Pharmacological Potential of *Ulva* Species: A Valuable Resource

Abstract

With the emergence of new diseases, the increase of pathogenic strains resistance and the apprehensiveness of synthetic compounds side effects, there is a constant need to find natural and low toxicity drug candidates. Seaweeds are rich source of original and bioactive natural substances. In particular, species of the genus *Ulva* have been demonstrated to metabolize biomolecules with pharmacological potential. This mini review present some of the biological properties reported for *Ulva* spp.

Keywords: Green seaweed; *Ulva*; Antibacterial; Anti-inflammatory; Cytotoxic; Antiviral; Antiprotozoal; Antioxidant

Introduction

Ulva Linnaeus genus (Ulvacae, Ulvales) is an ubiquitous genus widely distributed in oceans and estuaries. Currently, 128 species (accepted taxonomically) have been listed all around the world [1]. Individuals of this genus are characterized by a broad range of environmental tolerance, high growth rate and photosynthetic activity leading to a relatively abundant natural biomass. Additionally, in a rich nutrient environment, these species can proliferate into green tides, making available important amounts of biomass [2]. On the other hand, the successful results obtained for *Ulva* spp. cultivation in integrated multitrophic aquaculture (IMTA) systems [3] or in land based aquaculture coupled with waste water bioremediation [4] allows promising development for sustainable raw material supply. This last decade, scientific interest for this taxonomic genus has increased [5]. The cosmopolitan nature of *Ulva* spp., its development patterns and plasticity, among other reasons make it a good model organism to study algal growth, development and morphogenesis [6]. From an economic perspective, the use of *Ulva* species for different applications has been largely described: bioremediation [7], bioenergy [8], food and feed [9]. A biorefinery approach for industrial exploitation of *Ulva* constituents have been proposed [10]. To realize an economically feasible value chain, cascading valorization of both protein and non-protein seaweed constituents is required. We here present a mini review of pharmacological perspectives for species of the genus *Ulva*.

Antibacterial and Antifungal

The constant increase of pathogenic microbes resistance to existing antibiotics led to the continual need to find new antibacterial candidates. Marine algae derivatives seem to be good candidates in novel, antibacterial drug discovery [11]. Antimicrobial properties of *Ulva* species have been widely studied. Crude extracts of *Ulva* spp. samples often displayed positive antibacterial and/or antifungal activities for samples collected from different parts of the world [12-14]. In some studies, the active compounds have been isolated and identified. As for example, two guaiane sesquiterpenes derivatives from *Ulva fasciata* have been described with significant antibacterial activity against *Vibrio parahaemolyticus* [12].

Recently [15] demonstrated that time of harvesting of the algae can influence the antibacterial activity. In fact, these authors reported that *U. lactuca* methanolic extracts inhibit a range of clinically relevant *Staphylococcus* strains. Moreover, the study showed that lunar phase of macroalge harvest significantly impacts antimicrobial activity, suggesting that antimicrobial properties can be maximized by manipulating time of algal harvest.

It’s worth to mention the use of *Ulva* extracts to synthesize nanoparticles [16,17]. This technique, is a novel and innovative area of research for biomedical applications. As for example, the study of antifungal potency of silver (Ag-NP) synthesized by *Ulva rigida* aqueous extract tested on different human pathogens and with significant activity obtained on *Aspergillus fumigatus* [18].

Anti-Inflammatory

Antimicrobial activity of species from *Ulva* genus have been reported in different studies. *Ulva rigida* collected from Tunisian coasts showed a significant inhibition of phospholipase A2 activity (PLA$_2$ of *Apis mellifera*). The bioassay guided fractionation of dichloromethane/methanol extract led to the isolation and identification of sulfoquinovosylglyceride as the active molecule with an IC$_{50}$ of 125µM [19].

A steroid, the 3-O-β-D glucopyranosyl-stigmasta-5,25-dien isolated from *Ulva lactuca*, showed topical antiinflammatory activity when tested on the mouse ear oedema assay [20]. Organic extracts of *Ulva conglobata* displayed neuroprotective and anti-inflammatory effects on murine hippocampal and microglial cells [21]. *U. reticulata* presented potent analgesic and anti-inflammatory effects in both acetic acid-induced writhing and hot plate-induced pain models, without significant toxic effect at...
highest possible doses [22]. More recently, sulfated polysaccharide fraction from *Ulva lactuca* (collected from Atlantic coasts from Brazil) displayed significant analgesic and anti-inflammatory action [23]. The authors demonstrated that the antinociceptive and anti-inflammatory action occurs through a peripheral mechanism: the bradykinin pathway.

