The Gâteaux Derivative and Integral over Banach Algebra

Aleks Kleyn

ABSTRACT. Let \(A \) be algebra over commutative ring \(D \). Map \(f : A \to A \) is linear if for any \(a, b \in A \) and any \(c \in D \)
\[
 f \circ (a + b) = f \circ a + f \circ b
 \]
\[
 f \circ (ca) = c f \circ a
 \]
Map \(f : A \to A \) is called differentiable in the Gâteaux sense, if
\[
 f(x + a) - f(x) = \partial f(x) \circ a + o(a)
 \]
where the Gâteaux derivative \(\partial f(x) \) of map \(f \) is linear map of increment \(a \) and \(o \) is such continuous map that
\[
 \lim_{a \to 0} \frac{|o(a)|}{|a|} = 0
 \]
For instance
\[
 \partial(x^2) \circ h = xh + hx
 \]
\[
 \partial(x^{-1}) \circ h = -x^{-1}hx^{-1}
 \]
Assuming that we defined the Gâteaux derivative \(\partial^{n-1} f(x) \) of order \(n - 1 \), we define
\[
 \partial^n f(x) \circ (a_1 \otimes \ldots \otimes a_n) = \partial(\partial^{n-1} f(x) \circ (a_1 \otimes \ldots \otimes a_{n-1})) \circ a_n
 \]
the Gâteaux derivative of order \(n \) of map \(f \). When \(h_1 = \ldots = h_n = h \), we assume
\[
 \partial^n f(x) \circ h = \partial^n f(x) \circ (h_1 \otimes \ldots \otimes h_n)
 \]
Function \(f(x) \) has Taylor series expansion
\[
 f(x) = \sum_{n=0}^{\infty} \frac{(n!)^{-1}}{n!} \partial^n f(x_0) \circ (x - x_0)
 \]
Differential equation over division ring
\[
 \partial (y) \circ h = hx^2 + xhx + x^2h
 \]
has solution
\[
 y = x^3
 \]
The solution of differential equation
\[
 \partial (y) \circ h = \frac{1}{2} (yh + hy)
 \]
\[
 y(0) = 1
 \]
is exponent \(y = e^x \) that has following Taylor series expansion
\[
 e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
 \]
The equation
\[
 e^{a+b} = e^a e^b
 \]
is true iff \(ab = ba \).
1. Preface

The possibility of linear approximation of mapping is at the heart of calculus and main constructions of calculus have their roots in linear algebra. Therefore, before we give the definition of the differentiable function, we need to have an idea of the mappings that we are going to use to approximate the behavior of the original function.

Since the product in the field is commutative, then linear algebra over a field is relatively simple. When we explore division ring where product is not commutative, we still see some familiar statements of linear algebra; however, we meet new statements, which change the landscape of linear algebra.

Here I want to draw attention to the evolution of the concept of the derivative from the time of Newton. When we study functions of single variable, the derivative in selected point is a number. When we study function of multiple variables, we realize that it is not enough to use number. The derivative becomes vector or gradient. When we study maps of vector spaces, this is a first time that we tell about derivative as operator. However since this operator is linear, then we can represent derivative as matrix. Again we express a vector of increment of function as product of a matrix of derivative (Jacobian matrix) over vector of increment of argument.
Surely, such behavior of derivative weakens our attention. When we consider objects which are more complex than fields or vector spaces, we still try to see an object which can be written as a factor before an increment and which does not depend on the increment.

The assumption that the derivative of the mapping f over algebra A is defined by equation

\begin{equation}
 f(x + h) - f(x) = \partial f(x)h + o(h)
 \end{equation}

initially looks attractive. At first glance, such a definition satisfies the classical properties of derivative of mapping over field. However, in general, the product of differentiable functions is not differentiable function. It causes that the set of differentiable functions is very small, and such theory of differentiation is not interesting.

Since the algebra is a module over some commutative ring, there exist two ways to explore structures generated over the algebra.\(^1\) If the algebra is a free module, then we can choose a basis and consider all operations in the coordinates relative a given basis. Although the base can be arbitrary, we can choose the most simple basis in terms of algebraic operations. Beyond doubt, this approach has the advantage that we are working in commutative ring where all operations are well studied.

Exploration of operations in algebra regardless of the chosen basis gives an opportunity to consider elements of algebra as independent objects. However, noncommutativity of the product in the algebra is a source of a lot of difficulties on this way.

The question arises as to whether there exists an alternative method if the definition of derivative (1.1) restricts our ability to study infinitesimal behavior of map? The answer on this question is affirmative. We explore the calculus in algebra that is normed module. We know two types of derivative in normed space. Strong derivative or the Fréchet derivative is analogue of the derivative (1.1). Besides strong derivative there exits weak derivative or the Gâteaux derivative. The main idea is that differential may depend on direction.

The algebra A is the module over commutative ring D. If we relax the definition of derivative and require that derivative of the mapping f is a linear mapping of the module A, then we see that at least polynomial in algebra A is differentiable mapping. Defined in this way the derivative has many properties of derivative of the mapping over field. Therefore, in algebra, because of the noncommutativity of multiplication differential of the function has terms of the form

\begin{equation}
 a \, dx \, b
 \end{equation}

\(^1\)To explore the differentiation in the algebra, there is one more method of studying. Considering a certain set of functions, we can define differential operators acting on this set ([1], p. 368).

For instance, in the paper [13], Ludkovsky considers differential operators ∂z and $\partial \sigma$ in Cayley-Dickson algebra such that

\[
\begin{align*}
\partial z &= 1 \\
\partial \sigma &= 0 \\
\partial \bar{z} &= 0 \\
\partial \bar{\sigma} &= 1
\end{align*}
\]

Considering given properties of differential operator, Ludkovsky study its structure.

The exploration of differential operator from different points of view gives more deep knowledge and in the future I suppose to consider relation between different way of study theory of differentiation.
and we cannot write the differential of the mapping as a product of the derivative and the differential of the argument.

Hamilton was first to explore the differential of mapping of quaternion algebra ([11]). Apparently, his results appeared so out of the ordinary that his contemporaries found it difficult to embrace this Hamilton’s idea. Next generations forgot this research.\(^2\)

The problem of inseparability of derivative and differential is so serious that when Gâteaux defined weak differentiation, he considered a derivative only in case when he was able to separate increment of an argument as factor.

However, how is this obstacle serious? Derivative is a mapping of differential of argument to differential of function. In other words, derivative is some algorithm whose input is differential of argument and the output is the differential of function. If we consider functional notation for linear mapping, namely

\[
f \circ x = f(x)
\]

then we can formally separate the differential of the argument from the derivative and make a notation of the differential of function

\[
\partial f(x) (dx)
\]

more familiar, namely

\[
\partial f(x) \circ dx
\]

Tensor product of algebras allows us to write the structure of derivative as operator.

In addition, new notation allows us to simplify many expressions. For instance, an expression

\[
\partial f(\mathbf{x})(d\mathbf{x}) = \mathbf{r} \frac{\partial s_{0}f^{1}(\mathbf{x})}{\partial x^{1}} d\mathbf{x}^{1} \frac{\partial s_{1}f^{1}(\mathbf{x})}{\partial x^{1}}
\]

gets form

\[
\partial f(\mathbf{x}) \circ d\mathbf{x} = \begin{pmatrix}
\partial f^{1}(\mathbf{x}) \circ d\mathbf{x}^{1} \\
\vdots \\
\partial f^{n}(\mathbf{x}) \circ d\mathbf{x}^{n}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\frac{\partial s_{0}f^{1}(\mathbf{x})}{\partial x^{1}} \otimes \frac{\partial s_{1}f^{1}(\mathbf{x})}{\partial x^{1}} & \cdots & \frac{\partial s_{0}f^{1}(\mathbf{x})}{\partial x^{n}} \otimes \frac{\partial s_{1}f^{1}(\mathbf{x})}{\partial x^{n}} \\
\frac{\partial s_{0}f^{1}(\mathbf{x})}{\partial x^{1}} \otimes \frac{\partial s_{1}f^{n}(\mathbf{x})}{\partial x^{1}} & \cdots & \frac{\partial s_{0}f^{n}(\mathbf{x})}{\partial x^{n}} \otimes \frac{\partial s_{1}f^{n}(\mathbf{x})}{\partial x^{n}}
\end{pmatrix} \circ \begin{pmatrix}
d\mathbf{x}^{1} \\
\vdots \\
d\mathbf{x}^{m}
\end{pmatrix}
\]

As in the case of mappings over the field, the differential of mapping over the algebra is polynomial of first power with respect to increment of argument. The structure of polynomial over division ring is different from structure of polynomial over field. I consider some properties of polynomial in section 5.2. Using obtained theorems I explore Taylor series expansion of map and method to find solution of differential equation.

\(^2\)In the paper [14], Bertram explored the Gâteaux derivative of mappings over the commutative ring. Since the product is commutative, then statements in the paper are close to statements of classical calculus. The derivative is defined as the mapping of the differential of the argument into the differential of the function.
2. Conventions

Convention 2.1. Function and mapping are synonyms. However according to tradition, correspondence between either rings or vector spaces is called mapping and a mapping of either real field or quaternion algebra is called function.

Convention 2.2. I assume sum over index s in expression like
\[a_s \cdot 0 a_s \cdot 1 \]

Convention 2.3. Let A be free finite dimensional algebra. Considering expansion of element of algebra A relative basis e_i we use the same root letter to denote this element and its coordinates. However we do not use vector notation in algebra. In expression a^2, it is not clear whether this is component of expansion of element a relative basis, or this is operation $a^2 = aa$. To make text clearer we use separate color for index of element of algebra. For instance,
\[a = a^i e_i \]

Convention 2.4. If free finite dimensional algebra has unit, then we identify the vector of basis e_0 with unit of algebra.

Convention 2.5. If, in a certain expression, we use several operations which include the operation \circ, then it is assumed that the operation \circ is executed first. Below is an example of equivalent expressions.
\[
\begin{align*}
 f \circ xy & \equiv f(x)y \\
 f \circ (xy) & \equiv f(xy) \\
 f \circ x + y & \equiv f(x) + y \\
 f \circ (x + y) & \equiv f(x + y)
\end{align*}
\]

Without a doubt, the reader may have questions, comments, objections. I will appreciate any response.

3. Linear Mapping of Algebra

3.1. Module.

Theorem 3.1. Let ring D has unit e. Representation
\[(3.1)\]
\[f : D \rightarrow * A \]
of the ring D in an Abelian group A is effective iff $a = 0$ follows from equation $f(a) = 0$.

Proof. We define the sum of transformations f and g of an Abelian group according to rule
\[(f + g) \circ a = f \circ a + g \circ a \]
Therefore, considering the representation of the ring D in the Abelian group A, we assume
\[f(a + b) \circ x = f(a) \circ x + f(b) \circ x \]
We define the product of transformation of representation according to rule
\[f(ab) = f(a) \circ f(b) \]
Suppose \(a, b \in R \) cause the same transformation. Then
\[
(3.2) \quad f(a) \circ m = f(b) \circ m
\]
for any \(m \in A \). From the equation (3.2) it follows that \(a - b \) generates zero transformation
\[
f(a - b) \circ m = 0
\]
Element \(e + a - b \) generates an identity transformation. Therefore, the representation \(f \) is effective iff \(a = b \). □

Definition 3.2. Let \(D \) be commutative ring. \(A \) is a module over ring \(D \) if \(A \) is an Abelian group and there exists effective representation of ring \(D \) in an Abelian group \(A \). □

Definition 3.3. We call set of vectors \(\overline{\tau} = (\tau_i, i \in I) \) a \(D^* \)-basis for module if vectors \(\tau_i \) are \(D^* \)-linearly independent and adding to this system any other vector we get a new system which is \(D^* \)-linearly dependent. \(A \) is free module over ring \(D \), if \(A \) has basis over ring \(D \). □

Theorem 3.4. Let \(A \) be free module over ring \(D \). Coordinates \(a^j \) of vector \(a \in A \) are coordinates of \(D \)-valued contravariant tensor
\[
(3.3) \quad a^j = A^j_i a^i
\]

Proof. Let \(\overline{\tau}' \) be another basis. Let
\[
(3.4) \quad \tau'_i = \tau_j A^j_i
\]
be transformation, mapping basis \(\overline{\tau} \) into basis \(\overline{\tau}' \). Because vector \(a \) does not change, then
\[
(3.5) \quad a = \tau'_i a'^i = \tau_j a^j
\]
From equations (3.4) and (3.5) it follows that
\[
(3.6) \quad \tau_j a^j = \tau'_i a'^i = \tau_j A^j_i a'^i
\]
Because vectors \(\tau_j \) are linear independent, then equation (3.3) follows from equation (3.6). Therefore, coordinates of vector are tensor. □

Following definition is consequence of definitions 3.2 and 3.2.2.2.

Definition 3.5. Let \(A_1 \) be module over ring \(R_1 \). Let \(A_2 \) be module over ring \(R_2 \). Morphism
\[
(f : R_1 \rightarrow R_2, g : A_1 \rightarrow A_2)
\]
of representation of ring \(R_1 \) in the Abelian group \(A_1 \) into representation of ring \(R_2 \) in the Abelian group \(A_2 \) is called linear mapping of \(R_1 \)-module \(A_1 \) into \(R_2 \)-module \(A_2 \). □

Theorem 3.6. Linear mapping
\[
(f : R_1 \rightarrow R_2, g : A_1 \rightarrow A_2)
\]
follow to the definition in [1], p. 135.
The Gâteaux Derivative and Integral over Banach Algebra

of \(R_1\)-module \(A_1 \) into \(R_2\)-module \(A_2 \) satisfies to equations\(^4\)

\[
\begin{align*}
(3.7) & \quad g \circ (a + b) = g \circ a + g \circ b \\
(3.8) & \quad g \circ (pa) = (f \circ p)(g \circ a) \\
(3.9) & \quad f \circ (pq) = (f \circ p)(f \circ q)
\end{align*}
\]
\(a, b \in A_1 \quad p, q \in R_1 \)

Proof. From definitions 3.5 and [3]-2.2.2 it follows that

- the mapping \(f \) is a homomorphism of the ring \(R_1 \) into the ring \(R_2 \) (the equation (3.9))
- the mapping \(g \) is a homomorphism of the Abelian group \(A_1 \) into the Abelian group \(A_2 \) (the equation (3.7))

The equation (3.8) follows from the equation [3]-2.2.4. \(\square \)

According to the theorem [3]-2.2.18, in the study of linear mappings, without loss of generality, we can assume \(R_1 = R_2 \).

Definition 3.7. Let \(A_1 \) and \(A_2 \) be modules over the ring \(R \). Morphism

\[
f : A_1 \to A_2
\]

of representation of the ring \(D \) in the Abelian group \(A_1 \) into representation of the ring \(D \) in the Abelian group \(A_2 \) is called **linear mapping of \(D \)-module \(A_1 \) into \(D \)-module \(A_2 \)**.

Theorem 3.8. **Linear mapping**

\[
f : A_1 \to A_2
\]

of \(D \)-module \(A_1 \) into \(D \)-module \(A_2 \) satisfies to equations\(^5\)

\[
\begin{align*}
(3.10) & \quad f \circ (a + b) = f \circ a + f \circ b \\
(3.11) & \quad f \circ (pa) = p(f \circ a)
\end{align*}
\]
\(a, b \in A_1 \quad p \in D \)

Proof. From definition 3.7 and theorem [3]-2.2.18 it follows that the mapping \(g \) is a homomorphism of the Abelian group \(A_1 \) into the Abelian group \(A_2 \) (the equation (3.10)) The equation (3.11) follows from the equation [3]-2.2.44. \(\square \)

\(^4\)In classical notation, proposed equations have quite familiar form

\[
\begin{align*}
g(a + b) &= g(a) + g(b) \\
g(pa) &= f(p)g(a) \\
f(pq) &= f(p)f(q)
\end{align*}
\]
\(a, b \in A_1 \quad p, q \in R_1 \)

\(^5\)In classical notation, proposed equations have form

\[
\begin{align*}
f(a + b) &= f(a) + f(b) \\
f(pa) &= pf(a)
\end{align*}
\]
\(a, b \in A_1 \quad p \in D \)

In some books (for instance, [1], p. 119) the theorem 3.8 is considered as a definition.
Definition 3.9. Let D be the commutative ring. Let A_1, \ldots, A_n, S be D-modules. We call map
\[f : A_1 \times \ldots \times A_n \rightarrow S \]
\textit{polylinear mapping of modules} A_1, \ldots, A_n into module S, if
\[f \circ (a_1, \ldots, a_i + b_i, \ldots, a_n) = f \circ (a_1, \ldots, a_i, \ldots, a_n) + f \circ (a_1, \ldots, b_i, \ldots, a_n) \]
\[f \circ (a_1, \ldots, pa_i, \ldots, a_n) = pf \circ (a_1, \ldots, a_i, \ldots, a_n) \]
\[1 \leq i \leq n \quad a_i, b_i \in A_i \quad p \in D \]
\[\square \]

3.2. Algebra over Ring.

Definition 3.10. Let D be commutative ring. Let A be module over ring D. For given bilinear mapping
\[f : A \times A \rightarrow A \]
we define product in A
\begin{equation}
ab = f \circ (a, b)
\end{equation}
A is a \textit{algebra over ring} D if A is D-module and we defined product (3.12) in A. Algebra A^* is called \textit{the opposite algebra to algebra} A if we define a product in the module A according to rule6
\[ba = f \circ (a, b) \]
If A is free D-module, then A is called \textit{free algebra over ring} D.

Remark 3.11. Algebra A and opposite algebra coincide as modules.

Theorem 3.12. The multiplication in the algebra A is distributive over addition.

Proof. The statement of the theorem follows from the chain of equations
\[(a + b)c = f \circ (a + b, c) = f \circ (a, c) + f \circ (b, c) = ac + bc \]
\[a(b + c) = f \circ (a, b + c) = f \circ (a, b) + f \circ (a, c) = ab + ac \]
\[\square \]

The multiplication in algebra can be neither commutative nor associative. Following definitions are based on definitions given in [10], p. 13.

Definition 3.13. The \textit{commutator}
\[[a, b] = ab - ba \]
measures commutativity in D-algebra A. D-algebra A is called \textit{commutative}, if
\[[a, b] = 0 \]
\[\square \]

Definition 3.14. The \textit{associator}
\begin{equation}
(a, b, c) = (ab)c - a(bc)
\end{equation}
measures associativity in D-algebra A. D-algebra A is called \textit{associative}, if
\[(a, b, c) = 0 \]
\[\square \]

6I made the definition by analogy with the definition [5]-2, p. 2.
Theorem 3.15. Let A be algebra over commutative ring D.\(^7\)

\[(3.14)\quad a(b, c, d) + (a, b, c)d = (ab, c, d) - (a, bc, d) + (a, b, cd)\]

for any $a, b, c, d \in A$.

Proof. The equation (3.14) follows from the chain of equations

\[
\begin{align*}
 a(b, c, d) + (a, b, c)d &= a((bc)d - b(cd)) + ((ab)c - a(bc))d \\
 &= a((bc)d) - a(b(cd)) + ((ab)c)d - (a(bc))d \\
 &= ((ab)c)d - (ab)(cd) + (ab)(cd) \\
 &= a((bc)d) - a(b(cd)) - (a(bc))d \\
 &= (ab, c, d) - (a(bc))d + (ab)(cd) - a(b(cd)) \\
 &= (ab, c, d) - (a, (bc), d) + (a, b, cd)
\end{align*}
\]

\[\Box\]

Definition 3.16. The set\(^8\)

\[N(A) = \{a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0\}\]

is called the nucleus of an D-algebra A.

Definition 3.17. The set\(^9\)

\[Z(A) = \{a \in A : a \in N(A), \forall b \in A, ab = ba\}\]

is called the center of an D-algebra A.

Theorem 3.18. Let D be commutative ring. If D-algebra A has unit, then there exists an isomorphism f of the ring D into the center of the algebra A.

Proof. Let $e \in A$ be the unit of the algebra A. Then $f \circ a = ae$. \[\Box\]

Let \mathbf{e} be the basis of free algebra A over ring D. If algebra A has unit, then we assume that \mathbf{e}_0 is the unit of algebra A.

Theorem 3.19. Let \mathbf{e} be the basis of free algebra A over ring D. Let

\[a = a^i e_i, \quad b = b^i e_i, \quad a, b \in A\]

We can get the product of a, b according to rule

\[(3.15)\quad (ab)^k = C^k_{ij} a^i b^j\]

where C^k_{ij} are structural constants of algebra A over ring D. The product of basis vectors in the algebra A is defined according to rule

\[(3.16)\quad \mathbf{e}_i \mathbf{e}_j = C^k_{ij} \mathbf{e}_k\]

Proof. The equation (3.16) is corollary of the statement that \mathbf{e} is the basis of the algebra A. Since the product in the algebra is a bilinear mapping, then we can write the product of a and b as

\[(3.17)\quad ab = a^i b^j e_i e_j\]

\[\text{7}\text{The statement of the theorem is based on the equation [10]-2.4.}\]

\[\text{8}\text{The definition is based on the similar definition in [10], p. 13}\]

\[\text{9}\text{The definition is based on the similar definition in [10], p. 14}\]
From equations (3.16), (3.17), it follows that

\[ab = a^{ij} C^{k}_{ij} e_k \]

Since \(e \) is a basis of the algebra \(A \), then the equation (3.15) follows from the equation (3.18).

\[\square \]

Theorem 3.20. Since the algebra \(A \) is commutative, then

\[C^{p}_{ij} = C^{p}_{ji} \]

Since the algebra \(A \) is associative, then

\[C^{p}_{ij} C^{q}_{pk} = C^{q}_{ip} C^{p}_{jk} \]

Proof. For commutative algebra, the equation (3.19) follows from equation

\[e_i e_j = e_j e_i \]

For associative algebra, the equation (3.20) follows from equation

\[(e_i e_j) e_k = e_i (e_j e_k) \]

\[\square \]

3.3. Linear Mapping of Algebra

Algebra is a ring. A mapping, preserving the structure of algebra as a ring, is called homomorphism of algebra. However, the statement that algebra is a module over a commutative ring is more important for us. A mapping, preserving the structure of algebra as module, is called a linear mapping of algebra. Thus, the following definition is based on the definition 3.7.

Definition 3.21. Let \(A_1 \) and \(A_2 \) be algebras over ring \(D \). Morphism

\[f : A_1 \rightarrow A_2 \]

of the representation of the ring \(D \) in the Abelian group \(A_1 \) into the representation of the ring \(D \) in the Abelian group \(A_2 \) is called **linear mapping of \(D \)-algebra \(A_1 \) into \(D \)-algebra \(A_2 \)**. Let us denote \(\mathcal{L}(A_1; A_2) \) set of linear mappings of algebra \(A_1 \) into algebra \(A_2 \).

Theorem 3.22. Linear mapping

\[f : A_1 \rightarrow A_2 \]

of \(D \)-algebra \(A_1 \) into \(D \)-algebra \(A_2 \) satisfies to equations

\[
\begin{align*}
f \circ (a + b) &= f \circ a + f \circ b \\
f \circ (pa) &= pf \circ a \\
a, b \in A_1 & \quad p \in D
\end{align*}
\]

Proof. The statement of theorem is a corollary of the theorem 3.8.

Theorem 3.23. Consider \(D \)-algebra \(A_1 \) and \(D \)-algebra \(A_2 \). Let map

\[f : A_1 \rightarrow A_2 \]

be linear map. Then maps \(af, fb, a, b \in A_2 \), defined by equations

\[
\begin{align*}
(af) \circ x &= a f \circ x \\
(fb) \circ x &= f \circ x b
\end{align*}
\]

are linear.
Proof. Statement of theorem follows from chains of equations
\[
(af) \circ (x + y) = a f \circ (x + y) = a (f \circ x + f \circ y) = a f \circ x + a f \circ y = (af) \circ x + (af) \circ y
\]
\[
(af) \circ (px) = a f \circ (px) = ap f \circ x = pa f \circ x = p (af) \circ x
\]
\[
(fb) \circ (x + y) = f \circ (x + y) b = (f \circ x + f \circ y) b = f \circ x b + f \circ y b = (fb) \circ x + (fb) \circ y
\]
\[
(fb) \circ (px) = f \circ (px) b = p f \circ x b = p (fb) \circ x
\]
\[
\square
\]

Theorem 3.24. Consider D-algebra A_1 and D-algebra A_2. Let map
\[
f : A_1 \to A_2
\]
be linear map. Then $f \circ 0 = 0$.

Proof. Corollary of equation
\[
f(a + 0) = f(a) + f(0)
\]
\[
\square
\]

3.4. Polylinear Mapping of Algebra.

Definition 3.25. Let D be the commutative associative ring. Let A_1, \ldots, A_n be D-algebras and S be D-module. We call map
\[
f : A_1 \times \ldots \times A_n \to S
\]
polylinear mapping of algebras A_1, \ldots, A_n into module S, if
\[
f \circ (a_1, a_i + b_i, \ldots, a_n) = f \circ (a_1, \ldots, a_i, \ldots, a_n) + f \circ (a_1, \ldots, b_i, \ldots, a_n)
\]
\[
f \circ (a_1, \ldots, pa_i, \ldots, a_n) = pf \circ (a_1, \ldots, a_i, \ldots, a_n)
\]
\[
1 \leq i \leq n \quad a_i, b_i \in A_i \quad p \in D
\]

Let us denote $\mathcal{L}(A_1, \ldots, A_n; S)$ set of polylinear mappings of algebras A_1, \ldots, A_n into module S. Let us denote $\mathcal{L}(A^n; S)$ set of n-linear mappings of algebra A ($A_1 = \ldots = A_n = A$) into module S.

*Theorem 3.26.** Let D be the commutative associative ring. Let A_1, \ldots, A_n be D-algebras and S be D-module. Let mappings
\[
f : A_1 \times \ldots \times A_n \to S
\]
\[
g : A_1 \times \ldots \times A_n \to S
\]
be polylinear mappings. Then mapping $f + g$ defined by equation
\[
(f + g) \circ (a_1, \ldots, a_n) = f \circ (a_1, \ldots, a_n) + g \circ (a_1, \ldots, a_n)
\]
is polylinear.
Proof. Statement of theorem follows from chains of equations

\[(f + g) \circ (x_1, \ldots, x_i + y_i, \ldots, x_n)\]
\[= f \circ (x_1, \ldots, x_i + y_i, \ldots, x_n) + g \circ (x_1, \ldots, y_i, \ldots, x_n)\]
\[= f \circ (x_1, \ldots, x_i, \ldots, x_n) + f \circ (x_1, \ldots, y_i, \ldots, x_n)\]
\[+ g \circ (x_1, \ldots, y_i, \ldots, x_n)\]
\[= (f + g) \circ (x_1, \ldots, x_i, \ldots, x_n) + (f + g) \circ (x_1, \ldots, y_i, \ldots, x_n)\]
\[= (f + g) \circ (x_1, \ldots, x_i, \ldots, x_n)\]
\[= (f + g) \circ (x_1, \ldots, px_i, \ldots, x_n)\]
\[= (f + g) \circ (x_1, \ldots, x_i, \ldots, x_n) + (f + g) \circ (x_1, \ldots, y_i, \ldots, x_n)\]
\[= (f + g) \circ (x_1, \ldots, x_i, \ldots, x_n)\]

\[\Box\]

Theorem 3.28. Let \(D\) be the commutative associative ring. Let \(A_1, \ldots, A_n\) be \(D\)-algebras and \(S\) be \(D\)-module. Let mapping

\[f : A_1 \times \ldots \times A_n \rightarrow S\]

be polylinear mapping. Then mapping \(pf, p \in D\), defined by equation

\[(pf) \circ x = p f \circ x\]

is polylinear. This holds

\[p(qf) = (pq)f\]
\[(p + q)f = pf + qf\]
Proof. Statement of theorem follows from chains of equations
\[(pf) \circ (x_1, ..., x_i + y_i, ..., x_n) = pf \circ (x_1, ..., x_i + y_i, ..., x_n)\]
\[= p(f \circ (x_1, ..., x_i, ..., x_n) + f \circ (x_1, ..., y_i, ..., x_n))\]
\[= p(f \circ (x_1, ..., x_i, ..., x_n) + p f \circ (x_1, ..., y_i, ..., x_n))\]
\[= (pf) \circ (x_1, ..., x_i, ..., x_n) + (pf) \circ (x_1, ..., y_i, ..., x_n)\]
\[(pf) \circ (x_1, ..., qx_i, ..., x_n) = p f \circ (x_1, ..., qx_i, ..., x_n) = pq f \circ (x_1, ..., x_i, ..., x_n)\]
\[= q(pf) \circ (x_1, ..., x_n) = q \circ (pf) \circ (x_1, ..., x_n)\]
\[(p(qf)) \circ (x_1, ..., x_n) = p(qf) \circ (x_1, ..., x_n) = p(qf) \circ (x_1, ..., x_n)\]
\[= pqf \circ (x_1, ..., x_n) = ((pq)f) \circ (x_1, ..., x_n)\]
\[((p + q)f) \circ (x_1, ..., x_n) = (p + q) f \circ (x_1, ..., x_n)\]
\[= p f \circ (x_1, ..., x_n) + q f \circ (x_1, ..., x_n)\]
\[= (pf) \circ (x_1, ..., x_n) + (qf) \circ (x_1, ..., x_n)\]
\[\square\]

Corollary 3.29. Consider algebra A_1 and algebra A_2. Let mapping
\[f : A_1 \to A_2\]
be linear mapping. Then mapping pf, $p \in D$, defined by equation
\[(pf) \circ x = pf \circ x\]
is linear. This holds
\[p(qf) = (pq)f\]
\[(p + q)f = pf + qf\]
\[\square\]

Theorem 3.30. Let D be the commutative associative ring. Let $A_1, ..., A_n$ be D-algebras and S be D-module. The set $\mathcal{L}(A_1, ..., A_n; S)$ is a D-module.

Proof. The theorem 3.26 determines the sum of polylinear mappings into D-module S. Let $f, g, h \in \mathcal{L}(A_1, ..., A_2; S)$. For any $a = (a_1, ..., a_n)$, $a_1 \in A_1, ..., a_n \in A_n$,\[(f + g) \circ a = f \circ a + g \circ a = g \circ a + f \circ a\]
\[= (g + f) \circ a\]
\[((f + g) + h) \circ a = (f + g) \circ a + h \circ a = (f \circ a + g \circ a) + h \circ a\]
\[= f \circ a + (g \circ a + h \circ a) = f \circ a + (g + h) \circ a\]
\[= (f + (g + h)) \circ a\]

Therefore, sum of polylinear mappings is commutative and associative.

The mapping z defined by equation
\[z \circ a = 0\]
is zero of addition, because
\[(z + f) \circ a = z \circ a + f \circ a = 0 + f \circ a = f \circ a\]
For a given mapping f a mapping g defined by equation
\[g \circ a = -f \circ a\]
satisfies to equation \[f + g = z \]
because \[(f + g) \circ a = f \circ a + g \circ a = f \circ a - f \circ a = 0 \]
Therefore, the set \(L(A_1; A_2) \) is an Abelian group.

From the theorem 3.28, it follows that the representation of the ring \(D \) in the Abelian group \(L(A_1, \ldots, A_n; S) \) is defined. Since the ring \(D \) has unit, then, according to the theorem 3.1, specified representation is effective. □

Corollary 3.31. Let \(D \) be commutative ring with unit. Consider \(D \)-algebra \(A_1 \) and \(D \)-algebra \(A_2 \). The set \(L(A_1; A_2) \) is an \(D \)-module. □

3.5. Algebra \(\mathcal{L}(A; A) \).

Theorem 3.32. Let \(A, B, C \) be algebras over commutative ring \(D \). Let \(f \) be linear mapping from \(D \)-algebra \(A \) into \(D \)-algebra \(B \). Let \(g \) be linear mapping from \(D \)-algebra \(B \) into \(D \)-algebra \(C \). The mapping \(g \circ f \) defined by diagram (3.22)

\[
\begin{array}{ccc}
A & \xrightarrow{g} & C \\
\downarrow{f} & & \downarrow{g \circ f} \\
B & & \\
\end{array}
\]
is linear mapping from \(D \)-algebra \(A \) into \(D \)-algebra \(C \).

Proof. The proof of the theorem follows from chains of equations
\[
(g \circ f) \circ (a + b) = g \circ (f \circ (a + b)) = g \circ (f \circ a + f \circ b) \\
= g \circ (f \circ a) + g \circ (f \circ b) = (g \circ f) \circ a + (g \circ f) \circ b \\
(g \circ f) \circ (pa) = g \circ (f \circ (pa)) = g \circ (p \circ f \circ a) = p \circ g \circ (f \circ a) \\
= p \circ (g \circ f) \circ a
\]
□

Theorem 3.33. Let \(A, B, C \) be algebras over the commutative ring \(D \). Let \(f \) be a linear mapping from \(D \)-algebra \(A \) into \(D \)-algebra \(B \). The mapping \(f \) generates a linear mapping (3.23)
\[
f^* : g \in \mathcal{L}(B; C) \rightarrow g \circ f \in \mathcal{L}(A; C)
\]
(3.24)

\[
\begin{array}{ccc}
A & \xrightarrow{g \circ f} & C \\
\downarrow{f} & & \\
B & & \\
\end{array}
\]
Proof. The proof of the theorem follows from chains of equations
\[(g_1 + g_2) \circ f) \circ a = (g_1 + g_2) \circ (f \circ a) = g_1 \circ (f \circ a) + g_2 \circ (f \circ a)\]
\[= (g_1 \circ f) \circ a + (g_2 \circ f) \circ a\]
\[= (g_1 \circ f + g_2 \circ f) \circ a\]
\[(pg) \circ f) \circ a = (pg) \circ (f \circ a) = p \circ (g \circ f) \circ a\]
\[= (p(g \circ f)) \circ a\]
\[\square\]

Theorem 3.34. Let \(A, B, C\) be algebras over the commutative ring \(D\). Let \(g\) be a linear mapping from \(D\)-algebra \(B\) into \(D\)-algebra \(C\). The mapping \(g\) generates a linear mapping
\[(3.27)\]
\[g_* : f \in \mathcal{L}(A;B) \to g \circ f \in \mathcal{L}(A;C)\]
\[(3.28)\]

\[
\begin{array}{c}
A \\
\downarrow gof \\
B \\
\downarrow g \\
\downarrow f \\
C
\end{array}
\]

Proof. The proof of the theorem follows from chains of equations
\[(g \circ (f_1 + f_2)) \circ a = g \circ ((f_1 + f_2) \circ a) = g \circ (f_1 \circ a + f_2 \circ a)\]
\[= g \circ (f_1 \circ a) + g \circ (f_2 \circ a) = (g \circ f_1) \circ a + (g \circ f_2) \circ a\]
\[= (g \circ f_1 + g \circ f_2) \circ a\]
\[(g \circ (pf)) \circ a = g \circ ((pf) \circ a) = g \circ (p \circ (f \circ a)) = p \circ (g \circ f) \circ a\]
\[= (p(g \circ f)) \circ a\]
\[\square\]

Theorem 3.35. Let \(A, B, C\) be algebras over the commutative ring \(D\). The mapping
\[(3.31)\]
\[\circ : (g, f) \in \mathcal{L}(B;C) \times \mathcal{L}(A;B) \to g \circ f \in \mathcal{L}(A;C)\]
is bilinear mapping.

Proof. The theorem follows from theorems 3.33, 3.34. \[\square\]

10We use following definitions of operations over mappings
\[(3.25)\]
\[(f + g) \circ a = f \circ a + g \circ a\]
\[(3.26)\]
\[(pf) \circ a = p f \circ a\]

11We use following definitions of operations over mappings
\[(3.29)\]
\[(f + g) \circ a = f \circ a + g \circ a\]
\[(3.30)\]
\[(pf) \circ a = p f \circ a\]
Theorem 3.36. Let A be algebra over commutative ring D. D-module $\mathcal{L}(A; A)$ equipped by product
\[
\circ : (g, f) \in \mathcal{L}(A; A) \times \mathcal{L}(A; A) \to g \circ f \in \mathcal{L}(A; A)
\]
is algebra over D.

