Wnt/beta-Catenin Signaling and Small Molecule Inhibitors

Andrey Voronkov* and Stefan Krauss*

SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleen 21, 0349, Oslo, Norway

Abstract: Wnt/beta-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/beta-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, beta-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where beta-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where beta-catenin levels are regulated and the nucleus where beta-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of beta-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRPS/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular beta-catenin levels. However, beta-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/beta-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological and developmental biological research and development. The intricate regulation of beta-catenin at its various locations provides alternative points for therapeutic interventions.

Keywords: beta-catenin, cancer, drug discovery, small molecule inhibitors, stem cells, Wnt.

INTRODUCTION

Wnt/beta-catenin signaling is a branch of an extensive functional network that developed around a class of proteins - called armadillo proteins - that dates back to the first anaerobic metazoans. Wnt/beta-catenin signaling is involved in a broad range of biological systems, including stem cells biology, developmental biology, and adult organ systems.

The first detail of the Wnt/beta-catenin network was reported in 1982 with the identification of the proto-oncogene int-1 in mice [1]. Later its homolog in Drosophila, Wingless, was shown to be required for proper wing formation [2]. In 1989 injection of Wnt1 mRNA in Xenopus was shown to cause body axis duplication, and demonstrated the functional conservation of the pathway [3]. Since then, the functional importance of Wnt/beta-catenin signaling has been shown in a plethora of developmental and organ systems including the cerebral cortex, the hippocampus, the eye, the lens, the spinal cord, limbs, bone, cartilage, somites, the neural crest, skin, teeth, the gut, the lungs, the heart, the pancreas, the liver, the kidneys, the mammary glands, the hematopoietic system and the reproductive system [4-7]. Deregulation of Wnt/beta-catenin signaling is implicated in a wide spectrum of diseases including degenerative diseases, metabolic diseases and cancer [4], [8-11].

The key mediator of Wnt signaling, the armadillo protein beta-catenin, is found in a dynamic mode at multiple subcellular localizations, including junctions where it contributes to stabilize cell-cell contacts, the cytoplasm where beta-catenin levels are tightly controlled by protein stability regulating processes and the nucleus, where beta-catenin is involved in transcriptional regulation and chromatin interactions. Central extracellular regulators of beta-catenin levels are the Wnt morphogens. However, multiple other processes, including hepatocyte growth factor, prosta glandines, PKA (Protein Kinase A), E-cadherin, and hypoxia, can also influence beta-catenin levels.

*Address correspondence to these authors at the SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleen 21, 0349, Oslo, Norway;
Tel./Fax: +47 22958155/ +47 22958151;
E-mail: avoron@rr-research.no, stefan.krauss@rr-research.no

beta-catenin itself is a specialized member of the larger armadillo protein family that consists of three subfamilies: the p120 subfamily, the beta subfamily (beta-catenin and plakoglobin) and the more distant alpha subfamily. The functional interplay between members of this protein family is not well understood, but an involvement of p120 and plakoglobin in Wnt/beta-catenin signaling has been shown.

The regulation of the presence and stability of beta-catenin and functionally convergent armadillo proteins – in particular p120 - at the various cellular localizations as well as their shuffling within the cell provides alternative intervention points for therapeutic reagents. The broad implications of Wnt/beta-catenin signaling in development, the adult body and in disease renders it a prime target for pharmacological research and development. A short overview map for canonical Wnt signaling is presented on Fig. (1).

The armadillo protein beta-catenin is the central denominator of Wnt/beta-catenin (canonical Wnt) signaling. The levels of beta-catenin at different subcellular localizations are regulated by a variety of processes including site-specific phosphorylation of beta-catenin. In particular, the control of the turnover of cytoplasmic beta-catenin by the destruction complex and the control of the destruction complex by the Wnt signaling have been studied extensively. Other important mechanisms regulating subcellular beta-catenin thresholds are those controlling its mobilization from adherens junctions and its translocation to the nucleus. One of the central end points of the Wnt/beta-catenin signaling pathway is the regulation of transcription through the binding of beta-catenin to members of the Tcf-1/lymphoid enhancer factors (Lef-1, 3, 4) family of transcription factors in the nucleus [12-14].

The structure of beta-catenin can be divided into three domains: the N-terminal domain, the armadillo domain consisting of 12 armadillo repeats, and the C-terminal domain [15]. Through predominantly positively charged armadillo (Arm) repeats, beta-catenin is a member of an expanded and evolutionary ancient protein family that includes plakoglobin (gamma-catenin), APC (adenomatosis polyposis coli), p120 and other proteins [16-18]. Local charge alterations of beta-catenin by phosphorylation at a multitude of positions have been suggested to regulate its affinity to specific protein partners. This includes C-terminal phosphorylation that attenuates the bind-
ing of β-catenin to the cadherin adhesion complex and N-terminal phosphorylation that regulates its degradation in the proteasome. Furthermore, phosphorylation regulates the association of β-catenin with Tcf/Lef during transcriptional regulation [19].

In this review we will first describe the alterations of β-catenin in the destruction complex and the proteins that are involved in this process. We will then focus on the Wnt signalosome that recruits components of the destruction complex thus inactivating it. Subsequently, we will summarize how the signalosome is removed from the cell surface by endocytosis. Next we will describe the cellular pool of β-catenin at cell junctions and the mobilization of β-catenin from this pool. Then we will focus on the implications of β-catenin in transcription control. Finally, we will summarize some of the pathways that influence Wnt/β-catenin signaling. Several proteins in the Wnt/β-catenin pathway that are implicated in other cellular processes will be briefly described.

The β-Catenin Destruction Complex and its Proteins

In the absence of an active Wnt signalosome, cytoplasmic β-catenin associates with the destruction complex. The main known structural components of the destruction complex are APC and Axin. To this structural core, the casein kinases CK1α, δ, and ε (to be referred to collectively as CK1) and GSK3 (glycogen synthase kinase 3) are recruited [20].
In the degradation complex the processing of β-catenin is considered as a phosphorylation-dependent flux along the Axin scaffold protein which is regulated by a stepwise series of phosphorylations triggered by the kinases CK1 and GSK3 [15, 20]. A current model proposes that β-catenin initially binds to Axin. The priming kinases CK1 phosphorylate β-catenin at Ser45 [20], which enables a subsequent phosphorylation by GSK3 at Ser33, Ser37 and Ser41 [21, 22]. Subsequent phosphorylation of APC by CK1ε and GSK3, leads to an increased affinity between APC and β-catenin [23] triggering a transfer of β-catenin from Axin to APC, while Axin is able to bind the next β-catenin molecule. Finally, APC exposes the N-terminally phosphorylated β-catenin to β-TrCP (β-transducin-repeat-containing protein) [24], the ubiquitin ligase responsible for ubiquitylating β-catenin leading to its degradation in the proteasome [25]. N-terminal phosphorylation of β-catenin is not only required for its degradation, but also responsible for attenuating its effect on transcription [20, 26, 27].

Axin

In diverse human cancers Axin mutations are associated with increased levels of β-catenin [28-30]. Mutations in the genes encoding Axin and Axin2 are found in 11% of cases of colorectal cancers and in hepatocellular carcinomas [31-33]. Furthermore, mutations in the Axin gene are observed in 12% of cases of medulloblastomas, in 35% of cases of adenoid cystic carcinomas and in 20% of cases of oral squamous cell carcinomas [34].

In the destruction complex, Axin serves as a coordinating scaffold for the kinases GSK3 and CK1, for the structural protein APC and Dishevelled (Dvl/Dsh) as well as for β-catenin [35]. Early mathematical kinetic modeling for Wnt/β-catenin signaling suggested that Axin levels may be the rate-limiting factor for the degradation of β-catenin. These models were based on the assumption that Axin concentrations are about three orders of magnitude lower than the concentration of other degradation complex components known at the time of the study [36]. Since Axin is considered to be a rate limiting protein in the destruction complex, strategies involving an alteration of Axin protein levels are considered to be promising in drug discovery [36-40].

There are two Axin proteins in humans - Axin1 (826aa, 92kDa predicted in humans), and Axin2 (also called conductin or Axil, 840aa, 93kDa). Each of the Axin genes encodes two isoforms, a and b, which differ by splicing variants [34]. Axin and Axin2 have redundant functions in Wnt/β-catenin signaling, both binding to various proteins of the β-catenin degradation complex [41, 42]. The transcription of Axin2 is a central target of Wnt/β-catenin signaling, whereby Axin2 forms a negative feedback loop in the pathway [43]. Hence, Axin expression is upregulated by Wnt/β-catenin signaling while Axin contributes centrally to the degradation of β-catenin [44].

Axin contains a number of domains including a RGS (Regulators of G protein signaling) domain (aa 121 to 247) and a DIX domain (Dishevelled/Axin homologous domain) (aa 716 - 900). The DIX domain is responsible for Axin homodimerization and the formation of heterodimers with Dishevelled [45, 46]. In this process, the residues 757-820 of the Axin DIX domain bind to the homologous DIX domain of Dishevelled [46-48]. In addition to heterodimerization through the DIX domain, Axin was shown to have two further domains – D and I - that can mediate homodimerization [49]. The RGS domain of Axin interferes with the α-subunits of G-proteins (guanine nucleotide-binding proteins) [50, 51]. Gu proteins were reported to disrupt interactions between Axin and GSK3 [52, 53] and in *Drosophila* it was shown that the α-subunit of G$_i$ physically binds to Axin and recruits it to the plasma membrane [54]. Axin uses aa 437-506 to interact directly with the Armadillo repeats 2-3 of β-catenin [55]. The same repeats were also shown to interact with the armadillo protein plakoglobin [56]. Other binding areas in the Axin protein are amino acids 89–216 for APC, 507-712 for Axam, 353–437 for GSK3, 530–712/757–820 for Dishevelled, 217-352/508-712 for CK1 and 353–437 for Diversin [35]. Recently it was also shown by X-ray analysis that the N-terminal domain of Axin (1-80 aa) is responsible for binding to Tankyrase [57]. Interactions with Axin promote dimerization of Tankyrase. Additional Axin-interacting proteins include MEKK1 (MAP kinase kinase kinase), MEKK4 (MAP kinase kinase kinase 4), CK1ε, I- mfa (inhibitor of myogenic basic helix-loop-helix transcription factors), Axam (Axin associating protein), PP2A (Protein phosphatase 2), Smad3 (Mothers against denvapentageladis 3), LRP5/6 (Low-density lipoprotein receptor-related proteins 5/6), MEKK4, Cdc11(Coiled-coil-DIX1) and PIAS (Protein inhibitor of activated STAT) [35].

Axin thresholds and stability are regulated by different components of the Wnt/β-catenin pathway. Axin is stabilized by GSK3-mediated phosphorylation at Ser330, Thr341 and Ser343 [35, 58]. In mice, GSK3-mediated phosphorylation of amino acids Thr609 and Ser614 of Axin has been shown to be required for its activity [59]. Axin phosphorylation by GSK3 and CK1 also leads to increased affinity for β-catenin and enhances the phosphorylation and degradation of β-catenin [59-61]. Since the armadillo domain of β-catenin is positively charged in the area that mediates Axin interactions, phosphorylation of Axin can enhance the interaction, while a subsequent N-terminal phosphorylation of β-catenin adds a negative charge that presumably triggers its dissociation from the phosphorylated Axin [20].

Axin can be dephosphorylated by the serine/threonine phosphatases PP1 (Protein Phosphatase 1) and PP2C (Protein Phosphatase 2C) [60, 62] and the Ser/Thr phosphatase PP2A, which binds to aa 508-712 and aa 298-506 of Axin [35, 45, 55, 63-65]. PP2A was also reported to dephosphorylate APC [66]. PP1 acts on Ser residues of Axin to reverse CK1α-mediated phosphorylation. Hence, inhibition of PP1 can lead to an increased phosphorylation of Axin followed by an enhancement of β-catenin degradation [60]. Phosphatases therefore may be a targetable interference point of Wnt/β-catenin signaling. For instance the phosphate inhibitor okadaic acid (Table 1) reverses LiCl (inhibitor of GSK3) induced activation of Wnt/β-catenin signaling [58], and the PIPI inhibitor tautomycin (Table 1) was shown to reduce Wnt/β-catenin signaling [60].

Axin protein stability and turnover in the cell is centrally regulated by poly(ADP-ribosyl)ation, followed by ubiquitination and protein degradation in the proteasome. Axin ubiquitination is induced by the E3 ubiquitin ligases RNF146 (RING finger protein 146) that recognizes poly(ADP-ribosyl)ate tails at the protein that are added dynamically by the PARP (Poly (ADP-ribose) polymerase) proteins Tankyrase1 and Tankyrase2 [67, 68]. In contrast, SUMOylation was shown to prevent Axin polyubiquitination and thus to stabilize Axin. SUMOylation of Axin occurs at residues K951 and K954 in the C-terminal KVEKVD sequence and is implemented by E3 ligases of the PIAS family [69]. SUMOylation does not only regulate Axin stability, but also its subcellular localization [69]. Axin downregulates Wnt/β-catenin signaling [70] by binding to residues 507-712 of Axin and desSUMOylates the protein [35, 69-71]. Interestingly, Axin is also involved in desSUMOylation of Tcf-4 [72]. Another Axin2-interacting protein that has shown to regulate the stability of Axin, is the arginine methyltransferase PRMT1. PRMT1 directly interacts with Axin and methylates Arg378, resulting in a stability increase of Axin leading to a reduction of Wnt/β-catenin signaling [73].

Three nuclear localization signal sequences (NLS) are found in the Axin proteins at positions 443-558, 474-483 and 537-547. Because Axin lacking NLS fails to regulate cytoplasmic levels of β-catenin it has been suggested that Axin may serve as a shuttle for β-catenin between the cytoplasm and the nucleus [74]. Interestingly, it has also been shown that Axin may act as a molecular shuttle to export β-catenin from the nucleus [74], and that this function may require Axin oligomerization into larger aggregates [74].
Table 1. Small Molecules, which Downregulate Wnt/\(\beta\)-Catenin Signaling

Structure	Compound	Target	Reference
![Image](image1.png)	XAV939	Tankyrases1, 2	[37]
![Image](image2.png)	IWR1	Tankyrases1, 2	[38]
![Image](image3.png)	IWP-1	Porcupine	[38]
![Image](image4.png)	IWP-2	Porcupine	[38]
![Image](image5.png)	JW74	Tankyrases1, 2	[39]
![Image](image6.png)	JW55	Tankyrases1, 2	[40]
Structure	Compound	Target	Reference
-----------	----------	--------	-----------
![Okadaic acid](image1.png)	Okadaic acid	PP2A phosphatase	[58]
![Tautomycin](image2.png)	Tautomycin	PP1 phosphatase	[60]
![SB239063](image3.png)	SB239063	p38 MAPK	[122, 137]
![SB203580](image4.png)	SB203580	p38 MAPK	[122, 137]
![ADP-HPD](image5.png)	ADP-HPD	PARG	[148]
![2-[4-(4-fluorophenyl)piperazin-1-yl]-6-methylpyrimidin-4(3H)-one](image6.png)	2-[4-(4-fluorophenyl)piperazin-1-yl]-6-methylpyrimidin-4(3H)-one	Tankyrases1, 2	[165]
![PJ34](image7.png)	PJ34	Tankyrases1, 2	[170]
(Table 1) Contd.....

Structure	Compound	Target	Reference
![Structure](image1)	Niclosamide	Downregulates Dvl-2, triggers LRP6 degradation	[253, 254, 255]
![Structure](image2)	Cambinol	SIRT1	[278]
![Structure](image3)	Sulindac	PDZ domain of Dishevelled	[284, 479]
![Structure](image4)	3289-8625	Dishevelled	[286]
![Structure](image5)	Scaffold A for series of analogs	Dishevelled	[288]
![Structure](image6)	Scaffold B for series of analogs	Dishevelled	[288]
![Structure](image7)	J01-017a	Dishevelled	[288]
(Table 1) Contd.....

Structure	Compound	Target	Reference
![Image](image1.png)	NSC668036	Dishevelled	[289, 441]
![Image](image2.png)	Filipin	Caveolin-mediated endocytosis	[291]
![Image](image3.png)	IC261	CK1δ	[308]
![Image](image4.png)	PF670462	CK1δ and CK1ε	[308]
![Image](image5.png)	Bosutinib	Src kinase	[356, 357]
![Image](image6.png)	PHA665752	c-Met	[379, 386]
Structure	Compound	Target	Reference
---------------	---------------------	-------------------------	-------------
Imatinib	Different tyrosine kinases	[385]	
ICG-001	CREB binding protein (CBP)	[434, 441]	
Ethacrynic acid	Lef-1	[437, 439]	
Ethacrynic acid derivative	Lef-1	[439]	
PKF115-584	β-catenin	[440, 441, 443]	
PNU-74654	β-catenin	[441, 443]	
Structure	Compound	Target	Reference
-----------	----------	--------	-----------
![PKF118-744](image1)	PKF118-744	β-catenin	[440, 441, 443]
![CGP049090](image2)	CGP049090	β-catenin	[440, 441, 443]
![PKF118-310](image3)	PKF118-310	β-catenin	[440, 441, 443]
![ZTM000990](image4)	ZTM000990	β-catenin	[440, 441, 443]
![BC21](image5)	BC21	β-catenin	[444]
![GDC-0941](image6)	GDC-0941	PI3K	[449]
![Rp-8-Br-cAMP](image7)	Rp-8-Br-cAMP	PKA	[461]
Finally, Axin as well as several other components of the degradation complex (GSK3, β-catenin, Tankyrase and APC) may co-localize to centrosomes and mitotic spindles [75-78], where Axin modulates the distribution of Axin associated-proteins such as PLK1 (serine/threonine-protein kinase, also known as polo-like kinase 1) and GSK3, thereby modulating the mitotic process [79].

