Research & Innovation for Sustainable Products: Polysaccarides for a smart circular economy at zero waste

Pierfrancesco Morganti*1, Gianluca Morganti2 and Marco Palombo3
1R&D Unit, Academy of History of Healthcare Art, Rome, Italy; China Medical University, Shenyang, China
2ISCD Nanoscience Center, Rome, Italy.
3Department of Plastic & Reconstructive Surgery and Burn Center, Sant'Eugenio Hospital, Rome, Italy.

*Corresponding Author: Pierfrancesco Morganti, R&D Unit, Academy of History of Healthcare Art, Rome, Italy; China Medical University, Shenyang, China.

Received date: April 15, 2021; Accepted date: April 29, 2021; Published date: May 03, 2021

Citation: P Morganti, Gianluca M and M Palombo. (2021) Research & Innovation for Sustainable Products: Polysaccarides for a smart circular economy at zero waste. Clinical Research and Clinical Trials. 3(3); DOI: 10.31579/2693-4779/037

Copyright: © 2021 Pierfrancesco Morganti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Scientific Research and Innovation (R&I) may be considered respectively "the spoken language and the written language of every culture"[1]. The first is necessary to discover new lands, while the second results fundamental to build housed & roads and make food, necessary for an healthy living. At this purpose, the scientific research may be distinguished in 3 different phases: basic and experimental research, applied research and industrial research.

Innovation comes from the basic research, while the applied research represents the bridge between the basic research and the industrial ones.

Keywords: Research Innovation; Sustainable Products; Polysaccarides; smart circular economy

Introduction

Scientific Research and Innovation (R&I) may be considered respectively "the spoken language and the written language of every culture"[1]. The first is necessary to discover new lands, while the second results fundamental to build housed & roads and make food, necessary for an healthy living. At this purpose, the scientific research may be distinguished in 3 different phases: basic and experimental research, applied research and industrial research.

Innovation comes from the basic research, while the applied research represents the bridge between the basic research and the industrial ones[1].

However, the basic research results fundamental to design the criteria by which the scientific knowledge develops technical innovations, necessary for a sustainable development. Thus new theories have been constructed which, generating new possible scientific applications and technologies, can be engineered by the applied and industrial research, indispensable to realize the designed products. Consequently, the innovative industries may transform their applied researches in technological smart products with a cost-advantage or a significant lead quality over their rivals[1]. However, according to the actual consumer requests, it results fundamental to make products by sustainable raw materials and technologies, possibly at zero waste to preserve human health and the environment [2-4].

Linear economy versus circular economy plastic-free

It's not to forget that the actual linear economy, based on take, make and produce waste, is provoking increased greenhouse gas emissions (GHG) and climate changing with an estimated global human deaths of around 7 million per year, 3 million of which due to air particulates [5-8] (fig 1).
Air pollution, in fact, represents one of the worldwide greatest human risk, persisting today particulate pollution level. It, in fact, seems to be the supposed cause which provokes the estimated total loss of 12.8 billion years of life for the global population (fig2)[9].

Figure 1: Worldwide Death rate from outdoor and indoor air particulate (by courtesy of Our World in Data)

Figure 2: Particulate pollution levels and other injuries contributing to reduce years of life (By courtesy of STATISTA 1[9]).
Air pollution, human health and wellbeing, in fact, are intimately linked to environmental quality and climate changing, impacting on food and water security as well as affecting diseases such as COVID-19 pandemic (10-13). Moreover, it is also to underline that, because of the forced lockdown necessary to eliminate the virus spreading; more than 90% of people are living at home (indoor) where levels of micro-nano-particulate are more higher than in outdoor (fig 3) (14,15).

Therefore through more research studies and investments, it will be possible to realize innovative biodegradable products environmentally-friendly, trying to respect the equilibrium between market structure and innovation. These new smart products would be possibly plastic-free especially in the end-use sectors, such as packaging, building & construction and textiles which utilize around 300 million tons of plastic polymers per year (fig 4) (16,17).
Another example of unusual pollution is due to the actual great use of non-biodegradable surgical and beauty masks which, filled in the environment, are increasing the microplastics waste which invade lands and oceans (18-21). It has been estimated, in fact, that going on by the actual “plastic” production and consumption, there will be in oceans more microplastics than fishes by 2050 (fig 5) (22). Therefore, by the actual smart technologies and the circular economy could be possible to make various tissues and biodegradable bioplastic-packagings by the use of polysaccharides, obtained from food and industrial waste. So doing the precious natural raw materials and the Planet’s Biodiversity may be safeguarded.

Just to remember in 2016, 242 million tonnes of plastic waste have been generated, representing 12 percent of all solid global waste, which has been estimated to grow by 70% by 2050, if no action will be taken. Thus industry and consumer. Additionally, in the same year this waste has generated 1.6 billion tons of carbon dioxide, supposed to increase to 2.6 billion tons in 2050. Thus industry and consumer have to change their way of producing and consuming respectively (23,24). Unfortunately, “cities and countries are rapidly developing without adequate systems” of recycling, thus producing solid waste that affects negatively their citizens (24). Consequently, the particulate matter pollution generated is responsible for more than 100,000 deaths each year, causing many diseases, including heart attacks, strokes and lung cancer. Moreover, billion of toxic micro/nanoplastics, which invade the oceans, in fact, are entering in the food of fishes and sea-mammals, impacting human food and the health in a manner to be jet better discovered (5-15).

