Other Families of Rational Solutions to the KPI Equation

Pierre Gaillard

1Université de Bourgogne Franche-Comté, Institut de Mathématiques de Bourgogne, 9 Avenue Alain Savary BP 47870, 21078 Dijon Cedex, France.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2021/v17i630306

(1) Dr. Nikolaos D. Bagis, Aristotle University of Thessaloniki, Greece.
(2) Dr. Jaya Bishwal, University of North Carolina, USA.

Reviewers:

(1) Noundjeu Pierre, University of Yaounde I, Cameroun.
(2) Bharti Vishandas Nathwani, Amity University, India.
(3) Nguyen Thi Bich Thuy, UNESP University, Brazil.
(4) Ali Maianguwa Shuaibu, Federal University Dutse, Nigeria.

Complete Peer review History: http://www.sdiarticle4.com/review-history/70911

Received: 10 June 2021
Accepted: 14 August 2021
Published: 18 August 2021

Abstract

Aims / Objectives: We present rational solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of polynomials in \(x \), \(y \) and \(t \) depending on several real parameters. We get an infinite hierarchy of rational solutions written as a quotient of a polynomial of degree \(2N(N+1) - 2 \) in \(x \), \(y \) and \(t \) by a polynomial of degree \(2N(N+1) \) in \(x \), \(y \) and \(t \), depending on \(2N - 2 \) real parameters for each positive integer \(N \).

Place and Duration of Study: Institut de mathématiques de Bourgogne, Université de Bourgogne Franche-Comté between January 2020 and January 2021.

Conclusion: We construct explicit expressions of the solutions in the simplest cases \(N = 1 \) and \(N = 2 \) and we study the patterns of their modulus in the \((x, y)\) plane for different values of time \(t \) and parameters. In particular, in the study of these solutions, we see the appearance not yet observed of three pairs of two peaks in the case of order 2.

Keywords: Kadomtsev-Petviashvili equation; rational solutions; patterns of configurations.

*Corresponding author: E-mail: Pierre.Gaillard@u-bourgogne.fr;
2010 Mathematics Subject Classification: 35Axx; 35Cxx; 35Qxx; 76Axx; 76Mxx.

1 Introduction

We consider the Kadomtsev-Petviashvili (KPI) equation in the following normalization

\[(4u_t - 6uu_x + u_{xxx})_x = 3u_{yy},\] \hspace{1cm} (1.1)

where subscripts \(x\), \(y\) and \(t\) denote partial derivatives.

This equation first appears in 1970, in a paper written by Kadomtsev and Petviashvili [1]. The equation (1.1) was derived as a model for surface and internal water waves [2], and in nonlinear optics [3].

A lot of methods have been used to solve this equation; these methods are reviewed in the book by Ablowitz and Clarkson published in 1991 [4]. Matveev used the Darboux transformation to construct solutions [5] in 1979. Dubrovin gave for the first time solutions in terms of Riemann theta functions in the framework of algebraic geometry in 1981 [6]. Freeman and Nimmo constructed in 1983 solutions in terms of wronskians [7, 8] by means of tau functions. The inverse scattering method has been applied to obtain solutions of the KPI equations in 1999 [9].

The first rational solutions were constructed in 1977 by Manakov, Zakharov, Bordag, Its and Matveev [10]. Among the various researches concerning rational solutions of the KPI equation, we can mention the works of the following authors: Krichever in 1978 [11, 12], Satsuma and Ablowitz in 1979 [13], Pelinovsky and Stepanyants in 1993 [14], Pelinovsky in 1994 [15].

We present multi-parametric families of rational solutions to KPI equation as a quotient of two polynomials in \(x\), \(y\) and \(t\) depending on several real parameters. These solutions presented here belong to an infinite hierarchy of solutions of rational solutions written as a quotient of a polynomial of degrees \(2N(N+1) - 2\) in \(x\), \(y\), and \(t\) by a polynomial of degree \(N(N+1)\) in \(x\), \(y\), and \(t\), depending on \(2N-2\) real parameters for each positive integer \(N\). We limit here the study to the case of the simplest \(N = 1\) and \(N = 2\).

