Pancreatic stents for the prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis should be inserted up to the pancreatic body or tail

Mitsuru Sugimoto, Tadayuki Takagi, Rei Suzuki, Naoki Konno, Hiroyuki Asama, Yuki Sato, Hiroki Irie, Ko Watanabe, Jun Nakamura, Hitomi Kikuchi, Yuichi Waragai, Mika Takasumi, Takuto Hikichi, Hiromasa Ohira

ORCID number: Mitsuru Sugimoto (0000-0002-4223-613X); Tadayuki Takagi (0000-0003-0696-5973); Rei Suzuki (0000-0002-4049-0484); Naoki Konno (0000-0001-9830-4317); Hiroyuki Asama (0000-0002-0102-0404); Yuki Sato (0000-0001-8000-0972); Hiroki Irie (0000-0002-4805-6244); Ko Watanabe (0000-0003-3895-7636); Jun Nakamura (0000-0001-6006-1778); Hitomi Kikuchi (0000-0003-0583-1623); Yuichi Waragai (0000-0003-3347-8759); Mika Takasumi (0000-0002-6025-8084); Takuto Hikichi (0000-0002-9815-1557); Hiromasa Ohira (0000-0003-4331-0634).

Author contributions: Sugimoto M designed and performed the study; Sugimoto M, Takagi T, and Ohira H analyzed the data; Sugimoto M, Takagi T, and Ohira H wrote the paper; Suzuki R, Konno N, Asama H, Sato Y, Irie H, Watanabe K, Nakamura J, Kikuchi H, Waragai Y, Takasumi M and Hikichi T provided clinical advice; Hikichi T and Ohira H supervised the study.

Informed consent statement: Patients were not required to provide informed consent for the study because the analysis used anonymous clinical data obtained after each patient agreed to treatment by written consent. For full disclosure, the details of the study are published on the home page of Fukushima Medical University.

Conflict-of-interest statement: We have no financial relationships to disclose.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Abstract

AIM
To investigate the location to which a pancreatic stent should be inserted to prevent post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP).

METHODS
Over a ten-year period at our hospital, 296 patients underwent their first ERCP procedure and had a pancreatic stent inserted; this study included 147 patients who had ERCP performed primarily for biliary investigation and had a pancreatic stent inserted to prevent PEP. We divided
these patients into two groups: 131 patients with a stent inserted into the pancreatic head (head group) and 16 patients with a stent inserted up to the pancreatic body or tail (body/tail group). Patient characteristics and ERCP factors were compared between the groups.

RESULTS
Pancreatic amylase isoenzyme (p-AMY) levels in the head group were significantly higher than in the other body/tail group [138.5 (7.0-2086) vs 78.5 (5.0-1266.5), $P = 0.03$] [median (range)]. No cases of PEP were detected in the body/tail group [head group, 12 (9.2%)]. Of the risk factors for post-ERCP hyperamylasemia (\geq p-AMY median, 131 IU/L), procedure time \geq 60 min [odds ratio (OR) 2.65, 95%CI: 1.17-6.02, $P = 0.02$] and stent insertion into the pancreatic head (OR 3.80, 95%CI: 1.12-12.9, $P = 0.03$) were identified as independent risk factors by multivariate analysis.

CONCLUSION
Stent insertion up to the pancreatic body or tail reduces the risk of post-ERCP hyperamylasemia and may reduce the risk of PEP.

Key words: Pancreatic stent; Endoscopic retrograde cholangiopancreatography; Post-endoscopic retrograde cholangiopancreatography pancreatitis; Post-endoscopic retrograde cholangiopancreatography hyperamylasemia; Pancreatic body or tail

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We investigated whether the location of the inserted pancreatic stent rather than pancreatic stent length influenced the frequency of post-endoscopic retrograde cholangiopancreatography (ERCP) hyperamylasemia and post-ERCP pancreatitis (PEP). Pancreatic amylase isoenzyme levels after ERCP were significantly higher in the head group than in the body/tail group. PEP did not occur in the body/tail group. Stent insertion into the pancreatic head was an independent risk factor for hyperamylasemia after ERCP, while stent insertion up to the pancreatic body or tail reduced the risk of post-ERCP hyperamylasemia and may reduce the risk of PEP.
with a stent inserted into the pancreatic head (head group) and 16 patients with a stent inserted up to the pancreatic body or tail (body/tail group). The location of the inserted pancreatic stent was determined by X-ray during ERCP (Figure 2).

