clinker & clustermap.js: Automatic generation of gene cluster comparison figures

Cameron L.M. Gilchrist*1, Yit-Heng Chooi*1

1School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, 6009
E-mail: cameron.gilchrist@research.uwa.edu.au, yitheng.chooi@uwa.edu.au
Abstract

Summary

Genes involved in biological pathways are often collocalised in gene clusters, the comparison of which can give valuable insights into their function and evolutionary history. However, comparison and visualisation of gene cluster homology is a tedious process, particularly when many clusters are being compared. Here, we present clinker, a Python based tool, and clustermap.js, a companion JavaScript visualisation library, which used together can automatically generate accurate, interactive, publication-quality gene cluster comparison figures directly from sequence files.

Availability and Implementation

Source code and documentation for clinker and clustermap.js is available on GitHub (github.com/gamcil/clinker and github.com/gamcil/clustermap.js, respectively) under the MIT license. clinker can be installed directly from the Python Package Index via pip.

Contact

E-mail: cameron.gilchrist@research.uwa.edu.au, yitheng.chooi@uwa.edu.au
Introduction

Genes involved in biological pathways are often collocalised in the genome in gene clusters, the study of which is important given their potential to encode traits such as the biosynthesis of bioactive small molecules, virulence and drug resistance. Gene clusters are typically conserved to some extent across taxa, and comparative analysis can reveal significant insights into their evolution and potential differences in the pathways they encode. For instance, the conservation (or lack thereof) of gene clusters encoding the biosynthesis of secondary metabolites can guide the search for new drug compounds and bioactivities (Gilchrist et al., 2018; Ziemert et al., 2016).

Comparative analysis of large genomic datasets has become increasingly common in the post-genomics era, with visualisations of gene cluster conservation across species often featured prominently in such work (de Vries et al., 2017; Nielsen et al., 2017; Doroghazi and Metcalf, 2013). This is a tedious process, and as such has driven the development of numerous tools (e.g. EasyFig (Sullivan et al., 2011), Artemis Comparison Tool (Carver et al., 2005), GeneSpy (Garcia et al., 2019), Gene Graphics (Harrison et al., 2018)) and libraries (e.g. GenomeDiagram (Pritchard et al., 2006), genoPlotR (Guy et al., 2010)). However, these tools have drawbacks: most have limited interactivity, with clusters unable to be repositioned, reordered or resized without changing input files; visualisation options are inflexible, if not fixed; some require sequence comparison files to be generated externally using tools such as BLAST (Camacho et al., 2009), complicating the process; and libraries require some level of programming knowledge, making them inaccessible to the average biologist. Thus in many cases, researchers choose either to forgo specialist tools entirely, creating figures manually in other software (e.g. Microsoft PowerPoint, Adobe Illustrator), or directly use the output generated by analysis tools such as MultiGeneBlast (Medema et al., 2013), cblaster (Gilchrist, 2020), or antiSMASH (Blin et al., 2019). This quickly becomes a daunting prospect when many clusters are to be compared. There is therefore a need for tools which produce clear, publication-quality visualisations, are more flexible and intuitive than existing tools, and require no significant effort on the part of the user other than providing sequence data.

Here we describe clinker, a Python-based gene cluster comparison pipeline, and clustermap.js, a companion visualisation JavaScript library, which can automatically generate interactive, to-scale gene cluster comparison figures directly from sequence files.

Gene cluster alignments using clinker

The clinker workflow is detailed in Figure 1. clinker accepts GenBank files as input; multi-record GenBank files are treated as gene clusters with multiple loci. Amino acid translations of genes in each cluster are extracted and aligned using the BioPython package (Cock et al., 2009). By default, global alignments are performed using the BLOSUM62 substitution matrix, a gap open penalty of -10 and extension penalty of -0.5, however parameters
Figure 1: The clinker pipeline (a) and visualisation of the burnetramic acid biosynthetic gene cluster ([Li et al., 2019]) and homologues generated by clinker using clustermat.js (b). The gene cluster comparison figure in (b) is presented exactly as was achieved within the clustermat.js visualisation, with only minor further editing of text labels done in external software (italicising species names). The static HTML file used to generate (b) is provided in the supplementary information.
can be changed when directly using the clinker Python API. Any alignments not reaching the user-defined sequence identity threshold are discarded.

