On special values at integers of L-functions of Jacobi theta products of weight 3

Ryojun Ito

Abstract

In this paper, we consider L-functions of modular forms of weight 3, which are products of the Jacobi theta series, and express their special values at $s = 3, 4$ in terms of special values of Kampé de Fériet hypergeometric functions. Moreover, via L-values, we give some relations between special values of Kampé de Fériet hypergeometric functions and generalized hypergeometric functions.

1 Introduction and Main Results

Let f be a modular form of weight k with q-expansion $f(q) = \sum_{n=0}^{\infty} a_n q^n$ ($q = e^{2\pi i \tau}$, $\text{Im}(\tau) > 0$). Then its L-function $L(f, s) = \sum_{n=1}^{\infty} a_n/n^s$ converges absolutely on $\text{Re}(s) > k + 1$ ($\text{Re}(s) > k/2 + 1$ if f is a cusp form). When the Fricke involution image $f^\#$ of f is also a modular form, then $L(f, s)$ is meromorphically continued to the whole complex plane with a possible simple pole at $s = k$, and is entire when $f^\#(0) = 0$ (see [15, Theorem 3.2]). In this paper, we consider the case when $f(q)$ is a product of the Jacobi theta series

$$
\theta_2(q) := \sum_{n \in \mathbb{Z}} q^{(n+\frac{1}{2})^2}, \ \theta_3(q) := \sum_{n \in \mathbb{Z}} q^n, \ \theta_4(q) := \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2},
$$

which are modular forms of weight $1/2$, and satisfies the condition $f^\#(0) = 0$.

In [13], by an analytic method, Rogers and Zudilin expressed $L(f, 2)$ for some theta products $f(q)$ of weight 2 in terms of special values of generalized hypergeometric functions

$$
p+1 F_p \left[\begin{array}{c} a_1, a_2, \ldots, a_{p+1} \\ b_1, b_2, \ldots, b_p \end{array} | z \right] := \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_{p+1})_n}{(b_1)_n \cdots (b_p)_n} \frac{z^n}{(1)_n},
$$

where $(a)_n := \Gamma(a + n)/\Gamma(a)$ denotes the Pochhammer symbol. Other known results of hypergeometric expressions of L-values are the following.

1. Otsubo [10] expressed $L(f, 2)$ for some theta products $f(q)$ of weight 2 in terms of $3F_2(1)$ via regulators.

*Department of Mathematics and Informatics, Graduate School of Science, Chiba University, Yayoicho 1-33, Inage, Chiba, 263-8522 Japan. E-mail: afua0032@chiba-u.jp, 2010 Mathematics Subject Classification: 11F27, 11F67, 33C20, 33C99 keywords: theta series, L-values for theta products, generalized hypergeometric functions, Kampé de Fériet hypergeometric functions.
2. Rogers [11], Rogers-Zudilin [13], Zudilin [19] and the author [8] expressed \(L(f, 2) \) for some theta products \(f(q) \) of weight 2 in terms of \({}_3F_2(1) \) by using the Rogers-Zudilin method. Furthermore, Zudilin [19] expressed \(L(f, 3) \) for the theta product which corresponds to the elliptic curve of conductor 32 in terms of \({}_4F_3(1) \).

3. Rogers-Wan-Zucker [12] expressed \(L(f, 2) \) (resp. \(L(f, 3), L(f, 4) \)) for some quotients \(f(q) \) of the Dedekind eta function \(\eta(q) := q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \) of weight 3 (resp. 4, 5) in terms of special values of generalized hypergeometric functions or the gamma function by an analytic method. The author [9] expressed \(L(f, 1) \) (hence the values at 2 by the functional equations) for some theta products \(f(q) \) of weight 3 in terms of \({}_3F_2(1) \) by using the Rogers-Zudilin method.

4. Samart [14] expressed \(L(f, 3) \) for some eta quotients \(f(q) \) of weight 3 in terms of \({}_3F_4(1) \) via Mahler measures.

