Jump in the c_{66} shear modulus at the superconducting transition of Sr$_2$RuO$_4$: Evidence for a two-component order parameter

S. Benhabib1,†, C. Lupien2,†, I. Paul3,*, L. Berges1, M. Dion2, M. Nardone3, A. Zitouni1, Z.Q. Mao4,5, Y. Maeno6,6,8, A. Georges6,7,8, L. Taillefer2,6,* and C. Proust1,6,*

1Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France
2Département de physique and Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
3Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, F-75013, Paris, France
4Department of Physics, Kyoto University, Kyoto 606-8502, Japan
5Department of Physics, The Pennsylvania State University, University Park, PA 16803 USA
6Canadian Institute for Advanced Research, Toronto, Ontario, Canada, M5G 1Z8
7Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010 USA
8Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

(Dated: February 17, 2020)

The quasi-2D metal Sr$_2$RuO$_4$ is one of the best characterized unconventional superconductors, yet the nature of its superconducting order parameter is still highly debated. Here we use ultrasound velocity to probe the superconducting state of Sr$_2$RuO$_4$. We observe a sharp jump in the shear elastic constant c_{66} as the temperature is raised across the superconducting transition at T_c. This directly implies that the superconducting order parameter is of a two-component nature. We discuss what states are compatible with this requirement and propose, given the other known properties of Sr$_2$RuO$_4$, that the most likely candidate is the $(1, 0)$ state of the E_u representation.

I. INTRODUCTION

For 25 years, superconductivity of Sr$_2$RuO$_4$ has been viewed as an electronic analog of superfluid 3He [1–3]. The initial report of the temperature independent spin susceptibility through T_c [4] and the indication of time-reversal symmetry breaking [5–8] pointed to a chiral p-wave order parameter, $d = z(k_x \pm ik_y)$. However, several experiments are in contradiction with this scenario [7], for example the lack of edge currents [8], the Pauli limiting critical field [9] and the absence of a cusp in the dependence of T_c on uniaxial strain [10]. Importantly, evidence of line nodes in the gap from specific heat [11], ultrasound attenuation [23] and thermal conductivity [12, 13] is not compatible with a chiral p-wave order parameter. Recently, measurements of the NMR Knight shift were carefully revisited and a clear drop in the spin susceptibility below T_c was detected [14], pointing to an order parameter with even parity. As a result, the nature of the superconducting state in Sr$_2$RuO$_4$ is now a wide open question but the chiral p-wave order parameter and any odd-parity order with an out-of-plane d vector are excluded.

Here we present a study of ultrasound propagation in Sr$_2$RuO$_4$ that will allow us to rule out all the candidate states that are characterized by a one-component order parameter.

II. EXPERIMENTAL

T	Basis function	Strain component	Elastic constant
A_{1g}	$a(k_x^2 + k_y^2) + bk_x^2$	$\epsilon_{xx} + \epsilon_{yy}$, ϵ_{xx}	$(c_{11} + c_{12})/2$, c_{33}
A_{2g}	$k_x k_y (k_x^2 - k_y^2)$	none	none
B_{1g}	$k_x^2 - k_y^2$	$\epsilon_{xx} + \epsilon_{yy}$	$(c_{11} - c_{12})/2$
B_{2g}	$k_x k_y$	ϵ_{yy}	c_{66}
E_u	$k_x k_z, k_y k_z$	ϵ_{zz}, ϵ_{xy}	c_{44}

TABLE I. Irreducible representation of the strain tensor for the D$_{4h}$ point group.

Sound velocity is a powerful thermodynamic probe for order parameter. For propagation along high-symmetry directions of the crystal, the sound velocity is $v_s = \sqrt{c_{ij}/\rho}$ where ρ is the density of the material and c_{ij} are the elastic constants defined as the second derivative of the free energy F with respect to the strain u_{ij}. In the framework of Landau-Ginzburg theory of phase transition, a discontinuity in the elastic constant at the superconducting transition is a consequence of the symmetry allowed
coupling term between the order parameter Δ and the strain, $\lambda|\Delta|^2u$, where λ is a coupling constant (see S.I.) [14]. As part of the free energy, this coupling term is invariant under all the operations of the point group, i.e. it belongs to the A_{1g} representation. Table I lists the irreducible strains corresponding to the point group D_{4h} for the tetragonal symmetry of Sr$_2$RuO$_4$ (see the corresponding product table in the S.I.). If the superconducting order parameter is one-component, then $|\Delta|^2$ belongs to the A_{1g} representation. Consequently, the strain variable u can only belong to the A_{1g} representation, i.e. it corresponds to a longitudinal sound wave. A jump in the longitudinal elastic constant is observed at T_c in many superconductors and is directly related to the jump in the specific heat at T_c and the strain dependence of T_c via the Ehrenfest relation [10]. If an unusual jump in the elastic constant associated with a shear mode (B_{1g} or B_{2g} representation) is detected at T_c, then it necessarily implies that the superconducting order parameter is multi-dimensional [17]. Based on these symmetry arguments that are further developed in this paper, we have performed measurements of longitudinal and transverse sound velocities in Sr$_2$RuO$_4$ across the superconducting transition down to 40 mK. The measurements were performed using a pulse-echo technique with two different home built spectrometers and commercial LiNbO$_3$ transducers, bonded to the crystals (see Methods in the S.I.).

