Multimodal therapy in oligometastatic prostate cancer: A glimpse into the future?

Dear editor,

Since the introduction of radiotracer-labeled prostate-specific membrane antigen (PSMA) targeting positron emission tomography (PET), imaging of prostate cancer (PCa) improved drastically [1,2]. Subsequently, metastases may be detected in earlier stages with possible implications on treatment planning [3]. Here, we described the multimodal treatment approach on a young patient with newly diagnosed metastatic PCa conducted according to the results of repeated PSMA-PET imaging.

In September 2017, a 54-year-old man was referred to our hospital due to newly diagnosed PCa. A biopsy had revealed a Gleason score 4+4 in seven out of 13 cores with an initial prostate-specific antigen (PSA) of 29 ng/mL. Due to equivocal findings on abdominal magnetic resonance imaging (MRI), further 68Ga-PSMA-11 PET/computed tomography (CT) staging was performed revealing multiple metastases to pelvic, as well as retroperitoneal lymph nodes (M1a) (Fig. 1A and B). The patient presented with excellent performance status (ECOG 0) and no relevant comorbidities.

According to STAMPEDE data, an inductive chemo-hormonal therapy with six cycles of Docetaxel combined with Leuprolineacetat was initiated [4]. After termination of the therapy with six cycles of Docetaxel combined with Leuprolineacetat was initiated [4]. After termination of the chemotherapy, PSA had decreased to 0.02 ng/mL under continued androgen deprivation therapy (ADT) and no residual disease was detected by a repeated PET/CT imaging using 18F-rhPSMA-7, a probably more sensitive PSMA tracer without urinary excretion (Fig. 1C). In July 2018, the patient underwent open radical prostatectomy with extended pelvic lymph node dissection. Final pathology yielded a ypT3b prostatectomy due to significant PSA response and complete response on advanced molecular imaging as an individual and multimodal treatment approach [10,11]. However, the sequence in which these modalities should be administered still remains matter of debate. Initiation of systemic therapy prior to local therapy might help to distinguish between patients with potentially less aggressive disease responding well to systemic treatment and who may benefit of additional local treatment compared to patients with systemic disease in whom local therapy might only be considered for palliative local symptom relief.

Unfortunately, in our patient, the PSMA-PET scan triggered by a rising PSA 1 year after termination of the initial chemotherapy revealed a new pelvic lymph node metastasis. Recent data showed promising results of salvage lymph node dissection with radioguided-surgery in initially non-metastatic, then recurrent PCa patients [12]. Specifically, complete biochemical response (PSA <0.2 ng/mL at 4–8 weeks’ post-surgery) was demonstrated in 66% of these highly selected patients with a median biochemical recurrence-free survival of 19.8 months. Moreover, patients with low preoperative PSA-values and one single lesion in PSMA-PET imaging were more likely to experience complete biochemical response. Certainly, the mentioned study investigated initially non-metastatic patients with lymph node recurrent disease. Conversely, our patient had metastatic PCa at diagnosis, rather than a metastatic
recurrence after initial definitive local therapy. However, previous data suggested a potential survival benefit of metastasis-directed therapy [13–15].

One common limitation of most previously published trials concerning treatment modalities in newly diagnosed metastatic PCa is the use of conventional imaging techniques. With PSMA-based PET imaging, sensitivity and specificity increased tremendously in comparison to conventional imaging [2]. Therefore, earlier metastatic stages may be detectable, rendering comparisons to metastatic stages diagnosed by conventional imaging possibly difficult. In consequence, in metastatic patients diagnosed by PSMA-PET imaging, intensified active treatment may be considered more frequently in the future [3]. However, there are several unsolved questions. It is unknown if the extension of lymphadenectomy (or radiotherapy) should follow the extension of metastasis of initial PET/CT to potentially avoid undertreatment. Moreover, it is unclear if survival may be prolonged by intensified treatment modalities. Nonetheless, although cure may not be possible in advanced stages, as visible by very low persisting PSA levels in the presented case, use of ADT may be delayed, which in itself has morbidity and mortality. Further studies are needed to find optimal treatment combinations and sequences including systemic, as well as local therapy options for these patients.

