Half-checking propagators

Mikael Zayenz Lagerkvist1 and Magnus Rattfeldt2

1research@zayenz.se
2research@rattfeldt.se

Abstract. Propagators are central to the success of constraint programming, that is contracting functions removing values proven not to be in any solution of a given constraint. The literature contains numerous propagation algorithms, for many different constraints, and common to all these propagation algorithms is the notion of correctness: only values that appear in \textit{no solution} to the respective constraint may be removed. In this paper \textit{half-checking propagators} are introduced, for which the only requirements are that identified solutions (by the propagators) are actual solutions (to the corresponding constraints), and that the propagators are contracting. In particular, a half-checking propagator may \textit{remove solutions} resulting in an incomplete solving process, but with the upside that (good) solutions may be found faster. Overall completeness can be obtained by running half-checking propagators as one component in a portfolio solving process. Half-checking propagators opens up a wider variety of techniques to be used when designing propagation algorithms, compared to what is currently available.

A formal model for half-checking propagators is introduced, together with a detailed description of how to support such propagators in a constraint programming system. Three general directions for creating half-checking propagation algorithms are introduced, and used for designing new half-checking propagators for the \texttt{cost-circuit} constraint as examples. The new propagators are implemented in the Gecode system.

1 Introduction

Constraint programming has been successful in a wide variety of settings, and central to the success of constraint programming is the multitude of smart and efficient propagation algorithms devised. Propagation is all about removing values that are not in any solution to a constraint, and it is what separates constraint programming from generate-and-test. In constraint programming, we are justifiably proud of being able to effectively combine algorithms from many different fields implemented as propagators, so that a model effortlessly and without fear of adverse interactions can use intelligent scheduling algorithms for \texttt{disjunctive} and \texttt{cumulative} such as not-first/not-last and energetic reasoning, dynamic programming algorithms for \texttt{regular}, \texttt{bin-packing}, and \texttt{knap sack}, maximum flow reasoning for \texttt{global-cardinality}, arithmetic reasoning for arithmetic constraints, and Boolean reasoning, among many more.
Unfortunately, designing good propagation algorithms is hard. It is hard not only since the specific problems they model are hard, but they are hard for a more fundamental reason. Propagators are required to be correct; they must never remove a value from a variable that may still be a solution to the constraint. This means that propagation is not actually concerned with finding a solution but about proving that no solution exists for a certain variable-value pair, which is a subjectively harder problem. The requirement for correctness also means that there is an upper limit on the amount of propagation that can be done, and this limit (domain consistency [28]) is often the ultimate goal when designing a new propagator. Unfortunately, even if a propagator is domain consistent it does not mean that it performs a high amount of propagation: perhaps all values can still be part of some solution for the constraint.

In this paper we propose a new type of propagators, that we call half-checking propagators. By relaxing the requirements of propagators to a bare minimum for ensuring soundness (found solutions must be constraint solutions), we open up for a wider variety of techniques that may be used when designing propagation algorithms. On the downside, such propagators are no longer correct, which means that the overarching solving process is no longer complete. On the upside, however, such propagators can deploy new and stronger reasoning (possibly even stronger than domain consistency), with the hope that the search is then guided towards promising parts of the search space.

In many industrial applications, finding a provably optimal solution is not as interesting as finding solutions that improves the best known result. Local search is a typical example of an incomplete method used for finding better solutions, as are heuristics and approximation algorithms. In constraint programming, the perhaps most well known and successful incomplete technique is Large Neighborhood Search [38]. In contrast to these incomplete methods we embrace the incompleteness earlier by lifting it into the propagators, the heart of a constraint programming solver. Similar to all incomplete strategies, completeness can be regained by combining one or more incomplete solution methods with one or more complete solution methods in a portfolio solver.

Contributions. This paper introduces the novel concept of half-checking propagators, including a formal model, a full exploration on how to integrate into a realistic system, and how to use in a portfolio solver. Three general techniques for designing half-checking propagators are defined. For all three, an example propagator using the technique is developed for the cost-circuit constraint. An implementation in an industrial-strength constraint programming system (Gecode) has been made verifying the approach.

Plan of paper. In the next section an overview of constraint programming is given. Sect. 3 gives a formal model for half-checking propagators, and the next Section describes the practical aspects of integrating half-checking propagators in a realistic system. Sect 5 gives a background on the TSP problem used in the examples, and Sections 6 to 8 introduce three techniques for defining half-checking propagators, with examples using TSP. Some experimental evaluation
is reported in Section 9. Finally, related work is presented and then our results are summarized in the conclusions.

2 Constraint programming

In order to be clear about the specifics, a formal model of constraint programming is needed, as is knowing the standard requirements on propagators.

Let \(P(s) \) be the power-set of \(s \), that is the set of all subsets of \(s \). The set of all functions from the set \(A \) to the set \(B \) is denoted \(A \rightarrow B \). Let \(\lambda x.E \) be the function from the argument \(x \) to the expression \(E \).

2.1 Constraint satisfaction problems

A constraint satisfaction problem is defined over a finite set of variables \(\text{Var} = \{x_1, \ldots, x_n\} \) and a finite set of values \(\text{Val} \). An assignment \(a \in \text{Asn} \) maps each variable in \(\text{Var} \) to a value in \(\text{Val} \), \(\text{Asn} = \text{Var} \rightarrow \text{Val} \). For a set of variables \(x \subseteq \text{Var} \), \(\text{Asn}_x \) is the assignments where the arguments are restricted to \(x \), and \(a_x \) similarly is an assignment restricted to \(x \). A constraint \(c \in \text{Con} \) over variables \(\text{var}(c) \subseteq \text{Var} \) is defined as the set of assignments that are solutions to that constraint:

\[
\text{Con} = \bigcup_{x \subseteq \text{Var}} P(\text{Asn}_x).
\]

When necessary and without loss of generality, any constraint is extended to all variables \(\text{Var} \) by allowing all combinations of values for the added variables, for all solutions.

