Rod photoreceptors of the vertebrate retina produce, in darkness, spontaneous discrete current waves virtually identical to responses to single photons. The waves comprise an irreducible source of noise (discrete dark noise) that may limit the threshold sensitivity of vision. The waves obviously originate from acts of random activation of single rhodopsin molecules. Until recently, it has been generally accepted that the activation occurs due to the rhodopsin thermal motion. Yet, a few years ago it was proposed that rhodopsin molecules are activated not by heat but rather by real photons generated within the retina by chemiluminescence. Using a high-sensitive photomultiplier, we measured intensities of biophoton emission from isolated retinas and eyecups of frogs (Rana ridibunda) and fish (sterlet, Acipenser ruthenus). Retinal samples were placed in a perfusion chamber and emitted photons collected by a high-aperture quartz lens. The collected light was sent to the photomultiplier cathode through a rotating chopper so that a long-lasting synchronous accumulation of the light signal was possible. The absolute intensity of bio-emission was estimated by the response of the measuring system to a calibrated light source. The intensity of the source, in turn, was quantified by measuring rhodopsin bleaching with single-rod microspectrophotometry. We also measured the frequency of discrete dark waves in rods of the two species with suction pipette recordings. Expressed as the rate constant of rhodopsin activation, it was 1.2×10^{-11} s$^{-1}$ in frogs and 7.6×10^{-11} s$^{-1}$ in sterlets. Approximately two thirds of retinal samples of each species produced reliably measurable biophoton emissions. However, its intensity was 100 times lower than necessary to produce the discrete dark noise. We argue that this is just a lower estimate of the discrepancy between the hypothesis and experiment. We conclude that the biophoton hypothesis on the origin of discrete dark noise in photoreceptors must be rejected.

Introduction

Rod photoreceptors of the vertebrate retina, in complete darkness, produce random fluctuations of the flowing current. The noise consists of two components. The continuous noise is low-amplitude (few tenths of a pascal) oscillations that are symmetrical with respect to the dark level of the current. It plausibly arises due to spontaneous fluctuations of activity of the phototransduction effector enzyme, cGMP phosphodiesterase (Rieke and Baylor, 1996; Lamb et al., 2018a). The discrete noise consists of randomly occurring high-amplitude (in the range of a few pascals) unipolar current waves. The waves are virtually identical to responses of the rod to single photons (Baylor et al., 1979, 1980). The generation of single photon rods relies on a multistep amplification cascade that, at each step, involves hundreds of molecules; the turnoff of the transduction cascade is also supported by a concerted action of a number of proteins and low-molecular-weight components (Arshavsky and Burns, 2012, 2014; Lamb and Hunt, 2017; Lamb et al., 2018b). It is improbable that such a complex chain of events could be reproduced by random fluctuations in the system unless it is initiated by a single molecule at its very beginning—that is, by activation of rhodopsin.

Until recently, it has been generally accepted that the activation is caused by internal thermal motion of the rhodopsin molecule itself (Baylor et al., 1980; Donner et al., 1990; Barlow et al., 1993; Kefalov et al., 2003; Fu et al., 2008; Luo et al., 2011; Gozem et al., 2012; Guo et al., 2014; Yanagawa et al., 2015; Luk et al., 2016). Therefore, the properties of the discrete dark noise should critically depend on the properties of rhodopsin. Since the discrete waves are identical to responses to real light, they comprise an irreducible source of noise. So, they may limit threshold sensitivity of vision, thus, having a high functional significance. One of the intriguing predictions is that the level of the discrete dark noise should increase when the visual pigment absorbance shifts to a longer wavelength. This is because the energy of long-wavelength photons is lower than the energy of short-wavelength ones, and lower energy for activation is easier...
to obtain from thermal motion. Presumably, a higher rate of thermal activation may explain different sensitivities of rods and cones and preclude the use of red-sensitive visual pigments at low light levels, the proposition known as Barlow’s hypothesis (Barlow, 1957). A balance between the sensitivity to ambient light and the noise level might govern the adaptation of visual pigments to specific light environments (Luk et al., 2016). Not surprisingly, a good deal of work has been done to theoretically describe possible underlying intramolecular mechanisms and to predict their impact on visual functions (Luo et al., 2011; Gozem et al., 2012; Yanagawa et al., 2015).

Yet, a few years ago it was proposed that rhodopsin molecules are activated not by heat but rather by real photons generated within the retina by redox reactions—that is, by chemiluminescence (Bókkon and Vimal, 2009; Wang et al., 2011; Li and Dai, 2016; Salari et al., 2016, 2017). The concept of “biophotons” is now widely used to explain a number of other visual phenomena, such as phosphenes and afterimages (Salari et al., 2017) and in more esoteric fields including control of embryonic development, neural transmission, and intelligence (Volodyaev and Belousov, 2015; Kumar et al., 2016; Wang et al., 2016).

Since the properties of discrete dark noise in rods are well known, a stringent quantitative test of the biophoton hypothesis is possible. Using a wide-spectral-band, high-quantity-yield photomultiplier (PMT; Hamamatsu R9110), we measured intensities of biophoton emission from isolated retinas and eyecups of frogs (Rana ridibunda) and fish (sterlet, Acipenser ruthenus). Retinal samples were placed in a perfusion chamber, and emitted photons were collected by a high-aperture quartz lens. The absolute intensity of bioemission was estimated by measuring the response of the measuring system to a calibrated light source. The intensity of the source, in turn, was quantified by measuring rhodopsin bleaching with single-rod microspectrophotometry.

Approximately two thirds of samples of each species produced reliably measurable responses. However, the intensity of biophoton emission was 100 times lower than necessary to produce the discrete dark waves at the rate determined in independent electrophysiological experiments.

We conclude that the biophoton hypothesis of the origin of discrete dark noise in photoreceptors must be rejected and that the further study of mechanisms of thermal activation of rhodopsin retains its importance.

