Knotted handle decomposing spheres for handlebody-knots

By Atsushi Ishii, Kengo Kishimoto and Makoto Ozawa

(Received Apr. 4, 2013)

Abstract. We show that a handlebody-knot whose exterior is boundary-irreducible has a unique maximal unnested set of knotted handle decomposing spheres up to isotopies and annulus-moves. As an application, we show that the handlebody-knots 6_{14} and 6_{15} are not equivalent. We also show that certain genus two handlebody-knots with a knotted handle decomposing sphere can be determined by their exteriors. As an application, we show that the exteriors of 6_{14} and 6_{15} are not homeomorphic.

1. Introduction.

A genus g handlebody-knot is a genus g handlebody embedded in the 3-sphere S^3. Two handlebody-knots are equivalent if one can be transformed into the other by an isotopy of S^3. A handlebody-knot is trivial if it is equivalent to a handlebody standardly embedded in S^3, whose exterior is a handlebody. We denote by $E(H) = S^3 - \text{int} H$ the exterior of a handlebody-knot H.

Definition 1.1. A 2-sphere S in S^3 is an n-decomposing sphere for a handlebody-knot H if

1. $S \cap H$ consists of n essential disks in H, and
2. $S \cap E(H)$ is an incompressible and not boundary-parallel surface in $E(H)$.

In some cases it might be suitable to replace the condition (2) in Definition 1.1 with the condition

2'. $S \cap E(H)$ is an incompressible, boundary-incompressible, and not boundary-parallel surface in $E(H)$,

although we adopt the condition (2) in this paper. The two definitions are equivalent if $n = 1$, or $n = 2$ and $E(H)$ is boundary-irreducible.

For two n-decomposing spheres S and S' for a handlebody-knot H, S is isotopic to S' if there is an isotopy of S^3 from S to S' such that S remains being an n-decomposing sphere throughout the isotopy.

A handlebody-knot H is reducible if there exists a 1-decomposing sphere for H, where we remark that (2) follows from (1) when $n = 1$. A handlebody-knot is irreducible if it is not reducible. A handlebody-knot H is irreducible if $E(H)$ is boundary-irreducible.

2010 Mathematics Subject Classification. Primary 57M25.

Key Words and Phrases. handlebody-knot, decomposing sphere.

The first author was supported by JSPS KAKENHI (Grant Number 21740035).
The third author was supported by JSPS KAKENHI (Grant Number 23540105).
The converse is true for a genus two handlebody-knot H. In particular, for a genus two handlebody-knot H, the following are equivalent:

1. H is irreducible.
2. $\pi_1(E(H))$ is indecomposable with respect to free products.
3. $E(H)$ is boundary-prime (cf. [16, 2.10 Definition]).
4. $E(H)$ is boundary-irreducible.

By [18], we have the equivalence between (1) and (2). By [7], we have the equivalence between (2) and (3) for a handlebody-knot H of arbitrary genus. The conditions (3) and (4) are equivalent if $E(H)$ is not a solid torus (cf. [16, Proposition 2.15]). We remark that there is an irreducible genus $g \not= 2$ handlebody-knot whose exterior is not boundary-irreducible (cf. [16, Theorem 5.4]).

A genus two handlebody-knot [17] and a trivial handlebody-knot can be uniquely decomposed by 1-decomposing spheres into handlebody-knots each of which has no 1-decomposing spheres. The uniqueness is not known for genus $g \geq 3$ handlebody-knots.

Definition 1.2. A 2-sphere S in S^3 is a knotted handle decomposing sphere for a handlebody-knot H if

1. $S \cap H$ consists of two parallel essential disks in H, and
2. $S \cap E(H)$ is an incompressible and not boundary-parallel surface in $E(H)$.

We say that a 2-sphere S bounds $(B,K;H)$ if S bounds a 3-ball B so that $S \cap H$ consists of two parallel essential disks in H, and that $H \cup E(B)$ is equivalent to a regular neighborhood of a nontrivial knot K. A knotted handle decomposing sphere for H bounds $(B,K;H)$. A 2-sphere S which bounds $(B,K;H)$ is not always a knotted handle decomposing sphere for H (see the left picture of Figure 1). In this paper, we represent a handlebody-knot by a spatial trivalent graph whose regular neighborhood is the handlebody-knot as shown in Figure 1. Then the intersection of the spatial trivalent graph and the 2-sphere indicates two disks.

