Mod p Hecke algebras and dual equivariant cohomology I: the case of GL_2

Cédric PEPIN and Tobias SCHMIDT

January 29, 2022

Abstract

Let F be a p-adic local field and $G = GL_2$ over F. Let $\mathcal{H}^{(1)}$ be the pro-p Iwahori-Hecke algebra of the group $G(F)$ with coefficients in the algebraic closure \mathbb{F}_p. We show that the supersingular irreducible $\mathcal{H}^{(1)}$-modules of dimension 2 can be realized through the equivariant cohomology of the flag variety of the Langlands dual group \hat{G} over \mathbb{F}_p.

Contents

1 Introduction

2 The pro-p-Iwahori-Hecke algebra

3 The non-regular case and dual equivariant K-theory

4 The regular case and dual equivariant intersection theory

5 Tame Galois representations and supersingular modules

1 Introduction

Let F be a finite extension of \mathbb{Q}_p with residue field \mathbb{F}_p and let G be a connected split reductive group over F. Let $\mathcal{H} = R/I \setminus G(F)/I$ be the Iwahori-Hecke algebra associated to an Iwahori subgroup $I \subset G(F)$, with coefficients in an algebraically closed field R. On the other hand, let \hat{G} be the Langlands dual group of G over R, and \hat{B} the flag variety of Borel subgroups of \hat{G} over R.

When $R = \mathbb{C}$, the irreducible \mathcal{H}-modules appear as subquotients of the Grothendieck group $K^G(\hat{B})_\mathbb{C}$ of G-equivariant coherent sheaves on \hat{B}. As such they can be parametrized by the isomorphism classes of irreducible tame $\hat{G}(\mathbb{C})$-representations of the absolute Galois group $\text{Gal}(\overline{\mathbb{F}}/\mathbb{F})$ of \mathbb{F}, thereby realizing the tame local Langlands correspondence (in this setting also called the Deligne-Lusztig conjecture for Hecke modules): Kazhdan-Lusztig [KL87], Ginzburg [GZ97]. The idea of studying various cohomological invariants of the flag variety by means of Hecke operators (nowadays called Demazure operators) goes back to earlier work of Demazure [D73, D74].

The approach to the Deligne-Lusztig conjecture is based on the construction of a natural \mathcal{H}-action on the whole K-group $K^G(\hat{B})_\mathbb{C}$ which identifies the center of \mathcal{H} with the K-group of the base point $K^G(\text{pt})_\mathbb{C}$. The finite part of \mathcal{H} acts thereby via appropriate q-deformations of Demazure operators.

When $R = \overline{\mathbb{F}}_q$ any irreducible $\hat{G}(\overline{\mathbb{F}}_q)$-representation of $\text{Gal}(\overline{\mathbb{F}}/\mathbb{F})$ is tame and the Iwahori-Hecke algebra needs to be replaced by the bigger pro-p-Iwahori-Hecke algebra

$$\mathcal{H}^{(1)} = \overline{\mathbb{F}}_q[I^{(1)} \setminus G(F)/I^{(1)}].$$

Here, $I^{(1)} \subset I$ is the unique pro-p Sylow subgroup of I. The algebra $\mathcal{H}^{(1)}$ was introduced by Vignéras and its structure theory developed in a series of papers [V04, V05, V06, V14, V15, V16, V17]. The class of so-called supersingular irreducible $\mathcal{H}^{(1)}$-modules figures prominently among all irreducible $\mathcal{H}^{(1)}$-modules, since it is expected to be related to the arithmetic over the field \mathbb{F}. For $G = GL_n$, there is a distinguished correspondence between supersingular irreducible $\mathcal{H}^{(1)}$-modules of dimension n and irreducible $GL_n(\overline{\mathbb{F}}_q)$-representations of $\text{Gal}(\overline{\mathbb{F}}/\mathbb{F})$: Breuil [B03], Vignéras [V04, V05], Colmez [C10], Grosse-Klönne [GK16, GK18].

Our aim is to show that the supersingular irreducible $\mathcal{H}^{(1)}$-modules of dimension n can again be realized as subquotients of some \hat{G}-equivariant cohomology theory of the flag variety \hat{B} over $\overline{\mathbb{F}}_q$, although in a way different from the \mathbb{C}-coefficient case. Here we discuss the case $n = 2$, and we will treat the case of general n in a subsequent article [PS2].

From now on, let $R = \overline{\mathbb{F}}_q$ and $G = GL_2$. The algebra $\mathcal{H}^{(1)}$ splits as a direct product of subalgebras $\mathcal{H}^{(1)}_\gamma$ indexed by the orbits γ of \mathcal{O}_2 in the set of characters of $(\overline{\mathbb{F}}_q)^2$, namely the Iwahori components corresponding to trivial orbits, and the regular components. Accordingly, the category of $\mathcal{H}^{(1)}$-modules decomposes as the product of the module categories for the component algebras. In each component sits a unique supersingular module of dimension 2 with given central character. On the dual side, we have the projective line $\hat{B} = \mathbb{P}_{\overline{\mathbb{F}}_q}^1$ over $\overline{\mathbb{F}}_q$ with its natural action by fractional transformations of the algebraic group $\hat{G} = GL_2(\overline{\mathbb{F}}_q)$.

For a non-regular orbit γ, the component algebra \mathcal{H}^{γ} is isomorphic to the mod p Iwahori-Hecke algebra $\mathcal{H} = \overline{\mathbb{F}}_q[I \setminus GL_2(F)/I]$ and the quadratic relations in \mathcal{H} are idempotent of type $T_s^2 = -T_s$. The \hat{G}-equivariant K-theory $K^G(\hat{B})_{\overline{\mathbb{F}}_q}$ of \hat{B} comes with an action of the classical Demazure operator at $q = 0$. Our first result is that this action extends uniquely to an action of the full algebra \mathcal{H} on $K^G(\hat{B})_{\overline{\mathbb{F}}_q}$, which is faithful and which identifies the center $Z(\mathcal{H})$ of \mathcal{H} with the base ring $K^G(\text{pt})_{\overline{\mathbb{F}}_q}$. It is constructed from natural presentations of the algebras \mathcal{H} and $Z(\mathcal{H})$ [V04] and through the characteristic homomorphism

$$Z(\Lambda) \to K^G(\hat{B})$$

which identifies the equivariant K-ring with the group ring of characters Λ of a maximal torus in \hat{G}. In particular, everything is explicit. We finally show that, given a supersingular central character $\theta : Z(\mathcal{H}) \to \overline{\mathbb{F}}_q$, the central reduction $K^G(\hat{B})_{\theta}$ is isomorphic to the unique supersingular \mathcal{H}-module of dimension 2 with central character θ.

For a regular orbit γ, the component algebra \mathcal{H}^{γ} is isomorphic to Vignéras second Iwahori-Hecke algebra \mathcal{H}_2 [V04]. It can be viewed as a certain twisted version of two copies of the mod p nil Hecke ring \mathcal{H}^{nil} (introduced over the complex numbers by Kostant-Kumar [KK80]). In particular, the quadratic relations are nilpotent of type $T_s^2 = 0$. The \hat{G}-equivariant intersection theory $CH^G(\hat{B})_{\overline{\mathbb{F}}_q}$ of \hat{B} comes with an action of the classical Demazure operator at $q = 0$. We show that this action extends to a faithful action of \mathcal{H}^{nil} on $CH^G(\hat{B})_{\overline{\mathbb{F}}_q}$. To incorporate the twisting, we
then pass to the square \hat{B}^2 of \hat{B} and extend the action to a faithful action of \mathcal{H}_2 on $CH^{\hat{G}}(\hat{B}^2)_{\mathbb{P}_q}$. The action identifies a large part $Z^0(\mathcal{H}_2)$ of the center $Z(\mathcal{H}_2)$ with the base ring $CH^{\hat{G}}(\text{pt})_{\mathbb{P}_q}$. As a technical point, one actually has to pass to a certain localization of the Chow groups to realize these actions, but we do not go into this in the introduction. As in the non-regular case, the action is constructed from natural presentations of the algebras \mathcal{H}_2 and $Z(\mathcal{H}_2)$ \cite{V04} and through the characteristic homomorphism

$$\text{Sym}(\Lambda) \xrightarrow{\cong} CH^{\hat{G}}(\hat{B})$$

which identifies the equivariant Chow ring with the symmetric algebra on the character group Λ. So again, everything is explicit. We finally show that, given a supersingular central character $\theta : Z(\mathcal{H}_2) \to \mathbb{F}_q$, the semisimplification of the $Z^0(\mathcal{H}_2)$-reduction of (the localization of) $CH^{\hat{G}}(\hat{B}^2)_{\mathbb{P}_q}$ equals a direct sum of four copies of the unique supersingular \mathcal{H}_2-module of dimension 2 with central character θ.

In a final section we discuss the aforementioned bijection between supersingular irreducible $\mathcal{H}_q^{(1)}$-modules of dimension 2 and irreducible smooth $GL_2(\mathbb{F}_q)$-representations of $\text{Gal}(\mathbb{F}/F)$ in the light of our geometric language.

\textit{Notation:} In general, the letter F denotes a locally compact complete non-archimedean field with ring of integers \mathcal{O}_F. Let \mathbb{F}_q be its residue field, of characteristic p and cardinality q. We denote by G the algebraic group GL_2 over F and by $B := G(F)$ its group of F-rational points. Let $T \subset G$ be the torus of diagonal matrices. Finally, $I \subset G$ denotes the upper triangular standard Iwahori subgroup and $I^{(1)} \subset I$ denotes the unique pro-p Sylow subgroup of I. Without further mentioning, all modules will be left modules.

2 The pro-p-Iwahori-Hecke algebra

Let R be any commutative ring. The \textit{pro-p Iwahori Hecke algebra of G with coefficients in R} is defined to be the convolution algebra $\mathcal{H}_R^{(1)}(q) := (R[I^{(1)}]\backslash G/I^{(1)}], \ast)$ generated by the $I^{(1)}$-double cosets in G. In the sequel, \textit{we will assume that R is an algebra over the ring}

$$\mathbb{Z}[\frac{1}{q-1}, \mu_{q-1}].$$

The first examples we have in mind are $R = \mathbb{F}_q$ or its algebraic closure $R = \overline{\mathbb{F}_q}$.

2.1 Weyl groups and cocharacters

2.1.1. We denote by

$$\Lambda = \text{Hom}(G_m, T) = \mathbb{Z}\eta_1 \oplus \mathbb{Z}\eta_2 \simeq \mathbb{Z} \oplus \mathbb{Z}$$

the lattice of cocharacters of T with standard basis $\eta_1(x) = \text{diag}(x, 1)$ and $\eta_2(x) = \text{diag}(1, x)$. Then $\alpha = (1, -1) \in \Lambda$ is a root and

$$s = s_\alpha = s_{(1,-1)} : \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$$

$$(n_1, n_2) \mapsto (n_2, -n_1)$$

is the associated reflection generating the Weyl group $W_0 = \{1, s\}$. The element s acts on Λ and hence also on the group ring $\mathbb{Z}[\Lambda]$. The two invariant elements

$$\xi_1 := e^{(1,0)} + e^{(0,1)} \quad \text{and} \quad \xi_2 := e^{(1,1)}$$

in $\mathbb{Z}[\Lambda]^s$ define a ring isomorphism

$$\xi^+ : \mathbb{Z}[\Lambda^+] = \mathbb{Z}[e^{(1,0)}, (e^{(1,1)})^{\pm 1}] \xrightarrow{\cong} \mathbb{Z}[\Lambda]^s$$

$$e^{(1,0)} \mapsto \xi_1$$

$$e^{(1,1)} \mapsto \xi_2$$
where $\Lambda^+ := \mathbb{Z}_{\geq 0}(1, 0) \oplus \mathbb{Z}(1, 1)$ is the monoid of dominant cocharacters.

2.1.2. We introduce the affine Weyl group W_{aff} and the Iwahori-Weyl group W of G:

$$W_{\text{aff}} := e^\mathbb{Z}(1,-1) \times W_0 \subset W := e^\Lambda \rtimes W_0.$$

With

$$u := e^{(1,0)}s = se^{(0,1)}$$

one has $W = W_{\text{aff}} \rtimes \Omega$ where $\Omega = u^2 \simeq \mathbb{Z}$. Let $s_0 = e^{(1,-1)}s = se^{(-1,1)} = usu^{-1}$. Recall that the pair $(W_{\text{aff}}, \{s_0, s\})$ is a Coxeter group and its length function ℓ can be inflated to W via $\ell|_{\Omega} = 0$.

2.2 Idempotents and component algebras

2.2.1. We have the finite diagonal torus $T := T(\mathbb{F}_q)$ and its group ring $R[T]$. As $q - 1$ is invertible in R, so is $|T| = (q - 1)^2$ and hence $R[T]$ is a semisimple ring. The canonical isomorphism $T \simeq I/I(1)$ induces an inclusion

$$R[T] \subset H_R^{(1)}(q).$$

We denote by T^\vee the set of characters

$$\lambda : T \to \mathbb{F}_q^*$$

of T, with its natural W_0-action given by

$$^s\lambda(t_1, t_2) = \lambda(t_2, t_1)$$

for $(t_1, t_2) \in T$. The number of W_0-orbits in T^\vee equals $\frac{q^2 - q}{2}$. Also W acts on T^\vee through the canonical quotient map $W \to W_0$.

2.2.2. Definition. For all $\lambda \in T^\vee$, define

$$\varepsilon_\lambda := |T|^{-1} \sum_{t \in T} \lambda^{-1}(t)T_t \in R[T]$$

and for all $\gamma \in T^\vee/W_0$,

$$\varepsilon_\gamma := \sum_{\lambda \in \gamma} \varepsilon_\lambda \in R[T].$$

Following the terminology of [V04], we call $|\gamma| = 1$ the Iwahori case or non-regular case and $|\gamma| = 2$ the regular case.

2.2.3. Proposition. For all $\lambda \in T^\vee$, the element ε_λ is an idempotent. For all $\gamma \in T^\vee/W_0$, the element ε_γ is a central idempotent in $H_R^{(1)}(q)$. The R-algebra $H_R^{(1)}(q)$ is the direct product of its sub-R-algebras $H_R^{(1)}(q)\varepsilon_\gamma$, i.e.

$$H_R^{(1)}(q) = \prod_{\gamma \in T^\vee/W_0} H_R^{(1)}(q)\varepsilon_\gamma.$$

Proof. This follows from [V04] Prop. 3.1 and its proof. \qed

The proposition implies that the category of $H_R^{(1)}(q)$-modules decomposes into a finite product of the module categories for the individual component rings $H_R^{(1)}(q)\varepsilon_\gamma$.

