Modern high-performance computing architectures (Multicore, GPU, Manycore) are based on tightly-coupled clusters of processing elements which are physically implemented as rectangular tiles.

Goal: achieve a high utilization for the top-level die floorplan:
- size and aspect ratio strongly impact the achievable QoR
- as flexible as possible to achieve a high utilization for the top-level die floorplan.

We focus on an open-source, high-performance cluster tile with 8x compute (+1x control) RISC-V cores connected to a shared L1 SPM through a low-latency interconnect [1].

Similar to the state-of-the-art architectures, the cluster tile is then replicated to build a scaled-up high performance accelerator system [2].

We explore the QoR of the physical implementation of this cluster as a soft tile based on a flexible range of aspect ratio and memory macro placement styles for a fixed area of 0.9 mm².

We used Synopsys Fusion Compiler 2020.09 to synthesize, place, and route the cluster in Globalfoundries’ 12 nm advanced FinFET technology node at 1 GHz worst-case conditions (SS, 0.72V, 125°C).

Peak performance per chiplet:
- 384 Gflop/s DP @1GHz
- 768 Gflop/s SP @1GHz

HBM DRAM Bandwidth:
- 358 GB/s @1GHz

Die-to-Die Bandwidth:
- 70 Gb/s @125MHz pad speed
- 2Gb/s @125MHz pad speed

Off-system Bandwidth:
- 2 Gb/s @125MHz pad speed

Key features:
- FPU with Mini-float (ML training, Transformers):
 - FP8 (1, 5, 2)
 - FP8ALT (1, 4, 3)
 - FP16 (1, 5, 10)
 - FP16ALT (1, 8, 7)
- Expanding SDOTP Unit
- Sparsity support (Stencils, Sparse Tensors)
- Atomics and fast interrupts (synchro & offload accel.)

 Occamy: a 432-core RISC-V Based 2.5D Chiplet System with > 1 Billion Transistors per Chiplet

A big thanks to our partners: