Lawrence Berkeley National Laboratory

Recent Work

Title
The 2018 reawakening and eruption dynamics of Steamboat Geyser, the world's tallest active geyser.

Permalink
https://escholarship.org/uc/item/4st880qz

Journal
Proceedings of the National Academy of Sciences of the United States of America, 118(2)

ISSN
0027-8424

Authors
Reed, Mara H
Munoz-Saez, Carolina
Hajimirza, Sahand
et al.

Publication Date
2021

DOI
10.1073/pnas.2020943118

Peer reviewed
The 2018 reawakening and eruption dynamics of Steamboat Geyser, the world’s tallest active geyser

Mara H. Reed, Carolina Munoz-Saez, Sahand Hajimirza, Sin-Mei Wu, Anna Barth, Társklo Girona, Majid Rasht-Beheštiga, Eric B. White, Marianne S. Karplus, Shaul Hurwitz, and Michael Manga

Department of Earth and Planetary Science, University of California, Berkeley, CA 94720; Department of Geology, Universidad de Chile, Santiago, Chile 8320000; Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10027; Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX 77005; Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775; Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912; Yellowstone National Park, National Park Service, Mammoth, WY 82190; Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968; and Volcano Science Center, US Geological Survey, Moffett Field, CA 94035

Contributed by Michael Manga, November 18, 2020 (sent for review October 8, 2020; reviewed by Einat Lev and Thomas R. Walter)

Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions.

Yellowstone | Steamboat | geyser | hydrothermal | seasonality

On 15 March 2018, Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin (Fig. 1; refs. 1, 2) had its first major eruption following a 3.5-y dormancy. Since then, Steamboat has erupted 109 times as of 31 July 2020—already a greater number than any previous active phase on record (Fig. 2). Its eruption plumes can reach heights that exceed 115 m (2, 3), which is currently taller than any other geyser worldwide. Steamboat’s new active phase, thus, drew significant public attention and widespread press coverage. The renewed eruptions highlighted some fundamental open questions about intermittent natural processes that result from localized input of energy and mass and, more specifically, on geyser dynamics (4):

Why did Steamboat become active again?

What processes or thermodynamic conditions control the interval between its eruptions?

Why are Steamboat’s eruptions tall compared to other geysers?

Major eruptions of Steamboat may be a manifestation of deeper magmatic processes. Wicks et al. (5) proposed that renewed eruptions at Steamboat resulted from uplift episodes of Norris Geyser Basin from 2013 to 2014 and again since 2016. The inflation was attributed to magma intrusion in the late 1990s and ascent of magmatic volatiles to shallow depths (5). If this interpretation of geodetic data is correct, the questions listed are not just related to geysers, but are also connected to larger-scale magmatic processes and volcanic hazards, possibly including hydrothermal explosions, such as those that have occurred in Norris Geyser Basin (2, 6).

Here, we first provide an overview of Steamboat Geyser’s geologic setting, physical characteristics, and eruptive behavior, and then address the three outlined questions with a combination of observations and models. We use seismic, ground-deformation, hydrologic, geochemical, and satellite-based thermal infrared data to look for changes correlated with Steamboat’s reactivation. To determine what influences its eruption intervals, we search for empirical relations among intervals and ejected water volumes, meteorological data, ground deformation, and seismicity. Last, we use chemical geothermometry (7) and the thermodynamic properties of eruptions to identify controls on eruption heights.

Steamboat Geyser

Geologic Setting. Steamboat Geyser is in Norris Geyser Basin (Fig. 1), which is adjacent to the northern rim of the 0.631-million-year-old Yellowstone Caldera (8, 9) and the southern end of the Norris–Mammoth Corridor, a structure containing postcaldera rhyolitic domes and basaltic lava vents (2, 9). The geyser basin is also located at the easternmost extent of the...
Hebgen Lake fault system, which accounted for 75% of the Yellowstone region’s earthquakes between 1973 and 2006 (10). The 1959 moment magnitude (Mw) 7.3 Hebgen Lake, Montana earthquake was about 50 km west-northwest of Norris Geyser Basin, and both of the largest earthquakes in the Yellowstone Plateau in the last 50 y, the local magnitude (ML) 6.1 in 1975 (11) and the Mw 4.8 in 2014, had epicenters within 8 km of the geyser basin.

The bedrock in Norris Geyser Basin consists of the Lava Creek Tuff, which erupted when the Yellowstone Caldera was formed. This ∼300-m-thick unit consists of densely welded ash divided into subgroups A and B (9). The contact between them is a relatively permeable zone occurring at a depth of ∼40 m (2). Throughout most of the geyser basin, the Lava Creek Tuff is covered by siliceous sinter, glacial, and alluvial/lacustrine deposits (Fig. 1). The basin’s hydrothermal system is notable for its diverse water chemistry and the hottest temperatures recorded in Yellowstone at a subaerial vent (138 °C in a fumarole; ref. 12) and during research drilling (237 °C at a depth of 331 m in borehole Y12; ref. 13).

Unlike cone-type geysers in Yellowstone’s Upper Geyser Basin (Fig. 1) that have existed for thousands of years (14, 15), such as Old Faithful, Giant, and Castle Geysers, Steamboat is probably a relatively young geyser that broke out or significantly enlarged itself in August 1878 “with such upturning and hurling of rocks and trees” (ref. 16, p. 16). Since then, the geyser’s powerful eruptions have eroded sediment and discouraged tree growth in a 15- to 30-m radius. Present-day Steamboat Geyser consists of two vents (often referred to as the North and South Vents) in the middle of an open hillside strewn with boulders and rock fragments (Fig. 3A). Thin sinter deposits exist in and around the vents and along the geyser’s major runoff channels; the rest of the exposed rock is altered Lava Creek Tuff (2).

Steamboat Eruption Dynamics. Steamboat has two eruption styles. Minor eruptions, also called preplay, range from wispy, angled jetting to vertical surges up to 15 m from one or both vents (2). Major eruptions begin like minor eruptions, but, instead, become progressively taller and more violent. Some major eruptions in the 1960s reached maximum heights of 83 to 116 m, based on triangulation from photographs (3, 17). Because the North Vent’s jet is taller, the water column appears lopsided (Fig. 3B).

