer (MIBC) [3]. MIBC is associated with poor prognosis and the estimated 5-year survival rate remains at only 50% [4]. As a consequence, it’s crucial to identify novel potential prognostic biomarkers for predicting prognosis and progression of patients with BC in clinical practice.

Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules with more than 200 nucleotides [5]. It is reported that lncRNAs play critical roles in various cellular biological processes, such as cellular differentiation, gene expression, protein localization, and DNA damage response [6]. An increasing number of studies have revealed that lncRNAs played tremendous roles in various human diseases, including cancer [7, 8]. More importantly, aberrant expression of multiple lncRNAs were found to be involved in the tumorigenesis and many of them were correlated with cancer prognosis [9–11]. Multiple lncRNAs have been reported to be promising prognostic indicators for cancers, such as hepatocellular carcinoma [12], non small cell lung cancer [13, 14], osteosarcoma [15], ovarian carcinoma [16], and renal cell carcinoma [17]. So far, many studies have shown that lncRNAs also played critical roles in BC [18], these findings support that lncRNAs can be developed as novel potential prognostic biomarkers in patients with BC.

However, owing to the limitations in sample size, single study may be inaccurate and insufficient. Thus, studies should be analyzed systematically to uncover the potential prognostic value of lncRNAs in patients with BC. Nevertheless, no meta-analysis has been carried out to provide a precise estimation. As a consequence, we conducted this meta-analysis to explore the prognostic value of lncRNAs and the association between lncRNAs and clinicopathological characteristics by combined analysis of data from the published articles.

Materials and methods

Search strategies

The contents of this review are in accordance with the standard guidelines of Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) (S1 Checklist) [19]. We searched the databases PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) for relevant literatures about the prognostic value of lncRNA in BC. The search was performed by both text word and MeSH terms to increase the sensitivity. The following search terms were used: ("RNA, Long Noncoding", "lncRNA", "long noncoding RNA", "Long intergenic non-coding RNA") AND ("Urinary Bladder Neoplasms", "Bladder Neoplasm", "Bladder Tumor", "Urinary Bladder Cancer", "Bladder Cancer") AND ("Prognosis", "Prognostic", "outcome", "survival", "recurrence", "recurrence"). Additionally, manual searches were performed using the reference lists of the relevant articles to identify potentially eligible literatures. The retrieval time was from inception to May 2017.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) studies evaluated the association between lncRNA(s) expression and prognosis of bladder cancer; (2) the survival outcomes were measured with overall survival (OS) or recurrence-free survival (RFS); (3) sufficient data were provided to estimate hazard ratios (HRs) and their 95% confidence interval (95% CI). The exclusion
criteria were as follows: (1) insufficient data for HR and 95% CI estimation; (2) reviews, letters, or laboratory articles; (3) sample cases fewer than 30.

Data extraction

Data was carefully retrieved by two investigators (Yuexin Xia and Zhiyuan Liu) independently. The following information was extracted from each study: (1) publication information: the surname of first author and the year of publication; (2) patients’ characteristic information: study population, sample size, and follow-up duration; (3) IncRNA information: detection methods, survival results, and cut-off definition; (4) HRs and corresponding 95% CIs for survival analysis. The study quality was assessed in accordance with the Newcastle-Ottawa Scale (NOS) [20].

Statistical analysis

For the prognostic meta-analysis, HRs and corresponding 95% CIs were used to assess the relationship between IncRNAs expression and its prognostic value in BC. HRs and corresponding 95% CIs were extracted directly from data in included studies or calculated with available data by the method from Parmar. et al [21]. An observed HR > 1 implied a poor prognosis. ORs and corresponding 95% CIs were used to evaluate the association between IncRNAs expression and clinical characteristics. A OR > 1 implied that high levels of IncRNA was associated with parameter.