Research, Development & Innovation

Thus the need of more investments and research studies indispensable to utilize the great quantity of waste generated by agro-forestry and food industry for producing innovative goods and tissues (25). At this purpose it is interesting to underline the necessity to support Research and Innovation by new way of inventing, learning, producing, and trading as reported and shown by the Global Innovation Index (25). This Index ranks Countries by 80 well defined parameters including political regulatory and business environment, society welfare and scientific and creative outputs, education and R&D expenditure, workers knowledge, infrastructures and ecological sustainability, etc. (fig. 6). By this methodology, it is possible to verify the countries which are investing more in research and development in different sectors, safeguarding wellness, wellbeing, wealth and the environment. Thus the top Countries classified for their leadership Innovation are: Switzerland, Sweden, and Netherland in EU or USA and Canada in North America, Israel in Western Asia or Singapore, South Korea and Hong Kong/China in Asia Pacific. They have been able to conquer and maintain the first positions during the last ten years and the COVID-19 pandemic period also, as reported in figure 7 and 8 (25,26). However, in 2020 some countries have shown to change its innovation position (fig 8).
Figure 6: Classification of the Global Innovation Index (by courtesy of Global Foundation Index [25,26])

Top 15 leaders in innovation

- Switzerland
- Sweden
- Netherlands
- United States
- Finland
- United Kingdom
- Denmark
- Israel
- Germany
- Singapore
- South Korea
- Ireland
- Hong Kong, China
- China
- Japan

Source: Global Innovation Index 2019

Figure 7: The worldwide leaders of innovation (by courtesy of Global Innovation Index [25, 26])
In any way, research and innovation are vital to the countries's prosperity, security and wellness. Consequently, innovation should be focused worldwide on the ecological, social and economic transitions accordingly to the European Horizon Program 2021-2027 investments, notably increased during the years becoming from the 1984-1987 period (fig 9) [27]. Innovation, in fact, has a profound impact not only on the global economy, but also on the quality of life, as it appeared evident during the COVID-19 pandemic crisis which triggered an unprecedented global economic shutdown and a contemporaneous request of wealth with a healthy environment [28]. The greatest innovation happens in fact, during periods of economic crisis like television emerged around the Great Depression, so that innovation has to be considered a key enabler of progress and competitiveness. Thus, innovative research studies may create new categories of solutions by new way of learning, inventing and producing. According to the World Bank Group President David Malpass, "to overcome the impacts of pandemic and counter the investment headwind, there need to be a major push to improve business environments, increase labor and product market flexibility, and strengthen transparency and governance" [25]. Therefore, the innovation, respective of both human health and environment, is the main way to build a sustainable and inclusive future for each country, engineering its growth and economic development by new technologies and fundings. Thus the COVID-19 pandemic, which has triggered an unprecedented global economic shutdown, might catalyze innovation in many sectors such as tourism, education, transportation services, and e-commerce, reorganizing production locally and globally by new smart technologies structured and realized to reduce or reverse long-term climate changing.
Figure 9: HorizonEU Investments budget from 1984 to 2027 (by courtesy of EC [27])

Food lost, Plastics waste and climate changing.

The global food systems is responsible for around 30% of the total GHG emissions due to 1.3 billion tons of food lost every year, while the plastic emissions represents 10/13% of the entire carbon budget (fig 10)[28-30]. On the other hand, it has been estimated that, with the actual production and incineration of plastic material, the annual emission of CO2 could grow to more than 2.75 billion metric tons by 2050[30]. Global production and use of plastics or synthetic polymers, in fact, has been increased at a compound annual growth rate of 8.3% since the beginning mass production from 1950, surpassing the output of the other man-made materials (fig 11) [31,32]. Consequently, between 1950 and 2017, 9,200 million metric tons (Mt) of virgin plastics were produced, 5,300 of which have been discarded in landfills or the natural environment, recovered into the oceans, as toxic microplastic fibers [33,34]. Moreover, as previously reported, the consumers purchase of more than 80 billion pieces of new clothing each year, translated to USD 1.2 trillion annually, has created other millions of tons (Mt) of textile waste in landfills, with negative implications on both environment and human health[35]. Last but not least, it is to consider that both women and men are using between 9 and 15 personal care products per day, placing daily around 515 individual chemicals on their skin and the environment. Consequently, cosmetics represent another important field contributing to increase the chemicals and plastic packaging waste, ranging 142 billion units in 2020 [37,38]. For all these reasons as a result of COVID-19 pandemic, the vast majority of consumers worldwide are looking for safety, hygiene and sustainable products plastic-free. They claim to be willing to pay more for reducing the environmental footprint, due also to the packaging materials generating a turnover of
USD 900 billion a year [39,40]. However, for customers in EU and Japan, the marine litter is increasingly important, while pollution is more of concern in other Asian and Americas countries. Thus, they rank plastic packaging made by compostable and sustainable materials, accelerating online shopping products, focused even more on health and hygiene (40). Consumers, in fact, are looking for friendly, safe, effective and innovative products, including food, cosmetics and apparel. They feel the responsibility for the world where all of us are living, having an increasing concern for their own wealth, wellness and wellbeing[41,42]. It is to recognize, therefore, the impossibility to live a full life without an healthy body, mind and spirit, strictly connected to the natural environment and climate changing with a reduced GHG emissions. COVID-19 pandemic, therefore, has to be considered a wake-up call to modify our way of living, remembering how the actual global climate changing is damaging human health day by day[43]. It in fact, is projected to have a greater impact in the future, dragging more than 100 million people back to extreme poverty by 2030 with much of this reversal attributable to negative impacts on health [44]. Thus, the growing need for a greater integration among social protection measures, climate change adaptation and disaster risk reduction efforts[45].

