Case Report

Hyperphosphatasia with mental retardation syndrome, expanded phenotype of PIGL related disorders

Ruqaiah Altassan⁎, Stephanie Fox⁎, Chantal Poulinb, Daniela Buhasb,c,⁎

⁎ Department of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
b Department of Pediatric, Division of Neurology, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
c Department of Human Genetics, McGill University, Montreal, Quebec, Canada

ABSTRACT

Hypomorphic mutations in six different genes involved in the glycosylphosphatidylinositol (GPI) biogenesis pathway are linked to Mabry syndrome (hyperphosphatasia with mental retardation syndrome, HPMRS). This report on the third affected family with a HPMRS phenotype caused by mutations in PIGL, confirming the seventh GPI biogenesis gene linked to HPMRS. Two siblings presented with the main features of HPMRS: developmental delay, cognitive impairment, seizure disorder, skeletal deformities, and high alkaline phosphatase. We identified two heterozygous mutations in the PIGL gene (P.Trp20Ter and p.Arg88Cys). PIGL mutations have been linked to another distinctive neuroectodermal disorder: CHIME syndrome. The clinical picture of our patients expands the spectrum of PIGL-related phenotypes.

1. Introduction

Glycosylphosphatidylinositol (GPI) glycolipids play a critical role in the post-translation modification and cell membrane anchoring of > 150 eukaryotic proteins which ultimately affect the sorting, trafficking, and dynamics of those proteins. Also, they participate in the process of embryogenesis, neurogenesis, immune responses, and fertilization. The biogenesis of mature GPI involves > 20 genes and occurs in eukaryotes via a conserved post-translational pathway [1].

In animal studies, complete deletion of the GPI pathway results in embryonic lethality. However, complete deletion has not been reported in humans. Hypomorphic mutations in the genes encoding the GPI biogenesis pathway result in partial reduction of GPI-anchored proteins, which leads to phenotypically heterogeneous clinical presentations, with global developmental delay a common feature. This element supports the notion that GPI-anchored proteins play a vital role in neurogenesis [2,3].

PIGL encodes the endoplasmic phosphatidylinositol glycan anchor biosynthesis class L, which is involved in the second step of GPI biosynthesis: the de-n-acetylation of n-acetylglucosaminyl-phosphatidylglycositol (GluNc-PI), generating glucosaminyl-phosphatidylinositol (GlcNc-PI) on the cytoplasmic side of the endoplasmic reticulum [4].

Mutations in PIGL have been linked to two rare distinctive syndromes: CHIME syndrome (Zunich neuroectodermal syndrome) and Mabry syndrome (hyperphosphatasia with mental retardation syndrome, HPMRS) [5,6].

2. Clinical data

The proband is a 10-year-old West African male who is the first offspring of a non-consanguineous couple. He was delivered spontaneously at term after an uneventful pregnancy weighing 2665 g (5th percentile) with a head circumference of 32 cm (5th percentile) and Apgar score of 9. At the age of 6 months, he presented with myoclonic seizures that were partially controlled with medications. By the age of 12 months, he had surgical correction of inguinal hernia, hydrocele, and strabismus. His developmental milestones were globally delayed, including cognitive, language, gross and fine motor functions, with no major improvement despite intensive rehabilitation. His first available baseline physical examination was documented at 4 years of age. Growth parameters were normal with weight, height and head circumference on the 75th percentile. The facial features were coarsely dysmorphic, including prominent forehead, high arched eyebrows and sparse on the outer third, nystagmus, mild telecanthus, uplifted ear lobes, and open mouth with intermittent drooling. In addition, he had mild pectus excavatum and clinodactyly involving the fifth digits, 4th
zymes showed mildly elevated transaminases with significant elevations in the periventricular zones in the parietal, occipital and frontal regions, white matter loss, and thin corpus callosum. Liver enzyme abnormalities in the parietal, occipital and frontal regions, white matter loss, and thin corpus callosum. Liver enzymes showed mildly elevated transaminases with significantly elevated ALP 968 U/L (normal: 135–320 U/L). Vitamin E and alpha-feto-protein were normal. All metabolic tests were unremarkable, including but not limited to purines/pyrimidines, glycosaminoglycans, creatine panel, carbohydrate transferrin, homocysteine, sterol profiles, and creatine kinase. Array CGH and Coffin-Siris molecular testing were normal.

