Research Article

Janetta Niemann, Justyna Szwarc*, Jan Bocianowski, Dorota Weigt, Marek Mrówczyński

In-field screening for host plant resistance to *Delia radicum* and *Brevicoryne brassicae* within selected rapeseed cultivars and new interspecific hybrids

https://doi.org/10.1515/biol-2020-0074
received May 29, 2020; accepted July 06, 2020

Abstract: Rapeseed (*Brassica napus*) can be attacked by a wide range of pests, for example, cabbage root fly (*Delia radicum*) and cabbage aphid (*Brevicoryne brassicae*). One of the best methods of pest management is breeding for insect resistance in rapeseed. Wild genotypes of *Brassicaceae* and rapeseed cultivars can be used as a source of resistance. In 2017, 2018, and 2019, field trials were performed to assess the level of resistance to *D. radicum* and *B. brassicae* within 53 registered rape-seed cultivars and 31 interspecific hybrid combinations originating from the resources of the Department of Genetics and Plant Breeding of Poznań University of Life Sciences (PULS). The level of resistance varied among genotypes and years. Only one hybrid combination and two *B. napus* cultivars maintained high level of resistance in all tested years, i.e., *B. napus* cv. *Jet Neuf* × *B. carinata* – PI 649096, Galileus, and Markolo. The results of this research indicate that resistance to insects is present in *Brassicaceae* family and can be transferred to rapeseed cultivars. The importance of continuous improvement of rapeseed pest resistance and the search for new sources of resistance is discussed; furthermore, plans for future investigations are presented.

Keywords: *Brassica napus*, rapeseed, pest resistance, hybrids, cabbage root fly, cabbage aphid

1 Introduction

Rapeseed (*Brassica napus* L. *ssp. oleifera* Metzg.) is one of the three most important sources of vegetable oil in the world. The European Union (EU) was the world leader in rapeseed production in 2017 (22 million tons), followed by Canada (21 million tons), China (13 million tons), India (7.9 million tons), Australia (4.3 million tons), and Ukraine (2.1 million tons) [1]. The greatest producers of rapeseed in the EU are France, Germany, Poland, Romania, Great Britain, the Czech Republic, Hungary, Denmark, and Slovakia, respectively [2,3]. Protection from pests is an essential part of breeding programmes – for example, yield losses caused by pests in Poland can range from 15 to 50% [4]. Moreover, a significant increase in the threat from pests is expected, related both to climatic changes and to agrotechnical simplifications [5,6].

Rapeseed plants in Poland are attacked by a wide range of pests. Among them, two economically important insects can be distinguished – cabbage root fly (*Delia radicum* L.) (Diptera: Anthomyiidae) and cabbage aphid (*Brevicoryne brassicae* L.) (Homoptera: Aphididae). The cabbage aphid is one of the most important and commonly occurring insect pests of rapeseed worldwide [7]. *Brevicoryne brassicae* causes significant yield losses in many crops in the family *Brassicaceae*, including mustards and crucifers. Heavy infestation can result in severe plant damage, causing death of seedlings and young transplants. Symptoms in larger plants include curling and yellowing of leaves, stunting of plants, and deformation of developing heads [8,9].

The cabbage root fly is one of the most important pests of many *Brassica* crops in the temperate regions of Europe and North America. After overwintering as pupae and hatching in early spring, females lay eggs in close proximity to the host plant. Depending on the temperature, eggs hatch in about 4 days [8]. The number of generations varies each year from one to four, depending on climatic conditions [10]. Larvae of *D. radicum* can damage plants by feeding on root tissue, resulting in

* Corresponding author: Justyna Szwarc, Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland, e-mail: justyna.szwarc@up.poznan.pl
Janetta Niemann, Dorota Weigt: Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
Jan Bocianowski: Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojewódzkiego 28, 60-637, Poznań, Poland
Marek Mrówczyński: Institute of Plant Protection – National Research Institute, Władysława Węgorka 20, 60-318, Poznań, Poland

© 2020 Janetta Niemann et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
wilting of leaves or the entire plant and eventually reducing the yield and quality of the crop. Moreover, roots attacked by *D. radicum* are more susceptible to secondary root pathogens, such as *Fusarium* spp. [10,11].

To date, three resistance mechanisms have been recognized in the interaction of *Delia–Brassica* and *Brevicoryne–Brassica*: antixenosis, antibiosis, and tolerance [12]. Antixenosis (non-preference, avoidance) denotes morphological or chemical plant traits that make it unattractive for insects. For example, variation in cabbage leaf colour makes it less attractive to *B. brassicae* [13]. Antibiosis resistance is based on adverse effects of the plant after feeding [14]. Antibiosis does not prevent infestation, but rather causes increased mortality or delayed development of insects. Tolerance means the ability of a plant to reduce inflicted damage. A tolerant host is able to grow and reproduce despite the presence of a high number of insects [12,13]. In contrast to antixenosis and antibiosis, tolerance is independent of the herbivore response but is an adaptive mechanism helping plants to grow normally under biotic stress [15].

For most growers, the use of pesticides is an essential form of protection against harmful organisms [16]. However, there has been an increasing emphasis on the use of environmentally friendly methods of pest control. For example, in 2013, the EU restricted the use of certain neonicotinoids, and in 2018, banned three main neonicotinoids (Commission Implementing Regulation [EU] 2018/783, 2018/784, 2018/785). Moreover, Integrated Pest Management, which focuses on reducing the use of pesticides, has become compulsory for all farmers in the EU since 2014 (Directive 2009/128/EC). Therefore, breeding cultivars with resistance to insect pests fits perfectly into the currently applicable requirements and modern environmentally friendly trends [17,18]. The natural genetic variation among the wild relatives of crop species can provide good sources of novel host plant resistance [19].