Optimal ordering of clusters for visualisation is determined through hierarchical clustering. First, a cluster similarity score is calculated for every pair of input clusters. clinker uses a modified version of the formula implemented by Medema et al. (2013) in MultiGeneBlast, which incorporates both sequence homology and syntenic conservation. Briefly, the similarity of two clusters is given by $S = h + i \cdot s$, where h is the cumulative sequence identity of homologous sequences in each cluster, s is the total number of shared contiguous sequence pairs, and i is a weighting factor which determines the weight of synteny compared to sequence homology (0.5 by default). The resulting similarity matrix is then hierarchically clustered using the Ward variance minimization algorithm as implemented in the SciPy package (Virtanen et al., 2020). The leaves of the dendrogram generated in this step are used as the default order of clusters in the clustermap.js visualisation.

Interactive visualisations using clustermap.js

Cluster alignments generated using clinker are visualised using clustermap.js (Figure 1b). Though designed in conjunction with clinker, clustermap.js is a standalone library and can take data generated elsewhere as long as it abides by the correct schema.

Clusters are drawn to scale based on a user-definable scaling factor (15 pixels per 1000 base pair by default). Clusters can be renamed by clicking their labels and reordered by dragging them, enabling comparisons between clusters outside of the computed optimal ordering.

clustermap.js is capable of displaying multi-locus clusters. For example, the biosynthetic gene cluster for the burnettramic acids (Li et al., 2019) is split over three contigs due to fragmented genome assembly, but is readily visualised by our tool (top-most cluster in Figure 1b). Hovering over a locus displays a grey box with handles at both ends; loci can be freely repositioned by clicking and dragging the box, inverted by double clicking it, or resized (hiding genes) by dragging the handles. Any changes in the visible area of specific loci is reflected by the coordinates in the cluster label. Genes are drawn as arrows, whose shape is easily altered using sliders for body height, tip height and length. The visualisation can be anchored around a specific gene by clicking on it: clustermap.js will identify the closest homologous genes in other clusters and automatically reposition them to align with the clicked gene. Gene labels can be resized, repositioned or hidden entirely.

Links are drawn between homologous genes on neighbouring clusters and are shaded based on sequence identity (0% white, 100% black). By default, all links above the identity threshold in clinker are drawn; this threshold can be raised within the clustermap.js visualisation to dynamically hide links. Alternatively, one can choose to show only the highest scoring links between clusters, which is useful when multiple similar genes exist within a
cluster, resulting in many overlapping links. Groups of homologous genes are established via single linkage of gene
links. Each homology group is assigned a unique colour, which is used as the fill of both the genes in the group
and its corresponding entry in the figure legend.

The scale bar, colour bar and homology group legend are embedded in the figure, and are automatically
repositioned based on cluster and locus placement. The length of the scale bar can be changed by clicking on its
text. Likewise, legend entries can be renamed by clicking their text.

Figures generated by clinker and clustermap.js are easily exported as scalable vector graphics (SVG) files
that can be further modified in vector image software.

cinker and clustermap.js can serve as a useful extension of gene cluster search tools such as MultiGeneBlast
(Medema et al., 2013) or cblaster (Gilchrist, 2020).

In conclusion, clinker and clustermap.js enable the easy creation of publication quality gene cluster com-
parison figures, and can help facilitate and accelerate large-scale comparative genomic analysis, visualisation and
presentation of gene clusters.

Software Implementation and Availability

cinker is implemented in Python 3 and can be freely installed from the Python Package Index (pypi.org/project/clinker).
clustermap.js is implemented in JavaScript and is built on top of the D3 visualisation library (Bostock et al.,
2011). Source code and documentation for both tools is freely available on GitHub (github.com/gamcil/clinker
and github.com/gamcil/clustermap.js).

Acknowledgements

C.L.M.G is supported by an Australian Government Research Training Project scholarship. Y-H.C is supported
by an Australian Research Council Future Fellowship (FT160100233).

References

Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., and Weber, T. (2019).
antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res, 47(W1),
W81–W87.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 Data-Driven Documents. IEEE T Vis Comput Gr, 17(12),
2301–2309.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009). BLAST+: Architecture and applications. *BMC Bioinformatics, 10*(1), 421.

Carver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M.-A., Barrell, B. G., and Parkhill, J. (2005). ACT: The Artemis comparison tool. *Bioinformatics, 21*(16), 3422–3423.

