ETIOPATHOLOGY OF CHRONIC TUBULAR, GLOMERULAR AND RENOVASCULAR NEPHROPATHIES: CLINICAL IMPLICATIONS

J.M. López-Novoa, A.B. Rodríguez-Peña, A. Ortiz, C. Martínez-Salgado, F.J. López Hernández

1Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain; 2Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain; 3Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Spain; 4National Institutes of Health, Bethesda MD, USA; 5Renal and Vascular Research Laboratory, IIS-Fundación Jiménez Díaz and Universidad Autónoma de Madrid, Madrid, Spain; 6Instituto Reina Sofía de Investigación Nefrológica, Fundación Ilíego Álvarez de Toledo, Madrid, Spain.

ABSTRACT
Chronic kidney disease (CKD) comprises a group of pathologies in which the renal excretory function is chronically compromised. Most, but not all, forms of CKD are progressive and irreversible, pathological syndromes that start silently (i.e. no functional alterations are evident), continue through renal dysfunction and ends up in renal failure. At this point, kidney transplant or dialysis (renal replacement therapy, RRT) becomes necessary to prevent death derived from the inability of the kidneys to cleanse the blood and achieve hydroelectrolytic balance. Worldwide, nearly 1.5 million people need RRT, and the incidence of CKD has increased significantly over the last decades. Diabetes and hypertension are among the leading causes of end stage renal disease, although autoimmunity, renal atherosclerosis, certain infections, drugs and toxins, obstruction of the urinary tract, genetic alterations, and other insults may initiate the disease by damaging the glomerular, tubular, vascular or interstitial compartments of the kidneys. In all cases, CKD eventually compromises all these structures and gives rise to a similar phenotype regardless of etiology. This review describes with an integrative approach the pathophysiological process of tubulointerstitial, glomerular and renovascular diseases, and makes emphasis on the key cellular and molecular events involved. It further analyses the key mechanisms leading to a merging phenotype and pathophysiological scenario as etiologically distinct diseases progress. Finally clinical implications and future experimental and therapeutic perspectives are discussed.

Key words: nephropathy, chronic kidney disease, хроническая болезнь почек, patogenesis.
ХРОНИЧЕСКАЯ БОЛЕЗНЬ ПОЧЕК, ВВЕДЕНИЕ, ОПРЕДЕЛЕНИЕ И КЛИНИЧЕСКОЕ ТЕЧЕНИЕ

Понятие хронической болезни почек охватывает группу патологических состояний, при которых отмечается стойкое снижение экскреторной функции почек, обычно в результате повреждения почечных структур.

Большинство форм ХБП являются необратимыми и прогрессирующими. Повреждение почек включает:
1) потерю нефронов вследствие утраты клеток клубочков и каналцев;
2) фиброз как клубочков, так и каналцев;
3) поражение сосудов почек.

К ХБП приводят множество факторов, таких как сахарный диабет, артериальная гипертензия, нефрит, воспалительные и инфилтративные заболевания, почечные и системные инфекционные процессы (например, стрептококковые инфекции, бактериальный эндокардит, вирус иммунодефицита человека – ВИЧ, гепатиты В и С и т.д.), поликистоз почек, аутоиммунные заболевания (например, системная красная волчанка), гипоксия почки, травма, нефролитиаз и обструкция нижних мочевыводящих путей, химические токсины и другие. Повреждение почки, являющееся следствием любой из этих причин, с разной частотой приводит к хроническому, прогрессирующим и необратимому повреждению и к почечной дисфункции, которая, в конечном итоге, вызывает необходимость проведения заместительной почечной терапии (ЗПТ), т.е. диализа или трансплантации почки [1, 2].

Инфильтративные и функциональные изменения, затрагивающие большинство структур почки, что ведет к развитию прогрессирующего и распространенного фиброза и гломерулосклероза. Раз начавшись, повреждение почки постепенно прогрессирует, причем даже в

Таблица 1

Стадия	СКФ	Характерные симптомы
1	≥ 90*	-
2	60–90*	↑ паратиреоидного гормона, ↓ реабсорбция кальция в почках
3	30–59	Гипертрофия левого желудочка, анемия, вторичная по отношению к недостаточности эритропоэтина
4	15–29	↑ триглицеридов сыворотки, гипергликемия, гиперкалиемия, метаболический ацидоз, утомляемость, тошнота, анорексия, боли в костях
5	<15	Почечная недостаточность, выраженные симптомы уремии

* ХБП определяется либо СКФ < 60 мл/мин на 1,73 м², сохраняющейся в течение 3 мес., либо как СКФ выше этих значений, но при наличии доказательств повреждения почек, например, в анализах крови или мочи (например протеинурия) или визуализирующих методами исследования. ↑ – увеличение, ↓ – уменьшение.
условиях отсутствия провоцирующего фактора. Учитывая наличие сходных проявлений, ХБП может быть диагностирована независимо от наличия или отсутствии данных о конкретном этиологическом факторе. Национальная почечная ассоциация США (The National Kidney Foundation – NKF) классифицирует ХБП на 5 стадий в соответствии с выраженностью почечной дисфункции, повреждения почки, симптоматологией и рекомендуемой терапией (табл. 1).

Поздние стадии (4 и особенно 5 – почечная недостаточность) приводят к серьезным социальным и экономическим последствиям [3–6]. На рис. 1 показано течение во времени патологических изменений (например, процент активно функционирующих нефронов, общая экскреторная функция и скорость клубочковой фильтрации – СКФ), а также маркёры плазмы и мочи в соответствии с их появлением на разных стадиях ХБП.

Термин «уремия» или «уремический синдром» относится к клиническим проявлениям ХБП, которые являются следствием неспособности почек адекватно очищать кровь от продуктов обмена. В результате токсические субстанции, обычно удаляемые с мочой, концентрируются в крови и вызывают прогрессирующую дисфункцию многих (фактически всех) тканей и органов, существенно ухудшая самочувствие, качество жизни и выживаемость пациентов. Например, повышенный уровень мочевой кислоты сыворотки, являющийся маркером снижения почечной функции, может влиять на частоту новых случаев снижения функции почек и скорость прогрессирования этого процесса [7, 8]. В недавнем исследовании, включившем 900 здоровых доноров крови с нормальным артериальным давлением, было показано, что высокие уровни мочевой кислоты в сыворотке имели достоверную связь с более высокой вероятностью снижения СКФ [9]. Требуются дальнейшие клинические исследования с целью определения влияния терапии, снижающей концентрацию мочевой кислоты крови, на предотвращение развития ХБП. Необходимо отметить, что повреждение почек становится значительным еще до проявления нарушения ее функции. Объективные и субъективные симптомы уремии начинают появляться только тогда, когда утрачена функция, по крайней мере, двух третей от общего числа нефронов. До этого момента ХБП протекает бессимптомно. Это обусловлено способностью оставшихся нефронов гипертрофироваться и, тем самым, компенсировать функцию утраченных нефронов [10].

Динамика изменения СКФ во времени помогает в оценке скорости прогрессирования болезни почек. Мониторирование течения ХБП также полезно в плане прогнозирования времени начала ЗПТ. Скорость прогрессирования имеет сильную зависимость от непосредственной причины ХБП, однако в связи с генетической гетерогенностью она также очень значительно варьирует у больных с ХБП одной и той же этиологии [2]. В целом тубулоинтерстициальные заболевания прогрессируют медленнее по сравнению с гломерулярными и также в сравнении с диабетической и гипертонической нефропатиями, поликистозом почек. Полный диагноз включает установление стадии ХБП, определение этиологии почечного заболевания и коморбидных состояний, а также оценку скорости прогрессирования ХБП [3–6].

Ключевым и все еще неясным остается вопрос: почему и благодаря каким механизмам постоянное повреждение почек или повторные обострения основного заболевания вначале вызывают обратимые изменения, в то время как в дальнейшем неотвратимо происходит хронизация процесса. Ответы на эти вопросы находятся за пределами горизонта наших знаний о патологии ХБП в настоящее время. Введение маркеров, позволяющих диагностировать патологию на ранних стадиях процесса и прогнозировать его течение, а также разработка эффективных, а не просто паллиативных или замедляющих прогрессирование болезни методов лечения, всецело зависят от ответа на эти, часто игнорируемые вопросы. Тем не менее, за последние десятилетия были накоплены знания о новых механизмах, в том числе молекулярных, обусловливающих развитие определенной патологии. Эти знания полезны для оптимизации существующих методов лечения и в разработке новых. Целью данного обзора является описание патофизиологических процессов, приводящих к тубулярным, интерстициальным, гломерулярным и реноваскулярным хроническим заболеваниям с акцентом на клеточные и молекулярные механизмы, которые являются общими для большинства вариантов ХБП вне зависимости от ее этиологии.

ЭТИОПАТОГЕНЕЗ

Множество различных повреждений почек могут приводить к ХБП [2]. Патологический процесс может начинаться в канальцах и в интерстиции (тубулоинтерстициальные заболевания) в клубочках (гломерулярные заболевания), или даже в сосудистом русле почки (рекеноваскулярные заболевания) и являться результатом: 1) системных заболеваний, таких как сахарный диабет и артериальная гипертензия;

11
2) автосомных процессов и реакции отторжения трансплантата почки;
3) действия лекарственных препаратов, токсинов и металлов;
4) инфекционных процессов;
5) механического повреждения;
6) ишемии;
7) обструкции мочевыводящих путей;
8) первичных генетических аномалий;
9) неустановленных причин (идиопатических).

Целый ряд болезней, таких как генетически обусловленная поликистозная болезнь почек, поражают структуру почек и нарушают их функцию, в основном посредством неспецифических механизмов, что и приводит к развитию ХБП по неизвестным причинам.

Несколько десятилетий назад ведущей причиной ХБП был гломерулонефрит, обусловленный инфекционными заболеваниями. Широкое применение антибиотиков и улучшение санитарных условий вывели сахарный диабет и артериальную гипертензию на первое и второе место среди причин развития терминальной почечной недостаточности в развитых странах [11]. Фактически около 50% пациентов с терминальной почечной недостаточностью (в США) страдают сахарным диабетом [12]. По данным этого же источника примерно у 50–60% пациентов с ХБП имеет место артериальная гипертензия, и эти цифры достигают 90% у пациентов старше 65 лет. В сопоставимой общей популяции частота артериальной гипертензии составляет 11–13 и 50% соответственно. В общей сложности 70% случаев терминальной почечной недостаточности связаны с сахарным диабетом и артериальной гипертензией [13]. Недавно было показано, что полиморфизм гена МУН9 в основном ответствен за повышенный риск развития ВИЧ-ассоциированной нефропатии, гипертонической, диабетической и недиабетической нефропатий у афроамериканцев [25–27]. За последнее десятилетие были обнаружены ряд мутаций, связанных с фокальным и сегментарным гломерулосклерозом:

- два полиморфизма аполипопротеина L1 (APOL1) были связаны с ХБП у выходцев из Африки [28] и
- генетические изменения 5 протеинов, экспрессированных подоцитами, а именно: подоцина (ген NPHS2) [29, 30], инвертированного формина (ген INF) [31], катионного канала с транзиторным рецепторным потенциалом, подсемейства С, член 6 (ген TRPC6) [32], протеина, ассоциированного с CD2 (ген CD2AP) [32], и альфа-актинина 4 (ген ACTN4) [32].

В ходе генетического обследования крыс, предрасположенных к повреждению почек, скрещенных с более устойчивыми особями, было выявлено наличие 15 локусов, связанных с болезнью почек [33], три из которых совпадали с участками,
обнаруженными у пациентов с моногенным сегментарным гломерулосклерозом, болезнью почек индейцев Пима и у афро- и белых американцев с нарушением креатинина [34, 35]. Эти исследования выдвигают на первый план потенциальную прогностическую значимость (у моделей экспериментальных животных) обнаружения генов, ассоциированных с ХБП. Тем не менее, другие генетические детерминанты, выявляемые у людей и отсутствующие у большинства экспериментальных животных, происхождение которых обусловлено межрасовой, межпопуляционной и индивидуальной генетической гетерогенностью, позволяют с осторожностью оценивать данные, полученные на моделях животных. Например, в ряде работ была продемонстрирована зависимость частоты болезни почек от человеческого лейкоцитарного антигена (HLA) у популяций людей, обследованных на наличие диабетической нефропатии [36, 37] или мембранозного гломерулонефрита [38].