Materials and methods

Animals and preparations

Adult frogs, *R. ridibunda*, were caught in the wild in southern Russia; juvenile sterlet sturgeons, *A. ruthenus*, were obtained from a local breeder. Frogs were kept for up to 6 mo with free access to water at 10–15°C on a natural day/night cycle and fed mealworms. Fish of 25–30 cm in length were kept in aerated aquaria at 20–22°C on 12/12-h day/night cycle and fed commercial fish food (Tetra Pond Sterlet Sticks). Animals were treated in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC), and the protocol was approved by the local Institutional Animal Care and Use Committee. Prior to the experiment, the animals were dark adapted overnight. Animals were decapitated, and their eyes were enucleated under dim red light. All further procedures were conducted at infrared television surveillance. The eyes were hemisected, and, if necessary, the retinas were extracted into Ringer’s solution.

Measurements of the biophoton emission

The apparatus was assembled within a light-tight metal box that was placed into an additional black box; the entire setup was situated in a dark room. Light from the sample was collected by a quartz lens of the focal ratio f/d = 0.8. Transmittance of the lens was checked down to 320 nm; an ~1.25-fold attenuation was seen at the shortest wavelengths compared with the visible part of the spectrum. Combined with the spectral sensitivity of the PMT, it yielded the spectral response shallowly declining from 320 to 825 nm and further sharply dropping in infrared. The typical size of the sample was ~6 × 8 mm², and it was imaged at a magnification of approximately ×1.5 over the 6 × 8-mm² photocathode of the PMT. The collected light passed to the PMT through a rotating chopper so that a synchronous accumulation of the light signal was possible. Each chopper turn produced two alternating 0.5-s dark/0.5-s light cycles. Typically, signals from 1,000 chopper turns (2,000 cycles) were averaged. PMT output was low-pass filtered (25-ms simple RC-filter) and sampled at 16-bit resolution at 5-ms intervals. Isolated retinas were attached on the vitreal side to small sheets of white filter paper. Opened eyecups were placed on a wet cotton pad. Then two sorts of samples were used: (1) eyecups or isolated retinas placed on a black background in a wet chamber or (2) isolated retinas placed receptor side up in a perfusion chamber. The chamber was formed by a 0.7-mm-wide gap between two coverslips. Ringer’s solution was gravity fed to the inlet of the chamber and sucked out at the outlet. The perfusion rate was ~0.2 ml/min, which ensured complete solution exchange over the retina in ~10 s. Measurements were done at room temperature (20–22°C).

Statistical processing of the bioemission recordings

Due to the extremely low intensity of the biophoton emission, the signal cannot always be visually detected in raw unfiltered recordings. Therefore, we primarily selected recordings for further processing by computing the average and SE for dark (0–0.2 s and 0.8–1.0 s, chopper fully closed) and light (0.3–0.7 s, chopper fully open) stretches of the recording. Two transition phases between closed and opened states (0.2–0.3 s and 0.7–0.8 s) were excluded. Recordings were considered to contain a light signal if the average reading during the light phase of the cycle was higher than reading during the dark phase at a 95% confidence level based on Student’s t test. Further, the selected recordings were averaged. Low-pass Gaussian filtering can be applied as indicated in figure legends. The zero line in each average was drawn by least-square fit through the dark stretches and subtracted. Reliability and magnitude of the averaged signal were then determined by t test. In final recordings, t values were >7.2 as indicated in the figures. This corresponds to the probability of a zero hypothesis (no signal) P < 3.5 · 10⁻¹¹.
During averaging multiple recordings, the SEM was computed for each time point; this is represented by the error bars shown in the figures. At the same time, the average of the light phase of each recording was calculated and used for computing the global average and SEM for the biophoton emission (expressed further in figures at the rate of rhodopsin activation).

Location of biophoton production

In principle, any retinal structure could produce ultraweak luminescence that would reach photoreceptor outer segments and activate rhodopsin. However, it is known that the discrete dark waves are registered with equal efficiency from the rods attached to big pieces of the retina and from solitary rods retaining just the ellipsoid and outer segment freely floating in the solution. These observations imply that the source of light emission (if it is responsible for the dark noise) is situated in photoreceptor bodies or in the inner retina. It did not markedly change our conclusions.

Calibration of the biophoton intensity

Accurate conversion of the signal measured by the PMT into the rate of biophoton production poses a problem. Poorly controllable factors include the efficiency of light collection by the lens, lens transmittance, and most importantly, the quantum gain of the PMT photocathode that is not exactly specified by the maker. To circumvent the problem, we used a calibrated light from a light-emitting diode (LED; emission peak at 505 nm; Marlin International Ltd.) that shined on the sample and, after passage through the retina and reflection from the underlying filter paper, reached the PMT via the same optical system as the biophotons did (Fig. 1). Absolute intensity of the calibration light was estimated by measuring rhodopsin bleaching by single-cell microspectrophotometry. Since the LED intensity necessary for producing measurable bleach (bleaching rate of 0.01–0.001/s) is far higher than the rate of dark rhodopsin activation (~10^{-11}/s), the intensity was attenuated by ~15 · 10^6-fold with a stack of neutral density filters during the signal calibration. This way of calibration yielded exactly the value of a physiological interest, namely the rate of rhodopsin activation that corresponds to a given PMT output (of course, assuming that the activation is caused by biophotons). Further in the paper, the intensity of luminescence will be expressed in arbitrary units that refer to the bins of the analog-to-digital card that captured the PMT output. Conversion of the unit values to the rate constants of rhodopsin activation that would produce is considered in detail in the Appendix. Necessary computations were done with Mathcad 13 (PTC).

Measurements of discrete dark current noise in single rods

The rate of the dark activation of rhodopsin was determined by suction pipette recordings from single rods, as devised by Baylor et al. (1979). Details of the suction recording rig and the procedure of measurements were described by Astakhova et al. (2008, 2015, 2017). Data acquisition was under the control of LabVIEW (National Instruments) software and hardware. Responses were low-pass filtered at 30 Hz (8-pole analog Bessel filter) and recorded at 2-ms digitization intervals. If necessary, further digital filtering was applied to the recordings.

