Amino Acid Determinants in Cyclooxygenase-2 Oxygenation of the Endocannabinoid 2-Arachidonylglycerol*

Kevin R. Kozak‡§, Jeffery J. Prusakiewicz‡§, Scott W. Rowlinson‡§, and Lawrence J. Marnett‡‡**

From the ‡Departments of Biochemistry and Chemistry, Vanderbilt-Ingram Cancer Center and Center in Molecular Toxicology and the §Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

The endocannabinoid, 2-arachidonylglycerol (2-AG), is an endogenous ligand for the central (CB1) and peripheral (CB2) cannabinoid receptors and has been shown to be efficiently and selectively oxygenated by cyclooxygenase (COX)-2. We have investigated 2-AG/COX-2 interactions through site-directed mutagenesis. An evaluation of more than 20 site-directed mutants of murine COX-2 has allowed for the development of a model of 2-AG binding within the COX-2 active site. Most strikingly, these studies have identified Arg-513 as a critical determinant in the ability of COX-2 to efficiently generate prostaglandin H₂ glycerol ester, explaining, in part, the observed isoform selectivity for this substrate. Mutational analysis of Leu-531, an amino acid located directly across from Arg-513 in the COX-2 active site, suggests that 2-AG is shifted in the active site away from this hydrophobic residue and toward Arg-513 relative to arachidonic acid. Despite this difference, aspirin-treated COX-2 oxygenates 2-AG to afford 15-hydroxyeicosatetraenoic acid glycerol ester in a reaction analogous to the C-15 oxygenation of arachidonic acid observed with acetylated COX-2. Finally, the differences in substrate binding do not alter the stereospecificity of the cyclooxygenase reaction; 2-AG-derived and arachidonic acid-derived products share identical stereochemistry.

Cyclooxygenase (COX), prostaglandin endoperoxide synthase, EC 1.14.99.1, bis-dioxygenates arachidonic acid providing prostaglandin (PG) H₂, the precursor to the prostaglandins and thromboxanes (1). Two cyclooxygenase isoforms exist and differ in their regulation and tissue distribution (2). COX-1 is a constitutive enzyme expressed in most tissues, whereas COX-2 is inducible and highly regulated by a range of cytokines, growth factors, and tumor promoters (3–7). COX-1 appears to play a role in generating PGs, which serve cellular "housekeeping" functions and account for PG and thromboxane synthesis in gastric mucosa, kidney, and platelets (8). In contrast, COX-2 activity is primarily responsible for PG biosynthesis in the central nervous system and inflammatory cells (9–11). It is now well established that the two COX isoforms play very different roles in an array of physiological and pathological processes in vivo.

The possibility that the different functions of COX enzymes may be mediated by isoform-specific products has recently been posited (12, 13). For example, the endocannabinoid anandamide has been shown to be selectively oxygenated by COX-2 generating PG ethanolamides (12). COX-2 also oxygenates the endocannabinoid 2-arachidonylglycerol (2-AG) providing glycerol esters of both PGs and, to a lesser extent, hydroxyeicosatetraenoic acids (HETEs). 2-AG oxygenation by COX-2 has been demonstrated to occur in cultured macrophages. Both human and murine COX-2 metabolize 2-AG as efficiently as arachidonic acid (13).

The current study was initiated to define the binding of 2-AG in the COX-2 active site with a focus on protein residues that account for the observed isoform selectivity of this substrate. In addition, we determined the stereochemistry of oxygenation of 2-AG to PG glycerol esters and HETE glycerol esters (HETE-G) because product stereochemistry provides additional insight into the nature of substrate binding within the enzyme active site. These studies allow the development of a model for 2-AG binding in the COX-2 active site that helps explain the isoform selectivity of 2-AG oxygenation.

EXPERIMENTAL PROCEDURES

Materials—2-AG, PGF₂α, PGF₂β, 8-iso-PGF₂α, 11β-PGF₂α, and 15(R)-PGF₂α were purchased from Cayman Chemical (Ann Arbor, MI). Arachidonic acid was obtained from NuChek Prep (Elysian, MN). Hemin was purchased from Sigma. All molecular biology enzymes were obtained from New England Biolabs (Beverly, MA). Oligonucleotides were purchased from Operon Technologies (Alameda, CA). Ram seminal vesicles were from Oxford Biomedical Research (Oxford, MI). All other chemicals were purchased from Aldrich.

