Primordial black holes (PBHs) are expected to accrete particle dark matter around them to form ultracompact minihalos (UCMHs), if the PBHs themselves do not make up most of the dark matter. We show that if most dark matter is a thermal relic, then the inner regions of UCMHs around PBHs are highly luminous sources of annihilation products. Flux constraints on gamma rays and neutrinos set strong abundance limits, improving previous limits by orders of magnitude. Assuming enough particle dark matter exists to form UCMHs, we find that $\Omega_{\text{PBH}} \lesssim 10^{-4}$ (for $m_{\text{DM}} c^2 \approx 100$ GeV) for a vast range in PBH mass. We briefly discuss the uncertainties on our limits, including those due to the evolution of the UCMH luminosity as it annihilates.

Key words: dark matter – diffuse radiation – early universe – gamma rays: diffuse background

Online-only material: color figures

1. INTRODUCTION

The early universe was extremely smooth, but it is possible that there were rare but large perturbations. Any large perturbations ($\delta \rho/\rho \gtrsim 0.3$) collapsed to form primordial black holes (PBHs; Hawking 1971). PBHs are expected to acquire a halo from the surrounding particle dark matter background, if they themselves do not make up most of the dark matter (Mack al. 2007; Ricotti 2007; Ricotti et al. 2008; Ricotti & Gould 2009). These halos are called ultracompact minihalos (UCMHs; Scott & Sivertsson 2009).

The abundance of PBHs with masses above $1000 M_\odot$ is strongly constrained ($\Omega_{\text{PBH}} \lesssim 10^{-8}$), using the effects of baryonic accretion on the cosmic microwave background (CMB) energy spectrum (Ricotti et al. 2008), and that of masses below $\sim 10^{-15} M_\odot$ is constrained by the non-observation of gamma rays from PBH evaporation (see Carr et al. 2010, and references therein). In the planetary–stellar mass regime, there are modest constraints ($\Omega_{\text{PBH}} \lesssim 10^{-1}$) from microlensing (e.g., Alcock et al. 1998, 2001; Tisserand et al. 2007, but see also Alcock et al. 2000) and the dynamics of structure formation and widely separated binary stars (Yoo et al. 2004; but see also Quinn et al. 2009). Over a huge range of possible PBH masses (10^{-15} to $10^{-8} M_\odot$), the constraints on their abundances are weak or non-existent (e.g., Seto & Cooray 2007; Abramowicz et al. 2009).

The dark matter UCMHs around PBHs allow new ways to constrain the abundance of PBHs. Ricotti & Gould (2009) suggested searching for the microlensing signature of UCMHs, also pointing out that there could be a gamma-ray signal from dark matter annihilation in the dense core of the UCMH. Scott & Sivertsson (2009) developed this further, considering the gamma-ray signal from individual, nearby UCMHs of various masses and their detectability with Fermi.

We develop strong new constraints on dark matter annihilation in UCMHs around PBHs, using general assumptions that can be evaded only in exotic dark matter models. These limits apply if PBHs do not make up all of the dark matter, so that enough particle dark matter exists to form UCMHs. We strive for order-of-magnitude accuracy.

2. DARK MATTER ANNIHILATION

We assume that dark matter is a thermal relic, following annihilation freezeout in the early universe, consisting of weakly interacting massive particles (WIMPs). We assume that it may self-annihilate in the late universe (i.e., there is no large WIMP–antiWIMP asymmetry) and that the final states are Standard Model particles. For thermal relic dark matter, $\Omega_{\text{DM}} h^2 = 3 \times 10^{-27} \text{ cm}^3 \text{s}^{-1} / (\sigma v)$, relating the dark matter density to its thermally averaged annihilation cross section (Kolb & Turner 1990). We take $\Omega_{\text{DM}} = 0.3$ and $h = H_0/(100 \text{ km s}^{-1} \text{ Mpc}^{-1}) = 0.7$. We consider masses above the GeV range, probed at colliders, and below a PeV, set by the unitarity bound. We use the relic $\langle \sigma v \rangle$, assuming it independent of v; this holds for standard s-wave annihilation. Our results cannot be evaded by reducing $\langle \sigma v \rangle$, as this would lead to an unacceptably large Ω_{DM}.

