1. Introduction

Zahorski [14] and Choquet [1] (see also Tolstov [12]) proved a result characterizing curves \((f : [a, b] \to \mathbb{R}^n)\) that allow a differentiable parametrization (resp. a differentiable parametrization with almost everywhere non-zero derivative) as those curves having the \(V^*\) property (resp. which are also not constant on any interval). Fleissner and Foran [7] reproved this later (for real functions only and not considering the case of a.e. nonzero derivatives) using a different result of Tolstov. The definition of \(V^*\) is classical; see e.g. [11]. The mentioned results were generalized by L. Zajíček and the author [4] to curves with values in Banach spaces (and also metric spaces using the metric derivative instead of the usual one). Laczkovich, Preiss [9], and Lebedev [10] studied (among other things) the case of \(C^n\)-parametrizations of real-valued functions \((n \geq 2)\). For a nice survey of differentiability of real-valued functions via homeomorphisms, see [8]. L. Zajíček and the author [5] characterized the situation when a Banach space-valued curve admits a \(C^2\)-parametrization (for Banach spaces with a \(C^1\) norm) or a parametrization with finite convexity (for arbitrary Banach spaces).

Let \(X\) be a normed linear space, and \(f : [a, b] \to X\). We say that \(f\) is Lebesgue equivalent to \(g : [a, b] \to X\) provided there exists a homeomorphism \(h\) of \([a, b]\) onto itself such that \(g = f \circ h\). In the present note, we prove the following two theorems characterizing the situation when a vector-valued path allows a twice differentiable parametrization (resp. such a parametrization with almost everywhere non-zero derivative):

Theorem 1. Let \(X\) be a normed linear space, and \(f : [a, b] \to X\) be continuous. Then the following are equivalent.

(i) \(f\) is Lebesgue equivalent to a twice differentiable function \(g\).

(ii) \(f\) is Lebesgue equivalent to a differentiable function \(g\) whose derivative is pointwise Lipschitz.

(iii) \(f\) is \(V^*\).

Theorem 2. Let \(X\) be a normed linear space, and \(f : [a, b] \to X\) be continuous. Then the following are equivalent.

(i) \(f\) is Lebesgue equivalent to a twice differentiable function \(g\) with \(g'(x) \neq 0\) for a.e. \(x \in [a, b]\).

(ii) \(f\) is Lebesgue equivalent to a differentiable function \(g\) whose derivative is a pointwise Lipschitz function which is non-zero a.e. in \([a, b]\).

(iii) \(f\) is \(V^*\), and \(f\) is not constant in any interval.

As a matter of fact, a definition of a new notion of a \(V^*\) function (see Definition 5 below) involving a certain fractional variation, that was inspired by the results of Laczkovich, Preiss, and Lebedev, is necessary to achieve our goal.

The case of \(n\)-times differentiable functions for \(n \geq 3\) is more complicated even in the case \(X = \mathbb{R}\), and this case is treated in a separate paper [3] (where we also prove a version of Zahorski lemma for \(n\)-times differentiable homeomorphisms). The difficulty in the case of higher order derivatives of paths stems from the fact that although for a curve parametrized by the arc-length, the first derivative (provided it exists) is equal to the tangent (and thus has norm 1), the magnitude of higher-order derivatives is not thus simply bounded. The proof in the real-valued case of \(n \geq 3\) uses some auxiliary variations and proceeds in a rather indirect way. This is
a similar phenomenon as the case of C^1 parametrizations being different from the case of C^n ($n > 1$) parametrizations; see e.g. [9, p. 405] (since, in some sense, the C^1 case corresponds to twice-differentiable function case).

2. Preliminaries

By λ we will denote the Lebesgue measure on \mathbb{R}. By X, we will always denote a normed linear space, and by $B(x, r)$ an open ball with center x and radius $r > 0$. If X is separable, then it is well known that X admits an equivalent Gâteaux differentiable norm (see e.g. [2]). For $f : [a, b] \to X$ we define the derivative f' as usual (at the endpoints, we take the corresponding unilateral derivatives). Similarly, the second derivative $f''(x)$ of f at x is defined as $f''(x) := (f')(x)$. Note that the property of “being twice differentiable” is preserved under equivalent renormings of X.

We say that f is pointwise-Lipschitz at $x \in [a, b]$ provided $\lim_{t \to 0} \frac{\|f(x+t) - f(x)\|}{|t|}$ is finite. We say that f is pointwise-Lipschitz provided f is pointwise-Lipschitz at each $x \in [a, b]$.

Let $f : [a, b] \to X$ be continuous, and assume that X has a Gâteaux differentiable norm (there is no loss of generality in this assumption since the continuity of f implies that $\text{span}(f([a, b]))$ is separable). By K_f we will denote the set of points $x \in [a, b]$ such that there is no open interval U containing x such that $f|_U$ is either constant or admits an arc-length parametrization which is twice differentiable.

In the case of $X = \mathbb{R}$, the set K_f coincides with the set of points of varying monotonicity of f (see e.g. [9]). Obviously, K_f is closed and $\{a, b\} \subset K_f$. We easily see that K_f does not depend on the choice of the (equivalent) Gâteaux smooth norm on X. It is easy to see that if $f : [a, b] \to X$ is twice differentiable (and X has a Gâteaux differentiable norm), then $f'(x) = 0$ for each $x \in K_f$ by the chain rule for derivatives and by the continuity of f'.