In this paper, we consider the following normalized Jacobi theta products of weight 3

\[
f(q) = \frac{1}{16} \theta_2^4(q) \theta_4^2(q), \quad g(q) = \frac{1}{16} \theta_2^4(q) \theta_4^2(q^2).
\]

We remark that \(f(q) \) is an Eisenstein series twisted by some Dirichlet characters and \(g(q) \) is the cusp form corresponding to the Kummer K3 surface defined by \(z^2 = x(x^2 - 1)y(y^2 - 1) \) (cf. [18, Theorem 7.4]).

The aim of this paper is to express \(L(f, n) \) and \(L(g, n) \) for \(n = 3, 4 \) in terms of special values of the Kampé de Fériet hypergeometric function [1, 17]

\[
F^{A;B;B'}_{C;D;D'} \left(a_1, \ldots, a_A, b_1, \ldots, b_B, b'_1, \ldots, b'_{B'}; c_1, \ldots, c_C, d_1, \ldots, d_D, d'_1, \ldots, d'_{D'} \middle| x, y \right) := \sum_{m,n=0}^{\infty} \prod_{i=1}^{A} (a_i)_{m+n} \prod_{i=1}^{B} (b_i)_m \prod_{i=1}^{B'} (b'_i)_m \prod_{i=1}^{C} (c_i)_{m+n} \prod_{i=1}^{D} (d_i)_m \prod_{i=1}^{D'} (d'_i)_n (1)_m (1)_n,
\]

which is a two-variable generalization of generalized hypergeometric functions.

The main results are the following.

Theorem 1. 1.

\[
L(f, 3) = \frac{\pi^2}{96} F^{1;2;2}_{1;1;1} \left(\frac{2}{3}, \frac{1}{2}, \frac{1}{2} \middle| 1, 1 \right).
\]

2.

\[
L(g, 3) = \frac{\pi^3}{128} F^{1;2;2}_{1;1;1} \left(\frac{2}{3}, \frac{1}{2}, \frac{1}{2} \middle| 1, 1 \right).
\]

Theorem 2. 1.

\[
L(f, 4) = \frac{\pi^3}{288} \left(3F^{1;3;2}_{1;2;1} \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \middle| 1, 1 \right) + F^{1;3;2}_{1;2;1} \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \middle| 1, 1 \right) \right).
\]

2.

\[
L(g, 4) = \frac{\pi^4}{768} \left(2F^{1;3;2}_{1;2;1} \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \middle| 1, 1 \right) + F^{1;3;2}_{1;2;1} \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \middle| 1, 1 \right) \right).
\]
We remark that the double series $F_{\alpha;B;C}^{A:B+1:C+1}(x,y)$ converges absolutely on $|x| \leq 1$ and $|y| \leq 1$ when the parameters satisfy the following conditions [7, Theorem 1]

\[
\begin{align*}
\text{Re} & \left(\sum_{i=1}^{A} c_i + \sum_{i=1}^{B} d_i - \sum_{i=1}^{A} a_i - \sum_{i=1}^{B+1} b_i \right) > 0, \\
\text{Re} & \left(\sum_{i=1}^{A} c_i + \sum_{i=1}^{C} d'_i - \sum_{i=1}^{A} a_i - \sum_{i=1}^{B+1} b'_i \right) > 0, \\
\text{Re} & \left(\sum_{i=1}^{A} c_i + \sum_{i=1}^{B} d_i + \sum_{i=1}^{C} d'_i - \sum_{i=1}^{A} a_i - \sum_{i=1}^{B} b_i - \sum_{i=1}^{C+1} b'_i \right) > 0.
\end{align*}
\]

We prove Theorems 1 and 2 by using the Rogers-Zudilin method. The strategy of the method is as follows. For $h \in \mathbb{Z}_{\geq 1}$, the value $L(h, n)$ is obtained by the Mellin transformation of $h(q)$

\[
L(h, n) = \frac{(-1)^{n-1}}{\Gamma(n)} \int_0^1 (h(q) - a_0)(\log q)^{n-1} \frac{dq}{q}.
\]

(1)

The key to express the value $L(h, n)$ in terms of special values of hypergeometric functions is the following transformation formulas

\[
\theta_2^2(q) = 2F_1 \left[\frac{1}{2}, \frac{1}{2} \right| \alpha \right], \quad \theta_3^2(q) = \frac{dq}{\alpha(1-\alpha)}
\]

(2)

where $\alpha := \theta_2^2(q)/\theta_3^2(q)$. The former is [3, p.101, Entry 6], and the latter follows from the former and [2, p.87, Entry 30]. By these formulas, we reduce the integral (1) to an integral of the form

\[
\int_0^1 P(\alpha) \sum_{p=1}^{n} F_p \left[\frac{a_1, a_2, \ldots, a_{p+1}}{b_1, \ldots, b_p} \right] \frac{dq}{\alpha(1-\alpha)}.
\]

where $P(\alpha)$ is a polynomial in $\alpha^k (1 - \alpha)^l$ for various k and l. Then, by simple computations, we obtain hypergeometric expressions of L-values.

