Radiation-induced DNA double-strand break rejoining in human tumour cells

MI Núñez1, M Villalobos1, N Olea1, MT Valenzuela1, V Pedraza1, TJ McMillan2 and JM Ruiz de Almodóvar1

1Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Hospital Universitario, Facultad de Medicina, 18017 Granada, Spain; 2Radiotherapy Research Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, U.K.

Summary Five established human breast cancer cell lines and one established human bladder cancer cell line of varying radiosensitivity have been used to determine whether the rejoining of DNA double-strand breaks (dsbs) shows a correlation with radiosensitivity. The kinetics of dsb rejoining was biphasic and both components proceeded exponentially with time. The half-time (t1/2) of rejoining ranged from 18.0 ± 1.4 to 36.4 ± 3.2 min (fast rejoining process) and from 1.5 ± 0.2 to 5.1 ± 0.2 h (slow rejoining process). We found a statistically significant relationship between the survival fraction at 2 Gy (SF2) and the t1/2 of the fast rejoining component (r = 0.949, P = 0.0039). Our results suggest that cell lines which show rapid rejoining are more radiosensitive. These results support the view that, as well as the level of damage induction that we have reported previously, the repair process is a major determinant of cellular radiosensitivity. It is possible that the differences found in DNA dsb rejoining and the differences in DNA dsb induction are related by a common mechanism, e.g. conformation of chromatin in the cell.

Keywords: radiosensitivity; DNA double-strand breaks; dsb rejoining; pulsed field gel electrophoresis

The repair of radiation-induced lesions in DNA is widely believed to be a major determinant of the degree of radiosensitivity in mammalian cells. Evidence for this largely comes from radiosensitive mutants in which clear defects in the rejoining of DNA double-strand breaks (dsb) have been detected (Kemp et al., 1984; Iliakis et al., 1992). The $\alpha r s$ radiosensitive mutants of Chinese hamster ovary (CHO) cells, for example, exhibit a much reduced overall capacity for repair of dsbs, although there is some debate as to whether the rate of dsb rejoining is altered in these cells (Dahm-Daphi et al., 1993). Apart from these extreme cases, the relationship between various repair parameters is less cut-off. Of the many dsbs that are produced in DNA by ionising radiation, most are repaired within a few hours at 37°C (Włodek and Hittelman, 1987; Schwartz et al., 1988). Several studies have investigated the influence of the rate and extent of rejoining in cell lines differing in sensitivity, but no clear pattern has emerged (Schwartz et al., 1988, 1990).

In a group of six human tumour cell lines we have previously proposed that the observed variation in initial dsb seen immediately after irradiation does correlate with radiosensitivity, although an analysis of fragment sizes is necessary (Ruiz de Almodóvar et al., 1994a). It was the aim of this study to examine whether these cell lines also differ in their ability to remove dsbs following a single dose of radiation.

Materials and methods

Cell lines

Six human tumour cell lines were used in this work. The origins and some characteristics of these were given in a previous paper (Ruiz de Almodóvar et al., 1994). Five of the cell lines were derived from breast cancers (MCF-7 clones BUS and BB, T47D clones B1 and B8 and EYSA-T) and one from a bladder carcinoma (RT112). Cell cultures were grown in Dulbecco's modified Eagle medium (DMEM, Gibco), supplemented with 10% fetal calf serum (FCS). All media contained, in addition, penicillin (100 units ml$^{-1}$) and streptomycin (0.1 mg ml$^{-1}$). Cells were incubated at 37°C in plastic cell culture flask (Nunc) in 5% carbon dioxide in air. Freedom from mycoplasma contamination was checked periodically by testing with Hoescht 33528. Experiments were conducted on cells in exponential growth phase maintained by passage twice a week.

Irradiation

Irradiation of cells was performed using a 10 TBq 60Co source at a dose rate of 1–2 Gy min$^{-1}$ for cell survival and 5 Gy min$^{-1}$ for dsb rejoining measurements. Dose rate was determined by a Victoreen 500 with a Nuclear Enterprise model 23332 ionisation chamber.

Clonogenic assays

Acute-dose clonogenic assays were performed in monolayer culture as previously described (Ruiz de Almodóvar et al., 1994). Briefly, graded inocula of test and control cells were seeded in triplicate into 25 cm2 plastic tissue culture flasks. Irradiations were performed after 4 h when cells were attached. Cell colonies of >50 cells were counted after 14–21 days and survival data were fitted using the linear-quadratic model $[\ln SF = -(\alpha D + \beta D^2)]$. Parameters α and β were determined by non-linear regression analysis. Three experiments were performed on each cell line.

