ON ALMOST-EQUIDISTANT SETS - II

A. POLYANSKII

Abstract. A set in \(\mathbb{R}^d\) is called almost-equidistant if for any three distinct points in the set, some two are at unit distance apart. We proved that an almost-equidistant set \(V\) in \(\mathbb{R}^d\) has \(O(d)\) points in two cases: if the diameter of \(V\) is at most 1 or if \(V\) is a subset of \((d-1)\)-dimensional sphere of radius at most \(\sqrt{1/2 + O(d^{-2/3})}\). Also, we present a new proof of the result by Kupavskii, Mustafa and Swanepoel [9] that an almost-equidistant set in \(\mathbb{R}^d\) has \(O(d^{4/3})\) elements.

1. Introduction

A set in \(\mathbb{R}^d\) is called almost-equidistant if among any three points in the set, some two are at unit distance apart. The natural conjecture [12, Conjecture 7] claims that an almost-equidistant set in \(\mathbb{R}^d\) has \(O(d)\) points.

Using an elegant linear algebraic argument Rosenfeld [14] proved that an almost-equidistant set on a \((d-1)\)-dimensional sphere of radius \(1/\sqrt{2}\) has at most \(2d\) points. Note that the set of the vertices of two unit \((d-1)\)-simplices lying on the same \((d-1)\)-dimensional sphere of radius \(1/\sqrt{2}\) is almost-equidistant. Bezdek and Lángi [2, Theorem 1] generalized Rosenfeld’s approach and showed that an almost-equidistant set on a \((d-1)\)-dimensional sphere of radius \(<1/\sqrt{2}\) has at most \(2d + 2\) points; this bound is tight because the vertices of two unit \(d\)-simplices inscribed in the same sphere form an almost-equidistant set. Balko, Pór, Scheucher, Swanepoel and Valtr [1] showed that an almost equidistant set has \(O(d^{3/2})\) elements. This bound was improved by the author [12] to \(O(d^{13/9})\). Recently, Kupavskii, Mustafa, Swanepoel [9] further improved to \(O(d^{4/3})\). For more references we refer the interested readers to [1].

The first goal of the current article is to confirm the conjecture in two cases: for almost-equidistant sets of diameter 1 (see Section 3) and for almost-equidistant sets lying on a \((d-1)\)-dimensional sphere of radius \(\leq\sqrt{1/2 + O(d^{-2/3})}\) (see Section 4). The second aim is to give a new proof of the upper bound \(O(d^{4/3})\) for the cardinality of an almost-equidistant set in \(\mathbb{R}^d\) (see Section 5). Also, we will discuss several open problems related to almost-equidistant sets (see Section 6).

2. Preliminaries

Suppose that \(\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \subset \mathbb{R}^d\) is an almost-equidistant set. Consider the matrix

\[
\mathbf{U} := \|\mathbf{v}_i - \mathbf{v}_j\|^2 + \mathbf{I}_n - \mathbf{J}_n,
\]

where \(\mathbf{J}_n\) is the \(n\)-by-\(n\) matrix of one’s and \(\mathbf{I}_n\) is the identity matrix of size \(n\). We need two simple facts proved in [12, Corollary 4 and Lemma 5]. We join them in the following lemma.

\textbf{2010 Mathematics Subject Classification.} 51K99, 05C50, 51F99, 52C99, 05A99.

\textbf{Key words and phrases.} Equidistant sets, almost-equidistant sets, unit distance graph, diameter graph, triangle-free graph.
Lemma 1. 1) \(\text{tr}(U) = \text{tr}(U^3) = 0. \)

2) \(U \) has at most one eigenvalue > 1 and at least \(n - d - 2 \) eigenvalues equal to 1.

Suppose that \(\{v_1, \ldots, v_n\} \) is an almost-equidistant set lying on the \((d - 1)\)-dimensional sphere of radius \(\sqrt{1/(2(1 - \cos \alpha))} \) with center in the origin of \(\mathbb{R}^d \). Consider the matrix
\[
U_\alpha := 2(1 - \cos \alpha)(v_i, v_j) + (\cos \alpha - 1)I_n - \cos \alpha J_n, \tag{2}
\]
where \(0 < \alpha < \pi \) is a fixed angle.