Finally, we remark that we have simpler hypergeometric expressions of the L-values $L(f, 3)$, $L(f, 4)$ and $L(g, 3)$. Since $f(q)$ is the Eisenstein series twisted by the Dirichlet characters $\chi_{-4}(n) := \text{Im}(i^n)$ and $\psi(n) := (-1)^{n-1}$ [5, p. 281, Lemma 3.32 (3.85)]

\[
f(q) = \frac{1}{16} \theta_2^2(q)\theta_3^2(q) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^2 q^n}{1 + q^{2n}} = \sum_{n,k=1}^{\infty} \psi(n)n^2\chi_{-4}(k)q^{nk},
\]

we have

\[
L(f, s) = \sum_{n,k=1}^{\infty} \psi(n)n^2\chi_{-4}(k) = L(\psi, s - 2)L(\chi_{-4}, s),
\]

where $L(\chi, s)$ is the Dirichlet L-function associated to a Dirichlet character χ. We know $L(\psi, 1) = \log 2$ and $L(\chi_{-4}, 3) = \pi^3/32$, hence we obtain

\[
L(f, 3) = \frac{\pi^3 \log 2}{32}.
\]
Moreover, the value $L(f, 4)$ can be expressed in terms of $_5F_4$, since we have
$L(\psi, 2) = \pi^2/12$ and

$$L(\chi_{-4}, 4) = _5F_4 \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 \right] - 1 = _5F_4 \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 \right] - \frac{1}{81} _5F_4 \left[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 1 \right],$$

which easily follows from

$$2n + 1 = \frac{3}{2} n, \quad 4n + 1 = \frac{5}{2} n, \quad 4n + 3 = \frac{7}{2} n.$$

Similarly, we have a simpler expression of $L(g, 3)$ [14, Corollary 1.3]

$$L(g, 3) = \frac{\pi^3}{1024} \left(48 \log 2 - _5F_4 \left[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, 1, 1 \right] \right).$$

Therefore we obtain via L-values the following reduction formulas for Kampé de Fériet hypergeometric functions.

Corollary 3. 1.

$$F_{1;1;1}^{1;2;2} \left[\frac{2}{5}; \frac{1}{2}; \frac{1}{2}; 1 \right] = 3\pi \log 2.$$

2.

$$8F_{1;1;1}^{1;2;2} \left[\frac{3}{2}; \frac{3}{2}; \frac{3}{2}; \frac{1}{2}; 1 \right] = 48 \log 2 - _5F_4 \left[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, 1, 1 \right].$$

3.

$$\frac{\pi}{24} \left(3F_{1;2;1}^{1;3;2} \left[\frac{1}{2}; \frac{1}{2}; \frac{1}{2}; \frac{1}{2}; 1 \right] + F_{1;2;1}^{1;3;2} \left[\frac{1}{2}; \frac{3}{4}; \frac{3}{4}; \frac{3}{4}; 1 \right] \right)$$

$$= _5F_4 \left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1 \right] - 1.$$

The author does not know how to derive these formulas directly. It is new that the value $L(g, 4)$ is expressed in terms of special values of hypergeometric functions. Similarly to the results above, one might be able to express the value $L(g, 4)$ in terms of special values of generalized hypergeometric functions.

2 Proof of Theorem 1

We first show the following integral expressions of the L-values $L(f, 3)$ and $L(g, 3)$.

