Selection of treatment modalities for Budd-Chiari Syndrome in China: A preliminary survey of published literature

Xing-Shun Qi, Wei-Rong Ren, Dai-Ming Fan, Guo-Hong Han

Abstract

AIM: To evaluate the frequency of use of various treatment modalities for Budd-Chiari syndrome (BCS) in China by conducting a preliminary survey of relevant literature.

METHODS: All papers regarding the treatment of BCS in Chinese patients were identified by searching PubMed, Chinese Scientific and Technological Journal, and China National Knowledge Infrastructure databases. Data regarding the number of BCS patients treated with different treatment modalities over time were collected. The proportions of BCS patients undergoing various treatment modalities were calculated.

RESULTS: Overall, 300 of 3005 papers initially retrieved were included. These papers included 23352 BCS patients treated with different treatment modalities. The treatment modalities include surgery (n = 8625), interventional treatment (n = 13940), surgery combined with interventional treatment (n = 363), medical therapy (n = 277), other treatments (n = 91), and no treatment (n = 56). After 2005, the number of BCS patients treated with surgery was drastically decreased, but the number of BCS patients who underwent interventional treatment was almost maintained. Shunt surgery was the most common type of surgery (n = 3610). Liver transplantation was rarely employed (n = 2). Balloon angioplasty with or without stenting was the most common type of interventional treatment (n = 13747). Transjugular intrahepatic portosystemic shunt was rarely employed (n = 81).

CONCLUSION: Selection of treatment modalities for BCS might be different between China and Western countries. Further work should be necessary to establish a unanimous therapeutic strategy for BCS in China.
INTRODUCTION
In 1845, George Budd, a British internist, for the first time described the classic clinical triad of abdominal
pain, hepatomegaly, and ascites in three patients with hepatic venous thrombosis secondary to abscess-induced
phlebitis\(^6\). In 1899, Hans Chiari, an Austrian pathologist, documented the histological features of another three
cases with obliterator endophlebitis of the large hepatic veins\(^6\). Subsequently, the nomenclature for Budd-Chiari
syndrome (BCS) originated from the family names of the two famous doctors\(^3\). Recently, the European Group for
the Study of Vascular Disorders of the Liver standardized the definition of BCS as the hepatic venous outflow
obstruction at any level from the small hepatic veins to the junction of the inferior vena cava and the right atri-
um\(^4\). Notably, right heart failure, constrictive pericarditis or hepatic veno-occlusive disease (also known as sinusoi-
dal obstruction syndrome) should be excluded from the definition of BCS\(^5\).

Accumulated evidence demonstrated that the causes of BCS might be substantially different between Western
countries and China. For example, more than 80% of Western patients had at least one thrombotic risk fac-
tor\(^5-7\); by contrast, thrombotic risk factors were rarely observed in Chinese patients\(^8-13\). In addition, the ob-
structive location was the hepatic vein in most of Western patients; contrarily, the combined obstruction of the
hepatic vein and inferior vena cava was more common in Chinese patients\(^14\). Accordingly, it could be hypothesized
that the different causes and types of obstruction might lead to the difference in the selection of treatment mo-
dalities for BCS between the two regions.

Although China might have the largest number of BCS patients in the world\(^15\), no data have been system-
atically presented regarding the selection of treatment modalities for BCS in China. Herein, we conducted a
preliminary survey of literature to evaluate the frequency of use of various treatment modalities for BCS in China.

MATERIALS AND METHODS

Literature retrieval
As previously described\(^10,15,16\), the PubMed database, the Chinese Scientific and Technological Journal (VIP) data-
base, and the China National Knowledge Infrastructure database were searched from the database inception to
February 20, 2012. The search items were the combination of “Budd Chiari” and “China”\(^15\).

Literature identification
First, all full text copies of retrieved articles were ob-
tained. Papers that were falsely or repetitively recorded in the three databases were excluded.
Second, papers regarding neither Chinese nor BCS patients were excluded.

Third, the clinical studies were identified. The other types of papers, such as notification, book review, biogra-
phy, news report, quiz, review, editorial, conference paper and experimental studies, were excluded.