ТУБУЛЯРНЫЕ ЗАБОЛЕВАНИЯ

Термины тубулярные заболевания, тубулоинтерстициальные заболевания, тубулоинтерстициальные нефропатии относятся к гетерогенному кругу изменений, которые вначале поражают как корковые, так и мозговые канальцы, и интерстиций и вторично – другие структуры почки, такие как клубочки [39]. Канальцы являются главным компонентом почечной паренхимы, и в случае заболевания почек на их долю приходится большая часть повреждения [39]. Тем не менее, почечный интерстиций также играет важную роль в развитии тубулоинтерстициальных нефропатий, ввиду того, что их патогенез связан с этим компартментом, и его поражение способствует снижению функции почек [40]. Интерстиций образован межклеточным каркасом, поддерживающимся внеклеточным матриксом и базальными мембранами, в которых располагаются несколько типов клеток. Помимо клеток, формирующих кровеносные и лимфатические сосуды, включая капиллярные перивазисы, здесь также обнаруживаются постоянно присутствующие и проникающие сюда клетки иммунной системы (такие как лейкоциты, включая макрофаги). Наконец, часть тубулярного интерстиция формирует фибрибласты, а в случае патологических состояний – миофибрибласты. Первичные тубулоинтерстициальные заболевания [41] являются идиопатическими, генетическими или обусловлены: 1) химическим действием токсинов и лекарственных препаратов, накапливающихся в канальцах и индуцирующих апоптоз или некроз эпителиальных клеток канальцев; 2) инфекционным процессом и воспалением тубулоинтерстиция вследствие рефлюкса/хронического пиелонефрита или других причин; 3) повышенным внутриканальцевым давлением, индуцированным механическим сдавлением, в свою очередь являющимся следствием обструкции нижних мочевыводящих путей, обусловленной нефростенозом, простатитом, фибромом или ретроперитонеальным опухолью процессом и 4) отторжением трансплантата вследствие иммунного ответа. Во многих случаях причина заболевания остаётся неизвестной. Функция почек прогрессивно ухудшается в связи с нарушением канальцевой секреции и реабсорбции, активацией тубулярных клеток с привлечением медиаторов воспаления, прогрессирующей потерей канальцев и фиброзированием ткани и, в конечном итоге, повреждением других структур почки (например клубочек).

Независимо от конкретного этиологического фактора, характерными отличительными чертами тубулоинтерстициальных заболеваний являются атрофия канальцев, фиброс интерстиция и клеточная инфилтрация, приводящие к значительному увеличению объёма интерстиция [42, 43]. На ранних стадиях клубочковая фильтрация изменяется незначительно, и основным проявлением тубулоинтерстициальных нефропатий является канальцевая дисфункция [39, 44]. В противоположность гломерулярным заболеваниям, в случае патологии канальцев артериальная гипертензия появляется позже и только после значительного снижения СКФ [45–47]. Поражение проксимальных канальцев индуцирует бикарбонатурию, β2-микроглобулинурию, глюкозурию и аминоацидурию. Изменения в дистальных канальцах вызывают канальцевый ацидоз, гиперкалиемию и потерю натрия [48]. Структурные изменения мозгового слоя являются причиной нефрогенного несахарного диабета, клинически проявляющегося полиурией и никтурией [49].

Тубулоинтерстициальные заболевания можно рассматривать как постоянную воспалительную реакцию, не соответствующую нормальным защитным и репаративным процессам [50]. Иммунный ответ включает распознавание антигена, интегративную фазу и ликвидацию антигена. Эта реакция обеспечивается сложным, объединённым и координированным участием клеток тубулярного эпителия, интерстициальных и инфильтрирующих клеток. Медиаторами этого процесса являются хемотаксические, провоспалительные, вазоактивные, фиброгенные, апоптотические и стимулирующие
рост цитокинов и аутокоидов, высвобождаемых клетками – участниками процесса, а также гиперэкспрессия специфических рецепторов к этим молекулам и антигенных и адгезивных поверхностных маркеров на клетках-мишениях [51–55]. Последовательность патологических событий в течение тубулоинтерстициального фиброза начинается с инициального повреждения, которое активирует воспалительные и репаративные механизмы в почках, и завершается стадией фиброза, вызывающей прогрессирующую деструкцию ткани (рис. 2). Эти процессы описаны в следующих разделах.

НАЧАЛО ПОВРЕЖДЕНИЕ И АКТИВАЦИЯ КЛЕТОК
В результате поражения тубулярных структур повреждающим фактором запускаются процессы, выполняющие вначале восстановительные функции, но, в конечном итоге, они начинают играть негативную роль, формируется порочный круг, приводящий к интерстициальному фиброзу и тканевой деструкции. В зависимости от этиологического фактора наблюдаются некроз, апоптоз либо некроз в сочетании с апоптозом эпителиальных клеток канальцев. При инициации восстановления развивается воспалительный ответ, клетки канальцев пролиферируют с тем, чтобы заместить погибшие клетки. По непонятным причинам под действием неустановленных факторов процесс восстановления (в этой и последующих фазах, см. ниже) теряет адекватную регуляцию и принимает необратимое аутоагрессивное (деструктивное) течение, которое для дальнейшей прогрессии уже не требует наличия первичного повреждающего фактора.

Интерстициальный фиброз развивается вследствие нерегулируемого процесса фиброгенеза, изначально направленного на восстановления нормальной тканевой структуры, поддерживаемой внеклеточным матриксом и базальными мембранами [56]. Довольно рано интерстициальный фиброз начинает играть ведущую роль в патологическом процессе, вызывая образование рубцовой ткани в интерстиции и зоне эпителия (вместо восстановле-

Рис. 2. Схематическое изображение патологического процесса дегенерации канальцев и тубулоинтерстициального фиброза, характеризующих тубулоинтерстициальные заболевания, а также поздние стадии геморрагических и реноваскулярных заболеваний, приводящих к ХБП (заимствовано из ссылок [87] и [291]). ЭМТ – эпителиально-мезенхимальная трансформация.
Основные известные молекулы-медиаторы, участвующие в патофизиологическом процессе дегенерации канальцев и интерстициального фиброза, сгруппированные в соответствии с их наиболее важными эффектами

Эндогенные активаторы	Происхождение	FBR&EMT	INF	TD	ISCH	Ссылки		
1. Фиброз и EMT								
TGF-β	TC,FM,F,IG	X				EMF [252,253]; секреция профибротического	MCP-1 [254] и CTGF [255]. Фиброз: ↑ компонентов ECM и PAI,	MMPs [51,104–106]
EGF	PU,F	X				EMT [256]		
FGF	PU,F	X				EMT [234]; фиброз [87, 257–259]		
PDGF	P,RC	X				Трансформация фибробластов в миофибробла-	stы [87], пролиферация миофибробластов [260]	
CTGF	TC	X				EMF, фиброз, апоптоз [255, 261, 262]		
SPARC	TC,F,FM	X				Уменьшение клеточной адгезии и пролиферации,	activation TGF-β и коллагена-1, синтез фибро-	
						актина [98, 263]		
Тромбоспондин	TC,FM,F	X				Активация TGF-β [99]		
Декорин и бигликан	TC,FM,F	X				Накопление bFGF и TGF-β [101,102]		
Коллаген 1	F,FM,TF	X				EMT [264]		
PAI-1	TC,FM,F	X				EМС аккумуляция и фиброз [265]		
TIMP-1	TC,F,FM	X				Фиброз? [87, 108]		
2. Воспаление								
Комплект: C3 и C4	P,TC	X				Воспаление и фиброз [266–269]		
MCP-1	TC,P,IG	X				Клеточная инфильтрация, фиброз [72, 74, 254]		
ICAM-1/VCAM-1	EC,TC	X				На ЕС: диапедез и инфильтрация [271, 272]		
Гиалуроновая кислота	TC,F,FM	X				Воспаление, MCP-1 и секреция молекул адгезии	[97, 98]	
3. Канальцевое повреждение								
Перегрузка протеинами	UF	X				Активация клеток канальцев [65] и высвобожде-	ние ET-1 [273], ANG-2 [274] MCP-1 и RANTES [275]	
Комплект: C5b-9	P	X				Канальцевое повреждение и фиброз [276]		
TNF-α,INF-γ, Tweak	MBC	X				Воспаление, гибель клеток, активация фибробла-	стов и миофибробластов [277–279]	
4. Ишемия								
Эндотелин-1	TC	X				Вазоконстрикция и ишемия [273, 280]; ↑ компо-	нентов ECM и TGF-β [87]	
RAS	EC,TC,P	X				Вазоконстрикция, ишемия и секреция TGF-β [87,	281–284]	
ADMa	Плазма	X				Вазоконстрикция [67]		
Эндогенные ингибиторы	Происхожде-	FBR&EMT	INF	TD	ISCH	Ссылки		
1. Фиброз и EMT								
Коллаген 4	F,FM,TC	X				Подавление EMT [285]		
MMP-2 и 9	TC	X				Деградация коллагена 4 [286]		
HGF	P	X				Подавление EMT и фиброз [287–290]		
BMP-7	P,TC?	X				Подавление EMT и фиброз [285]		

Примечание. ADMA – асимметричный диметиларгинин, EC – эндотелиальные клетки, F – фибробласты, IG – воспаление в клубочке, iWBC – инфильтрирующие лейкоциты, MF – миофибробласты, P – плазма, RC – клетки почки (неуточнённые), TC – клетки каналцев, UF – гломерулярный ультрафильтрат, FBR – фиброз, EMT – эпителиально-мезенхимальная трансформация, INF – интерстициальный фиброз, TD – дистрофия каналцев, ISCH – ишемия.

ния эпителиальных клеток каналцев), и индуцируя последующие повреждение и деструкцию ткани посредством апоптоза и фенотипической трансдифференциации эпителиальных клеток каналцев.

Эпителиальные клетки каналцев отвечают на начальное повреждение посредством: 1) пролиферации или 2) дедифференциации через процесс, подобный эпителиально-мезенхимальной трансформации (ЭМТ), позволяющий им мигрировать, пролиферировать и, в конечном итоге, повторно дифференцироваться [57, 58]. Процесс ЭМТ клеток каналцев в фибробласты является неустановленным механизмом фиброза. Он также часто признаётся важным способствующим фи-
брозу фактором [59–61], хотя эта концепция по-прежнему оспаривается (см. обсуждение в [62]). Более того, в случае фиброза, наблюдаемого при переходе острого повреждения почек в ХБП, было показано, что миофибробласты в большинстве своём происходят из фибробластов и перицитов, а не из эпителиальных клеток канальцев [63, 64]. Как уже было ранее прокомментировано, асимметричный процесс восстановления открывает путь процессу фиброза, медиаторами которого являются активированные резидентные фибробLASTы [42], миофибробLASTы, образовавшиеся вследствие эпителиально-мезенхимальной трансформации [57], и секреция: 1) цитокинов, привлекающих мононуклеарные клетки; 2) факторов роста, стимулирующих интерстициальные фибробLASTы и 3) провоспалительных и профибротических молекул, стимулирующих синтез как базальной мембраны, так и протеинов межклеточного матрикса тубулоинтерстиция, таких как коллагены I и IV типов, фибронектин и ламинин [65, 66].

Критические события (повреждающие факторы), действующие на клетки эпителия канальцев, индуцируют раннее накопление и депонирование компонентов межклеточного матрикса в интерстиции. Апикальная стимуляция оказывает влияние на эпителий посредством механического и химического действия глюмерулярного ультрафильтрата вследствие повышения СКФ в отдельных оставшихся нефронах, в свою очередь вызывающего увеличение фильтрации протеинов, хемокинов, липидов и белков крови [65].

Базолатеральная стимуляция является результатом действия мононуклеарных клеток, а также гипоксии и ишемии, которые развиваются в ответ на потерю постгломерулярных капилляров. На моделях животных с ХБП была продемонстрирована потеря перитубулярных капилляров, связанная с...
тубулоинтрестициальной ишемией и фиброзом [67]. Было высказано мнение, что потеря капилляров является результатом ингибирования синтеза NO, поскольку гидролиз асимметричного диметиларгинина (ADMA) – ингибитора эндогенной NO-синтазы с помощью экзогенной диметиларгинин диметиламиногидролазы уменьшал потерю капилляров и повреждение почки [67]. И действительно, процесс потери капилляров является патологическим механизмом, ассоциированным с прогрессированием ХБП и потерей нефронов [68].

Известны ряд медиаторов, принимающих участие в этих процессах в канальцах, данные о них суммированы в табл. 2 (см. также рис. 3).

Инфильтрирующие клетки, заполняющие эндотелий перитубулярных капилляров [69] или пролиферирующие резидентные макрофаги [70], главным образом, влияют на прогрессирование повреждения паренхимы почек [50]. Источником MCP-1 может быть гломерулярный ультрафильтрат, содержащий белок, который поступает из плазмы и повреждённых клубочков. Важно отметить, что у мышей с ХБП и недостаточностью MCP-1 отмечается более детритовый характер, усиливая воспаление интерстиция и диапедез лимфоцитов [69] и способствуют прогрессированию повреждения, являясь источником профибротических факторов [50].

В больной почке миофибробласты аккумулируются вокруг повреждённых канальцев и артериол. Фиброз является следствием: 1) повышенного синтеза и высвобождения протеинов матрикса из клеток канальцев, фибробластов и, главным образом, миофибробластов и 2) сниженной деградации компонентов межклеточного матрикса [87, 88]. В ходе прогрессирования тубулоинтрестициального фиброза отмечается высокий уровень фибронектин, который остаётся в интерстиции и активация резидентных макрофагов усиливает воспаление и диапедез лимфоцитов, вызывая воспаление и повреждение [83, 84] и способствует прогрессированию повреждения, являясь источником профибротических факторов [50].

