Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease

Zhen Zheng1, Meilan Zhang1, Yongheng Wang2, Rongsheng Ma3, Chenyun Guo1, Liubin Feng1, Jihui Wu3, Hongwei Yao1 & Donghai Lin1

Prion diseases are caused by the propagation of misfolded cellular prion proteins (PrPs). A completely prion disease-resistant genotype, V127M129, has been identified in Papua New Guinea and verified in transgenic mice. To disclose the structural basis of the disease-resistant effect of the G127V mutant, we determined and compared the structural and dynamic features of the G127V-mutated human PrP (residues 91–231) and the wild-type PrP in solution. HuPrP(G127V) contains α1, α2 and α3 helices and a stretch-strand (SS) pattern comprising residues Tyr128-Gly131 (SS1) and Val161-Arg164 (SS2), with extending atomic distances between the SS1 and SS2 strands, and a structural rearrangement of the Tyr128 side chain due to steric hindrance of the larger hydrophobic side chain of Val127. The extended α1 helix gets closer to the α2 and α3 helices. NMR dynamics analysis revealed that Tyr128, Gly131 and Tyr163 underwent significant conformational exchanges. Molecular dynamics simulations suggest that HuPrP(G127V) prevents the formation of stable β-sheets and dimers. Unique structural and dynamic features potentially inhibit the conformational conversion of the G127V mutant. This work is beneficial for understanding the molecular mechanisms underlying the complete resistance of the G127V mutant to prion disease and for developing new therapeutics for prion disease.

Prion diseases, the notorious transmissible spongiform encephalopathies (TSEs), are infectious and fatal central nervous system (CNS) degenerative diseases in some mammals1. In humans, prion diseases manifest as a variety of clinical symptoms: Creutzfeldt-Jakob diseases (CJD, including sporadic, iatrogenic, variant, and familial/genetic CJD)2–5, Gerstmann-Sträussler-Scheinker syndrome (GSS)2,6, fatal familial insomnia (FFI)2,5,7 and Kuru2,8,9. These diseases are caused by the propagation of the insoluble scrapie isoform of the prion protein (PrPSc), a β-sheet-rich form, which is originated from the normal cellular prion protein (PrPc) through conformational conversion and is resistant to proteinases2,10,11. The α-helical PrPc is encoded by the endogenous prion protein gene (PRNP)1 and acts as an agonistic ligand of the Adgrg612. To date, more than 50 pathogenic point mutations of PRNP have been associated with a variety of prion diseases13–15. Fortunately, two frail sCJD-resistant mutants, V209M13,16 and E219K17–19, have been clinically observed, and their disease-resistance mechanisms have been addressed. Furthermore, a completely prion disease-resistant mutant G127V has also been identified in the bodies of Papua New Guinea’s Fore tribe and verified in transgenic mice studies20,21. However, the underlying disease-resistance mechanisms remain elusive.

Protein structure and dynamics primarily decide function. Structural biology is used extensively to exploit the molecular mechanisms of protein function. Previous work has shown that wild-type (WT) human prion protein (HuPrP) contains an N-terminal random coil (residues 23–124) and a C-terminal globular domain (residues 125–231)22 associated with many pathogenic and protective mutations13–15. The three-dimensional (3D) structure of the C-terminal domain in the WT protein is comprised of three α-helices (α1: 144–154, α2: 173–194, α3: 200–228), two short β-strands (β1: 128–131, β2: 161–164) and a disulfide bridge (Cys179-Cys214) even...

1MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China. 2School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China. 3School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China. Correspondence and requests for materials should be addressed to D.L. (email: dhlin@xmu.edu.cn)
though under different pH conditions. Almost all the HuPrP mutants adopt similar 3D structures to the WT protein. Previous 15N backbone dynamic studies of WT HuPrP show that the rigid globular C-terminal core has lower 15N longitudinal relaxation rates, higher 15N transverse relaxation rates, and much more positive \(^{1}H\)-15N heteronuclear steady-state nuclear Overhauser effects (NOEs) than the N-terminal random coil. Conformational exchanges on the \(\mu\)-ms timescale were exhibited by the residues at or near the short anti-parallel \(\beta\)-sheet but were too small to be detected by Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments. Due to the dramatic flexibility of the long N-terminal coil of the prion protein, the conventional model-free approach cannot be used to analyse NMR dynamics data.

Based on the crystal structure of the WT HuPrP, 3D domain swapping with an intermolecular \(\beta\)-sheet may be an important step in the conversion of PrP\(^{\alpha} \) to PrP\(^{\beta} \) propagation. A series of \(\beta\)-strands can form steric zippers with different packing geometries depending on the presence of either the Met129 or Val129 PRNP alleles, even though the monomeric structures of the two genotypes do not show striking differences. Importantly, molecular dynamics (MD) simulations confirmed that the slight protective heterozygosity of 129MV assembled extremely unstable intermolecular \(\beta\)-sheets due to the Val129 side chain, conflicting with spatially adjacent residues. The different genotypes of residue 129 could cause the different intrinsic conformational heterogeneity of the \(\alpha\)-helix. For instance, D178N/M129 associated with FFI and D178N/V129 related to CJD showed different intermolecular tetramers in crystal structures, different dynamic features, and different rates of the conversion to amyloid fibrils which were larger than WT in vitro.

Furthermore, the frailly protective mutant HuPrP(E200K) among the geometric packing of the \(\alpha\)-helix and the \(\beta\)-helix impairs the tendency of amyloid fibre formation. The V209M mutation decreased the fibrillation rate relative to WT in vitro. Quite differently, although the V201M mutant alters the geometry of the \(\alpha\)-helix, it is fully susceptible to sCJD. In addition, another frailly protective mutant against sCJD, HuPrP(E219K), has a slightly altered 3D structure, changed backbone dynamics, and redistributed surface electrostatic potentials. The mutated Lys219 residue exhibits one of the highest \(^{15}N\) \(R_\text{2}\) rates, indicative of decreased backbone flexibility or/and increased conformational exchange on the \(\mu\)-ms timescale. The incompatible structures and dynamics of the heterozygous 219EK mutant potentially prevent hetero-dimerization, which resists the development of sCJD. Interestingly, even though the E200K mutant also redistributed the surface electrostatic potentials, it still leads to gCJD and TSE. Thus, whether or not the alterations in the geometric packing of the \(\alpha\)-helices or the surface electrostatic potentials resist disease requires further studies.

In the completely disease-resistant G127V mutant, Val127 was observed exclusively on a Met129 PRNP allele. In transgenic mice experiments, heterozygous 127 GV mice were able to resist Kuru and all of the CJDs except vCJD. Moreover, the protein expression ratios of the Gly127 to Val127 genotypes greatly affected the ability to resist prion disease. More significantly, homozygous 127VV mice were entirely resistant to all the prion diseases. To identify the molecular mechanisms underlying the significant disease-resistant effect of the G127V mutant, we determined solution structures of both the recombinant HuPrP (residues 91–231) with the V127M129 genotype (termed HuPrP(V127M)) and the WT HuPrP with a G127M129 genotype (termed WT HuPrP) at pH 4.522. We performed NMR dynamics analysis and implemented MD simulations on the determined structures for the two proteins. We observed several significant differences in the structural and dynamic properties of the two proteins. These results provide novel insight into the molecular mechanisms of the disease-resistant effect of the G127V mutant. This work may be of benefit to both a mechanistic understanding of prion propagation and the development of effective therapeutics.

Results

Resonance assignments of HuPrP(V127M) and WT HuPrP. The well-dispersed \(^{1}H\)-15N HSQC spectra illustrate that both HuPrP(V127M) and WT HuPrP adopt well-folded structures (Figs 1 and S1). All resonance assignments were verified by 3D \(^{15}N\)-edited NOSEY-HSQC and \(^{13}C\)-edited NOESY-HSQC spectra. Overall, 91% resonances were assigned for the two proteins. In total, for the 136 backbone N-H resonances of HuPrP (residues 91–231) (141 residues minus 5 prolines), 127 and 128 resonances were unambiguously assigned to HuPrP(V127M) (BMRB ID: 27259) and WT HuPrP (BMRB ID: 27264), respectively. Backbone N-H resonances could not be obtained for Gly94, Arg164, Asp167, Glu168, Tyr169, Ser170, Asn171 and Phe175. Notably, the amine resonance of Tyr128 disappeared from the HSQC spectrum of HuPrP(V127M), but was visible as an isolated peak in that of WT HuPrP (Figs 1 and S1). The \(^{1}H\)-15N HSQC spectra between the mutant and WT proteins illustrate that the G127V mutant introduced notably changed chemical shifts for Met129, Val161, and Tyr162, with distinct peak broadening for Gly131 (Figs 1 and S1).

