An Authentication Based Approach for Prevention of Spectrum Sensing Data Falsification Attacks in Cognitive Radio Network

Nikhil Marriwala1 · Himanshu Punj2 · Sunita Panda3 · Inderjeet Kaur4 · Deepak Rathore5

Accepted: 4 November 2021 / Published online: 13 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
This is the era of Intelligent Cognitive Radio Network (CRN) technology that provides the available spectrum with efficient utilization. Cognitive Radio (CR) technology must promise to allow interference-free spectrum access by users. The paper discusses the several attacks and motives of attacks. The authentication mechanism role to prevent the attacks for hassle-free spectrum utilization is demonstrated. In this paper, resolving the cognitive network security issues by the authentication mechanism and the methods and need of authentication is discussed. This paper addresses the research challenges in the way of securing the CRN and countermeasures in CRN security strategies. Spectrum sensing data falsification (SSDF) attack is most disruptive in which the malicious users degrade the decision-making process by sending the false sensing reports to data fusion center's thus preventing honest users from utilizing the spectrum. In this paper, to counter the SSDF attack, the trust-based security mechanism is demonstrated to authenticate the honest users and it is observed that the proposed framework in the MATLAB environment is efficient and able to detect malicious users. CR technology is the strategy applied to the spectrum to make it efficient for wireless communication. The strategy is an intelligent way to access the spectrum as it can learn its environment and make decisions by easy adaptation of operating parameters. The initial step is to sense the spectrum available further steps are spectrum decision making, spectrum management, and spectrum mobility. The network is vulnerable to various attacks on spectrum sensing and policy protocols which lead to disturbing functionality of CR technology. The defence mechanism based on public-key cryptography is proposed in which the Primary User (PU) is authenticated by appending signature provided to PU signal. Authentication with a tag to the primary users is another perspective proposed. CRN technology should provide integrity, confidentiality and authenticity to the users.

Keywords Cognitive radio network · Spectrum sensing data falsification · Cyclo-feature detection · Radio matrix theory · Iterative state estimation · Distance ratio test · K-mean clustering

* Nikhil Marriwala
nikhilmarriwala@gmail.com

Extended author information available on the last page of the article
1 Introduction to Cognitive Radio Network

The Cognitive Radio, the term given by Joseph Mitola III in 1998 presented the concept for wireless technologies that “the related networks are sufficiently computationally intelligent about radio resources and related computer-to-computer communications to detect user communications needs as a function of user context and to provide radio resources and wireless services most appropriate to those needs”. Therefore, CR techniques are strategies that are only available for the efficient and effective use of the spectrum [1]. This strategy is a smart way to get access to the spectrum, as it can learn the environment of the classes by analyzing the series and make a decision by adjusting the operating parameters. The main task of the user of the network who wants to access the spectrum is to detect the presence of licensed users known as primary users (PUs), and if PU is absent, then to sense the RF environment to know the available spectrum. This process is important and called spectrum sensing. The goal of spectrum sensing is interference-free access to PUs by either switching to an available band or limiting its interference with PUs at an acceptable level and, second, secondary users must efficiently detect and utilizes the spectrum holes [2]. Thus, the detection performance in spectrum sensing is important to the performance of both primary and CRNs.

On average, users can first get a feel for what needs to be done before they try to get a minimum of intervention from the initial to the user. The first step is to sense the spectrum available, the next step is deciding on the range, the spectrum and range of movement. The network is primarily exposed to different types of attacks in spectrum sensing, which led to a violation of the functionality of the equipment as the mind. Spectral sensing to inform the user that the information which is provided is that the work is important for the CRN performance. As part of the process of exploration and to the average user, who is working to cognitive, to the stations in the memory location, to make sure that there is no harmful interference to the original user. CR is sometimes a very difficult period to investigate the spectrum from the sources you trust. This is because, the signals will tend to have, the effect of the shade of the decline of the multipath decay [3]. And there is the possibility for the user to repeat, as well as the reveal of the user of the original is set based on any unwanted noise or interference. These problems can be resolved by re-synchronizing the multiple of the average users work together in the spectrum of the probe. Each of the average users of the spectrum, it will serve as a sensitive terminal, from which the local spectrum sensing. While the traditional attacks in wireless networks, there is still, however, a knowledge of radio technology, it can receive a different kind of vulnerability. The enemies in an aggressive environment, try out the node-management systems to attack a single query protocol, for example, the false sense that the reporting of the results will directly affect the group’s final decision. Such an attack is known as a Spectral Probe, Data Manipulation attack. Spectrum sensing data falsification (SSDF) is an attack in which the underlying spectral sensing data is sent to the collector of the data, which affects the decision-making process. A security mechanism based on public-key cryptography, New York City, which is authenticating with the addition of the signature, gave a signal, at the New York city identification are then used to find the early adopters are the most likely. CRN’s engineering needs to look into the user’s territorial integrity, personal identity and the authenticity of the documents. The primary research is on security attacks based on the categories name, user name, and then the attack response. The studies in the literature, which shows that the result of the co-operative probing can be greatly diminished by the falsified reports of malicious nodes. The existing SSDF attack, the studies tend to look at
the presence of a fusion centre, how people interact with local measurements, and, there-
fore, the final decision about the presence or absence of the primary user.

2 Cognitive Radio Functioning

CR follows a particular approach for spectrum utilization inefficient manner. It has the abil-
ity to know the surrounding environment and recognize the useful spectrum bands with the
implementation of intelligent algorithms it detects the suitable spectrum hole appropriate
for work. It can adapt to the varying environment making the operation of the network
easier. This approach is the essential feature of CR which makes it a promising technology.
Figure 1 demonstrates the functions of CR and the features on which the CRN relies [2].

- Spectrum sensing: To sense the RF environment and be aware of the available spec-
trum.
- Spectrum management: To get the Selection of the present channels depending on their
signal strength, efficiency etc.
- Spectrum sharing: To share the licensed-band user’s spectrum bands.
- Spectrum mobility: To provide the features permitting the cognitive-radio user chang-
ing of its operational frequency.

3 Spectrum Sensing Techniques

The first task of CR is too aware of the surrounding environment by knowing the available
spectrum that can be utilized for transmission. It refers to the objective of estimating the
parameters of the radio channel, such as the characteristics of the transmission channel,
level of interference, noise level, availability of spectrum, availability of power, etc. Spec-
trum sensing is performed predominantly in the time and frequency domain. It can also be
done, however, in code and phase domains, as well as. Figure 2 below represents the vari-
ous sensing techniques there for the spectrum [4]. In the case of the transient, detection is
based on the sample distribution, and modification analysis [5].

4 Functionalities of Cognitive Radio Network

The functionalities of several layers of CRN are explored in the literature. Figure 3
describes the functionalities of important layers of the CR network.
5 Addressing Security Issues

- A number of the multiplication methods are used in such a way that the Probabilities of detection (PD)-broadcast is not to be considered as the noise of the licensed users [6]. This technology makes it possible to use a higher throughput at the expense of a small increase in the complexity of the issue. Bearing in mind that there is a trade-off, the hybrid methods can be considered to be that of the existing spectrum technology, with the PD-networks.

