New data on the stability of flow in steam-water geothermal well

To cite this article: A N Shulyupin and A A Chermoshentseva 2019 IOP Conf. Ser.: Earth Environ. Sci. 367 012024

View the article online for updates and enhancements.
New data on the stability of flow in steam-water geothermal well

A N Shulyupin¹ and A A Chermoshentseva²

¹ Institute of Mining, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia
ans714@mail.ru
² Kamchatka State Technical University, Petropavlovsk-Kamchatsky, Russia
allachermoshentseva@mail.ru

Abstract. New data on the stability of flow in the steam-water geothermal well are presented. There are facts of failures during commissioning of wells, testing which implied a positive result. An explanation of the marked phenomenon is presented in basis of new notions about stability of flow in the steam-water geothermal wells.

1. Introduction

Geothermal energy is one of the renewable energy sources associated with prospective solutions to the world’s energy problems and shows a steady development growth [1, 2]. Achieved volumes of this development no longer correspond to mere subsidization in this field [3]. Drilling requires a significant portion of costs associated with the implementation of geothermal projects; therefore, more topical issues, at present, are related to increasing efficiency of use of existing wells.

Much attention is paid to stimulation of wells [4, 5, 6, 7, etc.]. Other ways are developed to improve wells’ exploitation [8]. The possibility of energy production from geothermal fluids without their elevation to the surface has been investigated [9, 10, 11, 12, etc.]. This approach makes it possible to exploit the non-productive wells. However, obtained thermal capacity in this case is less than the values obtained by forced convection in traditional method of a well’s exploitation. More detailed processes are studied that do not have obvious practical application [13, 14], but they have cognitive interest and possible practical application in the future.

The wells of a geothermal field with reservoir fluid temperature over 100°C usually bring to the surface the heat-transfer agent in the form of a steam-water mixture. Often there were cases of unsuccessful commissioning of steam-water wells when results of testing predict a favorable outcome. For example, some wells were unable to operate at a wellhead pressure which was acceptable for testing wells in Mutnovskoe field (Kamchatka). Sometimes these facts can be explained by the temporal factor, i.e. characteristics of well change from the testing moment until attempt of commissioning, but in some other cases, this explanation is not applicable. For example, attempts of commissioning the wells A-2 and A-3 in Mutnovskoe field were made immediately before and after testing. Those wells had stable operation during test in wellhead pressure range of 7.0-11.9 bar and 3.0-12.2 bar, respectively, but those wells were unable to operate at exploitation regime with a wellhead pressure of 7.0-7.5 bar.

The main purpose of the well testing is to find a correlation between flow rate and wellhead pressure. Graphical illustration of this relationship is known as the performance curve (output curve). For example, Figure 1 shows some typical performance curves of wells at Mutnovskoe field. Test results show the basic information about performance capabilities of the wells and the field in general.
Figure 1. Performance curves of some wells in Mutnovskoe field: Well 012 were not capable of providing the necessary pressure for exploitation; wells A-2 and A-3 had difficulties during commissioning; wells 37, 053, 048 and Geo-1 had no difficulties.

The influence of testing technology for steam-water wells on resulting performance curves is researched in this article. In particular, the phenomenon is studied when the well is stable during the testing, but the well is instable during exploitation at the same wellhead pressure. The research aim is to develop recommendations on obtaining adequate information on well’s performance capabilities based on the results of their testing.

2. Methods for calculation of performance curves
The evidences suggest that if a geothermal well works steady at certain wellhead pressure in one case and does not do the same at the other, some additional conditions should exist, which ensure its steady operation. Evidently those conditions are related to the down-stream flow from wellhead. There is a permanent interest to the steam-water flow stability during a long time [15, 16, 17, 18, etc.]. In particular, there is interest to the stability of the steam-water flow in the geothermal-wells [19, 20]. The flow stability in a steam-water well is defined by the condition [20]

$$\frac{\partial p_w}{\partial G} + \frac{\partial \Delta p_{int}}{\partial G} > 0,$$

where G is mass flow rate, Δp_{int} is internal pressure drop (the amount of pressure drop by friction, convective acceleration and gravity), p_w is wellhead pressure, defined as an external parameter depending on the flow conditions outside the well.

