Sleep maturation influences cognitive development of preterm toddlers

Akiko Ando1,16, Hidenobu Ohta2,3,4,16*, Yuko Yoshimura9,10,16, Machiko Nakagawa5,6,7,16, Yoko Asaka8,16, Takayo Nakazawa1,16, Yusuke Mita11, Yoshihisa Oishi12, Masato Mizushima13, Hiroyuki Adachi14, Yosuke Kaneshi1, Keita Morigaka1, Rinshu Shimabukuro5, Michio Hirata5, Takashi Ikeda5, Rika Fukutomi16, Kyoko Kobayashi6, Miwa Ozawa5, Masahiro Takehashi6, Atsushi Manabe15, Tsutomu Takahashi14, Kazuo Mishima2, Isao Kusakawa5,6,16, Hitoshi Yoda7, Mitsuru Kikuchi9 & Kazutoshi Cho1

Our recent study on full-term toddlers demonstrated that daytime nap properties affect the distribution ratio between nap and nighttime sleep duration in total sleep time but does not affect the overall total amount of daily sleep time. However, there is still no clear scientific consensus as to whether the ratio between naps and nighttime sleep or just daily total sleep duration itself is more important for healthy child development. In the current study, to gain an answer to this question, we examined the relationship between the sleep properties and the cognitive development of toddlers born prematurely using actigraphy and the Kyoto scale of psychological development (KSPD) test. 101 premature toddlers of approximately 1.5 years of age were recruited for the study. Actigraphy units were attached to their waist with an adjustable elastic belt for 7 consecutive days and a child sleep diary was completed by their parents. In the study, we found no significant correlation between either nap or nighttime sleep duration and cognitive development of the preterm toddlers. In contrast, we found that stable daily wake time was significantly associated with better cognitive development, suggesting that sleep regulation may contribute to the brain maturation of preterm toddlers.

Children’s sleep architecture develops rapidly during the first 5 years of life bringing about dramatic changes in their sleep patterns. During this period, the duration and frequency of daytime naps diminishes and they begin to adopt a more consolidated nighttime sleep, like that in adults. In a previous study, we examined the sleep properties of full-term toddlers approximately 1.5 years of age and demonstrated that nap duration directly influences the distribution ratio between nap and nighttime sleep but does not affect overall total daily sleep duration1. There is, however, still an ongoing debate surrounding the two hypotheses on whether either nap or
nighttime sleep contributes more to the proper cognitive development of children or whether appropriate intellectual development depends merely on daily total sleep duration\(^2,3\).

In the current study, to gain an answer to this question, we examined the relationship between the sleep properties and cognitive development of 101 toddlers who had been born prematurely (preterm toddlers) and whose physiological and psychological data had been systematically collected from birth. Focusing on the early developmental stage of approximately 1.5 years of age, when the basic sleep structure of young children has been established\(^1,4–14\), we examined the effects of sleep maturation on the cognitive development of the preterm toddlers in order to find which sleep variables, such as nap, nighttime sleep, total sleep duration, or other sleep variables, contribute to their cognitive development.

Results

Sleep properties of the preterm toddlers. The characteristics of the 101 toddlers are shown in Table 1. No significant difference in characteristics by gender was detected (p < 0.05). The toddlers’ sleep arrangements are shown in Table 2. No significant difference in sleep arrangements by gender was detected except for “Putting children to sleep with formula” (p = 0.024), suggesting that more male toddlers were fed with formula at onset of nighttime sleep. The toddlers’ sleep variables such as bedtime, wake time, nighttime sleep duration, and nap duration are shown in Table 3 (Supplementary Data 1 and 2). No differences were found between boys and girls among the 15 different sleep variables (t-test, p > 0.05) except for daily variation in wake time, nap onset time and sleep efficiency. Boys were found to have more daily variation in wake time (p = 0.048), lower sleep efficiency (p = 0.035), and an earlier nap onset time (p = 0.017) compared to girls. Figure 1 demonstrates the representative daily activity-rest patterns of the approximately 1.5-year-old toddlers, indicating the existence of various nap patterns among the toddlers. There was a significant negative correlation between nap duration and nighttime sleep duration.
Table 2. Sleep arrangements and sleep variables by gender (number or mean ± s.d., *p < 0.05).

Home environment	Boys (n = 44)	Girls (n = 57)	p-value
Siblings			
Yes	29 (28.7%)	39 (38.6%)	0.790
No	15 (14.9%)	18 (17.8%)	
Child having own room			
Yes	2 (2.0%)	2 (2.0%)	
No	42 (41.6%)	55 (54.5%)	0.791
Co-sleeping with parents			
Yes	33 (32.7%)	45 (44.6%)	
No	11 (10.9%)	12 (11.9%)	0.639

Nighttime feeding

	Boys (n = 44)	Girls (n = 57)	p-value
Breastmilk			
Yes	16 (15.8%)	15 (14.9%)	
No	38 (36.9%)	42 (40.6%)	
Formula	6 (5.9%)	9 (8.9%)	
No feeding	22 (21.8%)	33 (32.7%)	0.555

Putting children to sleep with formula

	Boys (n = 44)	Girls (n = 57)	p-value
Yes	22 (21.8%)	16 (15.8%)	
No	22 (21.8%)	41 (40.6%)	0.024*

Nap during daytime

	Boys (n = 44)	Girls (n = 57)	p-value
Yes	44 (43.6%)	57 (56.4%)	
No	0 (0.0%)	0 (0.0%)	n.a

Child attending kindergarten

	Boys (n = 44)	Girls (n = 57)	p-value
Yes	14 (13.9%)	17 (16.8%)	
No	30 (29.7%)	40 (39.6%)	0.829

Bed time

	Total (n = 101)	Boys (n = 44)	Girls (n = 57)	p-value
Weekday bed time	20:56 ± 0:42	20:46 ± 0:38	21:07 ± 0:42	0.436
Sleep onset time	21:28 ± 0:43	21:18 ± 0:39	21:35 ± 0:45	0.200
Wake time	6:58 ± 0:40	6:57 ± 0:39	7:00 ± 0:41	0.532
Daily variation in sleep onset time	33.5 ± 18.7	35.4 ± 19.8	32.1 ± 17.9	0.741
Daily variation in wake time	33.0 ± 15.7	35.1 ± 17.9	31.3 ± 13.7	0.048*
Sleep latency (min)	29.7 ± 14.7	33.0 ± 15.7	27.1 ± 13.3	0.317
Nighttime sleep duration (h)	9.4 ± 0.6	9.5 ± 0.6	9.4 ± 0.6	0.842
Total sleep duration (h)	11.3 ± 0.6	11.4 ± 0.6	11.3 ± 0.6	0.608
Sleep efficiency (%)	85.7 ± 9.0	83.7 ± 11.0	87.2 ± 6.9	0.035*
WASO (wake after sleep onset)(min)	82.6 ± 51.8	94.0 ± 61.4	73.8 ± 41.4	0.056
Nighttime activity (counts/min)	26.4 ± 10.2	29.0 ± 12.3	24.3 ± 7.8	0.111

Daytime sleep variables

	Boys (n = 44)	Girls (n = 57)	p-value
Daytime activity (counts/min)	239 ± 49.4	240 ± 22.8	0.183
Nap duration (h)	2.0 ± 2.0	2.0 ± 0.4	0.068
Nap onset time	12.37 ± 1.04	12.25 ± 0.48	0.017*
Nap end time	15.00 ± 0.52	14.50 ± 0.42	0.086

