The Extended Cool Gas Reservoirs Within $z > 1$ (Proto-)Cluster Environments

Abstract: High-redshift (z) proto-clusters will serve as testing grounds to probe the gas supply furnishing the emerging metals, stars, and large-scale structures we see at the current epoch. This work focuses on the major role large radio/millimeter (mm) single dish facilities will have in constraining the bulk, cold ($T = 10^{1-4}$K) molecular and atomic gas content. To highlight the need for large radio/mm single dishes, we calculate how the high-sensitivity of the Green Bank Telescope’s (GBT) unblocked 100m aperture provides vital interferometric short-spacing coverage to support higher-resolution ngVLA observations of the cold neutral gas at the largest scales. These combined observations are optimal for revealing low-surface brightness emission, and thus aid in the total baryonic mass estimates across cosmic time.
1. Introduction
The multi-phase gas distribution within/surrounding proto-cluster environments requires observations that will transform our understanding of how high-redshift (i.e. $z > 1$) galaxies form within local cluster and filamentary structures. The rapid development in space-based IR/sub-mm facilities, such as the Origins Space Telescope (Origins), will yield the most important spectral line diagnostics of the warm and dense star-forming gas ($T > 100$ K; $n_{\text{H}_2} > 10^4$). In order to probe the cooler, and more diffuse, cosmic gas supply, future ground-based efforts in the mm/radio will be required.

In the previous decade, cool molecular/atomic gas studies at high-z have concentrated on individual Active Galactic Nuclei (AGN) or massive star-forming systems, with bright infrared (IR) luminosity, i.e. $L_{\text{IR}} > 10^{12.5}$ L_\odot [Carilli & Walter (2013)]. Currently, many high-z systems have low/mid-J transitions, tracing primarily molecular gas associated with ongoing SF, resulting in bulk gas estimates sensitive to the uncertainties in the scaling relations developed for field galaxies [Tacconi et al. (2018)]. Recently there has been an increase in high-resolution imaging of cool gas with the VLA and ALMA, while the cold gas supply from the CGM/IGM that is fundamentally responsible for fueling the rapid stellar-mass growth and metal enrichment has yet to be mapped systematically in galaxy proto-clusters. Technological advancements in the coming decade will overcome the challenges in observing this low-surface brightness emission across the largest spatial scales, yielding the required comparisons to detailed cosmological model predictions [Hayward et al. (2013), Sparre et al. (2015), Sparre et al. (2017)].

![Figure 1: First results from the IllustrisTNG (TNG300); [Springel et al. (2018)]. Top: From left to right, the dark matter distribution at z = 0, 1, 3. The color bar range for $\delta_{\text{DM}} + 1$ is 0.01 to 100. Bottom: From left to right, the stellar mass distribution at z = 0, 1, 3. The color bar range for $\delta_\star + 1$ is 0.1 to 100. The baryonic (dark matter) mass resolution is $7.44 \times 10^9 h^{-1} \, M_\odot$ (3.98 $\times 10^9 h^{-1}$) M_\odot, with a box side length of $205 h^{-1}$ Mpc and thickness of $25 h^{-1}$ Mpc.](image)
Star-forming galaxies mostly form in groups or clusters within massive dark matter haloes $\sim 10^{11-13} \text{M}_\odot$, and the clustering of baryonic gas is predicted to be stronger than the dark matter distribution at $z \sim 3$ [Springel et al. (2018)] (IllustrisTNG; Fig.1). In particular, observations of the large-scale distribution of cool neutral gas within the circumgalactic or intergalactic media (CGM:IGM) at high-z will reveal (i.) the fueling processes involved in the rapid stellar mass growth at $z \sim 3-6$ which led to $\sim 50\%$ of the total galaxy population at $z \sim 2$ having already quenched their SF activity [Toft et al. (2014)] and (ii.) the total bulk molecular gas mass and role of IGM gas accretion in fueling the co-moving SFR density peak at $z \sim 1-3$.