A domain \(d \in \text{Dom} \) maps each variable to a subset of the values, \(\text{Dom} = \text{Var} \rightarrow P(\text{Val}) \). For simplicity, all domains where at least one variable is mapped to the empty set are equated and represented by the fully empty domain \(\bot = \lambda x.\{\} \). A domain \(d \) induces a set of assignments \(\{a \mid \forall x. a(x) \in d(x)\} \), and can thus be considered as a constraint. Domains are ordered and behave similar to sets by lifting the operations and relations point-wise over the variables, and is extended to include constraints and assignments using the induced constraint for the domain.

The domain of a constraint is defined as \(\text{dom}(c) = \lambda x.\{v \mid \exists a \in c. a(x) = v\} \).

Note that the domain of a constraint in turn induces a much weaker constraint than the original. For example, the equality constraint \(eq \) for two variables contains just \(|\text{Val}| \) assignments, while \(\text{asn}(\text{dom}(eq)) \) contains all \(|\text{Val}|^2 \) assignments.

A constraint satisfaction problem (CSP) is a tuple \(\langle d, C \rangle \) of a domain \(d \) and a set of constraints \(C \). An assignment \(a \) is a solution to a CSP iff \(a \in d \) and \(\forall c \in C. a \in c \). The set of all solutions to a CSP \(csp \) is given by the function \(\text{sol}(csp) \). A function \(\text{solve} \in \text{CSP} \rightarrow P(\text{Asn}) \) finds solutions for a CSP. Such a function is sound iff \(\text{solve}(csp) \subseteq \text{sol}(csp) \) (all solutions found are actually solution). It is complete iff \(\text{solve}(csp) = \text{sol}(csp) \) (solving finds all solutions).
2.2 Propagators and models

A propagator p for a constraint c is a function from domains to domains ($p \in \text{Dom} \rightarrow \text{Dom}$), with the following properties.

Contracting For all propagators p and domains d, $p(d) \subseteq d$ must hold.

Local For all $d \in \text{Dom}$, if $x \notin \text{var}(c)$, then $p(d)(x) = d(x)$.

Checking For all $a \in \text{Asn}$, $p(\text{dom}(\{a\})) = \text{dom}(\{a\})$ iff $a \in c$.

Weakly monotonic For all $d \in \text{Dom}$ and assignments $a \in d$, $p(\{a\}) \subseteq p(d)$.

Contracting means that a propagator only removes values from domains, never adds values. *Local* means that a propagator only removes values from the variables involved in the constraint. *Checking* means that a propagator recognizes all solutions to a constraint since no values are removed for those assignments. *Weakly monotonic* means that if an assignment is a fix-point of a propagator (and thus a solution to the constraint), then the propagator does not remove that assignment from a domain it is in.

Correctness is a crucial property for propagators. It means that no solution is removed by running a propagator. Any propagator that is weakly monotonic and checking is correct for its constraint [36].

Definition 1 (Correct). A propagator p is correct for constraint c, iff

$$\forall a \in c. \forall d \in \text{Dom}. a \in \text{asn}(d) \implies a \in \text{asn}(p(d))$$

Let the constraint of a propagator p be referred to as c_p. A constraint model is a combination of a domain and a set of propagators $\langle d, P \rangle$. This is very similar to a CSP as defined above, and a model can be transformed to a CSP using $\text{csp}(\langle d, P \rangle) = \langle d, \{c_p | \forall p \in P\} \rangle$. The crucial difference is that a constraint model can define constraints in intension, instead of the extensional full set of solutions in a CSP. Another view is that the CSP defines the semantics, and a model defines how to compute solutions to a problem.

Solving a model is typically done by interleaving fix-point computation of the propagators with search using heuristic decomposition of the model (branching or labeling). We leave the details of solving opaque for now, assuming a function solve for CSPs where $\text{solve}(\langle d, P \rangle)$ returns all solutions that are fix-points of all propagators.

In [36], Schulte and Tack introduced weak monotonicity and showed that the above properties for propagators are necessary and sufficient to get sound and complete solving when combined with search; when solving a model all solutions found are solutions for all the constraints, and all solutions that satisfy

3 As remarked in [36], propagators do not need to be functions, and can be arbitrary relations in $\text{Dom} \times \text{Dom}$, e.g., as a model for randomized propagation. For ease of explanation and notation, we use functions as the terminology, and leave generalization unstated.

4 The *local* property was not needed there, as their constraints and propagators are defined over all variables.
the constraint are found. It is common to require monotonicity from propagators
\((\forall d_1, d_2 \in \text{Dom}. \; d_1 \subseteq d_2 \implies p(d_1) \subseteq p(d_2))\), but this does not model actual
propagators well, since it excludes many types of random and heuristic propagators. The gain from having monotonic propagators is that the fix-point of all
the propagators is unique, regardless of the order of propagators run.

In practice, a single constraint may be implemented by a set of propagators,
such as \(n^2\) not equals propagators for an \textbf{all different} constraint. We will leave
this generalization out of the formalization, but note that it is straightforward.

Propagators are often characterized on their propagation \textit{strength}. Given two
propagators \(p_1\) and \(p_2\) for a constraint \(c\), \(p_1\) is \textit{stronger} than \(p_2\) iff for all domains
\(d\), \(p_1(d) \subseteq p_2(d)\), and for some domain \(d'\), \(p_1(d') \subset p_2(d')\). A \textit{consistency level}
defines a specific strength of propagation. The canonical example is \textit{domain consistency}
(also called (generalized) arc consistency, or complete propagation),
where a propagator \(p\) is domain consistent iff \(\forall d \in \text{Dom}. \; p(d) = \text{dom}(\text{asn}(d) \cap c_p)\).
That is, the propagator removes all values for variables that have no supporting
assignment in the associated constraint. Domain consistency is interesting since
it is the strongest consistency possible, without violating the requirements for
a propagator. There are other consistency levels defined in the literature, for
example \textit{value consistency} (also called forward checking), and \textit{bound consistency}.

