Thiazide Diuretics and Fracture Risk: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

Louis-Charles Desbiens,1,2 Nada Khelifi,1,2 Yue-Pei Wang,1,2 Felix Lavigne,1,2 Véronique Beaulieu,1,2 Aboubacar Sidibé,1,2 and Fabrice Mac-Way1,2

1CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Quebec, Canada
2Department of Medicine, Faculty of Medicine, Laval University, Quebec, Canada

ABSTRACT
Thiazide diuretics are commonly used antihypertensive agents. Until today, whether their use reduces fracture risk remains unclear. Our objective was to conduct a systematic review of thiazide diuretics’ effects on fractures and bone mineral density (BMD) in randomized clinical trials (RCT) of adults. MEDLINE, EMBASE, CENTRAL, and the WHO’s ICTRP registry were searched from inception to July 31, 2019. Two reviewers assessed studies for eligibility criteria: (i) RCTs; (ii) including adults; (iii) comparing thiazides, alone or in combination; (iv) to placebo or another medication; and (v) reporting fractures or BMD. Conference abstracts and studies comparing thiazides to antiresorptive or anabolic bone therapy were excluded. Bias was assessed using Cochrane Collaboration’s Risk of Bias Tool-2. The primary outcome was fracture at any anatomical site. Secondary outcomes were osteoporotic fractures, hip fractures, and BMD at femoral neck, lumbar spine, and/or total hip. Fractures were pooled as risk ratios (RRs) using random-effect models. Prespecified subgroup analyses and post hoc sensitivity analyses were conducted. From 15,712 unique records screened, 32 trials (68,273 patients) met eligibility criteria. Thiazides were associated with decreased fractures at any site (RR = 0.87, 95% confidence interval [CI] 0.77–0.98; I² = 0%) and osteoporotic fractures (RR = 0.80; 95% CI 0.69–0.94; I² = 0%). Results were consistent in most subgroups and sensitivity analyses. Few studies reported hip fractures, and no association was found between thiazides and this outcome (RR = 0.84; 95% CI 0.67–1.04; I² = 0%). Only four studies reported BMD; a meta-analysis was not conducted because BMD reporting was inconsistent. Trials were deemed at low (3 studies, weight = 3%), some concerns (16 studies; 71%), or high (11 studies; 26%) risk of bias for the primary outcome. In conclusion, thiazide diuretics decreases the risk of fractures at any and at osteoporotic sites in a meta-analysis of RCTs. Additional studies are warranted in patients with high fracture risk. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

KEY WORDS: BONE MINERAL DENSITY; DIURETICS; FRACTURE; SYSTEMATIC REVIEW; THIAZIDE

Introduction
Hypertension affects 28% to 44% of individuals in occidental countries1,2 and is the most important risk factor for global disease burden.3 Several pharmacological classes are recommended as first-intention treatments for hypertension.4–6 Among these, thiazide diuretics represent 24% to 30% of antihypertensive drugs prescribed in the United States.7,8 Their role in cardiovascular protection has been demonstrated in large clinical trials and meta-analyses.9–11 Since thiazide diuretics have been associated with an enhancement of osteoblast activity and decreased calcium in animal models and humans,12–14 it has been suggested that thiazide use could decrease fracture incidence, a major source of increased mortality, institutionalization, health costs, and decreased quality of life in aging populations.15–18 Several epidemiological studies have indeed reported an association between thiazide use and decreased fracture risk, but these studies were limited by potential indication biases.19–25 In contrast, although no randomized controlled trial (RCT) was specifically designed to evaluate the effects of thiazides on fractures, several trials have reported fractures as adverse events.26–28 Previous systematic reviews conducted on this matter mostly focused on observational studies and did not include these RCTs.29–31 Consequently, the clinical impact of thiazide use on bone outcomes remains unclear. Because the selection of an antihypertensive agent is based on its risk–benefit profile, an enhanced appreciation of thiazides’
effects on fractures would help clinicians better individualize treatment to patients’ own condition.

Therefore, our primary objective was to conduct a systematic review and meta-analysis to evaluate the effect of thiazide diuretics on fracture risk from RCTs of adult patients. Our secondary objective was to evaluate the effect of thiazide diuretics on bone mineral density (BMD).

Methods

Design

This study was conducted according to Cochrane and Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) recommendations. The study protocol was prospectively registered in PROSPERO (CRD42018078083).

Search strategy

We searched MEDLINE, EMBASE, Cochrane Central Register of Randomized Clinical Trial (CENTRAL), and the World Health Organization’s International Clinical Trials Registry Platform (ICTRP) databases from inception to July 31, 2019. A two-prong strategy has been developed to identify all RCTs investigating thiazides with maximal sensitivity (Supplementary Table S1). The first prong (thiazides) was composed of free text, Medical Subject Heading, and Emtree key words based on a previous Cochrane systematic review. The second prong (RCTs) employed the sensitivity- and precision-maximizing version of the Cochrane Strategy for MEDLINE and a sensitivity maximizing filter with increased specificity developed for EMBASE. References of included studies were reviewed to identify eligible studies.

Eligibility criteria

Included studies met the following criteria: (i) randomized clinical trials; (ii) with at least one arm including thiazide or thiazide-like diuretics, alone or in combination; (iii) compared with placebo or non-thiazide medications; (iv) including adults (>80% of patients); and (v) reporting fractures and/or BMD at femoral neck, total hip, or lumbar spine. Co-interventions were allowed. Exclusion criteria were: (i) comparison of thiazides to antiresorptive agents or bone anabolic therapies and (ii) conference abstracts. No language restriction was applied.

Study selection

Two independent reviewers assessed the eligibility of studies in a two-step procedure. Citations’ titles and abstracts were first screened. Potentially eligible studies without mention of fractures or BMD in the abstract were kept to increase the sensitivity. Full texts were then assessed to confirm eligibility. Discords between the reviewers were solved by discussion. For duplicate reports of the same trial, the report with the most useful information was kept and the remaining reports were used as necessary. Review of trials in languages other than English or French was conducted after translation by collaborators or translators.

Data collection

Data were extracted by two independent reviewers (LCD, FM) on a standardized form with discorndances solved by discussion. A pilot extraction form was tested beforehand. The following data were collected: (i) methodology (design, follow-up, sample size, randomization, prespecified outcomes, bias); (ii) population characteristics (age, sex, comorbidities, baseline blood pressure [BP]); (iii) interventions (medication, co-interventions); (iv) outcome measurement (fracture assessment and validation, BMD units, and anatomical sites); and (v) outcomes (number of fractures, anatomical sites, BMD, obtained BP). Fracture events for the longest follow-up period were collected. Post-intervention BP was collected at the median follow-up. Comparator groups were categorized as placebo (including no medication), non-thiazide antihypertensives, or both/other (either non-antihypertensive comparator or two comparator groups). Studies’ authors were contacted for supplemental data as necessary. Risk of bias was assessed by two independent reviewers (LCD, FM) using the Cochrane Collaboration’s Risk of Bias Tool (version 2).

Outcomes

The primary outcome was fracture at any anatomical site. Secondary outcomes were osteoporotic fractures, hip fractures, and BMD at the femoral neck, total hip, and/or lumbar spine. These BMD sites were chosen a priori because they are recommended for osteoporosis diagnosis.

