Measurements of B Decays to Two Kaons

K. Abe,7 I. Adachi,7 H. Aihara,43 Y. Asano,47 V. Aulchenko,1 T. Aushev,11
A. M. Bakich,38 V. Balagura,11 S. Banerjee,39 E. Barberio,18 M. Barbero,6 A. Bay,15
I. Bedny,1 U. Bitenc,12 I. Bizjak,12 S. Blyth,21 A. Bondar,1 A. Bozek,24 M. Bračko,
J. Brodzicka,24 T. E. Browder,6 P. Chang,23 Y. Chao,23 A. Chen,21 K.-F. Chen,23
W. T. Chen,21 B. G. Cheon,6 R. Chistov,11 S.-K. Choi,5 Y. Choi,37 A. Chuvikov,32
S. Cole,38 J. Dalseno,18 M. Danilov,11 M. Dash,48 L. Y. Dong,9 J. Dragic,7 A. Drutskoy,4
S. Eidelman,1 Y. Enari,19 S. Fratina,12 N. Gabyshev,1 T. Gershon,7 A. Go,21 G. Gokhroo,39
B. Golob,16,12 A. Gorišek,12 J. Haba,7 T. Harai,29 N. C. Hastings,43 K. Hayasaka,19
H. Hayashii,20 M. Hazumi,7 L. Hinz,15 T. Hokuue,19 Y. Hoshi,41 S. Hou,21 W.-S. Hou,23
Y. B. Hsiung,23 T. Iijima,19 K. Ikado,19 A. Imoto,20 A. Ishikawa,7 H. Ishino,44 R. Itoh,7
M. Iwasaki,43 Y. Iwasaki,7 J. H. Kang,49 J. S. Kang,14 S. U. Kataoka,20 N. Katayama,7
H. Kawai,2 T. Kawasaki,26 H. R. Khan,44 H. Kichimi,7 J. H. Kim,37 S. K. Kim,35
S. M. Kim,37 K. Kinoshita,4 S. Korpar,17,12 P. Križan,16,12 P. Krokovny,1 C. C. Kuo,21
A. Kuzmin,1 Y.-J. Kwon,49 S. E. Lee,35 T. Lesiak,24 J. Li,34 S.-W. Lin,25 D. Liventsev,11
G. Majumder,39 F. Mandl,10 T. Matsumoto,45 A. Matyja,24 W. Mitaroff,10 H. Miyake,29
H. Miyata,26 Y. Mizayaki,19 R. Mizuk,11 D. Mohapatra,48 G. R. Moloney,18 Y. Nagasaka,8
E. Nakano,28 M. Nakao,7 Z. Natkaniec,24 S. Nishida,7 O. Nitoh,46 S. Noguchi,20 T. Nozaki,7
S. Ogawa,40 T. Ohshima,19 T. Okabe,19 S. Okuno,13 S. L. Olsen,6 Y. Onuki,26
W. Ostrowsicz,24 H. Ozaki,7 P. Pakhlov,11 H. Palka,24 C. W. Park,37 N. Parslow,38
L. S. Peak,38 R. Pestotnik,12 L. E. Piilonen,48 M. Rozanska,24 Y. Sakai,7 N. Sato,19
N. Satoyama,36 K. Sayeed,4 T. Schietinger,15 O. Schneider,15 A. J. Schwartz,4
M. E. Sevior,18 H. Shibuya,60 V. Sidorov,1 A. Somov,4 N. Soni,30 S. Stanič,27 M. Starič,12
K. Sumisawa,29 T. Sumiyoshi,45 S. Suzuki,33 O. Tajima,7 F. Takasaki,7 K. Tamai,7
N. Tamura,26 M. Tanaka,7 G. N. Taylor,18 Y. Teramoto,28 X. C. Tian,31 K. Trabelsi,6
T. Tsuboyama,7 T. Tsukamoto,7 S. Uehara,7 T. Uglow,11 Y. Unno,7 S. Uno,7 P. Urquijo,18
Y. Ushiroda,7 G. Varner,6 C. H. Wang,22 M.-Z. Wang,23 Y. Watanabe,44 E. Won,14
Q. L. Xie,9 B. D. Yabsley,48 A. Yamaguchi,12 Y. Yamashita,25 M. Yamauchi,7 J. Ying,31
S. L. Zhang,9 J. Zhang,7 L. M. Zhang,34 Z. P. Zhang,34 V. Zhilich,1 and D. Zürcher15

