Determinants of nutritional status of pregnant women attending antenatal care in Western Regional Hospital, Nepal

Nishant Lama1*, Rajendra Lamichhane2, Shreejana K.C.3, Gita Pun Bhandari4, Rajendra Raj Wagle4

INTRODUCTION

Nutritional status is the result of the biological phenomenon of food utilization.1 Good nutritional status before and during pregnancy is prerequisite for healthy pregnancy outcome.2 Maternal undernutrition leads to life threatening health consequences to an expectant mother and to her child.3 Studies have suggested that there is strong association between maternal nutrition and birth outcomes i.e. poor maternal nutrition leads to low birth weight babies, preterm delivery and intrauterine growth retardation and as well as complication on maternal health.4,5

Globally, about 3.5 million mothers and under five children dies due to underlying causes of undernutrition.3
In Nepal, pregnant women are more prone to be anemic (48%) than lactating (39%), non-pregnant and non-lactating women (33%). According to PoSHAN study, the prevalence of low MUAC (<22.5) between pregnant women and non-pregnant women is 35% and 25% respectively.

Previously, Millennium Development goal and now Sustainable Development Goal no. 2 have focused on improving maternal nutrition status. The MSNP, National health policy 2014, National Nutrition Policy 2004 and National Nutrition Program have nutrition direction to combat malnutrition. There is discrepancy in nutritional status of pregnant women in Nepal but reasons for this are little explored. Thus, this study was conducted to generate the evidence on nutritional status of pregnant women and factors influencing it.

METHODS

A cross sectional study was done from January to February 2016. Pregnant women in or above third trimester attending ANC in Western Regional Hospital, Pokhara, Kaski, Nepal, who were willing to participate in the study and had ANC card since first visit were included as the study participants. Pregnant women with chronic diseases such as hypertension, diabetes, Tuberculosis and HIV/AIDS were excluded by study. Sample size was calculated using the formula, \(n = \frac{z^2pq}{e^2} \) and adjusting 10% of nonresponse, the required sample size was 282. Systematic random sampling was carried to select participants. Ethical principle of respecting the human participant was maintained throughout the study and in report. Semi-structured questionnaire was used for obtaining demographic, socio-economic and cultural taboos related information; Household Food Insecurity Access Scale measurement tool for measuring household food security status; 24 hour recall tool for getting dietary information; adult MUAC tape for measuring muscle mass status of mid upper arm; and ANC card for observing record of gestational weight gain and anemia status (hemoglobin level) were used. Data entry were done in EpiData version 3.1 and analyzed in SPSS version 20. Data were summarized using descriptive statistics; further chi square test and logistic regression were used to check associations among variables. Collinearity diagnostic test of variables associated in bivariate analysis at \(p \leq 0.20 \), were considered for multivariate analysis.

RESULTS

This study revealed, 23.8% of the pregnant women were acutely malnourished (MUAC less than 23 cm), 67% were having low gestational weight gain (less than 10 kg) and 12.1% were anaemic (hemoglobin level less than 11 gm/dl) (Table 1).

Table 1: Nutritional status of participants (n=282).

Characteristics	Category	Number	Percentage (%)
MUAC of the participants	≥23 cm (Normal)	215	76.2
	<23 cm (acute malnutrition)	67	23.8
Gestational weight gain	≥10 kg (normal)	93	33
	<10 kg (below normal)	189	67
Hemoglobin level	≥11 gm/dl (non anaemic)	248	87.9
	<11 gm/dl (anaemic)	34	12.1

*Statistically significant association (\(p < 0.05 \)).

Table 2a: Association with mid upper arm circumference of pregnant women.

Characteristics	MUAC of the participants N (%)	Total sample	\(p \) value	
Age (in years)				
≥20	191 (78.9)	51 (21.1)	242	0.009*
<20	24 (60.0)	16 (40.0)	40	
Ethnicity				
Dalit/Madhesi/Muslim	48 (66.7)	24 (33.3)	72	0.038*
Janjati	61 (84.7)	11 (15.3)	72	
Brahmin/Chhetri/Others	106 (76.8)	32 (23.2)	138	
Education level				
No formal education	12 (66.7)	6 (33.3)	18	0.047*
Below SLC	86 (70.5)	36 (29.5)	122	
Above SLC	117 (82.4)	25 (17.6)	142	

Continued.
Table 2b: Association with mid upper arm circumference of pregnant women.

Characteristics	MUAC of the participant N (%)	Total sample	P value	
Occupation of the participant				
Unpaid*1	183 (75.3)	60 (24.7)	243	0.358
Paid*2	32 (82.1)	7 (17.9)	39	
Husband’s occupation				
Unpaid*3	22 (78.6)	6 (21.4)	28	0.760
Paid*4	193 (76.0)	61 (24.0)	254	

*Statistically significant association (p<0.05) *1house wife/student/agriculture *2wage/ salary/ business *3unemployed/student/agriculture *4wage/salary/business/labour migrant.

Table 3a: Association with gestational weight gain.

Characteristics	Gestational weight gain, N (%)	Total sample	P value	
Age (in years)				
≥20	82 (33.9)	160 (66.1)	242	0.426
<20	11 (27.5)	29 (72.5)	40	
Ethnicity				
Dalit/Madhesi/Muslim	20 (27.8)	52 (72.2)	72	0.547
Janjati	25 (34.7)	47 (65.3)	72	
Brahmin/Chhetri/Others	48 (34.8)	90 (65.2)	138	0.019*
Education level				
No formal education	6 (33.3)	12 (66.7)	18	0.393
Below SLC	35 (28.7)	87 (71.3)	122	
Above SLC	52 (36.6)	90 (63.4)	142	
Occupation of the participant				
Unpaid*1	75 (30.9)	168 (69.1)	243	0.059
Paid*2	18 (46.2)	21 (53.8)	39	
Husband’s occupation				
Unpaid*3	9 (32.1)	19 (67.9)	28	0.921
Paid*4	84 (33.1)	170 (66.9)	254	

*Statistically significant association (p<0.05) *1house wife/student/agriculture *2wage/ salary/ business *3unemployed/student/agriculture *4wage/salary/business/labour migrant.
Table 3b: Association with gestational weight gain.

Characteristics	Gestational weight gain, N (%)	Total sample	P value	
	≥10 kg	<10 kg		
Household income				
≥Average (Rs 30,121)	44 (41.9)	61 (58.1)	105	0.014*
<Average	49 (27.7)	128 (72.3)	177	
Food taboos				
Yes	37 (38.1)	60 (61.9)	97	0.182
No	56 (30.3)	129 (69.7)	185	
Household food security				
Food secure	85 (35.7)	153 (64.3)	238	0.023*
Food insecure	8 (18.2)	36 (81.8)	44	
Dietary diversity				
High	48 (47.5)	53 (52.5)	101	0.001*
Medium	35 (25.4)	103 (74.6)	138	
Lowest	10 (23.3)	33 (76.7)	43	

*Statistically significant association (p<0.05).

Table 4a: Association with anemia status of pregnant women.

Characteristics	Anemia status (Hb level) N (%)	Total Sample	P value	
	≥11 g/dl	<11 g/dl		
Age (in years)				
≥20	215 (88.8)	27 (11.2)	242	0.254
<20	33 (82.5)	7 (17.5)	40	
Ethnicity				
Dalit/Madhesi/Muslim	61 (84.7)	11 (15.3)	72	0.398
Janjati	62 (86.1)	10 (13.9)	72	
Brahmin/Chhetri/Others	125 (90.6)	13 (9.4)	138	
Education level				
No formal education	16 (88.9)	2 (11.1)	18	0.989
Below SLC	107 (87.7)	15 (12.3)	122	
Above SLC	125 (88.0)	17 (12.0)	142	
Occupation of the participant				
Unpaid*1	214 (88.1)	29 (11.9)	243	0.875
Paid*2	34 (87.2)	5 (12.8)	39	
Husband's occupation				
Unpaid*3	24 (85.7)	4 (14.3)	28	0.703
Paid*4	224 (88.2)	30 (11.8)	254	

*1 house wife/student/agriculture 2 wage/ salary/ business 3 unemployed/student/agriculture 4 wage/salary/business/labour migrant.

Table 4b: Association with anemia status of pregnant women.

Characteristics	Anemia status (Hb level) N (%)	Total sample	P value	
Household Income				
≥Average (Rs 30,121)	95 (90.5)	10 (9.5)	105	0.314
<Average	153 (86.4)	24 (13.6)	177	
Food taboos				
Yes	84 (86.6)	13 (13.4)	97	0.615
No	164 (88.6)	21 (11.4)	185	
Household food security				
Food secure	209 (87.8)	29 (12.2)	238	0.878
Food insecure	39 (88.6)	5 (11.4)	44	

Continued.
Table 5: Independent association with MUAC of the pregnant women.

Characteristics	Low MUAC			
	B	AOR	95% CI	P value
Constant	0.710			
Age of the participant (in years)				
≥20 (Ref)	-0.714	0.490	0.226–1.060	0.070
<20 (Ref)				
Ethnicity				
Dalit/Madhesi/Muslim	0.010	0.990	0.475–2.064	0.978
Janajati	-0.889	0.411	0.178–0.950	0.037*
Brahmin/Chhetri/Others (Ref.)				
Education level				
No formal education	0.668	1.950	0.562–6.768	0.293
<SLC (Ref.)	0.379	1.461	0.723–2.953	0.291
≥SLC (Ref.)				
Household income				
≥Average (Rs 30,121)	-0.578	0.561	0.286–1.098	0.092
<Average (Ref.)				
Food taboos				
Yes (Ref.)				
No (Ref.)	-0.502	0.605	0.312–1.174	0.605
Household food security				
Food secure	-0.462	0.630	0.296–1.342	0.231
Food insecure (Ref.)				
Dietary diversity				
High (Ref.)				
Medium	0.627	0.534	0.247–1.153	0.110
Lowest (Ref.)				

*Statistically significant association (p<0.05)

Table 6: Independent association with gestational weight gain of the participant.

Characteristics	Gestational weight gain below normal			
	B	AOR	95% CI	P value
Constant	1.885			
Occupation of participants				
Unpaid	0.481	1.617	0.789–3.313	0.189
Paid (Ref.)				
Household income				
≥Average (Rs 30,121)	-0.402	0.669	0.391–0.146	0.143
<Average (Ref.)				
Food taboos				
Yes (Ref.)				
No (Ref.)	-0.322	0.725	0.418–1.257	0.252
Household food security				
Food secure	-0.922	0.398	0.170–0.928	0.033*
Food insecure (Ref.)				

*Statistically significant association (p<0.05)
Chi square test found that age, ethnicity, education level, household income and dietary diversity of pregnant women were significantly associated with their MUAC (Table 2a, 2b). Similarly, household income, household food security and dietary diversity of the pregnant women were significantly associated with their gestational weight gain (Table 3b). But none of the demographic, socioeconomic, cultural factors and food security were significantly associated with anemia status of pregnant women except their dietary diversity (Table 4a, 4b).

Binary logistic regression revealed that pregnant women being Janajati were 58.9% less likely to be acutely malnourished (MUAC <23 cm) as compared to Brahmin/Chhetri/Other (AOR: 0.411, CI: 0.178 – 0.950, p=0.037) (Table 5). Similarly, food secured pregnant women were 60.2% less likely to have low gestational weight gain as compared to food insecure (AOR: 0.398, CI: 0.170–0.928, p=0.033) and pregnant women having high dietary diversity were 63.6% less likely to have low gestational weight gain as compared to their counterpart (AOR: 0.364, CI: 0.159–0.830, p=0.016) (Table 6). Pregnant women having medium dietary diversity were 65.7% less likely to be anemic as compared to those having lowest dietary diversity (AOR: 0.343, CI: 0.138–0.852, p=0.021) (Table 7).

DISCUSSION

This study evoked that about 24% of the pregnant women were acutely malnourished (MUAC<23 cm) which is slightly higher than the result shown by PoSHAN study. This may be because of 0.5 cm difference in cutoff point of MUAC between these two studies.7 But a cross sectional study done on patient files from the maternity ward at Okhaldhunga Community Hospital in Nepal found similar prevalence of undernourished.13 The prevalence of low gestational weight gain in this study was less (67%) than the prevalence (80%) found by a hospital based case control study conducted in Dhulikhel hospital, Nepal.14 Prevalence of anemia among pregnant women were 4 times less as compared to the findings of NDHS 2011.6

None of the socioeconomic, cultural, household food security and demographic factors had significant independent association with MUAC of pregnant women except ethnicity. However, unadjusted data of dietary diversity showed a significant association with MUAC of the pregnant women. These associations were supported by the study done in rural Northern Bangladesh and India respectively.15

