COUNTING IDEALS IN \(Z[t]/(f) \)

SARTHAK CHIMNI

Abstract. In this paper we study the growth of ideals in \(Z[t]/(f) \) for a monic cubic polynomial \(f \). We also compute the ideal zeta function of \(Z[t]/(t^n) \) for any \(n \in \mathbb{N} \).

1. Introduction

Given a commutative ring \(R \) with identity whose additive group is isomorphic to \(\mathbb{Z}^n \) for some \(n \in \mathbb{N} \) we define

\[
a^I_R(k) = |\{ I \text{ ideal in } R \mid [R : S] = k \}|
\]

We define the ideal zeta function of \(R \) to be

\[
\zeta^I_R(s) = \sum_{k=0}^{\infty} \frac{a^I_R(k)}{k^s}.
\]

Then we prove the following theorem:

Theorem 1. For any \(n \in \mathbb{N} \)

\[
\zeta^I_{Z[t]/(t^n)}(s) = \zeta(s)\zeta(2s-1)\zeta(3s-2) \cdots \zeta(ns - (n-1)).
\]

It has been brought to my notice by Michael Schein that Theorem 1 is Corollary 4.3 from [6] and can also be proven by counting Hermite Normal Forms of matrices. The proof is left in detail as it is more elementary than that of [6].

It is easy to see that \(\zeta^I_{Z[t]/(t^n)}(s) \) has a pole at \(s = 1 \) of order \(n \).

An application of a standard Tauberian Theorem then gives the following result.

Corollary 2. Let \(c = \frac{1}{n!(n-1)!} \) then

\[
\sum_{k \leq B} a^I_{Z[t]/(t^n)}(k) \sim cB(\log B)^{n-1}.
\]

More generally for any monic polynomial \(f \in \mathbb{Z}[t] \), denote \(\mathbb{Z}[t]/(f) \) by \(\mathbb{Z}_f \). Then the authors in [1] also conjecture that if \(f = g_1^{m_1}g_2^{m_2} \cdots g_k^{m_k} \) where \(g_i \) is irreducible over \(\mathbb{Z}[t] \) then \(\zeta^I_{\mathbb{Z}_f}(s) \) has a pole at \(s = 1 \) of order \(\sum_{i=1}^{k} m_i \). We prove this for the case of cubic polynomials in the following theorem:

Theorem 3. Let \(f \) be a monic cubic polynomial in \(\mathbb{Z}[t] \), then \(\zeta^I_{\mathbb{Z}_f}(s) \) converges for \(R(s) > 1 \) and has a pole at \(s = 1 \). Let \(m_f \) denote the
order of the pole of $\zeta_{\mathbb{Z}[t]}^I$. Then m_f is equal to the number of irreducible factors counted with multiplicity of f in $\mathbb{Z}[t]$.

In fact the authors of [1] believe that this holds for polynomials of any degree n. The ideal zeta function for $\mathbb{Z}[t]$ is computed by Segal in [2] where he proves the following theorem in which the equality is to be interpreted as an identity of formal Dirichlet Series.

Theorem 4. Let S be a Dedekind domain, not a field, having only finitely many ideals of each finite index. Let $R = S[t]$. Then R has only finitely many ideals of each finite index, and

$$\zeta_R^I(s) = \prod_{j=1}^{\infty} \zeta_S^I(js - j)$$

The general theory to study these zeta functions using p-adic integration techniques was introduced by Grunewald, Segal and Smith in [3]. They show that $\zeta_R(s)$ can be expressed as an Euler product of rational functions of p^{-s} over all primes p. In [5] Kaplan, Marcinek and Takloo-Bighash study subring growth of \mathbb{Z}^n and more generally the distribution of orders in number fields by locating the rightmost poles of these zeta functions instead of computing them explicitly. I use these ideas in the proofs in this paper.

The paper is organised as follows. In Section 2 we introduce the p-adic integration techniques we use in our proofs. We prove Theorem 1 in Section 3 and Theorem 3 in Section 4.

