EFFECTS OF NATURALLY PRODUCED DIETARY FUSARIUM MYCOTOXINS ON WEANING PIGS

Shin, S.Y., C. Kong, I.H. Kim and B.G. Kim

1Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
2Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, Republic of Korea

Received 2014-04-08; Revised 2014-04-14; Accepted 2014-04-19

ABSTRACT

Mycotoxins reduce animal productivity and animal health. The influence of Fusarium mycotoxins in corn co-products on pig performance is an important issue in swine feed industry. This study was conducted to determine the effects of naturally produced Fusarium mycotoxins in Corn Gluten Meal (CGM) on growth performance of nursery pigs. A total 96 weaning pigs comprising 48 gilts and 48 barrows with an initial body weight of 5.08 kg (SD = 1.28) were grouped into 3 blocks in each sex by initial body weight and randomly allotted to 4 treatments in a randomized complete block design. There were 6 replicate pens per treatment and 4 pigs were housed in each pen. The 4 experimental diets mainly based on corn, CGM, dried whey and soybean meal were formulated to contain 4 concentrations of mycotoxins derived from the contaminated CGM. Diet 1 contained 32 µg kg⁻¹ Deoxynivalenol (DON) and 6 µg kg⁻¹ Zearalenone (ZON) and diets 2, 3 and 4 contained 532, 1,033 and 1,534 µg kg⁻¹ DON and 203, 399 and 596 µg kg⁻¹ ZON, respectively. During the first 14 d of experiment, Average Daily Gain (ADG) was reduced linearly and quadratically (p<0.05) as concentration of dietary mycotoxin increased. Average Daily Feed Intake (ADFI) had a tendency for quadratic decrease (p = 0.059) with increasing dietary mycotoxin concentrations. Both ADG and ADFI from d 14 to 28 linearly decreased with increasing concentration of mycotoxins (p<0.05). During the overall experimental period, both ADG and ADFI linearly depressed with increasing concentration of mycotoxins (p<0.05). In conclusion, the current study showed that dietary Fusarium mycotoxins derived from contaminated CGM by Fusarium fungi resulted in decreased growth performance of nursery pigs. Swine nutritionists may increase nutrient concentrations of diets to partially overcome the negative effects of Fusarium mycotoxins in corn co-products on feed intake of pigs.

Keywords: Deoxynivalenol, Zearalenone, Growth Performance, Swine

1. INTRODUCTION

Mycotoxins are toxic secondary metabolic byproducts of fungal genera and these toxins are known to be detrimental to animal productivity as well as animal health due to their toxicity. Among several genera of mycotoxin-producing fungi such as Aspergillus, Fusarium and Penicillium, Fusarium genus fungi commonly grow on corn, wheat and other grains (Pollmann et al., 1985; Munkvold and Desjardins, 1997) and produce several detrimental toxins such as aflatoxins, Deoxynivalenol (DON), Zearalenone (ZON) and fumonisins.
as a natural source of mycotoxin. However, there is limited information on the effects of DON and ZON in corn co-products contaminated by Fusarium fungi. Thus, the aim of this study was to determine detrimental effects of dietary Fusarium mycotoxins naturally contaminated in Corn Gluten Meal (CGM) on nursery pigs.

2. MATERIALS AND METHODS

2.1. Feedstuffs and Diets

Two different sources of CGM were prepared for the experiment; a CGM source that was naturally contaminated by Fusarium genus fungi and a CGM source that was not contaminated. The concentrations of DON and ZON were 6,390 and 2,483 µg kg\(^{-1}\), or 132 and 24 µg kg\(^{-1}\) in the contaminated or the control CGM, respectively.

The experimental diets were provided in a 2-phase feeding program with phase I and II diets being fed for 2 wk for each period. The diet 1 was formulated to meet or exceed nutritional requirement of weaning pigs (NRC, 2012) and was mainly based on corn, the control CGM, dried whey and soybean meal (Table 1). The mycotoxin-containing diet 2, 3 and 4 were prepared to contain 80, 160 and 240 g kg\(^{-1}\) of the contaminated CGM at the expense of the control CGM, respectively.

