Inter-beat interval (IBI) measurement enables estimation of heart-rate variability (HRV) which, in turn, can provide early indication of potential cardiovascular diseases (CVDs). However, extracting IBIs from noisy signals is challenging since the morphology of the signal gets distorted in the presence of noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30 dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state-of-the-art techniques.

CCS Concepts: • Applied computing → Life and medical sciences; Health informatics; Consumer health;

Additional Key Words and Phrases: Autoencoder, denoising, electrode motion, inter-beat interval, motion artifacts, tiramisu model
1 INTRODUCTION

CVDs have been a major concern for human health for a long time and touted as the leading cause of death [15]. World Health Organization (WHO) declared that CVDs were responsible for the death of almost 17.9 million people in 2016 - 31% of all global deaths. 85% of these deaths are due to heart attack and stroke [57]. CVDs can also cause permanent or temporary disabilities and reduce the quality of life [33]. As a consequence, numerous research in CVD diagnosis have been carried out for the past decades with the goal of preventing and managing cardiac diseases [31, 34]. For in-time CVD diagnosis, it is vital to contentiously monitor HRV parameters that require accurate estimation of IBI [1, 18].

IBI is one of the most important parameters that can be extracted from ECG and photoplethysmography (PPG) signals. IBI in an ECG signal is the time interval between two consecutive beats as shown in Figure 1 and generally measured in units of milliseconds. In normal heart function, each IBI value varies from beat to beat. This natural variation is known as HRV. However, certain cardiac conditions may cause individual IBI values to become nearly constant, resulting in lower HRV values. This can happen, for example, during periods of exercise as the heart rate (HR) increases and the beats become more regular. Certain illnesses can cause the HR to increase and become uniform as well, such as when a subject is afflicted by an infection. In fact, IBI and HRV can be used as indicators of degraded cardiac system and can be early indicator of certain cardiac diseases [13].

Wearable sensors provide an opportunity for continuous and convenient measurement of health parameters such as IBI. For the last decade, there has been immense development in the domain of wearable devices for physiological parameter monitoring, disease diagnosis, and early prevention. Sleep apnea monitoring [10, 55], cardiac anomalies or arrhythmia detection/classification [19, 22, 41], HRV estimation [37], ECG monitoring [58], diabetes monitoring [6], gait assessment [32], edema monitoring [14], activity recognition [47, 49], dietary intake assessment [20], and stress monitoring [21, 50] are some of the tasks worth mentioning.

Although PPG sensors embedded in various wearables such as smart watches and smart rings enable conventional, convenient and continuous measurement of IBI, processing PPG and extracting IBI values from them is challenging due to their noise susceptibility. PPG sensors are particularly sensitive to noise and human hands have a higher degree of freedom and, therefore, exhibit more motions than the chest [5] leading to noisy signals. ECG, as opposed to PPG, includes more information about human heart activity. Alongside other tests, ECG is frequently used to diagnose and monitor conditions affecting regular activities of heart. Regardless of the intensity and type of motion, ECG is also prone to power-line interference and Gaussian noise [29] which sometimes distort the morphological features and curb diagnosis process. Denoising ECG and recovering the fiducial points can provide extra value because diagnosis of arrhythmia is highly dependent of the shape of ECG. Thus, being able to remove noise from ECG, in general, is essential.

ECG signal that is embedded with Gaussian out-of-band noise can be denoised easily using different types of finite impulse response (FIR) filters and empirical mode decomposition (EMD) techniques [11]. However, an ECG signal that is corrupted with motion artifacts (MAs) cannot be dealt with ease as the frequency spectrum of some of these noises (1–10 Hz) [27] overlaps with those of the PQRST contents (0–50 Hz) [28, 54]. Such situations emerge specially when the subject is in constant and/or periodic motion or performs exercise, where extracting IBI values from these motion embedded ECG signals is critical. Even if IBI is directly estimated under mobility, it will be nowhere near perfect. Therefore, there is an unmet need for noise rejection techniques that can deal with the high level of noise and MA.
To overcome the aforementioned unmet need, we propose a novel framework to determine IBI values from ECG signals totally buried in intense MA noise. We have modified The One Hundred Layers Tiramisu network [24], made it suitable for time-series denoising process, and used it for our case. While the original Tiramisu model in Ref. [24] had hundred convolution layers with a crossentropy loss function appropriate for classification tasks, the one in our proposal is tailored lightweight with fifty convolution layers followed by a mean squared error (MSE) loss function. The intention of this study is to eliminate MA and make the R-peaks of an ECG signal more prominent in a way that IBI values can be estimated from it as accurately as possible. Our modified network works as an autoencoder. Autoencoder is a well-known framework for making compact representation of a signal and taking it back to its original dimensions if required. Our methodology intends to squeeze the given ECG signal using autoencoder, suppress the noise, get back to the original dimensions, and represent the ECG signal with its peaks sufficiently visible to calculate IBI values. The autoencoder used in this experiment is comprised of fully convolutional dense networks (FCDenseNet)—a Tiramisu model—which is familiar for image segmentation, image classification and more recently time domain analysis.

In the process of estimating IBI values from noisy ECGs, the contribution of this article can be highlighted as follows.

1. An FC DenseNet based deep learning approach—derived from The One Hundred Layers Tiramisu model [24]—which performs as a robust autoencoder to suppress the noise and makes the R-peaks of the noisy ECG signal more notable. To the best of our knowledge, such a stacked tiramisu model is yet to be applied on ECG with intense noise and IBI estimation as well.

2. Our proposed methodology is capable of reckoning IBI values from ECG with noise level up to -30 dB with a considerable error of 13 milliseconds (RMSE). Thus far, we have not identified other studies going beyond -30 dB without the inclusion of high frequency or Gaussian white noise which are easy to eliminate using FIR filters.

As established by the tiramisu model in Ref. [24], our proposed approach does not require any sort of pre-processing or post-processing algorithms or tools in contrast to many concurrent studies. However, a simple peak picking algorithm has been used to facilitate the IBI calculation procedure.

The remaining of this article is organized as follows. Related works are discussed in Section 2. The dataset used in this work, noise signals, their characteristics, and noise addition protocols are discussed in Section 3, development of the proposed method is explained in Section 4, results, detailed comparison with state-of-the-art work in Section 5, observations, drawbacks, and discussions are presented in Section 6. In the end, we conclude with a brief conclusion in Section 7.