Data synthesis

Descriptive characteristics of included studies are presented using proportions for nominal data, means or medians for continuous data. Meta-analyses were conducted with random effects models. Fractures were pooled as risk ratios (RR) using the Mantel–Hantzel method and BMD as mean differences (MD) using the inverse variance method. Heterogeneity was assessed using the DerSimonian–Laird estimator. BMD reported as post-intervention values in each treatment group were transformed as absolute change from baseline values using formulas provided in the Cochrane Handbook. Absolute (g/cm²) and relative (percentage) changes from baseline BMD values were pooled separately. BMD at different anatomical sites was also pooled separately. In studies with zero-cell counts, a fixed value of 0.5 was added to each cell. Meta-analysis was deemed appropriate a priori if three or more studies reported an outcome. The meta package was used in R 4.1.0 (R Foundation for Statistical Computing) to carry analyses.

Heterogeneity and publication bias

Heterogeneity was measured with the I^2 statistic and categorized according to existing guidelines. Potential sources of heterogeneity were investigated in preplanned subgroup analyses. These analyses were performed for age, sex, baseline BP, follow-up length, comparators, fracture reporting (outcome, adverse events), and overall risk of bias. Post hoc sensitivity analyses were conducted by excluding the results of trials restricted to some anatomical fracture sites or with a major weight in meta-analyses. Post hoc sensitivity analyses using alternative methods for zero-cell correction and heterogeneity estimation were conducted according to previous recommendations. Publication bias was assessed by visual analysis of funnel plots and computation.
Study acronym/ID (country)	Population	Age (years)	Women (%)	Baseline BP (mmHg)	Duration	Thiazide arm(s) Protocol (daily doses)	n	Obtained BP (mmHg)	Comparator arm(s) Protocol (daily doses)	n	Obtained BP (mmHg)	Outcome(s)
Ando(54) 2009 ONEAST (Japan)	20–80 years HTN	66	56	151/83	12 weeks	HCTZ 12.5 mg Telmisartan 40–80 mg	37	133/77	Amlodipine 5–7.5 mg	38	144/81	FX (AE)
Brown(60,92) 2016 PATHWAY-3 (UK)	18–80 years HTN 1 MetS component	62	41	155/91	24 weeks	HCTZ 25-50 mg HCTZ 12.5-25 mg Amlodipine 5-10 mg	146	136/NR	Placebo 10–20 mg	145	135/NR	FX (SAE)
Canter(55) 1994 (multinational)	>18 years HTN	53	37	162/105	8 weeks	HCTZ 12.5 mg	88	6/7	Amlodipine 10–20 mg	259	14/11	FX (SAE)
Daiichi Sankyo(73,93) 2009 CS8635-A-E303 (multinational)	>18 years HTN	56	42	148/94	8 weeks	HCTZ 12.5 mg	269	139/86	Olmesartan 40 mg Amlodipine 10 mg	270	136/85	FX (SAE)
Diehm(69) 2011 (multinational)	>40 years HTN PAD	66	23	148/84	24 weeks	HCTZ 25 mg	86	140/80	Nebivolol 5 mg	91	140/80	FX (SAE)
Fletcher(50,94) 1991 EWPHE (multinational)	>60 years HTN	72	70	182/101 Mean 4.6 years	416	150/85	Placebo 424	171/95	FX (AE)			
Genton(56) 1994 (multinational)	18–75 years HTN	55	49	168/102	8 weeks	HCTZ 12.5 mg	222	149/91	Ramipril 2.5 mg	218	150/89	FX (drug-related SAE)
Giles(51,95) 1992 (USA)	HTN	63	16	135/NR	1 year	HCTZ 50 mg	15	123/NR	Placebo 63	113/NR	BMD (LS)	
Kario(57,96) 2017 NOCTURNE (Japan)	30–85 years HTN	63	45	146/87	8 weeks	Trichlormethiazide 1 mg Irbesartan 100 mg TZD Olmesartan	208	134/82	Placebo 203	129/78	FX (SAE)	
Kato(58) 2011 MOTHER (Japan)	65–85 years HTN CVD risk factor CHF NYHA 1–2	73	39	160/87	24 weeks	HCTZ 25 mg	60	NR	Placebo 61	NR	FX (AE-withdrawal)	
Kleber(59) 1990 (Germany)	60–79 years No HTN BMD Z-score – 2 to +2	66	66	NR	8 weeks	HCTZ 25 mg	107	NR	Placebo 105	NR	FX (prespecified outcome: questionnaire + radiological validation) BMD (LS, TH)	
LaCroix(28) 2000 (USA)	60–79 years No HTN BMD Z-score – 2 to +2	68	63	125/NR	3 years	HCTZ 25 mg	108	NR	Placebo 105	NR	FX (SAE)	
Lee(60) 2012 (Taiwan)	20–80 years HTN Type 2 diabetes Microalbuminuria	60	41	141/87	16 weeks	HCTZ 7.25-25 mg Valsartan 40-160 mg	85	123/79	Amlodipine 2.5–10 mg Benazepril 5-20 mg	84	126/78	FX (SAE)
Study acronym/ID (country)	Population	Age	Women (%)	Baseline BP (mmHg)	Duration	Thiazide arm(s)	Comparator arm(s)	Outcome(s)				
---------------------------	------------	-----	-----------	--------------------	----------	----------------	------------------	-------------				
Lonn^{(61,97) 2016} HOPE-3 (multinational)	M > 55 years (+ one CVD risk factor) F > 65 years (+ one CVD risk factor) F 60–65 years (+ two CVD risk factors)	66	46	138/82	Median 5.6 years	HCTZ 12.5 mg, Candesartan 16 mg, Rosuvastatin 10 mg randomized 1:1	Placebo, Rosuvastatin 10 mg	FX (hospitalization cause)				
Mallion^{(62) 2000} (France)	18–75 years HTN	56	52	163/101	12 weeks	Indapamide 0.625 mg, Perindopril 2 mg	HCTZ 25 mg	Atenolol 50 mg				
Merck^{(74,98,99) 2010} MK-8835-032 (multinational)	18–65 years HTN Uncontrolled type 2 diabetes	50	34	152/102	4 weeks	HCTZ 12.5 mg	Placebo, Ertuglisofin 1-25 mg	Placebo, Benazepril 2.5–10 mg				
Moser^{(53) 1992 (USA, Bahamas)}	HTN	54	32	136/84	4 weeks	HCTZ 25 mg	Placebo	FX (AE-withdrawal)				
Novartis^{(71,100,101) 2003 ACCOMPLISH (multinational)}	>55 years HTN CVD/target organ damage	68	40	145/80	Mean 3 years	HCTZ 12.5–25 mg, Benazepril 20–40 mg	Placebo	FX (SAE)				
Novartis^{(72,102,103) 2008 ACQUIRE (multinational)}	HTN >18 year	57	50	167/95	12 weeks	HCTZ 25 mg Aliskiren 300 mg	Placebo	FX (SAE)				
Novartis^{(75,104,105) 2008} ValVET (Canada, USA) Perez-Castrillon^{(52) 2003 (Spain)} Peters^{(57,106–108) 2010} HYVET (multinational)	HTN >80 years HTN >70 years HTN HTN >80 years HTN >80 years HTN >80 years	78	56	165/85	4 weeks	HCTZ 12.5 mg, Valsartan 160 mg	Placebo	BMD (LS)				
Putnam^{(11,26,109) 2017 ALLHAT (multinational)}	>55 years HTN 1 or more CHD risk factor	70	43	147/83	Mean 4.9 years	Chlorthalidone 12.5-25 mg	Amlodipine 2.5–10 mg, Lisinopril 10–40 mg	FX (prespecified outcome: SAE + systematically collected + validated with documentation)				
Rakugi^{(64,110) 2015} (Japan)	20–80 years HTN	55	23	150/96	8 weeks	HCTZ 12.5 mg, Losartan 50 mg	Placebo	FX (SAE)				

