Polymeric iodophors: preparation, properties, and biomedical applications

Article
Accepted Version

Makhayeva, D. N., Irmukhametova, G.S. and Khutoryanskiy, V. V. (2021) Polymeric iodophors: preparation, properties, and biomedical applications. Review Journal of Chemistry, 10. pp. 40-57. ISSN 2634-8284 doi: https://doi.org/10.1134/S2079978020010033 Available at http://centaur.reading.ac.uk/95577/

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1134/S2079978020010033

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
Полимерные иодофоры: получение, свойства и биомедицинские применения

Махаева Д.Н.¹, Ирмухаметова Г.С.¹*, Хуторянский В.В.²*

¹Казахский национальный университет им. аль-Фараби, проспект Аль-Фараби, 71, г. Алматы, 050040 Казахстан
²University of Reading, Whiteknights, PO Box 217, Reading, Berkshire, RG6 6AH Great Britain
*e-mail: Ирмухаметова Г.С. (galiya.irm@gmail.com); Хуторянский В.В. (v.khutoryanskiy@reading.ac.uk)

Данный обзор посвящен изучению основных химических и физиологических свойств иода и способности образовывать комплексы с природными и синтетическими полимерами. Иод - самый известный антисептик для профилактики и лечения микробных инфекций. Его уникальная способность образовывать комплексы с некоторыми полимерами открывает широкий спектр применения для целенаправленной и пролонгированной доставки иода в органы-мишени. Полимерные комплексы с иодом характеризуются изменением цвета, морфологии и повышением электропроводности по сравнению с исходными полимерами и повышением биологической активности системы. Комплексообразование полимеров с иодом связано с образованием ионов I₃⁻ и I₅⁻.

Ключевые слова: иодофоры; иод-полимерные комплексы; биологическая активность; антимикробная активность; антисептики.

1. Введение

Иод с давних пор использовался в качестве антисептика для профилактики и лечения широкого спектра инфекций. Но применение иода ограничивалось такими нежелательными факторами, как раздражение, повышение чувствительности, окрашивание как биологических, так и искусственных поверхностей, низкая растворимость в воде и высокое давление паров. В начале 1950-х годов «покорение» иода началось с изучения комплексообразования с некоторыми полимерами, что привело к появлению нового класса соединений под названием «иодофоры» [1].

Иодофоры — химические комплексы, содержащие смесь молекулярного иода, ионов иода и сольбилизирующего вещества [2]. Распространенное применение в качестве сольбилизаторов находят некоторые природные и синтетические водорастворимые полимеры и неионогенные поверхностно-активные вещества. Комплексообразование с полимерными носителями не только увеличивает растворимость молекулярного иода, но также способствует его пролонгированному высвобождению [3] и снижению его равновесной концентрации в свободном виде [4].

Иод обладает антимикробными и антисептическими свойствами. В отличие от антибиотиков, которые локализуются в определенном месте, иод одновременно воздействует на все органы микробных клеток. Связывание иода с белками приводит к их денатурации несколькими способами: окисление SH-групп в цистеине и метионине, и предотвращение образования водородных связей между N–H-группами в аргинине, гистидине и фенольными группами тирозина. Эти изменения влияют на структуру и функции микробных клеток. Кроме того, иод может связываться с жирными кислотами по С-С-связи и с некоторыми нуклеотидами (аденин, цитозин и гуанин), нарушая структуру...
нуклеиновых кислот и, в целом, всей клеточной мембраны бактерий. Следовательно, воздействие иода приводит к быстрому разрушению мембран и цитоплазмы [1]. Например, при исследовании влияния иодофора поливинилпирролидон-иода на микробные клетки методами электронной микроскопии и биохимического анализа наблюдались быстрое разрушение цитоплазмы, коагуляция нуклеотидов и потеря ферментативной активности. Клетки разрушились не полностью, но образование пор в их стенках приводило к утечке клеточных компонентов [5].

Широкий спектр применения иодофоров открывает возможности для получения нескольких лекарственных форм на основе иод-полимерных комплексов, таких как растворы, мази, пены, пленки, мукоадгезивные таблетки и др. Иодофорофы стабильны при длительном хранении и побочные реакции крайне редки [6].

В данном обзоре рассмотрены основные химические свойства иода, механизмы образования иод-полимерных комплексов, а также области применения иодофоров.

2. Иод: основные химические свойства

Иод - химический элемент (I), который встречается в природе в виде солей иодидов в морских водорослях, рыбе, моллюсках и частично в морской воде. Молекулярный иод впервые был получен в 1811 году химиком Б. Куртуа [7] и признан как новый элемент Л.Ж. Гей-Люссаком [8].

Иод при комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым блеском. При нагревании при атмосферном давлении он сублимируется (возгоняется), превращаясь в пары фиолетового цвета; при охлаждении пары иода кристаллизуются, минуя жидкое состояние [9].

Иод является наименее реакционноспособным галогеном, растворимость которого в воде сравнительно мала (0,33 г/л, 1-2 мМ при 25 °С). Водный раствор иода имеет желтовато-коричневый цвет. Однако, иод легко растворяется в этаноле или диэтиловом эфире с образованием коричневых, а в хлороформе и бензоле - фиолетовых растворов [10].

Растворимость элементарного иода в воде увеличивается в присутствии иодид-ионов, таких как иодид калия, так как образуется водорастворимый трииодид – ион (I₃⁻), а также несколько возрастает с ростом температуры (рис. 1). Водные растворы иода стабильны и, в зависимости от условий, в них могут присутствовать разные виды ионов. Считается, что только молекулярный иод (I₂) имеет самую высокую антимикробную активность. На стабильность иода сильное влияние оказывает рН среды, с ростом которой, а также с увеличением времени хранения антимикробная активность уменьшается [11]. Для более ясного представления химического поведения иода, в таблице 1 приведены 9 основных видов реакций в водном растворе, в которых присутствуют 10 форм иода: I⁻, I₂, I₃⁻, I₅⁻, I₆⁻, HOI, OI⁻, H₂O₂, I₂O₇ и H₂Oᴵ⁺. Среди всех форм иода только I₂ - гидратированный иод, HOI - гипоиодная кислота, H₂Oᴵ⁺ - катион иода проявляют антисептические свойства [12].
Рисунок 1. Зависимость растворимости иода в воде (1) и в 0,1 г/л растворе иодида калия (2) от температуры. Данные для построения этих зависимостей взяты из работы [4]

Таблица 1. Основные виды реакций молекулярного иода в воде. Данные взяты из работы [12]

Категория	Реакция	Вид реакции
I	I₂+H₂O→HOI+H⁺+I⁻	Гидролиз
II	HOI↔OH⁻+H⁺	Диссоциация
III	HOI+H⁺↔H₂O⁻	Протонирование
IV	I₂+I⁻↔I₃⁻	Комплексообразование
V	3HOI↔IO₃⁻+2I⁺+3H⁺	Диспропорционирование
VI	I₃⁻+I₂↔I₅⁻	Образование пента-иодида
VII	2I₃⁻↔I₆⁻⁻	Димеризация
VIII	OI⁻+I⁻+H₂O↔H₂O³⁻+OH⁻	Диспропорционирование
IX	H₂O⁻↔I₂O⁻⁻+H⁺	Диссоциация

Электронные спектры поглощения водных растворов молекулярного иода и системы иод-иодид довольно сложны. По литературным данным, для водного раствора молекулярного иода характерны полосы поглощения при λₘ=290, 350 и 460 нм. А в водных растворах иодидов наблюдаются спектры с полосами поглощения λₘ=192-193 нм и 226 нм. Абсорбционный спектр водного раствора иода-иодида характеризуется следующими максимумами при λₘ=192-193, 226, 290 и 350 нм. Максимум поглощения при λₘ=450-460 нм принадлежит сольватированной молекуле I₂ [13]. Согласно данным [14] для растворов, содержащих трииодид-ионы, наблюдаются спектры поглощения с максимумами при λₘ=290 и ~353 нм, тогда как для молекулярного иода характерны полосы при λₘ=270 нм и 460 нм.