III. RESULTS

Elastic constant	k	p	Sound velocity (km/s)	Value (GPa)
c_{11}	[100]	[100]	6.28	233
c_{44}	[100]	[001]	3.41	68.2
c_{66}	[100]	[010]	3.3	64.3
($c_{11}-c_{12}$)/2	[110]	[100]	2.94	51

TABLE II. Definition of the different sound modes measured at $T = 4$ K. k and p stand for the propagation and polarization direction, respectively. Sound velocities were obtained at low temperature using the echo spacing.

Table II shows the different acoustic modes with the directions of sound propagation and polarization of the transducer. The value of the sound velocity is obtained from the echo spacing at low temperature ($T = 4$ K) and can be converted to elastic constants using $\rho = 5.95 \text{ g/cm}^3$. They are in good agreement with resonant ultrasound spectroscopy measurements [18][20]. Fig. 1a and Fig. 1b show the temperature dependence of the sound velocity for the longitudinal mode c_{11} and the transverse mode ($c_{11}-c_{12}$)/2, respectively. Red circles (open squares) correspond to measurement in the superconducting (normal) state. Fig. 1c and Fig. 1d show the difference between the superconducting state and the normal state for the two modes. A discontinuity is expected at T_c for the longitudinal mode, c_{11}. From the Ehrenfest relation, we estimate the magnitude of this drop to be $\Delta c_{11}/c_{11} \approx 4$ ppm (see S.I.). This small discontinuity is thus hidden by the strong softening of the longitudinal constant in the superconducting state (≈ 80 ppm between T_c and $T \to 0$). A similar, but even stronger softening is observed for the transverse mode ($c_{11}-c_{12}$)/2, below T_c (Fig. 1b). These results are qualitatively in agreement with previous measurements [21][22] (but the absolute value of their elastic constants differs from ours [?])

![Fig. 1](image)

Fig. 1. Relative change in sound velocity for a) the longitudinal mode c_{11} measured at $F = 83$ MHz, b) the transverse mode ($c_{11}-c_{12}$)/2 measured at $F = 21.5$ MHz. The normal state data (open squares) are obtained by applying a magnetic field of 1.5 T in the plane, larger than H_{c2}. The superconducting state data (red circles) are measured without any applied field. c) Difference between the superconducting state and the normal state, for the c_{11} mode. d) Same, for the ($c_{11}-c_{12}$)/2 mode.

Fig. 2a shows the temperature dependence of the sound velocity for the transverse mode, c_{66}. The measurements in the superconducting state ($H = 0$, red circles) display a sharp discontinuity at the superconducting transition. The difference in the shear sound velocity between the normal and superconducting states (Fig. 2b) shows a small but very clear jump at T_c, of magnitude ≈ 0.2 ppm, 10 times larger than our experimental resolution. The exceptional sensitivity of our experiment is due to the very small attenuation of the c_{66} mode [23], which enabled us to detect up to 70 echoes (see SI) and to perform a fit on all of them. Note that we have reproduced the data for the c_{66} mode using another experimental setup (see S.I.). A discontinuity of the sound velocity of the c_{66} mode has also been detected by resonant ultrasound spectroscopy at T_c [20].