If H is a genus $g \geq 2$ handlebody-knot whose exterior is boundary-irreducible, then a 2-sphere S which bounds $(B,K;H)$ is a knotted handle decomposing sphere for H, where we note that $g \geq 2$ implies that $S \cap E(H)$ is not boundary-parallel in $E(H)$, and that the boundary-irreducibility implies the incompressibility of $S \cap E(H)$. A trivial handlebody-knot has no knotted handle decomposing sphere by the following lemma.

Lemma 1.3 ([14, Lemma 2.2]). An incompressible surface properly embedded in a handlebody cuts it into handlebodies.
The pair 6_{14}, 6_{15} is the remaining pair of handlebody-knots whose fundamental groups are isomorphic. In Section 2, we show that a handlebody-knot whose exterior is boundary-irreducible has a unique maximal unnested set of knotted handle decomposing spheres up to isotopies and annulus-moves (Theorem 2.2), where we note that Koda and the third author [10] have successfully removed the assumption that the exterior is boundary-irreducible. As an application, we show that the handlebody-knots 6_{14} and 6_{15} are not equivalent (Example 2.6). In Section 3, we show that certain genus two handlebody-knots with a knotted handle decomposing sphere can be determined by their exteriors (Theorem 3.1). As an application, we show that the exteriors of the handlebody-knots 6_{14} and 6_{15} are not homeomorphic (Example 3.5).

2. A unique decomposition for a handlebody-knot.

Let H be a handlebody-knot in S^3, and S a knotted handle decomposing sphere for H which bounds $(B, K; H)$. Let A be an annulus properly embedded in $E(H) - \text{int } B$ so that $A \cap S = l$ is an essential loop in the annulus $S \cap E(H)$, and that $A \cap \partial H = l'$ bounds an essential disk D in H, where $\partial A = l \cup l'$ (see Figure 2). Put $T = (S \cap E(H)) \cup (B \cap \partial H)$. Let A' be an annulus obtained from T by cutting along l and pasting two parallel copies of A, where T is slightly isotoped so that $T \cap H = \emptyset$. Then we have a new knotted handle decomposing sphere S' obtained from A' by attaching two parallel copies of D to $\partial A'$. We say that S' is obtained from S by an *annulus-move* along A. For example, in Figure 3, S' is obtained from S by an annulus-move along A.

A set $S = \{S_1, \ldots, S_n\}$ of knotted handle decomposing spheres for a handlebody-knot H is *unnested* if each sphere S_i bounds $(B_i, K_i; H)$ so that $B_i \cap B_j = \emptyset$ for $i \neq j$.

![Figure 1.](image1.png)

![Figure 2. An annulus-move along A.](image2.png)
An unnested set S is maximal if $n \geq m$ for any unnested set $\{S'_1, \ldots, S'_m\}$ of knotted handle decomposing spheres for H. By the Haken–Kneser finiteness theorem [4], [8], there exists a maximal unnested set of knotted handle decomposing spheres for H. By Schubert’s theorem [15], K_i is prime for any i if S is maximal.

Lemma 2.1. Let H be a handlebody-knot whose exterior is boundary-irreducible. Let $S = \{S_1, \ldots, S_n\}$ be an unnested set of knotted handle decomposing spheres for H such that S_i bounds $(B_i, K_i; H)$ and that K_i is prime for any i. Let $S' = \{S'_1, \ldots, S'_m\}$ be a set of 2-decomposing spheres for H. Then S can be deformed so that $S_i \cap S'_j = \emptyset$ for any i, j by isotopies and annulus-moves.

Proof. Let $A_i = S_i \cap E(H)$ for $i = 1, \ldots, n$ and $A'_j = S'_j \cap E(H)$ for $j = 1, \ldots, m$. We may assume that $A_i \cap A'_j$ consists of essential arcs or loops in both A_i and A'_j, and that $|A_i \cap A'_j|$ is minimal by isotopies and annulus-moves for each pair (i, j).

