The genome of the “Sea Vomit” *Didemnum vexillum*

Ernesto Parra-Rincón1*, Cristian A. Velandia-Huerto7,1*, Jörg Fallmann7, Adriaan Gittenberger2,3,4, Federico D. Brown5,6, Peter F. Stadler7,8,9,1,10† and Clara I. Bermúdez-Santana1†

Abstract

Background: Tunicates are the sister group of vertebrates and thus occupy a key position for investigations into vertebrate innovations as well as into the consequences of the vertebrate-specific genome duplications. Nevertheless, tunicate genomes have not been studied extensively in the past and comparative studies of tunicate genomes have remained scarce. The carpet sea squirt *Didemnum vexillum* is a colonial tunicate considered an invasive species with substantial ecological and economical risk.

Results: We report a newly re-assembled genome of *Didemnum vexillum*. We used a hybrid approach that combines two genome sequencing technologies and also its first transcriptome. Started from 28.5 Gb Illumina and 12.35 Gb of PacBio data a new hybrid scaffolded assembly was obtained comprised of a total size of 517.55 Mb that increases contig length about 8-fold compared to previous, Illumina-only assembly. While still highly fragmented (L50=25,284, N50=6539), the assembly is sufficient for comprehensive annotations of both protein-coding genes and non-coding RNAs.

Conclusions: The draft assembly of the “sea vomit” genome provides a valuable resource for comparative tunicate genomics and for the study of the specific properties of colonial ascidians.

Availability: Genome and annotation data as well as a link to a UCSC Genome Browser hub are available at http://tunicatadvexillum.bioinf.uni-leipzig.de/.

Keywords: Tunicata; *Didemnum vexillum*; microRNAs; genome annotation

Background

The carpet sea squirt *Didemnum vexillum* [1], a.k.a. “sea vomit”, is a colonial tunicate presumably native to Japan that has appeared as an invasive species in Europe, the Americas, and New Zealand [2]. It negatively affects established benthic species and damages ship hulls as well as the infrastructure in marinas, ports, and shellfish farms.

Rapid colony growth or regression in response to the dynamics of the habitat [3], water temperature [4], colony fragmentation as a reproductive and dispersal strategy [5], fast asexual budding that allows attachment to a variety of living and/or non-living substrata, and relatively few predators [3] have facilitated *D. vexillum* to become a well-recognized world-wide invasor.

The invasion potential of *D. vexillum* has an important economic impact on the aquaculture industry as it affects the conditions of bivalve and shellfish cultures (see e.g. [6] and the references therein), and increases the cost of maintenance to avoid the fouling process on mussel cages and facilities [7].

Despite the economic impact of tunicates and their pivotal phylogenetic position as sister group of the vertebrates, genomic studies and comparative analyses have remained relatively scarce. So far, the genomes of three solitary tunicates have been assembled and annotated in substantial depth: for the closely related sessile ascidians *Ciona savignyi* and *Ciona robusta* assemblies of their 14 chromosomes are available [8–11]; and for the pelagic larvacean *Oikopleura dioica* only 6 chromosomes have been reported [12–14]. In addition, draft assemblies recently have become available for the pelagic colonial thaliacian *Salpa thompsoni*, which was used to analyse the high mutation rates in the genomes of tunicates [15].

1* Equal contributor
2† Correspondence: studla@bioinf.uni-leipzig.de (PFS) or cibermudezs@unal.edu.co (CIBS)
Other genomic studies in tunicates include: for solitary ascidians, the genome of Halocynthia roretzi was used to predict microRNAs [16], and the genomes of three species of Molgula (M. occidentalis, M. oculata and M. occulta) were used [17] to study developmental system drift during cardiopharyngeal development. At the same time, the ANISEED database [18] served as a hub for ongoing sequencing projects for other ascidian species, including Phallusia mammillata, Phallusia fumigata and Halocynthia aurantium. For colonial ascidians, the genome of Botryllus schlosseri has been assembled to 13 incomplete chromosomes (of the 16 chromosomes in total) [19], and a draft assembly comprising 1778 scaffolds has been reported for the related species Botryllodes leachii [20]. A very fragmented assembly of the “sea vomit” Didemnum vexillum was also recently sequenced by our group to analyze non-coding RNAs (ncRNAs) [21]. Here we report on a substantial improvement of this assembly.

Comparisons between tunicate and other chordate genomes have identified both expansions of gene families and innovations such as the horizontally transferred genes of cellulose synthase from Actinobacteria [22], but also substantial losses, e.g., of parts of the homeobox (HOX) gene cluster [20]. The genomic organization of tunicates, as exemplified by Ciona and Oikopleura shows substantial differences compared to both vertebrates and amphioxus, the common outgroup to the Olfactores [23], and has led to the hypothesis that tunicates have undergone major genomic re-structuring because of an accelerated rate of evolution that was linked to changes in the organization of the entire gene complements [15, 24, 25]. In contrast, other chordate lineages have maintained a fairly constant rate of evolution [15, 24, 25].

In this study we expand the assembly and annotation of tunicate genomic resources, and improve the current genome assembly of the colonial tunicate D. vexillum to contribute to the understanding of chordate evolution, as well as to help understand the genomic changes involved in the novel mechanisms of asexual reproduction of colonial animals.

Results

Assembly of the D. vexillum Genome

An improved assembly of the D. vexillum genome was obtained by integrating PacBio and Illumina sequencing (see Methods for details). This resulted in a new assembly at scaffold level, comprising about 517.55 Mb. This amounts to a reduction in the number of genome fragments by a factor of ~8× and a corresponding increase in the N50 length from 918 bp to ~6.5 Kb. The new assembly also decreases the estimated genome size by about 25 Mb. While only about 15% of the contigs in our previous study [21] were longer than 1 kb, this threshold is now exceeded by almost 96% of the scaffolds in the new assembly and thus allows at least a comprehensive gene-level analysis. The newly analyzed nucleotide composition was consistent with our previous study [21].

D. vexillum has a similar genome size and GC content as other deuterostome genomes, including 10 tunicate genomes. Among tunicates, solitary organisms appear to have smaller genomes (≤250 Mb) than colonial ones (with range from 160 to 723 Mb). The D. vexillum genome thus appears in the typical size range for colonial tunicates, and in terms of its size, the D. vexillum genome is comparable to the amphioxus genome (Figure 1).

Tunicates have a GC content ≤43%, with lowest values reported for solitary ascidians, particularly in the molgulids. D. vexillum is similar in GC content to the salp S. thompsoni and solitary ascidian species to the zebrafish D. rerio, but also to the two outgroup species, the ambulacrarians: (S. purpuratus and S. kowalevskii). Although we do not find a clear relationship between GC content and genome size in the deuterostomes, when we compare both factors (i.e. genome size and GC content) together, there is a tendency for tunicates to have both lower GC content and smaller genome sizes when compared to other deuterostomes, and other chordates in particular. Moreover, within tunicates, solitary species show even lower GC content and genome size compared to colonial species (Figure 1). It remains an open question what the biological consequences of this trend are for tunicates in general and colonial tunicates in particular.

Partial degradation of genomic DNA

Despite considerable efforts we could not avoid partial degradation of gDNA isolated from D. vexillum even though the same protocols were used by one of us (F. Brown) for other ascidians such as Styela, Perophora and Clavelina spp., where no problems of DNA degradation were encountered. Fragment size was quantified using Agilent 2100 Bioanalyzer at the University of Washington PacBio Sequencing Service Facility showing that the pick size was 2 Kb but some longer material was presented.

We hypothesize that the particularly high gDNA degradation in D. vexillum may be linked to the presence of tunic bladder cells, which are restricted to some groups of ascidians, including the Didemnidae. The bulk of their cytoplasm comprises a large vacuole containing sulfuric acid, which accounts for a tunic pH
<3.0 in didemnids [26] that may be involved in chemical defense. In contrast, tunic pH >6.0 was measured for Perophora and Clavelina species. The acidic pH may account for the observed gDNA degradation, possibly due to increased deamination rates [27, 28]. The partial degradation of gDNA is a confounding factor for genome assembly and accounts for the limited quality of our assembly.

Transcriptome Sequencing and Assembly

In order to support the annotation of the Sea vomit genome, the transcriptome was assembled from RNA-seq reads. Trinity assembled a total of 55.1 million paired-end Illumina reads into 90,938 transcripts. After two training rounds of Maker, only 64,424 transcripts were annotated, with a median contig length of 375 nt with a positive skewed, long-tailed distribution. There are transcripts with a length > 10 kb, both corresponding to the uncharacterised proteins Dux1 and Dux2 (as shown in Additional File 1: Tables 1 and 2). Both of which have homologs in C. robusta, containing the TTLa (PF12714) and von Willebrand factor type C protein domains (PF00093).

Genome Annotation

Detection and analysis of repetitive regions

To identify regions prone to have repetitive elements, a combined strategy using RepeatModeler and RepeatMasker was used to generate a de novo library. Additionally, including also the reported repeats library from C. robusta, the D. vexillum genome was soft-masked, as explained in Methods. About 300.66 Mb, i.e. 57.89% of the assembled D. vexillum genome, consists of repetitive elements (see Additional File 1). Most of the repetitive elements are interspersed repeats (56.96%) as well as retroelements (12.86%), DNA transposons (7.65%), leaving about 100 Mb of the repeats as unclassified elements (35.96%). This is similar to the repeat content of B. schlosseri (∼59.85%) [20]. The most abundant family of repeats in D. vexillum are 100,404 copies of SINE/tRNA-Lys, a class of repetitive elements that have not been reported for other tunicates species. The other highly abundant families (i.e. LINE/L2 and DNA/hAT-Charlie) are also prevalent in other tunicates, see Additional File 1: Table 6 for details.