2. P-adic setting

Let R be a commutative ring with identity whose additive group is isomorphic to \mathbb{Z}^n for some $n \in \mathbb{N}$. Then the following theorem is a summary of results from [3]:

Theorem 5. 1. The series $\zeta_R^I(s)$ converges in some right half plane of \mathbb{C}. The abscissa of convergence α_R^I of $\zeta_R^I(s)$ is a rational number. There is a $\delta > 0$ such that $\zeta_R^I(s)$ can be meromorphically continued to the domain $\{s \in \mathbb{C} \mid \Re(s) > \alpha_R^I - \delta\}$. Furthermore, the line $\Re(s) = \alpha_R^I$ contains at most one pole of $\zeta_R^I(s)$ at the point $s = \alpha_R^I$.

2. There is an Euler product decomposition

$$\zeta_R^I(s) = \prod_p \zeta_{R,p}^I(s)$$

with the local Euler factor given by

$$\zeta_{R,p}^I(s) = \sum_{l=0}^{\infty} \frac{a_{R,p}(l^s)}{p^l s}.$$
This local factor is a rational function of p^{-s}; there are polynomials $P_p, Q_p \in \mathbb{Z}[x]$ such that $\zeta_{R,p}^{I}(s) = \frac{P_p(p^{-s})}{Q_p(p^{-s})}$. The polynomials P_p, Q_p can be chosen to have bounded degree as p varies.

By a theorem of Voll [4], the local Euler factors satisfy functional equations. The paper [3] introduced a p-adic formalism to study the local Euler factors $\zeta_{R,p}^{<}(s)$. Fix a \mathbb{Z}-basis for R and identify R with \mathbb{Z}^n. The multiplication in R is given by a bi-additive map

$$\beta: \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{Z}^n$$

which extends to a bi-additive map

$$\beta_p: \mathbb{Z}_p^n \times \mathbb{Z}_p^n \to \mathbb{Z}_p^n$$

giving $R_p = R \otimes \mathbb{Z} \mathbb{Z}_p$ the structure of a \mathbb{Z}_p-algebra.

Let $\mathcal{M}_p(\beta)$ be the subset of the set of $n \times n$ lower triangular matrices M with entries in \mathbb{Z}_p such that if the rows of $M = (x_{ij})$ are denoted by v_1, \ldots, v_n, and then for all j satisfying $1 \leq j \leq n$ and for all $v \in \mathbb{Z}_p^n$, there are p-adic integers c_1^v, \ldots, c_n^v

$$\beta_p(v, v_j) = \sum_{k=1}^n c_k^v v_k. \quad (4)$$

Let dM be the normalized additive Haar measure on $T_n(\mathbb{Z}_p)$, the set of $n \times n$ lower triangular matrices with entries in \mathbb{Z}_p. Proposition 3.1 of [3] says:

$$\zeta_{I\mathbb{Z}_p}^{I}(s) = (1 - p^{-1})^{-n} \int_{\mathcal{M}_p(\beta)} |x_{11}|^{s-n+1}|x_{22}|^{s-n+2} \cdots |x_{n,n}|^s dM. \quad (5)$$

We now apply these considerations to the case of $\mathbb{Z}_f = \mathbb{Z}[t]/(f)$ where f is a polynomial of degree n in $\mathbb{Z}[t]$. We fix $B = \{t^{n-1}, \ldots, t, 1\}$ as an ordered basis for \mathbb{Z}_f as a lattice. So that t^{n-j} corresponds to e_j where e_j denotes the j^{th} standard basis vector. Then the product of two vectors $v \cdot w$ is the vector representing the product of the corresponding polynomials in \mathbb{Z}_f in basis B. By Theorem 5 there exists an Euler product decomposition

$$\zeta_{\mathbb{Z}_f}^{I}(s) = \prod_{p \text{ prime}} \zeta_p^{I}(\mathbb{Z}_f, s)$$

where

$$\zeta_p^{I}(\mathbb{Z}_f, s) = \sum_{k=1}^{\infty} a_{k,p} \frac{t^k}{p^{ks}}.$$

Here $a_{k,p}$ counts the number of ideals of \mathbb{Z}_f of index p^k.