Solution Structures of HuPrP(V127M) and WT HuPrP at pH 4.5. Based on the resonance assignments and experimentally conformational restraints, we determined the solution structures of HuPrP(V127M) (PDB ID: 5YH4) and WT HuPrP (PDB ID: 5YJ5) at pH 4.5 and 298K. The well-dispersed peak broadening for Gly131 (Figs 1 and S1).

**Similar to WT HuPrP, the solution structure of HuPrP(V127M) (Fig. 2a,b) consisted of the N-terminal flexible segment (Gln91-Gly124) and the C-terminal structural core (Leu125-Ser231) containing three \(\alpha\)-helicies (\(\alpha1\): Asp144-Arg156, \(\alpha2\): Gln172-Lys194, \(\alpha3\): Glu200-Arg228) and a disulfide bond (Cys179-Cys214). The backbone root-mean-square deviation (RMSD) between the average structures of the mutant and WT proteins was 2.27 Å (Fig. S2). The G127V mutant formed a \(\beta\)-sheet with two segments (SS1: Tyr128-Gly131; SS2: Val161-Arg164), while the WT protein formed a stable \(\beta\)-sheet with two strands (S1: Tyr128-Gly131; S2: Val161-Arg164). Compared with WT HuPrP, HuPrP(V127M) exhibited unique structural characteristics (Fig. S2a,d),
including the following: (I) a smaller distance between the α_1 helix and α_2/α_3 helices; (II) a larger curvature of the α_1-SS2 loop (Tyr157-Gln160); (III) a more flexible SS2-α_2 loop (Pro165-Asn171) (backbone RMSD of 1.28 Å in the mutant vs. 0.88 Å in WT HuPrP); and (IV) a bigger bend in the α_2 helix such that its C-terminal is closer to the N-terminal end of the α_3 helix.

In HuPrP(G127V), the hydrophilic side chain of Tyr128 is rotated sharply so that its dihedral angle, chi(N-Cα-Cβ-Cγ), is reduced from 90° to 0° in WT HuPrP. This structural rearrangement might be introduced by the steric hindrance of the relatively larger hydrophobic side chain of Val127. This rotation pushes the phenyl ring of Tyr128 away from Ile182 and brings it closer to Gln186 (Fig. 2c,d). Although the HN$_{Met129}$-HN$_{Tyr163}$ distance is identical for both structures (2.6 ± 0.1 Å), the H$\alpha$$_{Leu130}$-H$\alpha$$_{Tyr162}$ distance is larger in the mutant (3.7 ± 0.2 Å vs. 2.2 ± 0.2 Å), as shown in Fig. 2e,f. The backbone atomic distances between SS1 and SS2 or between β_1 and β_2 are summarized in Table S2.

In the mutant protein, the C-terminal end of the α_1 helix is extended to Arg156 (Figs 2a,b and S2a,b). In this configuration, the Arg156 side chain is closer to Thr190 and Thr191 at the C-terminal end of the α_2 helix (Fig. S2c,d). In the α_1-SS2 loop of HuPrP(G127V), the dihedral angle psi(N-Cα-C-N) of Tyr157 is nearly 60°, causing the pyrrolidine of Pro158 to retroflex approximately 180° (Fig. 2g,h). This alteration changes the atomic distances between Tyr157, Pro158, Val209 and Val210. Tyr157 becomes close to two α_3-located residues, Val209 and Val210, and Pro158 moves away from Val209 and Val210. The retroflexion of the Pro158 side chain increases the curvature of the α_1-SS2 loop in the mutant protein compared with the α_1-β_2 loop (His155-Gln160) in the WT (Fig. 2g,h). Additionally, atomic distances between SS2 and the disulfide bridge in the mutant are shorter than those between SS2 and the disulfide bridge in the WT (Fig. S2g,h).

Furthermore, the G127V mutant also leads to a redistribution of the surface electrostatic potentials of the protein (Fig. S3). HuPrP(G127V) exhibits neutral potentials near residues Gly126-Ser135, while WT HuPrP shows positive potentials in this segment, except for Met129-Gly131. Additionally, compared with the WT protein, the mutant displays more positive potentials in the region near Arg146 and Arg151 of the α_1 helix, and more negative potentials on the N-termini of the α_1 and α_3 helices.

The two different structures were calculated from their own different NOESY restraints originated from 3D 15N-edited NOESY-HSQC and 13C-edited NOESY-HSQC spectra (Fig. S4, Table S3). Several 1H-1H NOE peaks were missing, and many peaks were weaker in the SS segments from the HuPrP(G127V) than in those from the WT HuPrP (Fig. S4, Table S3). Furthermore, the structural differences were validated by backbone amide residual dipolar couplings (RDCs) measured from 2D 1H-1N IPAP-HSQC spectra (Figs S5 and S6). As indicated by the Q-values, the experimental RDCs from HuPrP(G127V) fitted better with the HuPrP(G127V) structure (Q = 0.532) than those with the WT HuPrP structure (Q = 0.798) and vice versa for the RDCs of the WT HuPrP (G127V vs WT: 0.856 vs 0.564) (Figs S5 and S6). In addition, the differences were confirmed with H/D exchanges based on 2D 1H-1N Fast-HSQC experiments (Figs S7 and S8). Remarkably, the amide proton of Gly131 in the SS segments from the HuPrP(G127V) was exchanged completely with D$_2$O and became invisible in the HSQC spectrum than in those from the WT HuPrP (Figs S7 and S8). However, the amide protons of Met154 and His155 in the extended α_1 helix from the HuPrP(G127V) became more stable than those in those from the WT HuPrP (Figs S7 and S8).

Backbone amide relaxation analysis. To compare the dynamic features of the HuPrP(G127V) and WT HuPrP backbones, we performed a series of NMR relaxation experiments to obtain 15N longitudinal relaxation rates (R$_l$), 15N transverse relaxation rates (R$_t$) and 1H-1N heteronuclear steady-state NOEs (1H-1N NOEs) at two magnetic field strengths, 14.10 T and 19.97 T (Fig. 3). A total of 106 and 112 backbone amide resonances were used to analyse the dynamic features of the mutant and WT proteins.
For HuPrP(G127V), residues in the N-terminal flexible segment did not show distinct differences in the R1 and R2 rates between the two magnetic fields but exhibited more negative {1H}-15N NOEs at 14.10 T than those at 19.97 T. In contrast, the residues in the C-terminal structural core, except for those in the α2-α3 loop (Gly195-Thr199) and the C-terminus (Gly229-Ser231), displayed significant differences in the R1 and R2 rates and similar {1H}-15N NOEs values (>0.6) between the two magnetic fields. The average R1 rate at 14.10 T was larger than that at 19.97 T (1.1 s\(^{-1}\) vs. 0.8 s\(^{-1}\)). All residues, except for Gly131 and Gln172 in the C-terminal structural core, displayed R2 rates varying between 13.0 s\(^{-1}\) and 30 s\(^{-1}\) for both magnetic fields, with slightly higher values at 19.97 T. Furthermore, residues in the α2-α3 loop and the C-terminus showed larger R1 rates and smaller R2 rates as well as smaller {1H}-15N NOEs. Overall, WT HuPrP showed R1 rates, R2 rates and {1H}-15N NOEs roughly similar to HuPrP(G127V) for the two magnetic fields (Fig. 3). Both proteins exhibited larger differences in the R2/R1 ratios between 14.10 T and 19.97 T.