В работе [15] были записаны электронные спектры поглощения радикального аниона иода, иодид и трииодид-ионов в ацетонитриле при световом возбуждении молекулярного иода, тетрабутиламмонийиодида и тетрабутиламмонийтрииодида. Для трииодид иона наблюдались две полосы поглощения при λₘ=291 и 361 нм и для иодид иона при λₘ=208 нм и 246 нм, тогда как для радикального аниона иода поглощение наблюдалось при λₘ > 400 нм (рис. 2).
Практическое значение имеют полосы поглощения с λ_{м}=290 нм и 350 нм, которые встречаются не только в водных растворах йода-иодида, но и в многих других растворах иода, дигалогенов и иод-полимеров в разных растворителях. По предположению Мохнача [13], максимум поглощения при λ_{м}=290 нм принадлежит трииодиду I_{3}⁻, а максимум при λ_{м}=350-360 нм - оксианиону IO⁻ (I²⁻).

На рисунке 3 представлены спектры молекулярного иода в растворах иодида калия, полученные на УФ-спектрофотометре «Analytik Jena» (Япония) с использованием кварцевой кюветы толщиной 1 мм. Видно, что максимумы поглощения при λ_{м}=192 и 227 нм наблюдаются для сильно разбавленных растворов, а при увеличении концентрации для раствора характерны пики при 289 нм и 352 нм.
Полосы поглощения с λ=290 и 350 нм характерны не только для водных растворов иода, но и для растворов иодофоров. Для известного иодофора с поливинилпирролидоном (рис. 4) происходит батохромный сдвиг - смещение максимума поглощения с 290 и 350 нм до 293 и 352 нм, соответственно, что связано с образованием комплекса полимера с иодом. Комплекс интенсивно окрашен, при увеличении концентрации иода раствор приобретает более насыщенный цвет.

Рисунок 4. Абсорбционные спектры комплекса 0,00168% ПВП-иод (1) и 0,003 % водного раствора иода в присутствии 0,0225 % иодида калия (2). Вставка: Фото растворов комплекса ПВП-иод (1) и иод-иодида (2).

3. Получение иодофоров: основные способы получения и механизм образования комплексов

Иодофоры могут быть получены несколькими способами, такими как растворение полимера в водном растворе I₂/KI, взаимодействием с параи иода и путем полимеризации мономеров в присутствии иода. Водный раствор KI обычно добавляют в систему иод-полимер для улучшения растворимости I₂ и образования ионов I⁻, I₃⁻ и I₅⁻, участвующих в комплексообразовании. Комплексообразование проходит по следующим уравнениям реакций [12]:

\[
\begin{align*}
I_2 + R &\leftrightarrow I_2 \cdots R \quad (1) \\
I_3^- + R &\leftrightarrow I_3^- \cdots R \quad (2) \\
I^- + R &\leftrightarrow I^- \cdots R \quad (3)
\end{align*}
\]

где R - структурные участки иодофора, способного к комплексообразованию благодаря стерическим и электронным факторам.

Иод, как кислота Льюиса, легко реагирует с донорами электронов, образуя комплексы с переносом заряда [16]. Данный механизм был подтвержден результатами электронно-спиновой спектроскопии [17]. К богатым электронами молекулам, именуемым основаниями Льюиса, относятся соединения, содержащие π-связи (в том числе ароматические и гетероциклические соединения), особенно если их донорная способность усиlena электронодонорными заместителями [18].

Комплексы поливинилового спирта (ПВС) с иодом были достаточно подробно изучены многими авторами. Методом дифракции рентгеновских лучей показано, что прямая полиинодидной цепочки с периодичностью в 3,1 Å лежит параллельно направлению
ориентации ПВС [19]. Количество атомов иода в полииодидной цепочке зависит от метода приготовления иодофора. В работе [20] на основе ширины дифракции рентгеновских лучей было предложено, что полииодидные цепи состоят из 15 и больше атомов иода и в результате комплексообразования ПВС с иодом образуются ионы I₅⁻. Heyde с соавторами [21] установлено, что причиной резонанса Раман-спектров является формирование комплексов ПВС-иод и предположили, что в результате комплексообразования ПВС с молекулярным иодом образуется I₅⁻.

Были предложены винтовая (спиральная) [22] и агрегатная [23–25] модели образования комплексов поливиниловый спирт - иод. В винтовой модели ионы иода находятся во внутренней части спиральных цепей поливинилового спирта, что было подтверждено Inagaki с соавторами [26] схожестью Раман-спектров ПВС-иод и крахмал: полоса комбинационного рассеяния при 632,8 нм аналогична спектру крахмал-иодного комплекса, интенсивность полосы при 155 см⁻¹ сильно увеличена, что связано с антипситеметричными валентными колебаниями иона I₅⁻, выравненного в спиралевидных макромолекулах поливинилового спирта. Тебелев с соавторами [27] предположили, что иод может проникать внутрь спиралевидной молекулы поливинилового спирта и в полость его агрегатов. В агрегатной модели ионы иода расположены между цепями поливинилового спирта (сэндвичевая конструкция). Также установлено, что синдитактический поливиниловый спирт образует комплексы с иодом легче, чем атактический поливиниловый спирт [23-28]. Синдитактическая форма образует комплекс с иодом при 30°C и при более низкой концентрации полимера в растворе, тогда как атактический полимер вовсе не образует комплексов при таких условиях. Предполагается, что комплексы образуются путем включения полииодидных цепочек в агрегаты синдитактического поливинилового спирта (рис. 5) [29]. При помощи квантово-химических расчетов было выявлено существование водородных взаимодействий между атомом водорода гидроксильной группы поливинилового спирта и ионом иода [30].

Методами мало- и широкоуглового рассеяния рентгеновских лучей изучены фибрилляция и комплексообразование в процессе одноосновного растяжения пленки ПВС в растворе содержащем I⁻/I₂ ионы. Результаты показали, что во время растяжения образуются нанофибрилы, которые на последней стадии растяжения периодически упаковываются с расстоянием 10 нм. В целом, присутствие иода снижает кристалличность ПВС, что является следствием комплексообразования [31].

Рисунок 5. Агрегатная модель комплекса ПВС-иод. Перепечатано из [29] с разрешением John Wiley and Sons.
Повидон-иод представляет собой комплекс поливинилпирролидона (ПВП) с иодом, который содержит 1-12% свободного иода [32]. ПВП взаимодействует с иодом по N-карбонильной группе пиррольного кольца по схеме, приведенной на рисунке 6. Структура повидон-иода состоит из протонированных поливинилпирролидоновых звеньев, связанных между собой водородными связями с включениями триiodидных аннонов [33]. Взаимодействие полимера с иодом происходит в две стадии: 1) сначала, иод, обладающий выраженными акцепторными свойствами, образует связь со свободной электронной парой кислородного атома пирролидонового кольца; 2) при диссоциации комплекса освобождающиеся атомы иода реагируют с молекулами иода, образуя ионы триiodида, которые, в свою очередь, могут связываться с иодом, присоединенным к атому кислорода пирролидона, что приводит к образованию внутри- и межмолекулярных связей с помощью ионных мостиков [34]. Методом Раман-спектроскопии показано, что характерные колебания иода и его полииодидных производных (I₃⁻ и I₅⁻) вызывают сильные пики в спектре комбинационного рассеяния в области ниже 300 см⁻¹ в зависимости от способа приготовления исходных образцов комплекса повидон-иод. Небольшие сдвиги в положении карбонильной полосы в сторону увеличения являются следствием конформационных изменений структуры полиэдрика из-за действия галогена [35]. Повидон-иод получают тремя методами: действием парообразного иода [36], смешиванием растворов поливинилпирролидона и иода [37], а также выдерживанием смеси сухих поливинилпирролидона и иода при 80 - 90 °C до достижения постоянной концентрации титруемого иода [35].

Рисунок 6. Комплекс иод-поливинилпирролидона. Перепечатано из [33] с разрешением American Chemical Society.

Взаимодействие крахмала с иодом известно с 1814 года, когда сотрудники лаборатории Гей-Люссака Colin и de Claubry [38] изучали влияние иода на различные виды крахмала. С тех пор эта реакция стала одной из основных в качественном и количественном анализах для определения иода, амилозы и соединений амилопектина [39], и применяется для определения зрелости плодов яблоки и приемлемой даты сбора плодов [40], в лечении женских гинекологических заболеваний [13], иодной недостаточности организма [41], определения решений по лечению гипергидроза [42] и др. Глубокий сине-черный осадок образуется при смешивании растворов иода и крахмала. Крахмал состоит из линейной и спиралевидной амилозы (10-20 %) и разветвленного амилопектина (80-90%). Методами Раман-спектроскопии и УФ-спектроскопии показано, что упорядоченная структура крахмал-iodного комплекса присутствует не только в кристаллическом состоянии, но и в растворе [45]. Методом атомно-силовой микроскопии [46] изучено, что макромолекулы крахмала агрегируют в присутствии паров иода или в растворе содержащем иод, образуя при этом тонкодисперсные (сети, цепочки) и сложные спиральные структуры в зависимости от количества адсорбированного иода.
Спектроскопические данные показывают, что комплекс с переносом заряда образуется между кислородом гликозидной и гидроксильной групп амилозы и иодом [47]. Сшитые катионные производные крахмала, полученные реакциями с эпихлоргидрином или 2,3-эпоксипропилтриметиламмонием хлорида [2], показали высокую степень адсорбции анионов иода из растворов. В работе [48] получены комплексы иода и сшитых катионных производных крахмала: N- (2-гидроксил) пропил-3-триметиламмоний хлористый крахмал и N- (2-гидроксил) пропил-3-триметиламмоний-иод крахмала. В результате ионобменной реакции производных крахмала и иода образовались ионные комплексы, которые показали сильную антибактериальную активность в отношении патогенных микроорганизмов загрязненной воды.

Рисунок 7. Структура амилозы (A) и амилопектина (B).

Хитозан это катионный полисахарид, получаемый N-деацетилированием хитина, являющегося основным компонентом экзоскелета членистоногих и ряда других беспозвоночных, а также входящего в состав клеточной стенки грибов [49, 50]. В этой связи в его структуре практически всегда присутствуют остаточные ацетилированные звенья (рис. 8).

Рисунок 8. Структура хитозана.

Растворимость хитозана в воде существенно зависит от pH раствора и от степени деацетилирования и кристалличности его макромолекул. На рис. 9 приведена зависимость мутности растворов хитозана с различными степенями деацетилирования от pH среды. Видно, что хитозан с высокой степенью деацетилирования [51] растворим только в кислых средах, а при повышении pH>6.5 его растворы мутнеют [52]. Такое поведение хитозана...
связано с его полукристаллической природой, а также возможностью протонирования его аминогрупп в кислых средах и депротонирования при повышении рН. Полуацетилированный хитозан со степенью деацетилирования ~50 % проявляет растворимость в воде уже в более широком интервале изменения рН<7,2, что связано с частичной потерей его кристалличности из-за менее регулярного распределения ацетильных звеньев. А полностью деацетилированный хитозан является наименее растворимым из-за большой кристалличности.

Рисунок 9. Влияние рН на мутность водных растворов хитозана (1), полностью деацетилированного хитозана (2) и полуацетилированного хитозана (3). Кривая (4) была получена повторным растворением осажденного хитозана. Перепечатано из [52] с разрешения Wiley and Sons.

В работе [53] показано, что комплекс хитозана с иодом дает максимум поглощения при 500 нм. По результатам ЯМР-спектроскопии установлено, что иод связывается с гидроксильными группами и гликозидными атомами кислорода N-ацетил-D-глюкозамина. Хитозан не образует цветных комплексов с иодом при комнатной температуре и выше. Однако, при замораживании образуется фиолетовый раствор (рис.10) и причина такого интересного поведения пока еще не установлена.

Рисунок 10. Изменения окраски комплекса хитозан-иод (1) и раствора иода (2) до (А) и после (Б) замораживания.
В работе [54] взаимодействие иода с хитозаном было исследовано методом Раман-спектроскопии. Установлено, что иод взаимодействует с хитозаном по амино-группам. Основным видом иода, участвовавшим в комплексообразовании, является I_3^- (интенсивность полосы при 110 см$^{-1}$ намного сильнее, чем при 169 см$^{-1}$). Аминогруппы, расположенные с наружной стороны двойной спиралевидной конформации макромолекул хитозана, могли взаимодействовать с иодом методом физической адсорбции, окруженная себя I_3^-. Также возможно частичное окисление хитозана молекулярным иодом. Поскольку хитозан растворим в воде только в кислых средах, это затрудняет исследование комплексообразования с молекулярным иодом из-за присутствия посторонних веществ. В работе [55] сухой хитозан выдерживали в герметично закрытом сосуде, заполненном парами кристаллического иода или иодсодержащего раствора. При этом сорбция полимером паров иода над водно-спиртовыми растворами по величине максимального значения и скорости сорбции значительно превышает сорбцию паров над водно-солевыми растворами иода. Полученные образцы показали устойчивость во времени. Комплексы иода можно получить также с производными хитозана. Так Yang Tang с соавторами [56] получили новый комплекс смешением N-(2-гидрокси)пропил-3-триметиламмоний хлорида и хитозана с иодом в этаноле. Методом ИК-спектроскопии показано, что взаимодействие иода с производным хитозана осуществляется по типу комплекса с переносом заряда, где отрицательно заряженный ион иода взаимодействует с положительным атомом азота.

Целлюлоза и некоторые ее производные (рис.11) не образуют цветных комплексов с иодом [17, 57]. Дифракцией рентгеновскими лучами изучена структура комплексов целлюлозы с иодом [58]. В отличие от амилозы макромолекулы целлюлозы имеют вытянутую стержневую конформацию. Рентгеноструктурный анализ показал, что комплекс состоит из столбчатой структуры иода, зажатой между вытянутыми цепями целлюлозы. Иод образует с гидроксильными группами целлюлозы комплекс с переносом заряда. Wang с соавторами [59] исследовали взаимодействие между иодом и этилцеллюлозой. Установлено, что взаимодействие приводит к образованию комплекса с переносом заряда между кислородом эфирной группы этилцеллюлозы и иодом. Методом рентгеновской фотоэлектронной спектроскопии показано, что иод присутствует в двух формах: I_3^- и I_2. По результатам дифференциально-сканирующей калориметрии в структуре этилцеллюлозы происходит переход кристалл - жидкий кристалл под воздействием иода. Существование жидкокристаллической фазы в комплексе было показано и по данным спектроскопии кругового дихроизма. Диффузия иода в аморфные участки полимера может приводить к комплексообразованию с полимерными цепями. Образование комплекса характеризуется появлениям новой полосы поглощения или смешением, как в случае этилцеллюлозы [60].
В работе [61] была исследована абсорбция йода такими полимерами, как поли-(3-винил-10-метилфенотиазин), поли-(4-винилпирридин) и поли-(тетраметилен эфир гликоль). Поли-(4-винилпирридин) и поли-(тетраметилен эфир гликоль) абсорбировали больше, чем 0,5 моль йода на каждое мономерное звено, тогда как как поли-(3-винил-10-метилфенотиазин), который имеет электронодонорные ароматическое кольцо и атомы азота и серы в своей структуре, абсорбировал очень высокое количество йода на одно мономерное звено. Такая способность объясняется также образованием иона йода в результате комплексообразования между йодом и йодобензолом.

