Activation of the Arp2/3 Complex by the Listeria ActA Protein

ActA BINDS TWO ACTIN MONOMERS AND THREE SUBUNITS OF THE Arp2/3 COMPLEX*

Jonathan Zalevsky, Irina Grigorova, and R. Dyche Mullins†

From the Department of Cellular and Molecular Pharmacology, University of California School of Medicine, San Francisco, California 94129

Received for publication, July 19, 2000, and in revised form, September 27, 2000
Published, JBC Papers in Press, October 11, 2000, DOI 10.1074/jbc.M006407200

ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85–104 and 121–138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K_d of 0.6 μM and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144–170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.

The actin cytoskeleton participates in many essential functions in eukaryotic cells including motility, endocytosis, and cytokinesis. These processes rely on the rapid and localized assembly and disassembly of actin filaments. Cellular signals, such as activated Rho family G-proteins, direct construction of new actin filaments de novo by localizing and activating the nucleation machinery. The actin nucleation machinery consists of the Arp2/3 complex, a multiprotein complex that nucleates and cross-links actin filaments into orthogonal arrays, and a nucleation promoting factor that activates or enhances the activity of the Arp2/3 complex. Both the mechanism of Arp2/3-mediated nucleation and its enhancement by nucleation promoting factors are poorly understood. Cellular nucleation promoting factors identified to date are all members of the WASP family of proteins, which includes isoforms of WASP, N-WASP, and Scar. Other proteins, including fungal myosin I (1, 2) and p150 Spir (a possible c-Jun N-terminal kinase substrate in humans and Drosophila (3)), have been identified as potential nucleation promoting factors based on genetic and biochemical interactions with Arp2/3 and/or sequence similarity with regions of WASP family proteins.

The bacterium Listeria monocytogenes recruits the host cell cytoskeleton to power its own motility and migrate from cell to cell to avoid the humoral immune system. The only bacterial protein required for this activity is ActA (4, 5), a nucleation promoting factor that recruits and activates Arp2/3. Although ActA was the first protein found to stimulate Arp2/3-dependent actin nucleation (6), we know much less about how actin and Arp2/3 interact with ActA than with the WASP family proteins. WASP family proteins contain an acidic C-terminal domain that binds Arp2/3 (7) and one or two WASP homology 2 (WH2)1 domains that bind actin (8, 9). Biochemical analysis of truncation mutants suggests that both the acidic and WH2 domains are required to promote Arp2/3-dependent nucleation (10, 11). The nucleation promoting activity of ActA has been shown to reside in the N-terminal 262 amino acids of the molecule (6), but the location, number, and activity of actin- and Arp2/3-binding sites have not been determined.

Understanding the structure and function of ActA provides insight into the mechanism of Arp2/3-mediated actin polymerization. In addition, comparison of ActA with endogenous nucleation promoting factors shows us how relevant conclusions based on studying Listeria motility are to normal cellular motility. In the present study we find that ActA binds two actin monomers with submicromolar affinity using domains with some sequence similarity to WH2 domains from endogenous nucleation promoting factors. The binding site for Arp2/3 is located C-terminal to the actin-binding sites, and although it does not contain the characteristic cluster of acidic residues, it shares limited sequence homology with the Arp2/3-binding domains found in WASP family proteins. By chemical cross-linking and polarization anisotropy, we show that ActA and the WASP family proteins hScar1 and N-WASP contact the same subunits on Arp2/3 and compete for the same binding site. This binding site is much more extensive than previously thought and includes both of the actin-related proteins, Arp2 and Arp3.

In vitro the maximal activity of full-length ActA is nearly identical to the endogenous nucleation promoting factor N-WASP.