2.2. Animals and Feeding

The experimental procedure was approved by the Institutional Animal Care and Use Committee at Konkuk University. A total of 96 weaning pigs comprising 48 gilts and 48 barrows with an initial Body Weight (BW) of 5.08 kg (SD = 1.28) was used in the experiment. Pigs were grouped into 3 blocks in each gender based on initial BW and randomly allotted to 4 treatments in a randomized complete block design. There were 6 replicate pens per treatment and 4 pigs were housed in each pen. The pens were equipped with a two-hole stainless steel feeder, a nipple drinker and fully slatted plastic floor. Diets and water were freely available for 28 d of the entire experimental period.

Individual BW and feed consumption were measured on a pen basis on d 14 and 28. Based on these records, the growth performance including Average Daily Gain (ADG), Average Daily Feed Intake (ADFI) and gain to feed ratio (G:F) were calculated.

Table 1. Ingredient composition and amount of mycotoxins of experimental diets (as-fed basis)

Ingredient\(^{a}\) (g/kg)	Phase I	Phase II						
	Diet 1	Diet 2	Diet 3	Diet 4				
Corn	387.6	387.6	387.6	387.6	499.5	499.5	499.5	499.5
CGM, contaminated	0.0	80.0	160.0	240.0	0.0	80.0	160.0	240.0
CGM, control	240.0	160.0	80.0	0.0	240.0	160.0	80.0	0.0
Dried whey	200.0	200.0	200.0	200.0	100.0	100.0	100.0	100.0
Soybean meal	100.0	100.0	100.0	100.0	90.0	90.0	90.0	90.0
SDPP	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
Limestone	13.5	13.5	13.5	13.5	13.0	13.0	13.0	13.0
Dicalcium phosphate	6.5	6.5	6.5	6.5	5.5	5.5	5.5	5.5
L-Lysine-HCl	5.4	5.4	5.4	5.4	5.0	5.0	5.0	5.0
Salt	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Mineral premix\(^{b}\)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Vitamin premix\(^{c}\)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Total	1,000.0	1,000.0	1,000.0	1,000.0	1,000.0	1,000.0	1,000.0	1,000.0
Mycotoxin\(^{d}\) (µg/kg)								
DON	32.0	532.0	1,033.0	1,534.0	32.0	532.0	1,033.0	1,534.0
ZON	6.0	203.0	399.0	596.0	6.0	203.0	399.0	596.0

\(^{a}\)CGM = Corn Gluten Meal; SDPP = Spray Dried Plasma Protein

\(^{b}\)Provided as milligrams per kilogram of diet: 4.16 of Zn from zinc sulfate; 10.95 of Fe from iron sulfate; 6.29 of Mn from manganese sulfate; 6.31 of Cu from copper sulfate; 0.08 of I from calcium iodide; 0.02 of Se from sodium selenite; 0.04 of Co from cobalt sulfate

\(^{c}\)Provided per kilogram of diet: 25,000 IU of vitamin A; 40 IU of vitamin E; 85 mg of vitamin C; 40 mg of niacin

\(^{d}\)Calculated value in micrograms per kilogram of diet based on analyzed mycotoxin concentration in CGM
2.3. Mycotoxin Analysis

Analyses of AFLatoxin (AFL), DON, Fumonisin B1 (FB1), OchraToxin A (OTA) and ZON were carried out by HPLC at Romer Labs (Romer Labs Singapore Pte Ltd, Singapore). Two major mycotoxins, DON and ZON, were analyzed by using enzyme-linked immunosorbent assay (ELISA) kits (AgraQuant®, Romer Labs Inc. Singapore) which had a detection limits at 200 and 20 µg kg$^{-1}$ for DON and ZON, respectively.