2.3 Constraint programming systems

Constraint programming systems are designed to enable the specification and
solving of constraint models. Typical examples include open source solvers such as
Gecode \cite{gecode}, Choco \cite{choco}, and OR Tools \cite{ortools} and commercial solvers such as
SICStus Prolog \cite{sicstus} and CP Optimizer \cite{cpoptimizer}.

Constraint programming systems contain implementations for

- **Variables** Variables can be Booleans, integers, floats, sets, and so on.
- **Propagators** Propagators are the implementations of constraints. Systems typically provide many different propagators, for many different constraints.
- **Branching** A branching is an implementation of a heuristic, that decides how
to make guesses in a search tree.
- **Search** Search is used to find solutions to models comprised of variables and
propagators combined with branchings. Search methods can be complete
(DFS, Limited Discrepancy Search) or incomplete (Restart based search,
LNS), and can be for solutions only or finding optimal values.

For implementing search, systems need to provide support for state restora-
tion \cite{state-restoration}. The two main types are trailing and copying + recomputation. Trailing
involves keeping a trail that encodes undo-information, so that when backtrack-
ing in a search tree the changes along a path can be undone. Copying and re-
computation works by keeping a list of redo information, typically the branching
decisions taken, combined with regular check-pointing of the state using copies.
3 Half-checking propagators

A half-checking propagator is similar to a traditional propagator, only with less restrictions. In particular, half-checking propagators are allowed to actually remove solutions. A half-checking propagator is a propagator that only requires that if a solution is detected, then it is correct. Formally, a half-checking propagator is a function from domains to domains, with the properties that it is local and contracting, in addition to the following property:

Definition 2 (Half-checking). The propagator \(p \) is half-checking for \(c \), if for all assignments \(a \in \text{Asn} \), if \(p(\text{dom}(\{a\})) = \text{dom}(\{a\}) \) then \(a \in c \).

Half-checking is a natural weakening of checking, where instead of requiring that all solutions to a constraint are precisely identified and thus the only fix-points of the function, we only require that fix-points of assignments must be solutions to the constraint. Also importantly, a half-checking propagator is not required to be weakly monotonic either. Since weak monotonicity is required for correctness, a half-checking propagator may actually be incorrect: it may remove an assignment that it would recognize as a solution.

Example 1. The fail propagator \(\lambda d.\bot \) is a half-checking propagator for all constraints \(c \in \text{Con} \). Since fail has no fix-points for any assignment, it is trivially half-checking. It is naturally contracting, as well as local, since all empty/failed domains are equated. Note that the fail propagator is the strongest propagator possible, since \(\forall d \in \text{Dom} \cdot \bot \subseteq d \). (Note also that fail is a rather useless propagator in practice, since it guarantees that no solution will be found.)

Theorem 1. All propagators are also half-checking propagators.

Proof. This follows directly since half-checking is a weakening of checking.

Theorem 2. Solving a constraint model with half-checking propagators using solve is sound.

Proof. All returned solutions from solve must be fix-points for all the propagators (by definition, whether traditional or half-checking). Since the only fix-points of both traditional and half-checking propagators are solutions to the associated constraint, the returned assignments are solutions to the model.

Theorem 3. Solving a constraint model with half-checking propagators using solve is not complete.

Proof. Given is a model \(\langle d, P \rangle \) with at least one solution. We can replace any propagator \(p \) in \(P \) with fail from Example 1 as a half-checking propagator for the constraint \(c_p \). With fail in the set of propagators, no solutions are produced since there are no assignment fix-points for fail.
4 Integrating half-checking propagators into a system

After defining and describing the theoretical properties of half-checking propagators, it is important to investigate how they can be supported in constraint programming systems. In most constraint programming systems, propagators are just components that interact with the current variables, and based on deductions may remove some values from its variables domains.

When implementing a propagator in a typical constraint programming system, the properties *contracting* and *local* are natural consequences of the programming interface: propagators only have access to their variables, and the only modifications that a propagator can do are removal of values from domains.

As shown in [36], a constraint programming system that uses re-computation may need to make adjustments for weakly-monotonic propagators as opposed to monotonic propagators. The reason is that running propagation twice may not give the exact same result, since the fix-point is no longer unique. Typical examples of this might be propagators that use randomized algorithms. The same situation naturally applies for half-checking propagators, and thus if the system is set up such that it can handle weakly-monotonic propagators, it can also handle half-checking propagators.

In addition to supporting half-checking propagators, there are additional practical concerns that need to be taken into account. When applicable, we will describe how this is done for the Gecode system.

4.1 Portfolio-based search

Using half-checking propagators naturally leads to an incomplete search. In many cases, this may be ok and a desired outcome, but sometimes a user would like to know that all solutions have been found, that no solution exists, or that the optimal solution has been found. Using a cooperative portfolio solver combining an incomplete search with a complete search solves this, such as in the Failure Directed Search [40] used in the CP Optimizer [20] system. Portfolios of solvers, with some assets incomplete, for scheduling problems is explored in [11].

It is important to indicate to the portfolio system used that the asset with half-checking propagators is not a complete search method. If it is not possible to inform the system that an asset is incomplete, the resulting combined search may wrongly indicate that it is complete. In Gecode, returning false from the function called to set up the asset indicates that the asset is incomplete.

Given many half-checking propagators, there are three main ways in which they can be used together in a portfolio system.

Combined Half-checking propagators can naturally be combined

Multiple assets For each half-checking propagator, create an asset in the portfolio that runs the problem with it. This may require creating many assets.

Round robin To avoid too many assets, a single asset can be used with a round-robin schedule that upon re-start switches between the different half-checking propagators to use.
Which strategy to use will depend on the problem at hand, the half-checking propagators, and the instances to solve. For any particular problem, it will require experimentation combined with experience in the behaviour of the half-checking propagators in question.

4.2 No-good recording

A crucial aspect for modern re-starting search is to record no-goods [23,26]. A no-good is a constraint that describes the search-tree that has been explored so far, and is added upon re-start. In constraint programming, no-goods are typically based on negating the conjunction of a set of branching decisions. When combined with traditional constraint propagation for monotonic propagators, branching decisions precisely describe the explored part of a search tree. For weakly-monotonic propagators, the search-tree may not be precisely described by the no-good, but it is still correct.

