Demographic, ecological and physiological responses of ringed seals to an abrupt decline in sea ice availability

Steven H Ferguson Corresp., 1, 2, 3, Brent G Young 1, 2, David J Yurkowski 1, 2, Randi Anderson 2, Cornelia Willing 2, 3, Ole Nielsen 1

1 Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
2 Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
3 Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada

Corresponding Author: Steven H Ferguson
Email address: steve.ferguson@dfo-mpo.gc.ca

To assess whether demographic declines of Arctic species at the southern limit of their range will be gradual or punctuated, we compared large-scale environmental patterns including sea ice dynamics to ringed seal (Pusa hispida) reproduction, body condition, recruitment, and stress in Hudson Bay from 2003-2013. Aerial surveys suggested a gradual decline in seal density from 1995-2013, with the lowest density occurring in 2013. Body condition decreased and stress (cortisol) increased over time in relation to longer open water periods. The 2010 open water period in Hudson Bay coincided with extremes in large-scale atmospheric patterns (NAO, AO, ENSO) resulting in the earliest spring breakup and the latest ice formation on record. The warming event was coincident with high stress level, low ovulation rate, low pregnancy rate, few pups in the Inuit harvest, and observations of sick seals. Results provide evidence of changes in the condition of Arctic marine mammals in relation to climate mediated sea ice dynamics. We conclude that although negative demographic responses of Hudson Bay seals are occurring gradually with diminishing sea ice, a recent episodic environmental event played a significant role in a punctuated population decline.
Demographic, ecological and physiological responses of ringed seals to an abrupt decline in sea ice availability

Steven H. Ferguson*1,2,3, Brent G. Young1,2, David J. Yurkowski1,2, Randi Anderson2, Cornelia Willing2,3, Ole Nielsen1

1Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, Canada
2Department of Biological Science, University of Manitoba, Winnipeg, MB, Canada
3Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB, Canada

Corresponding Author:
Steven H. Ferguson
Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, Canada
e-mail: steve.ferguson@dfo-mpo.gc.ca
ABSTRACT

To assess whether demographic declines of Arctic species at the southern limit of their range will be gradual or punctuated, we compared large-scale environmental patterns including sea ice dynamics to ringed seal (*Pusa hispida*) reproduction, body condition, recruitment, and stress in Hudson Bay from 2003-2013. Aerial surveys suggested a gradual decline in seal density from 1995-2013, with the lowest density occurring in 2013. Body condition decreased and stress (cortisol) increased over time in relation to longer open water periods. The 2010 open water period in Hudson Bay coincided with extremes in large-scale atmospheric patterns (NAO, AO, ENSO) resulting in the earliest spring breakup and the latest ice formation on record. The warming event was coincident with high stress level, low ovulation rate, low pregnancy rate, few pups in the Inuit harvest, and observations of sick seals. Results provide evidence of changes in the condition of Arctic marine mammals in relation to climate mediated sea ice dynamics. We conclude that although negative demographic responses of Hudson Bay seals are occurring gradually with diminishing sea ice, a recent episodic environmental event played a significant role in a punctuated population decline.
BACKGROUND

Organisms evolve specific adaptations to their habitats through natural selection (Mayr 1963) and when their habitats change gradually, organisms can adjust phenotypically within an evolved range of flexibility (Levins 1962). However, this evolved adaptation has limitations and in extreme situations, organisms may not be able to adapt to particular habitats and environmental conditions above an evolved threshold (Southwood 1977). Under these circumstances, populations suffer mortality of individuals, declines in reproduction, and/or immigrate to new habitats that may allow increased demographic success (MacArthur and Wilson 1966). The result is a shift in species distribution (Guisan and Thuiller 2005) and understanding this process by identifying thresholds to adaptability and the mechanism of population decline are both critical to species conservation.

Predicting how climate warming will result in retraction of an Arctic species range northward requires knowledge of demographic changes and their ecological plasticity in response to environmental change. Few studies have linked marine mammal demographic responses to climate change (Poloczanska et al. 2007) with the notable exception of polar bears (*Ursus maritimus*) (Regehr et al. 2007; Hunter et al. 2010; Lunn et al. 2016), where the majority of research relates to loss of space and time opportunities for feeding on a lipid-rich diet (Thiemann et al. 2008; Rode et al. 2016). Ringed seals (*Pusa hispida*) have a circumpolar distribution and show high variability in the relative importance of predation from polar bears (Thiemann et al. 2008) and to varying food habits (Yurkowski et al. 2016a). However, key habitat attributes are linked to survival and successful reproduction.
In particular, ringed seals require sea ice during the critical spring period when reproduction and molting occurs (Smith & Stirling 1975) and a seasonal pulse in food availability in the summer ice-free season (Young & Ferguson 2013). Evolved life history characteristics that match these high-latitude environmental features include relative small body size for a pinniped and a life history characterized by early age of maturation, annual birthing, short lactation duration, widely varying but high pup mortality, relatively low adult mortality, and greater fitness investment in long life (Ferguson & Higdon 2006).

High latitude species are characterized by a strong seasonal cycle of feast and fast with both periods critical to reproduction and survival (Boyce 1979). Ringed seals are adapted to cycle annually from intensive foraging during the open water season to accumulate fat reserves to sustain them over winter and during the birthing, nursing, and mating periods when adults are restricted to small home ranges with depleted food resources (Luque et al. 2014; Young and Ferguson 2014). In spring, pups are independent and adults undergo molting with little feeding opportunities and increased risk of predation (Stirling and Archibald 1977; Young and Ferguson 2015). During periods of deteriorating environmental conditions, the phenology of ringed seals can be interrupted leading to inadequate energy reserves prior to the next year’s reproduction (Harwood et al. 2012). Ringed seal populations can also be negatively affected by infrequent, annual, extreme climatic conditions that exert pressure on their demographics (Stirling and Smith 2004).

Endemic Arctic species are challenged by the rapid pace of sea ice declines and resulting changes in ecological dynamics of the marine ecosystem (Post et al. 2013).
Hudson Bay represents one of the most southerly distributions of ringed seals and therefore, as an ice-obligate marine mammal, the prediction is for a retraction northward in range (Kovacs & Lydersen 2008). The Hudson Bay ecosystem is at the southern edge of maximum sea ice extent and goes through a seasonal cycle of complete ice formation and loss (Saucier et al. 2004). The initial characteristics of population and demographic changes may already be occurring with a decrease in ringed seal density observed in western Hudson Bay between the two recent aerial surveys in spring 2010 and 2013 (0.78 to 0.20/km2) (Young et al. 2015).

