Mind Your Weight(s): A Large-scale Study on Insufficient Machine Learning Model Protection in Mobile Apps

Zhichuang Sun
Northeastern University

Ruimin Sun
Northeastern University

Long Lu
Northeastern University

Alan Mislove
Northeastern University

Abstract
On-device machine learning (ML) is quickly gaining popularity among mobile apps. It allows offline model inference while preserving user privacy. However, ML models, considered as core intellectual properties of model owners, are now stored on billions of untrusted devices and subject to potential thefts. Leaked models can cause both severe financial loss and security consequences.

This paper presents the first empirical study of ML model protection on mobile devices. Our study aims to answer three open questions with quantitative evidence: How widely is model protection used in apps? How robust are existing model protection techniques? What impacts can (stolen) models incur? To that end, we built a simple app analysis pipeline and analyzed 46,753 popular apps collected from the US and Chinese app markets. We identified 1,468 ML apps spanning all popular app categories. We found that, alarmingly, 41% of ML apps do not protect their models at all, which can be trivially stolen from app packages. Even for those apps that use model protection or encryption, we were able to extract the models from 66% of them via unsophisticated dynamic analysis techniques. The extracted models are mostly commercial products and used for face recognition, liveness detection, ID/bank card recognition, and malware detection. We quantitatively estimated the potential financial and security impact of a leaked model, which can amount to millions of dollars for different stakeholders.

Our study reveals that on-device models are currently at high risk of being leaked; attackers are highly motivated to steal such models. Drawn from our large-scale study, we report our insights into this emerging security problem and discuss the technical challenges, hoping to inspire future research on robust and practical model protection for mobile devices.

1 Introduction
Mobile app developers have been quickly adopting on-device machine learning (ML) techniques to provide artificial intelligence (AI) features, such as facial recognition, augmented/virtual reality, image processing, voice assistant, etc. This trend is now boosted by new AI chips available in the latest smartphones [1], such as Apple’s Bionic neural engine, Huawei’s neural processing unit, and Qualcomm’s AI-optimized SoCs.

Compared to performing ML tasks in the cloud, on-device ML (mostly model inference) offers unique benefits desirable for mobile users as well as app developers. For example, it avoids sending (private) user data to the cloud and does not require network connection. For app developers or ML solution providers, on-device ML greatly reduces the computation load on their servers.

On-device ML inference inevitably stores ML models locally on user devices, which however creates a new security challenge. Commercial ML models used in apps are often part of the core intellectual property (IP) of vendors. Such models may fall victim to theft or abuse, if not sufficiently protected. In fact, on-device ML makes model protection much more challenging than server-side ML because models are now stored on user devices, which are fundamentally untrustworthy and may leak models to curious or malicious parties.

The consequences of model leakage are quite severe. First, with a leaked model goes away the R&D investment of the model owner, which often includes human, data, and computing costs. Second, when a proprietary model is obtained by unethical competitors, the model owner loses the competitive edge or pricing advantage for its products. Third, a leaked model facilitates malicious actors to find adversarial inputs to bypass or confuse the ML systems, which can lead to not only reputation damages to the vendor but also critical failures in their products (e.g., fingerprint recognition bypass).

This paper presents the first large-scale study of ML model protection and theft on mobile devices. Our study aims to shed light on the less understood risks and costs of model leakage/theft in the context of on-device ML. We present our study that answers the following questions with ample empirical evidence and observations.

- Q1: How widely is model protection used in apps?
- Q2: How robust are existing model protection techniques?
- Q3: What impacts can (stolen) models incur?
To answer these questions, we collected 46,753 trending Android apps from the US and the Chinese app markets. To answer Q1, we built a simple and automatic pipeline to first identify the ML models and SDK/frameworks used in an app, and then detect if the ML models are encrypted. Among all the collected apps, we found 1,468 apps that use on-device ML, and 602 (41%) of them do not protect their ML models at all (i.e., models are stored in plaintext form on devices). Most of these apps have high installation counts (greater than 10M) and span the top-ten app categories, which underlines the limited awareness of model thefts and the need for model protection among app developers.

To answer Q2, for the encrypted models, we dynamically run the corresponding apps and built an automatic pipeline to identify and extract the decrypted ML models from memory. This pipeline represents an unsophisticated model theft attack that an adversary can realistically launch on her own device. We found that the same protected models can be reused/shared by multiple apps, and a set of 18 unique models extracted from our dynamic analysis can affect 347 apps (43% of all the apps with protected models). These apps cover a wide range of ML frameworks, including TensorFlow, TFLite, Caffe, SenseTime, Baidu, Face++, etc. They use ML for various purposes, including face tracking, liveness detection, OCR, ID card and bank card recognition, photo processing, and even malware detection.

We also observed some interesting cases where a few model owners spent extra effort on protecting their models, such as encrypting both code and model files, encrypting model files multiple times, or encrypting feature vectors. Despite the efforts, these models can be successfully extracted in memory in plaintext. These cases indicate that model owners or app developers start realizing the risk of model thefts but no standard and robust model protection technique exists, which echoes the urgent need for research into on-device model protection.

Finally, to answer Q3, we present an analysis on the financial and security impact of model leakage on both the attackers and the model vendors. We identify three major sources of impact: the research and development investment on the ML models, the financial loss due to competition, and the security impact due to model evasion. We found that the potential financial loss can be as high as millions of dollars, depending on the app revenue and the actual cost of the models. The security impact includes bypassing the model-based access control, which may result in reputation damage or even product failure.

By performing the large-scale study and finding answers to the three questions, we intend to raise the awareness of the model leak/theft risks, which apps using on-device ML are facing even if models are encrypted. Our study shows that the risks are realistic due to absent or weak protection of on-device models. It also shows that attackers are not only technically able to, but also highly motivated to steal or abuse on-device ML models. We share our insights and call for future research to address this emerging security problem.

In summary, the contributions of our research are:

- We apply our analysis pipeline on 46,753 Android apps collected from US and Chinese app markets. We found that among the 1,468 apps using on-device ML, 41% do not have any protection on their ML models. For those do, 66% of them still leak their models to an unsophisticated runtime attack.
- We provide a quantified estimate on the financial and security impact of model leakage based on case studies. We show that attackers with stolen models can save as high as millions of dollars, while vendors can encounter pricing disadvantage and falling market share. Further model evasion may cause illegal access to private information of end users.
- Our work calls for research on robust protection mechanisms for ML models on mobile devices. We share our insights gained during the study to inform and assist future work on this topic.

The rest of the paper is organized as follows. Section 2 introduces the background knowledge about on-device ML. Section 3 presents an overview of our analysis pipeline. Sections 4, 5, and 6 answers the questions Q1, Q2, and Q3, respectively. Section 7 summarizes the current model protection practices and their effectiveness. Section 8 discusses the research insights and the limitations of our analysis. Section 9 surveys the related work and Section 10 concludes the paper.

2 Background

The Trend of On-device Machine Learning: Currently, there are two ways for mobile apps to use ML: cloud-based and on-device. In cloud-based ML, apps send requests to a cloud server, where the ML inference is performed, and then retrieve the results. The drawbacks include requiring constant network connections, unsuitable for real-time ML tasks (e.g., live object detection), and needing raw user data uploaded to the server. Recently, on-device ML inference is quickly gaining popularity thanks to the availability of hardware accelerators on mobile devices and the ML frameworks optimized for mobile apps. On-device ML avoids the aforementioned drawbacks of cloud-based ML. It works without network connections, performs well in real-time tasks, and seldom needs to send (private) user data off the device. However, with ML inference tasks and ML models moved from cloud to user devices, on-device ML raises a new security challenge to model owners and ML service providers: how to protect the valuable and proprietary ML models now stored and used on user devices that cannot be trusted.

The Delivery and Protection of On-device Models:

Typically, on-device ML models are trained by app developers or ML service providers on servers with rich computing resources (e.g., GPU clusters and large storage servers). Trained models are shipped with app installation packages. A model can also be downloaded separately after app installation.
to reduce the app package size. Model inference is performed by apps on user devices, which relies on model files and ML frameworks (or SDKs). To protect on-device models, some developers encrypt/obfuscate them, or compile them into app code and ship them as stripped binaries [9, 25]. However, such techniques only make it difficult to reverse a model, rather than strictly preventing a model from being stolen or reused.

On-device Machine Learning Frameworks: There are tens of popular ML frameworks, such as Google TensorFlow and TensorFlow Lite [27], Facebook PyTorch and Caffe2 [8], Tencent NCNN [25], and Apple Core ML [10]. Among these frameworks, TensorFlow Lite, Caffe2, NCNN and Core ML are particularly optimized for mobile apps. Different frameworks use different file formats for storing ML models on devices, including ProtoBuf (.pb, .pbtxt), FlatBuffer (.tflite), MessagePack (.model), pickle (.pkl), Thrift (.thrift), etc. To mitigate model reverse engineering and leakage, some companies developed customized or proprietary model formats [53, 61].

