\(\mathcal{R}(p, q) \) – deformed super Virasoro \(n \)– algebra

Fridolin Melong

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
fridomelong@gmail.com

Abstract

In this paper, we construct the super Witt algebra and super Virasoro algebra in the framework of the \(\mathcal{R}(p, q) \)– deformed quantum algebras. Moreover, we perform the super \(\mathcal{R}(p, q) \)– deformed Witt \(n \)– algebra, the \(\mathcal{R}(p, q) \)– deformed Virasoro \(n \)– algebra and discuss the super \(\mathcal{R}(p, q) \)– Virasoro \(n \)– algebra \((n \text{ even})\). Besides, we define and construct another super \(\mathcal{R}(p, q) \)– deformed Witt \(n \)– algebra and study a toy model for the super \(\mathcal{R}(p, q) \)– Virasoro constraints. Relevant particular cases induced from the quantum algebras known in the literature are deduced from the formalism developed.

keyword \(\mathcal{R}(p, q) \)– calculus, Super Virasoro algebra, super-Virasoro constraints.

Contents

1 Introduction 1
2 Basics definitions and notations 3
3 Super \(\mathcal{R}(p, q) \)– deformed Witt \(n \)– algebra 4
4 Super \(\mathcal{R}(p, q) \)– deformed Virasoro \(n \)– algebra 9
5 A toy model for the super \(\mathcal{R}(p, q) \)– Virasoro constraints 11
5.1 \(q \)– deformed super Virasoro constraints 16
6 Relevant particular cases 18
6.1 Jagannathan- Srinivasa deformation 24
6.2 Chakrabarti and Jagannathan deformation 25
6.3 Hounkonnou-Ngompe generalized \(q \)– Quesne deformation 25
6.4 Biedenharn-Macfarlane deformation 25
7 Concluding and remarks 25

1 Introduction

The nature of the Virasoro algebra was described by Kupershmidt [25]. Its applications in mathematics and physics, such that in conformal field theory and string theory
were also presented \[6, 25, 31\]. Many generalizations and deformations (one or two parameters) of the Virasoro algebra were investigated in the literature \[1, 8, 18\]. The generalization of Kupershmidt’s work was provided in \[25\]. The relation between the Korteweg-de Vries (KdV) equation and the Virasoro algebra was described by Gervais \[12\] and Kupershmidt \[25\]. Moreover, Huang and Zhdanov presented the realizations of Witt and Virasoro algebras. Their connection with integrable equations was determined \[22\].

The construction of α^k derivation and a representation theory were investigated \[2\]. Also, the cohomology complex of Hom-Lie superalgebras was furnished and the central extensions was computed. As application, the derivations and the second cohomology group of a twisted $osp(1,2)$ superalgebra were calculated. Moreover, Curtright and Zachos introduced the $q-$ deformed Witt algebra \[10\] and from this results Ding et al determined a nontrivial $q-$ deformed Witt $n-$ algebras. It is a generalization of the Lie algebra also called sh-n-Lie algebra \[11\]. Wang et al \[32\] investigated the two different $q-$ deformed Witt algebra and constructed their $n-$ algebras. In one case, the super version is also presented. Moreover the central extensions is provided and the super $q-$ deformed Virasoro $n-$ algebra for the n even case is furnished.

The two parameters deformation of the Virasoro algebra with conformal dimension was studied in \[8\]. Also, the central charge term for the Virasoro algebra and the associated deformed nonlinear equation (Korteweg-de Vries equation) were determined.

Moreover, the generalizations of (p,q)- deformed Heisenberg algebras, called $\mathcal{R}(p,q)$- deformed quantum algebras were investigated in \[17\]. Houkonnou and Melong \[19\] constructed the $\mathcal{R}(p,q)$- deformed conformal Virasoro algebra, derived the $\mathcal{R}(p,q)$- deformed Korteweg-de Vries equation for a conformal dimension $\Delta = 1$, and presented the energy-momentum tensor from the $\mathcal{R}(p,q)$- deformed quantum algebras for the conformal dimension $\Delta = 2$.

Recently, the generalizations of Witt and Virasoro algebras were performed, and the associated Korteweg-de Vries equations from the $\mathcal{R}(p,q)$- deformed quantum algebras were derived. Related relevant properties were investigated and discussed. Furthermore, the $\mathcal{R}(p,q)$- deformed Witt $n-$ algebra constructed, and the Virasoro constraints for a toy model, which play an important role in the study of matrix models was presented \[20\].

The aim of this paper is to construct the super Witt $n-$ algebra, Virasoro $2n-$ algebra, and super Virasoro $n-$ algebra (n even) from the quantum deformed algebra \[17\]. As application, we construct another super $\mathcal{R}(p,q)$- deformed Witt $n-$ algebra and investigate a toy model for the super $\mathcal{R}(p,q)$- Virasoro constraints. Furthermore, we deduce particular cases associated to quantum algebra presented in the literature.

This paper is organized as follows: Section 2 is reserved to some notations, definitions and results used in the sequel. In section 3, we investigate the super Witt algebra and super Witt $n-$ algebra induced by the $\mathcal{R}(p,q)$- deformed quantum algebra. Moreover, we construct the $\mathcal{R}(p,q)$- deformed Virasoro $2n-$ algebra and deduce particular cases. In section 4, we furnished the super $\mathcal{R}(p,q)$- deformed Jacobi identity. Besides, we construct the super $\mathcal{R}(p,q)$- deformed Virasoro algebra and perform the super $\mathcal{R}(p,q)$- deformed Virasoro $n-$ algebra. Particular cases are deduced. Section 5 is dedicated to the application. We construct another super $\mathcal{R}(p,q)$- deformed Witt $n-$ algebra and study a toy model. We end with the concluding remarks in section 6.
2 Basics definitions and notations

Let us recall some definitions, notations, and known results used in this work. For that, let \(p \) and \(q \), two positive real numbers such that \(0 < q < p \leq 1 \), and a meromorphic function \(\mathcal{R} \) defined on \(\mathbb{C} \times \mathbb{C} \) by [16]:

\[
\mathcal{R}(s, t) = \sum_{u, v = -l}^{\infty} r_{uv} s^u t^v,
\]

where \(r_{uv} \) are complex numbers, \(l \in \mathbb{N} \cup \{0\} \), \(\mathcal{R}(p^n, q^n) > 0 \), \(\forall n \in \mathbb{N} \), and \(\mathcal{R}(1, 1) = 0 \) by definition. The bidisk \(\mathbb{D}_R \) is defined by:

\[
\mathbb{D}_R = \{ a = (a_1, a_2) \in \mathbb{C}^2 : |a_j| < R_j \},
\]

where \(R \) is the convergence radius of the series [11] defined by Hadamard formula [29]:

\[
\lim_{s+t \to \infty} \sup \sqrt[s+t]{|r_{st}|} R_1^s R_2^t = 1.
\]

We also consider \(\mathcal{O}(\mathbb{D}_R) \) the set of holomorphic functions defined on \(\mathbb{D}_R \). Define the \(\mathcal{R}(p, q) \)-deformed numbers [16]:

\[
[n]_{\mathcal{R}(p, q)} = \mathcal{R}(p^n, q^n), \quad n \in \mathbb{N} \cup \{0\},
\]

the \(\mathcal{R}(p, q) \)-deformed factorials

\[
[n]!_{\mathcal{R}(p, q)} = \begin{cases} 1 & \text{for } n = 0 \\ \mathcal{R}(p, q) \cdots \mathcal{R}(p^n, q^n) & \text{for } n \geq 1, \end{cases}
\]

and the \(\mathcal{R}(p, q) \)-binomial coefficients

\[
\binom{m}{n}_{\mathcal{R}(p, q)} := \frac{[m]!_{\mathcal{R}(p, q)}}{[n]!_{\mathcal{R}(p, q)} [m-n]!_{\mathcal{R}(p, q)}}, \quad m, n \in \mathbb{N} \cup \{0\}, \quad m \geq n.
\]

Consider the following linear operators defined on \(\mathcal{O}(\mathbb{D}_R) \), (see [17] for more details),

\[
Q : \psi \mapsto Q\psi(z) : = \psi(qz),
\]

\[
P : \psi \mapsto P\psi(z) : = \psi(pz),
\]

\[
\partial_{p, q} : \psi \mapsto \partial_{p, q}\psi(z) : = \frac{\psi(pz) - \psi(qz)}{z(p - q)},
\]

and the \(\mathcal{R}(p, q) \)-derivative

\[
\partial_{\mathcal{R}(p, q)} := \partial_{p, q} \frac{p - q}{P - Q} \mathcal{R}(P, Q) = \frac{p - q}{p^P - q^Q} \mathcal{R}(p^P, q^Q) \partial_{p, q}.
\]

The algebra associated with the \(\mathcal{R}(p, q) \)-deformation is a quantum algebra, denoted \(\mathcal{A}_{\mathcal{R}(p, q)} \), generated by the set of operators \(\{1, A, A^\dagger, N\} \) satisfying the following commutation relations [17]:

\[
AA^\dagger = [N + 1]_{\mathcal{R}(p, q)}, \quad A^\dagger A = [N]_{\mathcal{R}(p, q)}.
\]
\[
[N, A] = -A, \quad [N, A^\dagger] = A^\dagger
\]
with the realization on \(O(\mathbb{D}_R)\) given by:
\[
A^\dagger := z, \quad A := \partial_{R(p,q)}, \quad N := z\partial_z,
\]
where \(\partial_z := \frac{\partial}{\partial z}\) is the derivative on \(\mathbb{C}\).

The super multibracket of order \(n\) is defined as [14]:
\[
\left[A_1, A_2, \ldots, A_n \right] := \epsilon_{12}^{i_1 \cdots i_n} (-1)^{\sum_{k=1}^{n-1} |A_k| |\sum_{i=k+1}^{n} |A_i|} A_{i_1} A_{i_2} \cdots A_{i_n},
\]
where the symbol \(|A|\) is to be understood as the parity of \(A\) and \(\epsilon_{12}^{i_1 \cdots i_n}\) is the Lévi-Civitá symbol defined by:
\[
\epsilon_{12}^{i_1 \cdots i_p} := \det \begin{pmatrix}
\delta_{i_1}^{j_1} & \cdots & \delta_{i_p}^{j_1} \\
\vdots & \ddots & \vdots \\
\delta_{i_1}^{j_p} & \cdots & \delta_{i_p}^{j_p}
\end{pmatrix}.
\]

Moreover, the \(q-\)deformed generalized Jacobi identity is given by [34]:
\[
\epsilon_{n_1, \ldots, n_{2n-1}}^{i_1, \ldots, i_{2n-1}} \left[\left[l_{i_1}, \ldots, l_{i_{2n-1}} \right]_q, l_{i_{n+1}}, \ldots, l_{i_{2n-1}} \right]_q = 0.
\]

3 Super \(\mathcal{R}(p, q)\) – deformed Witt \(n–\)algebra

In this section, we construct the super Witt algebra and the super Witt \(n–\)algebra from the \(\mathcal{R}(p, q)\) – deformed quantum algebra.

Let \(\mathcal{B} = \mathcal{B}_0 \oplus \mathcal{B}_1\) be the super-commutative associative superalgebra such that \(\mathcal{B}_0 = \mathbb{C}[z, z^{-1}]\) and \(\mathcal{B}_1 = \theta \mathcal{B}_0\), where \(\theta\) is the Grassman variable with \(\theta^2 = 0\) [32].

We define the algebra endomorphism \(\sigma\) on \(\mathcal{B}\) as follows:
\[
\sigma(t^n) := (\phi(p, q))^{\star} t^n \quad \text{and} \quad \sigma(\theta) := \phi(p, q) \theta,
\]
where \(\phi(p, q)\) is a function depending on the parameters \(p\) and \(q\) such that \(\phi(p, q) \rightarrow 1\) as \((p, q) \rightarrow (1, 1)\).