DNA dsb rejoining

Cells in exponential growth were radiolabelled with [H]3thymidine (1.8 kBq ml$^{-1}$) for 48 h followed by 18–24 h chase in unlabeled medium. After replacement of medium with cold (0°C) complete medium, test flasks were irradiated with 45 Gy while still attached in monolayer. The irradiation was performed at 0°C on ice. Following irradiation the 'cold' medium was replaced by 37°C DMEM + 10% FCS and cells were incubated for 0, 5, 15, 30, 45, 60, 75 and 90 min and 2, 4, 6, 8, 10 and 24 h. DNA rejoining was stopped by addition of excess ice-cold medium and transfer of the flasks to 4°C. We have looked carefully at the influence of this temperature on pulsed-field gel electrophoresis (PFGE) and there is no effect over 24 h. After 24 h, all the test and control flasks were harvested by mechanical disaggregation. Cells were

Correspondence: JM Ruiz de Almodóvar
Received 5 April 1994; revised 7 July and 12 September 1994; accepted 30 September 1994
DNA double-strand break rejoining
MI. Nuñez et a

washed and centrifuged at 4°C and mixed with ultra-low
gelling temperature agarose (type IX, Sigma) at 15°C and a
cell concentration of 1.2 × 10⁶ cells ml⁻¹. The cell–agarose
suspension was pipetted into moulds and cell plugs formed
and were kept at 4°C for 1 h. These cell plugs were transfer-
red into 30 ml plastic universal tubes containing ice-cold lysis
buffer, pH 7.6, comprising 2% sodium lauryl sarcosine, 0.5 M
EDTA (both Sigma) and 0.5 mg ml⁻¹ Proteinase K
(Boehringer-Mannheim). Lysis proceeded on ice for 1 h then
at 37°C for 24 h.

To determine whether the level of dose administrated has
any influence on the DNA dsb kinetic rejoining process, we
have also performed several experiments using two cell lines
with clear differences in radiosensitivities (MCF-7 BUS, sur-
viving fraction at 2 Gy, SF₂ = 33%; and EVSA-T, SF₂ =
65%). Cells were irradiated at 15 and 30 Gy and two
experiments were performed on each cell line.

Pulsed-field gel electrophoresis
DNA dsb measurements were performed on a clamped
homogeneous electric field pulse-field unit (CHEF-DR-II,
Bio-Rad) as described previously (Whitaker and McMillan,
1992). Sections of 25 μl of each cell plug containing the DNA
from approximately 10⁶ cells were loaded into the wells of a
0.8% agarose gel (Type V, Sigma) and subjected to CHEF-
PFGE at 45 V. with field switching interval of 60 min for a
total run time of 96 h. Electrophoresis buffer was 0.1 M Tris,
0.1 M borate and 0.2 mm EDTA (Sigma). pH 8.4. DNA size
markers were included in each gel (Saccharomices cerevisiae
and Schizosaccharomices pombe, both from Bio-Rad). Fol-
lowing electrophoresis the gels were stained with ethidium
bromide (0.5 μg ml⁻¹) then washed and, under UV transili-
mination, each lane of the gel was separated from its well
and cut into 5 mm sections. Gel pieces were heated in 100 μl
of 1 M hydrochloric acid and, when melted, neutralised with
100 μl of 1 M sodium hydroxide and mixed with scintillation
fluid (Optiphase Type II. LKB). Isotope activity was deter-
mined on a 2500 LS Beckam liquid scintillation counter.
At least two experiments were performed for each cell line.

Assessment of DNA dsb rejoining kinetics
The fraction of activity released (FAR) was calculated from
the ratio of ³C activity detected from all the sections in the
lane to the total activity, i.e.

\[\text{FAR} = \frac{d.p.m_{\text{rel}}}{d.p.m_{\text{tot}}} \]

The values of the fraction of damage remaining (FDR)
were plotted after the post-irradiation incubation time
(Figure 1), where FDR = FAR, FARp.

After subtraction of the FDR value at 24 h incubation, the
rejoining of DNA dsbs was assessed as the ratio between
the FDR values obtained from each time point. FDR, and the
FDR value corresponding to time t = 0.

\[\text{RR} = \frac{\text{FDR}}{\text{FDR}_{t=0}} \]

where RR is the rejoining ratio.

