Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissemination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal publishes original research articles dealing with all aspects of marine science and coastal management. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, Western Indian Ocean Journal of Marine Science features state-of-the-art review articles and short communications. The journal will, from time to time, consist of special issues on major events or important thematic issues. Submitted articles are subjected to standard peer-review prior to publication.

Manuscript submissions should be preferably made via the African Journals Online (AJOL) submission platform (http://www.ajol.info/index.php/wiojms/about/submissions). Any queries and further editorial correspondence should be sent by e-mail to the Chief Editor, wiojms@fc.ul.pt. Details concerning the preparation and submission of articles can be found in each issue and at http://www.wiomsa.org/wio-journal-of-marine-science/ and AJOL site.

Disclaimer: Statements in the Journal reflect the views of the authors, and not necessarily those of WIOMSA, the editors or publisher.
A review of soft corals (Octocorallia: Alcyonacea) and their symbionts: Distribution of clades and functionality

Deeya Jahajeeah1 *, Vishwakalyan Bhoyroo1, Mala Ranghoo-Sanmukhiya1

1 Department of Agricultural & Food Science, Faculty of Agriculture, University of Mauritius, Mauritius

* Corresponding author: deeya9jah@gmail.com

Abstract
Even though soft corals are an integral part of the coral reef ecosystem, very little research has focused on their endosymbiotic association with the zooxanthellae (Symbiodiniaceae). Symbiotic algae appear in soft corals from both the tropical seas as well as temperate regions across the world. The present study provides a list of soft corals along with their associated zooxanthellae using published data. By combining all the data, 52 soft coral species belonging to 21 genera were identified and their corresponding specific Symbiodiniaceae genera were analysed. It was important to initially compare soft corals and distinguish zooxanthellae at clade level to find any host specificity. The vast majority (75 %) of soft corals predominantly hosted the genus Cladocopium (Clade C) and therefore the focus of this study was to evaluate its geographical distribution. The genus Cladocopium consists of many species which are classified as subclades in this study, exhibiting high intra-clade diversity. For 40 of the 52 soft corals reviewed, 18 % had the same clade type C1 (considered as generalists and ancestral) and 13 % contained the clades C15, C64 and C1:3a, respectively. Analysis showed that some clades (C71a, C15b and C64) were confined to specific geographical regions while clade C1 was distributed worldwide. Understanding the distribution of endosymbionts may enable predictions of which symbioses will survive and exist under future climate change scenarios.

Keywords: soft corals, zooxanthellae, symbiodiniaceae, endosymbiosis, Cladocopium

Introduction
Global coral communities have been severely damaged as a result of natural and anthropogenic disasters (Dar et al., 2012), and soft corals which occupy up to 25 % of the primary space (Benayahu, 1995) have been equally affected. About 107 species of soft corals have been reported in Brazilian waters (Almeida et al., 2014), 80 species in the inshore zone of the Red Sea (Dar et al., 2012), and 70 species in Taiwanese reefs (Banayahu et al., 2004). They may also be found in many colder regions such as Antarctica, southern Africa, the Pacific Northwest coast of North America, and the North Atlantic (Haverkort-Yeh et al., 2013). Sesoko Island, Japan, is best known for soft coral coverage of as high as 34.4 % (Loya et al., 2001). The presence of octocorals in most benthic habitats under the influence of various environmental factors, indicates the adaptive nature of this taxonomic group (van de Water et al., 2018).

The most conspicuous feature of soft corals is the polyps which contain eight tentacles (hence octocorals) that are invariably pinnate (Janes and Lee, 2007). For some genera, the tentacles contain sensory cells which are filled with zooxanthellae, unicellular photosynthetic microalgae belonging to the Symbiodiniaceae (Order Suessiales, Class Dinophyceae) (Fournier, 2013).

These symbiotic types of soft corals have a tendency to be found in shallow tropical and subtropical waters (Cooper et al., 2014). The host and the symbiont hold a mutualistic relationship, where the symbiont receives inorganic nutrients from the host and in-turn provides translocated photosynthetic products necessary for host functions (Muscatine, 1990) such as calcification and reproduction (Farag et al., 2018). Farag et al. (2018) further stated that the formation of the modern
coral reef ecosystem and the contributions to global carbon and biogeochemical cycles is due to the mutualistic exchange of metabolites between the host, the zooxanthellae and their associated microbial assemblies. Unlike hard corals, soft corals exhibit mostly a mixotrophic nature (Fabricius and Klumpp, 1995; Slattery et al., 2019). Depending on symbiont diversity, the host trophic mode can be autotrophic or heterotrophic (Baker et al., 2015). Similar to scleractinian corals, heterotrophic feeding in soft corals is also increased by the energy provided by the Symbiodiniaceae (Slattery et al., 2019) and allow corals to thrive in oceanic deserts (nutrient-poor environments) (Houbrêque and Ferrier-Pagès, 2009). Both hard and soft corals acquire their symbionts by vertical and horizontal transfer. The diversity of symbionts is higher in hard corals but at the same time the association of Symbiodiniaceae in soft corals is more stable than that of the hard corals (Poland and Coffroth, 2016). Compared to zooxanthellate octocorals, azooxanthellate (absence of dinoflagellates) octocorals populate deep and dark environment where they rely solely on heterotrophic feeding (Fabricius and Klumpp, 1995).

Research on different soft corals such as the genera Sarcophyton, Sinularia, Xenia and Lobophytum has demonstrated that a similar endosymbiotic relationship exists between the zooxanthellae and the soft coral hosts (Sammarco and Strychar, 2013). Extensive studies over the past 60 years on the physiological contribution of the zooxanthellae to symbiosis unveiled their major role in the nutrition of the host (Santos et al., 2002). Furthermore, some reviews highlighted that depending on the local environment as well as the microhabitats within a host, some adult coral species can couple with different dinoflagellates from the genera of Symbiodiniaceae (Little et al., 2004). In tropical reefs, an increase in the diversity of symbiotic Symbiodiniaceae may improve the adaptability of coral to climate change (Qin et al., 2019). This particular form of association, termed polymorphic, implies that corals from the same species may not be physiologically similar and the presence of a particular zooxanthellae may play a role in determining the physiology of the host-symbiont endosymbiosis association (Toller et al., 2001). The ability of the host to acquire multiple symbiont phylotypes depends also on the host age (Poland and Coffroth, 2016). The work carried out by Poland and Coffroth (2016) has shown that the octocoral B. asbestinum can easily harbour up to 11 symbiont phylotypes, with single polyps capable of harbouring at least 6 phylotypes simultaneously in its juvenile state of life, while the adult colonies are in symbiotic association with only 1 or 2 symbiont phylotypes.

