Prostate cancer presented with de novo brain metastases as initial manifestation: A case report with review of the literature

Konstantinos Tsapakidis¹*, Ioannis Litos¹*, Vasileios Papadopoulos¹, Maria Tolia², Nikolaos Tsoukalas³

¹Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece
²Department of Radiotherapy/Radiation, University Hospital of Larissa, Larissa, Greece
³417 Veterans Hospital (NIMTS), Athens, Greece.

*Corresponding Author: Konstantinos Tsapakidis and Ioannis Litos, Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece.

Received date: February 20, 2021; Accepted date: March 22, 2021; Published date: March 26, 2021

Citation: K Tsapakidis, I Litos, V Papadopoulos, M Tolia, N Tsoukalas. (2021) Prostate cancer presented with de novo brain metastases as initial manifestation: A case report with review of the literature. J Cancer Research and Cellular Therapeutics. 5(1); Doi: 10.31579/2640-1053/073

Copyright: Copyright © 2021, Konstantinos Tsapakidis and Ioannis Litos, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Prostate cancer is the most common cancer and among the leading causes of cancer death in men and its clinical symptoms vary a lot. The most common metastatic site is the bones [1], but rarely prostate cancer can metastasize to brain in very advanced stages of the disease. However, brain metastases giving neurological symptoms as first manifestation of prostate cancers have been reported. Research of international literature revealed only seventeen patients (including our own) that were diagnosed with prostate cancer presented with neurological symptoms (Tables 1, 2).

Case number	Gender	Duration of symptoms	Presenting symptoms	MRI findings	PSA	Recurrence	Symptoms	Ref.
1	70	2y	headache, loss of balance	Cystic lesion in the left cerebellum	3.3	N/A	N/A	(15)
2	56	N/A	mild expressive apraxia and right-sided weakness	Cystic lesion in the left parietal lobe	N/A	N/A	N/A	(15)
3	76	4m	personality change, forgetfulness, agitated confusion, difficult with short memory	Cystic mass right frontal horn and midline shift	2.1	N/A	N/A	(16)
4	56	6m	partial complex symptoms	Large ring-enhancing lesion in the left anterior temporal lobe	> 100	N/A	N/A	(17)
5	56	9w	partial complex symptoms	Contrast enhancing mass	1.4	N/A	N/A	(18)
6	55	1m	partial complex symptoms	Contrast enhancing mass	0.5	N/A	N/A	(19)
7	71	concurrent	progressive leg weakness, headache, poor concentration, lack of coordination of his left arm	Isolated cerebellar space occupying lesion	5	N/A	N/A	(19)
8	62	3w	headache, acute onset of confusion	Lesion in the right hemisphere	N/A	N/A	N/A	(20)
9	65	2m	headache, gait disturbance, intracranial pressure, urinary incontinence	Lesion in the right hemisphere	N/A	N/A	N/A	(20)
10	55	concurrent	headache, incoordination of his left arm	Enhancing mass measuring in the left parietal lobe	11.5	N/A	N/A	(19)
11	70	3m	weakness, dizziness, left homonymous sensory, vomiting, anosmia, right-sided weakness	Cerebellar mass with central hemispheres	100	N/A	N/A	(21)
12	62	2m	headache	Right posterior fossa mass	11.7	N/A	N/A	(21)
13	57	none	none	Mass in the right thalamic area	N/A	N/A	N/A	(22)
14	46	concurrent	headache, confusion	Right cerebellar hemisphere	N/A	N/A	N/A	(23)
15	52	concurrent	headache	Lesion in the frontal lobe and hemispheres	N/A	N/A	N/A	(24)
16	62	6d	headache	Intracerebral hemispheres of the right temporal lobe	N/A	N/A	N/A	(25)

Table 1: Reported cases of brain metastasis from prostate cancer. d: days, m: months, N/A: Not assessed, w: weeks, y: years * PSA value at diagnosis
Table 2: Reported cases of brain metastasis from prostate cancer with de novo presentation or after local therapy. N/A: Not assessed, y: years

