UPLC-MS/MS-Based Profiling of Eicosanoids in RAW264.7 Cells Treated with Lipopolysaccharide

Jae Won Lee 1,†, Hyuck Jun Mok 2,†, Dae-Young Lee 1, Seung Cheol Park 2, Myeong Soon Ban 1, Jehun Choi 1, Chun Geon Park 1, Young-Sup Ahn 1, Kwang Pyo Kim 2,*, and Hyung Don Kim 1,3,*

1 Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Korea; jaewon3@gmail.com (J.W.L.); dylee0809@korea.kr (D.-Y.L.); bms928@nate.com (M.S.B.); jehun@korea.kr (J.C.); pcg@korea.kr (C.G.P.); ay21cay@korea.kr (Y.-S.A.)
2 Department of Applied Chemistry, The Institute of Natural Science, College of Applied Science, Kyung Hee University, Yongin 446-701, Korea; hjmok@khu.ac.kr (H.J.M.); scpark1126@khu.ac.kr (S.C.P.)
3 Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Korea
* Correspondence: kimkp@khu.ac.kr (K.P.K.); khd0303@rda.go.kr (H.D.K.); Tel.: +82-31-201-2419 (K.P.K.); +82-43-871-5614 (H.D.K.); Fax: +82-31-201-2340 (K.P.K.); +82-43-871-5589 (H.D.K.)
† These authors contributed equally to this work.

Abstract: While both the pro- and anti-inflammatory effects of several eicosanoids have been widely studied, the degree of inflammation in cells that results from various eicosanoids has yet to be comprehensively studied. The objective of this study was to assess the effect of lipopolysaccharide (LPS) treatment on eicosanoid content in RAW264.7 cells. An Ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS)-based profiling method was used to analyze the eicosanoid contents of RAW264.7 cells treated with different LPS concentrations. The profiling data were subjected to statistical analyses, such as principal component analysis (PCA) and hierarchical clustering analysis. LPS treatment increased nitric oxide production and secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, in a concentration-dependent manner. In total, 79 eicosanoids were identified in the cells. RAW264.7 cells treated with different LPS concentrations were well differentiated in the PCA score plot. A heatmap was used to identify the eicosanoids that were up- or down-regulated according to the degree of inflammation and LPS concentration. Thirty-nine eicosanoids were upregulated and seven were down-regulated by LPS treatment in a concentration-dependent manner. Our novel UPLC-MS/MS technique can profile eicosanoids, and can evaluate the correlations between inflammation and eicosanoid metabolism.

Keywords: eicosanoids; inflammation; macrophage; lipopolysaccharide; UPLC-MS/MS

1. Introduction

Eicosanoids, such as prostaglandins (PGs), leukotrienes (LTs), and a number of hydroxyl and epoxy compounds (Figure 1), are bioactive lipid mediators that play vital roles in physiological and pathophysiological conditions [1,2]. They are key mediators and regulators of inflammation and exert both pro- and anti-inflammatory effects [3–5]. Inflammation, a mechanism to protect the host from harmful stimuli, is implicated in the pathogenesis of a number of diseases, including cardiovascular disease, diabetes, allergic diseases, obesity, and cancer [6–10]. Thus, many studies have attempted to identify biomarkers of inflammation, for which the eicosanoids have been targeted as critical metabolites [11,12]. The levels of eicosanoids in biological systems have been assessed to investigate their roles in cell function and pathophysiological events [13,14].
2. Results

2.1. Effect of Lipopolysaccharide (LPS) on RAW264.7 Cells

LPS-stimulated RAW264.7 cells were used to elucidate the correlation between inflammation and eicosanoid metabolism. The cells were treated with 0, 1, 10, 100, 1000 ng/mL LPS for 18 h, and monitored under optical microscopy. LPS is known to induce the differentiation of RAW264.7 cells into dendritic-like cells [30,31]. We observed that LPS-activated RAW264.7 cells had a differentiated form with accelerated spreading and forming pseudopodia (Figure 2). Next, the supernatants were subjected to quantification of nitric oxide (NO) and pro-inflammatory cytokine levels. LPS-induced NO production in RAW264.7 cells changed in a concentration-dependent manner (Figure 3A). These results showed that LPS activated inflammatory signaling pathways.

Figure 1. Chemical structures of typical eicosanoids: prostaglandin E₂ (PGE₂), leukotriene B₄ (LTB₄), 5-hydroxy-eicosatetraenoic acid (5(S)-HETE), and 5,6-epoxy-eicosatrienoic acid (5,6 EET).
were used to optimize the analytical conditions. The addition of each eicosanoid was confirmed by MS scans and were detected primarily as [M – H]⁻ ions by electropray ionization (ESI) in the negative-ion mode. Previously reported MRM transitions for eicosanoids were employed in the current study [32]. Furthermore, source conditions (source temperature (Temp), nebulizer gas (GS1), and heater gas (GS2)) and the compound parameters (collision energy (CE) and declustering potential (DP)) of the mass spectrometer were optimized using eicosanoid standards. Table 1 shows the MRM transitions (precursor m/z (Q1) > product m/z (Q3)), DP, and CE of the eicosanoid standards. Use of a UPLC system with a small-particle-size column enabled effective separation of these standards within 25 min at a flow rate of 0.5 mL/min (Figure 4).