Rowan and Powers (1992), who spearheaded phylogenetic work on Symbiodinium, used nuclear ribosomal small subunit (nr18s) sequences to obtain 3 key clades (A-C). Various nuclear ribosomal large subunit (nr28s) sequences were assigned to different host taxa as well as larger geographic parameters (Santos et al., 2002) to ultimately obtain 9 Symbiodinium lineages, with suggestions that many more genetic variations exist within the clades (Davis et al., 2017). Some questions have been raised on the phylogenetic techniques used in the study of zooxanthellae. Rowan et al. (1996) addressed, and Santos et al. (2001) questioned, the un-established culture techniques used for zooxanthellae and the dilemma of excluding un-culturabl microalgae. This exclusion led to a lack of crucial data and a limited sample size for the phylogenetic studies. Additionally, Rowan (1998) mentioned that some of the members of the zooxanthellae still remain uncultured and lack description. The presence of many morphological characters and the lack of sexual reproduction in this algal group has not allowed the evolutionary groups within the zooxanthellae to be adequately described (Wilcox, 1998). Consequently, it has been suggested that these techniques have limited use in phylogenetics (Schoenberg and Trench, 1980). Despite the comprehensive body of physiological knowledge, the understanding on the phylogenetics of zooxanthellae remains unresolved.

Previously, researchers assumed that all zooxanthellae were associated with a single accepted species, Symbiodinium microdriaticum (Freudenthal) (Taylor, 1974). The heterogeneity of zooxanthellae in response to different hosts was addressed by various researchers (eg. Santos et al., 2002; Trench, 1993; Rowan, 1998; Schoenberg and Trench, 1980). The existence of a single genus comprising of hundreds of both closely and distantly related species is most likely to generate confusion (LaJeunesse et al., 2018). Interestingly, recent in-depth research by LaJeunesse et al. (2018) explained the evolutionary divergence of Symbiodinium, previously referred to as to as ‘clades’, as being analogous to the genera in the family Symbiodiniaceae. Systematic revision was needed due to low transcript similarity (<20% orthologous gene loci) between the Symbiodiniaceae clade recognized by Bayer et al. (2012). Moreover, high species diversity among Symbiodiniaceae distributed across highly diverse marine organisms, and ecologically diverge lineages, increased the
importance for a systematic revision (Lajeunesse et al., 2018). Lajeunesse et al. (2018) redefined the genus *Symbiodinium sensu stricto* to Clade A and also defined several new genera: B as *Brevidium*, C as *Cladocopium*, D as *Durusdinium*, E as *Effrenium*, F as *Fugacium* and G as *Gerakladium*. Additionally, the lineage encompasses multiple distinct genetic types which are highly variable (Lajeunesse et al., 2018).

Increase in temperature and loss of Symbiodiniaceae in soft corals: a reality or a myth?

It is no more a myth that worldwide coral bleaching, due to loss of zooxanthellae, is a heat stress response to an increase of sea surface temperature above the mean yearly maximum or elevated above 30 °C (Brown, 1990). Several reports have documented that corals are affected by long term temperature exposure above 30 °C and that they usually condition themselves to global heat stress (Strychar et al., 2005). Adaptive bleaching hypothesis (Fautin and Buddemeier, 2004) proposed that bleaching provides an opportunity for corals to change their algal communities to acquire more heat-resistant algal species. High mortality rates due to bleaching episodes have been reported and there is now good evidence to show that in response, zooxanthellae communities may change following bleaching in at least a few coral species. The soft coral host and the zooxanthellae display different degrees of adaptation to rising sea surface water temperature (Sammarco and Strychar, 2013). Barshis et al. (2014) explained how the host usually has a stronger transcriptional response to stress changes, while the Symbiodiniaceae is deprived of this transcriptional response. Lack of transcriptional responses was identified in Symbiodiniaceae D2 and C3k when exposed to heat stress, which differ generally from the transcriptional shifts in coral hosts (Barshis et al., 2014). Fitt et al. (2000) monitored the growth rate of several Symbiodiniaceae and found that temperature plays a vital role in their optimal growth and photosynthetic rate. Moreover, zooxanthellae can display optimal growth rates at temperatures between 26 °C – 32 °C, with some growing best at 26 °C with death occurring at 32 °C (Fitt et al., 2000). Yet exceptions exist, such as in the Persian Gulf where some zooxanthellae (mainly the thermotolerant lineage *S. thermophilum*) have adapted to temperatures as low as 13 °C and as high as 38 °C (Sammarco and Strychar, 2013). The density of zooxanthellae in soft corals usually varies seasonally (Fitt et al., 2000), but after abnormal seasonal change, it is vital that they become re-established within a few days or weeks to prevent the corals from dying (Sammarco and Strychar, 2013). The re-establishment of zooxanthellae is time dependant and this process can be hindered by factors such as salinity, pollution, ocean acidification and diseases. The ‘layered cell’ hypothesis describes how the Symbiodiniaceae population increases within the layers of soft corals, with the outer layer having a higher zooxanthellae density than the inner layers. The cells located deeper within the soft corals are exposed to lower light intensity and are less adapted to resist thermal and UV fluctuation than the resistant cells located in the upper layers. When loss of upper layer zooxanthellae cells occurs due to a rise in temperature above the tolerant value, the less-resistant inner layer cells are exposed to temperature and UV differences, making them more vulnerable and causing dissociation from the soft corals. This explains the concept of the ‘two large bursts’ of Symbiodiniaceae loss in soft corals elucidated by Strychar et al. (2005). Corals in general, and mainly octocorals, have an obligate association with the zooxanthellae, which even after an overproduction of reactive oxygen species (ROS), do not expel the symbionts, which instead migrate to the stolon (Parrin et al., 2016). The symbionts still possess photosynthesis power after full migration to the stolons (van de Water et al., 2018).

Extreme storm events as reported by Emanuel (2013) can cause serious damage to coral reefs, and ocean acidification undoubtedly affects physiological processes in corals (Doney et al., 2009). The drop in pH limits the capacity to produce calcium carbonate structures and limits algal photosynthetic productivity (Sogin et al., 2016). The work by Farag et al. (2018) clearly demonstrated that an increase in CO₂ levels results in a change in both polar and non-polar metabolism in soft corals. However, the change in metabolic reaction varies depending on the species. Interestingly, when exposed to an increase in CO₂, nicotinic acid was released from *S. glaucum* but not from *S. ehrenbergi* (Farag et al., 2018). Farag et al. (2018) suggested that the release of nicotinic acid may account for the increased stress resistance of *S. glaucum* compared to *S. ehrenbergi*, however no further published records are available. Alteration of metabolites (amino acids, polyamines, nitrogenous compounds) can act as biomarkers for predicting the impact of stress.

The objective of this review is to understand the distribution of different type of endosymbionts in soft corals (Octocorallia:Alcyonacea). The soft corals and
their associated symbionts were listed demonstrating that the majority of the soft corals form an endosymbiotic association with *Cladocopium*. The specificity of the genus *Cladocopium* and its geographical distribution was also reviewed.

Methods

Data from various reports were compiled into one large data set. The Symbiodiniaceae data were taken from field-collected soft corals and not from zooxanthellae culture due to the probability of overlooking non-culturable Symbiodiniaceae (Goulet and Coffroth, 1997; Santos et al., 2001; Lajeunesse, 2002). Most reports identified zooxanthellae at the genus level, with some reporting within-clades resolution. If a soft coral was not identified to the species level, the genus was noted with a ‘sp.’ notation. To be more explicit, each genus level (soft corals) was treated as a different species. Such an approach diminishes misinterpreting the species hosting a single Symbiodiniaceae. Furthermore, the latest systematic revision of the zooxanthellae (Lajeunesse et al., 2018) was taken into account while pooling the various data on soft corals and their particular endosymbionts. Using the compiled data set, a dendrogram was generated using the SPSS statistics 20 programme. Particularly, Average Linkage (between groups) was used to generate the phylogenetic tree based on the Symbiodiniaceae possessed by the soft corals. Less emphasis was given to the collection depth of the soft corals while constructing the dendrogram. A combined data set of soft corals with the specific genus *Cladocopium* type from various geographic locations was evaluated.