Let $K \subset [a, b]$ be a closed set with $a, b \in K$. We say that an interval $(c, d) \subset [a, b]$ is contiguous to K in $[a, b]$ provided $c, d \in K$ and $(c, d) \cap K = \emptyset$ (i.e. it is a maximal open component of $[a, b] \setminus K$ in $[a, b]$).

By $V(f, [a, x])$ we denote the (usual) variation of f on $[a, x]$. We will sometimes use the notation $v_f(x) := V(f, [a, x])$ for $x \in [a, b]$. We say that $\{y_i\}_{i=0}^N$ is a partition of $[a, b]$ provided $a = y_0 < y_1 < \cdots < y_N = b$.

We shall need the following lemma. For a proof, see e.g. [4, Lemma 2.7].

Lemma 3. Let $\{a, b\} \subset B \subset [a, b]$ be closed, and $f : [a, b] \to \mathbb{R}$ be continuous. If $\lambda(f(B)) = 0$, then we have $V(f, [a, b]) = \sum_{i \in \mathcal{I}} V(f_{|I_i}, [c_i, d_i])$, where $I_i = (c_i, d_i)$, $i \in \mathcal{I} \subset \mathbb{N}$ are all intervals contiguous to B in $[a, b]$.

As in [9], for $g : [a, b] \to \mathbb{R}$, $\alpha \in (0, 1)$, and $K \subset [a, b]$, we will define $V_\alpha(g, K)$ as a supremum of sums

$$\sum_{i=1}^m |g(b_i) - g(a_i)|^\alpha,$$

where the supremum is taken over all collections $\{[a_i, b_i]\}_{i=1}^m$ of non-overlapping intervals in $[a, b]$ with $a_i, b_i \in K$ for $i = 1, \ldots, m$.

We will need the following auxiliary lemma:

Lemma 4. Let $\alpha \in (0, 1)$, $A \subset \mathbb{R}$ be bounded, $f : A \to \mathbb{R}$ be uniformly continuous with $V_\alpha(f, A) < \infty$. Then $\lambda(f(A)) = 0$.
Proof. By [9, Theorem 2.10] it follows that $SV_\alpha(f, A) = 0$ (see [9] for the definition of SV_α). It is easy to see that $SV_\alpha(f, A) = 0$ implies $SV_1(f, A) = 0$, and thus [9, Theorem 2.9] shows that $\lambda(f(A)) = 0$. \hfill \square

We will need the following notion which plays the rôle of VBG_* for the second order differentiability.

Definition 5. We say that a continuous $f : [a, b] \to X$ is VBG_χ provided f has bounded variation, and there exist closed sets $A_m \subset [a, b]$ ($m \in M \subset \mathbb{N}$) such that $K_f = \bigcup_{m \in M} A_m$, and $V_2(f, A_m) < \infty$ for each $m \in M$.

It is easy to see that if f is VBG_χ and g is Lebesgue equivalent to f, then g is VBG_χ. Also, it is easily seen that the class of VBG_χ functions does not depend on the equivalent norm of X.

The following example shows that we cannot equivalently replace v_f by f in Definition 5 (even in the case $X = \mathbb{R}$).

Example 6. There exists a continuous function $f : [0, 1] \to \mathbb{R}$ with bounded variation such that f is not VBG_χ, but there exist closed $A_m \subset K_f$ such that $K_f = \bigcup A_m$ and $V_2(f, A_m) < \infty$.

Proof. Let $C \subset [0, 1]$ be the standard middle-thirds Cantor set. By \mathcal{I}_n we will denote the collection of all intervals contiguous to C such that $\lambda(I) < 3^{-n}$ for $I \in \mathcal{I}_n$, and by K^n_i, where $i = 1, \ldots, 2^n$, $n \in \mathbb{N}$, denote the closed intervals at level $n + 1$ of the construction. It is easy to see that there exist open intervals $I_{nik} \subset [0, 1]$ and numbers $a_{nik} > 0$, where $n, k \in \mathbb{N}$ and $i = 1, \ldots, 2^n$, such that

(i) $I_{nik} \cap I_{n'i'k'} = \emptyset$ whenever $(n, i, k) \neq (n', i', k')$,

(ii) $\sum_{n,k\in\mathbb{N}} \sum_{i=1}^{2^n} a_{nik} < \infty$,

(iii) $\sum_{k\in\mathbb{N}} \sqrt{a_{nik}} = \infty$ whenever $n \in \mathbb{N}$ and $i = 1, \ldots, 2^n$,

(iv) $\text{card} \{ (n, i, k) : I_{nik} \subset I \} < \infty$ for all $m \in \mathbb{N}$ and $I \in \mathcal{I}_m$,

(v) if $k \neq k'$, then there exists $x \in C$ such that either $I_{nik} < x < I_{nik'}$ or $I_{nik'} < x < I_{nik}$,

(vi) $I_{nik} \subset (K^n_i \cap \bigcup \mathcal{I}_n)$ for all $i = 1, \ldots, 2^n$, $n, k \in \mathbb{N}$.

Let $I = (a, b) \subset [0, 1]$ be an open interval. We denote $l(I) = a$, $r(I) = b$, and $c(I) = \frac{a+b}{2}$. We will define $f(x) := 0$ whenever $x \not\in [0, 1] \setminus (\bigcup_{n,k\in\mathbb{N}} \bigcup_{i=1}^{2^n} I_{nik})$. For $I \in \mathcal{I}_n$, we will define $f(I) := a_{nik}$, and f to be continuous and affine on $[l(I_{nik}), r(I_{nik})]$ and $[c(I_{nik}), r(I_{nik})]$.

