Winding numbers and $SU(2)$-representations of knot groups

Dylan Bowden and James Howie
Department of Mathematics and the
Maxwell Institute for Mathematical Sciences
Heriot-Watt University
Edinburgh EH14 4AS
UK

February 1, 2008

Abstract

Given an abelian group A and a Lie group G, we construct a bilinear pairing from $A \times \pi_1(R)$ to $\pi_1(G)$, where R is a subvariety of the variety of representations $A \to G$.

In the case where A is the peripheral subgroup of a torus or two-bridge knot group, $G = S^1$ and R is a certain variety of representations arising from suitable $SU(2)$-representations of the knot group, we show that this pairing is not identically zero. We discuss the consequences of this result for the $SU(2)$-representations of fundamental groups of manifolds obtained by Dehn surgery on such knots.

1 Introduction

The real algebraic variety of representations from a 3-manifold group $\pi_1(M)$ to $SU(2)$ or $SO(3)$ has long been a subject of interest, giving rise as it does to useful invariants such as the Casson invariant and the A-polynomial \cite{3}.

In the case where ∂M is a torus – in particular, where M is the exterior of a knot in S^3 – there is a particular interest in finding representations which vanish on a given slope $\alpha \in \mathbb{Q} \cup \{\infty\}$ on ∂M, and hence give rise to
a representation of $\pi_1(M(\alpha))$, where $M(\alpha)$ is the manifold obtained from M by Dehn filling along α.

A description of the character variety in the case of a 2-bridge knot is given by Burde in [1]. For twist knots, a more detailed description is given by Uygur and Azcan in [8].

Burde [1] used this description to show that nontrivial representations $\pi_1(M(+1)) \to SU(2)$ exist for any nontrivial 2-bridge knot exterior M, and deduced the Property P Conjecture for 2-bridge knots. More recently, Kronheimer and Mrowka [5] proved the Property P Conjecture in full by showing that nontrivial representations $\pi_1(M(+1)) \to SO(3)$ exist for an arbitrary nontrivial knot exterior M.

In another article [6], the same authors proved that there is an irreducible representation $\pi_1(M(r)) \to SU(2)$ (that is, a representation with nonabelian image), for any nontrivial knot exterior M and any slope $r \in \mathbb{Q}$ such that $|r| \leq 2$. One consequence of this (see [2, 4]) is that every nontrivial knot has a nontrivial A-polynomial.

In the present note, we construct a bilinear pairing $\pi_1(C) \times \pi_1(\partial M) \to \mathbb{Z}$ for suitable subsets C of the variety R of representations $\pi_1 M \to SU(2)$, and apply it to Burde’s description [1] of R in the case of 2-bridge knots, to show that the restriction $|r| \leq 2$ in [6] can be weakened in this case:

Theorem 1.1 Let M be the exterior of a nontrivial 2-bridge knot in S^3 which is not a torus knot, and let α be any non-meridian slope in ∂M. Then there exists an irreducible representation $\pi_1(M(\alpha)) \to SU(2)$.

Since there are many examples of lens spaces obtainable by Dehn surgery on nontrivial knots, it is clear that the above theorem cannot possibly extend from 2-bridge knots to arbitrary knots. However, by varying the subset C of the representation in our construction, we can adapt the technique to consider also reducible representations.

As an example, we prove the following result for torus knots.

Theorem 1.2 Let X be the exterior of the (p, q) torus knot, where $1 < p < q$, and $X(\alpha)$ the manifold obtained from X by Dehn filling along a non-meridian slope $\alpha \in \mathbb{Q}$. Then

1. if $\alpha = pq$ and $p > 2$, then $\pi_1(X(\alpha))$ admits an irreducible representation to $SU(2)$;
(2) if $\alpha = pq$ and $p = 2$, then $\pi_1(X(\alpha))$ admits no irreducible representation to $SU(2)$, but admits a representation to $SO(3)$ with nonabelian image;

(3) if $\alpha = pq \pm \frac{1}{n}$ for some positive integer n, then every representation from $\pi_1(X(\alpha))$ to $SO(3)$ has abelian image;

(4) for any other value of α, $\pi_1(X(\alpha))$ admits an irreducible representation to $SU(2)$.

Results of [7] indicate that this result is in a sense best possible: for example, in Case (3) the Dehn surgery manifold $X(\alpha)$ is a lens space.