In total, 149 patients were excluded from this study because 102 patients underwent ERCP primarily to investigate the pancreatic duct, 14 patients had a Vater’s papilla tumor or pancreatic cancer invasion to Vater’s papilla, 13 patients contracted acute pancreatitis before ERCP, eight patients had hyperamylasemia before ERCP, six patients had part of the stomach resected, four patients did not have amylase isozyme measurements after ERCP hyperamylasemia, one patient did not have images from the ERCP, and one patient had malfusion of the pancreaticobiliary ducts.

ERCP procedures

All the patients had an endoscope inserted after they were sufficiently sedated with midazolam. After the endoscope reached the descending part of the duodenum, biliary cannulation was initiated. When a guidewire was passed into the pancreatic duct or contrast media was injected, the guidewire was placed in the main pancreatic duct (MPD) as deep as possible by pancreatography. We injected contrast media as sparingly as possible to confirm MPD placement. After biliary cannulation was achieved, a pancreatic stent was inserted. If biliary cannulation was difficult, we inserted a pancreatic stent and performed a precut of Vater’s papilla. The lengths of the pancreatic stents were determined randomly by the endoscopists. If the patient was diagnosed with PEP or elevated serum pancreatic amylase isoenzyme (p-AMY) (> 500 IU/L) with abdominal pain, then the pancreatic stent was removed 1 d after ERCP. In other cases, pancreatic stents with a flap were removed 2-3 d after ERCP, but pancreatic stents without a flap were not removed. JF260V, JF240, and TJF240 ERCP endoscopes (Olympus, Tokyo, Japan) were used. A Tandem XL (Boston Scientific Japan, Tokyo, Japan), MTW ERCP catheter taper (MTW Endoskopie, Wesel, Germany), or PR-233Q (Olympus) was used as the ERCP catheter. A CleverCut 3V (Boston Scientific Japan, Tokyo, Japan) was used for endoscopic sphincterotomy (EST). An RX Needle Knife (Boston Scientific Japan, Tokyo, Japan) was used to precut Vater’s papilla. A Zimmon 5-Fr, 2-cm single pigtail stent without an inner flap (Cook Japan, Tokyo, Japan), a Zimmon 5-Fr, 4-cm single pigtail stent with an inner flap (Cook Japan, Tokyo, Japan), a
Statistical analyses
Kolmogorov-Smirnov tests and Shapiro-Wilk normality tests were used to test normality. Mann-Whitney U tests were used to compare continuous variables. Fisher’s exact tests were used to compare nominal variables. Logistic regression was used to investigate post-ERCP hyperamylasemia factors. A P value < 0.05 was considered to indicate a statistically significant difference. All statistical analyses were performed using the EZR platform (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria). More precisely, EZR is a modified version of R commander that was designed to perform functions frequently used in biostatistics.[28]

RESULTS
Patient characteristics were not significantly different between the two groups (Table 1). Regarding aspects of the ERCP procedures, the p-AMY levels after ERCP in the head group were significantly higher than those in the body/tail group [138.5 (7.0-2086) IU/L vs 78.5 (5.0-1266.5), P = 0.03] (median (range)). Other factors were not different between the two groups, and PEP did not occur in the body/tail group. However,

Table 1 Comparison of patient demographic and clinical characteristics (%)

	Head group (n = 131)	Body/tail group (n = 16)	P value
Age, median (range), yr	71.0 (29-97)	66.5 (26-81)	0.052
Male/female	69/62	11/5	0.29
Pancreatic calcification	4 (3.1)	1 (6.3)	0.45
Parapapillary diverticulum	38 (29.5)	5 (31.2)	1.0
Diameter of the MPD, median (range), mm	3.1 (0.7-22.0)	3.7 (1.5-13.8)	0.15
Diagnosis			
Left hepatic duct extension	1		
Biliary stricture	5		
Malignant			
Pancreatic cancer	24	7	
Biliary tract cancer	33	3	
Hepatocellular carcinoma	3		
Obstructive jaundice by metastatic cancer	1		
Barrett’s esophageal cancer			
Colon cancer	4		
Gastric cancer	2		
Uterine cancer	1		
Bladder cancer	1		
Ovarian cancer	1		
Suppression of lymph node swelling	1		
Central bile duct stone	4	4	
Primary sclerosing cholangitis	1	1	
Gallbladder adenomyosis	3		
IPNB	1		
Sphincter of Oddi dysfunction	1		
Biliary cysts	1		
Lemmel syndrome	1		

1Data from four cases were not available; 2Data from two cases were not available. MPD: Main pancreatic duct.

Geenen 5-Fr, 3-cm stent with outer flaps and without an inner flap (Cook Japan, Tokyo, Japan), or a Geennen 5-Fr, 5-, 7-, or 9-cm stent with inner flaps and outer flaps was used as the pancreatic stent.