(Continues)
Study acronym/ID (country)	Population	Age (years)	Women (%)	Baseline BP (mmHg)	Duration	Thiazide arm(s)	Comparator arm(s)	Outcome(s)			
Raveau-Landon(65) 1991 (France)	>70 years HTN	83	82	181/151	24 weeks	HCTZ 25–50 mg Amiloride 2.5–5 mg HCTZ 50 mg	60	146/82	Felodipine 5–20 mg Placebo 59	156/84	
Reid(47,111) 2000 (New Zealand)	Postmenopausal F <75 years	63	100	132/82	2 years	HCTZ 50 mg	92	122/80	Placebo 93	126/82	
Rodgers(66,112) 2011 PILL Pilot (multinational)	>18 years FRS >7.5% FRS >5% + 2 CVD risk factors	61	20	134/80	12 weeks	HCTZ 12.5 mg Aspirin 75 mg Losartan 50 mg Amlodipine 5 mg Low-dose TZO Olmesartan 5–40 mg	189	–10/–5 versus control group Placebo 189	FX (SAE)		
Saruta(67,113,114) 2015 COLM (Japan)	65–85 years HTN CVD or CVD risk factor	74	48	158/87	Median 3.3 years	Chlortalidone 12.5–25 mg ± Atenolol 25 mg, ± Reserpine 0.05 mg Indapamide 1.25 mg	2365	143/67	CCBb Olmesartan 50–40 mg Placebo 2568	133/73	
SHEP Research Group(53,115,116) 1991 SHEP (multinational)	>60 years HTN	72	57	170/77	Mean 4.5 years	HCTZ 12.5–25 mg	68	+5/+4 versus control group Felodipine 5–10 mg Placebo 66	150/95		
Weidler(68) 1995 (USA)	>50 years HTN	61	50	152/99	8 weeks	Aspirin 75 mg, ± Reserpine 0.05 mg Ca 1alpha-hydroxy-vitamin D3 0.75 μg Calcium lactate 3 g	14	NR	Vertebral FX (AE-withdrawal)		
Weisse(69) 1990 (Switzerland, Austria)	60–75 years HTN	66	55	170/101	8 weeks	HCTZ 12.5–25 mg	11	140/91	Placebo 111	150/95	
Yamada(70) 1989 (Japan)	Premenopausal F Connective tissue disease Chronic prednisolone use (5 mg ID x 6 months)	34	100	NR	2 years	Trichlormethiazide 4 mg 1-alpha-hydroxy-vitamin D3 0.75 μg Calcium lactate 3 g	11	NR	No medication Trichlormethiazide 4 mg 1-alpha-hydroxy-vitamin D3 0.75 μg Calcium lactate 3 g	13	NR

*Versus baseline.

*At the investigator choice.

This data was gathered from the ALLHAT original report(11), which included more patients than the report collecting fractures.

AE = adverse event; BMD = bone mineral density; BP = blood pressure; CHD = coronary heart disease; CHF = chronic heart failure; CVD = cardiovascular disease; DBP = diastolic blood pressure; F = female; FN = femoral neck; FRS = Framingham risk score; FX = fracture; HCTZ = hydrochlorothiazide; HTN = hypertension; ID = daily; LS = lumbar spine; MetS = metabolic syndrome; Mo = months; NR = non reported; NYHA = New York Heart Association classification; PAD = peripheral artery disease; SAE = serious adverse event; SBP = systolic blood pressure; TH = total hip.
of Egger and Begg tests for outcomes with more than 10 studies.\(^44\text{–}46\)

Results

Study selection and characteristics

From 25,057 reports retrieved, 32 studies (Table 1; 68,273 patients)\(^26\text{–}28,47\text{–}75\) met all inclusion criteria after full-text screening (Fig. 1). Additional data from five trials were obtained through authors’ contact\(^26,47,52,58,73\). Eight studies (10 reports)\(^76\text{–}83\) reported fractures but were not included because it was impossible to analyze their fracture data (notably because fractures could not be attributed to a specific intervention group). Aggregated characteristics are presented in Table 2. The number of patients in studies ranged from 32 to 22,180 with a mean age of 34 to 84 years. Forty-six percent of participants were women, with two studies conducted exclusively in women. Follow-up duration ranged from 4 weeks to 5.6 years. As comparators, 11 trials used a placebo or medications that were also included in the thiazide arm, 12 trials used antihypertensives other than the ones given in the thiazide arm, and nine trials used both or included non-antihypertensive medication (ertuglifozin, ibopro-
mine, calcium, and vitamin D).

Thiazide diuretics and fractures

Thirty trials reporting fractures (68,107 participants; 987 fractures) were included in the meta-analysis. Four trials reported fractures as a prespecified outcome with clinical or radiological validation and one trial reported fractures as a post-specified outcome using medico-administrative data. The remaining 25 trials reported fractures as adverse events. In the meta-analysis, we observed a statistically significant decrease in fracture incidence with thiazide diuretics use (RR = 0.87 [0.77, 0.98]; \(p = 0.026\); \(I^2 = 0\%\); Fig. 2). Eight trials had weights above 1% and totaled 96.1% of the cumulative effect.

In subgroup analyses (Fig. 3), we did not observe significant interactions in any prespecified subgroups. Effect estimates in subgroups were mostly similar to the overall one, except for two subgroups (age <50 years and baseline BP >180 mmHg) that included very few studies with broad confidence intervals. As a post hoc sensitivity analysis, we assessed the influence of the ALLHAT trial by removing it from the meta-analysis and observed similar effect estimate (RR = 0.91 [0.78, 1.06]), but with an expected higher uncertainty. Removing the two trials that included anatomical fracture site restrictions (ALLHAT, hip and pelvis fractures only; Yamada and colleagues, vertebral fractures only) had no substantial impact on the overall result.
In this systematic review and meta-analysis of RCTs, thiazide diuretics decreased the incidence of fractures when compared with placebo or other antihypertensives. Consistent results were obtained in prespecified subgroups and in post hoc analyses. Although thiazides did not specifically reduce hip fractures, very few trials reported this outcome. Meta-analysis was not conducted for BMD considering the heterogeneity in the four studies retrieved.