This is the key finding of our study: we observe a sharp discontinuity at T_c in the sound velocity for the transverse mode c_{66}. This immediately provides unambiguous evidence that the superconducting order parameter must be of a two-component nature, consistent only with the
The superconducting part, expanded to fourth order, is

\[
F_\Delta = a \left(|\Delta_A|^2 + |\Delta_B|^2 \right) + \beta_0 \left(|\Delta_A|^2 + |\Delta_B|^2 \right)^2 \\
+ \frac{\beta_0^2}{2} \left((\Delta_A^*)^2 \Delta_B^2 + c.c. \right) + \beta_3 |\Delta_A|^2 |\Delta_B|^2.
\]

The relevant elastic energy of the uniform strains is

\[
F_u = \frac{1}{2} c_{11} (u_{xx}^2 + u_{yy}^2) + c_{12} u_{xx} u_{yy} + 2 c_{66} u_{xy}^2 \\
+ \frac{1}{2} c_{33} u_{zz}^2 + c_{13} (u_{xx} + u_{yy}) u_{zz},
\]

where \(c\)'s are the elastic constants in Voigt notation. The cross-coupling term is

\[
F_{\Delta - u} = [\alpha_1 (u_{xx} + u_{yy}) + \alpha_2 u_{zz}] (|\Delta_A|^2 + |\Delta_B|^2) \\
+ \alpha_3 (u_{xx} - u_{yy}) (|\Delta_A|^2 - |\Delta_B|^2) \\
+ \alpha_4 u_{xy} \Delta_u \Delta_B + c.c.
\]

The analysis of the above free energy is standard, and is described in detail in the SI. Here we quote the main results.

For convenience we define \(c_A \equiv (c_{11} + c_{12})/2\) and \(c_O \equiv (c_{11} - c_{12})/2\). The latter is the orthorhombic elastic constant associated with the shear mode \(u_{xx} - u_{yy}\), while \(c_{66}\) is the elastic constant of the monoclinic shear \(u_{xy}\). Our aim is to calculate the jumps in the shear elastic constants defined by \(\delta c = c(T^-) - c(T^+)\).

The term \(F_{\Delta - u}\) renormalizes the fourth order coefficients \(\beta_i \rightarrow \beta_i^f\) with

\[
\beta_1 = \beta_0^f - \frac{1}{2} \left[\frac{\alpha_3^2}{c_O} + \frac{\alpha_1^2 c_{33} + \alpha_2^2 c_A - 2 \alpha_1 \alpha_2 c_{13}}{c_A c_{33} - c_{13}} \right],
\]

\[
\beta_2 = \beta_0^f - \frac{\alpha_1}{4 c_{66}}
\]

\[
\beta_3 = \beta_0^f - \frac{\alpha_1^2}{4 c_{66}} + 2 \alpha_3^2/c_O.
\]

For the stability of the system, we need \(\beta_1 > 0\), and \(4 \beta_1 \pm \beta_2 + \beta_3 > 0\). Within these ranges the following three superconducting phases are possible.

(1) **Time reversal symmetry broken superconductor:** In the region \(\beta_2 > (0, \beta_3)\), we get the time reversal symmetry broken state with \((\Delta_A, \Delta_B) = \Delta_0(1, \pm i)\). In this phase, there is no spontaneous shear strain, and the tetragonal symmetry is preserved. The shear moduli jumps are

\[
\delta c_{66} = \frac{-\alpha_3^2}{4 \beta_2 + \alpha_1^2/c_{66}},
\]

\[
\delta c_O = \frac{-2 \alpha_3^2}{\beta_2 - \beta_3 + 2 \alpha_3^2/c_O}.
\]

(2) **Nematic-monoclinic superconductor:** In the region \(\beta_2 < (0, -\beta_3)\), we get a nematic solution, \((\Delta_A, \Delta_B) = \Delta_0(1, \pm 1)\), which breaks the tetragonal symmetry by making the two in-plane diagonal directions inequivalent.
It is accompanied by a spontaneous monoclinic strain, i.e. $u_{xy} \neq 0$. The shear moduli jumps are

$$\delta c_{66} = -\frac{-\alpha_4^2/2}{\beta_1 + \beta_2 + \beta_3 + \alpha_4^2/(2c_{66})},$$ \hspace{1cm} (3a)$$
$$\delta c_{CO} = -\frac{-2\alpha_3^2}{\beta_2 - \beta_3 + 2\alpha_3^2/c_{CO}}. \hspace{1cm} (3b)$$