MATERIALS AND METHODS

Protein Purification—L. monocytogenes 4035 genomic DNA was a generous gift from A. K. Benson, University of Nebraska, Lincoln. Oligonucleotide primers were designed that correspond to the following: FACTA30N, GATCGAATTCCTCCAGTCTGAACACAGATGAATGGG; FACTA120N, GATCGGATCCATGGCTTCAGGAGCCGACCGACC; FACTA120N, GATCGAATTCTCCAGTCTGAACACAGATGAATGGG; FACTA120N, GATCGGATCCATGGCTTCAGGAGCCGACCGACC; FACTA120N, GATCGAATTCTCCAGTCTGAACACAGATGAATGGG.

The abbreviations used are: WH2, WASP homology 2; DTT, dithiothreitol; EDC, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride; NHS, N-hydroxysuccinimide.

* This work was supported by Howard Hughes Medical Institute Research Resources Program Grant 76296-549901 and National Institutes of Health Grant GM61010-01 (to R. D. M.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Dept. of Cellular and Molecular Pharmacology, University of California School of Medicine, 513 Parnassus Ave., San Francisco, CA 94129. Tel.: 415-502-4838; Fax: 415-476-5233; E-mail: dyche@mullinslab.ucsf.edu.
FACTA152N, GATCCGATCCGATGATCGATCATCGGATGATGACG; FACTB180N, GATGATGATGATGATGATGATGATGATGATGATGACG; RACTA170N, GATGATGATGATGATGATGATGATGATGATGATGACG; and RACTA612, GATGTTAAACGTCGATGTCCGTCGTTCTCCGTGG. Polymers containing cross-linkage were performed with pyrene-labeled amoeba or rabbit skeletal muscle actin to 10–15% dimers were prepared according to Ref. 15. Pyrene fluorescence was measured with a K2 Multifrequency Fluorometer (ISS, Champagne, IL). Data were analyzed using KaleidaGraph (Synergy Software, Reading, PA).

Polarization Anisotropy—Rhodamine-labeled ActA-(30–170) (500 nM) or Arp2/3 (750 nM) was mixed with the appropriate unlabeled proteins to the indicated molar concentrations. Samples were degassed under vacuum at room temperature before data collection. Data were collected with a K2 Multifrequency Fluorometer and analyzed using KaleidaGraph. Under the conditions used in our study, anisotropy is a measure of the rotational mobility of the fluorescently labeled protein. We excited the fluorophore with plane polarized light at 545 nm, and measured emission at 575 nm at polarizations both parallel (I∥) and perpendicular (I⊥) to the excitation source. We then calculated anisotropy (r) as shown in Equation 1,

\[r = \frac{I - I_0}{I_0} \]
(Eq. 1)

We determined dissociation equilibrium constants by fitting anisotropy data to the function shown in Equation 2,

\[r = r_f + (r_i - r_f) \frac{K_d + [A]}{K_d + [A] + [RF]} \]
(Eq. 2)

where \(r_f \) and \(r_i \) are the anisotropies of free and bound rhodamine ActA; \([A]\) and \([RF]\) are the total concentrations of ActA and Arp2/3, and \(K_d \) is the dissociation equilibrium constant. Fitting with this function makes no assumptions about the relative concentrations of ActA and Arp2/3.

In experiments where nonfluorescent ligands compete with rhodamine-labeled ActA (Fig. 4), we determined dissociation constants by fitting anisotropy data to the function (18) shown in Equation 3,

\[r = r_f + \frac{(r_i - r_f)}{K_d'} [C] + \frac{K_d'}{K_{d2}[R]} + 1 \]
(Eq. 3)

where \(K_d' \) is the dissociation constant of the nonfluorescent competitor; \([C]\) is the total concentration of the competitor, and \([RF]_0 \) is the concentration of free Arp2/3 when \([C] = 0\). For this analysis \([RF]_0 \) and \(K_{d2} \) are determined from the anisotropy in the absence of competitor and \(K_{d2} \) is determined from fitting Equation 3 to experimental data. This function is an approximation and only valid when Arp2/3 and the competitor are in excess over labeled ActA. These conditions were met in all our competition binding experiments.