In the presence of half-checking propagators, the parts of a search-tree that have been visited may contain solutions that were removed. Thus, a no-good from a search using half-checking propagators is not globally valid. It is still useful in the search using that half-checking propagator, but if it is used in an asset that claims to be complete, this will no longer be true.

Consider again the fail propagator from Example [1]. Given a portfolio search with one asset a traditional and complete search, and one asset using fail. As soon as the latter is run it will fail and be done. Recording the no-good and posting it in the traditional asset will abort the search since the no-good would rule out the whole search tree.

4.3 Lazy clause generation

In lazy clause generation solvers [30], a propagator explains its deductions using clauses. There is nothing inherently problematic about combining half-checking propagators and lazy clause generation. One interesting aspect, is that a simple half-checking propagator that does some very mild extra deductions may produce clauses that are later on used in the no-good explanation clauses generated on failure, and may thus end up being used in a wider context.

For some half-checking propagators, such as the removal of crossing edges described in Section [6], generating good explanations is easy. For others, such as the approximation based upper bound computation in Section [7], useful explanations can be generated if the approximation produces a witness solution. However, for some half-checking propagators such as the heuristic based filtering in Section [8], explanations may be quite hard to produce.

4.4 Testing of propagators

Propagators are complicated pieces of code, and testing is naturally needed to increase the confidence that a constraint programming system produces the correct results. Unfortunately, half-checking propagators make the job of testing harder, since there are fewer guarantees that we can rely on.
Testing in the Gecode system is based on a kind of test oracles using a set-up that combines initial domains with a constraint checker. A constraint checker is typically a much simpler piece of code to write than the propagator under test. For all assignments in the initial domains, the testing system then removes values towards that assignment, running the propagator under test intermittently. If the assignment is in the constraint/validated by the check, the propagator should not remove the assignment, and otherwise the search should eventually fail. The whole idea relies on weak monotonicity, which half-checking propagators do not have. In addition, propagators may opt-in for extended checking of bounds and domain consistency, neither of which are useful to a half-checking propagator.

In [1] metamorphic testing is used to test constraint propagators. The idea is to use an extensitional constraint with a table propagator as a validation propagator. A test consists of running original propagator and the validation propagator, and then comparing the resulting search trees. Again, the fact that a propagator must be weakly monotonic and checking are crucial properties here.

A similar idea is explored in SolverCheck [14]: initial domains and a constraint checker are used to generate a list of valid assignments. These assignments are then used to build reference propagators, including weakening them to build bounds-consistent propagators. Propagation of the propagator under test is compared with the simple reference propagator. Again the assumption is naturally that propagators are correct, and will not remove solutions.

Since half-checking propagators are allowed to remove solutions, none of the above testing strategies will work. However, there are some things that we could test for, namely the half-checking property. Using the Gecode testing strategy, it is possible to adjust it to only check that a solution accepted by the propagator was also verified by the checker as being valid.

In Section 7 half-checking propagators that update bounds based on approximations are described. These may use inferences that are always valid for optimal solutions. Thus, by only considering optimal assignments in a Gecode-style testing set-up, the propagator can be tested for optimal assignments in the traditional manner.

Naturally, many half-checking propagators may use standard algorithms, and these can of course be tested using any normal kind of testing framework.

5 The cost-circuit constraint and TSP

In the following sections, examples of general techniques and strategies to use when implementing half-checking propagators are given. For each one, an algorithm is proposed for the cost-circuit constraint. This section describes the constraint and the Travelling Salesperson Problem that it is used for.

5.1 Theory

Let $G = (V, E)$ be a graph consisting of a set of vertices or nodes V and a set of edges $E \subseteq V \times V$ indicating which edges are connected. The degree of
a node is the number of edges connected to it. The graph is complete if \(E = V \times V \), i.e., all nodes are connected to all other nodes (the degree of each node is \(|V| - 1 \)). The graph may be directed or undirected. A path of length \(k \) in a graph is a sequence of nodes \(\langle v_1, v_2, \ldots v_k \rangle \) where \(\forall i \in 1 \ldots k-1, (v_i, v_{i+1}) \in E \). A path is a circuit when \((v_k, v_1) \in E \). When all nodes are unique it is called a simple path and a cycle or a simple circuit. When a simple path or a simple circuit covers all the nodes (\(k = |V| \)), it is called Hamiltonian, and finding such are one of the classical NP-complete problems \[22\]. A graph is connected when there exists a path between all pairs of nodes. A tree is a graph that is connected and has no cycles. A weight function \(w \) is a function from edges to real numbers (\(w \in E \rightarrow \mathbb{R} \)), and most often to non-negative real numbers. It is symmetric if \(\forall v_1, v_2 \in V w((v_1, v_2)) = w((v_2, v_1)) \). A weight function respects the triangle inequality when \(\forall v_1, v_2, v_3 \in V w((v_1, v_3)) \leq w((v_1, v_2)) + w((v_2, v_3)) \). Given a graph \(G = \langle V, E \rangle \) and a weight function \(w \), a minimum spanning tree (MST) \(M = \langle V, T \rangle \) is a tree with the same nodes as the graph, with \(T \subseteq E \), and with a minimum weight.

The Travelling Salesperson Problem (TSP) is the problem of given a graph \(G = \langle V, E \rangle \) and a weight function \(w \), find a Hamiltonian circuit for the graph with minimum weight. This is the natural weighted extension of the Hamiltonian path problem. It is common to require that the graph for a TSP is complete; a missing edge can be modelled as an arbitrary large weight, and using bounds on weights to check feasibility. If the nodes of the graph have positions and the weight is defined as the distance between the nodes, it is a Euclidean TSP. The TSPLIB \[33\] is a collection of 110 challenging real-world TSP instances, with 77 of these using Euclidean 2D-distance.