Cytotoxic

There are several studies that demonstrate the cytotoxic potential of *Ulva* species. Methanol extract of *Ulva fasciata* collected from Indian coasts exhibited significant cytotoxic activity on hepatocyte carcinoma cells lines (HepG2) with optimum inhibition obtained at 170µg/ml [24]. Additionally, ethanolic extract of *Ulva rigida* collected from Marmara Sea shores possess a strong antigenotoxic, chemo-protective effects on mutagenic agent MMC in vitro [25]. These authors conclude that the obtained results for *U. rigida* extract (antigenotoxic and anti-clastogenic) are of great significance in radioprotection and thus may be useful in human pathological conditions. More recently, cytotoxic activity against three human cancer cell lines (HepG2, MCF7, and Hela) have been attributed to ulvan fraction extracted from *Ulva lactuca* collected from Vancouver coasts [26].

Antiviral

First mention of antiviral properties of *Ulva* spp. have been made in early nineties [27] with a bioactive sphingosine from *Ulva fasciata* collected from West cost of India. The extract showed antiviral activity against Semeliki Forest Virus (SFV) at 20mg/mouse/7 days.

Ulva rigida water extracts inhibited significantly the reproduction of influenza virus (A/Aichi (H3N2)) also in fertile eggs [28]. The study pointed that *Ulva rigida* extract reduced the mortality rate of white mice in experimental influenza infection when applied orally and extended the time of survival. Extracts of *Ulva fasciata* collected from Brazilian coasts have been evaluated on the replication of influenza virus (A/Aichi (H3N2)) [29]. The results demonstrated that the majority of the extracts possess virucidal activity and therefore have the ability to interact with the extracellular viral particles and prevent the infection. Ulvan, that are sulfated polysaccharide, have been described to have antiviral properties. The ulvan antiviral activity was tested using synctia formation against paramyxovirus infection, exhibiting significant activity with an IC₅₀ of 0.11µg/ml [30]. In addition, significant antiviral activities against Herpes simplex virus type-1 from *U. armoricana* extract have been described [31]. The revealed activities were correlated to high amounts of rhamnose, uronic acids and sulfate groups which are the main constituents of ulvans.

Antiprotozoal

Even thought antiprotozoal properties of seaweeds is understudied, some interesting findings can be reported for *Ulva* spp. Seaweed crude extracts extracts of *Ulva reticulata* and *Ulva rigida* have been documented to exhibit strong in vitro activity against the promastigote form of *Leshmania major* with IC₅₀ of 64.75µg/ml and 65.69µg/ml respectively [32]. Leishmanicidal potential of different marine and fresh macrophytes have been reported [33] highlighting the antiprotozoal potential of *Ulva lactuca* extract. In fact, *U. lactuca* displayed the most potent activity against axenic amastigotes of *Leshmania donovani* with IC₅₀=5.9ml/ml and efficiently inhibited the FabI enzyme. The antiprotozoal activity of four green marine algae collected from British coasts, among which two *Ulva* species (*U. intestinalis* and *U. lactuca*) have been prospected [34]. All crude extracts showed positive antiprotozoal activity against *Trypanosoma brucei rhodesiense* while a moderate trypanocidal activity against *Trypanosoma cruzi* were observed for *Ulva lactuca* extract.

Other

Last but not least, the antioxidant properties of *Ulva* spp. has to be described since this make them candidates for several pathologies in which the oxidative stress is incriminated (neurological disorders, atherosclerosis, hypertension, acute respiratory distress, idiopathic pulmonary fibrosis, asthma, cancer, etc.). The antioxidant properties of *Ulva* spp. have been studied form species collected from different part of the world [10,35,36]. As for example, the antioxidant activity, contents of total phenolics and flavonoids were quantified in the methanolic extracts of four *Ulva* species [37]. *Ulva cladophora* demonstrated the greater antioxidant potential with a low IC₅₀ of 0.881mg/ml, corresponding also to the highest phenolic and flavonoid content (5.080mg GAE/g and 33.094mg RE/g respectively). In addition, the free radical scavenging effects of hot water extract of *Ulva reticulata* obtained on animal model studies highlighted the possible use of this specie to reduce hepatic oxidative stress [38].

Conclusion

This mini review just sketches the potential of *Ulva* species for pharmacological use. This report reinforce the claims that seaweeds, and in particular species of the genus *Ulva*, can be used in heath industry. Additionally, *Ulva* species, with their wide range of application fields, their relatively abundant natural biomass, that can also be cultivated in a sustainable way, constitute good candidates for Blue Biotechnology development.

Conflict of Interest

Author declare that there is no conflict of interest.