Several meta-analyses have previously investigated the effect of thiazides on fractures, but only one included RCTs. This meta-analysis included both observational (cohort, case-control), and randomized studies. Although the authors observed a reduction in fractures (RR = 0.87 [0.70, 0.99]) similar to ours in one of their analyses, they used “fracture” in their search strategy and hence only found two RCTs (HYVET, ALLHAT) that were not pooled together. In contrast, the other trials found in our review did not include “fracture” in their abstract and were therefore not retrieved in that previous systematic review.

Table 2. Aggregated Characteristics of Included Trials

Characteristics	No. of trials	No. of patients
Patient number		
>1000 patients	6	54,927
<1000 patients	26	13,346
Age		
<50 years	1	38
50–65 years	16	6172
>65 years	15	62,063
Sex		
>75% female	3	342
25–75% female	26	67,049
<25% female	3	882
Follow-up		
>1 year	12	61,662
<1 year	20	6611
Baseline systolic BP		
<140 mmHg	6	13,814
140–160 mmHg	13	41,797
160–180 mmHg	9	11,418
>180 mmHg	2	959
Thiazide		
Hydrochlorothiazide	23	31,189
Chlorthalidone	2	26,916
Indapamide	3	4513
Trichlormethiazide	2	449
Investigator-chosen	2	5206
Comparator		
Placebo	11	25,054
No medication	8	23,231
Medication used in the thiazide group	3	1823
Other antihypertensive		
(not used in the thiazide group)	12	40,455
Both/Other	9	2764
Fracture reporting		
Outcome	5	26,568
Prespecified	4	4388
Post-specified	1	22,180
Adverse event	25	41,539
BMD reporting		
Lumbar spine	4	671
Femoral neck	1	185
Total hip	1	320

BP = blood pressure; BMD = bone mineral density.

only) led to similar results (RR = 0.92 [0.79, 1.07]). Sensitivity analyses for methodological considerations (zero-cell correction, heterogeneity estimation) also led to results similar to the principal analysis (Supplemental Table S2).

Twenty-three trials specified anatomical sites for fractures and 22 trials (43,874 participants; 627 fractures) reported at least one osteoporotic fracture. In the meta-analysis, thiazide diuretics significantly decreased the incidence of osteoporotic fractures (RR = 0.80 [0.69, 0.94]; p = 0.006; I² = 0%; Supplemental Fig. S1). Three studies had weights above 1% and totaled 94.7% of the weight. In subgroup analyses (Supplemental Fig. S2), no significant interaction was observed, whereas results were similar to the main analysis, except for two subgroups that included only one trial. Similar results were also obtained after removal of ALLHAT study (RR = 0.82 [0.66, 1.03]), removal of two studies with fracture sites restrictions (RR = 0.83 [0.66, 1.04]), and when using alternative zero-cell correction and heterogeneity estimation methods (Supplemental Table S2).

Finally, six trials (34,814 participants; 318 fractures) reported hip fractures. In the meta-analysis, thiazide diuretics did not significantly reduce hip fracture risk (RR = 0.84 [0.67, 1.04]; p = 0.116; I² = 0%; Supplemental Fig. S3). Two studies accounted for more than 98% of the weight in this meta-analysis. Thus, subgroup and sensitivity analyses were not performed.

Thiazide diuretics and bone mineral density

Four studies (671 participants) reported BMD: one at the femoral neck, four at the lumbar spine, and one at the total hip. Among the four studies reporting lumbar spine BMD, two used post-intervention absolute values (g/cm²), while two used percent change from baseline. Therefore, no meta-analysis was conducted (Supplemental Fig. S4). Two trials reported a significant increase in BMD for at least one anatomical site (LaCroix, total hip; Giles, lumbar spine), while the two other trials, reported a nonsignificant trend toward increased BMD with thiazide use.

Discussion

In this systematic review and meta-analysis of RCTs, thiazide diuretics decreased the incidence of fractures when compared with placebo or other antihypertensives. Consistent results were obtained in prespecified subgroups and in post hoc analyses. Although thiazides did not specifically reduce hip fractures, very few trials reported this outcome. Meta-analysis was not conducted for BMD considering the heterogeneity in the four studies retrieved.

Several meta-analyses have previously investigated the effect of thiazides on fractures, but only one included RCTs. This meta-analysis included both observational (cohort, case-control), and randomized studies. Although the authors observed a reduction in fractures (RR = 0.87 [0.70, 0.99]) similar to ours in one of their analyses, they used “fracture” in their search strategy and hence only found two RCTs (HYVET, ALLHAT) that were not pooled together. In contrast, the other trials found in our review did not include “fracture” in their abstract and were therefore not retrieved in that previous systematic review.
review. Similarly, although two previous meta-analyses were restricted to observational studies,\(^\text{31,85}\) two others aimed at including RCTs but did not retrieve any.\(^\text{29,30}\) This might be explained by (i) a research strategy that used “fracture”; (ii) the publication of eligible trials after their completion; and (iii) a lack of research in trials registries. Despite these discrepancies, these meta-analyses reported results close to ours. Indeed, Xiao and colleagues observed that thiazides reduced any and hip fracture risk similar to ours (RR = 0.76 [0.64, 0.89]).\(^\text{29}\) Although these results from meta-analyses of observational studies are expected as they retrieved similar studies, they reinforce our findings of reduced fractures with thiazides use in RCTs.

Two mechanisms are hypothesized to explain the bone-protective effects of thiazides. First, thiazides decrease urinary calcium excretion and therefore increase calcium available for bone mineralization.\(^\text{12,14}\) In addition, thiazides can directly stimulate bone formation by increasing osteoblast differentiation markers and decreasing osteocalcin.\(^\text{13,86,87}\) Although these mechanisms have been previously supported by observational studies associating thiazides to increased BMD,\(^\text{19,24,25,88}\) meta-analysis for BMD was not possible in this study. Indeed, we only found four studies reporting variable and inconsistent BMD results that prevented us from conducting a meta-analysis. Nevertheless, two trials reported significantly increased BMD with thiazides at a single bone site.

Clinical heterogeneity was observed in our meta-analysis. For example, follow-up duration varied from 4 weeks to several years. Likewise, various comparators were used: placebo, other antihypertensives, or non-antihypertensive medications. This variation in comparators may have influenced our results in several ways. For example, studies comparing thiazides to a placebo may have led to differences in blood pressure that could have an impact on the risk of falls. Unfortunately, data on falls are rarely reported even in studies focusing on fracture. Similarly, the potential direct impact of non-thiazide comparators (notably beta-blockers and SGLT2 inhibitors) on bone may also have influenced our findings. Furthermore, two types of fracture reporting were identified: (i) as an outcome through radiological validation or (ii) as an alternate diagnosis or large medico-administrative databases identification or (ii) as an adverse event (AE) with much fewer details (categorized as serious AEs or treatment-related AEs). We decided a priori to avoid using arbitrary eligibility criteria or cut-offs and preferred using prespecified subgroup analyses to explore the influence of these characteristics. Here, we did not observe any significant interaction with study characteristics in our subgroup analyses.
Subgroup Analyses for the Primary Outcome

Fractures at any anatomical site were pooled as risk ratios (indicated as blue boxes) with 95% confidence intervals (indicated as black lines) from random effect models. CI = confidence interval.