2 RELATED WORK

Research in the field of IBI estimation and ECG R-peak detection, which is a requirement for IBI estimation from noisy ECG, is extensive. Researchers have used a plethora of signal processing tools and techniques for accurate estimation of IBI in presence of MAs. Mostly, they have focused on some publicly available ECG datasets like MIT-BIH Arrhythmia database or IEEE SP Cup Dataset (2015).
Removing high frequency noise or Gaussian noise from ECG and then estimating IBI from it can be achieved by applying straightforward moving average [39], low-pass, high-pass or band-pass FIR filters [2, 43], EMD technique [26, 53], Pan-Tompkins peak detection [38], and wavelet transformation [51]. However, the challenge starts when we tend to do the same in presence of heavy MAs. Again, baseline wander and power line noise can be removed by using band-pass filter and notch filter. But, electrode motion (EM) artifact noise - which is caused by skin stretching and alters the impedance of the skin around the electrode - takes rigorous process to be encountered as its frequency spectrum (1 to 10 Hz) overlaps with that of the PQRST complex of ECG waveform [27].

Rahel et al. designed a study to evaluate the IBI signal qualities of a Holter device and a HR chest belt monitor while the subjects were at rest and were performing five different levels of activities like sitting and reading, doing household chores, walking, jogging, and training [16]. But there is no indication of the specific amount of noise they dealt with. Shalini et al. used Slope Sum Function and Teager-Kaiser Energy operator method for R-peak artifacts detection in cardiovascular and non-cardiovascular signals like Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) [44]. However, they too did not mention the SNR level up to which their algorithm works perfectly.

Sonia et al. discussed a new time delay estimation technique which is essentially derived from operational calculus, differential algebra, and non commutative algebra and helps to estimate RR interval from noisy ECG with SNR level up to 6 dB with a considerable number of false peak detections [46]. Aygun et al. proposed a technique to select the fiducial points from noisy ECG and PPG signal using shortest path algorithm which takes the advantage of time-continuity of heartbeats [9]. With this, they accurately measured IBI up to −2 dB SNR level, which they later used for determining HRV [8]. Here, the derivatives of the ECG or PPG signal are calculated using Savitzky-Golay method to detect the possible fiducial points like R-peaks, systolic peaks, points with maximum slope, and onset points. Since the signals are noisy, they ended up getting too many candidate points and most of them were false fiducial points if not all. With all these points, a graph was generated for each signal where the edges refer to IBIs, both true and false IBIs, and the vertices refer to morphological points, also both true and false. From this graph, it was clear that the starting point of one heartbeat is the end point of the last one and there is no disruption between them. Any candidate path that satisfies certain conditions derived from average HR can be considered as a true IBI and the two associated nodes/vertices as true morphological point for that specific signal. Next, each of the vertices were connected to some previous vertices which fell within a specific time window. If the time difference between the reference vertex and any neighboring vertex deviated the average IBI (which was calculated using average HR), the corresponding edge i.e., the “time interval” was assigned zero weight. Otherwise, a numerical weight was assigned to it where the weight varied according to its difference with the average IBI. The intuition behind this weighting is the fact that the true IBIs should remain close to the average IBI calculated from the average HR. The weights of the vertices were also derived from the weights of corresponding edges. After all these weight distribution, the vertex with the minimum accumulated weight, is the chosen true vertex inside the time window. This is indeed leveraging the shortest path algorithm and enables detecting the IBIs that are closest to the average IBI. Finally, they combined all the shortest paths and formed an array for each of the morphological features of each ECG and PPG signal. An overview of this process is depicted in Figure 2. Although both [8] and [46] have employed novel mathematical tools for IBI estimation without necessarily denoising the entire ECG signal, they have not been able to go far in terms of SNR level.

Many researchers have focused on R-peak detection from noisy ECG signals. As mentioned earlier, a robust peak detection algorithm can also lead to accurate IBI estimation. In addition to applying a band-pass filter for removing power line and baseline shifting noise, Pulavskyi et al. performed a two-stage smoothing using the “boxcar” and “parzen” kernel. This methodology allowed them to detect peaks with good precision and recall values up to −15 dB, however, there was the presence of white and pink noise, which decreased the relative weight of EM and muscle artifacts [40].
With advanced deep learning mechanisms, denoising tasks have gone further as they have been able to obtain higher accuracy with minimal human supervision. To talk about a few deep learning based approaches, Ansari et al. exploited a simple convolutional neural network (CNN) to differentiate between usable and unusable ECG segments. The usable segments have higher probability of QRS detection. They carried out their research up to 0 dB with some error [3]. Juho et al., on the other hand, utilized a bidirectional Long-Short Term Memory (LSTM) network to suppress the noise up to 0.1 dB and detect peaks from it [30]. A CNN encoder-decoder is used by Natasa et al. to denoise the QRS complexes of the long term ECG signals acquired with their wearable armband device and used them later to calculate HR [45]. They too were able to use the denoising process up to -17 dB with inclusion of white and brown noise, but no muscle artifact. Sricharan et al. modified the conventional U-Net [48] algorithm for time-series data and used it along with distance transformation (DT) to determine the position of the ECG R-peaks for noise level up to 0 dB [56]. The peak detection task was framed as a regression task in Ref. [56]. They obtained the DT of all the ECG signals, which disclose the distance of each point on the ECG from its nearest peak. It results in a zig-zag wave where the lowest points refer to the R-peaks of the corresponding ECG signal. The DT is of the same size as its input ECG. They have exploited the U-Net architecture with conventional encoder–decoder where the encoder performs downsampling with 8 layers of strided-convolutions, the decoder does upsampling in a similar way but in opposite direction. Both the encoder and decoder perform 1D convolution and there is a bottleneck between them to hold the minimum representation. Additionally, a residual inception block was placed at each layer, which exploits skip connections to discard vanishing gradient problem and ensure fast convergence. The architecture for this work is illustrated in Figure 3.

