Article

Pd-GaSe and Pd$_3$-GaSe Monolayers: Two Promising Candidates for Detecting Dissolved Gases in Transformer Oil

Tianyu Hou 1, Wen Zeng 2,* and Qu Zhou 1,*

1 College of Engineering and Technology, Southwest University, Chongqing 400715, China; houtianyu_luck@163.com
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
* Correspondence: wenzeng@cqu.edu.cn (W.Z.); zhouqu@swu.edu.cn (Q.Z.); Tel.: +86-130-683-05845 (Q.Z.)

Abstract: In this paper, the adsorption behaviors of three gases (H$_2$, CO, and C$_2$H$_2$) decomposed by the transformer oil on Pd-GaSe and Pd$_3$-GaSe monolayers were calculated by density functional theory. Compared with Pd single-atom doping, Pd$_3$ cluster doping changed the original structure and charge distribution to a greater extent, and more obviously improved the conductivity. According to the analysis of adsorption energy, charge transfer and deformation charge density, the results show that the two doped structures have better adsorption performance for the three gas molecules (H$_2$, CO, and C$_2$H$_2$) than the intrinsic GaSe monolayer. Compared with Pd-GaSe, Pd$_3$-GaSe showed stronger adsorption property for the three gases. Analysis of frontier molecular orbitals and recovery characteristics shows that Pd$_3$-GaSe can be used as an ideal gas sensitive material for H$_2$ detection because of its good desorption properties and obvious conductivity changes. Pd-GaSe can be used as a disposable resistive sensor for CO. Pd$_3$-GaSe is a kind of sensing material suitable for disposable resistance sensors for CO and C$_2$H$_2$. These two doped structures have great application potential in gas adsorption and detection, and provide indications for further study on gas sensor detection by means of metal-doped GaSe monolayer.

Keywords: Pd-GaSe monolayer; Pd$_3$-GaSe monolayer; density functional theory; oil-dissolved gases

1. Introduction

The stability and reliability of power systems play a vital role in the prosperity of any country and the happiness of its people. Therefore, performance requirements for power network equipment are subject to gradual improvement. Power transformers are a crucial and expensive power network equipment necessary for voltage conversion [1–4]. Among them, oil-immersed transformers account for about 90%. Over the long-term operation of the equipment, insulation oil is decomposed into H$_2$, CO, C$_2$H$_2$, and other gases due to insulation overheating, low energy spark, arc, partial discharge, and other faults [5]. Dissolved gas analysis (DGA) is commonly used to diagnose transformer faults because it provides great information about thermal anomalies and electricity [6]. Therefore, early detection of equipment faults helps reduce the losses caused by these faults.

Recently, with the successful research and development of graphene materials, two-dimensional (2D) materials have been broadly studied and successfully applied in many areas such as energy storage and transformation, electronics, and sensing materials due to their unique molecular structure and physicochemical properties [7–12]. In addition, many two-dimensional materials are used for gas sensor detection of dissolved gas in transformer oil in the field of dissolved gas analysis (DGA). By detecting the type and proportion of dissolved gas in transformer oil, we can assess the operation of electrical equipment, analyze the fault type, and then determine the corresponding maintenance method to reduce the loss, which is a significant topic in electric power research in recent times [13–16]. For instance, Qian et al. found that an Au-doped MoS$_2$ monolayer can
remarkably improve the adsorption performance for C$_2$H$_6$ and C$_2$H$_4$ gases [17]. At present, the requirement of characteristic gas detection is gradually increasing, and various gas sensors are in the research stage. Two-dimensional materials such as metal oxides, transition metal dihalogens (TMDs), metal nitrides, and carbides have attracted extensive attention in the academic world [18–20]. It is a promising research direction for the study and design of a gas sensor with better performance to detect the characteristic gases.

GaSe is a kind of metal-chalcogen compound with a layered hexagonal structure, belonging to a layered III–VI semiconductor and has been studied since last century. Hu et al. prepared two-dimensional nanosheets of ultrathin GaSe by using mechanical cleavage and solvent exfoliation method [21]. Due to its good ON/OFF ratio, electron differential mobility, low energy of formation and second-order nonlinearity, GaSe has shown wide application prospects in the fields of transistors, water splitting photocatalysts, and nonlinear optics [22–24]. Zhou et al. studied the adsorption performance of monolayer GaSe on several small molecule gases such as H$_2$, O$_2$, NO$_2$, and H$_2$O, and found that monolayer GaSe has a wide application prospect as O$_2$ and NO$_2$ sensors [25]. Increasing research has found that the doping of transition metal (TM) can improve the charge transfer rate between gas and material, thus greatly improving the sensitivity of gas molecules [26–28]. Jiang et al. found that V-GaSe monolayer had higher conductivity and better gas adsorption performance than an intrinsic GaSe monolayer, and could better adsorb SF$_6$ decomposition products [29]. Among TM atoms, Pd atom, as a doped atom, has significantly enhanced the adsorption performance of the substrate to characteristic gases in many materials doping studies. Cui et al. found that Pd-doped HfSe$_2$ has good adsorption performance for NO$_2$ and SO$_2$ molecules [30–32]. At present, there is little research on Pd atom-doped GaSe gas sensitive materials. In this paper, Pd atom-doped GaSe materials for several gases were studied.

To the present time, only few studies have investigated the influence of cluster doping on gas adsorption performance. For example, Gao et al. studied the effect of Ni$_n$ ($n = 1, 2, 3, and 4$) doped graphene on NO adsorption, and found that the more Ni atoms, the more obvious the effect of Ni on NO adsorption [33]. Cui et al. have studied the structure and electronic characteristics of Rh$_n$ ($n = 1–4$) cluster doped MoS$_2$ monolayer, and found that Rh$_3$-MoS$_2$ has the best stability and the best electronic behavior [34]. For the above reasons, the Pd$_3$ cluster doping method is adopted in this paper. Therefore, this paper studies the adsorption behavior of Pd monatomic doped GaSe molecules and Pd$_3$ cluster-doped GaSe molecules on dissolved gases in transformer oil, and compares the adsorption performance of the two materials.