The structural protein Axin participates not only in Wnt/β-catenin signaling but also in TGFβ (Transforming growth factor beta) signaling and MAPK (Mitogen-activated protein-kinase)-mediated signaling [35]. An overexpression of Axin has been reported to lead to an activation of MAP kinase (Mitogen-activated protein kinases) and the c-Jun N-terminal kinase JNK. In TGFβ signaling, Axin assists in TGFβ-mediated activation of Smad3 [80]. Smad3 in turn can activate β-catenin signaling through a direct interaction with β-catenin whereby Smad3 protects β-catenin from ubiquitination and degradation [81].

APC

APC is the largest structural core protein of the destruction complex (2843 amino acids, 312 kDa). The protein has several functional domains including an oligomerization domain (responsible for homodimerization), seven armadillo repeats and three β-catenin binding repeats of 15 amino acids [82, 83]. The β-catenin binding repeats were proposed to bind β-catenin and assist in its positioning to the binding sites of the kinases in the destruction complex. In addition, APC has seven 20 aa repeats that are involved in release of β-catenin after its phosphorylation [15, 24]. In most cases, oncogenic mutations in the gene encoding APC are caused by a truncation of the β-catenin binding region [84, 85]. However, APC mutations that do not affect β-catenin binding may also be cancerogenic e.g. if they lead to a reduction of Axin/APC binding and thus to destabilization of the destruction complex [9, 86].

APC can be phosphorylated by CK1ε at Ser1279 and Ser1392 [87]. Phosphorylated APC outcompetes Axin from forming a complex with β-catenin and it has been suggested that the synchronized coordination between Axin, β-catenin and APC phosphorylation is important for a stepwise processing of β-catenin in the degradation complex [20, 88].

Similar to Axin, APC was found to act as a nuclear shuttling protein and has been implied in nuclear β-catenin import as well as export [89, 90, 91]. APC has two nuclear localization signals (NLS), which use the importin α/β-system to shuttle APC into the nucleus [92]. It was shown that phosphorylation of APC at Ser2054 (C-terminal of the second NLS) negatively regulates APC transport to the nucleus [92]. Curiously, APC which lacks the NLS can still enter the nucleus [93] and it was reported that B56α, the catalytic subunit of PP2A, facilitates the nuclear transport of APC [93]. Nuclear APC was found to negatively regulate β-catenin-mediated transcription [94].

Among other cytoplasmic proteins that interact with APC are plakoglobin (γ-catenin) [95], tubulin [96], EB1 (microtubule-associated protein of the RP/EB family) [97] and hDLG (human disks large homolog 1) [94, 98]. In the nucleus APC has been shown to interact with DNA polymerase β, proliferating cell nuclear antigen (PCNA), the protein tyrosine phosphatase (PTP-BL) [94], the transcription factor activator protein AP-2alpha and the nuclear export factor Xpo1 (Exportin 1) [94].

GSK3

Glycogen synthase kinase-3 (GSK3) was initially identified as a serine/threonine protein kinase, which phosphorylates glycogen synthase in rabbit skeletal muscles leading to an inhibition of glycogen synthesis [99]. In humans there are two isoforms, GSK3α (483 aa, 51kDa) and GSK3β (433 aa, 47kDa), that are encoded by different genes. The two isoforms have high amino acid sequence identity (97%) in the catalytic domain, but are less conserved otherwise. GSK3β has two splicing isoforms, one containing a 13 aa insertion (GSK3β2) [100]. Although mutations in GSK3 are usually not associated with cancers, downregulation of GSK3 has been observed in hepatocellular carcinoma, squamous cell carcinoma and prostate cancer [101-103]. However, GSK3 was also suggested as anti-cancer biotarget [104]. GSK3 is involved in a large number of cellular processes [104-107]. A knockout of GSK3β in mice leads to embryonic lethality and is not compensated by GSK3α [108]. Although GSK3 recognition sequences can be found in almost half of all human proteins, a recent overview provides a list of 77 validated substrates of GSK3 [109]. These substrates can be clustered into several functional subsets: inflammation, cellular proliferation, structural rearrangements and glucose metabolism. Importantly, GSK3 appears to be involved in decision points between maintaining stem cell properties, and triggering differentiation. Inhibition of GSK3 together with inhibiting GFG-MAPK (FGF - Fibroblast Growth Factor) signaling enables long-term propagation of embryonal stem cells in mice [110]. Furthermore, deletion of both GSK3α and GSK3β in the brain increases self-renewal of neuronal progenitor cells, while neurogenesis is downregulated [111].

In the context of Wnt/β-catenin signaling, the GSK3α and GSK3β isoforms were shown to be fully redundant [112] and thus will be referred to herein collectively as GSK3. However, in other cellular processes GSK3α and GSK3β may not fully compensate each others functions [113, 114].

An involvement of GSK3 in Wnt/β-catenin signaling was first shown in Xenopus laevis embryos, where a mutated GSK3β induced a ventral axis duplication indicative of overactive canonical Wnt signaling [21, 115]. In contrast, active GSK3 was shown to negatively regulate Wnt/β-catenin signaling through an N-terminal phosphorylation of β-catenin in the destruction complex [116-118]. Interestingly, plakoglobin can also undergo GSK3-dependent phosphorylation and proteosomal degradation [119-120]. In the case of β-catenin, GSK3 requires a priming kinase that acts on a 4-5 amino acid C-terminal to a GSK3 phosphorylation site. Phosphorylated amino acids of the priming site bind to the catalytic pocket in GSK3β, formed by the amino acids Arg96, Arg180 and Lys205 and facilitate further phosphorylation through GSK3 [121].

The kinase activity of GSK3 can be attenuated by a phosphorylation of Ser21/Ser9 (GSK3α/GSK3β) through different kinases: protein kinase A (PKA), Akt/PKB (protein kinase B), PKC (protein Kinase C), p90 ribosomal S6 kinase/MAPK-activating protein (p90RSK/MAPKAP) and p70 ribosomal S6 kinase (p70S6K) [107]. p38 MAPK (p38 mitogen-activated proteins) can selectively reduce the kinase activity of GSK3β, but not GSK3α through a phosphorylation of Thr390, which can lead to reduced β-catenin degradation [122]. In contrast, autophosphorylation of GSK3α/GSK3β at Tyr279 or Tyr216 respectively can enhance the activity of GSK3 [107, 123].

There are multiple further protein/protein interactions that can modulate GSK3 activity. FRAT1 (frequently rearranged in advanced T-cell) and FRAT2, members of the GSK-3-binding protein family, compete with Axin for GSK3 binding and hence inhibit the activity of GSK3 in the context of Axin [124-126] whereby the Axin binding site on the GSK3 protein overlaps with the binding site for FRAT. Also, Dishevelled can interact with FRAT1, recruiting it to a ternary complex between Dvl, Axin and GSK3. This complex leads to an inhibition of GSK3 and consequently to a stabilization of β-catenin and an activation of Wnt/β-catenin signaling [125]. FRAT1 overexpression is associated with tumorigenesis [127-130]. Interestingly, FRAT1 is considered to be one of the links between β-catenin dependent (canonical) and β-catenin independent (non-canonical) Wnt signaling through its activation of JNK and AP-1(activator protein 1) [131].

In addition to a direct involvement in regulating β-catenin stability by phosphorylation, GSK3 has also a plethora of indirect
implications on Wnt/β-catenin signaling, predominantly synergizing with its function in antagonizing Wnt/β-catenin signaling. In particular GSK3 has both an effect on the transcriptional regulation of β-catenin, and on central β-catenin target genes. The oncogene c-Myc is among the primary target genes that are upregulated by β-catenin/Lef. GSK3 phosphorylates the Thr58 residue of c-Myc leading to a reduction of its half-life [109]. Importantly, GSK3 phosphorylates Ser resides in the oxygen-dependent degradation domain of the transcription factor Hypoxia-inducible factor 1α (HIF-1α) that links hypoxia to β-catenin-mediated signaling. An inhibition of GSK3 promotes HIF-1α stability while an upregulation of GSK3 has an opposite effect [132]. Another interesting substrate of GSK3 with implications on β-catenin-mediated signaling is the zinc-finger transcription factor Snail, which represses the transcription of E-cadherin. An inhibition of GSK3 leads to an upregulation of Snail followed by a down-regulation of E-cadherin which could lead to a cytoplasmic mobilization of β-catenin [133]. A more detailed description of GSK3 and GSK3 inhibitors is given in [104].

Numerous small molecular GSK3 inhibitors have been reported [134, 135]. Most GSK3 inhibitors target the ATP-binding site in the catalytic domain of the protein, which has 86% amino acid identity to the ATP-binding sites of CDK1 (cyclin-dependent kinase 1) and other kinases [107]. Hence, most of the published GSK3 inhibitors show low selectivity for GSK3. However, inhibitors that target the substrate binding site of GSK3 with increased specificity, are also reported [136].

There are also possibilities for increasing the activity of GSK3 by pharmacological intervention. Phosphorylation of GSK3 by p38 MAPK on Thr390 reduces the activity of the GSK3 kinase. Accordingly, small molecular inhibitors of p38 MAPK (SB203580 or SB239063, Table 1) can lead to increased GSK3 activity and in consequence reduced Wnt/β-catenin signaling [122, 137]. Interestingly, both compounds affect only GSK3β, but not GSK3α, making the intervention isoform-specific. Several p38 MAPK inhibitors are in clinical trials including the anti-inflammatory drug PH-797804 and dimethylpimodid [138, 139].

Tankyrases

There are two Poly (ADP-ribose) polymerases (PARPs) that are implicated in Wnt/β-catenin signaling: Tankyrase 1 (PARP5a) and Tankyrase 2 (PARP5b) [140, 141]. To a large extent, Tankyrases 1 and 2 appear to have redundant functions.

Tankyrase 1 has four functional domains: the HPS domain (consisting of His, Pro and Ser repeats), Ankyrin domain (consists of 20 ankyrin repeats), a SAM (sterile alpha motif) domain and the catalytic PARP domain. In contrast to Tankyrase 1, Tankyrase 2 lacks the HPS domain [141]. The PARP domain catalyzes poly(ADP-ribosyl)ation, the SAM and Ankyrin domains participate in the formation of protein-protein complexes with substrates, while the functions of the HPS domain remain obscure. One of the central properties of Tankyrases is their capability to form dynamic oligomers predominantly through their SAM domain, but presumably also assisted by the ankyrin domains, and to subsequently destabilize such oligomers through increasing, context depending poly(ADP-ribosyl)ation [142-146]. The ability of Tankyrase to form dynamic multimers has led to the suggestion that Tankyrase oligomers can regulate the assembly and disassembly of large polymerized structures in response to signals [145]. In the context of the destruction complex, poly(ADP-ribosyl)ation of Tankyrases, and possibly Axin appear to trigger deoligomerization due to an accumulation of negative charges and repulsive forces [145]. Through poly(ADP-ribosyl)ation Tankyrases also regulate a number of further protein complexes, including complexes involving IRAP (insulin-responsive amino peptidase), NuMa (nuclear mitotic apparatus protein 1), Mcl-1 (myeloid cell leukemia 1), EBNA-1 (Epstein-Barr nuclear antigen1), TRF1 (telomeric repeat binding factor 1), TAB182 (Tankyrase 1 binding protein 182) and GRB14 (growth factor receptor-bound protein 14). A recent overview of Tankyrase substrates is provided in [146].

Poly(ADP-ribosyl)ation is a catalytic reaction whereby nicotinamide adenine dinucleotide (NAD⁺) is used as a substrate to create multimeric side chains. At the first step, in the catalytic PARP domain, the nicotinamide part of NAD+ interacts with the Gly1032 (human Tankyrase 2 amino acid sequence numbering) residue of Tankyrase. At the second step, ADP-ribose is transferred from NAD⁺ to a glutamic acid residue of the target protein. Next, a further monomer is added to the polymer via the same mechanism using the hydroxyl group of the previous monomer. Poly(ADP-ribosyl)ation may include branching points in a process that is hitherto poorly understood. In the context of the destruction complex, poly(ADP-ribosyl)ated proteins appear to interact with the ubiquitin ligase RNF146 [37, 67, 68].

Poly(ADP-ribosyl)ation is a reversible process since poly(ADP-ribose) polymers may be removed by poly(ADP-ribose) glycohydrolase (PARG). It was recently suggested that in this process the Glu115 residue of PARG (T. curvata) replaces the ribose moiety from an ester followed by a replacement of Glu115 by a water molecule [147]. A PARG inhibitor, ADP-HPD was shown to decrease Tankyrase stability [148, 149].

The involvement of Tankyrase in attenuating the destruction complex was described [37]. In the process, Tankyrase poly(ADP-ribosyl)ates Axin. Poly(ADP-ribosyl)ated Axin is then recognized by the RNF146 ubiquitin ligase followed by ubiquitination and degradation [37, 67, 68]. The interaction of RNF146 with the poly(ADP-ribose) tail of Axin appears to be mediated through a recognition of the iso-ADP-ribose moiety (but not ADP-ribose) by the WWE domain of RNF146 [150]. In parallel, Tankyrase auto-poly(ADP-ribose)ation also leads to RNF146-mediated ubiquitination and subsequent degradation [67, 68]. Furthermore, RNF146 is poly(ADP-ribosyl)ated and ubiquitinated [68]. The HECT-type ubiquitin E3 ligase HUWE1 associates to RNF146 and was suggested to participate in ubiquitin chain elongation [68]. A number of RNF146-interacting proteins were identified, including PARP1, PARP2 and three proteins involved in DNA-damage response [68]. Noteworthy, RNF146 prevents Tankyrase co-localization to centrosomes [68].

To date it remains unclear whether Tankyrase presence and stability in the degradation complex can be regulated by mechanisms other than poly(ADP-ribosylation), and whether such regulation might be dependent on components of Wnt/β-catenin signaling. Several kinases are known to be involved in Tankyrase phosphorylation: GSK3, PLK1 and MAPK. PLK1 complexes with Tankyrase both in vivo and in vitro and activates Tankyrase through phosphorylation [151]. Disruption of PLK1 decreases the stability of Tankyrase 1 and leads to a reduction of its PARP activity. Interestingly, phosphorylation of Tankyrase by PLK1 was also shown to affect mitotic spindle assembly (see below) and the regulation of telomeric ends [79]. PLK1 also mediates phosphorylation of Drosophila Shredded2 [152]. MAPK has been shown to enhance the catalytic activity of Tankyrase in the context of IRAP4 [153].

Tankyrase has further cellular functions. It has been shown that Tankyrase is involved in glucose transport. In this process, Tankyrase associates with GLUT4 (glucose transporter type 4) vesicles through binding to the insulin responsive aminopeptidase (IRAP) [153]. The IRAP is required for the targeting of vesicles carrying the glucose transporter GLUT4 [154]. GLUT4 mediates the insulin-stimulated glucose uptake in adipocytes and muscle cells. In this context, Tankyrase acts as a positive regulator of insulin-mediated GLUT4 translocation from cytosolic vesicles to the cell surface to mediate glucose uptake [141].

Another role of Tankyrase is its influence on the cell cycle through its interaction with the nuclear mitotic apparatus protein (NuMA), associated to spindle poles in mitosis from prophase to
anaphase [155, 156]. NuMa is thought to be an important structural protein both for the nucleus and spindle poles [156]. A Tankyrase knockdown leads to defects in mitotic spindle functions and to defects in the microtubules [141]. GSK3 is involved in mitotic phosphorylation of Tankyrase [157] on Ser978, Thr982, Ser987 and Ser991 in the conserved [S/T]-X-X-[S/T] motif. Whether Tankyrase phosphorylation by GSK3 impacts Tankyrase function at the mitotic spindle through NuMa poly(ADP-ribo)sylation remains to be studied.

Tankyrases are involved in telomere maintenance by poly(ADP)riboseylating TRF1 (which prevents telomerase activity on telomeres) and releasing TRF1 from telomeres [140, 151]. In this context it is noteworthy that there are further links between telomeres and Wnt/β-catenin signaling. One of them is TERT (telomerase reverse transcriptase), a catalytic subunit of telomerase, that was shown to directly regulate Wnt/β-catenin signal by participating as a co-factor in the β-catenin/Tcf transcriptional complex [158]. It has been shown that an overexpression of either TERT or β-catenin in mouse hair follicles results in a similar phenotype [159, 160, 161]. Hence, under certain conditions gene regulation by TERT and β-catenin might interact [162].

As many other components of the β-catenin degradation complex, Tankyrase can be observed in the vicinity of the plasma membrane. Such localization is triggered by E-cadherin-mediated cell-cell adhesion, as shown on polarized epithelial MDCK cells [157]. Tankyrase recruitment to the lateral membrane follows a calcium initiated cell-cell adhesion and is reversed by calcium depletion. Inhibition of the poly(ADP)riboylation of Tankyrase leads to its stabilization and accumulation near the lateral membrane [157]. An inhibition of Tankyrase also leads to an inhibition of EMT _ex vivo_ [163], which indicates that Tankyrase may influence intercellular adhesion. Accordingly, the disruption of intercellular adhesion by calcium depletion leads to a Tankyrase release into cytoplasm.

Tankyrases have been identified as a promising target for inhibiting Wnt/β-catenin signaling. Several research groups have identified small molecules that inhibit Tankyrases and correspondingly Wnt/β-catenin signaling (Table 1) by stabilizing the destruction complex [37-40, [165, 166].

