INFINTESIMALS IN A RECURSIVELY ENUMERABLE PRIME MODEL

TRISTRAM DE PIRO

Abstract. Using methods developed by Robinson, we find a complete theory suitable for a first order description of infinitesimal neighborhoods. We use this to construct a specialisation having universal properties and to find a recursively enumerable model in which the algebraic version of Bezout’s theorem is provable by non-standard methods.

1. Specialisations and Valuations

Let L and K be fields with an imbedding $i : L^* \to K^*$. In the case when L and K have the same characteristic, we will consider L as a subfield of K, otherwise we will by some abuse of notation refer to the embedded set $i(L^*) \cup \{0\}$ as L. Let $P(K) = \bigcup_{n\geq 1} P^n(K)$ and $P(L) = \bigcup_{n\geq 1} P^n(L)$. By a closed algebraic subvariety of $P^n(K)$, we mean a set $W(K)$ where W is defined by homogeneous polynomial equations with coefficients in K. We say that $W(K)$ is defined over L if we can take the coefficients to lie in L. Let $W^m_n(K)$ denote the m'th Cartesian product of $P^n(K)$. By a closed algebraic subvariety of $W^m_n(K)$, we mean a set $W(K)$ defined by multi-homogeneous polynomial equations with coefficients in K, similarly we can make sense of the notion of being defined over L. Note that if K is not algebraically closed, it is not necessarily true that the projection maps $pr_{k,n} : W^k_n(K) \to W^m_n(K)$ preserve closed algebraic subvarieties.

Definition 1.1. A specialisation is a map $\pi = \bigcup_{n\geq 1} \pi_n : P(K) \to P(L)$, such that each $\pi_n : P^n(K) \to P^n(L)$ has the following property;

Let $W^m_n(K)$ denote the m'th Cartesian product of $P^n(K)$. Then, if $V \subset W^m_n(K)$ is a closed algebraic subvariety defined over L and \bar{a} is an m-tuple of elements from $W_n(K)$, such that $V(\bar{a})$ holds, then $V(\pi_n(\bar{a}))$ holds as well.

The author was supported by a Marie Curie research fellowship.
The following compatibility requirement must also hold between the π_n:

Fix the following chain of embeddings i_n of $P^n(K)$ and $P^n(L)$ into $P^{n+1}(K)$ and $P^{n+1}(L)$ for $n \geq 1$.

$$i_n : [x_0 : \ldots : x_n] \mapsto [x_0 : \ldots : x_n : 0].$$

Then we require that $\pi_{n+1} \circ i_n = i_{n+1} \circ \pi_n$.

Definition 1.2. A Krull valuation v is a map $v : K \to \Gamma \cup \{\infty\}$ where Γ is an ordered abelian group with the following properties:

(i). $v(x) = \infty$ iff $x = 0$.
(ii). $v(xy) = v(x) + v(y)$
(iii). $v(x + y) = \min\{v(x), v(y)\}$

Here, we adopt the convention that $\gamma < \infty$ for $\gamma \in \Gamma$ and extend $+$ naturally to $\Gamma \cup \{\infty\}$.

We let $\mathcal{O}_v = \{x \in K : v(x) \geq 0\}$ be the valuation ring of v and $\mathcal{M}_v = \{x \in K : v(x) > 0\}$ the unique maximal ideal. We also require:

(iv). The inclusion $i : L^* \cup 0 \to \mathcal{O}_v^* \cup 0$ maps L isomorphically onto $\mathcal{O}_v^*/\mathcal{M}_v$, the residue field of v.

Definition 1.3. We say that two Krull valuations v_1 and v_2 are equivalent, denoted by $v_1 \sim v_2$ if $\mathcal{O}_{v_1} = \mathcal{O}_{v_2}$.

Lemma 1.4. v_1 and v_2 are equivalent iff there exists $\Theta : \Gamma_1 \to \Gamma_2$ such that $\Theta \circ v_1 = v_2$.

In order to see this, define $\Theta(v_1(x)) = v_2(x)$, this is well defined as if $v_1(x) = v_1(x')$, then $v_1(x/x') = 0$, hence x/x' and x'/x belong to \mathcal{O}_{v_1}. If $v_1 \sim v_2$, then x/x' and x'/x belong to \mathcal{O}_{v_2} as well, which gives that $v_2(x) = v_2(x')$. One can easily check that Θ is an isomorphism of ordered abelian groups as required.

Our main result in this section is the following;

Theorem 1.5. Let $X := \{\pi : P(K) \to P(L)\}$ be the set of specialisations and $Y := \{v/\sim : v : K \to \Gamma\}$ be the set of equivalence classes of
Krull valuations. Then there exists a natural bijection between X and Y. Specifically, there exists maps Φ and Ψ;

$$\Phi : X \rightarrow Y$$

$$\Psi : Y \rightarrow X$$

with $\Psi \circ \Phi = Id_X$ and $\Phi \circ \Psi = Id_Y$.

We first show;

Theorem 1.6. There exists $\Psi : Y \rightarrow X$

Proof. Let $[v]$ denote a class of Krull valuations on K. We define a specialisation map $\pi_{[v]}$ as follows;

Let $(x_0 : x_1 : \ldots : x_n)$ denote an element of $P^n(K)$ written in homogeneous coordinates. For some $\lambda \in K$, the elements $\{\lambda x_0, \ldots, \lambda x_n\}$ will lie in O_v and not all of them will lie in M_v. Let $\pi : O_v \rightarrow L$ denote the unique ring morphism such that $\pi \circ i = Id_L$ where i is the inclusion map from L into O_v. Then $((\pi(\lambda x_0)) : (\pi(\lambda x_1)) : \ldots : (\pi(\lambda x_n))$ defines an element of $P^n(L)$. As is easily checked, the mapping is independent of the choice of λ and depends only on O_v, hence we obtain $\pi_{n,[v]} : P^n(K) \rightarrow P^n(L)$. We need to check that each $\pi_{n,[v]}$ satisfies the property required of a specialisation. We will just verify this in the case when $m \leq 2$ for each $n \geq 1$, the other cases are straightforward generalisations;

For $m = 1$, let $V \subset P^n(K)$ be a closed subvariety defined over L, then V is defined by a system of homogeneous equations in the variables $\{x_0, \ldots, x_n\}$ with coefficients in L. Taking a tuple \bar{a} belonging to V, we can assume that the elements $\{a_0, a_1, \ldots, a_n\}$ belong to O_v. Now, using the fact that the residue map π is a ring homomorphism fixing L, the reduced elements $\{\pi(a_0), \pi(a_1), \ldots, \pi(a_n)\}$ also satisfy the same homogeneous equations as required.