Mean age
- **Below 50 years Old**: 1 study, 38 patients, *P*-value for interaction 0.53, Favors Thiazide 0.22 [0.01; 3.62]
- **50 to 65 Years Old**: 14 studies, 5695 patients, Favors Thiazide 0.70 [0.32; 1.52]
- **Over 65 Years Old**: 15 studies, 62474 patients, Favors Thiazide 0.88 [0.77; 1.01]

Baseline BP
- **< 140 mmHg**: 5 studies, 13782 patients, *P*-value for interaction 0.36, Favors Thiazide 0.98 [0.74; 1.31]
- **140 – 160 mmHg**: 12 studies, 41663 patients, Favors Thiazide 0.79 [0.67; 0.93]
- **160 – 180 mmHg**: 9 studies, 11418 patients, Favors Thiazide 0.93 [0.61; 1.41]
- **> 180 mmHg**: 2 studies, 959 patients, Favors Thiazide 1.24 [0.64; 2.41]

Follow-up
- **> 1 year**: 10 studies, 61496 patients, *P*-value for interaction 0.97, Favors Thiazide 0.87 [0.76; 1.00]
- **< 1 year**: 20 studies, 6611 patients, Favors Thiazide 0.86 [0.42; 1.75]

Comparator
- **Placebo**: 11 studies, 25054 patients, *P*-value for interaction 0.27, Favors Thiazide 0.99 [0.80; 1.20]
- **Other Antihypertensive**: 11 studies, 40423 patients, Favors Thiazide 0.79 [0.67; 0.93]
- **Both/Other**: 8 studies, 2630 patients, Favors Thiazide 0.88 [0.29; 2.66]

Fracture reporting
- **Outcome**: 5 studies, 26568 patients, *P*-value for interaction 0.15, Favors Thiazide 0.79 [0.65; 0.95]
- **Adverse Event**: 25 studies, 41539 patients, Favors Thiazide 0.94 [0.80; 1.12]

Risk of bias
- **Some concerns**: 16 studies, 42077 patients, *P*-value for interaction 0.26, Favors Thiazide 0.91 [0.75; 1.09]
- **High**: 11 studies, 20184 patients, Favors Thiazide 0.88 [0.68; 1.14]
- **Low**: 3 studies, 5846 patients, Favors Thiazide 0.49 [0.24; 0.99]

Bias Assessment for the Primary Outcome

Risk of bias for each study was assessed using the Cochrane Collaboration’s Risk of Bias tool (version 2). Bias is represented as a proportion of the weight in the primary outcome meta-analysis.
Moreover, no statistical heterogeneity was observed in global analyses, nor in sensitivity analyses using other methods for heterogeneity estimation. Taken together, these observations reinforce our principal findings by mitigating the potential impact of clinical heterogeneity in our results.

We used the recently updated Cochrane Risk of Bias tool (RoB2) to assess potential biases in included studies. Although some trials were deemed at high risk, these only accounted for less than a third of the weight in the principal analysis. From these, only one large study (HOPE-3) was deemed at high risk for the outcome measurement domain because it used hospitalizations for fractures as an outcome. Similarly, only one large study (HYVET) was deemed at high risk for missing outcome data due to many deaths for which fracture could not be excluded with certainty. Nevertheless, no interaction with bias was observed in subgroup analyses.

An unexpected finding of our study was the large number of potentially eligible trials that were excluded based on non-reported fractures. Indeed, several excluded trials at the full-text stage only reported adverse events deemed as serious or treatment-related. Because these definitions are highly variable, several fractures that may have occurred in these studies could have been omitted. This non-reporting bias, which is not accounted in the RoB2 tool, may have decreased the power of our review to detect the effects on rare outcomes, such as hip fractures. Hence, our results highlight the need for full AE disclosure in RCTs as their relevance may be discovered years later.

Our study has several strengths. We conducted a comprehensive literature search in several databases including a trial registry and screened a very large number of citations. By avoiding fracture-related terms in our search strategy, including trials reporting fractures as AEs and avoiding arbitrary selection criteria, we retrieved several trials omitted by previous reviews. Similarly, we solely included RCTs to avoid biases associated with observational studies in contrast to previous reviews.

Our study also has limitations. First, some trials did not disclose fracture sites, which increased the uncertainty for secondary fracture outcomes. Second, a single trial had a major weight in our meta-analysis, but its removal in sensitivity analyses did not influence the magnitude of the association. Third, most trials included low-fracture-risk patients, which may have led to underestimation of thiazides’ effect magnitude, since osteoporosis treatments are known to have larger effects in higher-risk patients. Further studies should therefore be conducted in higher-risk populations before prompt generalization could be made to these patients. Fourth, several trials included a small number of patients with short follow-up for which the expected effect of thiazides on bone outcome is minimal. Nevertheless, there was no interaction for follow-up duration and our results were robust after post hoc analyses exploring other corrections for zero-cell studies. Fifth, our meta-analysis included heterogenous trials conducted in various populations and settings. However, statistical heterogeneity was negligible (even in analyses using other heterogeneity estimators) and subgroup analyses revealed no significant interactions. Sixth, all fracture sites were considered, including fractures less related to skeletal fragility (such as skull, hand, and feet). Similarly, fracture mechanism was not provided by most studies, which prevented us from distinguishing between low- and high-trauma fractures. Nevertheless, it was previously shown that the association of low BMD with low- and high-trauma fractures is similar.

In this meta-analysis of RCTs, thiazide diuretics were associated with decreased fractures at any and osteoporotic sites when compared with placebo or other antihypertensive therapy. Thiazide diuretics were not associated with decreased hip fractures, but uncertainty was higher for this outcome. Meta-analysis could not be conducted for BMD because of increased heterogeneity. Our review thus strengthens past meta-analyses of observational studies while being less prone to the indication biases of these past studies. Taken together, our results thus suggest that thiazide diuretics may play a role in fracture reduction in low-risk patients. Further studies are warranted to assess their impact in higher-fracture risk patients.

Disclosures

All authors state that they have no conflicts of interest.

Acknowledgments

The authors thank Dr Alexis Fournier-Turgeon for expert assistance in the elaboration of the protocol. We also thank the librarians who contributed to the bibliographical research and the several translators who helped with non-English or/and non-French language articles.

LCD received master scholarships from the Canadian Institutes of Health Research (CIHR), the Fonds de Recherche du Québec Santé (FRQS), and the Faculty of Medicine of Université Laval. AS holds a PhD scholarship from the CIHR and the Société Québécoise d’hypertension artérielle. FMW holds a scholarship from FRQS (32661) and is a past awardee of the KRESCENT (150006) program from CIHR, Canadian Society of Nephrology and Kidney Foundation of Canada; he is also supported by the Department of Medicine and is the co-chair of the Nephrology Research Chair at Fondation de l’Université Laval.

The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

This study was exempt from institutional review board approval.

Authors’ roles: Concept and design: LCD, AS, and FMW. Acquisition, analysis, or interpretation of data: LCD, N K, JW, FL, VB, and FMW. Drafting of the manuscript: LCD. Critical revision of the manuscript: LCD, FMW. Administrative, technical, or material support: FMW. Supervision: FMW. LCD and FMW had full access to all data and take responsibility for the integrity of the data and the accuracy of the data analysis.