Finally, the spectrum sharing approaches usually focus on two types of systems: networks to share it in a different system (intra-network spectrum sharing among multiple coexisting CR networks), or online, for the parts of the series, as shown below.

- **Primary Emulation Attack**: A number of the multiplication methods are used in such a way that the PD-broadcast is not to be considered as the noise of the licensed users. This technology makes it possible to use a higher throughput at the expense of a small increase in the complexity of the issue. Bearing in mind that there is a trade-off, the hybrid methods can be considered to be that of the existing spectrum technology, with the PD-networks. Finally, the spectrum sharing approaches usually focus on two types of systems: networks to share it in a different computer system (intra-network spectrum
An Authentication Based Approach for Prevention of Spectrum Sharing among multiple coexisting CR networks), or online, for the parts of the series, as shown below.

- **Spectrum sensing data falsification attack**: It is important in the security of cognitive radio. It is a belief manipulation attack as it is caused by manipulation of parameters by malicious users degrades the decision ability of the decision centre.
- **SSDF attack**: The behaviour of the malicious user in this attack will be classified under this. This attack is studied in terms of user accuracy to repeat based on the run-up you choose. To protect the information system to ensure security, availability of information, integrity and confidentiality in terms of functionality of different levels, are the activities that are planned.
- SSDF attack affects the availability of radio networks and speed of knowledge. To measure the integrity of the principle, the level-based safety method, fur is more effective, based on evidence, which significantly reduces cooperation [6].
- The effective defence against SSDF is based on the balance between hardware cost and method of user authentication and non-denial. It will be necessary to verify the identity and territorial integrity of the system item.
- Users with supply-based schedules, increase their ability to make decisions. If security is breached, the burden on services is increasing rapidly. The detection of attacks increases the development of the structure.
- Of the cluster, the mechanism isn’t difficult to detect the malicious users in each cluster to detect reliable clusters and authenticates the user.
- The attackers’ goal is to analyze the nature of the approach, to avoid being aided by other factors, and can be easy to judge the intentions of the user.

6 **Attacks on Cognitive Radio Network**

The high demand for wireless network services has made the security factor increasingly difficult. Though vulnerable to most security threats due to the nature of CRN and its critical applications. Ensuring security is a major challenge for these networks, despite such a great advantage. Table 1 identifies different types of attacks and its effects and the different mitigation mechanisms used. Table 2 tabulates the attacks on different layers and its countermeasures.

7 **Literature Review**

Chen et.al. [2], proposed a reputation-weighted method, to combine the information is based on the sequential testing of the hypothesis that a relationship with him. The test is made up of two parts: the reputation of the maintenance, and hypothesis testing. Reputation is determined by the effect of the local-sounding statement on the final sound of a decision. Hypothesis testing is an enhanced version of the following Probability Ratio Test (SPRT)—Weighted, and the Sequential Probability Ratio Test (WSPRT). The idea of the WSPRT is the change in the likelihood of the SPRT so that the good reputation of the individual nodes is also taken into account. This system depends on the a priori knowledge of the radio, the value of the membership. It also doesn’t take into account the spatial variation of the spectrum of the sun. Please note that this is only to be used on a small surface is detected. In addition, the attack is not removed, by the end of the process, even if, the
Sr. no.	Layer	Attack and its effects	Countermeasures
1	Physical layer	Jamming affects sensing	Escape the denial of service, changing the spatial location of a legitimate user, periodic scanning and cyclostationary parameters metrics [6]
		PU emulation- affects PU detection	Cryptographic authentication, biometric techniques [7]
		Overlapping SU	game theory [8]
			Trust approach, game theory
2	Data link layer	SSDF- affects spectrum decision	User’s authentication, reliability score identification of SU’s
		Common control channel jamming	Trust node detection mechanism [8]
		Common control channel saturation	
3	Network layer	Hello flood—affects routing	Asymmetric key cryptographic approach
		Teardrop- IP datagram fragmentation	Cyclostationary parameters based routing protocols [9]
		Sinkhole-affects routing	
		Sybil -affects host addressing	
		Wormhole -effects routing	
4	Transport layer	Key depletion- data, services and protocol	Cryptographer algorithm [2]
5	Application layer	Malicious software injection-effects decisions	Game theory [6]
		Policy attacks-effects quality of services	
6	Cross-layer	Jellyfish -affects network mechanism	Detection mechanisms [6]
		Lion attack -affects transmission control protocol	
		Routing information jamming	
Table 2 Layers attacks and countermeasures

Sr. no.	Author’s name	Proposed algorithm	Security attacks	Authentication
1	Wanga et al. [5]	Physical layer network coding	Primary user emulation attack (PUEA)	A hash function can be used to evaluate the trusted sender’s list
2	Zenget al. [6]	Authentication of spectrum sensing outcomes using data collector as well as fusion scheme	Mitigation of spectrum sensing data falsification (SSDF) attacks	Evaluation of data collector
3	Bennaceur et al. [10]	mechanism based on determining cognitive trust value	Primary user emulation attack (PUEA) and SSDF attacks	User identity authentication
4	Fatemieh et al. [11]	Cross-layer confirmation scheme	Primary emulation attack fetching the cross-layer network	recognition on basis of cross-layer authentication
5	Zeng et al. [12]	Game theory scheme	Primary user emulation attack (PUEA)	A clustering scheme is introduced in each of the clusters in order to identify the needs of the user
estimation of the weight is not much. The speed to get to a steady-state is not satisfactory. Another limitation is the fact that it can be used to get a stable connection, with an average user will only have to report on a double income, in addition to the first user to report or not, but classy, get together, where the average level of the users is reporting that the measured energy of the primary user. This limit reduces to the exact solution.

Yang et al. [13], proposed a game-theoretical anti-jamming scheme and modelled the jamming and anti-jamming process as a Markov decision process. With this approach, secondary users can avoid the jamming attack launched by external attackers. Zeng et al. [6], suggested grouping the sensors that are close to the group and then use the correlation of the filter to exclude or minimize the impact of adverse events. They are stylish, with a view of the relation of the shade, and in the shadows between the adjacent sensors. A sensor of the message, which differs significantly in other communication is deemed to be suspicious and will have to be disposed of, or sanctioned by the fusion centre. However, the system only works, when you are attacking, organize at least 13 of the cluster nodes, and identifying the regions in which the attack is paramount. Kim et al. [7], proposed the reliable attack detection system is cooperative sensing via the recursive State estimation (IRIS). This approach takes into account the network topology. However, the network topology is subject to change in CRNs, so that the proposed course of action is not always promising. Li et al. [8], propose an approach that detects anomalies, and detect harmful to repeat the behaviour. They suggested that a two-way algorithm is used to determine the distance to your neighbours are still far away from the user, which is by far and away the most the average user, date, amount of space. However, their approach assumes that the Np, which means that the majority of nodes are honest. In addition, he suggests that if history repeats, the user is very close to that of the story of the other, and his behaviour is normal. This is likely to determine the normal of the spatial correlation of attack, therefore, it may not be the one that could be applied in CRNs story of the various miles is not too close to each other. Wang et al. [9], An algorithm has been proposed for the detection of malicious users, who expect the suspicion of the average level of the users, based on their previous reports. However, enough of an attack, the damage to property (IV), after an attack, the reports of the absence of a primary user, and they don’t exist, and perhaps in the right way, otherwise, the effect of the attack. They don’t just identify the false alarms of attacks, and the attacks, the identification of false alarms and misses. An attack against a false positive outcome is the same as the exploit attack (EA), after an attack on information about the presence of the greatest of the user when not in use. However, the false-alarm and miss detection of attacks is a combination of EA and BF. If you do accept a power of the detection threshold, the report of an attack on a lower energy level; otherwise, it indicates that the higher the energy level is not present. While this is still a primary user, the attack may not create false alarms, increase the detection report. The false-alarm and miss-detection scenarios should be analyzed in two different cases. Kaligineedi et al. [14], proposed to offer a simple, detection system for primary filtration of the extreme values in order to query the data. The use of a medium of the constraint system, to simplify the decision-making process, and in the centre of a community. However, it has only a limited capacity to detect, and only in an extreme adverse report, the indicator light may be on for this period of time, always has been, the user, and is not always an identified customer. As an extension to this approach, once again, to be examined by the external factors and suggests a different kind of approaches in order to improve the detection of malicious code on it. They also suggested that the use of the number of observations in the immediate neighbourhood, to further improve the detection rate. If the user’s spatial information is available in the transfer centre, there are the outliers, the coefficient may be, for each node, based on the results of the
energy detector, and its nearest neighbour in space. It can detect the malicious user is able to manipulate the distribution and the density of the cognitive radio. Xiea and Wanga [14], proposed a PUE identification system for CRNs based on physical layer network coding. The analysis showed that the gap between the starting points of interference between the two receivers is limited by the senders’ positions. Using a trustworthy node as the reference sender multiple hyperbolas on which the interested sender resides are calculated. SDR is implemented and a trial of the system is done in actual network surrounding is presented [15]. Sakran et al. [16], the proposed protected in style the selection of schools, who choose a trusted, decoding, and direct style to help the Hustle, and the highest attainable standard of integrity, level, limit, are subject to the PU interference of the power of the number of parties, and the PUs, when the information is in the channel, with the limited CRNs security. Yan et al. [17], discuss a series of attacks over the distribution of information, the lack of access to common sense. They provide a sense of security, which is still being distributed, as the hash-based data. These controls may not be used in a dynamic network, in which the discovery of the history of the various miles is not too close to each other. Gopinathan et al. [12], focused on the guarantee of truthfulness through bid independent prices. However, most of them do not provide a security guarantee for the spectrum auctions. This scheme provides security to the users with the verification of their identity. Fatemieh et al. [11], identified the measurement of an equal split in the square, the mobile areas, as well as confirm that, as between the adjacent rushing it like it is, in the hierarchical structure of certain cells, with a significant lot of malicious nodes. Single-cell compared to the reports, it can be compared to as a couple. Only in the run-up to the acceptance or receipt is to have a node is moved, which is determined by the Sprinkling, and is excluded from further calculations. A balanced strategy is presented for those who have been appointed by the central government as the deviants. They are given a low and high point. On average, the value of the cell discharge is considered to be very low, as compared to its competitors, as mentioned, is a low-VF, a high-top. After the detection of outliers, and the average weight of the nodes is up to date. This work provides a basis for taking into account the uncertainty that it brings. However, it is assumed that legitimate and malicious websites are mobilizing together. When a malicious website interacts in order to modify the distribution system, the system will be compromised. Chari et al. [18], demonstrated an efficient authentication protocol to upgrade the security of the CRN. The strategy for recognizing the Primary Emulation Attacks in a CRN using a cross-layer approached and an authentication scheme to detect PUEA has been presented. It is identified that the physical layer authentication method can serve as a faster authentication method but with low accuracy in detection and a cryptography-based authentication protocol can serve as a slower authentication method but with high detection accuracy. Subbulakshmi et al. [19], demonstration of a non-parametric multivariate method, the fastest, the detection of a radio receiver, the measure of energy and cyclostationary properties. The proposed method can be used to trace the dynamics of the state of the communication channels. This feature can be useful for dynamic spectrum sharing (DHS), and the future of the system, because it is, in practice, the centralized channel, the synchronization is real, and the first information on the channel statistics are usually difficult to access. It is referred to as a multivariate non-parametric average of the sampling, the power of a cyclostationary system to enable more rapid detection, is proposed, with a higher level of performance compared to traditional systems. Pei et al. [20], demonstrated the requirement that is the required features in order to work in a mobile Ad hoc network (MANET) environment, as well as detection and response mechanism, should be set up. In operation, each node has an independent agent of the ID detection and response. The identification is carried out in response to the detection.
that have not been authenticated, or the network. In this scheme, every node in the local planning system. Each system can work independently and with others, and retain the information. This information will apply to notices of alleged copyright and the security of information that is being discovered as a result of co-operation with other organizations.
Pietro et al. [21], presented an anti-jamming technology that is defined on delay in time broadcast scheme which opens up a new area for CRN security. With the help of this mechanism, envious malicious users are eliminated who are accessing the spectrum opportunities through misconduct. Mirza et al. [22], presented the trust-based observations of the Access control mechanism (TEAM). It offers a full-featured and distributed access control mechanism, which is based on the trust model, safety, security, and cooperation in a network location. This segment of access control and the management of the process into two parts: the local and the global. The mission of the local context is to check global information about distrustful behaviour. Jarawaheh et al. [23], presented the reputation-based representations of the shared spectrum sensing scheme for ad hoc CRN. The system can reliably protect the secondary users and decide on an SSDF attack. The device is designed for scenarios in which the IP is not in scope when compared with those of the CRNs of a network. Khan et al. [24], presented a survey on Wireless Sensor Networks (WSNs) and elaborated on the next generation of WSNs, utilizing the advantages of CR technology for identifying and accessing the free spectrum bands. For the successful adoption of CWSNs, they have to be trustworthy and secure. The area of security and privacy was explored. Gul et al. [25], presented an approach to countermeasure with PUEA attack in CRN. The author demonstrated that in the absence of Primary Users (PU), the attackers mimic PUs’ signals characteristics to fool legitimate Secondary Users (SU) that evacuate the channel for them. Localization and encryption are the best approaches in this area. The author proposed the method based on game theory without using any complex calculation and second methods (RSS, GPS and so on), PUEA can be detected. This method is especially proposed for MANET and can be used in any circumstance of CRNs (ad-hoc, centralized, distributed). Bennaceur et al. [10], proposed the authentication mechanism of primary users in CRN to avoid primary user emulation attack (PUEA) and also for efficient utilization of spectrum. The authentication of PU has to be done at the physical layer only because SU and PU may not use the same protocol above the physical layer. And also, location-based authentication protocols are not suitable for mobile primary users. Clement [26], demonstrated the challenges in defending attacks in cognitive wireless networks. The author focused on addressing the attackers. A novel management mechanism SMTD is proposed which is based on trust and penalty to deal with security problems in CRNs. Morales et al. [27], provided a novel effective algorithm using the kernel KMC (k-means clustering) method to be answerable for attacker detection, which not only improves the attacker detection performance but also offers processing and memory savings.

8 Research Gaps and Challenges

- The authentication of users is needed to be effectively achieved using the machine learning concept and maintaining the database of honest and regular users.
- The behaviour analysis of the users needed to be tracked to build up a better defence mechanism against falsification attacks.
- Authentication ID allotment mechanism can be optimized for minimizing the delays in spectrum allocation to the needed users.
9 Problem Formulation

The inability to make use of a free of charge CRN channel is a major concern in such networks, the challenge of the spectrum for which the researchers had to find a solution. There are a large number of studies in the literature, which effectively solve the existing problems together. On the contrary, some of the critical questions remain open in the other. This research is in addresses the conditions of its existence, causes the CRN to lose the ability to make use of the other channels that are available on the CRN. Figure 4 represents the proposed system block diagram.

10 Methodology Used

The methodology of the proposed work is based on the aim of the mitigation of the SSDF attack with the authentication mechanism of secondary users. The aim is to make secure access to the spectrum and good decision making in the process of spectrum allocation. The rule is to check the trust of the users that want the spectrum by checking the conditions and behaviours of individual users and based on the detection makes the decision. The authentication is like a key strategy to access the spectrum lock and the key is provided based on the user’s performance in the authentication process.

The user’s authentication approach is followed by a two-stage verification process and providing the trust value to the users as a certificate of authenticity. The authentication algorithm is applied and based on the allotted trust value the malicious users are sorted from the hub and spectrum is granted to the honest secondary users. The energy and location of each user node are optimized and the reliability of search is increased. The optimization module helps in the stabilization of the network.

The defence is based on the trustworthiness of the users and allocation of spectrum done on the decision making of fusion centres. The database is maintained at each level which keeps track of the past and present work of the system.

The methodology adopted to develop the proposed system includes the following steps. The module wise steps are categorized and evaluated as described:

i. The primary user transmitted energy is detected.
ii. The secondary users present in the network are allowed to senses the spectrum.
iii. The secondary users generate their sensing reports.
iv. The accessing of the spectrum is checked periodically.
v. The users send the sensing report to the decision centre
vi. The spectrum sensing mechanism is optimized to improve performance and reduce randomness.
vii. The users are authenticated with the help of the verification process and allotted with the trust value.

Fig. 4 Proposed system block diagram
viii. Trust evaluation is conducted for spectrum accessing for the users and malicious users are hence searched with the algorithm based on the location.

ix. The geo-location database is updated with the time stamp.

x. Previous honest users are prioritized with knowledge-based.

xi. The database is updated and the authentication mechanism utilizes the database.

xii. The database-based report gets analyzed.

xiii. Authenticated ID is allocated to honest users for easy future use.

xiv. The spectrum information is displayed periodically and on-demand.

The flowchart showing the working procedure of the model is shown in Fig. 5.

This section gives the details of the simulations carried out in MATLAB 2019b for implementation of the proposed model of authentication mechanism to mitigate the SSDF attacks. The simulation parameters and simulation mechanism are demonstrated with simulation in MATLAB software. Let us assume that all secondary users are area oriented and able to communicate w.r.t the cyclostationary features. The location of SU’s is stored at the base station database. The transmission range of primary users and the secondary users in that range are permitted to sense the radio spectrum. The energy-based approach is utilized for RF sensing and detecting the presence of the Primary user in the proposed model. The SU’s that want the allocation of spectrum firstly sense the spectrum in the particular period.
and give its sensing report to the fusion centre. The sensing reports are submitted at fusion centres by the secondary users. The fusion centre makes a global decision based on the combination of local sensing decisions. Here, some SUs are malicious secondary users that intentionally send false sensing information to fusion centres to change global decisions.

The authentication algorithm is applied and based on the allotted trust value the malicious users are sorted from the hub and spectrum is granted to the honest secondary users. The energy and location of each user node are optimized and the reliability of search is increased. The optimization module helps in the stabilization of the network.

11 Simulation

We consider randomly distributed users with primary users and secondary users. This random environment is created with Gaussian or Poisson’s distribution [5]. The locations of the users are loaded in the database. The MATLAB simulation of PUs and SUs, with different distributions, is done. The primary user is detected with energy-sensing. The SU’s that want the allocation of spectrum firstly sense the spectrum in the particular period and give its sensing report to the fusion centre.

The secondary users are randomly distributed and the performance of the simulated scenario is evaluated with the probability of both the positive alarm as right access by users and negative false alarm as the wrong approach of users. The sensing reports are submitted at fusion centres by the secondary users. The implementation is done and evaluated in a controlled environment. Table 3 below shows the considered simulation parameters.

Every user is allowed to sense the spectrum and generate the sensing report. The energy of the primary transmitter is detected by the secondary users. The information given to the fusion centre where the threshold is compared of each user forms the basis for the fusion centre to process the decision. Here, the energy detection technique finds the spectrum holes on basis of the energy sensed at the receiver. The secondary users are randomly distributed and the performance of the simulated scenario is evaluated with the probability of both the positive alarm as right access by users and negative false alarm as the wrong approach of users. All secondary users need to sense the energy level for specific time duration. Let ‘t’ be the spectrum sensing duration. Figure 6 represents the scenario of simulation of the attack.

Let the secondary users nodes distributed in the region that want the spectrum access is represented as $N = \{n_1, n_2, n_3 \ldots n_i\}$, where $i = 1, 2 \ldots, n$ \hfill (1)

Let transmitted power of the Primary user is represented as in 2,

Table 3	Simulation parameters	
Sr. no.	Parameter	Value
1	Area of field	100*100
2	No. of primary users (PU)	2
3	No. of secondary users (PU)	N
4	Simulation time	t sec
Each user senses the spectrum and the information sent to the fusion centre represented as with Eq. 3 below,

\[P = \{P_1, P_2, P_3 \ldots P_i\}, \quad \text{where } i = 1, 2 \ldots, n \]

The fusion centre makes a global decision based on the combination of local sensing decisions. Here, some SUs are malicious secondary users that intentionally send false sensing information to the fusion centre to change global decisions.