We define also the two linear maps by:
\[
\begin{cases}
\partial_t(t^n) := [n]_{\mathcal{R}(p,q)} t^n, & \partial_t(\theta t^n) := [n]_{\mathcal{R}(p,q)} \theta t^n, \\
\partial_\theta(t^n) := 0, & \partial_\theta(\theta t^n) := (\phi(p, q))^{\star} t^n.
\end{cases}
\]

Lemma 1 The linear map \(\Delta = \partial_t + \theta \partial_\theta\) on \(\mathcal{B}\) is an even \(\sigma\)-derivation. Then:
\[
\Delta(x y) = \Delta(x) y + \sigma(x) \Delta(y), \\
\Delta(t^n) = [n]_{\mathcal{R}(p,q)} t^n \quad \text{and} \quad \Delta(\theta t^n) = ([n]_{\mathcal{R}(p,q)} + (\phi(p, q))^{\star}) \theta t^n.
\]

Proof 2 By direct computation. \(\square\)
Similarly, we have:

Taking $R_{x1} = (q - 1)^{-1}(x - 1)$ and $\phi(q) = q$, we obtained the result given in [32].

The super R_{x1} - deformed Witt algebra is generated by bosonic and fermionic operators $l_{m}^{R(p,q)} = -t^{m} \Delta$ of parity 0 and $G_{m}^{R(p,q)} = -\theta t^{m} \Delta$ of parity 1.

Proposition 3 The operators $l_{m}^{R(p,q)}$ and $G_{m}^{R(p,q)}$ satisfy the following relations:

\[
\begin{align*}
\left[l_{m_{1}}^{R(p,q)}, l_{m_{2}}^{R(p,q)} \right] &= \left([m_{1}]_{R(p,q)} - [m_{2}]_{R(p,q)} \right) l_{m_{1}+m_{2}}^{R(p,q)}, \\
\left[l_{m_{1}}^{R(p,q)}, G_{m_{2}}^{R(p,q)} \right] &= \left([m_{1}]_{R(p,q)} - [m_{2}+1]_{R(p,q)} \right) G_{m_{1}+m_{2}}^{R(p,q)}, \\
\left[G_{m_{1}}^{R(p,q)}, l_{m_{2}}^{R(p,q)} \right] &= 0,
\end{align*}
\]

where

\[
\begin{align*}
\dot{x} &= \chi_{m_{1}m_{2}}(p,q), \quad \dot{y} = (\phi(p,q))^{m_{2}-m_{1}} \chi_{m_{1}m_{2}}(p,q), \\
x &= \tau_{m_{1}m_{2}}(p,q), \quad y = (\phi(p,q))^{1+m_{2}-m_{1}} \tau_{m_{1}m_{2}}(p,q), \\
\chi_{m_{1}m_{2}}(p,q) &= \frac{[m_{1}]_{R(p,q)} - [m_{2}]_{R(p,q)}}{(\phi(p,q))^{m_{2}-m_{1}} [m_{1}]_{R(p,q)} - [m_{2}]_{R(p,q)}}, \\
\tau_{m_{1}m_{2}}(p,q) &= \frac{[m_{1}]_{R(p,q)} - [m_{2}+1]_{R(p,q)}}{(\phi(p,q))^{1+m_{2}-m_{1}} [m_{1}]_{R(p,q)} - [m_{2}]_{R(p,q)} - (\phi(p,q))^{m_{2}}}.
\end{align*}
\]

Proof 4 From the definition of the deformed commutators, we get:

\[
\begin{align*}
\left[l_{m_{1}}^{R(p,q)}, l_{m_{2}}^{R(p,q)} \right] &= \dot{x} \ l_{m_{1}}^{R(p,q)} l_{m_{2}}^{R(p,q)} - \dot{y} \ l_{m_{2}}^{R(p,q)} l_{m_{1}}^{R(p,q)}. \\
\end{align*}
\]

Thus,

\[
\begin{align*}
\dot{x} \ l_{m_{1}}^{R(p,q)} l_{m_{2}}^{R(p,q)} &= -t^{m_{1}} \Delta \ l_{m_{2}}^{R(p,q)} \\
&= -x \ [m_{2}]_{R(p,q)} l_{m_{1}+m_{2}}^{R(p,q)} - x (\phi(p,q))^{m_{2}} l_{m_{1}+m_{2}}^{R(p,q)} \Delta.
\end{align*}
\]

Similarly, we have:

\[
\begin{align*}
\dot{y} \ l_{m_{2}}^{R(p,q)} l_{m_{1}}^{R(p,q)} &= -\dot{y} \ [m_{1}]_{R(p,q)} l_{m_{1}+m_{2}}^{R(p,q)} - \dot{y} (\phi(p,q))^{m_{1}} l_{m_{1}+m_{2}}^{R(p,q)} \Delta.
\end{align*}
\]

Then, the relation (11) takes the following form:

\[
\begin{align*}
\left[l_{m_{1}}^{R(p,q)}, l_{m_{2}}^{R(p,q)} \right] &= \dot{y} \ [m_{1}]_{R(p,q)} - \dot{x} \ [m_{2}]_{R(p,q)} \ l_{m_{1}+m_{2}}^{R(p,q)} \\
&\quad + \dot{y} (\phi(p,q))^{m_{1}} - \dot{x} (\phi(p,q))^{m_{2}} l_{m_{1}+m_{2}}^{R(p,q)} \Delta.
\end{align*}
\]

We need to get

\[
\begin{align*}
\left[l_{m_{1}}^{R(p,q)}, l_{m_{2}}^{R(p,q)} \right] &= \left([m_{1}]_{R(p,q)} - [m_{2}]_{R(p,q)} \right) l_{m_{1}+m_{2}}^{R(p,q)}.
\end{align*}
\]

Thus, we obtain the system:

\[
\begin{align*}
\dot{y} \ [m_{1}]_{R(p,q)} - \dot{x} \ [m_{2}]_{R(p,q)} &= [m_{1}]_{R(p,q)} - [m_{2}]_{R(p,q)} \\
\dot{x} (\phi(p,q))^{m_{1}} - \dot{x} (\phi(p,q))^{m_{2}} &= 0.
\end{align*}
\]
Solving the above system, we obtain:

\[
\hat{x} = \frac{[m_1]_{\mathcal{R}(p,q)} - [m_2]_{\mathcal{R}(p,q)}}{(\phi(p,q))^{m_2-m_1} [m_1]_{\mathcal{R}(p,q)} - [m_2]_{\mathcal{R}(p,q)}} := \chi_{m_1m_2}(p,q).
\]

After computation, we get

\[
\hat{y} = (\phi(p,q))^{m_2-m_1} \chi_{m_1m_2}(p,q).
\]

Moreover,

\[
x_{m_1}^{\mathcal{R}(p,q)} G_{m_2}^{\mathcal{R}(p,q)} = -x([m_2]_{\mathcal{R}(p,q)} + (\phi(p,q))^{m_2}) G_{m_1+m_2}^{\mathcal{R}(p,q)} - x(\phi(p,q))^{m_2+1} G_{m_1+m_2}^{\mathcal{R}(p,q)} \Delta
\]

and

\[
y G_{m_2}^{\mathcal{R}(p,q)} x_{m_1}^{\mathcal{R}(p,q)} = -y [m_1]_{\mathcal{R}(p,q)} G_{m_1+m_2}^{\mathcal{R}(p,q)} - y (\phi(p,q))^{m_1} G_{m_1+m_2}^{\mathcal{R}(p,q)} \Delta.
\]

Thus, we get

\[
[m_{m_1}^{\mathcal{R}(p,q)},G_{m_2}^{\mathcal{R}(p,q)}]_{x,y} = \left(y [m_1]_{\mathcal{R}(p,q)} - x ([m_2]_{\mathcal{R}(p,q)} + (\phi(p,q))^{m_2}) \right) G_{m_1+m_2}^{\mathcal{R}(p,q)} + (y (\phi(p,q))^{m_1} - x(\phi(p,q))^{m_2+1}) G_{m_1+m_2}^{\mathcal{R}(p,q)} \Delta
\]

and

\[
\begin{cases}
{y [m_1]_{\mathcal{R}(p,q)} - x ([m_2]_{\mathcal{R}(p,q)} + (\phi(p,q))^{m_2}) = [m_1]_{\mathcal{R}(p,q)} - [m_2 + 1]_{\mathcal{R}(p,q)}} \\
y (\phi(p,q))^{m_1} - x(\phi(p,q))^{m_2+1} = 0.
\end{cases}
\]

Solving the above system, we obtain:

\[
x = \frac{[m_1]_{\mathcal{R}(p,q)} - [m_2 + 1]_{\mathcal{R}(p,q)}}{(\phi(p,q))^{1+m_2-m_1} [m_1]_{\mathcal{R}(p,q)} - [m_2]_{\mathcal{R}(p,q)} - (\phi(p,q))^{m_2}} := \tau_{m_1m_2}(p,q)
\]

and

\[
y = (\phi(p,q))^{1+m_2-m_1} \tau_{m_1m_2}(p,q).
\]

Let us now construct the super $\mathcal{R}(p,q)$—deformed Witt n—algebra. We define the $\mathcal{R}(p,q)$—deformed n— bracket ($n \geq 3$) as follows:

\[
[i_1^{\mathcal{R}(p,q)}, \ldots, i_n^{\mathcal{R}(p,q)}] := \left(\frac{-2 \sum_{j=1}^{n} m_j [\mathcal{R}(p,q)]}{-2 \sum_{j=1}^{n} m_j [\mathcal{R}(p,q)]} \right)^{\alpha_{i_1}i_{i_2} \cdots i_n} \times (\phi(p,q))^{\sum_{j=1}^{n} \left(\frac{1+(-1)^j}{2} \right) m_j [\mathcal{R}(p,q)]} \cdots i_{m_n^{\mathcal{R}(p,q)}}, \quad (12)
\]

where $\alpha = \frac{1+(-1)^n}{2}$, $[n] = \text{Max}\{ m \in \mathbb{Z} \mid m \leq n \}$ is the floor function.
Introducing the operator $i_m^{R(p,q)} = -i^n m \Delta$ into the relation (12), the $R(p,q)$—deformed n—bracket can be reduced in the simpler form as follows:

$$\left\{[m_1]_{R(p,q)}, [m_2]_{R(p,q)}, \ldots, [m_n]_{R(p,q)}\right\} = \frac{(q-p)^{\binom{n-1}{2}}}{(\phi(p,q))^{\frac{n-1}{2} \sum_{i=1}^{n} m_i} \left(\frac{-2 \sum_{i=1}^{n} m_i}{2 \sum_{i=1}^{n} m_i} \right)\left(\frac{1}{\mathcal{R}(p,q)}\right)} \times \prod_{1 \leq i < j \leq n} \left([m_i]_{R(p,q)} - [m_j]_{R(p,q)}\right)\sum_{i=1}^{n} m_i.$$

Now, we investigate the super $R(p,q)$—deformed Witt n—algebra.