We study the patterns of the modulus of the solutions in the \((x, y)\) plane for different values of time \(t\) and parameters.

This work is part of a project to find rational solutions to different classical partial differential equations. New types of rational solutions are proposed in this article.

We will give the ideas of the proof of the results in the case of order \(N\) in a future article. The proofs of the following results in the simple cases of the first orders can be carried out by hand or with the help of a formal calculation software.

2 Rational Solutions of Order 1

Theorem 2.1. The function \(v\) defined by

\[v(x, y, t) = -2 \frac{n(x, y, t)}{d(x, y, t)^2}\] \hspace{1cm} (2.1)

is a rational solution to the KPI equation (1.1)
with
\[n(x, y, t) = -512 x^2 + (768 t + 1024)x + 512 y^2 - 768 t - 288 t^2, \]
and
\[d(x, y, t) = 16 x^2 + (-24 t - 32)x + 9 t^2 + 16 y^2 + 24 t + 32. \]

Proof. We will give the ideas of the proof of the result in the case of order \(N \) in a future article. It can be carried out by hand or with the help of a formal calculation software: it is sufficient to replace the expression of the solution given by (2.1) and check that (1.1) is verified. \(\square \)

We represent the modulus of the solution for different values of \(t \) in the plane \((x, y)\). For \(t = 0 \), the maximum of the modulus is equal to 4. When the values of \(t \) increase, the maximum of the modulus of the solution decreases rapidly. For example for \(t = 10^3 \), this value is equal to 0.16.

Fig. 1. Solution of order 1 to KPI, on the left for \(t = 0 \); in the center for \(t = 10 \); on the right for \(t = 10^3 \)

3 Rational Solutions of Order 2 Depending on 2 Parameters

We always consider the KPI equation defined by (1.1).

Theorem 3.1. The function \(v \) defined by
\[v(x, y, t) = -2 \frac{n(x, y, t)}{d(x, y, t)}, \tag{3.1} \]
is a rational solution to the KPI equation (1.1), quotient of a polynomial \(n(x, y, t) \) of degree \(2N(N + 1) - 2 = 10 \) in \(x, y, t \) by a polynomial \(d(x, y, t)^2 \) of degree \(2N(N + 1) = 12 \) in \(x, y, t \) depending on 2 real parameters \(a_1, b_1 \)

with \(n \) and \(d \) defined by
\[n(x, y, t) = -73383542784 x^{10} + (550376570880 t + 1712282664960) x^9 + (-18590497505280 t - 1857520926720 t^2 - 11557907988480 t - 220150628352 y^2) x^8 + (1320903770112 t y^2 + 34673723965440 t^2 + 111542985031680 t + \]

29
As already said, we will give the ideas of the proof of the result in the case of order 1.1. It can be carried with the help of a formal calculation software. We have to replace the expression

$$\text{expression}$$

in the plane (x, y).

Proof. As already said, we will give the ideas of the proof of the result in the case of order N in a future article. It can be carried with the help of a formal calculation software. We have to replace the expression of the solution given by (3.1) in (1.1) and check that the relation is verified.

We represent the modulus of the solution for different values of t in the plane (x, y).

Fig. 2. Solution of order 2 to KPI for $t = 0$, on the left $a_1 = 0, b_1 = 10^3$; in the center $a_1 = 0, b_1 = 0$; on the right $a_1 = 10^3, b_1 = 0$

In this case of order 2, two types of configurations were highlighted.

For $a_1 \neq 0$ and $b_1 = 0$, we get a figure with 3 peaks in which height decreases when a_1 grows.

Conversely, for $b_1 \neq 0$ and $a_1 = 0$, we see the appearance of 6 peaks on a ring in which height decreases as b_1 grows.