2. Gas Rich Environs of Proto-clusters

The coalescence of proto-clusters occurs during the peak epoch of the co-moving star-formation rate (SFR) density at $1 < z < 3$ [Overzier et al. (2016)]. Although observations of the cold gas supply from the IGM has not been fully explored, galaxy proto-clusters are likely responsible for explaining the massive-end of the red sequence of galaxies with quenched SF within massive galaxy clusters at low-z [Bell et al. (2004)]. Overdense fields at high-z can exhibit a diverse clustering of Ly-\(\alpha\) emitters (LAEs) out to 10s of Mpc, with dusty star-forming galaxies clustering at the cores of such systems [Matsuda et al. (2005), Umehata et al. (2015)]. In addition, low surface-brightness gas may form as the CGM/IGM cools outside of the hot perimeter of the extended Ly-\(\alpha\) emission (> 10s-100 kpc) observed in QSOs and strong LAEs at $z \sim 2 – 3$ [Arrigoni Battaia et al. (2018), Cai et al. (2017)].

A large number of massive over-dense regions at $z > 1$ have been identified using the all-sky Planck colors [Planck intermediate results. XXVII, (2015), Clements et al. (2014)], while the past five to ten years has seen a growing number of proto-cluster studies [Aravena et al. (2012), Tadaki et al. (2014), Hayashi et al. (2017), Noble et al. (2017), Stach et al. (2017), Rudnick et al. (2017), Lee et al. (2017), Coogan et al. (2018), Hayashi et al. (2018)]. One such example includes the
radio-selected $z = 2$ proto-cluster, the Spiderweb [Dannerbauer et al. (2014), Emonts et al. (2016), Emonts et al. (2018), Gullberg et al. (2016)], within which individual proto-cluster galaxies have a velocity dispersion, $\sigma_{\text{galaxy}} \sim 1000\text{ km s}^{-1}$, and cold CO (1-0)-emitting gas spread across more than 50 kpc (with $\sigma_{\text{CO}} \sim 200\text{ km s}^{-1}$). Observations at $z \sim 4$ reveal several starbursting galaxies which dominate the rapid stellar mass assembly ($L_{\text{IR}} > 10^{14}L_\odot$) of a concentrated proto-cluster environment that encompasses 140-280 kpc [Oteo et al. (2018), Miller et al. (2018)]. Depending on the available gas in the IGM, this galaxy may proceed towards being one of the most massive structures of the local Universe.

Most recently, [Casey et al. (2018)] have emphasized the importance of CO(1-0) to trace the total molecular gas, as even the CO(2-1), and certainly the CO(3-2), line emission can begin to trace spatially distinct, and denser gas regions (also see e.g. Ivison et al. 2011, Oteo et al. 2016, 2017). This ultimately biases dynamical mass estimates. Theoretically, both the atomic carbon and CO(1-0) trace similar volumes within gas clouds, and recently the atomic carbon line has been developed as a total gas mass tracer [Papadopoulos et al. (2004) Weiss et al. (2005), Glover et al. (2016)]. Since CO(1-0) has an energy requirement of 5.5K above ground, the gas in the CGM can also be excited by the CMB at higher redshift if not shielded, making multiple low-J and [CI](1-0) emission line maps useful to measure the CMB effects [Zhang et al. (2016), da Cunha et al. (2015)] when viewed on the largest scales in-between galaxies. This is of particular importance for molecular gas that eventually breaks down into atomic form when ejected/stripped from a galaxy [Leroy et al. (2015)].

Fig. 2 Right, adopted from [Narayanan et al. (2015)], shows the strong rise, with increasing redshift, of the gas consumption-to-stellar-mass assembly of a galaxy, excluding the gas that may escape the system into the CGM/IGM. The relative scale height for the molecular gas, before it is re-accreted, oscillates as the redshift increases until the peak epoch of co-moving SFR density. In these cosmological, hydrodynamical zoom simulations there is a one to two order of magnitude increase in molecular gas mass consumed by a typical dusty, star-forming galaxy between $z \sim 5.5-2.5$ [Narayanan et al. (2015)], suggesting that the increased molecular gas mass that is processed by an individual galaxy is fueled by the available supply from the in-flowing gas at distances much greater than the scale heights of the measured central galaxy ($> 10 - 100$ kpc). The most massive growth events for a proto-cluster, occurring at $z \sim 5.5-2.5$ (e.g. Chiang et al. 2017), mark the most dynamic interplay between baryonic cooling, dark matter collapse, and the hierarchical growth processes across cosmic time.

