Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Cancer patients seem advisable to detect asymptomatic virus carriers and avoid population-wide and institutional safety measures. Routine SARS-CoV-2 testing of large department of Medical Oncology are feasible after implementation of strict accommodations.

Background: Cancer patients have been reported to be at increased risk for SARS-CoV-2 infection as a result of their immunosuppressed state. At the beginning of the outbreak onwards, all pts admitted to the Medical Oncology Unit at Spedali Civili Hospital, Brescia, underwent a triage investigating the presence of symptoms and signs suggestive of SARS-COV-2 infection. Triage results were used to decide which pts should continue antineoplastic treatments.

Methods: All consecutive cancer pts being admitted for systemic treatment from February 24th to April 21st 2020 were considered. Triage, performed by a trained nurse, consisted of questions regarding the presence of fever, cough, dyspnea, anosmia, dysgeusia, headache, nasal congestion, conjunctival congestion, sore throat, diarrhea, nausea and vomiting, measurement of body temperature and pulse oximetry. All enrolled pts were followed up over SARS-COV-2 outbreak until May 18th.

Results: Overall, 1180 pts were included, 54% female and median age 65 years. Most represented primary malignancies were breast (32%), gastroenteric (18%) and lung (16.5%). Thirty-one (2.5%) presented with clinically evident SARS-COV-2 disease and infection was proven by positive nasopharyngeal swab and/or radiological imaging. The triage identified 69 (6%) “grey zone” pts, with suspicious symptoms (i.e. fever 41%, cough 30%, dyspnea 19%). The nasopharyngeal swab was negative in 48% of them and was not performed in the remaining 52% of pts, as well as in all pts who were triage negative. Both SARS-COV-2 positive and “grey zone” pts did not receive any treatment and were addressed to hospitalisation or home quarantine. All the 1080 pts (91.5%) who resulted negative at triage continued their antineoplastic therapy as planned and was not performed in the remaining 52% of pts, as well as in all pts who were triage negative. Both SARS-COV-2 positive and “grey zone” pts did not receive any treatment and were addressed to hospitalisation or home quarantine. All the 1080 pts (91.5%) who resulted negative at triage continued their antineoplastic therapy as planned.

Conclusions: Accurate triage allowed safe continuation of anticancer treatment in 91.5% of pts during the SARS-COV-2 outbreak. All authors have declared no conflicts of interest.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: A. Berghoff: Research grant/Funding (institution), Travel/Accommodation/Expenses: Abbvie; A. Stazar: Travel/Accommodation/Expenses: Pharma. M. Preusser: Advisory/Consultancy: Roche; Novartis; Gerson Lehrman Group (GLG); CMS Contrast; Mundipharma; BMS Journals; MedMedia; Asta Zeneca; Lilly; Medheadad; Sanofi; Tocagen; Advisory/Consultancy, Research grant/Funding (institution): Bristol-Myers Squibb; GlaxoSmithKline; Roche; Abbvie; Daiichi Sankyo; Merck Sharp & Dome; Research grant/Funding (institution): Novo- cure; Böhringer Ingelheim. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1756

Table: 1691P

Mean number of sessions or procedures (per week)	Variation (%)		
Period 1 (Jan-1 to Mar-15)	Period 2 (Mar-16 to Apr-19)		
Chemistry	396	351	-11%
Radiotherapy	914	631	-31%
Surgery (oncological)	21	12	-43%
Surgery (oncoplastic)	8	0.8	-90%
Blood products	89	73	-18%
Transfusion	11	-69%	
Inclusions in clinical trials	846	546	-45%
On-site visits	983	233	-76%
Telemedicine visits	3	313	+10 333%

