Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells

Philipp Mattar1,2 and Karen Bieback1,2*

1 Stem Cell Laboratory, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Heidelberg, Germany; 2 German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany

Mesenchymal stromal cells (MSC) have gained immense attraction in regenerative medicine, tissue engineering, and immunotherapy. This is based on their differentiation potential and the supply of pro-regenerative and immunomodulatory signals. MSC can be isolated from a multitude of tissue sources, but mainly bone marrow, adipose tissue, and birth-associated tissues (e.g., umbilical cord, cord blood, placenta) appear to be relevant for clinical translation in immune-mediated disorders. However, only a few studies directly compared the immunomodulatory potency of MSC from different tissue sources. This review compiles the current literature regarding the similarities and differences between these three sources for MSCs with a special focus on their immunomodulatory effects on T-lymphocyte subsets and monocytes, macrophages, and dendritic cells.

Keywords: mesenchymal stromal cells, immunomodulation, T cells, regulatory T cells, macrophages, bone marrow, adipose tissue, umbilical cord

INTRODUCTION

Human mesenchymal stromal cells (MSC) have been an attractive target for translational research in a wide range of therapeutic applications due to their paracrine effects, multi-lineage differentiation potential and, most importantly, their immunomodulatory properties (1, 2). Bone marrow was the first established source of these cells (3). Since then it has been the primary and therefore most investigated population. Over the last few years, several other sources for MSC have been identified (4, 5). In our view, after bone marrow-derived MSCs (hereafter referred to as BM-MSC), adipose tissue-derived MSCs (hereafter referred to as AT-MSC), and birth-associated MSCs (from umbilical cord blood, cord tissue, and placenta, referred to as UCB-MSC, UC-MSC, and PL-MSC, respectively) (6) are most commonly used as sources of human MSCs in a clinical setting. These may be favored due to different advantages: greater yields of MSCs than BM, higher proliferative potential, and no ethical restrictions (5–10). It has to be noted that birth-associated tissue is not one single source of MSCs but rather a comprising name for several subpopulations, namely amnion, umbilical cord, cord blood, and placenta. Most of them can be categorized further into even more subpopulations.

Abbreviations: AT, adipose tissue; BM, bone marrow; CTL, cytotoxic T lymphocytes; DC, dendritic cells; MLR, mixed lymphocyte reaction; MSC, mesenchymal stromal cells; PBMC, peripheral blood mononuclear cells; PL, placenta; Treg, regulatory T cells; UC, umbilical cord; UCB, umbilical cord blood; WJ, Wharton’s jelly.
Mesenchymal stromal cells from different sources are similar in a range of phenotypic and functional features (5). There are, however, subtle differences, which may result from the micro-environmental niche, the local function (stromal support of hematopoiesis in the BM and immune homeostasis by AT), and the ontogenetic age (birth-associated versus adult) (5, 7, 11) or induced by the isolation and culture procedure. CD106 is one example, as it is significantly reduced on AT-MSCs compared to other MSCs (5, 12, 13). CD34, on the other hand, appears on induced by the isolation and culture procedure. CD106 is one the ontogenetic age (birth-associated versus adult) (5, 7, 11) or environmental niche, the local function (stromal support of
immunomodulatory properties of MSC from different tissues

Effects on T Cells

Effects on Naïve CD4+ T Cells

The exerted effects on naïve CD4+ T cells are of a suppressing and polarizing nature, meaning MSCs inhibit the proliferation and activation of naïve CD4+ T helper cells (Th cells). They are able to influence the differentiation of Th0 cells into Th1, Th2, Th17, or regulatory T cells (Tregs) (36, 41, 42). MSCs seem to hamper T cell proliferation by arresting T cells in the G0/G1 phase of the cell cycle (12, 43), thus reducing the total number of T cells undergoing activation. MSCs exert their immunomodulatory functions through numerous molecules. Although trans-well experiments show an inhibiting function of MSCs, most studies confirm a more pronounced effect without trans-wells, highlighting the importance of cell-cell contact in mediating immunomodulatory functions. Prostaglandin E2 (PGE2) seems to play an important role in suppressing the immune response (33). Just recently, evidence arose that MSC-derived microvesicles contain a variety of immunomodulatory factors, including miRNA and tRNA species (25, 44). Di Nicola et al. proposed transforming growth factor (TGF)-β and hepatocyte growth factor (HGF) as important mediators, as blockade of both significantly reduced the suppressive effect of MSCs (45). Another group identified indoleamine 2,3-dioxigenase (IDO) to be involved (46). IDO catalyzes the conversion of tryptophan, an essential molecule in the activation of T cells, to kynurenine and has been identified as a key pathway for inhibiting T cell response. Additionally, Human Leukocyte Antigen-G5 (HLA-G5) was found to be required to suppress T cell function and to induce Tregs (32, 47).