3. The Need for Large radio/mm Single-Dishes in the Next Decade

The 100m, unblocked aperture Green Bank Telescope (GBT) will serve as a leading single-dish facility in the coming decade, providing the essential interferometric short-spacing, swift mapping speeds and consistent sky frequency coverage as the VLA/ngVLA to detect the low-surface brightness emission from extended cold gas.

Large single-dishes complement interferometers by enabling science on spatial scales that are resolved out by interferometers, and the GBT is the only facility currently operating over the full range of proposed ngVLA frequencies (1-116 GHz). The previous decade has recently outgrown
Figure 3: Left: Relative sensitivity in flux density at 30 GHz for the same amount of integration time as a function of spatial scale: Both dotted lines show the sensitivity of the GBT with current technology (upper dotted) and with the expected improvement of a factor of two with future background-limited bolometer spectrometers (lower dotted line); the ngVLA (dashed line) has excellent sensitivity on small scales, but poor sensitivity on large scales even with the inclusion of the planned ngVLA SBA+TP data (dashed-dotted line). The combination of GBT and ngVLA data (solid lines) provides the best sensitivity over all spatial scales. Right: The relevant physical scales are shown with respect to the spatial scales on the left; [Tumlinson et al. (2017)] "A cartoon view of the CGM."

the era of limited bandwidth[^1] and the door is now open to investigate the total gas contents of merger or cluster environments with atomic/molecular emission line profiles having full width at zero-intensity (FWZI) \(\geq 1000 \) km/s [Harris et al. (2012)]. Large volumes of redshift-space can be observed with increased spectrometer bandwidth capability. The GBT will specifically be able to systematically map the redshifted atomic carbon [CI](1-0), CO(1-0; 2-1; 3-2) line emission surrounding the most massive, over-dense regions of gas-rich star-forming systems between about 3.3 \(< z < \) 5.6. In doing so, the GBT will also be able to search for the existence of previously undetected, low-excitation, gas-rich systems with dimmer \(L_{\text{IR}} \) than dusty star-forming systems, yet with comparable gas mass (see remark by Carilli & Blain, 2002).

4. The Combination of the GBT with the ngVLA

To highlight the importance of the GBT for the future of radio astronomy, we estimate the relative sensitivity of the GBT compared to the proposed ngVLA as a function of spatial scale at 30 GHz, corresponding to redshifted CO(1-0) emission at \(z = 2.8 \) (Fig. 3). The sensitivity of the ngVLA visibilities were computed using the appropriate weights associated with tapering the data to match the spatial scale (ngVLA Memo#14; [Frayer et al. (2017)]), assuming the updated 2018 ngVLA reference design (214 x 18m dishes). The sensitivity of the ngVLA falls off exponentially for sources larger than about 1 arcsec. The ngVLA project plans to provide short-spacing data by using a Short Baseline Array (SBA) comprised of 19 6m dishes and four 18m dishes in total-
power mode (TP). The combination of the SBA+TP data from the ngVLA project would be nearly an order of magnitude less sensitivity than GBT with current technology, and more than a than an order of magnitude less sensitive using future background-limited bolometer spectrometers that can be deployed only on single-dishes (e.g., Branford et al. 2008, SPIE, vol 7020, 70201O with TES bolometer technology and/or potentially using the newer MKID bolometer technology). By itself, the ngVLA will only be useful for observing emission on the smallest spatial scales. To study larger spatial scales, e.g., >~ 10 arcsec (> 75 kpc at z =2–3), the GBT (or a similarly sized single-dish) would be needed, in addition to the ~ 6” ATCA beam-size (Emonts et al. 2018). The combination data from the GBT and the ngVLA would provide the highest envisioned sensitivity over all spatial scales (Fig. 3). With the ngVLA+GBT, we will be able to study galaxy formation over spatial scales ranging from 10s of pc to more than 100 Mpc.