Major eruptions end with a roaring steam phase that slowly diminishes over many hours (2, 18), but the boundary between liquid and steam phases is ambiguous. Many, but not all, eruptions involve short-lived steam phases that transition back to liquid and vice versa, periods with one vent in steam phase while the other vent is in liquid phase, and/or abrupt pauses in emissions from both vents (19). The main liquid phase lasts for a duration of 3 to 90 min, but the exact definition of duration varies between observers due to this ambiguity (19). Following the end of the final steam phase, Steamboat discharges no water until minor eruptions resume several days later.
Steamboat’s eruption intervals, the periods between major eruption start times, range from 3 d to 50 y based on available records (2, 19). Prior to modern electronic monitoring, records come from visitor and National Park Service personnel observations that were published in reports and local newspapers. Steamboat alternates between active phases, which we define as a prolonged series of major eruptions with a majority of intervals lasting from days to weeks, and relatively dormant periods punctuated only by isolated major eruptions (Fig. 2A). We identify three active phases (Fig. 2B): 1) between early September 1961 and early 1969, 2) between 13 January 1982 and 26 September 1984, and 3) since 15 March 2018. Minor eruptions commonly occur through both active phases and dormancies (2, 18). In fact, after viewing the aftermath of the 1961 major eruption (likely the first since 1911), one observer expressed concern that “one of the prettiest small geysers of Yellowstone” had damaged itself and might not return to “normal” (20). Henceforth, the term “eruption” when used in the context of Steamboat refers to its major eruptions, and the term “interval” refers to the interval before the eruption in question.

Cistern Spring, located ~100 m to the southwest (Fig. 1), is the only thermal feature with documented evidence for a subsurface hydraulic connection to Steamboat. The pool was full of gray, boiling water in the early 1950s (18). Sometime between the late 1950s and mid-1960s, it became a brilliant turquoise color and discharged enough water downslope to kill nearby trees (2, 21). In the summer of 1966, Cistern’s water level began draining several meters after every major eruption of Steamboat (2). This relationship continues into the current active phase (22).

Why Did Steamboat Become Active in 2018?

Dormant geysers elsewhere have resumed frequent eruptions following large earthquakes (23), the cessation of geothermal development (e.g., ref. 24), and other human interventions such as soaping (25) and drilling (26). Here, we search for triggering mechanisms to explain Steamboat’s active phases. Owing to improvements in monitoring data availability and quality in Yellowstone, we focus on the latest active phase and explore variations in geophysical and geochemical parameters prior to Steamboat’s reactivation in 2018. We first consider annual precipitation (rain and snowfall) and seismicity, two external factors that are known to affect geyser activity (27–29). Then, we investigate processes related to uplift episodes in Norris Geyser Basin: ground deformation (5), radiant heat emissions, and changes in the geothermal reservoir temperature.

Precipitation. Meteoric water recharge into deep geothermal reservoirs can affect geyser-eruption intervals at annual to decadal timescales (28). The loss of recharge due to decades of dry climate can even lead to eruption cessation (15). We, thus, search for correlation between the number of Steamboat Geyser eruptions per year between 1960 and 2019 and the mean annual water discharge in the Yellowstone River at Corwin Springs, Montana (Fig. 1, Inset), which we use as a proxy for total annual precipitation in Norris Geyser Basin (SI Appendix, Fig. S1). Overall, we find no pattern and conclude that higher annual precipitation rates were likely not the cause of eruption reactivation.

Seismicity. A host of observations and laboratory experiments have shown that the dynamic stress from distant and regional earthquakes can change permeability and, hence, fluid flow in the crust (e.g., ref. 30). Dynamic stresses on the order of 10^{-3} MPa have changed the eruption intervals of Daisy and Old Faithful Geysers in Yellowstone’s Upper Geyser Basin (27, 29). A dynamic stress of 10^{-1} MPa corresponds to a peak ground velocity (PGV) of 10^{-2} m/s, similar to the minimum ground velocity that results in other hydrological responses (31).

Earthquake swarms around the northern Yellowstone Caldera rim in June–August 2017 and February 2018 preceded Steamboat’s reactivation (Fig. 4). These earthquakes, part of the Maple Creek sequence, were interpreted both as a swarm driven by magmatic fluids (32) and as aftershocks from the 1959 Mw 7.3 Hebgen Lake, Montana earthquake (33). We calculated PGV at seismic station YNM in Norris Geyser Basin (Fig. 1) resulting from both local and teleseismic earthquakes since mid-2013 (SI Appendix, Figs. S2 and S3). During the Maple Creek sequence, PGV in Norris Geyser Basin remained below the threshold of 10^{-2} m/s found to affect geyser eruptions elsewhere. We conclude that it is highly unlikely that the Maple Creek sequence caused Steamboat’s 2018 reactivation. The only time PGV exceeded 10^{-2} m/s was in response to a Mw 4.8 earthquake on 30 March 2014 located ~5 km east-northeast of Steamboat. The geyser erupted 5 mo later on 3 September 2014, but, given the time lag, it is unlikely that the earthquake caused this eruption.

Ground Deformation and Thermal Anomalies. We examined the inference that recent deformation episodes centered around Norris Geyser Basin, caused by progressive ascent and accumulation of magmatic volatiles in the shallow brittle crust, led to Steamboat’s 2018 reactivation (5). If deformation is related to the ascent of hotter and deeper fluids, we might expect to see a temperature increase in the hydrothermal system. Thermal infrared imagery acquired from survey flights (34, 35) and satellites (36) has been used to monitor changes in heat flow and thermal manifestations in Norris Geyser Basin. We analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data to infer the temporal variation of median radiant thermal anomaly. We considered a 4-km2 area centered on Norris Geyser
short-term trends (reactivation did not begin until 2016. Although the small, early earthquake in 2014. The uplift episode preceding Steamboat in fact, similar on multiyear timescales. The
tions. Trends in thermal emissions and ground deformation are,
geothermal reservoir could potentially trigger Steamboat erup-
tion. The increase in hydrothermally derived chloride or sulfate flux in the
inhibits the eruptions of Steamboat since mid-2003.
Basin in reference to an area outside of Yellowstone National
Park and without surface hydrothermal features (Thermal
Emissions). On the timescale of several years, deformation and
radiant heat emissions undulated with an overall decreasing
trend from 2003 to 2012 (Fig. 4). Median radiant temperature
increased \(\sim 0.8^\circ C\) starting in 2013 and leveled out in 2017–2018;
interestingly, this rate of increase remained the same during a
time of rapid inflation and deflation punctuated by the \(M_4\) 4.8
earthquake in 2014. The uplift episode preceding Steamboat’s
reactivation did not begin until 2016. Although the small,
early 2017 spike in radiant heat emissions may be an artifact because
short-term trends (<6 mo) are less reliable due to the filtering
method applied to the data, it is coincident with sharp deflation
(\(\sim 5\) cm) of Norris Geyser Basin.