Линейный полиэтиленгликоль (ПЭГ) способен образовывать комплексы с молекулярным йодом в растворе и в твердом состоянии [62]. Было изучено влияние молекулярной массы ПЭГ на его взаимодействие с йодом [63]. ПЭГ с молекулярной массой 200 и степенью полимеризации, равной 5, не взаимодействовал с йодом. При увеличении молекулярной массы ПЭГ в спектрах комплексов наблюдаются полосы поглощения при 295 и 365 нм. Таким образом для комплексообразования ПЭГ с йодом необходимым условием является степень полимеризации выше 6. Взаимодействие йода с ПЭГ происходит с образованием комплекса с переносом заряда, которое индуцируется между атомами йода и кислорода полимера. Цвет комплекса зависит от длины цепи поликсизилена [64] и может изменяться от светло-красного до темно-коричневого.

Водные растворы ПЭГ могут экстрагировать йод из растворов четыреххлористого углерода [65]. Давление паров йода над системой ПЭГ-йодо соединений значительно ниже, чем над чистым йодом.

4. Области применения полимерных иодофов

Йод-полимерные комплексы активно используются в фармацевтике, ветеринарии, медицине, в производстве дезинфицирующих веществ и в охране окружающей среды. Как было отмечено ранее, йод - универсальный антисептик, применение которого было ограничено раздражающим действием при контакте с кожей. Йод-полимеры лишены этих недостатков и находят применение в качестве дезинфицирующих средств, антимикробных и антибактериальных препаратов. Антибактериальную активность ПВП-йод проявляется в диапазоне рН 2,5-7,0. Исследования in vivo показали, что в течение 60 секунд после контакта со слизистой глаза ПВП-йод убивает 96,7% бактерий [66]. Йод-ПВП обладает многими характеристиками, необходимыми для лечения ран, проявляя широкий спектр антимикробного действия [67], включая вирусы [68], грибки [69] и паразиты, отсутствие резистентности, эффективность по сравнению с биопленками, хорошая переносимость, и способность быстро выполнять вспомогательную защитную функцию, препятствуя росту бактерий.

В работе [70] исследованы вируцидная активность и цитотоксичность в клеточной культуре двух лекарственных форм повидон-йода: водный раствор и липосомальная композиция. Вируцидная активность водного раствора и липосомальной формы повидон-йода против вирусов гриппа A, простого герпеса типа 1, аденовируса и человеческого риновируса оказались одинаковыми [32]. Поэтому данный иодофор является идеальным антисептиком для кожи и слизистых оболочек в процессе подготовки к операциям.
является более перспективным лекарственным веществом и для местного применения в профилактике и лечении инфекции глаз и верхних дыхательных путей.

Препарат «Бетадин» на основе повидон-иода использовался для исследования влияния иодофора на вирус иммунодефицита человека (ВИЧ). Минимальная эффективная концентрация препарата для полной инактивации ВИЧ составила 0,25 %. Этот результат позволяет использовать повидон-иод в качестве местного антисептика против ВИЧ в клиниках и лабораториях [71]. В другом исследовании [72] 6 видов препаратов на основе повидон-иода с концентрацией от 0,23 % до 2 % были использованы для определения влияния на поведение клетки вируса птичьего гриппа типа А. Влияние исследовалось смешением 0,25 мл препарата ПВП-иод с 0,25 мл тестируемого вируса и инкубированием при 25 °C в течение 10 сек. Реакцию останавливали добавлением фосфатного буферного раствора, содержащего 0,5 % тиосульфата натрия. Как показали результаты вирусные штаммы были снижены до уровня ниже предела обнаружения путем инкубации только за 10 сек со всеми препаратами ПВП-иод, что показывает эффективность повидон-иода при профилактике и борьбе с вирусами птичьего гриппа типа А. Группой японских ученых в работе [68] изучалась инактивация ряда таких штаммов вирусов, таких как адено-, рота-, паротита, полиомиелита (тип 1 и 3), Коксаки, простого герпеса, краснухи, кори, гриппа и ВИЧ повидон-иодом и другими коммерчески доступными антисептиками в соответствии со стандартизированными методиками in vitro. В исследовании использовались следующие антисептики: раствор повидон-иода, жидкость для полоскания горла на основе повидон-иода, крем повидон-иод, глюконат хлоргексидина, гидрохлорид алкилдиаминоэтиль глицина, хлорид бензалкония (ХБА) и хлорид бенzetония (ХБТ). В результате препараты на основе повидон-иода полностью инактивировали вирусы гриппа, краснухи, паротита, гриппа, безоболочечного рота- и оболочечного ВИЧ, тогда как вирусы оболочечной кори, адено-, безоболочечного рино - и полиомиелита были частично чувствительны к максимальной дозе препарата. Вирусы краснухи, кори, паротита и ВИЧ были чувствительны ко всем антисептикам, ротавирус был инактивирован ХБА и ХБТ, а адено-, полино- и риновирусы не реагировали на коммерческие антисептики. Таким образом, повидон-иод обладает широким спектром антивирусного действия, охватывающим вирусы как с оболочкой, так и без, по сравнению с другими коммерческими антисептиками.

Тяжелый острый респираторный синдром, вызванный коронавирусом (SARS-CoV), впервые был зарегистрирован в ноябре 2002 г. в г. Гандун, Китай. В период с ноября 2002 г. по июль 2003 г. вирус унес жизни 774 человек [74]. Антивирусная активность повидон-иода против коронавируса была исследована в работе [75]. Обработка SARS-CoV препаратами на основе повидон-иода в течение 2-х минут снизила инфекционный титр с 1,17*10⁶ ТЦД₅₀/мл (50%-ная тканевая и цитопатическая доза) ниже предела определяемого уровня. Эффективность повидон-иода была эквивалентна действию 70 %-этилового спирта. Применение спреев и растворов для полоскания горла на основе повидон-иода имеет важное профилактическое значение. В последней декаде 2019 г. появился новый коронавирус SARS-CoV-2 в провинции Ухань, Китай. 11 марта 2020 г. SARS-CoV-2 признан Всемирной Организацией Здравоохранения пандемией. В исследовании [75] предлагают использовать спреи с 0,5% повидон-иодом в дозировке 0,28-0,30 мл в каждую ноздрю для пациентов и медработников. Общая доза иода при этом составит около 0,33 мг, что не должно вызывать побочных эффектов. Для полоскания ротовой полости авторы [73] предлагают использовать 9 мл 0,5% раствора повидон-иода в течение 30 сек. Общая доза иода при этом должна составить около 0,05 мг. Показано, что одно применение повидон-иода способно уменьшить микрофлору полости рта в течение 3 часов.

