Research Article

Existence and Uniqueness of Positive Solutions for a Class of Nonlinear Fractional Differential Equations with Singular Boundary Value Conditions

Yan Debao

School of Mathematics and Statistics, Heze University, Heze 274000, Shandong Province, China

Received 16 November 2020; Accepted 2 March 2021; Published 31 March 2021

Correspondence should be addressed to Yan Debao; bbs0415@yeah.net

Academic Editor: Giovanni Falsone

Copyright © 2021 Yan Debao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on a singular boundary value (SBV) problem of nonlinear fractional differential (NFD) equation defined as follows: $D^\alpha_0, v(\tau) + f(\tau, v(\tau)) = 0$, $\tau \in (0, 1)$, $v(0) = v'(0) = v''(0) = 0$, where $2 < \alpha \leq 3$, D^α_0 is the standard Caputo’s fractional derivative, and $f: [0, 1] \times [0, +\infty) \rightarrow [0, +\infty)$ with $\lim_{\tau \rightarrow 0^+} f(\tau, \cdot) = +\infty$. Assuming some hypotheses on f, they gained positive solutions through the nonlinear Leray–Schauder-type alternative in a cone and the Guo–Krasnoselskii FP theory.

Xu [28] investigated the following SBV problem for NFD:

$$
\begin{align*}
D^\alpha_0 v(\tau) + f(\tau, v(\tau)) &= 0, & \tau \in (0, 1), \\
v(0) &= v'(0) = v''(0) = 0,
\end{align*}
$$

(2)

where $3 < \alpha \leq 4$, D^α_0 represents the standard RLF derivative, and $f: [0, 1] \times [0, +\infty) \rightarrow [0, +\infty)$ with $\lim_{\tau \rightarrow 0^+} f(\tau, \cdot) = +\infty$. They obtained the presence of multiple solutions under the condition of $f(\tau, v) = g(\nu) + h(\nu)$ and the uniqueness of solution for $f(\tau, v) = q(\tau)[g(\nu) + h(\nu)]$ using the Guo–Krasnoselskii FP theory, mixed monotone scheme, and Leray–Schauder’s nonlinear alternative.

Zhang and Zhong [31] investigated the boundary value problem of singular NFD written as

$$
\begin{align*}
D^\alpha_0 v(\tau) + f(\tau, v(\tau)) &= 0, & \tau \in (0, 1), \\
v(0) &= 0, D^\beta_0 v(0) = 0, D^\beta_0 v(1) = \sum_{i=1}^n \xi_i D^\beta_0 v(\eta),
\end{align*}
$$

(3)

where the function f permits singularities at $\tau = 0$, $\tau = 1$, and $v = 0$. The presence of multiple positive solutions for $f(\tau,
the presence of multiple positive solutions of (4) for $\tau \in (0, 1)$, (4) where $3 < \beta \leq 4$, D^β_0 is the standard RLF derivative, and $f(\tau, v(\tau))$ becomes singular when $\tau = 0, \tau = 1$, and $v = 0$. In analogy with other works, the corresponding Green’s NFD and its positive characteristics are inferred. As application, analogy with other works, the corresponding Green’s NFD and its positive properties are deduced in this paper. (1) To the best of our knowledge, those in [26–34]. The remainder of this paper is structured as follows. Preliminaries are given in Section 2, including definitions, lemmas, the deduction of Green’s function for problem (4), and new positive properties. Section 3 proves the presence of positive solutions of (4) by the Guo–Krasnoselskii FP theory and demonstrates an example. Section 4 discusses the uniqueness of the positive solution of (4) by a mixed monotone operator and demonstrates another example.

2. Preliminaries

The lemmas and definitions from [3] are given for the convenience of the reader as follows:

Definition 1 (see [3]). The RLF integral of the order $\beta > 0$ of a function $f(x): (0, +\infty) \rightarrow R$ is formulated:

$$I^\beta_0 f(x) = \frac{1}{\Gamma(\beta)} \int_0^x (x - s)^{\beta - 1} f(s)ds,$$

provided the right side is pointwise defined on $(0, +\infty)$.

Definition 2 (see [3]). The RLF derivative of the order $\beta > 0$ of a continuous function $f(x): (0, +\infty) \rightarrow R$ is formulated as

$$D^\beta_0 f(x) = \frac{1}{\Gamma(\beta)} \int_0^x (x - s)^{\beta - 1} f(s)ds,$$

where $n = [\beta] + 1$ and $[\cdot]$ represents the integer part of number.

Lemma 1 (see [3]). The solution of the NFD equation defined as

$$D^\beta_0 \mu(\tau) = 0$$

is $\mu(\tau) = C_1 \tau^{\beta-1} + C_2 \tau^{\beta-2} + \cdots + C_N \tau^{\beta-N}, \ C_i \in \Re, \ i = 1, 2, \ldots, N$, where N is the smallest integer greater than or equal to β and $\mu \in C(0, 1) \cap L(0, 1)$.