Examined parameters
Patient characteristics (age, gender, pancreatic calcification, parapapillary diverticulum, and diameter of the MPD) and ERCP factors (EST, endoscopic papillary balloon dilation (EPBD), precut of Vater’s papilla, procedure time, serum levels of p-AMY, PEP, and pancreatic stent migration within 1 wk) were compared between the head group and the body/tail group. The p-AMY value peaked within 1 wk of ERCP. The level of p-AMY was more than three times the normal level after ERCP, with p-AMY accounting for the majority of the change in serum amylase, we measured p-AMY every day until the serum amylase level decreased to approximately two times the normal level or to a normal level. PEP was diagnosed by hyperamylasemia more than three times the normal level at more than 24 h after ERCP and abdominal pain[27]. In addition, we confirmed peripancreatic inflammation by contrast computed tomography (CT) imaging in all PEP patients. The severity of PEP was determined as proposed by Cotton et al.[27] (mild: hospitalization prolonged for 2-3 d; moderate: 4-10 d; and severe: more than 10 d, or pseudocyst requiring intervention (percutaneous drainage or surgery), or hemorrhagic pancreatitis). Pancreatic stent migration was confirmed randomly by X-ray or CT.
PEP occurred in 12 patients in the head group (mild 2; moderate 8; and severe 2).

Regarding the risk factors of post-ERCP hyperamylasemia (≥ p-AMY median, 131 IU/L), age ≥ 71 years, parapapillary diverticulum, stent insertion into the pancreatic head, and procedure time ≥ 60 min were identified as significant factors in the univariate analysis (factors with \(P < 0.15 \) were selected for multivariate analysis) (Table 3). Logistic regression with backward stepwise selection was performed using these four items, and the independent risk factors included procedure time ≥ 60 min [odds ratio (OR) 2.65, 95%CI: 1.17-6.02, \(P = 0.02 \)] and stent insertion into the pancreatic head (OR 3.80, 95%CI: 1.12-12.9, \(P = 0.032 \)) (Table 4).

DISCUSSION

In this study, we investigated how far a pancreatic stent should be inserted. We compared several factors between the head group and the body/tail group. P-AMY levels after ERCP were significantly higher in the head group than in the body/tail group. PEP did not occur in the body/tail group. Stent insertion into the pancreatic head was an independent risk factor for hyperamylasemia.
after ERCP.

Several reports are available regarding the diameter of pancreatic stents. Lawrence et al.[20] reported that 3-Fr pancreatic stents passed spontaneously and did not induce changes in the pancreatic duct. Zolotarevsky et al.[24] reported that placement of a 5-Fr pancreatic stent was easier, faster, and required fewer wires compared to a 3-Fr pancreatic stent. Pahk et al.[25] reported that 4-Fr pancreatic stents migrated more frequently than 5-Fr pancreatic stents; therefore, the need for additional endoscopy to retrieve the pancreatic stent was reduced by using a 4-Fr pancreatic stent. However, PEP was no less common with the slimmer stents in these reports.

This report showed that pancreatic stent placement in the pancreatic body or tail could reduce the rates of post-ERCP hyperamylasemia and PEP. Difficulty with pancreatic duct drainage leads to proteinase activation, which exacerbates pancreatitis[20]. Pancreatic stent placement up to the pancreatic body or tail could allow greater pancreatic duct drainage than stent placement in the pancreatic head. Therefore, stent placement up to the pancreatic body or tail may reduce the risks of PEP and post-ERCP hyperamylasemia. In addition, no pancreatic stent migration was observed in the body/tail group. Therefore, the risk of pancreatic stent obstruction by contact with the duodenal wall was considered to be low.

This study has some limitations. First, this was a retrospective study with a small number of patients at a single institution. In addition, we generally insert stents into the pancreatic head, as described in past reports; we only recently began inserting pancreatic stents up to the body or tail of the pancreas. Therefore, the number of patients in the body/tail group was small. We hope to conduct larger prospective studies to verify the findings of this study. We performed a multivariate analysis, including post-ERCP serum p-AMY levels, and were able to identify the risk factors for post-ERCP hyperamylasemia. Second, many patients were excluded from this study. However, the amount of contrast media used in 102 patients to investigate the pancreatic duct by pancreatography was much higher than the target amount of this study. The risk of PEP in the 102 excluded patients was very different from that in the general population, as many of these excluded patients had chronic pancreatitis. In addition, many patients with pancreatic stricture underwent pancreatic stenting as treatment rather than for the prevention of PEP. Therefore, the patients included in the present study and the 102 patients excluded from the study could not be compared. Third, due to the retrospective nature of this study, ERCP procedures were not performed by specific endoscopists. In this study, ERCP was performed by specialists in pancreatobiliary endoscopy who had experience in performing at least 2000 ERCP procedures or by trainees under the guidance of these specialists. Therefore, the quality of the ERCP procedure was considered to be consistent. Fourth, stents without an inner flap (Geenen 5 Fr, 3 cm and Zimmon 5 Fr, 2 cm) were used in only the head group. Consequently, the stent migration rate was higher in the head group than in the body/tail group. In past reports, however, incidence of spontaneous pancreatic stent migration did not subsequently result in increased incidence of PEP[25,26,31]. Therefore, using a stent without an inner flap was not considered disadvantageous in the head group.