Equality of flow rates is expected in case equality of wellhead pressures. Respectively, equality of internal pressure drops and their derivations are expected. Existence of stable flow in one case and unstable flow in other case is explained by difference of values for first term in left-hand part of inequality (1). In real con-
ditions of exploitation, the well works for the collector, or main pipeline, or separator (sometimes group separator). In this equipment, relatively constant pressure is kept, which provides a relatively constant wellhead pressure, i.e. the first term of the left-hand part of (1) is close to zero.

Testing is carried out at various stages of wellhead pressure. The stages are provided by throttling of the flow at the valve located at the entrance to the flow-measure unit. Near the wellhead there is a significant pressure difference, which has substantially dependent on the flow rate. In this case the first term in left-hand part of inequality (1) has essential role and it has positive sign and it supports stability. Such support explains the fact of improved stability at testing.

Consider this feature in more detail on the example of average well of Mutnovskoe field. Depth of well to upper boundary of feed zones is 1400 m, inside diameter to depth 1100 m is 0.225 m, lower diameter is 0.152 m. Enthalpy of reservoir fluid is 1200 kJ/kg, static pressure on upper boundary of feed zones is 80 bar.

Considering that the current pressure in the well at the level of the upper border of the reservoir ("bottomhole pressure") consists of wellhead pressure and the corresponding pressure drop in the well, the left-hand part of inequality (1) can be defined as partial derivative of bottomhole pressure on flow rate. Graphs of bottomhole pressure depending on flow rate are shown in Figure 2. Bottomhole pressures were calculated by simulator WELL-4 [21]. Every graph was calculated at constant wellhead pressure. In area of high flow rate the graphs corresponding to low wellhead pressures are merged. It is result of appearance of conditions for critical flow in wellhead.

![Figure 2. Interconnection of bottomhole pressure and flow rate for well and reservoir: wellhead pressures for well graphs are changed from 3 bar to 18 bar; reservoir graphs correspond high (1), medium (2) and low performance (3).](image)

Reservoir characteristics corresponding stationary inflow with a linear filtration law also are presented in Figure 2. Operate parameters (work points) are determined by point of intersection of graphs for well and
reservoir. Static bottomhole pressure is accepted as 80 bar. Characteristic 1 is drawn through the point of extremum for wellhead pressure of 18 bar. Having such reservoir characteristic the well corresponds to high-performance wells of the Mutnovskoe field. Graph 2 is drawn through the point of extremum for wellhead pressure of 14 bars. Having such characteristic the well corresponds to middle-performance wells of the field. Graph 3 is drawn through the point of extremum for wellhead pressure of 7 bar. Having such characteristic the well corresponds to "problematic" wells of the field. Such wells do not operate with wellhead pressure above 7 bar (work points are absent). It is noted that the above-mentioned wells A-2 and A-3 at a pressure of 7 bar have flow rate corresponding "problematic" wells (about 20 kg/s, Figure 1 and Figure 2).

Steam-water mixture comes in measurement unit in the processes of testing where flow-rate parameters are determined. External environment is usually the atmosphere. External environment pressure is independent on the flow rate. A pressure drop takes place between the wellhead and the external environment. This drop is result of the hydraulics losses in the unit and the throttling valve when setting the wellhead pressure stages. Let this pressure drop has a quadratic dependence on the flow rate

\[p_w = p_{ext} + kaG^2, \]

where \(p_{ext} \) is external pressure, \(k \) is loss coefficient, \(a \) is intermediate coefficient (\(a = 100 \text{ (kg*m)}^{-1} \)).

Graphs of bottomhole pressure depending on flow rate for external pressure \(10^5 \) Pa and wellhead pressure determining by formula (2) are shown in Figure 3. Diapason of losses coefficient is 1-512. Bottomhole pressures are calculated by simulator WELL-4. Graphs of the reservoir also are given similar to Figure 2. Calculation of well graphs with the loss coefficient of less than 1 is meaningless. There are signs of critical flow in the wellhead in this case. A further reduction of the loss coefficient ceases to influence on the flow in the well.

![Figure 3](image-url)

Figure 3. Interconnection of bottomhole pressure and flow rate for well and reservoir: loss coefficients for well head graphs are changed from 1 to 512; reservoir graphs correspond high (1), medium (2) and low performance (3).
Calculated performance curves of wells are obtained by points of intersection of the well and reservoir graphs. For the graphs shown in Figure 2, it is possible to build three performance curves, conforming to the reservoir graphs with high, medium and low performance. Those curves correspond to independent wellhead pressure from flow rate. Similar three performance curves can be constructed for Figure 3. Those curves correspond to dependent wellhead pressure.