2.2. Profiling of Eicosanoids by Ultra Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry (UPLC-MS/MS)

To profile the eicosanoid levels in RAW264.7 cells, we established a multiple-reaction monitoring (MRM) method based on UPLC-MS/MS. First, several standards, 5-hydroxy-eicosatetraenoic acid-d8 (5(S)HETE-d8), 14,15-epoxy-eicosatrienoic acid-d11 (14,15EET-d11), leukotriene B₄-d₄ (LTB₄-d₄), prostaglandin E₂-d₄ (PGE₂-d₄), prostaglandin D₂-d₄ (PGD₂-d₄), and arachidonic acid-d₈ (AA-d₈), were used to optimize the analytical conditions. The adduct ion of each eicosanoid was confirmed by MS scans and were detected primarily as [M – H]⁻ ions by electropray ionization (ESI) in the negative-ion mode. Previously reported MRM transitions for eicosanoids were employed in the current study [32]. Furthermore, source conditions (source temperature (Temp), nebulizer gas (GS1), and heater gas (GS2)) and the compound parameters (collision energy (CE) and declustering potential (DP)) of the mass spectrometer were optimized using eicosanoid standards. Table 1 shows the MRM transitions (precursor m/z (Q1) > product m/z (Q3)), DP, and CE of the eicosanoid standards. Use of a UPLC system with a small-particle-size column enabled effective separation of these standards within 25 min at a flow rate of 0.5 mL/min (Figure 4).

Table 1. Optimized multiple-reaction monitoring (MRM) conditions for eicosanoid standards.

Compounds	Abbreviation	Ion Mode	MRM Transitions	DP	CE
	Q1	Q3			
Prostaglandin E₂-d₄	PGE₂-d₄	Negative	355 275	–50	–25
Prostaglandin D₂-d₄	PGD₂-d₄	Negative	355 275	–50	–25
Leukotriene B₄-d₄	LTB₄-d₄	Negative	339 197	–70	–22
14,15 Epoxy-eicosatrienoic acid-d₁₁	14,15 EET-d₁₁	Negative	330 202	–50	–15
5-Hydroxy-eicosatetraenoic acid-d₈	5(S)-HETE-d₈	Negative	327 116	–50	–20
Arachidonic acid-d₈	AA-d₈	Negative	311 267	–80	–20

Q1, precursor m/z; Q3, product m/z; DP, Declustering potential; CE, Collision energy.
2.3. Quantification of Eicosanoids in LPS-Treated RAW264.7 Cells

The above UPLC/MS/MS-based method was used to quantify eicosanoids in RAW264.7 cells treated with 0, 1, 10, 100, and 1000 ng/mL LPS. Assays were performed in triplicate for each LPS concentration. Eicosanoids were extracted using 10% methanol. In this study, a total of 150 MRM transitions were used to profile eicosanoids. A total of 79 eicosanoids were identified in RAW264.7 cells (Table 3). To ensure reliable quantification, we used deuterated compounds, including 5(S)-HETE-d8, 14,15-EET-d11, AA-d8, LTB4-d4, and PGE2-d4, as ISs to normalize the data. The normalized data (peak areas of compounds/peak area of IS) were subjected to statistical analyses.

Table 2. Validation of the eicosanoid profiling method based on UPLC-MS/MS and the LOD and LOQ of each compound.

Eicosanoids	RT (min)	RSD (n = 6) (%)	Correlation (R²)	Linear Range (pg)	LOD (pg)	LOQ (pg)	
PGE2-d4	8.06	0.25	2.85	0.9978	30–10,000	3	
PGD2-d4	8.43	0	4.44	0.9982	30–10,000	3	
LTB4-d4	12.77	0.20	5.39	0.9969	100–10,000	60	100
14,15 EET-d11	17.70	0	6.08	0.9964	10,000–100,000	3000	10,000
5(S)-HETE-d8	17.85	0	5.01	0.9972	30–10,000	6	
AA-d8	21.53	0	7.84	0.9959	3–6000	0.1	3

UPLC-MS/MS, Ultra performance liquid chromatography coupled to tandem mass spectrometry; LOD, The limit of detection; LOQ, The limit of quantification; RT, Retention time; RSD, Relative standard deviation.
Table 3. Eicosanoids identified in RAW264.7 cells.

