Shc and FAK Differentially Regulate Cell Motility and Directionality Modulated by PTEN

Jianguo Gu, Masahito Tamura, Roumen Pankov, Erik H.J. Danen, Takahisa Takino, Kazue Matsumoto, and Kenneth M. Yamada

Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4370

Abstract. Cell migration is modulated by regulatory molecules such as growth factors, oncoproteins, and the tumor suppressor PTEN. We previously described inhibition of cell migration by PTEN and restoration of motility by focal adhesion kinase (FAK) and p130 Crk-associated substrate (p130Cas). We now report a novel pathway regulating random cell motility involving Shc and mitogen-activated protein (MAP) kinase, which is downregulated by PTEN and additive to a FAK pathway regulating directional migration. Overexpression of Shc or constitutively activated MEK1 in PTEN-reconstituted U87-MG cells stimulated integrin-mediated MAP kinase activation and cell migration. Conversely, overexpression of dominant negative Shc inhibited cell migration; Akt appeared uninvolved. PTEN directly dephosphorylated Shc. The migration induced by FAK or p130Cas was directionally persistent and involved extensive organization of actin microfilaments and focal adhesions. In contrast, Shc or MEK1 induced a random type of motility associated with less actin cytoskeletal and focal adhesion organization. These results identify two distinct, additive pathways regulating cell migration that are downregulated by tumor suppressor PTEN: one involves Shc, a MAP kinase pathway, and random migration, whereas the other involves FAK, p130Cas, more extensive actin cytoskeletal organization, focal contacts, and directionally persistent cell motility. Integration of these pathways provides an intracellular mechanism for regulating the speed and the directivity of cell migration.

Key words: Shc • focal adhesion kinase • integrin • cell migration • PTEN

C.

Cell migration is important for embryonic development, wound repair, inflammation, and cancer invasion. Although an extensive literature has implicated a variety of molecules in cell motility, relatively little is known about how the process of cell migration is integrated intracellularly to control the directionality and the speed of migration. Cell motility can be regulated or modulated by growth factors and cytokines, small G proteins, oncoproteins, and the newly discovered tumor suppressor PTEN (Hynes and Lander, 1992; Stossel, 1993; Oliver et al., 1994; Hutenlocher et al., 1995; Nobes and Hall, 1995; Laffrenburger and Horwitz, 1996; Sheetz et al., 1998; Tamura et al., 1998, 1999a). PTEN is a tumor suppressor gene mutated in a wide variety of human cancers, including breast, prostate, and brain cancer (Li and Sun, 1997; Li et al., 1997; Steck et al., 1997). PTEN expression can suppress migration, invasion, tumorigenicity, and growth of human tumor cells (Furnari et al., 1997; Cheney et al., 1998; Li and Sun, 1998; Tamura et al., 1998; Whang et al., 1998).

PTEN encodes a protein tyrosine phosphatase motif. Substrates of PTEN identified to date, both in vitro and in living cells, include the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3)1 (Maehama and Dixon, 1998; Stambolic et al., 1998).

1. Abbreviations used in this paper: Csk, COOH-terminal Src kinase; ERK, extracellular signal-related kinase; FAK, focal adhesion kinase; FRNK, dominant negative FAK truncation; GFP, green fluorescent protein; HA, hemagglutinin; MAP, mitogen-activated protein; MEK, MAP or ERK kinase; p130Cas, p130 Crk-associated substrate; PIP3, phosphatidylinositol 3,4,5-trisphosphate.
The phosphoprotein focal adhesion kinase (FAK) (Tamura et al., 1998). Purified PTEN can remove a specific phosphate group from PIP$_2$, thereby inhibiting protein kinase B (also known as Akt), which in turn participates in cell growth control and inhibits the apoptosis pathway. Recent experiments using PTEN knockout mice and tumor cell lines indicate that PTEN is essential for embryonic development and sensitivity to apoptotic stimuli; the latter process has been linked to the lipid phosphatase activity of PTEN (Davies et al., 1998; Di Cristofano et al., 1998; H aas-Kog an et al., 1998; Li et al., 1998; M yers et al., 1998; S tambolic et al., 1998; S uzuki et al., 1998; W u et al., 1998).

Because PTEN also has an NH$_2$-terminal domain with extensive homology to tensin, a protein that interacts with actin filaments at focal adhesions, we have focused on analyzing roles of PTEN in integrin-mediated cell migration and signal transduction. We previously found that the G129E mutant of PTEN, which lacks lipid phosphatase activity but has protein phosphatase activity, can still inhibit integrin-mediated cell migration, spreading, focal adhesions, and tumor cell invasion, whereas a phosphatase-dead mutant (C124A) of PTEN cannot (Tamura et al., 1998; W u et al., 1998). This inhibition of PTEN was associated with effects on Shc phosphorylation (G u et al., 1998). Shc is a SH$_2$-phosphotyrosine-binding adapter protein that links tyrosine kinases to R as signaling by recruiting the Grb2-Sos complex to the plasma membrane in a tyrosine phosphorylation-dependent manner (R ozak is-A doc k et al., 1992; P ronk et al., 1994; P awson and S cott, 1997; W ary et al., 1998). PTEN can inhibit tyrosine phosphorylation of both FAK and Shc. Both proteins are implicated in integrin signaling and either one can bind Grb2 and potentially activate the Ras-MAP kinase pathway (S chlaep fer et al., 1994; W ary et al., 1996, 1998; L in et al., 1997; S chlaep fer and H unt er, 1997; G u et al., 1998; S chlaep fer et al., 1998; T amura et al., 1998). FAK can also promote integrin-mediated cell migration through the activation of p130Cas (C ary et al., 1998; S ieg et al., 1998). A general role for Shc in activation of the Ras-MAP kinase pathway is well established. Shc has been reported to be activated by only certain integrins and to regulate cell cycle progression in response to specific extracellular matrix proteins (W ary et al., 1996; M a iniero et al., 1997). Because the functions of Shc, FAK, and PTEN appear intertwined, we explored potential additional cell biological functions for Shc in regulating cell migration and the cytoskeleton.

In the present study, we examined the regulation of rates of cell motility versus directionality by the integrated effects of PTEN, Shc, and FAK. We tested for roles of Shc in cell migration and compared its effects and mechanisms with those of FAK. Shc was found to regulate integrin-mediated cell motility. Furthermore, Shc and constitutively activated MEK1 stimulated random cell migration. In contrast, FAK and p130Cas-activated directional (persistent) cell migration in PTEN-reconstituted cells. These differences in types of migration patterns correlated with differences in the extent and organization of actin cytoskeleton. These findings indicate for the first time that a Shc pathway can selectively regulate integrin-mediated random cell motility and that PTEN can suppress cell motility by distinct pathways that diverge at the level of Shc and FAK. Integration of these three counterregulatory regulatory systems provides an intracellular mechanism for regulating the speed and the directionality of cell migration.

Materials and Methods

Expression Plasmids

Green fluorescence protein (GFP) expression plasmids based on pcZ21G and pcZ21X that contained no insert, full-length wild-type PTEN, or hemagglutinin (HA)-tagged FAK were constructed as described (Tamura et al., 1998). The dominant negative truncation sequence of FAK (FRNK) was PCR amplified from a FRNK cDNA that was obtained from Dr. Hisamaru H irai (University of Tokyo, Tokyo, Japan) (Nakamoto et al., 1997). The plasmid 3D5-p130Cas functions as a dominant interfering (dominant negative) inhibitor of p130Cas because it lacks the substrate domain, which contains 15 potential tyrosine phosphorylation sites for binding of molecules such as Crk and other proteins (Nakamoto et al., 1997).

