Enhanced Efficiency of Direct-drive Switched Reluctance Motor with Reconfigurable Winding Topology

Peng Yang1,2, Wei Shi3, Yue Qiu4, Bingchu Li3, (Member, IEEE), and Yi Gan3,

1School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Minhang, Shanghai 200240 China
2Shanghai Aircraft Design & Research Institute, COMAC, Pudong, Shanghai 201210 China
3School of Mechanical Engineering, University of Shanghai for Science and Technology, Yangpu, Shanghai 200433 China
4CRRC Industrial Research Institute, Qingdao, Shandong 266000 China (e-mail: qiuyue@crrcgc.cc)

Corresponding author: Bingchu Li (e-mail: bclicsu@sina.com).

This research is financially supported by “Key project of National Natural Science Foundation of China (Grant No.51935007)” and “National Natural Science Foundation of China (Grant No. 51975356)”.

ABSTRACT Direct-drive motors (DDM) serve a vital role in reducing assemble complexity of washing machine and improve operation efficiency. However, design of DDM for washing machine is difficult, DDM needs to generate high torque at ultra-low-speed during rinse and reach high speed during dehydration, while keeping high efficiency. This paper puts forward a direct-drive switched reluctance motor (DDSRM) with reconfigurable drive topology for washing machine, the connections between pole windings in one phase of DDSRM can be reconfigured according to rotational speed. Three winding topologies are proposed in this paper, which leads to different speed range, efficiency and winding current. Topology switching mechanism are given, efficiency of DDSRM under different topologies are compared to find optimal speed to switch topology. A fast power loss calculation model is built to analyze the influence of turn-on and turn-off angles on DDSRM efficiency under different topologies, an online switching angles optimization method that matches topology switching strategy is proposed. A 24/16 3-phase out-rotor DDSRM was used in experiment to verify the effectiveness of topology switching strategy and switching angles optimization method, the results showed that the speed range of DDSRM is extended, efficiency of DDSRM over wild speed range can be significantly improved. The DDSRM with reconfigurable winding topology is of great value in promoting direct-drive technology for washing machines and facilities with similar operating condition.

INDEX TERMS Direct drive; Switched reluctance motor; Efficiency; Drive topology; Switching angle control;

I. INTRODUCTION

DIRECT-DRIVE washing machines are favored by more consumers considering its high energy efficiency and compact structure [1]. Instead of conventional drive train with motor-reducer-belt-drum structure, motors in direct-drive washing machines connect with drum without reducer and belt, simple structure of new drive train leads to improved efficiency and reliability, however, it also brings some challenges for DDM. First, Washing machines operate in rinse and dehydration modes alternatively, in which motor velocity and load differs significantly. The drum of washing machine with 5L capability rotates at speed of 50-60 rpm with load torque between 25 N·m - 30 N·m under rinse mode, while the velocity is 1500 rpm - 1800 rpm with output torque between 3 N·m - 5 N·m in dehydration mode. Without regulating output torque by reducer, the torque output capability of DDM is much bigger than conventional drive motor [2]. Second, the efficiency of DDM should be enhanced to increase economy in use and reduce carbon emissions. Third, maximum current and supply voltage is limited by household power supply system. The operation condition of washing machine drums requires DDM to have wide speed range with high efficiency while keeping large output capability at low speed, which made the design of direct-drive system of great challenge.

The motors commonly used in direct-drive washing machines include single-phase asynchronous motors, brushless...
DC motors, series-excited motors and switched reluctance motors (SRM) [3]. SRMs have double-salient structure with simple structure and low manufacturing cost, which has been widely used in aerospace, household appliances, ship transportation, and so on. Castano et al. discussed the advantages of SRM considering operating characteristics of washing machines [4], a comparison between SRM and single-phase two-speed asynchronous motor showed that energy consumption of SRM is only 47% of that for single-phase asynchronous motor. Asgara et al. introduced a 12/8 dual-stator SRM for washing machines, both finite element analysis and experiment have been carried out to verify the feasibility of SRM for washing machines [5].