Suppose that $A_i \cap A'_j$ consists of essential arcs for some i and j. Let Δ be a component of $A'_j \cap B_i$ which is cobounded by two adjacent arcs of $A_i \cap A'_j$ in A'_j. Since the arcs $\partial \Delta \cap \partial H$ are essential in the annulus $\partial H \cap B_i$ by the minimality of $|A_i \cap A'_j|$, $\partial \Delta$ winds around $B_i - \text{int} H$ longitudinally twice. By attaching a 2-handle $N(\Delta)$ to the solid torus $E(B_i - \text{int} H)$, we have a once punctured lens space $L(2, q)$, which contradicts Alexander’s theorem [1]. Hence $A_i \cap A'_j$ consists of essential loops for any pair i and j.

Let F be an outermost subannulus of A'_j which is cut by $(\bigcup_{k=1}^n A_k) \cap A'_j$ for some j. Let A_i be the annulus such that $F \cap A_i \neq \emptyset$. If F is contained in B_i, then by the primeness of K_i, we can isotope off F from B_i. Hence F is in the outside of B_i. Then by an annulus move for S_i along the annulus F, we can reduce $|A_i \cap A'_j|$. This contradicts to the minimality of $|A_i \cap A'_j|$. \hfill \square

Theorem 2.2. A handlebody-knot H whose exterior is boundary-irreducible has a unique maximal unnested set of knotted handle decomposing spheres up to isotopies and annulus-moves.

Proof. Let $S = \{S_1, \ldots, S_n\}$, $S' = \{S'_1, \ldots, S'_m\}$ be maximal unnested sets of knotted handle decomposing spheres for H such that S_i and S'_j bound $(B_i, K_i; H)$ and $(B'_j, K'_j; H)$, respectively. By Lemma 2.1, we can deform S' so that $S_i \cap S'_j = \emptyset$ for any i, j by isotopies and annulus-moves. We also deform S' so that $B_i \cap B'_j = \emptyset$ by isotopies if $B_i \cap B'_j$ is homeomorphic to $S^2 \times I$, where I is an interval. Then we have $B_i \subset B'_j$, $B'_j \subset B_i$, or $B_i \cap B'_j = \emptyset$ for any i, j. Since S' is maximal, for any B_i, there exists a 3-ball...
B'_j such that $B_i \subset B'_i$ or $B'_j \subset B_i$. Since K_i and K'_j are prime, S_i is parallel to S'_j. This gives a one-to-one correspondence between S and S'. Hence a maximal unnested set of knotted handle decomposing spheres for H is unique up to isotopies and annulus-moves.

Proposition 2.3. Let H be a genus g handlebody-knot whose exterior is boundary-irreducible. Let $\{S_1, \ldots, S_n\}$ be an unnested set of knotted handle decomposing spheres for H such that S_i bounds $(B_i, K_i; H)$ for any i. Put $H' := H \cup B_{m+1} \cup \cdots \cup B_n$. Then $\{S_1, \ldots, S_m\}$ is an unnested set of knotted handle decomposing spheres for H', or $g = 1$ and $m = 1$.

Proof. Suppose that $S_i \in \{S_1, \ldots, S_m\}$ is not a knotted handle decomposing sphere for H'. If $S_i \cap E(H')$ is compressible in $E(H')$, then $S_i \cap E(H)$ is also compressible in $E(H)$, a contradiction. If $S_i \cap E(H')$ is parallel to an annulus $A \subset \partial E(H')$ in $E(H')$, then A contains some annuli of $(B_{m+1} \cup \cdots \cup B_n) \cap \partial H'$. This shows that $g = 1$ and $m = 1$.

Proposition 2.4. Let H be a genus $g \geq 2$ handlebody-knot, S a 2-sphere which bounds $(B, K; H)$. If $E(H \cup B)$ is boundary-irreducible, then so is $E(H)$.

Proof. Suppose that $E(H)$ is boundary-reducible and let D be a compressing disk in $E(H)$. Since $E(H \cup B)$ is boundary-irreducible, D intersects with the annulus $A = S \cap E(H)$. Since $E(H)$ is irreducible, we may assume that $D \cap A$ consists of essential arcs in A. Since the knot K is nontrivial, an outermost disk of D gives a compressing disk in $E(H \cup B)$. This is a contradiction.

An $(n$-component$)$ handlebody-link is a disjoint union of n handlebodies embedded in the 3-sphere S^3. A non-split handlebody-link is a handlebody-link whose exterior is irreducible.

Proposition 2.5. Let H be a handlebody-knot, S a 2-sphere which bounds $(B, K; H)$. Suppose that $H - \text{int} B$ is a non-split handlebody-link whose exterior is boundary-irreducible. If $H - \text{int} B$ is 2-component handlebody-link or $E(H \cup B)$ is a handlebody, then $E(H)$ is boundary-irreducible.