No.	Compound Name	Abbreviation	MRM Transitions	DP	CE	RT (min)	IS	Alteration by LPS Treatment
1	12S-hydroxy-heptadecatrienoic acid	12-HHT	279 163	−30	−30	14.3	5(S)HETE-d8	Up
2	13-hydroxy-g-octadecatrienoic acid	13-HOTre-g	293 193	−70	−20	15.5	5(S)HETE-d8	Up
3	9-hydroxy-octadecadienoic acid	9-HODE	295 171	−60	−25	16.6	5(S)HETE-d8	Up
4	13-hydroxy-octadecadienoic acid	13-HODE	295 195	−60	−20	16.3	5(S)HETE-d8	–
5	9,10-hydroxy-octadecadienoic acid	9,10-diHOME	313 201	−60	−30	14.2	5(S)HETE-d8	–
6	12,13-hydroxy-octadecadienoic acid	12,13-diHOME	313 183	−60	−30	13.5	5(S)HETE-d8	–
7	9-hydroxy-eicosapentaenoic acid	9-HEPE	317 149	−75	−20	15.7	5(S)HETE-d8	Up
8	13-hydroxy-eicosapentaenoic acid	13-HEPE	317 115	−40	−17	16.6	5(S)HETE-d8	Down
9	5-hydroxy-eicosapentaenoic acid	5-HEPE	317 219	−60	−20	15.5	5(S)HETE-d8	Up
10	15-hydroxy-eicosapentaenoic acid	15-HEPE	317 127	−70	−25	15.5	5(S)HETE-d8	–
11	11-hydroxy-eicosapentaenoic acid	11-HEPE	317 121	−70	−24	15.7	5(S)HETE-d8	Up
12	12-hydroxy-eicosapentaenoic acid	12-HEPE	317 179	−70	−20	15.9	5(S)HETE-d8	–
13	18-hydroxy-eicosapentaenoic acid	18-HEPE	317 215	−50	−15	16.7	5(S)HETE-d8	Up
14	11-hydroxy-eicosatetraenoic acid	11-HETE	319 167	−60	−20	17.1	5(S)HETE-d8	Up
15	9-hydroxy-eicosatetraenoic acid	9-HETE	319 151	−60	−20	17.0	5(S)HETE-d8	Up
16	5-hydroxy-eicosatetraenoic acid	5-HETE	319 115	−60	−20	17.9	5(S)HETE-d8	Down
17	8-hydroxy-eicosatetraenoic acid	8-HETE	319 155	−60	−20	17.3	5(S)HETE-d8	–
18	15-hydroxy-eicosatetraenoic acid	15-HETE	319 219	−50	−15	16.7	5(S)HETE-d8	Up
19	12-hydroxy-eicosatetraenoic acid	12-HETE	319 179	−60	−20	17.3	5(S)HETE-d8	Up
20	18-hydroxy-eicosatetraenoic acid	18-HETE	319 261	−80	−25	15.9	5(S)HETE-d8	–
21	17-hydroxy-eicosatetraenoic acid	17-HETE	319 247	−80	−25	15.9	5(S)HETE-d8	–
22	16-hydroxy-eicosatetraenoic acid	16-HETE	319 189	−80	−25	16.0	5(S)HETE-d8	–
23	5-hydroxy-eicosatetraenoic acid	5-HETE	321 115	−70	−19	19.1	5(S)HETE-d8	Down
24	15-hydroxy-eicosatetraenoic acid	15-HETE	321 221	−70	−21	17.4	5(S)HETE-d8	Up
25	5,6-dihydroxy-eicosatetraenoic acid	5,6-DHET	337 145	−75	−25	16.5	5(S)HETE-d8	Down
26	8,9-dihydroxy-eicosatetraenoic acid	8,9-DHET	337 127	−60	−30	15.5	5(S)HETE-d8	–
27	11,12-dihydroxy-eicosatetraenoic acid	11,12-DHET	337 167	−60	−25	15.8	5(S)HETE-d8	Up
28	8-hydroxy-docosahexaenoic acid	8-HDoHE	343 109	−70	−20	17.5	5(S)HETE-d8	–
29	7-hydroxy-docosahexaenoic acid	7-HDoHE	343 141	−60	−18	17.3	5(S)HETE-d8	–
30	4-hydroxy-docosahexaenoic acid	4-HDoHE	343 101	−70	−17	18.2	5(S)HETE-d8	–
31	10-hydroxy-docosahexaenoic acid	10-HDoHE	343 151	−60	−17	16.9	5(S)HETE-d8	–
32	11-hydroxy-docosahexaenoic acid	11-HDoHE	343 149	−60	−19	17.0	5(S)HETE-d8	Up
33	13-hydroxy-docosahexaenoic acid	13-HDoHE	343 221	−60	−17	16.7	5(S)HETE-d8	Up
34	16-hydroxy-docosahexaenoic acid	16-HDoHE	343 233	−75	−19	16.5	5(S)HETE-d8	Up
35	20-hydroxy-docosahexaenoic acid	20-HDoHE	343 241	−60	−20	16.3	5(S)HETE-d8	–
36	17-hydroxy-docosahexaenoic acid	17-HDoHE	343 245	−60	−20	16.5	5(S)HETE-d8	Up
37	14-hydroxy-docosahexaenoic acid	14-HDoHE	343 205	−60	−18	16.7	5(S)HETE-d8	–
38	Arachidonic acid	AA	303 259	−80	−20	21.6	AA-d8	Down
39	Eicosapentaenoic acid	EPA	301 257	−65	−15	20.4	AA-d8	–
Table 3. Cont.