Comparison

Comparative studies have produced conflicting results. Puissant et al. report similar inhibition of T cell proliferation, both induced in MLR or mitogens, in presence of BM- or AT-MSCs (35). In both settings suppression was induced by soluble mediators. In contrast, whereas Ribeiro et al. (36) found AT-MSCs (compared to BM-MSCs and UC-MSCs) to have the strongest suppressive effect on the activation and acquisition of lymphoblast characteristics on T cells, Xishan et al. (12) determined BM-MSCs to have a superior immunosuppressive effect over AT-MSCs. In a study comparing MSCs from bone marrow, adipose tissue and Wharton's jelly, AT-MSCs showed the strongest effect on downregulating the activation marker CD38 on T cells, followed by UC-MSCs, whereas BM-MSCs had the weakest effect (33). The authors showed AT-MSCs to be the most potent population in inhibiting allogeneic-induced T cell proliferation (33).

Effects on CD4+ Th1 Cells

A large number of studies have been performed to explore the effects of MSCs on Th1 cells, considered to be the main effector cells of proinflammatory cell-mediated immunity and organ-specific autoimmune disorders (23, 48, 49). The results obtained from these studies usually imply an inhibiting effect on Th1 cells (12, 41, 48–50). However, there are conditions in which MSCs seem to promote Th1 cells and inhibit the differentiation of Th2 cells (49). Cho et al. described AT-MSCs to reduce Th2-associated cytokines (interleukin IL-4, IL-5) and increase Th1-derived interferon (IFN)-γ and IL-2 in a model of eosinophilic nasal polyps (51). These data are corroborated by other studies, confirming the Th2-inhibiting function of MSCs in Th2-dominated

Table 1

Reference Populations	Parameters Compared	Outcome
Kern et al. (5) BM, AT	Immomodg	AT
Montespan et al. (32) BM, AT	Immunomog	AT
Luan et al. (31) BM, PL	Immunogenicity	BM
Ivanova-Todorova et al. (28) BM, AT	Immunomodc	AT
Stubbendorf et al. (39) UCB, WJ, PL, UCL	Proliferation	UCL
Prasanna et al. (22) BM, WJ	Immunogenicity	BM
	Immunomodf	BM
	Immunomodj	BM
	Immunomodl	BM
	Immunomodm	UCL
	Immunogenicity	UCL

Notes:

- BM, bone marrow; AT, adipose tissue; MLR, mixed lymphocyte reaction; MSC, mesenchymal stromal cells; PBMC, peripheral blood mononuclear cells; PL, placenta; WJ, Wharton's jelly.
- Different sources of MSCs: BM, bone marrow; AT, adipose tissue; UCB, umbilical cord blood; PL, placenta; WJ, Wharton's jelly.
- Parameters compared:
 - Immomod: immunomodulatory properties
 - Immunogenicity: immunogenic properties
 - Other parameters such as proliferation, cytokine production, etc.

References

- Prasanna et al. (22)
- Kern et al. (5)
- Montespan et al. (32)
show an inhibiting function of MSCs, most studies confirm a through numerous molecules. Although trans-well experiments influence the differentiation of Th0 cells into Th1, Th2, Th17, or activation of naïve CD4 polarizing nature, meaning MSCs inhibit the proliferation and AT-MSCs other MSCs (5, 12, 13). CD34, on the other hand, appears on example, as it is significantly reduced on AT-MSCs compared to induced by the isolation and culture procedure. CD106 is one the ontogenetic age (birth-associated versus adult) (5, 7, 11) or hematopoiesis in the BM and immune homeostasis by AT), and however, subtle differences, which may result from the micro -

TABLE 1 | Studies directly comparing different sources of MSCs, reporting differences in immunomodulatory capacities.