Enzymology—Site-directed mutagenesis of murine COX-2 was performed as described (14). COX-2 enzymes were expressed in S/F9 insect cells by using the pVL1393 transfer vector (PharMingen, San Diego, CA) and purified by ion-exchange chromatography and gel filtration as described previously (14). Apoenzymes were reconstituted with heme prior to activity assays. COX activity was quantified as described (15). Initial reaction velocity data were obtained from the linear portion of oxygen uptake curves. The PG-G to HETE-G product ratio for enzyme oxygenation of 2-AG was obtained by incubating 10 µg of protein with 10 µg of endocannabinoid in 150 µl of Tris-HCl buffer (100 mM, pH 8) containing 500 µM phenol for 10 min at 37°C. Oxygenated products were extracted with EtOAc. The organic solvent was evaporated under a stream of argon, and the resultant residue was redissolved in 1:1 H₂O:MeCN and analyzed by LC/MS (see below). The PG-G to HETE-G ratio was calculated by dividing the area of peaks corresponding to
Fig. 1. Model of arachidonic acid bound in the COX-2 active site. A model of the predicted interactions between arachidonic acid and the active site residues of mCOX-2 is shown.

FIG. 2. Oxygenated products formed by COX-2 action on 2-AG. Selected ion mass chromatograms of oxygenated 2-AG products generated by wild-type mCOX-2 (10 μg) incubated with an equal mass of 2-AG. The products were eluted with a 15-min gradient of 20–100% acetonitrile in H2O (0.001% sodium acetate) and detected by monitoring m/z 449 (top panel) and 417 (bottom panel).

FIG. 3. Oxygenation of arachidonic acid and 2-AG by constriction site mutants of COX-2. Initial O2 uptake rates by wild-type and mutant murine COX-2 enzymes (200 nM) with arachidonic acid (100 μM) and 2-AG (200 μM) are shown and are normalized to the initial rate of O2 uptake for arachidonic acid with wild-type enzyme (mean ± S.E., n = 3).

PGE2-G and PGD2-G (m/z 449, M+Na+) by the area of peaks corresponding to 11- and 15-HETE-G (m/z 417, M+Na+) followed by normalization of the ratio of products generated by wild-type enzyme. The values represent the means ± S.E., and the indicated statistical differences are for comparisons with wild-type enzyme.

with 1 N NaOH for 1 h at 37 °C. The reaction mixture was acidified with 1 N HCl, and HETEs were extracted with EtOAc. HETE stereochemistry was established as previously described (16).

Mass Spectrometry—LC/MS was conducted as previously described (13). All displayed chromatograms are representative of at least three separate experiments.

Molecular Biology—Polymerase chain reaction (PCR) primers (5'-TGCGAACAGTCTGCGAGGTAGTGAAGCCTCACTAGCATATGTG-3' and 5'-GCTGAGACCTGAGGTGTCATCACTGAACTCAGTGATGATTAAAGGGC-3') were designed according to Ovis aries COX-2 cDNA (GenBank™ accession number U84846) and used to amplify a 300-nucleotide fragment from O. aries genomic DNA that included the codon for residue 513. Genomic DNA was isolated from ram seminal vesicle tissue with a DNeasy tissue kit (Qiagen, Valencia, CA) according to the manufacturer’s specifications. The primers encoded for the addition of HinDIII and SacI restriction sites (underlined above). These enzymes were used to subclone the PCR product into the pBS vector (Stratagene, La Jolla, CA) for amplification and subsequent sequencing.

Energy Minimization and Modeling—2-AG was built into the protein coordinates of uninhibited mCOX-2 (Protein Data Bank code 5COX). All amino acid positions were fixed except for the side chains of Arg-120, Arg-513, Glu-524, and Tyr-355. The glycerol ester moiety of 2-AG was built into the protein according to the manufacturer’s specifications. The primers encoded for the addition of HinDIII and SacI restriction sites (underlined above). These enzymes were used to subclone the PCR product into the pBS + vector (Stratagene, La Jolla, CA) for amplification and subsequent sequencing.