5. Outstanding Questions and Outlook for 2020-2030

The combination of the GBT, and other large single dish radio/mm facilities, with the ngVLA will provide a powerful instrument capable of addressing the following open questions (in no particular order):

• How does the gas depletion time, i.e. the ratio of the total molecular gas mass to star-formation rate (SFR), change as a function of spatial proximity to a proto-cluster core?

• A possible gradient in the excitation conditions of the gas in a diverse population of galaxies (e.g. an overdensity of both LAEs and SMGs) within co-moving volumes on the order of 10s of Mpc has been largely unexplored. How would the gas excitation conditions differ within the interstellar medium of a high-z cluster member vs. the global cluster-scale excitation? And, how is this (un)affected by the variations in these diagnostics across the CGM/IGM of a massive gas-rich, proto-cluster environment?

• How does the brightness temperature ratios of low-density gas tracers (n_{H_2} < 10^{1–3} cm^{-3}), i.e. carbon and low-J CO, depend on the CGM (> 10s – 100s kpc) of a QSO versus a SFG?

• How enriched (e.g. X([CI])/X(CO) abundances) is the CGM/IGM with respect to a field or cluster galaxy, and to what extent can a cloud self-shield itself in the CGM/IGM? It is likely that carbon and CO abundances would diminish with growing distances from proto-cluster core, but can dense gas that is stripped during galaxy mergers retain its composition before being captured by a gas stream or galaxy in the CGM/IGM? What processes play a dominant role in the increased ram-pressure stripping [Bekki et al. (2009), Ebeling et al. (2014), Darvish et al. (2018)]?

• The low-excitation gas traced by mm/radio facilities at 0.1-10s Mpc scale will aid large field of view observations in the IR/sub-mm (e.g. Origins) of the more highly excited gas (including SF/AGN feedback) in the CGM/IGM at z > 1.
Other Astro2020 science white papers (Casey et al. 2018; Emonts et al. 2018) also highlight the importance of this area of research. Strong progress and conclusive observations will be made in the coming decade with regards to the thermodynamic atomic/molecular gas properties within and surrounding the $z > 1$ CGM/IGM. Studying the total gas content of the rapidly forming progenitors of clusters and filaments of galaxies at $z \sim 0$ requires sensitive single-dish observations. These necessary measurements will then place the tightest dynamical mass constraints on the baryonic fraction in dark matter halos. Interferometers, by themselves, cannot study the distribution of gas on large spatial scales because the low-surface brightness emission will be resolved out. Therefore single-dish facilities will continue to advance our understanding of the coolest atomic/molecular gas from the interstellar to intergalactic territory at $z > 1$.

References

[Aravena et al. (2012)] Aravena, M., C. L. Carilli, M. Salvato, M. Tanaka, L. Lentati, E. Schinnerer, F. Walter, D. Riechers, V. Smolčić, P. Capak, H. Aussel, F. Bertoldi, S. C. Chapman, D. Farrah, A. Finoguenov, E. Le Floc’h, D. Lutz, G. Magdis, S. Oliver, L. Riguccini, S. Berta, B. Magnelli, and F. Pozzi, 2012: Deep observations of CO line emission from star-forming galaxies in a cluster candidate at $z=1.5$. Monthly Notices of the Royal Astronomical Society.

[Arrigoni Battaia et al. (2018)] Arrigoni Battaia, F., J. F. Hennawi, J. X. Prochaska, J. Oñorbe, E. P. Farina, S. Cantalupo, and E. Lusso, 2018; QSO MUSEUM I: A sample of 61 extended Lyα-emission nebulae surrounding $z \geq 3$ quasars. Tech. rep.

[Bekki (2009)] Bekki, K., 2009: Ram-pressure stripping of halo gas in disc galaxies: implications for galactic star formation in different environments. MNRAS, 399, 2221–2230.