Annotation of protein-coding genes

We identified 62,194 coding genes accounting for 64,424 distinct protein products (Table 1). About 97.5% of coding genes, have 0.97 kb in median, generate only one transcript and thus a single predicted protein product. Those genes that reported more than one transcripts have minimum and maximum median sizes of 0.44 to 7.07 kb, respectively (Additional File 1: Table 1). The largest annotated gene, Divexi.CG.Divexe2019.scaffold1-size56789.g1453, has a size of 33.74 kb and comprises as single transcript product, which accounts for a protein with domains as Laminin N-terminal (PF00055), Laminin EGF (PF00053) and Carbohydrate Binding Module 6 (PF03422). At the same time, it presented high homology to the C. robusta laminin alpha 5 subunit protein XP_026696566.1. The gene with largest number of transcripts is a homolog of Dynnein heavy chain proteins. It covers 16 exons in a region of only 7.07 kb and produces 10 observed isoforms, see Additional File 1: Figure 2 and Additional File 1: Table 2.

In order to assess the quality of both the genome assembly and the predicted gene set, we used BUSCO to compare them to metazoan orthologous genes (Figure 2). For the D. vexillum genome, from the 978 orthologs, 50.8% were found complete. Overall, the BUSCO results are comparable to other, published tunicate genomes (Figure 2), indicating that current assembly of D. vexillum is comparable to the S. thompsoni assembly in terms of completeness and annotation. In general terms, most of the reported tunicate genomes displayed ≥ 75.4% of complete BUSCO orthologs.

In this initial annotation, we specifically searched for homeobox transcription factors using a combined blastp/tblastn strategy (see Methods) that identified 48 coding sequences with their corresponding same number of genes located in 47 scaffolds. The most frequent found proteins are homologs from the families: ZEB2, LHX2 and Irx transcription factors. In an alternative approach we used the genome-wide alignments to compare existing annotations of homeobox genes in six tunicate and one cephalochordate genomes to our D. vexillum assembly (see Methods). Only one of the 48 homebox loci had annotated homologs in four of the six query species, which corresponds to a Hox2 gene, located on the scaffold16549-size8805. Several other Hox genes, however, were not recognized by the default homology annotation pipeline because of incomplete overlaps, and in some cases, no gene was annotated for D. vexillum (Figure 3).

By comparison with H, roretzi and Ciona spp., we expected to find three anterior, three middle-group, and three posterior Hox genes as in other tunicate genomes [29, 30]. Based on the data outline above and a more detailed manual search with genome alignments as support, we found evidence for two anterior
genes (Hox2 and Hox3), two central genes (Hox4 and Hox6/7-like), and the three expected posterior genes, as referred on Figure 3. What the consequences are for D. vexillum for the presumable absence of Hox1 and Hox5 remains to be studied. The assembly of the HOX gene region unfortunately is too fragmented to conclusively rule out the presence of Hox1 and Hox5 or to provide any linkage information of the reported Hox genes.

Annotation of noncoding RNAs

Noncoding RNAs were annotated using a homology-based strategy combining blastn searches, HMM profiles, and covariance models (CMs) as described in [21] with some modifications detailed in Methods. Not counting tRNAs, we identified 2153 ncRNA loci corresponding to 271 distinct ncRNA families. A search with trNAscan-SE resulted in 18,343 predicted loci, including pseudogenes and undetermined isotype candidates. In addition we mapped the 206 families of ncRNAs identified in a preliminary draft of the D. vexillum genome [21] to the current assembly (see Methods and Additional File 1). As in other genomes, in particular the pol-III transcribed RNAs including 5S rRNA, tRNAs, U6 RNA as well as the snRNAs transcribed by pol-II appear in multiples copies [31]. The data are summarized in Table 2. While most ncRNAs were visible in the automatized annotation pipeline, several additional ncRNAs could be added by manual curation only. RFAM IDs for the RNA families mentioned below can be found in Additional File 4.

Transfer RNAs. We found 2724 tRNAs and 15,619 tRNA pseudogenes or with undetermined isotype (23). The most abundant tRNA is tRNA7 where with 1395 copies, while only a single copy of tRNASeC was observed. Surprisingly, trNAscan-SE reports a large number of suppressor tRNAs including 5S rRNA, tRNAs, U6 RNA as well as the snRNAs transcribed by pol-II appear in multiples copies [31]. The data are summarized in Table 2. While most ncRNAs were visible in the automatized annotation pipeline, several additional ncRNAs could be added by manual curation only. RFAM IDs for the RNA families mentioned below can be found in Additional File 4.

Ribosomal RNAs. As in most eukaryotes, the small and large subunit (SSU 18S and LSU 28S) rRNAs are organized in repetitive units of the rRNA operon. It also contain the 5.8S rRNAs. In this case, D. vexillum reported 6 clusters of rRNAs: two clusters are composed of repetitions of 5S rRNA (scaffold1545-size16374 and scaffold22447-size6833), two clusters contain SSU 18S, 5.8S and LSU 28S rRNA elements, in total were found 6 5.8S, 3 SSU, and 4 LSU rRNAs.

Spliceosomal RNAs. All RNA components of the spliceosome machinery were found in the new genome assembly. As usual, the snRNAs of the major spliceosome appear in multiple copies U6 (46), U5 (9), U1 (21), U2 (27), U4 (3). Among the snRNAs of the minor spliceosome, U12 appear once, while there are 2 loci coding for U4atac, U6atac, and 4 U11 genes.

Other small nuclear RNAs. We identified the expected genes for the RNA component of the signal recognition particle as well as the RNase P RNA, RNase MRP RNA, and 7SK RNA. No homologs were found for the telomerase RNA, U7 snRNA, vault RNA, and Y RNAs, although their presence in the genome is expected. These groups are notoriously difficult to be detected by homology search without the benefit of known homologs in closely related species [32]. A thorough search along reported Tunicata genomes successfully reported vault snRNA loci, except for D. vexillum, other families were not detected, indicating that specific CMs should be redefined with a broad set of sequences to improve the annotation from those families on D. vexillum and another tunicate species (Additional File 1: Table 5).

MicroRNAs. The miRNA annotation pipeline, described in the Methods section, identified 2065 loci encoding members of 248 distinct miRNA families. An additional 20 loci, which harbor two additional families, correspond to previously reported miRNAs [21] which were successfully mapped into the new assembly. To avoid the annotation of false positives due to the modification of the threshold values (see Additional File 1: Figure 12), the position of the mature sequence was evaluated using MiRFix [33] which used both, the RFAM database for the miRNA families alignments and miRBase as source for the annotated mature sequences (as explained in more detail in Methods and Additional File 1: Figure 5). As a result, the definition of a true miRNA candidate relies not only on the homology results given by the sequence/secondary structure comparison, but also in the annotation of their mature sequence. In addition, we also require miRNA-specific features, such as a conserved position of the mature products within the defined miRNA family. To this end, candidates that reported homologous mature regions were compared against their corrected stockholm alignments, by the calculation of the tree edit distance between generated consensus secondary structures, as described on Additional File 1.

In this way, a number of 1582 loci were reported, from which 1394 fulfill all the designed filters and reported a set of mature sequences harbored at the predicted hairpin structure, the other 188 have broken the
conservation block in the defined family alignment, despite having shown a high conservation at hairpin level. Taking into account those detected miRNAs with mature annotation, the distribution of loci shows that 75% of miRNA families have less than 6 loci. The corresponding 25% of miRNA families have a higher median of \sim 11.5 loci. Within these miRNA families, mir-544 (65), mir-578 (70), and mir-944 (97), had the highest number of loci.

We also analyzed the phylogentic distribution of the miRNAs in the Rfam seed alignment, the corresponding species were retrieved along with their annotated kingdom, phylum and subphylum, as described in Methods. The annotated miRNA families and their loci in D. vexillum were compared as shown in Additional File 1: Figure 7. We found 18 miRNA families that were represented in more than 2 phyla: mir-124, mir-598, mir-7, let-7-mir-1, mir-133, mir-33, lin-4, mir-137, mir-153, mir-2, mir-31, mir-449, mir-183, mir-190, mir-210, mir-219 and mir-8. Families highlighted in bold showed a conserved structure (panel labeled as VALID,STR), even when the D. vexillum sequences were included into the alignment. In this analysis, we uncovered two additional families: ciona-mir-92 (RF01117) and mir-281 (RF00967), to the previously reported mir-1497 (RF00953) [16], candidate in D. vexillum. In contrast, a subset of 13 miRNA family candidates did not fit into the corrected stockholm alignment (classified as NO.VALID,STR), despite our previous homology validation.

In a previous study of the miRNA complement in the solitary species H. roretzi [16] a more extensive list of tunicate-specific miRNAs was reported (21). From these only one (mir-1497, RF00953), was detected in our study because of the corresponding covariance model used to validate their secondary structure. From the conserved families of miRNAs in Metazoa (25) we identified 21 in D. vexillum. Other families, including mir-9, mir-182, mir-184, mir-200, and mir-218, were not found. These families (except mir-200) were also found to be absent in other tunicates such as C. savignyi and O. dioica [16]. Absence of these families were also reported in a preliminary analysis along bilaterian species [34].

From our previously reported set of miRNAs [21], 16 families were detected only in D. vexillum and not in other tunicates. From this set, 10 families were annotated in our new assembly and four were discarded because their mature sequences could not be annotated (mir-130, mir-460, mir-185, and mir-233), one does not have covariance model (mir-4068), and another was not found in the new assembly (mir-9). From the set of shared families in colonial tunicates, all were annotated and validated by our strategy, except mir-340 (RF00761). The latter showed a good homology but did not pass the conditions of the current structural alignment strategy, which used only vertebrate sequences to assign homology. In this study, we report mir-31, as the sole miRNA candidate that passed our present filtering criteria to be exclusively found in solitary ascidian species. We also excluded 502 candidates based on the lack of conserved mature sequences inside the hairpins.

Small Nucleolar RNAs. Conserved snoRNA families were detected by the automatized homology-search strategy. We found 3 U3, 2 copies for SNORD14, SNORD18, snoZ39, and SNORA36, as well as a single copy of SNORD29, SNORD33, SNORD35, SNORD36, SNORD52, SNORD63, and SNORD83.

LncRNAs and other structured RNA elements. Two structured lncRNAs were found, corresponding to the Rhabdomyosarcoma 2 associated transcript conserved region: RMST 8 (1) and RMST 9 (7), the latter one had already been previously annotated [21]. As a result of the iteration and re-building of the correspondent CM with newly detected tunicate sequences, (see Additional File 1: Figure 8) we now report the occurrence of the complete RMST family in deuterostomes. RMST 8 and 9 were detected in all deuterostomes. We found two additional RMST families (RMST 6 and 7) in the coelacanth suggesting an initial expansion in the ancestor of lobe finned fishes (Sarcopterygii). The complete set RMST 1, 2, 3, 4, 5, 6, 7 and 10 were detected in mammals. Because of their relevance in neural development [35], it would be interesting to study the evolution of RMSTs in the tetrapods, and the ancestral role of RMST 8 and 9 in the deuterostomes, the tetrapods and mammals.

Finally, by using a specific search with HMMs and CMs we identified 326 loci carrying the Histone 3’ UTR stem-loop, 6 instances of the Potassium channel RNA editing signal, one for the Iron response element II and 9 loci for the Hammerhead ribozyme (type I).

Functional annotation and comparison of proteins across the tunicates.

To obtain functional annotations for the predicted D. vexillum proteins we used the pre-clustered orthology groups from the eggNOG database [36] together with the protein annotation of eleven chordates (see Methods). We obtained 8349 orthology groups of which 6279 were represented in at least two of the chordates included in our reference set. Figure 5A, shows that 57.1% (4584) of the orthologs were shared with at least one sequence of each of the major branches of the chordates (Cephalochordata, Tunicata, and Vertebrata). Only 3.63% of orthologs were shared exclusively with at least two species of tunicates, while 15.81% of orthologs were shared only with vertebrates.
Along all the detected set of orthologs shared exclusively among two or more tunicates (292), 5 were found present in all Tunicata species. From this subset, the *lytic polysaccharide monoxygenase* (ENOG5028N9R, 20) was involved in cellulose fibrillation and degradation. The other orthologs were unknown proteins with sulfotransferase family domains (ENOG502CNPV, 444; ENOG502CXMB, 23), pleckstrin homology domains (ENOG502EA0P, 24) or transmembrane domains with unknown function (ENOG502EQW0, 32). Another set, composed by 5 orthology groups, was found when *O. dioica* was excluded. From those groups, only one did not have functional annotation and the other 4 revealed functional annotations related to dopamine monoxygenase activity (ENOG502C4CE, 33), regulatory subunits of protein phosphatases (ENOG502CZS6, 17), the reducing fluoride concentration levels in the cell (COG0239, 15) and AMP binding (COG0589, 71).

Five orthology groups were found exclusively in all three available colonial tunicate genomes (*B. schlosseri*, *B. leachii* and *D. vexillum*), and 21 orthology groups were shared between *D. vexillum* and at least one other colonial botryllid. The set of orthology groups shared by all colonial ascidian genomes (5) contain proteins that present the following shared domains: Methyltransferase domains (ENOG502AII1Z), GIY-YIG endonucleases (ENOG502D72K), THAP DNA binding domains, DDE endonucleases (ENOG502E46Z), Antistasin domains (ENOG502FAER) and domains that lack annotation as the DUF3605 domain (ENOG502E7AU). To reach a more universal understanding of ortholog proteins during the evolution of coloniality, we need to better characterize and assign cellular functions to the conserved proteins found in colonial tunicates that evolved from independent coloniality. The above mentioned groups of proteins present in *D. vexillum* and the two botryllids will provide a starting point to address their biological roles for ascidian colonies.

In contrast, no orthology groups were shared between all solitary tunicates (*C. robusta*, *C. savignyi*, *O. dioica*, *M. oculata* and *M. occidentalis*), but three were shared among the four solitary ascidians, excluding the larvacean. The orthology groups shared by all solitary ascidians included proteins and presented the following shared domains: (i) *Tumor necrosis factor receptor / nerve growth factor receptor repeats* (ENOG502D0E2); (ii) a group of proteins with the *BESS motif* (ENOG502DZH1), usually associated with DNA binding as molecular function (GO:0003677); and (iii) ARM-like, ARM-type fold and Rotatin domains of the Rotatin gene family members that have functions related to cillum organization.

In spite of an absence of 1737 orthology groups of predicted proteins in the *D. vexillum* genome, most of these orthologs became detectable when the Chordata group were analyzed (79.2%). Moreover, in Olfactores and Tunicata (include *D. vexillum*), we found 12.7% and 8.1 of orphan genes, respectively. Although we report the functional profile of orphan genes in *D. vexillum*, which represent the majority of the orthologs recovered, we were not able uncover a clear functional annotation for many of these genes (see Additional File 2: Table 1 for details).

Despite the difficulties in the assignment of ortholog candidates across all genome datasets, comparisons against clustered groups allowed us to detect and annotate orthologs in the *D. vexillum* genome. Because the Didemnidae can mineralize calcium to form spicules in their tunics, we decided to search for key proteins involved in skeletogenesis [37]: *Sox*, Hedgehog (*Hh*), and *RUNX*, which corresponded to the ortholog groups: KOG0527 (*SOX*), KOG3638 (*Hh*), and KOG3982 (*RUNX*) on the eggNOG database. Gene phylogenies for these ortholog groups (including the chordate sequences used as reference and the orthologs annotated in the eggNOG database) are shown in Figure 4. In *D. vexillum*, we found seven members of the SOX family belonging to SoxB1, SoxB2, SoxC, SoxD and SoxE subgroups as defined in [38]. Overall, we found two paralogs for the SOXC (*SOX4/SoxC#32* and *SOX4/SoxC#33*) and SoxB2 (*SOX14/SoxB2#5* and *SOX14/SoxB2#6*) in our annotation of the *D. vexillum* genome, see Figure 4A and Additional File 2: Figure 3 for the complete tree.

All tunicates except *O. dioica* reported members of the Hh families (Figure 4B). The basal Hh family, previously reported in *Ciona* [39] and in amphioxus [40], was detected in all ascidians. In the vertebrates, we confirmed the presence of the three Hh genes: Desert (DHh), Indian (IHh) and Sonic-hedgehog (SHh) [40, 41]. In ascidians, we found several clades of Hh genes. There are at least three Hh families in the ascidians: Hh clade A (with medium bootstrap support of 61), Hh clade B (with full bootstrap support in *Ciona*) and Hh clade C (with full bootstrap support in the botryllids). The *D. vexillum* Hh does not group with any of the other clades. Our analysis supports an independent diversification of the Hh family in ascidians.

We did not find the key regulators of skeletogenesis RUNX-related transcription factor (RUNX) proteins in *D. vexillum*. This does not necessarily indicate a true loss, however, because in a detailed domain-based homology search (data not show), we found parts of the domain Runt (PF00853) along 15 proteins from *D. vexillum*, albeit with truncated sequences. The phylogenetic distribution of the orthologs found (Additional
File 2: Figure 2), shows a defined clade of tunicate sequences that belong to the ancestral RUNX family, which has been detected in this study in amphioxus and is known to be expressed in Ciona and Oikopleura [42]. This suggests that RUNX proteins may not be truly absent in D. vexillum. We note in passing that the RUNX family has undergone additional duplications in the lampreys (Additional File 2: Figure 2).

Ortholog groups determined by the eggNOG database were used to transfer the annotation to the corresponding orthologs in D. vexillum. General ontology terms (e.g. cellular, metabolic, multi-organisinal processes, reproductive processes, regulation and locomotion) were commonly annotated for D. vexillum proteins (Additional File 2: Figure 4). Enrichment analysis with REVIGO [43] based on the frequencies of ontology terms (see Methods and Additional File 2 for details) detected seven distinct overrepresented semantic clusters in D. vexillum: Positive regulation of phosphatidylinositol 3-kinase signaling, tRNA catabolism, secondary metabolism, chaperone-mediated protein folding, protein folding, protein autophosphorylation, and phosphorus metabolism, see Figure 5B.

A detailed annotation of the D. vexillum genome comparing the GO assignments from selected chordates genomes is provided in Additional File 2: Figures 6 and 7. We found a total of 237 tunicate-specific enriched GO terms, when compared to the annotations in B. floridæ, P. marinus and L. chalumnae. All tunicates, except O. dioica shared 8 assignments. Where related terms were found, we indicate these relationships (→ “is a”, ↦ “part of”) as follows: Oogenesis (GO:0048477) → Germ cell development (GO:0007281) ↦ Gamete generation (GO:0007276) (← Female gamete generation (GO:0007292)), cellular process involved in reproduction in multicellular organism (GO:0022412) → Multicellular organismal reproductive process (GO:0048609) ↦ Multicellular organism reproduction (GO:0032504) → Reproduction (GO:0000003).