To complement our analysis of radiant heat emissions, we
looked for temperature variations in Steamboat’s geothermal
reservoir. There is precedent for increasing reservoir
temperature occurring alongside more vigorous geyser activity. Based on
chemical geothermometry (7), it was inferred that the geother-
mal reservoir temperature of Porkchop Geyser (430 m from
Steamboat; Fig. 1) increased by 60 to 70 \(^\circ C\) starting in 1962;
eruptions began in 1971 and became progressively more violent
and frequent until a small hydrothermal explosion in 1989 (6).
To look for similar changes in the deep reservoir supplying water
to Steamboat, we calculated reservoir temperatures using long-
term geochemical data from samples collected at Cistern Spring
(hydraulically linked to Steamboat; refs. 2, 22) and the iGeoT
Multireaction Equilibrium Geothermometry (MEG) code (37).
Within the \(\pm 15^\circ C\) accuracy of the method (38), there were no
significant variations in reservoir temperature between 2000 and
2019 (Fig. 5). The small fluctuations were slightly less than the
magnitude of seasonal variations in reservoir temperature based
on multiple samples collected at Cistern Spring in 1995 (39).

Discussion of Triggering Mechanisms. Our results suggest that
Steamboat’s 2018 reactivation was not triggered by external
factors, such as varying water recharge or dynamic stresses as-
associated with earthquakes, but, rather, by internal hydrothermal
processes. If inflation reflects the progressive supply and accu-
mulation of hot magmatic volatiles in the shallow, brittle crust
beneath Norris Geyser Basin (5), then the associated stresses,
increased pore fluid pressure, and supply of enthalpy to the
geothermal reservoir could potentially trigger Steamboat eru-
ptions. Trends in thermal emissions and ground deformation are,
in fact, similar on multiyear timescales. The \(\sim 0.8^\circ C\) increase in
median radiant temperature anomaly is similar to that observed
prior to some volcanic eruptions (40).

We argue, however, that the available data are ultimately in-
sufficient to relate Steamboat’s reactivation to uplift episodes at
Norris Geyser Basin. The roughly constant reservoir temperature
calculated for Cistern Spring does not indicate anomalous subsur-
face changes. Missing are other indicators that the deforma-
tion affected the hydrothermal system. There was no anomalous
increase in hydrothermally derived chloride or sulfate flux in the
Gibbon River, which primarily originate from Norris Geyser
Basin (41) (SI Appendix, Fig. S4). Ledge and Echinus, two of the
geyser basin’s significant geysers, did not reactivate at the same
time as Steamboat, though Echinus experienced a short-lived active
phase in late 2017 (42). Out of a small sample of seven other geysers
within the Yellowstone Caldera chosen for their relatively complete
records, none have active periods that correlate with caldera uplift
between 1996–2020 (SI Appendix, Fig. S5).

Steamboat’s reactivation may arise from processes that oper-
ate purely within its local hydrothermal system. Geyser activity
is highly dependent on permeability of the conduit and surround-
andering rock matrix (43). Slow changes in temperature, pressure, and
solution composition affect amorphous silica (opal) precipitation
and dissolution kinetics in hydrothermal systems (e.g., refs. 44, 45),
which, in turn, alters permeability. Future models and ex-
periments involving geophysical monitoring of the subsurface
and geochemical monitoring of erupted water might provide
more insights into the conditions that create episodic active–
dormant transitions in geysers.

What Controls the Interval between Eruptions?
Geyser-eruption intervals are primarily controlled by internal
processes and subsurface structure (4), but they may also be
sensitive to seasonal hydrologic processes (28), weather condi-
tions (wind speed, air temperature, and atmospheric pressure;
refs. 29, 46, and 47), earthquakes (23, 27, 29), and subsurface
connections to other thermal features (46–49). Limited attention
has been given to Steamboat’s eruption intervals within active
phases. There are observations of longer intervals at Steamboat
during periods when Norris Geyser Basin was characterized by
increased boiling and turbidity in springs, changes in water
chemistry, and irregular geyser activity, most commonly during
the summer or early fall (2, 18). It was proposed that these
variations occur in response to lower pressures within the
hydrothermal system (39). Here, we report a summary of
median radiant temperature anomaly.

[Fig. 4. Time series of different geophysical observations. We show vertical
ground deformation (black) in Norris Geyser Basin measured at station
NRWY, long-term radiant thermal anomaly (red, with 95% CI) of a 2 \(\times\) 2-km\(^2\)
area centered at Norris Geyser Basin compared to a reference area without
hydrothermal activity, and monthly earthquake (EQ) counts (blue) around
the northern border of the caldera (open rectangle in Fig. 1). Vertical lines
(gray) identify the eruptions of Steamboat since mid-2003.]

[Fig. 5. Reservoir temperature for Cistern Spring waters (red markers) based
on thermodynamic calculations using the iGeoT MEG code (37). Error bars
represent the calculated SD and estimated accuracy of the temperatures (38).
Vertical gray lines show dates of Steamboat eruptions. Leading up to the current
Steamboat phase, the reservoir temperature remained roughly constant.]
Steamboat’s eruption intervals during the latest active phase and consider possible influences on the intervals.

Seasonality and Outlier Intervals. The median interval for the 108 eruptions between April 2018 and July 2020 is 7.17 d, in a range of 3.16 to 35.45 d. Most (86%) of the intervals are under 10 d (Fig. 6A). There appears to be an annual modulation of eruption intervals, with longer intervals in the winter months and shorter intervals during the summer. However, there are notable exceptions. April and August are months with higher median intervals than would be expected from the seasonal variation, and their intervals vary more widely than in other months. Intervals do not correlate with wind speed or air pressure at the time of eruption.

We count the monthly number of Steamboat eruptions and compare them to monthly mean discharge in the Gibbon River (Fig. 1), which drains Norris Geyser Basin and serves as a proxy for regional precipitation. During the latest active phase, we observed a peak in the number of eruptions each year during the late spring (May) through the midsummer (July), coincident with the increase in river discharge following snowmelt (Fig. 6B). We found a temporal cross-correlation coefficient of 0.23, suggesting a possible direct connection to seasonal hydrologic processes. Lags of 1 to 3 mo produced weaker correlations.