[Bell et al. (2004)] Bell, E. F., C. Wolf, K. Meisenheimer, H.-W. Rix, A. Borch, S. Dye, M. Kleinheinrich, L. Wisotzki, and D. H. McIntosh, 2004: Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since $z = 1$. ApJ, 608, 752–767.

[Cai et al. (2017)] Cai, Z., X. Fan, Y. Yang, F. Bian, J. X. Prochaska, A. Zabludoff, I. McGreer, Z.-Y. Zheng, R. Green, S. Cantalupo, B. Frye, E. Hamden, L. Jiang, N. Kashikawa, and R. Wang, 2017: Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at $z = 2.3$. ApJ, 837, 71.

[Carilli & Walter (2013)] Carilli, C. L. and F. Walter, 2013: Cool Gas in High-Redshift Galaxies. ARA&A, 51, 105–161.

[Casey et al. (2018)] Casey, C. M., D. Narayanan, C. Carilli, J. Champagne, C.-L. Hung, R. Dave, R. Decarli, E. J. Murphy, G. Popping, D. Riechers, R. S. Somerville, and F. Walter, 2018: Science with an ngVLA: Imaging Cold Gas to 1 kpc Scales in High-Redshift Galaxies with the ngVLA. arXiv e-prints, arXiv:1810.08258.

[Clements et al. (2014)] Clements, D. L. et al., 2014: Herschel Multitiered Extragalactic Survey: clusters of dusty galaxies uncovered by Herschel and Planck. MNRAS, 439, 1193–1211.

[Coogan et al. (2018)] Coogan, R. T., E. Daddi, M. T. Sargent, V. Strazzullo, F. Valentino, R. Gobat, G. Magdis, M. Bethermin, M. Pannella, M. Onodera, D. Liu, A. Cimatti, H. Dannerbauer, M. Carollo, A. Renzini, and E. Tremou, 2018: Merger-driven star formation activity in Cl J1449+0856 at $z = 1.99$ as seen by ALMA and JVLA. MNRAS, 479, 703–729.

[da Cunha et al. (2015)] da Cunha, E., F. Walter, I. R. Smail, A. M. Swinbank, J. M. Simpson, R. Decarli, J. A. Hodge, A. Weiss, P. P. van der Werf, F. Bertoldi, S. C. Chapman, P. Cox, A. L. R. Danielson, H. Dannerbauer, T. R. Greve, R. J. Ivison, A. Karim, and A. Thomson, 2015: An ALMA Survey of Sub-millimeter Galaxies in the Extended Chandra Deep Field South: Physical Properties Derived from Ultraviolet-to-radio Modeling. ApJ, 806, 110.

[Dannerbauer et al. (2014)] Dannerbauer, H., J. D. Kurk, C. De Breuck, D. Wylezalek, J. S. Santos, Y. Koyama, N. Seymour, M. Tanaka, N. Hatch, B. Altieri, D. Coia, A. Galametz, T. Kodama,
G. Miley, H. Röttgering, M. Sanchez-Portal, I. Valtchanov, B. Venemans, and B. Ziegler, 2014: An excess of dusty starbursts related to the Spiderweb galaxy. A&A, 570, A55.

[Dannerbauer et al. (2017)] Dannerbauer, H., M. D. Lehnert, B. Emonts, B. Ziegler, B. Altieri, C. De Breuck, N. Hatch, T. Kodama, Y. Koyama, J. D. Kurk, T. Matiz, G. Miley, D. Narayanan, R. P. Norris, R. Overzier, H. J. A. Roettgering, M. Sargent, N. Seymour, M. Tanaka, I. Valtchanov, and D. Wylezalek, 2017: The implications of the surprising existence of a large, massive CO disk in a distant protocluster. A&A, 608, A48.

[Darvish et al. (2018)] Darvish, B., N. Z. Scoville, C. Martin, B. Mobasher, T. Diaz-Santos, and L. Shen, 2018: Similar Scaling Relations for the Gas Content of Galaxies Across Environments to z 3.5. ApJ, 860, 111.

[Ebeling et al. (2014)] Ebeling, H., L. N. Stephenson, and A. C. Edge, 2014: Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters. ApJ, 781, L40.