While $\langle \sigma v \rangle$ is fixed, the particular Standard Model final states are not; however, strong constraints on dark matter annihilation can be set in any case (Beacom et al. 2007). We then limit the abundance of UCMHs from constraints on dark matter annihilation, and thus the abundance of PBHs themselves.

Constraints on dark matter annihilation from gamma-ray signals are well known. Direct annihilation produces a spectral line at $m_{\text{DM}} c^2$ (Mack et al. 2008). Annihilation into quarks, charged leptons, or gauge bosons produces a gamma-ray continuum when those particles decay. Electron–positron final states produce gamma rays, through internal bremsstrahlung, with branching fraction $\mathcal{B}(\gamma) \approx \alpha \approx 0.01$. This process is an electromagnetic radiative correction; it is independent of surrounding matter density, occurs in any process involving charged particles, and produces gamma rays with energies up to $m_{\text{DM}} c^2$ (Beacom et al. 2005; Bell & Jacques 2009). Additional radiation is produced through synchrotron and inverse Compton energy-loss processes.

It might be thought that neutrinos are invisible annihilation products; in fact, there are stringent bounds on them (Beacom et al. 2007; Yüksel et al. 2007). The sheer size of neutrino telescopes like IceCube compensates for the small detection cross section, and the atmospheric neutrino background falls...
off steeply with energy. Other Standard Model annihilation products are intermediate to the above cases.

3. UCMH PROFILES AND LUMINOSITIES

According to Mack et al. (2007) and Ricotti (2007), a UCMH (with or without a PBH) at \(z \approx z_{eq} \) with dark matter mass \(M_{eq} \) has a truncation radius

\[
R_{eq}(z) = 1300 \text{ AU} \left(\frac{M_{eq}}{M_\odot} \right)^{1/3} \left(\frac{1 + z}{1 + z_{eq}} \right)^{-1}.
\] (1)

UCMHs with PBHs at matter–radiation equality have \(M_{eq} = M_{PBH} \). The dark matter mass density within \(R_{eq}(z) \) is the same no matter what the PBH mass is, with a number density \(n_{eq} \approx 1.8 \times 10^5 \text{ cm}^{-3} m_{100}^3 \) at \(z_{eq} \), where \(m_{100} = m_{DM} c^2 / (100 \text{ GeV}) \). Within \(R_{eq} = R_{eq}(z_{eq}) \), the UCMH density profile goes as \(\rho \propto R^{-3/2} \), because the PBH dominates the mass; at larger radii, a \(R^{-9/4} \) density profile holds (Bertschinger 1985). This density profile is shallower than that in Ricotti & Gould (2009), which assumed \(\rho \propto R^{-9/4} \) throughout, and that adiabatic contraction increased the dark matter density further.

WIMPs have nearly radial orbits around the PBH, sampling a wide range of densities in each orbit. Thus, the dark matter annihilating in the inner regions of the UCMH is often stored much farther out. To answer whether WIMPs with apocenters of \(R_{eq} \) survive to the present day, we calculate the number of annihilations a WIMP is expected to experience during the universe’s history. This is the number of annihilations per orbit times the number of orbital periods in a Hubble time:

\[
\langle N_{ann} \rangle = 2 \left(\frac{t_H}{P} \right) \int_0^{\pi} n_{DM}(r)(\sigma_A v) \frac{dt}{d\theta} d\theta,
\] (2)

where we have defined \(\theta = 0 \) as apocenter and \(P \) is the orbital period. A WIMP can only annihilate once, so the density profile is valid at present only if \(\langle N_{ann} \rangle < 1 \). Assuming that the orbit is Keplerian and nearly radial,

\[
\langle N_{ann} \rangle \approx \frac{3(\sigma_A v)M_{PBH}t_H}{2\pi^2n_{DM}(r_{ap})^{3/2}} \left[1 + \ln \left(\frac{\pi G M_{PBH}}{v_{a}^2 r_{ap}} \right) \right],
\] (3)

where \(r_{ap} \) is the apocenter radius and \(v_a \) is the WIMP’s tangential velocity at apocenter.\(^4\) Using Equation (1) to find \(R_{eq} \) and

\[
v_a(r_a = R_{eq}) \approx 8.1 \text{ cm s}^{-1} \left(\frac{z}{z_{eq}} \right)^{-1/2} \left(\frac{M_{PBH}}{M_\odot} \right)^{0.28},
\] (4)

from the bulk velocity dispersion in Ricotti & Gould (2009), we find

\[
\langle N_{ann} \rangle \approx 0.03 m_{100}^{-1} \left(\frac{t_H}{10 \text{ Gyr}} \right) \left[1 - 0.005 \ln \left(\frac{M_{PBH}}{M_\odot} \right) \right].
\] (5)

Therefore, WIMPs with apocenters of \(R_{eq} \) mostly survive to the present, despite venturing much further out.