For the case when $m = 2$, we use the Segre embedding which is defined by;

$$Segre : P^n(K) \times P^n(K) \rightarrow P^{n+2}(K)$$
The following diagram is easily checked to commute:

\[
P^n(K) \times P^n(K) \xrightarrow{\text{Segre}} P^{n(n+2)}(K) \\
\downarrow {\pi_n,[v]} \times {\pi_n,[v]} \quad \downarrow {\pi_n(n+2),[v]} \\
P^n(L) \times P^n(L) \xrightarrow{\text{Segre}} P^{n(n+2)}(L)
\]

Therefore, it is sufficient to prove that the property holds for \(\pi_n(n+2),[v] : P^{n(n+2)}(K) \to P^{n(n+2)}(L)\) when \(m = 1\). This is the case covered above.

Finally, we need to check the compatibility requirement for the \(\pi_n,[v]\), this is a trivial calculation.

Denote the specialisation map we have obtained by \(\pi_{[v]}\) and let \(\Psi([v]) = \pi_{[v]}\).

Therefore, it is sufficient to prove that the property holds for \(\pi_{n(n+2),[v]} : P^{n(n+2)}(K) \to P^{n(n+2)}(L)\) when \(m = 1\). This is the case covered above.

Finally, we need to check the compatibility requirement for the \(\pi_{n,[v]}\), this is a trivial calculation.

Denote the specialisation map we have obtained by \(\pi_{[v]}\) and let \(\Psi([v]) = \pi_{[v]}\).

We now show;

Theorem 1.7. There exists \(\Phi : X \to Y\)

Proof. Suppose that we are given a specialisation \(\pi\). In particular we have a map \(\pi_1 : P^1(K) \to P^1(L)\) satisfying the requirements above. We want to show how to recover a Krull valuation on \(K\).

Let \(\gamma : K \to P^1(K)\) be the map \(\gamma : k \mapsto [k : 1]\), so \(\pi_1 \circ \gamma : K \to P^1(L)\). Let \(U \subset P^1(L)\) be the open subset defined by \(P^1 \setminus [1 : 0]\). Let \(O_K = (\pi_1 \circ \gamma)^{-1}(U)\) and \(M_K = (\pi_1 \circ \gamma)^{-1}([0 : 1])\). We now claim the following:

Lemma 1.8. \(O_K\) is a subring of \(K\) with \(\text{Frac}(O_K) = K\) and \(M_K\) is an ideal of \(O_K\).

Proof. Suppose that \(\{x, y\} \subset O_K\), then both \(\pi_1([x : 1])\) and \(\pi_1([y : 1])\) are in \(U\). Let \(C \subset P^1(K) \times P^1(K) \times P^1(K)\) be the closed set defined in coordinates \(([u : v], [w : x], [y : z])\) by the equation \(uwz = yvx\). As is easily checked, we have that \(C([x : 1], [y : 1], [xy : 1])\). By the defining property of \(\pi_1\), \(C(\pi_1([x : 1]), \pi_1([y : 1]), \pi_1([xy : 1]))\) also
holds. Therefore, $C([\lambda : 1], [\mu : 1], [\alpha, \beta])$ where $\lambda, \mu, \alpha, \beta$ are in L. By definition of C, we have $\lambda \mu \beta = \alpha$ which forces $\beta \neq 0$. Hence, $\pi_1([xy : 1]) \in U$ and therefore $xy \in \mathcal{O}_K$. Let $D \subset P^1(K) \times P^1(K) \times P^1(K)$ be defined using the same choice of coordinates by the equation $uxz + wvz = yvx$. Then we have that $D([x : 1], [y : 1], [x + y : 1])$ and therefore $D(\pi_1([x : 1]), \pi_1([y : 1]), \pi_1([x + y : 1]))$. Again, we must have $D((\lambda : 1), [\mu, [1, [\delta, \epsilon]]))$ where $\lambda, \mu, \delta, \epsilon$ are in L. This forces $(\lambda + \mu)\epsilon = \delta$ and therefore $\epsilon \neq 0$, so $x + y \in \mathcal{O}_K$. Clearly, $1 \in \mathcal{O}_K$ which shows that \mathcal{O}_K is a subring of K as required. In order to see that \mathcal{M}_K is an ideal of \mathcal{O}_K, let $x \in \mathcal{O}_K$ and $y \in \mathcal{M}_K$. We have that $C((\lambda : 1), [0 : 1], [\alpha, \beta])$ where $\pi_1([xy : 1]) = [\alpha, \beta]$. Then $0.1 \beta + 1.0 \epsilon = 1.1 \delta$. Then we obtain $D(0 : 1), [0 : 1], [\delta, \epsilon]$ where $\pi_1([x + y : 1]) = [\delta, \epsilon]$. Then $0.1 \beta + 1.0 \epsilon = 1.1 \delta$, so $\delta = 0$ and $\epsilon = 1$, hence $x + y \in \mathcal{M}_K$ as required. Finally, we show that $Frac(\mathcal{O}_K) = K$. Suppose $x \notin \mathcal{O}_K$, then $\pi_1([x : 1]) = [1 : 0]$. We have that $C([x : 1], [1/x : 1], [1 : 1])$, hence $C([1 : 0], [\alpha, \beta], [1 : 1])$ where $\pi_1([1/x : 1]) = [\alpha, \beta]$. This forces $1.0 \alpha = 0, \beta, 1$, hence $\alpha = 0$ and $\beta = 1$. Therefore $1/x \in \mathcal{O}_K$ as required.