Proof. The theorem follows from definition 3.10 and theorem 3.35. \qed

3.6. Tensor Product of Algebras.

Definition 3.37. Let A_1, \ldots, A_n be free algebras over commutative ring D.\footnote{I give definition of tensor product of D-algebras following to definition in [1], p. 601 - 603.}

Let us consider category \mathcal{A} whose objects are polylinear over commutative ring D mappings
\[
f : A_1 \times \ldots \times A_n \longrightarrow S_1 \\
g : A_1 \times \ldots \times A_n \longrightarrow S_2
\]
where S_1, S_2 are modules over ring D. We define morphism $f \rightarrow g$ to be linear over commutative ring D mapping $h : S_1 \rightarrow S_2$ making diagram

\[
\begin{array}{ccc}
\mathcal{A}_1 & \overset{f}{\longrightarrow} & S_1 \\
\downarrow & & \downarrow h \\
A_1 \times \ldots \times A_n & \overset{g}{\longleftarrow} & S_2
\end{array}
\]

commutative. Universal object $A_1 \otimes \ldots \otimes A_n$ of category \mathcal{A} is called tensor product of algebras A_1, \ldots, A_n. \qed

Definition 3.38. Tensor product
\[
A^{\otimes n} = A_1 \otimes \ldots \otimes A_n \quad A_1 = \ldots = A_n = A
\]
is called tensor power of algebra A. \qed

Theorem 3.39. There exists tensor product of algebras.

Proof. Let M be module over ring D generated by product $A_1 \times \ldots \times A_n$ of D-algebras A_1, \ldots, A_n. Injection
\[
i : A_1 \times \ldots \times A_n \longrightarrow M
\]
is defined according to rule
\[
i \circ (d_1, \ldots, d_n) = (d_1, \ldots, d_n)
\]
Let $N \subset M$ be submodule generated by elements of the following type
\[
(3.34) \quad (d_1, \ldots, d_i + c_i, \ldots, d_n) - (d_1, \ldots, d_i, \ldots, d_n) - (d_1, \ldots, c_i, \ldots, d_n)
\]
\[
(3.35) \quad (d_1, \ldots, ad_i, \ldots, d_n) - a(d_1, \ldots, d_i, \ldots, d_n)
\]
where $d_i \in A_i, c_i \in A_i, a \in D$. Let
\[
j : M \rightarrow M/N
\]
be canonical mapping on factor module. Consider commutative diagram

\[(3.36)\]

\[
\begin{array}{ccc}
A_1 \times \ldots \times A_n & \xrightarrow{i} & M \\
\downarrow{g} & & \downarrow{j} \\
M/N & & \\
\end{array}
\]

Since elements (3.34) and (3.35) belong to kernel of linear mapping \(j\), then, from equation (3.33), it follows

\[(3.37)\]

\[f \circ (d_1, \ldots, d_i + c_i, \ldots, d_n) = f \circ (d_1, \ldots, d_i, \ldots, d_n) + f \circ (d_1, \ldots, c_i, \ldots, d_n)\]

\[(3.38)\]

\[f \circ (d_1, \ldots, ad_i, \ldots, d_n) = af \circ (d_1, \ldots, d_i, \ldots, d_n)\]

From equations (3.37) and (3.38) it follows that mapping \(f\) is polylinear over ring \(D\). Since \(M\) is module with basis \(A_1 \times \ldots \times A_n\), then, according to theorem [1]-4.1 on p. 135, for any module \(V\) and any polylinear over \(D\) map

\[g : A_1 \times \ldots \times A_n \longrightarrow V\]

there exists a unique homomorphism \(k : M \rightarrow V\), for which following diagram is commutative

\[(3.39)\]

\[
\begin{array}{ccc}
A_1 \times \ldots \times A_n & \xrightarrow{i} & M \\
\downarrow{g} & & \downarrow{k} \\
V & & \\
\end{array}
\]

Since \(g\) is polylinear over \(D\), then \(\ker k \subseteq N\). According to statement on p. [1]-119, map \(j\) is universal in the category of homomorphisms of vector space \(M\) whose kernel contains \(N\). Therefore, we have homomorphism

\[h : M/N \rightarrow V\]

which makes the following diagram commutative

\[(3.40)\]

\[
\begin{array}{ccc}
M/N & \xrightarrow{j} & M \\
\downarrow{h} & & \downarrow{k} \\
V & & \\
\end{array}
\]

We join diagrams (3.36), (3.39), (3.40), and get commutative diagram

\[(3.41)\]

\[
\begin{array}{ccc}
A_1 \times \ldots \times A_n & \xrightarrow{i} & M \\
\downarrow{g} & & \downarrow{k} \\
M/N & \xrightarrow{j} & \\
\downarrow{h} & & \downarrow{f} \\
V & & \\
\end{array}
\]

Since \(\text{Im} f\) generates \(M/N\), then map \(h\) is uniquely determined. \(\square\)
According to proof of theorem 3.39
\[A_1 \otimes \ldots \otimes A_n = M/N \]
If \(d_i \in A_i \), we write
\[(3.42) \quad j \circ (d_1, \ldots, d_n) = d_1 \otimes \ldots \otimes d_n \]

Theorem 3.40. Let \(A_1, \ldots, A_n \) be algebras over commutative ring \(D \). Let
\[f : A_1 \times \ldots \times A_n \to A_1 \otimes \ldots \otimes A_n \]
be polylinear mapping defined by equation
\[(3.43) \quad f \circ (d_1, \ldots, d_n) = d_1 \otimes \ldots \otimes d_n \]
Let
\[g : A_1 \times \ldots \times A_n \to V \]
be polylinear mapping into \(D \)-module \(V \). There exists an \(D \)-linear mapping
\[h : A_1 \otimes \ldots \otimes A_n \to V \]
such that the diagram
\[(3.44) \]
\[\begin{array}{ccc}
A_1 \otimes \ldots \otimes A_n & \quad f \quad & A_1 \times \ldots \times A_n \\
\downarrow h & & \downarrow g \\
V & &
\end{array} \]
is commutative.

Proof. Equation (3.43) follows from equations (3.33) and (3.42). An existence of the mapping \(h \) follows from the definition 3.37 and constructions made in the proof of the theorem 3.39. \(\Box \)

We can write equations (3.37) and (3.38) as
\[a_1 \otimes \ldots \otimes (a_i + b_i) \otimes \ldots \otimes a_n = a_1 \otimes \ldots \otimes a_i \otimes \ldots \otimes a_n + a_1 \otimes \ldots \otimes b_i \otimes \ldots \otimes a_n \]
(3.45)
\[a_1 \otimes \ldots \otimes (ca_i) \otimes \ldots \otimes a_n = c(a_1 \otimes \ldots \otimes a_i \otimes \ldots \otimes a_n) \]
(3.46)
\[a_i \in A_i \quad b_i \in A_i \quad c \in D \]

Theorem 3.41. Let \(A \) be algebra over commutative ring \(D \). There exists a linear mapping
\[h : a \otimes b \in A \otimes A \to ab \in A \]

Proof. The theorem is corollary of the theorem 3.40 and the definition 3.10. \(\Box \)
The Gâteaux Derivative and Integral over Banach Algebra

Theorem 3.42. Tensor product \(A_1 \otimes \ldots \otimes A_n \) of free finite dimensional algebras \(A_1, \ldots, A_n \) over the commutative ring \(D \) is free finite dimensional algebra.

Let \(\mathbf{e}_i \) be the basis of algebra \(A_i \) over ring \(D \). We can represent any tensor \(a \in A_1 \otimes \ldots \otimes A_n \) in the following form

\[
a = a_1^{i_1} \cdot \ldots \cdot a_n^{i_n} \mathbf{e}_{i_1} \otimes \ldots \otimes \mathbf{e}_{i_n}
\]

Expression \(a^{i_1} \ldots i_n \) is called standard component of tensor.

Proof. Algebras \(A_1, \ldots, A_n \) are modules over the ring \(D \). According to theorem 3.39, \(A_1 \otimes \ldots \otimes A_n \) is module.

Vector \(a_i \in A_i \) has expansion

\[
a_i = a_i^{k} \mathbf{e}_k
\]

relative to basis \(\mathbf{e}_i \). From equations (3.45), (3.46), it follows

\[
a_1 \otimes \ldots \otimes a_n = a_1^{i_1} \cdot \ldots \cdot a_n^{i_n} \mathbf{e}_{i_1} \otimes \ldots \otimes \mathbf{e}_{i_n}
\]

Since set of tensors \(a_1 \otimes \ldots \otimes a_n \) is the generating set of module \(A_1 \otimes \ldots \otimes A_n \), then we can write tensor \(a \in A_1 \otimes \ldots \otimes A_n \) in form

\[
a = a^s a_{s_1}^{i_1} \ldots a_{s_n}^{i_n} \mathbf{e}_{i_1} \otimes \ldots \otimes \mathbf{e}_{i_n}
\]

where \(a^s, a_{s_1}^{i_1}, a_{s_n}^{i_n} \in F \). Let

\[
a^s a_{s_1}^{i_1} \ldots a_{s_n}^{i_n} = a^{i_1} \ldots i_n
\]

Then equation (3.48) has form (3.47).

Therefore, set of tensors \(\mathbf{e}_{i_1} \otimes \ldots \otimes \mathbf{e}_{i_n} \) is the generating set of module \(A_1 \otimes \ldots \otimes A_n \). Since the dimension of module \(A_i, i = 1, \ldots, n \), is finite, then the set of tensors \(\mathbf{e}_{i_1} \otimes \ldots \otimes \mathbf{e}_{i_n} \) is finite. Therefore, the set of tensors \(\mathbf{e}_{i_1} \otimes \ldots \otimes \mathbf{e}_{i_n} \) contains a basis of module \(A_1 \otimes \ldots \otimes A_n \), and the module \(A_1 \otimes \ldots \otimes A_n \) is free module over the ring \(D \).

We define the product of tensors like \(a_1 \otimes \ldots \otimes a_n \) componentwise

\[
(d_1 \otimes \ldots \otimes d_n)(c_1 \otimes \ldots \otimes c_n) = (d_1 c_1) \otimes \ldots \otimes (d_n c_n)
\]

In particular, if for any \(i, i = 1, \ldots, n, a_i \in A_i \) has inverse, then tensor

\[
(a_1 \otimes \ldots \otimes a_n)^{-1} = (a_1)^{-1} \otimes \ldots \otimes (a_n)^{-1}
\]

is inverse to tensor

\[
a_1 \otimes \ldots \otimes a_n \in A_1 \otimes \ldots \otimes A_n
\]

The definition of the product (3.50) agreed with equation (3.46) because

\[
(a_1 \otimes \ldots \otimes (ca_i) \otimes \ldots \otimes a_n)(b_1 \otimes \ldots \otimes b_i \otimes \ldots \otimes b_n)
\]

\[
=(a_1 b_1) \otimes \ldots \otimes (ca_i) b_i \otimes \ldots \otimes (a_n b_n)
\]

\[
=c((a_1 b_1) \otimes \ldots \otimes (a_i b_i) \otimes \ldots \otimes (a_n b_n))
\]

\[
=c((a_1 \otimes \ldots \otimes a_n)(b_1 \otimes \ldots \otimes b_n))
\]
The distributive property of multiplication over addition

\[(a_1 \otimes \ldots \otimes a_i \otimes \ldots \otimes a_n) \ast ((b_1 \otimes \ldots \otimes b_i \otimes \ldots \otimes b_n) + (b_1 \otimes \ldots \otimes c_i \otimes \ldots \otimes b_n))\]

\[= (a_1 \otimes \ldots \otimes a_i \otimes \ldots \otimes a_n)(b_1 \otimes \ldots \otimes (b_i + c_i) \otimes \ldots \otimes b_n)\]

\[= (a_1 b_1) \otimes \ldots \otimes (a_i (b_i + c_i)) \otimes \ldots \otimes (a_n b_n)\]

(3.51)

\[= (a_1 b_1) \otimes \ldots \otimes (a_i b_i + a_i c_i) \otimes \ldots \otimes (a_n b_n)\]

\[= (a_1 b_1) \otimes \ldots \otimes (a_i b_i) \otimes \ldots \otimes (a_n b_n)\]

\[+ (a_1 b_1) \otimes \ldots \otimes (a_i c_i) \otimes \ldots \otimes (a_n b_n)\]

\[= (a_1 \otimes \ldots \otimes a_i \otimes \ldots \otimes a_n)(b_1 \otimes \ldots \otimes b_i \otimes \ldots \otimes b_n)\]

\[+ (a_1 \otimes \ldots \otimes a_i \otimes \ldots \otimes a_n)(b_1 \otimes \ldots \otimes c_i \otimes \ldots \otimes b_n)\]

follows from the equation (3.45). The equation (3.51) allows us to define the product for any tensors \(a, b\).

\[\square\]

Remark 3.44. According to the remark 3.11, we can define different structures of algebra in the tensor product of algebras. For instance, algebras \(A_1 \otimes A_2, A_1 \otimes A_2^*\), \(A_1^* \otimes A_2\) are defined in the same module.

\[\square\]

Theorem 3.44. Let \(\overline{e}_i\) be the basis of the algebra \(A_i\) over the ring \(D\). Let \(B_{i\cdot j_i}^j\) be structural constants of the algebra \(A_i\) relative to the basis \(\overline{e}_i\). Structural constants of the tensor product \(A_1 \otimes \ldots \otimes A_n\) relative to the basis \(\overline{e}_{i_1} \otimes \ldots \otimes \overline{e}_{i_n}\) have form

\[(3.52)\]

\[C_{j_1 \cdot j_n}^{j_1 \cdot j_{i_1} \cdot j_{i_2} \cdot \ldots \cdot j_{i_n}} = C_{1}^{j_1} j_1 \cdot j_{i_1} \cdot j_{i_2} \cdot \ldots \cdot j_{i_n}\]

Proof. Direct multiplication of tensors \(\overline{e}_{i_1} \otimes \ldots \otimes \overline{e}_{i_n}\) has form

\[(3.53)\]

\[(\overline{e}_{1} \cdot \overline{e}_{2} \cdot \overline{e}_{n \cdot k_n})(\overline{e}_{i_1} \otimes \ldots \otimes \overline{e}_{i_n}) = (\overline{e}_{1} \cdot \overline{e}_{2} \cdot \overline{e}_{n \cdot k_n})(\overline{e}_{i_1} \otimes \ldots \otimes \overline{e}_{i_n})\]

According to the definition of structural constants

\[(3.54)\]

\[(\overline{e}_{1} \cdot \overline{e}_{2} \cdot \overline{e}_{n \cdot k_n})(\overline{e}_{i_1} \otimes \ldots \otimes \overline{e}_{i_n}) = C_{j_1 \cdot j_{i_1} \cdot j_{i_2} \cdot \ldots \cdot j_{i_n}}^{j_1 \cdot j_{i_1} \cdot j_{i_2} \cdot \ldots \cdot j_{i_n}}(\overline{e}_{1} \cdot \overline{e}_{2} \cdot \overline{e}_{n \cdot k_n})\]

The equation (3.52) follows from comparison (3.53), (3.54).
From the chain of equations
\[(a_1 \otimes \ldots \otimes a_n)(b_1 \otimes \ldots \otimes b_n)\]
\[= (a_{k_1}^{k_1} \otimes \ldots \otimes a_n^{k_n})(b_1^{l_1} \otimes \ldots \otimes b_n^{l_n})\]
\[= a_{k_1} \ldots a_n^{k_n} b_1^{l_1} \ldots b_n^{l_n} (\tau^{1}_{1} \otimes \ldots \otimes \tau^{n}_{k_n}) (\tau_{1}^{1} \otimes \ldots \otimes \tau_{n}^{l_n})\]
\[= a_{k_1} \ldots a_n^{k_n} b_1^{l_1} \ldots b_n^{l_n} C_{j_1 \ldots j_n}^{j_1 \ldots j_n} (\tau_{1}^{j_1} \otimes \ldots \otimes \tau_{n}^{j_n})\]
\[= (a_1 b_1) \otimes \ldots \otimes (a_n b_n)\]

it follows that definition of product (3.54) with structural constants (3.52) agreed with the definition of product (3.50).

Theorem 3.45. For tensors \(a, b \in A_1 \otimes \ldots \otimes A_n\), standard components of product satisfy to equation
\[(ab)^{j_1 \ldots j_n} = C_{j_1 \ldots j_n}^{j_1 \ldots j_n} a^{k_1 \ldots k_n} b^{l_1 \ldots l_n}\]

Proof. According to the definition
\[(ab)^{j_1 \ldots j_n} = \tau_{j_1}^{1} \otimes \ldots \otimes \tau_{j_n}^{n}\]

At the same time
\[ab = a_{k_1} \ldots a_n^{k_n} b_1^{l_1} \ldots b_n^{l_n} (\tau_{1}^{1} \otimes \ldots \otimes \tau_{n}^{l_n})\]
\[(ab)^{j_1 \ldots j_n} = a_{k_1} \ldots a_n^{k_n} b_1^{l_1} \ldots b_n^{l_n} C_{j_1 \ldots j_n}^{j_1 \ldots j_n} (\tau_{1}^{j_1} \otimes \ldots \otimes \tau_{n}^{j_n})\]

The equation (3.55) follows from equations (3.56), (3.57).

Theorem 3.46. If the algebra \(A_i, i = 1, \ldots, n\), is associative, then the tensor product \(A_1 \otimes \ldots \otimes A_n\) is associative algebra.

Proof. Since
\[((\tau_{1}^{i_1} \otimes \ldots \otimes \tau_{n-i_n})(\tau_{1}^{j_1} \otimes \ldots \otimes \tau_{n-j_n}))(\tau_{1}^{k_1} \otimes \ldots \otimes \tau_{n-k_n})\]
\[=((\tau_{1}^{i_1} \tau_{1}^{j_1})(\tau_{1}^{k_1}) \otimes \ldots \otimes ((\tau_{n-i_n} \tau_{n-j_n})(\tau_{1}^{k_1}))\]
\[=((\tau_{1}^{i_1} \tau_{1}^{j_1} \tau_{1}^{k_1}) \otimes \ldots \otimes ((\tau_{n-i_n} \tau_{1}^{j_n})(\tau_{1}^{k_1}))\]
\[=((\tau_{1}^{i_1} \tau_{1}^{j_1} \tau_{1}^{k_1}) \otimes \ldots \otimes ((\tau_{n-i_n} \tau_{1}^{j_n})(\tau_{1}^{k_1}))\]
\[=((\tau_{1}^{i_1} \otimes \ldots \otimes \tau_{n-i_n})(\tau_{1}^{j_1} \otimes \ldots \otimes \tau_{n-j_n})(\tau_{1}^{k_1} \otimes \ldots \otimes \tau_{n-k_n}))\]

then
\[(ab)c = a_{i_1}^{i_1} \ldots a_n^{i_n} b_{j_1}^{j_1} \ldots b_n^{j_n} c_{k_1}^{k_1} \ldots c_n^{k_n}\]
\[=((\tau_{1}^{i_1} \otimes \ldots \otimes \tau_{n-i_n})(\tau_{1}^{j_1} \otimes \ldots \otimes \tau_{n-j_n}))(\tau_{1}^{k_1} \otimes \ldots \otimes \tau_{n-k_n})\]
\[= a_{i_1}^{i_1} \ldots a_n^{i_n} b_{j_1}^{j_1} \ldots b_n^{j_n} c_{k_1}^{k_1} \ldots c_n^{k_n}\]
\[= \tau_{1}^{i_1} \otimes \ldots \otimes \tau_{n-i_n})(\tau_{1}^{j_1} \otimes \ldots \otimes \tau_{n-j_n})(\tau_{1}^{k_1} \otimes \ldots \otimes \tau_{n-k_n})\]
\[=a(bc)\]
3.7. Linear Mapping into Associative Algebra.

Theorem 3.47. Consider D-algebras A_1 and A_2. For given mapping $f \in \mathcal{L}(A_1; A_2)$, the mapping

$$g : A_2 \times A_2 \to \mathcal{L}(A_1; A_2)$$

$$g(a, b) \circ f = afb$$

is bilinear mapping.

Proof. The statement of theorem follows from chains of equations

$$((a_1 + a_2)fb) \circ x = (a_1 + a_2) f \circ x b = a_1 f \circ x b + a_2 f \circ x b$$

$$= (a_1 fb) \circ x + (a_2 fb) \circ x = (a_1 f b + a_2 f b) \circ x$$

$$((pa)fb) \circ x = (pa) f \circ x b = p(a f \circ x b) = p((afb) \circ x) = (pafb) \circ x$$

$$af(b_1 + b_2) \circ x = a f \circ x (b_1 + b_2) = a f \circ x b_1 + a f \circ x b_2$$

$$= (afb_1) \circ x + (afb_2) \circ x = (affb_1 + afb_2) \circ x$$

$$af(pb) \circ x = a f \circ x (pb) = p(a f \circ x b) = p((afb) \circ x) = (pafb) \circ x$$

\[\square\]

Theorem 3.48. Consider D-algebras A_1 and A_2. For given mapping $f \in \mathcal{L}(A_1; A_2)$, there exists linear mapping

$$h : A_2 \otimes A_2 \to \mathcal{L}(A_1; A_2)$$

defined by the equation

$$(a \otimes b) \circ f = afb$$

Proof. The statement of the theorem is corollary of theorems 3.40, 3.47. \[\square\]

Theorem 3.49. Consider D-algebras A_1 and A_2. Let us define product in algebra $A_2 \otimes A_2$ according to rule

$$(c \otimes d) \circ (a \otimes b) = (ca) \otimes (bd)$$

A linear mapping

$$h : A_2 \otimes A_2 \to \mathcal{L}(A_1; A_2)$$

defined by the equation

$$(a \otimes b) \circ f = afb \quad a, b \in A_2 \quad f \in \mathcal{L}(A_1; A_2)$$

is representation\(^{13}\) of algebra $A_2 \otimes A_2$ in module $\mathcal{L}(A_1; A_2)$. For a given tensor $c \in A_2 \otimes A_2$, a transformation $h(c)$ is a linear

\(^{13}\)See the definition of representation of Ω-algebra in the definition [3]-2.1.4.
transformation of module $L(A_1; A_2)$, because
$$((a \otimes b) \circ (f_1 + f_2)) \circ x = (a(f_1 + f_2)b) \circ x = a((f_1 + f_2) \circ x)b$$
$$= a(f_1 \circ x + f_2 \circ x)b = a(f_1 \circ x)b + a(f_2 \circ x)b$$
$$= (a f_1b) \circ x + (a f_2b) \circ x$$
$$= (a \otimes b) \circ f_1 \circ x + (a \otimes b) \circ f_2 \circ x$$
$$= ((a \otimes b) \circ f_1 + (a \otimes b) \circ f_2) \circ x$$
$$((a \otimes b) \circ (p f)) \circ x = (a(p f)b) \circ x = a((p f) \circ x)b$$
$$= a(p f \circ x)b = pa(f \circ x)b$$
$$= p (a f b) \circ x = p ((a \otimes b) \circ f) \circ x$$
$$= (p ((a \otimes b) \circ f)) \circ x$$

According to theorem 3.48, mapping (3.61) is linear mapping.

Let $f \in L(A_1; A_2)$, $a \otimes b, c \otimes d \in A_2 \otimes A_2$. According to the theorem 3.48
$$(a \otimes b) \circ f = afb \in L(A_1; A_2)$$

Therefore, according to the theorem 3.48
$$(c \otimes d) \circ ((a \otimes b) \circ f) = c(a f b)d$$

Since the product in algebra A_2 is associative, then
$$(c \otimes d) \circ ((a \otimes b) \circ f) = c(a f b)d = (ca)f(b d) = (ca \otimes bd) \circ f$$

Therefore, since we define the product in algebra $A_2 \otimes A_2$ according to equation (3.59), then the mapping (3.60) is morphism of algebras. According to the definition [3]-2.1.4 mapping (3.61) is a representation of the algebra $A_2 \otimes A_2$ in the module $L(A_1; A_2)$.

Theorem 3.50. Consider D-algebra A. Let us define product in algebra $A \otimes A$ according to rule (3.59). A representation of algebra $A \otimes A$

$$h : A \otimes A \to ^*L(A; A)$$

in module $L(A; A)$ defined by the equation

$$h : (a \otimes b) \circ f = afb$$

allows us to identify tensor $d \in A \otimes A$ and mapping $d \circ \delta \in L(A; A)$ where $\delta \in L(A; A)$ is identity mapping.

Proof. According to the theorem 3.48, the mapping $f \in L(A; A)$ and the tensor $d \in A \otimes A$ generate the mapping

$$x \mapsto (d \circ f) \circ x$$

If we assume $f = \delta$, $d = a \otimes b$, then the equation (3.64) gets form

$$((a \otimes b) \circ \delta) \circ x = (a \delta b) \circ x = a (\delta \circ x) b = axb$$

If we assume

$$((a \otimes b) \circ \delta) \circ x = (a \otimes b) \circ (\delta \circ x) = (a \otimes b) \circ x$$

then comparison of equations (3.65) and (3.66) gives a basis to identify the action of the tensor $a \otimes b$ and transformation $(a \otimes b) \circ \delta$.

\[\square \]
From the theorem 3.50, it follows that we can consider the mapping (3.61) as the product of mappings \(a \otimes b \) and \(f \). The tensor \(a \in A_2 \otimes A_2 \) is **nonsingular**, if there exists the tensor \(b \in A_2 \otimes A_2 \) such that \(a \circ b = 1 \otimes 1 \).

Definition 3.51. Consider the representation of algebra \(A_2 \otimes A_2 \) in the module \(\mathcal{L}(A_1; A_2) \).\(^{14}\) The set

\[
(A_2 \otimes A_2) \circ f = \{ g = d \circ f : d \in A_2 \otimes A_2 \}
\]

is called **orbit of linear mapping** \(f \in \mathcal{L}(A_1; A_2) \).

Theorem 3.52. Consider \(D\)-algebra \(A_1 \) and associative \(D\)-algebra \(A_2 \). Consider the representation of algebra \(A_2 \otimes A_2 \) in the module \(\mathcal{L}(A_1; A_2) \). The mapping

\[
h : A_1 \to A_2
\]

generated by the mapping

\[
f : A_1 \to A_2
\]

has form

\[
h = (a_{s,0} \otimes a_{s,1}) \circ f = a_{s,0}f a_{s,1}
\]

Proof. We can represent any tensor \(a \in A_2 \otimes A_2 \) in the form

\[
a = a_{s,0} \otimes a_{s,1}
\]

According to the theorem 3.49, the mapping (3.61) is linear. This proofs the statement of the theorem.\(\square \)

Theorem 3.53. Let \(A_2 \) be algebra with unit \(e \). Let \(a \in A_2 \otimes A_2 \) be a nonsingular tensor. Orbits of linear mappings \(f \in \mathcal{L}(A_1; A_2) \) and \(g = a \circ f \) coincide

\[
(A_2 \otimes A_2) \circ f = (A_2 \otimes A_2) \circ g
\]

Proof. If \(h \in (A_2 \otimes A_2) \circ g \), then there exists \(b \in A_2 \otimes A_2 \) such that \(h = b \circ g \). In that case

\[
h = b \circ (a \circ f) = (b \circ a) \circ f
\]

Therefore, \(h \in (A_2 \otimes A_2) \circ f \),

\[
(A_2 \otimes A_2) \circ g \supset (A_2 \otimes A_2) \circ f
\]

Since \(a \) is nonsingular tensor, then

\[
f = a^{-1} \circ g
\]

If \(h \in (A_2 \otimes A_2) \circ f \), then there exists \(b \in A_2 \otimes A_2 \) such that

\[
h = b \circ f
\]

From equations (3.71), (3.72), it follows that

\[
h = b \circ (a^{-1} \circ g) = (b \circ a^{-1}) \circ g
\]

Therefore, \(h \in (A_2 \otimes A_2) \circ g \),

\[
(A_2 \otimes A_2) \circ f \subset (A_2 \otimes A_2) \circ g
\]

(3.68) follows from equations (3.70), (3.73).\(\square \)

\(^{14}\)The definition is made by analogy with the definition \([3]-2.4.12.\)
From the theorem 3.53, it also follows that if \(g = a \circ f \) and \(a \in A_2 \otimes A_2 \) is a singular tensor, then relationship (3.70) is true. However, the main result of the theorem 3.53 is that the representations of the algebra \(A_2 \otimes A_2 \) in module \(\mathcal{L}(A_1; A_2) \) generates an equivalence in the module \(\mathcal{L}(A_1; A_2) \). If we successfully choose the representatives of each equivalence class, then the resulting set will be generating set of considered representation.\(^{15}\)

3.8. Linear Mapping into Free Finite Dimensional Associative Algebra.

Theorem 3.54. Let \(A_1 \) be algebra over the ring \(D \). Let \(A_2 \) be free finite dimensional associative algebra over the ring \(D \). Let \(e \) be basis of the algebra \(A_2 \) over the ring \(D \). The mapping

\[
g = a \circ f
\]

generated by the mapping \(f \in \mathcal{L}(A_1; A_2) \) through the tensor \(a \in A_2 \otimes A_2 \), has the standard representation

\[
g = a^{ij} (e_i \otimes e_j) \circ f = a^{ij} e_i f e_j
\]

Proof. According to theorem 3.42, the standard representation of the tensor \(a \) has form

\[
a = a^{ij} e_i \otimes e_j
\]

The equation (3.75) follows from equations (3.74), (3.76). \(\square \)

Theorem 3.55. Let \(\overline{e}_1 \) be basis of the free finite dimensional \(D \)-algebra \(A_1 \). Let \(\overline{e}_2 \) be basis of the free finite dimensional associative \(D \)-algebra \(A_2 \). Let \(C_{2 \cdot k l} \) be structural constants of algebra \(A_2 \). Coordinates of the mapping \(g = a \circ f \)

generated by the mapping \(f \in (A_1; A_2) \) through the tensor \(a \in A_2 \otimes A_2 \) and its standard components are connected by the equation

\[
g_{k}^{i} = f_{l}^{m} g_{j}^{i j} C_{2 \cdot k m}^{\cdot p j} C_{2 \cdot p j}^{\cdot k}
\]

Proof. Relative to bases \(\overline{e}_1 \) and \(\overline{e}_2 \), linear mappings \(f \) and \(g \) have form

\[
f \circ x = f_{j}^{i} x^{j} \overline{e}_{2 \cdot i}
\]

\[
g \circ x = g_{j}^{i} x^{j} \overline{e}_{2 \cdot i}
\]

From equations (3.78), (3.79), (3.75) it follows that

\[
g_{k}^{i} x^{j} \overline{e}_{2 \cdot k} = a^{ij} \overline{e}_{2 \cdot i} f_{l}^{m} x^{l} C_{2 \cdot im}^{\cdot p j} C_{2 \cdot p j}^{\cdot k} \overline{e}_{2 \cdot k}
\]

Since vectors \(\overline{e}_{2 \cdot k} \) are linear independent and \(x^{i} \) are arbitrary, then the equation (3.77) follows from the equation (3.80). \(\square \)

Theorem 3.56. Let \(D \) be field. Let \(\overline{e}_1 \) be basis of the free finite dimensional \(D \)-algebra \(A_1 \). Let \(\overline{e}_2 \) be basis of the free finite dimensional associative \(D \)-algebra \(A_2 \). Let \(C_{2 \cdot k l} \) be structural constants of algebra \(A_2 \). Consider matrix

\[
\mathcal{B} = (C_{2 \cdot k l}^{\cdot m \cdot ij}) = (C_{2 \cdot k l}^{\cdot m \cdot ij})
\]

\(^{15}\)Generating set of representation is defined in definition [3].
whose rows and columns are indexed by \(k_m \) and \(i_j \), respectively. If matrix \(B \) is nonsingular, then, for given coordinates of linear transformation \(g^k_k \) and for mapping \(f = \delta \), the system of linear equations (3.77) with standard components of this transformation \(g^{kr} \) has the unique solution.

If matrix \(B \) is singular, then the equation
\[
(3.82) \quad \text{rank} \begin{pmatrix} c^{k}_{m \cdot i \cdot j} & g^{k}_{m} \end{pmatrix} = \text{rank} C
\]
is the condition for the existence of solutions of the system of linear equations (3.77). In such case the system of linear equations (3.77) has infinitely many solutions and there exists linear dependence between values \(g^{k}_{m} \).

Proof. The statement of the theorem is corollary of the theory of linear equations over field.

Theorem 3.57. Let \(A \) be free finite dimensional associative algebra over the field \(D \). Let \(\overline{F} \) be the basis of the algebra \(A \) over the field \(D \). Let \(C^{p}_{kl} \) be structural constants of algebra \(A \). Let matrix (3.81) be singular. Let the linear mapping \(f \in L(A; A) \) be nonsingular. If coordinates of linear transformations \(f \) and \(g \) satisfy to the equation
\[
(3.83) \quad \text{rank} \begin{pmatrix} c^{k}_{m \cdot i \cdot j} & g^{k}_{m} & f^{k}_{m} \end{pmatrix} = \text{rank} C
\]
then the system of linear equations
\[
(3.84) \quad g^{k}_{l} = f^{m}_{l} g^{i}_{m} C^{p}_{rm} C^{k}_{pj}
\]
has infinitely many solutions.

Proof. According to the equation (3.83) and the theorem 3.56, the system of linear equations
\[
(3.85) \quad f^{k}_{l} = f^{i}_{l} C^{p}_{rm} C^{k}_{pj}
\]
has infinitely many solutions corresponding to linear mapping
\[
(3.86) \quad f = f^{i}_{l} \overline{e}_{i} \otimes \overline{e}_{j}
\]
According to the equation (3.83) and the theorem 3.56, the system of linear equations
\[
(3.87) \quad g^{k}_{l} = g^{i}_{l} C^{p}_{rm} C^{k}_{pj}
\]
has infinitely many solutions corresponding to linear mapping
\[
(3.88) \quad g = g^{i}_{l} \overline{e}_{i} \otimes \overline{e}_{j}
\]
Mappings \(f \) and \(g \) are generated by the mapping \(\delta \). According to the theorem 3.53, the mapping \(f \) generates the mapping \(g \). This proves the statement of the theorem.

Theorem 3.58. Let \(A \) be free finite dimensional associative algebra over the field \(D \). The representation of algebra \(A \otimes A \) in algebra \(L(A; A) \) has finite basis \(\overline{F} \).

1. The linear mapping \(f \in L(A; A) \) has form
\[
(3.89) \quad f = (a_{k \cdot s_{k} \cdot 0} \otimes a_{k \cdot s_{k} \cdot 1}) \circ I_{k} = \sum_{k} a_{k \cdot s_{k} \cdot 0} I_{k} a_{k \cdot s_{k} \cdot 1}
\]
The Gâteaux Derivative and Integral over Banach Algebra

(2) Its standard representation has form

\[f = a^{k,i,j} (e_i \otimes e_j) \circ I_k = a^{k,i,j} I_k e_j \]

Proof. From the theorem 3.57, it follows that if matrix \(B \) is singular and the mapping \(f \) satisfies to the equation

\[\text{rank} \left(C_{m,i,j}^{k,m} f_{m}^{k} \right) = \text{rank} \mathcal{C} \]

then the mapping \(f \) generates the same set of mappings that is generated by the mapping \(\delta \). Therefore, to build the basis of representation of the algebra \(A \otimes A \) in the module \(\mathcal{L}(A;A) \), we must perform the following construction.

The set of solutions of system of equations (3.84) generates a free submodule \(\mathcal{L} \) of the module \(\mathcal{L}(A;A) \). We build the basis \((h_1, \ldots, h_k) \) of the submodule \(\mathcal{L} \). Then we supplement this basis by linearly independent vectors \(h_{k+1}, \ldots, h_m \), that do not belong to the submodule \(\mathcal{L} \) so that the set of vectors \(h_1, \ldots, h_m \) forms a basis of the module \(\mathcal{L}(A;A) \). The set of orbits \((A \otimes A) \circ \delta, (A \otimes A) \circ h_{k+1}, \ldots, (A \otimes A) \circ h_m \) generates the module \(\mathcal{L}(A;A) \). Since the set of orbits is finite, we can choose the orbits so that they do not intersect. For each orbit we can choose a representative which generates the orbit.

