Microwave Assisted Synthesis of Benzotriazole Derivatives for Anti-Corrosive Study on Mild Steel in Acidic Medium

KUNIKA VERMA, NAVNEET SINGH*

Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara – 144411 (Punjab); India

*correspondence author; E-mail: drnavneet10@gmail.com

Abstract

Four novel benzotriazole derivatives 1-(Chloromethyl)-1H-Benzotriazole; 1, N-(benzo[e][1, 2, 4]triazin-4(3-H)-yl)methylbenzenamine; 2, 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl) hydrazine; 3 and 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl) phenyl hydrazine; 4 were synthesized through microwave irradiation (MWI) method. These derivatives were characterized and tested for anticorrosive action on iron coupons in 0.5M acidic medium at different concentration. The anti-corrosive study was done using weight loss method and corrosion rate (CR) analysis. All the synthesized derivatives gave remarkable corrosion protection effect. Major outcome of the study shows corrosion inhibitor efficiency of derivatives follows order 3, 4, 2 and 1 at 100mg/L, 3, 2, 4 and 1 at 200mg/L, 3, 4, 2 and 1 at 300mg/L. Compound 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)hydrazine; 3 emerges as leader in all concentration in this study while 1-(Chloromethyl)-1H-Benzotriazole; 1, shows moderate impact. This study imparts an understanding for the new class of anticorrosive benzotriazole derivatives which can be of industrial use.

Keywords: benzatriazole, corrosion inhibitor, microwave, corrosion rate, mild steel, weight loss, anticorrosion.

One report released by FHWA, USA, 2002 reveals that the cost to the economy in USA due to corrosion was estimated USD276 billion which was equivalent to approximately 3.1% of the U.S. Gross Domestic Product (GDP). Similar studies in other countries have shown a similar percentage of GDP [1]. Another report published by NACE international, USA, 2016 reveals the estimated cost to the world economy due to corrosion was 3.4% of the GDP [2], which is summarized in table-1.
Table 1: Global cost of corrosion by region (Billion USD 2013)

Economic region	Total GDP USD billion	COC % GDP
United states	16,720	2.7%
India	1,670	4.2%
European Region	18,331	3.8%
Arab world	2,789	5.0%
China	9,330	4.2%
Russia	2,113	4.0%
Japan	5,002	1.0%
Four Asian Tigers plus	2,302	2.5%
Rest of the World	16,057	3.4%
Global	**74,314**	**3.4%**

These data elaborates that corrosion is a global phenomenon, and has the potential to give impact to the global economy. Polymers, metals, ceramics all can undergo corrosion. There are several types of corrosion e.g. galvanic corrosion, microbial corrosion, general corrosion, pitting corrosion etc.

This work focuses on corrosion inhibition activity of metals, as mostly metals are used everywhere. Metals, when they are kept under an open environment where they are not stable they undergo corrosion. Sculptures made up of bronze generally corrode and its appearance and property of being persistent reduces [3-5]. Corrosion can be prevented by using like modification of environment, plating and coating [6-9]. The materials used for protection must be removed easily and their colour should not change [10]. There are various types of corrosion inhibitors: Inorganic and Organic inhibitors. Chromates, silicates, nitrites, phosphates, arsenates and carbonates are few examples. Organic inhibitors are compounds of sulphur like thiourea, thioester etc., heterocyclic compounds of nitrogen and hydrazine [11].

Thin and persistent films are made by organic inhibitors which help in decreasing corrosion rate as they lead to slow down the reactions taking place i.e. cathodic and anodic reactions. There are so many organic compounds that have polar groups including nitrogen and sulphur. They have been seen showing the anti-corrosive behaviour against number of metals [12-15].