We now further claim the following;

Lemma 1.9. If π_1 is non-trivial, that is, π_1 is not a bijection between $P^1(K)$ and $P^1(L)$, then \mathcal{O}_K is a proper subring of K.

Proof. By the same argument as above we have that $\pi_1 \circ \gamma(1/\mathcal{M}_K) = [1 : 0]$, hence $\mathcal{O}_K = K$, using the previous lemma, we must have that $\mathcal{M}_K = 0$. If π_1 is non-trivial, we can find $x \in K$ and $y \in K$ distinct such that $\pi_1([x : 1]) = \pi_1([y : 1])$. By the usual arguments, we then have that $\pi_1([x - y : 1]) = [0 : 1]$, so $x - y \in \mathcal{M}_K$ contradicting the fact that $\mathcal{M}_K = \{0\}$.

We can now construct a Krull valuation on K by a standard method. Let $\Gamma = K^*/\mathcal{O}_K^*$ and define $v : K \rightarrow \Gamma$ by $v(x) = x \mod \mathcal{O}_K^*$ and $v(0) = \infty$. Define an ordering on the abelian group Γ by declaring $v(x) \leq v(y)$ iff $y/x \in \mathcal{O}_K$. This is well defined as if $v(x) = v(x')$ and $v(y) = v(y')$, then $y'/y, y'/y, x/x'$ and x'/x are all in \mathcal{O}_K. We have that $y'/x' = y/x, y'/y, x/x'$ and $y/x = y'/x', y'/y, x/x'$, therefore $y'/x' \in \mathcal{O}_K$ iff $y'/x' \in \mathcal{O}_K$ as required. Transitivity of the ordering follows from the fact that \mathcal{O}_K is a subring of K. \leq is a linear ordering as if $x \in K^*$ and $y \in K^*$ then either x/y or y/x lies in \mathcal{O}_K. Finally, we clearly have that if $y/x \in \mathcal{O}_K$ then $yz/xz \in \mathcal{O}_K$, hence $v(x) \leq v(y)$ implies
$v(x) + v(z) \leq v(y) + v(z)$. This turns Γ into an ordered abelian group. Properties (i) and (ii) of the axioms for a Krull valuation are trivial to check. Suppose property (iii) fails, then we can find x, y with $v(x + y) < v(x)$ and $v(x + y) < v(y)$. Therefore $(x + y)/x \notin \mathcal{O}_K$ and $(x + y)/y \notin \mathcal{O}_K$. As $1 \in \mathcal{O}_K$, we have that $x/y \notin \mathcal{O}_K$ and $y/x \notin \mathcal{O}_K$ which is a contradiction. Finally, we check property (iv). By definition of π_1, we have that $L^* \subset \mathcal{O}_K^*$, hence $v|L$ is trivial. If $k \in \mathcal{O}_v^*$, we can find $l \in L^*$ such that $\pi_1([k : 1]) = [l : 1]$, then $\pi_1([k - l : 1]) = [0 : 1]$ and $k - l \in \mathcal{M}_K$. It follows that L maps onto $\mathcal{O}_K/\mathcal{M}_K$, and $\mathcal{O}_K/\mathcal{M}_K \cong L$ as required. Denote the valuation we have obtained by v_π and set $\Phi(\pi) = [v_\pi]$. This ends the proof of Theorem 1.7.

We now complete the proof of Theorem 1.5;

Proof. $\Phi \circ \Psi = Id_Y$.

Let $[v]$ be a class of Krull valuations on K with corresponding specialisation $\pi_{[v]}$ provided by Ψ. Let $\pi_{1,[v]}$ be the restriction to $P^1(K)$. By definition, if $k \in \mathcal{O}_v$ then $\pi_{1,[v]}([k : 1]) = [\pi(k), 1]$ where π is the residue map for v. If $k \notin \mathcal{O}_v$, then $\pi_{1,[v]}([k : 1]) = [0, 1]$, so we see that \mathcal{O}_K as defined above is exactly \mathcal{O}_v. The valuation $v_{\pi_{[v]}}$ constructed from $\pi_{[v]}$ therefore has the same valuation ring \mathcal{O}_v, so $v \sim v_{\pi_{[v]}}$ which gives the result.

$\Psi \circ \Phi = Id_X$.

Let π be a given specialisation and $[v_\pi]$ the corresponding class of Krull valuations. Let π_1 be the restriction of π to $P^1(K)$ and π_{1,v_π} the specialisation constructed from v_π restricted to $P^1(K)$. We have;

(i). $\pi_{1,v_\pi}([k : 1]) = [0 : 1]$ iff $v_\pi(k) > 0$ iff $k \in \mathcal{M}_{v_\pi}$ iff $k \in \mathcal{M}_K$ as defined above iff $\pi_1([k : 1]) = [0 : 1]$

(ii). $\pi_{1,v_\pi}([k : 1]) = [1 : 0]$ iff $v_\pi(k) < 0$ iff $k \notin \mathcal{O}_{v_\pi}$ iff $k \notin \mathcal{O}_K$ as defined above iff $\pi_1([k : 1]) \notin U$ iff $\pi_1([k : 1]) = [1 : 0]$

(iii). $\pi_{1,v_\pi}([1 : 0]) = \pi_1([1 : 0]) = [1 : 0]$ trivially.

If $k \in \mathcal{O}_{v_\pi}$, then $\pi_{1,v_\pi}([k : 1]) = [\alpha(k) : 1]$ where α is the residue mapping associated to v_π. We also have that $\pi_1([k : 1]) \in U$, hence as π_1 is
a specialisation that \(\pi_1([k : 1]) = [\beta(k) : 1] \) where \(\beta \) is a homomorphism from \(\mathcal{O}_{v_x} \) to \(L \). We thus obtain two homomorphisms \(\alpha, \beta : \mathcal{O}_{v_x} \to L \) such that (by (i)) \(\text{Ker}(\alpha) = \text{Ker}(\beta) = \mathcal{M}_{v_x} \) and with the property that \(\alpha \circ i = \beta \circ i = \text{Id}_L \) where \(i \) is the natural inclusion of \(L \) in \(\mathcal{O}_{v_x} \). We thus obtain the splitting \(\mathcal{O}_{v_x} = L \oplus \text{Ker}(\alpha) = L \oplus \text{Ker}(\beta) = L \oplus M \) with \(\text{Ker}(\alpha) = \text{Ker}(\beta) = M \). Now, using this fact, we can write any element of \(\mathcal{O}_{v_x} \) uniquely in terms of \(L \) and \(M \), hence the corresponding projections \(\alpha \) and \(\beta \) are the same.