Case number	First Diagnosis of Prostate cancer	Treatment of first diagnosis	Time to brain metastases	Ref.
1	NO	RT	12y	(15)
2	NO	radical prostatectomy AND RT	4y	(15)
3	NO	RT	9y	(16)
4	YES	de novo	de novo	
5	NO	N/A	N/A	(17)
6	YES	de novo	de novo	(18)
7	YES	de novo	de novo	(19)
8	YES	de novo	de novo	(20)
9	YES	de novo	de novo	(21)
10	NO	radical prostatectomy AND RT	2y	(13)
11	YES	de novo	de novo	(21)
12	YES	de novo	de novo	(21)
13	NO	prostatectomy	3y	(22)
14	YES	de novo	de novo	(23)
15	YES	de novo	de novo	(24)
16	YES	de novo	de novo	(25)

Case report

A 61-years-old man, ex-smoker of 25 pack-years, with free personal history and positive family history, presented with headache and tingled right hand. From the physical examination there was reduced muscular strength of the right hand. A brain CT demonstrated multiple secondary metastases (Fig. 1) and the patient started WBRT.

For the finding of the primary site we did lung and abdomen CT, bronchoscopy, endoscopy of larynx, upper GI endoscopy and colonoscopy which did not show something pathological. From the tumor markers of the patient we had CEA 44.6ng/ml (<4.7), PSA 12.94ng/ml (<4), NSE 15.9 (<16.3). Due to the raised PSA we did a prostate U/S, which showed hypertrophy of the gland. In the figure-rectal examination we found a tough prostate and the biopsy of the gland showed a prostate adenocarcinoma (Fig. 2). Then we did a bone scanning which revealed one secondary lesion on the 4th thoracic vertebra.

Unfortunately his neurological symptoms got worse before the start of the hormonotherapy and, finally, the patient died.

![Figure 1: Brain computed tomography (CT) showing multiple secondary metastases](image-url)
Discussion
Prostate cancer is the most common cancer among men and it is the second leading cause of death due to cancer [2]. It represents 26% of all new diagnosed cancers in men and 9% cancer-related deaths [3]. The risk for prostate cancer increases steeply with age. The rise in incidence is basically explained by improved detection capability, using prostate-specific antigen (PSA) and transrectal ultrasound [4–6].

The disease spreads by local extension through the capsule and seminal vesicles, the lymphatic system to regional nodes or hematogenously to bone and visceral sites. Bone is the most common site of prostate cancer metastases, producing predominantly osteoblastic lesions rather than osteolytic, although both types may coexist [6].

Brain metastases are present, especially in advanced stages of the disease. Adenocarcinomas of the prostate can metastasize to the brain from either metastases in the lungs and the bones (multistep or cascade theory) [7], or primarily to the central nervous system (single step theory) [8]. The most common intracranial sites of prostate cancer metastases are the dura (67%), cerebrum (25%) and cerebellum (8%) [9].

Almost always, intracranial metastases develop after the diagnosis of the prostatic adenocarcinoma is established; however, intracranial metastases are often difficult to detect, clinically silent and primarily diagnosed at autopsy. The mean time interval between initial diagnosis of prostatic cancer and diagnosis of intracranial metastases is 5.1 years [10].

Interestingly, the literature contains only 16 patients in which neurological symptoms secondary to intracranial metastases have served as the first sign of prostatic adenocarcinoma [11]. Headache, motor dysfunction and seizure appear to be the most common symptoms associated with metastatic prostate cancer.

Treatment options include radiosurgery, conventional external beam radiotherapy and surgery. Radiotherapy in combination with high doses of dexamethasone may be beneficial [12]. Craniotomy also appear to lengthen survival time[14] and hormonal treatment appear to have some efficacy [13-14].

Conclusion
Although neurological symptoms as a first clinical manifestation of prostate cancer are rare, it should be included in the differential diagnosis of a patient presented with secondary symptoms from intracranial metastases. Clinicians should have an index of suspicion for prostate cancer, check PSA and do prostate ultrasound during the investigation of the primary site in a patient presented with secondary brain metastases. Early detection and treatment should be the primary goal, as they may lengthen the survival for some patients with adenocarcinoma of the prostate.

Conflicts of interest: The authors declare that they have no conflict of interest.

