The title compound, (C₄H₁₂N₅)₄(C₂H₇N₄O)₂[V₁₀O₂₈]·4H₂O, is a by-product obtained by reacting ammonium metavanadate(V), metformin hydrochloride and acetic acid in the presence of sodium hypochlorite, at pH = 5. The crystal structure comprises a decavanadate(V) anion (V₁₀O₂₈)⁶⁻ lying on an inversion centre in space group P1, while cations and solvent water molecules are placed in general positions, surrounding the anion, and forming numerous N—H···O and O—H···O hydrogen bonds. Metforminium (C₄H₁₂N₅)⁺ and guanylurea (C₂H₇N₄O)⁺ cations display the expected shape. Interestingly, in physiology the latter cation is known to be the main metabolite of the former one. The reported structure thus supports the role of sodium hypochlorite as an oxidizing reagent being able to degrade metformin hydrochloride to form guanylurea.

Structure description

Metformin hydrochloride (Metf-HCl: 1,1-dimethylbiguanide hydrochloride) is one of the most commonly prescribed medications for the treatment of type 2 diabetes (Maruthur et al., 2016). On the other hand, coordination compounds of vanadium, including polyoxidovanadates resulting from the condensation of the vanadate anion, likewise exhibit an antidiabetic effect, among other biological activities of interest in medicinal applications (Thompson et al., 2009; Rehder, 2020). We are involved in studies about the chemical crystallography of compounds including both types of antidiabetic species. In
this context, we report here the crystal structure of a compound including a decavanadate(V) anion, metforminium cations, and a degradation product of the latter, guanylurea cation (1-carbamoylguanidinium).

The asymmetric unit of the title compound comprises one-half of the decavanadate(V) anion (V$_{10}$O$_{28}$)$^{6-}$, three cations and two water molecules of solvation. The chemical formula is thus (HMetf)$_4$(HGu)$_2$[V$_{10}$O$_{28}$]·4H$_2$O, where HMetf$^+$ is the metforminium cation (C$_4$H$_7$N$_4$O)$_+$ and HGu$^+$ is the guanylurea cation (C$_9$H$_7$N$_4$O)$_+$. All hydrogen-atom positions in the cations were refined, ensuring that the right tautomers are thus (HMetf)$_4$(HGu)$_2$[V$_{10}$O$_{28}$]·4H$_2$O, where HMetf$^+$ is the metforminium cation (C$_4$H$_7$N$_4$O)$_+$ and HGu$^+$ is the guanylurea cation (C$_9$H$_7$N$_4$O)$_+$. All hydrogen-atom positions in the cations were obtained from difference-Fourier maps, and their positions were refined, ensuring that the right tautomers are included in the structure model (Fig. 1). The decavanadate(V) anion is unprotonated, and displays its usual shape, with a point-group symmetry close to D$_{2h}$ (real C$_2$). The twisted shape of both metforminium cations is also similar to that observed in other compounds (e.g. Sánchez-Lombardo et al., 2014; Farzanfar et al., 2015). For the first cation, the dihedral angle between C1/N12/C25/C26 planes is 60.39 (9)°. Regarding the guanylurea cation, it is nearly planar [maximum distance of 0.009 (4) Å for N12], as in a closely related salt, namely (HMetf)$_3$(HGu)$_2$[V$_{10}$O$_{28}$]·2H$_2$O (Chatkon et al., 2014). In the metforminium cations, the positive charges are not clearly localized, since all C—N bond lengths span a short range, here between 1.321 (3) and 1.355 (3) Å (N—CH$_3$ bonds are omitted). These cations are thus stabilized by resonance, with delocalized π-bonds, a common feature of guanidinium derivatives. In the case of the present guanylurea cation, one π-bond is probably delocalized over C9—N11 and C9—N12.

The cation conformation, as well as their orientations with respect to the highly charged anion favour the formation of numerous hydrogen bonds, the NH$_2$ groups of HMetf$^+$ and HGu$^+$ being the main donors, and the O sites in the anion being the main acceptors (Table 1, Fig. 2). Empty channels oriented parallel to [100] are available in the crystal structure to accommodate water molecules (O16, O17). These mol-

![Figure 1](image1.png)

Figure 1
The structures of the molecular entities of the title compound, with displacement ellipsoids drawn at the 40% probability level. The centrosymmetric anion is shown, while the content for cations and water molecules is limited to the asymmetric unit.

