Restatement of the I-O Coefficient Stability Problem

Emilian Dobrescu

Received: 2 September 2012 / Accepted: 23 January 2013 / Published online: 4 February 2013
© 2013 E. Dobrescu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract The capacity of input-output tables to reflect the structural peculiarities of an economy and to forecast, on this basis, its evolution, depends essentially on the characteristics of the matrix A—matrix of I-O (or technical) coefficients. However, the temporal behaviour of these coefficients is yet an open question. In most applications, the stability of matrix A is usually admitted. This is a reasonable assumption only for a short-medium term. In the case of longer intervals, the question is much more complicated.

We shall empirically discuss this problem by using Romanian input-output tables. Our statistical option was motivated inter alia by the existence of official annual data for two decades (1989–2009).

As an introduction, Sect. 1 characterises the general framework of paper. Section 2—The main characteristics of I-O coefficients as statistical time series—examines the variability of technical coefficients expressed in both volume and value terms. The analysis is convergent to other previous works, confirming that the evolution of these coefficients in real and nominal terms is roughly similar. The main finding of this section is that, on one hand, the I-O coefficients are volatile, but on the other, they are serially correlated.

Consequently, Sect. 3—Attractor hypothesis—examines a possible presence of attractors in corresponding statistical series. The paper describes a methodology to approximate these using new indicators obtained by summation—in columns and rows—of the technical coefficients (colsums scaj and rowsums srai). The RAS method is involved as a connecting technique between these indicators and sectoral data.

Section 4—Conclusions—presents the main conclusions of the research and outlines several possible future developments. The database and econometric analysis are presented in Statistical and Econometric Appendix.

E. Dobrescu
2, Uruguay Str., Bucharest, 11445, Romania
e-mail: emiliand@clicknet.ro
Keywords I-O coefficients · Volatility · Serial correlation · Attractor · RAS technique

JEL Classification C12 · C32 · C43 · C67

1 Introduction

1. The capacity of input-output tables to reflect the structural peculiarities of the economy and to forecast, on this basis, its evolution, depends essentially on the characteristics of matrix A of I-O (or technical) coefficients. The so-called Leontief matrix \[(I - A)^{-1}\] has proven to be a powerful analytical tool in the investigation of propagated effects induced by inter-industry production chains. Our paper utilises the methodological framework developed in [23, 24, 28, 41, 44].

The temporal behaviour of I-O coefficients is yet an open question. In most applications, the stability of matrix A is usually assumed. This comes from both classical and extended interpretations of the Cobb–Douglas production function. According to Sawyer (p. 327 in [38]), “Under the first of these alternative hypotheses, the \(a_{ij}\) will be stable in volume terms. Under the second, the \(a_{ij}\) will be stable in value terms”. Generally, the relative stability of the technical coefficients can be considered as a reasonable assumption for a short-medium term. In the case of longer intervals, the question is much more complicated.

2. We shall empirically discuss this problem by using Romanian input-output tables. Our statistical option was motivated inter alia by the existence of official annual data for two decades (1989–2009).

These tables are built on an extended classification comprising 105 branches [17]. To simplify computational operations, the present research relates to a more compact version of 10 sectors [11, 33], as described in Table 1.

The correspondence of this collapsed structure to the original extended nomenclature is detailed in [12]. As in any aggregation, the one proposed in Table 1 implies some losses of information.

Nevertheless, the chosen analysis classification remains sufficiently complex and relevant to involve in this discussion some conceptual anchors of chaos theory. Specifically, we investigate whether the I-O coefficients series could contain sets of attractor points. To answer this question, a methodology for their numerical estimation will be applied to the available data.

3. The robustness of structural changes analysis and of the sectoral dynamic general equilibrium models depends mainly on the temporal behaviour of I-O coefficients. These can be estimated:

- in volume terms (at constant prices), denoted as \(c_{aij}\); and
- in value terms (at current prices), usually denoted as \(a_{ij}\).

The first estimation concerns the real economy, while the second relates to the nominal one. These determinations are mediated by the relative prices \(r_{Pij}\).

If \(cx_{ij}\) represents the part of sector i’s production (at constant prices \(p_{0ij}\)) used in sector j, and \(cX_j\) — total output of the sector j (at constant prices \(p_{0j}\)), then:

\[c_{aij} = cx_{ij}/cX_j\]
Table 1 Sectoral structure of the Romanian input-output tables

Code	Definition
1	Agriculture, forestry, hunting, and fishing
2	Mining and quarrying
3	Production and distribution of electric and thermal power
4	Food, beverages, and tobacco
5	Textiles, leather, pulp and paper, furniture
6	Machinery and equipment, transport means, other metal products
7	Other manufacturing industries
8	Constructions
9	Transports, post, and telecommunications
10	Trade, business, and public services

and

\[a_{ij} = \frac{x_{ij}}{X_j} \quad (2) \]

in which the same components of the above ratio are expressed in current prices \((p_i \text{ and } p_j, \text{ respectively})\).

Introducing the indices \(P_i = \frac{p_i}{p_{0i}}\) and \(P_j = \frac{p_j}{p_{0j}}\), we obtain

\[a_{ij} = \frac{x_{ij}}{X_j} = cx_{ij}/(cX_j * P_j) = (cx_{ij}/cX_j) * (P_i/P_j) = ca_{ij} * reP_{ij} \quad (3) \]

where \(reP_{ij} = P_i/P_j\).

The I-O coefficients at constant prices were estimated using formula (3), which is equivalent to \(ca_{ij} = a_{ij}/reP_{ij}\).

Econometric estimations involve several aggregative indicators resulted from the technical coefficients in value terms, namely:

- Colsums \((sc_{ai})\), which summarises the I-O coefficients in columns,

\[sc_{ai} = \sum_{j} a_{ij} \quad \text{with } j = \text{ fixed}; \quad i = 1, 2, \ldots, n \quad (4) \]

These approximate the weight of intermediary consumption in the total output of every sector.

- Rowsums \((sr_{ai})\), which summarises the I-O coefficients in rows,

\[sr_{ai} = \sum_{i} a_{ij} \quad \text{with } i = \text{ fixed}; \quad j = 1, 2, \ldots, n \quad (5) \]

These approximate the contribution of each sector to the intermediary consumption of the entire economy.

2 The Main Characteristics of I-O Coefficients as Statistical Time Series

In the evaluation of the temporal features of I-O coefficients, three questions are relevant:
Do some peculiarities exist in the co-movement of I-O coefficients real-nominal expression?

Are I-O coefficients really stable?

Are these coefficients serially correlated?

The following sections attempt to find answers to these problems.

1. Relating to the first question, in principle the dynamics of real and nominal I-O coefficients are interdependent. On the supply side, the modifications in production costs (reflected by c_{ij}) influence the current prices of transactions. On the other hand, the changes in relative prices (reflected by a_{ij}) have an impact on the demand structure and, consequently, on the size of the output and the conditions (technology, human capital, etc.) in which this is achieved. Due to the complexity of economic life, in each historical period this interdependence has some specific features. This is the reason why statistical evaluation becomes important. Given these, the estimation of the synchronisation degree (SDa) of changes in a_{ij} and c_{ij} can be conclusive.

1.1. Starting from some proposals advanced in the literature about economic structures and cycles, three concrete formulae are considered.

(a) The first could be referred to as the cosine synchronisation degree (SDa1) since it is estimated as a vectorial angle between time series of I-O coefficients in their double expressions:

$$SDa1 = \sum_{t} (a_{ij,t} \ast c_{ij,t}) / \left[\left(\sum_{t} a_{ij,t}^2 \right)^{1/2} \left(\sum_{t} c_{ij,t}^2 \right)^{1/2} \right]$$ \hspace{1cm} (6)

(b) The well-known correlation coefficient is often applied in statistical comparisons of real-nominal economic time series (see, for instance, [1, 8, 9, 16, 20, 26, 35, 39]). This Galtung–Pearson synchronisation degree (SDa2) is calculated as a ratio of covariance of series a_{ij} and c_{ij} to the product of their standard deviations, respectively:

$$SDa2 = \left(n \ast \sum_{t} a_{ij,t} \ast c_{ij,t} - \sum_{t} a_{ij,t} \ast \sum_{t} c_{ij,t} \right) / \left\{ \left[\left(n \ast \sum_{t} a_{ij,t}^2 - \left(\sum_{t} a_{ij,t} \right)^2 \right) \right]^{1/2} \right\} \left\{ \left[\left(n \ast \sum_{t} c_{ij,t}^2 - \left(\sum_{t} c_{ij,t} \right)^2 \right) \right]^{1/2} \right\}$$ \hspace{1cm} (7)

(c) A third method used in the economic literature for such analysis is worth mentioning [6, 9, 16]. We shall refer to it as the binary synchronisation degree (SDa3), which measures the proportion in which the compared series evolve in the same direction. Technically, a dummy variable is used, its value being 1 when the respective I-O coefficient increases, and 0 when it decreases or stagnates. If such an alternative assignment is denoted as d_{aij} for series a_{ij}, and, correspondingly, as $d_{ca_{ij}}$ for series c_{ij}, then SDa3 is given as

$$Sda3 = \left\{ \sum_{t} (d_{aij,t} \ast d_{ca_{ij},t}) + (1 - d_{aij}) \ast (1 - d_{ca_{ij}}) \right\} / n$$ \hspace{1cm} (8)
1.2. The above described SDa1, SDa2, and SDa3 do not raise special computational problems, and moreover, are easy to interpret. They have been applied in the series of all 100 technical coefficients, and the obtained results are synthesised in Fig. 1. Therefore, 95 % of SDa1 is positioned within 0.75–1 limits, and only 5 % do not exceed 0.75. At the same time, SDa2 is less than 0.5 in only one-fourth of cases; it is between 0.5–0.75 in 12 % of cases, and exceeds 0.75 in the rest (63 %). The last indicator is even more conclusive: SDa3 is within 0.75–1 in 87 % of cases, and less than 0.65 in none of the cases.

Summarising, all calculated synchronisation degrees of changes in aij and caij indicate that the I-O coefficients in both their expressions—in volume and value terms—evolve in a similar manner.

1.3. A more nuanced understanding of this interdependence could be obtained by determining the global variability degree of changes in all I-O coefficients, avca for caij and ava for aij:

\[
\text{avca}_t = \sum_j \left(w_{qi} \ast \left(\sum_i (cai_{ijt} - cai_{ijt-1})^2 \right)^{1/2} \right) \\
\text{ava}_t = \sum_j \left(w_{qi} \ast \left(\sum_i (ai_{ijt} - ai_{ijt-1})^2 \right)^{1/2} \right)
\]

where \(w_{qi} \) represents the weight of sector \(i \) in the total output of economy.

Fig. 1 Synchronisation degree (SDa) of changes in aij and caij

n being the number of observations in the sample.
There were applied two unit root tests for ava and avca: ADF—Augmented Dickey–Fuller and PP—Phillips–Perron. All available options concerning the exogenous (no one, constant, constant plus linear trend) have been computed. The results are detailed in Table 2. Indulgently accepting the stationarity assumption, the pairwise Granger test statistically accredits a certain interconnection between the respective series only on a short run, with the causality direction from avca toward ava (probability of null hypothesis = 0.0881) for one lag, and converse, from ava toward avca (probability of null hypothesis = 0.0943) for two lags. More appropriate for non-stationary series, the test Toda–Yamamoto [43] indicates again on a short run (two lags) an influence of ava on avca (according to F-statistic, and Chi-square, the probability for null hypothesis “ava does not cause avca” represents 0.1107 and, respectively, 0.0869).

Except for 4 years (1991, 2002–2003, and 2005), the ratio of ava to avca was <1 in all periods. This means that the changes in relative prices somehow attenuated the shifts in technical coefficients in volume terms.

2. The examination of the co-movement pattern of changes in the real and nominal expressions of I-O coefficients does not clarify if these are relatively stable (small annual changes) or significantly volatile. This is important for our analysis.

In the case of I-O coefficients, we shall adopt a larger interpretation of volatility as an integrating measure of the frequency and size of the changes registered in their evolution. A comprehensive analysis of volatility determinants exceeds the thematic perimeter of this paper. Briefly, we recall the following factors:

- the performance of preponderantly used technologies that redound to most aspects of costs (labour productivity, energy and raw material intensities, quality of goods and services, length of productive cycles, etc.);
- the dimension, and structure of domestic demand, which influence the scale efficiency and relative prices;
- the openness degree of the country, with its impact on firms’ access to external markets, on import substitution effects, and on productive factors migration;
- the institutional reforms that have a great role in both emerging and developed economies; and
• the operational consequences of macroeconomic policies that can facilitate or, on the contrary, hinder the fructification of comparative advantages for the respective economy.

Quantitatively, the volatility of a given indicator will be approximated by its variation coefficient calculated (for the entire available time series) as follows. If \(q_t \) is the value of this indicator at moment \(t \) \((t = 1, 2, \ldots, s)\) and \(\omega_q \) its level admitted as referential, then this coefficient \((C_V) \) is determined by

\[
C_V = \left[\left(\sum_{t} \left(\frac{q_t}{\omega_q} - 1 \right)^2 \right) / s \right]^{1/2} \tag{11}
\]

In principle, \(\omega_q \) can differ depending on the objectives of analysis. As a first choice, we adopt the sample mean, accommodating expression (11) to the standard deviation formula largely used in modern statistics. Such an approach is suitable in forecasting the volatility for different interested horizons by simple extrapolation of its statistically registered level.

The proposed procedure consists of the following steps:

• For each interval two estimations of the respective indicator are determined: an upper and a lower level. The first is obtained by multiplying the mean of the previous series by \((1 + C_V) \), while the other results similarly but using \((1 - C_V) \) as a multiplier. We shall designate these values as \(Y \) for the upper level and \(y \) for the lower one.

• On this basis, two new means are also computed, mixing the corresponding previous series with \(Y \) and \(y \): they will be represented by the symbols \(M \) and \(m \), respectively. The statistical volatility is applied again by multiplying the new \(M \) by \((1 + C_V) \) and \(m \) by \((1 - C_V) \). This procedure is continued as much as it is considered useful (the forecast period being denoted by \(\tau = 1, 2, \ldots, n \)).

• The difference \((Y - y) \) can be admitted as an error \((\text{ef}_V) \) attributable to the initially estimated volatility. The interpretation of results would be facilitated by equalising the starting sample mean to unity.

More formally, for the upper level, we have

\[
Y_{\tau - 1} = (1 + C_V) * M_{\tau - 2}, \quad \tau = 1, 2, \ldots, n \tag{12}
\]

\[
M_{\tau - 1} = \left((s + \tau - 2) * M_{\tau - 2} + Y_{\tau - 1} \right) / (s + \tau - 1)
= \left((s + \tau - 2) * M_{\tau - 2} + (1 + C_V) * M_{\tau - 2} \right) / (s + \tau - 1)
= M_{\tau - 2} * (s + \tau - 2 + 1 + C_V) / (s + \tau - 1)
= M_{\tau - 2} * (s + \tau - 1 + C_V) / (s + \tau - 1)
= M_{\tau - 2} * (1 + C_V / (s + \tau - 1)) \tag{13}
\]

\[
Y_{\tau} = (1 + C_V) * M_{\tau - 1} = (1 + C_V) * M_{\tau - 2} * (1 + C_V / (s + \tau - 1)) \tag{14}
\]

A simplification can be obtained by passing to indices \((\text{IY}_{\tau} = Y_{\tau} / Y_{\tau - 1}) \):

\[
\text{IY}_{\tau} = \left((1 + C_V) * M_{\tau - 2} * (1 + C_V / (s + \tau - 1)) \right) / \left((1 + C_V) * M_{\tau - 2} \right)
= (1 + C_V / (s + \tau - 1)) \tag{15}
\]
This relationship is valid for $\tau \geq 2$ since $Y_0 = M_0 = 1$ and $Y_1 = (1 + C_V) * M_0 = (1 + C_V)$. Finally, we have

$$Y_n = (1 + C_V) * \prod_{\tau} (1 + C_V / (s + \tau - 1)) \quad \text{for} \quad \tau = 2, \ldots, n \quad (16)$$

Symmetrically, the expression of y_n is determined as

$$y_n = (1 - C_V) * \prod_{\tau} (1 - C_V / (s + \tau - 1)), \quad \text{again for} \quad \tau = 2, \ldots, n \quad (16a)$$

and

$$ef_{Vn} = \left[(1 + C_V) * \prod_{\tau} (1 + C_V / (s + \tau - 1)) \right] - \left[(1 - C_V) * \prod_{\tau} (1 - C_V / (s + \tau - 1)) \right] \quad (17)$$

Therefore, ef_{Vn} is influenced mainly by C_V, s, and τ. Figures 2(a) and 2(b) illustrate some indifference curves of the initial C_V depending on s and m, estimated under the conditions given in Table 3.

The presented algorithm can be used in establishing a kind of taxonomy scale of I-O coefficients volatility. Toward this aim, it would be necessary to determine the desirable levels of ef_V and the length of τ (that is, the value of n). A possible starting point in this sense can be the expectable financial risk induced by economic decisions linked to forecasted I-O coefficients. Addressing this question requires further research. A possible solution to this problem could be adequately extrapolated in other socio-economic fields.

Returning to the Romanian I-O tables, the variation coefficient, based on formula (11), was computed for all statistical series in 1989–2009 (100 caij and 100 corresponding aij). The results are summarised in Table 4, which shows that there is no I-O coefficient with $C_V < 0.05$ and only one with $C_V < 0.1$; instead, 85 % of caij and 73 % of aij are characterised by $C_V > 0.3$. The hypothesis that the mean of all C_V would be between 0.4–0.65 was tested for both series C_Vcaij and C_Vaij. The results are presented in Fig. 3.

In many cases, the volatility is so high that the calculated ef_V becomes abnormal even for very short intervals. As an example, the evolution of the error attributable to the initially estimated volatility (ef_V) was determined for three cases: for $C_V = 0.1$ (variant 1), $C_V = 0.2$ (variant 2), and $C_V = 0.3$ (variant 3), during $\tau = 1, 2, \ldots, 15$. The results of this exercise are denoted as ef_V1, ef_V2, and ef_V3, and are summarised in Fig. 4. We recall that the computed data represent indices comparatively to the mean level of the statistical series (the mean equalised to 1). For $C_V = 0.3$, the difference between the forecasted limits of the respective indicator can reach 0.7 in five years and 0.8 in ten. Even for $C_V = 0.1$, the potential forecasting error is hardly ac-
ceptable. As we have already shown, the levels calculated for Romanian I-O tables are overall much higher than the simulated (in Fig. 4) values of C_V.

3. Like other previous studies, the analysis of Romanian I-O tables confirms that the technical coefficients are volatile. What needs to be documented is the nature of this volatility, and the highly questionable factor is the presence of non-linearities in the respective statistical series. Such a possibility has been revealed in many economic indicators [3, 34]. In the case of Romanian I-O tables, we shall also examine whether the data regarding the technical coefficients are independent or, on the contrary, serially correlated.
Table 3 Estimation of the initial C_V depending on s and the final desirable ef_V

Variant	Forecasted interval	Final desirable ef_V
Cy050A	5	0.05
Cy075A	5	0.075
Cy100A	5	0.1
Cy125A	5	0.125
Cy050B	10	0.05
Cy075B	10	0.075
Cy100B	10	0.1
Cy125B	10	0.125

Table 4 Tabulation of statistical variation coefficients (C_V)

Limits of var. coeff.	C_{Vcaij}	C_{Vaij}
0.05–0.1	1	1
0.1–0.2	5	11
0.2–0.3	9	15
0.3–0.4	15	11
0.4–0.5	16	23
0.5–0.6	16	12
0.6–0.7	10	5
0.7–0.8	9	10
0.8–0.9	8	6
0.9–1	4	3
>1	7	3
Total	100	100

Fig. 3 Probability for the mean of C_{Vcaij} and C_{Vaij} to be situated between 0.4–0.65 (tabulated on abscissa)

It is widely accepted that: “The correlation sum in various embeddings can...be used as a measure of determinism in a time series” (p. 313 in [40]). The BDS test is sensitive to a large variety of possible deviations from independence in time series, including linear dependence, non-linear dependence, or chaos. Concerning this technique, our turns to the conceptual and applicative framework developed in [2, 6,
Thus, the null hypothesis of independent and identically distributed (i.i.d.) data is checked against an unspecified alternative.

For the I-O tables examined in this paper, the BDS test was applied to both categories of coefficients—at constant (caij) and current prices (aij). Concerning the embedding dimension, we sought to cover an extended range of possibilities. Due to the insufficient length of the statistical series, five such variants were adopted: 2, 3, 4, 5, and 6. As a principal guiding mark, the p-value for the tested null hypothesis was retained, computed for the sample data (normal probability) and for their random repetitions (bootstrap probability). Recent software provided both probabilities (normal and bootstrap) for three options related to the distance used for testing: the fraction of pairs, the standard deviations, and the fraction of range. Therefore, 30 p-values were computed for each technical coefficient, resulting in five dimensions, two tested series (original and bootstrap), and three distances.

The characterisation of the global distributions of the obtained p-values for all series of technical coefficients will be discussed. Two classifications are significant.