Chemical Cross-linking—The indicated concentrations of ActA-(121–170) and Arp2/3 were dialyzed into 50 mM KCl, 1 mM MgSO₄, 1 mM imidazole, pH 7, to facilitate cross-linking. Stock solutions of 100 mM 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) (Pierce) were prepared in Me₂SO. Cross-linking reactions were carried out at room temperature at the indicated concentrations of proteins and cross-linkers for 45 min. The reaction was quenched with 10 mM Tris, 100 mM glycine. Reaction products were precipitated with methanol and chloroform and analyzed by SDS-polyacrylamide gel electrophoresis and immunoblotting.

Atomic Models—The atomic model for actin was taken from Schutt et al. (19), and the model of Arp2 was constructed by Joe Kelleher based on homology with conventional actin combined with molecular dynamics simulations (20). Visualization and rendering were performed with Molscript (21) and Raster3d (22).

RESULTS

ActA Binds Two Actin Monomers via WH2-like Motifs—Full-length ActA (amino acids 30–612) and several smaller truncation mutants inhibit spontaneous actin polymerization and elongation from the pointed end of existing actin filaments but have no effect on elongation from the barbed end (Fig. 1, A and B, inset). This activity is similar to that reported for fragments of N-WASP (29) and Scar1 (11). Unlike Scar and N-WASP, which almost completely inhibit pointed end elongation, saturating concentrations of ActA inhibit pointed end elongation by 80%.

We used the effect on pointed end elongation to quantitate actin monomer binding by ActA-(30–612) (Fig. 1B). The decrease in elongation rate as a function of ActA concentration is not well fit by a model in which an individual ActA molecule...
FIG. 1. ActA binds two actin monomers. A, inhibition of spontaneous actin polymerization by ActA-(30–612). 5 μM actin monomers were polymerized by addition of KCl and MgCl₂ in the presence of the following concentrations of ActA-(30–612): ○, 0.0 μM; ●, 3 μM; □, 5 μM; ■, 10 μM (conditions, actin was 15% pyrene-labeled; buffer, 50 mM KCl, 1 mM MgSO₄, 1 mM EGTA, 10 mM imidazole, pH 7, temperature, 24 °C). B, ActA-(30–612) blocks addition of actin monomers to the pointed ends of existing filaments. We polymerized 3 μM actin (10% pyrene-labeled) from the pointed ends of gelsolin-capped actin seeds in the presence of various concentrations of ActA-(30–612). Inset, time courses of polymerization in the presence of 0.0, 0.8, 1.6, 3.0, 4.0, and 6.0 μM ActA-(30–612) (conditions, buffer, and temperature same as A). Straight lines represent infinitely tight binding to either one (right) or two (left) binding sites. The heavy curve is the best fit to a two binding site model with equal dissociation equilibrium constants of 0.7 ± 0.2 μM. C, domain organization of ActA. ActA truncation mutants used in this study and their relative activities in inhibiting spontaneous actin polymerization and promoting Arp2/3-dependent nucleation activity. D, actin and Arp2/3-binding sites in the N-terminal portion of ActA. The heavy dark lines indicate the minimal fragment of ActA capable of promoting Arp2/3-dependent nucleation (top) and the putative actin and Arp2/3-binding sites identified by homology with domains from WASP family proteins (bottom). The domains from WASP family proteins begin at the following amino acids: Bee1p, 547, 570, and 613; human N-WASP, 345, 372, and 413; Rat N-WASP, 401, 428, and 468; Mouse WASP, 447 and 490; Human Scar1, 495 and 533; and Dicty Scar, 390 and 418.
ning the entire molecule (Fig. 1C) and assayed the monomer binding activity of each by its effect in three assays as follows: spontaneous actin polymerization, elongation from the barbed end, and elongation from the pointed end of existing filaments.