[Emonts et al. (2018)] Emonts, B. H. C., M. D. Lehnert, H. Dannerbauer, C. De Breuck, M. Villar-Martin, G. K. Miley, J. R. Allison, B. Gullberg, N. A. Hatch, P. Guillard, M. Y. Mao, and R. P. Norris, 2018. Giant galaxy growing from recycled gas: ALMA maps the circumgalactic molecular medium of the Spiderweb in [C I]. MNRAS, 477, L60-L65.

[Frayer et al. (2017)] Frayer, D. T., 2017: Short Spacing Considerations for the ngVLA. arXiv e-prints, arXiv:1706.02726 Frayer, D. T., R. J. Maddalena, R. J. Ivison, I. Smail, A. W. Blain, and P. Vanden Bout, 2018: The Discovery of a New Massive Molecular Gas Component Associated with the Submillimeter Galaxy SMM J02399-0136. ApJ, 860, 87.

[Glover et al. (2016)] Glover, S. C. O. and P. C. Clark, 2016: Is atomic carbon a good tracer of molecular gas in metal-poor galaxies? MNRAS, 456, 3596–3609.

[Gullberg et al. (2016)] Gullberg, B., M. D. Lehnert, C. De Breuck, S. Branchu, H. Dannerbauer, G. Drouart, B. Emonts, P. Guillard, N. Hatch, N. P. H. Nesvadba, A. Omont, N. Seymour, and J. Vernet, 2016: ALMA Finds Dew Drops in the Dusty Spider’s Web.

[Harris et al. (2012)] Harris, A. I. et al., 2012: Blind Detections of CO J = 1-0 in 11 H-ATLAS Galaxies at z = 2.1-3.5 with the GBT/Zpectrometer. ApJ, 752, 152.

[Hayashi et al. (2017)] Hayashi, M., T. Kodama, K. Kohno, Y. Yamaguchi, K.-i. Tadaki, B. Hatsukade, Y. Koyama, R. Shimakawa, Y. Tamura, and T. L. Suzuki, 2017: Evolutionary Phases of Gas-rich Galaxies in a Galaxy Cluster at z = 1.46. ApJ, 841, L21.

[Hayashi et al. (2018)] Hayashi, M., K.-i. Tadaki, T. Kodama, K. Kohno, Y. Yamaguchi, B. Hatsukade, Y. Koyama, R. Shimakawa, Y. Tamura, and T. L. Suzuki, 2018: Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46. ApJ, 856, 118.
[Hayward et al. (2013)] Hayward, C. C., D. Narayanan, D. Kereš, P. Jonsson, P. F. Hopkins, T. J. Cox, and L. Hernquist, 2013: Submillimetre galaxies in a hierarchical universe: number counts, redshift distribution and implications for the IMF. MNRAS, 428, 2529–2547.

[Ivison et al. (2013)] Ivison, R. J., A. M. Swinbank, I. Smail, A. I. Harris, R. S. Bussmann, A. Cooray, P. Cox, H. Fu, A. Kovács, M. Krips, D. Narayanan, M. Negrello, R. Neri, J. Peñarrubia, and J. Richard, 2013: HERSCHEL-ATLAS: A BINARY HYLIRG PINPOINTING A CLUSTER OF STARBURSTING PROTO-ELLIPTICALS.

[Lee et al. (2017)] Lee, N., K. Sheth, K. S. Scott, S. Toft, G. E. Magdis, I. Damjanov, H. J. Zahid, C. M. Casey, I. Cortzen, C. Gómez Guijarro, A. Karim, S. K. Leslie, and E. Schinnerer, 2017: The fine line between normal and starburst galaxies. MNRAS, 471, 2124–2142.

[Leroy et al. (2015)] Leroy, A. K., A. D. Bolatto, E. C. Ostriker, E. Rosolowsky, F. Walter, S. R. Warren, J. Donovan Meyer, J. Hodge, D. S. Meier, J. Ott, K. Sandstrom, A. Schruba, S. Veilleux, and M. Zwaan, 2015: ALMA Reveals the Molecular Medium Fueling the Nearest Nuclear Starburst. ApJ, 801, 25.