The RR values were plotted against time in semilogarith-
ic coordinates.

The kinetics of dsb rejoining during post-irradiation incu-
bation of cells was fitted to a model based on two unsatu-
ated, or first-order, reactions and can be described by the
following equation (Frankenberg-Schwarz and Franken-
berg, 1992).

\[\text{RR} = \frac{\text{FDR}_{t}}{\text{FDR}_{t=0}} = \frac{f_i \times \text{exp}(-k_i \times t) + f_j \times \text{exp}(-k_j \times t)}{f_i + f_j} \]

where f_i and f_j are the fractions of initial dsbs being rejoining
by the first and the second component of the biphasic kinetics
and k_i and k_j are the corresponding rate constants of
first-order rejoining components.

The final part of the rejoining curve was fitted by linear
regression. The value on the rejoining profile for the second
component was then subtracted from the RR at the early
time points prior to fitting these points by linear regression
(Figure 2).

In calculating the kinetics of rejoining by this method we
have assumed a linear relationship between dsbs and FAR.
While the induction curves for these lines are not strictly
linear for these cell lines (Ruiz de Almodóvar et al., 1994) the
analysis of the induction data as fitted by a linear relation-
ship (Table I) is still good and the conversion of the data to
Gy equivalents on the basis of the damage induction curves
does not influence our conclusions from these data.

Results

Clonogenic survival assay
The acute dose clonogenic survival curves were fitted by the
linear-quadratic expression. The a and b parameters and
values of the survival fraction at 2 Gy (SF₂) are shown in
Table II.

DNA dsb rejoining kinetics
Figure 1 shows the kinetics of dsb rejoining of the six human
tumour cell lines studied. The number of dsbs that remained
unrejoined after a 24 h incubation period was subtracted
from the number of dsbs measured after the other repair
times. In this way the kinetics of only the rejoined dsbs was
obtained (Frankenberg-Schwarz and Frankenberg, 1992;
Frankenberg-Schwager et al., 1990) (Figure 2). It is apparent
that the kinetics of dsb rejoining is biphasic and proceeds
exponentially with time for both components. Tables III and
IV summarise the values of the parameters f, t₁ (fast com-
ponent) and f and t₂ (slow component) of the biphasic
kinetics for each tumour cell line used. The half-time of re-
joining (t₂) corresponding to each component was cal-
culated from t₂ = -ln²k. These values ranged from 18.0 ±
1.4 to 36.4 ± 3.2 min (fast rejoining process) and from 1.5 ±
0.2 to 5.1 ± 0.2 h (slow rejoining process).

Relationship between the rate of rejoining dsb and
radiosensitivity
Figure 3 shows the relationship between the rates of two
components of rejoining and radiosensitivity (SF₂). In each
case the data have been fitted by linear regression, and in the
case of the fast component (Figure 3a) there is a significant
correlation between the two parameters (SF₂ = -0.017 t₁+ 1.1;
\(r = 0.949, P = 0.0039 \)), but with the slow component the
correlation does not reach significance \(P = 0.15 \) (Figure 3b).
Although we have no reason to do so, if data for one of the
cell lines studied (EVSA-T) are discarded then a significant
relationship between SF₂ and the rate of the slow component
is seen. Overall, we therefore conclude that radiosensitive
cells have a faster half-time of rejoining than sensitive
cells.

We found no relationship between the t₁-values and the
cellular radiosensitivity parameters.

Dose–effect
Figure 4 shows the dose–effect results found in both MCF-7
BUS and EVSA-T cell lines. The half-times of the fast com-
ponent of rejoining kinetic process appear to be dose
independent. Actually the values obtained for 15 Gy and
30 Gy in both cell lines are very close to those found for
45 Gy.

Discussion

The loss of proliferative capacity in irradiated cells is believed
to depend on:

(a) The number of initial radiation-induced DNA dsbs (Rad-
ford, 1985; Peacock et al., 1992; Whitaker and McMil-
DNA double-strand break rejoining

Figure 1 DNA dsb rejoining curves for six human tumour cell lines as the decrease in the fraction of damage remaining (FDR) following irradiation with 45 Gy and varying repair times at 37°C. Data points represent the means (and s.e.m.) of three experiments (only two for MCF-7 BB). The dotted line represents the fraction of irreparable damage (value of FDR after 24 h incubation).