Fourth, the redundant papers from the covert duplicate publication and plagiarism were excluded.

Fifth, the clinical studies regarding the treatment of BCS were included. The clinical studies regarding other
fields, such as anaesthesia, clinical or radiological diagnosis and features, epidemiology, etiology, hemodynamics,
infertility and pregnancy in BCS, interventional or surgical techniques, laboratory tests, liver cancer and BCS,
nursing, pathology of BCS, periproductive management, postoperative complications and prognosis, were also excluded. Additionally, case reports (< 10 patients) were excluded.

Sixth, among the studies with overlapping data, the studies with more extensive enrollment period and larger sample size were finally included in the present systematic review.

Data extraction
The primary items included first author’s region and af-

filiation, year of publication, number of patients, treat-
ment modalities (i.e., surgery, interventional treatment,
combination of interventional treatment and surgery,
medical treatment, other treatments or no treatment) and type of surgery and interventional treatment. The
secondary items included sex and age of patients, type of BCS, treatment-related complications and death, efficacy,
follow-up time and survival. Notably, because most of included papers reported the combined outcome of vari-
ous treatment modalities (i.e., interventional treatment and surgery) in patients with different types of BCS, it is often impossible for the review authors to extract the data regarding the safety and efficacy of individual treatment modality.

Data analysis
The data were reported in text and Excel table. The num-
ber and percentage of BCS patients treated with differ-
ent treatment modalities and the number of BCS papers according to the publication year were shown in bar and line charts. Additionally, the frequencies of use of different types of surgery and interventional treatment were shown in pie charts.

RESULTS

Characteristics of included papers
A total of 3005 papers were initially retrieved from the three databases. Among them, 300 papers were included in the systematic review (Figure 1). The number of BCS papers and patients reported gradually increased over time (Figure 2). Notably, the numbers of BCS papers and patients reported during the period of 2003-2005 were the largest. Additionally, the majority of BCS papers were
written by researchers from Henan (35%), Shandong (15%), Jiangsu (12%), Beijing (9%) and Anhui (5%) provinces (Figure 3). These papers were produced by 151 affiliations (Table 1). Notably, the First Affiliated Hospital of Zhengzhou University (Zhengzhou, Henan province) had the largest number of papers per affiliation (n = 33).

Treatment modalities

A total of 23352 BCS patients treated with various treatment modalities were reported in these included papers. The treatment modalities include surgery (n = 8625), interventional treatment (n = 13940), surgery combined with interventional treatment (n = 363), medical therapy (n = 277), other treatments (n = 91) and no treatment (n = 56). The trend in the number of BCS patients treated with various types of treatment modalities over time is described in Figure 4A. Before 2005, the number of BCS patients treated with surgery and interventional treatment gradually increased over time. Since then, the number of BCS patients treated with surgery drastically decreased, but the number of BCS patients who underwent interventional treatment was almost maintained. Before 1996, the number of BCS patients treated with surgery was larger than that with interventional treatment (610 vs 220). However, this case was reversed after 1996 (8015 vs 13720).

The trend in the percentage of BCS patients treated with various types of treatment modalities over time is described in Figure 4B. Notably, the percentage of BCS patients treated with surgery persistently decreased; contrarily, the percentage of BCS patients who underwent interventional treatment gradually increased.

Type of surgery

The proportion of BCS patients treated with various types of surgery is described in Figure 5. The most common type of surgery used in China was shunt surgery (n = 3610), followed by radical resection of membrane and/or thrombus (n = 2560), trans-right atrium finger or balloon membranotomy with or without stenting (n = 1332), and others (n = 1123). Notably, liver transplantation was rarely employed (n = 2). Additionally, the proportion of BCS patients treated with various types of shunt surgery is described in Figure 6. Meso-caval, meso-cavo-atrial, meso-atrial, meso-jugular, meso-cavo-jugular, and meso-brachiocephalic vein shunts were the most common types of shunt surgery (n = 1897).