Proof. Suppose that $E(H)$ is boundary-reducible. Let D be a compressing disk in $E(H)$. Put $A = S \cap E(H)$. If $D \cap A \neq \emptyset$, then we may assume that $D \cap A$ consists of essential arcs in A, since $E(H)$ is irreducible. Since the knot K is nontrivial, an outermost disk δ of D is contained in $E(H \cup B)$. If $H - \text{int} B$ is not a handlebody-knot, then the arc $\delta \cap (H - \text{int} B)$ connects the different components of $H - \text{int} B$ on $\partial(H - \text{int} B)$, a contradiction. If $E(H \cup B)$ is a handlebody, then δ cuts $E(H \cup B)$ into a 3-manifold homeomorphic to $E(H - \text{int} B)$, which is a handlebody by Lemma 1.3. This implies that $H - \text{int} B$ is trivial, which contradicts that $E(H - \text{int} B)$ is boundary-irreducible. Then $D \cap A = \emptyset$, and so D is in $E(H - \text{int} B)$. Since $E(H - \text{int} B)$ is boundary-irreducible, D is inessential in $E(H - \text{int} B)$. Let D' be a disk in $\partial E(H - \text{int} B)$ such that $\partial D' = \partial D$.

Let D_1, D_2 be the disks such that $S \cap H = D_1 \cup D_2$. If $D' \cap (D_1 \cup D_2) = \emptyset$, then $\partial D'$ is inessential in $\partial E(H)$, which contradicts that D is essential in $E(H)$. If
$D' \cap (D_1 \cup D_2) = D_1$ or $D' \cap (D_1 \cup D_2) = D_2$, then the 2-sphere $S' = D' \cup D$ can be slightly isotoped so that $S' \cap (H - \text{int } B) = \emptyset$, which contradicts that $H - \text{int } B$ is non-split, since S' separates D_1 and D_2. Thus $D_1, D_2 \subseteq D'$. If $H - \text{int } B$ is not a handlebody-knot, then D' connects the different components of $H - \text{int } B$ on $\partial (H - \text{int } B)$, a contradiction. If $E(H \cup B)$ is a handlebody, then the 2-sphere $S' = D' \cup D$ can be slightly isotoped so that D' is properly embedded in $H - \text{int } B$. Then S' separates a handlebody $E(H \cup B)$ into a solid torus and a handlebody which is homeomorphic to the exterior of $H - \text{int } B$. This contradicts that $H - \text{int } B$ is nontrivial. \hfill \Box

Example 2.6. We show that any two of the handlebody-knots $5_4, 5_4^*, 6_{14}, 6_{14}^*, 6_{15}$ and 6_{15}^* are not equivalent, where $5_4, 6_{14}$ and 6_{15} are the handlebody-knots depicted in Figure 4, and $5_4^*, 6_{14}^*$ and 6_{15}^* are their mirror images, respectively.

Let H be one of the handlebody-knots $5_4, 5_4^*, 6_{14}, 6_{14}^*, 6_{15}$ and 6_{15}^*. Let S be the knotted handle decomposing sphere for H depicted in Figure 4, where S bounds $(B, K; H)$ and K is a trefoil knot. By Proposition 2.5, $E(H)$ is boundary-irreducible. By Proposition 2.3, $\{S\}$ is a maximal unnested set of knotted handle decomposing spheres for H, since the trivial handlebody-knot $H \cup B$ has no knotted handle decomposing sphere. Then S is unique by Theorem 2.2, which implies that the pair $(K, H - \text{int } B)$ is an invariant of H. Hence any two of the handlebody-knots $5_4, 5_4^*, 6_{14}, 6_{14}^*, 6_{15}$ and 6_{15}^* are not equivalent.

![Figure 4](image)

Proposition 2.7. There exists a sequence of handlebody-knots H_i ($i \in \mathbb{N} \cup \{0\}$) satisfying the following conditions.

- H_0 is the trivial genus two handlebody-knot, which has no knotted handle decomposing sphere.
- For $i \geq 1$, H_i has a unique knotted handle decomposing sphere S_i which bounds $(B_i, K_i; H_i)$.
- For $i \geq 1$, $H_i \cup B_i$ is equivalent to H_{i-1} as a handlebody-knot.