Figure 2 Kinetics of rejoinable dsbs is expressed as a ratio (RR). The experimental points have been fitted to two-component unsaturated (first-order) rejoining process.

Table 1 Parameters of initial radiation-induced DNA damage

Cell line	Slope	r	P
MCF-7 BUS	-0.83	-0.944	<0.0001
MCF-7 BB	-0.75	-0.943	<0.0001
T47D-B1	-1.27	-0.966	<0.0001
T47D-B8	-0.95	-0.989	<0.0001
EVSA-T	-1.00	-0.960	<0.0001
RT-112	-1.06	-0.914	<0.0015

*Slope of DNA damage induction curve from Ruiz de Almodovar et al. (1994). r, correlation coefficient; P, P-value. Figures are means ± s.e.m. from five observations.

Table 2 Parameters of acute dose-survival curves

Cell line	α (Gy⁻¹)	β (Gy⁻²)	SF2
MCF-7 BUS	0.336 ± 0.038	0.021 ± 0.004	32.9 ± 3.7
MCF-7 BB	0.316 ± 0.019	0.023 ± 0.006	50.2 ± 2.3
T47D-B1	0.206 ± 0.024	0.036 ± 0.002	58.5 ± 3.1
T47D-B8	0.190 ± 0.015	0.040 ± 0.001	54.9 ± 1.3
EVSA-T	0.260 ± 0.051	0.016 ± 0.005	64.7 ± 3.2
RT-112	0.120 ± 0.018	0.040 ± 0.002	67.7 ± 1.5

Clonogenic cell survival data were fitted to the linear quadratic equation. SF2, surviving fraction at 2 Gy. Figures are means ± s.e.m.
lan, 1992). We have recently studied the relationship between this end point and the parameters obtained from the acute-dose survival curve, using the same set of cell lines that have been used in this work. Our data support the view that the initial damage is a major determinant of intrinsic cell radiosensitivity (Ruiz de Almodóvar et al., 1994).

(b) The number of unrejoined DNA dsbs (Blöcher et al., 1991; Dahm-Daphi et al., 1993). It has generally been found DNA dsb rejoining is complete within 15 h after irradiation, and often sooner than this (Dahm-Daphi et al., 1993). We therefore considered the FAR values obtained for 24 h after subtracting the FAR values obtained from control flasks as our measure of residual damage (Table IV). Our results show that there is no relationship between residual damage and SF2. This result agrees with our previous experiments in RT-112 bladder carcinoma cell line, in which we show that the differences in the clonogenic cell survival at different dose rates cannot be explained by the final level of unrejoined dsbs (Ruiz de Almodóvar et al., 1994) and it is supported by other studies in which a comparison of cells with different sensitivity has shown no differences in unrejoined dsbs (Koval and Kazmar, 1988). This result could be a reflection of inadequate sensitivity of PFGE at the doses used since correlations between sensitivity and residual damage have been found in studies in which higher doses were used (Blöcher et al., 1991; R. Wurm, personal communication). Alternatively we believe it could be due to one of the main problems with any physical measure of DNA integrity: the inability to distinguish between repair and misrepair (Ruiz de Almodóvar et al., 1994).

(c) The rate of rejoining of DNA dsbs. Following damage induction, numerous processes remove and repair the damage in an attempt to restore the genetic sequence to its original state. DNA damage may be correctly repaired, repaired incorrectly (misrepaired) or completely unrepaired.

Our results show that the DNA dsb rejoining process follows biphasic kinetics with a rapid initial rate followed by a much slower second component. This has been noted previously (Bryant et al., 1984; Iliakis et al., 1990) and it has been termed a two-component unsaturated dose-dependent process (TDU) (Frankenberg-Schwager et al., 1990). The two components of rejoining kinetic show a dose-independent rate of dsb rejoining, however the dose dependency of the
proportions of the two components slow down the overall rate of dsb rejoining with increasing dose (Frankenberg-Schwager and Frankenberger, 1992).