Tankyrase inhibitors can be classified into two groups that bind differentially to the PARP catalytic center: one group binds to the nicotinamide pocket whereas the other occupies predominantly the adjacent ADP pocket. The first group includes the Tankyrase selective XAV939, and many generic PARP inhibitors (PDB structures in Protein Data Bank, www.rcsb.org: 3K88, 3MHJ, 3POP, 3POQ, 3MKH and 3U9H) [37, 165, 166]. These compounds usually have stacking interactions with the side chain of Tyr1071 and form two hydrogen bonds with Gly1032 (numbering for human Tankyrase 2). Tankyrase inhibitors that bind to the ADP pocket include IWR1, JW55, and JW74 (Table 1) [38-40]. These molecules participate in stacking interactions with the side chain of histidine (aa 1201 in Tankyrase 1, aa 1048 in Tankyrase 2) and in hydrogen bonding with the backbone amides of Tyr1213 (Tyr1060 in Tankyrase 2) and Asp1198 (Asp1045 in Tankyrase 2) in the adenine dinucleotide pocket (PDB structures in Protein Data Bank, www.rcsb.org: 1UDD, 1UA9 and 4DVI) [167-169]. An interesting binding mechanism is exerted by the compound PJ34 (PDB code, www.rcsb.org: 3UH2) in that two molecules of PJ34 (Table 1) can simultaneously bind to the Tankyrase PARP domain; one in the nicotinamide pocket, the other in the ADP pocket [170]. A profound review on ADP-(ribo)sylation as old and new targets for cancer therapy is given in [171].

The Wnt receptor complex

The Wnt signalsome is the the best studied system that counteracts β-catenin degradation and enhances β-catenin-mediated signaling. The Wnt signalsome does so by recruiting components of the destruction complex to the membrane, a process that is triggered by binding of one of several Wnt morphogens to the transmembrane proteins Frizzled and LRPS/6. In the process, the Wnt signalsome itself is cleared from the plasma membrane by endocytosis.

Before Wnt morphogens can induce the Wnt signalsome, they mature by undergoing a number of post-translational modifications prior to being secreted. During post-translational maturation, Wnt morphogens undergo N-glycosylation in the endoplasmic reticulum (ER) [172-174], S-palmitoylation of the N-terminal residue Cys777 (mouse Wnt3a) [175] and acetylation with palmitoleic acid at Ser209, which is required for secretion [176, 177]. The functional implications of these post-translational modifications are not entirely understood. For example, some studies suggest that glycosylation is important for secretion, while other studies do not confirm such a link [172], [178]. Although palmitoleic modification may not be strictly required for secretion, it participates in Wnt binding to Frizzled receptors and in Wnt signal transduction [179]. Wnt proteins with a mutation in the cystein that is the target for palmitoylation are not able to transduce Wnt signaling. It has been proposed that the hydrophobicity of palmitate and palmitoleic acid is required for Wnt to interact with cellular membranes, which is necessary for the interaction with Frizzled/LRPS/6 receptors [180]. The lipid modifications as well as the acceptor amino acids are highly conserved among different Wnt proteins in diverse organisms.

After posttranslational modifications in the ER, Wnt proteins are transported to the Golgi apparatus. From the Golgi apparatus, Wnt proteins are translocated to the cellular membrane with the assistance of the seven-pass transmembrane orphan G-protein coupled receptor Evenness interrupted (Evi/Wntless(Wls)) (GPR177 in mammals) that co-localizes to the Golgi apparatus, cellular membrane and endocytic vesicles [176, 181-183]. Evi/Wntless exports all Wnt proteins [184]. In _Drosophila_ it has been shown that acylation of Wnts is required for their binding to Evi/Wls, while glycosylation and S-palmitoylation do not appear to be required [172, 181, 185]. In mammalian cells N-linked glycosylation is required for GPR177 localization to the Golgi apparatus and targeting to the plasma membrane [186, 187]. In mouse, deletion of GPR177 leads to axis formation defects and early fetal lethality [188]. Finally, Evi/Wls is cleared from the plasma membrane by endocytosis in a process that involves the GTPase Rab5 [164]. Clathrin-mediated endocytosis of Evi/Wls and endosomal sorting through the trans-Golgi network (TGN) appear to be required for the proper secretion of Wnt morphogens. Thus, disruption of these processes leads to an Evi/Wls accumulation on the plasma membrane and a downregulation of Wnt secretion [176, 189]. Lipidation and acidification of secretory vesicles was suggested to be important for Wnt secretion [176, 190] and a blockage of v-ATPase-mediated acidification of secretion vesicles leads to an accumulation of the Evi/Wls complex in vicinity of the cellular membrane and downregulates Wnt secretion [185]. Interestingly, the transcription of the mammalian GPR177 gene is enhanced by Wnt/β-catenin signaling [186].

Also central to the secretion of mature Wnt morphogens is the multispan membrane protein Porcupine (Porc) that interacts with the N-terminal domain of Wnt [191]. Loss of Porc leads to an accumulation of Wnts in the ER [192]. Porc function is antagonized by the protein Oto, which is a homolog of the _Drosophila_ glycosylphosphatidylinositol (GPI)-inositol-deacylase PGAP1. Oto deacylates GPI-anchors on proteins involved in Wnt secretion, which leads to sequestration of Wnts into the endoplasmic reticulum [193]. A class of potent small molecule inhibitors called IWP (Table 1) that target Porc and thereby inhibit Wnt secretion was identified using high-throughput screening [38]. Diverse IWP analogs were reported recently [194].

Signaling of Wnts is limited to approximately 20 cellular layers from the source of secretion [195]. It has been shown that heparane sulfate proteoglycans (HSPG) are involved in Wnt signaling and stabilizing the activity of purified Wnt proteins through preventing their aggregation [196]. Since Wnt proteins/morphogens are insolu-
ble and highly lipophilic, they require a specialized transport system. One way to transport Wnt proteins are lipoprotein particles, which associate with lipid modified Wnts [197, 198]. Another interesting way to transport Wnts is a direct translocation from cell to cell through a series of exocytosis-endocytosis cycles [199]. Hence, Wnts can be transported between the cells via exosomal vesicles [198, 200].

There are several models that describe the binding of Wnt morphogens to the Fz-LRP5/6 receptors to initiate Wnt/β-catenin signaling [7]. Historically, Wnt morphogens and Frizzled receptors were classified as canonical (β-catenin dependent) and non-canonical (β-catenin independent) proteins. However, closer scrutiny revealed that at least some of the Frizzled receptors and Wnt proteins can participate in both β-catenin dependent and independent signaling in a context-dependent manner [201-204]. LRP5 and LRP6 are thought to play redundant roles in the Wnt signalosome and are usually referred to as LRP5/6 [205, 206]. In humans, 19 Wnt morphogens and 10 Frizzled receptors are known to date. Mutations in Frizzled receptors were first identified in mutant Drosophila [207]. Later, it was found that Frizzled proteins belong to the family of seven-pass transmembrane receptors and bind Wnts [208, 209]. The most popular model proposes that Wnt binds to the transmembrane protein Frizzled and provides a link to the transmembrane protein LRP5/6. This binding forms the core of the Wnt signalosome and triggers a receptor oligomerization. Hetero-oligomerization of Fz-LRP5/6 is sufficient for activating Wnt/β-catenin signaling as demonstrated elegantly by studies involving chimeric Fz-LRP5/6 and Fz-Dkk proteins [210-212]. Evidence suggests that LRP6, in addition to participating positively in Wnt/β-catenin signaling, may also be engaged in an inhibitory role in β-catenin independent Wnt signaling [213, 214].

The oligomerization of the Wnt signalosome is enhanced on the intracellular side of the complex by Dishevelled, which oligomerizes through its DIX domain [215-217]. The Ser/Thr-rich motifs on LRP6 together with Dishevelled (Dvl) are then responsible for recruiting Axin and GSK3 to the Wnt signalosome [218-222], including Axin polymerization at the cytoplasmic side of the receptor complex [46]. In this process, the lipid kinases PIKK1 and PIP5K1 have been implicated in the formation of the Wnt signalosome and the translocation of Axin/GSK3 from the destruction complex to the plasma membrane [223]. It was shown in Drosophila that the recruitment of Dishevelled and Axin to the membrane is facilitated through G-proteins with trimeric Go-proteins acting as immediate transducer [224-227]. One of the Go subunits, Guo, uses an RGS domain to interact directly with Axin, recruiting it to the membrane [54, 228]. Guo also interacts with Rab5, an interaction that presumably promotes the internalization of the Wnt/Dishevelled/LRP complex [54, 229]. The Go subunit, Gβγ, recruits Dishevelled to the plasma membrane upon Wnt binding to the Frizzled receptors [54].

Together with Axin, two kinases - GSK3 and the primer kinases CKIα (γ, ε) - are juxtaposed with LRP5/6 [230]. CKI-mediated phosphorylation acts as primer, which triggers GSK3-mediated phosphorylation. CK1γ and GSK3 phosphorylate PP(S/T)PX(S/T) repeats in the cytoplasmic C-domain of LRP5/6, a step that is crucial for rescuing β-catenin from degradation [53, 217, 219, 231]. Upon binding to LRP5/6, the kinases GSK3β and CK1γ switch from phosphorylating β-catenin to phosphorylating LRP5/6 [217, 232]. One model suggested that phosphorylation of Dishevelled-2 by CK1ε increases its affinity to Frizzled receptors [219, 233]. CK1ε was also shown to be required for Dvl-2 phosphorylation and its binding to LRP5/6 [230]. In turn, CK1ε was shown to be directly activated by Wnt signaling through C-terminal dephosphorylation [234].

Recently, the seven-pass transmembrane protein TMEM198 was identified in Xenopus tropicalis and shown to associate with LRP6, recruiting CK1 to the receptor complex and promoting LRP6 phosphorylation [235]. Proline-directed kinases have also been shown to be involved in LRP5/6 C-terminal phosphorylation including PKA, Ptk (Cdk14), MAPK (such as p38, ERK1/2, and JNK1) and G-protein-coupled receptor kinases (Grk5/6) [236, 237]. Recently it was also found that Wnt/β-catenin signaling cooperates with tyrosine signaling through FGFR2 (FGF receptor 2), FGFR3 (FGF receptor 3), EGFR (epidermal growth factor receptor) and TRKA kinases (Tyrosine kinase receptor type 1) [238]. Intriguingly, phosphorylated PP(S/T)PX(S/T) peptides alone, derived from the C-terminus of LRP5/6, are able to activate Wnt signaling through a direct inhibition of GSK3 [222, 239].

The release of β-catenin from phosphorylation by CK1ε and GSK3 may not be the only mechanism for the Wnt signalosome to regulate β-catenin levels. It was found that LRP6 can stabilize β-catenin indirectly through Axin degradation and GSK3 inhibition [231, 240]. Without the structural protein Axin, CK1ε and GSK3 cannot form a complex that phosphorylates β-catenin at the N-terminal end.

A further mechanism, by which the Wnt signalosome reduces β-catenin degradation, is an induced GSK3 internalization by multi-vesicular endosomes. This physically reduces the cytoplasmic presence of the kinase [241, 242, 243].

The LGR4, -5 and -6 G-protein coupled receptors were shown to associate with the Frizzled-LRP5/6 signalosome and mediate Wnt/β-catenin signaling in intestinal crypt cells. LGR receptors were previously considered to be orphan, but recently R-spondin was identified as their ligand [244, 245, 246].

Furthermore, the parathyroid hormone receptor was found to directly regulate β-catenin signaling through interactions with Dishevelled, but without an involvement of Frizzled receptors [247].

Most of the described receptors are expressed specifically in certain organs, or tissues. Thus parathyroid hormone receptors exert their function in kidneys and bones [248], while LGR4-6 are found in the stomach, in the stem cell compartment of the small intestine and in hair follicles [249]. The complex interface between various receptors and components of β-catenin signaling appear to allow an intricate adaptive regulation.

The Wnt signalosome has been a target for developing antibodies and small drug therapeutics. A monoclonal antibody against Wnt-1 has shown to induce apoptosis in cancer cell lines expressing the Wnt-1 protein [250]. Antibodies against Frizzled-5, developed by OncoMed, have shown anti-tumor properties [251]. The OMP-18R5 antibody, developed in collaboration between Bayer and OncoMed, has entered Phase I clinical trials. Furthermore, antibodies against Frizzled 10 (FZD10) may reduce osteosarcoma growth and metastasis [252].

A small molecule, which triggers the internalization of Wnt receptors, has been identified as the FDA approved anthelmintic drug Niclosamide (Table 1). Amongst other functions, Niclosamide was found to inhibit Wnt/Dishevelled-1 signaling with an IC50 of 0.5 ± 0.05 μM [253-255]. It also downregulates Dishevelled-2 (Dvl-2) [256] and induces LRP6 degradation in prostate and breast cancer cells [254]. Interestingly, Niclosamide has no reported toxicity against non-cancer cells [256].

Dishevelled

Dishevelled participates in both β-catenin dependent and independent Wnt signaling. Three different Dishevelled proteins are known in humans, which have a similar size and domain organization. All Dishevelled proteins share three functional domains: an N-terminal DIX domain (named after Dishevelled and Axin), a central PDZ domain (Postsynaptic density 95, Discs Large, Zonula occludens-1) and a C-terminal DEP domain (Dvl, Egl-10, Pleckstrin).

The DIX domain is responsible for the polymerization of Dishevelled in the Wnt signalosome [257]. The resulting tetramerization of the Frizzled-LRP5/6 signal complex has been shown to be
required for the phosphorylation of the cytoplasmic tail of LRP5/6 [258]. The protein Cdc1, which also has a DIX domain, serves as a positive regulator of Wnt signaling by forming heterodimers with the Dishevelled DIX domain [259]. Recently, the ability of Axin to polymerize through its DIX domain was shown to be crucial for its function in the destruction complex, while a binding between the Axin DIX domain and its Dishevelled counterpart abrogates Axin polymerization. Hence, in addition of being important for the Wnt signalsome, heteromer formation through the DIX domain might be important for inhibiting the formation of the destruction complex by Dishevelled [46, 48], [260, 261].

The DEP domain of Dishevelled was suggested to mediate the interaction with membrane lipids [262] and to facilitate the interaction with Frizzleds through direct binding [263].

The PDZ domain of Dishevelled interacts with the cytosolic C-terminal tail of Frizzled [264]. This interaction can be counteracted by the Dapper (Dapper1 and Dapper3) proteins, which bind to the Dishevelled PDZ domain to prevent its interactions with Frizzled [216, 265, 266]. Proteins of Dapper family have been shown to promote Dishevelled degradation mediated by lysosomes instead of proteasomes [265, 267, 268]. Interestingly, Dishevelled was shown to promote Wnt5a-induced endocytosis of Frizzled by using the PDZ-domain to interact with the N-terminal region of β-arrestin 2 [269, 270]. Furthermore, Dishevelled 2 was shown to interact with a subunit of the clathrin adaptor protein AP2, micro2-adaptin. The interaction appears to be required for Frizzled 4 internalization [271].

Phosphorylation modulates the activity of Dishevelled in the Wnt signalsome [272]. Three kinases, CK2, PAR1 and CK1δ/ε that respond to Wnt signaling, have been implicated in Dishevelled phosphorylation [273, 274]. For instance in mouse SN4741 neurons, both Wnt5a and Wnt3a have been shown to induce phosphorylation of Dishevelled-2 and Dishevelled-3 [273]. Based on loss-of-function and gain-of-function experiments a model of a stepwise phosphorylation of Dishevelled was suggested. First, Dishevelled is phosphorylated by the CK2/PAR1 kinases and then by CK1 [274]. It was proposed that CK1ε can inactivate Dishevelled through phosphorylation [274].

The roles of Dishevelled in Wnt/β-catenin signaling go beyond stabilizing the Wnt signalsome and destabilizing the degradation complex. In Xenopus it has been demonstrated that mutations in the NLS of Dishevelled attenuate Wnt/β-catenin signaling [275]. Dishevelled translocates to the nucleus, where it interacts with the β-catenin/Tcf complex and participates in transcriptional regulation of β-catenin target genes [276, 277]. In the nucleus, Dishevelled can also form a complex with the histone deacetylase Sir2 (SIRT1), which supports the transcription of Wnt target genes. In accordance, the SIRT1 inhibitor cambinol negatively regulates Wnt signaling (Table 1) [278]. Sir2 is a member of the sirtuins proteins family and possesses (NAD⁺)-dependent acetyl-lysine deacetylating activity.

Furthermore, Dishevelled proteins also participate in interactions that affect structural rearrangements of the cell [279]. Through its PDZ domain, Dvl-1 was shown to protect microtubules from depolymerization. It was furthermore demonstrated that the stabilization of microtubules by Dvl-1 is enhanced by GSK3 inhibition [280]. Studies in C. elegans, Drosophila and vertebrates have led to the conclusion that Wnt/β-catenin signaling may regulate the orientation of the mitotic spindle through Dishevelled [281-283].

Finally, autophagy has been proposed to inhibit Wnt signaling through Dishevelled degradation. It has been shown that an ubiquitination of Dishevelled by the Von Hippel-Lindau protein facilitates its binding to p62, which in turn assists an LC3-mediated recruitment of Dishevelled to autophagosomes [276]. In late stages of colon cancer, a negative correlation between Dishevelled expression and autophagy was observed [276].

The PDZ domain of Dishevelled has been used to develop small molecule inhibitors for Wnt/β-catenin signaling. A series of synthetic inhibitors were identified by virtual screening, QSAR and computer-based modeling on the basis of Scaffolds A and B (Table 1) [284-288]. These compounds interact with the groove of PDZ domain, which interacts with the Dapper proteins [216]. Compound J01-017a (Table 1) is currently the strongest Dishevelled binder, inhibiting Wnt signaling with a Ki of 1.5±0.2 μM [288]. Compound NSC668036 [289] imitates a Dapper protein and binds to the PDZ domain of Dishevelled. Compound 3289–8625 (Table 1) binds to the same pocket as NSC668036 in Dishevelled with a Kd of 10.6±1.7 μM [286].