Likewise, Lishen et al. took advantage of U-Net and DR-Net to successfully perform a two-stage denoising process [42]. Karol designed a generative adversarial network (GAN) based ECG synthesizer to generate a synthesized ECG dataset. Later, noise was added to the artificial ECG, and a CNN autoencoder was trained using this dataset to achieve an MSE of 0.017 (direct from the optimizer during training) [4]. Finally, Brosnan et al. [59] demonstrated peak detection with a machine learning pipeline consisting of a Butterworth filter, two wavelet convolutional neural networks (WaveletCNNs) autoencoders, an optional QRS complex inverter, a Monte Carlo k-nearest neighbors (k-NN), and a convolutional long short-term memory (ConvLSTM) as shown in Figure 4.

The noisy one-channel ECG signal is fed into the Butterworth filter with a cut-off frequency set at 5 Hz to remove baseline shifting noise by attenuating the low-frequency components. Next, the output is decomposed using symlet-4 wavelet to obtain the wavelet coefficients. These coefficients are then fed into a CNN autoencoder, where the noisy unnecessary coefficients are rejected, but the significant parts are retained, producing clean wavelet coefficients that are significant for further analysis. The CNN autoencoder that takes on the wavelet coefficients has a 2-layered encoder, a bottleneck, and a 2-layered decoder, with a Leaky-ReLU activation layer at each hidden layer. A wavelet reconstruction is performed to get the coefficients back to the original form, i.e., a...
After that, a difference filter is deployed prior to the next wavelet autoencoder to refine the QRS complexes by suppressing the low-frequency components. The signal is then passed to the second wavelet autoencoder, which has the same functionality as the previous one. Both of these wavelet autoencoders work as bandpass filters to remove unnecessary components. To deal with the inverted peaks, an inverter was placed right after the second autoencoder, and it simply inverted the already inverted peaks. Then, the Monte Carlo k-NN method was utilized to normalize the ECGs by scaling the beats to unit millivolt. Finally, the ConvLSTM network was applied to detect the peak points, as it has pattern matching ability to detect specific characteristics from a time-series signal. They used the MIT-BIH, the European ST-T, and the Long Term ST database Noise Stress Test (NST) databases, going up to -6 dB, and recorded some good results. However, all these deep learning-based methods failed to leverage different deep learning algorithms’ power to improve the denoising accuracy or IBI estimation and explore intense noise scenarios.
Table 1. List of Used ECG Recordings from Different Databases

MIT-BIH Arrhythmia Database	European ST-T Database	IEEE SP Cup 2015
Train data	**Train data**	**Train data**
100	e0103	1
	e0104	5
Test data	**Test data**	**Test data**
101	e0105	2
103	e0106	3
109	e0107	4
112	e0113	6
113	e0114	7
115	e0115	8
116	e0118	9
122	e0122	10
123	e0123	11
	e0126	12
	e0127	
	e0129	

3 DATASETS

We have opted to use clean ECG recordings from publicly available databases like MIT-BIH Arrhythmia Database v1.0.0 [17, 35], European ST-T Database from PhysioNet [52], and IEEE Signal Processing Cup 2015 [60].

The sampling frequency of the MIT-BIH Arrhythmia Database is 360 Hz, i.e., 1 sample in every 2.78 ms. For ease of calculation and noise addition, we upsampled both the European ST-T Database and the IEEE SP Cup 2015 dataset from 250 Hz and 125 Hz to 360 Hz, respectively.

Next, we added EM noise, MA noise, and baseline wandering (BW) noise from the MIT-BIH NST Database v1.0.0 [36] and generated noisy data for different SNR levels, starting from 36 dB to −36 dB with a decrement of 6 dB. Therefore, for each clean ECG signal, we generated 13 variants with different SNR levels. Needless to mention, noise was added to the signals thoroughly instead of adding them between consecutive rest periods. Noise addition was carried out following the standard approach [42] in the NST Database:

\[
ECG_{\text{noisy}} = ECG_{\text{clean}} + [a_1] \ast EM + [a_2] \ast MA + [a_3] \ast BW
\]

Where \(ECG_{\text{clean}} \) refers to the clean ECG signal and \(a_1, a_2, a_3 \) gain values are adjusted according to the expected SNR value. Since we are more interested in estimating IBI values from a signal totally buried under muscle artifact and EM, these two noises have been assigned higher weights, meaning \(a_2 > a_1 > a_3 \). The noise recordings were produced with physically active volunteers and captured with conventional ECG recorders, leads, and electrodes; the electrodes were positioned on individuals’ limbs in areas where the ECGs could not intervene. The noise signals were recorded for half an hour, and the volunteers were in light motion during the collection phase. Thus, they are not synthetic but real.

In this work, we used the first 409,600 data points of each ECG signal since the noise signals have limited data points. Figure 5 shows a clean segment of ECG data from the MIT-BIH Arrhythmia database (recording # 101) and its corresponding noisy variants starting from 6 dB to −36 dB. As the noise increases, specifically after 0 dB, the R-peaks become heavily buried in noise, and detecting them with conventional signal processing techniques would be very inaccurate and challenging, if even possible. These artifacts enforce redundant tests, additional costs, and sometimes require specialists’ intervention. Table 1 lists the recordings from different datasets used for training and testing. The training set was selected at random. However, distorted signals and ECGs with
missing peaks were not included in the training of the model. Usually, autoencoder-type models require very small training data [56], and our case is no different.

4 PROPOSED METHODOLOGY

Our working principle starts with a fully convolutional-dense deep neural network (tiramisu model) [24]. Noisy signals are fed to this model, which has multiple convolution and pooling layers intuitively responsible for compressing the signal to a smaller representation, eliminating the noise, retaining the most patterned and prominent features, and making the peaks more visible. Later, we identify the peaks with a simple peak picking algorithm and then calculate IBI values from there. The overall procedure of this work is illustrated in Figure 6.

ACM Transactions on Computing for Healthcare, Vol. 5, No. 1, Article 1. Publication date: January 2024.
Calculating IBI values from noisy ECG readings is challenging. As a potential solution, transformers/autoencoders are well-known architectures used for minimizing the difference between the input and output, such as denoising. This means that the objective function of any such architecture is focused on producing results (\hat{x}) similar to the input (x) i.e.,
\[
\min |x - \hat{x}|
\] (1).