![Figure 2](image2.png)

Figure 2
Main interactions between the decavanadate(V) anion (polyhedral representation) and the first shell including six cations and four water molecules (ball-and-stick representation). Hydrogen bonds are represented by blue dashed lines, and the label associated to each hydrogen bond refers to its entry in Table 1.
Acetic acid (commercial vinegar) and 2 ml of 5% HCl extracted from a commercial brand; metavanadate (NH4VO3, 1.50 g, 12.1 mmol) and metformin hydrochloride (Metf) were obtained during the reaction between ammonium metavanadate (NH4VO3, 1.50 g, 12.1 mmol) and metformin hydrochloride (Metf-HCl extracted from a commercial brand; 1.70 g, 10.2 mmol) in 50 ml of distilled water, 20 ml of 5% v/v acetic acid (commercial vinegar) and 2 ml of 5% v/v sodium hypochlorite (commercial bleach). In a typical procedure, NH4VO3 was dissolved by gently heating in a water bath followed by addition of Metf-HCl and stirring until dissolution. The water bath was removed, and once the mixture cooled down to room temperature, CH3COOH and NaOCl were evaporated at ambient conditions and the two major products, (H2Metf)3[V10O28]·8H2O (Sánchez-Lombardo et al., 2014) and (HMetr)4(HGu)2[V10O28]·4H2O (estimated yields of ca 30 and 10%, respectively), were separated by fractional crystallization over the course of 5 to 10 d.

Synthesis and crystallization

Orange good-quality single crystals of the title compound were obtained during the reaction between ammonium metavanadate (NH4VO3, 1.50 g, 12.1 mmol) and metformin hydrochloride (Metf-HCl extracted from a commercial brand; 1.70 g, 10.2 mmol) in 50 ml of distilled water, 20 ml of 5% v/v acetic acid (commercial vinegar) and 2 ml of 5% v/v sodium hypochlorite (commercial bleach). In a typical procedure, NH4VO3 was dissolved by gently heating in a water bath followed by addition of Metf-HCl and stirring until dissolution. The water bath was removed, and once the mixture cooled down to room temperature, CH3COOH and NaOCl were evaporated at ambient conditions and the two major products, (H2Metf)3[V10O28]·8H2O (Sánchez-Lombardo et al., 2014) and (HMetr)4(HGu)2[V10O28]·4H2O (estimated yields of ca 30 and 10%, respectively), were separated by fractional crystallization over the course of 5 to 10 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2: Experimental details.

Crystal data	Description	
Chemical formula	(C4H12N5)4(C2H7N4O)2[V10O28]·4H2O	
Mw	1756.44	
Crystal system, space group	Triclinic, P1	
Temperature (K)	263	
a, b, c (Å)	8.9701 (3), 13.2202 (5), 14.0861 (5)	
α, β, γ (°)	99.609 (3), 103.133 (5), 107.676 (3)	
V (Å³)	1499.00 (10)	
Z	1	
Radiation type	Ag	Kα, λ = 0.56083 Å
μ (mm⁻¹)	0.82	
Crystal size (mm)	0.35 × 0.09 × 0.08	

Data collection

Diffraactometer	Stoe Stadivari
Radiation type	Multi-scan (X-AREA; Stoe & Cie, 2019)
Tmin, Tmax	0.471, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections	66181, 11970, 7120
Rint	0.064
R1	0.040, 0.101, 0.83
No. of parameters	488
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å⁻³)	0.50, −0.75

Computer programs: X-AREA (Stoe & Cie, 2019), SHELXTL2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

Armbruster, D., Happel, O., Scheurer, M., Harms, K., Schmidt, T. C. & Brauch, H.-J. (2015). Water Res. 79, 104–118.
Chatkon, A., Barres, A., Samart, N., Boyle, S. E., Haller, K. J. & Crans, D. C. (2014). *Inorg. Chim. Acta*, **420**, 85–91.

Farzanfar, J., Ghasemi, K., Rezvani, A. R., Delarami, H. S., Ebrahimi, A., Hosseinipoor, H., Eskandari, A., Rudbari, H. A. & Bruno, G. (2015). *J. Inorg. Biochem.* **147**, 54–64.

Kirihara, M., Okada, T., Sugiyama, Y., Akiyoshi, M., Matsunaga, T. & Kimura, Y. (2017). *Org. Process Res. Dev.* **21**, 1925–1937.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* **53**, 226–235.

Maruthur, N. M., Tseng, E., Hutfless, S., Wilson, L. M., Suarez-Cuervo, C., Berger, Z., Chu, Y., Iyoha, E., Segal, J. B. & Bolen, S. (2016). *Ann. Intern. Med.* **164**, 740–751.

Polito-Lucas, J. A., Núñez-Avila, J. A., Bernès, S. & Pérez-Benítez, A. (2021). *IUCrData*, **6**, x210634.

Rehder, D. (2020). *Inorg. Chim. Acta*, **504**, 119445.

Sánchez–Lombardo, I., Sánchez–Lara, E., Pérez–Benítez, A., Mendoza, A., Bernès, S. & González–Vergara, E. (2014). *Eur. J. Inorg. Chem.* pp. 4581–4588.

Sheldrick, G. M. (2015a). *Acta Cryst. A*, **71**, 3–8.

