Impact of Vertex Addition on Italian Domination Number

Jismy Varghese *
School of Computer Science
DePaul Institute of Science and Technology
Angamaly - 683 573
Kerala, India.

Aparna Lakshmanan S.†
Department of Mathematics
St.Xavier’s College for Women
Aluva - 683 101
Kerala, India.

Abstract

An Italian dominating function (IDF), of a graph G is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that for every $v \in V(G)$ with $f(v) = 0$, $\sum_{u \in N(v)} f(u) \geq 2$. The weight of an IDF on G is the sum $f(V) = \sum_{v \in V(G)} f(v)$ and Italian domination number, $\gamma_I(G)$ is the minimum weight of an IDF. In this paper, we study the impact of corona operator and addition of twins on Italian domination number.

Keywords: Italian domination number, corona operator, twin vertex.

AMS Subject Classification: primary: 05C69, secondary: 05C76.

*Email : kvjismy@gmail.com
†E-mail : aparnaren@gmail.com
1 Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. If there is no ambiguity in the choice of G then we write $V(G)$ and $E(G)$ as V and E respectively. The open neighborhood of a vertex $v \in V$ is the set $N(v) = \{u : uv \in E\}$ and its closed neighborhood is $N[v] = N(v) \cup \{v\}$. A subset $S \subseteq V$ of vertices in a graph is called a dominating set if every $v \in V$ is either an element of S or is adjacent to an element of S [8]. The domination number, $\gamma(G)$ is the minimum cardinality of a dominating set of G.

An Italian dominating function, in short IDF, of a graph G is a function $f : V \rightarrow \{0, 1, 2\}$ which satisfies the condition that for every $v \in V$ with $f(v) = 0$, $\sum_{u \in N(v)} f(u) \geq 2$, i.e.; either v is adjacent to a vertex u with $f(u) = 2$ or to at least two vertices x and y with $f(x) = f(y) = 1$. The weight of an Italian dominating function is $f(V) = \sum_{u \in V} f(u)$. The Italian domination number, $\gamma_I(G)$ is the minimum weight of an Italian dominating function. An IDF with weight $\gamma_I(G)$ is called γ_I-function. Let V_i^f or simply V_i, denote the set of vertices assigned i by the function f. The Italian domination number was first introduced in [3] with the name Roman-\{2\}-domination. For any graph G, the Italian domination number is bounded by $\gamma(G) \leq \gamma_I(G) \leq \gamma_R(G) \leq 2\gamma(G)$ which was given in [3, 12]. M. A. Henning and W. F. Klostermeyer studied the Italian domination number of trees [7]. The Italian domination number of generalized Petersen graph, $P(n, 3)$ is found in [4]. In [11], it is proved that $\gamma_I(G) + 1 \leq \gamma_I(M(G)) \leq \gamma_I(G) + 2$, where $M(G)$ is the Mycielskian graph of G. It is also proved that $\gamma_I(S(K_n, 2)) = 2n - 1$ and $n^{t-2}\alpha(G)\gamma_I(G) \leq \gamma_I(S(G, t)) \leq n^{t-2}(n - \gamma_I(G) - |V_2| - E_2)$ where $S(G, t)$ is the Sierpinski graph of G, $\alpha(G)$ is the independence number of G and E_2 is the set of non-isolated vertices in $< V_2 >$. To know more about Italian domination number, the interested readers can refer [1, 5, 6, 7, 11, 13].

The corona of two graphs $G_1 = (V_1; E_1)$ and $G_2 = (V_2; E_2)$, denoted by $G_1 \odot G_2$, is the graph obtained by taking one copy of G_1 and $|V_1|$ copies of G_2, and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2. We denote the complete graph on n vertices by K_n. If G_2 is K_1, then $G_1 \odot G_2$ is G_1 together with one pendant vertex each attached to all the vertices of G_1. A false twin of a vertex u is a vertex u' which is adjacent to all vertices in $N(u)$. A true twin of a vertex u is a vertex u' which is adjacent to all vertices in $N(u)$. Two vertices u and u' are said to be twins if either they are true twins or false twins. For any graph theoretic terminology and notations not mentioned here, the readers may refer to [2].
The following result is useful in this paper.

