ON K-THEORY AUTOMORPHISMS RELATED TO BUNDLES OF FINITE ORDER

A.V. ERSHOV

Abstract. In the present paper we describe the action of (not necessarily line) bundles of finite order on the K-functor in terms of classifying spaces. This description might provide with an approach for more general twistings in K-theory than ones related to the action of the Picard group.

Introduction

The complex K-theory is a generalized cohomology theory represented by the Ω-spectrum $\{K_n\}_{n \geq 0}$, where $K_n = \mathbb{Z} \times BU$, if n is even and $K_n = U$ if n is odd. $K_0 = \mathbb{Z} \times BU$ is an E_∞-ring space, and the corresponding space of units K_\otimes (which is an infinite loop space) is $\mathbb{Z}/2\mathbb{Z} \times BU_\otimes$, where BU_\otimes denotes the space BU with the H-space structure induced by the tensor product of virtual bundles of virtual dimension 1. Twistings of the K-theory over a compact space X are classified by homotopy classes of maps $X \to B(\mathbb{Z}/2\mathbb{Z} \times BU_\otimes) \simeq K(\mathbb{Z}/2\mathbb{Z}, 1) \times BB\otimes$ (where B denotes the functor of classifying space). The theorem that BU_\otimes is an infinite loop space was proved by G. Segal. Moreover, the spectrum BU_\otimes can be decomposed as follows: $BU_\otimes = K(\mathbb{Z}, 2) \times BSU_\otimes$. This implies that the twistings in the K-theory can be classified by homotopy classes of maps $X \to K(\mathbb{Z}/2\mathbb{Z}, 1) \times KSU_\otimes$, $[X, KSU_\otimes] = bsu_1(X)$, where $\{bsu_3\}_n$ is the generalized cohomology theory corresponding to the infinite loop space BSU_\otimes.

The twisted K-theory corresponding to the twistings coming from $H^1(X, \mathbb{Z}/2\mathbb{Z}) \times H^3(X, \mathbb{Z}) \times [X, BSU_\otimes]$, $[X, BSU_\otimes] = bsu_1(X)$, where $\{bsu_3\}_n$ is the generalized cohomology theory corresponding to the infinite loop space BSU_\otimes given by the infinite matrix grassmannian Gr^∞ (see also subsection 4.5 below).

A brief outline of this paper is as follows. In section 1 we recall the well-known result that the action of the projective unitary group of the separable Hilbert space $PU(\mathcal{H})$ on the space of Fredholm operators $Fred(\mathcal{H})$ (which is the representing space of K-theory) by conjugation corresponds to the action of the Picard group $Pic(X)$ on $K(X)$ by group automorphisms (Theorem 1). The key result of section 2 is Theorem 7 which is in some sense a counterpart of Theorem 1. Roughly speaking, it asserts that in terms of representing space $Fred(\mathcal{H})$ the tensor multiplication of K-functor by (not necessarily line) bundles of finite order k can be described by some maps $\gamma_{klm, l\rightarrow m}^{k}: Fr_{klm, l\rightarrow m} \times Fred(\mathcal{H}) \rightarrow Fred(\mathcal{H})$, where $Fr_{klm, l\rightarrow m}$ are the spaces parametrizing unital \ast-homomorphisms of matrix algebras $M_{klm}(\mathbb{C}) \rightarrow M_{klm}(\mathbb{C})$. Then by arranging these maps...
we should construct an action of the H-space $\lim_{n} Fr_{k,l,m}$ on $\text{Fred}(\mathcal{H})$. We also have shown that $\lim_{n} Fr_{k,l,m}$ is a well-pointed grouplike topological monoid and therefore there exists the classifying space $B \lim_{n} Fr_{k,l,m}$ (see subsection 3.2). More precisely, we consider the direct limit of matrix algebras $M_{k,l,m}(\mathbb{C}) = \lim_{m} M_{k,l,m}(\mathbb{C})$ and the monoid of its unital endomorphisms. We fix an increasing filtration $A_{k,l,m} \subset A_{k,l,m+1} \subset \ldots$, $A_{k,l,m} = M_{k,l,m}(\mathbb{C})$ such that $A_{k,l,m+1} = M_{l}(A_{k,l,m})$. Then we consider endomorphisms of $M_{k,l,m}(\mathbb{C})$ that are induced by unital homomorphisms of the form $h: A_{k,l,m} \rightarrow A_{k,l,n}$ (for some m, n), i.e. have the form $M_{l}(h)$. Such endomorphisms form the above mentioned topological monoid which is homotopy equivalent to the direct limit $Fr_{k,l,m} := \lim_{m,n} Fr_{k,l,m,n}$, which is not contractible provided $(k, l) = 1$. Moreover, the automorphism subgroup in the monoid (corresponding to $n = 0$) is $\lim_{m} PU(k,l,m)$. Furthermore, this monoid naturally acts on the space of Fredholm operators and this action corresponds to the tensor multiplication of the K-functor by bundles of order k. In subsection 3.3 we also sketch the idea of the definition of the corresponding version of the twisted K-theory.

Roughly speaking, the “usual” (Abelian) twistings of order k correspond to the group of automorphisms while the nonabelian ones correspond to the monoid of endomorphisms of $M_{k,l}(\mathbb{C})$. Note that these endomorphisms act on the localization of the space of Fredholm operators over l by homotopy auto-equivalences, i.e. they are invertible in the sense of homotopy.

Although some technical difficulties remain we hope that this approach will be useful in order to define a general version of the twisted K-theory.

1. K-THEORY AUTOMORPHISMS RELATED TO LINE BUNDLES

In this section we describe well-known results about the action of $Pic(X)$ on the group $K(X)$. We also consider the special case of the subgroup of line bundles of finite order.

Let X be a compact space, $Pic(X)$ its Picard group consisting of isomorphism classes of line bundles with respect to the tensor product. The Picard group is represented by the H-space $BU(1) \cong \mathbb{C}P^{\infty} \cong K(\mathbb{Z}, 2)$ whose multiplication is given by the tensor product of line bundles or (in the appearance of the Eilenberg-MacLane space) by addition of two-dimensional integer cohomology classes. In particular, the first Chern class c_1 defines the isomorphism $c_1: Pic(X) \rightarrow H^{2}(X, \mathbb{Z})$. The group $Pic(X)$ is a subgroup of the multiplicative group of the ring $K(X)$ and therefore it acts on $K(X)$ by group automorphisms. This action is functorial on X and therefore it can be described in terms of classifying spaces (see Theorem 1).

As a representing space for the K-theory we take $\text{Fred}(\mathcal{H})$, the space of Fredholm operators in the separable Hilbert space \mathcal{H}. It is known [2] that for a compact space X the action of $Pic(X)$ on $K(X)$ is induced by the conjugate action

$$\gamma: PU(\mathcal{H}) \times \text{Fred}(\mathcal{H}) \rightarrow \text{Fred}(\mathcal{H}), \gamma(g, T) = gTg^{-1}$$

of $PU(\mathcal{H})$ on $\text{Fred}(\mathcal{H})$. More precisely, there is the following theorem (recall that $PU(\mathcal{H}) \cong \mathbb{C}P^{\infty} \cong K(\mathbb{Z}, 2)$).
Theorem 1. If \(f_\xi : X \to \text{Fred}(\mathcal{H}) \) and \(\varphi_\zeta : X \to \text{PU}(\mathcal{H}) \) represent \(\xi \in K(X) \) and \(\zeta \in \text{Pic}(X) \) respectively, then the composite map

\[
\begin{align*}
&X \xrightarrow{\text{diag}} X \times X \xrightarrow{\varphi_\zeta \times f_\xi} \text{PU}(\mathcal{H}) \times \text{Fred}(\mathcal{H}) \xrightarrow{\gamma} \text{Fred}(\mathcal{H})
\end{align*}
\]

represents \(\zeta \otimes \xi \in K(X) \).

Proof see [2]. \(\square \)

It is essential for the theorem that the group \(\text{PU}(\mathcal{H}) \), on the one hand having the homotopy type of \(\mathbb{C}P^\infty \) is the base of the universal \(U(1) \)-bundle (which is related to the exact sequence of groups \(U(1) \to U(\mathcal{H}) \to \text{PU}(\mathcal{H}) \), because \(U(\mathcal{H}) \) is contractible in the considered norm topology), on the other hand being a group acts in the appropriate way on the representing space of \(K \)-theory (the space of Fredholm operators).

Then in order to define the corresponding version of the twisted \(K \)-theory one considers the \(\text{Fred}(\mathcal{H}) \)-bundle \(\tilde{\text{Fred}}(\mathcal{H}) \to \text{BPU}(\mathcal{H}) \) associated (by means of the action \(\gamma \)) with the universal \(\text{PU}(\mathcal{H}) \)-bundle over the classifying space \(\text{BPU}(\mathcal{H}) \simeq K(\mathbb{Z}, 3) \), i.e. the bundle

\[
\begin{align*}
\text{Fred}(\mathcal{H}) \xrightarrow{\text{EPU}(\mathcal{H})} \text{BPU}(\mathcal{H}).
\end{align*}
\]

Then for any map \(f : X \to \text{BPU}(\mathcal{H}) \) the corresponding twisted \(K \)-theory \(K_f(X) \) is the set (in fact the group) of homotopy classes of sections \([X, f^*\text{Fred}(\mathcal{H})]' \) of the pullback bundle (here \([..., ...]'\) denotes the set of fiberwise homotopy classes of sections). The group \(K_f(X) \) depends up to isomorphism only on the homotopy class \([f]\) of the map \(f \), i.e. in fact on the corresponding third integer cohomology class.

