On Multiple Hypothesis Testing with Rejection Option

Naira Grigoryan
IIAP NAS RA
Email: nar.gri@gmail.com

Ashot Harutyunyan
IIAP NAS RA
Email: ashot@iem.uni-due.de

Svyatoslav Voloshynovskiy
University of Geneva
Email: svolos@unige.ch

Oleksiy Koval
University of Geneva
Email: oleksiy.koval@unige.ch

Abstract—We study the problem of multiple hypothesis testing (HT) in view of a rejection option. That model of HT has many different applications. Errors in testing of M hypotheses regarding the source distribution with an option of rejecting all those hypotheses are considered. The source is discrete and arbitrarily varying (AVS). The tradeoffs among error probability exponents/reliabilities associated with false acceptance of rejection decision and false rejection of true distribution are investigated and the optimal decision strategies are outlined. The main result is specialized for discrete memoryless sources (DMS) and studied further. An interesting insight that the analysis implies is the phenomenon (comprehensible in terms of supervised/unsupervised learning) that in optimal discrimination within M hypothetical distributions one permits always lower error than in deciding to decline the set of hypotheses. Geometric interpretations of the optimal decision schemes are given for the current and known bounds in multi-HT for AVS’s.

I. INTRODUCTION

Recent impetuous progress in computer and public network infrastructure as well as in multimedia data manipulating software created an unprecedented yet often uncontrolled possibilities for multimedia content modification and redistribution over various public services and networks including Flickr and YouTube. Since in multiple cases these actions are based on multiple HT framework with a rejection option. Possible examples for binary data statistics are presented in [9] and [20]. Motivated by the prior art, we extend the problem of content identification as multiple HT with rejection to a broader class of source priors including AVS’s. Our analysis lies within the frames of the works by Hoeffding [11], Csiszár and Longo [2], Blahut [3], Haroutunian [6], Birgé [4], Fu and Shen [9], Tuncel [13], Grigoryan and Harutyunyan [20] with the aim of specifying the asymptotic bounds for error probabilities. Those papers do not treat an option of rejection. In particular, [3] characterizes the optimum relation between two error exponents in binary HT and [6] (see also [14], [18]) and [13] study the multiple ($M > 2$) HT for DMS’s in terms of logarithmically asymptotically optimality (LAO) and errors exponents achievability, respectively. Later advances in the binary and M-ary HT for a more general class of sources – AVS’s (see also its coding framework [15]), are the subjects of [9] and [20], respectively. The latter derives also Chernoff bounds for HT on AVS’s and extends the finding by Leang and Johnson [3] for DMS’s. Our work is a further extension of M-ary HT for discrete sources in terms of errors occurring with respect to an additional rejection decision. The focus is on the attainable region of error exponents which tradeoff between the false acceptance of rejection decision and false rejection of true distribution. A similar model of HT with empirically observed statistics for Markov sources has been explored by Gutman in [5]. Compared to [5] we make a new look into the compromises among error events. We still assume that the observations upon which the decision making is performed are available from the source without noise. A further expansion of this subject could restrict the decision making within corrupted source samples.

II. MODELS OF SOURCE AND HT

Let \mathcal{X} and \mathcal{S} be finite sets: the alphabet of an information source and its states, respectively. Let $P(\mathcal{X})$ be the set of all probability distributions (PD) on \mathcal{X}. The source in our focus is defined by the following family of conditional PD’s G_s^* depending on arbitrarily and not probabilistically varying source state $s \in \mathcal{S}$:

$$G^* \triangleq \{G^*_s, s \in \mathcal{S}\}$$

with $G^*_s \triangleq \{G^*(x|s), x \in \mathcal{X}\}$. An output source vector $x \triangleq (x_1, \ldots, x_N) \in \mathcal{X}^N$ will have the following probability if dictated by a state vector $s \in \mathcal{S}^N$: $G^{*N}(x|s) \triangleq G^*_s(x) \triangleq \prod_{n=1}^N G^*(x_n|s_n)$. Furthermore, the probability of a subset $A_N \subset \mathcal{X}^N$ subject to $s \in \mathcal{S}^N$ is measured by the sum $G^{*N}(A_N|s) \triangleq G^*_s(A_N) \triangleq \sum_{x \in A_N} G^*_s(x)$.

