Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis

Jingjing He | Yifei Guo | Richeng Mao MD, PhD | Jiming Zhang MD, PhD

Abstract

We aim to systematically review the characteristics of asymptomatic infection in the coronavirus disease 2019 (COVID-19). PubMed and EMBASE were electronically searched to identify original studies containing the rate of asymptomatic infection in COVID-19 patients before 20 May 2020. Then meta-analysis was conducted using R version 3.6.2. A total of 50,155 patients from 41 studies with confirmed COVID-19 were included. The pooled percentage of asymptomatic infection is 15.6% (95% CI, 10.1%-23.0%). Ten included studies contain the number of presymptomatic patients, who were asymptomatic at screening point and developed symptoms during follow-up. The pooled percentage of presymptomatic infection among 180 initially asymptomatic patients is 48.9% (95% CI, 31.6%-66.2%). The pooled proportion of asymptomatic infection among 1152 COVID-19 children from 11 studies is 27.7% (95% CI, 16.4%-42.7%), which is much higher than patients from all aged groups. Abnormal CT features are common in asymptomatic COVID-19 infection. For 36 patients from 4 studies that CT results were available, 15 (41.7%) patients had bilateral involvement and 14 (38.9%) had unilateral involvement in CT results. Reduced white blood cell count, increased lactate dehydrogenase, and increased C-reactive protein were also recorded. About 15.6% of confirmed COVID-19 patients are asymptomatic. Nearly half of the patients with no symptoms at detection time will develop symptoms later. Children are likely to have a higher proportion of asymptomatic infection than adults. Asymptomatic COVID-19 patients could have abnormal laboratory and radiational manifestations, which can be used as screening strategies to identify asymptomatic infection.

KEYWORDS

asymptomatic infection, children coronavirus disease 2019, Coronavirus disease 2019, COVID-19, presymptomatic infection, SARS-CoV-2

1 | BACKGROUND

The current COVID-19 pneumonia pandemic, caused by a novel coronavirus SARS-CoV-2 that belongs to the beta-coronavirus lineage B, is spreading globally at an accelerated rate. First reported in a seafood market in Wuhan province China in December 2019,¹ this disease is now affecting more than 156 countries around the world. As of 5 June 2020, a total number of 4,248,389 laboratory-confirmed cases have been documented globally, leading to 294,046 deaths,² which is far more than two previously identified coronaviruses SARS-CoV (2003) and MERS-CoV (2012) that cause Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome (MERS) did.
Clinical manifestation of COVID-19 is protean. Significant clinical presentations of COVID-19 include fever, respiratory and gastrointestinal symptoms, pneumonia, and other symptoms such as myasthenia, ageusia, and anosmia. However, patients infected with SARS-CoV-2 could also be asymptomatic, confirmed by positive Nucleic acid testing results during the illness. As a potential source of COVID-19 infection, asymptomatic patients with subclinical manifestation could be missed by detection strategies and put a threat to infection control via person-to-person contact. Asymptomatic cases inevitably distorting the COVID-19 epidemiologic reality. While a variety of studies on asymptomatic infection have been reported, the proportion of asymptomatic patients in confirmed COVID-19 cases is not well characterized. We conducted this meta-analysis to better understand the asymptomatic infection of COVID-19.

2 | MATERIALS AND METHOD

2.1 | Studies selection

Two databases including PubMed and Embase were searched before 20 May 2020 following the PRISMA guideline. We included the following items:

#1: “COVID-19” OR “2019 novel coronavirus disease” OR “COVID19” OR “COVID-19 pandemic” OR “SARS-CoV-2 infection” OR “COVID-19 virus disease” OR “coron121avirus disease-19” OR “2019 novel coronavirus infection” OR “2019-nCoV infection” OR “coronavirus disease 2019” OR “2019-nCoV disease” OR “COVID-19 virus disease”

#2: “Asymptomatic”

#3: #1 AND #2

We included articles reporting a specific number of asymptomatic infection cases in confirmed COVID-19 patients. Information describing the epidemiological and clinical features of COVID-19 asymptomatic infection were extracted from studies to obtain epidemiological and clinical features of asymptomatic infection.