2. Computation Methods

In this study, all microscopic calculations based on density functional theory (DFT) were performed in Dmol3 module of Materials Studio (MS). For dealing with the electron exchange correlation function and correlation energy, we use the Perdew–Burke–Ernzerhof (PBE) function to calculate the generalized gradient approximation (GGA) [35,36]. We used the Tkatchenko and Schefflfler (TS) method to correct the weak van der Waals forces between the gas molecules and the monolayer material [37]. The DFT-D method was used to calculate the weak interaction between adsorbed atom and substrate to obtain a more accurate result. The DFT semi-core pseudopotential (DSPP) method was used to deal with core electron relativity effects [38]. The double numerical plus polarization (DNP) method was selected for the linear combination of atomic orbitals [39,40]. GaSe supermonomer was constructed for atomic doping and gas adsorption, and was designed to be 14.972 Å × 14.972 Å × 24.7757 Å. To avoid interactions between adjacent cells, the vacuum region of a GaSe supercell was set to 20 Å vertically [41]. A 4 × 4 × 1 Monkhorst-Pack of k-point was used to analyze the Brillouin zones for geometric optimization and electronic structure calculation [42]. Electron spin is unrestricted [29,43,44]. The value of convergence criteria for the energy, maximum force and displacement were severally set as 1 × 10$^{-5}$ Ha, 2 × 10$^{-3}$ Ha/Å, and 5 × 10$^{-3}$ Å.
By calculating binding energy (E_b), the most stable doping structure can be determined. When n is equal to 1 or 3, the binding energy formula of Pd$_n$ doping GaSe is defined as:

$$E_b = E_{Pd_n-GaSe} - E_{GaSe} - n \cdot E_{Pd}$$

(1)

where, E_{Pd_n-GaSe} and E_{GaSe} are the total energy of Pd$_n$-doped GaSe and the total energy of GaSe molecular layer respectively. E_{Pd} is the energy of a single Pd atom, when n is equal to 3, $3 \cdot E_{Pd}$ represents the energies of the three isolated Pd atoms [46].

When the gas molecules approach the sensor surface in different ways, the adsorption energy (E_{ad}) is used to characterize the adsorption performance of the material to a single gas molecule [47].

$$E_{ad} = E_{Pd_n-GaSe/gas} - (E_{Pd_n-GaSe} + E_{gas})$$

(2)

In the above formula, $E_{Pd_n-GaSe/gas}$ represents the total energy of the gas adsorption system, E_{gas} represents the total energy of the gas molecule [48]. A larger absolute value of E_{ad} means that the system is more stable [49]. If the absolute value of E_{ad} is less than 0.6 eV, it indicates that the adsorption process is physical adsorption, while when the absolute value of E_{ad} is greater than 0.8 eV, it indicates that chemical adsorption exists in the process [50–52].

We use Muliken charge analysis to calculate the charge transfer between the gases and the Pd$_n$-GaSe, represented by Q_T.

$$Q_T = Q_{after} - Q_{before}$$

(3)

Q_{after} means the charge of the gas molecules after the system absorbs the gases, and Q_{before} represents the charge of the gas molecules before the system absorbs the gases. When Q_T is a positive value, it means that in the adsorption process, the gas loses electrons, and electrons with a value corresponding to $|Q_T|$ are transferred from the gas molecules to the adsorption material. On the contrary, when Q_T is negative, gas acts as an electron acceptor, accepting electrons transferred from the crystal surface [53].

3. Results and Discussion

3.1. Structures of Characteristic Gases, Pd-GaSe, and Pd$_3$-GaSe Monolayers

Figures 1 and 2 show the optimized dissolved gas molecular structures in transformer oil and the optimized GaSe monolayer, respectively. The H$_2$ molecule and C$_2$H$_2$ molecule have a symmetrical structure. The length of H–H bond in H$_2$ is 0.749 Å and the length of C–O bond in CO is 1.142 Å. The C–C and C–H bonds in C$_2$H$_2$ molecule are 1.211 Å and 1.071 Å in length, separately. The optimized data of gas molecular structures are the same as the experimental results of previous research [54,55]. Figure 2 shows the top and side views of the intrinsic GaSe, where the Ga–Se bond length is 2.472 Å. GaSe belongs to two-dimensional network structure.

Figure 1. Structures of (a) H$_2$, (b) CO, and (c) C$_2$H$_2$.
Firstly, Pd single-doped GaSe was studied. There were three possible doping positions considered, namely TH (hexagonal ring center of GaSe), TGa (top of Ga atom), TSe (top of Se atom), and TB (bridge site between two Se atoms) [30]. The configurations of the four doping sites were optimized, and the binding energies of the four models were calculated as -2.214 eV, -2.316 eV, -1.901 eV and -2.170 eV, respectively. The more negative E_b is, the better the stability is, it corresponds to the most ideal doping site. Therefore, T_{Ga} was selected as the doping site for subsequent research. Figure 3 shows its structure. The TDOS and PDOS diagrams of Pd-doped system are given in Figure 4. One can see that the TDOS of the Pd-GaSe system moves to the lower energy level as a whole, and the intercept at Fermi level decreases. Therefore, this shows that doping of Pd reduces the energy band of GaSe. The decrease of energy band indicates that the transition of electrons becomes easier, so the conductivity of the system is enhanced [56]. It can be seen from PDOS in Figure 4b that Pd-4d orbital overlaps with Se-4p orbital near -2.7 eV, indicating that a chemical bond between Pd and Se is formed, thus changing the charge distribution of the system. The results show that Pd and Se interact with each other.

![Figure 2. Geometric model of GaSe monolayer.](image)

Figure 2. Geometric model of GaSe monolayer.

![Figure 3. Geometric model of the Pd-GaSe monolayer.](image)

Figure 3. Geometric model of the Pd-GaSe monolayer.

![Figure 4. (a) TDOS of GaSe monolayer, Pd-GaSe monolayer, (b) PDOS of Pd-GaSe monolayer.](image)

Figure 4. (a) TDOS of GaSe monolayer, Pd-GaSe monolayer, (b) PDOS of Pd-GaSe monolayer.
Secondly, the Pd₃-GaSe system was analyzed. Three common doping sites were considered in this paper, [19] and two relatively stable models were obtained by optimizing the established model without serious distortion, as illustrated in the Figure 5. The optimized binding energies of the two structures are −6.616 eV and −6.627 eV severally. Similarly, a larger absolute value of binding energy means that the structure is more stable. Therefore, the model B is selected for subsequent research. Bonds are formed between Pd and Se atoms, and the three Pd atoms form an approximate equilateral triangle with 2.932 Å, 2.910 Å and 2.842 Å in bond length separately. Figure 6a shows the TDOS image before and after doping Pd₃ cluster. After doping, the system curve moves to the direction of low energy level, indicating that the Pd₃ cluster doping reduces the band gap of GaSe. TDOS appeared a new peak near −0.6 eV, which may be caused by the hybridization of Pd and Se orbits. It can be perceived from the PDOS image in Figure 5b that Pd-4d orbital and Se-4p orbital are hybridized at the −0.6 eV, proving that Pd can form a stable chemical bond with Se and verifying the previous idea. Compared with the TDOS of Pd-GaSe system, the TDOS of Pd₃-GaSe system has a larger moving distance. Therefore, it is considered that the conductivity of GaSe system doped with Pd₃ cluster is improved more significantly than that of GaSe system doped with Pd. To sum up, it is speculated that Pd₃-GaSe system may have better gas adsorption.