In this paper we are interested in the case of bundles (more precisely, of elements in \(bsu_0^0 \)) of finite order, therefore let us consider separately the specialization of the mentioned result to the case of line bundles of order \(k \) in \(\text{Pic}(X) \). For this we should consider subgroups \(\text{PU}(k) \subset \text{PU}(\mathcal{H}) \). Let us describe the corresponding embedding.

Let \(\mathcal{B}(\mathcal{H}) \) be the algebra of bounded operators on the separable Hilbert space \(\mathcal{H} \), \(M_k(\mathcal{B}(\mathcal{H})) := M_k(\mathbb{C}) \otimes \mathcal{B}(\mathcal{H}) \) the matrix algebra over \(\mathcal{B}(\mathcal{H}) \) (of course, it is isomorphic to \(\mathcal{B}(\mathcal{H}) \)). Let \(U_k(\mathcal{H}) \subset M_k(\mathcal{B}(\mathcal{H})) \) be the corresponding unitary group (which is isomorphic to \(U(\mathcal{H}) \)). It acts on \(M_k(\mathcal{B}(\mathcal{H})) \) by conjugations (which are \(*\)-algebra isomorphisms), moreover, the kernel of the action is the center, i.e. the subgroup of scalar matrices \(\cong U(1) \). The corresponding quotient group we denote by \(\text{PU}_k(\mathcal{H}) \) (of course, it is isomorphic to \(\text{PU}(\mathcal{H}) \)).

\(M_k(\mathbb{C}) \otimes \text{Id}_{\mathcal{B}(\mathcal{H})} \) is a \(k \)-subalgebra (i.e. a unital \(*\)-subalgebra isomorphic to \(M_k(\mathbb{C}) \)) in \(M_k(\mathcal{B}(\mathcal{H})) \). Then \(\text{PU}(k) \subset \text{PU}_k(\mathcal{H}) \) is the subgroup of automorphisms of this \(k \)-subalgebra. Thereby we have defined the injective group homomorphism

\[
i_k : \text{PU}(k) \hookrightarrow \text{PU}_k(\mathcal{H})
\]

induced by the group homomorphism \(U(k) \hookrightarrow U_k(\mathcal{H}), g \mapsto g \otimes \text{Id}_{\mathcal{B}(\mathcal{H})} \).
Let \([k]\) be the trivial \(C^k\)-bundle over \(X\).

Proposition 2. For a line bundle \(\zeta \to X\) satisfying the condition
\[(3)\]
the classifying map \(\varphi_\zeta: X \to PU_k(\mathcal{H}) \cong PU(\mathcal{H})\) can be lifted to a map \(\tilde{\varphi}_\zeta: X \to PU(k)\) such that
\[i_k \circ \tilde{\varphi}_\zeta \cong \varphi_\zeta.\]

Proof. Consider the exact sequence of groups
\[(4)\]
and the fibration
\[(5)\]
obtained by its extension to the right. In particular, \(\psi_k: PU(k) \to BU(1) \cong \mathbb{C}P^\infty\) is the classifying map for the \(U(1)\)-bundle \(\chi_k\) (4). It is easy to see that the diagram
\[
\begin{array}{ccc}
PU(k) & \xrightarrow{\psi_k} & BU(1) \\
\downarrow{i_k} & & \downarrow{\cong} \\
PU_k(\mathcal{H}) & & \\
\end{array}
\]
commutes.

Let \(\zeta \to X\) be a line bundle satisfying the condition (3), \(\varphi_\zeta: X \to BU(1)\) its classifying map. Since \(\omega_k\) (see (5)) is induced by taking the direct sum of a line bundle with itself \(k\) times (and the extension of the structural group to \(U(k)\)), we see that \(\omega_k \circ \varphi_\zeta \cong \ast\). Now it is easy to see from exactness of (5) that \(\varphi_\zeta: X \to BU(1)\) can be lifted to \(\tilde{\varphi}_\zeta: X \to PU(k)\). \(\square\)

Note that the choice of a lift \(\tilde{\varphi}_\zeta\) corresponds to the choice of a trivialization (3): two lifts differ up to a map \(X \to U(k)\). Thus, a lift is defined up to the action of \([X, U(k)]\) on \([X, PU(k)]\). The subgroup in \(Pic(X)\) consisting of line bundles satisfying the condition (3) is \(\text{im}\{\psi_{k*}: [X, PU(k)] \to [X, \mathbb{C}P^\infty]\}\) or the quotient \([X, PU(k)]/[X, U(k)]\).

Let \(\text{Fred}_k(\mathcal{H})\) be the subspace of Fredholm operators in \(M_k(B(\mathcal{H}))\). Clearly, \(\text{Fred}_k(\mathcal{H}) \cong \text{Fred}(\mathcal{H})\). Acting on \(M_k(\mathcal{C})\) by \(*\)-automorphisms, the group \(PU(k)\) acts on \(M_k(\mathcal{C}) \otimes B(\mathcal{H}) = M_k(B(\mathcal{H}))\) through the first tensor factor. Let \(\gamma_k^*: PU(k) \times \text{Fred}_k(\mathcal{H}) \to \text{Fred}_k(\mathcal{H})\) be the restriction of this action on \(\text{Fred}_k(\mathcal{H})\). Then the diagram
\[
\begin{array}{ccc}
PU(\mathcal{H}) \times \text{Fred}_k(\mathcal{H}) & \xrightarrow{\gamma_k} & \text{Fred}_k(\mathcal{H}) \\
\downarrow{i_k \times \text{id}} & & \downarrow{\gamma_k^*} \\
PU(k) \times \text{Fred}_k(\mathcal{H}) & & \\
\end{array}
\]
commutes. Now one can consider the $\text{Fred}_k(\mathcal{H})$-bundle

$$
\begin{array}{ccc}
\text{Fred}_k(\mathcal{H}) & \longrightarrow & \text{EPU}(k) \times_{\text{PU}(k)} \text{Fred}_k(\mathcal{H}) \\
\downarrow & & \downarrow \\
\text{BPU}(k) & & \text{BPU}(k)
\end{array}
$$

associated by means of the action γ'_k. This bundle is the pullback of (2) by $B_i k$.

It is easy to see from the definition of the embedding i_k that the action γ'_k is trivial on elements of the form $k\xi$. Indeed, a classifying map for $k\xi$ can be decomposed into the composite $X \overset{f}{\longrightarrow} \text{Fred}(\mathcal{H}) \overset{\text{diag}}{\longrightarrow} \text{Fred}_k(\mathcal{H})$.

From the other hand, $(1 + (\zeta - 1)) \cdot k\xi = k\xi + 0 = k\xi$ or $\zeta \otimes ([k] \otimes \xi) = (\zeta \otimes [k]) \otimes \xi = [k] \otimes \xi$.

Remark 3. Note that if we choose an isomorphism $B(\mathcal{H}) \cong M_{k\infty}(B(\mathcal{H}))$ and hence the isomorphism $\text{Fred}(\mathcal{H}) \cong \text{Fred}_{k\infty}(\mathcal{H})$, we can define the limit action $\gamma'_{k\infty}: \text{PU}(k\infty) \times \text{Fred}_{k\infty}(\mathcal{H}) \to \text{Fred}_{k\infty}(\mathcal{H})$, etc.

2. The case of bundles of dimension ≥ 1

As was pointed out in the previous section, the group $\text{PU}(\mathcal{H})$, from one hand acts on the representing space of K-theory $\text{Fred}(\mathcal{H})$, from the other hand it is the base of the universal line bundle. This two facts lead to the result that the action of $\text{PU}(\mathcal{H})$ on $K(X)$ corresponds to the tensor product by elements of the Picard group $\text{Pic}(X)$ (i.e. classes of line bundles). This action can be restricted to subgroups $\text{PU}(k) \subset \text{PU}(\mathcal{H})$ which classify elements of finite order k, $k \in \mathbb{N}$.

In what follows the role of groups $\text{PU}(k)$ will play some spaces $\text{Fr}_{k,l}$ (defined below). From one hand, they “act” on K-theory (more precisely, their direct limit (which has the natural structure of an H-space) acts), from the other hand, they are bases of some nontrivial l-dimensional bundles of order k. We will show that their “action” on $K(X)$ corresponds to the tensor product by those l-dimensional bundles (see Theorem 7). The key result of this section is Theorem 7 which can be regarded as a counterpart of Theorem 1.

Fix a pair of positive integers $k, l > 1$. Let $\text{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C}))$ be the space of all unital \ast-homomorphisms $M_k(\mathbb{C}) \to M_{kl}(\mathbb{C})$. It follows from Noether-Skolem’s theorem that it can be represented in the form of a homogeneous space of the group $\text{PU}(kl)$ as follows:

$$\text{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C})) \cong \text{PU}(kl)/(E_k \otimes \text{PU}(l))$$

(here \otimes denotes the Kronecker product of matrices). This space we shall denote by $\text{Fr}_{k,l}$. We will be interested in the case $(k, l) = 1$ (we have to impose a condition of such a kind to make the direct limit of the above spaces noncontractible and the construction below nontrivial).