Example 3.59. For complex field, the algebra \(\mathcal{L}(C;C) \) has basis

\[I_0 \circ z = z \]
\[I_1 \circ z = z \]

For quaternion algebra, the algebra \(\mathcal{L}(H;H) \) has basis

\[I_0 \circ z = z \]

3.9. Linear Mapping into Nonassociative Algebra. Since the product is nonassociative, we may assume that action of \(a, b \in A \) over the mapping \(f \) may have form either \(a(fb) \), or \((af)b \). However this assumption leads us to a rather complex structure of the linear mapping. To better understand how complex the structure of the linear mapping, we begin by considering the left and right shifts in nonassociative algebra.

Theorem 3.60. Let

\[l(a) \circ x = ax \]

be mapping of left shift. Then

\[l(a) \circ l(b) = l(ab) - (a, b)_1 \]

where we introduced linear mapping

\[(a, b)_1 \circ x = (a, b, x) \]

Proof. From the equations (3.13), (3.92), it follows that

\[(l(a) \circ l(b)) \circ x = l(a) \circ (l(b) \circ x) \]
\[= a(bx) = (ab)x - (a, b, x) \]
\[= l(ab) \circ x - (a, b)_1 \circ x \]

The equation (3.93) follows from equation (3.94).
Theorem 3.61. Let
\[(3.95)\] \(r(a) \circ x = xa\)
be mapping of right shift. Then
\[(3.96)\] \(r(a) \circ r(b) = r(ba) + (b, a)\)
where we introduced linear mapping \((b, a) \circ x = (x, b, a)\).

Proof. From the equations (3.13), (3.95) it follows that
\[(3.97)\]
\((r(a) \circ r(b)) \circ x = r(a) \circ (r(b) \circ x)\)
\[= (xb)a = x(ba) + (x, b, a)\]
\[= r(ba) \circ x + (x, b, a)\]
The equation (3.96) follows from equation (3.97). \(\square\)

Let \(f : A \rightarrow A\), \(f = (ax)b\)
be linear mapping of the algebra \(A\). According to the theorem 3.23, the mapping
\(g : A \rightarrow A\), \(g = (cf)d\)
is also a linear mapping. However, it is not obvious whether we can write the mapping \(g\) as a sum of terms of type \((ax)b\) and \(a(xb)\).

If \(A\) is free finite dimensional algebra, then we can assume that the linear mapping has the standard representation like\(^{16}\)
\[(3.99)\] \(f \circ x = f^{ij} (e_i \otimes e_j)\)
In this case we can use the theorem 3.58 for mappings into nonassociative algebra.

Theorem 3.62. Let \(\overline{e}_1\) be basis of the free finite dimensional \(D\)-algebra \(A_1\). Let \(\overline{e}_2\) be basis of the free finite dimensional nonassociative \(D\)-algebra \(A_2\). Let \(C_{2 \cdot k l}^{\cdot p}\) be structural constants of algebra \(A_2\). Let the mapping
\[(3.100)\] \(g = a \circ f\)
generated by the mapping \(f \in (A_1; A_2)\) through the tensor \(a \in A_2 \otimes A_2\), has the standard representation
\[(3.101)\] \(g = a^{ij} (\overline{e}_i \otimes \overline{e}_j) \circ f = a^{ij} (\overline{e}_i f) \overline{e}_j\)
Coordinates of the mapping (3.100) and its standard components are connected by the equation
\[(3.102)\] \(g^k_l = f^m_n a^{ij} C_{2 \cdot k l}^{\cdot p} \overline{e}_j C_{2 \cdot m p}^{\cdot n k}\)
\(^{16}\)The choice is arbitrary. We may consider the standard representation like
\(f \circ x = f^{ij} \overline{e}_i (x \overline{e}_j)\)
Then the equation (3.102) has form
\[(3.98)\] \(g^k_l = f^m_n a^{ij} C_{2 \cdot k l}^{\cdot p} C_{2 \cdot m p}^{\cdot n j}\)
I chose the expression (3.99) because order of the factors corresponds to the order chosen in the theorem 3.58.
Proof. Relative to bases e_1 and e_2, linear mappings f and g have form
\begin{align}
 f \circ x &= f^i_j x^j e_2^i \\
 g \circ x &= g^i_j x^j e_2^i
\end{align}
From equations (3.103), (3.104), (3.101) it follows that
\begin{align}
 g^k_i x^i e_2^k &= a^{ij} (f^m_l x^l e_2^m) e_2^j \\
 &= a^{ij} f^m_l x^l C_2^p \cdot p_j C_2^k \cdot k_j e_2^k
\end{align}
Since vectors e_2^k are linear independent and x^i are arbitrary, then the equation (3.102) follows from the equation (3.105).
\ \ \ \Box

Theorem 3.63. Let A be free finite dimensional nonassociative algebra over the ring D. The representation of algebra $A \otimes A$ in algebra $L(A; A)$ has finite basis \mathcal{I}.

1. The linear mapping $f \in L(A; A)$ has form
\begin{equation}
 f = (a_{k \cdot s_k} \otimes a_{k \cdot s_k}) \circ I_k = (a_{k \cdot s_k} \cdot a_k) a_{k \cdot s_k} \cdot 1
\end{equation}
2. Its standard representation has form
\begin{equation}
 f = a^{k-ij} (\mathcal{I}_i \otimes \mathcal{I}_j) \circ I_k = a^{k-ij} (\mathcal{I}_k \cdot I_k) \mathcal{I}_j
\end{equation}
Proof. Consider matrix (3.81). If matrix B is nonsingular, then, for given coordinates of linear transformation g^l_k, and for mapping $f = \delta$, the system of linear equations (3.102) with standard components of this transformation g^{kr} has the unique solution. If matrix B is singular, then according to the theorem 3.58 there exists finite basis \mathcal{I} generating the set of linear mappings.
\ \ \ \Box

Unlike the case of an associative algebra, the set of generators I in the theorem 3.63 is not minimal. From the equation (3.93) it follows that the equation (3.69) does not hold. Therefore, orbits of mappings I_k do not generate an equivalence relation in the algebra $L(A; A)$. Since we consider only mappings like $(aI_k)b$, then it is possible that for $k \neq l$ the mapping I_k generates the mapping I_l, if we consider all possible operations in the algebra A. Therefore, the set of generators I_k of nonassociative algebra A does not play such a critical role as conjugation in complex field. The answer to the question of how important it is the mapping I_k in nonassociative algebra requires additional research.

4. Differentiable Mappings

4.1. Topological Ring.

Definition 4.1. Ring D is called topological ring\footnote{I made definition according to definition from [8], chapter 4} if D is topological space and the algebraic operations defined in D are continuous in the topological space D. \ \ \ \Box

According to definition, for arbitrary elements a, $b \in D$ and for arbitrary neighborhoods W_{a-b} of the element $a - b$, W_{ab} of the element ab there exists neighborhoods W_a of the element a and W_b of the element b such that $W_a - W_b \subset W_{a-b}$, $W_a W_b \subset W_{ab}$.
Definition 4.2. Norm on ring D^{18} is a mapping
$$d \in D \rightarrow |d| \in R$$
which satisfies the following axioms
- $|a| \geq 0$
- $|a| = 0$ if, and only if, $a = 0$
- $|ab| = |a| \cdot |b|$
- $|a + b| \leq |a| + |b|$

Ring D, endowed with the structure defined by a given absolute value on D, is called normed ring.

Invariant distance on additive group of ring D
$$d(a, b) = |a - b|$$
defines topology of metric space, compatible with ring structure of D.

Definition 4.3. Let D be normed ring. Element $a \in D$ is called limit of a sequence $\{a_n\}$
$$a = \lim_{n \to \infty} a_n$$
if for every $\epsilon \in R$, $\epsilon > 0$ there exists positive integer n_0 depending on ϵ and such, that $|a_n - a| < \epsilon$ for every $n > n_0$.

Theorem 4.4. Let D be normed ring of characteristic 0 and let $d \in D$. Let $a \in D$ be limit of a sequence $\{a_n\}$. Then
$$\lim_{n \to \infty} (a_n d) = ad$$
$$\lim_{n \to \infty} (da_n) = da$$

Proof. Statement of the theorem is trivial, however I give this proof for completeness sake. Since $a \in D$ is limit of the sequence $\{a_n\}$, then according to definition 4.3 for given $\epsilon \in R$, $\epsilon > 0$, there exists positive integer n_0 such, that $|a_n - a| < \epsilon/|d|$ for every $n > n_0$. According to definition 4.2 the statement of theorem follows from inequalities
$$|a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < \epsilon/|d||d| = \epsilon$$
$$|da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d|\epsilon/|d| = \epsilon$$
for any $n > n_0$.

Definition 4.5. Let D be normed ring. The sequence $\{a_n\}$, $a_n \in D$ is called fundamental or Cauchy sequence, if for every $\epsilon \in R$, $\epsilon > 0$ there exists positive integer n_0 depending on ϵ and such, that $|a_n - a| < \epsilon$ for every $n > n_0$.

Definition 4.6. Normed ring D is called complete if any fundamental sequence of elements of ring D converges, i.e. has limit in ring D.

Later on, speaking about normed ring of characteristic 0, we will assume that homeomorphism of field of rational numbers Q into ring D is defined.

Theorem 4.7. Complete ring D of characteristic 0 contains as subfield an isomorphic image of the field R of real numbers. It is customary to identify it with R.

18I made definition according to definition from [6], IX, §3.2 and definition [12]-1.1.12, p. 23.
Proof. Let us consider fundamental sequence of rational numbers \(\{ p_n \} \). Let \(p' \) be limit of this sequence in division ring \(D \). Let \(p \) be limit of this sequence in field \(R \). Since immersion of field \(Q \) into division ring \(D \) is homeomorphism, then we may identify \(p' \in D \) and \(p \in R \). □

Theorem 4.8. Let \(D \) be complete ring of characteristic 0 and let \(d \in D \). Then any real number \(p \in R \) commute with \(d \).

Proof. Let us represent real number \(p \in R \) as fundamental sequence of rational numbers \(\{ p_n \} \). Statement of theorem follows from chain of equations

\[
pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp
\]

based on statement of theorem 4.4. □

4.2. Topological \(D \)-Algebra.

Definition 4.9. Given a topological commutative ring \(D \) and \(D \)-algebra \(A \) such that \(A \) has a topology compatible with the structure of the additive group of \(A \) and mappings

\[
(a, v) \in D \times A \to av \in A
\]

\[
(v, w) \in A \times A \to vw \in A
\]

are continuous, then \(V \) is called a topological \(D \)-algebra\(^{19} \). □

Definition 4.10. Norm on \(D \)-algebra \(A \) over normed commutative ring \(D \)\(^{20} \) is a map

\[
a \in A \to |a| \in R
\]

which satisfies the following axioms

- \(|a| \geq 0\)
- \(|a| = 0 \) if, and only if, \(a = 0 \)
- \(|a + b| \leq |a| + |b|\)
- \(|ab| = |a| \cdot |b|\)
- \(|da| = |d| \cdot |a|, d \in D, a \in A\)

If \(D \) is a normed commutative ring, \(D \)-algebra \(A \), endowed with the structure defined by a given norm on \(A \), is called normed \(D \)-algebra. □

Definition 4.11. Let \(A \) be normed \(D \)-algebra. Element \(a \in A \) is called limit of a sequence \(\{ a_n \} \)

\[
a = \lim_{n \to \infty} a_n
\]

if for every \(\epsilon \in R, \epsilon > 0 \) there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that \(|a_n - a| < \epsilon \) for every \(n > n_0 \). □

Definition 4.12. Let \(A \) be normed \(D \)-algebra. The sequence \(\{ a_n \}, a_n \in A \) is called fundamental or Cauchy sequence, if for every \(\epsilon \in R, \epsilon > 0 \) there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that \(|a_p - a_q| < \epsilon \) for every \(p, q > n_0 \). □

Definition 4.13. Normed \(D \)-algebra \(A \) is called Banach \(D \)-algebra if any fundamental sequence of elements of algebra \(A \) converges, i.e. has limit in algebra \(A \).

\(^{19}\)I made definition according to definition from [7], p. TVS I.1
\(^{20}\)I made definition according to definition from [6], IX, §3.3
Definition 4.14. Let A be Banach D-algebra. Set of elements $a \in A, |a| = 1$, is called **unit sphere in algebra A**.

Definition 4.15. Mapping

$$ f : A_1 \rightarrow A_2 $$

of Banach D_1-algebra A_1 with norm $|x|_1$ into Banach D_2-algebra A_2 with norm $|y|_2$ is called **continuous**, if for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$ |x' - x|_1 < \delta $$

implies

$$ |f(x') - f(x)|_2 < \epsilon $$

Definition 4.16. Let

$$ f : A_1 \rightarrow A_2 $$

mapping of Banach D_1-algebra A_1 with norm $|x|_1$ into Banach D_2-algebra A_2 with norm $|y|_2$. Value

$$ (4.1) \quad \|f\| = \sup \frac{|f(x)|_2}{|x|_1} $$

is called **norm of mapping f**.

Theorem 4.17. Let

$$ f : A_1 \rightarrow A_2 $$

linear mapping of Banach D_1-algebra A_1 with norm $|x|_1$ into Banach D_2-algebra A_2 with norm $|y|_2$. Then

$$ (4.2) \quad \|f\| = \sup\{ |f(x)|_2 : |x|_1 = 1 \} $$

Proof. From the definition 3.21 and the theorem 4.7, it follows that

$$ (4.3) \quad f(rx) = rf(x) \quad r \in R $$

From the equation (4.3) and the definition 4.10 it follows that

$$ \frac{|f(rx)|_2}{|rx|_1} = \frac{|r|}{|r|} \frac{|f(x)|_2}{|x|_1} = \frac{|f(x)|_2}{|x|_1} $$

Assuming $r = \frac{1}{|x|_1}$, we get

$$ (4.4) \quad \frac{|f(x)|_2}{|x|_1} = \left| f\left(\frac{x}{|x|_1} \right) \right|_2 $$

Equation (4.2) follows from equations (4.4) and (4.1).

Theorem 4.18. Let

$$ f : A_1 \rightarrow A_2 $$

linear mapping of Banach D_1-algebra A_1 with norm $|x|_1$ into Banach D_2-algebra A_2 with norm $|y|_2$. Since $\|f\| < \infty$, then map f is continuous.
Proof. Since map f is linear, then according to definition 4.16
\[|f(x) - f(y)|_2 = |f(x - y)|_2 \leq \|f\| |x - y|_1 \]
Let us assume arbitrary $\epsilon > 0$. Assume $\delta = \frac{\epsilon}{\|f\|}$. Then
\[|f(x) - f(y)|_2 \leq \|f\| \delta = \epsilon \]
follows from inequality
\[|x - y|_1 < \delta \]
According to definition 4.15 map f is continuous. \square

4.3. The Derivative of Mapping in Algebra.

Definition 4.19. Let A be Banach D-algebra. The function $f : A \to A$ is called **differentiable in the Gâteaux sense** on the set $U \subset A$, if at every point $x \in U$ the increment of the function f can be represented as
\[f(x + a) - f(x) = \partial f(x) \circ a + o(a) \]
where the **Gâteaux derivative** $\partial f(x)$ of map f is linear map of increment a and $o : A \to A$ is such continuous map that
\[\lim_{a \to 0} \frac{|o(a)|}{|a|} = 0 \]
\square

Remark 4.20. According to definition 4.19 for given x, the Gâteaux derivative $\partial f(x) \in \mathcal{L}(A; A)$. Therefore, the Gâteaux derivative of map f is map
\[\partial f : A \to \mathcal{L}(A; A) \]
Expressions $\partial f(x)$ and $\frac{\partial f(x)}{\partial x}$ are different notations for the same function. We will use notation $\frac{\partial f(x)}{\partial x}$ to underline that this is the Gâteaux derivative with respect to variable x. \square

Theorem 4.21. It is possible to represent the **Gâteaux differential** $\partial f(x) \circ dx$ of mapping f as
\[\partial f(x) \circ dx = \left(\frac{\partial s_0 f(x)}{\partial x} \otimes \frac{\partial s_1 f(x)}{\partial x} \right) \circ dx = \frac{\partial s_0 f(x)}{\partial x} d_x \frac{\partial s_1 f(x)}{\partial x} \]
Expression $\frac{\partial s_p f(x)}{\partial x}$, $p = 0, 1$, is called **component of the Gâteaux derivative of map** $f(x)$.

\squareFormally, we have to write the differential of the mapping in the form
\[\partial f(x) \circ dx = \left(\frac{\partial s_0 f(x)}{\partial x} \otimes \frac{\partial s_1 f(x)}{\partial x} \right) \circ I_k \circ dx = \frac{\partial s_0 f(x)}{\partial x} (I_k \circ dx) \frac{\partial s_1 f(x)}{\partial x} \]
However, for instance, in the theory of functions of complex variable we consider only linear mappings generated by mapping $I_0 \circ z = z$. Therefore, exploring derivatives, we also restrict ourselves to linear mappings generated by the mapping I_0. To write expressions in the general case is not difficult.
Proof. Corollary of definitions 4.19 and theorem 3.58. □

From definitions 3.21, 4.19 and the theorem 4.7 it follows

\[\partial f(x) \circ (ra) = r \partial f(x) \circ a \]

\(r \in R, r \neq 0, a \in A, a \neq 0 \)

Combining equation (4.8) and definition 4.19, we get known definition of the Gâteaux differential

\[\partial f(x) \circ a = \lim_{t \to 0, t \in R} \left(\frac{1}{t} (f \circ (x + ta) - f \circ x) \right) \]

Definitions of the Gâteaux derivative (4.5) and (4.9) are equivalent. Using this equivalence we tell that map \(f \) is called differentiable in the Gâteaux sense on the set \(U \subset D \), if at every point \(x \in U \) the increment of the function \(f \) can be represented as

\[f \circ (x + ta) - f \circ x = t \partial f(x) \circ a + o(t) \]

where \(o : R \to A \) is such continuous map that

\[\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0 \]

Theorem 4.22. Let \(A \) be Banach \(D \)-algebra. Let \(\mathcal{B} \) be basis of algebra \(A \) over ring \(D \). Standard representation of the Gâteaux derivative of mapping

\[f : A \to A \]

has form

\[\partial f(x) = \frac{\partial f}{\partial x_i} e_i \otimes e_j \]

Expression \(\frac{\partial f}{\partial x_i} \) in equation (4.11) is called standard component of the Gâteaux derivative of mapping \(f \).

Proof. Statement of theorem is corollary of statement (2) of the theorem 3.58. □

Theorem 4.23. Let \(A \) be Banach \(D \)-algebra. Let \(\mathcal{B} \) be basis of algebra \(A \) over ring \(D \). Then it is possible to represent the Gâteaux differential of mapping

\[f : D \to D \]

as

\[\partial f(x) \circ dx = dx^i \frac{\partial f}{\partial x_i} e_j \]

where \(dx \in A \) has expansion

\[dx = dx^i e_i, \quad dx^i \in D \]

relative to basis \(\mathcal{B} \) and Jacobian matrix of map \(f \) has form

\[\frac{\partial f}{\partial x^i} = \frac{\partial k^r f(x)}{\partial x} C^{p}_{ki} C_{pr} \]

Proof. Statement of theorem is corollary of theorem 3.58. □
Theorem 4.24. Let A be Banach D-algebra. Let f, g be differentiable mappings

$$f : A \to A \quad g : A \to A$$

The mapping

$$f + g : A \to A$$

is differentiable and the Gâteaux derivative satisfies to relationship

$$\partial(f + g)(x) = \partial f(x) + \partial g(x)$$

Proof. According to the definition (4.9),

$$\partial f(x) \circ a = \lim_{t \to 0, \ t \in R} (t^{-1}((f + g) \circ (x + ta) - (f + g) \circ x))$$

$$= \lim_{t \to 0, \ t \in R} (t^{-1}(f \circ (x + ta) + g \circ (x + ta) - f \circ x - g \circ x))$$

$$= \lim_{t \to 0, \ t \in R} (t^{-1}(f \circ (x + ta) - f \circ x))$$

$$+ \lim_{t \to 0, \ t \in R} (t^{-1}(g \circ (x + ta) - g \circ x))$$

$$= \partial f(x) \circ a + \partial g(x) \circ a$$

The equation (4.14) follows from the equation (4.15). \qed

Theorem 4.25. Let A be Banach D-algebra. Let

$$h : A \times A \to A$$

be continuous bilinear mapping. Let f, g be differentiable mappings

$$f : A \to A \quad g : A \to A$$

The mapping

$$h(f, g) : A \to A$$

is differentiable and the Gâteaux differential satisfies to relationship

$$\partial h(f(x), g(x)) \circ dx = h(\partial f(x) \circ dx, g(x)) + h(f(x), \partial g(x) \circ dx)$$

Proof. Equation (4.16) follows from chain of equations

$$\partial h(f(x), g(x)) \circ a = \lim_{t \to 0} (t^{-1}(h(f(x + ta), g(x + ta)) - h(f(x), g(x))))$$

$$= \lim_{t \to 0} (t^{-1}(h(f(x + ta), g(x + ta)) - h(f(x), g(x + ta))))$$

$$+ \lim_{t \to 0} (t^{-1}(h(f(x), g(x + ta)) - h(f(x), g(x))))$$

$$= h(\lim_{t \to 0} t^{-1}(f(x + ta) - f(x)), g(x))$$

$$+ h(f(x), \lim_{t \to 0} t^{-1}(g(x + ta) - g(x)))$$

based on definition (4.9). \qed

Theorem 4.26. Let A be Banach D-algebra. Let f, g be differentiable mappings

$$f : A \to A \quad g : A \to A$$

The Gâteaux differential satisfies to relationship

$$\partial(f(x)g(x)) \circ dx = (\partial f(x) \circ dx) \ g(x) + f(x) \ (\partial g(x) \circ dx)$$

Proof. The theorem is corollary of theorem 4.25 and definition 3.10. \qed
Theorem 4.27. Let A be Banach D-algebra. Suppose the Gâteaux derivative of mapping

$$ f : A \to A $$

has expansion

$$ \partial f(x) = \frac{\partial_s f(x)}{\partial x} \otimes \frac{\partial_{s_1} f(x)}{\partial x} $$

(4.18)

Suppose the Gâteaux derivative of mapping

$$ g : A \to A $$

has expansion

$$ \partial g(x) = \frac{\partial_t g(x)}{\partial x} \otimes \frac{\partial_{t_1} g(x)}{\partial x} $$

(4.19)

The Gâteaux derivative of mapping $f(x)g(x)$ have form

$$ \partial(f(x)g(x)) = \frac{\partial_s f(x)}{\partial x} \otimes \left(\frac{\partial_{s_1} f(x)}{\partial x} g(x) \right) + \left(f(x) \frac{\partial_t g(x)}{\partial x} \right) \otimes \frac{\partial_{t_1} g(x)}{\partial x} $$

(4.20)

$$ \frac{\partial_s f(x)g(x)}{\partial x} = \frac{\partial_s f(x)}{\partial x} g(x) $$

$$ \frac{\partial_{s_1} f(x)g(x)}{\partial x} = \frac{\partial_{s_1} f(x)}{\partial x} g(x) $$

(4.21)

$$ \frac{\partial_t f(x)g(x)}{\partial x} = f(x) \frac{\partial_t g(x)}{\partial x} $$

$$ \frac{\partial_{t_1} f(x)g(x)}{\partial x} = \frac{\partial_{t_1} g(x)}{\partial x} $$

(4.22)

Proof. Let us substitute (4.18) and (4.19) into equation (4.17)

$$ \partial(f(x)g(x))(a) = \frac{\partial_s f(x)}{\partial x} a \frac{\partial_{s_1} f(x)}{\partial x} g(x) + f(x) \frac{\partial_t g(x)}{\partial x} a \frac{\partial_{t_1} g(x)}{\partial x} $$

(4.23)

Based (4.23), we define equations (4.21), (4.22).

Theorem 4.28. Let A be Banach D-algebra. If the Gâteaux derivative $\partial f(x)$ exists in point x and has finite norm, then function f is continuous at point x.

Proof. From definition 4.16 it follows

$$ |\partial f(x) \circ a| \leq \|\partial f(x)\| |a| $$

(4.24)

From (4.5), (4.24) it follows

$$ |f(x + a) - f(x)| < |a| \|\partial f(x)\| $$

(4.25)

Let us assume arbitrary $\epsilon > 0$. Assume

$$ \delta = \frac{\epsilon}{\|\partial f(x)\|} $$

Then from inequality

$$ |a| < \delta $$

it follows

$$ |f(x + a) - f(x)| \leq \|\partial f(x)\| \delta = \epsilon $$

According to definition 4.15 map f is continuous at point x. □
Theorem 4.29. Let A be Banach D-algebra. Let mapping $f : A \to A$ be differentiable in the Gâteaux sense at point x. Then
\[\partial f(x) \circ 0 = 0 \]
Proof. Corollary of definitions 4.19 and theorem 3.24. \hfill \Box

Theorem 4.30. Let A be Banach D-algebra. Let mapping $f : A \to A$ be differentiable in the Gâteaux sense at point x and norm of the Gâteaux derivative of mapping f be finite
\[\| \partial f(x) \| = F \leq \infty \]
Let mapping $g : A \to A$ be differentiable in the Gâteaux sense at point $y = f(x)$ and norm of the Gâteaux derivative of mapping g be finite
\[\| \partial g(y) \| = G \leq \infty \]
Mapping $(g \circ f)(x) = g(f(x))$ is differentiable in the Gâteaux sense at point x
\[\begin{cases}
\partial(g \circ f)(x) = \partial g(y) \circ \partial f(x) \\
\partial(g \circ f)(x) \circ a = \partial g(y) \circ \partial f(x) \circ a
\end{cases} \]
\[\begin{cases}
\frac{\partial_{st.0}(g \circ f)(x)}{\partial x} = \frac{\partial_{s.0}g(f(x))}{\partial x} \frac{\partial_{t.0}f(x)}{\partial x} \\
\frac{\partial_{st.1}(g \circ f)(x)}{\partial x} = \frac{\partial_{s.1}f(x)}{\partial x} \frac{\partial_{t.1}g(f(x))}{\partial f(x)}
\end{cases} \]

Proof. According to definition 4.19
\[g(y + b) - g(y) = \partial g(y) \circ b + o_1(b) \]
where $o_1 : A \to A$ is such continuous map that
\[\lim_{b \to 0} \frac{|o_1(b)|}{|b|} = 0 \]
According to definition 4.19
\[f(x + a) - f(x) = \partial f(x) \circ a + o_2(a) \]
where $o_2 : A \to A$ is such continuous map that
\[\lim_{a \to 0} \frac{|o_2(a)|}{|a|} = 0 \]
According to (4.32) increment a of value $x \in A$ leads to increment
\[b = \partial f(x) \circ a + o_2(a) \]
of value \(y \). Using (4.27), (4.33) in equation (4.31), we get

\[
g(f(x + a)) - g(f(x))
\]

(4.34)

\[
g(f(x) + \partial f(x) \circ a + o_2(a)) - g(f(x))
\]

\[
= \partial g(f(x)) \circ (\partial f(x) \circ a + o_2(a)) - \partial_1(\partial f(x) \circ a + o_2(a))
\]

According to definitions 4.19, 3.21 from equation (4.34) it follows

\[
g(f(x + a)) - g(f(x))
\]

(4.35)

\[
= \partial g(f(x)) \circ \partial f(x) \circ a + \partial_2(a) - \partial_1(\partial f(x) \circ a + o_2(a))
\]

According to definition 4.10

\[
\lim_{a \to 0} \frac{\partial g(f(x)) \circ o_2(a) - \partial_1(\partial f(x) \circ a + o_2(a))}{|a|}
\]

(4.36)

\[
\leq \lim_{a \to 0} \frac{|\partial g(f(x)) \circ o_2(a)|}{|a|} + \lim_{a \to 0} \frac{|\partial_1(\partial f(x) \circ a + o_2(a))|}{|a|}
\]

From (4.28) it follows that

\[
\lim_{a \to 0} \frac{|\partial g(f(x)) \circ o_2(a)|}{|a|} \leq G \lim_{a \to 0} \frac{|o_2(a)|}{|a|} = 0
\]

From (4.26) it follows that

\[
\lim_{a \to 0} \frac{|\partial_1(\partial f(x) \circ a + o_2(a))|}{|a|}
\]

\[
= \lim_{a \to 0} \frac{|\partial_1(\partial f(x) \circ a + o_2(a))|}{|\partial f(x) \circ a + o_2(a)|} \lim_{a \to 0} \frac{|\partial f(x) \circ a + o_2(a)|}{|a|}
\]

\[
\leq \lim_{a \to 0} \frac{|\partial_1(\partial f(x) \circ a + o_2(a))|}{|\partial f(x) \circ a + o_2(a)|} \lim_{a \to 0} \frac{|\partial f(x)| |a| + |o_2(a)|}{|a|}
\]

\[
= \lim_{a \to 0} \frac{|\partial_1(\partial f(x) \circ a + o_2(a))|}{|\partial f(x) \circ a + o_2(a)|} ||\partial f(x)||
\]

According to the theorem 4.29

\[
\lim_{a \to 0} (\partial f(x) \circ a) + o_2(a)) = 0
\]

Therefore,

\[
\lim_{a \to 0} \frac{|\partial_1(\partial f(x) \circ a + o_2(a))|}{|a|} = 0
\]

(4.38)

From equations (4.36), (4.37), (4.38) it follows

\[
\lim_{a \to 0} \frac{|\partial g(f(x)) \circ o_2(a) - \partial_1(\partial f(x) \circ a + o_2(a))|}{|a|} = 0
\]

(4.39)

According to definition 4.19

\[
(g \circ f)(x + a) - (g \circ f)(x) = \partial(g \circ f)(x) \circ a + o(a)
\]

where \(o : A \to A \) is such continuous mapping that

\[
\lim_{a \to 0} \frac{|o(a)|}{|a|} = 0
\]

Equation (4.29) follows from (4.35), (4.39), (4.40).
From equation (4.29) and theorem 4.21 it follows that
\[
\frac{\partial_{s,0}(g \circ f)(x)}{\partial x} a \frac{\partial_{s,1}(g \circ f)(x)}{\partial x}
\]
(4.41)
\[
= \frac{\partial_{s,0}g(f(x))}{\partial f(x)} \frac{\partial f(x)}{\partial x} a \frac{\partial_{s,1}g(f(x))}{\partial f(x)}
\]
(4.30) follow from equation (4.41).

4.4. Table of Derivatives of Map of Associative Algebra.

Theorem 4.31. Let \(D \) be the complete commutative ring of characteristic 0. Let \(A \) be associative \(D \)-algebra. Then for any \(b \in A \)
\[
\partial b = 0
\]

Proof. Immediate corollary of definition 4.19.

Theorem 4.32. Let \(D \) be the complete commutative ring of characteristic 0. Let \(A \) be associative \(D \)-algebra. Then for any \(b, c \in A \)
\[
\left\{ \begin{array}{l}
\partial(bf(x)c) = b \partial f(x) c \\
\partial(bf(x)c) \circ dx = b(\partial f(x) \circ dx)c
\end{array} \right.
\]
(4.42)
\[
\frac{\partial_{s,0}bf(x)c}{\partial x} = b \frac{\partial_{s,0}f(x)}{\partial x}
\]
\[
\frac{\partial_{s,1}bf(x)c}{\partial x} = \frac{\partial_{s,1}f(x)}{\partial x} c
\]

Proof. Immediate corollary of equations (4.17), (4.21), (4.22) because \(\partial b = \partial c = 0 \).

Theorem 4.33. Let \(D \) be the complete commutative ring of characteristic 0. Let \(A \) be associative \(D \)-algebra. Then for any \(b, c \in A \)
\[
\left\{ \begin{array}{l}
\partial(bxc) = b \otimes c \\
\partial(bxc) \circ dx = b dx c
\end{array} \right.
\]
(4.43)
\[
\frac{\partial_{1,0}bxc}{\partial x} = b \frac{\partial_{1,1}bxc}{\partial x} = c
\]

Proof. Corollary of theorem 4.32, when \(f(x) = x \).

Theorem 4.34. Let \(D \) be the complete commutative ring of characteristic 0. Let \(A \) be associative \(D \)-algebra. Let \(f \) be linear mapping
\[
f \circ x = (a_{s,0} \otimes a_{s,1}) \circ x = a_{s,0} x a_{s,1}
\]
Then
\[
\partial f = f \\
\partial f \circ dx = f \circ dx
\]

Proof. Corollary of theorems 4.33, 4.24.
Corollary 4.35. Let D be the complete commutative ring of characteristic 0. Let A be associative D-algebra. Then for any $b \in A$

\[
\begin{align*}
\partial(xb - bx) & = 1 \otimes b - b \otimes 1 \\
\partial(xb - bx) \circ dx & = dx b - b \, dx \\
\frac{\partial_{1,0}(xb - bx)}{dx} & = 1 \\
\frac{\partial_{1,1}(xb - bx)}{dx} & = b \\
\frac{\partial_{2,0}(xb - bx)}{dx} & = -b \\
\frac{\partial_{2,1}(xb - bx)}{dx} & = 1
\end{align*}
\]

\[\square\]

Theorem 4.36. Let D be the complete commutative ring of characteristic 0. Let A be associative D-algebra. Then

\[
\begin{align*}
\partial x^2 & = x \otimes 1 + 1 \otimes x \\
\partial x^2 \circ dx & = x \, dx + dx \, x
\end{align*}
\]

(4.44)

\[
\begin{align*}
\frac{\partial_{1,0}x^2}{dx} & = x \\
\frac{\partial_{1,1}x^2}{dx} & = 1 \\
\frac{\partial_{2,0}x^2}{dx} & = 1 \\
\frac{\partial_{2,1}x^2}{dx} & = x
\end{align*}
\]

Proof. Consider increment of map $f(x) = x^2$.