The construct spanning amino acids 30–120 weakly inhibited spontaneous polymerization (data not shown), consistent with previous reports of an actin-binding site between amino acids 60 and 100 (24). In addition, the construct spanning amino acids 120–612 inhibited spontaneous polymerization and elongation from both the pointed and barbed ends of existing filaments. We further localized this second actin-binding site to a region of the protein between amino acids 121 and 152. We estimated a dissociation constant of 2.1 ± 0.5 μM for the actin-binding site on ActA-(120–612) from barbed end elongation assays (data not shown). The lower affinity of this binding site compared with that predicted from ActA-(30–612) and the fact that it blocks barbed as well as pointed end elongations are probably artifacts caused by some degree of misfolding of the ActA-(120–612) construct. Cicchetti et al. (24) found that deletions in the N-terminal region of ActA perturb the secondary structure and decrease the stability of the protein.

We conclude that full-length ActA contains two actin monomer-binding sites. We further localized them based on sequence similarity to the actin-binding WH2 domains from WASP family proteins (Fig. 1D).

The Arp2/3-binding Site of ActA—Amino acids 143–169 of ActA constitute a minimal Arp2/3-binding site. Full-length ActA and truncations spanning residues 30–170, 120–612, and 121–170 all stimulated Arp2/3-dependent nucleation (Figs. 1C and 2A). Therefore, residues 121–170 contain the minimal requirements to promote nucleation—actin monomer binding activity and an Arp2/3-binding site. Within this region we identified residues 143–169 as the Arp2/3-binding site by sequence similarity to the C-terminal portions of WASP, Scar, and N-WASP (Fig. 1D). This domain contains very few acidic residues compared with the Arp2/3-binding sites of most WASP family proteins but is most similar to the yeast protein Las17p/Beelp. At saturating concentrations the ActA-(120–612) truncation is less efficient at stimulating actin polymerization than proteins containing amino acids 30–120. Under our assay conditions (2 μM actin, 50 nM Arp2/3), the time to half-maximal polymerization stimulated by saturating concentrations of ActA-(30–612) and ActA-(30–170) is ~75 s compared with t1/2 of ~500 s for ActA-(120–612) (Fig. 2A).

We determined the affinity of the 30–612 and 30–170 ActA proteins for Arp2/3 by polarization anisotropy (Fig. 2B). To characterize the interaction with ActA-(30–612) we labeled Arp2/3 with rhodamine maleimide. Our labeling conditions produced 5–15% labeling, almost exclusively on the Arp3 subunit. From preparation to preparation, free Arp2/3 had an anisotropy of 0.21. From this anisotropy change, we measured a Kd of 4.8 ± 0.3 μM. The lower affinity of ActA-(30–170) suggests that residues C-terminal to 170 may also interact with Arp2/3.

ActA and Scar1 Bind Arp2/3 at the Junction between p-40, Arp2, and Arp3—To localize the binding sites for nucleation promoting factors on Arp2/3, we carried out identical cross-linking experiments with the active fragment of hScar1 and the smallest fragment of ActA capable of stimulating Arp2/3-dependent nucleation, ActA-(121–170). We identified three Arp2/3 subunits that directly contact both ActA and hScar1 by cross-linking each protein to Arp2/3 with the zero-length cross-linker EDC together with NHS. After cross-linking, antibodies that recognize the T7 tag on ActA-(121–170) or the His6 tag on Arp2/3 reacted with three prominent new bands (Fig. 3, A and B). The new bands are also recognized by monospecific antibodies against the p40, Arp2, and Arp3 subunits of Arp2/3.

We next investigated whether the binding site for ActA overlapped that of endogenous WASP family proteins by performing competition binding assays. Addition of the active C-terminal domain of N-WASP to a mixture of Arp2/3 and rhodamine ActA-(30–170) decreases the anisotropy of labeled ActA down...
to the level of free ActA (Fig. 4), suggesting that the two proteins bind in a mutually exclusive manner. From these competition experiments we estimate a K_d of 1.9 ± 0.3 μM for N-WASP binding to Arp2/3. Similar results were obtained with hSCAR1WA ($K_d = 2.0 \pm 0.4$ μM, data not shown).