Global greenhouse gas emissions from food production

![Global greenhouse gas emissions from food production](image)

Figure 10: Global greenhouse gas emission from food production (by courtesy of Our in World Data [28])
In conclusion, the increasing waste are producing pollutions and climate changing with an increase of diseases such as the last coronavirus infection. Thus "the necessity to invigorate economies and steer the countries to a prosperous low-carbon future", "helping reinforce economies that COVID-19 pandemic has weakened, and create healthier more equitable communities" [46,47]. This illness, in fact, modifying the likelihood of people habits "has impacted profoundly the consumer lifestyles by a renewed focus on science and nature and sustainability" [46]. Consequently, on the one hand personal health has been prioritized, while the connection between wellbeing/wellness and technology by the digital retail strategy has been accelerated [48]. The necessity to protect the natural environment that, helping mitigate climate changing by adsorbing CO2, could play an important role in preventing the next possible pandemic diseases. Moreover, a major use of natural-derived ingredients, such as polysaccharides, for producing biodegradable goods and tissues may be of great help to reduce production and consumption of petrol-derived plastics and polymers, going versus the requests of scientists and consumers.

Polysaccharides to produce smart goods and tissues.

The worldwide growth of the population and the constant consumption of natural resources are exerting a great pressure on the environment, producing waste and GHG emissions. Thus the necessity to use the natural raw materials in the best way, by a circular economy based on sustainable development and recycled waste to preserve an healthy environment for the future generations, according also to the Europe 2020 and Hellen McCarthur Foundation strategies [49-51]. The production of polysaccharides, polypeptides and polymers, including chitin, nanofibrils and nanolignin are going in this direction, jointing together circular economy (CE), green economy (GE) and bio-economy (BE) based on economic, environmental and social goals, also if with different geographical distributions. China, in fact, dominate in CE research, EU is prevalently focused on BE, while mostly worldwide researches are based on GE [52-54]. Just to better understand the differences among these research approaches, CE is "focused on industrial urban processes" necessary to decoupling resource use and economic output; BE, represents the integration of science with business and society, being focused "on biological resource-based innovation" with a better land use, while GE "try to envelop an umbrella perspective for a balanced social- environmental development" [52-54].

However, polysaccharides are natural and particularly safe macromolecules which can be extracted at low cost not only from plants, fungi, algae, but also from animals and bacteria. They are polymers consisting of repeating units of sugar monomers, which, extensively used in biomedical and pharmaceutical applications, show a widerange of biological multi-faced properties, including their easy bio/absorbable activity, and antioxidant, immunomodulating, and antibacterial effectiveness [55,56]. The sugar polymers are classified in monosaccharides, disaccharides, oligosaccharides and polysaccharides, and represented by long chains of carbon, hydrogen and oxygen, bound through glycosidic linkages with highly stereo- and regional-controlled arrangements. Among the polysaccharides chitin, lignin and their derived compound seem to be the more promising natural polymers to be used as healthy and safe macromolecules effective as carrier and active ingredients.

Chitin and Chitosan

They are natural polysaccharides containing N-acetyl groups and amino groups respectively, characterized for their high molecular weight and high percentage of nitrogen (6.89%), excellent biocompatibility, biodegradability and bio-absorbability with low immunogenicity and toxicity [57,58]. Structurally chitin is similar to the polysaccharide cellulose and, treated by alkali, the polymer lose the
majority of the acetyl glucosamine monomers producing chitosan more rich in glucosamine. Thus, in chitin, the acetylated units prevail being from 40- to 50% and more, depending to the method of industrial production, while chitosan is fully or partially deacetylated from [59%-98%]. However, chitin and chitosan differ not only for their molecular weight and extent of acetylation, but also for the dispersion of the polymerization degree and the various distribution of the acetylated and de-acetylated units, along the polymer chain. All these characteristics affect the chemical and biological properties of these polymers[60].