4
2.3 The Iwahori-Hecke algebra

Our reference for the following is [V04 1.1/2].

2.3.1. Definition. Let \(q \) be an indeterminate. The generic Iwahori-Hecke algebra is the \(\mathbb{Z}[q] \)-algebra \(\mathcal{H}(q) \) defined by generators

\[
\mathcal{H}(q) := \bigoplus_{(n_1, n_2) \in \mathbb{Z}^2} \mathbb{Z}[q]T_{c(n_1, n_2)} \oplus \mathbb{Z}[q]T_{e(n_1, n_2)}
\]

and relations:

- **braid relations**
 \[
 T_wT_{w'} = T_{ww'} \quad \text{for } w, w' \in W \text{ if } \ell(w) + \ell(w') = \ell(ww')
 \]

- **quadratic relations**
 \[
 \begin{cases}
 T_2^2 = (q - 1)T_q + q \\
 T_{w_0}^2 = (q - 1)T_{w_0} + q.
 \end{cases}
 \]

2.3.2. Setting \(S := T_\text{aff} \) and \(U := T_u \), one can check that

\[
\mathcal{H}(q) = \mathbb{Z}[q][S,U^{\pm 1}], \quad S^2 = (q - 1)S + q, \quad U^2 = SU^2
\]

is a presentation of \(\mathcal{H}(q) \). For example, \(S_0 := T_{w_0} = USU^{-1} \). We also have the generic finite and affine Hecke algebras

\[
\mathcal{H}_0(q) = \mathbb{Z}[q][S] \subset \mathcal{H}_\text{aff}(q) = \mathbb{Z}[q][S_0, S].
\]

The algebra \(\mathcal{H}_0(q) \) has two characters corresponding to \(S \mapsto 0 \) and \(S \mapsto -1 \). Similarly, \(\mathcal{H}_\text{aff}(q) \) has four characters. The two characters different from the trivial character \(S_0, S \mapsto 0 \) and the sign character \(S_0, S \mapsto -1 \) are called supersingular.

2.3.3. The center \(Z(\mathcal{H}(q)) \) of the algebra \(\mathcal{H}(q) \) admits the explicit description via the algebra isomorphism

\[
\mathcal{Z}(q) : \mathbb{Z}[q][\Lambda^+] = \mathbb{Z}[q][e^{(1,0)}, (e^{(1,1)})^{\pm 1}] \xrightarrow{\cong} Z(\mathcal{H}(q))
\]

\[
\begin{align*}
e^{(1,0)} &\mapsto \zeta_1 := U(S - (q - 1)) + SU \\
e^{(1,1)} &\mapsto \zeta_2 := U^2.
\end{align*}
\]

In particular,

\[
Z(\mathcal{H}(q)) = \mathbb{Z}[q][US + (1 - q)U + SU, U^{\pm 2}] \subset \mathbb{Z}[q][S,U^{\pm 1}] = \mathcal{H}(q).
\]

2.3.4. Now let \(\gamma \in T'/W_0 \) such that \(|\gamma| = 1 \), say \(\gamma = \{\lambda\} \). The ring homomorphism \(\mathbb{Z}[q] \rightarrow R, q \mapsto q \), induces an isomorphism of \(R \)-algebras

\[
\mathcal{H}(q) \otimes_{\mathbb{Z}[q]} R \xrightarrow{\cong} \mathcal{H}_R^{(1)}(q) \varepsilon_{\gamma}, \quad T_w \mapsto \varepsilon_{\lambda}T_w.
\]

2.4 The second Iwahori-Hecke algebra

Our reference for the following is [V04 2.2], as well as [KK06] for the basic theory of the nil Hecke algebra. We keep the notation introduced above.

2.4.1. Definition. The generic nil Hecke algebra is the \(\mathbb{Z}[q] \)-algebra \(\mathcal{H}_\text{nil}(q) \) defined by generators

\[
\mathcal{H}_\text{nil}(q) := \bigoplus_{(n_1, n_2) \in \mathbb{Z}^2} \mathbb{Z}[q]T_{e(n_1, n_2)} \oplus \mathbb{Z}[q]T_{e(n_1, n_2)}
\]

and relations:
- braid relations

\[T_w T_{w'} = T_{ww'} \text{ for } w, w' \in W \text{ if } \ell(w) + \ell(w') = \ell(ww') \]

- quadratic relations

\[
\begin{cases}
T_x^2 = q \\
T^2_{s_0} = q
\end{cases}
\]

2.4.2. Setting \(S := T_s \) and \(U := T_u \), one can check that

\[H^{\nil}(q) = \mathbb{Z}[q][S,U, U^{\pm 1}], \quad S^2 = q, \quad U^2 S = SU^2 \]

is a presentation of \(H^{\nil}(q) \). Again, \(S_0 := T_{s_0} = USU^{-1} \). The center \(\mathbb{Z}(H^{\nil}(q)) \) admits the explicit description via the algebra isomorphism

\[\mathcal{Z}^{\nil}(q) : \mathbb{Z}[q][\Lambda^+] = \mathbb{Z}[q][\epsilon(1,0), (\epsilon(1,1))^\mp 1] \xrightarrow{\cong} \mathbb{Z}(H^{\nil}(q)) \]

\[\epsilon(1,0) \mapsto \zeta_1 := US + SU \]

\[\epsilon(1,1) \mapsto \zeta_2 := U^2. \]

In particular,

\[\mathbb{Z}(H^{\nil}(q)) = \mathbb{Z}[q][US + SU, U^{\pm 2}] \subset \mathbb{Z}[q][S, U^{\pm 1}] = H^{\nil}(q). \]

2.4.3. Form the twisted tensor product algebra

\[H_2(q) := (\mathbb{Z}[q] \times \mathbb{Z}[q]) \otimes_{\mathbb{Z}[q]} H^{\nil}(q). \]

With the formal symbols \(\epsilon_1 = (1,0) \) and \(\epsilon_2 = (0,1) \), the ring multiplication is given by

\[(\epsilon_1 \otimes T_w) \cdot (\epsilon_{i'} \otimes T_{w'}) = (\epsilon_1 \epsilon_{i'} \otimes T_w T_{w'}) \]

for all \(1 \leq i, i' \leq 2 \). Here, \(W \) acts through its quotient \(W_0 \) and \(s \in W_0 \) acts on the set \(\{1, 2\} \) by interchanging the two elements. The multiplicative unit element in the ring \(\mathbb{Z}[q] \times \mathbb{Z}[q] \) is \((1,1) = \epsilon_1 + \epsilon_2 \) and the multiplicative unit element in the ring \(H_2(q) \) is \((1,1) \otimes 1 \). We identify the rings \(\mathbb{Z}[q] \times \mathbb{Z}[q] \) and \(H^{\nil}(q) \) with subrings of \(H_2(q) \) via the maps \((a,b) \mapsto (a,b) \otimes 1 \) and \(a \mapsto (1,1) \otimes a \) respectively. In particular, we will write \(\epsilon_1, \epsilon_2, S_0, S, U \in H_2(q) \) etc.

We also introduce the generic affine Hecke algebra

\[H_{2, \text{aff}}(q) = (\mathbb{Z}[q] \times \mathbb{Z}[q]) \otimes_{\mathbb{Z}[q]} \mathbb{Z}[q][S_0, S]. \]

It is a subalgebra of \(H_2(q) \) and has two supersingular characters \(\chi_1 \) and \(\chi_2 \), namely \(\chi_1(\epsilon_1) = 1 \) and \(\chi_1(\epsilon_2) = 0 \) and \(\chi_1(S_0) = \chi_1(S) = 0 \). Similarly for \(\chi_2 \).

2.4.4. The structure of \(H_2(q) \) as an algebra over its center can be made explicit. In fact, there is an algebra isomorphism with an algebra of \(2 \times 2 \)-matrices

\[H_2(q) \cong M(2, \mathbb{Z}(q)), \quad \mathbb{Z}(q) := \mathbb{Z}[q][X, Y, z^{\pm 1}, (XY)] \]

which maps the center \(\mathbb{Z}(H_2(q)) \) to the scalar matrices \(\mathbb{Z}(q) \). Under this isomorphism, we have

\[S \mapsto \begin{pmatrix} 0 & Y \\ z_2^{-1}X & 0 \end{pmatrix}, \quad U \mapsto \begin{pmatrix} 0 & z_2 \\ 1 & 0 \end{pmatrix}, \]

\[\varepsilon_1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \varepsilon_2 \mapsto \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \]

The induced map \(Z(H_2(q)) \rightarrow \mathbb{Z}(q) \) satisfies

\[\zeta_1 \mapsto \begin{pmatrix} X + Y & 0 \\ 0 & X + Y \end{pmatrix}, \quad \zeta_2 \mapsto \begin{pmatrix} z_2 & 0 \\ 0 & z_2 \end{pmatrix}. \]

In particular, the subring

\[Z^\circ(H_2(q)) := \mathbb{Z}[q][\zeta_1, \zeta_2^{\pm 1}] = Z(H^{\nil}(q)) \subset H^{\nil}(q) \subset H_2(q) \]

lies in fact in the center \(Z(H_2(q)) \) of \(H_2(q) \).
2.4.5. Now let $\gamma \in T^\vee / W_0$ such that $|\gamma| = 2$, say $\gamma = \{\lambda, \lambda\}$. The ring homomorphism $\mathbb{Z}[q] \to R$, $q \mapsto q$, induces an isomorphism of R-algebras

$$\mathcal{H}_2(q) \otimes_{\mathbb{Z}[q]} R \xrightarrow{\sim} \mathcal{H}_2^{(1)}(q) \varepsilon_\gamma, \quad \varepsilon_1 \otimes T_w \mapsto \varepsilon_\lambda T_w, \quad \varepsilon_2 \otimes T_w \mapsto \varepsilon \varepsilon_\lambda T_w.$$

2.4.6. Remark. We have used the same letters $S_0, S, U, \zeta_1, \zeta_2$ for the corresponding Hecke operators in the Iwahori Hecke algebra and in the second Iwahori Hecke algebra. This should not lead to confusion, as we will always treat non-regular components and regular components separately in our discussion.

3 The non-regular case and dual equivariant K-theory

3.1 Recollections from algebraic $K\hat{G}$-theory

For basic notions from equivariant algebraic K-theory we refer to [Th87]. A useful introduction may also be found in [CG97, chap. 5].

3.1.1. We let

$$\hat{G} := \text{GL}_2 / \mathbb{F}_q$$

be the Langlands dual group of G over the algebraic closure \mathbb{F}_q of \mathbb{F}_q. The dual torus

$$\hat{T} := \text{Spec} \mathbb{F}_q[A] \subset \hat{G}$$

identifies with the torus of diagonal matrices in \hat{G}. A basic object is

$$R(\hat{G}) := \text{the representation ring of } \hat{G},$$

i.e. the Grothendieck ring of the abelian tensor category of all finite dimensional \hat{G}-representations. It can be viewed as the equivariant K-theory $K\hat{G}(pt)$ of the base point $pt = \text{Spec} \mathbb{F}_q$. To compute it, we introduce the representation ring $R(\hat{T})$ of \hat{T} which identifies canonically, as a ring with W_0-action, with the group ring of Λ, i.e.

$$R(\hat{T}) = \mathbb{Z}[\Lambda].$$

The formal character $\chi_V \in \mathbb{Z}[\Lambda]^*$ of a representation V is an invariant function and is defined by

$$\chi_V(e^\lambda) = \dim_{\mathbb{F}_q} V_\lambda$$

for all $\lambda \in \Lambda$ where V_λ is the λ-weight space of V. The map $V \mapsto \chi_V$ induces a ring isomorphism

$$\chi^* : R(\hat{G}) \xrightarrow{\sim} \mathbb{Z}[\Lambda]^*.$$

The $\mathbb{Z}[\Lambda]^*$-module $\mathbb{Z}[\Lambda]$ is free of rank 2, with basis $\{1, e^{(-1,0)}\}$,

$$\mathbb{Z}[\Lambda] = \mathbb{Z}[\Lambda]^* \oplus \mathbb{Z}[\Lambda]^* e^{(-1,0)}.$$

3.1.2. We let

$$\hat{B} := \mathbb{P}_q^1$$

be the projective line over \mathbb{F}_q endowed with its left \hat{G}-action by fractional transformations

$$\left(\begin{array}{cc}a & b \\c & d \end{array}\right) \cdot (x) = \frac{ax + b}{cx + d}.$$

Here, x is a local coordinate on \mathbb{P}_q^1. The stabilizer of the point $x = \infty$ is the Borel subgroup \hat{B} of upper triangular matrices and we may thus write $\hat{B} = \hat{G} / \hat{B}$. We denote by

$$K^\hat{G}(\hat{B}) := \text{the Grothendieck group of all } \hat{G}\text{-equivariant coherent } \mathcal{O}_G\text{-modules.}$$
Given a representation \(V \) and an equivariant coherent sheaf \(\mathcal{F} \), the diagonal action of \(\hat{G} \) makes \(\mathcal{F} \otimes_{\mathcal{T}_q} V \) an equivariant coherent sheaf. In this way, \(K^{\hat{G}}(\hat{B}) \) becomes a module over the ring \(R(\hat{G}) \).

The characteristic homomorphism in algebraic \(K^{\hat{G}} \)-theory is a ring isomorphism
\[
e^G : \mathbb{Z}[\Lambda] \xrightarrow{\sim} K^{\hat{G}}(\hat{B}).
\]
It maps \(e^\lambda \) with \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \) to the class of the \(\hat{G} \)-equivariant line bundle \(\mathcal{O}_{\mathbb{P}^1}(\lambda_1 - \lambda_2) \otimes \text{det}^\lambda \) where \(\text{det} \) is the determinant character of \(\hat{G} \). The characteristic homomorphism is compatible with the character morphism \(\chi_* \), i.e. \(e^G \) is \(\mathbb{Z}[\Lambda]^* \cong R(\hat{G}) \)-linear.