A well-known compound which is an organic inhibitor for copper and its alloys is 1, 2, 3-benzotriazole (BTA) and its derivatives [16-18]. It is an anticorrosive agent used in airports. Benzotriazole leads to formation of a film less than 50 Armstrong. Many chemists have studied the...
interaction of benzotriazole with bronze[19-22] and mild steel[23]. BTA forms a complex with Cu (I) and Cu (II) which forms a protective thin and persistent film[24-25]. The rate of growth and the density of film depend on concentration of benzotriazole and how much time BTA immerse on the surface of metal. It binds to metals and forms the strong bonds through the triazole ring. So benzotriazole is an organic inhibitor used to reduce pitting of the surfaces, surface strains and tarnished surfaces formed by corrosion[26-27]. Few other benzotriazole derivatives as surveyed in literature for potent corrosion inhibitors are illustrated in Table 2.

TABLE 2: ANTICORROSIVE ACTIVITY FOR BENZOTRIAZOLE DERIVATIVES

Benzotriazole Derivative	IUPAC Name	Anticorrosive against metal	Reference
(Complex of Benzotriazole)	Copper	[28-29]	
Benzotriazole	Mild steel	[30]	
5-Methyl-1H-Benzotriazole	Mild steel	[30]	
5,6-Dimethyl-1H-BenzotriazoleMonohydrate	Mild steel	[30]	
1-Methanesulfonyl-1H-Benzotriazole	Mild steel	[30]	
1-(α-Chloroacetyl)-1H-Benzotriazole

Mild steel [30]

2-H-benzotriazole with a diethylene glycol

Copper [31]

5-dodecyl-1,2,3-benzotriazole

Bronze [32]

[5-(1-undecyl)dodecyl]-1,2,3-benzotriazole

Bronze [32]

5-hexyl-1,2,3-benzotriazole

Bronze [32]

5-Chlorobenzotriazole

Copper (HCl) [33]

5-Methylbenzotriazole

Copper (HCl) [33]

5-n-butyl benzotriazole

Copper (HCl) [33]
In the present work, four novel derivatives of benzotriazole had been synthesized, characterized and studied for anticorrosive activity against iron coupons in acidic medium.

MATERIALS AND METHODS:

a. The synthesis of the compounds was carried out using RAGA’s microwave systems microwave oven of 700W. The purity of the compounds was checked using TLC plates (glass) coated with silica gel. The developed chromatographic plates were visualized under iodine chamber. IR spectra were recorded
using KBr on Shimadzu FTIR model 8400 spectrophotometer. 1H NMR spectra were recorded through Bruker Advance II 400 NMR spectrometer.

b. **Weight loss method for determination of corrosion rate (CR)** [39]

The corrosion rate was determined by weight loss analysis method. The weight loss is converted to corrosion rate using the formula given below-

\[
\text{Corrosion Rate (CR)} = \frac{\text{Weight loss (g) } \times \text{K}}{\text{Alloy Density (g/cm}^3\text{) } \times \text{Exposed Area (A) } \times \text{Exposure Time (hr)}}
\]

Where K is constant; 8.76 x 10^4, metal density is 7.85g/cm^3

EXPERIMENTAL WORK:

The synthesis of compounds 1-4 was carried out as per scheme 1.

Scheme I

Synthesis of 1-(Chloromethyl)-1H-Benzotriazole; 1

0.048mole of benzotriazole was mixed with 30 ml of DMF and 0.048 mole of K_2CO_3 was mixed well with 30 ml of DCM. Both the mixtures were added to RBF and were treated under microwave irradiation for 3 min. at 300 watt. Product thus obtained was added to 75 ml ice cold
water followed by filtration and recrystallization by hot water. TLC was checked using hexane: ethyl acetate (7:3). **FT-IR (KBr\textit{\upsilon}\text{max cm}^{-1})**: 3002 (Ar C-H) str, 1558 and 1610 (C=C Arenes) str, 1264 (C-N Aromatic amine) str, 850 (C-Cl halo compound) str. **NMR (400 MHz, DMSO, δ/ ppm)**: 8.1 (m, 1H, Ar), 7.9 (m, 1H, Ar), 7.6 (d, 1H, Ar), 7.8 (s, 2H, CH$_2$).