The accretion and resultant WIMP orbits at \(R_{eq} \) must be nearly radial: \(\sigma_{DM} \ll \sqrt{2GM_{PBH}R_{eq}} \). Using \(v_a \) (Equation (4)) for the initial velocity dispersion \(\sigma_{DM} \), we find that accretion is radial for all reasonable PBH masses. WIMPs also have residual thermal dispersion, \(v_{th} \approx 1.3 \text{ cm s}^{-1} m_{100}^{1/2} (z/z_{eq})^{-1} \); conservatively, we find that radial accretion at \(R_{eq} \) holds for \(M_{PBH} \geq 2 \times 10^{-15} m_{100}^{-3} (z/z_{eq})^{-3} M_\odot \). Accretion at later times than \(z \approx 3000 \), at smaller radius than \(R_{eq} \), or from the low end of the WIMP velocity distribution might still form a UCMH; so our limits may roughly hold for smaller PBHs. Finally, WIMPs must miss the central PBH. WIMPs with an apocenter \(r_a \) have a pericenter \(r_p \approx v_{a}^2 r_{a}^2 / (2GM_{PBH}) \); if the apocenter is \(R_{eq} \), then

\[
r_{p,eq} \approx 6.3 \times 10^{-6} \text{ AU} \left(\frac{M_{PBH}}{M_\odot} \right)^{0.23}.
\] (6)

Thus, WIMPs with apocenters of \(R_{eq} \) remain outside the Schwarzschild radius if \(M_{PBH} \lesssim 1740 M_\odot \).

The UCMH annihilation luminosity is

\[
L_{ann} = \int_{r_{min}}^{R_{eq}} 2\pi r^2 n(r)^2 (\sigma_A v)_{DM}^2 dr
\]

or

\[
L_{ann} = \frac{9}{32\pi} \frac{M_{PBH}^2 (\sigma_A v)_{DM}^2}{m_{DM} R_{eq}^2} \ln \left(\frac{R_{eq}}{r_{min}} \right),
\] (7)

where \(r_{min} \) is a minimum-radius cutoff. Even if WIMPs with small apocenters annihilate away by the present, WIMPs on radial infall orbits with larger apocenters generate a time-averaged density profile of \(\rho \propto r^{-3/2} \) between apocenter and pericenter.\(^5\) Therefore, we use \(r_{p,eq} \) as \(r_{min} \). The UCMH luminosity is

\[
L_{ann} \approx 24 L_\odot \left(\frac{M_{PBH}}{M_\odot} \right) m_{100}^{-1}.
\] (8)

ignoring a very small logarithmic term in \(M_{PBH} \). The linear scaling with \(M_{PBH} \) arises because the UCMH mass scales linearly with PBH mass, and the WIMP density (and annihilation lifetime) at \(R_{eq} \) is always the same. When \(\rho \propto r^{-3/2} \), each decade in minihalo radius produces the same annihilation luminosity; the total luminosity therefore is not strongly dependent on the WIMP orbits’ eccentricities. The eccentricities themselves depend weakly on \(M_{PBH} \), since \(r_{a,eq}/r_p \propto M_{PBH}^{0.1} \). Thus, the total luminosity is understood as the mass of the UCMH halo (proportional to \(M_{PBH} \)) annihilating over a fixed annihilation timescale (set by \(n_\gamma \)) multiplied by some slowly varying logarithmic factor accounting for the UCMH’s inner regions.