No.	Compound Name	Abbreviation	MRM Transitions	DP	CE	RT (min)	IS	Alteration by LPS Treatment
40	Adrenic acid	ADA	Q1: 331 Q3: 287	−80	−20	22.3	AA-d8	–
41	Dihexacosaenoic acid	DHA	Q1: 327 Q3: 283	−95	−20	21.3	AA-d8	–
42	13-o xo-octadecadienoic acid	13-o xoODE	Q1: 293 Q3: 113	−70	−30	16.6	14,15 EET-d11	–
43	9,10-epoxy-octadecenoic acid	9,10-EPOME	Q1: 295 Q3: 171	−60	−25	18.4	14,15 EET-d11	–
44	12,13-epoxy-octadecenoic acid	12,13-EpOME	Q1: 295 Q3: 195	−60	−25	18.1	14,15 EET-d11	–
45	5,5-o xo-eicosatetraenoic acid	5-o xoEET	Q1: 317 Q3: 203	−40	−25	18.3	14,15 EET-d11	–
46	15-5-o xo-eicosatetraenoic acid	15-o xoEET	Q1: 317 Q3: 113	−40	−25	16.7	14,15 EET-d11	Down
47	11,12-epoxy-eicosatrienoic acid	11,12-EET	Q1: 319 Q3: 167	−60	−20	18.6	14,15 EET-d11	–
48	14,15-epoxy-eicosatrienoic acid	14,15-EET	Q1: 319 Q3: 113	−60	−20	18.8	14,15 EET-d11	Down
49	5,6-epoxy-eicosatrienoic acid	5,6-EET	Q1: 319 Q3: 191	−30	−20	18.8	14,15 EET-d11	Up
50	15-o xo-eicosadienoic acid	15-o xoDE	Q1: 321 Q3: 113	−100	−32	18.1	14,15 EET-d11	Up
51	Heparitin B1	HXB	Q1: 335 Q3: 183	−40	−20	15.5	14,15 EET-d11	–
52	19,20-epoxy-Doconapentaenoic acid	19,20-EpOPE	Q1: 343 Q3: 241	−60	−20	17.6	14,15 EET-d11	–
53	Lipoxin Bγ	LXBγ	Q1: 351 Q3: 221	−80	−25	8.4	LTBγ-d4	Up
54	20-carboxy- Leukotriene B4	20-coo LTB4	Q1: 365 Q3: 195	−60	−25	6.4	LTBγ-d4	–
55	15-deoxy-Prostaglandin A3 or 15-deoxy-Δ12,14-PGJ2	15d-PGJ2 or 15d-PGJ2	Q1: 315 Q3: 271	−50	−15	15.2	PGE-d4	Up
56	Tetranor-Prostaglandin F Metabolite	tetranor-PGF	Q1: 329 Q3: 293	−40	−25	3.1	PGE-d4	–
57	Prostaglandin A2 or Prostaglandin B2 or Prostaglandin J2	PGA2 or PGB2 or PGJ2	Q1: 333 Q3: 271	−30	−20	10.5	PGE-d4	Up
58	15-deoxy-Δ12,14-PGJ2	15d-PGJ2	Q1: 333 Q3: 271	−30	−20	12.5	PGE-d4	Up
59	Prostaglandin D3	PGE3	Q1: 349 Q3: 269	−55	−25	7.4	PGE-d4	Up
60	Prostaglandin E3	PGE3	Q1: 349 Q3: 269	−55	−25	7.1	PGE-d4	Up
61	15-keto-Prostaglandin E2	15k PGE2	Q1: 349 Q3: 113	−35	−30	8.3	PGE-d4	–
62	Prostaglandin K2	PGE2	Q1: 349 Q3: 205	−50	−30	8.3	PGE-d4	Up
63	15-keto-Prostaglandin F2	15k PGE2	Q1: 351 Q3: 113	−40	−35	8.6	PGE-d4	Up
64	Prostaglandin E2	PGE2	Q1: 351 Q3: 271	−50	−25	8.1	PGE-d4	Up
65	Prostaglandin D2	PGE2	Q1: 351 Q3: 271	−50	−25	8.4	PGE-d4	Up
66	13,14-dihydro-15-keto Prostaglandin E2	dhk PGE2	Q1: 351 Q3: 207	−40	−25	8.4	PGE-d4	Up
67	13,14-dihydro-15-keto Prostaglandin D2	dhk PGE2	Q1: 351 Q3: 207	−40	−25	9.3	PGE-d4	Up
68	Prostaglandin F2α	PGF2α	Q1: 353 Q3: 193	−50	−30	8.5	PGE-d4	Up
69	15-keto-Prostaglandin F1α	15k PGF1α	Q1: 353 Q3: 113	−50	−35	3.1	PGE-d4	–
70	11β,13,14-dihydro-15-keto Prostaglandin F2α	11β dhk PGF2α	Q1: 353 Q3: 113	−50	−35	9.3	PGE-d4	Up
71	Prostaglandin E1	PGE1	Q1: 353 Q3: 273	−55	−25	8.1	PGE-d4	Up
72	Prostaglandin D1	PGE1	Q1: 353 Q3: 273	−55	−25	8.5	PGE-d4	Up
73	Prostaglandin F1α	PGF1α	Q1: 355 Q3: 293	−75	−30	8.2	PGE-d4	Up
74	13,14-dihydro-Prostaglandin F2α	dh PGF2α	Q1: 355 Q3: 275	−40	−25	8.9	PGE-d4	–
75	Dihomo-Prostaglandin J2	Dihomo-PGJ2	Q1: 361 Q3: 299	−55	−25	13.0	PGE-d4	Up
76	Dihomo-15-deoxy-Prostaglandin J2	Dihomo-15d-PGJ2	Q1: 361 Q3: 299	−55	−25	14.4	PGE-d4	Up
77	Thromboxane B1	TXB1	Q1: 367 Q3: 169	−50	−25	6.4	PGE-d4	–
78	Dihomo-Prostaglandin F2α	Dihomo-PGF2α	Q1: 381 Q3: 221	−75	−35	10.0	PGE-d4	Up
79	Dihomo-Prostaglandin D2	Dihomo-PGD2	Q1: 379 Q3: 299	−65	−30	10.4	PGE-d4	Up
First, we applied principal component analysis (PCA) [33,34] to differentiate the RAW264.7 cells treated with various LPS concentrations. This resulted in effective separation in the corresponding PCA score plot (Figure 5). Each point represents an individual sample and the scatter of samples indicates similarities or differences in eicosanoid composition. Samples treated with 0, 1, and 10 ng/mL LPS were scattered on the lower side of the plot and those treated with 100 and 1000 ng/mL LPS were scattered on the upper side. The degree of inflammation increased with increasing LPS concentration. This demonstrated that eicosanoid contents differ depending on the degree of inflammation.

Second, changes in the levels of 79 eicosanoids can be described in a heatmap (Figure 6). This hierarchical clustering enabled effective differentiation of the five groups. Several of the 79 eicosanoid species were upregulated by treatments with 100 and 1000 ng/mL LPS. In contrast, the levels of other eicosanoids decreased with increasing LPS concentration. The levels of still other species were not correlated with LPS concentration. Therefore, up- and down-regulation of eicosanoids were associated with LPS-induced inflammation.

Figure 5. Principal component analysis (PCA) score plot of RAW264.7 cells treated with 0, 1, 10, 100, and 1000 ng/mL LPS.