From the super multibracket of order n (3), we define another $R(p,q)$—deformed n—bracket as follows:

$$\left\{[m_1]_{R(p,q)}, [m_2]_{R(p,q)}, \ldots, [m_n]_{R(p,q)}\right\} = \frac{(-2 \sum_{i=1}^{n} m_i - 1)_{\mathcal{R}(p,q)}}{2 \left(\sum_{i=1}^{n} m_i - 1\right)_{\mathcal{R}(p,q)}} \sum_{j=0}^{n-1} (-1)^{n-1+j} \prod_{1 \leq i \leq j}^{n-1} \mathcal{R}(p,q)$$

$$\times (\phi(p,q))^{\beta} i_{m_j+1}^{R(p,q)} \ldots i_{m_i+1}^{R(p,q)} \frac{1}{\mathcal{R}(p,q)} i_{m_1}^{R(p,q)} \ldots i_{m_n}^{R(p,q)},$$

where $\beta = \sum_{k=1}^{n} \left(\left\lfloor \frac{n}{2} \right\rfloor - k \right) m_i + \left(\left\lfloor \frac{n}{2} \right\rfloor + 1\right) (m_n + 1) + \sum_{k=j+1}^{n} \left(\left\lfloor \frac{n}{2} \right\rfloor - k \right) m_i.$

Using the bosonic and fermionic operators, the $R(p,q)$—deformed n—bracket (13) can be rewritten as:

$$\left\{[m_1]_{R(p,q)}, [m_2]_{R(p,q)}, \ldots, [m_n]_{R(p,q)}\right\} = \frac{(q-p)^{\binom{n-1}{2}}}{(\phi(p,q))^{\frac{n-1}{2} \sum_{i=1}^{n} m_i} \left(\frac{-2 \sum_{i=1}^{n} m_i - 1}{2 \sum_{i=1}^{n} m_i} \right)\left(\frac{1}{\mathcal{R}(p,q)}\right)} \times \prod_{1 \leq i < j \leq n} \left([m_i]_{\mathcal{R}(p,q)} - [m_j]_{\mathcal{R}(p,q)}\right)\sum_{i=1}^{n} m_i.$$

Proposition 5 The super $R(p,q)$—deformed Witt n—algebras are generated by the operators $i_m^{R(p,q)}$ and $G_m^{R(p,q)}$ satisfying the following commutation relations:

$$\left\{[m_1]_{R(p,q)}, [m_2]_{R(p,q)}, \ldots, [m_n]_{R(p,q)}\right\} = \frac{(q-p)^{\binom{n-1}{2}}}{(\phi(p,q))^{\frac{n-1}{2} \sum_{i=1}^{n} m_i} \left(\frac{-2 \sum_{i=1}^{n} m_i - 1}{2 \sum_{i=1}^{n} m_i} \right)\left(\frac{1}{\mathcal{R}(p,q)}\right)} \times \prod_{1 \leq i < j \leq n} \left([m_i]_{\mathcal{R}(p,q)} - [m_j]_{\mathcal{R}(p,q)}\right)\sum_{i=1}^{n} m_i.$$

and

$$\left\{[m_1]_{R(p,q)}, [m_2]_{R(p,q)}, \ldots, [m_n]_{R(p,q)}\right\} = \frac{(q-p)^{\binom{n-1}{2}}}{(\phi(p,q))^{\frac{n-1}{2} \sum_{i=1}^{n} m_i} \left(\frac{-2 \sum_{i=1}^{n} m_i - 1}{2 \sum_{i=1}^{n} m_i} \right)\left(\frac{1}{\mathcal{R}(p,q)}\right)} \times \prod_{1 \leq i < j \leq n} \left([m_i]_{\mathcal{R}(p,q)} - [m_j]_{\mathcal{R}(p,q)}\right)\sum_{i=1}^{n} m_i.$$

and other anti-commutators are zeros.
Taking $n = 3$ in the relations (14) and (15), we obtain the super $\mathcal{R}(p, q)$–deformed Witt 3–algebra:

$$
\left[\mathcal{R}(p, q), \mathcal{R}(p, q), \mathcal{R}(p, q) \right] = \frac{(q - p)(|m_1| \mathcal{R}(p, q) - |m_2| \mathcal{R}(p, q))}{(\phi(p, q))^{m_1 + m_2 + m_3}} \left(\frac{[m_1] \mathcal{R}(p, q) - [m_2] \mathcal{R}(p, q)}{2(\phi(p, q))^{m_1 + m_2 + m_3 + 3}} \right) \left([m_1] \mathcal{R}(p, q) - [m_3 + 1] \mathcal{R}(p, q) \right)
$$

and other anti-commutators are zeros.

Now, we investigate the Virasoro $2n$–algebra in the framework of the $\mathcal{R}(p, q)$–deformed quantum algebras. The Virasoro algebra

$$
\mathcal{V}ir = \bigoplus_{n \in \mathbb{Z}} \mathbb{K} L_n \oplus \mathbb{K} C
$$

is the Lie algebra which satisfies the commutation relations (23):

$$
[L_m, L_n] = (m - n)L_{m+n} + \frac{1}{12}m(m - 1)(m + 1)\delta_{m+n,0} C,
$$

$$
[\mathcal{V}ir, C] = \{0\},
$$

where $\delta_{i,j}$ denotes the Kronecker delta and C the central charge.

The $\mathcal{R}(p, q)$–deformed operators L_n defined as

$$
L_n := -t^n \bar{D}_{\mathcal{R}(p, q)}
$$

satisfy the $\mathcal{R}(p, q)$–deformed Witt n–algebra given by (14). From the skewsymmetry and the $\mathcal{R}(p, q)$–deformed generalized Jacobi identity, we have:

Lemma 6 The $\mathcal{R}(p, q)$–deformed Virasoro $2n$–algebra is generated by the following relation:

$$
\left[\mathcal{R}(p, q), \mathcal{R}(p, q), \mathcal{R}(p, q) \right] = g_{\mathcal{R}(p, q)}(m_1, \cdots, m_{2n}) + C_{\mathcal{R}(p, q)}(m_1, \cdots, m_{2n}), \quad (16)
$$

where

$$
g_{\mathcal{R}(p, q)}(m_1, \cdots, m_{2n}) = \frac{(q - p)(2^{n-1})}{(\phi(p, q))^{(n-1)} \sum_{i=1}^{2n} m_i} \left(\frac{-2 \sum_{i=1}^{2n} m_i \mathcal{R}(p, q)}{2[- \sum_{i=1}^{2n} m_i \mathcal{R}(p, q)]} \right)
$$

$$
\times \prod_{1 \leq i < j \leq 2n} \left([m_i] \mathcal{R}(p, q) - [m_j] \mathcal{R}(p, q) \right) L^{m_1}_{\sum_{i=1}^{2n} m_i} \quad (17)
$$

and

$$
C_{\mathcal{R}(p, q)}(m_1, \cdots, m_{2n}) = \frac{c(p, q) \epsilon_1^{1 \cdots 2n}}{6 \times 2^n \times n!} \prod_{i=1}^{n} \frac{[m_{2i-1} - 1] \mathcal{R}(p, q) [m_{2i-1}] \mathcal{R}(p, q)}{(\phi(p, q))^{m_{2i-1}} [2m_{2i-1} \mathcal{R}(p, q)]}
$$

$$
\times \frac{[m_{2i-1}] \mathcal{R}(p, q) [m_{2i-1} + 1] \mathcal{R}(p, q) \delta_{m_{2i-1}, m_{2i}}}{6 \times 2^n \times n!} \quad (18)
$$

is the $\mathcal{R}(p, q)$–deformed central extension.
Example 7 Some examples are given for \(n = 2 \) and \(n = 3 \).

(a) Taking \(n = 2 \) in the realtions (16), (17), and (18), we obtain the \(\mathcal{R}(p, q) \) - deformed Virasoro \(4 \) - algebra:

\[
[L_{m_1}, L_{m_2}, L_{m_3}, L_{m_4}]_{\mathcal{R}(p, q)} = g_{\mathcal{R}(p, q)}(m_1, m_2, m_3, m_4) + C_{\mathcal{R}(p, q)}(m_1, \ldots, m_4),
\]

where

\[
g_{\mathcal{R}(p, q)}(m_1, m_2, m_3, m_4) = \frac{(q - p)^3}{(\phi(p, q))^{m_1 + m_2 + m_3 + m_4}} \left(\frac{-2 \sum_{i=1}^{4} m_i|_{\mathcal{R}(p, q)}}{2| - \sum_{i=1}^{4} m_i|_{\mathcal{R}(p, q)}} \right)
\times \prod_{1 \leq i < j \leq 4} \left([m_i]_{\mathcal{R}(p, q)} - [m_j]_{\mathcal{R}(p, q)} \right) L_{\mathcal{R}(p, q)}^{m_1}
\]

and

\[
C_{\mathcal{R}(p, q)}(m_1, \ldots, m_4) = \frac{c(p, q)e^{q_{1\ldots4}}}{48} \sum_{l=1}^{2} \left(\phi(p, q) \right)^{-m_{2l-1}} \left[\frac{m_{2l-1}|_{\mathcal{R}(p, q)}}{2m_{2l-1}|_{\mathcal{R}(p, q)}} \right]
\times \prod_{1 \leq i < j \leq 4} \left([m_i]_{\mathcal{R}(p, q)} - [m_j]_{\mathcal{R}(p, q)} \right) L_{\mathcal{R}(p, q)}^{m_1}
\]

(b) The \(\mathcal{R}(p, q) \) - deformed Virasoro \(6 \) - algebra is deduced from the generalization by taking \(n = 3 \):

\[
[L_{m_1}, \ldots, L_{m_6}]_{\mathcal{R}(p, q)} = g_{\mathcal{R}(p, q)}(m_1, \ldots, m_6) + C_{\mathcal{R}(p, q)}(m_1, \ldots, m_6),
\]

where

\[
g_{\mathcal{R}(p, q)}(m_1, \ldots, m_6) = \frac{(q - p)^{10}}{(\phi(p, q))^{2\sum_{i=1}^{6} m_i}} \left(\frac{-2 \sum_{i=1}^{6} m_i|_{\mathcal{R}(p, q)}}{2| - \sum_{i=1}^{6} m_i|_{\mathcal{R}(p, q)}} \right)
\times \prod_{1 \leq i < j \leq 6} \left([m_i]_{\mathcal{R}(p, q)} - [m_j]_{\mathcal{R}(p, q)} \right) L_{\mathcal{R}(p, q)}^{m_1}
\]

and

\[
C_{\mathcal{R}(p, q)}(m_1, \ldots, m_6) = \frac{c(p, q)e^{q_{1\ldots6}}}{288} \sum_{l=1}^{3} \left(\phi(p, q) \right)^{-m_{3l-1}} \left[\frac{m_{3l-1}|_{\mathcal{R}(p, q)}}{2m_{3l-1}|_{\mathcal{R}(p, q)}} \right]
\times \prod_{1 \leq i < j \leq 6} \left([m_i]_{\mathcal{R}(p, q)} - [m_j]_{\mathcal{R}(p, q)} \right) L_{\mathcal{R}(p, q)}^{m_1}
\]

4 Super\(\mathcal{R}(p, q) \) - deformed Virasoro \(n \) - algebra

In this section, we determine the super \(\mathcal{R}(p, q) \) - deformed Jacobi identity. Furthermore, we discuss the super \(\mathcal{R}(p, q) \) - deformed Virasoro algebra and derive the super \(\mathcal{R}(p, q) \) - deformed Virasoro \(n \) - algebra (\(n \) even).

Lemma 8 The \(\mathcal{R}(p, q) \) - deformed superalgebra (7), (8), and (9) satisfies the super \(\mathcal{R}(p, q) \) - deformed Jacobi identity:

\[
\sum_{(i,j,l) \in \mathbb{C}(n,m,k)} (-1)^{|A_i||A_l|} [\rho(A_i), [A_j, A_l]]_{\mathcal{R}(p, q)} = 0,
\]

\[(19) \]
where $\rho(l_m^{R(p,q)}) = \frac{[2m]_{2(p,q)}}{[m]_{2(p,q)}} l_m^{R(p,q)}$, $\rho(G_m^{R(p,q)}) = \frac{[2(m+1)]_{2(p,q)}}{[m+1]_{2(p,q)}} G_m^{R(p,q)}$ and $C(n,m,k)$ denotes the cyclic permutation of (n,m,k).

Proof 9 Taking respectively, $A_i = l_m^{R(p,q)}$, $A_j = l_m^{R(p,q)}$, $A_k = l_k^{R(p,q)}$, and by computation, the result follows.

The super $\mathcal{R}(p,q)$—deformed Virasoro algebra is generated by bosonic and fermionic operators $l_m^{R(p,q)} = -t^m \Delta$ of parity 0 and $G_m^{R(p,q)} = -\theta t^m \Delta$ of parity 1.