Sheldrick, G. M. (2015b). *Acta Cryst. C*, **71**, 3–8.

Stoe & Cie (2019). *X-AREA* and *X-RED32*. Stoe & Cie, Darmstadt, Germany.

Tassoulas, L. J., Robinson, A., Martinez-Vaz, B., Aukema, K. G. & Wackett, L. P. (2021). *Appl. Environ. Microbiol.* **87**, e03003–20.

Thompson, K. H., Lichter, J., LeBel, C., Scaife, M. C., McNeill, J. H. & Orvig, C. (2009). *J. Inorg. Biochem.* **103**, 554–558.

Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.
full crystallographic data

IUCrData (2022). 7, x220627 [https://doi.org/10.1107/S2414314622006277]

Bis[(amino(iminiumyl)methyl)urea] tetrakis{2-[(dimethylamino)(iminiumyl)methyl]guanidine} di-µ₆-oxo-tetra-µ₃-oxido-tetradeca-µ₂-oxido-octaoxidodecavanadium(V) tetrahydrate

Aarón Pérez-Benítez, Jorge Luis Ariza-Ramírez, Monserrat Fortis-Valera, Rosa Elena Arroyo-Carmona, María Isabel Martínez de la Luz, Diego Ramírez-Contreras and Sylvain Bernès

Bis[(amino(iminiumyl)methyl)urea] tetrakis{2-[(dimethylamino)(iminiumyl)methyl]guanidine} di-µ₆-oxo-tetra-µ₃-oxido-tetradeca-µ₂-oxido-octaoxidodecavanadium(V) tetrahydrate

Crystal data

(C₆H₁₂N₅)₄(C₂H₇N₄O₂)[V₁₀O₂₈]·₄H₂O

Mr = 1756.44
Triclinic, P

a = 8.9701 (3) Å
b = 13.2202 (5) Å
c = 14.0861 (5) Å

α = 99.609 (3)°
β = 103.133 (3)°
γ = 107.676 (3)°

V = 1499.00 (10) Å³

Z = 1

F(000) = 888

Dₐ = 1.946 Mg m⁻³

Ag Kα radiation, λ = 0.56083 Å

Cell parameters from 44097 reflections

θ = 2.2–30.9°

μ = 0.82 mm⁻¹

T = 263 K

0.35 × 0.09 × 0.08 mm

Data collection

Stoe Stadivari

radiation source: Sealed X-ray tube, Axo Astix-

f Microfocus source

Graded multilayer mirror monochromator

Detector resolution: 5.81 pixels mm⁻¹

ω scans

(X-AREA; Stoe & Cie, 2019)

T = 0.471, T_max = 1.000

66181 measured reflections

11970 independent reflections

7120 reflections with I > 2σ(I)

R-factor = 0.064

θ_max = 26.0°, θ_min = 2.4°

h = −12→14

k = −20→20

l = −22→22

Refinement

Refinement on F²

Least-squares matrix: full

R[F² > 2σ(F²)] = 0.040

wR(F²) = 0.101

S = 0.83

11970 reflections

488 parameters

0 restraints

0 constraints

Primary atom site location: dual

Secondary atom site location: difference Fourier

map

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ²(Fc²) + (0.0523P)²]