Here, we compare indices in the productivity and health of the Hudson Bay ringed seal population with environmental covariates over time. Our data sets were annual trends in sea ice breakup and formation, major climatic indices, and biological data from seal collections, 2003-13: (1) body condition (% fat) from seals harvested by Inuit, (2) reproduction from examination of reproductive tracts, (3) recruitment from hunter harvest statistics, and (4) stress from blubber cortisol levels. We hypothesize that gradual deteriorating change in sea ice characteristics will correlate with a gradual decrease in ringed seal body condition, ovulation rate and pup recruitment (Stirling 2005), whereas an abrupt decline in sea ice availability in 2010 will result in dramatic negative demographic, ecological and physiological responses by ringed seals.

METHODS

Sea ice breakup and freeze-up dates were determined from weekly data obtained from the Canadian Ice Service using Icegraph 2.0 (http://iceweb1.cis.ec.gc.ca/IceGraph/), for eastern Hudson Bay, 1979-2014. The majority of biological data for ringed seals was
derived from the Sanikiluaq (southeast Hudson Bay) seal collection whereas Arviat (southwest Hudson Bay) only provided the time-series of cortisol measures. Therefore, we only present annual changes in sea ice coverage (Fig, 1b) for this eastern region (Sanikiluaq) although we found strong correlations with other Hudson Bay regions identified by the Canadian Ice Service. We were unable to assess the effect of east-west differences (Young and Ferguson 2014) and how they may influence our results because our datasets were not balanced (i.e., biological measures from Sanikiluaq were not available from Arviat). Ice breakup date was defined as the date on which the sea ice concentration decreased and remained below 50% (Stirling et al. 1999). Conversely, freeze-up date was defined as the date on which sea ice concentration increased and remained above 50%. Open-water duration was calculated by subtracting the breakup and freeze-up dates. Major climatic indices were obtained from the Climate Prediction Center (http://www.cpc.ncep.noaa.gov/), including the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and El Nino-Southern Oscillation (ENSO) for the December to February monthly mean estimates from 1971-2014. We included ENSO due to its significant climatic influence in North America and due to its effect on ecological relationships in several ecosystems across the globe (Wang et al. 2010; Nye et al. 2014; Rustic et al. 2015). NAO and AO were included since previous research found that they were related to ringed seal recruitment and timing of spring ice breakup (Ferguson et al. 2005). The longer time frame available for environmental data provided a background to the 2003-2013 period with available ringed seal biological data.

Morphological measurements and tissue samples were collected from 1425 Hudson Bay ringed seals harvested during the Inuit subsistence hunt from Sanikiluaq (n=917), NU,
Canada (56°32′34″ N, 79°13′30″ W) and Arviat (n=508), NU (61°6′29″ N, 94°3′25″ W) from 2003-2013. Permits to collect samples as part of the Inuit subsistence hunts were acquired from Fisheries and Oceans Canada. All biological data with the exception of cortisol was derived from seals collected by Sanikiluaq hunters in the eastern region of Hudson Bay. Samples were collected in autumn (Oct. to Dec.) in Arviat. In Sanikiluaq some samples were collected throughout the year but we used only autumn collections for age/sex composition as the late open-water season provides a representative sample of the population (see Holst et al. 1999; Ferguson et al. 2005). Permits to collect samples as part of the Inuit subsistence hunts were acquired from Fisheries and Oceans Canada. Canine teeth were extracted from the lower jaw for age determination using annual growth layer groups in the cementum (Chambellant and Ferguson 2009). Pup survival was defined as the percentage of pups (i.e., <1 year) in the autumn subsistence hunt and is considered a good measure of 0-6 month survival (Chambellant et al. 2012). Total body weight and sculp weight (weight of blubber layer, skin and fur) were recorded by the hunters at the time of sample collection. Body condition was calculated as percent blubber (sculp weight*100 / total bodyweight). Reproductive tracts were stored frozen before being examined. After gross examination of reproductive tracts, ovaries were excised, formalin-fixed and sectioned at 2-mm intervals, and examined macroscopically for the presence of a corpus luteum (ovulation in the year of collection) and corpora albicantia (previous pregnancies) (Laws 1956). Estimation of ovulation was only calculated if sample size for a particular year exceeded 5 mature adult females which excluded 2003-6. An extraction method for ringed seal blubber samples was used in conjunction with radioimmunoassay to measure
cortisol levels representing stress (Trana et al. 2014). Cortisol measures from Arviat seals were not available in 2013.

Four separate general linear models were used to investigate relationships between environmental (i.e. duration of the open water period, ENSO, NAO and AO indices) and biological variables (i.e. percentage of ovulating females, percentage of pups in the harvest, body condition and cortisol levels) over time using R v 3.2.3 (R Core Team 2015).

Continuous predictor variables were screened for collinearity and removed when a Pearson's correlation coefficient was ≥ 0.6 and a variance inflation factor (VIF) was > 3.0. NAO and AO were highly correlated (0.8). We retained NAO for all analyses due to its stronger association with sea ice (Nakamura et al. 2015). Prior to analysis, percentage of ovulating females, percentage of pups in harvest, and body condition were normally distributed upon visual examination of histograms and quantile-quantile plots. Cortisol levels were log-transformed before analysis to improve normality.

