Super \((a^*, d^*)-H\)-antimagic total covering of second order of shackle graphs

Ika Hesti Agustin\(^1,3\), Dafik\(^1,2\), Rosanita Nisviasari\(^1,3\), R.M. Prihandini\(^1,4\)

\(^1\) CGANT University of Jember, Indonesia
\(^2\) Mathematics Edu. Depart. University of Jember, Indonesia
\(^3\) Mathematics Depart. University of Jember, Indonesia
\(^4\) Elementary School Edu. Depart. University of Jember, Indonesia

E-mail: ikahesti.fmi@unej.ac.id, d.dafik@unej.ac.id

Abstract. Let \(H\) be a simple and connected graph. A shackle of graph \(H\), denoted by \(G = \text{shack}(H,v,n)\), is a graph \(G\) constructed by non-trivial graphs \(H_1, H_2, \ldots, H_n\) such that, for every \(1 \leq s, t \leq n\), \(H_s\) and \(H_t\) have no a common vertex with \(|s-t| \geq 2\) and for every \(1 \leq i \leq n-1\), \(H_i\) and \(H_{i+1}\) share exactly one common vertex \(v\), called connecting vertex, and those \(k-1\) connecting vertices are all distinct. The graph \(G\) is said to be an \((a^*, d^*)-H\)-antimagic total graph of second order if there exist a bijective function \(f: V(G) \cup E(G) \rightarrow \{1,2,\ldots,|V(G)|+|E(G)|\}\) such that for all subgraphs isomorphic to \(H\), the total \(H\)-weights \(w(H) = \sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e)\) form an arithmetic sequence of second order of \(\{a^*, a^* + d^*, a^* + 3d^*, a^* + 6d^*, \ldots, a^* + (\frac{n^2-n}{2})d^*\}\), where \(a^*\) and \(d^*\) are positive integers and \(n\) is the number of all subgraphs isomorphic to \(H\). An \((a^*, d^*)-H\)-antimagic total labeling of second order \(f\) is called super if the smallest labels appear in the vertices. In this paper, we study a super \((a^*, d^*)-H\) antimagic total labeling of second order of \(G = \text{shack}(H,v,n)\) by using a partition technique of second order.

1. Introduction

All graphs in this study are simple, connected and undirected. A graph \(G\) is said to be an \((a^*, d^*)-H\)-antimagic total graph of second order if there exist a bijective function \(f: V(G) \cup E(G) \rightarrow \{1,2,\ldots,|V(G)|+|E(G)|\}\) such that for all subgraphs of \(G\) isomorphic to \(H\), the total \(H\)-weights \(w(H) = \sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e)\) form an arithmetic sequence of second order \(\{a^*, a^* + d^*, a^* + 3d^*, a^* + 6d^*, \ldots, a^* + (\frac{n^2-n}{2})d^*\}\), where \(a^*\) and \(d^*\) are positive integers and \(n\) is the number of all subgraphs of \(G\) isomorphic to \(H\). If such a function exist then \(f\) is called an \((a^*, d^*)-H\)-antimagic total labeling of second order of \(G\). An \((a^*, d^*)-H\)-antimagic total labeling of second order \(f\) is called super if \(f: V(G) \rightarrow \{1,2,\ldots,|V(G)|\}\). By this notion, the super \((a,d) - H\) antimagic total labeling is classified as the super \((a,d) - H\) antimagic total labeling of first order.

We initiate to study this concept, thus we have not found any relevant results yet. But for the super \((a,d) - H\) antimagic total labeling, we can find many published results, some of them can be cited in [2, 3, 8, 9] and [10, 11, 12, 13, 15]. Inayah et al. in [8] proved that, for \(H\) is a non-trivial connected graph and \(k \geq 2\) is an integer, \(\text{shack}(H,v,k)\) which contains exactly \(k\) subgraphs isomorphic to \(H\) is \(H\)-super antimagic. All these papers only dealt with \(d\) derived...
from the sequence of order one. Our paper attempt to solve a super \((a^*, d^*)\)-H antimagic total labeling of order two of \(G = shack(H, v, n)\).