Conclusions: The evaluation of practice variation for cancer care is essential to understand the real impact of COVID-19 outbreak on global cancer management, so as to be prepared to further epidemic waves (for ex. implementation of telehealth innovations) or long-term consequences on cancer outcome.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: D. Borchelli: Advisory/Consultancy, Research grant/Funding (institution): Astellas; Astra Zeneca; MSD; Novartis; Advisory/Consultancy, Research grant/Funding (institution), Travel/Accommodation/Expenses: BMS, Iansson; Pfazer; Roche; Research grant/Funding (institution): Calithera; Exelixis; Infinity, Merck KgaA; Advisory/Consultancy: Ipsen; Sanofi; J-M. Hannoun-Levi: Advisory/Consultancy: Eckert & Ziegler BBEIG. E. Francois: Honoraria (self): Amsen; MSD; Novartis; Honoraria (self), Travel/Accommodation/Expenses: Servier; Advisory/Consultancy, Travel/Accommodation/Expenses: Roche. All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1755

SARS-CoV-2 RNA testing in cancer patients treated at a Department of Medical Oncology in Vienna, Austria

A.S. Berghoff, A. Ganserter, A.C. Bathlé, W. Truttscheg, P. Hungerländler, J.P. Berger, A. Krekinger, A. Starzer, R. Schmidt, W. Laimm, M. Raderer, A.D. Gottlieb, N.J. Mauser, M. Preusser

1Department of Medicine 1, Medizinische Universität Wien (Medical University of Vienna), Vienna, Austria; 2Faculty of Management and Economics, University of Klagenfurt, Klagenfurt, Austria; 3Faculty of Natural Sciences and Intelligent Data Analytics, University of Salzburg, Salzburg, Austria; 4Faculty of Technical Sciences, University of Klagenfurt, Klagenfurt, Austria; 5Department of Laboratory Medicine, Medizinische Universität Wien (Medical University of Vienna), Vienna, Austria; 6Oncology, Vienna General Hospital (AKH) - Medizinische Universität Wien, Vienna, Austria; 7Department of Medicine 1, Vienna General Hospital (AKH) - Medizinische Universität Wien, Vienna, Austria; 8Faculty of Mathematics, University of Vienna, Vienna, Austria; 9Department of Medicine 1, Vienna General Hospital (AKH) - Medizinische Universität Wien, Vienna, Austria

Methods: Patients routinely tested for SARS-CoV-2 RNA by nasal swab and Real-Time qPCR (RT-qPCR) between March 21st and May 4th 2020 were included. The results of this “cancer cohort” were statistically compared to the SARS-CoV-2 prevalence in the Austrian population (“control cohort”) as determined by a nation-wide random sample study to define the prevalence of SARS-CoV-2 infections.

Results: 1688 SARS-CoV-2 tests were performed in 1016 consecutive cancer patients. 830/1016 (81.6%) patients were undergoing active anti-cancer treatment in a neo-adjuvant/adjuvant or palliative setting. 53/1016 (5.2%) patients self-reported symptoms potentially associated with COVID-19. SARS-CoV-2 was detected in 4/1016 (0.4%) patients. At the time of testing, all four SARS-CoV-2 positive patients were asymptomatic. 2/4 (50%) of the positive tested patients had recovered from symptomatic COVID-19. Viral clearance was achieved so far only in one of the four patients 14 days after testing positive. The three remaining patients have not achieved viral clearance after 25 days of follow up. The estimated odds ratio of SARS-CoV-2 prevalence between the cancer cohort and the control cohort was 1.095 (95% CI 0.209-4.272; p=1).

Conclusions: Our data indicate that continuation of active anti-cancer treatment at a large department of Medical Oncology are feasible after implementation of strict population-wide and institutional safety measures. Routine SARS-CoV-2 testing of cancer patients seems advisable to detect asymptomatic virus carriers and avoid uncontrolled viral spread.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: A.S. Berghoff: Research grant/Funding (institution), Travel/Accommodation/Expenses: Abbvie; A. Stazar: Travel/Accommodation/Expenses: Pharma. M. Preusser: Advisory/Consultancy: Bayer; Novartis; Gerson Lehrman Group (GLG); CMS Contrast; Mundipharma; BMS Journals; MedMedia; Asta Zeneca; Lilly; Medheadad; Sanofi; Tocagen; Advisory/Consultancy, Research grant/Funding (institution): Bristol-Myers Squibb; GlaxoSmithKline; Roche; Abbvie; Daiichi Sankyo; Merck Sharp & Dome; Research grant/Funding (institution): Novo-cure; Böhringer Ingelheim. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1756

Abstracts 2020