Wild and related species of the *Brassicaceae* family are proved to be a valuable source of desirable agronomic traits. For example, *Sinapis alba* has been shown to be tolerant to crucifer flea beetle [20]; *B. juncea*, *B. carinata*, and *B. nigra* can be used to transfer blackleg resistance genes [21]; and *B. rapa*, *B. carinata*, and *S. alba* may act as a source of pod shattering resistance [22]. The assessment of the level of resistance within various *Brassicaceae* wild species or *Brassicaeae* hybrids may help identify genotypes with desired traits, which then can be included into rapeseed breeding programmes.

The aim of this research was to determine the range of pest resistance levels among selected rapeseed cultivars and new *Brassica* hybrid combinations obtained from the Department of Genetics and Plant Breeding of Poznań University of Life Sciences (PULS). This study has been conducted to identify the sources of resistance not only in rapeseed cultivars but also in other brassicaceous species. Consequently, this strategy will allow the assessment of the genetic resistance of interspecific *Brassica* hybrids in comparison with the parental forms in the future.

To the best of our knowledge, this is one of the few studies in which in-field comparison of resistance has been made among rapeseed cultivars and interspecific hybrids towards economically important insect pests.

2 Materials and methods

2.1 Experimental design

The experiment was conducted for three consecutive years (2017, 2018, and 2019) on the testing fields in PULS experimental station Dłoń (51°41′23″N, 17°04′10″E) located 100 km south from Poznań, Poland. The whole experiment was set up in a completely randomized block design with five replications (on the basis of six plants) in each year (*N* = 90), and each single plot size was 10 m² with a 0.30 row distance and a sowing density of 60 seeds/m². The field experiment in Dłoń was conducted on typical heavy soil of quality class III [23]. Agricultural practices were optimal for local agroecological conditions in Dłoń. Plots were harvested using a plot harvester. In crop seasons 2016/2017, 2017/2018, and 2018/2019, the weather conditions were normal for Poland. The seasonal rainfall in Dłoń was 667 mm in 2017, 372 mm in 2018, and 393 mm in 2019, whereas the mean annual temperatures in 2017, 2018, and 2019 were 9.6, 10.8, and 11.1°C, respectively.

2.2 Plant material

Seeds of 53 rapeseed cultivars and 31 hybrid combinations were used as the research material (Table 1). All *Brassica* interspecific hybrids were generated in the Department of Genetics and Plant Breeding of PULS with the application of *in vitro* culture of isolated embryos according to the method described by Niemann et al. [24]. In order to obtain interspecific hybrids with genetic
Table 1: List of Brassicaceae hybrids and B. napus cultivars used as the research material

No. of line	Cross-combination	No. of line	Cross-combination
H1	\(B. \text{napus} \times \text{Jet Neuf} \times B. \text{rapa ssp. pekinensis} 08\)	H17	\(B. \text{napus} \times \text{Lisek} \times B. \text{carinata} \text{Dodola}\)
H2	\(B. \text{napus} \times \text{Jet Neuf} \times B. \text{rapa ssp. pekinensis} 08\)	H18	\(B. \text{napus} \times \text{California} \times B. \text{fruticulosa} \text{– PI649097}\)
H3	\(B. \text{napus} \times \text{Jet Neuf} \times B. \text{carinata} \text{PI 649091}\)	H19	\(B. \text{napus} \times \text{Lisek} \times B. \text{fruticulosa} \text{– PI649097}\)
H4	\(B. \text{napus} \times \text{Górcański} \times B. \text{rapa ssp. pekinensis} 08.007574\)	H20	\(B. \text{napus} \times \text{Lisek} \times B. \text{fruticulosa} \text{– PI649099}\)
H5	\(B. \text{napus} \times \text{Górcański} \times B. \text{rapa ssp. pekinensis} 08.007569\)	H21	\(B. \text{napus} \times \text{Jet Neuf} \times B. \text{carinata} \text{– PI 649094}\)
H6	\(B. \text{napus} \times \text{Górcański} \times B. \text{rapa ssp. Chinensis}\)	H22	\(B. \text{napus} \times \text{Jet Neuf} \times B. \text{carinata} \text{– PI 649096}\)
H7	\(B. \text{napus} \times \text{Lisek} \times S. \text{alba cv. Bamberka}\)	H23	\(B. \text{napus} \times \text{California} \times B. \text{rapa ssp. pekinensis} 08\)
			\(007574-1\)
H8	\(B. \text{napus} \times \text{Lisek} \times B. \text{tournefortii}\)	H24	\(B. \text{napus} \times \text{California} \times B. \text{rapa ssp. pekinensis} 08\)
			\(007574-2\)
H9	\(B. \text{napus} \times \text{Lisek} \times B. \text{rapa Pak Choi 08, 007574}\)	H25	\(B. \text{napus} \times \text{California} \times B. \text{rapa ssp. pekinensis} 08\)
			\(007574-3\)
H10	\(B. \text{napus} \times \text{Lisek} \times B. \text{rapa Pak Choi 08, 007569}\)	H26	\(B. \text{napus} \times \text{California} \times B. \text{rapa ssp. pekinensis} 08\)
			\(007574-4\)
H11	\(B. \text{napus} \times \text{Górcański} \times B. \text{rapa Pak Choi 08, 007574}\)	H27	\(B. \text{napus} \times \text{Zhongshuang9} \times B. \text{rapa ssp. pekinensis}\)
			\(08 006169\)
H12	\(B. \text{napus} \times \text{Jet Neuf} \times B. \text{oleracea var. alboglabra}\)	H28	\(B. \text{napus} \times \text{MS8 line} \times B. \text{rapa ssp. pekinensis}\)
			\(08 006169-1\)
H13	\(B. \text{napus} \times \text{California} \times B. \text{oleracea var.}\)	H29	\(B. \text{napus} \times \text{MS8 line} \times B. \text{rapa ssp. pekinensis}\)
	\(\text{oleracea var. alboglabra}\)		\(08 006169-2\)
H14	\(B. \text{napus} \times \text{Lisek} \times B. \text{oleracea var. alboglabra}\)	H30	\(B. \text{napus} \times \text{MS8 line} \times B. \text{rapa ssp. pekinensis}\)
			\(08 006169-3\)
H15	\(B. \text{napus} \times \text{California} \times S. \text{alba cv. Bamberka}\)	H31	\(B. \text{napus} \times \text{Zhongshuang9} \times B. \text{rapa ssp. chinensis}\)
			\(08 007574\)