Lemma 2 (see [3]). Under the assumption that $\mu \in C(0, 1) \cap L(0, 1)$ with a NFD of order β, then

$$\int_0^\beta D^\beta_0 \mu(\tau) = \mu(\tau) C_1 \tau^{\beta-1} + C_2 \tau^{\beta-2} + \cdots + C_M \tau^{\beta-M},$$

where $C_i \in \Re, i = 1, 2, \ldots, M$, where M is the smallest integer greater than or equal to β.

Lemma 3. Provided that $\kappa(\tau) \in C[0, 1]$ and $3 < \beta \leq 4$,

$$D^\beta_0 \mu(\tau) + \kappa(\tau) = 0, \ 0 < \tau < 1,$$

$$\mu(0) = \mu'(0) = \mu''(0) = \mu''(1) = 0.$$

The solution of (10) is unique and as follows:

$$\mu(\tau) = \int_0^\tau G(\tau, s) \kappa(s)ds,$$

where Green’s function $G(\tau, s)$ is denoted as

$$G(\tau, s) = \frac{1}{\Gamma(\beta)} \begin{cases} \tau^{\beta-1}(1-s)^{\beta-3} - (\tau - s)^{\beta-1}, & 0 \leq s \leq \tau \leq 1, \\ \tau^{\beta-1}(1-s)^{\beta-3}, & 0 \leq \tau \leq s \leq 1. \end{cases}$$

Proof. (10) is rewritten as follows through Lemma 2:

$$\mu(\tau) = \frac{1}{\Gamma(\beta)} \int_0^\tau (\tau - s)^{\beta-1} \kappa(s)ds + C_1 \tau^{\beta-1} + C_2 \tau^{\beta-2} + C_3 \tau^{\beta-3} + C_4 \tau^{\beta-4},$$

where $C_i \in \Re, i = 1, 2, 3, 4$. From the boundary conditions $\mu(0) = \mu'(0) = \mu''(0) = 0$, we have $C_2 = C_3 = C_4 = 0$. Then,
\[\mu(t) = \frac{1}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-1} \kappa(s) ds + C_1 t^{\beta-1}, \]
\[\mu'(t) = -\frac{\beta-1}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-2} \kappa(s) ds + C_1 (\beta-1) t^{\beta-2}, \]
\[\mu''(t) = -\frac{(\beta-1)(\beta-2)}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-3} \kappa(s) ds + C_1 (\beta-1)(\beta-2) t^{\beta-3}. \]

By the condition \(u''(1) = 0 \), we have
\[C_1 = \frac{1}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-3} \kappa(s) ds. \]

Accordingly, the unique solution of problem (10) and (11) is given as
\[\mu(t) = \frac{1}{\Gamma(\beta)} \int_0^t (t-s)^{\beta-1} \kappa(s) ds + \frac{t^{\beta-1}}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-3} \kappa(s) ds \]
\[= \int_0^1 G(t,s) \kappa(s) ds. \]

Lemma 3 is proved with this. \(\square \)

\[\Gamma(\beta)G(t,s) = t^{\beta-1}(1-s)^{\beta-3} - (t-s)^{\beta-1} = t^2 s^{\beta-3} - (t-s)^{\beta-1} \]
\[= \left[t^2 - (t-s)^2 \right] (t-s)^{\beta-3} = t^2 s(2-s)(t-s)^{\beta-3} \]
\[= t^{\beta-1}s(2-s)(1-s)^{\beta-3}, \]
\[\Gamma(\beta)G_{\tau}(t,s) = (\beta-1)t^{\beta-2}(1-s)^{\beta-3} - (\beta-1)(t-s)^{\beta-2}, \]
\[\Gamma(\beta)G_{\tau_\tau}(t,s) = (\beta-1)(\beta-2)t^{\beta-3}(1-s)^{\beta-3} - (\beta-1)(\beta-2)(t-s)^{\beta-3} \]
\[= (\beta-1)(\beta-2) \left[(t-s)^{\beta-3} - (t-s)^{\beta-3} \right] \geq 0. \]

Obviously, \(\Gamma(\beta)G_{\tau}(t,s) \) is nondecreasing in \(t \), and thus, for \(0 \leq s \leq \tau \leq 1 \), we have
\[\Gamma(\beta)G(t,s) \leq \max_{0 \leq \tau \leq 1} \Gamma(\beta)G(1,s) = \Gamma(\beta)G(1,1) = (1-s)^{\beta-3} - 1 \]
\[= \left[1 - (1-s)^2 \right] (1-s)^{\beta-3} = s(1-s)(2-s)^{\beta-3}. \]

When \(0 \leq \tau \leq s \leq 1 \), note that \(0 \leq s(2-s) \leq 1 \), we have
\[\Gamma(\beta)G(t,s) = t^{\beta-1}(1-s)^{\beta-3} \geq t^{\beta-1}s(2-s)(1-s)^{\beta-3}, \]
\[\Gamma(\beta)G(t,s) = t^{\beta-1}(1-s)^{\beta-3} \leq s^{\beta-1}(1-s)^{\beta-3} = s^2 \cdot s^{\beta-3} \cdot (1-s)^{\beta-3} \leq s^2 (1-s)^{\beta-3}. \]