Results

Soft corals and their associated zooxanthellae

Fifty-two soft coral species belonging to 21 genera from the families Alcyoniidae, Neptheidae and Xenidae obtained from various research works as well as their corresponding Symbiodiniaceae genera were studied. The depth from which the soft corals were collected ranged from 1 m to a maximum depth of 40 m. Moreover, 60% of the soft corals were from Australia (Great Barrier Reef and Lizard Island), while the rest were from the Red Sea, Hawaii, Fiji, Guam and China. Most reports identified the soft corals up to species level, yet some were limited to genus level. The Symbiodiniaceae genera reported in the soft corals were *Symbiodinium* (Clade A), *Breviolum* (Clade B), *Cladocopium* (Clade C), *Durusdinium* (Clade D) and *Gerakladium* (Clade G) (Table 1). Interestingly, it can be inferred that the majority of the soft corals form an endosymbiotic association with *Cladocopium* (Clade C) (Fig. 1). Soft corals in multiple sites from the Great Barrier Reef (GBR), Guam, Fiji, Japan, Red Sea and Hawaii hosted predominantly clade C zooxanthellae (Table 1). Genus *Symbiodinium* was found in soft corals sampled from Hawaii, Israel, and the GBR, while *Breviolum*, *Durusdinium* and *Gerakladium* were only found in GBR.

The results from the dendrogram (Fig. 2) clearly show that all soft corals hosting the genus *Cladocopium* clustered together, irrespective of the depth from where they were collected. Similar results were obtained for soft corals hosting the genus *Durusdinium* and *Symbiodinium*. *Nephthea* sp. from the family Neptheidae were found in the different clusters due to the presence of distinct zooxanthellae. They hosted different zooxanthella clades at different geographic locations (Lajeunesse and Trench, 2000); namely genus *Cladocopium* from Israel, *Durusdinium* and *Breviolum* from Australia, and *Symbiodinium* from the Red Sea. It can also be inferred that cladal specificity does not occur at the family level of soft corals. In the family Alcyoniidae, all 20 species host genus *Cladocopium*, with two species also hosting genus *Durusdinium* and genus *Symbiodinium*. In the 15 Neptheidae species, 7 hosted the genus *Cladocopium*, 2 hosted genus *Durusdinium*, 3 hosted genus *Symbiodinium*, 1 hosted the genera *Breviolum* and *Gerakladium*, and one hosted multiple zooxanthella (A, C). The greater diversity of zooxanthellae clades was observed in the family Neptheidae. In the family Xenidae, 12 species hosted genus *Cladocopium*, and 1 hosted the genera *Durusdinium* and *Symbiodinium*, respectively. Furthermore, specific zooxanthellae genera were distributed globally while others exhibited a restricted distribution. Genus *Cladocopium* was globally distributed while genus *Symbiodinium* was very common in soft coral species in Australia, the Red Sea and Hawaii, based on data that are available. Interestingly, the genera *Durusdinium*, *Breviolum* and *Gerakladium* were restricted in soft corals from Australia. Aside from geographical location, the depth the soft corals were sampled from also defines the cladal specificity. The majority of the soft corals hosting the genus *Cladocopium* were obtained from a wide depth range from 1 m to 40 m (*Sarcophyton* sp. – 1.5 m; *Sinularia polyactyla* – 2-6 m, *Sinularia lochmodes* - 7-10 m, *Klyxum* sp. – 10-17 m, *Rhytisma fulvum fulvum* - 3-40 m) while the genera *Durusdinium*, *Symbiodinium* and *Gerakladium* were mostly found in soft corals at a depth of <20 m. The genus *Breviolum* was collected from soft corals at a depth of 3 m.
Table 1. List of soft corals and their associated Symbiodiniaceae genera from tropical and temperate regions. GBR: Great Barrier Reef, NA: Not available.

Family	Genus	Species	Location	Reported depth range/m	Symbiodiniaceae genera	Citation
Alcyoniidae	Sarcophyton	ehrenbergi	GBR Australia	7-10	C	Sammarco and Strychar, 2013
		glaucum	Australia		A	Carlos et al., 1999
		sp.	Lizard Island	1.5	C	van Oppen et al., 2005
		sp.	South China Sea	5	C	Gong et al., 2018
		trocheliophorum	Eilat's reef Red sea	<20	C	Barneah et al., 2004
Sinularia		lochmodes	GBR Red sea	7-10	C	Sammarco and Strychar, 2013
		gardinen	Eilat's reef Red sea	<20	C	Barneah et al., 2004
		querciformis	Eilat’s reef Red sea	<20	C	Barneah et al., 2004
		polydactyla	Australia	2-6	C	Goulet et al., 2008
		abrupta	Hawaii	2-6	C	Goulet et al., 2008
		erecta	Fiji	2-6	C	Goulet et al., 2008
		flexibilis	Australia	2-6	C	Goulet et al., 2008
		gyrosa	Fiji	2-6	C	Goulet et al., 2008
		maxima	Guam	2-6	C	Goulet et al., 2008
Lobophytum		sp.	Lizard Island	1.5	C	van Oppen et al., 2005
		compactum	Australia	2-6	C	Goulet et al., 2008
Cladiella	pachyclados	Eilat’s reef Red sea	<20	C	Barneah et al., 2004	
	tuberculoides	Israel		<20	C	Barneah et al., 2004
		sp.	Australia	2-6	C	Goulet et al., 2008
		sp.	Australia	<18	D	van Oppen et al., 2005
Rhytisma	fulvum fulvum	Australia		3-40	C	Barneah et al., 2004
Klyxum		sp.	Australia	10-17	C	Lajeunesse et al., 2004 ; van Oppen et al., 2005
		sp.	Australia	<18	D	van Oppen et al., 2005
Family	Genus	Species	Location	Reported depth range/m	Symbiodiniaceae genera	Citation
------------	---------------	-----------------------	----------------	------------------------	------------------------	----------------------------------
Nephtheidae	Capnella	lacerthiensis	Northern GBR Australia	2-6	C	Goulet et al., 2008
		sp.	Northern GBR Australia	<18	A,C	van Oppen et al., 2005
		sp.	GBR Australia	<15	D	van Oppen et al., 2005
	Lemnalia	sp.	Australia	<15	C	Goulet et al., 2008; van Oppen et al., 2005
	Litophyton	arboreum	Australia Israel	<20	A	Barneah et al., 2004
	Nephthea	sp.	Eilat’s reef Red sea	<20	A	Barneah et al., 2004
		sp.	Israel	<20	C	Goulet et al., 2008
		sp.	Australia	3	B	Lajeunesse et al., 2003
		sp.	Australia	>3	D	Lajeunesse et al., 2003
	Paralemnalia	thyrsoides	Red sea	<20	C	Barneah et al., 2004; Goulet et al., 2008
		digitiformis	Australia	2-6	C	Goulet et al., 2008
		eburnea	Australia	<20	C	Barneah et al., 2004
	Stereonephth-ya	cundabiluensis	Red sea	<20	A	Barneah et al., 2004
		sp.	Australia	<15	G	van Oppen et al., 2005
		sp.	Fiji	2-6	C	Goulet et al., 2008
Xenidae	Anthelia	edmondsoni	Hawaii	2-6	A	Goulet et al., 2008
		glauca	Israel	<20	C	Barneah et al., 2004
	Asterospicularia	laurae	Australia	2-6	C	Goulet et al., 2008
	Bayerxenia	sp.	Lizard Island	1.5	C	Ziegler et al., 2018
Family	Genus	Species	Location	Reported depth range/m	Symbiodiniaceae genera	Citation
---------------	------------	-------------	--------------	------------------------	------------------------	-------------------------------
Xenidae	Cespitularia	sp.	Australia	<15 C	C	van Oppen et al., 2005
	Efflatounaria	sp.	Australia	2-6 C	C	Goulet et al., 2008
	Heteroxenia	fuscescens	Israel	2-6 C	C	Behayahu, 1991; Goulet et al., 2008
		sp.	Australia	<10 C	C	Lajeunesse et al., 2004
	Sarcothelia	sp.	Hawaii	<10 C	C	Lajeunesse et al., 2004
	Sympodium	sp.	Australia	<15 D	D	van Oppen et al., 2005
	Xenia	macrospiculata	Israel	<20 C	C	Barneah et al., 2004
		umbellata	Israel	<20 C	C	Barneah et al., 2004
		elongata	GBR	7-10 C	C	Sammarco & Strychar, 2013
		farauensis	Eilat's reef	<20 C	C	Barneah et al., 2004