Reference	Populations compared	Parameters	Outcome
Bárcia et al. (26)	BM, UC	Immunomod	UC > BM
		Immunogenicity	UC < BM
Barlow et al. (9)	BM, PL	Proliferation	PL > BM
		Immuneogenicity	BM = PL
Castro-Manreza et al. (27)	BM, UCB, PL	Immunomod	BM = UCB > PL
Hass et al. (7)	BM, AT, UC	Proliferation	UC > AT > BM
		Senescence	UC < AT < BM
Ivanova-Todorova et al. (28)	BM, AT	Immunomod	AT > BM
Jin et al. (29)	BM, AT, UCB	Proliferation	UCB > AT = BM
		Immunomod	UCB > AT = BM
		Senescence	UCB < AT = BM
Kern et al. (5)	BM, AT, UCB	Proliferation	UCB > AT > BM
		Isolation success rate	BM = AT > UCB
		Colony frequency	AT > BM > UCB
Li et al. (30)	BM, AT, UC, PL	Proliferation	WJ > AT > PL > BM
		Immunomod	WJ > PL > AT > BM
Luan et al. (31)	BM, PL	Immunomod	BM = PL
Montespan et al. (32)	BM, AT	Immunomod	AT > BM
Najar et al. (33, 34)	BM, AT, UC	Immunomod	AT > BM = UC
Prasanna et al. (22)	BM, WJ	Immunogenicity	BM = WJ
		Immunomod	WJ ≠ BM
Puissant et al. (35)	BM, AT	Immunogenicity	BM = AT
		Immunomod	BM = AT
Ribeiro et al. (38)	BM, AT, UC,	T/NK cell inhibition	AT > BM = UC
		B cell inhibition	BM = AT (UC none)
Roemeling-van Rhijn et al. (37, 38)	BM, AT	Immunomod	BM = AT
		Immunomod	AT > BM
Stubbendorf et al. (39)	UCB, WJ, PL, UCL	Proliferation	UCL > UCB > WJ = PL
		Immunomod	UCL > UCB = WJ = PL
		Immunogenicity	UCL ≤ PL ≤ WJ = UCB
Xishan et al. (12)	BM, AT	Proliferation	AT > BM
		Immunomod	BM > AT
Yoo et al. (40)	BM, AT, UCB, WJ	Immunomod	BM = AT = UCB = WJ
		Cytokines	Only UCB and WJ

*MSCs + PBMCs/T cells: MLR assay to assess lymphocyte proliferation and immunogenicity. Flow cytometry to measure Treg induction. Comparative gene expression analysis.

*MSCs + T cells (transwell). Proliferation assay for CD4+ and CD8+ T cells. Flow cytometry to assess T cell activation and CTLA-4 and PD-L1 expression. Multiplex assay to measure IFN-γ, TNF-α, IL-10, and IL-4.

*MSCs + Monocytes. Flow cytometry to assess CD14, CD80, CD83, CD86, and HLA-DR. ELISA to measure IL-10 and IL-18. Proteome profile assay for 36 cytokines (e.g., CCL-3 and CCL-4).

*MSCs + LPS stimulated rat macrophages. ELISA to assess IL-1α, IL-6, and IL-8 and Ang-1.

*MSCs + T cells. T cell proliferation was assessed.

*MSCs + T cells. T cell proliferation assay. ELISA to assess IFN-γ and IL-10, or TNF-α.

*MSCs + PBMCs. Flow cytometry analysis for HLA-G. MLR assay to assess immunosuppression.

*MSCs + mitogenic/allergenic stimulated T cells. T cell activation and proliferation assays. Subset analysis for CD4+ and CD8+ T cells. PCR for COX1 and COX2. ELISA for PGE2

*MSCs + T cells. T cell proliferation assay. ELISA to assess IFN-γ and IL-10, or TNF-α.

*MSCs + PBMCs. Flow cytometry analysis for HLA-G. MLR assay to assess immunosuppression.

*MSCs + mitogenic/allergenic stimulated T cells. T cell activation and proliferation assays. Subset analysis for CD4+ and CD8+ T cells. PCR for COX1 and COX2. ELISA for PGE2

*MSCs + T cells. T cell proliferation assay. ELISA to assess IFN-γ and IL-10, or TNF-α.

*MSCs + PBMCs. Flow cytometry analysis for HLA-G. MLR assay to assess immunosuppression.

*MSCs + mitogenic/allergenic stimulated T cells. T cell activation and proliferation assays. Subset analysis for CD4+ and CD8+ T cells. PCR for COX1 and COX2. ELISA for PGE2

*MSCs + T cells. T cell proliferation assay. ELISA to assess IFN-γ and IL-10, or TNF-α.

*MSCs + PBMCs. Flow cytometry analysis for HLA-G. MLR assay to assess immunosuppression.

*MSCs + mitogenic/allergenic stimulated T cells. T cell activation and proliferation assays. Subset analysis for CD4+ and CD8+ T cells. PCR for COX1 and COX2. ELISA for PGE2

*MSCs + T cells. T cell proliferation assay. ELISA to assess IFN-γ and IL-10, or TNF-α.

*MSCs + PBMCs. Flow cytometry analysis for HLA-G. MLR assay to assess immunosuppression.

*MSCs + mitogenic/allergenic stimulated T cells. T cell activation and proliferation assays. Subset analysis for CD4+ and CD8+ T cells. PCR for COX1 and COX2. ELISA for PGE2

*MSCs + T cells. T cell proliferation assay. ELISA to assess IFN-γ and IL-10, or TNF-α.

*MSCs + PBMCs. Flow cytometry analysis for HLA-G. MLR assay to assess immunosuppression.

