Angiogenesis as Therapeutic Target in Metastatic Prostate Cancer – Narrowing the Gap Between Bench and Bedside

Antonio Giovanni Solimando1,2*, Charis Kalogirou3 and Markus Krebs3,4*

1 Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine "G. Baccelli", University of Bari Medical School, Bari, Italy, 2 Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II”, Bari, Italy, 3 Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany, 4 Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany

Angiogenesis in metastatic castration-resistant prostate cancer (mCRPC) has been extensively investigated as a promising druggable biological process. Nonetheless, targeting angiogenesis has failed to impact overall survival (OS) in patients with mCRPC despite promising preclinical and early clinical data. This discrepancy prompted a literature review highlighting the tumor heterogeneity and biological context of Prostate Cancer (PCa). Narrowing the gap between the bench and bedside appears critical for developing novel therapeutic strategies. Searching clinicaltrials.gov for studies examining angiogenesis inhibition in patients with PCa resulted in n=20 trials with specific angiogenesis inhibitors currently recruiting (as of September 2021). Moreover, several other compounds with known anti-angiogenic properties – such as Metformin or Curcumin – are currently investigated. In general, angiogenesis-targeting strategies in PCa include biomarker-guided treatment stratification – as well as combinatorial approaches. Beyond established angiogenesis inhibitors, PCa therapies aiming at PSMA (Prostate Specific Membrane Antigen) hold the promise to have a substantial anti-angiogenic effect – due to PSMA’s abundant expression in tumor vasculature.

Keywords: Prostate adenocarcinoma, PCa, angiogenesis inhibitors, TKI, immunotherapy, tumor microenvironment, clinical trials, PSMA

INTRODUCTION

The biological context of angiogenesis and prostate cancer (PCa) inspired a plethora of research, specifically in metastatic PCa and more specifically in castration-resistant disease (CRPC), the clinical stage in which the majority of clinical trials on angiogenesis inhibition was performed (1). Metastatic PCa is an androgen-driven and -dependent cancer (2), with androgen deprivation therapy (ADT) being the primary treatment. Despite high response rates – practically 90% of patients initially respond to hormone therapy – the vast majority will end up relapsing (3) in a predictable and irreversible manner. There has been a fair amount of research to try to analyze the mechanisms of progression to CRPC, which is the lethal phenotype of metastatic PCa – and current evidence suggest a function of
clonal selection and adaptation by androgen receptor (AR)-
dependent and independent mechanisms (4).

Indeed, ADT together with next generation hormonal agents
such as Abiraterone (5) and Enzalutamide (6) still represent the
foundation of systemic PCa treatment. Beyond hormone therapy,
approved chemotherapy regimens mainly consist of Docetaxel and
Cabazitaxel as microtubule inhibitors (7–9). Regarding bone as a
favorite localization of PCa metastasis (10–12), therapeutic
(combination) approaches include Radium-223 (13). In recent
years, PCa treatment has rapidly developed towards precision
oncology by addressing two novel target pathways: DNA repair
and Prostate-specific membrane antigen (PSMA)-related
signaling. Regarding DNA repair, cancers with mutations in
BRCA1/2 (Breast Cancer Associated Genes 1 and 2) can be
treated with PARP (Poly-ADP-Ribose-Polymerase) inhibitors
originally established in Ovarian Cancer (14, 15). For PSMA,
strategies include radioligand therapy as a theragnostic approach
performed by nuclear medicine specialists (16).

Beyond these established and approved cancer therapies, this
review aims to address an obvious treatment gap – given the
crucial role of angiogenesis for PCa development and
progression. Despite this fundamental promise reflected by in
vitro and preclinical evidence, phase III trials with angiogenesis
inhibitors failed to meet clinical endpoints.

PROSTATE CANCER AND VEGF-MEDiated ANGIOGENESIS – PROMISES
AND CHALLENGES

About 50 years ago, Folkman and colleagues highlighted the
importance of angiogenesis and neovascularization for tumor
growth – reasoning that targeting tumor blood vessels might
prove beneficial for patients with cancer (17). Meanwhile, state-
of-the-art techniques highlighted the crucial but not completely
understood link between angiogenesis (endothelial cells) and
tumor immunity (18). For PCa, histopathology pinpoints high
micro-vessel density and increased VEGF (Vascular Endothelial
Growth Factor) expression compared to non-neoplastic
conditions. Moreover, VEGF levels are associated with higher
tumor stages as well as advanced grading and plasma VEGF is
increased in metastatic PCa versus localized disease (19–21).
Higher VEGF expression evaluated by immunohistochemistry
has also been associated with reduced disease-specific survival in
patients with PCa (22). In addition, levels of urinary VEGF were
associated with worse survival (23) and elevated plasma VEGF/
sVCAM-1, a vascular cell adhesion molecule, correlated with
worse outcome (24).

In principle, many drugs and angiogenic target structures
known from other solid and hematological malignancies are
available for PCa (25–30). As a consequence, clinical trials
combined antiangiogenic agents with Taxanes in mCRPC (31);
however, not a single drug combined with Docetaxel showed a
statistically significant success in outcome (32). Therefore,
iclinicians started trials in less symptomatic patients,
investigating compounds as single agents. Unfortunately, all of
these phase III trials with thousands of patients were collectively
negative for OS – despite promising biological preclinical as well
as promising phase II trials. Despite efforts studying more than
1,000 patients, the combination of Bevacizumab or Alibibercept
with chemotherapy showed no improvement compared to
chemotherapy alone (33, 34). Sunitinib as a single agent
compared to prednison showed no improvement, either (35).

