Carybdea morandinii—New investigations on its life cycle reveal its true genus: *Carybdea morandinii* Straehler-Pohl & Jarms, 2011 becomes *Alatina morandinii* (Straehler-Pohl & Jarms, 2011)

ILKA STRAEHLER-POHL1,* & **SHO TOSHINO**2,3

1 Medusa’s nursery, Private Laboratory of Developmental, Evolutionary Biology and Life Cycle Research, Altmarkstr. 25, 21864 Stade-Hagen, Germany
2 School of Marine Biosciences, Kitasato University, 1–15–1 Kitasato, Sagamihara, Kanagawa 252–0373, Japan
3 Biological Institute on Kuroshio, 560 Nishidomari, Otsuki, Kochi 788–0333, Japan

Received 11 May 2015; Accepted 5 October 2015 Responsible Editor: Dhugal Lindsay

Abstract: The name *Carybdea morandinii* Straehler-Pohl & Jarms, 2011 was applied to unknown cubopolyps found on dead coral rock at the Hagenbeck Zoo, Hamburg, Germany, during 1999, and a description was given of its early life history. Although included in Carybdeidae Lesson, 1843, its familial affinities remained uncertain. In 2006, a population of unidentified cubopolyps was discovered on the walls of a saltwater tank at the Umikirara Aquarium, Nagasaki, Japan. In addition, an immature cubomedusa and polyps were collected at Ginowan and Ishigaki, Okinawa, Japan, in 2002 and 2012. Genetic analysis established that these polyps and the medusa belonged to the same species as the polyps found in Nagasaki. Comparisons of the anatomy and asexual propagation methods of Japanese polyps, and their newly detached medusae, with early life stages of cubozoans cultured in Germany, revealed that the Japanese populations were likely conspecific with *Carybdea morandinii*. Subsequent genetic analysis confirmed this identification. Morphology of Japanese medusae revealed that they were referable to the family Alatinidae Gershwin, 2005, and within that family to the genus *Alatina* Gershwin, 2005, rather than to the family Carybdeidae.

Key words: Alatinidae, Cubozoa, life cycle, systematics, taxonomy

Introduction

Identification of cubozoans at ranks below the orders Carybdeida and Chirodropida is problematic because medusae within these two groups closely resemble each other, and inspections of inner body structures are needed in most cases. Particular difficulties arise in the allocation of sessile and immature stages of Cubozoa because of a profound lack of knowledge about developmental stages. Thus, problems arose during 1999 in determining the identity of cubopolyps found on a block of dead coral in the Troparium at Hagenbecks Tierpark (Zoo), Hamburg, Germany (Straehler-Pohl & Jarms 2011). The early life history of the species was traced from polyp to young medusa. Morphological characters were then compared with the few existing accounts of polyps, young medusae, and metamorphic phases of cubozoan species (Werner et al. 1971, Studebaker 1972, Cutress & Studebaker 1973, Straehler-Pohl 2001, 2009, Straehler-Pohl & Jarms 2005, 2011, Toshino et al. 2013, 2014, 2015, Carrette et al. 2014), namely those of *Alatina moseri* (Mayer 1906), *Tripedalia cystophora* Conant, 1897, *Copula sivickisi* (Stiasny 1926), snf *Carybdea sp.* (="Carybdea marsupialis") from Puerto Rico and *Morbakka virulenta* (Kishinouye 1910). The unidentified species differed in its early life history from those five. As the medusae could not be reared to maturity, Straehler-Pohl and Jarms (2011) established the binomen *Carybdea morandinii* for the species, although they were aware that the sessile stages might prove to be referable to a known species of medusa. New investigations in Japan, and a collaboration between German and Japanese laboratories working on the species, have now resolved the identity of the genus *Carybdea morandinii*.

Corresponding author: Ilka Straehler-Pohl; E-mail, I.Straehler-Pohl@web.de
This study was undertaken to reveal the identity of the unknown cubopolyps discovered in the Umikirara Aquarium in Japan, to verify the identity of *Carybdea morandini*, and to demonstrate the importance of observations on all life history stages in the Cubozoa when making identifications.

Methods

For this study, the development of cubozoan polyps of unknown identity from a population discovered in a public Japanese aquarium was compared morphologically to the early life history of *Carybdea morandini*, originating from the population discovered in the public German aquarium Troparium but with an unknown original origin.

As both populations showed similarities at all stages, they were also compared genetically.

Additionally, as one immature medusa sampled in the wild in Japanese waters showed similarities to the artificially-reared 2-month-old Japanese medusae, they were added to both the morphological and genetic comparisons.