Proposition 10 The operators $l_m^{R(p,q)}$ and $G_m^{R(p,q)}$ satisfy the following commutation relations:

$$[[l_{m_1}^{R(p,q)}, l_{m_2}^{R(p,q)}]]_{x,y} = ([m_1]_{R(p,q)} - [m_2]_{R(p,q)}) l_{m_1 + m_2}^{R(p,q)} + C_{R(p,q)}(m_1) \delta_{m_1 + m_2, 0}, \quad (20)$$

and

$$[[l_{m_1}^{R(p,q)}, G_{m_2}^{R(p,q)}]]_{x,y} = ([m_1]_{R(p,q)} - [m_2 + 1]_{R(p,q)}) G_{m_1 + m_2}^{R(p,q)} + C_{R(p,q)}(m_1) \delta_{m_1 + m_2 + 1, 0}, \quad (21)$$

where \hat{x}, \hat{y}, x, y are given by the relation (10).

$$C_{R(p,q)}(m_1) = \frac{c(p,q)\phi(p,q)^{m_1}}{6[2m_1]_{R(p,q)}} [m_1 + 1]_{R(p,q)} [m_1 - 1]_{R(p,q)}$$

is the $\mathcal{R}(p,q)$—deformed central extension and other anti-commutators are zeros.

Note that, the super q—deformed Virasoro algebra proposed by Ammar et al [23] can be recovered by taking $\mathcal{R}(x,1) = (q-1)^{-1}(x-1)$.

Following the same procedure used to construct the $\mathcal{R}(p,q)$—deformed Virasoro $2n$—algebra (16), we can also derive the super $\mathcal{R}(p,q)$—deformed Virasoro $2n$—algebra. It’s generated by the bosonic and fermionic operators $L_m^{R(p,q)} = -t^m \Delta$ of parity 0 and $G_m^{R(p,q)} = -\theta t^m \Delta$ of parity 1 satisfying the following relations:

$$[L_{m_1}^{R(p,q)}, \ldots, L_{m_2}^{R(p,q)}] = g_{R(p,q)}(m_1, \ldots , m_{2n}) + C_{R(p,q)}(m_1, \ldots , m_{2n}),$$

$$[L_{m_1}^{R(p,q)}, L_{m_2}^{R(p,q)}, \ldots, G_{m_2}^{R(p,q)}]_{R(p,q)} = f_{R(p,q)}(m_1, m_2, \ldots , m_{2n}) + CS_{R(p,q)}(m_1, \ldots , m_{2n}),$$

where $g_{R(p,q)}(m_1, \ldots , m_{2n})$ and $C_{R(p,q)}(m_1, \ldots , m_{2n})$ are given by the relations (17), (18).

$$f_{R(p,q)}(m_1, m_2, \ldots , m_{2n}) = \frac{(q-p)^{2n-1}}{(\phi(p,q))^{(n-1)\sum_{i=2}^{2n} m_i + 1} \left(-2 \sum_{i=1}^{2n} m_i - 1 \right)_{R(p,q)}} \times \prod_{1 \leq i < j \leq 2n-1} (|m_i|_{R(p,q)} - |m_j|_{R(p,q)}) \times \prod_{i=1}^{2n-1} (|m_i|_{R(p,q)} - |m_{2n} + 1|_{R(p,q)}) G_{\sum_{i=1}^{2n} m_i},$$

10
\[CS_{\mathcal{R}(p,q)}(m_1, m_2, \ldots m_{2n}) = \sum_{k=1}^{2n-1} \frac{(-1)^{k+1}c(p,q)(\phi(p,q))^{-m_k} |m_k|_{\mathcal{R}(p,q)}}{6 \times 2^{n-1}(n-1)!} [2m_k]_{\mathcal{R}(p,q)} \times [m_k + 1]|_{\mathcal{R}(p,q)} |m_k|_{\mathcal{R}(p,q)} [m_k - 1]|_{\mathcal{R}(p,q)} \delta_{m_k + m_{2n} + 1, 0} \]
\[\times \epsilon_{i_1 \cdots i_{2n-2}}^{i_1 \cdots i_{2n-2}} \prod_{p=1}^{n-1} \frac{(\phi(p,q))^{-i_{2p-1}i_{2p-1}}[i_{2p-1}]}{[2i_{2p-1}]_{\mathcal{R}(p,q)}} \]
\[\times [i_{2p-1} + 1]|_{\mathcal{R}(p,q)} [i_{2p-1}]|_{\mathcal{R}(p,q)} [i_{2p-1} - 1]|_{\mathcal{R}(p,q)} \delta_{i_{2p-1} + i_{2p-1}, 0}, \]

with \(\{j_1, \ldots, j_{2n-2}\} = \{1, \ldots, \hat{k}, \ldots, 2n-1\} \) and other anti-commutators are zeros.

5 A toy model for the super \(\mathcal{R}(p, q) \) — Virasoro constraints

In this section, we construct another super Witt \(n \)— algebra from the \(\mathcal{R}(p, q) \) — deformed quantum algebra. We use the super \(\mathcal{R}(p, q) \) — Virasoro constraints to study a toy model.

We consider the operators defined by:
\[T_{\mathcal{R}^{R}(p^{a}, q^{a})}^{m} := \Delta z^{m} \] (22)
\[T_{\mathcal{R}^{R}(p^{a}, q^{a})}^{m} := -\theta \Delta z^{m}. \] (23)

The operators (22) and (23) can be rewritten as:
\[T_{m}^{\mathcal{R}(p^{a}, q^{a})} = -[m]_{\mathcal{R}(p^{a}, q^{a})} z^{m} \]
\[T_{m}^{\mathcal{R}(p^{a}, q^{a})} = -\theta [m]_{\mathcal{R}(p^{a}, q^{a})} z^{m}. \]

The \(\mathcal{R}(p, q) \) — deformed numbers (2) can be rewritten as [20]:
\[[n]_{\mathcal{R}(p,q)} = \frac{\tau_{1}^{n} - \tau_{2}^{n}}{\tau_{1} - \tau_{2}}, \quad \tau_{1} \neq \tau_{2}, \]

where \(\tau_{i}, i \in \{1, 2\} \) are the functions depending on the deformation parameters \(p \) and \(q \). For illustration, we have some particular cases [20]:

(i) \(q \) — Arick-Coon-Kuryskin deformation [5][26]
\[\tau_{1} = 1, \quad \tau_{2} = q \quad \text{and} \quad [n]_{q} = \frac{1 - q^{n}}{1 - q}; \]

(ii) \((p, q) \) — Jagannathan-Srinivasa deformation [24]
\[\tau_{1} = p, \quad \tau_{2} = q \quad \text{and} \quad [n]_{p,q} = \frac{p^{n} - q^{n}}{p - q}. \]
Lemma 11 The following products hold.

\[
T_m^{R(p^n,q^a)} \cdot T_n^{R(p^b,q^b)} = \left(\frac{\tau_1^{a+b} - \tau_2^{a+b}}{\tau_1 - \tau_2}\right) \cdot \frac{\tau_1^{-m} - \tau_2^{-m}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

\[
+ \frac{\tau_2^{-n} - \tau_1^{-n}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

and

\[
T_m^{R(p^n,q^a)} \cdot T_n^{R(p^{a+b},q^b)} = \left(\frac{\tau_1^{a+b} - \tau_2^{a+b}}{\tau_1 - \tau_2}\right) \cdot \frac{\tau_1^{-m} - \tau_2^{-m}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

\[
+ \frac{\tau_2^{-n} - \tau_1^{-n}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

Proposition 12 The operators (22) and (23) satisfy the following commutation relations:

\[
\left[T_m^{R(p^n,q^a)} , T_n^{R(p^{a+b},q^b)} \right] = \left(\frac{\tau_1^{a+b} - \tau_2^{a+b}}{\tau_1 - \tau_2}\right) \cdot \frac{\tau_1^{-m} - \tau_2^{-m}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

\[
+ \frac{\tau_2^{-n} - \tau_1^{-n}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

\[
\left[T_m^{R(p^n,q^a)} , T_n^{R(p^b,q^b)} \right] = \left(\frac{\tau_1^{a+b} - \tau_2^{a+b}}{\tau_1 - \tau_2}\right) \cdot \frac{\tau_1^{-m} - \tau_2^{-m}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

\[
+ \frac{\tau_2^{-n} - \tau_1^{-n}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

where

\[
f(m, n) = -\left(\frac{\tau_1^{a+b} - \tau_2^{a+b}}{\tau_1 - \tau_2}\right) \cdot \frac{\tau_1^{-m} - \tau_2^{-m}}{\tau_1 - \tau_2} T_{m+n}^{R(p^{a+b},q^{a+b})}
\]

and other anti-commutators are zeros.

Setting \(a = b = 1\), we obtain:

\[
\left[T_m^{R(p,q)} , T_n^{R(p,q)} \right] = \left(\frac{\tau_1^{-n} - \tau_2^{-m}}{\tau_1 - \tau_2}\right) \cdot \frac{2R(p,q)}{2R(p,q)} T_{m+n}^{R(p^2,q^2)}
\]

\[
+ \frac{\tau_2^{m+n} - \tau_1^{m+n}}{\tau_1 - \tau_2} T_{m+n}^{R(p^2,q^2)}
\]
\[
\left[T^R_m(p,q), T^R_n(p,q) \right] = \frac{(\tau_1^{-m} - \tau_1^{-m+1})}{\tau_1 - \tau_2} [2]^{R(p,q)} T^R_{m+n}(p^2,q^2) + f(m,n) \\
+ \frac{\tau_2^{m+n}}{\tau_1 - \tau_2} \left((\tau_1^{-m} \tau_1^{-n}) - (\tau_1^{-m} \tau_2 - \tau_2^{-n}) \right) T^R_{m+n}(p,q),
\]

where

\[
f(m,n) = -\frac{\tau_1^{-m-1} \tau_2^{2(m+n)}}{(\tau_1 - \tau_2)^2} [2]^{R(p,q)} T^R_{m+n}(p^2,q^2) + \frac{\tau_2^{m+n}}{\tau_1 - \tau_2} \left(\frac{\tau_1^{-m} + \tau_2^{m+n-1} \tau_2}{\tau_1 - \tau_2} \right) T^R_{m+n}(p,q)
\]

and other anti-commutators are zeros.

We consider the \(n \)– bracket defined by:

\[
\left[T^R_{m_1}(p^{a_1},q^{a_1}), \ldots, T^R_{m_n}(p^{a_n},q^{a_n}) \right] := \epsilon_{1 \cdots t n} T^R_{m_1}(p^{a_1},q^{a_1}) \ldots T^R_{m_n}(p^{a_n},q^{a_n}),
\]

where \(\epsilon_{1 \cdots t n} \) is the Lévi-Civitá symbol defined by (4). Our study is focused in the case with the same \(R(p^a, q^a) \) leads to

\[
\left[T^R_{m_1}(p^a, q^a), \ldots, T^R_{m_n}(p^a, q^a) \right] = \epsilon_{1 \cdots t n} T^R_{m_1}(p^a, q^a) \ldots T^R_{m_n}(p^a, q^a).
\]

Putting \(a = b \) in the relation (26), we obtain:

\[
\left[T^R_{m}(p^a, q^a), T^R_{n}(p^a, q^a) \right] = \frac{(\tau_1^{-na} - \tau_1^{-ma})}{(\tau_1^{-a} - \tau_2^{-a})} [2]^{R(p^a,q^a)} T^R_{m+n}(p^{2a},q^{2a}) \\
+ \frac{\tau_2^{(m+n)a}}{\tau_1^{-a} - \tau_2^{-a}} \left((\tau_1^{-na} - \tau_1^{-ma}) + (\tau_2^{-na} - \tau_2^{-ma}) \right) T^R_{m+n}(p^a,q^a).
\]