No. of line	Cultivar name	No. of line	Cultivar name
C1	Amir	C28	PX111CL
C2	Inspirati	C29	Anderson
C3	Bufalo	C30	Andromeda
C4	Atora	C31	Arsenal
C5	Dolar	C32	Hybrirock
C6	Fair	C33	Graf
C7	Fantastik	C34	Hary
C8	Jet Neuf	C35	Mickey
C9	Jupiter	C36	150/47
C10	Kana	C37	Prince
C11	Azurio	C38	Sofia
C12	Memoris	C39	Santana
C13	Lindora	C40	Rubin
C14	150/38	C41	Monolit
C15	150/46	C42	Metys
C16	Walegro	C43	Chrobry
C17	Marita	C44	150/42
C18	150/40	C45	Kabriiolet
C19	150/44	C46	Falcon
C20	Razmus	C47	Diger
C21	Walery	C48	Corina
C22	Aruze	C49	Kontakt
C23	Bazyl	C50	Ceres
C24	Bellinda	C51	Gailleus
C25	Californium	C52	Markolo
C26	Darmor	C53	Hewelius
C27	PR48W26		
pest resistance, paternal forms harbouring high level of resistance to *B. brassicae* and *D. radicum* were selected according to the literature data.

All interspecific cross-derived lines were sister-pollinated (five plants were enclosed in one paper bag during flowering) for four generations in order to stabilize the fertility [25]. Morphotypes of plants of the F₅–F₇ generations were compared with the parental lines, as described by Wojciechowski [26]. Analysis of selected morphological traits was performed in order to determine whether the obtained plants resembled the *B. napus* type or the paternal type. The examination was based on (a) leaf colour, (b) presence of trichomes on the lower side of the leaf blade, (c) position of the buds relative to the open flowers, (d) growth habit, (e) type of inflorescence, and (f) flower characteristics (sterile or fertile).

2.3 Assessment of pest resistance

The assessment of pest resistance was carried out for two insects (*Delia radicum* and *Brevicoryne brassicae*) and consisted of plant damage evaluation. General damage by insects was assessed at the end of the season, in late October 2017, 2018, or in early November 2019 in *D. radicum*. Assessment of pest resistance was carried out for two insect pests (*B. brassicae* and *D. radicum*), as described by Wojciechowski [26]. Analysis of selected morphological traits was performed in order to determine whether the obtained plants resembled the *B. napus* type or the paternal type. The examination was based on (a) leaf colour, (b) presence of trichomes on the lower side of the leaf blade, (c) position of the buds relative to the open flowers, (d) growth habit, (e) type of inflorescence, and (f) flower characteristics (sterile or fertile).

(No pesticides were used on the plots. The average values from six plants were calculated for each replication. In this way, we obtained quantitative trait data with normal distributions.)

2.4 Statistical analysis

The normality of the distributions of the studied traits (resistance to *B. brassicae* and resistance to *D. radicum*) was tested using the Shapiro–Wilk normality test [29]. Two-way analyses of variance (ANOVA) with blocks were carried out to determine the effects of year, genotype (cultivars and hybrids, independently), and year × genotype interaction on the variability of resistance to *B. brassicae* and resistance to *D. radicum*). The mean values and standard deviations of the observed traits were calculated for each genotype in all years of study. Fisher’s least significant differences (LSDs) were estimated for individual traits, and on this basis, homogeneous groups were determined. Differences between cultivars and hybrids were tested on the basis of a *t*-test, independently for resistance to *B. brassicae* and resistance to *D. radicum*.

We used the critical significance level equal to 0.05, resulting from a Bonferroni correction. All the analyses were conducted using the GenStat v. 18 statistical software package (VSN International, Hemel Hempstead, UK).