5.2 TSP in constraint programming

The \textit{circuit} constraint models the Hamiltonian circuit problem using an array of successor variables \(S \), where \(S_i = j \) indicates that \(j \) is the successor of \(i \) in the circuit. The \textit{cost-circuit} \((S, w, c) \) is the same, with the variable \(c \) representing the total cost of the circuit according to the weight function \(w \).

The \textit{circuit} constraint is one of the classical global constraints in constraint programming \[25,3\]. Since the base problem is NP-complete, filtering algorithms are focused on effective but not complete filtering. The base filtering is handled by the embedded implied \textit{alldifferent} \(S \), with additional removal of edges that would lead to circuits smaller than \(|S| \) (subtour elimination). In addition, many other structural filters have been identified and propagated (e.g., \[36,12\]). For the weighted variant, there have been recent advances above the basic filtering, for example in \[4\] and \[21\].

The above propagation algorithms are all limited by the fact that no correct value may be removed. State of the art TSP solvers such as Concorde \[7\] can do more, since the goal is to find a single optimal solution, not all possible solutions.

In constraint programming, the choice of the branching heuristic is key. For TSP, several different heuristics have been proposed \[9,21\], with no clear winner. Here, we will focus on the \textit{Warnsdorff} heuristic \[41\] for the Knights tour problem.
Half-checking propagators

(And more generally, the Hamiltonian path problem). The heuristic is, when cast in constraint programming terms, comprised of two parts. The first is the variable ordering, assigning variables along a path that is built up incrementally. The second is the value ordering, preferring to go to nodes with the lowest out-degree. Adjusted for the case of complete graphs with distances, the out-degree is less important and using the minimum distance becomes more important.

6 Technique: Dominating solutions

When solving a constraint programming problem, it is common to see that one solution may dominate another solution, either because of symmetries or because of one solution having better cost. Propagation for symmetries is common [10], as is more global views for symmetry breaking [29]. For cost-dominating solutions, there is less opportunities for incorporating the domination relation into propagators, since it is typically quite specialized and will not behave as a traditional propagator. This is a clear opportunity to apply half-checking propagators.

6.1 No Crossing Lines

In a pure Euclidean TSP over a complete graph with no side-constraints, a property that always holds is that in an optimal solution there are no crossing lines: given two crossing lines \(\langle s_1, e_1 \rangle \) and \(\langle s_2, e_2 \rangle \), they can be replaced with \(\langle s_1, e_2 \rangle \) and \(\langle s_2, e_1 \rangle \), which will have the same or lower weight. Thus, any solution that contains crossing lines will be dominated by a solution in which the crossing lines are un-crossed. For an edge \(e \), let \(cl(e) \subset E \) be the set of lines that cross it.

Using this observation, we can design our first interesting half-checking propagators, which we call \(ncl(S) \) for No Crossing Lines. The key observation is that given an assignment that includes an edge \(e \) in the solution, we known that in no optimal solution where \(e \) is used (if any such exist), are any of the lines in \(cl(e) \) used. Note that there may be no optimal solution including the edge \(e \). Given an assignment \(S_i = j \), for all edges \(\langle k, l \rangle \in \cap_{v \in d_k} cl(\langle S_i, v \rangle) \) can be removed. We have not implemented this stronger propagation.

For a solution that uses Warnsdorff’s rule for variable selection, it is possible to choose a simpler filtering called \(ncl-warn(S, f) \). The propagator follows the Warnsdorff path from the starting node \(f \) to the last known node in the path, and removes any outgoing edges from that node that cross the fixed path.

Stronger reasoning using crossing lines is also possible. For a variable \(S_i \) with domain \(d_{S_i} \), any edge \(\langle k, l \rangle \in \cap_{v \in d_k} cl(\langle S_i, v \rangle) \) can be removed. We have not implemented this stronger propagation.

Implementation. Implementing \(ncl \) requires a fast and efficient look-up of the \(cl \) sets. Since the graph is fixed, we pre-compute this information. In a complete TSP with \(n \) nodes, the number of edges is \(n^2 \), which means that the number of crossing lines is \(O(n^4) \), a very large number for a modest number of cities. Thus, the propagator can only be used for quite small instances.
For ncl-warn, the crossing lines are computed on the fly instead. Along the Warnsdorff path, \(n \) assignments will be made, and for each assignment \(O(n) \) other edges need to be considered. Thus, along a path a maximum of \(O(n^2) \) pairs of edges are considered. This is much less taxing than the full ncl propagation.

To speed up the computation of the crossing lines, a spatial index was used to make geometric look-ups. Our index is based on the STR construction of R-trees [27]. We adjusted it in two ways. The first is to make binary sub-divisions recursively. The second is to first sort objects based on width/height, and then on position. This strategy is useful since many edges are very long and cover most of the other edges. Using this ordering instead of the normal STR ordering gave a small but significant speed-up.

7 Technique: Heuristic bounds

For many hard problems in computer science, there are algorithms defined that create good but not provably optimal solutions. Such algorithms are often constructive, meaning that they produce a witness solution showing how to achieve the bound.

Bounds are typically used in constraint programming propagators for the worst case, i.e., finding the lowest and the highest weight possible. The difference here is that we instead strive to give good and tight upper-bounds based on a best-effort to find a solution to a single constraint. Naturally, such bounds may be invalid in the presence of other constraints in the model, but if they are valid, they will help guide propagation.

7.1 Christofides bounds propagation

The classical approximation algorithm for Euclidean TSP is Christofides algorithm [6]. The algorithm is defined for a complete graph \(G = \langle V, E \rangle \) with Euclidean weights \(w \), and the outline is the following.

- Find a minimum spanning tree of \(G, M \).
- Let \(O \) be the set of edges with odd degree in \(M \).
- Find a minimum weight complete matching in \(G \) among the nodes in \(O \), and add these edges to \(M \).
- Construct an Euler circuit in \(M \) (a circuit that crosses each edge once). Guaranteed to exist since all nodes have even degree.
- Following the Euler circuit, skip any node that has been used before with the corresponding edge in \(E \).