We omit the proof of the next lemma because it is similar to the proof of Lemma 1.

Lemma 2. 1) \(\text{tr}(U_\alpha) = \text{tr}(U_\alpha^3) = 0. \)

2) \(U_\alpha \) has at most one eigenvalue < \(\cos \alpha - 1 \) and at least \(n - d - 1 \) eigenvalues equal to \(\cos \alpha - 1 \).

We will use the following lemma in next sections.

Lemma 3. Suppose that an \(n \)-by-\(n \) matrix \(W \) has \(n - k \) eigenvalues are equal to 1. Also, \(\text{tr}(W) = \text{tr}(W^3) = 0. \)

1. Assume that eigenvalues of \(W \) are \(\leq 1 \). Then \(n \leq 2k \).
2. Assume that \(W \) has eigenvalues \(\lambda > \mu_1 = \cdots = \mu_{n-k} = 1 \geq \lambda_1 \geq \cdots \geq \lambda_{k-2} \geq \lambda' \) such that \(\lambda' + \lambda \leq 0 \). Then \(n \leq 2k - 2 \).
3. Assume that all eigenvalues of \(W \) but \(\lambda \) are \(\leq 1 \). Then
\[
\lambda^3 \geq \frac{(n - k + 1)^3}{(k - 1)^2} - (n - k + 1).
\]

Proof. 1. Denote by \(\lambda_1, \ldots, \lambda_k \) eigenvalues of \(W \) that are \(< 1 \). Then
\[
\sum_{i=1}^{k} (-\lambda_i) = n - k, \quad \sum_{i=1}^{k} (-\lambda_i)^3 = n - k. \tag{3}
\]

To finish the proof, we need Lemma 1 in [2]. For the sake of completeness we provide its proof here.

Lemma 4. Let \(x_1, \ldots, x_m \) be real numbers with the property that \(x_i \geq -2 \) for \(i = 1, \ldots, m \) and \(\sum_{i=1}^{m} x_i = (m + l) \), where \(l \geq 0 \). Then
\[
\sum_{i=1}^{m} x_i^3 \geq \frac{(m + l)^3}{m^2} \geq (m + 3l).
\]

Here the equality is possible if \(x_i \) are equal and therefore, \(x_i \geq 1 \).

Proof. Consider functions \(f, g : [-2, +\infty) \rightarrow \mathbb{R} \) such that
\[
f(x) = x^3 \text{ for any } x \geq -2, \quad g(x) = \begin{cases} 3x - 2, & \text{for any } -2 \leq x \leq 1, \\ x^3, & \text{for any } 1 \leq x. \end{cases}
\]

For \(-2 \leq x \leq 1\) we have \(g(x) \leq f(x) \) because in this range \(g(x) \) has the value of a tangent line to \(f(x) \) at \(x = 1 \) and the second point of the intersection of that tangent line and \(f(x) \) is at \(x = 2 \). Further, \(g(x) \) is a convex function in the range \(-2 \leq x \leq 1\). By Jensen's inequality,
\[
\sum_{i=1}^{m} x_i^3 = \sum_{i=1}^{m} f(x_i) \geq \sum_{i=1}^{m} g(x_i) \geq mg \left(\frac{\sum_{i=1}^{m} x_i}{m} \right) = m \left(\frac{\sum_{i=1}^{m} x_i}{m} \right)^3 \geq \frac{(m + l)^3}{m^2} \geq m + 3l.
\]
The equality case we leave as an exercise.

Assume that \(n > 2k \). Introducing the notation \(l = n - 2k \) we can rewrite the first equality in (3) as:
\[
\sum_{i=1}^{k} (-\lambda_i) = k + l.
\]
Thus Lemma 4 implies that
\[
\sum_{i=1}^{k} (-\lambda_i)^3 \geq k + 3l.
\]
Finally, according to the second equality in (3)
\[
\sum_{i=1}^{k} (-\lambda_i)^3 = k + l,
\]
a contradiction.