Figure 6. Hierarchical clustering of 79 eicosanoid datasets from RAW264.7 cells treated with 0, 1, 10, 100, and 1000 ng/mL LPS.
3. Discussion

To evaluate altered eicosanoid metabolism in RAW264.7 cells, we focused on the pathway of eicosanoid synthesis from AA (Figure 7). Several PGs, such as PGD$_2$, PGE$_2$, and PGF$_{2\alpha}$, are synthesized from AA by cyclooxygenase (COX)-1 and COX-2. Furthermore, 15-HETE is synthesized from AA by 15-lipoxygenase (LOX). In addition, 12-LOX and 5-LOX also synthesize 12-HETE and 5-HETE, respectively, from AA. Our results showed that AA was down-regulated following treatment with high concentrations of LPS. This indicated that AA was used as the substrate to synthesize several eicosanoids. PGE$_2$, which plays a pro-inflammatory role [35,36], was upregulated following treatment with high concentrations of LPS. In contrast, two other PGs (PGE$_2$ and PGF$_{2\alpha}$) and 15-HETE were upregulated. In addition, 12-HETE was upregulated slightly and 5-HETE was down-regulated following treatments with high concentrations of LPS. Therefore, COX-1, COX-2, and 15-LOX were highly activated by LPS-induced inflammation, whereas 12-LOX was only slightly activated and 5-LOX was suppressed.

Figure 7. The eicosanoid synthesis pathway from arachidonic acid (AA) and eicosanoid levels in RAW264.7 cells as a function of LPS concentration (0, 1, 10, 100, and 1000 ng/mL). COX, cyclooxygenase; LOX, lipoxygenase; PG, prostaglandin; HETE, hydroxyeicosatetraenoic acid.

Many previous studies have reported the utility of various eicosanoid species as biomarkers for diseases and pathophysiological conditions [11,37–39]. For example, the endogenous levels of AA, PGE$_2$, and 12-HETE were significantly altered in cancerous mucosa [40]. This indicates that inflammation is correlated with tumorigenesis. Rago et al. [41] also reported the quantities of several eicosanoids in human plasma to develop biomarkers to distinguish three groups: healthy individuals, hypertensive patients, and severe atherosclerotic patients. The results showed that lower levels of 8-HETE, LTB$_4$, 9-HODE, and 13-HODE are potential biomarkers for severe heart disease. Eicosanoid metabolism may differ depending on biological samples and pathophysiological events. However, the detailed metabolism of major and minor eicosanoids in human diseases that involve inflammation has yet to be studied.

To characterize eicosanoid metabolism in inflammatory cells, comprehensive profiling of various eicosanoids is required. In this study, we evaluated changes in the levels of not only known eicosanoids related to inflammation but also other, less well-known species. The following 39 eicosanoids were upregulated following treatment with high concentrations of LPS: (1) eicosanoids derived from AA: 9-HETE, 11-HETE, 12-HETE, 15-HETE, 11,12-DHET, 12-HHT, PGA$_2$, PGD$_2$, PGE$_2$, PGF$_{2\alpha}$, dihomo PGD$_2$, dihomo PGF$_{2\alpha}$, dihomo PGJ$_2$, dihomo 15d PGJ$_2$, 15d-PGA$_2$, 15d-PGD$_2$, 11β dhk PGF$_{2\alpha}$, dhk PGD$_2$, dhk PGE$_2$, PGK$_2$, 15k PGF$_2$, and LXB$_4$; (2) eicosanoids derived from
linoleic acid: 9-HODE, and 13-HODE; (3) eicosanoids derived from eicosapentaenoic acid: 9-HEPE, 11-HEPE, 15-HEPE, 15-oxoEDF, PGD₂, and PGE₂; (4) eicosanoids derived from docohexaenoic acid: 11-HDoHE, 13-HDoHE, 16-HDoHE, and 17-HDoHE; (5) eicosanoids derived from gamma-linoleic acid: 13-HOTre-g; and (6) eicosanoids derived from dihomo-gamma-linoleic acid: 15-HETrE, PGD₁, PGE₁, and PGF₁α. The following seven eicosanoids were down-regulated following treatments with high concentrations of LPS: (1) eicosanoids derived from AA: 5-HETE, 5,6-DHET, 5,6-EET, and 11,12-EET; (2) eicosanoids derived from eicosapentaenoic acid: 5-HEPE; and (3) eicosanoids derived from dihomo-gamma-linoleic acid: 5-HETrE. Other eicosanoid species were not influenced by LPA treatment in a concentration-dependent manner.

In conclusion, a profiling method based on UPLC-MS/MS was used to characterize the effect of LPS treatment on eicosanoid metabolism in RAW264.7 cells. The degree of inflammation increased with increasing LPS concentration. A total of 79 eicosanoids were identified in RAW264.7 cells. PCA and heatmap generation were used to differentiate RAW264.7 cells treated with different concentrations of LPS. The five groups were well separated in the PCA score plot, and the heatmap was used to identify the up- or downregulation of eicosanoids according to LPS concentration. To our knowledge, this study is the first attempt to assess the levels of cellular eicosanoids altered by the degree of inflammation. A total of 39 eicosanoids were upregulated, and seven were down-regulated by LPS treatment in a concentration-dependent manner. Our novel UPLC-MS/MS technique has the potential for eicosanoid profiling and evaluating correlations between inflammation and eicosanoid metabolism. The eicosanoids up- or down-regulated by LPS can be applied as typical biomarkers for inflammation. In the future, the levels of inflammation-related eicosanoids in biological samples are needed to estimate their roles in cell function and pathophysiological events.