Interestingly, the G127V mutant showed distinctly changed R2 rates for the residues located in the SS1 and SS2 segments. The R2 rates of the SS1-located residue Gly131 in the mutant protein were 38.5 s\(^{-1}\) at 14.10 T and 44.7 s\(^{-1}\) at 19.97 T, which were much larger than those in the WT (24.6 s\(^{-1}\) at 14.10 T and 33.4 s\(^{-1}\) at 19.97 T). Moreover, Gly131 also displayed significantly different R2/R1 ratios between the two proteins. Furthermore, the R2 rates of the SS2-located residue Tyr163 in the mutant protein were slightly larger than those in the WT (14.10 T: 21.8 s\(^{-1}\)
As expected, the G127V mutation more or less altered the R_2 rates of the α_2 helix residues. Although the R_2 rate of Gln172 at 14.10 T was almost identical for both the mutant and WT proteins (28.5 s$^{-1}$ vs. 27.6 s$^{-1}$), this value at 19.97 T was smaller in the mutant than that in the WT (34.4 s$^{-1}$ vs. 37.4 s$^{-1}$). Furthermore, Ile182 in the mutant displayed slightly increased R_2 rates compared to that in the WT protein (24.9 s$^{-1}$ vs. 22.9 s$^{-1}$ at 14.10 T; 29.4 s$^{-1}$ vs. 27.5 s$^{-1}$ at 19.97 T). In addition, the R_2 rate of Gln186 in the mutant was much larger than that in the WT protein (21.6 s$^{-1}$ vs. 16.4 s$^{-1}$ at 14.10 T; 21.8 s$^{-1}$ vs. 17.9 s$^{-1}$ at 19.97 T). These alterations might be caused by the rotation of the Tyr128 side chain, as described above.

The G127V mutation also changed the R_2 rates of the residues located within the α_3 helix. Because of the retroflexion of the Pro158 pyrrolidine, as described above, the R_2 rates of Val209 and Val210 subtly fluctuated at 14.10 T and were markedly disturbed at 19.97 T. Compared with the WT protein, the mutant showed slightly larger R_2 rates for the two residues at 14.10 T (Val209: 24.6 s$^{-1}$ vs. 23.8 s$^{-1}$; Val210: 24.6 s$^{-1}$ vs. 23.6 s$^{-1}$) and displayed smaller R_2 rates at 19.97 T (Val209: 23.8 s$^{-1}$ vs. 25.1 s$^{-1}$; Val210: 23.5 s$^{-1}$ vs. 28.2 s$^{-1}$) (Fig. 3).

Reduced spectral density mapping. To explicitly explore the internal motion of the amide backbone, we calculated the reduced spectral density functions at three frequencies, $J(0)$, $J(\omega_0)$ and $J(0.87\omega_0)$, based on

Figure 3. A comparison of the backbone dynamics parameters from HuPrP(G127V) and WT HuPrP derived from 15N relaxation data. All NMR spectra were acquired at magnetic field strengths of 14.10 T (red for G127V, violet for WT) and 19.97 T (blue for G127V, olive for WT).
experimentally derived 15N relaxation data for both HuPrP(G127V) and WT HuPrP (Fig. 4). For HuPrP(G127V), the $J(0)$ values of the N-terminal flexible segment and the C-terminus were less than 2.5 ns/rad for both magnetic fields. However, the C-terminal structural core exhibited $J(0)$ values varying from 5.0 ns/rad to 10.0 ns/rad. The α_3 helix exhibited higher $J(0)$ values than the α_1 and α_2 helices, but the α_2-α_3 loop displayed relatively smaller $J(0)$ values than the α_1 and α_2 helices. Moreover, the N-terminal flexible segment showed $J(\omega_N)$ values scattering from 0.05 ns/rad to 0.35 ns/rad at the two magnetic fields, but the C-terminal structural core exhibited $J(\omega_N)$ values fluctuating near 0.27 ± 0.03 ns/rad at 14.10 T and 0.20 ± 0.03 ns/rad at 19.97 T. Furthermore, the N-terminal flexible segment showed $J(0.87\omega_H)$ values between 0.014 ns/rad and 0.045 ns/rad at 14.10 T, which changed to 0.011 ns/rad and 0.026 ns/rad at 19.97 T. The C-terminal structural core displayed $J(0.87\omega_H)$ values varying near 0.006 ns/rad at 14.10 T and 0.003 ns/rad at 19.97 T (Fig. 4). On the whole, compared with HuPrP(G127V), WT HuPrP did not show distinctly different $J(0)$, $J(\omega_N)$, $J(0.87\omega_H)$ values or trends.

Compared with WT HuPrP, HuPrP(G127V) showed much larger $J(0)$ values for the SS1-located residue Gly131 (14.5 ns/rad vs. 9.2 ns/rad at 14.10 T; 16.7 ns/rad vs. 12.5 ns/rad at 19.97 T). The $J(0)$ values for Tyr163 located in the SS2 of the mutant were only subtly larger than those in the WT protein (8.1 ns/rad vs. 7.5 ns/rad at 14.10 T; 10.4 ns/rad vs. 9.5 ns/rad at 19.97 T), similar to the R$_2$ rate for Tyr163, which was slightly higher in the mutant than that in the WT protein. These results suggest that the two residues in the mutant underwent slow conformational fluctuations.

Gln172, located in the α_2 helix of the mutant protein, displayed almost the same $J(0)$ value as that of the WT protein at 14.10 T (10.7 ns/rad vs. 10.3 ns/rad) but exhibited a smaller $J(0)$ value than that of the WT protein at 19.97 T (12.8 ns/rad vs. 14.0 ns/rad). The anomalous alteration in the $J(0)$ values might have been caused by significant conformational fluctuations. Furthermore, the mutant showed subtly different $J(0)$ values from the WT protein for several residues, including the following: Ile182 (14.10 T: 9.3 ns/rad vs. 7.5 ns/rad; 19.97 T: 11.0 ns/rad vs. 10.2 ns/rad), Gln186 (14.10 T: 8.0 ns/rad vs. 6.0 ns/rad; 19.97 T: 8.1 ns/rad vs. 6.6 ns/rad), Val209 (14.10 T: 9.2 ns/rad vs. 8.8 ns/rad; 19.97 T: 8.9 ns/rad vs. 9.3 ns/rad) and Val210 (14.10 T: 9.2 ns/rad vs. 8.9 ns/rad; 19.97 T: 8.8 ns/rad vs. 10.5 ns/rad). For these residues, the trends in the $J(0)$ values (Fig. 4) were similar to those of the R$_2$ rates (Fig. 3).

Relaxation dispersion measurements. To compare in detail the dynamic features between HuPrP(G127V) and WT HuPrP, especially for Gly131 and Tyr163 with large $J(0)$ values, we performed CPMG RD experiments at...
The resulting individual interconversion rates (k_{ex}) are shown in Table S4.

For HuPrP(G127V), Gly131 and Tyr163 in the SS1 and SS2 segments displayed k_{ex} rates of 1295 ± 122 s$^{-1}$ and 2842 ± 186 s$^{-1}$, respectively (Fig. 5, Table S4). Notably, residue Tyr128 disappears from the 1H-15N HSQC spectrum because of peak broadening that may be caused by conformational exchange. The relaxation dispersion data from the Val161 and Tyr162 residues were not suitable for the CPMG RD analysis because of resonance overlapping. Interestingly, Met129 and Leu130 did not display observable conformational fluctuations (Fig. S9, Table S4). Gln172 and Gln186, located in the α_2 helix, exhibited significant conformational exchanges, with k_{ex} rates of 3171 ± 302 s$^{-1}$ and 2143 ± 328 s$^{-1}$, respectively (Fig. 5, Table S4).

For WT HuPrP, Gln172 in the nearby the α_2 helix displayed conformational exchange with a k_{ex} rate of 1815 ± 281 s$^{-1}$ (Fig. 5; Table S4). Interestingly, Ile182 showed significant conformational exchange ($k_{ex} = 1009 \pm 486$ s$^{-1}$), but Gln186 exhibited negligible conformational exchange (Fig. 5, Table S4), although they are both located in the α_2 helix. Furthermore, all residues in the β-sheet displayed insignificant conformational exchanges, excluding the unassigned Arg164 (Fig. S9, Table S4).