(4.45) \quad f(x + h) - f(x) = (x + h)^2 - x^2 = xh + hx + h^2 = xh + hx + o(h)

(4.44) follows from equations (4.7), (4.45).

\[\square\]

Theorem 4.37. Let D be the complete commutative ring of characteristic 0. Let A be associative division D-algebra. Then

\[
\begin{align*}
\partial x^{-1} & = -x^{-1} \otimes x^{-1} \\
\partial x^{-1} \circ dx & = -x^{-1} \, dx \, x^{-1} \\
\frac{\partial_{1,0}x^{-1}}{dx} & = -x^{-1} \\
\frac{\partial_{1,1}x^{-1}}{dx} & = x^{-1}
\end{align*}
\]

(4.46)

\[\square\]

\[\text{22} \text{The statement of the theorem is similar to example VIII, [11], p. 451. If product is commutative, then the equation (4.44) gets form} \]

\[
\begin{align*}
\partial x^2 \circ dx & = 2x \, dx \\
\frac{dx^2}{dx} & = 2x
\end{align*}
\]

\[\text{23} \text{The statement of the theorem is similar to example IX, [11], p. 451. If product is commutative, then the equation (4.46) gets form} \]

\[
\begin{align*}
\partial x^{-1} \circ dx & = -x^{-2} \, dx \\
\frac{dx^{-1}}{dx} & = -x^{-2}
\end{align*}
\]
Proof. Let us substitute $f(x) = x^{-1}$ in definition (4.9).

$$\partial f(x) \circ h = \lim_{t \to 0, \ t \in R} (t^{-1}((x + th)^{-1} - x^{-1}))$$

$$= \lim_{t \to 0, \ t \in R} (t^{-1}((x + th)^{-1} - x^{-1}(x + th)(x + th)^{-1}))$$

$$(4.47)$$

$$= \lim_{t \to 0, \ t \in R} (t^{-1}(1 - x^{-1}(x + th))(x + th)^{-1})$$

$$= \lim_{t \to 0, \ t \in R} (t^{-1}(1 - x^{-1}th)(x + th)^{-1})$$

$$= \lim_{t \to 0, \ t \in R} (-x^{-1}h(x + th)^{-1})$$

Equation (4.46) follows from chain of equations (4.47). \[\square\]

Theorem 4.38. Let D be the complete commutative ring of characteristic 0. Let A be associative division D-algebra. Then\(^{24}\)

$$\begin{align*}
\partial (xax^{-1}) &= 1 \otimes ax^{-1} - xax^{-1} \otimes x^{-1} \\
\partial (xax^{-1}) \circ dx &= dx \ ax^{-1} - xax^{-1} \ dx \ x^{-1} \\
\frac{\partial_1 ax^{-1}}{\partial x} &= 1 \\
\frac{\partial_1 ax^{-1}}{\partial x} &= ax^{-1} \\
\frac{\partial_2 ax^{-1}}{\partial x} &= -ax^{-1} \\
\frac{\partial_2 ax^{-1}}{\partial x} &= x^{-1}
\end{align*}
$$

Equation (4.48) is corollary of equations (4.17), (4.43). \[\square\]

5. **Derivative of Second Order of Map of Division Ring**

5.1. **Derivative of Second Order of Map of Algebra.** Let D be the complete commutative ring of characteristic 0. Let A be associative D-algebra. Let

$$f : A \to A$$

function differentiable in the Gâteaux sense. According to remark 4.20 the Gâteaux derivative is map

$$\partial f : A \to \mathcal{L}(A; A)$$

According to theorem 3.36 and definition 4.16 set $\mathcal{L}(A; A)$ is Banach D-algebra. Therefore, we may consider the question, if map ∂f is differentiable in the Gâteaux sense.

According to definition 4.19

$$(5.1) \quad (\partial f \circ (x + a_2)) \circ a_1 - (\partial f \circ x) \circ a_1 = \partial (\partial f(x) \circ a_1) \circ a_2 + a_2(a_2)$$

where $a_2 : A \to \mathcal{L}(A; A)$ is such continuous map, that

$$\lim_{a_2 \to 0} \frac{\|a_2(a_2)\|}{|a_2|} = 0$$

According to definition 4.19 the mapping $\partial (\partial f(x) \circ a_1) \circ a_2$ is linear map of variable a_2. From equation (5.1) it follows that mapping $\partial (\partial f(x) \circ a_1) \circ a_2$ is linear mapping of variable a_1. Therefore, the mapping $\partial (\partial f(x) \circ a_1) \circ a_2$ is bilinear mapping.

\(^{24}\)If product is commutative, then

$$y = xax^{-1} = a$$

Accordingly, the derivative is 0.
Definition 5.1. Polylinear map

\[\partial^2 f(x) \circ (a_1; a_2) = \frac{\partial^2 f(x)}{\partial x^2} \circ (a_1; a_2) = \partial(\partial f(x) \circ a_1) \circ a_2 \]

is called the Gâteaux derivative of second order of map \(f \).

Remark 5.2. According to definition 5.1 for given \(x \) the Gâteaux derivative of second order \(\partial^2 f(x) \in \mathcal{L}(A, A; A) \). Therefore, the Gâteaux derivative of second order of map \(f \) is mapping

\[\partial^2 f : A \rightarrow \mathcal{L}(A, A; A) \]

According to the theorem \([4]-3.6.4\), we may consider also expression

\[\partial^2 f(x) \circ (a_1 \otimes a_2) = \partial^2 f(x) \circ (a_1; a_2) \]

Then

\[\partial^2 f(x) \in \mathcal{L}(A \otimes A; A) \]
\[\partial^2 f : A \rightarrow \mathcal{L}(A \otimes A; A) \]

We use the same notation for mapping because of the nature of the argument it is clear what kind of mapping we consider.

Theorem 5.3. It is possible to represent the Gâteaux differential of second order of map \(f \) as

\[\partial^2 f(x) \circ (a_1; a_2) = \left(\frac{\partial^2 f_0(x)}{\partial x^2} \otimes \frac{\partial^2 f_1(x)}{\partial x^2} \otimes \frac{\partial^2 f_2(x)}{\partial x^2}, \sigma_s \right) \circ (a_1; a_2) \]

(5.3)

Expression \(^{25} \)

\[\frac{\partial^2_s f_p(x)}{\partial x^2} = 0, 1, 2 \]

is called component of the Gâteaux derivative of second order of map \(f(x) \).

By induction, assuming that we defined the Gâteaux derivative \(\partial^{n-1} f(x) \) of order \(n - 1 \), we define

\[\partial^n f(x) \circ (a_1; \ldots; a_n) = \]

\[\frac{\partial^n f(x)}{\partial x^n} \circ (a_1; \ldots; a_n) = \partial(\partial^{n-1} f(x) \circ (a_1; \ldots; a_{n-1})) \circ a_n \]

the Gâteaux derivative of order \(n \) of map \(f \). We also assume \(\partial^0 f(x) = f(x) \).

\[^{25} \text{We suppose} \]

\[\frac{\partial^2_s f_p(x)}{\partial x^2} = \frac{\partial^2_s f_p(x)}{\partial x \partial x} \]
5.2. Taylor Series. Let D be the complete commutative ring of characteristic 0. Let A be associative D-algebra. Let $p_k(x)$ be the monomial of power k, $k > 0$, in one variable over D-algebra A.

It is evident that monomial of power 0 has form $a_0, a_0 \in A$. For $k > 0$,

$$p_k(x) = p_{k-1}(x)xa_k$$

where $a_k \in A$. Actually, last factor of monomial $p_k(x)$ is either $a_k \in A$, or has form $x^l, \ l \geq 1$. In the later case we assume $a_k = 1$. Factor preceding a_k has form x^l, $l \geq 1$. We can represent this factor as $x^{l-1}x$. Therefore, we proved the statement.

In particular, monomial of power 1 has form $p_1(x) = a_0xa_1$.

Without loss of generality, we assume $k = n$.

Theorem 5.4. For any $m > 0$ the following equation is true

$$\frac{\partial^m(f(x)x)\circ(h_1;\ldots;h_m)}{} = \frac{\partial^m f(x)\circ(h_1;\ldots;h_m)x + \partial^{m-1}f(x)\circ(h_1;\ldots;h_{m-1})h_m}{\quad}$$

$$+ \frac{\partial^{m-1}f(x)\circ(h_1;\ldots;h_{m-1};h_m)h_1}{\quad} + \quad$$

$$+ \frac{\partial^{m-1}f(x)\circ(h_1;\ldots;h_{m-1};h_m)h_{m-1}}{\quad}$$

where symbol h^i means absence of variable h^i in the list.

Proof. For $m = 1$, this is corollary of equation (4.17)

$$\frac{\partial(f(x)x)\circ h_1}{\quad} = \frac{(\partial f(x)\circ h_1)x + f(x)h_1}{\quad}$$

Assume, (5.5) is true for $m - 1$. Then

$$\frac{\partial^{m-1}(f(x)x)\circ(h_1;\ldots;h_{m-1})}{\quad} = \frac{\partial^{m-1}f(x)\circ(h_1;\ldots;h_{m-1})x + \partial^{m-2}f(x)\circ(h_1;\ldots;h_{m-2})h_{m-1}}{\quad}$$

$$+ \frac{\partial^{m-2}f(x)\circ(h_1;\ldots;h_{m-2};h_{m-1})h_1}{\quad} + \quad$$

$$+ \frac{\partial^{m-2}f(x)\circ(h_1;\ldots;h_{m-2};h_{m-1})h_{m-2}}{\quad}$$

Using equations (4.17) and (4.42) we get

$$\frac{\partial^m(f(x)x)\circ(h_1;\ldots;h_{m-1};h_m)}{\quad} = \frac{\partial^m f(x)\circ(h_1;\ldots;h_{m-1};h_m)x}{\quad}$$

$$+ \frac{\partial^{m-1}f(x)\circ(h_1;\ldots;h_{m-2};h_{m-1})h_m}{\quad}$$

$$+ \frac{\partial^{m-1}f(x)\circ(h_1;\ldots;h_{m-2};h_{m-1};h_m)h_{m-1}}{\quad} + \quad$$

$$+ \frac{\partial^{m-2}f(x)\circ(h_1;\ldots;h_{m-2};h_{m-1};h_m)h_1}{\quad} + \quad$$

$$+ \frac{\partial^{m-2}f(x)\circ(h_1;\ldots;h_{m-2};h_{m-1};h_m)h_{m-2}}{\quad}$$

The difference between equations (5.5) and (5.6) is only in form of presentation. We proved the theorem. □

Theorem 5.5. The Gâteaux derivative $\frac{\partial^m p_n(x)\circ(h_1;\ldots;h_m)}{}$ is symmetric polynomial with respect to variables h_1, \ldots, h_m.

According to definition of the Gâteaux derivative (5.10) it follows that

\[\frac{\partial}{\partial x_i} r_n(x_1, ..., x_n) = r_n(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n) \]

where square brackets express symmetrization of expression with respect to variables \(x_1, ..., x_n \).

It is evident that

\[p_n(x) = r_n(x_1, ..., x_n) \quad x_1 = ... = x_n = x \]

We define the Gâteaux derivative of power \(k \) according to rule

\[\partial^k p_n(x) \circ (h_1; ...; h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = ... = x_n = x \]

According to construction, polynomial \(r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \) is symmetric with respect to variables \(h_1, ..., h_k, x_{k+1}, ..., x_n \). Therefore, polynomial (5.7) is symmetric with respect to variables \(h_1, ..., h_k \).

For \(k = 1 \), we will prove that definition (5.7) of the Gâteaux derivative coincides with definition (4.5).

For \(n = 1 \), \(r_1(h_1) = a_0 h_1 a_1 \). This expression coincides with expression of the Gâteaux derivative in theorem 4.33.

Let the statement be true for \(n - 1 \). The following equation is true

\[r_n(h_1, x_2, ..., x_n) = r_{n-1}(h_1, x_{[2, ..., x_{n-1}]}x_n) a_n + r_{n-1}(x_2, ..., x_n) h_1 a_n \]

Assume \(x_2 = ... = x_n = x \). According to suggestion of induction, from equations (5.7), (5.8) it follows that

\[r_n(h_1, x_2, ..., x_n) = (\partial p_{n-1}(x) \circ h_1)x a_n + p_{n-1}(x) h_1 a_n \]

According to theorem 5.4

\[r_n(h_1, x_2, ..., x_n) = \partial p_n(x) \circ h_1 \]

This proves the equation (5.7) for \(k = 1 \).

Let us prove now that definition (5.7) of the Gâteaux derivative coincides with definition (4.5) for \(k > 1 \).

Let equation (5.7) be true for \(k - 1 \). Let us consider arbitrary monomial of polynomial \(r_n(h_1, ..., h_{k-1}, x_k, ..., x_n) \). Identifying variables \(h_1, ..., h_{k-1} \) with elements of division ring \(D \), we consider polynomial

\[R_{n-k}(x_k, ..., x_n) = r_n(h_1, ..., h_{k-1}, x_k, ..., x_n) \]

Assume \(P_{n-k}(x) = R_{n-k}(x_k, ..., x_n), x_k = ... = x_n = x \). Therefore

\[P_{n-k}(x) = \partial^{k-1} p_n(x) \circ (h_1; ..., h_{k-1}) \]

According to definition of the Gâteaux derivative (5.4)

\[\partial P_{n-k}(x) \circ h_k = \partial (\partial^{k-1} p_n(x) \circ (h_1; ..., h_{k-1})) \circ h_k \]

\[= \partial^k p_n(x) \circ (h_1; ...; h_{k-1}; h_k) \]
According to definition (5.7) of the Gâteaux derivative
\[\partial P_{n-k}(x) \circ h_k = R_{n-k}(h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = \ldots = x_n = x \]
According to definition (5.9), from equation (5.11) it follows that
\[\partial P_{n-k}(x)(h_k) = r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x \]
From comparison of equations (5.10) and (5.12) it follows that
\[\partial^k p_n(x)(h_1; \ldots; h_k) = r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x \]
Therefore equation (5.7) is true for any \(k \) and \(n \).
We proved the statement of theorem.

Theorem 5.6. For any \(n \geq 0 \) following equation is true
\[\partial^{n+1} p_n(x) = 0 \]

Proof. Since \(p_0(x) = a_0, a_0 \in D \), then for \(n = 0 \) theorem is corollary of theorem 4.31. Let statement of theorem is true for \(n - 1 \). According to theorem 5.4 when \(f(x) = p_{n-1}(x) \) we get
\[\partial^{n+1} p_n(x)(h_1; \ldots; h_{n+1}) = \partial^{n+1}(p_{n-1}(x)x a_n)(h_1; \ldots; h_{n+1}) \]
\[= \partial^{n+1} p_{n-1}(x)(h_1; \ldots; h_m)x a_n \]
\[+ \partial^n p_{n-1}(x)(h_1; \ldots; h_{m-1})h_m a_n \]
\[+ \partial^m p_{n-1}(x)(h_1; \ldots; h_{m-1}; h_m)h_1 a_n + \]
\[+ \partial^{m-1} p_{n-1}(x)(h_1; \ldots; h_{m-1}; h_m)h_{m-1} a_n \]
According to suggestion of induction all monomials are equal 0.

Theorem 5.7. If \(m < n \), then following equation is true
\[\partial^m p_n(0) = 0 \]

Proof. For \(n = 1 \) following equation is true
\[\partial^0 p_1(0) = a_0 x a_1 = 0 \]
Assume that statement is true for \(n - 1 \). Then according to theorem 5.4
\[\partial^m(p_{n-1}(x)x a_n)(h_1; \ldots; h_m) \]
\[= \partial^m p_{n-1}(x)(h_1; \ldots; h_m)x a_n + \partial^{m-1} p_{n-1}(x)(h_1; \ldots; h_{m-1})h_m a_n \]
\[+ \partial^{m-1} p_{n-1}(x)(h_1; \ldots; h_{m-1}; h_m)h_1 a_n + \]
\[+ \partial^{m-2} p_{n-1}(x)(h_1; \ldots; h_{m-2}; h_m)h_{m-1} a_n \]
First term equal 0 because \(x = 0 \). Because \(m - 1 < n - 1 \), then rest terms equal 0 according to suggestion of induction. We proved the statement of theorem.

When \(h_1 = \ldots = h_n = h \), we assume
\[\partial^n f(x) \circ h = \partial^n f(x) \circ (h_1; \ldots; h_n) \]
This notation does not create ambiguity, because we can determine function according to number of arguments.

Theorem 5.8. For any \(n > 0 \) following equation is true
\[\partial^n p_n(x) \circ h = n! p_n(h) \]
Proof. For $n = 1$ following equation is true
$$\partial p_1(x) \circ h = \partial(a_0x_1) \circ h = a_0h = 1\partial p_1(h)$$
Assume the statement is true for $n - 1$. Then according to theorem 5.4
\begin{equation}
\partial^n p_n(x) \circ h = (\partial^n p_{n-1}(x) \circ h)x a_n + (\partial^{n-1} p_{n-1}(x) \circ h)ha_n \\
+ \ldots + (\partial^1 p_{n-1}(x) \circ h)ha_n
\end{equation}
First term equal 0 according to theorem 5.6. The rest n terms equal, and according to suggestion of induction from equation (5.13) it follows
$$\partial^n p_n(x) \circ h = n(\partial^{n-1} p_{n-1}(x) \circ h)ha_n = n(n-1)!p_{n-1}(h)ha_n = n!p_n(h)$$
Therefore, statement of theorem is true for any n. \qed

Let $p(x)$ be polynomial of power n.
\begin{equation}
p(x) = p_0 + p_{1i_1}(x) + \ldots + p_{ni_n}(x)
\end{equation}
We assume sum by index i_k which enumerates terms of power k. According to theorem 5.6, 5.7, 5.8
$$\partial^k p(0) \circ (h_1; \ldots; h_k) = k!p_{k i_k}(x)$$
Therefore, we can write
$$p(x) = p_0 + (1!)^{-1}\partial p(0) \circ x + (2!)^{-1}\partial^2 p(0) \circ x + \ldots + (n!)^{-1}\partial^n p(0) \circ x$$
This representation of polynomial is called Taylor polynomial. If we consider substitution of variable $x = y - y_0$, then considered above construction remain true for polynomial
$$p(y) = p_0 + p_{1i_1}(y - y_0) + \ldots + p_{ni_n}(y - y_0)$$
Therefore
$$p(y) = p_0 + (1!)^{-1}\partial p(y_0) \circ (y - y_0) + (2!)^{-1}\partial^2 p(y_0) \circ (y - y_0) + \ldots + (n!)^{-1}\partial^n p(y_0) \circ (y - y_0)$$
Assume that function $f(x)$ is differentiable in the Gâteaux sense at point x_0 up to any order.

Theorem 5.9. If function $f(x)$ holds
$$f(x_0) = \partial f(x_0) \circ h = \ldots = \partial^n f(x_0) \circ h = 0$$
then for $t \to 0$ expression $f(x + th)$ is infinitesimal of order higher than n with respect to t
$$f(x_0 + th) = o(t^n)$$
Proof. When $n = 1$ this statement follows from equation (4.10).
Let statement be true for $n - 1$. Map
$$f_1(x) = \partial f(x) \circ h$$
satisfies to condition
$$f_1(x_0) = \partial f_1(x_0) \circ h = \ldots = \partial^{n-1} f_1(x_0) \circ h = 0$$

\[^{26}\] consider Taylor polynomial for polynomials by analogy with construction of Taylor polynomial in [9], p. 246.
\[^{27}\] I explore construction of Taylor series by analogy with construction of Taylor series in [9], p. 248, 249.
According to suggestion of induction

\[f_1(x_0 + th) = o(t^{n-1}) \]

Then equation (4.9) gets form

\[o(t^{n-1}) = \lim_{t \to 0, t \in R} (t^{-1} f(x + th)) \]

Therefore,

\[f(x + th) = o(t^n) \]

Let us form polynomial

\[p(x) = f(x_0) + (1!)^{-1} \partial f(x_0) \circ (x - x_0) + ... + (n!)^{-1} \partial^n f(x_0) \circ (x - x_0) \]

According to theorem 5.9

\[f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n) \]

Therefore, polynomial \(p(x) \) is good approximation of map \(f(x) \).

If the mapping \(f(x) \) has the Gâteaux derivative of any order, then passing to the limit \(n \to \infty \), we get expansion into series

\[f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \partial^n f(x_0) \circ (x - x_0) \]

which is called Taylor series.

5.3. Integral. Concept of integral has different aspect. In this section we consider integration as operation inverse to differentiation. As a matter of fact, we consider procedure of solution of ordinary differential equation

\[\partial f(x) \circ h = F(x; h) \]

Example 5.10. I start from example of differential equation over real field.

\[(5.14) \quad y' = 3x^2 \]
\[(5.15) \quad x_0 = 0 \quad y_0 = 0 \]

Differentiating one after another equation (5.14), we get the chain of equations

\[(5.16) \quad y'' = 6x \]
\[(5.17) \quad y''' = 6 \]
\[(5.18) \quad y^{(n)} = 0 \quad n > 3 \]

From equations (5.14), (5.15), (5.21), (5.22), (5.23) it follows expansion into Taylor series

\[y = x^3 \]
Example 5.11. Let us consider similar differential equation over algebra
\[\partial y = 1 \otimes x^2 + x \otimes x + x^2 \otimes 1 \]
\[x_0 = 0 \quad y_0 = 0 \]

Differentiating one after another equation (5.19), we get the chain of equations
\[\partial^2 y = 1 \otimes_1 1 \otimes_2 x + 1 \otimes_1 x \otimes_2 1 + 1 \otimes_2 1 \otimes_1 x \]
\[+ x \otimes_1 1 \otimes_2 1 + 1 \otimes_2 x \otimes_1 1 + x \otimes_2 1 \otimes_1 1 \]
\[\partial^3 y = 1 \otimes_1 1 \otimes_2 1 \otimes_3 1 + 1 \otimes_1 1 \otimes_3 1 \otimes_2 1 + 1 \otimes_2 1 \otimes_1 1 \otimes_3 1
+ 1 \otimes_3 1 \otimes_1 1 \otimes_2 1 + 1 \otimes_2 1 \otimes_3 1 \otimes_1 1 + 1 \otimes_3 1 \otimes_2 1 \otimes_1 1 \]
\[\partial^n y = 0 \quad n > 3 \]

From equations (5.19), (5.20), (5.21), (5.22), (5.23) expansion into Taylor series follows
\[y = x^3 \]

Remark 5.12. I will write following equations to show how derivative works.
\[\partial y \circ h = hx^2 + xhx + x^2 h \]
\[\partial^2 y \circ (h_1; h_2) = h_1 h_2 x + h_1 x h_2 x + h_2 h_1 x \]
\[+ x h_1 h_2 + h_2 x h_1 + x h_2 h_1 \]
\[\partial^3 y \circ (h_1; h_2; h_3) = h_1 h_2 h_3 + h_1 h_3 h_2 + h_2 h_1 h_3 \]
\[+ h_3 h_1 h_2 + h_2 h_3 h_1 + h_3 h_2 h_1 \]

Remark 5.13. Differential equation
\[\partial y = 3 \otimes x^2 \]
\[x_0 = 0 \quad y_0 = 0 \]
also leads to answer \(y = x^3 \). It is evident that this map does not satisfies differential equation. However, contrary to theorem 5.5 second derivative is not symmetric polynomial. This means that equation (5.24) does not possess a solution.

Example 5.14. It is evident that, if function satisfies to differential equation
\[\partial y = f_{s,0} \otimes f_{s,1} \]
\[f_{s,0} \in A \quad f_{s,1} \in A \]
then The Gâteaux derivative of second order
\[\partial^2 f(x) = 0 \]

In that case, if initial condition is \(y(0) = 0 \), then differential equation (5.26) has solution
\[y = f_{s,0} \ x \ f_{s,1} \]
5.4. **Exponent.** In this section we consider one of possible models of exponent.

In a field we can define exponent as solution of differential equation

\[y' = y \]

(5.27)

It is evident that we cannot write such equation for division ring. However we can use equation

\[\partial(y) \circ h = y'h \]

(5.28)

From equations (5.27), (5.28) it follows

\[\partial(y) \circ h = yh \]

(5.29)

This equation is closer to our goal, however there is the question: in which order we should multiply \(y \) and \(h \)? To answer this question we change equation

\[\partial(y) \circ h = \frac{1}{2}(yh + hy) \]

(5.30)

Hence, our goal is to solve differential equation (5.30) with initial condition \(y(0) = 1 \).

For the statement and proof of the theorem 5.15 I introduce following notation. Let

\[\sigma = \begin{pmatrix} y & h_1 & \ldots & h_n \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix} \]

be transposition of the tuple of variables

\((y \ h_1 \ \ldots \ h_n) \)

Let \(p_\sigma(h_i) \) be position that variable \(h_i \) gets in the tuple

\((\sigma(y) \ \sigma(h_1) \ \ldots \ \sigma(h_n)) \)

For instance, if transposition \(\sigma \) has form

\[\begin{pmatrix} y & h_1 & h_2 & h_3 \\ h_2 & y & h_3 & h_1 \end{pmatrix} \]

then following tuples equal

\((\sigma(y) \ \sigma(h_1) \ \sigma(h_2) \ \sigma(h_3)) = (h_2 \ y \ h_3 \ h_1) \)

\(= (p_\sigma(h_2) \ p_\sigma(y) \ p_\sigma(h_3) \ p_\sigma(h_1)) \)

Theorem 5.15. If function \(y \) is solution of differential equation (5.30) then the Gâteaux derivative of order \(n \) of function \(y \) has form

\[\partial^n(y) \circ (h_1, \ldots, h_n) = \frac{1}{2^n} \sum_\sigma \sigma(y)\sigma(h_1)\ldots\sigma(h_n) \]

(5.31)

where sum is over transpositions

\[\sigma = \begin{pmatrix} y & h_1 & \ldots & h_n \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix} \]

of the set of variables \(y, h_1, \ldots, h_n \). Transposition \(\sigma \) has following properties
We prove this statement by induction. For \(n = 1 \) the statement is true because this is differential equation \((5.31)\). Let the statement be true for \(n = k - 1 \). Hence
\[
\vartheta^{k-1}(y) \circ (h_1, \ldots, h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})
\]
where the sum is over transposition
\[
\sigma = \begin{pmatrix} y & h_1 & \ldots & h_{k-1} \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{pmatrix}
\]
of the set of variables \(y, h_1, \ldots, h_{k-1} \). Transposition \(\sigma \) satisfies to conditions (1), (2) in theorem. According to definition \((5.4)\) the Gâteaux derivative of order \(k \) has form
\[
\vartheta^{k}(y) \circ (h_1, \ldots, h_k) = \vartheta(\vartheta^{k-1}(y) \circ (h_1, \ldots, h_{k-1})) \circ h_k
\]
\[
= \frac{1}{2^{k-1}} \vartheta \left(\sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right) \circ h_k
\]
From equations \((5.30), (5.33)\) it follows that
\[
\vartheta^{k}(y) \circ (h_1, \ldots, h_k)
\]
\[
= \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma} \sigma(yh_k)\sigma(h_1)\ldots\sigma(h_{k-1}) + \sum_{\sigma} \sigma(h_k y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)
\]
It is easy to see that arbitrary transposition \(\sigma \) from sum \((5.34)\) forms two transpositions
\[
\tau_1 = \begin{pmatrix} y & h_1 & \ldots & h_{k-1} & h_k \\ \tau_1(y) & \tau_1(h_1) & \ldots & \tau_1(h_{k-1}) & \tau_1(h_k) \\ h_k y & h_1 & \ldots & h_{k-1} \\ \sigma(h_k y) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{pmatrix}
\]
\[
= \begin{pmatrix} y & h_1 & \ldots & h_{k-1} & h_k \\ \tau_2(y) & \tau_2(h_1) & \ldots & \tau_2(h_{k-1}) & \tau_2(h_k) \\ y h_k & h_1 & \ldots & h_{k-1} \\ \sigma(y h_k) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{pmatrix}
\]
\[
\tau_2 = \begin{pmatrix} y & h_1 & \ldots & h_{k-1} & h_k \\ \tau_2(y) & \tau_2(h_1) & \ldots & \tau_2(h_{k-1}) & \tau_2(h_k) \\ y h_k & h_1 & \ldots & h_{k-1} \\ \sigma(y h_k) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{pmatrix}
\]
From (5.34) and (5.35) it follows that
\[
\frac{\partial^k}{\partial y} \circ (h_1, \ldots, h_k)
= \frac{1}{2^k} \left(\sum_{\tau_1} \tau_1(y) \tau_1(h_1) \ldots \tau_1(h_{k-1}) \tau_1(h_k)
+ \sum_{\tau_2} \tau_2(y) \tau_2(h_1) \ldots \tau_2(h_{k-1}) \tau_2(h_k) \right)
\]
(5.36)

In expression (5.36) \(p_{\tau_1}(h_k) \) is written immediately before \(p_{\tau_1}(y) \). Since \(k \) is smallest value of index then transposition \(\tau_1 \) satisfies to conditions (1), (2) in the theorem. In expression (5.36) \(p_{\tau_2}(h_k) \) is written immediately after \(p_{\tau_2}(y) \). Since \(k \) is largest value of index than transposition \(\tau_2 \) satisfies to conditions (1), (2) in the theorem.

It remains to show that in the expression (5.36) we get all transpositions \(\tau \) that satisfy to conditions (1), (2) in the theorem. Since \(k \) is largest index then according to conditions (1), (2) in the theorem \(\tau(h_k) \) is written either immediately before or immediately after \(\tau(y) \). Therefore, any transposition \(\tau \) has either form \(\tau_1 \) or form \(\tau_2 \). Using equation (5.35), we can find corresponding transposition \(\sigma \) for given transposition \(\tau \). Therefore, the statement of theorem is true for \(n = k \). We proved the theorem. □

Theorem 5.16. The solution of differential equation (5.30) with initial condition \(y(0) = 1 \) is exponent \(y = e^x \) that has following Taylor series expansion

\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
\]
(5.37)

Proof. The Gâteaux derivative of order \(n \) has \(2^n \) items. In fact, the Gâteaux derivative of order 1 has 2 items, and each differentiation increase number of items twice. From initial condition \(y(0) = 1 \) and theorem 5.15 it follows that the Gâteaux derivative of order \(n \) of required solution has form

\[
\frac{\partial^n}{\partial y} \circ (h, \ldots, h) = 1
\]
(5.38)

Taylor series expansion (5.37) follows from equation (5.38). □

Theorem 5.17. The equation

\[
e^{a+b} = e^a e^b
\]
(5.39)
is true iff

\[
ab = ba
\]
(5.40)

Proof. To prove the theorem it is enough to consider Taylor series

\[
e^a = \sum_{n=0}^{\infty} \frac{1}{n!} a^n
\]
(5.41)

\[
e^b = \sum_{n=0}^{\infty} \frac{1}{n!} b^n
\]
(5.42)

\[
e^{a+b} = \sum_{n=0}^{\infty} \frac{1}{n!} (a + b)^n
\]
(5.43)
Let us multiply expressions (5.41) and (5.42). The sum of monomials of order 3 has form

\[\frac{1}{6}a^3 + \frac{1}{2}a^2b + \frac{1}{2}ab^2 + \frac{1}{6}b^3 \]

and in general does not equal expression

\[\frac{1}{6}(a + b)^3 = \frac{1}{6}a^3 + \frac{1}{6}a^2b + \frac{1}{6}aba + \frac{1}{6}ab^2 + \frac{1}{6}bab + \frac{1}{6}b^2a + \frac{1}{6}b^3 \]

The proof of statement that (5.39) follows from (5.40) is trivial.

The meaning of the theorem 5.17 becomes more clear if we recall that there exist two models of design of exponent. First model is the solution of differential equation (5.30). Second model is exploring of one parameter group of transformations. For field both models lead to the same function. I cannot state this now for general case. This is the subject of separate research. However if we recall that quaternion is analogue of transformation of three dimensional space then the statement of the theorem becomes evident.

6. References

[1] Serge Lang, Algebra, Springer, 2002
[2] Aleks Kleyn, Introduction into Calculus over Division Ring, eprint arXiv:0812.4763 (2010)
[3] Aleks Kleyn, Representation of Universal Algebra, eprint arXiv:0912.3315 (2009)
[4] Aleks Kleyn, Linear Mappings of Free Algebra, eprint arXiv:1003.1544 (2010)
[5] N. Bourbaki, Algebra I, Springer, 2004
[6] N. Bourbaki, General Topology, Chapters 5 - 10, Springer, 1989
[7] N. Bourbaki, Topological Vector Spaces, Chapters 1 - 5, Transl. by H. G. Eggleston & S. Madan, Springer, 2003
[8] L. S. Pontryagin, Selected Works, Volume Two, Topological Groups, Gordon and Breach Science Publishers, 1966
[9] Flihtengolts G. M., Differential and Integral Calculus Course, volume 1, Moscow, Nauka, 1969
[10] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
[11] Sir William Rowan Hamilton, Elements of Quaternions, Volume I, Longmans, Green, and Co., London, New York, and Bombay, 1899
[12] V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the theory of topological rings and modules, Volume 1995, Marcel Dekker, Inc, 1996
[13] S. V. Ludkovsky, Differentiable functions of Cayley-Dickson numbers, eprint arXiv:math.CV/0405471 (2004)
[14] W.Bertram, H.Glockner, K.Neub, Differential Calculus over General Base Fields and Rings, Expositiones Mathematicae (2004), Volume 22, Issue 3, Pages 213-282
7. **Index**

Term	Page
algebra over ring	8
associative D-algebra	8
associator of R-algebra	8
Banach D-algebra	31
basis of algebra $L(A; A)$	26
Cauchy sequence in normed algebra	31
Cauchy sequence in normed ring	30
center of an R-algebra	9
commutative D-algebra	8
commutator of R-algebra	8
complete ring	30
component of the Gâteaux derivative of map $f(x)$ of algebra	33
component of the Gâteaux derivative of second order of map $f(x)$ of algebra	42
continuous function over D-algebra	32
D^*-basis for module	6
effective representation of ring	5
free algebra over ring	8
free module over ring	6
function of algebra differentiable in the Gâteaux sense	33
fundamental sequence in normed algebra	31
fundamental sequence in normed ring	30
the Gâteaux derivative of mapping of algebra	33
the Gâteaux derivative of order n of map f of algebra	42
the Gâteaux derivative of second order of mapping of algebra	42
the Gâteaux differential of mapping f of algebra	33
the Gâteaux differential of second order of mapping f of algebra	42
limit of sequence in normed algebra	31
limit of sequence in normed ring	30
linear mapping of R-algebra A_1 into R-algebra A_2	10
linear mapping of R-module A_1 into R-module A_2	7
linear mapping of R_1-module A_1 into R_2-module A_2	6
module over ring	6
nonsingular tensor	24
norm of mapping into D-algebra	32
norm on D-algebra	31
norm on ring	30
normed D-algebra	31
normed ring	30
nucleus of R-algebra	9
opposite algebra to algebra P	8
orbit of linear mapping	24
polylinear mapping of algebras	11
polylinear mapping of modules	8
standard component of tensor in tensor product of algebras	19
standard component of the Gâteaux derivative of mapping f	34
structural constants of algebra P over ring D	9
standard representation of the Gâteaux derivative of mapping over algebra	34
tensor power of algebra	16
tensor product of algebras	16
topological D-algebra	31
topological ring	29
unit sphere in D-algebra	32
8. SPECIAL SYMBOLS AND NOTATIONS

\((a, b, c)\) associator of \(R\)-algebra \(8\)

\([a, b]\) commutator of \(R\)-algebra \(8\)

\(A^*\) opposite algebra to algebra \(A\) \(8\)

\((A_2 \otimes A_2) \circ f\) orbit of linear mapping \(24\)

\(a^{i_1, \ldots, i_n}\) standard component of tensor in tensor product of algebras \(19\)

\(A_1 \otimes \ldots \otimes A_n\) tensor product of algebras \(16\)

\(C^k_{ij}\) structural constants of algebra \(A\) over ring \(D\) \(9\)

\(\frac{\partial_s f(x)}{\partial x}\) component of the Gâteaux derivative of map \(f(x)\) of algebra \(33\)

\(\frac{\partial^2_s f(x)}{\partial x^2}\) component of the Gâteaux derivative of second order of map \(f(x)\) of algebra \(42\)

\(\partial f(x)\) the Gâteaux derivative of map \(f\) of algebra \(33\)

\(\frac{\partial^n f(x)}{\partial x^n}\) the Gâteaux derivative of order \(n\) of map \(f\) of algebra \(42\)

\(\partial^n f(x)\) the Gâteaux derivative of order \(n\) of map \(f\) of algebra \(42\)

\(\partial^2 f(x)\) the Gâteaux derivative of second order of mapping \(f\) of algebra \(42\)

\(\frac{\partial^2 f(x)}{\partial x^2}\) the Gâteaux derivative of second order of mapping \(f\) of algebra \(42\)

\(\partial f(x) \circ dx\) the Gâteaux differential of mapping \(f\) of algebra \(33\)

\(\partial^2 f(x) \circ (a_1; a_2)\) the Gâteaux differential of second order of mapping \(f\) of algebra \(42\)

\(\frac{\partial^{ij} f(x)}{\partial x^i}\) standard component of the Gâteaux derivative of mapping \(f\) \(34\)

\(\|f\|\) norm of mapping into \(D\)-algebra \(32\)

\(\lim_{n \to \infty} a_n\) limit of sequence in normed ring \(30\)

\(\mathcal{L}(A_1; A_2)\) set of linear mappings of algebra \(A_1\) into algebra \(A_2\) \(10\)

\(\mathcal{L}(A^n; S)\) set of \(n\)-linear mappings of algebra \(A\) into module \(S\) \(11\)

\(N(A)\) nucleus of \(R\)-algebra \(A\) \(9\)

\(Z(A)\) center of an \(R\)-algebra \(A\) \(9\)
Производная Гато и интеграл над банаховой алгеброй

Александр Клейн

Аннотация. Пусть A - алгебра над коммутативным кольцом D. Отображение $f : A \rightarrow A$ линейно, если для любых $a, b \in A$ и любого $c \in D$

$$f \circ (a + b) = f \circ a + f \circ b$$

$$f \circ (ca) = c f \circ a$$

Функция $f : A \rightarrow A$ дифференцируема по Гато, если

$$f(x + a) - f(x) = \partial f(x) \circ a + o(a)$$

где производная Гато $\partial f(x)$ отображения f - линейное отображение приращения a и o - такое непрерывное отображение, что

$$\lim_{a \to 0} \frac{|o(a)|}{|a|} = 0$$

Например

$$\partial(x^2) \circ h = xh + hx$$

$$\partial(x^{-1}) \circ h = -x^{-1}hx^{-1}$$

Предполагая, что определена производная Гато $\partial^{n-1} f(x)$ порядка $n-1$, мы определяем

$$\partial^n f(x) \circ (a_1 \otimes ... \otimes a_n) = \partial(\partial^{n-1} f(x) \circ (a_1 \otimes ... \otimes a_{n-1})) \circ a_n$$

производную Гато порядка n отображения f. Если $h_1 = ... = h_n = h$, то мы положим

$$\partial^n f(x) \circ h = \partial^n f(x) \circ (h_1 \otimes ... \otimes h_n)$$

Функция $f(x)$ имеет разложение в ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \partial^n f(x_0) \circ (x - x_0)$$

Дифференциальное уравнение над телом

$$\partial(y) \circ h = hx^2 + xhx + x^2 h$$

имеет решение

$$y = x^3$$

Решением дифференциального уравнения

$$\partial(y) \circ h = \frac{1}{2}(yh + hy)$$

имеется экспонента $y = e^x$ которая имеет следующее разложение в ряд Тейлора

$$e^x = \sum_{n=0}^{\infty} \frac{(n!)}{(n!)^{-1}} x^n$$

Равенство

$$e^{a+b} = e^a e^b$$

справедливо тогда и только тогда, когда $ab = ba$
1. Предисловие

В основе математического анализа лежит возможность линейного приближения к отображению, и основные построения математического анализа уходят корнями в линейную алгебру. Следовательно, прежде чем давать определение дифференцируемой функции мы должны понять как выглядят отображения, с помощью которых мы хотим аппроксимировать поведение исходной функции.

