O Impacto da Aptidão Cardiorrespiratória no Paradoxo da Obesidade em Insuficiência Cardíaca com Fração de Ejeção Reduzida

Impact of Cardiorespiratory Fitness on the Obesity Paradox in Heart Failure with Reduced Ejection Fraction

Rita Ilhão Moreira,1 Tiago Pereira Silva,1 António Valentim Gonçalves,1 Joana Feliciano,1 Pedro Rio,1 Rui Soares,1 Rui Cruz Ferreira1
Hospital de Santa Marta,1 Lisboa – Portugal

Resumo

Fundamento: Índice de massa corporal (IMC) elevado tem sido associado a desfechos melhores em pacientes com insuficiência cardíaca com fração de ejeção reduzida. Este achado tem levado ao conceito do paradoxo da obesidade.

Objetivo: Investigar o impacto de tolerância ao exercício e capacidade cardiorrespiratória no paradoxo da obesidade.

Método: Pacientes ambulatoriais com insuficiência cardíaca sintomática e fração de ejeção ventricular esquerda (FEVE) ≤ 40%, acompanhados no nosso centro, foram prospectivamente submetidos à avaliação abrangente de linha de base incluindo parâmetros clínicos, laboratoriais, eletrocardiográficos, ecocardiográficos e de exercício cardipulmonar. A população do estudo foi dividida de acordo com o IMC (< 25, 25 – 29,9 e ≥ 30 kg/m²). Todos os pacientes foram acompanhados durante 60 meses. O desfecho composto foi definido como morte cardíaca, transplante cardíaco urgente ou necessidade de suporte circulatório mecânico. Valores de p < 0,05 foram considerados significativos.

Resultados: Dos 282 pacientes incluídos (75% masculino, 54 ± 12 anos, IMC 27 ± 4 kg/m², FEVE 27% ± 7%), o desfecho composto ocorreu em 24,4% durante o acompanhamento. Os pacientes com IMC elevado eram mais velhos e apresentavam FEVE e níveis séricos de sódio mais elevados, bem como menor inclinação de efi ciência ventilatória (VE/VCO₂). VE/VCO₂ e consumo de oxigênio de pico (VO₂p) eram fortes preditores prognósticos (p < 0,001). Na análise univariada de regressão de Cox, o IMC elevado foi associado a desfechos melhores (razão de risco 0,940, intervalo de confiança 0,886 – 0,998, p 0,042). No entanto, após ajustar para inclinação VE/VCO₂ ou VO₂p, o papel protetor do IMC sumiu. O benefício de sobrevida do IMC não foi evidente quando os pacientes foram agrupados de acordo com a classe de aptidão cardiorrespiratória (VE/VCO₂, valor de corte de 35, e VO₂p, valor de corte de 14 mL/kg/min).

Conclusão: Estes resultados sugerem que a aptidão cardiorrespiratória supera a relação entre o IMC e a sobrevida em pacientes com insuficiência cardíaca. (Arq Bras Cardiol. 2020; 115(4):639-645)

Palavras-chave: Insuficiência Cardíaca; Obesidade; Índice de Massa Corporal; Exercícios Respiratórios; Fração de Ejeção Ventricular; Aptidão Cardiorrespiratória; Testes de Função Respiratória.

Abstract

Background: Higher body mass index (BMI) has been associated with improved outcomes in heart failure with reduced ejection fraction. This finding has led to the concept of the obesity paradox.

Objective: To investigate the impact of exercise tolerance and cardiorespiratory capacity on the obesity paradox.

Methods: Outpatients with symptomatic heart failure and left ventricular ejection fraction (LVEF) ≤ 40%, followed up in our center, prospectively underwent baseline comprehensive evaluation including clinical, laboratory, electrocardiographic, echocardiographic, and cardiopulmonary exercise testing parameters. The study population was divided according to BMI (< 25, 25 – 29.9, and ≥ 30 kg/m²). All patients were followed for 60 months. The combined endpoint was defined as cardiac death, urgent heart transplantation, or need for mechanical circulatory support. P value < 0,05 was considered significant.