Our model of HT is determined by $M + 1$ hypotheses about the source distribution (1):

$$H_m: G^* = G_m, \quad H_R: \text{none of } H_m's \text{ is true}$$

with

$$G_m \triangleq \{G_{m,s}, s \in \mathcal{S}\},$$

where $G_{m,s} \triangleq \{G_m(x|s), x \in \mathcal{X}\}, s \in \mathcal{S}$, $m = 1 \ldots M$. Let G_m be the stochastic matrix defined by (2). Based on N observations of the stochastic matrix defined by (2). Based on N observations of the source one should make a decision in favor of one of those hypotheses. Typically it can be performed by a decision maker/detector applying a test φ_N as a partition of
\(X^N\) into \(M + 1\) disjoint subsets \(A^N_R, m = \overline{1, M}\) and \(\mathcal{A}^N_R\). If \(x \in \mathcal{A}^N_R\), then the test adopts the hypothesis \(H_m\). If \(x \notin \mathcal{A}^N_R\), the test rejects all the hypotheses \(H_m, m = \overline{1, M}\). The test design aims at achieving certain levels of errors during the process of decision making. \((M + 1)M\) different kinds of errors, denoted by \(\alpha_{m}(\varphi_N)\) and \(\alpha_{R,m}(\varphi_N), l \neq m = \overline{1, M}\), are possible. The probability of an erroneous acceptance of the hypothesis \(H_l\) when \(H_m\) was true is

\[\alpha_{l,m}(\varphi_N) \triangleq \max_{s \in \mathcal{S}^N} G^N_m(A^N_l|s), \quad 1 \leq l \neq m \leq M.\]

(3)

And the error probability of false rejection when \(H_m\) was true is defined by

\[\alpha_{R,m}(\varphi_N) \triangleq \max_{s \in \mathcal{S}^N} G^N_m(A^R_m|s), \quad m = \overline{1, M}.\]

(4)

Another type of error can be observed related to wrong decision in case of true \(H_m\) with the probability

\[\alpha_m(\varphi_N) \triangleq \max_{s \in \mathcal{S}^N} G^N_m(\mathcal{A}^N_R|s) = \sum_{l \neq m} \alpha_{l,m}(\varphi_N) + \alpha_{R,m}(\varphi_N), \quad m = \overline{1, M}.\]

(5)

So we study the following error probability exponents/reliabilities (\(\log s\) and \(\exp s\) being to the base \(2\)) by \(\alpha_m(\varphi_N)\) and \(\alpha_{R,m}(\varphi_N)\):

\[E_{l,m}(\varphi) \triangleq \limsup_{N \to \infty} -\frac{1}{N} \log \alpha_{l,m}(\varphi_N), \quad l \neq m = \overline{1, M},\]

(6)

\[E_{R,m}(\varphi) \triangleq \limsup_{N \to \infty} -\frac{1}{N} \log \alpha_{R,m}(\varphi_N), \quad m = \overline{1, M},\]

(7)

where \(\varphi \triangleq \{\varphi_N\}_{N=1}^\infty\). From \(\delta\) and \(\gamma\) it follows that

\[E_m(\varphi) = \min_{l \neq m} [E_{l,m}(\varphi), E_{R,m}(\varphi)].\]

(8)

In view of achievability concept [13] for reliabilities in \(M\)-ary HT, consider the \(M(M + 1)\)-dimensional point \(E \triangleq \{E_{R,m}, E_m\}_{m=1, M}\) with respect to the error exponents pairs

\[-\frac{1}{N} \log \alpha_{R,m}(\varphi_N), -\frac{1}{N} \log \alpha_m(\varphi_N)\],

where the decision regions \(\mathcal{A}^N_R\) \((m = \overline{1, M})\) and \(\mathcal{A}^N_m\) satisfy \(\mathcal{A}^N_R \cap \mathcal{A}^N_m = \emptyset\) for \(m \neq l, \mathcal{A}^N_R \cap \mathcal{A}^N_m = \emptyset\) and \(\bigcup_{m=1, M} \mathcal{A}^N_m = A^N / \mathcal{A}^N_R\).