Hence, we designed a robust tiramisu model - a member of the autoencoder family - which consists of stacked dense blocks (DBs) and numerous feedback loops. High number of DBs and feedback loops eliminate the requirement of pre-processing as the model itself is capable of removing high frequency or Gaussian white noise. While the convolution and pooling layers perform the job of squeezing out the noise, the skip connections between layers allow the output of each DB and up convolution to encode finer details from actual signal and later layers, solve the gradient vanishing problem, and provide improved results than without them. In contrast to the standard U-Net architecture, the DBs in the tiramisu model have skip connections within themselves, which eliminate the possibility of gradient vanishing within the contraction path.

The overall architecture of the proposed model is illustrated in Figure 7. As depicted, the model incorporates a contraction path, a bottleneck, an expanding path, and certain skip connections. The skip connections here help the expanding path (or upsampling path) to get back information from the contraction path, reuse them and thus abolish gradient vanishing. The main theme of this model is to take advantage of feature reuse and take the already complicated DenseNet a step ahead.

The contraction path (or down-sampling path) starts with a convolution with kernel size = 3. Then comes a series of consecutive DBs and transition down (TD) blocks. Prior to the bottleneck, 3 DBs have been placed on...
the contraction path with each having 4, 5, and 7 layers, respectively. Right after each DB, a TD block has been attached. Note that, the TD blocks perform the pooling operation and cause some information loss and resolution reduction along the downsampling path. In between, there are concatenation blocks to create feedback loops from previous layers.

The expanding path is almost a mirror symmetry of the contraction path except it has lesser feedback loops and the TD blocks are replaced by transition up (TU) blocks along the path. These TU blocks does transposed convolution operation and upsample the previous mappings. The upsampled mappings are then concatenated to the mappings coming from the downsampling path via skip connections and form a new input for the next DBs along expanding path. The last DB in this trajectory sums up the information from all the previous DBs. Unlike the contraction path, we do not concatenate the input of a DB with its output since it does not make any significant difference. The final convolution in this path is done with window size = 3. The DB that lies between these two paths is the bottleneck.

The DBs in the model have different number of layers which perform one dimensional convolution with kernel size = 3, ReLU activation function, Batch Normalization, and drop out value of 0.2. The batch normalization function is given by-

\[
BN(x) = \frac{x - \mu_x}{\sigma_x},
\]

where, \(\mu_x\) is the mean and \(\sigma_x\) is the standard deviation of input matrix \(x\).

The TD layers also use one dimensional convolution with kernel size = 1, ReLU activation, Batch Normalization, drop out value of 0.2 and Max Pooling with pool size = 2. However, the TU layers execute transposed convolution with kernel size = 3 and stride = 2.

We have employed \(\tanh\) activation on the final output layer to ensure that the output is between \([-1 1]\) and to gain non-linearity for better advantage during derivative calculation. The \(\tanh\) function can be written as-

\[
\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.
\]

As mentioned earlier, 3 DBs have been employed on either path with each block having 4, 5, and 7 layers, respectively. Also, the architecture has 3 TUs or TDs and 1 input or output block on either side. Since each layer has one convolution layer, each TU or TD also perform one convolution and each input/output block has one convolution layer. There are a total of 40 convolution layers in the contraction and expanding paths combined. Additionally, the bottleneck DB has 10 layers i.e., 10 convolution layers. Summing up, a total of 50 convolutions are done in this entire model. All the convolutions (except last one) are equipped with ReLU activation, L2 regularization with factor of 0.01 and zero padding for redeeming the initial shape. Finally, Adam optimizer with a default learning rate of 0.001 has been used followed by a mean square error (MSE) based loss function-

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - y_i^p)^2,
\]

where, \(y_i\) and \(y_i^p\) refer to actual target values from ground truth sequences (noise free ECG) and predicted values from recovered sequences, respectively, and \(N\) is the number of data points.

The model have been trained for one hundred iterations without any early stopping criteria while a batch size of 16 have been maintained throughout the entire experiment. 80/20 ratio has been chosen for train/validation split.

Table 2 shows the full architecture of our tiramisu model and the constituents of layer, TD, and TU blocks.

4.2 Peak Detection

Although numerous peak picking algorithms can be found in the literature [23], our choice is a generalized algorithm [25]. Usually, resting HR varies from 60–100 bpm [7]. But for athletes, it could be as low as 40 bpm.
Table 2. Tiramisu Model Architecture and Contents of Layer, TD and TU Blocks

Layer block	Transition Down (TD) block	Transition Up (TU) block
Batch Normalization	Batch Normalization	Trans. convolution: kernel size = 3
ReLU activation	ReLU activation	l2 regularizer (0.01)
l2 regularizer (0.01)	l2 regularizer (0.01)	stride = 2
Convolution: kernel size = 3	Convolution: kernel size = 1	
Dropout $p = 0.2$	Dropout $p = 0.2$	
Max Pooling: size = 2		

during rest periods and as high as 200 bpm during work out sessions [12]. Our sampling frequency is 360 Hz. It ensures that there must be at least one beat in every 108 to 540 data points. Therefore, we have used an algorithm that takes on a given signal and finds out all the local maxima, which must be at least 108 data points apart from each other. In this way, we may end up getting some false peaks because, when the noise is intense and a MA-induced peak is higher than its neighboring R-peak, the tiramisu model fails to detect the R-peak and removes it while the MA remains. Subsequently, the peak detection algorithm detects this MA as an R-peak causing some error.

4.3 IBI Calculation

Under any circumstance, to estimate IBI precisely, the position of the beats/peaks need to be detected accurately. After denoising the signal using the proposed AE-based model and detecting the R-peaks, in this step, the IBI value using the identified R-peaks can be extracted with Equation (5).

$$IBI_i = t_i - t_{i-1},$$ (5)

where, t_i is the occurrence time of the ith R-peak and IBI is extracted for all peaks in an ECG signal.

5 RESULTS

In this study, the aim is to make the R-peaks of noisy ECG more prominent to estimate IBI from it as accurately as possible. We evaluate the performance of our approach by testing it on different levels of noisy ECG, which have been generated by adding certain level of noise, explained in Section 3. In this section, we define our evaluation metrics and measure the performance of our model in terms of estimated IBI values extracted from ECGs with different SNR levels. Lastly, we will compare our approach against a few state-of-the-art methods designed for IBI calculation and/or peak detection from noisy ECG.