Making it even worse, Lenalidomide treatment resulted in a
sobering scenario (36): While effective in several hematologic
conditions (37–40), combination treatment of patients with PCa
(Lenalidomide + Docetaxel + Prednisone) led to a significantly
worse OS compared to treatment with Docetaxel and Prednisone (36).
Another surprising and quite sobering example is Cabozantinib, an
oral inhibitor of Tyrosine Kinases including MET and VEGFR2, two
major drivers of malignant progression in several neoplasia (41–47),
which did not guarantee an OS advantage in patients with PCa (48).
Indeed, Cabozantinib showed anti-angiogenic and antitumor effects
in a wide range of preclinical tumor models (49–51), also blocking
progression of PCa xenografts in soft tissue and bone (52–54).
Additionally, Cabozantinib affected key actors of the bone niche –
with reduction in osteoclasts and biphasic effects osteoblasts, while
altering bone remodeling with increased volume in mice (55). MET
and VEGFR2 cooperate to promote tumor survival, thereby boosting
angiogenesis via improved tumor blood flow and improved
oxygenation. Moreover, MET promotes migration and invasion,
also facilitating the escape from hypoxic areas. Consequently, bone
metastases are associated with high levels of MET expression. In
specific, MET expression increased with androgen deprivation in
preclinical models and with progression and metastasis in bone and
lymph nodes (56). Promising early phase II trial results from bone
scans upon combined Docetaxel and Cabozantinib treatment
showed activity in 300 patients (48, 57). Soft tissue effects were also
present, with objective response and significant progression-free
survival (PFS) benefit (48). Improvement in pain and reduction of
narcotics corroborated these initial results (58). These data were
paralleled by a reduction of circulating tumor cells (57), while keeping
activity in subjects heavily pretreated with Docetaxel, Abiraterone
and/or Enzalutamide (48, 57). The lowest effective dose of these
studies was 40 mg/day (59). Nevertheless, within phase III trial,
Cabozantinib did not perform better than Prednisone (60). The dose
and the stage of disease could have been the cause for this failure.

CURRENT CLINICAL TRIALS ON ANTI-
ANGIOGENESIS IN PROSTATE CANCER

To determine the status quo of clinical trials investigating anti-
angiogenesis in PCa, we performed a database research on
clinicaltrials.gov. As of September 2021, a total sum of 866
actively recruiting interventional trials were registered for
patients suffering from PCa. As outlined in Table 1, only a
minority of clinical trials investigated the effects of angiogenesis
inhibitors/Tyrosine kinase inhibitors. Specifically, we identified
20 clinical trials addressing angiogenesis inhibition. While some
studies aim to identify predictive biomarkers for future clinical stratification in entity-independent trials (NCT02465060, NCT03878524), others combine angiogenesis inhibition with immune checkpoint blockade – e. g. CONTACT-02 trial investigating Cabozantinib in combination with Atezolizumab in patients with mCRPC (NCT04446117). Of note, other studies include patients in different stages, such as metastatic castration sensitive disease (CABIOS phase I trial, NCT04477512) and even localized disease in a neoadjuvant setting before Radical Prostatectomy (SPARC phase II trial, NCT03964337).

Beyond this relatively small number of trials directly aiming at tumor vessels, we found several studies investigating

Trial Identifier	Stage/Entity	Title CHARACTERISTICS	Treatment	Comment
NCT01567800 PCa	Prostate Hypoxia FAZA	18F-FAZA	Hypoxia-specific PET tracer	Biomarker-driven Basket trial for various compounds
NCT02465060 Advanced Cancer	MATCH screening trial; Phase II	Combinations of Cediranib, Durvalumab and Opdivo	Cediranib: pan-VEGFR inhibitor	
NCT02484404 Advanced solid tumors	Phase I/II	Ibrutinib before Radical Prostatectomy	Ibrutinib: BTK inhibitor; Neoadjuvant setting	
NCT03170960 Advanced solid tumors	Phase I/II	Cabozantinib ± Atezolizumab	Biomarker-driven therapy stratification	
NCT03385655 PCa	Phase II	(...), Savolitinib, (...)		
NCT03356228 PCa and other malignancies	Phase I	VMD-928	VMD-928: TrkA inhibitor	
NCT03845166 Advanced solid tumors	Phase I	XL092 AND Atezolizumab OR XL092 AND Avolumab	XL092: Tyrosine Kinase inhibitor (incl. VEGFR2)	
NCT03866382 Rare genitourinary tumors	Phase II	Cabozantinib AND Nivolumab AND Ipilimumab	Metastatic Prostate Small Cell Neuroendocrine CA	
NCT03875624 Advanced Cancer	SMMAST; Phase I	(...), Bevacizumab, Cabozantinib, Sorafenib, Sunitinib, (...)	Biomarker-driven Basket trial for various compounds	
NCT03964337 PCa	Prostate Hypoxia FAZA	18F-FAZA	Hypoxia-specific PET tracer	Biomarker-driven Basket trial for various compounds
NCT03964337 PCa	Prostate Hypoxia FAZA	18F-FAZA	Hypoxia-specific PET tracer	Biomarker-driven Basket trial for various compounds
NCT04159896 mCRPC	Phase II	ESK981 AND Nivolumab	ESK981: Pan-VEGFR/TIE2 inhibitor	
NCT04446117 mCRPC	CONTACT-02; Phase III	Cabozantinib AND Atezolizumab		
NCT04477512 mCSPC	CABIOS; Phase I	Cabozantinib AND Aribaterone/Prednisone AND Nivolumab		
NCT04514484 Advanced Cancer AND HIV infection	Phase I	Cabozantinib AND Nivolumab		
NCT04521686 Advanced solid tumors with ID1 mutations	Phase I	LY3410738	LY3410738: ID1 inhibitor	
NCT04631744 mCRPC	Phase II	Cabozantinib		
NCT04635059 PCa: biochemical recurrence	Phase II	Pacritinib	Pacritinib: JAK/FLT3 inhibitor	
NCT04742959 Advanced solid tumors	Phase II/II	TT-00420 ± Nab-Paclitaxel	TT-00420: Tyrosine Kinase inhibitor (incl. VEGFRs)	
NCT04848337 Advanced/metastatic neuroendocrine PCa	PLANE-PC; Phase II	Lenvatinib AND Pembrolizumab		
NCT03964337 PCa	Prostate Hypoxia FAZA	18F-FAZA	Hypoxia-specific PET tracer	Biomarker-driven Basket trial for various compounds
NCT04159896 mCRPC	Phase II	ESK981 AND Nivolumab	ESK981: Pan-VEGFR/TIE2 inhibitor	
NCT04446117 mCRPC	CONTACT-02; Phase III	Cabozantinib AND Atezolizumab		
NCT04477512 mCSPC	CABIOS; Phase I	Cabozantinib AND Aribaterone/Prednisone AND Nivolumab		
NCT04514484 Advanced Cancer AND HIV infection	Phase I	Cabozantinib AND Nivolumab		
NCT04521686 Advanced solid tumors with ID1 mutations	Phase I	LY3410738	LY3410738: ID1 inhibitor	
NCT04631744 mCRPC	Phase II	Cabozantinib		
NCT04635059 PCa: biochemical recurrence	Phase II	Pacritinib	Pacritinib: JAK/FLT3 inhibitor	
NCT04742959 Advanced solid tumors	Phase II/II	TT-00420 ± Nab-Paclitaxel	TT-00420: Tyrosine Kinase inhibitor (incl. VEGFRs)	
NCT04848337 Advanced/metastatic neuroendocrine PCa	PLANE-PC; Phase II	Lenvatinib AND Pembrolizumab		