2.4. Statistical Analysis

Data were analyzed by analysis of variance using generalized linear model procedure (SAS Inst. Inc., Cary, NC). The model included dietary treatment, sex and block as independent variable. Least squares means of each treatment were calculated for each variable. Orthogonal polynomial contrasts were used to determine linear and quadratic effects of increasing dietary mycotoxin concentrations on the growth performance of pigs. A pen was the experimental unit and the statistical significance was declared at an alpha-level of 0.05. Probability values between 0.05 and 0.10 were considered tendency towards a difference.

3. RESULTS

The mycotoxin concentrations in the control CGM and the contaminated CGM are presented in Table 2. The concentrations of AFL in both CGM samples were below 1 µg kg$^{-1}$ whereas the other toxin contents were greater in the contaminated CGM than in the control CGM. The concentration of DON and ZON in the contaminated CGM determined by ELISA method fairly corresponded to values derived from HPLC method.

Table 2. Analyzed concentration of mycotoxins from 2 sources of corn gluten meal (as-is basis)

Item	HPLC	ELISA	HPLC	ELISA
DON	132	105	6,390	4,441
ZON	24	6	2,483	2,998
FB1	450	-	2,911	-
OTA	14	-	24	-
AFL	<1	-	-	-

Table 3. Growth performance of pigs fed diets containing 4 concentrations of mycotoxins

Item	Dietary number	P-value		
		SEMb	Linear	Quadratic
Mycotoxin ($\mu g \ kg^{-1}$)				
Deoxynivalenol	32.000	532.000	1,033.000	1,534.000
Zearalenone	6.000	203.000	399.000	596.000
Body weight (kg)				
D 0	5.120	5.040	5.130	4.970
D 14	11.610	11.280	11.200	11.080
D 28	15.130	14.660	14.460	14.320
Day 0 to 14				
ADG, g d$^{-1}$	273.000	259.000	250.000	257.000
ADFI, g d$^{-1}$	336.000	319.000	321.000	324.000
Gain:feed, g g$^{-1}$	0.814	0.814	0.782	0.794
Day 14 to 28				
ADG, g d$^{-1}$	442.000	428.000	416.000	411.000
ADFI, g d$^{-1}$	546.000	539.000	531.000	524.000
Gain:feed, g g$^{-1}$	0.809	0.794	0.784	0.784
Day 0 to 28				
ADG, g d$^{-1}$	357.000	344.000	333.000	334.000
ADFI, g d$^{-1}$	441.000	429.000	426.000	424.000
Gain:feed, g g$^{-1}$	0.810	0.801	0.783	0.788

a Each least squares of means represent 6 pens of 4 pigs per pen.

b Standard error of the means

c Calculated value in micrograms per kilogram of diet based on analyzed mycotoxin concentration in corn germ meal
Dietary *Fusarium* mycotoxins negatively affected growth performance of weaning pigs (Table 3). During the first 14 d of the experiment, ADG decreased linearly and quadratically (p<0.05) as mycotoxin concentration increased. The ADFI tended to be affected by dietary treatments (quadratic, p = 0.059). During d 14 to 28, ADG (p<0.001), ADFI (p = 0.007) and gain: Feed (p = 0.032) decreased linearly as mycotoxin concentrations increased, showing that there were reductions of ADG, ADFI and gain: Feed by 7.0, 4.0 and 3.1%, respectively, in the highest concentration compared with the lowest concentration of mycotoxins. During the overall period, ADG, ADFI and gain: Feed decreased linearly (p<0.05) as mycotoxin concentration increased.

4. DISCUSSION

In the current study, DON and ZON were major mycotoxins in the contaminated CGM. European Union commission suggests the guidance values of DON, ZON, OTA and FB1 for typical swine diets at 0.9, 0.25, 0.05 and 5 mg kg\(^{-1}\), respectively (EC, 2006). This indicates that the concentrations of both DON and ZON in diet 3 and 4 used in the present experiment were above the guidance values of (EC, 2006).