On-device Machine Learning Solution Providers: For cost efficiency and service quality, app developers often use third-party ML solutions, rather than training their own models or maintaining in-house ML development teams. The popular providers of ML solutions and services include Face++ [13] and SenseTime [34], which sell offline SDKs (including on-device models) that offer facial recognition, voice recognition, liveness detection, image processing, Optical Character Recognition (OCR), and other ML functionalities. By purchasing a license, app developers can include such SDKs in their apps and use the ML functionalities as black-boxes. ML solution providers are more motivated to protect their models because model leakage may severely damage their business [34].

3 Analysis Overview

On-device ML is quickly being adopted by apps, while its security implications on model/app owners remain largely unknown. Especially, the threats of model thefts and possible ways to protect models have not been sufficiently studied. This paper aims to shed light on this issue by conducting a large-scale study and providing quantified answers to three questions: How widely is model protection used in apps? (§4) How robust are existing model protection techniques? (§5) What impacts can (stolen) models incur? (§6)

To answer these questions, we built a static-dynamic app analysis pipeline. We note that this pipeline and the analysis techniques are kept simple intentionally and are not part of the research contributions of this work. The goal of our study is to understand how easy or realistic it is to leak or steal ML models from mobile apps, rather than demonstrating novel or sophisticated app analysis and reverse-engineering techniques. Our analysis pipeline represents what a knowledgeable yet not extremely skilled attacker can already achieve when trying to steal ML models from existing apps. Therefore, our analysis result gives the lower bound of (or a conservative estimate on) how severe the model leak problem currently is.

The workflow of our analysis is depicted in Figure 1. Apps first go through the static analyzer, ModelXRay, which detects the use of on-device ML and examines the model protection, if any, adopted by the app. For apps with encrypted models, the pipeline automatically generates the analysis scripts and send them to the dynamic analyzer, ModelXtractor, which performs a non-sophisticated form of in-memory extraction of model representations. ModelXtractor represents a realistic attacker who attempts to steal the ML models from an app installed on her own phone. Models extracted this way are in plaintext formats, even though they exist in encrypted forms in the device storage or the app packages. Our evaluation of ModelXRay and ModelXtractor (§4.3 and §5.3) shows that they are highly accurate for our use, despite the simple analysis techniques. We report our findings and insights drawn from the large-scale analysis results produced by ModelXRay and ModelXtractor in §4.4 and §5.4, respectively.

We investigated both the financial impact and the security impact of model leakages. For financial impact, we found that the attackers would benefit from the savings of model licenses fee and Research & Development (R&D) investment; while the model vendors would suffer from losing pricing advantages and market share. The security impact includes easier bypass of model based access control and further security and privacy breaches, which could affect both the end users and the model vendors. (§6).

4 Q1: How Widely Is Model Protection Used in Apps?

4.1 Android App Collection

We collect apps from three Android app markets: Google Play, Tencent My App, and 360 Mobile Assistant. They are the leading Android app stores in the US and China [35]. We download the apps labeled TRENDING and NEW across all 55 categories from Google Play (12,711), and all recently updated apps from Tencent My App (2,192) and 360 Mobile Assistant (31,850).

4.2 Methodology of ModelXRay

ModelXRay statically detects if an app uses on-device ML and whether or not its models are protected or encrypted.
ModelXRay extracts an app’s asset files and libraries from the APK file, analyzes the native libraries and asset files to identify ML frameworks, SDK libraries and model files. Then it applies model filters combining file sizes, file suffixes and ML libraries to reduce false positives and use entropy analysis to identify encrypted models.

ModelXRay is simple by design and adopts a best-effort detection strategy that errs on the side of soundness (i.e., low false positives), which is sufficient for our purpose of analyzing model leakage.

We only consider encrypted models as protected in this study. We are aware that some apps obfuscate the description text in the models. As we will discuss in Section 7, obfuscation may make it harder for the attacker to understand the model, but does not prevent the attacker from reusing it at all.

The workflow of ModelXRay is shown in Figure 2. For a given app, ModelXRay disassembles the APK file and extracts the app asset files and the native libraries. Next, it identifies the ML libraries/frameworks and the model files as follows:

ML Frameworks and SDK Libraries: On-device model inference always use native ML libraries for performance reasons. Inspired by Xu’s work [61], we use keyword searching in binaries for identifying native ML libraries. ModelXRay supports a configurable dictionary that maps keywords to corresponding ML frameworks, making it easy to include new ML frameworks or evaluate the accuracy of keywords (listed in Appendix A1). Further, ModelXRay supports generic keywords, such as “NeuralNetwork”, “LSTM”, “CNN”, and “RNN” to discover unpopular ML frameworks. However, these generic keywords may cause false positives. We evaluate and verify the results in §4.3.

ML Model Files: To identify model files, previous work [61] rely on file suffix match to find models that follow the common naming schemes. We find, however, many model files are arbitrarily named. Therefore, We use a hybrid approach combining file suffix match and path keyword match (e.g.,../models/arbitrary.name can be a model file). We address false positives by using three filters: whether the file size is big enough (more than 8 KB); whether it has a file suffix that is unlikely for ML models (e.g.,.model.jpg); whether the app has ML libraries.

Encrypted Model Files: We use the standard entropy test to infer if a model file is encrypted or not. High entropy in a file is typically resulted from encryption or compression [12]. For compressed files, we rule them out by checking file types and magic numbers. We use 7.99 as the entropy threshold for encryption in the range of [0,8], which is the average entropy of the sampled encrypted model files (see §4.3). Previous work [61] treats models that cannot be parsed by ML framework as encrypted models, which is not suitable in our analysis and has high false positives for several reasons, such as the lack of a proper parser, customized model formats, aggregated models, etc.

ML App Profiles: As the output, ModelXRay generates a profile for each app analyzed. A profile comprises of two parts: ML models and SDK libraries. For ML models, it records file names, sizes, MD5 hash and entropy. In particular, the MD5 hashes help us identify shared/reused models among different apps (as discussed in §4.4).

For SDK libraries, we record framework names, the exported symbols, and the strings extracted from the binaries. They contain information about the ML functionalities, such as OCR, face detection, liveness detection. Our analysis pipeline uses such information to generate the statistics on the use of ML libraries (§4.4).

4.3 Accuracy Evaluation of ModelXRay

Accuracy of Identifying ML Apps: To establish the ground truth for this evaluation, we chose the 219 non-ML apps labeled by [61] as the true negatives, and we manually selected and verified 219 random ML apps as the true positives. We evaluated ModelXRay on this set of 438 apps. It achieved a false negative rate of 6.8% (missed 30 ML apps) and a false positive rate of 0% (zero non-ML apps is classified as ML apps). We checked the 30 missed ML apps, and found out that they are using unpopular ML Frameworks whose keywords are not in the dictionary. We found two ML apps that ModelXRay correctly detected but are missed by [61], one using ULSFaceTracker, which is
an unpopular ML framework and the other using TensorFlow.

To further evaluate the false positive rate, we run ModelXRay on our entire set of 46,753 apps and randomly sampled 100 apps labeled by ModelXRay as ML apps (50 apps from Google Play and 50 apps from Chinese app market). We then manually checked these 100 apps and found 3 apps that are not ML apps (false positive rate of 3%). The manual check was done by examining the library’s exposed symbols and functions. This relatively low false positive rate shows ModelXRay’s high accuracy in detecting ML apps for our large-scale study.

Accuracy of Identifying Models: We randomly sampled 100 model files identified by ModelXRay from Chinese app markets and Google Play, respectively, and manually verified the results. ModelXRay achieved a true positive rate of 91% and 97%, respectively.

In order to evaluate how widely apps conform to model standard naming conventions, we manually checked 100 ML apps from both Google Play and Chinese app market and found 24 apps that do not follow any clear naming conventions. Some use "*.tfl" and "*.lite" instead of the normal "*.tflite" for TensorFlow Lite models. Some use "_class_model" without a suffix. Some have meaningful but not standard suffixes such as "_rpm_model", "_trained_data". Other have very generic suffixes such as "_bin", "_dat", and "_bundle". This observation shows that file suffix matching alone can miss a lot of model files. Table 1 shows the top 5 popular model file suffixes used in different app markets. Many of these popular suffixes are not standard. ModelXRay’s model detection does not solely depend on model file names.

Table 1: Popular model suffix among different app markets

360 Mobile Assistant	Num. Of Cases	Google Play	Num. Of Cases
.bin	1860	.bin	318
.model	1540	.model	175
.rpmmodel	257	.pb	93
.binary	212	.tflite	83
.dat	201	.traineddata	46

Accuracy of Identifying Encrypted Models: To evaluate whether entropy is a good indicator of encryption, we sampled 40 models files from 4 popular encodings: ascii text, protobuffer, flatbuffer, and encrypted format (10 for each category). As shown in Figure 3, the entropies of encrypted model files are all close to 8. The other encodings’ entropies are significantly lower than 8. Figure 4 shows the entropy distribution of all model files collected from 360 App Assistant app market. It shows that the typical entropy range of unencrypted model files is between 3.5 and 7.5.

