Physics of droplet impact on flexible materials: A review

Alireza Mohammad Karim

Abstract
Droplet impact on a flexible substrate is a prevalent phenomenon in nature and various advanced technologies such as soft bio-printing, tissue engineering, smart biomaterials and flexible electronics. Recent rapid advancement in new functional surfaces, ultra-high-speed imaging, nanotechnology, deep learning, advanced computational strength and the relation between fluid dynamics and interfacial science have intensified the physical understanding of droplet impact on soft materials. Once a droplet impacts on a solid surface, it deposits, spreads, rebounds or splashes. Given the importance of the droplet impact onto soft substrates in biotechnology, medicine and advanced flexible electronics, a deep physical understanding of such complex phenomenon is vital. This review initially presents the liquid-solid interaction physics and relevant interfacial science. Next, this review discusses the physics of droplet impact on soft materials with different physical and interfacial characteristics. Moreover, this review presents advancements in droplet impact on elastic materials relevant to new technologies such as soft electronics, elastic smart biomaterials, tissue engineering and the fight against COVID-19 pandemic. Finally, this review lays out future research directions related to current problems in such complex physical phenomenon.

Keywords
Droplet impact, droplet impact velocity, splash, spread, rebound, flexible surface, contact angle, interfacial tension

Date received: 13 August 2022; accepted: 19 October 2022

Handling Editor: Chenhui Liang

Introduction
Droplet impact is a ubiquitous physical event in various natural and industrial processes. The examples include rain drops falling on insect wings, splashing of pesticide on plant leaves, coffee stain, food industry and inkjet printing.\(^1\)\(^{-19}\) Physics of droplet-substrate interaction has been an attractive field of science in various technologies including healthcare, aerospace, electronics, coatings, printing and materials science.\(^20\)\(^{-99}\)

Previous studies about droplet impact on rigid substrates demonstrated following physical events: deposit (adhesion), breakup (fragmentation), prompt splash, corona splash, partial bounce and complete bounce as illustrated in Figure 1.\(^5\)\(^{,16,17,54,100\)\(^{-108}\) However, the physical process of a droplet impact on an elastic material is much more challenging due to interplay between the material elasticity and the droplet impact mechanism. With respect to the influence of a substrate on the droplet impact onto soft materials, in addition to substrate roughness and substrate chemistry, the mechanical properties of the substrate including material stiffness and elasticity will play important roles in the complex physical process.\(^32\)\(^{,109\)\(^{-132}\) A soft material exhibits the Young’s modulus of elasticity ranging in the order of magnitude of 1000 Pa–1 MPa. Therefore,
soft materials are classified as elastic and flexible materials.133

When a droplet gets into contact with a substrate, a three phase (solid-liquid-air) contact line forms, as demonstrated in Figure 2. This physical event is called droplet spreading. This happens when the contact line advances on the substrate as a result of the competition between adhesion and cohesion forces at the three-phase contact line.19,50–53,56,70–72,100,108,132,134–160 The adhesion force leads to the advancement the droplet on the substrate while the cohesion force resists the droplet advancement on the substrate.

Once the droplet impact the substrate, a contact angle is at the contact line which determines the wettability of the substrate. The contact angle is the result of the balance between interfacial tensions. The static (equilibrium) contact angle, θ_e, is determined by Young equation161 through a force balance between the interfacial tensions, presented by equation (1):

$$\gamma_{LV} \cos \theta_e = (\gamma_{SV} - \gamma_{SL})$$ \hspace{1cm} (1)

in which γ_{LV} denotes the liquid-vapour surface tension, γ_{SV} is the solid-vapour interfacial tension, and γ_{SL} presents the solid-liquid interfacial tension. The equilibrium contact angle on a hydrophilic surface is less than 90$^\circ$, on a hydrophobic surface is between 90$^\circ$ and 150$^\circ$, and on superhydrophobic surface is larger than 150$^\circ$. Figure 2(a) shows the static conformation of a liquid droplet on a smooth solid surface with flat contact angle, θ_e, and the interfacial tensions γ_{LV}, γ_{SL} and γ_{SV}. Figure 2(b) and (e) show the configuration of the droplet on a rough solid surface with Wenzel state and Cassie-Baxter state, respectively.

The droplet motion on an inclined substrate, with inclination angle (α), depends on the gravity. It changes the droplet shape as compared to spherical cap geometry on a horizontal substrate, as illustrated in Figure 2(d). This induces the droplet to advance in one direction with advancing dynamic contact (θ_a) and to recede in other direction with receding dynamic contact angle (θ_r).

For droplet impact on rough substrates, three well-known models were proposed to show the droplet conformation on the rough materials, as shown in Figure 2. These models are Wenzel, Cassie-Baxter, and mixed wetting state.72,162–165 Wenzel demonstrated the droplet shape on rough and orderly patterned substrates.163 He concluded that presence of roughness on a substrate enhances the solid-liquid contact without any air pockets between them, with the apparent contact angle, represented by equation (2):

$$\cos \theta_{Wenzel} = \chi \cos \theta_e$$ \hspace{1cm} (2)

θ_{Wenzel} is the Wenzel contact angle, θ_e denotes the equilibrium contact angle on a flat smooth substrate, and χ presents the substrate roughness.

Cassie and Baxter164,165 showed that air pockets present between a droplet and a substrate. The Cassie-Baxter wetting model is evaluated by equation (3):

$$\cos \theta_{Cassie–Baxter} = \phi (\cos \theta_e + 1) - 1$$ \hspace{1cm} (3)

$\theta_{Cassie–Baxter}$ is the Cassie-Baxter contact angle and ϕ is the fraction of the substrate surface. The Cassie-Baxter model was applied to a droplet shape on a material with chemical and roughness heterogeneity.\textsuperscript{68,69,72,135,166–199

Figure 1. Physical events during droplet impact on a rigid substrate.54,106,107 Reprinted from The Journal of Fluid Mechanics, 892, Burzynski, D. A., Roisman, I. V., and Bansmer, S. E. ’On the splashing of high-speed drops impacting a dry surface’, A2, Copyright (2020), with permission from Cambridge University Press. Reprinted from Scientific Reports, 6, Weisensee, P. B., Tian, J., Mijikovic, N., King, V. P. ’Water droplet impact on elastic superhydrophobic surfaces’, 30328, Copyright (2016), with permission of Springer Nature. Reprinted from Langmuir, 33, Malla, L. K., Patil, N. D., Bhardwaj, R., and Neild, A. ’Droplet bouncing and breakup during impact on a microgrooved surface’, 9620–9631, Copyright (2017), with permission of American Chemical Society.
A droplet might exhibit a mixture of two wetting conformations: portion of the droplet in contact with the substrate roughness and the rest is placed above the air pockets, as demonstrated in Figure 2(c) and (f). The contact angle for the mixed wetting mode is expressed by (4):

\[
\cos \theta_{\text{mixed wetting}} = \chi \psi \cos \theta_e + \psi - 1
\]

in which \(\psi \) presents the percentage of the substrate rough which is in contact with the droplet.

When two or more droplets become close to each other, they merge (coalesce). This phenomenon is controlled by imbalance of a local pressure in which droplet surface energy converts to viscous dissipation and kinetic energy. As a result of coalescence of the droplets, droplet jumping occurs. \(^{68,69,72,154,160,171–175,203–227} \)

Coalescence-induced droplet jumping process is demonstrated in Figure 2(g).

Droplet impact on soft materials presents a significant interest in current technologies including advanced functional materials, flexible printed electronics, generation of smart materials, tissue engineering, smart biomaterials, functional organs, development of biosensors, fabrication of nano-materials, fight against the COVID-19 pandemic, three-dimensional (3D) printing, bio-printing, nano-printing, energy performance, and high resolution additive manufacturing in biomedicine. Therefore, it is vital to focus significantly on the physics of droplet impact on soft materials. This review presents a summary of studies on the physics of droplet impact on flexible materials.

In the following sections, some applications of the droplet impact on soft materials are presented. Next, forces that are responsible in the physics of droplet impact on a substrate are discussed and pertinent non-dimensional parameters are introduced. After that, a summary of previous studies of the droplet impact on flexible materials are discussed in detail. Furthermore, future perspectives for extending the knowledge of this complex physical process are presented.

Applications of droplet impact on soft materials

Droplet impact on soft materials shows a great interest in bioprinting, fabrication of smart biomaterials, production of flexible printed electronics and fight against COVID-19 pandemic. \(^{228–233} \) In this section, the role of
droplet impact on soft materials in these leading-edge advanced technologies are presented in detail.