Evaluation of the patient’s younger 4-year-old brother revealed a very similar presentation. He had unremarkable antenatal and perinatal history. His developmental milestones were globally delayed. He developed his first onset of partially controlled tonic-clonic seizures at the age of 4 months. Strabismus was surgically corrected at the age of 1 year. On examination, he was inattentive with coarse facial features including high hairlines, hypertelorism, epicanthal folds, horizontal nystagmus, depressed nasal bridge, delayed teeth eruption, everted and flabby lower lip, folded ears, and irregular hypopigmented skin margins surrounding the eyes and the nose. His head circumference was 51 cm (75th percentile). Systemic examination revealed spastic lower limbs, bilateral brachydactyly, severe clinodactyly of both fifth fingers and toes and dry eczematous skin. No chest deformity or organomegaly was noted. His ALP was 454 U/L.

3. Molecular data

A commercially available multigene panel for intellectual disability (GeneDx) was performed in the proband and revealed two variants in PIGL gene, a nonsense (c.60G > A; p.Trp20Ter; W20X) pathogenic variant and missense (c.262C > T; p.Arg88Cys; R88C) variant. Neither variant was observed in approximately 65,000 individuals of European and African American ancestry in the NHLBI Exome Sequencing Project. The first variant was interpreted as pathogenic as it causes loss of normal protein function through truncation or nonsense-mediated mRNA decay. For the second variant, in silico analysis predicted it as likely damaging the protein structure and function. Parental analyses were done by Sanger sequencing and confirmed in trans mutations. Targeted genetic testing for the brother detected the same variants.

4. Discussion

In 1970, Mabry et al. described a unique syndrome comprised of severe cognitive impairment, seizures, various neurologic deficits, and elevated serum ALP [6]. This syndrome was acronymed HPMRS-1 (OMIM: 239300) [7] and linked to mutations in the PIGV gene, which is involved in the early steps of GPI anchor assembly [8]. Subsequently, other pathogenic defects in genes involved in either GPI anchor assembly or maturation were linked to the same phenotype. [Table 1].

The PIGL gene is responsible for the second step of GPI biosynthesis. Mutations in this gene were initially reported in seven cases presenting with CHIME syndrome. CHIME (OMIM: 280000, ocular Colobomas, Heart defect, Ichthyosis, Mental Retardation, and abnormal Ears or Epilepsy) was first described clinically by Zunich et al. in 1983, acronymed by Shashi et al. in 1995, and linked to PIGL mutations by Ng et al. in 2012. All patients presented the main features of CHIME syndrome plus a variable combination of facial dysmorphism such as brachycephaly, flat and broad nasal root, short philtrum, hypertelorism, cloudy corneas, overfolded helices, wide mouth, full lips, everted palates, and abnormal dentation. Mildly elevated alkaline phosphatase was reported in only one patient who presented with a clinical phenotype of CHIME syndrome (not molecularly confirmed) in the setting of acute lymphocytic leukemia [5,9–12].

Recently, in addition to its association with CHIME syndrome, mutations in PIGL have been linked to HPMRS in two cases [13,14]. We are reporting the third family with a HPMRS phenotype secondary to PIGL mutations supported by the clinical presentations of cognitive delay, seizures, skeletal deformities, and elevated ALP. Our patients had some overlapping features between CHIME and HPMRS, particularly in the characteristic facial features, seizures, and global developmental delay. However, the absence of coloboma, heart defect and hearing impairment, in addition to the distinctive skeletal phenotype of short terminal phalanges and the high ALP made the presentation more suggestive of HPMRS.

The phenotypic difference between HPMRS and CHIME syndromes could be related to the type of PIGL mutation. All the reported cases with a HPMRS phenotype, including our patients, presented at least one
Table 1