We evaluated seismic spectral-amplitude measurements (SSAMs) from station YNM (Fig. 1) in search of temporal correlations with Steamboat’s intervals and the seismic signals from underlying hydrothermal systems. Here, we focused on the 0.8- to 1.2-Hz SSAM band (Fig. 7) that is commonly observed in active hydrothermal areas (e.g., ref. 50). The SSAM showed a sharp ~50% reduction after Steamboat’s reactivation in March 2018, which was followed by the longest interval in the active phase (35.45 d); a similarly abrupt, but smaller, decrease occurred in late March 2019, followed by two long intervals. The largest decrease after the SSAM peak in late June 2018 also occurred before four abnormally long intervals. We note that the June 2018 peak was coincident with basin-wide anomalous activity (51), similar in some ways to that associated with longer Steamboat eruption intervals during the active phase in the 1980s (2). The reductions in SSAM do not temporally correlate with ground deformation, which implies that the seismic source is shallow and local, perhaps from within the Norris hydrothermal system. Although station coverage does not allow us to determine source locations, the decrease in SSAM is from a weakening of the source, rather than changes in source frequency (SI Appendix, Fig. S6). It is not possible to determine whether this weakening could be a cause or effect of longer eruption intervals, or whether both changes occur due to a yet-unidentified subsurface process.

Erupted Volume. For a constant input of heat and water, it might be reasonably expected that eruption intervals correlate with the volume of water ejected during individual eruptions. For both a laboratory model and a geysering well in Calistoga, California, a relationship was found between the eruption duration (a proxy for erupted volume) and the following interval between eruptions, but the distribution of durations in a series of eruptions was stochastic (52). Similarly, intervals of Old Faithful depend on the duration of the previous eruption (53). At Strokkur Geyser in Iceland, eruptions consist of one to six discrete bubble bursts; longer intervals follow eruptions with more bursts, but the burst count and seismic amplitude of individual eruptions cannot be predicted (54).

We used stream-discharge measurements from Tantalus Creek within Norris Geyser Basin (Fig. 1) to estimate Steamboat eruption volumes. For the 59 eruptions with available meteorological data and appropriate streamflow conditions for volume estimation, we found a negative correlation between wind speed and the volume of water discharged (Fig. 8A). This implies that stronger winds divert some erupted water away from established runoff channels. Thus, for erupted volume calculations, we considered only 29 eruptions that occurred when wind speeds were ≤ 1 m/s (SI Appendix, Fig. S7). The volumes range from 134 to 538 m³ with a median of 351 m³. For comparison, also using Tantalus Creek discharge data, Friedman (55) estimated Steamboat eruption volumes of 215 m³ (2 May 2000), 130 m³ (26 April 2002), and 246 m³ (13 September 2002). We found no relation between erupted volume and the interval before or after the eruption (Fig. 8B and C), implying unsteady heat and mass flow at Steamboat. We also found no relation between eruption volume and air temperature, air pressure, or amplitude of ground motion (SI Appendix, Fig. S8). Correlation coefficients between eruption volume and other parameters are tabulated in SI Appendix, Table S1. Our results are limited due to the small sample size, and we emphasize that the calculated volumes should be considered as minimum estimates of ejected liquid-water volume.

Why Are Steamboat Eruptions so Tall? Steamboat’s eruptions reach heights that exceed 115 m (2, 3), the highest of presently active geysers. We tested two hypotheses about why Steamboat reaches such lofty heights: 1) Its deep geothermal reservoir, where water and rocks equilibrate chemically, is hotter than those connected to other geysers; or 2) the shallow source that directly feeds Steamboat’s eruptions is deeper than at other geysers. Hereafter, we use “reservoir” to refer to the deep geothermal reservoir and “water source” to refer to the shallow subsurface void or cavity (“bubble trap”; ref. 56) where water is stored prior to the eruption. Understanding
why Steamboat’s eruptions are so tall addresses a fundamental question about geysers: What controls their eruption height?

To evaluate whether a hotter reservoir temperature is correlated with the height of geyser eruptions, we considered the chemical composition of 14 different geyser waters from around Yellowstone. The reported heights for geysers other than Steamboat range from 2 m for Pearl to 84 m for Giant (18). The equilibrium reservoir temperature calculated with the iGeoT MEG code (37) is not correlated with eruption height (Fig. 9A).

A compilation of water source (bubble trap) depths from geysers worldwide suggests that Steamboat’s water source (20 to 27 m; ref. 22) is the deepest, and its eruption column is the highest (Fig. 9B). We highlight that there are large uncertainties in water-source depth. Determining the existence and depth of shallow reservoirs is fraught with challenges, since the shallow subsurface is highly heterogeneous at various spatial scales. Water-source depth is inferred with multiple techniques. Direct observations define shallow sources as bends in the conduit for El Jefe in El Tatio, Chile (62). The height of the water source (20 to 49 m; ref. 22) is the deepest, and its eruption column is the shallowest (22,58).

Seismic surveys have provided useful insights about source dimensions and depth at Lone Star (58, 59), Old Faithful (60, 61), and Steamboat in Yellowstone (22), as well as for El Jefe in El Tatio, Chile (62). The height of the water column can vary from one eruption to another (e.g., refs. 18, 63); however, few studies (17, 63, 64) provide details about height measurements. Nevertheless, despite the unknown and possibly large uncertainties, there is a clear trend: Geysers with deeper water sources have taller eruptions (Fig. 9B).

To quantify how water-source depth Zs affects eruption height hs, we used a model for eruptions (Thermodynamic and Mechanical Models for Eruptions) in which the fluids in the water source expand isentropically during eruption, and mechanical work is converted into kinetic energy, gravitational potential energy, and other forms of mechanical energy (friction in the conduit and then drag on erupted fluids, fragmentation, and sound). The ballistic velocity (Vb in Eq. M3) is typically lower than the jet velocity (Vj in Eq. M2) because of drag on the jet from the surrounding air. Here, we adopted an estimate suggesting the ratio of 0.5 for the ballistic over jet velocities at Lone Star Geyser (63). Substituting Eq. M3 into Eq. M2 and rewriting Ed (forms of mechanical energy) as an efficiency term (−(1 − ζ) W), Eq. M1 is rewritten in terms of the jet height hj as a function of water source depth Zs as

\[h_j = -\frac{1}{2} \left(\frac{C W}{g} + Z_s \right). \]

where ζ is a conversion factor of W (mechanical work) into the kinetic and potential energies which varies between zero and one (65), and g is gravitational acceleration.
The dashed lines in Fig. 9B show the correlation between h_i and Z_i, predicted by Eq. 1. Data from geysers are mostly consistent with conversion factors of 0.3 to 0.5, similar to values suggested in Thiéry and Mercury (65). Our calculations suggest that the mechanical work of the mixture during expansion is correlated with water-saturation pressure. The kinetic energy at the vent and resulting jet height are, thus, expected to increase with water-source depth. Differences in eruption height at a single geyser could arise from the water initially being slightly oversaturated or undersaturated, variable friction loss, and external influences such as wind.