[Matsuda et al. (2005)] Matsuda, Y., T. Yamada, T. Hayashino, H. Tamura, R. Yamauchi, T. Murayama, T. Nagao, K. Ohta, S. Okamura, M. Ouchi, K. Shimasaku, Y. Shioya, and Y. Taniguchi, 2005: Large-Scale Filamentary Structure around the Protocluster at Redshift z = 3.1. ApJ, 634, L125–L128.

[Miller et al. (2018)] Miller, T. B., S. C. Chapman, M. Aravena, M. L. N. Ashby, C. C. Hayward, J. D. Vieira, A. Weiß, A. Babul, M. Béthermin, C. M. Bradford, M. Brodwin, J. E. Carlstrom, C.-C. Chen, D. J. M. Cunningham, C. De Breuck, A. H. Gonzalez, T. R. Greve, J. Harnett, Y. Hezaveh, K. Lacaille, K. C. Litke, J. Ma, M. Malkan, D. P. Marrone, W. Morningstar, E. J. Murphy, D. Narayanan, E. Pass, R. Perry, K. A. Phadke, D. Rennehan, K. M. Rotermund, J. Simpson, J. S. Spilker, J. Sreevani, A. A. Stark, M. L. Strandet, and A. L. Strom, 2018: A massive core for a cluster of galaxies at a redshift of 4.3. Nature, 556, 469–472.

[Narayanan et al. (2015)] Narayanan, D., M. Turk, R. Feldmann, T. Robitaille, P. Hopkins, R. Thompson, C. Hayward, D. Ball, C.-A. Faucher-Giguère, and D. Kereš, 2015: The formation of submillimetre-bright galaxies from gas infall over a billion years. Nature, 525, 496–499.

[Noble et al. (2017)] Noble, A. G., M. McDonald, A. Muzzin, J. Nantais, G. Rudnick, E. van Kampen, T. M. A. Webb, G. Wilson, H. K. C. Yee, K. Boone, M. C. Cooper, A. DeGroot, A. Delahaye, R. Demarco, R. Foltz, B. Hayden, C. Lidman, A. Manilla- Robles, and S. Perlmutter, 2017: ALMA Observations of Gas-rich Galaxies in z 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments. ApJ, 842, L21.

[Oteo et al. (2018)] Oteo, I., R. J. Ivison, L. Dunne, A. Manilla-Robles, S. Maddox, A. J. R. Lewis, G. de Zotti, M. Bremer, D. L. Clements, A. Cooray, H. Dannerbauer, S. Eales, J. Greenslade, A. Omont, I. PerezFournón, D. Riechers, D. Scott, P. van der Werf, A. Weiss, and Z. Y. Zhang, 2018: An Extreme Protocluster of Luminous Dusty Starbursts in the Early Universe. ApJ, 856, 72.
[Overzier et al. (2016)] Overzier, R. A., 2016: The realm of the galaxy protoclusters. A review. Astronomy and Astrophysics Review, 24, 14.

[Papadopoulos et al. (2004)] Papadopoulos, P. P., W.-F. Thi, and S. Viti, 2004: CI lines as tracers of molecular gas, and their prospects at high redshifts. MNRAS, 351, 147–160.

[Planck intermediate results. XXVII, (2015)] Planck Collaboration, N. Aghanim, B. Altieri, M. Arnaud, et al., 2015: Planck intermediate results. XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE. A&A, 582, A30.

[Rudnick et al. (2017)] Rudnick, G., J. Hodge, F. Walter, I. Momcheva, K.-V. Tran, C. Papovich, E. da Cunha, R. Decarli, A. Saintonge, C. Willmer, J. Lotz, and L. Lentati, 2017: Deep CO(1-0) Observations of $z = 1.62$ Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies. ApJ, 849, 27.

[Sparre et al. (2015)] Sparre, M., C. C. Hayward, R. Feldmann, C.-A. Faucher-Giguere, A. L. Muratov, D. Kereš, and P. F. Hopkins, 2017: (Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. MNRAS, 466, 88-104.