4.4 Findings and Insights

We now present the results from our analysis as well as our findings and insights, which provide answers to the question “Q1: How widely is model protection used in apps?”. We start with the popularity and diversity of on-device ML among our collected apps, which echo the importance of model security and protection. We then compare model protection used in various apps. Especially, we draw observations on how model protection varies across different app markets and different ML frameworks. We also report our findings about the shared encrypted models used in different apps. In addition, we measured the adoption of GPU acceleration in ML apps and compared the use of remote models and on-device models to further reveal the trends of on-device model inference in mobile apps.

Popularity and Diversity of ML Apps: In total, we are able to collect 46,753 Android apps from Google Play, Tencent My App and 360 Mobile Assistant stores. Using ModelXRay, we identify 1,468 apps that use on-device ML and have ML models deployed on devices, which accounts for 3.14% of our entire app collection.

We also measure the popularity of ML apps for each category, as apps from certain categories may be more likely to use on-device ML than others. We used the app category information from the three app markets. Table 2 shows the per-category numbers of total apps and ML apps (i.e., apps using on-device ML). Our findings are summarized as follows:

On-device ML is gaining popularity in all categories. There are more than 50 ML apps in each of the categories, which suggests the widespread interests among app developers in using on-device ML. Among all the categories, “Business”,

![Figure 3: Model File Entropy of 4 Popular Encodings](image-url)

![Figure 4: Model File Entropy Distribution of 360 App Market](image-url)
“Image” and “News” are the top three that see most ML apps. This observation confirms the diversity of apps that make heavy use of on-device ML. It also highlights that a wide range of apps need to protect their ML models and attackers have a wide selection of targets.

More apps from Chinese markets are embracing on-device ML. This is reflected from both the percentage and the absolute number of ML apps: Google Play has 178 (1.40%), Tencent My App has 159 (7.25%), and 360 Mobile Assistant has 1,131 (3.55%).

As we can see from the above findings, Chinese app markets show a significant higher on-device machine learning adoption rate and unique property of per-category popularity, making it a non-negligible dataset for studying on-device machine learning model protection.

Table 2: The number of apps collected across markets.

Category	Google Play	Tencent My App	360 Mobile Assistant	Total
Business	404	2	2	408
News	96	0	102	198
Images	349	36	158	533
Map	263	4	206	573
Social	438	23	141	602
Shopping	183	5	112	300
Life	1,715	15	193	2,023
Education	389	3	116	508
Finance	123	6	76	204
Health	317	5	115	447
Other	8,434	79	874	9,497
Total	**12,711**	**178**	**2,192**	**15,083**

Note: In 360 Mobile Assistant, the number of unique apps is 31,591 (smaller than 32,850) because some apps are multi-categorized. Image category contains 4,900 apps because we merged image and photo related apps.

We measure the diversity of ML apps in terms of ML frameworks and functionalities. We show the top-10 most common functionalities and their distribution across different ML frameworks in Table 3.

On-device ML offers highly diverse functionalities. Almost all common ML functionalities are now offered in the on-device fashion, including OCR, face tracking, hand detection, speech recognition, handwriting recognition, ID card recognition, and bank card recognition, liveness detection, face recognition, iris recognition and so on. This high diversity means that, from the model theft perspective, attackers can easily find targets to steal ML models for any common functionalities.

Long tail in the distribution of ML frameworks used in apps. Besides the well-known frameworks such as TensorFlow, Caffe2/PyTorch, and Parrots, many other ML frameworks are used for on-device ML, despite their relatively low market share. For instance, as shown in Table 3, Tencent NCNN [25], Xiaomi Mace [9], Apache MXNet [5], and ULS from Utility Asset Store [30] are used by a fraction of the apps that we collected. Each of them tends to cover only a few ML functionalities. In addition, there could be other unpopular ML frameworks that our analysis may have missed. This long tail in the distribution of ML frameworks poses a challenge to model protection because frameworks use different model formats, model loading/parsing routines, and model inference pipelines.

Models Downloaded at Runtime: Mobile apps can always update on-device models as part of the app package update, or update models independently by downloading the models at runtime. After investigating a few open ML platforms including Android’s Firebase and Apple’s Core ML, we found that they support downloading models at runtime [4, 6]. Other open-sourced ML platforms like Paddle-Lite [21], NCNN [26] and Mace [32], do not explicitly support downloading models at runtime. Developers who use their SDKs can implement this feature easily if they need it. Some proprietary ML SDKs, like SenseTime, Face++, which are not open-sourced, do not leave enough information for us to tell whether they implement this feature or not.

To measure how many ML apps that download models at runtime, we can use static analysis or dynamic analysis. For dynamic analysis, we can run each app, monitor the downloaded files, and check whether these files are ML models or not. It would require installing and running tens of thousands of apps, as well as triggering the model downloading process, which is not practical. For static analysis, we can reverse engineer each app and analyze whether it implements this feature or not. However, this feature can be implemented in a few lines of code without exporting any symbols and the app packages are always obfuscated, making it hard to analyze.

We took an indirect approach. We measure the number of apps that contain on-device ML libraries but not any ML models. These apps have to download the models at runtime to use the ML function. We found 109 such apps, 64 from the Chinese app markets and 45 from the US app markets.

Model Protection Across App Stores: Figure 5 gives the per-app-market statistics on ML model protection and reuse. Figure 5a shows the per-market numbers of protected apps (i.e., apps using protected/encrypted models) and unprotected apps (i.e., apps using unprotected models).

Overall, only 59% of ML apps protect their models. The rest of the apps (602 in total) simply include the models in plaintext, which can be easily extracted from the app packages or installation directories. This result is alarming and suggests that a large number of app developers are unaware of model theft risks and fail to protect their models. It also shows that, for 41% of the ML apps, stealing their models is as easy as downloading and decompressing their app packages. We urge stakeholders and security researchers to raise their awareness and understanding of model thefts, which is a goal of this work.

Percentages of protected models vary across app markets. When looking closer at each app market, it is obvious to see that Google Play has the lowest percentage of ML apps using protected models (26%) whereas 360 Mobile Assistant has the highest (66%) and Tencent My App follows closely (59%). A similar conclusion can be drawn on the unique models.
We found that many encrypted models are reused or shared (Figure 5b) become even higher. Overall, 4,254 out of 6,522 ML providers in preventing model thefts. However, we found features. The encrypted models reflect the awareness of the such as SenseTime, instead of developing their own ML libraries that provide the model encryption feature. However, result can be partly explained by the fact that some popular frameworks are the least protected against model thefts. This models (77%) are unprotected and thus easily extractable and reverse engineered.

Model Protection Across ML Frameworks: We also derive the per-ML-framework statistics on model protection (Figure 6). The frameworks used by a relatively small number apps, including MXNet, Mace, TFLite, and ULS, are grouped into the “Other” category.

Some popular ML frameworks have wider adoption of model protection, but some not. As shows in Figure 6a, more than 79% of the apps using SenseTime (Parrots) have protected models, followed by apps using Caffe (60% of them have protected models). For apps using TensorFlow and NCNN, the number is around 20%. Apps using other frameworks are the least protected against model thefts. This result can be partly explained by the fact that some popular frameworks, such as SenseTime, has first-party or third-party libraries that provide the model encryption feature. However, even for apps using the top-4 ML frameworks, the percentage of ML apps adopting model protection is still low at 59%.

Encrypted Models Reused/Shared among Apps: Our analysis also reveals a common practice used in developing on-device ML apps, which has profound security implications. We found that many encrypted models are reused or shared by different apps. The most widely shared model, namely SenseID_Motion_Liveness.model, is found in 81 apps. This reuse might be legitimate given that app developers buy and use ML models and services from third-party providers, such as SenseTime, instead of developing their own ML features. The encrypted models reflect the awareness of the ML providers in preventing model thefts. However, we found 60 cases of different app companies are reusing model licenses. One of the licenses is even used by 12 different app companies, indicating a high chance of illegal uses.

It is common to see the same encrypted model shared by different apps. For all the encrypted models that we detected from the apps, we calculate their MD5 hashes and identify those models that are used in different and unrelated apps. Figures 5c and 6c shows the numbers of unique (or non-shared) models and reused (or shared) models, grouped by app markets and ML frameworks, respectively. Overall, only 22% of all the protected models are unique. 75% of the encrypted models from Google Play are unique whereas only 50% and 19% of the encrypted models on Tencent My App and 360 Mobile Assistant, respectively, are not reused (Figure 5c). When grouped by ML frameworks, 82% of encrypted SenseTime models are shared, the highest among all frameworks (Figure 6c).