Note that \(s(2-s) - s^2 = 2s - 2s^2 = 2s(1-s) \geq 0 \); then,

\textbf{Lemma 4.} The properties of \(G(t,s) \) defined by (13) are as follows:

\begin{enumerate}
\item \(t^{\beta-1}s(2-s)(1-s)^{\beta-3} \leq \Gamma(\beta)G(t,s) \leq s(2-s)(1-s)^{\beta-3} \), \(0 \leq t, s \leq 1 \)
\item \(t^{\beta-1}s(1-s)^{\beta-3} \leq \Gamma(\beta)G(t,s) \leq t^{\beta-1}(1-s)^{\beta-3}, \ 0 \leq t, \ s \leq 1 \)
\item \(G(t,s) > 0, \ 0 < t, s < 1 \)
\item \(G(t,s) \in C([0,1] \times [0,1]) \)
\end{enumerate}

\textbf{Proof.} Property (4) is obvious and (3) holds from (1). Thus, here (1) and (2) will be proved.

(1) When \(s \leq t \),
\[
\Gamma(\beta)G(r, s) \leq s(2 - s)(1 - s)^{\beta-3}.
\]
(21)

From (18)–(21), we have the first conclusion in Lemma 4 which holds.

(22)

\[
\Gamma(\beta)G(r, s) = r^{\beta-1}(1-s)^{\beta-3} - (r-s)^{\beta-1} = r^2(1-r)^{\beta-3} - (r-s)^{\beta-1} \\
= r^2 - (r-ts)^{\beta-3} - (r-s)^{\beta-1} = r^2(2-s)(r-ts)^{\beta-3} \\
= r^2s(2-s)(1-s)^{\beta-3},
\]

(23)

\[
\Gamma(\beta)G(r, s) = r^{\beta-1}(1-s)^{\beta-3} - (r-s)^{\beta-1} \leq r^{\beta-1}(1-s)^{\beta-3}.
\]

(24)

When \(r \leq s \),
\[
\Gamma(\beta)G(r, s) = r^{\beta-1}(1-s)^{\beta-3}.
\]

(25)

Since \(0 \leq s(2-s) \leq 1 \) for \(0 \leq s(2-s) \leq 1 \), so
\[
\Gamma(\beta)G(r, s) = r^{\beta-1}(1-s)^{\beta-3} \geq r^{\beta-1}s(2-s)(1-s)^{\beta-3}.
\]

(26)

Also,
\[
\Gamma(\beta)G(r, s) = r^{\beta-1}(1-s)^{\beta-3}.
\]

From (22)–(26), we have the second conclusion in Lemma 4 which holds.

Now, we give the following definitions and lemmas (see [34–39]), which are essential in proving the results.

Lemma 5. For a Banach space \(\Psi \), let \(\Lambda \subset \Psi \) denote a normal cone in \(\Psi \) and \(\Phi_1 \) and \(\Phi_2 \) denote open subsets of \(\Psi \) with \(\theta \in \Phi_1 \cap \Phi_2 \). Then, let a completely continuous operator \(F: \Lambda \rightarrow \Lambda \) satisfy either \(||F\rho|| \leq ||\rho||, \rho \in \Lambda \cap \partial\Phi_1, ||F\rho|| \geq ||\rho||, \rho \in \Lambda \cap \partial\Phi_2 \) or \(||F\rho|| \leq ||\rho||, \rho \in \Lambda \cap \partial\Phi_1, ||F\rho|| \geq ||\rho||, \rho \in \Lambda \cap \partial\Phi_2 \).

Then, \(F \) has an FP in \(\Lambda \cap \overline{\Phi}_1 \cap \overline{\Phi}_2 \).

Let \(c \in \Lambda \) with \(||c|| \leq 1, c \neq \theta \) and \(\Omega_c = \{x \in \Lambda|x \neq \theta, \) there exists constants \(m, M > 0, \) such that \(mc \leq x \leq Mc \}, \) where \(\theta \) is the zero element in \(\Lambda \).

Definition 3. A: \(Q_c \times Q_c \rightarrow Q_c \) is a mixed monotone operator when satisfying the monotone condition of \(A(x, y) \) in \(x, y \in Q_c \) such that \(A(x_1, y) \leq A(x_2, y) \) when \(x_1 \leq x_2 \) and \(A(x, y_1) \leq A(x, y_2) \) when \(y_1 \geq y_2. \) \(x^* \in Q_c \) is an FP of \(A \) when \(A(x^*, x^*) = x^* \).

(27)

\[
A\left(\frac{r_1, r_2}{\tau}, x, y\right) \geq \frac{r_1}{\tau}A(x, y), \quad \forall x, y \in Q_c, 0 < \tau < 1,
\]

where \(A \) is a mixed monotone operator.