2.2 | Selection criteria

Records were identified through database searching. Confirmed COVID-19 was defined as one that had a throat-swab or other specimen tested positive for SARS-CoV2 using real-time RT-PCR assay. Asymptomatic infection was defined as patients who developed no symptoms such as fever, cough, or diarrhea during illness. A presymptomatic case was defined as a patient who has no symptoms at diagnosis time but developed symptoms during follow-up. Patients with no symptoms at screening point were defined as the number of asymptomatic patients plus the number of presymptomatic patients. Two authors (He and Guo) extracted data independently. Disagreements were resolved by discussion until consensus was reached or by consulting a third author. Including criteria included: (a) Study objectives: Patients confirmed infected with SARS-CoV-2 (including adult, pediatric patients, and pregnant women). (b) Study types: prospective/retrospective cross-section cohort studies. There was no language restriction. Original articles reporting asymptomatic infection in confirmed COVID-19 patients were included for meta-analysis.

The methodological quality of the studies included in meta-analysis was assessed using an 11-item checklist which was recommended by Agency for Healthcare Research and Quality (AHRQ). If an item was answered “NO” or “UNCLEAR” it would be scored 0” and if it was answered “YES,” then the item scored “1.” Article quality was assessed as follows: low quality = 0 to 3; moderate quality = 4 to 7; high quality = 8 to 11.

2.3 | Data extraction

After removing the duplicates, the abstract review was conducted through titles and abstracts. The following data were extracted: author, date of publication, site of study, study group, total number of people included in the study, age, sex, the number of asymptomatic infections, and the number of presymptomatic infection in patients if available. For detail information of asymptomatic patients, information containing age, sex, conversion time of illness (the time between the first day with a positive reverse transcription-polymerase chain reaction [RT-PCR] result and the day of a second negative RT-PCR result), laboratory analysis results and CT examination results were extracted if available.

2.4 | Data analysis

All statistical analysis was performed using R version 3.6.2 (R Foundation for Statistical Computing) statistical software and Rstudio. Packages “meta,” “metafor,” and “weightr” were used. The proportion of asymptomatic infection was transformed using the logit transformation to make it conform to the normal distribution. A random effects model was applied to calculate the effect size and its 95% confidence interval (95% CI) by the method of moments (the Dorsett and Laird method) and as presented by Forest plot. The tau² and I² statistic was used to estimate the proportion of the observed heterogeneity. Studies containing the number of presymptomatic patients were extracted to analyze the proportion of presymptomatic infection in patients with no symptoms at screening point. Untransformed proportions and a random effects model by the method of moments (the Dorsett and Laird method) were applied to calculate the effect size and its 95% confidence interval (95% CI) and as presented by Forest plot. Leave-one-out diagnostics and regression diagnostics were used to identify influential studies that pronouncedly contribute to heterogeneity in meta-analytic data. Meta-analysis via linear was conducted to find the factor attributing to the overall heterogeneity, which was described in the article published by Wang. Subgroup summary proportion analysis were conducted to explain
the factor contributing to heterogeneity. Then subgroups forest
plot was created by different study group: all, children, pregnant
women or elderly people, and different place: China or outside of
China. Publication bias was detected with funnel plot and Egger’s
regression test.

3 | RESULTS

3.1 | Study characteristic of meta-analysis

Study process is depicted in Figure S1. Of the 470 studies identified,
40 studies,6-45 and 1 additional study,46 including 50155 patients
were included in the meta-analysis. Place where the study was con-
ducted, age, sex, and reported proportion of asymptomatic infection,
number of presymptomatic infection, and quality scores were ab-
stracted (Table S1). There were 25 (59.5%) studies from China and
16 from other countries (South Korea: 4, United States of America: 3,
Europe region: 3, UK: 2, Brunei: 1, Iraqi Kurdistan: 1, Thailand: 1, and
Japan: 1). All studies were of high (27) or moderate (14) quality.
There were no articles with low quality rating.

3.2 | Results of meta-analysis

3.2.1 | Pooled proportion of asymptomatic infection

A total of 50155 patients with confirmed COVID-19 were included.
The pooled percentage of all asymptomatic infection is 15.6% (95% CI,
10.1%-23.0%) with significant heterogeneity noted among studies
(P < .01; Q, 1653.8; tau^2, 2.34; I^2, 97.6%) (Figure 1).

3.2.2 | Proportion of presymptomatic infection

There was a total of 10 studies containing the number of patients
who were identified as silent COVID-19 patients but developed
symptoms during follow-up. A total of 180 initial no-symptoms
COVID-19 patients were included. The pooled percentage of pre-
symptomatic infection among patients with no symptoms at screen-
ing point is 48.9% (95% CI, 31.6-66.2%) with heterogeneity noted
among studies (P < .01; I^2, 85%) (Figure 2).