Chitin is the most abundant second common polysaccharide found in nature after cellulose, being widely distributed in the skeletal material of crustaceans and insects as well as component of cell walls of bacteria and fungi. It differs from cellulose only for the C-2 position of the backbone, where chitin has a N-acetyl group, chitosan an amino group and cellulose an hydroxyl group (fig 12). Depending on the molecular chain orientation chitin is produced in nature in the beta, gamma and in alpha form, as the more frequent. In this last form the polymer appears organized by ordered crystalline microfibril units comprised of 18-25 polymeric chains which create a complex hierarchical architecture [61]. Thus, the acetyl groups of the crystallin alpha-chitin structure represent essential interactive sites, necessary to connect the adjacent chitin chains via hydrogen bonds as well as by other non-bonded interactions. Consequently for example, the bundles of chitin nanofibrils determine the corresponding mechanical properties and flexibility of the final engineered non-woven tissue designed as well as the degree of deacetylation of the polymer leads to the capability of forming more or less hydrogen and covalent bonding at low pH, because of the presence of -OH and -NH2 free groups [62]. When industrially produced from our group, each chitin Nanofibril’ (CN) crystal is covered on its surface by around 15.000 positive electrical charges, and shows a mean dimension of 240x7x5 nm (fig 13) with a water uptake capacity of about 400 wt%, at a pH interval between 2 and 4 [63,65]. Thus in water suspension, CN exhibits an interesting capacity to self-assembly natural polymers covered by negative charges as nanolignin (LN), entrapping active ingredients as glycyrrhetic acid and niacinamide into films of polylactic acid (PLA) made (fig 14) [66]. Moreover, CN, allowing to modify its surface because of the high modulus and strength along the axes of the fiber and the capacity to self-assembly with other natural polymers entrapping different active ingredients, has shown the ability to recreate the natural arrangement of fibrous proteins in living tissues, repairing burns and skin wounds [67,68]. Moreover, CN contributes to the orientation of the chitosan/chitin nanocomposite and other macromolecules as PLA nanocomposite, increasing its strength and Young modulus of the final designed fibers (fig 15) [69,70]. Probably these various characteristics could be at the base of the effectiveness to repair the skin affected by burns and wounds of tissues made by CN and its complexes [71].

![Chemical formulation of cellulose compared to Chitin and chitosan](image-url)
Figure 13: Chitin Nanofibrils at Transmission electronic microscopy and its natural hierarchical structure made by antiparallel chains

Figure 14: FTIR Spectrum of Chitin Nanofibril-Nanolignin(CN-LG) complex encapsulating respectively niacinamide(a) and Glycyrrhetic acid(b), embedded into a film made by polylactic acid(PLA) and controlled by the Fourier Transform Infrared Spectroscopy(ATR-FTIR) (by the courtesy of Miletic et al [70])
At this purpose it has been shown the facility by which CN-Lignin, bound to nanostructured silver (Ag), make non-woven tissues. Moreover, the tissues have the ability to regulate the cicatrizing phenomena promoting the healing of skin wounds and its repairing activity in a shorter time. Additionally, they don’t provoke side effects such as hypertrophic scars and keloids, probably modulating the cytokines activity (67,68). It has been verified in vitro, in fact, that both CN and its complexes with lignin and hyaluronic acid stimulate the fibroblasts survival and growth modulating the releasing of both anti-inflammatory cytokines and antibacterial defensins [65,66,72,73]. Cosmeceuticals and nanochitin and nanochitosan are suggested as excellent candidates for Biomaterials of pharmaceutical and cosmetic use, including gel, spray, surgical and beauty masks, and one-day medical dressings [74,19-21]. Moreover, they are used to develop scaffolds, drug release systems for wound healing and biomedical applications [61,65,66] as well as for cosmeceuticals and active cosmetic tissues [74-76], industrial adsorbents, civil engineering applications [78], water purification [79], protein biosensors [79] and nanofillers in the reinforcement of both natural and synthetic composites to avoid the nano-fibril agglomeration also [61,81-84].

Lignin

As previously reported, lignin and its derived compounds complexed with chitin Nanofibrils may be used in the biomedical field to produce films or non-woven tissues to repair burned and wounded skin or to try to slow down the appearance of fine lines and wrinkles [85]. Lignin in nature is an highly branched, three-dimensional polymer built up mainly from three phenyl propane units :p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, the mixture of which varies between different phylogenetic groups of plants, tissues and cell wall layers [86,87]. These units, named monolignols consist of phenol and short aliphatic side chains covalently connected by carbon-carbon bonds to form the polymer (fig 16). Thanks to the presence of numerous phenolic group, lignin possesses interesting antioxidant and UV protective properties useful to make biomaterials for pharmaceutical, cosmetic and diet supplement use [89,90]. However, it is interesting to underline that chitin-rich peel, present in the beetle shells of certain insects, is impregnated with aromatic polymerized monomers resulting similar to lignin [88]. On the other hand, some fungi and algae produce lignin of identical structure of vascular plants giving them an hard and resistant polymer similar to chitin, synthesizing melanin just as insects and mammals [89,90].

Thus, chitin and lignin are both natural polymers that can be complexed by the gelation method to obtain nanoparticles able to entrap different active ingredients designed to make innovative biomedical healthy products. Naturally the obtained final nanoparticle properly come not only from the active ingredient selected and entrapped into the complex, but also from its morphology, size and surface charge determined by the purity and concentration of both lignin and chitin, their physicochemical characteristics and the solvent used for its extraction [63,91]. However, both these polymers may have many potential applications as wound dressings and drug delivery systems depending to the different ways chitin and lignin can be combined with other biomaterials and bio-ingredients to construct innovative composite, biodegradable films and non-woven tissues, as reported from some of our research studies also [20-22,63-77,91-93].
Conclusion