Широко используется повидон-иод в ветеринарии при лечении различных отеков, растяжений связок, ушибов, трудноизлечимых язв домашних животных и скота, а также при дезинфекции пуповины у новорожденных жеребят и телят [32].

В мире известно около 400 наименований фармацевтических препаратов (дженериков) на основе иод-полимерных комплексов [76]. Наиболее распространенными
действующими веществами являются комплексы йода с поливинилпирролидоном и поливиниловым спиртом. Как видно из таблицы 2 препараты в основном применяются для первичной обработки кожи, открытых ран, участков инфицирования и дезинфекции приборов и участков организма перед хирургическими операциями. Известна также эффективность раствора повидон-йода как добавка в шампунь для борьбы с микроорганизмами кожи головы [32].

Неадгезивная повязка INADINE представляет собой вязкую ткань с низкой адгезией, пропитанную полиэтиленгликолем и содержащую 10 % повидон-йод с 1%-ной концентрацией свободного йода. Повязки рекомендовали себя как хорошие неприлипающие антисептики при первичной обработке раневых участков кожи. В работе [77] проведен тщательный обзор результатов клинических испытаний повязок с соединениями йода. Было найдено, что йод-содержащие повязки превосходят сульфадиазин-содержащие повязки, но уступают повязкам с рифамицином. При использовании йод-содержащих повязок не наблюдалось нарушений функции щитовидной железы и ухудшения процесса заживления ран. 5 %-ная йод-ПВП мазь также превосходит сульфадиазин серебра в заживлении ран [78]. Показано, что данный препарат эффективен и хорошо переносится и в педиатрии [79].

Таблица 2. Промышленно выпускаемые йод-полимер-содержащие препараты. Данные взяты из источников [80–84].

Препарат	Действующее вещество, концентрация	Производитель	Форма выпуска	Действие препарата
1	2	3	4	5
Betadine	Повидон-йод (0,25% - 10%)	Avrio Health (США), MundiPharma (Великобритания)	Раствор для местного и наружного применения, суппозитории вагинальные, мазь для наружного применения, вагинальный гель	Антибактериальные, антисептические средства, используемые, как и для людей, так и для животных
Recuro Vaginal	Повидон-йод (0,30%)	Iona Pharmacy LLC (США)	Раствор для спринцевания	
Аквазан	Повидон-йод (10%)	ООО Иодные технологии и маркетинг (Россия)	Раствор для местного и наружного применения	
Иодовидон	Повидон-йод (0,50%)	Алтайвитамины (Россия)	Спрей для наружного и местного применения	
Иовидокс	Повидон-йод (200 мг)	Тульская фармацевтическая фабрика ООО (Россия)	Суппозитории вагинальные	
Иодосепт	Повидон-иод (200 мг)	ЮжФарм (Россия)	Суппозитории вагинальные	Антибактериальные, антисептические средства, используемые, как и для людей, так и для животных
---------------	----------------------	-----------------	--------------------------	--
Йодинол (Синий иод)	ПВС-иод (1 %)	Ивановская фармфабрика (Россия), Троицкий иодный завод ОАО (Россия)	Рассол для наружного применения	Противовоспалительное средство
Йокс	Аллантоин + Повидон-иод (8,5 %)	АИБЭКС Фармасьютикалс с.р.о. (Чешская Республика)	Спрей для местного применения	Антибактериальная повязка
Inadine	Повидон-иод (10 %)	Kinetic Concepts, Inc. (США)	Неадгезивная повязка	Антибактериальная повязка
Iodosorb, Iodoflex	Кадексомер+иод (0,9 %)	Smith & Nephew (Великобритания)	Гель и повязка	Антибактериальное средство для лечения инфицированных ран и язв
Iodozyme	Гель+иод. Содержание свободного иода 0,20 мг/масс [84]	Archimed LLP (Великобритания)	Ранозаживляющая повязка	Антибактериальное средство для лечения инфицированных ран и язв

Влияние микробной инфекции при ожоговых ранах может быть очень существенным, так как микроорганизмы могут способствовать прогрессированию частичного ожога до полного с серьезными последствиями. В исследовании [85] пациенты с различными размерами ожогов проходили курс лечения мазями, содержащими иод-ПВП в сочетании с антибиотиками, системными витаминами Е и С для облегчения оксидантного стресса ожоговых ран. В результате лечения иод-ПВП-содержащими мазями эффективность составила 15,3% и время заживления - 4 дня, что способствует понижению больничных расходов на содержание больных в стационаре. Кроме того, никаких неблагоприятных эффектов не наблюдалось. Действие иод-ПВП на нейтрофилы и радикалы кислорода важно для пациентов с сопутствующими травмами кожи (например, открытые кровотечения). Landsman с соавторами [86] были получены полимерные гемостатические материалы с памятью формы на основе гидрогеля полипиридинилакриламид - поливинилпирролидон - иод для остановки кровотечения ран. Гидрогели показали увеличение поглощаемости в 19 раз по сравнению с гидрогелями без повидон-иода и высокую антибактериальную активность. В работе [87] были получены гемостатические макропористые полимерные пены по типу эмульсий с большим объемом дисперсной (внутренней) фазы на основе полизиленгликольдиакрилата - поливинилпирролидон - иод для остановки кровотечения ран. Гидрогели показали активность по отношению к бактериям E. coli, K.pneumonia, P. aeruginosa, and S. aureus.

Лецитин – это поверхностно-активное вещество, которое также очень хорошо связывается с иодом. Его применяют при изготовлении полимерных пленок (повязок) для обеспечения однородного распределения иода. Авторы работы [88] использовали гидроксилированый лецитин для улучшения комплексообразующей способности композитной пленки на основе карбоксиметилцеллюлозы и альгината натрия с иодом. Такие композитные пленки показали высокое содержание иода, хорошие набухающие свойства, pH-контролируемое высвобождение иода (рис. 12) и отличные
антибактериальные свойства. Процесс высвобождения иода из композитной пленки подчинялся законам диффузии и модели Хигучи. Скорость высвобождения иода увеличивалась по мере увеличения рН. С увеличением рН происходит диссоциация -СООН групп лецитина, разрыв водородных связей и электростатическое отталкивание отрицательно заряженных карбоксильных групп, что приводит к более быстрому высвобождению иода из композитной пленки.

Для предотвращения постоперационных последствий лечения вагинальных инфекций в исследовании [90] использовали комплекс иода с сополимерами акрилат натрия-Н-винилпирролидон и карбоксиметилхитозаном. Результаты клинических испытаний показали эффективность лечения с помощью полученной композиции по сравнению со стандартной методикой лечения.

В работе [91] использовали 10% раствор иод-ПВП различной концентрации для полевой дезинфекции воды против кишечной палочки E. coli. В результате исследования оптимальными условиями для подавления образования колоний кишечной палочки являются: соотношение разбавления 10% раствора иод-ПВП было 1:1000, время контакта - 15 мин и диапазон температуры 10-30˚С. Соотношение 10% раствора иод-ПВП 1:1000 содержит около 10 мг свободного иода на 1 л воды. Это количество свободного иода является наиболее безопасным для экстренной полевой очистки воды.