Our focus here has been on the eruption height, but we also note that Steamboat’s erupted volume can exceed 500 m3 (Fig. 8). Few geysers have estimates of erupted volumes because water discharge is challenging to measure, but those with estimates erupt less water: 8 to 11 m3 during major eruptions at Lone Star (63); uncertain estimates of 38 to 45 m3 (12) and 14 to 32 m3 for Old Faithful (ref. 66, based on ref. 53); 31 to 38 m3 for Echinus in Norris Geyser Basin (67); 18 m3 for Velikan (56); El Jefe (64); and 10 m3 for Steamboat (22); Old Faithful (60, 61); and Lone Star (58, 59, 63). Uncertainties are shown only if provided in the cited papers, and uncertainties in jet height are likely greater than 10%.

Concluding Remarks

Our study of Steamboat Geyser was motivated by three fundamental questions about geyser eruptions.

Why Did Steamboat Geyser Become Active Again? There are conflicting observations. Steamboat’s reactivation was preceded by regional uplift and a slight increase in the median radiant temperature of Norris Geyser Basin. Whether this is coincidental or causal cannot be determined because we cannot establish this connection over multiple active phases. Despite the increase in thermal radiance, there was no significant change in the geothermal reservoir temperature, no increase in chloride and sulfate flux, and no evidence that other geysers became active in response to deformation. It is possible that dormant–active transitions in geysers may be controlled by gradual changes in silica precipitation that affect permeability in the geyser’s subsurface. However, we acknowledge that direct observations of subsurface processes are lacking. Longer, continuous digital records of many observables will help identify possible connections between deformation, magmatic processes, and the surface expression of geothermal systems in the form of geyser eruptions.

What Controls the Interval between Eruptions? Based on 2.4 y of data, there is evidence for a small seasonal modulation of eruption intervals, with shorter intervals in the summer. This might suggest that intervals are modulated by the seasonal hydrologic cycle. Anomalously long intervals are associated with decreases in seismic noise measured at a nearby seismometer. We are unable to identify any relations between eruption intervals and erupted volumes, implying unsteady heat and mass discharge. Our volume estimates are hampered by relying on a streamgage well downstream from the vent and the fact that the site may not capture all erupted water, especially on windy days. A lack of reliable water-discharge measurements is the case for most geysers.

Why Are Steamboat’s Eruptions Taller Than at Other Geysers? Steamboat’s erupted water is stored deeper than at other geysers. If eruptions begin when water is at the saturation temperature, water in deeper sources has more thermal energy that can be converted to mechanical work and kinetic energy driving the eruption. We found a correlation between the depth of the shallow-water sources (bubble traps) under geysers and eruption height, but we highlight that there is much uncertainty in estimating source depth and eruption height.

To address these three questions, we relied heavily on monitoring data and observations. Few geysers are monitored well enough to have a continuous record of eruption times, water discharge, or geophysical data. To the extent that the questions motivating our study are interesting and worth answering, at least for the millions of tourists who visit Yellowstone each year, more instrumentation is required in and around geysers. Measuring ground-surface displacements, water discharge closer to the vent, and meteorological conditions, in addition to more frequent water sampling for chemical and isotopic analyses, would be useful to reduce uncertainty in observations. Such data would help answer fundamental questions about how geysers
work and provide insight into similar multiphase processes and associated geophysical signals that occur at volcanoes (53) and on other planetary bodies, such as Saturn’s moon Enceladus (69).

Methods

Eruption Datasets. Eruption data were obtained from GeyserTimes (https://www.geyertimes.org/retrieve.php), a crowdsourced database of eruption times and observations compiled by geyser enthusiasts. We retrieved primary entries for Steamboat eruptions to generate the counts plotted in Fig. 2. Start times from the late-2010s active phase are exact and based on visual reports combined with seismic and temperature monitoring. The count of Steamboat eruptions in GeyserTimes is complete from May 1982 onward; prior to this, entries are based on memos, reports, and logbooks in the Yellowstone National Park archives. The majority of events were recorded because eruptions are conspicuous and can be inferred from posteruptive activity. At the time of this study, the GeyserTimes database contained 85 eruptions for the 1960s, which is less than the 104 reported in yearly counts by White et al. (2). This discrepancy is due in part to the requirement that GeyserTimes entries must be associated with a date, which leaves out eruptions that were reported or inferred from visual observation, or eruption history not aligned with conflicting dates appear in different sources. Entries are added or updated upon discovery of new historical records.

We also examined the timing of active and dormant periods for other Yellowstone geysers since 1990 to compare with calibration deformation: Ledge in Norris Geyser Basin; King and Hillside in West Thumb Geyser Basin; Fan and Mortar, Giantess, Giant, and Splendid in Upper Geyser Basin; and Black Diamond in Biscuit Basin (SI Appendix, Fig. 53). Their records are based on visual reports and, when available, temperature loggers in runoff channels. Because these geysers are large and/or rarely active, they generate interest in the Yellowstone geyser-enthusiast community and are, therefore, reported consistently. We checked completeness by cross-referencing the GeyserTimes datasets with Bryan (18), logbooks from the Old Faithful Visitor Center (observations of geyser activity from National Park Service staff and volunteers), published in the Geyser Observation and Study Association newsletter. Despite suffering from some reporting bias, these datasets capture the geyser’s active and dormant periods well.

Seismicity. We acquired both local and teleseismic earthquake catalogs from the US Geological Survey (USGS) (https://earthquake.usgs.gov/earthquakes/search) and the Incorporated Research Institutions for Seismology (IRIS) (ds.iris.edu/nd_portal). In particular, we searched for local earthquakes with magnitudes 0 to 4.8 occurring between January 2003 and July 2020 around the northern border of the Yellowstone Caldera, in a region delimited by co-ordinates (44.635°, −110.703°) and delimited by (44.706°, −110.728°) to (44.742°, −110.678°), as well as the median radiant temperature in a reference area outside Yellowstone National Park, a hollow rectangle with internal borders (45.625°, −111.969°) to (45.823°, −109.438°) and external borders (43.634°, −112.222°) to (45.805°, −109.184°). The analysis was performed with nighttime scenes only.