Gene	HPMRS1	HPMRS2	HPMRS3	HPMRS4	HPMRS5	HPMRS6	HPMRS7
Type	PIGV	PIGO	PGAP2	PGAP3	PIGW	PIGY	PIGL
No. of reported cases	29	3	13	5	1	4	4 (2 in this report)
Cognitive impairment	+	+	+	+	+	+	+
Seizure	+	+	+	+	+	+	+
Growth retardation	NA	Poor growth	NA	Poor growth	NA	Poor growth	Normal
Dysmorphic features	+	N A	+	+	+	+	+
Bilateral brachydactly severe							
clinodactly of fingers							
Bilateral clinodactly (4th and 5th toes)							
Microcephaly							
Thin corpus callosum							
Brain, skull anomalies							
Plagiocephaly							
Microcephaly							
Enlarged ventricles plagiocephaly coronal synostosis							
Skeletal anomalies							
Hypoplastic terminal phalanges	+	+	+	+	+	+	+
Brachytelephalangy broad halluces hypoplastic/absent nails							
Bilateral adducted forefoot hypoplastic/curved nails							
Brain, skull anomalies							
Plagiocephaly							
Microcephaly							
Renal parenchyma echogenicity							
Hyperostosis of hypoplastic terminal phalanges							
Microcephaly							
Renal parenchyma echogenicity							
Hypoplastic terminal phalanges	+	+	+	+	+	+	+
Brachytelephalangy broad halluces hypoplastic/absent nails							
Bilateral adducted forefoot hypoplastic/curved nails							
Skeletal anomalies							
Hypoplastic terminal phalanges	+	+	+	+	+	+	+
Brachytelephalangy broad halluces hypoplastic/absent nails							
Bilateral adducted forefoot hypoplastic/curved nails							

Abbreviations: *the proposed 7th type of HPMRS in this report, MR: Mental retardation, ALP: alkaline phosphatase, NA: not available, GI/GU: gastrointestinal and genitourinary systems.

PIGL mutation leading to complete loss of the protein’s function [13,14]. On the other hand, all reported cases of CHIME shared the same p.Leu176Pro mutation in a compound heterozygous state with another pathogenic variant. Homozygous p.Leu176Pro mutations have never been reported. The p.Leu176Pro alteration has been shown to preserve some of the protein’s function, thus allowing a milder phenotype [10,12].

The craniofacial features that our patients share with the first reported case of HPMRS secondary to PIGL mutation include hypertelorism, high palate, strabismus, ear anomalies, and the skeletal deformities of the hands. However, the additional minor facial traits described by Fujiwara et al. were lacking in our patients [13]. Interestingly, the coarse facial features observed in our patients were previously reported in patients with HPMRS where there was initial suspicion of a lysosomal storage disorder [7]. All of the HPMRS types share the phenotype of global developmental delay, seizure disorder, and high ALP [15]. The hypoplastic terminal phalanges were reported in HPMRS type 1 and 2 only. This skeletal finding could lead to suspicion of Coffin-Siris syndrome given the neurological findings in both syndromes [Table 1] [16-28].

The elevated ALP in HPMRS is the nonspecific ALP isofrom (liver/bone/kidney). Defects in GPI biogenesis affect the expression of the anchored proteins, including ALP. The exact mechanism of ALP elevation in HPMRS is not well-explained. Experimental studies on mutant CHO cells showed that defects in the genes involved in the later steps of the pathway efficiently secrete ALP into the medium and consequently give high ALP levels. In comparison, mutations in the early steps will degrade the ALP in the cells and result in normal ALP levels. Additionally, GPI transamidase, which is activated through binding with a mannose-containing GPI intermediate before the enzyme complex processes the precursor proteins for release, plays a major role in expressing the proteins [29]. This could explain the elevated ALP levels in mutations involved in some of the late steps of GPI anchor synthesis including PIGV (fifth step) and PIGO (eighth step). However, elevated ALP levels were not observed in other late steps of GPI synthesis including PIGN in the sixth step and PIGT in the tenth step. On the other hand, mutations in the final step of GPI-anchor fatty acid remodeling, mainly in PGAP2 and PGAP3, resulted in an elevated ALP level [30]. Mutation in PIGL, which involves the second step of GPI synthesis and is another exception for the hypothesized theory. Further studies are needed to understand the factors affecting the expression of GPI-anchored proteins.

ALP is essential for dephosphorylation of the circulating pyridoxal 5-phosphate to pyridoxal. Defects in anchoring ALP could predispose to B6-responsive seizures in HPMRS in a similar manner as in hypophosphatasia (OMIM: 241500) secondary to pyridoxal. Defects in anchoring ALP could predispose to B6-responsive seizures in HPMRS in a similar manner as in hypophosphatasia (OMIM: 241500) secondary to pyridoxal. Defects in anchoring ALP could predispose to B6-responsive seizures in HPMRS in a similar manner as in hypophosphatasia (OMIM: 241500) secondary to pyridoxal. Defects in anchoring ALP could predispose to B6-responsive seizures in HPMRS in a similar manner as in hypophosphatasia (OMIM: 241500) secondary to pyridoxal.
Acknowledgment

We thank Dr. Sara Aldekhyl and Andrea Secord for their help in editing the manuscript, and we thank the patients’ family who kindly agreed for sharing their children’s cases.