Further compounds with known anti-angiogenic properties

Trial Identifier	Stage/Entity	Title CHARACTERISTICS	Treatment	Comment
NCT02935205 CRPC	Phase I/II	Indomethacin AND Enzalutamide	Indomethacin AND Enzalutamide	
NCT02935205 CRPC	Phase I/II	Indomethacin AND Enzalutamide	Indomethacin AND Enzalutamide	
NCT03845166 Advanced solid tumors	Phase I	XL092 AND Atezolizumab OR XL092 AND Avolumab	XL092: Tyrosine Kinase inhibitor (incl. VEGFR2)	
NCT03866382 Rare genitourinary tumors	Phase II	Cabozantinib AND Nivolumab AND Ipilimumab	Metastatic Prostate Small Cell Neuroendocrine CA	
NCT03875624 Advanced Cancer	SMMAST; Phase I	(...), Bevacizumab, Cabozantinib, Sorafenib, Sunitinib, (...)	Biomarker-driven Basket trial for various compounds	
NCT03964337 PCa	Prostate Hypoxia FAZA	18F-FAZA	Hypoxia-specific PET tracer	Biomarker-driven Basket trial for various compounds
NCT04159896 mCRPC	Phase II	ESK981 AND Nivolumab	ESK981: Pan-VEGFR/TIE2 inhibitor	
NCT04446117 mCRPC	CONTACT-02; Phase III	Cabozantinib AND Atezolizumab		
NCT04477512 mCSPC	CABIOS; Phase I	Cabozantinib AND Aribaterone/Prednisone AND Nivolumab		
NCT04514484 Advanced Cancer AND HIV infection	Phase I	Cabozantinib AND Nivolumab		
NCT04521686 Advanced solid tumors with ID1 mutations	Phase I	LY3410738	LY3410738: ID1 inhibitor	
NCT04631744 mCRPC	Phase II	Cabozantinib		
NCT04635059 PCa: biochemical recurrence	Phase II	Pacritinib	Pacritinib: JAK/FLT3 inhibitor	
NCT04742959 Advanced solid tumors	Phase II/II	TT-00420 ± Nab-Paclitaxel	TT-00420: Tyrosine Kinase inhibitor (incl. VEGFRs)	
NCT04848337 Advanced/metastatic neuroendocrine PCa	PLANE-PC; Phase II	Lenvatinib AND Pembrolizumab		
NCT03031821 PCa with indication for ADT	PRIME; Phase III	Metformin AND ADT	Patient pre-selection according to genotype	
NCT03031821 PCa with indication for ADT	PRIME; Phase III	Metformin AND ADT	Patient pre-selection according to genotype	
NCT03769766 low-risk PC under Active Surveillance	Phase III	Curcumin		
NCT03819101 CRPC	Phase III	Acetylsalicylic acid ± Atorvastatin	Aspirin AND Rintatolimod ± interferon-alpha 2b	
NCT03899987 PCa after Radical Prostatectomy	Phase II	Aspirin AND Rintatolimod ± interferon-alpha 2b		
NCT04300855 PCa under Active Surveillance	Phase II	Green Tea Catechins (Sunphenon)		
NCT04519879 PCa: recurrent/therapy-naive	Phase III	White Button Mushroom extract		
NCT04536805 PCa: relapse in previously irradiated Prostate bed	Phase II	Metformin AND Radiation		
NCT04597359 PCa under Active Surveillance	Phase II	Green Tea Catechins		

Ctr, Control; CRPC, castration-resistant Prostate Cancer; CSPC, castration-sensitive Prostate Cancer; mCRPC, metastatic castration-resistant Prostate Cancer; mCSPC, metastatic castration-sensitive Prostate Cancer; ADT, Androgen deprivation therapy.
compounds known to have additional anti-angiogenic effects (bottom part of Table 1). Curcumin, Green Tea Catechins and Metformin were among the substances identified. For Metformin, a tumor suppressive role was shown in several cancer entities (61). Moreover, adjuvant Metformin intake was associated with improved outcome in Clear Cell Renal Cell Carcinoma patients treated with Tyrosine Kinase inhibitors in two independent cohorts (62, 63). One reason for this protective effect could be the role of Metformin as a mitochondrial inhibitor. Interestingly, recent evidence implies a prominent role for mitochondrial signaling not only in Clear Cell Renal Cell Carcinoma (64), but also in high-grade PCa (65). Potentially, angiogenesis inhibition could be more effective in patients suffering from PC when combined with adjuvants such as Metformin.