Figure 1. Frequency of each symbiodiniaceae genus in the soft corals from the regions mentioned above (Table 1). The species were classified as hosting multiple genera when occurring in either the same or different colonies.
Figure 2. Dendrogram based on the average linkage (between group) method using the different Symbiodiniaceae associated with the different soft corals. Au: Australia; SCS: South China Sea; Fj: Fiji; RS: Red Sea
Soft corals and genus *Cladocopium* (clade C) specificity

Forty out of the 52 soft corals reviewed were found to be associated with *Cladocopium* (clade C). The results from Table 2 summarise how different soft corals have the ability to host multiple *Cladocopium* subclades at different collection depths. For example, *Paralemnalia digitiformis* from Australia has been found to harbour C1:2 and C64, and *Heteroxenia* sp. from Australia is associated with C15, C15e and C64 (Table 2). The data showed that the all the genus *Cladocopium* subclade was obtained from soft corals sampled from a depth of less than 20 m. Furthermore, Fig. 3, constructed from 40 soft corals, illustrates that 18 % have the same type C1 (considered as generalists and ancestral), 13 % contain the C15, C64 and C1:3a respectively, 8 % harbour C3j and C1:2, 5 % have Clc and C65, and finally 3 % contain C3, Cl:i, C71a, Cl:k, Cl:5e, Cl:q, Cl:5b and C84a, respectively.

The results shown in Fig. 4 illustrate the global distribution of genus *Cladocopium* type in soft corals. Specialized symbionts (such as C71a, C1:2, C15b, C15, C1z) displayed limited ranges in geographic distribution. C71a is dominant in soft corals in the region of Japan and C15b only in Hawaii. Soft corals from the tropical zone are more likely to host a wide variety of Clade C type. Australia, being partially in the sub-tropical zone, hosts various Clade C types (C1, C64, C1:3a, Clc, Cl:q, and many more). C1 (generalist) is known to be distributed worldwide in various hosts, but due to limited research having been conducted on soft corals and their symbionts, it is difficult to show the generalist nature of C1. From Fig. 4, it can be seen that C1 was present in various soft coral species from Australia and New Zealand.

Table 2. List of soft corals and their associated Clade C subclade.

Soft corals Host	Clade C subclade	Location	Reported depth range/m	Citation
Klyxum sp.	C1	Australia	<18	van Oppen et al., 2005
	C64	Australia	10-17	LaJeunesse et al., 2004a
Lobophytum compactum	C1:3a	Australia	2-6	Goulet et al., 2008
Lobophytum sp.	Cl	Australia	<17	LaJeunesse et al., 2004a
	C3j	Australia	2-4	LaJeunesse et al., 2003
Rhytisma sp.	C1:1	Australia	2-6	Goulet et al., 2008
	Cl	Australia	<17	LaJeunesse et al., 2004a
	C65	Australia	<17	LaJeunesse et al., 2004a
Sarcophyton sp.	C71a	Japan	<10	LaJeunesse et al., 2004a
	C1:3a	Australia	2-6	Goulet et al., 2008
	C3j	Australia	<10	LaJeunesse et al., 2003
Sinularia flexibilis	C1:3a	Australia	2-6	Goulet et al., 2008
Sinularia polydactyla	C1:3a	Australia	2-6	Goulet et al., 2008
Soft corals Host	Clade C subclade	Location	Reported depth range/m	Citation
------------------	------------------	----------	------------------------	----------
Sinularia sp.	Clc	Australia	5	Lajeunesse et al., 2003
	C65	Australia	10-17	Goulet et al., 2008
Nephthea sp.	Cl	New Zealand	10	Goulet et al., 2008
	C3	New Zealand	10	Wicks et al., 2010
	C3j	Australia	<10	
	C1z	New Zealand	5-10	
Paralemnalia digitiformis	Cl1:2	Australia	2-6	Goulet et al., 2008
	C64	Australia	2-6	
Paralemnalia thyroidea	Cl1:2	Australia/Israel	2-6	Goulet et al., 2008
Stereonephthya sp.	Cl15	Australia/ Fiji	2-6	Goulet et al., 2008
Anthelia sp.	C64	Australia	10-17	Lajeunesse et al., 2004a
Sarcothelia sp.	C84a	Australia	2-6	Goulet et al., 2008
Asterospicularia laurae	Cl15	Australia	2-6	Goulet et al., 2008
Cespitularia sp.	Cl15	Australia	2-6	van Oppen et al., 2005
	Cl1q	Australia	<15	Goulet et al., 2008
Efflatounaria sp.	Clc	Australia	2-6	Goulet et al., 2008
	Clc:3a	Australia	2-6	
Heteroxenia sp.	Cl15	Australia	10-17	Lajeunesse et al., 2004a
	Cl15e	Australia	1-17	
	C64	Australia	1-17	van Oppen et al., 2005
	Cl	Australia	<18	
Xenia sp.	Clk	Australia	15	Lajeunesse et al., 2003
	C64	Australia	3-17	
	Cl15	Israel	2-6	Goulet et al., 2008
Discussion

Soft corals form an integral part of the coral reef community worldwide, yet very little research has focused on the Symbiodiniaceae genera they possess (Goulet et al., 2008; Barneah et al., 2004; van Oppen et al., 2005). The data compiled in this study revealed the array of Symbiodiniacea associated with tropical and temperate soft coral species. Three main factors were reported to play a role in the specificity of Symbiodiniacea; namely the ability to host multiple clades (Goulet et al., 2008), the mode of acquisition of zooxanthellae (Barneah et al., 2004), and finally geographical location / bathymetric distribution (Iglesias-Prieto et al., 2004).