The DEP domain of Dishevelled was suggested to mediate the interaction with membrane lipids [262] and to facilitate the interaction with Frizzleds through direct binding [263].

The PDZ domain of Dishevelled interacts with the cytosolic C-terminal tail of Frizzled [264]. This interaction can be counteracted by the Dapper (Dapper1 and Dapper3) proteins, which bind to the Dishevelled PDZ domain to prevent its interactions with Frizzled [216, 265, 266]. Proteins of Dapper family have been shown to promote Dishevelled degradation mediated by lysosomes instead of proteasomes [265, 267, 268]. Interestingly, Dishevelled was shown to promote Wnt5a-induced endocytosis of Frizzled by using the PDZ-domain to interact with the N-terminal region of β-arrestin 2 [269, 270]. Furthermore, Dishevelled 2 was shown to interact with a subunit of the clathrin adaptor protein AP2, micro2-adaptin. The interaction appears to be required for Frizzled 4 internalization [271].

Phosphorylation modulates the activity of Dishevelled in the Wnt signalsome [272]. Three kinases, CK2, PAR1 and CK1δ/ε that respond to Wnt signaling, have been implicated in Dishevelled phosphorylation [273, 274]. For instance in mouse SN4741 neurons, both Wnt5a and Wnt3a have been shown to induce phosphorylation of Dishevelled-2 and Dishevelled-3 [273]. Based on loss-of-function and gain-of-function experiments a model of a stepwise phosphorylation of Dishevelled was suggested. First, Dishevelled is phosphorylated by the CK2/PAR1 kinases and then by CK1 [274]. It was proposed that CK1ε can inactivate Dishevelled through phosphorylation [274].

The roles of Dishevelled in Wnt/β-catenin signaling go beyond stabilizing the Wnt signalsome and destabilizing the degradation complex. In Xenopus it has been demonstrated that mutations in the NLS of Dishevelled attenuate Wnt/β-catenin signaling [275]. Dishevelled translocates to the nucleus, where it interacts with the β-catenin/Tcf complex and participates in transcriptional regulation of β-catenin target genes [276, 277]. In the nucleus, Dishevelled can also form a complex with the histone deacetylase Sir2 (SIRT1), which supports the transcription of Wnt target genes. In accordance, the SIRT1 inhibitor cambinol negatively regulates Wnt signaling (Table 1) [278]. Sir2 is a member of the sirtuins proteins family and possesses (NAD⁺)-dependent acetyl-lysine deacetylating activity.

Furthermore, Dishevelled proteins also participate in interactions that affect structural rearrangements of the cell [279]. Through its PDZ domain, Dvl-1 was shown to protect microtubules from depolymerization. It was furthermore demonstrated that the stabilization of microtubules by Dvl-1 is enhanced by GSK3 inhibition [280]. Studies in C. elegans, Drosophila and vertebrates have led to the conclusion that Wnt/β-catenin signaling may regulate the orientation of the mitotic spindle through Dishevelled [281-283].

Finally, autophagy has been proposed to inhibit Wnt signaling through Dishevelled degradation. It has been shown that an ubiquitination of Dishevelled by the Von Hippel-Lindau protein facilitates its binding to p62, which in turn assists an LC3-mediated recruitment of Dishevelled to autophagosomes [276]. In late stages of colon cancer, a negative correlation between Dishevelled expression and autophagy was observed [276].
triggers an internalization of LRP6 through clathrin-mediated endocytosis [164, 297].

Divergent consequences have been reported for the endocytosis of Wnt signalosomes on Wnt/β-catenin [298]. Endocytic vesicles containing Wnt signalosomes may shuttle to early endosomes (EE) from which the receptor complex may be sequestered into intraluminal vesicles of multivesicular endosomes (MVEs). These can either be released as exosomes, whereby exocytosis itself can act as a signal transduction mechanism [199, 298], [299], or MVEs may fuse with lysosomes that lead to a degradation of the included proteins [298, 300, 301]. It is unclear to what stage during this process the Wnt signalosome will remain active, however, deactivation of Wingless was shown to occur after it accumulates in multivesicular endosomes which target it further for lysosomal degradation [302]. It was shown that in response to Wnt ligands or LRPs, overexpression, GSK3 in complex with LRP5/6 is delivered to the lumen of MVEs, separating GSK3 from its cytosolic substrates [241, 303]. Two proteins Hrs/Vps27 and Vps4 that are components of the endosomal sorting (ESCRT) machinery have tubulin and act as an inhibitor of microtubules polymerization [308]. Intriguingly, p120 that has a major cytoplasmic function at the cytoplasmic end of E-cadherin, also interacts with the Wnt signalosome making it an important linker protein [305]. A depletion of p120 prevents intercellular adhesion and thus can contribute to regulatory binding of p120 to cadherin switches. Hence, the increase of N-cadherins against E-cadherins is a hallmark of an epithelial to mesenchymal transition (EMT) both in normal development and in metastasis [320-323]. Cadherin switches are crucial for motility, invasiveness, migration and metastasis in cancer cells [324, 325]. In several works a reverse correlation between invasiveness of cancer cells and E-cadherin-mediated adhesion was shown [326, 327].

The extracellular N-terminal domain of E-cadherin mediates cell-cell adhesion and consists of five repeats that are stabilized by cadherin repeats [321, 322]. In contrast to other types of cadherins, E-cadherins pool is a direct limiting factor for cadherins pools [333]. This process has been shown to be sensitive to the specific CK1ε-dependent phosphorylation of both LRPs/6 and E-cadherin [306] and thereby to prevent LRPs/6-mediated signaling. Furthermore, Wnt binding to Frizzled-LRP5/6 induces the phosphorylation of CK1ε-dependent phosphorylation of p120 (at Ser268 and Ser269) leading to the dissociation of p120 from E-cadherin [230]. Binding of Wnt to Frizzled-LRP5/6 induces the phosphorylation of CK1ε: dependent phosphorylation of p120 (at Ser268 and Ser269) leading to the dissociation of p120 from E-cadherin complex [230]. This process was shown to be sensitive to the specific CK1ε inhibitor IC261 (Table 1). IC261 binds to the CK1ε active site and acts as an inhibitor of microtubules polymerization [308]. Intriguingly, p120 that has a major cytoplasmic function at the cytoplasmic end of E-cadherin, also interacts with the Wnt signalosome making it an important linker protein [305]. A depletion of p120 prevents intercellular adhesion and thus can contribute to regulatory binding of p120 to cadherin switches. Hence, the increase of N-cadherins against E-cadherins is a hallmark of an epithelial to mesenchymal transition (EMT) both in normal development and in metastasis [320-323]. Cadherin switches are crucial for motility, invasiveness, migration and metastasis in cancer cells [324, 325]. In several works a reverse correlation between invasiveness of cancer cells and E-cadherin-mediated adhesion was shown [326, 327].

The extracellular N-terminal domain of E-cadherin mediates cell-cell adhesion and consists of five repeats that are stabilized by cadherin repeats [321, 322]. In contrast to other types of cadherins, E-cadherins pool is a direct limiting factor for cadherins pools [333]. This process has been shown to be sensitive to the specific CK1ε-dependent phosphorylation of both LRPs/6 and E-cadherin [306] and thereby to prevent LRPs/6-mediated signaling. Furthermore, Wnt binding to Frizzled-LRP5/6 induces the phosphorylation of CK1ε: dependent phosphorylation of p120 (at Ser268 and Ser269) leading to the dissociation of p120 from E-cadherin complex [230]. This process was shown to be sensitive to the specific CK1ε inhibitor IC261 (Table 1). IC261 binds to the CK1ε active site and acts as an inhibitor of microtubules polymerization [308]. Intriguingly, p120 that has a major cytoplasmic function at the cytoplasmic end of E-cadherin, also interacts with the Wnt signalosome making it an important linker protein [305]. A depletion of p120 prevents intercellular adhesion and thus can contribute to regulatory binding of p120 to cadherin switches. Hence, the increase of N-cadherins against E-cadherins is a hallmark of an epithelial to mesenchymal transition (EMT) both in normal development and in metastasis [320-323]. Cadherin switches are crucial for motility, invasiveness, migration and metastasis in cancer cells [324, 325]. In several works a reverse correlation between invasiveness of cancer cells and E-cadherin-mediated adhesion was shown [326, 327].

Connections between the Wnt-Frizzled-LRP5/6 signalosome and the E-cadherin adhesion complex

A close interaction between the Wnt signalosome and cell-cell junctions may exist both on a physical and functional level. N-cadherin [304] and E-cadherin [305] were shown to be able to directly associate with Lrp5/6. Binding of Wnt morphogens to the Frizzled-LRP5/6 induces a CK1ε-dependent phosphorylation of both LRPs/6 and E-cadherin [306] and thereby to prevent LRPs/6-mediated signaling. Furthermore, Wnt binding to Frizzled-LRP5/6 induces the phosphorylation of CK1ε: dependent phosphorylation of p120 (at Ser268 and Ser269) leading to the dissociation of p120 from E-cadherin complex [230]. This process was shown to be sensitive to the specific CK1ε inhibitor IC261 (Table 1). IC261 binds to the CK1ε active site and acts as an inhibitor of microtubules polymerization [308]. Intriguingly, p120 that has a major cytoplasmic function at the cytoplasmic end of E-cadherin, also interacts with the Wnt signalosome making it an important linker protein [305]. A depletion of p120 prevents intercellular adhesion and thus can contribute to regulatory binding of p120 to cadherin switches. Hence, the increase of N-cadherins against E-cadherins is a hallmark of an epithelial to mesenchymal transition (EMT) both in normal development and in metastasis [320-323]. Cadherin switches are crucial for motility, invasiveness, migration and metastasis in cancer cells [324, 325]. In several works a reverse correlation between invasiveness of cancer cells and E-cadherin-mediated adhesion was shown [326, 327].

C-terminal terminal phosphorylation of β-catenin attenuates the affinity between β-catenin and E-cadherin and thus can contribute to regulate free cellular β-catenin levels [19, 311]. Hence, phosphorylation of Tyr654 regulates the orientation of the C-terminal tail of β-catenin, changing its position from closed to open. The induced conformational change enables a number of binding proteins to interact with β-catenin [345]. It has been demonstrated that a Tyr654Glu point mutation in β-catenin imitates the negative charge of a phosphorylation and reduces the affinity of β-catenin to cadherins. Tyr654 phosphorylation of β-catenin also enhances Ser675 phosphorylation by protein kinase A (PKA) [346]. Ser675 phosphorylation appears to promote the stability of β-catenin, and assists in its binding to the Cdc42 Binding Protein (CBP) and as a consequence triggers an enhancement of β-catenin-mediated signaling [347, 348]. In addition, protein kinase B (AKT)-mediated Ser552 phosphorylation of β-catenin promotes its induction of transcription through Tcf/Lef [349-351].

The cellular kinase Src (c-Src) phosphorylates amino acids Tyr86 and Tyr654 in the C-terminus and in the last armadillo repeat.
of β-catenin respectively [345]. This phosphorylation also structurally impairs β-catenin binding to E-cadherin and can lead to increased cellular β-catenin levels [19, 341, 345, 352]. An increase of Src levels leads to a disruption of intercellular adhesion and E-cadherin dysfunction, while an inhibition of Src by small molecules has the opposite effect [353-355]. Hence, the Src kinase inhibitor bosutinib (SKI-606) (Table 1) was shown to increase the membrane localization of β-catenin and intercellular adhesion [356-357] and bosutinib has shown promising results in Phase I clinical trials in advanced solid tumors [358].

A further mechanism by which β-catenin levels can be regulated at adhesion complexes is the Presenilin 1 (PS1)γ-secretase system that can cleave the cytoplasmic domain of E-cadherin. The cleavage can be stimulated by calcium influx and has been reported to lead to a disruption of the E-cadherin-β-catenin complex followed by an increase of cytoplasmic α- and β-catenins [359, 360]. Furthermore, the cleaved cytoplasmic terminal fragment (CTF) of E-cadherin has been demonstrated to sequester free β-catenin from the cytoplasm by forming a physical complex with β-catenin. This complex may translocate to the nucleus and interfere directly with Tcf and E-cadherin have a conserved Dx2-7E motif (x2-7E) targets N-cadherins (it imitates the HAVD amino acid sequence of N-cadherin), increases cellular levels of E-cadherin which again would lead to a mobilization of E-cadherin from its complex with E-cadherin [344, 384]. Tyr654 phosphorylation is also required for β-catenin binding to Tcf4, adding to the synergistic effect of c-Met-mediated β-catenin phosphorylation [344]. Accordingly, Imatinib (Table 1), a tyrosine kinase inhibitor, was shown to reduce Wnt/β-catenin signaling [385]. The small molecule PHA665752 (Table 1), which inhibits c-Met-mediated phosphorylation, has shown to act inhibitory on HGF induced β-catenin signaling [379, 386].

Also the Endothelin A receptor (ET(A)R), through Src-dependent EGFR (epidermal growth factor receptor) transactivation, causes a Tyr654 phosphorylation of β-catenin leading to its mobilization from E-cadherin [387]. Moreover, the receptor tyrosine kinases FGFR2, FGFR3, EGFR and TRKA have recently been shown to increase cytoplasmic β-catenin concentrations via a Tyr142 phosphorylation that releases β-catenin from cadherin complexes [238].

In addition to mobilizing β-catenin, a C-terminal phosphorylation of β-catenin protects the protein from Ser/Thr phosphorylation in the degradation complex and thus can lead to increased cytoplasmic levels of β-catenin [380], [388]. It has also been shown that HGF could activate β-catenin signaling through inducing a degradation of E-cadherin which again would lead to a mobilization of β-catenin [366]. The matrix metalloproteinase-7 (MMP-7), a downstream target of Wnt/β-catenin signaling, participates in HGF-induced degradation of E-cadherins. [366]. Furthermore, HGF signaling may also alter β-catenin thresholds secondarily through regulating Snail leading to a repression of the transcription of E-cadherin which in turn leads to a reduced β-catenin pool at cellular junctions [389, 390]. HGF/c-Met-mediated stabilization of β-catenin has been associated with several types of tumors [391]. The small molecule PHA665752 (Table 1), which inhibits c-Met-mediated phosphorylation, has shown to act inhibitory on HGF induced β-catenin signaling [379, 386].

Phosphorylation of E-cadherin by CK1ε at Ser846 also reduces its binding to β-catenin [306]. Interestingly, a phosphorylation of E-cadherin and β-catenin (Thr112 and Thr120 by PKD1) can also lead to the opposite effect: to stimulate β-catenin/E-cadherin complex formation [341, 392, 393]. Accordingly, it has been shown that downregulation of PKD1 is associated with advanced prostate cancers [393].

The β-Catenin Tcf/Lef Transcription Complex

Besides its implications in junctions, the main effector function of β-catenin is in the nucleus. Here it regulates transcription through interactions with a number of transcription factors, including predominantly Tcf/Lef, Hif-1 and possibly also Oct4. β-catenin may also have a more unspecific role on transcription regulation through interactions with chromatin. The shutting of cytoplasmic β-catenin to the nucleus and back to the cytoplasm is not entirely understood. A picture emerges, where the nuclear uptake of β-catenin can be enhanced by the context-dependent C-terminal phosphorylation of β-catenin at S675 by PKA. Evidence suggests that the export of β-catenin from the nucleus to the cytoplasm can be GSK3-dependent [394]. Both kinases are well-explored drug targets. A further mode of β-catenin transport to the nucleus was proposed to be a binding between β-catenin and Tcf/Lef in the cyto...
toplasm, followed by its transfer to the nucleus [12, 13, 395]. Other mechanisms that influence the shuttling of β-catenin to the nucleus have been discussed earlier.

In the nucleus, the interaction between β-catenin and the zinc finger transcriptional factors of the Tcf/Lef family has been described and is seen as the classical regulatory unit for Wnt/β-catenin target genes (http://www.stanford.edu/~russe/wntwindow.html). All members of the Tcf/Lef family (Tcf-1, Tcf-3, Tcf-4 and Lef1) contain an N-terminal binding domain for β-catenin, followed by a context-dependent regulatory domain (CRD) with binding sites for the co-repressor Groucho (Gro), a HMG-box DNA-binding domain, and a C-terminal domain with binding sites for the co-repressor C-terminal binding protein (CBP) [396, 397]. Lef1 in general acts as a transcriptional activator in complex with β-catenin. Tcf3 is considered to be predominantly a transcriptional repressor. Tcf-1 and Tcf-4 have been claimed to execute context dependent dual activator or repressor roles [396]. In mice, Tcf-3 represses Wnt/β-catenin signaling either through a competitive physical interaction with β-catenin or via competition for Tcf/Lef binding sites on DNA [396, 398]. Further diversity of family members may be created by alternative splicing [399].

In the absence of β-catenin, members of the Tcf/Lef family form a complex with co-repressors such as Groucho, CBP, and HDAC leading to a repression of the transcription complex [5, 400-402]. β-catenin directly displaces Groucho/TLE from Tcf/Lef by binding to a N-terminal low-affinity binding site that overlaps with the Groucho/TLE-binding site rendering the Tcf/Lef into a transcription activator [403]. It has been reported that the interactions between β-catenin and Tcf/Lef are charge-dependent and occur through the formation of salt bridges between Lys amino acids of β-catenin and Glu amino acids of Tcf [404]. The histone acetyltransferase CREB binding protein (CBP) attenuates the complex and acts as a context-dependent transcriptional regulator [394].