In most cases, the ratio of the amplitude of discrete dark waves to the continuous noise was high enough to reliably count them by eye. If the signal-to-noise ratio was not good enough, the average discrete dark waves rate was obtained by analysis of the histogram of dark current values (Baylor et al., 1980; Donner et al., 1990; Astakhova et al., 2017).

Solutions

The Ringer’s solution for the frogs contained (in mM) 90 NaCl, 2.5 KCl, 1.4 MgCl2, 1.05 CaCl2, 5 NaHCO3, 5 HEPES, 10 glucose, and 0.05 EDTA, pH adjusted to 7.6. For fish, we used 90 NaCl, 2.5 KCl, 1.0 MgCl2, 1.0 CaCl2, 5 NaHCO3, 5 HEPES, and 10 glucose. MgCl2 and CaCl2 as 1 M standard solutions were from Honeywell Fluka. All other chemicals were from Sigma-Aldrich. The temperature was held at 17–19°C.

Recordings were performed from rods attached to small pieces of the retina in the configuration of outer segment in.

Microspectrophotometry

To characterize spectral properties of visual pigments in the frogs and sterlets and to test the functional state of the samples used for bioemission measurements, we performed...
Testing viability of preparations by rhodopsin photolysis. *R. ridibunda* red rods. Curves peaking near 500 nm and labeled “dark” show the average of recordings from 15 ROSs from a piece of dark-adapted retina used for bioemission measurements. T and L refer to the polarization of the measuring beam (T, transversal with respect to the ROS axis; L, longitudinal, i.e., parallel to the ROS axis). Curves peaking at ≈350 nm were recorded from the piece of the same retina that was used for bioemission measurements, bleached in the rig, and left for 30 min in place before preparing the MSP sample. The sharp L-ROL peak at ≈325 nm and the lack of absorbance beyond 400 nm show complete conversion of bleaching products to trans-retinol, thus evidencing a good metabolic state of the sample. Rh, rhodopsin; ROL, all-trans retinal.

microrhodopsin activation rate.

Results

Testing the metabolic state of retinal samples

The supposed biophoton emission should obviously depend on the retinal metabolism. Conditions of our experiments (isolated retina or eyecup in a wet chamber, a perfused retina) are routinely used for recording electroretinogram and other electrical responses of retinal cells; the samples function normally for many hours. Nevertheless, we additionally checked the viability of our samples by measuring the ability of rods to convert all-trans retinal to all-trans retinol after massive rhodopsin bleaching, which critically depends on the metabolic supply of ROSs (Tsina et al., 2004; Chen et al., 2005; Kolesnikov et al., 2003). Microspectrophotometry was also used to estimate the extent of rhodopsin bleaching by the calibrating LED (Fig. 1) that allowed further converting the PMT output into the equivalent rhodopsin activation rate.

Registration of retinal luminescence

Frog

Frequency of discrete dark waves. A sample of the dark current noise in a frog red rod is shown in Fig. 3. The cell was perfused with the solution containing 2 µM adenosine 3′,5′-cyclic monophosphate activator forskolin that significantly improved the detectability of discrete waves without affecting their frequency (Astakhova et al., 2017). The results from a few test rods agreed with data we reported earlier. Therefore, we did not conduct extensive measurements in the present study, and further used the average rate of the discrete dark waves from Astakhova et al. (2017). Expressed per unit OS volume, it was $(22 \pm 2.5) \cdot 10^{-6} \mu m^3/s$, which corresponded to the rate constant of dark activation $1.2 \cdot 10^{-11} Rh^{-1}/s$.

Biophoton emission. Recordings from the frog eyecups and isolated retinas in a wet chamber gave similar results and were pooled. 17 of a total of 25 recordings from 16 samples produced a reliable biophoton signal. Fig. 4 A shows a typical “good” single recording, which was obtained by averaging 2,000 1-s chopper dark-light cycles. Here, the signal is expressed in arbitrary units that correspond to output bins of the analog-to-digital converter card. 10 frog retinas studied in the perfusion chamber produced a weaker signal of approximately one fourth or less of that shown in Fig. 4 A and were not included in the average. Excluding “too weak” signals created a bias in favor of the biophoton hypothesis. This actually strengthens our final conclusion. Presenting average results in arbitrary units is not useful, however. Amplitude of the signal may vary among samples not only due to intrinsic variability of the biophoton emission but also due to a possible difference in the sample area. Therefore, the raw recordings must be converted before averaging into the physiologically relevant and area-independent variable of the rate constant of rhodopsin activation. This was done as follows: (1) On each sample, recording of biophoton emission (I_e) was preceded by recording the intensity of the calibration light reflected from the sample (I_c). Since both I_e and I_c are proportional to the sample area, further normalization to I_c eliminated area dependence. (2) The rate constant of rhodopsin activation by measured biophotons was calculated as

$$k = \frac{I_e}{I_c}$$
Figure 4. Intensity of biophoton emission from isolated R. ridibunda retinas and eyecups. (A) The red line with markers shows the raw (digitally unfiltered) experimental recording that represents an average of 2,000 1-s dark-light chopper cycles. Signal values are expressed as analog-to-digital converter (ADC) bins. The thick black line represents the same data Gaussian-filtered with a 150-ms window. Results of Student’s t-test for the difference between unfiltered dark (0–0.2 s and 0.8–1.0 s) and light (0.3–0.7 s) periods are shown in the upper right. (B) The average of 14 recordings from the five best retinas, each recording including 1,000 or 2,000 cycles. Raw ADC readings are converted to the rates of rhodopsin activation as described in the text (Eq. 1; G = 11.4 for the frog; Fig. II). Circles and error bars are mean ± SEM. The black line is the response to a higher-intensity calibrating light from the LED that was scaled to show the expected waveform of a noise-free signal. Recordings are smoothed before averaging by a Gaussian filter (25-ms window, ksmooth function in Mathcad).