First, the p-values for all 3000 estimations are classified according to the following thresholds: under 0.05, 0.05–0.1, 0.1–0.25, and 0.25–1, presented in Fig. 5. This shows that in the case of caij, over 75% of p-values (2252) are below 0.05; if the group 0.05–0.1 is added, the proportion reaches 80%. The picture is similar for aij: almost 72% of tests are estimated with p-values of under 0.05, and approximately 76% have p-values of less than 0.1. This means that, generally, the series of I-O coefficients (either at constant or current prices) are not independent.
The second application sorts I-O coefficients depending on the number of registered BDS p-values under 0.05. Toward this aim, six classes are delimited: up to 5 times, 5–10, 10–15, 15–20, 20–25, and 25–30. Evidently, the sum of classes is equal to 100 (the totality of coefficients). Figure 6 synthesises this distribution, showing that in each of the 86 c_{aij}, at least 15 tests had p-values of under 0.05. The result is no different in the case of a_{ij} coefficients: among 90 cases, at least 10 p-values were under 0.05. The similarity of the c_{aij} and a_{ij} series suggests that the volatility of relative prices does not substantially influence the presence of serial correlation in the data.

Thus, in this section, we can conclude that, on one hand, the I-O coefficients are volatile, but on the other, they are serially correlated. Both statements have statistical support. More simply stated, we acknowledge a paradox because the high volatility indicates rather the presence of a quasi-disorder, while the serial correlation indicates a possible stable pattern in the analysed time series. The following section focuses on this exciting matter.

3 Attractor Hypothesis

The revealed contradictory combination of relatively high volatility of data and their consistent serial correlation generates a legitimate question: Is this contradiction a sign of a possible presence of an attractor in statistical series?

1. Generally, an attractor is considered a point or a closed subset of points (lines, surfaces, volumes), toward which a given system tends to evolve independently of its initial (starting) state [29–31, 36, 37]. Three types are frequently mentioned:
 - stable steady states,
 - different types of cycles, and
 - strange attractors.

The first type is relatively usual in Economics (“At best, the notion of equilibrium might, in practice, be identified with the notion of <attractor>”; p. 34 in [14]). The list of such examples is long, from the optimal rates of accumulation to the extended palette of Phillips curves.

Such points or lines need to be regarded rather as historical (that is, contextually determined) phenomena than as permanent, inflexible benchmarks. It is worth mentioning that some authors considered the “natural rate of unemployment” as a rather weak attractor (p. xiii in [4]).
Taking into account the numerous such applications in economics, the following systematisation of types of stable steady states would be useful:

- stable points,
- constant rates of movement (in different expressions, such as indices, elasticities, ratios, spreads, etc.), and
- bands of evolution.

All these are interesting perspectives in researching I-O tables. However, such a target would require many and sustained efforts. Our target is very narrow, namely, to attempt to identify in the studied statistical series some fixed points as possible attractors. This hypothesis will be used in two sub-variants: fixed points as such or slightly variable points with gradually decreasing influence of unknown factors (cumulated over a time parameter). Besides, the econometric analysis will concentrate on the dynamics of each I-O coefficient, considered separately and not in connection with other series.

Therefore, the evolution of I-O coefficients is conceived as an auto-regressive adaptive process, the differences between their actual and long-run levels being influenced by the past deviations. In the simplest form, such an application for Romanian input-output tables was developed in [10]. In a general notation, if y is the time series of interest, we would have the following relationship:

$$y_t = \tilde{y} - \alpha \ast (y(-1) - \tilde{y}) = \tilde{y} \ast (1 + \alpha) - \alpha \ast y(-1)$$

(18)

where \tilde{y} represents the long-run levels of y (or the attractor according to this paper’s terminology). It is assumed that $0 < |\alpha| < 1$, which means that y tends asymptotically towards \tilde{y}. Correspondingly, the first-order difference operator $d(y)$ is defined as

$$d(y) = y - y(-1) = \tilde{y} \ast (1 + \alpha) - \alpha \ast y(-1) - y(-1)$$

$$= \tilde{y} \ast (1 + \alpha) - (1 + \alpha) \ast y(-1) = a_0 - a_1 \ast y(-1)$$

(19)

The expression (19) contains the equivalencies $a_0 = \tilde{y} \ast (1 + \alpha)$ and $a_1 = (1 + \alpha)$.

To be more realistic, this determination will be relaxed by two amendments. On one hand, the last formula will be extended, with gradually diminishing influence of time. On the other, the auto-regressive process may involve lags of higher orders, not only of the first one, as in (19).

2. Even under such modifications, the approximation of possible attractor points requires the presence of at least one non-differentiated observation in the computational formula. Therefore, it would be preferable to use the statistical series stationary in levels ($I(0)$). Unfortunately, most of the available data do not observe such a restriction. From this point of view, two already mentioned unit root tests were applied: ADF—Augmented Dickey–Fuller and PP—Phillips–Perron test. Each was computed in three versions for the exogenous variables:

- none (denoted as 1),
- individual effects (denoted as 2), and
- individual effects and individual linear trends (denoted 3).
The p-values calculated for all 100 technical coefficients were grouped as follows: 0–0.05, 0.05–0.1, 0.01–0.25, and 0.25–1.

The corresponding distribution for the technical coefficients at constant prices (ca_{ij}) is presented in Figs. 7 and 8. Both unit root tests (ADF and PP) show that in around 80% of the cases, the p-values exceed 0.1. The same result is found for the technical coefficients at current prices (see Figs. 9 and 10).

At this point, we are confronted with a problem. The BDS test indicated the presence of temporal correlation in the data for technical coefficients (either at constant or at current prices). As previously mentioned, this finding would justify the identification of possible attractor points in their evolution. Since the series are not stationary in levels, in order to avoid the calculation of attractor points (as levels) by first- or second-order differentiation (a difficult computational task), an indirect way to approximate such points will be proposed.

The first step is to determine colsums (sc_{aij}) and rowsums (sr_{aij}) for the technical coefficients at current prices. The resulting series are given in Statistical and Econo-
metric Appendix. With respect to these time series, PANEL analysis did not reveal compelling signs of common explicative parameters. For this reason, they were examined separately. Table 5 shows the p-values of the ADF and PP tests for the scai series. In only three cases (sca2, sca3, and sca4) are the corresponding p-values situated in the proximity of 0.25. Consequently, the series scai will be used as such in regressions.

Table 6 presents the same indicators for srai. The introduction of econometric estimations for series sra5, sra8, and sra10 as such would clearly be too risky. Consequently, the first two were recalculated by the Hodrick–Prescott filter, obtaining for each the sub-series denoted as HP and HPd (difference between filter and primary data), respectively. The third series (sra10) was replaced with the corresponding logarithms. Table 7 shows the unit root test results, based on which the new series for sra5, sra8, and sra10 were used in regressions.

The formula (19) with the mentioned amendments was investigated using different specifications. The proposed selection considered, beside the mentioned premises,
Table 5 ADF and PP tests for sca_i

Variable	Exogenous	ADF		PP	
		t-statistic	Prob.	t-statistic	Prob.
sca1	Constant, linear trend	−4.54901	0.009	−4.52912	0.0094
sca2	Constant	−2.02573	0.274	−2.00889	0.2809
sca3	Constant	−3.98533	0.0073	−2.00269	0.2833
sca4	Constant, linear trend	−4.79669	0.0072	−2.85646	0.1956
sca5	Constant, linear trend	−6.12916	0.0005	−3.86767	0.0339
sca6	Constant, linear trend	−5.45292	0.0026	−3.4261	0.0761
sca7	Constant	−4.76606	0.0018	−2.99545	0.0525
sca8	Constant	−5.00001	0.0008	−7.99152	0
sca9	Constant	−4.47988	0.0028	−2.81411	0.0741
sca10	Constant, linear trend	−4.43914	0.012	−7.71446	0

Table 6 ADF and PP tests for sra_i

Variable	Exogenous	ADF		PP	
		t-statistic	Prob.	t-statistic	Prob.
sra1	Constant, linear trend	−3.06826	0.1399	−1.59124	0.1031
sra2	Constant	−2.94275	0.0581	−2.91376	0.0614
sra3	Constant	−3.51945	0.0183	−3.51945	0.0183
sra4	Constant	−2.6057	0.1083	−2.6057	0.1083
sra5	Constant, linear trend	−2.28894	0.4194	−2.54869	0.3041
sra6	None	−2.36343	0.0209	−2.17192	0.0319
sra7	Constant, linear trend	−4.96559	0.0044	−2.84798	0.1981
sra8	Constant, linear trend	−2.34672	0.3929	−1.90162	0.6163
sra9	Constant	−2.91805	0.0609	−2.91805	0.0609
sra10	Constant	−1.22677	0.6415	−1.28041	0.6175

the results of tests for omitted or redundant variables, and outliers, also. It has also tried to reduce the econometric compromises as much as possible. For the current paper, several types of relationships were retained according to the scheme given in Table 8. Sometimes dummy variables were introduced to decrease the influence of data outliers.

3. The OLS-solution of system SyS1scr (Statistical and Econometric Appendix) was submitted to econometric controls from four standpoints: (a) variance inflation factors, (b) Breusch–Pagan–Godfrey heteroskedasticity test, (c) correlogram squared residuals, and (d) stationarity of residuals.

Concerning the variance inflation factors (Table 9), it is conclusive that more than 77 % of the centred VIFs do not exceed 2, and approximately 15 % are situated between 2 and 3; even the rest do not surpass 5.3. Based on these results, we could accept that the specification of the system SyS1scr is not contaminated in an alarming manner by collinearity effects.
The test Breusch–Pagan–Godfrey (Table 10) indicates high enough probabilities for the rejection of heteroskedasticity hypothesis.

The correlogram of squared residuals was computed for five lags (Table 11). In most cases, Q-statistics are associated with relatively large p-values, which attest a weak serial correlation in the residuals.

Concerning the stationarity of residuals, both unit root tests ADF and PP were applied again, in all available options for exogenous (Table 12). There were thus generated 132 values of the probability the respective residual has a unit root. Out of these, 76.52 % are placed under 0.05, and 10.61 % between 0.05–0.1.

The above presented tests (for collinearity, heteroskedasticity, serial correlation, and stationarity of residuals) show that OLS could be acceptable to estimate the system SyS1scr.

4. The system SyS1scr has been solved using other four techniques: Weighted Least Squares (WLS), Seemingly Unrelated Regression (SUR), Generalised linear models (GLM), and Generalised Method of Moments (GMM). The obtained results are detailed in Statistical and Econometric Appendix.

The solution induced by Weighted Least Squares slightly ameliorates the standard errors, maintaining, however, the parameters of equations practically at the same level as OLS. The differences between Seemingly Unrelated Regression and OLS re-

Table 7 ADF and PP tests for derived series sra5, sra8, and sra10

Variable	Exogenous	ADF t-statistic	ADF Prob.	PP t-statistic	PP Prob.
sra5HP	None	-2.48196	0.0168	-1.41255	0.1422
sra5HPd	None	-5.36025	0	-3.91121	0.0005
sra8HP	Constant	-3.84112	0.0116	-2.06376	0.5334
sra8HPd	None	-3.73356	0.0008	-3.89625	0.0005
sra10	None	-4.16256	0.0003	-5.48654	0

Table 8 Main econometric relationships

Variables	Specification
sra5, sra2, sra4, sra9, log(sra10)	d(y) = a0 + a1 * y(-1), with possible a1 * y(-3) or a2 * d(y, 2)
sra8, sra10	d(y) = b0 + b1 * y(-1) + b2 * t/(t + 1), with possible b0 = 0
sra2, sra3, sra5HPd	d(y) = c0 + c1 * y(-1) + c2 * d(y(-1)), with possible c0 = 0 or c1 * y(-2)
sra5, sra6, sra9	d(y) = d0 + d1 * y(-1) + d2 * d(y(-1)) + d3 * d(y(-2)) + d4 * t/(t + 1), with possible d3 = 0
sra8HP, sra8HPd	d(y) = e0 + e1 * y(-1) + e2 * d(y, 2), with possible e0 = e1 = 0
sca7, sra5HP	d(y) = f0 + f1 * y(-1) + f2 * d(y(-1)) + f3 * d(y(-2)) + f4 * d(y(-3)) + f5 * t/(t + 1) with possible f2 = f3 = f5 = 0
sra1, sra6	d(y) = g0 + g1 * y(-1) + g2 * d(y(-1)) + g3 * t^{-1}, with possible g2 * d(y(-2))
sra3	d(y) = h0 + h1 * y(-3) + h2 * t^{-1}
sra4, sra7	d(y) = i0 + i1 * y(-2) + i2 * d(y, 2) + i3 * t/(t + 1) or i3 * t^{-1}
Table 9 Variance Inflation Factors—SyS1scr

Variable Coefficient variance	Uncentred VIF	Centred VIF	Variable Coefficient variance	Uncentred VIF	Centred VIF
c(1)	0.007439	181.7134 NA	c(39)	0.024642	1.450884 1.315947
c(2)	0.032656	182.2648 1.009286	c(40)	0.109405	22.57514 5.223014
c(501)	0.00087	1.062407 1.009286	c(510)	0.001322	1.149574 1.085709
c(3)	0.003984	74.7162 NA	c(41)	0.010673	94.24219 NA
c(4)	0.00863	74.77052 1.17408	c(42)	0.035631	93.71807 2.198215
c(5)	0.014339	1.296515 1.292649	c(43)	0.014986	2.11911 2.11897
c(6)	0.001936	128.8835 NA	c(511)	0.002527	1.174249 1.112446
c(7)	0.003913	153.3235 1.466782	c(44)	0.020214	88.31065 NA
c(8)	0.007181	6.302923 1.458253	c(45)	0.043413	87.61261 1.624957
c(9)	0.025715	440.5265 NA	c(46)	0.044123	1.654492 1.645571
c(10)	0.014377	1123.768 4.799226	c(512)	0.004665	1.072668 1.016212
c(11)	0.003776	1.17145 1.169737	c(47)	0.003327	95.02657 NA
c(12)	0.008835	1235.916 4.601097	c(48)	0.021225	94.48058 1.093589
c(505)	0.000188	1.696676 1.607377	c(513)	0.000796	1.128173 1.071764
c(13)	0.019685	1392.005 NA	c(514)	0.000754	1.077272 1.023409
c(14)	0.024542	623.8674 1.638509	c(49)	2.81E-06	426.7166 NA
c(15)	0.016727	1.35002 1.347123	c(50)	1.05E-05	395.778 2.751647
c(16)	0.00631	364.5846 1.357284	c(51)	0.000234	3.754934 2.751647
c(17)	0.034858	1965.638 NA	c(52)	0.025272	1.796378 NA
c(18)	0.030144	650.8176 2.390064	c(53)	0.016926	1.920122 NA
c(19)	0.023574	1.422988 1.404814	c(515)	0.000178	1.170656 NA
c(20)	0.011187	515.4273 1.918844	c(516)	0.000184	1.211256 NA
c(21)	0.081562	8973.245 NA	c(54)	0.003218	19.90196 NA
c(22)	0.092117	5429.118 3.120946	c(55)	0.007158	20.39908 1.264573
c(23)	0.042363	2.079116 2.060516	c(56)	0.017469	1.220558 1.218342
c(24)	0.031891	1.948496 1.866357	c(517)	0.003526	1.147892 1.087476
c(25)	0.033425	2.002502 1.928123	c(57)	0.014686	248.5112 NA
c(26)	0.012829	1189.042 1.690041	c(58)	0.007722	281.5666 1.506779
c(27)	0.002979	389.7016 NA	c(59)	0.003002	1.016724 1.00456
c(28)	0.009449	388.3649 1.064145	c(60)	0.015966	4.954369 1.509934
c(29)	0.005972	1.198711 1.182468	c(61)	6.02E-06	47.60604 NA
c(506)	0.000171	1.178583 1.116553	c(62)	1.66E-04	23.38802 1.507298
c(30)	0.005762	1013.246 NA	c(63)	1.57E+00	11.50596 1.668578
c(31)	0.027859	860.7738 1.847807	c(518)	2.77E-06	1.152835 1.092159
c(32)	0.019306	2.0286 2.028597	c(519)	2.94E-06	1.223618 1.159217
c(33)	0.003382	494.3642 1.101297	c(64)	0.006251	1.235811 NA
c(34)	0.000142	1.385103 1.308153	c(520)	0.000222	1.133899 NA
c(35)	0.003491	324.9721 NA	c(521)	0.000216	1.101912 NA
Table 9 (Continued)

Variable	Coefficient variance	Uncentred VIF	Centred VIF	Variable	Coefficient variance	Uncentred VIF	Centred VIF
c(36)	0.005765	95.10627	1.474381	c(66)	0.017978	19.27486	1.020607
c(508)	0.000506	2.661904	2.528809	c(522)	0.003492	1.066213	1.012902
c(509)	0.000219	1.151599	1.094019	c(523)	0.003497	1.067792	1.014402
c(37)	0.011343	177.5241	NA	c(67)	0.000826	3.416318	NA
c(38)	0.042122	285.9858	4.932777	c(68)	0.000602	3.868874	1.182485
c(524)	0.00545			c(524)	0.00545	1.252043	1.182485

Regarding estimators and coefficients of determination are also insignificant. The same conclusion is valid for the Generalised Linear Models (applied with bootstrap).

The Generalised Method of Moments was involved in variant HAC for the time series (Bartlett and Variable Newey–West). Despite the large number enough of trials, the results were inconclusive. First, in order to obtain a plausible solution, it was necessary to break SyS1scr into three sub-systems—SyS1scaG, SyS1sraG, and SyS1sra8G—which have been separately computed. Secondly, the algorithm did not work with dummies, or these were not introduced casually, but according to the specification test about outliers.

Briefly, the comparative analysis of different techniques suggests as acceptable OLS method. Nevertheless, a problem persists. According to Statistical and Econometric Appendix (System Residual Cross-Correlations—OLS), the disturbances of some relationships represented in SyS1scr are correlated. They reflect, at great extent, the indubitable fact of inter-industry linkages. Obviously, there must be a consistent solution of the question hereby discussed. It could result from a re-specification of the entire system by explicit inclusion in the equations of the factors inducing cross-correlations among input-output technical coefficients, and subsequently applying computational methods that avoid simultaneity effects. But such an approach should need further interdisciplinary research. Until then, I am reluctant to involve techniques which somehow mechanically constrain the cross-correlations of I-O coefficients. Consequently, for the present OLS will keep being involved in the succeeding steps of our approach.

5. Based on the previous system, the fitted sca$_f$ and sra$_f$ can be obtained, but not a$_{ij}$ as such. To approximate these, the RAS technique was applied. During its half-century existence [42], this method has registered extended applications, including in recent researches [7, 18, 19, 21, 22, 25, 27]. Usually, the starting matrix for every t is the statistical matrix A_{t-1}, which is adjusted by successive bi-proportional corrections in dependence on exogenously given sectoral outputs. The applicability of such a method for an emergent economy such as in Romania has already been documented [13].