To date, the optimal sequence of treatments in newly diagnosed metastatic PCa with low metastatic burden is unclear, especially in patients diagnosed by PSMA-based PET imaging. In our experience, as highlighted in the presented case, a multimodal approach with systemic, as well as local (i.e. surgical and radiotherapeutic) treatment may be considered in selected patients to achieve potentially longer survival. Ideally, such patients should be included in clinical trials.

Author contributions

Study concept and design: Tobias Maurer.
Data acquisition: Matthias Heck, Matthias Eiber, Tobias Maurer.
Drafting of manuscript: Sophie Knipper.
Critical revision of the manuscript: Sophie Knipper, Gunhild von Amsberg, Franziska Stolzenbach, Thomas Steuber, Matthias Heck, Matthias Eiber, Christoph Berliner, Tobias Maurer.

Conflicts of interest

The authors declare no conflict of interest.

References

[1] Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer—Updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol 2019;77:403–17.

[2] Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol 2016;13:226–35.
[3] Han S, Woo S, Kim YJ, Suh CH. Impact of 68Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analysis. Eur Urol 2018;74:179–90.

[4] James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multi-arm, multistage, platform randomised controlled trial. Lancet Lond Engl 2016;19:387:1163–77.

[5] Maurer T, Robu S, Schottelius M, Schwamborn K, Rauscher I, van den Berg NS, et al. 99mTechnetium-based Prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur Urol 2019;75:659–66.

[6] Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017;377:352–60.

[7] Smith MR, Saad F, Chowdhury S, Oudard S, Hadaschik BA, Graff JN, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378:1408–18.

[8] Chi KN, Agarwal N, Bjartell A, Chung BH, Pereira de Santana Gomes AJ, Given R, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med 2019;381:13–24.

[9] Parker CC, James ND, Brawley CD, Clarke NW, Hoyle AP, Ali A, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet Lond Engl 2018;392:2353–66.

[10] Heidenreich A, Pfister D, Porres D. Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases: results of a feasibility and case-control study. J Urol 2015;193:832–8.

[11] Soorjakumaran P, Karnes J, Stief C, Copey B, Montorsi F, Hammerer P, et al. A multi-institutional analysis of perioperative outcomes in 106 men who underwent radical prostatectomy for distant metastatic prostate cancer at presentation. Eur Urol 2016;69:788–94.

[12] Horn T, Krönke M, Rauscher I, Haller B, Robu S, Wester HJ, et al. Single lesion on prostate-specific membrane antigen-ligand positron emission tomography and low prostate-specific antigen are prognostic factors for a favorable biochemical response to prostate-specific membrane antigen-targeted radioguided surgery in recurrent prostate cancer. Eur Urol 2019;76:517–23.

[13] Ost P, Reyners D, Decaestecker K, Fonteyne V, Lumen N, De Bruycker A, et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol Off J Am Soc Clin Oncol 2018;36:446–53.

[14] Siva S, Bressel M, Murphy DG, Shaw M, Chander S, Violet J, et al. Stereotactic ablative body radiotherapy (SABR) for oligometastatic prostate cancer: a prospective clinical trial. Eur Urol 2018;74:455–62.

[15] Bowden P, See AW, Frydenberg M, Haxhimolla H, Costello AJ, Moon D, et al. Fractionated stereotactic body radiotherapy for up to five prostate cancer oligometastases: interim outcomes of a prospective clinical trial. Int J Canc 2020;146:161–8.

Sophie Knipper*
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Gunhild von Amsberg
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Department of Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Franziska Stolzenbach
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Thomas Steuber
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Matthias Heck
Department of Urology, Technical University of Munich, Munich, Germany

Matthias Eiber
Department of Nuclear Medicine, Technical University of Munich, Munich, Germany

Christoph Berlinder
Department of Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Tobias Maurer
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany

*Corresponding author.
E-mail address: a.knipper@uke.de (S. Knipper)

16 July 2019