3. Results
Performance curves constructed for independent wellhead pressure from flow rate (Figure 2) and dependent wellhead pressure (Figure 3) are shown in Figure 4. Curves for independent wellhead pressure are superimposed on curves for dependent wellhead pressure. Curves for dependent wellhead pressure are shown by dotted lines. These curves have continuation.

![Graph showing performance curves for wells](image_url)

Figure 4. Performance curves for corresponding reservoir graphs (1), (2) and (3): 4 is points by Figure 2; 5 is points by Figure 3.

Performance curves shown in Figure 4 are related to average well. Real wells in the Mutnovskoe field have variations in design and on the reservoir conditions. Therefore, absolute similarity for graphs in Figure 1 and Figure 4 is absent. In each case, the feature of the real curve can be explained by the peculiarities of the well construction and reservoir conditions.

The curve of high-performance well is shown in Figure 4 by numeral 1. When testing with independent wellhead pressure the curve (solid line) is characterized by a monotonic decrease of flow rate until to 43.3 kg/s when wellhead pressure is increasing flow until 18 bar. At a lower flow rates, as well as at greater pressures the well cannot operate. When testing with dependent wellhead pressure the curve has continuation in area of more high pressure up to 18.2 bar for 32 kg/s flow rate. In addition, there is an inversion: transition from an increase to decrease of flow rate when wellhead pressure is decreased.

The curve of medium-performance well is shown in Figure 4 by numeral 2. When testing with independent wellhead pressure the curve (solid line) is monotonic. Minimal flow rate is 35 kg/s, maximal wellhead pressure is 14 bar. When testing with dependent wellhead pressure the curve has continuation in area of more high pressure up to 15.3 bar for 20 kg/s flow rate. There is an inversion.

The curve of low-performance well is shown in Figure 4 by numeral 3. When testing with independent wellhead pressure the curve (solid line) is monotonic. Minimal flow rate is 22.2 kg/s, maximal wellhead...
pressure is 7 bar. When testing with dependent wellhead pressure the curve has continuation in area of more high pressure up to 10.8 bar for 9 kg/s flow rate.

In some cases the well can have three different states at a fixed wellhead pressure. If the well has the performance curve shown in Figure 4 by numeral 2, the wellhead pressure equals 15 bar. The first state corresponds to operate with small throttling; flow rate is 25 kg/s. Second state corresponds to operate with more throttling; flow rate is 13 kg/s. The well is unable to operate in the third state when the wellhead pressure does not depend on flow rate.

4. Discussion
An analysis of curves in Figure 4 shows, that the performance curves obtained during well testing depend not only on the characteristics of reservoir and well construction, but also on the technology of testing. Throttling of the wellhead is a factor supporting the stability of the flow in the well, and it provides a more complete presentation of the well performance. However, a practical decision about use of the well reasonably to accept on basis of data corresponding to testing with independent wellhead pressure, when it is devoid of the stabilizing effect of throttling.

Testing is a specific process. Testing is always executed with throttling in wellhead. In theory the independent wellhead pressure can be provided during the testing, if the separator method is used for measurement of flow-rate parameters and the separator is big and the throttling is executed after separation, but it is difficult in practice. Large volume of separator is necessary, and the separator must operate at high pressure. It is easier to solve the problem on basis of data corresponding to testing with dependent wellhead pressure. The necessary condition is the second term of the left part of inequality (1) is calculated on basis of measurement data. Negative sign of calculated term indicates that stable operate of well is provided by throttling. In this case the well is unable to operate at independent wellhead pressure.

Inversion of performance curve has specific interest. This phenomenon is provided by stabilizing effect of throttling. For several reasons, the facts of observation of this phenomenon are not so well known. Firstly, the phenomenon does not fit into the traditional view of performance curves. It does not contribute to increased focus on the phenomenon. It is believed that the typical performance curve of steam-water wells does not have an inversion [22].