The statistical significance of the pooled HRs and ORs were determined using Z-test; a P value < 0.05 was considered statistically significant. Heterogeneity was evaluated by Q and I^2 tests. If the heterogeneity was not significant ($I^2 < 50\%, P\text{ value} > 0.05$), the fixed-effects model was used. Otherwise, a random-effects model was used ($I^2 \geq 50\%, P\text{ value} \leq 0.05$).

Publication bias and sensitivity analysis were performed to test the effect of an individual study on pooled HR and OR. For publication bias assessing, Begg’s funnel plot and Egger’s regression test were employed. An asymmetric plot and the P value < 0.05 were considered a significant publication bias.

All of the statistical analyses were performed by using STATA12.0 software package (Stata Corporation).

Results

Study selection and characteristics

According to the predefined criteria, a total of 9 eligible studies were acquired from 3 databases, including PubMed, Web of Science, and CNKI [22–30]. Fig 1 shows the literature inclusion procedure. The details of the studies included in the meta-analysis are shown in Table 1.

Association between IncRNAs expression and OS

We conducted meta-analysis to investigate the prognostic value of IncRNAs in OS of 532 BC patients from the seven studies. Statistical analyses showed no significant association between the expression of IncRNAs and OS of BC patients (HR = 1.18, 95% CI: 0.86–1.63, $P = 0.310$, random-effects; Fig 2), while a significant heterogeneity existed between studies($I^2 = 78.4\%, P = 0.000$).

Due to the presence of obvious heterogeneity, we performed subgroup analyses based on the ethnicity, follow-up period, and the expression level of IncRNAs in BC patients. Subgroup analysis by ethnicity indicated that high IncRNAs expression was associated with shorter overall survival in Asian BC patients (HR = 2.32, 95% CI: 1.35–4.00, $P = 0.002$, Fig 2) but not in
Caucasians (HR = 0.88; 95% CI: 0.68–1.15, P = 0.358). And the heterogeneity decreased from 78.4% to 57.5% and 61.9%, respectively. When grouped according to the follow-up period, the association between high lncRNAs expression and poor OS was found only for studies of shorter follow-up period (≤60 months) (HR = 2.29, 95% CI: 1.50–3.51, P < 0.001, Table 2). When grouped according to the expression level of lncRNAs in BC patients, there were no association between lncRNAs expression and OS (Table 2).

Association between lncRNAs expression and RFS

The prognostic value of lncRNAs in RFS was evaluated in two studies with 134 patients. lncRNAs expression were not significantly associated with RFS (HR = 1.54, 95% CI: 0.84–2.82, P = 0.162, random-effects; Fig 3), while a significant heterogeneity existed between studies.
Meta regression analysis, sensitivity analysis, and assessment of publication bias were not performed due to the limited number of included articles.

Correlation of lncRNAs with clinicopathological characteristics of BC

We conducted a meta-analysis to evaluate the association between lncRNAs expression and clinical characteristics in BC patients. High lncRNAs expression levels were significantly associated with histological grade (G2–G3 vs. G1: OR = 3.857, 95%CI: 1.293–11.502, \(P = 0.015 \) (random-effect), while a significant heterogeneity existed between studies (\(I^2 = 70.2\%, P = 0.035 \) (Table 3). Unfortunately, no significant correlation was found with gender (male vs. female: OR = 1.291, 95%CI: 0.782–2.129, \(P = 0.318 \), fixed-effect), multifocality (multifocal vs. unifocal: OR = 1.109, 95%CI: 0.660–1.861, \(P = 0.696 \), fixed-effect), tumor size (>3cm vs. \(\leq 3 \) cm: OR = 0.964, 95%CI: 0.519–1.790, \(P = 0.907 \), fixed-effect), and tumor stage (Ta,T1 vs. T2–T4: OR = 0.502, 95%CI: 0.199–1.265, \(P = 0.144 \), random-effect).

Publication bias

Egger’s publication bias plot and Bgger’s funnel plot were performed to analyze the publication bias. Both the two tests indicated there were no publication bias, due to both the values of \(P > 0.05 \). And the shape of funnel plots was approximately symmetrical (Fig 4).