*MSCs + mitogenic/allergenic stimulated T cells. T cell activation and proliferation assays. Subset analysis for CD4+ and CD8+ T cells. PCR for COX1 and COX2. ELISA for PGE2

*MSCs + T cells. T cell proliferation assay. ELISA to assess IFN-γ and IL-10, or TNF-α.

*MSCs + PBMCs. Flow cytometry analysis for HLA-G. MLR assay to assess immunosuppression.
inflammatory conditions, such as allergic airway inflammation (52). In an inflammatory environment, high levels of IFN-γ and/or tumor necrosis factor (TNF)-α increase the expression of TGF-β by MSCs (53, 54), which in turn prompts Th1 cells to express immunosuppressive IL-10 and ultimately reduces their IFN-γ production. Furthermore, MSC mediate a downregulation of the Th1 cells IFN-γ receptor, which renders them less susceptible to IFN-γ (55). In a recent study, MSCs-induced and expanded a subpopulation of T-bet+ Th1 cells co-expressing IFN-γ and IL-10 (55). T-bet is a Th1 cell-specific transcription factor (56). This suggests that the influence of MSCs on IFN-γ expression is dependent on several factors, such as the cytokine milieu, the stimulation methods or the types of cells present, showing that we are far from having a full grasp of the effects of MSCs on immune cells.

Comparison
AT-MSCs and BM-MSCs showed similar results in inhibiting Th1 differentiation, as both significantly reduced the levels of IL-2 and IFN-γ (12). Another study compared several MSC populations from birth-associated tissue (umbilical cord lining, cord blood, placenta, and Wharton's jelly), resulting in cord lining MSCs to emerge as the most potent in dampening Th1 and Th2 responses and reducing release of IFN-γ by lymphocytes (39). Castro-Manrreza et al. compared BM-MSCs, UC-MSCs, and PL-MSCs and identified similar proliferation suppression capacities for BM-MSCs and UC-MSCs, but PL-MSCs showed significantly weaker CD4+/CD8+ T lymphocyte suppression (27). AT-MSCs exerted the strongest inhibition on IFN-γ secretion and T cell proliferation compared to BM-MSCs and WJ-MSCs (34).

Effects on CD4+ Th2 Cells
Th2 cells have several functions in the humoral-mediated immune response, as they host the defense against extracellular parasites, inhibit Th1 cells and DCs via IL-10, stimulate B cells via IL-4 and can induce isotype-switches in B cells (57). MSCs have been shown to enhance anti-inflammatory IL-4 production by Th2 cells, supposedly via a PGE2 (48). In inflammatory diseases that are associated with high amounts of Th2 cells (e.g., allergies, asthma, Crohn's disease), MSCs were able to ameliorate disease activity by inhibiting the cytokine production of Th2 cells (IL-4 and IL-5) and increase Th1-derived cytokines (IFN-γ and IL-2) (51, 58).

Comparison
There are a small number of studies concentrating on the comparison of various MSC sources on T cell subsets. Xishan et al. compared AT-MSCs and BM-MSCs on their ability to induce Th0 differentiation into Th1 and Th2 cells and could show that both populations had no significant effect on the levels of the Th2-associated cytokines IL-4 and IL-10 (12). Concerning Th2 cells, data is especially scarce.

Effects on CD4+ Th17 Cells
Th17 cells play an important role in the human immune system as effectors against extracellular bacterial and fungal infections, but have also been associated with autoimmune diseases, such as multiple sclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma (59). Although studies about the effects of MSCs on Th17 cells seem to yield rather consistent results, presenting MSCs as potent inhibitors of Th17-mediated immune responses (60–62), data exists where Th17 cells appear to be stimulated by MSCs in vitro (63). The time at which MSCs are added could be important, as Carrion et al. demonstrated opposing effects of MSCs on Th1 and Th17 cells relative to the state of CD4+ T cell activation (49).

Comparison
AT-MSCs, UC-MSCs, and BM-MSCs have all proven to be effective in suppressing the Th17 immune response (41, 60, 64), but studies directly comparing them are rare. In a mouse model of experimental colitis, UC-MSCs and BM-MSCs demonstrated a similar inhibition of Th17 cells, shifting the Th17/Treg ratio toward a more immunosuppressive balance (64).