To show those existence, we will use a special technique, namely an integer set partition technique. We consider the partition \(P^n_{m, d}(i, j)\) of the set \(\{1, 2, \ldots, mn\}\) into \(n\) columns with \(n \geq 2\), \(m\)-rows such that the difference between the sum of the numbers in the \((j + 1)\)th \(m\)-rows and the sum of the numbers in the \(j\)th \(m\)-rows is always equal to the constant \(d\), where \(j = 1, 2, \ldots, n - 1\). We need to establish some lemmas related to the partition \(P^n_{m, d}(i, j)\). Furthermore, the partition will be developed into a second order partition. These lemmas are useful to develop the super \((a^*, d^*)\)-H antimagic total labeling of second order of \(G = shack(H, v, n)\).

Let \(G\) be a shackle of graph denoted by \(G = shack(H, v, n)\). Let \(G\) and \(H\) be a connected graph with \(|V(G)| = p_G, |E(G)| = q_G, |V(H)| = p_H,\) and \(|E(H)| = q_H\). The vertex set and edge set of the graph \(G = shack(H, v, n)\) can be split into following sets: \(V = \{x_{ij}; 1 \leq j \leq n + 1\} \cup \{x_{ij}; 1 \leq i \leq p_H - 2, 1 \leq j \leq n\}\) and \(E = \{e_{ij}; 1 \leq i \leq q_H, 1 \leq j \leq n\}\). Let \(n, i, j\) be positive integers with \(n \geq 2\). Thus \(p_G = |V(G)| = n + 1 + (p_H - 2)n = 1 + np_H + n - 2n = 1 + n(p_H - 1)\) and \(q_G = |E(G)| = nq_H\).

We recall a partition \(P^n_{m, d}(i, j)\) introduced in [4]. We will use the partition for a linear combination in developing a bijection of vertex and edge label of the main theorem.

Lemma 1.1. [4] Let \(n\) and \(m\) be positive integers. The sum of \(P^n_{m, d1}(i, j)\) = \{(i - 1)n + j, 1 \leq i \leq m\}\) and \(P^n_{m, d2}(i, j)\) = \{(j - 1)m + i, 1 \leq i \leq m\}\) form a arithmetic sequence of difference \(d_1 = m\) and \(d_2 = m^2\), respectively.

2. Main Results

Lemma 2.1. Let \(G\) be a simple graph of order \(p\) and size \(q\). If \(G\) is super \((a^*, d^*)\)-H-antimagic total labeling of second order then \(d \leq \frac{(p_G - p_H)q_H + (q_G - q_H)p_H}{n}\). For \(p_G = |V(G)|, q_G = |E(G)|, p_H = |V(H)|, q_H = |E(H)|\), and \(n = |H|\).

Proof. Given the function \(f(V) = 1, 2, 3, \ldots, p_G\) and \(f(E) = p_G + 1, p_G + 2, p_G + 3, \ldots, p_G + q_G\). Let \((p_G, q_G)\) admit a super \((a^*, d^*)\)-H antimagic total labeling with the total second order function, \(f(total) = 1, 2, 3, \ldots, p_G + q_G\) then the set of edge weight of a graph is \(\{a^*, a^* + d^*, a^* + 3d^*, a^* + 6d^*, \ldots, a^* + (\frac{n^2 - n}{2}d)\}\) with \(a^*\) is the smallest weight thus:

\[
1 + 2 + \cdots + p_H + (p_G + 1) + (p_G + 2) + \cdots + (p_G + q_H) \leq a^* \\
\frac{p_H}{2}(1 + p_H) + q_Hp_G + \frac{q_H}{2}(1 + q_H) \leq a^* \\
\frac{p_H^2}{2} + \frac{p_H^2}{2} + p_Hq_G + \frac{q_H^2}{2} + \frac{q_H^2}{2} \leq a^*
\]
Lemma 2.4. Let \(a^{*} + \left(\frac{n^{2} - n}{2} \right) d^{*} \leq p_{G} + (p_{G} - 1) + (p_{G} - 2) + \ldots + (p_{G} - (p_{H} - 1)) + (p_{G} + q_{G}) + (p_{G} + q_{G} - 1) + (p_{G} + q_{G} - 2) + \ldots + (p_{G} + q_{G} - (q_{H} - 1)) \)

\[
= p_{H} p_{G} - \frac{p_{H} - 1}{2}(1 + (p_{H} - 1)) + q_{H} p_{G} + q_{H} q_{G} - \frac{q_{H} - 1}{2}(q_{H} - 1)
\]

\[
= p_{H} p_{G} - \frac{p_{H} - 1}{2} + q_{H} p_{G} + q_{H} q_{G} - \frac{q_{H} - 1}{2}
\]

\[
\left(\frac{n^{2} - n}{2} \right) d^{*} \leq p_{H} p_{G} - \frac{p_{H} - 1}{2} + q_{H} p_{G} + q_{H} q_{G} - \frac{q_{H} - 1}{2}
\]