Sensitivity analysis

Sensitivity analysis was performed to detect the influence of the individual study on the pooled results by removing one single study each time from the overall pooled analysis. The results

\(I^2 = 64.6\%, P = 0.037 \). Meta regression analysis, sensitivity analysis, and assessment of publication bias were not performed due to the limited number of included articles.

Correlation of lncRNAs with clinicopathological characteristics of BC

We conducted a meta-analysis to evaluate the association between lncRNAs expression and clinical characteristics in BC patients. High lncRNAs expression levels were significantly associated with histological grade (G2–G3 vs. G1: OR = 3.857, 95%CI: 1.293–11.502, \(P = 0.015 \) (random-effect), while a significant heterogeneity existed between studies (\(I^2 = 70.2\%, P = 0.035 \) (Table 3). Unfortunately, no significant correlation was found with gender (male vs. female: OR = 1.291, 95%CI: 0.782–2.129, \(P = 0.318 \), fixed-effect), multifocality (multifocal vs. unifocal: OR = 1.109, 95%CI: 0.660–1.861, \(P = 0.696 \), fixed-effect), tumor size (>3cm vs. \(\leq 3 \) cm: OR = 0.964, 95%CI: 0.519–1.790, \(P = 0.907 \), fixed-effect), and tumor stage (Ta,T1 vs. T2–T4: OR = 0.502, 95%CI: 0.199–1.265, \(P = 0.144 \), random-effect).

Publication bias

Egger’s publication bias plot and Bgger’s funnel plot were performed to analyze the publication bias. Both the two tests indicated there were no publication bias, due to both the values of \(P > 0.05 \). And the shape of funnel plots was approximately symmetrical (Fig 4).

Sensitivity analysis

Sensitivity analysis was performed to detect the influence of the individual study on the pooled results by removing one single study each time from the overall pooled analysis. The results

\(I^2 = 64.6\%, P = 0.037 \). Meta regression analysis, sensitivity analysis, and assessment of publication bias were not performed due to the limited number of included articles.
verified that no individual study could change the pooled HRs significantly (Fig 5) and demonstrated that our analysis was relatively stable and credible.

Discussion

Up to now, numerous researches have showed that lncRNAs are involved in various cell biological processes, including cellular differentiation, gene expression, protein localization, and DNA damage response. An increasing number of evidence revealed that aberrant expression of multiple lncRNAs was related to clinical outcomes for cancer patients. In order to find some prognostic biomarkers for BC, we conducted this comprehensive systematic meta-

Table 2. Main results of subgroup analyses.

Categories	Subgroups	n	HR (95% CI)	P	Heterogeneity	
					I² (%)	Ph
All		13	1.18(0.86–1.63)	0.310	78.40	0.00
Ethnicity	Asian	4	2.33(1.35–4.00)	**0.002**	57.50	0.07
	Caucasians	9	0.88(0.68–1.15)	0.358	61.90	0.01
Follow-up	≤ 60	5	2.29(1.30–3.51)	<0.001	43.40	0.10
	> 60	8	0.81(0.64–1.03)	0.090	51.90	0.06
Expression level	Increased in tumors	12	1.26(0.89–1.77)	0.190	78.40	0.00

https://doi.org/10.1371/journal.pone.0198602.t002
analysis of the current studies. The present meta-analysis is the first to systematically analyze the association between the expression of lncRNAs and BC prognosis.

In the present meta-analysis, we examined the prognostic role of lncRNAs in BC and the association between lncRNAs and clinicopathological characteristics. A total of 9 recently published articles comprising 13 lncRNAs and 666 BC patients were included into this meta-analysis. The combined HRs suggested that high lncRNAs transcription levels represent an independent OS factor among Asian patients with BC and their high expressions were associated with shorter OS. However, no obvious association was found in Caucasians. Racial classification and regional factors might be crucial in the prognosis of patients with BC. This might be related to the variations in life styles, ethnic genetic heterogeneity, etc. When grouped according to the follow-up period, we found that the association was significant for studies with follow-up period ≤ 60 months, indicating that the lncRNAs expression might be more valuable on predicting short-term outcome of BC. In addition, we explored the relation between lncRNAs expression and clinicopathological characteristics. We found that high lncRNAs expression was only significantly associated with Histological grade (G2-G3 vs. G1: OR = 3.857, 95%CI: 1.293–11.502, P = 0.015, random-effect).