Для решения проблемы прилипания бактерий к поверхности мембранных фильтров авторы работы [92] предложили использовать полимерные композитные мембраны на основе системы хитозан/полиэтиленгликоль/многослойные углеродные нанотрубки, пропитанные иодом. Мембраны были приготовлены смешением подкисленного раствора хитозана и раствора, содержащего ПЭГ и коммерческие многослойные углеродные трубки, отливанием мембран и включением иода методом обращения фаз. Включение иода в мембрану приводит к усилению гидрофильно-гидрофобности и пористости. Содержание свободного иода в данных композитных мембранах составило от 0 до 0,31 мас.% (КМ-0, КМ-0,10, КМ-0,17 и КМ-0,31). Эти композитные мембранны показали большую эффективность в борьбе с кишечной палочкой (Escherichia coli) и золотистым стафилококком (Staphilococcus aureus) при концентрации иода 0,31 мас. % с коэффициентом эффективности бактерицидного действия 99,2 и 100%, соответственно (рис.13).
Рисунок 13. Бактерицидное действие композитных мембран на основе хитозан/полиэтиленгликоль/многослойные углеродные нанотрубки, пропитанных иодом (KM-0, KM-0,10, KM-0,17 и KM-0,31) против E. coli и S. aureus. Перепечатано из [92] с разрешения издательства Elsevier.

Согласно данным [93] широкое применение иод и его соединения находят в качестве контрастного агента в компьютерной и магнитно-резонансной томографии. В основном, разработанные контрастные вещества представляют собой ионоэ и ионные комплексы иода. Актуальным является создание иодированных контрастных веществ с длительным пребыванием в крови. Иодполимеры могут отвечать данным требованиям, так как многие биомедицинские полимеры являются гемосовместимыми. Так в работе [94] были получены многослойные микрочастицы, состоящие из ядра CaCO\(_3\) и иод-полимерных слоёв, адсорбированных на нём. В качестве комплексообразователя с иодом был выбран нетоксичный и биоразлагаемый хитозан. Максимальное количество загруженного иода составило 450 мкг на 1 г карбоната кальция. Уникальные наночастицы иода, ковалентно связанные с полиэтиленгликолем, с временем полураспада в крови равным 40 ч были получены в работе [95]. Это позволяет использовать их для визуализации микрососудов и опухолевой массы. Исследование токсичности наночастиц с иодом проводили на мышах, внутривенно вводя 4 г иода на 1 кг веса мышей. В роли контрольных образцов выступали мыши, которым вводили физиологический раствор. В результате мыши, которым вводили 4 г иода на 1 кг их веса, показали нормальный прирост веса в сравнении с контрольными образцами и жили больше одного года без каких-либо неблагоприятных клинических эффектов. Полный анализ крови и метаболические исследования после 40 дней внутривенного введения наночастиц с иодом продемонстрировали результаты в пределах нормы и отсутствие токсичности наночастиц.

Для лечения иодной недостаточности в исследовании [96] предлагают погружать помидоры в раствор хитозан-иод. В результате образуется съедобная хитозан-иодная плёнка с суточной нормой потребления иода (около 0,4 мкг иода на вес 1 помидора). Пленка увеличивает срок хранения помидоров и помогает их дольше держать свежими.

Перспективным является направление поиска новых лекарственных форм для целенаправленной доставки иода в труднодоступные места организма и увеличение времени его действия. Так, в работе [97] показано, что повидон-иод может применяться для лечения конъюнктивальных инфекций. Другое исследование показало эффективность повидон-иода при уничтожении патогенных вагинальных бактерий [98].

В некоторых случаях иод-ПВП находит ограниченное применение из-за короткого времени пребывания на слизистой оболочке, что не полностью способствует борьбе с
микробными инфекциями. Сам по себе ПВП как неионный полимер не обладает высокой адгезивной способностью к слизистым оболочкам [99]. Поэтому в работе [89] для улучшения мукоацеджевых свойств ПВП и иод-ПВП были синтезированы тиолированные частицы радикальной сополимеризацией N-винилпирролидона с 2-(2-акрилоилтилдисульфанил)-никотиновой кислотой. Полученные тиолированные частицы показали хорошую способность к образованию гелей со свиным желудочным мукином в условиях увеличения вязкости. Показано, что тиолированные комплексы ПВП-иода обладали большей способностью к удержанию на слизистых оболочках, поэтому они могут быть рекомендованы для применения в качестве дезинфицирующего средства для защиты от микробных инфекций. Для изучения степени высвобождения иода из полимер-иодных комплексов (ПВП-иод и комплексы с вариантами тиолированного ПВП: ПВП-1, ПВП-2 и ПВП-3) были проведены эксперименты на слизистой оболочке кишечника свиньи в течение 3 ч при рН 6,8 в присутствии фосфатного буферного раствора. Результаты показали более длительное высвобождение иода из комплексов с тиолированным ПВП (50-70 %) по сравнению с комплексом ПВП-иод (более 90 %) (рис.14).

Для улучшения мукоацеджевых свойств и применения иода для обеззараживания слизистых участков организма в работе [100] была проведена модификация окисленного α-циклоекстрина цистенин-2-меркаптоникотиновой кислотой. Тиолированный α-циклоекстрин обладает хорошими мукоацеджевыми свойствами из-за образования дисульфидных связей с богатыми цистеином субдоменами гликопротеинов мукина [99, 101] и уникальной способностью к образованию комплексов включения с гидрофобными лекарствами [102]. Кроме того α-циклоекстрин хорошо растворим в воде и образует более стабильные комплексы с иодом, чем другие циклоекстринны [103]. В результате работы высвобождение иода in vitro составило 15% в час, а мукоацеджевые свойства увеличились в 38 раз.

В патенте [104] описано получение гидрогеля на основе подкисленного уксусной кислотой раствора хитозана и раствора иода в присутствии глицерина по типу комплексов с переносом заряда. Данные комплексы хитозана и иода обладали высокой вязкостью и образовывали гель, который исчезал при встряхивании. Цвет комплекса изменялся от темно-коричневого до оранжевого и желтого цветов в зависимости от концентрации исходных веществ. При использовании данных комплексов для лечения ран, заживление происходило довольно быстро, и кожа не окрашивалась. Гель, состоящий из наночастиц хитозана, повидон-иода и альгината, был получен также методом ионного гелеобразования.
Наночастицы хитозана с ванкомицином были получены ионным гелеобразованием в присутствии триполифосфата пентанатрия по методике, описанной в работе [106]. Затем раствор альгината, содержащий повидон-иод, наночастицы хитозана с ванкомицином сшивали в присутствии хлорида кальция для получения геля. Антибактериальные свойства, гемосовместимость и пролонгированное высвобождение ванкомицина и повидон-иода в течение 10-15 суток открывают возможности для применения полученного геля при лечении осложнений протезной пластики. Изучение гемосовместимости гелей альгината с повидон-иодом и наночастицами хитозана проводили инкубированием с эритроцитами в физиологическом растворе. Было обнаружено, что процент гемолиза для всех составов составляет 5 %, что указывает на хорошую гемосовместимость. Некоторое незначительное количество гемолиза связано с положительным значением ζ-потенциала наночастиц хитозана. Также результаты по изучению изменения морфологии эритроцитов в контакте с гелями различным составом показали отсутствие изменений, за исключением нескольких эритроцитов с разрывом мембраны. Исследование жизнеспособности клеток показало 80 % через 24, 48 и 72 ч в присутствии экстрактов, полученных из гелей альгината с повидон-иодом и наночастицами хитозана. Морфология клеток оставалась без изменений. Все это свидетельствует о безопасном применении разных составов гелей для клинических и доклинических исследований.

Новая композиционная повязка, полученная смешением растворов альгината натрия и повидон-иода, показала хорошие терапевтические результаты в заживлении ран [107]. Обработка клеток фибропласта крайней плоти человека в течение 24 ч экстрактом альгинат натрия - повидон-иод не повлияла на их жизнеспособность: 93,2 % клеток остались живыми (рис. 15). Все процедуры проводились in vitro согласно стандартам ISO 10993. Полное заживление раны было достигнуто в течение 12 дней. Установлено, что повязки на основе альгината натрия и повидон-иода являются полностью биосовместимыми.