Effects on CD4+ FoxP3+ Regulatory T Cells (Tregs)
Regulatory T cells are either derived in the thymus as mature Tregs, or from CD4+CD25+ naïve T cells as peripherally derived Tregs under the influence of TGF-β and IL-2 (65). Tregs target effector T cells and DCs (65, 66) by inhibiting their differentiation, function, and maturation to prevent autoimmunity and establish a peripheral tolerance (67). MSCs have been shown to induce Tregs via a multitude of factors. HLA-G5, a non-classical HLA class I molecule, plays an important role in the induction of Tregs (68). Another factor of MSCs involved in the activation of Tregs is TGF-β, which seems to be constitutively expressed by MSCs (69). Additionally, MSCs were reported to elevate IL-10 production by Tregs and DCs (70, 71), whereby DC-derived IL-10 in turn promotes the expansion of Tregs (72). Tregs can also be indirectly activated by MSCs through an upregulation of Fas ligand (FasL)/Fas-mediated death pathway, which targets T cells via cell-cell contact and leads to increased apoptosis and Treg induction (73). In several in vitro settings, MSCs increased Tregs, thereby ameliorating disease states as well as promoting graft survival in transplant experiments (41, 50, 74–76).

Comparison
In an in vitro study that compared BM-MSCs and UC-MSCs on their ability to induce Tregs, UC-MSCs had a significantly greater potential to induce Tregs than BM-MSCs (26). Chao et al., on the other hand, did not report a difference in Treg induction of BM-MSCs and UC-MSCs in an in vivo experiment (77).

Effects on CD8+ T Cells (CTL)
Cytotoxic T lymphocytes (CTLs) are major effectors in the immune system through targeting virus-infected cells as well as tumor cells. CTLs have a crucial role in autoimmunity and transplant rejection. CTL activation is triggered following the interaction of the T cell receptor (TCR) with the specific allogeneic peptide–HLA-I complex. The activation of lymphocytes can be divided into several steps, which all have a corresponding phenotype: CD69+CD25−HLA-DR− (non-activated), CD69+CD25+HLA-DR+ (earlier activated), CD69+CD25+HLA-DR+ (intermediate activated) and CD69+CD25+HLA-DR+ (later activated). It was
reported that MSCs are able to dampen the immune response of CTLs as well as inhibiting their proliferation and maturation (36, 37, 51). MSC downregulate the CD8 surface marker on CTLs via an indirect pathway involving CD14+ monocytes, requiring cell–cell contact between the monocytes and the CTLs (78). In this process, CD28 is downregulated on CTLs indicating loss of effector-type and gain of regulatory functions (78).

Comparison
Ribeiro et al. investigated AT-MSCs, BM-MSCs, and UC-MSCs as to their effect of inhibiting CD4+/CD8+ lymphocyte activation (36). Co-culture with BM-MSCs and UC-MSCs similarly inhibited lymphocyte activation, whereas the majority of the CD8+ cells were of the earlier activated phenotype. AT-MSCs here emerged as the most immunosuppressive population, as the majority of the T Cells were found to be in the non-activated compartment (36). Different effects on CD8+ mediated alloreactivity are reported by Roemeling-van Rhijn et al., addressing the capacity of AT- versus BM-MSC to induce HLA-specific alloreactivity (38). CD8+ T cells educated with IFN-γ-treated AT-MSC evoked 31% specific lysis of AT-MSCs with identical HLA. IFN-γ-treated BM-MSC, however, resulted in 76% HLA-specific killing of HLA-identical BM-MSC.

EFFECTS ON MONOCYTES, MACROPHAGES, AND DENDRITIC CELLS
Monocytes are a subpopulation of leukocytes able to differentiate into macrophages and DCs. Macrophages and DCs are antigen-presenting cells that can initiate an immune response and act as a mediator between the innate and the adaptive immune system. MSCs were reported to strongly induce the secretion of IL-10 on CD14+ monocytes via HGF, thereby suppressing T cell proliferation (79). Melief et al. showed that MSCs promote the survival of monocytes and induce the differentiation into CD163+CD206+ type 2 macrophages, which secrete IL-10 and CCL18 (69). CCL18 in turn has a crucial role in inducing Tregs (69). MSCs were frequently shown to be able to inhibit the proinflammatory functions of DCs and macrophages and skew the cells toward a more immunosuppressive response (70, 71, 80). The proinflammatory molecules TNF-α and macrophage inflammatory protein (MIP)-1β, produced by macrophages and mature DCs, were suppressed under the influence of MSCs (80). Concerning maturation markers such as CD1a, CD14, CD83 and HLA-DR, MSCs inhibited the maturation of DCs and furthermore downregulated the costimulatory molecules CD86/CD80 (81, 82). Conflicting data exist, as Laranjera et al. could not detect any influence of MSCs on maturation markers CD83, CCR7, and HLA-DR (80) on DCs, thus leading the group to suppose that MSCs exhibit their anti-inflammatory functions on macrophages and DCs mainly by inhibiting the secretion of proinflammatory cytokines. MSCs are also able to inhibit the differentiation at a more upstream step by interfering with monocyte maturation (83).