Type of interventional treatment

The proportion of BCS patients who underwent various types of interventional treatment is described in Figure 7. Balloon angioplasty with or without stenting, also known as percutaneous recanalization, was the most common type of interventional treatment (n = 13747). However, transjugular intrahepatic portosystemic shunt (TIPS) in combination with or without percutaneous recanalization was rarely employed (n = 81).

DISCUSSION

To date, no randomized controlled trials regarding the selection of treatment modalities for BCS have been conducted.
performed due to the rarity of this disease. Accordingly, the current American Association for the Study of Liver Diseases recommendations and European Group for the Study of Hepatic Vascular Diseases consensus for the treatment of BCS originate from results of cohort studies and expert opinions. In Western countries, a step-wise therapeutic strategy aimed at minimal invasiveness has been developed and widely employed. This strategy mainly consists of four major steps. First, anti-coagulation is employed for the recanalization of hepatic venous thrombosis and prevention of recurrent thrombosis, and diuretics is used for the treatment of ascites. Second, percutaneous recanalization of hepatic veins and/or the inferior vena cava is attempted in cases of failure of medical therapy. Third, TIPS is performed in the absence of response to previous therapy. Fourth, liver transplantation is further considered in patients with progressive diseases. Recently, a large prospective case series has confirmed the efficacy of the therapeutic strategy in Western BCS patients. Importantly, medical therapy and TIPS placement have become the mainstay treatment options for BCS in Western countries. The proportions of BCS patients treated with medical therapy, percutaneous recanalization, TIPS and liver transplantation are 40%, 10%, 40%, and 10%, respectively. In addition, it should be noted that surgery has been gradually replaced, and percutaneous recanalization is infrequently used for the management of BCS.

Whether or not Western experiences should be extrapolated to the management of Chinese BCS patients remains unclear. However, the fact suggests that the treatment selection seems to be different between Western countries and China. Our single-center case series of 177 BCS patients has recently demonstrated that percutaneous recanalization alone can achieve excellent long-term patency and survival in most Chinese patients with BCS. The safety and efficacy of balloon angioplasty with or without stent-placement in Chinese patients are further confirmed by a larger experience of 903 cases treated with endovascular techniques. Additionally, a Chinese single-center case series of 1360 BCS patients shows that the patients treated with surgery have excellent long-term survival with low perioperative death and complication rates. The wide application of surgery and percutaneous recanalization in China is ascertained by a multi-center experience of 2564 patients. Thus, the substantial discrepancy in the selection of treatment modalities impels us to further conduct the present study.

To the best of our knowledge, this study is the first systematic analysis of the literature regarding the selection of treatment modalities for BCS in China. Several important findings are as follows.

First, more than 20000 Chinese BCS patients treated with various treatment modalities have been reported. Second, surgery and interventional treatment are the most common treatment modalities for BCS in China. Currently, interventional treatment is more common than surgery in Chinese BCS patients.
Third, unlike Western patients, very few Chinese patients are treated with medical therapy alone or liver transplantation. Surgical shunt, especially meso-caval, meso-cavo-atrial, meso-jugular, or meso-brachiocephalic vein shunt, is the most common type of surgery used in China. The reason why medical therapy alone is rarely employed in China might be attributed to the two following points: (1) In contrast with Western BCS patients who often have HV thrombosis, IVC obstruction is frequently observed in Chinese BCS patients. Anticoagulation therapy appears to be less effective for the recanalization of IVC obstruction; and (2) Most of Chinese patients have a relatively chronic disease course and live in poverty. Only if they present with relatively severe symptoms, these patients would be referred to the hospital and treated with more invasive treatment modalities.

Fourth, unlike Western patients, very few Chinese patients are treated with TIPS. Balloon angioplasty with or without stenting is the most common interventional treatment modality used in China. This inconsistent phenomenon might be explained by the three following points. First, TIPS procedure is applied only in some highly experienced interventional radiological centers[25], rather than widely in all Chinese medical centers[26,27]. By comparison, shunt surgery remains a mainstay treatment modality for BCS in China[23,24]. Second, percutaneous recanalization could achieve a relatively excellent outcome in Chinese BCS patients[21,22,28]. Thus, TIPS might be unnecessary in most of cases. Finally, the site of obstruction and etiological distribution are potentially different between China and Western countries[8-13].