Enzyme—Acetylation of wild-type murine COX-2 was accomplished by treating the enzyme with 3.0 ml of ice-cold EtOAc containing triphenylphosphine/H9262. The biphasic mixture was centrifuged, and the organic solvent was removed and dried under a stream of argon. The resultant residue was saponified by treatment with 2 m M aspirin for 30 min at 37 °C followed by the addition of ice-cold EtOAc. The biphasic mixture was centrifuged, and the organic solvent was removed and dried under a stream of argon. The resultant residue was saponified by treatment with 1 N NaOH for 1 h at 37 °C. The reaction mixture was acidified with 1 N HCl, and HETEs were extracted with EtOAc. HETE stereochemistry was established as previously described (16).

Mass Spectrometry—LC/MS was conducted as previously described (13). All displayed chromatograms are representative of at least three separate experiments.

Molecular Biology—Polymerase chain reaction (PCR) primers (5'-TGCGAACAGTCTGCGAGGTAGTGAAGCCTCACTAGCATATGTG-3' and 5'-GCTGAGACCTGAGGTGTCATCACTGAACTCAGTGATGATTAAAGGGC-3') were designed according to Ovis aries COX-2 cDNA (GenBank™ accession number U84846) and used to amplify a 300-nucleotide fragment from O. aries genomic DNA that included the codon for residue 513. Genomic DNA was isolated from ram seminal vesicle tissue with a DNeasy tissue kit (Qiagen, Valencia, CA) according to the manufacturer’s specifications. The primers encoded for the addition of HinDIII and SacI restriction sites (underlined above). These enzymes were used to subclone the PCR product into the pBS + vector (Stratagene, La Jolla, CA) for amplification and subsequent sequencing.

Energy Minimization and Modeling—2-AG was built into the protein coordinates of uninhibited mCOX-2 (Protein Data Bank code 5COX). All amino acid positions were fixed except for the side chains of Arg-120, Arg-513, Glu-524, and Tyr-355. The glycerol ester moiety of 2-AG was restrained within 3.6 Å from the hydrogen bond donor/acceptor groups of Arg-513, Arg-120, and Glu-524. The Tyr-355 hydroxyl group was restrained within 3.6 Å from C-13 to ensure a productive conformation for substrate addition. The complexes were energy minimized for 1000 iterations using a conjugate gradient in the consistent valence forcefield. Molecular dynamic simulations were then run on the energy minimized assemblies for 1000 iterations at 300 K. All simulations were performed using the Discover module of Insight II 2000 with a R12000 Silicon Graphics Octane work station.

RESULTS AND DISCUSSION

Site-directed Mutagenesis and Cyclooxygenase Activity Assays—Wild-type and mutant COX-2 enzymes were expressed in insect cells and then purified by ion exchange and gel filtration. The mutations were made in enzyme residues throughout the cyclooxygenase active site with particular attention paid to

Enzyme	Ratio
Wild type	1.0 ± 0.1
R120A	1.1 ± 0.1
R120Q	1.1 ± 0.2
Y348F	0.90 ± 0.07
V349A	<0.1
V349L	0.15 ± 0.02
V349I	1.2 ± 0.1
Y355A	1.2 ± 0.1
Y355F	15.0 ± 1.6
W387F	11.0 ± 0.2
L505F^a	0.84 ± 0.08
Y504F	1.4 ± 0.1
R513H	1.1 ± 0.2
R513H/V323I	0.88 ± 0.04
V323H	0.76 ± 0.02
V323I/R513H/V434I	0.57 ± 0.08^b
E524L	0.39 ± 0.07^b
A527V	0.65 ± 0.1
S530A	0.52 ± 0.02^b
S530M	<0.1
L531A	0.21 ± 0.02
L531V	0.33 ± 0.03^b
L531I	0.69 ± 0.08

^a p < 0.01 (Student’s t test).
^b p < 0.05 (Student’s t test).

COX-2 → COX-1 mutations are in bold.
amino acids implicated in arachidonic acid and 2-AG binding (Fig. 1). All of the proteins were shown by densitometric scanning of SDS-polyacrylamide gels to be at least 80% pure with the following exceptions: W387F (50%) and Y504F (60%). COX activity was determined by oxygen uptake. This necessitated the use of purified proteins to minimize possible hydrolysis of 2-AG to arachidonic acid by contaminating esterases/lipases.