Several researches have been conducted in order to increase the torque capability of SRM in aspects of both motor structure, winding structure and drive circuit. Li et al. proposed a 72/48 3-phase SRM with maximum output torque of 7000 N·m at rated speed 105 rpm [6]. Sun et al. compared SRM with different pole numbers, the results showed that 16/14 poles SRM had larger torque, less torque pulsation and higher efficiency than 16/10 poles SRM at low-speed range, this paper indicated that increasing rotor poles was an effective way to improve torque capability [7]. However, increasing pole pair numbers would complicate the manufacturing process. High rotor or stator number also means less conduction time in one phase, which may hinder increase of velocity for SRM. Outer-rotor structure has also been used to increase force arm length considering limited assembly space inside washing machine [8]. Fernandes et al. proposed an polyphase SRM with segmented rotor to improve torque capability, the commutation strategy was also modified where two adjacent phases are concurrently excited [9]. Davarpanah et al. proposed a novel 12/14 3-phase SRM with segmented C-core structure, as both teeth of stator pole in C-core structure generated positive torque [10], torque density of the new SRM was enhanced. In aspect of drive circuit, turn-off angle has been moved toward aligned position to increase torque capability of SRM, however, the backward turn-off angle may cause negative torque due to tail current. To solve this problem, Ahn proposed a novel passive boost power converter for single-phase SRM, a passive circuit is added in the front-end of a conventional asymmetric converter to obtain high negative bias, which can suppress negative torque generation from the tail current and improve output power [11]. Ding proposed a novel boost converter to increase phase voltage through additional capacitor, fast-excitation and fast-demagnetization currents were obtained, the conduction angle and output torque of SRM was enlarged with boosted converter [12]. Optimizing winding structure was also a promising approach to improve torque capability of SRM. Zhu et al. simultaneously excited two adjacent phase windings and found that the torque of SRM could be increased while torque pulsation being reduced [13]. Deng et al. proposed five different winding connections for six-phase SRM, different winding connections are compared in terms of torque characteristics, core losses and mutual inductance, and found an optimum winding configuration for SRM [14].

Speed range and opertating efficiency of SRM are also of great importance for washing machine. The main approach to improve speed range of SRM relies on diminution of winding inductance and increment of supply voltage [15]. The generation of power loss and efficiency optimization strategies for SRM have been investigated [16]–[18], the main approach to achieve high efficiency focus on maximizing average torque to current ratio within energy conversion loop. Switching angle optimization was also widely used to improve SRM efficiency. Xu et al. proposed an analytical calculation method for determining optimal switching angle based on a nonlinear inductance model [19], it improved SRM efficiency at low and high speed. Chen et al. proposed a novel method to search for optimal turn-on angle to minimize copper losses [20], the method performed well in case of start-up and sudden load change. Kittiratsatcha et al. introduced an artificial neural network to find optimal switching angles [21]. Then, contradiction arises between high torque capability, wild speed range and high efficiency. Considering requirement of washing machine, phase inductance should be designed at lower value in case back-EMF overlap the bus voltage at high speed; however, phase current needs to reach high value with low phase inductance to meet the demand of torque at low-speed, which may conflict with maximum allowable current in house-hold machine and reduce motor efficiency. At present, a common approach to balance torque capability and speed range is to increase power level of DDM, but cost and assembly space are increased.

In this paper, an outer-rotor SRM with high rotor and stator number is used for direct-drive washing machine, reconfigurable topology is proposed to achieve the balance between high torque at low-speed and wild speed range. Reconfigurable topology indicates the connecting topology for pole windings in one phase can be changed according to working condition. Three winding topologies, namely parallel topology, hybrid topology and serial topology, are proposed in this paper. The voltage for separate pole winding (VSPW) of SRM is different under diverse topologies, which lead to different efficiency, maximum speed and bus current. The topology can be switched according to working condition. The performance of different topology are compared at different working condition to establish reasonable topology switching rule. A fast power loss calculation model is built to analyze the influence of turn-on and turn-off angles on DDSRM efficiency under different topologies, turn-on and turn-on angle is optimized based on power loss calculation model. Hardware realization to switch winding topology is given in detail. A 24/16 3-phase out-rotor DDSRM is used in experiment to verify the effectiveness of winding reconfiguration method for DDSRM, the results show that SRM efficiency over wild speed range can be significantly improved. The innovations of this paper include:

1) A new concept of reconfigurable winding topology for DDSRM is proposed, DDSRM can reach expand speed range while maintaining high torque at low speed.
with limitation on bus voltage and current, the implementa-
tion of reconfigurable topology for SRM are also
given.
2) The influence of winding topology on DDSRM effi-
ciency is revealed, current waveforms under different
topologies are compared, an online topology switching
strategy is proposed.
3) A fast power loss calculation model is built, switching
angle optimization method considering DDSRM effi-
ciency is proposed based on fast power loss calculation
model. The performance of DDSRM with topology
switching strategy and switching angle optimal control
is evaluated in both simulation and experiments.