3 Results

3.1 Morphology of hybrid plants

The individual interspecific and intergeneric hybrid combinations of F₅–F₇ generations had reasonably uniform

Scale	Visual symptoms	Plant response
1	Lesions profuse on 100% of the roots and leaf surface	Susceptible
2	Lesions present on up to 90% of the roots and leaf surface	Susceptible to moderately susceptible
3	Lesions present on up to 70–75% of the roots and leaf surface	Moderately susceptible
4	Lesions visible on up to 50% of the roots and leaf surface	Moderately susceptible to moderately resistant
5	Lesions visible on up to 25% of the roots and leaf surface, little damage	Moderately resistant
6	Lesions visible on less than 15–20% of the roots and leaf surface	Moderately resistant to resistant
7	Lesions visible on less than 10% of the roots and leaf surface	Resistant
8	Lesions visible on less than 5% of the roots and leaf surface	Resistant to highly resistant
9	No insect damage visible on any analysed part of the plant	Highly resistant
morphological characteristics. Moreover, plants of all tested lines were very consistent in growth habit. Hybrid plants obtained from crosses between *B. napus* × *B. rapa* genotypes were similar to rapeseed. However, in a small number of cases, some morphological features were similar to those of turnip rape, e.g., lighter leaf colour, trichomes on the lower side of the leaf blade, and turnip rape-like inflorescence. No significant new characteristics, absent in either parent, were reported in the hybrids. All other hybrid plants resembled more paternal morphotypes. Consequently, plants obtained from crosses between *B. napus* × *B. carinata*, *B. juncea*, and *S. alba* genotypes had young leaf surfaces with high trichome density.

3.2 Assessment of pest resistance

The results of the ANOVA indicated that the effects of cultivar, hybrid, and year were significant for both tested traits (resistance to *B. brassicae* and *D. radicum*). The *year* × *genotype* interactions were highly significant for both observed traits for cultivars and hybrids (Table 3).

The mean values of resistance to insect pests for the analysed hybrids and cultivars in the years studied successively, i.e., 2017, 2018, and 2019, are presented in Table 4. In general, the resistance to both pests varied among years. The highest mean level of resistance to *B. brassicae* was observed for cultivars in 2017 (8.991), whereas the lowest in 2018 was also for cultivars (5.513). For *D. radicum*, the highest mean resistance was noticed in 2019 for hybrids (7.153). In contrast, the lowest mean resistance was observed for cultivars in 2017 (4.136).

The obtained data showed that the level of pest resistance varied between cultivars and hybrids. Compared to the analysed cultivars, the mean resistance of hybrid plants was higher in all tested years for *D. radicum*. For *B. brassicae*, the mean resistance of hybrids was higher only in 2018. The difference in resistance to *B. brassicae* among cultivars and hybrids in 2019 was not statistically significant (Table 5).

More detailed results are presented in Tables 5 and 6. The conducted analyses showed significant differences between the tested plants. Moreover, the collected data allowed us to distinguish a group of genotypes with the highest resistance to pests (belonging to group α) in tested years for both hybrids and cultivars. Within those plants, we found individuals that belonged to statistically the best group for all three successive years (Table 7). Four hybrids (e.g., *B. napus* cv. Górczański × *B. rapa* Pak Choi 08, 007574) and 27 cultivars (e.g., Inspirati) maintained the high level of resistance to *B. brassicae* during the tested years. However, only five hybrids (e.g., *B. napus* cv. Jet Neuf × *B. carinata* PI 649091) and two rapeseed cultivars (Galileus and Markolo) maintained the high level of resistance to *D. radicum*. Among the tested plant genotypes, only one hybrid and two cultivars remained resistant for both pests in three years, i.e., *B. napus* cv. Jet Neuf × *B. carinata* – PI 649096, Galileus, and Markolo.

Table 3: Mean squares (m.s.) from two-way analysis of variance for *Brevicoryne brassicae* and *Delia radicum* (hybrid and cultivar resistance) (N = 90)

Source of variation	*Brevicoryne brassicae*	*Delia radicum*				
	d.f.	m.s.	p-Value	d.f.	m.s.	p-Value
Hybrids						
Block	4	0.73	<0.001	4	1.27	
Hybrid	30	2.7592	<0.001	30	20.438	<0.001
Year	2	241.1076	<0.001	2	18.884	0.022
Hybrid × year	57	3.3161	<0.001	57	12.488	<0.001
Residual	425	0.5328		427	4.875	
Cultivars						
Block	4	0.91	<0.001	4	1.32	
Cultivar	52	5.9015	<0.001	52	30.982	<0.001
Year	2	1074.9311	<0.001	2	290.038	<0.001
Cultivar × year	104	7.7494	<0.001	104	23.986	<0.001
Residual	897	0.4831		632	4.339	

d.f. – the number of degrees of freedom.

4 Discussion

As stated before, in recent years, the use of insecticides became partly limited – some chemicals have been withdrawn due to their harmful effects on the environment. It causes many problems for farmers, as the range of effective insecticides is getting narrowed. Moreover, the use of chemicals may not always be successful as insects can develop resistance. For both insects, i.e., *D. radicum* and *B. brassicae*, cases of resistance to certain pesticides have been reported [30–32]. Considering this, host plant resistance might be the future of pest management, as it is one of the most economically feasible and ecologically sustainable options [33]. Several strategies to obtain insect-resistant rapeseed have been already presented [34]. This study has successfully followed two of them: finding the source of resistance within *Brassicaceae*.
species and selecting the insect-resistant rapeseed cultivars among cultivars that have been already registered.

Previous studies showed that wild species of *Brassicaceae* can be a useful source of resistance to *B. brassicae* and *D. radicum*. For example, *B. fruticulosa* and *B. spinescens* have a very high level of resistance to both pests and may be used as research material to find respective Quantitative Trait Loci (QTLs) or as part of a breeding programme [35,36]. Moreover, Dosdall et al. [37] screened many genotypes within *Brassicaceae* and successfully produced *S. alba × B. napus* hybrids that inherited resistance to *Delia* spp. from *S. alba*.

