MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health

Ioannis A. Stringlis,a,b,1 Ke Yu,a,c,1 Kirstin Feussner,b,1 Ronnie de Jonge,a,b,c,d, Sietske Van Bentum,a Marcel C. Van Verk,a, Roeland L. Berendsena, Peter A. H. M. Bakker,a Ivo Feussner,a,b,e and Corne M. J. Pietersea,b

aPlant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB Utrecht, The Netherlands; bDepartment of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany; cDepartment of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium; dDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; and eDepartment of Plant Biochemistry, Göttingen Center for Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany

Edited by Jeffery L. Dangl, University of North Carolina at Chapel Hill, Chapel Hill, NC, and approved April 3, 2018 (received for review December 22, 2017)

Plant roots nurture a tremendous diversity of microbes via exudation of photosynthetically fixed carbon sources. In turn, probiotic members of the root microbiome promote plant growth and protect the host plant against pathogens and pests. In the Arabidopsis thaliana-Pseudomonas simiae WCS417 model system the root-specific transcription factor MYB72 and the MYB72-controlled β-glucosidase BGLU42 emerged as important regulators of beneficial rhizobacteria-induced systemic resistance (ISR) and iron uptake responses. MYB72 regulates the biosynthesis of iron-mobilizing fluorescent phenolic compounds, after which BGLU42 activity is required for their excretion into the rhizosphere. Metabolite fingerprinting revealed the antimicrobial coumarin scopoletin as a dominant metabolite that is produced in the roots and excreted into the rhizosphere in a MYB72- and BGLU42-dependent manner. Shotgun-metagenome sequencing of root-associated microbiota of Col-0, myb72, and the scopoletin biosynthesis mutant f6′h1 showed that scopoletin selectively impacts the assembly of the microbial community in the rhizosphere. We show that scopoletin selectively inhibits the soil-borne fungal pathogens Fusarium oxysporum and Verticillium dahliae, while the growth-promoting and ISR-inducing rhizobacteria P. simiae WCS417 and Pseudomonas caperferum WCS358 are highly tolerant of the antimicrobial effect of scopoletin. Collectively, our results demonstrate a role for coumarins in microbiome assembly and point to a scenario in which plants and probiotic rhizobia join forces to trigger MYB72/BGLU42-dependent scopoletin production and scopoletin excretion, resulting in improved niche establishment for the microbial partner and growth and immunity benefits for the host plant.

Significance

Plant roots nurture a large diversity of soil microbes via exudation of chemical compounds into the rhizosphere. In turn, beneficial root microbiota promote plant growth and immunity. The root-specific transcription factor MYB72 has emerged as a central regulator in this process. Here, we show that MYB72 regulates the excretion of the coumarin scopoletin, an iron-mobilizing phenolic compound with selective antimicrobial activity that shapes the root-associated microbial community. Selected soil-borne fungal pathogens appeared to be highly sensitive to the antimicrobial activity of scopoletin, while two MYB72-inducing beneficial rhizobacteria were tolerant. Our results suggest that probiotic root-associated microbes that activate the iron-deficiency response during colonization stimulate MYB72-dependent excretion of scopoletin, thereby potentially improving their niche establishment and enhancing plant growth and protection.

Author contributions: I.A.S., K.Y., K.F., M.C.V.V., R.L.B., P.A.H.M.B., I.F., and C.M.J.P. designed research; I.A.S., K.Y., K.F., and S.V.B. performed research; I.A.S., K.Y., K.F., and R.D.J. analyzed data; and I.A.S. and C.M.J.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The data reported in this article have been deposited in the National Center for Biotechnology Information Short-Read Archive BioProject database (BioProject ID: PRJNA435676).

See Commentary on page 5629.

1I.A.S., K.Y., and K.F. contributed equally to this work.
2To whom correspondence should be addressed. Email: c.m.j.pieterse@uu.nl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1722335115/-/DCSupplemental.

Published online April 23, 2018.
Besides being essential for the onset of ISR, MYB72 emerged as an integral part of the plant’s adaptive strategy to iron deficiency. Together with its closest paralog, MYB70, MYB72 is essential for plant survival in alkaline soils where iron availability is largely restricted (17). Under iron-limiting conditions, MYB72 is strongly induced in the roots of Arabidopsis as part of a set of coordinated responses that boost iron mobilization and uptake from the soil environment (collectively referred to as the “strategy I iron-deficiency response”) (18, 19). The core of this response consists of rhizosphere acidification by the activity of the H^+ -ATPase AHA2 (20), which increases the concentration of soluble ferric iron (Fe^{3+}). Fe^{3+} is subsequently reduced to ferrous iron (Fe^{2+}) by FERRIC REDUCTION OXIDASE2 (FRO2), after which it is transported from the soil environment into root cells via IRON-REGULATED TRANSPORTER1 (IRT1) (21, 22). The basic helix-loop–helix (bHLH) transcription factor FIT (FER-LIKE IRON DEFICIENCY TRANSCRIPTION FACTOR) is a central regulator of the iron-uptake response (19) and also regulates the expression of MYB72 (23).