Let v_f be the vector corresponding to f in basis B. We define $\mathcal{M}_f(p)$ be the subset of the set of $n \times n$ lower triangular matrices M with entries
in \(\mathbb{Z}_p \) such that if the rows of \(M = (a_{ij}) \) are denoted by \(v_1, \ldots, v_n \), then for all \(j \) satisfying \(1 \leq j \leq n \), there are \(p \)-adic integers \(\{c_{kj}\}_{k=1}^n \) such that
\[
v_t \cdot v_j = \sum_{k=1}^n c_{kj}v_k \tag{6}\]
Observe that \(M \in \mathcal{M}_f(p) \) if and only if the rows of \(M \) generate an ideal in \(\mathbb{Z}_f \). Using Equation (5) we find that the local factors are given by
\[
\zeta_p^f(\mathbb{Z}_f, s) = (1 - p^{-1})^{-n} \int_{\mathcal{M}_f(p)} |a_{11}|^{s-n+1}|a_{22}|^{s-n+2} \cdots |a_{n,n}|^s dM.
\]
In order to compute these local factors we need the following definition.

Definition 6. Let \((b_1, b_2, \ldots, b_n) \) be a \(n \)-tuple of non negative integers, we set
\[
\mathcal{M}_f(p; b_1, \ldots, b_n) = \left\{ M = \begin{bmatrix} p^{b_1} & 0 & \cdots & 0 \\ a_{21} & p^{b_2} & \cdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & p^{b_n} \end{bmatrix} \in \mathcal{M}_f(p) \right\}.
\]

Let \(\mu_p^f(b_1, \ldots, b_n) \) be the volume of \(\mathcal{M}_f(p; b_1, \ldots, b_n) \) as a subset of \(\mathbb{Z}_p^{\frac{n(n+1)}{2}} \). It follows from equation (8) that
\[
\zeta_p^f(\mathbb{Z}_f, s) = \sum_{b_i=0}^\infty \frac{p^{(n-1)b_1+(n-2)b_2+\ldots+2b_{n-2}+b_{n-1}}}{p^{b_1+\ldots+b_n}s} \mu_p^f(b_1, \ldots, b_n). \tag{7}\]

3. **Proof of Theorem 1**

We now prove Theorem 1. In this section \(f(t) = t^n \) and \(\mathcal{M}_f(p; b_1, \ldots, b_n) \) is denoted by \(\mathcal{M}_n(p; b_1, \ldots, b_n) \) and \(\mu_p^f(b_1, \ldots, b_n) \) is denoted by \(\mu_p(b_1, \ldots, b_n) \).

We use equation (8) to compute \(\mu_p(b_1, \ldots, b_n) \). Define \(G_M \) be the subgroup of \(\mathbb{Z}_p^n \) generated by the rows of \(M \). Then we use the following standard result to find \(\mu_p(b_1, \ldots, b_n) \).

Lemma 7. Let \(M \in \mathcal{M}_n(p; b_1, \ldots, b_n) \), then \(\mu_p(G_M) = p^{-(b_1+\ldots+b_n)} \).