Specificity of Symbiodiniaceae clades hosted by soft corals

The diversity and complexity of the Symbiodiniacea genera has prompted researchers to explore cladal specificity. The specificity of the host and associated symbionts can explain the difference in coral physiology (growth rate, photophysiology, thermal stress resistance, bleaching and disease susceptibility) (Stat et al., 2009).

Several hypotheses have been proposed to explain the degree of specificity of Symbiodiniacea genera.

Ability to host single/multiple zooxanthellae and zooxanthellae density

One of the proposed theories holds that the specificity of a Symbiodiniacea genus is defined by the ability of some soft corals (eg. Sinularia sp., Lobophytum sp. and Xenia sp.) to host a single zooxanthellae clade at a time (Goulet et al., 2008). These types of soft corals may not change their symbionts even if a change in environmental condition occurs (Gaullet, 2006). A change such as a rise in sea surface temperature will cause bleaching and eventually death of the corals if they fail to acquire the same symbionts again in a specific time period (Sammarco and Strychar, 2013). However, octocorals hosting a single clade are found to be more stable over time and space when subjected to different thermal stresses as compared to the scleractinian corals (Tamar and Marie Alice, 2003).

It is interesting to note that some soft corals such as the Capnella sp. may host more than one zooxanthellae
genus at a time (van Oppen et al., 2005). One possible explanation is that before one of the genera gets outcompeted, a change in the climatic condition may result in a change in the dominancy of a particular zooxanthellae genus (Carlos et al., 2000). Intraspecific zooxanthellae diversity on a single host is not confined to soft corals communities, and has also been found in scleractinian corals (Baker, 1999, 2001; Baker et al., 1997; Glynn et al., 2001; LaJeunesse, 2001, 2002; LaJeunesse et al., 2003; Pawlowski et al., 2001; Pochon et al., 2001; Santos et al., 2001; Van Oppen, 2001, Howells et al., 2013), foraminiferans (Pawlowski et al., 2001; Pochon et al., 2001), gorgonians (Coffroth et al., 2001; Santos et al., 2003; Goulet and Coffroth, 1999, 2003a, b), hydrocorals (Baker, 1999; LaJeunesse 2002) and anemones (Santos et al., 2003). Scleractinian corals hosting multiple symbionts have been known for decades. For example, Baker and Romanski (2007) reported that 38 of 59 (64 %) of hard corals surveyed contained multiple symbionts.

Contrarily, the type and ability to host different/single clades defines the potential of a coral to withstand thermal stress, but zooxanthellae density (ZD) in the host also plays an important role (Xu et al., 2016). For example, hard corals such as massive Favia and Porites with high ZDs are less vulnerable to thermal bleaching as compared to branching Acropora corals with a low ZD (Li et al., 2008; Li et al., 2011). Further research and evidence is needed to confirm the effect of zooxanthellae density on the host and thermal tolerance (Qin et al., 2019).

Mode of acquisition
Barneah et al. (2004) worked on cladal specificity and explained how this to some extent depends on the mode of acquisition of zooxanthellae. Soft corals hosting the genus Cladocopium ‘clade C’ mainly acquire their symbionts through horizontal acquisition from the environment, while those hosting the genus Symbiodinium acquire theirs directly from their parents (Barneah et al., 2004). Horizontal transmission patterns are advantageous for both hard and soft corals to form associations with Symbiodiniaceae which are heat-tolerant (Boulotte et al., 2016). The mode of acquisition may not always explain the distinct Symbiodiniacea genera in soft corals as exemplified by Stereonephthya sp. belonging to the family Nephthidae (Goulet et al., 2008). Van Oppen et al. (2005) stated that the symbionts associated with Stereonephthya are facultative as most members of that particular group are azooxanthellate. Several studies (Barneah et al., 2004; Goulet et al., 2008; van Oppen et al., 2005) showed that Stereonephthya sp. form an endosymbiotic association with different zooxanthellae in distinct environments. Stereonephthya cundabiluensis from the Red Sea (Barneah et al., 2004) host the genus Symbiodinium, while the other Stereonephthya sp. from Australia (van Oppen et al., 2005) and Fiji (Goulet et al., 2008) host the genus Gerakladium and Cladocopium, respectively. Barneah et al. (2004) mentioned that the reason for Stereonephthya cundabiluensis hosting Symbiodinium is due to the fact that the symbionts are obtained vertically. It is currently unclear as to how the other
Stereonephthya sp. have a variety of symbionts. Poor correlation between transmission mode and zooxanthellae type was also observed in the scleractinian corals Montipora sp. and Acropora sp. (van Oppen, 2004).

Geographical location/bathymetric distribution
Geographical location plays a role in clade distribution within the soft corals. Van de Water et al. (2018) emphasized the dominance of some genera based on their geographical location. Red Sea and Pacific Ocean octocorals are dominated by Cladocopium, Mediterranean octocorals by Symbiodinium, while those in the Caribbean are dominated by Breviolum. However, the lack of high resolution spatial and temporal biological and environmental data has resulted in many fundamental gaps in the understanding of zooxanthellae biogeography (Cooper et al., 2011). Latitudinal variations in coral-algal symbiosis have been reported by Baker (2003). Studies on scleractinian corals have documented that Symbiodinium, Breviolum and Fugacium are more common at higher latitudes, while Cladocopium tends to be more common in the tropics (Rodriguez-Lanetty et al., 2001, 2002; Savage et al., 2002; reviewed in Baker, 2003). However, all these studies concluded that the clade distributions which vary worldwide are governed by temperature and light factors (Rowan and Knowlton, 1995; Baker, 2003; Toller et al., 2001; Ulstrup and van Oppen, 2003; Fabricius et al., 2004; Rowan, 2004).

Another factor that determines the clade specificity is location (i.e. depth). Light intensity is directly proportional to depth, and soft corals will likely host distinct genotypes or species of zooxanthellae dependant on depth (Iglesias-Prieto et al., 2004). In the case of Nephthea sp. in Australia (LaJeunesse et al., 2003) specimens collected from a depth of 3 m harboured the genus Breviolum while those collected at a depth of >3 m hosted the genus Durusdinium. However, the evidence for this is not conclusive as LaJeunesse et al. (2018) indicated that the genus Breviolum occurs in hosts found at depths ranging from 5-30 m. Moreover, soft corals hosting the genus Cladocopium were obtained from a wide depth ranging from 1 m to 40 m. LaJeunesse et al. (2018) identified this particular genus as being symbiotic with soft corals across depths ranging from the intertidal to the mesophotic zone. Additionally, the genus Symbiodinium are adapted to high light intensity (LaJeunesse et al., 2018) explaining why most soft corals harbouring this genus were all from a depth of less than 20 m. In addition, the genus Durusdinium reported from marginal reef environments can tolerate stressful environments and are resistant to coral bleaching, thus explaining their presence in soft corals at depths of less than 18 m (Table 1). Furthermore, the genus Durusdinium has been reported to occur in areas where turbidity is high (Chen et al., 2003).