By simple calculation, for \(n \) and \(m \) be positive integers and \(\{\{m,n\}: \text{integer} \geq 1 \leq i \leq m \} \) and \(\{mn+i-mj:1 \leq i \leq m \} \) form an arithmetic sequence of differences \(d_{3} = -m \) and \(d_{4} = -m^{2} \).

Proof. By simple calculation, for \(j = 1, 2, \ldots, n \), it gives \(\sum_{i=1}^{m} P_{m,d_{3}}(i,j) = P_{m,d_{3}}(j) \leftarrow P_{m,d_{3}}(j) = \{ \frac{n}{2}(m^{2} + m) + m - mj \} \leftarrow P_{m,d_{3}}(j) = \{ \frac{n}{2}(m^{2} + m) + m, \frac{n}{2}(m^{2} + m) - m, \frac{n}{2}(m^{2} + m) - 2m, \ldots, \frac{n}{2}(m^{2} + m) - mn \} \) and \(\sum_{i=1}^{m} P_{m,d_{4}}(i,j) = P_{m,d_{4}}(j) \leftarrow P_{m,d_{4}}(j) = \{ \frac{n}{2}(2mn + m + 1) - m^{2}, \frac{n}{2}(2mn + m + 1) - 2m^{2}, \ldots, \frac{n}{2}(2mn + m + 1) - mn \} \). It is easy to see that the differences of those sequences are \(d_{3} = -m, d_{4} = -m^{2} \). It concludes the proof.

Corollary 2.2. If the graph \(G = \text{shack}(H,v,n) \) admits super \((a^{*},d^{*}) \)-\(H \)-antimagic total labeling of second order for integer \(n \geq 2 \), then \(d \leq \frac{2(p_{H} - p_{H} + q_{H})}{n} \).

The following lemmas are useful for showing the existence of super \((a^{*},d^{*}) \)-\(H \) antimagic total labeling \(G = \text{shack}(H,v,n) \).

Lemma 2.3. Let \(n \) and \(m \) be positive integers. For \(1 \leq j \leq n \), the sum of \(P_{m,d_{3}}^{n}(i,j) = \{1 + ni - j:1 \leq i \leq m \} \) and \(P_{m,d_{4}}^{n}(i,j) = \{mn+i-mj:1 \leq i \leq m \} \) form an arithmetic sequence of differences \(d_{3} = -m \) and \(d_{4} = -m^{2} \).

Proof. By simple calculation, for \(j = 1, 2, \ldots, n \), it gives \(\sum_{i=1}^{m} P_{m,d_{3}}^{n}(i,j) = P_{m,d_{3}}^{n}(j) \leftarrow P_{m,d_{3}}^{n}(j) = \{ \frac{n}{2}(m^{2} + m) + m - mj \} \leftarrow P_{m,d_{3}}^{n}(j) = \{ \frac{n}{2}(m^{2} + m), \frac{n}{2}(m^{2} + m) - m, \frac{n}{2}(m^{2} + m) - 2m, \ldots, \frac{n}{2}(m^{2} + m) - mn \} \) and \(\sum_{i=1}^{m} P_{m,d_{4}}^{n}(i,j) = P_{m,d_{4}}^{n}(j) \leftarrow P_{m,d_{4}}^{n}(j) = \{ \frac{n}{2}(2mn + m + 1) - m^{2}, \frac{n}{2}(2mn + m + 1) - 2m^{2}, \ldots, \frac{n}{2}(2mn + m + 1) - mn \} \). It is easy to see that the differences of those sequences are \(d_{3} = -m, d_{4} = -m^{2} \). It concludes the proof.

Lemma 2.4. Let \(n \), \(m \) be positive integers and \(n = m \). The sum of

\[
P_{m,d_{3}}^{n}(i,j) = \begin{cases}
(2m+2j+1)-(2m-1)-i-j \leq 1 & \text{for } i-j \geq m-1 \cr
(m^2-m+2j+1) & \text{for } m-1 \geq i-j \cr
\end{cases}
\]
form an arithmetic sequence of second order with common difference \(d_5 = m \).