Definition 1. \(E\) is called achievable if for all \(\varepsilon > 0\) there exists a decision scheme \(\{\mathcal{A}^N_R\}_{m=1, M}\) with the properties

\[-\frac{1}{N} \log \alpha_{R,m}(\varphi_N) > E_{R,m} - \varepsilon, \quad -\frac{1}{N} \log \alpha_m(\varphi_N) > E_m - \varepsilon\]

for \(N\) large enough. Let \(\mathcal{R}_{\text{AVS}}(M, R)\) denotes the set of all achievable reliabilities.

III. BASIC PROPERTIES

Here we resume some necessary material on the typical sequences [7]. Let \(\mathcal{P}(\mathcal{S}) \triangleq \{P(s), s \in \mathcal{S}\}\) be the collection of all PD’s on \(\mathcal{S}\) and let \(PG\) be a marginal PD on \(\mathcal{X}\) defined by

\[PG(x) \triangleq \sum_{s \in \mathcal{S}} P(s)G(x|s), \quad x \in \mathcal{X}.\]

The type of the vector \(s \in \mathcal{S}^N\) is the empirical PD \(P_m(s) \triangleq \frac{1}{N} N(s|s),\) where \(N(s|s)\) is the number of occurrences of \(s\) in \(s\). Let’s denote the set of all types of \(N\)-length state vectors by \(\mathcal{P}^N(\mathcal{S})\). For a pair of sequences \(x \in \mathcal{X}^N\) and \(s \in \mathcal{S}^N\) let \(N(x, s|x, s)\) be the number of occurrences of \((x, s)\) in \(\{x_n, s_n\}_{n=1}^N\). The conditional type \(G_{x,s}\) of the vector \(x\) with respect to the vector \(s\) is defined by

\[G_{x,s}(x|s) \triangleq \frac{N(x, s|x, s)}{N(s|s)}, \quad x \in \mathcal{X}, s \in \mathcal{S}.\]

(9)

The joint type of vectors \(x\) and \(s\) is the PD \(P_{x,s} = PG(x|s), s \in \mathcal{S}\). For brevity the type notations can be used without indices. Let \(G^N(\mathcal{X}|\mathcal{S})\) be the set of all conditional types \(G\) and \(G(\mathcal{X})\) be the set of all distributions defined on \(\mathcal{X}\). Denote by \(\mathcal{T}_G^N(\mathcal{X}|s)\) the set of vectors \(x\) which have the conditional type \(G\) for given \(s\) having type \(P\). Let the conditional entropy of \(G\) given type \(P\) be \(H(G|P)\). The notation \(H(Q)\) will stand for the unconditional entropy of \(Q \in \mathcal{P}(\mathcal{X})\). Denote by \(D(G || G_m|P)\) the KL divergence between \(G\) and \(G_m\) given type \(P\) and by \(D(PG || PG_m)\) the one between marginals \(PG\) and \(PG_m\). The following inequality holds for every \(G_m \in \mathcal{G}_m:\)

\[D(G || G_m|P) \geq D(PG || PG_m).\]

(10)

We need the next properties:

\[|G^N(\mathcal{X}|\mathcal{S})| \leq (N + 1)^{|\mathcal{X}||\mathcal{S}|} \ldots (11)\]

\[|G^N(\mathcal{X}|\mathcal{S})| \leq \exp\{NH(G|P)\}.\]

(12)

For a PD \(G_m \in \mathcal{G}(\mathcal{X}|\mathcal{S})\) the sequence \(x \in \mathcal{T}_G^N(\mathcal{X}|s)\) has the probability

\[G_m^N(x|s) = \exp\{-N[H(G|P) + D(G || G_m|P)]\}.\]