Also, the armadillo protein plakoglobin is able to associate with the Tcf/Lef transcriptional complex, although with less affinity than β-catenin, and early reports claim that both proteins are able to activate Tcf/Lef reporters [405-407]. Plakoglobin was also shown to promote transcriptional activity independently from β-catenin [407], and although plakoglobin was shown to be less potent to activate Wnt/β-catenin downstream genes, c-Myc expression is significantly elevated by plakoglobin [408]. Interestingly, similar to β-catenin, ectopic over-expression of plakoglobin was shown to lead to axis duplication in Xenopus [409]. Further indications for a functional redundancy between the two structurally related proteins come from mouse studies showing that mice lacking plakoglobin do not show developmental apparent abnormalities. Furthermore, a decrease of plakoglobin in Xenopus does not affect embryonic axis formation [405].

p120 also affects Wnt/β-catenin-mediated transcription. In the absence of phosphorylated p120, the zinc finger transcription factor Kaiso binds to the HMG domain of Tcf, forming a co-repressor complex together with histone deacetylase (HDAC). Phosphorylation of p120 causes its dissociation from E-cadherin, its entrance to the nucleus and binding to Kaiso. In consequence, Kaiso loses its role as a co-repressor [230]. Kaiso binding sites are frequently located near Wnt responsive elements of several β-catenin target genes including Siamois, c-Myc and cyclin D1 [410-413]. Notably, this process was shown to be enhanced by Wnt-signaling indicating that several armadillo components that are present in adhesion junctions could be involved in mediating a convergent signaling program.

The Tcf/Lef transcriptional complex has a multitude of further binding partners [402]. Proteins like Pontin52 [414], the TATA-box binding protein [415], Bcl-9/Legless, and Pygopus [416, 417] have all shown to promote the formation of a β-catenin/Tcf complex. Chibby (Cby), a small (126 aa) protein antagonizes Wnt/β-catenin signaling by forming a ternary complex with protein 14-3-3ζ and β-catenin [418, 419]. The protein TC-1, associated with thyroid cancer, in turn can bind to Cby and inhibit its interactions with β-catenin, leading to an upregulation of β-catenin target genes [420, 421]. Further tissue-specific proteins like Osterix (osteoblast-specific transcription factor) are also able to repress the transcriptional complex through a disruption of Tcf binding to DNA [422]. As earlier described, Dishevelled in response to Wnt signaling may also localize to the nucleus [275, 423] where it forms a quaternary functional complex with Tcf/Lef and c-Jun, whereby c-Jun acts as scaffold [277]. Further proteins, associated with the Tcf/Lef complex and regulate its activity are reviewed in [396, 402].

Tcf/Lef-mediated transcription is target of numerous regulative covalent modifications like phosphorylation, SUMOylation, ubiquitination, and acetylation [201, 396]. It has been shown that CK1δ and CK2 phosphorylate Lef-1 [424] leading to a disruption of interactions between β-catenin and Lef-1, but not between Lef-1 and the template DNA. Hence, CK1δ-mediated phosphorylation results in a transcriptional repression of Lef-1/β-catenin target genes. In contrast, it has been demonstrated that Ser42 and Ser61 phosphorylation of Lef-1 by CK2 enhances Lef-1/β-catenin-mediated transcription [424, 425]. Initially it was supposed that CK2-mediated phosphorylation increases Lef-1 affinity to β-catenin. However, affinity studies have shown that Lef-1 phosphorylation does not affect its binding to β-catenin [426]. Instead, it was found that CK2-mediated phosphorylation leads to a decrease of Lef-1 interactions with the Gro/TLE1 co-repressor [427].

The Nemo-like kinase (NLK) phosphorylates amino acids Thr155 and Ser166 of Lef-1 and amino acids Thr178 and Thr189 of Tcf-4 which have been shown to lead to a reduced DNA-binding [20, 428, 429]. Thus, NLK has been proposed to be a negative regulator of β-catenin/Tcf controlled transcription [430]. Indeed, in human embryonic kidney 293 (HEK293) cells and the cervical epithelioid carcinoma cell line HeLa, NLK inhibits β-catenin-regulated target genes expression [428, 431]. Curiously, in zebrafish midbrain and mammalian neural progenitor cell (NPC)-like cell lines, NLK-mediated phosphorylation of Lef-1 upregulates Wnt signaling [432].

The E3 ligase PIASty SUMOylates Lef-1, which could lead context dependent - to either an activation or to an inhibition of Lef-1 [72, 433].

Different small molecule inhibitors that act at the level of the Tcf/Lef transcription complex have been reported. ICG-001 selectively binds to CBP, but not to the closely-related protein p300. ICG-001 disrupts the interaction of CBP with β-catenin and down-regulates target genes expression [434]. Recently, ICG-001 has been shown to be able to block EMT (epithelial to mesenchymal transition) induced by TGFB1 in a RLE-6TN rat lung epithelial-T-antigen negative cell line. [435]. ICG-001 has reached Phase 1 clinical trials [436]. During a high-throughput screening the approved FDA diuretic ethacrynic acid (Table 1) was found to down-regulate Wnt/β-catenin signaling by inhibiting the formation of the β-catenin/Lef-1 complex [437, 438] in chronic lymphocytic leukemia (CLL) cells, although at a low IC50 (Table 1). A number of ethacrynic acid derivatives have since been synthesized leading to a significant potency improvement [439].

Several small molecules were found among natural products that disrupt the β-catenin/Tcf-4 complex: CGP049090, PKF118-310, PKF115-584 and ZTM000990, all with an IC50 slightly below 1 μM (Table 1) [440-442]. Docking studies have shown that the assumed binding site for these compounds in β-catenin corresponds to a cavity located between amino acids Arg469, Lys435, Lys508, Glu571 and Arg515 which interacts with Tcf-4 [443]. A further set of compounds, PNU-74654 and BC21 (Table 1), also inhibits the interactions between β-catenin and Tcf. The binding of BC21 to β-catenin signaling...
In addition to Tcf/Lef, the oxygen sensing zinc finger transcription factor Hif-1α has been pointed out as a central regulatory element in β-catenin signaling. In an oxygen rich environment, Hif-1α gets hydroxylized through the HIF prolyl hydroxylase, triggering a subsequent ubiquitination by the von Hippel-Lindau protein (pVHL) that targets Hif-1α for rapid degradation in the proteasome [445]. Strikingly, the von Hippel Lindau protein has also been implied in promoting the degradation of cytoplasmic β-catenin, while maintaining the expression of E-cadherin [446]. In contrast, it was shown that PI3K (Phosphoinositide 3-kinase) through MAPK in-promotes Hif-1α phosphorylation and increases Hif-1α expression through the HIF prolyl hydroxylase, triggering a feedback loop APC mediates a repression of Hif-1α expression and activity [449].

In a low oxygen environment – as frequently found in stem cell niches – Hif-1α forms a complex with ARNT (the constitutive active form of Hif-1α) and enters the nucleus where it competes with Tcf/Lef proteins for β-catenin binding [450]. Hence, it has been proposed that while under normoxic conditions β-catenin binds predominantly to Tcf/Lef and activates classical Wnt/β-catenin downstream genes, under hypoxic conditions, Hif-1α may recruit β-catenin to alternative binding sites at promoters e.g. promoters that enhance tumor survival [446]. Strikingly, the promoters of genes of Tcf-1 and Lef-1 contain hypoxia response elements (HREs) [451] and Hif-1α is directly involved in regulating Tcf/Lef protein abundance [451]. Hif-1α also is involved in regulating the transcription of proteins implied the destruction complex, and has been shown to negatively regulate the transcription of APC via hypoxia-responsive elements, which could lead to increased cellular β-catenin levels. In a feedback loop APC mediates a repression of Hif-1α while APC depletions result in increased Hif-1α levels [452]. Furthermore, GSK3 has been reported to phosphorylate and destabilize Hif-1α [132].

Cross-talk with other Pathways: Interconnections Between Inflammation and Wnt/β-Catenin Signaling

Both COX activity and Wnt/β-catenin signaling are interconnected and have been associated with tumorigenesis. An inhibition of the cyclooxygenases COX-1 and COX-2 leads to reduction of prostaglandin synthesis including the pro-inflammatory prostaglandin E2 (PGE2) [453]. PGE2 activates a signaling cascade through the EP2 and EP4 receptors that leads to a PKA dependent colorectal cancers significantly [460]. Furthermore, it was shown that Rp-8-Br-cAMP (Table 1), a small molecule inhibitor of PKA, reduces the translocation of β-catenin to the nucleus and reduces the expression of Wnt/β-catenin target genes [461].

TGFβ and β-Catenin Signaling

The TGFβ signaling pathway belonging to the same protein superfamily as bone morphogenic proteins (BMP) and Nodal, is involved in multiple biological processes including proliferation, apoptosis and cancerogenesis [462-464]. TGFβ and Wnt/β-catenin signaling are interconnected at several levels through Smad proteins. In particular the TGFβ inhibitory protein Smad7 is regulated by components of the Wnt/β-catenin signaling pathway but it also affects Wnt/β-catenin signaling[464, 465]. For instance it has been shown that Axin assists in the degradation of Smad7 through serving as a scaffold for the E3 ligase Arkadia, which ubiquitinates Smad7 and targets it for degradation [464]. Also the ubiquitin ligase Smurf2, which belongs to the HECT class of ubiquitin ligases, binds Smad7 and targets the TGFβ receptors for degradation [466]. Interestingly, Smurf2 has also been suggested to act as as an ubiquitin ligase for Axin, and a knockdown of Smurf2 leads to a reduction of β-catenin/Tcf reporter activity [467]. Furthermore, it was shown in mouse keratinocytes that Smad7 associates with β-catenin and enhances its degradation by recruiting the E3 ubiquitin ligase Smurf2 [468]. Hence, a knockdown of Smad7 leads to an increase of β-catenin-mediated signaling [468]. Smad7 was also shown to interact with the β-catenin-Tcf/Lef transcriptional complex and to regulate apoptosis in a TGFβ dependent manner [469]. It has been proposed that Smad7 selectively downregulates the mobile pool of β-catenin while it upregulates the pool of β-catenin that interacts with E-cadherin [468, 470, 471].

Smad7 is not the only representative of the Smad family that affects β-catenin. Smad4 in complex with its receptor R-Smad interacts with β-catenin in the nucleus. In chondrocytes it was shown that the C-terminal domain of Smad3 interacts with the N-terminal and central domains of β-catenin in a TGFβ-dependent manner [81].

Finally, the TGFβ pathway was shown to induce phosphorylation of β-catenin at Tyr654 through an activation of Src kinase(s), influencing both the presence in junctional complexes, and the nuclear localization of β-catenin [163].

Interconnections Between PDGF and β-Catenin Signaling

Platelet-derived growth factor (PDGF) regulates cellular division and participates in angiogenesis. PDGF treatment leads to a phosphorylation of the p68 helicase, which facilitates the nuclear translocation of β-catenin and its interaction with the Tcf/Lef complex [472]. Interestingly, in a prostate cancer model, PDGF has shown to promote the formation of a nuclear transcription complex including β-catenin and Hif-1α, establishing a link between PDGF signaling, hypoxia and β-catenin [473]. In an apparent feedback loop, the extracellular Wnt inhibitor sFRP1 was shown to increase the expression of platelet-derived growth factor factor-BB (PDGF-BB) in mesenchymal stem cells (MSC) [474].

Interconnections Between Notch and β-Catenin Signaling

Both Notch and Wnt/β-catenin signaling are interconnected. Recently it was shown that membrane-associated uncleaved Notch directly interacts with β-catenin, serving as a protein trap and down-regulating the cellular levels of β-catenin. This process has been demonstrated to require the endocytic adaptor protein Numb and
CONCLUDING REMARKS

Although Wnt/β-catenin is a major signaling pathway with very significant implications in a broad range of diseases, addressing the pathway through small drugs or therapeutic antibodies is still at its infancy. Despite the description of a multitude of interesting bio-targets in the pathway, together with the identification of reagents that interfere with these bio-targets, it is by no means clear which bio-targets in the pathway may give a lead in drug discovery.

Creating specific agents to any bio-target is a challenge. In addition, several of the known bio-targets in the Wnt/β-catenin pathway are also implied in a multitude of other pathways raising specificity issues. Since the Wnt/β-catenin signaling pathway is highly complex, a number of back-up mechanisms as well as feedback loops exist. In this context it is also necessary to bear in mind that β-catenin is a member of a larger protein family – the armadillo protein family – and other members of that family, including p120 and plakoglobin, may have functions that are supportive to, or overlapping with β-catenin. Although it is not settled where the best druggable bottlenecks in the pathway may be, or if such bottlenecks exist at all, three main interference points in the pathway are at current predominantly explored: (i) the Wnt signalsome, (ii) the destruction complex and (iii) β-catenin targets and interactions in the nucleus. In a broader sense, other manipulations including altering cellular junctions, influencing prostaglandine-mediated signaling, affecting HGF signaling and mechanisms that influence Hif-1α levels are important in the context of addressing Wnt/β-catenin signaling.

Hence, it is not clear to what extent the pathway could be silenced by a single therapeutic agent and whether it may ultimately be necessary to regulate the pathway at two or multiple points simultaneously in an approach that may be termed “cloud inhibition”. Indeed, a combination of an EGFR and Tankyrase inhibition recently revealed a close functional correlation of both pathways and confirmed the synergistic effect of a dual antagonistic treatment in lung cancer cells [477]. Zibotentan, a ET(A)R antagonist when combined with the EGFR inhibitor gefitinib, reduces lung cancer cells [477]. Zibotentan, a ET(A)R antagonist when combined with the EGFR inhibitor gefitinib, reduces lung cancer cells [477]. Zibotentan, a ET(A)R antagonist when combined with the EGFR inhibitor gefitinib, reduces lung cancer cells [477]. Zibotentan, a ET(A)R antagonist when combined with the EGFR inhibitor gefitinib, reduces lung cancer cells [477].

Hence, it is not certain whether the pathway could be silenced by a single therapeutic agent and whether it may ultimately be necessary to regulate the pathway at two or multiple points simultaneously in an approach that may be termed “cloud inhibition”. Indeed, a combination of an EGFR and Tankyrase inhibition recently revealed a close functional correlation of both pathways and confirmed the synergistic effect of a dual antagonistic treatment in lung cancer cells [477]. Zibotentan, a ET(A)R antagonist when combined with the EGFR inhibitor gefitinib, reduces lung cancer cells [477].

However, even if Wnt/β-catenin signaling can be reduced more stringently with combinations of inhibitors, it is important to note that a complete inhibition of Wnt/β-catenin signaling may not be desirable as it may be necessary to maintain a basic Wnt/β-catenin activity in an organism to ensure the viability of natural Wnt dependent cells.

Despite of all the described issues, significant excitement is sensed in the field that developing reagents altering Wnt/β-catenin signaling can provide valuable new therapeutic tools which will allow to address disease conditions that have hitherto escaped therapeutic success.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