A pcDNA/F-Flag-Shc construct was generated by inserting the epitope tag Flag at the 5' end of the p52 Shc coding sequence in the expression vector pcDNA3.1(+) (Life Technologies). The L-p66-Shc cDNA that was used as a template for PCR was provided by Drs. E. M ilagli and P. G. Pellici (European Institute of Oncology, Milan, Italy). The point mutations Y239F and Y317F were introduced into the p130Cas and p130Cas-Flag were constructed by inserting the epoide tag Flag (Eastman Kodak Co.) at the 3' end of the p130Cas and 3D5-p130Cas (dominant negative p130Cas) coding sequence in the expression vectors pSRa-Cas and pSRa-Cas-Flag, which were provided by Dr. N.G. Ahn (Department of Chemistry and Biochemistry, University of Colorado) (M ansour et al., 1994). The puromycin resistance plasmid (puromycin resistance plasmid) was used for immunoblotting. Monoclonal anti-Shc as

Reagents and Antibodies

The mAb 2A7 (Upstate Biotechnology Inc.) directed against FAK was used for immunoprecipitation and a second mAb against FAK (Transduction Laboratories) was used for immunoblotting. Monoclonal anti-Shc as
well as polyclonal anti-p44/42 MAP kinase antibodies were purchased from Santa Cruz Biotechnology, mAbbs for p38[19, 20], paxillin, Csk, and phospho-ERK2 were obtained from Cell Signaling Technology. Monoclonal anti-phospho-p44/42 M AP kinase antibody was from New England Biolabs, Inc. mAb against Flag (M2) was from Eastman Kodak Co., mAb against HA was purchased from BAbCO, and mAb against GFP was from CLONTECH Laboratories. Cy3-conjugated goat antibody to mouse immunoglobulin G (Jackson ImmunoResearch Laboratories, Inc.) and Cy3-conjugated goat antibody to rabbit immunoglobulin G was from Molecular Probes. Culture medium and FBS were obtained from GIBCO BRL and Life Technologies, Inc.

Cell Culture, Transfection, and Selection

The PTEN-mutated glioblastoma cell line U-87MG was obtained from American Type Culture Collection. Cells were maintained in DME supplemented with 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin and cultured in 10% CO₂ at 37°C. Transfections were performed by electroporation (Laflamme et al., 1994). In brief, pGZ21lox (10 μg; cotransfection with 10 μg Flag-Shc, 10 μg HA-FAK, 10 μg Flag-Cas, or 3 μg constitutively activated H A-ME K 1) containing either no insert or PTEN was transfected into 1.5 × 10⁶ U-87MG cells by electroporation together with 3 μg pG A262pur. For cotransfections with F RN K or dominant negative Cas or Csk, we used 10 μg of each plasmid in this study. To increase the expression of transfected genes, 5 mM sodium butyrate was included in culture media. Cells were subcultured at a 1:3 dilution 24 h after transfection and were maintained for 2 d in 1 μg/ml puromycin-containing medium. The cells were cultured overnight in the absence of puromycin before use. This selection for transient transfec tants resulted in ~90% positive cells expressing GFP or GFP-PTEN as determined by fluorescence microscopy. For communoprecipitation experiments, U-87MG cells were cotransfected with GFP tag only, or GFP-tagged wild-type PTEN, trapping mutant D92A, or inactive phosphatase mutant C124A (20 μg each) with pH A262pur, and then selected with puromycin as described above.

Immunoprecipitation and Western Blotting

Puromycin-selected U-87MG cells expressing the various constructs were detached by treating with 0.05% trypsin-EDTA, and then washed with medium without FBS. 3 × 10⁷ cells were allowed to spread for the times indicated on 10-cm plastic tissue culture dishes coated with 10 μg/ml fibronectin. The cells were washed with ice-cold PBS and solubilized in 1% Triton X-100 lysis buffer (20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM sodium vanadate, 10 μg/ml leupeptin, 10 μg/ml apro tinin, 1 mM PM SF) for analysis of protein tyrosine phosphorylation. Trypsin was inactivated with 1 mg/ml soybean trypsin inhibitor. The sus- pended cells were washed two times in DME with 1% BSA. Cell suspensions were incubated in the same medium at 37°C for 30 min on a rotator. Thereafter, cells were counted and allowed to spread for 10 min on fibronectin-coated dishes, and then solubilized as described above.

For communoprecipitation experiments, cells were stimulated with EGF for 5 min, and then solubilized in modified CSK buffer (100 mM NaCl, 0.5% Triton X-100, 300 mM sucrose, 3 mM MgCl₂, 10 mM Pipes, pH 6.8) containing 2 mM PMSF, 50 mM sodium fluoride, 1 mM sodium orthovanadate, and protease inhibitor mixture (Boehringer Mannheim). The homogenate (RC20) were obtained from Transduction Laboratories. Protein was purified using Ni-NTA conjugated agarose (Qiagen) under denaturing conditions, and then renatured by sequential dilution and concentration in renaturat ion buffer (PBS, pH 7.0, containing 2 mM MgCl₂, 0.5 mM PM SF, 0.005% Tween 20, 10 mM DTT, protease inhibitor cocktail). Purity (>90%) was confirmed by SDS-PAGE and Coomassie blue staining. Phosphorylated F AK was obtained from immunoprecipitates using anti-FA K antibody from cell line lysates of U-87MG cells that had spread on fibronectin for 1 h. Phosphorylated Shc and activated E RK 2 were isolated as immunocomplexes from cell lysates of EG F-stimulated (10 ng/ml for 5 min) U-87MG cells transfected with Flag-Shc and HA-E RK 2, and then immunoprecipitated using either anti-Flag or anti-HA antibodies, respectively. Immunoprecipitated F AK and Shc were mixed and subjected to 8% SDS-PAGE. Immunoprecipitates of E RK 2 using anti-HA were sub- jected to 10% SDS-PAGE, and then electrotransferred to nitrocellulose. Blots were incubated with 20 μg/ml recombinant His6-PTEN in 100 mM Tris buffer, pH 7.0, containing 10 mM MgCl₂, and 10 mM DTT at 30°C for 30 min. Phosphorylation of Shc and F AK was detected with R C20 antiphosphotyrosine antibody and activated E RK 2 was detected by anti- phospho- E RK 2 antibody.

PTEN phosphatase activity against all three isoforms of endogenous Shc was also examined under nonnondenaturing conditions in vitro using immunoprecipitated Shc before SDS-PAGE. Endogenous Shc was isolated from EGF-stimulated, nontransfected U-87MG cells homogenized in lysis buffer as described above by immunoprecipitation using anti-Shc mAb 6 (4 μg/ml) and G'ama mbind G- Sepharose beads (A mersham Pharmacia Bio- tech) for 3 h at 4°C. The immunocomplexes were incubated with 0.5 μg of each recombinant PTEN in 30 μl of 50 mM Tris buffer, pH 7.0, containing 50 mM NaCl and 10 mM DTT at 30°C for 30 min. Controls were incubated without PTEN or with PTEN plus 2 mM sodium vanadate. The reaction was terminated by adding nonreducing SDS sample buffer and heating at 100°C for 5 min. A titer SDS-PAGE, immunoblotting was carried out using R C20 antiphosphotyrosine mAb.

Cell Motility

A titer puromycin selection, cells expressing various constructs were replated on 50-mm glass microwell dishes (Mattek Corp.) coated with 10 μg/ml fibronectin and cultured overnight in DME containing 10% FBS. Cell movements were monitored using a Zeiss inverted microscope. Video images were collected with a CCD camera (model 2400; Hamamatsu Photonics) at 20-mi n intervals, digitized, and stored as image stacks using M eta- morph G roup 3.5 software (U niversal Imaging Corp.). Image stacks were converted to QuickTime movies, the positions of nuclei were tracked to quantify cell motility, and their velocities were calculated in micrometers at 20-min points using the same software. Similar results with nonselected cells were obtained in preliminary experiments using GFP-tagged FAK or GFP-Shc and tracking of cell migration using time-lapse fluorescence microscopy. For testing the effects of PD98059 (a specific MEK1 inhibitor) and wortmannin (a phosphatidylinositol 3-kinase inhibitor) on cell migration, we cultured the cells in 20 μM PD98059 or 30 nM wortmannin for 2 h, and then examined cell motility for three more hours with each inhibitor.