(13)

[12] and [13] give an estimate for conditional type class probability

\[G_m^N(\mathcal{T}_G^N(\mathcal{X}|s)|s) \geq (N + 1)^{|\mathcal{X}||\mathcal{S}|} \exp\{-ND(G || G_m|P)\},\]

(14)

\[G_m^N(\mathcal{T}_G^N(\mathcal{X}|s)|s) \leq \exp\{-ND(G || G_m|P)\}.\]

(15)

IV. REGION OF ACHIEVABLE RELIABILITIES

Introduce the following convex hulls for each \(m = \overline{1, M}\)

\[W_m \triangleq \{W_m(x) \triangleq \sum_{s \in \mathcal{S}} \lambda_s G_{m,s}(x|s)\},\]

(16)

where \(x \in \mathcal{X}, 0 \leq \lambda_s \leq 1, \sum_{s \in \mathcal{S}} \lambda_s = 1,\) and the region

\[E_{\text{AVS}}(M, R) \triangleq \{E : \forall W \ni m (m = \overline{1, M}), s. t. \min_{W_m \in W_m} D(W || W_m) > E_m \) and \(\exists W \) s. t. \(\min_{W_m \in W_m} D(W || W_m) > E_{R,m}\) for all \(m\}.\]

(17)

Our main result shows that \(\{17\}\) completely characterizes \(\mathcal{R}_{\text{AVS}}(M, R)\).

Theorem 1: \(E_{\text{AVS}}(M, R)\) is an achievable region of reliabilities \(E_{\text{AVS}}(M, R) \subset \mathcal{R}_{\text{AVS}}(M, R)\). Moreover, if \(E \in \mathcal{R}_{\text{AVS}}(M, R)\), then for any \(\delta > 0\), \(E_\delta \in E_{\text{AVS}}(M, R)\), where \(E_\delta \triangleq \{E_{R,m} - \delta, E_m - \delta\}_{m=\overline{1, M}}\).
Proof: For the direct part, if $E \in \mathcal{E}_{\text{AVS}}(M, R)$, then from (10), (12), (13) and (15) for any type $G \in \mathcal{G}_N(\mathcal{X}|\mathcal{S})$ and $s \in S_N$ with type $P_m = P$ we have

$$G_{m,s}^N(\mathcal{X}_N|s) = \sum_{x \in \mathcal{X}_N} G_{m,s}(x|s) \leq \sum_{T_m^N(\mathcal{X}|s) \subseteq \mathcal{X}_N} \exp\{-ND(G \| G_m,s|P)\} \leq |\mathcal{G}_N(\mathcal{X}|\mathcal{S})| \exp\{-ND(PG \| PG_m,s)\}. \quad (18)$$

For every $W_m \in W_m$ there exists $s \in S_N$, such that $W_m = P_mG_m,s$. Hence, from (18) and (11) we come to

$$\alpha_m(\varphi_N) \leq |\mathcal{G}_N(\mathcal{X}|\mathcal{S})| \exp\{-N \min_{W_m} D(W \| W_m)\} \leq |\mathcal{G}_N(\mathcal{X}|\mathcal{S})| \exp\{-NE_m\} \leq \exp\{-N(E_m - \delta)\}. \quad (19)$$

In the same way we could get the necessary inequality for $\alpha_{R,m}(\varphi_N)$, that is

$$\alpha_{R,m}(\varphi_N) \leq \exp\{-N(E_{R,m} - \delta)\}. \quad (20)$$

This closes the proof of the direct part.