Миофибробласты могут образовываться путем трансдифференциации фибробластов, эпителиальных клеток канальцев, перицитов сосудов и макрофагов [57, 81, 82]. Фиброз является следствием: 1) повышенного синтеза и высвобождения протеинов матрикса из клеток канальцев, фибробластов и, главным образом, миофибробластов и 2) сниженной деградации компонентов межклеточного матрикса [87, 88]. В ходе прогрессирования тубулоинтрестициального фиброза отмечается высокий уровень фибронектина, который остаётся в интерстиции и активация резидентных макрофагов усиливает воспаление и диапедез лимфоцитов, вызывая воспаление и повреждение [83, 84] и способствует прогрессированию повреждения, являясь источником профибротических факторов [50].

Повреждение активирует почечные фибробласть, которые пролиферируют и в ответ на многие факторы, выделяемые тубулярными клетками, лейкоцитами и фибробластами, и является важным источником патологических фиброгенных факторов межклеточного матрикса, таких как коллаген и фибронектин [42, 61, 75, 76]. Эти молекулы включают цитокины и факторы роста, такие как трансформирующий фактор роста бета (TGFβ), MCP-1, фактор роста соединительной ткани (CTGF), инсулиноподобный фактор роста (IGF), фактор роста, выделяемый тромбоцитами (PDGF), фактор, активирующий тромбоциты (PAF); интерлейкины (ILs) 1, 4 и 6, и вазоактивные молекулы (напр. ангиотензин II и эндотелин-1), а также молекулы взаимодействия клеток межклеточного матрикса (например, интегрины, гиалуроновая кислота) ([65]; табл. 2; рис. 3).
стом фагоцитоза [89], в большинстве краткосрочных исследований была выявлена связь количества инфильтрирующих макрофагов с объёмом фиброза и со степенью почечной дисфункции [рассмотрено в обзоре [90]], что подтверждает этиологическую роль этих клеток в патогенезе повреждения почки. Более того, снижение аккумуляции макрофагов в случае экспериментальной обструктивной нефропатии сопровождалось усилением фиброза интерстиция почки и профибротической активности [91]. В ходе долговременных исследований была обнаружена реципрокная связь между этими двумя параметрами и поставлены ряд вопросов, касающихся функции инфильтрирующих клеток [92]. Таким образом, макрофаги, возможно, оказывают двойной эффект: краткосрочный профибротический и долгосрочный репаративный.

Участок повреждения интерстиция в фиброзированной почке выполнен избыточным количеством составных компонентов интерстициального матрикса (например, коллагена I, III, V, VII, XV, фибронектина), в нормальных условиях присутствующих только в тубулярных базальных мембранах (коллаген IV, ламинин), и протеинами, синтезированными de novo (тенасцин, определённые изоформы фибронектина и цепи ламинина) [93]. Фибронектин, обладающий хемоаттрактантными и адгезивными свойствами для привлечения фибробластов и депонирования других компонентов интерстициального матрикса, является одним из первых протеинов межклеточного матрикса, накапливающихся в ответ на инициальное повреждение. В процессах воспаления и фиброгенеза источниками фибронектина являются фибробласты, макрофаги, клетки канальцев и мезангия [95, 96]. Другими активно вырабатываемыми компонентами интерстиция фиброзных почек являются гиалуроновая кислота [97, 98], секретируемый кислый протеин, богатый цистеином (SPARC; [98]), тромbospondин [99, 100], декорин и бигликан [101, 102] (см. табл. 2 и рис. 3).

Принцип развития определенных типов ХБП являются выраженные изменения активности почечной коллагеназы с незначительным или полным отсутствием изменений синтеза коллагена. Почечный фиброzu экспериментальных мышей с обструкцией мочеточника также является следствием сниженной коллагенолитической активности [103].

В повреждённых почках повышение активации TGF-β также способствует блокированию нормального гомеостатического равновесия межклеточного матрикса путём снижения экспрессии детерминированных MMPs и активации экспрессии ингибитора MMPs – ингибитора активатора плазминогена 1 (PAI-1; 51, [104–106]). Также в случае прогрессирующей ХБП клетками почки активно синтезируется TIMP-1, эндогенный тканевой ингибитор MMPs, его экспрессию стимулирует действие: TGFβ, TGFα, эндотелиального фактора роста (EGF), тромбоцитарного фактора роста (PDGF), фактора некроза опухолей альфа (TNFα), интерлейкинов 1 и 6, онкостатина М, эндоотоксина, и тромбина [87]. Тем не менее, его роль противоречива, поскольку у мышей с индуцированным повреждением почек и недостаточностью TIMP-1 не выявляются значимые отличия выраженности интерстициального фиброза [87, 108].

ПРОГРЕССИРУЮЩАЯ ДЕСТРУКЦИЯ ТКАНИ

Гистологическим признаком прогрессирования ХБП является атрофия каналцев [109]. Эффектами избыточного накопления межклеточного матрикса, а также распространения воспалительного процесса на внеклеточное пространство являются деструкция паренхимы почек и снижение их функции [109]. Потеря клеток каналцев происходит в течение десятилетнего фазы, как следствие апоптоза, персистирующей эпителиально-мезенхимальной трансформации (с неустановленным способствующим фактором) и рубцевания интерстиция [110]. На этой стадии несбалансированный фиброгенез также может способствовать гибели клеток каналцев. Фиброз интерстиция ухудшает снабжение кислородом клеток каналцев и интерстиция, что активизирует процесс апоптоза [111].

Значимым эффектором апоптоза является FAS-инициированный внешний путь [112]. В сущности, сниженная экспрессия апоптоз-индуцированного рецептора FAS и эндогенного агониста лиганда FAS (FasL) уменьшает апоптоз эпителиальных клеток каналцев в модели диабетической нефропатии in vivo [113]. Вместе с тем, в нормальных условиях многие типы эпителиальных клеток, включая эпителиальные клетки каналцев почки, рефрактерны к апоптозу, индуцированному стимулирующей FAS [114]. Неадекватное объединение FAS и изменённый баланс внутриклеточных про- и антиапоптотических модуляторов могут объяснить недостаточную чувствительность к FAS [115, 116]. Специфически передача сигнала на уровне сигнального комплекса, индуцирующего гибель (DISC), сформированного вокруг FAS при стимуляции рецептора, обусловлена базальной экспрессией протеина-ингибитора, подобного домену смерти превращающего энзима, сходного и ИЛ-1, ассоциированного с FAS (FLIP),
который является эндогенным ингибитором DISC [117]. Антисенс FLIP или терапия циклогоксис-мидом, которая также существенно уменьшает уровень FLIP-клеток, заставляет рефрактерные фибробласты подвергаться апоптозу при стимуляции FAS. Соответственно необходимо первичная стимуляция для придания чувствительности эпителиальным клеткам каналцев к FAS-опосредованному апоптозу, что наблюдается при ХБП.

TGFβ оказывает влияние на апоптоз клеток каналцев in vivo, что было продемонстрировано на крысах с обструкцией мочеточника, когда после терапии anti-TGFβ, антителами было отмечено уменьшение апоптоза [86–118]. Учитывая центральную роль TGFβ в развитии ХБП, он является хорошим кандидатом для на стимуляции клеток каналцев к FAS-индукционному апоптозу. Другим веществом, обладающим способностью повышать чувствительность к FAS-индукционному апоптозу, является ангиотензин II. In vivo ингибирование действия ангиотензина II приводит к выраженному уменьшению повреждения, связанного с ХБП, включая апоптоз эпителиальных клеток каналцев [119]. In vitro ангиотензин II индуцирует апоптоз эпителиальных клеток проксимальных каналцев почек крыс, причем этот эффект опосредован синтезом TGFβ, сопровождаемым активацией генов клеточной смерти Fas и FasL [120].

В этих условиях действие на эпителиальные клетки каналцев нейтрализующими антителами anti-TGFβ частично ингибирует, а терапия анти- FasL выражено подавляет ангиотензин II-индукционный апоптоз. Ил-1 и гипоксия также вызывают усиление экспрессии FAS в клетках каналцев [121–123]. Совсем недавно было показано, что изолированныя тубулярная гиперэкспрессия TGFβ II мышц вызывала массивную пролиферацию парентубулярных клеток, распространённый фиброз и фокальную потерю нефронов, ассоциированных с дедифференциацией аутофагией клеток каналцев [124], хотя роль аутофагии в гибели клеток каналцев необходимо ещё доказать в последующих исследованиях.

Взаимовлияние этих и других факторов требует последующего исследования с тем, чтобы достичь понимания начала апоптоза в клетках каналцев в течение ХБП [125]. Кроме того, ангиотензин II в физиологических условиях является регулятором функции клеток почки, включая клетки каналцев [126]. Причиной этой двойственности может быть тот факт, что межклеточное взаимодействие и взаимодействие между клетками и межклеточным матриксом, а равно и специфические гуморальные детерминанты, участвуя в различных патофизиологических событиях, оказывают воздействие на эффект ангиотензина II и на судьбу и функцию клеток. Например, collagen discoidin domain receptor I принимает участие в вызывании клеток каналцев почки собак Madin-Darby (MDCK) [127]. Также избыточное отложение коллагена I и фибронектина может изменять чувствительность клеток к апоптозу [128].

Гипотетически, для индуцирования апоптоза ангиотензином II (и другим медиаторам) in vivo, необходимы ряд условий, таких как изменение гуморального состава и нарушение гомеостаза межклеточного матрикса, вызванное фиброгенезом. Возможно, этому способствует персистирование ангиотензина II. Наконец, ишемия также может напрямую индуцировать либо повышать чувствительность тубулярных клеток к апоптозу и некрозу [129, 130], или косвенно — посредством стимуляции фиброгенеза.

И действительно, в культуре клеток каналцев в условиях гипоксии снижается активность ММР и увеличивается общее содержание коллагена [131]. Также на примере экспериментальной ХБП было показано, что фактор, индуцирующий гипоксию (HIF), способствовал развитию фиброза [132, 133]. В патологических условиях фиброз также поражает сосудистую систему почки, уменьшая проницаемость сосудов, а также перитубулярных капилляров в области паренхимы [134]. На рис. 3 изображён прототип тубулоинтерстиция, на котором отмечены наиболее важные внеклеточные миореактивные клетки, ключевые патологические события.

ГЛОМЕРУЛЯРНЫЕ БОЛЕЗНИ

Глюмерулопатии представляют собой заболевания почек, при которых происходит поражение структуры и функции клубочков. Первичные гломерулопатии включают воспалительные гломерулопатии (гломерулонефриты) и нефритические синдромы [135]. Причиной вторичных гломерулопатий являются первичные тубулоинтерстициальные и реноваскулярные заболевания, способствующие прогрессированию повреждения [95]. Первичные и вторичные гломерулопатии делятся на хронические и острые заболевания, способствующие прогрессированию повреждения. Гипертрофия и хронический фиброз и гломерулонефриты являются основными причинами хронической почечной недостаточности и гломерулярных заболеваний [136]

Причинами воспалительных гломерулярных заболеваний являются: 1) системные и почечные
инфекционные процессы; 2) фокальные и сегментарные гломерулонефриты; 3) повреждение гломерулярной базальной мембраны в связи с отложением иммунных депозитов в стенке капилляров (люпус-нефрит, мембранопролиферативный гломерулонефрит), накопления комплексов IgA в клубочке (IgA-нефропатия) и др.; 4) гломерулонефрит при васкулите.

Гломерулонефрит подразумевает воспаление клубочков. В этом повреждении участвует как клеточный, так и гуморальный иммунный ответ, задействующие циркулирующие и in situ сформированные иммунные комплексы, систему комплемента [138], которые, в свою очередь, имеют тенденцию накапливаться в компонентах фильтрационного барьера и нарушать его структуру. Основным последствием гломерулонефрита является нефритический синдром, характеризующийся гематурией и протеинурией (обусловленных изменениями гломерулярного фильтрационного барьера), а также снижением гломерулярной фильтрации, олигурией и артериальной гипертензией, причиной которой является задержка жидкости [139]. Дополнительные отличительные признаки гломерулонефрита представлены активацией и пролиферацией мезангиальных и эндотелиальных клеток, которые способствуют развитию фиброза и формированию участков склероза, обычно наблюдаемых в повреждённых клубочках.