3.2.3 | Subgroup meta-analysis

Study group
There were 24 studies of 48868 people in study cohorts from all
age groups, 11 studies of 1152 children, 3 studies of 75 elderly
people, and 4 studies of 83 pregnant women. The pooled pre-
vvalence of asymptomatic infection was 9.0% (95% CI, 5.5%-14.6%),
27.7% (95% CI, 16.4%-42.7%), 28.3% (95% CI, 19.4%-94.2%), and
49.9% (95% CI, 14.9%-84.9%) in studies from all aged group,
children, the elderly, and pregnant women respectively (Figure 3).
There was a significant subgroup difference between the studies
(P = .0041).

Study place
The pooled prevalence of asymptomatic infection was 15.5% (95% CI,
8.8%-25.7%) and 14.5% (95% CI, 9.8%-21.1%) in studies from China and
other countries respectively (Figure 4). The P value between these two
groups is .8313 with no significance. There was significant hetero-
geney among the studies conducted in China (P < .01; I^2 = 98.3%) and
fewer heterogeneity studies from other countries (P < .01; I^2 = 70.1%).

3.2.4 | Sensitivity analysis and publication bias

Leave-one-out diagnostics (Figure S2) and regression diagnostics
(Figure S3) showed that no specific study has a pronounced impact
on the original summary proportion. Meta-analysis via linear was
conducted to explaining heterogeneity by different independent
variables: study place, study group, quality scores, and the number of
confirmed cases. The P values were .96, .0005, .06, and .0028 dif-
ferently for them. Different study group and sample size may account
for the high heterogeneity among studies. The Funnel plot (Figure 5)
and Egger’s regression test indicate that there may be publication
bias (t = 5.65; P < .0001).

3.3 | Clinical features of asymptomatic infection

Fifty-nine patients from four studies included in the meta-
analysis9,26-28 and one additional case series study47 were included. A
summary of the characterizes of asymptomatic COVID-19 infection
is shown in Table 1. Illness duration ranged from 3 to 34 days. CT
imaging results could be normal and abnormal. For 36 patients from
4 studies, 15 (41.7%) had bilateral involvement and 14 (38.9%) had
unilateral involvement in CT results. Some patients may have ab-
norat laboratory results. Detail information was available from two
studies respectively conducted by Ma et al26 and Xu et al.47 In those
two studies, 27.3% (3/26) of asymptomatic patients had reduced
white blood cell count, 42.3% (11/26) of patients showed increased
lactate dehydrogenase, and 11.5% (3/26) of patients recorded in-
creased C-reactive protein. Increased creatine kinase-MB, both de-
creased lymphocyte count and increased lymphocyte count were also
recorded in those two studies.

4 | DISCUSSION

This study conducted a meta-analysis studying the epidemiological
and clinical characteritics of asymptomatic COVID19 patients.
50155 confirmed COVID-19 patients from 41 studies were included
and the pooled proportion of asymptomatic infection is 15.6%.
Meanwhile nearly half of the patients who were asymptomatic at
screening time may develop symptoms during follow-up. Our results also show that there is no significant difference in the percentage of asymptomatic infection between studies conducted in China or other countries. Meantime, 11 studies whose research objects are children, got a pooled asymptomatic proportion of 27.7% among confirmed cases. This result is much higher than the result obtained from all aged groups.

Many viral infections are associated with asymptomatic, subclinical, or very mild symptoms. Influenza was estimated to be 5.2% to 35.5%. Asymptomatic infections were also reported during SARS and MERS. Our result of asymptomatic proportion is lower than in many independent studies. In the study conducted by Nishiura et.al estimating the asymptomatic ratio of COVID-19 by using the information on Japanese chartered flights evacuated from Wuhan, China, this number
was calculated to be 30.8%. This could be explained by the relatively small observation sample size. Presymptomatic is common in patients who had no symptoms at diagnosis. Those patients developed symptoms later during follow-up and are easy to be mistakenly classified as asymptomatic patients if the observation time is not long enough, which disturbs figuring out the true burden of asymptomatic infection. In 10 studies containing the number of presymptomatic infection, the pooled proportion of presymptomatic infection of COVID-19 among no-symptoms patients at screening time is 48.8%. This result indicates that nearly half of the patients who were diagnoses with COVID-19 asymptotically at screening time may be in their incubation period and develop symptoms later in the nature course of the disease. In a study reporting 55 asymptomatic cases, even admitted asymptotically, 39 of them developed symptoms and two of them even developed severe COVID-19 during hospitalization. In one extreme case, an asymptomatic patient did not show any symptoms of COVID-19 until her sudden death due to arterial and venous thromboembolic events of COVID-19.