For the converse we assume that $E \in \mathcal{R}_{\text{AVS}}(M,R)$. This provides that for every $\varepsilon > 0$ there exists a decision scheme $\{\mathcal{A}_m^N, \mathcal{A}_N^R\}_{m=1}^\infty$ that makes the following inequalities true as soon as $N > N_0(\varepsilon)$:

$$-\frac{1}{N} \log \alpha_{R,m}(\varphi_N) > E_{R,m} - \varepsilon, \quad -\frac{1}{N} \log \alpha_m(\varphi_N) > E_m - \varepsilon, \quad (21)$$

for all m’s. Pick a $\delta > 0$ and show that

$$\forall W \exists m \text{ s.t. } W_m \in W_m \text{ s.t. } \min_{W_m \in W_m} D(W \| W_m) > E_m - \delta, \quad (21)$$

$$\exists W \text{ s.t. } \min_{W_m \in W_m} D(W \| W_m) > E_{R,m} - \delta \text{ for all } m. \quad (22)$$

For that we prove the next fact. For every $W_m \in W_m$ and $\mathcal{A}_N \subseteq \mathcal{X}^N$ the inequality holds:

$$W_m^N(\mathcal{A}_N) \leq \max_{s \in S_N^N} G_m^N(\mathcal{A}_N|s). \quad (23)$$

To show (23), first note that for $W_m \in W_m$ there exists a collection of λ_s’s (by (16)) s.t. $W_m = \sum_{s \in S} \lambda_s G_m,s$. Whence, for $\lambda_s \triangleq \prod_{n=1}^N \lambda_{x^n}$ and any $\mathcal{A}_N \subseteq \mathcal{X}_N$, $x \in \mathcal{A}_N$, the following estimate implies

$$W_m^N(x) = \prod_{n=1}^N W_m(x_n) = \prod_{n=1}^N \sum_{s \in S} \lambda_s G_m(x_n|s) = \sum_{s \in S_N^N} \lambda_s \prod_{n=1}^N G_m(x_n|s_n) \leq \max_{s \in S_N^N} \prod_{n=1}^N G_m(x_n|s_n) \leq \max_{s \in S_N^N} G_m^N(x|s).$$

Therefore

$$W_m^N(\mathcal{A}_N) \leq \max_{s \in S_N^N} G_m^N(\mathcal{A}_N|s)$$

for every $W_m^N \in \mathcal{W}_m^N$ and $\mathcal{A}_N \subseteq \mathcal{X}_N$. Turning to (21), by the continuity of $D(\| W_m)$ there exists a type $Q \in \mathcal{D}_N(\mathcal{X})$ for that $N > N_1(\varepsilon)$ and a fixed m satisfies

$$D(Q \| W_m) \leq D(W \| W_m) + \delta/2. \quad (24)$$

Let $\overline{W}_m = \arg \min_{W_m \in W_m} D(Q \| W_m) > E_m - \delta/2$, then in light of (23) and (12) we have

$$\alpha_m(\varphi_N) \geq \overline{W}_m^N(\mathcal{A}_N^R) \geq \overline{W}_m^N(\mathcal{A}_N^R \cap T_Q^N(X)) = \sum_{\mathcal{A}_N^R \cap T_Q^N(X)} \exp\{-N[H(Q)]\} \geq |\mathcal{A}_N^R \cap T_Q^N(X)| \exp\{-NH(Q)\} \times \exp\{-ND(Q \| \overline{W}_m)\}.$$
However the last inequality is in conflict with (20) for $\varepsilon < \delta/4$ and $N > \max\{N_0(\varepsilon), N_1(\delta), N_2(\delta)\}$. □

V. OPTIMAL DECISION SCHEMES

Here we look for optimal decision schemes and the corresponding best error exponents in the following sense (similar to LAO test [6], [14]). Let $E_{l,m}, \ m = \overline{1, M}$, be fixed: what are the “maximum” values for $\{E'_{l,m}, E^{*}_{l,m}\}_{l \neq m = \overline{1, M}}$ such that there is no other $\{E'_{l,m}, E^{*}_{l,m}\}_{l \neq m = \overline{1, M}}$ satisfying $E'_{l,m} > E^\ast_{l,m}$ and $E'_{R,m} > E^{*}_{R,m}$ for all $l \neq m = \overline{1, M}$? Consider the following test sequence φ^* in terms of the sets

$$B_R \triangleq \{W : \min_{W_m \in W_m} D(W \mid W_m) > E_m \text{ for all } m\},$$

$$B_m \triangleq \{W : \min_{W_m \in W_m} D(W \mid W_m) < E_m\}, \ m = \overline{1, M}.$$ Define ($l \neq m = \overline{1, M}$):

$$E_{R,m}(\varphi^*) \triangleq E^*_{R,m} \triangleq \min_{W \in B_R} \min_{W_m \in W_m} D(W \mid W_m),$$

$$E_{l,m}(\varphi^*) \triangleq E^*_{l,m} \triangleq \min_{W \in B_l} \min_{W_m \in W_m} D(W \mid W_m).$$

