THE CHARACTERIZATION OF PLANAR, 4-CONNECTED, $K_{2,5}$-MINOR-FREE GRAPHS

ZACH GASLOWITZ, EMILY MARSHALL, AND LIANA YEPREMYAN

Abstract. We show that every planar, 4-connected, $K_{2,5}$-minor-free graph is the square of a cycle of even length at least six.

1. Introduction

All graphs in this paper are finite and simple. A graph is a minor of another graph if the first can be obtained from a subgraph of the second by contracting edges and deleting resulting loops and parallel edges. We say that a graph G is H-minor-free if H is not a minor of G.

In [5] Wagner showed that K_5 and $K_{3,3}$-minor-free graphs are precisely the planar graphs; this is probably the most well-known result concerning characterizations of minor-free graphs. A related result that follows from a different formulation of Wagner’s theorem is that a 2-connected graph is $K_{2,3}$-minor-free if and only if it is K_4 or outerplanar. More results concerning H-minor-free graphs include Dirac’s [2] characterization of all K_4-minor-free graphs and more recently, Ding and Liu’s [1] description of H-minor-free graphs for all 3-connected graphs H on at most eleven edges. In [3], Ellingham et. al. provide a complete characterization of all $K_{2,4}$-minor-free graphs. This type of questions have acquired more attention recently since the conclusion of Robertson and Seymour’s Graph Minors Project which proved that minor-closed families of graphs can be characterized by a finite set of forbidden minors.

In this paper we focus on $K_{2,5}$-minor-free graphs. We suspect that this family is large and rather complex so we restrict our attention here to 4-connected planar $K_{2,5}$-minor-free graphs. Note that the similar question with 5-connected graphs has a simple answer since every 5-connected graph either has 5 disjoint paths between a non-adjacent pair of vertices (by Menger’s theorem) and hence a $K_{2,5}$ minor, or is K_6.

Date: July 27, 2015.
To state our main result we need one more definition. The *square* of a graph G, denoted by G^2, is a graph on the same vertex set as G, with pairs of vertices adjacent in G^2 if they are at distance at most two in G (see Fig. 3).

Theorem 1. A graph is planar, 4-connected and $K_{2,5}$-minor-free if and only if it is the square of a cycle of even length at least 6.

1.1. **Notation.** Let us first introduce an equivalent definition of minor, which we will use in this paper. H is a *minor* of G if for every vertex $v \in H$, there exists a connected subset of vertices $B_v \subseteq G$ called the *branch set* of v such that the branch sets of distinct vertices are disjoint and for each edge vw of H, there is an edge in G connecting B_v and B_w. If G has $K_{t,s}$ as a minor, often we will denote this minor by $\{B_1, B_2, \ldots, B_t; S\}$, where B_i’s are the branch sets of the vertices of $K_{t,s}$ in the same bipartition class with t vertices and S is the union of the branch sets of the vertices in the other side.

For a given graph G and any vertex $v \in G$, the *open neighborhood* $N(v)$ denotes the set of vertices of G adjacent to v. Similarly, for vertices $v_1, \ldots, v_n \in G$, $N(v_1, \ldots, v_n) = \left(\bigcup_{i=1}^n N(v_i)\right) \setminus \{v_1, \ldots, v_n\}$. The *closed neighborhood* is defined to be $N[v] := N(v) \cup \{v\}$ and $N[v_1, \ldots, v_n] := N(v_1, \ldots, v_n) \cup \{v_1, \ldots, v_n\}$.

Given a graph G, its *line graph* $L(G)$ is a graph with vertex set $V(L(G)) = E(G)$ and two vertices of $L(G)$ are adjacent if and only if their corresponding edges share a common endpoint.

2. **Proof of Theorem 1**

Our proof of Theorem 1 uses the following result of Martinov from [4]. To state his result, we need the following definition. A *cyclically 4-edge-connected* graph is a 3-edge-connected graph with no 3-edge-cuts that leave a cycle in each component.