Studies showed that most children’s cases were less severe than adults. The main reason why the majority of children had a benign course of illness with mild respiratory symptoms is still unknown. This may be explained by host factors. Angiotensin-converting enzyme 2 (ACE2), the main means of pathogenesis, is significantly lower in children than in adults. Moreover, children’s immune function is less mature than adults with a blunt immune response in SARS-CoV2 infection. This may highlight a possible likelihood of underestimation of children COVID-19 patients, owing to the not so ideal performance of current screening strategy relying hugely on clinical symptoms to detect COVID-9. Some studies also showed that the median age of asymptomatic patients is younger than the symptomatic patients. The elderly and pregnant women also showed higher proportions of asymptomatic infection in our subgroup meta-analysis. Reasons may be explained by the relatively small sample size of these two types of patients. Special immune system states may also be a possible reason for this phenomenon.

Clinical manifestations of asymptomatic patients show that most asymptomatic patients were moderate in their clinical manifestations and stay asymptomatic until their RNA testing turned negative. Some transient symptoms were recorded in some studies. In the study conducted by Lee et al, acute anosmia or ageusia was observed in 15.7% (367/2342) patients with asymptomatic-to-mild disease severity owing to damage to the olfactory nerve during invasion and multiplication of SARS-CoV-2. An asymptomatic patient can also have a transient high temperature or a slightly dry cough during illness. COVID-19 patients may show varying degrees of laboratory abnormalities, for example, leukopenia, increased lactate dehydrogenase, lymphocytosis, lymphopenia, etc. We still don’t know whether there are differences in laboratory test results between asymptomatic patients and symptomatic patients. Though imaging examination could be a potential approach to identify asymptomatic COVID-19 patients. Even without clinical features, some asymptomatic patients do have abnormal CT features indicating pulmonary involvement, which is mainly patchy shadowing and GGOs, demonstrating that chest CT method could be helpful to screen asymptomatic COVID-19 patients. IgG and IgM levels of the patients showed a gradually increasing trend during COVID-19. Noticeably, one study from Wuhan showed that 98/1021(9.6%) nucleic acid testing negative patients had IgG positive results, suggesting possible recovery from asymptomatic SARS-CoV-2 infection. A study from Germany also demonstrates the importance of serological tests in COVID-19. In 5/316(1.6%) healthcare workers SARS-CoV-2-IgG antibodies could be detected. Four of the five subjects were tested negative for SARS-CoV-2 via PCR. One subject was not tested via PCR since he was asymptomatic. All those results suggest that asymptomatic patients could use serological tests to detect COVID-19 infection.

Asymptomatic infection was believed to be less contagious as a consequence of a decreased virulence throughout the successive transmission, like SARS-CoV. In the study conducted by

author/year	pre-asymptomatic	total asymptomatic	Proportion	95% C.I. weights	
Wong J (2020.05)	42	58	0.72414	[0.60911; 0.83916]	12.1%
Wang XB (2020.03)	16	30	0.53333	[0.35481; 0.71185]	11.3%
Arons MM (2020.04)	24	27	0.88889	[0.77035; 1.00000]	12.1%
Breskin N (2020.04)	10	14	0.71429	[0.47765; 0.95092]	10.3%
Zhou X (2020.03)	3	13	0.23077	[0.00174; 0.45680]	10.5%
Seong EK (2020.04)	3	13	0.23077	[0.00174; 0.45680]	10.5%
Park SY (2020.04)	4	8	0.50000	[0.15352; 0.84648]	8.5%
Wu CC (2020.04)	3	7	0.42857	[0.06197; 0.79517]	8.1%
Lucy R (2020.04)	1	6	0.16667	[0.00000; 0.46487]	9.3%
Roxby AC (2020.04)	1	4	0.25000	[0.00000; 0.67434]	7.2%