where P = (Fc² + 2Fos²)/3

(Δ/σ)max = 0.001

Δρ_max = 0.50 e Å⁻³

Δρ_min = −0.75 e Å⁻³
Special details

Refinement. High-resolution data were collected ($d_{	ext{min}} = 0.64$ Å), and all H atoms were discernible in difference-Fourier maps. Methyl H atoms were placed in calculated positions, with $U_{	ext{iso}}(H) = 1.5U_{	ext{eq}}$(carrier C). The positions for other H atoms were freely refined, and their isotropic displacements were calculated as $U_{	ext{iso}}(H) = 1.2U_{	ext{eq}}$(carrier N) and $U_{	ext{iso}}(H) = 1.5U_{	ext{eq}}$(carrier O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	$U_{ ext{iso}}*/U_{ ext{eq}}$
V1	−0.18346 (3)	0.50285 (3)	0.48387 (2)	0.02031 (7)
V2	0.11454 (4)	0.67569 (3)	0.66199 (2)	0.02333 (7)
V3	0.29658 (4)	0.73708 (3)	0.50272 (3)	0.02746 (8)
V4	0.00747 (4)	0.56616 (3)	0.32784 (2)	0.02919 (7)
V5	−0.04938 (4)	0.74348 (3)	0.47654 (3)	0.02779 (8)
O1	−0.35393 (15)	0.39698 (12)	0.47679 (11)	0.0256 (3)
O2	0.14821 (19)	0.71282 (13)	0.78213 (11)	0.0346 (3)
O3	0.47419 (18)	0.82185 (14)	0.51151 (13)	0.0389 (4)
O4	−0.02963 (18)	0.52272 (14)	0.20790 (11)	0.0334 (3)
O5	−0.1391 (2)	0.83039 (14)	0.46158 (13)	0.0401 (4)
O6	−0.18582 (14)	0.45457 (11)	0.34529 (9)	0.0205 (3)
O7	−0.00402 (17)	0.75691 (12)	0.61355 (11)	0.0275 (3)
O8	0.16426 (17)	0.82016 (12)	0.48728 (11)	0.0293 (3)
O9	−0.08722 (16)	0.66811 (12)	0.34085 (11)	0.0266 (3)
O10	−0.24798 (15)	0.60808 (12)	0.46689 (11)	0.0257 (3)
O11	−0.09736 (14)	0.54661 (11)	0.62762 (10)	0.0209 (3)
O12	0.30173 (16)	0.75443 (12)	0.64019 (11)	0.0271 (3)
O13	0.21944 (16)	0.66484 (12)	0.36802 (11)	0.0270 (3)
O14	0.05231 (14)	0.60398 (11)	0.49536 (10)	0.0199 (2)
C1	−0.2523 (3)	0.8595 (2)	0.76688 (18)	0.0349 (5)
C2	0.0296 (3)	0.95180 (18)	0.81639 (17)	0.0315 (4)
C3	0.1549 (3)	0.8988 (2)	0.96161 (19)	0.0466 (6)
H3A	0.191943 (3)	0.952085	1.025219	0.070*
H3B	0.222871 (3)	0.854931	0.962427	0.070*
H3C	0.043527 (3)	0.852377	0.950131	0.070*
C4	0.3258 (3)	1.0073 (4)	0.8715 (3)	0.0729 (11)
H4C	0.344844 (3)	0.959712	0.819942	0.109*
H4D	0.407592 (3)	1.021958	0.934421	0.109*
H4E	0.331692 (3)	1.075066	0.853596	0.109*
N1	−0.2665 (3)	0.79810 (18)	0.67858 (16)	0.0376 (5)