\[r_c = \frac{1}{\text{Gain} \cdot \frac{I_c}{I_c - \text{Att} - \tau_{\text{bleach}}}} \]

Here, \(\tau_{\text{bleach}} \) is the time constant of rhodopsin bleaching by unattenuated bleaching light, and \(\text{Att} = 1.47 \cdot 10^7 \) is the attenuation of the calibrated light with respect to the bleaching light. The factor Gain, \(\sim 5–12 \), takes into account more favorable conditions of registration of intrinsic bioemission compared with external (bleaching or calibrating) light (see the explanation in the Appendix). Fig. 4 B shows the average rate of dark noise that corresponds to the bioemission detected in our experiments. Its plateau is at \((1.19 \pm 0.35) \cdot 10^{-11} \text{s} \) (average ± SEM of 14 best recordings) that is 102 times lower than the rate constant of discrete dark waves in R. ridibunda rods \((1.2 \cdot 10^{-11} \text{s}; \text{Astakhova et al., 2017}) \).

Sterlet

Rod visual pigment. We have chosen A. ruthenus to further test the biophoton hypothesis because the level of the rod discrete dark noise in sturgeons was found to be almost an order of magnitude higher than in the frog, and it was attributed to their use of far-longer wavelength-sensitive visual pigments (Firsov and Govardovskii, 1990). Indeed, sterlet rods contained porphyrpsin \((A_2\text{-based pigment}) \) with a maximum absorbance at 545 nm (microspectrophotometry data not shown), close to what has been reported in other sturgeons (Govardovskii et al., 2000; Sillman et al., 2005).

Frequency of discrete dark waves. A sample suction recording from a sterlet rod is shown in Fig. 5, A and B. The continuous 8-min trace in Fig. 5 A clearly demonstrates that the frequency of the discrete dark waves in sterlet is far higher than that in the frog (compare with Fig. 3). If discrete waves are counted as peaks crossing 2-SD level of the continuous noise (marked with dot-dashed lines in Fig. 5 A), it yields one event per 10 s compared with one per 1 min in the frog. The signal-to-noise ratio in the sterlet was a bit lower than in the frog, though, so we applied the histogram analysis to more reliably estimate the rate of the waves production (Fig. 5 C; Baylor et al., 1980; Donner et al., 1990; Astakhova et al., 2017). The average rate of discrete dark waves in the sterlet was derived from recordings on 11 cells. Totally, 757 waves were detected during 9,552 s of recordings, which yielded the rate of dark activation of \(7.6 \cdot 10^{-11} \text{s} \), \(\sim 6 \) times higher than in the frog.

Biophoton emission. 20 isolated retinas and eyecups from 11 fish were studied. 14 of them produced a reliable biophoton...
signal. The 12 best responses were included in the average. The intensity of biophoton emission expressed as an equivalent dark waves rate was \((0.67 \pm 0.11) \cdot 10^{-12}/s\) (Fig. 6). This is approximately sixfold higher than in frog and 113 times lower than the experimentally measured rate of \(7.6 \cdot 10^{-11}/s\).

Discussion

We have detected a weak light emission from isolated retinas and eyecups of frogs and fish in general agreement with results reported earlier (Li and Dai, 2016). To determine whether the measured intensity is sufficient to produce discrete dark noise in rods of these species, we calibrated the sensitivity of the measuring system in terms of the rate of rhodopsin bleaching. For this, we partially bleached retinas in the experimental chamber by a separate light source for a fixed period of time and then quantified rhodopsin bleaching by microspectrophotometry on solitary ROSs. Thus, the intensity of an unattenuated bleaching LED can be expressed as the rate constant of rhodopsin bleaching derived from electrophysiological recordings. (A) Frog; (B) Sterlet. The red dots with error bars are the average bioemission curves taken from Fig. 4 B and Fig. 6. The high-amplitude black traces show the bioemission signal that would correspond to the actual frequency of discrete dark waves.

Equivalently, the discrepancy between the assumptions of the biophoton hypothesis and the experimentally measured intensity of bioemission may be far bigger. The above consideration assumed that the bioemission spectrum is similar to the spectral composition of bioemission from brain slices in a few species (frog, chicken, mouse, pig, monkey, and human; Wang et al., 2016). The spectral distribution was not characterized in detail, but it was stated that the average wavelength of emission in frogs lies at \(\sim 600\) nm and at longer wavelengths in higher vertebrates. Since the absorbance of the frog rhodopsin at 600 nm is \(\sim 30\) times lower than at its maximum, correspondingly a 30-times brighter 600-nm emission is necessary to produce the bleaching equivalent that is measured at 505 nm. This would increase the discrepancy between the available and necessary light to a few thousand times.
times greater than the equivalent rod-activating calibration light at 505 nm. The spectral sensitivity of our measuring system is pretty flat between 500 and 700 nm (Fig. 8 B). Therefore, the corresponding PMT response to rod- and cone-activating light should be 1,000 times stronger than shown in Fig. 7 and nearly five orders of magnitude higher than the signal measured experimentally.