Immunofluorescence Microscopy

Glass coverslips (12 mm; Carolina Biological Supply Company) were incu- bated with 10 μg/ml fibronectin in PBS overnight at 4°C. The coverslips were blocked with 10 mg/ml BSA for an additional 1 h at 37°C. A tter puromycin selection, cells expressing various constructs were replated on the coverslips and cultured overnight in DME containing 10% FBS. Thereafter, the cells were fixed with 4% paraformaldehyde in PBS for 20 min, and then permeabilized with 0.5% Triton X-100 in PBS for 5 min. The adhesions were visualized by incubating first with mouse antipaxi lin mAb, and then with Cy3-conjugated goat antibody to mouse immuno globulin G. Actin filaments were stained with rhodamine-phalloidin. For semiquantitative documentation of cytoskeletal organization, a square equivalent to 15 × 15 μm was overlaid randomly over each of the four quadrants of each cell. Rhodamine-phalloidin-stained actin microfila ments in each square were scored as appearing random or oriented in par allel. In this assay, the highest index for a cell occurs when all four test fields show oriented actin microfilaments, resulting in a maximal index score of 4.0.
Results
We examined for roles of Shc in regulating cell migration, because it is implicated in integrin signaling and is a prominent target of the tumor suppressor phosphatase PTEN, which is a newly identified regulator of cell migration and invasion. We find that Shc can enhance cell migration inhibited by PTEN and that Shc is a direct target for PTEN phosphatase activity. We compare this novel pathway regulating cell migration both mechanistically and biologically with the previously described FAK-p130Cas pathway (Cary et al., 1996, 1998; Tamura et al., 1998) including roles in regulating speed and the directionality of cell migration.

Shc Induces Cell Migration Inhibited by PTEN
To test for a role of Shc in cell migration modulated by PTEN, we cotransfected PTEN and puromycin resistance plasmids with Shc (or FAK as a positive control), and selected transfectedants for 2 d using puromycin. This puromycin selection procedure routinely yielded ~90% pure populations of transfectedants according to fluorescence analyses using GFP markers. The surviving selected cells were replated on glass microwell dishes coated with 10 μg/ml fibronectin and cultured in DMEM containing 10% FBS overnight. To analyze cell motility, phase-contrast video images were recorded at 20-min intervals using a CCD camera and were analyzed for velocities of cell migration using MetaMorph orp h image processing software. As shown in Fig. 1, reconstitution of PTEN in these cells lacking PTEN to protein levels similar to those in primary fibroblasts (1–2× according to immunoblotting) substantially inhibited cell movement. Migration was reduced to 39% of rates in controls without PTEN. Interestingly, coexpression of Shc with PTEN significantly rescued rates of cell motility on fibronectin, raising them from 39% of control migration rates with PTEN alone to 78% of controls after Shc coexpression with PTEN. These differences were significant at the P < 0.001 level.

Because PTEN can downmodulate the ERK type of MAP kinase signaling, we tested whether constitutively activated MEK1, a potential downstream effector of Shc, could also activate cell movement downmodulated by PTEN (Fig. 1). MEK1 coexpression was highly effective in reversing PTEN inhibition of migration (significant at the P < 0.001 level). Consistent with previous observations that FAK and p130Cas overexpression could rescue PTEN inhibition of cell migration measured by in vitro wound-healing assays (Tamura et al., 1999a), FAK and p130Cas also effectively rescued single cell movement in this system (Fig. 1). To test whether Shc and FAK stimulated cell motility via different or overlapping pathways, we performed a triple transfection experiment combining PTEN with both Shc and FAK. Cell movement was fully restored to 95% of controls by this triple transfection, as compared with 78% of controls for Shc plus PTEN double transfection and 82% for FAK plus PTEN. This simple additivity of migration suggests the existence of two parallel biological pathways originating from Shc and FAK affecting cell migration modulated by PTEN. In contrast, the Y397F mutant of FAK lacking the Src and phosphorylating

![Figure 1](https://example.com/figure1.png)

Figure 1. Shc accelerates cell movement inhibited by PTEN. U-87MG cells were transfected with various plasmids as indicated and transfectedants were selected by puromycin as described in Materials and Methods. Cell movements were monitored by time-lapse video microscopy and motility was calculated as velocity (μm/3 h) using image processing software as described in Materials and Methods. Data from at least 10 cells selected by puromycin were collected and calculated in each experiment, and data were pooled from three independent experiments (each with similar results). Error bars indicate SD for at least 30 cells per condition. One asterisk, P < 0.001 versus controls transfected with GFP-PTEN only. Two asterisks, P < 0.01 versus each of the other conditions (except for control transfected with GFP-PTEN only or without plasmid).

Dominant Negative Shc Expression Inhibits Cell Migration
A s a direct test of the role of Shc in cell migration (independent of PTEN), we examined whether expression of a dominant negative mutant of Shc to block endogenous Shc function could mimic the effects of PTEN. Transfection with dominant negative Shc (double point mutant Y239/317F) substantially reduced cell migration to 58% of controls (Fig. 2). A putative integrin-specific mutant of Shc in which only tyrosine 317 was mutated (Wary et al., 1998) produced less inhibition, suggesting a roughly 40:60% ratio of contributions of integrins versus serum growth factors to Shc stimulation of migration. Specifically, there was 16% inhibition with Y317F versus 42% inhibition with the double mutant.

In addition, transfection with FRNK or dominant negative p130Cas also substantially reduced cell migration to 55 or 54% of controls, respectively (Fig. 2). In contrast, expression of GFP (—), Shc, FAK, constitutively activated MEK1, or p130Cas alone in the absence of PTEN had little or no effect on cell migration of U-87MG cells in this system (Fig. 2). Because it had been reported previously that FAK overexpression significantly increases CHO cell migration (Cary et al., 1996), we also compared FAK overexp-
pression in CHO cells using our cell migration assay. We found that FAK overexpression did enhance cell migration of CHO cells in this system to 165% of controls transfected with GFP (Δ) alone (data not shown).

Although phosphatidylinositol 3\(^\text{kinase}\) (PI3K), an upstream regulator of PKB/Akt, has been implicated in cell movement (Keely et al., 1997; Shaw et al., 1997; Sander et al., 1998), to our knowledge there are no studies on the roles of Akt in cell movement. Because many studies indicate that PTEN inhibits cell growth and leads to apoptosis through inhibition of the PI3K-Akt pathway, an obvious question is whether PTEN-mediated inhibition of Akt affects cell migration. U-87MG cells were cotransfected with the puromycin resistance plasmid pHA262pur and either wild-type Shc, FRNK is a dominant negative FAK truncation, and P130Cas (Δ) indicates the AS-p130Cas dominant negative mutant of p130Cas lacking the substrate domain. Cell motility was examined as described in Fig. 1. Error bars indicate SD for at least 30 cells per condition. A asterisk, P < 0.001 versus controls transfected with GFP (Δ) only.