Table 3. Sleep variables by gender (mean ± s.d., *p < 0.05).
Figure 1. The actograms show representative daily activity-rest patterns of preterm toddlers with stable daily wake times (a) (an infant with DQ96) and unstable daily wake times (b) (an infant with DQ73). The vertical axis shows the 7 consecutive observation days and the horizontal axis shows the course of each 24 h day from 12:00 h (00:00 pm). Activity counts per minute are represented by the height of the vertical black bars on each actogram. The arrows and the blue rectangles indicate naps and bathing periods, respectively. The red underlines are the periods that were automatically judged as sleep periods by the actigraph software. Note that the wake times are recognized as relatively regular starts of the vertical black bars at around 6:00 h (06:00 am) in (a) but as irregular starts of the vertical black bars between 6:00 h (06:00 am) and 9:00 h (09:00 am) in (b).

Figure 2. Correlations of nighttime sleep duration with nap duration in preterm toddlers of approximately 1.5 years of age (**p < 0.01).
sleep duration ($r = -0.517, p = 0.000$), suggesting that longer nap duration induces shorter nighttime sleep duration (Fig. 2), as we previously reported\(^1\).

Effects of sleep on cognitive development of the preterm toddlers.

Before logistic regression analysis, univariate regression analysis was performed in order to select variables (Table 4). Next, to evaluate possible factors contributing to the toddlers’ cognitive development, we performed a logistic regression analysis for the effects of birth profiles, respiratory complications, sleep variables and sleep arrangements on the cognitive development (DQ (Developmental Quotient) scores of the KSPD test) of the preterm toddlers (Table 5). According to analysis of DQ scores in model 1, which was adjusted for birth profile characteristics such as gender and birth weight, no significant odds ratios (ORs) for toddlers with a DQ score of ≥ 93.4 (mean) were found. In model 2, which adds the respiratory complications of prolonged ventilation and non-significant chronic lung disease (CLD) to model 1, no significant ORs for toddlers with a DQ score of ≥ 93.4 (mean) were found. In model 3, which adds the sleep variables of daily variation (standard deviation) of wake time, total sleep duration, sleep onset time, and total sleep duration to model 2, the ORs for toddlers with a DQ score of ≥ 93.4 (mean) were 0.964 ($p = 0.014$) for daily variation of wake time, indicating that greater daily variation of wake time is a significant predictor of lower DQ in toddlers, but failed to find any significant correlations with other sleep variables. In model 4, which adds the sleep arrangement factors of co-sleeping with parents, child attending kindergarten, and nighttime formula feeding to model 3, the ORs for toddlers with a DQ score of ≥ 93.4 (mean) were also 0.964 ($p = 0.014$) for daily variation of wake time, again indicating that greater

DQ-related factors	r	R²	p-value
Birth profiles			
Gender	−0.197	0.039	0.048*
Birth weight	0.169	0.028	0.092
Gestational age	0.160	0.025	0.111
Maternal age at birth	0.073	0.005	0.471
Birth order	0.044	0.002	0.664
Respiratory complications			
Prolonged ventilation (> 7 days)	−0.198	0.039	0.048*
Non-significant CLD	−0.195	0.038	0.050
RDS	−0.073	0.005	0.468
Sleep variables			
Daily variation in wake time	−0.346	0.120	0.000**
Daily variation in sleep onset time	−0.279	0.078	0.005**
Total sleep duration	0.205	0.042	0.040*
Sleep onset time	−0.189	0.036	0.058
Bed time	−0.143	0.021	0.152
Nighttime sleep duration	0.125	0.016	0.213
Nap duration	0.088	0.008	0.380
Wake time	−0.076	0.006	0.449
Total bed duration	0.067	0.005	0.502
Sleep efficiency	0.061	0.004	0.543
Sleep latency	−0.040	0.000	0.693
Night wakings	0.031	0.001	0.762
WASO	−0.015	0.000	0.881
Nap end time	−0.011	0.000	0.912
Nap onset time	0.008	0.000	0.934
Sleep arrangements			
Co-sleeping with parents	0.229	0.052	0.021*
Nighttime formula feeding	−0.812	0.033	0.069
Child attending kindergarten	0.145	0.021	0.148
Putting children to sleep with formula	−0.109	0.012	0.277
Nighttime breast feeding	0.074	0.015	0.460
No feeding during nighttime	0.061	0.004	0.545
Child having own room	−0.060	0.004	0.553

Table 4. The associations of birth profiles, respiratory complications, sleep variables, and sleep arrangements and DQ scores evaluated by univariate regression analysis (**p < 0.01, *p < 0.05). RDS respiratory distress syndrome, Non-significant CLD non-significant chronic lung disease.
that adults do not have naps but only nighttime sleep. Adults’ sleep regulatory system in which the circadian sleep mechanism plays a more powerful role, resulting in a longer sleep duration and nighttime sleep duration, suggesting that longer nap durations may also lead to shorter nighttime sleep durations in preterm toddlers (Fig. 2). This indicates that the balance between nap and nighttime sleep duration is a strong sleep regulatory mechanism and also that we may be able to control the nighttime sleep duration of preterm and term toddlers effectively by controlling their nap durations. This is quite different from adults’ sleep regulatory system in which the circadian sleep mechanism plays a more powerful role, resulting in that adults do not have naps but only nighttime sleep.

The second significant finding is that the current study with preterm toddlers also agrees with a finding from our previous study with full-term toddlers, namely that there is a significant negative correlation between nap duration and nighttime sleep duration, suggesting that longer nap durations may also lead to shorter nighttime sleep durations in preterm toddlers (Fig. 2). This indicates that the balance between nap and nighttime sleep duration is a strong sleep regulatory mechanism and also that we may be able to control the nighttime sleep duration of preterm and term toddlers effectively by controlling their nap durations. This is quite different from adults’ sleep regulatory system in which the circadian sleep mechanism plays a more powerful role, resulting in that adults do not have naps but only nighttime sleep.

The third significant finding is that sex-based differences existed among toddlers in their cognitive development and sleep variables (Table 1 & 3). In cognitive development, the female toddlers had higher DQ scores than the male toddlers. This is consistent with the results of previous studies, in which increased intraventricular hemorrhage (IVH) and prolonged ventilatory support from pulmonary diseases among male preterm infants was reported to have contributed to their reduced cognitive development. A group from Karolinska University Hospital speculates that IVH and prolonged ventilatory support may enlarge the sexual brain dimorphism already existing at the early developmental stage, leading to delayed myelination and lower white matter volumes in male brains, which may result in lower cognitive functions in preterm male toddlers. In sleep variables, female toddlers had significantly less daily variation in wake time, higher sleep efficiency and later nap onset time, which may reflect more mature sleep regulatory mechanisms being associated with toddlers’ cortical function as we previously discussed.

Several concerns warrant consideration in the present study. First, this study did not examine whether the cortical maturation of toddlers’ brains may affect either their sleep regulatory mechanism and/or cognitive functions. That is, there is a possibility that unstable wake time may simply reflect toddlers’ brain immaturity. To investigate this possibility, we would have to artificially improve or hamper toddlers’ intellectual development and evaluate its effects on sleep regulation. However, such an experimental design has not been scientifically established nor, even if it were, could be ethically approved for use in human studies. Second, although

Table 5. Logistic regression analysis of DQ scores of toddlers with birth profiles, respiratory complications, sleep variables, and sleep arrangements (OR, 95% CI, **p < 0.01, * p < 0.05). RDS respiratory distress syndrome, Non-significant CLD non-significant chronic lung disease, N.S. not significant.