Predictions of the biophoton hypothesis are also inconsistent with the experimental data already published by its proponents. Li and Dai (2016) studied biophoton emission from rat and frog isolated retinas. After estimating the efficiency of light collection by their measuring system, the authors were able to express the data as total emission over a 4π solid angle. Our analysis shows that under optical conditions of measurements made by Li and Dai (2016), the ratio of internally absorbed to externally emitted light is underestimated because the authors did not take into account the complex layered retinal structure and total reflections at interfaces (Appendix and Fig. 9). The correction is in favor of the biophoton hypothesis; the measured values must be multiplied by 2.5 in the frog and by 1.8 in the rat to convert them into equivalent dark activation rates (see Appendix). This translates the value from Li and Dai (2016) for the frog (0.018 photons per rod per minute) into 0.045 dark activations per rod per minute. Since the rate of discrete dark waves is ∼1 per minute per rod (Fig. 3), the measured intensity of bioemission is ≥22 times lower than necessary to produce discrete noise. Besides, Li and Dai (2016) made measurements at 34°C, which would significantly increase the dark noise compared with routine measurements at room temperature. Based on known temperature dependence in toads (Q10 = 3.46; Baylor et al., 1980), the expected dark event frequency at 34°C would be ∼5 per minute, that is, 110 times higher than the detected biophoton emission, in surprising agreement with our present result (Fig. 7 A). The biophoton emission measured by Li and Dai (2016) in rats has to be multiplied by 1.8, which yields 0.0027 biophotons absorbed per rod per minute at 36°C. This is 270 times lower than measured discrete dark noise (0.72 per rod per minute, admittedly, obtained in the mouse; Burns et al., 2002; Naarendorp et al., 2010).

Strictly speaking, the title of the article by Li and Dai (2016), “Biophotons Contribute to Retinal Dark Noise,” is correct. We confirm that there is a low-level emission of biophotons in the retina, but its contribution to discrete dark noise is not higher than ∼1% and is probably much smaller. We conclude that the biophoton hypothesis on the origin of the photoreceptor dark noise must be rejected.

Appendix
Relation between the rhodopsin activation and registered bioemission or calibration signal
Within the framework of the biophoton hypothesis, redox reactions in the retina produce photons that partly leave the retina, are registered by a measuring system, and are partly absorbed by rhodopsin in ROSs, thus causing discrete dark noise.

The optics of light collection deserves special attention. It is problematic to reliably estimate the sensitivity of the rig
the corresponding re-
sample is treated as a three-layered structure: the perfusing Ringer
s solution, and an inner retina with vitreous. The corresponding re-
sample is treated as a three-layered structure: the perfusing Ringer

On the other hand, the bioemission occurs

Ground, and passes the retina again on the way to the measuring

sorption, diffusely reflects from rather poorly reflecting back-

Bleaching (calibrating) light passes through the retina with ab-

and for presumed photons created within the ROS layer.

escaping lights are different for the external calibrating source

sitivity of the measuring system.

LED in physiologically relevant units, that is, as the rate of

trophotometry. This way, we calibrated the intensity of the

LED (505 nm) was used to bleach rhodopsin in situ, and the

cluded in the apparatus a calibrating light source. A bright

perimental parameters. To circumvent the problem, we

emitted within the upper

ponents

Biophotons emitted

(A)

Biophotons emitted

x

(B)

Calibrating or bleaching light comes from

x

(C)

Light absorption by rhodopsin in the ROS layer

Specific absorbance for light propagating at various angles \(\alpha \)
in the ROS layer \((\varepsilon(\alpha)) \) is one of the key parameters of the model.

(From here and onward, the angle \(\alpha \) is measured with respect to

the ROS axis, that is, from normal to the retinal surface). Specific

absorbance is commonly expressed as the optical density per

micron of the light path. Absorption of light by rhodopsin can be

characterized by two absorbing dipoles, one lying parallel to the

plane of disk membranes \((\varepsilon_T) \) and the other perpendicular to the

plane \((\varepsilon_L; \text{ Fig. 10}) \). Since rhodopsin rotates within the mem-

brane, \(\varepsilon_T \) can be considered to consist of two mutually perpen-
dicular components. The same \(\varepsilon_T = \varepsilon_0 \) is measured side-on \((\alpha = 90^\circ) \) by using linearly polarized light whose electric vector is

parallel to the plane of the membrane, that is, transversal to the

ROS axis (T-orientation). Side-on measurements with light po-

larized along the ROS axis (L-orientation) yield \(\varepsilon_L < \varepsilon_T \). The
dichroic ratio \(DR = \varepsilon_T/\varepsilon_L \) is usually 3.5–5. The specific absorbance

of nonpolarized light propagating at an arbitrary angle \(\alpha \) is given by

\[
\varepsilon(\alpha) := \varepsilon_0 \left(\frac{1 + \cos(\alpha)^2}{2} \right) \left[\frac{\sin(\alpha)^2}{2} \right]
\]
Fig. 11. **Advantage of measuring bioemission vs. calibrating light both producing the same level of rhodopsin activation.** The advantage in the frog and sterlet was a bit shorter than in the frog (35 vs. 40 µm). This was taken into account in the calculation of the amount transmitted through or absorbed in a retinal layer.

Transmission and absorption of bioemission in retinal layers. Fig. 9 A and B, shows the optics of the collection of the bioemission generated within the ROSs. We treat the sample as a three-layered structure consisting of the ROS layer sandwiched between a film of Ringer’s solution on the upper surface and inner retina with Ringer’s solution underneath. It is assumed that the biophotons are emitted uniformly in all directions over a solid angle at unit intensity per unit retinal thickness and unit area per steradian. The term amount will further be used for a measure of light that can be expressed as a number of photons, energy, etc. All amounts of transmitted and absorbed light are further normalized to 2π and retinal thickness, h, that is, expressed as fractions of the total one-side emission. We also use the terms transmittance and absorbance that mean fractions of the amount transmitted through or absorbed in a retinal layer.

The fate of the light emitted in the upper hemisphere toward the registration system is shown in Fig. 9 A. A fraction of light propagates outside the Snell window at the ROS/Ringer’s solution interface (angle α2). It is captured within the ROS layer due to multiple total reflections at its borders and is absorbed completely. The absorbed amount $A_{\text{up1}} = \sin(\arccos(n_1/n_2)) = 0.266$.

Angle $\alpha_2 = \arcsin(n_1/n_2)$ is the angle of total reflection at the Ringer’s solution/air interface. The light that propagates between the angles α_1 and α_2 undergoes total reflection here, crosses the ROS layer again, and reaches the reflecting filter paper at the bottom. Its total amount (absorbed and transmitted) is $\cos(\alpha_2) - \cos(\alpha_1) = 0.429$. The absorbed fraction A_{up2} is calculated as follows.