Increasingly frequent and harsh episodes of coral bleaching and mortality have been reported in recent decades. An increase of sea surface temperature above 30°C (Brown, 1990) (usually occurring at 20 m below the sea surface) causes the soft corals to dissociate from their symbionts, and the specificity of particular zooxanthellae genera defines the degree to which bleaching takes place. Soft corals hosting genus Durusdinium (extremophile) are more likely to increase the thermal tolerance of the coral (Ulstrup and van Oppen, 2003) compared to those hosting genus Cladocopium. Hosts harbouring genus Symbiodinium and Breviolum are considered more susceptible to bleaching compared to the other genera (Baker et al., 1997). Therefore, it can be concluded that corals hosting unique or multiple symbiotic Symbiodiniaceae have varying abilities to deal with environmental stress (Sampayo et al., 2008; Silverstein et al., 2015).

Specificity of genus Cladocopium in soft corals
From 40 soft corals sampled, association was highest with the genus Cladocopium (Clade C). Similarly, the work by Leveque et al. (2019) showed Cladocopium as being the most abundant endosymbiont identified in all the Merulinidae corals, accounting for 78.2% of sequences retained. Clade C strains exhibited more within-clade diversity as compared to the other functional clades (Lesser et al., 2013). Savage et al. (2002) mentioned that the comparison of zooxanthellae physiology within a clade from various hosts revealed as much variability within a clade as between clades. The phenomenon of specificity, where the symbiont type forms a partnership with individual hosts with some degree of selectivity (depending on the depth and geographical location) is important for the understanding of the symbiotic association (LaJeunesse, 2001). Host species that are in symbiosis with a sole zooxanthella clade may host several types within that clade (Gaulet, 2006). For example, a single colony of Heteroxenia sp. hosts Cl5 and C64 (Table 2) (LaJeunesse et al., 2004). Numerous host-specific, regionally endemic and/or rare types have radiated from the ancestral Types Cl and C3 symbionts (LaJeunesse et al., 2004). As per the data collected, Cl was the most prevalent symbiont among soft corals. Similarly, type Cl has been reported to be common in many hard corals. For example,
A. cytherea, A. nasuta, Pavona sp., Leptttastrea sp., Fungi sp. and Pocillopora sp. have all been reported to be associated with type C1 (Stat et al., 2009). Additionally, types C15, C64 and C1:3a were among the most common symbionts. Specialized symbionts (such as C71a, C1:2, C15b, C15, C1z) displayed limited ranges in geographic distribution as shown in Fig. 4. C71a is dominant in soft corals in the region of Japan and C15b in Hawaii, and both are from the temperate zone. Soft corals from the tropical zone are more likely to host a wide variety of Clade C type. Australia being partially in the sub-tropical zone, hosts various Clade C type (C1, C64, C1:3a, C1c, C1q and many more). The work of LaJeunesse et al. (2004) confirmed that specific/rare forms of symbionts tend to have narrow geographic ranges and express endemicity. Similarly, biogeographic patterns in symbiont type was reported in scleractinian corals (Stat et al., 2009). According to Stat et al. (2008), Acropora cytherea in Hawaii associates with C1, C3 and C3b while A. cytherea from the GBR harbours C3 only (LaJeunesse et al., 2003). However, it is also possible that a rare symbiont specialized to live in a particular host in a specific region displayed more generalized associations at another geographical location (LaJeunesse et al., 2003).

Apart from the presence of a variety of Symbiodiniaceae species, the type of endosymbionts present in the host can change in response to environmental conditions. Jones et al. (2008) reported that after a bleaching event, the hard coral Acropora millepora, which predominantly hosted Cladocopium C3, acquired more C1 or Durusdinium endosymbionts. Furthermore, shuffling of symbionts in A. millepora from C1 to C2 due to temporal change has been documented by Cooper et al. (2011).

Symbionts that are acquired from the environment are usually dependant on the particular environment and latitude where they occur which affects the dominance of certain zooxanthellae (LaJeunesse et al., 2004). Some more specialist subclades such as C15 (present in soft corals from Australia, Fiji and Israel) can survive in different waters at different depths and are thus considered resistant to thermal stress. The variance in thermal tolerance highlights the fact that the genus Cladocopium type is ecologically and physiologically distinct and the sequence divergence is low (LaJeunesse et al., 2003).

The complex nature of Clade C type has been explored by various researchers. From the data collected, it can be inferred that some specific symbionts are limited to specific host tissues (LaJeunesse et al., 2003), while others are diversely present irrespective of the soft coral family. C64 was found in soft corals from the 3 different families; namely Klyxum sp. (Alcyoniidae), Paralemnalia digitiformis (Nephtheidae), and Anthealia sp. (Xenidae), while C8j was mostly associated with the alcyonarian soft corals (Lobphytum sp., Sinularia sp. and Sarcophyton sp.) (LaJeunesse et al., 2003). This evidence confirms that certain host tissues act as an individual habitat that is specialised to host a specific type of zooxanthellae (LaJeunesse, 2002). Similar data was found for scleractinian corals where specific symbionts were limited to specific hosts, and sometimes to a specific genus. Porites lobota was found to associate solely with C15 irrespective of the biogeographical location (Hawaii and Japan) and the type of molecular marker used (ITS2 sequence and chloroplast 23S sequence) (Stat et al., 2009). In addition, from Table 2 it can be seen that no particular trend was observed in the genus Cladocopium type composition based on the different collection depths. Most of the genus Cladocopium subclade was obtained from soft corals sampled from a depth of less than 20 m. However, some aspects remain unclear, as shown in the work by LaJeunesse et al. (2003) who showed that some zooxanthellae types are associated selectively with a specific host, at times at certain depths, and are adapted to that host’s intracellular environment.

These specific zooxanthellae are functionally different from others that share almost identical rDNA-ITS sequences. Increasing knowledge on the full ecological significance of symbiont diversity, host-symbiont specificity, and soft coral physiology, is crucial for predicting how endosymbiotic association may respond to environmental changes in different geographical regions (LaJeunesse et al., 2003).

Conclusions

Using the data available, this review summarises the existing symbionts associated with soft corals in the temperate and tropical regions around the globe. The majority of soft coral species host a single zooxanthella clade. Soft corals associate with 5 different zooxanthellae genera; namely Symbiodinium, Breviolum, Cladocium, Durusdinium and Gerakladium. The host-symbiont specificity and diversity are influenced by factors such as the geographical location, sea depth as well as the ability of the symbionts to survive in particular environments. The most prevalent endosymbiotic association was noted between soft corals and the genus Cladocium. Additionally, more within-clade diversity
was observed in the genus *Cladocopium* as compared to the other functional clades. Deciphering similarities and differences between the soft corals hosting the different symbionts may aid in predicting soft coral survivorship in the face of global climate change. Furthermore, from the research reviewed, it is apparent that no data are available on the different soft corals and their associated symbionts from the Indian Ocean tropical islands such as Mauritius, Rodrigues and the Maldives, which are known to have extensive coral reefs. Thus, research work involving these small islands is of high priority.