Analyses of COX reaction product profiles typically employ radiolabeled arachidonic acid substrate and take advantage of the availability of all necessary synthetic standards. The expense and technical difficulties associated with the synthesis of the requisite quantity of radiolabeled 2-AG prevented a similar strategy from being employed in these studies. Thus, products were identified and quantified by LC/MS analysis. Fig. 2 shows a typical LC/MS chromatogram for wild-type mCOX-2 incubated with 2-AG.

Constriction Site Mutations—In both COX isoforms, Arg-120, Tyr-355, and Glu-524 participate in a hydrogen bonding network that forms a constriction at the bottom of the substrate (and inhibitor) binding site (17, 18). In addition to forming the constriction, these residues play a role in binding the polar carboxylate of both arachidonic acid and acidic nonsteroidal anti-inflammatory drugs (19–23). To identify interactions between these residues and 2-AG, site-directed mutants of mCOX-2 were generated, including R120Q and R120A, Y355F and Y355A, and E524L. The site-directed mutants R120Q, Y355F, and E524L displayed modestly reduced capacities to oxygenate arachidonic acid at high substrate concentrations (2.5-fold reductions) (Fig. 3). However, the R120Q and E524L mutants demonstrated 9- and 7-fold reductions in 2-AG oxygenation rates, respectively, when compared with wild-type enzyme (Fig. 3). In contrast, although Y355F oxygenated arachidonic acid at approximately half the rate of wild-type enzyme, 2-AG oxygenation remained essentially unaffected (Fig. 3). A role for Glu-524 in 2-AG oxygenation is further supported by the demonstration that the E524L mutant generates a smaller proportion of PG-G products in comparison with wild-type enzyme (Table I). In contrast, Tyr-355 mutants actually generate a greater proportion of PG-G products in comparison with wild-type enzyme (Table I). Taken together, these results suggest that both Arg-120 and Glu-524 are critical residues in facilitating 2-AG oxygenation and that Glu-524 plays a role in establishing or maintaining a substrate conformation that is amenable to cyclization to PG-G products. Tyr-355 appears to be relatively uninvolved in 2-AG oxygenation because mutations in this residue do not detract from 2-AG oxygenation rates or PG-G formation.

Side Pocket Mutations—Previous investigations have identified the COX-2 side pocket as a structural determinant of the

Fig. 4. Sequence alignments for COX-1 and COX-2. Amino acids 510–535 are shown for all previously reported COX sequences (A) and the revised ovine COX-2 sequence (B). Residues 513, 523, and 530 are indicated in boxes.

Fig. 5. Oxygenation of arachidonic acid and 2-AG by side pocket mutants of COX-2. Initial O₂ uptake rates by wild-type and mutant murine COX-2 enzymes (200 nM) and wild-type ovine COX-1 (150 nM) with arachidonic acid (100 µM) and 2-AG (200 µM) are shown and are normalized to the initial rate of O₂ uptake for arachidonic acid with wild-type enzyme (mean ± S.E., n = 3).

Fig. 6. Model of 2-AG bound in the COX-2 active site. A stereo view of the predicted interactions between 2-AG and the active site residues of mCOX-2 is shown.
The ratio of initial O\textsubscript{2} uptake rates of 2-AG (200 \textmu M) to arachidonic acid (100 \textmu M) by wild-type and mutant murine COX-2 enzymes (400 nM) are shown (mean \pm S.E., n = 3).

Fig. 7. Effects of Leu-531 mCOX-2 mutations on the oxygenation rates of arachidonic acid and 2-AG. The ratio of initial O\textsubscript{2} uptake rates of 2-AG (200 \textmu M) to arachidonic acid (100 \textmu M) by wild-type and mutant murine COX-2 enzymes (400 nM) are shown (mean \pm S.E., n = 3).

Fig. 8. Generation of 15-HETE-G by V349I mCOX-2. Selected ion mass chromatograms of HETE-G products generated by wild-type mCOX-2 (10 \textmu M), V349A mCOX-2 (10 \textmu M), V349I mCOX-2 (10 \textmu M), or V349L mCOX-2 (10 \textmu M) incubated with an equal mass of 2-AG are shown. HETE-G products were eluted with a 15-min gradient of 20–100% acetonitrile in H\textsubscript{2}O (0.001% sodium acetate) and detected by monitoring m/z 417.