Variables	Model 1, OR (CI)	Model 2, OR (CI)	Model 3, OR (CI)	Model 4, OR (CI)
Gender	N.S	N.S	N.S	N.S
Birth weight	N.S	N.S	N.S	N.S
Prolonged ventilation (>7 days)	N.S	N.S	N.S	N.S
Non-significant CLD	N.S	N.S	N.S	N.S
Daily variation of wake time (h)	–	–	0.964 (0.935, 0.993)*	0.964 (0.935,0.993)*
Daily variation of sleep onset time (h)	–	–	N.S	N.S
Sleep onset time	–	–	N.S	N.S
Total sleep duration	–	–	N.S	N.S
Co-sleeping with parents	–	–	–	N.S
Child attending kindergarten	–	–	–	N.S
Nighttime formula feeding	–	–	–	N.S
p-value	N.S	N.S	0.008**	0.008**
R² (Cox-Snell)	N.S	N.S	0.068	0.068

daily variation of wake time is a significant predictor of lower DQ in toddlers, but failed to find any significant correlations with other variables.

Discussion
The present study indicates three significant findings concerning the sleep properties of preterm toddlers at approximately 1.5 years of age. First, our study describes a new finding that only daily variation of wake time, a sleep regulatory variable, is significantly associated with the cognitive development (the DQ scores of the KSPD test) of preterm toddlers in the logistic regression analysis (Table 5). This is inconsistent with a current working hypothesis that the DQ scores of preterm toddlers are significantly influenced by nap and/or nighttime sleep duration. Rather, the maturation of the sleep regulatory mechanism, which controls wake time, contributes to or reflects the levels of preterm toddlers’ cognitive development. This is partly supported by the findings of previous studies in which the daily variation of wake time of full-term infants has been reported to decrease as infants mature. Present data also suggests that, among toddlers, the cortex, which is responsible for cognitive functions, may also play an important role in sleep/wake transition as the final destination of the output from the GABAergic and/or the orexinergic pathway. It has been known that the sleep/wake transition of animals is modulated by their cognitive status, which is affected by environmental conditions such as feeding, mating, and predation. In particular, the orexinergic neurons of the lateral hypothalamus (LH) have been reported to increase wake in response to stress such as from reduced food availability. So far, however, rather than the cortex, the GABAergic neurons of the ventrolateral preoptic area (VLPO) and brainstem and/or the LH orexinergic neurons have been hypothesized to mainly control the transition between wake and sleep status in mammals.

The second significant finding is that the current study with preterm toddlers also agrees with a finding from our previous study with full-term toddlers, namely that there is a significant negative correlation between nap duration and nighttime sleep duration, suggesting that longer nap durations may also lead to shorter nighttime sleep durations in preterm toddlers (Fig. 2). This indicates that the balance between nap and nighttime sleep duration is a strong sleep regulatory mechanism and also that we may be able to control the nighttime sleep duration of preterm and term toddlers effectively by controlling their nap durations. This is quite different from adults’ sleep regulatory system in which the circadian sleep mechanism plays a more powerful role, resulting in that adults do not have naps but only nighttime sleep.

The third significant finding is that sex-based differences existed among toddlers in their cognitive development and sleep variables (Table 1 & 3). In cognitive development, the female toddlers had higher DQ scores than the male toddlers. This is consistent with the results of previous studies, in which increased intraventricular hemorrhage (IVH) and prolonged ventilatory support from pulmonary diseases among male preterm infants was reported to have contributed to their reduced cognitive development. A group from Karolinska University Hospital speculates that IVH and prolonged ventilatory support may enlarge the sexual brain dimorphism already existing at the early developmental stage, leading to delayed myelination and lower white matter volumes in male brains, which may result in lower cognitive functions in preterm male toddlers. In sleep variables, female toddlers had significantly less daily variation in wake time, higher sleep efficiency and later nap onset time, which may reflect more mature sleep regulatory mechanisms being associated with toddlers’ cortical function as we previously discussed.