3. Presence of Positive Solutions of SVB

The presence and multiplicity of positive solutions of (4) and (5) is investigated here. The nonlinear function \(f(\tau, x) \in C((0, 1) \times (0, +\infty)), (0, +\infty)), f \) may be singular when \(\tau = 0, \) \(\tau = 1, \) and \(x = 0. \)

For a Banach space \(\Psi = C[0, 1] \) with the maximum norm \(\max_{0 \leq \tau \leq 1} ||\mu||, \) let \(K \in \Psi \) denote a nonnegative cone defined as

\[
K = \{\mu \in \Psi||\mu(\tau) \geq r^{\beta-1}||\mu||, \tau \in [0, 1]\}.
\]

(28)

The operator \(T \) is defined as follows:

\[
(T\mu)(\tau) = \int_0^1 G(r, s)f(s, \mu(s))ds, \quad 0 \leq \tau \leq 1.
\]

(29)

Clearly, \(T: K - \{0\} \rightarrow C[0, 1]. \) Denote \(B_\tau = \{\mu(\tau) \in \Psi||\mu(\tau) || < r\} \)

(30)

and

\[
K_\tau = K \cap B_\tau = \{\mu \in K||\mu(\tau) || \leq \mu(\tau) < r\}.
\]

The following are assumed for later use:

(\(H_1 \)) \(f \in C((0, 1) \times (0, +\infty)), (0, +\infty)), f \)

(\(H_2 \)) \(There \ exist \ a_1, a_2 \in C((0, 1), [0, +\infty)) \ and \ f_1, f_2 \in C((0, +\infty), [0, +\infty)) \ satisfying \)

\[
f(\tau, \mu) \leq a_1(\tau)f_1(\mu) + a_2(\tau)f_2(\mu), \quad \forall \tau \in (0, 1), \mu \in (0, +\infty),
\]

(31)

and for any \(r > 0, \)

\[
\int_0^1 [a_1(\tau)f_1(\tau) + a_2(\tau)f_2(\tau)]d\tau < +\infty,
\]

(32)
where $f_{ir} (r) = \max \{f_i (\mu); \ r \beta^{-1} \leq \mu \leq r\}, i = 1, 2$.

(H3) There exist $R_i > 0, 0 < c_i < (1/2)$ and $[c_i, d_i] \subset (0, 1)$ and a nonnegative function $b_i (r) \in L^1 [0, 1]$ with $0 < 2^{\beta-1} \int_{c_i}^{d_i} G (1/2, s) b_i (s) ds$ satisfying

$$f (x, \mu) \geq b_1 (r) \mu, \ \forall (r, \mu) \in [c_i, d_i] \times (R_i, +\infty).$$

(33)

(H4) There exist $[c_2, d_2] \subset (0, 1)$ and a nonnegative function $b_2 (r) \in L^1 [0, 1]$ with $0 < \int_0^1 b_2 (s) ds < +\infty$ satisfying

$$f (x, \mu) \geq b_2 (r) \mu, \ \forall (r, \mu) \in [c_2, d_2] \times (R_i, +\infty).$$

$$\liminf_{\rho \rightarrow 0^+} \min_{r [c_i, d_i]} \frac{f (r, \mu)}{b_2 (r)} = +\infty. \quad (34)$$

Lemma 7. For any $r > 0, T: K \rightarrow B_r$ is completely continuous.

Proof. For any $\mu \in K / B_r$, we have $r^{\beta-1} \|\mu\| \leq \mu (r) \leq \|\mu\|$.

From (H2) and (1) of Lemma 4

$$(T\mu) (r) = \int_0^1 G (r, s) f (s, \mu (s)) ds \leq \int_0^1 (2-s) (1-s)^{\beta-3} f (s, \mu (s)) ds$$

$$\leq \int_0^1 s (2-s) (1-s)^{\beta-3} [a_1 (s) f_{1r} (s) + a_2 (s) f_{2r} (s)] ds < +\infty, \quad (35)$$

meaning that T is well defined.

And, by (1) of Lemma 4,

$$(T\mu) (r) \leq \int_0^1 s (2-s) (1-s)^{\beta-3} [a_1 (s) f_{1r} (s) + a_2 (s) f_{2r} (s)] ds < +\infty, \quad (36)$$

So, T maps K, B_r into K.

$$\left|G (r', s) - G (r'', s)\right| \leq \frac{\epsilon}{1 + \int_0^1 [a_1 (s) f_{1r} (s) + a_2 (s) f_{2r} (s)] ds} \quad (37)$$

which means $T (D)$ is uniformly continuous. $G (r, s)$ is uniformly continuous on $[0, 1] \times [0, 1]$. Accordingly, $\delta > 0$ exists for any $\epsilon > 0$, such that $|r' - r''| < \delta, s \in [0, 1]$, for $r', r'' \in [0, 1]$.

Consequently,

$$\|T\mu (r') - T\mu (r'')\| \leq \int_0^1 \left|G (r', s) - G (r'', s)\right| f (s, \mu (s)) ds$$

$$\leq \int_0^1 \left|G (r', s) - G (r'', s)\right| [a_1 (s) f_{1r} (s) + a_2 (s) f_{2r} (s)] ds$$

$$\leq \int_0^1 \left[\frac{\epsilon}{1 + \int_0^1 [a_1 (s) f_{1r} (s) + a_2 (s) f_{2r} (s)] ds} \right] [a_1 (s) f_{1r} (s) + a_2 (s) f_{2r} (s)] ds$$