Невоспалительные гломерулярные заболевания включают метаболические и системные заболевания, химически или механически вызывающие повреждение клубочков, к ним относятся сахарный диабет и артериальная гипертензия, токсическое и опухолевое поражение почек. Невоспалительные гломерулярные заболевания также включают идиопатическую мембранозную нефропатию, поскольку, хотя её причиной и является иммунное поражение подоцитов, воспаление клубочка неоценимо, по крайней мере, на начальных этапах. Сахарный диабет является ведущей причиной ХБП и терминальной почечной недостаточности в развитых странах, на его долю приходится 20–40% от всех пациентов с этой патологией [141]. Другая важная причина невоспалительных гломерулярных заболеваний – персистирующая артериальная гипертензия, в результате которой происходит патологическое ремоделирование капилляров клубочка в ответ на повышение перфузионного давления и физический стресс. Хотя ауторегуляция почечного кровотока защищает почки от артериальной гипертензии, эта защита недостаточно эффективна и медленно, но неуклонно сходит на нет [142]. Основным клиническим синдромом невоспалительных глomerулопатий является нефrotический синдром, представленный выраженной протеинурией (>3 г/день), гипоальбуминемией, отёками, гиперлипидемией и липидурией [139], сниженной или даже нормальной гломерулярной фильтрацией. В противоположность нефритическому синдрому нефrotический синдром протекает без гематурии. Вместе с тем, необходимо отметить, что даже невоспалительные гломерулопатии протекают с развитием воспаления почки, которое является ключевым механизмом прогрессирования и важной мишенью терапевтического воздействия [143]. Отличие от воспалительных нефропатий состоит в том, что воспаление вторично по отношению к первичному повреждению.

ГИСТОПАТОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ И ПОСЛЕДСТВИЯ ГЛОМЕРУЛЯРНОГО ПОВРЕЖДЕНИЯ
Спектр гломерулярных патогенетических механизмов также широк, как и спектр первичных гломерулопатий. Существует зависимость от этиологии, течения специфических гломерулярных заболеваний со специфическим комплексом гистопатологических изменений, включающими фокальный и сегментарный склероз, диффузный склероз, мезангиальную, мембранозную и эндокапиллярную пролиферацию, мембранозные изменения и иммунные депозиты, формирование полулуней, тромботическую микроангиопатию, васкулит и др.

Отдельное гломерулярное заболевание может иметь различные гистопатологические характеристики (паттерны). Например, диабетическая нефропатия недавно была классифицирована на 4 класса: 1) класс 1 характеризуется изолированным утолщением гломерулярной базальной мембраны и только незначительными, неспецифическими изменениями при световой микроскопии; 2) класс 2, при котором наблюдается умеренная (IIA) или выраженная (IIb) мезангиальная экспанзия без нодулярного склероза или глобального гломерулосклероза более чем в 50% клубочков; 3) класс 3, когда выявляются нодулярный склероз или поражения Kimmelstiel–Wilson по крайней мере в одном клубочке с узелками увеличенного мезангиального матрикса, но без изменений, описанных в классе 4; 4) класс 4 или выраженный диабетический гломерулосклероз, характеризуется глобальным гломерулосклерозом более 50% клубочков, а также наличием последующих клинических или пато-
логических доказательств, определяющих связь гломерулосклероза с диабетической нефропатией [144].

В большинстве вариантов ХБП рано или поздно изменяет селективность и проницаемость гломеруллярного фильтрационного барьера, гломерулярные структуры коллапсируют, подвергаются склерозу и рубцеванию или даже физически отделяются от каналца, снижаются гломерулярный кровоток и фильтрация [145] (рис. 4).

Пролиферация мезангиальных клеток и гломерулосклероз также являются распространенными отличительными чертами большинства установленных гломерулопатий [136, 146, 147].

Мезангиальная пролиферация часто воспринимается как инициальный адаптивный ответ, который, в конечном итоге, трансформируется в патологический процесс. Другая характерная черта многих гломерулопатий и центральное событие протеинурических нефропатий – повреждение подоцитов [146, 148, 149]. Существует мнение, что подоцитопения является причиной либо способствует агрезии капилляров клубочка к капсуле Боумена в участках базальной мембраны, лишенной подоцитов. Эти участки агрезии образуют промежутики в париетальном эпителии, что, в свою очередь, открывает путь эктопической фильтрации из капсулы Боумена в параглomerулярное и интерстициальное пространство, которая может распространиться за пределы клубочка и также инициировать тубулоинтерстициальное повреждение [150].

Гломерулярные эндотелиальные клетки также являются первичными мишенью повреждения с исходом в гломерулопатии и ХБП. Они будут рассмотрены в секции 4, наряду с другими рено- васкулярными заболеваниями. Помимо тромботической микроаггипации, гломерулосклерозные заболевания включают атеросклеротическую микроэмболию, васкулит микрососудов, диабетическую нефропатию, мембранопролиферативный и постинфекционный гломерулонефрит, луис нефрит, а также наследственное заболевание – се-
мейный гемолитико-уремический синдром. Также гемодинамическое повреждение является важным компонентом в развитии гломерулосклероза и прогрессирования гломерулярного повреждения в большинстве форм ХБП. Гиперфилтрация, глomerулярная гипертензия, расширение гломерул и воспаление отмечаются после действия первичного фактора, обусловливающего различные изменения в гломерулах, которые активируют и даже повреждают мезангиальные и эндотелиальные клетки [151].

У пациентов с гломерулонефритом в ходе прогрессирования заболевания накапливается гломерулярный межклеточный матрикс [152]. Как и в здоровых почках в случае умеренно выраженного гломерулонефритического повреждения не обнаруживаются коллаген I и III типов [152]. Прогрессирующее повреждение почки коррелирует с увеличением содержания в мезангии коллагена IV и VI типов, ламинина и фибронектина. Наконец, на поздних стадиях гломерулонефрита постепенно снижается содержание коллагена IV типа ламинина и фибронектина, наряду с увеличением фокальной экспрессии коллагена I и III типов. Параллельно с развитием склероза также отмечается апоптоз гломерулярных клеток, межклеточный матрикс прогрессивно заполняет участки, освободившиеся после гибели клеток [153].

Воспаление играет центральную роль в прогрессировании многих, если не всех форм ХБП. В клубочке воспаление оказывает различные эффекты, которые усиливают повреждение и непрямое способствуют уменьшению гломерулярной фильтрации. Возможно, изначально воспаление активируется как механизм восстановления в ответ на повреждение клеток и тканей. Однако в результате действия неустановленных патологических событий перистирующее воспаление трансформируется в порочный круг прогрессирования и деструкции. В целом, воспаление стимулирует многие типы клеток почек к высвобождению хемотаксических факторов [157]. Как уже сообщалось ранее, ангиотензин II является одним из главных эффекторов, задействованных в активации резидентных клеток в случае патологического процесса в почке [126].

Введение ангиотензина II индуцирует выражаемое почечное повреждение в клубочках, тубулоинтерстиции и системе почечных сосудов, а также ассоциировано с пролиферацией клеток, лейкоцитарной инфильтрацией, интерстициальным фиброзом и восстановлением фенотипа мезангиальных клеток [158]. В короткий срок ангиотензин II, действуя на мезангиальные клетки, индуцирует прогрессирование процесса воспаления и повреждения.

КЛЕТКИ И МОЛЕКУЛЯРНЫЕ МЕДИАТОРЫ
Мезангиальные клетки представляют собой сократительные гломерулярные периваскулярные клетки, которые играют основную роль в регуляции почечного кровотока и СКФ. Также им принадлежит ключевая роль в генезе хронических гломерулярных заболеваний. Пролиферация мезангиальных клеток является распространённой чертой, характерной для течения инициальной фазы многих хронических гломерулярных заболеваний, включая IgA-нефропатию, мембранонезаместительный гломерулонефрит, люпус-нефрит и дебютную нефропатию [154].

По данным многочисленных экспериментальных моделей гломерулярного повреждения, установлено, что пролиферация мезангиальных клеток часто ассоциирована с депонированием межклеточного матрикса в мезангии и, таким образом, предшествует процессам фиброза и гломерулосклероза. Действительно, снижение пролиферации мезангиальных клеток в моделях гломерулярных заболеваний уменьшало депонирование межклеточного матрикса [154]. Таким образом, существует мнение о том, что пролиферирующие мезангиальные клетки являются центральным источником продукции межклеточного матрикса и, соответственно, причиной как фокального, так и диффузного гломерулосклероза [155, 156].

Развитие фиброза, являемся механизмом повреждения почек при гломерулопатиях, представляет собой финальный общий путь, в котором начальное повреждение клубочков запускает каскад процессов, включающих раннюю воспалительную fazу, за которой следует фиброгенез в клубочках и тубулоинтерстиции почек [93]. Ряд цитокинов, факторов роста и протеинов системы комплемента посредством активации путей, связанных с нуклеарным фактором NF-kB, инициирует воспаление, потенцируя мезангиальные клетки к высвобождению хемотаксических факторов [157]. Как уже сообщалось ранее, ангиотензин II является одним из главных эффекторов, задействованных в активации резидентных клеток в случае патологического процесса в почке [126].

Введение ангиотензина II индуцирует выраженное почечное повреждение в клубочках, тубулоинтерстиции и системе почечных сосудов, а также ассоциировано с пролиферацией клеток, лейкоцитарной инфильтрацией, интерстициальным фиброзом и восстановлением фенотипа мезангиальных клеток [158]. В короткий срок ангиотензин II, действуя на мезангиальные клетки, индуцирует повреждение и повреждение клеток, межклеточный матрикс [159]. В ответ на ангиотензин II, действуя на мезангиальные клетки, индуцирует повреждение и повреждение клеток, межклеточный матрикс [159]. Медиаторами этих эффектов являются аутоцитокиновые факторы, высвобождаемые в результате...
действия ангиотензина II, одним из которых является TGFβ, [86,136,160]. TGFβ вызывает про-
лиферацию мезангиальных клеток напрямую и посредством действия PDGF [161]. PDGF пред-
ставляет собой важный медиатор мезангиальной
пролиферации, а HGF противодействует ему [162].
Дополнительно установлена связь ряда патогенных
молекул с процессом развития гломерулосклеро-
за, включая эндотелин [163] и активные формы
кислорода [164]; выявлено их участие в процессе
индукированной ангиотензином II гипертрофии
мезангиальных клеток [165].
Резидентные клетки клубочка и циркулирующие
клетки воспаления, включая нейтрофильы, тромбо-
циты и макрофаги, являются медиаторами воспа-
лительных реакций, обусловливающих появление
участков гломеруларного поражения [135, 166,
167]. Привлечённые клетки воспаления усиливают
фibriотический и пролиферативный ответ мезанги-
альных клеток [168], а также экспрессию маркера
EMT альфа-SMA [169], продукцию компонентов
внеклеточного матрикса [155, 170], высвобождение
цитокинов и факторов роста [171]. Как уже было
объяснено при обсуждении тубулоинтерстициаль-
ных заболеваний, провоспалительные цитокины,
включая TNF-альфа, ИЛ-1 и другие интерлейкины,
интерферон гамма, tweak и другие, принимают
участие в паракринных реакциях, которые, в свою
очередь, приводят к следующему (рис. 5):
1) прямому повреждению и гибели клеток [172,
173].
2) стимуляции выработки TGFβ клетками почки
[174] и фиброзу [175, 176].
3) вазконстрикциии сосудов почки, которая,
уменяя почечный кровоток, приводит к двум
последствиям: с одной стороны, снижает гломеру-
лярную фильтрацию и с другой – может вызвать
дефицит кислорода и гипоксию при определённых
обстоятельствах. Гипоксия увеличивает гибель
клеток и активирует высвобождение HIF, который
способствует фиброзу [131–133].
Кроме того, гипоксия снижает запасы АТФ кле-
tок и, таким образом, может способствовать некрозу
клеток [177], который далее активирует развитие
иммунного ответа. Вазконстрикция также может
развиваться вследствие эндотелимальной дисфункции
и оксидативного стресса [178–180], либо являться результатом высвобождения подоцитами, эндотелиальными и мезангиальными клетками факторов вазоокклюзии, таких как эндотелин 1, фактор, активирующий тромбоциты (PAF) [181–184];

4) микрососудистому полнокровию в результате эндотелиальной дисфункции и абберрантной коагуляции, способствующих развитию гипоксии [185, 186];

5) сокращению мезанги [181–184], вызывающему уменьшение гломерулярной фильтрации и коэффициента ultraфильтрации [187].

Пролиферирующие париетальные эпителиальные клетки капсулы Бумена вовлечены в процесс развития ФСГС и экстракапиллярной пролиферации. Долгое время пролиферирующие париетальные клетки считались своего рода пассивными участниками процесса развития ХБП. В последние годы, по данным ряда исследований, было установлено, что, пролиферируя при различных гломерулярных заболеваниях, они вырабатывают компоненты межклеточного матрикса, способствуя фиброзу, агезии гломерулярных капилляров к капсуле Бумена [188,189] и колапсу клубочков. Кроме того, после активации эти клетки экспрессируют множество факторов роста, хемокин, цитокины и их рецепторы [рассмотрено в 190].