Our results suggest that Arp2 interacts directly with ActA and WASP family proteins. To further localize the binding site for nucleation promoting factors, we tested the effects of two proteins known to bind Arp2, profilin and actophorin, on the binding of ActA to Arp2/3. Interestingly, profilin decreases the fraction of ActA bound to Arp2/3 in a dose-dependent manner, suggesting that its binding site overlaps that of ActA. Fitting the data with a competitive binding model yields a K_d of 3.4 ± 0.3 for profilin binding, somewhat lower than our previous estimate of 7 μM from analytical ultracentrifugation (26). Profilin, however, is not as effective as N-WASP at displacing ActA from Arp2/3. In the presence of Arp2/3, saturating concentrations of profilin do not decrease the anisotropy of rhodamine ActA-(30–170) down to the levels of free ActA even at high concentrations (Fig. 4).

Kinetics of Arp2/3-dependent Nucleation—Although we do not understand the molecular details of Arp2/3-dependent nucleation, several characteristics of the process have been well described. Addition of WASP family proteins to Arp2/3 accelerates filament formation but, even at high concentrations, does not completely abolish the initial lag phase of polymerization (10, 27, 28). This suggests that nucleation promoting factors do not convert Arp2/3 into a *bona fide* actin nucleus but promote nucleation via a multistep mechanism. In addition, pre-existing filaments accelerate the nucleation reaction so that the majority of new actin filaments grow from the sides of pre-existing filaments in a characteristic branching pattern (7, 11, 15, 29). To compare the activity of ActA to that of endogenous nucleation promoting factors, we asked the following three questions. 1) Does addition of ActA abolish the lag phase of polymerization? 2) How does the maximal activity of ActA compare with that of an endogenous nucleation promoting factor? 3) Do pre-existing filament enhance ActA-stimulated filament formation?

The maximal activity of either ActA-(30–612) or ActA-(30–170) is nearly identical to the most active C-terminal fragment of N-WASP (Fig. 5A). The initial lag phase of actin polymerization is reduced in the presence of both proteins but, even at saturating concentrations, is not abolished. We also find that prepolymerized actin seeds enhance the rate of ActA-stimulated polymerization (Fig. 5B). Under these conditions the lag phase is either abolished or so short that the dead time of our assay prevents us from detecting it.

DISCUSSION

Understanding the functional organization of the ActA protein is fundamental to the study of cellular actin dynamics. Motility of *Listeria* or beads coated with ActA is widely used as a model for *in vivo* actin assembly (30) and actin-based force generation (31). ActA, however, is a prokaryotic protein and a constitutive Arp2/3 activator and thus might operate by a different mechanism from that of the endogenous WASP family proteins. The present study, therefore, not only provides insight into the function of the Arp2/3 complex but also indicates the relevance of conclusions drawn from the study of *Listeria* motility to regulation of actin assembly by endogenous factors.

The structural and kinetic similarities identified by this study indicate that the constitutive Arp2/3 activator ActA and the tightly regulated WASP family proteins operate via a common mechanism and that ActA-dependent actin assembly closely mimics endogenous processes. In addition, for the first time we have identified the subunits of Arp2/3 that bind nucleation promoting factors, including ActA and the WASP family proteins.