![Figure 5. Two geometric models of Pd₃-GaSe monolayer.](image)

![Figure 6. (a) TDOS of GaSe monolayer, Pd₃-GaSe monolayer, (b) PDOS of Pd₃-GaSe monolayer.](image)

We consider all the adsorption sites for each gas, and build models to make gas molecules approach the adsorption materials in different ways. After geometric optimization, the adsorption energy of each adsorption model is calculated by Formula (2), and the models with the largest absolute value of adsorption energy are selected as the models for subsequent research.

3.2. H₂ Adsorption

The adsorption properties, charge transfer, and E_ads of H₂ on Pd-GaSe and Pd₃-GaSe monolayers are shown in Figures 7 and 8, and Table 1. Some data of H₂ adsorption by intrinsic GaSe monolayer are also listed in Table 1. From the data in Table 1, the adsorption
energy of H_2 on GaSe monolayer is -0.544 eV, H_2 on Pd-GaSe monolayer is -0.58 eV, and H_2 on Pd$_3$-GaSe monolayer is -0.943 eV. It is worth noting that the adsorption distance of GaSe/H_2 system (3.504 Å) is almost twice that of Pd-GaSe/H_2 system (1.820 Å), but the adsorption energy of both systems is close. It can be noted that the Q_T of Pd-GaSe/H_2 system (0.108 e) is obviously more than that of GaSe/H_2 system (0.002 e), and the former has stronger charge transfer behavior. The results show that the doping of Pd improves the electronic behavior in the adsorption process, so the adsorption distance of Pd-GaSe/H_2 system is smaller than that of GaSe/H_2 system. However, from the point of view of adsorption energy, the two kinds of adsorption belong to weak physical adsorption, and the doping of Pd does not change the weak adsorption behavior of H_2. The doping method of Pd$_3$ cluster significantly enhances the system’s adsorption performance for H_2, which belongs to chemical adsorption. Isolated H_2 has a bond length of 0.749 Å, and both kinds of doping make the H–H bond longer after adsorption. It can also be seen from the adsorption model that Pd$_3$-GaSe monolayer is obviously deformed during the adsorption process, and all three Pd atoms have shifted in different degrees. Pd cluster capture H_2, which indicates that there is a strong interaction between them. Mulliken atomic population analysis of H_2 molecule shows that 0.108 e electrons are transferred to Pd-GaSe monolayer and 0.199 e electrons are transferred to Pd$_3$-GaSe monolayer after H_2 adsorption. The results show that the doping method of Pd$_3$ cluster brings greater charge transfer amount than the doping method of Pd. Figures 7c and 8c show the deformation charge density (DCD) of the two adsorption systems. In the figure, red represents the charge accumulation zone and blue represents the charge depletion zone. In the two systems, there is an obvious blue area around Pd atom, which can be seen as the link of electron transfer between gas and material.

In Figure 7d, TDOS of the Pd-GaSe system shifted slightly to the right after H_2 adsorption, indicating that the electron orbit changed, but TDOS changed little during the adsorption process. The results indicate that H_2 has weak interaction with Pd-GaSe. TDOS shown in Figure 8d shows that after H_2 was adsorbed by Pd$_3$-GaSe system, TDOS decreased in the vicinity of -6.2 eV and increased significantly around -8.4 eV. In both systems, the spin-up and spin-down curves are symmetric, which means that the two H_2 adsorption systems are non-magnetic [57]. As shown in Figure 7e, in the Pd-GaSe system, slight hybridization exists between Pd-4d and H-1s orbitals near -7.3 eV and -0.1 eV. As shown in Figure 8e, in the Pd$_3$-GaSe system, the peak of H-1s orbital near -8.4 eV not only explains the increase of TDOS at -8.4 eV, but also indicates its hybridization with the Pd-4d orbital. Since the Pd-4d orbital overlaps with the H-1s orbital, it is speculated that a chemical bond may be formed between the two atoms. In conclusion, the doping method Pd$_n$ (n is 1 or 3) can improve the H_2 adsorption performance of GaSe monolayer, and the H_2 adsorption performance of the Pd$_3$ cluster doping method is stronger than that of the Pd doping method.

Table 1. Adsorption characteristic parameters of H_2 adsorption.

Structure	The Length of Band (Å)	Adsorption Distance (Å)	Atom	Charge (e)	Q_T (e)	E_{ad} (eV)	
GaSe/H_2	H$_1$-H$_2$	0.751	3.504	H$_1$	0.001	0.002	-0.544
			H$_2$	0.001			
Pd-GaSe/H_2	H$_1$-H$_2$	0.822	1.820	H$_1$	0.058	0.108	-0.58
			H$_2$	0.050			
			Pd	-0.249			
Pd$_3$-GaSe/H_2	H$_1$-H$_2$	0.847	1.726	H$_1$	0.100	0.199	-0.943
			H$_2$	0.099			
			Pd$_1$	-0.133			
			Pd$_2$	-0.336			
			Pd$_3$	-0.161			
1.180 Å after adsorption on Pd and 1.158 Å after adsorption on Pd-GaSe monolayer, while the length of C–O bond increased to

Figure 7. Adsorptive structure of Pd-GaSe/H₂ system (a) view of side, (b) view of top, (c) DCD distribution, (d) TDOS of Pd-GaSe/H₂ system, (e) PDOS of Pd-GaSe/H₂ system.

Figure 8. Adsorptive structure of Pd₃-GaSe/H₂ system (a) view of side, (b) view of top, (c) DCD distribution, (d) TDOS of Pd₃-GaSe/H₂ system, (e) PDOS of Pd₃-GaSe/H₂ system.