It is possible that the multiple phases are due to the repair of different types of lesion, with the residual damage as a final subset of lesions (Steel, 1991). However, this is untestable with current technology. It has also been suggested that the initial fast component entails rejoining of dsbs by enzymes which are constitutively expressed in mammalian cells (Hittelmann and Pollard, 1982; Radford, 1987; Boothman et al., 1989). The late phase, which proceeds at a significantly slower rate, is characteristically blocked by inhibitors of protein, RNA and DNA synthesis (Iliakis, 1989) suggesting that it may require the induction of specific genes and gene products to repair more complex types of DNA lesions (Boothman et al., 1989; Haimovich-Friedman et al., 1991). We suggest that misrepair may occur in both fast and slow rejoining components, but it must be more probable when the rejoining kinetic is slower. What is still unknown is how DNA packaging in cells affects DNA repair. Structural differences (euchromatin or heterochromatin, for example) may alter the nature of the damage, the function and the positioning of repair systems.

Our results show a close relationship between cell survival and the half-time of dsb rejoining corresponding to fast components. A survey of the literature reveals that our results agree with those published by Kelland et al. (1988), Schwartz et al. (1990) and Giaccia et al. (1992). Studies on other cell lines have also suggested a relationship between the slow component of rejoining process and cell radiosensitivity (Whitaker et al., 1994). Thus, cells with a rapid rate of rejoining are generally more resistant to ionising radiation, perhaps because of a higher fidelity of rejoining.

Overall, our view is that sensitive cells suffer more dsbs per dose unit. In addition, the process of dsb rejoining is slower than in the radiosensitive ones. It is possible that these two observations are directly linked, i.e. that the induction of more damage leads to a slower rate of repair because of the greater strain on the repair systems, although we have evidence for a dose independence of repair rates within two different cell lines (Figure 4). Alternatively, they may be indirectly linked through a common cause such as the conformation of DNA (Oleinick et al., 1984; Patil et al., 1985; Barendsen, 1988; Olive, 1992).

References

BARENDSEN GW. (1988). Radiation-induced DNA damage in relation to linear and quadratic terms of dose effect relationships for cell reproductive death. Br. J. Radiol., 24 (Suppl.), 53–56.

BLOCHER D, SIGUT D AND HANNAN MA. (1991). Fibroblasts from ataxia-telangiectasia (AT) and AT heterozygotes show an enhanced level of residual DNA double stranded breaks after low dose-rate irradiation as assayed by pulsed field gel electrophoresis. Int. J. Radiat. Biol., 60, 791–802.

BOOTHMAN DA, BOUVARD I AND HUGHES EN. (1989). Identification and characterization of X-ray induced proteins in human cells. Cancer Res., 49, 2871–2878.

BRYANT PE, WARRING R AND AHNSTROM G. (1984). DNA repair kinetics after low doses of X-rays. A comparison of results obtained by the unwinding and nucleotide sedimentation methods. Biochim. Biophys. Acta, 758, 19–26.

DAHM-DAPHI J, DIKOMEY E, PYTTLIK C AND JEGGO PA. (1993). Reparable and non-reparable DNA strand breaks induced by X-irradiation in CHO K1 cells and the radiosensitive mutants xrs-1 and xrs-5. Int. J. Radiat. Biol., 64, 19–26.

FRANKENBERG-SCHWAGER M AND FRANKENBERG D. (1992). Shouldered survival curves in accordance with the unsaturated rejoining kinetics of DNA double-strand breaks. Br. J. Radiol., 24 (Suppl.), 23–27.

FRANKENBERG-SCHWAGER M, FRANKENBERG D, HARBICH R AND ADAMCZYK C. (1990). A comparative study of rejoining of DNA double-strand breaks in yeast irradiated with 3.5 MeV α-particles or with 30 MeV electrons. Int. J. Radiat. Biol., 57, 1151–1168.

GIACCIA AJ, SCHWARTZ J, SHIEH J AND BROWN JI. (1992). The use of asymmetric-field inversion gel electrophoresis to predict tumor cell radiosensitivity. Radiat. Oncol. Commun., 24, 231–238.

HAIMOVITZ-FRIEDMAN A, VLODAYSKY I, CHAUDHURI A, WITTE I AND FUKS Z. (1991). Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res., 51, 2552–2558.

HITTELMAN WN AND POLLARD M. (1982). A comparison of the DNA and chromosome repair kinetics after irradiation. Radiat. Res., 89, 497–509.

ILIAKIS G. (1989). Radiation-induced potentially lethal damage: DNA lesion susceptibilities to fixation. Int. J. Radiat. Biol., 53, 541–584.

ILIAKIS G, METZGER L, MUSCHEL RV AND MCKENNA WG. (1990). Induction and repair of DNA double strand breaks in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Res., 50, 6575–6579.