Sampling locations

Polyps of *"Carybdea morandini"*:

Germany: A saltwater tank at the Troparium of Hagenbecks Tierpark (Zoo), Hamburg, Germany, during 1999. They were discovered on a block of dead coral, the origin of which is unknown. According to the staff of Hagenbecks Tierpark, it came from somewhere in east Asia.

Polyps of unknown identity (Japanese population):

Nagasaki: A saltwater tank at the Saikai Pearlsea Resort, Umikirara Aquarium, Sasebo, Nagasaki, during 2006. Polyps were discovered on the wall of the tank. According to husbandry specialist Mr. Hitoshi Akiyama, the water in this tank came directly from the sea near the aquarium, and may have contained either planulae or creeping polyps.

Ishigaki: A piece of dead coral at Nagura Bay, Ishigaki Is., Okinawa, on March 26, 2006. One polyp was discovered on the wall of the tank. According to the staff of Hagenbecks Tierpark (Zoo), Hamburg, Germany, during 1999. They were discovered on a block of dead coral, the origin of which is unknown. According to the staff of Hagenbecks Tierpark, it came from somewhere in east Asia.

Ginowan: A glass plate at Ginowan Marina, Okinawa, on November 27, 2006. One polyp was discovered on the dead coral.

Medusa of Alatina sp. from the wild:

Japan: Ginowan Marina, Okinawa, Japan. One immature medusa was collected using light traps during the night between 19:30 and 21:00 on July 5, 2012.

Lab cultures

"*Carybdea morandini*":

Laboratory in Stade-Hagen, Germany: Living polyps of all known stages in the private "Medusa"s nursery" laboratory of the first author in Stade-Hagen; specimens were donated by Prof. Dr. André C. Morandini (Universidade de São Paulo) and had the same origin as type series ZMH No. C.11999 of *Carybdea morandini* in Hamburg, Germany.

The cubopolyps and young medusae were cultured as described by Jarms et al. (2002) and by Straehler-Pohl & Jarms (2011). Metamorphosis could not be induced artificially, but it occurred during the spring and summer period (May to September) when room temperature rose above 24°C and direct sunlight penetrated the room at least 4–5 hours a day.

Polyps of unknown identity:

Laboratory in Kitasato University, Japan: Polyps were incubated in petri dishes (diameter 75 mm, height 45 mm) with filtered seawater (1 µm) at 23°C. *Artemia* sp. nauplii were fed to the polyps twice or thrice a week. A complete rearing water change with filtered seawater (1 µm) followed about 3 hours after feeding. Metamorphosis was induced by temperatures between 25°C to 30°C. Newly detached medusae were kept in a separate polypropylene beaker (volume 1000 mL) with filtered seawater (1 µm) at 30°C. *Artemia* nauplii were fed to the medusae on a daily basis. Culture water was replaced with filtered seawater about three hours after feeding.

Measurements and abbreviations

Medusa: Standard measurements were used (Gershwin 2005a, b, 2006, Straehler-Pohl 2014): bell height (BH)=length between bell turn-over (velarium excluded from measurement) and top of apex; interpedalial diameter (IPD)=distance between opposite pedalia (outer pedalial wing edges) at the level of the bell turn-over; interrhopalial diameter (IRD)=distance between opposite sense niches. Nematocyst distribution: “>”=more than; “>>>”=a lot more than.

Polyps: Standard measurements of the polyps were adapted from Straehler-Pohl et al. (2011) and Straehler-Pohl & Jarms (2011): Hypostome Length (HL)=length from tentacle crown base to hypostome tip; Mouth Disc Diameter (MDD)=widest diameter of mouth disc; Stalk Length (StL)=length from basal disc to gastric cavity base; Total Body Length (TBL)=refers to the maximal length of the completely relaxed polyp body from basal disc to tip of hypostome.

To compare body dimensions and proportions, the following proportion quotients (%) were used: measurements compared to body length (HL/TBL×100; StL/TBL×100).

Photographs were taken with the following digital cameras: Canon Powershot G12; Canon Eos 550D; Canon EOS Kiss X5; OLYMPUS E-330.

Identification of characteristics

Zooxanthellae in polyps and newly detached medusae (Figs. 1B, I) were identified by their location lining the gastric tissue (on the inside of the endoderm), the nematocyst warts on the exumbrella and the velarium, their distinctive granular shape and their brownish-green colour in
tissue squashes and histological sections (Fig. 1) according to descriptions and images by Muscatine (1974), Schlichter & Fricke (1990), Arai (1997) and Straehler-Pohl & Jarms (2011).