2. Since \(\text{tr}(W) = \text{tr}(W^3) = 0 \),
\[
\sum_{i=1}^{k-2} (-\lambda_i) + (-\lambda - \lambda') = n - k, \quad \sum_{i=1}^{k-2} (-\lambda_i)^3 - \lambda^3 - (\lambda')^3 = n - k. \tag{4}
\]
Assume that \(n \geq 2k - 1 \). Introducing the notation \(l = n - 2k - 1 \) we can rewrite the first equality in (4) as:
\[
\sum_{i=1}^{k-2} (-\lambda_i) + (-\lambda - \lambda') = k - 1 + l.
\]
By Lemma 4, we obtain
\[
\sum_{i=1}^{k-2} (-\lambda)^3 + (-\lambda - \lambda')^3 \geq k - 1 + 3l. \tag{5}
\]
Moreover, if \(\lambda + \lambda' = 0 \) then (5) becomes a strict inequality (see Lemma 4). Since the second equality in (4),
\[
k - 1 + l + (-\lambda - \lambda')^3 + \lambda^3 + (\lambda')^3 \geq k - 1 + 3l.
\]
Therefore, \(-3\lambda \lambda' (\lambda + \lambda') \geq 2l\). From \(-3\lambda \lambda' (\lambda + \lambda') \leq 0\) and \(l \geq 0 \) we see \(\lambda + \lambda' = 0 \), but this implies a strict inequality in (5), a contradiction.

3. Denote by \(\lambda_1, \ldots, \lambda_{k-1} \) eigenvalues < 1. Since \(\text{tr}(W) = \text{tr}(W^3) = 0 \),
\[
\lambda + \sum_{i=1}^{k-1} \lambda_i + (n - k) = 0, \quad \lambda^3 + \sum_{i=1}^{k-1} \lambda_i^3 + (n - k) = 0.
\]
Therefore, we have
\[
\sum_{i=1}^{k-1} (-\lambda_i) = \lambda + (n - k) > (n - k + 1).
\]
By Lemma 4, we obtain
\[
\lambda^3 = \sum_{i=1}^{k-1} (-\lambda_i)^3 - (n - k) \geq \frac{(-\lambda_1 - \ldots - \lambda_{k-1})^3}{(k-1)^2} - (n - k) \geq \left(\frac{(n - k + 1)^3}{(k-1)^2} - (n - k + 1) \right).
\]
3. Almost-equidistant diameter sets

A subset of \mathbb{R}^d is called an **almost-equidistant diameter set** if it is almost-equidistant and has diameter 1. The next theorem is about the maximal size of such sets.

Theorem 5. An almost-equidistant diameter set in \mathbb{R}^d has at most $2d + 4$ points.

Proof. Suppose that the matrix U (see (1)) for an almost-equidistant diameter set $V \subseteq \mathbb{R}^d$. Clearly, the entries of U are non-positive.

Assume that U does not have an eigenvalue > 1. By Lemmas 1 and 3 (case 1), we have $|V| \leq 2d + 4$.

Assume that U has an eigenvalue $\lambda > 1$. We need the following week form of the Perron–Frobenius theorem; see [5, 11] or [15, Theorem 5.2.1].

Theorem 6 (Perron–Frobenius theorem). If an n-by-n matrix has non-negative entries, then it has a non-negative real eigenvalue, which has maximum absolute value among all eigenvalues.

By the Perron–Frobenius theorem, the matrix U has an eigenvalue $\lambda' < 0$ such that $|\lambda'| \geq \lambda$. Therefore, Lemmas 1 and 3 (case 2) imply $|V| \leq 2d + 2$. \qed

4. Almost-equidistant sets on small spheres

Theorem 7. An almost-equidistant set with vertices on a $(d - 1)$-dimensional sphere S of radius $\leq \sqrt{1/(2(1 - (32d^2)^{1/2}))} = \sqrt{1/2 + O(d^{-2/3})}$ has cardinality $O(d)$.

Proof. Assume that $\{v_1, \ldots, v_n\} \subseteq S$ is an almost-equidistant set and S has the center in the origin o of \mathbb{R}^d. Clearly, that if $|v_i - v_j| = 1$ then $\angle v_i o v_j = \alpha$, where $\cos \alpha \leq 1/(32d^2)^{1/3}$.

Consider the matrix U_{α} (see (2)) for $\{v_1, \ldots, v_n\}$. According to Lemma 2 there are two possible cases.