Additionally, the α_3 helix in both the mutant and WT protein displayed substantial magnetic field strength-dependent conformational fluctuations on the μs-ms timescale (Fig. S10, Table S4). For example, two residues located in the α_3 helix, Met205 and Thr216, exhibited significant conformational exchanges at 19.97 T rather than at 14.10 T.

Molecular dynamics simulations.

To further disclose the differences in dynamic structural properties between HuPrP(G127V) and WT HuPrP, we performed MD simulations based on the identified protein structures (Fig. 6 and S11). By analysing secondary structure elements and the geometric relationship of residues Leu125-Asp167, we summarized five primary distinctions between the mutant and WT proteins: the SS1 and SS2 segments rarely form a β-sheet in the mutant, instead, two β-strands always formed a stable β-sheet in the WT during the entire MD simulation (Fig. 6a); the α_1 helix in the mutant is extended compared with that in the WT protein (Fig. 6a); the Tyr128 side chain adopts either the “mediate” or “out” conformation in the mutant instead of the “in” conformation found in the WT protein (Fig. 6b,c); the dynamic distance between the mass centres of Val127 and Pro165 in the mutant is smaller than that of Gly127 and Pro165 in the WT protein (Fig. 6d); the protonation state of residues at pH 4.5 on both the mutant and WT proteins (1.0 mM) at two magnetic field strengths (14.10 T and 19.97 T).
dihedral angle psi(N-Cα-C-N) of Tyr157 is approximately 60° for the mutant but is approximately 180° in the WT protein (Fig. 6e). These distinct dynamic properties might derive from the difference in hydrophobicity between Val127 and Gly127. Compared with glycine, valine is more hydrophobic and tends to be near the hydrophobic Pro165 in the SS2-α2 loop, as supported by the 3D structures of the mutant and WT proteins. This spatial alteration might introduce alterations in the conformation of Tyr128 and Tyr157 and the feasibility of β-sheet formation.

More meaningfully, the G127V mutant induces intramolecular steric hindrance in the relatively larger Val127 side chain, leading to a striking structural rearrangement and conformational alternation of the Tyr128 side chain. The MD simulations suggest that the orientation of the Tyr128 side chain directly determined the feasibility of the intermolecular dimerization. For the “exposed” case (either the “mediate” conformation or “out” conformation) in HuPrP(G127V), the steric hindrance closely associated with the Tyr128 side chain potentially prevents the monomeric prion protein from forming intermolecular interactions and might thus prohibit prion dimerization. In contrast, for the “buried” case (the “in” conformation) in WT HuPrP, the Tyr128 side chain likely does not reduce the feasibility of intermolecular dimerization (Fig. 6c). Hence, the mutation-induced structural rearrangement and dramatic conformational exchange of the Tyr128 side chain might be unfavourable for the dimerization and conformational conversion of HuPrP(G127V).
Discussion

Prion disease pathogenesis is closely associated with the conformational conversion of prion proteins from PrPC to PrPSc. The α2 and α3 helices, octarepeats, the N-terminal flexible segment, and the glycosphatidylsphin-golipid (GPI) anchor contained in PrPs might be involved in conformational conversions. Moreover, the α2 helix, the β1-α1 loop, the α1-α2 loop, and the β2-α2 loop are more stable than the β-sheet core (residues 120–144) in PrPSc. Notably, the more stable β-sheet structure is by the formation of the N-terminus (residues 120–144), the earlier stages of misfolding are caused by PrPC in MD, and a relatively short β-sheet conformation (residues 112–139) is capable of seeding the conversion to fibrils in vitro. Nevertheless, the molecular mechanism underlying the disease-resistant effect of the G127V mutation still remains elusive. To reveal the molecular mechanisms, we determined the solution structures of both the HuPrP(G127V) and WT HuPrP under identical experimental conditions. We then analyzed the backbone dynamics using 15N relaxation experiments and conducted MD simulations for both proteins. We focused primarily on the dynamic structural properties of the two SS segments and adjacent regions, including intramolecular interactions between SS1 and SS2, SS1/SS2 and α2, SS1/SS2 and α3, α1/α1-SS2 loop and α3, and SS2-α2 loop/α2 and α3.

The primary structural distinction between HuPrP(G127V) and WT HuPrP or other pathogenic mutants is that HuPrP(G127V) extends atomic distances between SS1 and SS2, increases the solvent accessibility surface of SS1-located residues, and exhibits significant ms-ms timescale conformational fluctuations at Tyr128, Gly131 and Tyr163. These properties indicate that the SS region is more flexible than the β-sheet and is not prone to conversion to a stable β-sheet conformation. Moreover, the striking structural rearrangement and alternate conformation of the Tyr128 side chain potentially induces the intermolecular steric hindrance effect, prevents the formation of intermolecular hydrogen bonds and prohibits prion protein dimerization. Notably, the result is fundamentally different from the previous hypothesis that the intermolecular steric hindrance was closely associated with the bulky sidechain of Val127. The previous MD simulation was based on the modelled structures of the G127V mutant using the solution structure of WT HuPrP (125–228) determined at pH 7.0 (PDB ID: 1HJN) and the crystal structure of the β1-strand fragment (PDB ID: 4TUT) as the templates. Additionally, HuPrP(G127V) also alters the local electrostatic potential redistribution near the SS1 and SS2 segments to influence potentially electrostatic interactions.

Previous studies suggest that pathogenic and protective mutants of PrPs have similar structures and dynamics. However, our results confirmed that the structural and dynamic alterations caused by G127V are tremendously different from the changes caused by Met129, Val129 or any other known mutants. Furthermore, as previously hypothesized, the β-sheet in the prion protein, and especially the β-strand, might be the cornerstone on which prion protein aggregation is triggered. For instance, D178N/M129 and F198S form intermolecular antiparallel four-strand β-sheets based on β-strands in crystal structures, and the β-strand fragments form a steric zipper conformation. However, HuPrP(G127V) possesses flexible SSs with structural rearrangement and conformational fluctuations, rearrangement and alternate conformation of the Tyr128 side chain as well as surface electrostatic potential redistribution that destroys the prion protein aggregation trigger and prohibits prion protein fibrillization.

On the other hand, HuPrP(G127V) and WT HuPrP have similar atomic distances between Met129 and Tyr163 (Table S2), similar H/D exchanges of Met129, Leu130, Val161, Tyr162 and Tyr163 (Figs S7 and S8), and similar dynamic properties for Met129 and Leu130 (Figs 3, 4 and S9). The similar structural and dynamic properties between the SSs in the mutant protein and the β-sheet in the WT protein imply that HuPrP(G127V) might partially reserve the structural and dynamic properties of the β-sheet in the WT protein via the SS pattern.

Regarding the intramolecular interactions between the SSs and the α2/α3 helices in the G127V mutant, we found that the G127V mutant changes the orientation of the Tyr128 side chain and leads to different conformational exchanges for Ile182 and Gln186 (Table S4); (II) the mutation-induced steric hindrance effect between the side chains of Val127 and Arg164 pushes the Arg164 side chain close to Asp178, strengthens the electrostatic interaction between Arg164 and Asp178 (Fig. S2e,f) and enhances the hydrophobic interaction between Val127 and Pro165 (Fig. 6d); (III) the G127V mutant positions two SS2-located residues, Tyr163 and Arg164, slightly closer to Cys179 (Fig. S2g,h). These structural alternations reveal that the G127V mutation changes the local circumsances around the SSs and α2/α3 regions in HuPrP(G127V), which are distinctly different from those in the WT protein and several other HuPrP mutants such as D178N. These unique structural features of HuPrP(G127V) potentially reduce the feasibility of prion protein aggregation and may promote the protective effect of the G127V mutant.

Furthermore, distinguishing structural features are also identified in the regions around the α1 helix and the α1-SS2 loop and the α2 and α3 helices in HuPrP(G127V), which may be responsible for the prion disease-resistance effects of the G127V mutant. Overall, the G127V mutation extends the α1 helix and induces the retroflexion of the Pro158 pyrrolidine, thus increasing the curvature of the α1-SS2 loop. These structural alterations potentially prevent the unwinding of the α1 helix. As previously suggested, the α1 helix could be converted to the β-strand to form fibrils via a despiralization process. In the G127V mutant, the atomic distances between Tyr157, Pro158, Val209 and Val210 changed (Fig. 2g,h) and introduced magnetic field strength-dependent fluctuations in the R2 and R2/R2, rates of Val209 and Val210 (Fig. 3). These alterations might correspondingly change the local environment of the Val210 mutant site (the V210I mutant is associated with fCJD) and may promote the protective effect of the G127V mutant.