DISCUSSION

From a histopathological and preclinical perspective, there is convincing evidence for a significant role of angiogenesis in PCa development and progression. For example, VEGFR2 was shown to mark PCa cases with a high risk of progression (30, 66). In addition, angiogenesis-related microRNAs such as let-7, miR-195 and miR-205 (67) are also deregulated and play prominent roles in PCa (68–70). However, no angiogenesis-specific inhibitor has met its clinical endpoint in phase III trials (see Figure 1A). Consequently, angiogenesis inhibitors currently do not play a role in PCa treatment guidelines. As shown by our database search on clinicaltrials.gov, several clinical trials are currently recruiting patients with PCa to address the discrepancy between promising preclinical findings and sobering clinical trial results.
Current Therapeutic Strategies to Narrow the Gap Between Bench and Bedside

As illustrated in Figure 1, two main strategies aim to establish therapeutic anti-angiogenesis in patients with PCa. Within the first strategic approach, clinicians are searching for PCa subgroups most susceptible towards angiogenesis inhibition (Figure 1B). It is tempting to assume that targeting tumor neovascularization could be more efficient when used early in the course of disease (71) in order to prevent metastases (44, 72). In line with this assumption, clinicians examine effects in PCa subgroups other than mCRPC. Specifically, SPARC investigates Cabozantinib in a neoadjuvant setting. PCa patients suffering from biochemical recurrence are currently recruited for the BLAST trial, which investigates the JAK/FLT3 inhibitor Pacritinib. Moreover, the CABIOS trial recruits CSPC patients receiving Cabozantinib, Abiraterone and Nivolumab (thereby also representing the second strategic approach of combinatorial therapies). Up to now, neither predictive nor response biomarkers have been established to stratify PCa patients regarding anti-angiogenic therapy (18, 26). Of note, most biomarkers have been established to stratify PCa patients therapies). Up to now, neither predictive nor response biomarkers have been established to stratify PCa patients regarding anti-angiogenic therapy (18, 26). Of note, most biomarker-driven trials trying to meet the needs are not PCA-specific. Recruiting patients suffering from advanced cancer, the MATCH screening trial constitutes a biomarker-driven basket study for various compounds including Sunitinib. In a similar setting, SMMART investigates compounds such as Bevacizumab, Cabozantinib, Sorafenib and Sunitinib.

As a second strategic approach to narrow the gap between bench and bedside (Figure 1C), clinicians and researchers combine angiogenesis inhibitors with other established cancer therapies. Most of the respective trials identified by our search teamed angiogenesis inhibitors with immune checkpoint inhibitors (ICI) – e.g. Cabozantinib and Atezolizumab (CONTACT-02 trial). However, the primary rationale of these approaches is not to establish anti-angiogenesis as a treatment option for PCa, but to break therapy resistance towards ICI (73–75).

BRCA in Metastatic Prostate Cancer - Recommendations and Perspectives

As a second bullet point to envision next steps narrowing the gap between the bench and bedside, it is important to highlight that genetic alterations of BRCA2 and BRCA1 occur in metastatic PCa with a frequency of 13% and 5.3% for the somatic component, and 0.3% and 0.9% for the germline component, respectively (76, 77). Germline mutations in BRCA2 are associated with pathways also related to VEGF signaling (78). Thus, phase II and III studies investigating effect on PFS and ORR in mCRPC hold promise to further elucidate the complex relationship of disease biology, since genomic alterations and several genes are screened (Table 2). TRITON2 and GALAHAD studies showed objectives and PSA responses in patients with BRCA1/2 alterations employing Rucaparib and Niraparib, respectively (79, 80). Nonetheless, the Profound trial testing Olaparib, confirmed that BRCA2 is the most frequently altered gene and with BRCA1 and ATM genes allowed to reach a radiographic PFS improvement of Olaparib treated over control (HR.34 P<.0001, CI.25-.47). Those results are remarkable since checkpoint inhibitors may have limited efficacy in PCa as single agents; thus, combination approaches are being examined to potentially improve their efficacy in this as in other urological diseases (30, 44). The hypothetical synergism between PARP inhibitors and ICI is centered on evidence that DNA damage resulting from PARP inhibition triggers the cGAS-STING pathway (81), which consequently boosts the interferon signaling, leading to enhanced immunogenicity (82). There is also rationale for an additive effect in cancers with high microsatellite instability (MSI) and BRCA mutations (83). Moreover, cancers with CDK12 mutations are often sensitive to PARP inhibitors - and preclinical and biological data from patients with PCa showed that CDK12 inactivation is related to increased burden of neoantigens, which can in turn enhance the immunogenicity (84). ICI hold anti-mCRPC activity potential in high degree of MSI. Indeed, the KEYNOTE-365 trial comparing Pembrolizumab plus Olaparib in biomarker-unstratified mCRPC subjects after prior taxane-based regimen uncovered that 36.6% of...
individuals obtained a PSA response (85). The KEYLYNK-010 phase III study has been designed to elucidate the combination of Pembrolizumab plus Olaparib in patients with mCRPC in a biomarker-unselected population after progression on androgen-deprivation therapy and androgen receptor signaling inhibitor (86). In line with this, Nivolumab plus Rucaparib in the phase II CheckMate 9KD trial focusing on mCRPC revealed that best response rates were among BRCA2 mutated cases and that the combination was not efficient in individuals without homologous recombination mutations (87). Statistically powered studies aiming to corroborate these hypothesis-generating results are needed. Nonetheless, based on the available data, the FDA approved both Niraparib and Rucaparib as well as Olaparib in May 2020 (88). Nonetheless, EMA approved Olaparib for the treatment of patients with mCRPC and BRCA1/2 mutations, either germline or somatic after progression following a prior line including a hormonal agent, based on the results published by Hussain M. et al. (89). Collectively, the BRCA mutational status assessment in mCRPC is not merely a predictor of response to PARP inhibition, but is rather a biomarker of aggressiveness and therefore can sketch a disease phenotype for whom additional biomarker might be added (90). Indeed, BRCA status might also predict a decreased taxane sensitivity compared to Abiraterone and Enzalutamide, nonetheless confirmatory trials are also needed.