During iron deprivation, plant roots exude a whole suite of secondary metabolites into the rhizosphere which aid in the mobilization and uptake of iron. These metabolites include phenolics, organic acids, flavins, and flavonoids (24–26). In Arabidopsis roots, MYB72 is required for the biosynthesis of iron-mobilizing fluorescent phenolic compounds, while BGLU42 is important for their subsequent excretion into the rhizosphere (12). These so-called “coumarins” are synthesized in the phenylpropanoid pathway via FERULOYL-COA 6-HYDROXYLASE1 (F6H) and are excreted into the rhizosphere by the iron deficiency-regulated ABC transporter PLEIOTROPIC DRUG RESISTANCE9 (PDR9) (24–27). Arabidopsis knockout mutants myb72 and bglu42 are impaired in the excretion of iron-mobilizing coumarins and in the ability to mount rhizobacteria-mediated ISR, suggesting a mechanistic link between the iron-deficiency response and plant immunity (12, 28).

Interplay between plant immunity and adaptive plant responses to nutrient deficiencies is also reported for the phosphate-starvation response (29). Interestingly, phosphate-starved plants release metabolites into the rhizosphere that are also exuded during conditions of iron deficiency (30, 31). Plants responding to changes in their biotic or abiotic environment show changes in root exudation (32, 33), which in turn affect the composition of the root microbiome (1). Likewise, mutations in defense and phosphate-starvation signaling pathways significantly impact the composition of the root-associated microbial community (29, 34, 35). Collectively the picture is emerging that components of the plant immune system and the plant’s adaptive response to nutrient starvation are interlinked in influencing the assembly of the root-associated microbiome, and vice versa (36). However, the molecular mechanisms and the ecological and evolutionary advantages of this apparent relationship are largely unknown.

Because MYB72 is an essential regulator of (i) the onset of ISR by beneficial members of the root microbiome and (ii) the excretion of iron-mobilizing coumarins into the rhizosphere, we set out to investigate the identity of the MYB72-dependent metabolites that are excreted into the rhizosphere and their impact on the root-associated microbiome. We performed metabolite fingerprinting analysis of root extracts and exudates of wild-type Col-0 and mutant myb72 and bglu42 plants. We identified the coumarin scopoletin as a major metabolite that is produced and excreted into the rhizosphere in a MYB72–BGLU42-dependent manner. Scopoletin possesses antimicrobial activity (37) and was previously linked to disease resistance in different plant species (38–40). Metagenome analysis of microbiota associated with roots of Col-0 plants and roots of the scopoletin biosynthesis mutant f6h1 shows that this antimicrobial and iron-mobilizing coumarin impacts the assembly of the root-associated microbiome. We further show that scopoletin selectively inhibits the growth of two soil-borne fungal pathogens in vitro but has little or no effect on the growth of two beneficial ISR-inducing rhizobacteria. Collectively, our results suggest that the MYB72–BGLU42-mediated production and excretion of scopoletin favors the interaction between plant roots and pro-biotic members of the root microbiome.

Results

Metabolite Fingerprinting of Root Exudates. In Arabidopsis roots MYB72 and BGLU42 are both required for the onset of rhizobacteria-mediated ISR. Moreover, MYB72 is required for the biosynthesis of iron-mobilizing fluorescent phenolic compounds, while BGLU42 has a role in their subsequent excretion into the rhizosphere (12). Under iron-starvation conditions, Col-0 roots exuded high quantities of fluorescent phenolic compounds (Fig. 1A) and activated the iron-deficiency marker genes FRO2, IRT1, MYB72, and F6H1 (Fig. 1B). The mutant myb72 did not excrete detectable levels of the fluorescent compounds, and in bglu42 plants their exudation was significantly impaired, confirming previous findings (12). To identify the metabolites that were synthesized and secreted from Arabidopsis roots in a MYB72- and BGLU42-dependent manner, we analyzed the metabolome of root exudates of wild-type Col-0 and mutant myb72 and bglu42 plants. The three genotypes were grown under iron-sufficient and iron-deficient conditions, and the root exudates were analyzed by metabolite fingerprinting using ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-TOF-MS (Dataset S1). Filtering the data resulted in a set of 722 metabolite features with a false-discovery rate (FDR) below 0.001. Principal component analysis (PCA) of the profiles of these 722 metabolite features indicates that the exudates of the different genotypes grown under iron-sufficient conditions are similar (Fig. 1C and Fig. S1). In contrast, the root exudates of iron-starved plants were clearly different from those of iron-sufficient plants. The root exudates of iron-starved myb72 plants clearly separated from those of iron-starved Col-0 and bglu42 plants, indicating that the metabolite profiles of myb72 root exudates are markedly different from those of Col-0 and bglu42 plants.