3.3. CO Adsorption

Parameters and structures related to CO adsorption are shown in Figures 9 and 10, and Table 2. From the data in Table 2, after CO adsorption, the adsorption energy of Pd-GaSe and Pd₃-GaSe systems are −1.587 eV and −2.427 eV respectively. When the absolute value of adsorption energy is greater than 0.8 eV, chemisorption exists. Therefore, the adsorption of CO by the two doped systems belongs to chemisorption. By comparing with the adsorption energy for CO of the intrinsic GaSe monolayer (−0.545 eV), indicating that the doping method of Pdₙ (n is 1 or 3) obviously enhanced the adsorption of CO, and the enhanced adsorption effect may be caused by the formation of chemical bonds between CO and doping groups. In further proof, the length of C-O bond increased from 1.142 Å to 1.158 Å after adsorption on Pd-GaSe monolayer, while the length of C-O bond increased to 1.180 Å after adsorption on Pd₃-GaSe monolayer. The change of bond length indicates that CO has certain activity in the adsorption process. In addition to the C–O bond, some Pd-Se
bonds in Pd$_3$-GaSe monolayer also increased obviously. Pd cluster capture CO molecules through C. Mulliken population analysis of CO molecule showed that 0.163 e electrons were transferred from CO molecule to Pd-GaSe monolayer after adsorption. After the adsorption of Pd$_3$-GaSe monolayer, 0.187 e electrons were transferred from CO molecule to Pd$_3$-GaSe monolayer. In the DCD diagrams of Figures 9c and 10c, the blue area and the red area represent electron accumulation region and electron depletion region separately. As can be seen from the DCD diagrams of the two doping models, there is an obvious continuous electron region between Pd atom and CO gas molecule, which means that there is a strong chemical interaction between CO and the two adsorption materials.

Figure 9. Adsorptive structure of Pd-GaSe/CO system (a) view of side, (b) view of top, (c) DCD distribution, (d) TDOS of Pd-GaSe/CO system, (e) PDOS of Pd-GaSe/CO system.

Figure 10. Adsorptive structure of Pd$_3$-GaSe/CO system (a) view of side, (b) view of top, (c) DCD distribution, (d) TDOS of Pd$_3$-GaSe/CO system, (e) PDOS of Pd$_3$-GaSe/CO system.
Table 2. Adsorption characteristic parameters of CO adsorption.

Structure	The Length of Bond (Å)	Adsorption Distance (Å)	Atom	Charge (e)	QT (e)	Ead (eV)	
GaSe/CO	C-O	1.141	C	0.111	-0.105	0.006	-0.545
			O				
Pd-GaSe/CO	C-O	1.158	C	0.307	-0.144	0.163	-1.587
			O				
			Pd	-0.334			
Pd$_3$-GaSe/CO	C-O	1.180	C	0.373	-0.186	0.187	-2.427
			O				
			Pd$_1$	-0.203			
			Pd$_2$	-0.206			
			Pd$_3$	-0.165			

Figure 9d,e show the DOS distribution of the Pd-GaSe system. After CO adsorption, the overall TDOS changes little and a new peak appears near -8.5 eV. The hybridization of the Pd-4d orbital, C-2p orbital, and O-2p orbital at -1.1 eV and -5.8 eV caused TDOS to rise around -1.1 eV and -5.8 eV. Figure 10d,e show the DOS distribution of the Pd$_3$-GaSe system. After adsorption, TDOS showed a new peak near -9.3 eV and decreased significantly at -0.6 eV. Pd-4d orbital, C-2p orbital, and O-2p orbital have overlapping regions around -0.9 eV and -6.1 eV, C-2p, and O-2p have obvious hybridization around 1.5 eV and -9.3 eV. These hybridization phenomena lead to changes in TDOS of the adsorption system, indicating that the adsorption of gas affects the electron behavior of Pd$_3$-GaSe monolayer. The results show that both Pd-GaSe monolayer and Pd$_3$-GaSe monolayer have an obvious adsorption effect on CO, and the adsorption performance of CO is significantly improved after doping Pd$_n$ (n is 1 or 3). However, higher adsorption energy, higher charge transfer and more obvious gas molecules deformation show that Pd$_3$-Gase monolayer has better adsorption performance for CO.

3.4. C$_2$H$_2$ Adsorption

Figures 11 and 12, and Table 3 show the structures and related parameters of C$_2$H$_2$ adsorption. After the adsorption of C$_2$H$_2$ on the two doped materials, the structure of C$_2$H$_2$ has obvious deformation but still has good symmetry. In the Pd-GaSe/C$_2$H$_2$ system, H–C–C and C–C–H bond angles change to 155.279° and 155.552°, respectively. In the Pd$_3$-GaSe/C$_2$H$_2$ system, H–C–C and C–C–H bond angles decrease to 131.730° and 131.258°. As can be seen, in Pd$_3$-GaSe/C$_2$H$_2$ system, deformation of the C$_2$H$_2$ molecule is more severe, which may be related to the stronger reaction between adsorbent and C$_2$H$_2$. The adsorption energy of Pd-GaSe/C$_2$H$_2$ and Pd$_3$-GaSe/C$_2$H$_2$ systems are -1.307 eV and -2.757 eV, respectively, both of which belong to chemisorption. Compared with the direct adsorption of intrinsic GaSe monolayer ($E_{ad} = -0.7$ eV), the adsorption energy of the two doping systems for C$_2$H$_2$ were significantly increased, and the change of adsorption energy of Pd$_3$-GaSe/C$_2$H$_2$ system was particularly obvious, which also verified the previous conjecture. Moreover, from the adsorption model, it can be seen that Pd$_3$-GaSe has a strong adsorption effect on C$_2$H$_2$. After adsorption, three Pd atoms shift obviously and capture C$_2$H$_2$ but the monolayer of Pd-GaSe does not change obviously. In the Pd-GaSe/C$_2$H$_2$ system, Pd atom carries 0.296 e electrons after C$_2$H$_2$ molecule transfers 0.1 e electrons to Pd-GaSe monolayer, indicating that Pd atom obtains electrons from GaSe monolayer. Similarly, Pd acts as an electron acceptor in the Pd$_3$-GaSe/C$_2$H$_2$ system, accepting electrons from gas molecules and GaSe monolayer. As can be seen from the DCD diagrams in Figures 11c and 12c, the overlap between the red and blue areas between the gas and the material indicates a large amount of electron transfer and strong chemical reaction strength.
the temperature is constant. Thus, the narrower the band gap, the easier the electron transfer.

DOS distribution of Pd-GaSe/C2H2 system is shown in Figure 11d,e. After adsorption of C2H2, the TDOS of the system appeared a new peak near −8.8 eV, but there was no obvious change. In addition, the Pd-4d orbital and C-2p orbital overlap at −0.1 eV, −2.9 eV, and −7.1 eV, and hybridization between orbitals causes strong orbital interactions. Based on the TDOS distribution of the Pd3-GaSe/C2H2 system shown in Figure 12d, the overall TDOS shifted significantly to the left after adsorption, indicating that its electrical conductivity was significantly enhanced. As can be seen from the PDOS distribution in Figure 12e, obvious orbital hybridization exists in Pd-4d and C-2p orbitals at 0.1 eV, −1.1 eV, −4.5 eV, and −7.5 eV. It means that chemical bonds are formed between Pd atom and C atom. From the above analysis, it can be seen that Pd3-GaSe monolayer shows strong adsorption of C2H2. In conclusion, after Pd3 (n is 1 or 3) doping, the adsorption performance of the system for C2H2 is significantly enhanced, and various data show that
Pd₃ cluster doped with GaSe monolayer have better adsorption performance of C₂H₂ than Pd-GaSe system.