Synthesis of N-(benzo[e][1, 2, 4]triazin-4(3-H)-ylmethylbenzenamine; 2

0.006 mole of compd. 1 was mixed with 10 ml DMF followed by addition of 0.018 mole of p-aminotoluidine and 0.006 mole of K$_2$CO$_3$ in the RBF. The complete mixture was treated under microwave irradiation for 4 minutes; 240 watt. To the reaction mixture 10% HCl was added to remove excess of p-toluidine. The desired product was extracted by chloroform (3×10) ml and the product was recrystallized with hot water. At last TLC was checked using hexane: ethyl acetate as solvent system in the ratio (7:3). **FT-IR (KBr\textit{\upsilon}\text{max cm}^{-1})**: 752.26 (C-H Ar-rings) bending, 1161.9 (C=C Arenes) str, 1274.03 (C-N Ar amine) str, 669.32 (N-H) wagging, 2956.01 (Ar C-H) str. **NMR (400 MHz, DMSO, δ/ ppm)**: 7.6-8.0 (m, 8H, Ar), 7.45 (m, 2H, CH$_2$), 8.10 (m, 1H, NH), 2.5 (s, 3H, CH$_3$).

Synthesis of 1-((1-H-benzo[d][1, 2, 3]triazol-1-yl)methylhydrazine; 3

0.006 mole of 1-(Chloromethyl)-1H-Benzotriazole was mixed with 10 ml of DMF in RBF to which 0.006 mole of hydrazine hydrate was added. In the mixture 0.018 mole of hydrazine and 0.006 mole of K$_2$CO$_3$ were added. The entire mixture in RBF was treated under microwave irradiation for 4 minutes; 240 watt. To this reaction mixture, 10% HCl was added to remove excess of hydrazine. The desired product was extracted by chloroform (3×10) ml. At last TLC was checked using DCM as solvent system. **FT-IR (KBr\textit{\upsilon}\text{max cm}^{-1})**: 752.26 (C-H Ar-rings) bending, 1558.54 (C=C Arenes) str, 1262.45 (C-N Ar amine) str, 619.26 (N-H) wagging, 2955.04 (Ar C-H) str. **NMR (400 MHz, DMSO, δ/ ppm)**: 7.65-7.95 (m, 4H, Ar), 7.45 (m, 2H, CH$_2$), 8.10 (m, 1H, NH), 3.7 (s, 2H, NH$_2$).

Synthesis of 1-((1-H-benzo[d][1, 2, 3]triazol-1-yl)methylphenyl hydrazine; 4

0.006 mole of 1-(Chloromethyl)-1H-Benzotriazole was mixed with 0.006 mole of phenyl hydrazine and 8 ml of ethanol. This mixture was added to RBF and was treated under microwave irradiation for 3 minutes; 210 watt. It was poured into 4 ml concentrated H$_2$SO$_4$. The mixture was stirred for 20 minutes with heating at 40-50°C and then was cooled. After that it was poured into 20 ml ice cold water, filtered and recrystallized with methanol. At last TLC was checked using hexane: ethyl acetate as solvent system in the ratio (7:3). **FT-IR (KBr\textit{\upsilon}\text{max cm}^{-1})**: 3002 (Ar C-H) str, 1558 and 1610 (C=C Arenes) str, 1264 (C-N Aromatic amine) str, 850 (C-Cl halo compound) str.
cm$^{-1}$): 752.26(C-H Ar-rings) bending, 1161.19 and 1558.54(C=C Arenes) str, 1262.45(C-N Ar
amine) str, 667.36(N-H) wagging. **NMR (400 MHz, DMSO, δ/ ppm):** 7.8-8.0 (m, 9H, aromatic), 7.4 (m, 2H, CH$_2$), 8.1 (m, 1H, NH), 3.6 (s, 1H, NHar).

The yield analysis of the synthesized compounds is given in Table 3.