Coating and printing

Among numerous printing techniques, printing droplets on soft viscoelastic materials has gained a tremendous attention in current fast growing technologies including flexible printed electronics, production of advanced functional materials, soft biomaterials and smart materials, as illustrated in Figures 3 and 4.228,234–237 The droplets might contain biological solutions, biopolymers and electronic conducting solutions. Recent study by Modak et al. [2020] has illustrated printing droplets, containing conducting solutions (silver inks) and polymers, on to soft tapes to produce advanced flexible electronic materials.228 Figure 3 shows the ‘cavity-collapse-driven single-microdroplet ejection’ technique to impact the droplets onto a superhydrophobic groove by the force balance between the dynamic pressure of the impacting droplet and the breakthrough pressure of the groove.228

Moreover, droplet impact on flexible materials has shown a great influence in the area of 3D bioprinting for advancement in the field of biomedicine (Figure 4). Figure 4 illustrates the biological droplet, DMEM (Dulbecco’s Modified Eagle Medium), impacting on a Teflon coated surface. After drying stage, the DMEM droplet became hydrophilic and the rest of the Teflon-coated substrate maintained its hydrophobicity. This creates a wettability gradient on the surface with the biological sample for the purpose of cell-culture-based researches. Three-dimensional bioprinting covers various biomedical purposes including printing droplets containing DNA molecules, biological cells and proteins onto soft materials. Three-dimensional bioprinting is a leading-edge technology in the area of tissue engineering, production of 3D smart biomaterials, biosensor manufacturing, stem cell research, fabrication of 3D functional organs and gene expression analyses.

Biotechnology and healthcare

COVID-19 pandemic largely caused loss of millions of lives worldwide by transmission of the droplets containing SARS-CoV-2 in the community.238 The common mode of contracting the virus was realized to be by spread of the aerosol-based SARS-CoV-2-laden respiratory droplets from infected individuals through sneezing, coughing and exhaling.239 Face masks were shown to prevent its spread in the society.240,241 Therefore, the physical understanding of droplet impact on soft face masks and the adhesion/deposition of the impacting respiratory SARS-CoV-2-loaded droplets onto the soft superhydrophobic face masks are vital.238–240,242–248 Moreover, fight against the COVID-19 highlighted the lack of comprehensive knowledge pertinent to the interaction of the respiratory droplets with individual skin and various surfaces such as the personal protective equipment including soft superhydrophobic face masks to intensify their efficacy (Figure 5).239,240,248
Forces and non-dimensional parameters in physics of droplet impact on a substrate

When a droplet becomes in contact with a substrate, the balance of physical forces and external forces, such as electric and magnetic fields, control the corresponding interfacial physics. The governing physical forces are interfacial tensions, gravity and viscosity.\(^{17,55–57,124,148,204,211,221,250–276}\) Figure 6 illustrates the stationary condition of a droplet on a soft (flexible) substrate with interfacial tensions acting along the interfaces due to deformation of the soft substrate via impact of the droplet.

Viscosity resists the droplet motion on a substrate which causes the viscous dissipation. Interfacial tensions induce the droplet stiffness during contact with the material. Gravity affects the droplet puddling which might be negligible as the droplet diameter is less than the capillary length \(\left(\frac{\sqrt{\sigma}}{\rho g}\right)\) in which \(\rho\) is the droplet density, \(\sigma\) is the liquid surface tension and \(g\) is the gravitational acceleration. External forces might also play key roles in droplet impact physics. The external forces are due to acoustic waves, electric field, magnetic field, dynamic pressure, substrate roughness, substrate chemistry and substrate mechanical properties.
The physical forces characterize the droplet impact physics by various non-dimensional parameters: the Reynolds number \((Re) \), the Weber number \((We) \), the Ohnesorge number \((Oh) \), the capillary number \((Ca) \), the Stokes number \((St) \), the Bond number \((Bo) \), the Froude number \((Fr) \), the Weissenberg number \((Wi) \), the Deborah number \((De) \) and the elasto-capillary number \((Ec = \frac{We}{Dr}) \) in which \(\lambda \) is the characteristic relaxation time for an elastic droplet.

Additional non-dimensional numbers might be introduced in the droplet impact physics due to the external forces (electric field, magnetic field, vibration, wind and obstacles), substrate roughness, substrate chemistry and mechanical properties of the substrate.\(^{17,258,259}\)

Research in droplet impact physics onto soft flexible materials progressed remarkably since last couple of decades when astonishing high-speed imaging capabilities and power of computational fluid dynamics enabled clarifying the rapid physical event.\(^{68,69,278–280}\)

Several physical parameters such as force, drag, pressure and shear stress, droplet shape, air cushioning and many more pertinent to the physics of droplet impact on smooth soft materials were investigated through experimental, computational and theoretical efforts.\(^{68,69,280}\)

In the physics of droplet impact on flexible substrates, besides roughness and chemistry of a substrate, the mechanical properties of the substrate including elasticity and stiffness are vital.\(^{281–284}\) Material deformation by droplet impact has a key role in numerous parameters in interfacial science and technology including contact angle, contact angle hysteresis, adhesion, condensation, frost growth and evaporation. In following sections droplet impact physics on smooth and rough soft materials are discussed.

Droplet impact on soft smooth substrates

There were various efforts on the droplet impact physics on smooth soft substrates that deform due to the capillary effect. It was reported that surface deformation is reversely related to substrate shear modulus.\(^{281}\) Chen et al. experimentally studied impact physics of water droplets on soft viscoelastic hydrophobic substrates for a broad range of the Weber numbers by determining the physical interactions between the droplet and the soft substrate.\(^{281}\)

At the small Weber number, the droplet bounces from the soft material while at the larger Weber numbers, the droplet spreads and deposits on the soft material.\(^{281}\) At the moderate Weber number, air bubbles entrap inside the droplet during deposition on soft material.\(^{281}\) Similar mechanism was observed for droplet impact on rigid substrates.\(^{281}\)

At the large Weber numbers, droplet does not bounce from the soft viscoelastic materials. In comparison, partial bouncing of the droplet from rigid materials were observed. Similarly, an elastic droplet rebounds from a superhydrophobic rigid material.\(^{281}\) The elasticity of a soft material does not affect on the dynamics of droplet spreading after its impact on the soft
material. However, mechanical vibration of the droplet after impact on a flexible viscoelastic material is governed by wettability of the soft material.

Lee et al. studied the physics of water droplet impact on smooth bitumen materials with unique characteristics of being rigid and flexible viscoelastic. They showed the dynamic stick-slip feature of the droplet on the soft deformable material. Spreading and dewetting dynamics of a water droplet after impact on a rigid material and a deformable material were compared for different impact speeds. Different droplet impact mechanisms including spreading/deposition, partial rebound and complete rebound were considered at different impact speeds. The water droplet impact/wetting has a classical quasi-static predictable condition on a rigid material. In comparison, the water droplet impact/wetting behaviour is a dynamic un-predictable condition on a deformable viscoelastic material due to formation of wetting ridges.

Langley et al. investigated the role of the elasticity of soft substrates on formation of air layer and air bubbles under the droplet at the onset of impact on the elastic materials by an ultra-fast imaging technique (Figure 7(a) and (b)). Figure 7 demonstrates the images of the air entrapment dynamics after impact of an ethanol droplet on a glass substrate in comparison with the ethanol droplet impact on a soft (flexible) silicone substrate. The elasticity of a soft material delays compressibility of air layer, formed under the droplet after impact. Material elasticity induces generation of thicker air films as compared to the air films formed under the droplet after impact on the rigid materials.

Chen and Bertola studied the physics of a water droplet impact on a curved soft elastic material by a high-speed imaging considering different material elasticity and curvatures. Moreover, their observations were compared with their simulations over a broad range of the impact Weber numbers. It was shown that increase in the elastic material curvature induces more droplet receding from the soft material. When a droplet impacts on an elastic curved material, the dynamic contact angle depends on three parameters: material curvature, material elasticity and the impact Weber number. After a droplet impacts on an elastic curved or flat substrate, viscous energy dissipation happens due to deformation of the soft material after droplet impact.

Poulain and Carlson analytically studied the coupled interactions between the droplet and the substrate coated with a thin soft material containing one of the following: viscous film, elastic compressible film and an elastic sheet protected by a viscous layer. Their results were compared with their simulations. They showed that the droplet impact dynamics and droplet configuration depend on the nature of the soft material. Recently, there has been a great attention on application of elastohydrodynamic lubrication (soft lubrication) for a broad range of systems such as stereolithography and biological adhesion.

In this field of technology, experimental efforts showed that droplet impact dynamics on a soft material is governed by the elasticity of the soft material. Similarly, it was reported that the droplet impact physics is affected by the mechanical deformation of the soft material via absorbing part of energy or due to the contact line dynamics. Table 1 lists various studies that have been conducted on physics of droplet impact onto soft flexible solid materials.

Droplet impact on soft rough substrates

Weisensee et al. showed that the material elasticity affects on the physics of droplet impact on a soft rough material. Figure 8 shows the physics of droplet impact dynamics onto a rigid superhydrophobic and an elastic flexible superhydrophobic surface at very large impact velocities, 1.58 and 1.57 m/s, respectively. As shown in Figure 8, droplet impact onto a rigid superhydrophobic surface causes the droplet breakup and splashing while after droplet impact onto an elastic superhydrophobic surface, the substrate vibrates and the droplet lifts-off in a pancake geometry. The time interval over which a water droplet is in contact with an elastic superhydrophobic substrate is half of the time interval a water droplet is in contact with a rigid superhydrophobic substrate (Figure 8).