Secondly, throttling does not ensure inversion when a large angle of incline of reservoir characteristic takes place. Wellhead pressure increases together with flow rate in down section of inversion performance curve. Wellhead pressure is the difference of bottomhole pressure and internal pressure drop. Consequently, the down section of inversion curve corresponds to condition

\[
\frac{\partial p_b}{\partial G} - \frac{\partial \Delta p_{int}}{\partial G} > 0 ,
\]

where \(p_b\) is bottomhole pressure defined as external parameter which depends on flow conditions in underground reservoir.

The first term of (3) can have large negative value. The second term of (3) cannot always compensate it.

Third, measurement of flow rates during test has limited range. Area of small flow rates has no practical interest, but it is important for inversion. Measurements for small flow rates often are absent. Fourth, flow parameters pulsate and the well often stops operate at small flow rates. It impedes measurement in inversion area. However, the phenomenon of inversion was observed by the author clearly in practice [20].

Empirical performance curves of some wells are shown in Figure 5. The author got these curves via well testing in Pauzhetskoe field (Kamchatka). Flow throttling was used during the testing. Nature of the flow had no fundamental changes in area of the inversion. Thereby, this phenomenon should be regarded as empirically proven.
Figures 2 and 3 show, that extremum point of well graph is lifted when wellhead pressure, or loss coefficient are increased. Minimum flow rate for stability operation corresponds the case when intersection of well and reservoir graphs takes place in the extremum point. Static level of underground water often is located below the wellhead. It is typical for exploitation well of largest geothermal fields in Russia (Mutnovskoe and Pauzhetskoe fields in Kamchatka). The well is not able to operate when flow rate is less than the minimum.

Presented results of calculation show that throttling in wellhead increases upper pressure limit of the performance curve. For example, the considered well with low performance has high pressure limit 10.8 bar when throttling takes place during the testing. But high pressure limit is only 7 bar when wellhead pressure is independent from flow rate during of test.

Obtained results point at engineering solutions for support of stable well exploitation. The main condition is the inadmissibility of a negative value of the derivative of a wellhead pressure in inequality (1). It appears impossible, but it exists in practice. For example, some steam-water mixture pipelines in Mutnovskoe field have overly large diameters [23]. Steam-water mixture from wells is transported to group separators of power plant by the pipelines. Auspicious conditions appear for decrease of steam-water mixture density when flow rate is increased in ascending sectors of the pipelines. As a result, pressure drop can decrease when flow rate is increased. Decrease of the pressure drop corresponds to a negative value of the derivative of external wellhead pressure. The same effect can appear in descending sectors of the pipelines when flow-rate growth can increase mixture density.

Artificial increase of pressure drop in the pipeline is one of methods for removal of the instability. It should be noted that that pressure drop on its own account is not stabilizing factor. It is necessary to increase the derivative of external wellhead pressure. Satisfactory results take place by flow throttling in valve which is mounted in the outlet of wellhead [8]. It is easily obtained on the basis of formula (2)

$$\frac{\partial p_w}{\partial G} = \frac{2(p_w - p_{ext})}{G}.$$ \hfill (4)

Flow parameters of steam-water mixture in Mutnovskoe field were measured until 2004 by well known method of critical discharge [24, 25, 26]. During the later years the parameters of mixture are measured by separator method ensuring maximal precision [27]. In process of measurement the mixture is separated at
pressure which is close to atmospheric pressure. Necessary stage of wellhead pressure is supported by throttling in the valve between wellhead and separator.

Throttling generally occurs in regime of critical flow, or critical flow takes place in wellhead when valve is fully open. Experimental investigations show that flow rate has linear correlation with pressure of critical flow for the first approximation [28]. Correlation of pressure in the critical flow and the wellhead is also linear as a first approximation. Then correlation of wellhead pressure with flow rate has linear form for the first approximation

\[p_w = bG, \] \hspace{1cm} (5)

where \(b \) is a coefficient depending on flow enthalpy and the section area of a critical flow.

Wellhead pressure derivative is obtained from formula (5)

\[\frac{\partial p_w}{\partial G} = \frac{p_w}{G}. \] \hspace{1cm} (6)

Taking into consideration the difference of formula (4) and (6) the most effective method in order to provide necessary wellhead pressure stage for every concrete case. The method can use critical flow or uncritical flow. However manipulations by equipment are not able to increase the wellhead pressure infinitely. Figure (2) shows that wellhead pressure has absolute maximum. Absolute maximal value corresponds to point where reservoir graph must touch the well graph. Calculated according the formula (5) the performance curves are not fundamentally different from the curves calculated with formula (2). The difference would affect the ascending sector of curve in area of minimal flow rates. This area has no practical interest.