Так как произведение в поле коммутативно, то линейная алгебра над полем относительно проста. При переходе к телу, где произведение некоммутативно, некоторые утверждения линейной алгебры сохраняются, но появляются и новые утверждения, которые меняют ландшафт линейной алгебры.

Здесь я хочу обратить внимание на эволюцию, которую претерпело понятие производной со времён Ньютона. Когда мы изучаем функции одной переменной, то производная в заданной точке является числом. Когда мы изучаем функцию нескольких переменных, выясняется, что числа недостаточно. Производная становится вектором или градиентом. При изучении отображений векторных пространств мы впервые говорим о производной как об операторе. Но так как этот оператор линеен, то мы можем представить производную как...
Производная Гато и интеграл над банаховой алгеброй

матрицу. И в этом случае мы можем представить вектор приращения функции как произведение матрицы производной (матрицы Якоби) на вектор приращения аргумента.

Без сомнения, подобное поведение производной ослабляет наше внимание. Когда мы переходим к объектам, более сложным чем поля или векторные пространства, мы по-прежнему пытаемся увидеть объект, который можно записать как множитель перед приращением и который от приращения не зависит.

Предположение, что производная отображения \(f \) над алгеброй \(A \) определена равенством

\[
(1.1) \quad f(x + h) - f(x) = \partial f(x)h + o(h)
\]

вначале выглядит привлекательным. На первый взгляд подобное определение удовлетворяет классическим свойствам производной отображения над полем. Однако производные дифференцируемых функций, вообще говоря, не является дифференцируемой функцией. Это приводит к тому, что множество дифференцируемых функций крайне бедно, а сама теория дифференцирования не представляет серьёзного интереса.

Поскольку алгебра является модулем над некоторым коммутативным кольцом существует два пути изучения структур, порождённых над алгеброй. Если алгебра является свободным модулем, то мы можем выбрать базис и рассматривать все операции в координатах относительно заданного базиса. Хотя базис может быть произвольным, мы можем выбрать наиболее простой базис с точки зрения алгебраических операций. Этот подход имеет без сомнения то преимущество, что мы работаем в коммутативном кольце, где все операции хорошо изучены.

Рассмотрение операции в алгебре независимо от выбранного базиса даёт возможность рассматривать элементы алгебры как самостоятельные объекты. Однако некоммутативность произведения в алгебре порождает немало трудностей на этом пути.

Если определение производной (1.1) ограничивает нашу возможность изучения поведения отображений в малом, существует ли альтернатива? Ответ на этот вопрос положительный. Мы изучаем математический анализ в алгебре, которая является нормированным модулем. Мы знаем два типа произведённых нормированном пространстве. Сильная производная или производная Фреше является аналогом производной (1.1). Помимо сильной производной существует слабая производная или производная Гато. Основная идея состоит в том, что дифференциал может зависеть от направления.

1. Для изучения операции дифференцирования в алгебре существует ещё один метод изучения. Выделив некоторое множество функций, мы можем определить дифференциальные операторы, действующие на этом множестве ([1], с. 301).

Например, в статье [13] Людовский рассматривает дифференциальные операторы \(\partial_z \) и \(\partial_{\overline{z}} \) в алгебре Кэли - Диксона такие, что

\[
\begin{align*}
\partial_z z &= 1, & \partial_z \overline{z} &= 0 \\
\partial_{\overline{z}} z &= 0, & \partial_{\overline{z}} \overline{z} &= 1
\end{align*}
\]

Рассматривая заданные свойства дифференциального оператора, Людовский изучает его структуру.

Изучение оператора дифференцирования с разных точек зрения даст более глубокое знание и я полагаю в будущем рассмотреть связь между различными подходами к теории дифференцирования.
Алгебра A является модулем над коммутативным кольцом D. Если мы осла- бым определение производной и потребуем, что производная отображения f является линейным отображением модуля A, то мы увидим, что по крайней мере полиномы в алгебре A являются дифференцируемыми отображениями. Определённая таким образом производная обладает многими свойствами производной отображений над полем. Следовательно, в алгебре из-за некоммутативности умножения дифференциал функции имеет слагаемые вида

$$a \ dx \ b$$

и мы не можем записать дифференциал отображения в виде произведения производной и дифференциала аргумента.

Гамильтон был первым, кто рассмотрел дифференциал отображения в алгебре кватернионов ([11]). Повидимому, его результаты были настолько необычны, что для его современников было трудно воспринять эту идею Гамильтона и последующие поколения забыли это исследование.

Проблема невозможности разделить производную и дифференциал настолько серьёзна, что когда Гато определил слабое дифференцирование, он рассматривал производную только в том случае, когда он мог выделить приращение аргумента как сомножитель.

Однако, насколько серьёзно это препятствие? Производная - это отображение дифференциала аргумента в дифференциал функции. Другими словами, производная - это некоторый алгоритм, на вход которого мы вводим дифференциал аргумента, а на выходе мы получаем дифференциал функции. Если мы рассмотрим функциональную запись для линейного отображения, а именно

$$f \circ x = f(x)$$

то мы можем формально выделить из производной дифференциал аргумента и сделать запись дифференциала функции

$$\partial f(x)(dx)$$

более знакомой, а именно

$$\partial f(x) \circ dx$$

Тензорное произведение алгебр позволяет явно записать структуру производной как оператора.

Кроме того, новая запись позволила упростить многие выражения. Например, выражение

$$\partial \mathcal{T}(\mathcal{P})(dx) = \mathcal{T}_j \frac{\partial s_0f_j(\mathcal{P})}{\partial x^i} dx^i \frac{\partial s_1f_j(\mathcal{P})}{\partial x^i}$$

В статье [14] рассмотрена производная Гато отображений модулей над коммутативными кольцом. Так как производение коммутативно, то утверждения в статье близки к утверждениям классического математического анализа. Производная определена как отображение дифференциала аргумента в дифференциал функции.
Производная Гото и интеграл над банаховой алгеброй

приобретает форму

$$\partial f(x) \circ dx = \left(\begin{array}{c}
\frac{\partial f^1(x)}{\partial x^1} \circ dx^1 \\
\vdots \\
\frac{\partial f^n(x)}{\partial x^n} \circ dx^n
\end{array} \right) = \left(\begin{array}{c}
\frac{\partial s \cdot 0 f^1(x)}{\partial x^1} \otimes \frac{\partial s \cdot 1 f^1(x)}{\partial x^1} \\
\vdots \\
\frac{\partial s \cdot 0 f^n(x)}{\partial x^1} \otimes \frac{\partial s \cdot 1 f^n(x)}{\partial x^1}
\end{array} \right) \circ \left(\begin{array}{c}
dx^1 \\
\vdots \\
dx^n
\end{array} \right)$$

Также как и в случае отображений над полем, дифференциал отображения над алгеброй является многочленом первой степени относительно приращения аргумента. Структура полинома над телом отличается от структуры полинома над полем. Я рассматриваю некоторые свойства полинома в разделе 5.2. Опираясь на полученные результаты, я изучаю разложение отображения в ряд Тейлора и метод решения дифференциального уравнения.

2. Соглашения

Соглашение 2.1. Функция и отображение - синонимы. Однако существует традиция соответствие между кольцами или векторными пространствами называть отображением, а отображение поля действительных чисел или алгебры кватернионов называть функцией. Я также следую этой традиции, хотя встречается текст, в котором неясно, какому термину надо отдать предпочтение.

Соглашение 2.2. В выражении вида

$$a_{s-0}xa_{s-1}$$

предполагается сумма по индексу s.

Соглашение 2.3. Пусть A - свободная конечно мерная алгебра. При разложении элемента алгебры A относительно базиса e_i мы пользуемся одной и той же копией буквой для обозначения этого элемента и его координат. Однако в алгебре не принято использовать векторные обозначения. В выражении a^2 не ясно - это компонента разложения элемента a относительно базиса или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например,

$$a = a^1 e_1$$

Соглашение 2.4. Если свободная конечномерная алгебра имеет единицу, то мы будем отождествлять вектор базиса e_0 с единицей алгебры.

Соглашение 2.5. Если в некотором выражении используется несколько операций, среди которых есть операция \circ, то предполагается, что операция \circ выполняется первой. Ниже приведен пример эквивалентных выражений.

$$f \circ xy \equiv f(x)y \quad f \circ (xy) \equiv f(xy)$$

$$f \circ x + y \equiv f(x) + y \quad f \circ (x + y) \equiv f(x + y)$$
Без сомнения, у читателя могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.

3. Линейное отображение алгебры

3.1. Модуль.

Теорема 3.1. Пусть кольцо D имеет единицу e. Представление

$$f : D \to {}^*A$$

кольца D в абелевой группе A эффективно тогда и только тогда, когда из равенства $f(a) = 0$ следует $a = 0$.

Доказательство. Сумма преобразований f и g абелевой группы определяется согласно правилу

$$(f + g) \circ a = f \circ a + g \circ a$$

Поскольку, рассматривая представление кольца D в абелевой группе A, мы полагаем

$$f(a + b) \circ x = f(a) \circ x + f(b) \circ x$$

Произведение преобразований представления определено согласно правилу

$$f(ab) = f(a) \circ f(b)$$

Если $a, b \in R$ порождают одно и то же преобразование, то

$$f(a) \circ m = f(b) \circ m$$

для любого $m \in A$. Из равенства (3.2) следует, что $a - b$ порождает нулевое преобразование

$$f(a - b) \circ m = 0$$

Элемент $e + a - b$ порождает тождественное преобразование. Следовательно, представление f эффективно тогда и только тогда, когда $a = b$.

Определение 3.2. Пусть D - коммутативное кольцо, A - модуль над кольцом D, если A - абелева группа и определено эффективное представление кольца D в абелевой группе A.

Определение 3.3. Множество векторов $\mathbf{e} = (\mathbf{e}_i, i \in I)$ - D-базис модуля, если векторы \mathbf{e}_i D-линейно независимы и добавление любого вектора к этой системе делает эту систему D-линейно зависимой. A - свободный модуль над кольцом D, если A имеет базис над кольцом D.

Теорема 3.4. Пусть A - свободный модуль над кольцом D. Координаты a^i вектора $a \in A$ являются координатами D-значного контравARIANTного тензора

$$a^i = A^i_j a^j$$

3Я следую определению в [1], с. 103.
Производная Гато и интеграл над банаховой алгеброй 7

Доказательство. Пусть \mathbf{e}' - другой базис. Пусть

$$
\mathbf{e}'_i = \mathbf{e}_j A^j_i
$$

преобразование, отображающее базис \mathbf{e} в базис \mathbf{e}'. Так как вектор a не меняется, то

$$
a = \mathbf{e}'_i a'^i = \mathbf{e}_j a^j
$$

Из равенств (3.4) и (3.5) следует

$$
\mathbf{e}_j a^j = \mathbf{e}'_i a'^i = \mathbf{e}_j A^j_i a'^i
$$

Так как векторы \mathbf{e}_j линейно независимы, то равенство (3.3) следует из равенства (3.6). Следовательно, компоненты вектора являются тензором. □

Следующее определение является следствием определений 3.2 и [3]-2.2.2.

Определение 3.5. Пусть A_1 - модуль над кольцом R_1. Пусть A_2 - модуль над кольцом R_2. Морфизм

$$(f : R_1 \rightarrow R_2, g : A_1 \rightarrow A_2)$$

представления кольца R_1 в абелевой группе A_1 в представление кольца R_2 в абелевой группе A_2 называется **линейным отображением** R_1-модуля A_1 в R_2-модуль A_2. □

Теорема 3.6. **Линейное отображение**

$$(f : R_1 \rightarrow R_2, g : A_1 \rightarrow A_2)$$

R_1-модуля A_1 в R_2-модуль A_2 удовлетворяет равенствам

$$
g \circ (a + b) = g \circ a + g \circ b \tag{3.7}
g \circ (pa) = (f \circ p)(g \circ a) \tag{3.8}
f \circ (pq) = (f \circ p)(f \circ q) \tag{3.9}
$$

$a, b \in A_1, p, q \in R_1$

Доказательство. Из определений 3.5 и [3]-2.2.2 следует, что

* отображение f является гомоморфизмом кольца R_1 в кольцо R_2 (равенство (3.9))
* отображение g является гомоморфизмом абелевой группы A_1 в абелеву группу A_2 (равенство (3.7))

Равенство (3.8) следует из равенства [3]-(2.2.3). □

Согласно теореме [3]-2.2.18 при изучении линейных отображений, не нарушая общности, мы можем полагать $R_1 = R_2$.

4 Предлагаемые равенства в классической записи имеют вполне знакомый вид

$$
g(a + b) = g(a) + g(b)
g(pa) = f(p)g(a)
f(pq) = f(p)f(q)
$$

$a, b \in A_1, p, q \in R_1$
Определение 3.7. Пусть A_1 и A_2 - модули над кольцом D. Морфизм $f: A_1 \to A_2$ представления кольца D в абелевой группе A_1 в представление кольца D в абелевой группе A_2 называется линейным отображением D-модуля A_1 в D-модуль A_2. □

Теорема 3.8. Линейное отображение $f: A_1 \to A_2$ D-модуля A_1 в D-модуль A_2 удовлетворяет равенствам:

\begin{align*}
(3.10) & \quad f \circ (a + b) = f \circ a + f \circ b \\
(3.11) & \quad f \circ (pa) = pf \circ a
\end{align*}

$a, b \in A_1$, $p \in D$

Доказательство. Из определения 3.7 и теоремы [3]-2.2.18 следует, что отображение g является гомоморфизмом абелевой группы A_1 в абелеву группу A_2 (равенство (3.10)) Равенство (3.11) следует из равенства [3]-2.2.44. □

Определение 3.9. Пусть D - коммутативное кольцо. Пусть A_1, \ldots, A_n, S - D-модули. Мы будем называть отображение $f: A_1 \times \ldots \times A_n \to S$ полилинейным отображением модулей A_1, \ldots, A_n в модуль S, если

\begin{align*}
& f \circ (a_1, \ldots, a_i + b_i, \ldots, a_n) = f \circ (a_1, \ldots, a_i, \ldots, a_n) + f \circ (a_1, \ldots, b_i, \ldots, a_n) \\
& f \circ (a_1, \ldots, pa_i, \ldots, a_n) = pf \circ (a_1, \ldots, a_i, \ldots, a_n)
\end{align*}

$1 \leq i \leq n$, $a_i, b_i \in A_i$, $p \in D$

3.2. Алгебра над кольцом.

Определение 3.10. Пусть D - коммутативное кольцо. Пусть A - модуль над кольцом D. Для заданного билинейного отображения $f: A \times A \to A$ мы определим произведение в A

\begin{align*}
(3.12) & \quad ab = f \circ (a, b)
\end{align*}

A - алгебра над кольцом D, если A - D-модуль и в A определена операция произведения (3.12). Алгебра A^* называется алгеброй, противоположной алгебре A, если в модуле A определено произведение согласно правилу:

\begin{align*}
ba = f \circ (a, b)
\end{align*}

В классической записи приведенные равенства имеют вид

\begin{align*}
& f(a + b) = f(a) + f(b) \\
& f(pa) = pf(a)
\end{align*}

$a, b \in A_1$, $p \in D$

В некоторых книгах (например, [1], с. 94) теорема 3.8 рассматривается как определение.

6Определение дано по аналогии с определением [5]-2, с. 19.
Если A является свободным D-модулем, то A называется **свободной алгеброй над кольцом** D.

Замечание 3.11. Алгебра A и противоположная ей алгебра совпадают как модули.

Теорема 3.12. Произведение в алгебре A дистрибутивно по отношению к сложению.

Доказательство. Утверждение теоремы следует из цепочки равенств

\[
(a + b)c = f \circ (a + b, c) = f \circ (a, c) + f \circ (b, c) = ac + bc
\]

\[
a(b + c) = f \circ (a, b + c) = f \circ (a, b) + f \circ (a, c) = ab + ac
\]

Произведение в алгебре может быть ни коммутативным, ни ассоциативным. Следующие определения основаны на определениях, данных в [10], с. 13.

Определение 3.13. Коммутатор

\[
[a, b] = ab - ba
\]

служит мерой коммутативности в D-алгебре A. D-алгебра A называется **коммутативной**, если

\[
[a, b] = 0
\]

Определение 3.14. Ассоциатор

\[
(3.13)
(a, b, c) = (ab)c - a(bc)
\]

служит мерой ассоциативности в D-алгебре A. D-алгебра A называется **ассоциативной**, если

\[
(a, b, c) = 0
\]

Теорема 3.15. Пусть A - алгебра над коммутативным кольцом D.\(^7\)

\[
(3.14)
\]

для любых $a, b, c, d \in A$.

Доказательство. Равенство (3.14) следует из цепочки равенств

\[
\begin{align*}
(a, b, c) + (a, b, c)d & = (ab, c, d) - (a, bc, d) + (a, b, cd) \\
(a, b, c)d & = (a((bc)d - (bc)cd) + ((ab)c - a(bc))d \\
& = a((bc)d - a(b(cd)) + ((ab)c - a(bc))d \\
& = ((ab)c - (ab)(cd) + (ab)(cd) \\
& + a((bc)d - a(b(cd)) - (a(bc))d \\
& = (ab, c, d) - (a(bc))d + a((bc)d) + (ab)(cd) - a(b(cd)) \\
& = (ab, c, d) - (a, (bc), d) + (a, b, cd)
\end{align*}
\]

\(^7\)Утверждение теоремы опирается на равенство [10]-(2.4).
Определение 3.16. Ядро D-алгебры A - это множество8

$$N(A) = \{ a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0 \}$$

Определение 3.17. Центр D-алгебры A - это множество9

$$Z(A) = \{ a \in A : a \in N(A), \forall b \in A, ab = ba \}$$

Теорема 3.18. Пусть D - коммутативное кольцо. Если D-алгебра A имеет единицу, то существует изоморфизм f кольца D в центр алгебры A.

Доказательство. Пусть $e \in A$ - единица алгебры A. Положим $f \circ a = ae$. □

Пусть \overline{e} - базис свободной алгебры A над кольцом D. Если алгебра A имеет единицу, положим \overline{e}_0 - единица алгебры A.

Теорема 3.19. Пусть \overline{e} - базис свободной алгебры A над кольцом D. Пусть

$$a = a^i e_i, \quad b = b^j e_j, \quad a, b \in A$$

Произведение a, b можно получить согласно правилу

(3.15)

$$(ab)^k = C^k_{ij} a^i b^j$$

где C^k_{ij} - структурные константы алгебры A над кольцом D. Произведение базисных векторов в алгебре A определено согласно правилу

(3.16)

$$\overline{e}_i \overline{e}_j = C^k_{ij} \overline{e}_k$$

Доказательство. Равенство (3.16) является следствием утверждения, что \overline{e} является базисом алгебры A. Так как произведение в алгебре является билинейным отображением, то произведение a и b можно записать в виде

(3.17)

$$ab = a^i b^j e_i e_j$$

Из равенств (3.16), (3.17), следует

(3.18)

$$ab = a^i b^j C^k_{ij} \overline{e}_k$$

Так как \overline{e} является базисом алгебры A, то равенство (3.15) следует из равенства (3.18). □

Теорема 3.20. Если алгебра A коммутативна, то

(3.19)

$$C^p_{ij} = C^p_{ji}$$

Если алгебра A ассоциативна, то

(3.20)

$$C^p_{ij} C^q_{pk} = C^q_{ip} C^p_{jk}$$

Доказательство. Для коммутативной алгебры, равенство (3.19) следует из равенства

(3.21)

$$\overline{e}_i \overline{e}_j = \overline{e}_j \overline{e}_i$$

Для ассоциативной алгебры, равенство (3.20) следует из равенства

(3.22)

$$\overline{e}_k \overline{e}_k = \overline{e}_k \overline{e}_k$$

8Определение дано на базе аналогичного определения в [10], с. 13

9Определение дано на базе аналогичного определения в [10], с. 14
3.3. Линейное отображение алгебры. Алгебра является кольцом. Отображение, сохраняющее структуру алгебры как кольца, называется гомоморфизмом алгебры. Однако для нас важнее утверждение, что алгебра является модулем над коммутативным кольцом. Отображение, сохраняющее структуру алгебры как модуля, называется линейным отображением алгебры. Таким образом, следующее определение опирается на определение 3.7.

Определение 3.21. Пусть A_1 и A_2 - алгебры над кольцом D. Морфизм $f : A_1 \rightarrow A_2$

представления кольца D в абелевой группе A_1 в представление кольца D в абелевой группе A_2 называется линейным отображением D-алгебры A_1

в D-алгебру A_2. Обозначим $L(A_1; A_2)$ множество линейных отображений алгебры A_1 в алгебру A_2.

Теорема 3.22. Линейное отображение

$f : A_1 \rightarrow A_2$

D-алгебры A_1 в D-алгебру A_2 удовлетворяет равенствам

(3.21)

\[
\begin{align*}
 f \circ (a + b) &= f \circ a + f \circ b \\
 f \circ (pa) &= pf \circ a \\
 a, b &\in A_1 \quad p \in D
\end{align*}
\]

Доказательство. Следствие теоремы 3.8.

Теорема 3.23. Рассмотрим D-алгебру A_1 и D-алгебру A_2. Пусть отображение

$f : A_1 \rightarrow A_2$

является линейным отображением. Тогда отображения af, fb, $a, b \in A_2$, определённые равенствами

\[
\begin{align*}
 (af) \circ x &= a \ f \circ x \\
 (fb) \circ x &= f \circ x \ b
\end{align*}
\]

также являются линейными.

Доказательство. Утверждение теоремы следует из цепочек равенств

\[
\begin{align*}
 (af) \circ (x + y) &= a \ (f \circ (x + y)) = a \ (f \circ x + f \circ y) = a \ f \circ x + a \ f \circ y \\
 &= (af) \circ x + (af) \circ y \\
 (af) \circ (px) &= a \ (f \circ (px)) = ap \ f \circ x = pa \ f \circ x \\
 &= p \ (af) \circ x \\
 (fb) \circ (x + y) &= f \ (b \circ (x + y)) = (f \circ x + f \circ y) \ b = f \circ x \ b + f \circ y \ b \\
 &= (fb) \circ x + (fb) \circ y \\
 (fb) \circ (px) &= f \ (b \circ (px)) = p \ (f \circ x \ b) \\
 &= p \ (fb) \circ x
\end{align*}
\]
Пусть \(f : A_1 \rightarrow A_2 \) является линейным отображением. Тогда \(f \circ 0 = 0 \).

Доказательство. Следствие равенства

\[
f(a + 0) = f(a) + f(0)
\]

3.4. Полилинейное отображение алгебры.

Определение 3.25. Пусть \(D - \) коммутативное ассоциативное кольцо. Пусть \(A_1, ..., A_n - \) \(D \)-алгебры и \(S - \) \(D \)-модуль. Мы будем называть отображение

\[
f : A_1 \times ... \times A_n \rightarrow S
\]

полилинейным отображением алгебр \(A_1, ..., A_n \) в модуль \(S \), если

\[
f \circ (a_1, ..., a_1 + b_i, ..., a_n) = f \circ (a_1, ..., a_i, ..., a_n) + f \circ (a_1, ..., b_i, ..., a_n)
\]

Полилинейное отображение алгебры.

Теорема 3.26. Пусть \(D - \) коммутативное ассоциативное кольцо. Пусть \(A_1, ..., A_n - \) \(D \)-алгебры и \(S - \) \(D \)-модуль. Пусть отображения

\[
f : A_1 \times ... \times A_n \rightarrow S \quad \text{и} \quad g : A_1 \times ... \times A_n \rightarrow S
\]

являются полилинейными отображениями. Тогда отображение \(f + g \), определённое равенством

\[
(f + g) \circ (a_1, ..., a_n) = f \circ (a_1, ..., a_n) + g \circ (a_1, ..., a_n)
\]

tакже является полилинейным.

Доказательство. Утверждение теоремы следует из цепочек равенств

\[
(f + g) \circ (x_1, ..., x_i + y_i, ..., x_n)
\]

\[
= f \circ (x_1, ..., x_i + y_i, ..., x_n) + g \circ (x_1, ..., x_i + y_i, ..., x_n)
\]

\[
= f \circ (x_1, ..., x_i, ..., x_n) + f \circ (x_1, ..., y_i, ..., x_n)
\]

\[
+ g \circ (x_1, ..., x_i, ..., x_n) + g \circ (x_1, ..., y_i, ..., x_n)
\]

\[
= (f + g) \circ (x_1, ..., x_i, ..., x_n) + (f + g) \circ (x_1, ..., y_i, ..., x_n)
\]

\[
(f + g) \circ (x_1, ..., px_i, ..., x_n)
\]

\[
= f \circ (x_1, ..., px_i, ..., x_n) + g \circ (x_1, ..., px_i, ..., x_n)
\]

\[
= pf \circ (x_1, ..., x_i, ..., x_n) + pg \circ (x_1, ..., x_i, ..., x_n)
\]

\[
= p(f \circ (x_1, ..., x_i, ..., x_n) + g \circ (x_1, ..., x_i, ..., x_n))
\]

\[
= p(f + g) \circ (x_1, ..., x_i, ..., x_n)
\]
Следствие 3.27. Рассмотрим алгебру A_1 и алгебру A_2. Пусть отображения

$$f : A_1 \to A_2$$
$$g : A_1 \to A_2$$

являются линейными отображениями. Тогда отображение $f + g$, определённое равенством

$$(f + g) \circ a = f \circ a + g \circ a$$

также является линейным. □

Теорема 3.28. Пусть D - коммутативное ассоциативное кольцо. Пусть A_1, \ldots, A_n - D-алгебры и S - D-модуль. Пусть отображение $f : A_1 \times \ldots \times A_n \to S$ является полилинейным отображением. Тогда отображение $pf, p \in D$, определённое равенством

$$(pf) \circ x = p \, f \circ x$$

также является полилинейным. При этом выполняется равенство

$$p(qf) = (pq)f$$
$$p + q)f = pf + qf$$

Доказательство. Утверждение теоремы следует из цепочек равенств

$$(pf) \circ (x_1, \ldots, x_i + y_i, \ldots, x_n) = p \, f \circ (x_1, \ldots, x_i + y_i, \ldots, x_n)$$
$$= p \, (f \circ (x_1, \ldots, x_i, \ldots, x_n) + f \circ (x_1, \ldots, y_i, \ldots, x_n))$$
$$= p \, f \circ (x_1, \ldots, x_i, \ldots, x_n) + p \, f \circ (x_1, \ldots, y_i, \ldots, x_n)$$
$$= (pf) \circ (x_1, \ldots, x_i, \ldots, x_n) + (pf) \circ (x_1, \ldots, y_i, \ldots, x_n)$$

$$(pf) \circ (x_1, \ldots, qx_i, \ldots, x_n) = p \, f \circ (x_1, \ldots, qx_i, \ldots, x_n) = pq \, f \circ (x_1, \ldots, x_i, \ldots, x_n)$$
$$= qp \, f \circ (x_1, \ldots, x_n) = q \, (pf) \circ (x_1, \ldots, x_n)$$

$$(pqf) \circ (x_1, \ldots, x_n) = p \, (qf) \circ (x_1, \ldots, x_n) = p \, (q \, f \circ (x_1, \ldots, x_n))$$
$$= (pqf) \circ (x_1, \ldots, x_n) = (pqf) \circ (x_1, \ldots, x_n)$$

$$(p + q)f \circ (x_1, \ldots, x_n) = (p + q) \, f \circ (x_1, \ldots, x_n)$$
$$= p \, f \circ (x_1, \ldots, x_n) + q \, f \circ (x_1, \ldots, x_n)$$
$$= (pf) \circ (x_1, \ldots, x_n) + (qf) \circ (x_1, \ldots, x_n)$$

□

Следствие 3.29. Рассмотрим алгебру A_1 и алгебру A_2. Пусть отображение

$$f : A_1 \to A_2$$

является линейным отображением. Тогда отображение $pf, p \in D$, определённое равенством

$$(pf) \circ x = p \, f \circ x$$

также является линейным. При этом выполняется равенство

$$p(qf) = (pq)f$$
$$p + q)f = pf + qf$$

□
Теорема 3.30. Пусть D - коммутативное ассоциативное кольцо. Пусть A_1, \ldots, A_n - D-алгебры и S - D-модуль. Множество $L(A_1, \ldots, A_n; S)$ является D-модулем.

Доказательство. Теорема 3.26 определяет сумму полилинейных отображений в D-модуль S. Пусть $f, g, h \in L(A_1, \ldots, A_2; S)$. Для любого $a = (a_1, \ldots, a_n)$, $a_1 \in A_1, \ldots, a_n \in A_n$,

$$(f + g) \circ a = f \circ a + g \circ a = g \circ a + f \circ a$$

$$= (g + f) \circ a$$

$$(f + g + h) \circ a = (f + g) \circ a + h \circ a = (f \circ a + g \circ a) + h \circ a$$

$$= f \circ a + (g \circ a + h \circ a) = f \circ a + (g + h) \circ a$$

$$= (f + (g + h)) \circ a$$

Следовательно, сумма полилинейных отображений коммутативна и ассоциативна.

Отображение z, определённое равенством

$$z \circ a = 0$$

является нулем операции сложения, так как

$$(z + f) \circ a = z \circ a + f \circ a = 0 + f \circ a = f \circ a$$

Для заданного отображения f отображение g, определённое равенством

$$g \circ a = -f \circ a$$

удовлетворяет равенству

$$f + g = z$$

так как

$$(f + g) \circ a = f \circ a + g \circ a = f \circ a - f \circ a = 0$$

Следовательно, множество $L(A_1; A_2)$ является абелевой группой.

Из теоремы 3.28 следует, что определено представление кольца D в абелевой группе $L(A_1, \ldots, A_n; S)$. Так как кольцо D имеет единицу, то согласно теореме 3.1 указанное представление эффективно.

Следствие 3.31. Пусть D - коммутативное кольцо с единицей. Рассмотрим D-алгебру A_1 и D-алгебру A_2. Множество $L(A_1; A_2)$ является D-модулем.

3.5. Алгебра $L(A; A)$.

Теорема 3.32. Пусть A, B, C - алгебры над коммутативным кольцем D. Пусть f - линейное отображение из D-алгебры A в D-алгебру B. Пусть g - линейное отображение из D-алгебры B в D-алгебру C. Отображение $g \circ f$, определённое диаграммой

$$(3.22)$$

является линейным отображением из D-алгебры A в D-алгебру C.

Доказательство. Доказательство теоремы следует из цепочек равенств
\[(g \circ f) \circ (a + b) = g \circ (f \circ (a + b)) = g \circ (f \circ a + f \circ b)\]
\[= g \circ (f \circ a) + g \circ (f \circ b) = (g \circ f) \circ a + (g \circ f) \circ b\]
\[(g \circ f) \circ (pa) = g \circ (f \circ (pa)) = g \circ (pf \circ a) = p \circ (g \circ f) \circ a\]
\[
\square
\]

Теорема 3.33. Пусть \(A, B, C \) - алгебры над коммутативным кольцом \(D \).
Пусть \(f \) - линейное отображение из \(D \)-алгебры \(A \) в \(D \)-алгебру \(B \). Отображение \(f \) порождает линейное отображение
(3.23) \[f^* : g \in \mathcal{L}(B; C) \rightarrow g \circ f \in \mathcal{L}(A; C)\]
(3.24)

\[A \quad g \circ f \quad C\]

Доказательство. Доказательство теоремы следует из цепочек равенств\(^{10}\)
\[((g_1 + g_2) \circ f) \circ a = (g_1 + g_2) \circ (f \circ a) = g_1 \circ (f \circ a) + g_2 \circ (f \circ a)\]
\[= (g_1 \circ f) \circ a + (g_2 \circ f) \circ a\]
\[= (g_1 \circ f + g_2 \circ f) \circ a\]
\[((pg) \circ f) \circ a = (pg) \circ (f \circ a) = p \circ (g \circ f) \circ a = p \circ (g \circ f) \circ a\]
\[
\square
\]

Теорема 3.34. Пусть \(A, B, C \) - алгебры над коммутативным кольцом \(D \).
Пусть \(g \) - линейное отображение из \(D \)-алгебры \(B \) в \(D \)-алгебру \(C \). Отображение \(g \) порождает линейное отображение
(3.27) \[g^* : f \in \mathcal{L}(A; B) \rightarrow g \circ f \in \mathcal{L}(A; C)\]
(3.28)

\[A \quad g \circ f \quad C\]

\(^{10}\)Мы пользуемся следующими определениями операций над отображениями
(3.25) \[(f + g) \circ a = f \circ a + g \circ a\]
(3.26) \[(pf) \circ a = pf \circ a\]
Доказательство. Доказательство теоремы следует из цепочек равенств11
\[
(g \circ (f_1 + f_2)) \circ a = g \circ ((f_1 + f_2) \circ a) = g \circ (f_1 \circ a + f_2 \circ a)
\]
\[
= g \circ (f_1 \circ a) + g \circ (f_2 \circ a) = (g \circ f_1) \circ a + (g \circ f_2) \circ a
\]
\[
= (g \circ f_1 + g \circ f_2) \circ a
\]
\[
(g \circ (p f)) \circ a = g \circ ((p f) \circ a) = g \circ (p (f \circ a)) = p \circ (g \circ (f \circ a))
\]
\[
= p (g \circ f) \circ a = (p (g \circ f)) \circ a
\]

\begin{flushright}
\Box
\end{flushright}

Теорема 3.35. Пусть A, B, C - алгебры над коммутативным кольцом D. Отображение
\[
\circ : (g, f) \in \mathcal{L}(B; C) \times \mathcal{L}(A; B) \to g \circ f \in \mathcal{L}(A; C)
\]
является билинейным отображением.