We have shown that \(\pi_1 = \pi_{1,v_x} \), it remains to check that \(\pi_n = \pi_{n,v_x} \) for all \(n \geq 1 \). We prove this by induction on \(n \), the case \(n = 1 \) having been established.

By the induction hypothesis and the compatibility requirement between the \(\pi_n \), for \(\{k_0, k_1, \ldots, k_n\} \subset \mathcal{O}_{v_x} \);
\[
\pi_{n+1}([k_0 : k_1 : \ldots : k_n : 0]) = [\pi(k_0) : \pi(k_1) : \ldots : \pi(k_n) : 0] \quad (*)
\]
where \(\pi \) is the residue map on \(\mathcal{O}_{v_x} \).

Let \(C \subset P^{n+1}(K) \) be the closed subvariety defined using coordinates \([x_0 : x_1 : \ldots : x_{n+1}]\) by the equations \(x_0 = x_1 = \ldots = x_{n-1} = 0 \). Then by arguments as above and the fact that \(C \) is preserved by \(\pi_{n+1} \), we can find a Krull valuation \(v' \) on \(K \) with corresponding residue mapping \(\pi' \) such that;
\[
\pi_{n+1}([0 : \ldots : 0 : 1 : k_{n+1}]) = [0 : \ldots : 0 : 1 : \pi'(k_{n+1})] \text{ if } v'(k_{n+1}) \geq 0
\]
\[
= [0 : \ldots : 0 : 1] \text{ otherwise (**)}
\]

Now let \(D \) be the closed subvariety of \(P^{n+1}(K) \) defined by the equations \(x_1 = \ldots = x_n \) and \(x_0 = x_{n+1} \). Again, we have that \(\pi_{n+1} \) preserves \(D \), hence there exists a Krull valuation \(v'' \) on \(K \) with corresponding residue mapping \(\pi'' \) such that;
\[
\pi_{n+1}([k : 1 : \ldots : 1 : k]) = [\pi''(k) : 1 : \ldots : 1 : \pi''(k)] \text{ if } v''(k) \geq 0
\]
\[
= [1 : 0 : \ldots : 0 : 1] \text{ otherwise (***)}
\]

Let \(Sum \) be the closed subvariety of \(P^{n+1}(K) \times P^{n+1}(K) \times P^{n+1}(K) \) defined using coordinates \([x_0 : x_1 : \ldots : x_{n+1}]\), \([y_0 : y_1 : \ldots : y_{n+1}]\) and \([z_0 : z_1 : \ldots : z_{n+1}]\) by the equations \(x_0y_1z_1 + y_0x_nz_1 = z_0x_ny_1 \)
and $x_{n+1}y_1z_1 + y_{n+1}x_nz_1 = z_{n+1}x_ny_1$. Then, for $k \in K$, we have that $Sum([0:0:\ldots:1:k],[k:1:\ldots:0:0],[k:1:\ldots:1:k])$, hence by the properties of a specialisation that $Sum(\pi_{n+1}([0:0:\ldots:1:k]),\pi_{n+1}([k:1:\ldots:0:0]),\pi_{n+1}([k:1:\ldots:1:k])).$

In the generic case when $v_\pi(k), v'(k), v''(k)$ are all non-negative, we obtain $Sum([0:0:\ldots:1:\pi'(k)],[\pi(k):1:\ldots:0:0],[\pi''(k):1:\ldots:1:\pi''(k)])$ which gives the relations $0.1.1 + \pi(k).1.1 = \pi''(k).1.1$ and $\pi'(k).1.1 + 0.1.1 = \pi''(k).1.1$, so $\pi(k) = \pi'(k) = \pi''(k)$.

A simple calculation shows that $v_\pi(k) < 0$ iff $v'(k) < 0$ iff $v''(k) < 0$, hence $\mathcal{O}_{v_\pi} = \mathcal{O}_{v'} = \mathcal{O}_{v''}$. We have now shown the following further compatibility between π_1 and π_{n+1}. Namely;

If $\gamma : P^1(K) \rightarrow P^{n+1}(K)$ is given by $\gamma : [x_0,x_1] \mapsto [0:0:\ldots:x_0:x_1]$ then $\pi_{n+1} \circ \gamma = \gamma \circ \pi_1$. (†)

Finally, let Sum' be the closed subvariety of $P^{n+1}(K) \times P^{n+1}(K) \times P^{n+1}(K)$ defined in coordinates $[x_0: \ldots : x_{n+1}],[y_0: \ldots : y_{n+1}],[z_0: \ldots : z_{n+1}]$ by the $(n+1)$ equations $x_jy_1z_1 + y_jx_nz_1 + z_jx_ny_1$ for $j \neq n$. Let $[k_0: \ldots : k_{n+1}]$ be an arbitrary element of $P^{n+1}(K)$. Without loss of generality, we may assume that $\{k_0: \ldots : k_{n+1}\} \subset \mathcal{O}_{v_\pi}$ and that $k_n \in \mathcal{O}_{v_\pi}^*$. Hence, dividing by k_n, the element is of the form $[k_0: \ldots : k_{n-1}:1:k_{n+1}]$ with $\{k_0, \ldots , k_{n-1}, k_{n+1}\} \subset \mathcal{O}_{v_\pi}$. We have that $Sum'([0:0:\ldots:0:1:k_{n+1}],[k_0: \ldots : k_{n-1}:1:0],[k_0: \ldots : k_{n-1}:1:k_{n+1}])$, hence by specialisation and (†), $Sum'([0:0:\ldots:0:1:\pi(k_{n+1})],[\pi(k_0): \ldots : \pi(k_{n-1}):1:0],[l_0: \ldots : l_n:l_{n+1}])$ where $\{l_0, \ldots , l_{n+1}\} \subset L$. As is easily checked, the case when $l_n = 0$ leads to a contradiction, hence we can assume that $l_n = 1$ (multiplying by $1/l_n$). Now the equations give that $l_j = \pi(k_j)$ for $j \neq n$. We have therefore shown that $\pi_{n+1} = \pi_{n+1,v_\pi}$ as required.