The present paper slightly modifies this procedure, using sca$_f$ and sra$_f$ as column and row restrictions in a RAS algorithm. The resulting technical coefficients (denoted as r$_{ij}$) are relevant from the present research perspective. Notably, r$_{ij}$ are calculated using the fitted sca$_f$ and sra$_f$. The formulae, however, are based on the hypothesis that the respective original statistical series contain attractor points. Consequently, the
Table 10 SyS1scr: heteroskedasticity test Breusch–Pagan–Godfrey

Dependent variable: d(sca1)	Dependent variable: d(sra2)		
F-statistic	0.901062	F-statistic	1.017491
Obs*R-squared	1.916936	Obs*R-squared	4.279439
Scaled explained SS	0.928978	Scaled explained SS	0.96349

| Obs*R-squared | 0.4247 | Obs*R-squared | 0.4318 |
| Scaled explained SS | 0.928978 | Scaled explained SS | 0.928978 |

Dependent variable: d(sca2)	Dependent variable: d(sra3)		
F-statistic	0.493489	F-statistic	0.610519
Obs*R-squared	2.347896	Obs*R-squared	2.067521
Scaled explained SS	1.07891	Scaled explained SS	0.52206

| Obs*R-squared | 0.7408 | Obs*R-squared | 0.6185 |
| Scaled explained SS | 1.07891 | Scaled explained SS | 0.914 |

Dependent variable: d(sca3)	Dependent variable: d(sra4)		
F-statistic	0.880908	F-statistic	0.329585
Obs*R-squared	2.858248	Obs*R-squared	1.16401
Scaled explained SS	2.466576	Scaled explained SS	0.798201

| Obs*R-squared | 0.4746 | Obs*R-squared | 0.7616 |
| Scaled explained SS | 2.466576 | Scaled explained SS | 0.8499 |

Dependent variable: d(sca4)	Dependent variable: d(sra5HP)		
F-statistic	1.613982	F-statistic	0.335166
Obs*R-squared	7.277122	Obs*R-squared	0.76401
Scaled explained SS	7.487449	Scaled explained SS	0.343187

| Obs*R-squared | 0.2249 | Obs*R-squared | 0.6285 |
| Scaled explained SS | 7.487449 | Scaled explained SS | 0.8423 |

Dependent variable: d(sca5)	Dependent variable: d(sra5HPd)		
F-statistic	0.757351	F-statistic	0.651693
Obs*R-squared	2.499355	Obs*R-squared	2.982437
Scaled explained SS	3.524105	Scaled explained SS	1.916603

| Obs*R-squared | 0.5352 | Obs*R-squared | 0.5608 |
| Scaled explained SS | 3.524105 | Scaled explained SS | 0.7511 |
Table 10 (Continued)

Dependent variable: d(sca6)	F-statistic	Prob. F(3.15)	Obs*R-squared	Prob. Chi-Square(3)	Scaled explained SS	Prob. Chi-Square(3)
F-statistic	0.498536	0.6889	Obs*R-squared	2.547519	Prob. Chi-Square(4)	0.6361
Obs*R-squared	1.722675	0.6319	Scaled explained SS	2.828426	Prob. Chi-Square(4)	0.5869
Scaled explained SS	2.27106	0.5181				

Dependent variable: d(sca7)	F-statistic	Prob. F(5.11)	Obs*R-squared	Prob. Chi-Square(5)	Scaled explained SS	Prob. Chi-Square(5)
F-statistic	0.776423	0.5866	Obs*R-squared	0.437113	Prob. Chi-Square(4)	0.9793
Obs*R-squared	4.434583	0.4887	Scaled explained SS	0.426564	Prob. Chi-Square(4)	0.9802
Scaled explained SS	1.311754	0.9337				

Dependent variable: d(sca8)	F-statistic	Prob. F(4.14)	Obs*R-squared	Prob. Chi-Square(4)	Scaled explained SS	Prob. Chi-Square(4)
F-statistic	1.183406	0.3604	Obs*R-squared	6.399829	Prob. Chi-Square(5)	0.2692
Obs*R-squared	4.800931	0.3083	Scaled explained SS	2.752073	Prob. Chi-Square(5)	0.7381
Scaled explained SS	4.819883	0.3063				

Dependent variable: d(sca9)	F-statistic	Prob. F(5.12)	Obs*R-squared	Prob. Chi-Square(5)	Scaled explained SS	Prob. Chi-Square(5)
F-statistic	0.63052	0.6804	Obs*R-squared	4.141061	Prob. Chi-Square(5)	0.5293
Obs*R-squared	3.745019	0.5867	Scaled explained SS	1.882761	Prob. Chi-Square(5)	0.8651
Scaled explained SS	1.619852	0.8988				

Dependent variable: d(sca10)	F-statistic	Prob. F(4.15)	Obs*R-squared	Prob. Chi-Square(4)	Scaled explained SS	Prob. Chi-Square(4)
F-statistic	0.928894	0.4733	Obs*R-squared	1.061723	Prob. Chi-Square(3)	0.7863
Obs*R-squared	3.970571	0.41	Scaled explained SS	0.863016	Prob. Chi-Square(3)	0.8343
Scaled explained SS	2.66595	0.6152				

Dependent variable: d(sra1)	F-statistic	Prob. F(5.12)	Obs*R-squared	Prob. Chi-Square(5)	Scaled explained SS	Prob. Chi-Square(5)
F-statistic	0.476573	0.7871	Obs*R-squared	2.755483	Prob. Chi-Square(2)	0.2521
Obs*R-squared	2.982131	0.7027	Scaled explained SS	1.404621	Prob. Chi-Square(2)	0.4954
Scaled explained SS	0.508079	0.9918				
Table 11 Correlogram of residuals squared—S_yS1scr

Lag	Dependent variable: d(sca1)	Dependent variable: d(sca3)	Dependent variable: d(sra5HP)									
	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.
1	1.168	0.5983	0.439	0.127	0.127	0.3738	0.541	0.276	0.276	1.6847	0.194	
2	0.038	0.6304	0.73	0.004	0.012	0.3743	0.829	0.286	0.285	1.9394	0.379	
3	0.044	0.6771	0.879	0.171	0.175	1.1293	0.77	0.238	0.242	3.3536	0.34	
4	0.009	0.6789	0.954	0.259	0.225	2.9779	0.562	-0.097	-0.202	3.6057	0.462	
5	-0.198	1.7687	0.88	-0.308	-0.394	5.763	0.33	0.004	0.173	3.6061	0.607	

Lag	Dependent variable: d(sca2)	Dependent variable: d(sca9)	Dependent variable: d(sra5HPd)									
	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.
1	0.092	0.092	0.1874	0.665	0.087	0.087	0.1621	0.687	0.033	0.033	0.0247	0.875
2	0.174	0.167	0.9021	0.637	0.144	0.152	0.6266	0.731	0.106	0.107	0.2871	0.866
3	-0.118	-0.093	1.2507	0.741	-0.101	-0.133	0.871	0.832	0.117	0.126	0.6284	0.89
4	0.047	0.004	1.31	0.86	-0.169	-0.228	1.6068	0.808	-0.143	-0.17	1.1734	0.882
5	-0.056	-0.018	1.3989	0.924	0.086	-0.003	1.8114	0.875	-0.259	-0.226	3.0863	0.687

Lag	Dependent variable: d(sca3)	Dependent variable: d(sca10)	Dependent variable: d(sra6)									
	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.
1	-0.168	-0.168	0.5983	0.439	0.127	0.127	0.3738	0.541	-0.033	-0.033	0.0248	0.875
2	0.038	0.01	0.6304	0.73	0.004	-0.012	0.3743	0.829	0.286	0.285	1.9394	0.379
3	-0.044	-0.037	0.6771	0.879	0.171	0.175	1.1293	0.77	-0.238	-0.242	3.3536	0.34
4	-0.009	-0.023	0.6789	0.954	0.259	0.225	2.9779	0.562	-0.097	-0.202	3.6057	0.462
5	-0.198	-0.208	1.7687	0.88	-0.308	-0.394	5.763	0.33	0.004	0.173	3.6061	0.607
Table 11 (Continued)

Lag	Dependent variable: d(sca4)	Dependent variable: d(sra1)	Dependent variable: d(sra7)									
	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.
1	-0.022	-0.022	0.0109	0.917	-0.034	-0.034	0.0249	0.875	-0.109	-0.109	0.2637	0.608
2	-0.036	-0.037	0.0421	0.979	-0.147	-0.148	0.5104	0.775	0.081	0.07	0.4167	0.812
3	0.267	0.266	1.821	0.61	-0.224	-0.241	1.7165	0.633	-0.043	-0.027	0.4618	0.927
4	-0.151	-0.154	2.4276	0.658	0.172	0.135	2.4809	0.648	-0.178	-0.194	1.3069	0.86
5	-0.11	-0.1	2.7737	0.735	-0.206	-0.286	3.6588	0.6	0.008	-0.026	1.3088	0.934

Lag	Dependent variable: d(sca5)	Dependent variable: d(sra2)	Dependent variable: d(sra8HP)									
	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.
1	0.083	0.083	0.1544	0.694	-0.05	-0.05	0.0559	0.813	-0.228	-0.228	1.1477	0.284
2	-0.177	-0.186	0.8918	0.64	-0.287	-0.29	1.9901	0.37	-0.085	-0.145	1.3186	0.517
3	-0.066	-0.035	1.0011	0.801	-0.03	-0.069	2.012	0.57	0.282	0.245	3.3084	0.346
4	-0.187	-0.22	1.9314	0.748	-0.192	-0.311	2.997	0.558	-0.224	-0.128	4.6405	0.326
5	0.222	0.262	3.3306	0.649	-0.182	-0.313	3.9447	0.557	0.061	0.039	4.7479	0.447

Lag	Dependent variable: d(sca4)	Dependent variable: d(sra3)	Dependent variable: d(sra8HPd)									
	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.
1	-0.141	-0.141	0.4389	0.508	-0.024	-0.024	0.0131	0.909	-0.224	-0.224	1.1139	0.291
2	-0.159	-0.182	1.0301	0.597	-0.188	-0.189	0.8438	0.656	-0.194	-0.257	1.9937	0.369
3	-0.103	-0.164	1.2972	0.73	-0.394	-0.419	4.709	0.194	0.145	0.037	2.5173	0.472
4	0.066	-0.012	1.4131	0.842	0.051	-0.05	4.7777	0.311	0.068	0.077	2.6402	0.62
5	0.149	0.122	2.0468	0.843	0.017	-0.178	4.7854	0.443	-0.23	-0.17	4.1494	0.528
Lag	Dependent variable: d(sca7)	Dependent variable: d(sra4)	Dependent variable: d(sra9)									
-----	-----------------------------	-----------------------------	-----------------------------									
	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.	AC	PAC	Q-statistic	Prob.
1	0.072	0.072	0.1057	0.745	−0.001	−0.001	4.00E-05	0.995	−0.056	−0.056	0.0733	0.787
2	−0.102	−0.108	0.3299	0.848	0.119	0.119	0.3466	0.841	0.161	0.158	0.7045	0.703
3	−0.221	−0.208	1.4564	0.692	−0.005	−0.004	0.3472	0.951	−0.284	−0.276	2.7994	0.424
4	−0.312	−0.312	3.8731	0.423	−0.017	−0.032	0.3555	0.986	0.37	0.367	6.5593	0.161
5	−0.298	−0.381	6.2633	0.281	0.141	0.144	0.9389	0.967	−0.084	−0.038	6.7672	0.239

Lag	Dependent variable: d(sra10l)			
	AC	PAC	Q-statistic	Prob.
1	−0.042	−0.042	0.0377	0.846
2	0.015	0.013	0.0426	0.979
3	−0.022	−0.021	0.0547	0.997
4	−0.268	−0.27	1.899	0.754
5	0.455	0.467	7.6334	0.178
Table 12 ADF and PP unit root tests of residuals SyS1scr

Null hypothesis:	Null hypothesis:	Null hypothesis:	Null hypothesis:
ressc4 has a unit root	ressc3 has a unit root	ressc2 has a unit root	ressc1 has a unit root
t-statistic	t-statistic	t-statistic	t-statistic
Prob.	Prob.	Prob.	Prob.
ADF, exogenous: none	ADF, exogenous: none	ADF, exogenous: none	ADF, exogenous: none
	t-statistic	t-statistic	t-statistic
	t-statistic	t-statistic	t-statistic
	Prob.	Prob.	Prob.

ADF, exogenous: constant

Null hypothesis:	Null hypothesis:	Null hypothesis:	Null hypothesis:
ressc4 has a unit root	ressc3 has a unit root	ressc2 has a unit root	ressc1 has a unit root
t-statistic	t-statistic	t-statistic	t-statistic
Prob.	Prob.	Prob.	Prob.
ADF, exogenous: constant, linear trend			
	t-statistic	t-statistic	t-statistic
	t-statistic	t-statistic	t-statistic
	Prob.	Prob.	Prob.
PP, exogenous: none	PP, exogenous: none	PP, exogenous: none	PP, exogenous: none
	t-statistic	t-statistic	t-statistic
	t-statistic	t-statistic	t-statistic
	Prob.	Prob.	Prob.
PP, exogenous: constant	PP, exogenous: constant	PP, exogenous: constant	PP, exogenous: constant
	t-statistic	t-statistic	t-statistic
	t-statistic	t-statistic	t-statistic
	Prob.	Prob.	Prob.
PP, exogenous: constant, linear trend			
	t-statistic	t-statistic	t-statistic
	t-statistic	t-statistic	t-statistic
	Prob.	Prob.	Prob.
Null hypothesis: resca9 has a unit root	Null hypothesis: resca10 has a unit root	Null hypothesis: resra1 has a unit root	Null hypothesis: resra2 has a unit root					
t-statistic	Prob.	t-statistic	Prob.	t-statistic	Prob.	t-statistic	Prob.	
ADF, exogenous: none	-3.789794	0.0008	-5.27384	0	-3.016457	0.0049	-4.043831	0.0004
ADF, exogenous: constant	-3.663534	0.0155	-5.162812	0.0008	-2.900826	0.066	-3.951321	0.0083
ADF, exogenous: constant, linear trend	-3.646379	0.0559	-5.140881	0.0039	-2.8125	0.2119	-3.97919	0.0298
PP, exogenous: none	-3.76958	0.0009	-7.353143	0	-2.908989	0.0063	-4.043831	0.0004
PP, exogenous: constant	-3.635529	0.0164	-7.09582	0	-2.790106	0.0805	-3.951321	0.0083
PP, exogenous: constant, linear trend	-3.557692	0.0649	-7.493081	0	-2.681021	0.2547	-3.973131	0.0301

Null hypothesis: resra3 has a unit root	Null hypothesis: resra4 has a unit root	Null hypothesis: resra5HP has a unit root	Null hypothesis: resra5HPd has a unit root					
t-statistic	Prob.	t-statistic	Prob.	t-statistic	Prob.	t-statistic	Prob.	
ADF, exogenous: none	-3.46127	0.017	-5.532511	0	-3.222773	0.0031	-2.361507	0.0218
ADF, exogenous: constant	-3.361322	0.027	-5.373084	0.0004	-3.091733	0.0465	-2.123058	0.2389
ADF, exogenous: constant, linear trend	-3.142646	0.1267	-4.837124	0.0061	-2.932113	0.1776	-2.265232	0.4268
PP, exogenous: none	-3.46127	0.017	-5.913703	0	-1.834051	0.0646	-5.664019	0
PP, exogenous: constant	-3.361322	0.027	-5.70976	0.0002	-1.356726	0.5795	-5.853202	0.0002
PP, exogenous: constant, linear trend	-3.142646	0.1267	-9.865782	0	-1.714644	0.7022	-9.964217	0
Table 12 (Continued)

Null hypothesis:	Null hypothesis:	Null hypothesis:	Null hypothesis:					
	resra6 has a unit root	resra7 has a unit root	resra8HP has a unit root	resra8HPd has a unit root				
	t-statistic	Prob.	t-statistic	Prob.	t-statistic	Prob.	t-statistic	Prob.
ADF, exogenous: none	−3.720831	0.0009	−4.171027	0.0003	−2.832449	0.0074	−5.387255	0
ADF, exogenous: constant	−3.612433	0.0164	−3.94738	0.0089	−3.102695	0.0481	−5.243256	0.0006
ADF, exogenous: constant, linear trend	−3.505032	0.0692	−3.777624	0.0445	−2.922023	0.1835	−5.189448	0.0032
PP, exogenous: none	−3.709671	0.0009	−3.557824	0.0013	−2.757837	0.0087	−6.014966	0
PP, exogenous: constant	−3.598596	0.0168	−3.321521	0.0292	−2.660895	0.0999	−6.301019	0.0001
PP, exogenous: constant, linear trend	−3.489806	0.071	−2.902353	0.1844	−2.489547	0.3283	−8.353103	0

Null hypothesis:	Null hypothesis:			
	resra9 has a unit root	resra10l has a unit root		
	t-statistic	Prob.	t-statistic	Prob.
ADF, exogenous: none	−2.725678	0.0093	−6.80313	0
ADF, exogenous: constant	−2.640708	0.1026	−6.617948	0.0001
ADF, exogenous: constant, linear trend	−2.683911	0.2527	−6.352981	0.0005
PP, exogenous: none	−2.732364	0.0091	−6.767128	0
PP, exogenous: constant	−2.648713	0.1012	−6.586823	0.0001
PP, exogenous: constant, linear trend	−2.715594	0.2416	−6.352981	0.0005
analysis of the differences $\text{resra}_{ij} = a_{ij} - r_{aij}$ can be informative. Given the independence of these differences, the assumption that sca_j and sra_i include attractor points and that the derived r_{aij} contain such compatible points becomes plausible since both sca_i and sra_i represent simple summations of the corresponding a_{ij}.

Consequently, we return to the BDS test. As in the previous application, the test was applied to both probabilities (normal and bootstrap) in three options related to the distance (fraction of pairs, standard deviations, and fraction of range) and in five dimensions (2, 3, 4, 5, and 6). For each resra_{ij}, 30 p-values were again computed (as before). The distribution of all 3000 p-values is described in Fig. 11. Only one fifth of the p-values do not exceed 0.05. This proportion falls to 8\% in the case of the bootstrap method, which is more relevant for relatively short series.

For this reason, as a general approximation, the serial independence of resra_{ij} differences was assumed. Consequently, the probability of attractor points in the data for a_{ij} cannot be neglected.

6. Further on, the attractor points will be estimated based on the following additional assumptions:

- It is admitted that in the proximity of an attractor point, the values of the respective technical coefficients are relatively stable. In other words, first- and higher-order differences tend to disappear.
- In terms of level, the value of the technical coefficient coincides or is close to that of the attractor point. The importance of the presence of observations in level (I(0) problem) in econometric formulae has already been outlined.
Table 13 Algebraical attractor definitions

Variables (y)	Approximating formula
sca1, sra2, sra4, sra9, log(sra10)	ay = a0/a1
sca8, sca10	ay = (b0 + b2)/−b1
sra2, sra3	ay = c0/c1
sca5, sca6, sca9	ay = (d0 + d4)/−d1
sra8	ay = e0/e1
sca7, sra5	ay = (f0 + f5)/−f1
sra1, sra6	ay = g0/g1
sca3	ay = h0/h1
sca4, sra7	ay = (i0 + i3)/−i1 or = i0/i1

Table 14 Attractor-points for the colsums and rowsums of technical coefficients

Symbol	Estimation	Symbol	Estimation
asca1	0.488059	asra1	0.508254
asca2	0.633969	asra2	0.546414
asca3	0.904387	asra3	0.674086
asca4	0.603476	asra4	0.389116
asca5	0.566348	asra5	0.467036
asca6	0.5619	asra6	0.564482
asca7	0.722865	asra7	1.337777
asca8	0.536487	asra8	0.130711
asca9	0.438797	asra9	0.37335
asca10	0.47579	asra10	0.687186

- The attractor points are conceived at long-run levels. For large values of t, it is admitted that $t^{-1} \to 0$ and $t/(t + 1) \to 1$.

The scheme containing the main econometric relationships will be adapted to these assumptions, the result being the algebraical expressions of attractors in the 9 types of specifications (Table 13) included in SyS1scr. Their symbols are given the prefix a: asca\textsubscript{j} and asra\textsubscript{i}.

Table 14 presents the approximated attractors for colsums (asca\textsubscript{j}) and rowsums (asra\textsubscript{i}) of the I-O coefficients. These estimations were included as column–row restrictions in a new RAS application concerning all a\textsubscript{ij}. This algorithm was applied on a matrix compounded by the average levels of the respective statistical coefficients (for the entire interval 1989–2009). Table 15 presents the so-obtained attractor points (aaij).

4 Conclusions

The analysis of Romanian I-O tables (based on surveys for 21 consecutive years) reveals new evidence in favour of the statement that the technical coefficients are volatile (illustrated by the relatively high standard deviation of corresponding series).
Table 15 Attractor-points for individual technical coefficients (aa$_{ij}$)

j	1	2	3	4	5	6	7	8	9	10
aa1j	0.233951	0.001173	0.000136	0.232187	0.034418	0.000132	0.000947	0.000367	0.000277	0.004665
aa2j	0.001076	0.173019	0.270478	0.001162	0.00058	0.006661	0.073396	0.015125	0.002156	0.002762
aa3j	0.024686	0.090712	0.288858	0.022381	0.030654	0.04102	0.095837	0.023173	0.033597	0.023168
aa4j	0.053107	0.0026	0.001616	0.213718	0.009814	0.002945	0.007421	0.004082	0.005101	0.088714
aa5j	0.008545	0.011228	0.003287	0.017918	0.290144	0.019729	0.021376	0.025626	0.009881	0.059303
aa6j	0.017634	0.084122	0.043601	0.011139	0.022303	0.176451	0.037253	0.062144	0.078011	0.031824
aa7j	0.086517	0.086553	0.165247	0.028473	0.076022	0.194198	0.371607	0.173607	0.094814	0.060737
aa8j	0.00491	0.000865	0.014924	0.002182	0.002516	0.003279	0.00486	0.07097	0.007305	0.0149
aa9j	0.013468	0.067402	0.026501	0.014494	0.020011	0.02745	0.028172	0.02357	0.120064	0.032218
aa10j	0.023246	0.085211	0.051111	0.03394	0.055662	0.066024	0.05111	0.114896	0.068388	0.137147
This affects both determinations of I-O coefficients, either in volume (\(c_{aij}\)) or in value terms (\(a_{ij}\)); the first is referred to as real volatility and the second as nominal volatility. Their dynamic pattern is similar, as confirmed by three measures: (a) the vectorial angle between the series \(a_{ij}\) and \(c_{aij}\), (b) the Galtung–Pearson correlation (also a cosine of the vectorial angle but between their deviations against the mean) and (c) the binary synchronisation degree.

To verify whether or not the I-O coefficients are serially correlated, the BDS procedure was used as a test covering a large variety of possible deviations from independence in the time data. Again, both forms of technical coefficients were studied. Generally, the serial correlation could not be statistically rejected. It is important to mention that this conclusion resulted from a relatively extended database.

Due to these two circumstances—high volatility and serial correlation—the possible presence of attractors in the technical coefficients series was taken into consideration. Such points would be flexibly interpreted not as unchangeable levels but rather as historical (contextually determined) phenomena. This approach is similar to the manner in which other authors regarded the natural rate of unemployment, for instance, as a weak attractor. Consequently, the evolution of I-O coefficients was conceived as an auto-regressive adaptive process, the differences between the actual coefficients and their long-run levels being influenced by the precedent deviations. Since the available series for sectoral coefficients are, as a rule, non-stationary, more aggregate indicators were employed in econometric analysis (column and row sums of I-O coefficients). The RAS technique was used to transform these into sectoral estimations.

The paper’s approach can be considered as an attempt to conciliate the assumption of I-O coefficients’ stability with their undisputable volatility.

Further research could improve on the econometric estimations through structural specifications of the technical coefficients, including their stable co-movements. Thus, more complex econometric specifications must be cautiously adopted, but based on a solid economic motivation.

The possible presence of attractors in the series of I-O coefficients also opens a large research space. A deeper investigation of their determinants—technologies, inter-industry linkages, institutional factors—would be interesting from both the theoretical and the applicative perspective. In addition, it would be relevant to clarify the temporal stability of the attractors themselves.

Competing Interests

The author declares that he has no competing interests.

Acknowledgements The author thanks to V. Gaftea, D. Jula, M. Matei, B. Pauna, and C. Saman for their computational assistance. He is also highly grateful to the anonymous referent of the “Journal of Economic Structures” for the suggested analytical extensions.