In conclusion, stent insertion up to the pancreatic body or tail reduced the incidence of post-ERCP hyperamylasemia and may reduce the incidence of PEP.

ARTICLE HIGHLIGHTS

Research background

Pancreatic stents are reported to be useful for preventing pancreatitis (PEP).

Research motivation

We wanted to determine the appropriate length of a pancreatic stent for preventing PEP.

Research objectives

To investigate whether a stent should be inserted into the pancreatic head, body, or tail to prevent PEP.

Research methods

Patient characteristics and endoscopic retrograde cholangiopancreatography (ERCP) factors were compared between 131 patients with a stent inserted into the pancreatic head (head group) and 16 patients with a stent inserted up to the pancreatic body or tail (body/tail group).

Research results

Pancreatic amylase isoenzyme (p-AMY) levels after ERCP were significantly higher in the head group than in the body/tail group. PEP did not occur in the body/tail group. Stent insertion into the pancreatic head was an independent risk factor for hyperamylasemia after ERCP.

Research conclusions

Stent insertion up to the pancreatic body or tail reduced the incidence of post-ERCP hyperamylasemia and may reduce the incidence of PEP.

Research perspectives

Prophylactic stent insertion up to the pancreatic body or tail may be the main method for preventing PEP. We hope that a future prospective, multicenter study will confirm the conclusion of this study.

ACKNOWLEDGMENTS

I am grateful to the staff at the Department of Gastroenterology of Fukushima Medical University School of Medicine, the medical staff in the Department of Endoscopy at Fukushima Medical University Hospital, and the medical staff of the Gastroenterology Ward at Fukushima Medical University Hospital.

REFERENCES

1. Reiertsen O, Skjøtt J, Jacobsen CD, Rosseland AR. Complications of fiberoptic gastrointestinal endoscopy--five years’ experience in a central hospital. *Endoscopy* 1987; 19: 1-6 [PMID: 3493897 DOI: 10.1055/s-2007-1013011]

2. Sherman S, Hawes RH, Rathgaber SW, Uzer MF, Smith MT,
Stenting prevent post-ERCP pancreatitis in patients who undergo pancreatic duct guidewire placement for achieving selective biliary cannulation? A prospective randomized controlled trial. J Gastroenterol Hepatol 2010; 45: 1183-1191 [PMID: 20667310 DOI: 10.1111/j.1440-1746.2010.06426.x]

Pan XP, Tang T, Meng XM, Xue KC, Zhang ZH, Zhang YP. Clinical study on the prevention of post-ERCP pancreatitis by pancreatic duct stenting. Cell Biochem Biophys 2011; 61: 473-479 [PMID: 21739262 DOI: 10.1007/s12013-011-9230-4]

Sofuni A, Maguchi H, Mukai T, Wakamaki H, Irisawa A, Kubota K, Okaniwa S, Kiyakuya M, Kutsuki H, Hanada K, Ueki T, Itoi T. Endoscopic pancreatic duct stents reduce the incidence of post-endoscopic retrograde cholangiopancreatography pancreatitis in high-risk patients. Clin Gastroenterol Hepatol 2011; 9: 851-8; quiz e110 [PMID: 21749851 DOI: 10.1016/j.cgh.2011.06.033]

Cha SW, Leung WD, Lehman GA, Watkins JL, McHenry L, Fogel EL, Sherman S. Does leaving a main pancreatic duct stent in place reduce the incidence of preput biliary sphincterotomy-associated pancreatitis? A randomized, prospective study. Gastrointest Endosc 2013; 77: 209-216 [PMID: 23084272 DOI: 10.1016/j.gie.2012.08.022]