To obtain a global overview of the metabolite features and their relative abundances (RAs) in the root exudates, the profiles of the selected 722 metabolite features were clustered by means of one-dimensional self-organizing maps (1D-SOMs) (41). 1D-SOMs organized the intensity profiles in 10 clusters (prototypes) (Fig. 1D). Analogous to the PCA plot, the intensity profiles of the metabolite features of Col-0, myb72, and bglu42 plants grown under iron-sufficient conditions are highly similar. For all three genotypes, the iron-starvation treatment changed the metabolome of root exudates, which resulted mainly in increased signal intensities, most strikingly visible in clusters 4–7 and 9–10. Clusters 1–3 and 8 represent features with rather unaffected intensity profiles or with only a weak accumulation in the bglu42 mutant. Cluster 4 represents features that accumulated highly in exudates of Col-0 plants, while clusters 6 and 10 show features mainly enriched in myb72 or bglu42 exudates, respectively. The metabolite features of clusters 5 and 9 show lower intensities for iron-starved myb72 than for iron-starved Col-0 and bglu42. Collectively, these results indicate that MYB72 activity affects the composition of the root exudate metabolite profile under conditions in which the iron-deficiency response is activated.

Exudation of MYB72- and BGLU42-Dependent Metabolites. To determine the identity of the MYB72- and BGLU42-dependent metabolites in the root exudates of iron-starved Arabidopsis plants, we generated a data subset of the metabolome data shown in Fig. 1 containing only the metabolite fingerprinting analyses of the root exudates of iron-deprived Col-0, myb72, and bglu42 plants. Filtering the data of this subset resulted in 311 metabolite features with an FDR below 0.001 (Dataset S2).
The intensity profiles of these 311 features were clustered by means of 1D-SOMs, resulting in five prototypes (Fig. 2A). Metabolite features in clusters 1, 2, and 5 showed clearly lower intensities in myb72 than in Col-0 exudates, indicating that the abundance of the corresponding metabolites increased in Col-0 root exudates in a MYB72-dependent manner. The metabolite features of prototype 1 showed in addition a depletion in root exudates of iron-starved Col-0 plants (with scopoletin being the most abundant), while no increase is observed in root exudates of iron-starved myb72 plants (Fig. S2). Most of the features summarized in cluster 1 (Fig. 2A) are related to scopoletin. The diversity of the scopoletin-related features is caused by the intense adduct formation of the highly abundant coumarin scopoletin during ESI. The scopoletin-nonrelated features in cluster 1 showed very low signal intensities and inconclusive database matches. High-resolution tandem mass spectrometry (MS²) analysis confirmed the identity of the detected coumarins (Table S1). Of these excreted MYB72-dependent coumarins, only scopoletin levels were reduced in the root exudates of iron-starved bglu42 plants.

Quantification of scopoletin and its aglycone scopolin by HPLC with diode array UV detection (HPLC-DAD) (Fig. 2B) confirmed their patterns observed in the nontargeted metabolite fingerprinting approach (Fig. S2). Scopoletin accumulated to over 3 μg·mL⁻¹ in root exudates of iron-starved Col-0 plants, while it was undetectable or strongly reduced in root exudates of the myb72 and bglu42 plants, respectively. Fig. 2B shows that the glycosylated form of scopoletin, scopolin, also accumulated in a MYB72-dependent manner in the exudates of iron-starved roots, albeit only to about 10% of the concentration of scopoletin (compare the scales of the y axes). However, the bglu42 mutation had no effect on the iron-starvation–induced levels of scopolin. Collectively, these results show that scopoletin is the major MYB72- and BGLU42-dependent metabolite that is secreted by roots of iron-starved Arabidopsis plants. Besides coumarins, the coumarin precursor phenylalanine and the citric acid cycle components citrate, malate, and succinate also increased in abundance in root exudates of iron-starved Col-0 plants (Fig. S2 and Table S1), confirming previous findings (24). However, their excretion was not dependent on MYB72 and BGLU42.
Role of BGLU42 in the Excretion of Scopoletin. BGLU42 encodes a β-glucosidase that belongs to glycoside hydrolase (GH) family 1, and it was previously shown that the GH family 1 members BGLU21, BGLU22 and BGLU23 can hydrolyze scopolin, resulting in the production of scopoletin (42). Glycosylation and deglycosylation can change phenylpropanoid solubility, stability, and toxic potential and can influence their compartmentalization and biological activity (43). While myb72 plants are blocked in the ability to produce fluorescent phenolic compounds in their roots, iron-starved bglu42 roots still accumulate significant amounts (Fig. 2C). Hence, we hypothesized that if BGLU42 activity facilitates the excretion of scopoletin, then iron-starved bglu42 mutant plants should still accumulate the glycosylated form scopoletin within their roots. To test this, we analyzed the metabolite profiles of the polar and nonpolar extractions of the roots of Col-0, myb72, and bglu42 plants grown under iron-sufficient and iron-starved conditions by UPLC-ESI-TOF-MS (Datasets S3 and S4). Similar to the observations for the root exudates, the root metabolome showed different metabolite profiles in terms of iron treatment and plant genotype (Figs. S1 and S3A and B). Metabolite features related to coumarins were abundantly present in the polar extracts of the root, with scopolin, scolepoin, and esculin showing highly abundant signal intensities (Fig. S3C and Table S2). Scopolin, scopoletin, and esculin were produced within the roots in a MYB72-dependent manner, and BGLU42 did not negatively impact their abundance in the roots (Fig. 2D and Fig. 3C). Scopolin even increased to higher levels in the roots of iron-starved bglu42 plants than in the roots of Col-0 plants, supporting the notion that BGLU42-mediated deglycosylation of scopolin is impaired in this mutant. As opposed to root exudates of iron-starved Col-0 plants, where scopoletin levels were about 10-fold higher than those of scopolin (Fig. 2B), within the roots of iron-starved Col-0 plants the scopoletin levels were over 25-fold lower than those of scopolin (Fig. 2D). Collectively, these results indicate that roots of iron-starved Col-0 plants produce scopolin and scolepoin in a MYB72-dependent manner and that BGLU42 activity is important for the deglycosylation of scopolin and the subsequent production of the aglycone scopoletin before its excretion into the rhizosphere. The presented molecules were created using the website https://www.emolecules.com.
Metabolite fingerprinting yielded a rich source of metabolite features with either MYB72- or BGLU42-dependent patterns. However, because none were impaired in both the myb72 and the bglu42 mutant background, they are not described further in this study.