We want to thank Jennifer Dembinski, Line Mygland and Orest W. Blaschuk for critical reading of the manuscript. A special thank to Nai-Wen Chi for inspiring scientific discussions and critical comments to the manuscript. The work was supported by the Research Council of Norway and the South-Eastern Norway Regional Health Authority.
Acronym	Description
ESCRT	Endosomal sorting complex required for transport
ET(A)R	Endothelin A receptor
Ex vivo	Experiments conducted with tissues outside of the organism, but in conditions close to natural
Evi/Wls	Evenness/Wntless
FDA	Food and drug administration
Fer	Proto-oncogene protein tyrosine kinase
FGF	Fibroblast growth factor
FGFR2	Fibroblast growth factor receptor 2
FGFR3	Fibroblast growth factor receptor 3
FLT3/ITD	Cluster of differentiation antigen 135 (CD135), also known as Fms-like tyrosine kinase 3
FRAT1	Frequently rearranged in advanced T-cell lymphomas 1 proto-oncogene
FRAT2	Frequently rearranged in advanced T-cell lymphomas 2 proto-oncogene
FZ, FZD	Frizzled, receptor of Wnt proteins
Frodo	Signaling adaptor protein
FYN	Proto-oncogene protein tyrosine kinase
Ga, Gβ, Gγ, Go	Guanine nucleotide binding proteins
GPI	Glycophosphatidylinositol
GLUT4	Glucose transporter type 4
GPCR	G-protein coupled receptor
G proteins	Guanine nucleotide-binding proteins
Grk5/6	G-protein-coupled receptor kinases
GRB14	Growth factor receptor-bound protein 14
GPR177	G protein-coupled receptor 177 (GPR177)
GSK3	Glycogen synthase kinase 3
GTPase	GTPase-activating protein
hDLG1	Human disks large homolog 1
HECT	Domain homologous to the E6-AP carboxyl terminus
Hif-1α	Hypoxia-inducible factor 1α
HGF	Hepatocyte growth factor
HGFR	Hepatocyte growth factor receptor
HPS domain	His/Pro/Ser domain of tankyrase
HRS/VPS27	Hepatocyte growth factor receptor tyrosine kinase substrate
HSPG	Heparane sulfate proteoglycans
HUWE1	HECT-type ubiquitin E3 ligase 1
IC50	Half maximal (50%) inhibitory concentration (IC) of a substance
ICAT	Inhibitor of β-catenin and Tcf4
I-MFA	Inhibitor of myogenic basic helix-loop-helix transcription factors
IRAK	Insulin-responsive amino peptidase
IWP	Inhibitor of Wnt production, small molecule
IWR	Inhibitor of Wnt response, small molecule
Jag1	Jagged 1 protein
JMD	Juxtamembrane domain
JNK	c-Jun N-terminal kinase
JW74	Inhibitor of tankyrases, small molecule
Kaiso	Bi-modal DNA-binding protein, transcription regulator
Kd	Dissociation constant
Ki	Inhibition constant
LC3	Light chain of the microtubule-associated protein 1
LEF	Lymphoid enhancer factor-1; transcription factor
LGR4, 5	Leucine-rich repeat-containing G protein-coupled receptor 4, 5
LRP5/6	Low-density lipoprotein receptor-related proteins 5/6
MAPK	Mitogen-activated protein kinase
Mcl-1	Myeloid cell leukaemia 1
MDC	Monodansyl-cadaverine
MDCK cells	Madin-Darby canine kidney (MDCK) cells
MEKK1	MAP kinase kinase kinase 1
MEKK4	MAP kinase kinase kinase 4
MM	Multiple myeloma
MMP-7	Matrix metalloproteinase-7
MSC	Mesenchymal stem cells
MVEs	Multivesicular endosomes
NAD+	Nicotinamide adenine dinucleotide
NLS	Nuclear localization signal sequences
NLK	Nemo-like kinase
NuMa	Nuclear mitotic apparatus protein 1
Oct-4	Octamer-binding transcription factor 4
OMP-18R5	OncoMed Pharmaceuticals 18R5
Osterix	Osteoblast specific transcription factor
PAR1	Prader-Willi/Angelman region-1
PARG	Poly (ADP-ribose) glycohydrolase
PARP	Poly (ADP-ribose) polymerase
PCNA	Proliferating cell nuclear antigen
p62	Nucleoporin 62, a protein complex associated with the nuclear envelope
PDB	Protein Data Bank, www.rcsb.org
PDGF	Platelet-derived growth factor
PDZ domain	Postsynaptic density 95, Discs Large, Zonula occludens-1
PFTK (CDK14)	Serine/threonine-protein kinase PFTAIRE-1
PGAP1	Glycosylphosphatidylinositol (GPI)-inositol-deacylase
PGE2	Prostaglandine E2
PIAS	Protein inhibitor of activated STAT-1, E3 SUMO-protein ligase
PI3K, PI4KII, PI5KI	Phosphatidylinositol kinases
PKA	Protein kinase A
PKB (AKT)	Protein kinase B
PKC	Protein kinase C
PKD1	Protein kinase D1
PLK1	Serine/threonine-protein kinase, also known as polo-like kinase 1
PORC	Porcupine
PP1 = Protein phosphatase 1
PP2A = Protein phosphatase 2A
PP2C = Protein phosphatase 2C
PRMT1 = Arginine methyltransferase
PS1 = Presenelin 1
PTP-BL = Protein tyrosine phosphatase
p38 MAPK = p38 mitogen-activated protein kinase
p70S6K = p70 ribosomal S6 kinase
p90RSK/MAPKAP = p90 ribosomal S6 kinase/MAPK-activating protein
p120 = Armadillo repeats containing protein, referred to also as catenin δ
QSAR = Quantitative structure-affinity relationship
Rab5 = Ras superfamily of monomeric G proteins, localized to clathrin vesicles and early endosomes
RGS domain = Regulators of G protein signaling
RNF146 = RING finger protein 146 ubiquitin ligase
R-Smad = Receptor of Smad 4
R-spondin = Secreted activator protein
SAM domain = Sterile alpha motif
SAR = Structure-activity relationship
SFPR = Soluble Frizzled-related protein
SIRT1 = Histone deacetylase Sirtuin 1
SN4741 = Dopaminergic neurons derived from SN4741 progenitor phenotype on colorectal cancer cells
SNAIL = Zinc-finger transcription factor
Smad5 = Mothers against dpp-5
Smad3 = Mothers against dpp-3
Smad4 = Mothers against dpp-4
SNAIL = Zinc-finger transcription factor
c-SRC = Cytoplasmic SRC tyrosine kinase (Src - abbreviation of sarcoma)
STF = Super TOPFlash reporter containing Tcf/Lef binding sites
SUMO = Small Ubiquitin-like Modifier protein
SUMOylation = Post-translational modification of proteins by adding SUMO
TAB182 = Tankyrase 1 binding protein 182
TATA-binding protein = Transcription factor, which binds TATA DNA sequence
Tankyrase = TRF-1-interacting ankyrin related ADP-ribose polymerase
TC-1 = Thyroid cancer protein 1
TCF = T-cell factor; transcription factor
TERT = Telomerase reverse transcriptase subunit
TGFβ = Transforming growth factor β
TGN = Trans-Golgi network
TLE1 = Transducin-like enhancer protein 1
TMEM198 = Transmembrane protein 198
TRF1 = Telomeric repeat binding factor 1
TRKA kinases = TRK1-transforming tyrosine kinase protein or Trk-A
RNF146 = Poly(ADP-ribose)-directed E3 ligase
ROR = RAR-related orphan receptor
RYK = Related to receptor tyrosine kinase
V-ATPase = Vacuolar-type H+-ATPase
Wnt inhibitory factor-1
WNT = Wntless/Int1 signaling protein
WWE domain = Common interaction module in proteins by adding SUMO
Xpo1(Exportin 1) = Protein, participating in the nuclear export

REFERENCES

[1] Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982; 31(1): 99-109.
[2] Baker NE. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J 1987; 6(6): 1765-1773.
[3] McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 1989; 58(6): 1075-1084.
[4] Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781-810.
[5] Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2009; 1(2): a002881.
[6] van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009; 136(19): 3205-3214.
[7] MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17(1): 9-26.
[8] Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3): 469-480.
[9] Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17(1): 45-51.
[10] Clevers H, Nusse R, Wnt/beta-catenin signaling and disease. Cell 2012; 149(6): 1192-1205.
[11] Polakis P. Drugging Wnt signalling in cancer. EMBO J 2012; 31(12): 2737-2746.
[12] Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R et al. Functional interaction of beta-catenin with the transcription factor Lef-1. Nature 1996; 382(6592): 638-642.
[13] Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsavage S, Korinek V et al. XTC-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86(3): 391-399.
[14] van de Wetering M, Sancho E, Verweij C, de LW, Oving I, Hurlstone A et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111(2): 241-250.
[15] Xu W, Kimelman D. Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci 2007; 120(Pt 19): 3337-3344.
[16] Coates JC. Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 2003; 13(9): 463-471.
[17] Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20(8): 470-481.
[18] Huber AH, Nelson WJ, Weis WI. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 1997; 90(5): 871-882.
[19] Daugherty RL, Gottardi CJ. Phospho-regulation of beta-catenin adherence and signaling functions. Physiology (Bethesda) 2007; 22: 303-309.
[20] Verheyen EM, Gottardi CJ. Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn 2010; 239(1): 34-44.
[21] Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996; 10(12): 1443-1454.
[22] Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108(6): 837-847.
[23] Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K et al. An F-box protein, WFD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 1999; 18(9): 2401-2410.
Xing Y, Clements WK, Kimelman D, Xu W. Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev 2003; 17(22): 2753-2764.

Hart M, Conordet JP, Lassot I, Albert I, del los SR, Durand H et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 1999; 9(4): 207-210.

van Noort M., van de Ventering, M., Clevers H. Identification of two novel regulated serines in the N terminus of beta-catenin. Exp Cell Res 2002; 276(2): 264-272.

van Noort M., Meeldijk J., van der Zee R., Destree O., Clevers H. Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 2002; 277(20): 17901-17905.

Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 2000; 24(3): 245-250.

Webster MT, Rozycka M, Sara E, Davis E, Smalley M, Young N et al. Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer 2000; 28(4): 443-453.

Dahmen RP, Koch A, Denkhaus D, Tonc JC, Sorensen N, Berthold F et al. Deletions of AXIN1, a component of the WNT/lessing pathway, in sporadic medulloblastomas. Cancer Res 2001; 61(19): 7039-7043.

Clevers H. Axin and hepatocellular carcinomas. Nat Genet 2000; 24(3): 206-208.

Liu W, Dong X, Mai M, Scanlan RS, Taniguchi K, Krishnadhath KK et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 2000; 26(2): 146-147.

Wu R, Zhai Y, Fearon ER, Cho KR. Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 2001; 61(22): 8247-8255.

Parveen N, Hussain MM, Pandith AA, Mudassar S. Diversity of axin in signaling pathways and its relation to colorectal cancer. Med Oncol 2011; 28 Suppl 1: S259-S267.

Luo W, Lin SC. Axin: a master scaffold for multiple signaling pathways. Neurosignals 2004; 13(3): 99-113.

Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003; 1(1): E10.

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud et al. Beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Oncol Res 2002; 275(46): 10861-10864.

Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009; 461(7264): 614-620.

Baek S, Ziegler J, Park C, Kulikov AS, Lee H et al. AXIN, a negative regulator of Wnt signaling, functions as a tumor suppressor. Cell 2006; 124(7): 1045-1058.

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud et al. AXIN, a negative regulator of Wnt signaling, functions as a tumor suppressor. Cell 2006; 124(7): 1045-1058.
Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci U S A 1994; 91(19): 8969-8973.

Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates role in beta-catenin degradation. Mol Cell 2004; 15(4): 511-521.

Hulsken J, Birchmeier W, Behrens J, E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 1994; 127(6 Pt 2): 2061-2069.

Fodde R, Smits R, Clevers H. E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 1994; 127(6 Pt 2): 2061-2069.

Rubinfeld B, Polakis P. The Apc gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994; 54(14): 3676-3681.

Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P. A targeted chain-termination mutation in the mouse Apc allele converts a leprosy patient to a host cell. J Cell Sci 2003; 116(Pt 4): 637-646.

Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signaling pathways by a novel axin-binding protein. J Biol Chem 2001; 276(49): 45833-45839.

Hulsken J, Birchmeier W, Behrens J, E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 1994; 127(6 Pt 2): 2061-2069.

Rubinfeld B, Polakis P. The Apc gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994; 54(14): 3676-3681.

Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P. A targeted chain-termination mutation in the mouse Apc allele converts a leprosy patient to a host cell. J Cell Sci 2003; 116(Pt 4): 637-646.

Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signaling pathways by a novel axin-binding protein. J Biol Chem 2001; 276(49): 45833-45839.

Hulsken J, Birchmeier W, Behrens J, E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 1994; 127(6 Pt 2): 2061-2069.

Rubinfeld B, Polakis P. The Apc gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994; 54(14): 3676-3681.

Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P. A targeted chain-termination mutation in the mouse Apc allele converts a leprosy patient to a host cell. J Cell Sci 2003; 116(Pt 4): 637-646.

Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signaling pathways by a novel axin-binding protein. J Biol Chem 2001; 276(49): 45833-45839.

Hulsken J, Birchmeier W, Behrens J, E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 1994; 127(6 Pt 2): 2061-2069.

Rubinfeld B, Polakis P. The Apc gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994; 54(14): 3676-3681.

Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P. A targeted chain-termination mutation in the mouse Apc allele converts a leprosy patient to a host cell. J Cell Sci 2003; 116(Pt 4): 637-646.

Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signaling pathways by a novel axin-binding protein. J Biol Chem 2001; 276(49): 45833-45839.
Wnt/beta-catenin Signaling and Small Molecule Inhibitors

Current Pharmaceutical Design, 2013, Vol. 19, No. 4 657

[117] Marikawa Y, Elinson RP. beta-TrCP is a negative regulator of Wnt/beta-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mech Dev 1998; 77(1): 75-80.

[118] Latres E, Chiaur DS, Pagano M. The human F box protein betaTrCP associates with the Cull1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 1999; 18(4):849-854.

[119] Sadot E, Simcha I, Iwai K, Cicchanoever A, Geiger B, Ben-Ze'ev A. Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system. Oncogene 2000; 19(16): 1992-2001.

[120] Teuliere J, Paraldo MM, Shutman M, Birchmeier W, Huelskens J, Thiery JP et al. beta-catenin-dependent and -independent effects of DeltaN-plakoglobin on epithelial growth and differentiation. Mol Cell Biol 2004; 24(19): 8649-8661.

[121] ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J. Inactivation of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 2001; 8(7): 593-596.

[122] Thornton TM, Pedraza-Alga G, Deng B, Wood CD, Aronsham A, Clements JL et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 2008; 320(5876): 667-670.

[123] Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J 2004; 377(Pt 1): 249-255.

[124] Yost C, Farr GH, III, Pierce SB, Ferkey DM, Chen MM, Kimelman D, GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 1998; 93(6): 1031-1041.

[125] Li LL, Yuan H, Weaver CD, Mao J, Farr GH, III, Sussman DJ et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J 1999; 18(15): 4233-4240.

[126] Freemantle SJ, Portland HB, Ewings K, Dmitrovsky F, DiPetrillo D. The ex-pression and its correlation with pathologic grade, proliferation, phos- 249-255. Phorylation of glycogen synthase kinase-3 (GSK3) in mammalian cell-305(3): 974-980. on. Oncogene 1998; 18(4):849-854.

[127] Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E et al. The ex-pression of Frat1 correlates with malignant phenotype and advanced stage in human non-small cell lung cancer. Virchows Arch 2011; 459(3): 255-263.

[128] van Ameerssen R, Nawijn MC, Lambaio JP, Proost N, Jonkers J, Berns A. Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways. Oncogene 2010; 29(1): 93-104.

[129] Yang X, Guo M, Wang P, Liu B, Zhang X, Jiang X et al. The expression profile of FRAT1 in human gliomas. Brain Res 2010; 1290: 152-158.

[130] Zhang Y, Ju HJ, Lin XY, Miao Y, Han Y, Fan CF et al. Overexpression of Frat1 correlates with malignant phenotype and advanced stage in human non-small cell lung cancer. Virchows Arch 2011; 459(3): 255-263.

[131] Plotkin B, Kaidanovich O, Talior I, Eldar-Finkelman H. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther 2003; 305(3): 974-980.

[132] Bikkavilli RK, Feigin ME, Malbon CC. p38 MAP kinase inhibitor dilmapimod in activation of beta-catenin signaling in cutaneous keratinocytes is effective. J Pharmacol Exp Ther 2003; 305(3): 974-980.

[133] Xing L, Devadas B, Devraj RV, Selness SR, Shieh H, Walker JK et al. Discovery and characterization of atroposporin PH-797804, a p38 MAP kinase inhibitor, as a clinical drug candidate. ChemMed- Chem 2012; 7(2): 273-280.

[134] Smith M, Giriat I, Schmitt A, de Lange T. Tankyrase, a poly(ADP- ribose) polymerase at human telomeres. Science 1998; 282(5393): 1484-1487.

[135] Kim CA, Phillips ML, Kim W, Ginsberg M, Tran HH, Robinson MA et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J 2001; 20(15): 4173-4182.

[136] De Rycker M., Price CM. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. Mol Cell Biol 2004; 24(22): 9802-9812.

[137] Guettler S, LaRose J, Patsalaki E, Gish G, Scatter A, Pawson T et al. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for chenhdrome cell. Cell 2011; 147(6): 1340-1354.

[138] Blake D, Dundee MS, Barkauskaitė E, Westrun L, Lafite P, Dixon N et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolyse. Nature 2011; 477(7366): 616-620.

[139] Okita N, Ashizawa D, Ohta R, Abe H, Tanuma S. Discovery of novel poly(ADP-ribose) glycohydrolyse inhibitors by a quantitative assay system using dot-blot with anti-poly(ADP-ribose). Biochem Biophys Res Commun 2010; 392(4): 485-489.

[140] Dregalla RC, Zhou J, Idate RR, Battaglia CL, Liber HL, Bailey SM. Regulatory roles of tankyrase 1 at telomeres and in DNA repair: suppression of T-SCE and stabilization of DNA-PKcs. Aging (Albany NY) 2010; 2(10): 691-708.

[141] Wang Z, Cheng Z, Zhang Y, Hinds TR, Fan E et al. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WVE domains suggests a general mechanism for poly(ADP-ribosylation)-dependent ubiquitination. Genes Dev 2012; 26(3): 235-240.

[142] Ha GH, Kim HS, Go H, Lee H, Seimyia H, Chung DH et al. Tankyrase-1 function at telomeres and during mitosis is regulated by Polo-like kinase-1-mediated phosphorylation. Cell Death Differ 2012; 19(2): 321-332.

[143] Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A. Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Ptk1. EMBO J 2010; 29(10): 2470-2483.

[144] Chi NW, Lodish HF. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem 2000; 275(49): 38437-38444.

[145] Waters SB, D ’Auria M, Martin SS, Nguyen C, Kozma LM, Luskey KL. The amino terminus of insulin-responsive aminopeptidase causes Glat4 translation in 3T3-L1 adipocytes. J Biol Chem 1997; 272(37): 23323-23327.

[146] Shidlo Ji, Chi NW. Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase part- of the iso-ADP-ribose moiety in poly(ADP-ribose) by WW domains suggests a general mechanism for poly(ADP-ribosylation)-dependent ubiquitination. Genes Dev 2012; 26(3): 235-240.

[147] De Rycker M., Price CM. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. Mol Cell Biol 2004; 24(22): 9802-9812.

[148] Guettler S, LaRose J, Petsalaki E, Gish G, Scatter A, Pawson T et al. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for chenhdrome cell. Cell 2011; 147(6): 1340-1354.

[149] Blake D, Dundee MS, Barkauskaitė E, Westrun L, Lafite P, Dixon N et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolyse. Nature 2011; 477(7366): 616-620.

[150] Okita N, Ashizawa D, Ohta R, Abe H, Tanuma S. Discovery of novel poly(ADP-ribose) glycohydrolyse inhibitors by a quantitative assay system using dot-blot with anti-poly(ADP-ribose). Biochem Biophys Res Commun 2010; 392(4): 485-489.
sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev 2003; 17(10): 1219-1224.

Lo Celso C, Prowse DM, Watt FM. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 2004; 131(8): 1787-1799.

[162] Millar SE. Cell biology: The not-so-old couple. Nature 2009; 460(7251): 44-45.