Fig. 9. Production of 15-HETE-G by acetylated mCOX-2 and SS530M mCOX-2. Selected ion mass chromatograms of HETE-G products generated by wild-type mCOX-2 (10 \textmu M), acetylated wild-type mCOX-2 (100 \textmu M), or SS530M mCOX-2 (100 \textmu M) incubated with an equal mass of 2-AG are shown. HETE-G products were eluted with a 15-min gradient of 20–100% acetonitrile in H\textsubscript{2}O (0.001% sodium acetate) and detected by monitoring m/z 417.
of the three polar enzyme residues implicated in 2-AG metabolism and hydrogen bond donors/acceptors of the endocannabinoid.

Hydrophobic Channel Mutations—Both COX isoforms contain Leu at position 531 (Fig. 4A). In COX-2, Leu-531 is positioned directly across from the side pocket in the cyclooxygenase active site (Fig. 6) (17, 24, 28). Crystallographic analysis of complexes of COX-1 with arachidonic acid indicate that Leu-531 is beyond van der Waals’ contact distances from substrate; however, site-directed mutagenesis studies demonstrate that this residue promotes high affinity, productive binding of arachidonic acid within the active site (23, 29). Reduction of the hydrophobic side chain length at position 531 in COX-1 affects the positioning of arachidonic acid near Arg-120 and substantially decreases oxygenation rates (29). The demonstrated role of the COX-2 side pocket, and Arg-513 in particular, in 2-AG oxygenation suggests that this endocannabinoid may bind nearer to the side pocket and consequently, further from Leu-531 than arachidonic acid. To test the hypothesis that Leu-531 may have a less significant role in positioning 2-AG than that seen with arachidonic acid, three mutations (L531I, L531V, and L531A) were made in mCOX-2 to reduce the size of the hydrophobic side chain. The ability of these mutant enzymes to oxygenate both arachidonic acid and 2-AG decreased markedly. However, the deleterious effects of Leu-531 mutations were less pronounced with the endocannabinoid substrate. In addition, as the side chain of residue 531 decreased in size, the ratio of 2-AG/arachidonic acid oxygenation rates increased (Fig. 7). Thus, changes in Leu-531 of COX-2 affect 2-AG oxygenation rates less significantly than arachidonic acid oxygenation rates. These results are consistent with our model in which 2-AG is displaced toward the side pocket of COX-2 and away from Leu-531 relative to arachidonic acid (Fig. 6). In fact, modeling results positioned C-1 of 2-AG 7.3 angstroms from the closest Leu-531 methyl group. In comparison, the crystal structure of arachidonic acid bound in COX-1 reveals a distance of 4.6 angstroms from C-1 to the closest Leu-531 methyl group (23).

Arachidonic acid binds within COX enzymes in an L-shaped conformation placing the 13-pro-S-hydrogen close to Tyr-385 and the o-end near Gly-533 (14, 23). Previous investigations demonstrated that 2-AG binds within COX-2 in a similar conformation; neither the G533V nor the Y385F mutant COX-2 enzymes oxygenated 2-AG (13). Residues Ala-527 and Val-349 line the hydrophobic L-shaped channel adjacent to Ser-530 (Fig. 6). Ala-527 and Val-349 are within van der Waals’ distances of arachidonic acid, and Val-349 has been implicated in stabilizing a conformation of arachidonic acid that is optimal for cyclization (23, 29). Mutations were made in COX-2 at positions 527 and 349 to examine whether these residues also affect 2-AG oxygenation. The mutant enzymes were incubated with 2-AG, and the products were analyzed by LC/MS. The A527V and V349I mutations did not show significant increases in monooxygenated products (Table I). However, V349A and V349L did show relative increases in monoxygenated products (Table I). V349L also displayed a dramatic shift in HETE-G regiochemistry, from C-11 to C-15 (Fig. 8). Therefore, one of the methyl groups of Val-349 seems to interact with 2-AG to promote PG-G generation. These findings are consistent with arachidonic acid product profiles from mutant COX-1 enzymes (29).