The paper is organised as follows. In Section 2 below we recall some basic properties of the $SU(2)$ representation and character varieties of a knot group. In Section 3 we describe our bilinear pairing, in a fairly general context. We then apply this in Sections 4 and 5 to prove Theorems 1.1 and 1.2 respectively.

Acknowledgement We are grateful to Ben Klaff for helpful conversations about this work.

2 The $SU(2)$ representation and character varieties

If Γ is any finitely presented group, and G is a (real) algebraic matrix group, then the set of representations $\Gamma \to G$ forms a real affine algebraic variety \mathcal{R} on which G acts by conjugation, giving rise to a quotient character variety \mathcal{X}.

For the purposes of the present paper, Γ will always be a knot group, and $G = SU(2)$. In this case \mathcal{R} is naturally expressed as a union of two closed $SU(2)$-invariant subvarieties $\mathcal{R}_{\text{red}} \cup \mathcal{R}_{\text{irr}}$, and hence also \mathcal{X} is a union of subvarieties $\mathcal{X}_{\text{red}} \cup \mathcal{X}_{\text{irr}}$. Here \mathcal{R}_{red} denotes the variety of reducible representations $\rho : \Gamma \to SU(2)$, in other words those for which the resulting Γ-module \mathbb{C}^2 splits as a direct sum of two 1-dimensional modules. This happens precisely when the image of ρ is abelian, in other words when ρ is induced from a representation of $\Gamma/[\Gamma, \Gamma] \cong \mathbb{Z}$. Hence \mathcal{R}_{red} is canonically homeomorphic to $SU(2) \cong S^3$. The corresponding character subvariety \mathcal{X}_{red} is canonically homeomorphic to the closed interval $[-2, 2] \subset \mathbb{R}$, parametrised by the trace $Tr(\rho(\mu))$, where ρ is a representative of a conjugacy class of
reducible representations, and $\mu \in \Gamma$ is a fixed meridian element. The complement of \mathcal{R}_{red} in \mathcal{R} is not closed, but its closure is a subvariety \mathcal{R}_{irr} which is $SU(2)$-invariant and hence gives rise to a closed subvariety \mathcal{X}_{irr} of \mathcal{X}.

Now fix once and for all a meridian $\mu \in \Gamma$, and consider the following subset \mathcal{C} of \mathcal{R}. A representation $\rho : \Gamma \to SU(2)$ belongs to \mathcal{C} if and only if

$$\rho(\mu) = \begin{pmatrix} x + iy & 0 \\ 0 & x - iy \end{pmatrix}$$

with $x, y \in \mathbb{R}$, $x^2 + y^2 = 1$ and $y \geq 0$. Note that every representation in \mathcal{R} is conjugate to one in \mathcal{C}, so the quotient map $\mathcal{R} \to \mathcal{X}$ restricts to a surjection on \mathcal{C} (and to a homeomorphism $\mathcal{C} \cap \mathcal{R}_{red} \to \mathcal{X}_{red}$).

3 Winding numbers

Let A be an abelian group, G a (connected) Lie group, and \mathcal{D} a subset of the variety of representations $A \to G$. Given any path $P = \{\rho_t, 0 \leq t \leq 1\}$ in \mathcal{D}, and any $a \in A$, we obtain a path $P(a) = \{\rho_t(a), 0 \leq t \leq 1\}$ in G.

Clearly, if P' is homotopic (rel end points) to P, then $P'(a)$ is homotopic (rel end points) to $P(a)$, for any $a \in A$. Hence we obtain a pairing

$$\nu : A \times \pi_1(\mathcal{D}) \to \pi_1(G), \quad \nu(a, [P]) := [P(a)].$$

Remark Recall that, if $f, g : [0, 1] \to G$ are closed paths in the topological group G, based at the identity element $1 \in G$, then $[f][g] = [f.g] = [g][f]$ in $\pi_1(G, 1)$, where $f.g$ denotes the pointwise product $t \mapsto f(t)g(t) \in G$. This can easily be seen, for example, from the diagram below, representing the map $[0, 1]^2 \to G$, $(s, t) \mapsto f(s)g(t)$.
In particular, \(\pi_1(G,1) \) is abelian, so the above definition of \(\nu \) is unaffected by base-point choices.

Proposition 3.1 The pairing \(\nu : (a, [P]) \mapsto [P(a)] \) defined above is bilinear.