Results: In the 282 enrolled patients (75% male, 54 ± 12 years, BMI 27 ± 4 kg/m², LVEF 27% ± 7%), the composite endpoint occurred in 24.4% during follow-up. Patients with higher BMI were older, and they had higher LVEF and serum sodium levels, as well as lower ventilatory efficiency (VE/VCO₂) slope. VE/VCO₂ and peak oxygen consumption (pVO₂) were strong predictors of prognosis (p < 0,001). In univariable Cox regression analysis, higher BMI was associated with better outcomes (HR 0,940, CI 0,886 – 0,998, p 0,042). However, after adjusting for either VE/VCO₂ slope or pVO₂, the protective role of BMI disappeared. Survival benefit of BMI was not evident when patients were grouped according to cardiorespiratory fitness class (VE/VCO₂ cut-off value 35, and pVO₂ cut-off value 14 mL/kg/min).

Correspondência: Rita Ilhão Moreira • Hospital Santa Marta - Rua Santa Marta, 50. 1169-024, Lisboa - Portugal
E-mail: ritailhaomoreira@gmail.com
Artigo recebido em 04/06/2019, revisado em 07/07/2019, aceito em 23/10/2019

DOI: https://doi.org/10.36660/abc.20190337
Introdução

A obesidade impacta a maioria dos fatores de risco para doenças cardiovasculares e é um fator de risco independente para o desenvolvimento de insuficiência cardíaca (IC), estando presente em aproximadamente 20% a 30% dos pacientes com IC avançada.1-3 Apesar disso, vários investigadores têm demonstrado que o índice de massa corporal (IMC) elevado está paradoxalmente associado a melhores resultados clínicos no contexto de IC estável, fenômeno que foi denominado “paradoxo da obesidade”.4,4

Diversos mecanismos concorrentes e frequentemente contraditórios foram propostos para explicar o paradoxo da obesidade na IC. Os possíveis motivos incluem níveis elevados de lipoproteínas séricas,7 níveis baixos de adiponectina8 e resposta diminuída à ativação simpática.9 Fatores de confusão também têm sido sugeridos como uma explicação potencial.10

A aptidão cardiorrespiratória, medida de várias maneiras como consumo de oxigênio de pico (VO2p) ou inclinação de eficiência ventilatória (inclinação VE/VCO2), tem sido identificada como um importante preditor de sobrevida na IC.11,12 Um forte paradoxo da obesidade tem sido demonstrado em pacientes com doença cardíaca coronária,13,14 mas não em pacientes com altos níveis de tolerância ao exercício.15,16

Nós visamos investigar o impacto de tolerância ao exercício e capacidade cardiorrespiratória no paradoxo da obesidade.

Métodos

A investigação está de acordo com os princípios prescritos na Declaração de Helsínquia. Todos os participantes preencheram um termo de consentimento livre e esclarecido e o comitê de ética institucional aprovou o protocolo do estudo.

Seleção de pacientes e avaliação complementar

Realizamos um estudo de coorte prospectivo incluindo todos os pacientes com IC com fração de ejeção reduzida (ICFEr) (≤ 40%), em classe II ou III da New York Heart Association (NYHA), acompanhamos nas Clínicas de Insuficiência Cardíaca da nossa instituição. Todos os pacientes encaminhados à Clínica de Insuficiência Cardíaca foram submetidos à abrangente avaliação complementar, de 2000 a 2009. Foram coletados prospectivamente os dados clínicos, laboratoriais, eletrocardiográficos, ecocardiográficos e de exercício cardipulmonar; todos os exames foram realizados no prazo de um mês para cada paciente. Foram excluídos os pacientes com os seguintes fatores: menores de 18 anos, revascularização coronária percutânea ou cirurgia cardíaca programada, comorbidades limitadoras de exercício (incluindo doença cerebrovascular, comprometimento musculosquelético e doença vascular periférica grave) e transplante cardíaco prévio.