Several concerns warrant consideration in the present study. First, this study did not examine whether the cortical maturation of toddlers’ brains may affect either their sleep regulatory mechanism and/or cognitive functions. That is, there is a possibility that unstable wake time may simply reflect toddlers’ brain immaturity. To investigate this possibility, we would have to artificially improve or hamper toddlers’ intellectual development and evaluate its effects on sleep regulation. However, such an experimental design has not been scientifically established nor, even if it were, could be ethically approved for use in human studies. Second, although the
The developmental age is estimated according to the sum score of the three sections. The DQ is then calculated by dividing the developmental age by the chronological age and then multiplying it by 100. A DQ score of 100.6 ± 13.4 represents the mean ± 1 s.d. at the time of standardization.

Statistical analysis. A Student’s t-test for continuous data or a χ² test for categorical data was performed to compare the characteristics of participants by gender and a χ² test was used to compare the sleep arrangements and sleep variables by gender (Table 1, 2, and 3) after confirming that all data fulfilled the requirements for normality and equal variances. Univariate regression analysis was performed before logistic regression analysis (Table 4). The degrees of correlation between the cognitive development parameter (DQ scores of the KSPD test) and birth profiles, respiratory complications, sleep variables, and sleep arrangement factors were assessed using the Spearman correlation test. Only variables with relatively significant values (p < 0.2) in the Spearman correlation tests were included in logistic regression analysis. Logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals as estimates of effects, with the DQ scores of the toddlers as the outcome variable (Table 5). Statistical analyses were performed with SPSS Statistics 25.0 (IBM Corp. Armonk, NY, USA).
References
1. Nakagawa, M. et al. Daytime nap controls toddlers’ nighttime sleep. Sci. Rep. 6, 27246. https://doi.org/10.1038/srep27246 (2016).
2. Horváth, K., Myers, K., Foster, R. & Plunkett, K. Napping facilitates word learning in early lexical development. J. Sleep Res. 5, 503–509. https://doi.org/10.1111/j.1365-2850.2006.00157.x (2006).
3. Horváth, K., Liu, S. & Plunkett, K. A daytime nap facilitates generalization of word meanings in young toddlers. Sleep 39, 203–207. https://doi.org/10.5665/sleep.35348 (2016).
4. Acebo, C. et al. Sleep/wake patterns derived from activity monitoring and maternal report for healthy 1- to 5-year-old children. Sleep 28, 1568–1577. https://doi.org/10.1093/sleep/28.12.1568 (2005).
5. Harada, T., Hirotani, M., Maeda, M., Nomura, H. & Takeuchi, H. Correlation between breakfast tryptophan content and morning-evening in Japanese infants and students aged 0–15 yrs. J. Physiol. Anthropol. 26, 201–207. https://doi.org/10.1093/jphysiol/28.12.1568 (2007).
6. Asaka, Y. & Takada, S. Activity-based assessment of the sleep behaviors of VLBW preterm infants and full-term infants at around 12 months of age. Brain Dev. 32, 150–155. https://doi.org/10.1016/j.braindev.2008.12.006 (2010).
7. Nakade, M., Takeuchi, H., Taniwaki, N., Noji, T. & Harada, T. An integrated effect of protein intake at breakfast and morning exposure to sunlight on the circadian typology in Japanese infants aged 2–6 years. J. Physiol. Anthropol. 28, 239–245. https://doi.org/10.1039/sleep/28.12.1568 (2009).
8. Akacem, L. D. et al. The timing of the circadian clock and sleep differ between napping and non-napping toddlers. PLoS ONE 10, e0125181. https://doi.org/10.1371/journal.pone.0125181 (2015).