H1A	−0.178 (3)	0.794 (2)	0.662 (2)	0.045*
H1B	−0.351 (3)	0.771 (2)	0.636 (2)	0.045*
N2	−0.3897 (3)	0.8602 (2)	0.7888 (2)	0.0537 (7)
H2A	−0.379 (4)	0.902 (3)	0.848 (3)	0.064*
H2B	−0.484 (4)	0.829 (3)	0.747 (3)	0.064*
N3	−0.1127 (2)	0.91530 (19)	0.83847 (15)	0.0404 (5)
N4	0.0405 (3)	0.99452 (18)	0.73832 (17)	0.0370 (4)
H4A	−0.045 (3)	1.001 (2)	0.700 (2)	0.044*
H4B	0.117 (3)	1.006 (2)	0.717 (2)	0.044*
IUCrData (2022). 7, x220627				
	V3	V4	V5	O1
-----	---------	---------	---------	---------
Geometric parameters (Å, °)

Bond/Angle	Distance/Angle	Distance/Angle	Distance/Angle
V1—O10	1.6925 (14)	C4—N5	1.454 (3)
V1—O1	1.7005 (13)	C4—H4C	0.9600
V1—O11	1.9126 (13)	C4—H4D	0.9600
V1—O6	1.9430 (13)	C4—H4E	0.9600
V1—O14	2.0836 (12)	N1—H1A	0.89 (3)
V1—O14*	2.1105 (13)	N1—H1B	0.79 (3)
V1—V5	3.0691 (5)	N2—H2A	0.89 (4)
V1—V3*	3.0755 (5)	N2—H2B	0.85 (3)
V2—O2	1.6113 (15)	N4—H4A	0.87 (3)
V2—O12	1.8102 (14)	N4—H4B	0.79 (3)
V2—O7	1.8324 (14)	C5—N6	1.329 (3)
V2—O6*	2.0062 (14)	C5—N8	1.334 (3)
V2—O11	2.0238 (13)	C5—N7	1.334 (3)
V2—O14	2.2495 (13)	C6—N9	1.324 (3)
V2—V4*	3.0888 (5)	C6—N10	1.331 (2)
V2—V5	3.1024 (5)	C6—N8	1.355 (3)
V3—O3	1.6091 (15)	C7—N10	1.457 (3)
V3—O13	1.8407 (15)	C7—H7C	0.9600
V3—O8	1.8484 (15)	C7—H7D	0.9600
V3—O12	1.8998 (15)	C7—H7E	0.9600
V3—O1*	2.0361 (15)	C8—N10	1.455 (3)
V3—O14	2.3243 (12)	C8—H8A	0.9600
V3—V5	3.0697 (5)	C8—H8B	0.9600
V3—V4	3.0951 (5)	C8—H8C	0.9600
V4—O4	1.6122 (15)	N6—H6A	0.91 (3)
V4—O9	1.8042 (15)	N6—H6B	0.80 (3)
V4—O13	1.8427 (13)	N7—H7A	0.75 (3)
V4—O6	2.0012 (13)	N7—H7B	0.81 (3)
V4—O1**	2.0196 (14)	N9—H9A	0.84 (3)
V4—O14	2.2434 (13)	N9—H9B	0.81 (3)
V4—V5	3.1169 (5)	C9—N11	1.296 (3)
V5—O5	1.6054 (16)	C9—N12	1.309 (3)
V5—O8	1.8331 (14)	C9—N13	1.361 (3)
V5—O7	1.8457 (15)	C10—O15	1.223 (3)
V5—O9	1.9040 (15)	C10—N14	1.316 (3)
V5—O10	2.0660 (14)	C10—N13	1.405 (3)
V5—O14	2.3191 (13)	N11—H11A	0.84 (3)
C1—N3	1.321 (3)	N11—H11B	0.70 (3)
C1—N1	1.323 (3)	N12—H12A	0.83 (3)
C1—N2	1.339 (3)	N12—H12B	0.82 (3)
C2—N4	1.327 (3)	N13—H13	0.82 (3)
C2—N5	1.328 (3)	N14—H14A	0.88 (4)
C2—N3	1.347 (3)	N14—H14B	0.74 (3)
C3—N5	1.453 (3)	O16—H16A	0.80 (3)
C3—H3A	0.9600	O16—H16B	0.71 (3)
C3—H3B	0.9600	O17—H17A	0.75 (3)
C3—H3C 0.9600 O17—H17B 0.78 (3)