3.1.3. For the definition of the classical Demazure operators on algebraic \(K \)-theory we refer to [Dr2] [Dr4]. The Demazure operators
\[
D_s, D'_s \in \text{End}_{R(\hat{T})}(R(\hat{T}))
\]
are defined by:
\[
D_s(a) = \frac{a - s(a)}{1 - e^{(1, -1)}} \quad \text{and} \quad D'_s(a) = \frac{a - s(a)e^{(1, -1)}}{1 - e^{(1, -1)}}
\]
for \(a \in R(\hat{T}) \). They are the projectors on \(R(\hat{T})^*e^{(-1, 0)} \) along \(R(\hat{T})^* \), and on \(R(\hat{T})^* \) along \(R(\hat{T})^*e^{(1, 0)} \), respectively. In particular \(D_s^2 = D_s \) and \(D'_s^2 = D'_s \). One sets
\[
D_s(q) := D_s - q D'_s \in \text{End}_{R(\hat{T})^*}[q](R(\hat{T})[q])
\]
and checks by direct calculation that
\[
D_s(q)^2 = q - (q - 1) D_s(q).
\]
In particular, we obtain a well-defined \(\mathbb{Z}[q] \)-algebra homomorphism
\[
\mathcal{A}_0(q) : \mathcal{H}_0(q) = \mathbb{Z}[q][S] \longrightarrow \text{End}_{R(\hat{T})^*}[q](R(\hat{T})[q]), \quad S \longmapsto -D_s(q)
\]
which we call the Demazure representation.

3.2 The morphism from \(R(\hat{G})[q] \) to the center of \(\mathcal{H}(q) \)
In the following we identify the rings
\[
R(\hat{G})[q] \simeq \mathbb{Z}[q][\Lambda]^* = \mathbb{Z}[q][\xi_1, \xi_2^{\pm 1}]
\]
via the character isomorphism \(\chi_* \). We have the \(\mathbb{Z}[q] \)-algebra isomorphism coming via base change from the isomorphism \(\xi^+ \), cf. [2.1.1]
\[
\xi^+ : \mathbb{Z}[q][e^{(1,0)}, (e^{(1,1)})^{\pm 1}] \xrightarrow{\sim} \mathbb{Z}[q][\xi_1, \xi_2^{\pm 1}]
\]
\[
e^{(1,0)} \longmapsto \xi_1 \quad e^{(1,1)} \longmapsto \xi_2.
\]
On the other hand, the source of \(\xi^+ \) is isomorphic to the center \(Z(\mathcal{H}(q)) \) of \(\mathcal{H}(q) \) via the isomorphism \(\mathcal{Z}'(q) \), cf. [2.3.2]. The composition
\[
\mathcal{Z}'(q) \circ (\xi^+)^{-1} : R(\hat{G})[q] \xrightarrow{\sim} Z(\mathcal{H}(q))
\]
\[
\xi_1 \longmapsto \zeta_1 = U(S - (q - 1)) + SU \quad \xi_2 \longmapsto \zeta_2 = U^2
\]
is then a ring isomorphism.
3.3 The extended Demazure representation \(\mathcal{A}(q) \)

Recall the Demazure representation \(\mathcal{A}_0(q) \) of the finite algebra \(\mathcal{H}_0(q) \) by \(R(\widehat{G})[q] \)-linear operators on the \(K \)-theory \(K^G(\widehat{B}) \), cf. \[\text{3.1.3} \] We have the following first main result.

3.3.1. Theorem. There is a unique ring homomorphism

\[
\mathcal{A}(q) : \mathcal{H}(q) \to \text{End}_{R(\widehat{G})[q]}(K^G(\widehat{B})[q])
\]

which extends the ring homomorphism \(\mathcal{A}_0(q) \) and coincides on \(Z(\mathcal{H}(q)) \) with the isomorphism

\[
Z(\mathcal{H}(q)) \xrightarrow{\approx} R(\widehat{G})[q]
\]

\[
\zeta_1 \mapsto \xi_1
\]

\[
\zeta_2 \mapsto \xi_2.
\]

The homomorphism \(\mathcal{A}(q) \) is injective.

Proof : Such an extension exists if and only if there exists

\[
\mathcal{A}(q)(U) \in \text{End}_{R(\widehat{G})[q]}(K^G(\widehat{B})[q])
\]

satisfying

1. \(\mathcal{A}(q)(U) \) is invertible ;
2. \(\mathcal{A}(q)(U)^2 = \mathcal{A}(q)(U^2) = \mathcal{A}(q)(\zeta_2) = \xi_2 \text{Id} ;
3. \(\mathcal{A}(q)(U)\mathcal{A}_0(q)(S) + (1-q)\mathcal{A}(q)(U) + \mathcal{A}_0(q)(S)\mathcal{A}(q)(U) = \mathcal{A}(q)(US + (1-q)U + SU) = \mathcal{A}(q)(\zeta_1) = \xi_1 \text{Id}.

To find such an operator \(\mathcal{A}(q)(U) \), we write

\[
K^G(\widehat{B})[q] = R(\widehat{T})[q] = R(\widehat{T})^+[q] \oplus R(\widehat{T})^-[q][e^{(-1,0)}],
\]

and use the \(R(\widehat{T})^+[q] \)-basis \(\{1, e^{(-1,0)}\} \) to identify \(\text{End}_{R(\widehat{G})[q]}(K^G(\widehat{B})[q]) \) with the algebra of \(2 \times 2 \) matrices over the ring \(R(\widehat{T})^+[q] \). Then, by definition,

\[
\mathcal{A}_0(q)(S) = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} + q \begin{pmatrix} 1 & \xi_1 e^{(-1,-1)} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} q & \xi_1 e^{(-1,-1)} \\ 0 & -1 \end{pmatrix}.
\]

Hence, if we set

\[
\mathcal{A}(q)(U) = \begin{pmatrix} a & c \\ b & d \end{pmatrix},
\]

we get

\[
\mathcal{A}(q)(U)^2 = e^{(1,1)} \text{Id} \iff \begin{pmatrix} a^2 + bc & c(a + d) \\ b(a + d) & d^2 + bc \end{pmatrix} = \begin{pmatrix} e^{(1,1)} & 0 \\ 0 & e^{(1,1)} \end{pmatrix}
\]

and

\[
\mathcal{A}(q)(U)\mathcal{A}_0(q)(S) + (1-q)\mathcal{A}(q)(U) + \mathcal{A}_0(q)(S)\mathcal{A}(q)(U) = \xi_1 \text{Id} \iff \begin{pmatrix} (q + 1)a + q\xi_1 e^{(-1,-1)}b & q\xi_1 e^{(-1,-1)}(a + d) \\ 0 & -(q + 1)d + q\xi_1 e^{(-1,-1)}b \end{pmatrix} = \begin{pmatrix} \xi_1 & 0 \\ 0 & \xi_1 \end{pmatrix}.
\]

These two conditions together are in turn equivalent to

\[
\begin{cases}
 a & = -d \\
 bc & = e^{(1,1)} - a^2 \\
 (q + 1)a & = \xi_1 - q\xi_1 e^{(-1,-1)}b.
\end{cases}
\]
Moreover, in this case, the determinant
\[ad - bc = -a^2 - (e^{(1,1)} - a^2) = -e^{(1,1)} \]
is invertible. Specialising to \(q = 0 \), we find that there is exactly one \(R(\hat{G})[q] \)-algebra homomorphism
\[\mathcal{A}(q) : \mathcal{H}(q) \longrightarrow \text{End}_{R(\hat{G})[q]}(K\hat{G}(\hat{B})[q]), \]
extending the ring homomorphism \(\mathcal{A}_0(q) \), corresponding to the matrix
\[\mathcal{A}(q)(U) = \begin{pmatrix} a & c \\ b & d \end{pmatrix} := \begin{pmatrix} \xi_1 & e^{(-1,-1)}\xi_1^2 - 1 \\ -e^{(1,1)} & -\xi_1 \end{pmatrix}. \]

Note that \(a, b, c, d \in R(\hat{T})^* \subset R(\hat{T})^*[q]. \) The injectivity of the map \(\mathcal{A}(q) \) will be proved in the next subsection. \(\square \)

3.4 Faithfulness of \(\mathcal{A}(q) \)

Let us show that the map \(\mathcal{A}(q) \) is injective. It follows from \(\ref{3.3} \) that the ring \(\mathcal{H}(q) \) is generated by the elements
\[1, \ S, \ U, \ SU \]
over its center \(Z(\mathcal{H}(q)) = \mathbb{Z}[\zeta_1, \zeta_2^\pm 1][q] \). As the latter is mapped isomorphically to the center \(R(\hat{G})[q] = \mathbb{Z}[\xi_1, \xi_2^\pm 1][q] \) of the matrix algebra \(\text{End}_{R(\hat{G})[q]}(K\hat{G}(\hat{B})[q]) \) by \(\mathcal{A}(q) \), it suffices to check that the images
\[1, \ \mathcal{A}_0(q)(S), \ \mathcal{A}(q)(U), \ \mathcal{A}_0(q)(S)\mathcal{A}(q)(U) \]
of \(1, S, U, SU \) by \(\mathcal{A}(q) \) are free over \(R(\hat{G})[q] \). To ease notation, we will write \(\xi \) instead of \(\xi_1 \) in the following calculation. So let \(\alpha, \beta, \gamma, \delta \in R(\hat{T})^*[q] \) (which is an integral domain) be such that
\[\alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \beta \begin{pmatrix} q & q\xi e^{(-1,-1)} \\ 0 & -1 \end{pmatrix} + \gamma \begin{pmatrix} a & c \\ b & -a \end{pmatrix} + \delta \begin{pmatrix} q & q\xi e^{(-1,-1)} \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & c \\ b & -a \end{pmatrix} = 0. \]
This is equivalent to the expression
\[\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} + \beta q \begin{pmatrix} q & \xi e^{(-1,-1)} \\ 0 & -1 \end{pmatrix} + \gamma \begin{pmatrix} a & c \\ b & -a \end{pmatrix} + \delta \begin{pmatrix} q & \xi e^{(-1,-1)}b \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & c \\ b & -a \end{pmatrix} = 0. \]
being zero, i.e. to the identity
\[\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} + \beta q \begin{pmatrix} q & \xi e^{(-1,-1)} \\ 0 & -1 \end{pmatrix} + \gamma \begin{pmatrix} a & c \\ b & -a \end{pmatrix} + \delta \begin{pmatrix} (\xi - a) \end{pmatrix} = 0. \]
Then
\[\begin{cases} \alpha + \beta q + \gamma a + \delta (\xi - a) = 0 \\ (\gamma - \delta)b = 0 \\ \beta q\xi e^{(-1,-1)} + \gamma c + \delta q(c - a\xi e^{(-1,-1)}) = 0 \\ \alpha - \beta + (\delta - \gamma)a = 0. \end{cases} \]
As \(b \neq 0 \), we obtain \(\delta = \gamma \) and
\[\begin{cases} \alpha + \beta q + \gamma \xi = 0 \\ \beta q\xi e^{(-1,-1)} + \gamma((q + 1)c - q\xi e^{(-1,-1)}a) = 0 \\ \alpha - \beta = 0. \end{cases} \]
Hence \(\alpha = \beta \) and
\[\begin{cases} \alpha(q + 1) + \gamma \xi = 0 \\ \alpha q\xi e^{(-1,-1)} + \gamma((q + 1)c - q\xi e^{(-1,-1)}a) = 0. \end{cases} \]
The latter system has determinant
\[(q + 1)((q + 1)c - q\xi e^{(-1,-1)}a) - q\xi^2 e^{(-1,-1)},\]
which is nonzero (its specialization at \(q = 0 \) is equal to \(c \neq 0 \)), whence \(\alpha = \gamma = 0 = \beta = \delta \).
This concludes the proof and shows that the map \(\mathcal{A}(q) \) is injective. We record the following two corollaries of the proof.

3.4.1. Corollary. The ring \(\mathcal{H}(q) \) is a free \(\mathbb{Z}(\mathcal{H}(q)) \)-module on the basis \(1, S, U, SU \).

3.4.2. Corollary. The representation \(\mathcal{A}(0) \) is injective.

3.5 Supersingular modules

In this section we work at \(q = 0 \) and over the algebraic closure \(\overline{\mathbb{F}}_q \) of the field \(\mathbb{F}_q \).

3.5.1. Consider the ring homomorphism \(\mathbb{Z}[q] \to \overline{\mathbb{F}}_q, \, q \mapsto q = 0 \), and let
\[\mathcal{H}_{\mathcal{F}} = \mathcal{H}(q) \otimes_{\mathbb{Z}[q]} \mathbb{F}_q = \mathbb{F}_q[S, U^\pm]. \]

The characters of \(\mathcal{H}_{\mathcal{F}} \) are parametrised by the set \(\{0, -1\} \times \overline{\mathbb{F}}_q^\times \) via evaluation on the elements \(S \) and \(U \). Let \((\tau_1, \tau_2) \in \overline{\mathbb{F}}_q \times \overline{\mathbb{F}}_q \). A standard module over \(\mathcal{H}_{\mathcal{F}} \) of dimension 2 is defined to be a module of type
\[M_2(\tau_1, \tau_2) := \mathbb{F}_q^m \oplus \mathbb{F}_q U^m, \quad Sm = -m, \quad SUm = \tau_1 m, \quad U^2m = \tau_2 m. \]
The center \(Z(\mathcal{H}_{\mathcal{F}}) = \overline{\mathbb{F}}_q[\zeta_1, \zeta_2 \pm 1] \) acts on the module \(M_2(\tau_1, \tau_2) \) via the character \(\zeta_1 \mapsto \tau_1, \zeta_2 \mapsto \tau_2 \).
The module \(M_2(\tau_1, \tau_2) \) is reducible if and only if \(\tau_1 = \tau_2 \). It is called supersingular if \(\tau_1 = 0 \). A supersingular module is irreducible.
Any simple finite dimensional \(\mathcal{H}_{\mathcal{F}} \)-module is either a character or a standard module [V04, 1.4].

3.5.2. Now consider the base change of the representation \(\mathcal{A} := \mathcal{A}(0) \) to \(\mathbb{F}_q \)
\[\mathcal{A} : \mathcal{H}_{\mathcal{F}} \longrightarrow \text{End}_{R(G)_{\mathcal{F}}} (K^G(\mathcal{B})_{\mathcal{F}}) = \text{End}_{\mathcal{F}_q}[\zeta_1, \zeta_2 \pm 1](\mathbb{F}_q[e^\pm m, e^\pm m]). \]
Recall that the image of \(Z(\mathcal{H}_{\mathcal{F}}) = \overline{\mathbb{F}}_q[\zeta_1, \zeta_2 \pm 1] \) is \(R(\tilde{G})_{\mathcal{F}} = \overline{\mathbb{F}}_q[\zeta_1, \zeta_2 \pm 1] \).