However, according to the literature data, much uncertainty still exists about insect feeding preferences and sources of plant resistance to pests [38]. Despite this, there is a considerable amount of literature comparing the life history traits of adults and larvae of pollen beetles among species of *Brassicaceae* [39–41]. For example, *S. alba* may act as a donor of resistance, which can be successfully introgressed into rapeseed. Moreover, *S. alba* genotypes show resistance to a few other pests of rapeseed: root flies *Delia* spp. [37,42], flea beetle *P. cruciferae* [43,44], and bertha armyworm *Mamestra configurata* [45]. However, based on the in-field screening performed in this study, it is not possible to confirm that the obtained *B. napus × S. alba* hybrid combinations were able to maintain higher level of resistance to *D. radicum* or *B. brassicae* during the three consecutive years of study. Furthermore, review of the literature supports resistance to pollen beetles also in *Eruca sativa* [40] and in *C. abyssinica* [46].

Breeding programmes depending on resistant materials are presently also being applied against *Ceutorhynchus obstrictus* (Marsham) (Coleoptera: Curculionidae). Previous experience in other countries has shown that among the tested *Brassicaceae* species, the white mustard *S. alba* was much less susceptible than rapeseed to *C. obstrictus* damage [47].

These studies confirm our assumption that some of the interspecific or intergeneric hybrids can be successfully used as part of future breeding strategies.

Generally, rapeseed cultivars are not considered a very promising source of resistance to pests, as screenings for resistance within existing varieties rarely bring expected results [38,48,49]. Despite this, we managed to find genotypes within *B. napus* (Galileus and Marcolo), which are moderately or highly resistant to both *B. brassicae* and *D. radicum*. Our observations have shown that in the future more assessments should be performed to verify a greater number of cultivars.

Our research has proven the existence of insect-resistant genotypes among rapeseed cultivars and *Brassicaceae* hybrids. A few genotypes were able to maintain the high level of resistance in the three consecutive years of field experiments, which seems to be very useful in future insect resistance breeding. Observed differences in the infestation level allow us to conclude that the plant response might be conditioned by genotype, which may give a chance to identify resistance genes. Future work should focus on laboratory studies, to determine the genetic basis of resistance, as it may depend on three systems: antixenosis, antibiosis, or tolerance [35]. Moreover, research conducted by Hao et al. [50] showed that aphids have preferential behaviour regarding the host plant. Upper epidermis thickness and trichome length had significant impact on aphids’

Table 4: Mean resistance to *Brevicoryne brassicae* and resistance to *Delia radicum* (and standard deviations) of all investigated *Brassica napus* cultivars and hybrid lines over three years

	2017	2018	2019			
	Hybrids	Cultivars	Hybrids	Cultivars	Hybrids	Cultivars
Resistance to *Brevicoryne brassicae*						
Number of observations	309	530	93	265	117	265
Mean	8.803	8.991	6.28	5.513	7.692	7.57
Standard deviation	0.5494	0.0968	1.913	2.326	0.6881	0.6599
t-Statistic	-5.96	3.13	1.65			
p-Value	<0.001	0.002	0.1			
Resistance to *Delia radicum*						
Number of observations	310	265	93	265	118	265
Mean	6.697	4.136	6.581	5.804	7.153	5.362
Standard deviation	2.617	2.568	3.076	2.326	1.556	2.537
t-Statistic	11.8	2.12	8.46			
p-Value	<0.001	0.035	<0.001			
preference on initial probing, which leads to a conclusion that physical properties of rapeseed leaves may be important for B. brassicae host choice.

The level of plant damage varied over the years of observation. Therefore, it can be concluded that the results of the field trials might have been partly dependent on the weather or other abiotic and biotic stresses [34]. Population dynamics of insects may be affected by parameters such as temperature, humidity, and total rainfall [51,52]. Many factors affect the plant response to insects, which makes it harder to find individuals with true genetically induced resistance to insects.

Currently, insect resistance research is focused on quantitative resistance, as it might provide a more durable effect than pyramiding single resistance genes [34]. Variability of insect-derived damage observed in our study proves the complexity of plant response to pests. This might indicate that the resistance of tested genotypes relies on multiple genes located in QTLs. This type of resistance is usually harder to track, because of its complexity and dependence on environmental factors [53]. This makes quantitative traits difficult to include in breeding programmes. However, a study by Ekuere et al. [54] proves that it is possible to track QTLs conferring resistance to Delia spp. by using linkage analysis. Successful introduction of multigenic resistance to insects in Brassica crops would be a great strategy in pest management.

Table 5: Mean values and standard deviations (s.d.) for hybrid resistance to Brevicoryne brassicae and resistance to Delia radicum (N = 90)