Proof. For a fixed element \(a \in A \), if \(P,Q \) is the concatenation of paths \(P,Q \) in \(D \), then \((P,Q)(a) \) is the concatenation of \(P(a), Q(a) \) in \(G \), so \([P] \mapsto [P(a)] \) is a homomorphism \(\pi_1(D) \to \pi_1(G) \).

For \(a,b \in A \) and a fixed path \(P \) in \(D \), we have \(P_t(ab) = P_t(a)P_t(b) \) for each \(t \in [0,1] \), since \(P_t \) is a representation \(A \to G \). By the above remark, \([P(ab)] = [P(a)][P(b)] \) in \(\pi_1(G) \). In other words, \(a \mapsto [P(a)] \) is a homomorphism \(A \to \pi_1(G) \).

We apply Proposition 3.1 in the following restricted context. Let \(X \) be the exterior of a nontrivial knot in \(S^3 \), and let \(A = \pi_1(\partial X) \cong \mathbb{Z}^2 \). Let \(\mu, \lambda \in A \) denote a fixed meridian and longitude respectively.

Let \(G \) be the Lie group \(S^1 \). The subset \(D \) of the variety of representations \(A \to S^1 \) arises as follows. We regard \(S^1 \) as the subgroup of \(SU(2) \) consisting of diagonal matrices. Recall that \(R \) is the variety of representations \(\pi_1(X) \to SU(2) \), and that \(C \) is the subvariety of \(R \) consisting of representations \(\rho : \pi_1(X) \to SU(2) \) such that \(\rho(\mu) \) is diagonal, and the imaginary part of the \((1,1) \) entry of \(\rho(\mu) \) is non-negative. Since \(A \) is abelian and \(\pi_1(X) \) is generated by conjugates of \(\mu \), it follows that \(\rho(A) \) contains only diagonal matrices whenever \(\rho \in C \). We define \(D \) to be the set of representations \(A \to S^1 \) that arise as restrictions of representations in \(C \).

Note that \(\pi_1(S) \cong \mathbb{Z} \), so the bilinear pairing \(\nu : A \times \pi_1(D) \to \pi_1(S^1) \) is integer-valued.

Proposition 3.2 For each \(\gamma \in \pi_1(D) \) let \(K_\gamma \subset A \) denote the kernel of the homomorphism \(A \to Z, a \mapsto \nu(a,\gamma) \). Then either \(K_\gamma = A \) or \(K_\gamma = \mathbb{Z}\mu \), the subgroup of \(A \) generated by \(\mu \).

Proof. Certainly \(\mu \) belongs to \(K_\gamma \) for all \(\gamma \in \pi_1(D) \), since for \(\rho \in C \) we have \(\rho(\mu) \) contained in an open interval in \(S^1 \) (so the winding number of \(\rho(\mu) \) as \(\rho \) travels around \(C \) is zero).

On the other hand, let \(c = \nu(\lambda,\gamma) \). Then by bilinearity, for any \(m,n \in \mathbb{Z} \) we have \(\nu(m\mu+n\lambda,\gamma) = cn \). If \(cn = 0 \) for some \(n \) then either \(c = 0 \) or \(n = 0 \). In the first case \(\nu(m\mu+n\lambda,\gamma) = 0 \) for all \(m,n \). In the second case, \(m\mu+n\lambda = m\mu \in \mathbb{Z}\mu \).

\(\square \)
Corollary 3.3 If the pairing $\nu : A \times \pi_1(D) \to \mathbb{Z}$ is not uniformly vanishing, and α is any non-meridian slope on ∂X, then $\pi_1(X(\alpha))$ admits a nontrivial representation to $SU(2)$, where $X(\alpha)$ is the 3-manifold obtained from X by Dehn-filling along α.

Proof. By hypothesis, $K_\gamma \neq A$ for some $\gamma \in \pi_1(D)$, so $K_\gamma = \mathbb{Z}\mu$ by the Proposition. Since $\alpha \notin \mathbb{Z}\mu$, it follows that $\nu(\alpha, \gamma) \neq 0$. Hence the map $S^1 \to S^1$ defined by $t \mapsto \gamma_t(\alpha)$, has nonzero winding number, and hence in particular is surjective. Thus we may choose $t \in S^1$ such that $\gamma_t(\alpha) = 1 \in SU(2)$ and hence σ induces a nontrivial representation

$$
\tau : \pi_1(X(\alpha)) = \pi_1(X)/\langle\langle \alpha \rangle\rangle \to SU(2).
$$

□

In practice, to find suitable closed paths in D we may find a closed path in C and project it to D using the restriction map $\rho \mapsto \rho|_A$. The next result shows that it is equally valid to work in the character variety X rather than C.