Наконец, значению подоцитов в развитии гломерулопатий сегодня уделяется всё больше внимания, существует мнение об их ключевой роли в патологическом процессе, которая является следствием как генетических, так и приобретённых изменений. Установлена связь потери подоцитов, не обладающих способностью к постнатальной пролиферации, с прогрессированием гломерулярных заболеваний, вплоть до гломерулосклероза [191]. Подоциты представляют собой специализированные перцсициты, расположенные вокруг капилляров клубочков и способствующие формированию уникальных характеристик гломерулярного фильтрационного барьера [148, 192].

В случае приобретённых человеческих протеинурических гломерулопатий, таких как диабетическая нефропатия, нефротический синдром с минимальными изменениями (НСМИ), ФСГС и мембранозная нефропатия, в целом, по данным электронной микроскопии, наблюдается слияние ножковых отростков подоцитов и исчезновение щелевых диафрагм; указанные гломерулопатии, таким образом, считаются болезнями повреждения подоцитов (подоцитопатиями) [148, 193]. Ряд экспериментальных моделей, таких как пиромициновая аминогликозидная нефропатия у крыс и адриамициновая нефропатия у мышей, при которых развивается массивная протеинурия, похожая на человеческую болезнь минимальных изменений, обеспечили глубокое понимание причин и взаимосвязей клеточных и межклеточных механизмов болезни повреждения подоцитов.

Дисфункция подоцитов приводит к прогрессирующей почечной недостаточности. Во первых, повреждение подоцитов вызывает протеинурию. Устойчивая протеинурия приводит к повреждению тубулоинтерстиция и, в конечном итоге, завершается почечной недостаточностью [194]. Во вторых, повреждение подоцитов нарушает структуру и функцию мезанги. В случае анти-Thy 1-гломерулонефрита индукция минимального повреждения подоцитов после назначения PAN приводила к обратимой альтерации мезанги [195].

Также при анти-Thy1-гломерулонефрите в подоцитах повышается экспрессия протеина 61, богатого цистеином (Cyr61)-потенциального антигиогенного протеина, принадлежащего к CCN семейству матрикса ассоциированных секретируемых протеинов [196].

Cyr61 ингибирует миграцию мезангиальных клеток, предполагается, что этот протеин может играть роль модулятора в ограничении мезангиальной активации. Таким образом, подоциты секретируют различные гуморальные факторы, которые осуществляют регуляцию структуры и функции мезанги; уменьшение количества подоцитов может повлечь за собой ухудшение функции и пролиферацию мезанги, экспансию матрикса. К примеру, ангиотензин II и высокие концентрации глюкозы увеличивают выработку подоцитами TGFβ, [197] и VEGF [198]. Известно, что обе эти молекулы воздействуют на мезангиальные клетки [199]. В третьих, утрата подоцитов или отделение их от гломерулярной базальной мембраны приводит к гломерулосклерозу [200]. В случае человеческой диабетической нефропатии и IgA-нефропатии снижение количества подоцитов сильно коррелирует с плохим прогнозом [201, 202]. Эти данные указывают на то, что повреждение подоцитов является ключевым моментом не только в случае подоцит-специфических заболеваний, таких как нефrotический синдром с минимальными изменениями и ФСГС, но также и в подоцит-неспецифических заболеваниях, при IgA-нефропатии и диабетической нефропатии.

РЕНОВАСКУЛЯРНЫЕ ЗАБОЛЕВАНИЯ
Реноваскулярные заболевания включают в себя группу прогрессирующих состояний, вызывающих повреждение почек и нарушение их
функции в результате сужения или окклюзии кровеносных сосудов почки. По данным базы данных США (the U.S. Renal Data System) [203], причиной приблизительно одной трети всех случаев терминальной почечной недостаточности являются реноваскулярные заболевания. Реноваскулярные заболевания обычно проявляются как микроангиопатия, хотя потенциальными этиологическими факторами также могут быть окклюзия почечной артерии, тромбоз почечных вен, эмболия атеросклеротическим массами. Этот термин в большинстве случаев используется для описания заболеваний, поражающих почечные артерии, поскольку блокада почки встречается довольно редко. Реноваскулярные заболевания поражают главные почечные артерии и их ветви (stenoz) либо микрососудистое русло (тромбоэмболическая микроангиопатия) и приводят, в конечном итоге, к ХБП. Атеросклероз является причиной 70–90% случаев стеноза почечных артерий и главной патологической находкой у пациентов старше 50 лет [204, 205], тогда как причина большинства остальных случаев стеноза – фибромускулярная дисплазия.

Последняя представляет собой группу идиопатических фибротических состояний, главным образом поражающих медию, но также и интиму, и адвенциональные слои сосудов мелкого калибра. Наиболее часто данные состояния встречаются у женщин среднего возраста. Необычными причинами стеноза являются внешняя компрессия (например опухолью), частичная окклюзия в области шва после трансплантации почки, нефроангиосклероз (повреждение в результате артериальной гипертензии), диабетическая нефропатия (в сосудах малого калибра), тромбоэмболия, атеросклеротическими массами, расслоение аорты и почечной артерии, васкулит почечных артерий, травма, нейрофибросаркома, облитерирующий тромбоангиит и склеродермия [206, 207].

АТРОСКЛЕРОЗ И ПОВРЕЖДЕНИЕ ПОЧЕК

Следствием атеросклероза почечных артерий являются два основных эффекта, совместно и независимо друг от друга вызывающих нарушение функции почек. С одной стороны, в сосудах, поражённых атеросклерозом, имеет место повышенная выработка реактивных форм кислорода (ROS), которые приводят к оксидативному стрессу. Оксидативный стресс влечёт за собой два основных последствия: 1) эндотелиальную дисфункцию и 2) воспаление. С другой стороны — массивные атеросклеротические бляшки могут, преодолевая механизмы ауторегуляции, снижать почечный кровоток (во всей почке или отдельных областях), тем самым вызывая выраженное уменьшение клубочковой фильтрации (рис. 6) [209, 210].

Даже в условиях отсутствия значимой обструкции эндотелиальная дисфункция и воспаление также могут вызывать снижение клубочковой фильтрации. Эндотелиальная дисфункция является причиной вазоконстрикции и, как следствие, уменьшения фильтрации. Воспаление индуцирует активацию клеток клубочков и канальцев и выработку ими вазоактивных молекул, таких как фактор, активирующий тромбоциты, эндотелин-1, и также вызывает активацию РАС [143]. Указанные медиаторы являются инициаторами процессов: вазоконстрикции и сокращения мезангия (которые снижают коэффициент ультрафильтрации, Kf), что приводит к уменьшению гломерулярной фильтрации и, в ряде случаев, к гибели клеток, способствующей потере нефронов.

Увеличение выработки реактивных форм кислорода в условиях таких патологических состояний, как артериальная гипертензия и атеросклероз, наиболее часто является следствием активации ренин-ангиотензиновой системы и НАД(Ф)Н-оксидазы [211–213]. A.R. Chade и соавт. [214] показали in vivo в экспериментальной модели реноваскулярно-
го заболевания, что системная активность ренина плазмы не была увеличена, поэтому предположена активация РАС в почке со стенозом артерии. Также складывается впечатление о том, что индуцированная ангиотензином II продукция реактивных форм кислорода задействует цепной механизм, что приводит к пролонгации их выработки [211]. Постоянное наличие оксидативного стресса играет существенную роль в патогенезе повреждения почки и реноваскулярных заболеваний [214], также не вызывает сомнения тот факт, что оксидативный стресс способствует развитию реноваскулярной артериальной гипертензии [215].

Реактивные формы кислорода могут вызывать вазоконстрикцию и модулировать функцию микрососудов почки [216], способствуя, тем самым, увеличению тонуса и чувствительности почечных сосудов, которые, в свою очередь, индуцированы действием других вазоконстрикторов, таких как ангиотензин-II и эндотелин-1. Более того, супероксид-анион и оксид азота (NO) могут взаимодействовать друг с другом, что снижает доступность NO и в связи с образованием пероксинитрита, ухудшает функцию внутрипочечных сосудов и клубочков [213, 216].

Наконец, было показано, что антиоксиданты предотвращают повреждение почек и нарушение их функции в условиях атеросклероза и обструкции почечных артерий [214]. Все указанные факты позволяют высказать предположение о том, что в процессе нарушения эндотелий-зависимой вазодилатации, наблюдаемой у пациентов с реноваскулярной артериальной гипертензией, по крайней мере отчасти принимает участие оксидативный стресс.

ПОВРЕЖДЕНИЕ ПОЧКИ, ОБУСЛОВЛЕННОЕ ГИПОПЕРФУЗИЕЙ И ИШЕМИЕЙ

Выраженная окклюзия, снижающая почечный кровоток более чем на 60%, вызывает уменьшение перфузионного давления почек ниже порога ауторегуляции (<70–85 мм рт. ст.). Гипоперфузия почек развивается только в случае снижения перфузионного давления ниже порога ауторегуляции, что, в свою очередь, приводит к уменьшению почечного кровотока. Принято считать, что необходимым условием гипоперфузии является окклюзия 70–80% просвета почечной артерии, что носит название критического стеноза [217].

Указанное состояние индуцирует генерали-
званную гипоперфузию тканей почки (иногда относимую к ишемии) и нарушение экскреторной функции, которые могут эволюционировать в фиброз (зачастую во вторичный ФСГС) и ХБП. Локализованная или распространённая тромбоэмболическая микроангиопатия, развиваясь на почве системного атеросклероза или косвенно вследствие атеросклеротического стеноза главной почечной артерии, также может явиться причиной появления цепи истиных ишемических изменений. Вместе с тем, осторное уменьшение почечного кровотока совсем не обязательно приводит к повреждающей ишемии, но может явиться причиной обратимого, подобного гибернации функционального состояния, и в ряде случаев вызывать повреждение почек [208].

Необходимо помнить тот факт, что лишь 10% от общего количества кислорода, проходящего через почку, используется на нужды её метаболизма [218]. В этой ситуации осуществляется постоянная активация прессорных механизмов, что приводит к повышению системного артериального давления и, как следствие, к увеличению перфузионного давления для достижения, в конечном итоге, водного и электролитного баланса. Артериальная гипертензия ухудшает исходы течения стеноза почечной артерии [219]. В сущности уже описана комплексная взаимосвязь между стенозом почечной артерии, артериальной гипертензией и ХБП [220].

Выраженная гипоперфузия почки приводит к разрежению микросоудистого русла (МР), недостаточной выработке сосудистого эндотелиального фактора роста (VEGF) и фокальной или распространённой ишемии [221]. Складывается впечатление, что МР играет значительную роль в патогенезе реноваскулярной болезни почек, поскольку назначение экзогенного сосудистого эндотелиального фактора роста предотвращает МР и нарушение функции почек [221]. Ишемия также признана сильным повреждающим и фиброгенным стимулем, однако механизмы, приводящие к ХБП, всё ещё недостаточно ясны [208].

Было продемонстрировано, что фактор, индуцируемый гипоксией (HIF), являясь проангиогенным и протективным медиатором, высвобождаемым ишемизированными клетками in vivo, в хронических патологических условиях усиливает почечный фиброз [222]. Наконец, была обнаружена связь между гипоперфузиеи и повреждением каналцев [223]. Уменьшение снабжения клетки кислородом и глюкозой лимитирует продукцию АТФ и напрямую вызывает либо является предрасполагающим фактором гибели клеток [224–226]. Гипоксия также активирует экспрессию индуцируемой синтазы оксида азота (iNOS), которая, в свою очередь, приводит к возникновению оксидативного стресса, ингибирует синтез АТФ и активирует процесс апоптоза [227].

ПОВРЕЖДЕНИЕ ВСЛЕДСТВИЕ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ

Артериальная гипертензия является прогностическим фактором, индуцирующим повреждение почек в случае наличия стеноза почечной артерии [228]. Гипертоническая нефропатия представляет собой гломерулопатию, инициируемую повышением внутриклубочкового давления, которое активирует и повреждает клетки клубочков, включая мезангиальные клетки, эпителиальные клетки и подоциты. Эти клетки продуцируют провоспалительные и вазоактивные медиаторы, которые способствуют повреждению и развитию фиброза, снижают почечный кровоток, КГ и гломерулярную фильтрацию [143] (см. рис. 6).

Изначально стресс, индуцированный артериальной гипертензией, активирует локальную РАС на уровне клубочков. Как и в большинстве других сердечно-сосудистых патологий было убедительно показано, что локальная РАС вовлечена в процесс повреждения и ремоделирования тканей. В модели гиперхолестеринемической реноваскулярной ХБП [229], а также в модели формирования коарктации аорты между обеими почечными артериями, патологически схожей с унилатеральным стенозом [230, 231], увеличивалась экспрессия почечных TGFβ, NFκB и других цитокинов. Указанные цитокины могут участвовать в процессах воспаления, фиброза и апоптоза, как описано для гломерулярных и канальцевых заболеваний в целом [208].

Стеноз почечной артерии может поражать одну или обе почки, что индуцирует цепь различных патологических событий (рис. 7).