Table 3. Association between high levels of lncRNAs and clinicopathological characteristics of patients with BC.

Subgroup factor	Studies	Case number	Pooled OR(95% CI)	P	Heterogeneity	References	
Gender (male vs. female)	4	336	1.291(0.782–2.129)	0.318	24.6	0.264	[23], [26], [28], [30]
Multifocality (multifocal vs. unifocal)	3	241	1.109(0.660–1.861)	0.696	47.3	0.15	[23], [26], [28]
Tumor size (>3cm vs. ≤3cm)	2	193	0.964(0.519–1.790)	0.907	0.0	0.494	[28], [30]
Histological grade (G2-G3 vs. G1)	3	261	3.857(1.293–11.502)	**0.015**	70.2	0.035	[26], [28], [30]
Tumor stage (Ta,T1 vs. T2-T4)	2	163	0.502(0.199–1.265)	0.144	50	0.157	[26], [30]

https://doi.org/10.1371/journal.pone.0198602.t003
Several researches have showed that the increased expression of 6 lncRNAs (H19[31], UCA1[32], TUG1 [33], MALAT1 [34], SPRY4-IT1 [35], and HOTAIR [36]) was correlated to poor prognostic outcome of cancers, those findings in consist with our results. And it has been

![Funnel plot of the publication bias](https://doi.org/10.1371/journal.pone.0198602.g004)
reported that the lncRNAs were aberrantly expressed in a variety of cancers (Table 4), leading to lack of specific BC-related lncRNA. Therefore, identification of BC related lncRNAs that are vital in tumorigenesis are promising biomarkers for BC prognosis.

In the present study, lncRNAs (UNMIBC, MEG3, SNHG16, and Malat1) expression were not significantly associated with RFS. Unexpectedly, previous studies have found that low level of MEG3 lncRNA expression correlates with poor survival in multiple cancers[37] and patients with low MEG3 level had shorter recurrence-free survival (RFS) in bladder cancer[24]. Our meta-analysis has a obvious heterogeneity existed between studies. It is likely that the heterogeneity affect the pooled results. The sources of heterogeneity were diverse, such as tumour stages, molecular subtypes, analysis method and so on. However, due to the limited number of included articles, meta regression analysis, sensitivity analysis, and assessment of publication bias were not performed. So the results need to be confirmed by future studies with larger samples.

It should be stressed that there are several limitations in our meta-analysis. Firstly, we only included the studies that measured survival outcomes with OS and RFS, and the articles reporting other prognostic indicators were thus excluded; secondly, the number of studies

Table 4. LncRNAs were aberrantly expressed in a variety of cancers.

LncRNAs	Cancers
TUG1	NSCLC, BC, ESCC, Osteosarcoma, SCLC, CRC, ccRCC and GC
MEG3	NSCLC, GC, TSCC, NFPAs, HCC, osteosarcoma, PC and GC
MALAT1	NSCLC, HCC, GC, PDAC, CRC, ccRCC, BC, EC, Glioma, GBC, osteosarcoma and breast cancer
SPRY4-IT1	ccRCC, ESCC, BC, GC, glioma melanoma
HOTAIR	breast cancer, CRC,laryngeal squamous cell carcinoma, liver cancer, OC

NSCLC = non-small cell lung cancer; HCC = hepatocellular carcinoma; GC = gastric cancer; PDAC = pancreatic ductal adenocarcinoma; CRC = colorectal cancer; ccRCC = clear cell renal cell carcinoma; ESCC = esophageal squamous cell carcinoma; EC = esophageal cancer; GBC = gallbladder cancer; BC = bladder cancer; SCLC = small cell lung cancer; PC = prostate cancer; OC = ovarian cancer; GBC = gallbladder cancer; TSCC = tongue squamous cell carcinoma; NFPAs = non functioning pituitary adenomas

https://doi.org/10.1371/journal.pone.0198602.t004
included in our meta-analysis was inadequate and the sample size was limited; thirdly, age is a very important predictor of OS and RFS in bladder cancer[38]. Because of the included studies provided insufficient data and grouped according to different criteria, age of the BC patients could not be considered when evaluating the association of IncRNA expression with overall survival or clinical characteristics. To reach a definitive conclusion, further well-designed meta-analysis and high-quality studies are needed to confirm the association between the expression of IncRNAs and BC prognosis.

Conclusion
In general, our meta-analysis for the first time evaluated the prognostic value of IncRNAs and the association between IncRNAs and clinical characteristics of patients with BC. Despite the existence of limitations, the present analysis showed that IncRNAs could be used as potential prognostic markers for BC and high IncRNAs expression could predict poor prognosis among Asian BC patients. We also found that IncRNAs could be developed as predictive biomarkers for Histological grade. However, in view of the limitation of individual studies about IncRNAs, good quality and large-scale investigations should be still warranted to further validate the clinical utilities of IncRNAs in evaluating BC patients’ prognosis.

Supporting information
S1 Checklist. PRISMA checklist. Each section was localized in the paper.

Author Contributions
Conceptualization: Yuexin Xia.
Data curation: Zhiyuan Liu.
Formal analysis: Zhiyuan Liu.
Investigation: Yuexin Xia, Weijian Yu.
Methodology: Yuexin Xia.
Project administration: Yuexin Xia.
Resources: Yuexin Xia, Wenqian Song.
Software: Yuexin Xia, Shihang Zhou, Linnan Shao.
Writing – original draft: Yuexin Xia, Zhiyuan Liu.
Writing – review & editing: Zhiyuan Liu, Ming Liu.

References
1. GLOBOCAN. Cancer incidence, mortality and prevalence worldwide in 2012. Lyon, France: International Agency Research on Cancer, 2012. Available from: http://globo can.iarc.fr
2. Babjuk M, Burger M, Zigeuner R, Kaasinen E, Böhle A, Palou-Redorta J, et al. EAU guidelines on non-muscle invasive urothelial carcinoma of the 2011 update. Eur Urol 2013; 64:639–653. https://doi.org/10.1016/j.eururo.2013.06.003 PMID: 23827737
3. Van Rhijn BW, Burger M, Lotan Y, Solsona E, Stief CG, Sylvester RJ, et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol. 2009; 56:430–442. https://doi.org/10.1016/j.eururo.2009.06.028 PMID: 19576682
4. Kim WJ, Kim EJ, Kim SK, Kim YJ, Ha YS, Jeong P, et al. Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Mol Cancer. 2010; 9:3. https://doi.org/10.1186/1476-4598-9-3 PMID: 20059769

5. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long non-coding RNA HOTAIR regulates Polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011; 71:6320–6. https://doi.org/10.1158/0008-5472.CAN-11-1021 PMID: 21862635

6. Maruyama Reo, Suzuki Hiromu. Long non-coding RNA involvement in cancer. BMB Reports. 2012; 45 (11):604–611. https://doi.org/10.5483/BMBRep.2012.45.11.227 PMID: 23186998

7. Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res [Internet]. 2011; 39(6):2119–28. https://doi.org/10.1177/147322891103900608 PMID: 21862635

8. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al. Expression of a non-coding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 2008; 14:723. https://doi.org/10.1038/nm1784 PMID: 18587408

9. Reis EM, Verjovski-Almeida S. Perspectives of Long Non-Coding RNAs in Cancer Diagnostics. Front Genet. 2012; 3:32. https://doi.org/10.3389/fgene.2012.00032 PMID: 22408643

10. Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med. 2012; 10:103. https://doi.org/10.1186/1479-5876-10-103 PMID: 22613733

11. Gutschner T, Diederichs S. The hallmarks of cancer: a long noncoding RNA point of view. RNA Biol. 2012; 9:703–19. https://doi.org/10.4161/rna.20481 PMID: 22664915

12. Qu Z, Yuan CH, Yin CQ, Guan Q, Chen H, Wang FB. Meta-analysis of the prognostic value of abnormally expressed IncRNAs in hepatocellular carcinoma. Onco Targets Ther. 2016; 9:5143–52. https://doi.org/10.2147/OTT.S108599 PMID: 27547455

13. Wang M, Ma X, Zhu C, Guo L, Li Q, Liu M, et al. The prognostic value of long non-coding RNAs in non small cell lung cancer: A meta-analysis. Oncotarget. 2016; 7(49):81292–81304. https://doi.org/10.18632/oncotarget.14527 PMID: 28415638

14. Jing W, Li N, Wang Y, Liu X1, Liao S1, Chai H, et al. The prognostic significance of long non-coding RNAs in non-small cell lung cancer: a meta-analysis. Oncotarget. 2017; 8(3):3957–3968. https://doi.org/10.18632/oncotarget.13956 PMID: 27992369

15. Yang Y, Wang S, Li T. Altered long non-coding RNAs predict worse outcome in osteosarcoma patients: evidence from a meta-analysis. Oncotarget. 2017; 8(21):35234–35243. https://doi.org/10.18632/oncotarget.16470 PMID: 28415638

16. Luo P, Liu XF, Wang YC, Li ND, Liao SJ, Yu MX, et al. Prognostic value of abnormally expressed IncRNAs in ovarian carcinoma: a systematic review and meta-analysis. Oncotarget. 2017; 8(14):23927–23936. https://doi.org/10.18632/oncotarget.14760 PMID: 28118613

17. Chen J, Chen Y, Gu L, Li X, Gao Y, Lyu X, et al. LncRNAs act as prognostic and diagnostic biomarkers in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget. 2016; 7(45):74325–74336. https://doi.org/10.18632/oncotarget.11101 PMID: 27527868

18. Xue Y, Ma G, Zhang Z, Hua Q, Chu H, Tong N, et al: A novel antisense long noncoding RNA regulates the expression of MDC1 in bladder cancer. Oncotarget. 2015; 6:484. https://doi.org/10.18632/oncotarget.2861 PMID: 25514464

19. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62:1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005 PMID: 19631508

20. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of non-randomized studies in meta-analyses. European journal of epidemiology. 2010; 25:603–605. https://doi.org/10.1007/s10654-010-9491-z PMID: 20652370

21. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998; 17:2815–34. PMID: 9921604

22. Droop J, Szarvas T, Schulz WA, Niedworok C, Niegsch G, Scheckenbach K, et al. Diagnostic and prognostic value of long non-coding RNAs as biomarkers in urothelial carcinoma. PLoS One. 2017; 12(4): e0176287. https://doi.org/10.1371/journal.pone.0176287 PMID: 28430799

23. Zhang S, Zhong G, He W, Yu H, Huang J, Lin T. IncRNA Up-Regulated in Nonmuscle Invasive Bladder Cancer Facilitates Tumor Growth and Acts as a Negative Prognostic Factor of Recurrence. J Urol. 2016; 196(4):1270–8. https://doi.org/10.1016/j.juro.2016.05.107 PMID: 27267320

24. Duan W, Du L, Jiang X, Wang R, Yan S, Xie Y, et al. Identification of a serum circulating IncRNA panel for the diagnosis and recurrence prediction of bladder cancer. Oncotarget. 2016; 7:78850–58. https://doi.org/10.18632/oncotarget.12880 PMID: 27793008
25. Iliev R, Kleinova R, Juracek J, Dolezel J, Ozanova Z, Fedorko M. et al. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer. Tumour Biol. 2016; 37: 13385–13390. https://doi.org/10.1007/s13277-016-5177-9 PMID: 27460088