Рисунок 15. Жизнеспособность клеток фибропласта крайней плоти человека после обработки экстрактом альгинат натрия - повидон-иод в течение 24 ч по сравнению с контрольным образцом (100%). Перепечатано из [107] с разрешения издательства Elsevier.

Mingze Sai и другие [108] получили гель на основе привитого сополимера хитозан-ПВП с иодом путем смешения раствора комплекса ПВП-хитозан-иод с желатином. Привитой сополимер ПВП-хитозан был приготовлен прививкой хитозана к ПВП в местах защиты N2 с диметил 2,2'-изобис (2-метилпропионатом) в качестве инициатора. Комплекс данного полимера был получен добавлением небольшого количества раствора иода в
этаноле. Свойства данного комплекса были изучены методами УФ-спектроскопии, ИК-спектроскопии и термогравиметрического анализа. Результаты эксперимента по высвобождению йода соответствуют кинетической модели высвобождения - законам диффузии Фика: в начале наблюдается взрывной эффект, ускоренное выделение лекарственного вещества при начале его высвобождения, затем процесс оставался постоянным в течение некоторого времени, демонстрируя замедленное высвобождение йода. Диаметры зоны подавления Staphylococcus aureus и Escherichia coli гелем хитозан-ПВП-йод-желатин были более 16 мм, что демонстрирует значительную антибактериальную активность. Вышеуказанные преимущества этой системы позволяют применить ее в качестве новых биомедицинских материалов для стерилизации. В другом исследовании [109] была получена мембрана, состоящая из смеси желатина, поливинилпирролидона и сополимера гидроксипропил бигуанид хлорида и хитозана. Мембрана показала хорошие результаты по сорбции йода и длительно высвобождала его при уменьшении температуры.

Иодофоры широко применяются не только в медицине, но и в других сферах. Пленки комплексов поливиниловый спирт-йод широко используются в качестве пластины для жидкокристаллических дисплеев благодаря своим превосходным поляризационным свойствам [110, 111]. В промышленности такие пластины получают путем погружения растянутой пленки поливинилового спирта в водный раствор KI-I₂.

Основная проблема современных производств – это загрязнение промышленными отходами, которые представляют опасность и серьезную угрозу жизнедеятельности окружающей среды. Йод является одним из продуктов ядерной энергетики, 2-3 г молекулярного йода являются смертельной дозой для человека, а его растворы раздражающие действуют на кожные покровы и слизистые оболочки [1]. Поэтому разработка эффективной стратегии по захвату и удалению йода из промышленных сточных вод имеет большое государственное значение. Для этой цели в исследовании [112] был получен сополимер на основе N-винилпирролидона и винилацетата радикальной одностадийной сополимеризацией с регулированием состава исходной мономерной смеси. Сополимер N-винилпирролидона и винилацетата (N-ВП-ВА) использовался в качестве адсорбента йода из различных растворителей, таких как вода, этанол, циклогексан и петролейный эфир. Йод из сополимера легко высвобождался в присутствии крахмала и бактерий. На рисунке 16 показана зависимость антибактериальной активности от концентрации комплекса сополимера (N-ВП-ВА) с йодом против E. coli и S. aureus. Чистый сополимер (N-ВП-ВА) не способен убивать бактерии в области концентраций 0,01-0,5 мг/л, тогда как степень стерилизации для комплекса сополимера (N-ВП-ВА) с йодом достигла 24 % против E. coli и 32 % против S. aureus при концентрации образца, равной 0,01 мг/л. Степень стерилизации составило 100 % против E. coli и S. aureus при концентрации выше 0,05 мг/л. Это открывает новые перспективы для безопасного удаления йода и антибактериального применения. Данный сополимер в комплексе с йодом может найти широкое применение в восстановлении окружающей среды и общественного здравоохранения. Микросферы сшитого хитозана [113] и хитозана с хлоридом серебра [114] также показали высокую эффективность по удалению радиоактивного йода из сточных вод. После нескольких регенераций микросферы не теряли высокой адсорбционной способности.
Рисунок 16. Антибактериальная активность поли-(N-ВП-ВА)-I и поли-(N-ВП-ВА) против E. coli и S. aureus. Перепечатано из [112] с разрешения издательства Elsevier.

Таким образом иод-полимерные комплексы находят широкое применение в медицине, фармацевтике, и охране окружающей среды как очень эффективные антисептики и антимикробные средства. Моделирование структуры полимерного носителя открывает новые возможности для применения иодофиров в качестве обеззараживающих, противомикробных средств для лечения конъюнктивальных, вагинальных и поражений слизистой оболочки полости рта.

Список литературы

[1] Garg, S., Jambu, L., Vermani, K., Drug Devol. Ind. Pharm., 2007, vol. 33, no. 12, p.1340.
[2] Klimaviciute, R., Bendoraitiene, J., Rutkaite, R., Siugzdaite, J., Zemaitaitis, A., Int. J. Biol. Macromol., 2012, vol. 51, no. 5, p. 800.
[3] Boddie, R., Nickerson, S.C., J. Dairy Sci., vol.80, no. 8, p. 1846.
[4] Kaiho, T., Iodine chemistry and applications, New Jersey: John Wiley&Sons, 2014.
[5] Schreier, H., Erdos, G., Reimer, K., König, B., König, W., Fleischer, W., Dermatology, 1997, vol.195, no. 2, p.111.
[6] Blatun, L.A., Acta Biomed. Sci., 2005, vol.41, no. 3, p. 2.
[7] Courtois, B., Ann. chim., 1813, vol.88, p. 304.
[8] Gay-Lussac, J., Ann. Chim., 1813, vol.88, p. 311.
[9] Glinka, N.L., Obshaya khimiya (General Chemistry), Moscow: CknoRus, 2014.
[10] Cooper, R.A., Int. Wound J., 2007, vol. 4, no. 2, p. 124.
[11] Bendoraitiene, J., Mazoniene, E., Zemaitaitiene, R.J., Zemaitaitis, A., J. Appl. Polym. Sci., 2006, vol. 100, no. 4, p. 2710.
[12] Block, S.S., Disinfection, Sterilization, and Preservation, Philadelphia, PA : Lippincott Williams & Wilkins, 2001.
[13] Mokhnach, V.O., Iod i problemy zhizni (Teoriya biologicheskoj aktivnosti ioda i problemy prakticheskogo primeneniya soedinenij ioda s vysokopolimerami) (Iodine and the problems of life (The theory of the biological activity of iodine and the problems of the practical use of iodine compounds with high polymers)), Leningrad: Nauka, 1974.
[14] Awtrey, A.D., Connick, R.E., J. Am. Chem. Soc., 1951, vol.73, no. 4, p. 1842.
[15] Gardner, J.M., Abrahamsson, M., Farnum, B.H., Meyer, G.J., J. Am. Chem. Soc., 2009, vol. 131, no. 44, p. 16206.
[16] Schulz, R.C., Fleischer, D., Henglein, A., Bossler, H.M., Trisnadi, J., Tanaka, H., Macromolecular Microsymposia–XII and XIII, Prague, 1973, p. 227.
[17] Moulay, S., J. Polym. Eng., 2013, vol. 33, no. 5, p. 389.
[18] Moskva, V.V., SOZH, 1996, vol. 12, p. 33.
[19] Teitelbaum, R.C., Ruby, S.L., Marks, T.J., J. Am. Chem. Soc., 1978, vol. 100, no. 10, p. 3215.
[54] Miyajima, N., *Thermochim. Acta*, 2010, vol. 498, no. 1, p. 33.