$$< \epsilon, \quad (39)$$

implying $T (D)$ is equicontinuous. According to the Arzelâ–Ascoli theorem, $T: K \rightarrow B_r$ is compact.
\[
\begin{align*}
\|T(\mu_n) - T(\mu_0)\| & \leq \max_{0 \leq s \leq 1} \int_0^1 G(r, s) f(s, \mu_n(s)) - f(s, \mu_0(s)) ds \\
& \leq \int_0^1 s(2 - s)(1 - s)\frac{\beta - 3}{2} [a_1(s) f_1(s) + a_2(s) f_2(s)] ds \\
& \leq 2 \int_0^1 s(2 - s)(1 - s)\frac{\beta - 3}{2} [a_1(s) f_1(s) + a_2(s) f_2(s)] ds \\
& \quad + \int_{\delta}^{1-\delta} s(2 - s)(1 - s)\frac{\beta - 3}{2} [a_1(s) f_1(s) + a_2(s) f_2(s)] ds \\
& \quad + 2 \int_{1-\delta}^1 s(2 - s)(1 - s)\frac{\beta - 3}{2} [a_1(s) f_1(s) + a_2(s) f_2(s)] ds \\
& \leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\
& = \epsilon.
\end{align*}
\]

So, \(T \) is continuous. The proof is finished. \(\square \)

Theorem 1. Under the conditions \((H_1) - (H_3)\) and the existence of a positive constant \(r > 0 \) and \(\lambda > \beta > 0 \) such that
\[
\int_0^1 [a_1(s) f_1(s) + a_2(s) f_2(s)] ds < 2^3 r,
\]
(44)

at least two positive solutions \(\mu_1 \) and \(\mu_2 \) of (4) exists with \(0 < \|\mu_1\| < 2^3 r < \|\mu_2\| \).

Proof. According to Lemma 7, the complete continuity of \(T \) is valid from \(K - B \), into \(K \) for any \(r > 0 \). Then, the existence of two fixed points \(\mu_1 \) and \(\mu_2 \) with \(0 < \|\mu_1\| < 2^3 r < \|\mu_2\| \) is proved here. For any \(r > 0 \) and condition \((H_3)\), we choose
\[
r_1 > \max \{2^3 r, 2^4 r\}.
\]
(45)

When \(\mu \in K \) and \(\|\mu\| = r_1 \), we have
\[
\mu(r) \geq r_1 \geq \left(\frac{1}{2}\right)^{\beta - 1} r_1 > r_1, \forall r \in \left[\frac{1}{2}, 1\right].
\]
(46)

Thus, we get from \((H_2)\) and (45) and (46):

\[
(T(\mu)) \left(\frac{1}{2}\right) = \int_0^1 G \left(\frac{1}{2}, s\right) f(s, \mu(s)) ds \geq \int_{c_1}^{d_1} G \left(\frac{1}{2}, s\right) f(s, \mu(s)) ds \\
\geq \int_{c_1}^{d_1} G \left(\frac{1}{2}, s\right) b_1(s) \mu(s) ds \geq \int_{c_1}^{d_1} G \left(\frac{1}{2}, s\right) b_1(s) \mu(s) ds \geq \left(\frac{1}{2}\right)^{\beta - 1} r_1
\]
(47)
Therefore,
\[
\|T\mu\| = \max_{\tau \in [0,1]} \|T(\mu)(\tau)\| \geq \left|\left(T\mu\right)\left(\frac{1}{2}\right)\right| \geq r_1 = \|\mu\|,
\]
\[\forall \mu \in K, \|\mu\| = r_1. \tag{48}\]

The condition (H4) guarantees that, for \(M = r \int_{c_2}^{d_2} G((1/2, s)b_2(s)ds)^{-1} \), there exists \(R_2 \in (0, 1) \) satisfying
\[
\begin{align*}
(T\mu)\left(\frac{1}{2}\right) &= \int_0^1 G(\frac{1}{2}, s)f(s, \mu(s))ds \geq r \left[\int_{c_2}^{d_2} G(\frac{1}{2}, s)b_2(s)ds \right]^{-1} \int_{c_2}^{d_2} G(\frac{1}{2}, s)b_2(s)ds = r > r_2.
\end{align*}
\]

Therefore,
\[
\|T\mu\| = \max_{\tau \in [0,1]} \|T(\mu)(\tau)\| \geq \left|\left(T\mu\right)\left(\frac{1}{2}\right)\right| \geq r_2 = \|\mu\|,
\]
\[\forall \mu \in K, \|\mu\| = r_2. \tag{52}\]

\[\begin{align*}
(T\mu)(\tau) &= \int_0^1 G(\tau, s)f(s, \mu(s))ds \leq \int_0^1 s(2-s)(1-s)\beta f(s, \mu(s))ds \\
&\leq \int_0^1 s(2-s)(1-s)\beta \left[a_1(s)f_{1r}(s) + a_2(s)f_{2r}(s) \right]ds \\
&\leq \int_0^1 \left[a_1(s)f_{1r}(s) + a_2(s)f_{2r}(s) \right]ds \\
&< 2^{\beta}r.
\end{align*}\]

Thus, we have
\[
\|T\mu\| \leq \|\mu\|, \quad \forall \mu \in K, \|\mu\| = 2^{\beta}. \tag{54}\]