Theorem 1.1. For the class of P_n, $\gamma_I(P_n) = \lceil \frac{n+1}{2} \rceil$.

2 Corona Operator on Italian Domination

In this section, we find the value of Italian domination number of corona operator of any two graphs G and H, where $H \nRightarrow K_1$. The upper and lower bounds for $\gamma_I(G \odot K_1)$ is obtained and the corresponding realization problem is also settled. Also, the exact value of $\gamma_I(G \odot K_1)$, when G belongs to some special classes of graphs is obtained.

Lemma 2.1. Let G be a graph and u be a pendent vertex of G. Then there exists a γ_I-function f of G in which $f(u) \neq 2$.

Proof. If possible assume that there exists a γ_I-function with $f(u) = 2$. Note that the weight of neighbor of u, say v is zero, due to the minimality of f. Then we can reassign $f(u) = f(v) = 1$ or $f(u) = 0$, $f(v) = 2$, which is again a γ_I-function on G with $f(u) \neq 2$. Hence the lemma.

In this paper, here onwards, we consider γ_I-functions for which the weight of a pendent vertex is not equal to 2.

Theorem 2.2. For every graph G and $H \nRightarrow K_1$, $\gamma_I(G \odot H) = 2n$, where n is the order of G.

Proof. Define an Italian domination function f of $G \odot H$ as follows.

\[
f(v) = \begin{cases}
2, & \text{for } v \in V(G), \\
0, & \text{otherwise}.
\end{cases}
\]

Therefore, $\gamma_I(G \odot H) \leq 2n$. There are n mutually exclusive copies of H each of which requires at least weight 2 in IDF. So $\gamma_I(G \odot H) \geq 2n$. Hence the theorem.

Theorem 2.3. For any graph G, $n + 1 \leq \gamma_I(G \odot K_1) \leq 2n$.

3
Proof. Let \(V(G) = \{v_1, v_2, ... v_n\} \) and let \(u_i \) be the leaf neighbor of \(v_i \) in \(G \odot K_1 \). Define an IDF of \(G \odot K_1 \) as follows.

\[
f(u) = \begin{cases}
2, & \text{for } u = u_i, \\
0, & \text{otherwise.}
\end{cases}
\]

Therefore, \(\gamma_I(G) \leq 2n \). To prove the left inequality, let \(f \) be any IDF of \(G \odot K_1 \). By Lemma 2.4, each \(u_i \) must be either in \(V_1 \) or adjacent to a vertex in \(V_2 \). If \(u_i \in V_1 \), for all \(i = 1, 2, 3, ... n \), none of the vertices in \(G \) can be Italian dominated by \(u_i \) alone. Therefore, \(f(V) \geq n + 1 \). If \(u_i \notin V_1 \) for some \(i \), then \(u_i \) is adjacent to a vertex in \(V_2 \) which further increases the value of \(f(V) \). Hence the theorem.

\[\blacksquare\]

Theorem 2.4. Any positive integer \(a \) is realizable as the Italian domination number of \(G \odot K_1 \), for some \(G \) if and only if \(n + 1 \leq a \leq 2n \), where \(n \) is the number of vertices in \(G \).

Proof. Let \(G \) be a graph with \(|V(G)| = n \). If \(\gamma_I(G \odot K_1) = a \) then by theorem 2.3, \(n + 1 \leq a \leq 2n \). To prove the converse, let \(G \) be the graph \(K_{1,m} \cup (n - m - 1)K_1 \) where \(0 \leq m \leq n - 1 \). Let \(v_1, v_2, ... v_{m+1} \) be the vertices of \(K_{1,m} \) in which \(v_1 \) is the universal vertex and \(v_{m+2}, v_{m+3}, ..., v_n \) be the isolated vertices in \(G \). Let \(v' \) be the leaf neighbor of \(v_i \) in \(G \odot K_1 \). Define an IDF \(f \) on \(V(G \odot K_1) \) as follows.