Statistical and Econometric Appendix
Table 16 Column-sums of the technical coefficients at current prices

Year	\(sca_1\)	\(sca_2\)	\(sca_3\)	\(sca_4\)	\(sca_5\)	\(sca_6\)	\(sca_7\)	\(sca_8\)	\(sca_9\)	\(sca_{10}\)
1989	0.491558	0.569253	0.889023	0.76225	0.552646	0.650026	0.812164	0.712277	0.420045	0.496334
1990	0.387324	0.668055	0.956937	0.729538	0.585299	0.622568	0.799226	0.633274	0.466569	0.454735
1991	0.494798	0.663253	0.820943	0.750352	0.675304	0.700584	0.75585	0.622815	0.454685	0.378095
1992	0.498327	0.676749	0.779253	0.737931	0.668211	0.700656	0.742198	0.584504	0.404153	0.346181
1993	0.475942	0.633793	0.722954	0.676025	0.623013	0.659749	0.711613	0.569026	0.395378	0.343785
1994	0.447545	0.625294	0.656678	0.648452	0.561198	0.593076	0.693557	0.513575	0.362277	0.334192
1995	0.431615	0.736073	0.637111	0.657541	0.58757	0.587836	0.740255	0.568219	0.423969	0.283543
1996	0.448299	0.889495	0.705545	0.662567	0.620109	0.639375	0.745313	0.574133	0.434749	0.325155
1997	0.448678	0.885471	0.718332	0.718407	0.614082	0.643057	0.756277	0.568766	0.434086	0.383843
1998	0.500438	0.73034	0.711868	0.671709	0.589266	0.618621	0.750819	0.552626	0.412593	0.373144
1999	0.451623	0.649843	0.710166	0.689681	0.626521	0.645794	0.730459	0.521393	0.410677	0.373031
2000	0.471773	0.620211	0.728855	0.675673	0.578638	0.610767	0.712465	0.551344	0.410928	0.376375
2001	0.464331	0.557372	0.767713	0.626716	0.568639	0.589786	0.727921	0.562682	0.412289	0.420057
2002	0.483088	0.550141	0.765831	0.629274	0.569244	0.582466	0.711277	0.545703	0.412843	0.415685
2003	0.46985	0.636448	0.790705	0.651569	0.586742	0.612382	0.755768	0.558792	0.424581	0.423453
2004	0.470463	0.65786	0.793915	0.654237	0.590792	0.605497	0.748681	0.554347	0.434705	0.423932
2005	0.511133	0.660908	0.793131	0.621407	0.583903	0.581869	0.73793	0.544117	0.431047	0.416438
2006	0.505062	0.665331	0.793829	0.623597	0.585979	0.585482	0.735709	0.543761	0.433134	0.428825
2007	0.547584	0.664387	0.789971	0.623635	0.579907	0.57569	0.716971	0.53191	0.420637	0.425441
2008	0.534281	0.641298	0.796951	0.626553	0.582379	0.579771	0.721889	0.533723	0.425995	0.439046
2009	0.521289	0.624123	0.795017	0.624762	0.592213	0.57092	0.704817	0.541346	0.440151	0.445557
Table 17 Row-sums of the technical coefficients at current prices

Year	sra1	sra2	sra3	sra4	sra5	sra6	sra7	sra8	sra9	sra10
1989	0.879487	0.715536	0.460816	0.424076	0.458559	1.204335	1.512107	0.130762	0.464525	0.105374
1990	0.719968	0.681193	0.595892	0.420332	0.509075	1.137719	1.616523	0.126245	0.382477	0.114103
1991	0.799707	0.519268	0.740962	0.30728	0.55112	1.009835	1.719619	0.122188	0.430851	0.115852
1992	0.758225	0.559776	0.802719	0.323097	0.549017	0.850436	1.632821	0.053936	0.447255	0.160882
1993	0.828402	0.483196	0.668033	0.307312	0.476423	0.608609	1.417821	0.066092	0.700265	0.253325
1994	0.7714	0.513863	0.655478	0.365699	0.488487	0.548466	1.37154	0.071654	0.453217	0.19604
1995	0.720338	0.52918	0.629171	0.344625	0.538629	0.64714	1.444648	0.135043	0.388398	0.276562
1996	0.639786	0.589832	0.583761	0.443051	0.593274	0.77149	1.494947	0.121243	0.492754	0.3146
1997	0.650862	0.624606	0.690994	0.457173	0.549141	0.631484	1.607715	0.100695	0.416869	0.441459
1998	0.701866	0.470438	0.650553	0.375155	0.545836	0.701163	1.429193	0.120339	0.450406	0.464676
1999	0.625048	0.294633	0.851485	0.378145	0.535579	0.65026	1.283071	0.102068	0.546984	0.541914
2000	0.589872	0.455738	0.705737	0.421593	0.504906	0.606695	1.440411	0.099778	0.298352	0.613946
2001	0.560844	0.515316	0.696012	0.423083	0.510963	0.516993	1.462513	0.114338	0.280583	0.616862
2002	0.550552	0.472552	0.796213	0.424217	0.501515	0.471378	1.415838	0.123366	0.281333	0.628588
2003	0.604588	0.565419	0.779686	0.417632	0.475566	0.521081	1.341116	0.167739	0.326985	0.710478
2004	0.628928	0.584544	0.695776	0.419551	0.467175	0.534748	1.390866	0.161495	0.34003	0.711316
2005	0.594292	0.563607	0.625771	0.390167	0.449022	0.562245	1.447483	0.1435	0.355017	0.750782
2006	0.574519	0.63664	0.584961	0.392571	0.425354	0.574501	1.388618	0.196368	0.353318	0.773859
2007	0.542797	0.630615	0.579161	0.414989	0.408277	0.577103	1.402135	0.185372	0.369498	0.766186
2008	0.610861	0.557296	0.590074	0.399415	0.389158	0.569906	1.423817	0.192557	0.376025	0.772777
2009	0.603559	0.541821	0.735107	0.381838	0.384324	0.589331	1.234232	0.244792	0.419811	0.725381
Table 18 System SYS1scr: Specification

Expression
\(d(sca_1) = c(1) + c(2) * sca_1(-1) + c(501) * d90\)
\(d(sca_2) = c(3) + c(4) * sca_2(-1) + c(5) * d(sca_2(-1)) + c(502) * d95 + c(503) * d96\)
\(d(sca_3) = c(6) + c(7) * sca_3(-3) + c(8)/t + c(504) * d96\)
\(d(sca_4) = c(9) + c(10) * sca_4(-2) + c(11) * d(sca_4, 2) + c(12) * t/(t + 1) + c(505) * d99\)
\(d(sca_5) = c(13) + c(14) * sca_5(-1) + c(15) * d(sca_5(-1)) + c(16) * t/(t + 1)\)
\(d(sca_6) = c(17) + c(18) * sca_6(-1) + c(19) * d(sca_6(-1)) + c(20) * t/(t + 1)\)
\(d(sca_7) = c(21) + c(22) * sca_7(-1) + c(23) * d(sca_7(-1)) + c(24) * d(sca_7(-2)) + c(25) * d(sca_7(-3)) + c(26) * t/(t + 1)\)
\(d(sca_8) = c(27) + c(28) * sca_8(-1) + c(29) * d(sca_8, 2) + c(506) * d96\)
\(d(sca_9) = c(30) + c(31) * sca_9(-1) + c(32) * d(sca_9(-2)) + c(33) * t/(t + 1) + c(507) * d96\)
\(d(sca_{10}) = c(34) + c(35) * t/(t + 1) + c(36) * sca_{10}(-1) + c(508) * d90 + c(509) * d95\)
\(d(sra_1) = c(37) + c(38) * sra_1(-1) + c(39) * d(sra_1(-2)) + c(40)/t + c(510) * d98\)
\(d(sra_2) = c(41) + c(42) * sra_2(-1) + c(43) * d(sra_2, 2) + c(511) * d99\)
\(d(sra_3) = c(44) + c(45) * sra_3(-2) + c(46) * d(sra_3(-1)) + c(512) * d99\)
\(d(sra_4) = c(47) + c(48) * sra_4(-1) + c(513) * d96 + c(514) * d91\)
\(d(sra_{5HP}) = c(49) + c(50) * sra_{5HP}(-1) + c(51) * d(sra_{5HP}(-1))\)
\(d(sra_{5HPd}) = c(52) + c(53) * sra_{5HPd}(-1) + c(54) * d(sra_{5HPd}(-1)) + c(515) * d93 + c(516) * d96\)
\(d(sra_6) = c(54) + c(55) * sra_6(-1) + c(56) * d(sra_6, 2) + c(517) * d93\)
\(d(sra_7) = c(57) + c(58) * sra_7(-2) + c(59) * d(sra_7, 2) + c(60)/t\)
\(d(sra_{8HP}) = c(61) + c(62) * sra_{8HP}(-1) + c(63) * d(sra_{8HP}, 2) + c(518) * d93 + c(519) * d94\)
\(d(sra_{8HPd}) = c(64) * d(sra_{8HPd}, 2) + c(520) * d92 + c(521) * d95\)
\(d(sra_9) = c(65) + c(66) * sra_9(-1) + c(522) * d93 + c(523) * d99\)
\(d(sra_{10l}) = c(67) + c(68) * sra_{10l}(-3) + c(524) * d94\)
Coefficient

c(1)
c(2)
c(501)
c(3)
c(4)
c(5)
c(502)
c(503)
c(6)
c(7)
c(8)
c(504)
c(9)
c(10)
c(11)
c(12)
c(505)
c(13)
c(14)
c(15)
c(16)
c(17)
c(18)

Table 19 SYS1scr estimated by different methods—sample 1990–2009: OLS—ordinary least squares
Coefficient	Std. error	t-statistic	Prob.	Coefficient	Std. error	t-statistic	Prob.		
c(19)	0.465948	0.153538	3.034749	0.002602261	c(54)	0.135167	0.056727	2.382743	0.017760431
c(20)	-0.60757	0.105767	-5.74438	2.13E-08	c(55)	-0.23945	0.084606	-2.83021	0.004942134
c(21)	1.5781	0.285591	5.525739	6.75E-08	c(56)	0.284088	0.132169	2.149434	0.032340176
c(22)	-1.82179	0.303507	-6.00245	5.21E-09	c(57)	-0.14994	0.059384	-2.52487	0.012051054
c(23)	0.765847	0.205822	3.720919	0.00023936	c(58)	1.052576	0.121187	8.685559	1.89E-16
c(24)	0.756215	0.17858	4.234588	2.99E-05	c(59)	-0.78681	0.087866	-8.95465	2.72E-17
c(25)	0.559842	0.182826	3.062164	0.002381463	c(60)	0.522016	0.054793	9.527016	3.95E-19
c(26)	-0.26119	0.113264	-2.30606	0.021738264	c(61)	-0.02272	0.002453	-9.26173	2.86E-18
c(27)	0.20165	0.054576	3.69482	0.000258233	c(62)	0.17378	0.012884	13.48847	3.24E-33
c(28)	-0.37587	0.097205	-3.86677	0.000133287	c(63)	0.761811	1.251823	6.085614	3.27E-09
c(29)	0.414938	0.077282	5.369165	1.51E-07	c(64)	-0.00564	0.001664	-3.38751	0.00079222
c(30)	0.226448	0.075907	2.983219	0.003068868	c(65)	-0.05021	0.001714	-3.04001	0.002558513
c(31)	-1.23202	0.16691	-7.38132	1.33E-12	c(66)	0.394639	0.079062	4.991487	9.80E-07
c(32)	0.557367	0.138947	4.011371	7.50E-05	c(67)	-0.03994	0.014916	-2.67737	0.007798128
c(33)	0.314156	0.058156	5.401991	1.28E-07	c(68)	0.39854	0.014704	2.710374	0.007078646
c(34)	0.044864	0.011907	3.767881	0.000195553	c(69)	0.274047	0.055718	4.918437	1.39E-06
c(35)	-0.15911	0.055598	-2.86172	0.004487515	c(70)	-0.73402	0.134082	-5.47443	8.81E-08
c(36)	0.371868	0.058992	6.303751	9.50E-10	c(71)	0.307258	0.059092	5.199688	3.54E-07
c(37)	0.041543	0.022503	4.067977	5.96E-05	c(72)	0.153138	0.059135	2.589621	0.010041828
c(38)	-0.06748	0.014801	-4.55935	7.28E-06	c(73)	-0.20561	0.024533	-8.38109	1.62E-15
c(39)	0.413941	0.106503	3.886657	0.00012328	c(74)	-0.62241	0.073826	-8.43065	1.15E-15
Coefficient	Std. error	t-statistic	Prob.	Coefficient	Std. error	t-statistic	Prob.		
-------------	------------	-------------	--------	-------------	------------	-------------	--------		
c(1)	0.283078	0.079519	3.55988	0.000426566	c(38)	−0.81444	0.174418	−4.66946	4.43E-06
c(2)	−0.58001	0.166606	−3.48131	0.000567383	c(39)	0.33183	0.133406	2.487366	0.013371939
c(501)	−0.10221	0.027192	−3.75867	0.000202576	c(40)	1.076357	0.281095	3.829153	0.000154358
c(3)	0.278431	0.054182	5.138814	4.79E-07	c(510)	0.086243	0.030901	2.79095	0.00556695
c(4)	−0.43919	0.079745	−5.50742	7.43E-08	c(41)	0.23365	0.091796	2.545326	0.011380659
c(5)	0.408362	0.10279	3.97277	8.76E-05	c(42)	−0.42761	0.167719	−2.54953	0.011247182
c(502)	0.11044	0.028355	3.894901	0.000119343	c(43)	0.285218	0.108771	2.622176	0.00914958
c(503)	0.153027	0.030187	5.069303	6.73E-07	c(511)	−0.20212	0.044664	−4.5254	8.47E-06
c(6)	0.125699	0.038805	3.239239	0.001322776	c(44)	0.521483	0.126327	4.128053	4.66E-05
c(7)	−0.13899	0.05517	−2.51926	0.012240942	c(45)	−0.77361	0.185132	−4.17872	3.77E-05
c(8)	−0.24993	0.074736	−3.3442	0.000921969	c(46)	−0.50663	0.186639	−2.71451	0.006992757
c(504)	0.074459	0.015396	4.836239	2.05E-06	c(512)	0.193523	0.060687	3.188865	0.001567833
c(9)	0.924228	0.13765	6.714309	8.48E-11	c(47)	0.13412	0.051588	2.599849	0.009753476
c(10)	−0.75929	0.102925	−7.37712	1.37E-12	c(48)	−0.34468	0.130308	−2.64509	0.00856481
c(11)	0.47183	0.052746	8.945246	2.91E-17	c(513)	0.083091	0.025138	3.30545	0.001054529
c(12)	−0.46602	0.080684	−5.7758	1.80E-08	c(514)	−0.10229	0.024564	−4.16433	4.01E-05
c(505)	0.03589	0.011779	3.04696	0.002501691	c(49)	0.013136	0.001539	8.534482	5.52E-16
c(13)	1.064914	0.124663	8.542329	5.22E-16	c(50)	−0.02813	0.002978	−9.44589	7.25E-19
c(14)	−1.18973	0.139196	−8.54717	5.05E-16	c(51)	1.08189	0.014027	77.131	1.49E-210
c(15)	0.454757	0.114914	3.957369	9.32E-05	c(52)	−0.83309	0.14125	−5.89801	9.25E-09
c(16)	−0.39111	0.070581	−5.54135	6.22E-08	c(53)	0.320171	0.115598	2.769686	0.005934489
c(17)	1.216451	0.16589	7.33289	1.82E-12	c(515)	−0.05209	0.011843	−4.3984	1.48E-05
c(18)	−1.08361	0.154265	−7.02436	1.27E-11	c(516)	0.042189	0.012046	3.502234	0.000526139
Table 20 (Continued)

Coefficient	Std. error	t-statistic	Prob.	Coefficient	Std. error	t-statistic	Prob.		
c(19)	0.465948	0.136422	3.415497	0.000717678	c(54)	0.135167	0.050404	2.681688	0.007700416
c(20)	-0.60757	0.093977	-6.46509	3.72E-10	c(55)	-0.23945	0.075174	-3.18529	0.001586701
c(21)	1.5781	0.229729	6.869395	3.31E-11	c(56)	0.284088	0.117435	2.419109	0.016109025
c(22)	-1.82179	0.244141	-7.46203	7.91E-13	c(517)	-0.14994	0.052764	-2.84165	0.004772473
c(23)	0.765847	0.165563	4.62571	5.40E-06	c(57)	1.052576	0.107678	9.775252	6.02E-20
c(24)	0.756215	0.14365	5.264284	2.57E-07	c(58)	-0.78681	0.078071	-10.0781	5.87E-21
c(25)	0.559842	0.147065	3.806769	0.000168351	c(59)	0.522016	0.048685	10.7223	3.70E-23
c(26)	-0.26119	0.091109	-2.86681	0.004417774	c(60)	0.773993	0.11227	6.894012	2.84E-11
c(27)	0.20165	0.048492	4.158383	4.11E-05	c(61)	-0.02272	0.002105	-10.7896	2.16E-23
c(28)	-0.37587	0.086369	-4.35191	1.81E-05	c(62)	0.17378	0.011059	15.71359	9.33E-42
c(29)	0.414938	0.068666	6.042796	4.16E-09	c(63)	7.618111	1.074559	7.089526	8.47E-12
c(30)	0.038061	0.011624	3.274303	0.001173709	c(518)	-0.00564	0.001428	-3.94633	9.73E-05
c(31)	0.226448	0.064509	3.510344	0.000510922	c(519)	-0.00521	0.001471	-3.5415	0.000456213
c(32)	-1.23202	0.141846	-8.68557	1.89E-16	c(64)	0.394639	0.072553	5.439346	1.06E-07
c(33)	0.557367	0.118082	4.720168	3.51E-06	c(520)	-0.03994	0.013688	-2.9176	0.003773847
c(34)	0.314156	0.049423	6.356506	7.00E-10	c(521)	0.039854	0.013493	2.953561	0.003371041
c(36)	-0.44718	0.065753	-6.80082	5.02E-11	c(523)	0.153138	0.052892	2.895285	0.00404538
c(37)	0.091543	0.019489	4.697295	3.90E-06	c(67)	-0.07714	0.026239	-2.9397	0.003521415
c(38)	-0.06748	0.012818	-5.26469	2.56E-07	c(68)	-0.20561	0.022396	-9.18103	5.19E-18
c(39)	0.413941	0.09051	4.573417	6.84E-06	c(524)	-0.62241	0.067394	-9.23532	3.48E-18
Coefficient	Std. error	t-statistic	Prob.	Coefficient	Std. error	t-statistic	Prob.		
-------------	------------	-------------	---------	-------------	------------	-------------	---------		
c(1)	0.234957	0.058079	4.045498	6.53E-05	c(38)	-0.84056	0.100483	-8.36515	1.81E-15
c(2)	-0.48089	0.121424	-3.9604	9.20E-05	c(39)	0.34597	0.079175	4.369712	1.68E-05
c(501)	-0.11051	0.01443	-7.65865	2.19E-13	c(40)	1.137276	0.173371	6.559794	2.13E-10
c(3)	0.272854	0.020134	13.55169	1.87E-33	c(510)	0.09166	0.016681	5.494938	7.92E-08
c(4)	-0.42622	0.028895	-14.751	4.96E-38	c(41)	0.249617	0.026854	9.295474	2.23E-18
c(5)	0.400249	0.039501	10.13262	3.85E-21	c(42)	-0.44738	0.046709	-9.57791	2.69E-19
c(502)	0.120347	0.01254	9.597298	2.32E-19	c(43)	0.270023	0.025781	10.4738	2.66E-22
c(503)	0.147105	0.013128	11.2054	7.52E-25	c(511)	-0.20361	0.012093	-16.8361	3.88E-46
c(6)	0.115054	0.014094	8.163217	7.33E-15	c(44)	0.548312	0.045754	11.9838	1.22E-27
c(7)	-0.12727	0.019723	-6.45284	4.00E-10	c(45)	-0.81821	0.065265	-12.5368	1.15E-29
c(8)	-0.24232	0.034329	-7.05859	1.03E-11	c(46)	-0.54969	0.065482	-8.39457	1.47E-15
c(504)	0.082137	0.006536	12.56645	8.97E-30	c(512)	0.194547	0.029549	6.583848	1.85E-10
c(9)	0.943513	0.043286	21.79729	1.75E-65	c(47)	0.15916	0.025087	6.344446	7.51E-10
c(10)	-0.75699	0.029589	-25.5831	9.35E-80	c(48)	-0.40294	0.062287	-6.46904	3.64E-10
c(11)	0.475233	0.013396	35.47534	1.29E-113	c(513)	0.090953	0.014434	6.301505	9.62E-10
c(12)	-0.48929	0.029803	-16.4175	1.68E-44	c(514)	-0.08508	0.012256	-6.94239	2.11E-11
c(505)	0.036983	0.002789	13.25975	2.35E-32	c(49)	0.01349	0.000625	21.57141	1.30E-64
c(13)	1.06234	0.053497	19.85786	5.74E-58	c(50)	-0.02875	0.001192	-24.1101	2.82E-74
c(14)	-1.21682	0.053302	-22.8289	1.97E-69	c(51)	1.085785	0.008216	132.1608	6.73E-28
c(15)	0.466725	0.044263	10.54438	1.52E-22	c(52)	-0.86156	0.060809	-14.1682	8.52E-36
c(16)	-0.37179	0.042773	-8.6921	1.80E-16	c(53)	0.328044	0.049865	6.578703	1.91E-10
c(17)	1.251569	0.07414	16.88106	2.59E-46	c(515)	-0.05817	0.005475	-10.624	8.09E-23
c(18)	-1.13099	0.066292	-17.0608	5.13E-47	c(516)	0.037513	0.005639	6.65296	1.22E-10
c(19)	0.461616	0.053557	8.619101	3.03E-16	c(54)	0.140982	0.026324	5.355615	1.62E-07
c(20)	−0.61549	0.050982	−12.0727	5.80E-28	c(55)	−0.24846	0.035189	−7.0609	1.01E-11
c(21)	1.591889	0.090008	17.68004	1.82E-49	c(56)	0.280768	0.038032	7.382508	1.32E-12
c(22)	−1.83248	0.092471	−19.8168	8.30E-58	c(517)	−0.17261	0.023242	−7.42684	9.93E-13
c(23)	0.774811	0.067097	11.54767	4.56E-26	c(57)	0.98605	0.044398	22.2092	4.59E-67
c(24)	0.739849	0.054287	13.62841	9.59E-34	c(58)	−0.74137	0.031644	−23.4283	1.05E-71
c(25)	0.558427	0.053313	10.47448	2.64E-22	c(59)	0.523095	0.017136	30.52647	2.46E-97
c(26)	−0.268	0.04471	−5.99429	5.45E-09	c(60)	0.773597	0.058144	13.30473	1.59E-32
c(27)	0.197595	0.020551	9.614966	2.03E-19	c(61)	−0.0229	0.001283	−17.8516	4.08E-50
c(28)	−0.36951	0.035719	−10.3451	7.32E-22	c(62)	0.175333	0.00685	25.59751	8.27E-80
c(29)	0.400592	0.018888	21.20883	3.25E-63	c(63)	7.671487	0.548712	13.98089	4.41E-35
c(30)	0.038445	0.002467	9.099607	1.82E-17	c(518)	−0.0055	0.000613	−8.96842	2.46E-17
c(31)	−1.18993	0.056699	−20.9867	2.35E-62	c(64)	0.430947	0.030779	14.0012	3.69E-35
c(32)	0.545298	0.040457	13.47857	3.53E-33	c(520)	−0.03993	0.006948	−5.7465	2.10E-08
c(33)	0.308919	0.028288	10.92042	7.55E-24	c(521)	0.037305	0.00608	6.135315	2.48E-09
c(34)	0.046084	0.004433	10.39612	4.90E-22	c(65)	0.244369	0.023271	10.50116	2.14E-22
c(35)	−0.13306	0.025963	−5.12513	5.12E-07	c(66)	−0.67082	0.050755	−13.2168	3.41E-32
c(36)	0.351948	0.02466	14.27219	3.41E-36	c(522)	0.304342	0.029036	10.48162	2.50E-22
c(37)	0.425266	0.052871	8.043437	1.66E-14	c(524)	−0.64568	0.026648	−24.2303	9.97E-75
Table 22 SYS1scr estimated by different methods—sample 1990–2009: GLM—generalized linear models with bootstrap

