Intra-Suprasellar Schwannoma Originating from the Diaphragma Sellae

Hyun-Woong Park, M.D., Shin Jung, M.D., Ph.D., Tae-Young Jung, M.D., Kyung-Sub Moon, M.D.
Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea

A 49-year-old woman presented with headache, vomiting and visual disturbance. Neurological examination revealed bitemporal hemianopsia with poor visual acuity. Magnetic resonance imaging showed a bulky intra-suprasellar mass, which was isointense with brain parenchyma on T1-weighted images, and slightly hyperintense on T2-weighted images. After gadolinium administration, the mass was homogeneously enhanced. The mass was partially removed by the endonasal transsphenoidal approach and then the remnant mass was totally removed by the transcranial approach five months later. We found a yellowish mass which was attached to the diaphragm sellae in operation field. Histopathological examination of the tumor revealed the characteristic features of a schwannoma. We report an unusual case of an intra-suprasellar schwannoma resembling a non-functioning pituitary macroadenoma both clinically and radiologically.

KEY WORDS: Intrasellar · Schwannoma · Diaphragm sellae.
features of a schwannoma. The tissue was composed of Antoni A and Antoni B fibers (Fig. 2A). Immunohistochemically, there was high and diffuse positivity for the S-100 protein (Fig. 2B). Also, the mass attached to the diaphragm sellae showed diffuse positivity for S-100 protein (Fig. 2C).

Last follow-up postoperative magnetic resonance imaging showed no remnant mass and recurrence (Fig. 3).

DISCUSSION

Schwannomas account for about 8% of all primary intracranial neoplasms and are relatively frequent intracranial tumors. They usually develop from sensory nerves, most often the auditory nerve and less commonly the trigeminal nerve, although they have been shown to involve all other cranial nerves except the optic nerve1,13,14,18. However, an intrasellar location is exceptional and can mimic a non-functioning pituitary adenoma2,3,5,9. Schwannomas occurring within the sella are exceedingly rare; there have been 10 reported cases including the present case5. These tumors are not usually included in the differential diagnosis of sellar or suprasellar lesions. The clinical and radiological presentation of intrasellar schwannomas is consistent with the findings of pituitary adenomas. Therefore, many surgeons chose transsphenoidal approach as initial surgical procedure. Schwannomas have been described as fibrous, moderately to highly vascular and difficult to remove3. Hence, tumor removal is often incomplete because of the macroscopic features. Wilberger16 recommended that a transsphenoidal approach should be avoided if a schwannoma is suspected. However, it is difficult to diagnose a sellar schwannoma preoperatively, because of their clinical and radiological resemblance to typical pituitary adenomas.

As there are no nerves observed within the sellar turcica, the origin of primary intrasellar schwannomas remains unclear. Three histopathogenetic hypotheses, which were about the origin from lateral sellar nerve plexus1, perivascular schwann cells4,9,12, and small sensory nerves that innervate the dura3,5 have been proposed. Firstly, lateral sellar nerve plexus is a distribution centre for visceromotor and sensory nerves, which innervate cerebral arteries, orbital structures, and the dura mater1. The potential deficiency of the medial wall of the cavernous sinus has also been increasingly appreciated9. Secondly, Penfield10 demonstrated the presence of perivascular schwann cells. Cerebral arteries as small as 10 to 15 µm in diameter receive adrenergic supply. The occurrence of schwannomas within the substance of the spinal cord has been attributed to the proliferation of schwann cells from nerve plexuses accompanying the perivascular spaces of perforating branches. In the third place, an origin from schwann cells that encircle small dural sensory branches of the trigeminal nerve or vasomotor nerves of the cavernous sinus has also been increasingly appreciated9.
Intra-suprasellar schwannoma originating from the nerve present within the diaphragma sellae

All four lesions including schwannoma have been proposed.

Intraoperatively, our case showed that the tumor had dense dural attachments adjacent to the diaphragm sellae. This mass might have originated from nerves that innervated the diaphragm sellae and the histopathological findings also suggested this origin of the tumor.