[Sparre et al. (2017)] Sparre, M., C. C. Hayward, V. Springel, M. Vogelsberger, S. Genel, P. Torrey, D. Nelson, D. Sijacki, and L. Hernquist, 2015: The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation. MNRAS, 447, 3548–3563.

[Springel et al. (2018)] Springel, V., R. Pakmor, A. Pillepich, R. Weinberger, D. Nelson, L. Hernquist, M. Vogelsberger, S. Genel, P. Torrey, F. Marinacci, and J. Naiman, 2018: First results from the IllustrisTNG simulations: matter and galaxy clustering. MNRAS, 475, 676-698.

[Stach et al. (2017)] Stach, S. M., A. M. Swinbank, I. Smail, M. Hilton, J. M. Simpson, and E. A. Cooke, 2017: ALMA Pinpoints a Strong Overdensity of U/LIRGs in the Massive Cluster XCS J2215 at z 1.46. ApJ, 849, 154.

[Tacconi et al. (2018)] Tacconi, L. J., R. Genzel, A. Saintonge, F. Combes, S. Garcia-Burillo, R. Neri, A. Bolatto, T. Contini, N. M. Förster Schreiber, S. Lilly, D. Lutz, S. Wuyts, G. Accurso, J. Boissier, F. Boone, N. Bouché, F. Bournaud, A. Burkert, M. Carollo, M. Cooper, P. Cox, C. Feruglio, J. Freundlich, R. Herrera-Camus, S. Juneau, M. Lippa, T. Naab, A. Renzini, P. Salome, A. Sternberg, K. Tadaki, H. Úbler, F. Walter, B. Weiner, and A. Weiss, 2018: PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. ApJ, 853, 179.

[Tadaki et al. (2014)] Tadaki, K.-i., T. Kodama, Y. Tamura, M. Hayashi, Y. Koyama, R. Shimakawa, I. Tanaka, K. Kohno, B. Hatsukade, and K. Suzuki, 2014: Evidence for a Gas-rich Major Merger in a Proto-cluster at z 2.5. ApJ, 788, L23.

[Toft et al. (2014)] Toft, S., V. Smolčic, B. Magnelli, A. Karim, A. Zirm, M. Michalowski, P. Capak, K. Sheth, K. Schawinski, J. K. Krogager, S. Wuyts, D. Sanders, A. W. Man, D. Lutz, J. Staguhn, S. Berta, H. McCracken, J. Krpan, and D. Riechers, 2014: Submillimeter galaxies as progenitors of compact quiescent galaxies. Astrophysical Journal.
[Tumlinson et al. (2017)] Tumlinson, J., M. S. Peeples, and J. K. Werk, 2017: The Circumgalactic Medium. Annual Review of Astronomy and Astrophysics, 55, 389–432.

[Umehata et al. (2015)] Umehata, H., Y. Tamura, K. Kohno, R. J. Ivison, D. M. Alexander, J. E. Geach, B. Hatsukade, D. H. Hughes, S. Ikarashi, Y. Kato, T. Izumi, R. Kawabe, M. Kubo, M. Lee, B. Lehmer, R. Makiya, Y. Matsuda, K. Nakanishi, T. Saito, I. Smail, T. Yamada, Y. Yamaguchi, and M. Yun, 2015: ALMA Deep Field in SSA22: A Concentration of Dusty Starbursts in a z = 3.09 Protocluster Core. ApJ, 815, L8.

[Weiss et al. (2005)] Weiss, A., D. Downes, C. Henkel, and F. Walter, 2005: Atomic carbon at redshift z 2.5 A&A, 429, L25-28.

[Zhang et al. (2016)] Zhang, Z.-Y., P. P. Papadopoulos, R. J. Ivison, M. Galametz, M. W. L. Smith, and E. M. Xilouris, 2016: Gone with the heat: a fundamental constraint on the imaging of dust and molecular gas in the early Universe. Royal Society Open Science, 3, 160025.