Table 3. Adsorption characteristic parameters of C₂H₂ adsorption.

Structure	The Length of Bond (Å)	Bond Angle (°)	Adsorption Distance (Å)	Atom	Charge (e)	QT (e)	Ead (eV)
Pd-GaSe/C₂H₂							
C₁-C₂	1.212	H₁-C₁-C₂	179.704	C₁	−0.123		−0.700
C₁-H₁	1.072	C₁-C₂-H₂	179.283	C₂	−0.127	0.004	−0.700
C₂-H₂	1.072			H₁	0.126		
				H₂	0.128		
Pd₃-GaSe/C₂H₂							
C₁-C₂	1.261	H₁-C₁-C₂	155.279	C₁	−0.062		−1.307
C₁-H₁	1.079	C₁-C₂-H₂	155.552	C₂	−0.060	0.100	−1.307
C₂-H₂	1.079			H₁	0.111		
				H₂	0.111		
				Pd	−0.296		

3.5. Frontier Orbital Theory Analysis

To further elucidate the changes in the conductivity of Pd-GaSe and Pd₃-GaSe monolayers caused by gas adsorption, the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) were calculated according to the frontier molecular orbital (FMO) theory. The relationship between band gap and conductivity is shown as follows:

$$\sigma \propto \exp\left(-\frac{E_g}{2k_BT}\right)$$

(4)

where kₘ and T represent Boltzmann constant and temperature respectively. According to the formula, the narrower the band gap means that it has greater conductivity when the temperature is constant. Thus, the narrower the band gap, the easier the electron transfer.

Refer to Figure 13a, LUMO and HOMO are mostly distributed around Pd atoms in the Pd-GaSe system. After gas molecule adsorption, LUMO and HOMO distribution of the Pd-GaSe/H₂ system does not change much compared with that before adsorption, meaning that the interaction force between gas and adsorption material is weak after H₂ adsorption. In Pd-GaSe/CO and Pd-GaSe/C₂H₂ systems, LUMO is mainly distributed in Pd-GaSe monolayer, HOMO is mainly distributed in the vicinity of gas molecules and Pd atoms. After the adsorption of the three gas molecules, the band gaps of the adsorption systems all increase, indicating that the conductivity of the adsorption systems decreases after gas adsorption. Since the band gap increase of Pd-GaSe/C₂H₂ system is not obvious, the sensitivity of the sensor to C₂H₂ detection is limited. Therefore, Pd-GaSe can be used as a semiconductor sensor to detect H₂ and CO.

In Figure 13b, before gas adsorption, LUMO and HOMO are mainly distributed around the Pd₃ group before gas adsorption, which indicated that there is a high electron concentration in the vicinity of the Pd₃ cluster. After gas adsorption, HOMO of the system is mainly distributed near gas molecules and Pd₃ cluster. Except for the Pd₃-GaSe/H₂ system, the LUMO of the other two systems is rarely distributed near the gas and Pd₃ cluster. Compared with Pd₃-GaSe, the band gap of Pd₃-GaSe/C₂H₂ system decreased significantly, indicating that the electrical conductivity increased significantly after adsorption. However, the band gaps of Pd₃-GaSe/H₂ and Pd₃-GaSe/CO systems increased and the conductivity decreased after gas adsorption. Therefore, Pd₃-GaSe can be used as a sensor material to detect these three gases.
16.7 s when the temperature rises to 498 K. Pd-GaSe has a strong adsorption of C$_2$H$_2$ adsorption system. The Pd-GaSe/H$_2$ system does not change much compared with that before adsorption, the Pd-GaSe system. After gas molecule adsorption, LUMO and HOMO distribution of the system concentration in the vicinity of the Pd$_3$ cluster. After gas adsorption, HOMO of the system is mainly distributed near gas molecules and Pd$_3$ cluster. Except for the Pd$_3$-GaSe/H$_2$ system, the band gap increases significantly, indicating that the conductivity of the adsorption systems decreases after gas adsorption. Since the band gap increase of Pd-GaSe/C$_2$H$_2$ system is not obvious, the sensitivity of the sensor to C$_2$H$_2$ detection is limited. Therefore, Pd-GaSe can be used as a semiconductor sensor to detect H$_2$ and CO.

Compared with Pd$_3$-GaSe, the band gap of Pd$_3$-GaSe/C$_2$H$_2$ system decreased significantly, indicating that the electrical conductivity increased significantly after adsorption. However, the band gaps of Pd$_3$-GaSe/H$_2$ and Pd$_3$-GaSe/CO systems increased and the conductivity decreased after gas adsorption. Therefore, Pd$_3$-GaSe can be used as a sensor material to detect these three gases. In Pd-GaSe, the LUMO distribution is rarely distributed near the gas and Pd$_3$ cluster. However, in Pd$_3$-GaSe, the LUMO distribution is near the gas and Pd$_3$ cluster, indicating that there is a strong interaction force between gas and adsorption material after H$_2$ adsorption. Therefore, both doping structures can be used as disposable CO scavengers. At suitable temperatures, which means that there is a strong interaction between adsorbent and gas molecule. Therefore, both doping structures can be used as disposable CO scavengers. At 298 K, C$_2$H$_2$ is difficult to desorption from Pd-GaSe monolayer, but the recovery time is 16.7 s when the temperature rises to 498 K. Pd-GaSe has a strong adsorption of C$_2$H$_2$ at room temperature, and the recovery time is very short at high temperature. However, after adsorption of C$_2$H$_2$, the increase of conductivity is not obvious. Therefore Pd-GaSe is more suitable as a reusable C$_2$H$_2$ scavenger than for detecting C$_2$H$_2$. However, the desorption time of C$_2$H$_2$ on Pd$_3$-GaSe is very long, and Pd$_3$-GaSe can be used as a one-time scavenger of C$_2$H$_2$.

\[\tau = A^{-1}e^{\left(-E_a/K_B T\right)} \]

(5)

As an important index, recovery time is used to indicate the desorption capacity of gas-sensitive materials to characteristic gases, which can be obtained by the following equation:

In the above formula, A and T represent the attempt frequency and temperature, A is constant and equal to 10^{12} s$^{-1}$. K_B represents Boltzmann constant (8.62×10^{-5} eV/K). E_a represents the energy to be overcome in the desorption process, and its value can be considered to be equal to E_{ad}. Figure 14 shows the recovery time of the three gas molecules on the Pd-GaSe and Pd$_3$-GaSe systems at 298 K, 398 K, and 498 K. The recovery time of H$_2$ in Pd-GaSe is very short, and the adsorptive H$_2$ will soon break away from the binding of the material, indicating that Pd-GaSe is not suitable as H$_2$ scavenger. When the temperature is 398 K, the recovery time of H$_2$ on Pd$_3$-GaSe is 0.87 s, and when the temperature is 298 K, the recovery time is 8780 s (2.4 h), meaning that Pd$_3$-GaSe is an ideal gas sensitive material for the detection of H$_2$. CO is difficult to desorption on the two adsorption systems at three temperatures, which means that there is a strong interaction between adsorbent and gas molecule. Therefore, both doping structures can be used as disposable CO scavengers. At 298 K, C$_2$H$_2$ is difficult to desorption from Pd-GaSe monolayer, but the recovery time is 16.7 s when the temperature rises to 498 K. Pd-GaSe has a strong adsorption of C$_2$H$_2$ at room temperature, and the recovery time is very short at high temperature. However, after adsorption of C$_2$H$_2$, the increase of conductivity is not obvious. Therefore Pd-GaSe is more suitable as a reusable C$_2$H$_2$ scavenger than for detecting C$_2$H$_2$. However, the desorption time of C$_2$H$_2$ on Pd$_3$-GaSe is very long, and Pd$_3$-GaSe can be used as a one-time scavenger of C$_2$H$_2$.

![Figure 13. HOMO and LUMO distributions of (a) Pd-GaSe adsorption system and (b) Pd$_3$-GaSe adsorption system.](image)
molecules on the Pd-GaSe and Pd3-GaSe systems at 298 K, 398 K, and 498 K. The recovery adsorption, and are of important significance to the safe operation of power equipment.

4. Conclusions

In this study, the adsorption behaviors of Pd-GaSe and Pd3-GaSe monolayers on three gases (H2, CO, and C2H2) decomposed by the transformer oil were studied using DFT calculations. The results show that Pd mono-atom doping and Pd3 cluster doping can improve the adsorption capacity of the materials to the three gases compared with the intrinsic GaSe monolayer. The adsorption performance of Pd3-GaSe for three gases is better than that of Pd-GaSe. All three kinds of adsorption of Pd3-GaSe are chemical adsorption. It is speculated that the increase in the number of doped Pd atoms changes the original structure and charge distribution to a greater extent, more obviously enhances the conductivity, and thus enhances the adsorption performance of the gas. Through the analysis of DOS, the above viewpoint is also proved. By analyzing the frontier molecular orbitals and recovery characteristics, Pd3-GaSe can be used as an ideal gas sensitive material for H2 detection because of its good desorption properties and obvious conductivity changes. Pd-GaSe can also be used as a disposable resistive sensor for CO. Pd3-GaSe is a sensing material suitable for the disposable resistive sensor for CO and C2H2. Therefore, Pd-GaSe and Pd3-GaSe monolayers have great application potential in gas detection and adsorption, and are of important significance to the safe operation of power equipment.

Author Contributions: Conceptualization, T.H.; methodology, T.H. and Q.Z.; validation, T.H. and Q.Z.; investigation, T.H.; resources, Q.Z.; data curation, T.H.; writing—original draft preparation and editing, T.H.; writing—review and editing, T.H., Q.Z. and W.Z.; visualization, T.H.; supervision, Q.Z.; project administration, Q.Z. and W.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This study has been supported in part of by the National Natural Science Foundation of China (Nos. 52077177 and 51507144) and Fundamental Research Funds for the Central Universities (No. XDJK2019B021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available on the request from corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Tenbohlen, S.; Coenen, S.; Djamali, M.; Muller, A.; Samimi, M.H.; Siegel, M. Diagnostic Measurements for Power Transformers. Energies 2016, 9, 347. [CrossRef]

2. Wang, J.C.; Zhang, X.X.; Liu, L.; Wang, Z.T. Dissolved gas analysis in transformer oil using Ni-Doped GaN monolayer: A DFT study. Superlattices Microstruct. 2021, 159, 107055. [CrossRef]

3. Alsuaibani, S.; Khan, Y.; Beroual, A.; Malik, N.H. A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics. Energies 2016, 9, 879. [CrossRef]

4. Bustamante, S.; Manana, M.; Arroyo, A.; Castro, P.; Laso, A.; Martinez, R. Dissolved Gas Analysis Equipment for Online Monitoring of Transformer Oil: A Review. Sensors 2019, 19, 4057. [CrossRef][PubMed]

5. He, X.; Gui, Y.G.; Xie, J.F.; Liu, X.; Wang, Q.; Tang, C. A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. Appl. Surf. Sci. 2020, 563, 144030. [CrossRef]

6. Singh, S.; Bandypadhyay, M.N. Dissolved Gas Analysis Technique for Incipient Fault Diagnosis in Power Transformers: A Bibliographic Survey. IEEE Electr. Insul. Mag. 2010, 26, 41–46. [CrossRef]

7. Yang, X.; Wu, X.; Li, J. Recent advances in screening two-dimensional materials for high-performance energy storage and conversion devices based on electronic structure theory. Chin. Sci. Bull. Chin. 2021, 66, 640–656. [CrossRef]

8. Zhou, Z.X.; Yap, Y.K. Two-Dimensional Electronics and Optoelectronics: Present and Future. Electronics 2017, 6, 53. [CrossRef]

9. Bag, A.; Lee, N.E. Gas sensing with heterostructures based on two-dimensional nanostruuctured materials: A review. J. Mater. Chem. C 2019, 7, 13367–13383. [CrossRef]

10. Chaudhari, N.K.; Jin, H.; Kim, B.; Baek, D.S.; Joo, S.H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564–24579. [CrossRef]

11. Faiz, J.; Soleimani, M. Dissolved Gas Analysis Evaluation in Electric Power Transformers using Conventional Methods a Review. Int. J. Electr. Power Energy Syst. 2021, 125, 106517. [CrossRef]

12. Bao, J.; Jeppson, K.; Edwards, M.; Fu, Y.F.; Ye, L.L.; Lu, X.Z.; Liu, J. Synthesis and Applications of Two-Dimensional Hexagonal Boron Nitride in Electronics Manufacturing. Electron. Mater. Lett. 2016, 12, 1–16. [CrossRef]

13. Rezaie, S.; Bafghi, Z.G.; Manavizadeh, N.; Kordmahale, S.B. Highly Sensitive Detection of Dissolved Gases in Transformer Oil with Carbon-Doped ZnO Nanotube: A DFT Study. ACS Nano 2016, 326, 128989. [CrossRef]