Proposition 4. 1.

$$L(f, 3) = \frac{\pi^2}{8} \int_0^1 \theta_2^4(q) \theta_4^2(q) \sum_{r,k=1}^{\infty} \frac{q^{(2r-1)(2k-1)}}{2r-1} dq.$$

2.

$$L(g, 3) = \frac{\pi^2}{16} \int_0^1 \theta_2^4(q) \theta_4^2(q) \sum_{r,k=1}^{\infty} \frac{q^{2(r-1/2)(k-1/2)}}{2r-1} dq.$$
Proof. We prove the formula for \(L(f, 3) \) only. Similar computation leads to the remaining formula.

By (1), we have

\[
L(f, 3) = \frac{1}{2} \int_0^1 \frac{1}{16} \quad \frac{\theta_2^4(q)\theta_4^2(q)(\log q)^2 dq}{q}
\]

By changing the variable \(q = e^{-\pi u} \), we have

\[
L(f, 3) = \frac{\pi^3}{32} \int_0^\infty \theta_2^4(e^{-\pi u})\theta_4^2(e^{-\pi u})u^2 du.
\]

If we use the involution formula for \(\theta_4(q) \) [4, p.40, (2.3.3)], the Lambert series expansions of \(\theta_2^2(q) \) and \(\theta_4^2(q) \) [5, p.177, Theorem 3.10 (3.15) and p.196, Theorem 3.26 (3.69)]

\[
\sqrt{u}\theta_4(e^{-\pi u}) = \theta_2(e^{-\frac{\pi}{2}u}), \quad (3)
\]

\[
\theta_2^2(q) = 4 \sum_{n,k=1}^\infty \chi_{-4}(n)q^{n(k-1/2)}, \quad \chi_{-4}(n) := \text{Im}(i^n), \quad (4)
\]

\[
\theta_4^2(q) = 16 \sum_{r,s=1}^\infty (2r-1)q^{(2r-1)(2s-1)}, \quad (5)
\]

and the substitution \(u \mapsto nu/(2r-1) \), then we obtain

\[
L(f, 3) = 2\pi^3 \int_0^\infty \left(\sum_{n,s=1}^\infty \chi_{-4}(n)n^2e^{-\pi un(2s-1)} \right) \left(\sum_{r,k=1}^\infty e^{-\frac{\pi(2r-1)(k-1/2)}{2r-1}} \right) u du.
\]

We know that the first series in the integral above is the theta product [5, Lemma 3.32 (3.84)]

\[
\sum_{n,s=1}^\infty \chi_{-4}(n)n^2q^{n(2s-1)} = \frac{1}{4} \theta_2^2(q^2)\theta_4^2(q^2).
\]

By this identity and (3), we have

\[
L(f, 3) = \frac{\pi^3}{2} \int_0^\infty \theta_2^4(e^{-2\pi u})\theta_4^2(e^{-2\pi u}) \left(\sum_{r,k=1}^\infty e^{-\frac{\pi(2r-1)(k-1/2)}{2r-1}} \right) u du
\]

\[
= \frac{\pi^3}{16} \int_0^\infty \theta_2^4(e^{-\pi u})\theta_4^2(e^{-\pi u}) \left(\sum_{r,k=1}^\infty e^{-\frac{\pi(2r-1)(k-1/2)}{2r-1}} \right) du / u^2.
\]

If we use the substitutions \(u \mapsto 1/u \), \(q = e^{-\pi u} \) and \(q \mapsto q^2 \), then we obtain the formula.

\[
\square
\]

The series in the integrals in Proposition 4 are hypergeometric functions.

Lemma 5. 1.

\[
\sum_{r,k=1}^\infty \frac{q^{(2r-1)(2k-1)}}{2r-1} = \frac{\alpha}{16} \quad _2F_1 \left[\begin{array}{c} 1, 1 \\ \frac{1}{2} | \alpha \end{array} \right].
\]
\[\sum_{r,k=1}^{\infty} \frac{q^{2(r-1/2)(k-1/2)}}{2r-1} = \frac{\alpha^{1/2}}{4} \binom{\frac{1}{2} \cdot \frac{1}{2}}{1 \cdot \frac{1}{2}}. \]

Proof. We prove these hypergeometric expressions by using the transformation formulas (2).