Proposition 8.
\[
\mu_p(b_1, \ldots, b_n) = \begin{cases} p^{-(n-2)b_1+(n-3)b_2+\ldots+b_{n-2}} & b_1 \leq \ldots \leq b_n \\ 0 & \text{otherwise} \end{cases}
\]

Proof. For any matrix \(M \), let \(M_j \) denote the matrix obtained from \(M \) by deleting the last \(n-j \) rows. Now \(M = (v_1, v_2, \ldots, v_n)^T \in \mathcal{M}_n(p) \) if and only if for all \(2 \leq j \leq n, v_i \cdot v_j \in G_{M_{n-j}} \). Therefore \(\exists c_{ij} \in \mathbb{Z}_p \) such that
\[
v_t \cdot v_j = (a_{j,2}, \ldots, a_{j,j-1}, p^{b_j}, 0, \ldots, 0) = \sum_{i=1}^{j-1} c_{ij}v_i. \tag{8}\]
This happens only if \(b_{j-1} \leq b_j \) as \(c_{j-1,j} = p^{b_j - b_{j-1}} \). For \(j = 2 \) Equation 8 is satisfied if and only if \(b_1 \leq b_2 \) and this holds on a volume of 1. For \(3 \leq j \leq n \) we can write \(v_i v_j = u_j + w_j \) where \(u_j \in G_{j-2} \) and \(w_j = p^{b_j} e_{j-1} \) where \(\{e_1, \ldots, e_n\} \) is the standard basis for \(\mathbb{Z}_p^n \). So equation 8 holds on a volume of \(\mu_p(G_{M_{j-2}}) \). Using Lemma 7 we have \(\mu_p(G_{M_{j-2}}) = p^{-(b_1 + \cdots + b_{j-2})} \) for \(3 \leq j \leq n \). This implies

\[
\mu_p(b_1, \ldots, b_n) = \prod_{j=3}^{n} \mu(G_{M_{j-2}}) = \mu_p(b_1, \ldots, b_n) = p^{-(n-2)b_1 + (n-3)b_2 + \cdots + b_{n-2}}.
\]

We now compute the local factors \(\zeta_{R,p}(s) \). In order to this we need another lemma.

Lemma 9. For \(2 \leq k \leq n \)

\[
\sum_{b_k \geq b_{k-1}} (px)^{b_k} \cdots \sum_{b_{n-2} \geq b_{n-1}} (px)^{b_{n-1}} \sum_{b_n \geq b_{n-1}} x^{b_n} = (p^{n-k} x^{n-k+1})^{b_{k-1}} \prod_{j=1}^{n-k+1} (1-p^{j-1} x^j)^{-1}.
\]

Proof. We prove this by induction on the number of summations. If \(k = n \), that is there is only one summation then it is easily seen that the equality holds. Now assume the equation is true for \(n - k \) summations. Then we have

\[
\sum_{b_k \geq b_{k-1}} (px)^{b_k} \cdots \sum_{b_{n-2} \geq b_{n-1}} (px)^{b_{n-1}} \sum_{b_n \geq b_{n-1}} x^{b_n} = \prod_{j=1}^{n-k} (1-p^{j-1} x^j)^{-1} \sum_{b_k \geq b_{k-1}} (px)^{b_k} (p^{n-k-1} x^{n-k})^{b_k}.
\]

So that

\[
\sum_{b_k \geq b_{k-1}} (px)^{b_k} \cdots \sum_{b_{n-2} \geq b_{n-1}} (px)^{b_{n-1}} \sum_{b_n \geq b_{n-1}} x^{b_n} = (p^{n-k} x^{n-k+1})^{b_{k-1}} \prod_{j=1}^{n-k+1} (1-p^{j-1} x^j)^{-1}.
\]

\[\square\]

Proposition 10. Let \(x = p^{-s} \) then

\[
\zeta_p^f(\mathbb{Z}[t]/(t^n), s) = \prod_{j=1}^{n} (1-p^{j-1} x^j)^{-1}.
\]

(9)

Proof. Applying Proposition 8 to equation (7) we have

\[
\zeta_p^f(\mathbb{Z}[t]/(t^n), s) = \sum_{0 \leq b_1, \ldots, b_n} \frac{p^{b_1 + \cdots + b_{n-1}}}{p^{(b_1 + \cdots + b_n)s}}.
\]