Proof. By simple calculation, for \(j = 1, 2, \ldots, n \), it gives \(\sum_{i=1}^{m} P_{m,d_5}(i,j) = P_{m,d_5}(j) \). It concludes the proof.

Lemma 2.5. Let \(n, m \) be positive integers and \(n = m \). The sum of

\[
P_{m,d_5}(i,j) = \left\{ \begin{array}{ll}
2m^2 - 2mi + j^2 + 1 & 1 \leq i, j \leq m + 1 \\
4m^2 + 4m - 4mj - 3i(j + 2j + i + 3j^2 + 1) & 1 \leq i \leq m, m + 1 < i + j
\end{array} \right.
\]

form an arithmetic sequence of second order with common difference \(d_5 = -m \).

Proof. By simple calculation, for \(j = 1, 2, \ldots, n \), it gives \(\sum_{i=1}^{m} P_{m,d_5}(i,j) = P_{m,d_5}(j) \). It is easy to see that the differences of those sequences are \(d_5 = -m, d_4 = m^2 \). It concludes the proof.

Lemma 2.6. Let \(d^* \) be the common difference of arithmetic sequence of second order and \(d \) be the common difference of arithmetic sequence of first order, the sum of corresponding terms will form an arithmetic sequence of second order with common difference \(d^* \).

Proof. An arithmetic sequence of first order is a sequence of the form:

\[a, a + d, a + 2d, a + 3d, \ldots, a + (n - 1)d \]

where \(a \) is the first term and \(d \) is common difference of the sequence. Whilst an arithmetic sequence of second order is of the form \(a^*, a^* + d^*, a^* + 2d^*, a^* + 3d^*, \ldots, a^* + \left(\frac{n^2 - n}{2}\right)d^* \), where \(a^* \) and \(d^* \) are the first term and common difference of the sequence, respectively. Now, add the corresponding terms of these two expression:

Sequence	\(a \)	\(a + d \)	\(a + 2d \)	\(a + 3d \)	\(\ldots \)	\(a + (n - 1)d \)
Sequence	\(a^* \)	\(a^* + d^* \)	\(a^* + 2d^* \)	\(a^* + 3d^* \)	\(\ldots \)	\(a^* + \left(\frac{n^2 - n}{2}\right)d^* \)
First order difference	\(d + d^* \)	\(d + 2d^* \)	\(d + 3d^* \)	\(\ldots \)	\((n - 1)d \)	
Second order difference	\(d^* \)	\(d^* \)	\(d^* \)	\(\ldots \)	\(d^* \)	

It concludes the proof.

Theorem 2.7. Let \(H \) be a connected graph, then the shackle of the connected graph \(G = shack(H, v, n) \) admits super \((a^*, d^*) - H \) antimagic total labeling.
Proof. Let G be a shackle of graph denoted by $G = shackle(H,v,n)$. Let G and H be a connected graph with $|V(G)| = p_G$, $|E(G)| = q_G$, $|V(H)| = p_H$, and $|E(H)| = q_H$. The vertex set and edge set of the graph $G = shackle(H,v,n)$ can be split into following sets: $V = \{x_j; 1 \leq j \leq n+1\} \cup \{x_{ij}; 1 \leq i \leq p_H-2, 1 \leq j \leq n\}$ and $E = \{e_{ij}; 1 \leq i \leq q_H, 1 \leq j \leq n\}$. Let n, i, j be positive integers with $n \geq 2$. Thus $p_G = |V(G)| = n + 1 + (p_H - 2)n = 1 + np_H + n - 2n = 1 + n(p_H - 1)$ and $q_G = |E(G)| = nq_H$. Construct a total labeling $f,g : V(shackle(H,v,n)) \cup E(shackle(H,v,n)) \rightarrow \{1, 2, \ldots, 1 + n(p_H + q_H - 1)\}$ constitute the following set:

$$
\begin{align*}
\phi_1(V_{ph}) &= \{j; 1 \leq j \leq n + 1\} \\
\phi_2(V_{ph}) &= \{P_{m_1,d_v}(i,j) \oplus n + 1\} \cup \{P_{m_2,d_v}(i,j) \oplus n(m_1 + 1) + 1\} \\
\phi_3(E_{gh}) &= \{P_{c_1,d_v}(i,j) \oplus (p_H - 1)n + 1\} \cup \{P_{c_2,d_v}(i,j) \oplus (p_H + r_1 - 1)n + 1\}
\end{align*}
$$

where $m_1 + m_2 = p_H - 2$, $c_1 + c_2 = q_H$, d_v and d_e depends on $p_H - 2$ and q_H, respectively. Furthermore the weight of the subgraphs H_i, $i = 1, 2, \ldots, p_L$ in the following way:

$$
W = \sum_{v \in V(H_1)} f(v) + \sum_{e \in E(H_1)} f(e)
$$

$$
= (2j + 1) + \sum_{i=1}^{m_1} (P_{m_1,d_v}(j) \oplus n + 1) + \sum_{i=1}^{m_2} (P_{m_2,d_v}(j) \oplus n(m_1 + 1) + 1)
$$

$$
+ (c_1) \sum_{i=1}^{c_1} (P_{c_1,d_v}(j) \oplus (p_H - 1)n + 1) + (c_2) \sum_{i=1}^{c_2} (P_{c_2,d_v}(j) \oplus (p_H + r_1 - 1)n + 1)
$$

$$
= [2j + 1] + [C_{m_1,d_v}^{n} + d_v^c (j^2 - j + 2 / 2) m_1(n + 1)] + [C_{m_2,d_v}^{n} + d_v c j + m_2(n(m_1 + 1) + 1)]
$$

$$
+ [C_{c_1,d_v}^{n} + d_v c (j^2 - j + 2 / 2) c_1((p_H - 1)n + 1)]
$$

$$
+ [C_{c_2,d_v}^{n} + d_v c + c_2(n(p_H + r_1 - 1) + 1)]
$$

based on Lemma 2.6 we obtained:

$$
= 1 + C_{m_1,d_v}^{n} + C_{m_2,d_v}^{n} + C_{c_1,d_v}^{n} + C_{c_2,d_v}^{n} + m_1(n + 1) + m_2(n(m_1 + 1) + 1)
$$

$$
+ c_1((p_H - 1)n + 1) + c_2(n(p_H + r_1 - 1) + 1) + [d_v^c + d_v c + 2j]
$$

3. Special Families

Theorem 3.1. Suppose $G = shackle(C_m,v,n)$, with $s \geq 3$ dan $2s \geq n+1$, graph G admits super (a^*, d^*)-H-anti-magic total covering of second order with $a = 3 + \left[\frac{2m_1 + 4m_2 + 3m_3 - 3m_1}{6}\right] + m_1(n + 1) + \left[\frac{2m_1 - m_2}{2} + m_2 \right] + \left[\frac{m_1 - m_2}{2} + m_2(n(m_1 + 1) + 1)\right]
$$

and $d = m_1 + c_1$.

Proof. The graph $G = shackle(C_m,v,n)$ have vertex set $V = \{x_j; 1 \leq j \leq n + 1\} \cup \{x_{ij}; 1 \leq i \leq m - 2, 1 \leq j \leq n\}$ and edge set $E = \{e_{ij}; 1 \leq i \leq m, 1 \leq j \leq n\}$. Thus $p_G = |V(G)| = mn - n + 1$ and $q_G = |E(G)| = mn$ where $p_H = m - 2$ and $q_H = m$ respectively are the cardinality of the vertex and edge on one cover H. We can define the vertex labeling
\[f_1 : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p_G + q_G\} \] by using the linear combination of \(P_{m,m}^n \), \(P_{m,m}^{n,m} \), \(P_{m,m}^{m,n} \), \(P_{m,m}^{n,m} \) and \(P_{m,m}^{m,n} \). By Lemma 1.1.2.3.2.4 and 2.5 we use \(m_1 \) and \(c_1 \) for the partition \(P_{m,m}^{n,m}(i,j) \), \(m_2 \) and \(c_2 \) for the partition \(P_{m,m}^{m,n}(i,j) \), \(m_3 \) and \(c_3 \) for the partition \(P_{m,m}^{n,m}(i,j) \), \(m_4 \) and \(c_4 \) for the partition \(P_{m,m}^{m,n}(i,j) \), \(m_5 \) and \(c_5 \) for the partition \(P_{m,m}^{n,m}(i,j) \) and we use \(m_6 \) and \(c_6 \) for the partition \(P_{m,m}^{m,n}(i,j) \). For \(i = 1, 2, \ldots, m \), \(l = 1, 2, \ldots, c \) and \(j = 1, 2, \ldots, n \), the total labels can be expressed as follows