TABLE 3: YIELD ANALYSIS OF SYNTHESIZED COMPOUNDS

Comd.	Molecular formula	Molecular Weight (g/mol)	Reaction Time; watt of MWI	Recrystallization Solvent	Rf	Yield (%)	Melting point
1	C$_7$H$_6$ClN$_3$	167	3 minutes; 300 watt	Water	0.51	84	134°C
2	C$_{14}$H$_{14}$N$_4$	246	4 minutes; 240 watt	Chloroform	0.65	71	129°C
3	C$_7$H$_9$N$_5$	163	4 minutes; 240 watt	Chloroform	0.60	93	154°C
4	C$_{12}$H$_{11}$N$_5$	225	3 minutes; 210 watt	Methanol	0.57	88	141°C

ANTICORROSIVE STUDY:

The iron coupons (5x 2x 0.2 cm) were washed with distilled water and cleaned with acetone. Coupons were weighed and processed in acidic medium (0.5M H$_2$SO$_4$) with four synthesized derivatives of benzotriazole at conc. 100mg/L, 200mg/L and 300mg/L for 24 hours. One control was set which was made to run without adding compound (only 0.5M H$_2$SO$_4$ with iron coupon of weight 8.35g). The process followed is illustrated as given below (Fig. 1).

Fig. 1: 24 hours analysis of weight loss with derivatives of benzotriazole
The iron coupons were analysed for pre and post corrosion treatment i.e. before and after putting them in acidic medium in each case. The status of iron coupons is displayed below (Fig.2).

Fig. 2: Iron coupon after analysing for 24 hours in control and a benzotriazole derivative

The corrosion study was carried out with a set of two samples (A and B) for control and derivatives and the average of the data collected is taken. The weight loss was analysed in each case and result is given in Table 4.

TABLE 4: AVERAGE WEIGHT LOSS OF IRON STRIP IN 0.5 H₂SO₄ SOLUTION

Compd.	Control (0mg/L)	100mg/L	200mg/L	300mg/L
1	3.3g	0.99g	0.83g	0.53g
2	3.3g	0.75g	0.49g	0.36g
3	3.3g	0.30g	0.22g	0.10g
4	3.3g	0.65g	0.51g	0.34g

Determination of Corrosion rate (CR):

The corrosion rate for synthesized compounds 1, 2, 3 and 4 were determined by weight loss analysis method. The weighed iron coupons under consideration was introduced into the process, and later removed after 24 hours. The strip was then cleaned for all corrosion products and is reweighed. The calculated corrosion rate for synthesized compounds is given in Table 5.
TABLE 5: CORROSION RATE OF SYNTHESIZED COMPOUNDS IN 0.5 M ACIDIC SOLUTION

Compound	Inhibitor Concentration (mg/L)	Weight before corrosion (g) (avg.)	Weight after corrosion (g) (avg.)	Weight Loss (g) (avg.)	Corrosion rate (CR) (mm/y)
Control	0	8.35	5.05	3.3	67.28
1	100	8.19	7.20	0.99	20.18
1	200	8.23	7.40	0.83	16.92
1	300	8.52	7.99	0.53	10.80
2	100	8.31	7.56	0.75	15.29
2	200	8.35	7.86	0.49	9.99
2	300	8.43	8.07	0.36	7.34
3	100	8.08	7.78	0.30	6.11
3	200	8.46	8.24	0.22	4.48
3	300	8.33	8.23	0.10	2.03
4	100	8.58	7.93	0.65	13.25
4	200	8.16	7.65	0.51	10.39
4	300	8.28	7.94	0.34	6.93

RESULT AND DISCUSSION:

For compound 1-(Chloromethyl)-1H-Benzotriazole, weight loss as compared to control (3.3g) was less and was getting reduced to 0.99g, 0.83g and 0.53g for concentration 100mg/L, 200mg/L, 300mg/L in 0.5M acidic solution respectively. Similarly, CR was getting reduced to 20.18, 16.92, 10.80mm/h, respectively. The graph is shown as given below (fig. 3). Similarly for compound N-(benzo[e][1, 2, 4] triazin-4(3-H)-ylmethylbenzenamine, weight loss as compared to control (0.33mg) was less and was getting reduced to 0.75mg, 0.49mg and 0.36mg for concentration 100mg/L, 200mg/L, 300mg/L in 0.5M acidic solution respectively. Similarly, CR was getting reduced to 15.29, 9.99 and 7.34mm/h, respectively. The graph is shown as below (Fig. 4).
For compound 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)hydrazine, weight loss as compared to control was less and was getting reduced to 0.30mg, 0.22mg and 0.10mg for concentration 100mg/L, 200mg/L, 300mg/L in 0.5M acidic solution respectively. Similarly, CR was getting reduced to 6.11, 4.48, 2.03mm/h, respectively. The graph is shown in Fig. 5. For compound 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)phenyl hydrazine, weight loss as compared to control was less and was getting reduced to 0.65mg, 0.51mg and 0.34mg for concentration 100mg/L, 200mg/L, 300mg/L in 0.5M acidic solution respectively. Similarly, CR was getting reduced to 13.25, 10.39, 6.93mm/h, respectively. The graph is shown in Fig. 6.
Comparative study of CR for synthesized compounds at three different concentrations: The comparative analysis of the synthesized compounds with respect to 100mg/L, 200mg/L and 300mg/L is given in Fig. 7.

![Bar chart showing comparative analysis of CR for compounds 1, 2, 3, and 4 at 100mg/L, 200mg/L, and 300mg/L concentrations.]

Fig. 7: Comparative analysis of CR for compd. 1, 2, 3 and 4.

7. CONCLUSION:

All the synthesized benzotriazole derivatives are found effective corrosion inhibitors. Compounds 1-(Chloromethyl)-1H-Benzotriazole; 1, N-(benzo[e][1, 2, 4] triazin-4(3-H)-yl)methylbenzenamine; 2, 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)hydrazine; 3 and 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)phenyl hydrazine; 4 demonstrated remarkable anticorrosive activity at 300mg/L concentration and least anticorrosive activity at 100mg/L concentration in 0.5 M H₂SO₄ solution.

At 100mg/L, the effectiveness of corrosion inhabitancy of synthesized compounds follow the order 3, 4, 2 and 1.

At 200mg/L, the effectiveness of corrosion inhabitancy of synthesized compounds follow the order 3, 2, 4 and 1.

At 300mg/L, the effectiveness of corrosion inhabitancy of synthesized compounds follow the order 3, 4, 2 and 1.

Compound 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)hydrazine; 3 emerges as a leader in this study which shows potent anticorrosive activity against mild steel at all concentration in 0.5 M H₂SO₄ solution. Similar observation is obtained for compound 1-(Chloromethyl)-1H-Benzotriazole; 1, which shows moderate anticorrosive activity against mild steel at all concentration in 0.5 M H₂SO₄ solution.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

ACKNOWLEDGEMENT
The authors are very thankful to Dr. Ramesh Thakur, HOS, Lovely Professional University, Punjab for providing the research facilities.

REFERENCES

[1] G.H. Koch, M.P.H. Brongers, N.G. thompson, Y.P. Virmani, J.H. Payer, “Corrosion Costs and Preventive Strategies in the United States,” FHWA-RD-01-156 (McLean, VA: FHWA, 2002).

[2] G.H. Koch, N.G. Thompson, O. Moghissi, J.H. Payer, J. Varney, “IMPACT (International Measures of Prevention, Application, and Economics of Corrosion Technologies Study,” Report No. OAPUS310GKOCH (AP110272) (Houston, TX: NACE International, 2016).

[3] Scott D.A., Podany J. and Considine B.B. Ancient and Historical Metals, Conservation and Scientific Research, Proceedings of a Symposium, organized by J. Paul Getty Museum and the Getty Conservation Institute, 1991.

[4] Graedel T.E., Nassau K. and Franey J.P. Copper Patinas Formed in the Atmosphere -I. Corros. Sci. 1987, 27(7), 639-657.

[5] Graedel T.E. Copper Patinas Formed in the Atmosphere –II. A Quantitative Assessment of Mechanism. Corros. Sci. 1987, 27(7), 20.

[6] Bashir S., Sharma V., Lgaz H., Chung I.M., Singh A. and Kumar A. The inhibition action of algin on the corrosion of mild steel in acidic medium: A combined theoretical and experimental approach. J. Mol. 2018, 263, 454-462.