Then f is a continuous function and by (ii) it is easy to see that $V(f, [0, 1]) < \infty$. Index the countable family of closed sets

$$\{C\} \cup \{l(I_{nik}), c(I_{nik}), r(I_{nik})\} : n, k \in \mathbb{N}, i = 1, \ldots, 2^n\}
$$

as $(A_m)_{m \in \mathbb{N}}$. It is easy to see that $K_f = \bigcup_{m \in \mathbb{N}} A_m$ and $V_2(f, A_m) < \infty$ for all $m \in \mathbb{N}$ (since $f|_C \equiv 0$, and all those A_m that satisfy $A_m \neq C$ are finite).

Now we will show that f is not VBG_χ. Suppose that \mathcal{A}_l satisfy $V_2(\mathcal{A}_l, A_m) < \infty$, and $K_f = \bigcup_{m \in \mathbb{N}} A_m$. Since $C = \bigcup (C \cap A_m)$, by the Baire category theorem, there exists m_0 and an open interval U such that $C \cap U \subset C \cap \mathcal{A}_{m_0} \cap U$ and $C \cap U \neq \emptyset$. Thus, there exists $n \in \mathbb{N}$ and $i \in \{1, \ldots, 2^n\}$ such that $K^n_i \subset U$, and conditions (v),(vi) imply that

$$V_2(f, \mathcal{A}_{m_0}) \geq \sum_{I \in \mathcal{I}_n} (V(v_f, I))^* \geq \sum_k \sqrt{a_{nik}} = \infty,$$
which contradicts the choice of the sets \tilde{A}_m. Thus, f is not $VBG_\frac{3}{2}$.

3. LEMMATA

The following lemma is a sufficient condition for a function to be $VBG_\frac{3}{2}$.

Lemma 7. Let $f : [a, b] \to X$ have a pointwise-Lipschitz derivative. Then f is $VBG_\frac{3}{2}$.

Proof. Because f' is continuous on $[a, b]$ (and thus bounded), we see that f is Lipschitz (and thus has finite variation). For $j \in \mathbb{N}$ define

$$D_j = \{ x \in [a, b] : \| f'(x) - f'(z) \| \leq j|x - z| \text{ for all } z \in B(x, 1/j) \}.$$

It is easy to see that $[a, b] = \bigcup_j D_j$, and D_j is closed. Let $D_j = \bigcup_{k \in \mathbb{N}} D_{jk}$ be such that each D_{jk} is closed, and $\operatorname{diam}(D_{jk}) < 1/j$. We order the doubly-indexed sequence $(K_f \cap D_{jk})_{j,k}$ into a single sequence (while omitting empty sets); we will call the new sequence A_m ($m \in \mathcal{M} \subset \mathbb{N}$).

It remains to show that $V_\frac{3}{2}(v_f, A_m) < \infty$, where $m \in \mathcal{M}$. Let $m \in \mathcal{M}$, and fix $j, k \in \mathbb{N}$ such that $A_m = D_{jk} \cap K_f$. Let $x < y$ be such that $x, y \in A_m$. Note that

$$|v_f(y) - v_f(x)| \leq \int_x^y \| f'(s) \| \, ds \leq j(y - x)^2. \tag{3.1}$$

Applying (3.1) to $[x, y] = [a_i, b_i]$, $i \in \{1, \ldots, N\}$, where $[a_i, b_i]$ are non-overlapping intervals with $a_i, b_i \in A_m$, we obtain

$$\sum_{i=1}^N |v_f(b_i) - v_f(a_i)|^{\frac{3}{2}} \leq \sqrt{j} \sum_{i=1}^N (b_i - a_i) \leq \sqrt{j}(b - a). \tag{3.2}$$

By taking a supremum over all sequences $\{[a_i, b_i]\}_{i=1}^N$ as above, we obtain that $V_\frac{3}{2}(v_f, A_m) < \infty$. \qed

Lemma 8. Let $\zeta : [\sigma, \tau] \to \mathbb{R}$ be a continuous strictly increasing Lipschitz function with $\zeta(0) = 0$, and $\lambda(F) = 0$ for some closed $F \subset [\sigma, \tau]$ with $\sigma, \tau \in F$. Then $\lambda(\sqrt{\zeta}(F)) = 0$, where $\sqrt{\zeta}(x) := \sqrt{\zeta(x)}$ for $x \in [\sigma, \tau]$.

Proof. Since the function $g(x) = \sqrt{x}$ on $[0, \infty)$ has property (N) (i.e. it maps zero sets onto zero sets), the conclusion easily follows. \qed

We will need the following simple lemma.

Lemma 9. Let $h_m : [a, b] \to [c_m, d_m]$ ($m \in \mathcal{M} \subset \mathbb{N}$) be continuous increasing functions such that $\sum_{m \in \mathcal{M}} h_m(x) < \infty$ for all $x \in [a, b]$. Let $K \subset [a, b]$ be closed and such that $\lambda(h_m(K)) = 0$ for all $m \in \mathcal{M}$. Then $h : [a, b] \to [c, d]$, defined as $h(x) := \sum_{m \in \mathcal{M}} h_m(x)$, is a continuous and increasing function (for some $c, d \in \mathbb{R}$) such that $\lambda(h(K)) = 0$.