Proposition 4. A map $X \to \text{Fr}_{k,l}$ is the same thing as an embedding

$$\mu: X \times M_k(\mathbb{C}) \hookrightarrow X \times M_{kl}(\mathbb{C}),$$

whose restriction to a fiber is a unital \ast-homomorphism of matrix algebras.
Proposition 5. (Cf. Proposition 2) For an $M_k(\mathbb{C})$-bundle $B_l \to X$ such that

\[[M_k] \otimes B_l \cong X \times M_{kl}(\mathbb{C}) \]

(cf. [4]) a classifying map $\varphi_{B_l} : X \to \text{BPU}(l)$ can be lifted to $\tilde{\varphi}_{B_l} : X \to \text{Fr}_{k,l}$ (i.e. $\psi'_k \circ \tilde{\varphi}_{B_l} = \varphi_{B_l}$ or $B_l = \tilde{\varphi}_{B_l}(\tilde{B}_{k,l})$).

Proof follows from the analysis of fibration (11). □

Moreover, the choice of such a lift corresponds to the choice of trivialization (12) and we return to the interpretation of the map $X \to \text{Fr}_{k,l}$ given in Proposition 3. We stress that a map $X \to \text{Fr}_{k,l}$
is not just an $M_l(\mathbb{C})$-bundle, but an $M_l(\mathbb{C})$-bundle together with a particular choice of trivialization \cite{12}.

It is not difficult to show \cite{8} that the bundle $B_l \to X$ as in the statement of Proposition 5 has the form $\operatorname{End}(\eta_l)$ for some (unique up to isomorphism) \mathbb{C}^l-bundle $\eta_l \to X$ with the structural group $\operatorname{SU}(l)$ (here the condition $(k, l) = 1$ is essential).

Let $\tilde{\zeta} \to \operatorname{Fr}_{k,l}$ be the line bundle associated with the universal covering $\rho_k \to \tilde{\operatorname{Fr}}_{k,l} \to \operatorname{Fr}_{k,l}$, where ρ_k is the group of kth roots of unity. Note that $\tilde{\operatorname{Fr}}_{k,l} = \operatorname{SU}(kl)/(E_k \otimes \operatorname{SU}(l))$. Put $\zeta' := \tilde{\varphi}_{B_l}^*(\tilde{\zeta}) \to X$ and $\eta_l' := \eta_l \otimes \zeta'$.

Recall that $\operatorname{Fred}_n(\mathcal{H})$ is the subspace of Fredholm operators in $M_n(\mathcal{B}(\mathcal{H}))$. The evaluation map
\begin{equation}
\operatorname{ev}_{k,l} : \operatorname{Fr}_{k,l} \times M_k(\mathbb{C}) \to M_{kl}(\mathbb{C}), \quad \operatorname{ev}_{k,l}(h, T) = h(T)
\end{equation}
(recall that $\operatorname{Fr}_{k,l} := \operatorname{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C}))$) induces the map
\begin{equation}
\gamma_{k,l} : \operatorname{Fr}_{k,l} \times \operatorname{Fred}_k(\mathcal{H}) \to \operatorname{Fred}_{kl}(\mathcal{H}).
\end{equation}

Remark 6. Note that map \eqref{13} can be decomposed into the composition
\[\operatorname{Fr}_{k,l} \times M_k(\mathbb{C}) \to \operatorname{Fr}_{k,l} \times M_{kl}(\mathbb{C}) = \mathcal{A}_{k,l} \to M_{kl}(\mathbb{C}),\]
where the last map is the tautological embedding $\mu : \mathcal{A}_{k,l} \to \operatorname{Gr}_{k,l} \times \operatorname{M}_{kl}(\mathbb{C})$ followed by the projection onto the second factor.

Let $f_\xi : X \to \operatorname{Fred}_n(\mathcal{H})$ represent some element $\xi \in K(X)$.

Theorem 7. (Cf. Theorem \cite{11}.) With respect to the above notation the composite map (cf. \cite{7})
\[X \xrightarrow{\operatorname{diag}} X \times X \xrightarrow{\tilde{\varphi}_{B_l} \times f_\xi} \operatorname{Fr}_{k,l} \times \operatorname{Fred}_k(\mathcal{H}) \xrightarrow{\gamma_{k,l}'} \operatorname{Fred}_{kl}(\mathcal{H})\]
represents the element $\eta_l' \otimes \xi \in K(X)$.

Proof (cf. \cite{2}, Proposition 2.1). By assumption the element $\xi \in K(X)$ is represented by a family of Fredholm operators $F = \{F_x\}$ in a Hilbert space \mathcal{H}^k. Then the element $\eta_l' \otimes \xi \in K(X)$ is represented by the family of Fredholm operators $\{\operatorname{Id}_{B_l}, 0 \otimes F_x\}$ in the Hilbert bundle $\eta_l' \otimes (\mathcal{H}^k)$ (recall that $\operatorname{End}(\eta_l') = B_l \Rightarrow \operatorname{End}(\eta_l' \otimes \xi) = B_l$). A trivialization $\eta_l' \otimes (\mathcal{H}^k) \cong \mathcal{H}^{kl}$ is the same thing as a map $\tilde{\varphi}_{B_l} : X \to \operatorname{Fr}_{k,l}$, i.e. a lift of the classifying map $\varphi_{B_l} : X \to \operatorname{BPU}(l)$ for B_l (see \cite{11}). \hfill \Box

Remark 8. In order to separate the “SU”-part of the “action” $\gamma_{k,l}'$ from its “line” part, one can use the space $\tilde{\operatorname{Fr}}_{k,l} = \operatorname{SU}(kl)/(E_k \otimes \operatorname{SU}(l))$ \cite{8} in place of $\operatorname{Fr}_{k,l}$. Then one would have the representing map for $\eta_l' \otimes \xi \in K(X)$ instead of $\eta_l' \otimes \xi$ in the statement of Theorem \cite{7}.

Remark 9. Note that $\operatorname{Fr}_{k,l} = \operatorname{PU}(k)$ and the action $\gamma_{k,l}'$ coincides with the action γ_k' from the previous section.

Now using the composition of algebra homomorphisms we are going to define maps $\phi_{k,l} : \operatorname{Fr}_{k,l} \times \operatorname{Fr}_{k,l} \to \operatorname{Fr}_{k,l}$, i.e.
\[\phi_{k,l} : \operatorname{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C})) \times \operatorname{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C})) \to \operatorname{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C})).\]

First let us define a map
\[\iota_{k,l} : \operatorname{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C})) \to \operatorname{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C})), \quad \iota_{k,l}(h) = h \otimes \operatorname{id}_{M_{kl}(\mathbb{C})}.\]
Then $\phi_{k,l}$ is defined as the composition of homomorphisms: $\phi_{k,l}(h_2, h_1) = \iota_{k,l}(h_2) \circ h_1$, where $h_1 \in \text{Hom}_{\text{alg}}(M_k(\mathbb{C}), M_{kl}(\mathbb{C}))$. Then we have $ev_{k,l,2}(\phi_{k,l}(h_2, h_1), T) = ev_{k,l,1}(\iota_{k,l}(h_2), ev_{k,l,1}(h_1, T))$, i.e. $\phi_{k,l}(h_2, h_1)(T) = \iota_{k,l}(h_2)(h_1(T))$, where $T \in M_k(\mathbb{C})$.

Now suppose there is an $M_i(\mathbb{C})$-bundle $C_l \to X$ with the corresponding vector bundle θ_l' such that $C_l \cong \text{End}(\theta_l')$ (cf. a few paragraphs after Proposition 5). Suppose that $\tilde{\varphi}_{C_l} : X \to Fr_{k,l}$ is its classifying map.

Proposition 10. (cf. Theorem \[\square\]) The composition

$$X \xrightarrow{\text{diag}} X \times X \xrightarrow{\bar{\varphi}_{C_l} \times \bar{\varphi}_{B_{kl}} \times \phi_{k,l}} Fr_{k,l} \times Fr_{k,l} \times \text{Fred}_k(\mathcal{H}) \to \text{Fred}_{kl}(\mathcal{H})$$

where the last map is the composition $\gamma'_{k,l} \circ (\phi_{k,l} \times \text{id}_{\text{Fred}_k(\mathcal{H})}) = \gamma'_{k,l} \circ (\iota_{k,l} \times \gamma_{k,l})$ represents the element $\eta_1' \otimes \theta_l' \otimes \xi \in K(X)$.

Proof is evident. \square

Clearly, the results of this section can be generalized to the case of spaces Fr_{kl^m,l^n}, $m, n \in \mathbb{N}$. In the next section we will construct a genuine action of their direct limit $Fr_{k\infty,l\infty}$ on the space of Fredholm operators.

3. A CONSTRUCTION OF THE CLASSIFYING SPACE

A simple calculation with homotopy groups shows that the direct limit $Fr_{k\infty,l\infty} := \varinjlim Fr_{kl^m,l^n}$ for $(k, l) = 1$ is not contractible because its homotopy groups are $\mathbb{Z}/k\mathbb{Z}$ in odd dimensions (and 0 in even ones). In this section we show that it is a topological monoid and construct its classifying space.