(3) Nematic-orthorhombic superconductor: In the region $\beta_3 > (0, |\beta_2|)$, we also get a nematic solution, $(\Delta_A, \Delta_B) = \Delta_0(0, 1)$, or equivalently $\Delta_0(1, 0)$, which also breaks the tetragonal symmetry by making the two in-plane crystallographic axes inequivalent. It is accompanied by a spontaneous orthorhombic strain, i.e. $u_{xx} - u_{yy} \neq 0$. The shear moduli jumps are

$$\delta c_{66} = -\frac{-\alpha_4^2/2}{\beta_2 + \beta_3 + \alpha_4^2/(2c_{66})},$$ \hspace{1cm} (4a)$$
$$\delta c_{CO} = -\frac{-\alpha_3^2}{2\beta_1 + \alpha_3^2/c_{CO}}. \hspace{1cm} (4b)$$

Thus, in all three states the two shear elastic constants, c_{66} and c_{CO}, jump at the superconducting transition $T = T_c$. In our data, there is a clear jump in c_{66}. However, a jump in c_{CO} could not be resolved, most likely because of the strong temperature dependence of $c_{CO}(T)$ below the transition.

V. DISCUSSION

The observed jump in c_{66} at T_c implies that the superconducting order parameter of Sr$_2$RuO$_4$ is of a two-component nature. We now discuss the various implications of this new constraint, in the context of the other known properties of Sr$_2$RuO$_4$.

(i) Discrete symmetry breaking: In a two-component scenario, the $U(1)$ symmetry breaking superconducting transition is necessarily accompanied by a simultaneous discrete symmetry breaking. For case (1) in section IV, this discrete symmetry is time reversal leading to a spontaneous magnetization that can be detected in a μSR measurement, for example. A non-zero μSR signal below T_c has indeed been reported [5], but its origin and implications are currently under investigation [24]. For cases (2) and (3) in section IV, the broken symmetry is tetragonal D_{4h} leading to an orthorhombic or a monoclinic distortion of the tetragonal unit cell, which can in principle be detected through x-ray diffraction. At present, no such distortion has been reported.

(ii) Response to uniaxial pressure: T_c as a function of uniaxial strain $u_{xx} - u_{yy}$ should increase linearly. Experimentally, T_c increases, but not in the linear regime since the cusp at zero strain has not yet been resolved [10]. Next, in the presence of a uniaxial strain $u_{xx} - u_{yy}$, there should be two split transitions if the order parameter is the $(1, 1)$ type. But for $(1, 0)$, one expects a single transition, with enhanced T_c. Since split transitions have not been observed in thermodynamic measurements [27], it argues in favor of $(1, 0)$ order parameter.

(iii) Spin-wavevector content of Cooper pairs: The drop of the Knight shift below T_c is strongly suggestive of an even parity order parameter [13, 25]. Assuming only intraband pairing, for singlets, the lowest harmonic is a d-wave solution $(\Delta_A, \Delta_B) = \Delta_0(k_x, k_y)$.

(iv) Line nodes: All states that we discuss within the E_g and E_u representations necessarily have horizontal line nodes. Experimentally, thermal conductivity measurements show that the gap has vertical line nodes [13]. Recent quasiparticle interference (QPI) experiments corroborate this conclusion [29] with nodes along the diagonal. Concerning the location of the line nodes, the specific-heat under in-plane magnetic fields is interpreted either in terms of vertical line nodes of the k_xk_y-type [30] (i.e. rotated by 45 deg compared to the $d_{x^2-y^2}$ orbital) or horizontal line nodes [31]. In the singlet sector (E_g), the states $(1, 0)$ and $(1, 1)$, which break tetragonal symmetry, have vertical line nodes. However, the state $(1, 1)$, which breaks time reversal symmetry, typically does not have vertical line nodes, unless the pairing leads to a Bogoliubov Fermi surface [28]. In the triplet sector (E_u), the p-wave solutions do not have vertical line nodes. In order to have triplet solutions also consistent with vertical line nodes one needs to consider a higher harmonic f-wave solution $(\Delta_A, \Delta_B) = \Delta_0k_z(k^2_x - k^2_y)(d_x, d_y)$.

(v) Accidental degeneracy: Until now, we only considered the two-dimensional irreducible representation E. In principle, one can also get a two-dimensional Δ if two one-dimensional representations become accidentally degenerate. The advantage of such a scenario is that it allows the possibility of having a finite jump in c_{66} while having no jump of c_{CO}. Thus the $(s + d)$-wave solution $(\Delta_A, \Delta_B) = (1, k_xk_y)$ will have the same free energy structure as in Eq. (1), except with $\alpha_3 = 0$. However, such a state is not guaranteed to have line nodes. Vertical line nodes are present for accidental degeneracy of higher order harmonics such as the $(d + g)$-wave solution $(\Delta_A, \Delta_B) = (k^2_x - k^2_y)/(1, k_xk_y)$ [32].