Proof. The continuity and monotonicity of h follows easily by the assumptions. Let $K \subset [a, b]$ be closed with $\lambda(h_m(K)) = 0$ for all $m \in \mathcal{M}$. Without any loss of generality, we can assume that $[a, b] \subset K$. Let (c_p, d_p) ($p \in \mathcal{P} \subset \mathbb{N}$) be all
the intervals contiguous to K in $[a,b]$. Let $\varepsilon > 0$ and find $M \in \mathbb{N}$ such that
\[\sum_{m \in M \cap (M, \infty)} (h_m(b) - h_m(a)) < \varepsilon. \]
Then
\[\lambda(h([a,b])) = \sum_{m \in M} (h_m(b) - h_m(a)) \leq \varepsilon + \sum_{m \in M \cap [1,M]} (h_m(b) - h_m(a)) = \varepsilon + \sum_{m \in M \cap [1,M]} \lambda(h_m(b) - h_m(a)) \]
where we used Lemma 3 to obtain the second equality. Since $\text{card} \left(h((c_p, d_p)) \cap h((c_q, d_q)) \right) \leq 1$ for $p, q \in \mathcal{P}$, $p \neq q$, we obtain the equality
\[\lambda(h([a,b])) = \lambda(h(\bigcup_{p \in \mathcal{P}} (c_p, d_p))). \]
Since the set $h(K) \cap h(\bigcup_{p \in \mathcal{P}} (c_p, d_p))$ is countable, we get $\lambda(h(K)) = 0$. \hfill \blackqed

Lemma 10. Suppose that X is a normed linear space with a Gâteaux smooth norm. Let $f : [a,b] \to X$ be a continuous $VBG^{1/2}$ function which is not constant on any interval. Then there exists a continuous strictly increasing $v : [a,b] \to [\alpha, \beta]$ such that $\lambda(v(K_f)) = 0$, $f \circ v^{-1}$ is twice differentiable on $[\alpha, \beta] \setminus v(K_f)$ with $(f \circ v^{-1})'(x) \neq 0$ for $x \in [\alpha, \beta] \setminus v(K_f)$, and for each $x \in K_f$ there exists $0 < C_x < \infty$ such that
\[\|f(y) - f(z)\| \leq C_x|v(z) - v(y)|(|v(z) - v(x)| + |v(y) - v(x)|), \]
whenever $y, z \in [a, b]$, and $\text{sgn}(y-x) = \text{sgn}(z-x)$.

Proof. Let A_m ($m \in \mathcal{M} \subset \mathbb{N}$) be as in the definition of $VBG^{1/2}_\mathcal{L}$ for $g = f \circ v^{-1}$. Note that g is 1-Lipschitz, and $K_g = v_f(K_f)$. Since f is $VBG^{1/2}_\mathcal{L}$, by Lemma 4 we have $\lambda(v_f(K_f)) = \lambda(v_g(K_g)) = 0$. Let $\ell = v_f(b)$. Note that because g is an arc-length parametrization of f, we have $V(g, [c, d]) = d - c$ for all $0 \leq c < d \leq \ell$ (we will use this fact frequently without necessarily repeating it). Let $(c_p, d_p) (p \in \mathcal{P} \subset \mathbb{N})$ be all the intervals contiguous to K_g in $[0, \ell]$. Since $\lambda(v_g(K_g)) = 0$, by Lemma 3 (applied to $f = v_g$) we have $V(g, [0, \ell]) = \ell = \sum_{p \in \mathcal{P}} V(g, [c_p, d_p]) = \sum_{p \in \mathcal{P}} (d_p - c_p)$, and thus $\lambda(K_g) = \ell - \lambda(\bigcup_{p \in \mathcal{P}} (c_p, d_p)) = 0$. For $m \in \mathcal{M}$ and $x \in [0, \ell]$, we define $v_m(x)$ as a supremum of the sums
\[\sum_{i=1}^N (b_i - a_i)^{1/2}, \]
where the supremum is taken over all finite sequences $\{(a_i, b_i)\}_{i=1}^N$ of non-overlapping intervals in $[0, \ell]$ such that $a_i, b_i \in (A_m \cup \{0\}) \cap [0, x]$ for $i = 1, \ldots, N$. Similarly, we define $\hat{v}_m(x)$ for $x \in [0, \ell]$ as a supremum of the sums in (3.4), where the supremum is taken over all finite sequences $\{(a_i, b_i)\}_{i=1}^N$ of non-overlapping intervals in $[0, \ell]$ such that $a_i, b_i \in (A_m \cup \{x, \ell\}) \cap [x, \ell]$ for $i = 1, \ldots, N$. Note that v_m is increasing and \hat{v}_m is decreasing on $[0, \ell]$. Note that g is affine on each $[c_p, d_p]$, and
\[v_m(x) = v_m(z) + (x - z)^{1/2} \quad \text{for} \quad x \in [c_p, d_p], \]
where $z = \max(A_m) \in \{0\} \cap [0, c_p]$, and similarly for \hat{v}_m. Thus v_m (and similarly \hat{v}_m) is twice (or even infinitely many times) differentiable on $[0, \ell] \setminus v_f(K_f)$ with $v'_m(x) > 0$ for all $x \in [0, \ell] \setminus v_f(K_f)$. Find $\varepsilon_m > 0$ such that
(a) if we define $w(x) := \sum_m \varepsilon_m \cdot (v_m(x) - \tilde{v}_m(x))$, then $w(0)$, and $w(\ell)$ are finite (and thus $w(x)$ is finite for all $x \in [0, \ell]$), and w is continuous on $[0, \ell]$ (provided all v_m, \tilde{v}_m were continuous).