RESULTS

Results support a gradual pattern of earlier spring ice breakup and later autumn freeze-up in Hudson Bay; where from 2003-2013, sea ice breakup has varied more widely than freeze-up. No relationship occurred with any climate variability index over 1979-2014, but the NAO and AO have been more positive from 1999-2015 (Fig. 1). The longest ice-free season on record for eastern Hudson Bay occurred in 2010, with the earliest spring breakup (May) and latest freeze-up (January 2011) and an anomalous negative NAO and AO, and a high ENSO index (Fig. 1).
Figure 1. Top: Annual winter (December to February) North Atlantic Oscillation index (NAO), Arctic Oscillation (AO), and El Nino-Southern Oscillation (ENSO), 1971-2014. Note red arrows indicate possible regime shifts (1977, 1989, 1989/99, 2010) and black arrows possible years with poor ringed seal condition: 1973/74, 1983, 1992, 1998, 2010 (Smith and Stirling 1978; Hare and Mantua 2000; Smith and Harwood 2001; Benson and Trites 2002; Ferguson et al. 2005; Litzow 2006). Bottom: Sea ice patterns over the day of the year showing inter-annual variation in timing of spring breakup, duration of open water season, and time of freeze-up, 2003-2013. Note that autumn 2010 freeze-up did not occur until January 2011.
Body condition significantly decreased over time \((t = -8.2, p < 0.001)\), from 55.4% blubber mass in 2004 to 40.3% in 2012 before increasing to 48.1% in 2013 (Table 1; Fig. 2). In addition, body condition significantly decreased with increasing open water period \((t = -2.0, p < 0.05)\), ENSO index \((t = -2.3, p = 0.02)\) and NAO index \((t = -2.0, p < 0.05; \text{Table 2}; \text{Fig. 3})\). Ovulation rate varied considerably among years from 100% in 2008 to 56% in 2011, albeit with no relationship with year, open water duration, or climatic indices. Percentage of pups in the harvest, as an estimate of pup survival, exhibited a marginal decline from 2003-2013 \((t = -2.09, p = 0.08)\) from about 40% of the harvest to about 20% (Table 2; Fig 2). Stress, as measured by cortisol concentration (ng/g), significantly increased over time \((t = 8.0, p < 0.001)\) from about 0.1 to 0.6ng/g over the 2003-12 period (Table 2; Fig. 2). A significant decrease in cortisol level occurred with NAO index \((t = -2.6, p = 0.01; \text{Fig. 3})\). In 2010, cortisol levels in ringed seals had the highest amount of variability (standard deviation = 1.84) compared to other years (Fig. 2). High stress levels occurred in 2010 and low ovulation rates occurred in 2011 which supports the pattern of a decrease in ovulation rate after the high stress levels.

Year	Body condition (% fat)	Percent Ovulation	Percent Young of Year	RIA Cortisol (ng/g)
2003	39.1 (115)	0.07 ± 0.01 (72)		
2004	55.4 ± 1.0 (45)	30.4 (56)	0.10 ± 0.02 (32)	
2005	52.8 ± 0.9 (71)	40.9 (88)	0.10 ± 0.01 (120)	
Year	Ovulation rate (%)	Pup recruitment (%)	Seal condition (blubber %)	Cortisol (ng/g)
------	--------------------	---------------------	-----------------------------	-----------------
2006	49.7 ± 0.7 (80)	42.7 (82)	0.14 ± 0.05 (40)	
2007	46.9 ± 0.6 (123)	85.7 (7)	0.32 ± 0.10 (27)	
2008	47.5 ± 0.8 (102)	100.0 (5)	0.24 ± 0.04 (56)	
2009	45.2 ± 1.2 (41)	88.9 (9)	0.28 ± 0.04 (51)	
2010	43.9 ± 0.9 (90)	66.7 (18)	0.86 ± 0.27 (46)	
2011	46.4 ± 0.8 (97)	56.3 (16)	0.51 ± 0.12 (30)	
2012	40.3 ± 1.2 (65)	83.3 (12)	0.43 ± 0.07 (34)	
2013	48.1 ± 1.4 (42)	100.0 (6)	20.0 (45)	

Table 2. Relationships between Hudson Bay ringed seal biological parameters and environmental correlates assessed using general linear models, 2003-2013.

R² was 0.40 for ovulation rate model, 0.19 for pup recruitment model, 0.12 for body condition model, and 0.21 for cortisol level model.

Figure 2. Barplots (A and B) of annual ovulation rates (%) from adult female ringed seals and annual percentage of pups in the harvest (Table 1). Linear regressions between seal
body condition and harvest year (C; slope = -0.01, t = -8.2, p < 0.001), and cortisol level and harvest year (D; slope = 0.02, t = 8.0, p < 0.001).
Figure 3. Linear regressions between ringed seal body condition and ice-free duration (A; slope = -0.0004, \(t = -2.0 \), \(p < 0.05 \)), body condition and El-Nino Southern Oscillation (ENSO) index (B; slope = -0.009, \(t = -2.32 \), \(p = 0.02 \)), body condition and North Atlantic Oscillation (NAO) index (C; slope = -0.009, \(t = 2.0 \), \(p < 0.05 \)), and cortisol and NAO index (D; slope = -0.02, \(t = 2.6 \), \(p = 0.01 \)).
DISCUSSION

We predicted demographic change occurring at the southern limit of the ringed seal distribution with both gradual changes in environmental variables and episodic events associated with extreme lows in sea ice concentration. Our results suggest both patterns have occurred in southern Hudson Bay over the past decade. Previous research has indicated that Hudson Bay ringed seals (Chambellant et al. 2012) and polar bears (Regehr et al. 2007; Lunn et al. 2016; Obbard et al. 2016) have shown gradual reductions in body condition and survival over the past decades which are concurrent with negative consequences of continued environmental change (Holst et al. 1999; Ferguson et al. 2005).

We provide additional evidence for a continuation of these progressive patterns for ringed seals with decreasing body condition and increasing stress over 2003-2013. However, no research results have suggested short-temporal pulses in condition and abundance (i.e., Young et al. 2015) for either seals or polar bears in the Hudson Bay ecosystem, although a regime shift likely occurred in late 1990s (Gaston et al. 2012). Here, we document for the first time, a relationship with ringed seal demographics and the 2010 climatic event that resulted in a punctuated decrease in ovulation, reduced body condition, and increased cortisol levels. Reduced seal pups in the following autumn harvest would likely follow with a lag effect (Ferguson et al. 2005; Iacozza and Ferguson 2014). Ringed seals display a remarkable ability to adjust their body condition and reproduction with different environmental conditions as exemplified by the return to high ovulation levels and body condition (% fat) in the years following the 2010 extreme event. However, age structure would likely maintain a record of a cohort effect with a reduced number of seals moving through the population over time.
Gradual reduction in body condition could be associated with the recent changes in Hudson Bay prey resource abundance and availability. The prevalence of capelin (*Mallotus villosus*) and sand lance (*Ammodytes spp.*) and decrease in Arctic cod (*Boreogadus saida*) abundance in Hudson Bay since 2000 has caused dietary shifts from endemic Arctic cod to sub-Arctic capelin and sand lance in Arctic marine megafauna including sea birds (Gaston et al. 2003), beluga whales (*Delphinapterus leucus*; Kelley et al. 2010), and ringed seals (Chambellant et al. 2012). In addition, the isotopic niche size of Hudson Bay ringed seals is significantly larger than individuals from higher latitudes which principally consume Arctic cod, indicating a more diverse and omnivorous diet (Young and Ferguson 2013; Yurkowski et al. 2016a, b). Among ringed seal prey items, Arctic cod represent the highest energy content compared to other fish and invertebrate species (Weslawski et al. 1994; Hedeholm et al. 2011; Harwood et al. 2015). Thus, a recent change in Hudson Bay ringed seal diet due to shifts in forage fish availability and abundance may have negatively impacted ringed seal body condition.