Доказательство. Теорема является следствием теорем 3.33, 3.34. \Box

Теорема 3.36. Пусть A - алгебра над коммутативным кольцом D. D-модуль $\mathcal{L}(A; A)$, оснащённый произведением
\[
\circ : (g, f) \in \mathcal{L}(A; A) \times \mathcal{L}(A; A) \to g \circ f \in \mathcal{L}(A; A)
\]
является алгеброй над D.

Доказательство. Теорема является следствием определения 3.10 и теоремы 3.35. \Box

3.6. Тензорное произведение алгебр.

Определение 3.37. Пусть A_1, ..., A_n - свободные алгебры над коммутативным кольцом D.12 Рассмотрим категорию A объектами которой являются полилинейные над коммутативным кольцом D отображения

\[
f : A_1 \times \ldots \times A_n \longrightarrow S_1 \quad g : A_1 \times \ldots \times A_n \longrightarrow S_2
\]
где S_1, S_2 - мODULES над кольцом D. Мы определим морфизм $f \to g$ как линейное над коммутативным кольцом D отображение $h : S_1 \to S_2$, для которого коммутатива диаграмма

\begin{center}
\begin{tikzpicture}
\node (S1) at (2,0) {S_1};
\node (S2) at (0,-2) {S_2};
\node (A) at (0,0) {$A_1 \times \ldots \times A_n$};
\node (S1) at (2,-2) {S_1};
\node (S2) at (0,-4) {S_2};
\node at (0,-2) {h};
\node at (0,-4) {g};
\node at (2,-2) {f};
\draw[->] (A) -- (S1);
\draw[->] (A) -- (S2);
\draw[->] (S1) -- (S2);
\end{tikzpicture}
\end{center}

11Мы пользуемся следующими определенными операциями над отображениями
\[
(f + g) \circ a = f \circ a + g \circ a
\]
\[
(pf) \circ a = p f \circ a
\]

12Я определяю тензорное произведение D-алгебр по аналогии с определением в [1], с. 456 - 458.
Универсальный объект \(A_1 \otimes ... \otimes A_n \) категории \(A \) называется тензорным произведением алгебр \(A_1, ..., A_n \).

Определение 3.38. Тензорное произведение
\[
A^{{\otimes n}} = A_1 \otimes ... \otimes A_n = A_1 = ... = A_n = A
\]
называется тензорной степенью алгебры \(A \).

Теорема 3.39. Тензорное произведение алгебр существует.

Доказательство. Пусть \(M \) - модуль над кольцом \(D \), порождённый произведением \(A_1 \times ... \times A_n \) \(D \)-алгебр \(A_1, ..., A_n \). Инъекция
\[
i : A_1 \times ... \times A_n \longrightarrow M
\]
opределена по правилу
(3.33) \[i \circ (d_1, ..., d_n) = (d_1, ..., d_n)\]

Пусть \(N \subset M \) - подмодуль, порождённый элементами вида
(3.34) \[(d_1, ..., d_i + c_i, ..., d_n) - (d_1, ..., d_i, ..., d_n) - (d_1, ..., c_i, ..., d_n)\]
(3.35) \[(d_1, ..., ad_i, ..., d_n) - a(d_1, ..., d_i, ..., d_n)\]
где \(d_i \in A_i, c_i \in A_i, a \in D \). Пусть
\[j : M \longrightarrow M/N\]
каноническое отображение на фактормодуль. Рассмотрим коммутативную диаграмму
(3.36)
\[
\begin{array}{ccc}
A_1 \times ... \times A_n & \longrightarrow & M \\
\downarrow j & & \downarrow k \\
M/N & \longrightarrow & V
\end{array}
\]
По скольку элементы (3.34) и (3.35) принадлежат ядру линейного отображения \(j \), то из равенства (3.33) следует
(3.37) \[f \circ (d_1, ..., d_i + c_i, ..., d_n) = f \circ (d_1, ..., d_i, ..., d_n) + f \circ (d_1, ..., c_i, ..., d_n)\]
(3.38) \[f \circ (d_1, ..., ad_i, ..., d_n) = a f \circ (d_1, ..., d_i, ..., d_n)\]
Из равенств (3.37) и (3.38) следует, что отображение \(f \) полилинейно над кольцом \(D \). Поскольку \(M \) - модуль с базисом \(A_1 \times ... \times A_n \), то, согласно теореме [1]-1 на с. 104, для любого модуля \(V \) и любого полилинейного над \(D \) отображения
\[g : A_1 \times ... \times A_n \longrightarrow V\]
sуществует единственный гомоморфизм \(k : M \rightarrow V \), для которого коммутативная следующая диаграмма
(3.39)
\[
\begin{array}{ccc}
A_1 \times ... \times A_n & \longrightarrow & M \\
\downarrow g & & \downarrow k \\
V & &
\end{array}
\]
Так как \(g \) - полилинейно над \(D \), то \(\ker k \subseteq N \). Согласно утверждению на с. [1]-94, отображение \(j \) универсально в категории гомоморфизмов векторного
пространства M, ядро которых содержит N. Следовательно, определён гомо-
морфизм

$$h : M/N \to V$$

dля которого коммутативна диаграмма

(3.40)

Объединяя диаграммы (3.36), (3.39), (3.40), получим коммутативную диаграмму

(3.41)

Так как $\text{Im} f$ порождает M/N, то отображение h однозначно определено. □

Согласно доказательству теоремы 3.39

$$A_1 \otimes \ldots \otimes A_n = M/N$$

Для $d_i \in A_i$ будем записывать

(3.42)

$$j \circ (d_1, \ldots, d_n) = d_1 \otimes \ldots \otimes d_n$$

Теорема 3.40. Пусть A_1, \ldots, A_n - алгебры над коммутативным кольцом D.

Пусть

$$f : A_1 \times \ldots \times A_n \to A_1 \otimes \ldots \otimes A_n$$

полилинейное отображение, определённое равенством

(3.43)

$$f \circ (d_1, \ldots, d_n) = d_1 \otimes \ldots \otimes d_n$$

Пусть

$$g : A_1 \times \ldots \times A_n \to V$$

полилинейное отображение в D-модуль V. Существует D-линейное отображение

$$h : A_1 \otimes \ldots \otimes A_n \to V$$
такое, что диаграмма

(3.44)

\[
\begin{array}{c}
A_1 \otimes \cdots \otimes A_n \\
\downarrow \quad f \\
A_1 \times \cdots \times A_n \\
\downarrow \quad h \\
\downarrow \quad g \\
V
\end{array}
\]

коммутативна.

Доказательство. Равенство (3.43) следует из равенств (3.33) и (3.42). Существование отображения \(h \) следует из определения 3.37 и построений, выполненных при доказательстве теоремы 3.39. □

Равенства (3.37) и (3.38) можно записать в виде

(3.45)

\[a_1 \otimes \cdots \otimes (a_i + b_i) \otimes \cdots \otimes a_n = a_1 \otimes \cdots \otimes a_i \otimes \cdots \otimes a_n + a_1 \otimes \cdots \otimes b_i \otimes \cdots \otimes a_n\]

(3.46)

\[a_1 \otimes \cdots \otimes (ca_i) \otimes \cdots \otimes a_n = c(a_1 \otimes \cdots \otimes a_i \otimes \cdots \otimes a_n)\]

(3.47)

\[a_i \in A_i, \quad b_i \in A_i, \quad c \in D\]

Теорема 3.41. Пусть \(A \) - алгебра над коммутативным кольцом \(D \). Существует линейное отображение \(h : a \otimes b \in A \otimes A \to ab \in A\)

Доказательство. Теорема является следствием теоремы 3.40 и определения 3.10. □

Теорема 3.42. Тензорное произведение \(A_1 \otimes \cdots \otimes A_n \) свободных конечномерных алгебр \(A_1, \ldots, A_n \) над коммутативным кольцом \(D \) является свободной конечномерной алгеброй.

Пусть \(e_i \) - базис алгебры \(A_i \) над кольцом \(D \). Произвольный тензор \(a \in A_1 \otimes \cdots \otimes A_n \) можно представить в виде

(3.47)

\[a = a^{i_1 \ldots i_n} e_{1,i_1} \otimes \cdots \otimes e_{n,i_n}\]

Мы будем называть выражение \(a^{i_1 \ldots i_n} \) стандартной компонентой тензора.

Доказательство. Алгебры \(A_1, \ldots, A_n \) являются модулями над кольцом \(D \). Согласно теореме 3.39, \(A_1 \otimes \cdots \otimes A_n \) является модулем.

Вектор \(a_i \in A_i \) имеет разложение

\[a_i = a_i^{k} e_{i,k}\]

относительно базиса \(e_i \). Из равенств (3.45), (3.46) следует

\[a_1 \otimes \cdots \otimes a_n = a_1^{i_1} \cdots a_n^{i_n} e_{1,i_1} \otimes \cdots \otimes e_{n,i_n}\]

Так как множество тензоров \(a_1 \otimes \cdots \otimes a_n \) является множеством образующих модуля \(A_1 \otimes \cdots \otimes A_n \), то тензор \(a \in A_1 \otimes \cdots \otimes A_n \) можно записать в виде

(3.48)

\[a = a^{s} a_1^{i_1} \cdots a_n^{i_n} e_{1,i_1} \otimes \cdots \otimes e_{n,i_n}\]
где $a^s, a_{s_1}^i, ... a_{s_n}^i \in F$. Положим

$$(3.49) \quad a^s a_{s_1}^i ... a_{s_n}^i = a^{i_1 ... i_n}$$

Тогда равенство (3.48) примет вид (3.47).

Следовательно, множество тензоров $\mathcal{T}_{i_1} \otimes ... \otimes \mathcal{T}_{i_n}$ является множеством образующих модуля $A_1 \otimes ... \otimes A_n$. Так как размерность модуля $A_i, i = 1, ..., n$, конечно, то конечно множество тензоров $\mathcal{T}_{i_1} \otimes ... \otimes \mathcal{T}_{i_n}$. Следовательно, множество тензоров $\mathcal{T}_{i_1} \otimes ... \otimes \mathcal{T}_{i_n}$ содержит базис модуля $A_1 \otimes ... \otimes A_n$, и модуль $A_1 \otimes ... \otimes A_n$ является свободным модулем над кольцом D.

Мы определим произведение тензоров типа $a_1 \otimes ... \otimes a_n$ покомпонентно

$$(3.50) \quad (d_1 \otimes ... \otimes d_n)(c_1 \otimes ... \otimes c_n) = (d_1 c_1) \otimes ... \otimes (d_n c_n)$$

В частности, если для любого $i, i = 1, ..., n, a_i \in A_i$ имеет обратный, то тензор

$$a_1 \otimes ... \otimes a_n \in A_1 \otimes ... \otimes A_n$$

имеет обратный

$$(a_1 \otimes ... \otimes a_n)^{-1} = (a_1)^{-1} \otimes ... \otimes (a_n)^{-1}$$

Определение произведения (3.50) согласовано с равенством (3.46) так как

$$(a_1 \otimes ... \otimes (ca_i) \otimes ... \otimes a_n)(b_1 \otimes ... \otimes b_i \otimes ... \otimes b_n) = (a_1 b_1) \otimes ... \otimes (ca_i b_i) \otimes ... \otimes (a_n b_n) = c((a_1 b_1) \otimes ... \otimes (a_i b_i) \otimes ... \otimes (a_n b_n)) = c((a_1 \otimes ... \otimes a_n)(b_1 \otimes ... \otimes b_n))$$

Из равенства (3.45) следует дистрибутивность умножения по отношению к сложению

$$(a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n) \ast ((b_1 \otimes ... \otimes b_i \otimes ... \otimes b_n) + (b_1 \otimes ... \otimes c_i \otimes ... \otimes b_n)) = (a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n)(b_1 \otimes ... \otimes (b_i + c_i) \otimes ... \otimes b_n) = (a_1 b_1) \otimes ... \otimes (a_i (b_i + c_i)) \otimes ... \otimes (a_n b_n)$$

$$(3.51) \quad = (a_1 b_1) \otimes ... \otimes (a_i b_i + a_i c_i) \otimes ... \otimes (a_n b_n)$$

$$(a_1 \otimes ... \otimes a_i b_i) \otimes ... \otimes (a_n b_n) + (a_1 b_1) \otimes ... \otimes (a_i c_i) \otimes ... \otimes (a_n b_n)$$

$$(a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n)(b_1 \otimes ... \otimes b_i \otimes ... \otimes b_n) + (a_1 \otimes ... \otimes a_i \otimes ... \otimes a_n)(b_1 \otimes ... \otimes c_i \otimes ... \otimes b_n)$$

Равенство (3.51) позволяет определить произведение для любых тензоров a, b.

Замечание 3.43. Согласно замечанию 3.11, мы можем определить различные структуры алгебры в тензорном произведении алгебр. Например, алгебры $A_1 \otimes A_2, A_1 \otimes A_2^*, A_1^* \otimes A_2$ определены на одном и том же модуле.
Каждый из цепочек равенств
\[(a_1 \otimes ... \otimes a_n)(b_1 \otimes ... \otimes b_n) = (a_1^{k_1} \cdots a_n^{k_n}) (b_1^{l_1} \cdots b_n^{l_n}) = a_1^{k_1} \cdots a_n^{k_n} b_1^{l_1} \cdots b_n^{l_n} = (a_1 b_1) \otimes ... \otimes (a_n b_n)\]
следует, что определение произведения (3.54) со структурными константами (3.52) согласовано с определением произведения (3.50).

Teorema 3.45. Для тензоров $a, b \in A_1 \otimes ... \otimes A_n$ стандартные компоненты произведения удовлетворяют равенству
\[(ab)^{j_1 \cdots j_n} = C_{j_1 k_1 ... k_n}^{j_1} a^{k_1 \cdots k_n} b^{l_1 \cdots l_n}\]

Доказательство. Согласно определению (3.56)

\[ab = (ab)^{j_1 \cdots j_n} \tau_{1, j_1} \otimes ... \otimes \tau_{n, j_n}\]

В то же время
\[ab = a^{k_1 \cdots k_n} \tau_{1, k_1} \otimes ... \otimes \tau_{n, k_n} b^{l_1 \cdots l_n} \tau_{1, l_1} \otimes ... \otimes \tau_{n, l_n}\]

Равенство (3.55) следует из равенств (3.56), (3.57).

Teorema 3.46. Если алгебра A_i, $i = 1, \ldots, n$, асоциативна, то тензорное произведение $A_1 \otimes \ldots \otimes A_n$ - ассоциативная алгебра.
Доказательство. Поскольку

\[(\tau_{1;i_1} \otimes \ldots \otimes \tau_{n;i_n})(\tau_{1;j_1} \otimes \ldots \otimes \tau_{n;j_n})(\tau_{1;k_1} \otimes \ldots \otimes \tau_{n;k_n})\]

\[=\left(\left(\tau_{1;i_1} \tau_{1;j_1}\right) \otimes \ldots \otimes \left(\tau_{n;i_n} \tau_{1;j_n}\right)\right)(\tau_{1;k_1} \otimes \ldots \otimes \tau_{n;k_n})\]

\[=\left(\tau_{1;i_1} \otimes \ldots \otimes \tau_{n;i_n}\right)\left(\tau_{1;j_1} \tau_{1;k_1}\right) \otimes \ldots \otimes \left(\tau_{n;j_n} \tau_{1;k_n}\right)\]

\[=\left(\tau_{1;i_1} \otimes \ldots \otimes \tau_{n;i_n}\right)(\tau_{1;j_1} \otimes \ldots \otimes \tau_{n;j_n})(\tau_{1;k_1} \otimes \ldots \otimes \tau_{n;k_n})\]

tо

\[(ab)c = a^{i_1 \ldots i_n} b_{j_1 \ldots j_n} c_{k_1 \ldots k_n}\]

\[= a^{i_1 \ldots i_n} b_{j_1 \ldots j_n} c_{k_1 \ldots k_n}\]

\[= \left(\tau_{1;i_1} \otimes \ldots \otimes \tau_{n;i_n} \right)(\tau_{1;j_1} \otimes \ldots \otimes \tau_{n;j_n})(\tau_{1;k_1} \otimes \ldots \otimes \tau_{n;k_n})\]

\[= a(bc)\]

\[\Box\]

3.7. Линейное отображение в ассоциативную алгебру.

Теорема 3.47. Рассмотрим D-алгебры A_1 и A_2. Для заданного отображения $f \in \mathcal{L}(A_1; A_2)$ отображение

\[g : A_2 \times A_2 \to \mathcal{L}(A_1; A_2)\]

\[g(a, b) \circ f = afb\]

является билинейным отображением.

Доказательство. Утверждение теоремы следует из цепочек равенств

\[(a_1 + a_2)fb \circ x = (a_1 + a_2) f \circ x b = a_1 f \circ x b + a_2 f \circ x b\]

\[= (a_1 fb) \circ x + (a_2 fb) \circ x = (a_1 fb + a_2 fb) \circ x\]

\[(pa)fb \circ x = (pa) f \circ x b = p(a f \circ x b) = p((afb) \circ x) = (pafb) \circ x\]

\[(af(b_1 + b_2)) \circ x = a f \circ x (b_1 + b_2) = a f \circ x b_1 + a f \circ x b_2\]

\[= (afb_1) \circ x + (afb_2) \circ x = (afb_1 + afb_2) \circ x\]

\[(af(pb)) \circ x = a f \circ x (pb) = p(a f \circ x b) = p((afb) \circ x) = (pafb) \circ x\]

\[\Box\]

Теорема 3.48. Рассмотрим D-алгебры A_1 и A_2. Для заданного отображения $f \in \mathcal{L}(A_1; A_2)$ существует линейное отображение

\[h : A_2 \otimes A_2 \to \mathcal{L}(A_1; A_2)\]

определенное равенством

\[(a \otimes b) \circ f = afb\]

Доказательство. Утверждение теоремы является следствием теорем 3.40, 3.47.

\[\Box\]
Теорема 3.49. Рассмотрим D-алгебры A_1 и A_2. Определим произведение в алгебре $A_2 \otimes A_2$ согласно правилу
\begin{equation}
(a \otimes b) \circ (c \otimes d) = (ca) \otimes (bd)
\end{equation}
Линейное отображение
\begin{equation}
h : A_2 \otimes A_2 \rightarrow \mathcal{L}(A_1; A_2)
\end{equation}
определённое равенством
\begin{equation}
(a \otimes b) \circ f = afb \quad a, b \in A_2 \quad f \in \mathcal{L}(A_1; A_2)
\end{equation}
является представлением алгебры $A_2 \otimes A_2$ в модуле $\mathcal{L}(A_1; A_2)$.

Доказательство. Согласно теореме 3.23, отображение (3.61) является преобразованием модуля $\mathcal{L}(A_1; A_2)$. Для данного тензора $c \in A_2 \otimes A_2$ преобразование $h(c)$ является линейным преобразованием модуля $\mathcal{L}(A_1; A_2)$, так как
\begin{align*}
((a \otimes b) \circ (f_1 + f_2)) \circ x &= (a(f_1 + f_2) b) \circ x = a((f_1 + f_2) \circ x) b \\
&= a(f_1 \circ x + f_2 \circ x) b = a(f_1 \circ x) b + a(f_2 \circ x) b \\
&= (a f_1 b) \circ x + (a f_2 b) \circ x \\
&= (a \otimes b) \circ f_1 \circ x + (a \otimes b) \circ f_2 \circ x \\
((a \otimes b) \circ (p f)) \circ x &= (a(p f) b) \circ x = a((p f) \circ x) b \\
&= a(p f \circ x) b = p a(f \circ x) b \\
&= f (a \otimes b) \circ f \circ x \\
&= (p((a \otimes b) \circ f)) \circ x
\end{align*}
Согласно теореме 3.48, отображение (3.61) является линейным отображением. Пусть $f \in \mathcal{L}(A_1; A_2)$, $a \otimes b, c \otimes d \in A_2 \otimes A_2$. Согласно теореме 3.48
\begin{equation}
(a \otimes b) \circ f = afb \in \mathcal{L}(A_1; A_2)
\end{equation}
Следовательно, согласно теореме 3.48
\begin{equation}
(c \otimes d) \circ ((a \otimes b) \circ f) = c(afb)d
\end{equation}
Поскольку произведение в алгебре A_2 ассоциативно, то
\begin{equation}
(c \otimes d) \circ ((a \otimes b) \circ f) = (ca) f (bd) = (ca \otimes bd) \circ f
\end{equation}
Следовательно, если мы определим произведение в алгебре $A_2 \otimes A_2$ согласно равенству (3.59), то отображение (3.60) является морфизмом алгебр. Согласно определению [3]-2.1.4 отображение (3.61) является представлением алгебры $A_2 \otimes A_2$ в модуле $\mathcal{L}(A_1; A_2)$.

Теорема 3.50. Рассмотрим D-алгебру A. Определим произведение в алгебре $A \otimes A$ согласно правилу (3.59).
Представление
\begin{equation}
h : A \otimes A \rightarrow \mathcal{L}(A; A)
\end{equation}
alгебры $A \otimes A$ в модуле $\mathcal{L}(A; A)$, определённое равенством
\begin{equation}
(a \otimes b) \circ f = afb \quad a, b \in A \quad f \in \mathcal{L}(A; A)
\end{equation}

13Определение представления Ω-алгебры дано в определении [3]-2.1.4.
позволяет отождествить тензор \(d \in A \otimes A \) с отображением \(d \circ \delta \in \mathcal{L}(A; A) \), где \(\delta \in \mathcal{L}(A; A) \) — тождественное отображение.

Доказательство. Согласно теореме 3.48, отображение \(f \in \mathcal{L}(A; A) \) и тензор \(d \in A \otimes A \) порождают отображение

\[
(3.64) \quad x \rightarrow (d \circ f) \circ x
\]

Если мы положим \(f = \delta, \ d = a \otimes b \), то равенство (3.64) приобретает вид

\[
(3.65) \quad ((a \otimes b) \circ \delta) \circ x = (a \delta b) \circ x = a (\delta \circ x) b = axb
\]

Если мы положим

\[
(3.66) \quad ((a \otimes b) \circ \delta) \circ x = (a \otimes b) \circ (\delta \circ x) = (a \otimes b) \circ x
\]

tо сравнение равенств (3.65) и (3.66) даёт основание отождествить действие тензора \(a \otimes b \) с преобразованием \((a \otimes b) \circ \delta \). \(\square \)

Из теоремы 3.50 следует, что отображение (3.61) можно рассматривать как произведение отображений \(a \otimes b \) и \(f \). Тензор \(a \in A_2 \otimes A_2 \) невозерожден, если существует тензор \(b \in A_2 \otimes A_2 \) такой, что \(a \circ b = 1 \otimes 1 \).

Определение 3.51. Рассмотрим представление алгебры \(A_2 \otimes A_2 \) в модуле \(\mathcal{L}(A_1; A_2) \). Орбитой линейного отображения \(f \in \mathcal{L}(A_1; A_2) \) называется множество

\[
(A_2 \otimes A_2) \circ f = \{ g = d \circ f : d \in A_2 \otimes A_2 \}
\]

Теорема 3.52. Рассмотрим \(D \)-алгебру \(A_1 \) и ассоциативную \(D \)-алгебру \(A_2 \). Рассмотрим представление алгебры \(A_2 \otimes A_2 \) в модуле \(\mathcal{L}(A_1; A_2) \). Отображение

\[
h : A_1 \rightarrow A_2
\]

порождённое отображением

\[
f : A_1 \rightarrow A_2
\]

имеет вид

\[
(3.67) \quad h = (a_{s,0} \otimes a_{s,1}) \circ f = a_{s,0}f a_{s,1}
\]

Доказательство. Произвольный тензор \(a \in A_2 \otimes A_2 \) можно представить в виде

\[
a = a_{s,0} \otimes a_{s,1}
\]

Согласно теореме 3.49, отображение (3.61) линейно. Это доказывает утверждение теоремы. \(\square \)

Теорема 3.53. Пусть \(A_2 \) — алгебра с единицей \(e \). Пусть \(a \in A_2 \otimes A_2 \) — невырожденный тензор. Орбиты линейных отображений \(f \in \mathcal{L}(A_1; A_2) \) и \(g = a \circ f \) совпадают

\[
(3.68) \quad (A_2 \otimes A_2) \circ f = (A_2 \otimes A_2) \circ g
\]

14Определение дано по аналогии с определением [3]-2.4.12.
Доказательство. Если $h \in (A_2 \otimes A_2) \circ g$, то существует $b \in A_2 \otimes A_2$ такое, что $h = b \circ g$. Тогда
\begin{equation}
(3.69) \quad h = b \circ (a \circ f) = (b \circ a) \circ f
\end{equation}
Следовательно, $h \in (A_2 \otimes A_2) \circ f$.
\begin{equation}
(3.70) \quad (A_2 \otimes A_2) \circ g \subset (A_2 \otimes A_2) \circ f
\end{equation}
Так как a - невырожденный тензор, то
\begin{equation}
(3.71) \quad f = a^{-1} \circ g
\end{equation}
Если $h \in (A_2 \otimes A_2) \circ f$, то существует $b \in A_2 \otimes A_2$ такое, что
\begin{equation}
(3.72) \quad h = b \circ f
\end{equation}
Из равенств (3.71), (3.72), следует, что
\begin{equation}
(3.73) \quad h = b \circ (a^{-1} \circ g) = (b \circ a^{-1}) \circ g
\end{equation}
Следовательно, $h \in (A_2 \otimes A_2) \circ g$, (3.68) следует из равенств (3.70), (3.73). □

Из теоремы 3.53 также следует, что, если $g = a \circ f$ и $a \in A_2 \otimes A_2$ - вырожденный тензор, то отношение (3.70) верно. Однако основной результат теоремы 3.53 состоит в том, что представления алгебры $A_2 \otimes A_2$ в модуле $\mathcal{L}(A_1; A_2)$ порождает отношение эквивалентности в модуле $\mathcal{L}(A_1; A_2)$. Если удачно выбрать представители каждого класса эквивалентности, то полученное множество будет множеством образующих рассматриваемого представления. 15

3.8. Линейное отображение в свободную конечно мерную ассоциативную алгебру.

Теорема 3.54. Пусть A_1 - алгебра над кольцом D. Пусть A_2 - свободная конечно мерная ассоциативная алгебра над кольцом D. Пусть e_i - базис алгебры A_2 над кольцом D. Отображение
\begin{equation}
(3.74) \quad g = a \circ f
\end{equation}
порождённое отображением $f \in \mathcal{L}(A_1; A_2)$ посредством тензора $a \in A_2 \otimes A_2$, имеет стандартное представление
\begin{equation}
(3.75) \quad g = a^{ij} (e_i \otimes e_j) \circ f = a^{ij} e_i \circ e_j
\end{equation}
Доказательство. Согласно теореме 3.42, стандартное представление тензора a имеет вид
\begin{equation}
(3.76) \quad a = a^{ij} e_i \otimes e_j
\end{equation}
Равенство (3.75) следует из равенств (3.74), (3.76). □

15Множество образующих представления определено в определении [3]-3.1.5.
Теорема 3.55. Пусть \(\mathfrak{F}_1 \) - базис свободной конечно мерной \(D \)-алгебры \(A_1 \). Пусть \(\mathfrak{F}_2 \) - базис свободной конечно мерной ассоциативной \(D \)-алгебры \(A_2 \). Пусть \(C_{2,kl}^p \) - структурные константы алгебры \(A_2 \). Координаты отображения

\[g = a \circ f \]

порождённого отображением \(f \in (A_1; A_2) \) посредством тензора \(a \in A_2 \otimes A_2 \), и его стандартные компоненты связаны равенством

\[g_{kl}^k = f_{lm}^i g_{ij}^p C_{2,im}^p C_{2,pj}^k \]

Доказательство. Относительно базисов \(\mathfrak{F}_1 \) и \(\mathfrak{F}_2 \), линейные отображения \(f \) и \(g \) имеют вид

\[f \circ x = f_j^i x^i \mathfrak{F}_2^j \]
\[g \circ x = g_j^i x^i \mathfrak{F}_2^j \]

Из равенств (3.78), (3.79), (3.75) следует

\[g_{kl}^k x^k \mathfrak{F}_2^k = a_{ij}^l x^i \mathfrak{F}_2^j C_{2,im}^p C_{2,pj}^k \]

Так как векторы \(\mathfrak{F}_2^k \) линейно независимы и \(x^k \) произвольны, то равенство (3.77) следует из равенства (3.80).

Теорема 3.56. Пусть \(D \) является полем. Пусть \(\mathfrak{F}_1 \) - базис свободной конечно мерной \(D \)-алгебры \(A_1 \). Пусть \(\mathfrak{F}_2 \) - базис свободной конечно мерной ассоциативной \(D \)-алгебры \(A_2 \). Пусть \(C_{2,kl}^p \) - структурные константы алгебры \(A_2 \). Рассмотрим матрицу

\[B = (C^{k}_{m,ij}) = (C_{2,im}^p C_{2,pj}^k) \]

столбцы которой пронумерованы индексом \(k \) и строки пронумерованы индексом \(i,j \). Если матрица \(B \) невырождена, то для заданных координат линейного преобразования \(g_{kl}^k \) и для отображения \(f = \delta \), система линейных уравнений (3.77) относительно стандартных компонент этого преобразования \(g_{kl}^k \) имеет единственное решение.

Если матрица \(B \) вырождена, то условием существования решения системы линейных уравнений (3.77) является равенство

\[\text{rank} \left(C^{k}_{m,ij} g_{m}^k \right) = \text{rank} C \]

В этом случае система линейных уравнений (3.77) имеет бесконечно много решений и существует линейная зависимость между величинами \(g_{m}^k \).

Доказательство. Утверждение теоремы является следствием теории линейных уравнений над полем.

Теорема 3.57. Пусть \(A \) - свободная конечно мерная ассоциативная алгебра над полем \(D \). Пусть \(\mathfrak{F} \) - базис алгебры \(A \) над полем \(D \). Пусть \(C_{kl}^{p} \) - структурные константы алгебры \(A \). Пусть матрица (3.81) вырождена. Пусть линейное отображение \(f \in L(A; A) \) невырождено. Если координаты линейных преобразований \(f \) и \(g \) удовлетворяют равенству

\[\text{rank} \left(C^{k}_{m,ij} g_{m}^k \right) = \text{rank} C \]
то система линейных уравнений
\[(3.84) \quad g^k_l = f^m_l g^{ij} C^p_{irm} C^k_{pj}\]
имеет бесконечно много решений.

Доказательство. Согласно равенству (3.83) и теореме 3.56, система линейных уравнений
\[(3.85) \quad f^k_l = f^{ij} C^p_{il} C^k_{pj}\]
имеет бесконечно много решений, соответствующих линейному отображению
\[(3.86) \quad f = f^{ij} \varpi_i \otimes \varpi_j\]
Согласно равенству (3.83) и теореме 3.56, система линейных уравнений
\[(3.87) \quad g^k_l = g^{ij} C^p_{il} C^k_{pj}\]
имеет бесконечно много решений, соответствующих линейному отображению
\[(3.88) \quad g = g^{ij} \varpi_i \otimes \varpi_j\]
Отображения \(f\) и \(g\) порождены отображением \(\delta\). Согласно теореме 3.53, отображение \(f\) порождает отображение \(g\). Это доказывает утверждение теоремы. \(\Box\)

Теорема 3.58. Пусть \(A\) - свободная конечно мерная ассоциативная алгебра над полем \(D\). Представление алгебры \(A \otimes A\) в алгебре \(L(A; A)\) имеет конечный базис \(\overline{\varpi}\).

(1) Линейное отображение \(f \in L(A; A)\) имеет вид
\[(3.89) \quad f = (a \cdot s_0 \otimes a \cdot s_{-1}) \circ I_k = \sum_k a \cdot s_k \circ I_k \cdot a \cdot s_{-1}\]

(2) Его стандартное представление имеет вид
\[(3.90) \quad f = a^{k,ij} (\varpi_i \otimes \varpi_j) \circ I_k = a^{k,ij} \varpi_k \varpi_j\]

Доказательство. Из теоремы 3.57 следует, что если матрица \(B\) вырождена и отображение \(f\) удовлетворяет равенству
\[(3.91) \quad \text{rank} \left(C^{k,ij}_{m} f^k_m \right) = \text{rank} C\]
то отображение \(f\) порождает то же самое множество отображений, что порождено отображением \(\delta\). Следовательно, для того, чтобы построить базис представления алгебры \(A \otimes A\) в модуле \(L(A; A)\) мы должны выполнить следующее построение.

Множество решений системы уравнений (3.84) порождает свободный подмодуль \(L\) модуля \(L(A; A)\). Мы строим базис \((\overline{h}_1, ..., \overline{h}_m)\) подмодуля \(L\). Затем дополняем этот базис линейно независимыми векторами \(\overline{h}_{k+1}, ..., \overline{h}_m\), которые не принадлежат подмодулю \(L\), таким образом, что множество векторов \(\overline{h}_1, ..., \overline{h}_m\) является базисом модуля \(L(A; A)\). Множество орбит \((A \otimes A) \circ \delta, (A \otimes A) \circ \overline{h}_{k+1}, ..., (A \otimes A) \circ \overline{h}_m\) порождает модуль \(L(A; A)\). Поскольку множество орбит конечно, мы можем выбрать орбиты так, чтобы они не пересекались. Для каждой орбиты мы можем выбрать представитель, порождающий эту орбиту. \(\Box\)
Пример 3.59. Для поля комплексных чисел алгебра $\mathcal{L}(C; C)$ имеет базис

$$I_0 \circ z = z$$
$$I_1 \circ z = \overline{z}$$

Для алгебры кватернионов алгебра $\mathcal{L}(H; H)$ имеет базис

$$I_0 \circ z = z$$

3.9. Линейное отображение в неассоциативную алгебру. Так как произведение неассоциативно, мы можем предположить, что действие $a, b \in A$ на отображение f может быть представлено либо в виде $a(fb)$, либо в виде $(af)b$. Однако это предположение приводит нас к довольно сложной структуре линейного отображения. Чтобы лучше представить насколько сложна структура линейного отображения, мы начнём с рассмотрения левого и правого сдвигов в неассоциативной алгебре.

Теорема 3.60. Пусть

$$(3.92) \quad l(a) \circ x = ax$$

отображение левого сдвига. Тогда

$$(3.93) \quad l(a) \circ l(b) = l(ab) - (a, b)_1$$

где мы определили линейное отображение

$$(a, b)_1 \circ x = (a, b, x)$$

Доказательство. Из равенств (3.13), (3.92) следует

$$(3.94) \quad (l(a) \circ l(b)) \circ x = l(a) \circ (l(b) \circ x)$$

$$= a(bx) = (ab)x - (a, b, x)$$

$$= l(ab) \circ x - (a, b)_1 \circ x$$

Равенство (3.93) следует из равенства (3.94). □

Теорема 3.61. Пусть

$$(3.95) \quad r(a) \circ x = xa$$

отображение правого сдвига. Тогда

$$(3.96) \quad r(a) \circ r(b) = r(ba) + (b, a)_2$$

где мы определили линейное отображение

$$(b, a)_2 \circ x = (x, b, a)$$

Доказательство. Из равенств (3.13), (3.95) следует

$$(3.97) \quad (r(a) \circ r(b)) \circ x = r(a) \circ (r(b) \circ x)$$

$$= (xb)a = x(ba) + (x, b, a)$$

$$= r(ba) \circ x + (x, b, a)$$

Равенство (3.96) следует из равенства (3.97). □
Пусть

\[f : A \to A \quad f = (ax)b \]

линейное отображение алгебры \(A \). Согласно теореме 3.23, отображение

\[g : A \to A \quad g = (cf)d \]

также линейное отображение. Однако неочевидно, можем ли мы записать отображение \(g \) в виде суммы слагаемых вида \((ax)b\) и \((xb)\).