Let us fix a character \(\theta : Z(\mathcal{H}_{\mathcal{F}}) \to \overline{\mathbb{F}}_q \). Following [V04], we call \(\theta \) supersingular if \(\theta(\zeta_1) = 0 \). Consider the base change of \(\mathcal{A} \) along \(\theta \)
\[\mathcal{A}_\theta := \mathcal{A} \otimes_{Z(\mathcal{H}_{\mathcal{F}})} \overline{\mathbb{F}}_q, \quad K^G(\mathcal{B})_{\theta} := K^G(\mathcal{B})_{\mathcal{F}} \otimes_{Z(\mathcal{H}_{\mathcal{F}})} \overline{\mathbb{F}}_q = K^G(\mathcal{B})_{\mathcal{F}} \otimes_{R(G)_{\mathcal{F}}} (R(\tilde{G})_{\mathcal{F}} \otimes_{Z(\mathcal{H}_{\mathcal{F}})} \overline{\mathbb{F}}_q) \]
\[\mathcal{A}_\theta : \mathcal{H}_\theta \longrightarrow \text{End}_{\mathcal{F}_q}(K^G(\mathcal{B})_{\theta}). \]

3.5.3. Proposition. The representation \(\mathcal{A}_\theta \) is faithful if and only if \(\theta(\zeta_1)^2 \neq \theta(\zeta_2) \). In this case, \(\mathcal{A}_\theta \) is an algebra isomorphism
\[\mathcal{A}_\theta : \mathcal{H}_\theta \xrightarrow{\cong} \text{End}_{\mathcal{F}_q}(K^G(\mathcal{B})_{\theta}). \]

Proof: The discussion in the preceding section [52] shows that \(\mathcal{H}_\theta \) has \(\mathbb{F}_q \)-basis given by \(1, S, U, SU \). Moreover, their images
\[1, \mathcal{A}_\theta(S), \mathcal{A}_\theta(U), \mathcal{A}_\theta(S) \mathcal{A}_\theta(U) \]
by \(\mathcal{A}_\theta \) are linearly independent over \(\mathbb{F}_q \) if and only if the scalar \(c = e^{(-1,-1)} \xi_2^2 - 1 \in R(\tilde{G})_{\mathcal{F}} \) does not reduce to zero via \(\theta \), i.e. if and only if \(\xi_2^2 \xi_1^2 - 1 \notin \ker \theta \). In this case, the map \(\mathcal{A}_\theta \) is injective and then bijective since \(\dim_{\mathbb{F}_q} K^G(\mathcal{B})_{\theta} = 2 \). □
3.5.4. Corollary. The \mathcal{H}_{γ}-module $K^G(\hat{B}_\theta)$ is isomorphic to the standard module $M_2(\tau_1, \tau_2)$ where $\tau_1 = \theta(\zeta_1)$ and $\tau_2 = \theta(\zeta_2)$. In particular, if θ is supersingular, then $K^G(\hat{B}_\theta)$ is isomorphic to the unique supersingular \mathcal{H}_{γ}-module with central character θ.

Proof: In the case $\tau_1 \neq \tau_2$, the module $K^G(\hat{B}_\theta)$ is irreducible by the preceding proposition and hence is standard. In general, it suffices to find $m \in K^G(\hat{B}_\theta)$ with $Sm = -m$ and to verify that $\{m, Um\}$ are linearly independent. For example, $m = e^n$ is a possible choice, cf. below. \square

A "standard basis" for the module $K^G(\hat{B}_\theta)$ comes from the so-called Pittie-Steinberg basis \cite{St75} of $\mathbb{F}_q[e^{\pm n}, e^{\pm m}]$ over $\mathbb{F}_q[\zeta_1, \zeta_2^{\pm 1}]$. It is given by

$$z_e = 1, \quad z_s = e^{n_2}.$$

It induces a basis of $\mathbb{F}_q[e^{\pm n}, e^{\pm m}] \otimes_{\mathbb{F}_q[\zeta_1, \zeta_2^{\pm 1}]} \mathbb{F}_q$ over \mathbb{F}_q for any character θ of $\mathbb{F}_q[\zeta_1, \zeta_2^{\pm 1}]$. Let $\tau_2 = \theta(\zeta_2)$. The matrices of S, U and $S_0 = USU^{-1}$ in the latter basis are

$$S = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 0 & -\tau_2 \\ -1 & 0 \end{pmatrix}, \quad S_0 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}.$$

The two characters of $\mathcal{H}_{\gamma, \theta} = \mathbb{F}_q[S]$ corresponding to $S \mapsto 0$ and $S \mapsto -1$ are realized by z_e and z_s. From the matrix of S_0, we see in fact that the whole affine algebra $\mathcal{H}_{aff, \gamma} := \mathbb{F}_q[S_0, S]$ acts on z_e and z_s via the two supersingular characters of $\mathcal{H}_{aff, \gamma}$, cf. 3.3.2.

3.5.5. We extend this discussion of the component $\gamma = 1$ to any other non-regular component as follows. Consider the quotient map

$$\mathbb{T}' \to \mathbb{T}' / W_0.$$

For any $\gamma \in \mathbb{T}' / W_0$ define the \mathbb{F}_q-variety

$$\tilde{B}_\gamma := \hat{B} \times \pi^{-1}(\gamma).$$

Suppose $|\gamma| = 1$. We have the algebra isomorphism $\mathcal{H}_{\gamma, \theta} \cong \mathcal{H}_{\gamma, \theta}^{(1)} \varepsilon_\gamma$ from 2.3.4. It identifies the center $Z(\mathcal{H}_{\gamma, \theta})$ with the center of $\mathcal{H}_{\gamma, \theta}^{(1)} \varepsilon_\gamma$. In this way, we let the component algebra $\mathcal{H}_{\gamma, \theta}^{(1)} \varepsilon_\gamma$ act on $K^G(\hat{B}_\gamma)$, and we denote this representation by $K^G(\hat{B}_\gamma)_{\gamma, \theta}$. We may then state, in obvious terminology, that any supersingular character θ of the center of $\mathcal{H}_{\gamma, \theta}^{(1)} \varepsilon_\gamma$ gives rise to the supersingular irreducible $\mathcal{H}_{\gamma, \theta}^{(1)} \varepsilon_\gamma$-module $K^G(\hat{B}_\gamma)_{\theta}$.

4 The regular case and dual equivariant intersection theory

4.1 Recollections from algebraic CH^G-theory

For basic notions from equivariant algebraic intersection theory we refer to \cite{EG96} and \cite{Br97}. As in the case of equivariant K-theory, the characteristic homomorphism will make everything explicit.

4.1.1. We denote by Sym(Λ) the symmetric algebra of the lattice Λ endowed with its natural action of the reflection s. The equivariant intersection theory of the base point $pt = \text{Spec} \, \mathbb{F}_q$ canonically identifies with the ring of invariants

$$\text{Sym}(\Lambda)^s \simeq CH^G(pt),$$

cf. \cite[sec. 3.2]{EG96}. Recall our basis elements $\eta_1 := (1, 0)$ and $\eta_2 := (0, 1)$ of Λ, so that $\text{Sym}(\Lambda) = \mathbb{Z} [\eta_1, \eta_2]$. We define the invariant elements

$$\xi_1 := \eta_1 + \eta_2 \quad \text{and} \quad \xi_2 := \eta_1 \eta_2.$$
in Sym(Λ)*. Then
\[\text{Sym}(\Lambda)^* = \mathbb{Z}[\zeta_1', \zeta_2'] \]
and, after inverting the prime 2, the Sym(Λ)*-module Sym(Λ) is free of rank 2, on the basis \(\{1, \frac{a+\eta_2}{\eta_1-\eta_2}\} \).

4.1.2. The equivariant Chern class of line bundles in the algebraic \(CH^G \)-theory of \(\hat{B} \) is a map
\[c_1^G : \text{Pic}^G(\hat{B}) \longrightarrow CH^G(\hat{B}) \]
which is a group homomorphism. Then, the corresponding characteristic homomorphism is a ring isomorphism
\[c^G : \text{Sym}(\Lambda) \longrightarrow CH^G(\hat{B}), \]
which maps \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \) to the equivariant Chern class of the line bundle \(\mathcal{O}_{\pi^!}(\lambda_1 - \lambda_2) \otimes \text{det}^{\lambda_2} \) on \(\hat{B} = \mathbb{P}^1_{\mathbb{Z}_2} \), i.e.
\[c^G(\lambda) = c_1^G(\mathcal{O}_{\pi^!}(\lambda_1 - \lambda_2) \otimes \text{det}^{\lambda_2}). \]

Note here that the algebraic group \(\hat{G} = G \times \mathbb{Z}_2 \) is special (in the sense of [EG96, 6.3]) and the map \(c^G \) is therefore already bijective at the integral level \([Br97, \text{sec. 6.6}]\). The homomorphism \(c^G \) is \(\text{Sym}(\Lambda)^* \simeq CH^G(\text{pt}) \)-linear.

To emphasize the duality and the analogy with the case of \(K \)-theory (and to ease notation), we abbreviate from now on
\[S(\hat{T}) := \text{Sym}(\Lambda) \quad \text{and} \quad S(\hat{G}) := \text{Sym}(\Lambda)^*. \]

4.1.3. For the definition of the classical Demazure operators on algebraic intersection theory, we refer to [D73]. The Demazure operators
\[D_s, D_s' \in \text{End}_{S(\hat{T})}(S(\hat{T})) \]
are defined by:
\[D_s(a) = \frac{a - s(a)}{\eta_1 - \eta_2} \quad \text{and} \quad D'_s(a) = \frac{a - s(a)(1 - (\eta_1 - \eta_2))}{\eta_1 - \eta_2} \]
for \(a \in S(\hat{T}) \). Then \(D_s \) is the projector on \(S(\hat{T})^a \eta_1 - \eta_2 \) along \(S(\hat{T})^r \), and \((-D_s) + D'_s = s\). In particular, \(D_s^2 = 0 \) and \(D'_s^2 = \text{id} \). One sets
\[D_s(q) := D_s - qD'_s \in \text{End}_{S(\hat{T})^q}(S(\hat{T})) \]
and checks by direct calculation that \(D_s(q)^2 = q^2 \). We obtain thus a well-defined \(\mathbb{Z} \)-algebra homomorphism
\[\omega_{0}^{\text{nil}}(q) : H_{0}^{\text{nil}}(q) = \mathbb{Z}[q][S] \longrightarrow \text{End}_{S(\hat{T})^q}(S(\hat{T})) \quad \text{q} \longmapsto q^2 \], \(S \longmapsto -D_s(q) \)
which we call the Demazure representation.

4.2 The morphism from \(S(\hat{G})[q] \) to the center of \(\mathcal{H}^{\text{nil}}(q) \)
The version of the homomorphism \((\zeta^*)^{-1}\) in the regular case is the \(\mathbb{Z}[q] \)-algebra homomorphism
\[S(\hat{G})[q] = \mathbb{Z}[q][\zeta_1', \zeta_2'] \longrightarrow \mathbb{Z}[q][e^{(1,0)}, \{e^{(1,1)}\}^{\pm 1}] \]
\[\zeta_1' \longmapsto e^{(1,0)} \]
\[\zeta_2' \longmapsto e^{(1,1)} \]
which becomes an isomorphism after inverting \(\zeta_2' \). Its composition with \(\mathcal{Z}^{\text{nil}}(q) \), cf. 2.4.2 therefore gives a ring isomorphism
\[
\begin{align*}
S(\hat{G})[q][\zeta_2'^{-1}] & \cong \mathcal{Z}(\mathcal{H}^{\text{nil}}(q)) \\
\zeta_1' & \longmapsto \zeta_1 = US + SU \\
\zeta_2' & \longmapsto \zeta_2 = U^2.
\end{align*}
\]
4.3 The extended Demazure representation $\mathscr{L}_p^{\text{nil}}(q)$ at $q = 0$

Recall the Demazure representation $\mathscr{A}_0^{\text{nil}}(q)$ of the finite algebra $H_0^{\text{nil}}(q)$ by $S(\hat{G})[q]$-linear operators on the intersection theory $CH^G(\hat{B})$, cf. 4.1.3. In this section we work at $q = 0$. We write $\mathscr{A}_0^{\text{nil}}$ for the specialization of $\mathscr{A}_0^{\text{nil}}(q)$ at $q = 0$.

For better readability we make a slight abuse of notation and denote the elements ξ_i' by ξ_i in this and the following sections. Moreover, p will always be an odd prime.

4.3.1. A ring homomorphism

$$\mathscr{A}^{\text{nil}} : H^{\text{nil}} \longrightarrow \text{End}_{S(\hat{G})}(CH^G(\hat{B}))$$

which extends $\mathscr{A}_0^{\text{nil}}$ and which is linear with respect to the above ring homomorphism $S(\hat{G}) \rightarrow Z(H^{\text{nil}})$ does not exist, even after inverting ξ_2. However, there exists a natural good approximation (after inverting the prime 2). We will explain these points in the following.

4.3.2. An extension of $\mathscr{A}_0^{\text{nil}}$, linear with respect to $S(\hat{G}) \rightarrow Z(H^{\text{nil}})$, exists if and only if there is an operator

$$\mathscr{A}^{\text{nil}}(U) \in \text{End}_{S(\hat{G})[\xi_2^{-1}]}(CH^G(\hat{B})[\xi_2^{-1}])$$

satisfying

1. $\mathscr{A}^{\text{nil}}(U)$ is invertible;
2. $\mathscr{A}^{\text{nil}}(U)^2 = \mathscr{A}^{\text{nil}}(U^2) = \xi_2 \text{Id}$, i.e. $\mathscr{A}^{\text{nil}}(U)^2 = \xi_2 \text{Id}$;
3. $\mathscr{A}^{\text{nil}}(U)\mathscr{A}^{\text{nil}}(S) + \mathscr{A}^{\text{nil}}(S)\mathscr{A}^{\text{nil}}(U) = \mathscr{A}^{\text{nil}}(US + SU) = \xi_1 \text{Id}$.

Tensoring by F_p, we may write

$$CH^G(\hat{B})_{F_p} = S(\hat{G})_{F_p} \oplus S(\hat{G})_{F_p} \eta_1 - \eta_2 \over 2,$$

and identify $\text{End}_{S(\hat{G})_{F_p}}(CH^G(\hat{B})_{F_p})$ with the algebra of 2×2-matrices over the ring $S(\hat{G})_{F_p}$. The analogous statements hold after inverting ξ_2.

