Comments on the perturbation of Cornell potential in a QCD potential model

D K Choudhury and Krishna Kingkar Pathak

1. Introduction

In the potential models, the effective potential between a quark and antiquark can be taken as the Coulomb-plus-linear potential,

\[V(r) = -\frac{4\alpha_s}{r} + br + c. \]

(1)

This potential has received a great deal of attention in particle physics, more precisely in the context of meson spectroscopy where it is used to describe systems of quark and antiquark bound states. However, it has been found to be questionable about the numbers of free parameters (\(\alpha_s, b, c\)) and numbers of findings in any potential model. The success of a phenomenological model depends on reducing the free model parameters to obtain more precise values with proper arguments and analysis.

In this letter, we put forward the comments on linear part of the Potential as perturbation with Coulombic part as Parent [1, 2] as well as Coulombic part as perturbation with linear as parent [3] in a potential model and attempt to put some constraints on the model parameters.

2. The method of perturbation

It is well known that one cannot solve the Schrödinger equation in quantum mechanics with the QCD potential (equation (1)) except for some simple models. Perturbation theory has been helpful since the earliest applications of quantum mechanics in this regard. In fact, perturbation theory is probably one of the approximate methods that most appeals to intuition [4].

The advantage of taking Cornell Potential for study is that it leads naturally to two choices of “parent” Hamiltonian, one based on the Coulomb part and the other on the linear term, which can be usefully compared. It is expected that a critical role is played by \(r_0\) where the Potential \(V(r) = 0\). Aitchison and Dudek in Reference [5] put an argument that if the size of a state measured by \(\langle r \rangle < r_0\), then the Coulomb part as the “Parent” will perform better.
Figure 1: Variation of $V(r)$ with the variation of b, c and α_s.

and if not so the linear part as “parent” will perform better. The Aitchison’s work also showed that with Coulombic part as perturbation (VIPT), bottomonium spectra are well explained than charmonium where as charmonium states are well explained with linear part as parent. It becomes noteworthy in this context that the critical distance r_0 is not a constant and can be enhanced by reducing b and c or by increasing α_s. In Figure 1, we show the variation of $V(r)$ with the variation of model parameters.

3. The QCD potential model
For completeness and proper reference we put the last modified version of our model wave function with Coulombic part as parent as [6,7]

$$\psi_{rel+conf}(r) = \frac{N'}{\sqrt{\pi a_0^3}} e^{-r/a_0} \left(C' - \frac{\mu b a_0 r^2}{2} \right) \left(\frac{r}{a_0} \right)^{-\epsilon}$$ \hspace{1cm} (2)$$

where N' is the normalisation constant. All other terms involved in equation 2 are explained in reference [1,2,6] with a correction for ϵ [7]

$$\epsilon = 1 - \sqrt{1 - \left(\frac{4}{3} \alpha_s \right)^2}.$$ \hspace{1cm} (3)$$

4. Constraints from two points of view
In this section, we discuss the constrains of the model parameters. The values of α_s and the constant shift c of the potential $V(r)$ are expected to fit from mass spectroscopy of hadrons to study its other properties. A narrow range of the free parameters in a potential model measures its success and applicability as well. Here we have tried to show some constrains on the free parameters α_s and c from two points of view.

4.1. From the convergence point of view
In Reference [1,2], it is shown from the momentum transform of equation(2) (with $C' = 1$) that confinement can be treated as perturbation provided

$$\frac{(4 - \epsilon)(3 - \epsilon) \mu b a_0^3}{2(1 + a_0^2 \alpha^2)} \ll 1.$$ \hspace{1cm} (4)$$
perturbation, we get
\langle r \rangle = \int \psi^* r \psi dr = \frac{3a_0}{2} = r_1 \text{ (say)} \quad (6)
and the critical distance \(r_0 \) at which \(V(r_0) = 0 \) can be obtained by the relation
\[b^2 r_0^3 + cr_0 - \frac{4a_0}{3} = 0. \quad (7) \]
The variation of \(r_1 \) and \(r_0 \) with the model parameters can be easily studied from the above relations. From the calculation it seems to be clear that to treat linear part as perturbation with
the valid condition $\langle r \rangle < r_0$ one has to choose the value of $c \ll -0.5$ GeV. With $c = -1$ GeV the condition is found to be valid for certain value of α_s. In Table 3 and Table 4, we present our result with $c = -0.5$ GeV and $c = -1$ GeV.