Tissue squashes from the tentacles, calices and umbrellas of polyps and/or medusae, respectively, of different stages were observed under 400x magnification and basic forms of nematocysts identified according to Östman (2000) and Gershwin (2006).

“Gonads” in Cubozoa

Campbell (1974: 142) stated that “gonads” in most cnidarians are not separate organs, as found in higher animals, because germ cells are generally found in the interstitial portions of the body tissue which, prior to the formation of germ cells, exhibit no reproductive specialization. However, we follow Campbell (1974), Marques & Collins (2004), Bentlage et al. (2010), Morandini & Marques (2010) and Straehler-Pohl et al. (2014) in using the term gonad to refer to areas where gametes are formed.

Molecular methods

Sequences of the nuclear 18S rDNA genes (approximately 1800 bp) were used for molecular phylogenetic analyses. Genomic DNA was extracted from fresh or 99.5% ethanol-preserved polyps and 1 young medusa of unknown identity from Okinawa (Ishigaki, Ginowan) and Nagasaki and polyps of the German Carybdea morandinii culture using Chelex 100 (Bio-Rad, Japan) or DNeasy Blood and Tissue Kits (Qiagen, Germany). 18S rDNA was PCR am-

"Carybdea morandinii": A species with a curious polyp morphology

Fig. 1. Anatomical features of the polyp (A–C) and life cycle stages (D–I) of C. morandinii from German cultures (images A to C, E, G, H were altered and newly composed from Straehler-Pohl & Jarms (2011): A: Budding polyp with inflated, dome shaped hypostome, shutter-lens lamella with slit-like opening faintly visible through transparent hypostome tissue; B: a) longitudinal section through hypostome, shutter lens lamella and upper calyx, b) close up of longitudinal section of hypostome and shutter-lens lamella (bracket), note mesoglea axis (fat black arrow) in lamella and zooxanthellae (white arrow) in hypostome at mouth opening; C: Inner and outer polyp anatomy—left: inner anatomy showing ectoderm (ecD), mesogloea (Mes) and entoderm (enD), the zooxanthellae stored in the tissue surrounding the mouth opening (white arrow), the position of the shutter-lens lamella (ShLL) and the two-chambered digestion system with antechamber (AC) in the hypostome and main gastric cavity (GC) inside the calyx; right: outer anatomy showing tentacles (T), hypostome (H), calyx (C) and stalk (St). D: polyp with inflated hypostome; E-G: metamorphosis type 2 complete): E: phase 2; F: phase 3; G: phase 4; H: 1-day old medusa; I: 4-week old medusa with zooxanthellae (white arrows) inside nematocyst warts and velarium. AC: antechamber; C: calyx; ecD: ectoderm; enD: endoderm; GC: gastric cavity; H: hypostome; Mes: mesogloea; St: stalk; T: tentacle; TB: tentacle base.
plified and sequenced using primers and protocols outlined in Collins et al. (2008). Phylogenetic analysis (maximum likelihood and Minimum Evolution methods) and pairwise distance measurements were determined using the maximum likelihood method with 1000 bootstrap replications in MEGA 6.06. All of these sequences have been deposited in the DNA Data Bank of Japan (DDBJ). Those sequences were compared to 18S rDNA sequences of 17 cubozoan species of 6 families and two scyphozoan species as outgroups as listed in Table 1.

Results and Discussion

In 1999, an unknown cubozoan polyp was found on a block of dead coral in the Troparium of Hagenbecks Tierpark (Zoo), Hamburg, Germany. The provenance of the coral rock substrate was unknown, although Tierpark staff thought it might have come from East Asia (Straehler-Pohl & Jarms 2011). On testing temperature range tolerances of the polyps in the laboratory, and noting that the metamorphosis season was in the summer of the northern hemisphere, it was thought the origin might have been Japan (Straehler-Pohl 2001). The life cycle was followed from polyp to young medusa, including descriptions of asexual reproduction methods and observations of a resting stage. As the medusa could not be reared to maturity, Straehler-Pohl and Jarms (2011) decided to describe the species under the binomen Carybdea morandinii, although they were aware that the generic or specific names might change in the future if the sessile stages were found to belong to a known species of medusa.

In 2012, the second author received and maintained unidentified cubopolyps detected in a saltwater tank at the Umikirara Aquarium, Nagasaki, Japan in 2006.

To reveal the identity of the unknown cubopolyps discovered in the Umikirara Aquarium in Japan collaboration between our German and Japanese laboratories was set up. The unknown Japanese polyps and their further developmental stages were compared with those of the four cubozoan species maintained in Germany (Alatina moseri, Tripedalia cystophora, snf Carybdea sp. (=“Carybdea marsupialis” from Puerto Rico), Carybdea morandinii) and later on with species maintained in Japan: Copula sivickisi (Toshino et al. 2014) and Morbakka virulenta (Toshino et al. 2015a). The cubopolyps from Japan (Fig. 2A) differed from all others except those of Carybdea morandinii (Straehler-Pohl & Jarms 2011) in characters such as colour, body size and gross morphology, the existence of zooxanthellae in tentacles, hypostome and calyx lining the gastric cavity, and especially the horizontal twin-chamber system of the gastric cavity (Straehler-Pohl & Jarms 2011).

Table 1. List of species used for genetic analysis.

Species	GenBank No.	Reference
Alatina moseri (Australia)	GQ849082	Bentlage et al. 2010
Alatina sp. (Ishigaki Is., Okinawa)	LC047802 (as Alatina morandinii)	this study
Alatina sp. (Ginowan, Okinawa)	LC047804 (as Alatina morandinii)	this study
Alatina sp. (Nagasaki)	LC047803 (as Alatina morandinii)	this study
Carybdea morandinii (Germany)	LC047805 (as Alatina morandinii)	this study
Carybdea brancki (South Africa)	GQ849089	Bentlage et al. 2010
Carybdea brevipedalia (Japan)	GQ849092	Bentlage et al. 2010
Carybdea rastoni	AF358108	Collins et al. 2006
Carybdea xaymacana	AF358109	Collins et al. 2006
Carybdea xaymacana (Panama)	GQ849090	Bentlage et al. 2010
Carukia barnesi	AF358107	Collins et al. 2006
Copula sivickisi	AF358110	Collins et al. 2006
Gerongia rifkinae	AF358105	Collins et al. 2006
Meteorona kishinouyei (Fukushima, Japan)	LC033480	Toshino et al. 2015b
Morbakka virulenta (Japan)	GQ849083	Bentlage et al. 2010
Malo maxima (Australia)	GQ849084 (as Malo kingi)	Bentlage et al. 2010
Tripedalia cystophora (Indonesia)	GQ849088	Bentlage et al. 2010
Chiropsalmus fleckeri (Australia)	GQ849073	Bentlage et al. 2010
Chiropsalmus quadranusmanus (Brazil)	GQ849078	Bentlage et al. 2010
Chiropsella bronzie	AF358103 (as Chiropsella sp.)	Collins et al. 2006
Atolla wyvillei (Monterey Bay)	HM194788	Collins et al. 2006
Halicystus sanjuanensis	AF358102	Bayha et al. 2010
Comparison of morphology of polyp cultures from Germany and Nagasaki

Cubopolyps amphora-shaped in both cultures (German culture (Fig. 1A, D): TBL: 0.81–1.8 mm (mean: 1.12 mm, n=56), MDD: 0.34–0.74 mm (mean: 0.50 mm, n=56); Nagasaki culture (Fig. 2A): TBL: 1.46–3.36 mm (mean: 2.22 mm; n=20), MDD: 0.38–0.64 mm (mean: 0.51 mm; n=20)); dome of hypostome functioning as antechamber for main gastric tract of calyx (Fig. 1A), gastric cavity without septae but horizontally two-chambered, with shutter-lens-like diaphragm separating upper chamber in hypostome, from lower chamber inside calyx (Figs. 1B–C). Diaphragm, originating from endoderm (Figs. 1Ba, b), with a mesogloea axis (Figs. 1Bb, black arrow), located directly above tentacular circle. Tentacles 18–24 (mean: 22, n=50) when newly discovered in German culture, 8–22 (mean: 14, n=42) in Nagasaki culture, solid, capitate with single stenotele nematocyst in tips, arranged in a single circle around mouth disc. Hypostome dome to balloon-shaped (HL≈21% of TBL in both cultures). Stalk distinct (StL≈31% of TBL in both cultures), basal region covered by thin periderm cuticle. Colour in both cultures creamy-white with a tinge of beige when held in darkness; beige with tinge of greenish-brown due to zooxanthellae when kept in daylight. Mouth opening characteristically lined with a ring of tentacles around mouth disc.