26. Zhao XL, Zhao ZH, Xu WC, Hou JQ, Du XY. Increased expression of SPRY4-IT1 predicts poor prognosis and promotes tumor growth and metastasis in bladder cancer. Int J Clin Exp Pathol. 2015; 8:1954–1960. PMID: 25973088

27. Martínez-Fernández M, Feber A, Dueñas M, Segovia C, Rubio C, Fernandez M, et al. Analysis of the Polycomb-related lncRNAs HOTAIR and ANRIL in bladder cancer. Clin Epigenetics. 2015; 7:109. https://doi.org/10.1186/s13148-015-0141-x PMID: 26457124

28. Chen T, Xie W, Xie L, Sun Y, Zhang Y, Shen Z, et al. Expression of long noncoding RNA IncRNA-n336928 is correlated with tumor stage and grade and overall survival in bladder cancer. Biochem Biophys Res Commun. 2015; 468:666–70. https://doi.org/10.1016/j.bbrc.2015.11.013 PMID: 26551459

29. Tan J, Qiu K, Li M, Liang Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 2015; 589:3175–81. https://doi.org/10.1016/j.febslet.2015.08.020 PMID: 26318860

30. Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, et al. TGF-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res. 2014; 20:1531–1541. https://doi.org/10.1158/1078-0432.CCR-13-1455 PMID: 24449823

31. Chen T, Yang P, He Z. Long non-coding RNA H19 can predict a poor prognosis and lymph node metastasis: a meta-analysis in human cancer. Minerva Med. 2016; 107(4):251–258. PMID: 27348443

32. Li J, Gao J, Kan A, Hao T, Huang L. SNHG and UCA1 as prognostic molecular biomarkers in hepatocellular carcinoma: recent research and meta-analysis. Minerva Med. 2017; 108(6):568–574. https://doi.org/10.23736/S0026-4806.17.05094-7 PMID: 28466631

33. Zhou Y, Lu Y, Li R, Yan N, Li X, Dai T. Prognostic role of long non-coding RNA TUG1 expression in various cancers: a meta-analysis. Oncotarget. 2017; 8:100499–100507. https://doi.org/10.18632/oncotarget.20037 PMID: 29245996

34. Shuai P, Zhou Y, Gong B, Jiang Z, Yang C, Yang H, et al. Long noncoding RNA MALAT1 can serve as a valuable biomarker for prognosis and lymph node metastasis in various cancers: a meta-analysis. Springerplus. 2016; 5(1):1721. https://doi.org/10.1186/s40064-016-3342-7 PMID: 27777857

35. Li N, Tan Q, Jing W, Luo P, Tu J. Long Non-Coding RNA SPRY4-IT1 Can Predict Unfavorable Prognosis and Lymph Node Metastasis: a Meta-Analysis. Pathol Oncol Res. 2017; 23(4):731–736. https://doi.org/10.1007/s12253-016-0182-2 PMID: 28054316

36. Xi W, Song W. Prognostic value of IncRNA HOTAIR expression in patients with cancer: A Meta-analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016; 41(12):1352–1357. https://doi.org/10.11817/j.issn.1672-7347.2016.12.017 PMID: 28070051

37. Cui X, Jing X, Long C, Tian J, Zhu J. Long noncoding RNA MEG3, a potential novel biomarker to predict the clinical outcome of cancer patients: a meta-analysis. Oncotarget. 2017; 8(12):19049–19056. https://doi.org/10.18632/oncotarget.14967 PMID: 28157702

38. Kluth LA, Black PC, Bochner BH, et al. Prognostic and prediction tools in bladder cancer: a comprehensive review of the literature. Eur Urol 2015; 68:238–53. https://doi.org/10.1016/j.eururo.2015.01.032 PMID: 25709027