4. Materials and Methods

4.1. Reagents

HPLC-grade water, methanol, acetonitrile, and isopropyl alcohol were purchased from J.T. Baker (Avantor Performance Material, Inc., Center Valley, PA, USA). Acetic acid and ammonium acetate were obtained from Sigma-Aldrich (St. Louis, MO, USA). The eicosanoid standards were as follows: 14,15-EET-d₁₁, 5(S)HETE-d₈, LTB₄-d₄, PGE₂-d₄, PGD₂-d₄, and AA-d₈ (Cayman Chemical, Ann Arbor, MI, USA). A Strata-x 33-µm polymerized solid reverse-phase extraction column (cat # 8B-S100-UBJ) was purchased from Phenomenex (Torrance, CA, USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin-streptomycin, and trypsin-ethylenediaminetetraacetic acid (EDTA) were purchased from HyClone Laboratories Inc. (Logan, UT, USA). Escherichia coli LPS and Griess reagent were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

4.2. Cell Culture and LPS Treatment

Murine macrophage RAW264.7 cells (KCLB 40071; Korean Cell Line Bank, Seoul, Korea) were cultured in DMEM containing 10% heat-inactivated FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin in a humidified atmosphere with 5% CO₂ at 37 °C. Cells were seeded in a 100-mm Petri dish, cultured for 24 h, and incubated for a further 18 h after treatment with 100 µL LPS (0, 1, 10, 100, and 1000 ng/mL). Cell pellets were collected from each culture dish and the cells were enumerated using a hemocytometer. Finally, 1 × 10⁷ cells were used in the analyses.

4.3. Nitric Oxide (NO) and Enzyme-Linked Immunosorbent Assays (ELISAs) Analyses

NO concentrations in the culture supernatants were determined using a spectrophotometric assay based on the Griess reaction. A calibration curve was constructed using known concentrations (0–100 µM) of sodium nitrite. Levels of proinflammatory cytokines such as TNF-α and IL-6 were analyzed using commercial ELISA kits (BD Biosciences, San Diego, CA, USA) according to the manufacturer’s instructions.
4.4. Sample Preparation

A simple solid-phase extraction method was applied for the extraction of eicosanoids [25]. Cells were resuspended in 1 mL of 10% methanol in water (v/v) and sonicated for 5 min. Samples were then spiked with 10 ng of deuterated internal standards. Eicosanoids were extracted using Strata-x 33-µm polymerized solid reverse-phase extraction columns. Briefly, the columns were activated with 3.5 mL of 100% methanol followed by 3.5 mL of water for equilibration. After loading the samples, the columns were washed with 3.5 mL of 10% methanol in water to remove non-specific-binding metabolites. Eicosanoids were eluted into 1 mL methanol. The eluted samples were dried using a Speed-Vac concentrator (Labconco, Kansas City, MO, USA) and resuspended in 90 µL of Solvent A, as described below. The samples were stored at −80 °C until analysis.

4.5. UPLC-MS/MS Conditions

The UPLC analyses were performed on a Waters ACQUITY UPLC instrument (Waters Corp., Milford, MA, USA). The temperature of the column oven and autosampler were set at 40 and 4 °C, respectively. An Acquity BEH300 C18 column (2.1 × 150 mm ID; 1.7 µm; Waters Corp.) was used for the separation of eicosanoids. Solvent A consisted of water/acetonitrile/acetic acid (70:30:0.02; v/v/v) and solvent B of acetonitrile/isopropyl alcohol (50:50, v/v). The gradient elution program was as follows: 0–1 min, B 0%; 1–3 min, B 0%–25%; 3–11 min, B 25%–45%; 11–13 min, B 45%–60%; 13–18 min, B 60%–75%; 18–18.5 min, B 75%–90%; 18.5–20 min, B 90%; and 20–21 min, B 90%–0%. The column was equilibrated with 0% Solvent B for 4 min prior to analysis of the next sample. The total run time was 25 min for each analysis. The flow rate was 0.5 mL/min and the injection volume was 40 µL for each run.

For the MS analyses, an ABI/Sciex (Foster City, CA, USA) 5500 QTRAP hybrid, triple quadrupole, linear ion trap mass spectrometer equipped with a Turbo V ion source, together with the Analyst 1.5.1 software package (ABI/Sciex, Foster City, CA, USA), was used. Ultra-pure nitrogen gas was used as the collision gas for eicosanoids. The typical operating source conditions for the analysis of eicosanoids in negative ion ESI mode were optimized using deuterated standards as follows: curtain gas (CUR) = 10 psi, GS1 = 30 psi, GS2 = 30 psi, ionspray voltage (IS) = −4500 V, collision gas setting (CAD) = high, Temp = 525 °C, Ihe = on, entrance potential (EP) = −10 V, and collision cell exit potential (CXP) = −10 V.

4.6. Validation Study

External standard curves were established from the analysis of mixed eicosanoid standards at 16 different concentrations (0.1, 0.3, 0.6, 1, 3, 6, 10, 30, 60, 100, 300, 600, 1000, 3000, 6000, and 10,000 pg). In the case of 14,15 EET-d11, seven different concentrations (1000, 3000, 6000, 10,000, 30,000, 60,000, and 100,000 pg) were applied. The LOD, LOQ, linear ranges, and correlation (R²) values were determined by the external standard curve. The RSDs (%) of the relative RTs and the relative peak areas were estimated after six replicate analyses of 3000 pg of each standard.

4.7. Data Processing and Statistical Analysis

LC-MS data were obtained using the Analyst 1.5.1 software package (ABI/Sciex, Foster City, CA, USA). Eicosanoid peaks were assigned by comparisons of retention times with those of the internal standards. The Skyline software package (MacCoss Laboratory, University of Washington, Seattle, WA, USA) was used as an in-house database to determine the peak area of each assigned lipid from replicate raw data. The extracted peak areas of lipid peaks were normalized to the appropriate internal standard [42]. Hierarchical clustering of the quantified eicosanoids and PCA analyses was performed on the MetaboAnalyst web site [43].
Acknowledgments: This work was carried out with the support of the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01135001)” Rural Development Administration, Korea.

Author Contributions: Jae Won Lee and Hyung Don Kim conceived and designed the experiments; Hyuck Jun Mok, Seung Chul Park, Myeong Soon Ban, and Jehun Choi performed the experiments; Jae Won Lee, Hyuck Jun Mok, and Seung Chul Park analyzed the data; Dae-Young Lee, Chun Geon Park, Young-Sup Ahn, and Kwang Pyo Kim contributed the reagents/materials/analysis tools; Jae Won Lee, Hyung Don Kim, and Hyuck Jun Mok wrote the paper.