The absorbed fraction of light that is emitted at a depth x in the ROS layer is:

$$A_{1}(x,\alpha_1) = 1 - 10^{-\epsilon x /d}. \quad (3)$$

If the light undergoes total reflection and crosses the full-thickness h of the ROS layer again, as in Fig. 9 A, Eq. 3 is substituted by

$$A_{2}(x,\alpha_2) = 1 - 10^{-\epsilon x /d}. \quad (4)$$

The amount transmitted to the bottom is $T_{\text{down1}} = 0.429 - A_{\text{up2}}$.

The rest of the light emitted upward within the Snell window α_2 is partly absorbed and partly transmitted toward the measuring system. The absorbed amount is

$$A_{\text{up3}} = \frac{1}{n_3} \int_{0}^{h_1} A_{1}(x,\alpha_2) \cdot \sin(\alpha) \cdot dx. \quad (5)$$

The amount transmitted above two Snell windows is obtained by integrating Eq. 4 over $x = 0$ to h and over $\alpha = \alpha_1$ to α_2:

$$A_{\text{up3}} = \frac{1}{n_3} \int_{0}^{h_1} A_{1}(x,\alpha_2) \cdot \sin(\alpha) \cdot dx. \quad (6)$$

The lens collects light from the angle $\alpha_1 = \arctan(R/L)$. Here $R = 20$ mm is the radius of the lens, and $L = 35$ mm is its distance from the retinal sample. Within the ROS layer, the limiting angle $\alpha_1 = \arcsin((\sin(\alpha_1) / n_1)^{1/2})$. The amount of light transmitted to the lens and available for measurement is

$$T_{\text{up2}} = \frac{1}{n_3} \int_{0}^{h_1} \left(1 - A_{1}(x,\alpha_2)\right) \cdot \sin(\alpha) \cdot dx. \quad (7)$$

The propagation of light emitted by ROSs in the downward direction is shown in Fig. 9 B. Actually, the ROS layer lies on the multilayered inner retina with changing refraction indices n_i. Yet, there is a thin layer of vitreous body and Ringer’s solution below the retina. Its refraction index $n_0 = n_1$. It can be shown that it is n_3 that defines the angle α_2 of total reflection at which the light returns back to the ROS layer for absorption. Therefore, similarly to the upward propagation, the amount $A_{\text{down1}} - A_{\text{up4}} = \sin(\arccos(n_0/n_2)) = 0.266$ is completely absorbed in ROSs. The amount emitted within the Snell window α_2 is equal to $1 - A_{\text{down2}} = 0.734$. A part of it is absorbed:

$$A_{\text{down2}} = \frac{1}{n_3} \int_{0}^{h_1} A_{1}(x,\alpha_2) \cdot \sin(\alpha) \cdot dx. \quad (8)$$

The rest is transmitted to the reflecting bottom, $T_{\text{down2}} = 1 - A_{\text{down1}} - A_{\text{down2}}$.

Govardovskii et al.

Biophotons and photoreceptor dark noise

Journal of General Physiology

https://doi.org/10.1085/jgp.201812317
Thus, the total amount of light emitted in ROSs and reaching the reflecting bottom is \(T_{dwntot} = T_dwn + T_{dwnt} \). After diffuse reflection from the bottom into the layer, \(r \times T_{dwntot} \) reaches the ROS layer. Here \(r = 0.3 \) is the reflection coefficient of wet filter paper placed under the retina. Reflected light coming at an angle \(\alpha \) to the vertical axis crosses the ROS layer at the angle \(\alpha_r = \arcsin\left(\frac{\sin(\alpha) \cdot n_0}{n_2}\right) \) (Fig. 9C). Notice that the light that leaves the ROS layer outside the Snell window at the Ringer’s solution/air interface (red arrows) is reflected back and crosses the ROS layer again. Thus its absorption path is doubled, which causes the second term in Eq. 9. After the two passages, the reflected light comes back to the bottom and is partly reemitted. This fraction comprises <3% of measured light and is neglected.

Correspondingly, the overall absorption coefficient for crossing the ROSs layer is

\[
\begin{align*}
\alpha_{abs} &= \int_0^\alpha \left(1 - 10^{-\frac{c(x)}{\alpha_{abs} \cdot \sin(\alpha)}}\right) \cdot \sin(\alpha) \cdot d\alpha \cdot \pi \cdot \int_0^\alpha \left(1 - 10^{-\frac{c(x)}{\alpha_{abs} \cdot \sin(\alpha)}}\right) \cdot \sin(\alpha) \cdot d\alpha .
\end{align*}
\]

The amount of light coming from the bottom and absorbed in ROSs is \(r \cdot \alpha_{abs} \cdot T_{dwntot} \).

The transmission coefficient for the reflected light reaching the collecting lens is

\[
\begin{align*}
\alpha_f &= \int_0^\alpha 10^{-\frac{c(x)}{\alpha_f \cdot \sin(\alpha)}} \cdot \sin(\alpha) \cdot d\alpha .
\end{align*}
\]

The amount of reflected light passed to the lens is \(\alpha_f \cdot r \cdot T_{dwntot} \).

The sum of all components of the absorbed bioemission light is \(\Sigma A_{c} = A_{up1} + A_{up2} + A_{up3} + A_{dwnt} + A_{dwnt} + r \cdot \alpha_{abs} \cdot T_{dwntot} \). The light available for measurement is \(\Sigma M_{e} = T_{up1} + T_{ftr} \cdot r \cdot T_{dwntot} \).