Comparison
AT-MSCs seem to have a more pronounced effect on DC differentiation than BM-MSCs (28). Saedi et al. examined UC-MSCs on their potential to interfere with maturation and endocytotic capability of DCs comparing them with BM-MSCs (81). While being equally effective in hampering the maturation of DCs, UC-MSCs had a stronger effect on reducing the endocytotic ability of DCs (81). Jin et al. compared anti-inflammatory activity of BM-, AT-, and UCB-MSCs (29). UCB-MSCs were most potent in suppressing cytokine release from LPS-challenged alveolar macrophages. Angiopoietin-1 was at least partly responsible for this effect.

CONCLUSION
The increasing numbers of studies conducted on comparing MSC sources in vitro and in vivo yield largely congruent results, presenting MSCs as promising cells for a multitude of immunological applications (Table 1). Nevertheless, the heterogeneity in MSC populations and experimental protocols still poses a major obstacle when trying to compare and merge different results and to translate them into clinical practice (84). Our survey reflects that the vast majority of data showed no significant deficiencies in the immunomodulatory potential of MSCs from alternative sources but often even stronger immunosuppressive capabilities than BM-MSCs (26, 28, 30, 33, 34, 36, 81). This was especially the case for MSCs from adipose tissue (28, 32–34, 36). This claim, however, is based on the few studies directly comparing MSCs from different tissue sources. Future studies should elucidate whether the similarities of tissue MSCs in vitro relate to similar functions in situ or are artificially gained by ex vivo isolation and culture adaptation (85, 86) and whether the subtle differences in function relate to the role of MSCs in situ. What is certain is that MSCs expanded in vitro are highly sensitive to their microenvironment; they may alternate their function based on the surrounding conditions. Important parameters are the culture conditions (e.g., choice of serum supplement), types of immune cells present, cell activation status, ratio of MSC to immune cells and, of course, the cytokine levels in the milieu (87–90). Additionally, variations in isolation methods, culture media, cell counts, and different stimulation protocols can further blur the potential differences among distinct MSC sources. A standardization of assays to assess the effects of MSCs is essential to guarantee trustworthy and reproducible results (18). Ideally, these assays are capable of predicting efficacy of MSCs in vivo, to serve as potency assay. We would therefore appreciate more comparative studies to give us a better understanding of the immunomodulatory mechanisms of MSCs, facilitating the choice between different sources for defined clinical settings to improve safety and efficacy of MSC-based therapies.

AUTHOR CONTRIBUTIONS
PM, KB: conception, acquisition, analysis, or interpretation of data, drafting and critical revision, final approval before submission, and agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
ACKNOWLEDGMENTS

We would like to thank Stefanie Uhlig, Susanne Elvers-Hornung and Andrea Hecker for excellent technical and scientific support and Eva Ossenbühn for critical proofreading.

