Hiding in Plain Sight: Nebivolol Exhibits Compelling Tocolytic Properties

Scott D. Barnett | Iain L. O. Buxton

Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada

Correspondence
Iain L. O. Buxton, Pharmacology, University of Nevada, Reno, 1664 N. Virginia St. CMM308 M50573, Reno, NV 89557. Email: ibuxton@medicine.nevada.edu

Funding information
Eunice Kennedy Shriver National Institute of Child Health and Human Development, Grant/Award Number: HD053028; Bill and Melinda Gates Foundation, Grant/Award Number: R6 Ph 1; National Institute of General Medical Sciences, Grant/Award Number: U54GM 104944

Abstract
Preterm birth before 37 weeks of completed gestation results in numerous health consequences for the foetus. Preterm labour leads to preterm birth in over 50% of cases, and no FDA-approved treatment can prevent labour or help a foetus remain in the womb until term. Examination of nitric oxide mediated relaxation signaling in the uterine smooth muscle reveals a role for protein S-nitrosation. The recent discovery of upregulated S-nitrosoglutathione reductase (GSNOR) in spontaneously preterm labouring women has emphasized the need to explore the function of S-nitrosation regulation in the maintenance of uterine quiescence. Here we have examined the ability of nebivolol to relax uterine smooth muscle and tested recent claims that nebivolol is a GSNOR inhibitor. In uterine smooth muscle strips from both mouse and human, nebivolol relaxes oxytocin-induced contractions in a dose dependent manner. Our data indicates that nebivolol has no effect on GSNOR activity, nor does nebivolol inhibit thioredoxin reductase, two of the major protein denitrosylases. The ability of nebivolol to relax uterine smooth muscle is likely the combined effects of increased nitric oxide synthase activity and β3-adrenergic stimulation.

KEYWORDS
GSNO, GSNOR GSNO reductase, ADH5 nebivolol, nitric oxide, pregnancy, preterm labour, smooth muscle, S-Nitrosoglutathione

1 | INTRODUCTION

Spontaneous Preterm Labour (sPTL) leads to Preterm Birth (PTB). PTB remains the primary cause of neonatal morbidity and hospitalization during pregnancy, and in the United States alone one in eight infants are born prematurely, resulting in 20,000 deaths annually. Currently available drugs are not effective at delaying birth beyond 48-hours. This observation is not surprising when we consider that tocolytics, in general, are borrowed pharmacology. That is to say, nearly every drug used to treat PTL was initially intended to treat maladies in other smooth muscle types, such as vascular, colonic and airway. Even atosiban (Tractocile®; Ferring Pharmaceuticals, Parsippany, NJ), a selective oxytocin-vasopressin receptor antagonist designed specifically to mitigate uterine contractions, is not approved for use in the United States and does not reduce the risk of preterm birth beyond 48-hours or improve neonatal outcome.

The myometrium is a unique subclass of smooth muscle that exhibits a signalling exception to the dogma that global cGMP accumulation drives nitric oxide (▪NO)-mediated relaxation. It is well-established that term human myometrium relaxes to ▪NO in an cGMP-independent fashion. ▪NO is a critical mediator of uterine quiescence; however, ▪NO's most pervasive role in the myometrium is through protein S-nitrosation (SNO), rather than cGMP accumulation. S-nitrosoglutathione reductase (GSNOR) is an important modulator of ▪NO and S-nitrosation. GSNOR is upregulated in human sPTL myometrium, and inhibition of GSNOR by N6022 can partially restore native myometrial function.

At first glance, nebivolol seems like an unlikely tocolytic. Nebivolol is a third generation, FDA-approved β1-adrenergic receptor (β1AR)
antagonist commonly used for the treatment of heart failure. Nebivolol also serves a lesser known secondary function as a β3AR agonist,10 which facilitates vasodilation by increasing endothelial NO-synthase (eNOS) activity and expression.11 Nebivolol increases SNOs and has recently been reported as a GSNOR inhibitor,12 which if true would further increase NO concentration in the cell. The NO-promoting effects of nebivolol makes it a candidate therapeutic for inotropic muscle conditions other than vascular smooth muscle disease, such as sPTL, where SNOs are decreased. Here, we test the tocolytic properties of nebivolol and determine if nebivolol does in fact act as a GSNOR inhibitor.