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role in the design of the study; collection, analyses, or interpretation of the data; writing of the manuscript; or decision to publish the results.

Abbreviations

LPS Lipopolysaccharide
UPLC Ultra performance liquid chromatography
MS Mass spectrometry
PG Prostaglandin
LT Leukotriene
ELISA Enzyme-linked immunosorbent assays
NO Nitric oxide
TNF-α Tumor necrosis factor-α
IL-6 Interleukin-6
MRM Multiple reaction monitoring
CE Collision energy
DP Declustering potential
RSD Relative standard deviation
LOD The limit of detection
LOQ The limit of quantification
IS Internal standard
PCA Principal component analysis
EDTA Ethylenediaminetetraacetic acid

References
1. Sellmayer, A.; Koletzko, B. Long-chain polyunsaturated fatty acids and eicosanoids in infants—Physiological and pathophysiological aspects and open questions. *Lipids* 1999, 34, 199–205. [CrossRef] [PubMed]
2. Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. *Science* 2001, 294, 1871–1875. [CrossRef] [PubMed]
3. Serhan, C.N.; Chiang, N.; van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. *Nat. Rev. Immunol.* 2008, 8, 349–361. [CrossRef] [PubMed]
4. Harizi, H.; Corcuff, J.B.; Gualde, N. Arachidonic-acid-derived eicosanoids: Roles in biology and immunopathology. *Trends Mol. Med.* 2008, 14, 461–469. [CrossRef] [PubMed]
5. Williams, K.I.; Higgs, G.A. Eicosanoids and inflammation. *J. Pathol.* 1988, 156, 101–110. [CrossRef] [PubMed]
6. Libby, P. Inflammation and cardiovascular disease mechanisms. *Am. J. Clin. Nutr.* 2006, 83, 456S–460S. [PubMed]
7. Hartge, M.M.; Unger, T.; Kintscher, U. The endothelium and vascular inflammation in diabetes. *Diabetes Vasc. Dis. Res.* 2007, 4, 84–88. [CrossRef] [PubMed]
8. Galli, S.J.; Tasi, M.; Piliponsky, A.M. The development of allergic inflammation. *Nature* 2008, 454, 445–454. [CrossRef] [PubMed]
9. Lakoski, S.G.; Cushman, M.; Siscovick, D.S.; Blumenthal, R.S.; Palmas, W.; Burke, G.; Herrington, D.M. The relationship between inflammation, obesity and risk for hypertension in the Multi-Ethnic Study of Atherosclerosis (MESA). *J. Hum. Hypertens.* 2011, 25, 73–79. [CrossRef] [PubMed]
10. Wang, D.; DuBois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [CrossRef] [PubMed]
11. Ferreiro-Verà, C.; Mata-Granados, J.M.; Priego-Capote, F.; Quesada-Gomez, J.M.; Luque de Castro, M.D. Automated targeting analysis of eicosanoid inflammation biomarkers in human serum and in the exometabolome of stem cells by SPE-LC-MS/MS. Anal. Bioanal. Chem. 2011, 399, 1093–1103. [CrossRef] [PubMed]
12. Norwood, S.; Liao, J.; Hammock, B.D.; Yang, G.Y. Epoxideicosatrienoic acids and soluble epoxide hydrolase: Potential therapeutic target for inflammation and its induced carcinogenesis. Am. J. Transl. Res. 2010, 2, 447–457. [PubMed]
13. Birney, Y.; Redmond, E.M.; Sitzmann, J.V.; Cahill, P.A. Eicosanoids in cirrhosis and portal hypertension. Prostaglandins Other Lipid Mediat. 2003, 72, 3–18. [CrossRef]
14. Harizi, H.; Grosset, C.; Gualde, N. Prostaglandin E2 Modulates dendritic cell function via EP2 and EP4 receptor subtypes. J. Leukoc. Biol. 2003, 73, 1–8. [CrossRef]
15. Miller, D.K.; Sadowski, S.; DeSouza, D.; Maycock, A.L.; Lombardo, D.L.; Young, R.N.; Hayes, E.C. Development of enzyme-linked immunosorbert assays for measurement of leukotrienes and prostaglandins. J. Immunol. Methods 1985, 81, 169–185. [CrossRef]
16. Mazid, M.A.; Nishimura, K.; Nagao, K.; Jisaka, M.; Nagaya, T.; Yokota, K. Development of enzyme-linked immunosorbert assay for prostaglandin D2 using the stable isosteric analogue as a hapten mimic and its application. Prostaglandins Other Lipid Mediat. 2007, 83, 219–224. [CrossRef] [PubMed]
17. Alber, D.; Mousard, C.; Toubin, M.; Henry, J.C.; Ottignon, Y.; Deschamps, J.P. Gas chromatographic/mass spectrometric quantitative analysis of eicosanoids in human oesophageal mucosa. Biomed. Environ. Mass Spectrom. 1988, 16, 299–304. [CrossRef] [PubMed]
18. Deems, R.; Buczynski, M.W.; Bowers-Gentry, R.; Harkewicz, R.; Dennis, E.A. Detection and quantitation of eicosanoids via high performance liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol. 2007, 432, 59–82. [PubMed]
19. Wan, G.H.; Yan, D.C.; Tseng, H.Y.; Lee, J.T.; Lin, Y.W. Using high-performance liquid chromatography with UV detector to quantify exhaled leukotriene B4 level in nonatopic adults. J. Formos. Med. Assoc. 2014, 113, 566–568. [CrossRef] [PubMed]
20. Kita, Y.; Takahashi, T.; Uozumi, N.; Shimizu, T. A multiplex quantitation method for eicosanoids and platelet-activating factor using column-switching reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Biochem. 2005, 342, 134–143. [CrossRef] [PubMed]
21. Martin-Venegas, R.; Jauregui, O.; Moreno, J.J. Liquid chromatography-tandem mass spectrometry analysis of eicosanoids and related compounds in cell models. J. Chromatogr. B 2014, 964, 41–49. [CrossRef] [PubMed]
22. Paolo, M. LC/MS/MS analysis of leukotriene B4 and other eicosanoids in exhaled breath condensate for assessing lung inflammation. J. Chromatogr. B 2009, 877, 1272–1280.
23. Kingsley, P.J.; Marnett, L.J. LC-MS-MS analysis of neutral eicosanoids. Methods Enzymol. 2007, 433, 91–112. [PubMed]
24. Wang, Y.; Armando, A.M.; Quehenberger, O.; Yan, C.; Dennis, E.A. Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J. Chromatogr. A 2014, 1359, 60–69. [CrossRef] [PubMed]
25. Kortz, L.; Dorow, J.; Cegłarek, U. Liquid chromatography-tandem mass spectrometry for the analysis of eicosanoids and related lipids in human biological matrices: A review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 1–11. [CrossRef] [PubMed]
26. Norris, P.C.; Dennis, E.A. A lipid perspective on inflammatory macrophage eicosanoid signaling. Adv. Biol. Regul. 2014, 54, 99–110. [CrossRef] [PubMed]
27. Trebino, C.E.; Eskra, J.D.; Vacht mann, T.S.; Perez, J.R.; Carty, T.J.; Audoly, L.P. Redirection of eicosanoid metabolism in mPGES-1-deficient macrophages. J. Biol. Chem. 2005, 280, 16579–16585. [CrossRef] [PubMed]
28. Bromfield, J.J.; Sheldon, I.M. Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology 2011, 152, 5029–5040. [CrossRef] [PubMed]
29. Djo, B.; Chiou, R.Y.Y.; Shee, J.J.; Liu, Y.W. Characterization of immunological activities of peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW264.7 macrophages. J. Agric. Food Chem. 2007, 55, 2376–2383. [CrossRef] [PubMed]
30. Saxena, R.K.; Vallyathan, V.; Lewis, D.M. Evidence for lipopolysaccharide-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J. Biosci. 2003, 28, 129–134. [CrossRef] [PubMed]