Effect of Scopoletin on Rhizosphere Microbiome Assembly. Previously, coumarin derivatives were shown to possess antimicrobial activity (37). Because beneficial ISR-inducing members of the root microbiome induce MYB72 and coumarin biosynthesis genes upon colonization of the roots (12), we hypothesized that coumarins may play a role in shaping the microbial community in the rhizosphere. To investigate the effect of MYB72-dependent coumarins, in particular scopoletin, on the composition of the root-associated microbial community, we analyzed the root-associated microbiomes of Col-0 and myb72 and the scopoletin biosynthesis mutant f6′h1 (26, 44). Arabidopsis seedlings were grown in vitro under iron-sufficient or iron-starved conditions to verify their coumarin-exudation status at the start of the experiment. As expected, iron-starved Col-0 seedlings abundantly exuded fluorescent phenolic compounds, while myb72 and f6′h1 seedlings did not (Fig. 3A). Subsequently, the plants were transplanted into natural Reijerscamp soil (45) that was limed to maintain iron limitation and differential coumarin excretion patterns. At the moment of transplantation, MYB72, FRO2, and IRT1 were strongly induced in the roots of iron-starved Col-0 seedlings (Fig. 3B). Their induced expression leveled off over time but was still detectable at day 3 after transplantation. In this experimental setup, differences in iron availability of the Col-0 seedlings after transplantation to the natural Reijerscamp soil had no major effect on the expression of the root immunity marker gene CYP71A12, the glucosinolate biosynthesis genes CYP79B2 and CYP79F2, and the pathogenesis-related protein gene PR3 (Fig. S4). Hence, potential differences in microbiome composition are not likely the result of differences in basal root defenses. Next, we analyzed the microbiota associated with the roots of iron-starved Col-0, myb72, and f6′h1 plants that were grown in limed soil for 3 d. As a control, we characterized the root microbiota of Col-0 plants that were pregrown under iron-sufficient conditions. Day 3 after transplantation was chosen

![Image](https://example.com/image.png)
because enhanced expression levels of MYB72, FRO2, and IRT1 were still detectable at that time point (Fig. 3B), and phenolics excreted by the roots can reside in the soil for several days (46).

To analyze the effect of MYB72 and F6H1 activity on the composition of the root microbiome, genomic DNA of the root-associated microbiota was subjected to shotgun metagenome sequencing. Per sample, Illumina NextSeq. 500 sequencing yielded between 52.4 and 108.7 million paired-end reads with a length of 150 bp (Table S3). For the analysis of the metagenomes, we followed a classification-first approach using Kaiju, a program that estimates the sequence similarity of metagenomic reads with reference prokaryotic and eukaryotic microbial protein databases (47). For the root samples, Kaiju classified 28–32% of the reads at the genus level to Arabidopsis and 21–24% of the reads to microbiota in the reference database (Table S3). For the bulk soil samples, a very small number of reads compared with the total sample reads were classified to Arabidopsis (sample B1: 10.995, 0.03%; sample B2: 3.534, 0.01%; sample B3: 2.802, 0.01%), while 37% matched with microbiota in the reference database. For all samples, 45–60% of the reads could not be classified at the genus level.