The resulting circuit is at most 1.5 times the length of the optimal circuit. Note that the algorithm requires that the graph is complete. The Christofides algorithm is very popular as a reasonably simple algorithm that gives a good bound. For example, it is implemented as a stand-alone TSP solver in OR Tools [16].
We propose the $\text{cbp}(S, w, c)$ bounds propagator, that works as follows. Let $G_S = (V, E_S)$ be the current graph induced by the S variables, with G the original graph. For simplicity, we treat the graph as undirected. Our algorithm proceeds as follows:

- Find a spanning tree of G_S, M_S, with the fixed edges in S included.
- Let O be the set of edges with odd degree in M_S.
- Find a maximal matching in G_S for the edges in O, and add to M_S.
- For the nodes not matched in the previous step, find a matching using the edges in G and add to M_S.
- Construct an Euler circuit in M_S.
- Following the Euler circuit, skip any node that has been used before with the corresponding edge in E, even if it is not in E_S.
- Adjust the upper bound of c to be at most the weight of the found circuit.

The above algorithm tries as far as possible to use only edges in the graph G_S. If only such edges are used, then the upper bound represents a solution to the sub-problem. Otherwise, the best remaining tour may have a larger cost.

Implementation The implementation of the cbp propagators follows the outline above. The spanning tree is found using Kruskal’s algorithm [24]. First all fixed edges are added to the tree. After this, the edges in the graph are traversed in increasing order. For this, our graphs keep a list of all the edges in increasing weight order. If $|E_S| > \frac{1}{4}|E|$, then this list is used with a filter to check for validity, otherwise a new list is constructed from the current domains. The constant $\frac{1}{4}$ was determined through experimentation, and needs to be adjusted for a specific implementation. Finding the Euler walk is done using Hierholzer’s algorithm [19], with the stack-based formulation.

The largest difference is that instead of the complete minimum weight matching, a simple greedy algorithm is used instead. This is because implementing and running a maximal matching algorithm such as Edmonds algorithm [8] is both complicated and time-consuming. An approximate solution here may give a higher bound, but never a wrong one.

8 Technique: Heuristic solutions

This is the most general technique, where heuristic algorithms are used to make inferences and deductions that may or may not be true.

8.1 Heuristic 1-tree propagation

As discussed in [18][21], a 1-tree is a very useful structure for analysing properties of graphs when searching for weighted Hamiltonian circuits. Formally, a 1-tree for a graph $G = (V, E)$ and a node n_1 is a spanning tree for the graph $(V \setminus \{n_1\}, E \setminus \{\{n, n'\}|n = n_1 \lor n' = n_1\})$ along with a set of two edges from n_1 to the rest of the graph: $\{\{n, n_1\}, \{n_1, n'\}\}$. A minimum 1-tree is a 1-tree with
minimum weight. Note that all circuits are 1-trees for all the nodes in the graph as the selected node.

Our one-tree propagator starts by finding a node to use as the dedicated node, after which a 1-tree is computed. Three rules are used: Update the lower bound of the cost with the cost of the 1-tree; If the 1-tree is a circuit, set this as the solution; For some node with degree > 2 in the spanning tree part, remove the longest of the incident edges. The latter idea is inspired by Held and Karps [18] techniques from MIP formulations of the TSP problem, where the residual costs of the edges in such nodes are manipulated iteratively.

Implementation. To find a 1-tree, the implementation uses an algorithm based on Kruskal's algorithm similar to the implementation of the spanning tree algorithm in [7,4]. The main difference is that the special node n_1 is given as an additional argument, and the algorithm returns a spanning tree for $V \setminus \{n_1\}$, and two edges incident to n_1. First all fixed edges are added, either to the spanning tree or to the n_1 edges. While processing edges to build up the spanning tree, if an edge is incident to n_1 add it to that set unless it already contains 2 edges. When the spanning tree is constructed, we may still not have 2 edges in the n_1 set, and if so add the smallest. Note that the algorithm is only executed after normal propagation for the circuit constraint has been done. Thus, we can assume that there are at most 2 fixed edges incident to n_1.

9 Evaluation

Our implementation is done using the Gecode [13] constraint programming system, version 6.2.0. The main constraint in the model is cost-circuit, along with an inverse constraint to get variables representing the predecessors also. The main branching heuristic used is the Warnsdorff heuristic for selecting the variable to branch on, and for values selecting the value with min weight (slightly randomized). Instances are read from TSPLIB files.

The search uses a portfolio with several assets. Each asset runs a restart-based search with a Luby-based restart schedule with a fairly low scale, and no-goods are collected. The set-up with randomized value selection and rapid restarts is inspired by [2].

When a half-checking propagator is requested, it is placed in the last asset, which declares itself to be an incomplete asset. For this asset, no-good recording is also turned off, by modifying the branching heuristic. Unfortunately, it is not possible in Gecode to known from which asset a no-good is produced. The possibility to record no-goods anyway is also included.

Our experiments are run on a Macbook Pro 15 with a 6-core 2.7 GHz Intel Core i7 processor and 16 GiB memory. The experiments are not for deciding the best way to solve a TSP using constraint programming, it is instead to demonstrate that the techniques adds filtering power.

available at [https://github.com/zayenz/half-checking-propagators]
Instance	wncl min	max	cbp min	max	one-tree min	max	All min	max
berlin52	99.54%	=	=	=	15.83%	99.95%	88.02%	=
st70	99.87%	=	=	=	13.04%	99.97%	79.89%	=
eil51	99.61%	=	=	=	17.39%	99.95%	90.57%	=
eil76	=	=	=	=	14.82%	99.98%	93.84%	=
eil101	99.65%	=	=	=	11.72%	99.99%	93.78%	=
lin105	99.84%	=	=	=	7.30%	99.99%	61.94%	=
lin318	=	=	=	=	4.87%	=	66.32%	=
pr76	99.89%	=	=	=	10.74%	=	76.25%	=
pr107	=	=	=	=	5.83%	=	63.71%	=
pr124	99.58%	=	=	=	5.80%	=	73.48%	=
pr136	99.99%	=	=	=	8.08%	=	58.93%	=
pr144	=	=	=	=	5.50%	=	42.42%	=
pr152	99.40%	=	99.49%	=	4.71%	=	58.93%	=

Table 1. Filtering strength for the propagators. Reported is the reduction when using the propagators wncl, cbp, one-tree, and all combined on the domains size of S and the min and max cost after assigning 10%. = means no reduction, ⊥ means a failure.
Computing the crossing lines data-structure from Section 6 quickly starts to get costly. At around 50 nodes, it takes 0.25-0.3 seconds and at around 100 nodes it takes 0.8-1.1 seconds. However, for lin318 with 318 nodes, it takes more than 5 minutes to compute, which is clearly too long to be useful. In the following, we will skip the full version since it is clearly impractical.