Proof. Let H_0 be the trivial genus two handlebody-knot. For $i \geq 1$, let H_i be the genus two handlebody-knot with $i - 1$ tangles T and a 2-sphere S_i bounding $(B_i, K_i; H_i)$ as depicted in Figure 5. Then $H_i \cup B_i$ is equivalent to H_{i-1}. We remark that H_1 is the irreducible handlebody-knot 6_{14}, whose exterior is boundary-irreducible. It follows by Proposition 2.4 that H_i is boundary-irreducible for $i \geq 1$. Then S_i is a knotted handle decomposing sphere for H_i.

We prove by induction on i that S_i is a unique knotted handle decomposing sphere for H_i. We already showed that S_1 is a unique knotted handle decomposing sphere for
Figure 5.

H_1 in Example 2.6. Assume that S_{i-1} is a unique knotted handle decomposing sphere for H_{i-1}. Suppose that S_i is not a unique knotted handle decomposing sphere for H_i. Then, by Lemma 2.1 and Theorem 2.2, there is a knotted handle decomposing sphere S'_i for H_i which bounds $(B'_i, K'_i; H_i)$ such that the set $\{S_i, S'_i\}$ is a maximal unnested set of knotted handle decomposing spheres for H_i.

Let K_{i-1} be the core of $H_i - \text{int} B_i$, which is a satellite knot. Let T' be the tangle obtained from T and 3 half twists as the leftmost tangle of K_{i-1} in Figure 5. Then T and T' are prime tangles (cf. [5]). Since K_{i-1}^- is obtained from T' and $i-2$ copies of T by tangle sum, K_{i-1}^- is a prime knot [12]. It follows by Proposition 2.3 that S'_i corresponds to S_{i-1}. Hence K_{i-1}^- is the positive trefoil knot, and $(H_i \cup B_i) - \text{int} B_i'$ is a regular neighborhood of K_{i-1}^-. A loop l of $S'_i \cap \partial H_i$ is in $\partial (H_i - \text{int} B_i)$, since the set $\{S_i, S'_i\}$ is unnested.

If l is essential in $\partial (H_i - \text{int} B_i)$, then l is a meridian loop of a solid torus $H_i - \text{int} B_i$. By the primeness of K_{i-1}^-, the positive trefoil knot K_i^- is equivalent to the satellite knot K_{i-1}^- for $i > 1$, a contradiction.

If l is inessential in $\partial (H_i - \text{int} B_i)$, then l bounds a disk D in $\partial (H_i - \text{int} B_i)$. Let D_1, D_2 be the disks such that $S_i \cap H_i = D_1 \cup D_2$. Since l is essential in ∂H_i, $D \cap (D_1 \cup D_2) \neq \emptyset$. If D contains both D_1 and D_2, then l is a separating loop in ∂H_i and ∂H_{i-1}, which contradicts that $S_{i-1} \cap \partial H_{i-1}$ consists of non-separating disks. Thus D contains either D_1 or D_2, which implies that l is parallel to the loops of $S_i \cap \partial H_i$. Then $H_i - \text{int} B_i$ and $(H_i \cup B_i) - \text{int} B'_i$ are equivalent as handlebody-knots. It follows that K_{i-1}^- and K_{i-1}^- are equivalent, which contradicts that K_{j-1}^- has a non-trivial Fox 3-coloring if and only if j is odd, since the replacement of the tangle T with the trivial tangle does not change the number of Fox 3-colorings.

Therefore S_i is a unique knotted handle decomposing sphere for H_i. This completes the proof.

Proposition 2.7 suggests that the following theorem holds. Actually, the theorem is true by the recent work of Koda and the third author [10]. Then Proposition 2.7 gives a concrete example which has a hierarchy of any depth.
Theorem 2.8. For any handlebody-knot \(H \), there exists a unique sequence of handlebody-knots \(H_0, \ldots, H_m = H \) satisfying the following conditions.

- \(H_0 \) has no knotted handle decomposing sphere.
- For \(1 \leq i \leq m \), \(H_i \) has a unique maximal unnested set of knotted handle decomposing spheres \(\{ S_{i,1}, \ldots, S_{i,n_i} \} \), where each \(S_{i,j} \) bounds \((B_{i,j}, K_{i,j}; H_i) \).
- For \(1 \leq i \leq m \), \(H_i \cup B_{i,1} \cup \cdots \cup B_{i,n_i} \) is equivalent to \(H_{i-1} \) as a handlebody-knot.