Genus-level classification using publicly available taxonomy databases as in ref. 48 allowed us to track shifts in higher taxonomic ranking between the root-associated microbiota and those assembled in the unplanted soil (Fig. S5). Taxonomic classification at the genus level resulted in the assignment of reads to 4,046 genera belonging to the domains of Bacteria, Eukaryota, and Archaea (Dataset S5). Bacteria were the most dominant domain in terms of RA, with Eukaryota being the second and Archaea representing only a small fraction of the microbial communities (Fig. S5A). Bacteria displayed a significant decrease in the root samples of all genotypes compared with bulk soil. In contrast, Eukaryota showed a significant increase in the root samples, while the RA of Archaea remained unaffected in both compartments (Fig. S5A). At the phylum level, we focused on phyla with an RA of over 0.5% (Fig. S5B). Proteobacteria were the most abundant (around 50% RA) with Actinobacteria, Firmicutes, and Bacteroidetes being overrepresented as well but with lower RA. The phyla Acidobacteria, Actinobacteria, Bacteroidetes, and Firmicutes showed statistically significant changes in RA between soil and all root/rhizosphere samples. For the phyla Chlorophyta, Mucoromycota, Planctomycetes, and Chlorarachniophyta only a small number of the genera in these phyla combinations showed significant changes in the RA in root/rhizosphere versus bulk soil samples, while the phyla Verrucomicrobia, Cyanobacteria, Chloroflexi, Basidiomycota, and Ascomycota remained unaffected (Fig. S5B).

To gain further insight into the effect of plant genotype and treatment on root microbial diversity, we performed β- and α-diversity analyses. In the principal coordinate analysis (PCoA) of Bray–Curtis similarities (β-diversity), the microbial diversity of bulk soil clearly separates from those of the different plant genotypes (Fig. 3C), indicating a significant effect of the plant on root microbiome assembly. Along the second principal coordinate, the root-associated microbial communities of iron-sufficient (+Fe) and iron-starved (−Fe) Col-0 plants differentiate (Fig. 3C), suggesting that root exudates produced during iron starvation affected microbiome assembly. The microbial communities of iron-starved Col-0 and myb72 plants both displayed intermediate separation from that of iron-sufficient Col-0 plants, while the microbial community on the scopoletin biosynthesis mutant f6h1 diverged most distinctly. To pinpoint genotype-mediated differences within the root-associated microbiota, the microbial diversity within each sample (α-diversity) was calculated as Shannon diversity (Fig. 3D). This calculation showed that microbial communities in unplanted bulk soil are significantly more diverse and complex than the root-associated microbial communities and that the Shannon diversity for the f6h1 root-associated microbiota was significantly lower than that for the other genotypes. The observation that the scopoletin-biosynthesis mutant f6h1 clearly separates from the other genotypes in both between- and within-samples diversity estimations suggests that F6H1 activity affects root microbiome assembly.

To dissect the plant genotype-mediated differences in root microbiome structure on lower taxonomic ranking, we performed pairwise comparisons using DESeq2. Pairwise comparison between the root-associated microbiota of iron-starved and iron-sufficient Col-0 plants revealed 21 genera with differential abundance, predominantly from the Proteobacteria and Firmicutes phyla (Fig. S6A). Psychrobacillus, Stenotrophomonas, Paenibacillus, and Dyella were the genera with the highest differential abundance in the root microbiomes of iron-starved Col-0 plants, indicating that these genera grow better in the rhizosphere of iron-starved Col-0 plants than in that of iron-sufficient Col-0 plants. Conversely, Adhaeribacter, Niustella, and Hymenobacter were most highly enriched on roots of iron-sufficient Col-0 plants, indicating that they grow better in the rhizosphere of iron-sufficient Col-0 plants than in that of iron-starved Col-0 plants. Comparison between the root microbiomes of iron-starved Col-0 and myb72 plants yielded only three genera above the limit of statistical significance (Fig. S6B). However, these genera were also detected in the comparison between iron-starved Col-0 and f6h1 plants, which revealed the largest number (35) of genera with differential abundance (Fig. 4). The 22 genera significantly enriched on Col-0 over f6h1 roots (growth positively affected by F6H1/ scopoletin activity) represent seven phyla, with Psychrobacillus and Paraclostridium from the Firmicutes phylum and Rhizophaga, a genus of mycorrhizal fungi from the phylum Mucoromycota, being among the most strongly stimulated genera. The 13 genera significantly enriched on f6h1 over Col-0 roots (growth negatively affected by F6H1/scopoletin activity) represent four phyla, with Pontibacter, Ruibacter, and Adhaeribacter, all belonging to the Hymenobacteraeaceae family, being among the most strongly affected genera. Interestingly, Adhaeribacter and Hymenobacter were both significantly less abundant on the roots of iron-starved Col-0 plants than on the roots of iron-sufficient f6h1 and iron-sufficient Col-0 plants, suggesting that these genera are particularly sensitive to F6H1-dependent coumarins that are secreted under conditions of iron starvation. Together, these results demonstrate that the F6 H1-dependent root exudation patterns, with the coumarin scopoletin as a major compound, can positively and negatively influence the abundance of specific genera in the root-associated microbiome of Arabidopsis, thereby impacting the assembly of the root microbiome.