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., and de Hoon, M. J. L. (2009). Biopython: Freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics, 25*(11), 1422–1423.

de Vries, R. P., Riley, R., Wiebenga, A., Aguilar-Osorio, G., Amillis, S., Uchima, C. A., Anderluh, G., Asadollahi, M., Askim, M., Barry, K., Battaglia, E., Bayram, Ö., Benocci, T., Braus-Stromeyer, S. A., Caldana, C., Cánovas, D., Cerqueira, G. C., Chen, F., Chen, W., Choi, C., Clum, A., dos Santos, R. A. C., Damádio, A. R. d. L., Dallinhas, G., Emri, T., Fekete, E., Flippini, M., Freyberg, S., Gallo, A., Gournas, C., Habgood, R., Hainaut, M., Hariispe, M. L., Henriassat, B., Hildén, K. S., Hope, R., Hossain, A., Karabika, E., Karaffa, L., Karányi, Z., Kraševec, N., Kuo, A., Kusch, H., LaButti, K., Lagendijk, E. L., Lapidus, A., Levasseur, A., Lindquist, E., Lipzen, A., Logrieco, A. F., MacCabe, A., Mäkelä, M. R., Malavazi, I., Melin, P., Meyer, V., Mielnichuk, N., Miskei, M., Molnár, Á. P., Mulé, G., Ngan, C. Y., Orejas, M., Orosz, E., Ouedraogo, J. P., Overkamp, K. M., Park, H.-S., Perrone, G., Piumi, F., Punt, P. J., Ram, A. F. J., Ramón, A., Rauscher, S., Record, E., Riaño-Pachón, D. M., Robert, V., Röhrig, J., Ruller, R., Salamov, A., Salih, N. S., Samson, R. A., Sándor, E., Sanguinetti, M., Schütze, T., Sepcić, K., Shelest, E., Sherlock, G., Sophianopoulou, V., Squina, F. M., Sun, H., Susca, A., Todd, R. B., Tsang, A., Unkles, S. E., van de Wiele, N., van Rossen-Uffink, D., Oliveira, J. V. d. C., Vesth, T. C., Visser, J., Yu, J.-H., Zhou, M., Andersen, M. R., Archer, D. B., Baker, S. E., Benoit, I., Brakhage, A. A., Braus, G. H., Fischer, R., Frisvad, J. C., Goldman, G. H., Houbraken, J., Oakley, B., Pócsi, I., Scazzocchio, C., Seiboth, B., van Kuyk, P. A., Wortman, J., Dyer, P. S., and Grigoriev, I. V. (2017). Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. *Genome Biol, 18*(1), 28.

Doroghazi, J. R. and Metcalf, W. W. (2013). Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. *BMC Genomics, 14*(1), 611.

Garcia, P. S., Jauffrit, F., Grangeasse, C., and Brochier-Armanet, C. (2019). GeneSpy, a user-friendly and flexible genomic context visualizer. *Bioinformatics, 35*(2), 329–331.

Gilchrist, C. L. M. (2020). gamcil/cblaster: cblaster v1.2.2.

Gilchrist, C. L. M., Li, H., and Chooi, Y.-H. (2018). Panning for gold in mould: Can we increase the odds for fungal genome mining? *Org Biomol Chem, 16*(10), 1620–1626.
Guy, L., Roat Kultima, J., and Andersson, S. G. E. (2010). genoPlotR: Comparative gene and genome visualization in R. *Bioinformatics*, **26**(18), 2334–2335.

Harrison, K. J., de Crécy-Lagarde, V., and Zallot, R. (2018). Gene Graphics: A genomic neighborhood data visualization web application. *Bioinformatics*, **34**(8), 1406–1408.

Li, H., Gilchrist, C. L. M., Lacey, H. J., Crombie, A., Vuong, D., Pitt, J. I., Lacey, E., Chooi, Y.-H., and Piggott, A. M. (2019). Discovery and Heterologous Biosynthesis of the Burnettramic Acids: Rare PKS-NRPS-Derived Bolaamphiphilic Pyrrolizidinediones from an Australian Fungus, *Aspergillus burnetii*. *Org Lett*, **21**(5), 1287–1291.

Medema, M. H., Takano, E., and Breitling, R. (2013). Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast. *Mol Biol Evol*, **30**(5), 1218–1223.

Nielsen, J. C., Grijseels, S., Prigent, S., Ji, B., Dainat, J., Nielsen, K. F., Frisvad, J. C., Workman, M., and Nielsen, J. (2017). Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. *Nat Microbiol*, **2**(6), 17044.

Pritchard, L., White, J. A., Birch, P. R. J., and Toth, I. K. (2006). GenomeDiagram: A python package for the visualization of large-scale genomic data. *Bioinformatics*, **22**(5), 616–617.

Sullivan, M. J., Petty, N. K., and Beatson, S. A. (2011). Easyfig: A genome comparison visualizer. *Bioinformatics*, **27**(7), 1009–1010.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloekner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T.,
Jones, T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., Vázquez-Baeza, Y., and SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. *Nat Methods*, **17**(3), 261–272.

Ziemert, N., Alanjary, M., and Weber, T. (2016). The evolution of genome mining in microbes – a review. *Nat Prod Rep*, **33**(8), 988–1005.