Acetylated COX-2 and S530M Generation of 15-HETE-G—Both aspirin-acetylated COX-2 and the S530M enzyme have been shown to oxygenate arachidonic acid to provide 15-HETE (30–35). These findings have led to the suggestion that some of the therapeutic actions of aspirin may be mediated by the generation of 15-HETE and subsequent metabolites (36). Both 2-AG oxygenation and 15-HETE generation by acetylated-COX-2 are dependent, in part, on the COX-2 side pocket, and the possibility existed that these two overlapping spatial re-

![Fig. 10. Stereochemistry of 2-AG oxygenation. A, structures of PGF_2α diastereomers. B, thin layer chromatographic analysis of PGF_2α generated by COX-2 oxygenation of 2-AG followed by triphenylphosphine reduction and saponification (Sample). The products were visualized by iodine staining.](http://www.jbc.org/content/jbc/147/6/30076/F10.large.jpg)
quirements would prevent 2-AG oxygenation by acetylated-COX-2 (35). To assess the capacity of aspirin-treated COX-2 and the s530M mutant to bind and metabolize 2-AG, these enzymes were incubated with the endocannabinoid, and the products were evaluated by LC/MS. Neither enzyme generated a significant amount of PGE₂-G or PGD₂-G (data not shown and Table I). However, HETE-G products were observed, and regiochemical analysis demonstrated that oxygenation occurred preferentially at C-15 (Fig. 9). Thus, 2-AG and arachidonic acid are both capable of adopting a conformation in the active site of aspirin-acetylated COX-2, which leads to selective C-15 oxygenation in addition to the more typical conformation in unmodified enzyme that leads preferentially to prostaglandin formation.

Stereochemistry of Oxygenated 2-AG Products—COX-2 oxygenation of anandamide and 2-AG to generate PG ethanolamides and glyceryl PGs has been reported (12, 13). However, the stereochemistry of the products has not been conclusively established. Structural changes in the active site of cyclooxygenase enzymes can lead to altered product profiles and product stereochemistry. As a result, product stereochemical analysis provides an additional test of substrate-enzyme interactions. In addition, PG and HETE stereoisomers generally possess dramatically different biological activities and/or potencies. For example, 15(R)-PGF₂α displays negligible binding to rat vascular smooth muscle cells and binds ovine luteal cell FP receptors with 15-fold less affinity when compared with the natural stereoisomer (37, 38). Similarly, 8(R)-HETE activates peroxisome proliferator-activated receptor α 10-fold more potently than 8(R)-HETE (39). Consequently, we investigated the relative stereochemistry of PG and HETE glyceryl esters generated by COX-2 metabolism of 2-AG. PGF₂α-G was obtained by rapidly reducing the endoperoxide PGH₂-G generated in COX-2 incubations with 2-AG. Following saponification to generate the PGF₂α-free acid, the sample was analyzed by thin layer chromatography and compared with PGF₂α and diastereomers (Fig. 10). The sample generated from 2-AG eluted as a single spot with an identical Rf as PGF₂α. Under the chromatographic conditions employed, PGF₂α, 8-iso-PGF₂α, 11β-PGF₂α, and 15(R)-PGF₂α were readily distinguished from PGF₂α. Thus, further establishment of the natural prostaglandin stereochemistry. These findings support the hypothesis that 2-AG is a natural COX-2 substrate and that the active site of this enzyme has evolved to promote efficient 2-AG turnover.

REFERENCES

1. Hamberg, M., and Samuelsson, B. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 899–903

2. Smith, W. L., Garavito, R. M., and DeWitt, D. L. (1996) J. Biol. Chem. 271, 33517–33520

3. Everd, G. E., Xie, W., Chipman, J. G., Robertson, D. L., and Simmons, D. L. (1993) Arch. Biochem. Biophys. 306, 169–177

4. Herschman, H. R. (1996) Biochem. Biophys. Acta 1299, 125–140

5. Herschman, H. R., Xie, W. L., and Sames, C. S. (1997) J. Biol. Chem. 272, 11318–11326

6. Smith, W. L., and Dewitt, D. L. (1996) Adv. Immunol. 62, 167–215

7. Smith, W. L., Dewitt, D. L., and Garavito, R. M. (2000) Annu. Rev. Biochem. 69, 145–182

8. Vane, J. R., Bakke, Y. S., and Botting, R. M. (1998) Annu. Rev. Pharmacol. Toxicol. 38, 97–120

9. Masferrer, J. L., Zweifel, B. S., Mansingh, P. T., Huether, S. D., Leahy, K. M., Smith, W. G., Isakson, P. C., and Seibert, K. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 3228–3232