Based on the previously described semantic clusters, the functional interactions of involved D. vexillum proteins were inferred using STRING (v.11) [44], comparing them with their homologous proteins annotated in C. robusta. As an example, Figure 5C shows the annotations for C. robusta that have been detected as homologs of the proteins in D. vexillum involved in tRNA catabolism processes. As a result, it was possible to detect 5 protein clusters, each one with a specific interaction, as follows: cluster 3 was related to the autophagy pathways (KEGG pathways cin04136, cin04140, and cin04137), while clusters 2 and 5, are involved to the ribosome biogenesis and RNA transport pathways (cin03008, cin03013), respectively. Clusters 1 and 4 contain proteins without any clear association. For the other ontology clusters (Additional File 2: Figure 4) we carried out the same analysis. As expected, for the proteins involved in protein folding, the functional annotation pointed out processes related with the endoplasmic reticulum. Regarding the pathways of secondary metabolism, we detected process involved in starch, sucrose, and porphyrin metabolism, as well in chlorophyll metabolic pathways. In more detail, 3847 proteins are involved in the Positive regulation of phosphatidylinositol 3-kinase signaling, and in processes such as: endocytosis (cin04144), autophagy (cin04140), mTOR, FoxO, Wnt, and Inositol signaling pathways (cin04150, cin04068, cin04310 and cin00562) and RNA transport (cin03013). In addition, 1056 and 1053 proteins were found related to phosphorus metabolism and protein autophosphorylation, respectively. This detected proteins reported the same interactions in: metabolic pathways (cin01100), Inositol phosphate metabolism (cin00562), phosphatidylinositol signaling (cin04070), FoxO signaling (cin04068), purine metabolism (cin00230) and autophagy (cin04140).

In summary, we were able to infer several candidate functional networks on the basis of the semantic clusters detected in D. vexillum with the help of homologous proteins from the solitary tunicate C. robusta. However, a much more extensive annotation effort will be necessary not only for D. vexillum but also for tunicate genomes in general, in order to produce a more complete picture of the functional landscape.

Genome Browser and analysis of genomic coordinates

We updated the data on the D. vexillum genome site http://tunicatadvexillum.bioinf.uni-leipzig.de/ with the data reported here. In particular, it provides the new assembly and a link to a UCSC genome browser hub [45] as described in Methods. Genome coordinates for ncRNAs and annotated genes were concatenated, sorted and crossed by incrementing the starting position for each scaffold and by reporting the genome coordinates. We labeled the ncRNAs as suggested in the guidelines for tunicate elements [46]. Accordingly, we found that a total number of 2378 genes have a ncRNA nearby or within their gene structure. These corresponded to 1832 ncRNAs, where 53.93% were tRNAs, 36.14% (183) miRNA families, 6.66% (3) cis regulatory RNAs and 0.27% miscellaneous RNAs (1) and ribozymes (2). Other house keeping RNAs summed up 3%, including rRNAs (3 families), snoRNAs (10) and snRNAs (6).
Mitochondrial Genome

The mitochondrial genome of *D. vexillum* maps to a single scaffold **scaffold1656-size16126** and very closely matches the two previously reported mitogenomic sequences [47], known as Clade A and Clade B. The mt-LSU is 99.9% identical to Clade A, and diverges about 3.6% from Clade B, confirming that the collected organisms belongs to clade a, see also [21]. Mapping the currently reported elements from mtDNA, resulted in the gene order depicted on Additional File 1: Figure 10. In this case, intergenic distances were reduced, but the size and the order of the genes in the new assembly were conserved. The 37 expected elements from the mtDNA were mapped into the new assembly. The gene order of the mitogenome matches that of clade A but differs from other tunicate species, as shown in the multiple alignment of the mitogenomes in Additional File 1: Figure 11.

Discussion

The draft genome assembly using a combination of PacBio and Illumina data reported here provides a comprehensive resource to study *D. vexillum* at least at the level of genes. The contiguity of the assembly still falls short of those available for other ascidians. Despite considerable efforts, a partial degradation of the genomic DNA, presumably due to the unusually acidic milieu of the tunic, could not be avoided entirely, limiting the achievable PacBio read lengths. The genome assembly as well as the annotation data are made available for both download and interactive use in the browser http://tunicatadvexillum.bioinf.uni-leipzig.de/

The mitochondrial genome is assembled to a single scaffold. Analysis of its mt-LSU RNA showed that the specimen used for sequencing belongs to *D. vexillum* Clade A.

Functional annotation of the predicted proteome of *D. vexillum* by comparison with 11 chordates resulted in 8349 orthology groups. The vast majority is shared among chordates. We identified 292 orthology groups in tunicates only (present in more than one tunicate). Among them five functional groups shared by all tunicates, including *lytic polysaccharide monoxygenase* and *cellulose-degrading processes* (ENOG5028N9R).

Other shared orthology groups did not have an specific annotation, however in some cases protein domains (e.g., *sulfotransferase and pleckstrin families* and some transmembrane domains) were recognizable. Of all of the chordate orthology groups available, 1737 groups were not recovered in our *D. vexillum* assembly. Most notably, we did not a find any member of the *RUNX* family, which correspond to key regulators of skeletogenesis together with *HH* and *SOX* family members. We observed that tunicates, except *O. dioica*, showed a tunicate specific expansion of HH members. We found seven members of the SOX family. A phylogenetic analysis revealed duplication events for SoxC and SoxB2 in *D. vexillum*. We also identified seven of nine tunicate *homeobox* transcription factors of HOX family, the contiguity of the assembly is insufficient to conclusively rule out the absence of the remaining two genes (*Hox1* and *Hox5*) or to determine the genomic organization of the HOX gene cluster.

The new assembly increased the number of detected ncRNA families to 4877 genomic loci corresponding to 271 families. From these, most of the detected loci were *housekeeping* ncRNAs (rRNAs, tRNAs, snRNAs and snoRNAs) and those loci where found in a conserved cluster organization, as seen on tRNAs, rRNAs and snRNAs. At the same time, a new set of regulatory ncRNAs (miRNAs, Cis-regulatory RNAs and IncRNAs) were detected, in case of miRNAs by the modification of the default threshold value on the structural alignment step and on the validation of the position of the mature sequences inside the detected hairpin. As expected, the conserved set of miRNAs were annotated: mir-124, mir-598, mir-7, let-7, mir-1, mir-133, mir-33, lin-4, mir-137, mir-153, mir-2, mir-31, mir-449, mir-183, mir-190, mir-210, mir-219 and mir-8. In comparison to previous miRNA tunicate surveys [16, 34], we validated previous reports of tunicate-specific miRNA mir-1497 (RF00953), by detecting the mature position and evaluating it along a secondary family specific structural multiple alignment, and also reported additional specific families, such as: ciona-mir-92 (RF01117) and mir-281 (RF00967). Additionally, we discarded previously reported 6 *D. vexillum* miRNA families because of a lacking of the mature annotation or missing of covariance model, and one other colonial specific mir-340 (RF00761), that could not be supported using the current multiple structural alignment. Further studies will allow us to continue to refine the complete miRNA complement in *D. vexillum* and allow us to reconstruct the evolutionary history of miRNAs in the tunicates. We were not able to identify homologs of other expected ncRNA families, as: *vault*, U7 and Y RNA and Telomerase RNA.

Concluding Remark

This new assembly of the *D. vexillum* genome provides an integrated effort to contribute for the ongoing Tunicata genome projects and constitutes the first annotation dataset for a species in the Aplousobranchia. We hope that the new *D. vexillum* genome annotation
presented here triggers more biological studies in a representative of a highly invasive species with a colonial life history.

Methods

Re-assembly of *D. vexillum* genome

DNA extraction

On 10 June 2015, during an alien species focused survey of oyster beds in the marine lake Grevelingen, The Netherlands, a colony of *D. vexillum* was collected with a mussel dredge (coordinates: N51° 45.073, E3° 55.664). Directly after collection, the colony was preserved on ethanol 96% and stored in a refrigerator at 4 °C (GiMaRIS collection number AG4844). On 14 December 2015 eight little pieces, with a diameter of about 4 mm each, were cut out from this colony with a sterile scalpel for DNA-extraction. A Kingfisher robot was used to extract the DNA from these pieces with the NucleoMag Tissue kit from Macherey Nagel. To lyse the cells, 200 μl T1 lysis buffer was added to the wells of a 96-well plate. Eight of these wells were used for the DNA extraction of *D. vexillum*. After adding a small piece of tissue, 25 μl of Proteinase K (20 mg/ml) was added and incubated at 56°C overnight. After the cells were lysed, 225 μl of the sample was added to the MB2 plate containing 360 μl MB2 binding buffer (35–55% ethanol, 20–40% sodium perchlorate) and 25 μl Magnetic beads. The robot then mixed the mixture and transferred the DNA that was attached to the magnetic beads to a series of wash buffers (20–30% ethanol). The MB3 plate was filled with 600 μl MB3 wash buffer, the MB4 plate with 600 μl MB4 wash buffer, and the MB5 plate with 600 μl MB5 wash buffer. To release the DNA from the magnetic beads, the robot proceeded after the wash buffer to MB6 wash elution buffer (5 mM Tris/HCl, pH 8.5). The DNA dilution was stored in the fridge at 4°C. With the Nanodrop ND1000 the quality and quantity was tested for each of the 8 DNA extractions. Based on these analyses two samples of 100 μl each were selected and sent to University of Washington PacBio Sequencing Services for further analyses. Agilent 2100 Bioanalyzer platform was used for the quantitation and sizing of gDNA. PacBio sequencing started from 386 ng/μl and 192 ng/μl quantified by a Qubit assay for each sample respectively.

RNA extraction

A ∼ 10 cm² large piece of a *D. vexillum* colony was collected on 14/Dec/2009 from the upside of a settlement plate that was deployed about six months earlier on 25/Mar/2009 at a depth of 1 meter from the south pier of the islet Hompelvoet (Grevelingen, The Netherlands) in an enclosed marine lake with minimal tidal differences. One piece of this colony was used for the first draft in 2016, [21], while another piece of the same colony was used for transcriptome analyses. This piece was preserved in RNAlater (Ambion) at −20°C prior to RNA extraction and subsequent sequencing in February 2010. Total RNA was extracted using the RNeasy kit according to manufacturers instructions (QIAGEN GmbH, Hilden). A transcriptome library was prepared from 10 mg total RNA, using the Illumina mRNA-Seq Sample Preparation Kit according to the manufacturers instructions (Illumina Inc., San Diego, USA). The mRNA-Seq library with a read length of 2 × 76 nucleotides was sequenced using the next generation sequencing apparatus Illumina GAIIx according to the manufacturers description at ZF-Screens.