Ulsamer A, Wei Y, Kim KK, Tan K, Wheeler S, Xi Y et al. Axin pathway activity regulates in vivo p53beta/beta-catenin accumulation and pulmonary fibrosis. J Biol Chem 2012; 287(7): 5164-5172.

Seto ES, Bellen HJ. Internalization is required for proper Wingless signaling in Drosophila melanogaster. J Cell Biol 2006; 173(1): 95-106.

[165] Karlberg T, Markova N, Johansson I, Hammarstroem M, Schultz P, Weigt J et al. Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J Med Chem 2010; 53(14): 5352-5355.

Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiurlo A, Thorsell AG et al. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 2012; 30(3): 283-288.

Narwal M, Fallerano A, Vuorela P, Lehtio L. Homogeneous screening assay for human tankyrase. J Biomol Screen 2012; 17(5): 593-604.

Shultz MD, Kirby CA, Tshy, Chinh DN, Blank J, Chariot O et al. [1,2,4]Triazol-3-ylsulfanyl)ethyl-[1,2,4]oxadiazoles: antagonists of the Wnt pathway that inhibit tankyrases 1 and 2 novel adenosine pocket binding. J Med Chem 2012; 55(3): 1127-1136.

Gunaydin H, Gu Y, Huang X. Novel binding mode of a potent and selective tankyrase inhibitor. PLoS One 2012; 7(3): e33740.

Kirby CA, Cheung A, Fazal A, Shultz MD, Stams T. Structure of human tankyrase 1 complex with small-molecule inhibitor PJ34 and XAV939. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68(Pt 2): 207-213.

Komeda H, Yamamoto H, Chiba T, Kikuchi A. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 2007; 12(4): 521-534.

Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell 1993; 4(12): 2363-2372.

Yan Q, Lennarz JW. Oligosaccharidyltransferase: a complex multi-subunit enzyme of the endoplasmic reticulum. Biochem Biophys Res Commun 1999; 266(3): 684-689.

Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Charnay P et al. Structural basis for the interaction between tanK and Wnt-5A. Science 1997; 275(5306): 1652-1654.

He X, Semenov M, Tamai K, Zeng X. LDL receptor-related protein 6 (LRP6) is required for Wnt/beta-catenin signaling: arrows point the way. J Cell Biol 2006; 173(1): 95-106.

Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 2010; 11(10): 1265-1271.

Port F, Basler K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 2010; 11(10): 1265-1271.

Benzinger J, Croteau C, He X, Saint-Jeannet JP, Wang Y, Nathans J et al. PKCdelta activation promotes bone formation. Dev Cell 2007; 12(1): 113-127.

[179] Fuerer C, Habib SJ, Nusse R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev Dyn 2010; 239(1): 184-190.

Panakova D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005; 435(7038): 58-65.

Korkut C, Ataman B, Ramachandran P, Ashley J, Gherbesi N et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 2009; 138(1): 393-404.

Yan D, Lin X. Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect Biol 2009; 1(3): a002493.

Greco V, Hannus M, Eaton S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 2001; 106(5): 541-552.

Yu HM, Jin Y, Fu J, Hsu W. Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis. Dev Dyn 2010; 239(7): 2102-2109.

Carpenter AC, Rao S, Wells JM, Campbell K, Lang RA. Generation of mice with a conditional null allele for Wntless. Genesis 2010; 48(9): 534-538.

[187] Bolenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YY et al. The retromer complex influences Wnt secretion by recycling Wntless from endosomes to the trans-Golgi network. Dev Cell 2008; 14(1): 120-131.

Niehrs C, Boulton M. Trafficking, acidification, and growth factor signaling. Sci Signal 2010; 3(124): e26.

Bao Z, Chang L, Gao H, Zhang L, Wang J et al. Wnt signaling is regulated by endoplasmic reticulum retention. PLoS One 2009; 4(7): e6191.

Dodge ME, Moon J, Tuladhar R, Lu J, Jacob LS, Zhang LS et al. Diverse chemical scaffolds support direct inhibition of the membrane bound O-acetyltransferase Porcupine. J Biol Chem 2012; 287(27): 23246.

Zecca M, Basler K, Stuhl G. Direct and long-range action of a wingless morphogen gradient. Cell 1996; 87(5): 833-844.

[196] Tao Q, Yokota C, Pack H, Kofron M, Bisroo B, Yan D et al. Maternal wnt1 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 2005; 120(6): 857-871.

He X, Semenov M, Tamai K, Zeng X. LDL receptor-related protein 6 (LRP6) is required for Wnt/beta-catenin signaling: arrows point the way. J Cell Biol 2006; 173(1): 95-106.

Liy B, Bu G. LRP5/6 in Wnt signaling and tumorigenesis. Future Oncol 2005; 1(5): 673-681.

Nusse R, Varma S. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 2012; 31(12): 2670-2679.

Vinson CR, Conover S, Adler PN. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 1989; 336(6212): 263-264.
Wnt/beta-catenin Signaling and Small Molecule Inhibitors

Current Pharmaceutical Design, 2013, Vol. 19, No. 4 659

[209] Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996; 382(6588): 225-230.

[210] Tolwinski NS, Wehrli M, Rives A, Erdeniz N, DiNardo S, Wieschaus E. Wg/Wnt signal can be transmitted through arrow/LRP6 and Axis independently of Zn2/Gsk3beta activity. Dev Cell 2003; 3(4): 407-418.

[211] Cong F, Schweizer L, Varmus H. Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oiguomers containing its receptors, Frizzled and LRP. Development 2004; 131(20): 5103-5115.

[212] Holmen SL, Robertson SA, Zylstra CR, Williams BO. Wnt-independent activation of beta-catenin mediated by a Dkk1-Fz5 fusion protein. Biochem Biophys Res Commun 2005; 328(2): 533-539.

[213] Caneparo L, Huang YL, Staudt N, Tada M, Ahrendt R, Kazanskyva O et al. Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/beta-catenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek. Genes Dev 2007; 21(4): 465-480.

[214] Bryja V, Andersson ER, Schambony A, Esner M, Bryjova L, Konvirta CM, et al. Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/beta-catenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek. Genes Dev 2007; 21(4): 465-480.

[215] Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y et al. Dally-like homolog Knypek. Genes Dev 2007; 21(4): 465-480.

[216] Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z. Mechanism for Wnt coreceptor activation. Mol Cell 2004; 13(1): 149-156.

[217] Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R et al. A dual-mechanism for Wnt co-receptor phosphorylation and activation. Nature 2005; 438(7069): 867-872.

[218] Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z. A mechanism for Wnt coreceptor activation. Mol Cell 2004; 13(1): 149-156.

[219] Carmon KS, Gong X, Lin Q, Thomas A, Liu Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt signaling in vitro. Proc Nat Acad Sci U S A 2008; 105(23): 8032-8037.

[220] Glicka P, Dolce C, Kirsch N, Huang YL, Kazankova O, Ingelfinger D et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signaling. Nature 2011; 476(7360): 293-297.

[221] Rakovics B, Lai S, Wang Y, Tolley J, O’Driscoll C et al. Direct interaction between Go and Rab5 during G protein-coupled receptor signaling. Sci Signal 2010; 3(136): ra65.

[222] Cong F, Schweizer L, Varmus H. Casein kinase I epsilon modulates glycosylation synthase kinase 3 inside multivesicular endosomes. Cell 2010; 143(7): 1136-1148.

[223] Blitzer JT, Nusse R. A critical role for endocytosis in Wnt signaling. BMC Cell Biol 2006; 7: 28.

[224] Piao S, Lee SH, Kim H, Yum S, Stamos J, Xu Y et al. Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRPs in Wnt/beta-catenin signaling. PLoS One 2008; 3(12): e35826.

[225] Kobrion M, Birsoy B, Houston D, Tao Q, Wylie C, Heasman J. Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRPs-mediated regulation of axin. Development 2007; 134(3): 503-513.

[226] Carmon KS, Gong X, Lin Q, Thomas A, Liu Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 2011; 108(28): 11452-11457.

[227] Glicka P, Dolce C, Kirsch N, Huang YL, Kazankova O, Ingelfinger D et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signaling. EMBO Rep 2011; 12(10): 1051-1061.

[228] Romero G, Sneddon WB, Yang Y, Wheeler D, Blair HC, Friedman PA. Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-Catenin signaling and osteoclastogenesis. J Biol Chem 2010; 285(19): 14756-14763.

[229] Genscore RC, Gardella TJ, Jumper H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005; 328(3): 666-678.

[230] Barker N., Huch M, Kujala P, van de Wetering M., Snippert H.J., Barker N., Huch M, Kujala P, van de Wetering M., Snippert H.J. LGR5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011; 476(7360): 293-297.

[231] Cervenka I, Wolf J, Masek J, Krejci P, Wilcorx WR, Kozhubik A et al. Mitogen-activated protein kinases promote Wnt/beta-catenin signaling via phosphorylation of Wnt5R6. Mol Cell Biol 2011; 31(1): 179-189.

[232] Krejci P, Aklia W, Mechelova K, Sevchikova E, Pruschakova J, Masek JK et al. Receptor tyrosine kinases activate canonical Wnt/beta-catenin signaling via MAP kinase/LRPs pathway and direct beta-catenin phosphorylation. PLoS One 2012; 7(4): e35826.

[233] Piao S, Lee SH, Kim H, Yum S, Stamos J., Xu Y et al. Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRPs in Wnt/beta-catenin signaling. PLoS One 2008; 3(12): e35826.

[234] de Laval W., Barker N, Low TY, Koo BK, Li VS, Teunissen H et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011; 476(7360): 293-297.

[235] Glicka P, Dolce C, Kirsch N, Huang YL, Kazankova O, Ingelfinger D et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signaling. EMBO Rep 2011; 12(10): 1051-1061.

[236] Romero G, Sneddon WB, Yang Y, Wheeler D, Blair HC, Friedman PA. Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-Catenin signaling and osteoclastogenesis. J Biol Chem 2010; 285(19): 14756-14763.

[237] Genscore RC, Gardella TJ, Jumper H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005; 328(3): 666-678.
Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA, Li Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS One 2011; 6(12): e29290.

Pan X, Ding K, Wang CY. Niclosamide, an old anthelmintic agent, demotorsin regulates tumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer 2012; 31(4): 178-84.

Osada T, Chen M, Yang XY, Spasojevic I, Vandeusen JB, Hsu D et al. Anthelmint compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res 2011; 71(12): 4172-4182.

Wharton KA, Jr. Runnin’ with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 2003; 253(1): 1-17.

Metcalfe C, Mendoza-Topaz C, Mieszczanek J, Bienz M. Stability elements in the LRP6 cytoplasmic tail confer efficient signaling upon DIX-dependent polymerization. J Cell Sci 2010; 123(Pt 9): 1588-1599.

Liu YT, Dan QI, Wang J, Feng Y, Chen L, Liang J et al. Molecular basis of Wnt activation via the DIX domain protein Cdc1. J Biol Chem 2011; 286(10): 8597-8608.

Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J Cell Sci 2005; 118(Pt 22): 5269-5277.

Smalley MJ, Signoret N, Robertson D, Tilley A, Hahn A, Ewan K et al. Dishevelled (Dvl-2) activates canonical Wnt signalling in the absence of cytoplasmic paxanta. J Cell Sci 2005; 118(Pt 22): 5279-5289.

Simons M, Gault WJ, Gotthardt D, Rohatgi R, Klein TJ, Shao Y et al. Electrophoemoc cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nat Cell Biol 2009; 11(3): 286-294.

Tauriello DV, Jordens I, Kirchner K, Sloorstra JW, Kruitwagen T, Bouwman BA et al. Wnt/beta-catenin signalling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc Natl Acad Sci U S A 2012; 109(14): E812-E820.

Punchihewa C, Ferreira AM, Cassell R, Rodrigues P, Fuji N. Sequence preference and subtype specificity in the high-affinity interaction between human frizzled and dishevelled proteins. Protein Sci 2009; 18(5): 994-1002.

Zhang L, Gao X, Wen J, Ying Y, Chen YG. Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 2006; 281(13): 8607-8612.

Chen H, Liu L, Ma B, Ma TM, Hou JJ, Xie GM et al. MEK/ERK and Wnt/beta-catenin pathways of cancer stem cells. Chin J Cancer 2012; 31(4): 178-182.

Pan JX, Ding K, Wang CY. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. J Biol Chem 2011; 286(12): 10396-10410.

Ioх K, Brott BK, Bai NU, Ratcliffe MJ, Sokol SY. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol Chem 2005; 280(1): 3.

Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T et al. Autophagy negatively regulates Wnt signaling by promoting Dishevelled degradation. Nat Cell Biol 2010; 12(8): 781-790.

Liu YT, Dan QI, Wang J, Feng Y, Chen L, Liang J et al. Site-specific casein kinase 1epsilon-dependent phosphorylation of Dvl to activate beta-catenin. Cell Signal 2007; 19(3): 4172-4182.
to tune the activation of beta-catenin signaling. Dev Cell 2008; 15(1): 37-48.

[298] Platta HW, Stenmark H. Endocytosis and signaling. Curr Opin Cell Biol 2011; 23(4): 393-403.

[299] Fevrier B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 2004; 16(4): 415-421.

[300] Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21(4): 575-581.

[301] Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 2012. DOI:10.1007/60441-012-1428-2.

[302] Piddini E, Marshall F, Dubois L, Hirst E, Vincent JP, Arrow (LRP6) and Frizzled2 cooperate to degrade Wingless in Drosophila imaginal discs. Development 2005; 132(24): 5479-5489.

[303] Hupalowska A, Miazynska M. The new faces of endocytosis in signaling. Traffic 2012; 13(1): 9-18.

[304] Hay E, Nouraud A, Marie PJ. N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling. PLoS One 2009; 4(12): e8284.

[305] Casagolda D, Del Valle-Perez B, Valls G, Lugilde E, Vinyoles M, Thiry JP. Cell-cell junction assembly and cell-cell signaling. J Cell Sci 2010; 123(Pt 15): 2621-2631.

[306] Dupre-Crochet S, Figueroa A, Hogan C, Ferber EC, Bialucha CU, Adams J et al. Casein kinase 1 is a novel negative regulator of E-cadherin-based cell-cell contacts. Mol Cell Biol 2007; 27(10): 3804-3816.

[307] Grey VE, Rubin JS. Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a-dependent neurite outgrowth. J Cell Biol 2011; 192(6): 993-1004.

[308] Cheong JK, Nguyen TH, Wang H, Tan P, Voorhoeve PM, Lee SH et al. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1delta/beta-catenin and Wnt/beta-catenin independent inhibition of mitotic spindle formation. Oncogene 2011; 30(22): 2558-2569.

[309] Park JI, Ji H, Sun S, Gu D, Hikasa H, Li L et al. Frodo links Di- shevelled to the p120-catenin/Kaiso pathway: distinct cadherin subfamilies promote Wnt signals. Dev Cell 2006; 11(5): 683-695.

[310] Cox RT, Kirkpatrick C, Peifer M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J Cell Biol 1996; 134(1): 133-148.

[311] Brembeck FH, Rosario M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 2006; 16(1): 51-59.

[312] Stockinger A, Eger A, Wolf J, Beug H, Foisner R. E-cadherin regulates cell-cell contact formation in a cadherin-independent manner. J Cell Biol 2011; 192(6): 7003-7011.

[313] Hazan RB, Kang L, Roe S, Borgen PI, Rimm DL. Vinculin is associated with the E-cadherin adhesion complex. J Biol Chem 1997; 272(51): 32448-32453.

[314] Knudsen KA, Sauer C, Johnson KR, Wheelock MJ. Effect of N-cadherin misexpression by the mammary epithelium in mice. J Cell Biol 2005; 166(6): 1093-1107.

[315] Hulit J, Suyama K, Chung S, Keren R, Agiostrati dou G, Shan W et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res 2007; 67(7): 3106-3116.

[316] Hulit J, Weidner KM, Fri xen UH, Schipper JH, Sachs M, Arakaki N et al. The role of E-cadherin and scatter factor in tumor invasion and cell motility. EXS 1991; 59: 109-126.

[317] Fri xen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991; 113(1): 173-185.

[318] Nagar B, Overduin M, Ikura M, Rini JM. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 1996; 380(6572): 360-364.

[319] Simcha I, Geiger B, Yehuda-Levenberg S, Salomon D, Ben-Ze’ev A. Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J Cell Biol 1993; 121(4): 199-209.

[320] Cieslik LA, Lee SH, Li SY, Li GY, Smith MJ, Reichardt LF et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 2010; 141(1): 117-128.

[321] Davis MA, Ireton RC, Reynolds AB. A core function for p120 catenin in cadherin turnover. J Cell Biol 2003; 163(5): 525-534.

[322] Xiao K, Allison DF, Buckley KM, Kotlde MD, Vincent PA, Faundez V et al. Cellular levels of p120 catenin as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol 2003; 163(3): 535-545.

[323] Kowalczyk AP, Reynolds AB. Protecting your tail: regulation of cadherin degradation by p120-catenin. Curr Opin Cell Biol 2004; 16(5): 522-527.

[324] Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA et al. A novel role for p120 catenin in E-cadherin function. J Cell Biol 2002; 159(3): 465-476.

[325] Reynolds AB. p120-catenin: Past and present. Biochim Biophys Acta 2007; 1773(1): 2-7.

[326] Nagafuchi A, Takeichi M, Tsukita S. The 102 kD cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 1991; 65(5): 849-857.

[327] Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 250(5008): 1451-1455.

[328] Gumbiner BM, McCrea PD. Catenins as mediators of the cytoplasmic functions of cadherins. J Cell Sci Suppl 1993; 17: 155-158.

[329] Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell 2005; 123(5): 899-901.

