Mechanical Properties of Concrete Modified with Silica Fume and Integral Waterproof and Comparison with Waste Glass Aggregate Concrete

Taghreed Abd-Almahdee Musa¹, Hiba Ali Abbas², Ayam Jabbar Jihad³
¹ Department of Structure and Water Resources, Faculty of Engineering, University of Kufa, Najaf, Iraq
²,³ Department of Structure and Water Resources, Faculty of Engineering, University of Kufa, Najaf, Iraq

Emails: taghreeda.musa@uokufa.edu.iq, Hiba.abbas@uokufa.edu.iq, ayam.jihad@uokufa.edu.iq

Abstract: This study includes the effect of using different dosages of integral waterproof Admixture and silica fume on some mechanical properties of concrete. Concrete improved by using different ratios of integral water proof admixture(IWP admixture) to increase strength and durability, this admixture used as percentages from cement weight in each mix ranged from 0.0% to 2% (0.0%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8%, and 2%) , compressive strength test done for cubes with (10*10*10) cm for each mix .The flexural strength test was done by (10*10*40) cm beams and tested after 28 days of curing. comparison study was made between silica fume mixes properties and mixes without silica fume. Adding IWP admixture leads to increase mechanical properties of ordinary concrete, the reference mix shows compressive strength equal to 26.38 MPa ,while mixes with 2% IWP gives 38.8 MPa in this study .The study also includes the effect of using 2 main dosages of silica fume to the mixes that contain IWP, the new concrete with two admixtures show better values of compressive , tensile and flexural strength comparing with mixes with only IWP, the compressive strength increased from 38.8 MPa for ordinary IWP mixes to 52.3 MPa for 10% silica fume concrete mixes , and also the flexural strength increased from 4.8 MPa for mixes with only IWP to 7.3 MPa for mixes modified with 10 % silica fume .Study include also using waste glass as fine aggregate in mixes contain IWP and 10% silica fume and that show more increment in mechanical properties also.

Key words: Silica fume, integral waterproof, compressive strength, tensile strength, flexural strength.
1. Introduction

Admixtures in concrete are widely used in concrete production to improve the mechanical properties of concrete such as compressive strength, tensile strength, flexural strength, and the static modulus of elasticity, and also to make concrete more durable to severe conditions such as sulfate attack due to groundwater or exposure to freeze-thaw conditions. The use of integral water proof liquid admixture in concrete can improve the mechanical properties of concrete and also decreasing absorption of concrete [1,2] that lead to more durable concrete, silica fume is a relatively new powder material and called sometimes micro silica can be used in concrete to increase strength silica fume reacts with calcium hydroxide that liberates from cement hydration [3, 4], and that operation leads to form more cement gel that blocks the pores inside the concrete and make concrete with higher strength and durability [5]. Silica fume is an important material used in concrete production to improve mechanical properties of concrete and also the production of high strength concrete especially when used with super-plasticizer, silica fume mainly consists of micro silica particles at least of 85% of SiO2 with particles size distribution finer than cement particles and this property allow the silica fume to refine the pore structure of cement paste [6]. Using integral waterproof admixture gives more durable concrete with higher strength comparing with ordinary concrete [7]. Another advantage of using integral waterproofing admixture done by Geetha, A., and Perumal, P., [8] they state that using integral waterproofing admixture in concrete reduces permeability and improve the corrosion resistance in reinforced concrete. Using waste aggregate concrete leads to several benefits especially decreasing environmental pollution and also lead to less cost of concrete production and finally increase some of the mechanical properties of concrete.

This study aims to use both silica fume and integral waterproofing admixtures on some of the mechanical properties of ordinary concrete and also include using waste glass as fine aggregate and comparison between two types.

2. Experimental program

Materials used: A constant mix proportions were used in all mixes in this study with 450 kg for each cubic meter concrete as shown in table 1, but with different percentages of water/cement ratio and different integral waterproof admixture. Portland cement type I was used in all mixes, fine aggregate zone 2 is used and 16 mm maximum size of coarse aggregate and confirming with Indian standards 383 [9] as shown in tables 2 and 3. Integral water proof used as percentages of the weight of cement with different ratios, silica fume used as the replacement from cement weight with ratios of 5% and 10% in this study. Waste glass used with mixes containing 10% silica fume and IWP admixture as a replacement with 50% and 100 % from normal sand.

Specimens and tests: Using steel molds with dimensions of 10 *10*10 cm for compression test and the specimens tested after 28 days, 3 specimens were used for each mix and taking the average value after testing. Figure 1 shows concrete specimen under compression test. Tensile strength is done by using cylinders with 10 cm*20 cm and tested for splitting tensile test according to equation number 1:

\[F_{\text{tens}} = 2P/\pi DL \]

Where:
\(F_{\text{tens}} \) : is the Tensile strength value for cylinder.
\(P \) : is the peak load from testing machine.
\(D \) : is the diameter of concrete cylinder.
\(L \) : is the length of the cylinder.

Flexural strength done according to British Standards B-S: 1881 [10] by using the Third Point loading according to equation 2:

\[F_{\text{flex}} = P/L BD \]

2
Where:
- F_{flex}: is the Flexural Strength value.
- P: is the maximum load from flexure test machine.
- L: length between supports that hold the beam.
- b and d: is the width and depth of the beam respectively.

Flexural strength done by using 10*10*40 cm beams, as shown in figure 2. Three beams were tested for each mix and taking the average value.

![Figure 1](image1.png)

Fig. 1. Compressive strength test for 10% silica fume concrete specimen.

![Figure 2](image2.png)

Fig. 2 Compressive strength test for 10% silica fume concrete specimen.

Table 1. Concrete used for mixes preparations

Mix type	Water/cement ratio	Integral water proof admixture	cement	Fine aggregate	Coarse aggregate
M1 Reference ordinary	0.45	0.0	450	750	900
M2	0.37	1.0 liter/100 kg cement	450	750	900
M3 Modified	0.37	1.2 liter/100 kg cement	450	750	900
M4 Modified	0.37	1.4 liter/100 kg cement	450	750	900
M5 Modified	0.35	1.6 liter/100 kg cement	450	750	900
M6	0.30	1.8 liter/100 kg cement	450	750	900
Table 2. Concrete used for mixes preparations

SIEVE SIZE MM	% Passing by weight	Indian specifications for 16 mm
20 MM	100	100%
16 MM	92.4	90-100%
10 MM	54.7	30 – 70 %
4.75 MM	8.9	0 – 10 %

Table 3. The Grading of The - Fine Aggregate- Zone 2

Sieve Dimension, mm , micron	% Pass by weight	Indian specifications for zone 2
10 mm	100	100
4.75	100	90-100%
2.36	80.5	75-100%
1.18	72.3	55-90%
600	41.2	35-59%
300	18.7	8-30
150	1.2	0-10

3. Results and discussion

Table 4 shows some of the mechanical properties of reference mix and mixes modified with integral waterproof only, compressive strength was increased from 26.3 MPa to 38.8 MPa by using 2 liters for each 100 kg cement and that can be attributed to double action of this type of admixture that it reduces w/c ratio and also polymer particles action that reduce voids inside cement paste [9,10], also tensile strength increased from 1.58 to 3.36 MPa, and flexural strength increased from 2.8 to 4.8 MPa.

Table 5 shows all mixes used in table 4 but modified with 5% silica fume powder by weight of cement, table 5 shows increment in compressive, tensile and flexural strength of concrete, table 6 shows all mixes with a higher percentage of silica fume (10%) , the compressive strength increased from 38.8 MPa for mix without silica fume to 42.8 MPa for mixes with 5% silica fume and then increased to 52.3 MPa for mixes with 10% silica fume and that can be attributed to the action of silica fume that reacts with Ca(OH)2 that liberates from the operation of cement hydration and forming an additional gel that increases strength and decreases voids inside concrete [11,12], also the flexural strength increased from 4.8 for mixes with maximum integral waterproof to 7.3 MPa for the mixes with 10% silica fume. Figures 3,4 and 5 show the relationship between integral water proof admixture dosage and compressive strength, tensile strength and flexural strength respectively. figures 6,7 and 8 show a comparison between concretes with 0%,5%, and 10% silica fume content for compressive, tensile and flexural strength, it can be seen that concrete with a higher dosage of silica fume and maximum dosage of IWP give the maximum mechanical properties values. Tables 7 and 8 show modified concrete mixes (which contains IWP and 10% silica fume) but with replacing normal sand with 50% and 100 % waste glass, the compressive, tensile and flexural strength increased by using waste glass and that can be attributed to the sharp edges of particles of waste glass which gave excellent bond with cement paste.
Table 4. Properties for ordinary mixes modified with integral water proof only

Mix type	Compressive Strength, MPa	Tensile Strength, MPa	Flexural Strength, MPa
M1 Reference	26.38	1.58	2.84
M2 Modified	31.67	2.25	3.92
M3 modified	33.89	2.47	4.14
M4 Modified	34.75	2.71	4.33
M5 Modified	35.90	2.88	4.60
M6 Modified	37.22	3.07	4.73
M7 Modified	38.86	3.36	4.81

Table 5. Properties for ordinary mixes modified with integral water proof and 5% of silica fume

Mix type	Compressive Strength (MPa)	Tensile Strength, (MPa)	Flexural Strength, (MPa)
M1 Reference with 5% silica fume	30.70	2.34	3.17
M2 Modified – with 5% silica fume	34.85	2.81	4.36
M3 modified- with 5% silica fume	36.10	3.05	4.73
M4 Modified -with 5% silica fume	38.06	3.39	4.92
M5 Modified -with 5% silica fume	39.44	3.61	5.18
M6 Modified- with 5% silica fume	41.38	3.90	5.50
M7 Modified -with 5% silica fume	42.85	3.98	5.93

Table 6. Properties for ordinary mixes modified with integral water proof and 10% of silica fume

Mix type	Compressive Strength (MPa)	Tensile Strength, MPa	Flexural Strength, MPa
M1 Reference with 10% silica fume	32.83	2.80	4.02
M2 Modified – with 10% silica fume	38.90	3.47	5.10
M3 modified- with 10% silica fume	41.54	3.92	5.69
M4 Modified -with 10% silica fume	43.80	4.45	6.14
M5 Modified -with 10% silica fume	47.72	4.70	6.85
Table 7. Modified concrete with 50% replacement of waste glass as fine aggregate

Mix type	Compressive Strength, MPa	Tensile Strength, MPa	Flexural Strength, MPa
M1	36.15	3.12	4.81
M2	42.34	3.67	5.62
M3	45.91	4.22	5.98
M4	48.55	4.65	6.52
M5	51.92	4.93	7.11
M6	55.40	5.10	7.80
M7	57.88	5.31	8.04

Table 8. Modified concrete with 100% replacement of waste glass as fine aggregate

Mix type	Compressive Strength, MPa	Tensile Strength, MPa	Flexural Strength, MPa
M1	38.71	3.60	5.12
M2	43.82	3.93	5.94
M3	46.93	4.55	6.60
M4	49.38	4.80	7.21
M5	53.70	5.29	7.84
M6	56.09	5.41	8.23
M7	58.64	5.81	8.65

Fig. 3 Relationship between % IWP and compressive strength without silica fume.
Fig. 4 Relationship between % IWP and tensile strength without silica fume.

Fig. 5 Relationship between % IWP and flexural strength without silica fume.

Fig. 6 Comparison between concrete with 0%, 5%, and 10% silica fume content (10% for upper curve)-compressive strength test.

Fig. 7 Comparison between concrete with 0%, 5%, and 10% silica fume content (10% for upper curve)-tensile strength test.
Fig. 8 Comparison between concrete with 0% , 5% , and 10% silica fume content (10% for upper curve) - flexural strength test.

4. Conclusions

1- The compressive strength, tensile strength and also flexural strength of concrete increased due to the use of IWP admixture only and by using silica fume in addition of adding IWP, more increment achieved in mechanical properties.

2- More increment in mechanical properties achieved by using waste glass as fine aggregates.

References

[1] Mahdi L., Mechanical Properties of waste Aggregate -Steel fiber reinforced concrete modified with water proof admixture. Int. journal of civil engineering and technology, 9(11) :948-958, November 2018.

[2] Hameed T., and A., Fadhel. Decreasing absorption in concrete lined canals by modifying the Mechanical Properties of concrete using Integral Water-Proofing admixture. journal of engineering and applied sciences, 14(3): 960-964, 2019.

[3] Vikas S., Effect of Silica Fume in Concrete. Int. journal of Innovative -Research in science, engineering and technology, 3(4): 254-259, march, 2014.

[4] Anurag J., characteristics of silica fume concrete. Int. journal of computer applications, p.p:23-26, 2015.

[5] Qureshi M., Effect of Silica Fume on the Strength and Durability Properties of concrete. research gate, p.p:117-120, December, 2016.

[6] Eric E., Using Silica Fume Concrete with the Full Depth Bridge Deck Construction in Minnesota. Final Report, office of materials and road research, Minnesota Department of transportation, 55p, 2001.

[7] Arulinfanta X., and muruganantham M., The Effect of integral and external waterproofing on the Durability of concrete. Int. journal of engineering research and technology, 7(6): 1-5, 2019.

[8] Geetha A., and Perumal P., Chemical reaction of waterproofing admixtures on the corrosion behavior of reinforced cement concrete. Asian Journal of Chemistry, 23(11): 5145-5148, 2011.

[9] Indian Standards I.S-383: Specification for the Coarse and the fine Aggregates from the Natural sources for concrete, Bureau of Indian Standards, New Delhi, 2002.

[10] British Standard 1881,118: Testing on concrete: part -118-Method for the Determination of the flexural strength of concrete, B.S.I -1983.