Assessing the causes of an episodic event is more difficult to establish. The extremely low extent and duration of the 2010 ice-covered period in Hudson Bay may have adversely affected the abundance, availability and distribution of prey resources but it is unlikely to have triggered a punctuated decrease in their physiological and energetic demands. We summarized anecdotal evidence for an episodic event affecting the abundance and body condition of ringed seals in Hudson Bay related in 2010-11 (see supplementary material). Anecdotal observations in 2010 are suggestive of a hitherto never before seen event causing impaired biological responses in ringed seal behaviour including unusual approachability, lethargy, and increased tendency for hauling out on
land, possibly due to associated respiratory problems that were first seen during that
autumn season. Polar bears are thought to have benefited from this behavior since affected
seals were easily captured but no estimate of predation over and above normal could be
calculated. Evidence for a biological response to an episodic environmental event comes
from the low ringed seal density observed between spring 2010 and 2013 surveys and the
unusual environmental patterns that suggest a possible shift in seal condition after 2010.

Evidence for a dramatic decline in ringed seal abundance associated with the 2010
climatic event in Hudson Bay is both anecdotal (Supplementary Table) and circumstantial
(aerial survey abundance estimates; Young et al. 2015). The mechanism of such a decline is
not well understood but we postulate that it may be linked to the inability of the seals to
properly moult in spring due to a lack of a resting platform with the early loss of sea ice
which sets up a physiological predisposition for disease. In addition, hyperthermia in
autumn when seals are at their maximum blubber fatness (Young and Ferguson 2013) may
be a potential mechanism for the observations of lethargy and use of tidal flats resulting in
greater polar bear predation (Supplementary Table). The evidence for a decline in Hudson
Bay ringed seal body condition from 2003 to 2013 has statistical support and continues a
pattern previously reported (Stirling 2005). Periods of declines in ringed seal body
condition have been documented in the western Canadian Arctic (Harwood et al. 2012) and
Svalbard (Hamilton et al. 2015) as well as periods of improving body condition in western
Hudson Bay (Chambellant et al. 2012). In all cases, top down predation is not considered
the agent of change but rather bottom up changes in food supply.

Longer periods of open-water have been linked to access to more food for ringed
seals allowing for a longer period of fattening (Young and Ferguson 2013). Possible
explanations for this novel pattern of decreased ringed seal condition with a warming ocean include (1) a shift in the types of forage fish available that result in lower lipid intake – a requirement for ringed seals with their large blubber biomass (Gaden et al. 2009; McKinney et al. 2013; Yurkowski et al. 2016a, b); (2) greater competition from temperate species making forays into the subarctic (Finley et al. 1990; Berg et al. 2010); (3) greater predation effect from new predators moving into areas from which they were previously excluded by sea ice forcing ringed seals to compromise foraging activities in favor of predator avoidance (Laidre et al. 2008; Higdon and Ferguson 2009); and (4) new or increased disease arising from physiological stress associated with warmer temperatures (Pounds et al. 2006; Burek et al. 2008). For Hudson Bay we found ringed seal condition problems linked to large scale climatic patterns that likely cycle over multiple years and possibly explain the periods of good (Chambellant et al. 2012) and bad (this study) in Hudson Bay. However, the mechanistic link between early spring breakup and late ice formation and poor seal condition is not well understood possibly because it has been rarely observed (Ferguson et al. 2005).

An Unusual Mortality Event was declared in 2011 by the US government due to a 'new' ulcerative-dermatitis-disease-syndrome of unknown etiology observed in Alaskan ice seals and Pacific walrus (Atwood et al. 2015) that resulted in significant pathology of the lung, liver, immune system, and skin of the seals (Barbosa et al. 2015; Bowen et al. 2015). As observed in Hudson Bay, the affected ice seals displayed uncommon behaviours such as unusual approachability, lethargy, and increased tendency for hauling out on land, as well as respiratory problems. There was some mortality associated with the disease syndrome;
however reliable baseline abundance estimates were not available to assess its

significance. Potential repercussions of a gradual sea ice decline and punctuated decreases in
some years include a continual reduction in ringed seal body condition and greater stress
leading to implications on their demographics. The years marked by extremes in climatic
indices (Fig. 1) are associated at higher latitudes with excessive sea ice extremes; whereas
our results at the southern range of ringed seals indicate a lack of sea ice may have
attributed to decreased body condition, increased stress, and low ovulation rates and pup
recruitment. Spring 2010 recorded an unusually early ice breakup that may have
predisposed seals to a delayed molt. In the fall of 2010, numerous (100's) moribund seals
were found in distress along the shore of western and eastern Hudson Bay suggesting that
both regions were affected.