The following chapters are arranged as follows: Chapter
2 introduces the principle of reconfigurable topology for
DDSRM. The implementation of topology switching strat-
egy is given in Chapter 3. In chapter 4, a fast power loss
calculation model is proposed to build optimal switching
angle control for DDSRM. The performance of DDSRM with
reconfigurable topology is evaluated through experiments in
Chapter 6. Chapter 7 concludes the whole paper.

II. INFLUENCE OF WINDING TOPOLOGY ON DDSRM
PERFORMANCE
A. DESIGN CONSIDERATION OF DIRECT-DRIVE SRM
The DDSRM for washing machine connect with drum
through rigidity transmission, operation speed and load capa-
bility of DDSRM need to be identical with drum. In washing
mode, the drum change rotational direction frequently to
bring washes into contact with washing-up liquid, DDSRM
works at low speed with high load that made up of washes
and massive water. In dehydration mode, much of water
has been drain away, the washes are whirling with high
velocity to shake off the rest, DDSRM needs to work at high
speed. Besides, supply voltage and current of DDSRM are
limited by safety requirements of washing machine, structure
of DDSRM is limited by the assembly space and cooling
condition of washing machine. The design consideration for
DDSRM used in washing machine are listed as follows:
1) The supply voltage for DDSRM drive is AC 220V,
 which would be transformed into DC voltage through
 rectifier.
2) Maximum bus current for DDSRM should not exceed
 45 A.
3) Maximum output torque of DDSRM is bigger than
 35 N·m at 50 rpm, while maximum continuous output
torque should exceeds 25 N·m at 50 rpm.
4) Maximum speed of DDSRM should exceed 1400 rpm
 with 3 N·m load.
5) The diameter and length of DDSRM is smaller than
 320 mm and 40 mm, respectively.

To acquire high torque density at low speed, outer-rotor
SRM with high stator and rotor poles are generally used, a
3-phase 24/16 out-rotor SRM is designed and used as direct-
drive motor for washing machine in this paper, the structure
of DDSRM has been optimized though multi-objective op-
timization [22]. The structure of DDSRM is shown in Fig. 1
(a), the torque - current - position curve of DDSRM are
given in Fig. 1 (b). Structure parameters of DDSRM are illustrated
in Tab. 1. We can be see from Fig. 1 (b) that output torque
of DDSRM can reach 35N·m at 10 A, DDSRM can satisfy
output torque requirement with current limitation. However,
phase inductance of DDSRM are high, maximum speed of
DDSRM is limited due to high back-EMF, VSPW of the
proposed SRM need to be increased to broaden speed range.

B. SRM DRIVE TOPOLOGY
VSPW of DDSRM is decided by drive topology and winding
topology. Conventional SRM drive system is consisted of

TABLE 1. Structure parameters of direct-drive 24/16 out-rotor DDSRM
designed for washing machine

Parameters	Values
Number of stator poles	24
Number of rotor poles	16
Rotor outer diameter (mm)	294
Rotor inner diameter (mm)	250
Stator outer diameter (mm)	249.4
Stator inner diameter (mm)	140
Stack length (mm)	35
Stator arc angle (deg)	10.3
Rotor arc angle (deg)	8
Winding turns	48
power converter, driver module for power switches, controller and sensors (such as encoder and current transducers). Asymmetric half-bridge power converter is widely used for SRM considering its fault tolerance capability, in which each phase is independently controlled by power switches. A 3-phase SRM drive system with asymmetric half-bridge power converter is shown in Fig. 2. For proposed DDSRM, each phase is consisted of 8 winding coils, winding coils from different phase are arranged regularly.

Coils belong to one phase connect with each other in certain topology and finally form a dual-port winding, port voltage (the port connected with positive pole of power supply is defined as positive port) of each winding are regulated by two power switches in asymmetric half-bridge power converter, the actions of two power switches leads to different port voltage:

1) Positive port voltage: when two switches are both conducting, the port voltage equals to bus voltage. With positive port voltage, winding current increases.
2) Zero port voltage: when one power switch is turned off and another keep conducting, the port voltage equals to zero, winding current decreases slowly with cooper loss.
3) Negative port voltage: when two switches are both turned off, winding storage energy is feeded back to power supply, the port voltage equals to negative bus voltage until tail current decreases to zero.