Functionality	TensorFlow (Google)	*Caffe2/PyTorch (Facebook)	Parrots (SenseTime)	*TFLite (Tencent)	Mace (Xiaomi)	NCNN (Apache)	ULS (Unity Asset Store)	Total
OCR (Optical Character Recognition)	41	186	140	6	37	18	1	114
Face Tracking	26	272	216	7	53	6	13	27
Speech Recognition	7	32	9	1	11	18	1	9
Hand Detection	4	0	0	2	4	0	0	10
Handwriting Recognition	8	17	1	0	16	0	0	42
Liveness Detection	32	392	349	9	70	7	10	3
Face Recognition	17	116	95	6	40	7	10	3
Iris Recognition	8	0	0	2	0	3	0	9
ID Card Recognition	26	230	147	5	47	18	0	10
Bank Card Recognition	11	126	117	2	16	18	1	9

Table 3: Number of apps using different ML frameworks with different functionalities.

Note: 1) One app may use multiple frameworks for different ML functionalities. Therefore, the sum of apps using different functionalities is bigger than the number of total apps. 2) Security critical functionalities are in bold fonts and can be used for fraud detection or access control. 3) *Caffe was initially developed by Berkeley, based on which Facebook built Caffe2, which was later merged with PyTorch. The following uses “Caffe” to represent Caffe, Caffe2 and PyTorch.

CPU Acceleration Adoption Rate among ML Apps: Table 4 shows the number ML apps and libraries that use GPU for acceleration. 797(54%) ML apps make use of GPU. The wide adoption of GPU acceleration poses a challenge to the design of secure on-device ML. For instance, the naive idea of performing model inference and other model access operations entirely inside a trusted execution environment (TEE, e.g., TrustZone) is not viable due to the need for GPU acceleration, which cannot be easily or efficiently accessed within the TEE.

ML Apps	Tencent My App	Google Play	
360 Mobile Assistant	669	104	
ML Libraries	212	103	24

Table 4: ML apps and libraries that use GPU acceleration

Measurement of Remote Models: Unlike on-device model inference, remote model inference allows an app to query a remote server with an object, and obtain the inference result from the response. Remote model inference does not necessarily leave footprints like machine learning libraries or models in the app packages. We thus measure the use of remote models through APIs provided by AI companies. We investigated the APIs provided by notable AI companies
from both US and China. Given publicly available documentation, we were able to extract the use of remote models from Google Cloud AI, Amazon Cloud AI and Baidu AI. Specifically, we scanned the API documentation for signature (unique naming) of remote ML inference libraries. For example, to use the remote Voice Synthesizer of Baidu AI, an app developer needs to include the library `libBDVoiceSynthesizer_V1.so`. We then collected all the signatures from the three companies, and analyzed the use of such signatures in our app collection.

We compared the number of apps using remote models, on-device models, or using both type of models in a hybrid mode. As Table 5 shows, 1,341 apps use remote models, 1,468 apps use on-device models, and 182 apps use both. We emphasize again that on-device model inference is as popular as remote model inference.

App Number	360 Mobile Assistant	Tencent My App	Google Play	Sum
Remote Models	1,186	118	37	1,341
On-device Models	1,131	159	178	1,468
Hybrid Mode	153	23	6	182

We also analyzed the type of ML services provided by remote models, and the coverage of remote models among Android apps. Among the 1,341 apps using remote models, 1,075 apps use NLP APIs (speech recognition/synthesizer, etc.), 266 apps use ML Vision APIs (OCR, image labeling, landmark recognition, etc.). We did not find any security critical use cases for remote models. As we can see, remote ML models offer services such as NLP, Voice Synthesizer, OCR and so on, rather than liveness detection, face recognition, or other live image processing functionalities, as often seen in on-device models. This indicates that on-device models are preferred in scenarios with security critical use cases, and real-time demands. For the remaining scenarios, remote models are preferred for easier integration.

5 Q2: How Robust Are Existing Model Protection Techniques?

To answer this question, we build ModelXtractor, a tool simple by design to dynamically recover protected or encrypted models used in on-device ML. Conceptually, ModelXtractor represents a practical and unsophisticated attack, whereby an attacker installs apps on his or her own mobile device and uses the off-the-shelf app instrumentation tools to identify and export ML models loaded in the memory. ModelXtractor mainly targets on-device ML models that are encrypted during transportation and at rest (in storage) but not protected when in use or loaded in memory. For protected models mentioned
in §4, ModelXtractor is performed to assess the robustness of the protection.

The workflow of ModelXtractor is depicted in Figure 7. It takes inputs from ModelXRay, including the information about the ML framework(s) and the model(s) used in the app (described in §4). These information helps to target and efficiently instrument an app during runtime, and capture models in plaintext from the memory of the app. We discuss ModelXtractor’s code instrumentation strategies in §5.1, our techniques for recognizing in-memory models in §5.2, and how ModelXtractor verifies captured models in §5.3. Our findings, insights, the answer to Q2, and several case studies are presented in §5.4 and §5.5. Responsible disclosure of our findings is discussed in §5.6.

5.1 App Instrumentation

ModelXtractor uses app instrumentation to dynamically find the memory buffers where (decrypted) ML is loaded and accessed by the ML frameworks. For each app, ModelXtractor determines which libraries and functions need to be instrumented and when to start and stop each instrumentation, based on the instrumentation strategies (discussed shortly). ModelXtractor automatically generates the code that needs to be inserted at different instrumentation points. It employs the widely used Android instrumentation tool, Frida [11], to perform code injection.

ModelXtractor has a main instrumentation strategy (S0) and four alternative ones (S1-S4). When the default strategy cannot capture the models, the alternatively strategies (S1-S4) will be used.

S0: Capture at Model Deallocation: This is the default strategy since we observe the most convenient time and place to capture an in-memory model is right before the deallocation of the buffer where the model is loaded. This is because (1) memory deallocation APIs (e.g., free) are limited in numbers and easy to instrument, and (2) models are completely loaded and decrypted when their buffers are to be freed.

Naive instrumentation of deallocation APIs can lead to dramatic app slowdown. We optimize it by first only activating it after the ML library is loaded, and second, only for buffers greater than the minimum model size (a configurable threshold). To get buffer size, memory allocation APIs (e.g., malloc) are instrumented as well. The size information also helps correlate a decrypted model to its encrypted version (discussed in §5.3).

This default instrumentation strategy may fail in the following uncommon scenarios. First, an app is not using native ML libraries, but a JavaScript ML library. Second, an app uses its own or customized memory allocator/deallocator. Third, a model buffer is not freed during our dynamic analysis.

S1: Capture from Heap: This strategy dumps the entire heap region of an app when a ML functionality is in use, in order to identify possible models in it. It is suitable for apps that do not free model buffers timely or at all. It also helps in cases where memory-managed ML libraries are used (e.g., JavaScript) and buffer memory deallocations (done by a garbage collector) are implicit or delayed.

S2: Capture at Model Loading: This strategy instruments ML framework APIs that load models to buffers. We manually collect a list of such APIs (e.g., loadModel) for the ML frameworks observed in our analysis. This strategy is suitable for those apps where S0 fails and the ML framework code is not obfuscated.

S3: Capture at Model Decryption: This strategy instruments model decryption APIs (e.g., aes256_decrypt) in ML frameworks, which we collected manually. Similar to S2, it is not applicable to apps that use obfuscated ML framework code.

S4: Capture at Customized Deallocation: Some apps use customized memory deallocators. We manually identify a few such allocators (e.g., slab_free), which are instrumented similarly as S0.

5.2 Model Representation and Recognition

The app instrumentation described earlier captures memory buffers that may contain ML models. The next step is to perform model recognition from the buffers. The recognition is based on the knowledge of in-memory model representations, i.e., different ML frameworks use different formats model encoding, discussed in the following.

Protobuf is the most popular model encoding format, used by TensorFlow, Caffe, NCNN, and SenseTime. To detect and extract models in Protobuf from memory buffers, ModelXtractor uses two kinds of signatures: content signatures and encoding signatures. The former is used to identify buffers that contain models and the latter is used to locate the beginning of a model in a buffer.

Model encoded in Protobuf usually contains words descriptive of neural network structures and layers. For example, “conv1” is used for one-dimension convolution layer, and “relu” for the Rectified Linear Unit. Such descriptive words appear in almost every model and are used as the content signatures.

The encoding signatures of Protobuf is derived from its encoding rule [22]. For example, a Protobuf contains multiple messages. Every message is a series of key-value pairs, or fields. The key of a field is encoded as (field_number ≪ 3) | wire_type, where the field_number is the ID of the field and wire_type specifies the field type.