The \(n \)– bracket takes the following form:

\[
\left[T^R_{m_1}(p^a, q^a), \ldots, T^R_{m_n}(p^a, q^a) \right] = \frac{(-1)^{n+1}}{(\tau_1^{-a} - \tau_2^{-a})} \left(M^n_m [n] R(p^a,q^a) T^R_{m+n}(p^{a(n)},q^{a(n)}) \right) \\
- \frac{n+1}{\tau_2^{-a} \left(\sum_{k=1}^{m} \right)} \left(M^n_a + C^n_a \right) T^R_{m_1 + \ldots + m_n}(p^{(n-1)a},q^{(n-1)a}),
\]

where

\[
M^n_a = \tau_1^{-a(n-1)} \sum_{k=1}^{m \leq n} \left(\frac{\tau_1^{-a} - \tau_2^{-a}}{2} \right)^2 \prod_{1 \leq j < k \leq n} \left([m_k] R(p^a,q^a) - [m_j] R(p^a,q^a) \right) \\
+ \prod_{1 \leq j < k \leq n} \left(\frac{\tau_1^{-a} m_k - \tau_2^{-a} m_j}{\tau_2^{-a} \tau_1^{-a}} \right)
\]

and

\[
C^n_a = \tau_2^{-a(n-1)} \sum_{k=1}^{m \leq n} \left(\frac{\tau_1^{-a} - \tau_2^{-a}}{2} \right)^2 \prod_{1 \leq j < k \leq n} \left([m_k] R(p^a,q^a) - [m_j] R(p^a,q^a) \right) \\
+ (-1)^{n+1} \prod_{1 \leq j < k \leq n} \left(\frac{\tau_1^{-a} m_k - \tau_1^{-a} m_j}{\tau_1^{-a}} \right),
\]

13
From the super multibracket of order n, we define the $\mathcal{R}(p,q)$ - deformed super n - bracket as follows:

$$\left[T_{m_1}^{\mathcal{R}(p,q^n)}, T_{m_2}^{\mathcal{R}(p,q^n)}, \ldots, T_{m_n}^{\mathcal{R}(p,q^n)} \right] := \sum_{j=0}^{n-1} \left(-1\right)^{n-1+j} \epsilon_{12 \cdots n-1} T_{m_1}^{\mathcal{R}(p,q^n)} \cdots T_{m_j}^{\mathcal{R}(p,q^n)} \times T_{m_{j+1}}^{\mathcal{R}(p,q^n)} \cdots T_{m_n}^{\mathcal{R}(p,q^n)}.$$

From the relation (27) with $a = b$, we obtain:

$$\left[T_{m_1}^{\mathcal{R}(p,q^n)}, T_{m_2}^{\mathcal{R}(p,q^n)} \right] = \left(\tau_1^{a-m} - \tau_1^{-a-m} \right) \left[2 \right]_{\mathcal{R}(p,q^n)} T_{m+n}^{\mathcal{R}(p,q^n)} + f(m, n) + \tau_2^{(m+n)a} \left(\tau_2^{-a+m} - \tau_1^{-a} \right) T_{m+n}^{\mathcal{R}(p,q^n)},$$

where

$$f(m, n) = -\frac{\tau_1^{(m+1)a} - \tau_2^{(m+1)a}}{\tau_1^a - \tau_2^a} \left(\tau_2^{am} \left[2 \right]_{\mathcal{R}(p,q^n)} T_{m+n}^{\mathcal{R}(p,q^n)} - \frac{\left[2(m+1) \right]_{\mathcal{R}(p,q^n)}}{\tau_1} T_{m+n}^{\mathcal{R}(p,q^n)} \right).$$

Thus, the super n - bracket can be rewritten as follows:

$$\left[T_{m_1}^{\mathcal{R}(p,q^n)}, \ldots, T_{m_n}^{\mathcal{R}(p,q^n)} \right] = \left(\tau_1^{a-n} \sum_{s=1}^{n} \left(\frac{\alpha_1}{\tau_1^a - \tau_2^a} \right)^2 \prod_{1 \leq j < k \leq n} \left(m_{j} - 1 \right)_{\mathcal{R}(p,q^n)} - m_j \right)_{\mathcal{R}(p,q^n)} + \prod_{1 \leq j < k \leq n} \left(\tau_2^{a(m-1)} - \tau_2^{a(m)} \right),$$

where

$$A_a^m = \tau_1^{a(n-1)} \sum_{s=1}^{n} \left(\frac{\alpha_1}{\tau_1^a - \tau_2^a} \right)^2 \prod_{1 \leq j < k \leq n} \left(m_{j} - 1 \right)_{\mathcal{R}(p,q^n)} - m_j \right)_{\mathcal{R}(p,q^n)},$$

$$F_a^m = \tau_1^{a(n-1)} \sum_{s=1}^{n} \prod_{1 \leq j < k \leq n} \left(m_{j} - 1 \right)_{\mathcal{R}(p,q^n)} - m_j \right)_{\mathcal{R}(p,q^n)} \tau_2^{a(m)} \left(\tau_2^{a(m-1)} - \tau_2^{a(m)} \right),$$

$$S_a^m = \tau_1^{a(n-1)} \sum_{s=1}^{n} \prod_{1 \leq j < k \leq n} \left(m_{j} - 1 \right)_{\mathcal{R}(p,q^n)} - m_j \right)_{\mathcal{R}(p,q^n)} \tau_2^{a(m-1)} \left(\tau_2^{a(m)} - \tau_2^{a(m-1)} \right) + \left(-1 \right)^{n-1} \prod_{1 \leq j < k \leq n} \left(\tau_2^{a(m-1)} - \tau_2^{a(m)} \right).$$

14
Let us consider the generating function with infinitely many parameters presented by \([28]\):

\[
Z_{toy}(t) = \int x^\gamma \exp \left(\sum_{s=0}^{\infty} t_s s! x^s \right) dx.
\]

We assume that the following relation holds for the linear maps \(\Delta\) given by the relation \((6)\)

\[
\int \Delta f(x) dx = 0.
\]

Taking \(f(x) = x^{m+\gamma} \exp \left(\sum_{s=0}^{\infty} t_s s! x^s \right)\), we have

\[
\int_{-\infty}^{+\infty} \Delta \left(x^{m+\gamma} \exp \left(\sum_{s=0}^{\infty} t_s s! x^s \right) \right) dx = 0.
\]

We consider the following expression

\[
\exp \left(\sum_{s=0}^{\infty} t_s s! x^s \right) = \sum_{n=0}^{\infty} B_n(t_1, \ldots, t_n) \frac{x^n}{n!},
\]

where \(B_n\) is the Bell polynomials. Then

\[
\Delta \left(x^{m+\gamma} \exp \left(\sum_{s=0}^{\infty} t_s s! x^s \right) \right) = x^{m+\gamma} \exp \left(\sum_{s=0}^{\infty} t_s s! x^s \right) + \frac{(\phi(p, q))^{m+\gamma}}{(\tau_1^m - \tau_2^m)} \sum_{k=1}^{\infty} \frac{B_k(t^a_1, \ldots, t^a_k)}{k!} \exp \left(\sum_{s=0}^{\infty} \frac{t_s s!}{s!} x^{s+\gamma} \right),
\]

where \(t^a_k = (\tau^a_1 - \tau^a_2) t_k\). Then, from the relation

\[
T_{m}^R(\mu^n, \nu^n) Z_{toy}(t) = 0, \quad m \geq 0,
\]

the operator \([22]\) takes the following form:

\[
T_{m}^R(\mu^n, \nu^n) = [m + \gamma]_{R(\mu^n, \nu^n)} m! \frac{\partial}{\partial t_m} + \frac{(\phi(p, q))^{m+\gamma}}{\tau_1^m - \tau_2^m} \sum_{k=1}^{\infty} \frac{(k + m)!}{k!} B_k(t^a_1, \ldots, t^a_k) \frac{\partial}{\partial t_{k+m}}.
\]

Similarly, we obtain

\[
\pi_{m}^R(\mu^n, \nu^n) Z_{toy}(t) = 0, \quad m \geq 0,
\]
The results obtained here can be deduced from the general formalism by setting $\mathcal{R}(x, 1) = (q - 1)^{-1}(x - 1)$. Then, the q-deformed operators given by:

\[
\mathcal{T}_m^q = \Delta z^m \tag{28}
\]

\[
\mathcal{T}_n^q = -\theta \Delta z^n \tag{29}
\]

satisfy the products

\[
\mathcal{T}_m^q \cdot \mathcal{T}_n^q = -\frac{(q^{a+b} - 1)}{(q^a - 1)(q^b - 1)} \mathcal{T}_{m+n}^{a+b} + \frac{1}{q^b - 1} \mathcal{T}_m^q + \frac{q^{-m}b}{q^a - 1} \mathcal{T}_n^q \tag{30}
\]

and

\[
\mathcal{T}_m^q \cdot \mathcal{T}_n^b = -\frac{(q^{a+b} - 1)}{(q^a - 1)(q^b - 1)} \mathcal{T}_{m+n+1}^{a+b} + \frac{q^{-n}b}{q^a - 1} \mathcal{T}_m^q \tag{31}
\]

Moreover, the following commutation relations hold:

\[
\left[\mathcal{T}_m^q, \mathcal{T}_n^b \right] = \frac{(q^{a+b} - 1)}{(q^a - 1)(q^b - 1)} \mathcal{T}_{m+n}^{a+b} - \frac{(q^{-n}a - q^{-m}b)}{q^a - 1} \mathcal{T}_m^q + \frac{(q^{-m}b - 1)}{q^a - 1} \mathcal{T}_n^q \tag{32}
\]

\[
\left[\mathcal{T}_m^q, \mathcal{T}_n^q \right] = \frac{(q^{a+b} - 1)}{(q^a - 1)(q^b - 1)} \mathcal{T}_{m+n}^{a+b} - \frac{(q^{-n}a - q^{-m}b)}{q^a - 1} \mathcal{T}_m^q + \frac{(q^{-m}b - 1)}{q^a - 1} \mathcal{T}_n^q + f(m, n) \tag{33}
\]

where

\[
f(m, n) = -\frac{(q^{a+b} - 1)}{(q^a - 1)(q^b - 1)} \mathcal{T}_{m+n}^{a+b} + \frac{q^{-m}b - b}{q^a - 1} \mathcal{T}_m^q + \frac{q^{-m}b - b}{q^a - 1} \mathcal{T}_n^q + f(m, n)
\]

and other anti-commutators are zeros. Setting $a = b = 1$, we obtain:

\[
\left[\mathcal{T}_m^q, \mathcal{T}_n^q \right] = \frac{(q^{-n} - q^{-m})}{(q - 1)} \left[2q \mathcal{T}_{m+n}^2 - \frac{1}{q - 1} \left((q^{-n} - 1) - (q^{-m} - 1) \right) \mathcal{T}_{m+n}^q \right]
\]
and other anti-commutators are zeros. We study the case with the same q^n. Then, putting $a = b$ in the relation \text{(32)}, we obtain:

$$
\left[T_m, T_n \right] = \frac{(q^{-a} - q^{-m+1})}{q - 1} [2]_q T_m^2 q^n + \frac{1}{q - 1} \left((q - q^{-m}) - (q^{-m} - 1) \right) T_m^q + f(m, n),
$$

where

$$
f(m, n) = -\frac{q^{-m-1}}{q - 1} [2]_q T_1^q + \frac{1 + q^{-m-1}}{q - 1} T_1^q
$$

From the super multibracket of order n \text{(3)}, we define the q–deformed n–bracket as follows:

$$
\left[T_{m_1}, T_{m_2}, \ldots, T_{m_n} \right] := \sum_{j=0}^{n-1} (-1)^{n-j+1} \epsilon_{j_1 \ldots j_n} T_{m_1}^{m_{j_1}} \ldots T_{m_j}^{m_{j+1}} \ldots T_{m_n}^{m_{n-1}}.
$$