(b) for all $m \in M$ and $p \in P$ with $c_p + 1/m < d_p - 1/m$ and all $x \in (c_p + 1/m, d_p - 1/m)$, we have $\varepsilon_m \max(|v_m''(x)|, -\tilde{v}'_m(x), |\tilde{v}_m''(x)|) < 2^{-m}$.

By (b), it is easy to see that $w'(x)$ exists, is positive, and $w''(x)$ exists for each $x \in [0, \ell] \setminus v_f(K_f)$. Put $v := w \circ v_f$, $\alpha = v(a)$, and $\beta = v(b)$.

To show that v is strictly increasing, it is enough to show that w is strictly increasing (as v_f is strictly increasing by the fact that f is not constant on any interval). On the other hand, to show that w is strictly increasing, it is enough to show that v_m is strictly increasing for each $m \in M$. Fix $m \in M$. Let $x, y \in [0, \ell]$ with $x < y$. If $x, y \in [c_p, d_p]$ for some $p \in P$, then (3.5) implies that $v_m(x) < v_m(y)$, and similarly if $x \in (c_p, d_p)$ or $y \in (c_p, d_p)$ for some $p \in P$ (resp. $p' \in P$). If $x, y \in K_f$, and $(x, y) \cap A_m = \emptyset$, then

$$v_m(t) = v_m(z) + \sqrt{t - z} \quad \text{for all } t \in [x, y],$$

where $z = \max((A_m \cup \{0\}) \cap [0, x])$, and thus $v_m(x) < v_m(y)$. Finally, if there exists $q \in A_m \cap (x, y)$, then $v_m(x) \leq v_m(q) < v_m(y)$, and thus $v_m(x) < v_m(y)$ also in this case. By a similar argument, \tilde{v}_m is strictly decreasing.

For a fixed $m \in M$, we will prove that whenever $r, s \in A_m \cup \{0, \ell\}$ with $r < s$, then

$$v_m(s) - v_m(r) \leq \sum_{p \in P: (c_p, d_p) \cap [r, s] \neq \emptyset} (v_m(d_p) - v_m(c_p)).$$

A symmetrical argument then shows that

$$\tilde{v}_m(r) - \tilde{v}_m(s) \leq \sum_{p \in P: (c_p, d_p) \cap [r, s] \neq \emptyset} (\tilde{v}_m(c_p) - \tilde{v}_m(d_p)).$$

To prove (3.7), fix $\varepsilon_0 > 0$, and let $\{[a_i, b_i]\}_{i=1}^N$ be non-overlapping intervals in $[r, s]$ such that $a_i, b_i \in (A_m \cup \{r, s\}) \cap [r, s]$ for $i = 1, \ldots, N$ such that $v_m(s) = v_m(r) + \sum_{i=0}^{N-1} (b_i - a_i)^2 + \varepsilon$, for some $0 \leq \varepsilon < \varepsilon_0/2$. For $i \in \{1, \ldots, N\}$ by Lemma 3 applied to $f = g$ on $[a, b] = [a_i, b_i]$ and $B = (A_m \cup \{r, s\}) \cap [a_i, b_i]$ (note that $\lambda(g(A_m)) = 0$ since $\lambda(g(K_g)) = 0$, and thus $\lambda(g(B)) = 0$), let (γ^i_1, δ^i_2) ($j \in \{1, \ldots, J^i\}$) be a finite collection of intervals contiguous to $A_m \cup \{r, s\}$ in $[a_i, b_i]$ such that $(b_i - a_i) \leq \sum_{j=1}^{J^i} (\delta^i_2 - \gamma^i_1) + \left(\frac{\varepsilon_0}{4N}\right)^2$. Then

$$v_m(s) - v_m(r) \leq \sum_{i=1}^N \sum_{j=1}^{J^i} (\delta^i_2 - \gamma^i_1)^2 + \frac{\varepsilon_0}{2} + \varepsilon.$$

By Lemma 8 applied to $\zeta(x) = x - \gamma^i_1$ on $[\sigma, \tau] = [\gamma^i_1, \delta^i_2]$, $F = K_g \cap [\gamma^i_1, \delta^i_2]$, and because $v_m(x) = v_m(\gamma^i_1) + (x - \gamma^i_1)^{\frac{1}{2}}$ for $x \in [\gamma^i_1, \delta^i_2]$, we have that $\lambda(v_m(K_g \cap [\gamma^i_1, \delta^i_2])) = 0$, and by Lemma 3 applied to $f = v_m$ on $[a, b] = [\gamma^i_1, \delta^i_2]$, and $B = K_g \cap [\gamma^i_1, \delta^i_2]$, we obtain that $(\delta^i_2 - \gamma^i_1)^{\frac{1}{2}} \leq \sum_{p \in P: (c_p, d_p) \subset [\gamma^i_1, \delta^i_2]} (v_m(d_p) - v_m(c_p))$ for each $i \in \{1, \ldots, N\}$ and $j \in \{1, \ldots, J^i\}$. Combining this inequality with (3.9), we get
$v_m(s) - v_m(r) \leq \sum_{p \in \mathcal{P}} (v_m(d_p) - v_m(c_p)) + \varepsilon_0$, and by sending $\varepsilon_0 \to 0$ it follows that (3.7) holds.

To show that v is continuous, it is enough to show that each v_m is continuous (as this implies that w is continuous by the choice of ε_m's, and the continuity of v_f follows from e.g. [6, §2.5.16]). Fix $m \in \mathcal{M}$. From (3.5), it follows that

$(*)$ v_m is continuous from the right at all points $x \in \bigcup_{p \in \mathcal{P}} (c_p, d_p)$, and continuous from the left at all points $x \in \bigcup_{p \in \mathcal{P}} (c_p, d_p)$.