2 | METHODS

2.1 | Contractile studies

Strips of either human or mouse (C57BL/6J) myometrium (~0.5 × 15 mmol L−1) were clip-mounted by silk thread, attached to a force transducer and isometrically stretched in an organ bath (WPI, Sarasota, FL) containing Krebs buffer. Tissues were maintained at 37°C, gently bubbled with balanced oxygen (95% O\textsubscript{2}, 5% CO\textsubscript{2}) and challenged with KCl (60 mmol L−1 replacing NaCl) for 3 min, followed by washout. Tissues were equilibrated for 1 h, then further challenged with oxytocin (8 nmol L−1), followed by washout. Samples utilizing the β3AR antagonist, SR59230A (10 μmol L−1), were pre-incubated 15-min prior to baseline recordings. Data were analyzed with LabScribe (version 3.015800, Mac OS 10.11; iWorx systems inc., Dover, NH).

2.2 | GSNOR activity assay

GSNOR enzyme activity was determined as previously described13 using total protein lysate from human uterine smooth muscle tissue taken from the superior portion of the transverse incision. The lysate was prepared to a final protein concentration of 1 mg/mL in oxygen-purged buffer containing: Tris-HCl pH 8.0 (20 mmol L−1), EDTA (0.5 mmol L−1), NP-40 (0.1%) and 1 mmol L−1 phenylmethylsulphonyl fluoride.含量在图1中显示。
fluoride (PMSF) and equilibrated at r.t. for 10 min in the presence of NADH (300 μmol L⁻¹) prior to addition of GSNO (200 μmol L⁻¹). Absorbance at 340 nm (A340) was recorded at t = 0, 5, 10 min to ensure stability of the NADH pool prior to the addition of GSNO or/and inhibitors. N6022 (8 nmol L⁻¹) (S77589: Selleck Chemicals, Houston, TX), a GSNO inhibitor, was used to verify negligible NADH conversion to NAD⁺ in the presence of GSNO.

2.3 | SC-TR activity assay

The selenocystamine-thioredoxin reductase (SC-TR) assay was performed as previously described with the exception that selenocystamine was used in lieu of selenocystine as the substrate. HEK293 cells were grown to 90% confluence and lysed with ice-cold TE-buffer (pH 7.5). 100 μL reaction volumes were used in costar 3396 96-well polystyrene plates and read on a Hidex Chameleon (model 425-106, MikroWin software ver. 4.43). Reaction mixtures consisted of: 500 μmol L⁻¹ NADPH (sigma N1630), 800 μmol L⁻¹ selenocystamine (sigma S0520) and 25 μg total HEK293 protein lysate, with or without 1 or 10 μmol L⁻¹ auranofin (sigma A6733), in a final volume of 100 μL. Protein lysates and inhibitors were equilibrated at r.t. for 5 min prior to the start of the assay. Samples were read at 30 sec intervals for 20 min at 365 nm. Data are displayed relative to baseline activity (0-1) over the 20-min time-course.

2.4 | Analysis

All data analysis were conducted using Prism (version 7.0c for Mac OS 10.11, GraphPad Software, La Jolla, CA). Significance is defined as P < 0.05 using an unpaired, two-tailed, student’s t-test, unless otherwise stated.

3 | Results

3.1 | Nebivolol decreases uterine force and AUC

In order to determine whether nebivolol acts as a negative inotropic agent, we utilized a tissue organ bath with either human or mouse myometrium. Nebivolol was applied at 100 μmol L⁻¹ and 300 μmol L⁻¹ to OT-primed (8nM) term non-labouring human (Figure 1A, TNL:...
Nebivolol does not inhibit S-nitrosglutathione reductase

Recently, researchers have suggested that because nebivolol shares structural similarities to N6022, a known GSNOR inhibitor, and because nebivolol increases endogenous •NO and total protein S-nitrosations, nebivolol may also act as a GSNOR inhibitor. To test this, we utilized a GSNOR activity assay. Data are reported as GSNOR activity within a range between 0 and 1. NADH consumption after 10 min [GSNO (300 μmol L⁻¹) + NADH (200 μmol L⁻¹)] + protein lysate (1 mg/mL) was set to a nominal value of “1”, while NADH consumption of the reaction mixture (same as above - GSNO) after 10 min was set to a nominal value of “0”. Drug concentrations between 1 nmol L⁻¹ and 100 μmol L⁻¹ were tested and NADH consumption at 10 min was recorded as a metric of relative GSNOR activity. One-way ANOVA analysis for the action of each candidate drug on GSNOR activity is as follows: N6022 (known GSNOR inhibitor) “F (8, 18) = 174.1” P < 0.0001, Nebivolol “F (7, 16) = 2.038” P = 0.1129 (n.s.) and baseline “F (9, 20) = 1.229” P = 0.3323 (n.s.). Our results indicate that nebivolol does not inhibit GSNOR (Figure 1C).