The seismicity dataset was processed four ways: (i) To calculate the discharge from Steamboat Geyser, we handpicked a LI-COR eddy covariance tower located 1.5 km north of Steamboat Geyser (Fig. 1). We calculated the PGV by taking the maximum value of the rms energy after combining all three components of ground motion. We used continuous daily data segments from YNM to calculate the SSAM. For each day, we removed mean and trend, applied a Butterworth filter between 0.8 and 1.2 Hz, and cut the data into hourly segments. To avoid spurious seismic energy (e.g., earthquakes and anthropogenic activity), SSAM was calculated as the median amplitude of each hour and restricted to a window of 21:00 to 07:00 local time (Fig. 7 and SI Appendix, Fig. 56). The unit of SSAM is Instrument Charge. Meteorological data are available for most eruptions on and after 2013.

Ground Deformation. We obtained continuous ground-deformation measurements from the University of Nevada, Reno repository (geodesy.unr.edu/index.php; ref. 70). Data have been detrended and referenced to the North American plate. We focused on station NRNY (Fig. 1), located near Norris Geyser Basin, and data from other stations in Yellowstone can be found in SI Appendix, Fig. S5.

Thermal Emissions. We explored the long-term (years) variations of radiant heat emissions from the ground surface at Norris Geyser Basin. This analysis was performed through an automated median of median algorithm that uses satellite-based thermal infrared data retrieved from MODIS. The method we used is an extension of the method presented in refs. 40, 71, and its fundamental components are summarized here.

We downloaded the MODIS radiance, geolocation, and cloud-mask products, covering the period 4 July 2002 through 15 March 2020, from NASA’s Earth database repository (https://earthdata.nasa.gov). In particular, we used the following products: MODIS Terra/Aqua Calibrated Radiances 5-Min Level-1B Swath 1km V006 (MOD021K/MYD021K), which provides accurate radiance values that are radiometrically calibrated and corrected for instrumental effects; MODIS Terra/Aqua Geolocation Fields 5-Min Level-1A Swath 1km V006 (MOD03/MYD03), which provides the geographical coordinates of the scenes; and MODIS Terra/Aqua Cloud Mask and Spectral Test Results 5-Min Level-2 Swath 1km V6.1 (MOD35/MYD35), which allows extraction of cloud-free pixels.

Scenes with less than ~10% cloud-free pixels in the 3,600 km² around Norris Geyser Basin were discarded to ensure a reliable statistical analysis, using only scenes that were minimally affected by clouds. For each of the remaining scenes, we extracted band 31 (10.780 to 11.280 μm) radiance data from cloud-free pixels and converted them to radiant temperature using Planck’s function for simplicity. We then calculated the median radiant temperature in a 4-km² square region centered on Norris Geyser Basin (44.724°, −110.703°) and delimited by (44.706°, −110.728°) to (44.742°, −110.678°), as well as the median radiant temperature in a reference area outside Yellowstone National Park, a hollow rectangle with internal borders (45.625°, −111.969°) to (45.823°, −109.438°) and external borders (43.634°, −112.222°) to (45.805°, −109.184°). The analysis was performed with nighttime scenes only.

We calculated the difference between the median radiant temperature at Norris Geyser Basin and the median radiant temperature of the reference area. We then calculated the median value per day of that difference in order to produce a regular and continuous sampling rate of one sample per day that allowed for further signal processing. Gaps were filled by using the nearest interpolation method, and the resulting time series, which contains a seasonal component and noise, was low-pass-filtered through an iterative denoising technique consisting of a combination of wavelet and median filters (40). This denoising technique yielded the so-called median anomaly, which describes the long-term (years) variations of the median radiant temperature in a region of interest (here, Norris Geyser Basin) with respect to a reference area.

Hydrothermal Discharge. An estimated 98% of all hydrothermal discharge within Norris Geyser Basin is drained by Tantalus Creek (55), which begins from a source southeast of Echinus Geyser and flows north and northwest toward the Yellowstone River in Norris Geyser Basin until it enters the Gibbon River (45). The Norris Geyser Basin hydrothermal system generates streamflow at a rate of 50 m³ s−1, and the Norris Geyser Basin hydrothermal system generates streamflow at a rate of 50 m³ s−1. We downloaded the MODIS radiance, geolocation, and cloud-mask products, covering the period 4 July 2002 through 15 March 2020, from NASA’s Earth database repository (https://earthdata.nasa.gov). In particular, we used the following products: MODIS Terra/Aqua Calibrated Radiances 5-Min Level-1B Swath 1km V006 (MOD021K/MYD021K), which provides accurate radiance values that are radiometrically calibrated and corrected for instrumental effects; MODIS Terra/Aqua Geolocation Fields 5-Min Level-1A Swath 1km V006 (MOD03/MYD03), which provides the geographical coordinates of the scenes; and MODIS Terra/Aqua Cloud Mask and Spectral Test Results 5-Min Level-2 Swath 1km V6.1 (MOD35/MYD35), which allows extraction of cloud-free pixels.

Metropolitan Hydrology, and Solute Flux. Weather conditions were measured with a Li-COR eddy covariance tower located ~1.5 km north of Steamboat Geyser. Meteorological data are available for most eruptions on and after 2013. We took an average of the four values following the start of a stage of a Steamboat eruption. We handpicked signal start and end times, linearly interpolated baseline over discharge measurements at the time peaks, and then integrated the excess discharge over time (illustrated in SI Appendix, Fig. S9). From a population of 87 eruptions between 15 March 2018 and 6 March 2020 for which there were approved discharge data, 74 have discernable signals that were uncompromised by rainfall and could be used for volume calculations.

Following the method of Hurvitz et al. (28), discharges measured at two USGS streamgages were used as a proxy for precipitation. We took annual
data since 1960 from the Yellowstone River at Corwin Springs, Montana (streamgage 06191500). Though this location is 45 km north of Norris Geyser Basin (Fig. 1), it has a long-term, complete record, making it the best candidate for analysis. We also took monthly average discharge from the Gibbon River measured at Madison Junction (streamgage 06371100) for comparison against eruption intervals within the latest active phase. The Gibbon River flows adjacent to Norris Geyser Basin (hydrothermal discharge from Tantalus Creek flows into it), and the gauge is 15 km to the southwest (Fig. 1). Both datasets are available from https://waterdata.usgs.gov/nwis.

Thermodynamic and Mechanical Model for Eruptions. We assumed that water was initially assemblage of hydrothermal (secondary) minerals based on borehole chemical data and ionic imbalance (47). We took specific conductivity measured at the streamgage (data available from ref. 75), converted to solution concentrations, and multiplied by water discharge to calculate flux.