Fifth, liver transplantation is rarely employed in BCS patients. This might be associated with a very high cost of this surgery for poor Chinese BCS patients and the shortage of donor organs. Collectively, our findings suggest that China may have a relatively large number of BCS patients treated, and the preferred treatment modalities for
BCS are different between Western countries and China.

Our study has several strengths. First, literature retrieval is comprehensive, and one English-language database and two Chinese-language databases were searched. Second, all full-text copies are reviewed to avoid omitting the potentially eligible articles. Third, the eligibility criteria are strict. The papers unrelated to the treatment of BCS, as well as those with overlapping data, are excluded.
Several limitations should be also clarified as follows. First, the number of BCS patients reported in the published literature may not fully reflect the actual number of BCS patients treated in the real world. Thus, the number of BCS patients might be underestimated. Certainly, the difficulty of performing a nationwide investigation is huge. Second, the major goal of this preliminary survey is just to analyze the frequency of use of various treatment modalities. But we have to acknowledge that other important issues, such as the safety and efficacy of various treatment modalities and prognosis of BCS patients, are not evaluated due to the difficulty in data collection. Indeed, we initially intended to collect the data regarding the efficacy and safety. However, the work was largely restricted by the following aspects: (1) type of BCS, follow-up length, and criteria for assessing the efficacy and safety were different among studies; (2) only the combined outcomes of all treatment modalities were reported in studies in which the patients underwent different treatment modalities, but the separate outcome of individual treatment modality could not be extracted; and (3) the information regarding the number of patients who were lost to follow-up was often unavailable.

In conclusion, this preliminary survey shows the following features of the selection of treatment modalities in Chinese BCS patients: (1) medical therapy alone is infrequently used in China; (2) balloon angioplasty with or without stenting is the preferred treatment modality in China, but TIPS placement is rarely employed; (3) liver transplantation is very rare in China; and (4) although the number of patients treated with surgery gradually decreases, surgery remains the mainstay treatment modality. Given the substantial difference in the selection of treatment between China and Western countries, further work should be conducted to establish a unanimous therapeutic strategy for BCS in China.

COMMENTS

Background

A step-wise therapeutic strategy for Budd-Chiari syndrome (BCS) has been widely employed in Western patients, including medical therapy, percutaneous recanalization, transjugular intrahepatic portosystemic shunt (TIPS) and liver transplantation. Given the difference in the etiology and obstructive location of BCS between Western countries and China, it remains unclear whether or not Western experiences should be extrapolated to the management of Chinese BCS patients.
REFERENCES