Fig. 2. Nagasaki population of *Alatina morandinii*: Early life stages – from cubopolyp through complete metamorphosis to newly detached medusa: A: Adult polyp; B: creeping polyp (secondary polyp produced by lateral budding); Metamorphosis—C: Phase 1, clustering of tentacles at four points around hypostome; D: Phase 2, fusion of tentacle bases, reabsorption of tentacles, formation of rhopalia out of tentacle bases; E: Phase 3 (early), development of 4 medusa tentacle buds, transformation of hypostome to manubrium; F: Phase 4, growth of developing medusa, transformation of remaining polyp tissue, absorption of stalk; G: close up of developing rhopalia, note 6 eyes – 2 median lens eyes (black arrows), 4 lateral eyes (blue arrows); H: Phase 5 (early), detachment of medusa, reabsorption of stalk tissue remains; I: newly detached medusa; J: young medusa, 7 days old, St: statolith. Scale bars: 1 mm.
I. Straehler-Pohl & S. Toshino

with zooxanthellae, the dark circle of the mouth opening giving a sharp contrast to the otherwise zooxanthellae-free, colourless hypostome (Straehler-Pohl & Jarms 2011, this study: Fig. 1Bb, white arrow).

Asexual reproduction methods including lateral budding (Fig. 1A) of creeping polyps (buds with 4–6 tentacles; Fig. 2B), and the stages of complete metamorphosis (Figs. 1D–G, 2C–H) were also identical in both cultures.

The successfully induced metamorphosis resulted in medusae (Figs. 1I, 2H–J, 3, 4) that could be reared in the Japanese cultures to a stage (Fig. 6A) in which key characters were developed so that its generic identity could be determined. The crescent shape of the gastric phacellae (Fig. 6B) revealed that it was referable to the family Alatinidae

Fig. 3. Medusa of Alatina morandinii 1 day after detachment from Japanese and German cultures: Nagasaki culture specimen (A, E–I): A: lateral view; E: apical view; F: oral view; G: single gastric filaments (arrows), note greenish brown coloured nematocyst warts infused with zooxanthellae; H: pedalium; I: tentacle structure; German culture specimen: B: medusa, lateral view; C: rhopalium, front view, note 2 median eyes, 4 lateral eyes (arrows); D: rhopalium, lateral view, note 2 median eyes, 2 lateral eyes (arrows); Scale bars: 1 mm (A–B, E–F), 0.5 mm (C, D, G–I).
Gershwin, 2005 and the non-branched tentacles (Fig. 6E) hinted to the genus *Alatina* Gershwin, 2005.

Newly detached to 1-day-old medusae of German and Nagasaki cultures

Bell tetraradial, spheroidally-pyramidal shaped when newly detached in both cultures (German culture: BH: 0.6–0.9 mm (mean: 0.7 mm, n=12); IRD: 0.4–0.6 mm (mean: 0.5 mm, n=12)), spheroidal shaped when 1-day old (Nagasaki culture (Figs. 3A, 4): BH: 1.1–1.3 mm (mean: 1.1 mm, n=10), IRD: 0.8–1.1 mm (mean: 1.0 mm, n=10); German culture (Fig. 3B): BH: 0.9–1.1 mm (mean: 1.0 mm, n=12), IRD: 0.9–1.2 mm (mean: 1.1 mm, n=12)), exumbrella with very small, round (0.03–0.04 mm) nematocyst warts regularly dispersed along radial furrows in Nagasaki culture (Fig. 3A) and irregularly dispersed over entire exumbrella in medusae from German culture (Fig. 3B). In both cultures, rhopalia 4, extending from bell sides, no rhoparial niche yet developed, eyes 6 (2 median lens eyes, 2 pit eyes, 2 slit eyes; Figs. 3C, D). Manubrium short (approx. 30% of bell height; Figs. 3A, B), four-lipped; gastric filaments 4 (Fig. 3G). Tentacles 4, without pedalia, filiform, white with thin, light brown annuli (Fig. 3H). Bell, yellowish to yellowish-brown due to zooxanthellae in the exumbrella (mainly in warts) and velarium.

Nematocysts (both cultures):

Tentacles: holotrichous isorhizas, atrichous isorhizas,
I. Straehler-Pohl & S. Toshino

174

single ovoid heterotrichous microbasic euryteles.

Bell mammillation: ovoid heterotrichous microbasic eu-
ryteles >> round holotrichous isorhizas.

Zooxanthellae were detectable in manubrium lips, velar-
iurn, and nematocyst clusters on the exumbrella in both
cultures.

Later development was noted in detail only in Nagasaki
specimens. German cultures died after two to four weeks
due to ruptured tentacles, followed by degeneration and
death by starvation.

