A randomized double-blind phase II study evaluating the role of maintenance therapy with cabozantinib in high-grade uterine sarcoma after stabilization or response to doxorubicin ± ifosfamide following surgery or in metastatic first line treatment (EORTC62113)

Isabelle Ray-Coquard,1,2 Helen Hatcher,3 Emmanuelle Bompas,4 Antonio Casado,5 Annekke Westermann,6 Nicolas Isambert,7 Paolo Giovanni Casali,8 Sarah Pratap,9 Daniel Stark,10 Claudia Valverde,11 Anjana Anand,12 Manon Huizing,13 Anne Floquet,14 Lars Lindner,15 Barbara Hermes,16 Beatrice Seddon,17 Corneel Coens,18 Robin Jones,19 Nick Reed20

ABSTRACT

Background Uterine sarcomas are a group of rare tumors that include different subtypes. Patients with histopathological high-grade diseases are at high-risk of recurrence or progression, and have a poor prognosis. We aim to explore the most appropriate management in patients with uterine high-grade sarcomas.

Primary objective To assess the efficacy of maintenance treatment with cabozantinib in patients with high-grade uterine sarcomas who achieved clinical benefit after standard chemotherapy.

Study hypothesis Maintenance treatment with cabozantinib after standard chemotherapy given as an adjuvant treatment after curative surgery, or in locally advanced or metastatic disease, increases progression-free survival compared with placebo

Trial design This is a randomized double blinded phase II trial.

Major inclusion/exclusion criteria The study is enrolling adult patients with high-grade undifferentiated uterine sarcomas, high-grade endometrial stromal sarcomas, high-grade leiomyosarcoma, and high-grade adenosarcoma. Eligible patients had histopathological confirmation of high-grade uterine sarcoma.

Primary endpoint Progression-free survival at 4 months.

Sample size The study plans to enroll 90 patients to allow the randomization of 54 patients to detect an improvement in 4-month progression-free survival from 50% to 80% with 15% significance level and 85% power. Estimated dates for accrual completion: recruitment for the trial started in February 2015, and has currently enrolled 83 patients, of whom 35 patients have been randomized. The end of recruitment is anticipated for December 2020.

Trial registration number ClinicalTrials.gov, number NCT01979393.

INTRODUCTION

Uterine sarcomas are rare tumors that account for approximately 1% of female genital tract malignancies and 8% of uterine cancers with an incidence of approximately 0.4 per 100 000 women.1 Uterine sarcomas belong to a heterogeneous group of tumors including leiomyosarcomas as the most common subtype (63%), endometrial stromal sarcoma (21%), and less common subtypes gathered as undifferentiated uterine sarcoma.2 The 5 year survival estimates for stage I is 76%, for stage II, 60%, for stage III, 45%, and for stage IV disease, 29%.3 Histopathology characteristics define patients with high-grade diseases at high risk of recurrence, progression, and poor prognosis. High grade undifferentiated uterine sarcoma and high grade endometrial stromal sarcoma have a very poor prognosis; most patients die from recurrent disease within 2 years of diagnosis. Endometrial stromal sarcomas with YWHAE-FAM22 fusions represent a clinically aggressive subtype of endometrial stromal sarcoma classified as high-grade endometrial stromal sarcoma; they are distinct from the usual low-grade endometrial stromal sarcoma with JAZF1 rearrangement and from high-grade undifferentiated uterine sarcomas with no identifiable molecular aberration. Undifferentiated sarcomas have been shown to express platelet-derived growth factor receptor-α (PDGFR-α),4 androgen receptor,5 and Wilm’s tumor 1.6 The management of patients with high-grade...
Clinical trial

metastatic adenosarcomas is similar to the management of patients with metastatic high-grade sarcomas. For localized disease, standard guidelines include adjuvant chemotherapy with anthracyclines ± ifosfamide in patients with good performance status and poorly differentiated stage I and II sarcoma, or in patients with advanced disease (stage III/IV). Typically, management of metastatic uterine sarcoma conforms to treatment practice for other metastatic soft tissue sarcomas. Systemic treatment for high grade undifferentiated uterine sarcoma paralleled that for adult-type soft tissue sarcomas, using doxorubicin ± ifosfamide as single agents or in combination. No consensus for first line chemotherapy regimen has been established yet. First-line therapy currently includes doxorubicin, doxorubicin plus ifosfamide, gemcitabine, and gemcitabine plus docetaxel, with the objective response ranging from 17–36%.