Theorem 2: Let the following inequalities hold:

$$E^\ast_{l} < \min_m \{\min_{W_m \in W_m, W_l \in W_l} D(W_m \mid W_l)\},$$

$$E^\ast_{m} < \min_{l \neq m = \overline{1, M}} \{\min_{l = m+1, M} \min_{W_m \in W_m, W_l \in W_l} D(W_l \mid W_m)\},$$

then there exist optimal sequence of tests and the corresponding optimal vector of reliabilities are defined as in (26)–(27).

Proof: Let the decision on R or an m be made based on the partition: $D_m = \bigcup_{W \in B_m} \mathcal{T}_W^N(X), \ D_R = \bigcup_{W \in B_R} \mathcal{T}_W^N(X)$. Note that $D_m \cap D_l = \emptyset$ and $D_m \cap D_R = \emptyset, m \neq l = \overline{1, M}$.

For $W_m = \arg \min_{W_m \in W_m} D(W \mid W_m), m = \overline{1, M}$, and $\varphi \triangleq \{\varphi^*_N\}_{N=1}^\infty$ perform (applying unconditional version of $\{14\}$)

$$\alpha_{R,m}(\varphi_N) \geq \bigtriangleup_{m=1}^{M} D(R) \geq \bigtriangleup_{m=1}^{M} \bigtriangleup_{W \in B_R} \mathcal{T}_W^N(X) \geq \max_{W \in B_R} \exp\{\min_{W \in B_R} D(W \mid W_m) + o_N(1)\} = \exp\{\min_{W \in B_R} D(W \mid W_m) + o_N(1)\}.$$ In a similar way we can obtain the inequality

$$\alpha_{l,m}(\varphi_N) \geq \exp\{\min_{W_m \in W_m} D(W \mid W_m) + o_N(1)\}. \quad (28)$$

The proof of the converse inequalities

$$\alpha_{R,m}(\varphi_N) \leq \exp\{\min_{W_m \in W_m} D(W \mid W_m) + o_N(1)\},$$

$$\alpha_{l,m}(\varphi_N) \leq \exp\{\min_{W_m \in W_m} D(W \mid W_m) + o_N(1)\}, \quad (29)$$

are omitted here because of space restrictions.

Taking into account (28), (29), (30) and the continuity of the functional $D(W \mid W_m)$ we obtain that the limit $\lim_{N \to \infty} \{\sup h^{-1} \log \alpha_{R,m}(\varphi^*_N)\}$ exists and equals to $E^\ast_{l,m}$. The proof will be accomplished if we demonstrate that φ^* is optimal. Let φ^* be a test defined by the sets (D'_m, D'_R) s.t.

$$E^\ast_{l,m} > E'_{l,m} > E^\ast_{R,m} > E'_{R,m}, \ \forall m \neq 1, M.$$ It yields for N large enough that

$$\alpha_{l,m}(\varphi^*_N) < \alpha_{l,m}(\varphi^*_N), \ \alpha_{R,m}(\varphi'_N) < \alpha_{R,m}(\varphi_N).$$

Below we examine the relation between (D_m, D_R) and (D'_m, D'_R). Four cases are possible:

1) $D_m \cap D'_m = \emptyset$.
2) $D_m \subseteq D'_m$.
3) $D'_m \subseteq D_m$.
4) $D_m \cap D'_m \neq \emptyset$.

The same cases exist also for D_R and D'_R.