Absorption and collection of the calibrating light

Light paths of the bleaching or calibrating light from the LED is shown in Fig. 9C. The light falls on the retinal surface at the angle 32° (with respect to the retinal plane) and after refractions at interfaces passes the ROS layer obliquely at the angle \(\alpha = \arcsin\left(\frac{\cos(32°) \cdot n_2}{n_0}\right) = 55° \). The absorbed amount is

\[
\begin{align*}
A_{cal} &= 1 - 10^{-\frac{c(x)}{\alpha_{cal} \cdot \sin(\alpha)}} \cdot \sin(\alpha) ,
\end{align*}
\]

and the transmitted amount \(T_{cal} = 1 - A_{cal} \). The fraction \(r = 0.3 \) of the transmitted light diffusely reflects from the bottom and goes toward the ROS layer and the measuring system. The situation is identical to that with reflected biophotons, so Eqs. 9 and 10 apply to computing its absorbed \((A_{cal}) \) and measured \((T_{up1}) \) fractions, respectively.

The sum of all components of the absorbed calibration light is \(\Sigma A_{cal} = A_{up1} + A_{up2} \). The calibration light available for measurement is \(M_{cal} = T_{up1} \).

The ratio

\[
\begin{align*}
\text{Gain} = \frac{\Sigma M_{e} / \Sigma A_{e}}{M_{cal} / A_{cal}}
\end{align*}
\]

shows the advantage of measuring bioemission versus calibrating light provided that in both cases rhodopsin activation is the same. Obviously, Gain is a function of the specific density of the visual pigment in the ROS layer \((\epsilon) \) and the thickness of the layer \(h \). The corresponding curve is shown in Fig. 11 (solid red line).

Absorption and transmission of biophotons produced proximally to outer segments

Although there is a good experimental reason to place the noise-producing biophoton emission into ROSs (see Materials and methods), we also considered the possibility that the bioemission originates in the retina proximally to the ROS layer. Then the situation is similar to the absorption, transmission, and detection of the light diffusely reflected from the bottom. Correspondingly, Eqs. 9 and 10 apply. The resulting \(\text{Gain} \) versus Absorbance curve is shown in Fig. 11 by the broken black line.

Acknowledgments

Support was provided by the Russian Foundation for Basic Research (17-04-00807 to V. Govardovskii).

The authors declare no competing financial interests.

Author contributions: V.I. Govardovskii: conceptualization, funding acquisition, conducting experiments, data processing, writing the draft manuscript. L.A. Astahova: conducting electrophysiological experiments, data processing and discussion, reviewing and editing of the draft manuscript. A. Yu. Rotov: Conducting microspectrophotometric and morphometric measurements, data processing and discussion, review and editing of the draft manuscript. M.L. Firsov: Designing and conducting electrophysiological experiments, software development, data processing and discussion, review and editing of the draft manuscript.

Edward N. Pugh served as guest editor.

Submitted: 27 December 2018
Accepted: 29 March 2019

References

Arshavsky, V.Y., and M.E. Burns. 2012. Photoreceptor signaling: supporting vision across a wide range of light intensities. J. Biol. Chem. 287: 1620–1626. https://doi.org/10.1074/jbc.R111.305243

Arshavsky, V.Y., and M.E. Burns. 2014. Current understanding of signal amplification in phototransduction. Cell. Logist. 4:e29390. https://doi.org/10.4161/cell.29390

Astakhova, L.A., M.L. Firsov, and V.I. Govardovskii. 2008. Kinetics of turn-offs of frog rod phototransduction cascade. J. Gen. Physiol. 132:587–604. https://doi.org/10.1085/jgp.200810034

Astakhova, L., M. Firsov, and V. Govardovskii. 2015. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling. Mol. Vis. 21: 244–263.

Astakhova, L.A., D.A. Nikolaeva, T.V. Fedotkina, V.I. Govardovskii, and M.L. Firsov. 2017. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors. J. Gen. Physiol. 149:689–701. https://doi.org/10.1085/jgp.201611744

Barlow, H.B. 1957. Purkinje shift and retinal noise. Nature. 179:255–256. https://doi.org/10.1038/179255b0

Barlow, R.B., R.R. Birge, E. Kaplan, and J.R. Tallent. 1993. On the molecular origin of photoreceptor noise. Nature. 366:64–66. https://doi.org/10.1038/366064a0

Baylor, D.A., T.D. Lamb, and K.-W. Yau. 1979. The membrane current of single rod outer segments. J. Physiol. 288:589–611. https://doi.org/10.1113/jphysiol.1979.sp012715
Lamb, T.D., M. Heck, and T.W. Kraft. 2002. Dynamics of cyclic GMP synthesis in retinal rods. Neuron. 36:81–91. https://doi.org/10.1016/S0896-6273(02)00911-X

Burns, M.E., A. Mendez, J. Chen, and D.A. Baylor. 2002. Evolution of the shut-off steps of vertebrate phototransduction. Open Biol. 8:170232. https://doi.org/10.1098/rsob.2017.0232

Li, Z., and J. Dai. 2016. Biophotons Contribute to Retinal Dark Noise. Neurosci. Bull. 32:246–252. https://doi.org/10.1007/s12264-016-0029-6

Luk, H.L., N. Bhattacharyya, F. Montisci, J.M. Morrow, F. Melaccio, A. Wada, M. Sheves, F. Fanelli, B.S.W. Chang, and M. Olivucci. 2016. Modulation of thermal noise and spectral sensitivity in Lake Balkal cottoeid fish rhodopsins. Sci. Rep. 6:38425. https://doi.org/10.1038/srep38425

Luo, D.-G., W.W.S. Yue, P. Ala-Laurila, and K.-W. Yau. 2011. Activation of visual pigments by light and heat. Science. 332:1307–1312. https://doi.org/10.1126/science.1200172

Naarendorp, F., T.M. Eisdall, S.M. Banden, J. Andrews-Labenski, O.P. Gross, and E.N. Pugh Jr. 2010. Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision. J. Neurosci. 30:12495–12507. https://doi.org/10.1523/JNEUROSCI.2186-10.2010