Author Contributions

Louis-Charles Desbiens: Conceptualization; data curation; formal analysis; methodology; writing – original draft. Nada Khelifi: Data curation; formal analysis; methodology. Yue Pei Wang: Formal analysis; methodology; writing – review and editing. Félix Lavigne: Formal analysis; methodology; writing – review and editing. Véronique Beaulieu: Formal analysis; methodology; writing – review and editing. Aboubacar Sidibe: Methodology; writing – review and editing. Fabrice Mac-Way: Conceptualization; data curation; formal analysis; methodology; writing – review and editing.
References

1. Wolf-Maier K, Cooper RS, Banegas JR, et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003;289(18):2363-2369.

2. Yoon SS, Carroll MD, Fryar CD. Hypertension prevalence and control among adults: United States, 2011-2014. NCHS Data Brief. 2015;220:1-8.

3. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease 2010 Study. Lancet. 2012;380(9859):2224-2260.

4. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. JAMA. 2014;311(5):507-520.

5. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESC/ESH guidelines for the management of arterial hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159-2219.

6. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/ABC/ACPM/AGS/APHA/ASH/ASCN/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):e127-e248.

7. Shah SJ, Stafford RS. Current trends of hypertension treatment in the United States. Am J Hypertens. 2017;30(10):1008-1014.

8. Zhou M, Daubresse M, Stafford RS, Alexander GC. National trends in the ambulatory treatment of hypertension in the United States, 1997-2012. PLoS One. 2015;10(3):e0119292.

9. Musini VM, Nazer M, Bassett K, Wright JM. Blood pressure-lowering efficacy of monotherapy with thiazide diuretics for primary hypertension. Cochrane Database Syst Rev. 2014;4:CD003824.

10. Psaty BM, Lumley T, Furberg CD, et al. Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis. JAMA. 2003;289(19):2534-2544.

11. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002;288(23):2981-2997.

12. Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol. 2017;312(6):F988-F1105.

13. Dvorak MK, De Joussineau C, Carter DH, et al. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone. J Am Soc Nephrol. 2007;18(9):2509-2516.

14. Reilly RF, Huang CL. The mechanism of hypocalcuria with NaCl cotransporter inhibition. Nat Rev Nephrol. 2011;7(11):669-674.

15. Blieu D, Nguyen ND, Milich VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301(5):513-521.

16. Morin S, Lix LM, Azimae M, Metge C, Majumdar SR, Leslie WD. Institutionalization following incident non-traumatic fractures in community-dwelling men and women. Osteoporos Int. 2012;23(9):2381-2386.

17. Randell AG, Nguyen TV, Blaherao N, Silverman SL, Sambrook PN, Eisman JA. Deterioration in quality of life following hip fracture: a prospective study. Osteoporosis Int. 2000;11(5):460-466.

18. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465-475.

19. Cauley JA, Cummings SR, Seeley DG, et al. Effects of thiazide diuretic therapy on bone mass, fractures, and falls. The Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1993;118(9):666-673.

20. Felson DT, Sloutskis D, Anderson JJ, Anthony JM, Kiel DP. Thiazide diuretics and the risk of hip fracture. Results from the Framingham Study. JAMA. 1991;265(3):370-373.

21. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. A prospective study of thiazide use and fractures in women. Osteoporos Int. 1997;7(1):79-84.

22. Rejnmark L, Vestergaard P, Mosekilde L. Reduced fracture risk in users of thiazide diuretics. Calcif Tissue Int. 2005;76(3):167-175.

23. Schoolos MW, van der Klift M, Hofman A, et al. Thiazide diuretics and the risk for hip fracture. Ann Intern Med. 2003;139(6):476-482.

24. Lau EM, Leung PC, Kwok T, et al. The determinants of bone mineral density in Chinese men—results from Mr. Os (Hong Kong), the first cohort study on osteoporosis in Asian men. Osteoporosis Int. 2006;17(2):297-303.

25. Solomon DH, Ruppert K, Zhao Z, et al. Bone mineral density changes among women initiating blood pressure lowering drugs: a SWAN cohort study. Osteoporos Int. 2016;27(3):1181-1189.

26. Putnam R, Davis BR, Pressel SL, et al. Association of 3 different antihypertensive medications with hip and pelvic fracture risk in older adults: secondary analysis of a randomized clinical trial. JAMA Intern Med. 2017;177(1):67-76.

27. Peters R, Beckett N, Burch L, et al. The effect of treatment based on a diuretic (indapamide) ± ACE inhibitor (perindopril) on fractures in the hypertension in the very elderly trial (HYVET). Age Ageing. 2010;39(5):609-616.

28. LaCroix AZ, Ott SM, Ichikawa L, Scholes D, Barlow WE. Low-dose hydrochlorothiazide and preservation of bone mineral density in older adults. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;133(5):S16-S26.

29. Aung K, Hayt T. Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst Rev. 2011;10:CD005185.

30. Wiens M, Etminan M, Gill SS, Takouche B. Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J Intern Med. 2006;260(4):350-362.

31. Xiao X, Xu Y, Wu Q. Thiazide diuretic usage and risk of fracture: a meta-analysis of cohort studies. Osteoporos Int. 2018;29(7):1515-1524.

32. Higgins JPT, Savovic J, Page MJ, et al. Chapter 8: Assessing risk of bias in randomised trials. In: Higgins JPT, Thomas J, Chandler J et al (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3. Cochrane, 2022. Available from www.training.cochrane.org/handbook

33. Page MJ, McKenzie JE, Bossuyt PM, et al. PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

34. Wong SS, Wilczynski NL, Haynes RB. Developing optimal search strategies for detecting clinically sound treatment studies in EMBASE. J Med Libr Assoc. 2006;94(1):41-47.

35. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

36. Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12(5):417-427.
37. International Society for Clinical Densitometry. 2015 ISCD official adult—positions. 2015.
38. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560.
39. Bradburn MJ, Deeks JJ, Berlin JA, LAR. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med. 2007;26(1):53-77.
40. Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004;23(9):1351-1375.
41. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55-79.
42. Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83-98.
43. Langan D, Higgins JPT, Simmonds M. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res Synth Methods. 2017;8(2):181-198.
44. Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.
45. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by the ‘funnel test’. BMJ. 1997;315(7109):629-634.
46. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088-1101.
47. Reid IR, Ames RW, Orr-Walker BJ, et al. Hydrochlorothiazide reduces loss of cortical bone in normal postmenopausal women: a randomized controlled trial. Am J Med. 2000;109(5):362-370.
48. Brown MJ, Williams B, Morant SV, et al. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on the bone mass of hypertensive patients with intermittent claudication. Lancet Diabetes Endocrinol. 2016;4(2):136-147.
49. Diehm C, Pittrow D, Lawall H. Effect of nebivolol vs. hydrochlorothiazide on the walking capacity in hypertensive patients with intermittent claudication. J Hypertens. 2011;29(7):1448-1456.
50. Fischer AE. Adverse treatment effects in the trial of the European working party on high blood pressure in the elderly. Am J Med. 1991;90(SUPPL 3A):425-445.
51. Giles TD, Sander GE, Roffidal LE, Quiroz AC, Mazzu AL. Comparative effects of nitrendipine and hydrochlorothiazide on calcitropic hormones and bone density in hypertensive patients. Am J Hypertens. 1992;5(12):875-879.
52. Perez-Castrillon JL, Silva J, Justo I, et al. Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am J Hypertens. 2003;16(6):453-459.
53. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the systolic hypertension in the elderly program (SHEP). JAMA. 1991;265(24):3255-3264.
54. Ando K, Isshiki M, Takahashi K. Effect of switching from amlodipine to combination therapy with telmisartan and low-dose hydrochlorothiazide. Hypertens Res. 2009;32(9):748-752.
55. Canter D, Frank GJ, Knapp LE, et al. Quinapril and hydrochlorothiazide combination for control of hypertension: assessment by factorial design. J Hum Hypertens. 1994;8(3):155-162.
56. Genthon R, ATHIS Study Group. Study of the efficacy and safety of the combination ramiplril 2.5 mg plus hydrochlorothiazide 12.5 mg in patients with mild-to-moderate hypertension. Int J Clin Pharmacol Res. 1994;14(1):1-9.
57. Kario K, Tomitani N, Kanegae H, et al. Comparative effects of an angiotensin II receptor blocker (ARB)/diuretic vs. ARB/calcium-channel blocker combination on uncontrolled nocturnal hypertension evaluated by information and communication technology-based nocturnal home blood pressure monitoring—the NOC-TURNE study. Circulation J. 2017;81(7):948-957.
58. Kato J, Yokota N, Tamaki N, et al. Comparison of combination therapy, including the angiotensin receptor blocker olmesartan and either a calcium channel blocker or a thiazide diuretic, in elderly patients with hypertension. Hypertens Res. 2011;34(3):331-335.
59. Kleber FX, Thyroff-Friesinger U. Treatment of mild chronic congestive heart failure with ibopamine, hydrochlorothiazide, ibopamine plus hydrochlorothiazide or placebo. A double-blind comparative study. Cardiology. 1990;77(Suppl 5):67-74.
60. Lee JT, Hung YJ, Chen JF, Wang CY, Lee WJ, Sheu WH. Comparison of the efficacy and safety profiles of two fixed-dose combinations of antihypertensive agents, amlodipine/benazepril versus valsartan/hydrochlorothiazide, in patients with type 2 diabetes mellitus and hypertension: a 16-week, multicenter, randomized, double-blind, noninferiority study. Clin Ther. 2012;34(8):1735-1750.
61. Lonn EM, Bosch J, Lopez-Jaramillo P, et al. Blood-pressure lowering in intermediate-risk patients without cardiovascular disease. N Engl J Med. 2016;374(21):2009-2020.
62. Mallion JM, Chastang C, Unger P. Efficacy and safety of a fixed low-dose perindopril/indapamide combination in essential hypertension. A randomised controlled study. Clin Exp Hypertens. 2000;22(1):23-32.
63. Moser M, Abraham PA, Bennett WM, et al. The effects of benazepril, a new angiotensin-converting enzyme inhibitor, in mild to moderate essential hypertension: a multicenter study. Clin Pharmaco Ther. 1991;49(3):322-329.
64. Rakugi H, Tsuchihashi T, Shimada K, et al. Add-on effect of hydrochlorothiazide 12.5 mg in Japanese subjects with essential hypertension uncontrolled with losartan 50 mg and amlopidine 5 mg. Hypertens Res. 2015;38(5):329-335.
65. Raveau-Landon C, Savier C, Dewailly P, et al. Double-blind study of felodipine ER versus the hydrochlorothiazide-amlodipine combination in elderly hypertensive patients. Semaine des Hopitaux. 1991:1785-1789.
66. Rodgers A, Patel A, Bervanger O, et al. An international randomised placebo-controlled trial of a four-component combination pill ("polypill") in people with raised cardiovascular risk. PLoS One. 2011;6(5):e19857.
67. Saruta T, Ogihara T, Saito I, et al. Comparison of olmesartan combined with a calcium channel blocker or a diuretic in elderly hypertensive patients (COLM study): safety and tolerability. Hypertens Res. 2015;38(2):132-136.
68. Weidler D, Jallad NS, Curry C, et al. Efficacious response with lower dose indapamide therapy in the elderly patients with moderate hypertension. J Clin Pharmacol. 1995;35(1):45-51.
69. Weisell M, Stanek B, Flygt G. Felodipine is more effective than hydrochlorothiazide when added to a beta-blocker in treating elderly hypertensive patients. J Cardiovasc Pharmacol. 1990;15(4):595-598.
70. Yamada H. Long-term effect of 1 alpha-hydroxyvitamin D, calcium and thiazide administration on glucocorticoid-induced osteoporosis. Nihon Naibunpu Gakkai zasshi. 1989;65(6):603-614.
71. Novartis. Avoiding cardiovascular events through combination therapy in patients living with systolic hypertension. 2003. Available at: https://ClinicalTrials.gov/show/NCT00170950.
72. Novartis. Efficacy and safety of the combination aliskiren (300 mg) and hydrochlorothiazide (25 mg) to aliskiren (300 mg) monotherapy in patients with stage II hypertension. 2008. Available at: https://ClinicalTrials.gov/show/NCT00705575.
73. Daiichi Sankyo Inc. Hydrochlorothiazide as add-on to olmesartan/amlodipine in hypertension. 2009. Available at: https://ClinicalTrials.gov/show/NCT00902538.
74. Merck Sharp & Dohme Corp, Pfizer. Study of safety and efficacy of etretifibrozin (PF-04971729, MK-8835) in participants with type 2 diabetes and hypertension (MK-8835-042). 2010. Available at: https://ClinicalTrials.gov/show/NCT01096667.
75. Novartis Pharmaceuticals. Efficacy and safety of valsartan/hydrochlorothiazide combination compared to valsartan monotherapy or hydrochlorothiazide monotherapy in elderly (>70) with mild-moderate hypertension. 2008. Available at: https://ClinicalTrials.gov/show/NCT00698646.
76. Nakamichi N, Tadayasu Y, Seki T, et al. Drug-drug interactions study of triple combination of telmisartan 80 mg, amlopidine 5 mg and hydrochlorothiazide 12.5 mg at the steady-state in Japanese healthy volunteers. Jpn Pharmacol Ther. 2016;44(5):703-711.

77. Daichi Sankyo Inc. Safety and efficacy study of a triple combination therapy in subjects with hypertension. 2008. Available at: https://ClinicalTrials.gov/show/NCT00649389.

78. Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm hg. JAMA. 1970;213(7):1143-1152.

79. Ninomiya T, Zoungas S, Neal B, et al. Drug-drug interactions study and combination diuretics on glucose tolerance (PATHWAY-3): protocol for the main trial. J Hypertens. 2019;10:1364.

80. Zhu D, Bays H, Gao P, Mattheus M, Voelker B, Ruilope LM. Efficacy and tolerability of a single-pill combination of telmisartan 80 mg and hydrochlorothiazide 25 mg according to age, gender, race, hypertension severity, and previous antihypertensive use: planned analyses of a randomized trial. Int J Blood Press Control. 2013;6:1-14.