Вариант одностороннего стеноза почечной артерии (как в случае унилатеральной нефростомии или у пациентов после трансплантации почки) схож с билатеральным стенозом. Дело в том, что во всех случаях РАС играет центральную роль в развитии компенсаторных реакций, включающих повышение системного артериального давления [232]. В случае билатерального стеноза или одностороннего стеноза единственной почки уменьшение перфузионного давления индуцирует быстрое высвобождение ренина, который, в свою очередь, вызывает увеличение образования почечного и системного ангиотензина II. Последний стимулирует выраженную системную и почечную вазо-
конструкцию, увеличение реабсорбции натрия и воды в канальцах, что быстро приводит к развитию артериальной гипертензии. Необходимо отметить, что по прошествии нескольких дней высвобождение ренина в почке со стенозом артерии возвращается к нормальным значениям, и артериальная гипертензия становится зависимой от увеличения объёма внеклеточной жидкости (и крови) и независимой от РАС.

Ингибиторы ангиотензин-превращающего фермента (ИАПФ), таким образом, могут лишь предотвратить начало артериальной гипертензии и в дальнейшем не оказывают воздействия на артериальное давление. В случае ограничения натрия и воды артериальная гипертензия вновь становится ренин-зависимой [208, 232]. Существует мнение о том, что контроль артериального давления, опосредованный РАС, является промежуточным механизмом. Впоследствии прессорный натрийурез замещает другие механизмы контроля и даже инактивирует контроль, опосредованный РАС [142] путём уменьшения высвобождения ренина [208, 232].

В случае унілатерального стеноза почечной артерии почка, как и при билатеральном стенозе, отвечает высвобождением ренина, выработкой ангиотензина II и артериальной гипертензий. При унілатеральном стенозе сохранение артериальной гипертензии зависит от постоянной активации РАС. Высокие уровни циркулирующего и почечного ангиотензина II становятся ещё выше [233], что, вероятно, устанавливает механизм прессорного натрийуреза–диуреза в почке, не поражённой стенозом, на более высокие уровни артериального давления, так что водный и электролитный баланс достигается уже на новом уровне артериального давления. В сущности, блокаторы РАС в этой модели (например ингибиторы ангиотензин–превращающего энзима) ингибитируют как начало, так и хронизацию артериальной гипертензии [207].

Заслуживает внимание тот факт, что ангиотензин II обладает возможностью поддержания арте-
риальной гипертензии в долгосрочной перспективе, что было продемонстрировано в экспериментальной модели у крыс с артериальной гипертензией, индуцированной постоянным назначением ангиотензина II [234]. В случае унілатерального стеноза (в экспериментальных моделях, например модели унілатерального стеноза Голдбатта — «две почки — одна клипса» — 2П1К, и модели коарктации аорты между почечными артериями) в интактной почке также происходили структурные изменения [230, 231], возможно, в результате развившейся артериальной гипертензии или вследствие локальных или системных гуморальных изменений, являющихся компенсаторной реакцией. В самом деле, в модели 2П1К в контралатеральной почке по прошествии 3–5 нед после стеноза также увеличивалась экспрессия TGFβ [235].

ОБЩИЕ МЕХАНИЗМЫ ПРОГРЕССИРОВАНИЯ

Внезависимо от конкретной причины патогенез ХБП характеризуется прогрессирующей утратой функции почек и изъёмальным накоплением внеклеточного матрикса в клубочках и интерстиции канальцев [236]. Прогрессирование ХБП ассоциировано с появлением общего фибротического фенотипа, когда установить причину заболевания становится возможным только при анализе специфических морфологических характеристик при патоморфологическом исследовании почечных биопсий.

Это происходит потому, что тубулоинтерстициальные заболевания, в конечном итоге, приводят к поражению клубочков, а в исходе гломерулярных заболеваний неизбежно возникает поражение тубулоинтерстиция. В обеих ситуациях происходит потеря нефронов и замещение их рубцово-подобной тканью, что прогрессивно снижает гломерулярную фильтрацию и ухудшает экскреторную функцию почек. Важно отметить, что выраженность морфологических изменений в почке и риск прогрессирования тесно коррелируют со степенью тяжести тубулоинтерстициального фиброза вне зависимости от этиологии [69].

Это позволяет предположить, что, по крайней мере, изначально поврежденные клубочки в меньшей степени влияют на экскреторную функцию, чем повреждённые каналы. Повреждённые и
склерозированные клубочки могут сохранять определенный уровень фильтрационной функции, который, благодаря наличию резервных возможностей почки, оказывает меньшее воздействие на функцию почки в целом. Тем не менее, умеренное нарушение канальцевой реабсорбции может посредством механизма тубулолохомеллярной обратной связи приводить к катастрофическому падению уровня клубочковой фильтрации, с тем, чтобы сохранить водно-электролитный баланс [237].

Более того, повреждённые каналы могут претерпевать частичную или полную обструкцию тканевым детритом вследствие деструкции эпителия, что снижает или полностью останавливает фильтрацию (рис. 8).

Повреждённые каналы продуцируют ряд профibriотических и провоспалительных факторов, которые в патологических условиях также могут изменять функцию клубочков и повреждать их посредством паракринных механизмов (табл. 2) [143].

Традиционно считается, что механизмами, которые связывают первичные гломерулопатии и последующее вовлечение тубулоинтерстициального пространства в патологический процесс, являются [238]: увеличение реабсорбции протеинов в проксимальных канальцах вследствие клубочковой гиперфильтрации, ассоциированной с повреждением клубочков. Увеличение реабсорбции протеинов в канальцах активирует выработку цитокинов клетками канальцев, что, в свою очередь, способствует инфильтрации иммунными клетками и активации иммунно-воспалительного ответа [238]. Аномально фильтруемые биоактивные макромолекулы взаимодействуют с эпителиальными клетками проксимальных канальцев, активируя сигнальные пути, включающие NfκB [239, 240].

Комплекс мегалин-кубилин опосредует захват ряда протеинов, включая альбумин, эпителиальными клетками проксимальных канальцев. Мегалин может также инициировать или принимать участие во внутриклеточном сигнальном взаимодействии, связывающем аномальную альбуминурию с провоспалительными и профibriотическими сигналами [240].

Определённую роль также могут играть неонаральный Fc-рецептор и CD36. Более того, добавление альбумина или трансферрина к клеткам каналцев снижает их способность к связыванию фактора H и противодействию активации системы комплемента [241]. Альбумин также может быть источником потенциальных антителенных пептидов, вырабатываемых дендритными клетками почки [242].

И в самом деле, протеинурия является не просто маркером заболевания, но также и эффектором нефропатии. Это подтверждается взаимосвязью протеинурии с рядом событий:

1. Протеинурия коррелирует с прогрессированием заболевания, а фармакологическое предотвращение её коррелирует с замедлением прогрессирования заболевания [2].

2. Протеинурия сопровождается прямым распространением экстракапиллярных участков поражения на клубочки и каналы [150].

3. Протеинурия сопутствует периодическим эпизодам острого повреждения клубочков (токсинами, металлами, лекарственными препаратами, инфекционными агентами и т. д.), которые подерживают постоянную выработку факторов роста и хемокинов, участвующих в процессе повреждения каналцев [238].

4. Протеинурия сочетается с постгломерулярной недостаточностью кровоснабжения ввиду деградации, коллапса или сужения гломерулярных капилляров, приводящая к гипоксии каналцев [238].

5. Протеинурия принимает участие в формировании парагломерулярного экссудата, содержащего профibriотические факторы, внеклеточный матрикс – ECM, структурные компоненты базальной мембраны, тканевой детрит, образующийся после разрушения эпителиальных клеток и подоцитов. Экссудат попадает в каналы через интерстициальные пути и инициирует процесс повреждения, приводящий к интерстициальному фиброзу и дегенерации каналцев, которые в ряде случаев могут вызывать физическое разделение клубочков и каналцев и формирование в итоге гломерулярных кист [238].

Ядра склероза берут своё начало в местах слияния между капиллярами и капсулой Буюма гломерула на участках базальной мембраны с недостаточным количеством подоцитов, что, в конечном итоге, приводит к образованию парагломерулярного пространства (ПГП).

ПГП содержит эктопический фильтрат и детрит капиллярных петель.

Предполагается, что содержимое ПГП играет значительную роль в инициации повреждения и является связующим звеном между гломерулярными и канальцевыми заболеваниями. Необходимо отметить, что растёт количество доказательств того, что даже в случае таких считающихся традиционными гломерулопатий, как диабетическая нефропатия, еще до обнаружения первых признаков гломерулярного повреждения имеет место некоторая степень повреждения каналцев [243–247]. Этот факт, в
конечном итоге, может заставить пересмотреть концепцию разделения глюмерулярных и канальцевых заболеваний в пользу более интегративного представления о них [245].

Вне зависимости от конкретной причины при прогрессирующем нарушении функции почек активируются компенсаторные механизмы, которые также могут принимать участие в прогрессировании патологического процесса. Эти реакции включают артериальную гипертензию и гиперактивацию периферической или почечной симпатической нервной системы [248], что обычно наблюдается у пациентов с ХБП.

В самом деле, недавно была установлена связь гиперактивности почечной симпатической нервной системы, опосредованной барорецепторами, с появлением и персистированием артериальной гипертензии [142]. На рис. 8 показаны патологические механизмы, связывающие повреждение клубочек и канальцев, что даёт начало общей картине болезни почек в течение прогрессирования ХБП.

ВЫВОДЫ, КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ И ПЕРСПЕКТИВЫ

В этом обзоре суммируются ключевые патофизиологические процессы в ходе развития хронических болезней почек, нарушающих экскреторную функцию почек на организменном, тканевом, клеточном и молекулярном уровнях. Причиной хронических болезней почек могут быть: поражение клубочек, канальцев или сосудов почек. Большинство заболеваний каждой из этих групп имеют специфические, но также и общие патофизиологические характеристики, определяемые в результате всё большего понимания механизмов их развития. Кроме того, эти болезни вне зависимости от этиологии, в конечном итоге, поражают все части нефрона и принимают необратимое течение, несущее угрозу жизни пациента.

По мере прогрессирования заболевания создаётся все более универсальная патофизиологическая картина, характеризующаяся нарастающим фиброзом, воспалением, потерей нефронов и рубцеванием паренхимы. Имеющиеся на сегодняшний день методы лечения ХБП оказывают достаточно эффективным только в плане замедления прогрессирования заболевания. Их применяют существенно позднее развития необратимых событий, во многом потому, что четкие патологические признаки появляются только после потери функции более 50% нефронов. В этих условиях критической для прогноза является как можно более ранняя диагностика. Более того, поиск новых биомаркеров и технологий, направленных на раннюю постановку диагноза, является предметом активных исследований.

Наблюдение за пациентами с ХБП показывает, что в целом уровень их смертности возрастает по мере снижения функции почек, и смертность пациентов с терминальной почечной недостаточностью в 10–20 раз выше, чем в общей популяции. В настоящее время изление ХБП невозможно, а естественное течение болезни состоит в прогрессировании, вплоть до развитии терминальной почечной недостаточности и смерти (в случае отсутствия лечения диализом или выполнения трансплантации почки).

Таким образом, в последние годы внимание специалистов было сосредоточено на оптимизации ведения таких больных с ХБП и замедлении прогрессирования болезни с тем, чтобы избежать необходимости применения заместительной почечной терапии в течение всего периода жизни пациента. В большинстве случаев возможно замедлить прогрессирование ХБП до терминальной почечной недостаточности, если больной выживает и лечится на ранних стадиях, главным образом с помощью блокаторов ренин-ангиотензиновой системы, хотя на основе знаний о механизмах прогрессирования уже разрабатываются другие лекарственные препараты [143, 249]. Таким образом, раннее обнаружение ХБП имеет потенциально огромное социально-экономическое и медицинское значение. Однако разработка способов ранней диагностики и использование лучших лекарственных препаратов для предотвращения и в идеальном варианте для ликвидации повреждения почек и восстановления их функции требуют более глубоких знаний патофизиологических механизмов развития и прогрессирования ХБП. В этом смысле целесообразно также замедлить развитие ХБП в условиях клиники, в идеале не достигнуто. Вместе с тем, в ряде исследований с использованием экспериментальных моделей почечного фиброза, например с использованием BMP-7 в качестве терапевтического агента, были достигнуты многообещающие результаты [250, 251].