3.1. The category $C_{k,l}$. First, we define some auxiliary category $C_{k,l}$. Fix a pair of positive integers $\{k, l\}$, $k, l > 1, (k, l) = 1$. By $C_{k,l}$ denote the category with the countable number of objects which are matrix algebras of the form $M_{kl^m}(\mathbb{C})$ ($m = 0, 1, \ldots$) and morphisms in $C_{k,l}$ from $M_{kl^m}(\mathbb{C})$ to $M_{kl^{m+1}}(\mathbb{C})$ are all unital \ast-homomorphisms $M_{kl^m}(\mathbb{C}) \to M_{kl^{m+1}}(\mathbb{C})$ (this set is nonempty iff $m \leq n$). (Since $k > 1$ we see that this category does not contain the initial object, therefore there is no reason to expect that its classifying space (i.e. the “geometric realization”) is contractible). Thus, morphisms Mor($M_{kl^m}(\mathbb{C}), M_{kl^{m+1}}(\mathbb{C})$) form the space $Fr_{kl^m,l^n-m} = \text{Hom}_{\text{alg}}(M_{kl^m}(\mathbb{C}), M_{kl^{m+1}}(\mathbb{C}))$, hence $C_{k,l}$ is a topological category. (Note that for $n = m$ the space $Fr_{kl^m,l^n-m} = Fr_{kl^m,1}$ is the group $\text{PU}(k^{l^m})$.) In particular, there is the collection of continuous maps $Fr_{kl^m+n,l^{n-r}} \times Fr_{kl^{m+1},l^n} \to Fr_{kl^m,l^{n+r}}$ for all $m, n, r \geq 0$ given by the composition of morphisms.

Recall (\[\square\], Chapter IV) that there is an appropriate modification of the construction of the geometric realization $B\mathcal{C}$ for topological categories \mathcal{C}. More precisely, the nerve in this case is a simplicial **topological space** and $B\mathcal{C}$ is its appropriate geometric realization. Now we are going to describe the classifying space of the category $B\mathcal{C}_{k,l}$.

So let $B\mathcal{C}_{k,l}$ be the classifying space of the topological category $C_{k,l}$. Its 0-cells (vertices) are objects of $C_{k,l}$, i.e. actually positive integers. Its 1-cells (edges) are morphisms in $C_{k,l}$ (excluding identity morphisms) attached to their source and target, i.e. $\bigsqcup_{m, n \geq 0} Fr_{kl^m,l^n}$ (recall that for
For each pair of composable morphisms \(h_0, h_1 \) in \(C_{k,l} \) there is a 2-simplex:

\[
\begin{array}{ccc}
0 & \overset{h_0}{\rightarrow} & 1 \\
& \swarrow & \nearrow \\
& h_1 \circ h_0 & \rightarrow 2
\end{array}
\]

attached to the 1-skeleton, etc. Thus, at the third step we obtain the space
\[
\coprod_{m,n,r,0} (Fr_{k+m,n,r} \times Fr_{k+m,n})
\]
consisting of all pairs of composable morphisms. The face maps \(\partial_0, \partial_2 \) are defined by the deletion of the corresponding morphism \((h_0\) and \(h_1 \) respectively in the above simplex) and \(\partial_1 \) is defined by the composition map
\[
\coprod_{m,n,r,0} (Fr_{k+m,n,r} \times Fr_{k+m,n}) \rightarrow \coprod_{m,n+r,0} Fr_{k+m,n+r} = \coprod_{m,n,0} Fr_{k+m,n}.
\]
The nerve \(NC_{k,l} \) of the category \(C_{k,l} \) is

\[
(\mathbb{N}, \coprod_{m,n,0} Fr_{k+m,n}, \coprod_{m,n,r,0} (Fr_{k+m,n+r} \times Fr_{k+m,n}), \ldots).
\]

Recall that there is a construction of the classifying space of a (topological) group \(G \) as the geometric realization of the simplicial topological space \((pt, G, G \times G, \ldots)\). Then the total space \(EG \) of the universal principal \(G \)-bundle is the geometric realization of the simplicial space \((G, G \times G, \ldots)\). Consider the simplicial topological space
\[
\mathcal{E}_{k,l} := (\coprod_{m,n,0} Fr_{k+m,n}, \coprod_{m,n,r,0} (Fr_{k+m,n+r} \times Fr_{k+m,n}), \ldots),
\]
whose faces and degeneracies are defined by analogy with the construction of \(EG \). There is the map of simplicial spaces \(p: \mathcal{E}_{k,l} \rightarrow NC_{k,l} \).

Now we are going to give a construction of the corresponding “universal bundle”. The idea is to construct a “simplicial bundle” associated with the “universal principal bundle” \(p \).

More precisely, again consider the space \(\mathcal{E}_{k,l} \):
\[
(\coprod_{m,n,0} Fr_{k+m,n}, \coprod_{m,n,r,0} (Fr_{k+m,n+r} \times Fr_{k+m,n}), \coprod_{m,n,r,0} (Fr_{k+m,n+r} \times Fr_{k+m,n+r} \times Fr_{k+m,n}), \ldots).
\]

Applying the natural (“evaluation”) maps \(Fr_{k+m,n} \times M_{k+m}(\mathbb{C}) \rightarrow M_{k+m+n}(\mathbb{C}) \), we obtain

\[
(\coprod_{m,0} M_{k+m}(\mathbb{C}), \coprod_{m,n,0} (Fr_{k+m,n} \times M_{k+m}(\mathbb{C})), \coprod_{m,n,r,0} (Fr_{k+m,n+r} \times Fr_{k+m,n} \times M_{k+m}(\mathbb{C})), \ldots).
\]

The obtained object can be regarded as a “simplicial bundle” over \(\mathcal{E}_{k,l} \). Now performing the appropriate factorizations we should define its geometric realization. Namely, the matrix algebras from the first disjoint union in \(\mathcal{E}_{k,l} \) are fibers of our bundle over 0-cells of the space \(BC_{k,l} \), from the second over 1-cells, etc. The attachment of 1-cells to their source corresponds to the projection \(Fr_{k+m,n} \times M_{k+m}(\mathbb{C}) \rightarrow M_{k+m}(\mathbb{C}) \) onto the second factor, and the one to their target corresponds to the natural map \(Fr_{k+m,n} \times M_{k+m}(\mathbb{C}) \rightarrow M_{k+m+n}(\mathbb{C}) \). \(M_{k+m}(\mathbb{C}) \)-bundles over 2-simplices correspond to the products \(Fr_{k+m,n} \times Fr_{k+m,n} \times M_{k+m}(\mathbb{C}) \) and they are identified over the boundary as follows:

\[
\partial_0: Fr_{k+m+n} \times Fr_{k+m,n} \times M_{k+m}(\mathbb{C}) \rightarrow Fr_{k+m+n} \times M_{k+m+n}(\mathbb{C}) \quad \text{induced by the natural map} \quad Fr_{k+m,n} \times M_{k+m}(\mathbb{C}) \rightarrow Fr_{k+m,n} \times Fr_{k+m,n} \times M_{k+m}(\mathbb{C}) \quad \text{by the composition of morphisms} \quad Fr_{k+m,n} \times Fr_{k+m,n} \rightarrow Fr_{k+m,n+r},
\]
The definition of $\mathcal{C}_{k,l}$ one can define categories $\mathcal{C}_{km,l}$, $m \geq 1$. The objects of $\mathcal{C}_{km,l}$ are matrix algebras $M_{km,l}(\mathbb{C})$, $n \geq 0$. Note that the tensor product of matrix algebras gives rise to the bifunctor $T_{m,n}: \mathcal{C}_{km,l} \times \mathcal{C}_{kn,l} \rightarrow \mathcal{C}_{km+n,l}$. Thus, on objects we have: $T_{m,n}(M_{km,l}(\mathbb{C}), M_{kn,l}(\mathbb{C})) = M_{km+n,l}(\mathbb{C})$, and on morphisms $h_1: M_{km,l}(\mathbb{C}) \rightarrow M_{km+l,++}(\mathbb{C})$, $h_2: M_{kn,l}(\mathbb{C}) \rightarrow M_{k+n,++}(\mathbb{C})$.

Moreover, the bifunctor $T_{m,n}$ determines the continuous map of the topological spaces $\text{Fr}_{km+l,++} \times \text{Fr}_{kn+l,++} \rightarrow \text{Fr}_{km+n,l,++}$, $(h_1, h_2) \mapsto h_1 \otimes h_2$.

For the topological bicategory $\mathcal{C}_{km,l} \times \mathcal{C}_{kn,l}$ one can define the bisimplicial topological space $X = \{X_{p,q}\}$, where $X_{p,q}$ consists of all pairs of functors $p+1 \rightarrow \mathcal{C}_{km,l}$, $q+1 \rightarrow \mathcal{C}_{kn,l}$. There are two types of face and degeneracy maps: “horizontal” and “vertical” which correspond to the category $\mathcal{C}_{km,l}$ and $\mathcal{C}_{kn,l}$ respectively. Clearly that its geometric realization $B X$ (to any point of $X_{p,q}$ we attach $\Delta^p \times \Delta^q$) is $B \mathcal{C}_{km,l} \times B \mathcal{C}_{kn,l}$. The bifunctor $T_{m,n}$ determines the continuous map $T_{m,n}: B \mathcal{C}_{km,l} \times B \mathcal{C}_{kn,l} \rightarrow B \mathcal{C}_{km+n,l}$.