Genome sequencing and data preprocessing

The Illumina data used for the genome assembly are described in more detail in [21]. The comprise a mix a of paired end reads of 76 and 151 nt, respectively, with a total coverage of about 30× obtained on a Illumina GAIIx instrument.

PacBio sequencing data was obtained using P6/C4 chemistry in an instrument PacBio RSII at University of Washington PacBio Sequencing Services. SMRT libraries of size 20 kb, 10 kb and 5 kb where run on eleven SMRT cells and prepared without previous DNA shearing or size-selection [48] due to low DIN of the samples (DIN ≤ 3.8). A total of 12.35 Gb sequence data obtained corresponds to 5 millions of subreads with N50 = 2.3 Kbp. Size distribution of subreads sequenced is shown on (Figure 6).

We opted for a hybrid, non-conservative de novo assembly approach. Therefore, PacBio subreads and high-confidence Illumina paired end reads used previously to drafting the genome of *D. vexillum* [21] were used to collectively provide an improved new genome assembly. Before performing the assembly, PacBio sequence data were error corrected and pre-processed in three independent steps. First, PacBio reads of size ≥ 250 bp and quality ≥ 0.83 were pre-assembled using the protocols RS_PreAssembler and RS_ReadsOfInsert implemented on SMRT pipe v.2.3. A total of 1.4 Gpb comprised of 823.758 pre-assembled reads (error-corrected reads) with N50 = 1.8Kbp were obtained. Second, a total of 450 Mbp distributed in 220.514 CCSs with quality ≥ 99% and N50=2.1 Kbp were obtained using RS_PreAssembler by processing PacBio reads of complete sequencing cycles ≥ 2. Third PacBio subreads of size ≥ 150bp and quality ≥ 0.87
were retrieved using dextract[49] to be error corrected by the alignments of Illumina PE reads using Proovread-2.13.13[50]. The module ccseq was utilized to improve correction performance. Then, 2.7 Gpb of sequence corrected data comprising of 776,295 of untrimmed error-corrected subreads N50=3.4 kbp and 391 Mbp of trimmed error-corrected subreads corresponding to 288,198 N50=1.7 kbp were obtained. Finally a total of (4.94 Gb) of error-corrected data were assembled. The size of the data used to be run on the new hybrid assembly is shown in Table 3.

Genome assembly

De novo hybrid assembly was performed using Celera Assembler Approach [51], Version 8.3rc2, without popping bubbles. Command-line parameters used were utgErrorRate=0.12, utgErrorLimit=2.5, ovlErrorRate=0.15, cgwErrorRate=0.15 and kmer=17. A first version produced an assembly of 566.4 Mpb comprising 130,707 contigs with N50 = 5.97 kb and GC = 36%. Summary of general steps followed to perform the genome assembly are shown in Figure 7. Duplicated contigs were filtered using fasta2homozygous [52]. A total of 16839 contigs of size ≤ 500 bp and similarity ≥ 95% corresponding to 47.4 Mbp were removed. Finally only 519 Mbp were subjected to genome scaffolding.

Genome Scaffolding

LoRDEc [53] was run to correct high quality CCS by processing together Illumina short reads and CCS subreads. Bruijin graphs were built with Illumina data using k-mers of size 13, 15, 17, 19, 21, 31 and 51 and guided by 462,447 CCS subreads (985 Mb, N50 = 2.1 kb) retrieved by unanimity v.3.0 [54]. On a further step, error-corrected CCS aligned by daligner [55] were input into daccord [56] to get consensus of CCSs. Those error-corrected consensus CCSs and 519 Mbp of genome data assembled by Celera were used as input into SSPACE-Long [57] to genome scaffolding. The final assembly resulted in a 517.5 Mb genome sequence (109,769 scaffolds with N50 of 6.54 kb).

Assembly polishing

QUIVER v.2.1 [58] from the BAM_Resequencing Beta.1 SMRT pipe v2.3.0 was used to provide SNPs and high quality base calling for each scaffold.

Assessment of genome assembly quality

Genome assembly completeness was evaluated by Benchmarking Universal Single-Copy Orthologs (BUSCO) [59], using the metazoan lineage data resulting in scores to be comparable with other tunicate species.

RNA data assembly

Illumina sequence data (PE reads of size 76 bp) were trimmed using BBtools [60]. After trimming a total of ~ 2.6 Mbp comprising of 55.1 millions of PE reads of size 50 bp and Phred ≥ 30 were input to perform a genome-guided Trinity de novo transcriptome assembly using Trinity v2.4.0 [61]. Reads were first aligned to the reassembled genome of D. vexillum with Gmap (Version 2019-06-10) [62] to get groups of overlapping reads into clusters used for further steps for the de novo transcriptome assembly. Finally 39 Mbp comprising 90,938 transcripts were assembled and processed by TransDecoder [63] to find coding regions within transcripts.

Genome annotation

Gene structure were predicted using Maker v.3.01.02 [64] in two rounds. First Maker annotation round run Augustus 3.3 [65] and RepeatMasker version open-4.0.5 [66] with Ciona robusa models and RepBase (RepBase20.03) [67]. This first draft annotation was further improved on a second round by incorporating transcripts, peptide and filtered RNAseq raw data previously used to assembly D. vexillum transcriptome. Genomic variants previously detected by Quiver were used to guide SNAP [68] to align mRNAseq data. Besides, Repeatmodeler [69] was used to construct our de novo repeat annotation library which was used in combination with RepBase (RepBase20.03) by RepeatMasker to asses for the total repetitive elements content of D. vexillum. Semi-HMM-based Nucleic Acid Parser (version 2006-07-28), GeneMark, GeneMark.hmm eukaryotic, version 3.54 [70], Nucleotide-Nucleotide BLAST 2.4.0+ [71] were used in the steps of Maker annotations. GO annotation was assigned with Uniref90 [72] from Uniprot, PFAM 31.0 or RefSeq accessions. Finally eggNOG v.5 was used to identify clusters of Orthologous groups as described below.

Genome Browser construction

Resulting gene, ncRNAs and mtDNA annotations were generated as GFF3 files and were processed using MakeHub [73] as preprocessing step to generate the input files of the hub. The input files were used to create a genome Hub hosted on the UCSC hub site [45].
Identification of contamination along sequenced D. vexillum genome

A modification of the protocol described on [21] to detect possible contamination was performed and it is described in more detail on Additional File 1. A final number of 4 scaffolds were removed from the original genome assembly, it means ∼ 18.65 kb of the final assembly. Those sequences were removed from the final available genome, reporting a final genome with: 109,769 scaffolds and 517.55 Mb.

Annotation of non-coding RNAs

Annotated ncRNA candidates from the first assembly of D. vexillum were mapped in the new assembly as described on Additional File 1. At the same time, homology blastn and HMM strategies with their corresponding metazoa-specific CMs and default CMs evaluation have been applied following the methodology proposed in [21], in order to annotated those candidates that have not been detected on the mapping strategy. The tRNAs genes were found using tRNAscan-SE v.2.0.3 using default parameters. Final check of candidates was performed to ensure that the reported families belongs from Rfam families that contains at least one sequence from Metazoa clade into their original seed alignment. These last step was performed to report possible false-positive families that could be retrieved applying the default Rfam models directly to the genome.

In order to annotate the position of mature sequences from miRNA candidates, MIRfix [33] was used. The mirBase (v.22) mature and hairpin sequences were used as initial sequences resource. Via RNAcentral database [74], the cross-link between mirBase and Rfam (v.14.1) was retrieved, and a list of Rfam families were classified as annotated in both databases. In this case, by MIRfix the reported mature position was corrected along their corresponding hairpin sequence. After that, the remaining seed sequences that have not been annotated on mirBase were included to be evaluated by the same methodology, but with the mature family-specific sequences. Final correction and annotation of those families, allowed the re-build of multiple sequence and structural alignments from the Rfam defined sequences, as a stockholm alignment. Given those results, the D. vexillum miRNA sequences annotated in this study, were processed as subject to annotate their mature sequences, based on previously detected matures in the Rfam family. At the end, the results were the positions of the most probable mature sequences plus the correspondent alignments in stockholm format for each miRNA Rfam family. Those genome annotations can be assessed on the described genome browser.

Computational validation of miRNAs

Precursors from predicted miRNAs were obtained in fasta format. The position of the mature sequence (s) from Rfam seed sequences were evaluated using MIRfix [33]. Based on the complete set of corrected seed sequences an evaluation of D. vexillum miRNAs were performed, miRNAs hairpins that contains a candidate mature annotation and are supported by the family structural alignment were considered as true candidates (for details see Additional File 1).

In order to identify the phylogenetic distribution of the Rfam sequences, the taxonomic distribution, generated by the annotated kingdom, phylum and subphylum, was retrieved for each of the species from the Rfam stockholm alignments from NCBI Taxonomy Browser[1]. Once defined those groups, was possible to calculate the number of phyla that reported sequences on the annotated miRNAs from Rfam.

Mitochondrial genes

Mitochondrial complete genome from isolated clade A (NC_026107) and isolated clade B (KM259617.1) from D. vexillum were retrieved from GenBank as reported by [47]. Both set of sequences searched with blastn against new D. vexillum genome. Best candidates were retrieved adjusting identity ≤ 95% and E-value ≤ 0.001 and coverage 100%. Final coordinate files was organized as GFF3 file. Reduction of the intergenic coordinates was performed by a Perl script and this output was depicted with LuaTeX package pgfmlbio. Annotated Tunicata mitochondrial genomes were collected from NCBI. Multiple mitochondrial genome alignments were calculated using progressiveMauve [75] as referenced in Additional File 3.