Alizadeh et al. studied the role of the material elasticity on the mechanism of a water droplet impact on a smooth and a patterned superhydrophobic substrates with various elasticity. The droplet spreading on and retraction from a soft material depends on the material elasticity through viscoelastic energy dissipation event. It was shown that decrease in elasticity of a soft material induces a reduction in the droplet retraction from the soft material. A water droplet spreads less on a soft material with higher elasticity.

Few studies were attempted to gain insights on the role of material roughness in the area of droplet impact on soft flexible material. The mechanism of droplet spreading and droplet penetration inside pores of a rough flexible material were investigated by high-speed imaging and results were compared with their simulations. This test was conducted for the impact of blood droplet on flexible rough fabrics. Moreover, recent efforts were attempted on the droplet response to the impact on a flexible soft material. Recently, Banitabaei and Amirfazli studied the collision of the droplets with arrays of spherical particles and reported the role of impact speed and the wettability of the spherical particles on the mechanism of impact.
It was shown that as a result of droplet impact on an elastic superhydrophobic surface the contact time between the droplet and the superhydrophobic soft substrate is remarkably reduced as compared with droplet impact on a rigid superhydrophobic substrate. Moreover, it was reported that micro- and nano-patterns on superhydrophobic soft surface can enhance the droplet removal performance by properly controlling the flexibility of the superhydrophobic material.

It should be noted that most of studies focused on the dynamics of a droplet motion after impact on a soft material. There were few research attempts on the response dynamics of the elastic soft superhydrophobic surfaces. Recent study by Soto et al. demonstrated the dependency of the deformation dynamics of a thin cantilever plate on the force, due to droplet impact, using momentum conservation law. Similarly, theoretical work by Gart et al. showed the elastic response of a
Model	Liquid	Solid	Comment
Rioboo et al.298	water droplet	cross-linked PDMS (polydimethylsiloxane)	wettability characteristics including contact angle hysteresis, advancing and receding contact angles were experimentally studied and compared with droplet impact on rigid substrates
Langley et al.286	water and ethanol droplets	silicone soft material	effect of material stiffness on air cushioning formation under the droplet after impact on a soft material and formation of air bubbles under the droplet
Chen and Li294	water droplet	superhydrophobic soft materials	water droplets bounce from non-superhydrophobic soft materials in the range of minimum and maximum impact speeds, presence of air films under the droplet and deformability of the soft material at higher impact speeds
Chen et al.299	water droplet	soft PDMS elastomer	formation of a thin air film under the droplet after impact on a soft material, air film entrapment during droplet impact due to shear-thinning behaviour of the soft material, droplet bouncing after impact role of material elasticity on spreading and receding dynamics of the water droplets after impacting flat and patterned superhydrophobic flexible materials
Alizadeh et al.300, Mangili et al.301	water droplet	soft PDMS materials with different elasticity	visualization of the impact mechanism of an ethanol droplet on silicone gels with different stiffness and elasticity; material stiffness affects splashing threshold by reducing or vanishing it role of mechanical stiffness of the soft material on droplet impact mechanism is related to the dynamic response of the soft viscoelastic material after droplet impact
Howland et al.295	ethanol droplet	silicone or acrylic materials with different stiffness and elasticity	wettability was studied experimentally after droplet impact on the soft materials by measuring static contact angle wettability was studied theoretically after droplet impact on the soft materials by evaluating static contact angle theoretical and numerical study: wettability was studied theoretically and computationally after impact on the soft materials by calculating static contact angle
Chen et al.281	water droplet	soft PDMS viscoelastic materials with various shear modulus	wettability was studied experimentally after droplet impact on the soft materials by measuring static contact angle wettability was studied theoretically after droplet impact on the soft materials by evaluating static contact angle theoretical and numerical study: wettability was studied theoretically and computationally after impact on the soft materials by calculating static contact angle
Pericet-Camara et al.302	ionic liquid 1-butyl-3- methylimidazolium hexafluorophosphate doped with fluorophore Nile Red droplet	soft polymeric materials: bulk flexible PDMS substrates; thin flexible PDMS film on a glass elastic isotropic thin film	wettability was studied experimentally after droplet impact on the soft materials by measuring static contact angle wettability was studied theoretically after droplet impact on the soft materials by evaluating static contact angle theoretical and numerical study: wettability was studied theoretically and computationally after impact on the soft materials by calculating static contact angle
Kern and Müller303	droplet	thick flexible elastic membranes with finite thicknesses	wettability was studied experimentally after droplet impact on the soft materials by measuring static contact angle wettability was studied theoretically after droplet impact on the soft materials by evaluating static contact angle theoretical and numerical study: wettability was studied theoretically and computationally after impact on the soft materials by calculating static contact angle

(continued)
cantilever plate due to water droplet impact. The elastic response dynamics consist of deflection, vibration, damping and bending.315 Dong et al. applied smoothed particle hydrodynamics approach to numerically model the impact physics of a droplet on a cantilever plate as well as a flexible beam.316 However, their simulation is limited to small deformation of the elastic beams. Huang et al. followed up previous work for modelling the elastic beam deformation due to droplet impact for much larger deformation.317 Table 2 lists various studies that have been conducted on physics of droplet impact onto soft flexible solid materials.

Future perspectives

Various studies have been attempted on the physics of droplet impact over soft elastic (flexible) materials considering both smooth and rough surfaces with or without curvature. Moreover, numerous physical non-dimensional parameters were considered to explain the physics of droplet impact dynamics onto soft elastic substrates including Weber number and Reynolds number. Majority of investigations on the dynamics of droplet impact onto soft flexible materials involve Newtonian liquids such as water, silicone oil and ethanol. However, considering the complexity of the

Table 2. Continued

Model	Liquid	Solid	Comment
Gerber et al.305	colloidal droplet	thick silicone elastomer	controlling wetting and drying mechanisms of a colloidal droplet on a soft material by modifying environment humidity
Liu et al.306	water droplet	soft PDMS materials	anti-icing performance of soft PDMS materials with adjustable shear modulus
Dressaire et al.307	various silicone oils	thin flexible fibre	elasticity of the soft material can be tuned to enhance efficiency of droplet capture after impact analytical model for droplet impact on elastic-plastic substrate
Li et al.308	water droplet	elastic substrate	
Adler309	water droplet	deformable surface	Theoretical modelling of drop impact on a soft elastic surface role of soft material on capillary flows
Andreotti and Snoeijer296, Bico et al.310	droplet	deformable substrate	

![Figure 8. High-speed visualization of water droplet impact on a rigid (top) and an elastic (bottom) superhydrophobic surface.](image-url) Reprinted from Scientific Reports, 6, Weisensee, P. B., Tian, J., Miljkovic, N., King, W. P. 'Water droplet impact on elastic superhydrophobic surfaces', 30328, Copyright (2016), with permission of Springer Nature.
real-life problems related to the field of droplet impact onto soft elastic materials, these studies need to be significantly enhanced.

Droplet impact on flexible materials show a significant role in current science and technology including fight against COVID-19, energy efficiency, nano-printing, bio-printing, 3D-printing, tissue engineering, smart biomaterials, functional organs, flexible printed electronics and high-resolution additives in medicine. For example, heterogeneous droplet impact on a flexible material presents a key role in pharmaceuticals. Liquid drugs are heterogeneous droplets that contain insoluble solid particles in the aqueous solution. To name a few more are impact of virus-contained droplets onto flexible materials with heterogeneous morphology/chemistry and heterogeneous biological cell-contained droplets for biomaterials.

Given the importance of advancement in healthcare, medicine, energy and smart technology, it is vital to enhance applying emerging advanced technologies such as deep learning, quantum computation and nanoscience in imaging such as transmission electron microscopy and cryogenic electron microscopy to strengthen physical understanding of complex droplet impact on real-life heterogeneous flexible materials. Droplets in real-life can contain complexity in terms of rheology, interfacial properties, and physical properties. Similarly, flexible materials can consist of

Table 2. Summary of researches on droplet impact onto soft rough substrates.