Theorem 2 (Martinov, [4]). A 4-connected graph that is 4-regular and has every edge in a triangle is either a squared cycle of length at least five or the line graph of a cubic, cyclically 4-edge-connected graph.

Our proof of the main result follows by combining Martinov’s result along with the following auxiliary lemmas, each of them exploiting the structure of planar, 4-connected, $K_{2,5}$-minor-free graphs. Together they imply that all planar, 4-connected, $K_{2,5}$-minor-free graphs must be the squares of cycles of length at least five. Then with a bit of more work, we rule out the case of odd cycles, thus proving our main result.

Lemma 1. If G is a 4-connected planar graph, then for every vertex $v \in V(G)$ the graph $G \setminus N[v]$ is connected.
THE CHARACTERIZATION OF PLANAR, 4-CONNECTED, $K_{2,5}$-MINOR-FREE GRAPHS

Proof. Suppose, to the contrary, that for some $v \in V(G)$, $N[v]$ is a cut set. Let $S \subseteq N(v)$ be a minimal cut set of the 3-connected graph $G \setminus v$. Note that $|S| \geq 3$. Let C_1 and C_2 to be two distinct components of $G \setminus (\{v\} \cup S)$. It is easy to see that $(\{v\}, C_1, C_2; S)$ gives a $K_{3,|S|}$ minor in G, in particular a $K_{3,3}$ minor, contradicting planarity. □

Lemma 2. If G is a 4-connected planar, $K_{2,5}$-minor-free graph, then it is 4-regular.

Proof. Suppose, to the contrary, there exists a vertex v of G with degree $d := d(v) \geq 5$. Take the planar embedding of the graph G and label v's neighbors by w_1, \ldots, w_d, ordered clockwise around v.

Note that w_i cannot be adjacent to w_j for $j \neq i \pm 1$, where we take the indices of the vertices modulo d, since the opposite would contradict either the planarity of the embedding or the 4-connectivity of the graph G. In the latter case, $\{v, w_i, w_j\}$ becomes a 3-cut.

By Lemma 1, $G \setminus N[v]$ is connected, denote it by C. We claim that C must be adjacent to exactly four vertices among w_1, w_2, \ldots, w_d. Let W be the set of these vertices. Indeed, the fact that $|W| \geq 4$ follows from the 4-connectivity of G. On the other hand, if $|W| \geq 5$, then $(C, \{v\}; W)$ is a $K_{2,5}$ minor. Now since $|W| = 4$ and $d \geq 5$, it follows that there must be some i such that w_i is not adjacent to any vertex in C, hence by our first observation, $d(w_i) \leq 3$, a contradiction. This shows that G is 4-regular. □

Lemma 3. If G is a 4-connected planar, $K_{2,5}$-minor-free graph, then every edge of G is in a triangle.

Proof. Assume, to the contrary, that there is an edge, say ab, not in a triangle. By Lemma 2, G is 4-regular, thus a and b each have three neighbors, all distinct vertices. Let c, d, e and f, g, h be the neighbors of a and b, respectively and suppose that they appear in the planar embedding of G in the order as in Figure 1. It is not hard to check that 4-connectivity of G implies that $G \setminus N[a, b]$ is not empty.

As in the previous lemma, one can easily check that any component of $G \setminus N[a, b]$ must be adjacent to exactly four vertices in $N(a, b)$ in order for G to be 4-connected and $K_{2,5}$-minor-free. Now let us consider the following two cases.