From the relation \text{(33)} with $a = b$, we obtain:

$$
\left[T_m, T_n \right] = \frac{(q^{-a} - q^{-m+1})}{q - 1} [2]_q T_m^2 q^n + \frac{1}{q - 1} \left((q - q^{-m}) - (q^{-m} - 1) \right) T_m^q + f(m, n),
$$

where

$$
f(m, n) = -\frac{q^{-m-a-1}}{q - 1} [2]_q T_1^q + \frac{1 + q^{-m-a}}{q - 1} T_1^q.
$$
Thus, the super \(n \)– bracket takes the form:

\[
\left[T^{n}_{m_1, \ldots, m_n} \right] = \frac{(-1)^{n+1}}{(q^n - 1)^{n-1}} \left(\prod_{1 \leq j < k \leq n} \left[m_k - 1 \right] q^n \right) + f(m_1, \ldots, m_n),
\]

where

\[
A^n_a = q^{-a(n-1) \sum_{s=1}^{n}(m_s - 1)} \left(q^n - 1 \right)^{\binom{n}{2}} \prod_{1 \leq j < k \leq n} \left[m_k - 1 \right] q^n,
\]

\[
F^n_a = q^{-a(n-1) \sum_{s=1}^{n} m_s} \left(q^n - 1 \right)^{\binom{n}{2}} \prod_{1 \leq j < k \leq n} \left[m_k - 1 \right] q^n,
\]

\[
S^n_a = \left(q^n - 1 \right)^{\binom{n}{2}} \prod_{1 \leq j < k \leq n} \left[m_k - 1 \right] q^n + (-1)^{n-1} \prod_{1 \leq j < k \leq n} \left(q^{m_k} - q^{m_j} q^{\binom{n}{2}} \right)
\]

and

\[
f(m_1, \ldots, m_n) = \frac{(-1)^{n+1} q^{-(m+1)a}}{(q^n - 1)^{n-1}} \left(\prod_{1 \leq j < k \leq n} \left[m_k - 1 \right] q^n \right) - \frac{2(m+1)}{[m+1] q^n} \frac{\prod_{1 \leq j < k \leq n} \left[m_k - 1 \right] q^n}{\left(q^n - 1 \right)^{n-1}}.
\]

The operators (28) and (29) take the following forms:

\[
T^{\alpha}_{m} = \left[m + \gamma \right] q^m m! \frac{\partial}{\partial m} + \frac{q^{m+\gamma}}{q^a - q^{-a}} \sum_{k=1}^{\infty} \frac{(k+m)!}{k!} B_k(t_1^\alpha, \ldots, t_k^\alpha) \frac{\partial}{\partial \delta_{k+m}}
\]

\[
T^{\alpha}_{m} = \theta \left[m + \gamma \right] q^m m! \frac{\partial}{\partial m} + \frac{q^{m+\gamma}}{q^a - q^{-a}} \sum_{k=1}^{\infty} \frac{(k+m)!}{k!} B_k(t_1^\alpha, \ldots, t_k^\alpha) \frac{\partial}{\partial \delta_{k+m}}
\]

Putting \(\tilde{m} = m + \gamma \), \(\tilde{n} = n + \gamma \), and by changing \(n! \frac{\partial}{\partial m} \leftrightarrow x^n \), we show directly that the products \(T^{\alpha}_{m} \cdot T^{\beta}_{n} \) and \(T^{\alpha}_{m} \cdot T^{\beta}_{n} \) are respectively equivalent to (30) and (31).

6 Relevant particular cases

Particular cases of super Virasoro \(n \)– algebra and application associated to different quantum algebras in the literature are deduced as follows:

6.1 Jagannathan- Srinivasa deformation [24]

Taking \(\mathcal{R}(x, y) = \frac{x-y}{p-q} \), we obtain: the algebra endomorphism \(\sigma \) on \(B \) is defined by:

\[
\sigma(t^n) := (p q)^n t^n \quad \text{and} \quad \sigma(\theta) := (p q) \theta.
\]

We define also the two \((p, q) \)– deformed linear maps by:

\[
\left\{ \begin{array}{l}
\partial_1(t^n) = [n]_{p,q} t^n, \quad \partial(t^n) = [n]_{p,q} \theta t^n, \\
\partial_2(t^n) = 0, \quad \partial_2(\theta t^n) = (p q)^n t^n.
\end{array} \right.
\]
The linear map $\Delta = \partial_t + \theta \partial_\theta$ on B is an even σ-derivation, and satisfy the following relations:

$$\Delta(x y) = \Delta(x) y + \sigma(x) \Delta(y),$$
$$\Delta(t^n) = [n]_{p,q} t^n \quad \text{and} \quad \Delta(\theta t^n) = ([n]_{p,q} + (pq)^n) \theta t^n.$$

It is generated by bosonic and fermionic operators $\mathcal{P}_{m_1}^{p,q} = -t^m \Delta$ of parity 0 and $\mathcal{G}_{m_1}^{p,q} = -\theta t^m \Delta$ of parity 1 verifying the following commutations relations:

$$\left[\mathcal{P}_{m_1}^{p,q}, \mathcal{P}_{m_2}^{p,q} \right]_{\hat{x}, \hat{y}} = \left([m_1]_{p,q} - [m_2]_{p,q} \right) \mathcal{P}_{m_1+m_2}^{p,q};$$
$$\left[\mathcal{P}_{m_1}^{p,q}, \mathcal{G}_{m_2}^{p,q} \right]_{x,y} = \left([m_1]_{p,q} - [m_2+1]_{p,q} \right) \mathcal{G}_{m_1+m_2}^{p,q};$$
$$\left[\mathcal{G}_{m_1}^{p,q}, \mathcal{G}_{m_2}^{p,q} \right] = 0,$$

where

$$\begin{align*}
\hat{x} &= \chi_{m_1 m_2} (p,q), \quad \hat{y} = (pq)^{m_2-m_1} \chi_{m_1 m_2} (p,q), \\
x &= \tau_{m_1 m_2}, \quad y = (pq)^{m_2-m_1} \tau_{m_1 m_2}, \\
\chi_{m_1 m_2} (p,q) &= \frac{[m_1]_{p,q} - [m_2]_{p,q}}{(pq)^{m_2-m_1} [m_1]_{p,q} - [m_2]_{p,q}}, \\
\tau_{m_1 m_2} (p,q) &= \frac{[m_1]_{p,q} - [m_2+1]_{p,q}}{(pq)^{m_2-m_1} [m_1]_{p,q} - [m_2]_{p,q} - (pq)^{m_2}}.
\end{align*}$$

The (p,q)–deformed n–bracket $(n \geq 3)$ are defined as follows:

$$\left[t_{m_1}^{p,q}, \ldots, t_{m_n}^{p,q} \right] := \left(\frac{p - \sum_{i=1}^{n-1} m_i + q - \sum_{i=1}^{n-1} m_i}{2} \right)^{\alpha_1 \cdots \alpha_n} \epsilon_{12 \cdots n} \times (pq)^{\sum_{j=1}^{n-1} \left(\left\lfloor \frac{m_j}{2} \right\rfloor - j \right) m_j} t_{m_1}^{p,q} \cdots t_{m_n}^{p,q},$$

and

$$\left[t_{m_1}^{p,q}, \ldots, t_{m_n}^{p,q} \right] := \left(\frac{p - \sum_{i=1}^{n-1} m_i + q - \sum_{i=1}^{n-1} m_i}{2} \right)^{\alpha_{n-1} \cdots \alpha_1} \epsilon_{12 \cdots n-1} \times (pq)^{\beta_{p,q} m_{m_1}^{p,q} \cdots p_{m_j}^{p,q} \mathcal{G}_{m_{m_j+1}}^{p,q} \cdots p_{m_{m_j+1}}^{p,q} \cdots p_{m_{n-1}}^{p,q}},$$

where $\beta = \sum_{k=1}^{n} \left(\left\lfloor \frac{m_k}{2} \right\rfloor - k+1 \right) m_k + \left(\left\lfloor \frac{m_n}{2} \right\rfloor - 1 \right) m_n + 1 + \sum_{k=j+1}^{n-1} \left(\left\lfloor \frac{m_k}{2} \right\rfloor - k \right) m_k,$

$\alpha = \frac{1+(n-1)}{2},$ and $[n] = Max\{m \in \mathbb{Z} \mid m \leq n\}$ is the floor function. Then, the generators $\mathcal{P}_{m_1}^{p,q}$ and $\mathcal{G}_{m_1}^{p,q}$ satisfy the commutation relations:

$$\left[t_{m_1}^{p,q}, \ldots, t_{m_n}^{p,q} \right] = \left(\frac{q-p}{(pq)^{\frac{n-1}{2}}} \right)^{\alpha_{n-1} \cdots \alpha_1} \times (pq)^{\sum_{j=1}^{n-1} \left(\left\lfloor \frac{m_j}{2} \right\rfloor - j \right) m_j} \epsilon_{12 \cdots n-1} \times \prod_{1 \leq i < j \leq n} \left([been chosen. Please let me know if you need any further assistance.
\[
[p^{p,q}, \cdots, G_{m_n}^{p,q}] = \frac{(q-p)^{\binom{n-1}{2}}}{(pq)^{\sum_{i=1}^{n} m_i + 1}} \left(\frac{p^{\sum_{i=1}^{n-1} m_i + 1} + \sum_{i=1}^{n-1} m_i}{2} \right)
\times \prod_{1 \leq i < j \leq n-1} \left([m_i]_{p,q} - [m_j]_{p,q} \right) \prod_{i=1}^{n-1} \left([m_i]_{p,q} - [m_n + 1]_{p,q} \right) G_{\sum_{i=1}^{n} m_i}^{p,q}
\]
and other anti-commutators are zeros. Furthermore, the corresponding Virasoro \(2n\)– algebra is deduced as:

\[
[L_{m_1}, \cdots, L_{m_n}] = g_{p,q}(m_1, \cdots, m_{2n}) + C_{p,q}(m_1, \cdots, m_{2n}),
\]

where

\[
g_{p,q}(m_1, \cdots, m_{2n}) = \frac{(q-p)^{\binom{2n-1}{2}}}{2(pq)^{\sum_{i=1}^{2n} m_i}} \left(\frac{p^{\sum_{i=1}^{2n} m_i + 1} + \sum_{i=1}^{2n} m_i}{2} \right)
\times \prod_{1 \leq i < j \leq 2n} \left([m_i]_{p,q} - [m_j]_{p,q} \right) L_{\sum_{i=1}^{2n} m_i}^{2n}
\]

and

\[
C_{p,q}(m_1, \cdots, m_{2n}) = \frac{c(p,q)\varepsilon_{i_1 \cdots i_{2n}}} {6 \times 2^n \times n!} \prod_{l=1}^{n} \left(\frac{m_{i_l - 1} - 1}{p} \right)_{p,q} \cdot m_{i_l - 1} \delta_{m_{i_l - 1} + m_{i_l}, 0}.
\]

Several examples are deduced as follows:

(a) Taking \(n = 2\) in the relations (36) and (37), we obtain the \((p,q)\)– deformed Virasoro \(4\)– algebra:

\[
[L_{m_1}, L_{m_2}, L_{m_3}, L_{m_4}] = g_{p,q}(m_1, m_2, m_3, m_4) + C_{p,q}(m_1, \cdots, m_4),
\]

where

\[
g_{p,q}(m_1, m_2, m_3, m_4) = \frac{(q-p)^3}{(pq)^{m_1 + m_2 + m_3 + m_4}} \left(\frac{p^{\sum_{i=1}^{4} m_i} + \sum_{i=1}^{4} m_i}{2} \right)
\times \prod_{1 \leq i < j \leq 4} \left([m_i]_{p,q} - [m_j]_{p,q} \right) L_{\sum_{i=1}^{4} m_i}^{4}
\]

and

\[
C_{p,q}(m_1, \cdots, m_4) = \frac{c(p,q)\varepsilon_{i_1 \cdots i_4}} {48} \prod_{l=1}^{2} \left(\frac{m_{i_l - 1} - 1}{p} \right)_{p,q} \cdot m_{i_l - 1} \delta_{m_{i_l - 1} + m_{i_l}, 0}.
\]

(b) The \((p,q)\)– deformed Virasoro \(6\)– algebra is deduced from the generalization by taking \(n = 3\):

\[
[L_{m_1}, \cdots, L_{m_6}] = g_{p,q}(m_1, \cdots, m_6) + C_{p,q}(m_1, \cdots, m_6),
\]

20
where
\[g_{\rho,q}(m_1,\ldots,m_6) = \frac{(q-p)^{10}}{(pq)^{\sum_{i=1}^6 m_i}} \left(p - \sum_{i=1}^6 m_i + q - \sum_{i=1}^6 m_i \right) \]
\[\times \prod_{1 \leq i < j \leq 6} \left([m_i]_{\rho,q} - [m_j]_{\rho,q} \right) L_{\sum_{i=1}^6 m_i}^q \]
and
\[C_{\rho,q}(m_1,\ldots,m_6) = \frac{c(p,q)\epsilon_1\cdots\epsilon_4}{288} \prod_{l=1}^3 \frac{\left(m_{2l-1} \right)_{\rho,q}}{2\left(m_{2l-1} \right)_{\rho,q}} \]
\[\times \left[m_{2l-1} - 1 \right]_{\rho,q} \left[m_{2l-1} \right]_{\rho,q} \delta_{m_{2l-1} + 1,0}. \]

The \((p,q)\) deformed super Jacobi identity is given by:
\[\sum_{(i,j,l) \in \mathcal{C}(n,m,k)} (-1)^{|A_i||A_l|} \left[\rho(A_i), [A_j, A_l] \right]_{\rho,q} = 0, \]
where \(\rho(L_{m_1}) = (p^{m_1} + q^{m_1}) L_{m_1}, \rho(G_{m_1,q}) = (p^{m_1+1} + q^{m_1+1}) G_{m_1,q}\) and \(\mathcal{C}(n,m,k)\) denotes the cyclic permutation of \((n,m,k)\).