\[
\begin{align*}
f_1(V_{PH}) &= \{ j ; 1 \leq j \leq n + 1 \} \\
f_2(V_{PH}) &= \{ P_{m_1,d_1,c_1}^{n,m}(i,j) \oplus n + 1 \} \cup \{ P_{m_2,d_2,c_2}^{n,m}(i,j) \oplus n(m_1 + 1) + 1 \} \\
f(E_{PH}) &= \{ P_{c_1,d_1}^{n}(i,j) \oplus (p_H - 1)n + 1 \} \cup \{ P_{c_2,d_2}^{n}(i,j) \oplus (p_H + r_1 - 1)n + 1 \}
\end{align*}
\]

The total vertex and edge-weights of \(G = shack(C_m, v, n) \) under the labeling \(f_1 \), for \(1 \leq j \leq n \), constitute the following sets:

\[
W = \sum_{v \in V(H_i)} f(v) + \sum_{e \in E(H_i)} f(e)
\]

\[
= (2j + 1) + \left(\sum_{i=1}^{m_1} (P_{m_1,d_1,c_1}^{n,m}(j) \oplus n + 1) \right) + \left(\sum_{i=1}^{m_2} (P_{m_2,d_2,c_2}^{n,m}(j) \oplus n(m_1 + 1) + 1) \right) + \left(\sum_{i=1}^{c_1} (P_{c_1,d_1}^{n}(j) \oplus (p_H - 1)n + 1) \right) + \left(\sum_{i=1}^{c_2} (P_{c_2,d_2}^{n}(j) \oplus (p_H + r_1 - 1)n + 1) \right)
\]

\[
= [2j + 1] + [C_{m_1,d_1,c_1}^{n,m} + d_1 j (\frac{j^2 - j + 2}{2}) + m_1 (n + 1)] + [C_{m_2,d_2,c_2}^{n,m} + d_2 j + m_2 (n + 1)] + [C_{c_1,d_1}^{n} + d_1 j (\frac{j^2 - j + 2}{2}) + c_1 (p - 1)n + 1] + [C_{c_2,d_2}^{n} + d_2 j + c_2 (p_H + r_1 - 1) + 1]
\]

The total weights of \(G = shack(C_m, v, n) \) constitute the following sets:

\[
W_{f_1} = w_{f_1}^1 + w_{f_1}^2 + w_{f_1}^3
\]

\[
= [2j + 1] + w_{f_1}^2 + w_{f_1}^3
\]

\[
= C^* + C + 1 + [2 + \frac{3m_1 - 3m_1}{2} + m_2 + m_3 - m_4 - m_5 - \frac{3c_1 - 3c_1}{2} + c_2 + c_3 - c_4 - c_4 j ; 1 \leq j \leq n]
\]

By simple calculation, for \(j = 1, 2, \ldots, n \), it gives \(W_{f_1} = C^* + C + 1 + [2 + \frac{3m_1 - 3m_1}{2} + m_2 + m_3 - m_4 - m_5 - \frac{3c_1 - 3c_1}{2} + c_2 + c_3 - c_4 - c_4 j ; 1 \leq j \leq n] \) \(W_{f_1} \).
m_2(n(m_1 + 1) + 1)] + \left[\frac{m_3 - m_2^2}{2} + m_3^2 + m_3(n(m_1 + m_2 + 1) + 1) \right] + \left[\frac{m_4}{2} (m_3^2 + m_4) + m_4 - m_4 + m_4 \left(\sum_{i=1}^{3} m_i + 1 \right) + 1 \right] + \left[\frac{m_5}{2} (2m_5^n + m_5 + 1) - m_5^2 + m_5 \left(\sum_{i=1}^{4} m_i + 1 \right) + 1 \right] \left[\frac{2c_1^3 + 4c_1 + 3c_1 - 3c_1}{6} \right] +
\left[\frac{m_5}{2} (2m_5^n + m_5 + 1) + c_5 \left(\sum_{i=1}^{4} c_i + 1 \right) + 1 \right] + \left[\frac{m_5}{2} (2m_5^n + m_5 + 1) + c_5 \left(\sum_{i=1}^{4} c_i + 1 \right) + 1 \right] \left[\frac{2c_5^3 + 4c_5 + 3c_5 - 3c_5}{6} \right] +
\text{when the total edge weights at } j = 1 \text{ and the difference } d = [2 + m_1^2 + c_1]. \text{ It concludes the proof. }$

