Summary: The aim of this paper is to introduce and to investigate the basic properties of q convex, q-affine and q-concave sequences and to establish their surprising connection to Chebyshev polynomials of the first and of the second kind. One of the main results shows that q concave sequences are the pointwise minima of q-affine sequences. As an application, we consider a nonlinear selfmap of then-dimensional space and prove that it has a unique fixed point. For the proof of this result, we introduce a new norm on the space in terms of a q-concave sequence and show that the nonlinear operator becomes a contraction with respect to this norm, and hence, the Banach Fixed Point theorem can be applied.

MSC:
26A51 Convexity of real functions in one variable, generalizations
39B62 Functional inequalities, including subadditivity, convexity, etc.

Keywords:
q-convex sequence; q-concave sequence; q-affine sequence; Chebyshev polynomials of first and second kind; contraction

Full Text: DOI

References:
[1] G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA, Inequalities, Cambridge University Press, Cambridge, 1934, (first edition), 1952 (second edition).
[2] X. Z. KRASNIQI, On α-convex sequences of higher order, J. Numer. Anal. Approx. Theory 45 (2016), no. 2, 177-182. - Zbl 1399.26021
[3] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe Uniwersytetu Śląskiego, vol. 489, Państwowe Wydawnictwo Naukowe - Uniwersytet, 1970. In cooperation with P. M. Vasić.
[4] D. S. MITRINOVIC’, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić.
[5] D. S. MITRINOVIC’, J. E. PECAHI ‘C’, ANDA. M. FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1991.
[6] D. S. MITRINOVIC’, J. E. PECAHI ‘C’, ANDA. M. FINK, Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), vol. 61, Kluwer Academic Publishers Group, Dordrecht, 1993.
[7] C. P. NICULESCU AND E. PERRISON, Convex Functions and Their Applications, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer-Verlag, New York, 2006. A contemporary approach.
[8] M. NIEZGODA, Remarks on convex functions and separable sequences, II, Discrete Math. 311 (2011), no. 2-3, 178-185. - Zbl 1205.26017
[9] M. NIEZGODA, Inequalities for convex sequences and nondecreasing convex functions, Aequationes Math. 91 (2017), no. 1, 1-20. - Zbl 1364.39022
[10] M. NIEZGODA, Sherman, Hermite-Hadamard and Fejér like inequalities for convex sequences and nondecreasing convex functions, Filomat 31 (2017), no. 8, 2321-2335. - Zbl 1374.26022
[11] T. POPOVICIU, Les fonctions convexes, Hermann et Cie, Paris, 1944.
[12] A. W. ROBERTS ANDD. E. VARBERG, Convex Functions, Pure and Applied Mathematics, vol. 57, Academic Press, New York-London, 1973.
[13] D. F. SOFONEA, T. T, ANDC. ANCA, M. ACU, Convex sequences of higher order, Filomat 32 (2018), no. 13, 4655-4663. - Zbl 1399.26021
[14] JÁ. TÁBOR, J’O. TÁBOR, AND D. M. ZOLDAK, Strongly convex sequences, Inequalities and applications 2010, Internat. Ser. Numer. Math., vol. 161, Birkhäuser, Springer, Basel, 2012, p. 183-188.
[15] SH. WU ANDL. DEBNATH, Inequalities for convex sequences and their applications, Comput. Math. Appl. 54 (2007), no. 4, 525-534. - Zbl 1144.26016
[16] S. YILDIZ, A general matrix application of convex sequences to Fourier series, Filomat 32 (2018), no. 7, 2443-2449. - Zbl 1399.26021

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2022 FIZ Karlsruhe GmbH
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.