Hybrid	Resistance to Brevicoryne brassicae (9° scale)	Resistance to Delia radicum (9° scale)				
	2017 s.d.	2018 s.d.	2019 s.d.	2017 s.d.	2018 s.d.	2019 s.d.
H1	8.8abc 0.42	6.333bcd 0.58	6.667c 2.31	6.9bcde 2.56	8.333ab 0.58	3.667i 3.79
H2	9a 0.00	6.333bcd 1.15	7.8ab 0.45	6.5bcdef 3.38	7.333abc 2.89	8abc 1.23
H3	8.8abc 0.42	7abcd 0.00	7.333bc 0.58	7.6abc 1.58	6abc 4.36	7.333abc 1.16
H4	8.889ab 0.33	3i 1.73	6.667c 1.53	7.3abc 2.41	6abc 3.46	7.667abc 0.58
H5	9a 0.00	5.333cde 1.53	7.4abc 1.34	7.2abcd 2.78	7abc 1.73	6cdef 2.07
H6	9a 0.00	3.333hi 2.31	7.8ab 0.45	7.4abc 2.80	3.667cd 3.79	7.4abcd 0.55
H7	8.8abc 0.42	3.667gh 2.89	7.333bc 0.58	5.8cdef 3.08	4bcd 4.36	7bcde 1.00
H8	8.5bcd 0.71	6cdef 1.73	8ab 0.00	6.1cdef 2.64	6abc 2.65	8.4a 0.55
H9	8.7abcd 0.48	5efghi 1.00	7.667ab 0.58	6.6cdef 2.27	4bcd 1.73	6defg 2.00
H10	8.5bcd 0.85	7.333abc 0.58	7.8ab 0.45	6.5cdef 2.55	9a 0.00	6.8cdef 1.64
H11	8.7abcd 0.48	7abcd 0.00	8ab 0.00	3.5gh 2.92	9a 0.00	7.8abc 0.84
H12	9a 0.00	4.333fghi 2.52	8ab 0.00	6.6cdef 3.37	5.667abc 4.04	8.333ab 0.58
H13	8.9ab 0.32	7.333abc 0.58	8ab 0.00	4.9efg 1.85	5.333abc 3.79	8.2ab 0.45
H14	8.8abc 0.63	7.667ab 0.58	7.25bc 0.96	6.9cde 2.85	6.667abc 3.22	7.5abcd 1.00
H15	8.6abcd 0.70	4.333fghi 3.06	7.8ab 0.45	7.3abc 1.42	1d 0.00	7.6ab 0.55
H16	9a 0.00	6.667bcde 0.58	7.333bc 0.58	6.8bcde 3.55	5.667abc 4.04	5ghi 1.73
H17	8.9ab 0.32	6.333bcd 2.08	8.2a 0.45	7.1abcd 2.18	6.667abc 3.22	7.8abc 0.84
H18	8.7abcd 0.95	7abcd 0.00	8ab 0.00	6.3cdef 1.57	5.667abc 4.04	7.4abcd 0.89
H19	8.4cd 0.70	5.333cdeghi 0.58	7.6ab 0.55	2.3h 1.57	6abc 4.36	7.2abcd 1.30
H20	8.9ab 0.32	5.667bcdeghi 1.5	7.6ab 0.55	8.4ab 0.84	5.667abc 4.04	7.8abc 0.84
H21	9a 0.00	6bcd 1.00	8ab 0.00	7.4abc 2.17	6abc 4.36	6.8cdef 1.30
H22	9a 0.00	7.333abc 1.5	8ab 0.00	7.8abc 2.04	8.333ab 0.58	7.8abc 0.45
H23	7.9e 1.20	4.667efghi 2.08	7.5abc 0.58	4.6fg 1.71	5.667abc 4.04	7.5abcd 0.58
H24	8.3de 1.16	7.667ab 0.58	8ab 0.00	5.2cdef 1.32	8.333ab 0.58	5.333fghi 1.53
H25	8.8abcd 0.63	6.333bcd 1.15	8ab 0.00	6.3cdef 2.16	3.667cd 2.89	7.8ab 0.45
H26	9a 0.00	7.667ab 0.58	7.333bc 0.58	7.7abc 2.58	9a 0.00	5.667fg 1.53
H27	9a 0.00	6.667bcde 0.58	7.667ab 0.58	7.5abc 2.59	8.333ab 1.16	4hi 2.65
H28	9a 0.00	9a 0.00	– – 9a 0.00	0.00	9a 0.00	– –
H29	9a 0.00	9a 0.00	– – 9a 0.00	0.00	9a 0.00	– –
H30	9a 0.00	9a 0.00	– – 9a 0.00	0.00	9a 0.00	– –
H31	9a 0.00	6.333bcd 1.15	7.4abc 0.89	6.1cdef 1.91	9a 0.00	7.4abcd 0.89
LSD 0.05	0.45	2.233	0.841	2.01	4.644	1.592

Values with different letters in columns are significantly different.
Table 6: Mean values and standard deviations (s.d.) for cultivar resistance to *Brevicoryne brassicae* and resistance to *Delia radicum* (*N* = 90)

Cultivar	Resistance to *Brevicoryne brassicae* (9° scale)	Resistance to *Delia radicum* (9° scale)				
	2017 Mean s.d.	2018 Mean s.d.	2019 Mean s.d.	2017 Mean s.d.	2018 Mean s.d.	2019 Mean s.d.
C1						
C2						
C3						
C4						
C5						
C6						
C7						
C8						
C9						
C10						
C11						
C12						
C13						
C14						
C15						
C16						
C17						
C18						
C19						
C20						
C21						
C22						
C23						
C24						
C25						
C26						
C27						
C28						
C29						
C30						
C31						
C32						
C33						
C34						
C35						
C36						
C37						
C38						
C39						
C40						
C41						
C42						
C43						
C44						
C45						
C46						
C47						
C48						
C49						
C50						
C51						
C52						
C53						
LSD$_{0.05}$	0.085	1.61	0.76	1.65	3	2.4

Values with different letters in columns are significantly different.
Table 7: List of genotypes with high resistance to pests in three successive years

Brevicoryne brassicae
Hybrids
Cultivars

Delia radicum
Hybrids
Cultivars

Genotypes resistant to both pests are highlighted in bold font. *Numbers according to Table 1.

In conclusion, we found several sources of resistance to *D. radicum* and *B. brassicae* among the rapeseed cultivars, i.e., Galileus and Marcolo, and interspecific *Brassicaceae* hybrids, i.e., *B. napus* cv. Jet Neuf × *B. carinata* – PI 649096. Some of the genotypes showed high level of resistance over the three successive years of field trials. These genotypes are especially valuable and should be diligently analysed.