Set \(x = p^{-s} \). Then
\[\zeta_I^f(\mathbb{Z}[t]/(t^n), s) = \sum_{b_1 \geq 0} (px)^{b_1} \sum_{b_2 \geq b_1} (px)^{b_2} \cdots \sum_{b_{n-1} \geq b_n-2} (px)^{b_{n-1}} \sum_{b_n \geq b_{n-1}} x^{b_n}. \]

We apply Lemma 9 with \(k = 2 \) to equation \(\text{(10)} \) to obtain

\[\zeta_I^f(\mathbb{Z}[t]/(t^n), s) = \prod_{j=1}^{n} (1 - p^{j-1}x^j)^{-1} \sum_{b_1 \geq 0} (p^{n-1}x^{n})^{b_1}. \]

Therefore

\[\zeta_I^f(\mathbb{Z}[t]/(t^n), s) = \prod_{j=1}^{n} (1 - p^{j-1}x^j)^{-1}. \]

\[\square \]

Multiplying the local factors given in equation \(\text{(9)} \) gives the result.

\[\zeta_{\mathbb{Z}[t]/(t^n)}(s) = \zeta(s)\zeta(2s-1)\zeta(3s-2)\cdots\zeta(ns-(n-1)). \]

4. Ideals in cubic rings

In this section we prove Theorem 3. Before we prove the theorem we first state the following general result from \[1\]:

Theorem 11. Let \(f \in \mathbb{Z}[t] \) be monic and assume that \(f = g_1 \cdots g_k \) with \(g_1, \ldots, g_k \) in \(\mathbb{Z}[t] \) irreducible, monic and pairwise distinct. Then the ideal zeta function \(\zeta_{Z_f}(s) \) converges for \(R(s) > 1 \), has a meromorphic extension to the halfplane \(\{ s \in \mathbb{C} \mid R(s) > 0 \} \) and has a pole of order \(k \) at \(s = 1 \). In particular, \(\sum_{k \leq N} a_{Z_f}(k) \sim cN(\log N)^{k-1} \) for some constant \(c \).

We now prove Theorem 3.

Proof of Theorem 3. In the case that the roots of \(f \) are distinct the result follows from Theorem 11. If \(f = (t - \lambda)^3 \) for some \(\lambda \in \mathbb{Z} \) then the result follows from Theorem 1 by a change of variable. Hence we need to show that \(m_f = 3 \) when \(f = (t - \lambda_1)^2(t - \lambda_2) \). Now note that since \(f \) is not separable it is reducible and therefore \(\lambda_1 \) and \(\lambda_2 \in \mathbb{Z} \). Thus by a change of variable we can reduce this to the case \(f = t^2(t - \lambda) \) with \(\lambda \in \mathbb{Z} \setminus \{0\} \). The result now follows from Proposition 12. \(\square \)

Proposition 12. Let \(f(t) = t^2(t - \lambda) \in \mathbb{Z}[t] \). Then \(\zeta_{Z_f}^f(s) \) converges for \(R(s) > 1 \) and has a pole of order 3 at \(s = 1 \).

The rest of this section goes into proving Proposition 12. In what follows \(f(t) = t^2(t - \lambda) \). We find the local factors \(\zeta_p(Z_f, s) \) using the \(p \)-adic integration methods of Section 2 and 3 and use them to study the convergence of \(\zeta_{Z_f}(s) \).
Let $M_f(p; b_1, b_2, b_3)$ and $\mu^f_p(b_1, b_2, b_3)$ be as in Definition 6. Then an application of Equation (5) gives the following expression for the local factors of $\zeta_{Z_f}(s)$:

$$\zeta_{Z_f}^f(Z_f, s) = \sum_{b_i=0}^{\infty} \frac{p^{2b_1+b_2}}{p^{b_1+b_2+b_3}s} \mu^f_p(b_1, b_2, b_3).$$ (11)