Lemma 3.4 The restriction map $C \to D$, $\rho \mapsto \rho|_A$, factors through X.

Proof. Given $\rho, \rho' \in C$ with the same image in X, we know that ρ, ρ' are conjugate by some matrix $M \in SU(2)$. If $\rho(\mu) \in Z(SU(2)) = \{\pm I\}$, then the image of ρ is central and so $\rho' = \rho$. Otherwise, $\rho(\mu) = \rho'(\mu)$ is a diagonal matrix with non-real diagonal entries, so the conjugating matrix M must also be diagonal. But in this case $\rho(A)$ consists only of diagonal matrices, which therefore commute with M, so the restrictions of ρ and ρ' to A coincide. □

An immediate consequence of Lemma 3.4 is that any path in R between two conjugate representations gives rise to a closed path in D by first projecting to X and then applying the restriction map $X \to D$.

4 Two-bridge knots

In this section we prove the following result.

Theorem 4.1 Let R_{irr} be the variety of irreducible $SU(2)$-representations of a two-bridge knot group G, and let A be a peripheral subgroup of G. Then there is a closed curve γ in R_{irr} such that the pairing $\nu : \pi_1(\gamma) \times A \to \mathbb{Z}$ is not identically zero.
Proof. A two-bridge knot group G has a presentation of the form

$$G = \langle x, y \mid Wx = yW \rangle,$$

where $W = W(x, y)$ is a word of the form $x^{\varepsilon(1)}y^{\varepsilon(2)} \cdots y^{\varepsilon(2n)}$ with $\varepsilon(i) = \pm 1$ for each i. Here x and y are meridians. The symmetry of the presentation ensures that $xW^* = W^*y$ in G, where $W^*(x, y) := W(y, x)$. Hence $\beta = W^*W$ commutes with the meridian x, so is a peripheral element and represents a slope on the boundary torus of the knot exterior.

The exponents $\varepsilon(i)$ can be more explicitly described. There is an odd integer k coprime to $2n + 1$ such that

$$\varepsilon(i) = (-1)^{\left\lfloor \frac{ik}{2n+1} \right\rfloor} \left\lfloor \frac{(2n+1 - i)k}{2n+1} \right\rfloor$$

for each i. In particular, since

$$\frac{ik}{2n+1} - 1 < \left\lfloor \frac{ik}{2n+1} \right\rfloor < \frac{ik}{2n+1}$$

for each i, we have

$$\left\lfloor \frac{ik}{2n+1} \right\rfloor + \left\lfloor \frac{(2n+1 - i)k}{2n+1} \right\rfloor = k - 1 \equiv 0 \bmod 2$$

for each i, so that $\varepsilon(2n+1 - i) = \varepsilon(i)$. From this, it follows that

$$W(x^{-1}, y^{-1}) = W(y, x)^{-1} = W^{*-1} \quad \text{and} \quad W^{*}(x^{-1}, y^{-1}) = W^{-1}.$$

The following construction is essentially due to Burde (see [2, p.116]). Under the action of $SU(2)$ by rotations on S^2, we may choose fixed points of $\rho(x), \rho(W), \rho(y), \rho(W^*)$ as the vertices A, B, C, D respectively of a spherical rhombus, such that $\rho(W)(A) = C$ and $\rho(W^*)(C) = A$. (There are degenerate cases: possibly $A = C$ if $\rho(G)$ is abelian; possibly $B = D$ if $\rho(W) = \rho(W^*)$ with $\rho(W)^2 = -I.$) It follows that the angle of rotation of W^*W is 2θ modulo 2π, where θ is the angle \hat{DAB} of the rhombus.
Conjugacy in $SU(2)$ allows us freedom to place this rhombus where we wish. Let us choose to place it with $A = (1, 0, 0)$, and $C = (\cos \psi, \sin \psi, 0)$ with $0 < \psi < \pi$.

If we have a path ρ_t ($0 \leq t \leq 1$) of representations, then this gives rise to a path $A_tB_tC_tD_t$ of rhombi, and a path $\theta_t \in \mathbb{R}/(2\pi\mathbb{Z})$ of corresponding angles. Parameters t with $\theta_t \in 2\pi\mathbb{Z}$ correspond to degenerate rhombi with $B_t = D_t$, and hence to representations ρ_t with $\rho_t(W) = \rho_t(W^*)$.