By (5), we have
\[\sum_{r,k=1}^{\infty} \frac{q^{2r-1)(2k-1)}}{2r-1} = \int_0^q \sum_{r,k=1}^{\infty} (2k-1)q^{2(r-1)(2k-1)} \frac{dq}{q} = \frac{1}{16} \int_0^q \theta_2^4(q) \frac{dq}{q}. \]

If we use (2), then the integral above is equal to
\[\frac{1}{16 \int_0^\alpha} \frac{d\alpha}{\alpha(1 - \alpha)} = -\frac{1}{16} \log(1 - \alpha). \]

Since we know
\[-\log(1 - \alpha) = a_2 F_1 \left[\frac{1}{2}, 1 \right] \alpha, \]
we obtain the first formula.

Similarly, we have
\[\sum_{r,k=1}^{\infty} \frac{q^{2(r-1/2)(k-1/2)}}{2r-1} = \frac{1}{32} \int_0^q \theta_2^4(q^2) \frac{dq}{q} = \frac{1}{8} \int_0^q \theta_2^3(q) \theta_3^2(q) \frac{dq}{q}. \]

Here we used \(2\theta_2(q^2) \theta_3(q^2) = \theta_2^3(q)\) \([3, \text{ p. } 40, \text{ Entry } 25 (iv)]\) for the last equality. Then, by (2), we obtain
\[\int_0^q \theta_2^3(q) \theta_3^2(q) \frac{dq}{q} = \int_0^\alpha \frac{d\alpha}{\alpha(1 - \alpha)}. \]

By the integral representation of hypergeometric functions [16, (1.6.6)]
\[a_2 F_1 \left[\frac{a, b}{c} \right] = \frac{\Gamma(c)}{\Gamma(c - b) \Gamma(b)} \int_0^1 t^b (1 - t)^{c-b} (1 - zt)^{-a} \frac{dt}{t(1-t)}, \]
we have
\[\int_0^\alpha \frac{d\alpha}{\alpha(1 - \alpha)} = \frac{1}{2} \int_0^1 \theta_2^4(1-t)(1-\alpha t)^{-1} \frac{dt}{t(1-t)} = \frac{1}{2} \frac{\Gamma \left(\frac{1}{2} \right) \Gamma \left(\frac{1}{2} \right)}{\Gamma \left(\frac{3}{2} \right)} a_2 F_1 \left[\frac{1}{2}, 1 \right] \alpha, \]

hence we obtain the second formula.

Proof of Theorem 1. By Lemma 5 and the transformation formulas (2), we have
\[L(f, 3) = \frac{\pi^2}{128} \int_0^1 \alpha^2 (1 - \alpha)^{1/2} \binom{1/2}{1/2} \frac{d\alpha}{\alpha(1 - \alpha)}, \]
\[L(g, 3) = \frac{\pi^2}{64} \int_0^1 \alpha^{3/2} (1 - \alpha)^{1/2} \binom{1/2}{1/2} \frac{d\alpha}{\alpha(1 - \alpha)}. \]
If we use the series expansions of hypergeometric functions and integrate term-by-term, we obtain

\[L(f, 3) = \frac{\pi^2}{128} \int_0^1 \frac{\alpha^2 (1 - \alpha)^{1/2} \, \, _2F_1 \left[\frac{1}{2}, 1, 2 \right] \, \, _2F_1 \left[\frac{1}{2}, 1, 2 \right]}{\alpha (1 - \alpha)} \, \, d\alpha \]

\[= \frac{\pi^2}{128} \sum_{m, n = 0}^{\infty} \frac{(1)^2_m}{(2)_m (1)^2_n} \int_0^1 \alpha^{2+m+n} (1 - \alpha)^{1/2} \, \, _2F_1 \left[\frac{1}{2}, 1, 2 \right] \, \, d\alpha \]

\[= \frac{\pi^2}{128} \sum_{m, n = 0}^{\infty} \frac{(1)^2_m}{(2)_m (1)^2_n} \Gamma (2 + m + n) \Gamma \left(\frac{1}{2} \right) \]

\[= \frac{\pi^2}{96} \, _1F_1;2;2 \left[\frac{2}{5}, 2, 1; 1, 1 \right]. \]

By similar computations, we have the hypergeometric expression of the value \(L(g, 3) \).

\[\square \]

3 Proof of Theorem 2

Similarly to the computations in the proof of Proposition 4, we obtain the following integral expressions of the \(L \)-values \(L(f, 4) \) and \(L(g, 4) \).