In order to compute $\mu^f_p(b_1, b_2, b_3)$ we use the following lemma

Lemma 13. $M = \begin{bmatrix} p^{b_1} & 0 & 0 \\ a_{21} & p^{b_2} & 0 \\ a_{31} & a_{32} & p^{b_3} \end{bmatrix} \in M_f(p; b_1, b_2, b_3)$ if and only if the entries of M satisfy the following inequalities.

\begin{align*}
 b_2 & \leq v(p^{b_1} + \lambda a_{31}) \quad (12) \\
 b_1 + b_2 & \leq v(p^{b_2} a_{32} - (p^{b_3} + \lambda a_{31}) a_{21}) \quad (13) \\
 b_2 & \leq v(a_{21}) \quad (14) \\
 b_1 + b_2 & \leq v(p^{2b_2} - \lambda a_{21}^2) \quad (15) \\
 b_2 & \leq b_1. \quad (16)
\end{align*}

Proof. These inequalities follow from an application of Equation (6).

Lemma 14. If $(\lambda, p) = 1$ then

$$\mu^f_p(b_1, b_2, b_3) = p^{-b_1-2b_2-\lceil \frac{b_1-b_2}{2} \rceil}$$

Proof. Suppose $(\lambda, p) = 1$. Using Inequality (14) we can write $a_{21} = p^{b_2} z$ for some $z \in \mathbb{Z}_p$. Therefore Inequality (15) can be rewritten as $b_1 - b_2 \leq v(1 - \lambda z^2)$. Since Inequality (16) holds, we have that these inequalities hold on a volume of $p^{-b_2 - \lceil \frac{b_1-b_2}{2} \rceil}$ for a_{21}. Now Inequality (12) holds on a volume of p^{-b_2} while Inequality (13) holds on a volume of p^{-b_1}. Multiplying these volumes we get $\mu^f_p(b_1, b_2, b_3) = p^{-b_1-2b_2-\lceil \frac{b_1-b_2}{2} \rceil}$ in this case.

Lemma 15. If $(\lambda, p) > 1$ then $\mu^f_p(b_1, b_2, b_3) \leq p^{-2b_2} \text{ and } b_1 = b_2$.

Proof. Now suppose $\lambda = p^a$ for some $a \in \mathbb{N}$. As before we can write $a_{21} = p^{b_2} z$ and therefore we have $b_1 - b_2 \leq v(1 - p^a z^2)$. This inequality only holds if $b_1 = b_2$. This implies that Inequality (13) holds on a volume of p^{-b_2}. Therefore all the inequalities hold on a volume of at most p^{-2b_2}.

\[\square \]
We now evaluate the local factors using Equation (11).

Lemma 16. Let \(x = p^{-s} \). If \((\lambda, p) = 1\) then

\[
\zeta_p' \left(\mathbb{Z}_f, s \right) = \frac{1 - x^2 + p^{-1}x - p^{-1}x^2 + x^2 - x^3}{(1 - x)^2(1 - px^2)(1 - x^4)}
\]

Proof.

\[
\zeta_p' \left(\mathbb{Z}_f, s \right) = \sum_{b_2 \leq b_1} \sum_{b_3=0}^\infty \frac{p^{2b_1+b_2}}{p^{b_1+b_2+b_3}s} \mu_p' \left(b_1, b_2, b_3 \right)
\]

Using Lemma [4]

\[
= \sum_{b_2 \leq b_1} \sum_{b_3=0}^\infty \frac{p^{b_1-b_2-[\frac{b_1+b_2}{2}]} - [\frac{b_1+b_2}{2}]}{p^{b_1+b_2+b_3}s}
\]

\[= A_{00} + A_{01} + A_{10} + A_{11}.
\]

Where

\[A_{ij} = \sum_{k_2 \leq k_1} \sum_{b_3=0}^\infty \frac{p^{2k_1+i-(2k_2+j)-[\frac{2k_1+i-2k_2-j}{2}]-[\frac{2k_1+i-2k_2-j}{2}]} - [\frac{2k_1+i-2k_2-j}{2}]}{p^{2k_1+i+2k_2+j+b_3}s}
\]

Setting \(x = p^{-s} \), \(b_1 = 2k_1 + i \) and \(b_2 = 2k_2 + j \).