Model	Liquid	Solid	Comment
Chen and Li294	water droplet	superhydrophobic soft substrates	water droplet bounces from a non-superhydrophobic soft material in the range of minimum and maximum droplet impact velocity thresholds due to presence of air film under the droplet and flexibility of the soft material at the impact speed larger than the minimum threshold effect of material elasticity on spreading and receding of a water droplet after impact on the flat and patterned superhydrophobic soft materials. Water droplet bounces from a superhydrophobic soft porous material; water droplet is trapped in the concave structures of a soft porous material, this condition challenges defining the contact line on a soft porous material, superamphiphobic soft material repels water, glycerol, peanut-oil droplets and some organic solvents.
Alizadeh et al300, Mangili et al.301	water droplet	PDMS flat and patterned superhydrophobic substrates with different elasticity	effect of material elasticity on spreading and receding of a water droplet after impact on the flat and patterned superhydrophobic soft materials. Water droplet bounces from a superhydrophobic soft porous material; water droplet is trapped in the concave structures of a soft porous material, this condition challenges defining the contact line on a soft porous material, superamphiphobic soft material repels water, glycerol, peanut-oil droplets and some organic solvents.
Lu et al.318	water droplet	superhydrophobic soft porous materials	contact time reduction of water droplet bouncing onto a soft elastic superhydrophobic cotton.
Chen et al.319	oil droplet	robust superamphiphobic coated soft materials	superamphiphobic soft material repels water, glycerol, peanut-oil droplets and some organic solvents.
Huang et al.320	water droplet	soft elastic superhydrophobic cotton	contact time reduction of water droplet bouncing onto a soft elastic superhydrophobic cotton.
Kim et al.89	water droplet	superhydrophobic coated flexible PDMS	coupled dynamic responses of flexible superhydrophobic surfaces after droplet impact with high-speed imaging technique material flexibility alongside surface micro-patterning and nano-patterning can increase the superhydrophobicity of the material.
Vasilieou et al.313	water droplet	flexible hydrophobic substrate: low-density polyethylene film treated with a hydrophobic nanocomposite coating	influence of frequency of vibration of elastic superhydrophobic surfaces due to droplet impact on the physics of droplet impact on elastic beams.
Weisensee et al.321	water droplet	elastic superhydrophobic surfaces	numerical model to describe the droplet impact on elastic beams.
Dong et al316	water droplet	elastic superhydrophobic beams	droplet evaporation mechanism on flexible substrates.
Zang et al.322	water droplet	flexible polymer sheet	effect of fabric roughness on penetration of blood droplet inside fabric pores after impact.
de Goede et al.311	blood droplet	soft flexible thin rough fabric mesh	theoretical study of droplet impact on an elastic cantilever with large deformation.
Huang et al.317	droplet	elastic cantilever	flexible cantilever with large deformation.
heterogeneity in morphology, chemistry and mechanical properties in real-life problems.

A comprehensive list is provided for complexity of droplet impact on flexible materials in real-life problems (Figure 9). Future research directions in the area of droplet impact on flexible materials need to consider these complexities.

Moreover, environment condition has a key role on the physics of droplet impact on soft materials. For instance, pressure affects on droplet splashing. Air enhances air film entrainment under the droplet after impact on a soft material. The droplets need to be in perfect contact with soft materials for high-quality biomaterials, tissue engineering and flexible printed electronics. Furthermore, Marangoni effect controls the droplet behaviour on a soft material via the interfacial tension gradient due to the temperature gradient. Therefore, it is vital to consider such complexities in the future researches in the area of droplet impact on soft viscoelastic materials.

Also, scientific community from various fields are strongly encouraged to collaborate to unravel physical understanding of this complex interfacial phenomenon. The physics of complex droplet impact on real-life heterogeneous flexible materials demands collaboration across various fields including applied physics, applied chemistry, biology, molecular biology, mathematics, materials science, computer science, medicine, aerospace engineering, biochemistry, chemical engineering and mechanical engineering.

Despite the fact that all real-world problems, attributed to the area of droplet impact on soft materials, contain complex droplets and real-life heterogeneous flexible materials, most previous studies in this physical phenomenon were contributed to the Newtonian fluids and homogeneous soft materials. As a result, it is extremely vital to enhance physical understanding in the area of impact of complex droplets on real-life heterogeneous flexible materials under variant environment condition suitable to the real-world situations.

Declaration of conflicting interests
The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Alireza Mohammad Karim https://orcid.org/0000-0002-2031-9057

References
1. Bird JC, Dhiman R, Kwon HM, et al. Reducing the contact time of a bouncing drop. Nature 2013; 503: 385–388.
2. Jia W and Qiu HH. Experimental investigation of droplet dynamics and heat transfer in spray cooling. Exp Therm Fluid Sci 2003; 27: 829–838.
3. Dong H, Carr WW and Bucknall DG. Temporally-resolved inkjet drop impaction on surfaces. *AIChE J* 2007; 53: 2606–2617.

4. Ersoy NE and Eslamian M. Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film. *Phys Fluids* 2019; 31: 012107.

5. Yarin AL. Drop Impact Dynamics: splashing, spreading, receding, bouncing. *Annu. Rev Fluid Mech* 2006; 38: 159–192.

6. Gent R, Dart N and Cansdale J. Aircraft icing. *Philos Trans R Soc London, Ser A* 2000; 358: 2873–2911.

7. Bansmer S. *Airplane Icing*. Göttingen: Cuvillier Verlag, 2020.

8. Burzynski A. On the impact of high-speed drops on dry and wetted surfaces. Braunshweig: TU Braunschweig, 2021.

9. Mohammad Karim A, Suszynski WJ, Francis LF, et al. Effect of viscosity on liquid curtain stability. In: *18th International society of coating science and technology symposium (ISCST)*, Pittsburgh, PA, 2016.

10. Mohammad Karim A, Suszynski WJ, Francis LF, et al. Effect of rheological characteristics of non-newtonian liquids on liquid curtain stability. In: *18th International society of coating science and technology symposium (ISCST)*, Pittsburgh, PA, 2016.

11. Mohammad Karim A, Suszynski WJ, Francis LF, et al. Effect of elasticity on stability of viscoelastic liquid curtain. In: *69th Annual meeting of the fluid dynamics division of the American physical society*, vol. 61, no. 2, 2016, Portland, OR.

12. Mohammad Karim A, Francis LF, Carvalho MS, et al. Effect of elasticity on stability of viscoelastic liquid curtain. In: *AIChE Annual meeting*, Minneapolis, MN, 2017.

13. Kavehpour HP, Mohammad Karim A, Rothstein JP, et al. Laws of spreading: when hydrodynamic equations are not enough. In: *70th Annual meeting of the fluid dynamics division of the American physical society*, vol. 62, no. 14, 2017, Denver, CO.

14. Mohammad Karim A, Suszynski WJ, Griffith WB, et al. Effect of rheological properties on liquid curtain coating. In: *70th Annual meeting of the fluid dynamics division of the American physical society*, vol. 62, no. 14, 2017, Denver, CO.

15. Mohammad Karim A, Suszynski WJ, Griffith WB, et al. Effect of rheological properties on liquid curtain coating. In: *Industrial partnership for research in interfacial and materials engineering (IPRIME) annual meeting*, Minneapolis, MN, 2017.

16. Marengo M, Antonini C, Roisman IV, et al. Drop collisions with simple and complex surfaces. *Curr Opin Colloid Interface Sci* 2011; 16(4): 292–302.

17. Josserand C and Thoroddsen ST. Drop impact on a solid surface. *Annu Rev Fluid Mech* 2016; 48: 365–391.

18. Yarin AL, Roisman IV and Tropea C. Collision phenomena in liquids and solids. Cambridge: Cambridge University Press, 2017.

19. Pierzyna M, Burzynski DA, Bansmer SE, et al. Data-driven splashing threshold model for drop impact on dry smooth surfaces. *Phys. Fluids* 2021; 33: 123317.

20. Mohammad Karim A, Rothstein JP and Kavehpour HP. Dynamics of spreading on micro-textured surfaces. In: *68th Annual meeting of the fluid dynamics division of the american physical society*, Boston, MA, vol. 60, no. 21, 2015.

21. Wijshoff H. Drop dynamics in the inkjet printing process. *Curr Opin Colloid Interface Sci* 2018; 36: 20–27.

22. Mohammad Karim A, Rothstein JP and Kavehpour HP. Experimental study of dynamic contact angles on rough hydrophobic surfaces. *J Colloid Interface Sci* 2018; 513: 658–665.

23. Houssainy S, Mohammad Karim A and Kavehpour HP. Effect of viscous force on dynamic contact angle measurement with tensiometer. In: *68th Annual meeting of the fluid dynamics division of the American physical society*, Boston, MA, 2015.

24. Mohammad Karim A and Kavehpour HP. Dynamics of spreading on ultra-hydrophobic surfaces. *J Coat Technol Res* 2015; 12: 959–964.

25. Wibowo C and Ng KM. Product-oriented process synthesis and development: creams and pastes. *AIChE J* 2001; 47: 2746–2767.

26. Skurtys O and Aguilera JM. Applications of microfluidic devices in food engineering. *Food Biopros* 2008; 3: 1–15.

27. Singh M, Haverinen HM, Dhagat P, et al. Inkjet printing-process and its applications. *Adv Mater* 2010; 22: 673–685.

28. Zheng B, Roach LS and Ismagilov RF. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. *J Am Chem Soc* 2003; 125: 11170–11171.