If $(x, y) \cap A_m = \emptyset$ for some $y > x$ with $y \in (0, \ell] \cap K_g$, then (3.6) implies that v_m is continuous from the right at x. If $x \in A_m$ is a right-hand-side accumulation point of A_m (i.e. $A_m \cap (x, x + \delta) \neq \emptyset$ for all $\delta > 0$), then (3.7) implies that $\lim_{y \to x+} v_m(y) = v_m(x)$, since

\[
(3.10) \quad \sum_{p \in \mathcal{P}} (v_m(d_p) - v_m(c_p)) \to 0
\]
as $y \to x+$. Now the monotonicity of v_m implies that it is continuous from the right at x. Concerning the continuity from the left, by (*) it is enough to prove that v_m is continuous from the left at all points $y \in (K_g \cap (0, \ell]) \setminus \bigcup_{p \in \mathcal{P}} (c_p, d_p)$. Fix such a point y. If there is an $x \in (0, y]$ such that $(x, y) \cap A_m = \emptyset$, then (3.6) implies that v_m is continuous from the left at y. If y is a left-hand-side accumulation points of A_m, then (3.7) together with (3.10) imply that v_m is continuous from the left at y. A similar argument as above yields the continuity of \tilde{v}_m.

Now we will prove that $\lambda(v(K_f)) = 0$. Note that we already established that $\lambda(K_g) = 0$. Because $K_g = v_f(K_f)$, it is enough to prove that $\lambda(w(K_g)) = 0$. To apply Lemma 9 to h'_s, where $h_{2k} := h_k \cdot \varepsilon_k$, and $h_{2k+1} := -h_k \cdot \varepsilon_k$, we have to check that $\lambda(v_m(K_g)) = 0$ and $\lambda(\tilde{v}_m(K_g)) = 0$ for all $m \in \mathcal{M}$. Let $m \in \mathcal{M}$. Then (3.7) applied to $r = 0$, and $s = \ell$ shows that $v_m(0) \leq \sum_{p \in \mathcal{P}} (v_m(d_p) - v_m(c_p))$, and since $v_m(K_g) \cap v_m(\bigcup_{p \in \mathcal{P}} (c_p, d_p)) = \emptyset$, we get $\lambda(v_m(K_g)) = 0$. Similarly, we obtain $\lambda(\tilde{v}_m(K_g)) = 0$. Thus, Lemma 9 shows that $\lambda(w(K_g)) = 0$.

To prove that the second derivative of $f \circ v^{-1}$ exists and the first derivative is non-zero on $[\alpha, \beta] \setminus v(K_f)$, let $x \in [\alpha, \beta] \setminus v(K_f)$. Put $y = w^{-1}(x)$. There exists $p \in \mathcal{P}$ and $q \in \mathbb{N}$ such that $y \in (c_p, 1/q, d_p - 1/q)$. Since (by the chain rule and the smoothness of the norm on X) g is twice differentiable on (c_p, d_p) and $\|g'(x)\| = 1$ for all $x \in (c_p, d_p)$ (because g is the arc-length parametrization of f and g' is continuous on (c_p, d_p)), it is enough to prove that $w'(y)$ exists, is non-zero, and $w''(y)$ exists (since then $(f \circ v^{-1})'(x) = g''(y) \cdot (w^{-1})''(x)$, and $(f \circ v^{-1})''(x) = g''(y) \cdot (w^{-1})''(x)$). But by the choice of ε_m (for $m > q$), and by the properties of v_m, \tilde{v}_m for all m, it is easy to see that $w'(y)$ exists, $w'(y) > 0$, and $w''(y)$ exists; the rest is a straightforward application of the “derivative of the inverse” rule.

To prove (3.3) for f and v, by a substitution using v_f, it is easy to see that it is enough to establish a version of (3.3), where f is replaced by g, and v by w. To that end, take $m \in \mathcal{M}$ such that $x \in A_m$, and let $C_m = (\varepsilon_m)^{-2}$. Take $y, z \in [0, \ell]$. Without any loss of generality, we can assume that $x < y < z$ (if $y < x$, then a symmetric estimate using \tilde{v}_m yields the conclusion). Let $0 < \varepsilon_0 < v_m(z) - v_m(x)$. Find a sequence $\{(a_i, b_i)\}_{i=1}^N$ of non-overlapping intervals with endpoints in $(A_m \cup \{x, y\}) \cap [x, y]$ with $b_i < a_{i+1}$ for $i = 1, \ldots, N - 1$, and such that $v_m(y) = \ldots,$
Lemma 11. Let $F \subset [\alpha, \beta]$ be closed, $\{\alpha, \beta\} \subset F$, and $\lambda(F) = 0$. Then there exists an (increasing) continuously differentiable homeomorphism h of $[\alpha, \beta]$ onto itself such that $h'(x) = 0$ if and only if $x \in h^{-1}(F)$, h is twice differentiable on $[\alpha, \beta] \setminus h^{-1}(F)$, and h^{-1} is absolutely continuous.