Foi realizado o teste de exercício cardiopulmonar máximo em esteira limitado por sintomas usando o protocolo de Bruce modificado (esteira GE Marquette Series 2000). Ventilação por minuto, consumo de oxigênio e produção de dióxido de carbono foram aferidos respiração a respiração, usando um analisador de gases SensorMedics Vmax 229. Antes de cada teste, o equipamento foi calibrado de forma padrão utilizando gases de referência. Os pacientes foram incentivados a realizar exercícios até que a relação de troca respiratória (relação entre a produção de dióxido de carbono e o consumo de oxigênio, RER) fosse ≥ 1,10. Foi definido o VO2p como a maior média de 30 segundos alcançada durante o exercício e foi normalizado para a massa corporal; substituto para massa magra foi considerado em pacientes obesos (IMC ≥ 30 kg/m²). A porcentagem de VO2p previsto foi calculada de acordo com Hansen et al.,17 Foi calculada a inclinação VE/VCO2 por regressão linear de mínimos quadrados, utilizando dados obtidos ao longo de todo o exercício.18 Os dados eletrocardiográficos foram interpretados por um médico durante o exame. Foram obtidos o peso e a estatura em uma balança antropométrica Welmy 110-CH, antes de realizar o teste cardipulmonar.

Foi utilizado um sistema de ultrassom GE Vivid 9 para obter vistas parasetais nos eixos longo e curto, bem como vistas apicais de duas, três e quatro câmaras. Os parâmetros ecocardiográficos, incluindo os volumes diastólicos e sistólicos finais do ventrículo esquerdo e a fração de ejeção do ventrículo esquerdo, foram determinados de acordo com as recomendações da Sociedade Americana de Ecocardiografia.

Acompanhamento e desfecho

Todos os pacientes foram acompanhados durante 60 meses. Os pacientes foram avaliados quanto a ocorrência de óbito, transplante cardíaco ou necessidade de suporte circulatório mecânico. Os dados foram obtidos de consultas ambulatoriais e revisão dos prontuários médicos, com entrevista telefônica padronizada complementar para todos os pacientes aos 12, 36 e 60 meses de acompanhamento.

O desfecho composto foi definido como morte cardíaca, transplante cardíaco urgente (ocorrendo durante internação não planejada por agravamento da CI, requerendo inotrópicos) ou necessidade de suporte circulatório mecânico.

Análise estatística

Os pacientes foram divididos nos seguintes três grupos de acordo com o IMC: < 25, 25 – 29,9 e ≥ 30 kg/m². A aptidão cardiorrespiratória foi dicotomizada em baixo e alto risco de acordo com VE/VCO2 (valor de corte de 3519) e VO2p (valor de corte de 14 mL/kg/min18).

Os dados categóricos são apresentados como frequências (porcentagens) e as variáveis continuas como média (desvio
padrão), conforme apropriado. As variáveis contínuas foram analisadas usando o teste t de Student não pareado após verificação da normalidade (teste de Kolmogorov-Smirnov). Foram analisadas as variáveis categóricas usando o teste qui-quadrado ou o teste exato de Fisher. A análise de variância (ANOVA) unilateral foi usada para comparação entre grupos, quando apropriado. Foram aplicados modelos univariados e multivariados de regressão de Cox para analisar o tempo até o desfecho composto. A sobrevida foi estimada pela análise de Kaplan-Meier e comparada pelo teste de log-rank. Foi realizada análise adicional do grupo de IMC menor (< 25 kg/m²), separando IMC < 20 e IMC 20 – 24,9 kg/m². Porém, devido à pequena porcentagem de pacientes com IMC < 20 kg/m² (apenas 17 pacientes), apenas as características de linha de base foram avaliadas (Tabela Suplementar S1 e Figura Suplementar S1) e nenhuma análise estatística adicional foi realizada. Todos os testes estatísticos foram bilaterais. Foi considerado significativo o valor de p < 0,05. O software SPSS versão 21 (SPSS Inc., Chicago, Illinois, EUA) foi usado para a computação.