ILIAKIS G, METHA R AND JACKSON M. (1992). Level of DNA double-strand break rejoining in chinese hamster xrs-5 cells is dose-dependent: implications for the mechanism of radiosensitivity. Int. J. Radiat. Biol., 61, 315–321.

KELLAND LR, EDWARDS SM AND STEEL GG. (1988). Induction and rejoining of DNA double-strand breaks in human cervix carcinoma cell lines of differing radiosensitivity. Radiat. Res., 116, 526–538.

KEMP LM, SEGDWICK SG AND JEGGO PA. (1984). X-ray sensitive mutants of chinese hamster ovary cells defective in double-strand break rejoining. Mutat. Res., 132, 189–196.

KOVAL TM AND KAZMAR ER. (1988). DNA double-strand break repair in eukaryotic cell lines having radically different radiosensitivities. Radiat. Res., 113, 268–277.

PATIL MS, LOCHER SE AND HARHAN PV. (1985). Radiation induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells. Int. J. Radiat. Biol., 48, 691–700.

OLEINICK NL, CHIU S AND FRIEDMAN LR. (1984). Gamma irradiation as a probe of chromatin structure: damage and repair of chromatin in the metaphase chromosome. Radiat. Res., 98, 629–641.

OILVE PL. (1992). DNA organization affects cellular radiosensitivity and detection of initial DNA strand breaks. Int. J. Radiat. Biol., 62, 389–396.

PEACOCK JH, EADY JJ, EDWARDS SM, MCMILLAN TJ AND STEEL GG. (1992). The intrinsic α/β ratio for tumor cells: is it a constant? Int. J. Radiat. Biol., 61, 479–487.

RADFORD IR. (1985). The level of induced double strand breakage correlate, with cell killing after X-irradiation. Int. J. Radiat. Biol., 48, 45–54.

RADFORD IR. (1987). Effect of cell-cycle position and dose on the kinetics of DNA double strand breakage repair in X-irradiated chinese hamster cells. Int. J. Radiat. Biol., 52, 555–563.

RUIZ DE ALMODOVAR JM, NUÑEZ MI, MCMILLAN TJ, OLEA N, MORT C, VILLALOBOS M, PEDRAZA V AND STEEL GG. (1994). Initial DNA damage is a determinant of intrinsic cellular radiosensitivity. Br. J. Cancer, 69, 457–462.

RUZ DE ALMODOVAR JM, BUSH C, PEACOCK JH, STEEL GG, WHITAKER SJ AND MCMILLAN TJ. (1994). Dose-rate effect for DNA damage induced by ionizing radiation in human tumor cells. Radiat. Res., 138, 593–596.

SCHWARTZ JL, ROTMENSCH J, GIOVANAZZI S, COHEN MB AND WEICHELSBAUM RR. (1988). Faster repair of DNA double-strand breaks in radiosensitive human tumor cells. Int. J. Radiat. Oncol. Biol. Phys., 15, 907–912.

Acknowledgements

This work was supported by CICYT SAL 89-1115 and DGICYT BF-230. Spain. Grants PS 2280833 to MJD and 92 883 7784 to MTV. Grants from the British Council greatly aided this collaboration. TJM is supported by the Cancer Research Campaign and the Medical Research Council.
SCHWARTZ JL, MUSTAFI R, BECKETT MA AND WEICHSELBAUM RR. (1990). Prediction of radiation sensitivity of human squamous carcinoma cells using DNA filter elution. Radiat. Res., 123, 1–6.

STEEL GG. (1991). Cellular sensitivity to low dose-rate irradiation focuses the problem of tumor radioresistance. Radiother. Oncol., 20, 71–83.

WHITAKER SJ AND MCMILLAN TJ. (1992). Oxygen effect for DNA double-strand break induction determined by pulsed-field gel electrophoresis. Int. J. Radiat. Biol., 61, 29–41.

WHITAKER SJ, UNG Y AND MCMILLAN TJ. (1994). DNA double strand break induction and rejoining as determinant of human tumor cell radiosensitivity. A pulsed-field gel electrophoresis study. Int. J. Radiat. Biol. (in press).

WLODEK D AND HITELMAN WN. (1987). The repair of double-strand DNA breaks correlate with radiosensitivity of L5178Y-S and L5178Y-R cells. Radiat. Res., 112, 146–155.