81. Novartis Pharmaceuticals. A randomized controlled trial of aliskiren in the prevention of major cardiovascular events in elderly people. 2011. Available at: https://ClinicalTrials.gov/show/NCT01259297.

82. Daichi Sankyo Inc. Parallel-group comparison of olmesartan (OLM), amlopidine (AML) and hydrochlorothiazide (HCTZ) in hypertension. 2009. Available at: https://ClinicalTrials.gov/show/NCT00923091.

83. Emeriau JP, Knauf H, Pujadas JO, et al. Comparison of indapamide SR 1.5 mg with both amlopidine 5 mg and hydrochlorothiazide 25 mg in elderly hypertensive patients: a randomized double-blind controlled study. J Hypertens. 2001;19(2):343-350.

84. Charkos TG, Liu Y, Jin L, Yang S. Thiazide use and fracture risk: an updated Bayesian meta-analysis. Sci Rep. 2019;9(1):19754.

85. Wang J, Xu K, Sang W, Li L, Ma S. Thiazide diuretics and the incidence of osteoporotic fracture: a systematic review and meta-analysis of cohort studies. Front Pharmacol. 2019;10:1364.

86. Aubin R, Menard P, Lajeunesse D. Selective effect of thiazides on the human osteoblast-like cell line MG-63. Kidney Int. 1996;50(5):1476-1482.

87. Lajeunesse D, Delandre A, Guggino SE. Thiazide diuretics affect osteocalcin production in human osteoblasts at the transcription level without affecting vitamin D3 receptors. J Bone Miner Res. 2000;15(8):894-901.

88. Morton DJ, Barrett-Connor EL, Edelstein SL. Thiazides and bone mineral density in elderly men and women. Am J Epidemiol. 1994;139(11):1107-1115.

89. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280(24):2077-2082.

90. McClung MR, Geusens P, Miller PD, et al. Effect of alendronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344(5):333-340.

91. Mackey DC, Lui LY, Cawthon PM, et al. High-trauma fractures and low bone mineral density in older women and men. JAMA. 2007;298(20):2381-2388.

92. Brown MJ, Williams B, MacDonald TM, et al. Comparison of single and combination diuretics on glucose tolerance (PATHWAY-3): protocol for a randomised double-blind trial in patients with essential hypertension. BMJ Open. 2015;5(8):e008086.

93. Daichi Sankyo Inc. Clinical Study Report CS8635-A-E303. 1.0 ed 2011.

94. Amery A, Birkenhager W, Brixio P, et al. Mortality and morbidity results from the European Working Party on High Blood Pressure in the Elderly Trial. Lancet. 1985;1(8442):1349-1354.

95. Giles TD, Sander GE, Roffidal LE, Mazza A. Comparison of effects of nitrrendipine versus hydrochlorothiazide on left ventricular structure and function and neurohumoral status in systemic hypertension. Am J Cardiol. 1990;65(18):1265-1268.

96. Kario K. Comparative effects on nocturnal hypertension at home by combination therapy of ARB/CCB and ARB/diuretics. 2014. Available at: https://upload.umin.ac.jp/cgi-open-bin/ctr_E/ctr_view.cgi?recptno=R000018555.

97. Population Health Research Institute. Heart outcomes prevention evaluation-3. 2007. Available at: https://ClinicalTrials.gov/show/NCT00468923.

98. Amin NB, Wang X, Mitchell JR, Lee DS, Nucci G, Rusnak JM. Blood pressure-lowering effect of the sodium glucose co-transporter-2 inhibitor ertugliflozin, assessed via ambulatory blood pressure monitoring in patients with type 2 diabetes and hypertension. Diabetes Obes Metab. 2015;17(8):805-808.

99. Pfizer Global Research & Development. Clinical study report synopsis—protocol B1521004. 2011.

100. Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amlopidine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359(23):2417-2428.

101. Jamerson KA, Bakris GL, Wun CC, et al. Rationale and design of the AVOIDing Cardiovascular Events Through Combination Therapy in Patients Living With Systolic Hypertension (ACCOMPLISH) trial: the first randomized controlled trial to compare the clinical outcome effects of first-line combination therapies in hypertension. Am J Hypertens. 2004;17(9):793-801.

102. Black HR, Kribben A, Aguiri Palacios F, Bijarnia M, Laflamme AK, Baschiera F. Aliskiren alone or in combination with hydrochlorothiazide in patients with the lower ranges of stage 2 hypertension: the ACQUIRE randomized double-blind study. J Clin Hypertens. 2010;12(12):917-926.

103. Novartis. Clinical trial report—CSPP100A2353. 2009.

104. Izzo JL Jr, Weintraub HS, Drezner PA, et al. Treating systolic hypertension in the very elderly with valsartan-hydrochlorothiazide vs. either monotherapy: ValVET primary results. J Clin Hypertens. 2011;13(10):722-730.

105. Novartis. Clinical trial report—CVAH631BUS08. 2009.

106. Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887-1898.

107. Bulpitt CJ, Fletcher A, Beckett N, et al. Hypertension in the Elderly Program (SHEP) Cooperative Research Group. JAMA. 1990;264(6):783-790.

108. Bulpitt CJ, Peters R, Staessen JA, et al. Fracture risk and the use of a diuretic (indapamide SR) +/- perindopril: a substudy of the hypertension in the Very Elderly Trial (HYVET). Trials. 2006;7:33.

109. Davis BR, Cutler JA, Gordon DJ, et al. Rationale and design for the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 1996;275(4):430-436.

110. Merck Sharp Dohme Corp. MK-0954E study in participants with hypertension (MK-0954E-357). 2011. Available at: https://ClinicalTrials.gov/show/NCT01302691.

111. Bolland MJ, Ames RW, Home AM, Orr-Walker BJ, Gamble GD, Reid IR. The effect of treatment with a thiazide diuretic for 4 years on bone density in normal postmenopausal women. Osteopors Int. 2007;18(4):479-486.

112. Rodgers A. Is a polypill tolerable and effective at improving blood pressure and cholesterol control in people at raised risk of cardiovascular disease. 2007. Available at: https://www.anzctr.org.au/ Trial/Registration/TrialReview.aspx?id=1378.

113. Oghara T, Saruta T, Rakugi H, et al. Combinations of olmesartan and a calcium channel blocker or a diuretic in elderly hypertensive patients: a randomized, controlled trial. J Hypertens. 2014;32(10):2054-2063.

114. Oghara T, Saruta T, Rakugi H, et al. Rationale, study design and implementation of the COMOL study: the combination of OLmesartan and calcium channel blocker or diuretic in high-risk elderly hypertensive patients. Hypertens Res. 2009;32(2):163-167.

115. Rationale and design of a randomized clinical trial on prevention of stroke in isolated systolic hypertension. The Systolic Hypertension in the Elderly Program (SHEP) Cooperative Research Group. J Clin Epidemiol. 1988;41(12):1197-1208.

116. Borhani NO, Applegate WB, Cutler JA, et al. Systolic hypertension in the elderly program (SHEP). Part 1: rationale and design. Hypertension. 1991;17(3 Suppl):112-115.