Valve throttling is simple method in order to support the stable operating regime of well. But this method is not the most effective. It is applied in only some cases and even in these cases this method is not able to provide reliability. Specific of instability in steam-water well is development from wellhead to bottomhole [20]. Theoretically the well can operate in metastable regime, when condition (1) is not realized for well in general, but the flow in wellhead satisfies to the condition (1). Stabilization of well operation by this method is executed via empirical selection of necessary throttling level. The most likely result of such procedure will be a metastable regime. In this case there is a high probability of instability of initiation when the pressure in separators and pipelines is changed.

The most effective method for support of stable operation regime of well is the reduction of the internal cross-section of the well. It substantially changes the well graph; extremum point is displaced in area of low flow rates [8]. In this case the intersection of well and reservoir graphs takes place in area of positive value of bottomhole pressure derivative; that is the area of stable operate regime.

5. Conclusions

The main conclusions of the present work are:

1) Technology of testing has an important role in order to receive adequate data about exploitation potential of steam-water geothermal wells.

2) Stable operation of a well at a specified pressure in the process of testing does not guarantee stable operation with the same pressure during exploitation.

3) When testing with valve throttling it is advisable to determine section of performance curve corresponding to testing at independent external wellhead pressure. This section determines permissible diapason of wellhead pressure at exploitation.

4) Steam-water mixture transporting from wells is inadmissible in conditions corresponding to a negative value of the partial derivative of external wellhead pressure by flow rate.

5) The most effective method for support of stable operation regime of well is the reduction of the internal cross-section of the well.

Acknowledgements
Author thanks I I Chernev and A A Lubin for facilitation at research.
The reported study was funded by RFBR according to the research project № 16-05-00398 a.

References
[1] Bertani R 2016 Geothermal power generation in the world 2010–2014 update report Geothermics 60 pp 31-43 doi:10.1016/j.geothermics.2015.11.003
[2] Lund J W, Boyd T L 2016 Direct utilization of geothermal energy 2015 worldwide review Geothermics 60 pp 66-93 doi:10.1016/j.geothermics.2015.11.004
[3] Kolesnikov D V, Lyubin A A, Shulyupin A N 2015 Problems with using the geothermal resources of Kamchatka Power Technology and Engineering 49 No 3 pp. 212-215 doi: 10.1007/s10749-015-0601-9
[4] Grubelich M C, King D, Knudsen S, Blankenship D, Bane S, Venkatesh P 2015 An overview of a high energy stimulation technique for geothermal applications Proceedings of the World Geothermal Congress Melbourne, Australia, 19-25 April 2015 No 31070 pp 1-6
[5] On M D G, Andrino R P 2015 Evaluation of hydraulic stimulation-induced permeability enhancement Proceedings of the World Geothermal Congress, Melbourne, Australia, 19-25 April 2015 No 22094 pp 1-8
[6] Siratovich P, Cole J, Heap M, Villeneuve M, Reuschle T, Swanson K, Kennedy B, Gravely D, Lavalley Y 2015 Experimental thermal stimulation of the Rotokawa Andesite Proceeding of the World Geothermal Congress Melbourne, Australia, 19-25 April 2015 No 22044 pp 1-6
[7] Mubarok M H, Zarrouk S J 2017 Discharge stimulation of geothermal wells: Overview and analysis Geothermics 70 pp 17-37 doi:10.1016/j.geothermics.2017.05.012
[8] Shulyupin A N, Chernyev I I 2015 Some methods for reducing of steam deficit at geothermal power plants exploitation: Experience of Kamchatka (Russia) Geothermal Energy 3: 23 pp 1-11 doi:10.1186/s40517-015-0042-4
[9] Alimonti C, Berardi D, Bocchetti D, Soldo E 2016 Coupling of energy conversion systems and wellbore heat exchanger in a depleted oil well Geothermal Energy 4: 11 pp 1-17 doi:10.1186/s40517-015-0053-9
[10] Holmberg H, Acuña J, Næss E, Sonju O K 2016 Numerical model for nongrouted borehole heat exchanges, part 2 – Evaluation Geothermics 59 pp 134-144 doi:10.1016/j.geothermics.2014.11.002
[11] Wotoszyn J, Gołas A 2016 Experimental verification and programming development of a new MDF borehole heat exchanger numerical model Geothermics 59 pp 67-76 doi:10.1016/j.geothermics.2015.10.006
[12] Louš M L, Larroque F, Dupuy A, Moignard A 2015 Thermal performance of a deep borehole heat exchanger: Insights from a synthetic coupled heat and flow model Geothermics 57 pp 157-172 doi:10.1016/j.geothermics.2015.06.014
[13] Pashkevich R I, Muratov P V 2015 Film condensation in a large diameter tube with upward steam flow International Journal of Heat and Mass Transfer 81 pp 804-810 doi:10.1016/j.ijheatmasstransfer.2014.11.001
[14] Muratov P V, Pashkevich R I 2015 Reflux condensation of steam inside a short vertical large diameter tube International Journal of Heat and Mass Transfer 91 pp 494-501 doi:10.1016/j.ijheatmasstransfer.2015.07.075
[15] Ledinegg M 1938 Instability of flow during natural and forced circulation. Die Wärme 61 No 8 pp 891-898
[16] Bouré J, Bergles A, Tong L 1973 Review of two-phase flow instabilities Nucl. Eng. Des. 25 pp 165-192
[17] Nayak A K, Vijayan P K 2008 Flow Instabilities in Boiling Two-Phase Natural Circulation Systems: A Review. Science and Technology of Nuclear Installations ID 573192 doi:10.1155/2008/573192
[18] Ruspini L C, Marcel C P, Claussé A 2014 Two-phase flow instabilities: A review. International Journal of Heat and Mass Transfer 71 pp 521-548 doi:10.1016/j.ijheatmasstransfer.2013.12.047
[19] Drozni V A 1980 Physics model of volcanic processes Moscow: Science (in Russian)
[20] Shulyupin A N 2017 Steam-water flow instability in geothermal wells *International Journal of Heat and Mass Transfer* **105** pp 290-295 doi:10.1016/j.ijheatmasstransfer.2016.09.092