Conflict of interest

Ruqiaah Altassan declares no conflict of interest. Stephanie Fox declares no conflict of interest. Chantal Poulin declares no conflict of interest. Daniela Buhas declares no conflict of interest.

References

[1] M.A.J. Ferguson, T. Kinoshita, G.W. Hart, Glycosylphosphatidylinositol anchors, in: A. Varki, R.D. Cummings, J.D. Esko, et al. (Eds.), Essentials of Glycobiology, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 2006 (Chapter 11). Available from: https://www.ncbi.nlm.nih.gov/books/NBK1966/.

[2] T. Kinoshita, Biosynthesis and deficiencies of glycosylphosphatidylinositol, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 90 (4) (2014) 130–143.

[3] H.H. Freeze, J.X. Chong, M.J. Rambhad, B.G. Ng, Solving glycosylation disorders: fundamental approaches reveal complicated pathways, Am. J. Hum. Genet. 94 (2) (2014 Feb 6) 161–175.

[4] OMIM (Online Mendelian Inheritance in Man).

[5] J. Zunich, C.I. Kaye, New syndrome of congenital ichthyosis with neurologic abnormalities, Am. J. Med. Genet. 15 (2) (1983 Jun) 331–333.

[6] C.C. Mabry, A. Bautista, R.F.H. Kirk, L.D. Dubilier, H. Braunstein, J.A. Koepke, Familial hyperphosphatase with mental retardation, seizures, and neurologic deficits, J. Pediatr. 77 (1) (1970 Jul) 74–85.

[7] M.D. Thompson, M.M. Nezarati, G. Gillessen-Kaesbach, P. Meinecke, R. Mendoza-Londono, E. Mornet, I. Brun-Heath, C.P. Squarcioni, L. Legeai-Mallet, A. Münich, D.E. Cole, Hyperphosphatasia with seizures, neurologic deficit, and characteristic facial features: five new patients with Mabry syndrome, Am. J. Med. Genet. A 152A (7) (2010 Jul) 1661–1669.

[8] P.M. Krawitz, M.R. Schweiger, C. Rödelsperger, C. Marcelis, U. Kölsch, M. Nakashima, Y. Tsurusaki, N. Miyake, T. Kinoshita, N. Matsumoto, H. Saitou, PIGO mutations in intractable epilepsy and severe developmental delay with mild elevation of alkaline phosphatase levels, Epilepsia 55 (2) (2014 Feb) e13–7.

[9] V. Shashi, J. Zunich, T.E. Kelly, J.S. Fryburg, Neuroectodermal (CHIME) syndrome: an additional case with long term follow up of all reported cases, J. Med. Genet. 32 (6) (1995 Jun) 465–469.

[10] B.G. Ng, K. Hackmann, M.A. Jones, A.M. Eroshkin, P. Meinecke, Hyperphosphatasia-mental retardation syndrome due to PIGY mutations: expanded clinical spectrum, Am. J. Med. Genet. A 155A (8) (2011 Aug) 1917–1922.

[11] J. Xue, H. Li, Y. Zhang, Z. Yang, Clinical and genetic analysis of two Chinese infants with Mabry syndrome, Brain Dev. 38 (9) (2016 Oct) 807–818.

[12] A. Karadimitris, Y. Maeda, T. Kinoshita, Mechanism for release of alkaline phosphatase from the cell membrane, Jpn. Acad. Ser. B Phys. Biol. Sci. 90 (4) (2014) 130–143.

[13] T. Chiyonobu, N. Inoue, M. Matsuda, T. Kinoshita, Y. Murakami, Glycosyolphosphatidylinositol (GPI) anchor deficiency caused by mutations in PI-GW is associated with west syndrome and hyperphosphatasia with mental retardation syndrome, J. Med. Genet. 51 (3) (2014 Mar) 203–207.