For further explanation, we refer to Figure 8. The clean ECG in this figure is the first 40,960 data points of recording 234 from MIT-BIH Arrhythmia Database. Three different noises have been added to the clean ECG to get a noisy signal of -30 dB SNR. -30 dB refers to a very high amount of noise and implies that the power of noise is 10^3 times that of actual signal. Without any pre-processing, this noisy ECG is then fed to the tiramisu model to make the R-peaks more visible. Next, our peak detection algorithm has been applied to the output of the model. We estimated IBI values from the beats and in the final box, we have compared our IBI values with that of the ground truth and recorded an RMSE of 3.44 ms.

Prior studies in the field of ECG denoising and beat detection exercised SNR_{imp}, Sensitivity or F_1 score to evaluate their performance regarding detecting correct peaks. However, herein, we are interested in estimating...
IBI from noisy signals. Therefore, we selected our performance metrics based on that objective and leveraged RMSE and % error of IBI for performance evaluation. We define those metrics as follows:

\[\text{RMSE}_{\text{IBI}} = \sqrt{\frac{\sum_{i=1}^{n}(P_i - O_i)^2}{n}} \]

\[\% \text{error} = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{O_i - P_i}{O_i} \right| \times 100\% \]

where, \(P_i \) refers to predicted IBI, \(O_i \) denotes observed IBI (ground truth), and \(n \) indicates number of IBIs in one segment of ECG. As shown in Figure 8, the denoising algorithm performs very good at exposing the R-peaks. On top of that, the peak picking algorithm has also performed well to detect the exposed peaks. The peak picking algorithm has found extra peaks (false peaks) in the recovered signals from \(-30\) dB SNR on extremely rare occasions, with an approximate average ratio of 120:1. Given the fact that these false peaks are in between true peaks and incur very small error in IBI estimation, their presence is simply ignored in evaluation.

The Bland–Altman plots in Figures 9(a) to 9(d) show comparison of the IBIs estimated from noisy ECGs of SNR \(-30\) dB against their true IBIs. The ECGs considered in these plots are recordings \# 230, 220, 115 and 213. The limits of agreements (LOAs)—which work as boundary for 95% of data and a good measurement of accuracy—are located at [49.92, −50.85] ms, [73.74, −72.44] ms, [20.14, −20.29] ms, and [33.89, −33.52] ms, respectively. Also, the Pearson correlation plots are illustrated in Figures 9(e) to (h) for the same set of recordings. The high correlation coefficients (\(r \)) - 0.96, 0.93, 0.99, and 0.9—emphasize that the estimated IBIs are very coherent to the true IBIs.

In comparison, similar plots are also shown in Figures 10(a) to (c) and Figures 10(d) to (f) highlighting the performance of Brosnan et al., Sricharan et al., and Aygun et al., respectively, on recording \# 230. The LOAs are...
Fig. 9. Bland–Altman plot with LOAs are depicted in Figures 9(a) to 9(d) for different recordings. Also, correlation plot for same recordings are shown with Pearson correlation coefficient in Figures 9(e) to 9(h). For some ECGs, the proposed method achieves r values like 0.9895 though nominal values like 0.9 also exist.

Fig. 10. Bland–Altman plot for IBI estimation on recording #230 using methods of Brosnan et al., Sricharan et al., and Aycya et al. are depicted in Figures 10(a) to 10(c), respectively. Corresponding correlation plots are also shown along with correlation coefficients in Figures 10(d) to 10(f).

at $[90.25, -94.40]$ ms, $[88.87, -88.38]$ ms, and $[129.829, -134.76]$ ms, respectively. Thus, our method is ensuring $[40.33, -43.55]$ ms, $[38.95, -37.53]$ ms, and $[79.91, -83.91]$ ms of improvements, respectively. As stated in corresponding papers, these methods also perform well under low noise situations. Correlation coefficients (r) for these methods on this specific recording are 0.88, 0.87, and 0.79, respectively, whereas our approach obtains 0.96 correlation for the same setting. For other recordings of same dataset, none of these 3 methods achieve
correlation above 0.9 at an SNR value of -30 dB. Performance of all methods (including ours) decline for recordings of IEEE SP Cup 2015 and European ST-T Database and the rationale has been clearly explained in Section 6.

The accuracy of the proposed methodology can also be inferred from the box and whisker plot depicted in Figure 11. The IBI values have been estimated for all 13 noisy variants of the test ECGs in MIT-BIH Arrhythmia Database listed in Table 1 and compared with that of the clean versions. Notice that, we hardly get any error for SNR values up to -12 dB and the estimated IBI values are consistent and nearly as good as the true IBIs. However, starting from -18 dB, we encounter some amount of error and above -30 dB the noise becomes very intense as well as the RMSE. The median value at -30 dB is 7.792 ms.

Plots of true IBIs, IBIs estimated with our approach and that of Brosnan et al. (both at -30 dB) are pictured in Figure 12. Some other methods have not been included with a view to keeping the plots clean to understand. IBIs estimated with our approach are not that much different from the true one following the trend in a cogent way.
Table 3. Comparison of Different Methods on Three Dataset

	0 dB	−6 dB	−12 dB	−18 dB	−24 dB	−30 dB
Brosnan et al.[59]	1.69 ms	6.86 ms	15.41 ms	21.22 ms	28.73 ms	31.44 ms
	2.38%	6.97%	9.06%	12.74%	14.34%	17.24%
Sricharan et al.[56]	2.64 ms	8.61 ms	12.02 ms	20.05 ms	49.78 ms	54.33 ms
	1.54%	3.79%	9.87%	18.71%	20.97%	22.41%
Aygun et al.[8]	3.08 ms	8.41 ms	17.24 ms	32.47 ms	42.32 ms	55.72 ms
	3.54%	5.88%	8.77%	14.27%	17.31%	21.83%
Proposed Method	0.08 ms	0.17 ms	0.68 ms	1.09 ms	4.72 ms	8.39 ms
	0.01%	0.08%	0.28%	0.95%	4.23%	6.34%