[21] Shulyupin A N, Chermoshentseva A A 2017 The collection of mathematical models of Well-4 for the calculation of flows in steam-water geothermal wells *Mathematical Models and Computer Simulations* **9** No 1 pp 127-132 doi:10.1134/S2070048217010136

[22] March A 2015 Modelling a geothermal steam fields to evaluate well capacities and assist operational decisions *Proceedings of the World Geothermal Congress* Melbourne, Australia, 19-25 April 2015 No 25008 pp 1-9

[23] Shulyupin A N 2013 Hydraulic calculations for the transport of a steam-water heat carrier at hydrothermal fields *Journal of Volcanology and Seismology* **7** No 3 pp 196-203 doi:10.1134/S0742046313030068

[24] James R 1970 Factors controlling borehole performance *Geothermics* **2** pp 1502-1515

[25] Irsamukhti R Putra, A P Novianto 2015 Evaluation of James lip pressure method for low flow rate geothermal well: ML-5 case study *Proceedings of the World Geothermal Congress* Melbourne, Australia, 19-25 April 2015 No 25003 pp 1-10

[26] Wibowo A T, Thasril M, Sirait P 2015 Production test analysis of XYZ-Well at Deing geothermal field using horizontal discharge lip pressure method with Russel James equation and Hiriart equation *Proceedings of the World Geothermal Congress*, Melbourne, Australia, 19-25 April 2015 No 25005 pp 1-9

[27] Wormald C N 1984 Two phase flow measurement *Measurement and instrum. control* GB pp 61-72

[28] Shulyupin A, Alekseev V 1995 Testing of steam-water wells *Proceedings of the World Geothermal Congress* Vol **3** Florence 1995 pp 1835-1837

Nomenclature

\[G \] mass flow rate [kg/s]

\[p \] pressure [Pa]

\[\Delta p \] pressure drop [Pa]

\[k \] loss coefficient

\[a \] intermediate coefficient \((a = 100)\) \([\text{kg} \cdot \text{m}^{-1}]\)

\[b \] coefficient in formula (5) \([\text{s} \cdot \text{m}^{-1}]\)

Subscripts

\[w \] corresponded to wellhead

\[b \] corresponded to bottomhole

\[ext \] external

\[int \] internal