1. The matrix U_{α} does not have an eigenvalue $< -1 + \cos \alpha$. Then by Lemmas 2 and 3 (case 1) for $U_{\alpha}/(\cos \alpha - 1)$, we get that $n \leq 2d + 2$.

2. The matrix U_{α} has an eigenvalue $\lambda < -1 + \cos \alpha$. Suppose, contrary to our claim, $n > 6d$. Lemmas 2 and 3 (case 3) for $U_{\alpha}/(-1 + \cos \alpha)$ imply that

$$(-\lambda)^3 \geq (1 - \cos \alpha)^3 \frac{(n - d)^3}{d^2} - (n - d) \geq \frac{1}{2} \frac{(n - d)^3}{d^2} - (n - d).$$

We need Weyl’s inequality (see [16, Theorem 1] and [13, Theorem 34.2.1]).

Theorem 8 (Weyl’s inequality). Let A and B are Hermitian matrices of size n. Suppose that $\alpha_1 \leq \cdots \leq \alpha_n$ are eigenvalues of A, $\beta_1 \leq \cdots \leq \beta_n$ are eigenvalues of B, $\gamma_1 \leq \cdots \leq \gamma_n$ are eigenvalues of $A + B$. Then

$$\gamma_i \geq \alpha_j + \beta_{i-j+1} \text{ for } i \geq j \text{ and } \gamma_i \leq \alpha_j + \beta_{i-j+n} \text{ for } i \leq j.$$

In particular, $\gamma_1 \geq \alpha_1 + \beta_1$.

From (2), Weyl’s inequality and positivity of the Gram matrix $\langle v_i, v_j \rangle$ we conclude that $\lambda \geq (\cos \alpha - 1) - n \cos \alpha$. Therefore, $\lambda \geq -2 \max\{n \cos \alpha, 1\}$. This forces

$$\max\left\{\frac{n^3}{4d^2}, 8\right\} \geq (2 \max\{n \cos \alpha, 1\})^3 \geq (\lambda)^3 \geq \frac{1}{2} \frac{(n - d)^3}{d^2} - (n - d),$$

so

$$\max\left\{\frac{x^3}{2}, \frac{16}{d}\right\} \geq (x - 1)^3 - (x - 1),$$

where $x := n/d$. Clearly, the last inequality contradicts our assumption that $x \geq 6$. \qed
5. Almost-equidistant sets: general case

Theorem 9 (Kupavskii, Mustafa, Swanepoel, 2018). *The cardinality of an almost-equidistant set in \(\mathbb{R}^d \) is \(\leq 38d^{4/3} \).

Proof. Assume that there is an almost equidistant set \(V := \{v_1, \ldots, v_n\} \subset \mathbb{R}^d \) such that \(n > 38d^{4/3} \). Clearly, if the matrix \(U \) (see (1)) for \(V \) does not have eigenvalue \(> 1 \) then Lemmas 1 and 3 (case 1) imply \(n \leq 2d + 4 \). Assume that \(U \) has an eigenvalue \(\lambda > 1 \). By Lemmas 1 and 3 (case 3) for \(U \), we have

\[
\lambda^3 \geq \left(\frac{(n - d - 1)^3}{(d + 1)^2} - (n - d - 1) \right) \geq \frac{n^3}{8d^2},
\]

and so \(\lambda \geq \frac{n}{2d^{2/3}}. \) \(\underline{(6)} \)

Assume that the following inequality holds:

\[
f := \max_{i=1,\ldots,n} \left\{ \sum_{j=1}^{n} \|v_i - v_j\|^2 - 1 \right\} = \sum_{j=1}^{n} \|v_1 - v_j\|^2 - 1 \leq 19 \max \left\{ 1, \sqrt{d}, 19d^2/n \right\}. \] \(\underline{(7)} \)

Now we need to apply the Gershgorin circle theorem [6] (or [13, Problem 34.1]) for \(U \).

Theorem 10 (Gershgorin circle theorem). *Every eigenvalue of an \(n \)-by-\(n \) matrix \((a_{ij}) \) over \(\mathbb{C} \) belong to one of the disks

\[
\left\{ z \in \mathbb{C} : |a_{kk} - z| \leq \sum_{1 \leq j \leq n, j \neq k} |a_{kj}| \right\} \text{ for } k = 1, \ldots, n.
\]

From the Gershgorin circle theorem, (6) and (7) we conclude that

\[
\frac{n}{2d^{2/3}} \leq \lambda \leq f \leq 19 \max \left\{ 1, \sqrt{d}, 19d^2/n \right\},
\]

and so \(n \leq 38d^{4/3} \).

Therefore, it is enough to show that (7) holds.

Without loss of generality we can assume that \(\sum_{i=1}^{n} v_i = o \), where \(o \) is the origin. By the definition of \(f \) (see (7)) we have

\[
\left| \sum_{j=1}^{n} \|v_i - v_j\|^2 - 1 \right| \leq f \text{ or } \|v_i\|^2 + \frac{\sum_{j=1}^{n} \|v_j\|^2}{n} - 1 \leq \frac{f}{n} \text{ for } i = 1, \ldots, n.
\]

Summing up the last inequality for \(i = 1, \ldots, n \) we get

\[
\left| \sum_{i=1}^{n} \|v_i\|^2 - \frac{1}{2} \right| \leq \frac{f}{n}.
\]

Thus

\[
\left| \|v_i\|^2 - \frac{1}{2} \right| \leq \frac{2f}{n}. \] \(\underline{(8)} \)

We will use the following theorem (see [4, Theorem 1]) several times.

Theorem 11. Let \(X = \{x_1, \ldots, x_n\} \) and \(Y = \{y_1, \ldots, y_n\} \) be two point-sets in \(\mathbb{R}^d \). Then

\[
\sum_{1 \leq i, j \leq n} \|x_i - y_j\|^2 = \sum_{1 \leq i, j \leq n} \|x_i - x_j\|^2 + \sum_{1 \leq i, j \leq n} \|y_i - y_j\|^2 + n^2 \|x - y\|^2,
\]

where \(x \) and \(y \) are barycenters of \(X \) and \(Y \), respectively, that is,

\[
x = (x_1 + \cdots + x_n)/n, \quad y = (y_1 + \cdots + y_n)/n.
\]
Suppose that \(w_1, \ldots, w_k, w \in V \) are such that \(\| w - w_i \|^2 \neq 1 \). Since \(V \) is an almost-equidistant set, \(w_1, \ldots, w_k \) form a unit simplex. Hence, by Theorem 11 for \(\{ w, \ldots, w \} \) and \(\{ w_1, \ldots, w_k \} \), we have
\[
\sum_{1 \leq i \leq k} \| w - w_i \|^2 = \frac{k - 1}{2} + k\| w - o' \|^2 \leq \frac{k - 1}{2} + k(\| w \|^2 + \| o' \|^2 + 2\| w \|\| o' \|), \tag{9}
\]
where \(o' \) is the center of the simplex \(w_1 \ldots w_k \). Also, by Theorem 11 for \(\{ o, \ldots, o \} \) and \(\{ w_1, \ldots, w_k \} \), we have
\[
k\| o' \|^2 = \sum_{1 \leq i \leq k} \| w_i \|^2 - \frac{k - 1}{2} \leq \frac{2fk}{n} + \frac{k}{2} - \frac{k - 1}{2} = \frac{2fk}{n} + \frac{1}{2}. \tag{10}
\]
By (8) and (10), we obtain
\[
(9) \leq \frac{k - 1}{2} + \frac{2fk}{n} + \frac{k}{2} + \frac{2fk}{n} + \frac{1}{2} + 2k \sqrt{\frac{2f}{n + 2} \cdot \sqrt{\frac{2f}{n + 2k}}} \leq k + 9k \max \left\{ \sqrt{f/n, 1} \right\} \cdot \max \left\{ \sqrt{f/n, \sqrt{1/k}} \right\}.
\]
Likewise, we get
\[
\left| \sum_{1 \leq i \leq k} \| w - w_i \|^2 - 1 \right| \leq 9k \max \left\{ \sqrt{f/n, 1} \right\} \cdot \max \left\{ \sqrt{f/n, \sqrt{1/k}} \right\}. \tag{11}
\]
Without loss of generality we assume \(\| v_1 - v_j \|^2 > 1 \) for \(j = 2, \ldots, l+1, \| v_1 - v_j \|^2 < 1 \) for \(j = l + 2, \ldots, l + m + 1 \) and \(\| v_1 - v_j \|^2 = 1 \) for \(j = l + m + 2, \ldots, n \). Since \(V \) is an almost-equidistant set and \(\| v_1 - v_j \| \neq 1 \) for \(j = 2, \ldots, l + m + 1 \), the simplex \(v_2 \ldots v_{l + m + 1} \) is regular. Hence \(l + m \leq d + 1 \). By (7), we thus get
\[
f = 1 + \left(\sum_{j=2}^{l+1} \| v_1 - v_j \|^2 - 1 \right) - \left(\sum_{j=l+2}^{l+m+1} \| v_1 - v_j \|^2 - 1 \right). \tag{12}
\]
Also, we can assume that \(l \geq m \). There are several possible cases.