Setting \(x = p^{-s} \), \(b_1 = 2k_1 \) and \(b_2 = 2k_2 \) we have

\[A_{00} = \sum_{k_2=0}^\infty \left(p^{-1}x^2 \right)^{k_2} \sum_{k_1=k_2}^\infty \left(px^2 \right)^{k_1} \sum_{b_3=0}^\infty \left(x \right)^{b_3}
\]

\[= \frac{1}{1-x} \sum_{k_2=0}^\infty \left(p^{-1}x^2 \right)^{k_2} \sum_{k_1=k_2}^\infty \left(px^2 \right)^{k_1}
\]

\[= \frac{1}{(1-x)(1-px^2)} \sum_{k_2=0}^\infty x^{4k_2}
\]

\[A_{00} = \frac{1}{(1-x)(1-px^2)(1-x^4)}.
\]

We compute \(A_{01}, A_{10} \) and \(A_{11} \) similarly to get

\[\zeta_p \left(\mathbb{Z}_f, s \right) = \frac{1 + x + p^{-1}x + x^2}{(1-x)(1-px^2)(1-x^4)}
\]

\[= \frac{1 - x^2 + p^{-1}x - p^{-1}x^2 + x^2 - x^3}{(1-x)^2(1-px^2)(1-x^4)}.
\]

\[\square
\]

Lemma 17. If \((\lambda, p) > 1\) then \(\zeta_p(\mathbb{Z}_f, s) \) converges for \(R(s) > 1/2 \).
Proof. Let $R(s) = \sigma$, an application of Lemma 15 gives

$$|\zeta_p^I(\mathbb{Z}_f, s)| \leq \sum_{b_2, b_3} \frac{p^{b_2}}{p^{(2b_2 + b_3)\sigma}}$$

Therefore

$$|\zeta_p^I(\mathbb{Z}_f, s)| \leq \frac{1}{(1 - p^{-\sigma})(1 - p^{1 - 2\sigma})}$$

Since the right hand side converges for $\sigma > 1/2$ so does $\zeta_p(\mathbb{Z}_f, s)$. \square

Now let

$$F(s) = \prod_{p: (\lambda, p) > 1} \zeta_p(\mathbb{Z}_f, s)$$

and

$$G(s) = \prod_{p: (\lambda, p) = 1} \zeta_p(\mathbb{Z}_f, s).$$

Then it is easy to see that $F(s)$ is a finite product and therefore converges for $R(s) > 1/2$ by Lemma 17. On the other hand it follows from Lemma 16 that $G(s)$ has a pole at $s = 1$ of order 3. Hence $\zeta_{\mathbb{Z}_f}(s) = F(s)G(s)$ converges for $R(s) > 1$ and has a pole of order 3 at $s = 1$, proving Proposition 12.

References

[1] Fukshansky, L; Kuhnlein, S; Schwerdt, R Counting Ideals in Polynomial Rings ArXiv e-prints, January 2017, arXiv:1701.04633
[2] Segal, Dan. Ideals of finite index in a polynomial ring. Quart. J. Math. Oxford (2), 48 (1997), 83-92
[3] Grunewald, F. J.; Segal, D.; Smith, G. C. Subgroups of finite index in nilpotent groups. Invent. Math. 93 (1988), no. 1, 185–223.
[4] Voll, Christopher. Functional equations for zeta functions of groups and rings. Ann. of Math. (2) 172 (2010), no. 2, 1181–1218.
[5] Kaplan, Nathan; Marcinek, Jake; Takloo-Bighash, Ramin. Distribution of orders in number fields. Res. Math. Sci. 2 (2015), Art. 6, 57 pp.
[6] Rossmann, Tóibás. Enumerating submodules invariant under an endomorphism Math. Ann. 368 (2017), pp. 391-417