Shc Interacts Physically with PTEN

Since Shc and PTEN appeared to be involved in an early step of a specific signaling pathway regulating cell migration, they might be expected to interact physically. Shc has three isoforms of 66, 52, and 46 kD, which are derived from alternative splicing and differential translation initiation at three ATG sites (Migliaccio et al., 1997). PTEN preferentially decreases tyrosine phosphorylation of the 52-kD isoform of Shc and thereby inhibits interaction with the adapter protein Grb2, resulting in decreased activation of the Ras/Raf/MEK/ERK pathway (Gu et al., 1998). Because phosphatases bind, but rapidly cleave and dissociate from substrates, we tested for physical interactions of PTEN with Shc in living cells using a trapping mutant D92A of PTEN. The latter mutant has inactivated phosphatase activity but retains its ability to bind and even to protect a substrate (Flint et al., 1997). Cells were cotransfected with control or PTEN plasmids and a puromycin resistance plasmid, and then selected with puromycin to en-
The capacity of PTEN to dephosphorylate Shc was evaluated either by an in blot tyrosine phosphatase assay using the transfected 52-kD isoform of PTEN or its mutants (A and C) or by an in vitro phosphatase assay using immunoprecipitated (IP), native Shc isoforms of 46, 52, and 66 kDa followed by immunoblotting (IB) for phosphorytrosyl (B). For A and C, U-87MG cells were transiently transfected with Flag-tagged 52-kD isoform of wild-type Shc (WT), Y239F mutant, Y317F mutant, or HA-ERK2. 24 h after transfection, cells were stimulated by EGF for 5 min, and then immunoprecipitated (IP) with anti-Flag or anti-HA. For B, endogenous Shc was immunoprecipitated with anti-Shc mAb after nontransfected cells were stimulated by EGF for 5 min. Endogenous FAK was immunoprecipitated after stimulation by adhesion to fibronectin for 1 h as described in Materials and Methods. Incubated with PTEN alone, as described previously (Gu et al., 1998) and activated ERK2 as a negative control. Renatured recombinant PTEN reduced the tyrosine phosphorylation of the electrophoretically resolved 52-kD Shc isoform by 67% (Fig. 4A, lane 2, top) compared with controls to which we added 2 mM sodium vanadate, a general inhibitor of phosphatase activity (lane 1). This level of dephosphorylation of Shc was similar to the 70% reduction in tyrosine phosphorylation of FAK. In contrast, PTEN could not dephosphorylate activated ERK2 in vitro (Fig. 4A, lane 2, bottom); the latter negative result was consistent with a previous report using a different assay system (Myers et al., 1997).

Next, we tested whether PTEN could directly dephosphorylate Shc using two types of in vitro phosphatase assays. A n in blot phosphatase assay was used to examine the tyrosine-phosphorylated 52-kD isoform of Shc as a direct substrate of PTEN. FAK was used as a positive control (Tamura et al., 1998) and activated ERK2 as a negative control (Myers et al., 1997). Renatured recombinant PTEN reduced the tyrosine phosphorylation of the electrophoretically resolved 52-kD Shc isoform by 67% (Fig. 4A, lane 2, top) compared with controls to which we added 2 mM sodium vanadate, a general inhibitor of phosphatase activity (lane 1). This level of dephosphorylation of Shc was similar to the 70% reduction in tyrosine phosphorylation of FAK. In contrast, PTEN could not dephosphorylate activated ERK2 in vitro (Fig. 4A, lane 2, bottom); the latter negative result was consistent with a previous report using a different assay system (Myers et al., 1997).

We also tested whether PTEN could dephosphorylate native tyrosine-phosphorylated Shc in vitro. Incubation of recombinant PTEN with immunoprecipitated endogenous Shc showed that PTEN could dephosphorylate all three isoforms of Shc (Fig. 4B). PTEN appeared to dephosphorylate both of the two major tyrosine phosphorylation sites because it equally effectively removed phosphorytrosine from mutant p52Shc molecules containing only one of the two sites after point mutations to phenylalanine in the Y239F or Y317F mutants (Fig. 4C). The double point mutant Y239/317F Shc showed only very weak phosphorylation. This level of dephosphorylation of Shc was similar to the 70% reduction in tyrosine phosphorylation of FAK. In contrast, PTEN could not dephosphorylate activated ERK2 in vitro (Fig. 4A, lane 2, bottom); the latter negative result was consistent with a previous report using a different assay system (Myers et al., 1997).

The possible mechanisms of Shc regulation of PTEN-modulated adhesion were explored in more detail. We tested whether overexpression of Shc or FAK could attenuate the effects of PTEN on MAP kinase activation by fibronectin. We cotransfected GFP-PTEN and puromycin resistance plasmids with or without Shc or FAK, or with both Shc and FAK, and selected for transfectants using puromycin. The surviving selected cells were plated for 10 min on dishes coated with fibronectin, and then homogenized using lysis buffer. MAP kinase activation was assayed by direct examination of ERK1/2 phosphorylation by immunoblotting with anti-phospho-ERK1/2. MAP kinase activation was substantially suppressed in cells transfected with PTEN alone, as described previously (Gu et al.,...
Figure 5. Effects of Shc or FAK overexpression on MAP kinase activation and Shc phosphorylation inhibited by PTEN. U-87MG cells were cotransfected with pHA262pur and GFP-PTEN with or without Flag-Shc or HA-FAK. After selection using puromycin, cells were serum-restricted overnight in 0.2% FBS. Cells were detached and incubated in serum-free medium for 30 min at 37°C as described under Materials and Methods. (A) For assaying MAP kinase activation, the cells were either maintained in suspension (−) or allowed to attach to fibronectin-coated dishes for 10 min (+), which is the time of maximal activation in these cells (Gu et al., 1998). Cell lysates were subjected to 10% SDS-PAGE. A filter electroblotting, blots were analyzed using anti-phospho-ERK 1/2 antibody (top), and total quantities of ERK 1/2 were confirmed using anti-ERK 1/2 antibody (bottom). (B) After selection by puromycin, cells were either maintained in suspension (−) or allowed to attach to fibronectin-coated dishes for 30 min (+). Total Shc was immunoprecipitated with anti-Shc mAb, and then immunoblotted with antiphosphotyrosine (top) or total Shc (bottom). The level of Shc overexpression (52 kD) was increased 2.7-fold as compared with endogenous Shc (52 kD) as determined by densitometry. Ctr, control transfected with PTEN; Vec, vector control transfecant without PTEN. The lanes labeled Shc, FAK, or Shc + FAK were cotransfected with PTEN plus the indicated expression plasmids.

Figure 6. Shc overexpression does not affect FAK and p130Cas phosphorylation. Cell lysates were prepared from cells cotransfected with PTEN and the indicated plasmids (labels at top) in suspension (−) or on fibronectin substrates (+) as described in Fig. 5. Proteins were immunoprecipitated from the lysates with either FAK or p130Cas antibodies, and then immunoblotted with antiphosphotyrosine. (A) Phospho-FAK (P-FAK, top) and total FAK (T-FAK, bottom); and (B) phospho-p130Cas (top) and total p130Cas (bottom). The level of FAK overexpression in FAK transfectants was increased 2.5-fold according to densitometry.

Shc Overexpression Does Not Affect FAK and p130Cas Phosphorylation

The activation of integrins by cell binding to extracellular matrix leads to increases in both Shc and FAK phosphorylation and enhances signaling pathways. We tested for possible overlaps between the Shc and FAK pathways by examining for effects of Shc overexpression on the FAK-p130Cas activation pathway by comparing FAK and p130Cas phosphorylation levels in U-87MG cells cotransfected with PTEN and Shc or FAK. As shown in Fig. 6A, Shc overexpression did not increase FAK phosphorylation, which remained at levels similar to controls transfected with PTEN alone; in contrast, FAK overexpression clearly enhanced FAK phosphorylation as previously reported (Tamura et al., 1999a). Examining downstream p130Cas phosphorylation, FAK overexpression substantially enhanced p130Cas phosphorylation but Shc overexpression could not (Fig. 6B). These results support the hypothesis that two separate pathways originating from Shc or from FAK are downregulated by PTEN.