Acknowledgments: This research was funded by the Polish Ministry of Agriculture and Rural Development, project number 54.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: All data generated or analysed during this study are included in this published article.

References

[1] Food and Agriculture Organization of the United Nations – FAOSTAT. 2018. Database – crops production. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 12.04.2020).

[2] Institute of Agricultural and Food Economics – National Research Institute in Poland. 2018. Market analysis. Available online: https://www.ierigz.waw.pl (accessed on 12.04.2020).

[3] Wóźniak E, Waszkowska E, Zimny T, Sowa S, Twardowski T. The rapeseed potential in Poland and Germany in the context of production, legislation, and intellectual property rights. Front Plant Sci. 2019;10(1423):1–11.

[4] Mrówczyński M. Studium nad doskonaleniem ochrony rzepaku oziomego przed szkodnikami. Rozprawy Naukowe Inst.

[5] Ochr. Roślin [Research on improving the protection of winter rape against pests]. Sci Thesis Inst Plant Prot, Poznań. 2003;10:1–61.

[6] Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, et al. Increase in crop losses to insect pests in a warming climate. Science. 2018;361:916–9.

[7] Śliwa M, Korbas M, Praczyk T, Giwadowski R, Jajor E, Pruszyński G, et al. Ochrona roślin w integrowanej produkcji rzepaku [Plant protection in integrated oilseed rape production]. Rośliny Oleist-Oliseed Crop. 2009;30(2):245–56.

[8] Chmiel J, Han X, Moens M. Biological control of *Delia radicum* (Diptera: Anthomyiidae) with entomopathogenic nematodes. Appl Entomol Zool. 2003;38:441–8.

[9] Santolamazza-Carbone S, Velasco P, Cartea ME. Resistance to the cabbage root fly, *Delia radica* (Diptera, Anthomyiidae), of turnip varieties (*Brassica rapa* subsp. *rapa*). Euphytica. 2017;213–274:1–13.

[10] Capinera JL. Handbook of Vegetable Pests. San Diego: Academic Press; 2001.

[11] Griffith GCD. Phenology and dispersion of *Delia radicum* (L.) (Diptera: Anthomyiidae) in canola fields at Morinville, Alberta. Quaestl Entomol. 1986:22:29–50.

[12] Painter RH. Insect resistance in crop plants. New York: The MacMillan Company; 1951.

[13] Acquaah G. Principles of plant genetics and breeding. Oxford: Blackwell Publishing Ltd; 2012.

[14] Painter RH. The economic value and biologic significance of insect resistance in plants. J Econ Entomol. 1941;14:358–67.

[15] Shuhang W, Voorrips RE, Steenhuis-Broers G, et al. Antibiosis resistance against larval cabbage root fly, *Delia radicum*, in wild *Brassica*-species. Euphytica. 2016;211:139–55.

[16] Horowitz AR, Ishaya I. Insect pest management: field and protected crops. Heidelberg, Berlin: Springer-Verlag; 2004.

[17] Jensen EB, Felkl G, Kristiansen K, Andersen SB. Resistance to the cabbage root fly, *Delia radicum*, within *Brassica fruticulosa*. Euphytica. 2002;124:379–86.

[18] Ellis PR, Pink DAC, Barber NE, Mead A. Identification of high levels of resistance to cabbage root fly, *Delia radicum*, in wild *Brassica* species. Euphytica. 1999;110:207–14.

[19] Broekgaard C, Snoeren TA, Dicke M, Vosman B. Exploiting natural variation to identify insect-resistance genes. Plant biotechnol J. 2011;9:819–25.

[20] McCaffrey JP, Harmon BL, Brown J, Brown AP, Davis JB. Assessment of *Sinapis alba*, *Brassica napus* and *S. alba × B. napus* hybrids for resistance to cabbage seedpod weevil, *Ceutorhynchus assimilis* (Coleoptera: Curculionidae). J Agric Sci. 1999;132:289–95.

[21] Sjödin C, Gilmeilus K. Screening for resistance to blackleg *Phoma lingam* (Tode ex Fr.) Desm. within *Brassicaeae*. J Phytopathol. 1988;123:322–32.

[22] Wang R, Ripley VL, Rakow G. Pod shatter resistance evaluation in cultivars and breeding lines of *Brassica napus*, *B. juncea* and *Sinapis alba*. Plant Breed. 2007;126:588–95, doi: 10.1111/j.1439-0523.2007.01382.x.

[23] Niemann J, Bocianowski J, Stuper-Szablewska K, Wojciechowski T. New interspecific *Brassica* hybrids with high
levels of heterosis for fatty acids composition. Agriculture. 2020;10:221.

[24] Niemann J, Wojciechowski A, Janowicz J. Broadening the variability of quality traits in rapeseed through interspecific hybridization with an application of immature embryo culture. BioTechnol J Biotechnol Comput Biol Bionanotechnol. 2012;9(2):109–15.

[25] Niemann J, Kaczmarek J, Książczyk T, Wojciechowski A, Jędryczka M. Chinese cabbages (Brassica rapa ssp. pekinensis) — a valuable source of resistance to clubroot (Plasmodiophora brassicae). EUR J Plant Pathol. 2017;147:181–98.

[26] Wojciechowski A. Some morphological and phenological traits and fertility of lines of artificial winter oilseed rape originated from male sterile plants (Brassica napus var. oleifera). Genet Pol. 1993;34:317–25.

[27] Anon. Guidelines on pest risk analysis. No. 3. Pest risk assessment scheme. Bull OEPF/EPPO Bull. 1997;27:281–305.