References
1. Mohler J, Bahnson RR, Boston B, Busby JE, Amico AD, Eastham JA, et al. (2010) Prostate Cancer. 8(2):162–200.
2. Landis SH, Murray T, Bolden S, Wingo P a. (1998) Cancer statistics, 1998. CA Cancer J Clin. 48(1):6-29.
3. Siegel R, Miller K, Jemal A. (2015) Cancer statistics, 2015. CA Cancer J Clin. 65(1):29.
4. Kawachi MH, Bahnson RR, Barry M, Busby JE, Peter R, Carter HB, et al. (2010) Prostate Cancer Early Detection. 8(2):240-262.
5. Carter HB, Albertsen PC, Barry MJ, Etzioni R, Freedland SJ, Greene KL, et al. (2013) Early detection of prostate cancer: AUA Guideline. J Urol. 190(2):419–426.
6. Cupp M, Oesterling J. (1993) Prostate-Specific Antigen, Digital Rectal Examination, and Transrectal Ultrasonography: Their Roles in Diagnosing Early Prostate Cancer. Mayo Clin Proc. 68(3):297-306.
7. Varkarakis MJ, Winterberger AR, Gaeta J, Moore RH, Murphy GP. (1974) Lung metastases in prostatic carcinoma. Clinical significance. Urology. 3(4):447-452.
8. Batson O V. (1940) The Function of the Vertebral Veins and Their Role in the Spread of Metastases. Ann Surg. 112(1):138-149.
9. Lynes WL, Bostwick DG, Freiha FS, Stamey TA. (1986) Parenchymal Brain Metastases from of Prostate. Urology. 28(4):280-287.
10. Catane R, Kaufman J, West C, Merrin C, Tsukada Y, Murphy G. (1971) Brain metastasis from prostatic carcinoma. 38(6):2583-2587.
11. Sarma DP, Godeau L. (1983) Brain metastasis from prostatic cancer. JSurgOncol. 23:173-174.
12. Hellmann K, Phillips RH, Goold M. (1993) High dose dexamethasone and base of brain irradiation for hormone refractory metastatic carcinoma of the prostate. Clin Exp Metastasis. 11(2):227-229.
13. Gupta R, Baidas S, Cumberlin RK. (1994) Brain Stem Metastasis as the Only Site of Spread in Prostate Carcinoma A Case Report. Cancer. 74(9):2516-2519.
14. Kohri K, Yamate T, Tsujihashi H, Nakao Y, Katayama Y, Hara Y, et al. (1991) Effect of endocrine therapy on a brain metastatic lesion of prostatic carcinoma. Urol Int. 47(2):100-102.
15. Tsai V, Kim S, Clatterbuck RE, Ewen MG, Olivi A. (2001) Cystic prostate metastases to the brain parenchyma : report of two cases and review of the literature. J Neurooncol. 51(2):167-173.
16. Behrens B, Hussain MM. (2001) Cystic solitary intracerebral metastasis from prostate adenocarcinoma. Neuroradiology. 43(2):162-164.
17. Bland LI, Welch WC, Okawara S. (1992) Large cystic intraparenchymal brain metastasis from prostate cancer. Neuroradiology. 34(1):70-71.
18. Lam A, Gan PY. (2017) Metastatic Prostate Adenocarcinoma to the Brain: Case Reports and Literature Review. J Neurol Surg Rep. 78(1):62-65.
19. Mcloughlin J, Gingell JC, Harper G, Hinchliife A. (1992) Cerebellar manifestations of prostatic carcinoma. Postgr Med J.68(801):584-586.
20. Barolat-Romana G, Maiman D, Dernbach P, Choi H. (1984) Prostate carcinoma presenting as intracranial hemorrhage. J Neurosurg. 60:414-416.
21. Sutton A, Watkins L, Green K. (1996) Intracranial metastases as the first manifestation of prostate cancer. Urology. 4295(96):789-793.
22. Hayashi T, Igarashi K, Tanizawa A, Terada Y, Sekine H. (1998) Brain Metastasis as a Sole Recurrence of Prostate Cancer after Total Prostatectomy. Urol Int. 158:121-123.
23. Lewis I. Cerebellar metastasis from prostatic carcinoma. Neurology. 17(7):698-702.
24. Loseke N, Retif J. (1981) Inferior red nucleus syndrome (Benedikt’s syndrome) due to a single intramesencephalic metastasis from a prostatic carcinoma. Case report. Acta Neurochir. 56(1–2):59-64.
25. Baumann MA, Holoye PY, Choi H. (1984) Adenocarcinorna of Prostate Presenting as Brain Metastasis. Cancer. 54(8):1273-1275.

Ready to submit your research? Choose Auctores and benefit from:

- fast, convenient online submission
- rigorous peer review by experienced research in your field
- rapid publication on acceptance
- authors retain copyrights
- unique DOI for all articles
- immediate, unrestricted online access

At Auctores, research is always in progress.

Learn more www.auctoresonline.org/journals/cancer-research-and-cellular-therapeutics