Targeting Angiogenesis Without Specific Inhibitors – Established and Evolving Therapies

While our database search on clinicaltrials.gov revealed a limited number of studies with specific inhibitors of angiogenesis, a plethora of trials investigated compounds such as antiandrogens, PARP inhibitors and PSMA-directed agents. At first sight, these approaches might not appear tightly related to a hormonal agent. Yet, recent findings imply that all these strategies obtain a significant anti-angiogenic component. Regarding AR-related signaling, a growing amount of literature investigates the complex crosstalk with VEGF-mediated pathways in cancer (91). As mentioned, for PARP inhibitors such as Olaparib, an anti-angiogenic effect besides an anti-mCRPC is widely accepted (14, 92, 93). Moreover, FGF (Fibroblast Growth Factor) and its receptors (FGFRs) play prominent pro-angiogenic roles in several malignancies, including PCa (94, 95). Consequently, the FGFR inhibitor Erdafitinib is currently investigated in patients with CRPC as a single drug (NCT04754425) and combined with Abiraterone or Enzalutamide in patients with CRPC (NCT03999515). Metronomic (low-dose) chemotherapy is another well-described therapeutic strategy to target tumor-associated neo-vasculature in various cancer entities. Frequent and regular administration of chemotherapeutic agents at doses constituting a fraction of the MTD (maximum tolerated dose) was shown to have substantial therapeutic effects – especially on tumor endothelium. Moreover, these regimens frequently exhibited favorable toxicity profiles (96, 97). For PCa, clinical evidence highlights the potential of metronomic therapies especially in mCRPC: studies investigated metronomic Cyclophosphamide in combination with Docetaxel (98) or in heavily pretreated patients after Docetaxel or Abiraterone/Enzalutamide (99–102) – showing effectiveness and good tolerability. In addition, researchers examined the efficacy of metronomic application of Vinorelbine (103) and metronomic Cyclophosphamide, Celecoxib and Dexamethasone in patients suffering from mCRPC (104). Interestingly, metronomic Cyclophosphamide application also induced an immune reaction (in terms of T cell reactivation) in patients with biochemical recurrence (105). Although the mode of action of metronomic therapies is not completely understood, a recent study identified key genes which were associated with (metronomic) Topotecan dosing in PCa cell lines (106).

Regarding PSMA, receptor expression not only exists on the surface of PCa cells. Instead, tumor-associated endothelium frequently displays robust levels of PSMA in various cancer entities (107–109). Future research must show the impact of targeting PSMA in terms of anti-angiogenic activity – for PCa but also for other entities with PSMA-positive tumor endothelium. Given the rationale of adding angiogenesis inhibitors to ICI in order to break resistance towards immune-based approaches (73–75), it also appears tempting to assume that targeting PSMA could have an impact on the immunogenicity of PCa.

In a nutshell: While specific angiogenesis inhibitors currently do not have an established role in PCa, targeting tumor angiogenesis and tumor-associated blood vessels probably is part of established PCa therapies – especially regarding PSMA-directed approaches.

CONCLUSION

Targeting angiogenesis with specific inhibitors unfortunately has failed to impact OS in patients with mCRPC despite promising early data – and despite convincing clinical activity in several other malignancies. This discrepancy highlights the importance of the microenvironment niche, as PCa is characterized by substantial inter- and intra-patient heterogeneity and adaptive biology. Therapeutic strategies to overcome this challenge include biomarker-guided screening for patient subgroups most likely to benefit from anti-angiogenesis. Moreover, several trials investigate combinatorial approaches. Beyond specific angiogenesis inhibitors, approved compounds such as antiandrogens, PARP inhibitors and PSMA-targeting approaches probably also have a substantial anti-angiogenic impact in PCa biology.

AUTHOR CONTRIBUTIONS

Conceptualization: AS and MK. Methodology: AS and MK. Writing – draft preparation: AS, CK, and MK. Writing – review and editing: AS, CK, and MK. All authors contributed to the article and approved the submitted version.

FUNDING

This project was supported in part by the Apulian Regional Project Medicina di Precisione to A.G.S. Moreover, M.K. was funded by a personal grant from Else-Kröner-Foundation (Else Kröner Integrative Clinician Scientist College for Translational Immunology, University Hospital Würzburg, Germany). This publication was supported by the Open Access Publication Fund of the University of Würzburg.
REFERENCES

1. Nicholson B, Theodorescu D. Angiogenesis and Prostate Cancer Tumor Growth. J Cell Biochem (2004) 91:125–50. doi: 10.1002/jcb.10772

2. Noble RL. Hormonal Control of Growth and Progression in Tumors of Nb Rats and a Theory of Action. Cancer Res (1977) 37:82–94.

3. Isaacs JT, Coffey DS. Adaptation Versus Selection as the Mechanism Responsible for the Relapse of Prostatic Cancer to Androgen Ablation Therapy as Studied in the Dunning R-3327-H Adenocarcinoma. Cancer Res (1981) 41:5070–5.