In conclusion of this subsection we describe yet another two properties of the category $\mathcal{C}_{k,l}$.

Let $\mathcal{C}_{k,l}$ be the category with the same objects as $\mathcal{C}_{k,l}$ but with morphisms that are automorphisms in $\mathcal{C}_{k,l}$. Clearly, $B \mathcal{C}_{k,l} \simeq \coprod_{n \geq 0} BPU(k^n)$ and the embedding $\coprod_{n \geq 0} BPU(k^n) \rightarrow B \mathcal{C}_{k,l}$ corresponds to the inclusion of the subcategory $\mathcal{C}_{k,l} \rightarrow \mathcal{C}_{k,l}$.

Let \mathbb{N} be the category with countable set of objects $\{0, 1, 2, \ldots\}$ and there is a morphism from i to j iff $i \leq j$, and such morphism is unique. It is easy to see that its classifying space $B \mathbb{N}$ is the infinite simplex Δ.

There is the obvious functor $F: \mathcal{C}_{k,l} \rightarrow \mathbb{N}$, $F(M_{kl}(\mathbb{C})) = m$ and for a morphism $h: M_{kl}(\mathbb{C}) \rightarrow M_{kl+m}(\mathbb{C})$ the morphism $F(h)$ is the unique morphism $m \rightarrow n$ in \mathbb{N}. Therefore there is the corresponding map of classifying spaces $B \mathcal{C}_{k,l} \rightarrow B \mathbb{N}$. The subspace $\coprod_{n \geq 0} BPU(k^n) \subset B \mathcal{C}_{k,l}$ corresponds to the vertices of the simplex $B \mathbb{N}$ (more precisely, to the corresponding discrete category).

In general, simplices degenerate under this map of classifying spaces, moreover, their degenerations correspond to automorphisms of objects of $\mathcal{C}_{k,l}$ and nondegenerate simplices correspond to chains $\{h_0, h_1, \ldots, h_n\}$ of composable morphisms such that for all h_r the source and the target are different objects (in other words, $h_i \in \text{Fr}_{kl+m}^r$, $n \neq 0$).

3.2. The definition of $B \text{Fr}_{k\infty, l\infty}$. Now consider new topological category $\overline{\mathcal{C}}_{k,l}$. It has a unique object $M_{kl}(\mathbb{C}) = \lim_m M_{kl}(\mathbb{C})$ (i.e. $\overline{\mathcal{C}}_{k,l}$ is actually a monoid), where the direct limit is taken over unital *-homomorphisms $M_{kl}(\mathbb{C}) \rightarrow M_{kl+1}(\mathbb{C})$, $X \mapsto X \otimes E_l$. More precisely, we assume
that the matrix algebra $M_{kl}(\mathbb{C})$ is given together with the infinite family of $*$-subalgebras $A_k \subset A_{kl} \subset A_{kl^2} \subset \ldots$, where $A_{kl} = M_{kl}(\mathbb{C})$ and $A_{kl+1} = M_I(A_{kl})$ for every $m \geq 0$, which form its filtration.

By definition, for each morphism $h: M_{kl}(\mathbb{C}) \to M_{kl}(\mathbb{C})$, $h \in \text{Mor}(\mathcal{C}_{k,l})$ there exists a pair m, n, $n \geq m$ such that 1) $h|_{A_{kl}}$ is a unital $*$-homomorphism $h|_{A_{kl}}: A_{kl} \to A_{kl^n}$ and 2) $h = M_I(h|_{A_{kl}})$, i.e. $h|_{A_{kl+m+1}} = M_I(h|_{A_{kl}}): A_{kl+m+1} \to A_{kl+m+1} \to M_I(A_{kl})$, etc. In other words, h is induced by some $h' \in \text{Fr}_{kl,m,n}$, $h_2: A_k \to A_{kl}$ is defined by the following diagram

as the class of the homomorphism $M_{kl}(h_2) \circ h_1$. Clearly, the composition of morphisms is well-defined and associative and the identity morphism is $M_I\text{id}_{A_k}$, i.e. the family \{id$_A$, id$_{A_{kl}}$, id$_{A_{kl^2}}$, \ldots\}.

Now we define the functor Φ: $\mathcal{C}_{k,l} \to \mathcal{C}_{k,l}$ which sends every object $M_{kl}(\mathbb{C})$ in $\mathcal{C}_{k,l}$ to the unique object $M_{kl}(\mathbb{C})$ in $\mathcal{C}_{k,l}$. For a morphism $h \in \text{Fr}_{kl,m,n}$ we put $\Phi(h) = M_I(h)$. Thus, we see that $\text{Mor}(\mathcal{C}_{k,l})$ is the well-pointed grouplike (because $\pi_0(\text{Fr}_{kl,m,n}) = 0$) topological monoid $\text{Fr}_{kl,m,n}$. Recall [4] that for such a monoid M there exists the classifying space BM. Thus we have the classifying space $B\text{Fr}_{kl,m,n}$ which is defined uniquely up to CW-equivalence and there is the Whitehead equivalence $\text{Fr}_{kl,m,n} \to \Omega B\text{Fr}_{kl,m,n}$; in particular, $\pi_i(\text{Fr}_{kl,m,n}) = \pi_{i+1}(\Omega B\text{Fr}_{kl,m,n})$. Note that Φ defines a continuous map $\bar{\Phi}: B\mathcal{C}_{k,l} \to B\text{Fr}_{kl,m,n}$. Moreover, the maps $\bar{T}_{m,n}$ correspond to the maps $B\text{Fr}_{km,n+1} \to B\text{Fr}_{km+n+1}$ which are given by maps $\text{Fr}_{km,n} \times \text{Fr}_{km+n} \to \text{Fr}_{km+n+1}$ induced by the tensor product of matrix algebras.

Note that there is the subgroup $\text{PU}(kl^n) = \lim_m \text{PU}(kl^m)$ in the monoid $\text{Fr}_{kl,m,n}$ which corresponds to automorphisms of $M_{kl}(\mathbb{C})$. The corresponding map $B\text{PU}(kl^n) \to B\text{Fr}_{kl,m,n}$ has the homotopy fiber $\text{Gr}_{kl,m,n}$ (this follows from the fibration

\[\text{PU}(kl^n) \to \text{Fr}_{kl,m,n} = \text{PU}(kl^m+n)/E_{kl^m} \to \text{Gr}_{kl,m,n}. \]
Remark 11. Retrospectively, we note that we have used the maps \(\text{Fr}_{kl^{m+n}, l^r} \times \text{Fr}_{kl^m, l^n} \to \text{Fr}_{kl^{m+n+r}, l'^t} \) (given by the composition of morphisms) in order to define the monoidal structure on \(\text{Fr}_{kl^{≈}, l^{≈}} \) and thereby the classifying space \(B \text{Fr}_{kl^{≈}, l^{≈}} \), and the maps \(\text{Fr}_{k^{m+r}, l^t} \times \text{Fr}_{k^{n+t}, l^u} \to \text{Fr}_{k^{m+n+r+t}, l^{u+t}} \) given by the tensor product in order to define the additional structure on the spaces \(\text{Fr}_{k^{m+l}, l^{≈}} \) (which gives rise to the \(H \)-space structure on \(\lim_m \text{Fr}_{k^{m+l}, l^{≈}} \)). From the category-theoretic point of view the first corresponds to the composition of morphisms in the category and the second to the monoidal structure on it.

3.3. The action of \(\text{Fr}_{kl^{≈}, l^{≈}} \) on the space of Fredholm operators. Recall (13) that there are evaluation maps

\[
e_{vl^{km}, l^{m-n}} : \text{Fr}_{kl^{km}, l^{m-n}} \times M_{kl^m} (\mathbb{C}) \to M_{kl^n} (\mathbb{C})
\]

and the corresponding maps (recall that \(\text{Fred}_{kl^m}(\mathcal{H}) \) is the subspace of Fredholm operators in \(M_{kl^m}(B(\mathcal{H})) \))

\[
\gamma'_{kl^m, l^{m-n}} : \text{Fr}_{kl^{km}, l^{m-n}} \times \text{Fred}_{kl^m}(\mathcal{H}) \to \text{Fred}_{kl^{n}}(\mathcal{H})
\]

(see (14)). Using the filtration in \(M_{kl^{≈}}(B(\mathcal{H})) \) (and hence in \(\lim_m \text{Fred}_{kl^{m}}(\mathcal{H}) \)) corresponding to the above filtration \(A_k \subset A_{kl} \subset A_{kl^2} \subset \ldots \) in the matrix algebra \(M_{kl^{≈}}(\mathbb{C}) \) one can define the action of the monoid \(\text{Fr}_{kl^{≈}, l^{≈}} \) on \(\lim_m \text{Fred}_{kl^m}(\mathcal{H}) \). Note that since the direct limit is taken over maps induced by the tensor product, we see that \(\text{Fred}_{kl^{≈}}(\mathcal{H}) := \lim_m \text{Fred}_{kl^m}(\mathcal{H}) \) is the localization in which \(l \) becomes invertible (in particular, the index takes values in \(\mathbb{Z} [\frac{1}{l}] \), not in \(\mathbb{Z} \)). Thereby we have defined the required action

\[
\gamma'_{kl^{≈}, l^{≈}} : \text{Fr}_{kl^{≈}, l^{≈}} \times \text{Fred}_{kl^{≈}}(\mathcal{H}) \to \text{Fred}_{kl^{≈}}(\mathcal{H})
\]

of the monoid \(\text{Fr}_{kl^{≈}, l^{≈}} \).