Theorem 1.5 is now proved.

2. A Model Theoretic Language of Specialisations

We now introduce a model theoretic language which will enable us to describe specialisations in the context of algebraic geometry. In this section, we will assume that K and its residue field have the same characteristic. We will use a many sorted structure $\{\bigcup S_n : n \in \mathcal{N}\}$. Each sort will be the domain of $P^n(K)$ for an algebraically closed field.
We fix an algebraically closed constant field L which we assume to be countable and let K be some non-trivial extension of L, having the same characteristic. In order to describe algebraic geometry, we introduce sets of predicates $\{V^m_n\}$ on the Cartesian powers S^m_n to describe closed algebraic subvarieties of $P^n(K)$ defined over L. In particular, we have constants to denote the individual elements of $P^n(L)$ on each sort S_n. We introduce function symbols $i_n : S_n \to S_{n+1}$ to describe the imbeddings $P^n(K) \to P^{n+1}(K)$ defined above. Finally, we will have symbols $\{\pi_n : n \in \mathbb{N}\}$ to describe the specialisation map $\pi = \cup_{n \geq 1} \pi_n$. Strictly speaking, as $P^n(L)$ is not definable, each π_n will be a union over $l \in P^n(L)$ of unary predicates defined as $\{x \in P^n(K) : \pi_n(x) = l\}$. We denote the language $\langle \{V^m_n\}, i_n, \pi_n \rangle$ by L_{spec} and the theory of the structure $< P(K), P(L), \pi >$ in this language by T_{spec}. We denote the theory of the structure $< P(K), P(L) >$ in the language $L_{\text{spec}} \setminus \{\pi_n\}$ by T_{alg}. Note that the structure $< K, 0, 1, +, >$ is interpretable in the structure $< P(K), P(L) >$ in the language $L_{\text{spec}} \setminus \{\pi_n\}$ (*). This follows by noting that the points $[1 : 0], [0 : 1]$ and $[1 : 1]$ are named as elements in the sort S_1 and the operations of $+,$ define algebraic subvarieties in the sorts S_3^1. The structure $< L, 0, 1, +, >$ is not interpretable but any model of T_{alg} will contain an isomorphic copy of $P(L)$ as a substructure. It follows that the models of T_{alg} are exactly of the form $< P(K), P(L) >$ for some algebraically closed field K properly extending L (use the fact that the axiomatisation of $Th(< K, 0, 1, +, >)$ can be interpreted in T_{alg} and the field structure can be related to the predicates $\{V^m_n\}$ using the imbeddings i_n). We now claim the following;

Theorem 2.1. The theory T_{spec} is axiomatised by $T_{\text{axioms}} = T_{\text{alg}} \cup \Sigma$ where Σ is the set of sentences given by;

(i). The mappings $\{\pi_n\}$ preserve the predicates $\{V^m_n\}$.

(ii). The compatibility requirement $\pi_{n+1} \circ i_n = i_{n+1} \circ \pi_n$ holds.

(see definition 1.1). In particular, T_{axioms} is complete. Moreover, T_{axioms} is model complete.

The proof of this theorem will be based on Theorem 1.5 and the following result by Robinson, given in [6];

Theorem 2.2. Let K be an algebraically closed field with a non trivial Krull valuation v and residue field l. Then T_K is model complete in the language L_{val} and admits quantifier elimination in the language
Moreover, the completions of K are determined by the pair $(\text{char}(l), \text{char}(K))$, that is $T_K \cup \Sigma$ is complete where Σ is the possibly infinite set of sentences specifying the characteristic of K and l.

Here, by the language \mathcal{L}_{rob} we mean the language of algebraically closed fields together with a binary predicate $\text{Div}(x, y)$ denoting $v(x) \leq v(y)$. By the language \mathcal{L}_{val}, we mean a 2-sorted language for the value group and the field, with the usual language for the field sort and the language of ordered groups on the group sort. T_K is the theory which asserts that K is an algebraically closed field, the value group Γ is linearly ordered and abelian, the valuation is non-trivial. For our purposes, we will require a slightly refined version of this result. Namely, we will fix a set of constants for an algebraically closed field L which we can assume to be countable, add to T_K the atomic diagram of L, relativized to the field sort, the requirement that $v|L$ is trivial and π, the residue mapping, maps L injectively and homomorphically into the residue field. (Note, the condition that L maps onto the residue field is not definable and that the homomorphism requirement ensures that the residue field l and K have equal characteristic, hence the characteristic of K is already determined by the characteristic of L.) We will denote the corresponding theory by $T_{K,L}$ and the expanded languages by \mathcal{L}_{rob} and \mathcal{L}_{val} again. It is no more difficult to prove that $T_{K,L}$ is model complete, Robinson’s original proof in [6] requires the solution of certain valuation equations in the model K given that these equations have a solutions in an extension K', it makes no difference if some of the elements from K are named. In order to show that $T_{K,L}$ is complete, it is sufficient to exhibit a prime model of the theory;

Case 1. $\text{Char}(K, L) = (p, p)$, with $p \neq 0$. Take $L(\epsilon)^{\text{alg}}$ where ϵ is transcendental over L, define the valuation on L to be zero and extend it to $L(\epsilon)$ non-trivially using say $v_{\text{ord}, \epsilon}$, the order valuation in ϵ. Take any extension to $L(\epsilon)^{\text{alg}}$.

Case 2. $\text{Char}(K, L) = (0, 0)$, define a similar valuation on $L(\epsilon)^{\text{alg}}$.