Coefficient	Std. error	z	Prob.	Coefficient	Std. error	z	Prob.		
c(1)	0.283078	0.082689	3.42	0.001	c(38)	−0.81444	0.188264	−4.33	0
c(2)	−0.58001	0.170839	−3.4	0.001	c(39)	0.33183	0.159535	2.08	0.038
c(501)	−0.10221	0.004737	−21.58	0	c(40)	1.076356	0.332231	3.24	0.001
c(3)	0.278431	0.101581	2.74	0.006	c(510)	0.086243	0.011943	7.22	0
c(4)	−0.43919	0.153461	−2.86	0.004	c(41)	0.23365	0.088917	2.63	0.009
c(5)	0.408363	0.140692	2.9	0.004	c(42)	−0.42761	0.163947	−2.61	0.009
c(502)	0.11044	0.006218	17.76	0	c(43)	0.285218	0.091688	3.11	0.002
c(503)	0.153027	0.014458	10.58	0	c(511)	−0.20212	0.015286	−13.22	0
c(6)	0.125699	0.041312	3.04	0.002	c(44)	0.521483	0.108545	4.8	0
c(7)	−0.13899	0.050457	−2.75	0.006	c(45)	−0.77361	0.158828	−4.87	0
c(8)	−0.24993	0.085994	−2.91	0.004	c(46)	−0.50663	0.175199	−2.89	0.004
c(504)	0.074459	0.005317	14	0	c(512)	0.193523	0.011274	17.17	0
c(9)	0.924228	0.094083	9.82	0	c(47)	0.13412	0.047279	2.84	0.005
c(10)	−0.75929	0.067526	−11.24	0	c(48)	−0.34468	0.118808	−2.9	0.004
c(11)	0.47183	0.047361	9.96	0	c(513)	0.083091	0.007286	11.4	0
c(12)	−0.46602	0.056969	−8.18	0	c(514)	−0.10229	0.004784	−21.38	0
c(505)	0.03589	0.004272	8.4	0	c(49)	0.013136	0.001949	6.74	0
c(13)	1.064914	0.167703	6.35	0	c(50)	−0.02813	0.003768	−7.46	0
c(14)	−1.18973	0.193828	−6.14	0	c(51)	1.08189	0.01169	92.55	0
c(15)	0.454757	0.165187	2.75	0.006	c(52)	−0.83309	0.153003	−5.44	0
c(16)	−0.39111	0.087032	−4.49	0	c(53)	0.320171	0.137497	2.33	0.02
c(17)	1.216451	0.209223	5.81	0	c(515)	−0.05209	0.005145	−10.12	0
c(18)	−1.08361	0.17854	−6.07	0	c(516)	0.042189	0.005872	7.18	0
Coefficient	Std. error	z	Prob.	Coefficient	Std. error	z	Prob.		
------------	------------	-----	-------	------------	------------	-----	-------		
c(19)	0.465948	0.172046	2.71	0.007	c(54)	0.135167	0.065899	2.05	0.04
c(20)	-0.60757	0.12657	-4.8	0	c(55)	-0.23945	0.111845	-2.14	0.032
c(21)	1.5781	0.291682	5.41	0	c(56)	0.284088	0.142332	2	0.046
c(22)	-1.82179	0.352457	-5.17	0	c(57)	-0.14994	0.029437	-5.09	0
c(23)	0.765847	0.237994	3.22	0.001	c(58)	1.052575	0.100791	10.44	0
c(24)	0.756215	0.238152	3.18	0.001	c(59)	-0.78681	0.075003	-10.49	0
c(25)	0.559842	0.191824	2.92	0.004	c(60)	0.522016	0.060821	8.58	0
c(26)	-0.26119	0.109698	-2.38	0.017	c(61)	0.773993	0.15599	4.96	0
c(27)	0.20165	0.037095	5.44	0	c(62)	-0.02272	0.001404	-16.18	0
c(28)	-0.37587	0.06611	-5.69	0	c(63)	0.173781	0.007403	23.47	0
c(29)	0.414938	0.064205	6.46	0	c(64)	7.618141	0.782133	9.74	0
c(30)	0.038061	0.004809	7.91	0	c(65)	-0.00564	0.000399	-14.12	0
c(31)	0.226448	0.115659	1.96	0.05	c(66)	0.000521	0.000485	-10.75	0
c(32)	-1.23202	0.246907	-4.99	0	c(67)	0.394639	0.049193	8.02	0
c(33)	0.557367	0.151548	3.68	0	c(68)	-0.03994	0.003189	-12.52	0
c(34)	0.314156	0.064189	4.89	0	c(69)	0.039854	0.002782	14.32	0
c(35)	0.044864	0.006176	7.26	0	c(70)	0.274047	0.036869	7.43	0
c(36)	-0.15911	0.032982	-4.82	0	c(71)	-0.73402	0.096623	-7.6	0
c(37)	0.371868	0.0525	7.08	0	c(72)	0.307258	0.009443	32.54	0
c(507)	0.44718	0.072451	-6.17	0	c(73)	0.153138	0.009668	15.84	0
c(508)	-0.041543	0.018952	4.83	0	c(74)	-0.07714	0.01713	-4.5	0
c(67)	-0.06748	0.004226	-15.97	0	c(68)	-0.20561	0.019253	-10.68	0
c(38)	0.413941	0.095647	4.33	0	c(524)	-0.62241	0.030516	-20.4	0
Table 23 Comparative estimation output OLS–SUR

Equation: \(d(sca_1) = c(1) + c(2) \times sca_1(-1) + c(501) \times d90 \)

	OLS	SUR	
R-squared	0.592041	R-squared	0.582578
Adjusted R-squared	0.544045	Adjusted R-squared	0.533469
S.E. of regression	0.028614	S.E. of regression	0.028944
Durbin–Watson stat.	1.538095	Durbin–Watson stat.	1.721237

	Mean dependent var.	Mean dependent var.	
OLS	0.001486537	0.001486537	
SUR			
S.D. dependent var.	0.04237619	S.D. dependent var.	0.04237619
Sum squared resid.	0.013919204	Sum squared resid.	0.014242074

Equation: \(d(sca_2) = c(3) + c(4) \times sca_2(-1) + c(5) \times d(sca_2(-1)) + c(502) \times d95 + c(503) \times d96 \)

	OLS	SUR	
R-squared	0.827101	R-squared	0.822768
Adjusted R-squared	0.777702	Adjusted R-squared	0.77213
S.E. of regression	0.03183	S.E. of regression	0.032227
Durbin–Watson stat.	2.754131	Durbin–Watson stat.	2.693471

	Mean dependent var.	Mean dependent var.	
OLS	−0.00231224	−0.00231224	
SUR			
S.D. dependent var.	0.067510188	S.D. dependent var.	0.067510188
Sum squared resid.	0.014184143	Sum squared resid.	0.014539665

Equation: \(d(sca_3) = c(6) + c(7) \times sca_3(-3) + c(8)/t + c(504) \times d96 \)

	OLS	SUR	
R-squared	0.778591	R-squared	0.773913
Adjusted R-squared	0.731147	Adjusted R-squared	0.725466
S.E. of regression	0.016444	S.E. of regression	0.016616
Durbin–Watson stat.	2.002707	Durbin–Watson stat.	1.987606

	Mean dependent var.	Mean dependent var.	
OLS	−0.00144036	−0.00144036	
SUR			
S.D. dependent var.	0.031713173	S.D. dependent var.	0.031713173
Sum squared resid.	0.003785497	Sum squared resid.	0.003865477
Table 23 (Continued)

Equation: d(sca₄) = c(9) + c(10) * sca₄₋₋ + c(11) * d(sca₄, 2) + c(12) * t/(t + 1) + c(505) * d₉₆
OLS
R-squared
Adjusted R-squared
S.E. of regression
Durbin–Watson stat.

Equation: d(sca₅) = c(13) + c(14) * sca₅₋₋ + c(15) * d(sca₅₋₋) + c(16) * t/(t + 1)
OLS
R-squared
Adjusted R-squared
S.E. of regression
Durbin–Watson stat.

Equation: d(sca₆) = c(17) + c(18) * sca₆₋₋ + c(19) * d(sca₆₋₋) + c(20) * t/(t + 1)
OLS
R-squared
Adjusted R-squared
S.E. of regression
Durbin–Watson stat.
Table 23 (Continued)

Equation: \(d(sca_7) = c(21) + c(22) \times sca_7(-1) + c(23) \times d(sca_7(-1)) + c(24) \times d(sca_7(-2)) + c(25) \times d(sca_7(-3)) + c(26) \times t/(t + 1) \)

	OLS	SUR	
R-squared	0.776545	Mean dependent var.	\(-0.00219888\)
Adjusted R-squared	0.674974	S.D. dependent var.	0.021803938
S.E. of regression	0.012431	Sum squared resid.	0.001699731
Durbin–Watson stat.	2.45839	Durbin–Watson stat.	2.449675

Equation: \(d(sca_8) = c(27) + c(28) \times sca_8(-1) + c(29) \times d(sca_8 - 2) + c(506) \times d96 \)

	OLS	SUR	
R-squared	0.79341	Mean dependent var.	\(-0.00483833\)
Adjusted R-squared	0.752092	S.D. dependent var.	0.024203015
S.E. of regression	0.012051	Sum squared resid.	0.002178319
Durbin–Watson stat.	1.725176	Durbin–Watson stat.	1.776138

Equation: \(d(sca_9) = c(30) + c(31) \times sca_9(-1) + c(32) \times d(sca_9(-2)) + c(33) \times t/(t + 1) + c(507) \times d96 \)

	OLS	SUR	
R-squared	0.846468	Mean dependent var.	\(-0.00080741\)
Adjusted R-squared	0.799227	S.D. dependent var.	0.022579243
S.E. of regression	0.010117	Sum squared resid.	0.001330662
Durbin–Watson stat.	1.832536	Durbin–Watson stat.	1.928251
Table 23 (Continued)

Equation: d(sca10) = c(34) + c(35) * t/(t + 1) + c(36) * sca10(-1) + c(508) * d90 + c(509) * d95
OLS
R-squared
Adjusted R-squared
S.E. of regression
Durbin–Watson stat.

Equation: d(sra1) = c(37) + c(38) * sra1(-1) + c(39) * d(sra1(-2)) + c(40)/t + c(510) * d98
OLS
R-squared
Adjusted R-squared
S.E. of regression
Durbin–Watson stat.

Equation: d(sra2) = c(41) + c(42) * sra2(-1) + c(43) * d(sra2, 2) + c(511) * d99
OLS
R-squared
Adjusted R-squared
S.E. of regression
Durbin–Watson stat.
Table 23 (Continued)

Equation: \(\text{d}(\text{sra}_3) = c(44) + c(45) \times \text{sra}_3(-2) + c(46) \times \text{d}(\text{sra}_3(-1)) + c(512) \times \text{d}99 \)

	OLS	SUR	
R-squared	0.604261	R-squared	
		0.601432	Mean dependent var. 0.007327141
Adjusted R-squared	0.525113	Adjusted R-squared	
		0.521718	S.D. dependent var. 0.095697545
S.E. of regression	0.065947	S.E. of regression	
		0.066182	Sum squared resid. 0.065701731
Durbin–Watson stat.	1.611126	Durbin–Watson stat.	
		1.521897	

Equation: \(\text{d}(\text{sra}_4) = c(47) + c(48) \times \text{sra}_4(-1) + c(513) \times \text{d}96 + c(514) \times \text{d}91 \)

	OLS	SUR	
R-squared	0.701614	R-squared	
		0.683711	Mean dependent var. −0.00211187
Adjusted R-squared	0.645667	Adjusted R-squared	
		0.624407	S.D. dependent var. 0.044451546
S.E. of regression	0.02646	S.E. of regression	
		0.027242	Sum squared resid. 0.011874394
Durbin–Watson stat.	2.497302	Durbin–Watson stat.	
		2.320523	

Equation: \(\text{d}(\text{sra}_5\text{HP}) = c(49) + c(50) \times \text{sra}_5\text{HP}(-1) + c(51) \times \text{d}(\text{sra}_5\text{HP}(-1)) \)

	OLS	SUR	
R-squared	0.998586	R-squared	
		0.998573	Mean dependent var. −0.00657374
Adjusted R-squared	0.998409	Adjusted R-squared	
		0.998394	S.D. dependent var. 0.00887352
S.E. of regression	0.000354	S.E. of regression	
		0.000356	Sum squared resid. 2.02E-06
Durbin–Watson stat.	0.584091	Durbin–Watson stat.	
		0.585266	
Table 23 (Continued)

Equation: \(d(\text{sra}_5\text{HPd}) = c(52) \times \text{sra}_5\text{HPd}(-1) + c(53) \times d(\text{sra}_5\text{HPd}(-1)) + c(515) \times d93 + c(516) \times d96 \)

	OLS	SUR	
R-squared	0.852908	R-squared	0.848174
Adjusted R-squared	0.82349	Adjusted R-squared	0.817809
S.E. of regression	0.012319	S.E. of regression	0.012515
Durbin–Watson stat.	1.956297	Durbin–Watson stat.	1.905226
Mean dependent var.	7.88E-06	Mean dependent var.	7.88E-06
S.D. dependent var.	0.02932112	S.D. dependent var.	0.02932112
Sum squared resid.	0.0027626	Sum squared resid.	0.002349518

Equation: \(d(\text{sra}_6) = c(54) + c(55) \times \text{sra}_6(-1) + c(56) \times d(\text{sra}_6, 2) + c(517) \times d93 \)

	OLS	SUR	
R-squared	0.705175	R-squared	0.701184
Adjusted R-squared	0.64621	Adjusted R-squared	0.64142
S.E. of regression	0.055427	S.E. of regression	0.055801
Durbin–Watson stat.	1.764954	Durbin–Watson stat.	1.907709
Mean dependent var.	−0.02886253	Mean dependent var.	−0.02886253
S.D. dependent var.	0.093185537	S.D. dependent var.	0.093185537
Sum squared resid.	0.046082199	Sum squared resid.	0.046706118

Equation: \(d(\text{sra}_7) = c(57) + c(58) \times \text{sra}_7(-2) + c(59) \times d(\text{sra}_7, 2) + c(517) \times d93 \)

	OLS	SUR	
R-squared	0.920327	R-squared	0.918205
Adjusted R-squared	0.904393	Adjusted R-squared	0.901847
S.E. of regression	0.033509	S.E. of regression	0.033952
Durbin–Watson stat.	1.736261	Durbin–Watson stat.	1.701985
Mean dependent var.	−0.02012059	Mean dependent var.	−0.02012059
S.D. dependent var.	0.108371317	S.D. dependent var.	0.108371317
Sum squared resid.	0.016842702	Sum squared resid.	0.017291216
Table 23 (Continued)

| Equation: \(d(sra_8HP) = c(61) + c(62) \cdot sra_8HP(-1) + c(63) \cdot d(sra_8HP, 2) + c(518) \cdot d93 + c(519) \cdot d94 \) |
|---------------------------------|---------------------------------|
| OLS | SUR |
| R-squared | 0.941453 | R-squared | 0.941163 |
| Mean dependent var. | 0.005926559 | Mean dependent var. | 0.005926559 |
| Adjusted R-squared | 0.924725 | Adjusted R-squared | 0.924352 |
| S.D. dependent var. | 0.005647312 | S.D. dependent var. | 0.005647312 |
| S.E. of regression | 0.001549 | S.E. of regression | 0.001553 |
| Sum squared resid. | 3.36E-05 | Sum squared resid. | 3.38E-05 |
| Durbin–Watson stat. | 1.30744 | Durbin–Watson stat. | 1.274754 |

| Equation: \(d(sra_8HPd) = c(64) \cdot d(sra_8HPd, 2) + c(520) \cdot d92 + c(521) \cdot d95 \) |
|---------------------------------|---------------------------------|
| OLS | SUR |
| R-squared | 0.806027 | R-squared | 0.803115 |
| Mean dependent var. | 0.000312728 | Mean dependent var. | 0.000312728 |
| Adjusted R-squared | 0.78178 | Adjusted R-squared | 0.778504 |
| S.D. dependent var. | 0.029986054 | S.D. dependent var. | 0.029986054 |
| S.E. of regression | 0.014008 | S.E. of regression | 0.014112 |
| Sum squared resid. | 0.00313945 | Sum squared resid. | 0.003186578 |
| Durbin–Watson stat. | 2.438696 | Durbin–Watson stat. | 2.477959 |
Table 23 (Continued)

Equation: \(d(sra_9) = c(65) + c(66) \times sra_9(-1) + c(522) \times d93 + c(523) \times d99 \)

	OLS	SUR
R-squared	0.774555	0.769816
Adjusted R-squared	0.732284	0.726657
S.E. of regression	0.057227	0.057826
Durbin–Watson stat.	1.192039	1.327546

Mean dependent var. | –0.00223569 | Mean dependent var. | –0.00223569 |
S.D. dependent var. | 0.110603027 | S.D. dependent var. | 0.110603027 |
Sum squared resid. | 0.052399624 | Sum squared resid. | 0.053501025 |
Durbin–Watson stat. | | | |

Equation: \(d(sra_{10l}) = c(67) + c(68) \times sra_{10l}(-3) + c(524) \times d94 \)

	OLS	SUR
R-squared	0.871203	0.867635
Adjusted R-squared	0.85403	0.849986
S.E. of regression	0.065978	0.066886
Durbin–Watson stat.	2.849506	2.662251

Mean dependent var. | 0.10191042 | Mean dependent var. | 0.10191042 |
S.D. dependent var. | 0.172691047 | S.D. dependent var. | 0.172691047 |
Sum squared resid. | 0.065297402 | Sum squared resid. | 0.067106068 |
Durbin–Watson stat. | | | |
Table 24 Generalized method of moments—time series (HAC): Kernel: Bartlett, bandwidth: Variable Newey–West (5), no prewhitening