Proposition 6. 1.

\[L(f, 4) = \frac{\pi^4}{48} \int_0^1 (2\theta_4^2 (q^2) - \theta_4^2 (q)) \left(\sum_{n, r = 1}^{\infty} \frac{\chi_1(n)}{(2r - 1)^2} q^{n(r - 1/2)} \right) \, \, dq. \]

2.

\[L(g, 4) = \frac{\pi^4}{48} \int_0^1 (2\theta_4^2 (q^4) - \theta_4^2 (q^2)) \left(\sum_{n, r = 1}^{\infty} \frac{\chi_1(n)}{(2r - 1)^2} q^{n(r - 1/2)} \right) \, \, dq. \]

Proof. We prove the formula for \(L(f, 4) \) only. The formula for \(L(g, 4) \) is obtained by similar computations.

By (1), we have

\[L(f, 4) = \frac{1}{6} \int_0^1 \frac{1}{16} \theta_4^2 (q) \theta_4^2 (q) (\log q)^3 \, \, dq = \frac{\pi^4}{96} \int_0^1 \theta_4^2 (e^{-\pi u}) \theta_4^2 (e^{-\pi u}) u^3 \, \, du. \]

By (3), (4), (5) and the variable transformation \(u \mapsto (k - 1/2)u/(2r - 1) \), we have

\[L(f, 4) = \frac{\pi^4}{12} \sum_{s, k = 1}^{\infty} (2k - 1)^3 e^{-\pi (2s - 1)(2k - 1)} \left(\sum_{n, r = 1}^{\infty} \frac{\chi_1(n)}{(2r - 1)^2} e^{-\pi n(2r - 1)} \right) u^2 \, \, du. \]

The first series in the integral is a theta product.

Lemma 7.

\[\sum_{s, k = 1}^{\infty} (2k - 1)^3 q^{(2s - 1)(2k - 1)} = \frac{\theta_4^2 (q^{1/2}) - 8 \theta_4^2 (q)}{256}. \]
Proof. We have
\[
\sum_{s,k=1}^{\infty} (2k-1)^3 q^{(2s-1)(2k-1)} = \sum_{s,k=1}^{\infty} (k^3 q^{sk} - 9k^3 q^{2sk} + 8k^3 q^{sk})
\]
\[= \frac{M(q) - 9M(q^2) + 8M(q^4)}{240},\]
where
\[M(q) := 1 + 240 \sum_{s,k=1}^{\infty} k^3 q^{sk}.\]
We know that \(\theta_2(q)\) has the connection with \(M(q)\) [5, p.207, Theorem 3.39 (3.101)]
\[\theta^8_2(q^{1/2}) = \frac{16}{15} (M(q) - M(q^2)).\]
By this identity, we obtain the lemma.

If we use the lemma above and (3), we have
\[
L(f,4) = \frac{\pi^4}{3072} \int_0^{\infty} (\theta^8_2(e^{-u/4}) - 8\theta^8_2(e^{-u/2})) \left(\sum_{n,r=1}^{\infty} \frac{\chi_{n-4}(n)}{(2r-1)^2} e^{-\pi n(2r-1)/u} \right) u^2 du
\]
\[= \frac{\pi^4}{24} \int_0^{\infty} (\theta^8_4(e^{-4\pi/u}) - \theta^8_4(e^{-2\pi/u})) \left(\sum_{n,r=1}^{\infty} \frac{\chi_{n-4}(n)}{(2r-1)^2} e^{-\pi n(2r-1)/u} \right) u^2 du.
\]
By changing the variables \(u \mapsto 1/u\) and \(q = e^{-2\pi u}\), we obtain the proposition.