29. Suya-Ngam A, Rattanarat P, Chailapakul O, et al. Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. *Anal. Chim. Acta* 2015; 883: 45–54.

30. Mohammad Karim A, Suszynski WJ, Griffith WB, et al. Effect of rheological properties of shear thinning liquids on curtain stability. *J Non-Newton Fluid Mech* 2019; 263: 69–76.

31. Singh R, Bahga SS and Gupta A. Electrohydrodynamic droplet formation in a T-junction microfluidic device. *J Fluid Mech* 2020; 905: A29.

32. Pruppacher HR and Klett JD. *Microphysics of clouds and precipitation*. Boston, MA: Kluwer Acad, 1997.

33. Kavehpour HP. Coalescence of drops. *Annu Rev Fluid Mech* 2015; 47: 245–268.

34. Mohammad Karim A, Suszynski WJ, Pujari S, et al. Delaying breakup and avoiding air entrainment in curtain coating using a two-layer liquid structure. *Chem Eng Sci* 2020; 213: 115376.

35. Jin J, Ooi CH, Dao DY, et al. Coalescence processes of droplets and liquid marbles. *Micromachines* 2017; 8: 336.

36. Choi K, Ng AH, Fobel R, et al. Digital microfluidics. *Annu Rev Anal Chem* 2012; 5: 413–440.

37. Mashaghi S, Abbaspourrad A, Weitz DA, et al. Droplet microfluidics: a tool for biology, chemistry and nanotechnology. *TRAC Trends Anal Chem* 2016; 82: 118–125.

38. Mohammad Karim A, Suszynski WJ, Pujari S, et al. Stability of two-layer curtain coating. In: *ICR 2020 – 18th International congress on rheology*, virtual ICR 2020, Rio de Janeiro, Brazil, 2020.

39. Mohammad Karim A, Suszynski WJ, Pujari S, et al. Using two-layer structure to expand operability window
of curtain coating process. In: 20th International society of coating science and technology symposium (IS CST), virtual event, 2020.

40. Nguyen N-T, Hejazian M, Ooi CH, et al. Recent advances and future perspectives on microfluidic liquid handling. *Micromachines* 2017; 8: 186.

41. Song H, Chen DL and Ismagilov RF. Reactions in droplets in microfluidic channels. *Angew Chem Int Ed Engl* 2006; 45: 7336–7356.

42. Teh SY, Lin R, Hung LH, et al. Droplet microfluidics. *Lab Chip* 2008; 8: 198–220.

43. Weigl BH, Bardell RL and Cabrera CR. Lab-on-a-chip for drug development. *Adv Drug Deliv Rev* 2003; 55: 349–377.

44. Tao XU and Chakrabarty K. Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. *IEEE Trans Biomed Circuits Syst* 2007; 1: 148–158.

45. Mohammad Karim A, Suszynski WJ, Pujari S, et al. Contact line dynamics in curtain coating of Non-Newtonian liquids. *Phys Fluids* 2021; 33: 103103.

46. Mohammad Karim A. Experimental dynamics of Newtonian non-elastic and viscoelastic droplets impacting immiscible liquid surface. *AIP Adv* 2019; 9: 125141.

47. Mohammad Karim A. Experimental dynamics of Newtonian and Non-Newtonian droplets impacting liquid surface with different rheology. *Phys Fluids* 2020; 32: 043102.

48. Joung YS and Buie CR. Aerosol generation by raindrop impact on soil. *Nat Commun* 2015; 6: 6083.

49. Bourouiba L. The fluid dynamics of disease transmission. *Annu Rev Fluid Mech* 2021; 53: 473–508.

50. Mundo C, Sommerfeld M and Tropea C. Droplet-wall collisions: experimental studies of the deformation and breakup process. *Int J Multiphase Flow* 1995; 21: 151–173.

51. Riboux G and Gordillo JM. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. *Phys Rev Lett* 2014; 113: 024507.

52. Xu L, Zhang WW and Nagel SR. Drop splashing on a dry smooth surface. *Phys Rev Lett* 2005; 94: 184505.

53. Lee M, Chang YS and Kim H-Y. Drop impact on micro-wetted patterned surfaces. *Phys Fluids* 2010; 22: 072101.

54. Burzynski DA, Roisman IV and Bansmer SE. On the splashing of high-speed drops impacting a dry surface. *J Fluid Mech* 2020; 892: A2.

55. Piskunov M, Semyonova A, Khomitov N, et al. Effect of rheology and interfacial tension on spreading of emulsion drops impacting a solid surface. *Phys Fluids* 2021; 33: 083309.

56. Pasandideh-Fard M, Qiao YM, Chandra S, et al. Capillary effects during droplet impact on a solid surface. *Phys Fluids* 1996; 8: 650–659.

57. Ukiwe C and Kwok DY. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. *Langmuir* 2005; 21: 666–673.

58. Hoffman RL. A study of the advancing interface. I. Interface shape in liquid—gas systems. *J Colloid Interface Sci* 1975; 50: 228–241.

59. Voinov OV. “Hydrodynamics of Wetting” Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza 1976; 5: 714–721.

60. Tanner LH. The spreading of silicone oil drops on horizontal surfaces. *J Phys D Appl Phys* 1979; 12: 1473–1484.

61. Jung S, Tiwari MK, Doan NV, et al. Mechanism of supercooled droplet freezing on surfaces. *Nat Commun* 2012; 3: 615.

62. Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. *ACS Nano* 2010; 4: 7699–7707.

63. Stone HA. Ice-phobic surfaces that are wet. *ACS Nano* 2012; 6: 6536–6540.

64. Chen L, Wu J, Li Z, et al. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces. *Colloids Surf A Physicochem Eng Asp* 2011; 384: 726–732.

65. Blossey R. Self-cleaning surfaces—virtual realities. *Nat Mater* 2003; 2: 301–306.

66. Tutuja A, Choi W, Ma M, et al. Designing superoleophobic surfaces. *Science* 2007; 318: 1618–1622.

67. Deng X, Mammen L, Butt HJ, et al. Candle soot as a template for a transparent robust superamphiphobic coating. *Science* 2012; 335: 67–70.

68. Liu F, Ghiglotti G, Feng JJ, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. *J Fluid Mech* 2014; 752: 39–65.

69. Liu Y, Moevius L, Xu X, et al. Pancake bouncing on superhydrophobic surfaces. *Nat Phys* 2014; 10: 515–519.

70. Thoroddsen ST, Takehara K and Etho TG. Bubble entrainment through topological change. *Phys Fluids* 2010; 22: 051701.

71. Lee JS, Weon BM, Je JH, et al. How does an air film evolve into a bubble during drop impact? *Phys Rev Lett* 2012; 109: 204501.

72. Wang X, Xu B, Chen Z, et al. Review of droplet dynamics and dropwise condensation enhancement: theory, experiments and applications. *Adv Colloid Interface Sci* 2022; 305: 102684.

73. Jin Z, Wang Z, Sui D, et al. The impact and freezing processes of a water droplet on different inclined cold surfaces. *Int J Heat Mass Transf* 2016; 97: 211–223.

74. Wang Y. Numerical study of a droplet impact on cylindrical objects: towards the anti-icing property of power transmission lines. *Appl Surf Sci* 2020; 516: 146155.

75. Wang Z, Xu Y and Gu Y. A light lithium niobate transducer design and ultrasonic de-icing research for aircraft wing. *Energy* 2015; 87: 173–181.

76. Lei S, Wang F, Fang X, et al. Icing behavior of water droplets impinging on cold superhydrophobic surface. *Surf Coat Technol* 2019; 363: 362–368.

77. Yang S, Hou Y, Shang Y, et al. BPNN and CNN-based AI modeling of spreading and icing pattern of a water droplet impact on a supercooled surface. *AIP Adv* 2022; 12: 045209.

78. Guo C, Liu L, Sun J, et al. Splashing behavior of impacting droplets on grooved superhydrophobic surfaces. *Phys Fluids* 2022; 34: 052105.

79. Sarma B, Dalal A and Basu DN. Interfacial dynamics of viscous droplets impacting a superhydrophobic candle soot surface: overview and comparison. *Phys Fluids* 2022; 34: 012121.

80. Sun L, Pan J, Wang X, et al. Molecular dynamics study of nanoscale droplets impacting on textured substrates of variable wettability. *Phys Fluids* 2022; 34: 012005.
81. Ju J, Yang Z, Yi X, et al. Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface. *Phys Fluids* 2019; 31: 057107.

82. Zhang C and Liu H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing. *Phys Fluids* 2016; 28: 062107.

83. Aviation Safety Council. *In-flight icing encounter and crash into the Seasatansia airway flight 791* ATR72-200, B-2270817 kilometers southwest of Makung City, Penghu Island, Taiwan. GE791 occurrence investigation ASC-AOR-05-04-001, December 2002, Reno, NV.