[28] UPOV. International Union for the Protection of New Varieties of Plants. Guidance on certain physiological characteristics. Document TGP/12. Geneva, Switzerland: 2012.

[29] Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52:591–611.

[30] Harris CR, Manson GF, Mazurek JH. Development of insecticide resistance by soil insects in Canada. J Econ Entomol. 1962;55:777–80.

[31] McDonald S, Swales GE. Dieldrin resistance in Hylemya brassicae (Diptera: Anthomyiidae) in Alberta. Can Entomol. 1975;107(7):729–34.

[32] Ahmad M, Akhtar S. Development of insecticide resistance in field populations of Brevicoryne brassicae (Homoptera: Aphididae) in Pakistan. J Econ Entomol. 2013;106(2):954–8.

[33] Arora R, Sandhu S, editors. Breeding insect resistant crops for sustainable agriculture. Singapore: Springer; 2017.

[34] Hervé MR. Breeding for insect resistance in oilseed rape: challenges, current knowledge and perspectives. Plant Breed. 2018;137:27–34.

[35] Singh R, Ellis PR, Pink DAC, Phelps K. An investigation of the resistance to cabbage aphid in brassica species. Ann Appl Biol. 1994;125:457–65.

[36] Shuhang W, Voorrips RE, Steenhuis-Broers G, Vosman B, van Loon JJA. Antibiosis resistance against larval cabbage root fly, Delia radicum, in wild Brassica-species. Euphytica. 2016;211:139–55.

[37] Dossdall LM, Good A, Keddie BA, Ekuere U, Stringam G. Identification and evaluation of root maggot (Delia spp.) (Diptera: Anthomyiidae) resistance within Brassicaceae. Crop Prot. 2000;19:247–53.

[38] Hervé MR, Cortesero AM. Potential for oilseed rape resistance in pollen beetle control. Arthropod-Plant Interact. 2016;10(6):463–75.

[39] Cook SM, Rasmussen HB, Birckett MA, Murray DA, Pye BJ, Watts NP, et al. Behavioural and chemical ecology underlying the success of turnip rape (Brassica rapa) trap crops in protecting oilseed rape (Brassica napus) from the pollen beetle (Meligethes aeneus). Arthropod Plant Interact. 2007;1:57–67.

[40] Veromann E, Metspalu L, Williams IH, Hiesaar K, Mand M, Kaasik R, et al. Relative attractiveness of Brassica napus, Brassica nigra, Eruca sativa and Raphanus sativus for pollen beetle (Meligethes aeneus) and their potential for use in trap cropping. Arthropod Plant Interact. 2012;6:385–94.

[41] Kaasik R, Kovács G, Toome M, Metspalu L, Veromann E. The relative attractiveness of Brassica napus, B. rapa, B. juncea and Sinapis alba to pollen beetles. Biocontrol. 2014;59:19–28.

[42] Kott LS, Dossdall LM. Introgression of root maggot resistance (Delia spp.) derived from Sinapis alba L. into Brassica napus L. Brassica. 2004;6:55–62.

[43] Bodnaryk RP, Lamb RJ. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in mustard seedlings, Sinapis alba L. Can J Plant Sci. 1991;71:13–20.

[44] Gavloski JE, Ekuere U, Keddie A, Dossdall L, Kott L, Good SG. Identification and evaluation of flea beetle (Phyllotreta cruciferae) resistance within Brassicaceae. Can J Plant Sci. 2000;80:881–7.

[45] Ulmer B, Gillott C, Erlanson M. Feeding preferences, growth, and development of Mamestra configurata (Lepidoptera: Noctuidae) on Brassicaceae. Can Entomol. 2001;133:509–19.

[46] Eckomb B, Borg A. Pollen beetle (Meligethes aeneus) oviposition and feeding preferences on different host plant species. Entomol Exp Appl. 1996;78:291–9.

[47] McCaffrey JP, Harmon BL, Brown J, Davis JB. Resistance of canola-quality cultivars of yellow mustard, Sinapis alba L., to the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham). Can J Plant Sci. 2004;84:397–9.

[48] Bhattacharya S. Brassica-aphid interaction: challenges and prospects of genetic engineering for integrated aphid management. Physiol Mol Plant Pathol. 2019;108(101442):1–12.

[49] Amer M, Aslam M, Razaq M, Afzal M. Lack of plant resistance against aphids, as indicated by their seasonal abundance in canola, Brassica napus (L.) in Southern Punjab, Pakistan. Pak J Bot. 2009;41(3):1043–51.

[50] Hao ZP, Zhan HX, Wang YL, Hou SM. How cabbage Aphis Brevicoryne brassicae (L.) make a choice to feed on Brassica napus cultivars. Insects. 2019;10:1–11.

[51] Yadav N, Agrawal N, Yadav R. Influence of weather parameters on the population of different cabbage pests in organic cabbage field. J Entomol Zool Stud. 2019;7(3):551–3.

[52] Gaikwad AD, Bhide BV, Bokan SC, Bhosle BB. Seasonal incidence of major insect pests, natural enemies on cauliflower, and their correlation with weather parameters. J Entomol Zool Stud. 2018;6(5):952–6.

[53] Yencho GC, Cohen MB, Byrne PF. Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol. 2000;45(1):393–422.

[54] Ekuere UU, Dossdall LM, Hills M, Keddie AB, Kott L, Good A. Identification, mapping, and economic evaluation of QTLs encoding root maggot resistance in Brassica. Crop Sci. 2005;45(1):371–8.