Fumonisin B1 in the ingredients used in the current study also existed at the concentration of 2,911 and 450 µg kg\(^{-1}\) for the contaminated and control CGM, respectively and concentration was diluted at 108, 305, 502 and 699 µg kg\(^{-1}\) in diets 1, 2, 3 and 4, respectively. According to Zomborszky-Kovács et al. (2002), 1,000 µg kg\(^{-1}\) of FB1 was considered a tolerable concentration for pigs, thus the concentration of FB1 in the current study would not be the major cause for the reduction in growth performance of pigs.

The overall reductions in ADG and G: F of pigs fed diet 4 compared with diet 1 were 6.4 and 2.7%, respectively. The respective values were within ranges that were predicted with collective data from the literature (Mok et al., 2013). Decreased ADG observed in the present experiment appears to be mainly affected by the reduced feed intake but not directly by mycotoxins. Andretta et al. (2012) also suggested that the degeneration of weaning pigs’ growth was due to reduced feed intake, but not by presence of mycotoxin *per se*. In agreement, several reports have been shown that dietary DON adversely affected growth performance of pigs by reducing feed intake (Young et al., 1983; Smith et al., 1997; Waché et al., 2009). Reduced feed intake caused by DON would be attributed to reduced hepatic protein synthesis which causes raised blood tryptophan, a precursor of serotonin and subsequently elevated brain serotonin concentrations (Díaz-Llano and Smith, 2006). The elevated concentration of serotonin consequently would be responsible for anorexic effects of DON (Leathwood, 1987).

In contrast, the effects of ZON on ADFI of pigs were not always significant. James and Smith (1982) reported that ZON up to 40 mg kg\(^{-1}\) did not affect feed consumption of pigs and this result was in agreement with other reports that suggested no adverse effect of ZON on feed intake when gilts or weaning pigs were fed 1 to 2 mg kg\(^{-1}\) of ZON (Rainey et al., 1990; Jiang et al., 2012). In addition, dietary ZON may negatively affect feed intake when combined with dietary DON, but not ZON solely (Young et al., 1981; Williams and Blaney, 1994).

5. CONCLUSION

In conclusion, the present study showed that dietary *Fusarium* mycotoxins derived from contaminated CGM by *Fusarium* fungi resulted in decreased the growth performance of pigs which could be mainly attributed to the negative effects of DON on feed consumption of pigs. The mechanisms contributing the main action in DON are still unclear. Further research is warranted to elucidate the mode of actions by which dietary DON reduces feed intake.

6. ACKNOWLEDGEMENT

The researchers are grateful for the support by Rural Development Administration (Suwon, Republic of Korea; PJ008405). This study resulted from the Konkuk University research support program.

7. REFERENCES

Andretta, I., M. Kipper, C.R. Lehnen, L. Hauschild and M.M. Vale *et al.*, 2012. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal, 6: 1476-1482. DOI: 10.1017/S1751731111002278

Díaz-Llano, G. and T.K. Smith, 2006. Effects of feeding grains naturally contaminated with *Fusarium* mycotoxins with and without a polymeric glucomannan mycotoxin adsorbent on reductive performance and serum chemistry of pregnant gilts. J. Anim. Sci., 84: 2361-2366. DOI: 10.2527/jas.2005-699

Döll, S., S. Dänicke, K.H. Ueberschär, H. Valenta and G. Flachowsky *et al.*, 2003. Effects of graded levels of fusarium toxin contaminated maize in diets for female weaned piglets. Archives Anim. Nut., 63: 689-698. DOI: 10.1080/0003942031000160768
EC, 2006. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. 2006/576/EC. European Community.

Friend, D.W., H.L. Trenholm, P.S. Fiser, B.K. Thompson and K.E. Hartin et al., 1983. Effect on dam performance and fetal development of deoxynivalenol (vomitoxin) contaminated wheat in the diet of pregnant gilts. Canadian J. Anim. Sci., 63: 689-698. DOI: 10.4141/cjas83-078.