Three-week-old medusae (Figs. 4A–E, Nagasaki culture
specimens)

Bell spheroidal (BH: 2.4–3.0 mm (mean: 2.8 mm, n=10),
IRD: 1.8–2.5 mm (mean: 2.2 mm, n=10) (Fig. 4A); rhop-
alia 4, settled inside shallow cavity of developing rhopalia
niche (Fig. 4A); eyes 6 (2 median, 4 lateral); velarial can-
als not yet developed (4C); gastric filaments 5–10 (Fig.
4D); pedalia development commencing, growing into thin
"stalks" (Fig. 4E).

Fig. 5. Nematocysts of 3-week old medusa of *Alatina morandinii* (bell height 4.4 mm): A, B: Microbasic euryteles: intact (A), discharged (B); C, D: Ovoid isorhizas: intact (C), discharged (D); E, F: Spherical isorhizas: intact (E), discharged (F). All bars represent 10 \(\mu m \).

Fig. 6. Anatomical features of medusae of *Alatina morandinii* reared from polyp cultures from Nagasaki and medusae caught in the wild in Okinawa: Nagasaki culture specimen (Figs. A–E), photos by courtesy of Mr. Hitoshi Akiyama: A: medusa, lateral view; B: apex, note small crescentic gastric phacellae (arrow) arranged around manubrium base (m); C: quadrant of velarium, note 2–3 developing velarial canals (arrows) per octant flanking frenulum (f); D: rhopalium inside developing rhopalia niche without covering scales; E: developing pedalia, note developing inner wing in lower third; specimen from Okinawa, Japan (Figs. F–J): F: medusa, lateral view; G: apex, note crescentic gastric phacellae (gp) arranged around manubrium base (m); H: quadrant of velarium, note 3 developing velarial canals (arrows) per octant flanking frenulum (f); I: rhopalium (rh) inside heart-shaped rhopalia niche with two developing lower covering scales (arrows); J: developing pedalia, note slim scalpel shape of developing inner wing.
Nematocysts (Figs. 5A–F):
Tentacles: Ovoid isorhizas (mean: 12.39×10.31 µm, range: 10.13–13.86 µm long, 8.02–10.44 µm wide).
Bell: Spherical isorhizas (mean: 18.00×18.09 µm, range: 14.26–20.70 µm long, 14.67–20.64 µm wide).
Gastric filaments: Microbasic euryteles (mean: 9.05×6.49 µm, range: 7.55–11.92 µm long, 5.04–9.54 µm wide).
Manubrium: Microbasic euryteles (mean: 11.94×9.04 µm, range: 9.91–13.81 µm long, 8.02–10.44 µm wide).

No additional tentacles were added during development; bell becoming lighter in colour and more transparent, medusae nearly invisible in rearing tanks reaching 4–5 mm in bell height. Tentacles of medusae at that size hair-thin, nearly invisible when completely extended, up to 50 mm in length.

Two-month-old medusae (Figs. 6A–E, Nagasaki culture specimens)
Bell pyramidal to cuboidal, higher than wide (BH: 6.8–7.9 mm (mean: 7.4 mm, n=2), IPD: 4.4–4.9 mm (mean: 4.7 mm, n=2); Fig. 6A); phacellae 4, crescent-shaped, one per interradial corner of stomach (Fig. 6B); number of gastric filaments uncountable in living specimens; velarium narrow; velarial canals developing, 2–3 per octant, simple, non-branching (Fig. 6C); rhopalia 4, settled inside roundish cavity of developing rhopalial niche (Fig. 6D); covering scales still undeveloped; eyes 6 (2 median, 4 lateral). Pedalium stalked, development of inner wing commencing in lower third (Fig. 6E). Manubrium very short (≈1/7 of bell height). Gonads undeveloped.

Nematocysts:
Tentacles: isorhizas > medium-sized microbasic euryteles > ovoid isorhizas > microbasic amastigophores.
Bell: mammilation: 20–30 small spherical isorhizas per cluster.
Gastric filaments: small euryteles.

In 2000 and 2012, polyps and a small, immature Alatina medusa (Fig. 6F) identifiable by the crescentic shaped gastric phacellae, the “T”-shaped rhopalial niche opening with clearly separated lower covering scales and the non-branching tentacles were collected in Okinawa, Japan (1 polyp and 1 medusa in Ginowan and 1 polyp in Ishigaki). As this still immature medusa showed alatimid characters, and showed similarities in development to the young medusae of the Nagasaki culture, it was speculated that it might represent a further developmental stage. Genetic analysis of specimens from the cultures of Nagasaki and the Okinawa specimens confirmed that they belonged to the same species (Fig. 7).