Moreover, the operators \(L_{m_1,q}^p\) and \(G_{m,q}^p\) satisfy the following commutation relations:
\[[L_{m_1,q}^p, L_{m_2,q}^p]_{\hat{x},\hat{y}} = \left([m_1]_{\rho,q} - [m_2]_{\rho,q} \right) L_{m_1+\hat{m}_2}^q + \frac{c(p,q)(pq)^{m_1} [m_1]_{\rho,q}}{6[2m_1]_{\rho,q}} \]
\[\times \left[m_1 + 1 \right]_{\rho,q} \left[m_1 \right]_{\rho,q} \delta_{m_1+\hat{m}_2,0}, \]
and
\[[L_{m_1,q}^p, G_{m_2,q}^p]_{\hat{x},\hat{y}} = \left([m_1]_{\rho,q} - [m_2]_{\rho,q} \right) G_{m_1+\hat{m}_2}^q + \frac{c(p,q)(pq)^{m_1} [m_1]_{\rho,q}}{6[2m_1]_{\rho,q}} \]
\[\times \left[m_1 + 1 \right]_{\rho,q} \left[m_1 \right]_{\rho,q} \delta_{m_1+\hat{m}_2,0}, \]
where \(\hat{x}, \hat{y}, x,\) and \(y\) are given by the relation (35). The super Virasoro \(2n-\) algebra is presented as follows:
\[\left[L_{m_1,q}^p, \cdots, L_{m_{2n},q}^p \right] = g_{p,q}(m_1,\cdots,m_{2n}) + C_{p,q}(m_1,\cdots,m_{2n}), \]
\[\left[F_{m_1,q}^p, \cdots, F_{m_{2n},q}^p \right] = f_{p,q}(m_1,\cdots,m_{2n}) + CS_{p,q}(m_1,\cdots,m_{2n}), \]
where \(g_{p,q}(m_1,\cdots,m_{2n})\) and \(C_{p,q}(m_1,\cdots,m_{2n})\) are given by the relations (36), (37).

\[f_{p,q}(m_1,\cdots,m_{2n}) = \frac{(q-p)^{2n-1}}{2(pq)^{(n-1)\sum_{i=1}^{2n} m_i + 1}} \left(p^{\sum_{i=1}^{2n} m_i - 1} + q^{\sum_{i=1}^{2n} m_i - 1} \right) \]
\[\times \prod_{1 \leq i < j \leq 2n-1} \left([m_i]_{\rho,q} - [m_j]_{\rho,q} \right) \prod_{i=1}^{2n-1} \left([m_i]_{\rho,q} - [m_{2n} + 1]_{\rho,q} \right) G_{\sum_{i=1}^{2n} m_i}. \]
The following products hold.

\[
\begin{align*}
C_{p,q}(m_1, m_2, \ldots, m_{2n}) &= \sum_{k=1}^{2n-1} \frac{(-1)^{k+1} c[p,q](pq)^{-m_k}}{6 \times 2^{n-1}(n-1)!} \frac{1}{p^{m_k} + q^{m_k}} \\
&\times [m_k + 1]_{p,q} [m_k]_{p,q} [m_k - 1]_{p,q} \delta_{m_k + m_{2n+1}, 0} \\
&\times \sum_{s=1}^{j_1 - j_2 - 2} \prod_{i=1}^{n-1} \frac{(pq)^{-i_{2s+1}}}{p^{2i_{2s+1} - 1} + q^{2i_{2s+1}}}
\end{align*}
\]

with \(\{j_1, \ldots, j_{2n-2}\} = \{1, \ldots, \hat{k}, \ldots, 2n-1\} \) and other anti-commutators are zeros.

Now, we construct another \((p, q)\)-deformed super Witt \(n\)-algebra. We consider the operators defined by:

\[
\begin{align*}
\mathcal{T}_{p,q}^{a^m} &= \Delta z^m, \\
\mathcal{T}_{\bar{p},q}^{a^m} &= -\theta \Delta z^m.
\end{align*}
\]

The operators (38) and (39) can be rewritten as:

\[
\begin{align*}
\mathcal{T}_{p,q}^{a^m} &= -[m]_{p,q} a^m z^m, \\
\mathcal{T}_{\bar{p},q}^{a^m} &= -\theta [m]_{p,q} a^m z^m.
\end{align*}
\]

The following products hold.

\[
\begin{align*}
\mathcal{T}_{p,q}^{a^m} \cdot \mathcal{T}_{\bar{p},q}^{a^b} &= \frac{(p^{a+b} - q^{a+b}) p^{-mb}}{(p^a - q^a) (p^b - q^b)} \mathcal{T}_{m+n}^{a^b, a^{m+b}} \\
&+ \frac{q^{-nb}}{p^b - q^b} \mathcal{T}_{m+n}^{a^m, a^b} + \frac{q^{(m+n)a} p^{-mb}}{p^a - q^a} \mathcal{T}_{m+n}^{a^b, a^m} (40)
\end{align*}
\]

and

\[
\begin{align*}
\mathcal{T}_{p,q}^{a^m} \cdot \mathcal{T}_{\bar{p},q}^{a^b} &= \frac{(p^{a+b} - q^{a+b}) p^{-(m+1)b}}{(p^a - q^a) (p^b - q^b)} \mathcal{T}_{m+n+1}^{a^b, a^{m+b}} \\
&+ \frac{q^{-nb}}{p^b - q^b} \mathcal{T}_{m+n+1}^{a^m, a^b} + \frac{q^{(m+1)a} p^{-(m+1)b}}{p^a - q^a} \mathcal{T}_{m+n+1}^{a^b, a^m} (41)
\end{align*}
\]

and the operators satisfy the following commutation relations

\[
\begin{align*}
\left[\mathcal{T}_{p,q}^{a^m}, \mathcal{T}_{\bar{p},q}^{a^b} \right] &= \frac{(p^{a+b} - q^{a+b}) (p^{a} - q^{a}) (p^{b} - q^{b})}{p^a - q^a} \mathcal{T}_{m+n}^{a^{m+b}, a^{m+b}} \\
&- \frac{q^{(m+n)b} (p^{a} - q^{a}) (p^{b} - q^{b})}{p^a - q^a} \mathcal{T}_{m+n}^{a^m, a^b} + \frac{q^{(m+n)a} (p^{a} - q^{a}) (p^{b} - q^{b})}{p^a - q^a} \mathcal{T}_{m+n}^{a^b, a^m} (42)
\end{align*}
\]

\[
\begin{align*}
\left[\mathcal{T}_{p,q}^{a^m}, \mathcal{T}_{\bar{p},q}^{a^b} \right] &= \frac{(p^{a+b} - q^{a+b}) (p^{a} - q^{a}) (p^{b} - q^{b})}{p^a - q^a} \mathcal{T}_{m+n}^{a^{m+b}, a^{m+b}} \\
&+ \frac{q^{(m+n)b} (p^{a} - q^{a}) (p^{b} - q^{b})}{p^a - q^a} \mathcal{T}_{m+n}^{a^m, a^b} + \frac{q^{(m+n)a} (p^{a} - q^{a}) (p^{b} - q^{b})}{p^a - q^a} \mathcal{T}_{m+n}^{a^b, a^m} + f(m,n)
\end{align*}
\]
where

\[f(m, n) = - \frac{(p^{a+b} - q^{a+b}) p^{-m} b - b q^{(a+b)(m+n)}}{(p^a - q^a)(p^b - q^b)} T_1^{a+b, q^{a+b}} + \frac{q^{(m+n)a} q^n b}{p^b - q^b} T_1^{p^a, q^n} + \frac{q^{(m+n)(a+b)} p^{-m} b - b q^a}{p^a - q^a} T_1^{b, q^b} \]

and other anti-commutators are zeros.

Setting \(a = b = 1 \), we obtain:

\[
\begin{align*}
\left[T_{m_1}^{p, q}, T_{m_2}^{p, q} \right] &= \frac{(p^{-n} - p^{-m})}{(p - q)} [2_{p, q} T_{m_1+n}^{p^2, q^2} - \frac{q^{m+n}}{p-q} \left((p^{-n} - q^{-m}) - (p^{-m} - q^{-n}) \right) T_{m+n}^{p, q}, \\
\left[T_{m_1}^{p, q}, T_{m_2}^{p, q} \right] &= \frac{(p^{-n} - p^{-m+1})}{p-q} [2_{p, q} T_{m_1+n}^{p^2, q^2} + f(m, n) \\
&+ \frac{q^{m+n}}{p-q} \left((q^{-m} p - p^{-n}) - (p^{-m} q - q^{-n}) \right) T_{m+n}^{p, q}],
\end{align*}
\]

where

\[
f(m, n) = - \frac{p^{-m-1} q^{2(m+n)}}{(p-q)} [2_{p, q} T_{m+n}^{p^2, q^2} + \frac{q^{m+n} (q^n + q^{m+n} p^{-m-1} q)}{p-q} T_{m+n}^{p^2, q^2}]
\]

and other anti-commutators are zeros.

We consider the \(n \)- bracket defined by:

\[
\left[T_{m_1}^{p^a, q^a}, \ldots, T_{m_n}^{p^a, q^a} \right] := \varepsilon_{1 \cdots n} T_{m_1}^{p^a, q^a} \cdots T_{m_n}^{p^a, q^a}.
\]

We study the case with the same \((p^a, q^a)\). Then,

\[
\left[T_{m_1}^{p^a, q^a}, \ldots, T_{m_n}^{p^a, q^a} \right] = \varepsilon_{1 \cdots n} T_{m_1}^{p^a, q^a} \cdots T_{m_n}^{p^a, q^a}.
\]

Putting \(a = b \) in the relation (42), we obtain:

\[
\begin{align*}
\left[T_{m}^{p^a, q^a}, T_{m}^{p^a, q^a} \right] &= \frac{(p^{-a} - p^{-m a})}{(p^a - q^a)} [2_{p^a, q^a} T_{m+n}^{2 a^2 a} \\
&- \frac{\tau_a^{m+n}}{p^a - q^a} \left((p^{-a} - p^{-m a}) + (q^{-a} - q^{-m a}) \right) T_{m+n}^{p^a, q^a}.
\end{align*}
\]

The \(n \)- bracket takes the following form:

\[
\begin{align*}
\left[T_{m_1}^{p^a, q^a}, \ldots, T_{m_n}^{p^a, q^a} \right] &= \frac{(-1)^{n+1}}{(p^a - q^a)^n} \left(M_n^m [n] p^a q^a T_{m_1+m+n}^{p^a, q^a} \right. \\
&- \frac{[n-1]}{q^a} \left(M_n^m + C_n^m \right) T_{m_1+m+n}^{(n-1) a, p^a q^a} \right).
\end{align*}
\]
where
\[
M_a^n = p^{-a(n-1) \sum_{s=1}^{n} m_s \left((p^a - q^a)^2 \right)} \prod_{1 \leq j < k \leq n} \left([m_k]_{p^a, q^a} - [m_j]_{p^a, q^a} \right) \\
+ \prod_{1 \leq j < k \leq n} \left(q^a m_k - q^a m_j \right)
\]
and
\[
C_a^n = q^{-a(n-1) \sum_{s=1}^{n} m_s \left((p^a - q^a)^2 \right)} \prod_{1 \leq j < k \leq n} \left([m_k]_{p^a, q^a} - [m_j]_{p^a, q^a} \right) \\
+ (-1)^{n-1} \prod_{1 \leq j < k \leq n} \left(p^a m_k - p^a m_j \right).
\]