Acknowledgments

The first author would like to thank the Higher Education Commission of Mauritius for a postgraduate scholarship. The authors are also thankful to the anonymous reviewers for their critical comments and suggestions which improved the manuscript.

References

Almeida, MTR, Moritz, MIG, Capel, KCC, Perez, CD, Schenkel, EP (2014) Chemical and biological aspects of octocorals from the Brazilian coast. Brazilian Journal of Pharmacognosy 24: 446-467

Baker AC, Rowan R, Knowlton N (1997) Symbiosis ecology of two Caribbean acroporid corals. Proceedings of the 8th International Coral Reef Symposium 2: 1295-1300

Baker AC (1999) The symbiosis ecology of reef building corals. PhD thesis. University of Miami. 120 pp

Baker AC (2001) Reef corals bleach to survive change. Nature 411:765-66

Baker AC (2003) Flexibility and specificity in coral-algal symbioses: diversity, ecology, and biogeography of *Symbiodinium*. Annual Reviews of Ecology and Systematics 34: 661-689

Baker AC, Romanski AM (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: Comment on Goulet (2006). Marine Ecology Progress Series 333: 237-242

Baker DM, Freeman CJ, Knowlton N, Thacker RW, Kim K, Fogel ML (2015) Productivity links morphology, symbiont specificity and bleaching in the evolution of Caribbean octocoral symbioses. The ISME Journal 9 (12) 2620

Banayahu Y, Jeng MS, Perkol-Finkel S, Dai, CF (2004) Soft corals (Octocorallia: Alcyonacea) from Southern Taiwan II. Species diversity and distribution patterns. Zoological Studies 43 (3): 548-560

Barneah O, Weis VM, Perez S, Benayahu Y (2004) Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Marine Ecology Progress Series 275: 89-95

Barshis DJ, Ladner JT, Oliver TA, Palumbi SR (2014) Lineage-specific transcriptional profiles of *Symbiodinium* spp. unaltered by heat stress in a coral host. Molecular Biology and Evolution 31: 1343-1352

Bayer T, Aranda M, Sunagawa S, Yum LK, Desalvo MK, Lindquist E, Coffroth MA, Voolstra CR, Medina M (2012) Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE 7 [doi:10.1371/journal.pone.0035269]

Benayahu Y (1995) Species composition of soft corals (Octocorallia, Alcyonacea) on the coral reefs of Sesoko Island, Ryukyu Archipelago, Japan. Galaxea Journal of Coral Reef Studies 12: 103-124

Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM (2016) Exploring the *Symbiodinium* rare biosphere provides evidence for symbiont switching in reef-building corals. International Society for Microbial Ecology Journal 10: 2693-2701

Brown BE (ed) (1990). Coral bleaching: special issue. Coral Reefs 8: 153-232

Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of *Symbiodinium* (dinophyceae) isolates from tridacnids (bivalvia), cardiids (bivalvia), a sponge (porifera), a soft coral (anthozoa), and a free-living strain. Journal of Phycology 35:1054-1062

Carlos AA, Baillie BK, Maruyama T (2000) Diversity of dinoflagellate symbionts (zooxanthellae) in a host individual. Marine Ecology Progress Series 195: 93-100

Chen CA, Lam KK, Nakano Y, Tsai WS (2003) Stable association of a stress-tolerant zooxanthellae, *Symbiodinium* clade D, with the low-temperature tolerant coral *Oulastrea crispata*, (Scleractinia; Faviidae) in subtropical nonreefal coral communities. Zoological Studies 42: 540-550

Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Marine Ecology Progress Series 222: 85-96

Cooper TF, Berkelmans R, Ulstrup KE, Weeks S, Rafford B, Jones AM, Doyle J, Canto M, O’Leary RA, van Oppen MJH (2011) Environmental factors controlling the distribution of *Symbiodinium* harboured by the coral Acropora millepora on the Great Barrier Reef. PLoS ONE 6: e25536
Cooper EL, Hirabayashi K, Strychar KB, Sammarco PW (2014) Corals and their potential applications to integrative medicine. Evidence-Based Complementary and Alternative Medicine:1-9

Dar MA, Mohamad TA, El-Saman MI (2012) Geomorphic and geographic distributions of reef-building and soft coral communities in the inshore zone of the Red Sea. Egyptian Journal of Aquatic Research 38: 105-117

Davies SW, Ries JB, Marchetti A, Granzotti R, Castillo KD (2017) Symbiodinium functional diversity and clade specificity under global change stressors. BioRxiv [doi: http://dx.doi.org/10.1101/190413]

Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169-192

Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America 10: 12219-12224

Fabricius K, Klumpp D (1995) Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Marine Ecology Progress Series 125: 195-204 [https://doi.org/10.3354/meps125195]

Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular Ecology 13: 2445-2458

Farag, MA, Meyer, A, Ali, SE, Salem, MA, Giavalisco, P, Westphal, H, Wessjohann LA (2018) Comparative metabolomics approach detects stress-specific responses during coral bleaching in soft corals. Journal of Proteome Research 17 (6): 2060-2071

Fautin DG, Buddemeier RW (2004) Adaptive bleaching: a general phenomenon. Hydrobiology 530/531: 459-467

Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnology and Oceanography 43: 677-685

Fournier A (2013) The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. BioSciences Master Reviews: 1-8

Glynn PW, Mat’e JL, Baker AC, Calder on MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997-1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982-1983 event. Bulletin of Marine Science 69: 79-109

Gong S, Chai G, Xiao Y, Xu L, Yu K, Li J, Liu F, Cheng H, Zhang F, Liao B, Li Z (2018) Flexible symbiotic associations of Symbiodinium with five typical coral species in tropical and subtropical reef regions of the northern South China Sea. Frontiers in Microbiology [doi: 10.3389/fmicb.2018.02485]

Goulet TL, Coffroth MA (1997) A within colony comparison of zooxanthellae genotypes in the Caribbean gorgonian Plexaura kuna. Proc 8th Int Coral Reef Symp, Panama 2:1331-1334

Goulet TL, Coffroth MA (2003a) Genetic composition of zooxanthellae between and within colonies of the octocoral Plexaura kuna, based on small subunit rDNA and multilocus DNA fingerprinting. Marine Biology 142: 233-39

Goulet TL, Coffroth MA (2003b) Stability of an octocoral-algal symbiosis over time and space. Marine Ecology Progress Series 250: 117-24

Goulet TL (2006) Most corals may not change their symbionts. Marine Ecology Progress Series 321: 1-7

Goulet TL, Simmons C, Goulet D (2008) Worldwide biogeography of Symbiodinium in tropical octocorals. Marine Ecology Progress Series 355: 43-58

Haverkort-Yeh D, McFadden CS, Benayahu Y, Berumen M, Halász A, Toonen RJ (2013) A taxonomic survey of Saudi Arabian Red Sea octocorals (Cnidaria: Alcyonacea). Marine Biodiversity 43: 279-291

Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical Scleractinian corals. Biological Reviews 84 (1): 1-17

Howells EJ, Willis BL, Bay FK, van Oppen MJH (2013) Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef. Molecular Ecology 22: 3693-3708

Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonnilla H, Thorne PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proceedings in Biological Sciences / The Royal Society 271:1757-1763

Janes M, Lee MW (2007) Octocoral taxonomy laboratory manual: Results of the international workshop on the taxonomy of octocorals, March 20-26, 2005. University of Kerala. pp 1-91

Jones AM, Berkelmans R, Van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of
acclimatization. Proceedings of the Royal Society B: Biological Sciences 275: 1359-1365

LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegansissima (Brandt). The Biological Bulletin (Woods Hole) 199: 126-134

LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: in search of a “species” level marker. Journal of Phycology 37: 866-880

LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Marine Biology 141: 387-400

LaJeunesse TC, Loh WK, Woesik RV, Hoegh-Guldborg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnology and Oceanography 48: 2046-2054

LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldborg O (2004a) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Marine Ecology Progress Series 284: 147-161

LaJeunesse TC, Thornhill D, Cox E, Stanton F, Fitt WK, Schmidt GW (2004b) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23: 596-603

LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology 28: 2570-2580

Lesser MP, Stat M, Gates RD (2013). The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs: 603-611

Leveau S, Afiq-Rosli L, Ip YCA, Jain SS, Huang D (2019) Searching for phylogenetic patterns of Symbiodiniaceae community structure among Indo-Pacific Merulinidae corals. PeerJ Life & Environment 7: e7669 [https://doi.org/10.7717/peerj.7669]

Little AF, van Oppen MWH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304: 1492-1494

Li S, Yu K, Chen T, Zhao M, Zhao J (2008) Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching. Chinese Science Bulletin 53: 295-303 [doi: 10.1007/sl1434-007-0514-4]

Li S, Yu K, Chen T, Shi Q, Zhang H (2011) Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the NanSha Islands, South China Sea. Chinese Science Bulletin 56: 1031-1037 [doi: 10.1007/s11434-011-4390-6]

Loya Y, Sakai K, Nakano Y, Van Woestik R (2001) Coral bleaching: the winners and the losers. Ecology Letters 4: 122-131

Muscatine, L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world. Coral reefs. Elsevier, Amsterdam. pp 75-87

Parrin AP, Goulet TL, Yaeger MA, Bross LS, McFadden CS, Blackstone NW (2016) Symbiodinium migration mitigates bleaching in three octocoral species. Journal of Experimental Marine Biology and Ecology 474: 73-80

Pawlowski J, Holzmann M, Fahrsni JF, Pochon X, Lee JJ (2001) Molecular identification of algal endosymbionts in large miliolid foraminifera: 2. Dinoflagellates. Journal of Eukaryotic Microbiology 48: 368-73

Poland, DM, Coffroth, MA (2016) Trans-generational specificity within a cnidarian-algal symbiosis. Coral Reefs 36: 119-129 [https://doi.org/10.1007/s00338-016-1514-0]

Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in Soritida foraminifera. Marine Biology 139: 1069-1078

Qin Z, Yu K, Chen B, Wang Y, Liang J, Luo W, Xu L, Huang X (2019) Diversity of Symbodiniaceae in 15 coral species from the southern South China Sea: Potential relationship with coral thermal adaptability. Frontiers in Microbiology 10. pp 2343 [https://doi.org/10.3389/fmicb.2019.02343]

Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldborg O (2001) Latitudinal variability in symbiont specificity among Symbiodinium versipora. Marine Biology 138: 1161-1173

Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proceedings of the National Academy of Sciences of the United States of America 89: 3639-3643
Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 92: 2850-2853

Rowan R, Whitney SM, Fowler A, Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8: 539-553

Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430: 742

Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proceedings of the National Academy of Sciences of the United States of America 105: 10444-10449

Sammarco PW, Strychar KB (2013) Responses to high seawater temperatures in zooxanthellate octocorals. PLoS ONE 8 [doi:10.1371/journal.pone.0054989]

Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. Journal of Phycology 37: 900-912

Santos SR, Taylor DJ, Kinzie III RA, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Molecular Phylogenetics and Evolution 23: 97-111

Santos SR, Gutierrez-Rodrigues C, Lasker HR, Coffroth MA (2003) Symbiodinium sp. associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Marine Biology 143: 111-120

Savage A, Goodson MS, Trapido-Rosenthal SVH, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: Dinoflagellates of the genus Symbiodinium in corals and sea anemones. Marine Ecology Progress Series 244: 17-26

Schoenberg DA, Trench RK (1980) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum, Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in Symbiodinium microadriaticum. Proceedings of the Royal Society, London B 207: 445-460

Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology 21: 236-249

Slattery M, Pankey MS, Lesser MP (2019) Annual thermal stress increases a soft coral’s susceptibility to bleaching. Scientific Reports 9 (l): 1-10

Sogin EM, Putnam HM, Anderson PE, Gates RD (2016) Metabolic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics 12 (4): 71

Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proceedings of the National Academy of Sciences of the United States of America 105: 9256-9261

Stat M, Loh W KW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA (2009) Stability of coral-endozymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28: 709-713

Strychar KB, Coates M, Sammarco PW, Piva TJ, Scott PT (2005) Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp. Journal of Experimental Marine Biology and Ecology 320: 159-177

Tamar LG, Mary Alice C (2003) Stability of an octocoral-algal symbiosis over time and space. Marine Ecology Progress Series 250: 117-124

Taylor DL (1974) Symbiotic marine algae: taxonomy and biological fitness. In: Vernberg WB (ed) Symbiosis in the sea. University of South Carolina Press, Columbia. pp 245-262

Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biology Bulletin 201: 348-359

Trench RK (1993) Microalgal-invertebrate symbiosis: A review. Endocytobiosis & Cell Research 9: 135-175

Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Molecular Ecology 12: 3477-3484

van Oppen MJH (2001) In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs 20: 200

van Oppen MJH (2004) Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Marine Biology 144: 1-7

van Oppen MJH, Mieog JC, Sanchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Molecular Ecology 14: 2403-2417

van de Water JAJM, Allemand D, Ferrier-Pagès C (2018) Host-microbe interactions in octocoral holobionts
- recent advances and perspectives. Microbiome 6: 64 [https://doi.org/10.1186/s40168-018-0431-6]

Wicks LC, Gardner JPA, Davy SK (2010) Spatial patterns and regional affinities of coral communities at the Kermadec Islands Marine Reserve, New Zealand-a marginal high-latitude site. Marine Ecology Progress Series 400: 101-113

Wilcox TP (1998) Large-subunit ribosomal RNA systematics of symbiotic dinoflagellates: Morphology does not recapitulate phylogeny. Molecular Phylogenetics and Evolution 10: 436-448

Xu L, Yu K, Li S, Liu G, Tao S, Shi Q, Chen T, Zhang H (2017) Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea. Coral Reefs 36: 477-487 [https://doi.org/10.1007/s00338-016-1532-y]

Ziegler M, Stone E, Colman D, Takacs-Vesbach C, Shepherd U (2018) Patterns of Symbiodinium (Dinophyceae) diversity and assemblages among diverse hosts and the coral reef environment of Lizard Island, Australia. Journal of Phycology 54: 447-460