We remark that the series in the integrals in Proposition 6 can be expressed in terms of generalized hypergeometric functions [6, (2.2)]
\[
\sum_{n,r=1}^{\infty} \frac{\chi_{n-4}(n)}{(2r-1)^2} q^{n(2r-1)/2} = \frac{\alpha^{1/2}}{4} \left[F_2 \left[\begin{array}{c} 1 \frac{3}{2}, \frac{3}{2} \\ 1 \right] \right] \alpha = \frac{1}{2} F_1 \left[\begin{array}{c} 1 \frac{3}{2} \frac{3}{2} \\ 1 \right] \alpha
\]
(6)

Proof of Theorem 2. By (2) and (6), we obtain
\[
L(f,4) = \frac{\pi^3}{192} \int_0^{1} ((\alpha^{1/2} + \alpha^{3/2})(1-\alpha) F_2 \left[\begin{array}{c} 1 \frac{3}{2}, \frac{3}{2} \\ 1 \frac{3}{2} \frac{3}{2} \\ 1 \right] \right] \frac{d\alpha}{\alpha(1-\alpha)},
\]
\[
L(g,4) = \frac{\pi^3}{384} \int_0^{1} ((1-\alpha)^{1/2} + (1-\alpha)^{3/2}) F_2 \left[\begin{array}{c} 1 \frac{3}{2}, \frac{3}{2} \\ 1 \frac{3}{2} \frac{3}{2} \\ 1 \right] \alpha
\]
Here we used
\[2\theta^8_4(q^2) - \theta^8_4(q) = (1+\alpha)(1-\alpha)\theta^8_4(q),\]
\[2\theta^8_4(q^4) - \theta^8_4(q^2) = \frac{1}{2} ((1-\alpha)^{1/2} + (1-\alpha)^{3/2})\theta^8_4(q),\]
which follow from the formulas [4, p. 34, (2.1.7i), (2.1.7ii)]
\[2\theta^8_4(q^2) = \theta^8_4(q) + \theta^8_4(q), \quad \theta_3(q)\theta_4(q) = \theta^2_4(q^2).
\]
Then the hypergeometric expressions can be proved by interchanging of the order of summation and integration.

8
Acknowledgment

The author expresses his gratitude to Noriyuki Otsubo for a lot of helpful comments on a draft version of this paper.

References

[1] P. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques; Polynômes d’Hermite, Gauthier-Villars, Paris, 1926.
[2] B. C. Berndt, Ramanujan’s Notebooks, part II, Springer, New York, NY, 1989.
[3] B. C. Berndt, Ramanujan’s Notebooks, part III, Springer, New York, NY, 1991.
[4] J. M. Borwein, P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley & Sons, 1987.
[5] S. Cooper, Ramanujan’s theta functions, Springer, 2017.
[6] W. Duke, Some entries in Ramanujan’s notebooks, Math. Proc. Cambridge Philos. Soc. 144 no. 2, 2008, 255-266.
[7] N. T. Hái, O. I. Marichev, H. M. Srivastava, A note on the convergence of certain families of multiple hypergeometric series, Journal of Mathematical Analysis and Applications 164, 1992, 104-115.
[8] R. Ito, The Beilinson conjectures for CM elliptic curves via hypergeometric functions, Ramanujan J 45, 2018, 433-449.
[9] R. Ito, The special values of L-functions at s = 1 of theta products of weight 3, Research in Number Theory 5, 2019, 1-8.
[10] N. Otsubo, Certain values of Hecke L-functions and generalized hypergeometric functions, J.Number Theory 131, 2011, 648-660.
[11] M. Rogers, Boyd’s conjectures for elliptic curves of conductor 11, 19, 39, 48 and 80, unpublished notes, 2010.
[12] M. Rogers, J.G. Wan, I.J. Zucker, Moments of elliptic integrals and critical L-values, Ramanujan J. 37, 2015, 113-130.
[13] M. Rogers, W. Zudilin, From L-series of elliptic curves to Mahler measures, Compositio Math. 148, 2012, 385-414.
[14] D. Samart, Three-variable Mahler measures and special values of modular and Dirichlet L-series, Ramanujan J. 32, 2013, 245-268.
[15] G. Shimura, Elementary Dirichlet Series and Modular Forms, Springer, 2007.
[16] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, 1966.
[17] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Mathematics and Its Applications, Ellis Horwood, Chichester; Halsted Press (John Wiley & Sons), New York, 1985.
[18] J. Top, N. Yui, *Congruent number problems and their variants*, Algorithmic Number Theory vol. 44, 2008, 613-639.

[19] W. Zudilin, *Period(d)ness of L-Values*, Number Theory and Related Fields, Springer Proceedings in Mathematics and Statistics vol. 43, 2013, 381-395.