Elmunzer BJ, Serrano J, Chak A, Edmundowicz SA, Papachristou GI, Scheiman JM, Singh VK, Varadarajulu S, Vargo JI, Willingham FF, Baron TH, Coté GA, Romagnolo J, Wood-Williams A, Depue EK, Spitzer RL, Spino C, Foster LD, Durlakski V; SVI study group and the United States Cooperative for Outcomes Research in Endoscopy (USCORE). Rectal indomethacin alone versus indomethacin and prophylactic pancreatic stent placement for preventing pancreatitis after ERCP: study protocol for a randomized controlled trial. Trials 2016; 17: 120 [PMID: 26941086 DOI: 10.1186/s13063-016-1251-2]

Li GD, Jia XY, Dong HY, Pang QP, Zhai HL, Zhang XJ, Guo HR, Meng JY, Shi CY, Xia Y, Jiang XL, Cao Y, Ding JP, Liu JJ, Yu YW, Song ZH, Hua L, Li GD, Pan XP, Yin HK, Wu HE, Li QX, Wang W, Ou WL, Xia HH. Pancreatic Stenting Reduces Post-ERCP Pancreatitis and Biliary Sepsis in High-Risk Patients: A Randomized, Controlled Study. Gastroenterol Res Pract 2016; 2016: 9687052 [PMID: 27057161 DOI: 10.1155/2016/9687052]

Olsson G, Lübbe J, Arnell U, Jonas E, Törnqvist B, Lundell L, Enochsson L. The impact of prophylactic pancreatic stenting on post-ERCP pancreatitis: A nationwide, register-based study. United European Gastroenterol J 2017; 5: 111-118 [PMID: 28455329 DOI: 10.1177/1477892316645434]

Freeman ML. Pancreatic stents for prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis. Clin Gastroenterol Hepatol 2007; 5: 1354-1365 [PMID: 17981248 DOI: 10.1016/j.cgh.2007.09.007]

Zolotarevsky E, Fahmi SM, Anderson MA, Schoenfeld PS, Elmunzer BJ, Kwon RS, Piraka CR, Wansteker EJ, Scheiman JM, Korsnes SJ, Normolle DP, Kim HM, Elta GH. Prophylactic 5-Fr pancreatic duct stents are superior to 3-Fr stents: a randomized controlled trial. Endoscopy 2011; 43: 325-330 [PMID: 21455872 DOI: 10.1055/s-0030-1256305]

Pahk A, Rigaux J, Poreddy V, Smith J, Al-Kawas F. Prophylactic pancreatic duct stents: does size matter? A comparison of 4-Fr and 5-Fr stents in reference to post-ERCP pancreatitis and migration rate. Dig Dis Sci 2011; 56: 3058-3064 [PMID: 21847771 DOI: 10.1007/s10620-011-1695-x]

Fujisawa T, Kagawa K, Ochiai K, Hisatomi K, Kubota K, Sato H, Nakajima A, Matsuhashi N. Prophylactic Efficacy of 3- or 5-cm Pancreatic Stents for Preventing Post-ERCP Pancreatitis: A Prospective, Randomized Trial. J Clin Gastroenterol 2016; 50: e30-e34 [PMID: 26280707 DOI: 10.1097/MCG.0000000000000397]

Cotton PB, Lehman G, Vennes J, Geenen JE, Russell RC, Meyers WC, Liguori C, Nickl N. Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc 1991; 37: 383-393 [PMID: 2070995 DOI: 10.1016/S0016-5107(91)70740-2]
Sugimoto M et al. Stents up to the pancreatic body/tail to prevent PEP

28 Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 2013; 48: 452-458 [PMID: 23208313 DOI: 10.1038/bmt.2012.244]

29 Lawrence C, Cotton PB, Romagnuolo J, Payne KM, Rawls E, Hawes RH. Small prophylactic pancreatic duct stents: an assessment of spontaneous passage and stent-induced ductal abnormalities. Endoscopy 2007; 39: 1082-1085 [PMID: 17886200 DOI: 10.1055/s-2007-966815]

30 Kingsnorth A. Role of cytokines and their inhibitors in acute pancreatitis. Gut 1997; 40: 1-4 [PMID: 9155566 DOI: 10.1136/gut.40.1.1]

31 Chahal P, Tarnasky PR, Petersen BT, Topazian MD, Levy MJ, Gostout CJ, Baron TH. Short 5Fr vs long 3Fr pancreatic stents in patients at risk for post-endoscopic retrograde cholangiopancreatography pancreatitis. Clin Gastroenterol Hepatol 2009; 7: 834-839 [PMID: 19447196 DOI: 10.1016/j.cgh.2009.05.002]

P- Reviewer: Gonzalez-Ojeda AG, Gupta R, Han JH, Isik ARDA, Luglio G, Lorenzo-Zuniga V, Rabago LR, Tallon-Agular L
S- Editor: Wang XJ L- Editor: Filipodia E- Editor: Yin SY