A steeper density profile inside \(R_{eq} \) would increase the luminosity but shorten the WIMP survival time. Equation (2) implies, for WIMPs with a \(r^{-9/4} \) density profile and \(r = R_{eq} \),

\[
\langle N_{ann} \rangle = 1500 m_{100}^{-1} (M_{PBH}/M_\odot)^{0.08},
\]

\(t_{ann} \approx 7 m_{100}^{-1} \text{ Myr} \). For a \(r^{-2} \) profile, \(\langle N_{ann} \rangle = 22 m_{100}^{-1} (M_{PBH}/M_\odot)^{0.08} \). Efficient annihilation introduces \(\Omega_{PBH} \), the high energy radiation into the universe. At redshift, the CMB energy spectrum and reionization history severely constrain the gamma-ray and cosmic ray injection rates (e.g., Fixsen et al. 1996; Padmanabhan & Finkbeiner 2005; Mapelli et al. 2006). At low enough redshift, the gamma-ray and neutrino backgrounds still constrain the annihilation products directly. Thus, it would be difficult to have \(\Omega_{PBH} \approx \Omega_{\text{WIMP}} \), unless perhaps the annihilations were entirely into

\(^4\) We approximated \(K(k) = \int_0^{\pi/2} d\theta / \sqrt{1 - k^2 \sin^2 \theta} \) as \(1/\sqrt{1 - k^2} [1 + \ln(\pi \sqrt{1 - k^2})] / \sqrt{1 - k^2} \), where \(k^2 = 2e/(e - 1) \) and \(e \) is the eccentricity.

\(^5\) Consider a shell of non-interacting WIMPs at apocenter \(r_{ap} \) with identical tangential speeds. The time-averaged mass at each radius is proportional to the time they spend there: \(dM(r) \propto d\rho/\rho \), where \(\rho \) is the radial velocity. For nearly radial orbits, \(\rho \approx \sqrt{2GM} \), except near pericenter and apocenter. Thus, \((dM(r) \propto \rho^{1/2} dr) \), since \((dM(r) = 4\pi r^2 (\rho(r)) dr, \rho \propto r^{-3/2} \) except near pericenter and apocenter.
neutrinos. Furthermore, such efficient annihilation would mean that present UCMHs around PBHs have depleted inner halos, with consequences for microlensing searches (Ricotti & Gould 2009). More work on the effects of annihilation in steep density profiles is needed.

3.1. Assumptions and Other Considerations

This annihilation luminosity depends on some simple considerations. We assume that PBHs have not evaporated yet, which is valid for $M_{\text{PBH}} \gtrsim 10^{-18} M_\odot$, and that most of the dark matter is made of WIMPs and not of PBHs, otherwise there would be too few WIMPs to form a UCMH.

We require that the density profile along a WIMP’s orbit not evolve significantly. Most importantly, we require that dark matter accretion after z_{eq} does not increase the mass within R_{eq}. Such accretion would initially increase the UCMH luminosity, but would also shorten the time WIMPs survive within the UCMH. We also assume that annihilation of WIMPs with small apecenters does not affect our calculations. As a limiting case, if WIMPs annihilate into a constant density core with $\rho = \rho(R_{\text{eq}})$, then $L_{\text{ann}} \approx 0.42 L_\odot(M_{\text{PBH}}/M_\odot) t_{\text{eq}}^{-1}$, this weakens our bounds by a factor of ~ 60, but still implies $\Omega_{\text{PBH}} \ll 0.1$ for $m_{\text{DM}} c^2 \lesssim 10$ TeV. Furthermore, since the PBH dominates the mass within R_{eq}, adiabatic contraction should be unimportant.

Perhaps the other most important effects we do not consider are those of accreted baryonic material, which may cool radiatively and collapse efficiently. Adiabatic contraction will not be important if the PBH dominates the mass within R_{eq}. However, baryonic matter can be optically thick to gamma rays, reducing the apparent UCMH luminosity. We estimate the optical depth as $\tau \approx n_{\text{b}} \sigma T R_{\text{eq}}$. If the mass of baryons within R_{eq} is $f_{\text{b}} M_{\text{DM}} \approx f_{\text{b}} M_{\text{PBH}}$, then $\tau \approx 0.5 f_{\text{b}} (M_{\text{PBH}}/M_\odot)^{1/3}$. Klein–Nishina effects will reduce this optical depth. Thus for smaller PBHs ($M \lesssim 10 M_\odot$), we can ignore baryonic opacity. Neutrino limits are unaffected by opacity.

4. COSMIC GAMMA-RAY BACKGROUND CONSTRAINTS

Annihilation of dark matter can produce gamma rays with significant power near $m_{\text{DM}} c^2$. Gamma rays below ~ 100 GeV contribute directly to the extragalactic background. Gamma rays with energy $\gtrsim 100$ GeV for $z \gtrsim 1$ cascade down in energy by pair production and inverse Compton processes with ambient photons, contributing to the background at lower energies.