84. Federal Aviation Administration (FAA), DOT. *Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions. Final rule.* Department of Transportation, Federal Aviation Administration Edition, 2014.

85. Rothstein JP. Slip on superhydrophobic surfaces. *Annual Rev. Fluid Mech* 2010; 42: 89.

86. Quéré D. Wetting and roughness. *Annu Rev Mater Res* 2008; 38: 71.

87. Schellenberger F, Encinas N, Vollmer D, et al. How water advances on superhydrophobic surfaces. *Phys Rev Lett* 2016; 116: 096101.

88. Kim J-H and Rothstein JP. Role of interface shape on the laminar flow through an array of superhydrophobic pillars. *Microfluid Nanofluidics* 2017; 21: 78.

89. Kim J-H, Rothstein JP and Shang JK. Dynamics of a flexible superhydrophobic surface during a drop impact. *Phys Fluids* 2018; 30: 072102.

90. Kim J-H, Kavehpour HP and Rothstein JP. Dynamic contact angle measurements on superhydrophobic surfaces. *Phys Fluids* 2015; 27: 032107.

91. Nilsson MA and Rothstein JP. The effect of contact angle hysteresis on droplet coalescence and mixing. *J Colloid Interface Sci* 2011; 363: 646–654.

92. Nilsson MA and Rothstein JP. Using sharp transitions in contact angle hysteresis to move, deflect, and sort droplets on a superhydrophobic surface. *Phys Fluids* 2012; 24: 062001.

93. Barthlott W and Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. *Plantu* 1997, 202: 1–8.

94. Cao L, Jones AK, Sikka VK, et al. Anti-icing superhydrophobic coatings. *Langmuir* 2009; 25: 12444–12448.

95. Genzer J and Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. *Biofouling* 2006; 22: 339–360.

96. Lee C, Choi C-H and Kim C-J. Superhydrophobic drag reduction in laminar flows: a critical review. *Exp Fluids* 2016; 57: 176.

97. Ou J, Perot B and Rothstein JP. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. *Phys Fluids* 2004; 16: 4635–4643.

98. Danielli RJ, Waterhouse NE and Rothstein JP. Drag reduction in turbulent flows over superhydrophobic surfaces. *Phys Fluids* 2009; 21: 085103.

99. Srinivasan S, Choi W, Park K-C, et al. Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. *Soft Matter* 2013; 9: 5691.

100. Quéré E. Non-sticking drops. *Rep Prog Phys* 2005; 68(11): 2495.

101. Rioboo R, Tropea C and Marengo M. Outcomes from a drop impact on solid surfaces. *Atomization Sprays* 2001; 11: 12–165.

102. Rein M. Phenomena of liquid drop impact on solid and liquid surfaces. *Fluid Dyn Res* 1993; 12: 61.

103. Ding B, Wang H, Zhu X, et al. How supercooled superhydrophobic surfaces affect dynamic behaviors of impacting water droplets? *Int J Heat Mass Transf* 2018; 124: 1025–1032.

104. Bange PG, Patil ND and Bhardwaj R. Impact dynamics of a droplet on a heated surface. In: *Proceedings of the 5th International conference of fluid flow, heat and mass transfer (FFHMT’18)*, Niagara Falls, vol. 190, pp.232–247, 2018, ON, Canada.

105. Guo Y, Shen S, Yang Y, et al. Rebound and spreading during a drop impact on wetted cylinders. *Exp Therm Fluid Sci* 2013; 52: 97–103.

106. Malla LK, Patil ND, Bhardwaj R, et al. Droplet bouncing and breakup during impact on a microgrooved surface. *Langmuir* 2017; 33: 9620–9631.

107. Weisensee PB, Tian J, Miljkovic N, et al. Water droplet impact on elastic superhydrophobic surfaces. *Sci Rep* 2016; 6: 30328.

108. Zhang H, Zhang X, Yi X, et al. Reversed role of liquid viscosity on drop splash. *Phys Fluids* 2021; 33: 052103.

109. Andreotti B, Bäumchen O, Boulogne F, et al. Solid capillarity: when and how does surface tension deform soft solids? *Soft Matter* 2016; 12: 2993–2996.

110. Boyer F, Sandoval-Nava E, Snoeijer JH, et al. Drop impact of shear thickening liquids. *Phys Rev Fluids* 2016; 1: 013901.

111. Aytona M, Bartolo D, Wegdam G, et al. Impact dynamics of surfactant laden drops: dynamic surface tension effects. *Exp Fluids* 2010; 48: 49–57.

112. Izhassarov D and Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface. *Phys Rev Fluids* 2016; 1: 023302.

113. Chen L, Xiao Z, Chan PCH, et al. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays. *J Micromech Microeng* 2010; 20: 105001.

114. Deng X, Schellenberger F, Papadopoulos P, et al. Liquid drops impacting superamphiphobic coatings. *Langmuir* 2013; 29: 7847–7856.

115. Gauthier A, Symon S, Clanet C, et al. Water impacting on superhydrophobic macrotextures. *Nat Commun* 2015; 6: 8001.

116. Schutzius TM, Jung S, Maitra T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. *Nature* 2015; 527: 82–85.

117. Antonini C, Bernagozzi I, Jung S, et al. Water drops dancing on ice: how sublimation leads to drop rebound. *Phys Rev Lett* 2013; 111: 014501.

118. Wu Z and Cao Y. Dynamics of initial drop splashing on a dry smooth surface. *PLoS One* 2017; 12: e0177390.

119. Fluent I. FLUENT 6.3 user’s guide, Fluent documentation, 2006.

120. R. Davidson M. Spreading of an inviscid drop impacting on a liquid film. *Chem Eng Sci* 2002; 57: 3639–3647.

121. Josserand C and Zaleski S. Droplet splashing on a thin liquid film. *Phys Fluids* 2003; 15: 1650–1657.
159. Mohammad Karim A and Kavehpour HP. Spreading of emulsions on a solid substrate. Los Angeles, CA: UCLA, 2014.

160. Bartolo D, Bouamririne F, Verneuil É, et al. Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 2006; 74(2): 299–305.

161. Young T. An essay on the cohesion of liquids. Phil Trans R Soc London 1805; 95: 65–87.

162. Rao DN. The concept, characterization, concerns and consequences of contact angles in solid-liquid-liquid systems. In: 3rd International symposium on contact angle, wettability and adhesion, vol. 3, pp.191–210, 2003.

163. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem 1936; 28: 988–994.

164. Cassie ABD and Baxter S. Wettability of porous surfaces. Trans Faraday Soc 1944; 40: 546–551.

165. Cassie ABD. Contact angles. Discuss Faraday Soc 1948; 3: 11–16.

166. Israelachvili JN and Gee ML. Contact angles on chemically heterogeneous surfaces. Langmuir 1989; 5: 288–289.

167. Gao L and McCarthy TJ. How Wenzel and Cassie were wrong. Langmuir 2007; 23: 3762–3765.

168. Larsen ST and Taboryski R. A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces. Langmuir 2009; 25: 1282–1284.

169. Choi W, Tuteja A, Mabry JM, et al. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J Colloid Interface Sci 2009; 339: 208–216.

170. Milne AJ and Amirfazli A. The Cassie equation: how it is meant to be used. Adv Colloid Interface Sci 2012; 170: 48–55.

171. Wang X, Xu B, Chen Z, et al. Effects of gravitational force and surface orientation on the jumping velocity and energy conversion efficiency of coalesced droplets. Microgravity Sci Technol 2020; 32: 1185–1197.

172. Mohammad Karim A, Suszynski WJ, Griffith WB, et al. Effect of viscoelasticity on stability of liquid curtain. J Non-Newtonian Fluid Mech 2018; 257: 83–94.

173. Wasserfall J, Figuereido P, Kneer R, et al. Coalescence-induced droplet jumping on superhydrophobic surfaces: effects of droplet mismatch. Phys Rev Fluids 2017; 2: 123601.

174. Eggers J, Lister JR and Stone HA. Coalescence of liquid drops. J Fluid Mech 1999; 401: 293–310.

175. Paulsen JD, Burton JC, Nagel SR, et al. The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc Natl Acad Sci USA 2012; 109: 6857–6861.

176. Wang X and Jia L. Experimental study on heat transfer performance of pulsed heat pipe with refrigerants. J Therm Sci 2016; 25: 449–453.

177. Wiedenheft KF, Guo HA, Qu X, et al. Hotspot cooling with jumping-drop vapor chambers. Appl Phys Lett 2017; 110: 141601.

178. McNeil DA, Burnside BM and Cuthbertson G. Dropwise condensation of steam on a small tube bundle at turbine condenser conditions. Exp Heat Transfer 2000; 13(2): 89–105.

179. Song K, Kim G, Oh S, et al. Enhanced water collection through a periodic array of tiny holes in dropwise condensation. Appl Phys Lett 2018; 112: 071602.