Note that the action (17) gives rise to the action on \(K \)-theory (which is recall represented by the space of Fredholm operators) which corresponds to the action of the \(k \)-torsion subgroup in \(BU \) by tensor products (cf. Proposition (14) and Theorem (7)). In fact, this action is defined on \(K \)-theory \(K[\frac{1}{l}] \) localized over \(l \) (in the sense that \(l \) becomes invertible). This is not surprising because in (14) we take the tensor product of \(K(X) \) by some \(l \)-dimensional bundle, \(l > 1 \). It is not difficult to show that in fact our construction does not depend on the choice of \(l \), \((k, l) = 1 \).

Note that the restriction of the action \(\gamma'_{kl^{≈}, l^{≈}} \) on \(\text{Fr}_{kl^m, 1} \cong PU(kl^m) \) coincides with the composition of the action \(\gamma'_{kl^m} \) (see Remark 3) and the localization map \(\text{Fred}_{kl^m}(\mathcal{H}) \to \text{Fred}_{kl^{≈}}(\mathcal{H}) \) on \(l \).

Using this action (17) we can define the \(\text{Fred}_{kl^{≈}}(\mathcal{H}) \)-bundle

\[
\begin{CD}
\text{Fred}_{kl^{≈}}(\mathcal{H}) @> \text{EFr}_{kl^{≈}, l^{≈}} \times \text{Fred}_{kl^{≈}}(\mathcal{H}) >> \text{Fr}_{kl^{≈}, l^{≈}} \times \text{Fred}_{kl^{≈}}(\mathcal{H}) \\
\downarrow @. \\
B \text{Fr}_{kl^{≈}, l^{≈}}
\end{CD}
\]

"associated" with the universal principal \(\text{Fr}_{kl^{≈}, l^{≈}} \)-bundle (more precisely, with the universal principal quasi-fibration, see (4)) over \(B \text{Fr}_{kl^{≈}, l^{≈}} \). This allows us to define a more general version of
the twisted K-theory than the one given by the action of $Pic(X)$ on $K(X)$. The above defined maps $B Fr_{k^n,l^∞} × B Fr_{k^n,l^∞} → B Fr_{k^n+l^n,l^∞}$ give rise to the operation on twistings which is an analog of the one induced by maps $BPU(k^m) × BPU(k^n) → BPU(k^{m+n})$ in the Abelian case (i.e. the Brauer group), etc.

4. APPENDIX: H-space $Fr_{k^∞,l^∞}$

In this section we give a category-theoretic description of the structure of H-space on $Fr_{k^∞,l^∞}$ and $Gr_{k^∞,l^∞}$.

4.1. k^m-frames.

Definition 12. A k^m-frame $α$ in the algebra $M_{k^{m,n}}(ℂ)$ is an ordered collection of k^{2m} linearly independent matrices $\{α_{i,j}\}_{1 ≤ i, j ≤ k^m}$ such that

(i) $α_{i,j}α_{r,s} = δ_{j,r}α_{i,s}$ for all $1 ≤ i, j, r, s ≤ k^m$;

(ii) $\sum_{i=1}^{k^m} α_{i,i} = E$, where $E = E_{k^{m,n}}$ is the unit $k^m l^n × k^m l^n$-matrix which is the unit of the algebra $M_{k^{m,n}}(ℂ)$;

(iii) matrices $\{α_{i,j}\}$ form an orthonormal basis with respect to the hermitian inner product $(x, y) := \text{tr}(x\overline{y})$ on $M_{k^{m,n}}(ℂ)$.

For instance, the collection of “matrix units” $\{e_{i,j}\}_{1 ≤ i, j ≤ k^m}$ (where $e_{i,j}$ is the $k^m × k^m$-matrix whose only nonzero element is 1 on the intersection of ith row with jth column) is a k^m-frame in $M_{k^m}(ℂ)$, and the collection $\{e_{i,j} ⊗ E_{l^n}\}_{1 ≤ i, j ≤ k^m}$ is a k^m-frame in $M_{k^{m,n}}(ℂ)$. Clearly, every k^m-frame in $M_{k^{m,n}}(ℂ)$ is a linear basis in some k^m-subalgebra.

Proposition 13. The set of all k^m-frames in $M_{k^{m,n}}(ℂ)$ is the homogeneous space $PU(k^m l^n)/(E_{k^m} ⊗ PU(l^n))$.

Proof follows from two facts: 1) the group $PU(k^m l^n)$ of $*$-automorphisms of the algebra $M_{k^{m,n}}(ℂ)$ acts transitively on the set of k^m-frames, and 2) the stabilizer of the k^m-frame $\{e_{i,j} ⊗ E_{l^n}\}_{1 ≤ i, j ≤ k^m}$ is the subgroup $E_{k^m} ⊗ PU(l^n) ⊂ PU(k^m l^n)$. \square

In fact, the space of k^m-frames Fr_{k^m,l^n} in $M_{k^{m,n}}(ℂ)$ is isomorphic to the space of unital $*$-homomorphisms $\text{Hom}_{alg}(M_{k^m}(ℂ), M_{k^{m,n}}(ℂ))$. More precisely, let $\{e_{i,j}\}_{1 ≤ i, j ≤ k^m}$ be the frame in $M_{k^m}(ℂ)$ consisting of matrix units. Then the isomorphism $Fr_{k^m,l^n} \cong \text{Hom}_{alg}(M_{k^m}(ℂ), M_{k^{m,n}}(ℂ))$ is given by the assignment

$$α \mapsto h_α: M_{k^m}(ℂ) → M_{k^{m,n}}(ℂ), \quad (h_α)_∗(\{e_{i,j}\}) = α \quad ∀α ∈ Fr_{k^m,l^n}.$$

Let $β$ be a k^r-frame in $M_{k^r l^n}(ℂ)$ and $m ≤ r$. Then one can associate with $β$ some new k^m-frame $α := π^m_1(β)$ as follows:

$$α_{i,j} = \beta_{(i-1)k^r-m+1,(j-1)k^r-m+1} + \beta_{(i-1)k^r-m+2,(j-1)k^r-m+2} + \ldots + \beta_{i(k^r-m),j(k^r-m)}, \quad 1 ≤ i, j ≤ k^m.$$

Also one can associate with $β$ some k^{r-m}-frame $γ := π^{r-m}_2(β)$ by the following rule:

$$γ_{i,j} = \beta_{i,j} + \beta_{i+k^r-m,j+k^r-m} + \ldots + \beta_{i+(k^r-1)k^r-m,j+(k^r-1)k^r-m}, \quad 1 ≤ i, j ≤ k^{r-m}.$$

The idea of the definition of $π^m_1(β)$ and $π^{r-m}_2(β)$ is the following. If one takes the k^r-frame $ε$ in $M_{k^r}(ℂ) = M_{k^m}(ℂ) ⊗ M_{k^{r-m}}(ℂ)$ consisting of the matrix units, then the k^m and k^{r-m}-frames in
subalgebras $M_{km}(\mathbb{C}) \otimes CE_{kr-m} \subset M_{kr}(\mathbb{C})$ and $CE_{km} \otimes M_{kr-m}(\mathbb{C}) \subset M_{kr}(\mathbb{C})$ consisting of the matrix units tensored by the corresponding unit matrices are $\pi_1^m(\epsilon)$ and $\pi_2^{r-m}(\epsilon)$ respectively. From the other hand it is easy to see that the frame ϵ (under the appropriate ordering) is the tensor product of the frames of matrix units in the tensor factors $M_{km}(\mathbb{C})$ and $M_{kr-m}(\mathbb{C})$. The matrices from $\pi_1^m(\epsilon)$ commute with the matrices from $\pi_2^{r-m}(\epsilon)$, moreover, all possible pairwise products of the matrices from $\pi_1^m(\epsilon)$ by the matrices from $\pi_2^{r-m}(\epsilon)$ (we have exactly $k^{2m} \cdot k^{2(r-m)} = k^{2r}$ such products) give all matrices from the frame ϵ. If we order the collection of products in the appropriate way, we get the frame ϵ. The operation which to a pair consisting of commuting k^m and k^{r-m}-frames assigns (according to this rule) the k^r-frame we will denote by dot \cdot. In particular, $\beta = \pi_1^m(\beta) \cdot \pi_2^{r-m}(\beta)$ for any k^r-frame β.