Shc and FAK Regulate Cell Migration via Distinct Pathways

Cell migration was measured by time-lapse video microscopy and tracking of patterns of motility. Fig. 7A, a, shows a representative set of motility records of U-87MG cells. PTEN inhibited movement of individual cells (Fig. 7A, b), which is consistent with previous results (Tamura et al., 1999a). Unexpectedly, we found that Shc and FAK each

Gu et al. Shc, FAK, and PTEN Regulate Cell Motility and Persistence
regulated cell movement in a different manner. In cells cotransfected with Shc and PTEN, the cells moved more rapidly but in random directions with a relatively limited number of runs that persisted in the same direction (Fig. 7 A, c). In contrast, in cells cotransfected with FAK and PTEN, the cells tended to continue to migrate in a particular direction, i.e., persistent movement (Fig. 7 A, d).

To quantify these differences in migration patterns, we compared the ratios of the shortest direct distance from the starting point of each recording to the end point (D), to the total distance traversed by the cell (T). For ease of comparisons, the ratio D/T was normalized to a value of 1.0 for cells transfected with PTEN alone. As shown in Fig. 7 B, cotransfection of Shc with PTEN substantially reduced the ratio to 54% compared with controls transfected with PTEN alone. However, cotransfection by PTEN with FAK significantly increased the D/T value by 1.75-fold over controls transfected with PTEN alone. Interestingly, cotransfection of both Shc and FAK with PTEN resulted in an apparent reconstitution to a ratio characteristic of nontransfected cells (Fig. 7 B): the ratio was ~1.25-fold higher than with PTEN alone, which represented restoration of the original ratio observed in control cells transfected with GFP (−) vector alone (i.e., no PTEN, Shc, or FAK transfection). The differences between the triple transfection (PTEN, Shc, and FAK) and double transfections (PTEN and Shc or PTEN and FAK) were significant at the P < 0.0005 and P < 0.001 levels, respectively. Furthermore, overexpression of constitutively activated MEK1 to enhance MAP kinase activation mim-
icked the actions of Shc and reduced the ratio as shown in Fig. 7B. In contrast, overexpression of p130Cas produced effects similar to FAK and increased the ratio. Finally, even though transfection of cells with the dominant negative Shc construct reduced the speed of cell migration (Fig. 2), it resulted in a 1.5-fold increase in the D/T ratio (data not shown). These results strongly suggest that PTEN inhibits cell movement through at least two different pathways, i.e., Shc-MAP kinase and FAK-p130Cas.

To confirm random versus directional cell motility, we used a mean square displacement assay (Gail, 1973). Net displacements (D) of cells from their location at time zero of video time-lapse microscopy was determined every 40 min and the mean square displacement (D^2) was calculated and plotted against time as shown in Fig. 7C. In pure random movement, the plot would be a straight line passing through the origin. The x-intercept for Shc was much closer to the origin than the intercept for FAK, indicating that Shc promotes relatively random movement, whereas FAK promotes considerably more directional migration.

Additional Evidence for Separate Shc and FAK Pathways

Overexpression of FAK in U-87MG cells did not significantly increase the level of tyrosine phosphorylation of Shc (Fig. 5B) even though total phosphorylated FAK was considerably increased (Fig. 6A). Dominant negative (dominant interfering) mutants of FAK, Cas, and Shc were used to test further the extent of separation of FAK and Shc pathways regulating migratory speed or directionality. U-87MG cells were cotransfected with PTEN to suppress migration, and then Shc or FAK cotransfectants were probed for specificity of each pathway using dominant negative FAK (the truncated version of FAK termed FRNK), dominant negative Cas (missing the substrate domain), or dominant negative Shc (Y239/317F). There were no significant effects of FRNK and dominant negative Cas on Shc-induced cell motility; overexpression of Shc in PTEN-cotransfected cells plus FRNK or dominant interfering Cas cotransfection produced minimal effects on cell motility (Table I). Furthermore, D/T ratios were also minimally affected compared with parallel transfectants without FRNK or dominant interfering Cas (Table I).

Conversely, dominant negative Shc cotransfected with FAK or p130Cas also resulted in minimal effects on either rates of cell motility or the increase of D/T ratios dependent on the FAK pathway (Table I). These results reveal only minimal effects of Shc on the FAK-p130Cas pathway, whereas the same dominant negative Shc construct had substantial effects on migration when both putative pathways were active (Fig. 2).

A additional evidence for differences between the FAK and Shc pathways was provided by the use of MEK and phosphatidylinositol 3-kinase inhibitors. The specific MEK inhibitor PD98059 abolished the increase in cell migration dependent on Shc (cells reconstituted with PTEN and cotransfected with Shc), producing a 96% reduction in cell motility compared with untreated controls (Table II). In clear contrast, there was no significant inhibition (10%) of cell migration by PD98059 in parallel cells cotransfected with FAK and PTEN (Table II). Furthermore, the phosphatidylinositol 3'-kinase inhibitor wortmannin substantially inhibited cell migration activated by FAK overexpression, producing a 65% reduction in rates of FAK-induced cell motility (Table II). A very recent report describes a similar inhibition by phosphatidylinositol 3'-kinase inhibitors of migration enhanced by FAK overexpression in CHO cells (80% inhibition; Reiske et al., 1999). In contrast, wortmannin had much less effect on our Shc-overexpressing cells, with a modest 23% decrease in the increased migration because of Shc.

Since a FAK-independent Src family kinase pathway has been described for the tyrosine phosphorylation of Shc (Sieg et al., 1998; Wary et al., 1998), we examined for possible effects of Src-related kinase activity on migration in these cells. Inhibition of function of Src kinases by the use of Csk overexpression had minimal inhibitory effects on the FAK pathway (FAK-overexpressing cells), with migration rates of 117 ± 24 μm/min in controls compared with 105 ± 25 μm/min in Csk-overexpressing cells; there were no detectable effects of Csk overexpression on Shc-enhanced motility. In these experiments, Csk transfection resulted in a 7-fold increase in Csk protein by Western blotting and a 2.5-fold enhancement of Src tyrosine phosphorylation, but no evidence for significant roles of Src in regulating migration of these cells could be demonstrated.

Additional Evidence for Separate Shc and FAK Pathways

Overexpression of FAK in U-87MG cells did not significantly increase the level of tyrosine phosphorylation of Shc (Fig. 5B) even though total phosphorylated FAK was considerably increased (Fig. 6A). Dominant negative (dominant interfering) mutants of FAK, Cas, and Shc were used to test further the extent of separation of FAK and Shc pathways regulating migratory speed or directionality. U-87MG cells were cotransfected with PTEN to suppress migration, and then Shc or FAK cotransfectants were probed for specificity of each pathway using dominant negative FAK (the truncated version of FAK termed FRNK), dominant negative Cas (missing the substrate domain), or dominant negative Shc (Y239/317F). There were no significant effects of FRNK and dominant negative Cas on Shc-promoted cell motility: overexpression of Shc in PTEN-cotransfected cells plus FRNK or dominant interfering Cas cotransfection produced minimal effects on cell motility (Table I). Furthermore, D/T ratios were also minimally affected compared with parallel transfectants without FRNK or dominant interfering Cas (Table I).

Conversely, dominant negative Shc cotransfected with FAK or p130Cas also resulted in minimal effects on either rates of cell motility or the increase of D/T ratios dependent on the FAK pathway (Table I). These results reveal only minimal effects of Shc on the FAK-p130Cas pathway, whereas the same dominant negative Shc construct had substantial effects on migration when both putative pathways were active (Fig. 2).