Faced with the lack of effective treatments and the poor prognosis in patients with high-grade undifferentiated uterine sarcomas, new agents need to be investigated. Indeed, chemotherapy is currently mainly used as palliative treatment and the best multimodality treatment did not allow sustainable results. The benefits of a continuous scheme of chemotherapy administration have never been demonstrated to be superior to therapy disruption after the first response is observed, and related risks from cumulative drug-associated toxicities, such as cardiac toxicity associated with doxorubicin, may be avoided.

A therapy making it possible to stabilize disease or to delay progression after prior cytotoxic chemotherapy might help the management of sarcoma patients with advanced/metastatic disease. Angiogenesis plays an important role in the growth and dissemination of high-grade undifferentiated uterine sarcomas and other soft tissue sarcomas. High vascular endothelial growth factor (VEGF) expression has been identified as an independent prognostic factor, increasing risk of metastases and decreasing overall survival. Pazopanib has been approved by the US Food and Drug Administration (FDA) for patients with advanced soft tissue sarcomas who have received prior chemotherapy. Cabozantinib capsules (140 mg) were approved by the FDA and the European Medicines Agency for the treatment of patients with progressive, metastatic medullary thyroid cancer, and also approved by the FDA for the treatment of patients with advanced renal cell carcinoma who have received prior antiangiogenic therapy. Based on the activity of cabozantinib observed in several malignancies, and the activity of pazopanib and regorafenib as VEGF-targeting agents in soft tissue sarcomas, maintenance treatment after chemotherapy in patients with high-grade uterine sarcomas warrant further exploration.

METHODS

Trial Design

This randomized double blinded phase II trial aims to evaluate cabozantinib as maintenance therapy in women with high-grade uterine sarcomas after stabilized disease or response achieved with chemotherapy following surgery or in advanced first-line treatment. Fifty-four patients will be randomized (1:1) to receive either cabozantinib as monotherapy (experimental arm) or placebo (control arm). The efficacy of maintenance treatment will be assessed by formal comparison between these two arms of the primary endpoint: progression-free survival at 4 months (4m-PFS). At progression, cross-over to cabozantinib is permitted. Key secondary endpoints include overall survival and toxicity. The study design is presented in Figure 1.

Patient are registered in a period ranging from 4 weeks before the initiation and no later than 12 weeks after the first dose

Figure 1 Study design. FIGO, Federation International gynecologue Obstétricien, HG, high-grade; HGESS, high-grade endometrial stromal sarcoma; HGLMS, high-grade leiomyosarcoma; HGUS, high-grade uterine sarcoma; PD, progressive disease; QD, once a day.
administration of first line treatment. This screening step allows timely central histological review. Randomization is performed after pathological confirmation by a central review board and should occur no later than 12 weeks after the last administration of first line treatment.

Eligible patients are randomized to receive either cabozantinib monotherapy or placebo. Cabozantinib should start between 3 and 12 weeks after the end of the doxorubicin-based regimen (see online supplementary appendix A for allowed regimens and doses of doxorubicin ± ifosfamide). Protocol treatment is given for 2 years or prematurely discontinued for disease progression, diagnosis of a second malignancy, patient refusal, toxicity (impeding further protocol therapy), unblinding of the study treatment, pregnancy, or failure to use adequate contraception. Patients discontinuing therapy in the absence of progression should not receive another cancer treatment, unless ethically impossible. After documented disease progression according to RECIST 1.1 (Response Evaluation Criteria in Solid Tumors),20 unblinding of treatment allocation is allowed. Subjects receiving cabozantinib will be treated at the investigator’s discretion. Subjects receiving placebo will be offered the option of receiving cabozantinib. This cross-over is not mandatory and is left to the decision of the investigator.

The study was approved by the appropriate institutional review board, and patients have provided written informed consent for trial-specific procedures. The trial is registered with ClinicalTrials.gov, number NCT01979393. This study is funded from donations from the family de Spoelbergh and by La Ligue Nationale contre le Cancer from France. In addition, Exelixis, Inc is providing cabozantinib for this study. Study sites are members of the International Rare Cancer Initiative (IRCI). IRCI is a strategic collaboration between Cancer Research UK, the UK National Institute for Health Research Cancer Research Network (NCRN), the US National Cancer Institute, the European Organization for Research and Treatment of Cancer (EORTC), and the French National Institute of Cancer. IRCI aims to facilitate the development of clinical trials in patients with rare cancers. EORTC initiated this trial through a collaboration between the EORTC Soft Tissue Bone Sarcoma Group and the EORTC Gynecological Cancer Group. The protocol was developed through the IRCI network with input from all parties, but only the NCRN group was involved in the recruitment.