\[
f(u) = \begin{cases}
2, & \text{for } u = v_i, \ i = 1, m + 2, m + 3, ... , n, \\
1, & \text{for } u = v', \ i = 2, 3, ... , m + 1, \\
0, & \text{otherwise.}
\end{cases}
\]

Therefore, \(f \) is a \(\gamma_I \)-function with weight \(2(n - m) + m = 2n - m \), \(0 \leq m \leq n - 1 \). So \(\gamma_I(G \odot K_1) \) varies from \(n + 1 \) to \(2n \). Hence the theorem.

\[\blacksquare\]

Theorem 2.5. \(\gamma_I(G \odot K_1) = n + 1 \) if and only if \(G \) has a universal vertex.

Proof. Let \(G \) be a graph with vertices \(v_1, v_2, v_3, ... v_n \) and let \(u_i \) be the leaf neighbor of \(v_i \). Let \(v_1 \) be the universal vertex in \(G \). Define an IDF of \(G \odot K_1 \) as follows.

\[
g(v) = \begin{cases}
2, & v = v_1, \\
1, & v = u_i, \ i = 2, 3, ... , n, \\
0, & \text{otherwise.}
\end{cases}
\]

Then \(g(V) = n + 1 \) which is the minimum possible and hence \(\gamma_I(G \odot K_1) = n + 1 \).
To prove the converse part, assume that $\gamma_f(G \oplus K_1) = n + 1$. Let f be a γ_f-function of $G \oplus K_1$. If possible assume that G does not have a universal vertex. Out of n pendent vertices in $G \oplus K_1$, let k vertices be in V_1^f so that the remaining $n - k$ pendent vertices are adjacent to vertices in V_2^f. Then $f(V) = n + 1 \geq k + 2(n - k) = 2n - k$. Therefore, $k \geq n - 1$. If $k = n - 1$ then there exists a pendent vertex u_1 which is adjacent to a vertex in V_2^f. If u_1 is adjacent to a vertex in V_2^f then, since u_1 is not a universal vertex we need more vertices with non zero weight to Italian dominate vertices in G, which is a contradiction to the fact that $\gamma_f(G \oplus K_1) = n + 1$. Therefore our assumption is wrong. Hence G has a universal vertex.

Theorem 2.6. $\gamma_f(G \oplus K_1) = 2n$ if and only if $G = K_n^c$.

Proof. Let $v_1, v_2, ... v_n$ be the vertices of G and let u_i be the pendent vertex adjacent to v_i in $G \oplus K_1$ for $i = 1, 2, ..., n$. If possible assume that there exists an edge $v_i v_j$ in G. Then $u_i v_i v_j u_j$ is a P_4 in $G \oplus K_1$ which can be Italian dominated by assigning 2 to v_i and 1 to u_j. Now, assigning 2 to every v_k for $k = 1, 2, ..., n$ and $k \neq i, j$ gives an IDF of $G \oplus K_1$ with weight $3 + 2(n - 2) = 2n - 1$, which contradicts the fact that $\gamma_f(G \oplus K_1) = 2n$. Hence G does not have an edge. i.e., $G = nK_1 = K_n^c$. It is trivial that if $G = K_n^c$ then $\gamma_f(G \oplus K_1) = 2n$.

Theorem 2.7.

\[
\gamma_f(K_{p,q} \oplus K_1) = \begin{cases}
 p + q + 1, & p = 1 \text{ or } q = 1, \\
 p + q + 2, & \text{otherwise.}
\end{cases}
\]

Proof. Let $V(K_{p,q}) = u_1, u_2, ... u_p, v_1, v_2, ..., v_q$ and u_i' be the leaf neighbor of u_i, $i = 1, 2, ..., p$ and v_j' be that of v_j for $j = 1, 2, ... q$ in $K_{p,q} \oplus K_1$. By the left inequality of 2.3 $p + q + 1 \leq \gamma_f(K_{p,q} \oplus K_1)$.

Case 1: $p = 1$ or $q = 1$.