Consider $D_m \cap D'_m = \emptyset$ case. It follows that there exists $l \neq m$ such that $D_m \cap D'_l \neq \emptyset$. That is $\exists W$ such that $D(W \mid W_m) < E^\ast_m$, so $\mathcal{T}_W^N(X) \subset D'_l$. Compute

$$\alpha_{l,m}(\varphi'_N) = \max_{s \in \mathcal{S}_N} G_m(D'_l[s) \geq \bigtriangleup_{m=1}^{M} \mathcal{T}_W^N(X) \geq \exp\{-N[D(W \mid W_m) + o_N(1)]\} = \exp\{-N[D(W \mid W_m) + o_N(1)]\} = \exp\{-N[E^\ast_m + o_N(1)]\}.$$ Thus $E^\ast_{l,m} < E'_{l,m} = E^\ast_m$ which contradicts to (8). □

VI. GEOMETRIC INTERPRETATIONS

Fig. 1 presents a geometric interpretation for the decision scheme in Theorem 1. Relevantly, Fig. 2 and 3 illustrate the geometry of the Chernoff bounds derived in [20] for the multi-HT where the rejection is not an alternative (c.f. 17 for DMS’s). Those interpretations are comprehensible with conceptual details given in [20].

VII. RESULTS FOR DMS

With assumption of $S = 1$ we get the model of multi-HT with rejection for DMS:

$$H_m : G^* = G_m, \ H_R : \text{none of } H_m\text{'s is true},$$

with $G_m \triangleq \{G_m(x), \ x \in X\}, m = \overline{1, M}$. The problem here is to make a decision regarding the generic G^* among M alternative PD’s $G_m, m = \overline{1, M}$, and the rejection. Let

$$\mathcal{E}(M, R) \triangleq \{E : \quad \forall Q \exists m (m = \overline{1, M}), \text{ s. t.}$$

$$D(Q \mid G_m) > E_m, \text{ and } \exists Q \text{ s. t.}$$

$$D(Q \mid G_m) > E_{R,m} \text{ for all } m\}.$$ Theorem 3: Theorem 1 implies that $\mathcal{E}(M, R) \subset \mathcal{R}(M, R)$. Conversely, if $E \in \mathcal{R}(M, R)$, then for any $\delta > 0$, $E_\delta \in \mathcal{E}(M, R)$, where $E_\delta \triangleq \{E_{R,m} - \delta, E_m - \delta\}_{m=1}^{M}$.

To formulate the DMS counterpart of Theorem 2, define the sets:

\[B_R(\text{DMS}) \triangleq \{ Q : D(Q \parallel G_m) > E_m, \text{ for all } m = 1, M \}, \]

\[B_{\min}(\text{DMS}) \triangleq \{ Q : D(Q \parallel G_m) < E_m, \text{ for all } m = 1, M \}. \]

Furthermore

\[E_{R,m}^* \triangleq \min_{Q \in B_R(\text{DMS})} D(Q \parallel G_m), \quad m = 1, M, \]

\[E_{l,m}^* \triangleq \min_{Q \in B_{\min}(\text{DMS})} D(Q \parallel G_m), \quad l \neq m = 1, M. \]

Then there exist optimal tests and the corresponding optimal vector of reliabilities are defined according to (31)-(32).

According to [22] the authors claim to have obtained Theorem 4 independently.

Remark 1: It is possible to prove that

\[\min_{l=1, M, l \neq m} \left[E_{l,m}^*, E_{R,m}^* \right] = E_{R,m}^*, \quad \text{for all } m = 1, M. \]

This means that discrimination is always easier than rejection.

References

[1] W. Hoeffding, “Asymptotically optimal tests for multinomial distributions”, Ann. Math. Statist., vol. 36, pp. 369–401, 1965.

[2] I. Csiszar and G. Longo, “On the error exponent for source coding and for testing simple statistical hypotheses”, Studia Scientiarum Mathem. Hung., vol. 6, pp. 181–191, 1971.

[3] R.E. Blahut, “Hypothesis testing and information theory”, IEEE Trans. Inform. Theory, vol. IT-20, no. 4, pp. 405–417, 1974.