As it has been focused, according to consumers and scientists opinions, plastic production and use, together with food lost, deforestation, overpopulation and great releasing of waste have increased worldwide air and land pollution creating not only worries for global warming and earth disasters but causing also diseases such as COVID-19 pandemic due mostly to human activities and the actual way of producing, consuming and living. Thus, the necessity to change our way of living, recycling not only the textile materials taking the habit to consume less apparel, but becoming also to reduce food lost and waste levels which, accounting for about 8% of the global anthropogenic GHG emissions, represent a significant contribution to climate change (28,94). It is also to underline the further increase of the actual problem of waste which has been forecasted to grow from 260 million tons per year in 2016 to 460 million tons by 2030, if plastic demand will follow the today trajectory [95]. In 2015, in fact, of the 8.3 billion metric tons of plastic produced, 6.3 billion will become waste, being actually 9% recycled, 12% incinerated and 79% accumulated in the natural environment (lands and oceans) [32]. On the other hand, the possible worldwide recycling and reusing of plastic waste at a 50% level, could generate a profit calculated in USD 60 billion by 2030, also if not easy to realize [95,96]. However, changing in consumer’ behavior during the pandemic has contributed to increase waste and pollution because of the increased shopping on line with more consume of take out food, packed by single-use plastic. But it isn’t to forget the majority of GHG emissions (~90%) which results for the manufacture of four industrial commodities such as ammonia, cement, ethylene and steel [97,98]. In any way, it results fundamental to change worldwide the way of producing and consuming, investing more in Research & Development to realize sustainable and smart products, necessary to maintain and ameliorate...
human health and the environment. As previously discussed, climate change became a great problem that not only harms people worldwide, but also is being cause of further poverty. As reported, in fact from The World Bank Group, it has been estimated that COVID-19 pandemic in 2021 will push in extreme poverty an additional 88 million people, affected between 9.1% and 9.4% of the world population in 2020 [99]. On the other hand, this new pandemic has shown that just few months of reduced and altered activity had a beneficial effect on air, water and other aspect of natural world [100,101]. Therefore the climate change - mitigation behavior would be considered worldwide top priority and social norm, which require international collaboration and high education, as happened for the design, study, and production of the COVID-19 vaccine, realized by high level and quick investments [96,100,101]. Thus by a similar global collaboration and investments in R&D among finance, policy, and social science technology-based fields, it will be possible to stop the climate disasters realizing a planet free of pollution and waste human- and environmentally-friendly [94,101]. This is the dream of the worldwide citizens who encompass a wellbeing based not only on food and fitness, but also on overall physical and mental health and appearance. Moreover, after the COVID-19 pandemic, it is increased the consumer’ request for sustainable, clean and natural products to ameliorate her/his life-style through wellbeing, viewed though six dimension: better health, better fitness, better nutrition, better appearance, better sleep, and better mindfulness (i.e. a meditation-oriented focused) [102]. However, among the worldwide consumers exist differences because, for example, Japanese people prioritize appearance while German emphasize fitness, Brazilian and Americans are more oriented versus mindfulness and Chinese and British people prefer nutrition [102].

Thus, there is the urgent necessity to integrate R&D with the new scientific knowledge and technologies for realizing a sustainable development capable to preserve natural raw materials for the future generations. Moreover, it is our hope that time of the COVID-19 crisis may also be used as an opportunity to invest in policies and institutions to reduce the social, racial and economic inequalities, making the world an equal place for all. In conclusion, the green circular economy seems to represent the goal for creating tools for managing more efficiently land and oceans resources to produce innovative sustainable products at zero waste and pollution. The use of the reported polysaccharides, obtained from food-forestry and industrial waste, seems the best way for achieving the goal to make biodegradable products and packaging materials by sustainable technologies.