Numerous examples of episodic events causing major ecological shifts include
regime shifts (Hughes et al. 2013), continental growth (Santosh 2013), drought (Ireland et
al. 2012), disease (Pickles et al. 2013), and range shifts due to climate (Baker et al. 2008;
Seppä et al. 2009; Chen et al. 2011). For ringed seals, the literature suggests periods of
ringed seal crashes in abundance associated with poor reproduction during significant
heavy ice years. Variation in ringed seal density associated with ENSO events include 1973
(Smith and Stirling 1978), 1992 (Ferguson et al. 2005), 1998 (Smith and Harwood 2001),
and in 2010 (Fig. 1). Evidence of high latitude regime shifts include 1977 and 1989 (Hare
and Mantua 2000), 1998-99 (Litzow 2006; Benson and Trites 2002). Also, the Greenland
Blocking Index for 2010 was the highest year in the annual, spring, winter and December
series, 1851-2015 (Hanna et al., 2016). Synchronous fluctuations of seabird species across
the entire Arctic and sub-Arctic regions were associated with changes in sea surface
temperatures that were linked to two climate shifts, in 1977 and again in 1989 (Irons et al.
2008), and 1998 (Flint 2013), including Hudson Bay in 1998 (Gaston et al. 2003). Major
atmospheric patterns suggest that we can expect episodic events occurring once every 10-
15 years and that they are largely unpredictable in timing but have major consequences on
ecosystem structure and function (Ottersen et al. 2004).

CONCLUSIONS

Considerable uncertainties exist with deciphering past patterns to determine possible
cause and effect relationships among environmental variation, body condition, and their
demographic responses. However, mounting evidence indicates endemic Arctic species,
such as ringed seals, are under immense pressure from climate change and complex spatio-
temporal shifts in ecology have subsequently resulted in decreased abundance as a
harbinger of range shift. Managers need to be wary of climate change culminating in both a
gradual decline in condition and unpredictable episodic events that when combined can
have major abundance and distribution consequences.

ACKNOWLEDGEMENTS

We thank the Inuit hunters and the Hunters and Trappers Association of Arviat and
Sanikiluaq, NU, Canada, for conducting community-based seal collections. Reviews by J.
Higdon, R. Hodgson, N. Pilfold, and two anonymous reviewers improved the manuscript.
REFERENCES

Atwood, T., Peacock, E., Burek-Huntington, K., Shearn-Bochsler, V., Bodenstein, B., Beckmen, K. and Durner, G., 2015. Prevalence and spatio-temporal variation of an alopecia syndrome in polar bears (Ursus maritimus) of the southern Beaufort Sea. Journal of wildlife diseases, 51(1), pp.48-59.

Baker, A.C., Glynn, P.W. and Riegl, B., 2008. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, coastal and shelf science, 80(4), pp.435-471.

Barbosa, L., Johnson, C.K., Lambourn, D.M., Gibson, A.K., Haman, K.H., Huggins, J.L., Sweeny, A.R., Sundar, N., Raverty, S.A. and Grigg, M.E., 2015. A novel Sarcocystis neurona genotype XIII is associated with severe encephalitis in an unexpectedly broad range of marine mammals from the northeastern Pacific Ocean. International journal for parasitology, 45(9), pp.595-603.

Benson, A.J. and Trites, A.W., 2002. Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish and Fisheries, 3(2), pp.95-113.

Berg MP, KIERS E, Driessen G, Van Der HEIJDEN MA, Kooi BW, Kuenen F, Liefting M, Verhoef HA, Ellers J. 2010 Adapt or disperse: understanding species persistence in a changing world. Global Change Biology. Feb 1;16(2):587-98.

Bowen, L., Miles, A.K., Stott, J., Waters, S. and Atwood, T., 2015. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus). Science of The Total Environment, 529, pp.114-120.
Boyce MS. Seasonality and patterns of natural selection for life histories. 1979 American Naturalist. Oct 1:569-83.

Burek KA, Gulland FM, O'Hara T. 2008 Effects of climate change on Arctic marine mammal health. *Ecolog. Appl.* 18(sp2): S126-34. (doi: 10.1890/06-0553.1)

Chambellant, M. and S.H. Ferguson. 2009. Ageing live ringed seals (Phoca hispida): which tooth to pull? Marine Mammal Science 25: 478-486. DOI: 10.1111/j.1748-7692.2008.00269.x

Chambellant M, Stirling I, Gough WA, Ferguson SH. 2012 Temporal variations in Hudson Bay ringed seal (*Phoca hispida*) life-history parameters in relation to environment. *J. Mammal.* 93, 267-281. (doi:10.1644/10-MAMM-A-253.1)

Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. and Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), pp.1024-1026.

Ferguson SH, Stirling I, McLoughlin P. 2005 Climate change and ringed seal (*Phoca hispida*) recruitment in western Hudson Bay. *Mar. Mamm. Sci.* 21, 121 – 135. (doi:10.1111/j.1748-7692.2005.tb01212.x)

Ferguson SH and Higdon JW. 2006 How seals divide up the world: environment, life-history, and conservation. *Oecologia* 150, 318-329. (doi:10.1007/s00442-006-0489-x)

Finley KJ, Bradstreet MS, Miller GW. 1990 Summer feeding ecology of harp seals (Phoca groenlandica) in relation to Arctic cod (Boreogadus saida) in the Canadian High Arctic. *Polar Biology.* Oct 1;10(8):609-18.
Flint, P.L., 2013. Changes in size and trends of North American sea duck populations associated with North Pacific oceanic regime shifts. Marine Biology, 160(1), pp.59-65.

Gaden A, Ferguson SH, Harwood L, Melling H, Stern GA. 2009 Mercury trends in ringed seals (Phoca hispida) from the western Canadian Arctic since 1973: associations with length of ice-free season. Environmental science & technology. Mar 23;43(10):3646-51.

Gaston, A.J., Woo, K. and Hipfner, J.M., 2003. Trends in forage fish populations in northern Hudson Bay since 1981, as determined from the diet of nestling thick-billed murres Uria lomvia. Arctic, pp.227-233.

Gaston AJ, Smith PA, Provencher JF. 2012 Discontinuous change in ice cover in Hudson Bay in the 1990s and some consequences for marine birds and their prey. ICES J. Mar. Sci. 69, 1218 – 1225. (doi:10.1093/icesjms/fss040)

Guisan A. and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993-1009.

Hamilton, C.D., Lydersen, C., Ims, R.A. and Kovacs, K.M., 2015. Predictions replaced by facts: a keystone species' behavioural responses to declining arctic sea-ice. Biology Letters, 11(11), p.20150803.

Hanna, E., Cropper, T.E., Hall, R.J. and Cappelen, J., 2016. Greenland Blocking Index 1851–2015: a regional climate change signal. International Journal of Climatology.