From Lemma 5, (48), (52), and (54), two fixed points \(\mu_1, \mu_2 \) of \(T \) satisfy
\[
\begin{aligned}
D_0^{(7/2)} \mu(\tau) + \frac{r^2}{2} \mu^{1/2} + \frac{33\Gamma(7/2)}{\sqrt{3} - \sqrt{2}} (1-\tau)^{(1/2)} \mu = 0, & \quad 0 < \tau < 1, \\
\mu(0) = \mu'(0) = \mu''(0) = \mu''(1) = 0.
\end{aligned}\]
\[\tag{56}\]

Choose
\[
0 < r_2 < \min(r, R_2). \tag{50}\]

When \(\mu \in K \) and \(\|\mu\| = r_2 \), we have
\[
f(\tau, \mu) > Mb_2(\tau), \quad \forall (\tau, \mu) \in [c_2, d_2] \times (0, R_2]. \tag{49}\]

For \(\mu \in K \), where \(\|\mu\| = 2^4r \), (H3), (1) of Lemma 4, and
\[0 < s(2-s)(1-s)^{\beta - 3} < 1, \quad \text{it is similar to (35) and (44), one can get}\]
\[
0 < r_2 \leq \|\mu_1\| < 2^4r \leq \|\mu_2\| \leq r_1. \tag{55}\]

The proof is completed. \[\square\]

Example 1. Consider the following SBV problem:

\[\begin{align*}
\beta = (7/2) \quad \text{and} \quad f(\tau, \mu) &= (r^2/2)\mu^{1/2} + ((33\Gamma(7/2))/\sqrt{3} - \sqrt{2}) (1-\tau)^{(1/2)} \mu = 0, \\
&\quad 0 < \tau < 1, \\
&\mu(0) = \mu'(0) = \mu''(0) = \mu''(1) = 0.
\end{align*}\]
\[\tag{56}\]

So, the conditions (H1) and (H2) hold.
Next, we set \(b_1 (\tau) = a_2 (\tau), b_2 (\tau) = a_1 (\tau) \), \([c_1, d_1] = [c_2, d_2] = [(1/4), (3/4)]\). Then, it is obviously \(f(\tau, \mu) \geq b_1 (\tau) \mu, \forall (\tau, \mu) \in [c_1, d_1] \times (R_1, +\infty) \) for any \(R_1 > 0 \). By simple computation, we have \(\int_0^{R_1} G((1/2), s) b_1 (s) ds = 3 \times 2^{-2(5/2)} > 2^{(7/2)-1} \). And \(\lim_{\mu \to 0+} \inf \min_{y \in [1/4, (3/4)]} (f(\tau, \mu)/ b_2 (\tau)) = +\infty \). So, the conditions \((H_3)\) and \((H_4)\) also hold. Taking \(r = 1, \lambda = 10.25 \), we have by (57)

\[
\int_0^1 [a_1 (s) f_1 (s) + a_2 (s) f_2 (s)] ds = 1084.4 < 2^{10.25} \cdot 1.
\]

Consequently, condition (44) holds. Then, from Theorem 1 in Example 1 at least two positive solutions \(\mu_1 \) and \(\mu_2 \) exist with \(0 < ||\mu_1|| < 2^{1/4} ||\mu_2|| \).

4. Uniqueness of Singular Problem Solution

By property (2) of Green’s function,

\[
\zeta (\tau) p (s) \leq \Gamma (\beta) G (\tau, s) \leq \zeta (\tau) q (s), \quad \tau, s \in [0, 1],
\]

where \(\zeta (\tau) = \tau^{1-\beta}, p (s) = s (1-s)^{\beta-2}, \) and \(q (s) = (1-s)^{\beta-3} \).

From Lemma 3 and (59), a solution of (4) \(\mu (\tau) \) is

\[
\mu (\tau) = \int_0^1 G (\tau, s) f (s, \mu (s)) ds, \quad \tau \in [0, 1],
\]

\[
\zeta (\tau) \int_0^1 p (s) f (s, \mu (s)) ds \leq \mu (\tau) \leq \zeta (\tau) \int_0^1 q (s) f (s, \mu (s)) ds.
\]

Proof. Taking the similar process in [34], for \(\tau \in (0, 1), \mu > 0, \)

\[
f_2 (\tau \mu) \leq \tau^{-\gamma} f_2 (\mu),
\]

\[
f_2 (\tau) \leq \tau^{-\gamma} f_2 (1),
\]

\[
f_2 (\tau^{-1}) \geq \tau^{\gamma} f_2 (1),
\]

\[
f_1 (\tau) \geq \tau^{\gamma} f_1 (1),
\]

\[
f_1 (\mu) \leq \mu^{\gamma} f_1 (1), \quad \mu > 1.
\]

Define

\[
Q_{\zeta} = \left\{ \mu \in \Lambda : \frac{1}{M} \zeta (\tau) \lambda (\tau) \leq \mu (\tau) \leq M \zeta (\tau), \tau \in [0, 1] \right\},
\]

where \(\zeta (\tau) = \tau^{1-\beta} \), and \(M > 1 \) is defined as

\[
M = \max \left\{ \left\{ \left(\int_0^1 \frac{1}{\Gamma (\beta)} q (s)^{-\gamma} (a_1 (s) f_1 (1) + a_2 (s) f_2 (1)) ds \right)^{1/(1-\gamma)} \right\}, \left\{ \left(\int_0^1 \frac{1}{\Gamma (\beta)} p (s)^{-\gamma} (a_1 (s) f_1 (1) + a_2 (s) f_2 (1)) ds \right)^{-1/(1-\gamma)} \right\} \right\}.
\]

For \(\mu, \nu \in Q_{\zeta} \), we define

\[
T_{\zeta} (\mu, \nu) (\tau) = \xi \int_0^1 G (\tau, s) [a_1 (s) f_1 (\mu (s)) + a_2 (s) f_2 (\nu (s))] ds, \quad \forall \tau \in [0, 1].
\]
We firstly show that $T_\xi: Q_\zeta \times Q_\zeta \rightarrow Q_\zeta$. Let $\mu, \nu \in Q_\zeta$, and from (65) and (66), we have then from (69),

$$f_1(\mu) \leq f_1(M\zeta(\tau)) \leq f_1(M) \leq M^\gamma f_1(1), \quad \forall \tau \in (0, 1), \quad (73)$$

Then, from (62), (67), and (68),

$$T_\xi(\mu, \nu)(\tau) \leq f_2\left(\frac{1}{M} \zeta(\tau)\right) \leq f_2\left(\frac{1}{M} \zeta^{-\gamma}(\tau)\right) \leq M^\gamma f_1(1)\zeta^{-\gamma} f_2(1), \quad \forall \tau \in (0, 1). \quad (74)$$

So, we have

$$T_\xi(\mu, \nu)(\tau) \leq M^\gamma(\tau)\zeta^{-\gamma} f_1(1) \zeta^{-\gamma} f_2(1) = M\zeta(\tau), \quad \forall \tau \in [0, 1]. \quad (75)$$

And, from (62), (67), and (68),

$$f_1(\mu(\tau)) \geq f_1\left(\frac{1}{M} \zeta(\tau)\right) \geq f_1\left(\frac{1}{M} \zeta\right) \geq M^{-\gamma} f_1(1) \zeta f_1(1), \quad \forall \tau \in (0, 1), \quad (76)$$

$$f_2(\nu(\tau)) \geq f_2(M\zeta(\tau)) \geq f_2(M) \geq M^{-\gamma} f_2(1), \quad \forall \tau \in (0, 1),$$

for all $\mu, \nu \in Q_\zeta$. So,

$$T_\xi(\mu, \nu)(\tau) \geq M^{-\gamma}(\tau)\zeta^{-1} f_2(1) = M^{-1}\zeta(\tau), \quad \forall \tau \in [0, 1]. \quad (77)$$

It is easy to check that $T_\xi(\mu, \nu)$ is nondecreasing in μ and nonincreasing in ν.
Next, for any $\sigma \in (0, 1)$ and $\mu, \nu \in Q_{\sigma}$, we have

\[
T_{\xi}(\sigma \mu, \sigma^{-1} \nu)(\tau) = \xi \int_{0}^{1} G(\tau, s) \left[a_{1}(s) f_{1}(\sigma \mu(s)) + a_{2}(s) f_{2}(\sigma^{-1} \nu(s)) \right] ds
\]

\[
\geq \xi \int_{0}^{1} G(\tau, s) \left[a_{1}(s) \sigma^{\gamma} f_{1}(\mu(s)) + a_{2}(s) \sigma^{\gamma} f_{2}(\nu(s)) \right] ds
\]

\[
= \sigma^{\gamma} T_{\xi}(\mu, \nu)(\tau), \quad \forall \tau \in [0, 1].
\]

Lemma 6 accordingly holds. Also, a unique $\mu^{*} \in Q_{\sigma}$ satisfying $T_{\xi}(\mu^{*}, \mu^{*}) = \mu^{*}$ exists. Theorem 2 is proved. \qed

Example 2. The following example for SBV is considered here:

\[
\begin{aligned}
D_{0}^{(7/2)} & \mu(\tau) + \frac{1}{\sqrt{T}} \mu^{1/3} + \tau \mu^{(-1/4)} = 0, \quad 0 < \tau < 1, \\
\mu(0) &= \mu^{'}(0) = \mu^{''}(0) = \mu^{'''}(1) = 0.
\end{aligned}
\]

We let $f_{1}(\mu(\tau)) = \mu^{1/3}(\tau)$, $a_{1}(\tau) = (1/\sqrt{T})$, $f_{2}(\mu(\tau)) = \mu^{(-1/4)}(\tau)$, $a_{2}(\tau) = \tau$, and $\gamma = 1/3$. Accordingly,

\[
f_{1}(\tau \mu) = \tau^{1/3} \mu^{1/3} \geq \tau^{\gamma} f_{1}(\mu), \quad f_{2}(\tau^{-1} \mu) = \tau^{1/4} \mu^{(-1/4)} \geq \tau^{\gamma} f_{2}(\mu),
\]

\[
\int_{0}^{1} q(s) \xi^{\gamma} \left[a_{1}(s) f_{1}(1) + a_{2}(s) f_{2}(1) \right] ds = \int_{0}^{1} (1-s)^{(7/2)-3} s^{-(7/2)-1/3} \left[s^{-(1/9)} + s \right] ds
\]

\[
= 18 + \frac{6}{7} < + \infty.
\]

So, Theorem 2 is validated, indicating the presence of a unique positive solution μ^{*}.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Conflicts of Interest

The author declares no conflicts of interest.