A typical model in Protobuf starts with a message whose first field defines the model name (e.g., VGG_CNN_S). This field usually has a wire_type of 2 (i.e., a length-delimited string) and a field_number of 0 (i.e., the first field), which means that encoded key for this field is “0A”. This key is usually the first byte of a Protobuf encoded model. Due to alignment, this key appears at a four-byte aligned address within the buffer. It is used as an encoding signature.

Other model formats and representations have their own content and encoding signature. For example, TFLite models usually include “TFL2” or “TFL3” as version numbers. Some
model files are even stored in JSON format, with easily identifiable names for each field. Models from unknown frameworks or of unknown encoding formats are hard to identify from memory. In such cases, we consider the buffer of the same size as the encrypted model to contain the decrypted model. This buffer-model size matching turns out to be fairly reliable in practice. The reason is that, when implementing a decryption routine, programmers almost always allocate a buffer for holding the decrypted content with the same size as the encrypted content. This practice is both convenient (i.e., no need to precisely calculate the buffer size before decryption) and safe (i.e., decrypted content is always shorter than its encrypted counterpart due to the use of IV and padding during encryption). We show how buffer size matching is used in our case studies in §5.5.

5.3 Evaluation of ModelXtractor

Model Verification: ModelXtractor performs a two-step verification to remove falsely extracted models. First, it confirms that the extracted model is valid. Second, it verifies that the extracted model matches the encrypted model. We use publicly available model parsers to verify the validity of extracted model buffers (e.g., protobuf decoder [19] to extract protobuf content, and Netron [18] to show the model structure). When a decoding or parsing error happens, ModelXtractor considers the extracted model invalid and reports a failed model extraction attempt. To confirm that an extracted model indeed corresponds to the encrypted model, ModelXtractor uses the buffer-model size matching described before.

Evaluation on Apps from Google Play: There are 47 ML apps from Google Play that use encryption to protect their models. We applied ModelXtractor on half of the ML apps (randomly selected 23 out of 47). Among the tested 23 apps, we successfully extracted decrypted models from 9 of them. As for the other 14 apps, 2 apps do not use encryption, 1 app does not using ML, and 11 apps do not have their models extracted for the following reasons: apps cannot be instrumented; apps did not trigger the ML function; apps cannot be installed on our test devices.

Evaluation on Apps from Chinese App Markets: There are 819 apps from Chinese app markets found to be using encrypted models, where model reuse is quite common as shown in our static analysis. We carefully selected 59 of these apps prioritizing model popularity and app diversity. Our analyzed apps cover 15 of the top 45 most widely used models (i.e., each is reused more than 10 times) and 8 app categories.

When analyzing the Chinese apps, we encountered some non-technical difficulties of navigating the apps and triggering their ML functionalities. For instance, some apps require phone numbers from certain regions that we could not obtain for user registration. A lot of them are online P2P loan apps or banking apps that require a local bank account to trigger ML functionalities. Out of the 59 apps, we managed to successfully navigate and trigger ML functionalities in 16 apps. We then extracted decrypted models from 9 of them.

Limitation of ModelXtractor: ModelXtractor failed to extract 11 models whose ML functionalities were indeed triggered. This was because of the limitation of our instrumentation strategies discussed in §5.1. We note that these strategies and the design of ModelXtractor are not meant to extract every protected model. Instead, they represent a fairly practical and simple attack, designed only to reveal the insufficient protection of ML models in today’s mobile apps.

5.4 Findings and Insights

Results of Dynamic Model Extraction: Table 6 shows the statistics on the 82 analyzed apps, grouped by the ML frameworks they use. Among the 29 apps whose ML functionalities were triggered, we successfully extracted models from 18 of them (66%). Considering the reuse of those extracted encrypted models, the number of apps that are affected by our model extraction is 347 (i.e., 347 apps used the same models and same protection techniques as the 18 apps that we
extracted models from). This extraction rate is alarming and shows that a majority of the apps using model protection can still lose their valuable models to an unsophisticated attack. It indicates that even for app developers and ML providers willing/trying to protect their models, it is hard to do it in a robust way using the file encryption-based techniques.

Table 7 shows the per-app details about the extracted models. We anonymized the apps for security concerns: many of them are highly downloaded apps or provide security-critical services. Many of the listed apps contain more than one ML models. For simplicity, we only list one representative model for each app.

Most decrypted models in memory are not protected at all. As shown in Table 7, most of the decrypted models (12 of 15) were easily captured using the default strategy (S0) when model buffers are to be freed. This means that the decrypted models may remain in memory for an extended period of time (i.e., decrypted models are not erased before memory deallocation), which creates a large time window for model thefts for leakages. Moreover, this result indicates that apps using encryption to protect models are not doing enough to secure decrypted models loaded in memory, partly due to the lack practical in-memory data protection techniques on mobile platforms.

Popularity and Diversity of Extracted Models: The extracted models are highly popular and diverse, some very valuable or security-critical. From Table 7 we can see that 8 of 15 listed apps have been downloaded more than 10 million times. Half of the extracted models belong to commercial ML providers, such as SenseTime, and were purchased by the app developers. Such models being leaked may cause direct financial loss to both app developers and model owners (\S6).

As for diversity, the model size ranges from 160KB to 20MB. They span all the popular frameworks, such as TensorFlow, TFLite, Caffe, SenseTime, Baidu, and Face++. The observed model formats include Protobuf, FlatBuffer, JSON, and some proprietary formats used by SenseTime, Face++ and Baidu. In terms of ML functionalities, the models are used for face recognition, face tracking, liveness detection, OCR, ID/card recognition, photo processing, and malware detection. Among them, liveness detection, malware detection, and face recognition are often used for security-critical purposes, such as access control and fraud detection. Leakage of these models may give attackers an advantage to develop model evasion techniques in a white-box fashion.

Reusability of the Extracted Models: Extracted models can be directly used by an attacker when they expect standard input representations (e.g., images and video) and run on the common ML frameworks (e.g., TensorFlow and PyTorch). More than 81% of apps in our study contain directly usable models. In some uncommon cases, such as the example given in Section 5.5, a model may expect a special/obfuscated input representation. Such a model, after extraction, cannot be directly used. However, as we demonstrated in the paper, using standard reverse engineering techniques, we could recover the feature vectors and reuse the extracted models in this case.

Potential Risk of Leaking SDK/Model License: SDK/Model license are poorly protected. Developers who bought the ML SDK license from model provider usually ship the license along with app package. During analysis, we find the license are used to verify legal use of SDK before model file get decrypted. However, license file are not protected by the developer, which means it is possible to illegally use the SDK by stealing license file directly from those apps that have bought it. Poor protection of license has been observed in both SenseTime ML SDKs and some other SDKs, which actually affects hundreds of different apps.

ML Framework	Unique Models Analyzed	ML Triggered	Models Extracted	Models Missed	Apps Affected
TensorFlow	3	3	1	0	3
Caffe	7	3	1	2	79
SenseTime	55	16	11	5	186
TFLite	3	2	2	0	76
NCNN	9	3	0	3	0
Other	5	3	2	1	88
Total	82	29	18	11	347

Note: 347 is the sum of affected apps per framework after deduplication.

5.5 Interesting Cases of Model Protection

We observe a few cases clearly showing that some model providers use extra protection on their models. Below we discuss these cases and share our insights.

Encrypting Both Code and Model Files: We analyzed an app that uses the Anyline OCR SDK. From the app profile generated by ModelXRay, we can tell that this app uses TensorFlow framework. It places the encrypted models under a directory named “encrypted_models”. Initially, ModelXtractor failed to extract the decrypted models using the default strategy (S0). We manually investigated the reason and found that, unlike most ML apps, this app runs ML inference in a customized WebView, where an encrypted JavaScript, dynamically loaded at runtime, performs the model decryption and inference. We analyzed the heap memory dumped by ModelXtractor using the alternative strategy, S1, and found the TensorFlow model buffers in the memory dump. We verified our findings by decoding the Protobuf model buffers and extract the models’ weights.

It shows that, despite the extra protection and sophisticated obfuscation, the app can still lose its models to not-so-advanced attacks that can locate and extract decrypted models in app memory.