Differential Antimicrobial Effect of Scopoletin. MYB72 and BGLU42 are both important for the onset of rhizobacteria-mediated ISR and the excretion of iron-mobilizing coumarins into the rhizosphere (12, 23). Metabolite fingerprinting using UPLC-ESI-TOF-MS confirmed that at 48 h after colonization by *P. simiae* WCS417, Col-0 roots already showed increased accumulation of the coumarins scopolin, scopoletin, and esculin and the tricarboxylic acid (TCA) cycle intermediates citrate, malate, and succinate (Fig. 5A, Fig. S7, and Dataset S6). Production of coumarins in response to colonization of Arabidopsis roots by ISR-inducing *P. simiae* WCS417 bacteria occurs in a F6H1-dependent manner (Fig. 5A), which raises the question how and to what extent such plant-beneficial rhizobacteria benefit from the excretion of antimicrobial compounds into the rhizosphere. To assess the effect of coumarin production on root colonization by WCS417, we monitored the growth of WCS417 on roots of iron-starved and iron-sufficient Col-0 plants over a time period of 7 d after the plants were transplanted into limed Reijerscoop soil (Fig. 5B; same experimental setup as used for the microbiome analysis). Within 1 d, the density of WCS417 bacteria had increased by 10-fold in the rhizosphere of Col-0 plants in comparison with the density in unplanted bulk soil. This increase in WCS417 density was maintained for the 7-d period.
Pseudomonas Capeferrum (roots) raphani shows that fungal hyphae from ger-
and WCS417 and S3 μ SEE COMMENTARY Differential abundance of microbial genera on WCS358 (7, 23). WCS358 was
The rhizosphere microbiome is highly diverse, and its
β roots, which suggests that BGLU42 functions in the hydro-
P. simiae β S3 | plants significantly attracted the fungal hyphae. Together, these
fungi in vitro and inhibited the growth of

![Fig. 4.](image) Differential abundance of microbial genera on Arabidopsis roots with different scopoletin exudation patterns. Differentially abundant bacterial and fungal genera in root samples of Col-0 (–Fe) and f6’h1 (–Fe) plants as determined using DESeq2. Comparisons were performed at the genus level using an FDR <0.05 to select for significance. In all graphs, negative log2 fold-change values relate to genera that are significantly enriched in iron-starved Col-0 plants (Fig. 2 and Figs. S2 and S3). Coumarins, such as scopolin, scopoletin, esculin, esculetin, and isofraxidin, are produced via the phenylpropanoid pathway (54) and accumulate abundantly in roots and exudates of Arabidopsis roots in a MYB72- and BGLU42-dependent manner and investigated their possible role in plant–microbe interactions. Untargeted UPLC-ESI-TOF-MS metabolomics of root exudates and root extracts revealed coumarins as a major group of compounds whose production relies on MYB72 activity (Fig. 2 and Figs. S2 and S3). Coumarins, such as scopolin, scopoletin, esculin, esculetin, and isofraxidin, are produced via the phenylpropanoid pathway (54) and accumulate abundantly in roots and exudates of iron-starved plants (24–26) where they play a role in the mobilization and uptake of iron (26, 27). Mutant bglu42 plants produced wild-type levels of coumarins but were specifically impaired in the excretion of scopoletin in root exudates and root extracts revealed coumarins as a major group of compounds whose production relies on MYB72 activity (Fig. 2 and Figs. S2 and S3). Coumarins, such as scopolin, scopoletin, esculin, esculetin, and isofraxidin, are produced via the phenylpropanoid pathway (54) and accumulate abundantly in roots and exudates of iron-starved plants (24–26) where they play a role in the mobilization and uptake of iron (26, 27). Mutant bglu42 plants produced wild-type levels of coumarins but were specifically impaired in the excretion of scopoletin, the most abundant coumarin in the root exudates (Fig. 2 and Figs. S2 and S3). However, the glycosylated form of scopoletin, scopoletin, accumulated to high levels in iron-starved bglu42 roots, which suggests that BGLU42 functions in the hydrolysis of scopoletin and that this activity is required for the excretion of scopoletin into the rhizosphere. This is in line with previous findings in which the Arabidopsis β-glucohydrolases BGLU21, BGLU22, and BGLU23 were shown to specifically hydrolyze scopoletin into scopoletin in vitro (42). β-Glucosidases can hydrolyze glycosidic bonds either between two carbohydrates or between a carbohydrate and a noncarbohydrate (55), often resulting in the release of bioactive derivatives (55, 56). The activity of BGLU42 seems to be specific for scopoletin/esculetin, since other coumarin pairs such as esculin/esculetin were not affected by bglu42 (Figs. S2 and S3). We thus conclude that BGLU42 activity in iron-starved Arabidopsis roots plays an important role in the processing of scopoletin.
of monitoring. No difference was observed in the level of coloni-
ization on iron-starved and iron-sufficient Col-0 roots, suggesting that WCS417 is insensitive to possible antimicrobial effects of root exudates that are excreted in the rhizosphere during conditions of iron starvation.