Resultados

Foram incluídos 282 pacientes, com idade média de 53,7 ± 12,1 anos; 75,5% eram de sexo masculino, com IMC médio de 26,8 ± 4,3 kg/m², e 37,6% tinham cardiomiopatia isquémica. A fração de ejeção ventricular esquerda (FEVE) média foi de 27,4% ± 7,3% e 23,0% de pacientes estavam em classe ≥ III NYHA. Em relação à terapia, 96,8% dos pacientes estavam sob uso de um inibidor da enzima da conversão da angiotensina ou um bloqueador do receptor da angiotensina; 80,1% estavam sob uso de um betabloqueador; 68,1% estavam recebendo um antagonista mineralocorticoide e 26,2% tinham estimulação biventricular. Todos os pacientes foram acompanhados durante 60 meses. O desfecho composto de morte cardíaca, transplante cardíaco urgente ou necessidade de suporte circulatório mecânico ocorreu em 24,4% dos pacientes.

Grupos de índice de massa corporal

São apresentadas na Tabela 1 as características de linha de base dos pacientes de acordo com os grupos de IMC. Os pacientes com IMC mais alto eram mais velhos e apresentavam FEVE e níveis séricos de sódio mais elevados. O esforço do exercício foi, em média, máximo em todos os grupos de IMC (RER > 1,05), embora o IMC mais alto estivesse associado a um valor menor de RER. O IMC elevado foi associado a menor inclinação VE/VCO₂ (p 0,005), bem como VO₂p numericamente mais alto e percentual do VO₂p previsto, embora sem alcançar significância estatística.

Tabela 1 – Características de linha de base de acordo com a classe de IMC

Características de linha de base	IMC < 25 kg/m² (n = 99)	IMC 25 – 29,9 kg/m² (n = 119)	IMC ≥ 30 kg/m² (n = 64)	p
Idade, anos, média (DP)	49,0 (± 9,6)	59,3 (± 4,5)	57,3 (± 8,5)	0,022
Sexo masculino, n (%)	70 (70,7%)	92 (77,3%)	51 (79,7%)	0,359
Etiologia isquémica, n (%)	37 (37,4%)	44 (37,0%)	25 (39,1%)	0,961
Diabetes mellitus, n (%)	8 (8,0%)	30 (25,2%)	22 (35,1%)	<0,001
FEVE, % média (DP)	24,0 (± 5,2)	28,3 (± 0,6)	27,8 (± 3,6)	0,003
Classe ≥ III NYHA, n (%)	29 (29,6%)	42 (35,3%)	12 (19,0%)	0,184
IECA ou BRA, n (%)	98 (99,0%)	113 (95,0%)	62 (96,9%)	0,241
Betabloqueadores, n (%)	75 (75,8%)	99 (83,2%)	53 (82,8%)	0,335
Antagonista mineralocorticoide, n (%)	63 (63,0%)	86 (72,3%)	44 (68,8%)	0,364
Estimulação biventricular, n (%)	21 (21,2%)	33 (27,7%)	19 (29,7%)	0,402
DCI, n (%)	23 (23,2%)	30 (25,2%)	16 (25,0%)	0,938
Hb, g/dL, média (DP)	15,0 (± 1,3)	12,4 (± 1,1)	13,6 (± 1,7)	0,075
TFGEm, mL/min/1,73 m², média (DP)	103,4 (± 48,5)	69,0 (± 23,3)	73,0 (±23,5)	0,140
Sódio, mEq/L, média (DP)	134,5 (± 7,1)	139,0 (±2,6)	136,4 (± 4,8)	0,025
BNP, pg/mL, média (DP)	534,3 (± 365,3)	350,7 (± 89,0)	573,4 (± 300,6)	0,710
RER, média (DP)	1,13 (± 0,14)	1,06 (± 0,49)	1,07 (± 0,15)	0,023
VO₂p, mL/kg/min, média (DP)	15,0 (± 2,6)	15,2 (± 3,9)	16,1 (± 2,8)	0,758
% VO₂p previsto, % média (DP)	43,0 (± 8,4)	55,3 (± 9,3)	60,3 (± 16,1)	0,207
Inclinação VE/VCO₂, média (DP)	43,4 (± 6,6)	33,8 (± 6,0)	33,1 (± 8,1)	0,005