Additionally, the extended α1 helix, the bent α2 helix, and the α3 helix are packed more compactly in HuPrP(G127V) than those in the WT protein. The unique geometric packing in the G127V mutant is similar to the protective packing in the V209M mutant and might slow the initial fibrillation rate in a manner similar to that in HuPrP(V209M) and the G126V mutant of the mouse prion protein (moPrP). The moPrP(G126V) is equivalent to HuPrP(G127V), slows initial fibril growth and increases the critical concentration. The compact geometric packing might also change the local environment of the α2-α3 loop near the α1 helix. Note that the fCJD-associated F198S mutant occurs in the α2-α3 loop. In the G127V mutant, the surface electrostatic...
potential distribution on the region encompassing the α1 and α3 helices is diametrically distinct from those in the WT and the CJD-associated E200K mutant. The alterations of HuPrP(G127V) in both the geometric packing and electrostatic potential distribution combined with the close atomic distances between SS2 and the disulfide bridge, might prohibit rearrangement of the disulfide bridge, aggregation and fibrilization as previously published results.

Compared with the WT HuPrP, the SS2–α2 loop (Pro165-Asn171) of the HuPrP(G127V) exhibits more flexibility. The G127V mutation allows Met166 at the SS2–α2 loop to be closer to Tyr218, which is located in the α3 helix (Fig. S2i, j). In HuPrP(G127V), Gin172, next to the SS2–α2 loop, undergoes a more significant conformational change than that in the WT HuPrP (Table S4). These results indicate that the SS2–α2 loop has dynamic structural features distinct from the β2–α2 loop (Pro165-Gln172), which is probably correlated to the susceptibility to prion disease. The unique dynamic structural properties of the SS2–α2 loop might contribute to the prion disease resistance of the G127V mutant as well.

Astonishingly, the α3 helix in HuPrP(G127V) showed R2/R1 ratios that were dramatically different from those of the WT HuPrP at 19.97 T (Fig. 3). Moreover, the α3 helix exhibited varying J(0) values, similar to the R2/R1 ratios in addition. Met205 and Thr216 in both proteins experienced slow conformational exchange, which was observable only at 19.97 T. Unexpectedly, the α3-located Glu219 in both proteins displayed large R2 rates and J(0) values but did not exhibit observable conformational exchanges (Fig. S10, Table S4). Furthermore, Glu219 in HuPrP(G127V) showed the dynamic property, distinct from HuPrP(E219K). Thus, the dramatically altered dynamic structural properties relevant to the α3 helix could potentially influence the intermolecular interactions of the prion protein with the so-called “protein X”.

Besides, our fibrillation experiments showed that HuPrP(G127V) had significantly slower initial fibril growth than WT HuPrP. The measured lag phases were 61 ± 2 h for HuPrP(G127V) and 25 ± 2 h for WT HuPrP as showed in Fig. S12. Moreover, the mixing samples of WT HuPrP and HuPrP(G127V) (at a mixing ratio of 1:1) exhibited a slower fibrillation rate than WT HuPrP but faster than HuPrP(G127V). The measured lag phase was 47 ± 2 h for the mixing sample. These kinetic analyses are similar to the quantitative comparison of mPrP(G126V) and WT mPrP. These unique dynamic structural features might be responsible for the prion disease-resistance effect of the G127V mutant. As expected, the further study of the exploitation of the structural and dynamic features of the GSS-associated mutant G131V (GSS), which was confirmed to enhance the disease-resistance effect of the G127V mutant, would greatly help to address the crucial role of the SS1 segment in conformational conversion and propagation.

Summarily, we performed solution structure determinations, NMR dynamics analysis and MD simulations on both HuPrP(G127V) and WT HuPrP. We addressed the G127V mutation-induced significant distinct alterations in structural and dynamic properties in detail. The G127V mutation extends atomic distances between the SS1 and SS2 segments and enhances the conformational exchange of the two strands, leading to the formation of the SS pattern instead of the stable β-sheet. The relatively larger hydrophobic side chain of Val127 introduces steric hindrance and a striking structural rearrangement in the Tyr128 side chain. Additionally, the G127V mutation also subtly alters the geometric stacking of the three α helices. These structural and dynamic features might prevent the SS1 (Tyr128-Gly131) and SS2 (Val161-Arg164) segments and adjacent regions from being converted into a stable β-sheet under certain circumstances. Furthermore, the steric hindrance effect of the rearrangement of the Tyr128 side chain, together with the dramatic conformational alternation, could potentially prohibit the prion protein intermolecular interaction and dimerization, and thus inhibit prion protein aggregation and fibrillization. Moreover, HuPrP(G127V) had significantly slower initial fibril growth than WT HuPrP. Although more researches are required to clarify completely the molecular mechanisms of the prion disease-resistance of HuPrP(G127V), our results provide several important evidences regarding the differences in structure and dynamics between HuPrP(G127V) and WT HuPrP. These structural and dynamic differences substantially contribute to the different conversion of monomer to dimer in MD and of monomer to fibril in fibrillation between the two proteins. This work may be helpful for mechanistically understanding the pathogenesis of prion diseases and for developing effective drugs against prion diseases.

Methods

NMR sample preparation. Recombination of the pET30a plasmids without any tag bearing the DNA of the WT HuPrP (residues 91–231 with G127M129) was prepared as previously described. The recombination plasmids for HuPrP(G127V) (residues 91–231 with the genotype of V127M129) were cloned by PCR using site-directed mutagenesis. The forward primer used in the PCR was: 5′-AGTGGGTTGGGGGCCTTGCGGTCTTACATGCTGGGAA-3′ and the reverse primer used was: 5′-ATGGGACCTTCAGCATGTAACCGCAAGGCCGCCCCA-3′. The uniformly labelled protein was overexpressed in E. coli BL21(DE3) grown in M9 medium. 15NH4Cl was added to the M9 medium to prepare 15N-labelled proteins and both 13NH4Cl and 13C6-glucose were added to prepare 15/13N-labelled proteins. After the cells were sonicated and the lysates were centrifuged, the inclusion bodies were denatured in 6 M guanidine hydrochloride and refolded by dialysing against the NMR buffer (20 mM NaOAc, 0.02% NaN3, pH 4.5) as previously described. Thereafter, the protein was purified in NMR buffer through size exclusion chromatography with Superdex-75 on an ÄKTA FPLC system (GE Healthcare). Finally, the protein solution was concentrated to approximately 0.5 mM with 10% D2O (v/v).

NMR spectroscopy. To perform backbone and side chain resonances and to determine the solution structures of the HuPrP(G127V) and WT HuPrP proteins, we recorded a suite of 2D/3D heteronuclear NMR spectra at 25 °C on a Bruker Avance III 850-MHz spectrometer (magnetic field strength is 19.97 T) with a 1H/13C/15N triple-resonance cryogenic probe (TCI). These 3D NMR spectra included HNCA, CBCA(CO)NH, HN(CO)NH, H(CCO)NH, CC(CO)NH and (H)CH2-TOCSY. A mixing
time of 120 ms was used for both 15N-edited NOSEY-HSQC and 13C-edited NOESY-HSQC experiments. All NMR spectra were processed by NMRPipe software and analysed with CARA software.

Structure calculations. Distance constraints were generated from the 1H-1H NOEs of both 13C and 15N-labelled NOESY-HSQC spectra. Dihedral angle restraints were obtained based on chemical shifts of the backbone atoms including HN, Hα, Cα, CB, C(O), and N using the TALOS+ programme. The 3D structures were calculated and refined with the XPLOR-NIH package. Then, the qualities of the calculated structures were evaluated by the PROCHECK programme. Ultimately, the 20 lowest-energy conformers were selected as representative solution structures of each protein. The tertiary structures of the proteins were displayed using PyMOL and MOLMOL.