Among all $SU(2)$ representations of G, a special rôle is played by those whose image in $SO(3)$ is dihedral, in other words where $\rho(x)^2 = \rho(y)^2 = -I$. In this case, the points B, D of our rhombus coincide with the north and south poles $N, S = (0, 0, \pm 1)$. Burde [11 pp. 116-117] explains that, if Γ is the group of a two-bridge knot which is not a torus knot, then there is a path ρ_t of irreducible representations joining two dihedral representations ρ_0, ρ_1, such that $B_t = D_t$ switch poles on travelling from $t = 0$ to $t = 1$. In other words, the change of angle $\theta_1 - \theta_0$ on traversing this path is an odd multiple of 2π (in particular nonzero). Replacing the path ρ_t by a smooth approximation if necessary, we may assume that θ_t is differentiable as a function of t, and express this as

$$\int_0^1 \frac{\partial \theta_t}{\partial t} dt \neq 0.$$

Now consider another path of representations $\bar{\rho}_t$, defined by $\bar{\rho}_t(x) = -\rho_t(x^{-1})$, $\bar{\rho}_t(y) = -\rho_t(y^{-1})$. The equation $W(x^{-1}, y^{-1}) = W^{*^{-1}}$ enables us to verify that $\bar{\rho}_t$ is indeed a representation for each t. Moreover, since
\(\rho_t(x)^2 = \rho_t(y)^2 = -I \) for \(t = 0,1 \), it follows that \(\tilde{\rho}_t = \rho_t \) for \(t = 0,1 \). Finally, since \(\tilde{\rho}_t(W^*W) = \rho_t(W^*W)^{-1} \), the change in \(\theta \) along the path \(\tilde{\rho} \) is the negative of the change along the path \(\rho_t \):

\[
\frac{\partial \tilde{\theta}_t}{\partial t} = -\frac{\partial \theta_t}{\partial t}.
\]

If \(\gamma \) is the closed curve formed by concatenating the paths \(\rho_t \) and \(\tilde{\rho}_{1-t} \), the change in \(\theta \) around \(\gamma \) is precisely twice that along \(\rho_t \), namely an odd multiple of \(4\pi \):

\[
\int_{\gamma} \frac{\partial \theta_t}{\partial t} dt = \int_0^1 \frac{\partial \theta_t}{\partial t} dt + \int_1^0 \frac{\partial \theta_t}{\partial t} dt = 2 \int_0^1 \frac{\partial \theta_t}{\partial t} dt \neq 0.
\]

In particular \(\nu([\gamma], W^*W) \neq 0. \)

\[\square\]

Corollary 4.2 Let \(X \) be the exterior of a two-bridge knot in \(S^3 \), and let \(X(\alpha) \) be the manifold formed from \(X \) by Dehn filling along a non-meridian slope \(\alpha \) in \(\partial X \). Then \(\pi_1(X(\alpha)) \) admits an irreducible representation to \(SU(2) \).

Proof. By Theorem 4.1, there is a closed curve \(\gamma \) of irreducible representations \(\pi_1(X) \to SU(2) \) such that the pairing \(\nu \) on \(\pi_1(\gamma) \times \pi_1(\partial X) \) is not identically zero.

Then \(\nu([\gamma], \cdot) : \pi_1(\partial X) \to \mathbb{Z} \) has kernel \(\mu\mathbb{Z} \). Since \(\alpha \notin \mu\mathbb{Z} \), \(\nu([\gamma], \alpha) \neq 0 \). In other words, the closed curve \(t \mapsto \gamma_t(\alpha) \in S^1 \) has non-zero winding number, and so is surjective. There exists a point \(\rho \in \gamma \) such that \(\rho(\alpha) = 1 \) in \(SU(2) \). Since \(\pi_1(X(\alpha)) \) is the quotient of \(\pi_1(X) \) by the normal closure of \(\alpha \), \(\rho \) induces a representation \(\pi_1(X(\alpha)) \to SU(2) \) with nonabelian image. \[\square\]

5 Torus knots

In this section we demonstrate that the pairing \(\nu \) is not identically zero on suitable curves in the \(SU(2) \)-representation variety of a torus knot. We then apply this to the fundamental group of any manifold obtained by nontrivial Dehn surgery on a torus knot, and study its representations to \(SU(2) \).

