Preliminary results on the response of some springs of the Sibillini Mountains area to the 2016-2017 seismic sequence

D. Fronzi, F. Banzato, S. Caliro, C. Cambi, C. Cardellini, R. Checcucci, L. Mastrotrillo, F. Mirabella, M. Petitta, D. Valigi, A. Tazioli

Abstract: The dynamic of groundwater systems feeding several springs of the Sibillini Mountains was deeply affected by nine M_w 5.0-6.5 seismic events occurred in central Italy starting from August 2016. The strongest shock occurred on October 30th 2016 about 5 km NNE of Norcia Town, 9 km below the surface, as a result of upper crust normal faulting on the nearly 30 km-long Mt Vettore - Mt Bove fault system, a NW-SE trending, SW-dipping fault system outcropping on the western slope of Mt Vettore, the highest peak of Sibillini Mountains. Soon after this event, a general increase of springs and rivers discharge and groundwater levels was observed both in the Visso and Norcia areas, west of the Sibillini Mountains. In the Visso area the hydrogeological changes due to the seismic sequence exhausted in the 2019, while nowadays both discharges and groundwater levels are still higher than nowadays.

Discharge data of the main springs located east, south-east of the Sibillini Mountains were analysed to verify whether the general increase observed on the western side was associated to a decrease on the eastern and southern-east area. The results show that the springs located on the eastern side and southern-east side of Mt Vettore experienced a significant long-term discharge decrease.

In this preliminary work, the analysis of the historical discharge series of the Pescara di Arquata spring (SE of Mt Vettore), and its relationship with the Standard Precipitation Index (SPI) shows that the very low discharge values recorded during the post-seismic period are not associated with SPI as low as documented in the past for similar discharges. Moreover, the stable isotopic composition of Pescara di Arquata water during the post-earthquake period is slightly different from that measured before the seismic events; this suggests that a lower amount of water having more enriched isotopic $\delta^{18}O$ content reaches the spring after the seismic sequence. These aspects seem to indicate that groundwater circulation in the southern-east area of Sibillini Mountains has been affected by the 2016-2017 seismic sequence.
Introduction

Earthquakes effects on the hydrogeological systems are well known worldwide (Manga et al. 2003; Lai et al. 2004; Charmoille et al. 2005). In Italy these phenomena are documented by many Authors (Esposito et al. 2009; Amoruso et al. 2011; Barberio et al. 2017; Valigi et al. 2020). Sometimes the principal changes are related only to the geochemical aspects of groundwater (Skelton et al. 2014), sometimes earthquakes modify the hydrodynamics of the system (Montgomery 2003, Manga et al. 2003), but in general both effects are recognised during strong seismic events (Adinolfi Falcone et al. 2012).

Several seismic events occurred since August 2016 (Chiaraluce et al. 2017; Civico et al. 2018; Porreca et al. 2018; Brozzetti et al. 2019) affected the dynamic of groundwater systems in the Sibillini Mountains area, in which nine of these events displayed a magnitude ranging from 5.0 to 6.5 M_w. In particular, a general increase of springs and rivers discharge was observed as a consequence of the main shock occurred on October 30th 2016 in the Visso and Norcia areas, that are located in the western portion of the Sibillini area (Petitta et al. 2018; Mastrorillo et al. 2019; Valigi et al. 2019; Di Matteo et al. 2020). In addition, a general decrease of spring discharge occurred after this earthquake in the eastern and south-eastern part of the Sibillini Mountains area.

Due to the strategic role for human requirements of the main springs in the study area, where the protection of groundwater resources and of ecosystems is naturally safeguard by the Sibillini National Park (Mastrorillo et al. 2012), a preliminary discharge analysis on one of a spring of the area, named Pescara di Arquata spring and its relationship with the Standard Precipitation Index (SPI), was conducted. In addition, a preliminary evaluation of changes in the isotopic composition of the spring was performed and data were compared to pre-earthquakes ones to investigate if the general changes on the hydrodynamic system were related to the seismic sequence.