Without loss of generality, let $p = 1$. Define an IDF of $K_{p,q} \oplus K_1$ as follows.

\[
f(u) = \begin{cases}
 2, & \text{for } u = u_1, \\
 1, & \text{for } u = v_j', j = 1, 2, 3, ..., q, \\
 0, & \text{otherwise.}
\end{cases}
\]

The weight $f(V) = 2 + q = p + q + 1$. Therefore, $\gamma_f(K_{p,q} \oplus K_1) \leq p + q + 1$. Hence $\gamma_f(K_{p,q} \oplus K_1) = p + q + 1$.

Define an IDF of K_k vertices be in $K_{p,q} \odot K_1$ as follows.

$$f(u) = \begin{cases}
2, & \text{for } u = u_1 \text{ and } u = v_1, \\
1, & \text{for } u = u'_i \text{ if } i = 2, 3, ..., p, \text{ and } u = v'_j \text{ if } j = 2, 3, ..., q, \\
0, & \text{otherwise.}
\end{cases}$$

The weight $f(V) = 4 + p - 1 + q - 1 = p + q + 2$. Therefore, $\gamma_I(K_{p,q} \odot K_1) \leq p + q + 2$.

Case 2: $p, q \geq 2$.

To prove the reverse inequality, if possible assume that there exists an IDF g of $K_{p,q} \odot K_1$ with weight $p + q + 1$. Out of $p + q$ pendent vertices in $K_{p,q} \odot K_1$, let k vertices be in V'_1. Note that, by Lemma 2.1 we can always find a γ_I-function in which pendent vertices are assigned values either 0 or 1. So that the remaining $p + q - k$ pendent vertices are adjacent to vertices in V_2^g. Hence the weight of g, $g(V) = p + q + 1 \geq k + 2(p + q - k)$. Hence, $k \geq p + q - 1$. If $k > p + q - 1$ then $k = p + q$ so that all the pendent vertices are in V'_1^g and none of them can be Italian dominated by any of the non-pendent vertices. Therefore, we need more vertices having non-zero values under g, which contradicts $g = p + q + 1$. If $k = p + q - 1$, then one pendent vertex, say x, is adjacent to a vertex in V^g_2, say y. Then y can not Italian dominate any of the vertices in its partite set of $K_{p,q}$ containing y. Therefore, we need more vertices having non-zero values under g which is a contradiction. Hence the theorem.

Theorem 2.8. For any graph G, $\gamma_I((G \odot K_1) \odot K_1) = 3n$ where $n = |V(G)|$.

Proof. Let G be a graph with vertex set $V(G) = v_1, v_2, ..., v_n$ and let u_i be the leaf neighbor of v_i in $G \odot K_1$. Let v'_i and u'_i be the leaf neighbors of v_i and u_i, respectively, in $(G \odot K_1) \odot K_1$. There are n vertex disjoint P_4’s, $v'_i u'_i u_i v_i$ for $i = 1, 2, ..., n$ in $(G \odot K_1) \odot K_1$. Let f be an IDF on $(G \odot K_1) \odot K_1$. Then the 2 pendent vertices v'_i and u'_i in each P_4 should be either in V'_1^f or adjacent to a vertex in V'_2^f. If all the pendent vertices are in V'_1^f, then to Italian dominate non-pendent vertices v_i and u_i we need more vertices with non-zero weight in P_4. The pendent vertices have no common neighbors. Hence, under f, the sum of the values of vertices in each P_4 must be at least 3. Therfore, $f(V) \geq 3n$. To prove the reverse inequality, define g as follows.

$$g(u) = \begin{cases}
1, & \text{for } u = v'_i, u'_i, u_i, \text{ if } i = 1, 2, ..., n, \\
0, & \text{otherwise.}
\end{cases}$$

Then g is an IDF on $(G \odot K_1) \odot K_1$ with $g(V) = 3n$. Hence the theorem.
Theorem 2.9. \(\gamma_I(P_n \odot K_1) = \lceil \frac{4n}{3} \rceil \).