180. Humplik T, Lee J, O’Hern SC, et al. Nanostructured materials for water desalination. Nanotechnol 2011; 22: 292001.

181. Lara JR, Holtzapple MT and Holtzapple MT. Experimental investigation of dropwise condensation on hydrophobic heat exchangers. Part II: effect of coatings and surface geometry. Desalination 2011; 280: 363–369.

182. Miljkovic N, Enright R, Nam Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett 2013; 13: 179–187.

183. Wu F, Huang Y, Chen Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 2012; 3: 1247.

184. Lv C, Hao P, Yao Z, et al. Condensation and jumping relay of droplets on lotus leaf. Appl Phys Lett 2013; 103: 021601.

185. Ghosh A, Beatin S, Zhang BJ, et al. Enhancing dropwise condensation through bioinspired wettability patterning. Langmuir 2014; 30: 13103–13115.

186. Parker AR and Lawrence CR. Water capture by a desert beetle. Nature 2001; 414: 33–34.

187. Feng S, Delannoy J, Malod A, et al. Tip-induced flipping of droplets on Janus pillars: from local reconfiguration to global transport. Sci Adv 2020; 6: eabb4540.

188. Hou Y, Yu M, Chen X, et al. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 2015; 9: 71–81.

189. Wang Y, Feng Z and Frechette J. Dynamic adhesion due to fluid infusion. Curr Opin Colloid Interface Sci 2020; 50: 101397.

190. Wang R, Wu F, Yu F, et al. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Res 2021; 14: 1429–1434.

191. Peng Q, Jia L, Guo J, et al. Forced jumping and coalescence-induced sweeping enhanced the dropwise condensation on hierarchically microgrooved superhydrophobic surface. Appl Phys Lett 2019; 114: 133106.

192. Wen R, Xu S, Ma X, et al. Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer. Joule 2018; 2: 269–279.

193. Jin Y, Qamar A, Shi Y, et al. Preferential water condensation on superhydrophobic nano-cones array. Appl Phys Lett 2018; 113: 216011.

194. Chen S, Wang R, Wu F, et al. Copper-based high-efficiency condensation heat transfer interface consisting of superhydrophobic hierarchical microgroove and nanocone structure. Mater. Today Phys 2021; 19: 100407.

195. Mulroe MD, Srijanto BR, Ahmadi SF, et al. Tuning condensation and jumping efficiency condensation heat transfer interface consisting of superhydrophobic hierarchical microgroove and nanocone structure. Mater. Today Phys 2021; 19: 100407.

196. Lo C-W, Chu Y-C, Yen M-H, et al. Enhancing condensation heat transfer on three-dimensional hybrid surfaces. Joule 2019; 3: 2806–2823.

197. Lu M-C, Lin C-C, Lo C-W, et al. Superhydrophobic Si nanowires for enhanced condensation heat transfer. Int J Heat Mass Transf 2017; 111: 614–623.
198. Wang R, Wu F, Xing D, et al. Density maximization of one-step electrodeposited copper nanocubes and dropwise condensation heat-transfer performance evaluation. *ACS Appl Mater Interfaces* 2020; 12: 24512–24520.

199. Cen C, Wu H, Lee CF, et al. Experimental investigation on the sputtering and micro-explosion of emulsion fuel droplets during impact on a heated surface. *Int J Heat Mass Transf* 2019; 132: 130–137.

200. Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. *Langmuir* 2000; 16: 5754–5760.

201. Marmur A. Wetting on hydrophobic rough surfaces: to Be heterogeneous or not to be? *Langmuir* 2003; 19: 8334–8348.

202. Erbil HY and Cansoy CE. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. *Langmuir* 2009; 25: 14135–14145.

203. Liu G, Fu L, Rode AV, et al. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. *Langmuir* 2011; 27: 2595–2600.

204. Li W, Wang J, Zhu C, et al. Numerical investigation of droplet impact on a solid superhydrophobic surface. *Phys Fluids* 2021; 33: 063310.

205. Yokoi K. Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle. *Soft Matter* 2011; 7: 5120.

206. Tsai P, Pacheco S, Pirat C, et al. Drop impact upon micro- and nanostructured superhydrophobic surfaces. *Langmuir* 2009; 25: 12293–12298.

207. Feng X, Feng L, Jin M, et al. Reversible superhydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. *J Am Chem Soc* 2004; 126: 62–63.

208. Liu H, Feng L, Zhai J, et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. *Langmuir* 2004; 20: 5659–5661.

209. Zhang X-T, Sato O and Fujishima A. Water ultrarepellency induced by nanocolumnar ZnO surface. *Langmuir* 2004; 20: 6065–6067.

210. Khojasteh D, Kazerooni M, Salarian S, et al. Droplet impact on superhydrophobic surfaces: a review of recent developments. *J Ind Eng Chem* 2016; 42: 1–14.

211. Abubakar AA, Yilbas BS, Al-Qahtani H, et al. Droplet motion on sonically excited hydrophobic meshes. *Sci Rep* 2022; 12: 6759.

212. Guleria SD, Dhar A and Patil DV. Experimental insights on the water entry of hydrophobic sphere. *Phys Fluids* 2021; 33: 102109.

213. Zheng Q-S, Yu Y and Zhao Z-H. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. *Langmuir* 2005; 21: 12207–12212.

214. Forsberg P, Nikolajeff F and Karlsson M. Cassie–Wenzel and Wenzel–Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. *Soft Matter* 2011; 7: 104–109.

215. Kumari N and Garmiella SV. Electrowetting-induced dewetting transitions on superhydrophobic surfaces. *Langmuir* 2011; 27: 10342–10346.

216. Mannetje D, Banpurkar A, Koppelman H, et al. Electrically tunable wetting defects characterized by a simple capillary force sensor. *Langmuir* 2013; 29: 9944–9949.

217. Dorrer C and Rühe J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. *Langmuir* 2007; 23: 3820–3824.

218. Gras SL, Mahmud T, Rosengarten G, et al. Intelligent control of surface hydrophobicity. *Chem Phys Chem* 2007; 8: 2036–2050.

219. Motornov M, Minko S, Eichhorn K-J, et al. Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes. *Langmuir* 2003; 19: 8077–8085.

220. Cheng Z, Lai H, Zhang N, et al. Magnetically induced reversible transition between Cassie and Wenzel states of superparamagnetic microdroplets on highly hydrophobic silicon surface. *J Phys Chem C* 2012; 116: 18796–18802.

221. Antonini C, Amirfazli A and Marengo M. Drop impact and wettability: from hydrophobic to superhydrophobic surfaces. *Phys Fluids* 2012; 24: 102104.

222. Bormashenko E. *Wetting of real surfaces*. Berlin: De Gruyter, 2013.

223. Neumann AW and Good RJ. Thermodynamics of contact angles. I. Heterogeneous solid surfaces. *J Colloid Interface Sci* 1972; 38: 341–358.

224. Marmur A. Soft contact: measurement and interpretation of contact angles. *Soft Matter* 2006; 2: 12–17.

225. Liu G and Craig VSJ. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature. *Faraday Discuss* 2010; 146: 141–151.

226. Vakarelski IU, Patankar NA, Marston JO, et al. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. *Nature* 2012; 489: 274–277.

227. Gu Z, Shang Y, Li D, et al. Lattice Boltzmann simulation of droplet impacting on the superhydrophobic surface with a suspended octagonal prism. *Phys Fluids* 2022; 34: 012015.

228. Modak CD, Kumar A, Tripathy A, et al. Drop impact printing. *Nat Commun* 2020; 11: 4327.

229. Starly B and Shirwaiker R. 3D bioprinting techniques. In: Zhang LG, Fisher JP and Leong KW (eds) *3D Bioprinting nanotechnology in tissue engineering regenerative medicine*. Amsterdam: Elsevier, 2015, 57–77.

230. Murphy SV and Atala A. 3D bioprinting of tissues and organs. *Nat Biotechnol* 2014; 32: 773–785.

231. Mandycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues. *Biotechnol Adv* 2016; 34: 422–434.

232. Dasgupta Q and Black LD 3rd. A fresh slate for 3D bioprinting. *Nat Mater* 2016; 15: 50–51.

233. Qu J, Dou C, Xu B, et al. Printing quality improvement for laser-induced forward transfer bioprinting: numerical modeling and experimental validation. *Phys Fluids* 2021; 33: 071906.

234. Shin P, Sung J and Lee MH. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. *Microelectron Reliab* 2011; 51: 797–804.
235. Lorenczewski E and Quéré D. Drops impacting a sieve. J Colloid Interface Sci 2003; 263: 244–249.

236. Ryu S, Sen P, Nam Y, et al. Water penetration through a superhydrophobic mesh during a drop impact. Phys Rev Lett 2017; 118: 014501.

237. Kumar A, Tripathy A, Nam Y, et al. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matter 2018; 14: 1571–1580.

238. Stadnytskiy V, Bax CE, Bax A, et al. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci USA 2020; 117: 11875–11877.