Participants

Adult patients with high-grade undifferentiated uterine sarcomas, high-grade endometrial stromal sarcomas, high-grade leiomyosarcoma, and high-grade adenosarcoma, FIGO stage II and III (adjuvant chemotherapy proposed), or FIGO stage IV (first line chemotherapy proposed) are eligible for treatment with doxorubicin ± ifosfamide. Patients should have WHO/ECOG (European Cooperative Oncology Group) performance status 2 and should be able to swallow and retain oral tablets.

Exclusion criteria include low-grade endometrial stromal sarcoma, leiomyosarcoma (low or intermediate grade), carcinosarcoma, low-grade adenosarcoma, rhabdomyosarcoma (alveolar or embryonal), and soft tissue primitive neuro-ectodermal tumor of the uterus/cervix. Randomized patients should have histological evidence of high-grade undifferentiated uterine sarcomas, high-grade endometrial stromal sarcomas, high-grade leiomyosarcoma, and high-grade adenosarcoma centrally confirmed. They should be non-progressive (complete response, partial response, or stable disease) after first-line treatment (four to six cycles of doxorubicin alone or in combination with ifosfamide) and at time of randomization.

Outcomes

The primary objective is to assess the efficacy of maintenance treatment with cabozantinib in patients who achieved clinical benefit (complete response, partial response, or stable disease) after standard chemotherapy as measured by 4m-PFS. Secondary efficacy endpoints evaluate progression-free survival, overall survival, response rate, and duration of response. We report the safety profile of cabozantinib in patients with high-grade uterine sarcoma (Common Terminology Criteria for Adverse Events (CTCAE) v4.0). Exploratory objectives are to evaluate the response rate to doxorubicin-based chemotherapy for patients with measurable disease and to evaluate health-related quality of life in each arm.

Sample Size

Using a one-sided Fisher exact test, stratified on adjuvant versus metastatic disease, and response at end of chemotherapy, 54 patients are needed to detect an increase from 50% to 80%, with 85% power and a 15% significance level. Using such design characteristics, but assuming progression-free survival rate at 4 months for the control arm of 60%, an improvement of 28% (ie, from 60% to 88%) could be detected. In order to randomize the required 54 patients, a total of 90 patients should be registered. A total of 35 progression-free survival events at the time of final analysis is expected. This would show an HR of 0.49 with a one-sided test at 15% significance level with 85% power.

Randomization and Blinding

A minimization technique is used to randomize the patients between the two treatment arms, stratified on collaborative group (EORTC vs NCRN), disease (adjuvant vs metastatic), response after first line chemotherapy (complete response, partial response vs stable disease), and operability (operable vs inoperable). The method used for treatment allocation is a modified version of the dynamic allocation method21–23 and assigns a treatment arm to each patient at the moment it is entered into the clinical trial by choosing among the available treatment arms in such a way that the stratification factors are balanced over all the treatment arms within preset constraints.

i. This triple-blind randomized placebo-controlled phase II trial aims to randomize (1:1) 54 patients to receive either cabozantinib monotherapy (experimental arm) or placebo (control arm). Due to the rarity of uterine sarcomas, the few data mainly based on small retrospective series24 were used for hypotheses assumptions. We used survival data in endometrial and uterine sarcomas from previous EORTC studies to define 4m-PFS. We therefore determine a 4m-PFS rate of 50–60% for the control arm. A comparative phase II design as proposed by Korn et al25 is preferred over a non-comparative design in established reference outcomes, due to the uncertainty inherent in these rare cancer populations. The result is a comparative phase III trial design with increased error rates.

ii. The treatment arm allocation procedure is triple-blinded: the patient, the local treatment staff, and the trial management are
Clinical trial

not aware of the treatment. Unblinding of treatment allocation may occur after progression. In case of a safety concern affecting a patient, the investigator site can request to unblind the patient.

Statistical Methods

The primary analysis will be performed according to the intent to treat principle: all randomized patients will be analyzed in the arm they were allocated by randomization. The superiority of the experimental arm against the control arm will be tested for 4m-PFS using a one-sided stratified Fisher exact test at the 15% significance level. The estimate of the 85% one-sided confidence interval (CI) for the proportion of interest will be derived from the exact binomial distribution. If a significant difference is found in the overall population, a preplanned subgroup analysis will be made in the adjuvant and metastatic subgroups, respectively (closed testing procedure). The test in each subgroup will be performed on the primary endpoint as a Fisher exact test at 15% significance level.