14. Cilliyuz, Y.; Bicen, Y.; Aras, F.; Aydugan, G. Measurements and performance evaluations of natural ester and mineral oil-immersed identical transformers. Int. J. Electr. Power Energy Syst. 2021, 125, 106517. [CrossRef]

15. Faiz, J.; Soleimani, M. Dissolved Gas Analysis Evaluation in Electric Power Transformers using Conventional Methods a Review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1239–1248. [CrossRef]

16. Kondalkar, V.V.; Park, J.; Lee, K. MEMS hydrogen gas sensor for in-situ monitoring of hydrogen gas in transformer oil. Sens. Actuators B Chem. 2021, 326, 128989. [CrossRef]

17. Qian, G.C.; Peng, Q.J.; Zou, D.X.; Wang, S.; Yan, B.; Zhou, Q. First-Principles Insight into Cu-Doped MoS2 for Sensing C2H4 and C2H2. Front. Mater. 2020, 7, 22. [CrossRef]

18. Rezaie, S.; Bafghi, Z.G.; Manavizadeh, N.; Kordmahale, S.B. Highly Sensitive Detection of Dissolved Gases in Transformer Oil with Carbon-Doped ZnO Nanotube: A DFT Study. IEEE Sens. J. 2022, 22, 82–89. [CrossRef]

19. Cilliyuz, Y.; Bicen, Y.; Aras, F.; Aydugan, G. Measurements and performance evaluations of natural ester and mineral oil-immersed identical transformers. Int. J. Electr. Power Energy Syst. 2021, 125, 106517. [CrossRef]

20. Yuan, T.; Fu, C.; Gong, Y.J.; Tong, Y.; Zhang, J.; Wang, Y.Q. First-principles Insights into Cu-Decorated GaN Monolayers for Sensing CO and HCHO in Dry-Type Transformers. ACS Omega 2021, 6, 19127–19133. [CrossRef]

21. Hu, P.A.; Wen, Z.Z.; Wang, L.F.; Tan, P.H.; Xiao, K. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988–5994. [CrossRef]

22. Late, D.J.; Liu, B.; Luo, J.J.; Yan, A.M.; Matte, H.; Grayson, M.; Rao, C.N.R.; Dravid, V.P. GaS and GaSe Ultrathin Layer Transistors. Adv. Mater. 2012, 24, 3549–3554. [CrossRef]

23. Zhang, H.L.L.; Hennig, R.G. Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting. Chem. Mater. 2013, 25, 3232–3238. [CrossRef]

24. Jie, W.J.; Chen, X.; Li, D.; Xie, L.; Hui, Y.Y.; Lau, S.P.; Cui, X.D.; Hao, J.H. Layer-Dependent Nonlinear Optical Properties and Stability of Non-Centrosymmetric Modification in Few-Layer GaSe Sheets. Angew. Chem. Int. Ed. 2015, 54, 1188–1189. [CrossRef]

25. Zhou, C.J.; Zhu, H.L.; Wu, Y.P.; Lin, W.; Yang, W.H.; Dong, L.X. Effect of external strain on the charge transfer: Adsorption of gas molecules on monolayer GaSe. Mater. Chem. Phys. 2017, 198, 49–56. [CrossRef]

26. Chen, D.C.; Zhang, X.X.; Tang, J.; Cui, H.; Li, Y. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SO2, and SO2:F2: A DFT study. Appl. Phys. A 2018, 124, 194. [CrossRef]

27. Chen, G.X.; Li, H.F.; Wang, D.D.; Li, S.Q.; Fan, X.B.; Zhang, J.M. Adsorption of toxic gas molecules on pristine and transition metal doped hexagonal GaN monolayer: A first-principles study. Vacuum 2019, 165, 35–45. [CrossRef]

28. Ni, J.M.; Quintana, M.; Song, S.X. Adsorption of small gas molecules on transition metal (Fe, Ni and Co, Cu) doped graphene: A systematic DFT study. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 116, 113768. [CrossRef]