Bond	Length (Å)	Bond	Length (Å)		
O10—V1—O1	105.46 (7)	O10—V5—O14	74.12 (5)		
O10—V1—O11	98.71 (6)	O5—V5—V1	131.07 (7)		
O1—V1—O11	96.92 (6)	O8—V5—V1	125.08 (5)		
O10—V1—O6	95.97 (6)	O7—V5—V1	78.36 (5)		
O1—V1—O6	95.74 (6)	O9—V5—V1	78.38 (4)		
O11—V1—O6	157.30 (5)	O10—V5—V1	31.41 (4)		
O10—V1—O14	88.53 (6)	O14—V5—V1	42.73 (3)		
O1—V1—O14	165.98 (6)	O5—V5—V3	137.49 (7)		
O11—V1—O14	81.62 (5)	O8—V5—V3	33.66 (5)		
O6—V1—O14	81.53 (5)	O7—V5—V3	85.71 (4)		
O10—V1—O14i	167.14 (6)	O9—V5—V3	83.45 (4)		
O1—V1—O14i	87.35 (6)	O10—V5—V3	122.77 (4)		
O11—V1—O14i	80.52 (5)	O14—V5—V3	48.69 (3)		
O6—V1—O14i	81.33 (5)	V1—V5—V3	91.420 (13)		
O14—V1—O14i	78.65 (5)	O5—V5—V2	134.32 (7)		
O10—V1—V5	39.51 (5)	O8—V5—V2	82.26 (5)		
O1—V1—V5	144.96 (5)	O7—V5—V2	32.36 (4)		
O11—V1—V5	89.98 (4)	O9—V5—V2	123.48 (4)		
O6—V1—V5	90.41 (4)	O10—V5—V2	82.77 (4)		
O14—V1—V5	49.05 (4)	O14—V5—V2	46.29 (3)		
O14i—V1—V5	127.69 (3)	V1—V5—V2	61.613 (12)		
O10—V1—V3i	143.79 (5)	V3—V5—V2	61.042 (11)		
O1—V1—V3i	38.33 (5)	O5—V5—V4	133.62 (7)		
O11—V1—V3i	88.31 (4)	O8—V5—V4	81.96 (5)		
O6—V1—V3i	90.02 (4)	O7—V5—V4	123.82 (5)		
O14—V1—V3i	127.68 (4)	O9—V5—V4	31.82 (4)		
O14i—V1—V3i	49.04 (3)	O10—V5—V4	80.43 (4)		
V5—V1—V3i	176.557 (14)	O10—V5—V4	45.90 (3)		
O2—V2—O12	104.71 (7)	O14—V5—V4	61.206 (11)		
O2—V2—O7	103.32 (7)	V1—V5—V4	60.033 (12)		
O12—V2—O7	95.37 (7)	V2—V5—V4	91.958 (13)		
O2—V2—O6i	99.03 (7)	V1—O1—V3i	110.47 (6)		
O12—V2—O6i	89.97 (6)	V1—O6—V4	105.96 (6)		
O7—V2—O6i	154.83 (6)	V1—O6—V2i	106.54 (6)		
O2—V2—O11	98.92 (7)	V4—O6—V2i	100.85 (6)		
O12—V2—O11	154.25 (6)	V2—O7—V5	115.02 (8)		
O7—V2—O11	88.94 (6)	V5—O8—V3	112.99 (8)		
O6i—V2—O11	76.20 (5)	V4—O9—V5	114.37 (7)		
O2—V2—O14	173.33 (7)	V1—O10—V5	109.08 (6)		
O12—V2—O14	80.50 (6)	V1—O11—V4i	108.12 (6)		
O7—V2—O14	80.05 (6)	V1—O11—V2	106.80 (6)		
O6i—V2—O14	76.60 (5)	V4i—O11—V2	99.62 (5)		
O11—V2—O14	75.26 (5)	V2—O12—V3	115.31 (7)		
O2—V2—V4i	88.84 (6)	V3—O13—V4	114.34 (7)		
O12—V2—V4i	129.46 (5)	V1—O14—V1i	101.35 (5)		
O7—V2—V4i	129.07 (5)	V1—O14—V4	93.34 (5)		
Bond	Distance (Å)	Angle (°)			
----------------------	--------------	--------------------			
O6—V2—V4i	39.52 (4)	V1i—O14—V4	93.95 (5)		
O11—V2—V4i	40.14 (4)	V1—O14—V2	93.60 (5)		
O14—V2—V4i	84.60 (3)	V1i—O14—V2	93.05 (5)		
O2—V2—V5	135.78 (6)	V4—O14—V2	168.99 (7)		
O12—V2—V5	83.17 (5)	V1—O14—V5	88.22 (4)		
O7—V2—V5	32.62 (5)	V1i—O14—V5	170.40 (6)		
O6—V2—V5	124.76 (4)	V4—O14—V5	86.16 (4)		
O11—V2—V5	87.04 (4)	V2—O14—V5	85.53 (5)		
O14—V2—V5	48.18 (3)	V1—O14—V3	170.95 (7)		
V4—V2—V5	119.903 (14)	V1i—O14—V3	87.68 (4)		
O3—V3—O13	102.26 (8)	V4—O14—V3	85.29 (4)		
O3—V3—O8	103.30 (8)	V2—O14—V3	86.51 (4)		
O13—V3—O8	92.71 (7)	V5—O14—V3	82.77 (4)		
O3—V3—O12	101.81 (7)	N3—C1—N1	125.0 (2)		
O13—V3—O12	154.56 (6)	N3—C1—N2	116.8 (2)		
O8—V3—O12	89.66 (7)	N1—C1—N2	118.1 (2)		
O3—V3—O1i	100.28 (7)	N4—C2—N5	119.8 (2)		