A additional evidence for differences between the FAK and Shc pathways was provided by the use of MEK and phosphatidylinositol 3-kinase inhibitors. The specific MEK inhibitor PD98059 abolished the increase in cell migration dependent on Shc (cells reconstituted with PTEN and cotransfected with Shc), producing a 96% reduction in cell motility compared with untreated controls (Table II). In clear contrast, there was no significant inhibition (10%) of cell migration by PD98059 in parallel cells cotransfected with FAK and PTEN (Table II). Furthermore, the phosphatidylinositol 3'-kinase inhibitor wortmannin substantially inhibited cell migration activated by FAK overexpression, producing a 65% reduction in rates of FAK-induced cell motility (Table II). A very recent report describes a similar inhibition by phosphatidylinositol 3'-kinase inhibitors of migration enhanced by FAK overexpression in CHO cells (80% inhibition; Reiske et al., 1999). In contrast, wortmannin had much less effect on our Shc-overexpressing cells, with a modest 23% decrease in the increased migration because of Shc.

Since a FAK-independent Src family kinase pathway has been described for the tyrosine phosphorylation of Shc (Sieg et al., 1998; Wary et al., 1998), we examined for possible effects of Src-related kinase activity on migration in these cells. Inhibition of function of Src kinases by the use of Csk overexpression had minimal inhibitory effects on the FAK pathway (FAK-overexpressing cells), with migration rates of 117 ± 24 μm/min in controls compared with 105 ± 25 μm/min in Csk-overexpressing cells; there were no detectable effects of Csk overexpression on Shc-enhanced motility. In these experiments, Csk transfection resulted in a 7-fold increase in Csk protein by Western blotting and a 2.5-fold enhancement of Src tyrosine phosphorylation, but no evidence for significant roles of Src in regulating migration of these cells could be demonstrated.

Table I. Minimal Cross-inhibition by Dominant Negative Inhibitors

Transfectant	Additional plasmid	Migration rate ± SD	Directionality	D/T ratio
PTEN + She	None	110 ± 24	0.57 ± 0.20	
PTEN + She	FRNK	101 ± 20	0.53 ± 0.25	
PTEN + She	Dn-Cas	105 ± 18	0.50 ± 0.20	
PTEN + FAK	None	117 ± 24	1.72 ± 0.14	
PTEN + FAK	Dn-Shc	104 ± 21	1.81 ± 0.16	
PTEN + Cas	None	118 ± 23	1.65 ± 0.17	
PTEN + Cas	Dn-Shc	108 ± 18	1.82 ± 0.18	

U-87MG cells were cotransfected with PTEN plus the indicated plasmids, and then analyzed by video time-lapse microscopy and image analysis for rates of cell migration and directionality as described in Materials and Methods. Dn-Cas, dominant negative Cas plasmid ΔSD-p130Cas lacking the substrate domain. Dn-Shc, dominant negative Shc plasmid Y239/317F with a double mutation in tyrosine phosphorylation sites. These dominant interfering plasmids substantially inhibited migration in cells in which the FAK and Shc pathways were not inhibited by PTEN (see Fig. 2).

Table II. Effects of Inhibitors on Shc- or FAK-induced Migration

Transfectant	Inhibitor	Migration rate ± SD	Increase vs. PTEN	Percentage inhibition
		μm/min	μm/min	
PTEN	None	54 ± 17	—	—
PTEN + She	None	110 ± 24	56	0%
PTEN + She	PD98059	56 ± 18	2	96%
PTEN + She	Wortmannin	99 ± 18	43	23%
PTEN + FAK	None	117 ± 24	63	0%
PTEN + FAK	PD98059	111 ± 15	57	10%
PTEN + FAK	Wortmannin	76 ± 65	62	65%

U-87MG cells, transiently transfected with the indicated expression plasmids, were treated with inhibitors or left untreated, and then were analyzed for rates of cell migration as described in Materials and Methods. The column entitled Increase shows net increases in the migration rate compared to the PTEN-reconstituted control.
FRNK and Dominant Negative p130Cas Inhibit the Directionally Persistent Component of Movement Remaining in the Absence of Serum

To evaluate the contribution of growth factor stimulation to the Shc pathway stimulated by integrin ligation (as in Fig. 5B), we measured cell movements in the absence of FBS. Cell migration rates were reduced to ~64% of controls in the presence of serum and the directionality of migration of the cells became markedly persistent in serum-free medium, as shown in Fig. 8A (Ctr). Consistent with the prediction that this residual directional component of migration would be FAK-dependent, transfection by the FAK dominant negative construct termed FRNK or by dominant negative Cas resulted in inhibition of migration (Fig. 8, A and B). FRNK and Dn-Cas (Dn-p130Cas). The differences between transfection with vector alone (Ctr) and transfection with FRNK or dominant negative Cas were significant at the P < 0.0001 level. Moreover, overexpression of FRNK or dominant negative Cas also substantially reduced the directionality of migration, as indicated by a decrease in D/T ratios, which was also significant at the P < 0.0001 level.

In contrast, transfection with dominant negative Shc had only minor effects on this FAK-dependent form of cell motility (Figs. 8, A–C). Taken together, these findings in Figs. 5 and 8 suggest that the Shc pathway in U-87MG cells involves both integrins and growth factors for Shc phosphorylation and its downstream effects, and that there are at least two distinct pathways regulating cell motility. These findings appear to be consistent with a previous report that Ras signaling (presumably including MAP kinase signaling) is involved in cell migration stimulated by PDGF (Kundra et al., 1994), yet cells expressing dominant negative Ras were still able to migrate on fibronectin (Kundra et al., 1995), which could have been due to involvement of the FAK-p130Cas pathway.

Shc and FAK Overexpression Have Different Effects on Actin Cytoskeleton and Focal Adhesions

Our previous studies had indicated that PTEN affects cell migration and invasion on fibronectin and had shown that FAK or p130Cas could rescue these functions (Tamura et al., 1999a). Moreover, transfection of constitutively activated MEK1 to induce MAP kinase activity could partially res-
cue cell spreading impaired by PTEN (Gu et al., 1998). In this study, Shc was found to enhance PTEN-downmodulated actin cytoskeletal organization (Fig. 9 A, P + Shc), but the actin microfilament bundles tended to be shorter than in control cells transfected with GFP tag only (Fig. 9 A, Ctr) with interrupted patterns of rhodamine-phalloidin staining. These Shc-transfected cells showed increased numbers of focal adhesions (Fig. 9 B, P + Shc), but not to the extent seen in control cells (Fig. 9 B, Ctr). Activated MEK1 produced similar patterns of partially enhanced actin microfilament organization (Fig. 9 A, P + Mek) that were not organized to the level of control cells. As reported above, both transfectants showed enhanced random motility.

In contrast, FAK-cotransfected cells showed relatively complete restoration of extensive and oriented patterns of actin microfilament bundles (Fig. 9 A, P + FAK) with extensive focal adhesions (Fig. 9 B, P + FAK) as detected by antipaxillin staining. Cells transfected with p130Cas (Cas), which also showed enhanced directional migration, also showed strongly organized actin cytoskeleton (Fig. 9 A, P + Cas) as well as well organized focal contacts (Fig. 9 B, P + Cas). These results establish distinct effects of Shc and FAK pathways on the actin cytoskeleton and focal adhesions, both of which are downmodulated by PTEN.

To quantify these apparent differences in morphological effects of signaling by FAK and Shc pathways, we applied a semi-quantitative morphometric measure for actin mi-

Figure 9. Differential effects of Shc and FAK pathways on enhancing actin cytoskeletal organization and focal contact formation downmodulated by PTEN. U-87MG cells were transfected with various constructs and selected as described above. They were allowed to spread on fibronectin-coated cover-slips overnight in complete culture medium, and then stained with rhodamine-phalloidin to detect F-actin (A) and with antipaxillin antibody to detect focal contacts (B). Ctr, cells transfected with GFP (−) only; P, cells transfected with GFP-PTEN only; in the other frames, cells were cotransfected with GFP-PTEN plus each of the indicated plasmids; Mek, constitutively activated MEK1; and Cas, p130Cas. Bar, 20 μm.
Discussion

Cell migration is a complex process that can be regulated by multiple mechanisms, including by the newly discovered tumor suppressor protein PTEN (Tamura et al., 1998, 1999a). This phosphatase has both phosphoinositide lipid and phosphoprotein substrates (Mehanna and Dixon, 1998; Myers et al., 1998; Tamura et al., 1998). In this study, we have explored the integration of the regulation of cell migration by PTEN, Shc, and FAK pathways. We examined the intriguing possibility that the effects of PTEN on Shc phosphorylation levels and on cell migration might be causally related, e.g., through a previously undescribed Shc-initiated pathway for regulation of the speed or directionality components of cell migration.