For the secondary endpoints, no formal comparisons between arms will be performed. For time-to-event endpoints (progression-free survival, overall survival, and response duration), curves will be estimated using the Kaplan-Meier technique by treatment arm. Hazard ratios and medians will be displayed with their 95% CI. Response rates as per RECIST (version 1.1) will be displayed using the treatment arm in each subgroup together with their 95% exact CI.

Safety data will be displayed by treatment arm in each subgroup for those patients who received at least one dose of the protocol treatment. The worst toxicity grade over all cycles according to the CTCAE v4.0 will be displayed by treatment arm.

The available power to assess the response rate, progression-free survival, and overall survival is difficult to estimate as the available sample size will depend on the number of patients registered in order to reach the 54 randomizations. Assuming 75 available patients and a response rate of 40%, the 95% CI width for the response rate would be 2×6%. A total of 50 events would yield approximately 80% power to detect an HR of 0.5 in either progression-free survival or overall survival, assuming a two-sided significance test at 10% and a 50%–50% split between groups of interest.

DISCUSSION

As of February 25, 2020, 11 out of 11 EORTC sites in six countries and seven out of 11 UK sites have been activated for patient recruitment. A total of 82 patients have been registered, representing 91% of our target (90 patients), including 35 randomized patients, out of 54 (64%) patients expected. Recruitment is scheduled to end in 2020. Figure 2 shows the accrual of registered and randomized patients. The screening failure rate is higher than anticipated. In practice, this rate is closer to 55% (35 out of 79). The major reasons for non-randomization were a change in histological diagnosis by central review and progression during first line, accounting together for two thirds of the screening failures. This highlights the importance of central review in rare cancers as the histological diagnosis was changed in one in three cases.

We can also note the complexity of conducting clinical randomized trials in the field of rare cancers. This needs to be a priority not only for industry sponsored trials but also for academic groups. Success can nevertheless not be guaranteed as recently demonstrated by the premature discontinuation of the randomized phase III trial GOG (Gynecologic Oncologic Group)−0277/IRCI 001 investigating gemcitabine plus docetaxel followed by doxorubicin versus observation in patients with uterus-limited, high-grade uterine leiomyosarcomas (EudraCT 2012-002852-17; NCT01533207).

Author affiliations

1Centre Leon Berard, Lyon, Rhône-Alpes, France
2Oncology, Université Claude Bernard Lyon 1, Villeurbanne, Auvergne-Rhône-Alpes, France
3Medical Oncology, Cambridge University, Cambridge, UK
4Medical Oncology Department, ICO, Saint Herblain, Pays de la Loire, France
5Medical Oncology Department, Complutense University of Madrid, Madrid, Comunidad de Madrid, Spain
6Medical Oncology Department, Academisch Medisch Centrum, Amsterdam, North Holland, The Netherlands
7Medical Oncology Department, Centre Georges-François Leclerc, Dijon, Bourgogne-Franche-Comté, France
8Medical Oncology Department, IRCCS, Milano, Lombardia, Italy
9Medical Oncology Department, Oxford University, Oxford, UK
10Medical Oncology Department, Leeds Teaching Hospitals NHS Trust, Leeds, UK
11Medical Oncology Department, Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
12Medical Oncology Department, Nottingham Trent University, Nottingham, UK
13Medical Oncology Department, Universitair Ziekenhuis Antwerpen, Edegem, Antwerp, Belgium
14Medical Oncology Department, Institut Bergonié, Bordeaux, Aquitaine, France
15Medical Oncology Department, Ludwig-Maximilians-Universität Munchen, Munchen, Bayern, Germany
16Medical Oncology Department, Eberhard Karls Universität Tubingen, Tubingen, Baden-Württemberg, Germany
17Medical Oncology Department, University College London, London, UK
Clinical trial

REFERENCEs

1 Koivisto-Korander R, Martinsen JI, Weiderpass E, et al. Incidence of uterine leiomyosarcoma and endometrial stromal sarcoma in Nordic countries: results from NORDCAN and NOCCA databases. *Maturitas* 2012;72:56-60.

2 Tropé CG, Aberle VM, Kristensen GB. Diagnosis and treatment of sarcoma of the uterus. A review. *Acta Oncol* 2012;51:694-705.

3 Kapp DS, Shin JY, Chan JK. Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. *Cancer* 2008;112:820.

4 Caudell JJ, Deavers MT, Slomovitz BM, et al. Imatinib mesylate (gleevac)–targeted kinases are expressed in uterine sarcomas. *Appl Immunohistochem Mol Morphol* 2005;13:167-70.