We now show the following lemma;

\textbf{Lemma 2.1.} \textit{Amalgamation of Specialisations}
Let \((P(K_1), P(L), \pi_1)\) and \((P(K_2), P(L), \pi_2)\) be models of \(T_{\text{axioms}}\), then there exists a further model \((P(K_3), P(L), \pi_3)\) such that:

\[(P(K_1), P(L), \pi_1) \preceq (P(K_3), P(L), \pi_3)\]

and

\[(P(K_2), P(L), \pi_2) \preceq (P(K_3), P(L), \pi_3)\]

Proof. By Theorem 1.5, we can find Krull valuations \(v_1\) and \(v_2\) on \(K_1\) and \(K_2\) such that \(\pi_1 = \pi_{v_1}\) and \(\pi_2 = \pi_{v_2}\). Using the refined version of Robinson’s completeness result, we can jointly embed \((K_1, v_1)\) and \((K_2, v_2)\) over \(L\) into \((K_3, v_3)\) \((*)\). Let \(L'\) be the residue field of \(v_3\), then as \(K_3\) is algebraically closed, so is \(L'\) and extends the residue field \(L\) of \(v_1\) and \(v_2\). By standard results, we can construct a Krull valuation \(v\) on \(L'\) with residue field \(L\), for example use the construction given in [2]. Using Theorem 1.5 again, we can construct specialisations \((P(K_3), P'(L'), \pi_{v_3})\) and \((P'(L'), P(L), \pi_v)\), the composition gives a specialisation \((P(K_3), P(L), \pi_3)\). It remains to see that in fact \(\pi_3\) extends the specialisations \(\pi_1\) and \(\pi_2\). This follows from the fact that if \(k \in K_1\) or \(k \in K_2\) and there exists \(l \in L\) such \(v_1(k - l) > 0\) or \(v_2(k - l) > 0\) then this relation is preserved in the embedding \((*)\). Hence the specialisation \(\pi_{v_3}\) already extends the specialisations \(\pi_1\) and \(\pi_2\) of \(P(K_1)\) and \(P(K_2)\) into \(P(L)\). As the specialisation \(\pi_v\) fixes \(L\), this proves the lemma.

\[\square\]

Lemma 2.3. Transfer of Formulas

Let \((P(K), P(L), \pi)\) be a specialisation with corresponding \((K, v)\), then there exists a map:

\[\sigma : P(K) \to K^{eq}\]

\[\sigma : \mathcal{L}_{\text{spec-formulae}} \to \mathcal{L}_{\text{val-formulae}}\]

such that for any \(\phi(x_1, \ldots, x_n)\) which is a \(\mathcal{L}_{\text{spec-formula}}\) and \((k_1, \ldots, k_n) \subset P(K)\):

\[(P(K), P(L), \pi) \models \phi(k_1, \ldots, k_n) \iff (K, v) \models \sigma(\phi)(\sigma(k_1), \ldots, \sigma(k_n))\]

\[\dagger\]
Moreover, the definition of the map is uniform in K.

Proof. The map σ is defined on the sorts $P^n(K)$ by sending $[k_0, \ldots, k_n]$ to $(k_0, \ldots, k_n)/\sim_n$ where \sim_n is the equivalence relation defined on K^{n+1} from multiplication by K^*. Similarly, σ maps a variable from the sort S^n to the corresponding variable from the sort in K_{eq} defined by \sim_n. A closed algebraic subvariety in $\{V^m_n\}$ is defined by a multi-homogeneous equation in the variables $\{(x_{01}, \ldots, x_{n1}), \ldots, (x_{0m}, \ldots, x_{nm})\}$. Let C^m_n be the algebraic variety in $K^{m(n+1)}_{eq}$ defined by this equation. Then the corresponding formula in K_{eq} is given by:

$$(y_1, \ldots, y_m) \in (\sim_n)^m[\exists x_1 \ldots x_m(C^m_n(x_1, \ldots, x_m) \land \bigwedge_{i=1}^m x_i/\sim_n = y_i)]$$

For the inclusion maps i_n, let us identify each i_n with its graph, then clearly we can define σ to map the formula $i(x) = y$ to a corresponding formula relating the sorts \sim_n and \sim_{n+1} in K_{eq}.

Note that if $l \in P^n(L)$ is a constant, then $\sigma(l) = (l_0, \ldots, l_n)/\sim_n$ where each l_i is a constant from the atomic diagram of L.

Finally, let $\pi_n : P^n(K) \to P^n(L)$ be a specialisation. Again, let us assume that we can identify π_n with its graph. We then have that:

$$\pi_n([x_0 : \ldots : x_n]) = [l_0 : \ldots : l_n]$$

iff

$$\exists z \exists z_0 \ldots \exists z_n((\bigwedge_{i=0}^n x_i z = l_i + z_i) \land (\bigwedge_{i=0}^n v(z_i) > 0)).$$

It is now clear how to define $\sigma(\pi_n)$ as a union of formulas in the sort defined by \sim_n.

This completes the definition of σ, it is clear that the definition is uniform in K and a straightforward induction on the length of a formula from \mathcal{L}_{spec} shows that it has the required property (\dagger).

\[\square\]

Theorem 2.1 is now a fairly straightforward consequence of the above lemmas. We first show model completeness. Suppose that we have models of T_{axioms};
By theorem 1.5, we can find Krull valuations v_1 and v_2 such that $(K_1, v_1) \leq (K_2, v_2)$ and $(K_1, v_1), (K_2, v_2) \models T_{K,L}$. By the refined model completeness result after Theorem 2.2, we have $(K_1, v_1) \prec (K_2, v_2)$, hence using Lemma 2.3, we must have that;

$$(P(K_1), P(L), \pi_1) \prec (P(K_2), P(L), \pi_2)$$

as required. Completeness now follows directly from Lemma 2.1 and model completeness. Alternatively, one can exhibit a prime model of the theory, this is clearly possible by taking the specialisations corresponding to the prime models of $T_{K,L}$ above.