During the instance of attacks, the CRN users as sense the spectrum with primary user transmitter power as represented with Eq. 5 below,

\[P_i, n = Pt + 10a \log (d0d1, n) + ci, n + wi, n \quad \text{where, } i= 1, 2 \ldots, Nn = 1, 2, \ldots, Nc \]

The \(c \), represents the change made by the CRN user during receiving of the power and in the case of honest users it does not change and in the case of a malicious user, it is equal to the false value as the change added by the malicious user intentionally.

12 Spectrum Sensing Module

Every user is allowed to sense the spectrum and generate the sensing report. The energy of the primary transmitter is detected by the secondary users. The information given to the fusion centre where the threshold is compared of each user forms the basis for the fusion centre to process the decision. Here, the energy detection technique finds the spectrum holes on basis of the energy sensed at the receiver. The secondary users are randomly distributed and the performance of the simulated scenario is evaluated with the probability of both the positive alarm as right access by users and negative false alarm as the wrong approach of users. All secondary users need to sense the energy level for a specific time duration. Let ‘\(t \)’ be the spectrum sensing duration. Figure 7 shows the energy detected by the primary transmitter.

![Fig. 6 A scenario of simulation of attack [1]](image-url)
Let $S_i(n)$ represents the ith signal sensed by the secondary user n and $w_i(n)$ is Gaussian noise with mean 0 and variance σ_2 and α_i is the gain and is represented by Eqs. 5 and 6 below:

\begin{align}
H_0 | S_i(n) & = w_i(n) \text{ where, } i = 1, 2 \ldots, n : \text{when PU is absent} \\
H_1 | S_i(n) & = \alpha_i S_i(n) + w_i(n) \text{ where, } i = 1, 2 \ldots, n : \text{when PU is present}
\end{align}

The secondary users are allowed to sense the spectrum and generate the sensing report. The energy of the primary transmitter is detected by the secondary users. The information given to the fusion centre where the threshold is compared of each user forms the basis for the fusion centre to process the decision. The sensing report is then sent to the fusion centre and this information is based on the various parameters that are time to time compared with the predefined thresholds. If the group of secondary users sends the information passed the threshold test, the reliability of the users is considered to be good.

The sensing time is very important and considered carefully for increments. The sensing is affected by an increase in malicious users attacks because with an increase in malicious users the falser decision sends to the fusion centre. The detection time needs to be analyzed as an important characteristic. Figure 8 below shows the false alarm probability versus missed detection. Based on their statistical distributions, we examine how likely false alarms and false negatives would happen. When transmissions are done the database is updated again in the appropriate trust value table based on current observations with timestamp information. SUs is allowed to communicate their observations amongst each other. The database is maintained and helps in updating the sensing report. The pre-defined threshold comparison is performed while updating automatically the trust values that help in the search of malicious users.

For the evaluation of detection performance, the probabilities of detection P_d and false-alarm.
For the evaluation of detection performance, the probabilities of detection P_d and false-alarm P_f are defined in Eqs. 7 and 8 below:

$$P_d = (dP > a|H1), \quad PFa = (dP > a|H0)$$

$$P_f = 1 - P_d = P(dP (a|H1))$$

In the SSDF attack, the attacker makes the high global false alarm probability to enlarge the output. The fusion centre apply several rules to make a good global decision and it is done within a specific time frame as the binary numbers are used so rules based on logical operations are utilized such as OR, etc. operations. As the sensing information is considered as the binary value so it is vulnerable and affected with attack easily and SSDF attack is done with false sensing submission of the report and thus affecting the final decision of the fusion centre. As a result, the wrong decision is made so careful majority rule strategies are suitable for it. The trust value of the malicious user’s calculation helps in the detection of SSDF attackers and the strategies are observed on basis of this value. They generate false high values so that the authentication is implied to check it.

The fusion centre has the information of users and comparison its analysis finds the malicious users and Step by step the users are checked periodically and the process is continuous and periodic in nature. The sensing report is prepared with the measurement of the received power of the primary transmitter. The value of power changes with the absence or presence of the PU.

13 Spectrum Optimization Module

Spectrum sensing is optimized to improve the performance of the proposed model. The location of SU’s is stored at the base station database. The transmission range of the primary user and the secondary users in that range are permitted to sense the radio spectrum.
The energy-based approach is utilized for RF sensing and detecting the presence of the Primary user in the proposed model. The SU’s that want the allocation of spectrum firstly sense the spectrum in the particular period and give its sensing report to the fusion centre. The sensing reports are submitted at the fusion centre by the secondary users.

Let us assume that all secondary users are area oriented and able to communicate on basis of the cyclostationary features. The location of SU’s is stored at the base station database. The parameters are updated periodically. The transmission range of the primary user and the secondary users in that range are permitted to sense the radio spectrum. The energy-based approach is utilized for RF sensing and detecting the presence of the Primary user in the proposed model. The authentication algorithm is applied and based on the allotted trust value the malicious users are sorted from the hub and spectrum is granted to the honest secondary users. The energy and location of each user node are optimized and the reliability of search is increased. The optimization module helps in the stabilization of the network. For optimization of the sensing module, an algorithm is applied after the sensing so that make the sensing is made more focused and reliable. The randomness can be avoided efficiently with optimization mechanisms and sensing reports are made more precise. The energy and location of each user node are optimized and the reliability of search is increased. The optimization module helps in the stabilization of the network. Figure 9 represents the spectrum sensing optimization.

14 Authentication Module

Authentication: The authenticated mechanism is meant to prevent malicious users’ spectrum assessment with the identification of honest users. The user nodes are analyzed sequentially and periodically and nodes that fail to authenticate are rejected from the

![Fig. 9 Showing spectrum sensing optimization](image)
network. The goal of the authentication of the user is to assure secure access to the primary user spectrum and helps in the mitigation of SSDF attacks. Authentication is an essential requirement of CRNs. The authentication algorithm is applied and based on the allotted trust value the malicious users are sorted from the hub and spectrum is granted to the honest secondary users.

The authentication algorithm is implemented based on the generated trust value and the malicious users are sorted from the group of users and the spectrum is granted to the honest secondary users. The energy and location of each user node are optimized and the reliability of search is increased. The main aim of authentication is to verify the authority gain of the users.

Online authentication based on login access is a good way to implement the authentication mechanism. Secondary user accesses the login. The password is allowed to give to regular secondary users and for a new user, the login access is created with their identity verification. The database is accessed and on behalf of authentication, a trust value is generated. The session key is allotted to the user and after the second stage verification decision centre will allot the spectrum. A trust mechanism is implemented to process all the necessary steps and updating of the trust value of the respective secondary user. The authentication module here is based on database correlation of users identities based on verification. This verification is sent to the fusion centre and helps in the improvement of decision making done with computation of trust value.

14.1 User Identification

The database of regular secondary users is saved with passwords in tables and new users need to authenticate. The authentication algorithm solves this purpose. This first stage of verification generates the first trust value which is sending to the decision centre.

The authenticated mechanism is meant to prevent malicious users’ spectrum assessment with the identification of honest users.