4.3. Constrains on α_s

From the above analysis we see that in the perturbation procedure the value of α_s and the model parameter c plays a crucial role in choosing the parent and perturbative terms. From the reality condition and convergence of series demands the value of α_s within the range of $0.4 \leq \alpha_s \leq 0.75$ in the model without putting any further restriction or constraints. However the logarithmic decrease of α_s depends on the QCD energy scale parameter Λ_{QCD} which is a free parameter and has to be measured in the experiments. One well known formula to fix the value of α_s in Quark models is taken as \[\alpha_s(\mu^2) = \frac{4\pi}{\left(11 - \frac{2n_f}{3}\right)\ln \left(\frac{\mu^2 + M_B^2}{\Lambda_{QCD}^2}\right)} \tag{8} \]

where, n_f is the number of light flavours, μ is renormalisation scale related to the constituent quark masses as $\mu = 2\sum m_i/m_f$. M_B is the background mass related to the confinement term of the potential as $M_B = 2.24 \times b^{1/2} = 0.95$ GeV. The reality condition of α_s in equation(8) requires that $\Lambda_{QCD} \leq 460$ MeV. By fitting the ρ meson mass in equation(8) one easily obtains QCD scale parameter $\Lambda_{QCD} = 413$ MeV [10].

5. Conclusion and comments

In this letter we mainly devote in finding the analytical conditions to treat the linear part of the Cornell potential as perturbation. We find from the convergence point of view that one can consider the confining part of the potential as perturbation with $0.4 \leq \alpha_s \leq 0.75$ and $c = -0.5$ GeV. From table.3 and table.4 it seems to be clear that the validity of the condition $\langle r \rangle < r_0$ demands parametrisation of $\langle c \rangle < -0.5$ GeV and $\alpha_s > 0.6$. However with linear part as perturbation, if the value of α_s in the above range is taken to be granted, then with the same potential another possibility of considering the coulombic part as perturbation also arises for a value of $\alpha_s \leq 0.4$. Interestingly, in Reference [3], it is shown that with $\alpha_s = 0.39$ and $\alpha_s = 0.22$ one can obtain the required values of slope and curvature in the model with coulombic part as perturbation. The results in Reference [3], clearly indicates that with coulombic part as perturbation, one can get improved results with $\alpha_s \leq 0.4$ than $\alpha_s \geq 0.4$.

References

[1] Choudhury D K et al; 1995 PRAMANA Journal of Physics 44 6
[2] Choudhury D K and Bordoloi N S 2002 Mod. Phys. Lett. A 17 1909
[3] Hajarika B J, Pathak K K and Choudhury D K 2011 Mod. Phys. Lett. A 26 1547
[4] Fernandez Francisco M 2000 Introduction to Perturbation theory in Quantum mechanics (New York Washington:CRC Press)
[5] Aitchison I J R and Dudek J J 2002 Eur. J. Phys. 23 605
[6] Choudhury D K and Bordoloi N S 2009 Mod. Phys. Lett. A 24 443
[7] Pathak K K and Choudhury D K 2011 Chinese Physics Lett. 28 101201
[8] Eichten E et al., 1975 Phys. Rev. Lett. 34 369
[9] Hazarika B J and Choudhury D K 2010 Pramana J. Physics 75 423
[10] Ebert D, Faustov R N and Galkin V O 2009 Phys. Rev. D 79 114029