3. A First Order Definition of Intersection Multiplicity and Bezout’s Theorem

We now formulate a non-standard definition of intersection multiplicity in the language L_{spec}. We will do this only in the case of projective curves inside $P^2(L)$, the reader may wish to try formulating a corresponding definition in higher dimensions.

Let C_1 and C_2 be projective curves of degree d and degree e in $P^2(K)$ defined over L. The parameter spaces for such curves are affine spaces of dimension $(d+1)(d+2)/2$ and $(e+1)(e+2)/2$ respectively. We can give them a projective realisation by noting that if (l) is a non-zero vector defining a curve of degree d, then multiplying it by a constant μ defines the same curve. Let $P^{d(d+3)/2}(K)$ and $P^{e(e+3)/2}(K)$ define these spaces which we will denote by P_d and P_e for ease of notation. Let Curve_d and Curve_e be the closed projective subvarieties of $P_d \times P^2(K)$ and $P_e \times P^2(K)$, defined over the prime subfield of L, such that, for $l \in P_d$, the fibre $\text{Curve}_d(l)$ defines the corresponding projective curve of degree d in $P^2(K)$. For l in $P^n(L)$, we denote its infinitesimal neighborhood V_l to be the inverse image under the specialisation π_n.

Now suppose that C_1 and C_2 (which may not be reduced or irreducible), of degrees d and e respectively, are defined by parameters l_1 and l_2 and intersect at an isolated point l in $P^2(L)$. Then we define;

$$\text{Mult}(C_1, C_2, l) \geq n$$
iff

\[\exists x_1, x_2 \in V_1, V_2, \exists y \neq y_n \in V(\{y_1, \ldots, y_n\} \subset Curve_d(x_1) \cap Curve_e(x_2)) \]

Then define \(\text{Mult}(C_1, C_2, l) = n \) iff

\[\text{Mult}(C_1, C_2, l) \geq n \text{ and } \neg \text{Mult}(C_1, C_2, l) \geq n + 1. \]

Clearly, the statement that \(\text{Mult}(C_1, C_2, l) = n \) naturally defines a sentence in the language \(\mathcal{L}_{\text{spec}} \). One consequence of the completeness result given above is that the statement "The curves \(C_1 \) and \(C_2 \) intersect with multiplicity \(n \) at \(l \)" depends only on the theory \(T_{\text{axioms}} \) and is independent of the particular structure \((P(K), P(L), \pi) \). In the paper \[3\], we showed that this non-standard definition of multiplicity is equivalent to the algebraic definition of multiplicity when computed in the structure \((P(K_{\text{univ}}), P(L), \pi_{\text{univ}}) \) (see the next section). It therefore follows that the non-standard definition of multiplicity is equivalent to the algebraic definition even when computed in a prime model of \(T_{\text{axioms}} \) which I will denote by \((P(K_{\text{prime}}), P(L), \pi_{\text{prime}}) \).

We now turn to the statement of Bezout’s theorem. In algebraic language, this says that if projective algebraic curves \(C_1 \) and \(C_2 \) of degree \(d \) and degree \(e \) in \(P^2(L) \) intersect at finitely many points \(\{l_1, \ldots, l_n\} \), then:

\[\sum_{i=1}^{n} I(C_1, C_2, l_i) = de \]

where \(I(C_1, C_2, l_i) \) is the algebraic intersection multiplicity. The non-standard version of this result can be formulated in the language \(\mathcal{L}_{\text{spec}} \) by the sentence:

\[\text{Bezout}(C_1, C_2) \equiv \exists m_1, \ldots, m_n, m_1 + \ldots + m_n = de (\wedge_{i=1}^{n} \text{Mult}(C_1, C_2, l_i) = m_i) \]

Again, in the paper \[3\], we proved the algebraic version of Bezout’s theorem by non-standard methods in the structure \((P(K_{\text{univ}}), P(L), \pi_{\text{univ}}) \). It follows that the sentences \(\text{Bezout}(C_1, C_2) \) are all proved by the theory \(T_{\text{axioms}} \) and therefore hold in the structure \((P(K_{\text{prime}}), P(L), \pi_{\text{prime}}) \) as well. This demonstrates the fact that we can prove an algebraic statement of Bezout’s theorem using only infinitesimals from a straightforward extension of \(L \), namely \(L(\epsilon)^{\text{alg}} \), in particular in a structure such
that the infinitesimal neighborhoods V_i are all recursively enumerable. This seems to provide some answer to a general objection concerning the use of infinitesimals, originating in [1]. It may also provide an effective alternative method to compute intersection multiplicities generally in algebraic geometry.

4. Constructing a Universal Specialisation

In the papers [2] and [3], we used the existence of a specialisation $(P(K_{univ}), P(L), \pi_{univ})$ having the following ”universal” property;

If $L \subset L_m$ is an algebraically closed extension of L with transcendence degree m, and $(P(L_m), P(L), \pi_m)$ is a specialisation, then there exists an L-embedding $\alpha_L : L_m \rightarrow K_{univ}$ with the property that $\pi_{univ} \circ \alpha_L = \pi_m$. (*)

Unfortunately, the construction of K_{univ} was flawed. We correct this difficulty here;

Model theoretically, using theorem 2.1, it is easy to show the existence of such a structure. Namely, let $(P(K_{univ}), P(L), \pi_{univ})$ be a 2^ω saturated model of the theory T_{axioms}. Then, if $L \subset L_m$ is an algebraically closed extension of L of transcendence degree $m \leq n$, clearly $\bigcup_{n \geq 1} \text{Card}(S^n(\text{Th}(\mathcal{M}))) \leq 2^\omega$, where $\mathcal{M} = (P(L_m), P(L), \pi_m)$. This follows as L was assumed to be countable. Hence, by elementary model theory, there exists an L-embedding α_L with the required properties. For the non-model theorist, we give a more algebraic construction, replacing the use of types by an explicit amalgamation of the possible valuations;

Proof. Suppose, inductively, we have already constructed a specialisation $(P(K_n), P(L), \pi_n)$ which has the property (*) for all extensions $L \subset L_m$ with L_m algebraically closed of transcendence degree $m \leq n$. We will construct K_{n+1} having this property for $m \leq n + 1$. By theorem 1.5, we can find a Krull valuation v_n on K_n corresponding to the specialisation π_n. Let t be a new transcendental element. The extensions of v_n to $K_n(t)$ are completely classifiable. In fact, we have the following result in [3] (Theorem 3.9), we refer the reader to the paper for the definition of each family of valuations;
The extensions of \(v_n \) are of the form:

(i). \(v_{n,a,\gamma} \) where \(a \in K_n \) and \(\gamma \) is an element of some ordered group extension of \(v(K) \).