Nebivolol does not inhibit thioredoxin reductase

Another major contributor to •NO metabolism in the myometrium is thioredoxin reductase (TrxR). TrxR depletes •NO from the cell by reducing S-nitrosated thioredoxin. Because S-nitrosations are labile and the •NO-moieity can be non-enzymatically transferred between complimentary cysteine thiols, the reduction of S-nitrosated proteins proportionally decreases available •NO in the system. TrxR activity is measured similar to GSNOR using a selenocystamine-thioredoxin reductase assay, except NADPH is substituted for NADH, and the substrate for this assay is selenocystamine, for which TrxR is the only known endogenous metabolizer. We determined that nebivolol (1-100 μmol L⁻¹) does not inhibit TrxR activity (Figure 1D) (n = 3 for all conditions), as analyzed with a one-way ANOVA: “F (2, 117) = 2.694” P = 0.0718. As predicted, auranofin, a known inhibitor of TrxR, inhibited the enzyme in a dose dependent fashion (P < 0.0001; only the 10 μmol L⁻¹ dose shown for clarity). These data further indicate that the tocolytic effects of nebivolol are not the result of the inhibition of •NO metabolizing enzymes.

CONFLICT OF INTEREST

The authors confirm that there are no conflicts of interest.

REFERENCES

1. Miniño AM, Heron MP, Smith BL. Deaths: preliminary data for 2006. Natl. Vital Stat. Reports. 2006;54:1-49.
2. Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Mathews TJ. Births: final data for 2011. Natl. Vital Stat. Reps 2013;62:1-69.
3. Weissmiller DG. Preterm labor. Am Fam Physician 2000;59:593-602.
4. Papatonis D, Flenady V, Cole S, Liley H. Oxytocin receptor antagonists for inhibiting preterm labour. Cochrane Database Syst Rev. 2005;(3):CD004452
5. Buxton ILO, Brunton LL. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 1983;258:10233-10239.

6. Barnett SD, Smith CR, Ulrich CC, et al. S-Nitrosoglutathione reductase underlies the dysfunctional relaxation to nitric oxide in preterm labor. Nature-Scientific Reports 2018;8:5614.

7. Bradley KK, Buxton IL, Barber JE, et al. Nitric oxide relaxes human myometrium by a cGMP-independent mechanism. Am J Physiol. 1998;275:C1668-C1673.

8. Ulrich C, Quillici DR, Schegg K, et al. Uterine smooth muscle S-nitrosothiolproteome in pregnancy. Mol Pharmacol. 2012;81:143-153.

9. Barnett SD, Buxton ILOO. The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit Rev Biochem Mol Biol. 2017;52:340-354.

10. Gauthier C, Leblais V, Kobzik L, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998;102:1377-1384.

11. Wang Y, Zhang F, Liu Y, et al. Nebivolol alleviates aortic remodeling through eNOS upregulation and inhibition of oxidative stress in I-NAME-induced hypertensive rats. Clin Exp Hypertens. 2017;39:628-639.

12. Jiang H, Polhemus DJ, Islam KN, et al. Nebivolol acts as a S-nitrosoglutathione reductase inhibitor: a new mechanism of action. J Cardiovasc Pharmacol Ther 2016;21:478-485.

13. Liu L, Hausladen A, Zeng M, et al. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001;410:490-494.

14. Cunniff B, Snider GW, Fredette N, et al. A direct and continuous assay for the determination of thioredoxin reductase activity in cell lysates. Anal Biochem. 2013;443:34-40.

15. Rouget C, Bardou M, Breuilier-Fouché M, et al. β3-adrenoceptor is the predominant β-adrenoceptor subtype in human myometrium and its expression is up-regulated in pregnancy. J Clin Endocrinol Metab. 2005;90:1644-1650.

16. Croci T, Cecchi R, Marini P, et al. In vitro and in vivo pharmacological characterization of ethyl-4- (SAR150640), a new potent and selective human β beta 3 -adrenoceptor agonist for the treatment of preterm labor. Pharmacology. 2007;321:1118-1126.

17. Magee L, Duley L. Oral beta-blockers for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev. 2003;(3):CD002863.

18. Altoama K, Yassine Mallem M, Thorin C, et al. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat. Eur J Pharmacol. 2015;758:31-39.

How to cite this article: Barnett SD, Buxton ILO. Hiding in Plain Sight: Nebivolol Exhibits Compelling Tocolytic Properties. J Cell Mol Med. 2018;22:6391–6395. https://doi.org/10.1111/jcmm.13883