Computable planar curves intersect in a computable point

Klaus Weihrauch
University of Hagen

Oberwolfach, Jan. 9, 2018
Well-known:

Computable Intermediate Value Theorem
Every computable function $f : [0; 1] \rightarrow \mathbb{R}$ such that $f(0) < 0$ and $f(1) > 0$ has a computable zero.

The multi-function $f \mapsto x_0$ is not computable.
Suppose $f, g : [0; 1] \rightarrow [0; 1]^2$ and $f(0; 1), g(0; 1) \subseteq (0; 1)^2$

- **Classically:**
 The functions f and g intersect if they are continuous.

- **[Manukyan 1976]**
 There are (Russian-) computable functions f and g which do not intersect.

- Let f, g be (Grzegorczyk-Lacombe-) computable
Theorem [Wei 2017]
The functions f and g intersect in a **computable point** if they are (Grzegorczyk-Lacombe-) **computable**.

Obvious?

The possibly chaotic behavior of f and g must be controlled.

Proof

Main idea: compute a nested convergent sequence of crossings
The function \(f \) entering and leaving a “simple ball” \(B(f(a), r) \), \(a, r \in \mathbb{Q} \)

\[
\begin{align*}
\min(L_r) &= \sup\{ t > a \mid f[a; t] \subseteq B(f(a), r) \} \quad \text{comp. from below} \\
\max(L_r) &= \inf\{ t > a \mid |f(t) - f(a)| > r \} \quad \text{comp. from above} \\
\min(K_r) &= \sup\{ t < a \mid |f(t) - f(a)| > r \} \quad \text{comp. from below} \\
\max(K_r) &= \inf\{ t < a \mid f[t; a] \subseteq B(f(a), r) \} \quad \text{comp. from above}
\end{align*}
\]
For computing the nested sequence of balls we will need “everywhere” balls such that

\[x_{ar}, y_{ar} \notin \text{range}(g) \]

\[Q \iff \text{for all } a, r < s \in \mathbb{Q}, \ldots \]

\[(\exists t \in \mathbb{Q}, r \leq t \leq s) x_{at}, y_{at} \notin \text{range}(g) \]

A If \(\neg Q \) then \(f \) and \(g \) intersect in a computable point.

B If \(Q \) then \(f \) and \(g \) intersect in a computable point.
Proof for Case (A)

Suppose $\neg Q$: There are $a, r, s \in \mathbb{Q}$, $r < s$ such that

$$(\forall t \in \mathbb{Q}, r \leq t \leq s) \ (x_{at} \in \text{range}(g) \text{ or } y_{at} \in \text{range}(g))$$

x_{at} and y_{at} are in $\text{range}(f)$ but not computable in general.
\[(\forall t \in [r; s]) \left[f \circ \max(K_t) \in \text{range}(g) \text{ or } f \circ \min(L_t) \in \text{range}(g) \right]\]
For $r < r' < s' < s$:

We can compute $r_i, s_i \in \mathbb{Q}$ such that

\[r = r_0 < r_1 < r_2 < \ldots < s_2 < s_1 < s_0 = s \]

and nested sequ. $(l_i)_{i \in \mathbb{N}}$ and $(J_i)_{i \in \mathbb{N}}$ of rat. interv., such that

\[K_{s_i} \cup K_{r_i} \subseteq l_i, \quad L_{r_i} \cup L_{s_i} \subseteq J_i \]

\[\{p\} := \bigcap l_i, \quad \{q\} := \bigcap J_i \]

p and q are computable. By continuity of f,

\[\{f(p)\} := \bigcap f(l_i) \quad \text{and} \quad \{f(q)\} := \bigcap f(J_i). \]

By $\neg Q$.

\[f(l_i) \cap \text{range}(g) \neq \emptyset \quad \text{i.o.} \quad \text{or} \quad f(J_i) \cap \text{range}(g) \neq \emptyset \quad \text{i.o.} \]

since $\text{range}(g)$ is compact, hence complete,

\[f(p) \in \text{range}(g) \quad \text{or} \quad f(q) \in \text{range}(g) \]
Proof for Case (B)

Suppose Q: For all $a, r, s \in \mathbb{Q}$, $r < s$

$$(\exists t \in \mathbb{Q}, r \leq t \leq s) \left(x_{at} \notin \text{range}(g) \text{ and } y_{at} \notin \text{range}(g) \right)$$

The balls with $x_{at}, y_{rt} \notin \text{range}(g)$ are “dense”.
barrier: Ball $B(f(a), r)$ with exit points of f (red) not in range(g)

Case 1: no branch of g crosses the barrier (repellent barrier)
Case 2: some branch of g crosses the barrier (crossing)

Lemma: Every crossing contains a much smaller crossing
A crossing with balls $B(f(a_i), r_i)$ covering f

Somewhere g must cross the strip
Times $a_i, b_i \in \mathbb{Q}$ and radii $r_i \in \mathbb{Q}$ can be defined such that f moves through the balls as follows:

The red points are not in $\text{range}(g)$ (using Condition Q) and ...
but not like this ...
Suppose all barriers $B(f(a_i), r_i)$ are repellent. g can still cross the strip of balls.
Consider also **lens-shaped barriers** (intersections of two balls). g crosses the lens-shaped barrier. **There must be a ball-shaped or a lens-shaped crossing.**
Lemma
Every crossing (unit square, ball-shaped or lens-shaped) contains a much smaller crossing (ball-shaped or lens-shaped).

The set of crossings is not c.e.
Lemma
Every crossing (ball-shaped or lens-shaped) contains a smaller proper crossing (ball-shaped or lens-shaped).

Lemma
The set of proper crossings is c.e.
Theorem [Wei 2017]
The functions f and g intersect in a computable point if they are (Grzegorczyk-Lacombe-) computable.

ArXiv: 2017, Klaus Weihrauch, Computable planar curves intersect in a computable point