Then, by definition,

$$\mathscr{A}^{\text{nil}}_{0,F_p}(S) = -D_s = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}.$$

Hence, if we set

$$\mathscr{A}^{\text{nil}}_{F_p}(U) = \begin{pmatrix} a & c \\ b & d \end{pmatrix},$$

we obtain

$$\mathscr{A}^{\text{nil}}_{F_p}(U)^2 = \xi_2 \text{Id} \iff \begin{pmatrix} a^2 + bc & c(a + d) \\ b(a + d) & d^2 + bc \end{pmatrix} = \begin{pmatrix} \xi_2 & 0 \\ 0 & \xi_2 \end{pmatrix}$$

and

$$\mathscr{A}^{\text{nil}}_{F_p}(-D_s) + (-D_s)\mathscr{A}^{\text{nil}}_{F_p}(U) = \xi_1 \text{Id} \iff \begin{cases} a = -d \\ b = -\xi_1, \end{cases}$$

and then the first system becomes equivalent to the equation

$$a^2 - \xi_1 c = \xi_2 \in F_p[\xi_1, \xi_2^\pm 1].$$

However, since ξ_2 has no square root in the ring $F_p[\xi_2^\pm 1]$, this latter equation has no solution (take $\xi_1 = 0$!). Consequently, there does not exist any matrix $\mathscr{A}^{\text{nil}}_{F_p}(U)$ with coefficients in $S(\hat{G})_{F_p}[\xi_2^{-1}]$ satisfying conditions 1, 2, 3, above.
The injectivity part of the theorem will be shown in the next subsection. The discussion preceding the theorem shows that the matrix

\[\mathfrak{A}_{nil}^{nil} : \mathcal{H}_{F_p}^{nil} \to \text{End}_{S(\mathcal{G})_F_p}[\mathcal{S}^{\pm 1}(\hat{\mathcal{G}})] \]

which extends the ring homomorphism \(\mathfrak{A}_0^{nil} \) and coincides on Z(\(\mathcal{H}_F^{nil} \)) with the homomorphism

\[Z(\mathcal{H}_F^{nil}) \xrightarrow{\sim} F_p[\xi_1, \xi_2^{\pm 2}] \subset S(\hat{\mathcal{G}})_{F_p}[\xi_2^{-1}] \]

\[\xi_1 \mapsto -\xi_1 \]

\[\xi_2 \mapsto \xi_2. \]

The homomorphism \(\mathfrak{A}_{nil}^{nil} \) is injective.

Proof. The discussion preceding the theorem shows that the matrix

\[\mathfrak{A}_{nil}^{nil}(U) := \left(\begin{array}{cc} \frac{\xi_2}{2} - \xi_2 & -\xi_1 \left(\frac{\xi_2^2}{4} - \xi_2 \right) \\ \xi_1 & -\left(\frac{\xi_2}{2} - \xi_2 \right) \end{array} \right) \]

does satisfy the three conditions

1. \(\mathfrak{A}_{nil}^{nil}(U) \) is invertible;
2. \(\mathfrak{A}_{nil}^{nil}(U)^2 = (\xi_2)^2 \text{Id} \);
3. \(\mathfrak{A}_{nil}^{nil}(US + SU) = -\xi_1 \text{Id} \).

The injectivity part of the theorem will be shown in the next subsection.

4.3.4. Remark. The minus sign before \(\xi_1 \) appearing in the value of \(\mathfrak{A}_{nil}^{nil} \) on \(\xi_1 = US + SU \) could be avoided by setting \(\mathfrak{A}_0^{nil}(S) := D_s \) instead of \(-D_s \) in the Demazure representation. But we will not do this.

4.3.5. Remark. In the Iwahori case, one can check that the action of \(U \) coincides with the action of the Weyl element \(e^m s \). In the regular case, the action of the element \(\eta_1 s \) does not satisfy the conditions 1-3 appearing in the above proof. However, the action of \(\eta_1 s \) does and, in fact, its matrix is given by matrix \(\mathfrak{A}_{nil}^{nil}(U) \). So the choice of the matrix \(\mathfrak{A}_{nil}^{nil}(U) \) is in close analogy with the Iwahori case. Our chosen extension \(\mathfrak{A}_{nil}^{nil} \) of \(\mathfrak{A}_0^{nil} \) seems to be distinguished for at least this reason. This observation also shows that the action of \(U \) can actually be defined integrally, i.e. before inverting the prime 2.

4.4 Faithfulness of \(\mathfrak{A}_{nil}^{nil} \)

Let us show that the map \(\mathfrak{A}_{nil}^{nil} \) is injective. It follows from 2.4.2 that the ring \(\mathcal{H}_F^{nil} \) is generated by the elements

\[1, S, U, SU \]

over its center \(Z(\mathcal{H}_F^{nil}) = F_p[\xi_1, \xi_2^{\pm 1}] \). The latter is mapped isomorphically to the subring

\[F_p[\xi_1, \xi_2^{\pm 2}] \subset S(\hat{\mathcal{G}})_{F_p}[\xi_2^{-1}] \]

of the matrix algebra \(\text{End}_{S(\mathcal{G})_F_p}[\mathcal{S}^{\pm 1}(\hat{\mathcal{G}})] \) by \(\mathfrak{A}_{nil}^{nil} \). For injectivity, it therefore suffices to show that the images

\[1, \mathfrak{A}_0^{nil}(S), \mathfrak{A}_{nil}^{nil}(U), \mathfrak{A}_0^{nil}(S)\mathfrak{A}_{nil}^{nil}(U) \]

are distinct.
of $1, S, U, SU$ under $\mathcal{A}_p^{\text{nil}}$ are free over $S(\hat{G})[\xi_2^{-1}]$. To this end, let $\alpha, \beta, \gamma, \delta \in S(\hat{G})[\xi_2^{-1}]$ (which is an integral domain) be such that

$$\alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \beta \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} + \gamma \begin{pmatrix} a & c \\ b & -a \end{pmatrix} + \delta \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & c \\ b & -a \end{pmatrix} = 0,$$

i.e.

$$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} + \begin{pmatrix} 0 & -\beta \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \gamma a & \gamma c \\ \gamma b & -\gamma a \end{pmatrix} + \begin{pmatrix} -\delta b & \delta a \\ 0 & 0 \end{pmatrix} = 0.$$

Then

$$\begin{cases} \alpha + \gamma a - \delta b &= 0 \\ \gamma b &= 0 \\ -\beta + \gamma c + \delta a &= 0 \\ \alpha - \gamma a &= 0, \end{cases}$$

with $\alpha, \beta, \gamma, \delta \in S(\hat{G})[\xi_2^{-1}]$. Now recall our choice

$$\mathcal{A}_p^{\text{nil}}(U) = \begin{pmatrix} a & c \\ b & -a \end{pmatrix} : = \begin{pmatrix} \xi_2^2 - \xi_2 \\ -\xi_1^2 (\xi_2^2 - \xi_2) \\ \xi_1 \\ -(\xi_2^2 - \xi_2) \end{pmatrix}.$$

In particular, $b = \xi_1$ implies $\gamma = 0$, and then $\alpha = 0$, $\delta = 0$ and $\beta = 0$. This shows that the map $\mathcal{A}_p^{\text{nil}}$ is injective and concludes the proof. We record the following corollary of the proof.

4.4.1. Corollary. The ring $\mathcal{H}_p^{\text{nil}}$ is a free $Z(\mathcal{H}_p^{\text{nil}})$-module on the basis $1, S, U, SU$.

4.5 The twisted representation $\mathcal{A}_{2, p}$

4.5.1. In the algebra

$$\mathcal{H}_2 := \mathcal{H}_2(0) = (\mathbb{Z} \otimes \mathbb{Z}) \otimes Z \mathcal{H}_{\text{nil}}$$

we have the two subrings \mathcal{H}_{nil} and $\mathbb{Z} \otimes \mathbb{Z}$. The aim of this section is to extend the representation $\mathcal{A}_{2, p}$ from \mathcal{H}_{nil} to the whole algebra $\mathcal{H}_{2, p} := \mathcal{H}_2 \otimes \mathbb{F}_p$. To this end, we consider the \mathbb{F}_q-variety

$$\hat{B}^2 := \hat{B}_1 \coprod \hat{B}_2,$$

where \hat{B}_1 and \hat{B}_2 are two copies of \hat{B}. We have

$$CH^G(\hat{B}^2) = CH^G(\hat{B}_1) \times CH^G(\hat{B}_2).$$

After base change to \mathbb{F}_p, the ring \mathcal{H}_{nil} acts $S(\hat{G})[\xi_2^{-1}]$-linearly on $CH^G(\hat{B})[\xi_2^{-1}]$ through the map $\mathcal{A}_{2, p}^{\text{nil}}$. We extend this action diagonally to $CH^G(\hat{B}^2)[\xi_2^{-1}]$, thus defining a ring homomorphism

$$\text{diag}(\mathcal{A}_{2, p}^{\text{nil}}) : \mathcal{H}_{p^{\text{nil}}} \longrightarrow \text{End}_{S(\hat{G})[\xi_2^{-1}]}(CH^G(\hat{B}^2)[\xi_2^{-1}]).$$

Because of the twisted multiplication in the algebra \mathcal{H}_2, we need to introduce the permutation action of W

$$\text{perm} : W \longrightarrow W_0 \longrightarrow \text{Aut}_{S(\hat{G})}(CH^G(\hat{B}^2))$$

which permutes the two factors of $CH^G(\hat{B}^2)$.

On the other hand, we can consider the projection p_i from $CH^G(\hat{B}^2)$ to $CH^G(\hat{B}_i)$ as an $S(\hat{G})$-linear endomorphism of $CH^G(\hat{B}_i)$, for $i = 1, 2$. The rule $\varepsilon_i \mapsto p_i$ defines a ring homomorphism

$$\text{proj} : \mathbb{Z}\varepsilon_1 \times \mathbb{Z}\varepsilon_2 \longrightarrow \text{End}_{S(\hat{G})}(CH^G(\hat{B}^2)).$$
4.5.2. Proposition. There exists a unique ring homomorphism

\[\mathcal{A}_{2,F_p} : \mathcal{H}_{2,F_p} \rightarrow \text{End}_{S(G)_{F_p}[G^{-1}]}(CH\tilde{G}(B^2)_{F_p}[G^{-1}]) \]

such that

- \(\mathcal{A}_{2,F_p}(\pi_{\mathcal{H}_{2,F_p}})(T_w) = \text{diag}(\mathcal{A}_{2,F_p}(T_w)) \circ \text{perm}(w) \) for all \(w \in W \),
- \(\mathcal{A}_{2,F_p}(\pi_{\mathcal{H}_{2,F_p}})(w) = \text{proj} \).

The homomorphism \(\mathcal{A}_{2,F_p} \) is injective.

Proof. Recall that \(W_0 \) acts on the set \(\{1, 2\} \) by interchanging the two elements and then \(W \) acts via its projection to \(W_0 \). As \(\{\varepsilon, T_w, i, w \in \{1, 2\} \times W \} \) is a \(F_p \)-basis of \(\mathcal{H}_{2,F_p} \), such a ring homomorphism is uniquely determined by the formula

\[\mathcal{A}_{2,F_p}(\varepsilon, T_w) = p_i \circ \text{diag}(\mathcal{A}_{2,F_p}(T_w)) \circ \text{perm}(w). \]

Conversely, taking this formula as a definition of \(\mathcal{A}_{2,F_p} \), we need to check that the resulting \(F_p \)-linear map is a ring homomorphism, i.e.

\[\mathcal{A}_{2,F_p}((1, 1)) = \text{Id} \]

and

\[\mathcal{A}_{2,F_p}(\varepsilon_i T_w \cdot \varepsilon_i T_w) = \mathcal{A}_{2,F_p}(\varepsilon_i T_w) \circ \mathcal{A}_{2,F_p}(\varepsilon_i T_w). \]

The first condition is clear because \((1, 1) = \varepsilon_1 + \varepsilon_2 \) and \(p_i + p_{\bar{i}} = \text{Id} \). Let us check the second condition.

If \(i' \neq w^{-1} i \), then both sides of the claimed equality vanish. Now assume that \(i = w i' \). On the left hand side we find

\[\mathcal{A}_{2,F_p}(\varepsilon_i T_w \cdot \varepsilon_i T_w) = \mathcal{A}_{2,F_p}(\varepsilon_i T_w T_w), \]

while on the right hand side, we find

\[\mathcal{A}_{2,F_p}(\varepsilon_i T_w) \circ \mathcal{A}_{2,F_p}(\varepsilon_{w^{-1}} T_w) \]

\[= p_i \circ \text{diag}(\mathcal{A}_{2,F_p}(T_w)) \circ \text{perm}(w) \circ p_{\bar{w}^{-1} i} \circ \text{diag}(\mathcal{A}_{2,F_p}(T_w)) \circ \text{perm}(w') \]

\[= p_i \circ \text{diag}(\mathcal{A}_{2,F_p}(T_w)) \circ \text{diag}(\mathcal{A}_{2,F_p}(T_w)) \circ p_{\bar{w}^{-1} i} \circ (w^{-1} i) \]

\[= p_i \circ \text{diag}(\mathcal{A}_{2,F_p}(T_w) T_w) \circ p_{\bar{w}^{-1} i}. \]

If \(\ell(w i') \neq \ell(w) + \ell(w') \), then \(T_w T_w' = 0 \) and both sides vanish. Otherwise \(T_w T_w' = T_{ww'} \), so that the left hand side becomes

\[\mathcal{A}_{2,F_p}(\varepsilon_i T_{ww'}) = p_i \circ \text{diag}(\mathcal{A}_{2,F_p}(T_{ww'})) \circ \text{perm}(ww'), \]

and the right hand side

\[p_i \circ \text{diag}(\mathcal{A}_{2,F_p}(T_{ww'})) \circ p_{\bar{w}^{-1} i}. \]

These two operators are equal. This proves the existence and the uniqueness of the extension \(\mathcal{A}_{2,F_p} \). Its injectivity will be shown in the next subsection. \(\square \)