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices of \(P_n \) and let \(u_i \) be the pendent vertex corresponding to \(v_i \), for \(i = 1, 2, \ldots, n \). If possible assume that there exists a \(\gamma_I \)-function \(g \) of \(P_n \odot K_1 \) such that \(g(V) < \frac{4n}{3} \). Note that we can always find a \(\gamma_I \)-function in which pendent vertices are assigned values either 0 or 1 by Lemma 2.1. Out of \(n \) pendent vertices in \(P_n \odot K_1 \) let \(p \) vertices be in \(V_1^0 \), so that the remaining \(n - p \) pendent vertices are assigned value 0 and hence adjacent to vertices in \(V_1^0 \). i.e., \(n - p \) vertices in \(P_n \) are assigned the value 2. These \(n - p \) vertices can Italian dominate atmost \(3(n - p) \) vertices of \(P_n \), i.e., at least \(n - (3(n - p)) = 3p - 2n \) vertices are not yet Italian dominated. To Italian dominate these \(3p - 2n \) vertices we need atleast \(\frac{3p - 2n}{3} \) more vertices of weight 1 in \(P_n \). Therefore, \(g(V) > p + 2(n - p) + \frac{3p - 2n}{3} \). i.e., \(g(V) > \frac{4n}{3} \), which is a contradiction. So \(g(V) \geq \frac{4n}{3} \). Define an IDF of \(P_n \odot K_1 \) as follows.

When \(n = 3k \).

\[
 f(u) = \begin{cases}
 2, & \text{if } u = v_{3j-1}, \text{ for } j = 1, 2, \ldots, k, \\
 1, & \text{if } u = u_j, \text{ for every } j \text{ such that } f(v_j) \neq 2, \\
 0, & \text{otherwise}.
\end{cases}
\]

Then \(f \) is an IDF with \(f(V) = \frac{4n}{3} \).

So that, \(\gamma_I(P_n \odot K_1) \leq \frac{4n}{3} \). Therefore, \(\gamma_I(P_n \odot K_1) = \frac{4n}{3} \).

When \(n = 3k + 1 \).

\[
 f(u) = \begin{cases}
 2, & \text{if } u = v_n, \text{ or } v_{3j-1} \text{ for } j = 1, 2, \ldots, k, \\
 1, & \text{if } u = u_j, \text{ for every } j \text{ such that } f(v_j) \neq 2, \\
 0, & \text{otherwise}.
\end{cases}
\]

Then \(f \) is an IDF with \(f(V) = \frac{4n+2}{3} \). So that, \(\gamma_I(P_n \odot K_1) \leq \frac{4n+2}{3} \). Therefore, \(\gamma_I(P_n \odot K_1) = \frac{4n+2}{3} \).

When \(n = 3k + 2 \).

\[
 f(u) = \begin{cases}
 2, & \text{if } u = v_{3k+2}, \text{ for } k = 0, 1, 2, \ldots \\
 1, & \text{if } u_j \text{ with } f(v_j) \neq 2, \\
 0, & \text{otherwise}.
\end{cases}
\]

Then \(f \) is an IDF with \(f(V) = \frac{4n+1}{3} \). So that, \(\gamma_I(P_n \odot K_1) \leq \frac{4n+1}{3} \). Therefore, \(\gamma_I(P_n \odot K_1) = \frac{4n+1}{3} \).

Hence, \(\gamma_I(P_n \odot K_1) \leq \lceil \frac{4n}{3} \rceil \).

Theorem 2.10. \(\gamma_I(C_n \odot K_1) = \lceil \frac{4n}{3} \rceil \).

Proof. The proof is similar to that of \(P_n \).
3 Addition of twin vertex

In this section, we discuss the impact of addition of twin vertices to a graph \(G \) on the Italian domination number of a graph.

Lemma 3.1. Let \(u \) and \(u' \) be true twins in a graph \(G \). Then there exists a \(\gamma_I \)-function of \(G \) in which \(f(u') = 0 \).