BNP: peptídeo natriurético cerebral; BRA: bloqueador do receptor da angiotensina; DCI: desfibrilador cardioversor implantável; FEVE: fração de ejeção ventricular esquerda; Hb: hemoglobina; IECA: inibidor da enzima da conversão da angiotensina; IMC: índice de massa corporal; Inclinação VE/VCO₂: inclinação de eficiência ventilatória; NYHA: New York Heart Association; RER: relação de troca respiratória; TFGEm: taxa de filtração glomerular estimada; VO₂p: consumo de oxigênio de pico. P calculado por análise de variância.
Em um modelo não ajustado de riscos proporcionais de Cox, o IMC foi um preditor de sobrevida livre de eventos quando expresso como uma variável contínua (razão de risco [RR] 0,940, IC 0,886 – 0,998, p 0,042, Tabela 2) ou uma variável dicotômica (log-rank valor de p 0,047, Figura 1).

Aptidão cardiorrespiratória

Tanto a inclinação VE/VCO₂ quanto o VO₂p foram preditores fortes de sobrevida livre de eventos na análise univariada (p < 0,001, Tabela 2).

Quando os pacientes foram agrupados em classes de aptidão cardiorrespiratória de baixo e alto risco de acordo com a inclinação VE/VCO₂, o IMC não foi um preditor de desfechos clínicos na análise univariada de regressão de Cox (p 0,771 para inclinação VE/VCO₂ > 35 e p 0,439 para inclinação VE/VCO₂ ≤ 35). A Figura 2 ilustra as características de sobrevida livre de eventos de cada grupo de aptidão cardiorrespiratória. Além disso, o IMC não afetou sobrevida livre de eventos quando os pacientes foram agrupados por VO₂p (p 0,170 para VO₂p ≤ 14 mL/kg/min e p 0,164 para VO₂p > 14 mL/kg/min).

Embora o IMC tenha sido um preditor prognóstico na análise univariada, após usar uma análise de regressão de Cox ajustando para a inclinação VE/VCO₂, o IMC perdeu

Tabela 2 – Desfecho composto de acordo com índice de massa corporal e parâmetros de teste de exercício cardiorrespiratório

Variável dependente	RR (95% IC)	p
IMC, não ajustado	0,940 (0,886 – 0,998)	0,042
Inclinação VE/VCO₂, não ajustada	1,164 (1,135 – 1,194)	< 0,001
VO₂p, não ajustado	0,791 (0,742 – 0,842)	< 0,001

IMC: índice de massa corporal; inclinação VE/VCO₂: inclinação de eficiência ventilatória; RR: razão de risco; VO₂p: consumo de oxigênio de pico.

![Figura 1 – Análise Kaplan-Meier de acordo com índice de massa corporal (IMC) no grupo geral.](image-url)
a sua capacidade prognóstica (p 0,786, Tabela 3). Além disso, não houve relação entre o IMC e a sobrevida livre de eventos após ajustar para VO2p (p 0,201, Tabela 3).

Discussão

Neste estudo, avaliamos se a capacidade cardiorrespiratória afeta o paradoxo da obesidade. Os achados podem ser resumidos da maneira seguinte: (1) o paradoxo da obesidade está presente nesta população com IC; (2) a inclinação VE/VCO2e o VO2p são fortes preditores prognósticos, e (3) mais importante, a capacidade prognóstica do IMC se perde ao se considerar qualquer um desses dois parâmetros de aptidão cardiorrespiratória.