3. Handlebody-knots and their exteriors.

In this section, we show that certain genus two handlebody-knots with a knotted handle decomposing sphere can be determined by their exteriors. As an application, we show that the exteriors of the handlebody-knots \(6_{14} \) and \(6_{15} \) are not homeomorphic.

Theorem 3.1. For \(i = 1, 2 \), let \(H_i \) be an irreducible genus two handlebody-knot with a knotted handle decomposing sphere \(S_i \) bounding \((B_i, K_i; H_i) \) such that \(B_i \) contains all spheres in a maximal unnested set of knotted handle decomposing spheres for \(H_i \). Suppose that \(E(H_i \cup B_i) \) is a handlebody and that \(H_i - \text{int} B_i \) is a nontrivial handlebody-knot for \(i = 1, 2 \). Then \(H_1 \) and \(H_2 \) are equivalent if and only if there is an orientation preserving homeomorphism from \(E(H_1) \) to \(E(H_2) \).

An annulus \(A \) properly embedded in a 3-manifold is essential if \(A \) is incompressible and not boundary-parallel. To prove Theorem 3.1, we give some lemmas.

Lemma 3.2 ([2, 15.26 Lemma]). Let \(K \) be a knot in \(S^3 \). If \(E(K) \) contains an essential annulus \(A \), then either

1. \(K \) is a composite knot and \(A \) can be extended to a decomposing sphere for \(K \),
2. \(K \) is a torus knot and \(A \) can be extended to an unknotted torus or
3. \(K \) is a cable knot and \(A \) is the cabling annulus.

Lemma 3.3 ([9, Lemma 3.2]). If \(A \) is an essential annulus in a genus two handlebody \(W \), then either

1. \(A \) cuts \(W \) into a solid torus \(W_1 \) and a genus two handlebody \(W_2 \) and there is a complete system of meridian disks \(\{ D_1, D_2 \} \) of \(W_2 \) such that \(D_1 \cap A = \emptyset \) and \(D_2 \cap A \) is an essential arc in \(A \), or
2. \(A \) cuts \(W \) into a genus two handlebody \(W' \) and there is a complete system of meridian disks \(\{ D_1, D_2 \} \) of \(W' \) such that \(D_1 \cap A \) is an essential arc in \(A \).

We say that an annulus \(A \) is obtained from a knotted handle decomposing sphere \(S \) for a handlebody-knot \(H \) when \(A = S \cap E(H) \).

Lemma 3.4. Let \(H \) be an irreducible genus two handlebody-knot with a knotted handle decomposing sphere \(S \) bounding \((B, K; H) \) such that \(B \) contains all spheres in a maximal unnested set of knotted handle decomposing spheres for \(H \). Suppose that \(E(H \cup B) \) is a handlebody and that \(H - \text{int} B \) is a nontrivial handlebody-knot. Then any essential separating annulus in \(E(H) \) is isotopic to either a cabling annulus for \(H - \text{int} B \) or an annulus obtained from a knotted handle decomposing sphere for \(H \).
Proof. Let \(A' \) be an essential separating annulus in \(E(H) \). Assuming that \(A' \) cannot be obtained from a knotted handle decomposing sphere for \(H \), we show that \(A' \) is a cabling annulus for \(H \setminus \text{int} B \). Put \(A = S \cap E(H) \) and \(W = E(H \cup B) \). We may assume that \(A \cap A' \) consists of essential arcs or loops in both \(A \) and \(A' \), and that \(|A \cap A'| \) is minimal by isotopies. As the proof of Lemma 2.1, we may assume that \(A \cap A' \) consists of essential loops.

If \(\partial A' \) is contained in \(B \), then \(A' \) is an annulus obtained from a knotted handle decomposing sphere for \(H \), since each loop of \(\partial A' \) is parallel to \(\partial (S \cap H) \). Hence there is a loop \(C \) of \(\partial A' \) contained in \(W \).