29. Jiang, T.Y.; Zhang, T.; He, Q.Q.; Bi, M.Q.; Chen, X.; Zhou, X. Adsorption performance and gas-sensing properties of V-GaSe to SF6 decomposition components in gas-insulated switchgear. Appl. Surf. Sci. 2022, 577, 151854. [CrossRef]
30. Cui, H.; Zhang, X.X.; Zhang, G.Z.; Tang, J. Pd-doped MoS\textsubscript{2} monolayer: A promising candidate for DGA in transformer oil based on DFT method. *Appl. Surf. Sci.* 2019, 470, 1035–1042. [CrossRef]
31. Ma, L.; Zhang, J.M.; Xu, K.W.; Ji, Y. A first-principles study on gas sensing properties of graphene and Pd-doped graphene. *Appl. Surf. Sci.* 2015, 343, 121–127. [CrossRef]
32. Cui, H.; Jia, P.F.; Peng, X.Y. Adsorption of SO\textsubscript{2} and NO\textsubscript{2} molecule on intrinsic and Pd-doped HfSe\textsubscript{2} monolayer: A first-principles study. *Appl. Surf. Sci.* 2020, 513, 145863. [CrossRef]
33. Gao, Z.Y.; Li, A.; Liu, X.S.; Ma, C.Z.; Li, X.; Yang, W.J.; Ding, X.L. Density functional study of the adsorption of NO on Ni-n (n=1, 2, 3 and 4) clusters doped functionalized graphene support. *Appl. Surf. Sci.* 2019, 481, 940–950. [CrossRef]
34. Cui, H.; Jia, P.F. Doping effect of small Rh\textsubscript{n} (n = 1–4) clusters on the geometric and electronic behaviors of MoS\textsubscript{2} monolayer: A first-principles study. *Appl. Surf. Sci.* 2020, 526, 146659. [CrossRef]
35. Delley, B. From molecules to solids with the DMO3 approach. *J. Chem. Phys.* 2000, 113, 7756–7764. [CrossRef]
36. Lee, S.G.; Choi, J.I.; Koh, W.; Jang, S.S. Adsorption of beta-D-glucose and cellobiose on kaolinite surfaces: Density functional theory study. *Appl. Clay Sci.* 2013, 71, 73–81. [CrossRef]
37. Tkatchenko, A.; DiStasio, R.A.; Head-Gordon, M.; Scheffler, M. Dispersion-corrected Moller-Plesset second-order perturbation theory. *J. Chem. Phys.* 2009, 131, 094106. [CrossRef]
38. Zeng, F.P.; Feng, X.X.; Chen, X.Y.; Yao, Q.; Miao, Y.L.; Dai, L.J.; Li, Y.; Tang, J. First-principles analysis of Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{n} MXene as a promising candidate for SF\textsubscript{6} decomposition characteristic components sensor. *Appl. Surf. Sci.* 2022, 578, 152020. [CrossRef]
39. Cui, H.; Zhang, X.X.; Chen, D.C.; Tang, J. Adsorption mechanism of SF\textsubscript{6} decomposed species on pyridine-like PtN\textsubscript{3} embedded CNT: A DFT study. *Appl. Surf. Sci.* 2018, 447, 594–598. [CrossRef]
40. Gao, X.; Zhou, Q.; Wang, J.X.; Xu, L.N.; Zeng, W. DFT Study on the Selective Adsorption Properties of Modified Graphene for SF\textsubscript{6} Decompositions. *IEEE Sens. J.* 2021, 21, 3193–3200. [CrossRef]
41. Pakornchote, T.; Ekatarawong, A.; Alling, B.; Pinsook, U.; Tanchararak, S.; Busayaporn, W.; Boovratanarak, T. Phase stabilities and vibrational analysis of hydrogenated diamondized bilayer graphenes: A first principles investigation. *Carbon* 2019, 146, 468–475. [CrossRef]
42. Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. *Phys. Rev. B* 1976, 13, 5188. [CrossRef]
43. Mom, R.V.; Cheng, J.; Koper, M.T.M.; Sprink, M. Modeling the Oxygen Evolution Reaction on Metal Oxides: The Influence of Unrestricted DFT Calculations. *J. Phys. Chem. C* 2014, 118, 4095–4102. [CrossRef]
44. Li, B.L.; Zhou, Q.; Peng, R.C.; Liao, Y.M.; Zeng, W. Adsorption of SF\textsubscript{6} decomposition gases (H\textsubscript{2}, SO\textsubscript{2}, SOF\textsubscript{2} and SOF\textsubscript{2}F\textsubscript{2}) on Sc-doped MoS\textsubscript{2} surface: A DFT study. *Appl. Surf. Sci.* 2021, 549, 149271.
45. Zhang, X.X.; Wang, J.C.; Chen, D.C.; Liu, L. The adsorption performance of harmful gas on Cu doped WS\textsubscript{2}: A first-principle study. *Mater. Today Commun.* 2021, 28, 102488. [CrossRef]
46. Chen, D.C.; Li, Y.; Xiao, S.; Yang, C.X.; Zhou, J.; Xiao, B.B. Single Ni atom doped WS\textsubscript{2} monolayer as sensing substrate for dissolved gases in transformer oil: A first-principles study. *Appl. Surf. Sci.* 2022, 579, 152141. [CrossRef]
47. Zhang, X.X.; Cui, H.; Zhang, J.; Tang, J. Adsorption characteristic of Pd-4 cluster carbon nanotube towards transformer oil dissolved components: A simulation. *Appl. Surf. Sci.* 2017, 419, 802–810. [CrossRef]
48. Xiao, Z.; Wu, W.; Wu, X.W.; Zhang, Y.F. Adsorption of NO\textsubscript{2} on monolayer MoS\textsubscript{2} doped with Fe, Co, and Ni, Cu: A computational investigation. *Chem. Phys. Lett.* 2020, 755, 137768. [CrossRef]
49. Ye, X.; Jiang, X.; Chen, L.; Jiang, W.J.; Wang, H.L.; Cen, W.L.; Ma, S.G. Effect of manganese dioxide crystal structure on adsorption of SO\textsubscript{2} by DFT and experimental study. *Appl. Surf. Sci.* 2020, 521, 146477. [CrossRef]
50. Cui, H.; Guo, Y.X.; Zhao, Q.; Zhang, G.Z. Pd-doped PtSe\textsubscript{2} monolayer with strain-modulated effect for sensing SF\textsubscript{6} decomposed species: A first-principles study. *J. Mater. Res. Technol.* 2022, 18, 629–636. [CrossRef]
51. Gui, X.X.; Zhou, Q.; Peng, S.D.; Xu, L.N.; Zeng, W. Adsorption behavior of Rh-doped MoS\textsubscript{2} monolayer towards SO\textsubscript{2}, SOF\textsubscript{2}, SO\textsubscript{2}F\textsubscript{2} based on DFT method. *Phys. E Low-Dimens. Syst. Nanostruct.* 2020, 122, 114224. [CrossRef]
52. Zhang, X.X.; Cui, H.; Dong, X.C.; Chen, D.C.; Tang, J. Adsorption performance of Rh decorated SWCNT upon SF\textsubscript{6} decomposed components based on DFT method. *Appl. Surf. Sci.* 2017, 420, 825–832. [CrossRef]
53. Liu, D.K.; Cui, H.G.; Ji, C.; Tang, C.; Zhou, Q.; Li, J.; Zhang, X.X. Adsorption of SF\textsubscript{6} decomposition components over Pd (111): A density functional theory study. *Appl. Surf. Sci.* 2019, 465, 172–179. [CrossRef]
54. Gui, X.X.; Zhou, Q.; Peng, S.D.; Xu, L.N.; Zeng, W. Dissolved gas analysis in transformer oil using Sb-doped graphene: A DFT study. *Appl. Surf. Sci.* 2020, 533, 147309. [CrossRef]
55. Liu, Y.P.; Zhou, Q.; Hou, W.J.; Li, J.; Zeng, W. Adsorption properties of Cr modified GaN monolayer for H\textsubscript{2}, CO, C\textsubscript{2}H\textsubscript{2} and C\textsubscript{2}H\textsubscript{4}. *Chem. Phys. 2021, 550, 111304. [CrossRef]
56. Liao, Y.M.; Zhou, Q.; Hou, W.J.; Li, J.; Zeng, W. Theoretical study of dissolved gas molecules in transformer oil adsorbed on intrinsic and Cr-doped InP\textsubscript{3} monolayer. *Appl. Surf. Sci.* 2021, 561, 149816. [CrossRef]
57. Li, Z.H.; Jia, L.F.; Chen, J.X.; Cui, X.S.; Zeng, W.; Zhou, Q. Ag-modified hexagonal GaN monolayer as an innovative gas detector toward SF\textsubscript{6} decomposed species: Insights from the first-principles computations. *Appl. Surf. Sci.* 2022, 589, 153000. [CrossRef]
58. Boerner, E.D.; Bertram, H.N. Non-Arrhenius behavior in single domain particles. *IEEE Trans. Magn.* 1998, 34, 1678–1680. [CrossRef]
59. Lee, J.M.; Lim, S.H. Thermally activated magnetization switching in a nanostructured synthetic ferrimagnet. *J. Appl. Phys.* 2013, 113, 063914.