Backbone dynamics. Backbone amide relaxation measurements. A complete set of backbone amide R1, R2 and (1H)-15N NOEs spectra were acquired on 15N labelled samples on both a Bruker Avance III 850-MHz (magnetic field strength of 19.97 T with a TCI cryogenic probe) and a Bruker Avance III 600-MHz (magnetic field strength of 14.10 T with a BBO cryogenic probe) spectrometer at 25°C and pH 4.5. All spectra were recorded with 1024 × 128 complex points. R1 values were measured from 2D 1H-15N HSQC spectra with relaxation delays of 10, 50, 100 (×2), 250, 500, 800, 1200 (×2), 1600 and 2000 ms. R2 values were determined with relaxation delays of 16.32, 32.64 (×2), 48.96, 65.28, 81.6, 97.92, 114.24 (×2), 130.56, 146.88, and 163.2 ms. The repeated spectra were used for experimental error analysis. (1H)-15N NOEs were obtained by recording spectra with a 1H pre-saturation of 3 s plus a 2-s relaxation delay and without a pre-saturation of a 5-s relaxation delay. All NMR spectra were processed using NMRPipe software and analysed using CcpNmr software. Peak heights were used to represent peak intensities. Standard errors of the fitted parameters were obtained by Monte Carlo simulations. For HuPrP(G127V), 21 residues were unavailable for NMR dynamics analysis due to resonance overlapping: 101, 121, 127, 146, 147, 155, 159, 161, 162, 173, 177, 178, 183, 185, 187, 189, 190, 204, 213, 218 and 231. Thus, 106 backbone amide resonances were used to analyse the dynamic behaviour of the molecular backbone. For WT HuPrP, 16 residues could not be used for NMR dynamics analysis due to resonance overlapping: 101, 140, 146, 149, 154, 155, 159, 173, 177, 185, 189, 190, 204, 213, 218, and 231. Thus, 112 backbone amide resonances were employed to analyse the dynamic behaviour of the molecular backbone.

Reduced spectral density mapping. Reduced spectral density mapping is usually employed to characterize the internal motions of the N-H bonds with the assumption that J(0.87ωH) is approaching J(ωH+ωN) and J(ωH+ωN) at high frequencies. Therefore, the values of the relaxation rates R1, R2 and (1H)-15N NOEs are taken to map the spectral density using the following formula:

\[
\sigma_{NH} = \frac{R_1(NO\ E - 1)\gamma_N/\gamma_H}{\omega}\n\]

\[
J(0) = (6R_2 - 3R_1 - 2.72\sigma_{NH})/(3d^2 + 4c^2)\n\]

\[
J(\omega) = (4(\omega_1 - 5\sigma_{NH})/(3d^2 + 4c^2)\n\]

\[
J(0.87\omega_1) = 4\sigma_{NH}/(5d^2)\n\]

where

\[
d = \frac{\mu_0 h\gamma_N\gamma_H(r_{NH}^{-3})/(8\pi^2)}{c = \omega_\Delta\sigma/3}\n\]

and

where \(\mu_0\) is the permeability of the free space; \(h\) is Planck’s constant; \(\gamma_N\) and \(\gamma_H\) are the gyromagnetic ratios of 15N and 1H, respectively; \(\omega_N\) and \(\omega_H\) are the Larmor frequencies of 15N and 1H, respectively; \(r_{NH}\) is the length of the N-H bond; and \(\Delta\sigma = \sigma_H - \sigma_L\) is the chemical shift anisotropy for 15N. The calculations were implemented using Mathematica software.

Relaxation dispersion measurements. Single quantum CPMG RD experiments were performed on the same NMR instruments described above (850 MHz at 19.97 T with a TCI cryogenic probe, 600 MHz at 14.10 T with a BBO cryogenic probe). The CPMG RD spectra were recorded on 15N-edited HuPrP(G127V) and WT HuPrP proteins at 25°C and pH 4.5 using a constant relaxation time of 40 ms and under thirteen \(\nu_{CPMG}\) values of 0, 100 (×2), 200, 300, 400, 500, 600, 700 (×2), 800, 900, and 1000 Hz. All spectra were recorded with complex points of 1024 × 128. The \(\nu_{CPMG}\) is defined by the following formula:

\[
\nu_{CPMG} = \frac{1}{4\tau_p}\n\]

Here, \(\tau_p\) is the time between refocusing pulses during the CPMG pulse train. We used the following equation to calculate the effective transverse relaxation rates, \(R_2^e\).
\[R_{2}^{\text{eff}}(\nu_{\text{CPMG}}) = -\frac{1}{\tau_\text{p}} \ln \left(\frac{I(\nu_{\text{CPMG}})}{I_0} \right) \]

(6)

where \(\tau_\text{p} \) is the constant transverse relaxation time and \(I(\nu_{\text{CPMG}}) \) and \(I_0 \) are the intensity with or without different \(\nu_{\text{CPMG}} \). The RD of \(R_{2}^{\text{eff}} \) relies on \(\nu_{\text{CPMG}} \) if the residue undergoes conformational exchange at the \(\mu \text{-ms} \) timescale. All spectra were processed in NMRPipe and the integrals of the peaks were obtained in NMRFAM-Sparky. The dispersion data were fitted with a Carver-Richards two-state exchange model in the NESSY software. Similar to the \(^{15}\text{N} \) backbone dynamics analysis, overlapping amide resonances were not used for CPMG RD analysis.

Molecular Dynamics Simulations. All MD simulations were performed with the Amber99SB force field in Amber12. All systems were solvated within a cubic box of TIP3P water molecules by extending 10 Å from the protein surface. The initial coordinates and topology files were generated using the leap programme contained in Amber12. First, energy minimizations were performed to relax the solvent and optimize the system. Then, each system was gradually heated from 0 to 300 K under the NVT ensemble for 100 ps and another 100 ps of NPT ensemble MD simulation was performed at 300 K and a target pressure of 1.0 atm. Finally, a 100 ns MD simulation under the NVT ensemble was performed for each model. The system temperature was controlled by the Langevin thermostat method. During the MD simulations, all hydrogen-containing bonds were constrained using the SHAKE algorithm. A cut-off of 12 Å was set for both the van der Waals and electrostatic interactions. The DSSP algorithm was employed to assign the secondary structure of the protein.

Residual Dipolar Couplings. Initially, both \(^{15}\text{N} \)-labeled HuPrP(G127V) and WT HuPrP were dissolved in H₂O buffer (90% H₂O, 10% D₂O, 20 mM NaOAc, 0.02% NaN₃, pH 4.5) to a final concentration of 0.4 mM. As reference spectra, 2D Fast-\(^{1}H\)-\(^{15}\text{N}\) IPAP-HSQC spectra were recorded at 25 °C on a Bruker Avance III 600-MHz spectrometer (magnetic field strength of 14.10 T with a triple-resonance TCI cryogenic probe) at the University of Science and Technology of China. All spectra were recorded with complex points of 1024 × 400. Then, the two proteins were dissolved in C₆H₆/n-hexanol alignment media. The final concentration of C₆H₆ was 3% (\(r = 0.96 \)) \(^{101} \). 2D Fast-\(^{1}H\)-\(^{15}\text{N}\) IPAP-HSQC spectra were recorded under the same experimental conditions. All data were processed on NMRPipe, analysed on NMRFAM-Sparky and fitted on PALES. The Q-value was fitted by PALES, which is normally used to assess the agreement between the experimental RDCs and calculated RDCs based on the structure. When fitted using the PALES program, the experimental RDCs were just from the residues of the C-terminal structural core minus the overlapping resonance, as described above.