Authors’ Contributions

The author has read and approved the final manuscript.

References

[1] K. B. Oldham and J. Spanier, *The Fractional Calculus*, Academic Press, New York, NY, USA, 1974.

[2] K. Miller and B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, Wiley, New York, NY, USA, 1993.

[3] S. Samko, A. Kilbas, and O. Marichev, *Fractional Integrals and Derivatives: Theory and Applications*, Gordon & Breach, Yverdon, Switzerland, 1993.

[4] I. Podlubny, *Fractional Differential Equations*, Academic Press, San Diego, CA, USA, 1999.

[5] K. Diethelm, *The Analysis of Fractional Differential Equations*, Springer, Berlin, Germany, 2010.

[6] Y. Zhou, *Basic Theory of Fractional Differential Equations*, World Scientific, Singapore, 2014.

[7] Y. Zhou, *Fractional Evolution Equations and Inclusions: Analysis and Control*, Elsevier, Amsterdam, Netherlands, 2015.

[8] A. Kilbas, H. Srivastava, and J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, Netherlands, 2006.

[9] Y. Zhou, H. Chen, and L. Huang, “Existence of positive solutions for nonlinear fractional functional differential equations,” *Computers & Mathematics with Applications*, vol. 64, no. 10, pp. 3456–4367, 2012.

[10] M. Matar, “On existence of positive solution for initial value problem of nonlinear fractional differential equations of order
1 \leq \alpha \leq 2,” *Acta Mathematica Universitatis Comenianae*, vol. 84, no. 1, pp. 51–57, 2015.

[11] Z. Bai, S. Zhang, S. Sun, and C. Yin, “Monotone iterative method for fractional differential equations,” *Electronic Journal of Differential Equations*, vol. 6, pp. 1–8, 2016.

[12] B. Hamid, A. Abdelouahab, and L. Yamina, “Positive solutions for nonlinear fractional differential equations,” *Positivity*, vol. 21, pp. 1201–1212, 2017.

[13] R. P. Agarwal, M. Benchohra, and S. Hamani, “Boundary value problems for fractional differential equations,” *Galen Medical Journal*, vol. 16, no. 3, pp. 401–411, 2009.

[14] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” *Journal of Mathematical Analysis and Applications*, vol. 311, no. 2, pp. 495–505, 2005.

[15] S. Zhang, “Positive solutions for boundary-value problems of nonlinear fractional differential equations,” *Electronic Journal of Differential Equations*, vol. 6, pp. 1–12, 2006.

[16] D. Jiang and C. Yuan, “The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 72, no. 2, pp. 710–719, 2010.

[17] R. P. Agarwal, Y. Zhou, and Y. He, “Existence of fractional neutral functional differential equations,” *Computers & Mathematics with Applications*, vol. 59, no. 3, pp. 1095–1100, 2010.

[18] V. Lakshmikantham and J. Devi, “Theory of fractional differential equations in a Banach Space,” *European Journal of Pure and Applied Mathematics*, vol. 1, pp. 38–45, 2008.

[19] Z.-L. Han, Y.-Y. Pan, and D.-W. Yang, “The existence and nonexistence of positive solutions to a discrete fractional boundary value problem with a parameter,” *Applied Mathematics Letters*, vol. 36, pp. 1–6, 2014.

[20] W. Feng, S. Sun, X. Li, and M. Xu, “Positive solutions to fractional boundary value problems with nonlinear boundary conditions,” *Boundary Value Problems*, vol. 2014, p. 225, 2014.

[21] B. Li, S. Sun, Y. Li, and P. Zhao, “Multi-point boundary value problems for a class of Riemann–Liouville fractional differential equations,” *Advances in Difference Equations*, vol. 2014, no. 1, p. 151, 2014.

[22] T. Qiu and Z. Bai, “Existence of positive solutions for singular fractional differential equations,” *Electronic Journal of Differential Equations*, vol. 146, pp. 1–9, 2008.

[23] J. Mohamed and S. Bessem, “On positive solutions of a class of singular nonlinear fractional differential equations,” *Boundary Value Problems*, vol. 73, 2012.

[24] R. P. Agarwal, D. O’Regan, and S. Staněk, “Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations,” *Journal of Mathematical Analysis and Applications*, vol. 371, no. 1, pp. 57–68, 2010.

[25] L. Guo and X. Zhang, “Existence of positive solutions for the singular fractional differential equations,” *Journal of Applied Mathematics and Computing*, vol. 44, no. 1–2, pp. 215–228, 2014.

[26] Y. Wu and L. Liu, “Positive properties of the Green function for two-term fractional differential equations and its application,” *Journal of Nonlinear Sciences and Applications*, vol. 10, pp. 2094–2102, 2017.

[27] F. Wang, L. Liu, and Y. Wu, “Iterative unique positive solutions for a new class of nonlinear singular higher order fractional differential equations with mixed-type boundary value conditions,” *Journal of Inequalities and Applications*, vol. 2019, p. 210, 2019.