Using transfection reconstitution, dominant negative, and biochemical approaches, we have found the following. (a) We have established a mechanism for our previous observation that PTEN transfection reduces the tyrosine phosphorylation of Shc and inhibits MAP kinase activation by demonstrating that PTEN can interact with Shc and can directly dephosphorylate it in vitro; we also show here that Shc overexpression can rescue PTEN-inhibited MAP kinase activation in U-87MG cells. (b) We have found that Shc overexpression can stimulate integrin-mediated cell migration and spreading downregulated by PTEN. (c) Conversely, we have demonstrated that cell migration is inhibited by a dominant negative mutant of Shc partially mimicking the action of PTEN. We also established that PTEN, Shc, and FAK regulate cell movement through two different mechanisms: one is a pathway from Shc through the MAP kinase pathway leading to the stimulation of random cell motility, and the other is from FAK through p130Cas leading to stimulation of directionally persistent cell migration. (e) We also have demonstrated that inhibition of the Shc component of migration results in slower but more directionally persistent migration because of retention of the FAK component of migration. (f) We have established that the increased random motility accompanying Shc and activated MEK1 action is associated with only partial cytoskeletal and focal contact enhancement, whereas the directional migration induced by FAK and p130Cas correlates with more extensive, oriented actin microfilament bundle (stress fiber) organization and focal contact formation. (g) Finally, we have demonstrated that the Shc/MEK1 pathway can enhance MAP kinase activation without affecting FAK kinase phosphorylation, whereas moderate overexpression of FAK restores levels of tyrosine-phosphorylated FAK and p130Cas and stimulates migration with minimal effects on MAP kinase activation. These studies define two distinct pathways for regulating speed and directionality of cell migration that counterbalance and interdigitate with actions of the PTEN tumor suppressor protein.

The adapter protein Shc has been linked to specific integrin-dependent signaling pathways (Wary et al., 1996, 1998). Overexpression of Shc also reportedly enhances cell migration and growth in response to hepatocyte growth factor (Pelicci et al., 1995). Our studies provide, to our knowledge, the first report that Shc upregulates random cell migration mediated by integrins and serum factors in a process that opposes its downregulation by PTEN. Supporting this concept, overexpression of a dominant negative form of Shc, doubly mutated by changing tyrosines 239 and 317 to phenylalanine, substantially inhibits the random component of cell motility on fibronectin. A putative integrin-specific mutant in which only tyrosine 317 was mutated suggested that the ratio of integrin versus growth factor contribution to migration was roughly 40:60%. We previously reported that PTEN inhibits integrin-mediated MAP kinase activation in this glioma cell line and find in this study that overexpression of Shc can rescue integrin-stimulated MAP kinase activation. Moreover, we find that transfection of constitutively activated MEK1 to activate MAP kinase can mimic the effects of Shc on random cell movement on fibronectin. In addition, the MEK inhibitor PD98059 substantially inhibits Shc-stimulated...
Shc specificity for stimulating phosphorylation of FAK analyses in this cell line of the specificity (a) of Shc versus sive future analysis. As summarized above, biochemical
1999). However, determining the mechanisms of phos-
ematins using Wortmannin (this paper and Reiske et al.,
phatidylinositol 3
regulate migration using a pathway dependent on phos-
stream p130Cas upregulates directional motility. FAK may
downstream-activated MAP kinase (ERK) upregulate
roles in modulating rates and directionality of migration
strength of cell adhesion can control rates of motility
Cell migration can be viewed as a process regulated by
counterbalanced signals that can control rates of motility
by several mechanisms. Strength of cell adhesion is one
mechanism, where suboptimal, optimal, or inhibitory de-
grees of cell adhesion can regulate speed of locomotion
(Duband et al., 1993; Kaasaka et al., 1995; Gilmore and Romer,
1996; Huttenlocher et al., 1996; Palecek et al., 1997). In fact,
extensive formation of focal adhesions has been linked to the slowing of cell migration
(Couchman and Rees, 1979; Duband et al., 1988; D’unlevy
and Couchman, 1993; Ilic et al., 1995). In addition, however,
cytoskeletal systems are likely to play important
roles in modulating rates and directionality of migration
(Zigmond, 1993; Oliver et al., 1994; Huttenlocher et al.,
1995). The distinct pathways involving Shc–MAP kinase
versus FAK–p130Cas defined in this paper produce distinct
effects on the actin cytoskeleton and focal contact organi-
zation. A through both pathways produce cell spreading
and increased organization of the actin-containing cyto-
skeleton downregulated by PTEN, Shc and MEK 1 induced
less actin organization compared with the more strongly
organized and oriented actin bundles characteristic of
FAK and p130Cas action. This enhanced orientation of the
cytoskeleton is consistent with the maintenance of direc-
tional migration, although other mechanisms cannot be
entirely excluded. It is noteworthy that this extent of focal

Figure 11. Model depicting proposed roles of PTEN, Shc, and FAK in integrin-
and growth factor-mediated cell motility. Integrin and growth factors can collaboratively or separately
stimulate the Shc–MAP kinase pathway. Integrin receptor en-
gagement with fibronectin stimulates both FAK and Shc phos-
phorylation, and each initiates a distinct downstream signaling
pathway activating either persistent movement or random mi-
groin; these pathways are additive. PTEN inhibits integrin-
mediated FAK and Shc phosphorylation by direct dephosphor-
ylation, thereby inhibiting cell migration and spreading. This
model depicts at least two pathways for downstream regulation
of cell migration in U–87MG cells: one involving Shc to a MAP
kinase pathway producing random motility and the other a
FAK to p130Cas pathway involving directional migration. For
activation of the Shc random motility pathway, the contribu-
tions of integrins compared with serum growth factors were es-
timated to be roughly 40 versus 60% in these cells, as deter-
mained by a putative integrin-specific Shc mutant. It should also
be noted, however, that higher levels of FAK overexpression

can activate FAK and affect the Shc pathway in 293 cells as described
by Gu et al., 1997, and this study; dashed lines). Summation of these regulatory pro cesses controls the speed and the directionality of cell migration.
contact formation and actin organization was obviously not sufficiently high to retard cell migration, which was accelerated. Taken together, these results suggest that an intermediate level of focal adhesion formation and actin microfilament organization are optimal for the highest velocity and directionality of migration of these cells and that speed and directionality of migration are separable.

Besides the phosphoproteins examined in this study, PTEN has a major lipid substrate that is important biologically. PTEN directly dephosphorylates PIP$_3$, which is produced by phosphatidylinositol 3'-kinase and can activate the PKB/Akt pathway. PTEN is thought to regulate cell growth and cell death by apoptosis and/or anoikis via this pathway (Davies et al., 1998; Haa-s-Kogan et al., 1998; Li et al., 1998; Myers et al., 1998; Stambolic et al., 1998; Suzuki et al., 1999b; Wu et al., 1998). Nevertheless, the intertwined regulatory effects of Shc, PTEN, and FAK on migration that we describe do not appear to involve this PKB/Akt pathway. Even though phosphatidylinositol 3'-kinase is known to have regulatory effects on cell migration (Keeley et al., 1997; Shaw et al., 1997; Sander et al., 1998), recent studies indicate that phosphatidylinositol 3'-kinase induction of scattering acts through effectors other than PKB/Akt and requires at least basal MAP kinase function (Khwaja et al., 1998). In this study, inhibition of phosphatidylinositol 3'-kinase by Wortmannin also reduced the rate of cell migration of U-87MG cells, but it targeted the FAK pathway selectively. We have been unable to find any reports of PKB/Akt overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell Sci. 109:1787–1794.