Если \(A \) - свободная конечно мерная алгебра, то мы можем предположить, что линейное отображение имеет стандартное представление в виде\(^{16}\)

\[f \circ x = f^{ij}(x_i x_j) \tag{3.99} \]

В этом случае мы можем применить теорему 3.58 для отображений в неассоциативную алгебру.

Теорема 3.62. Пусть \(\bar{x}_1 \) - базис свободной конечно мерной \(D \)-алгебры \(A_1 \). Пусть \(\bar{x}_2 \) - базис свободной конечно мерной неассоциативной \(D \)-алгебры \(A_2 \). Пусть \(C_{2}^{p} \)-структурные константы алгебры \(A_2 \). Пусть отображение

\[g = a \circ f \]

порождённое отображением \(f \in (A_1; A_2) \) посредством тензора \(a \in A_2 \otimes A_2 \), имеет стандартное представление

\[g = a^{ij}(\bar{x}_i \otimes \bar{x}_j) \circ f = a^{ij}(x_i f)\bar{x}_j \tag{3.100} \]

Координаты отображения (3.100) и его стандартные компоненты связаны равенством

\[g^{k}_{l} = f^{m}_{l} g^{ij} C_{2}^{p} C_{i m}^{p} C_{2}^{k} C_{p j}^{k} \tag{3.101} \]

Доказательство. Относительно базисов \(\bar{x}_1 \) и \(\bar{x}_2 \), линейные отображения \(f \) и \(g \) имеют вид

\[f \circ x = f^{j}_{i} x^{j} \bar{x}_{2,i} \tag{3.102} \]

\[g \circ x = g^{j}_{i} x^{j} \bar{x}_{2,i} \tag{3.103} \]

Из равенств (3.103), (3.104), (3.101) следует

\[g^{k}_{l} x^{l} \bar{x}_{2,k} = a^{ij}(\bar{x}_i \cdot (f^{m}_{l} x^{j} \bar{x}_{2,m}))\bar{x}_{2,j} \tag{3.105} \]

Так как векторы \(\bar{x}_{2,k} \) линейно независимы и \(x^i \) произвольны, то равенство (3.102) следует из равенства (3.105).\[\square \]

Теорема 3.63. Пусть \(A \) - свободная конечно мерная неассоциативная алгебра над кольцом \(D \). Представление алгебры \(A \otimes A \) в алгебре \(\mathcal{L}(A; A) \) имеет конечный базис \(\bar{T} \).

\(^{16}\)Выбор произволен. Мы можем рассмотреть стандартное представление в виде

\[f \circ x = f^{ij}(x_i \bar{x}_j) \]

Тогда равенство (3.102) имеет вид

\[g^{k}_{l} = f^{m}_{l} g^{ij} C_{2}^{p} C_{i m}^{p} C_{2}^{k} C_{p j}^{k} \tag{3.98} \]

Я выбрал выражение (3.99) так как порядок сомножителей соответствует порядку, выбранному в теореме 3.58.
(1) Линейное отображение $f \in \mathcal{L}(A; A)$ имеет вид

$$f = (a_{k \cdot s_k \cdot 0} \otimes a_{k \cdot s_k \cdot 1}) \circ I_k = (a_{k \cdot s_k \cdot a}I_k)a_{k \cdot s_k \cdot 1} \quad (3.106)$$

(2) Его стандартное представление имеет вид

$$f = a^{k \cdot i j}(e_i \otimes e_j) \circ I_k = a^{k \cdot i j}(e_i I_k) e_j \quad (3.107)$$

Доказательство. Рассмотрим матрицу (3.81). Если матрица B невырождена, то для заданных координат линейного преобразования $g_l k$ и для отображения $f = \delta$, система линейных уравнений (3.102) относительно стандартных компонент этого преобразования $g^{k \cdot r}$ имеет единственное решение. Если матрица B вырождена, то согласно теореме 3.58 существует конечный базис \mathcal{T}, порождающий множество линейных отображений. □

В отличие от случая ассоциативной алгебры множество генераторов I в теореме 3.63 не является минимальным. Из равенства (3.93) следует, что неверно равенство (3.69). Следовательно, орбиты отображений I_k не порождают отношения эквивалентности в алгебре $L(A; A)$. Так как мы рассматриваем только отображения вида $(a I_k)b$, то возможно, что при $k \neq l$ отображение I_k порождает отображение I_l, если рассмотреть все возможные операции в алгебре A. Поэтому множество образующих I_k неассоциативной алгебры A не играет такой критической роли как отображение сопряжения в поле комплексных чисел. Ответ на вопрос насколько важно отображение I_k в неассоциативной алгебре требует дополнительного исследования.

4. Дифференцируемые отображения

4.1. Топологическое кольцо.

Определение 4.1. Кольцо D называется **топологическим кольцом**\(^{17}\), если D является топологическим пространством, и алгебраические операции, определённые в D, непрерывны в топологическом пространстве D. □

Согласно определению, для произвольных элементов $a, b \in D$ и для произвольных окрестностей $W_{a - b}$ элемента $a - b$, W_{ab} элемента ab существуют такие окрестности W_a элемента a и W_b элемента b, что $W_{a - b} \subset W_{a - b}$, $W_a W_b \subset W_{ab}$.

Определение 4.2. Норма на кольце D\(^{18}\) - это отображение $d \in D \rightarrow |d| \in R$

такое, что

- $|a| \geq 0$
- $|a| = 0$ равносильно $a = 0$
- $|ab| = |a| |b|$
- $|a + b| \leq |a| + |b|$

Кольцо D, наделённое структурой, определяемой заданием на D нормы, называется **нормированным кольцом**. □

\(^{17}\)Определение дано согласно определению из [8], глава 4

\(^{18}\)Определение дано согласно определению из [6], гл. IX, §3, п.1.12, а также согласно определению [12]-1.1.12, с. 23.
Производная Гато и интеграл над банаховой алгеброй 31

Инвариантное расстояние на аддитивной группе кольца D

$$d(a, b) = |a - b|$$

определяет топологию метрического пространства, согласующуюся со структурой кольца в D.

Определение 4.3. Пусть D - нормированное кольцо. Элемент $a \in D$ называется пределом последовательности $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

если для любого $\epsilon \in R$, $\epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_n - a| < \epsilon$ для любого $n > n_0$.

Теорема 4.4. Пусть D - нормированное кольцо характеристики 0 и пусть $d \in D$. Пусть $a \in D$ - предел последовательности $\{a_n\}$. Тогда

$$\lim_{n \to \infty} (a_n d) = ad$$

$$\lim_{n \to \infty} (da_n) = da$$

Доказательство. Утверждение теоремы тривиально, однако я привожу доказательство для полноты текста. Поскольку $a \in D$ - предел последовательности $\{a_n\}$, то согласно определению 4.3 для заданного $\epsilon \in R$, $\epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_n - a| < \epsilon/|d|$ для любого $n > n_0$. Согласно определению 4.2 утверждение теоремы следует из неравенств

$$|a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < \epsilon/|d||d| = \epsilon$$

$$|da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d|\epsilon/|d| = \epsilon$$

dля любого $n > n_0$.

Определение 4.5. Пусть D - нормированное кольцо. Последовательность $\{a_n\}$, $a_n \in D$ называется фундаментальной или последовательностью Коши, если для любого $\epsilon \in R$, $\epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_p - a_q| < \epsilon$ для любых $p, q > n_0$.

Определение 4.6. Нормированное кольцо D называется полным если любая фундаментальная последовательность элементов данного кольца сходится, т. е. имеет предел в этом кольце.

В дальнейшем, говоря о нормированном кольце характеристики 0, мы будем предполагать, что определён гомеоморфизм поля рациональных чисел Q в кольце D.

Теорема 4.7. Полное кольцо D характеристики 0 содержит в качестве подполя изоморфный образ поля R действительных чисел. Это поле обычно отождествляют с R.

Доказательство. Рассмотрим фундаментальную последовательность рациональных чисел $\{p_n\}$. Пусть p' - предел этой последовательности в теле D. Пусть p - предел этой последовательности в поле R. Так как вложение поля Q в тело D гомеоморфно, то мы можем отождествить $p' \in D$ и $p \in R$.

Теорема 4.8. Пусть D - полное кольцо характеристики 0 и пусть $d \in D$. Тогда любое действительное число $p \in R$ коммутирует с d.

□
Доказательство. Мы можем представить действительное число $p \in \mathbb{R}$ в виде фундаментальной последовательности рациональных чисел $\{p_n\}$. Утверждение теоремы следует из цепочки равенств

$$pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp$$

основанной на утверждении теоремы 4.4. □

4.2. Топологическая D-алгебра.

Определение 4.9. Пусть D - топологическое коммутативное кольцо. D-алгебра A называется топологической D-алгеброй, если A наделено топологией, согласующейся со структурой адиитивной группы в A, и отображения

$$(a, v) \in D \times A \to av \in A$$

$$(v, w) \in A \times A \to vw \in A$$

непрерывны. □

Определение 4.10. Норма на D-алгебре A над нормированным коммутативным кольцом D - это отображение $a \in A \to |a| \in \mathbb{R}$ такое, что

- $|a| \geq 0$
- $|a| = 0$ равносильно $a = 0$
- $|a + b| \leq |a| + |b|$
- $|ab| = |a| |b|$
- $|da| = |d| |a|$, $d \in D, a \in A$

D-алгебра A над нормированным коммутативным кольцом D, наделённая структурой, определяемой заданием на A нормы, называется нормированной D-алгеброй. □

Определение 4.11. Пусть A - нормированная D-алгебра. Элемент $a \in A$ называется пределом последовательности $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

если для любого $\epsilon \in \mathbb{R}, \epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_n - a| < \epsilon$ для любого $n > n_0$. □

Определение 4.12. Пусть A - нормированная D-алгебра. Последовательность $\{a_n\}, a_n \in A$ называется фундаментальной или последовательностью Коши, если для любого $\epsilon \in \mathbb{R}, \epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_p - a_q| < \epsilon$ для любых $p, q > n_0$. □

Определение 4.13. Нормированная D-алгебра A называется банаховой D-алгеброй если любая фундаментальная последовательность элементов алгебры Aсходится, т. е. имеет предел в алгебре A. □

Определение 4.14. Пусть A - банаховая D-алгебра. Множество элементов $a \in A, |a| = 1$, называется единичной сферой в алгебре A. □

19 Определение дано согласно определению из [7], с. 21
20 Определение дано согласно определению из [6], гл. IX, §3, п. 3
Определение 4.15. Ограничить $f : A_1 \to A_2$
банаховой D_1-алгебры A_1 с нормой $|x|_1$ в банаховую D_2-алгебру A_2 с нормой $|y|_2$
называется непрерывной, если для любого сколь угодно малого $\epsilon > 0$
существует такое $\delta > 0$, что

$$|x' - x|_1 < \delta$$

влечёт

$$|f(x') - f(x)|_2 < \epsilon$$

□

Определение 4.16. Пусть

$$f : A_1 \to A_2$$
отображение банаховой D_1-алгебры A_1 с нормой $|x|_1$ в банаховую D_2-алгебру A_2 с нормой $|y|_2$. Величина

(4.1)

$$\|f\| = \sup_{|x|_1 = 1} |f(x)|_2$$

называется нормой отображения f.

□

Теорема 4.17. Пусть

$$f : A_1 \to A_2$$
линейное отображение банаховой D_1-алгебры A_1 с нормой $|x|_1$ в банаховую D_2-алгебру A_2 с нормой $|y|_2$. Тогда

(4.2)

$$\|f\| = \sup\{|f(x)|_2 : |x|_1 = 1\}$$

Доказательство. Из определения 3.21 и теоремы 4.7 следует

(4.3)

$$f(rx) = rf(x) \quad r \in R$$

Из равенства (4.3) и определения 4.10 следует

$$\frac{|f(rx)|_2}{|rx|_1} = \left|\frac{r}{|r|}\right| \frac{|f(x)|_2}{|x|_1} = \frac{|f(x)|_2}{|x|_1}$$

Полагая $r = \frac{1}{|x|_1}$, мы получим

(4.4)

$$\frac{|f(x)|_2}{|x|_1} = \left|f\left(\frac{x}{|x|_1}\right)\right|_2$$

Равенство (4.2) следует из равенств (4.4) и (4.1). □

Теорема 4.18. Пусть

$$f : A_1 \to A_2$$
линейное отображение банаховой D_1-алгебры A_1 с нормой $|x|_1$ в банаховую D_2-алгебру A_2 с нормой $|y|_2$. Отображение f непрерывно, если $\|f\| < \infty$.
Доказательство. Поскольку отображение \(f \) линейно, то согласно определению 4.16
\[
|f(x) - f(y)|_2 = |f(x - y)|_2 \leq \|f\| \|x - y\|_1
\]
Возьмём произвольное \(\epsilon > 0 \). Положим \(\delta = \frac{\epsilon}{\|f\|} \). Тогда из неравенства
\[
|x - y|_1 < \delta
\]
следует
\[
|f(x) - f(y)|_2 \leq \|f\| \delta = \epsilon
\]
Согласно определению 4.15 отображение \(f \) непрерывно. \(\square \)

4.3. Производная отображений алгебры.

Определение 4.19. Пусть \(A \) - банаховая \(D \)-алгебра. Функция
\[
f : A \to A
\]
дифференцируема по Гато на множестве \(U \subset A \), если в каждой точке \(x \in U \) изменение функции \(f \) может быть представлено в виде
\[
(4.5) \quad f(x + a) - f(x) = \partial f(x) \circ a + o(a) = \frac{\partial f(x)}{\partial x} \circ a + o(a)
\]
где производная Гато \(\partial f(x) \) отображения \(f \) - линейное отображение приращения \(a \) и \(o : A \to A \) - такое непрерывное отображение, что
\[
\lim_{a \to 0} \frac{|o(a)|}{|a|} = 0
\]
Замечание 4.20. Согласно определению 4.19 при заданном \(x \) производная Гато \(\partial f(x) \in \mathcal{L}(A; A) \). Следовательно, производная Гато отображения \(f \) является отображением
\[
\partial f : A \to \mathcal{L}(A; A)
\]
Выражения \(\partial f(x) \) и \(\frac{\partial f(x)}{\partial x} \) являются разными обозначениями одной и той же функции. Мы будем пользоваться обозначением \(\frac{\partial f(x)}{\partial x} \), если хотим подчеркнуть, что мы берём производную Гато по переменной \(x \). \(\square \)

Теорема 4.21. Мы можем представить дифференциал Гато \(\partial f(x) \circ dx \) отображения \(f \) в виде
\[
(4.7) \quad \partial f(x) \circ dx = \left(\frac{\partial f(x)}{\partial x} \otimes \frac{\partial_1 f(x)}{\partial x} \right) \circ dx = \frac{\partial_0 f(x)}{\partial x} dx \frac{\partial_1 f(x)}{\partial x}
\]
Выражение \(\frac{\partial_{x_p} f(x)}{\partial x} \), \(p = 0, 1 \), называется компонентой производной Гато отображения \(f(x) \).

Формально, мы должны записать дифференциал отображения в виде
\[
(4.6) \quad \partial f(x) \circ dx = \left(\frac{\partial_{k_0 f(x)}}{\partial x} \otimes \frac{\partial_{k_1 f(x)}}{\partial x} \right) \circ I_k \circ dx = \frac{\partial_{k_0 f(x)}}{\partial x} \frac{\partial_{k_1 f(x)}}{\partial x} \circ I_k \circ dx
\]
Однако, например, в теории функций комплексного переменного рассматриваются только линейные отображения, порождённые отображением \(I_0 \circ z = z \). Поэтому при изучении производных мы также ограничимся линейными отображениями, порождёнными отображением \(I_0 \). Переход к общему случаю не составляет особого труда.
Доказательство. Следствие определения 4.19 и теоремы 3.58.

Из определений 3.21, 4.19 и теоремы 4.7 следует
(4.8) \(\partial f(x) \circ (ra) = r \partial f(x) \circ a \)

\(r \in R \quad r \neq 0 \quad a \in A \quad a \neq 0 \)

Комбинируя равенство (4.8) и определение 4.19, мы получим знакомое определение дифференциала Гато
(4.9)

\[\partial f(x) \circ a = \lim_{t \to 0, t \in R} \left(t^{-1}(f \circ (x + ta) - f \circ x) \right) \]

Определения производной Гато (4.5) и (4.9) эквивалентны. На основе этой эквивалентности мы будем говорить, что отображение \(f \) дифференцируемо по Гато на множестве \(U \subset D \), если в каждой точке \(x \in U \) изменение функции \(f \) может быть представлено в виде
(4.10)

\[f \circ (x + ta) - f \circ x = t \partial f(x) \circ a + o(t) \]

где \(o : R \to A \) - такое непрерывное отображение, что

\[\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0 \]

Теорема 4.22. Пусть \(A \) - банаховая \(D \)-алгебра. Пусть \(\{e_i\} \) - базис алгебры \(A \) над кольцом \(D \). Стандартное представление производной Гато отображения

\[f : A \to A \]

имеет вид
(4.11)

\[\partial f(x) = \frac{\partial^i f(x)}{\partial x^i} e_i \otimes e_j \]

Выражение \(\frac{\partial^i f(x)}{\partial x^i} \) в равенстве (4.11) называется стандартной компонентой производной Гато отображения \(f \).

Доказательство. Утверждение теоремы является следствием утверждения (2) теоремы 3.58.

Теорема 4.23. Пусть \(A \) - банаховая \(D \)-алгебра. Пусть \(\{e_i\} \) - алгебры \(A \) над кольцом \(D \). Тогда дифференциал Гато отображения

\[f : D \to D \]

можно записать в виде
(4.12)

\[\partial f(x) \circ dx = dx^i \frac{\partial f^j}{\partial x^i} e_j \]

где \(dx \in A \) имеет разложение

\[dx = dx^i e_i \quad dx^i \in D \]

относительно базиса \(\{e_i\} \) и матрица Якоби отображения \(f \) имеет вид
(4.13)

\[\frac{\partial f^j}{\partial x^i} = \frac{\partial^k r f(x)}{\partial x^k} C^p_{ki} C^j_{pr} \]

Доказательство. Утверждение теоремы является следствием теоремы 3.58.
Теорема 4.24. Пусть A - банаховая D-алгебра. Пусть f, g - дифференцируемые отображения

\[f : A \to A \quad g : A \to A \]

Отображение

\[f + g : A \to A \]

dифференцируемо и производная Гато удовлетворяет соотношению

\[(4.14) \quad \partial(f + g)(x) = \partial f(x) + \partial g(x) \]

Доказательство. Согласно определению (4.9),

\[
\partial f(x) \circ a = \lim_{t \to 0, \ t \in R} \left(t^{-1}((f + g) \circ (x + ta) - (f + g) \circ x) \right)
\]

\[= \lim_{t \to 0, \ t \in R} \left(t^{-1}(f \circ (x + ta) + g \circ (x + ta) - f \circ x - g \circ x) \right) \]

\[= \lim_{t \to 0, \ t \in R} \left(t^{-1}(f \circ (x + ta) - f \circ x) \right) \]

\[+ \lim_{t \to 0, \ t \in R} \left(t^{-1}(g \circ (x + ta) - g \circ x) \right) \]

\[= \partial f(x) \circ a + \partial g(x) \circ a \]

Равенство (4.14) следует из равенства (4.15). \qed

Теорема 4.25. Пусть A - банаховая D-алгебра. Пусть

\[h : A \times A \to A \]

непрерывное билинейное отображение. Пусть f, g - дифференцируемые отображения

\[f : A \to A \quad g : A \to A \]

Отображение

\[h(f, g) : A \to A \]

dифференцируем и дифференциал Гато удовлетворяет соотношению

\[(4.16) \quad \partial h(f(x), g(x)) \circ dx = h(\partial f(x) \circ dx, g(x)) + h(f(x), \partial g(x) \circ dx) \]

Доказательство. Равенство (4.16) следует из цепочки равенств

\[
\partial h(f(x), g(x)) \circ a = \lim_{t \to 0} \left(t^{-1}(h(f(x + ta), g(x + ta)) - h(f(x), g(x))) \right)
\]

\[= \lim_{t \to 0} \left(t^{-1}(h(f(x + ta), g(x + ta)) - h(f(x), g(x + ta))) \right) \]

\[+ \lim_{t \to 0} \left(t^{-1}(h(f(x), g(x + ta)) - h(f(x), g(x))) \right) \]

\[= h(\lim_{t \to 0} t^{-1}(f(x + ta) - f(x)), g(x)) \]

\[+ h(f(x), \lim_{t \to 0} t^{-1}(g(x + ta) - g(x))) \]

основанной на определении (4.9). \qed

Теорема 4.26. Пусть A - банаховая D-алгебра. Пусть f, g - дифференцируемые отображения

\[f : A \to A \quad g : A \to A \]

Дифференциал Гато удовлетворяет соотношению

\[(4.17) \quad \partial(f(x)g(x)) \circ dx = (\partial f(x) \circ dx) g(x) + f(x) (\partial g(x) \circ dx) \]
Доказательство. Теорема является следствием теоремы 4.25 и определения 3.10.

Теорема 4.27. Пусть A - банахова D-алгебра. Допустим производная Гата отображения $f : A \to A$
имеет разложение

\[(4.18)\quad \partial f(x) = \frac{\partial_{s_0} f(x)}{\partial x} \otimes \frac{\partial_{s_1} f(x)}{\partial x}\]

Допустим производная Гата отображения $g : D \to D$ имеет разложение

\[(4.19)\quad \partial g(x) = \frac{\partial_{t_0} g(x)}{\partial x} \otimes \frac{\partial_{t_1} g(x)}{\partial x}\]

Производная Гата отображения $f(x)g(x)$ имеет вид

\[(4.20)\quad \partial (f(x)g(x)) = \frac{\partial_{s_0} f(x)}{\partial x} \otimes \left(\frac{\partial_{s_1} f(x)}{\partial x} g(x) \right) + \left(f(x) \frac{\partial_{t_0} g(x)}{\partial x} \right) \otimes \frac{\partial_{t_1} g(x)}{\partial x} + \frac{\partial_{s_0} f(x)}{\partial x} \otimes \frac{\partial_{t_1} g(x)}{\partial x}\]

\[(4.21)\quad \frac{\partial_{s_0} f(x)g(x)}{\partial x} = \frac{\partial_{s_0} f(x)}{\partial x} \quad \frac{\partial_{t_0} f(x)g(x)}{\partial x} = f(x) \frac{\partial_{t_0} g(x)}{\partial x}\]

\[(4.22)\quad \frac{\partial_{s_1} f(x)g(x)}{\partial x} = \frac{\partial_{s_1} f(x)}{\partial x} g(x) \quad \frac{\partial_{t_1} f(x)g(x)}{\partial x} = \frac{\partial_{t_1} g(x)}{\partial x}\]

Доказательство. Подставим (4.18) и (4.19) в равенство (4.17)

\[(4.23)\quad \partial (f(x)g(x))(a) = \partial f(x)(a) g(x) + f(x) \partial g(x)(a)\]

\[= \frac{s_0 \partial f(x)}{\partial x} a \frac{\partial_{s_1} f(x)}{\partial x} g(x) + f(x) \frac{\partial_{t_0} g(x)}{\partial x} a \frac{\partial_{t_1} g(x)}{\partial x}\]

Опираясь на (4.23), мы определяем равенства (4.21), (4.22).

Доказательство. Из определения 4.16 следует

\[(4.24)\quad |\partial f(x) \circ a| \leq ||\partial f(x)|| \cdot |a|\]

Из (4.5), (4.24) следует

\[(4.25)\quad |f(x+a) - f(x)| < |a| \cdot ||\partial f(x)||\]

Возьмём произвольное $\epsilon > 0$. Положим

\[\delta = \frac{\epsilon}{||\partial f(x)||}\]

Тогда из неравенства

\[|a| < \delta\]

следует

\[|f(x+a) - f(x)| \leq ||\partial f(x)|| \cdot \delta = \epsilon\]

Согласно определению 4.15 отображение f непрерывно в точке x. □
Теорема 4.29. Пусть A - банаховая D-алгебра. Пусть отображение $f : A \to A$

dифференцируемо по Гато в точке x. Тогда

$$\partial f(x) \circ 0 = 0$$

Доказательство. Следствие определения 4.19 и теоремы 3.24.

Теорема 4.30. Пусть A - банаховая D-алгебра. Пусть отображение $f : A \to A$

dифференцируемо по Гато в точке x и норма производной Гато отображения f конечна

(4.26) $\|\partial f(x)\| = F \leq \infty$

Пусть отображение $g : A \to A$

dифференцируемо по Гато в точке $y = f(x)$

и норма производной Гато отображения g конечна

(4.28) $\|\partial g(y)\| = G \leq \infty$

Отображение $(g \circ f)(x) = g(f(x))$

dифференцируемо по Гато в точке x

(4.29)

$$\begin{cases}
 \partial (g \circ f)(x) = \partial g(y) \circ \partial f(x) \\
 \partial (g \circ f)(x) \circ a = \partial g(y) \circ \partial f(x) \circ a
\end{cases}$$

(4.30)

$$\begin{cases}
 \frac{\partial_{st,0}(g \circ f)(x)}{\partial x} = \frac{\partial_{s,0}g(f(x))}{\partial x} \frac{\partial_{t,0}f(x)}{\partial x} \\
 \frac{\partial_{st,1}(g \circ f)(x)}{\partial x} = \frac{\partial_{s,1}g(f(x))}{\partial x} \frac{\partial_{t,1}f(x)}{\partial x}
\end{cases}$$

Доказательство. Согласно определению 4.19

(4.31) $g(y + b) - g(y) = \partial g(y) \circ b + o_1(b)$

где $o_1 : A \to A$ - такое непрерывное отображение, что

$$\lim_{b \to 0} \frac{|o_1(b)|}{|b|} = 0$$

Согласно определению 4.19

(4.32) $f(x + a) - f(x) = \partial f(x) \circ a + o_2(a)$

где $o_2 : A \to A$ - такое непрерывное отображение, что

$$\lim_{a \to 0} \frac{|o_2(a)|}{|a|} = 0$$

Согласно (4.32) смещение a значения $x \in A$ приводит к смещению

(4.33) $b = \partial f(x) \circ a + o_2(a)$
значения y. Используя (4.27), (4.33) в равенстве (4.31), мы получим

$$g(f(x + a)) - g(f(x))$$

(4.34)

$$= g(f(x) + \partial f(x) \circ a + o_2(a)) - g(f(x))$$

$$= \partial g(f(x)) \circ (\partial f(x) \circ a + o_2(a)) - o_1(\partial f(x) \circ a + o_2(a))$$

Согласно определениям 4.19, 3.21 из равенства (4.34) следует

$$g(f(x + a)) - g(f(x))$$

(4.35)

$$= \partial g(f(x)) \circ \partial f(x) \circ a + \partial g(f(x)) \circ o_2(a) - o_1(\partial f(x) \circ a + o_2(a))$$

Согласно определению 4.10

$$\lim_{a \to 0} \frac{[\partial g(f(x)) \circ o_2(a) - o_1(\partial f(x) \circ a + o_2(a))]}{|a|}$$

(4.36)

$$\leq \lim_{a \to 0} \left(\frac{\partial g(f(x)) \circ o_2(a)}{|a|} + \lim_{a \to 0} \frac{o_1(\partial f(x) \circ a + o_2(a))}{|a|} \right)$$

Из (4.28) следует

$$\lim_{a \to 0} \frac{[\partial g(f(x)) \circ o_2(a)]}{|a|} \leq G \lim_{a \to 0} \frac{o_2(a)}{|a|} = 0$$

Из (4.26) следует

$$\lim_{a \to 0} \frac{o_1(\partial f(x) \circ a + o_2(a))}{|a|}$$

$$= \lim_{a \to 0} \frac{o_1(\partial f(x) \circ a + o_2(a))}{|a|} \lim_{a \to 0} \frac{\partial f(x) \circ a + o_2(a)}{|a|}$$

$$\leq \lim_{a \to 0} \frac{o_1(\partial f(x) \circ a + o_2(a))}{|a|} \lim_{a \to 0} \frac{[\partial f(x)] || a + o_2(a) ||}{|a|}$$

$$= \lim_{a \to 0} \frac{o_1(\partial f(x) \circ a + o_2(a))}{|a|} [\partial f(x)]$$

Согласно теореме 4.29

$$\lim_{a \to 0} (\partial f(x) \circ a + o_2(a)) = 0$$

Следовательно,

$$\lim_{a \to 0} \frac{o_1(\partial f(x) \circ a + o_2(a))}{|a|} = 0$$

Из равенств (4.36), (4.37), (4.38) следует

$$\lim_{a \to 0} \frac{[\partial g(f(x)) \circ o_2(a) - o_1(\partial f(x) \circ a + o_2(a))]}{|a|} = 0$$

Согласно определению 4.19

$$g \circ f(x + a) - (g \circ f)(x) = \partial (g \circ f)(x) \circ a + o(a)$$

где $o : A \to A$ - такое непрерывное отображение, что

$$\lim_{a \to 0} \frac{o_1(a)}{|a|} = 0$$

Равенство (4.29) следует из (4.35), (4.39), (4.40).
Из равенства (4.29) и теоремы 4.21 следует

\[
\frac{\partial_{st,0}(g \circ f)(x)}{\partial x} \cdot a \cdot \frac{\partial_{st,1}(g \circ f)(x)}{\partial x}
\]

(4.41)

\[
= \frac{\partial_{s,0}g(f(x))}{\partial f(x)} (\partial f(x) \circ a) \cdot \frac{\partial_{s,1}g(f(x))}{\partial f(x)}
\]

\[
= \frac{\partial_{s,0}g(f(x))}{\partial f(x)} \cdot \frac{\partial_{t,0}f(x)}{\partial x} \cdot a \cdot \frac{\partial_{t,1}f(x)}{\partial x} \cdot \frac{\partial_{s,1}g(f(x))}{\partial f(x)}
\]

(4.30) следуют из равенства (4.41).

4.4. Таблица производных отображений ассоциативной алгебры.

Теорема 4.31. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная \(D \)-алгебра. Тогда для любого \(b \in A \)

\[
\partial b = 0
\]

Доказательство. Непосредственное следствие определения 4.19.

Теорема 4.32. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная \(D \)-алгебра. Тогда для любых \(b, c \in A \)

(4.42)

\[
\begin{cases}
\partial(bf(x)c) = b \partial f(x)c \\
\partial(bf(x)c) \circ dx = b(\partial f(x) \circ dx)c \\
\partial_{s,0}bf(x)c \frac{\partial}{\partial x} = b \partial_{s,0}f(x) \\
\partial_{s,1}bf(x)c \frac{\partial}{\partial x} = \partial_{s,1}f(x) \partial_{s,1}c
\end{cases}
\]

Доказательство. Непосредственное следствие равенств (4.17), (4.21), (4.22), так как \(\partial b = \partial c = 0 \).

Теорема 4.33. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная \(D \)-алгебра. Тогда для любых \(b, c \in A \)

(4.43)

\[
\begin{cases}
\partial(bxc) = b \otimes c \\
\partial_{1,0}bxc \frac{\partial}{\partial x} = b \\
\partial_{1,1}bxc \frac{\partial}{\partial x} = c
\end{cases}
\]

Доказательство. Следствие теоремы 4.32, когда \(f(x) = x \).

Теорема 4.34. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная \(D \)-алгебра. Пусть \(f \) - линейное отображение

\[
f \circ x = (a_{s,0} \otimes a_{s,1}) \circ x = a_{s,0} x a_{s,1}
\]

Тогда

\[
\partial f = f \\
\partial f \circ dx = f \circ dx
\]

Доказательство. Следствие теорем 4.33, 4.24.
Следствие 4.35. Пусть D - полное коммутативное кольцо характеристики 0. Пусть A - ассоциативная D-алгебра. Тогда для любого $b \in A$

$$
\begin{align*}
\partial(xb - bx) &= 1 \otimes b - b \otimes 1 \\
\partial(xb - bx) \circ dx &= dx \ b - b \ dx \\
\frac{\partial_1(xb - bx)}{dx} &= 1 \\
\frac{\partial_1(xb - bx)}{dx} &= b \\
\frac{\partial_2(xb - bx)}{dx} &= -b \\
\frac{\partial_1(xb - bx)}{dx} &= 1
\end{align*}
$$

□

Теорема 4.36. Пусть D - полное коммутативное кольцо характеристики 0. Пусть A - ассоциативная D-алгебра. Тогда

(4.44)

$$
\begin{align*}
\partial x^2 &= x \otimes 1 + 1 \otimes x \\
\partial x^2 \circ dx &= dx \ dx + dx \ x \\
\frac{\partial_1 x^2}{dx} &= x \\
\frac{\partial_2 x^2}{dx} &= 1 \\
\frac{\partial_1 x^2}{dx} &= 1 \\
\frac{\partial_2 x^2}{dx} &= x
\end{align*}
$$

Доказательство. Рассмотрим приращение функции $f(x) = x^2$.

(4.45) \(f(x + h) - f(x) = (x + h)^2 - x^2 = xh + hx + h^2 = xh + hx + o(h) \)

(4.44) следует из равенств (4.7), (4.45).

Теорема 4.37. Пусть D - полное коммутативное кольцо характеристики 0. Пусть A - ассоциативная D-алгебра с делением. Тогда

(4.46)

$$
\begin{align*}
\partial x^{-1} &= -x^{-1} \otimes x^{-1} \\
\partial x^{-1} \circ dx &= -x^{-1} \ dx \ x^{-1} \\
\frac{\partial_1 x^{-1}}{dx} &= -x^{-1} \\
\frac{\partial_1 x^{-1}}{dx} &= x^{-1}
\end{align*}
$$

22Утверждение теоремы аналогично примеру VIII, [11], с. 451. Если произведение коммутативно, то равенство (4.44) принимает вид

$$
\begin{align*}
\partial x^2 \circ dx &= 2x \ dx \\
\frac{dx^2}{dx} &= 2x
\end{align*}
$$

23Утверждение теоремы аналогично примеру IX, [11], с. 451. Если произведение коммутативно, то равенство (4.46) принимает вид

$$
\begin{align*}
\partial x^{-1} \circ dx &= -x^{-2}dx \\
\frac{dx^{-1}}{dx} &= -x^{-2}
\end{align*}
$$
Доказательство. Подставим \(f(x) = x^{-1} \) в определение (4.9).

\[
\frac{\partial f(x)}{\partial x} \circ h = \lim_{t \to 0, \ t \in R} (t^{-1}((x + th)^{-1} - x^{-1})) \\
= \lim_{t \to 0, \ t \in R} (t^{-1}((x + th)^{-1} - x^{-1}(x + th)(x + th)^{-1})) \\
= \lim_{t \to 0, \ t \in R} (t^{-1}(1 - x^{-1}(x + th))(x + th)) \\
= \lim_{t \to 0, \ t \in R} (-x^{-1}h(x + th)^{-1})
\]

(4.47)

Равенство (4.46) следует из цепочки равенств (4.47). □

Теорема 4.38. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная \(D \)-алгебра с делением. Тогда

\[
\frac{\partial (xa^{-1})}{\partial x} = a^{-1} - xa^{-1} \\
\frac{\partial (xa^{-1})}{\partial x} = dx \\
\frac{\partial}{\partial x} = a \\
\frac{\partial}{\partial x} = x^{-1}
\]

(5.1)

Доказательство. Равенство (4.48) является следствием равенств (4.17), (4.43). □

5. Производная второго порядка отображения тела

5.1. Производная второго порядка отображения алгебры. Пусть \(D \) - полное коммутативное кольцо характеристики 0. Пусть \(A \) - ассоциативная \(D \)-алгебра. Пусть

\[f : A \to A \]

функция, дифференцируемая по Гато. Согласно замечанию 4.20 производная Гато является отображением

\[\partial f : A \to \mathcal{L}(A; A) \]

Согласно теореме 3.36 и определению 4.16 множество \(\mathcal{L}(A; A) \) является банаховой \(D \)-алгеброй. Следовательно, мы можем рассмотреть вопрос, является ли отображение \(\partial f \) дифференцируемым по Гато.