References

1. Guiry MD, Guiry GM (2017) Algae Base. World-wide electronic publication, National University of Ireland, Galway, Ireland.
2. Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504: 84-88.
3. Marinho G, Nunes C, Sousa-Pinto I, Pereira R, Rema P, et al. (2013) The IMTA-cultivated Chlorophyta *Ulva* spp. as a sustainable ingredient in Nile tilapia (*Oreochromis niloticus*) diets. Journal of Applied Phycology 25(5): 1359-1367.
4. Lawton RJ, Mata L, de Nys R, Paul NA (2013) Algal bioenemiation of waste waters from land-based aquaculture using *Ulva*: selecting target species and strains. Plos One 8(10): e77344.
5. Silva M, Vieira L, Almeida AP, Kijjoa A (2013) The Marine Macroalgae of the Genus *Ulva*: Chemistry, Biological Activities and Potential Applications. Oceanography 1:101.

Citation: Ktari L (2017) Pharmacological Potential of Ulva Species: A Valuable Resource. J Anal Pharm Res 6(1): 00165. DOI: 10.15406/japhr.2017.06.00165
Pharmacological Potential of Ulva Species: A Valuable Resource

6. Richard T, Charrier B, Mineur F, Bothwell JH, De Clerck O, et al. (2015) The green seaweed Ulva: a model system to study morphogenesis. Front Plant Sci 6: 72.

7. Sode S, Bruhn A, Balsby TJ, Larsen MM, Gottfredsen A, et al. (2013) Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresource Technology 146: 426-435.

8. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, et al. (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102(3): 2595-2604.

9. Abdel-Warith AWA, Younis ESM, AIAsgha NA (2016) Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, Clarias gariepinus. Saudi J Biol Sci 23(3): 404-409.

10. Bikker P, van Krimpen MM, van Wijkseelaar P, Houweling-Tan B, Scaccia N, et al. (2016) Bioenergy potential of Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Physiol 26(6): 3511-3525.

11. Shannon E, Abu-Ghannam N (2016) Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Mar Drugs 14(4): 81-104.

12. Chakraborty K, Paulraj R (2010) Sesquiterpenoids with free-radical-scapling properties from marine macroalgae Ulva fasciata Delile. Food Chem 122: 31-41.

13. Trigui M, Gasmii L, Zouari I, Tounsi S (2013) Seasonal variation in phenolic composition, antibacterial and antioxidant activities of Ulva fasciata (Chlorophyta) and assessment of anti-acyethylcholinesterase potential. Journal of Applied Physcology 25(1): 319-328.

14. Boisvert C, Beaulieu L, Bonnet C, Pelletier E (2015) Assessment of the Antioxidant and Antibacterial Activities of Three Species of Edible Seaweeds. Journal of Food Biochemistry 39(4): 377-397.

15. Deveau AM, Miller-Hope Z, Lloyd E, Williams BS, Bolduc C, et al. (2016) Antimicrobial activity of extracts from macroalgae Ulva lactuca against clinically important Staphylococci is impacted by lunar phase of macroalgae harvest. Lett Appl Microbiol 62(5): 363-371.

16. Rahimi, Z, Youssefzadi M, Noori A, Akharzadeh A (2014) Green Synthesis of Silver Nanoparticles using Ulva flexuosa from the Persian Gulf, Iran. Journal of the Persian Gulf (Marine Science) 5(15): 9-16.

17. Fernández-Díaza C, Costea O, Maltab E-j (2017) Polymer chitosan nanoparticles functionalized with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solae senegalensis macrophages. Algal Research 26: 135-142.

18. El-Kassas HY, ELkomi MM (2015) Biogenic Silver Nanoparticles using Seaweed Ulva rigida and their Fungicidal and Cytotoxic Effects. JKAU, Mar Sci 25(1): 3-20.

19. Ktari L (2000) Recherche de composés actifs dans les algues marines: propriétés pharmacologiques et simulation de cycle biologique de l’algue et de la biosynthèse d’un métabolite. Paris VI University, France, pp. 140.

20. Awad NE (2000) Biologically active steroid from the green alga Ulva lactuca. Phytother Res 14(8): 641-643.

21. Jin DQ, Lim CS, Sung JY, Choi HG, Ha I, et al. (2006) Ulva conglobata, a marine alga, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neurosci Lett 402(1-2): 154-158.

22. Hong DD, Hien HM, Anh HTL (2011) Studies on the analgesic and anti-inflammatory activities of Sargassum swartzii (Turner). C Agardh (Phaeophyta) and Ulva reticulata Forskal (Chlorophyta) in experiment animal models. African Journal of Biotechnology 10(12): 2308-2314.

23. De Araújo, Rodrigues JA, Quinderé AL, Silva JF, Maciel GF, et al. (2016) Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca. Int J Biol Macromol 92: 820-830.