Equation	Description			
SYS1scaG	d(sca1) = c(1) + c(2) * sca1(-1) @ sca1(-1)			
	d(sca2) = c(3) + c(4) * sca2(-1) + c(5) * d(sca2(-1)) @ sca2(-1) d(sca2(-1))			
	d(sca3) = c(6) + c(7) * sca3(-3) + c(8)/t @ sca10(-3) 1/t			
	d(sca4) = c(9) + c(10) * sca4(-2) + c(11) * d(sca4, 2) + c(12) * t/(t+1) @ sca6(-2) d(sca4, 2) t/(t+1)			
	d(sca5) = c(13) + c(14) * sca5(-1) + c(15) * d(sca5(-1)) + c(16) * t/(t+1) @ sca6(-1) d(sca5(-1)) t/(t+1)			
	d(sca6) = c(17) + c(18) * sca6(-1) + c(19) * d(sca6(-1)) + c(20) * t/(t+1) @ sca4(-1) d(sca6(-1)) t/(t+1)			
	d(sca7) = c(21) + c(22) * sca7(-1) + c(23) * d(sca7(-1)) + c(24) * d(sca7(-2)) + c(25) * d(sca7(-3)) + c(26) * t/(t+1) @ sca8(-1) d(sca7(-1)) d(sca7(-2)) d(sca7(-3)) t/(t+1)			
	d(sca8) = c(27) + c(28) * sca8(-1) + c(29) * d(sca8, 2) @ sca7(-1) d(sca8, 2)			
	d(sca9) = c(30) + c(31) * sca9(-1) + c(32) * d(sca9(-2)) + c(33) * t/(t+1) @ sca9(-1) d(sca9(-2)) t/(t+1)			
	d(sca10) = c(34) + c(35) * t/(t+1) + c(36) * sca10(-1) @ t/(t+1) sca3(-1)			
SYS1sraG	d(sra1) = c(37) + c(38) * sra1(-1) + c(39) * d(sra1(-2)) + c(40)/t @ sra10(-1) d(sra1(-2)) 1/t			
	d(sra2) = c(41) + c(42) * sra2(-1) + c(43) * d(sra2, 2) @ sra3(-1) d(sra2, 2)			
	d(sra3) = c(44) + c(45) * sra3(-2) + c(46) * d(sra3(-1)) @ sra2(-2) d(sra3(-1))			
	d(sra4) = c(47) + c(48) * sra4(-1) @ sra4(-1)			
	d(sra5HP) = c(49) + c(50) * sra5HP(-1) + c(51) * d(sra5HP(-1)) @ sra8HP(-1) d(sra5HP(-1))			
	d(sra5HPd) = c(52) * sra5HPd(-1) + c(53) * d(sra5HPd(-1)) @ sra5HPd(-1) d(sra5(-1))			
	d(sra6) = c(54) + c(55) * sra6(-1) + c(56) * d(sra6, 2) @ sra10(-1) d(sra6, 2)			
	d(sra7) = c(57) + c(58) * sra7(-2) + c(59) * d(sra7, 2) + c(60)/t @ sra7(-2) d(sra7, 2) 1/t			
	d(sra9) = c(65) + c(66) * sra9(-1) @ sra9(-1)			
	d(sra10l) = c(67) + c(68) * sra10l(-3) @ sra10(-3)			
SYS1sra8G	d(sra8HP) = c(61) + c(62) * sra8HP(-1) + c(63) * d(sra8HP, 2) @ sca1(-1) d(sra1)			
	d(sra8HPd) = c(64) * d(sra8HPd, 2) @ d(sra8)			
Estimation	Coefficient	Std. error	t-statistic	Prob.
------------	-------------	------------	-------------	-------
c(1)	0.306601	0.125989	2.43355	0.0161112
c(2)	−0.64008	0.280023	−2.2858	0.0236481
c(3)	0.306749	0.040223	7.626242	2.45E-12
c(4)	−0.4616	0.050503	−9.13994	3.75E-16
c(5)	0.582774	0.115473	5.046853	1.27E-06
c(6)	0.13037	0.028106	4.638562	7.51E-06
c(7)	−0.14457	0.042163	−3.42883	0.0007803
c(8)	−0.2129	0.056051	−3.79838	0.0002101
c(9)	0.940451	0.141303	6.65555	4.82E-10
c(10)	−0.78012	0.122989	−6.34302	2.45E-09
c(11)	0.540342	0.030012	18.00435	1.60E-39
c(12)	−0.46646	0.070064	−6.65759	4.77E-10
c(13)	1.086867	0.046148	23.55169	1.38E-52
c(14)	−1.22309	0.051193	−23.8916	2.48E-53
c(15)	0.492234	0.07655	6.430267	1.56E-09
c(16)	−0.39337	0.0287	−13.7063	2.39E-28
c(17)	1.01984	0.101599	10.03791	1.66E-18
c(18)	−0.8892	0.095385	−9.32216	1.26E-16
c(19)	0.457512	0.122083	3.747537	0.0002531
c(20)	−0.52278	0.058669	−8.91068	1.46E-15
c(21)	1.512662	0.228653	6.61553	5.95E-10
c(22)	−1.74819	0.253013	−6.90948	1.25E-10
c(23)	0.730626	0.163282	4.474613	1.49E-05
c(24)	0.729524	0.077765	9.381098	8.85E-17
c(25)	0.532158	0.139174	3.823693	0.0001914
c(26)	−0.24892	0.065536	−3.7982	0.0002102
c(27)	0.206372	0.052335	3.943296	0.0001223
c(28)	−0.38015	0.0913	−4.16373	5.23E-05
c(29)	0.343602	0.049807	6.898688	1.33E-10
c(30)	0.178478	0.045995	3.880364	0.000155
c(31)	−1.00173	0.120293	−8.32743	4.48E-14
c(32)	0.312532	0.117606	2.65744	0.0087153
c(33)	0.263697	0.032537	8.10445	1.62E-13
c(34)	−0.11243	0.05481	−2.0513	0.041954
c(35)	0.223479	0.040543	5.512165	1.48E-07
c(36)	−0.22669	0.066706	−3.39839	0.0008656
c(37)	0.410337	0.078538	5.224706	5.30E-07
c(38)	−0.79341	0.152393	−5.20636	5.77E-07
c(39)	0.246874	0.109319	2.258289	0.0252624
c(40)	1.014128	0.223294	4.54167	1.08E-05
Table 24 (Continued)

Estimation	Coefficient	Std. error	t-statistic	Prob.
c(41)	0.158335	0.081972	1.931566	0.0551585
c(42)	-0.3044	0.14473	-2.10325	0.0369891
c(42)	-0.3044	0.14473	-2.10325	0.0369891
c(43)	0.353333	0.085985	4.109225	6.29E-05
c(44)	0.607509	0.186953	3.249529	0.0014058
c(45)	-0.88958	0.272764	-3.26134	0.001352
c(46)	-0.59086	0.180956	-3.2652	0.0013348
c(47)	0.200071	0.023126	8.651512	4.78E-15
c(48)	-0.51659	0.051403	-10.0498	9.01E-19
c(49)	0.012438	0.001323	9.400312	5.06E-17
c(50)	-0.02672	0.002535	-10.5384	4.19E-20
c(51)	1.079729	0.012712	84.93893	2.99E-136
c(52)	-1.19794	0.103191	-11.6089	4.67E-23
c(53)	0.660945	0.10392	6.360122	1.97E-09
c(54)	0.175152	0.019104	9.168604	2.09E-16
c(55)	-0.31296	0.031561	-9.91593	2.08E-18
c(56)	0.292367	0.030034	9.734402	6.42E-18
c(57)	1.046782	0.020545	50.9516	1.23E-101
c(58)	-0.78373	0.015172	-51.6567	1.51E-102
c(59)	0.534862	0.046339	11.54236	7.15E-23
c(60)	0.779652	0.034143	22.83479	1.64E-52
c(61)	-0.01889	0.003623	-5.21494	9.04E-06
c(62)	0.152942	0.014253	10.73059	1.86E-12
c(63)	5.864809	2.511417	2.335259	2.56E-02
c(64)	0.805251	0.063548	12.67163	1.96E-14
c(65)	0.249173	0.044659	5.579505	9.93E-08
c(66)	-0.61859	0.08038	-7.69586	1.30E-12
c(67)	-0.03635	0.010982	-3.31009	0.0011496
c(68)	-0.13208	0.015079	-8.75877	2.51E-15
Table 25 System residual cross-correlations—OLS: ordered by variables, 5 lags

	d(sca1)	d(sca2)	d(sca3)	d(sca4)	d(sca5)	d(sca6)	d(sca7)	d(sca8)	d(sca9)	d(sca10)	d(sra1)
d(sca1)	1	-0.20436	-0.08028	-0.091888	-0.1558	-0.32513	-0.09166	0.127159	0.126493	-0.1381	-0.102451
d(sca1(-1))	0.238371	0.100513	0.069354	-0.188872	0.501609	0.197367	0.144698	-0.16862	0.007396	0.242583	0.369804
d(sca1(-2))	0.464957	-0.00573	-0.20809	-0.126914	-0.1924	-0.47671	-0.413	-0.20746	0.469117	-0.27781	0.159137
d(sca1(-3))	0.014023	-0.16512	0.282422	-0.381427	0.084076	-0.12379	0.256522	0.033792	0.141903	0.265038	0.27344
d(sca1(-4))	0.080867	-0.15566	-0.19726	-0.163086	-0.19362	-0.4359	-0.38842	0.053464	0.283662	0.091934	0.07346
d(sca1(-5))	0.048466	0.223342	0.019214	-0.201697	-0.06186	-0.10777	0.215485	-0.01232	-0.01762	0.143215	0.148988
d(sca2)	-0.20436	1	-0.02033	0.280442	0.078604	0.169666	0.035075	-0.26527	-0.04301	0.00944	0.029148
d(sca2(-1))	0.304251	-0.33059	0.244168	0.176977	-0.10405	-0.14067	0.231152	0.378946	0.388916	0.0737	0.130203
d(sca2(-2))	0.180376	-0.30009	-0.21838	-0.249673	0.428553	0.164485	-0.12539	-0.12696	-0.24927	-0.02269	-0.100335
d(sca2(-3))	0.08852	0.372942	-0.1118	0.285574	-0.12179	-0.05929	-0.41894	-0.28013	-0.01267	-0.12782	-0.207659
d(sca2(-4))	0.008295	-0.18485	0.290198	-0.19912	0.042257	0.051865	0.328405	0.133748	0.051816	0.093589	0.054134
d(sca2(-5))	-0.04955	-0.25392	-0.05879	-0.027027	-0.08283	-0.12925	-0.11605	-0.01391	-0.17007	0.006302	0.109683
d(sca3)	-0.08028	-0.02033	1	0.308264	0.158787	0.323551	0.590183	0.708803	0.13217	0.640846	-0.180649
d(sca3(-1))	0.337497	-0.43834	-0.06704	0.204933	-0.3463	-0.18626	-0.26524	0.377639	-0.27634	0.1118	0.04193
d(sca3(-2))	0.03907	0.297628	-0.04003	0.024955	0.060329	0.089449	0.216249	-0.06979	-0.17868	-0.0111	0.161203
d(sca3(-3))	0.034735	0.034321	-0.10186	-0.267631	-0.04657	0.06572	0.169739	-0.19723	0.436332	-0.44161	0.119385
d(sca3(-4))	0.083949	0.18535	0.223897	-0.162403	0.026417	-0.16438	0.322092	0.048802	0.175681	0.129771	-0.011604
d(sca3(-5))	0.398427	-0.26411	-0.03919	-0.058797	-0.35541	-0.48231	-0.19285	0.174301	0.121024	0.218617	0.015848
d(sca4)	-0.09189	0.280442	0.308264	1	-0.0906	0.211281	-0.15044	0.382849	-0.24187	0.286144	-0.096679
d(sca4(-1))	0.237643	-0.54796	0.065513	0.095888	0.034277	0.243114	0.108567	0.215664	-0.23957	-0.22748	-0.183252
d(sca4(-2))	-0.25775	0.09267	-0.041	0.001857	0.254398	0.459795	0.011027	-0.3158	-0.29426	-0.31956	-0.312641
d(sca4(-3))	0.060369	0.208651	0.431494	0.166593	-0.48511	-0.1802	0.095936	0.136077	0.145572	-0.05945	-0.242455
d(sca4(-4))	-0.01631	-0.45796	0.391378	-0.170627	-0.18053	-0.16552	0.393599	0.541904	-0.05571	0.479824	0.123879
\(d(\text{sca}_4(-5)) \)	0.308314	0.083025	−0.28778	−0.186627	−0.22081	−0.2977	−0.13306	0.018216	−0.01406	−0.07198	0.0013
\(d(\text{sca}_5) \)	−0.1558	0.078604	0.158787	−0.0906	1	0.710568	0.354184	−0.06044	0.215431	0.139468	0.058226
\(d(\text{sca}_5(-1)) \)	0.23506	0.13743	−0.27551	0.392722	−0.32507	−0.13605	−0.58393	−0.36561	−0.11694	−0.44898	−0.160362
\(d(\text{sca}_5(-2)) \)	−0.14596	−0.2944	0.416933	0.008684	0.124961	0.006619	0.231986	0.219797	−0.13243	0.37878	−0.011586
\(d(\text{sca}_5(-3)) \)	0.037532	−0.45536	−0.25905	−0.291073	−0.17605	−0.10479	−0.39156	−0.10578	−0.06973	−0.32215	−0.329483
\(d(\text{sca}_5(-4)) \)	−0.32546	0.563786	0.429299	0.129662	−0.04891	0.153143	0.298213	0.085797	−0.17367	0.334916	0.074596
\(d(\text{sca}_5(-5)) \)	−0.09185	−0.3443	0.042503	0.222039	−0.35538	−0.21477	0.002511	0.424443	0.214301	0.138713	0.354686
\(d(\text{sca}_6) \)	−0.32513	0.169666	0.323551	0.211281	0.710658	1	0.451651	−0.01105	−0.20956	−0.02033	−0.202087
\(d(\text{sca}_6(-1)) \)	0.043414	0.111258	0.020595	0.66825	−0.29507	0.015686	−0.33303	−0.01241	−0.1869	−0.23653	−0.198904
\(d(\text{sca}_6(-2)) \)	0.007598	−0.45947	0.349134	−0.020629	−0.07793	0.050664	0.263848	0.239835	−0.25073	0.087027	−0.190373
\(d(\text{sca}_6(-3)) \)	−0.07874	−0.16756	−0.07382	−0.241908	−0.06333	0.063685	−0.15592	−0.05828	−0.07023	−0.18899	−0.361577
\(d(\text{sca}_6(-4)) \)	−0.01622	0.488009	0.41089	0.107069	−0.32783	−0.08124	0.356004	0.173416	−0.06044	0.211333	−0.069367
\(d(\text{sca}_6(-5)) \)	0.080902	−0.32704	0.128741	−0.005854	−0.22099	−0.22411	0.24531	0.441717	0.176585	0.298198	0.466716
\(d(\text{sca}_7) \)	−0.09166	0.035075	0.590183	−0.150443	0.354184	0.451651	1	0.287952	0.070501	0.300115	0.04842
\(d(\text{sca}_7(-1)) \)	0.239444	−0.03452	−0.38151	0.084055	−0.28759	−0.2851	−0.37584	−0.12573	−0.03451	−0.16027	0.228464
\(d(\text{sca}_7(-2)) \)	0.157694	0.19669	0.046793	−0.069873	0.088277	−0.17645	0.146565	0.017491	0.159334	0.15294	0.102864
\(d(\text{sca}_7(-3)) \)	0.162717	−0.23252	−0.27738	−0.383346	0.092196	0.021942	−0.0562	−0.2275	0.194938	−0.30508	−0.083403
\(d(\text{sca}_7(-4)) \)	0.11452	0.428296	0.117604	−0.022638	0.109974	−0.08834	0.093916	−0.14617	−0.05	0.144818	−0.015269
\(d(\text{sca}_7(-5)) \)	0.170686	−0.34892	0.056968	0.092562	−0.22715	−0.28749	−0.21879	0.188461	0.169256	0.221837	0.300966
\(d(\text{sca}_8) \)	0.127159	−0.26527	0.708803	0.382849	−0.06044	−0.01105	0.287952	1	0.174083	0.695733	−0.118307
\(d(\text{sca}_8(-1)) \)	0.359221	−0.16507	−0.18538	0.093641	0.036319	0.233419	0.011879	0.15942	−0.38786	−0.07879	−0.014911
\(d(\text{sca}_8(-2)) \)	0.011789	0.561056	−0.08789	0.253803	0.161084	0.264968	0.157299	−0.27697	−0.00863	−0.21218	0.211926
\(d(\text{sca}_8(-3)) \)	0.227778	−0.18849	0.047901	−0.243131	−0.06513	−0.08946	0.215611	−0.10826	0.423988	−0.39761	0.022347
	d(sca1)	d(sca2)	d(sca3)	d(sca4)	d(sca5)	d(sca6)	d(sca7)	d(sca8)	d(sca9)	d(sca10)	d(sra1)
-------	----------	----------	----------	----------	----------	----------	----------	---------	----------	-----------	---------
d(sca8)	0.145551	−0.1495	0.16415	−0.30329	0.01913	−0.21426	0.07210	0.009178	0.042069	0.161423	−0.188076
d(sca9)	0.371743	0.002318	0.031956	−0.10787	−0.375	−0.49603	−0.24498	0.150834	0.098627	0.290866	−0.101475
d(sca10)	0.126493	−0.04301	0.13217	−0.241865	0.215431	−0.20956	0.075051	0.174083	1	0.03095	0.19582
	0.152794	−0.03475	−0.11232	−0.214269	0.001097	−0.0703	0.001794	−0.09724	−0.11135	0.045365	0.001894
d(sca11)	0.163243	0.1315	−0.17428	0.180316	−0.06756	−0.32416	−0.20934	−0.03024	−0.04258	0.23071	0.032816
d(sca12)	0.254008	−0.16174	−0.23515	−0.451669	0.143816	0.030617	0.028699	−0.26846	0.058293	−0.26674	0.065711
d(sca13)	−0.27762	0.245495	−0.02308	0.058829	0.311047	0.139846	−0.06628	−0.25418	0.020193	0.073877	0.240799
d(sca14)	0.080926	−0.19668	0.075819	0.154405	−0.27322	−0.29693	−0.34279	0.134797	0.248776	0.002247	0.066301
d(sca15)	−0.1381	0.00944	0.640846	0.286144	0.139468	−0.02033	0.300115	0.695733	0.03095	1	0.241824
d(sca16)	0.488922	−0.32373	−0.50933	−0.02184	−0.28367	−0.28645	−0.37907	0.059262	−0.09706	−0.25481	0.138613
d(sca17)	−0.30032	0.5107	−0.05599	−0.054073	0.533023	0.514324	0.352901	−0.37042	−0.05847	−0.09713	0.327759
d(sca18)	0.052918	−0.03322	−0.12229	0.087361	−0.15135	−0.13518	−0.22174	−0.15294	0.515574	−0.44955	−0.05172
d(sca19)	0.017396	−0.18244	0.314692	−0.149584	0.08688	−0.02754	0.245004	0.143241	−0.16334	0.267288	−0.252981
d(sca20)	0.164792	−0.21057	−0.17911	0.031792	−0.26818	−0.26656	−0.39649	0.032564	−0.15324	0.094664	−0.243106
d(sra1)	−0.10245	0.029148	−0.18065	−0.096679	0.058226	−0.20209	0.04842	−0.11831	0.19582	0.241824	1
d(sra2)	−0.01562	−0.07957	−0.5937	−0.347242	0.026614	−0.37394	−0.37163	−0.32717	0.51043	−0.4135	0.279592
d(sra3)	−0.22807	0.207868	−0.05635	−0.277841	0.219646	0.161013	0.118702	−0.3078	0.163825	−0.15584	−0.275141
d(sra4)	0.032613	0.067573	0.019157	0.140028	−0.09389	−0.14785	−0.10516	0.04092	−0.07359	0.193097	−0.267478
d(sra5)	0.190533	−0.20374	−0.06083	0.022614	−0.01331	−0.09267	−0.027	0.02458	−0.38972	0.18656	0.059843
d(sra6)	−0.18016	−0.03542	−0.22848	0.006725	0.295864	0.212983	−0.30699	−0.21726	−0.01955	−0.08501	0.252188
d(sra7)	−0.07831	0.32901	0.416388	0.063816	0.162032	0.129893	0.485695	0.429645	−0.01105	0.559134	−0.115176
d(sra8)	0.736849	−0.13907	−0.16066	0.178032	−0.24915	−0.2986	−0.06093	0.193442	−0.04055	−0.02107	0.004782
d(sra9)	0.188637	0.16553	−0.10458	−0.163716	0.548817	0.302653	0.104322	−0.2198	−0.00856	0.092487	0.417636
Table 25 (Continued)