Encrypting Feature Vectors and Formats: When we analyzed one malware detection app, we found that it does not encrypt its model file. Instead, it encrypts the feature vectors which is the input of the model. This app uses a Random Forest model for malware classification. It uses TensorFlow framework and the model is in the format of Protobuf. There are more than one thousand features used in this malware...
Table 7: Overview of Successfully Dumped Models with ModelXtractor

App name	Downloads	Framework	Model Functionality	Size (B)	Format	Reuses	Extraction Strategy
Anonymous App 1	300M	TF-Lite	Liveness Detection	160K	FlatBuffer	18	Freed Buffer
Anonymous App 2	10M	Cafe	Face Tracking	1.5M	Protobuf	4	Model Loading
Anonymous App 3	27M	SenseTime	Face Tracking	3.6M	Protobuf	3	Freed Buffer
Anonymous App 4	100K	SenseTime	Face Filter	1.4M	Protobuf	2	Freed Buffer
Anonymous App 5	100M	SenseTime	Face Filter	2.3M	Protobuf	77	Freed Buffer
Anonymous App 6	10K	TensorFlow	OCR	892K	Protobuf	2	Memory Dumping
Anonymous App 7	10M	TensorFlow	Photo Process	6.5M	Protobuf	1	Freed Buffer
Anonymous App 8	10K	SenseTime	Face Track	1.2M	Protobuf	5	Freed Buffer
Anonymous App 9	5.8M	Cafe	Face Detect	60K	Protobuf	77	Freed Buffer
Anonymous App 10	10M	Face++	Liveness	468K	Unknown	17	Freed Buffer
Anonymous App 11	100M	SenseTime	Face Detect	1.7M	Protobuf	18	Freed Buffer
Anonymous App 12	492K	Baidu	Face Tracking	2.7M	Unknown	26	Freed Buffer
Anonymous App 13	250K	SenseTime	ID card	1.3M	Unknown	13	Freed Buffer
Anonymous App 14	100M	TF-Lite	Camera Filter	228K	Json	1	Freed Buffer
Anonymous App 15	5K	TensorFlow	Malware Classification	20M	Protobuf	1	Decryption Buffer

Note: 1) We excluded some apps that dumped the same models as reported above; 2) We anonymized the name of the apps to protect the user’s security; 3) Every app has several models for different functionalities, we only list one representative model for each app.

classification model, including the APIs used by the App, the Permissions claimed in the Android Manifest files and so on. By encrypting the feature vectors, the developer assumes it is impossible to (re)use the model because the input format and content are unknown to attackers. However, we instrumented the decryption functions and extracted the decrypted feature vectors. With this information, an attacker can steal and recover the model as well as the feature vector format, which can lead to model evasions or bypassing the malware detection. It shows that even though some models take specific input format, with some basic reverse engineering effort, the attacker can still uncover and reuse the model.

Encrypting Models Multiple Times: We also observed that one app encrypts its models multiple times. This app offers online P2P loans. It uses two models provided by SenseTime: one for ID card recognition and the other for liveness detection, which are security critical. ModelXtractor successfully extracted 6 model buffers, whose sizes range from 200KB to 800KB. However, we only found 2 encrypted model files. When we were trying to map the model buffers to the encrypted files, we found something very interesting. One encrypted model file named SenseID_Ocr_Idcard_Mobile_1.0.1.model has a size of 1.3 MB. Among the dumped model buffers, we have one buffer of the same size. It is supposed to be the right decrypted buffer. After analyzing its content, we found that it is actually a tar file containing multiple files, one of which is align_back.model. After inspecting the content of align_back.model, we found that it is also an encrypted file. We then found another buffer of the same size, 246 KB, which contains a decrypted model. We finally realized that the app encrypts each model individually and compresses all encrypted models into a tar file, then encrypts it again.

5.6 Responsible Disclosure

We have contacted 12 major vendors whose apps have leaked models, including Google, Facebook, Tencent, SenseTime and etc. We have received responses from five of them.

In summary, for vendors that use plaintext models, one vendor is unaware of possible model leakage until we contact them. For the other vendors, one of them is unaware of the impact that leaked models can incur. Two vendors respond with lack of a practical solution to protect the models, in which one vendor is waiting for hardware support to encrypt the models securely, and the other fails to find an existing proprietary mitigation to make it harder for model reuse. This vendor assumes that malicious end users might eventually gain access to some model data, but not for practical use. For vendors whose models are encrypted but can still be extracted, our research raised internal discussions of one vendor on improving model security. The vendor is taking actions on robust model protection, with research and collaborations with well-known security partners.

6 Q3: What Impacts can (Stolen) Models Incur?

ML models are the core intellectual properties of ML solution providers. The impacts of leaked models are wide and profound, including substantial financial impact as well as significant security implications.

6.1 Financial Impact

6.1.1 Financial Benefit for Attackers

App developers usually have two legitimate ways to get ML models: (1) buying a license from ML solution providers, such as SenseTime, Face++, and so on; (2) Developing their own ML models, which usually requires a large amount of computing and human resources. Stealing the models saves the attackers either the license fee paid to the model providers, or the research and development (R&D) cost on the models.

License Fee Savings for Attackers: Usually, when vendors license an ML model, the app developer can choose between
online authorization or offline authorization. A license with offline authorization allows a device to use the ML SDK without network connection. A company with such licenses is given unlimited uses on different devices [14]. The downside is that the model provider has no control over the number of devices or which devices to have access to the model SDKs. As a result, it is hard for the model provider to tell whether a model has been stolen or not. According to Face++, the annual fee for a license with offline authorization is $50,000 to $200,000 [14]. The saving is large enough to motivate an attacker to steal the models or the model licenses. In our analysis, we found 60 cases in which several different apps sharing one model license. One of the licenses is even used by 12 different apps, indicating a high chance of illegal uses.

A license with online authorization can control the usages of the SDKs. Before using the model SDK, a device has to authenticate itself to the model provider with a license key. The model provider can then count the number of authorized devices, and charge the app company per device or per pack of devices. Online authorization offers stronger protection of the model licenses than offline authorization. However, there are still chances that attackers stealthily use a license before it reaches the limit of the current pack. The market price for face landmark SDK is $10,000 for up to 10,000 of online authorizations [14]. Even though the savings are smaller than offline authorized licenses, attackers can still benefit from them financially.

R&D Savings for Attackers: The R&D cost of ML models comes from three sources: collecting and labeling data for training, hiring AI engineers for designing and fine-tuning models, and computing resources, such as renting or buying and maintaining storage servers and GPU clusters for training models.

According to Amazon Mechanical Turk [2], the price of labeling an object ranges from $0.012 to $0.84, depending on the type of the object (e.g., image, text, semantic segmentation). Considering the CMU Multi-PIE database as an example, which contains more than 750,000 images [29], the cost of labeling would be at least $9,000. For larger databases, for example, MegaFace with 4.7 million labels [16], or some audio and video datasets [20, 31], the cost of labeling could be even higher. According to LinkedIn statistics [23], the median base salary for machine learning engineers is $145,000 per year. Given a team with five engineers, training and fine-tuning a model for one year, the cost would be $725,000. Based on the pricing of Amazon SageMaker [3], the monthly rate for ML storage is $0.14 per GB, and the hourly rate for the current generation of ml.p3.2xlarge accelerated computing is $4.284. Still considering the CMU Multi-PIE database as an example, with a data size of 305GB, the yearly cost of data storage and training would be $38,040.

Based on the above information, a conservative estimate on the total saving for attackers on model R&D cost could be $772,040. Note that the salary of AI engineers are based on the public information of large AI companies, which can be higher than those from small companies. The number of AI engineers and the actual model development cycle vary from case to case. The estimation of R&D cost should take all above factors into consideration.

6.1.2 Financial Loss for Model Vendors

For vendors whose main business (source of income) depends on ML models, e.g., model providers or app companies, model leakages result in pricing disadvantages, lost of customers and market share.

Pricing Disadvantages for Vendors: As mentioned earlier, the cost of ML models can reach millions of dollars, thereby competitors have strong motivation towards leaked models. Once competitors start adopting leaked models with lower cost, they can offer lower prices to the customers. At the same quality, customers are more willing to choose the cost efficient products. Therefore, vendors who leak their models will lose the pricing competition in the first place.

For model providers, the market is strongly competitive. In our study, we have found some top ML SDK providers, such as SenseTime, Megvii, Baidu, ULSee, Anyline, etc. Take Megvii as an example, according to Owler [17], 10 competitors are closely related to its businesses, such as Cognitec. SenseTime, Kairos, FaceFirst, Cortexex, etc. For app companies, the competition is as much competitive if not more so. In Google Play only, our study found 36 apps using ML SDK for image recognition as the main business. Considering the other two stores, at least 215 apps are competing for this business.

Anticipated Falling Market Share for Vendors: The pricing disadvantage caused by leaked models will potentially result in loss of customers and market share, which will both lead to significant revenue loss. Take model provider SenseTime as an example, our study found 8 unique SenseID_OCR models, and each is reused by 21 apps on average. Loss of one single app customer will potentially bring a loss of at least $10,000, based on the market price discussed earlier (e.g., $10,000 for up to 10,000 of online authorizations). In fact, SenseTime has more than 700 customers and partners [24], and has a revenue of $750 Million in 2019. For app companies, we also observed unbalanced market share in the 215 apps competing for the business of image recognition. The number of downloads for these apps ranges from ten thousands to one hundred million.

For both model providers and app companies, the decline in market share caused by pricing disadvantage may lead to further financial loss.

6.2 Security Impact

Some ML models are used for security-critical purposes. For example, liveness detection model is used to verify whether it is a real person holding a real ID card. Face, fingerprint and iris recognition models are used to detect and verify the identity of a person. These models bring in great convenience, for example, users do not need to go to a bank or customer
service centers to verify their identities. However, breaches of such models bring in security and privacy concerns.