Согласно определению 4.19

\[
(\partial f \circ (x + a_2)) \circ a_1 - (\partial f \circ x) \circ a_1 = \partial(\partial f(x) \circ a_1) \circ a_2 + o_2(a_2)
\]

где \(o_2 : A \to \mathcal{L}(A; A) \) - такое непрерывное отображение, что

\[
\lim_{a_2 \to 0} \left\| \frac{o_2(a_2)}{|a_2|} \right\| = 0
\]

\[\text{24Если произведение коммутативно, то} \]

\[y = xa^{-1} = a \]

Соответственно производная обращается в 0.
Согласно определению 4.19 отображение $\partial(\partial f(x) \circ a_1) \circ a_2$ линейно по переменной a_2. Из равенства (5.1) следует, что отображение $\partial(\partial f(x) \circ a_1) \circ a_2$ линейно по переменной a_1. Следовательно, отображение $\partial(\partial f(x) \circ a_1) \circ a_2$ билинейно.

Определение 5.1. Полилинейное отображение

\[(5.2) \quad \partial^2 f(x) \circ (a_1; a_2) = \frac{\partial^2 f(x)}{\partial x^2} \circ (a_1; a_2) = \partial(\partial f(x) \circ a_1) \circ a_2\]

называется производной Гата второго порядка отображения f. \[\square\]

Замечание 5.2. Согласно определению 5.1 при заданном x произвольная Гата второго порядка $\partial^2 f(x) \in \mathcal{L}(A, A; A)$. Следовательно, производная Гата второго порядка отображения f является отображением

\[\partial^2 f : A \to \mathcal{L}(A, A; A)\]

Согласно теореме 4.3.6.4. мы можем также рассматривать отображение

\[\partial^2 f(x) \circ (a_1 \otimes a_2) = \partial^2 f(x) \circ (a_1; a_2)\]

Тогда

\[\partial^2 f(x) \in \mathcal{L}(A \otimes A; A)\]

\[\partial^2 f : A \to \mathcal{L}(A \otimes A; A)\]

Мы будем пользоваться тем же символом для обозначения отображения, так как по характеру аргумента ясно о каком отображении идёт речь. \[\square\]

Теорема 5.3. Мы можем представить дифференциал Гата второго порядка отображения f в виде

\[(5.3) \quad \partial^2 f(x) \circ (a_1; a_2) = \left(\frac{\partial^2 f(x)}{\partial x^2} \otimes \frac{\partial^2 f(x)}{\partial x^2} \otimes \sigma_s, \sigma_s \right) \circ (a_1; a_2)\]

\[= \frac{\partial^2 f(x)}{\partial x^2} \sigma_s(a_1) \frac{\partial^2 f(x)}{\partial x^2} \sigma_s(a_2) \frac{\partial^2 f(x)}{\partial x^2}\]

Мы будем называть выражение \[25\]

\[\frac{\partial^2 f(x)}{\partial x^2} \quad p = 0, 1, 2\]

компонентой производной Гато второго порядка отображения $f(x)$. \[\square\]

По индукции, предполагая, что определена производная Гата $\partial^{n-1} f(x)$ по порядку $n - 1$, мы определяем

\[(5.4) \quad \partial^n f(x) \circ (a_1; \ldots; a_n) = \frac{\partial^m f(x)}{\partial x^m} \circ (a_1; \ldots; a_n) = \partial(\partial^{n-1} f(x) \circ (a_1; \ldots; a_{n-1})) \circ a_n\]

производную Гато порядка n отображения f. Мы будем также полагать $\partial^0 f(x) = f(x)$. \[25\] Мы полагаем

\[\frac{\partial^2 f(x)}{\partial x^2} = \frac{\partial^2 f(x)}{\partial x \partial x}\]
5.2. **Ряд Тейлора.** Пусть D - полное коммутативное кольцо характеристики 0. Пусть A - ассоциативная D-алгебра. Пусть $p_k(x)$ - одночлен степени k, $k > 0$, одной переменной над D-алгеброй A.

Очевидно, что одночлен степени 0 имеет вид a_0, $a_0 \in A$. Для $k > 0$,

$$p_k(x) = p_{k-1}(x)xa_k$$

где $a_k \in A$. Действительно, последний множитель одночлена $p_k(x)$ является либо $a_k \in A$, либо имеет вид x^l, $l \geq 1$. В последнем случае мы положим $a_k = 1$.

Множитель, предшествующий a_k, имеет вид x^l, $l \geq 1$. Мы можем представить этот множитель в виде $x^{l-1}x$. Следовательно, утверждение доказано.

В частности, одночлен степени 1 имеет вид $p_1(x) = a_0xa_1$.

Не нарушая общности, мы можем положить $k = n$.

Теорема 5.4. Для произвольного $m > 0$ справедливо равенство

$$\partial^m(f(x)x) \circ (h_1; \ldots; h_m)$$

$$= \partial^m f(x) \circ (h_1; \ldots; h_m)x + \partial^{m-1} f(x) \circ (h_1; \ldots; h_m-1)h_m$$

$$+ \partial^{m-1} f(x) \circ (h_1; \ldots; h_{m-1}; h_m)h_1 + \ldots$$

$$+ \partial^{m-1} f(x) \circ (h_1; \ldots; h_{m-1}; h_m)h_{m-1}$$

где символ \hat{h}_i означает отсутствие переменной h_i в списке.

Доказательство. Для $m = 1$ - это следствие равенства (4.17)

$$\partial(f(x)x) \circ h_1 = (\partial f(x) \circ h_1)x + f(x)h_1$$

Допустим, (5.5) справедливо для $m - 1$. Тогда

$$\partial^{m-1}(f(x)x) \circ (h_1; \ldots; h_{m-1})$$

$$= \partial^{m-1} f(x) \circ (h_1; \ldots; h_{m-1})x + \partial^{m-2} f(x) \circ (h_1; \ldots; h_{m-2})h_{m-1}$$

$$+ \partial^{m-2} f(x) \circ (\hat{h}_1; \ldots; h_{m-2}; h_{m-1})h_1 + \ldots$$

$$+ \partial^{m-2} f(x) \circ (\hat{h}_1; \ldots; h_{m-2}; h_{m-1})h_{m-2}$$

Пользуясь равенствами (4.17) и (4.42) получим

$$\partial^m(f(x)x) \circ (h_1; \ldots; h_{m-1}; h_m)$$

$$= \partial^m f(x) \circ (h_1; \ldots; h_{m-1}; h_m)x$$

$$+ \partial^{m-1} f(x) \circ (h_1; \ldots; h_{m-2}; h_{m-1})h_m$$

$$+ \partial^{m-1} f(x) \circ (h_1; \ldots; h_{m-2}; \hat{h}_m; h_m)h_{m-1}$$

$$+ \partial^{m-2} f(x) \circ (\hat{h}_1; \ldots; h_{m-2}; h_{m-1}; h_m)h_1 + \ldots$$

$$+ \partial^{m-2} f(x) \circ (\hat{h}_1; \ldots; h_{m-2}; h_{m-1}; h_m)h_{m-2}$$

Равенства (5.5) и (5.6) отличаются только формой записи. Теорема доказана.

Теорема 5.5. Производная Гато $\partial^m p_n(x) \circ (h_1; \ldots; h_m)$ является симметричным многочленом по переменным h_1, ..., h_m.
Доказательство. Для доказательства теоремы мы рассмотрим алгебраические свойства производной Гато и дадим эквивалентное определение. Мы начнём с построения одночлена. Для произвольного одночлена \(p_n(x) \) мы построим симметричный многочлен \(r_n(x) \) согласно следующим правилам

- Если \(p_1(x) = a_0 x a_1 \), то \(r_1(x_1) = a_0 x_1 a_1 \)
- Если \(p_n(x) = p_{n-1}(x)a_n \), то

\[
r_n(x_1, ..., x_n) = r_{n-1}(x_1, ..., x_{n-1}) x_n a_n
\]

где квадратные скобки выражают симметризацию выражения по переменным \(x_1, ..., x_n \).

Очевидно, что

\[
p_n(x) = r_n(x_1, ..., x_n) \quad x_1 = ... = x_n = x
\]

Мы определим производную Гато порядка \(k \) согласно правилу

\[
(5.7) \quad \partial^k p_n(x) \circ (h_1; ..., h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = ... = x_n = x
\]

Согласно построению многочлен \(r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \) симметричен по переменным \(h_1, ..., h_k, x_{k+1}, ..., x_n \). Следовательно, многочлен (5.7) симметричен по переменным \(h_1, ..., h_k \).

При \(k = 1 \) мы докажем, что определение (5.7) производной Гато совпадает с определением (4.5).

Для \(n = 1, r_1(h_1) = a_0 h_1 a_1 \). Это выражение совпадает с выражением производной Гато в теореме 4.33.

Пусть утверждение справедливо для \(n - 1 \). Справедливо равенство

\[
(5.8) \quad r_n(h_1, x_2, ..., x_n) = r_{n-1}(h_1, x_2, ..., x_{n-1}) a_n + r_{n-1}(x_2, ..., x_n) a_n
\]

Положим \(x_2 = ... = x_n = x \). Согласно предположению индукции, из равенств (5.7), (5.8) следует

\[
r_n(h_1, x_2, ..., x_n) = (\partial p_{n-1}(x) \circ h_1) a_n + p_{n-1}(x) a_n
\]

Согласно теореме 5.4

\[
r_n(h_1, x_2, ..., x_n) = \partial p_n(x) \circ h_1
\]

что доказывает равенство (5.7) для \(k = 1 \).

Докажем теперь, что определение (5.7) производной Гато совпадает с определением (5.4) для \(k > 1 \).

Пусть равенство (5.7) верно для \(k - 1 \). Рассмотрим произвольное слагаемое многочлена \(r_n(h_1, ..., h_{k-1}, x_k, ..., x_n) \). Ожидаемое переменные \(h_1, ..., h_{k-1} \) с элементами тела \(D \), мы рассмотрим многочлен

\[
(5.9) \quad R_{n-k}(x_k, ..., x_n) = r_n(h_1, ..., h_{k-1}, x_k, ..., x_n)
\]

Положим \(P_{n-k}(x) = R_{n-k}(x_k, ..., x_n), x_k = ... = x_n = x \). Следовательно

\[
P_{n-k}(x) = \partial^{k-1} p_n(x) \circ (h_1; ..., h_{k-1})
\]

Согласно определению (5.4) производной Гато

\[
(5.10) \quad \partial P_{n-k}(x) \circ h_k = \partial (\partial^{k-1} p_n(x) \circ (h_1; ..., h_{k-1})) \circ h_k
\]

\[
= \partial^k p_n(x) \circ (h_1; ..., h_{k-1}; h_k)
\]
Согласно определению производной Гато (5.7)

\(\partial P_{n-k}(x) \circ h_k = R_{n-k}(h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = ... = x_n = x \)

Согласно определению (5.9), из равенства (5.11) следует

\(\partial P_{n-k}(x)(h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \)

Из сравнения равенств (5.10) и (5.12) следует

\(\partial^k p_n(h_1; ...; h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \)

Следовательно равенство (5.7) верно для любых \(k \) и \(n \).

Утверждение теоремы доказано.

Теорема 5.6. Для произвольного \(n \geq 0 \) справедливо равенство

\[\partial^{n+1} p_n(x) = 0 \]

Доказательство. Так как \(p_n(x) = a_0, a_0 \in D, \) то при \(n = 0 \) теорема является следствием теоремы 4.31. Пусть утверждение теоремы верно для \(n - 1 \). Согласно теореме 5.4 при условии \(f(x) = p_{n-1}(x) \) мы имеем

\[\partial^{n+1} p_n(x)(h_1; ...; h_{n+1}) = \partial^{n+1}(p_{n-1}(x)xa_n)(h_1; ...; h_{n+1}) \]

\[= \partial^{n+1}p_{n-1}(x)(h_1; ...; h_m)xa_n + \partial^n p_{n-1}(x)(h_1; ...; h_{m-1})h_m a_n + ... \]

\[+ \partial^{m-1} p_{n-1}(x)(\hat{h}_1; ...; h_{m-1}; h_m)h_1 a_n + ... \]

Согласно предположению индукции все одночлены равны 0.

Теорема 5.7. Если \(m < n \), то справедливо равенство

\[\partial^m p_n(0) = 0 \]

Доказательство. Для \(n = 1 \) справедливо равенство

\[\partial^0 p_1(0) = a_0 xa_1 = 0 \]

Допустим, утверждение справедливо для \(n - 1 \). Тогда согласно теореме 5.4

\[\partial^m(p_{n-1}(x)xa_n)(h_1; ...; h_m) \]

\[= \partial^m p_{n-1}(x)(h_1; ...; h_m)xa_n + \partial^{m-1} p_{n-1}(x)(h_1; ...; h_{m-1})h_m a_n + ... \]

\[+ \partial^{m-1} p_{n-1}(x)(\hat{h}_1; ...; h_{m-1}; h_m)h_1 a_n + ... \]

Первое слагаемое равно 0 так как \(x = 0 \). Так как \(m - 1 < n - 1 \), то остальные слагаемые равны 0 согласно предположению индукции. Утверждение теоремы доказано.

Если \(h_1 = ... = h_n = h \), то мы положим

\[\partial^n f(x) \circ h = \partial^n f(x) \circ (h_1; ...; h_n) \]

Эта запись не будет приводить к неоднозначности, так как по числу аргументов ясно, о какой функции идёт речь.
Гато до любого порядка.

Теорема 5.8. Для произвольного \(n > 0 \) справедливо равенство

\[
\partial^n p_n(x) \circ h = n!p_n(h)
\]

Доказательство. Для \(n = 1 \) справедливо равенство

\[
\partial p_1(x) \circ h = \partial(a_0x) \circ h = a_0h = 1!p_1(h)
\]

Допустим, утверждение справедливо для \(n - 1 \). Тогда согласно теореме 5.4

\[
\partial^n p_n(x) \circ h = (\partial^n p_{n-1}(x) \circ h)x_n + (\partial^{n-1} p_{n-1}(x) \circ h)ha_n
\]

+ ... + \((\partial^{n-1} p_{n-1}(x) \circ h)ha_n
\]

Первое слагаемое равно 0 согласно теореме 5.6. Остальные \(n \) слагаемых равны, и согласно предположению индукции из равенства (5.13) следует

\[
\partial^n p_n(x) \circ h = n(\partial^{n-1} p_{n-1}(x) \circ h)ha_n = n(n-1)!p_{n-1}(h)ha_n = n!p_n(h)
\]

Следовательно, утверждение теоремы верно для любого \(n \).

\[\Box\]

Пусть \(p(x) \) - многочлен степени \(n \).

\[p(x) = p_0 + p_{1n_1}(x) + ... + p_{nn_n}(x)\]

Мы предполагаем сумму по индексу \(i_k \), который нумерует слагаемые степени \(k \). Согласно теоремам 5.6, 5.7, 5.8

\[\partial^k p(0) \circ (h_1;...;h_k) = k!p_{k\mathbf{i}_k}(x)\]

Следовательно, мы можем записать

\[p(x) = p_0 + (1!)^{-1}\partial p(0) \circ x + (2!)^{-1}\partial^2 p(0) \circ x + ... + (n!)^{-1}\partial^n p(0) \circ x\]

Это представление многочлена называется **формула Тейлора для многочлена**. Если рассмотреть замену переменных \(x = y - y_0 \), то рассмотренное построение остаётся верным для многочлена

\[p(0) = p_0 + p_{1n_1}(y - y_0) + ... + p_{nn_n}(y - y_0)\]

откуда следует

\[p(y) = p_0 + (1!)^{-1}\partial p(y_0) \circ (y - y_0) + (2!)^{-1}\partial^2 p(y_0) \circ (y - y_0) + ... + (n!)^{-1}\partial^n p(y_0) \circ (y - y_0)\]

Предположим, что функция \(f(x) \) в точке \(x_0 \) дифференцируема в смысле Гато до любого порядка.

Теорема 5.9. Если для функции \(f(x) \) выполняется условие

\[f(x_0) = \partial f(x_0) \circ h = ... = \partial^n f(x_0) \circ h = 0\]

то при \(t \rightarrow 0 \) выражение \(f(x + th) \) является бесконечно малой порядка выше \(n \) по сравнению с \(t \)

\[f(x_0 + th) = o(t^n)\]

26 Я рассматриваю формулу Тейлора для многочлена по аналогии с построением формулы Тейлора в [9], с. 246.
27 Я рассматриваю построение ряда Тейлора по аналогии с построением ряда Тейлора в [9], с. 248, 249.
Доказательство. При \(n = 1 \) это утверждение следует из равенства (4.10). Пусть утверждение справедливо для \(n - 1 \). Для отображения
\[f_1(x) = \partial f(x) \circ h \]
выполняется условие
\[f_1(x_0) = \partial f_1(x_0) \circ h = ... = \partial^{n-1} f_1(x_0) \circ h = 0 \]
Согласно предположению индукции
\[f_1(x_0 + th) = o(t^{n-1}) \]
Тогда равенство (4.9) примет вид
\[o(t^{n-1}) = \lim_{t \to 0, \, t \in \mathbb{R}} (t^{-1} f(x + th)) \]
Следовательно,
\[f(x + th) = o(t^n) \]

Составим многочлен
\[p(x) = f(x_0) + (1!)^{-1} \partial f(x_0) \circ (x - x_0) + ... + (n!)^{-1} \partial^n f(x_0) \circ (x - x_0) \]
Согласно теореме 5.9
\[f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n) \]
Следовательно, полином \(p(x) \) является хорошей аппроксимацией отображения \(f(x) \).
Если отображение \(f(x) \) имеет производную Гато любого порядка, то переходя к пределу \(n \to \infty \), мы получим разложение в ряд
\[f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \partial^n f(x_0) \circ (x - x_0) \]
который называется рядом Тейлора.

5.3. Интеграл. Понятие интеграла имеет разные аспекты. В этом разделе мы рассмотрим интегрирование, как операцию, обратную дифференцированию. По сути дела, мы рассмотрим процедуру решения обыкновенного дифференциального уравнения
\[\partial f(x) \circ h = F(x; h) \]

\textbf{Пример 5.10.} Я начну с примера дифференциального уравнения над полем действительных чисел.
(5.14) \[y' = 3x^2 \]
(5.15) \[x_0 = 0 \quad y_0 = 0 \]
Последовательно дифференцируя равенство (5.14), мы получаем цепочку уравнений
(5.16) \[y'' = 6x \]
(5.17) \[y''' = 6 \]
(5.18) \[y^{(n)} = 0 \quad n > 3 \]
Из уравнений (5.14), (5.15), (5.16), (5.17), (5.18) следует разложение в ряд Тейлора

\[y = x^3 \]

Пример 5.11. Рассмотрим аналогичное дифференциальное уравнение над алгеброй

(5.19) \[\partial y = 1 \otimes x^2 + x \otimes x + x^2 \otimes 1 \]

(5.20) \[x_0 = 0 \quad y_0 = 0 \]

Последовательно дифференцируя равенство (5.19), мы получаем цепочку уравнений

(5.21) \[\partial^2 y = 1 \otimes_1 1 \otimes_2 x + 1 \otimes_1 x \otimes_2 1 + 1 \otimes_2 1 \otimes_1 x \]

+ \[x \otimes_1 1 \otimes_2 1 + 1 \otimes_2 x \otimes_1 1 + x \otimes_2 1 \otimes_1 1 \]

(5.22) \[\partial^3 y = 1 \otimes_1 1 \otimes_2 1 \otimes_3 1 + 1 \otimes_1 1 \otimes_3 1 \otimes_2 1 + 1 \otimes_2 1 \otimes_1 1 \otimes_3 1 \]

+ \[1 \otimes_3 1 \otimes_1 1 \otimes_2 1 + 1 \otimes_2 1 \otimes_3 1 \otimes_1 1 + 1 \otimes_3 1 \otimes_2 1 \otimes_1 1 \]

(5.23) \[\partial^n y = 0 \quad n > 3 \]

Из уравнений (5.19), (5.20), (5.21), (5.22), (5.23) следует разложение в ряд Тейлора

\[y = x^3 \]

Замечание 5.12. Я записываю следующие равенства для того, чтобы показать как работает производная.

\[\partial y \circ h = hx^2 + xhx + x^2 h \]

\[\partial^2 y \circ (h_1; h_2) = h_1 h_2 x + h_1 x h_2 + h_2 h_1 x \]

+ \[x h_1 h_2 + h_2 x h_1 + x h_2 h_1 \]

\[\partial^3 y \circ (h_1; h_2; h_3) = h_1 h_2 h_3 + h_1 h_3 h_2 + h_3 h_1 h_2 \]

+ \[h_3 h_1 h_2 + h_2 h_3 h_1 + h_3 h_2 h_1 \]

Замечание 5.13. Дифференциальное уравнение

(5.24) \[\partial y = 3 \otimes x^2 \]

(5.25) \[x_0 = 0 \quad y_0 = 0 \]

так же приводит к решению \(y = x^3 \). Очевидно, что это отображение не удовлетворяет дифференциальному уравнению. Однако, вопреки теореме 5.5 вторая производная не является симметричным многочленом. Это говорит о том, что уравнение (5.24) не имеет решений.
Пример 5.14. Очевидно, если функция удовлетворяет дифференциальному уравнению

\[\partial y = f_{s \cdot 0} \otimes f_{s \cdot 1} \]

то вторая производная Гато

\[\partial^2 f(x) = 0 \]

Следовательно, если задано начальное условие \(y(0) = 0 \), то дифференциальное уравнение (5.26) имеет решение

\[y = f_{s \cdot 0} x f_{s \cdot 1} \]

5.4. Экспонента. В этом разделе мы рассмотрим одну из возможных моделей построения экспоненты.

В поле мы можем определить экспоненту как решение дифференциального уравнения

\[y' = y \]

Очевидно, что мы не можем записать подобное уравнения для тела. Однако мы можем воспользоваться равенством

\[\partial(y) \circ h = y'h \]

Из уравнений (5.27), (5.28) следует

\[\partial(y) \circ h = yh \]

Это уравнение уже ближе к нашей цели, однако остаётся открытым вопрос в каком порядке мы должны перемножать \(y \) и \(h \). Что бы ответить на этот вопрос, мы изменяем запись уравнения

\[\partial(y) \circ h = \frac{1}{2}(yh + hy) \]

Следовательно, наша задача - решить дифференциальное уравнение (5.30) при начальном условии \(y(0) = 1 \).

Для формулировки и доказательства теоремы 5.15 я введу следующее обозначение. Пусть

\[\sigma = \begin{pmatrix} y & h_1 & \ldots & h_n \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix} \]

перестановка кортежа переменных

\[\begin{pmatrix} y & h_1 & \ldots & h_n \end{pmatrix} \]

Обозначим \(p_\sigma(h_i) \) позицию, которую занимает переменная \(h_i \) в кортеже

\[\begin{pmatrix} \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix} \]

Например, если перестановка \(\sigma \) имеет вид

\[\begin{pmatrix} y & h_1 & h_2 & h_3 \\ h_2 & y & h_3 & h_1 \end{pmatrix} \]
Мы докажем это утверждение индукцией. Доказательство.

Дифференциальное уравнение (5.30) имеет вид

$$\partial^n(y) \circ (h_1, ..., h_n) = \frac{1}{2^n} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_n)$$

где сумма выполнена по перестановкам

$$\sigma = \begin{pmatrix} y & h_1 & \ldots & h_n \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix}$$

множества переменных y, h_1, ..., h_n. Перестановка σ обладает следующими свойствами:

1. Если существуют i, j, $i \neq j$, такие, что $p_\sigma(h_i)$ располагается в произведении (5.31) левее $p_\sigma(h_j)$ и $p_\sigma(h_j)$ располагается левее $p_\sigma(y)$, то $i < j$.
2. Если существуют i, j, $i \neq j$, такие, что $p_\sigma(h_i)$ располагается в произведении (5.31) правее $p_\sigma(h_j)$ и $p_\sigma(h_j)$ располагается правее $p_\sigma(y)$, то $i > j$.

Доказательство. Мы докажем это утверждение индукцией. Для $n = 1$ утверждение верно, так как это дифференциальное уравнение (5.30). Пусть утверждение верно для $n = k - 1$. Следовательно

$$\partial^{k-1}(y) \circ (h_1, ..., h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})$$

где сумма выполнена по перестановкам

$$\sigma = \begin{pmatrix} y & h_1 & \ldots & h_{k-1} \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{pmatrix}$$

множества переменных y, h_1, ..., h_{k-1}. Перестановка σ удовлетворяет условиям (1), (2), сформулированным в теореме. Согласно определению (5.4) производная Гато порядка k имеет вид

$$\partial^k(y) \circ (h_1, ..., h_k) = \partial(\partial^{k-1}(y) \circ (h_1, ..., h_{k-1})) \circ h_k$$

(5.33)

Из равенств (5.30), (5.33) следует

$$\partial^k(y) \circ (h_1, ..., h_k) = \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma} \sigma(yh_k)\sigma(h_1)\ldots\sigma(h_{k-1}) + \sum_{\sigma} \sigma(h_ky)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)$$

(5.34)
Нетрудно видеть, что произвольная перестановка σ из суммы (5.34) порождает две перестановки

$$
\tau_1 = \begin{pmatrix}
y & h_1 & \ldots & h_{k-1} & h_k \\
\tau_1(y) & \tau_1(h_1) & \ldots & \tau_1(h_{k-1}) & \tau_1(h_k) \\
h_k y & h_1 & \ldots & h_{k-1} \\
\sigma(h_k y) & \sigma(h_1) & \ldots & \sigma(h_{k-1})
\end{pmatrix}
$$

(5.35)

$$
\tau_2 = \begin{pmatrix}
y & h_1 & \ldots & h_{k-1} & h_k \\
\tau_2(y) & \tau_2(h_1) & \ldots & \tau_2(h_{k-1}) & \tau_2(h_k) \\
y h_k & h_1 & \ldots & h_{k-1} \\
\sigma(y h_k) & \sigma(h_1) & \ldots & \sigma(h_{k-1})
\end{pmatrix}
$$

Из (5.34) и (5.35) следует

$$
\partial^k (y) \circ (h_1, \ldots, h_k)
$$

(5.36)

$$
= \frac{1}{2k} \left(\sum_{\tau_1} \tau_1(y) \tau_1(h_1) \ldots \tau_1(h_{k-1}) \tau_1(h_k) \\
+ \sum_{\tau_2} \tau_2(y) \tau_2(h_1) \ldots \tau_2(h_{k-1}) \tau_2(h_k) \right)
$$

В выражении (5.36) $p_{\tau_1}(h_k)$ записано непосредственно перед $p_{\tau_1}(y)$. Так как k - самое большое значение индекса, то перестановка τ_1 удовлетворяет условиям (1), (2), сформулированным в теореме. В выражении (5.36) $p_{\tau_2}(h_k)$ записано непосредственно после $p_{\tau_2}(y)$. Так как k - самое большое значение индекса, то перестановка τ_2 удовлетворяет условиям (1), (2), сформулированным в теореме.

Нам осталось показать, что в выражении (5.36) перечислены все перестановки τ, удовлетворяющие условиям (1), (2), сформулированным в теореме. Так как k - самый большой индекс, то согласно условиям (1), (2), сформулированным в теореме, $\tau(h_k)$ записано непосредственно перед или непосредственно после $\tau(y)$. Следовательно, любая перестановка τ имеет либо вид τ_1, либо вид τ_2. Пользуясь равенством (5.35), мы можем для заданной перестановки τ найти соответствующую перестановку σ. Следовательно, утверждение теоремы верно для $n = k$. Теорема доказана. □

Теорема 5.16. Решением дифференциального уравнения (5.30) при начальном условии $y(0) = 1$ является экспонента $y = e^x$ которая имеет следующее разложение в ряд Тейлора

$$
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
$$

Доказательство. Производная Гато порядка n содержит 2^n слагаемых. Действительно, производная Гато порядка 1 содержит 2 слагаемых, и каждое дифференцирование увеличивает число слагаемых вдвое. Из начального условия $y(0) = 1$ и теоремы 5.15 следует, что производная Гато порядка n искомого
Производная Гато и интеграл над банаховой алгеброй

решения имеет вид

(5.38) \[\partial^n(0) \circ (h, ..., h) = 1 \]

Из равенства (5.38) следует разложение (5.37) в ряд Тейлора.

Теорема 5.17. Равенство

(5.39) \[e^{a+b} = e^a e^b \]

справедливо тогда и только тогда, когда

(5.40) \[ab = ba \]

Доказательство. Для доказательства теоремы достаточно рассмотреть ряды Тейлора

(5.41) \[e^a = \sum_{n=0}^{\infty} \frac{1}{n!} a^n \]

(5.42) \[e^b = \sum_{n=0}^{\infty} \frac{1}{n!} b^n \]

(5.43) \[e^{a+b} = \sum_{n=0}^{\infty} \frac{1}{n!} (a + b)^n \]

Перемножим выражения (5.41) и (5.42). Сумма одночленов порядка 3 имеет вид

(5.44) \[\frac{1}{6} a^3 + \frac{1}{2} a^2 b + \frac{1}{2} ab^2 + \frac{1}{6} b^3 \]

и не совпадает, вообще говоря, с выражением

(5.45) \[\frac{1}{6} (a + b)^3 = \frac{1}{6} a^3 + \frac{1}{6} a^2 b + \frac{1}{6} aba + \frac{1}{6} ba^2 + \frac{1}{6} ab^2 + \frac{1}{6} bab + \frac{1}{6} b^2 a + \frac{1}{6} b^3 \]

Доказательство утверждения, что (5.39) следует из (5.40) тривиально.

Смысл теоремы 5.17 становится яснее, если мы вспомним, что существует две модели построения экспоненты. Первая модель - это решение дифференциального уравнения (5.30). Вторая - это изучение однопараметрической группы преобразований. В случае поля обе модели приводят к одной и той же функции. Я не могу этого утверждать сейчас в общем случае. Это вопрос отдельного исследования. Но если вспомнить, что кватернион является аналогом преобразования трёхмерного пространства, то утверждение теоремы становится очевидным.

6. **Список литературы**

[1] Серж Ленг, Алгебра, М. Мир, 1968
[2] Александр Клейн, Введение в математический анализ над телом, eprint arXiv:0812.4763 (2010)
[3] Александр Клейн, Представление универсальной алгебры, eprint arXiv:0912.3315 (2010)
[4] Александр Клейн, Линейные отображения свободной алгебры, eprint arXiv:1003.1544 (2010)
[5] Н. Бурбаки, Алгебра: алгебраические структуры, линейная и полилинейная алгебра, перевод с французского Д. А. Райкова, М., государственное издательство физико-математической литературы, 1962
[6] Н. Бурбаки, Общая топология, Использование вещественных чисел в общей топологии, перевод с французского С. Н. Крачковского под редакцией Д. А. Райкова, М. Наука, 1975
[7] Н. Бурбаки, Топологические векторные пространства, перевод с французского Д. А. Райкова, М. Иностранная литература, 1959
[8] Понтрягин Л. С., Непрерывные группы, М. Едиториал УРСС, 2004
[9] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, том 1, М. Наука, 1969
[10] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
[11] Sir William Rowan Hamilton, Elements of Quaternions, Volume I, Longmans, Green, and Co., London, New York, and Bombay, 1899
[12] V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the theory of topological rings and modules, Volume 1995, Marcel Dekker, Inc, 1996
[13] S. V. Ludkovsky, Differentiable functions of Cayley-Dickson numbers, eprint arXiv:math.CV/0405471 (2004)
[14] W. Bertram, H. Glockner, K. Neeb, Differential Calculus over General Base Fields and Rings, Expositiones Mathematicae (2004), Volume 22, Issue 3, Pages 213-282
7. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

D^\star-базис модуля 6
алгебра над кольцом 8
алгебра, противоположная алгебре P 8
ассоциативная D-алгебра 9
ассоциатор R-алгебры 9
базис алгебры $L(A; A)$ 27
банахова D-алгебра 32
dифференциал Гато второго порядка
отображения f алгебры 43
dифференциал Гато отображения f
алгебры 34
единичная сфера в D-алгебре 32
коммутативная D-алгебра 9
коммутатор R-алгебры 9
компоненты производной Гато второго
порядка отображения $f(x)$ алгебры 43
компоненты производной Гато
отображения $f(x)$ алгебры 34
линейное отображение R_1-модуля A_1 в
R_2-модуль A_2 7
линейное отображение R-алгебры A_1 в
R-алгебру A_2 11
линейное отображение R-модуля A_1 в R
модуль A_2 8
модуль над кольцом 6
невырожденный тензор 24
непрерывная функция над D-алгебро 33
норма на D-алгебре 32
норма на кольце 30
норма отображения в D-алгебру 33
нормированная D-алгебра 32
нормированное кольцо 30
орбита линейного отображения 24
полилинейное отображение алгебр 12
полилинейное отображение модулей 8
полное кольцо 31
последовательность Компь в
нормированном алгебре 32
последовательность Компь в
нормированном кольце 31
предел последовательности в
нормированной алгебре 32
предел последовательности в
нормированном кольце 31
производная Гато второго порядка
отображения алгебры 43
производная Гато отображения алгебры 34
производная Гато порядка n
отображения f алгебры 43
свободная алгебра над кольцом 9
свободный модуль над кольцом 6
стандартная компонента производной
Гато отображения f 35
стандартная компонента тензора в
тензорном произведении алгебр 19
стандартное представление производной
Гато отображения над алгеброй 35
структурные константы алгебры P над
кольцом D 10
tензорная степень алгебры A 17
tензорное произведение алгебр 17
tопологическая D-алгебра 32
tопологическое кольцо 30
фундаментальная последовательность в
нормированном алгебре 32
фундаментальная последовательность в
нормированном кольце 31
функция алгебры, дифференцируемая по
Гато 34
центр R-алгебры A 10
eффективное представление кольца 6
ядро R-алгебры A 10
8. СПЕЦИАЛЬНЫЕ СИМВОЛЫ И ОБОЗНАЧЕНИЯ

\((a, b, c) \) ассоциатор \(R \)-алгебры 9
\([a, b] \) коммутатор \(R \)-алгебры 9

\(A^* \) алгебра, противоположная алгебре \(A \) 8
\((A_2 \otimes A_2) \circ f \) орбита линейного отображения 24

\(a^{i_1\ldots i_n} \) стандартная компонента тензора в тензорном произведении алгебр 19

\(A^{\otimes n} \) тензорная степень алгебры \(A \) 17
\(A_1 \otimes \ldots \otimes A_n \) тензорное произведение алгебр 17

\(C_{ij} \) структурные константы алгебры \(A \) над кольцом \(D \) 10

\(\frac{\partial f(x)}{\partial x^i} \) компонента производной Гато отображения \(f(x) \) алгебры 34

\(\frac{\partial^2 f(x)}{\partial x^2} \) компонента производной Гато второго порядка отображения \(f(x) \) алгебры 43

\(\partial f(x) \) производная Гато отображения \(f \) алгебры 34

\(\frac{\partial f(x)}{\partial x} \) производная Гато отображения \(f \) алгебры 34

\(\frac{\partial^n f(x)}{\partial x^n} \) производная Гато порядка \(n \) отображения \(f \) алгебры 43

\(\frac{\partial^2 f(x)}{\partial x^2} \) производная Гато второго порядка отображения \(f \) алгебры 43

\(\frac{\partial^2 f(x)}{\partial x^2} \) производная Гато второго порядка отображения \(f \) алгебры 43

\(\partial f(x) \circ dx \) дифференциал Гато отображения \(f \) алгебры 34

\(\partial^2 f(x) \circ (a_1; a_2) \) дифференциал Гато второго порядка отображения \(f \) алгебры 43

\(\frac{\partial^i f(x)}{\partial x} \) стандартная компонента производной Гато отображения \(f \) 35

\(\| f \| \) норма отображения в \(D \)-алгебру 33

\(\lim_{n \to \infty} a_n \) предел последовательности в нормированном кольце 31