Materials and methods

Geological and hydrogeological setting

The study area is located in central Italy, between Marche, Umbria, Abruzzo and Lazio Regions. It involves the southern-east structure of Mt Sibillini Massif (Dragoni and Valigi 2003), where the Umbria-Marche succession crops out. The stratigraphic sequence is mostly composed by limestone deposited in a carbonate platform environment and overlaid by pelagic sequences (Pierantoni et al. 2013).

The area was subjected to a compressive tectonic stage (Late Miocene–Early Pliocene) generating a thrust and folds chain. The main compressional tectonic element is represented by the Sibillini Mountains thrust (Lavecchia and Jorio 1965). Extensional tectonic took place since Early Pliocene, with the consequent development of WSW-ESE normal faults, among which the ones responsible for the 2016-2017 seismic sequence (Porreca et al. 2018; Villani et al. 2018; Brozzetti et al. 2019).

The hydrogeological setting depends on stratigraphic and structural features of the Umbria-Marche domain (Fig. 1). The main aquifers are located in the Calcare Massiccio and Corniola formations, and in the Maiolica formation. These two aquifers are independent at a local scale, where they are stratigraphically separated from each other by a Jurassic sequence, mostly composed of siliceous and marly formations, acting as an aquitard. Conversely, in areas where these...
formsations are thin or missing a single aquifer (Basal aquifer) including the above mentioned ones can be recognized (Boni et al. 2010; Valigi et al. 2020).

Above these two aquifers, other upper ones are located within the Scaglia Bianca and Scaglia Rossa formations (Calcarea Scaglia, late Cretaceous - middle Eocene), made of thin to medium-layered pelagic limestones. The Marne a Fucoidi (middle -Cretaceous) represents the aquiclade dividing the Basal and Scaglia aquifers.

Discharge and climatic setting

A preliminary discharge analysis was conducted on Foce, Sasso Spaccato, Capodacqua and Pescara di Arquata springs for which the data were provided by C.I.I.P. Servizio Idrico Integrato.

In this work a focus was dedicated to Pescara di Arquata spring discharge and its relationship with the Standard Precipitation Index (SPI) (McKee et al. 1993).

SPI values, at a time scale from 1 to 24 months, were calculated for the Arquata del Tronto rainfall station located nearby the spring recharge area, a representative set of data is available. The rainfall station is located at an altitude lower than the spring mean recharge area. Nonetheless, although it could not be used as it is to estimate water balance, it seems that it can be conveniently used to determine the relation between mean monthly discharge values and SPI values before and after the seismic sequence.

The SPI is the number of standard deviations that the observed value would deviate from the long-term mean, for a normally distributed random variable. In the SPI computation, cumulated rainfalls over different time scales (1, 2, 3 … n months) were fitted to a gamma probability distribution and then transformed into a normal distribution. For a given data time series of precipitation x_i, x_1, x_2, … x_n, the SPI is defined by the equation:

$$SPI = \frac{x_i - \bar{x}}{\sigma_x}$$

where \bar{x} is the arithmetic mean of rainfall and σ_x is the standard deviation.

For a defined timescale, SPI equal to 0 implies that there is no deviation from the mean. Positive values of SPI indicate wet periods, while negative values indicate dry periods. The severity of drought events increases when SPI values are highly negative. Table 1 shows the classification of drought severity based on the SPI values.

Isotopic analysis

In order to investigate if any change on the recharge area or aquifer geometry of the southern-east sector of Sibillini Ms occurred after the seismic sequence, a preliminary isotopic analysis on $\delta^{18}O$ content was conducted in several springs of the area.

At first we determined the isotopic altitude gradient of $\delta^{18}O$ in the study area with rain gauges and shallow springs, used to integrate the rain data. In fact, due to the relatively short flowpath between recharge area and discharge point, the minor springs can be considered as meteoric water collectors (Tazioli et al. 2019). A second analysis on $\delta^{18}O$ content was performed between 2016-2019 on the Pescara di Arquata spring, on the water of which a previous collection campaign was conducted between 2002 and 2009. Samples for isotopes analysis were collected in 50mL high-density polyethylene bottles sealed by plastic inserts to avoid water evaporation. Isotopic analysis of $\delta^{18}O$ were performed by using standard mass spectrometry techniques with an analytical error of $\pm 0.08\%$.