To confirm that P. simiae WCS417 is insensitive to coumarins, we tested the effect of scopoletin on the growth of WCS417 in vitro, using the antibiotic tetracycline as a positive control (Fig. 5C (40)). While tetracycline prevented the growth of WCS417, scopoletin concentrations of up to 2 mM had no effect on the growth of this PGPR. Additionally, we tested the effect of scopoletin on another well-characterized ISR- and MYB72-inducing PGPR, Pseudomonas capeferrum WCS358 (7, 23), WCS358 was also highly insensitive to scopoletin (Fig. 5D). We then reasoned that the excretion of coumarins would aid the rhizobacteria that in the key. As shown in the key.
Scopoletin possesses antimicrobial activity (37). Hence, its excretion likely influences the composition of the microbial community in the rhizosphere. In our search for scopoletin-mediated effects on root microbiome assembly, shotgun sequencing of the microbial communities in our search for scopoletin-mediated effects on root microbiome assembly was achieved under UV light (365 nm). Photographs were taken from roots of 20-d-old in vitro-grown Arabidopsis plants 7 d after colonization by P. simiae WCS417. Shown data are the means ± SEM of three biological replicates (see also Fig. 5S). (B) Number of P. simiae WCS417 bacteria recovered from rhizospheres of Col-0 plants grown in limed Reijerscamp soil that was amended with 10⁶ cfu g⁻¹ WCS417 bacteria. Root colonization was determined at the indicated days after the seedlings were transplanted from iron-sufficient (+Fe) or iron-starved (−Fe) Hoagland growth medium into the WCS417-amended Reijerscamp soil. Values for each time point were calculated from five rhizosphere or bulk soil samples. Asterisks indicate significant differences between bulk soil and colonized plants: ****P < 0.0001, two-way ANOVA, Tukey’s test. (C–F) Graphs showing growth (OD₆00) of P. simiae WCS417 (C), P. capreiferum WCS358 (D), F. oxysporum f.sp. raphani (E), and V. dahliæ JR2 (F) in medium containing the indicated concentrations of scopoletin (Scop). Tetracycline and Delvocid were used as positive controls for bacteria and fungi, respectively. Growth measurements were performed over a period of 24 h (bacteria) or 6 d (fungi). The data shown are the means of 8–10 replicates. Error bars represent the SE of the mean. Different letters represent significant differences between treatments: P < 0.05, two-way ANOVA, Tukey’s test.

Fig. 5. Effect of scopoletin on P. simiae WCS417 colonization and on the growth of selected soil-inhabiting microbes. (A, Left) Visualization of fluorescent phenolic compounds produced by roots of iron-sufficient Col-0 and scopoletin biosynthesis mutant f6/h1 plants in response to colonization by P. simiae WCS417. Visualization of fluorescent phenolic compounds was achieved under UV light (365 nm). Photographs were taken from roots of 20-d-old in vitro-grown Arabidopsis plants 7 d after colonization by the rhizobacteria. (Right) Bars show signal intensity in counts per second of the coumarin scopolin (detected as [M+H]⁺) in Col-0 roots 2 d after colonization by P. simiae WCS417. Shown data are the means ± SEM of three biological replicates (see also Fig. S5S).

The data shown are the means of 8–10 replicates. Error bars represent the SE of the mean. Different letters represent significant differences between treatments: P < 0.05, two-way ANOVA, Tukey’s test.
Variovorax

Alternaria alternata

The growth of the soil-borne fungal pathogens F. oxysporum and V. dahliae (Fig. 5). We found that, in addition to reducing the growth of these fungi, scopoletin deters the germination of F. oxysporum spores (Fig. S8B) and inhibits pigmentation of F. oxysporum mycelium (Fig. S8A). Such mycelial pigments can have protective activities against environmental stresses (52, 82). Hence, the inhibition of their formation by scopoletin could render this fungus less viable in the rhizosphere.

Collectively, our microbiome and targeted microbial growth analyses show that some soil-borne microbes can be sensitive to the antimicrobial activity of scopoletin, while others are tolerant. Beneficial ISR-inducing rhizobacteria, such as P. simiae WCS417 and P. caperom FWC3358, induce MYB72 and BGLU42, which leads to the onset of ISR and the excretion of scopoletin in the rhizosphere. Like P. simiae WCS417 (Fig. S4A), the ISR inducers Pseudomonas fluorescens SS101 and Paenibacillus polymyxa BFC01 (83, 84) also stimulate the production of coumarins upon colonization of Arabidopsis roots. It is tempting to speculate that in these mutualistic plant-microbe interactions, the rhizobacteria benefit because scopoletin outcompetes scopoletin-sensitive microbes in the same root niche, while the plant benefits because the population of plant-beneficial microbes increases while scopoletin-sensitive soil-borne pathogens are suppressed.