5 Moinfar F, Regtign P, Tabrizi AD, et al. Expression of androgen receptors in benign and malignant endometrial stromal neoplasms. *Virchows Arch* 2004;444:410-4.

6 Coosemans A, Nik SA, Caluwaerts S, et al. Upregulation of Wilms’ tumour gene 1 (WT1) in uterine sarcomas. *Eur J Cancer* 2007;43:1630–7.

7 Friedlander ML, Covens A, Glasspool RM, et al. Gynecologic Cancer InterGroup (GCOG) consensus review for Mullerian adenosarcoma of the female genital tract. *Int J Gynecol Cancer* 2014;24:578-82.

8 Sutton G, Blessing JA, Park R, et al. Ifosfamide treatment of recurrent or metastatic endometrial stromal sarcomas previously unexposed to chemotherapy: a study of the Gynecologic Oncologic Group. *Obstet Gynecol* 1996;87:747-50.

9 Kanjeekal S, Chambers A, Fung MFK, et al. Systemic therapy for advanced uterine sarcoma: a systematic review of the literature. *Gynecol Oncol* 2005;97:624-37.

10 Muss HB, Bundy B, DiSaia PJ, et al. Treatment of recurrent or advanced uterine sarcoma. A randomized trial of doxorubicin versus doxorubicin and cyclophosphamide (a phase III trial of the gynecologic Oncology group). *Cancer* 1985;55:1648.

11 Sutton G, Blessing JA, Malfetano JH, Ifosfamide and doxorubicin in the treatment of advanced leiomyosarcomas of the uterus: a Gynecologic Oncology Group study. *Gynecol Oncol* 1996;62:226.

12 Look KY, Sandler A, Blessing JA, et al. Phase II trial of gemcitabine as second-line chemotherapy of uterine leiomyosarcoma: a Gynecologic Oncology Group (GOG) study. *Gynecol Oncol* 2004;92:644.

13 Hensley ML, Blessing JA, Mannel R, et al. Fixed-dose rate gemcitabine plus docetaxel as first-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology Group phase II trial. *Gynecol Oncol* 2008;109:3029.

14 Heymach JV. Angiogenesis and antiangiogenic approaches to sarcomas. *Curr Opin Oncol* 2001;13:261–9.

15 Yoon SS, Segal NH, Olshen AB, et al. Circulating angiogenic factor levels correlate with extent of disease and risk of recurrence in patients with soft tissue sarcoma. *Ann Oncol* 2004;15:1261-6.

16 Rutkowski P, Kaminska J, Kowalska M, et al. Cytokine serum levels in soft tissue sarcoma patients: correlations with clinicopathological features and prognosis. *Int J Cancer* 2002;100:463-71.

17 van der Graaf WTA, Blay J-Y, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. *Lancet* 2012;379:1879-86.

18 Mir O, Brodowicz T, Italiano A, et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet Oncol* 2016;17:1732–42.

19 Brodowicz T, Liegi-Atzwager B, Tresh E, et al. Study protocol of REGOSARC trial: activity and safety of regorafenib in advanced soft tissue sarcoma: a multinational, randomized, placebo-controlled, phase II trial. *BMJ Cancer* 2015;15:127.

20 Schwartz LH, Litière S, de Vries E, VE de, et al. RECIST 1.1-Update and clarification: from the RECIST Committee. *Eur J Cancer* 2016;62:132–7.

21 Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. *Biometrics* 1975;31:103-15.

22 Freedman LS, White SJ. On the use of Pocock and Simon’s method for balancing treatment numbers over prognostic factors in the controlled clinical trial. *Biometrics* 1976;32:691-4.

23 White SJ, Freedman LS. Allocation of patients to treatment groups in a controlled clinical study. *Br J Cancer* 1978;37:949-57.

24 Amant F, Coosemans A, Debiec-Rychter M, et al. Clinical management of uterine sarcomas. *Lancet Oncol* 2009;10:1188–98.

25 Korn EL, Arbuck SG, Pihloda JM, et al. Clinical trial designs for cytostatic agents: are new approaches needed? *J Clin Oncol* 2001;19:265-72.

26 Fisher RA. Statistical methods for research workers., Edinburgh: Oliver and Boyd, 1954.

27 Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. *J Am Stat Assoc* 1958;53:457-81.

28 Hensley ML, Enserro D, Hatcher T, et al. Adjuvant gemcitabine plus docetaxel followed by doxorubicin versus observation for high-grade uterine leiomyosarcoma: a phase III NRG Oncology/Gynecologic Oncology Group study. *J Clin Oncol* 2018:3324–30.