O13—V3—O1i	85.14 (6)	N4—C2—N3	122.1 (2)		
O8—V3—O1i	156.22 (6)	N5—C2—N3	117.8 (2)		
O12—V3—O1i	82.61 (6)	N5—C3—H3A	109.5		
O3—V3—O14	174.67 (7)	N5—C3—H3B	109.5		
O13—V3—O14	78.49 (5)	H3A—C3—H3B	109.5		
O8—V3—O14	81.89 (5)	N5—C3—H3C	109.5		
O12—V3—O14	76.79 (5)	H3A—C3—H3C	109.5		
O1i—V3—O14	74.47 (5)	H3B—C3—H3C	109.5		
O3—V3—V5	136.65 (7)	N5—C4—H4C	109.5		
O13—V3—V5	85.37 (4)	N5—C4—H4D	109.5		
O8—V3—V5	33.35 (4)	H4C—C4—H4D	109.5		
O12—V3—V5	82.78 (4)	N5—C4—H4E	109.5		
O1i—V3—V5	122.98 (4)	H4C—C4—H4E	109.5		
O14—V3—V5	48.54 (3)	H4D—C4—H4E	109.5		
O3—V3—V1i	131.48 (7)	C1—N1—H1A	120.9 (18)		
O13—V3—V1i	79.52 (5)	C1—N1—H1B	121 (2)		
O8—V3—V1i	125.17 (5)	H1A—N1—H1B	117 (3)		
O12—V3—V1i	78.46 (5)	C1—N2—H2A	117 (2)		
O1i—V3—V1i	31.20 (4)	C1—N2—H2B	123 (2)		
O14—V3—V1i	43.29 (3)	H2A—N2—H2B	119 (3)		
V5—V3—V1i	91.829 (13)	C1—N3—C2	121.3 (2)		
O3—V3—V4	134.99 (6)	C2—N4—H4A	120.2 (18)		
O13—V3—V4	32.85 (4)	C2—N4—H4B	125 (2)		
O8—V3—V4	82.37 (5)	H4A—N4—H4B	114 (3)		
O12—V3—V4	123.02 (4)	C2—N5—C3	120.9 (2)		
O1i—V3—V4	83.12 (4)	C2—N5—C4	121.5 (2)		
O14—V3—V4	46.25 (3)	C3—N5—C4	117.5 (2)		
V5—V3—V4	60.738 (12)	N6—C5—N8	118.3 (2)		
V1i—V3—V4	62.131 (11)	N6—C5—N7	117.9 (2)		
O4—V4—O9	104.49 (7)	N8—C5—N7	123.7 (2)		
O4—V4—O13	103.24 (7)	N9—C6—N10	119.0 (2)		
Bond	Angle 1	Angle 2	Angle 3		
--------------	---------	---------	---------		
O9—V4—O13	95.73 (7)	N9—C6—N8	122.24 (18)		
O4—V4—O6	98.59 (7)	N10—C6—N8	118.44 (19)		
O9—V4—O6	90.50 (6)	N10—C7—H7C	109.5		
O13—V4—O6	154.96 (6)	N10—C7—H7D	109.5		
O4—V4—O11i	98.58 (7)	H7C—C7—H7D	109.5		
O9—V4—O11i	154.97 (6)	N10—C7—H7E	109.5		
O13—V4—O11i	88.24 (6)	H7C—C7—H7E	109.5		
O6—V4—O11i	76.41 (5)	H7D—C7—H7E	109.5		
O4—V4—O14	172.62 (7)	N10—C8—H8A	109.5		
O9—V4—O14	81.17 (6)	N10—C8—H8B	109.5		
O13—V4—O14	80.64 (5)	H8A—C8—H8B	109.5		
O6—V4—O14	76.39 (5)	N10—C8—H8C	109.5		
O11i—V4—O14	75.10 (5)	H8A—C8—H8C	109.5		
O4—V4—V2i	88.30 (6)	H8B—C8—H8C	109.5		
O9—V4—V2i	130.12 (5)	C5—N6—H6A	121.6 (18)		
O13—V4—V2i	128.48 (5)	C5—N6—H6B	116 (2)		
O6—V4—V2i	39.63 (4)	H6A—N6—H6B	122 (3)		
O11i—V4—V2i	40.24 (4)	C5—N7—H7A	122 (2)		
O14—V4—V2i	84.39 (3)	C5—N7—H7B	123 (2)		
O4—V4—V3	135.96 (6)	H7A—N7—H7B	115 (3)		
O9—V4—V3	84.25 (5)	C5—N8—C6	118.98 (18)		
O13—V4—V3	32.81 (5)	C6—N9—H9A	120 (2)		
O6—V4—V3	124.78 (4)	C6—N9—H9B	126 (2)		
O11i—V4—V3	85.92 (4)	H9A—N9—H9B	112 (3)		
O14—V4—V3	48.45 (3)	C6—N10—C8	120.82 (19)		
V2i—V4—V3	119.12 (14)	C6—N10—C7	120.68 (19)		
O4—V4—V5	138.15 (6)	C8—N10—C7	118.08 (17)		
O9—V4—V5	33.81 (5)	N11—C9—N12	119.9 (2)		
O13—V4—V5	83.95 (5)	N11—C9—N13	119.58 (19)		
O6—V4—V5	87.98 (4)	N12—C9—N13	120.6 (2)		
O11i—V4—V5	123.03 (4)	O15—C10—N14	123.2 (2)		
O14—V4—V5	47.94 (3)	O15—C10—N13	122.1 (2)		
V2i—V4—V5	119.587 (14)	N14—C10—N13	114.7 (2)		
V3—V4—V5	59.228 (12)	C9—N11—H11A	121.0 (19)		
O5—V5—O8	103.84 (8)	C9—N11—H11B	124 (2)		
O5—V5—O7	102.08 (8)	H11A—N11—H11B	116 (3)		