Proof. Since we were not able to locate a reference in the literature for this exact statement, we will sketch the proof. Let (a_i, b_i) (where $i \in \mathcal{I} \subset \mathbb{N}$) be all the intervals contiguous to F in $[\alpha, \beta]$. For each $i \in \mathcal{I}$ find a C^1 function $\psi_i : (a_i, b_i) \to \mathbb{R}$ such that

- $\psi_i(x) \geq 0$ for all $x \in (a_i, b_i)$, and $\lim_{x \to a_i+} \psi_i(x) = \lim_{x \to b_i-} \psi_i(x) = \infty$,
- $m_i := \\min_{x \in (a_i, b_i)} \psi_i(x) > 0$, and if $|\mathcal{I}| = \aleph_0$, then $\lim_{i \to \infty} m_i = \infty$,
- $\sum_{i \in \mathcal{I}} \int_{a_i}^{b_i} \psi_i(t) \, dt < \infty$.

Such functions ψ_i clearly exist. Define $\psi : [\alpha, \beta] \to \mathbb{R}$ as $\psi(x) := \psi_i(x)$ for $x \in (a_i, b_i)$, and $\psi(x) = 0$ for $x \in F$. It is easy to see that ψ is integrable. Define $k(x) := \int_{a}^{x} \psi(t) \, dt$; then k is continuous and (strictly) increasing. By integrability of ψ, it follows that k has Luzin’s property (N), and thus k is absolutely continuous by the Banach-Zarecki theorem (see e.g. [13, Theorem 3]). It is easy to see that k is twice differentiable on $[\alpha, \beta] \setminus F$ with $k''(x) > 0$. We also have that $k'(x) = \infty$ for $x \in F \setminus (\bigcup_{i \in \mathcal{I}} \{a_i\})$, as for $x \in F$ and $t > 0$ small enough, we have

$$k(x + t) - k(x) \geq m_j(x + t - a_j) + \sum_{(a_i, b_i) \subset [x, x+t]} m_i(b_i - a_i) \geq m_t \cdot t,$$

where $j \in \mathcal{I}$ is such that $x + t \in (a_j, b_j)$ and for $m_t := \\min \{m_k : (a_k, b_k) \cap [x, x+t] \neq \emptyset\}$ we have $\lim_{t \to 0^+} m_t = \infty$ by the choice of ψ_i. If $x = a_i$ for some $i \in \mathcal{I}$, then we
have \(k(x+t) - k(x) \geq t \cdot \min_{y \in [x,x+t]} \psi_i(y) \), and the minimum goes to infinity with \(t \to 0^+ \) by the choice of \(\psi_i \). By continuity and symmetry, the rest follows. Now define \(\varphi(x) := \alpha + \frac{\beta - \alpha}{k(x)} k(x) \), \(h := \varphi^{-1} \), and the lemma easily follows.

\[\square \]

4. Proofs of the main results

Proof of Theorem 1. The implication (i) \(\implies \) (ii) is trivial. To prove that (ii) \(\implies \) (iii), let \(h \) be a homeomorphism such that \(g = f \circ h \) has pointwise-Lipschitz derivative. Then Lemma 7 implies that \(g \) is \(\text{VBG}_{\frac{1}{2}} \). By a remark following Definition 5, it follows that \(f \) is \(\text{VBG}_{\frac{1}{2}} \).

To prove that (iii) \(\implies \) (i), without any loss of generality, we can assume that the norm on \(X \) is Gâteaux differentiable (since \(\text{span}(f([a,b])) \) is separable and second order differentiability of a path does not depend on the equivalent norm on \(X \)). First, assume that \(f \) is not constant on any interval. Lemma 10 implies that there exists an increasing homeomorphism \(v : [a,b] \to [\alpha,\beta] \) such that \(f \circ v^{-1} \) is differentiable on \([\alpha,\beta] \), twice differentiable on \([\alpha,\beta] \setminus v(K_v) \), and \(\lambda(v(K_v)) = 0 \). Apply Lemma 11 to \(F = v(K_f) \) to obtain an (increasing) continuously differentiable homeomorphism \(h : [\alpha,\beta] \to [\alpha,\beta] \) such that \(h'(x) = 0 \) iff \(x \in h^{-1}(v(K_f)) \), and such that \(h \) is twice differentiable on \([\alpha,\beta] \setminus h^{-1}(v(K_f)) \). Let \(g = f \circ v^{-1} \circ h \). By the chain rule for derivatives, we have that \(g \) is twice differentiable on \([\alpha,\beta] \setminus h^{-1}(v(K_f)) \).

Let \(x \in h^{-1}(v(K_f)) \). Then by (3.3) there exists a \(C_x > 0 \) such that

\[
\frac{\|f \circ v^{-1}(y) - f \circ v^{-1}(z)\|}{|y-z|} \leq 2C_x |y - z|
\]

for \(z < y < h(x) \) or \(h(x) < y < z \) (and by continuity this holds also for \(y = h(x) \), and \(y, z \in [\alpha,\beta] \). It follows that \((f \circ v^{-1})'(h(x)) = 0 \). Thus \(g'(x) = 0 \) by the chain rule. It also follows from (4.1) that \((f \circ v^{-1})'(h(x)) = 0 \) is pointwise-Lipschitz at \(h(x) \) with constant \(2C_x \). This implies that

\[
\left\| \frac{g'(x+t) - g'(x)}{t} \right\| = \left\| \frac{(f \circ v^{-1})'(h(x+t))}{t} \cdot h'(x+t) \right\|
\]

\[
= \left\| \frac{(f \circ v^{-1})'(h(x+t))}{t} - (f \circ v^{-1})'(h(x)) \right\| \cdot h'(x+t)
\]

\[
\leq 2C_x \cdot \left\| \frac{h(x+t) - h(x)}{t} \right\| \cdot h'(x+t),
\]

for all \(x + t \in [\alpha,\beta] \). The continuity of \(h' \) at \(x \) shows that \(g''(x) = 0 \). It is easy to see that \(f \) is Lebesgue equivalent to \(g \) (by composing \(v^{-1} \circ h \) with an affine change of parameter).