Geothermometry. Geysers in Yellowstone usually erupt alkaline-chloride waters with high silica concentrations (76). Geothermometry based on the chemical composition of these waters provides estimates of the temperature at which the water equilibrated with a set of minerals, presumably in the deep geothermal reservoir. We calculated reservoir temperatures using the iGeoT MEG code (37). We used published geochemical data for Steamboat, Cistern Spring, and other geysers around Yellowstone: Arsenic, Blue, Pearl, Constant, and Echinus in Norris Geyser Basin; Clepsydra in Lower Geyser Basin; and Beehive, Giant, Grand, Grotto, Lion, Sawmill, and Old Faithful in Upper Geyser Basin (35, 77–83). In 2019, we collected four new water samples from Steamboat Geyser in a runoff channel ~65 m from the South Vent (minor eruption discharge: 1 June and 15 July; major eruption discharge: 1 June and 18 July) and two samples directly from Cistern Spring (30 May and 15 July). Water chemistry for these samples is summarized in SI Appendix, Table S2. The selection of samples was based on the quality of the geochemical data and ionic imbalance <3%. For the iGeoT simulations, we assumed that the dry gas was 100% CO2. We considered a common assemblage of hydrothermal (secondary) minerals based on borehole descriptions in Yellowstone, particularly borehole Y9 which is ~400 m north-east of Steamboat (Fig. 1): quartz, chalcedony, cristobalite, chlorite, goethite, and different amounts of clays and iron oxides (2).

Thermodynamic and Mechanical Model for Eruptions. To understand the controls of eruption height, we used a model for the thermodynamics and mechanics of eruptions by considering the energy balance of the liquid and steam mixture during a geyser eruption. We assumed that water was initially in the saturated liquid state at a pressure equivalent to the hydrostatic pressure of the water source (63). Decompression as water ascends to the surface drives formation of steam bubbles, which are compressible and expand during ascent. The mechanical work, \(W \), associated with decompression and steam expansion, is given by Théry and Michel (65) and

\[
W = H_r - H_s. \tag{M1}
\]

where \(H_r \) is the enthalpy of the mixture of water and steam, and subscripts \(r \) and \(s \) refer to the reservoir (water source) and ground surface, respectively. \(H_s \) is estimated from thermodynamic properties of water and steam (84), assuming the mixture expands isentropically. This assumption is justified because the ascent velocity of the mixture is high enough that heat transfer between water and the surrounding wall rock and from the escape of bubbles are negligible (63, 85). The mechanical work is converted into kinetic energy, gravitational potential energy, and other forms of mechanical energy (friction in the conduit and then drag on erupted fluids, fragmentation, and sound), \(E_s \). Assuming the fluid velocity in the reservoir is negligible, the energy balance is given by

\[
-W = gZr + \frac{1}{2}V_j^2 + sE_s. \tag{M2}
\]

where \(g \) is gravitational acceleration, \(Z_r \) is the reservoir depth, and \(V_j \) is the jet velocity at the surface. The kinetic energy at the surface is converted into the jet’s gravitational energy at its highest point. The ballistic height, \(h_j \), of the jet is estimated from

\[
h_j = \frac{V_j^2}{2g}. \tag{M3}
\]

where \(V_j \) is the ballistic velocity at the surface.

Data Availability. All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. We thank the 2019 Cooperative Institute for Dynamic Earth Research program for enabling this collaboration (NSF Grant EAR1355452). M. A. Bellingham provided extensive historical context for Steamboat. We thank GeyserTimes users, in particular, Carol and Bill Beverly, for their detailed entries. Water samples were collected under permit YELL-2019-SCI-8104 with help from Yellowstone National Park research coordinators Annie Carlson; Xiaojing “Ruby” Fu, Matthew Kirk, and Nicole Mizrahi provided fieldwork assistance. Greg Vaughan, Jefferson Hungerford, and Blaine McCluskey added helpful input toward our analyses. We thank Eian Lev, Thomas Walter, and Mike Poland for constructive reviews. Additional support was provided by NSF Grant EAR1724986. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

1. K. Flynn et al., Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park (U.S. Geological Survey Data Series 324, U.S. Geological Survey, Reston, VA, 2008).
2. D. E. White, R. A. Hutchinson, T. E. C. Keith, “The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming” (U.S. Geological Survey Professional Paper 1456, U.S. Geological Survey, Reston, VA, 1988).
3. L. A. Gastellum, Description of Eruption of Steamboat Geyser as Observed by Luis A. Gastellum, Associate Superintendent December 25, 1962 (Geology Program Records, Box 82) (Yellowstone National Park Archives, Gardiner, MT, 1963).
4. S. Hurwitz, M. Manga, The fascinating and complex dynamics of geyser eruptions. Annu. Rev. Earth Planet. Sci. 45, 31–59 (2017).
5. C. W. Wicks, D. Dzurisin, J. Braverman, J. Svrc, Magma intrusion and volatile ascent beneath Norris Geyser Basin, Yellowstone National Park. J. Geophys. Res. Solid Earth 125, e2019JB018208 (2020).
6. R. O. Fournier, J. M. Thompson, C. G. Cunningham, R. A. Hutchinson, Conditions leading to a recent small hydrothermal explosion at Yellowstone National Park. Geol. Soc. Am. Bull. 103, 1114–1120 (1991).
7. R. O. Fournier, Chemical geothermometers and mixing models for geothermal systems. Geothermics 5, 41–50 (1976).
8. N. E. Matthews, J. A. Vaquero, A. T. Calvert, Age of the Lake Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals. Geochim. Geophys. Geosyst. 16, 2508–2528 (2015).
9. R. L. Christiansen, “The Quaternary and Pleistocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana” (U.S. Geological Survey Professional Paper 729-G, U.S. Geological Survey, Reston, VA, 2001).
10. J. Farrell, S. Huen, R. B. Smith, Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J. Volcanol. Geotherm. Res. 188, 260–276 (2009).
11. A. M. Pitt, C. S. Weaver, W. Spence, The Yellowstone Park earthquake of June 30, 1975. Bull. Seismol. Soc. Am. 69, 187–205 (1979).
12. E. T. Allen, R. L. Day, Hot Springs of the Yellowstone National Park (Carnegie Institution of Washington, Washington, DC, 1935).
13. D. E. White, R. O. Fournier, L. J. P. Muffler, A. H. Truesdell, “Physical results of research drilling in thermal areas of Yellowstone National Park, Wyoming” (U.S. Geological Survey Professional Paper 892, U.S. Geological Survey, Reston, VA, 1975).
14. D. M. Churchill et al., Dating silica sinter (geyserite): A cautionary tale. J. Volcanol. Geotherm. Res. 402, 106991 (2020).
15. S. Hurwitz et al., Yellowstone’s Old Faithful Geyser shut down by a severe nineteenth century drought. Geophys. Res. Lett. 47, e2020GL089871 (2020).
16. P. W. Norris, Report upon the Yellowstone National Park, to the Secretary of the Interior, for the Year 1879 (United States Government Printing Office, Washington, DC, 1880).
27. S. Husen, R. Taylor, R. B. Smith, H. Heasler, Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska. Geology 32, 537–540 (2004).