Amide Hydrogen/Deuterium Exchange. Both \(^{15}\text{N} \) labelled HuPrP(G127V) and WT HuPrP were initially dissolved in H₂O buffer (90% H₂O, 10% D₂O, 20 mM NaOAc, 0.02% NaN₃, pH 4.5). As reference spectra, 2D Fast-\(^{1}H\)-\(^{15}\text{N}\) HSQC\(^{100} \) were recorded at 25 °C on a Bruker Avance III 850-MHz spectrometer (magnetic field strength of 19.97 T with a triple-resonance TCI cryogenic probe). All spectra were recorded with complex points of 1024 × 128. Through buffer exchange with centrifugal filter devices (Amicon Ultra 3 K device) at 2,555 × g and 4 °C for 3 h, the proteins were re-dissolved in equal volumes of D₂O buffer (99.9% D₂O, 20 mM NaOAc, 0.02% NaN₃, pH 4.5). Then, 2D Fast-\(^{1}H\)-\(^{15}\text{N}\) HSQC spectra were recorded on the re-dissolved proteins as amide proton exchange spectra under the same experimental conditions. All data were processed on NMRPipe, analysed on NMRFAM-Sparky and fitted on PALES. The Q-value was fitted by PALES, which is normally used to assess the agreement between the experimental RDCs and calculated RDCs based on the structure. When fitted using the PALES program, the experimental RDCs were just from the residues of the C-terminal structural core minus the overlapping resonance, as described above.

Accession codes. Chemical shift data were deposited in the Biological Magnetic Resonance Data Bank (http://www.bmrb.wisc.edu) under accession numbers 27259 for HuPrP(G127V) and 27264 for WT HuPrP. The atomic coordinates were deposited in the Protein Data Bank under the accession codes 5YJ4 for HuPrP(G127V) and 5YJ5 for WT HuPrP.

References
1. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).
2. Prusiner, S. B. Prions. Proc Natl Acad Sci USA 95, 13363–13383 (1998).
3. Masters, C. L., Gajdusek, D. C. & Gibbs, C. J. Jr. The familial occurrence of Creutzfeldt-Jakob disease and Alzheimer’s disease. Brain 104, 535–558 (1981).
4. Fornai, F. et al. A hypothesis on prion disorders: are infectious, inherited, and sporadic causes so distinct? Brain Res Bull 69, 95–100 (2006).
5. Goldfarb, L. G. et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease phenotype determined by a DNA polymorphism. Science 258, 806–809 (1992).
6. Hsiao, K. et al. Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 338, 342–345 (1989).
7. Petersen, R. B., Parchi, P., Richardson, S. L., Urig, C. B. & Gambetti, P. Effect of the D178N mutation and the codon 129 polymorphism on the metabolism of the prion protein. J Biol Chem 271, 12661–12668 (1996).
8. Gibbs, C. J. Jr, Amyx, H. L., Bacote, A., Masters, C. L. & Gajdusek, D. C. Oral Transmission of Kuru, Creutzfeldt-Jakob Disease, and Scrapie to Nonhuman Primates. J Infect Dis 142, 205–208 (1980).
9. Field, E. J. The significance of astroglial hypertrophy in Scrapie, Kuru, Multiple Sclerosis and old age together with a note on the possible nature of the scrapie agent. Deutsche Zeitschrift für Nervenheilkunde 192, 265–274 (1967).
10. Pan, K. M. et al. Conversion of alpha helices into beta sheets features in the formation of the scrapie prion protein. Proc Natl Acad Sci USA 90, 10962–10966 (1993).
11. Meyer, R. K. et al. Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 83, 2310–2314 (1986).
12. Küfer, A. et al. The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature 536, 464–468 (2016).
13. Beck, J. A. et al. PRNP allelic series from 19 years of prion protein gene sequencing at the MRC Prion Unit. Hum Mutat 31, E1551–1563 (2010).
14. Jeong, B. H. & Kim, Y. S. Genetic studies in human prion diseases. J Korean Med Sci 29, 623–632 (2014).
15. Giachin, G., Biljan, I., Ilc, G., Plavec, J. & Legname, G. Probing early misfolding events in prion protein mutants by NMR spectroscopy. *Molecules* **18**, 9451–9476 (2013).

16. Kong, Q. et al. Thermodynamic stabilization of the folded domain of prion protein inhibits prion infection *in vivo*. *Cell Rep* **4**, 248–254 (2013).

17. Petraroli, R. & Pocchiari, M. Codon 219 polymorphism of PRNP in healthy Caucasians and Creutzfeldt-Jakob disease patients. *Am J Hum Genet* **58**, 888–889 (1996).

18. Shibuya, S., Higuchi, J., Shin, R. W., Tateishi, J. & Kimamoto, T. Codon 219 lys allele of prnp is not found in sporadic creutzfeldt-jakob disease. *Neuro Rep* **43**, 826–828 (1998).

19. Seno, H. et al. New haplotype of familial creutzfeldt-jakob disease with a codon 200 mutation and a codon 219 polymorphism of the prion protein gene in a japanese family. *Acta Neuropathol* **99**, 125–130 (2000).

20. Mead, S. et al. A novel protective prion protein variant that colocalizes with kuru exposure.pdf. *N Engl J Med* **361**, 2056–2065 (2009).

21. Asante, E. A. et al. Naturally occurring variant of the human prion protein completely prevents prion disease. *Nature* **522**, 478–481 (2015).

22. Zahn, R. et al. NMR solution structure of the human prion protein. *Proc Natl Acad Sci USA* **97**, 145–150 (2000).

23. Biljan, I. et al. Structural basis for the protective effect of the human prion protein carrying the dominantnegative E219K polymorphism. *Biochem J* **446**, 243–251 (2012).

24. Calzolai, L. & Zahn, R. Influence of pH on NMR structure and stability of the human prion protein globular domain. *J Biol Chem* **278**, 35592–35596 (2003).

25. Apostol, M. I., Perry, K. & Surewicz, W. K. Crystal structure of a human prion protein fragment reveals a motif for oligomerization. *Proc Natl Acad Sci USA* **101**, 2293–2298 (2004).

26. Baskakov, I. et al. Metadynamics Simulation of Prion Protein beta Structure Stability and the Early Stages of Misfolding. *J Am Chem Soc* **128**, 2705–2710 (2006).

27. Paz, S. A., Vanden-Eijnden, E. & Abrams, C. F. Polymorphism at 129 dictates metastable conformations of the human prion protein. *Protein Sci* **18**, 410–423 (2009).

28. Guo, J., Ren, H., Ning, L., Liu, H. & Yao, X. Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R. *J Struct Biol* **178**, 225–232 (2012).

29. Biljan, I., Ilc, G., Giachin, G., Plavec, J. & Legname, G. Structural rearrangements at physiological pH: nuclear magnetic resonance insights from the V210I human prion protein mutant. *Biochemistry* **51**, 7465–7474 (2012).

30. Pocchiari, M. et al. A new point mutation of the prion protein gene in Creutzfeldt-Jakob disease. *Ann Neurol* **34**, 802–807 (1993).

31. Jahandideh, S., Jamalan, M. & Faridounnia, M. Molecular dynamics study of the dominant-negative E219K polymorphism in human prion protein. *J Biolomo Struct Dyn* **33**, 1315–1325 (2015).

32. Gabizon, R. et al. Mutation in codon 200 in scrapie amyloid precursor gene linked to Creutzfeldt-Jakob disease in Sephardic Jews of Libyan and non-Libyan origin. *Phil Trans B Soc Lond* **363**, 385–390 (1994).

33. Chakroun, N. et al. Decrypting Prion Protein Conversion into a beta-Rich Conformer by Molecular Dynamics. *J Chem Theory Comput* **9**, 2455–2465 (2013).

34. Apostol, M. I., Perry, K. & Surewicz, W. K. Crystal structure of a human prion protein fragment reveals a motif for oligomer formation. *J Am Chem Soc* **135**, 10202–10205 (2013).

35. Benetti, F. & Legname, G. New insights into structural determinants of prion protein folding and stability. *Prion* **9**, 119–124 (2015).

36. DeMarco, M. L. & Daggett, V. From conversion to aggregation: Prototifibril formation of the prion protein. *Proc Natl Acad Sci USA* **101**, 2293–2298 (2004).
57. Johannes, Z. & Ill, E. G. Molecular dynamics simulation of human prion protein including both N-linked oligosaccharides and the GPI anchor. Glycobio 10, 959–974 (2000).

58. Campos, S. R. R., Machuqueiro, M. & Baptista, A. Constant-pH Molecular Dynamics Simulations Reveal a β-Rich Form of the Human Prion Protein. J Phys Chem B 114, 12692–12700 (2010).