Thereby we have defined the continuous maps $\pi_1^m: Fr_{kr, l^*} \to Fr_{km, kr-m^*}$ and $\pi_2^{-m}: Fr_{kr, l^*} \to Fr_{kr-m, km^*}$. In terms of algebra homomorphisms they correspond to the assignment to a homomorphism $h: M_{kr}(\mathbb{C}) \to M_{kr'}(\mathbb{C})$ its compositions with homomorphisms $M_{km}(\mathbb{C}) \to M_{kr}(\mathbb{C})$, $X \mapsto X \otimes E_{kr-m}$ and $M_{kr-m}(\mathbb{C}) \to M_{kr}(\mathbb{C})$, $X \mapsto E_{km} \otimes X$ respectively.

4.2. Functor Fr. In this subsection we define a functor Fr from some monoidal category $C_{k,l}$ to the category of topological spaces with a chosen basepoint.

Let us fix an ordered pair of positive integers k, l, $(k, l) = 1$, $k, l > 1$. Define the category $C_{k,l}$ whose objects are pairs of the form $(M_{km^*}(\mathbb{C}), \alpha)$, consisting of a matrix algebra $M_{km^*}(\mathbb{C})$, $m, n \geq 0$ and a k^m-frame α in it. A morphism $f: (M_{km^*}(\mathbb{C}), \alpha) \to (M_{kr^*}(\mathbb{C}), \beta)$ is a unital $*$-homomorphism of matrix algebras $f: M_{km^*}(\mathbb{C}) \to M_{kr^*}(\mathbb{C})$ such that $f_s(\alpha) = \pi_1^m(\beta)$, where by f_s we denote the map induced on frames by f. Equivalently, we have the commutative diagram

$$
\begin{array}{ccc}
M_{km^*}(\mathbb{C}) & \xrightarrow{f} & M_{kr^*}(\mathbb{C}) \\
\uparrow h_\alpha & & \uparrow h_\beta \\
M_{km}(\mathbb{C}) & \xrightarrow{i_{r,m}} & M_{kr}(\mathbb{C}),
\end{array}
$$

where $i_{r,m}: M_{km}(\mathbb{C}) \to M_{kr}(\mathbb{C})$ is the homomorphism $X \mapsto X \otimes E_{kr-m}$.

Note that $C_{k,l}$ is a symmetric monoidal category with respect to the bifunctor \otimes:

$$
((M_{km^*}(\mathbb{C}), \alpha), (M_{kr^*}(\mathbb{C}), \beta)) \mapsto (M_{km^*}(\mathbb{C}) \otimes M_{kr^*}(\mathbb{C}), \alpha \otimes \beta)
$$

and the unit object $\epsilon := (M_1(\mathbb{C}) = \mathbb{C}, \epsilon)$, where $\epsilon = 1$ is the unique $k^0 = 1$-frame.

Now let us define a functor Fr from $C_{k,l}$ to the category of topological spaces with a chosen basepoint. On objects Fr($M_{km^*}(\mathbb{C}), \alpha$) is the space of k^m-frames in $M_{km^*}(\mathbb{C})$, where α gives the basepoint. For a morphism $f: (M_{km^*}(\mathbb{C}), \alpha) \to (M_{kr^*}(\mathbb{C}), \beta)$ put

$$
\text{Fr}(f): \text{Fr}(M_{km^*}(\mathbb{C}), \alpha) \to \text{Fr}(M_{kr^*}(\mathbb{C}), \beta), \quad \text{Fr}(f)(\alpha') = f_s(\alpha') \cdot \pi_2^{r-m}(\beta).
$$

Then Fr(f) is a well-defined continuous map preserving basepoints.

Consider a few particular cases.
1) Suppose \(m = 0 \), then \(\mathrm{Fr}(M_{m}(\mathbb{C}) , \varepsilon) = \{ \varepsilon \} \) is the space consisting of one point, and for a morphism \(f: (M_{m}(\mathbb{C}) , \varepsilon) \rightarrow (M_{k'p}(\mathbb{C}) , \beta) \) the induced map

\[
\mathrm{Fr}(f): \mathrm{Fr}(M_{m}(\mathbb{C}), \varepsilon) \rightarrow \mathrm{Fr}(M_{k'p}(\mathbb{C}), \beta), \quad \varepsilon \mapsto \varepsilon \cdot \beta = \beta
\]

is the inclusion of the basepoint (note that \(\pi_0^k(\beta) = \varepsilon \), cf. Definition \([12]\) (ii)).

2) Suppose \(n = 0 \), then \(\mathrm{Fr}(M_{k^{m}}(\mathbb{C}), \alpha) = \mathrm{PU}(k^{m}) \) and \(\alpha \) corresponds to the unit in the group \(\mathrm{PU}(k^{m}) \). For a morphism \(f: (M_{k^{m}}(\mathbb{C}), \alpha) \rightarrow (M_{k^{r}}(\mathbb{C}), \beta) \) the diagram

\[
\begin{array}{ccc}
\mathrm{Fr}(M_{k^{m}}(\mathbb{C}), \alpha) & \xrightarrow{\mathrm{Fr}(f)} & \mathrm{Fr}(M_{k^{r}}(\mathbb{C}), \beta) \\
\downarrow & & \downarrow \\
\mathrm{PU}(k^{m}) & \xrightarrow{\ldots \otimes E_{k^{r}-m}} & \mathrm{PU}(k^{r})
\end{array}
\]

is commutative (the lower row corresponds to the homomorphism \(X \mapsto X \otimes E_{k^{r}-m} \)).

3) \(r = m \), \(f: (M_{k^{m}n}(\mathbb{C}), \alpha) \rightarrow (M_{k^{m}l}(\mathbb{C}), \beta) \). Then \(\beta = f_{*}(\alpha) \), \(\pi_0^k(\beta) = \varepsilon \) (cf. Definition \([12]\) (ii)) \(\mathrm{Fr}(f)(\alpha') = f_{*}(\alpha') \).

4.3. **Natural transformation** \(\mu: \mathrm{Fr}(\ldots) \times \mathrm{Fr}(\ldots) \rightarrow \mathrm{Fr}(\ldots \otimes \ldots) \). Using the bifunctor \(\otimes \) on the category \(C_{k,i} \) we define a natural transformation of functors \(\mu: \mathrm{Fr}(\ldots) \times \mathrm{Fr}(\ldots) \rightarrow \mathrm{Fr}(\ldots \otimes \ldots) \) from the category \(C_{k,i} \times C_{k,i} \) to the category of topological spaces with a chosen basepoint. More precisely,

\[
\mu: \mathrm{Fr}(M_{k^{m}n}(\mathbb{C}), \alpha) \times \mathrm{Fr}(M_{k^{p}l}(\mathbb{C}), \varphi) \rightarrow \mathrm{Fr}(M_{k^{m}n}(\mathbb{C}) \otimes M_{k^{p}l}(\mathbb{C})), \alpha \otimes \varphi),
\]

(recall that \(M_{k^{m}n}(\mathbb{C}) \otimes M_{k^{p}l}(\mathbb{C}) \cong M_{k^{m+p}n+q}(\mathbb{C}) \)), where \(\alpha' \otimes \varphi' \) is the \(k^{m+p} \)-frame which is the tensor product of the \(k^{m} \)-frame \(\alpha' \) and the \(k^{p} \)-frame \(\beta' \).

In fact, \(\mu \) is a natural transformation, because for any two morphisms in \(C_{k,i} \)

\[
f: (M_{k^{m}n}(\mathbb{C}), \alpha) \rightarrow (M_{k^{r}l}(\mathbb{C}), \beta), \quad g: (M_{k^{p}l}(\mathbb{C}), \varphi) \rightarrow (M_{k^{t}u}(\mathbb{C}), \psi)
\]

the diagram

\[
\begin{array}{ccc}
\mathrm{Fr}(M_{k^{m}n}(\mathbb{C}), \alpha) \times \mathrm{Fr}(M_{k^{p}l}(\mathbb{C}), \varphi) & \xrightarrow{\mu} & \mathrm{Fr}(M_{k^{m}n}(\mathbb{C}) \otimes M_{k^{p}l}(\mathbb{C})), \alpha \otimes \varphi) \\
\mathrm{Fr}(f) \times \mathrm{Fr}(g) & & \mathrm{Fr}(f) \times \mathrm{Fr}(g)
\end{array}
\]

\((18)\)

is commutative. Indeed, \(\mu \circ (\mathrm{Fr}(f) \times \mathrm{Fr}(g))(\alpha', \varphi') = \mu(f_{*}(\alpha') \cdot \gamma, g_{*}(\varphi') \cdot \chi) = (f_{*}(\alpha') \cdot \gamma) \otimes (g_{*}(\varphi') \cdot \chi) \), where \(\gamma, \chi \) are \(\pi_{-}^{k-r}(\beta) \) and \(\pi_{-}^{k-p}(\psi) \) respectively. On the other hand, \(\mathrm{Fr}(f \otimes g) \circ \mu(\alpha', \varphi') = \mathrm{Fr}(f \otimes g)(\alpha' \otimes \varphi') = (f_{*}(\alpha') \otimes g_{*}(\varphi')) \cdot \Xi \), where \(\Xi \) is the unique \(k^{r+l-m-p} \)-frame such that \((f_{*}(\alpha) \otimes g_{*}(\varphi)) \cdot \Xi = \beta \otimes \psi \). But \((f_{*}(\alpha') \cdot \gamma) \otimes (g_{*}(\varphi') \cdot \chi) = (f_{*}(\alpha') \otimes g_{*}(\varphi')) \cdot (\gamma \otimes \chi) \) by virtue of the commutativity of frames, and moreover \((f_{*}(\alpha) \cdot \gamma) \otimes (g_{*}(\varphi) \cdot \chi) = \beta \otimes \psi \). Hence \(\Xi = \gamma \otimes \chi \) and the diagram commutes, as claimed.
4.4. Properties of the natural transformation μ. First, the natural transformation μ is associative in the sense that the functor diagram

$$
\begin{align*}
\operatorname{Fr}(\ldots) \times (\operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots)) & \cong (\operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots)) \times \operatorname{Fr}(\ldots) \\
\mu \times \operatorname{id}_\mu & \\
\operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots) & \rightarrow \operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots)
\end{align*}
$$

commutes (we have used the natural isomorphism $\operatorname{Fr}((\ldots) \times ((\ldots) \times (\ldots))) \cong \operatorname{Fr}(((\ldots) \times (\ldots)) \times (\ldots))$ in the lower right corner).