4. Debes JD, Tindall DJ. Mechanisms of Androgen-Refractory Prostate Cancer. N Engl J Med (2004) 351:1488–90. doi: 10.1056/NEJMmp041878

5. Fizziari K, Tran N, Fein I, Matusbara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone Plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med (2017) 377:352–60. doi: 10.1056/NEJMoA1704174

6. Scher HI, Fizziari K, Saad F, Taplin M-E, Sterberg CN, Miller K, et al. Increased Survival With Enzalutamide in Prostate Cancer After Chemotherapy. N Engl J Med (2012) 367:1187–97. doi: 10.1056/NEJMoa1207506

7. Tannock IF, de Wit R, Berry WR, Horti J, Pflaumka A, Chi KN, et al. Docetaxel Plus Prednisone or Mitotane-trontrone Plus Prednisone for Advanced Prostate Cancer. N Engl J Med (2004) 351:1502–12. doi: 10.1056/NEJMoa040720

8. Tucci M, Bertaglia V, Vignani F, Buttigliero C, Fiori C, Porpiglia F, et al. Addition of Docetaxel to Androgen Deprivation Therapy for Patients With Hormone-Sensitive Metastatic Prostate Cancer: A Systematic Review and Meta-Analysis. Eur Urol (2016) 69:563–73. doi: 10.1016/j.eururo.2015.09.013

9. de Wit R, de Bono J, Sterberg CN, Fizziari K, Tombal B, Wulff C, et al. Cabazitaxel Versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med (2019) 381:2506–18. doi: 10.1056/NEJMoa1911206

10. Antonio G, Oronzo B, Vito L, Angela C, Antonell-a La, Roberto C, et al. Immune System and Bone Microenvironment: Rationale for Targeted Cancer Therapies. Oncotarget (2020) 11:880–7. doi: 10.18632/oncotarget.27439

11. Argentiero A, Solimando AG, Brunetti O, Calabrave A, Pantano F, Iuliani M, et al. Skeletal Metastases of Unknown Primary: Biological Landscape and Clinical Overview. Cancers (2019) 11:1270. doi: 10.3390/cancers11091270

12. Body J-J, Casimiro S, Costa L. Targeting Bone Metastases in Prostate Cancer: Improving Clinical Outcome. Nat Rev Urol (2015) 12:340–56. doi: 10.1038/nruro.2015.90

13. Cursano MC, Iuliani M, Casadei C, Sottellato M, Tonini G, Paganelli G, et al. Combination Radium-223 Therapies in Patients With Bone Metastases From Castration-Resistant Prostate Cancer: A Review. Crit Rev Oncol Hematol (2020) 146:102864. doi: 10.1016/j.critrevonc.2020.102864

14. Konstantinopoulos PA, Matulonis UA. PARP Inhibitors in Ovarian Cancer: A Trailblazing and Transformative Journey. Clin Cancer Res (2018) 24:4062–5. doi: 10.1158/1078-0432.CCR-18-1314

15. Ratta R, Guida A, Scotti F, Neuzillet Y, Teillet AB, Lebret T, et al. PARP Inhibitors as a New Therapeutic Option in Metastatic Prostate Cancer: A Systematic Review and Prostate Cancer Prostatic Dut (2020) 23:549–60. doi: 10.1034/j1390-02033-3

16. Sartor O, de Bono J, Chi KN, Fizziari K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med (2021) 385:1091–103. doi: 10.1056/NEJMoa2107322

17. Sherwood LM, Parris EE, Folkman J. Tumor Angiogenesis: Therapeutic Implications. J Natl Med Res (1971) 285:1182–6. doi: 10.1056/NEJM197111182852108

18. Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (2020) 12:3380. doi: 10.3390/cancers12113380

19. Strohmeyer D, Rossing C, Bauerfeind A, Kaufmann O, Schlechte H, Bartsch G, et al. Vascular Endothelial Growth Factor and Its Correlation With Angiogenesis and PS3 Expression in Prostate Cancer. Prostate (2000) 45:216–24. doi: 10.1002/1097-0045(20001101)45:3216-aid-pros3-3.0.co;2-c

20. Duque JLF, Loughlin KR, Adam RM, Kantoff PW, Zarakowski D, Freeman MR. Plasma Levels of Vascular Endothelial Growth Factor Are Increased in Patients With Metastatic Prostate Cancer. Urology (1999) 54:523–7. doi: 10.1016/S0090-4295(99)00167-3

21. Doll JA, Reifer FK, Crawford SE, Pins MR, Campbell SC, Bouck NP. Thrombospondin-1, Vascular Endothelial Growth Factor and Fibroblast Growth Factor-2 Are Key Functional Regulators of Angiogenesis in the Prostate. Prostate (2001) 48:293–305. doi: 10.1002/pros.10025
Multiple Myeloma. Oncotarget (2018) 9:20563–77. doi: 10.18632/oncotarget.25003

39. Solimando AG, Da Viá MC, Cicco S, Leone P, Di Lernia G, Giannico D, et al. High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. JCM (2019) 8:997. doi: 10.3390/jcm8070997

40. Stahl M, Zeidan AM. Lenalidomide Use in Myelodysplastic Syndromes: Insights Into the Biologic Mechanisms and Clinical Applications: Use of Lenalidomide in MDS: Biology and Efficacy. Cancer (2017) 123:1703–13. doi: 10.1002/cncr.30585

41. Moschetta M, Basile A, Ferrucci A, Frassanito MA, Ria R, et al. Novel Targeting of Phospho-CMET Overcomes Drug Resistance and Induces Antitumor Activity in Multiple Myeloma. Clin Cancer Res (2013) 19:4371–82. doi: 10.1158/1078-0432.CCR-13-0039

42. Ferrucci A, Moschetta M, Frassanito MA, Berardi S, Catacchio I, Ria R, et al. A HGF/CMET Autocrine Loop Is Operative in Multiple Myeloma Bone Marrow Endothelial Cells and May Represent a Novel Therapeutic Target. Clin Cancer Res (2014) 20:5796–807. doi: 10.1158/1078-0432.CCR-14-0847