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3Chonnam National University, Kwangju
4University of Cincinnati, Cincinnati, Ohio 45221
5Gyeongsang National University, Chinju
6University of Hawaii, Honolulu, Hawaii 96822
7High Energy Accelerator Research Organization (KEK), Tsukuba
8Hiroshima Institute of Technology, Hiroshima
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute for Theoretical and Experimental Physics, Moscow

Typeset by REVTeX
12 J. Stefan Institute, Ljubljana
13 Kanagawa University, Yokohama
14 Korea University, Seoul
15 Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
16 University of Ljubljana, Ljubljana
17 University of Maribor, Maribor
18 University of Melbourne, Victoria
19 Nagoya University, Nagoya
20 Nara Women’s University, Nara
21 National Central University, Chung-li
22 National United University, Miao Li
23 Department of Physics, National Taiwan University, Taipei
24 H. Niewodniczanski Institute of Nuclear Physics, Krakow
25 Nippon Dental University, Niigata
26 Niigata University, Niigata
27 Nova Gorica Polytechnic, Nova Gorica
28 Osaka City University, Osaka
29 Osaka University, Osaka
30 Panjab University, Chandigarh
31 Peking University, Beijing
32 Princeton University, Princeton, New Jersey 08544
33 Saga University, Saga
34 University of Science and Technology of China, Hefei
35 Seoul National University, Seoul
36 Shinshu University, Nagano
37 Sungkyunkwan University, Suwon
38 University of Sydney, Sydney NSW
39 Tata Institute of Fundamental Research, Bombay
40 Toho University, Funabashi
41 Tohoku Gakuin University, Tagajo
42 Tohoku University, Sendai
43 Department of Physics, University of Tokyo, Tokyo
44 Tokyo Institute of Technology, Tokyo
45 Tokyo Metropolitan University, Tokyo
46 Tokyo University of Agriculture and Technology, Tokyo
47 University of Tsukuba, Tsukuba
48 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
49 Yonsei University, Seoul
Abstract

We report measurements of B meson decays to two kaons using 253 fb$^{-1}$ of data collected with the Belle detector at the KEKB energy-asymmetric e^+e^- collider. We find evidence for signals in $B^+ \rightarrow \bar{K}^0K^+$ and $B^0 \rightarrow K^0\bar{K}^0$ with significances of 3.0σ and 3.5σ, respectively. (Charge-conjugate modes included) The corresponding branching fractions are measured to be $\mathcal{B}(B^+ \rightarrow \bar{K}^0K^+) = (1.0 \pm 0.4 \pm 0.1) \times 10^{-6}$ and $\mathcal{B}(B^0 \rightarrow K^0\bar{K}^0) = (0.8 \pm 0.3 \pm 0.1) \times 10^{-6}$. These decay modes are examples of hadronic $b \rightarrow d$ transitions. No signal is observed in the decay $B^0 \rightarrow K^+K^-$ and we set an upper limit of 3.7×10^{-7} at 90% confidence level.

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw, 14.40.Nd
Recent precise measurements of the branching fractions \cite{1} and partial rate asymmetries \cite{2} from the decays $B \rightarrow K \pi, \pi \pi$ provide essential information to understand the B decay mechanism and to probe possible contributions from new physics. The rates for these decays constrain the hadronic $b \rightarrow s$ and $b \rightarrow u$ amplitudes. Here we report results on $B^0 \rightarrow K^0\overline{K}^0$ and $B^+ \rightarrow K^+\overline{K}^0$ decays, which are examples of $b \rightarrow d$ hadronic transitions. We also discuss a search for $B^0 \rightarrow K^+K^-$, which is sensitive to effects of final-state interactions (FSI) \cite{3}. The results are based on a sample of 275 million $B\overline{B}$ pairs collected with the Belle detector at the KEKB e^+e^- asymmetric-energy (3.5 on 8 GeV) collider \cite{4} operating at the $\Upsilon(4S)$ resonance.