The \((p,q)\)-torus knot has fundamental group \(\Gamma = \langle x, y | x^p = y^q \rangle \). In particular, it has nontrivial centre, generated by \(\zeta = x^p = y^q \). If \(\{\mu, \lambda\} \) is any meridian-longitude pair, then \(\zeta \) belongs to the peripheral subgroup generated by \(\{\mu, \lambda\} \), since it commutes with \(\mu \).
The character variety X of $\text{Hom}(\Gamma, \text{SU}(2))$ splits into a number of arcs as follows. As for all knots, the subvariety X_{red} corresponding to reducible representations is isomorphic to the closed interval $[-2, 2]$, parametrised by the trace of $\rho(\mu)$.

If $\rho : \Gamma \to \text{SU}(2)$ is an irreducible representation, then $\rho(x), \rho(y)$ are non-commuting matrices with $\rho(x)^p = \rho(y)^q$. This can arise only if $\rho(x)^p = \rho(y)^q = \pm I$, where I is the identity matrix. Hence $\rho(x)$ has trace $2 \cos(a\pi/pq)$ for some integers a, b of the same parity. There are $(p-1)(q-1)/2$ open arcs $A_{(a,b)}$ in the irreducible character variety, one corresponding to each pair (a, b) of integers with $1 \leq a \leq p-1, 1 \leq b \leq q-1, a \equiv b$ modulo 2. Each open arc $A_{(a,b)}$ is the interior of a closed arc $\overline{A}_{(a,b)}$ in the whole character variety, whose endpoints are reducible characters.

Lemma 5.1 The endpoints of $\overline{A}_{(a,b)}$ are the points

$$2 \cos(c\pi/pq), 2 \cos(d\pi/pq) \in [-2, 2] \cong X_{\text{red}},$$

where where $c, d \in \{1, \ldots, pq-1\}$ are the unique solutions to the congruences

$c, d \equiv \pm a \mod 2p; \quad c, d \equiv \pm b \mod 2q.$

Proof. On $A_{(a,b)}$, the trace of $\rho(x)$ is constant at $2 \cos(a\pi/pq)$, so the same will hold at each endpoint of $A_{(a,b)}$, which corresponds to a reducible representation. But $x \equiv \mu \pm q \mod \text{commutator subgroup}$, so for any reducible representation ρ we have $\rho(x) = \rho(\mu)^{\pm q}$. If z is a complex q-th root of $\cos(a\pi/pq) \pm i \sin(a\pi/pq)$, then $z = \cos(c\pi/pq) + i \sin(c\pi/pq)$ where $c \equiv \pm a \mod 2p$. Hence, for a reducible representation ρ at an endpoint of $A_{(a,b)}$, the trace of $\rho(\mu)$ must be $2 \cos(c\pi/pq)$ with $c \equiv \pm a \mod 2p$.

A similar analysis using $\rho(y) = \rho(\mu)^p$ gives the congruence $c \equiv \pm b \mod 2q$.

Finally, note that, since $a \equiv b \mod 2$ and since p, q are coprime, each of the four pairs of simultaneous congruences

$c \equiv \pm a \mod 2p; \quad c \equiv \pm b \mod 2q$

has a unique solution modulo $2pq$. Moreover, if c is the solution of one of these pairs of congruences, then $2pq - c$ is the solution of another, so precisely two of the four solutions lie in the indicated range $\{1, \ldots, pq-1\}$. \hfill \square

Proposition 5.2 Let γ be the closed curve in X formed by the arc $\overline{A}_{(a,b)}$ together with the subinterval $[2 \cos(c\pi/pq), 2 \cos(d\pi/pq)]$ of $[-2, 2] \cong X_{\text{red}}$. Then $\nu(\gamma, \zeta) \neq 0$.
Proof. The knot is embedded in an unknotted torus $T \subset S^3$. Each component of $S^3 \setminus T$ is an open solid torus. Moreover, x, y are represented by the cores of these solid tori, and $\zeta = x^p = y^q$ represents a curve on T parallel to the knot. In particular, $\zeta \in A$, i.e., ζ is a peripheral curve. Now $\rho(\zeta) = \pm I$ for any irreducible representation ρ, and so $\rho(\zeta)$ is constant for $\rho \in A_{(a,b)}$.