4.6 Faithfulness of \(\mathcal{A}_{2,F_p} \)

Let us show that the map \(\mathcal{A}_{2,F_p} \) is injective. This is equivalent to show that the family

\[\{ \mathcal{A}_{2,F_p}(\varepsilon_i T_w), (i, w) \in \{1, 2\} \times W \} \]

is free over \(F_p \). So let \(\{n_{i,w} \in F_p(1, 2) \times W) \) such that

\[\sum_{i, w} n_{i,w} \mathcal{A}_{2,F_p}(\varepsilon_i T_w) = 0. \]
Let us fix $i_0 \in \{1, 2\}$. Composing by p_{i_0} on the left, we get
\[
\sum_w n_{i_0,w} \mathcal{A}_F(T_w) \xi_{i_0} = 0.
\]
The left hand side can be rewritten as
\[
\sum_w n_{i_0,w} p_{i_0} \circ \text{diag}(\mathcal{A}_F(T_w)) \circ \text{perm}(w) = \sum_w n_{i_0,w} p_{i_0} \circ \text{diag}(\mathcal{A}_F(T_w)) \circ p_{w^{-1} i_0}.
\]
Now let us fix $w_0 \in W_0$. Composing by $p_{w_0^{-1} i_0}$ on the right, we get
\[
\sum_{w \in \Lambda w_0} n_{i_0,w} p_{i_0} \circ \text{diag}(\mathcal{A}_F(T_w)) \circ p_{w_0^{-1} i_0} = 0.
\]
Then, for each $w \in \Lambda w_0$, remark that
\[
p_{i_0} \circ \text{diag}(\mathcal{A}_F(T_w)) \circ p_{w_0^{-1} i_0} = \xi_{i_0} \circ \text{diag}(\mathcal{A}_F(T_w)) \circ \xi_{w_0^{-1} i_0}
\]
in $\text{End} (CH \hat{G}(\tilde{B}_1)[\xi_2^{-1}] \times CH \hat{G}(\tilde{B}_2)[\xi_2^{-1}])$, where $\xi_{i_0} \circ \xi_{w_0^{-1} i_0}$ is the canonical map
\[
\xi_{i_0} \circ \xi_{w_0^{-1} i_0} : CH \hat{G}(\tilde{B}_1)[\xi_2^{-1}] \to CH \hat{G}(\tilde{B}_2)[\xi_2^{-1}]
\]
As the latter is injective, we get
\[
0 = \sum_{w \in \Lambda w_0} n_{i_0,w} \mathcal{A}_F(T_w) \circ p_{w_0^{-1} i_0} = \mathcal{A}_F(T_w) \circ p_{w_0^{-1} i_0}.
\]
Finally, as $p_{w_0^{-1} i_0} : CH \hat{G}(\tilde{B}_2)[\xi_2^{-1}] \to CH \hat{G}(\tilde{B}_1)[\xi_2^{-1}]$ is surjective, and as \mathcal{A}_F is injective, cf. 4.41 we get $n_{i_0,w} = 0$ for all $w \in \Lambda w_0$. This concludes the proof that \mathcal{A}_F is injective.

4.7 Supersingular modules

In this section we work over the algebraic closure $\overline{\mathbb{F}}_q$ of the field \mathbb{F}_q.

4.7.1. Recall from 2.4.4 that
\[
\mathcal{H}_2(\overline{\mathbb{F}}_q) = \mathcal{H}_2 \otimes \overline{\mathbb{F}}_q \cong (\mathbb{F}_q \times \overline{\mathbb{F}}_q) \otimes_{\mathbb{F}_q} \mathbb{F}_q[S, U^{\pm 1}]
\]
has the structure of a 2×2-matrix algebra over its center $Z(\mathcal{H}_2(\overline{\mathbb{F}}_q))$. Since $\overline{\mathbb{F}}_q$ is algebraically closed, $Z(\mathcal{H}_2(\overline{\mathbb{F}}_q))$ acts on any finite-dimensional irreducible $\mathcal{H}_2(\overline{\mathbb{F}}_q)$-module by a character (Schur’s lemma).

Let θ be a character of $Z(\mathcal{H}_2(\overline{\mathbb{F}}_q))$. Then
\[
\mathcal{H}_{2,\theta} := \mathcal{H}_2 \otimes Z(\mathcal{H}_2(\overline{\mathbb{F}}_q)), \theta \overline{\mathbb{F}}_q
\]
is isomorphic to the matrix algebra $M(2, \overline{\mathbb{F}}_q)$. In particular, it is a semisimple (even simple) ring.

4.7.2. The unique irreducible $\mathcal{H}_2(\overline{\mathbb{F}}_q)$-module with central character θ is called the standard module with character θ. Its $\overline{\mathbb{F}}_q$-dimension is 2 and it is isomorphic to the standard representation $\overline{\mathbb{F}}_q^{2 \times 2}$ of the matrix algebra $M(2, \overline{\mathbb{F}}_q)$. The image of the basis $\{(1, 0), (0, 1)\}$ of $\overline{\mathbb{F}}_q^{2 \times 2}$ is called a standard basis.

A central character θ is called supersingular if $\theta(X) = \theta(Y) = 0$ (or, equivalently, if $\theta(\zeta_1) = 0$). If θ is supersingular, then the affine algebra $\mathcal{H}_{2, \text{aff}}(\overline{\mathbb{F}}_q)$ acts on the standard basis of the module via the characters χ_1, respectively χ_2 and the action of U interchanges the two, cf. 2.4.3 and 2.4.4.

For more details we refer to [VO03] 2.3.
Recall that the image under the map $\mathcal{A}_{2,\mathcal{F}_q}$ of the central subring

$$Z^\circ(H_{2,\mathcal{F}_q}) = \mathcal{F}_q[\xi_1, \xi_2^\pm 1] \subset Z(H_{2,\mathcal{F}_q})$$

is the subring of scalars

$$\mathcal{F}_q[\xi_1, \xi_2^\pm 1] \subset \mathcal{F}_q[\xi_1, \xi_2^\pm 1] = S(\mathcal{G})_{\mathcal{F}_q}[\xi_2^{-1}].$$

4.7.4. Let us fix a supersingular central character θ and denote its restriction to $Z^\circ := Z^\circ(H_{2,\mathcal{F}_q})$ by θ, too. Then consider the H_{2,\mathcal{F}_q}-action on the base change

$$CH^G(\mathcal{B})[\xi_2^{-1}]_{\theta} := CH^G(\mathcal{B})_{\mathcal{F}_q}[\xi_2^{-1}] \otimes Z^\circ \mathcal{F}_q = CH^G(\mathcal{B})_{\mathcal{F}_q}[\xi_2^{-1}] \otimes S(\mathcal{G})_{\mathcal{F}_q}[\xi_2^{-1}](S(\mathcal{G})_{\mathcal{F}_q}[\xi_2^{-1}] \otimes Z^\circ \mathcal{F}_q).$$

For the base ring, we have

$$S(\mathcal{G})_{\mathcal{F}_q}[\xi_2^{-1}] \otimes Z^\circ \mathcal{F}_q = \mathcal{F}_q[\xi_1, \xi_2^\pm 1] \otimes \mathcal{A}_{2,\mathcal{F}_q}[\xi_1, \xi_2^\pm 1] \otimes \mathcal{F}_q$$

where $\mathcal{A}_{2,\mathcal{F}_q}(\xi_1) = -\xi_1$ and $\mathcal{A}_{2,\mathcal{F}_q}(\xi_2) = \xi_2^2$. Now put $\theta(\xi_2) = b \in \mathcal{F}_q^\times$. Then

$$S(\mathcal{G})_{\mathcal{F}_q}[\xi_2^{-1}] \otimes Z^\circ \mathcal{F}_q = \mathcal{F}_q[\xi_1, \xi_2^\pm 1]/(\xi_1, \xi_2^2 - b) = \mathcal{F}_q[\xi_2]/(\xi_2^2 - b) =: A$$

and so

$$CH^G(\mathcal{B})[\xi_2^{-1}]_{\theta} = \mathcal{F}_q[\eta_1^{\pm 1}, \eta_2^{\pm 2}] \otimes \mathcal{F}_q[\xi_1, \xi_2^\pm 1] \mathcal{F}_q[\xi_2]/(\xi_2^2 - b) = \mathcal{F}_q[\eta_1^{\pm 1}, \eta_2^{\pm 2}] \otimes \mathcal{A}_{2,\mathcal{F}_q}(\xi_1, \xi_2^\pm 1) A.$$

Note that the \mathcal{F}_q-algebra A is isomorphic to the direct product $\mathcal{F}_q \times \mathcal{F}_q$ (the isomorphism depending on the choice of a square root of b in \mathcal{F}_q). An A-basis of $CH^G(\mathcal{B})[\xi_2^{-1}]_{\theta}$ is given by the four elements

$$\{1_i, \frac{\eta_1 - \eta_2}{2} 1_i\}_{i=1,2}$$

where

$$1_i \in CH^G(\mathcal{B}_i) \subset CH^G(\mathcal{B}_1) \times CH^G(\mathcal{B}_2) = CH^G(\mathcal{B}).$$

is the equivariant Chern class of the structure sheaf on \mathcal{B}_i, for $i = 1, 2$. The \mathcal{F}_q-dimension of $CH^G(\mathcal{B})[\xi_2^{-1}]_{\theta}$ is therefore 8 and H_{2,\mathcal{F}_q} acts A-linearly. The length of the H_{2,\mathcal{F}_q}-module $CH^G(\mathcal{B})[\xi_2^{-1}]_{\theta}$ is 4 and the central character of any irreducible subquotient is necessarily equal to θ, since this is true by construction after restriction to Z°. In the following, we compute explicitly a composition series.

4.7.5. Proposition. The algebra $H_{2,\text{aff},\mathcal{F}_q}$ acts on $1_i \in CH^G(\mathcal{B})[\xi_2^{-1}]_{\theta}$ by the supersingular character χ_i, for $i = 1, 2$.

Proof: The action of $H_{2,\text{aff},\mathcal{F}_q}$ on $CH^G(\mathcal{B})_{\mathcal{F}_q}[\xi_2^{-1}]$ is defined by the map $\mathcal{A}_{2,\mathcal{F}_q}$. Hence, by definition,

$$\varepsilon_{i'} \cdot 1_i = \begin{cases} 1_i & \text{if } i' = i \\ 0 & \text{otherwise.} \end{cases}$$

We calculate

$$S \cdot 1_i = \text{diag}(-D_s) \circ \text{perm}(s)(1_i) = \text{diag}(-D_s)1_i = 0.$$

Moreover,

$$U^{-1} \cdot 1_i = \text{diag}(U^{-1}) \circ \text{perm}(u^{-1})(1_i) = \text{diag}(U^{-1})1_i = s(\eta_1^{-2})1_i = \eta_2^{-2}1_i$$

and

$$D_s(\eta_2^{-2}) = \frac{\eta_2^{-2} - \eta_1^{-2}}{\eta_1 - \eta_2} = (\eta_1 \eta_2)^{-2} \eta_1^{-2} - \eta_2^{-2} = (\eta_1 \eta_2)^{-2}(\eta_1 + \eta_2) = \frac{\xi_1}{\xi_2^2}.$$
Therefore,
\[SU^{-1} \cdot 1_i = \text{diag}(-D_s) \circ \text{perm}(s)(\eta_2^{-2}1_{s,i}) = -D_s(\eta_2^{-2})1_i = -\frac{\xi_1}{\xi_2}1_i = 0 \]
since \(\xi_1 = 0\) in \(CH^G(\hat{B}_i)\)[\(\xi_2^{-1}\)]\(_g\). It follows that \(S_0 \cdot 1_i = USU^{-1} \cdot 1_i = 0\). \(\square\)

4.7.6. Proposition. A composition series with simple subquotients of the \(H_{2\mathbb{F}_q}\)-module

\[CH^G(\hat{B}^2)\)[\(\xi_2^{-1}\)]\(_g\)

is given by

\[
\{0\} \\
\subset \mathbb{F}_q1_1 \oplus \mathbb{F}_q(U \cdot 1_i) \\
\subset A_{1_1} \oplus A(U \cdot 1_i) = A_{1_1} \oplus A_{1_i} \\
\subset A_{1_1} \oplus A_{1_i} \oplus \mathbb{F}_q(\frac{\eta_1 - \eta_2}{2}) \subset \mathbb{F}_q(U \cdot \frac{\eta_1 - \eta_2}{2}) \\
\subset CH^G(\hat{B}^2)\)[\(\xi_2^{-1}\)]\(_g\).
\]

Here the direct sums \(\oplus\) are taken in the sense of \(\mathbb{F}_q\)-vector spaces.

Proof. First of all, \(U \cdot 1_i := \text{diag}(U) \circ \text{perm}(u)(1_{s,i}) = \text{diag}(U)1_{s,i} = \eta_1^21_{s,i} = -\xi_21_{s,i} \in A^\times 1_{s,i}\)

because \(0 = \xi_1 = \eta_1 + \eta_2\) and \(0 = \xi_2^2 = \eta_1^2 + \eta_2^2 + 2\xi_2\) in \(CH^G(\hat{B})\)[\(\xi_2^{-1}\)]\(_g\). Hence the three first \(\oplus\) appearing in the statement of the proposition are indeed direct sums. These three sums are \(U\)-stable by construction. Moreover, by the preceding proposition, \(H_{2\mathbb{F}_q}\) acts by the character \(\chi_i\) on \(1_i\), hence by the character \(\chi_{-1}\) on \(U \cdot 1_i\). It follows that \(\mathbb{F}_q1_i \oplus \mathbb{F}_q(U \cdot 1_i)\) realizes the standard \(H_{2\mathbb{F}_q}\)-module with central character \(\theta\), and that \(A_{1_1} \oplus A(U \cdot 1_i)\) is an \(H_{2\mathbb{F}_q}\)-submodule of \(CH^G(\hat{B}^2)\)[\(\xi_2^{-1}\)]\(_g\) of dimension 4 over \(\mathbb{F}_q\). In fact, if \(L \subset A\) is any \(\mathbb{F}_q\)-line, the same arguments show that \(L_{1_1} \oplus L(U \cdot 1_i)\) realizes the standard \(H_{2\mathbb{F}_q}\)-module with central character \(\theta\). In particular, the module \(A_{1_1} \oplus A(U \cdot 1_i)\) is semisimple.