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside the coil is instrumented to detect K^0_L mesons and to identify muons (KLM). The detector is described in detail elsewhere \cite{5}. Two different inner detector configurations were used. For the first sample of 152 million $B\overline{B}$ pairs (Set I), a 2.0 cm radius beampipe and a 3-layer silicon vertex detector were used; for the latter 123 million $B\overline{B}$ pairs (Set II), a 1.5 cm radius beampipe, a 4-layer silicon detector and a small-cell inner drift chamber were used \cite{6}.

Charged kaons are required to have a distance of closest approach to the interaction point (IP) in the beam direction (z) of less than 4 cm and less than 0.1 cm in the transverse plane. Charged kaons and pions are identified using dE/dx information and Cherenkov light yields in the ACC. The dE/dx and ACC information are combined to form a $K-\pi$ likelihood ratio, $\mathcal{R}(K/\pi) = \mathcal{L}_K/(\mathcal{L}_K + \mathcal{L}_\pi)$, where \mathcal{L}_K (\mathcal{L}_π) is the likelihood that the track is a kaon (pion). Charged tracks with $\mathcal{R}(K/\pi) > 0.6$ are regarded as kaons. Furthermore, charged tracks that are positively identified as electrons or muons are rejected. The electron identification uses information composed of E/p and dE/dx, shower shape, track matching χ^2, and ACC light yields, while information from the KLM, dE/dx and ACC are combined to identify muons. The kaon identification efficiency and misidentification rate are determined from a sample of kinematically identified $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^-\pi^+$ decays, where the kaons from the D decay are selected in the same kinematic region as in $B \rightarrow K\overline{K}$ decays. The kaon efficiency is measured to be $(84.24 \pm 0.13)\%$ for Set I and $(82.84 \pm 0.14)\%$ for Set II, while the pion-fake-kaon rates are $(5.40 \pm 0.08)\%$ and $(6.86 \pm 0.11)\%$, respectively.

Candidate K^0_S mesons are reconstructed through the $K^0_S \rightarrow \pi^+\pi^-$ decay. We pair oppositely-charged tracks assuming the pion hypothesis and require the invariant mass of the pair to be within 18 MeV/c2 of the nominal K^0_S mass. Furthermore, the intersection point of the $\pi^+\pi^-$ pair must be displaced from the IP.

Two variables are used to identify B candidates: the beam-constrained mass, $M_{bc} \equiv \sqrt{E_{beam}^2 - p_B^2}$, and the energy difference, $\Delta E \equiv E_B^* - E_{beam}^*$, where E_{beam}^* is the run dependent beam energy and E_B^* and p_B^* are the reconstructed energy and momentum of the B candidates in the center-of-mass (CM) frame, respectively. Events with $M_{bc} > 5.20$ GeV/c2 and $|\Delta E| < 0.3$ GeV are selected for analysis.

The dominant background is from $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) continuum events. Event topology and B flavor tagging information are used to distinguish between the spherically distributed $B\overline{B}$ events and the jet-like continuum backgrounds. We combine a set of modified Fox-Wolfram moments \cite{9} into a Fisher discriminant. A signal/background likelihood is
formed, based on a GEANT-based Monte Carlo (MC) simulation, from the product of the probability density function (PDF) for the Fisher discriminant and that for the cosine of the angle between the B flight direction and the positron beam. The continuum suppression is achieved by applying a requirement on a likelihood ratio $R = \mathcal{L}_s/(\mathcal{L}_s + \mathcal{L}_{qq})$, where $\mathcal{L}_{s(qq)}$ is the signal ($q\bar{q}$) likelihood. Additional background discrimination is provided by B flavor tagging. For each event, the standard Belle flavor tagging algorithm provides a discrete variable indicating the probable flavor of the tagging B meson, and a quality r, a continuous variable ranging from zero for no flavor tagging information to unity for unambiguous flavor assignment. An event with a high value of r (typically containing a high-momentum lepton) is more likely to be a $B\overline{B}$ event, and a looser R requirement can be applied. We divide the data into $r > 0.5$ and $r \leq 0.5$ regions. A selection requirement on R for events in each r region of Set I and Set II is applied according to a figure-of-merit defined as $N^\text{exp}/\sqrt{N^\text{exp} + N^\text{qq}}$, where N^exp denotes the expected signal yields based on MC simulation and the assumed branching fractions, 1×10^{-6}, and N^qq denotes the expected $q\bar{q}$ yields from sideband data ($M_{bc} < 5.26 \text{ GeV}/c^2$).