	d(sca2)	d(sca2)	d(sca3)	d(sca4)	d(sca5)	d(sca6)	d(sca7)	d(sca8)	d(sca9)	d(sca10)	d(sra1)
d(sra2(-3))	0.206172	0.076853	-0.32452	0.031531	0.072747	-0.1541	-0.37742	-0.35384	0.386884	-0.4271	0.017178
d(sra2(-4))	0.119296	-0.13247	0.324196	-0.264832	0.025224	-0.05166	0.192877	-0.0656	0.034185	0.034527	-0.075003
d(sra2(-5))	-0.0593	-0.31902	0.047672	-0.002626	-0.12295	-0.28542	-0.37138	0.206344	0.070294	0.345249	-0.037706
d(sra3)	-0.25228	0.075665	0.063403	0.239771	-0.11273	-0.07825	-0.25651	0.337649	-0.19897	0.358662	0.152756
d(sra3(-1))	-0.00212	0.038102	0.041641	0.061075	-0.24545	0.092911	0.259878	0.15256	0.122733	-0.28139	-0.003856
d(sra3(-2))	-0.24681	0.200018	0.129231	-0.076733	0.22319	0.372671	0.478427	0.018211	0.068009	-0.05022	0.127689
d(sra3(-3))	0.267123	0.092183	-0.08774	0.196836	-0.30694	-0.31462	-0.05399	0.041215	0.135565	-0.1267	-0.164458
d(sra3(-4))	0.32863	-0.11757	0.029419	-0.35513	0.078781	-0.04592	0.254064	-0.00151	-0.02458	0.087049	-0.125362
d(sra3(-5))	0.274028	0.148488	-0.25478	-0.189916	0.091188	-0.14807	-0.09332	-0.25605	-0.00147	-0.04562	-0.021609
d(sra4)	-0.15118	0.456694	0.180554	0.403007	-0.41297	-0.1513	-0.18561	0.056756	-0.37189	0.202098	-0.169645
d(sra4(-1))	0.358795	-0.46871	0.412758	0.068594	-0.29112	-0.3238	0.289124	0.651837	0.129606	0.350978	0.032522
d(sra4(-2))	0.000777	-0.10651	-0.23706	-0.369005	0.348545	0.343085	-0.00448	-0.10075	-0.09287	-0.08452	0.165805
d(sra4(-3))	-0.00525	0.740731	-0.03365	0.410241	-0.12344	-0.08055	-0.03193	-0.15598	0.195578	-0.11234	0.095176
d(sra4(-4))	0.222947	-0.43336	0.171436	-0.231282	-0.09752	-0.09078	0.374575	0.166814	0.225279	-0.04849	0.166346
d(sra4(-5))	0.095831	-0.08573	-0.25757	-0.271589	0.264268	-0.08594	-0.19759	-0.1584	-0.02162	-0.00048	-0.196851
d(sra5HP)	-0.15832	-0.041	-0.08973	-0.484778	-0.45387	-0.36986	0.281651	-0.15548	0.019681	-0.15794	0.012781
d(sra5HP(-1))	-0.01183	0.162322	-0.00436	-0.47444	-0.24246	-0.37893	0.297076	0.050355	0.268908	0.150439	0.072113
d(sra5HP(-2))	0.23112	0.242049	-0.11534	-0.196278	-0.07548	-0.30124	0.155821	0.116057	0.241715	0.281613	0.298523
d(sra5HP(-3))	0.319503	0.185394	-0.36963	-0.052495	0.248699	-0.12211	-0.02377	-0.10274	0.170498	0.091223	0.398505
d(sra5HP(-4))	0.273866	0.119377	-0.4419	-0.090921	0.424209	0.083386	-0.21322	-0.4489	0.181489	-0.30057	0.165622
d(sra5HP(-5))	0.057535	0.03265	-0.09783	0.00062	0.362275	0.122477	-0.2713	-0.3741	0.121691	-0.17591	-0.102379
d(sra5HPd)	-0.02582	-0.65912	-0.06508	-0.196108	0.296115	0.237845	0.073186	0.237649	0.087111	-0.16249	-0.122776
d(sra5HPd(-1))	-0.31994	0.40589	-0.11559	0.132954	0.248179	0.562101	-0.08343	-0.41851	-0.35515	-0.38314	-0.394828
	d(sca1)	d(sca2)	d(sca3)	d(sca4)	d(sca5)	d(sca6)	d(sca7)	d(sca8)	d(sca9)	d(sca10)	d(sra1)
-------------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	----------	---------
d(sra5HPd(−2))	−0.13342	0.202133	0.489677	0.576155	−0.37648	−0.04846	0.095292	0.299402	0.029764	0.203793	−0.090327
d(sra5HPd(−3))	0.072693	−0.72256	0.058956	−0.219541	−0.03798	−0.03037	0.187078	0.346583	−0.21928	0.070762	−0.128232
d(sra5HPd(−4))	−0.02532	0.312753	−0.15893	−0.031589	−0.02192	0.118887	−0.11456	−0.25496	−0.25743	−0.18744	−0.202893
d(sra5HPd(−5))	−0.08591	0.343021	0.3183	0.16489	−0.14448	0.03136	0.232126	0.187184	0.301052	0.155588	0.191555
d(sra6)	0.079354	0.105344	0.085949	−0.270728	0.454158	0.329718	0.313739	0.043965	0.505304	−0.09948	−0.135169
d(sra6(−1))	0.057229	0.2963	−0.00753	0.486099	0.230269	0.189335	−0.16484	−0.00869	−0.1936	0.244362	0.054956
d(sra6(−2))	0.353631	−0.28772	−0.18509	0.330146	−0.03243	−0.17142	−0.34132	0.004231	−0.17732	−0.03542	−0.048348
d(sra6(−3))	−0.09813	−0.26149	−0.1811	−0.36198	0.454508	0.433039	−0.09523	−0.42312	−0.19465	−0.37987	−0.224681
d(sra6(−4))	−0.31228	0.303426	0.269713	0.254556	−0.11445	0.075851	−0.17497	−0.15269	−0.02812	−0.06903	−0.192689
d(sra6(−5))	−0.16875	−0.44392	0.554227	0.190321	−0.42338	−0.21782	0.083623	0.613343	−0.00496	0.444755	0.105625
d(sra7)	0.285423	0.153645	0.143524	0.634831	−0.09618	0.112987	0.146996	0.272394	−0.4718	0.262607	−0.135284
d(sra7(−1))	0.320828	−0.20743	−0.16797	0.059214	0.217958	0.17851	−0.07996	−0.06827	−0.14212	−0.12321	0.214895
d(sra7(−2))	−0.08702	0.085241	−0.17459	−0.072173	0.364089	0.277448	−0.14387	−0.39749	0.099808	−0.40776	−0.076371
d(sra7(−3))	0.004763	0.013737	0.364363	0.0467	−0.25108	−0.09011	0.0092	−0.01181	0.120599	−0.1006	−0.228426
d(sra7(−4))	−0.07155	−0.41422	0.372133	−0.032225	−0.19991	−0.22603	0.030383	0.494039	−0.04042	0.511155	−0.065801
d(sra7(−5))	0.182252	−0.02457	−0.1602	−0.12583	−0.26709	−0.21686	0.06897	0.118497	−0.20834	0.033663	−0.094111
d(sra8HP)	0.085464	0.030686	0.262081	−0.010163	−0.29173	0.030023	0.471341	0.251369	−0.10184	−0.00868	−0.154089
d(sra8HP(−1))	0.274697	0.120757	0.065064	−0.205745	−0.2182	−0.17924	0.373161	0.113165	0.109703	0.020486	0.102649
d(sra8HP(−2))	0.411478	0.160664	−0.07155	−0.29882	−0.08653	−0.30926	0.253718	0.003069	0.297683	0.05078	0.247511
d(sra8HP(−3))	0.493465	0.126676	−0.18657	−0.377422	0.063066	−0.32715	0.094591	−0.12208	0.376869	0.028276	0.268989
d(sra8HP(−4))	0.470091	0.126699	−0.21652	−0.323866	0.157509	−0.31042	−0.05351	−0.21045	0.328319	0.05358	0.248759
d(sra8HP(−5))	0.401725	0.018312	−0.19042	−0.26463	0.159213	−0.29005	−0.18311	−0.21577	0.269841	0.062981	0.241184
d(sra8HPd)	−0.06692	0.062992	−0.0988	−0.371353	−0.12033	−0.08903	0.10758	0.036451	0.194614	−0.01726	0.116522
Table 25 (Continued)

	d(sca1)	d(sca2)	d(sca3)	d(sca4)	d(sca5)	d(sca6)	d(sca7)	d(sca8)	d(sca9)	d(sca10)	d(sra1)
d(sragHPd(−1))	−0.5089	0.297822	0.170832	0.114387	0.115237	0.036297	0.392667	0.185869	0.139719	0.155716	0.097207
d(sragHPd(−2))	0.251565	−0.11526	−0.03377	0.082948	−0.13808	−0.0589	−0.05829	0.075424	0.108538	−0.01701	0.298923
d(sragHPd(−3))	−0.04804	0.073139	−0.21511	0.024383	0.415487	0.078338	−0.12938	−0.02349	0.141897	0.097919	−0.020138
d(sragHPd(−4))	0.349684	0.044513	−0.25963	−0.137283	−0.17559	−0.03271	−0.00773	−0.44355	−0.17222	−0.56495	−0.38048
d(sragHPd(−5))	−0.15138	0.050534	0.33543	−0.104596	0.245597	0.116929	0.201668	−0.03033	−0.00679	0.337691	0.177253
d(srag)	0.08446	0.008764	−0.38077	−0.371384	0.382518	0.120217	−0.01789	−0.17715	0.186736	−0.0629	0.293941
d(srag(−1))	−0.15351	0.458711	−0.32607	0.37837	0.375252	0.183448	−0.27746	−0.3461	0.014992	−0.06336	0.153266
d(srag(−2))	0.107692	−0.23826	−0.08948	0.1436	0.109855	0.079366	−0.23061	−0.16105	0.03125	−0.26202	−0.146382
d(srag(−3))	−0.31079	−0.28508	0.003284	0.031958	0.383384	0.347673	−0.22564	−0.1667	−0.33379	−0.01879	−0.36931
d(srag(−4))	−0.13573	0.00072	0.16302	0.301034	−0.30773	0.00209	−0.34016	−0.02619	−0.31772	−0.08653	−0.419996
d(srag(−5))	−0.48367	−0.24377	0.462731	0.178846	−0.07878	0.238764	0.213926	0.404048	−0.26742	0.368062	0.098698
d(srag(−1l))	−0.2292	0.638249	0.231459	0.20436	0.023671	−0.01401	0.334653	−0.13729	0.13404	0.244634	0.22337
d(srag(−1l)(−1))	0.24777	−0.4541	−0.21768	−0.327155	−0.42188	−0.49401	−0.07242	0.057867	0.259296	−0.12013	0.292055
d(srag(−1l)(−2))	−0.09903	0.098661	−0.22868	−0.365858	0.393825	−0.02645	0.090334	−0.18047	−0.04548	0.119218	−0.011345
d(srag(−1l)(−3))	0.203709	0.283232	−0.178	0.02977	−0.22002	−0.13695	−0.29067	−0.24384	0.223085	−0.20417	−0.027343
d(srag(−1l)(−4))	−0.12836	0.032327	0.16951	0.014689	0.393341	0.117687	0.252462	0.169338	0.028096	0.413244	0.251756
d(srag(−1l)(−5))	0.253035	−0.32093	−0.41142	0.075446	−0.14543	−0.18154	−0.4442	−0.23226	−0.14782	−0.3671	−0.049664
Table 25 (Continued)

	d(sra₂)	d(sra₃)	d(sra₄)	d(sra₅HP)	d(sra₅HPd)	d(sra₆)	d(sra₇)	d(sra₈HP)	d(sra₈HPd)	d(sra₉)	d(sra₁₀)	
d(sca₁)	−0.07831	−0.25228	−0.15118	−0.158318	−0.02582	0.079354	0.285423	0.085464	−0.06692	0.08446	−0.229203	
d(sca₁(−1))	0.097945	0.0482	−0.07295	−0.146672	−0.15985	−0.1196	−0.08818	−0.03681	0.067278	0.043284	0.154748	
d(sca₁(−2))	−0.34973	−0.02838	0.09049	−0.029424	−0.22289	−0.12419	−0.31167	−0.12925	0.162567	−0.15148	0.024616	
d(sca₁(−3))	0.084228	−0.04724	−0.05481	0.210956	−0.07715	−0.07036	−0.31506	0.017017	0.01644	−0.05721	0.097095	
d(sca₁(−4))	−0.07144	0.228974	0.05124	0.12321	−0.12584	−0.06605	−0.20605	−0.04243	0.194919	0.008565	−0.056827	
d(sca₁(−5))	0.124835	0.039175	−0.08646	0.133063	−0.15383	0.076409	−0.00838	0.040436	0.161872	0.215898	0.2403	
d(sca₂)	0.32901	0.075665	0.456694	−0.040997	−0.65912	0.105344	0.153645	0.030686	0.062992	0.008764	0.638249	
d(sca₂(−1))	0.10868	−0.53255	−0.18414	−0.122499	0.256324	0.306209	0.199611	−0.05724	−0.08137	0.08935	−0.203069	
d(sca₂(−2))	0.013987	0.061978	−0.18274	−0.216002	0.229629	−0.01081	0.051019	−0.1867	−0.35028	0.245706	−0.366553	
d(sca₂(−3))	−0.35637	−0.00214	0.098332	−0.169734	−0.4158	−0.18574	0.050899	−0.12663	0.012026	−0.26852	0.366927	
d(sca₂(−4))	0.216882	−0.11317	0.091679	0.034743	0.264836	0.005449	−0.26437	−0.04193	0.421731	0.001076	−0.239444	
d(sca₂(−5))	−0.18353	0.177483	0.127219	0.044708	−0.05792	−0.19559	0.145028	−0.00563	−0.43747	−0.18195	−0.075049	
d(sca₃)	0.416388	0.063403	0.180554	−0.089731	−0.06508	0.085949	0.143524	0.262081	−0.0988	−0.38077	0.231459	
d(sca₃(−1))	−0.02418	0.469753	0.196491	−0.019875	0.117831	−0.40434	0.250785	0.317378	0.082579	−0.14398	−0.438173	
d(sca₃(−2))	−0.11355	0.424394	−0.16791	0.23579	−0.03364	−0.38413	0.03065	0.456515	−0.0578	−0.27306	0.429048	
d(sca₃(−3))	−0.01613	−0.264	−0.06481	0.401786	0.047155	0.228623	−0.42741	0.400917	0.476245	−0.04767	−0.019793	
d(sca₃(−4))	0.486833	−0.13583	0.329994	0.358289	−0.37877	0.033506	0.028983	0.286014	−0.3586	−0.18029	0.335851	
d(sca₃(−5))	−0.00515	−0.20317	−0.1109	0.182116	−0.22434	−0.04082	0.1892	0.113151	−0.07886	−0.03202	0.024452	
d(sca₄)	0.063816	0.239771	0.403009	−0.484778	−0.19611	−0.27073	0.634831	−0.01016	−0.37135	−0.37138	0.20436	
d(sca₄(−1))	−0.28171	0.041168	−0.37079	−0.130185	0.718676	−0.21472	0.033156	0.181865	−0.05337	−0.14038	−0.525919	
d(sca₄(−2))	−0.1138	0.220612	0.178432	0.181758	−0.00579	−0.2889	−0.13854	0.36178	−0.1249	−0.47087	0.070968	
d(sca₄(−3))	−0.01622	0.004938	0.420171	0.341752	−0.40714	−0.2252	−0.13546	0.432412	0.098847	−0.63244	0.35905	
d(sca₄(−4))	0.464676	0.22782	0.151514	0.458121	0.167775	−0.23979	−0.01918	0.504918	0.137787	−0.25036	−0.171814	
	d(sra2)	d(sra3)	d(sra4)	d(sra5 HP)	d(sra5 HPd)	d(sra6)	d(sra7)	d(sra8 HP)	d(sra8 HPd)	d(sra9)	d(sra10)	
------------------	---------	---------	---------	------------	-------------	---------	---------	------------	-------------	---------	----------	
d(sca4 (-5))	-0.06191	0.37974	-0.06886	0.271561	-0.16462	-0.09666	0.092159	0.371715	0.019235	0.011359	0.115555	
d(sca5)	0.162032	-0.11273	-0.41297	-0.453874	0.296115	0.454158	-0.09618	-0.29173	-0.12033	0.382518	0.023671	
d(sca5 (-1))	-0.38677	-0.24102	0.384828	-0.277756	-0.39636	-0.17928	0.194264	-0.23387	-0.22735	-0.18964	-0.028236	
d(sca5 (-2))	0.043123	0.040996	-0.0801	0.0087	0.263921	-0.36651	-0.10821	-0.0847	-0.18618	-0.33976	0.016384	
d(sca5 (-3))	-0.589	0.17244	-0.0263	0.095189	0.247906	-0.07271	-0.27503	0.004712	0.252476	-0.08627	-0.496284	
d(sca5 (-4))	0.176766	0.385643	0.336651	0.082239	-0.45401	-0.14597	-0.01517	0.152767	0.08226	-0.19872	0.568706	
d(sca5 (-5))	0.014761	0.11912	-0.01958	0.132788	0.253974	-0.03964	0.03961	0.20567	0.250637	-0.02899	-0.230897	
d(sca6)	0.129893	-0.07825	-0.1513	-0.369857	0.237845	0.329718	0.112987	0.030023	-0.08903	0.120217	-0.041042	
d(sca6 (-1))	-0.16841	0.051495	0.514253	-0.185112	-0.22836	-0.39488	0.30153	0.087423	-0.31523	-0.5148	0.039792	
d(sca6 (-2))	-0.10676	0.052973	-0.15756	0.226842	0.377722	-0.41952	-0.05354	0.309544	-0.23811	-0.49254	-0.1261	
d(sca6 (-3))	-0.06388	0.310719	0.13436	0.310119	0.064513	-0.16086	-0.30976	0.357552	0.318767	-0.29439	-0.190585	
d(sca6 (-4))	0.285213	0.215673	0.444347	0.327732	-0.52563	-0.1494	0.092266	0.454588	0.12593	-0.34457	0.545547	
d(sca6 (-5))	0.228302	0.092621	-0.0601	0.265123	0.162037	-0.031	0.076704	0.349219	0.169983	0.019928	-0.136917	
d(sca7)	0.485695	-0.25651	-0.18561	0.281651	0.073186	-0.2942	-0.13777	0.173777	0.115181	-0.05978	0.044077	-0.11327
d(sca7 (-1))	-0.02676	0.04869	0.269347	0.071889	-0.2942	-0.13777	0.173777	0.115181	-0.05978	0.044077	-0.11327	
d(sca7 (-2))	0.037535	0.004428	-0.25855	0.102196	-0.04824	-0.09311	-0.03223	0.056444	-0.14476	-0.04721	0.375386	
d(sca7 (-3))	0.033886	-0.3842	-0.14107	0.121012	0.171691	0.31667	-0.22715	-0.00847	0.381931	0.249328	-0.363241	
d(sca7 (-4))	0.224285	-0.04498	0.322795	-0.086105	-0.49427	0.006126	0.166687	-0.16657	-0.32036	-0.01848	0.401431	
d(sca7 (-5))	-0.2365	-0.16203	-0.16989	-0.169962	0.02927	-0.00948	0.031775	-0.24617	0.096719	0.07202	-0.172233	
d(sca8)	0.429645	0.337649	0.056756	-0.15548	0.237649	0.043965	0.272394	0.251369	0.036451	-0.17715	-0.137293	
d(sca8 (-1))	-0.03382	0.365135	-0.151	-0.098143	0.221054	-0.12781	0.349827	0.384802	0.10603	0.127698	-0.301964	
d(sca8 (-2))	-0.0674	0.12283	0.029676	0.092756	-0.23873	-0.22615	0.056232	0.378243	-0.01238	-0.2742	0.530402	
d(sca8 (-3))	0.017779	-0.45875	-0.01778	0.359213	0.108108	0.100357	-0.32979	0.307245	0.07598	-0.21614	-0.089528	
	d(sra₂)	d(sra₃)	d(sra₄)	d(sra₅HP)	d(sra₅HPd)	d(sra₆)	d(sra₇)	d(sra₈HP)	d(sra₈HPd)	d(sra₉)	d(sra₁₀)	
-------	---------	---------	---------	-----------	------------	---------	---------	-----------	------------	---------	---------	
d(sca₈(−4))	0.265218	−0.09611	0.202911	0.346314	−0.29281	−0.11125	−0.05343	0.214273	−0.37149	−0.27541	0.125107	
d(sca₈(−5))	0.044942	0.081743	0.089474	0.152889	−0.37781	−0.1319	0.017042	0.083201	0.282033	−0.08535	0.15169	
d(sca₉)	−0.01105	−0.19897	−0.37189	0.019681	0.087111	0.505304	−0.4718	−0.10184	0.194614	0.186736	0.13404	
d(sca₉(−1))	0.318379	−0.22835	0.151821	0.083159	−0.22676	0.144506	0.100764	−0.01539	−0.0851	0.289535	−0.113401	
d(sca₉(−2))	0.013285	−0.02623	−0.01853	−0.074619	−0.22911	−0.18804	0.336636	−0.16244	−0.24021	−0.05045	0.296039	
d(sca₉(−3))	−0.18592	−0.30942	−0.36513	−0.139908	0.292599	0.296359	−0.24543	−0.31337	0.391863	0.467798	−0.345843	
d(sca₉(−4))	0.00726	0.008928	0.21825	−0.240694	−0.24771	0.04476	−0.01173	−0.374	−0.20949	0.058564	0.187814	
d(sca₉(−5))	−0.41298	−0.04915	−0.13202	−0.24877	0.025019	0.005361	−0.12468	−0.35133	−0.08365	0.01196	−0.100343	
d(sca₁₀)	0.559134	0.358662	0.202098	−0.157936	−0.16249	−0.09948	0.262607	−0.00868	−0.01726	−0.0629	0.244634	
d(sca₁₀(−1))	−0.36929	0.250502	−0.28903	−0.161556	0.318366	−0.07809	0.169501	−0.00761	0.197592	0.311848	−0.470723	
d(sca₁₀(−2))	−0.0028	0.066644	−0.21296	−0.020151	−0.03134	0.05954	−0.12519	0.058352	−0.02085	0.119419	0.417576	
d(sca₁₀(−3))	−0.16012	−0.41303	0.092482	0.055553	−0.04077	0.2161	−0.23038	−0.0256	0.030666	−0.11245	−0.074739	
d(sca₁₀(−4))	0.319199	−0.15146	0.08775	0.150782	−0.04271	−0.08564	0.072694	0.053473	−0.43175	−0.14805	0.033512	
d(sca₁₀(−5))	−0.12908	0.079282	0.03721	0.025779	−0.09907	−0.183	0.150928	−0.00789	0.12376	−0.11494	−0.116078	
d(sra₁)	−0.11518	0.152756	−0.16965	0.012781	−0.12278	−0.13517	−0.13528	−0.15409	0.116522	0.293941	0.22337	
d(sra₁(−1))	−0.33635	−0.03786	−0.40671	0.119535	0.236144	0.151012	−0.4757	−0.23958	0.035667	0.313858	−0.104958	
d(sra₁(−2))	0.162166	−0.50079	−0.13919	0.15302	−0.12889	0.454542	−0.17178	−0.1218	−0.06471	0.23144	0.173329	
d(sra₁(−3))	0.342347	−0.32313	0.308599	−0.136183	−0.24022	0.150532	0.311779	−0.28498	−0.06191	0.119177	−0.005468	
d(sra₁(−4))	−0.10857	−0.09032	−0.13461	−0.33239	0.121002	−0.06416	0.388701	−0.4075	−0.22939	0.237796	−0.182338	
d(sra₁(−5))	−0.45085	0.196124	−0.27762	−0.47143	0.243733	0.048441	−0.20148	−0.51487	0.172722	0.295845	−0.211465	
d(sra₂)	1	0.030164	0.438573	0.171358	−0.22642	0.210584	0.255294	0.313154	0.143494	0.041935	0.171932	
d(sra₂(−1))	−0.04973	−0.22338	−0.13163	−0.16893	−0.09669	0.108995	0.670526	0.080135	−0.35518	0.147036	−0.076845	
d(sra₂(−2))	−0.0163	0.021786	−0.34026	−0.307464	0.068539	0.053522	−0.11668	−0.19331	0.153725	0.374897	0.029755	
Table 25 (Continued)