[7] Saxena A., Prasad D. and Haldhar R. Use of Butea monosperma extract as green corrosion inhibitor for mild steel in 0.5 MH2SO4. Int. J. Electrochem. Sci. 2017, 12, 8793-8805.

[8] Dhaundiyal P., Bashir S., Sharma V. and Kumar A. An investigation on mitigation of corrosion of mildsteel by Origanum vulgare in acidic medium. B. Chem. Soc. Ethiopia. 2019. 33(1), 159-168.

[9] Kumar A. and Bashir S. Ethambutol: A new and effective corrosion inhibitor of mildsteel in acidic medium. Russ. J. Appl. Chem. 2016, 89(7), 1158-1163.

[10] Dugdale I. and Cotton J.B. An Electrochemical Investigation on the Prevention of Staining of Copper by Benzotriazole. Corros. Sci. 1963, 3(2), 69-74.
[11] Branzoi V., Pruna A. and Branzoi F. Adsorption and Inhibitive Corrosion Properties of Some Polymeric Compounds as Green Inhibitors on Carbon Steels in Cooling Water Systems. Rev. Roum. Chim. 2007, 52, 587.

[12] Singh A.K. and Quraishi M.A. Effect of Cefazolin on the Corrosion of Mild Steel in HCl Solution. Corros. Sci. 2010, 52(1), 152-160.

[13] Emregul K.C., Duzgun E. and Atakol O. The Application of Some Polydentate Schiff Base Compounds Containing Aminic Nitrogens as Corrosion Inhibitors for Mild Steel in Acidic Media. Corros. Sci. 2006, 48(10), 3243-3260.

[14] Lebrini M., Bentiss F., Vezin H. and Lagrenee M., The Inhibition of Mild Steel Corrosion in Acidic Solutions by 2, 5-bis (4-Pyridyl)-1, 3, 4-Thiadiazole: Structure–Activity Correlation. Corros. Sci. 2006, 48(5), 1279-1291.

[15] Geigy AG J.R. Corrosion Inhibitor for Copper and its Alloys. Brigian Patent 658,763. July 26, 1965.

[16] Branzoi F. Branzoi V. and Harabor I. Inhibition of Carbon Steel Corrosion in Cooling Water Systems by new Organic Polymers. Rev. Chim. (Bucharest). 2011, 62(11), 1090-1097.

[17] Gong Y., Wang Z., Gao F., Zhang S and Li H. Synthesis of New Benzotriazole Derivatives Containing Carbon Chains as the Corrosion Inhibitors for Copper in Sodium Chloride Solution. Ind. Eng. Chem. Res., 2015, 54(49), 12242–12253.

[18] Fateh A., Aliofkhazraei M., Rezvanian A.R. Review of Corrosive Environments for Copper and its Corrosion Inhibitors. Arab. J. Chem. 2020, 13(1), 481-544.

[19] Dugdale I and Cotton J.B. An Electrochemical Investigation on the Prevention of Staining of Copper by Benzotriazole. Corros. Sci. 1963, 3(2), 69-74.

[20] Cotton J.B. and Scholes I.R. Benzotriazole and Related Compounds as Corrosion Inhibitors for Copper. Br. Corros. J. 1967, 2(1), 1-5.

[21] Al-Hinai A.T. and Osseo-Asare K. Corrosion of Copper in BTA Solutions Effects of Passive Film Removal. Electrochem. Solid-State Lett. 2003, 6(5), B23-B24.

[22] Laguzzi G. and Luvidi L. Evolution of the Anticorrosive Properties of Benzotriazole Alkyl Derivatives on 6% Sn Bronze Alloy. Surf. Coat. Tech. 2010, 204, 2442-2446.