(a) MIT-BIH Arrhythmia Database

	0 dB	−6 dB	−12 dB	−18 dB	−24 dB	−30 dB
Brosnan et al.[59]	1.02 ms	3.27 ms	12.57 ms	23.29 ms	25.13 ms	30.53 ms
	1.87%	1.51%	2.59%	9.61%	15.02%	18.72%
Sricharan et al.[56]	2.21 ms	7.07 ms	13.74 ms	19.69 ms	27.92 ms	37.81 ms
	1.21%	3.17%	11.51%	17.94%	21.38%	27.35%
Aygun et al.[8]	5.32 ms	7.95 ms	15.33 ms	33.41 ms	57.97 ms	47.86 ms
	3.21%	5.12%	7.91%	12.02%	18.32%	19.27%
Proposed Method	2.27 ms	3.85 ms	4.09 ms	5.76 ms	7.98 ms	10.52 ms
	0.85%	1.59%	1.77%	2.31%	3.87%	7.71%

(b) European ST-T Database

	0 dB	−6 dB	−12 dB	−18 dB	−24 dB	−30 dB
Brosnan et al.[59]	2.35 ms	8.41 ms	15.14 ms	18.73 ms	21.61 ms	32.64 ms
	2.17%	4.47%	7.37%	9.22%	13.36%	16.04%
Sricharan et al.[56]	4.97 ms	8.82 ms	11.46 ms	25.41 ms	32.63 ms	38.59 ms
	1.73%	3.59%	7.15%	15.81%	17.23%	21.75%
Aygun et al.[8]	6.21 ms	6.91 ms	17.13 ms	31.04 ms	35.31 ms	41.23 ms
	3.64%	4.09%	7.42%	11.90%	18.47%	18.98%
Proposed Method	5.14 ms	7.11 ms	12.16 ms	11.91 ms	17.84 ms	26.33 ms
	3.63%	4.22%	7.96%	8.05%	8.79%	11.23%

(c) IEEE Signal Processing Cup 2015

For any method, the upper value refers to avg. RMSE and the lower value refers to avg. % error. Performance have been measured on signals listed in Table 1 only.

The best performances are marked bold in the table.

Lastly, we preform comparative analysis of 3 state-of-the-art and our proposed method on MIT-BIH Arrhythmia Database v1.0.0, European ST-T Database, and IEEE Signal Processing Cup 2015 in Tables 3(a) to 3(b) (the details of these methods are described in Section 2). Once more, the performance metrics are average RMSE and average % error and noise has been added to all the signals from each dataset. In these tables, we have considered SNR levels starting from 0 dB to −30 dB since performance of all methods on higher quality signals are almost flawless. The weighted average of RMSE is 13.514 ms and % error is 7.97% for the proposed method whereas they are 31.467 ms (17.953 ms higher than us) and 17.384% (9.414% higher) for Brosnan et al., 45.439 ms (31.925 ms higher) and 23.72% (15.75% higher) for Sricharan et al., 49.739 ms (36.225 ms higher) and 20.349% (12.379% higher) for Aygun et al.

6 DISCUSSION

While analyzing the proposed method’s performance, we have come across some of the observations, facts, and limitations which are worth mentioning-

The proposed algorithm can make the peaks more visible, detect them from intense noisy signals and estimate the IBI values from it. However, it cannot redeem or rescue the typical shape of an ECG i.e. the PQRST wave. It can only recover the R-peaks.

ACM Transactions on Computing for Healthcare, Vol. 5, No. 1, Article 1. Publication date: January 2024.
Additionally, the IEEE SP Cup 2015 data already contains some MAs, and we are adding additional noise to it. Therefore, the unexpected performance on this dataset is quite reasonable. Therefore, the subpar performance on this dataset is quite reasonable.

The performance of the proposed algorithm on the European ST-T Database and IEEE Signal Processing Cup 2015 is lower than on the MIT-BIH Arrhythmia Database, likely due to the need for upsampling the latter.

Some of the signals are not clean enough; they are missing peaks, distorted, and have some innate noise. These are beyond the scope of fixing with any sort of pre-processing, and we have had to omit such signals from the database entirely. Such a distorted signal segment is presented in Figure 13.

Some of the signals have inconsistent peak sizes, like the one in Figure 14. This becomes a notable hindrance. The SNR levels are set according to the power of the ECG and power of noise. Now, in an ECG with inconsistent peak size, the consistent peaks play dominant role to set the power of ECG signal and the noise power is set accordingly. In such a case, the noise peaks adjacent to the inconsistent peaks become much higher and the tiramisu model fails to differentiate between the actual ECG peak and the noise. Consequently, it suppresses the actual peak and retains the noisy peak leading to higher error in IBI estimation.

Signals with SNR levels beyond $-30\,\text{dB}$ have extremely intense noise that cannot be suppressed effectively. As a result, the detected peaks are not perfect, leading to significant errors in IBI estimation. Therefore, we claim, our method is good for estimation up to $-30\,\text{dB}$.

7 CONCLUSION

This article presents and analyzes a novel method based on a stacked tiramisu model for extracting IBI from ECG signals submerged in MAs. This method can be easily used for denoising purpose and can compete with traditional concurrent techniques. The model suppresses the noise and later, most prominent feature of ECG
i.e., position of R-peaks, has been leveraged to estimate the IBIs. Also, this approach does not require any pre-processing or post-processing method, which saves some of the complexities. Results show the efficiency of the proposed model and the estimated IBIs are highly correlated to that of the true IBIs even at −30 dB SNR value. The weighted average RMSE for IBI estimation is 13.514 ms. Although the size of the model is massive, with tensorflowlite, it can also be optimized for embedded system applications. Our approach is generalizable, and with some slight changes, it can be adapted for denoising other physiological signals as well.