Suppose \(A \cap A' \neq \emptyset \). Let \(F \) be the outermost subannulus on \(A' \) containing \(C \), which is an annulus properly embedded in \(W \). Since \(A' \) is incompressible in \(E(H) \), \(F \) is incompressible in \(W \). By the minimality of \(|A \cap A'| \), \(F \) is not boundary-parallel in \(W \). Let \(D \) be a disk in \(E(H \setminus \text{int} B) \) such that \(D \cap W = F \) and \(D \cap B \) is a disk \(D_0 \) in \(B \). If \(C \) is essential in \(\partial (H \setminus \text{int} B) \), then \(E(H \setminus \text{int} B) \) is boundary-reducible, which implies that \(H \setminus \text{int} B \) is trivial, a contradiction. Hence \(C \) is inessential in \(\partial (H \setminus \text{int} B) \). Let \(D' \) be the disk in \(\partial (H \setminus \text{int} B) \) such that \(\partial D' = C \). Let \(D_1, D_2 \) be the disks such that \(S \cap H = D_1 \cup D_2 \). If \(C \) is parallel to \(\partial D_0 \) on \(\partial (H \cup B) \), then \(F \) is an annulus obtained from a knotted handle decomposing sphere for the trivial genus two handlebody-knot \(H \cup B \), a contradiction. Thus \(D_1, D_2 \subset D' \) or \((D_1 \cup D_2) \cap D' = \emptyset \), which contradicts that the 2-sphere \(S' = D' \cup D \) separates \(D_1 \) and \(D_2 \), where \(S' \) is slightly isotoped so that \(D' \) is properly embedded in \(H \setminus \text{int} B \). Hence \(A \cap A' = \emptyset \), which implies that \(A' \subset W \).

The annulus \(A' \) is incompressible in \(W \), since it is incompressible in \(E(H) \). If \(A' \) is boundary-parallel in \(W \), then \(A' \) is parallel to \(A \) and is obtained from a knotted handle decomposing sphere for \(H \), since \(A' \) is not boundary-parallel in \(E(H) \). Hence \(A' \) is essential in the genus two handlebody \(W \).

By Lemma 3.3, the separating annulus \(A' \) cuts \(W \) into a solid torus \(W_1 \) and a genus two handlebody \(W_2 \) so that \(A' \) winds around \(W_1 \) at least twice. If \(A \) is contained in \(\partial W \cap W_1 \), then by attaching a 2-handle \(N(D) \) to the solid torus \(W_1 \), we have a once punctured lens space \(L(p, q) \) \((p \geq 2) \), where \(D \) is a component of \(S \cap H \). This contradicts Alexander’s theorem [1]. Thus \(A \) is contained in \(\partial W \cap W_2 \) and \(A' \) cuts \(W \cup B \) into \(W_1 \) and \(W_2 \cup B \).

Suppose that \(A' \) is compressible in \(W \cup B \). Let \(D \) be a compressing disk for \(A' \) in \(W \cup B \). Then \(D \) is contained in \(W_2 \cup B \), since \(A' \) is incompressible in \(W \). By attaching a 2-handle \(N(D) \) to the solid torus \(W_1 \), we have a once punctured lens space \(L(p, q) \) \((p \geq 2) \), a contradiction. Thus \(A' \) is incompressible in \(W \cup B \). Suppose that \(A' \) is boundary-parallel in \(W \cup B \). Since \(A' \) is not boundary-parallel in \(W \), \(W_2 \cup B \) is a solid torus \(A' \times I \). Then the solid torus \(W_1 \) is isotopic to \(W \cup B = E(H \setminus \text{int} B) \), which implies that \(H \setminus \text{int} B \) is trivial, a contradiction. Thus \(A' \) is not boundary-parallel in \(W \cup B \). Therefore \(A' \) is essential in \(W \cup B = E(H \setminus \text{int} B) \), which is the exterior of the tunnel number one knot represented by the core curve of \(H \) \(\setminus \text{int} B \). By Lemma 3.2, \(A' \) is a cabling annulus for \(H \) \(\setminus \text{int} B \), where we note that a tunnel number one knot is prime. □