Hare SR, Mantua NJ. 2000 Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanog. 47, 103-145. (doi:10.1016/S0079-6611(00)00033-1)
Harwood LA, Smith TG, Melling H, Alikamik J, Kingsley MC. 2012 Ringed seals and sea ice in Canada's Western Arctic: Harvest-based monitoring 1992-2011. Arctic. Dec 1:377-90.

Harwood LA, Smith TG, George JC, Sandstrom SJ, Walkusz W, Divoky GJ. 2015 Change in the Beaufort Sea ecosystem: diverging trends in body condition and/or production in five marine vertebrate species. Progress in Oceanography. Aug 31;136:263-73.

Hedeholm, R., Grønkjær, P. and Rysgaard, S., 2011. Energy content and fecundity of capelin (Mallotus villosus) along a 1,500-km latitudinal gradient. Marine biology, 158(6), pp.1319-1330.

Higdon JW, Ferguson SH. 2009 Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century. Ecological Applications. Jul 1;19(5):1365-75.

Holst M, Stirling I, Calvert W. 1999 Age structure and reproductive rates of ringed seals (Phoca hispida) on the northwestern coast of Hudson Bay in 1991 and 1992. Mar. Mamm. Sci. 15, 1357–1364. (doi:10.1111/j.1748-7692.1999.tb00898.x)

Hughes, T.P., Linares, C., Dakos, V., van de Leemput, I.A. and van Nes, E.H., 2013. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in ecology & evolution, 28(3), pp.149-155.

Hunter, C.M., Caswell, H., Runge, M.C., Regehr, E.V., Amstrup, S.C. and Stirling, I., 2010. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology, 91(10), pp.2883-2897.
Ireland, A.W., Booth, R.K., Hotchkiss, S.C. and Schmitz, J.E., 2012. Drought as a trigger for rapid state shifts in kettle ecosystems: Implications for ecosystem responses to climate change. Wetlands, 32(6), pp.989-1000.

Irons, D.B., Anker-Nilssen, T.Y.C.H.O., Gaston, A.J., Byrd, G.V., Falk, K., Gilchrist, G., Hario, M., Hjernquist, M., Krasnov, Y.V., Mosbech, A. and Olsen, B., 2008. Fluctuations in circumpolar seabird populations linked to climate oscillations. Global Change Biology, 14(7), pp.1455-1463.

Kelley, T.C., Loseto, L.L., Stewart, R.E.A., Yurkowski, M. and Ferguson, S.H., 2010. Importance of eating capelin: unique dietary habits of Hudson Bay beluga. In A Little Less Arctic (pp. 53-70). Springer Netherlands.

Kovacs KM, Lydersen C, 2008 Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf seas. Sci. Prog. 91, 117–150.

Laidre KL, Stirling I, Lowry LF, Wiig Ø, Heide-Jørgensen MP, Ferguson SH. 2008 Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecological Applications. Mar 1;18(sp2).

Laws RM. 1956 Growth and sexual maturity in aquatic mammals. Nat. 178, 193–194. (doi:10.1038/178193a0)

Levins, R., 1962. Theory of fitness in a heterogeneous environment - I. The fitness set and adaptive function. Am. Nat. 96, 361–373.

Litzow MA. 2006 Climate regime shifts and community reorganization in the Gulf of Alaska: how do recent shifts compare with 1976/1977? ICES J. Mar. Sci. 63, 1386-1396. (doi: 10.1016/j.icesjms.2006.06.003)
Luque SP, Ferguson SH, Breed GA. 2014 Spatial behaviour of a keystone Arctic marine predator and implications of climate warming in Hudson Bay. Journal of Experimental Marine Biology and Ecology. Dec 31;461:504-15.

Lunn, N.J., Servanty, S., Regehr, E.V., Converse, S.J., Richardson, E. and Stirling, I., 2016. Demography of an apex predator at the edge of its range–impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications.

MacArthur, R. H. & Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton Univ. Press, Princeton.

Mayr, E. 1963. Animal species and evolution. Belknap Press, Harvard Univ. Press, Cambridge, Mass.

McKinney MA, Iverson SJ, Fisk AT, Sonne C, Rigét FF, Letcher RJ, Arts MT, Born EW, Rosing-Asvid A, Dietz R. 2013 Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Global change biology. Aug 1;19(8):2360-72.

Nakamura, T., Yamazaki, K., Iwamoto, K., Honda, M., Miyoshi, Y., Ogawa, Y. and Ukita, J., 2015. A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. Journal of Geophysical Research: Atmospheres, 120(8), pp.3209-3227.

Nye, J.A., Baker, M.R., Bell, R., Kenny, A., Kilbourne, K.H., Friedland, K.D., Martino, E., Stachura, M.M., Van Houtan, K.S. and Wood, R., 2014. Ecosystem effects of the atlantic multidecadal oscillation. Journal of Marine Systems, 133, pp.103-116.
Obbard M.E., M.R.L. Cattet, E.J. Howe, K.R. Middel, E.J. Newton, G.B. Kolenosky, K.F. Abraham, and C.J. Greenwood. 2016. Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Science 2: 15–32.

Ottersen, G., Stenseth, N.C. and Hurrell, J.W., 2004. Climatic fluctuations and marine systems: a general introduction to the ecological effects. Marine ecosystems and climate variation, pp.3-14.

Pickles, R.S., Thornton, D., Feldman, R., Marques, A. and Murray, D.L., 2013. Predicting shifts in parasite distribution with climate change: a multitrophic level approach. Global change biology, 19(9), pp.2645-2654.

Poloczanska, E.S., Babcock, R.C., Butler, A., Hobday, A.J., Hoegh-Guldberg, O., Kunz, T.J., Matear, R., Milton, D., Okey, T.A. and Richardson, A.J., 2007. Climate change and Australian marine life. Oceanography and marine biology, 45, p.407.

Post E, Bhatt US, Bitz CM, Brodie JF, Fulton TL, Hebblewhite M, Kerby J, Kutz SJ, Stirling I, Walker DA. 2013 Ecological consequences of sea-ice decline. Science 341, 519-24. (doi:10.1126/science.1235225)

Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR. 2006 Widespread amphibian extinctions from epidemic disease driven by global warming. Nature. Jan 12;439(7073):161-7.
Regehr EV, Lunn NJ, Amstrup SC, Stirling IA. 2007 Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. The Journal of Wildlife Management. Nov 1;71(8):2673-83.