59. Zhang, J. & Zhang, Y. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion protein. J Theor Biol 342, 70–82 (2014).

60. Cheng, C. J. & Daggett, V. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 4, 181–201 (2014).

61. Ye, W., Wang, W., Jiang, C., Yu, Q. & Chen, H. Molecular dynamics simulations of amyloid fibrils: an in silico approach. Acta Biochim Biophys Sin (Shanghai) 45, 503–508 (2013).

62. Swietnicki, W., Morillas, M., Chen, S. G., Gambetti, P. & Surewicz, W. K. Aggregation and fibrillization of the recombinant human prion protein hPrP90–231. Biochemistry 39, 8 (2000).

63. Samson, A. O. & Levitt, M. Normal modes of prion proteins: from native to infectious particle. Biochemistry 50, 2243–2248 (2011).

64. Singh, J. & Udgaonkar, J. B. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 54, 4431–4442 (2015).

65. Caldarulo, E., Barducci, A., Wuthrich, K. & Parrinello, M. Prion protein beta2-alpha2 loop conformational landscape. Proc Natl Acad Sci USA 114, 9617–9622 (2017).

66. Askharon, R. N. et al. Probing the N-terminal beta-sheet conversion in the crystal structure of the human prion protein bound to a nanobody. J Am Chem Soc 136, 937–944 (2014).

67. Bamdad, K. Sequence-dependent dynamical instability of the human prion protein: A comparative simulation study. J Biomol Struct Dyn, 1–11 (2017).

68. Wang, Y., Shao, Q. & Hall, C. K. N-terminal Prion Protein Peptides (PrP(120–144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways. J Biol Chem 291, 22093–22105 (2016).

69. Wang, Y. & Hall, C. K. Seeding and Cross-seeding Fibrillation of N-terminal Prion Protein Peptides PrP(120–144). Protein Sci 27, 1304–1313 (2018).

70. Choi, J. K. et al. Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc Natl Acad Sci USA 113, 13851–13856 (2016).

71. Zhou, S., Shi, D., Liu, X., Liu, H. & Yao, X. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep 6, 21804 (2016).

72. Sabareesan, A. T. & Udgaonkar, J. B. The G126V Mutation in the Mouse Prion Protein Hinders Nucleation-Dependent Fibril Formation by Slowing Initial Fibril Growth and by Increasing the Critical Concentration. Biochemistry 56, 5931–5942 (2017).

73. Kaneko, K. et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci USA 94, 10069–10074 (1997).

74. Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc Natl Acad Sci USA 99, 13079–13084 (2002).

75. Panegyres, P. K. et al. A new PRNP mutation (G131V) associated with Gerstmann–Straussler–Scheinker disease. Ann Neurol 58, 1899–1902 (2001).

76. Race, B. et al. Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein. Acta Neuropathol Commun 6, 13 (2018).

77. Santini, S., Claude, J.-B., Audic, S. & Derreumaux, P. Impact of the tail and mutations G131V and M129V on prion protein flexibility. Proteins 51, 258–265 (2003).

78. Chen, W., van der Kamp, M. W. & Daggett, V. Diverse Effects on the Native β-Sheet of the Human Prion Protein Due to Disease-Associated Mutations. Biochemistry 49, 9874–9881 (2010).

79. Wen, Y. et al. Unique structural characteristics of the rabbit prion protein. J Biol Chem 285, 31682–31693 (2010).

80. Yu, Y. et al. Distinct effects of mutations on biophysical properties of human prion protein monomers and oligomers. Acta Biochim Biophys Sin (Shanghai) 48, 1016–1025 (2016).

81. Yu, Z. et al. Unique Properties of the Rabbit Prion Protein Oligomer. PloS one 11, e0160874 (2016).

82. Delaglio, F. et al. NMRPipe a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277–293 (1995).

83. Keller, R. L. J. The Computer Aided Resonance Assignment Tutorial. (CANTINA Verlag, 2004).

84. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44, 213–223 (2009).

85. Schwieters, C., Kuszewski, J. & Marxtschin, G. Using Xplor–NIH for NMR molecular structure determination. Prog Magn Reson Spectrosc 47, 42–62 (2006).

86. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W. & Thornton, J. AQUA and PROCHECK-NMR programs for checking the quality of protein structures solved by NMR. J Biomol NMR 4, 477–486 (1996).

87. Schroedinger, LLC. The PyMOL Molecular Graphics System, Version 1.8 (2015).

88. Reto, K., Martin, B. & Wuthrich, K. MOLMOL: A program for display and analysis of macromolecular structures. J Mol Graph 14, 51–55 (1996).

89. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

90. Farow, N. A., Zhang, O., Szabo, A., Torchia, D. A. & Kay, L. E. Spectral density function mapping using 15N relaxation data analysis. J Biomol NMR 6, 153–162 (1995).

91. Spyracopoulos, L. A suite of Mathematica notebooks for the analysis of protein main chain 15N NMR relaxation data. J Biomol NMR 36, 215–224 (2006).

92. Mulder, F. A., Skrynnikov, N. R., Hon, B., Dahlquist, F. W. & Kay, L. E. Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123, 967–975 (2001).

93. Lee, W., Tonelli, M. & Markley, J. L. NMRAM-PARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

94. Carver, J. P. & Richards, R. E. A General Two-Site Solution for the Chemical Exchange Produced Dependence of T2 Upon the Carr-Purcell Pulse Separation. J Magn Reson 6, 89–105 (1972).

95. Bieri, M. & Gooley, P. R. Automated NMR relaxation dispersion data analysis using NESSY. BMC bioinformatics 12, 421–431 (2011).

96. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensedphase quantum mechanical calculations. J Comput Chem 24, 1999–2012 (2003).

97. Case, D. A. et al. Amber12. University of California, San Francisco (2012).

98. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926–935 (1983).

99. Ryckaert, J.-P., Cicotti, G. & Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints Molecular Dynamics of α Alanines. J Comput Phys 23, 327–341 (1977).
100. Kabsch, W. & Sander, C. Dictionary of protein secondary structure pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers* **22**, 2577–2637 (1983).
101. Rückert, M. & Otting, G. Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments. *J Am Chem Soc* **122**, 7793–7797 (2000).
102. Zweckstetter, M. & Bax, A. Prediction of Sterically Induced Alignment in a Dilute Liquid Crystalline Phase: Aid to Protein Structure Determination by NMR. *J Am Chem Soc* **122**, 3791–3792 (2000).
103. Tolman, J. R. & Ruan, K. NMR Residual Dipolar Couplings as Probes of Biomolecular Dynamics. *Chem Rev* **106**, 1720–1736 (2006).
104. Mori, S., Abeygunawardana, C., Johnson, M. O. & Vanzijl, P. C. M. Improved Sensitivity of HSQC Spectra of Exchanging Protons at Short Interscan Delays Using a New Fast HSQC (FHSQC) Detection Scheme That Avoids Water Saturation. *J Magn Reson B* **108**, 94–98 (1995).
105. Laszlo, L. P. H. *et al*. Structural mobility of the human prion protein probed by backbone hydrogen exchange. *Nat Struct Biol* **6**, 740–743 (1999).

Acknowledgements
This research was financially supported by the National Natural Science Foundation of China (Nos. 31670741, 31170717 and 31470034). The RDCs experiments were performed at the University of Science and Technology of China, and all other NMR experiments were performed at the High-Field Nuclear Magnetic Resonance Research Centre of Xiamen University. In particular, Zhen Zheng wants to thank the invaluable support from Jun Wan over the years. I love you.

Author Contributions
Z.Z., C.G., and D.L. devised all the experiments. Z.Z. and M.Z. prepared the samples. Z.Z. and L.F. implemented the NMR experiments and analysed the data. Z.Z. performed the structural calculations, dynamic analyses and fibrillization experiments. Y.W. executed the molecular dynamics simulation. Z.Z., R.M., and J.W. performed the RDC experiments and re-implemented the CPMG RD experiments. Z.Z., Y.W., C.G., H.Y. and D.L. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31394-6.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018