For attackers, a leaked security-critical model makes it easier for them to design and craft adversarial examples. They can then use the examples to either fake different identities, or simply bypass the identity check of the apps [7].

We found more than 100 apps using on-device ML models for banking and loan services. These apps provide personal loan services aiming at quick and convenient loan applications. They use face recognition models to verify the identity of a person by taking a short video, and comparing with the photo on the ID card. The apps then determine the credit limits and rates to loan to the applicants. When the models are leaked, attackers can easily fake identities of other applicants, and apply for loans on their behalf.

In our analysis, we found that 872 apps are using liveliness detection models, representing 59% of all the apps using on-device ML. We also found security-critical models to be shared among different apps, for example, the SenseID_Motion_Liveness model is shared by 81 apps. Leakage of this model from any of the apps will make it easier for the attackers to bypass the detection to all the 81 apps.

For end users, it raises the concern that attackers with faked identities can access users’ private information. For example, some apps provide online medical services, such as booking appointments, filling out medical history forms, receiving electrical prescriptions, and laboratory reports from the doctors. They may also use on-device ML models to verify the identities of patients. Bypassing the verification will allow attackers to access personal medical records. In our analysis, we found 6 such apps, which have been downloaded more than 9 million times on 360 Mobile Assistant Store. One of the face detection model, although encrypted, is shared by 77 different apps. Leakage of the model from any of the apps will potentially expose the personal medical records of mass end users. It is therefore important for vendors to protect the models, especially when they are security-critical. Vendors and app developers should be careful about the potential security impact caused by leaked/stolen models.

7 Countermeasures

In this section, we discuss several existing approaches to protecting on-device machine learning models and their limitations. We also share our insights in the future research of model protection.

7.1 Current Model Protection

Obfuscation makes it harder for attackers to recover the model. We observed that developers have implemented their own obfuscation/de-obfuscation mechanisms, which impose non-trivial programming overhead. For example, NCNN can convert models into binaries where text is all striped, and Mace can convert a model to C++ code [26, 32].

Encryption prevents the attackers from directly accessing the model from a downloaded APK. We observed that developers use encryption in many ways to protect their models, including the ML feature vectors, ML models, and the code to run model inferences. However, they all fall victim to our non-sophisticated dynamic analysis.

Customized model frameworks/formats increase the effort for attackers to identify and reuse the models. We observed that customized or proprietary model formats, such as MessagePack (.model), pickle (.pkl), Thrift (.thrift), can be used to counter against model reverse engineering. We also observed customized ML library running encrypted JavaScript in a customized WebView.

7.2 Limitations

Obfuscation is vulnerable to devoted attackers who can recover the model with knowledge of binary decompilation. Attackers can leverage program slicing and partial execution [41, 51] to de-obfuscate Android apps [39, 60], and further decompile and recover the obfuscated models. Even without these knowledge, attackers can reuse the model as a black box.

Encryption is vulnerable to attackers who can perform dynamic analysis and instrument app memory at runtime. We have demonstrated it in Section 5.1.

Customized model frameworks/formats are vulnerable to documentation leakage of the model frameworks/formats. The documentation may come from internal attackers, or skilled and patient attackers who have good motivation to reverse engineer the model frameworks/formats.

7.3 Future Works

Secure hardware is the most promising approach to protecting models on mobile devices. It has been demonstrated on desktop platforms. For example, recent advance in TF-Trust [28] allows developers to run Tensorflow models inside of secure enclaves, such as Intel SGX [15]. Slalom [56] uses SGX during model inference, applies homomorphic encryption on each layer’s input and outsources the computation of linear layers to GPU securely. Privado [55] uses SGX to mitigate side channel attacks of input inference. TensorScone [46] also uses SGX to protect model inference but does not consider GPU. Graviton [58] is proposed to make GPU a trusted execution environment with minimal hardware changes incurred. So far, research in this area focuses on cloud-end security.

Future research should consider secure hardware backed model inference on mobile device. For example, Arm TrustZone [33] in mobile devices can be used to provide model protection. There are also some unique challenges that needs to be addressed on mobile devices. Compared with desktop platforms, mobile devices are more restricted in computation...
resources, making it impractical to perform model inference entirely in TEE. Given the wide adoption of GPU on mobile devices, an effective model protection should also consider using the GPU for acceleration in a secure way.

8 Discussion

Manual analysis effort: Although ModelXtractor can automatically generate instrumentation scripts customized for the apps, manual effort is required in the dynamic analysis. As described in Section 5.3, some Chinese apps require registration with valid phone numbers or regional bank accounts before using ML models. Manual effort is thus needed to feed in valid registration information. To maximize the chance of triggering ML models, manual effort is also needed to fully navigate the apps with ML-related functionalities. After the model is loaded and suspected model buffer dumped by ModelXtractor, manual effort is needed to verify the start of the model based on the encoding signatures described in Section 5.2. Then we truncate the buffer and use a model decoder, e.g. protobuf, to parse the buffer and manually verify whether it is a ML model.

The amount of manual effort depends on how easy it is to trigger the ML functionality. Some apps do not need registration and the ML models are loaded by default, such as some AI camera apps, extracting their models takes less than an hour. In the worst cases, such as some P2P loan apps, whole ML models cannot be loaded without registration with valid phone numbers and regional bank accounts, it may take hours to extract the models. We therefore prioritize on apps whose models can be easily extracted, and budget 2 hours for each app among the 82 apps we analyzed in Table 6.

Research Insights: White-box Adversarial Machine Learning. Previous research on adversarial machine learning has been focused on black-box threat models, assuming the model files are inaccessible. Our research shows that an attacker can easily extract the protected private models. As a result, more research on defending adversarial machine learning under white-box threat model is much needed to improve the resiliency of those models used in security critical applications.

Model Plagiarism Detection. As machine learning models are not well protected, attackers, instead of training their own model, can steal their competitor’s model and reuse it. As a result, model plagiarism detection is needed to prevent this type of attack. It is challenging because the attacker can retrain their model based on the stolen one, making it looks very different. We need research to detect model plagiarism and provide forensic tools for illegal model reuse analysis.

Limitations: Since the goal of this paper is to show that even simple tools can extract on-device ML models in a large scale, ModelXRay and ModelXtractor are limited by the straightforward design of keyword matching. We acknowledge that the scale of model extraction can be further improved by leveraging program slicing and partial execution [41,51], and Android app de-obfuscation [39,60]. Further, model encoding and content features are limited to well-known ML SDKs having documentation available, thereby we believe an extended knowledge base can further include special model encoding formats.

We note that our financial loss analysis is subjective and limited by the asymmetric information of R&D cost and company revenue. The approach is used to emphasize the point that costs can be very high. A more comprehensive study can be carried out by stakeholders having real data of model leakage cases.

9 Related Work

Motivated by hardware acceleration and efficiency improvement of deep neural networks [48], on-device model inference becomes a new trend [61]. This work empirically evaluates model security on mobile devices. It interacts with three lines of research: machine learning model extraction, adversarial machine learning, and proprietary model protection.

To extract information from Android apps, prior works have used various techniques, such as memory instrumentation, program slicing and partial execution. For example, to detect Android malware, Hoffmann presents static analysis with program slicing on Smali code [43]. DroidTrace [63] presents ptrace based dynamic analysis with forward execution capability. DroidTrace monitors selected system calls of the target process, and classifies the behaviors through the system call sequences. Rasthofer combines program slicing and dynamic execution [51] to further extract values from obfuscated samples, which include reflected function calls, sensitive values in native code, dynamically loaded code, and other anti-analysis techniques. Similar works include DeGuard [39] and TIRO [60]. To extract the cryptographic key of a TLS connection, DroidKex [54] applies fast extraction of ephemeral data from the memory of a running process. It then performs partial reconstruction on the semantics of data structures. ARTIST provides an Android Runtime Instrumentation Toolkit [42], which monitors the execution of Java and native code. ARTIST parses OAT executable files in memory to find classes and methods of interest, and locate internal structures of the Android Runtime. AndroidSlicer combines asynchronous slicing for data modeling and control dependencies in the callbacks [37]. It can locate instructions responsible for model loading/unloading, and track responsible parts based on app inputs. Similarly, CredMiner investigates the prevalent unsafe uses of developer credentials [64]. It leverages data flow analysis to identify the raw form of the embedded credential. Our work also combines static and dynamic analysis on Android apps, however, with a different goal of machine learning model extraction.