A statistical analysis (performed in MATLAB®) based on moving mean (window length equal to 7) was applied to the Pescara di Arquata $\delta^{18}O$ isotopic data in order to detect abrupt changes in the signal.

Results and discussion

After the 2016-2017 seismic sequence, the discharge of the Foce and Sasso Spaccato springs, both fed by the Basal aquifer significantly decreased in the long term (Fig. 2). As regards the Foce spring, the mean discharge calculated for the period 2014-2016 was about 500 L/s, whereas after the seismic sequence the mean discharge value was about 300 L/s. At the end of 2019 recession period, the mean monthly discharge reached a value lower than 200 L/s. The Sasso Spaccato spring mean discharge, calculated for the period 2014-2016, was about 70 L/s, whereas after the seismic sequence the mean discharge value was about 30 L/s. On the contrary, the Capodacqua spring, also fed mainly by the Basal aquifer, do not show an evident long lasting decrease of average discharge after the seismic sequence. The mean monthly discharge before (2004-2016) and after the seismic sequence has a value of about 400 L/s. In the Pescara di Arquata spring, fed mainly by Maiolica and Scaglia aquifers, it was observed that in 2017, 2018 and 2019 the minimum discharge values at the end of the depletion periods were about 30 L/s.

Table 1 - Classification of drought conditions based on the SPI values (McKee et al. 1993).

Condition	Range
Extremely wet	SPI ≥ 2.0
Very wet	1.5 ≤ SPI < 2.0
Moderately wet	1.0 ≤ SPI < 1.5
Near normal	-1.0 < SPI < 1.0
Moderately dry	-1.5 < SPI ≤ -1.0
Severely dry	-2.0 < SPI ≤ -1.5
Extremely dry	SPI ≤ -2.0

DOI: 10.7343/as-2020-450
The best correlation was found for SPI calculated at a time scale of 12 months (SPI-12) ($R= 0.60$). Only six times (1990, 2002, 2007, 2012, 2017 and 2019) the discharge has fallen below 50 L/s (Fig. 3). In all these periods except in 2017 and 2018-2019, the very low discharge values have corresponded to SPI-12 values lower than, or very close to, -2. In 2017 only, SPI-12 values between -1 and -1.5 (moderately dry) for just a one month (October 2017) have corresponded to a discharge even lower than 30 L/s. Starting from October 2017, the SPI-12 ranges between -1.47 to 1.59 which corresponds to a moderately dry to a very wet period. These considerations suggest that the very low discharges recorded in 2017 and 2018-2019 could be linked to the earthquake.

Our results are in accordance with the higher Maillet depletion coefficient (α) (Mailllet 1905) values determined for the post-earthquake recession periods, with respect to those calculated before October 30th, 2016 earthquake. The average value of α coefficient before and after the M$_{\text{w}}$ 6.5 earthquake are 6.35×10^{-3} day$^{-1}$ and 1.27×10^{-2} day$^{-1}$ respectively. The aquifer feeding the Pescara di Arquata spring emptied faster than it did before (Valigi et al. 2020).

The δ^{18}O altitude gradient calculated in this area in the studied period is about 0.28 ‰/100 m, similar to other values determined for the same area in previous studies (Tarragoni 2006; Nanni and Tazioli 2013; Giustini et al. 2016; Mussi et al. 2017).

The isotopic analysis (between September 2002 and September 2009) of the Pescara di Arquata spring shows that the average value of δ^{18}O content is -9.91 ‰ with a standard deviation of ± 0.39 ‰. The maximum value of δ^{18}O reached before the seismic sequence is -8.51 ‰ in July 2004, the minimum value is -10.5 ‰ reached in September 2009. All the water samples collected after the earthquake are characterized by a δ^{18}O content lower than the average value recorded for the period 2002-2009 (Fig. 4a). The more limited variability of δ^{18}O content and the general slight decreasing of δ^{18}O values after the seismic sequence could be attributable to a low number of samples so far collected, but a contribution to spring discharge of waters more enriched in δ^{18}O slightly lowered with respect to pre-seismic conditions, cannot be excluded.
Conclusions