\square

4. Concluding Remarks
We have shown the existence of super antimagic labeling of second order for graph operation $G = sh\text{ack}(H, v, n)$. We have found that $G = sh\text{ack}(H, v, n)$ admits a super(a^*, d^*)-H antimagic labeling of second order for all differences $d = 2 + d_1^* + d_2^*$ where d_1^* and d_2^* are respectively feasible difference of second order of integer set partition. We have not found the result for another graph operations. Thus, we propose the following open problems.

Open Problem 4.1. Analyse the existence of super (a^*, d^*)-H antimagic total labeling of second order of other graph operations.

4.1. Acknowledgments
We gratefully acknowledge the support from CGANT University of Jember of year 2017.

References
[1] M. Bača, L. Brankovic, M. Lascšäková, O., Phanalasy, A. Semaničová-Fešovčíková 2013 On d-antimagic labelings of plane graphs, *Electr. J. Graph Theory Appl.*, 1 28-39
[2] Dašik, A.K. Purnapraja, R Hidayat 2015 Cycle-Super Antimagicness of Connected and Disconnected Tensor Product of Graphs, *Procedia Computer Science*, 74 9309
[3] Dašik, Slamin, Kushaly Tanna, Andrea Semaničová-Fešovčíková, Martin Bača 2017 Constructions of H-antimagic graphs using smaller edge-antimagic graphs, *Ars Combinatoria* 100 In Press
[4] Dašik, Moh. Hasan, Y.N. Azizah, Ika Hesti Agustin 2016 A Generalized Shackle of Any Graph H Admits a Super H-Antimagic Total Labeling, *Mathematics in Computer Science Journal*. Submitted
[5] Dašik, Ika Hesti Agustin, A. I. Nurtijantiwong, R. M. Prihandini 2017 On super H-antimagicness of an edge comb product of graphs with subgraph as a terminal of its amalgamation, *Journal of Physics: Conf. Series Series* 855
[6] Dašik, R. M Prihandini, Ika Hesti Agustin 2016 $P_2 \triangleright H$-super antimagic total labeling of comb product of graphs, *AKCE International Journal of Graphs and Combinatorics*, submitted.
[7] N. Inayah, A.N.M. Salman and R. Simanjuntak 2009 On $(a, d) - H$-antimagic coverings of graphs, *J. Combin. Math. Combin. Comput.* 71 273-281
[8] Inayah, N., R. Simanjuntak, A.N.M Salman. 2013. Super $(a, d)-H$-Antimagic Total labelings For Shackles of a Connected Graph H. *The Australian Journal of Combinatorics*, 57 127-138
[9] P. Jeyanthi, P. Selvakogal 2010 More classes of H-supermagic Graphs, *Intern. J. of Algorithms, Computing and Mathematics* 3 93-108
[10] A. Llado and J. Moragas 2007 Cycle-magic graphs, *Discrete Math.* 307 2925-2933
[11] T.K. Maryati, A. N. M. Salman, E.T. Baskoro, J. Ryan, M. Miller 2010 On H- supermagic labelings for certain shackles and amalgamations of a connected graph, *Utilitas Mathematica* 83 333-342
[12] A. A. G. Ngurah, A. N. M. Salman, L. Susilowati 2010 H-supermagic labeling of graphs, *Discrete Math.* 310 1293-1300
[13] S.T.R. Riizi, K. Ali, M. Hussain 2014 Cycle-supermagic labelings of the disjoint union of graphs, *Utilitas Mathematica*, in press.
[14] Rafiantika M. Prihandini, I. H Agustin, Dašik 2017 Construction of $P_2 \triangleright H$-Antimagic graph using smaller edge-antimagic vertex labeling, *ICONSSED*, submitted.
[15] Roswitha, M. and Baskoro, E. T 2012 H-magic covering on some classes of graphs, *American Institute of Physics Conference Proceedings* 1450 135-138