If \(f \) is constant on some interval, then let \((c_i, d_i) \ (i \in I \subset \mathbb{N}) \) be the collection of all maximal open intervals such that \(f \) is constant on each \((c_i, d_i) \). It is easy to see that we can find a continuous function \(\tilde{f} : [a,b] \to X \) such that \(f = \tilde{f} \) on \([a,b] \setminus \bigcup_i (c_i, d_i) \), \(\tilde{f} \) is affine and non-constant on \((c_i, (c_i + d_i)/2), ((c_i + d_i)/2, d_i)\), and such that \(\tilde{f} \) is \(\text{VBG}_{\frac{1}{2}} \). By the previous paragraph, there exists a homeomorphism \(h \) of \([a,b] \) onto itself such that \(\tilde{f} \circ h \) is twice differentiable. It follows that \(f \circ h \) is twice differentiable (since \((f \circ h)'(x) = (f \circ h)''(x) = 0 \) for all \(x \in \bigcup_i (c_i, d_i) \) by the construction).
Proof of Theorem 2. The implication (i) \implies (ii) is trivial. To prove that (ii) \implies (iii), note that if $g'(x) \neq 0$ for a.e. $x \in [a, b]$, then g is not constant in any interval. This notion is clearly stable with respect to Lebesgue equivalence. The rest follows from Theorem 1.

To prove that (iii) \implies (i), we can follow the proof of the corresponding implication of Theorem 1. To see that the resulting function g has non-zero derivative almost everywhere, we note that the homeomorphism h obtained by applying the Lemma 11 has an absolutely continuous inverse. The rest follows easily. \(\square\)

The following example shows that even in the case of $X = \mathbb{R}$, $VBG_{1/2}$ functions do not coincide with continuous functions satisfying $V_{1/2}(f, K_f) < \infty$.

Example 12. There exists a continuous $VBG_{1/2}$ function $f : [0, 1] \to \mathbb{R}$ such that $V_{1/2}(f, K_f) = \infty$ (and thus f is not Lebesgue equivalent to a C^2 function by [9, Remark 3.6]).

Proof. Let $a_n \in (0, 1)$ be such that $a_n \downarrow 0$. Define $f(a_{2k}) = 0$, $f(a_{2k+1}) = 1/k^2$ for $k = 1, \ldots$, and $f(0) = f(1) = 0$. Extend f to be continuous and affine on the intervals $[a_{2k+1}, a_{2k}]$ and $[a_{2k+2}, a_{2k+1}]$. Then $K_f = \{0, 1\} \cup \{a_n : n \geq 2\}$ and it is easy to see that f is $VBG_{1/2}$ but $V_{1/2}(f, K_f) = \infty$. \(\square\)

ACKNOWLEDGMENT

The author would like to thank Professor Luděk Zajíček for a valuable conversation that led to several simplifications and improvements of the paper.

REFERENCES

[1] G. Choquet, Application des propriétés descriptives de la fonction contingente à la théorie des fonctions de variable réelle et à la géométrie différentielle des variétés cartesiennes, J. Math. Pures Appl. (9) 26 (1947), 115–226 (1948).

[2] R. Deville, G. Godefroy, V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64.

[3] J. Duda, Generalized α-variation and Lebesgue equivalence to differentiable functions, submitted.

[4] J. Duda, L. Zajíček, Curves in Banach spaces - differentiability via homeomorphisms, to appear in Rocky Mountain J. Math.

[5] J. Duda, L. Zajíček, Curves in Banach spaces which allow a C^2 parametrization or a parametrization with finite convexity, submitted.

[6] H. Federer, Geometric Measure Theory, Grundlehren der math. Wiss., vol. 153, Springer, New York, 1969.

[7] R. J. Fleissner, J. A. Foran, A note on differentiable functions, Proc. Amer. Math. Soc. 69 (1978), 56.

[8] C. Goffman, T. Nishiura, D. Waterman, Homeomorphisms in analysis, Mathematical Surveys and Monographs, vol. 54, AMS, Providence, RI, 1997.

[9] M. Laczkovich, D. Preiss, α-variation and transformation into C^n functions, Indiana Univ. Math. J. 34 (1985), 405–424.

[10] V. V. Lebedev, Homeomorphisms of a segment and smoothness of a function (Russian), Mat. Zametki 40 (1986), 364–373, 429.

[11] S. Saks, Theory of the integral, Monographie Mat., vol. 7, Hafner, New York, 1937.

[12] G. P. Tolstov, Curves allowing a differentiable parametric representation (Russian), Uspehi Matem. Nauk (N.S.) 6 (1951), 135–152.

[13] D. E. Varberg, On absolutely continuous functions, Amer. Math. Monthly 72 (1965), 831–841.

1 Preprint available from http://www.arxiv.org.
[14] Z. Zahorski, *On Jordan curves possessing a tangent at every point* (Russian), Mat. Sbornik. (N.S.) 22 (64) (1948), 3–26.

E-mail address: duda@karlin.mff.cuni.cz

Charles University, Department of Mathematical Analysis, Sokolovská 83, 186 75 Praha 8 - Karlín, Czech Republic