References

1. Buscema M and Pieri G. (2003) Ricerca e a Innovazione. Le Parole Chiave, Rizzoli, Milano, Italy.
2. Probst L. (2016) Frideres L, Cambier B, Clarke S Sustainable Supply of Raw Materials, Business Innovation Observatory, European Commission, Brussels, Belgium.
3. UN. (2020) Sustainable Development - Take Action for the Sustainable Development Goals, United Nations Report, New York, USA.
4. Cosmetics Europe. (2020) Environmental Sustainability - The European Cosmetic Industry's Contribution, 2017-2019, Brussels, Belgium.
5. Part P, Jarosinska D and Hoogeveen Y. (2013) Environment and Human Health, European Environment Agency, Copenhagen, Denmark.
6. UNECE. (2021) Sustainable Development Goals - Air pollution and Health, 2020, Union Nations Economic Commission for Europe Report, New York.
7. WHO. (2020) Health Expenditure Data Base. World Health Organization.
8. WHO. (2016) Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. World Health Organization.
9. McCarthy N. (2018) Air pollution is the greatest human health risk. Chart of the day. STATISTA.
10. Austin W, Carattini S, Mahecha JD and Pesco M. (2020) COVID-19 Mortality and Contemporaneous Air Pollution, Working paper. International Center for Public Policy, Andrew Young School, Georgia State University, Atlanta, Georgia, USA.
11. Boudret T, Annesi-Maesano I, Alaahmad B, Maesano CN, and Bind MA. (2021) The Impact of Outdoor Pollution on VKJD-19: A review of evidence from in vitro, animal, and human studies. Eur Respir Rev: 30:200242.
12. Brunekreef B, Downward G, Forastiere F, Gehring U, Heederik DJ, Hoek G et al. (2021) Air Pollution and COVID-19, study by Policy Department for Economic, Scientific and Quality of Life Policies, European Parliament, Luxemburg.
13. Ali N. and Islam F. (2020) The effects of Air Pollution on COVID-19 Infection and Mortality: A Review on Recent Evidence. Front Public Health.
14. Nohynek G. (2011) Nanotechnology and the Skin: A risk to Human Health. Proceeding of Nanotechnology and Biotechnology in Cosmetics, Milan, Italy.
15. Bo M, Salizzoni P, Clerico M and Buccolieri R. (2017) Assessment of Indoor-Outdoor Particulate Matter Air Pollution: A Review. Atmosphere, 8, 136.
16. Van Cayseele P. (1988) Market Structure and Innovation: A Survey of the last twenty Years. De Economica, 146:391-417.
17. Hashmi A R and Van Biesenbroek J. (2016) The Relationship between Market Structure and Innovation in Industry Equilibrium: A Case Study of the Global Automobile Industry. Rev Econom Statistics, 98(1):192-208.
18. Gope D, Gope A and Gope PC. (2020) Mask Material: Challenges and Virucidal Properties as an Effective Solution against Coronavirus SARS-CoV-2, Open Health, 1:37-50.
19. Morganti P and Morganti G. (2020) Post-COVID-19: An Opportunity to Produce Biodegradable Goods & Surgical Masks to Save the Environment. Health Care Res, 1(3):157-165.
20. Morganti P, Yudin VE, Morganti G and Collelli MB. (2020) Trends in Surgical and Beauty Masks for a Cleaner Environment, Cosmetics, 7, 68.
21. Morganti P and Morganti G. (2020) Surgical & Beauty Facial Mask: The New Waste Problem of Post COVID-19. Biomed J Sci & Tech Res, 29(4) – BJSTR.
Quarter of the World's Greenhouse Gas Emissions, Our World in Data.
29. CIEL. Plastic & Climate. (2019) The Hidden Costs of a Plastic Planet.Center for International Environmental Law.
30. EPA. (2021) Plastic: Material-Specific Data. United States Environmental Protection, Washington DC, USA.
31. Geyer R,Jambeck, J.R.and Law KL. (2017) Production, use and fate of all plastics ever made. Science Advances, 3(7):e1700782.
32. Geyer R. (2019) Production, use and fate of synthetic polymers.In : Letcher TM (Ed) Plastic Waste and Recycling, Academic Press, Cambridge, MA,USA.
33. Jambeck JR,Andray A,Geyer R,Natayaan P,Rerryman M,Siegler T.et al. (2015) Plastic Easte Inputs from Land into Ocean, Science,347(6223):768-771; doi:10:1126/science.1260352
34. Napped I.and Thompson RC. (2016) Release of Synthetic Microplastic fibers from domestic washing machines:Effects of fabric tyke and washing conditions. Marine Pollution Bulletin,112(1):39-45
35. Bick R,Helsey E.and Ekenga CC. (2018) The Global environmental injustice of fast fashion Environmental Health,17,12.
36. Gavigan D,Krvela T,Macadam-Somer I,Suh S,and Barbara S. (2020) Synthetic Microfiber emissions to land rival those to Waterbodies and are growing PLOS ONE, 15(9):e0247838.
37. Jones O. and Selinger B. (2021) The Chemistry of Cosmetics. People Media,Australian Academy of Science,Sidney,Australia.
38. Saman A and Newman P. (2020) Plastic are the part of the zero- waste agenda or the toxic--waste agenda? Sustainable Earth, 4-4.
39. Feber D,Lingquist O and Nordgarden D. (2020) Shaping the Next Normal of Packaging Beyond COVID -19 , McKinsey & Company.
40. Feber D.Nordgarden D,Grandko G A,Gronewald F.and Lingquist O. (2021) Sustainability in Packaging:Investable Themes. McKinsey & Company.