A obesidade é um dos principais fatores de risco para o desenvolvimento de IC. No Estudo Framingham Heart, com 5.881 participants, o risco de IC dobrou em indivíduos obesos (RR 1,90 para homens e RR 2,12 para mulheres). Estes resultados foram semelhantes em estudos maiores, incluindo um estudo com mais de 59.000 participantes livres de IC no início, onde os RRs ajustados multivariados para desenvolver IC com diferentes níveis de IMC (< 25, 25 – 29,9 e ≥ 30 kg/m2) foram de 1,00, 1,25 e 1,99 para homens e 1,00, 1,33 e 2,06 para mulheres, respectivamente.

Embora o IMC elevado constitua um fator de risco independente para IC, múltiplas investigações têm mostrado uma associação reversa entre o IMC e a mortalidade, levando ao conceito do “paradoxo da obesidade.” Um dos primeiros estudos em 2001, com 1.203 pacientes com ICFEr avançada, mostrou que IMC > 27,8 kg/m2 estava associado a um benefício de sobrevida estatisticamente significativo. Uma análise da sobrevida hospitalar e IMC em mais de 100.000 pacientes com IC descompensada identificou uma redução de 10% no risco de mortalidade para cada aumento de 5 unidades no IMC. Adicionalmente uma meta-análise incluindo > 22.000 pacientes com IC crónica mostrou que o risco de mortalidade cardiovascular e hospitalização era menor em pacientes com sobrepeso (risco relativo de 0,79 e 0,92, em comparação com IMC normal, respectivamente). Na nossa coorte de pacientes com IC, os pacientes com maior IMC também apresentaram melhor prognóstico (Figura 1).

Historicamente, o VO2p tem sido a variável do teste de exercício cardiorrespiratório mais amplamente usada para determinar o prognóstico da IC e o momento de transplante. Porém, outras variáveis, incluindo a inclinação VE/VCO2, também são fortes preditores prognósticos. A vantagem adicional de medir a inclinação VE/VCO2 é que este valor continua confiável se um paciente não atingir o esforço máximo (RER > 1,05) e, portanto, não atingir seu “verdadeiro” VO2p.

No nosso estudo, a inclinação VE/VCO2 e o VO2p eram fortes preditores prognósticos. Chase et al. demonstraram que a inclinação VE/VCO2 mantém o seu valor prognóstico independente do IMC em pacientes com IC. Também demonstramos que IMC elevado resulta em um resultado melhor na análise não ajustada. Porém, quando a inclinação VE/VCO2 ou o VO2p foram levados em consideração, o IMC perdeu a sua capacidade prognóstica. Além disso, quando os pacientes foram agrupados de acordo com a sua classe de aptidão cardiorrespiratória, o IMC não influenciou os desfechos. Analisando a nossa população com IC por classe de IMC, também pudemos observar que os pacientes com maior IMC apresentaram melhores parâmetros prognósticos (incluindo FEVE, níveis de sódio e inclinação VE/VCO2), indicando que estes pacientes apresentavam um quadro de IC menos avançado.
Estes achados indicam que o paradoxo da obesidade pode ser mitigado ou mesmo negado pela aptidão cardiorrespiratória, podendo representar apenas um viés de sobrevivência ou de evento-índice. A IC é um estado catabólico e o IMC elevado pode representar uma reserva metabólica, enquanto o IMC mais baixo pode ser uma consequência da perda de peso não intencional e da caquexia cardiaca, que está associada a um mau prognóstico. Adicionalmente, a experiência clínica das nossas Clínicas de Insuficiência Cardíaca tem demonstrado que os pacientes obesos podem apresentar maior comprometimento funcional devido ao aumento da massa corporal e, portanto, procurar atendimento médico mais cedo, o que leva à implementação mais precoce de terapia prognóstica. Além disso, é possível que alguns dos pacientes identificados como “obesos”, de fato, tenham aumento de massa muscular e força muscular.