Materials and Methods

Cultivation of Plants and Microbes. A detailed description of the growth conditions of wild-type and mutant A. thaliana plants for the metabolite fingerprinting and root microbiome analyses and of the cultivation conditions of P. simiae WCS417, P. caperom FWC3358, F. oxysporum, and V. dahliae in different assays used in this study are provided in SI Materials and Methods.

Metabolite Fingerprinting Analysis. The protocol used for the UPLC-ESI-TOF-MS metabolite fingerprinting analysis of the root extracts and root exudates is described in detail in SI Materials and Methods.

Root Microbiome Analysis. The experimental setup used to study the root microbiomes and the metagenome analysis pipeline is described in detail in SI Materials and Methods.

Quantification, Visualization, and Determination of Biological Effects of Coumarins. Quantification and visualization of fluorescent coumarins in root extracts and root exudates is described in detail in SI Materials and Methods.

All other methods are described in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank David Turrà for his suggestions on the chemotropism assay, Bart Thomma for providing Verticillium dahliae JR2, Jürgen Zeier for fb/h1 seeds, Richard Hickman for discussions on the statistical analysis of microbiome data, and Sabine Freitag and Hans Van Pelt for technical assistance. This work was supported by European Research Council Advanced Grant 269072 (to C.M.J.P.), a China Scholarship Council fellowship (to K.Y.R.), Research Foundation Flanders postdoctoral fellowship 12B8116N (to R.d.J.), and Deutsche Forschungsgemeinschaft Grant ZUK 45/2010 (to I.F.).

1. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266.
2. Berendse RL, Pieterse C MJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486.
3. Mendes R, et al. (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100.
4. Bulgarelli D, Slaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and function of the bacterial microbiota of plants. Annu Rev Plant Biol 64:887–908.
5. Hauquard S, Spaepen S, Garrido-Orter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589.
6. Pieterse C MJ, et al. (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:171–205.
7. Berendse RL, et al. (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 16:539.
8. Pieterse C MJ, et al. (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1517–1528.
9. Verhagen BW, et al. (2004) The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Mol Plant Microbe Interact 17:895–908.
10. Martinez-Medina A, et al. (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822.
11. Pozo MI, Van Der Ent S, Van Loon LC, Pieterse C MJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phyto 180:511–523.
12. Zamioudis C, Hanson J, Pieterse C MJ (2014) Jß-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phyto 204:368–379.
13. Stringlis IA, et al. (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant 93:166–180.
14. Van der Ent S, et al. (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304.
15. Martinez-Medina A, Van Wees SCM, Pieterse C MJ (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defenses in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40:2691–2705.
Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in Arabidopsis roots. Plant Physiol 149:1084–1094.

Kobayashi Y, Nishikawa NW (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152.

Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412.

Sanz I, Schmidt W (2009) Dissecting iron deficiency-promoted proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084.

Eide D, Branders M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628.

Robinson NJ, Proctor CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697.

Zamiodis C, et al. (2015) Rhizobacterial volatiles and photosynthesis-related signals coordinate plant iron nutrition in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant 84:309–322.

Fourcroy P, et al. (2014) Involvement of the AHC237 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167.

Rodríguez-Celma J, et al. (2013) Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol 162:1473–1485.

Aliotta G, De Feo V, Pinto G, Pollio A (1999) In vitro inhibition of algal growth by Ruta graveolens L. extracts: Biological and chemical aspects. Plant Biosyst 133:185–191.

Kim KK, Kim MK, Lim JH, Park HY, Lee ST (2005) Transfer of Chrysobactin repressor protein CbsA from Escherichia coli to Elizabethkingia miricola. Gen. J. Microbiol. 56:1287–1293.

Lundberg DS, et al. (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90.

Zagare-Biazzo R, et al. (2015) Internal root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA 113:E7969–E8005.

Zhang Y, et al. (2017) Huanglongbing impacts the rhizosphere to zolirate envel- opment process of the citrus root-associated microbiome. Microbiome 5:87.

Aliotta G, De Feo V, Pinto G, Pollio A (1999) In vitro inhibition of algal growth by Ruta graveolens L. extracts: Biological and chemical aspects. Plant Biosyst 133:185–191.

Kim KK, Kim MK, Lim JH, Park HY, Lee ST (2005) Transfer of Chrysobactin repressor protein CbsA from Escherichia coli to Elizabethkingia miricola. Gen. J. Microbiol. 56:1287–1293.

Lundberg DS, et al. (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90.

Zagare-Biazzo R, et al. (2015) Internal root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA 113:E7969–E8005.

Zhang Y, et al. (2017) Huanglongbing impacts the rhizosphere to zolirate envel- opment process of the citrus root-associated microbiome. Microbiome 5:87.