[55] Vlasova, O.A., Buzinova, D.A., Fomina, V.I., Mezhvuz. sbornik nauch. trudov VIII Vseros. Konf. Molodyh uchenyh s mezhdunarodnym uchastiem, Saratov, 2011, p. 203.

[56] Tang, Y., Xie, L., Sai, M., Xu, N., Ding, D., *Mater. Sci. Eng. C.*, 2015, vol. 48, p. 1.

[57] Tashiro, K., Gakhutishvili, M., *Polymer*, 2019, vol. 171, p. 140.

[58] Psimadas, D., Georgoulias, P., Valotassiou, V., Loudos, G., *J. Pharm. Sci.*, 2012, vol. 101, no. 7, p. 2271.

[59] Wang, Y., Easteal, A. J., *J. Appl. Polym. Sci.*, 1999, vol. 71, no. 8, p. 1303.

[60] Mizrahi, B., Domb, A. J., *J. Pharm. Sci.*, 2007, vol. 96, no. 11, p. 3144.

[61] Fujii, N., Takashima, I., *Dermatology*, 1997, vol. 2, no. 195, p. 29.

[62] Konig, B., Reimer, K., Fleischer, W., Konig, W., *Dermatology*, 1997, vol. 2, no. 195, p. 42.

[63] Vermeulen, H., Westerbos, S.J., Ubbink, D.T., *J. Hosp. Infect.*, 2010, vol. 76, no. 3, p. 191.

[64] Al-Kaisy A.A., Salih Sahib A., *Ann. Burns Fire Disasters*, 2005, vol. 18, no. 1, p. 19.

[65] Lafferty, B., Wood, L., Davis, P., *Wounds UK*, 2011, vol. 7, no. 1, p. 14.

[66] Al-Kaisy A.A., Salih Sahib A., *Ann. Burns Fire Disasters*, 2005, vol. 18, no. 1, p. 19.

[67] Landsman, T.L., Touchet, T., Hasan, S.M., Smith, C., Russel, B., Rivera, J., Maitland, D.J., Cosgriff-Hermandez, E., *Acta Biomater.*, 2017, vol. 47, p. 91.

[68] Lundin, J.G., McGann, C.L., Weise, N.K., Estrella, L.A., Ballow, R.B., Streifel, B.C., Wynne, J.H., *React. Funct. Polym.*, 2019, vol. 135, no. 9, p. 44.

[69] Chen, Y., Qui, H., Dong, M., Cheng, B., Jin, Y., Tong, Z., Li, P., Li, S., Yang, Z., *Carbohydr. Polym.*, 2019, vol. 206, p. 435.

[70] Jalil, A., Matuszczak, B., Nguyen Le, N.-M., Mahmood, A., Laffleur, F., Bernkop-Schnürch, A., *Mol. Pharm.*, 2018, vol. 15, no. 8, p. 3527.

[71] Chen, Y., Yang, Y., Liao, Q., Yang, W., Ma, W., Zhao, J., Zheng, X., Yang, Y., Chen, R., *Mater. Sci. Eng. C.*, 2016, vol. 67, p. 247.
[91] Heiner, J. D., Hile, D. C., Demons, S.T., Wedmore, I.S., *Wilderness Environ. Med.*, 2010, vol. 21, no. 4, p. 332.

[92] Khoerunnisa, F., Rahmah, W., Ooi, B.S., Dwihwemiat, E., Nashrah, N., Fatimah, S., Gun, Ko Y., Ng, E. *J. Environ. Chem. Eng.*, 2020, vol. 8, no. 2, p. 103686.

[93] Hallouard, F., Anton, N., Choquet, P., Constantinesco, A., Vandamme, T. *Biomaterials*, 2010, vol.31, no. 24, p. 6249.

[94] Kolontaeva, O.A, Khokhlova, R.A., Markina, N.E., Markin, A.V., Burmistrova, N.A., *Saratov Fall Meet. 2015 Third Int. Symp. Opt. Biophotonics Seventh Finnish-Russian Photonics Laser Symp.*, Saratov, 2016, p. 99171.

[95] Hainfeld, J.F., Ridwan, S.M, Stanishevskiy, Y., Smilowitz, N.R., Davis, J., Smilowitz, H.M., *Sci. Rep.*, 2018, vol. 8, no. 1, p. 2.

[96] Limchoowong, N., Sricharoen, P., Techawongstien, S., Chanthai, S., *Food Chem.*, 2016, vol. 200, p. 223.

[97] Koerner, J.C., George, M.J., Meyer, D.R., Rosco, M.G., Habib, M.M., *Survol. Ophthalmol.*, 2018, vol. 63, no. 6, p. 862.

[98] Zakut, H., Lotan, M., Bracha, Y. *Clin. Exp. Obstet. Gynecol.*, 1987, vol. 14, no. 1, p. 1.

[99] Khutoryanskii, V.V., *Macromol. Biosci.*, 2011, vol. 11, no. 6, p. 748.

[100] Asim, M.H., Moghadam, A., Ijaz, M., Mahmood, A., Gotz, R.X., Matuszczak, B., Bernkop-Schnurch, A., *J. Colloid Interface Sci.*, 2018, vol. 531, p. 261.

[101] Moghadam, A., Ijaz, M., Asim, M.H., Mahmood, A., Jelkmann, M., Matuszczak, B., Bernkop-Schnurch, A., *Int. J. Nanomedicine*, 2018, vol. 13, p. 4003.

[102] Li, J., Loh, X.J., *Advol. Drug Delivol. Revol.*, 2008, vol. 60, no. 9, p. 1000.

[103] Munaf, E., Takeuchi, T., Miwa, T., *Anal. Chim. Acta*, 2000, vol. 418, no. 2, p. 175.

[104] US Patent 6521243B2.

[105] Pawar, V., Topkar, H., Srivastava, R., *Int. J. Biol. Macromol.*, 2018, vol. 115, p. 1131.

[106] Qi, L., Xu, Z., Jiang, X., Hu, C., Zou, X., *Carbohydr. Res.*, 2004, vol. 339, no. 16, p. 2693.

[107] Summa, M., Russo, D., Penna, I., Margaroli, N., Bayer, I.S., Bandiera, T., Athanassiou, A., Bertorelli, R., *Eur. J. Pharm. Biopharm.*, 2018, vol. 122, p. 17.

[108] Sai, M., Guo, R., Chen, L., Xu, N., Tang, Y., Ding, D., *J. Appl. Polym. Sci.*, 2015, vol. 132, no. 14, p. 41797.

[109] Xu, N., Ding, D., *R. Soc. Chem. Advol.*, 2015, vol. 5, no. 97, p. 79820.

[110] Saik, Y., *Nippon Gomu Kyokaishi*, 2011, vol. 84, no. 8, p. 237.

[111] Land, E.H., *J. Opt. Soc. Am.*, 1951, vol. 41, no. 12, p. 957.

[112] Borjihan, Q., Yang, J., Zhang, Z., Zi, X., Huang, M., Che, Y., Dong, A., *J. Hazard. Mater.*, 2020, vol. 204, p. 121305.

[113] Zhang, W., Li, Q., Mao, Q., He, G., *Carbohydr. Polym.*, 2019, vol. 209, no. 9, p. 215.

[114] Li Q., Mao, Q., Li, M., Zhang, S., He, G., Zhang, W., *Carbohydr. Polym.*, 2020, vol. 234, no. 1, p. 115926.