31
Fig. 3. Solution of order 2 to KPI for $t = 1$, on the left $a_1 = 0, b_1 = 0$; in the center $a_1 = 0, b_1 = 10^5$; on the right for $a_1 = 10^5, b_1 = 0$

Fig. 4. Solution of order 2 to KPI, on the left for $t = 10, a_1 = 0, b_1 = 10^5$; in the center for $a_1 = 0, b_1 = 0$; on the right for $a_1 = 10^5, b_1 = 0$

Fig. 5. Solution of order 2 to KPI, on the left for $t = 0, a_1 = 10^4, b_1 = 10^4$; in the center for $t = 1, a_1 = 10^5, b_1 = 10^5$; on the right for $t = 10, a_1 = 10^5, b_1 = 10^5$
For $a_1 \neq 0$ and $b_1 \neq 0$, we see the appearance of 3 couples of peaks on a ring in which height decreases as a_1 and b_1 grow.

4 Conclusion

a We have constructed rational solutions to KPI equation. To the best of our knowledge, all these solutions and configurations have never been presented before.

b We propose ourselves in a future research to give the general method to construct rational solutions to KPI equation at order N. We will show that these solutions can be written as a quotient of a polynomial of degree $2N(N+1)-2$ in x, y and t by a polynomial of degree $2N(N+1)$ in x, y and t, depending on $2N-2$ parameters.

c The method described in the present paper provides a powerful tool to get explicit solutions to the KPI equation and to understand the behavior of solutions.

d These solutions are different from those derived from the NLS equation [16, 17, 18, 19].

e In both cases, peak modules are observed to decrease very rapidly with time t. What is new in the study of these solutions is the appearance not yet observed of 3 pairs of two peaks in the case of order 2. One can hope to discover other new configurations in the study of solutions for higher orders.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Kadomtsev BB, Petviashvili VI. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 1970;15(6):539-541.

[2] Ablowitz MJ, Segur H. On the evolution of packets of water waves. J. Fluid Mech. 1979;92:691-715.

[3] Pelinovsky DE, Stepanyants YA, Kivshar YA. Self-focusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E. 1995;51:5016-5026.

[4] Ablowitz MJ, Clarkson PA. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press; 1991.

[5] Matveev VB. Darboux transformation and explicit solutions of the Kadomtsev-Petviashvili equation depending on functional parameters. Letters in Mathematical Physics. 1979;3:213-216.

[6] Dubrovin BA. Theta functions and non-linear equations. Russian Math. Surveys. 1981;36 (2):11-92.

[7] Freeman NC, Nimmo JJC. Rational solutions of the KdV equation in wronskian form. Phys. Letters. 1983;96A(9):443-446.

[8] Freeman NC, Nimmo JCC. The use of Bäcklund transformations in obtaining N-soliton solutions in wronskian form. J. Phys. A: Math. Gen. 1984;17(A):1415-1424.

[9] Prinari B. Inverse scattering theory for the KP equations. Thesis; 1999.

[10] Manakov SV, Zakharov VE, Bordag LA, Matveev VB. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Letters. 1977;63(3):205-206.

[11] Krichever I. Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of n particles on a line. Funct. Anal. and Appl. 1978;12(1):76-78.
[12] Krichever I, Novikov SP. Holomorphic bundles over Riemann surfaces and the KPI equation. Funkt. Anal. E Pril. 1979;12:41-52.

[13] Satsuma J, Ablowitz MJ. Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 1979;20: 1496-1503.

[14] Pelinovsky DE, Stepanyants YA. New multisolitons of the Kadomtsev-Petviashvili equation. Phys. JETP Lett. 1993;57:24-28.

[15] Pelinovsky DE. Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution. J.Math.Phys. 1994;35:5820-5830.

[16] Gaillard P. Families of quasi-rational solutions of the NLS equation and multi-rogue waves. J. Phys. A : Meth. Theor. 2010;44:1-15.

[17] Gaillard P. Wronskian representation of solutions of the NLS equation and higher Peregrine breathers. Jour. of Math. Sciences: Advances and Applications. 2012;13(2):71-153.

[18] Gaillard P. Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves. Jour. of Math. Phys. 2013;54:013504-1-32.

[19] Gaillard P. Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves. Adv. Res. 2015;4:346-364.

© 2021 Gaillard; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle4.com/review-history/70911