FIGURE 2 Frost plot of the proportion of presymptomatic infection in initial no-symptom COVID-19 patient
FIGURE 3 Frost plot of the proportion of asymptomatic infection in COVID-19 patients by study group
FIGURE 4 Frost plot of the proportion of asymptomatic infection in COVID-19 patients by study place

author/year	cases	total	Proportion	95% C.I.	weights
place = China					
China CDC (2020.02)	889	44627	0.01992	[0.01866; 0.02126]	2.7%
Ji T (2020.04)	50	1015	0.04926	[0.03753; 0.06441]	2.7%
Wang XB (2020.03)	14	1012	0.01383	[0.00821; 0.02322]	2.7%
Dong YY (2020.03)	94	728	0.12912	[0.10665; 0.15550]	2.7%
Zhou X (2020.03)	10	328	0.03049	[0.01648; 0.05572]	2.6%
Liu JY (2020.05)	11	321	0.03427	[0.01908; 0.06081]	2.6%
Tian SJ (2020.02)	13	262	0.04962	[0.02893; 0.08356]	2.6%
He GQ (2020.04)	12	206	0.05825	[0.03338; 0.09976]	2.6%
Lu XX (2020.04)	27	171	0.15789	[0.11056; 0.22047]	2.7%
Chen P (2020.04)	30	136	0.22059	[0.15875; 0.29798]	2.7%
Xiong F (2020.04)	28	131	0.21374	[0.15184; 0.29218]	2.7%
Ma YL (2020.03)	61	115	0.53043	[0.43922; 0.61966]	2.7%
Ma Y (2020.04)	11	47	0.23404	[0.13460; 0.37510]	2.6%
Qiu HY (2020.03)	10	36	0.27778	[0.15646; 0.44369]	2.6%
Yin S (2020.04)	4	33	0.12121	[0.04625; 0.28179]	2.4%
Wang D (2020.02)	4	31	0.12903	[0.04928; 0.29745]	2.4%
Liu L (2020.05)	3	24	0.12500	[0.04087; 0.32384]	2.4%
Wu XQ (2020.04)	15	23	0.65217	[0.44289; 0.81558]	2.5%
Song WL (2020.04)	8	16	0.50000	[0.27290; 0.72710]	2.5%
Du WJ (2020.03)	8	14	0.57143	[0.31630; 0.79350]	2.4%
Tan X (2020.03)	2	13	0.15385	[0.03874; 0.45063]	2.2%
Tan YP (2020.04)	2	10	0.20000	[0.05041; 0.54071]	2.2%
Zhong Z (2020.03)	1	9	0.11111	[0.01539; 0.49965]	1.9%
Zhou Y (2020.02)	5	9	0.55556	[0.25131; 0.82316]	2.3%
Wu CC (2020.04)	4	8	0.50000	[0.20006; 0.79994]	2.3%

Random effects model 49325
Heterogeneity: $I^2 = 98\%$, $X_{15}^2 = 1393.22 (p < 0.01)$

author/year	cases	total	Proportion	95% C.I.	weights
place = outside China					
Kim G (2020.04)	41	213	0.19249	[0.14498; 0.25100]	2.7%
Wong J (2020.05)	16	138	0.11594	[0.07225; 0.18089]	2.7%
Park SY (2020.04)	4	97	0.04124	[0.01556; 0.10476]	2.5%
Seong EK (2020.04)	10	71	0.14085	[0.07749; 0.24239]	2.6%
Lucy R (2020.04)	5	61	0.06197	[0.03453; 0.18226]	2.5%
Arons MM (2020.04)	3	48	0.06250	[0.02030; 0.17663]	2.4%
Breskin N (2020.04)	4	43	0.09302	[0.03536; 0.22300]	2.5%
Susanne B (2020.05)	2	36	0.05556	[0.01394; 0.19669]	2.2%
Spiterl G (2020.03)	2	31	0.06452	[0.01619; 0.22422]	2.2%
Kim ES (2020.03)	3	28	0.10714	[0.03496; 0.28441]	2.4%
Muayad A (2020.04)	6	15	0.40000	[0.19178; 0.65193]	2.5%
Nishiura H (2020.02)	4	13	0.30769	[0.12039; 0.59070]	2.4%
Vera S (2020.04)	2	12	0.16667	[0.04198; 0.47720]	2.2%
Pongpirul WA (2020.04)	1	11	0.09091	[0.01264; 0.43857]	1.9%
Asma K (2020.05)	8	9	0.86889	[0.50015; 0.98461]	1.9%
Roxby AC (2020.04)	3	4	0.75000	[0.23784; 0.96649]	1.7%