Secondly, we need the diagram for identity. Recall that in the monoidal category $\mathcal{C}_{k,l}$ $e = (\mathbb{C}, \varepsilon)$ is the unit object, and it is also the initial object. In particular, for any object $A = (M_{km}m(C), \alpha)$ there is a unique morphism $\iota_A: e \to A$, i.e. $\iota_A: (\mathbb{C}, \varepsilon) \to (M_{km}m(C), \alpha)$. The identity diagram has the following form:

$$
\begin{align*}
\operatorname{Fr}(e) \times \operatorname{Fr}(\ldots) & \rightarrow \operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots) \\
\mu & \\
\operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots) & \rightarrow \operatorname{Fr}(\ldots)
\end{align*}
$$

(note that $\operatorname{Fr}(\iota): \operatorname{Fr}(e) \to \operatorname{Fr}(\ldots)$ is the inclusion of the basepoint). It is easy to see that (for any pair of objects A, B of $\mathcal{C}_{k,l}$) the slanted arrows are homeomorphisms on their images.

There is also the commutativity diagram

$$
\begin{align*}
\operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots) & \rightarrow \operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots) \\
\mu & \\
\operatorname{Fr}(\ldots) \times \operatorname{Fr}(\ldots) & \rightarrow \operatorname{Fr}(\ldots)
\end{align*}
$$

(where τ is the map which switches the factors) which is commutative up to isomorphism. This gives us a homotopy $\mu \circ \tau \simeq \mu$.

For any pair A, B of objects of $\mathcal{C}_{k,l}$ the natural transformation μ determines a continuous map $\overline{\mu}_{A,B}: \operatorname{Fr}(A) \times \operatorname{Fr}(B) \to \operatorname{Fr}(A \otimes B)$ of topological spaces.

Put $\operatorname{Fr}_{k,l,\infty} := \lim_{i} \operatorname{Fr}(M_{k}m_{l}m(C), \alpha)$. Then the above diagrams show that $\operatorname{Fr}_{k,l,\infty}$ is a homotopy associative and commutative H-space with multiplication given by $\overline{\mu} := \lim_{i} \overline{\mu}_{A,B}$ and with the homotopy unit $\overline{\eta} := \lim_{i} \operatorname{Fr}(\iota_A): * = \operatorname{Fr}(e) \to \operatorname{Fr}_{k,l,\infty}$.

4.5. H-space structure on the matrix grassmannian. Note that the analogous construction can be applied to matrix grassmannians (in place of frame spaces). Namely, consider the category $\mathcal{D}_{k,l}$ whose objects are pairs of the form $(M_{km}m(C), A)$, consisting of a matrix algebra $M_{km}m(C)$, $m, n \geq 0$ and a k^m-subalgebra $A \subset M_{km}m(C)$ in it (recall that a k-subalgebra is a unital $*$-subalgebra isomorphic $M_k(C)$). A morphism $f: (M_{km}m(C), A) \to (M_{k}m_{l}m(C), B)$ in $\mathcal{D}_{k,l}$
ON K-THEORY AUTOMORPHISMS RELATED TO BUNDLES OF FINITE ORDER 17

is a unital $*$-homomorphism of matrix algebras $f: M_{k^m,l^m}(C) \to M_{k^r,l^r}(C)$ such that $f(A) \subset B$. We define the k^r-m-subalgebra $C \subset M_{k^r,l^r}(C)$ as the centralizer of the subalgebra $f(A)$ in B.

Define the functor Gr from the category $\mathcal{D}_{k,l}$ to the category of topological spaces with a chosen basepoint as follows. On objects the space $\text{Gr}(M_{k^m,l^m}(C), A)$ is the space of all k^m-subalgebras in $M_{k^m,l^m}(C)$ and A corresponds to its basepoint. For a morphism $f: (M_{k^m,l^m}(C), A) \to (M_{k^r,l^r}(C), B)$ as above we put

$$\text{Gr}(f): \text{Gr}(M_{k^m,l^m}(C), A) \to \text{Gr}(M_{k^r,l^r}(C), B), \quad \text{Gr}(f)(A') = f(A') \cdot C,$$

where C is the centralizer of the subalgebra $f(A)$ in B and $f(A') \cdot C$ denotes the subalgebra in $M_{k^r,l^r}(C)$ generated by subalgebras $f(A')$ and C (clearly, $B = f(A) \cdot C$). Then one can define the analog $\mu': \text{Gr}(\ldots) \times \text{Gr}(\ldots) \to \text{Gr}(\ldots \otimes \ldots)$ of the natural transformation μ, etc. (For example, the commutativity of the analog of diagram [IS] follows from the coincidence $Z_B \otimes \Psi(f(A) \otimes g(\Phi)) = Z_B(f(A)) \otimes Z_\Psi(g(\Phi))$ for any two morphisms $f: (M_{k^m,l^m}(C), A) \to (M_{k^r,l^r}(C), B)$ and $g: (M_{k^r,l^r}(C), \Phi) \to (M_{k^r,l^r}(C), \Psi)$ (which is an analog of the above formula $\Xi = \gamma \otimes \chi$ for frames), where $Z_B(A)$ denotes the centralizer of a subalgebra A in an algebra B.)

This allows us to equip the direct limit $\text{Gr}_{k^\infty, l^\infty} := \lim_{(f)} \text{Gr}(M_{k^m,l^m}(C), A)$ with the structure of a homotopy associative and commutative H-space with a homotopy unit.

Note that there is the functor

$$\lambda: \mathcal{C}_{k,l} \to \mathcal{D}_{k,l}, \quad (M_{k^m,l^m}(C), \alpha) \mapsto (M_{k^m,l^m}(C), M(\alpha)),$$

where $M(\alpha)$ is the k^m-subalgebra spanned on the k^m-frame α. There is the obvious natural transformation of functors $\theta: \text{Fr} \to \text{Gr} \circ \lambda$ from the category $\mathcal{C}_{k,l}$ to the category of topological spaces with a chosen basepoint which gives rise to the H-space homomorphism $\text{Fr}_{k^\infty, l^\infty} \to \text{Gr}_{k^\infty, l^\infty}$.

Recall that $\text{Gr}_{k^\infty, l^\infty} = \text{Gr} \cong \text{BSU}_\otimes$, and the image of the just constructed homomorphism is the k-torsion subgroup in it, as the next proposition claims.

Proposition 14. Let X be a compact space. Then the image of the homomorphism $[X, \text{Fr}_{k^\infty, l^\infty}] \to [X, \text{Gr}_{k^\infty, l^\infty}]$ is the k-torsion subgroup in the group $\text{BSU}_\otimes^0(X)$.

Proof. This proposition follows from Proposition [5]. Another way is to pass to the direct limit in fibration

$$\text{Fr}_{k^m, l^m} \to \text{Gr}_{k^m, l^m} \to \text{BPU}(k^n),$$

and to notice that the limit map $\text{Gr}_{k^\infty, l^\infty} \to \text{BPU}(k^\infty) := \lim_n \text{BPU}(k^n)$ actually is a localization on k. □

References

[1] M. Atiyah, G. Segal Twisted K-theory // arXiv:math/0407054v2 [math.KT]
[2] M. Atiyah, G. Segal Twisted K-theory and cohomology // arXiv:math/0510674v1 [math.KT]
[3] R.S. Pierce: Associative Algebras. Springer Verlag, 1982.
[4] Yu.B. Rudyak: On Thom Spectra, Orientability and Cobordism. Springer Monogr. in Math., Springer (1998).
[5] G.B. Segal: Categories and cohomology theories. Topology 13 (1974).
[6] C. Weibel The K-book: An introduction to algebraic K-theory.
[7] A.V. Ershov Homotopy theory of bundles with fiber matrix algebra // arXiv:math/0301151v1 [math.AT]
[8] A.V. Ershov Topological obstructions to embedding of a matrix algebra bundle into a trivial one // arXiv:0807.3544v13 [math.KT]

E-mail address: ershov.andrei@gmail.com