Our results show that ActA binds two actin monomers and has actin-binding properties similar to WH2-containing WASP family proteins. The domain organization of ActA most closely resembles that of N-WASP (Fig. 2B) with two actin-binding sites N-terminal to an Arp2/3-binding site. The smallest ActA proteins that promote Arp2/3-dependent nucleation contain both an actin and an Arp2/3-binding site separated by a very short (five residues) and apparently flexible linker suggesting that nucleation promoting activity involves delivery of actin monomers to Arp2/3. The maximal activity of ActA is insensitive to a 10-fold change in the affinity for Arp2/3, but the maximal activity is very sensitive to the loss of residues 30–120. This may be caused by loss of one actin-binding site or possibly by a misfolding artifact. Cicchetti et al. (24) report that N-terminal truncations of ActA are unstable, and we find that, whereas ActA-(30–612) inhibits only pointed end elongation,
ActA-(120–612) inhibits both pointed and barbed end elongation.

The most interesting result of our study is the identification of the binding site for nucleation promoting factors on the Arp2/3 complex. It is interesting because it tells us a lot about both the organization and activation of the Arp2/3 complex. We find that ActA and the endogenous WASP family proteins bind Arp2/3 in a mutually exclusive manner and by chemical cross-linking these proteins interact with the Arp2, Arp3, and p40 subunits of the Arp2/3 complex. Previous chemical cross-linking studies (32) identified interactions between Arp2 and p40 but found no evidence of a contact between Arp3 and either Arp2 or p40. The interaction of the small (49 residue) ActA-(120–170) protein with all three subunits suggests that they are in close physical proximity (Fig. 6A). Arp2 and Arp3 were previously predicted to form a heterodimer (20), but ours is the first experimental evidence that they are in close proximity within the Arp2/3 complex.

A yeast two-hybrid screen originally identified an interaction between the vertebrate p21arc subunit of the Arp2/3 complex and the Scar protein (7). We do not detect a direct interaction between p18 (the amoeba homolog of p21arc) and either ActA or hScar1, but our experiments do not rule it out. The p18-Scar-binding interface may not involve close proximity of amino and carboxyl groups required for chemical cross-linking by EDC. Regardless, p21arc does not appear to be required for Arp2/3 binding since Winter et al. (33, 34) found that a yeast Arp2/3 complex lacking p18 (the amoeba homolog of p21arc) and/or p40 can still bind Las17p/Bee1p (a yeast protein similar to N-WASP). Despite this, the essential interaction required for Arp2/3 activation is between the nucleation promoting factor and the actin-related protein Arp2 (Winter, 1997) found that Arp2/3 complex lacking p40 communoprecipitates with Las17p but that a complex lacking Arp2, p40, and p15 does not. We previously showed that anti-Arp2 antibodies that do not affect the base-line nucleation or pointed end capping of purified Arp2/3 block its activation in cell extracts (44). We also detect direct interaction between ActA, Scar, N-WASP, and Arp3, but we can say less about the role of this interaction in nucleation. Our data are consistent with the two most likely models for Arp2/3 activation as follows: 1) nucleation promoting factor binding induces a reorganization of subunits and converts Arp2 and Arp3 into an actin-like nucleus (35), or 2) nucleation promoting factors deliver actin monomers to Arp2 or Arp3 (7).

Arp2 is an actin-related protein with 50% sequence identity to conventional actin. The surfaces of actin that interact with profilin and actophorin are conserved in Arp2 (20, 26) so the ability of profilin and the failure of actophorin to compete with ActA allow us to localize further the ActA-binding site on Arp2.
A similar study of ActA was published while this manuscript was under review. Based on analysis of deletion mutants, Skoble et al. (40) argue that actin binding is not essential for ActA activity in vivo and that perhaps the combination of VASP and profilin can deliver actin monomers to the Arp2/3 complex. We disfavor this model for two reasons. 1) The authors failed to remove the actin-binding site between amino acids 121 and 138 and so never directly tested an ActA molecule with no actin-binding sites in their motility assays. 2) Although VASP is known to enhance Listeria motility, this effect has been shown to be independent of its ability to bind profilin (41).

We do not understand the physiological significance of the interaction between profilin and Arp2/3. We estimated previously that in vivo a significant fraction of Arp2/3 is bound to profilin (26). The fact that profilin inhibits binding of nucleation promoting factors suggests that it may play a role in regulation of Arp2/3 activity.