The results show that the springs of the Sibillini area analysed in this preliminary work behaved different from each other in response to the 2016-2017 seismic sequence. The Foce and the Sasso Spaccato springs, both fed by the basal aquifer of the Mt Vettore Massif, experienced a significant long term discharge decrease. In particular, the discharge of Foce spring, is still presently much lower with respect to the pre-seismic value. The discharge of Capodacqua spring, fed mainly by the basal aquifer of Mt Utero Massif, is the only one which did not change significantly after the earthquakes. The discharge reduction recorded in Foce and Sasso Spaccato springs could be related to the fact that the Basal aquifer of the Mt Vettore Massif was affected by significant dislocations as a consequence of the activation of the Mt Vettore - Mt Bove fault system during the 2016-2017 seismic sequence. This could have caused a connection between the Mt Vettore Basal aquifer and the groundwater bodies located west of the Sibillini chain. Part of the groundwater previously feeding the springs east of Mt Vettore Massif could have therefore diverted westward, increasing the discharge of western groundwater systems in Norcia and Visso areas (Petitta et al. 2018; Mastrorillo et al. 2019; Valigi et al. 2019; Di Matteo et al. 2020).

The Pescara di Arquata spring is the only one among those analysed which is mainly fed by an upper aquifer hosted in Maiolica and Scaglia formations (Valigi et al. 2020).

The analysis of the relationship between Pescara di Arquata spring discharges and climatic conditions of the area shows that, after the seismic sequence, at the end of recession periods very low discharge values were reached, which cannot be justified only by climatic conditions. This suggests that the system was affected by modifications related to the 2016-2017 seismic sequence.

Although isotopic data presently available are still not enough to certainly define the changes occurred in the Pescara di Arquata spring system, the δ¹⁸O content of the seven water samples so far collected, might indicate that the contribution of water coming from lower altitudes has decreased after the seismic sequence.

New data will hopefully allow to confirm the preliminary isotopic results and to better define the mechanisms which could have modified the groundwater flowpaths determining significant discharge changes both west and east of the Sibillini Mountains.

Funding: This research was financed by Regione Umbria, Italy, Funds for “Interventi di emergenza previsti dall’Ordinanza del Capo del Dipartimento di Protezione Civile del 26 agosto 2016, n. 388”.

Acknowledgment: We kindly acknowledge C.I.I.P. Servizio Idrico Integrato for providing discharge data of the analysed springs, the Civil Protection Agency of Marche Region, Centro Funzionale Multirischi per la Meteorologia, l’Idrologia e la Sismologia for providing meteorological data.
Tarragoni C (2006) Determinazione della “quota isotopica” del bacino di alimentazione delle principali sorgenti dell’alta Valnerina “Determination of the “isotopic elevation” for the principal springs of high Valnerina watershed”. Geologica Romana 39:55-62.

Tazioli A, Cervi F, Doveri M, Mussi M, Deiana M, Ronchetti F (2019) Estimating the Isotopic Altitude Gradient for Hydrogeological Studies in Mountainous Areas: Are the Low-Yield Springs Suitable? Insights from the Northern Apennines of Italy. Water 11(9):1764. https://doi.org/10.3390/w11091764

Valigi D, Mastrorillo L, Cardellini C, Checucci R, Di Matteo L, Fronzoni F, Mirabella F, Viazoli S, Vispi I (2019) Springs discharge variations induced by strong earthquakes: the Mw 6.5 Norcia event (Italy, October 30th 2016). ROL, 47:141–146. https://doi.org/10.3301/ROL.2019.25

Valigi D, Fronzoni D, Cambi C, Beddini G, Cardellini C, Checucci R, Mastrorillo L, Mirabella F, Tazioli A (2020) Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August-October 2016 Central Italy Earthquakes. Water 12(3): 767. https://doi.org/10.3390/w12030767

Villani F, Pucci S, Civico R, De Martini PM, Cinti FR, Pantosti D (2018) Surface Faulting of the 30 October 2016 Mw 6.5 Central Italy Earthquake: Detailed Analysis of a Complex Coseismic Rupture. Tectonics 37:3578-3410. https://doi.org/10.1029/2018TC005175