[23] Amini M., Aliofkhazraei M., Navidi Kashani A.H., Rouhaghdam A.S. Mild Steel Corrosion Inhibition by Benzotriazole in 0.5M Sulfuric Acid Solution on Rough and Smooth Surfaces. Int. J. Electrochem. Sci. 2017, 12, 8708 – 8732.
[24] Wang L. Inhibition of Mild Steel Corrosion in Phosphoric Acid Solution by Triazole Derivatives. Corros. Sci. 2006, 48, 608-616.
[25] Zhang S., Ma L., Dong R., Zhang C.Y., Sun W.J., Fan M.J., Yang D.S., Zhou F. and Liu W.M. Study on the Synthesis and Tribological Properties of Anti-corrosion Benzotriazole Ionic Liquid. RSC Adv. 2017, 7, 11030-11040.
[26] Mennucci M.M., Banczek E.P., Rodrigues P.R.P, Costa I. Evaluation of Benzotriazole as Corrosion Inhibitor for Carbon Steel in Simulated Pore Solution. Cement Concrete Comp. 2009, 31(6), 418-424.
[27] Abu-Baker A.N., MacLeod I.D., Sloggett R.I, Taylor R. A Comparative Study of Salicylaldoxime, Cysteine and Benzotriazole as Inhibitors for the active Chloride-based Corrosion of Copper and Bronze Artifacts. Eur. Sci. J. 2013, 9(33), 229-251.
[28] Yao J.L., Ren B., Huang Z.F., Cao P.G., Gu R.A. and Tian Z.Q. “Extending Surface Raman Spectroscopy to Transition Metals for Practical Applications IV. A Study on Corrosion Inhibition of Benzotriazole on Bare Fe Electrodes. Electrochimica. Acta. 2003, 48(9), 1263-1271.
[29] Ghayad I.M. and Saad A.Y. Corrosion Inhibition of Copper and its Alloys using Benzotriazole. Egypt. J. Chem. 2010, 53(3), 403-415.
[30] Batis G., Rakanta E., Theodoridis B., Sideris K.K., Psomas K. and Barvari X. Influence of N, N'-Dimethylaminoethanol Corrosion Inhibitor on Carbonation and Chloride-Induced Corrosion of Steel. ACI Special Publication. 2003, 217, 469-482.
[31] Gong Y., Li H., Gao and Yuan X. Preparation of Benzotriazole Derivative as Corrosion Inhibitor. 2013, CN 103342684, A 20131009.
[32] Laguzzi G. and Luvidi L. Evalution of Anticorrosive Properties of Benzotriazole Alkyl Derivatives on 6% Sn Bronze Alloy. Surf. Coat. Technol. 2010, 204(15), 2442-2446.
[33] Zhang J., Zhang X., Zhou H., Liu G. and Kuang Y. Synergetic Inhibition Effect of Benzotriazole and its Derivatives on Copper. Diandu.Yu. Tushi. 2011, 30, 46-49.
[34] Jia Z., Xia Y., Pang X. and Hao J. Tribiological Behaviours of Different Diamond-like Carbon Coatings on Nitrided Mild Steel Lubricated with Benzotriazole-containing Borate Esters. Tribol. Lett. 2011, 41, 247-256.
[35] Li J. Wu H. and Ren T. The Tribological Study of Novel Benzotriazole-containing Anticorrosive Polysulphides in Rapeseed Oil. J. Tribol. 2008, 131:011801.
[36] Selvi S.T., Raman V. and Rajendran N. Corrosion Inhibition of Mild Steel by Benzotriazole Derivatives in Acidic Medium. J. Appl. Electrochem. 2003, 33(12), 1175-1182.
[37] Ababneh A.N., Sheban M., Abu-Dalo M. and Andreescu S. Effect of Benzotriazole Derivatives on Steel Corrosion in Solution Simulated Carbonated Concrete. JJCE. 2009, 3, 91-102.

[38] Trabanelli G., Monticelli C., Grassi V. and Frignani A. Electrochemical study on inhibitors of rebar corrosion in carbonated concrete. Cement Concrete Res. 2005, 35(9), 1804-1813.

[39] Schweitzer P.A. Fundamentals of corrosion – Mechanisms, Causes and Preventative Methods. Taylor and Francis Group, LLC. 2010, ISBN 978-1-4200-6770-5, p. 25.