Random effects model 830
Heterogeneity: $I^2 = 70\%$, $X_{15}^2 = 50.11 (p < 0.01)$

Random effects model 50155
Heterogeneity: $I^2 = 98\%$, $X_{30}^2 = 1653.75 (p < 0.01)$

Residual heterogeneity: $I^2 = 97\%$, $X_{30}^2 = 1443.34 (p = 0.00)$

Prevalence

![Frost plot of the proportion of asymptomatic infection in COVID-19 patients by study place](image-url)
The viral load of six asymptomatic patients is lower than six symptomatic cases. This result was supported by a mass screening by Rivett et al of health care workers as well as their contacts in the UK. Viral loads were significantly lower for 31 asymptomatic health care workers screening group than in those 30 individuals tested positive due to the presence of symptoms. However, it’s still too early to conclude that asymptomatic patients are less likely to transmit the virus. Relatively high viral load was also detected in asymptomatic patients and the stool sample was tested positive in a well infant of COVID-19, a man in his 20s and a 10 years old boy in Zhejiang, China. The role of asymptomatic patients in potential transmission of infection to close contact is still a concern. The study conducted by Hu et al certificated that asymptomatic carriers can result in person-to-person transmission and should be considered a source of COVID-19. Case 13 in that study transmitted the virus to his cohabiting family members and one of the infected individuals developed severe COVID-19 pneumonia. In a family cluster report, the index patient is asymptomatic during hospitalization. A familial cluster of five patients with COVID-19 pneumonia in Anyang, China, had contact with an asymptomatic

![Funnel plot based on the proportion of asymptomatic infection for evaluation of publication bias](image)

FIGURE 5 Funnel plot based on the proportion of asymptomatic infection for evaluation of publication bias

(ID) Study	(20) Ma Y	(13) Xiong F	(9) He GQ	(32) Du WJ	Xu TM
Number of asymptomatic patients	11	28	12	8	15
Age (range)	23 (1-60)	62.1	31 (24-51)	NA	27
Male (percentage)	6 (54.5%)	15 (53.6%)	6 (50%)	5 (62.5%)	10 (66.7%)
Conversion time, d	10 (3-34)	NA	NA	5.43	NA
Hospital stay, d	14 (10-30)	NA	NA	NA	NA
Abnormal CT result	7 (63.6%)	NA	NA	5 (62.5%)	NA
Bilateral involvement (CT)	4	NA	4	3	4
Unilateral involvement (CT)	3	NA	5	2	4
White blood cell count (10⁹/L)	NA	5.3 (3.5-7.9)	6.1 (4.6-6.9)	7.11	6.3 (4.8-8.1)
Decreased	3 (27.3%)	NA	NA	NA	0
Lymphocyte count (10⁹/L)	NA	1.0 (0.8-1.3)	1.9 (1.5-2.1)	4.64	2.3 (1.7-3.4)
Increased	4 (36.4%)	NA	NA	NA	NA
Decreased	0 (0.0%)	NA	NA	NA	1 (6.7%)
Neutrophils count (10⁹/L)	NA	4.0 (2.6-6.4)	3.4 (2.6-5.0)	1.93	3.0 (2.7-4.6)
Hemoglobin, g/L	NA	110.0 (91.0-121.0)	136.0 (121.0-144.0)	131.63	138.0 (131.0-162.0)
PLT (10⁹/L)	NA	151.5 (108.9-191.0)	272.0 (210.0-311.0)	260.88	214.0 (142.0-277.0)
C-reactive protein, mg/L	NA	0.80 (0.46-1.10)	0.65	NA	2 (2/14, 14.3%)
Increased	1 (9.1%)	NA	NA	NA	NA
Lactate dehydrogenase, U/L	NA	154.0 (134.0-182.0)	333.03	195.0 (166.0-388.0)	6 (40%)
Increased	5 (45.5%)	NA	NA	NA	NA
Creatine kinase, U/L	NA	65.1 (36.0-73.9)	116.85	NA	NA
Increased	6 (54.5%)	NA	NA	NA	NA
Level of D-dimer, µg/mL	NA	NA	NA	0.49	0.2 (0.1-0.3)
ESR, mg/L	NA	NA	14 (10-15)	NA	NA
family member before their symptom onset. Presymptomatic patient can also transmit the virus by close contact. Laboratory screening tests should be regarded as part of active case monitoring and contact investigations. When asymptomatic patients are identified, it is better to put the patients under monitor.