O paradoxo da obesidade já foi questionado em outros estudos. Lavie et al., demonstraram que, em pacientes com ICFEr, o IMC foi um preditor de sobrevida no grupo com baixa aptidão cardiorrespiratória (VO$_2$ < 14 mL/kg/m2), mas não no grupo com alta aptidão cardiorrespiratória. Mais recentemente, Piepoli et al., verificaram que o papel prognóstico do IMC sumiu quando idade, sexo, FEVE e VO$_2$p foram levados em consideração. Estes estudos anteriores que avaliaram a influência da aptidão cardiorrespiratória no paradoxo da obesidade analisaram apenas a influência do VO$_2$p, que é dependente do esforço e altamente influenciado pela motivação do paciente. No nosso estudo, também demonstramos que a inclinação VE/VCO$_2$, que é um parâmetro independente do esforço máximo, mitigou o paradoxo da obesidade. Portanto, a relação entre a aptidão cardiorrespiratória e o paradoxo da obesidade não é influenciada pelo esforço máximo do exercício realizado durante o teste. Apesar do benefício da perda de peso na prevenção de remodelação cardíaca adversa, IC e outras doenças cardíacas, não há um consenso claro em relação à perda de peso em pacientes com IC. Grandes ensaios clínicos são necessários para compreender melhor os benefícios e os riscos da redução de peso em pacientes com IC. Dado o estado atual das evidências, pode ser razoável aconselhar a perda de peso proposta, particularmente nos pacientes com graus mais graves de obesidade, incorporando os benefícios da atividade física, do treinamento físico e da aptidão cardiorrespiratória.

Limitações

Este é um estudo unicêntrico, o que limita a generalização dos resultados. No entanto, isto possibilitou que o protocolo do teste de exercício cardiorrespiratório fosse homogêneo em todos os casos e pode ter reduzido o número de médicos responsáveis pela interpretação do exame, diminuindo a variabilidade interobservador. Além disso, trata-se de uma população de pacientes com ICFEr (FEVE sistólica média 27,4% ± 7,3%) que eram capazes de realizar exercícios e, portanto, os resultados podem não se aplicar a toda a população com IC. Outra limitação é que os pacientes com maior IMC apresentaram menor RER. No entanto, estes tiveram o maior desempenho de exercício e a análise com a inclinação VE/VCO$_2$ supera essa limitação, considerando que é um parâmetro independente do esforço máximo.

Conclusão

Na população com IC, o IMC não esteve relacionado aos desfechos quando as variáveis do teste de exercício cardiorrespiratório foram levadas em consideração. Portanto, a aptidão cardiorrespiratória afeta a relação entre o IMC e a sobrevida em pacientes com IC.

Contribuição dos autores

Concepção e desenho da pesquisa e Análise estatística: Moreira RI; Obtenção de dados: Moreira RI, Silva TP, Gonçalves AV, Feliciano J, Rio P; Análise e interpretação dos dados: Moreira RI, Gonçalves AV; Redação do manuscrito: Moreira RI, Silva TP; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Soares R, Ferreira RC.

Potencial conflito de interesses

Declare não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.
Referências

1. Loehr LR, Rosamond WD, Poole C, Mennell AM, Chang PP, Folsom AR, et al. Association of multiple anthropometric measures of overweight and obesity with incident heart failure: The atherosclerosis risk in communities study. Circ: Heart Fail. 2009;2(1):18–24.

2. Djoussé L, Bartz TM, Is JH, Zieman SJ, Delaney A, Mukamal KJ, et al. Adiposity and incident heart failure in older adults: the cardiovascular health study. Obesity (Silver Spring) 2012;20(9):1936–41.

3. Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: A scientific statement from the American Heart Association. Circulation. 2016;134(23):535–78.

4. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body mass index and mortality in heart failure: A meta-analysis. Am Heart J. 2008;156(1):13–22.

5. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38(3):789–95.