Now let us compute the action of \(H_{2\mathbb{F}_q}\) on the element \(\frac{\eta_1 - \eta_2}{2}1_i\), for \(i = 1, 2\). We have

\[\varepsilon_{i'} \cdot \frac{\eta_1 - \eta_2}{2}1_i = \begin{cases} \frac{\eta_1 - \eta_2}{2}1_i & \text{if } i' = i \\ 0 & \text{otherwise.} \end{cases} \]

Next

\[S \cdot \frac{\eta_1 - \eta_2}{2}1_i := \text{diag}(S) \circ \text{perm}(s)(\frac{\eta_1 - \eta_2}{2}1_i) = \text{diag}(S)(\frac{\eta_1 - \eta_2}{2}1_i) = -1_{s,i}, \]

\[U^{-1} \cdot \frac{\eta_1 - \eta_2}{2}1_i := \text{diag}(U^{-1}) \circ \text{perm}(u^{-1})(\frac{\eta_1 - \eta_2}{2}1_i) = \text{diag}(U^{-1})(\frac{\eta_1 - \eta_2}{2}1_i) = \eta_2^{-2}\eta_2 - \eta_1^{-2}1_{s,i}, \]

\[D_s(\eta_2^{-2}\eta_2 - \eta_1^{-2}) = \frac{1}{\eta_1 - \eta_2}(\eta_2^{-2}\eta_2 - \eta_1^{-2}) = \frac{\xi_1^2 - 2\xi_2}{2\xi_2^2}, \]

\[SU^{-1} \cdot \frac{\eta_1 - \eta_2}{2}1_i = \text{diag}(S) \circ \text{perm}(s)(\eta_2^{-2}\eta_2 - \eta_1^{-2}1_{s,i}) = \frac{\xi_1^2 - 2\xi_2}{2\xi_2^2}1_i, \]

\[S_0 \cdot \frac{\eta_1 - \eta_2}{2}1_i := USU^{-1} \cdot \frac{\eta_1 - \eta_2}{2}1_i = \text{diag}(U) \circ \text{perm}(u)(\frac{\xi_1^2 - 2\xi_2}{2\xi_2^2}1_i) = \eta_1^2\frac{\xi_1^2 - 2\xi_2}{2\xi_2^2}1_{s,i} = 1_{s,i}, \]

because \(\xi_1 = 0\) and (hence) \(\eta_1^2 = -\xi_2\) in \(CH^G(\hat{B})\)[\(\xi_2^{-1}\)]\(_g\), and finally

\[U \cdot \frac{\eta_1 - \eta_2}{2}1_i = \text{diag}(U) \circ \text{perm}(u)(\frac{\eta_1 - \eta_2}{2}1_i) = \text{diag}(U)(\frac{\eta_1 - \eta_2}{2}1_i) = \xi_2\frac{\eta_1 - \eta_2}{2}1_{s,i}, \]

20
which lies in $A^\times(\frac{m-n}{2}1_{1_1})$. Neither of the two elements $\frac{m-n}{2}1_{1_1}$ and $U \cdot \frac{m-n}{2}1_{1_1}$ lies in the (semisimple) module $A1_1 \oplus A(U \cdot 1_1)$. Hence the three last \oplus appearing in the statement are indeed direct and they form a sub-$H_{\text{aff}}q$-module of dimension 6 over \mathbb{F}_q. So the series appearing in the statement is indeed a composition series with irreducible subquotients.

4.7.7. Remark. We see from the proof of the preceding proposition that the characters of $H_{\text{aff}}q$ in the sub-$H_{\text{aff}}q$-module

$$A1_1 \oplus A1_1 \oplus \mathbb{F}_q(\frac{m-n}{2}1_{1_1}) \oplus \mathbb{F}_q(U \cdot \frac{m-n}{2}1_{1_1})$$

are contained in $A1_1 \oplus A1_1$. Hence this submodule is not semi-simple. A fortiori the whole module $CH^G(\hat{B}^2)([\xi_2^{-1}])_p$ is not semisimple and, hence, has no central character.

4.7.8. Now we transfer this discussion to any regular component of the algebra $H^{(1)}q$ as follows. Let $\gamma = \{\lambda, \lambda\} \in T'/W_0$ be a regular orbit and form the \mathbb{F}_q-variety

$$\hat{B}^\gamma = \hat{B} \times \pi^{-1}(\gamma) = \hat{B} \prod \hat{B}_\lambda,$$

where \hat{B}_λ and \hat{B}_λ are two copies of \hat{B}. We have the algebra isomorphism $H_{\text{aff}}q \cong H^{(1)}q_{\epsilon\gamma}$ from 2.4.5. In this way, the representation $\mathcal{M}_{\text{aff}}q$ induces a representation

$$\mathcal{M}_{\text{aff}}q : H^{(1)}q_{\epsilon\gamma} \rightarrow \text{End}_{\Sigma(G)}(CH^G(\hat{B}^\gamma)([\xi^{-1}_2])).$$

We may then state, in obvious terminology, that any supersingular character θ of the center of $H^{(1)}q_{\epsilon\gamma}$ gives rise to the $H^{(1)}q_{\epsilon\gamma}$-module $CH^G(\hat{B}^\gamma)([\xi^{-1}_2])_p$ and that the semisimplification of the latter module equals a direct sum of four copies of the unique supersingular $H^{(1)}q_{\epsilon\gamma}$-module with central character θ.

5 Tame Galois representations and supersingular modules

Our reference for basic results on tame Galois representations is [V94].

5.1. Let $\varpi \in \mathcal{O}_F$ be a uniformizer and let f be the degree of the residue field extension $\mathbb{F}_q/\mathbb{F}_p$, i.e. $q = p^f$. Let $\text{Gal}(\overline{F}/F)$ denote the absolute Galois group of F. Let $I \subset \text{Gal}(\overline{F}/F)$ be its inertia subgroup. We fix an element $\varphi \in \text{Gal}(\overline{F}/F)$ lifting the Frobenius $x \mapsto x^q$ on $\text{Gal}(\overline{F}/F)/I$. The unique pro-$p$-Sylow subgroup of I is denoted by P (the wild inertia subgroup) and the quotient I/P is pro-cyclic with pro-order prime to p. We choose a lift $v \in I$ of a topological generator for I/P. Let $W \subset \text{Gal}(\overline{F}/F)$ denote the Weil group of F. The quotient group W/P is topologically generated by (the images of) φ and v and the only relation between these two generators is $\varphi v \varphi^{-1} = v^q$. There is a topological isomorphism

$$W/P \simeq \lim_{\rightarrow \mu_p} \mathbb{F}_p^\times$$

where the projective limit is taken with respect to the norm maps $\mathbb{F}_p^\times \rightarrow \mathbb{F}_p^\times$. We denote by ω_n the projection map $W/P \rightarrow \mathbb{F}_p^\times$ followed by the inclusion $\mathbb{F}_p^\times \subseteq \mathbb{F}_q^\times$. We shall only be concerned with the characters ω_n and ω_2. The character ω_2 extends from W to $\text{Gal}(\overline{F}/F)$ by choosing a root $\sqrt{-q}$ and letting $\text{Gal}(\overline{F}/F)$ act as

$$g \mapsto g \frac{\sqrt{q}}{\sqrt{q}} \in \mu_{q-1}(F)$$

followed by reduction mod ϖ. The character

$$\omega_2 : \text{Gal}(\overline{F}/F) \rightarrow \mathbb{F}_q^\times$$

21
depends on the choice of ϖ (but not on the choice of $\sqrt{-\varpi}$) and equals the reduction mod ϖF of the Lubin-Tate character $\chi_L : \text{Gal}(\overline{F} / F) \to \mathcal{O}_F^\times$ associated to the uniformizer ϖ. By changing φ by an element of I, if necessary, we may assume $\omega_f(\varphi) = 1$. We normalize local class field theory $W_{ab} \simeq F^\times$ by sending the geometric Frobenius φ^{-1} to ϖ. We view the restriction of ω_f to W as a character of F^\times.

5.2. The set of isomorphism classes of irreducible smooth Galois representations

$$\rho : \text{Gal}(\overline{F} / F) \to \hat{G} = \text{GL}_2(\mathbb{F}_q)$$

is in bijection with the set of equivalence classes of pairs $(s, t) \in \hat{G}^2$ such that

$$s = \begin{pmatrix} 0 & 1 \\ -b & 0 \end{pmatrix} \quad \text{and} \quad t = \begin{pmatrix} y & 0 \\ 0 & y^q \end{pmatrix}$$

with $b \in \mathbb{F}_q^\times$ and $y \in \mathbb{F}_q^\times \setminus \mathbb{F}_q$. Here, two pairs (s, t) and (s', t') are equivalent if $s = s'$ and t, t' are $\text{Gal}(\mathbb{F}_q^\times / \mathbb{F}_q)$-conjugate. Note that $\det(s) = b$ and $\det(t) = y^q$. The bijection is induced by the map $\rho \mapsto (\rho(\varphi), \rho(v))$. The number of equivalence classes of such pairs (s, t) equals $\frac{q^2 - q}{2}$ and hence coincides with the number of W_0-orbits in T^\vee.

5.3. By the above numerical coincidence (the ”miracle” from [V94]), there exist (many) bijections between the isomorphism classes of irreducible smooth two-dimensional Galois representations and the isomorphism classes of supersingular two-dimensional $\mathcal{H}_{\mathbb{F}_q}^{(1)}$-modules. In the following we discuss a a certain example of such a bijection in our geometric language.

Let ρ be a two-dimensional irreducible smooth Galois representation with parameters (s, t). Since the element $\omega_{2f}(v)$ generates $\mathbb{F}_{q^2}^\times$, the element t uniquely determines an exponent $1 \leq h \leq q^2 - 1$, such that

$$\omega_{2f}(v)^h = y.$$

Replacing ρ by an isomorphic representation ρ' which replaces y by its Galois conjugate y^q, replaces h by the rest of the euclidian division of qh by $q^2 - 1$. We call either of the two numbers an exponent of ρ.

5.4. Lemma. There is $0 \leq i \leq q - 2$ such that $\rho \otimes \omega_f^{-i}$ has an exponent $\leq q - 1$.

Proof : This is implicit in the discussion in [V94]. Let $\omega_{2f}(v)^h = y$. Then $h \leq q^2 - 2$ since $y \neq 1$. Moreover, $q^2 - 2 - (q - 2)(q + 1) = q$. Since $\omega_{2f}^{q+1} = \omega_f$, twisting with ω_f reduces to the case $h \leq q$. Replacing y by its Galois conjugate y^q, if necessary, reduces then further to $h \leq q - 1$.

By the lemma, we may associate two numbers $1 \leq h \leq q - 1$ and $0 \leq i \leq q - 2$ to the representation ρ. We form the character

$$\omega_f^{h-1+i} \otimes \omega_f^i : (F^\times)^2 \to \mathbb{F}_q^\times, \quad (t_1, t_2) \mapsto \omega_f^{h-1+i}(t_1)\omega_f^i(t_2)$$

and restrict to $\mu_{q-1}(F)^2$. This gives rise to an element $\lambda(\rho)$ of T^\vee and we take its W_0-orbit γ_{ρ}.

5.5. Lemma. The orbit γ_{ρ} depends only on the isomorphism class of ρ.

Proof : Suppose $\rho' \simeq \rho$ with

$$\rho'(v) = t' = \begin{pmatrix} y^q & 0 \\ 0 & y \end{pmatrix}.$$

By the preceding lemma, there is $0 \leq i \leq q - 2$ and an exponent $1 \leq h \leq q - 1$ of $\rho \otimes \omega_f^{-i}$. If $1 < h$, then by definition $\omega_{2f}^h(v) = y_0 \omega_f^{-i}(v)$, so that $\omega_{2f}^h(v) = y^q \omega_f^{-i}(v)$, and hence $\omega_{2f}^{h-1+i}(v) = y^q \omega_f^{-(h-1+i)}(v)$, using $qh = q - (h - 1) + (h - 1)(q + 1)$. Then $1 \leq h' := q - (h - 1) \leq q - 1$ and taking $0 \leq i' \leq q - 2$ congruent to $h - 1 + i$ mod $q - 1$, we obtain that h' is an exponent for $\rho' \otimes \omega_f^{-i'}$. In particular, $\lambda(\rho') := \omega_f^{h'+1+i'} \otimes \omega_f^{-i'}$, which is s-conjugate to $\lambda(\rho)$. If $h = 1$, then by definition $\omega_{2f}(v) = y^q \omega_f^{-i}(v)$, which implies $\lambda(\rho') = \lambda(\rho)$ in this case. □
We call ρ (non-)regular if the orbit γ_ρ is (non-)regular. On the other hand, we view the element $s = \rho(\varphi)$ as a supersingular character θ_s of the center $Z(\mathcal{H}_{\mathbb{F}_q}^{(1)})$, i.e. $\theta_s(\zeta_1) = 0$ and $\theta_s(\zeta_2) = b$. Finally, we have the \mathbb{F}_q-variety

$$\tilde{B}^\gamma = \tilde{B} \times \pi^{-1}(\gamma)$$

coming from the quotient map $\mathbb{T}^\gamma \to \mathbb{T}^\gamma/W_0$. These data give rise to the supersingular $\mathcal{H}_{\mathbb{F}_q}^{(1)}$-module

$$\mathcal{M}(\rho) := \begin{cases} K^G(\tilde{B}^\gamma)\theta_s & \text{if } \rho \text{ non-regular} \\ CH^G(\tilde{B}^\gamma)[\xi_s^{-1}]\theta_s & \text{if } \rho \text{ regular.} \end{cases}$$

Recall that $\mathcal{H}_{\mathbb{F}_q}^{(1)}$ acts on $\mathcal{M}(\rho)$ via the projection onto $\mathcal{H}_{\mathbb{F}_q}^{(1)}\gamma_\rho$ followed by the extended Demazure representation $\omega^{[\rho]}$. Recall also that the semisimplification of $\mathcal{M}(\rho)$ is a direct sum of four copies of the supersingular standard module, if ρ is regular. By abuse of notation, we denote a simple subquotient of $\mathcal{M}(\rho)$ again by $\mathcal{M}(\rho)$.

5.6. Proposition. The map $\rho \mapsto \mathcal{M}(\rho)$ gives a bijection between the isomorphism classes of two-dimensional irreducible smooth \mathbb{F}_q-representations of $\text{Gal}(\overline{F}/F)$ and the isomorphism classes of two-dimensional supersingular $\mathcal{H}_{\mathbb{F}_q}^{(1)}$-modules.