Anatomical characters of Okinawa specimen from nature (Figs. 6F–J, Table 2)
Medusa estimated to be 2–3 months old: Bell pyramidal to cuboidal, higher than wide (BH: 8.0 mm (n=1); IPD: 6.7 mm (n=1); Fig. 6F); phacellae 4, crescent-shaped, one per interradial corner of stomach; gastric filaments approx. 30 per phacellum, long, simple, rooted singly or in pairs (Fig. 6G); velarium narrow, velarial canals lengthening, 2–3 per octant, simple, non-branching. Manubrium very short (≈1/7 of bell height) (Fig. 6H); rhopalia 4, settled inside heart-shaped cavity of rhopalial niche; one upper and two lower covering scales developing (Fig. 6I); eyes 6 (2 median lens eyes, 2 lateral pit eyes, 2 lateral slit eyes). Pedalium long (≥1/2 BH), long-stalked (≥1/3 PL), with no distinct outer wing, only broad outer keel; inner wing (lower 2/3 of pedalium) narrow, pointed scalpel-shaped, broadening below stalk, tapering from first half towards distal end (Fig. 6J); gonads developing as narrow stripes, attached at centre of septum. Other morphological characters agreeing with Nagasaki specimens.

Nematocysts: the same as in the specimens reared from the Nagasaki polyp culture.

Genetic analysis of specimens from the cultures of Germany and Nagasaki and the Okinawa specimens confirmed that they belonged to the same species (Fig. 7).

Comparison of Carybdea morandinii with the specimens from Okinawa and Nagasaki based on molecular data
In the resulting ML tree (Fig. 7), four major monophyletic clades were formed in the order Carybdeida: 1) Carybdeidae (Carybdea branchii, Carybdea brevipeda-
Carybdea morandinii was found in Japan, and morphological and molecular data indicate that it belongs to the genus Alatina. Insufficient homology with morphological early life cycle data and molecular data for A. moseri indicates that A. morandinii is not this species but as these data are lacking for A. grandis and A. rainensis, it is not yet possible to confirm that A. morandinii is not one of these species. In the future, when additional molecular data are available for all valid alatinid species, and mature medusae of A. morandinii are collected or reared, we plan to test the hypothesis of A. morandinii's synonymy with either of these valid Alatina species. But until then, the taxonomic status of Carybdea morandinii Straehler-Pohl & Jarms, 2011 is changed at a generic level to Alatina morandinii (Straehler-Pohl & Jarms 2011) and the species name still considered as valid.

Systematics
Phylum Cnidaria Verrill, 1865
Subphylum Medusozoa Petersen, 1979
Class Cubozoa Werner, 1973
Order Carybdeida (Lesson 1843)
Family Alatinidae Gershwin, 2005
Genus Alatina Gershwin, 2005
Alatina morandinii (Straehler-Pohl & Jarms 2011)

Acknowledgements
We would like to express our sincere thanks to Hitoshi Akiyama, Setsuko Iwanaga, Daijiro Kamiya, Yusuhuto Azama, Yukitoshi Nakama and Hitoshi Fukuchi for providing the specimens and photos. We thank Prof. André C. Morandini for helpful advice concerning taxonomic matters and manuscript contents. Our gratitude is expressed to Prof. Dale Calder for editorial help with the draft version. We would also like to thank two anonymous reviewers and the editor Ass. Prof. Dhugal Lindsay for constructive advice to further improve this paper. The research was financially supported by the Sasakawa Scientific Research Grant from the Japan Science Society and the Research Institute of Marine Invertebrates Foundation by the Research Institute of Marine Invertebrates.