Background contributions from $\Upsilon(4S) \rightarrow B\overline{B}$ events are investigated using a large MC sample, which includes events from $b \rightarrow c$ transitions and charmless decays. After all the selection requirements, no $B\overline{B}$ background is found for the $B^0 \rightarrow K^0\overline{K}^0$ mode. Owing to $K^-\pi$ misidentification, large $B^0 \rightarrow K^+\pi^-$ and $B^+ \rightarrow K^0\pi^+$ feed-across backgrounds appear in the $B^0 \rightarrow K^+K^-$ and $B^+ \rightarrow \overline{K}^0K^+$ modes, respectively. A small charmless three-body contribution is found at low ΔE values for these two modes.

The signal yields are extracted by performing unbinned two dimensional maximum likelihood (ML) fits to the ($M_{bc}, \Delta E$) distributions. The likelihood for each mode is defined as

$$
\mathcal{L} = \exp \left(- \sum_{s,k,j} N_{s,k,j} \right) \prod_{i} \left(\sum_{s,k,j} N_{s,k,j} \mathcal{P}_{s,k,j,i} \right),
$$

where s indicates Set I or Set II, k distinguishes between events in the $r < 0.5$ and $r > 0.5$ regions, i is the identifier of the i-th event, $P(M_{bc}, \Delta E)$ is the two-dimensional PDF of M_{bc} and ΔE, N_j is the number of events for the category j, which corresponds to either signal, $q\bar{q}$ continuum, a feed-across due to $K^-\pi$ misidentification, or background from other charmless three-body B decays.

All the signal PDFs ($P_{s,k,j=\text{signal}}(M_{bc}, \Delta E)$) are parametrized by a product of a single Gaussian for M_{bc} and a double Gaussian for ΔE using MC simulations based on the Set I and Set II detector configurations. The same signal PDFs are used for events in the two different r regions. Since the M_{bc} signal distribution is dominated by the beam energy spread, we use the signal peak positions and resolutions obtained from $B^+ \rightarrow D^0\pi^+$ data ($D^0 \rightarrow K^0_S\pi^+\pi^-$) sub-decay is used for the $K^0\overline{K}^0$ mode, while $D^0 \rightarrow K^+\pi^-$ is used for the other two modes) with small mode dependent correlations obtained from MC. The MC-predicted ΔE resolutions are verified using the invariant mass distributions of high momentum D mesons. The decay mode $D^0 \rightarrow K^+\pi^-$ is used for $B^0 \rightarrow K^+K^-$, $D^+ \rightarrow K^0_S\pi^+$ for $B^+ \rightarrow K^0\pi^+$ and $D^0 \rightarrow K^0_S\pi^+\pi^-$ for $B^0 \rightarrow K^0\overline{K}^0$. The parameters that describe the shapes of the PDFs are fixed in all of the fits.

The continuum background in ΔE is described by a linear function while the M_{bc} distribution is parameterized by an ARGUS function $f(x) = x\sqrt{1-x^2} \exp [-\xi(1-x^2)]$, where
x is M_{bc} divided by half of the total center of mass energy E. Therefore, the continuum PDF is the product of this ARGUS function and the linear function, where the overall normalization, ξ and the slope of the linear function are free parameters in the fit. These free parameters are r-dependent and allowed to be different in Set I and Set II. The background PDFs for charmless three-body B decays for the K^+K^- and \bar{K}^0K^+ modes are each modeled by a smoothed two-dimensional histogram, obtained from a large MC sample. The feed-across backgrounds for these two modes from the $K^+\pi^-$ and $K^0\pi^+$ events have $M_{bc} - \Delta E$ shapes similar to the signals with the ΔE peak positions shifted by ≈ 45 MeV. The methods to model the K^+K^- and \bar{K}^0K^+ signal PDFs are also applied to describe the feed-across background.