APPENDIX

A ONLINE RESOURCES

The code for this article can be found at: https://github.com/Arefeen06088/IBI_Tiramisu

REFERENCES

[1] Mobeen Uddin Ahmed and S. Begum. 2010. Heart rate and inter-beat interval computation to diagnose stress using ECG sensor signal. IEEE Journal of Biomedical and Health Informatics, 24, 8 (2020), 2238–2250.
[2] Ayca Aygun and R. Jafari. 2020. Robust interbeat interval and heart rate variability estimation method from various morphological features using wearable sensors. IEEE Journal of Biomedical and Health Informatics, 24, 8 (2020), 2238–2250.
[3] Ayca Aygun, H. Ghasemzadeh, and R. Jafari. 2019. Robust heart rate variability and interbeat interval detection algorithm in the presence of motion artifacts. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (2019), 1–5.
[4] M. Bsoul, H. Minn, and L. Tamil. 2011. Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG. IEEE Transactions on Information Technology in Biomedicine, 15, 3 (2011), 416–427.
[5] K. Chang and Shing-Hong Liu. 2011. Gaussian noise filtering from ECG by wiener filter and ensemble empirical mode decomposition. Journal of Signal Processing Systems, 64, 2 (2011), 249–264.
[6] Jane Chertoff. 2020. Why Do Athletes Have a Lower Resting Heart Rate? Retrieved from https://www.healthline.com/all-about-heart-rate
[7] M. Chessa, G. Butera, G. Lanza, E. Bossone, A. Delogu, G. De Rosa, G. Marietti, L. Rosti, and M. Carminati. 2002. Role of heart rate variability in the early diagnosis of diabetic autonomic neuropathy in children. Herz, 27 (2002), 785–790.
[8] Ayca Aygun, H. Ghasemzadeh, and R. Jafari. 2020. Robust interbeat interval and heart rate variability estimation method from various morphological features using wearable sensors. IEEE Journal of Biomedical and Health Informatics, 24, 8 (2020), 2238–2250.
[9] Jane Chertoff. 2020. Why Do Athletes Have a Lower Resting Heart Rate? Retrieved from https://www.healthline.com/all-about-heart-rate
[10] M. Bsoul, H. Minn, and L. Tamil. 2011. Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG. IEEE Transactions on Information Technology in Biomedicine, 15, 3 (2011), 416–427.
[11] K. Chang and Shing-Hong Liu. 2011. Gaussian noise filtering from ECG by wiener filter and ensemble empirical mode decomposition. Journal of Signal Processing Systems, 64, 2 (2011), 249–264.
[12] Jane Chertoff. 2020. Why Do Athletes Have a Lower Resting Heart Rate? Retrieved from https://www.healthline.com/all-about-heart-rate
[13] M. Chessa, G. Butera, G. Lanza, E. Bossone, A. Delogu, G. De Rosa, G. Marietti, L. Rosti, and M. Carminati. 2002. Role of heart rate variability in the early diagnosis of diabetic autonomic neuropathy in children. Herz, 27 (2002), 785–790.
[14] Ramin Fallahzadeh, Mahdi Pedram, and Hassan Ghasemzadeh. 2016. SmartSock: A wearable platform for context-aware assessment of ankle edema. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Society (EMBC), 6302–6306.
[15] Centre for Disease Control and Prevention (CDC). 2020. Heart Disease Facts. Retrieved from https://www.cdc.gov/heartdisease/facts.htm
[16] Ramin Fallahzadeh, Mahdi Pedram, and Hassan Ghasemzadeh. 2016. SmartSock: A wearable platform for context-aware assessment of ankle edema. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Society (EMBC), 6302–6306.
[17] A. Goldberger, L. Amaral, L. Glass, Jeffrey M. Hausdorff, P. Ivanov, R. Mark, J. Mietus, G. Moody, C. Peng, and H. Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101 (2000), 23 (2000), E215–20.
[18] M. Hasan, S. Rahman, Asiful Arefeen, T. Ahmed, Mohtasmin Nakib, C. Shahnaz, and Arik Subhana. 2019. Portable real time ECG monitor and disease diagnostics. In Proceedings of the 2019 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON) (2019), 15–19.
[20] Nilofar Hezarjaribi, Sepideh Mazrouee, and Hassan Ghasemzadeh. 2017. Speech2Health: A mobile framework for monitoring dietary composition from spoken data. IEEE Journal of Biomedical and Health Informatics 22, 1 (2017), 252–264.
[21] Ryan Holder, Ramesh Kumar Sah, Michael Cleveland, and Hassan Ghasemzadeh. 2022. Comparing the predictability of sensor modalities to detect stress from wearable sensor data. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 557–562.
[22] Sheng Hu, H. Wei, Y. Chen, and J. Tan. 2012. A real-time cardiac arrhythmia classification system with wearable sensor networks. Sensors (Basel, Switzerland) 12, 9 (2012), 12844–12869.
[23] Shweta Jain, Anil Kumar, and Varun Bajaj. 2017. Real-time detection of electrocardiograph peaks: A genetic algorithm based approach. In Proceedings of the 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN) (2017), 262–266.
[24] S. Jégoü, M. Drozdžal, David Vázquez, A. Romero, and Yoshua Bengio. 2017. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017), 1175–1183.
[25] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001-. SciPy: Open source scientific tools for Python. Retrieved from http://www.scipy.org/
[26] A. Karagiannis and P. Constantinou. 2010. On the empirical mode decomposition performance in white gaussian noise biomedical signals. XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010 (2010), 101–106.
[27] R. Kher. 2019. Signal processing techniques for removing noise from ECG signals. J Biomed Eng 1 (2019), 1–9.
[28] M. Kirst, Bastian Glauner, and J. Ottenbacher. 2011. Using DWT for ECG motion artifact reduction with noise-correlating signals. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2011), 4804–4807.
[29] Framendra Kumar and Vijay Kumar Sharma. 2020. Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis. Healthcare Technology Letters 7, 1 (2020), 18–24.
[30] Juhu Laitala, Mingzhe Jiang, Elise Sijriðá, Emad Kasaeyan Naeni, Antti Airola, A. Rahman, N. Dutt, and P. Liljeberg. 2020. Robust ECG R-peak detection using LSTM. In Proceedings of the 35th Annual ACM Symposium on Applied Computing (2020).
[31] Sungboon Ivan Lee, Hassan Ghasemzadeh, Bobak Mortazavi, Mars Lan, Nabil Alshurafa, Michael Ong, and Majid Sarrafzadeh. 2013. Remote patient monitoring: What impact can data analytics have on cost?. In Proceedings of the 4th Conference on Wireless Health. 1–8.
[32] Yuchao Ma, Zhila Esna Ashari, Mahdi Pedram, Navid Amini, Daniel Tarquinio, Kourosh Nouri-Mahdavi, Mohammad Pourhomayoun, Robert D. Catena, and Hassan Ghasemzadeh. 2019. CyclePro: A robust framework for domain-agnostic gait cycle detection. IEEE Sensors Journal 19, 10 (2019), 3751–3762.
[33] C. McAloon, Luke M. Boylan, T. Hammond, N. Stallard, F. Osman, P. Lim, and S. Hayat. 2016. The changing face of cardiovascular disease 2000-2012: An analysis of the world health organisation global health estimates data. International Journal of Cardiology 224, 1 (2016), 256–264.
[34] Seyed Imam Mirzadeh, Asiful Arefeen, Jessica Ardo, Ramin Fallahzadeh, Bryan Minor, Jung-Ah Lee, Janett A. Hildebrand, Diane Cook, Hassan Ghasemzadeh, and Lorraine S. Evangelista. 2022. Use of machine learning to predict medication adherence in individuals at risk for atherosclerotic cardiovascular disease. Smart Health 26 (2022), 100328.
[35] G. Moody and R. Mark. 2001. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine 20, 1 (2001), 45–50.
[36] G. Moody, W. Muldrow, and R. Mark. 1984. A noise stress test for arrhythmia detectors. Computers in Cardiology 11 (1984), 381–384.
[37] Yu Thi Hong Nhan, N. Park, Y. K. Lee, Y. Lee, J. Lee, and K. Ryu. 2010. Online discovery of Heart Rate Variability patterns in mobile healthcare services. Journal of Systems and Software 83, 10 (2010), 1930–1940.
[38] J. Pan and W. Tompkins. 1985. A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering BME-32, 3 (1985), 230–236.
[39] V. Pandey and V. K. Giri. 2016. High frequency noise removal from ECG using moving average filters. In Proceedings of the 2016 International Conference on Emerging Trends in Electrical Energy & Sustainable Energy Systems (ICETEES) (2016), 191–195.
[40] A. Pulavskyi, S. Krivenko, and L. S. Kryvenko. 2020. Evaluation of the effectiveness of post-filtration smoothing using lossless compression for heart rate variability obtained from a very noisy ECG. In The Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO) (2020), 1–5.
[41] Alif Bin Abdul Quyyum, Tanveerul Islam, and M. Haque. 2019. ECG heartbeat classification: A comparative performance analysis between one and two dimensional convolutional neural network. In Proceedings of the 2019 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCOn) (2019), 93–96.
[42] Lishen Qiu, Wenqiang Cai, Jie Yu, J. Zhong, Yan Wang, Wanyue Li, Y. Chen, and L. Wang. 2020. A two-stage ECG signal denoising method based on deep convolutional network. bioRxiv (2020).
[43] Hrishi Rakshit and M. A. Ullah. 2016. A new efficient approach for designing FIR low-pass filter and its application on ECG signal for removal of AWGN noise. IAENG International Journal of Computer Science 43 (2016), 176–183.
[44] Shalini A. Rankawat and R. Dubey. 2017. Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method. Biomedical Signal Processing and Control 33 (2017), 201–212.
Inter-Beat Interval Estimation with Tiramisu Model: A Novel Approach with Reduced Error