VI. SUMMARY

In summary, using high-sensitivity measurements of ultrasound propagation in Sr$_2$RuO$_4$, we observe a sharp jump in the transverse sound velocity at T_c for the c_{66} mode. This is only possible if the superconducting order parameter has two components, implying either a two-component representation (E_g or E_u) or the accidental combination of two one-dimensional representations (e.g. $B_{1g} \bigoplus A_{2g}$). We can then add the following requirements from previous experiments: 1) the gap has

\[\Delta_A, \Delta_B = \Delta_0(k_x, k_y) \]

\[(\Delta_A, \Delta_B) = \Delta_0k_z(k^2_x - k^2_y)(d_x, d_y) \]

\[(\Delta_A, \Delta_B) = (k^2_x - k^2_y)/(1, k_xk_y) \]
vertical line nodes (from thermal conductivity [13]; 2) the order parameter has even parity (from NMR [14]); 3) uniaxial strain does no split the superconducting transition (from specific heat under strain [27]. If we limit the additional constraints to those three, then the only possible candidate is the (1,0) state in E_y representation, namely the nematic k_xk_z or k_yk_z with both horizontal and vertical line nodes. This is a nematic state, whose onset will be accompanied by an orthorhombic distortion of the lattice and certainly the formation of nematic domains. This implication can be tested by x-ray diffraction measurements.

Acknowledgements C.P. acknowledges support from the EUR grant NanoX n°ANR-17-EURE-0009 and from the ANR grant NEPTUN n°ANR-19-CE30-0019-01. L.T. acknowledges support from the Canadian Institute for Advanced Research (CIFAR) as a CIFAR Fellow and funding from the Natural Sciences and Engineering Research Council of Canada (NSERC; PIN: 123817), the Fonds de recherche du quebec - Nature et Technologies (FRQNT), the Canada Foundation for Innovation (CFI), and a Canada Research Chair. This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund. Y.M. acknowledges support from JSPS Kakenhi (Grants JP15H5852 and JP15K21717) and the JSPS-EPSRC Core-to-Core Program Oxide-Superspin (OSS).

† These authors contributed equally to this work.

* Correspondence to: indranil.paul@univ-paris-diderot.fr, louis.taillefer@usherbrooke.ca, cyril.proust@lnl.infn.it

[1] Maeno, Y. et al. Superconductivity in a layered perovskite without copper. *Nature* **372**, 532534 (1994).

[2] Rice, T. and Sigrist, M. J. Sr$_2$RuO$_4$ - an electronic analog of He-3. *Phys. Condens. Matter* **7**, L643-L648 (1995).

[3] Mackenzie, A.P. and Maeno, Y. The superconductivity of Sr$_2$RuO$_4$ and the physics of spin-triplet pairing. *Rev. Mod. Phys.* **75**, 657-712 (2003).

[4] Ishida, K. et al. Spin-triplet Superconductivity in Sr$_2$RuO$_4$ identified by 17O Knight shift. *Nature* **396**, 658-660 (1998).

[5] Luke, G.M. et al. Time-reversal symmetry-breaking superconductivity in Sr$_2$RuO$_4$. *Nature* **394**, 558 (1998).

[6] Xia, J., Maeno, Y., Beyersdorf, P.T., Fejer, M.M. and Kapitulnik, A. High resolution polar Kerr effect measurements of Sr$_2$RuO$_4$: Evidence for broken time-reversal symmetry in the superconducting state. *Phys. Rev. Lett.* **97**, 167002 (2006).

[7] Mackenzie, A.P., Scaffidi, T., Hicks, C.W., and Maeno Y. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr$_2$RuO$_4$. npj Quantum Materials **2**, 40 (2017).

[8] Kirtley, J.R. et al. Upper limit on spontaneous supercurrents in Sr$_2$RuO$_4$. *Phys. Rev. B* **76**, 014526 (2007).

[9] Deguchi, K., Tanatar, M. A., Mao, Z. Q., Ishiguro, T. and Maeno, Y. Superconducting double transition and the upper critical field limit of Sr$_2$RuO$_4$ in parallel magnetic fields. *J. Phys. Soc. Jpn.* **71**, 2839-2842 (2002).

[10] Hicks, C. W. et al. Strong increase of T_c of Sr$_2$RuO$_4$ under both tensile and compressive strain. *Science* **344**, 283-285 (2014).