During Listeria motility ActA remains attached to the surface of the bacterium (4), whereas Arp2/3 remains attached to the actin network (15). So for efficient motility ActA must dissociate rapidly from Arp2/3 after a new filament is formed. To avoid retarding bacterial motility, we estimate that the Arp2/3 must dissociate from ActA before the bacterium has moved 25 nm (or approximately ~10 monomers). We measure an affinity of 0.6 μM for Arp2/3-binding ActA. A diffusion-limited association rate constant of 10 μM⁻¹ s⁻¹ predicts an upper limit for the dissociation rate constant of 6 s⁻¹ and a lower limit of 0.13 s for the half-time of dissociation. The cytoplasmic concentration of polymerizable actin is ~100 μM (42), and the rate constant for filament elongation at the bacterial surface is between 3 and 10 μM⁻¹ s⁻¹ (31, 43) so filaments associated with the bacterium should elongate at a rate of 300–1000 monomers/s. Thus the bacterium will move by more than 75 nm (30–100 actin monomers) by the time half the ActA has dissociated from Arp2/3. Thus we speculate that the in vivo rate of Arp2/3 dissociation is significantly faster than the rate in vitro. Perhaps some step in the nucleation reaction decreases the affinity of ActA for Arp2A.

Acknowledgments—We are grateful to A. K. Benson for the generous gift of ActA genomic DNA; to C. Adler and C. Carroll who performed preliminary experiments; to L. Lempert and L. Haines for valuable technical assistance; to E. A. Holleran, M. Dayel, K. DeFea, J. Iwasa, J. Barry, and A. Kelley for helpful discussions and critical reading of the manuscript; and finally to M. R. Nuttie and L. Oko for inspiration and comic relief.

REFERENCES

1. Lechler, T., Shevchenko, A., and Li, R. (2000) J. Cell Biol. 148, 363–373
2. Evangelista, M., Klebl, B. M., Tong, A. H., Webb, B. A., Leenew, T., Leherer, E., Whiteway, M., and Thomas, D. Y., and Boone, C. (2000) J. Cell Biol. 148, 353–362
3. Otto, I. M., Raabe, T., Rennefahrt, U. E., Bork, P., Rapp, U. R., and Kerkhoff, E. (2000) Curr. Biol. 10, 345–348
4. Kocks, C., Goun, E., Tahouret, M., Berche, P., Ohayon, H., and Cossart, P. (1992) Cell 68, 521–531
5. Smith, G. A., Portnoy, D. A., and Theriot, J. A. (1995) Mol. Microbiol. 17, 945–951
6. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A., and Mitchison, T. J. (1998) Science 281, 105–108
7. Machelsky, L. M., and Insall, R. H. (1998) Curr. Biol. 8, 1347–1356
8. Miki, H., Murua, K., and Takenawa, T. (1996) EMBO J. 15, 5326–5335
9. Symons, M., Derry, J. M., Karlak, B., Jiang, S., Lemahieu, V., McCormick, P., Franco, U., and Abo, A. (1996) Cell 84, 725–734
10. Machelsky, L. M., Mullins, R. D., Higgs, H. N., Kaiser, D. A., Blanchon, L., May, R. C., Hall, M. E., and Pollard, T. D. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 3739–3744
11. Higgs, H. N., Blanchon, L., and Pollard, T. D. (1999) Biochemistry 38, 15212–15222
12. Kelleher, J. P., Mullins, R. D., and Pollard, T. D. (1998) Methods Enzymol. 298, 42–51
13. Spudich, J. A., and Watt, S. (1971) J. Biol. Chem. 246, 4866–4871
14. MacLean-Fletcher, S., and Pollard, T. D. (1986) Cell 20, 329–341
15. Mullins, R. D., Heuser, J. A., and Pollard, T. D. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 6181–6186
16. Bryan, J., and Coluccio, L. M. (1985) J. Cell Biol. 101, 1236–1244
17. Cooper, J. A., Walker, S. B., and Pollard, T. D. (1985) J. Muscle Res. Cell Motil.
Activation of Arp2/3 by ActA