Functional annotation of annotated proteins

Protein fasta files were obtained from Ensembl v.81: C. savignyi, P. marinus, L. chalumnae; Aniseed [18]: C. robusta, B. schlosseri, M. oculata, M. occidentalis and B. leachii. Proteins from B. floridum were retrieved in JGI [76] and for O. dioica from Oikoarrays [77].

Functional annotation from all retrieved species were assessed using eggNOG-Mapper v.2 [78], based on the database eggNOG v.5 [36] applying DIAMOND mode as referred on [79].

Protein enrichment analysis

Enrichment analysis was calculated with goatools [80] taking as background group the

[1]https://www.ncbi.nlm.nih.gov/taxonomy
complete set of proteins reported on studied chordata species and the comparison group, the list of proteins for each specie, the association file between proteins and GO, was generated based on eggNOG-Mapper results, all the command line methods are described on Additional File 3. Final results of enrichment were plotted using ggplot2 [81, 82] and grid [83] R packages. TreeMap plots were performed with REVIGO [43]. Calculated p-values from goatools were used as input data to REVIGO webserver against whole UniProt and SimRel as semantic similarity measure.

Interaction analysis of proteins

Proteins that reported the same semantic terms on the REVIGO results were clustered and subject to a protein-protein interaction analysis using STRING (v.11) [44]. Proteins from D. vexillum were compared against the entire Chordata protein set. Since C. robusta was the species with the largest number of recognizable homologs, this species was used as reference. Only connected nodes with “high” or “highest” confidence were analyzed and plotted.

Annotation of homeobox proteins

A collection of reported homeobox proteins from human (from the family Homeboxes (516) [2] from HGNC database on 10 October, 2019 [84]), C. robusta, C. savignyi (both species from Ensembl), B. leachii [20], H. roretzi [29, 30] and a variety of species from the HomedB [85] were retrieved from the corresponding references. All the described subset was searched along the annotated transcriptome and proteins sequences from D. vexillum using tblastn and blastp, respectively. Best candidates were obtained if reported an identity percent ≥ 35, E-value ≤ 10−5 and a query coverage of 70%. For command line details refer to Additional File 3.

As a complement, pairwise genome alignments with the new assembly from D. vexillum and close species that reported annotations of homeobox genes: B. floridae, B. leachii, B. schlosseri, C. savignyi, C. robusta, H. roretzi and O. dioica, were performed with LASTZ [86]. References from homeobox genes were obtained from Aniseed [18] using the Gene Builder with the term hox, except from B. floridae where updated annotations (from v.2) were searched and retrieved from LanceletDB [87]. Cross-matching of shared regions and reported genes and homology searches were performed to support the identification of homeobox candidates.

Detection of orthologous proteins involved in skeletogenesis

We searched for RUNX, SOX, and Hh homologs in the output of eggNOG-Mapper for all studied chordate species. The corresponding orthology groups have the accession numbers: KOG3982, KOG0527 and KOG3638, respectively. Due to the lack of true runt orthologous on D. vexillum, we performed an additional analysis to confirm the presence of some homology signal. We retrieved the RUNX sequences reported on [88], from available 16 chordates from NCBI: AJM44878.1, AJM44883.1, and AJM44886.1. The complete phylogenetic analyses were performed using the ETE 3 Toolkit [90], using Maximum Likelihood (ML) tree with the JTT+G+I, substitution model generating 100 bootstraps. Specific command line is described on Additional File 3. Gene IDs were replaced by “human readable” names in Figure 4. A version with the database IDs is provided in Additional File 4.

[2] https://www.genenames.org/cgi-bin/genegroup/download?id=516&type=branch
Availability of data and material
The reported data can be accessed at http://tunicatadvexillum.bioinf.uni-leipzig.de/Home.html.

List of Abbreviations
GO gene ontology
miRNA microRNA
ML maximum likelihood
cmpRNA non-coding RNA

Declarations
Acknowledgments
CIB acknowledges Universidad Nacional de Colombia for the time granted to do this research.

Funding
This work and the computational analysis were partially supported by the equipment donation from the German Academic Exchange Service-DAAD to the Faculty of Science at the Universidad Nacional de Colombia. The design and the complete project was supported by Colciencias (project no. 110165843196, contract 571-2014). FDB was supported by FAPESP grants 2019/06927-5, 2015/50164-5. PFS acknowledges support by the DAAD/CAPES exchange program, grant number 57390771 and the part funding from the German Federal Ministry for Education and Research (BMBF 031A538A (de.NBI/RBC)). CAVH acknowledges the support by DAAD scholarship: Forschungstitusenden-Promotionen in Deutschland, 2018/19 (Bewerbung 57299294). Publication costs are supported by the German Research Foundation (DFG) and Leipzig University within the program of Open Access Publishing. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author's contributions
CIB, AAG, FDB, and PFS designed the study. AAG was responsible for gDNA and RNA extraction. EPR and CIB assembled the genome and transcriptome sequences. CAVH implemented the computational workflows and analyzed the data with contributions by JF and PFS. CAVH and PFS drafted the manuscript. All authors contributed to the interpretation of the data and the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
The colonies of Didemnum vexillum were collected in 2009 and 2015 during surveys conducted from ships of the responsible national authorities (Staatsbosbeheer & the Dutch ministry). They were conducted as part of the continuous monitoring, i.e. within the SETL-project run by GiMaRIS, and the detection of marine invasive species in the Grevelingen. No further permits or permissions were required to collect specimens according to institutional, national, or international laws or guidelines. The results of the surveys concerned are described in reports on alien fouling organisms issued by the Office for Risk Assessment and Research of the Netherlands Food and Consumer Product Safety Authority, of the Dutch Ministry of Economic Affairs [91, 92].

Consent for publication
Not applicable.

Author details
1 Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C, Colombia. 2 Institute of Biology, Leiden University., P.O. Box 9505, 2300 RA Leiden, Netherlands. 3 GiMaRIS, Rijkswaterweg 75, 2171ak, Sassenheim, Netherlands. 4 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands. 5 Departamento de Zoología, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Tr. 14 no. 101, São Paulo, SP, Brazil. 6 Centro de Biología Marina, Universidade de São Paulo, Rod. Manuel Hypólito do Rego km. 131,5, Praia do Cabelo Gordo, São Sebastião, Brazil. 7 Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtestraße 16–18, D-04107 Leipzig, Germany. 8 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany. 9 Department of Theoretical Chemistry, University of Vienna Währinger Straße 17, A-1090 Vienna, Austria. 10 Santa Fe Institute, 1399 Hyde Park Rd., NM87501 Santa Fe, USA.

References
1. Kott, P.: A complex didemnid ascidian from Whangamata, New Zealand. J. Marine Biol. Assoc. UK 82, 625–628 (2002). doi:10.1017/S0025315402005970
2. Lambert, G.: Adventures of a sea squirt sleuth: unraveling the identity of Didemnum vexillum, a global ascidian invader. Aquatic Invasions 4, 5–28 (2009). doi:10.3391/ai.2009.4.1.2
3. Valentine, P.C., Carman, M.R., Blackwood, D.S., Heffron, E.J.: Ecological observations on the colonial ascidian Didemnum sp. in a New England tide pool habitat. J. Exp. Marine Biol. Ecol. 342, 109–121 (2007). doi:10.1016/j.jembe.2006.10.021
4. Ordóñez, V., Pascual, M., Fernández-Tejedor, M., Pineda, M.C., Tagliapietra, D., Turon, X.: Ongoing expansion of the worldwide invader Didemnum vexillum (Asciidae) in the Mediterranean Sea: high plasticity of its biological cycle promotes establishment in warm waters. Biological Invasions 17, 2075–2085 (2015). doi:10.1007/s10530-015-0861-a
5. Bullard, S.G., Siedlack, B., Reinhardt, J.F., Litty, C., Gareau, K., Whitlatch, R.B.: Fragmentation of colonial ascidians: Differences in reattachment capability among species. J. Exp. Marine Biol. Ecol. 342, 166–168 (2007). doi:10.1016/j.jembe.2006.10.034
6. Cottier-Cook, E.J., Minchin, D., Geisler, R., Graham, J., Mogg, A., Sayer, M.D., Mateusova, I.: Biosecurity implications of the highly invasive carpet sea-squirt Didemnum vexillum kott, 2002 for a protected area of global significance. Management Biol. Invasions 10, 311–323 (2019). doi:10.3391/mibi.2019.10.2.07
7. Bullard, S.G., Lambert, G., Carman, M.R., Byrnes, J., Whitlatch, R.B., Ruiz, G., Miller, R.J., Harris, L., Valentine, P.C., Collie, J.S., Pedersen, J., McNaught, D.C., Cohen, A.N., Asch, R.G., Dijkstra, J., Heinonen, K.: The colonial ascidian Didemnum sp. A: Current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. J. Exp. Marine Biol. Ecol. 342, 99–108 (2007). doi:10.1016/j.jembe.2006.10.020
8. Dehali, P., Satou, Y., Campbell, R.K., Chapman, J., Degnan, B., De Tomasao, A., Davidson, B., Di Gregorio, A., Gelpke, M., Goodstein, D.M., et al.: The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002). doi:10.1126/science.1080049
9. Small, K.S., Brudno, M., Hill, M.M., Sidow, A.: A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome biology 8(3), 41 (2007). doi:10.1186/gb-2007-8-3-r41
10. Hill, M.M., Bromran, K.W., Stupka, E., Smith, W.C., Jiang, D., Sidow, A.: The C. savignyi genetic map and its integration with the reference sequence facilitates insights into chordate genome evolution. Genome Res. 18, 1369–1379 (2008). doi:10.1101/gr.078576.108
11. Satou, Y., Nakamura, R., Yu, D., Yoshida, R., Hamada, M., Fujie, M., Hisata, K., Takeda, H., Satoh, N.: A nearly complete genome of Ciona intestinalis type A (C. robusta) reveals the contribution of inversion to chromosomal evolution in the genus Ciona. Genome Biol. Evol. 11, 3144–3157 (2019). doi:10.1093/gbe/evz228
12. Colombera, D., Fenaux, R.: Chromosome form and number in the Larvacea. Boll. Zoologia 40, 347–353 (1973). doi:10.1080/11252900709429248
13. Sea, H.C., Kube, M., Edvardsen, R.B., Jensen, M.F., Beck, A., Spriet, E., Gorsky, G., Thompson, E.M., Lehrach, H., Reinhardt, R., et al.: Miniature genome in the marine chordate Oikopleura dioica. Science 294, 2506–2506 (2001). doi:10.1126/science.294.5551.2506
Plasticity of animal genome architecture unfolded by rapid evolution of a pelagic tunicate. Science 330, 1381–1385 (2010).