10. Vane, J. R., Mitchell, J. A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Cruftall, J., and Willoughby, D. A. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 2046–2050

11. Kennedy, B. P., Chan, C.-C., Culp, S. A., and Cromlish, W. A. (1993) Biochem. Biophys. Res. Commun. 197, 494–500

12. Yu, M., Ives, D., and Sames, C. S. (1997) J. Biol. Chem. 272, 11318–11326

13. Kokaz, K. R., Rowlinson, S. W., and Marnett, L. J. (2000) J. Biol. Chem. 275, 34774–34797

14. Rowlinson, S. W., Crews, B. C., Lanoza, C. A., and Marnett, L. J. (1999) J. Biol. Chem. 274, 23305–23310

15. Kalmikov, A. S., and Marnett, L. J. (1994) Biochemistry 33, 8625–8628

16. Schneider, C., Boeglin, W. E., and Brash, A. R. (2000) Anal. Biochem. 287, 156–189

17. Luong, C., Miller, A., Barnett, J., Chow, J., Ramesha, C., and Brown, M. F. (1996) Nat. Struct. Biol. 3, 927–933

18. Picot, D., Loll, P. J., and Garavito, R. M. (1994) Biochemistry 33, 8625–8628

19. Schneider, C., and Brash, A. R. (2000) J. Biol. Chem. 275, 19134–19139

20. Loll, P., Picot, D., and Garavito, R. M. (1995) Nat. Struct. Biol. 2, 637–642

21. Loll, P., Picot, D., Ekaloo, G., and Garavito, R. M. (1996) Biochemistry 35, 7330–7340

22. Malkowski, M. G., Ginell, S. L., Smith, W. L., and Garavito, R. M. (2000) Biochemistry 39, 10374–10377

23. Meade, E. A., Smith, W. L., and DeWitt, D. L. (1993) J. Biol. Chem. 268, 6110–6118

24. Leconte, M., Laneuville, O., Ji, C., Dewitt, D. L., and Smith, W. L. (1994) J. Biol. Chem. 269, 13207–13215

25. Xiao, G., Tsai, A. L., Palmer, G., Boyar, W. C., Marshall, P. J., and Kazmaier, R. J. (1997) Biochemistry 36, 1836–1845

26. Mancini, J. A., Vickers, P. J., Greig, M. R., Boily, C., Garavito, R. M., and DeWitt, D. L. (1997) Mol. Pharmacol. 51, 52–60

27. Schneider, C., and Brash, A. R. (2000) J. Biol. Chem. 275, 4743–4746

28. Rowlinson, S. W., Crews, B. C., Goodwin, D. C., Schneider, C., Giese, J. K., and Marnett, L. J. (2000) J. Biol. Chem. 275, 6586–6591

29. Serhan, C. N., Takano, T., Chish, C. B., Gronert, K., and Petasis, N. A. (1999) Adv. Exp. Med. Biol. 409, 287–293

30. Balapure, A. K., Rexroad, C. E., Kawada, K., Watt, D. S., and Fitz, A. T. (1999) Biochem. Pharmacol. 38, 2375–2381

31. Hanasaki, K., Kishi, M., and Arita, H. (1990) J. Biol. Chem. 265, 4871–4875

32. Yu, K., Bayona, W., Callen, B., Harding, H. P., Ravaera, C. P., McMahon, G., Brown, M., and Lazar, M. A. (1995) J. Biol. Chem. 270, 23975–23983
Amino Acid Determinants in Cyclooxygenase-2 Oxygenation of the Endocannabinoid 2-Arachidonylglycerol
Kevin R. Kozak, Jeffery J. Prusakiewicz, Scott W. Rowlinson, Claus Schneider and Lawrence J. Marnett

J. Biol. Chem. 2001, 276:30072-30077.
doi: 10.1074/jbc.M104467200 originally published online June 11, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M104467200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 39 references, 19 of which can be accessed free at http://www.jbc.org/content/276/32/30072.full.html#ref-list-1