- The user nodes are analyzed sequentially and periodically and nodes that fail to authenticate are rejected from the network.
- The database of each session is maintained and updated periodically. The database is maintained in excel and can be accessed and analyzed easily for future use as well.
- Online authentication based on login access is a good way to implement the authentication mechanism. Secondary users access the login. The password is allowed to give to regular secondary users and for a new user, the login access is created with their identity verification. The database is accessed and on behalf of authentication, a trust value is generated. Figure 10 shows the GUI seen by the user while authentication.

Fig. 10 Authentication login
• The login is based on password access.
• The session key is allotted to the user and after the second stage verification decision centre will allot the spectrum. The honest secondary users only pass the authentication process efficiently.
• In MATLAB the database is stored in.mat format and during the algorithm application, it is accessed and updated automatically.
• The newly updated database is made to store automatically from time to time based on sensing time. The confidential strategies are applied to save the data from malicious intents.

14.2 Search Algorithm

The search algorithm is implemented for the second step of verification. The attack is simulated probably and with the algorithm, the honest users are detected on basis of the identification and appropriate location updated in the database.

The search algorithm is based on the location features and a second trust value is generated on the user’s node that is found as honest users with the algorithm. Figure 11 shows the algorithm search for honest users.

In the first stage of authentication, the primary user information is stored in the database and the secondary users with an honest approach are only permitted to access the primary user band and the database generated trust values from time to time while login access protects from the malicious users for the first value.

In the second stage of authentication, the users authenticated in the first stage and also have valid trust value in search algorithm that is based on cyclostationary parameters evaluation are combined. The trust value is generated before the sending of the sensing report to the fusion centre and the primary user also can access the trust value.

The followed algorithm for trust key generation is as follows:

\textit{Step 1} The input given for the key generation.

\textit{Step 2} Select the random numbers.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig.11.png}
\caption{Showing search of honest users}
\end{figure}
Step 3 Calculate the final values T_1 and T_2 AND (U).

If the value is invalid the user is not allowed to access the spectrum. In this way, the security aspects are implemented with MATLAB 2019b.

The valid trust value comes from a two-stage verification process and comparison with threshold trust value at every stage is done that leads to better authentication of the user.

Further, the detection of honest secondary users is shown in Fig. 12. as marked in green colour circles and the location of the user is saved automatically in the database. The display module represents the honest and malicious user with the encirclements as done with graphics in the algorithm of searching as represented by Eqs. 9, 10 and 11.

\[
T_1 = \{ t_1, t_2, t_3 \ldots t_i \} \quad (9)
\]

\[
T_2 = \{ t_1, t_2, t_3 \ldots t_i \} \quad (10)
\]

\[
T = \{ T_1 \cup T_2 \} \quad (11)
\]

Decision making: Efficient decision making is the main goal to achieve by a fusion centre that follows the following steps:

- The Fusion centre will have a trust value for each user and after comparison with the trust threshold value, the spectrum allocation is approved ($T > Th$) where Th, is the threshold trust value.
- The decision-making process of the fusion centre to allocate the spectrum is based on the trust value. The location and values related to users are stored and maintained in the database.
- When transmissions are done the database is updated again in the appropriate trust value table on the basis of current observations with timestamp information. SUs are allowed to communicate their observations amongst each other which helps in updating the sensing report.
- The predefined threshold comparison is performed while updating automatically the trust values that help in the search of malicious users.

Fig. 12 Authentications of honest users with encirclement
The location information is important in authentication and saving it in the database helps to make an efficient framework for authentication.

An honest SU can access the spectrum and utilize it for data transmission when the fusion centre permits it and schedule the transmission with the assignment of the session key.

The trust calculation is done to make a decision and allot the spectrum to provide the session key that is randomly generated only after the user authentication and sorting out the malicious users from the queue.

The fusion centre provides the identity authentication consisting of Identity, time, free channels etc.

The trust is the basis of the trustworthiness of the users and always the updated value of the particular sensing time is considered. The mechanism is well versed does not need any information regarding the surroundings and is not affected by malicious identities of surroundings.

The fusion centre rejects the malicious user reports itself and other honest users don’t need to bother it.

The authentication mechanism to mitigate the SSDF attack based on the two-stage verification of the users is achieved. The performance of the model is improved with an optimization algorithm.

The identification and mitigation of attacks in an effective way is important for the establishment of a secure strategy for CRNs. Moreover, the security is essential for efficient functionality of the network as well as for an implemented framework optimization of the spectrum sensing mechanism and malicious users sorting efficiently on the basis of trust value predictions done in two verification stages. The honest users are authenticated with the implementation of user’s identification and identification login is allotted to the honest users. The database of honest users is maintained and honest users are able to access the spectrum on basis of it. The database can be utilized effectively in excel for analyzing the network actively and report generation. The display module is effectively able to show honest users and malicious users. The optimization technique utilized as the second stage of the spectrum sensing can verify the decision and make it more efficient with spectrum mechanisms. The authentication mechanism can mitigate the SSDF attacks effectively and in less time and effort with good strategy. The various scenarios of the attack strategies are considered and a predefined threshold is utilized for comparison and decision rules implementation. Table 4 presents the feature comparison of the proposed technique with other existing techniques.

15 Conclusion

A trust-based authentication mechanism for the security of the network from an SSDF attack has been proposed in this paper. The proposed model is implemented and simulated using MATLAB 2019b and supports the context privacy of honest users. The research proposes to mitigate the spectrum sensing data falsification attack in CRNs. The authentication mechanism to mitigate the SSDF attack based on the two-stage verification of the users is achieved. The performance of the model is improved with an optimization algorithm. The identification and mitigation of attacks in a proper way is the necessity for the establishment of a secure system for CRNs. The implemented framework is able to optimize the
Table 4 Feature comparison of the proposed technique

Sr. no.	Author’s name	Proposed algorithm	Complexity	Reliability	Security issues	Privacy issue
1	Wanga et al. [5]	Physical layer network coding	Low	Medium	Low	Unlink ability, user anonymity
2	Zenget al. [6]	Authentication of spectrum sensing outcomes using data collector as well as fusion scheme	Low	Medium	Low	User Anonymity
3	Bennaceur et al. [10]	Mechanism based on determining cognitive trust value	Medium	Medium	Medium	Context Privacy, unlink ability
4	Fatemieh et al. [11]	Cross-layer confirmation scheme	High	Medium	Medium	Unlink ability, conditional traceability
5	Zeng et al. [12]	Game theory scheme	Medium	High	High	User anonymity, conditional traceability
6	Marriwala et al.	Authentication based approach for prevention of spectrum sensing data falsification attacks	Very Low	VeryHigh	High	Context Privacy, unlink ability, user anonymity, conditional traceability
An Authentication Based Approach for Prevention of Spectrum Sensing Mechanism and able to reject malicious users efficiently based on trust value predictions done in two verification stages. The honest users are authenticated with the implementation of user’s identification and identification login is allotted to the honest users. The database of honest users is maintained and honest users are able to access the spectrum on basis of it. The database can be utilized effectively in excel for analyzing the network actively and report generation. The display module is effectively able to show honest users and malicious users. The optimization technique utilized as the second stage of the spectrum sensing can verify the decision and make it more efficient with spectrum mechanisms. The authentication mechanism is able to mitigate the SSDF attacks effectively and in less time and effort with good strategy. The various scenarios of the attack strategies are considered and a predefined threshold is utilized for comparison and decision rules implementation. The malicious users are successfully detected and eliminated from the region. The fusion centre allots the spectrum band to the honest users correctly. The users need to show their authenticity to use the spectrum and after that use the spectrum without any interference and do their data transmission safely. The security of the users is improved with this approach and future use of the spectrum will be also eased. The two-stage verification and allotment of trust value differentiate efficiently the malicious users from the honest users and the performance of the network is improved.