Jue, N.K., Batta-Lona, P.G., Trusiak, S., Obergfell, C., Bucklin, A., O'Neill, M.J., O'Neill, R.J.: Rapid evolutionary rates and unique genomic signatures discovered in the first reference genome for the southern ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Genome Biol. Evol. 8, 3171–3186 (2016). doi:10.1093/gbe/evw215

Wang, K., Dantec, C., Lemaire, P., Onuma, T.A., Nishida, H.: Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics 18, 314 (2017). doi:10.1186/s12864-017-1370-5

Stolfi, A., Lowe, E.K., Racioppi, C., Ristolatorre, F., Brown, C.T., Svalla, B.J., Christiaen, L.: Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife 3, 03728 (2014). doi:10.7554/elife.03728

Brozovic, M., Dantec, C., Dardailion, J., Dauga, D., Faure, E., Osoegawa, K., Pennacchio, L.A., Salamov, A.A., Satou, Y., Bermúdez-Santana, C.I.: Automated detection of ncRNAs in the draft genome of Botryllus schlosseri. Genome Biol. 17, 72 (2010). doi:10.1186/gb-2010-11-7-r72

Huerta-Cepas, J., Szklarczyk, D., Keller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L., vonMering, C., Bork, P.: eggNOG 5.0: a hierarchical, functionally organized database of clusters covering the eukaryotic tree of life. Nucleic Acids Res. 47, 725–731 (2019). doi:10.1093/nar/gkx1108

Voskoboinik, A., Neff, N.F., Sahoo, D., Newman, A.M., Pushkarev, D., Koh, W., Passarelli, B., Fan, H.C., Mantalas, G.L., Palmeri, K.J., Ishizuka, K.J., Gissi, C., Griggio, F., Ben-Shlomo, R., Corey, D.M., Halocynthia roretzi. BMC Genomics 18, 317 (2017). doi:10.1186/s12864-016-2934-5

Sasakura, Y., Ogura, Y., Treen, N., Yokomori, R., Park, S.-J., Nakai, K., Saiga, H., Sakuma, T., Yamamoto, T., Fujiwara, S., Yoshida, K.: Conserved heart transcripts reveal a shared chordate karyotype. Nature 478, 317–320 (2011). doi:10.1038/nature10433

Putnam, N.H., Butts, T., Carro-de la Cruz, A., Dehal, P.S., Grabherr, M., Rosenbauer, F., Souc装配, K., Zink, D., Proctor, J., Bejerano, G., Pachter, L., Costello, J.E., Chiu, H., Mikkelsen, T., Ting, L., Kellis, M., Lupu, R., Gu, X., Ohno, K., O'Neill, R.J.: Rapid evolutionary rates and unique genomic signatures discovered in the first reference genome for the ascidian, Halocynthia roretzi. BMC Genomics 18, 314 (2017). doi:10.1186/s12864-017-1370-5

Stolfi, A., Lowe, E.K., Racioppi, C., Ristolatorre, F., Brown, C.T., Svalla, B.J., Christiaen, L.: Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife 3, 03728 (2014). doi:10.7554/elife.03728

Brozovic, M., Dantec, C., Dardailion, J., Dauga, D., Faure, E., Osoegawa, K., Pennacchio, L.A., Salamov, A.A., Satou, Y., Bermúdez-Santana, C.I.: Automated detection of ncRNAs in the draft genome of Botryllus schlosseri. Genome Biol. 17, 72 (2010). doi:10.1186/gb-2010-11-7-r72

Huerta-Cepas, J., Szklarczyk, D., Keller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L., vonMering, C., Bork, P.: eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, 309–314 (2018). doi:10.1093/nar/gky1085

Obradovic Wagner, D., Aspengren, P.: Where did bone come from? Acta Orthopaedica 82, 393–398 (2011). doi:10.3109/17453674.2011.588861

Guth, S.J.E., Wegner, M.: Having it both ways: Sox protein function between conservation and innovation. Cell. Mol. Life Sci. 65, 3000–3018 (2008). doi:10.1007/s00018-008-8138-7

Takatori, N., Satou, Y., Satoh, N.: Expression of hedgehog genes in the sea squirt Ciona intestinalis embryos. Mech. Dev. 116, 235–238 (2002). doi:10.1016/S0925-4773(02)00150-8

Shimeld, S.M.: The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev. Genes Evol. 209, 40–47 (1999). doi:10.1007/s004270050225

Ingham, P.W., McMahon, A.P.: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001). doi:10.1101/gad.938601

Nah, G.S.S., Tan, B.H., Brenner, S., Osato, M., Venkatesh, B.: Characterization of the Runx gene family in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum). PLOS ONE 9, 113445 (2014). doi:10.1371/journal.pone.0113445

Supek, F., Boˇsnjak, M., ˇSkunca, N., ˇSmuc, T.: REVIGO summarizes and visualizes long lists of Gene Ontology terms. PLOS ONE 6, 1–9 (2011). doi:10.1371/journal.pone.0021800

Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyke, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J., Mering, C.: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, 607–613 (2019). doi:10.1093/nar/gky1131

Caner, B.J., Dreszer, T.R., Barber, G.P., Clawson, H., Fujita, P.A., Wang, T., Nguyen, N., Paten, B., Zweig, A.S., Karolich, D., Kent, W.J.: Track data hubs enable visualization of user-defined genome-scale datasets. Nucleic Acids Res. 47, 718–725 (2017). doi:10.1093/nar/gkw1108

Voskoboinik, A., Neff, N.F., Sahoo, D., Newman, A.M., Pushkarev, D., Koh, W., Passarelli, B., Fan, H.C., Mantalas, G.L., Palmeri, K.J., Ishizuka, K.J., Gissi, C., Griggio, F., Ben-Shlomo, R., Corey, D.M., Halocynthia roretzi. BMC Genomics 18, 314 (2017). doi:10.1186/s12864-016-2934-5
Dantec, C., Endo, T., Naville, M., Nishida, H., Swalla, B.J., Volf, J.-N., Voskoboinik, A., Dauga, D., Lemaire, P.: Guidelines for the nomenclature of genetic elements in tunicate genomes. Genesis 53, 1–14 (2015). doi:10.1002/dvg.22822

47. Smith, K.F., Abbott, C.L., Saito, Y., Fidler, A.E.: Comparison of whole mitochondrial genome sequences from two taxa of the invasive ascidian, Didemnum vexillum. Marine Genomics 19, 75–83 (2015). doi:10.1016/j.margen.2014.11.007

48. Wang, S., Harting, J., Tseng, E., Baybayan, P.: Getting the most out of your PacBio libraries with size selection. Technical report, PacBio (2019)

49. Myers, G.: DEXTRACTOR. https://github.com/thegenemyers/DEXTRACTOR (2015)

50. Förster, F., Schultz, J., Hedrich, R., Hackl, T.: proovead: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3000–3011 (2014). doi:10.1093/bioinformatics/btu392

51. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M., Kravitz, S., Mobarry, C., Vershon, A.K.,�

52. Pryszcz, L.P., Gabaldón, T.: Redundans: an assembly pipeline for long-read sequences. Bioinformatics 34, 1494–1512 (2018). doi:10.1093/bioinformatics/btx578

53. Remington, K.A., Anson, E.L., Bolanos, R.A., Chou, H.H., Jordan, C.M., Halpern, A.L., Loniard, S., Beasley, E.M., Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nussken, D.R., Zhan, M., Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C.: A whole-genome assembly of Didemnum vexillum. Science 287, 2196–2204 (2000). doi:10.1126/science.287.5461.2196

54. Pyszczek, L.P., Gabaldón, T.: Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, 113–113 (2016). doi:10.1093/nar/gkw294

55. Salmela, L., Rivals, E.: LoRD: accurate and efficient long read error correction. Bioinformatics 30, 3506–3514 (2014). doi:10.1093/bioinformatics/btu538

56. Tischler, G., Myers, E.W.: Non hybrid long read consensus using local de Bruijn graph assembly. bioRxiv, 106252 (2017). doi:10.1101/206252

57. Boetzer, M., Pirovano, W.: SPACe-longread: scaffolding bacterial draft genomes using long read sequence information. BMC bioinformatics 15, 211 (2014). doi:10.1186/1471-2105-15-211

58. PacBio: QUIVER. https://github.com/PacificBiosciences/QUIVER (2016)

59. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M., Kravitz, S., Mobarry, C., Venter, J.C.: A whole-genome assembly of the ascidian Didemnum vexillum. Nature Biotechnol. 29, 644 (2011). doi:10.1038/nbt.1883

60. Wu, T.D., Reeder, J., Lawrence, M., Becker, G., Brauer, M.J.: GMAP and GSNAP for genomic sequence alignment: Enhancements to speed, accuracy, and functionality. In: Mathé, E., Davis, S. (eds.) Statistical Genomics: Methods and Protocols, pp. 283–334. Springer, New York, NY (2016). doi:10.1007/978-1-4939-3578-9_15

61. Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., MacManes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., Williams, T., Dewey, C.N., Henschel, R., LeDuc, R.D., Friedman, N., Regen, A.: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8, 1494–1512 (2013). doi:10.1038/nprot.2013.084

62. Cantarel, B.L., Korf, I., Robb, S.M., Parra, G., Ross, E., Moore, B., Holt, C., Alvarado, A.S., Yandell, M.: MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008). doi:10.1101/gr.674307

63. Stanke, M., Schöffmann, O., Morgenstern, B., Waack, S.: Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7, 62 (2006). doi:10.1186/1471-2105-7-62

64. Smrt, A.F.A., Hubley, R., Green, P.: RepeatMasker Open-4.0. 2013–2015. http://www.repeatmasker.org (2015)

65. Zhong, Y.-F., Butts, T., Holland, P.W.H.: HomesDB: a database of homeobox gene diversity. Evol. Dev. 10, 516–518 (2008). doi:10.1111/j.1525-142X.2008.00266.x
86. Harris, R.S.: Improved pairwise alignment of genomic DNA. PhD thesis, Pennsylvania State University, University Park, PA, USA (2007)

87. You, L., Chi, J., Huang, S., Yu, T., Huang, G., Feng, Y., Sang, X., Gao, X., Li, T., Yue, Z., Liu, A., Chen, S., Xu, A.: LanceletDB: an integrated genome database for lancelet, comparing domain types and combination in orthologues among lancelet and other species. Database 2019 (2019). doi:10.1093/database/baz056

88. Hecht, J., Stricker, S., Wiecha, U., Stiege, A., Panopoulou, G., Podsiadlowski, L., Pousta, A.J., Dieterich, C., Ehrich, S., Suvorova, J., Mundlos, S., Seitz, V.: Evolution of a core gene network for skeletogenesis in chordates. PLOS Genetics 4, 1000025 (2008). doi:10.1371/journal.pgen.1000025

89. Eddy, S.R.: Accelerated profile HMM searches. PLOS Comp. Biol. 7, 1002195 (2011). doi:10.1371/journal.pcbi.1002195

90. Huerta-Cepas, J., Serra, F., Bork, P.: ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016). doi:10.1093/molbev/msw046

91. Gittenberger, A., Rensing, M., Niemantsverdriet, P., Schrieken, A. N. D’Hont, Stegenga, H.: Soorteninventarisatie oesterputten en oesterpercelen, 2015. I.o.v. bureau risicobeoordeling & onderzoeksprogrammering, nederlandse voedsel- en warrautoriteit, ministerie van economische zaken. Technical Report 2015_19, GiMaRIS (2015). https://www.nvwa.nl/binaries/nvwa/documenten/dier/dieren-in-de-natuur/exoten/risicobeoordelingen/soorteninventarisatie-oesterputten-en-oesterpercelen-2015-gimaris/Soorteninventarisatie+oesterputten+en+oesterpercelen+2015%2C+GiMaRIS.pdf

92. Gittenberger, A., Wesdorp, K.H., Rensing, M.: Biofouling as a transport vector of non-native marine species in the Dutch Delta, along the North Sea coast and in the Wadden Sea. commissioned by Office for Risk Assessment and Research, the Netherlands Food and Consumer Product Safety Authority. Technical Report 2017_09, GiMaRIS (2017). http://www.gimaris.com/Portals/3/GiMaRIS_2017_09_Hullfouling.pdf
Figure 1 Distribution of estimated genome size and GC content of Deuterostome taxa. We included Hemichordata (S. kowalevskii, Saco) Echinodermata (P. miniata Pami and S. purpuratus Stpu) and Chordata species. Filled circles are tunicates and their lifestyle, colonial or solitary, is highlighted in orange or blue accordingly. Species labels: B. floridae (Brfl), B. belcheri (Brbe), O. dioica (Oidi), M. occidentalis (Mlis), M. oculata (Mata), M. occulta (Mta), B. schlosseri (Bosc), H. roretzi (Haro), S. thompsoni (Sath), B. leachii (Bole), D. vexillum (Dive), C. robusta (Ciro), C. savignyi (Cisa), P. marinus (Pema), D. rerio (Dare) and L. chalumnae (Lach).

Figure 2 Completeness of tunicate genomes assessed by BUSCO [59] in comparison to metazoan orthologs.

BUSCO Assessment Results

BUSCO	Complete (C) and single-copy (S)	Complete (C) and duplicated (D)	Fragmented (F)	Missing (M)
B.achillesi_vs_metazoan	C:658 [S:498, D:160], F:44, M:84, n:978			
Botrylloides_leachii_vs_metazoan	C:108 [S:99, D:9], F:9, M:40, n:978			
C.robusta_vs_metazoan	C:1485 [S:1381, D:104], F:30, M:184, n:978			
C.savignyi_vs_metazoan	C:2010 [S:1894, D:116], F:26, M:170, n:978			
D.vexillum_vs_metazoan	C:2402 [S:2252, D:250], F:40, M:120, n:978			
M.occidentalis_vs_metazoan	C:2796 [S:2686, D:110], F:14, M:152, n:978			
M.occulta_vs_metazoan	C:2611 [S:2487, D:124], F:26, M:130, n:978			
M.occulta_vs_metazoan	C:2915 [S:2757, D:158], F:25, M:105, n:978			
S.thompsoni_vs_metazoan	C:3369 [S:3169, D:200], F:26, M:180, n:978			

Figure 3 Detection of Homeobox genes on D. vexillum. A. Model of detection, a shared region between genomes A and B is detected and referenced as gray boxes. Correspondence is denoted by dotted lines between genomes. The dark gray box in genome B represents an annotated gene whereas the dark grey box mark represents the putative orthologous region. Figures B-D show examples of putative orthologous Hox gene assignment in D. vexillum (Dive) in comparison to reported genes on C. robusta (Ciro) and H. roretzi (Haro). Genomic locations were retrieved from ANISEED, Hox cluster of the chordate ancestor is depicted [29, 30]. Uncertain positions of some genes are represented as a dotted box, eg. Hox1 and Hox4 in H. roretzi. For specific genome coordinates see Additional File 1: Table 3.
Figure 4 Phylogenetic analysis of skeletogenesis proteins found in *D. vexillum*. A, SoxB1/B2 family. B Hh family. The sea vomit is highlighted in gray. A tree of the complete SOX family can be found in Additional File 2: Figure 3. Trees were built using Maximum Likelihood (ML) with the JTT+G+I substitution model generating 100 bootstrap replicates.

Figure 5 Comparative genome analyses of *D. vexillum* predicted proteins. A. EggNOG functional annotation of orthologous groups across chordate genomes. B. TreeMap representation from REVIGO [43] *D. vexillum* of the enriched GO specific terms. Boxes’ area correspond to the adjusted p-value, calculated with goatools [80]. C. Functional interactions of homologous proteins in *C. robusta* which have shown homology with the functionally annotated proteins on *D. vexillum* with tRNA catabolism processes. Nodes correspond to single, protein-coding locus. Edges do not represent physically binding, but functional association determined by STRING [44]. The legend was obtained and modified from web server (https://string-db.org/).
Figure 6 Raw data heatmap of PacBio sequences showing the density distribution of subreads produced on PacBio sequencing. X-axis: subread length, Y axis: read quality (RQ) score.

Figure 7 General procedure of the hybrid assembly of *D. vexillum* using error-corrected subreads. Numbers 1, 2, 3 and 4 correspond to the data size (shown in Table 3).
Table 1 Comparison of first draft [21] and the new draft assembly of the *D. vexillum* genome.

Assembly	Estimated Size (kb)	Number contigs (c) / Scaffolds (s)	L50	N50	GC content	IUPAC	Gene Number	Protein Number
Draft [21]	542,259	882,106 (c)	152,090	918	0.366 ± 0.063	0.000	N/A	N/A
This work	517,553	109,769 (s)	25,281	6539	0.362 ± 0.024	0.0155	62,194	64,424
Table 2 Annotated ncRNAs families and loci (in parentheses) in the *D. vexillum* genome. Homology corresponds to previously reported numbers of ncRNAs by homology [21]. Mapped corresponds to the number of ncRNAs that were mapped in the first genome draft [21]. Final corresponds to the current list of candidate ncRNAs. NA: Not available.

ncRNA Family	Homology	Mapped	Final
Cis-Reg	3 (333)	0	3 (333)
miRNAs	248 (2065)	17 (20)	235 (1582)
misc RNAs	1 (1)	1 (1)	2 (2)
IncRNAs	2 (2)	0	2 (2)
Ribozyme	3 (11)	0	3 (11)
rRNAs	4 (84)	0	4 (84)
snoRNAs	6 (9)	6 (9)	12 (18)
snRNAs	9 (87)	2 (34)	9 (115)
tRNAs	23 (2724)	NA	23 (2724)
→ mt-tRNAs	0	21	21
→ mt-rRNAs	0	2	2
Total	277 (5322)	26 (64)	271 (4877)

Table 3 Data used to be run on the new hybrid assembly

Correction	Software	Reads	N50	Size
1 Hybrid	Proovread	776,295	3.94kbp	2.7Gp
2 Hybrid	Proovread	288,198	1.7kbp	391Mbp
3 Pre-assembled reads	SMRT pipe	823,758	1.8Kbp	1.4Gpb
4 CCS	SMRT pipe	220,514	2.1Kbp	450 Mbp
Additional Files

- **Additional File 1**: Genome annotation methodology.
- **Additional File 2**: Orthologs and Protein GO enrichment analysis.
- **Additional File 3**: Command line methods.
- **Additional File 4**: List of SOX, RUNX and Hedgehog sequence names and their accession numbers used for phylogenetic analysis.