28. S. Hurvitz, A. Kumar, R. Taylor, H. Heasler, Climate-induced variations of geyser periodicity in Yellowstone National Park, USA. Geology 36, 451–454 (2008).

29. S. Hurvitz, R. A. Sohn, K. Luttrell, M. Manga, Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, tides, and weather. J. Geophys. Res. Solid Earth 119, 1718–1737 (2014).

30. M. Manga et al., Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Rev. Geophys. 50, RG04 (2012).

31. C. H. Mohr, M. Manga, C.-Y. Wang, O. Korup, Regional changes in streamflow after a megathrust earthquake. Earth Planet. Sci. Lett. 458, 418–428 (2017).

32. D. R. Shelly, J. L. Hardebeck, Illuminating faulting complexity of the 2017 Yellowstone Maple Creek earthquake swarm. Geophys. Res. Lett. 46, 2544–2552 (2019).

33. G. Pang et al., The 2017–2018 Maple Creek earthquake sequence in Yellowstone National Park, USA. Geophys. Res. Lett. 46, 4653–4663 (2019).

34. C. M. U. Neale, C. Jaworowski, H. Heasler, S. Sivarajan, A. Masih, Hydrothermal monitoring in Yellowstone National Park using airborne thermal infrared remote sensing. Remote Sens. Environ. 184, 628–644 (2016).

35. H. Heasler, C. Jaworowski, Hydrothermal monitoring of Norris Geyser basin, Yellowstone National Park, USA, using airborne thermal infrared imagery. Geothermics 72, 265–276 (2018).

36. R. G. Vaughan, L. P. Keshelely, J. B. Lowenstern, C. Jaworowski, H. Heasler, Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. J. Volcanol. Geotherm. Res. 233–234, 72–89 (2012).

37. N. Spycher et al., Integrated multicomponent solute geothermometry. Geosciences 51, 113–120 (2014).

38. J. M. King et al., Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser basin, Yellowstone National Park, USA. J. Volcanol. Geotherm. Res. 328, 105–114 (2016).

39. R. R. Fournier et al., “Results of weekly chemical and isotopic monitoring of selected springs in Norris Geyser basin, Yellowstone National Park during June-September, 1995” (U.S. Geological Survey Open-File Report 2002–344, U.S. Geological Survey, Reston, VA, 2002).

40. T. Girona, V. Realmuto, P. Lundgren, Volcanoes show signs of large-scale thermal unrest for years prior to eruption. https://doi.org/10.1029/2005GS002534 (12 Aug 2020).

41. R. B. McCleasy, D. K. Nordstrom, D. D. Sussong, J. W. Ball, J. M. Holloway, Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA: I. Low-flow discharge and major solute chemistry. J. Volcanol. Geotherm. Res. 193, 189–202 (2010).

42. Yellowstone Volcano Observatory, “Yellowstone Volcano Observatory 2017 annual report” (U.S. Geological Survey Circular 1456, U.S. Geological Survey, Reston, VA, 2019).

43. S. E. Ingebritsen, S. A. Rojtazer, Geyser periodicity and the response of geyser to deformation. J. Geophys. Res. Solid Earth 101, 21891–21905 (1996).

44. R. R. Fournier, J. J. Rowe, The solubility of amorphous silica in water at high temperatures and high pressures. Am. Mineral. 62, 1052–1056 (1977).

45. J. P. Ithoman, P. M. Dove, The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength. Geochim. Cosmochim. Acta 64, 4193–4203 (2000).

46. G. J. Weir, R. M. Young, P. N. McGavin, A simple model for Geyser flat, Whakawae- waera. Geothermics 21, 281–304 (1992).

47. S. Rojtazer, T. R. Walter, S. E. Ingebritsen, D. M. Rubin, Variability in geyser eruptive timing and its causes: Yellowstone National Park. Geophys. Res. Lett. 30, 1953 (2003).

48. G. D. Marler, Exchange of function as a cause of geyser irregularity. Am. J. Sci. 249, 329–342 (1950).

49. C. Munoz-Saez, A. Namiki, M. Manga, geyser eruption intervals and interactions: Examples from El Tatio, Atacama, Chile. J. Geophys. Res. Solid Earth 120, 7490–7507 (2015).

50. S.-M. Wu et al., Anatomy of Old faithful from subsurface seismic imaging of the Yellowstone Upper Geyser basin. Geophys. Res. Lett. 44, 10,240–10,247 (2017).

51. Yellowstone Volcano Observatory, Feeling perturbed: Seasonal disturbances of Yellowstone’s hydrothermal systems. Caldeira Chronicles (2018). https://www.usgs.gov/-/media/usgs/geochemistry/feel-perturbed-seasonal-disturbances-yellowstones-hydrothermal-systems. Accessed 24 August 2020.

52. A. S. Stinebenig, An experimental study of geyser eruption periodicity. Dokl. Phys. 44, 305–308 (1999).

53. S. W. Seltzer, Seismicity at Old Faithful Geyser: An isolated source of geothermal noise and possible analogue of volcanic seismicity. J. Volcanol. Geotherm. Res. 22, 59–95 (1984).

54. E. P. Elbi et al, Eruption interval monitoring at Stokkur geyser, Iceland. Geophys. Res. Lett. 147, e2006GL026009 (2006).

55. I. Friedman, “Monitoring changes in geothermal activity at Norris Geyser basin by satellite telemetry, Yellowstone National Park, Wyoming” in Integrated Geoscience Studies in the Greater Yellowstone Area—Volcanic, Tectonic, and Hydrothermal Processes, ed. by John Geohegan, L. Norgaard, & R. Aronson (U.S. Geological Survey Professional Paper 1717, U.S. Geological Survey, Reston, VA, 2007).