O8—V5—O7	92.75 (7)	C9—N12—H12A	115 (2)		
O5—V5—O9	101.85 (8)	C9—N12—H12B	119 (2)		
O8—V5—O9	91.20 (7)	H12A—N12—H12B	126 (3)		
O7—V5—O9	154.03 (7)	C9—N13—C10	124.73 (18)		
O5—V5—O10	99.67 (7)	C9—N13—C10	115.2 (19)		
O8—V5—O10	156.41 (6)	C10—N13—C10	120.0 (19)		
O7—V5—O10	84.18 (6)	C10—N14—H14A	115 (2)		
O9—V5—O10	82.01 (6)	C10—N14—H14B	123 (3)		
O5—V5—O14	173.78 (7)	H14A—N14—H14B	122 (3)		
O8—V5—O14	82.35 (5)	H16A—O16—H16B	111 (3)		
O7—V5—O14	77.92 (5)	H17A—O17—H17B	99 (3)		
Bond	Angle (°)	Error 1	Bond	Angle (°)	Error 1
----------------------	----------	---------	----------------------	----------	---------
O10—V1—O1—V3i	−179.43	7	O7—V2—O12—V3	−70.42	9
O11—V1—O1—V3i	−78.38	8	O6′—V2—O12—V3	84.95	8
O6—V1—O1—V3i	82.74	7	O11—V2—O12—V3	28.32	19
O14—V1—O1—V3i	4.8	3	O14—V2—O12—V3	8.53	7
O14′—V1—O1—V3i	1.73	7	V4′—V2—O12—V3	83.39	9
V5—V1—O1—V3i	−178.31	3	V5—V2—O12—V3	−40.10	7
O2—V2—O7—V5	174.91	8	O3—V3—O12—V2	176.91	9
O12—V2—O7—V5	68.39	9	O13—V3—O12—V2	−22.2	2
O6—V2—O7—V5	−33.07	19	O8—V3—O12—V2	73.38	9
O11—V2—O7—V5	−86.17	8	O1′—V3—O12—V2	−84.07	8
O14—V2—O7—V5	−10.96	7	O14—V3—O12—V2	−8.37	7
V4—V2—O7—V5	−85.57	8	V5—V3—O12—V2	40.66	7
O5—V5—O7—V2	−175.65	9	V1′—V3—O12—V2	−52.71	7
O8—V5—O7—V2	−70.87	9	V4—V3—O12—V2	−7.28	11
O9—V5—O7—V2	27.55	19	O3—V3—O13—V4	−175.67	9
O10—V5—O7—V2	85.67	8	O8—V3—O13—V4	−71.43	9
O14—V5—O7—V2	10.70	7	O12—V3—O13—V4	23.5	2
V1—V5—O7—V2	54.41	7	O1′—V3—O13—V4	84.84	8
V3—V5—O7—V2	−37.93	7	O14—V3—O13—V4	9.73	7
V4—V5—O7—V2	11.29	10	V5—V3—O13—V4	−38.87	7
O5—V5—O8—V3	−178.80	9	V1′—V3—O13—V4	53.86	7
O7—V5—O8—V3	78.04	9	O4—V4—O13—V3	176.40	9
O9—V5—O8—V3	−76.28	8	O9—V4—O13—V3	70.03	9
O10—V5—O8—V3	−3.7	2	O6—V4—O13—V3	−33.6	2
O14—V5—O8—V3	0.62	7	O11′—V4—O13—V3	−85.2	8
V1—V5—O8—V3	0.33	11	O14—V4—O13—V3	−10.01	7
V2—V5—O8—V3	47.35	7	V2′—V4—O13—V3	−85.08	9
V4—V5—O8—V3	−45.74	7	V5—V4—O13—V3	38.28	7
O3—V3—O8—V5	−179.37	9	N1—C1—N3—C2	27.6	4
O13—V3—O8—V5	77.35	8	N2—C1—N3—C2	−156.9	3
O12—V3—O8—V5	−77.32	8	N4—C2—N3—C1	40.9	4
O1′—V3—O8—V5	−6.7	2	N5—C2—N3—C1	−146.1	2
O14—V3—O8—V5	−0.62	7	N4—C2—N5—C3	−173.7	2
V1′—V3—O8—V5	−1.73	11	N3—C2—N5—C3	13.1	4
V4—V3—O8—V5	46.10	7	N4—C2—N5—C4	2.3	4
O4—V4—O9—V5	−175.39	8	N3—C2—N5—C4	−170.9	3
O13—V4—O9—V5	−70.10	8	N6—C5—N8—C6	−160.5	2
O6—V4—O9—V5	85.61	8	N7—C5—N8—C6	22.6	3
O11′—V4—O9—V5	28.06	18	N9—C6—N8—C5	44.9	3
O14—V4—O9—V5	9.47	7	N10—C6—N8—C5	−141.8	2
V2′—V4—O9—V5	84.38	8	N9—C6—N10—C8	−3.0	3
V3—V4—O9—V5	−39.32	6	N8—C6—N10—C8	−176.5	2
O1—V1—O10—V5	178.99	7	N9—C6—N10—C7	−175.4	2
O11—V1—O10—V5	79.26	7	N8—C6—N10—C7	11.1	3
O6—V1—O10—V5	−83.36	7	N11—C9—N13—C10	179.5	2
O14—V1—O10—V5	−2.03	7	N12—C9—N13—C10	−1.6	4
O14′—V1—O10—V5	−6.3	3	O15—C10—N13—C9	0.5	4
IUCrData (2022). 7, x220627

Symmetry code: (i) \(-x, -y+1, -z+1\); (ii) \(-x, -y+2, -z+1\); (iii) \(x-1, y, z\); (iv) \(x, -y+1, -z\); (v) \(x+1, y, z\); (vi) \(-x+1, -y+2, -z+1\); (vii) \(-x-1, -y+1, -z+1\).