Proof: By construction, the restriction of ω_i^{h-1} to $\mu_{q-1}(F) \simeq \mathbb{F}_q^\times$ is given by the exponentiation $x \mapsto x^{b_i-1}$. Given $0 \leq i \leq q-2$ and $1 \leq h \leq q-1$, and $b \in \mathbb{F}_q^\times$, the parameter $y := \omega_2f(i)b$ lies in $\mathbb{F}_q^\times \setminus \mathbb{F}_q$ and the pair (s, t) determines a Galois representation ρ having h common exponent. Hence, $\rho \otimes \omega_i^{h-1}$ gives rise to the character $\omega_i^{h-1}1^{\rho}$. The elements of type γ_ρ exhaust all orbits in \mathbb{T}^γ/W_0. Since a two-dimensional supersingular $\mathcal{H}_{\mathbb{F}_q}^{(1)}$-module is determined by its γ-component and its central character, the map $\rho \mapsto \mathcal{M}(\rho)$ is seen to be surjective. It is then bijective, since source and target have the same cardinality. \hfill \Box

5.7. Let F be a finite extension of \mathbb{Q}_p. A distinguished natural bijection between irreducible two-dimensional $\text{Gal}(\overline{F}/F)$-representations and supersingular two-dimensional $\mathcal{H}_{\mathbb{F}_q}^{(1)}$-modules is established by Breuil [Br03] for $F = \mathbb{Q}_p$ (see [Be11] for its relation to the p-adic local Langlands correspondence for $\text{GL}_2(\mathbb{Q}_p)$) and by Grosse-Klönne [GK15] for general F/\mathbb{Q}_p. In this final paragraph we will show that the bijection $\rho \mapsto \mathcal{M}(\rho)$ from 5.6 coincides in this case with the bijections [Br03] and [GK15].

The case $F = \mathbb{Q}_p$ follows directly from the explicit formulae given in [Be11], 1.3]. For the general case, we briefly recall the main construction from [GK15] in the case of standard supersingular modules of dimension 2. Let F_ϕ be the special Lubin-Tate group with Frobenius power series $\phi(t) = \omega t + t^q$. Let F_∞/F be the extension generated by all torsion points of F_ϕ and let $\Gamma = \text{Gal}(F_\infty/F)$. We identify in the following $\Gamma \simeq \mathfrak{o}_{\mathbb{F}_q}^\phi$ via the character χ_L.

Let k/\mathbb{F}_q be a finite extension and let $\mathcal{H}^{(1)}_{\mathbb{F}_q} := \mathcal{H}^{(1)}(\mathbb{F}_q) \otimes_{\mathbb{Z}[\mathfrak{q}]} k$ via $q \mapsto q = 0$. Let M be a two-dimensional standard supersingular $\mathcal{H}^{(1)}_{\mathbb{F}_q}$-module, arising from a supersingular character $\chi : \mathcal{H}^{(1)}_{\mathbb{F}_q} \to k$. Let $e_0 \in M$ such that $\mathcal{H}^{(1)}_{\mathbb{F}_q}$ acts on e_0 via χ and put $e_1 = T^{-1}e_0$ (where $\omega = u^{-1}$ in our notation). The character χ determines two numbers $0 \leq k_0, k_1 \leq q - 1$ with $(k_0, k_1) \neq (0,0), (q-1,q-1)$. One considers M a $k[[t]]$-module with $t = 0$ on M. Let $\Gamma = \mathfrak{o}_{\mathbb{F}_q}^\phi$ act on M via

$$\gamma(m) = T_{\eta(\mathfrak{f})^{-1}}(m)$$

for $\gamma \in \mathfrak{o}_{\mathbb{F}_q}^\phi$ with reduction $\mathfrak{f} \in \mathbb{F}_q^\times$ and $\eta_{\mathfrak{f}}(\mathfrak{f})^{-1} = \text{diag}(\mathfrak{f}^{-1}, 1) \in \mathfrak{t}$. The $k[[t]][[\mathfrak{c}}]-submodule $\nabla(M)$ of

$$k[[t]][[\mathfrak{c}}]\otimes_{k[[t]][[\mathfrak{c}}] M \simeq \nabla(M)$$

\footnote{For example, if M is an $H_{\mathbb{F}_q}$-module on which $U^2 = \zeta_2$ acts via the scalar $\theta(\zeta_2) = \tau_2$, then $U = U_{\mathbb{F}_q}$ acts via the scalar $\theta(\zeta_2) = \tau_2$.}
is then generated by the two elements $h(e_j) = t^{b_j} \varphi \otimes T_{\omega}^{-1}(e_j) + 1 \otimes e_j$ thereby defining the relation between the Frobenius φ and the Hecke action of T_ω. Note that in the case of GL_2, the cocharacter $e^* \circ [GK18, 2.1]$ is equal to η_1.

The module $\nabla(M)$ is stable under the Γ-action and thus the quotient

$$\Delta(M) = (k[[t]][\varphi] \otimes k[[t]] M)/\nabla(M)$$

defines a $k[[t]][\varphi, \Gamma]$-module. It is torsion standard cyclic with weights (k_0, k_1) in the sense of [GK18, 1.3], according to [GK18, Lemma 5.1]. Let $\Delta(M)^* = \text{Hom}_k(\Delta(M), k)$. By a general construction (which goes back to Colmez and Emerton in the case $F = Q_p$ and $\phi(t) = (1 + t)^p - 1$, as recalled in [BrTe 2.6]) the $k((t))$-vector space

$$\Delta(M)^* \otimes k[[t]] k((t))$$

is in a natural way an étale Lubin-Tate (φ, Γ)-module of dimension 2. The correspondence $M \mapsto \Delta(M)^* \otimes k[[t]] k((t))$ extends in fact to a fully faithful functor from a suitable category of supersingular $H^{(1)}$-modules to the category of étale (φ, Γ)-modules over $k((t))$. The composite functor to the category of continuous $\text{Gal}((F)/F)$-representations over k is denoted by $M \mapsto V(M)$. It induces the aforementioned bijection between irreducible two-dimensional $\text{Gal}((F)/F)$-representations and supersingular two-dimensional $H^{(1)}$-modules.

5.8. Proposition. The inverse map to the bijection $M \mapsto V(M)$ is given by the map $\rho \mapsto M(\rho)$.

Proof: The correspondence $M \mapsto V(M)$ is compatible with the twist by a character of F^\times and local class field theory, such that the determinant corresponds to the central character restricted to F^\times. By its very construction, the same is true for the correspondence $\rho \mapsto M(\rho)$. It therefore suffices to compare them on irreducible Galois representations having parameters $b = 1$ and $i_0 = 0$. Let $k = F_{q^2}$ in the following. Let ω^h_{2j} be the Galois representation with exponent $1 \leq h \leq q - 1$ and $b = 1$ and $i_0 = 0$. Let $D = (\varphi, \Gamma)$-module associated to $\rho := \omega^h_{2j}$ and let M be a supersingular $H^{(1)}_k$-module such that $\Delta(M)^* \otimes k[[t]] k((t)) \simeq D$. According to the main result of [PS3] for $n = 2$, the module D has a basis $\{g_0, g_1\}$ such that

$$\gamma(g_j) = \frac{1}{t_j}(h^{(q - 1)}) g_j$$

for all $\gamma \in \Gamma$ and $\varphi(g_0) = g_1$ and $\varphi(g_1) = -t^{h(q - 1)} g_0$. Here, $\frac{1}{t_j}(h(t)) = \omega_f(t) / \gamma(t) \in k[[t]]^\times$. Define the triple $(k_0, k_1, k_2) = (h - 1, q - h, 1)$ and $i_j := q - 1 - k_{2-j}$, so that $i_0 = i_2 = q - h$ and $i_1 = 2q - h - 1$. Define the triple $(h_0, h_1, h_2) = (0, i_1, i_0 + i_1)$. Note that $h_2 = h(q - 1)$. Put $f_j = t^{b_j} g_j$ for $j = 0, 1$ and let $D^j \subset D$ be the $k[[t]]$-submodule generated by $\{f_0, f_1\}$. Let $(D^j)^*$ be the k-linear dual. Define $e'_i \in (D^j)^*$ via $e'_i(f_j) = \delta_{ij}$ and $e'_i = 0$ on tD^j. Using the explicit formulæ for the ψ-operator on $k((t))$ as described in [GK18, Lemma 1.1] one may follow the argument of [GK16, Lemma 6.4] and show that D^j is a ψ-stable lattice in D and that $\{e'_0, e'_1\}$ is a k-basis of the t-torsion part of $(D^j)^*$ satisfying

$$t^{k_1} \varphi(e'_0) = e'_1 \quad \text{and} \quad t^{k_0} \varphi(e'_1) = -e'_0.$$

But according to [GK18, 1.15] there is only one ψ-stable lattice in $\Delta(M)^* \otimes k[[t]] k((t))$, namely $\Delta(M)^*$. It follows that $\Delta(M) \simeq (D^j)^*$ and so the weights of the torsion standard cyclic $k[[t]][\varphi, \Gamma]$-module $\Delta(M)$ are (k_0, k_1). Since $k_0 = h - 1$, one deduces from [GK18, Lemma 4.1/5.1] that $e_1 \equiv h - 1 \mod (q - 1)$. This means $\lambda \circ \alpha^\vee(x)^{-1} = x^{h-1}$ for the character $\lambda \in \mathbb{T}^\vee$ of M. Since $i = 0$ and hence $a = 0$ (in the notation of [GK16, 2.2]), we arrive therefore at

$$\lambda(\text{diag}(x_1, x_2)) = \lambda(e^*(x_1 x_2)\alpha^\vee(x_2)^{-1}) = e^*(x_1 x_2)^*x_2^{h-1} = x_2^{h-1}.$$

Hence the image of λ in \mathbb{T}^\vee / W_0 coincides with γ_ρ. This implies $M \simeq M(\rho)$, as claimed. \qed

24
References

[Be10] L. Berger, On some modular representations of the Borel subgroup of GL₂(Q_p), Comp. Math. 146(1) (2010), 58-80.

[Be11] L. Berger, La correspondance de Langlands locale p-adique pour GL₂(Q_p), Astérisque 339 (2011), 157-180.

[Br03] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL₂(Q_p). I, Compositio Math. 138 (2003), 165-188.

[Br15] C. Breuil, Induction parabolique et (ϕ, Γ)-modules., Algebra and Number Theory. 9 (2015), 2241-2291.

[Br97] M. Brion, Equivariant Chow groups for torus actions, Transformations Groups, Vol. 2, Nr. 3, 1997, pages 225-267.

[CG97] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser, Boston, 1997.

[CI0] P. Colmez, Représentations de GL₂(Q,p) et (ϕ, Γ)-modules, Astérisque 330 (2010), 281-509.

[D73] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21, pages 287-301, 1973.

[D74] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4), tome 7 (1974), 53-88. Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I.

[EG96] D. Edidin and W. Graham, Equivariant Intersection Theory, Invent. Math. 131, pages 595-634, 1996.

[GK16] E. Grosse-Klönne, From pro-p-Iwahori-Hecke modules to (ϕ, Γ)-modules, I, Duke Math. Journal 165 No. 8 (2016), 1529-1595.

[GK18] E. Grosse-Klönne, Supersingular Hecke modules as Galois representations, Preprint (2018) arXiv:1803.02616.

[Hu65] J.-E. Humphreys, Modular Representations of Finite Groups of Lie Type, London Math. Soc. Lecture Notes Series 326, Cambridge University Press, 2005.

[KK86] B. Kostant, S. Kumar, The Nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Advances. Math., 62 (1), 187-237, 1986.

[KL87] D. Kazhdan, G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1), 153-215, 1987.

[KR09] M. Kisin, W. Ren, Galois representations and Lubin-Tate groups, Doc. Math., 14, 441-461, 2009.

[O14] R. Ollivier, Compatibility between Satake and Bernstein isomorphisms in characteristic p, Algebra and Number Theory 8(5) (2014), 1071-1111.

[PS2] C. Pépin, T. Schmidt, Mod p Hecke algebras and dual equivariant cohomology II: the case of GL_n, in preparation.

[PS3] C. Pépin, T. Schmidt, On a certain class of Lubin-Tate (ϕ, Γ)-modules, Preprint 2019.

[Sch17] P. Schneider, Galois representations and (ϕ, Γ)-modules, Cambridge Studies in Advanced Mathematics 164 (Cambridge University Press, 2017).

[Se72] J.-P. Serre, Propriétés galoisienne des points d’ordre fini des courbes elliptiques, Invent. Math., 15(4) (1972), 259-331.
[St75] R. Steinberg, *On a theorem of Pittie*, Topology 14 (1975), 173-117.

[Th87] R.W. Thomason, *Algebraic K-theory of group scheme actions*, Ann. of Math. Stud. 113 (1987), 539-563.

[V94] M.-F. Vigneras, *A propos d’une conjecture de Langlands modulaire*, in: *Finite reductive groups*, Ed. M. Cabanes, Prog. Math., vol. 141 (Birkhäuser, Basel, 1997).

[V96] M.-F. Vigneras, *Représentations ℓ-modulaires d’un groupe réductif p-adique*, Prog. Math., vol. 137 (Birkhäuser, Basel, 1996).

[V04] M.-F. Vigneras *Representations modulo p of the p-adic group GL(2, F)*, Compositio Math. 140 (2004) 333-358.

[V05] M.-F. Vigneras *Pro-p-Iwahori Hecke ring and supersingular ℱp-representations*, Math. Ann. 331 (2005), 523-556. + Erratum

[V06] M.-F. Vigneras *Algèbres de Hecke affines génériques*, Representation Theory 10 (2006), 1-20.

[V14] M.-F. Vigneras, *The pro-p-Iwahori Hecke algebra of a reductive p-adic group II*, Compositio Math. Muenster J. Math. 7 (2014), 363-379. + Erratum

[V15] M.-F. Vigneras, *The pro-p-Iwahori Hecke algebra of a reductive p-adic group V (Parabolic induction)*, Pacific J. of Math. 279 (2015), Issue 1-2, 499-529.

[V16] M.-F. Vigneras, *The pro-p-Iwahori Hecke algebra of a reductive p-adic group I*, Compositio Math. 152 (2015), 693-753.

[V17] M.-F. Vigneras, *The pro-p-Iwahori Hecke algebra of a reductive p-adic group III (Spherical Hecke algebras and supersingular modules)*, Journal of the Institut of Mathematics of Jussieu 16 (2017), Issue 3, 571-608. + Erratum

Cédric Pépin, LAGA, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93 430 Villetaneuse, France
E-mail address: cepinp@math.univ-paris13.fr

Tobias Schmidt, IRMAR, Université de Rennes 1, Campus Beaulieu, 35042 Rennes, France
E-mail address: tobias.schmidt@univ-rennes1.fr