When likelihood fits are performed, the yield for each background component ($N_{s,k,j}$ where $j = q\bar{q}$, feed-across, charmless) is allowed to float independently for each s (Set I or Set II), and k bin (low or high r region). For the signal component, the same branching fraction is required by constraining the number of signal events in each (s,k) bin using the measured efficiency in the corresponding (s,k) bin. Table I summarizes the fit results for each mode. We observe $13.3 \pm 5.6 \pm 0.6$ K^0K^+ and $15.6 \pm 5.8^{+1.1}_{-0.6}$ $K^0\bar{K}^0$ signal events with significances of 3.0σ and 3.5σ, respectively. The second errors in the yields are the systematic errors from fitting, estimated from the deviations after varying each parameter of the signal PDFs by one standard deviation, and from modeling the three-body background, studied by excluding the low ΔE region (< -0.15 GeV) and repeating the fit. At each step, the yield deviation is added in quadrature to provide the fitting systematic errors and the statistical significance is computed by taking the square root of the difference between the value of $-2\ln L$ for the best fit value and zero signal yield. The smallest value is chosen to be the significance including the systematic uncertainty.

Figure 1 shows the M_{bc} and ΔE projections of the fits after requiring events to have $|\Delta E| < 0.06$ GeV and 5.271 GeV/$c^2 < M_{bc} < 5.289$ GeV/c^2, respectively. The feed-across yields are 47.1 ± 8.7 in the K^+K^- mode and 16.4 ± 6.1 in the K^0K^+ mode. The amounts of the feed-across background are consistent with the expectations of 49.1 $K^+\pi^-$ and 18.8 $K^0\pi^+$ events, based on MC simulation and measured branching fractions [12]. The MC modeling of the requirement on the likelihood ratio, R, is investigated using the $B^+ \rightarrow D^0\pi^+ (D^0 \rightarrow K^0\pi^+\pi^-)$ for K^0K^0 and $D^0 \rightarrow K^+\pi^-$ for the others) samples. The obtained systematic errors are $\pm 2.9\%$ for $B^0 \rightarrow K^0\bar{K}^0$ and $\pm 6.8\%$ for the other two modes. The systematic error on the charged track reconstruction efficiency is estimated to be around 1% per track using partially reconstructed D^* events. The resulting K^0_S reconstruction is verified by comparing the ratio of $D^+ \rightarrow K^0_S\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$ yields with the MC expectation. The resulting K^0_S detection systematic error is $\pm 4.5\%$. The final systematic errors are then obtained by quadratically summing the errors due to the reconstruction efficiency and the fitting systematics.

With 275 million BB pairs, we find evidence of $B^+ \rightarrow \bar{K}^0K^+$ and $B^0 \rightarrow K^0\bar{K}^0$ with branching fractions $\mathcal{B}(B^+ \rightarrow \bar{K}^0K^+) = (1.0 \pm 0.4 \pm 0.1) \times 10^{-6}$ and $\mathcal{B}(B^0 \rightarrow K^0\bar{K}^0) = (0.8 \pm 0.3 \pm 0.1) \times 10^{-6}$. These are examples of hadronic $b \rightarrow d$ transitions. Our measurements are consistent with preliminary results reported by the BaBar collaboration and agree with some theoretical predictions [13, 14, 16, 17]. It has been suggested that the branching fraction and CP asymmetry of the mode $B^0 \rightarrow K^0\bar{K}^0$, which originates from the flavor-changing neutral current process $b \rightarrow d\bar{s}s$, may be sensitive to physics beyond the Standard Model [16]. Measurements with larger statistics are needed for this purpose. No signal is
FIG. 1: M_{bc} (left) and ΔE (right) distributions for $B^0 \rightarrow K^+K^-$ (top) and $B^+ \rightarrow \overline{K}^0K^+$ (middle) and $B^0 \rightarrow K^0\overline{K}^0$ candidates. The histograms show the data, while the curves represent the various components from the fit: signal (dashed), continuum (dotted), three-body B decays (hatched), background from mis-identification (dash-dotted), and sum of all components (solid). In the K^+K^- mode, there is a large contribution from misidentified $K^+\pi^-$ but no significant signal excess. In the \overline{K}^0K^+ mode, the signal and misidentified $K^0\pi^+$ contributions are comparable in size. In the $K^0\overline{K}^0$ mode, there is a signal excess but no misidentification background.