9. Thorpe, K. et al. Napping, development and health from 0 to 5 years: A systematic review. Arch. Dis. Child. 100, 615–622. https://doi.org/10.1136/archdischild-2014-307241 (2015).
10. Fukuda, K. & Sakashita, Y. Sleeping pattern of kindergartners and nursery school children: Function of daytime nap. Percept. Mot. Skills 94, 219–228. https://doi.org/10.2466/pms.2002.94.1.219 (2002).
11. Yokomaku, A. et al. A study of the association between sleep habits and problematic behaviors in preschool children. Chronobiol. Int. 25, 549–564. https://doi.org/10.1080/07420502082261705 (2008).
12. Komada, Y. et al. Relationship between napping pattern and nocturnal sleep among Japanese nursery school children. Sleep Med. 13, 107–110. https://doi.org/10.1016/j.sleep.2011.01.017 (2012).
13. Staton, S. L., Smith, S. S., Pattinson, C. L. & Thorpe, K. J. Mandatory nap times in child care and children’s nighttime sleep. Sleep 28, 1568–1577. https://doi.org/10.1093/sleep/28.12.1568 (2005).
14. Miike, T. How to analyze and evaluate data from a self-reported sleep diary. In Required for Pediatricians at Present (eds Miike, T.) 120–129 (Shindan to Chiryo Sha Inc., 2015).
15. Eban-Rothschild, A., Giardino, W. J. & de Lecea, L. To sleep or not to sleep: Neuronal and ecological insights. Behav. Sleep Med. 11, 1–15. https://doi.org/10.1080/15208781.2015.1120199 (2016).
16. Komada, Y. et al. Short sleep duration and irregular bedtime are associated with increased behavioral problems among Japanese preschool-age children. Tobaku J. Exp. Med. 224, 127–136. https://doi.org/10.1620/tjem.224.127 (2011).
17. Nakagawa, M. et al. Neonatal sleep and brain development. Paediatr. Perinatal. Epidemiol. 16, 33–46. https://doi.org/10.1111/j.1365-3016.2002.00393.x (2002).
18. De Ridder, J. et al. The effect of early procedural pain in preterm infants on the maturation of electroencephalogram and heart rate variability. Pain 162, 1536–1566. https://doi.org/10.1016/j.pain.2021.05.017 (2021).
19. Lavanda, M. et al. Effect of early procedural pain in preterm infants on the maturation of electroencephalogram and heart rate variability. Pain 162, 1536–1566. https://doi.org/10.1016/j.pain.2021.05.017 (2021).
20. pavlidis, E., Lloyd, R. O., Mathieson, S. & Boylan, G. B. A review of important electroencephalogram features for the assessment of brain maturation in premature infants. Acta Paediatr. 106, 1394–1408. https://doi.org/10.1111/apa.13956 (2017).
21. Messmer, P. R. et al. Effect of kangaroo care on sleep time for neonates. Pediatr. Nurs. 23, 408–414 (1997).
22. Moon, R. Y. & Task Force On Sudden Infant Death Syndrome. SIDS and other sleep-related infant deaths: Updated 2016 recommendations for a safe infant sleeping environment. Pediatrics 138, 62–71. https://doi.org/10.1542/peds.2012-2857 (2013).

Acknowledgements
We thank all the participants and their parents for their generous contributions. This work was supported by Grants-in-Aid for Scientific Research (to H.O. # 26650176 and K.C. # H30W05) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, grants (to M.N.) from St. Luke’s Life Science Institute and the Public Health Research Foundation, and grants (to H.O., Y.Y., Y.K., and K.C.) from the JST Center of Innovation (COI).

Author contributions
H.O., Y.Y., A.K., H.Y., M.K. and K.C. conceived of the study and designed the experiments. A.A., H.O., Y.Y., M.N., Y.A., T.N., Y.M., Y.O., M.M., H.A., Y.K., K.M., R.S., M.H., T.I., R.F., K.K., M.O., M.T., K.M., I.K., H.Y., M.K., and K.C. performed and analyzed the experiments. A.A., H.O., Y.Y., M.N., Y.A., Y.M., A.M., T.T., K.M., I.K., H.Y., M.K. and K.C. wrote the paper.

Competing interests
The authors declare no competing interests.