Proof. Let \(f \) be a \(\gamma_I \)-function of \(G \). If \(f(u') = 2 \), then \(f(u) = 0 \), due to the minimality of \(f \). Now, reassign \(f(u) = 2 \) and \(f(u') = 0 \), so that \(f \) is a \(\gamma_I \)-function of \(G \) with the required property.

If \(f(u') = 1 \) then \(f(u) \) can be either 1 or 0. Note that due to the minimality it can not be 2. If \(f(u) = 1 \) then we can reassign \(f(u) = 2 \) and \(f(u') = 0 \) so that \(f \) is still a \(\gamma_I \)-function of \(G \) with the required property. If \(f(u) = 0 \) then to Italian dominate \(u \) there esists a \(v \in N(u) \) such that \(f(v) = 1 \). Since \(N(u) = N(u') \), in this case also we can interchange the weights of \(u \) and \(u' \) to get a \(\gamma_I \)-function in which \(f(u') = 0 \). Hence the lemma.

Theorem 3.2. Let \(G \) be a graph and \(u \in V(G) \). Let \(H \) be the graph obtained from \(G \) by attaching a true twin \(u' \) to \(u \). Then \(\gamma_I(H) = \gamma_I(G) \) or \(\gamma_I(G) + 1 \).

Proof. Let \(f \) be a \(\gamma_I \)-function of \(G \). If \(u \in V_0^f \cup V_2^f \) then \(f \) can be extended to an IDF of \(H \) by assigning 0 to \(u' \) so that

\[
\gamma_I(H) \leq \gamma_I(G). \tag{1}
\]

If \(u \in V_1^f \) and there exists \(v \in N(u) \) such that weight of \(v \) not equal to 0 then \(f \) can be extended to an IDF of \(H \) by assigning 0 to \(u' \) so that

\[
\gamma_I(H) \leq \gamma_I(G). \tag{2}
\]

Now assume that there does not exist any \(\gamma_I \)-function of \(G \) for which \(u \in V_0^f \cup V_2^f \) or \(|N(u) \cap (V_1^f \cup V_2^f)| \geq 1 \), then we can extend \(f \) to an IDF of \(H \) by assigning 1 to \(u' \) so that

\[
\gamma_I(H) \leq \gamma_I(G) + 1. \tag{3}
\]

Let \(g \) be a \(\gamma_I \)-function of \(H \). Then by Lemma 3.1 there exists an IDF \(g \) in which \(g(u') = 0 \). Then the restriction of \(g \) to \(V(G) \) is an IDF of \(G \) so that

\[
\gamma_I(G) \leq \gamma_I(H). \tag{4}
\]

The weight of \(u \) in \(H \) can be \(g(u) = 0, 1 \) or 2. If \(g(u) = 2 \), all the vertices in the neighborhood of \(u \) other than \(u' \) are Italian dominated by some other vertices
in H. Then the restriction of g to G by assigning weight 1 to u is an IDF of G. Therefore, $\gamma_I(G) \leq \gamma_I(H) - 1$. i.e.,

$$\gamma_I(G) + 1 \leq \gamma_I(H).$$

(5)

From equations (1), (2), (3), (4) and (5), we get, $\gamma_I(H) = \gamma_I(G)$ or $\gamma_I(G) + 1$. \Box

Lemma 3.3. Let u and u' be false twins in a graph G. Then there exists a γ_I-function f of G in which $f(u') \neq 2$.

Proof. Let f be a γ_I-function with $f(u') = 2$. Then $f(u) = 0$, by the minimality of f. If $f(u) = 0$ then there exists a $v \in N(u)$ such that $f(v) = 2$ or two vertices $x, y \in N(u)$ such that $f(x) = f(y) = 1$. Since, u and u' have the same neighborhood, exchange weights of u and u'. Then we get a γ_I-function with same weight and $f(u') = 0$. \Box

Theorem 3.4. Let G be a graph and $u \in V(G)$. Let H be a graph obtained from G by attaching a false twin u' to u. Then $\gamma_I(H) = \gamma_I(G)$ or $\gamma_I(G) + 1$.