The gamma-ray emissivity of the universe at energies above 100 MeV is limited by EGRET observations to $Q_{\text{max}} = 8 \times 10^{-35}$ erg s$^{-1}$ cm$^{-3}$ (Coppi & Aharonian 1997). The number density of PBHs is then limited to $n_{\text{PBH}} \lesssim Q_{\text{max}}/(L_{\text{ann}} \delta_{\gamma}(\gamma))$, where $\delta_{\gamma}(\gamma)$ is the branching fraction into gamma rays. If dark matter annihilates into charged particles, there must be internal bremsstrahlung, with branching ratio $\delta_{\gamma}(\gamma) \approx \alpha \approx 0.01$, which we take as a minimum branching fraction. This number density is converted into a limit on Ω_{PBH} by multiplying by the mass of the PBH and dividing by the critical density, $\rho_c = 9.20 \times 10^{-30}$ g cm$^{-3}$, so that $\Omega_{\text{PBH}} \lesssim Q_{\text{max}} M_{\text{PBH}}/(\rho_c L_{\text{ann}} \delta_{\gamma}(\gamma))$:

$$\Omega_{\text{PBH}} \lesssim 1.9 \times 10^{-5} m_{100} (\frac{\delta_{\gamma}(\gamma)}{0.01})^{-1}.$$

(9)

The upper limits on Ω_{PBH} are essentially independent of PBH mass: the number of PBHs for a given Ω_{PBH} scales as M_{PBH}^{-1}, but the luminosity of each scales as $M_{\text{PBH}}^{1/3}$.

5. MILKY WAY GAMMA-RAY CONSTRAINTS

Stronger constraints can be obtained by taking advantage of the higher-than-average number density of PBHs in the Milky Way. PBHs in the Milky Way are close enough that annihilation gamma rays are not attenuated; such gamma rays do not have to compete with the entire gamma-ray background above 100 MeV, but only with that near $m_{\text{DM}} c^2$.

Suppose the density of PBHs, $n_{\text{PBH}}(\gamma)$, tracks the dark matter density; then the integrated gamma-ray intensity on a line of sight out of the Milky Way is $I = \frac{4 \pi}{c} L_{\text{ann}}(n_{\text{PBH}}) Br(\gamma) \int \delta(\gamma) ds$, where δ is the dark matter overdensity over the average cosmic dark matter density and (n_{PBH}) is the average PBH density in the universe. Then the abundance of PBHs is limited by

$$\Omega_{\text{PBH}} \lesssim \frac{4 \pi I_{\text{obs}} M_{\text{PBH}}}{L_{\text{ann}} Br(\gamma) \rho_c \int \delta(\gamma) ds}.$$

(10)

To find the background I_{obs} the UCMH radiation competes with, we use the Fermi-measured extragalactic background spectrum (Abdo et al. 2010) for $E \lesssim 100$ GeV. For annihilation into gamma rays or internal bremsstrahlung from charged particles, most of the power is within one log bin in energy of $m_{\text{DM}} c^2$ (Bell & Jacques 2009). We therefore find I_{obs} by integrating the gamma-ray background as such.

We use a Navarro–Frenk–White density profile for the distribution of UCMHs in the Milky Way (Figure 1 for various final states. The Galactic gamma-ray signal constrains Ω_{PBH}. The dependence of Ω_{PBH} with WIMP mass is shown in Equation (8)). Since the competing extragalactic background falls as $E^2 dN/dE \propto E^{-0.4}$ in the GeV to 100 GeV range, the allowed Ω_{PBH} increases with WIMP mass. The Galactic signal constrains $\Omega_{\text{PBH}} \lesssim 10^{-6}$ for a WIMP mass of 100 GeV even if $Br(\gamma) = 0.01$, smaller than the cosmic bound (Equation (9)).