239. Jayaweera M, Perera H, Gunawardana B, et al. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res 2020; 188: 109819.

240. Melayil KR and Mitra SK. Wetting, adhesion, and droplet impact on face masks. Langmuir 2021; 37: 2810–2815.

241. World Health Organization. Advice on the use of masks in the context of COVID-19. Geneva: World Health Organization, 2020.

242. Katre P, Banerjee S, Balusamy S, et al. Fluid dynamics of respiratory droplets in the context of COVID-19: airborne and surfaceborne transmissions. Phys Fluids 2021; 33: 081302.

243. Hetherington R, Toufique Hasan ABM, Khan A, et al. Exposure risk analysis of COVID-19 for a ride-sharing motorbike taxi. Phys Fluids 2021; 33: 113319.

244. Bhardwaj R and Agrawal A. Likelihood of survival of SARS-CoV-2 transmission. Proc Natl Acad Sci USA 2020; 117: 11875–11877.

245. Kumar B, Chatterjee S, Agrawal A, et al. Evaluating a transparent coating on a face shield for repelling airborne respiratory droplets. Phys Fluids 2021; 33: 111705.

246. Shafaghi AH, Rokhsar Talabazar F, Koşar A, et al. On the effect of the respiratory droplet generation condition on COVID-19 transmission. Fluids 2020; 5: 113.

247. Mittal R, Ni R and Seo J-H. The flow physics of COVID-19. J Fluid Mech 2020; 894: F2.

248. Poon WCK, Brown AT, Direito SOL, et al. Soft matter science and the COVID-19 pandemic. Soft Matter 2020; 16: 8310–8324.

249. Liao M, Liu H, Wang X, et al. A technical review of liquid contact line dynamics: adhesion vs. hydrodynamics. PhD thesis, UCLA, 2015.

250. Mohammad Karim A, Fujii K and Kavehpour HP. Contact line dynamics of gravity driven spreading of liquids. Fluid Dyn Res 2021; 53: 035503.

251. Mohammad Karim A, Suszynski WJ and Pujari S. Liquid film stability and contact line dynamics of emulsion liquid films in curtain coating process. J Coat Technol Res 2018; 11: 1531–1541.

252. Abe Y, Zhang B, Gordillo L, et al. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows. Soft Matter 2017; 13: 1681–1692.

253. Mohammad Karim A, Rothstein JP and Kavehpour HP. Spreading dynamics on micro-structured surfaces. In: symposium interfacial phenomena for bobbles, droplets, films, and soft matter, 2015.

254. Mohammad Karim A, Rothstein JP and Kavehpour HP. Inconsistencies in the experimental study of spontaneous spreading vs. forced spreading. Droplets, University of Twente, The Netherlands, 2015.

255. Mohammad Karim A, Rothstein JP and Kavehpour HP. Contact line dynamics of gravity driven spreading of liquids. Fluid Dyn Res 2021; 53: 035503.
Droplets on impact with a solid surface. *Int J Heat Mass Transf* 1983; 26: 1095–1098.

Stow C and Hadfield M. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. *Proc R Soc London Ser A* 1981; 373: 419–441.

Delplanque J and Rangel R. An improved model for droplet solidification on a flat surface. *J Mater Sci* 1997; 32: 1519–1530.

Moghaddernajad S, Lee C and Jadidi M. An introduction of droplet impact dynamics to engineering students. *Fluids* 2020; 5: 107.

Thoroddsen ST, Etoh TG and Takehara K. High-speed imaging of drops and bubbles. *Annu Rev Fluid Mech* 2008; 40: 257–285.

Worthington AM. On the forms assumed by drops of droplet solidification on a flat surface. *Advances in Mechanical Engineering* 2020; 1981; 373: 419–441.

Chen L, Bonaccurso E, Deng P, et al. Droplet impact on nonsuperhydrophobic surfaces. *Rev Fluid Mech* 2016; 5: 107.

Lee JB, dos Santos S and Antonini C. Water touch-and-slip on a soft viscoelastic substrate: wetting, dewetting, and rebound on bitumen. *Langmuir* 2016; 32: 8245–8254.

Langley KR, Castrejón-Pita AA and Thoroddsen ST. Droplet impacts onto soft solids entrap more air. *Soft Matter* 2020; 16: 5702–5710.

Chen S and Bertola V. Drop impact on spherical soft surfaces. *Phys Fluids* 2017; 29: 082106.

Poulin S and Carlson A. Droplet settling on solids coated with a soft layer. *J Fluid Mech* 2022; 934: A25.

Kerem JR, Castrejón-Pita AA and Thoroddsen ST. Nonlinear theory of droplet impact on soft surfaces: beyond the static contact angles. *Langmuir* 2010; 26: 4873–4879.

Chen X, Wu J, Ma R, et al. Nanograssed micropyramidal architectures for continuous dropwise condensation. *Adv Funct Mater* 2011; 21: 4617–4623.

Alizadeh A, Bahadur V, Shang W, et al. Influence of substrate elasticity on droplet impact dynamics. *Langmuir* 2013; 29: 4520–4524.

Mangili S, Antonini C, Marengo M, et al. Understanding the drop impact phenomenon on soft PDMS substrates. *Soft Matter* 2012; 8: 10045.

Pericet-Camara R, Auernhammer GK, Koykov K, et al. Solid-supported thin elastomer films deformed by microdrops. *Soft Matter* 2009; 5: 3611–3617.

Kern R and Müller P. Deformation of an elastic thin solid induced by a liquid droplet. *Surf Sci* 1992; 264: 467–494.

Yu YS and Zhao YP. Elastic deformation of soft membrane with finite thickness induced by a sessile liquid droplet. *J Colloid Interface Sci* 2009; 339: 489–494.

Gerber J, Schutzius TM and Poulikakos D. Patterning of colloidal droplet deposits on soft materials. *J Fluid Mech* 2021; 907: A39.

Liu Y, Ma L, Wang W, et al. An experimental study on soft PDMS materials for aircraft icing mitigation. *Appl Surf Sci* 2018; 447: 599–609.

Dressaire E, Sauret A, Boulodge F, et al. Drop impact on a flexible fiber. *Soft Matter* 2016; 12: 200–208.

Li N, Zhou Q, Chen X, et al. Liquid drop impact on solid surface with application to water drop erosion on turbine blades. Part I: nonlinear wave model and solution of one-dimensional impact. *Int J Mech Sci* 2008; 50: 1526–1542.

Adler WF. Waterdrop impact modeling. *Wear* 1995; 186-187: 341–351.

Bico J, Reyssat É and Roman B. Elastocapillarity: when surface tension deforms elastic solids. *Annu Rev Fluid Mech* 2018; 50: 629–659.

de Goede TC, Mquaddam AM, Limpens KCM, et al. Droplet impact of Newtonian fluids and blood on simple fabrics: effect of fabric pore size and underlying substrate. *Phys Fluids* 2021; 33: 033308.

Banitabaei SA and Amirfazli A. Droplet impact onto a solid sphere: effect of wettability and impact velocity. *Phys Fluids* 2017; 29: 062111.

Vazileiou T, Gerber J, Prautzsch J, et al. Superhydrophobicity enhancement through substrate flexibility. *Proc Natl Acad Sci USA* 2016; 113: 13307–13312.

Soto D, De Larivière AB, Boutillon X, et al. The force of impacting rain. *Soft Matter* 2014; 10: 4929–4934.

Gart S, Mates JE, Megaridis CM, et al. Droplet impacting a cantilever: a leaf-raindrop system. *Phys Rev Appl* 2015; 3: 044019.
317. Huang X, Dong X, Li J, et al. Droplet impact induced large deflection of a cantilever. *Phys. Fluids* 2019; 31: 062106.
318. Lu Y, Sathasivam S, Song J, et al. Water droplets bouncing on superhydrophobic soft porous materials. *J Mater Chem A* 2014; 2: 12177–12184.
319. Chen F, Song J, Lu Y, et al. Creating robust superamphiphobic coatings for both hard and soft materials. *J Mater Chem A* 2015; 3: 20999–21008.
320. Huang L, Song J, Wang X, et al. Soft elastic superhydrophobic cotton: a new material for contact time reduction in droplet bouncing. *Sci Coatings Technol* 2018; 347: 420–426.
321. Weisensee PB, Ma J, Shin YH, et al. Droplet impact on vibrating superhydrophobic surfaces. *Phys Rev Fluids* 2017; 2: 103601.
322. Zang D, Tarafdar S, Tarasevich YY, et al. Evaporation of a droplet: from physics to applications. *Phys Rep* 2019; 804: 1–56.
323. Jian Z, Josserand C, Popinet S, et al. Two mechanisms of droplet splashing on a solid substrate. *J Fluid Mech* 2018; 835: 1065–1086.
324. Burzynski DA and Bansmer SE. Role of surrounding gas in the outcome of droplet splashing. *Phys Rev Fluids* 2019; 4: 073601.