observed in $B^0 \rightarrow K^+K^-$ and we set the upper limit of 3.7×10^{-7} at the 90% confidence level, using the Feldman-Cousins approach [18] taking into account both the statistical and systematic errors [19].

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge
TABLE I: Fitted signal yields, reconstruction efficiencies, product of efficiencies and sub-decay branching fractions (B_s), branching fractions and significances for individual modes.

Mode	Yield	Eff.(%)	Eff.×B_s (%)	$B(10^{-6})$	Sig.
K^+K^-	2.5	15.5	15.5	< 0.37	0.5
\bar{K}^0K^+	13.3	14.5	5.0	1.0 ± 0.4 ± 0.1	3.0
$K^0\bar{K}^0$	15.6	28.7	6.8	0.8 ± 0.3 ± 0.1	3.5

support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (contract No. 2P03B 01324, Poland); MIST (Russia); MHEST (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[1] Belle Collaboration, Y. Chao et al., Phys. Rev. D 69, 111102 (2004); Belle Collaboration, Y. Chao et al., Phys. Rev. Lett. 94, 181803 (2005); BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002). BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 94, 181802 (2005).

[2] Belle Collaboration, Y. Chao et al., Phys. Rev. Lett. 93, 191802 (2004); Belle Collaboration, K. Abe et al., hep-ex/0502035; BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131801 (2004); BaBar Collaboration, B. Aubert et al., hep-ex/0408089.

[3] H.-Y. Cheng, C.-K. Chua, and A. Soni, hep-ph/0502235; C.-K. Chua, W.-S. Hou and K.-C. Yang, Mod. Phys. Lett. A 18, 1763 (2003); S. Barshay, L. M. Sehgal and J. van Leusen, Phys. Lett. B 591, 97 (2004); C. W. Bauer, D. Pirjol, I. Z. Rothstein and I. Stewart, Phys. Rev. D 70, 054015, 2004.

[4] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.

[5] Belle Collaboration, A. Abashian et al. Nucl. Instr. and Meth. A 479, 117 (2002).

[6] Y. Ushiroda (Belle SVD2 Group), Nucl. Instr. and Meth.A 511 6 (2003).

[7] Belle Collaboration, Y. Chao et al., Phys. Rev. D 69, 111102(R) (2004).

[8] R. Brun et al., GEANT 3.21, CERN Report No. DD/EE/84-1 (1987).

[9] The Fox-Wolfram moments were introduced in G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41 1581 (1978). The modified moments used in this paper are described in Belle Collaboration, S. H. Lee et al., Phys. Rev. Lett. 91, 261801 (2003).

[10] H. Kakuno et al., Nucl. Instr. and Meth. A 533, 516 (2004).

[11] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241, 278 (1990).

[12] Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag

[13] J.D. Bjorken, Nucl. Phys. (Proc. Suppl.) B11, 325 (1989); H-n. Li and B. Tseng, Phys. Rev. D 57, 443 (1998).

[14] Y.-Y. Keum and A. I. Sanda, Phys. Rev. D 67, 054009 (2003).

[15] C.-H. Chen and H.-n. Li, Phys. Rev. D 63, 014003 (2001).

[16] R. Fleischer and S. Recksiegel, Eur. Phys. J C 38, 251 (2004)

[17] C.-W. Chiang, M. Gronau, J. L. Rosner, D. A. Suprun, Phys. Rev. D 70, 034020 (2004).
[18] G.J. Feldman and R.D. Cousins, Phys. Rev. D57, 3873 (1998).
[19] We used the method described in J. Conrad et al., Phys. Rev. D67, 012002 (2003).