Однако ценные и потенциально полезные для клинической практики знания о ХБП всё ещё не получены, остается неясным, почему за начальным или персистирующим повреждением почки не следует восстановление, а напротив, развивается цепь необратимых событий, направленных на саморазрушение, которые уже становятся независимыми от действия первопричины. В этой точке невозвращения в судьбу повреждённых почек возможно
скрывается ключ к изменению концепции лечения от замедления прогрессирования к достижению ре- прессии и, наряду с достаточной ранней диагностикой, к предотвращению вступления в порочный круг прогрессирующего ухудшения. Предполагается, что основное значение имеет дисбаланс про- и антифибротических цитокинов в достижении точки невозврата [110], поэтому полезным было бы сфокусировать научные изыскания на этом клю- чевом аспекте ХБП на пути завоевания истинного контроля над этим заболеванием.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Mitch WE, Walser M, Buffington GA et al. A simple method of stimulating progression of chronic renal failure. Lancet 1976;2:1326–1328
2. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 2006;11:288–296
3. Chin C. Renal failure: Pharmacologic issues. Pharmacy Practice 2002, 1–8
4. Levey AS, Coresh J, Balk E, et al. National Kidney Foundation. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003;139:137–147
5. Snively CS, Gutierrez C. Chronic kidney disease: Prevention and treatment of chronic complications. American Family Physician 2004;70:1921–1928
6. Snyder S, Pendergraph B. Detection and evaluation of chronic kidney disease. American Family Physician 2005;72:1723–1732
7. Feig DI. Uric acid: a novel mediator and marker of risk in chronic kidney disease? Curr Opin Nephrol Hypertens. 2009;18:526–530
8. Goicoechea M, de Vinuesa SG, Verdalles U, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010;5:1388–1393
9. Bellomo G, Venanzi S, Verdura C, et al. Association of uric acid with change in kidney function in healthy normotensive individuals. Am J Kidney Dis 2010;56:264–272
10. Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol 1985;249 (3):F324–F337
11. Molitch ME, DeFronzo RA, Franz MJ, et al. American Diabetes Association. Nephropathy in diabetes. Diabetes Care 2004;7 [Suppl 1]:S79–S83
12. U.S. Renal Data System, USRDS 2009 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2009
13. Brosnahan G, Fraer M. Chronic kidney disease: whom to screen and how to treat, part 1: definition, epidemiology, and laboratory testing. South Med J 2010;103:140–146
14. Stengel B, Tarver-Carr ME, Powe NR, et al. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology 2003;14:479–487
15. Hsu CY, Mc Culloch CHE, Iribarren C, et al. Body mass index and risk for end-stage renal disease. Ann Intern Med 2006;144:21–28
16. Ejbelblad E, Foerd M, Lindblad P, et al. Obesity and risk for chronic renal failure. J Am Soc Nephrol 2006;17:1695–1702
17. Ritz E. Metabolic syndrome and kidney disease. Blood Purif 2008;26:59–62
18. Hall JE, Crook ED, Jones DW, et al. Mechanisms of obesity-associated cardiovascular and renal disease. Am J Medical Sciences 2002;324:127–137
19. Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med 2004;140:167–174
20. Ting SM, Nair H, Ching I, et al. Overweight, obesity and chronic kidney disease. Nephron Clin Pract 2009;112:c121–c127
21. Faronato PP, Maioli M, Tonolo G, et al. Clusterin of albumin excretion rate abnormalities in Caucasian patients with NIDDM. The Italian NIDDM nephropathy study group. Diabetologia 1997;40:816–823
22. Satko SG, Freedman BI. The importance of family history on the development of renal disease. Curr Opin Nephrol Hypertens 2004;13:337–341
23. Gohda T, Tanimoto M, Watanabe-Yamada K, et al. Genetic susceptibility to type 2 diabetic nephropathy in human and animal models. Nephrology (Carlton) 2005;10 [Suppl]:S22–S25.
24. Satko SG, Freedman BI, Moossavi S. Genetic factors in end-stage renal disease. Kidney Int 2005;94 [Suppl]:S46–S49
25. Kao WH, Klaj M, Meoni LA, et al. Family Investigation of Nephropathy and Diabetes Research Group. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 2006;40:1185–1192
26. Freedman BI, Hicks PJ, Bostrom MA, et al. Polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9) are strongly associated with end-stage renal disease historically attributed to hypertension in African Americans. Kidney Int 2009;75:736–745
27. Divers J, Freedman BI. Susceptibility genes in common complex kidney disease. Curr Opin Nephrol Hypertens 2010;19:79–84
28. Genovesi G, Friedman DJ, Ross MD, et al. Association of trypanolytic Apol1 variants with kidney disease in African Americans. Science 2010;329:841–845
29. Tsukaguchi H, Sudhakar A, Le TC, et al. NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J Clin Invest 2002;110:1659–1666
30. Franceschini N, North KE, Kopp JB, et al. NPHS2 gene, nephrotic syndrome and focal segmental glomerulosclerosis: a HuGe review. Genet Med 2006;8:65–75.
31. Brown EJ, Schlindorf JS, Becker DJ, et al. Mutations in the formin gene IN2 cause focal segmental glomerulosclerosis. Nat Genet 2010;42:72–76
32. Mukerji N, Damodaran TV, Winn MP. TRPC6 and FSGS: the latest TRP channelopathy. Biochim Biophys Acta 2007;1772:859–868
33. Korstanje R, DiPetrillo R. Unraveling the genetics of chronic kidney disease using animal models. Am J Physiol Renal Physiol 2004;287:F347–352
34. Imperatore G, Hanson RL, Meoni LA, et al. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes 1996;47:821–830
35. DeWan AT, Arnett DK, Atwood LD, et al. A genome scan for renal function among hypertensives: the HyperGEN study. Am J Hum Genet 2001:68:136–144
36. Perez-Luque E, Malacara JM, Olivo-Diaz A, et al. Contribution of HLA class II genes to end stage renal disease in mexican patients with type 2 diabetes mellitus. Hum Immunol 2000:61:1031–1039
37. Dyck R, Bohm C, Klop M. Increased frequency of HLA A2/DRA and A2/DRB haplotypes in young saskatchewan aboriginal people with diabetic end-stage renal disease. Am J Nephrol 2003;23:178–185
38. Freedman BI, Spray BJ, Dunston GM, et al. HLA associations in end-stage renal disease due to membranous glomerulonephritis: HLA-DR3 associations with progressive renal injury. Southern Organ Procurement Foundation. Am J Kidney Dis 1994;23:797–802
39. Cogan MG. Medical Staff Conference. Tubulo-interstitial nephropathies – a pathophysiology approach. West J Med 1980;132:134–140
40. Strutz F, Neison EG. The role of lymphocytes in the progression of intertitial disease. Kidney Int 1994;45 [Suppl]:S106–S110

ISSN 1561-6274. Неврология. 2013. Том 17. №2.
41. Braden GL, O’Shea MH, Mulhern JG. Tubulointerstitial diseases. Am J Kidney Dis 2005;46:560–572
42. Norman JT, Fine LG. Progressive renal disease: fibroblasts, extracellular matrix, and integrins. Exp Nephrol 1997;9:167–177
43. Oko R, Sulovicz W, Smolejosi O, et al. Interstitial, tubular and vascular factors in progression of primary glomerulonephritis. Pol J Pathol 2007;58:73–78
44. Piscator M. Early detection of tubular dysfunction. Kidney Int 1991;34:S15–17
45. Blythe WB. Natural history of hypertension in renal parenchymal disease. Am J Kidney Dis 1985;5(4):A50–A56
46. Rosario RF, Wesson DE. Primary hypertension and nephropathy. Curr Opin Nephrol Hypertens 2006;15:130–134
47. Sugiuera T, Wada A. Resistive index predicts renal prognosis in chronic kidney disease. Nephrol Dial Transplant 2009;24:2780–2785
48. Muijais S, Battle DC. Functional correlates of tubulo-interstitial damage. Semin Nephrol 1988;8:94–99
49. Eknoyan G, Quiniu WJ, Grissom RT, et al. Renal papillary necrosis: an update. Medicine (Baltimore) 1982;61:55–73
50. Keren G. Cellular immunity and the tubulointerstitium. Semin Nephrol 1999;19:182–187
51. Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996;7:2495–2508
52. Johnson DW, Saunders HJ, Baxter RC, et al. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int 1986;5:547–757
53. Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic and extrinsic factors in the generation of fibroblasts in developing kidney. Exp Nephrol 1997;5:319–328
54. Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an integrative view on the role of TGF-beta in the progressive nephropathy. Nephrol Dial Transplant 1997;12:43–50
55. Rodriguez IS, Burrows C, Shanks JH, et al. Interstitial myofibroblasts: predictors of progression in membranous nephropathy. J Clin Pathol 1997;50:123–127
56. Boukhalfa G, Desmouliere A, Rondeau E, et al. Relationship between alpha-smooth muscle actin expression and fibrotic changes in human kidney. Exp Nephrol 1996;4:241–247
57. Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 1995;130:393–405
58. Schindler A. The role of chemokines in the initiation and progression of renal disease. Kidney Int 1995;49 [Suppl]:S44–S47
59. Bohe A, Mackensen-Haen S, Wehrmann M. Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. Kidney Blood Press Res 1996;19:191–195
60. Mezzano SA, Aros CA, Droguett A, et al. Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. Kidney Int 2003;63 [Suppl]:S39–S45
61. García-Sánchez O, López-Hernández FJ, Lopez-Novoa JM. An integrative view on the role of TGF-beta in the progressive tubular deletion associated with chronic kidney disease. Kidney Int 2010;77:950–955
62. Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol 2000;15:290–301
63. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapies. Kidney Int 2006;69:213–217
64. Songer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999;341:738–746
65. Eddy AA. Role of cellular infiltrates in response to proteinuria. Am J Kidney Dis 2001;37:225–230
66. Nishida M, Fujinaka H, Matsusaka T, et al. Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest 2002;110:1859–1868
67. Van Goor H, Ding G, Kees-Folts D, et al. Macrophages and renal disease. Lab Invest 1994;71:456–464
93. Viemling LJ, Brujin JA, van Es LA. The pathogenesis of progressive renal failure. *Neth J Med* 1999;54:114–128
94. Ghararie-Kermari M, Wiggins R, Wolber F, et al. Fibronectin is the major fibroblast chemotactant in rabbit anti-glomerular basement membrane disease. *Am J Pathol* 1996;148:961–967
95. Eddy AA. Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions. *J Am Soc Nephrol* 1994;5:1273–1277
96. Van Vliet A, Baelde HJ, Viemling LJ, et al. Distribution of fibronectin isoforms in human renal disease. *J Pathol* 2001;193:256–262
97. Wells AF, Larsson E, Tengblad A, et al. The localization of hyaluronan, laminin and rejected human kidneys. *Transplantation* 1990;50:240–243
98. Beck-Schimmer B, Oertli B, Pasch T, et al. Hyaluronan induces monocyte chemotactant protein-1 expression in renal tubular epithelial cells. *J Am Soc Nephrol* 1998;9:2283–2290
99. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. *Cell* 1993;53:1039–1047
100. Hugo C, Shankland SJ, Pichler RH, et al. Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat. *Kidney Int* 1998;53:302–311
101. Diamond JR, Levinson M, Kreisberg R, et al. Increased expression of decorin in experimental hydropnephrosis. *Kidney Int* 1997;51:1133–1139
102. Schirner L, Haussner H, Altenburger M, et al. Decorin, biglycan and their endocytosis receptor in rat renal cortex. *Kidney Int* 1998;54:1529–1541
103. González-Avilá G, Vadillo-Ortega F, Perez-Tamayo R. Experimental diffuse interstitial renal fibrosis. A biochemical approach. *Lab Invest* 1988;59:245–252
104. Border WA, Noble NA. Transforming growth factor beta in tubulointerstitial fibrosis. *N Engl J Med* 1994;331:1286–1292
105. Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. *Exp Biol Med (Maywood)* 2002;227:943–956
106. Roberts AB, McCune BK, Sporn MB. TGF-beta: regulation of extracellular matrix. *Kidney Int* 1992;41:557–559
107. Hultström M, Leh S, Skogstrand T, et al. Upregulation of tissue inhibitor of metalloproteases-1 (TIMP-1) and procollagen-1 peptide in peritubular renal fibrosis. *Nephron Transplant* 2000;23:896–903
108. Kim H, Oda T, Lopez-Guisa J, et al. TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. *J Am Soc Nephrol* 2000;12:736–748
109. Klahr S. Progression of chronic renal disease. *Heart Dis* 2001;3:206–209
110. García-Sánchez O, López-Hernández FJ, López-Novoa JM. An integrative view on the role of TGF-beta in the progressive tubular deletion associated with chronic kidney disease. *Kidney Int* 2010;77:950–955
111. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. *J Am Soc Nephrol* 2006;17:17–25
112. Barsoum H, Gundersen HJ, Lorcz C, Egido J. The Fas ligand/Fas system in renal injury. *Nephrol Dial Transplant* 1999;14:1831–1834
113. Kelly DJ, Stein-Oakley A, Zhang Y, et al. Fas-induced apoptosis is a feature of progressive diabetic nephropathy in transgenic (mRen-2)27 rats: attenuation with renin-angiotensin blockade. *Nephrology* 2004;7:9–13
114. Lorcz C, Ortiz A, Justo P, et al. Proapoptotic Fas ligand is expressed by normal kidney tubular epithelium and injured glomeruli. *J Am Soc Nephrol* 2000;11:1266–1277
115. Khan S, Koepke K, Jarad G, et al. Apoptosis and JNK activation are differentially regulated by Fas expression level in renal tubular epithelial cells. *Kidney Int* 2001;60:65–76
116. Jarad G, Wang B, Khan S, et al. Fas activation induces renal tubular epithelial cell beta 8 integrin expression and function in the absence of apoptosis. *J Biol Chem* 2002;277:47826–47833
117. Santiago B, Galiano M, Palao G, et al. Intracellular regulation of Fas-induced apoptosis in human fibroblasts by extracellular factors and cycloheximide. *J Immunol* 2004;172:560–566
118. Miyajima A, Chen J, Lawrence C, et al. Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. *Kidney Int* 2000;58:2301–2313
119. Kelly DJ, Cox AJ, Tolcos M, et al. Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. *Kidney Int* 2002;61:31–39
120. Bhaskaran M, Reddy K, Radhakrishnan N, et al. Angiotensin II induces apoptosis in renal proximal tubular cells. *Am J Physiol Ren Physiol* 2003;284:F955–965
121. Ortiz-Arduran A, Danielson AK. Regulation of Fas and Fas ligand expression in cultured murine renal cells and in the kidney during endotoxemia. *Am J Physiol* 1996;271:F1193–1201
122. Schelling JR, Nkemere N, Kopp JB, et al. Fas-dependent fratricidal apoptosis is a mechanism of tubulointerstitial cellular deletion in chronic renal failure. *Lab Invest* 1998;78:813–824
123. Khan S, Cleveland RP, Koch CJ, et al. Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. *Lab Invest* 1999;79:1089–1099
124. Koesters R, Kaisling B, Lehr H, et al. Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. *Am J Pathol* 2010;177:632–643
125. Sanz AB, Santamaria B, Ruiz-Ortega M, et al. Mechanisms of renal apoptosis in health and disease. *J Am Soc Nephrol* 2019;18:1634–1642
126. Ichikawa I, Harris RC. Angiotensin actions in the kidney: renewed insight into the old hormone. *Kidney Int* 1991;40:583–596
127. Wang CZ, Hsu YM, Tang MJ. Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel. *J Cell Physiol* 2005;203:295–304
128. Hughes J, Naughton A, Shi C, et al. Fratricidal apoptosis in isolated renal tubular epithelial cells. *Lab Invest* 2009;1:303–314
129. Serón D, Alexopoulos E, Raftery MJ, et al. Number of interstitial capillary cross-sections assessed by monoclonal antibodies: relation to interstitial damage. *Nephrol Dial Transplant* 1990;5:889–893
130. Couser WG. Pathogenesis of glomerular damage in glomerulonephritis. *Nephrol Dial Transplant* 1998;13:10–15
131. Isakka Y, Akagi Y, Ando Y, et al. Cytokines and glomerulosclerosis. *Nephrol Dial Transplant* 1999;14:30–32
132. Nangaku M, Couser WG. Mechanisms of immune-deposit formation and the mediation of immune renal injury. *Clin Exp Nephrol* 2005;9:183–191
133. Couser WG. Complement inhibitors and glomerulonephritis: are we there yet? *J Am Soc Nephrol* 2003;14:815–818
134. Cunard R, Jelly CJ. Immune-mediated renal disease. *J Allergy Clin Immunol* 2003;111:S637–644
135. Shimizu A, Masuda Y, Kitamura H, et al. Recovery of damaged glomerular capillary network with endothelial cell apoptosis in experimental proliferative glomerulonephritis. *Nephron* 1998;79:206–214
136. U.S. Renal Data System. USRDS 2005 Annual Data
In Vivo and In Vitro Role of Matrix Metalloproteinase-9 in Mesangial Cell Activation and Proliferation. J Am Soc Nephrol 2005;16:3394–405.