(ii). \(v_{n,A} \) where \(A \) is a pseudo Cauchy sequence in \((K_n, v_n)\) of transcendental type.

Let \(I \) be a fixed enumeration of these valuations. Inductively, we assume that \(\text{Card}(K_n) \leq 2^\omega \) in which case the dimension of \(v(K_n) \) as a vector space over \(\mathbb{Q} \) has dimension at most \(2^\omega \) as well. Clearly then the number of non-isomorphic (over \(K_n \)) valuations from (ii) is at most \(2^\omega \) and the same holds for the valuations obtained from (i) by noting that the number of order types of \(\gamma \) is at most \(2^\omega \) (it is easily checked that 2 new elements of the value group, \(\gamma_1 \) and \(\gamma_2 \), having the same order type, define isomorphic valuations in the case of (i)). Hence, we can assume that \(I \) is well ordered and apply the method of transfinite induction to construct a series of specialisations \((P(K_n,i), P(L), \pi_n,i)\) as follows;

For \(i = 0 \), set \((P(K_n,0), P(L), \pi_{n,0}) = (P(K_n), P(L), \pi_n)\)

Given \(i \in I \) with \(i \) not a limit ordinal, let \(v_{i+1} \) be the next valuation in the enumeration. Let \((K_n, t, v_{i+1})\) be the completion of \((K_n(t), v_{i+1})\) and let \(\overline{v_{i+1}} \) also denote the unique extension of this valuation to the algebraic closure \(K_n \{t\}^{alg} \). This defines a Krull valuation and hence a specialisation \((P(K_n, t, v_{i+1}), P(L'), \pi_n,i+1)\) where \(L' \) is the algebraic closure of the residue field of \(v_{i+1} \), having transcendence degree at most 1 over \(L \). Using arguments as above, we can construct a specialisation \((P(L'), P(L), \pi)\). Composing these specialisations, we obtain a specialisation \((P(K_n, t, v_{i+1}), P(L), \pi_n,i+1)\). (One can omit this step by enumerating in \(I \) only those valuations which preserve the residue field \(L \)) Now, using Lemma 2.1 and Theorem 2.1, amalgamate the specialisations \((P(K_n \{t\}^{alg}), P(L), \pi_{n,i+1})\) and \((P(K_n,i), P(L), \pi_n,i)\) to form a specialisation;

\((P(K_n,i), P(L), \pi_n,i) \prec (P(K_n,i+1), P(L), \pi_{n,i+1})\).

For \(i \) a limit ordinal, we set;

\((P(K_n,i), P(L), \pi_n,i) = \bigcup_{j<i}(P(K_n,j), P(L), \pi_{n,j})\)
By the usual union of chains arguments we have that;

\((P(K_{n,j}), P(L), \pi_{n,j}) \prec (P(K_{n,i}), P(L), \pi_{n,i})\) for \(j < i\).

Repeating this process, we obtain a structure \((P(K_{n+1}), P(L), \pi_{n+1})\) such that;

\((P(K_n), P(L), \pi_n) \prec (P(K_{n+1}), P(L), \pi_{n+1})\).

It remains to check that this structure has the universal property \((\ast)\) for \(m = n + 1\). Let \(L_{n+1}\) be an algebraically closed extension of \(L\) with transcendence degree \(n + 1\) and specialisation \((P(L_{n+1}), P(L), \pi)\). Let \(v\) be the corresponding valuation and its restriction to \(L \subset L_n \subset L_{n+1}\), a subfield of transcendence degree \(n\). The corresponding specialisation \((P(L_n), P(L), \pi)\) already factors through \((P(K_n), P(L), \pi_{n})\) \((\dagger)\) and the valuation \(v\) appears as \(v_i\) in the enumeration \(I\) when restricted to \(L_n(t)\). By a standard result in valuation theory, see \([5]\), there exists an \(L_n(t)\)-embedding \(\tau : L_n(t)^{alg} \rightarrow L_n\{t\}^{alg}\) such that \(v = v_i \circ \tau\) \((\dagger\dagger)\) (see notation above). Combining \((\dagger)\) and \((\dagger\dagger)\), we obtain an embedding \(\alpha : (P(L_{n+1}), P(L)) \rightarrow (P(K_{n,i}), P(L))\) such that \(\pi = \pi_{n,i} \circ \alpha\). This proves the result. It is now clear that the structure

\[(P(K_{univ}), P(L), \pi_{univ}) = \bigcup_{i>0} (P(K_i), P(L), \pi_i)\]

has the required universal property, is a model of \(T_{axioms}\) and;

\[(P(K_i), P(L), \pi_i) \prec (P(K_{univ}), P(L), \pi_{univ})\) for \(i > 0\).

\[\square\]

References

[1] "The Analyst: a Discourse addressed to an Infidel Mathematician", George Berkeley (1734)

[2] Zariski Structures and Algebraic Geometry, Tristram de Piro, AG ArXiv (0402301)

[3] A Non-Standard Bezout Theorem, Tristram de Piro, AG/LO ArXiv (0406176)

[4] Value groups, residue fields and bad places of function fields, Franz-Viktor Kuhlmann, (2003)

[5] Algebraic Number Theory, Jurgen Neukirch, Volume 322, Springer (1992)
[6] Complete Theories, Abraham Robinson, Studies in Logic and the Foundations of Mathematics, North-Holland, (1956).

MATHEMATICS DEPARTMENT, THE UNIVERSITY OF CAMERINO, CAMERINO, ITALY

E-mail address: tristam.depiro@unicam.it