6. Clark AL, Fonarow GC, Horwich TB. Waist circumference, body mass index, and survival in systolic heart failure: The obesity paradox revisited. J Card Fail. 2011;17(5):374–80.

7. Rauchhaus M, Clark AL, Doehner W, Davos C, Bolger A, Sharma R, et al. The relationship between cholesterol and survival in patients with chronic heart failure. J Am Coll Cardiol. 2003;42(11):1933–40.

8. Mohamed-Ali V, Goodrick S, Bulmer K, Holly JMP, Yudkin JS, Coppack SW. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am J Physiol - Endocrinol Metab. 1999;277(6):E971–5.

9. Weber MA, Neufeld LM, Smith DHG. Contrasting clinical properties and exercise responses in obese and lean hypertensive patients. J Am Coll Cardiol. 2003;37(1):169–74.

10. Ades PA, Savage PD. The obesity paradox: Perception vs knowledge. Mayo Clin Proc. 2010;85(2):112–4.

11. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmonds LH, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.

12. Chase P, Arena R, Myers J, Abella J, Peberdy MA, Guazzi M, et al. Relation of the prognostic value of ventilatory efficiency to body mass index in patients with heart failure. Am J Cardiol. 2008;101(3):345–52.

13. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of body weight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet. 2006;368(9536):666–78.

14. Lavie CJ, De Schutter A, Patel DA, Romero-Corral A, Artham SM, Milani RV. Body composition and survival in stable coronary heart disease: Impact of lean mass index and body fat in the “obesity paradox.” J Am Coll Cardiol. 2012;60(15):1374–80.

15. McAuley PA, Koldinos PE, Oliveira RB, Emerson BT, Myers IN. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clin Proc. 2010;85(2):115–21.

16. Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 2013;1(2):93–102.

17. Hansen J, Sue D, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis. 1984;129(2P):549–55.

18. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–74.

19. Chua TP, Ponikowski P, Harrington D, Anker SD, Webb-Peploe K, Clark L, et al. Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1997;29(7):1578–90.

20. Kenchiaia S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–11.

21. Hu G, Jousilahti P, Antikainen R, Katzarzyszcz P. Joint effects of physical activity, body mass index, waist circumference, and waist-to-hip ratio on the risk of heart failure. Circulation. 2010;121(2):237–44.

22. Fonarow GC, Srikantan P, Costanzo MR, Cintron GB, Lopatin M, ADHERE Scientific Advisory Committee and Investigators. An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the Acute Decompensated Heart Failure National Registry. Am Heart J. 2007;153(6):74–81.

23. Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-Analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115(10):1428–34.

24. Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002;106(24):3079–84.

25. Anker SD, Negassa A, Coats AJ, Alzaf R, Poole-Wilson PA, Cohn JN, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: An observational study. Lancet 2003;361(9363):1077–83.

26. Oreopoulos A, Kalantar-Zadeh K, McAlister F, Ezekowitz J, Fonarow G, Johnson J et al. Comparison of direct body composition assessment methods in patients with chronic heart failure. J Card Fail. 2010;16(11):867-872.

27. Piepoli MF, Corrêa U, Veglia F, Bonomi A, Salvioni E, Cattadori G, et al. Exercise tolerance can explain the obesity paradox in patients with systolic heart failure: Data from the MECKI Score Research Group. Eur J Heart Fail. 2016;18(5):545–53.

28. Ramos-Barbón D, Fitchett D, Gibbons WJ, Latter DA, Levy RD. Maximal exercise testing for the selection of heart transplantation candidates: Limitation of peak oxygen consumption. Chest. 1999;113(2):410–7.

29. Lavie CJ, Alpert MA, Ventura HO. Risks and Benefits of Weight Loss in Heart Failure. Heart Fail Clin. 2015;11(1):125–31.

30. Kunutsor S, Laukkanen J. Heart failure risk reduction: is fit and overweight or obese better than unfit and normal weight? Eur J Heart Fail. 2019;21(4):445-8.