Case 1: Suppose $G \setminus N[a, b]$ has only one component, C. Let $x, y \in N(a, b)$ such that C is not adjacent to these two vertices. If x and y have a common neighbor $z \in N(a, b)$, then G has a $K_{2,5}$ minor given by $(C \cup \{z\}, \{a, b\}; N(a, b) \setminus z)$. If x and y do not have a common neighbor, then to have $d(x) = d(y) = 4$, they must be adjacent. And in this
Case 2: $G \setminus N[a,b]$ has more than one component. Take any two of them, C_1 and C_2. If C_1 and C_2 together are adjacent to all of $N(a,b)$, then let $x \in N(a,b)$ be one of the two vertices adjacent to both. Then G has a $K_{2,5}$ minor given by $(\{a, b\}, \{x\} \cup C_1 \cup C_2; N(a,b) \setminus x)$. Otherwise, C_1 and C_2 must have (at least) three common neighbors, let us denote it by $S \subseteq N(a,b)$. But now G has a $K_{3,3}$ minor given by $(C_1, C_2, \{a, b\}; S)$, contradicting planarity. □

Lemma 4. The line graph of any cubic, 3-connected graph H has $K_{2,5}$ as a minor, unless $H \cong K_4$.

Proof. Consider any cubic, 3-connected graph H not isomorphic to K_4. Thus H must have an edge, say uv, not in a triangle. Let w, x and y, z be the distinct neighbours of u and v, respectively. Let s and t be the two neighbors of w distinct v. Note that, unlike Figure 2, they are not necessarily distinct from x, y, and z.

Since H is 3-connected, $H \setminus \{u, w\}$ is connected. Note that v cannot be a cut vertex of $H \setminus \{u, w\}$, so $H \setminus \{u, v, w\}$ is connected. It is not hard to see that $H \setminus \{u, v, w\}$ must contain an edge, so it will induce a connected subgraph of $L(H)$ which avoids the edges uv, ux, uy, vz, vw, ws, and wt. Then $L(H)$ has a $K_{2,5}$ minor given by $(\{uv, vw\}, L(H) \setminus N[uv, vw]; N(uv, vw))$. See Figure 2 □

Now we are ready to prove our main result.

Proof of Theorem 1. First note that a cubic, cyclically 4-edge-connected graph is, in particular, 3-connected. Thus Theorem 2, along with Lemmas 2, 3 and 4 show that a planar, 4-connected, $K_{2,5}$-minor-free graph must be a squared cycle of length at least five. However, it is not hard
to see that every C^2_n contains C^2_{n-2} as a minor, therefore, for all odd $n \geq 5$, C^2_n will have $C^2_5 \cong K_5$ as a minor, which shows that for all such n, C^2_n is non-planar. This finishes the necessary direction of the theorem.

For the other direction, fix an even $n \geq 6$ and consider C^2_n. Note that C^2_n can be embedded on the plane such that there are two vertex-disjoint, degree $n/2$ faces F_1 and F_2 which are connected by n triangular faces (see Fig. 3). This shows the planarity of C^2_n. It is also easy to see that C^2_n is 4-connected, since any cut set must contain at least two vertices from both F_1 and F_2.

Now suppose C^2_n has a $K_{2,5}$ minor given by $(R_1, R_2; S)$. We can suppose that S is a set of only five vertices. Then, without loss of generality, F_1 contains three vertices of S, denote the set of these vertices
Consider a new graph G' by adding a new vertex to C_n^2 and connecting it to the vertices of S'. Clearly, this graph is planar. However, G' contains a $K_{3,3}$ minor given by $(R_1, R_2, \{v\}; S')$, a contradiction. This finishes the proof of the main theorem. □

3. Acknowledgements

The authors would like to thank Mark Ellingham for his insight and helpful suggestions while they worked on this problem.

References

[1] G. Ding and C. Liu. Excluding a small minor. *Discrete Applied Mathematics*, 161:355–368, 2013.
[2] G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. *J. London Math. Soc.*, 27:85–92, 1952.
[3] M. N. Ellingham, E. A. Marshall, K. Ozeki, and S. Tsuchiya. A characterization of $K_{2,4}$-minor-free graphs. submitted, 2014.
[4] N. Martinov. Uncontractable 4-connected graphs. *Journal of Graph Theory*, 6:343–344, 1982.
[5] K. Wagner. Über eine eigenschaft der ebenen komplexe. *Math. Ann.*, 114:570–590, 1937.