James, L.J. and T.K. Smith, 1982. Effect of dietary alfalfa on zearalenone toxicity and metabolism in rats and swine. J. Anim. Sci., 55: 110-118. PMID: 6214539

Jiang, S.Z., Z.B. Yang, W.R. Yang, S.J. Wang and Y. Wang et al., 2012. Effect of purified zearalenone with or without modified montmorillonite on nutrient availability, genital organs and serum hormones in post-weaning piglets. Livestock Sci., 144: 110-118. DOI: 10.1016/j.livsci.2011.11.004.

Leathwood, D., 1987. Tryptophan availability and serotonin synthesis. Proc. Nut. Society, 46: 143-156. DOI: 10.1079/PNS19870018

Mok, C.H., S.Y. Shin and B.G. Kim, 2013. Aflatoxin, deoxynivalenol and zearalenone in swine diets: Predictions on growth performance. Revista Colombiana de Ciencias Pecuarias, 26: 243-254.

Munkvold, G.P. and A.E. Desjardins, 1997. Fumonisins in maize: Can we reduce their occurrence. Plant Dis., 81: 556-565. DOI: 10.1094/PDIS.1997.81.6.556

NRC, 2012. Nutrient Requirements of Swine. 11th Edn., National Academic Press, Washington, DC., USA. ISBN: 978-0-309-22423-9.

Papatsiros, V.G., 2012. The splay leg syndrome in piglets: A Review. Am. J. Anim. Vet. Sci., 7: 80-83. DOI: 10.3844/ajavsp.2012.80.83

Pollmann, D.S., B.A. Koch, L.M. Seitz, H.E. Mohr and G.A. Kennedy, 1985. Deoxynivalenol-contaminated wheat in swine diets. J. Anim. Sci., 60: 239-247. PMID: 3972745

Rainey, M.R., R.C. Tubbs, L.W. Bennett and N.M. Cox, 1990. Prepubertal exposure to dietary zearalenone alters hypothalamo-hypophysial function but does not impair postpubertal reproductive function of gilts. J. Anim. Sci., 68: 2015-2022. PMID: 2143505

Rotter, B.A., B.K. Thompson and M. Lessard, 1995. Effects of deoxynivalenol-contaminated diet on performance and blood parameters in growing swine. Canadian J. Anim. Sci., 75: 297-302. DOI: 10.4141/cjas95-046.

Smith, T.K., E.C. McMillan and J.B. Castillo, 1997. Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fumaric acid on growth and feed consumption of immature swine. J. Anim. Sci., 75: 2184-2191. PMID: 9263067

Trenholm, H.L., B.C. Foster, L.L. Charmley, B.K. Thompson and M.A. Albassam et al., 1994. Effects of feeding diets containing Fusarium (naturally) contaminated wheat or pure Deoxynivalenol (DON) in growing pigs. Canadian J. Anim. Sci., 74: 361-369. DOI: 10.4141/cjas94-049

Waché, Y.J., C. Valat, G. Postollec, S. Bougeard and P. Fravalo et al., 2009. Impact of deoxynivalenol on the intestinal microflora of pigs. Int. J. Molecular Sci., 10: 1-17. DOI: 10.3390/ijms10010001

Williams, K.C. and B.J. Blaney, 1994. Effect of the mycotoxins, nivalenol and zearalenone, in maize naturally infected with Fusarium graminearum on the performance of growing and pregnant pigs. Aus. J. Agric. Res., 45: 1265-1279. DOI: 10.1071/AR9941265

Young, L.G., L. Mcgirr, V.E. Valli, J.H. Lumsden and A. Lun et al., 1983. Vomitoxin in corn fed to young pigs. J. Anim. Sci., 57: 655-664. PMID: 6630099

Young, L.G., R.F. Vesonder, H.S. Funnell, I. Simons and B. Wilcock et al., 1981. Moldy corn in diets of swine. J. Anim. Sci., 52: 1312-1318.

Zomborszky-Kovács, M., F. Vetési, P. Horn, I. Repa and F. Kovács et al., 2002. Effects of prolonged exposure to low-dose fumonisin B1 in pigs. J. Vet. Med. Series B., 49: 197-201. DOI: 10.1046/j.1439-0450.2002.00519.x