Prior work on machine learning model extraction focuses on learning-based techniques targeting ML-as-a-service. Tramer et. al proposes stealing machine learning models via prediction APIs [57], since ML-as-a-service may accept partial feature vectors as inputs and include confidence values with predictions. Then, Wang et. al [59] extend the attacks by...
stealing hyperparameters. Other work includes stealing the functionality of the models [45, 50], querying the gradient to reconstruct the models [49], exploratory attacks to reverse engineer the classifiers [32], and side channel attacks to recover the models [38]. Our work is orthogonal to these study by targeting on-device model inference, assuming the attackers having physical access to the mobile devices running model inference.

Model extraction paves the road for adversarial machine learning. Prior work [44, 47] fooling the models or bypassing the check is mostly under the black-box threat model. Once ML models become white-box, attackers can easily craft adversarial examples to deceive the learning systems. Our study shows white-box adversarial machine learning is a real threat to on-device ML models.

To protect machine learning model as an intellectual property, watermark technique has been used to detect illegitimate model uses [36, 62]. Moreover, fingerprinting has been used to protect model integrity. Chen et al. encodes fingerprint [40] in DNN weights so that the models can be attested to make sure it is not tampered or modified. Our research supports it with the finding that model plagiarism is a realistic problem especially for mobile platforms.

10 Conclusion

We carry out a large scale security analysis of machine learning model protection on 46,753 Android apps from both the Chinese and the US app markets. Our analysis shows that on-device machine learning is gaining popularity in every category of mobile apps, however, 41% of them are not protecting their models. For those are, many suffer from weak protection mechanisms, such as using the same encrypted model for multiple apps, and even the encrypted models can be easily recovered with our unsophisticated analysis. Our impact analysis shows that model leakage can financially benefit attacks with as high as millions of dollars, and allow attackers to evade model-based authentication and access user private information. Attackers both technically can and financially are motivated to steal models. We call for research into robust model protection.

Acknowledgment

The authors would like to thank the paper shepherd Prof. Konrad Rieck and the anonymous reviewers for their insightful comments. This project was supported by the National Science Foundation (Grant#: CNS-1748334) and the Army Research Office (Grant#: W911NF-18-1-0093). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the funding agencies.

References

[1] A brief guide to mobile AI chips. https://www.theverge.com/2017/10/19/16502538/mobile-ai-chips-apple-google-huawei-qualcomm.
[2] Amazon SageMaker Ground Truth pricing. https://aws.amazon.com/sagemaker/groundtruth/pricing/.
[3] Amazon SageMaker Pricing. https://aws.amazon.com/sagemaker/pricing/.
[4] Android ml. https://developer.android.com/ml.
[5] Apache MXNet | A flexible and efficient library for deep learning. https://mxnet.apache.org/.
[6] Apple core ml. https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates.
[7] Artificial Intelligence + GANs can create fake celebrity faces. https://medium.com/datadriveninvestor/artificial-intelligence-gans-can-create-fake-celebrity-faces-44fe80d419f7.
[8] Caffe2 - a lightweight, modular, and scalable deep learning framework. https://github.com/facebookarchive/caffe2.
[9] Converting model to C++ code. https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html.
[10] Core ML | Apple Developer Documentation. https://developer.apple.com/documentation/coreml.
[11] Dynamic instrumentation toolkit for developers, reverse-engineers, and security researchers. https://frida.re/.
[12] Entropy (information theory). https://en.wikipedia.org/wiki/Entropy_(information_theory)#Entropy_as_information_content.
[13] Face++ - Cognitive Services. https://www.faceplusplus.com/.
[14] Face++ pricing details - mobile sdk. https://www.faceplusplus.com/pricing-details/#offline.
[15] Intel® Software Guard Extensions. https://software.intel.com/en-us/sgx.
[16] MegaFace and MF2: Million-Scale Face Recognition. http://megafac.cs.washington.edu/.
[17] Megvii’s Competitors, Revenue, Number of Employees, Funding and Acquisitions. https://www.owler.com/company/megvii.
[18] Netron. https://lutzroeder.github.io/netron/.
[19] Online Protobuf Decoder. https://protogen.marcgravell.com/decode.
[20] Over 1.5 TB’s of Labeled Audio Datasets. https://towardsdatascience.com/a-data-lakes-worth-of-audio-datasets-b45b88cd4ad.
[21] Paddle-lite github. https://github.com/PaddlePaddle/Paddle-Lite.
[22] Protocol Buffers Encoding Rule. https://developers.google.com/protocol-buffers/docs/encoding#simple.
[23] Salary for the Machine Learning Engineer. https://www.linkedin.com/salary/machine-learning-engineer-salaries-in-san-francisco-bay-area-at-xnor-ai.
[24] SenseTime has 700+ customers and partners. https://www.forbes.com/sites/bernardmarr/2019/06/17/meet-the-worlds-most-valuable-ai-startup-chinas-sensetime/.
[25] Strip visible string in ncnn. https://github.com/Tencent/ncnn/wiki.
[26] Tencent ncnn github. https://github.com/Tencent/ncnn.
[27] TensorFlow. https://www.tensorflow.org/.
[28] TF Trusted. https://github.com/dropoutlabs/tf-trusted.
[29] The CMU Multi-PIE Face Database. http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html.
[30] Unity Asset Store - The Best Assets for Game Making. https://assetstore.unity.com/?category=tools%2Fai&orderBy=1.
[31] Video Dataset Overview - Sortable and searchable compilation of video dataset. https://www.di.ens.fr/~miech/datasetviz/.
[32] Xiaomi mace github. https://github.com/XiaoMi/mace.
[33] ARM TrustZone in Android. https://medium.com/@nimronagy/arm-trustzone-on-android-975bfc7497d2, 2019.
[34] SenseTime. https://www.sensetime.com/, 2019.
[35] The AppInChina App Store Index. https://www.appinchina.co/market/app-stores/, 2019.
[36] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Security Symposium (USENIX Security 18), pages 1615–1631, 2018.
[37] Tanzirul Azim, Arul Alavi, Iulian Neamtiu, and Rajiv Gupta. Dynamic slicing for android. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 1154–1164. IEEE, 2019.
[38] Lejla Batina, Shivam Bhasin, Diramanto Jap, and Stjepan Picek. Csi neural network: Using side-channels to recover your artificial neural network information. arXiv preprint arXiv:1810.09076, 2018.
[39] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation of android applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 343–355, 2016.
[40] Huili Chen, Cheng Fu, Biti Darvish Rouhani, Jishen Zhao, and Farinaz Koushanfar. DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks. 2019.
[41] Yi Chen, Wei You, Yeonjoon Lee, Kai Chen, Xiaofeng Wang, and Wei Zou. Mass discovery of android traffic imprints through instantiated partial execution. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 815–828, 2017.
[42] Lukas Dresel, Mykolai Protsenko, and Tilo Müller. Artist: the android runtime instrumentation toolkit. In 2016 11th International Conference on Availability, Reliability and Security (ARES), pages 107–116. IEEE, 2016.
[43] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael Spreitzenbarth. Slicing droids: program slicing for small code. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages 1844–1851, 2013.
[44] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar. Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security and artificial intelligence, pages 43–58. ACM, 2011.
[45] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High-fidelity extraction of neural network models. arXiv preprint arXiv:1909.01838, 2019.
[46] Roland Kunkel, Do Le Quoc, Franz Gregor, Serge Arnautov, Pramod Bhatotia, and Christof Fetzer. TensorSCONE: A Secure TensorFlow Framework using Intel SGX. arXiv preprint arXiv:1902.04413, 2019.
[47] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236, 2016.
[48] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh, Fabio Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann. On-Device Neural Net Inference with Mobile GPUs. https://arxiv.org/abs/1907.01989, 2019.

[49] Smitha Milli, Ludwig Schmidt, Anca D Dragan, and Moritz Hardt. Model reconstruction from model explanations. arXiv preprint arXiv:1807.05185, 2018.

[50] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of black-box models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4954–4963, 2019.

[51] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting runtime values in android applications that feature anti-analysis techniques. In NDSS, 2016.

[52] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of black-box models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4954–4963, 2019.

[53] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable Cross-Language Services Implementation. Technical report.

[54] Benjamin Taubmann, Omar Alabduljaleel, and Hans P Reiser. Droidkex: Fast extraction of ephemeral tls keys from the memory of android apps. Digital Investigation, 26:67–76, 2018.

[55] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran Ramjee. Privado: Practical and secure DNN inference. arXiv preprint arXiv:1810.00602, 2018.

[56] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287, 2018.

[57] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine learning models via prediction apis. In 25th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages 681–696, 2018.

[58] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. Harvesting developer credentials in android apps. In Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks, pages 1–12, 2015.

Appendix A Keywords for ML Frameworks

Framework	Magic Words	Framework	Magic Words
TensorFlow	tensorflow	Callee	callee
Mace	libmace, mace_input	SenseTime	senseetime_st_mobile
ULS	ultracker, ulface	Other	neuralnetwork, lstm, cnn, rnn

Note: "TensorFlow Lite" and "TensorFlow" are merged into one framework.