1. Budd G. Diseases of the liver. London: John Churchill, 1945.
2. Chiarì H. Ueber die selbständige Phlebitis obliterans der Hauptstmedmer Venae hepaticae als Todesursache. Beitr Z Pathol Anat U Z Allg Pathol 1899; 26: 1-18.
3. Okuda K, Kage M, Shrestha SM. Proposal of a new nomenclature for Budd-Chiari syndrome: hepatic vein thrombosis versus thrombosis of the inferior vena cava at its hepatic portation. Hepatology 1998; 29: 1191-1198 [PMID: 9794901 DOI: 10.1002/hep.510280505].
4. Janssen HL, Garcia-Pagan JC, Elias E, Menthia G, Hadengue A, Valla DC. Budd-Chiari syndrome: a review by an expert panel. J Hepatol 2003; 38: 364-371 [PMID: 12586305].
5. Valla DC. Primary Budd-Chiari syndrome. J Hepatol 2009; 50: 195-203 [PMID: 19012998 DOI: 10.1016/j.jhep.2008.10.007].
6. De Stefano V, Martellini I. Splanchnic vein thrombosis: clinical presentation, risk factors and treatment. Intern Emerg Med 2010; 5: 487-494 [PMID: 20532730 DOI: 10.1007/s11739-010-0413-6].
7. DeLeve LD, Valla DC, Garcia-Tsao G. Vascular disorders of the liver. Hepatology 2009; 49: 1729-1764 [PMID: 19399912 DOI: 10.1002/hep.22772].
8. Cheng D, Xu H, Lu Zj, Hua R, Qiu H, Du H, Xu X, Zhang J. Clinical features and etiology of Budd-Chiari syndrome in Chinese patients: a single-center study. J Gastroenterol Hepatol 2013; 28: 1061-1067 [PMID: 23425079 DOI: 10.1111/j.1440-1746.2012.07355.x].
9. Qi X, He C, Han G, Yin Z, Wu F, Zhang Q, Niuj, Wu K, Fan D. Prevalence of paraxial orbital nocturnal hemoglobinuria in Chinese patients with Budd-Chiari syndrome or portal vein thrombosis. J Gastroenterol Hepatol 2013; 28: 145-152 [PMID: 23020629 DOI: 10.1111/j.1440-1746.2012.07282.x].
10. Qi X, Wu F, Ren W, He C, Yin Z, Niuj, Bai M, Yang Z, Wu K, Fan D, Han G. Thrombotic risk factors in Chinese Budd-Chiari syndrome patients. An observational study with a systematic review of the literature. Thromb Haemost 2013; 109: 878-884 [PMID: 23447059 DOI: 10.1160/TH12-10-0784].
11. Qi X, Yang Z, Bai M, Shi X, Han G, Fan D. Meta-analysis: the significance of screening for JAK2V617F mutation in Budd-Chiari syndrome and portal venous system thrombosis. Aliment Pharmacol Ther 2011; 33: 1087-1103 [PMID: 21395632 DOI: 10.1111/j.1365-2036.2011.04627.x].
12. Qi X, Zhang C, Han G, Zhang W, He C, Yin Z, Liu Z, Bai W, Li R, Bai M, Yang Z, Wu K, Fan D. Prevalence of the JAK2V617F mutation in Chinese patients with Budd-Chiari syndrome and portal vein thrombosis: a prospective study. J Gastroenterol Hepatol 2012; 27: 1036-1043 [PMID: 22142461 DOI: 10.1111/j.1440-1746.2011.07040.x].
13. Wang H, Sun G, Zhang P, Zhang J, Guj E, Zu M, Jia E, Xu H, Xu L, Zhang J, Lu Z. JAK2 V617F mutation and 46/1 haplotype in Chinese Budd-Chiari syndrome patients. J Gastroenterol Hepatol 2014; 29: 208-214 [PMID: 23980667 DOI: 10.1111/jgh.12379].
14. Valla DC. Hepatic venous outflow tract obstruction etiopathogenesis: Asia versus the West. J Gastroenterol Hepatol 2004; 19: 5204-5211.
15. Qi X, Ren W, Liu L, Yang Z, Yang M, Fan D, Han G. Prevalence of covert duplicate publications in Budd-Chiari syndrome articles in China: a systematic analysis. Am J Med 2013; 126: 633-9, e2 [PMID: 23787196 DOI: 10.1016/j.amjmed.2012.12.021].
16. Qi X, Wang J, Ren W, Bai M, Yang Z, Han G, Fan D. Familial Budd-Chiari Syndrome in China: A Systematic Review of the Literature. ISRN Hepatol 2013; 7: [DOI: 10.1155/2013/763588].