24. Das MK, Sahu PK, Rao GS, Mukkanti K, Silpavathi L (2014) Application of response surface method to evaluate the cytotoxic potency of Ulva fasciata Delile, a marine macro alga. Saudi J Biol Sci 21(6): 539-546.

25. Celikker S, Yildiz G, Vatan O, Bilaloglu R (2008) In vitro antigenotoxicity of Ulva rigida C. Agardh (Chlorophyceae) extract against induction of chromosome aberration, sister chromatid exchange and micronuclei by mutagenic agent MMC. Biomed Environ Sci 21(6): 492-498.

26. Thanh TT, Quach TM, Nguyen TN, Vu Luong D, Bui ML, et al. (2016) Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int J Biol Macromol 93: 695-702.

27. Garg HS, Sharma M, Dewan SB, Pramanik BN, Bose AK (1992) An antiviral sphingosine derivative from the green algae Ulva fasciata. Tetrahedron Lett 33(12): 1641-1644.

28. Serkedjewa J, Konakliwa M, Dimitrova-Konakliwa S, Ivanova V, Stefanov K, et al. (2000) Antifluinfluenza Virus Effect of Extracts from Marine Algae and Invertebrates. Z Naturforsch C 55(1-2): 87-93.

29. Mendes GD, Soares AR, Martins FO, de Albuquerque MCM, Costa SS, et al. (2010) Antiviral activity of the green marine alga Ulva fasciata on the replication of human metapneumovirus. Rev Inst Med trop S Paulo 52(1): 3-10.

30. Aguilar-Briseno JA, Cruz-Suarez LE, Sassi JF, Ricque-Marie D, Zapata-Benavides P, et al. (2015) Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection. Mar Drugs 13(2): 697-712.

31. Hardouin K, Bedoux G, Burlot A-S, Donnay-Moreno C, J-P Bergé, et al. (2016) Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Research 16: 233-239.

32. Sabina H, Tasneem S, Sambreen Kausar Y, Choudhary MI, Alhya R (2013) Antileishmanial activity in the crude extract of various seaweed from the coast of Karachi, Pakistan. Pak J Bot 37: 163-168.

33. Orhana I, Senera B, Atcib T, Brunc R, Perozzod R, et al. (2006) Turkish freshwater and marine macrophyte extracts show in vitro antiprotozoa activity and inhibit Fabl, a key enzyme of Plasmodium falciparum fatty acid biosynthesis. Phytomedicine 13(6): 388-393.

34. Spavieri J, Kaiser M, Casey R, Hingley-Wilson S, Lalvani A, et al. (2013) Antileishmanial activity of two seaweeds of Rameshwaram coast. Global J Pharmacol 36(3): 295-300.

35. Bikker P, van Krimpen MM, van Wijkseelaar P, Houweling-Tan B, Scaccia N, et al. (2016) Bioenergy potential of Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Physiol 26(6): 3511-3525.

36. Shannon E, Abu-Ghannam N (2016) Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Mar Drugs 14(4): 81-104.

37. Chakraborty K, Paulraj R (2010) Sesquiterpenoids with free-radical-scapling properties from marine macroalgae Ulva fasciata Delile. Food Chem 122: 31-41.

38. Trigui M, Gasmii L, Zouari I, Tounsi S (2013) Seasonal variation in phenolic composition, antibacterial and antioxidant activities of Ulva fasciata (Chlorophyta) and assessment of anti-acyethylcholinesterase potential. Journal of Applied Physcology 25(1): 319-328.

39. Boisvert C, Beaulieu L, Bonnet C, Pelletier E (2015) Assessment of the Antioxidant and Antibacterial Activities of Three Species of Edible Seaweeds. Journal of Food Biochemistry 39(4): 377-397.

40. Deveau AM, Miller-Hope Z, Lloyd E, Williams BS, Bolduc C, et al. (2016) Antimicrobial activity of extracts from macroalgae Ulva lactuca against clinically important Staphylococci is impacted by lunar phase of macroalgae harvest. Lett Appl Microbiol 62(5): 363-371.
37. Farasat M, Khavari-Nejad RA, Nabavi SMB, Namjooyan F (2014) Antioxidant Activity, Total Phenolics and Flavonoid Contents of some Edible Green Seaweeds from Northern Coasts of the Persian Gulf. Iran J Pharm Res 13(1): 163-170.

38. Balaji Raghavendra Rao H, Sathivel A, Devaki T (2004) Antihepatotoxic nature of Ulva reticulata (Chlorophyceae) on acetaminophen-induced hepatotoxicity in experimental rats. J Med Food 7(4): 495-497.