Table 1 reports the filtering improvements for our proposed propagators. Five variants are run simultaneously, assigning 10% of the nodes in the path. The variants use the standard model, along with variants with the propagators \texttt{wncl}, \texttt{cbp}, \texttt{one-tree}, and all three combined. The reported value is the reduction in the sum domain size of the successor variables S, and the adjustment of the minimum and maximum costs compared with the standard model. As can be seen, our propagators have complementary and strong filtering.

Finding good solutions quickly is naturally desired. Unfortunately, the improved filtering does not translate into better solving directly. For some test-cases, our propagators give modestly better results for solving under time-limits. However, we believe that a main issue is that it is not possible yet to generate no-goods local to an asset in Gecode. Further investigation is clearly needed, as is testing other problems using the \texttt{cost-circuit} constraint.

10 Related work

The requirement of correctness for propagators have been a constant in constraint programming since the field began. Still, there are a few techniques and approaches that have touched on similar ideas.

The most similar technique to half-checking propagators is probably \textit{streamlining constraints} \cite{15}. The original idea is to post additional constraints in a model in order to focus on certain subsets of solutions that exhibit some kinds of regularities. Typically, these regularities are found examining solutions to small instances, and the added streamliners help find these regularities in larger instances. The idea is similar to half-checking propagators, in that in order to solve a problem we may want to rule out potential solutions. In a certain sense, the \texttt{nc1} no-crossing lines propagator is a streamliner constraint, since we focus on the solutions that have the no-crossing lines regularity. On the other hand, the Christofides bounds propagation (\texttt{cbp}) and the 1-tree propagation (\texttt{one-tree}) we propose are not easily formulated as streamliners. An additional difference is that half-checking propagators focus on adding new reasoning for existing constraints, while streamliner constraints focus on adding new reasoning for models.

The similar approaches of cost propagation \cite{17} and belief propagation \cite{31} use a domain store that indicates a common cost or belief for each variable-value pair. Both approaches use the gathered information to guide the search (a non-backtracking search for \cite{17}). As remarked by Pesant in \cite{31} a value that gets a belief very close to 0 (or perhaps even 0, due to rounding errors), is very unlikely to be in any solution, and thus it might be beneficial to actually prune these values. Such a pruning rule would be a half-checking propagator.
In [4], TSP instances tested are pre-processed with tight bounds based on standard state-of-the-art heuristics. While it is not clearly stated, this pre-processing is of course not valid if there are any other constraints in the instances than just a cost-circuit. This kind of bounds updates is similar to what we propose in Section 7, although we use it continuously during search.

In [37], Sellmann and Harvey propose using heuristic constraint propagation. While it may sound similar to half-checking propagators and especially the techniques we present, the crucial difference is that Sellmann and Harvey focus on incomplete, but still correct propagation.

11 Conclusions

This paper has introduced half-checking propagators, a new variant of propagators that are not required to be correct. Lifting this restriction opens up new possibilities for designing propagation algorithms. The goal is to guide search towards good solutions. To regain completeness, we paired models with half-checking propagators in a portfolio with standard models.

A detailed description on how to integrate half-checking propagators into modern constraint programming systems was given. To showcase the idea, three techniques for designing half-checking propagators were presented and made concrete with an application to the cost-circuit constraint.

Future work. The most important future work is of course to make computational studies on how to best use half-checking propagators. In order to make this as fair as possible, an improvement to Gecode that would allow us to record no-goods locally in assets with half-checking propagators is needed.

There are many examples of hard problems, where half-checking propagators could be useful. We think that scheduling problems may be an interesting future area of research for this. Also, studying automatically generated streamliner constraints [42,39] could be an interesting source of ideas for new half-checking propagators.

Acknowledgments

Thanks to the anonymous reviewers of this paper, which helped improve and clarify many points and recommended additional references.

References

1. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Metamorphic testing of constraint solvers. In: Hooker, J. (ed.) Principles and Practice of Constraint Programming. pp. 727–736. Springer International Publishing, Cham (2018)
2. Archibald, B., Dunlop, F., Hoffmann, R., McCreeesh, C., Prosser, P., Trimble, J.: Sequential and parallel solution-biased search for subgraph algorithms. In: Rousseau, L., Stergicu, K. (eds.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research - 16th International Conference, CPAIOR 2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11494, pp. 20–38. Springer (2019). https://doi.org/10.1007/978-3-030-19212-9_2

3. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathematical and Computer Modelling 20(12), 97 – 123 (1994). https://doi.org/10.1016/0895-7177(94)90127-9

4. Benchimol, P., van Hoeve, W.J., Régis, J., Rousseau, L., Rueher, M.: Improved filtering for weighted circuit constraints. Constraints 17(3), 205-233 (2012). https://doi.org/10.1007/s10601-012-9119-x

5. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) Programming Languages: Implementations, Logics, and Programs. pp. 191–206. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

6. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Tech. Rep. 388, Graduate School of Industrial Administration, Carnegie Mellon University (1976)

7. Cook, W.: Concorde TSP Solver. http://www.math.uwaterloo.ca/tsp/concorde.html

8. Edmonds, J.: Paths, trees, and flows. Canadian Journal of Mathematics 17, 449–467 (1965)

9. Fages, J.G., Lorca, X., Rousseau, L.M.: The salesman and the tree: the importance of search in cp. Constraints 21(2), 145–162 (Apr 2016). https://doi.org/10.1007/s10601-014-9178-2

10. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking row and column symmetries in matrix models. In: Principles and Practice of Constraint Programming - CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings. pp. 462–476 (2002). https://doi.org/10.1007/3-540-46135-3_31

11. Fontaine, D., Michel, L., Van Hentenryck, P.: Parallel composition of scheduling solvers. In: Quimper, C.G. (ed.) Integration of AI and OR Techniques in Constraint Programming, pp. 159–169. Springer International Publishing, Cham (2016)

12. Francis, K.G., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1), 1–29 (Jan 2014). https://doi.org/10.1007/s10601-013-9148-0

13. Gecode team: Gecode, the generic constraint development environment (2018), http://www.gecode.org/

14. Gillard, X., Schaus, P., Deville, Y.: Solvercheck: Declarative testing of constraints. In: Schiex and de Givry [35], pp. 565–582. https://doi.org/10.1007/978-3-030-30048-7_33

15. Gomes, C.P., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3258,
pp. 274–289. Springer (2004). https://doi.org/10.1007/978-3-540-30201-8_22

16. Google: OR-Tools (2019). https://developers.google.com/optimization

17. Grohe, B., Wedelin, D.: Cost propagation – numerical propagation for optimization problems. In: Perron, L., Trick, M.A. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. pp. 97–111. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

18. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part ii. Mathematical Programming 1(1), 6–25 (Dec 1971).

19. Hierholzer, C., Wiener, C.: Ueber die mglichkeit, einen lineinzeug ohne wiederholung und ohne unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

20. IBM: IBM ILOG CP Optimizer (2019), https://www.ibm.com/analytics/cplex-cp-optimizer

21. Isart, N., Régin, J.: Integration of structural constraints into TSP models. In: Schiex and de Givry [35], pp. 284–290. https://doi.org/10.1007/978-3-030-30048-7_17

22. Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

23. Katsirelos, G., Bacchus, F.: Generalized nogoods in csps. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. pp. 390-396. AAAI Press / The MIT Press (2005), http://www.aaai.org/Library/AAAI/2005/aaai05-062.php

24. Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7(1), 48–50 (1956)

25. Laurière, J.L.: A language and a program for stating and solving combinatorial problems. Artificial Intelligence 10(1), 29 – 127 (1978). https://doi.org/10.1016/0004-3702(78)90029-2

26. Lee, J.H.M., Schulte, C., Zhu, Z.: Increasing nogoods in restart-based search. In: Schuurmans, D., Wellman, M. (eds.) AAAI Conference on Artificial Intelligence, pp. 3426-3433. AAAI Press, Phoenix, AZ, USA (Feb 2016), https://cbschulte.github.io/papers/leeschulteeaaai-2016.html

27. Leutenegger, S., Lopez, M., Edgington, J.: STR: A simple and efficient algorithm for r-tree packing. pp. 497–506 (05 1997). https://doi.org/10.1109/ICDE.1997.582015

28. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)

29. Mears, C., de la Banda, M.G., Demoen, B., Wallace, M.: Lightweight dynamic symmetry breaking. Constraints 19(3), 195–242 (2014). https://doi.org/10.1007/s10601-013-9154-2

30. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation = lazy clause generation. In: Bessiere, C. (ed.) Proceedings of the 13th International Conference on Principles and Practice of Constraint Programming, LNCS, vol. 4741, pp. 544–558 (2007)

31. Pesant, G.: From support propagation to belief propagation in constraint programming. J. Artif. Intell. Res. 66, 123–150 (2019). https://doi.org/10.1613/jair.1.11487
32. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S. (2017), http://www.choco-solver.org
33. Reinelt, G.: Tsplib - a traveling salesman problem library. INFORMS Journal on Computing 3(4), 376–384 (1991), http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
34. Reischuk, R.M., Schulte, C., Stuckey, P.J., Tack, G.: Maintaining state in propagation solvers. In: Gent, I.P. (ed.) Principles and Practice of Constraint Programming - CP 2009. pp. 692–706. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)
35. Schiex, T., de Givry, S. (eds.): Principles and Practice of Constraint Programming - 25th International Conference, CP 2019, Stamford, CT, USA, September 30 - October 4, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11802. Springer (2019). https://doi.org/10.1007/978-3-030-30048-7
36. Schulte, C., Tack, G.: Weakly monotonic propagators. In: Gent, I. (ed.) Fifteenth International Conference on Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 5732, pp. 723–730. Springer-Verlag, Lisbon, Portugal (Sep 2009). https://doi.org/10.1007/978-3-642-04244-7_56
37. Sellmann, M., Harvey, W.: Heuristic constraint propagation. In: Hentenryck, P.V. (ed.) Eighth International Conference on Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 2470, pp. 738–743. Springer-Verlag, Ithaca, NY, USA (Sep 2002). https://doi.org/10.1007/3-540-46135-3_55
38. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.F. (eds.) Fourth International Conference on Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 1520, pp. 417–431. Springer-Verlag, Pisa, Italy (1998)
39. Spracklen, P., Dang, N., Akgün, Ö., Miguel, I.: Automatic streamlining for constrained optimisation. In: Schiex, T., de Givry, S. (eds.) Principles and Practice of Constraint Programming - 25th International Conference, CP 2019, Stamford, CT, USA, September 30 - October 4, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11802, pp. 366–383. Springer (2019). https://doi.org/10.1007/978-3-030-30048-7_22
40. Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: CPAIOR ’15: Proceedings of the 12th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Springer-Verlag (2015)
41. von Warnsdorff, H.C.: Des rsselsprungs einfachste und allgemeinste lsung. Th. G. Fr. Varnhagensen Buchhandlung (1823)
42. Wetter, J., Akgün, Ö., Miguel, I.: Automatically generating streamlined constraint models with essence and conjure. In: Pesant, G. (ed.) Principles and Practice of Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9255, pp. 480–496. Springer (2015). https://doi.org/10.1007/978-3-319-23219-5_34