[330] Choi HJ, Gross JC, Pokutta S, Weis WI. Interactions of plakoglobin and beta-catenin with desmosomal catenins: basis of selective exclusion of alpha- and beta-catenin from desmosomes. J Biol Chem 2009; 284(46): 31776-31788.

[331] Huber AH, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 2001; 105(3): 391-402.

[332] Pokutta S, Weis WI. Structure of the dimerization and beta-catenin-binding region of alpha-catenin. Mol Cell 2000; 5(3): 533-543.

[333] Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, Garcia de HA et al. P120-Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin-Tyr-142 phosphorylation and beta-catenin-alpha-catenin interaction. Mol Cell Biol 2003; 23(7): 2287-2297.

[334] Kajiguchi T, Katsumi A, Tanizaki R, Kiyoi H, Naoe T, Y654 of beta-catenin is essential for FLT3/ITD-related tyrosine phosphorylation and nuclear localization of beta-catenin. Eur J Haematol 2012; 88(4): 319-320.

[335] Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG. Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 2001; 276(23): 20436-20443.

[336] van Veelen W., Le N.H., Helvenstein W, Blonden L, Theeuwes M, Bakker ER et al. beta-catenin tyrosine 654 phosphorylation in cells. Wnt signalling and intestinal tumorigenesis. Gut 2011; 60(9): 1204-1212.

[337] Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes
beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 2005; 25(20): 9063-9072.

[349] Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 2007; 282(15): 1997-19976.

[340] Tian Q, Freeman MC, Tao WA, He XC, Li L, Aebersold R et al. Proteomic analysis identifies that 14-3-3eta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A 2004; 101(43): 15370-15375.

[350] Agarwal A, Das K, Lerner N, Sathe S, Cicek M, Casey G et al. The AKT1 kappa B kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor kappa B and beta-catenin. Oncogene 2005; 24(6): 1021-1031.

[351] Fang D, Hawke D, Zheng Y, Xia Y, Meisenger J, Naka H et al. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 2007; 282(15): 11221-11229.

[352] Roua S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/β-catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274(51): 36734-36740.

[353] Nam JS, Ino Y, Sakamoto M, Hirohshi S. Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin Cancer Res 2002; 8(7): 2410-2416.

[354] Genda T, Sakamoto M, Ichida T, Asakura H, Hirohshi S. Loss of cell-cell contact is induced by integrin-mediated cell-substratum adhesion in highly-motile and highly-metastatic hepatocellular carcinoma cells. Lab Invest 2000; 80(3): 387-394.

[355] Muckle A, Philipp C, Vogelmann R, Vohravan R, Seidel B, Lutz MP, Adler G et al. Down-regulation of E-cadherin expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 2001; 61(8): 3508-3517.

[356] Coluccia AM, Benati D, Dekhil H, De Filippo A, Lan C, Gambacorti-Passerini C. SKI-606 decreases growth and motility of beta-catenin and its nuclear signaling. Cancer Res 2006; 66(4): 2279-2286.

[357] Vultur A, Buettner R, Kowolik C, Liang W, Smith D, Boschelli F et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 2002; 62(7): 2064-2071.

[358] Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303(5663): 1463-1467.

[359] Previdi S, Maroni P, Matteucci E, Broginni M, Bendinelli P, Desiderio MA. Interaction between human breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/Wnt pathways. Eur J Cancer 2010; 46(9): 1679-1691.

[360] Sharma M, Jamieson C, Johnson M, Molloy MP, Henderson BR. Specific armadillo repeat sequences facilitate beta-catenin nuclear accumulation in live cells via direct binding to β-catenin at its N-terminus. Nup62, Nup153, and RanBP2/Nup358. J Biol Chem 2012; 287(2): 819-831.

[361] Kajiguchi T, Chung EI, Lee S, Stine A, Kiyoi H, Naoe T et al. SKI-606 decreases growth and motility of colon cancer cells and reduces cancer metastasis. Clin Cancer Res 2008; 14(11): 31-40.

[362] Choi KH, Park MW, Lee SY, Jeon MY, Kim MY, Lee HK et al. Intracelular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol Cancer Ther 2006; 5(9): 2428-2434.

[363] Hoschuetzky H, Aherle H, Kemler R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 1994; 127(5): 1375-1380.

[364] Denzel S, Maetz D, Mack B, Canin M, Wemp F, Benk M et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 2009; 11(2): 162-171.

[365] Blaschuk OW, Deveny E. Cadherins as novel targets for anti-cancer therapy. Eur J Pharmacol 2009; 625(1-3): 195-198.

[366] Yarom N, Stewart D, Malik R, Wells J, Avruch L, Jonker DJ. Phase I Clinical Trial of Exerin (ADH-1) in Patients with Advanced Solid Tumors. Curr Clin Pharmacol 2012.

[367] Iozzo MV. Proteoglycans: structure, biology and molecular interactions. Gallagher FL, Ed. Molecular Structure of Hepuran Sulfate and interactions with growth factors and morphogens. 27-59. New York, Marcel Dekker Inc. Ref Type: Generic.

[368] Zhang YW, Vande Woude GF. HGF/SF/met-signal in the control of branching morphogenesis and invasion. J Cell Biochem 2003; 88(2): 408-417.

[369] Gao CF, Vande Woude GF. HGF/SF-Met-signal in tumor progression. Cell Res 2005; 15(1): 49-51.

[370] Gherardi E, Birchmeier W, Birchmeier C, Vande WG. Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012; 12(2): 99-103.

[371] Vermeulen L, de Sousa E Melo, van der Heijden M, Cameron K, de Jong JH, Borovski T et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010; 12(5): 468-476.

[372] Monga SP, Mars WM, Pediatidakis P, Bell A, Mule K, Bowen WC et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 2002; 62(7): 2064-2071.

[373] Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303(5663): 1483-1487.

[374] Previdi S, Maroni P, Matteucci E, Broginni M, Bendinelli P, Desiderio MA. Interaction between human breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/Wnt pathways. Eur J Cancer 2010; 46(9): 1679-1691.

[375] Shin S, Kim H, Kwon Y, Cho J, Kim S, Kim Y et al. c-Met-dependent phenotypes induced by nerve growth factor receptor. J Cell Biol 1994; 127(5): 1375-1380.

[376] Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P et al. Beta-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells. Leukemia 2007; 21(12): 2476-2484.

[377] Zhou L, An N, Haydon RC, Zhou Q, Cheng H, Peng Y et al. Tyrosine kinase inhibitor STI-571/Gleevec down-regulates the beta-catenin signaling activity. Cancer Lett 2003; 193(2): 161-170.

[378] Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoxicreductive antitumor activity in vivo. Cancer Res 2003; 63(21): 7345-7355.

[379] Cianfrocca R, Tocci P, Spinella F, Di C, V, Bagnato A, Rosano L. The endothelin A receptor and epidermal growth factor receptor signaling converge on beta-catenin to promote ovarian cancer metastasis. Life Sci 2012; 91(13-14): 550-556.

[380] Danilkovich-Miagkova A. Oncogenic signaling pathways activated by RON receptor tyrosine kinase. Curr Cancer Drug Targets 2003; 3(1): 31-40.

[381] Groetegut S, Von Schweinitz D, Christofori G, Lehembre F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1 and the c-Jun N-terminal kinase pathway. J Cell Biol 2000; 152(6): 1375-1380.

[382] Leroy P, Mostov KE. Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. Mol Biol Cell 2007; 18(5): 1943-1952.
Wnt/beta-catenin Signaling and Small Molecule Inhibitors

Current Pharmaceutical Design, 2013, Vol. 19, No. 4 663

[391] Ranganathan S, Tan X, Monga SP, beta-Catenin and met deregulation in childhood Hepatoblastomas. Pediatr Dev Pathol 2005; 8(4): 435-447.

[392] Lickert H, Bauer A, Kemler R, Spauttel J. Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem 2000; 275(7): 5090-5095.

[393] Du C, Jaggi M, Zhang C, Balaji KC. Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin. Cancer Res 2009; 69(3): 1117-1124.

[394] Li J, Sutter C, Parker DS, Blauwinkamp T, Fang M, Cadigan KM. CBP/p300 are bimodal regulators of Wnt signaling. EMBO J 2007; 26(9): 2284-2294.

[395] Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 1996; 59(1): 3-10.

[396] Arce L, Yokoyama NN, Waterman ML. Diversity of LEF/TCF action in development and disease. Oncogene 2006; 25(7): 7492-7504.

[397] Hoppler S, Kavanagh CL. Wnt signalling: variety at the core. J Cell Sci 2007; 120(Pt 3): 385-393.

[398] Solberg N, Machon O, Machonova O, Krauss S. Mouse Tre3 represses canonical Wnt signaling by either competing for beta-catenin binding or through occupation of DNA-binding sites. Mol Cell Biochem 2012; 365(1-2): 53-63.

[399] Van de Wetering M, Castrop J, Korinek V, Clevers H. Extensive transcriptional regulation of beta-catenin and plakoglobin. Mol Cell Biol 2000; 20(12): 4238-4252.

[400] Zhurinsky J, Shtutman M, Ben-Ze’ev A. Differential mechanisms of LEF/TCF family-dependent transcriptional activation by beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci U S A 1997; 94(25): 14757-14762.

[401] Hecht A, Litterer CM, Huber O, Kemler R. Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 1999; 274(25): 18017-18025.

[402] Kramps T, Peter O, Brunner E, Nellen D, Frosch B, Chatterjee S et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 2002; 109(1): 47-60.

[403] Townsley FM, Cliffe A, Bienz M. Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol 2004; 6(7): 626-633.

[404] Takemaru K, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT. Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 2003; 422(6934): 905-909.

[405] Li FQ, Mofunanya A, Harris K, Takemaru K. Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. J Cell Sci 2008; 121(7): 1141-1153.

[406] Chua EL, Young WJ, Chok WC, Dong Q. Cloning of TC-1 (C8orf4), a novel gene found to be overexpressed in thyroid cancer. Genomics 2000; 69(3): 342-347.

[407] Sunde M, McGrath KC, Young L, Matthews JM, Chua EL, Mackay JP et al. TC-1 is a novel tumorigenic and normally dispersed protein associated with thyroid cancer. Cancer Res 2004; 64(8): 2766-2773.

[408] Zhang C, Cho K, Huang Y, Lyons JP, Zhou X, Sinha K et al. Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci U S A 2008; 105(19): 6936-6941.

[409] Torres MA, Wilson NL. Colocalization and redistribution of dished and actin during Wnt-induced mesenchymal morphogenesis. J Cell Biol 2000; 149(7): 1433-1442.

[410] Hammerlein A, Weiske J, Huber O. A second protein kinase CK1-mediated step negatively regulates Wnt signaling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex. Cell Mol Life Sci 2005; 62(5): 606-618.

[411] Wang S, Jones KA. CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol 2006; 16(22): 2239-2244.

[412] Jin Y, Lu Z, Ding K, Li J, Du X, Chen C et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res 2010; 70(6): 2516-2527.

[413] Sun J, Wei WL. Biochemical and structural characterization of beta-catenin interactions with nonphosphorylated and CK2-phosphorylated Lef-1. J Biol Chem 2011; 405(2): 519-530.

[414] Ishitan T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N et al. The TAK1-NLK-MAPK-related pathway antagonizes signaling between beta-catenin and transcription factor TCF. Nature 1999; 399(6738): 798-802.

[415] Ishitan T. Context-dependent dual and opposite roles of nemo-like kinase in the Wnt/beta-catenin signaling. Cell Cycle 2012; 11(9): 1743-1745.

[416] Zeng Y, Verheyen EM. Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Development 2004; 131(12): 2911-2920.

[417] Ishitan T, Ninomiya-Tsuji J, Matsumoto K. Regulation of lymphoid enhancer factor 1/β-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol Cell Biol 2003; 23(4): 1379-1389.

[418] Ota S, Ishitan T, Shimizu N, Matsumoto K, Inoh M, Ishitan T. NLK positively regulates Wnt/beta-catenin signaling by phosphorylating LEFI in neural progenitor cells. EMBO J 2012; 31(8): 1904-1915.

[419] Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R. PIAxs, a nuclear matrix-associated SUMO E3 ligase, represses LEFI activity by sequestration into nuclear bodies. Genes Dev 2001; 15(23): 3088-3103.

[420] Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription activity. Exp Cell Res 2004; 301(14): 12682-12687.

[421] Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H et al. Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and
are dependent on the transcriptional co-activator CAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem 2012; 287(10): 7026-7038.

[436] Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010; 16(12): 3153-3162.

[437] Lu D, Liu JX, Endo T, Zhou H, Yao S, Willett K et al. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway. PLoS One 2009; 4(12): e8294.

[438] Schmidt M, Kim Y, Giat SM, Endo T, Lu D, Carson D et al. Increased in vivo efficacy of lenalidomide and thalidomide by addition of ethacrynic acid. In Vivo 2011; 25(3): 325-333.

[439] Jin G, Lu D, Yao S, Wu CC, Liu JX, Carson DA et al. Amide derivatives of ethacrynic acid: synthesis and evaluation as antagonists of Wnt/beta-catenin signaling and CCL cell survival. Bioorg Med Chem Lett 2009; 19(3): 606-609.

[440] Leporecurlet M, Chen YN, France DS, Wang H, Crews P, Petersen F et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5(1): 91-102.

[441] Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 2006; 5(12): 997-1014.

[442] Wei W, Chua MS, Greper S, So S. Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer 2010; 126(10): 2426-2436.

[443] Troset JY, Dalvit C, Knapp S, Fassolini M, Veronesi M, Mantegani S et al. Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins 2006; 64(1): 60-71.

[444] Tian W, Han X, Yan M, Xu Y, Duggineni S, Lin N et al. Structure-based discovery of a novel inhibitor targeting the beta-catenin/Tcf4 interaction. Biochemistry 2012; 51(2): 724-731.

[445] Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Buchannan FG, DuBois RN. Beta-catenin: a tumor suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumor cells. Gut 2011; 61(9): 1306-1314.

[446] Han G, Li AG, Liang YY, Owens P, He W, Lu S et al. Smad7-induced beta-catenin degradation alters epithelial appendage development. Dev Cell 2006; 11(3): 301-312.

[447] Iqbal S, Zhang S, Jho EH. The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem 2010; 285(47): 36420-36426.

[448] Tang Y, Liu Z, Zhao L, Clemens TL, Cao X. Smad7 stabilizes beta-catenin binding to E-cadherin complex and promotes cell-cell adhesion. J Biol Chem 2008; 283(35): 23956-23963.

[449] DiVito KA, Trabosh VA, Chen YS, Chen Y, Albanese C, Javelaud D et al. Smad7 restricts melanoma invasion by restoring N-cadherin expression and establishing heterotypic cell-cell interactions in vitro. Pigment Cell Melanoma Res 2010; 23(6): 795-808.

[450] Yang L, Lin C, Liu ZR. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 2006; 127(1): 139-155.

[451] Iqbal S, Zhang S, Driss A, Liu ZR, Kim HR, Wang Y et al. PDGF upregulates McI-1 through activation of beta-catenin and HIF-1-dependent signaling in human prostate cancer cells. PLoS One 2012; 7(11): e90764.

[452] Kwon C, Cheng P, King IN, Andersen P, Shenje L, Nigam V et al. Notch post-translational regulates beta-catenin protein in stem and progenitor cells. Nat Cell Biol 2011; 13(10): 1244-1251.

[453] Hsi LC, Angerman-Stewart J, Eling TE. Introduction of full-length APC modulates cyclooxygenase-2 expression in HT-29 human colorectal carcinoma cells at the translational level. Carcinogenesis 1999; 20(11): 2045-2049.

[454] Hsi SC. Wnt pathway: a new role in regulation of inflammation. Arterioscler Thromb Vase Biol 2008; 28(3): 400-402.

[455] Bolino KF, Theodoratou E, Farrington SM, Tesauro A, Barnteon RA, Ceturnska Y et al. Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut 2010; 59(12): 1670-1679.

[456] Brudvik KF, Paulsen JE, Aandahl EM, Roald B, Tasken K. Protein kinase A antagonists inhibit beta-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in Apc(Min+)/+ mice. Mol Cancer 2011; 10: 149.

[457] Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000; 1(3): 169-178.

[458] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113(6): 685-700.

[459] Liu W, Rui H, Wang J, Lin S, He Y, Chen M et al. Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J 2006; 25(18): 1646-1658.

[460] Imamura T, Takase M, Nishi T, Oda H, Hanai J, Kawabata M et al. Small-molecule antagonist of the oncogenic Tcf/beta-catenin complex. Cancer Cell 2004; 5(1): 91-102.

[461] Dufourcq P, Descamps B, Tojais NF, Leroux L, Oses P, Daret D et al. Networking of WNT, FGF, Notch, BMP, and Hedgehog signalling. Nat Rev Drug Discov 2006; 5(12): 997-1014.

[462] Caten M, Chen YN, France DS, Wang H, Crews P, Petersen F et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5(1): 91-102.

[463] O2 regulates stem cells through Wnt/beta-catenin signaling in human prostate cancer cells. PLoS One 2012; 7(3): e30764.

[464] Han G, Li AG, Liang YY, Owens P, He W, Lu S et al. Smad7-induced beta-catenin degradation alters epithelial appendage development. Dev Cell 2006; 11(3): 301-312.

[465] Edlund S, Lee SY, Grimsby S, Zhang S, Aspensstrom P, Heldin CH et al. Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis. Mol Cell Biol 2005; 25(4): 1475-1488.

[466] Tang Y, Liu Z, Zhao L, Clemens TL, Cao X. Smad7 stabilizes beta-catenin binding to E-cadherin complex and promotes cell-cell adhesion. J Biol Chem 2008; 283(35): 23956-23963.

[467] Saad M et al. O2 regulates stem cells through Wnt/beta-catenin signaling. Nat Cell Biol 2008; 10(11): 1475-1485.