17. Qi X, Jia J, Ren W, Yang M, De Stefano V, Wang J, Fan D. Scientific publications on portal vein thrombosis and Budd-Chiari syndrome: a global survey of the literature. J Gastrointestin Liver Dis 2014; 23: 65-71 [PMID: 24689099].
18. Plessier A, Sibert A, Consigny Y, Hakime A, Zappa M, Denninger MH, Condol B, Farges O, Chagnonu C, de Ledinghen V, Francoz C, Suvanet A, Vilgrainn V, Belghiti J, Durand F, Valla D. Aiming at minimal invasiveness as a therapeutic strategy for Budd-Chiari syndrome. Hepatology 2006; 44: 1308-1316 [PMID: 17058215 DOI: 10.1002/hep.21354].
19. Darwish Murad S, Plessier A, Hernandez-Corraira M, Fabris F, Eapen CE, Bahr MJ, Trebicka J, Morard I, Lasser L, Heller J, Hadengue A, Langlet P, Miranda H, Primignani M, Elias I, Leebeek FW, Rosendall FR, Garcia-Pagan JC, Valla DC, Janssen HL. Etiology, management, and outcome of the Budd-Chiari syndrome. Ann Intern Med 2009; 151: 167-175 [PMID: 19652186].
20. Seijo S, Plessier A, Hoekstra J, Dell’era A, Mandair D, Rifai K, Trebicka J, Morard I, Lasser L, Abraldes JG, Darwish Murad S, Heller J, Hadengue A, Anglet P, Miranda H, Primignani M, Elias I, Leebeek FW, Rosendall FR, Garcia-Pagan JC, Valla DC, Janssen HL. Good long-term outcome of Budd-Chiari syndrome with a step-wise management. Hepatology 2013; 57: 1962-1968 [PMID: 23389867 DOI: 10.1002/hep.26306].
21. Han G, Qi X, Zhang W, He C, Yin Z, Wang J, Xia J, Xu K, Guo W, Niuj, Wu K, Fan D. Percutaneous recanalization for Budd-Chiari syndrome: an 11-year retrospective study on patency and survival in 177 Chinese patients from a single center. Radiology 2013; 266: 657-667 [PMID: 23143028 DOI: 10.1148/radiol.12120856].
22. Meng QY, Sun NF, Wang JX, Wang RH, Liu ZX. Endovascular treatment of Budd-Chiari syndrome. Chin Med J (Engl) 2011; 124: 3289-3292 [PMID: 22088523].
23. Xu PQ, Ma XX, Ye XX, Feng LS, Dang XX, Zhao YF, Zhang SJ, Zhao LS, Tang Z, Lu XB. Surgical treatment of 1360 cases of Budd-Chiari syndrome: 20-year experience. Hepatobiliary Pancreat Dis Int 2004; 3: 391-394 [PMID: 15313675].
24. Wang ZZ, Zhang FJ, Yi MQ, Qiang LX. Evolution of management for Budd-Chiari syndrome: a team’s view from 2564 patients. ANZ J Surg 2005; 75: 55-63 [PMID: 15740519 DOI: 10.1111/j.1445-2197.2005.03135.x].
25. Qi X, Yang M, Fan D, Han G. Transjugular intrahepatic portosystemic shunt in the treatment of Budd-Chiari syndrome: a critical review of literatures. Scand J Gastroenterol 2013; 48: 771-784 [PMID: 23806234 DOI: 10.1080/00365523.2013.777775].
26. Qi X, Guo W, He C, Zhang W, Wu F, Yin Z, Bai M, Niuj, Yang Z, Fan D. Han G. Proposal of transjugular intrahepatic portosystemic shunt for Budd-Chiari syndrome: techniques, indications, and results on 51 Chinese patients from a single centre.
Qi XS et al. Management of BCS in China

Liver Int 2013 Oct 12; Epub ahead of print [PMID: 24256572 DOI: 10.1111/liv.12355]

27 Wu X, Ding W, Cao J, Han J, Li J. Modified transjugular intrahepatic portosystemic shunt in the treatment of Budd-Chiari syndrome. Int J Clin Pract 2010; 64: 460-464 [PMID: 18435742 DOI: 10.1111/j.1742-1241.2008.01765.x]

28 Zhang CQ, Fu LN, Xu L, Zhang GQ, Jia T, Liu JY, Qin CY, Zhu JR. Long-term effect of stent placement in 115 patients with Budd-Chiari syndrome. World J Gastroenterol 2003; 9: 2587-2591 [PMID: 14606103]

P- Reviewer: Cura M, Han GH, Jeng KS S- Editor: Ma YJ
L- Editor: Wang TQ E- Editor: Ma S