43. Gnoni A, Licchetta A, Memeo R, Argentiero A, Longo V, et al. Anti-Angiogenesis and Immunotherapy: Novel Paradigms to Envision Tailored Approaches in Renal Cell-Carcinoma. JCM (2020) 9:1594. doi: 10.3390/jcm9051594

44. Salimando AG, Susca N, Argentiero A, Brunetti O, Leone P, De Re V, et al. Second-Line Treatments for Advanced Hepatocellular Carcinoma: A Systematic Review and Bayesian Network Meta-Analysis. Clin Exp Med (2021) 1–10. doi: 10.1007/s10238-021-00277-7

45. Gherardi E, Birchmeier W, Birchmeier C, Woude GV. Targeting MET in Cancer: Rationale and Progress. Nat Rev Cancer (2012) 12:89–103. doi: 10.1038/nrc3205

46. Chatterjee S, Heukamp LC, Sobal M, Schöttle J, Wieczorek C, Peifer M, et al. Tumor VEGF : VEGFR2 Autocrine Feed-Forward Loop Triggers Angiogenesis in Lung Cancer. J Clin Invest (2013) 123:1732–40. doi: 10.1177/JCI65385

47. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, et al. Cabozantinib in Patients With Advanced Prostate Cancer: Results of a Phase II Randomized Discontinuation Trial. JCO (2013) 31:412–9. doi: 10.1200/JCO.2012.450494

48. Schimmler F, Zayzafoon M, Chung LWK, Zhou HE, Fagerlund KM, Aftab DT. Abstract A233: Cabozantinib (XL184), a Dual MET-VEGFR2 Inhibitor, Blocks Osteoblastic and Osteolytic Progression of Human Prostate Cancer Xenografts in Mouse Bone. In: Proceedings of the Therapeutic Agents: Small Molecule Kinase Inhibitors. San Francisco, CA: American Association for Cancer Research (2011). p. A233–3.

49. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a Novel MET and VEGFR2 Inhibitor, Simultaneously Suppresses Metastasis, Angiogenesis, and Tumor Growth. Mol Cancer Ther (2011) 10:2298–308. doi: 10.1158/1535-7163.MCT-11-0264

50. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, et al. Phase III Study of Cabozantinib in Previously Treated Metastatic Castration-Resistant Prostate Cancer: COMET-1. JCO (2016) 34:3005–13. doi: 10.1200/JCO.2015.65.5597

51. Schulten H-I. Pleiotropic Effects of Metformin on Cancer. Int J Mol Sci (2018) 19(10):2850. doi: 10.3390/ijms19102850

52. Keizman D, Ish-Shalom M, Sella A, Gottfried M, Maimon N, Peer A, et al. Metformin Use and Outcome of Sunitinib Treatment in Patients With Diabetes and Metastatic Renal Cell Carcinoma. Clin Genitourin Cancer (2016) 14:420–5. doi: 10.1016/j.clgc.2016.04.012

53. Hamieh L, McKay RR, Lin X, Moreira RB, Simantov R, Choueir TK. Effect of Metformin Use on Survival Outcomes in Patients With Metastatic Renal Cell Carcinoma. Clin Genitourin Cancer (2017) 15:221–9. doi: 10.1016/j.clgc.2016.06.017

54. Marquardt A, Solimando AG, Kerscher A, Bittrich M, Kalogirou C, Kübler H, et al. Subgroup-Independent Mapping of Renal Cell Carcinoma—Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathological Boundaries. Front Oncol (2021) 11:621278. doi: 10.3389/fonc.2021.621278

55. Stern PH, Alvaras K. Antitumor Agent Cabozantinib Decreases RANKL Expression in Osteoblastic Cells and Inhibits Osteoclastogenesis and PTHrP-Stimulated Bone Resorption: Cabozantinib and the Bone Microenvironment. J Cell Biochem (2014) 2013–8. doi: 10.1002/jcb.24879. n/a-n/a.
72. Solimando AG, De Vla MC, Leone P, Crocì G, Borrelli P, Tabares Gaviria P, et al. Adhesion-Mediated Multiple Myeloma (MM) Disease Progression: Junctional Adhesion Molecule 1 enhances Angiogenesis and Multiple Myeloma Dissemination and Predicts Poor Survival. Blood (2019) 134:855–5. doi: 10.1182/blood-2019-126674

73. Huinen ZB, Huijbers EM, van Beinum JR, Nowak-Sliwinska P, Griffioen AW. Anti-Angiogenic Agents — Overcoming Tumour Endothelial Cell Anergy and Improving Immunotherapy Outcomes. Nat Rev Clin Oncol (2021) 18:527–40. doi: 10.1038/s41571-021-00496-y

74. Chouaib S, Messai Y, Couse S, Escudier B, Hasmim M, Noman MZ. Hypoxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape. Front Immun (2012) 3:21. doi: 10.3389/fimmu.2012.00021

75. Song Y, Fu Y, Xie Q, Zhu B, Wang J, Zhang R. Anti-Angiogenic Agents in Combination With Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment. Front Immunol (2020) 11:1956. doi: 10.3389/fimmu.2020.01956

76. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N Engl J Med (2015) 373:1697–708. doi: 10.1056/NEJMo1506859

77. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-Repair Gene Mutations in Men With Metastatic Prostate Cancer. N Engl J Med (2016) 375:443–53. doi: 10.1056/NEJMo1603144

78. Taylor RA, Fraser M, Livingstone J, Espiritu SMG, Thorne H, Huang V, et al. Germline BRCA2 Mutations Drive Prostate Cancers With Distinct Evolutionary Trajectories. Nat Commun (2017) 8:13671. doi: 10.1038/s41467-017-00171-w