Let $z = \exp(i\pi/pq)$, a primitive $(2pq)$-th root of unity. Then the endpoints of $A_{(a,b)}$ correspond to the reducible representations $\mu \mapsto z^c$ and $\mu \mapsto z^d$, where c, d are given by Lemma 5.1.

Now, as ρ moves continuously through reducible representations from $\mu \mapsto z^c$ to $\mu \mapsto z^d$, the argument of $\rho(\mu)$ changes by $(d - c)\pi/pq$, so the argument of $\rho(\zeta) = \rho(\mu)^{pq}$ changes by $(d - c)\pi$, whence $\nu([\gamma], \zeta) = (d - c)/2 \neq 0$. □

Corollary 5.3 Let X be the exterior of a torus knot in S^3, and $X(\alpha)$ the manifold obtained from X by Dehn filling along a non-meridian slope α. Then $\pi_1(X(\alpha))$ admits a nontrivial representation to $SU(2)$.

Proof. If γ is the curve in the Theorem, then $\nu([\gamma], \zeta) \neq 0$, and so the kernel of the homomorphism $A \to \mathbb{Z}$, $\beta \mapsto \nu([\gamma], \beta)$, is precisely $\mu\mathbb{Z}$. But by hypothesis $\alpha \notin \mu\mathbb{Z}$, so $\nu([\gamma], \alpha) \neq 0$. Thus the closed curve $t \mapsto \gamma_t(\alpha)$ has nonzero winding number on S^1, so is surjective. There is a representation $\rho \in \gamma$ such that $\rho(\alpha) = 1$ in $SU(2)$. This choice of ρ induces a nontrivial representation $\pi_1(X(\alpha)) \to SU(2)$.

Of course, the above corollary is neither new nor surprising. For example, almost all the groups $\pi_1(X(\alpha))$ have nontrivial abelianisation, so admit representations to $SU(2)$ that are reducible but nontrivial. Of more interest is the question of which $\pi_1(X(\alpha))$ admit irreducible representations to $SU(2)$. This question can also be readily answered using the known classification of 3-manifolds obtained by Dehn surgery on torus knots [1]. Here we present an alternative approach using an adaptation of our winding-number technique.

Theorem 5.4 Let X be the exterior of the (p, q) torus knot, where $1 < p < q$, and $X(\alpha)$ the manifold obtained from X by Dehn filling along a non-meridian slope $\alpha \in \mathbb{Q} \cup \{\infty\}$. Then

1. if $\alpha = pq$ and $p > 2$, then $\pi_1(X(\alpha))$ admits an irreducible representation to $SU(2)$;
(2) If \(\alpha = pq \) and \(p = 2 \), then \(\pi_1(X(\alpha)) \) admits no irreducible representation to \(SU(2) \), but admits a representation to \(SO(3) \) with nonabelian image;

(3) If \(\alpha = pq \pm \frac{1}{n} \) for some positive integer \(n \), then every representation from \(\pi_1(X(\alpha)) \) to \(SO(3) \) has abelian image;

(4) For any other value of \(\alpha \), \(\pi_1(X(\alpha)) \) admits an irreducible representation to \(SU(2) \).

Remark The statement of this theorem fits the classification of [7], where it is proved that \(X(\alpha) \) is a lens space in Case (3); a connected sum of two lens spaces in Cases (1) and (2); and a Seifert fibre space in Case (4).

Proof.

(1) Since \(2 < p < q \), one of the components of \(X_{irr} \) is the arc \(A_{(2,2)} \). But any point on \(A_{(2,2)} \) corresponds to a representation \(\rho \) with \(\rho(x^p) = \rho(y^q) = I \).

(2) In this case \(\pi_1(X(\alpha)) \cong \mathbb{Z}_2 \ast \mathbb{Z}_q \). Since the only element of order 2 in \(SU(2) \) is the central element \(-I \), the image of any representation \(\mathbb{Z}_2 \ast \mathbb{Z}_q \to SU(2) \) is abelian. However, corresponding to any point on \(A_{(1,1)} \) is a representation \(\rho \) with \(\rho(x^2) = \rho(y^n) = -I \), so composing this with the quotient map \(SU(2) \to SO(3) \) gives a representation of \(\pi_1(X(\alpha)) \) to \(SO(3) \) with nonabelian image.