[4] L. Birge, “Vitesse maximaux de d´croissance des erreurs et tests optimaux associés”, Z. Wahrsch. Verw. Gebiete, vol. 55, pp. 251–173, 1981.

[5] M. Gutman, “Asymptotically optimal classification for multiple tests with empirically observed statistics”, IEEE Trans. Inform. Theory, vol. 35, no. 2, pp. 401–408, 1989.

[6] E.A. Haroutunian, “Logarithmically asymptotically optimal testing of multiple statistical hypotheses”, Problems of Control and Inform. Theory, vol. 19, no. 5-6, pp. 413–421, 1990.

[7] T.M. Cover and J.A. Thomas, Elements of Information Theory, New York, Wiley, 1991.

[8] C. Leang and D.H. Johnson, “On the asymptotics of M-hypothesis bayesian detection”, IEEE Trans. Inform. Theory, vol. 43, no. 1, pp. 280–282, 1997.

[9] F-W. Fu and S.-Y. Shen, “Hypothesis testing for arbitrarily varying source with exponential-type constraint”, IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 892–895, 1998.

[10] J. Haisma, T. Kalker, and J. Oostveen, “Robust audio hashing for content identification”, Proc. Int. Workshop Content-Based Multimedia Indexing, pp. 117–125, Brescia, Italy, Sept. 2001.

[11] F. Lefebvre and B. Macq, “Rash : RAdon Soft Hash algorithm”, Proc. EUSIPCO, Toulouse, France, Sept. 3–6, 2002.

[12] F. Willems, T. Kalker, J. Goseling, and J.P. Linnartz, “On the capacity of a biometrical identification system”, Proc. IEEE Intern. Symp. Inf. Theory, p. 82, Yokohama, Japan, June 29 – July 4, 2003.

[13] E. Tuncel, “On error exponents in hypothesis testing”, IEEE Trans. Inform. Theory, vol. 51, no. 8, pp. 2945–2950, 2005.

[14] R.F. Ahlswede and E.A. Haroutunian, “On statistical hypothesis optimal testing and identification”, Lecture Notes in Computer Science 4123, pp. 553–571, Springer Verlag, 2006.

[15] A.N. Harutyunyan and A.J. Han Vinck, “Error exponents in AVS coding”, Proc. IEEE Intern. Symp. Inform. Theory, pp. 2166–2170, Seattle, WA, July 9–14, 2006.

[16] O. Koval, S. Voloshynovskiy, F. Beekhof, and T. Pun, “Decision-theoretic consideration of robust perceptual hashing: link to practical algorithms”, WaCha2007, Saint Malo, France, June 15, 2007.

[17] M. Brandon Westover, “Asymptotic geometry of multiple hypothesis testing”, IEEE Trans. Inform. Theory, vol. 54, no. 7, pp. 3327–3329, 2008.

[18] E.A. Haroutunian, M.E. Haroutunian, and A.N. Harutyunyan, Re 1. Reliability Criteria in Information Theory and in Statistical Hypothesis Testing, FrT in Communic. and Inform. Theory, vol. 4, no 2–3, pp. 97–263, 2008.

[19] A.L. Varna, A. Swaminathan, and M. Wu, “A decision theoretic framework for analyzing hash-based content identification systems”, Proc. ACM Digital Rights Management Workshop, pp. 67–76, Oct. 27, 2008.

[20] N.M. Grigoryan and A.N. Harutyunyan, “Error exponents in multiple hypothesis testing for arbitrarily varying sources”, Proc. IEEE Workshop Inform. Theory, Dublin, Ireland, August 30 – September 3, 5 p., 2010.

[21] S. Voloshynovskiy, O. Koval, F. Beekhof, F. Farhadzadeh, and T. Holotyak, “Information-theoretical analysis of private content identification”, Proc. IEEE Workshop Inform. Theory, Dublin, Ireland, August 30 – September 3, 5 p., 2010.

[22] E. Haroutunian and P. Hakobyan, Personal communication, 2011.