[45] N. Reljin, J. Lázaró, Md Billal Hossain, Yeon Sik Noh, C. Cho, and K. Chon. 2020. Using the redundant convolutional encoder–decoder to Denoise QRS complexes in ECG signals recorded with an armband wearable device. Sensors (Basel, Switzerland) 20, 16 (2020), 4611.

[46] S. Rezk, C. Join, and S. E. Asmi. 2012. Inter-beat (R-R) intervals analysis using a new time delay estimation technique. In Proceedings of the 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (2012), 929–933.

[47] Seyed Ali Rokni and Hassan Ghasemzadeh. 2016. Plug-n-learn: Automatic learning of computational algorithms in human-centered internet-of-things applications. In Proceedings of the 53rd Annual Design Automation Conference.

[48] O. Ronneberger, P. Fischer, and T. Brox. 2015. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention - (MICCAI) (2015), 234–241.

[49] Seyed Ali Rokni and Hassan Ghasemzadeh. 2016. Plug-n-learn: Automatic learning of computational algorithms in human-centered internet-of-things applications. In Proceedings of the 53rd Annual Design Automation Conference.

[50] Ramesh Kumar Sah, Michael John Cleveland, Assal Habibi, and Hassan Ghasemzadeh. 2022. Stressalyzer: Convolutional neural network framework for personalized stress classification. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 4658–4663.

[51] Vinu Sundararaj. 2016. An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm. International Journal of Intelligent Engineering and Systems 9, 3 (2016), 117–126.

[52] A. Taddei, G. Distante, M. Emdin, P. Pisani, G. Moody, C. Zeeenberg, and C. Marchesi. 1992. The european ST-T database: Standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. European Heart Journal 13, 9 (1992), 1164–72.

[53] M. Tali, S. Abid, and A. Cherif. 2015. EMD-based ECG denoising using source separation. Journal of Mechanics in Medicine and Biology 15, 5 (2015), 1550082.

[54] L. Tereshchenko and M. Josephson. 2015. Frequency content and characteristics of ventricular conduction. Journal of Electrocardiology 48, 6 (2015), 933–7.

[55] C. Varon, A. Caicedo, D. Testelmans, B. Buyse, and S. Huffel. 2015. A novel algorithm for the automatic detection of sleep apnea from single-lead ECG. IEEE Transactions on Biomedical Engineering 62, 9 (2015), 2269–2278.

[56] Sriraman Vijayarangan, Vignesh Ravichandran, Balamurali Murugesan, S. Preejith, J. Joseph, and M. Sivaprakasam. 2020. RNet: A deep learning approach for robust r peak detection in noisy ecg. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2020), 345–348.

[57] World Health Organization (WHO). 2017. Cardiovascular Diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

[58] Zhe Yang, Qihao Zhou, L. Lei, K. Zheng, and Wei Xiang. 2016. An IoT-cloud based wearable ECG monitoring system for smart healthcare. Journal of Medical Systems 40, 12 (2016), 1–11.

[59] B. Yuen, X. Dong, and Tao Lu. 2020. Detecting noisy ECG QRS complexes using WaveletCNN autoencoder and ConvLSTM. IEEE Access 8 (2020), 143802–143817.

[60] Zhilin Zhang, Zhouyue Pi, and B. Liu. 2015. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering 62 (2015), 522–531.

Received 11 July 2021; revised 15 December 2022; accepted 14 July 2023