Only household food security and dietary diversity had significant independent association with gestational weight gain but unadjusted data showed a significant association between household income and gestational weight gain. These findings were supported by the study done in Malaysia, Pakistan and Bangladesh.4,14 Whereas the study done in Nigeria reflected that age, education and occupation of the participants also have significant association with gestational weight gain.7

Dietary diversity was the only factor which had significant association with anemia status of pregnant women in the study but the study done in Pakistan contrast with this finding.4 Whereas, study done in Bangladesh and Nepal revealed that maternal anemia was associated with age, education level and income.14,15

CONCLUSION

The study concluded that about one fourth of the pregnant women were acutely malnourished, more than two third were below normal gestational weight gain and more than one tenth were anemic. Ethnicity, food security and dietary diversity were the factors having significant association with nutritional status of pregnant women. So, these factors should be given special consideration to improve nutritional status of pregnant women.

Table 7: Independent association with anemia status (Hb level).

Characteristics	Anemic			
	B	AOR	95% CI	P value
Constant	-1.194			
Dietary diversity				
High	-0.908	0.403	0.157–1.037	0.060
Medium	-1.069	0.343	0.138–0.852	0.021*
Lowest (Ref.)				

Ref. = Reference Category, AOR= Adjusted Odds Ratio, *Statistically significant association (p<0.05).
ACKNOWLEDGEMENTS

We would like to acknowledge study participants for their active voluntary participation; Faculties from Department of Community Medicine and Public Health, Maharajgunj Medical Campus, Institute of Medicine, for their constructive comments and supports; and Nutrition Innovation Lab for providing adult MUAC tape.

Funding: UNICEF Nepal and Childreach Nepal
Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Review Board, Institute of Medicine, Kathmandu, Nepal

REFERENCES

1. Bioline International. S. African journal of biomedical research. Vol. 13, African Journal of Biomedical Research. Ibadan Biomedical Communications Group; 2003: 161-167.
2. Jerath S. Public health foundation of India. Post graduate diploma in public health nutrition by distance learning. 2013.
3. Devkota MD, Uprety A, Subedi NRP. Identification of Gaps and Priority Interventions for Maternal Nutrition in Nepal: A Review. 2012.
4. Ali F, Thaver I, Khan SA. Assessment of dietary diversity and nutritional status of pregnant women in Islamabad, Pakistan. J Ayub Med Coll Abbottabad. 2014;26(4):506–9.
5. Ministry of Health and Population of Nepal. Strategy for infant and young child feeding: Nepal 2014. 2014.
6. Ministry of Health and Population (MOHP) [Nepal]. New ERA and III. Nepal Demographic and Health Survey 2011. Kathmandu; 2012.
7. Manohar S, Klemm RDW, Rajbhandary R, Adhikari R, Gauchan D, Shrestha K, Webb P, Ghosh S, West KPW Jr. PoSHAN Community Studies Baseline Report. Nutrition Innovation Lab, Johns Hopkins University, Baltimore, MD. 2014.
8. Government of Bangladesh. Nutrition Background Paper to Inform the Preparation of the 7th Five Year Plan. 2015.
9. Government of Nepal MoHP, Department of Health Services. Annual Report. 2013/14.
10. Panta PP. A Text Book of Biostatistics. 2016.
11. Coates J. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide Version 3. 2007.
12. Kennedy G, Ballard T, Dop MC Guidelines for measuring household and individual dietary diversity: Nutrition and Consumer Protection Division, Food and Agriculture Organization of the United Nations 2010.
13. Winther II. Maternal anthropometry as a predictor of birth weight. A study performed at Okhaldhunga Community Hospital in rural Nepal. 2014.
14. Singh S, Shrestha S, Marahatta S. Incidence and risk factors of low birth weight babies born in Dhulikhel Hospital. J Inst Med. 2010;32(3):39–42.
15. Makhoul Z, Taren D, Duncan B, Pandey P, Thomson C, Winzerling J, et al. Risk factor associated with anemia, iron deficiency and iron deficiency anemia 60 in rural Nepali pregnant women. Southeast Asian J Trop Med Public Health. 2012;43(3):735-46.

Cite this article as: Lama N, Lamichhane R, Shrejana KC, Bhandari GP, Wagle RR. Determinants of nutritional status of pregnant women attending antenatal care in Western Regional Hospital, Nepal. Int J Community Med Public Health 2018;5:5045-51.