Proof. Let f be a γ_I-function of G. If $u \in V_0^I$ or $|N(u) \cap V_1^I| \geq 1$ or $|N(u) \cap V_2^I| \geq 2$ then f can be extended to an IDF of H by assigning 0 to u' so that

$$\gamma_I(H) \leq \gamma_I(G).$$

(6)

Now, assume that there does not exist any γ_I-function of G for which any of the above conditions are satisfied. Then we can extend f to an IDF of H by assigning 1 to u' so that

$$\gamma_I(H) \leq \gamma_I(G) + 1.$$

(7)

Let g be a γ_I-function of H. Then by Lemma 3.3 there exists a γ_I-function with $g(u') \neq 2$. Therefore, $g(u') = 1$ or 0. If $g(u') = 0$ then the restriction of g to G is an IDF of G. Therefore,

$$\gamma_I(G) \leq \gamma_I(H)$$

(8)

If $g(u') = 1$, but all the neighbors of u' are Italian dominated by some other vertices (i.e., u' is assigned value 1 to Italian dominate itself), then the restriction of g to G will be an IDF with $\gamma_I(G) \leq \gamma_I(H) - 1$. i.e.,

$$\gamma_I(G) + 1 \leq \gamma_I(H).$$

(9)

From equations (6), (7), (8) and (9), we get, $\gamma_I(H) = \gamma_I(G)$ or $\gamma_I(G) + 1$. \Box
4 Conclusion

In this paper, the impact of corona operator and addition of twins on the Italian domination number is studied. The following problems may also be worth investigating.

Problem 1: The effect of other graph operations on Italian domination number.

Problem 2: The effect of corona operator on Italian domination number of some other graph classes.

Problem 3: The effect of corona operator on other domination parameters.

References

[1] F. Alizadeh, H. R. Maimani, L. P. Majd, M. R. Parsa, Roman $\{2\}$-domination in Graphs and Graph Products, Unpublished.

[2] R. Balakrishnan, K. Ranganathan, A Text Book of Graph Theory, Springer, New York, (1999).

[3] M. Chellai, T. W. Haynes, S. T. Hedetniemi, A. A McRae, Roman $\{2\}$-domination, Discrete Appl. Math., 204 (2016), 22-28.

[4] H. Gao, C. Xi, K. Li, Q. Zhang, Y. Yang, The Italian Domination Numbers of Generalized Petersen Graphs $P(n,3)$, Mathematics, 714(2019), 7.

[5] H. Gao, T. Xu, Y. Yang, Bagging Approach for Italian Domination in $C_n\Box P_m$, IEEE Access, PP(99): 1-1, DOI:10.1109/ACCESS.2019.2931053.

[6] M. Hajibaba, N. J. Rad, On Domination, 2-Domination and Italian Domination Numbers, Utilitas Mathematica, 111(2019), 271-280.

[7] T. W. Haynes, M. A. Henning, L. Volkman, Graphs with Large Italian Domination Number, Bull. Malays. Math. Sci. Soc. (2020), https://doi.org/10.1007-s40840-020-00921-y.

[8] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[9] M. A. Henning, W. F. Klostermeyer, *Italian domination in trees*, Discrete Appl. Math, 217(2017): 557-564.

[10] V. Jismy, V. Anu, S. Aparna Lakshmanan, *Italian Domination and Perfect Italian domination on Sierpiński Graphs*, (Communicated).

[11] V. Jismy, S. Aparna Lakshmanan, *Italian Domination on Mycielskian and Sierpinski Graphs*, Discrete Mathematics Algorithms and Applications, (accepted - online ready: https://doi.org/10.1142/S1793830921500373).

[12] G. MacGillivray, W. Klostermeyer, *Roman, Italian and 2-domination*, J. Comb. Math. Comb. Comput., 108(2019), 113-123.

[13] A. Poureidi, N. J. Rad, *On the Algorithmic Complexity of Roman {2}-domination*, Iranian Journal of Science and Technology, Transaction A: Science, 44(6), DOI: 10.1007—s40995-020-00875-7.