References
Arai M (1997) A functional biology of Scyphozoa. Chapman & Hall, London, New York, 316 pp.
Bayha KM, Dawson MN, Collins AG, Barbeitos MS, Haddock SHD (2010) Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integr Comp Biol 50: 436–455. doi:10.1093/icb/icq074.
Bentlage B, Cartwright P, Yanagihara AA, Lewis C, Richards GS, Collins AG (2010) Evolution of box jellyfish (Cnidaria: Cubozoaa) a group of highly toxic invertebrates. Proc R Soc B 277: 493–501. http://dx.doi.org/10.1098/rspb.2009.1707
Campbell RD (1974) Cnidaria. In: Reproduction of marine invertebrates. Vol. I. Acoelomate and pseudocoelomate metazoans (eds Giese AC, Pearse JS). Academic Press, pp. 133–199.
Carrette T, Straehler-Pohl I, Seymour J (2014) Early life history of Alatina cf. moseri Populations from Australia and Hawaii with Implications for Taxonomy (Cubozoa: Carybdeida, Alatinidae). PLoS ONE 9: e84377 doi: 10.1371/journal.pone.0084377
Collins AG, Bentlage B, Lindner A, Lindsay D, Haddock SHD, Jarms G, Norenburg JL, Jankowski T, Cartwright P (2008) Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa. J Mar Biol Assoc UK 88: 1673–1685. doi: 10.1017/S0025315408001732
Conant FS (1897) Notes on the Cubomedusae. Johns Hopkins University Circulars 132: 8–10.
Cutress CE, Studebaker JP (1979) Development of the Cubomedusae, Carybdea marsupialis. Proc Ass Is Mar Lab Caribb 9: 25.
Gershwin L-A (2005a) Carybdea alata auct. and Manokia stiasnyi, reclassification to a new family with description of a new genus and two new species. Memoirs of the Queensland Museum 51: 501–523.
Gershwin L-A (2005b) Two new species of jellyfishes (Cnidaria: Cubozoa: Carybdeida) from tropical Western Australia, presumed to cause Irukandji Syndrome. Zootaxa 1084: 1–30.
Gershwin, L-A (2006) Nematocysts of the Cubozoa. Zootaxa 1232: 1–57.
Genus change in C. morandinii

Jarms G, Morandini AC, Silveira FL da (2002) Cultivation of polyps and medusae of Coronatae (Cnidaria, Scyphozoa) with a brief review of important characters. Helgoland Mar Res 56: 203–210.

Kishinouye K (1910) Some Medusae of Japanese Waters. J Coll Sci Imp Univ Tokyo 27: 2–35+5 plates.

Lesson R-P (1843) Histoire Naturelle des Zoophytes—Acaléphes. Librairie Encyclopédique de Roret, Paris, 596 pp.+12 plates.

Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidian evolution. Invert Biol, 123: 23–42. http://dx.doi.org/10.1111/j.1744-7410.2004.tb00139.x

Mayer AG (1906) Medusae of the Hawaiian Islands collected by the Steamer Albatross in 1902. US Fish Bull for 1903 3: 1131–1143+3 plates.

Morandini AC, Marques AC (2010) Revision of the genus Chrys-aora Péron & Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa 2464: 1–97.

Muscatine L (1974) Endosymbiosis of cnidarians and algae. In: Coelenterate Biology: Reviews and New Perspectives (ed Lenhoff LMAH). Academic Press, New York, pp. 539–593.

Östman, C. (2000) A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Sci Mar 64: 31–46.

Petersen KW (1979) Development of colony in Hydrozoa. In: Biology and systematics of colonial animals (eds Larwood G, Rosen BR). Academic Press, New York, pp. 105–139.

Reynaud, AAM (1830) La Carybdeée (Méduse) ailée. Carybdea alata n. sp. In: Centurie Zoologique (ed Lesson RP). FG Levrault, Paris, Brussels, p. 95, Plate 33.

Schlichter D, Fricke H (1990) Coral host improves photosynthesis of endosymbiotic algae. Naturwissenschaften 77: 447–450.

Stiasny G (1926) XIII. Carybdea sivickisi (Stiasny, 1926) (Cnidaria: Cubozoa: Carybdeidae: Tripedaliidae) collected from the Ryukyu Archipelago, southern Japan. Plank Benth Res 9: 32–41.

Toshino S, Miyake H, Iwanaga S (2014) Development of Copula sivickisi (Stiasny, 1926) (Cnidaria: Cubozoa: Carybdeidae: Tripedaliidae) collected from the Seto Inland Sea, western Japan. Plank Benth Res 8: 1–8.

Toshino S, Miyake H, Ohtsuka S, Okuizumi K, Adachi A, Hamatsu Y, Urata M, Nakaguchi K, Yamaguchi S (2013) Development and polyp formation of the giant box jellyfish Morbakka virulenta (Kishinouye, 1910) (Cnidaria: Cubozoa) collected from the Seto Inland Sea, western Japan. Plank Benth Res 8: 1–8.

Werner B (1973) New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Publ Seto Mar Biol Lab 20: 35–61.

Werner B, Cutress CE, Studebaker JP (1971) Life Cycle of Tripedalia cystophora Conant (Cubomedusae). Nature 232 (5312): 582–583.