(3) Let \(\zeta \) be the curve \(x^p = x^q \) of slope \(pq \). Then \(\zeta = \mu^{pq} \lambda \), so \(\alpha = \mu^{npq \pm 1} \lambda^n = \mu^{\pm 1} \zeta^n \) in \(\pi_1(\partial X) \). Now any representation from \(\pi_1(X(\alpha)) \) to \(SO(3) \) with nonabelian image arises from a representation of \(\pi_1(X) \) with nonabelian image, which therefore lifts to an irreducible representation \(\rho : \pi_1(X) \to SU(2) \), such that \(\rho(\alpha) = \pm I \). But \(\rho \) corresponds to a point on one of the open arcs \(A_{(a,b)} \), so \(\rho(\zeta) = (-I)^a \) and hence \(\rho(\mu) = (\rho(\alpha)\rho(\zeta)^{-n})^{\pm 1} = \pm I \), contradicting the assumption that \(\rho \) is irreducible.

(4) As in the previous case, let \(\zeta = \mu^{pq} \lambda \) denote the curve with slope \(pq \). Then \(\pi_1(\partial X) \) is generated by \(\zeta \) and \(\mu \), so we can write \(\alpha = \mu^g \zeta^h \). If \(|g| \leq 1 \) then we are in one of the previous cases, so we have \(|g| \geq 2 \).

Suppose first that \(pq \) is even. Then the endpoints of \(A_{1,1} \) are reducible representations \(\rho \) in which the trace of \(\rho(\mu) \) is \(\pm 2 \cos(\pi/pq) \). Choose \(\theta \in [\pi/pq, (pq-1)\pi/pq] \) such that \(\theta \) is an odd multiple of \(\pi/|g| \). Then by continuity of trace, we can choose \(\rho \in A_{(1,1)} \) such that the trace of \(\rho(\mu) \) is \(2 \cos(\theta) \). Provided \(h \) is odd, this gives \(\rho(\mu)^g = -I = \rho(\zeta)^{-h} \), so \(\rho(\alpha) = I \). If \(h \) is even
then $|g|$ is odd, since α is a slope. In particular $|g| > 2$. In this case, we take θ to be an even multiple of $\pi/|g|$, and the argument goes through as before.

Now consider the case where pq is odd. Precisely one of the two positive integers $(q \pm p)/2$ is odd. Call it c, and note that $c \in \{1, \ldots, q-1\}$. Let a be the unique odd integer with $1 \leq a \leq p - 1$ and $a \equiv \pm c \mod p$. Then the endpoints of $A_{a,c}$ are reducible representations ρ where the trace of $\rho(\mu)$ is $2\cos(c\pi/pq)$ and $2\cos((pq - q + c)\pi/pq)$ respectively. Now the interval $[c\pi/pq, (pq - q + c)\pi/pq]$ contains at least one odd multiple of $\pi/|g|$, and (if $|g| > 2$) at least one even multiple of $\pi/|g|$. Arguing as before, we can choose $\rho \in A_{a,c}$ such that $\rho(\mu)^g = \rho(\zeta)^{-h}$, and so $\rho(\alpha) = I$, except possibly if $|g| = 2$ and h is even (which does not arise, since α is a slope).

□

References

[1] G. Burde, $SU(2)$-representation spaces for two-bridge knot groups, Math. Ann. 288 (1990), 103–119.

[2] S. Boyer, and X. Zhang, Every nontrivial knot in S^3 has nontrivial A-polynomial, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2813–2815.

[3] D. Cooper, M. Culler, H. Gillet, D. D. Long and P. B. Shalen, Plane Curves Associated to Character Varieties of 3-Manifolds. Invent. Math. 118 (1994), 47–84.

[4] N. M. Dunfield and S. Garoufalidis, Non-triviality of the A-polynomial for knots in S^3, Algebr. Geom. Topol. 4 (2004), 1145–1153.

[5] P. B. Kronheimer and T. S. Mrowka, Witten’s conjecture and property P. Geom. Topol. 8 (2004), 295–310.

[6] P. B. Kronheimer and T. S. Mrowka, Dehn surgery, the fundamental group and $SU(2)$. Math. Res. Lett. 11 (2004), 741–754.

[7] L. Moser, Elementary surgery along a torus knot. Pacific J. Math. 38 (1971), 737–745.

[8] T. Uygur and H. Azcan, The space of irreducible $SU(2)$ representations of the twist knots. J. Knot Theory Ramifications 13 (2004), 357–365.