Cary, L.A., D.C. Han, T.R. Poite, S.K. Hanks, and J.L. Guan. 1996. Identification of p130c as a mediator of focal adhesion kinase-promoted cell migration. J. Cell Biol. 140:211–220.

Cheney, I.W., D.E. Johnson, M.T. Vailiacourt, J. A. vanzini, A. Morimoto, G.W. Demers, K.N. Willis, P.W. Shabram, J.B. Bolen, S.T. Vattkian, and R. Bookstein. 1998. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated M A C/P T E N gene transfer. Cancer Res. 58:2351–2354.

Coffey, P.J., N. Gejisen, L. M. Rabiet, R.C. Schweizer, T. Makoe, J.A. Raaaijmakers, J.W. Lammers, and L. Koenderman. 1998. Comparison of the roles of mitogen-activated protein kinase kinase and PAK in cell migration. Biochem. J. 329:121–130.

Cong, L.L., N. Chen, Y. Li, L. Zhou, M.A. M.Gibson, S.J. Taylor, and M. J. Quon. 1997. Physiological role of a K in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol. Endocrinol. 11:1881–1890.

Couchman, J.R., and D.A. Rees. 1979. The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J. Cell Sci. 39:149–165.

Davies, M.A., Y. Lu, T. Sano, X. Fang, P. Tang, R. LaPushin, D. Koul, R. Bookstein, D. Stokoe, W.K. Yung, G.B. Mills, and P.A. Steck. 1998. A de novo transgene expression of M A C/P T E N in human glioma cells inhibits its Akt activation and induces anoikis. Cancer Res. 58:5285–5292.

Di Cristofano, A., B. Pesce, A. Cordon-Cardo, and P. P. Pandolfi. 1998. PTEN is essential for embryonic development and tumour suppression in mice. Nat. Genet. 19:348–355.

Dubard, J.L., G.H. Nuckolls, A. Ishihara, T. Hasegawa, K.M. Y. amada, J.P. Thierie, and K. J. jacobsen. 1998. Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J. Cell Biol. 107:1385–1396.

Dubard, J.L., C. Dufour, S. S. Y. amada, K.M. Y. amada, and J.P. Thierie. 1991. Neural crest cell locomotion induced by antibodies to integrins. A tool for studying the roles of substrate molecular activity and density in migration. J. Cell Sci. 98:517–532.

Dunly, J.R., and J.R. Couchman. 1993. Controlled induction of focal adhesion disassembly and migration in primary fibroblasts. J. Cell Sci. 105:489–500.

Flint, A.J., T. Tigonis, D. Barford, and N.K. Tomks. 1997. Development of substrates-trapping mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA. 94:1680–1685.

Furnari, F.B., H. Lin, H.S. Huang, and W.K. Caveness. 1997. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc. Natl. Acad. Sci. USA. 94:12479–12484.

Gail, M. 1973. Time lapse studies on the motility of fibroblasts in tissue culture. In Ciba Foundation Symposium 14: Locomotion of Tissue Cells. Elsevier Science Publishing Co., Inc., North Holland, Amsterdam. 287–302.

Gilmore, A.P., and L.H. Romer. 1996. Inhibition of focal adhesion kinase (FAK) signaling in fibroblasts decreases cell motility and proliferation. J. Biol. Chem. 271:1209–1214.

Gu, J.M., T. Tamura, and K.M. Y. amada. 1998. Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase pathway in cell migration. J. Biol. Chem. 273:12828–12832.

Haa-s-Kogan, D.N., T. Shaley, M. Wong, G. Mills, G. Y. ount, and D. Stokoe. 1998. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr. Biol. 8:1195–1198.

Huttenlocher, A.R., R.R. Sandborg, and A.F. Horwitz. 1995. A deficiency in cell migration. Curr. Opin. Cell Biol. 7:697–706.

Huttenlocher, A.R., A.M. Ginsberg, and A.F. Horwitz. 1996. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J. Cell Biol. 134:1551–1562.

Hynes, R.O., and A.D. Lander. 1992. Contact and adhesive specificities in the differentiation of the nervous system. Development 110:348–355.

Keeley, P.J., J.K. Westwick, J. C. Der, and L.V. Parise. 1997. Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol. Endocrinol. 11:1881–1890.

Kundra, V., B. Anand-Apte, L.A. Feig, and B.R. Zetter. 1995. The chemotactic response to PDGF-GF: evidence of a role for Ras. J. Cell Biol. 130:735–721.
Pelicci, G., S. Giordano, Z. Zhen, A.E. Salcini, L. Lanfrancone, A. Bardelli, G. Pawson, T., and J.D. Scott. 1997. Signaling through scaffold, anchoring, and

Rigot, V., L. Lehmann, F. Aindre, N. Daemi, J. Marvahli, and J. Luis. 1998. In

tegnin ligation and PKC activation are required for migration of colon carci

89:73-734.

2011:1331-1357.

Rigot, V., L. Lehmann, F. Aindre, N. Daemi, J. Marvahli, and J. Luis. 1998. In

tegnin ligation and PKC activation are required for migration of colon carci

89:73-734.

2011:1331-1357.

Rigot, V., L. Lehmann, F. Aindre, N. Daemi, J. Marvahli, and J. Luis. 1998. In

Lacalle, R.A., D. Pulido, J. Vara, M. Zalacain, and A. Jimenez. 1989. Molecular

for activation of p230 src. Nature. 351:69-72.

Nakamoto, T., R. Sakai, H. Honda, S. Ogawa, H. Ueno, T. Suzuki, S. Aizawa, Nada, S., M. Okada, A. MacAuley, J.A. Cooper, and H. Nakagawa. 1991. Clon-

2011:1331-1357.

Rigot, V., L. Lehmann, F. Aindre, N. Daemi, J. Marvahli, and J. Luis. 1998. In

Lacalle, R.A., D. Pulido, J. Vara, M. Zalacain, and A. Jimenez. 1989. Molecular

for activation of p230 src. Nature. 351:69-72.

Nakamoto, T., R. Sakai, H. Honda, S. Ogawa, H. Ueno, T. Suzuki, S. Aizawa, Nada, S., M. Okada, A. MacAuley, J.A. Cooper, and H. Nakagawa. 1991. Clon-

2011:1331-1357.

Rigot, V., L. Lehmann, F. Aindre, N. Daemi, J. Marvahli, and J. Luis. 1998. In

Lacalle, R.A., D. Pulido, J. Vara, M. Zalacain, and A. Jimenez. 1989. Molecular

for activation of p230 src. Nature. 351:69-72.

Nakamoto, T., R. Sakai, H. Honda, S. Ogawa, H. Ueno, T. Suzuki, S. Aizawa, Nada, S., M. Okada, A. MacAuley, J.A. Cooper, and H. Nakagawa. 1991. Clon-

2011:1331-1357.

Rigot, V., L. Lehmann, F. Aindre, N. Daemi, J. Marvahli, and J. Luis. 1998. In

Lacalle, R.A., D. Pulido, J. Vara, M. Zalacain, and A. Jimenez. 1989. Molecular

for activation of p230 src. Nature. 351:69-72.

Nakamoto, T., R. Sakai, H. Honda, S. Ogawa, H. Ueno, T. Suzuki, S. Aizawa, Nada, S., M. Okada, A. MacAuley, J.A. Cooper, and H. Nakagawa. 1991. Clon-

2011:1331-1357.