Rieke, F., and D.A. Baylor. 1996. Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J. 71:2553–2572. https://doi.org/10.1016/S0006-3495(96)79448-1

Salari, V., F. Scholkmann, I. Bokkon, F. Shahbazi, and J. Tuszyński. 2016. The physical mechanism for retinal discrete dark noise: Thermal activation or cellular ultrawatt photon emission? PLoS One. 11:e0148336. https://doi.org/10.1371/journal.pone.0148336

Salari, V., F. Scholkmann, R.L.P. Vimal, N. Cászár, M. Aslani, and I. Bókkon. 2017. Phosphenes, residual discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog. Retin. Eye Res. 60:101-119. https://doi.org/10.1016/j.preteyeres.2017.07.001

Stillman, A.J., A.K. Beach, D.A. Dahlin, and E.R. Loew. 2005. Photo-receptors and visual pigments in the retina of the fully anadromous green sturgeon (Acipenser medirostris) and the potamodromous pallid sturgeon (Scaphirhynchus albus). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 191:799-811. https://doi.org/10.1007/s00359-005-0004-6

Tsina, E., C. Chen, Y. Koutalos, P. Ala-Laurila, M. Tsacopoulos, B. Wiggert, R.K. Crouch, and M.C. Cornwall. 2004. Physiological and microfluorometric studies of reduction and clearance of retinal in bleached rod photoreceptors. J. Gen. Physiol. 124:249–443. https://doi.org/10.1085/jgp.200409078

Voldyeva, I., and L.V. Belousov. 2015. Revisiting the mitogenetic effect of ultra-weak photon emission. Front. Physiol. 6:241. https://doi.org/10.3389/fphys.2015.00241

Wang, C., I. Bókkon, J. Dai, and I. Antal. 2011. Spontaneous and visible light-induced ultrawatt photon emission from rat eyes. Brain Res. 1369:1-9. https://doi.org/10.1016/j.brainres.2010.10.077

Wang, Z., N. Wang, Z. Li, F. Xiao, and J. Dai. 2016. Human high intelligence is involved in spectral shift of biophotonic activities in the brain. Proc. Natl. Acad. Sci. USA. 113:8755–8758. https://doi.org/10.1073/pnas.1604855113

Yanagawa, M., K. Kojima, T. Yamashita, Y. Imamoto, T. Matsuyama, K. Nakashiki, Y. Yamano, A. Wada, Y. Sako, and Y. Shichida. 2015. Origin of the low thermal isomerization rate of rhodopsin chromophore. Sci. Rep. 5:10181. https://doi.org/10.1038/srep10181

Bókkon, I., and R.L.P. Vimal. 2009. Retinal phosphines and discrete dark noises in rods: a new biophysical framework. J. Photochem. Photobiol. B. 96:255–259. https://doi.org/10.1016/j.jphotobiol.2009.07.002

Donner, K., M.L. Firsov, and V.I. Govardovski i. 1990. The frequency of isomerization-like ‘dark’ events in rhodopsin and porphyropsin rods of the bull-frog retina. J. Physiol. 428:679-692. https://doi.org/10.1113/jphysiol.1990.sp018224

Firsov, M.L., and V.I. Govardovskii. 1990. Dark noise of visual pigments with different absorbance maxima. Сибирский физико-химический журнал. 4:25–33 (in Russian).

Fu, Y., V. Kefalov, D.-G. Luo, T. Xue, and K.-W. Yau. 2008. Quantal noise from human red cone pigment. Nat. Neurosci. 11:565–571. https://doi.org/10.1038/nn.2110

Fyhrquist, N., V. Govardovskii, C. Leibrock, and T. Reuter. 1998. Rod pigment and rod noise in the European toad Bufo bufo. Vision Res. 38:483-486. https://doi.org/10.1016/S0042-6989(97)00177-6

Gogos, E. Tsina, M.C. Cornwall, B.K. Crouch, S. Vijayaraghavan, and Y. Koutalos. 2005. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. Biophys. J. 88:2278–2287. https://doi.org/10.1529/biophysj.105.045254

Govardovskii, V.I., N. Fyhrquist, T. Reuter, D.G. Kuzmin, and K. Donner. 2000. In search of the visual pigment template. Vis. Neurosci. 17:509–528 https://doi.org/10.1017/S0952523800001072.

Govardovskii, V.I., E.Yu. Golobokova, and V.I. Govardovskii. 2003. The identity of metarhodopsin III. Vis. Neurosci. 20:249–265. https://doi.org/10.1017/S0952523803031047

Kolesnikov, A.V., P. Ala-Laurila, S.A. Shukolyukov, R.K. Crouch, B. Wiggert, M.E. Estevez, V.I. Govardovskii, and M.C. Cornwall. 2007. Visual cycle and its metabolic support in gecko photoreceptors. Vision Res. 47:363–374. https://doi.org/10.1016/j.visres.2006.08.024

Kumar, S., K. Boone, J. Tuszynski, P. Barclay, and C. Simon. 2016. Possible existence of optical communication channels in the brain. Sci. Rep. 6:36508. https://doi.org/10.1038/srep36508

Lamb, T.D., and D.M. Hunt. 2017. Evolution of the vertebrate phototransduction cascade activation steps. Dev. Biol. 431:77–92. https://doi.org/10.1016/j.ydbio.2017.03.018

Lamb, T.D., M. Heck, and T.W. Kraft. 2018a. Implications of dimeric activation of DFRs for rod phototransduction. Open Biol. 8:180076. https://doi.org/10.1098/rsob.180076

Lamb, T.D., H.R. Patel, A. Chuah, and D.M. Hunt. 2018b. Evolution of the shut-off steps of vertebrate phototransduction. Open Biol. 8:170232. https://doi.org/10.1098/rsob.2017.0232

Luo, J.W.S. Yue, P. Ala-Laurila, and K.-W. Yau. 2011. Activation of visual pigments by light and heat. Science. 332:1307–1312. https://doi.org/10.1126/science.1200172