[14] B. Ilkovski, A.T. Pagnamenta, G.L. O’Grady, T. Kinoshita, M.F. Howard, M. Lek, B. Thomas, A. Turner, J. Christodoulou, D. Silence, S.J. Knight, N. Popitsch, D.A. Keays, C. Anzilotti, A. Goriely, L.B. Waddell, F. Brilot, K.N. North, N. Kanzawa, D.G. Macarthur, J.C. Taylor, U. Kini, Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental delay, facial and skeletal anomalies, and hyperphosphatasia in two sisters: nosology and genetics of the coflin-Siris syndrome, Am. J. Med. Genet. 43 (1) (1991 Dec 1) 350–354.

[15] Y. Murakami, N. Inoue, K. Saito, P.M. Krawitz, S. Mundlos, J. Hecht, P.N. Robinson, D. Horn, PGAP2 mutations, affecting the GPI-anchor-synthesis pathway cause hyperphosphatasia with mental retardation, Am. J. Hum. Genet. 4 (92) (2013 Apr) 584–589.

[16] P.M. Krawitz, Y. Murakami, A. Rieß, M. Hierta, U. Krüger, N. Zhu, T. Kinoshita, S. Mundlos, J. Hecht, P.N. Robinson, D. Horn, PGAP2 mutations, affecting the GPI-anchor-synthesis pathway cause hyperphosphatasia with mental retardation syndrome, Am. J. Hum. Genet. 4 (92) (2013 Apr) 584–589.

[17] M.J. Naseer, M. Rasool, M.M. Jan, A.G. Chaudhary, P.N. Punnapari, A.M. Abuzenada, M.H. Al-Qahani, A novel mutation in PGAP2 gene causes developmental delay, intellectual disability, epilepsy and microcephaly in consanguineous Saudi family, J. Neurol. Sci. 371 (2016 Dec 15) 121–125.

[18] M.F. Howard, Y. Murakami, A.T. Pagnamenta, C. Daumer-Haas, B. Fischer, J. Hecht, D.A. Keays, S.J. Knight, U. Kölsch, U. Krüger, S. Leiz, Y. Maeda, D. Mitchell, S. Mundlos, J.A. Phillips III, P.N. Robinson, U. Kini, J.C. Taylor, D. Horn, T. Kinoshita, P.M. Krawitz, Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation, Am. J. Hum. Genet. 94 (2) (2014 Feb 6) 278–287.

[19] A. Knaus, T. Aoyama, I. Helbig, Z. Afawi, M. Pendziviziat, J. Abu-Rachma, M.D. Thompson, D.E. Cole, S. Skinner, F. Annese, N. Canham, M.R. Schweiger, P.N. Robinson, S. Mundlos, T. Kinoshita, A. Münich, Y. Murakami, D. Horn, P.M. Krawitz, Rare noncodings mutations extend the mutational Spectrum in the PGAP3 subtype of Hyperphosphatasia with Mental Retardation syndrome. Hum. Mutat. 37 (8) (2016 Aug) 737–744.

[20] J. Xue, H. Li, Y. Zhang, Z. Yang, Clinical and genetic analysis of two Chinese infants with Mabry syndrome, Brain Dev. 38 (9) (2016 Oct) 807–818.

[21] Y. Murakami, N. Inoue, K. Saito, P.M. Krawitz, S. Mundlos, J. Hecht, P.N. Robinson, D. Horn, PGAP2 mutations, affecting the GPI-anchor-synthesis pathway cause hyperphosphatasia with mental retardation, Am. J. Hum. Genet. 4 (92) (2013 Apr) 584–589.

[22] B.G. Ng, H.H. Freeze, Human genetic disorders involving glycosylphosphatidylinositol (GPI) anchors and glycosyolphosphoglycolipids (GSL), J. Inherit. Metab. Dis. 38 (1) (2015 Jan) 171–178.

[23] M.D. Thompson, A. Killoran, M.E. Percy, M. Nezarati, D.E. Cole, P.A. Hwang, Hyperphosphatasia with neurologic deficit: a pyridoxine-responsive seizure disorder? Pediatr. Neurol. 34 (4) (2006 Apr) 303–307.

[24] I. Kuki, Y. Takahashi, S. Okazaki, H. Kawaswki, E. Ebara, N. Inoue, T. Kinoshita, Y. Murakami, Vitamin B6-responsive epilepsy due to inherited GPI deficiency, Neurology 81 (16) (2013 Oct 15) 1467–1469.