REFERENCES

1. Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cell: a review of clinical applications and manufacturing practices. Transfus (2014) 54(5):1418–37. doi:10.1111/trf.12421
2. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol (2014) 15(11):1099–16. doi:10.1038/ni.3002
3. Friedenstein AJ, Gorska JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol (1976) 4(5):267–74.
4. de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, et al. Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des (2013) 19(13):2459–73. doi:10.2174/1381612811319130015
5. Kern S, Eichler H, Stoeve J, Kütter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells (2006) 24(5):1294–301. doi:10.1634/stemcells.2005-0342
6. Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: from biology to cell therapy. World J Stem Cells (2010) 2(4):81–92. doi:10.4252/wjsc.v2.i4.81
7. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal (2011) 9:12. doi:10.1186/1478-811X-9-12
8. Bieback K, Kern S, Kütter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells (2004) 22(4):625–34. doi:10.1634/stemcells.2004-2625
9. Barlow S, Brooke G, Chatterjee K, Price G, Pekelkanos R, Rossetti T, et al. Characterization of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev (2008) 17(6):1095–107. doi:10.1089/scd.2007.0154
10. In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings CE. Mesenchymal stem cells from the adipose tissue-derived stromal vascular fraction and the International Society for Cellular Therapy (ISCT). Immunological characterization of multipotent mesenchymal stromal cells – the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy (2013) 15(9):1054–61. doi:10.1016/j.jcyt.2013.02.010
11. Rasmussen I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res (2005) 305(1):33–41. doi:10.1016/j.yexcr.2004.12.013
12. Nauta AJ, Westerhuis G, Kruijssenbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood (2006) 108(6):2114–20. doi:10.1182/blood-2005-11-011650
13. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol (2014) 32(3):252–60. doi:10.1038/nbt.2816
14. Prassana SJ, Gopalakrishnan D, Shankar SR, Vasandani AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One (2010) 5(2):e9016. doi:10.1371/journal.pone.0009016
15. Duffy MM, Ritter T, Ceredig R, Griffin MD. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Ther (2011) 2(4):33. doi:10.4252/wjsc.v2.i4.81
16. Tsai MS, Hwang SM, Chen KD, Lee YS, Hsu LW, Chang YJ, et al. Functional network analysis of the transcriptionomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells (2007) 25(10):2511–23. doi:10.1634/stemcells.2007-0023
17. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Perez Lanzon M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and lncRNA species. Stem Cell Ther (2015) 6(1):127. doi:10.1007/s13287-015-0116-z
18. Barcia RN, Santos JM, Filipe M, Teixeira M, Martins JP, Almeida J, et al. What makes umbilical cord tissue-derived mesenchymal Stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells? Stem Cells Int (2015) 2015:583984. doi:10.1155/2015/583984
19. Castro-Manrique ME, Mayani H, Monroy-Garcia A, Flores-Figueroa E, Chavez-Rueda K, Legorreta-Haquet V, et al. Human mesenchymal stromal cells from adult and neonatal sources: a comparative in vitro analysis of their immunosuppressive properties against T cells. Stem Cells Dev (2014) 23(12):1217–37. doi:10.1089/scd.2013.0363
20. Ivanova-Todorova E, Bochev I, Mourdjeva M, Dimitrov R, Bukarev D, Kyurkchiev S, et al. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immun Lett (2009) 126(1–2):37–42. doi:10.1016/j.imlet.2009.07.010
21. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci (2013) 14(9):17986–8001. doi:10.3390/ijms140917986
22. Li X, Bai J, Ji X, Li R, Xuan Y, Wang F. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med (2014) 34(3):695–704. doi:10.3892/ijmm.2014.1821
23. Luan X, Li G, Wang G, Wang F, Lin Y. Human placenta-derived mesenchymal stem cells suppress T cell proliferation and support the culture expansion of cord blood CD34(+) cells: a comparison with human bone marrow-derived mesenchymal stem cells. Tissue Cell (2013) 45(1):32–8. doi:10.1016/j.ticelle.2012.09.002
24. Montespan F, Deschaseaux F, Sensebe L, Carosella ED, Rouas-Freiss N. Osteodifferentiated mesenchymal stem cells from bone marrow and adipose tissue express HLA-G and display immunomodulatory properties in HLA-mismatched settings: implications in bone repair therapy. J Immunol Res (2014) 2014:230346. doi:10.1155/2014/230346
Immunomodulatory properties of MSC from different tissues

Mattar and Bieback

CD4\(^+\) geneic immune cell responses.

Meissel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxoxygenase-mediated tryptophan degradation. Blood (2004) 103(12):4619–21. doi:10.1182/blood-2003-11-3099

Wang Q, Yang Q, Wang Z, Tong H, Ma L, Zhang Y, et al. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Hum Vacc Immunother (2015). doi:10.1089/hvi.2014.0246

Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate alloimmune immune cell responses. Blood (2005) 105(4):1815–22. doi:10.1182/blood-2004-04-1559

Carrion F, Nova E, Luz P, Apablaza F, Figueroa F. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4\(^+\) T-cell activation. Immunol Lett (2011) 135(1–2):10–6. doi:10.1016/j.imlet.2010.09.006

Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells (2009) 27(6):1421–32. doi:10.1002/stem.68

Cho KS, Kim YW, Kang MJ, Park HY, Hong SL, Roh HJ. Immunomodulatory effect of mesenchymal stem cells on T lymphocyte and cytokine expression in nasal polypos. Otolaryngol Head Neck Surg (2014) 150(6):1062–70. doi:10.1177/19459981452751

Kang B-J, Ryu H-H, Park SS, Koyama Y, Kikuchi M, Woo H-M, et al. Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissue, bone marrow, umbilical cord blood, and Warton’s jelly for treating bone defects. J Vet Sci (2012) 13(3):299. doi:10.4114/jvs.2012.13.3.299

English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(+)high fork-head box P1+ regulatory T cells. Clin Exp Immunol (2009) 156(1):149–60. doi:10.1111/j.1365-2249.2009.03874.x

Engela AU, Baan CC, Dor FJ, Weimar W, Hoogduijn MJ. On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation. Front Immunol (2012) 3:126. doi:10.3389/fimmu.2012.00126

Selli S, Dieng MM, Nicoletti S, Louis I, Beausejour C, Le Deist F, et al. Cord-blood-derived mesenchymal stem cells downmodulate CD4+ T-cell activation by inducing IL-10-producing Th1 cells. Stem Cells Dev (2013) 22(7):1063–75. doi:10.1089/scd.2013.0135

Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong DT, et al. T(17) cells in inflammation and autoimmunity. Autoimmun Rev (2014) 13(12):1174–81. doi:10.1016/j.autrev.2014.08.019

Lee JJ, Jeong HJ, Kim MK, Wee WR, Lee WW, Kim SU, et al. CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human T(17) cell function. Purinergic Signal (2014) 10(2):357–65. doi:10.1007/s11302-013-9385-0

Tatara R, Ozaki K, Kikuchi Y, Hatanaka K, Oh I, Meguro A, et al. Mesenchymal stromal cells induce cytokine secretion in Th17 cells and regulate Th17 cell function. Exp Ther Med (2011) 2(4):686–94. doi:10.3892/etm.2011.156

Qu X, Liu X, Cheng K, Yang R, Zhao RC. Mesenchymal stem cells inhibit Th17 cell function. J Vet Sci (2013) 14(5–6):257–64. doi:10.1159/000354883

ElJaafari A, Tartelin ML, Aissaoui H, Chevrel G, Osta B, Lavocat F, et al. Bone marrow-derived and synovium-derived mesenchymal cells promote Th17 cell expansion and activation through caspase 1 activation: contribution to the chronicity of rheumatoid arthritis. Arthritis Rheum (2012) 64(7):2147–57. doi:10.1002/art.34391

Li L, Liu S, Xu Y, Zhang A, Jiang J, Tan W, et al. Human umbilical cord-derived mesenchymal stem cells downregulate inflammatory responses by shifting the Treg/Th17 profile in experimental colitis. Pharmacology (2013) 92(5–6):257–64. doi:10.1159/000354883

Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol (2012) 30:531–64. doi:10.1146/annurev.immunol.30.041509.102456

Chattopadhyay G, Shevach EM. Antigen-specific induced T regulatory cells impair dendritic cell function via an IL-10–MARCH1–dependent mechanism. J Immunol (2013) 191(12):5875–84. doi:10.4049/jimmunol.1301693

Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol (2010) 11(1):7–13. doi:10.1038/ni.1818

Selmani N, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce...
CD4+CD25highFOXP3+ regulatory T cells. Stem Cells (2008) 26(1):212–22. doi:10.1634/stemcells.2007-0554
69. Mielgo SM, Schrama E, Koppens FRKH, Tiemenssen MM, Hoogduijn MJ, Fabbe WE, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells (2013) 31(9):1980–91. doi:10.1002/stem.1432
70. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med (2009) 15(1):42–9. doi:10.1038/nm.1905
71. Zhang W, Ge W, Li C, You S, Liao Z, Han Q, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev (2004) 13(3):263–71. doi:10.1089/154732804323099190
72. Maccario R, Pedesta M, Moretta A, Cometa A, Comoli P, Montagna D, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica (2005) 90(4):516–25.
73. Wang L, Zhao Y, Shi S. Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. J Dent Res (2012) 91(11):1003–10. doi:10.1177/0022034512460404
74. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol (2008) 181(6):3933–46. doi:10.4049/jimmunol.181.6.3933
75. Fan XB, Gay FPH, Ong SY, Ang JML, Chu PPY, Bari S, et al. Mesenchymal stromal cell supported umbilical cord blood ex vivo expansion enhances regulatory T cells and reduces graft versus host disease. Cytotherapy (2013) 15(5):610–9. doi:10.1016/j.jcyt.2012.12.007
76. Tasso R, Ilengo C, Quarto R, Cancédda R, Caspi RR, Pennesi G. Mesenchymal stem cells induce functionally active T-regulatory lymphocytes in a paracrine fashion and ameliorate experimental autoimmune uveitis. Invest Ophthalmol Vis Sci (2012) 53(2):786–93. doi:10.1167/iovs.11-8211
77. Chao YH, Wu HP, Wu KH, Tsai YG, Peng CT, Lin KC, et al. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One (2014) 9(10):e110338. doi:10.1371/journal.pone.0110338
78. Hof-Nahor I, Leshnays L, Shvitiel S, Eldor L, Aberdam D, Itskovitz-Eldor J, et al. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes. J Cell Sci (2012) 125(Pt 19):4640–30. doi:10.1242/jcs.108860
79. Chen PM, Liu KJ, Hsu PJ, Wei CF, Bai CH, Ho LJ, et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2. J Leukoc Biol (2014) 96(2):295–303. doi:10.1189/jlb.A0513-242R
80. Laranjeira P, Gomes I, Pedroso S, Pedrosa M, Martinho A, Antunes B, et al. Human bone marrow-derived mesenchymal stem cells differentially inhibit cytokine production by peripheral blood monocytes subpopulations and myeloid dendritic cells. Stem Cells Int (2015) 2015:819084. doi:10.1155/2015/819084