31. Kang, S.R.; Han, D.Y.; Park, K.I.; Park, H.S.; Cho, Y.B.; Lee, H.J.; Lee, W.S.; Ryu, C.H.; Ha, Y.L.; Lee, D.H.; et al. Suppressive effect on lipopolysaccharide-induced proinflammatory mediators by Citrus aurantium L. in macrophage RAW264.7 cells via NF-κB signal pathway. Evid. Based Complement. Altern. Med. 2011, 2011, 1–12.

32. Dumlao, D.S.; Buczynski, M.W.; Norris, P.C.; Harkewicz, R.; Dennis, E.A. High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines. Biochim. Biophys. Acta 2011, 1811, 724–736. [CrossRef] [PubMed]

33. Worley, B.; Halouska, S.; Powers, R. Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal. Biochem. 2013, 433, 102–104. [CrossRef] [PubMed]

34. Nyamundanda, G.; Brennan, L.; Gormley, I.C. Probabilistic principal component analysis for metabolomic data. BMC Bioinform. 2010, 11. [CrossRef] [PubMed]

35. Almer, G.; Teismann, P.; Stevic, Z.; Halaschek-Wiener, J.; Deecke, L.; Kostic, V.; Przedborski, S. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 2001, 58, 1277–1279. [CrossRef]

36. Kuehl, F.A.; Egan, R.W. Prostaglandins, arachidonic acid, and inflammation. Science 1980, 210, 978–984. [CrossRef] [PubMed]

37. Higashi, N.; Mita, H.; Ono, E.; Fukutomi, Y.; Yamaguchi, H.; Kajiwara, K.; Tanimoto, H.; Sekiya, K.; Akiyama, K.; Taniguchi, M. Profile of eicosanoid generation in aspirin-intolerant asthma and anaphylaxis assessed by new biomarkers. J. Allergy Clin. Immunol. 2010, 125, 1084–1091. [CrossRef] [PubMed]

38. Ecker, J. Profiling eicosanoids and phospholipids using LC-MS/MS: Principles and recent applications. J. Sep. Sci. 2012, 35, 1227–1235. [CrossRef] [PubMed]

39. Drozdovszky, O.; Barta, I.; Antus, B. Sputum eicosanoid profiling in exacerbations of chronic obstructive pulmonary disease. Respiration 2014, 87, 408–415. [CrossRef] [PubMed]

40. Mal, M.; Koh, P.K.; Cheah, P.Y.; Chan, E.C.Y. Ultra-pressure liquid chromatography/tandem mass spectrometry targeted profiling of arachidonic acid and eicosanoids in human colorectal cancer. Rapid Commun. Mass Spectrom. 2011, 25, 755–764. [CrossRef] [PubMed]

41. Rago, B.; Fu, C. Development of a high-throughput ultra performance liquid chromatography-mass spectrometry assay to profile 18 eicosanoids as exploratory biomarkers for atherosclerotic diseases. J. Chromatogr. B 2013, 936, 25–32. [CrossRef] [PubMed]

42. Han, X.; Yang, K.; Gross, R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 2012, 31, 134–178. [CrossRef] [PubMed]

43. MetaboAnalyst 3.0—A Comprehensive Tool Suite for Metabolomic Data Analysis. Available online: http://www.metaboanalyst.ca (accessed on 1 April 2016).