[11] Nishizaki, S., Maeno, Y., and Mao Z.Q. Changes in the superconducting state of Sr$_2$RuO$_4$ under magnetic fields probed by specific heat. *J. Phys. Soc. Jpn.* **69**, 572578 (2000).

[12] Suzuki, M. et al. Universal Heat Transport in Sr$_2$RuO$_4$. *Phys. Rev. Lett.* **88**, 227004 (2002).

[13] Hassinger E. et al. Vertical line nodes in the superconducting gap structure of Sr$_2$RuO$_4$. *Phys. Rev. X* **7**, 011032 (2017).

[14] Pustogow A. et al. Constraints on the superconducting order parameter in Sr$_2$RuO$_4$ from oxygen-17 nuclear magnetic resonance. *Nature* **574**, 72-75 (2019).

[15] Rehwald, W. The study of structural phase transitions by means of ultrasonic experiments. *Advances in Physics* **22**, 721-755 (1973).

[16] Sigrist M. Ehrenfest Relations for Ultrasonic Absorption in Sr$_2$RuO$_4$. *Progress of Theoretical Physics* **107**, 917-925 (2002).

[17] Walker M. B. and Contreras P. Theory of elastic properties of Sr$_2$RuO$_4$ at the superconducting transition temperature. *Phys. Rev. B* **66**, 214508 (2002).

[18] Paglione JP., Lupien C., MacFarlane W.A., Perz J.M., Taillefer L., Mao Z.Q and Maeno Y. Elastic tensor of Sr$_2$RuO$_4$. *Phys. Rev. B* **65**, 220506 (2002).

[19] Barber, M.E. et al. Role of correlations in determining the Van Hove strain in Sr$_2$RuO$_4$. *Phys. Rev. B* **100**, 245139 (2002).

[20] Preprint by Ghosh, Ramshaw, et al.

[21] Matsui, H. et al. Ultrasonic studies of the spin-triplet order parameter and the collective mode inSr$_2$RuO$_4$. *Phys. Rev. B* **63**, 060505R (2001).

[22] Okuda N., Suzuki T., Mao Z., and Fujita T. Unconventional Strain Dependence of Superconductivity in Spin-Triplet Superconductor Sr$_2$RuO$_4$. *J. Phys. Soc. Jpn.* **71**, 1134-1139 (2002).

[23] Lupien, C. et al. Ultrasound Attenuation in Sr$_2$RuO$_4$: An Angle-Resolved Study of the Superconducting Gap Function. *Phys. Rev. Lett.* **86**, 265986 (2001).

[24] Grinenko, V. et al. Split superconducting and time-reversal symmetry-breaking transitions, and magnetic order in Sr$_2$RuO$_4$ under uniaxial stress. arXiv: 2001.08152 (2020).

[25] Ishida, K., Manago, M. and Maeno, Y. Reduction of the 17O Knight shift in the Superconducting State and the Heat-up Effect by NMR Pulses on Sr$_2$RuO$_4$. arXiv: 1907.12236 (2019).

[26] Petsch, A.N. et al. Reduction of the spin susceptibility in the superconducting state of Sr$_2$RuO$_4$ observed by polarized neutron scattering. arXiv: 2002.0285 (2020).
[27] Li, Y.S. et al. High precision heat capacity measurements on Sr$_2$RuO$_4$ under uniaxial pressure. arXiv: 1906.07597 (2019).

[28] Suh, H.G. et al. Stabilizing Even-Parity Chiral Superconductivity in Sr$_2$RuO$_4$. arXiv: 1912.09525 (2019).

[29] Sharma, R. et al. Momentum Resolved Superconducting Energy Gaps of Sr$_2$RuO$_4$ from Quasiparticle Interference Imaging. arXiv: 1912.02798 (2019).

[30] Deguchi, K., Mao, Z.Q., Yaguchi, H. and Maeno, Y. Gap Structure of the Spin-Triplet Superconductor Sr$_2$RuO$_4$ Determined from the Field-Orientation Dependence of the Specific Heat. Phys. Rev. Lett. 92, 047002 (2004).

[31] Kittaka, S. et al. Searching for Gap Zeros in Sr$_2$RuO$_4$ via Field-Angle-Dependent Specific-Heat Measurement. J. Phys. Soc. Jpn 87, 093703 (2018).

[32] Kivelson, S.A., Yuan, A.C., Ramshaw, B.J. and Thomale R. A proposal for reconciling diverse experiments on the superconducting state in Sr$_2$RuO$_4$. arXiv: 2002.00016 (2020).