There are highlights in our studies. First, by using logit transversion of the original data, the pooled proportion of asymptomatic infection was more accurately estimated. Besides, the pooled percentage of presymptomatic infection in patients without symptoms at screening point was also analyzed in the 10 studies containing the detailed information. Meanwhile, there are limitations to our study. First of all, some including studies’ observation time were not long enough or did not record negative PCR results of patients. This may lead to some presymptomatic cases to be mistaken for asymptomatic patients. Second, recalling bias may exist, some studies recorded symptoms of patients mainly basing on self-recalling bias may exist, some studies recorded symptoms of patients may have symptoms before screening and thus symptomatic person might have failed to report mild or subclinical symptoms after symptoms resolved. Third, serum viral conversion time and treatments are not available in many articles, making it’s hard to conclude whether asymptomatic patients are more likely to clear virus shedding in organs and whether these patients with slightly clinical manifestations should undergo routine treatment or should only take quarantine till recovery. More studies are needed to get a comprehensive understanding of asymptomatic infection of COVID-19 to guide the prevention measures employed in the real-world.

5 CONCLUSION

Probing into asymptomatic infection proportion is a useful quantity to understand the true burden of disease transmission. In our meta-analysis, asymptomatic infection is estimated to be 15.6% of all confirmed cases. Nearly half of the patients who have no symptoms at the screening point can develop symptoms during follow-up. Children are likely to have a higher proportion of asymptomatic infection of COVID-19 than adults. One-third of confirmed children with COVID-19 are asymptomatic. A comprehensive analysis of a possible patient’s epidemiological history, nucleic acid tests, serological tests, and imaging test results are required to identify asymptomatic infections of COVID-19 to intercept the transmission of this virus.

ACKNOWLEDGMENTS

The present study was supported by the Shanghai Pujiang Pujiang Program (17PJ005) and the National Natural Science Foundation of China (81670528, 81672009, and 81871640).

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

Data curation, methodology, and writing-original draft: JH and YG. Funding acquisition, writing-review, and editing, and supervision: JZ and RM. Software: JH.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Jingjing He (http://orcid.org/0000-0003-0322-4846)

REFERENCES

1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020; 395(10223):497-506.
2. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/
3. Del Rio C, Malani PN. COVID-19-new insights on a rapidly changing epidemic. JAMA. 2020;323(14):1339-1340.
4. Lee Y, Min P, Lee S, Kim SW. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci. 2020;35(18):e174.
5. Wang N How to conduct a meta-analysis of proportions in R: a comprehensive tutorial. 2018.
6. Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020;80(4):401-406.
7. Wang D, Ju XL, Xie F, et al. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China. Zhonghua er ke za zhi. 2020;58(4):269-274.
8. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020;20:689-696.
9. Du W, Yu J, Wang H, et al. Clinical characteristics of COVID-19 in children compared with adults in Shandong Province, China. Infection. 2020;48:1-8.
10. Wang X, Fang J, Zhu Y, et al. Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clin Microbiol Infect. 2020;26:1063-1068.
11. Pongpirul WA, Mott JA, Woodring JV, et al. Clinical characteristics of patients hospitalized with coronavirus disease, Thailand. Emerging Infect Dis. 2020;26:7-1585.
12. Kim ES, Chin BS, Kang CK, et al. Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: a preliminary report of the first 28 patients from the Korean Cohort Study on COVID-19. J Korean Med Sci. 2020;35(13):e142.
13. Zhou Y, Yang GD, Deng K, et al. Clinical features and chest CT findings of coronavirus disease 2019 in infants and young children. Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(3):215-220.
14. Am J Obstet Gynecol MFM Breslin N, Baptiste C, Gyamfi-Bannerman C, et al. COVID-19 infection among asymptomatic and symptomatic pregnant women: two weeks of confirmed presentations to an affiliated pair of New York City hospitals. Am J Obstet Gynecol MFM. 2020;100118.
15. Roxby AC, Greninger AL, Hatfield KM, et al. Detection of SARS-CoV-2 among residents and staff members of an independent and assisted living community for older adults-Seattle, Washington, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):416-418.
16. Tan YP, Tan BY, Pan J, Wu J, Zeng SZ, Wei HY. Epidemiologic and clinical characteristics of 10 children with coronavirus disease 2019 in Changsha, China. J Clin Virol. 2020;127:104353.

17. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2020;41(2):145-151.

18. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145.