With these abundances, we can calculate the lower limits on the mean distance to the nearest PBH, $\lambda_{\text{PBH}} = [3 \pi/(4 \delta (n_{\text{PBH}}))]^{1/3}$, where the local $\delta = 89,000$:

$$\lambda_{\text{PBH}} \gtrsim 220 \text{ pc} m_{100}^{-1/3} \left(\frac{M_{\text{PBH}}}{M_\odot} \right)^{1/3} \left(\frac{Br(\gamma)}{0.01} \right)^{1/3},$$

(11)

for WIMP masses greater than 100 GeV. This implies a γ-ray flux of

$$\Phi_\gamma \lesssim 1.0 \times 10^{-9} \text{ cm}^{-2} \text{ s}^{-1} m_{100}^{-4/3} \left(\frac{M_{\text{PBH}}}{M_\odot} \right)^{1/3} \left(\frac{Br(\gamma)}{0.01} \right)^{1/3}.$$

(12)

6. NEUTRINO BACKGROUND CONSTRAINTS

Unlike gamma rays, neutrinos do not cascade down in energy as they travel through the universe, although they redshift. We integrate the atmospheric neutrino spectrum (or diffuse neutrino...
data are reported in Ashie et al. (2005), Gonzalez-Garcia et al. (A color version of this figure is available in the online journal.)

Model final states would give intermediate limits. easiest final state to detect, while neutrinos are the hardest, and other Standard background limits are solid and Galactic limits are dashed. Gamma rays are the (gray; Br(γ)) = 0.01) are shown as well as neutrinos (Br(ν) = 1) (blue). Cosmic background limits are solid and Galactic limits are dashed. Gamma rays are the easiest final state to detect, while neutrinos are the hardest, and other Standard Model final states would give intermediate limits.

(A color version of this figure is available in the online journal.)

backdrop limits above 100 TeV) from $m_{DM}c^2/e$ to $m_{DM}c^2$ (Gaisser & Honda 2002) and require the neutrino flux from UCMHs be less than this; otherwise, they would have been detected (Beacom et al. 2007; Yüksel et al. 2007). The measured data are reported in Ashie et al. (2005), Gonzalez-Garcia et al. (2006), Achterberg et al. (2007), Hoshina et al. (2008), Abbasi et al. (2009), and DeYoung (2009).

In Figure 1, we show the Galactic (solid) and cosmic (dashed) bounds on PBHs from neutrinos. The atmospheric neutrino background also steeply falls with energy ($E^2 dN/dE \propto E^{-1.3}$), so that the bound on Ω_{PBH} is fairly energy independent up to 100 TeV.

7. CONCLUSIONS

In Figure 2, we show that even with the uncertainties in our estimates, our constraints are powerful for PBHs inside UCMHs. PBHs of many masses are ruled out to very small abundances, for a wide range in WIMP masses. At high PBH masses ($\gtrsim 1 M_\odot$), CMB constraints become more powerful (Ricotti et al. 2008); at very low masses, Hawking radiation limits are more powerful (e.g., Carr et al. 2010). Microlensing constraints are weaker, but make no assumptions about WIMPs (Alcock et al. 2001; Tisserand et al. 2007). For $10^{-15} M_\odot \lesssim M_{PBH} \lesssim 10^{-8} M_\odot$, ours are the only constraints on PBHs aside from Ω_{DM}. Our conclusion depends on the standard assumption that most dark matter is a self-annihilating thermal relic. Our analysis does not apply if all of the dark matter is made of PBHs (e.g., Frampton 2009), because there will not be any WIMPs to annihilate. For the smallest PBH and WIMP masses ($M_{PBH} \lesssim 10^{-15} m_{100} M_\odot$), radial accretion may not hold. PBHs could remain important for other reasons (e.g., as seeds of massive BHs; see Mack et al. 2007) which do not require them to have a substantial abundance. The combination of our results with previous limits imply that PBHs either make up almost all of the dark matter or almost none of it.

Our results could be improved by detailed simulations of how the UCMH evolves as its inner regions annihilate. Annihilation could lower the luminosity of the inner regions of the halo over time, weakening our bounds. Steeper density profiles than $r^{-3/2}$ may increase the annihilation luminosity, but shorten the lifetime of WIMPs so that the halo annihilates away before $z = 0$. We expect that some combination of constraints on gamma-ray and neutrino backgrounds, reionization history, and the CMB energy spectrum will generally require a small Ω_{PBH}.

Further improvements could come from more detailed studies of the annihilation products and their detectability. When considering annihilation into charged particles, we considered only gamma rays from internal bremsstrahlung, but charged particles can themselves radiate, such as through inverse Compton scattering (e.g., Cirelli & Panci 2009). We are confident that the limits for WIMP masses above 100 GeV can be improved by new observations. Finally, Ricotti & Gould (2009) suggest that some UCMHs may exist without PBHs, formed from weaker initial perturbations in the early universe. Limits on dark matter annihilation in these UCMHs may strongly constrain these weaker perturbations.