	d(sra2)	d(sra3)	d(sra4)	d(sra5)	d(sra5HP)	d(sra5HPd)	d(sra6)	d(sra7)	d(sra8)	d(sra8HP)	d(sra8HPd)	d(sra9)	d(sra10)
d(sra2(−3))	-0.26009	-0.20463	0.076031	-0.125592	-0.07453	0.007591	-0.19706	-0.19917	0.01282	-0.11255	-0.012497		
d(sra2(−4))	-0.02958	-0.30905	0.013483	0.069898	-0.11415	-0.00011	-0.18876	-0.09883	-0.22982	-0.13804	0.050658		
d(sra2(−5))	0.008323	0.260646	0.166973	0.002629	-0.0615	-0.22636	-0.12104	-0.11059	0.138516	-0.16977	-0.157162		
d(sra3)	0.030164	1	0.275984	-0.018535	0.049662	-0.546	-0.12461	0.178616	0.267248	-0.26453	-0.019089		
d(sra3(−1))	-0.20129	0.135411	-0.24323	0.305687	0.211418	0.045877	-0.0469	0.550416	0.203491	-0.16523	0.094283		
d(sra3(−2))	0.443198	-0.00108	0.114955	0.348859	-0.01479	0.153171	-0.10052	0.509521	0.066668	-0.00023	0.133623		
d(sra3(−3))	0.121566	-0.21513	0.150263	0.308979	-0.31341	-0.0765	0.31719	0.383068	-0.42148	-0.29896	0.28412		
d(sra3(−4))	0.272485	-0.30306	-0.20954	0.2288	0.043924	0.090901	-0.01018	0.186627	0.123455	0.124888	-0.037447		
d(sra3(−5))	0.17381	-0.12419	0.189972	0.023547	-0.26149	0.030916	0.112395	-0.06446	0.088067	0.072421	0.060998		
d(sra4)	0.438573	0.275984	1	0.137411	-0.64517	-0.43054	0.232439	0.204685	0.041332	-0.49042	0.223361		
d(sra4(−1))	-0.06016	0.065703	-0.31055	0.082684	0.319416	-0.10513	0.223418	0.234059	-0.15133	-0.22399	-0.068496		
d(sra4(−2))	0.014433	0.358652	-0.21687	-0.005038	0.233364	0.118637	-0.27813	0.157501	0.427963	0.375911	-0.346767		
d(sra4(−3))	0.043959	0.100341	0.338922	0.07883	-0.57456	-0.12261	0.164807	0.22781	-0.13249	-0.30711	0.079723		
d(sra4(−4))	0.123498	-0.50559	-0.25074	0.260561	0.301578	0.162884	-0.1061	0.200141	0.049618	0.053274	-0.250274		
d(sra4(−5))	0.157162	0.111269	0.045852	0.091493	-0.06905	-0.04615	-0.02105	0.000312	-0.26813	0.012083	-0.056383		
d(sra5HP)	0.171358	-0.01854	0.137411	1	-0.18105	-0.25133	-0.30075	0.695554	0.161362	-0.36515	0.277636		
d(sra5HP(−1))	0.441603	-0.09751	0.070338	0.655165	-0.31931	0.24544	-0.12118	0.377363	0.212938	0.107045	0.305167		
d(sra5HP(−2))	0.440847	-0.17943	-0.04687	0.113068	-0.3103	0.423303	0.217972	-0.00054	0.158546	0.530374	0.186613		
d(sra5HP(−3))	0.173581	-0.26406	-0.29359	-0.294863	-0.03495	0.373892	0.291871	-0.3491	-0.04218	0.669506	0.022396		
d(sra5HP(−4))	-0.20319	-0.48413	-0.37066	-0.468667	0.077432	0.375479	0.05026	-0.58736	-0.15808	0.536958	-0.100804		
d(sra5HP(−5))	-0.19778	-0.44443	-0.05142	-0.470603	-0.0267	0.181726	-0.11222	-0.65328	-0.19957	0.155251	-0.094487		
d(sra5HPd)	-0.22642	0.049662	-0.64517	-0.181045	1	0.181071	-0.25047	-0.1202	0.145693	0.249485	-0.701927		
d(sra5HPd(−1))	-0.10549	0.096079	0.243692	-0.079322	-0.23949	0.037171	0.056829	0.089742	-0.21803	-0.12713	0.153739		
d(sra2)	d(sra3)	d(sra4)	d(sra5)	d(sra5HP)	d(sra5HPd)	d(sra6)	d(sra7)	d(sra8)	d(sra8HP)	d(sra8HPd)	d(sra9)	d(sra10)	
---------	---------	---------	---------	-----------	------------	---------	---------	---------	-----------	------------	---------	---------	
0.075886	-0.06098	0.373429	0.026708	-0.27217	-0.24066	0.164738	0.174466	-0.04356	-0.51701	0.344384			
0.146986	0.133083	-0.12691	0.214448	0.626214	-0.19049	-0.00478	0.259703	-0.00889	-0.08661	-0.594721			
-0.21607	0.292657	0.040432	0.134725	-0.30339	-0.13434	0.076111	0.256021	-0.14939	-0.18034	0.298497			
0.221903	-0.01008	0.168023	0.117134	-0.19347	0.07981	-0.17643	0.218452	0.517639	-0.08425	0.275028			
0.210584	-0.5456	-0.43054	-0.251333	0.181071	1	-0.07326	-0.26356	0.13829	0.684777	-0.125893			
0.317968	-0.18409	0.341643	-0.559502	-0.37646	0.141354	0.555757	-0.39784	-0.37736	0.281925	0.063551			
-0.40509	-0.1486	-0.29447	-0.455943	0.28793	-0.27399	0.33399	-0.40628	-0.36571	-0.03619	-0.197014			
-0.36199	-0.07095	-0.28393	-0.218374	0.468116	0.017907	-0.41718	-0.30712	0.207712	0.09803	-0.44068			
-0.18279	0.133293	0.545692	-0.094738	-0.42674	-0.19168	-0.13315	-0.13339	-0.09808	-0.47829	0.285845			
-0.0372	0.276235	0.113972	0.077645	0.157879	-0.28606	-0.08561	0.099115	0.056066	-0.31996	-0.158429			
0.255294	-0.12461	0.232439	-0.300752	-0.25047	-0.07326	1	0.095636	-0.57891	-0.07941	0.173865			
-0.33747	0.006726	-0.41158	-0.375801	0.388574	-0.11489	0.048937	-0.16825	0.052182	0.182403	-0.296725			
-0.24308	0.02298	0.008075	-0.096601	0.113108	-0.07511	-0.33565	-0.07514	0.004769	-0.17777	-0.043599			
-0.1266	-0.18308	0.292527	0.152561	-0.29492	-0.11097	-0.1785	0.10505	-0.1538	-0.47432	0.175764			
0.263101	0.309164	0.196771	0.215921	0.068528	-0.29983	-0.08573	0.202322	0.116176	-0.29277	-0.160884			
-0.03462	0.427861	-0.01285	0.202805	-0.00632	-0.18967	0.108185	0.291081	0.176292	-0.02419	-0.016906			
0.313154	0.178616	0.204685	0.695554	-0.1202	-0.26356	0.095636	1	0.049007	-0.54116	0.255321			
0.368818	0.039398	0.13445	0.627102	-0.26137	-0.08786	0.039777	0.771453	0.123421	-0.22523	0.281551			
0.337049	-0.142	-0.00762	0.446666	-0.31005	0.087933	0.02342	0.451643	0.082679	0.034097	0.292211			
0.260669	-0.30209	-0.11343	0.203276	-0.27641	0.23892	-0.0285	0.094997	0.096456	0.272527	0.169549			
0.161844	-0.34784	-0.09767	-0.038327	-0.28522	0.241024	-0.00778	-0.21924	0.025526	0.339496	0.121719			
-0.02586	-0.31609	-0.12752	-0.23095	-0.18846	0.194451	-0.05259	-0.45638	0.023276	0.347952	0.000338			
0.143494	0.267248	0.041332	0.161362	0.145693	0.13829	-0.57891	0.049007	1	0.274634	-0.317396			
	d(sra₂)	d(sra₃)	d(sra₄)	d(sra₅HP)	d(sra₅HPd)	d(sra₆)	d(sra₇)	d(sra₈HP)	d(sra₈HPd)	d(sra₉)	d(sra₁₀l)		
---------------	----------	----------	----------	------------	------------	----------	----------	------------	------------	----------	------------		
d(sra₈HPd(−1))	0.37641	0.036996	0.18074	0.077906	−0.17868	0.208367	0.312864	0.182499	−0.29385	−0.00868	0.337861		
d(sra₈HPd(−2))	−0.19516	−0.222	−0.27557	−0.125288	−0.06132	0.18867	0.140969	−0.01944	−0.12102	0.271062	−0.066807		
d(sra₈HPd(−3))	0.243988	0.165218	−0.10641	−0.104528	0.199267	−0.05199	−0.10737	−0.07835	0.066269	0.115834	−0.022019		
d(sra₈HPd(−4))	−0.22492	−0.57039	−0.02159	0.117075	−0.12687	0.098713	0.197799	0.046481	−0.1952	−0.0755	0.01356		
d(sra₈HPd(−5))	0.197273	−0.11396	0.17261	−0.083801	−0.18596	−0.0173	−0.12923	−0.2208	0.009627	−0.03997	0.132283		
d(sra₉)	0.041935	−0.26453	−0.49042	−0.365153	0.249485	0.684777	0.07941	−0.54116	0.274634	1	−0.32919		
d(sra₉(−1))	−0.03669	−0.22531	0.012726	−0.568572	−0.20597	0.24335	0.320544	−0.62226	−0.36395	0.37097	0.210435		
d(sra₉(−2))	−0.38002	−0.51751	−0.30704	−0.500054	0.326698	0.185098	0.02172	−0.61409	−0.22096	0.211334	−0.326312		
d(sra₉(−3))	−0.12849	−0.00516	0.042397	−0.358765	0.298681	−0.11774	−0.07635	−0.45709	−0.2137	−0.0705	−0.360018		
d(sra₉(−4))	−0.43963	0.184704	0.25925	−0.234842	−0.11813	−0.29442	0.042309	−0.22132	−0.08127	−0.38797	−0.007701		
d(sra₉(−5))	0.009702	0.452969	0.123364	−0.026925	0.31319	−0.28479	−0.13981	0.066989	0.287077	−0.22866	−0.179804		
d(sra₁₀l)	0.171932	0.01909	0.223361	0.277636	−0.70193	−0.12589	0.173865	0.255321	−0.3174	−0.32919	1		
d(sra₁₀l(−1))	0.005599	−0.32033	−0.1354	0.292328	0.213216	0.080061	−0.23024	0.017578	0.383578	0.246448	−0.409547		
d(sra₁₀l(−2))	0.239986	0.084746	−0.14234	0.11154	−0.00767	0.099154	0.023602	−0.10181	−0.32121	0.220353	0.14672		
d(sra₁₀l(−3))	−0.26232	−0.39254	−0.09161	−0.17551	−0.36567	0.370237	0.018441	−0.27274	0.240698	0.286826	0.138417		
d(sra₁₀l(−4))	0.490922	−0.02283	0.096379	−0.27697	0.171625	0.104078	0.03092	−0.35476	0.090959	0.307841	−0.098449		
d(sra₁₀l(−5))	−0.58786	−0.19166	−0.2258	−0.273407	0.109888	−0.01422	0.283923	−0.33411	−0.49421	0.074032	−0.272728		
References

1. Afonso A, Furceri D (2007) Business cycle synchronization and insurance mechanisms in the EU. Working paper no 844/December, European Central Bank, Eurosystem. http://www.ecb.int/pub/pdf/scpwps/ecbwp844.pdf. Accessed 10 June 2012
2. Belaire-Franch J, Contreras-Bayarri D (2002) The BDS test: a practitioner’s guide. DT 02-01, University of Valencia. http://centros.uv.es/departamentos/D10/data/investigacion/PDF132.pdf. Accessed 14 March 2012
3. Bevilacqua F, van Zon A (2001) Random walks and non-linear paths in macroeconomic time series: some evidence and implications. Maastricht, November. http://www.wu.ac.at/inst/vw1/gee/papers/gee!wp22.pdf. Accessed 12 April 2012
4. Blanchard O (1995) Preface. In: Cross R (ed) The natural rate of unemployment—reflections on 25 years of the hypothesis. Cambridge University Press, New York
5. Bordo MD, Helbling T (2003) Have national business cycles become more synchronized? Working paper 10130, NBER. http://www.nber.org/papers/w10130. Accessed 13 July 2011
6. Brock W, Dechert D, Scheickman J, LeBaron B (1996) A test for independence based on the correlation dimension. Econom Rev 15:197–235
7. Capilit E (2009) RAS method. Asian Development Bank, RETA 6483—adopting the supply and use framework towards 1993. System of national accounts compliance in selected DMCs, 2nd data review workshop, 7–12 December. http://www2.adb.org/statistics/icp/files/6483-2DRW/RAS-Method-Capilit.pdf. Accessed 13 July 2011
8. Cashin P, McDermott CJ, Scott A (1999) The myth of co-moving commodity prices. Discussion paper G99/9, Reserve Bank of New Zealand, December. http://www.rbnz.govt.nz/research/discusspapers/g99_9.pdf. Accessed 8 June 2012
9. Darvas Z, Szapáry G (2004) Business cycle synchronization in the enlarged EU. Paper revised in October 2004 for the joint ECB-IMF workshop on global financial integration, stability and business cycles: exploring the links, Frankfurt. http://www.imf.org/external/np/seminars/eng/2004/ecbimf/pdf/szapar.pdf. Accessed 11 June 2012
10. Dobrescu E (2006) Integration of macroeconomic behavioural relationships and the input–output block (Romanian modelling experience). Paper presented at the international conference on policy modelling (Ecomod 2006), Hong Kong, June 28–30, 2006
11. Dobrescu E (2009) Measuring the interaction of structural changes with inflation. Rom J Econ Forecast, Supplement
12. Dobrescu E, Gaftea V, Scutaru C (2010) Using the Leontief matrix to estimate the impact of investments upon the global output. Rom J Econ Forecast 13:176–187
13. Dobrescu E, Gaftea V (2012) On the accuracy of RAS method in an emergent economy. Amfiteatru Econ 14:1–20
14. Giarini O (2011) Science and economics: the case of uncertainty & disequilibrium. Cadmus 1(2):25–34
15. Harding D, Pagan A (1999) Dissecting the cycle. Working paper 13/99, Melbourne Institute. http://fmwww.bc.edu/RePEc/es2000/1164.pdf. Accessed 14 June 2012
16. Inklaar R, Jong-A-Pin R, De Haan J (2005) Trade and business cycle synchronization in OECD countries. A re-examination. Working paper 1546, category 6: monetary policy and international finance, CESIFO. http://www.cesifo.de/pls/guestsci/download/CESifo%20Working%20Papers%202005/CESifo%20Working%20Papers%20September%202005/cesifo1_wp1546.pdf. Accessed 11 June 2012
17. INSSE—TEMPO (2012) Input–output tables. http://statistici.insse.ro/shop/?lang=en
18. Jackson RW, Murray AT (2003) Alternate input–output matrix updating formulations. Research paper 2003-6. http://rri.wvu.edu/pdfiles/jacksonmurraywp2003-6.pdf. Accessed 10 Jan 2012
19. Jian X, Jing H, Yanyun Z (2007) Assessment study for the RAS method based on China’s input–output tables. Management School of Graduate University, Chinese Academy of Sciences. http://www.iariw.org/papers/2007/jian.pdf. Accessed 13 July 2011
20. Kalemli-Ozcan S, Papaioannou E, Peydró J-L (2010) Financial regulation, financial globalization and the synchronization of economic activity. Working paper 1221/July, European Central Bank, Eurosyste
21. Kratena K, Zakarias G (2002) Technical coefficients change by bi-proportional econometric adjustment functions. Paper presented at the 14th international conference on input–output techniques, Montréal, Canada, October 10–15, 2002. http://www.iioa.org/pdf/14th%20conf/kratena_zakarias.pdf. Accessed 7 January 2012
22. Lahr ML, de Mesnard L (2004) Biproportional techniques in input–output analysis: table updating and structural analysis. Econ Syst Res 16:115–134
23. Leontief W (1970) Analiza input–output. Editura Stiintifica, Bucharest
24. Leontief W (1986) Input–output economics, 2nd edn. Oxford University Press, New York
25. Linden JA, Dietzenbacher E (2000) The determinants of structural change in the European Union: a new application of RAS. Environ Plan A 32:2205–2229
26. Li L, Zhang N, Willett TD (2011) A survey of measurements of interdependence. Claremont Institute for Economic Policy Studies. http://www.cgu.edu/PDFFiles/SPE/Willett/Papers/A%20Survey%20of%20Measurements%20of%20Interdependence.pdf. Accessed 11 June 2012
27. Mesnard L (2000) Failure of the normalization of the RAS method: absorption and fabrication effects are still incorrect. LATEC—document de travail—économie (1991–2003) 2000-01, LATEC, Laboratoire d’Analyse et des Techniques Economiques, CNRS UMR 5118, Université de Bourgogne. http://leg.u-bourgogne.fr/documents-de-travail/e2000-01.pdf. Accessed 20 July 2011
28. Miller RE, Blair PD (2009) Input–output analysis: foundations and extensions, 2nd edn. Cambridge University Press, Cambridge
29. Milnor J (1985) On the concept of attractor. Commun Math Phys 99:177-195
30. Milnor J (1985) Comments on the concept of attractor: correction and remarks. Commun Math Phys 102:517-519
31. Milnor JW (2006) Attractor. Scholarpedia 1(11):1815. http://www.scholarpedia.org/article/Attractor. Accessed 5 June 2012
32. Moloney K, Raghavendra S (2011) Testing for nonlinear dependence in the credit default swap market. Econ Res Int 2011:708704. doi:10.1155/2011/708704
33. National Commission for Prognosis, Romania (2012) Data base of the macromodel-Dobrescu from the project strengthening the institutional capacity in evaluating and formulating of macroeconomic policies for economic convergence with EU within the National Commission for Prognosis, SMIS code 27153
34. Nelson CR, Plosser CI (1982) Trends and random walks in macroeconomic time series: some evidence and implications. J Monet Econ 10:139–162
35. Nguyen T (2007) Determinants of business cycle synchronization in East Asia: an extreme bound analysis. Working paper 2007/14, DEPOCEN. http://www.depocenwp.org/upload/pubs/ NguyenNgocToan/Determinants_of_Business_Cycle_Synchronization_in_East_Asia-rv2_.DEPOCENWP.pdf. Accessed 10 June 2012
36. Rosser JB Jr, Kramer KL Jr (2000) Integrating the complexity vision into mathematical economics. In: Colander D (ed) Complexity and the teaching of economics. Edvard Elgar, Cheltenham Glos, pp 209–230. http://cob.jmu.edu/rosserjb/mathecon.doc. Accessed 5 June 2012
37. Ruelle D (2006) What is...strange attractor? Not Am Math Soc 53(7):764–765
38. Sawyer JA (1992) Forecasting with input–output matrices: are the coefficients stationary? Econ Syst Res 4:325–348. doi:10.1080/09535319200000030
39. Schirwitz B, Wälde K (2004) Synchronization of business cycles in G7 and EU14 countries. European Commission Directorate General Economic and Financial Affairs, October. http://www.waelde.com/pdf/SchirwitzWaeldeTIERsynchronization.pdf. Accessed 10 June 2012
40. Sprott JC (2003) Chaos and time-series analysis. Oxford University Press, New York
41. Stone R (1961) Input–output and national accounts organisation for European economic co-operation, Paris
42. Stone R, Brown JAC (1962) A long-term growth model for the British economy. In: Geary RC (ed) Europe’s future in figures. North-Holland, Amsterdam
43. Toda HY, Yamamoto T (1995) Statistical inference in vector autoregressions with possibly integrated processes. J Econorn 66:225–250
44. United Nations (1999) Handbook of input–output table: compilation and analysis, studies in methods. Handbook of national accounting, series F, No. 74, Department for Economic and Social Affairs, Statistics Division, New York. http://unstats.un.org/unsd/publication/seriesF/seriesF_74E.pdf. Accessed 13 July 2011