Rode, K.D., Stricker, C.A., Erlenbach, J., Robbins, C.T., Cherry, S.G., Newsome, S.D., Cutting, A., Jensen, S., Stenhouse, G., Brooks, M. and Hash, A., 2016. Isotopic Incorporation and the Effects of Fasting and Dietary Lipid Content on Isotopic Discrimination in Large Carnivorous Mammals. Physiological and Biochemical Zoology, 89(3), pp.182-197.

Rustic, G.T., Koutavas, A., Marchitto, T.M. and Linsley, B.K., 2015. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling. Science, 350(6267), pp.1537-1541.

Santosh, M., 2013. Evolution of continents, cratons and supercontinents: building the habitable Earth. Current Science(Bangalore), 104(7), pp.871-879.

Saucier FJ, Senneville S, Prinsenberg S, Roy F, Smith G, Gachon P, Caya D, Laprise R. 2004 Modelling the sea ice-ocean seasonal cycle in Hudson Bay, Foxe Basin and Hudson Strait, Canada. Climate Dynamics. Sep 1;23(3-4):303-26.

Seppä, H., Alenius, T., Bradshaw, R.H., Giesecke, T., Heikkilä, M. and Muukkonen, P., 2009. Invasion of Norway spruce (Picea abies) and the rise of the boreal ecosystem in Fennoscandia. Journal of Ecology, 97(4), pp.629-640.

Smith TG, Harwood LA. 2001 Observations of neonate ringed seals, Phoca hispida, after early break-up of the sea ice in Prince Albert Sound, Northwest Territories, Canada, spring 1998. Pol. Biol. 24, 215-219. (doi:10.1007/s003000000198)
Smith TJ, Stirling I. 1975 The breeding habitat of the ringed seal (Phoca hispida). The birth lair and associated structures. Can. J. Zool. 53, 1297-1305. (doi:10.1139/cjz-2012-0137)

Smith TG, Stirling I. 1978 Variation in the density of ringed seal (Phoca hispida) birth lairs in the Amundsen Gulf, Northwest Territories. Can. J. Zool., 56, 1066-1070. (doi:10.1139/z78-149)

Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

Stirling, I., 2005. Reproductive rates of ringed seals and survival of pups in northwestern Hudson Bay, Canada, 1991–2000. Polar Biology, 28(5), pp.381-387.

Stirling, I. and Archibald, W.R., 1977. Aspects of predation of seals by polar bears. Journal of the Fisheries Board of Canada, 34(8), pp.1126-1129.

Stirling, I., N. J. Lunn and J. Iacozza. 1999. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic 52:294–306.

Stirling I, Smith TG. 2004 Implications of warm temperatures and an unusual rain event for the survival of ringed seals on the coast of southeastern Baffin Island. Arctic. Mar 1:59-67.

Thiemann GW, Iverson SJ, Stirling I. 2008 Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecolog. Monogr. 78, 591-613. (doi:10.1890/07-1050.1)
Trana MR, Roth JD, Tomy GT, Anderson WG, Ferguson SH. 2014 Influence of sample degradation and tissue depth on blubber cortisol in beluga whales. *J. Exper. Mar. Biol. Ecol.* 462, 8-13. (doi:10.1016/j.jembe.2014.10.010)

Wang, J., Bai, X., Leshkevich, G., Colton, M., Clites, A. and Lofgren, B., 2010. Severe ice cover on Great Lakes during winter 2008-2009. *Eos*, 91(5), pp.41-42.

Weslawski, J.M., 1994. Diet of ringed seals (Phoca hispida) in a fjord of West Svalbard. *Arctic*, 47(2), p.109.

Young BG, Ferguson SH. 2013 Seasons of the ringed seal: pelagic open-water hyperphagy, benthic feeding over winter and spring fasting during molt. *Wildl. Res.* 40, 52-60. (doi:10.1071/WR12168)

Young, B.G. and Ferguson, S.H., 2014. Using stable isotopes to understand changes in ringed seal foraging ecology as a response to a warming environment. *Marine Mammal Science*, 30(2), pp.706-725.

Young BG, Ferguson SH, Lunn NJ. 2015 Variation in indices of ringed seal density and abundance in western Hudson Bay determined from aerial surveys, 1995 to 2013. *Arctic* 68, 301-309. (doi:10.1111/j.1748-7692.2005.tb01212.x)

Yurkowski DJ, Ferguson SH, Semeniuk CAD, Brown TM, Muir DC, Fisk AT. 2016a. Spatial and temporal variation of an ice-adapted predator's feeding ecology in a changing Arctic marine ecosystem. *Oecologia* 180:631-644. (doi:10.1007/s00442-015-3384-5)