1. If \(f/n \geq 1 \) then (11) and (12) imply
\[
f \leq 1 + 9(d + 1)f/n \leq 19df/n, \quad \text{so } n \leq 19d.
\]

2. If \(1/m \leq f/n < 1 \) then (11) and (12) imply
\[
f \leq 1 + 9(d + 1)\sqrt{f/n} \leq 19 \max \{1, d\sqrt{f/n}\}, \quad \text{and so } f \leq 19 \max \{1, 19d^2/n\}.
\]

3. If \(1/l \leq f/n < 1/m \leq 1 \) or \(m = 0 \) and \(1/l \leq f/n < 1 \) then (11) and (12) imply
\[
f \leq 1 + 9l\sqrt{f/n} + 9\sqrt{m} \leq 19 \max \{1, d\sqrt{f/n}, \sqrt{d}\}, \quad \text{and so } f \leq 19 \max \left\{1, \sqrt{d}, 19d^2/n\right\}.
\]

4. If \(f/n < 1/l \) then (11) and (12) imply
\[
f \leq 1 + 9\sqrt{l} + 9\sqrt{m} \leq 19\sqrt{d}.
\]
This completes the proof. \(\square \)
6. Discussion

6.1. Almost-equidistant diameter sets. A graph \((V, E)\) is called a diameter graph if its vertex set \(V \subseteq \mathbb{R}^d\) is a set of points of diameter 1 and a pair of vertices forms an edge if they are at unit distance apart. Of course, the set of vertices of two cliques in a diameter graph is an almost-equidistant diameter set. For instance, in [10, the last paragraph of Section 3] there is given an example of diameter graph in \(\mathbb{R}^d\) consisting of two cliques without common vertices such that they have \(d + 1\) and \(\left\lfloor \frac{d+1}{2} \right\rfloor\) vertices respectively. We believe that the vertex set of this diameter graph has the maximal size among almost-equidistant diameter sets in \(\mathbb{R}^d\).

Conjecture 12. An almost-equidistant diameter set in \(\mathbb{R}^d\) has at most \(\left\lfloor \frac{3(d+1)}{2} \right\rfloor\) points.

There is the following conjecture [7, Conjecture 5.5] that arose in the context of study of cliques in diameter graphs.

Conjecture 13 (Schur). Let \(S_1\) and \(S_2\) be two unit simplices in \(\mathbb{R}^d\) forming a set of diameter 1 such that they have \(k\) and \(m\) vertices respectively. Then \(S_1\) and \(S_2\) share at least \(\min\{0, k + 2m - 2d - 2\}\) vertices for \(k \geq m\).

Clearly, this conjecture is closely related to Conjecture 12. Note that Conjecture 13 was confirmed in two special (but not trivial!) cases: for \(k = m = d\) (see [10]) and \(k = 5, m = 3, d = 4\) (see [8]).

6.2. Two-distant almost-equidistant sets. A subset of \(\mathbb{R}^d\) is called a two-distant set if there are only two distances formed by any two distinct points of the set. The following question seems to be interesting.

Problem 14. What is the largest cardinality of a set in \(\mathbb{R}^d\) that is two-distant and almost-equidistant at the same time?

Let us consider a two-distant almost-equidistant set \(V \subseteq \mathbb{R}^d\) with distances 1 and \(a > 1\) between points of \(V\) (the case \(a < 1\) is not interesting because of Theorem 5). If the matrix \(U\) (see (1)) for \(V\) does not have an eigenvalue \(> 1\) then Lemmas 1 and 3 imply \(|V| \leq 2d + 4\). Thus we can assume that \(U\) has an eigenvalue \(> 1\). Note that the matrix \(U/(a^2 - 1)\) is an adjacency matrix of some triangle-free graph. By Lemma 1, Problem 14 is reduced to following question.

Problem 15. What is the minimal rank of the matrix \(A - \lambda_2 I_n\), where \(A\) is the adjacency matrix of some triangle-free graph on \(n\) vertices and \(\lambda_2 > 0\) is its second largest eigenvalue?

It is worth pointing out that there are infinitely many triangle-free graphs on \(n\) vertices such that \(\text{rank}(A - \lambda I) = O(n^{3/4})\), where \(A\) is the adjacency matrix of the graph and \(\lambda\) is some real number; see [3, the proof of Theorem 5].

Acknowledgement

We are grateful to Zilin Jiang for bringing the Perron–Frobenius theorem to out attention. The author was supported by the Russian Foundation for Basic Research, grant № 18-31-00149 mol_a.
References

[1] M. Balko, A. Pór, M. Scheucher, K. Swanepoel, and P. Valtr, Almost-equidistant sets, 2017. arXiv:1706.06375.
[2] K. Bezdek and Z. Lángi, Almost equidistant points on S^{d-1}, Period. Math. Hungar. 39 (1999), no. 1-3, 139–144. Discrete geometry and rigidity (Budapest, 1999).
[3] B. Codenotti, P. Pudlák, and G. Resta, Some structural properties of low-rank matrices related to computational complexity, Theoretical Computer Science 235 (2000), no. 1, 89–107.
[4] M. Deza and H. Maehara, A few applications of negative-type inequalities, Graphs Combin. 10 (1994), no. 3, 255–262.
[5] F. G. Frobenius, Über matrizen aus nicht negativen elementen, Sitzungsber. Königl. Preuss. Akad. Wiss. (1912), 456–477.
[6] S. Geršgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Bulletin de l’Académie des Sciences de l’URSS 6 (1931), 749–754.
[7] G. Kalai, Some old and new problems in combinatorial geometry I: around Borsuk’s problem, Surveys in combinatorics 2015, London Math. Soc. Lecture Note Ser., vol. 424, Cambridge Univ. Press, 2015, pp. 147–174. arXiv:1505.04952.
[8] A. B. Kupavskii and A. A. Polyanskii, On simplices in diameter graphs in \mathbb{R}^4, Mathematical Notes 101 (2017), no. 1-2, 265–276.
[9] A. Kupavskii, N. H. Mustafa, and K. J. Swanepoel, Bounding the size of an almost-equidistant set in Euclidean space, Combinatorics, Probability and Computing (2018), 1–7. arXiv:1708.01590.
[10] A. B. Kupavskii and A. Polyanskii, Proof of Schur’s Conjecture in \mathbb{R}^D, Combinatorica 37 (2017), no. 6, 1181–1205. arXiv:1402.3694.
[11] O. Perron, Zur theorie der matrices, Mathematische Annalen 64 (1907), no. 2, 248–263.
[12] A. Polyanskii, Almost-equidistant sets, 2017. arXiv:1707.00295.
[13] V. V. Prasolov, Problems and theorems in linear algebra, Translations of Mathematical Monographs, vol. 134, American Mathematical Society, Providence, RI, 1994.
[14] M. Rosenfeld, Almost orthogonal lines in E^d, Applied geometry and discrete mathematics, DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, American Mathematical Society, Providence, RI, 1991, pp. 489–492.
[15] D. Serre, Matrices: Theory and applications, Graduate Texts in Mathematics, vol. 216, Springer-Verlag, New York, 2002.
[16] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479.

ALEXANDR POLYANSKII,
Moscow Institute of Physics and Technology
Institutskiy per. 9
Dolgoprudny, Russia 141700
Institute for Information Transmission Problems RAS
Bolshoy Karetny per. 19
Moscow, Russia 127994
E-mail address: alexander.polyanskii@yandex.ru
URL: http://polyanskii.com