H. Carro-Bejarano, B. Salazar, and J. A. Sanchez-Nito. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2006;17:449–60.

G. M. Johnson, D. A. Johnson, and L. H. Johnson. Role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2007;18:329–40.

S. V. Reddy, S. K. Saha, and M. J. O'Meara. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2008;19:400–9.

J. A. Sanchez-Nito, J. A. Sanchez-Navarro, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2009;20:2135–44.

M. A. Sanchez, S. K. Saha, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2010;21:1238–47.

R. A. Rodrigo, J. A. Sanchez-Nito, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2011;22:2054–62.

A. J. Sanchez, J. A. Sanchez-Nito, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2012;23:105–15.

J. A. Sanchez-Nito, J. A. Sanchez-Navarro, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2013;24:2134–44.

J. A. Sanchez-Nito, J. A. Sanchez-Navarro, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2014;25:423–34.

J. A. Sanchez-Nito, J. A. Sanchez-Navarro, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2015;26:2134–44.

J. A. Sanchez-Nito, J. A. Sanchez-Navarro, and D. A. Johnson. The role of matrix metalloproteinase-9 in the pathogenesis of experimental proliferative glomerulonephritis. J Am Soc Nephrol 2016;27:885–892.

H. Hahn, S. Krieg RJ Jr, H. Sano, S. et al. Vitamin E suppresses oxidative stress and glomerulosclerosis in rat remnant kidney. Pediatr Nephrol 1999;13:195–198.

J. James, A. Galceran JM, R. J. Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int 1998;54:775–784.

C. Cousser WG. Pathogenesis of glomerulonephritis. Kidney Int 1993;42 [Suppl]: S19–S26.

G. Grande MT, J. Perez-Barriocanal F, L. Lopez-Novoa JM. Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) 2010;7:19.

J. Johnson RJ, I. Ida, A. Alpers CE, et al. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest 1991;87:847–858.

A. Alpers CE, H. Huddkins KL, G. Own AM, et al. Enhanced expression of "muscle-specific" actin in glomerulonephritis. Kidney Int 1992;41:1134–1142.

S. Stokes MB, J. Holler S, C. Cui Y, et al. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int 2000;57:457–468.

C. Cousser WG, J. Johnson RJ. Mechanisms of progressive renal disease in glomerulonephritis. Am J Kidney Dis 1994;23:193–198.

J. Justo P, S. Anzab, S. Sanchez-Nito MD, et al. Cytokine cooperation in renal tubular cell injury: the role of TWEAK. Kidney Int 2006;70:1750–1759.

J. H. Int. N. S. Benito-Martin A, D. Goncalves A, et al. TFN superfamily: a growing saga of kidney injury modulators. Mediators Inflamm 2010; pii: 182958. Epub 2010 Oct 4.

J. Strutz F, N. Neilson EG. New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol 2003;24:459–476.

B. Border WA, N. Noble NA. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int 1997;51:1308–1396.

K. Tamaki, K. Okuda S. Role of TGF-beta in the progression of renal fibrosis. Contrib Nephrol 2003:139:44–45.

J. Chiarugi A. «Simple but not simpler»: toward a unified picture of energy requirements in cell death. FASEB J 2005;19:1783–1788.

J. Rusterholz C, U. Gupta AK, H. Huppertz B, et al. Soluble factors released by placental villous tissue: Interleukin-1 is a potent mediator of endothelial dysfunction. Am J Obstet Gynecol 2005;192:618–624.

J. Gao, Z. Zhang, H. Belmadani S, et al. Role of TNF-alpha-induced reactive oxygen species in endothelial dysfunction during repair/repair injury. Am J Physiol Heart Circ Physiol 2008;295:H2242–2249.

Z. Zhang, C. Wu J, X. Xu X, et al. Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in repair/repair injury. Basic Res Cardiol 2010;105:453–464.

J. Camussi, G. Torello E, T. Cetta, et al. Tumor necrosis factor induces contraction of mesangial cells and alters their cytoskeletons. Kidney Int 1990;38:795–802.

J. Lopez-Farré A, G. Gómez-Garre D, B. Bermejo F. Renal effects and mesangial cell contraction induced by endothelin are mediated by PAF. Kidney Int 1991;39:624–630.

J. Bussolati B, M. Mariano F, F. Biancone L, et al. Interleukin-12 is synthesized by mesangial cells and stimulates platelet-activating factor synthesis, cytoskeletal reorganization, and cell shape change. Am J Pathol 1999;154:623–632.

J. Lopez-Novoa JM. Potential role of platelet activating factor in acute renal failure. Kidney Int 1999;55:1672–1682.

J. Molitoris BA, S. Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 2004;64:496–499.

J. Bonventre JV. Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 2010;165:9–17. full_text.

J. Rodriguez-Barbero A, L. Uzoa B, C. Cambar J, et al. Potential use of isolated glomeruli and cultured mesangial cells as in vitro models to assess nephrotoxicity. Cell Bioi Toxic 2000;16:145–153.
growth factor stimulates the release of preformed transforming growth factor beta 1 from human proximal tubular cells in the absence of de novo gene transcription or mRNA translation. Lab Invest 1997;76:591–600

260. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004;15:255–273

261. Weston NA, Wahab NA, Mason RM. CTGF mediates TGF-beta-induced fibroblast matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells. J Am Soc Nephrol 2003;14:601–610

262. Wahab NA, Weston NA, Mason RM. Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2. Exp Cell Res 2005;307:305–314

263. Francki A, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol 2006;17:2974–2984

264. Baines RJ, Brunskill NJ. Tubular toxicity of proteinuria. Nat Rev Nephrol 2011 Mar;7(3):177–180

265. Buelli S, Abbate M, Morigi M, et al. Protein load impairs factor H binding promoting complement-dependent dysfunction of proximal tubular cells. Kidney Int 2009;75:1050–1059

266. Macconi D, Chiabrando C, Schiarea S, et al. Proteasomal proteolysis mediates early renal dysfunction in chronic kidney disease. Kidney Int 2009;76:591–600

267. Komlosi P, Bell PD, Zhang ZR. Tubuloglomerular feedback mechanisms in nphron segments beyond the macula densa. Curr Opin Nephrol Hypertens 2009;18:57–62

268. Kriz W, Hosser H, Hahnel B, et al. From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: a histopathological study in rat models and human glomerulopathies. Nephrol Dial Transplant 1998;13:2781–2798

269. Nomura A, Morita Y, Maruyama S, et al. Role of tissue growth factor-beta1 in mesangial cells. Kidney Int 1999;56:1247–1251

270. Duncan MR, Frazier KS, Abraham DJ. TGF-β induces collagen synthesis: downregulation by cAMP. J Biol Chem 1999;274:2002–2010

271. Guo G, Morrissey J, McCracken R, et al. Contributions of angiogenesis II and tumor necrosis factor-alpha to the development of renal fibrosis. Am J Physiol Renal Physiol 2001;280:F777–F785

272. Phillips AO, Topley N, Morrisey K, et al. Basic fibroblast growth factor stimulates the release of preformed transforming growth factor beta 1 from human proximal tubular cells in the absence of de novo gene transcription or mRNA translation. Lab Invest 1997;76:591–600

273. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004;15:255–273

274. Weston NA, Wahab NA, Mason RM. CTGF mediates TGF-beta-induced fibroblast matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells. J Am Soc Nephrol 2003;14:601–610

275. Wahab NA, Weston NA, Mason RM. Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2. Exp Cell Res 2005;307:305–314

276. Francki A, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol 2006;17:2974–2984

277. Okada H, Danoff TM, Kalluri R, et al. Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 1997;273:F563–574

278. Stratuz F, Zeisberg M, Ziyyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002;61:1714–1728

279. Kriz W, Hahnel B, Rosener S, et al. Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 1995;48:1435–1450

280. Phillips AO, Topley N, Morrisey K, et al. Basic fibroblast growth factor stimulates the release of preformed transforming growth factor beta 1 from human proximal tubular cells in the absence of de novo gene transcription or mRNA translation. Lab Invest 1997;76:591–600

281. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004;15:255–273
282. Gilbert RE, Wu LL, Kelly DJ, et al. Pathological expression of renin and angiotensin II in the renal tubule after subtotal nephrectomy. Implications for the pathogenesis of tubulointerstitial fibrosis. *Am J Pathol* 1999;155:429–440

283. Yang J, Dai C, Liu Y. Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. *J Am Soc Nephrol* 2002;13:2464–2477

284. Ursula C, Brewster MD, Mark A, et al. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease. *Am J Med* 2004;116:263–272

285. Zeisberg M, Bonner G, Maeshima Y, et al. Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. *Am J Pathol* 2001;159:1313–1321

286. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. *Am J Pathol* 2001;159:1465–1475

287. Liu Y. Hepatocyte growth factor promotes renal epithelial cell survival by dual mechanisms. *Am J Physiol* 1999;277:F624–F633

288. Yang J, Liu Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. *J Am Soc Nephrol* 2002;13:96–107

289. Dworkin LD, Gong R, Tolbert E, et al. Hepatocyte growth factor ameliorates progression of interstitial fibrosis in rats with established renal injury. *Kidney Int* 2004;65:409–419

290. Esposito C, Parrilla B, De Mauri A, et al. Hepatocyte growth factor (HGF) modulates matrix turnover in human glomeruli. *Kidney Int* 2005;67:2143–2150

291. Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. *Annu Rev Pharmacol Toxicol* 2008;48:463–493