We thank A. Gould, J. Rich, M. Ricotti, K. Stanek, G. Steigman, and T. Thompson for helpful discussions. This work was supported by the NSF CAREER Grant PHY-0547102 to J.F.B. and an Alfred P. Sloan Fellowship to T. Thompson.
REFERENCES

Abbasi, R., et al. 2009, Phys. Rev. D, 79, 102005
Abdo, A. A., et al. 2010, Phys. Rev. Lett., 104, 101101
Abramowicz, M. A., Becker, J. K., Biermann, P. L., Garzilli, A., Johansson, F., & Qian, L. 2009, ApJ, 705, 659
Achterberg, A., et al. 2007, Phys. Rev. D, 76, 042008
Alcock, C., et al. 1998, ApJ, 499, L9
Alcock, C., et al. 2000, ApJ, 542, 281
Alcock, C., et al. 2001, ApJ, 550, L169
Ashie, Y., et al. 2005, Phys. Rev. D, 71, 112005
Beacom, J. F., Bell, N. F., & Bertone, G. 2005, Phys. Rev. Lett., 94, 171301
Beacom, J. F., Bell, N. F., & Mack, G. D. 2007, Phys. Rev. Lett., 99, 231301
Bell, N. F., & Jacques, T. D. 2009, Phys. Rev. D, 79, 043507
Bertschinger, E. 1985, ApJS, 58, 39
Carr, B. J., Kohri, K., Sendouda, Y., & Yokoyama, J. 2010, Phys. Rev. D, 81, 104019
Cirelli, M., & Panci, P. 2009, Nucl. Phys. B, 821, 399
Coppi, P. S., & Aharonian, F. A. 1997, ApJ, 487, L9
DeYoung, T. (for the IceCube Collab.) 2009, arXiv:0910.3644
Fixsen, D. J., Cheng, E. S., Gales, J. M., Mather, J. C., Shafer, R. A., & Wright, E. L. 1996, ApJ, 473, 576
Frampton, P. H. 2009, J. Cosmol. Astropart. Phys., JCAP10(2009)016
Gaisser, T. K., & Honda, M. 2002, Annu. Rev. Nucl. Part. Sci., 52, 153
Gonzalez-Garcia, C., Maltoni, M., & Rojo, J. 2006, J. High Energy Phys., JHEP10(2006)075
Hawking, S. 1971, MNRAS, 152, 75
Hoshina, K., Hodges, J., & Hill, G. C. 2008, Proc. 30th ICRC, 5, 1449
Kolb, E. W., & Turner, M. S. 1990, Frontiers in Physics (Reading, MA: Addison-Wesley)
Mack, G. D., Jacques, T. D., Beacom, J. F., Bell, N. F., & Yüksel, H. 2008, Phys. Rev. D, 78, 063542
Mack, K. J., Ostriker, J. P., & Ricotti, M. 2007, ApJ, 665, 1277
Mapelli, M., Ferrara, A., & Pierpaoli, E. 2006, MNRAS, 369, 1719
Padmanabhan, N., & Finkbeiner, D. P. 2005, Phys. Rev. D, 72, 023508
Quinn, D. P., Wilkinson, M. I., Irwin, M. J., Marshall, J., Koch, A., & Belokurov, V. 2009, MNRAS, 396, L11
Ricotti, M. 2007, ApJ, 662, 53
Ricotti, M., & Gould, A. 2009, ApJ, 707, 979
Ricotti, M., Ostriker, J. P., & Mack, K. J. 2008, ApJ, 680, 829
Scott, P., & Sivertsson, S. 2009, Phys. Rev. Lett., 103, 211301
Seto, N., & Cooray, A. 2007, ApJ, 659, L33
Stoehr, F., White, S. D. M., Springel, V., Tormen, G., & Yoshida, N. 2003, MNRAS, 345, 1313
Tisserand, P., et al. 2007, A&A, 469, 387
Yoo, J., Chanamé, J., & Gould, A. 2004, ApJ, 601, 311
Yüksel, H., Horiiuchi, S., Beacom, J. F., & Ando, S. 2007, Phys. Rev. D, 76, 123506