41. Crabbe M,Lieberman G,and Mariarty S. (2020) Consumer Trends 2030, MintelReport
42. Westbrook G and Alison A. (2020) Top 10 Consumer Trends 2020, EuromonitorReport.
43. Yeung O and Johnston H. (2020) Resetting the World with Wellness:A new Vision for a Post COVID-19 future. Global Wellness Institute.
44. WBG.Climate-Smart Healthcare. (2017) Low-Carbon and Resilience Strategies for the Health Sector.Climate Smart Healthcare,World Bank Group,Washington DC,USA.
45. Ohlhoff A and Christen J. (2020) Emission Gap Report.Union Nations Environment Programme,New York, USA.
46. Brody S,Dohran N,Hoover Z,Pollack L and Pinner D. (2020) Responding to Climate Risk:Actions for US State and Local Leaders. McKinsey & Company .
47. Austin W,Carattini S, Mahecha JG and Pesko M. (2020) COVID-19 mortality and contemporaneous air pollution, Working paper 20-16, October. International Center for Public Policy,George state University-Andrew Young School of Policy,Studies.
48. Jindal S. (2020) 2030 Global Beauty and Personal Care Trends ,Mintel Report.
49. Tausova M,Mhalikova D,Culcova K,Stehlicova B,Taus P,Kudelas D and Srba I. (2019) Recycling of Communal Waste:Current State and Future Potential for Sustainable Development in EU, Sustainability, 11,2904.
50. EC. (2020) Circular Economy Action Plan for a Cleaner and more Competitive Europe.
51. EMAF. (2013) Toward the Circular Economy:Economics and Business Rationale for an Accelerated Transition , Ellen McArthur Foundation Report,London, U.K.
52. Murray A, Skene K and Haynes K. (2015) The circular economy: an interdisciplinary exploration of the concept and application in a global context,J Bus Ethics.
53. Hagemann N,Gawel E,Purkus A.,and Hauck J. (2016) Possible futures towards a Wood- based Bioeconomy:a Scenario Analysis for Germany,Sustainability,2016 Germany .Sustainability, 8:1-24.
54. D’Amato D,Drose T,Allen B,Kettunen M,Lahtinen K,Korhonen J et al. (2017) Green, Circular, Bioeconomy: A Comparative Analysis of Sustainability. J Clean Prod,168:716-734
55. Ji X, Shen Y.and Gui X. (2018) Isolation, Structures, and Bioactivities of the Polysacharides from Cynoglossum pentaphyllum Makino. A Review. Biomed Int:2685134.
56. Zhao Y,Yan B,Wang Z, and Zhao M. (2020) Natural Polysaccharides with Immunomodulatory Activities. Mini-Reviews in Medicinal Chemistry, 20(2):96-106.
57. Majeti NA and Kumar R. (2000) Areview of chitin and chitosan applications, React Funct Polym ,46(1):1-27
58. Gopi S, Thomas S, and Pius A (Eds) Chitin and Chitosan, Vol 1: (2020) Preparation and Properties, Elsevier. ISBN 978-0-12-817970-3
59. Brugnerotto J,Lizzare J,Goicoeula FM. Arguellos-Monal W, Desbrieres J and Rinaudo M. (2001) An infrared investigation in relation with chitin and chitosan Characterization, Polym er, 42(8):3569-3580
60. Aranuz I,Mengibar N,Harris R,Miralles B, Acosta N, Calderon L et al. (2014) Role of Phytochemical Properties of Chitin and Chitosan on their Functionality. Curr Chem Biol.8:27-42
61. Cidre Joao CF, Carvalho Silva J and Borges JP. Chitin-Based Nanocomposites: Biomedical Applications. (2015) In: VK Thakur and MK Thakur (Eds) Eco-friendly Polymer Nanocomposites, Springer India, pp 439-457
62. Yu Z and Lau D. (2017) Flexibility of backbone fibrils in alphachitin crystals with different degree of acetylation. Carbohydrate Polym er, 74:941-947
63. Morganti P, Careazzi F, Del Ciotto P, Morganti G, Nunziata ML, Gao X et al. Chitin Nanofibrils: (2014) A natural Multifunctional Polymer. Physicochemical Characteristics Effectiveness and Safety. In: DA Phoenix and W Ahmed (Eds) Nanobiotechnology, One Central Press, Manchester, UK, pp 1-31
64. Morganti P, Danti S, and Colletti MB. (2018) Chitin and Lignin to Produce Bio-compatible Tissues, Res Clin Dermatol, 1(1):5-11
65. Danti S, Trombi L, Fusco A, Azimia B, Lazzeri A, Morganti P et al. (2019) Chitin Nanofibrils and Nanoglin as Functional Agents in Skin Regeneration, Int J Mol Sci, 20,2669.
66. Annibaletti P, Palombo M, Moroni M, Bruno S, Palombo P, and Morganti P. (2019) Innovative non-woven tissues. In : P. Morganti (Ed) Green Bioeconomy and Biomaterialotechnology for a more Sustainable Environment , MDPI, Basel, Switzerland, pp 340-360
67. Morganti P, Annibaletti T, Pollastrini C, and Morganti G. (2019) Natural Polymers for Body Care to Save the Environment, Biomed J Sci & Tech Res, 17(1).
68. Yuddle VE, Dobrovolskaya IP, Neelov IM, Dresvyannia EN. (2014) Poppyyudukhin PV, Morganti P. Wet spinning of fibers made by chitosan and chitin Nanofibrils. Carbohydrate Polymer, 108:176-182
69. Miletic A, Ristic I, Colletti MB, and Pilic B. (2020) Modification of PLA-based Films by Graﬁng or Coating, J Funct Biomater
70. Morganti P. (2016) Use of Chitin Nanofibrils from Biomass for an Innovative Bioeconomy. In: J Ebothe and W Ahmed (Eds) Nanofabrication Using Nanomaterials. One Central Press, Birmingham, UK, pp 1-22