Yurkowski DJ, Ferguson SH, Choy E, Loseto L, Brown TM, Muir DCG, Semeniuk CAD, Fisk AT. 2016b. Latitudinal variation in ecological opportunity and intra-specific competition
indicates differences in niche variability and diet specialization of Arctic marine predators. Ecology and Evolution 6:1666-1678
Year	AO	ENSO	NAO	Breakup	Freeze-up	
1971	-0.49459	-1.3	-0.69667			
1972	0.264983	-0.7	0.396667			
1973	1.08517	1.7	0.36			
1974	-0.1462	-1.7	0.506667			
1975	0.781803	-0.5	0.486667			
1976	0.993478	-1.5	0.226667			
1977	-2.6173	0.7	-1.04333			
1978	-1.20007	0.7	-0.84667			
1979	-1.30322	0	-1.20667	166	340	
1980	-0.56821	0.6	0.1	163	335	
1981	-0.16841	-0.2	0.69	191	337	
1982	-0.37507	0	0.08	164	334	
1983	0.17346	2.1	0.946667	171	339	
1984	0.262857	-0.5	0.89	156	328	
1985	-1.2665	-0.9	-0.7	151	333	
1986	-1.80645	-0.4	0.11	185	326	
1987	-0.85368	1.1	-0.29667	180	345	
1988	-0.44515	0.8	0.7	154	342	
1989	2.688033	-1.6	1.26	180	334	
1990	1.252883	0.1	0.433333	180	335	
1991	0.374647	0.4	0.706667	174	336	
1992	1.094977	1.6	0.466667	181	329	
Year	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
------	---------	---------	---------	---------	---------	---------
1993	1.768833	0.2	0.856667	169	328	
1994	-0.41784	0.1	1.02	180	348	
1995	0.722987	0.9	1.363333	173	334	
1996	-1.05476	-0.9	-0.62	184	357	
1997	-0.09629	-0.5	-0.06667	164	330	
1998	-0.7783	2.1	-0.22667	159	352	
1999	0.648627	-1.4	0.643333	146	350	
2000	1.1297	-1.6	1.303333	157	351	
2001	-1.31188	-0.7	0.04	150	361	
2002	0.454133	-0.2	0.236667	171	338	
2003	-0.64532	0.9	-0.05333	185	362	
2004	-0.98303	0.3	0.07	177	338	
2005	0.105223	0.6	0.89	158	350	
2006	-0.81005	-0.7	0.104837	145	355	
2007	1.002867	0.7	0.36307	173	345	
2008	0.859387	-1.4	0.6561	150	348	
2009	0.25841	-0.8	-0.07584	184	347	
2010	-3.42177	1.3	-1.67293	141	369	
2011	-0.9129	-1.3	-0.67427	163	349	
2012	0.654935	-0.7	1.371767	159	348	
2013	-1.12184	-0.4	0.02096	159	346	
2014	0.183305	-0.5	0.85704	168	341	
Supplementary Table 2. Chronology of unusual ringed seal and polar bear observations gathered from Hudson Bay communities related to a warming event in 2010.

Date	Comment	Reporter
4 Nov. 2010	I've only seen about 3 kills in the 11 years I've worked for you guys and now 7 in a month?	Marc Hebert, Manitoba Conservation Officer
14 Nov. 2010	He has also seen quite a few seals and seal kills by Polar Bears. He also flew over Button Bay and saw a number of seal kills that hadn't been consumed.	Mike Macri (Sea North Tours, Churchill)
16 Nov. 2010	He states that seals are venturing inland than normal. Bears are eating seals. The only physical problems or abnormalities he notes he has seen is one seal that appeared to be bleeding from the anus. Sick seals -- showing evidence of hair loss.	Amanda Currie (DFO) conversation with Donnie (Great White Bear tours).
16 Nov. 2010	Recently found a seal that was still alive but crawling over land near the Rx road just out of the Town of Churchill.	LeeAnn Fishback (CNSC) with Manitoba Conservation
17 Nov. 2010	First Vince had heard of dead seals. But noted Darryl Hedman flew coast and saw over 300 bears - saw 18 dead seals that had been killed so he says by bears - when I was looking at science with Vince Crichton (Manitoba)	Ole Nielson (DFO) with Vince Crichton (Manitoba)
asked him how the bears were catching seals he said they are likely getting caught on the flats when tide goes out and bears just taking advantage of easy meal - maybe something wrong with seals that they are getting caught like this.

18 Nov. 2010 They both confirm they’re have been no reports of any killer whale sightings in the area, as it’s too late in the seasons for Killer Whales. Also the local polar bears are also very fat, and several appear to be ‘stock piling’ the seals they catch (i.e. some people have witness and photographed the bears stock piling or buried seals inland instead of eating them). Mike was on a flight a week ago and saw a fat polar bear kill a seal, walk away and kill another seal on the shore, drag it back to the first, and then walk away without eating either. And another sow with cubs had a dead seal and was not eating it. Another seal was seen moving along RX road about 1-2 km from shore. Received two pictures of this from Mike Macri.

24 Nov. 2010 I met two hunters from Chesterfield Inlet and Whale Cove Ole Nielsen (DFO) in the Iqaluit airport on Monday that were also very concerned with the ‘behavior’ of ringed seals near their
communities this fall. I’m following up with them and several other HTOs. They reported that they are catching more adult seals this year which are really large, and very few pups. The seals are also very easy to catch, in many cases they said ‘too easy’. One hunter caught 30 seals in one day trip. The seals are also coming inland and hanging around the shoreline for extended periods of time. Of course, it’s great for hunting, but they were really concerned as this is very unusual.

26 Nov. 2010 Some of the Hunters and Trappers Organizations in the Kivalliq region have recently reported concerns with ‘odd summarizing behaviour’ of ringed seals near the communities (i.e. seals response from Kivalliq coming close to shore and hanging around, and hauling Region communities out on shore), as well as some seals that appears to be sick (i.e. molting and loss of hair, seal pocks, low fat content, etc.).

26 Nov. 2010 She has heard the same concerns from hunters: “After Leah Muckpah (Arviat HTO Manager) discussion with my board of directors, they have reported some hunters catching seals on shore, and far away from shore with loss of hair (like bald patches) but nobody took pictures and the seals were used as dog food.”
27 Nov. 2010 He hasn’t seen any more seals on shore, neither have the helicopters or tundra buggy camps. Also notes another odd thing, the zodiacs, for the first time ever, are covered with scratches from bearded seals who were hauling up into them in September.

17 Dec. 2010 “A couple weeks ago while he was out of town, Lucassissie Takatak, found 6 dead seals on the beach, their heads seem to be craving for air like their heads up back.”

06 Jan. 2011 They observed a very few number of seals were shedding and that even a few number of them were sinking after being shot. The seal harvest in Arviat is usually done when the first ice forms in the salt water, usually late October to Late November. During that time, it is unheard of that seals would be shedding fur and that they would sink after being shot.

26 Jan. 2011 Ringed seals usually molt in the spring but locals noted seals molting in the fall. The local Conservation Officer sent seal parts to DFO showing the unusual molt. During fall large numbers (100s) of seals were observed along shorelines. Other communities including Repulse Bay also noted the same unusual conditions. Coral Harbour.
seldom sees seals near town but this past fall large numbers were in the Harbour and some went on land in the harbour (very unusual).

His own personal experience - he was traveling along shoreline in August and found a seal on the beach. The ringed seal kept traveling up the shore – unusual behaviour. Three weeks later he was in a different area and saw a harp seal on land – about ¼ mile inland. It was a late freeze up this autumn and a very warm fall. The ice formed along the shoreline twice in mid-November but drifted off with winds both times before it finally formed fast in December. In December rain fell.