Funding Funding information is not applicable as no funding was received. No funds, grants, or other support was received.

Data availability Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest There are no Conflicts of interest/Competing interests in this paper. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

References

1. Salahdine, F., & Kaabouch, N. (2020). Security threats, detection, and countermeasures for physical layer in cognitive radio networks: A survey. Physical Communication, 39, 101001. https://doi.org/10.1016/j.phycom.2020.101001
2. Sun, Z., Xu, Z., Hammad, M. Z., Ning, X., Wang, Q., & Guo, L. (2019). Defending against massive SSDF attacks from a novel perspective of honest secondary users. IEEE Communications Letters, 23(10), 1696–1699. https://doi.org/10.1109/LCOMM.2019.2931974
3. Marriwala, N., Sahu, O. P., & Vohra, A. (2016). Novel design of a low cost flexible transceiver based on multistate digitally modulated signals using Wi-Fi protocol for software defined radio. Wireless Personal Communications, 87(4), 1265–1284. https://doi.org/10.1007/s11277-015-3052-4
4. Sharifi, A. A. (2019). Attack-aware defense strategy: A robust cooperative spectrum sensing in cognitive radio sensor networks. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(11), 133–140. https://doi.org/10.1007/s40998-018-0133-x
5. Yu, H., Liu, S., Kot, A. C., Miao, C., & Leung, C. (2011). Dynamic witness selection for trustworthy distributed cooperative sensing in cognitive radio networks. no. September, 2011. https://doi.org/10.1109/ICCT.2011.6157821
6. Zeng, F., Li, J., Xu, J., & Zhong, J. (2016). A trust-based cooperative spectrum sensing scheme against SSDF attack in CRNs. In Proc.—15th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 10th IEEE Int. Conf. Big Data Sci. Eng. 14th IEEE Int. Symp. Parallel Distrib. Proce, pp. 1167–1173. https://doi.org/10.1109/TrustCom.2016.0190
27. Morales, J. A., Al-Bataineh, A., Xu, S., & Sandhu, R. (2010). Analyzing and exploiting network falsification attack in cognitive radio networks. *EURASIP Journal on Advances in Signal Processing*, 2014(1), 1–16. https://doi.org/10.1186/1687-6180-2014-48

9. Wang, M., Liu, B., & Zhang, C. (2013). Detection of collaborative SSDF attacks using abnormality detection algorithm in cognitive radio networks. In *2013 IEEE Int. Conf. Commun. Work. ICC* 2013, pp. 342–346. https://doi.org/10.1109/ICC.2013.6649256

10. Bennaceur, J., Souihi, S., Idoudi, H., Saidane, L. A., & Mellouk, A. (2018). Game-based secure sensing for the mobile cognitive radio network. In *IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC*, vol. 2017-Sept, pp. 1–7. https://doi.org/10.1109/PIMRC.2017.8292623

11. Jain, S., Hussain, M., & Garimella, R. M. (2016). Primary user authentication in cognitive radio network using authentication tag. pp. 1–5

12. Wan, R., Ding, L., Xiong, N., & Zhou, X. (2019). Mitigation strategy against spectrum-sensing data falsification attack in cognitive radio sensor networks. *International Journal of Distributed Sensor Networks*. https://doi.org/10.1177/1550147719870645

13. Walko, J. (2005). Cognitive radio. *IEEE Review*, 31(5), 34–37. https://doi.org/10.1049/ir:20050504

14. Xie, X., Wang, W., & Charlotte, U. N. C. (2013). Detecting primary user emulation attacks in cognitive radio networks via physical layer network coding. *Procedia—Procedia Computer Science*, 21, 430–435. https://doi.org/10.1016/j.procs.2013.09.057

15. Marriwala, N. K., Sahu, O. P., & Vohra, A. (2017). Secure baseband techniques for generic transceiver architecture for software-defined radio. In *Handbook of research on recent developments in intelligent communication application* (pp. 96–117). IGI Global

16. Xia, S., Tao, X., Li, N., & Wang, S. (2020). Malicious user detection in non-orthogonal multiple access based on spectrum analysis. *IEEE Signal Processing Letters*, 27, 1390–1394. https://doi.org/10.1109/LSP.2020.3012826

17. Biswas, R., Wu, J., Du, X., & Yang, Y. (2020). Mitigation of the spectrum sensing data falsifying attack in cognitive radio networks. *Cyber-Physical Systems, 00(00), 1–20*. https://doi.org/10.1080/23357777.2020.1811387

18. Chaitanya, D. L., & Chari, K. M. (2017). Secure channel allocation approach for video streaming in cognitive radio networks. *Wireless Personal Communications, 94(4), 2613–2631*. https://doi.org/10.1007/s11277-016-0329-9

19. Subbulakshmi, P., Prakash, M., & Ramalakshmi, V. (2018). Honest auction based spectrum assignment and exploiting spectrum sensing data falsification attack using stochastic game theory in wireless cognitive radio network. *Wireless Personal Communications, 102(2), 799–816*. https://doi.org/10.1007/s11277-017-5105-3

20. Pei, Q., Liang, R., & Li, H. (2011). A trust management model in centralized cognitive radio networks. In *Proc.—2011 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discov. CyberC 2011*, pp. 491–496. https://doi.org/10.1109/CyberC.2011.104

21. Wang, B., Wu, Y., & Liu, K. J. R. (2010). Game theory for cognitive radio networks: An overview. *Computer Networks, 54(14), 2537–2561*. https://doi.org/10.1016/j.comnet.2010.04.004

22. Mirza, M. A., Ahmad, M., Habib, M. A., Mahmood, N., Faisal, C. M. N., & Ahmad, U. (2018). CDCSS: Cluster-based distributed cooperative spectrum sensing model against primary user emulation (PUE) cyber attacks. *The Journal of Supercomputing, 74(10), 5082–5098*. https://doi.org/10.1007/s11227-018-2378-6

23. Jararweh, Y., Bany Salameh, H. A., Alturani, A., Tawalbeh, L., & Song, H. (2018). Anomaly-based framework for detecting dynamic spectrum access attacks in cognitive radio networks. *Telecommunications Systems, 67(2), 217–229*. https://doi.org/10.1007/s11235-017-0329-9