The pathological differential diagnosis for a sellar schwannoma includes three common lesions that can be observed in this region, namely fibroblastic meningioma, astrocytoma of the posterior pituitary gland and solitary fibrous tumors. All four lesions including schwannoma have similar histological appearance as low-grade spindle cell tumors with cells arranged in fascicles. Therefore, immunohistochemical examinations are essential for confirmation of the diagnosis. Fibroblastic meningiomas show moderate focal positivity for S-100, while schwannomas are diffusely and strongly reactive to S-100. In addition, meningiomas are epithelial membrane antigen-positive, whereas schwannomas are negative. Astrocytomas of the posterior pituitary gland, which are also known as pituicytomas, are mostly immunopositive for glial fibrillary acidic protein (GFAP) and may demonstrate S-100 immunopositivity, similar to schwannomas. A solitary fibrous tumor (SFT) has clearly different findings of the vascular stroma and the cellular appearance. Furthermore, the immunohistochemical profile with positivity for CD34 is consistent with a SFT, whereas CD34 reactions are reported only in a very small portion of certain schwannomas. Our case showed immunopositivity to only S-100, not to GFAP, epithelial membrane antigen (EMA) and CD34. These findings confirm our case to be a schwannoma.

CONCLUSION

Authors experienced a very rare case of schwannoma in the sellar and suprasellar area originating from the small nerves that innervating diaphragm sellae. Because of the similarity with pituitary adenoma in the clinical and radiological aspect, it should be included in the differential diagnosis of sellar and suprasellar lesions.

References

1. Bleys RL, Janssen LM, Groen GJ: The lateral sellar nerve plexus and its connections in humans. J Neurosurg 95: 102-110, 2001
2. Brat DJ, Scheithauer BW, Staugaitis SM, Holtzman RN, Morgello S, Burger PC: Pituicytoma: a distinctive low-grade glioma of the neurohypophysis. Am J Surg Pathol 24: 362-368, 2000
3. Civit T, Pinelli C, Klein M, Auque J, Baylac F, Hepner H: Intrasellar schwannoma. Acta Neurochir (Wien) 139: 160-161, 1997
4. Gibson AA, Hendrick EB, Conen PE: Case reports. Intrasellar schwannoma. Report of a case. J Neurosurg 24: 552-557, 1966
5. Goebel HH, Shimokawa K, Schaake T, Kremp A: Schwannoma of the sellar region. Acta Neurochir (Wien) 48: 191-197, 1979
6. Honegger J, Koerbel A, Parias T, Petrich M, Mueller K: Primary intrasellar schwannoma: clinical, aepitopathological and surgical considerations. Br J Neurosurg 19: 432-438, 2005
7. Louw D, Sutherland G, Halliday W, Kaufmann J: Meningiomas mimicking cerebral schwannoma. J Neurosurg 73: 715-719, 1990
8. Maahtens NF, Ellelaga DB, Vance ML, Lopes MB, Laws ER Jr: Intrasellar schwannomas: report of two cases. Neurosurgery 52: 1200-1205; discussion 1205-1206, 2003
9. New PF: Intrasellar schwannoma. Case report. J Neurosurg 36: 795-797, 1972
10. Penfield W: Intracerebral vascular nerves. Arch Neurol Psychiatry 21: 92-94, 1958
11. Russell DS, Rubinstein LJ: Pathology of tumours of the nervous system, ed 4. Baltimore, Williams and Wilkins, 1977, pp51-52
12. Ulrich H, Tien RD: Tumors of the cranial, spinal and peripheral nerve sheaths, in Bigner DD, McLendon RE, Bruner JM (eds): Russell and Rubinstein’s Pathology of Tumours of the Central Nervous System. London: Edward Arnold, 1998, pp141-193
13. Ulrich J, Levy A, Pfister C: Schwannoma of the olfactory groove. Case report and review of previous cases. Acta Neurochir (Wien) 40: 315-321, 1978
14. Uto C, Sehested P, Overgaard J: Intracranial hypoglossal neurinoma: diagnosis and postoperative care. Surg Neurol 16: 65-68, 1981
15. Weiss SW, Nickoloff BJ: CD-34 is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am J Surg Pathol 17: 1039-1045, 1993
16. Wilberger JE Jr: Primary intrasellar schwannoma: case report. Surg Neurol 32: 156-158, 1989
17. Woodruff JM, Kourou AP, Louis DN, Scheithauer BW: Schwannoma, in Kleinhues P, Cavenee WK (eds): WHO Classification of Tumours, Pathology and Genetics: Tumours of the Central Nervous System. Lyon: IARC Press, 2000, pp164-166
18. Yoon WS, Park IS, Baik MW: Intrasellar schwannomas. J Korean Neurosurg Soc 37: 157-159, 2005

Fig. 3. Postoperative MR images. Last follow-up postoperative magnetic resonance imaging shows no remnant mass and recurrence.

377