From the super multibracket of order \(n \), we define the \((p, q)\)—deformed super \(n \)—bracket as follows:
\[
[T_{m_1}^{p^n, q^n}, T_{m_2}^{p^n, q^n}, \ldots, T_{m_n}^{p^n, q^n}] := \sum_{j=0}^{n-1} (-1)^{n-1-j} \prod_{i \neq j} T_{m_i}^{p^n, q^n} \\
\times T_{m_j}^{p^n, q^n} \prod_{1 \leq j < k \leq n} \left(p^a m_k - p^a m_j \right),
\]

Using the relation (43) with \(a = b \), we obtain:
\[
[T_{m_1}^{p^n, q^n}, T_{m_2}^{p^n, q^n}] = \left(\frac{p^{-n} - p^{-(m-1)n}}{(p^a - q^a)^2} \right) [2]_{p^n, q^n} T_{m_1}^{2, q^n} + f(m, n) \\
+ \frac{q^{(m+n)a}}{p^a - q^a} \left((q^{-n} - p^{-n}) + (p^{-a} q^n - q^{-a}) \right) T_{m+n}^{a^n, q^n}.
\]

where
\[
f(m, n) = \frac{-p^{-m-a} q^{2(a+m+n)}}{(p^a - q^a)^2} [2]_{p^n, q^n} T_{m_1}^{2, q^n} + \frac{q^{(m+n)a}}{p^a - q^a} \left(q^{-a} + \frac{q^{(m+n+1)a}}{p^a + q^a} \right) T_{m+n}^{a^n, q^n}.
\]

Thus, the super \(n \)—bracket takes the form:
\[
[T_{m_1}^{p^n, q^n}, \ldots, T_{m_n}^{p^n, q^n}] = \left(\frac{(-1)^{n+1}}{(p^a - q^a)^{n-1}} \right) A^n_{a\{m\}_{p^a, q^a}^{p^n, q^n} - q^{a\{m\}_{p^a, q^a}^{p^n, q^n}}} \\
- \frac{[n-1]_{p^{-a} q^n} a^{n-1}}{q^{-a} \left(\sum_{j=1}^{n} m_j \right)} \left(F_a^n + S_a^n \right) T_{m_1}^{(n-1), q^{(n-1)a}} + f(m_1, \ldots, m_n),
\]

where
\[
A_a^n = p^{-a(n-1) \sum_{s=1}^{n} (m_s-1) \left((p^a - q^a)^2 \right)} \prod_{1 \leq j < k \leq n} \left([m_k - 1]_{p^a, q^n} - [m_j]_{p^a, q^n} \right) \\
+ \prod_{1 \leq j < k \leq n} \left(q^{a(m_k-1)} - q^{a(m_j)} \right),
\]
\[
F_a^n = p^{-a(n-1) \sum_{s=1}^{n} m_s \left((p^a - q^a)^2 \right)} \prod_{1 \leq j < k \leq n} \left([m_k]_{p^a, q^n} - [m_j]_{p^a, q^n} q^{(2)} \right) \\
+ \prod_{1 \leq j < k \leq n} \left(q^{a m_k} - q^{a m_j} q^{(2)} \right),
\]

24
\[S_n^m = q^{-a(n-1) \sum_{i=1}^n m_i} \left(\prod_{1 \leq j < k \leq n} (m_{ik} p^a \cdot q^a p^a) \right) \]

and

\[f(m_1, \ldots, m_n) = \frac{(pq)^{n-1} q^{\sum_{i=1}^n m_i}}{(p^a - q^a)^{n-1}} \left(q^{am}[n] p^a \cdot q^a \bar{T}_1^{m} \right) \]

Furthermore, the operators (38) and (39) are presented as follows:

\[T_{m}^{\mathcal{R}(p^a, q^a)} = (m + \gamma) p^a q^a m \frac{\partial}{\partial t_m} + \frac{(pq)^{m+\gamma}}{p^a - q^a} \sum_{k=1}^{\infty} \frac{(k + m)!}{k!} B_k(t_1^a, \ldots, t_k^a) \frac{\partial}{\partial t_{k+m}} \]

\[T_{n}^{p^a, q^a} = \theta \left[(m + \gamma) p^a q^a m \frac{\partial}{\partial t_m} + \frac{(pq)^{m+\gamma}}{p^a - q^a} \sum_{k=1}^{\infty} \frac{(k + m)!}{k!} B_k(t_1^a, \ldots, t_k^a) \frac{\partial}{\partial t_{k+m}} \right] \]

Putting \(\bar{m} = m + \gamma \), \(\bar{n} = n + \gamma \), and by changing \(n! \frac{\partial}{\partial t_m} \leftarrow x^n \), we show directly that the products \(T_{m}^{p^a, q^a} \cdot T_{n}^{p^b, q^b} \) and \(T_{m}^{p^a, q^a} \cdot T_{n}^{p^b, q^b} \) are respectively equivalent to (40) and (41).

6.2 Chakrabarti and Jagannathan deformation [8]

Setting \(\mathcal{R}(x, y) = \frac{(1-xy)}{(x-y)x} \), we deduce the \((p^{-1}, q) - \) deformed super Virasoro \(n \) - algebra and application.

6.3 Hounkonnou-Ngome generalized \(q \) – Quesne deformation [21]

The results corresponding here are obtained by taking \(\mathcal{R}(x, y) = \frac{(xy-1)}{(q-p)xy} \).

6.4 Biedenharn-Macfarlane deformation [7][27]

Putting \(\mathcal{R}(x) = \frac{x-x^{-1}}{q-q^{-1}} \), we obtain the \(q \) – deformed super Virasoro \(n \) – algebra.

7 Concluding and remarks

We have constructed a super Witt \(n \) and Virasoro \(2n \) – algebras from quantum algebras. Moreover, we have generalized this study to investigate the super \(\mathcal{R}(p, q) \) – deformed Witt \(n \) – algebra, and super \(\mathcal{R}(p, q) \) – deformed Virasoro \(n \) – algebra and discuss a toy model. Particular cases have been investigated. For further, the super Virasoro algebra with a conformal dimension is in preparation for the future work.
Acknowledgements

This research was partly supported by the SNF Grant No. IZSEZ0_206010.

References

[1] Aizawa, N. and Sato, H.: q— deformation of the Virasoro algebra with central extension, Phys. Lett. B. 256, (1991).

[2] Ammar, F. Makhoul, A. and Saadaoui, N.: Second cohomology of q— deformed Witt superalgebras, J. Math. Phys. 54, 063507 (2013).

[3] Azcárraga, de. J. A. and Pérez Bueno, J. C.: Higher-order simple Lie algebras, Commun. Math. Phys. 184, 669-681 (1997).

[4] Azcárraga, de. J. A. and Izquierdo, J. M.: n— ary algebras: a review with applications, J. Phys. A: Math. Theor. 43, 293001 (2010).

[5] Arik, M. and Coon, D. D. Hilbert spaces of analytic functions and generated coherent states, J. Math. Phys. 17, 424-427 (1976).

[6] Belavin, A., Polyakov, A. and Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B. 241, 333-380 (1984).

[7] Biedenharn, L. C.: The quantum group $SU_q(2)$ and a q— anologue of the boson operators, J. Phys. A. 22 (1989) L873-L878.

[8] Chakrabarti, R. and Jagannathan, R.: A (p, q)-deformed Virasoro algebra, J. Phys. A Math. Gen. 25, 2607-2614, (1992).

[9] Chakrabarti, R. and Jagannathan, R.: A (p, q)—oscillator realisation of two-parameter quantum algebras, J. Phys. A: Math. Gen. 24, L711-L718, (1991).

[10] Curtright, T. and Zachos, C.: Deforming maps for quantum algebras, Phys. Lett. B. 243, 237-244 (1990).

[11] Ding, L, Jia, X.Y, Wu, K, Yan.Z, W, and Zhao, W. Z.: On q— deformed infinite-dimensional n-algebra, Nucl. Phys. B. 904, 18-38 (2016).

[12] Gervais, J. L.: Transport matrices associated with the Virasoro algebra, Phys. Lett. B. 160, 279-282, (1985).

[13] Goddard, P., Kent, A. and Olive, D.: Unitary representations of the Virasoro and super-Virasoro algebras, Commun. Math. Phys. 103, 105-119, (1986).

[14] Hanlon, P. and Wachs, M.: On Lie k-algebras, Adv. Math. 113, 206-236 (1995).

[15] Hiro-Oka, H., Matsui, O., Naito, T. and Saito, S.: On the q— deformation of Virasoro algebra, preprint TMUP-HEL 9004, (1990).
[16] Hounkonnou, M. N. and Kyemba Bukweli, J. D.: $\mathcal{R}(p,q)$—calculus: differentiation and integration, SUT Journal of Mathematics, Vol 49 (2), 145-167, (2013).

[17] Hounkonnou, M. N. and Bukweli Kyemba, J. D.: $\mathcal{R}(p,q)$-deformed quantum algebras: coherent states and special functions, J. Math. Phys. 51, 063518, (2010).

[18] Hounkonnou, M. N., Guha, P. and Ratiu, T.: Generalized Virasoro algebra: left-symmetry and related algebraic and hydrodynamic properties, J. Nonlin. Math. Phys. vol 23, Iss 1, (2016).

[19] Hounkonnou, M. N and Melong, F.: $\mathcal{R}(p,q)$—deformed conformal Virasoro algebra, J. Maths. Phys. 60, (2019).

[20] Hounkonnou, M. N., Melong, F and Mitrović, M.: Generalized Witt, Witt n-algebras, Virasoro algebras and KdV equations induced from $\mathcal{R}(p,q)$—deformed quantum algebras, Reviews in Mathematical Physics, 2150011 (2020).

[21] Hounkonnou, M N and Ngompe Nkouankam, E. B.: On $(p,q,\mu,\nu,\varphi_1,\varphi_2)$ generalized oscillator algebra and related bibasic hypergeometric functions, J. Phys. A: Math. Theor. 40, 8835-8843, (2007).

[22] Huang, Q. and Zhdanov, R.: Realizations of the Witt and Virasoro algebras and integrable equations, J. Nonlin. Math. Phys. 27, 36-56, (2019).

[23] Iohara, K. and Koga, Y.: Representation Theory of the Virasoro Algebra (Springer-Verlag, London, 2011).

[24] Jagannathan, R. and Srinivasa Rao, K.: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, Proceedings of the International Conference on Number Theory and Mathematical Physics, 20-21 December 2005.

[25] Kupershmidt, B. A.: On the nature of the Virasoro algebra, J. Nonlin. Math. Phys. 6 (2), 222-245, (1998).

[26] Kuryshkin, V.V.: Annales de la Fondation Louis de Broglie 5 (1980), p. 111.

[27] Macfarlane, A. J.: On q—analogues of the quantum harmonic oscillator and quantum group $SU_q(2)$, J. Phys. A 22, 4581-4588, (1989).

[28] Nedelin, A. and Zabzine, M.: q—Virasoro constraints in matrix models, J. High Energ. Phys. 03, 098, 1-17, (2017).

[29] Nishino, T.: Function theory in several complex variables, Translations of mathematical monographs, (Volume 193, American Mathematical Society, Providence, Rhode Island, 2001).

[30] Quesne, C., Penson, K. A. and Tkachuk, V. M.: Maths-type q—deformed coherent states for $q > 1$, Phys. Lett. A. 313, 29-36, (2003).
[31] Ratindranath, A. and Yasuhiro, O.: Strings in curved space-time: Virasoro algebra in the classical and quantum theory, *Phys. rev. D: Particles and fields*. 35, 1917-1938, (1987).

[32] R. Wang, Li. M. Yao, K. Wu and W. Zhao, On deformations of the Witt \(n \)-algebra, *J. Maths. Phys.* 59, 103504 (2018) 1-10.