24. Khan, M. S., Faisal, M., Kim, S. M., Ahmed, S., St-Hilaire, M., & Kim, J. (2021). A correlation-based sensing scheme for outlier detection in cognitive radio networks. *Applied Sciences, 11(5), 1–12*. https://doi.org/10.3390/app11052362

25. Gul, N., Qureshi, I. M., Khan, M. S., Elahi, A., & Akbar, S. (2020). Differential evolution based reliable cooperative spectrum sensing in the presence of malicious users. *Wireless Personal Communications, 114(1), 123–147*. https://doi.org/10.1007/s11277-020-07354-7

26. Clement, J. C. (2018). Jettison the defectives: A robust cooperative spectrum sensing scheme in a cognitive radio network. *Circuits, Systems, and Signal Processing, 37(6), 2471–2491*. https://doi.org/10.1007/s00034-017-0767-9

27. Morales, J. A., Al-Bataineh, A., Xu, S., & Sandhu, R. (2010). Analyzing and exploiting network behaviors of malware. In *Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng.*, vol. 50 LNICST, pp. 20–34. https://doi.org/10.1007/978-3-642-16161-2_2
An Authentication Based Approach for Prevention of Spectrum...

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nikhil Marriwala (B.Tech., M.Tech. and Ph.D. in Engineering & Technology) is working as Assistant Professor and Head of the Department Electronics and Communication Engineering Department, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra. He did his Ph.D. from National Institute of Technology (NIT), Kurukshetra in the department of Electronics and Communication Engineering. He did his post-graduation (M.Tech) in Electronics and Communication Engineering from Institute of Advanced Studies in Education (IAS) University, and did his B.Tech in Electronics and Instrumentation from MMEC, Mullana, Kurukshetra University, Kurukshetra. He has more than 19 years of experience teaching graduate and postgraduate students. More than 31 students have completed their M.Tech dissertation under his guidance. He has published more than 05 book chapters in different International books, has authored more than 10-books with Pearson, Wiley, etc. and has more than 35 publications in reputed International Journals (SCI, SCIE, ESCI, and Scopus) and 20 papers in International/National conferences. He has filed 07 patents out of which 05 patents have been granted with 01 in Indian and 04 International Patents. He has been Chairman of Special Sessions in more than 20 International/National Conferences and has delivered a keynote address at more than 7 International conferences. He has also acted as organizing secretary for more than 05 International conferences and 01 National Conference. He has delivered more than 45 Invited Talks/Guest Lectures in leading Universities/Colleges PAN India. He is having additional charge of Training and Placement Officer, UIET, Kurukshetra University, Kurukshetra and heading the T&P cell for more than 11 years now. He is the Single point of contact (SPOC) and head of local chapter of SWAYAM NPTEL Local Chapter of UIET, KUK. He is the SPOC for Infosys campus connect program for UIET, KUK. He is also the reviewer for many reputed journals such as the International Journal of Communication Systems, Wiley, IEEE Signal Processing Letters, International Journal of Measurement Technologies and Journal of Organizational and End User Computing (JOEUC), Egyptian Informatics Journal—Elsevier, Instrumentation Engineering (UMTIE), International Journal of Interactive Communication Systems and Technologies (IJICST), Current Journal of Applied Science and Technology, UK. He has been awarded as the NPTEL ENTHUSIASTS for year 2019–2020 by NPTEL IIT, Madras. He has also been awarded as the “Career Guru of the Month” award by Aspiring Minds. His areas of interests are Software Defined Radios, Cognitive Radios, Soft Computing, Wireless Communications, Wireless Sensor Networks, Fuzzy system design, and Advanced Microprocessors.

Himanshu Punj (B.Tech, M.Tech in Electronics & Communication Engineering) from Kurukshetra University Kurukshetra. I worked as Chief Executive in a Industrial Hub named M/S. Him Ventures (Manufactures, Supplier Of Scientific Goods & Electronics Goods). Worked as Director Public Relations in ICL Institute Of Engineering & Technology. Technical Education Society is running ICL Group Of Colleges, situated at Village Sountli, Tehsil Sehzadpur, Naraingarh, District Ambala. From the year 2019–2021 I remained a student of M.Tech in Electronics & Communication Engineering. A Thesis submitted by me in the 4th Semester of Master in Engineering in Electronics and Communication (An Authentication Based Approach For Prevention SSDF Attacks In Cognitive Radio Network). Learn a lot from Seniors & thanks to Guide.
Sunita Panda is presently working as an Assistant Professor in the department of Electronics and communication Engg, GITAM Deemed to be University, Bengaluru Campus. She has published many research papers in national and international journals, having 15 years of experience in the field of teaching and research. Her area of interest includes soft computing, wireless communication network, digital signal processing, cognitive radio etc.

Inderjeet Kaur, an alumni of GGSIPU Delhi and Kurukshetra University, Kurushetra is currently an Associate Professor with the Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College (AKGEC), Ghaziabad, Uttar Pradesh, since July 2014. She is B.Tech, M.Tech. and Ph.D. In Computer Science & Engineering. She has more than 17 years of academic experience. Her areas of interests include Wireless Sensor Networks, Massive MIMO Systems for 5G & 6G Wireless Applications, Machine Learning in healthcare applications, Software Engineering and Computer Organization & Architectures. She has published 18 research papers in reputed journals/conferences. She has also coauthored one book of Computer Science and published one book chapter. She has published two innovation patents. Dr. Kaur is a member of ACM, SDIWC, IACSIT and IAENG. She is also the member of Editorial Board and Review Committee of several Journals.

Deepak Rathore received the bachelor of engineering degree in electronics and communication engineering from RGPV, Bhopal, India, in 2007, the master of technology degree in electronics and communication engineering from the National Institute of Technology (NIT) Kurukshetra, India, in 2009. He is currently working toward the Ph.D. degree at Indian Institute of Technology (IIT) Guwahati, India. He joined the GGV Central University Bilaspur, India in 2011 as assistant Professor. His research interests include Next-generation wireless communication technologies, massive MIMO systems, antenna selection, and physical layer security in massive MIMO systems.
Authors and Affiliations

Nikhil Marriwala1 · Himanshu Punj2 · Sunita Panda3 · Inderjeet Kaur4 · Deepak Rathore5

Himanshu Punj
punjhimanshu21@gmail.com

Sunita Panda
spanda3@gitam.edu

Inderjeet Kaur
Inderjeetk@gmail.com

Deepak Rathore
erdeep2020@gmail.com

1 Electronics and Communication Engineering Department, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, India
2 ICL Group of Colleges, Village Sountil, Naraingarh, Ambala, India
3 Department of Electrical, Electronics and Communication Engineering, GITAM School of Technology, Bengaluru Campus, Doddaballapura, Karnataka, India
4 Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College Ghaziabad, Ghaziabad, India
5 Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, India