Proof of Theorem 3.1. If \(H_1 \) and \(H_2 \) are equivalent, then there is an orientation preserving self-homeomorphism of \(S^3 \) which sends \(H_1 \) to \(H_2 \), which gives an orientation preserving homeomorphism from \(E(H_1) \) to \(E(H_2) \).
Suppose that there is an orientation preserving homeomorphism \(f \) from \(E(H_1) \) to \(E(H_2) \). Since any cabling annulus cuts off a solid torus from \(E(H_2) \), it follows from Lemma 3.4 that \(f(S_1 \cap E(H_1)) = S_2 \cap E(H_2) \). Since \(E(H_i - \text{int} B_i) \) and \(B_i - \text{int} H_i \) are exteriors of knots, by the Gordon-Luecke theorem [3], both of the restrictions of \(f \) to \(E(H_1 - \text{int} B_1) \) and \(B_1 - \text{int} H_1 \) are extended to homeomorphisms of \(S^3 \). Hence \(f \) can be extended to a homeomorphism \(\hat{f} \) of \(S^3 \) such that \(\hat{f}(S_1) = S_2 \) and \(\hat{f}(H_1) = H_2 \). □

Example 3.5. By Example 2.6, neither 6_15 nor 6_1^* is equivalent to 6_14. We recall that each of them has a unique knotted handle decomposing sphere. By Theorem 3.1, there is no orientation preserving/reversing homeomorphism from \(E(6_14) \) to \(E(6_15) \). Hence \(E(6_{14}) \) and \(E(6_{15}) \) are not homeomorphic.

References

[1] J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Natl. Acad. Sci. USA, 10 (1924), 6–8.
[2] G. Burde and H. Zieschang, Knots, De Gruyter Stud. Math., 5, Walter de Gruyter & Co., Berlin, 1985.
[3] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc., 2 (1989), 371–415.
[4] W. Haken, Some results on surfaces in 3-manifolds, In: Studies in Modern Topology, (ed. P. J. Hilton), Studies in Mathematics, 5, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, NJ), 1968, pp. 39–98.
[5] C. Hayashi, H. Matsuda and M. Ozawa, Tangle decompositions of satellite knots, Rev. Math. Complut., 12 (1999), 417–437.
[6] A. Ishii, K. Kishimoto, H. Moriuchi and M. Suzuki, A table of genus two handlebody-knots up to six crossings, J. Knot Theory Ramifications, 21 (2012), 1250035.
[7] W. Jaco, Three-manifolds with fundamental group a free product, Bull. Amer. Math. Soc., 75 (1969), 972–977.
[8] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Deutsch. Math.-Verein., 38 (1929), 248–259.
[9] T. Kobayashi, Structures of the Haken manifolds with Heegaard splittings of genus two, Osaka J. Math., 21 (1984), 437–455.
[10] Y. Koda and M. Ozawa, Essential surfaces of non-negative Euler characteristic in genus two handlebody exteriors, Trans. Amer. Math. Soc., (2014), DOI: http://dx.doi.org/10.1090/S0002-9947-2014-06199-0.
[11] J. H. Lee and S. Lee, Inequivalent handlebody-knots with homeomorphic complements, Algebr. Geom. Topol., 12 (2012), 1059–1079.
[12] W. B. R. Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc., 267 (1981), 321–332.
[13] M. Motto, Inequivalent genus 2 handlebodies in \(S^3 \) with homeomorphic complement, Topology Appl., 36 (1990), 283–290.
[14] M. Ozawa, Synchronism of an incompressible non-free Seifert surface for a knot and an algebraically split closed incompressible surface in the knot complement, Proc. Amer. Math. Soc., 128 (2000), 919–922.
[15] H. Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 1949 (1949), 57–104.
[16] S. Suzuki, On surfaces in 3-sphere: prime decompositions, Hokkaido Math. J., 4 (1975), 179–195.
[17] Y. Tsukui, On surfaces in 3-space, Yokohama Math. J., 18 (1970), 93–104.
[18] Y. Tsukui, On a prime surface of genus 2 and homeomorphic splitting of 3-sphere, Yokohama Math. J., 23 (1975), 63–75.
Atsushi Ishii
Institute of Mathematics
University of Tsukuba
1-1-1 Tennodai, Tsukuba
Ibaraki 305-8571, Japan
E-mail: aishii@math.tsukuba.ac.jp

Kengo Kishimoto
Osaka Institute of Technology
5-16-1 Omiya, Asahi-ku
Osaka 535-8585, Japan
E-mail: kishimoto@ge.oit.ac.jp

Makoto Ozawa
Department of Natural Sciences
Faculty of Arts and Sciences
Komazawa University
1-23-1 Komazawa, Setagaya-ku
Tokyo 154-8525, Japan
E-mail: w3c@komazawa-u.ac.jp