19. Nishiura H, Kobayashi T, Miyama T, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int J Infect Dis. 2020;94:154-155.

20. Spiteri G, Fielding J, Diercke M, et al. First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020. Euro Surveill. 2020;25(9):200178.

21. Zhou X, Li Y, Li T, Zhang W. Follow-up of asymptomatic patients with SARS-CoV-2 infection. Clin Microbiol Infect. 2020;26:957-959.

22. Ji T, Chen HL, Xu J, et al. Lockdown contained the spread of 2019 novel coronavirus disease in Huangshi city, China: early epidemiological findings. Clin Infect Dis. 2020;ciaa390.

23. Wu X, Sun R, Chen J, Xie Y, Zhang S, Wang X. Radiological findings and clinical characteristics of pregnant women with COVID-19 pneumonia. Int J Gynecol Obstet. 2020;150:58-63.

24. Kim G, Kim MJ, Ra SH, et al. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin Microbiol Infect. 2020;26:948.e1-948.e3.

25. Liu JY, Chen TJ, Hwang SJ. Analysis of imported cases of COVID-19 in Wenzhou. J Med Virol. 2020;88:1-5.

26. Ma Y, Xu Q, Wang F, et al. Characteristics of asymptomatic patients with SARS-CoV-2 infection in Jinan, China. Microb Infect. 2020;22:212-217.

27. Xiong F, Tang H, Liu L, et al. Clinical characteristics of asymptomatic patients with mild COVID-19. Clin Microbiol Infect. 2020;26:948.e1-948.e3.

28. Liu JY, Chen TJ, Hwang SJ. Analysis of imported cases of COVID-19 in Taiwan: a nationwide study. Int J Environ Res Public Health. 2020;17:9.

29. Cai X, Xu Y, Yu K, et al. The clinical feature of silent infections of novel coronavirus infection (COVID-19) in Wenzhou. J Med Virol. 2020;88:1-5.

30. Tan X, Huang J, Zhao F, Zhou Y, Li JQ, Wang XY. Clinical features of asymptomatic SARS-CoV-2 infection: an analysis of 13 cases from Changsha, China. Zhongguo Dang Dai Er Ke Za Zhi = Zhonghua liuxingbingxue zazhi. 2020;41(2):145-151.

31. Ma YL, Xia SY, Wang M, Zhang SM, Du WH, Chen Q. Clinical features of children with SARS-CoV-2 infection: an analysis of 115 cases. Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(4):290-293.

32. Song W, Li J, Zou N, Guan W, Pan J, Xu W. Clinical features of pediatric patients with coronavirus disease (COVID-19). J Clin Virol. 2020;127:104377.

33. Wu C, Yang W, Wu X, et al. Clinical manifestation and laboratory characteristics of SARS-CoV-2 infection in pregnant women. Virol Sin. 2020;35:1-6.

34. Park SY, Kim YM, Yi S, et al. Coronavirus disease outbreak in call center, South Korea. Emerging Infect Dis. 2020;26:8-10.

35. Merza MA, Haleem AI, Mezori AA, Mohammed HM, Abdulah DM. COVID-19 outbreak in Iraqi Kurdistan: the first report characterizing epidemiological, clinical, laboratory, and radiological findings of the disease. Diabetes Metab Syndr. 2020;14(4):547-554.

36. Chen P, Zhang Y, Wen Y, et al. Epidemiological and clinical characteristics of 136 cases of COVID-19 in main district of Chongqing. J Formosan Med Assoc. 2020;119:1180-1184.

37. Schwierzveck V, König JC, Kühn J, et al. First reported nosocomial outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a pediatric dialysis unit. Clin Infect Dis. 2020;ciaa491.
the United States-Maricopa County, Arizona, 2020. Clin Infect Dis. 2020;70(15):807-812.

57. Nicastri E, D’Abramo A, Faggioni G, et al. Coronavirus disease (COVID-19) in a paucisymptomatic patient: epidemiological and clinical challenge in settings with limited community transmission, Italy, February 2020. Euro Surveill. 2020;25:11.

58. Tang A, Tong ZD, Wang HL, et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis. 2020;26:6-1339.

59. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020;63(5):706-711.

60. Zhang J, Tian S, Lou J, Chen Y. Familial cluster of COVID-19 infection from an asymptomatic. Crit Care. 2020;24(1):119.

61. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406-1407.

62. Tong ZD, Tang A, Li KF, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg Infect Dis. 2020;26(5):1052-1054.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.