71. Morganti P,Fusco A,Paoletti I,Perfetto B,Del Ciotto P,Palombo P et al. (2017) Antiinflammatory, Immunomodulatory and Tissue Repair Activity on Human Keratocytes. Materials,843:0.

72. Donnarumma G,Perfetto B,Baroni A,Paoletti, Tufano MA,Palombo P,Morganti P. Biological Activity of Innovative Polymeric Nanoparticles and non-Woven Tissue. (2019) In: P.Morganti (Ed) Bionanotechnology to Save the Environment. MDPI, Basel, Switzerland, pp 421-339

73. Muzzarelli RAA,Morganti P,Morganti G,Palombo P,Palombo M,Biagini G et al (2007) Chitin Nanofibrils/chitosan Glycolate composites as wound medicaments. Carbohydr Polym, 70(3):274-284.

74. Morganti P and Morganti G. (2008) Chitin Nanofibrils for advanced cosmeceuticals

75. Clin Dermatol, 26(4):334-340; doi:10.1016/j.cldermatol.2008.01.003

76. Morganti P,Morganti G and Coltelli MB. (2019) Chitin Nanomaterials and Nanocomposites for Tissue Repair. In: Choi and B Ben/Nudsan (Eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Singapore, Springer, pp 523-544.

77. Morganti P,Morganti G and Coltelli MB. (2019) A New Carrier for Advanced Cosmeceuticals

78. Martinez-Barrera G,Gencel O, and Reis JML. (2016) Civil Engineering Applications of Polymer Composites, Int J Polym Sci.

79. Samoila P,Humelinicu AC,Ignat M,Cojocaru C,and Harabagiu V. (2020) Chitin and Chitosan for Water Purification. In : LAM Van den Broek and CG Bieriu (Eds) Chitin and Chitosan, Wiley Online, pp 429-460

80. Karrat A and Amine A. (2020) Recent Advances in chitosan-based electrochemical sensors and biosensors, Arab J Chem Environ Res. 7(2):66-93

81. Zheng J,B,He YS,Li SL and Wang YZ. (2012) Chitin wiskers: an overview Biomacromolecules, 13(1):1-11.

82. Coltelli MB,Gigante V,Cinelli P, and Lazzeri A. (2019) Flexible Food Packaging Using Polymers from Biomass. In : P.Morganti (Ed) Bionanotechnology to Save the Environment. MDPI, Basel, Switzerland, pp 272-296

83. Cinelli P,Coltelli MB,Malleggi N,Morganti P, and Lazzeri A. (2017) Degradability and Sustainability of Nanocomposites Based on Poly(lactic Acid and Chitin Nanofibrils, Chem Eng Trans. , 60:116-120.

84. Coltelli MB,Cinelli P,Gigante V,Aliotta L,Morganti P, Panariello L,Lazzeri A. (2019) Chitin Nanofibrils in Poly(Lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties, Int J Mol Sci, 20:504.

85. Morganti P,Palombo M,Fabrizi G,Guameri F, Slovacchia F, Cardillo A et al. (2013) New Insights on Antiaging activity of Chitin Nanofibril-Hyaluronic acid polymers entrapping active ingredients in vitro and in vivo study. J Appl Cosmetol, 41:1-29

86. Duval A and Lawoko M. (2014) A review on lignin-based, micro and Nano-structured materials, React Func Pol. 85:78-96

87. Crestini C,Meloni F,Sette M, and Saladino R. (2011) Mill wood lignin: a linear oligomer. Biomacromol, 12:3928-3935

88. Andersen SO. (2010) Insect cuticular sclerotic action: A review. Insect Biochem. Mol Biol, 40(3):166-177

89. Eisenman HC and Casadevall A. (2012) Synthesis and assembly of fungal melanin, Appl Microbiol Biotechnol, 93:941-940

90. Yu O and Kim KH. (2020) Lignin to Materials: A Focused Review on Recent Novel Lignin Applications, Appl Sci, 10,4426.

91. Tishchenko G,Morganti P,Stoller M,Kelmar I,Mikesova J,Kovarova J et al. (2019) Chitin Nanofibrils-Chitosan Composite Films: Characterization and Properties. In: P.Morganti (Ed) Bionanotechnology to Save the Environment, MDPI, Basel, Switzerland, pp 191-226

92. Gil-Chavez J,Gurukov P,Hu X,Meyer R,Reynolds W, and Smirnova I. (2019) Application of Novel and Thechnical Lignins in Food and Pharmaceutical Industries: Structure-Function Relationship and Current Challenges, Biomass Convers Biotenfinery, 1-17

93. Morganti P,Morganti G, and Colao C. (2019) Biofunctional Textiles for Aging Skin Biomedicines, 7,51.

94. Wieben E. (2017) Save food for a better climate, Food and Agricultural Organization of the United Nations, Rome, Italy.

95. Handertmark T,Mayer M,McNally C,Simonns TS, and Witte C. (2018) How Plastic Waste Recycling Could Transform the Chemical Industry, MacKinsey & Company Report.

96. Kenkatesan M,Dreyfuss WS, F,Nair A, Pedersen A. (2021) Marketing, Recycling and Climate Change: An Opportunity, Sustainability Climate Change, 14(1).

97. De Pee A,Pinber D,Roeotsen O,Sumers M, Speelman E, and Viitteeven M. (2018) How Industry can move toward a low-carbon future. McKinsey & Company Report.

98. Johnson N. (2020) COVID-19 to Add as Mamt as 150 Million Extreme Poverty by 2021, The World Bank Group Report, October, Washington DC, USA

99. Arora S,Bhaukhandi KD and Kumar Kisa P. (2020) Coronavirus Lockdown Helped the Environment to Bounce Back. Sci Total Environ 752:1495730.

100. Carter T and Wielw W. (2021) Coronavirus, Racial Justice, Climate Change, and Higher Education: Six Priorities to Inform the Future. Sustainability and Climate Change, 14(1):11-13

101. Callaghan S,Losch M,Pione A, and Telchner W. (2021) Feeling food: the future of the USD 1.5 trillion wellness market, McKinsey & Company Report.