79. Abida W, Campbell D, Patnaik A, Sautois B, Shapiro J, Vogelzang NJ, et al. Docetaxel Plus Oral Metronomic Cyclophosphamide: A Phase II Study With Pharmacodynamic and Pharmacogenetic Analyses in Castration-Resistant Prostate Cancer Patients: Docetaxel and Metronomic Chemotherapy. Cancer (2014) 120:3923–31. doi: 10.1152/cancerres.2013.28953

80. Barroso-Sousa R, da Fonseca LG, Souza KT, Chaves ACR, Kann AG, de Castro G, et al. Metronomic Oral Cyclophosphamide Plus Prednisone in Docetaxel-Pretreated Patients With Metastatic Castration-Resistant Prostate Cancer. Med Oncol (2015) 32:443. doi: 10.1007/s12032-014-0443-4

81. Ladoire S, Eymard JC, Zanetta S, Mignot G, Martin E, Kermarrec I, et al. Adhesion-Mediated Multiple Myeloma (MM) Disease Progression: Evidence to Date. Front Immunol (2019) 10:26. doi: 10.3389/fimmu.2019.00021

82. Fontana A, Galli L, Fioravanti A, Orlandi P, Galli C, Landi L, et al. Clinical and Pharmacodynamic Evaluation of Metronomic Cyclophosphamide, Celecoxib, and Dexamethasone in Advanced Hormone-Refractory Prostate Cancer. J Clin Oncol (2009) 15:4954–62. doi: 10.1097/JCO.2009.08.3317

83. Calvani N, Morelli F, Niglieri E, Gnoni A, Chiuri VE, Orlando L, et al. Metronomic Chemotherapy With Cyclophosphamide Plus Low Dose of Corticosteroids in Advanced Castration-Resistant Prostate Cancer Across the Era of Taxanes and New Hormonal Drugs. Med Oncol (2019) 36:80. doi: 10.1007/s12032-019-1304-y

84. Caffo O, Facchini G, Biasco E, Ferraii F, Morelli F, Donini M, et al. Activity and Safety of Metronomic Cyclophosphamide in the Modern Era of Metastatic Castration-Resistant Prostate Cancer. Front Oncol (2019) 15:1115–23. doi: 10.3389/fonc.2019.00715

85. Ladoire S, Eymard JC, Zanetta S, Mignot G, Martin E, Kermarrec I, et al. Metronomic Oral Cyclophosphamide Prednisolone Chemotherapy Is an Effective Treatment for Metastatic Hormone-Refractory Prostate Cancer After Docetaxel Failure. Anticancer Res (2010) 30:4317–23.

86. Di Sidero T, Derosa L, Orlando P, Fontana A, Fioravanti A, et al. Clinical, Pharmacodynamic and Pharmacokinetic Results of a Prospective Phase II Study on Oral Metronomic Vinorelbine and Dexamethasone in Castration-Resistant Prostate Cancer Patients. Invest N Drugs (2016) 34:760–70. doi: 10.1007/s10637-016-0385-0

87. Fontana A, Galli L, Fioravanti A, Orlando P, Galli C, Landi L, et al. Clinical and Pharmacodynamic Evaluation of Metronomic Cyclophosphamide, Celecoxib, and Dexamethasone in Advanced Hormone-Refractory Prostate Cancer. Clin Cancer Res (2009) 15:4954–62. doi: 10.1158/1078-0432.CCR-08-3317

88. Laheurte C, Thiery-Vuillemin A, Calcagno F, Legros A, Simonin H, Boullerot MC, Leone P, Croci G, Borrelli P, Tabares Gaviria P, et al. Adhesion-Mediated Multiple Myeloma (MM) Disease Progression: Evidence to Date. Cancer Manag Res (2020) 12:8105–14. doi: 10.2217/fon-2018-0715

89. Castro E, Romero-Laorden N, Del Pozo A, Lozano R, Medina A, Puente J, et al. PROGREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol (2019) 37:490–503. doi: 10.1200/JCO.18.00358

90. Eiermann K, Fraiger Z, The Androgen Receptor and VEGF: Mechanisms of Androgen-Regulated Angiogenesis in Prostate Cancer. Cancers (2017) 9:32. doi: 10.3390/cancers9040032

91. Tentori L, Lacal PM, Arosio D, Lossetti C, Scarsella M, et al. Poly(ADP-Ribose) Polymerase (PARP) Inhibition or PARP-1 Gene Deletion Abolishes Angiogenesis. Eur J Cancer (2005) 41:2324–33. doi: 10.1016/j.ejca.2007.07.010

92. Rajesh M, Mukhopadhyay P, Godlewski G, Bâtkai S, Haskö G, Liałuda L, et al. Poly(ADP-Ribose)Polymerase Inhibition Decreases Angiogenesis. Biochem Biophys Res Commun (2006) 336:1056–62. doi: 10.1016/j.bbrc.2006.09.160

93. Chang SS, Reuters VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five Different Anti-Prostate-Specific Membrane Antigen (PSMA) Antibodies
Confirm PSMA Expression in Tumor-Associated Neovasculature. *Cancer Res* (1999) 59:5192–8.

108. Nguyen DP, Xiong PL, Liu H, Pan S, Leconet W, Navarro V, et al. Induction of PSMA and Internalization of an Anti-PSMA MAb in the Vascular Compartment. *Mol Cancer Res* (2016) 14:1045–53. doi: 10.1158/1541-7786.MCR-16-0193

109. Derlin T, Kreipe H-H, Schumacher U, Soudah B. PSMA Expression in Tumor Neovasculature Endothelial Cells of Follicular Thyroid Adenoma as Identified by Molecular Imaging Using 68ga-PSMA Ligand PET/CT. *Clin Nucl Med* (2017) 42:e173–4. doi: 10.1097/RLU.0000000000001487

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Solimando, Kalogirou and Krebs. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.