18. Vinson, V. K., De La Cruz, E. M., Higgs, H. N., and Pollard, T. D. (1998) Biochemistry 37, 10871–10880
19. Schutt, C., Myslik, J. C., Rozych, M. D., Goonneskere, N. C. W., and Lindberg, U. (1993) Nature 365, 810–816
20. Kelleher, J. F., Atkinson, S. J., and Pollard, T. D. (1995) J. Cell Biol. 131, 385–397
21. Kraulis, P. K. (1991) J. Appl. Crystallogr. 24, 946–950
22. Merritt, E., and Murphy, M. (1994) Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 869–873
23. Laurent, V., Loisel, T. P., Harbeck, B., Wehman, A., Grobe, L., Jockusch, B. M., Wehland, J., Gertler, F. B., and Carlier, M. F. (1999) J. Cell Biol. 144, 1245–1258
24. Cicchetti, G., Maurer, P., Wagener, P., and Kocks, C. (1999) J. Biol. Chem. 274, 33616–33626
25. Lasa, I., Goethals, M., Vandekerckhove, J., and Cossart, P. (1997) EMBO J. 16, 1531–1540
26. Mullins, R. D., Kelleher, J. F., Xu, J., and Pollard, T. D. (1998) Mol. Biol. Cell 9, 841–852
27. Yarar, D., To, W., Abo, A., and Welch, M. D. (1999) Curr. Biol. 9, 555–558
28. Blanchoin, L., Amano, K. J., Higgs, H. N., Marchand, J. B., Kaiser, D. A., and Pollard, T. D. (2000) Nature 404, 1007–1011
29. Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J., and Mitchison, T. J. (1994) Cell 76, 505–517
30. van Oudenaarden, A., and Theriot, J. A. (1999) Nat. Cell Biol. 1, 493–499
31. Mullins, R. D., Stafford, W. F., and Pollard, T. D. (1997) J. Cell Biol. 136, 331–343
32. Winter, D., Lechler, T., and Li, R. (1999) Curr. Biol. 9, 501–504
33. Winter, D. C., Choe, E. Y., and Li, R. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 7298–7293
34. Mullins, R. D., and Pollard, T. D. (1999) Curr. Opin. Struct. Biol. 9, 244–249
35. Winter, D. C., Choe, E. Y., and Li, R. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 7298–7293
36. Blanchoin, L., and Pollard, T. D. (1998) J. Biol. Chem. 273, 25106–25111
37. Giuliano, K. A., Khatib, F. A., Hayden, S. M., Daoud, E. W. R., Adams, M. E., Amorese, D. A., Bernstein, B. W., and Bamburg, J. R. (1998) Biochemistry 27, 8831–8838
38. Mullins, R. D., Kelleher, J. F., and Pollard, T. D. (1996) Trends Cell Biol. 6, 208–212
39. Kaiser, D., Vinson, V., Murphy, D., and Pollard, T. (1999) J. Cell Sci. 112, 3779–3790
40. Skoble, J., Portnoy, D., and Welch, M. (2000) J. Cell Biol. 150, 527–538
41. Loisel, T. P., Boujemaa, R., Pantaloni, D., and Carlier, M. F. (1999) Nature 401, 613–616
42. Gordon, D. J., Eisenberg, E., and Kern, E. D. (1976) J. Biol. Chem. 251, 4778–4786
43. Pollard, T. D. (1986) J. Cell Biol. 103, 2747–2754
44. Mullins, R. D., and Pollard, T. D. (1999) Curr. Biol. 9, 405–415
45. Kahsche, W., Mannherz, H. G., Sack, D., Pai, E. F., and Holmes, K. C. (1990) Nature 347, 37–44