VSPW is the voltage that implemented on coils on single pole, the relationship between VSPW and winding voltage depends on winding topology of SRM.

C. WINDING TOPOLOGY OF SRM

Winding topology refers to connection method between coils belong to same winding. The coils distribution for 3-phase 24/16 SRM is illustrated in Fig. 3 (a), all possible connection topologies for phase A are illustrated in Fig. 3 (b)-(d), namely serial topology, hybrid topology and parallel topology, respectively. The port voltage for each winding equals to bus voltage when corresponding power switches are conducting, however, VSPW is different depends on winding topology.

Without considering manufacturing error and structure imbalance, the resistance of each coil should be equal, so as VSPW (U_{wd}) and coil current (i_{wd}):

\[
i_{wd} = i_k(k = 1, 2..8) \quad (1)
\]

\[
U_{wd} = U_k(k = 1, 2..8) \quad (2)
\]

The relationship between port voltage and VSPW, and the relationship between bus current and coil current, both depends on the winding topology.

For serial topology:

\[
i_{bus} = i_{wd} \quad (3)
\]

\[
U_{bus} = 8 \times U_{wd} \quad (4)
\]

For hybrid topology:

\[
i_{bus} = 2 \times i_{wd} \quad (5)
\]

\[
U_{bus} = 4 \times U_{wd} \quad (6)
\]

For parallel topology:

\[
i_{bus} = 4 \times i_{wd} \quad (7)
\]

\[
U_{bus} = 2 \times U_{wd} \quad (8)
\]

where \(i_{bus}\) and \(U_{bus}\) represent port current and port voltage of one phase, respectively. According to voltage equation of winding coil:

\[
U_{wd} = \frac{d\phi_{wd}}{dt} + i_{wd} \times R_{wd} \quad (9)
\]

where \(\phi_{wd}\) and \(R_{wd}\) are flux linkage and resistance of one coil. It can be conclude that dynamic variation of flux linkage and current depends on coil voltage, thus, different current waveforms exist with same control parameters in different topologies, Fig. 4 gives phase current of SRM with three topologies that operating under single-pulse mode with same speed and load. The difference between current waveforms lies in the rate of current rise and fall. With serial topology, VSPW is minimum and winding current rises gently for SRM, the corresponding winding needs to be switched on in advance to prolong the dwell period and guartee torque capability. The switching angle moves rearward as VSPW increase, thus, current waveforms for SRM with hybrid and parallel topology are different. As current waveform correlates with many performance criterias, it can be conjectured that winding topology has significan influence on SRM performance.

D. EFFECT OF WINDING TOPOLOGY ON SRM PERFORMANCE

The effect of winding topology on SRM performance is studied through numerical method. A multi-physics simulation method is implemented using ANSYS Workbench, the diagram for multi-physics simulation is given in Fig. 5. Dual-coupling between electromagnetic force calculation and mechanical load is built, electromagnetic field distribution and electromagnetic force (Te) of DDSRM with different winding voltage (U_{wd}) are dynamically calculated using FEM in Maxwell, rotor velocity (\(\omega\)) and position (\(\theta\)) are calculated through coupling electromagnetic force with mechanical load and then feedback to SRM controller. The winding voltages of DDSRM are regulated by drive circuit and winding topology control module which are implemented in Simulor. Control signals for drive circuit (\(S_{dr}\)) are generated by switching angle control according to electromagnetic characteristic of DDSRM and feedback of velocity, position and current. Control signals for winding topology (\(S_{tp}\)) are generated by winding topology control according to velocity, both switching angle control and winding topology control are built in Matlab.
The performance of 3-phase 24/16 DDSRM with different winding topology is acquired through high fidelity multiphysics simulation. The power source for DDSRM drive is AC 220V, the bus voltage of DDSRM drive is acquired through AC-DC rectifier. DDSRM works on single-pulse control mode in simulation, turn-on and turn-off angle are selected using optimal switching angle control method proposed in Section IV. The efficiency of DDSRM are compared with different speed and mechanical load, the efficiency-speed characteristic with mechanical loads of 3N·m, 10N·m, 18N·m, and 25N·m are given in Fig. 6(a)-(d), respectively. The speed with maximum efficiency for each winding topology are marked, the speed when motor efficiency for two different winding topologies are identical are also marked.

Fig. 6(a) shows that motor efficiency with serial winding is better than other winding topology with speed under 618 rpm. For DDSRM with serial winding topology and 3 N·m mechanical load, motor efficiency increases as speed increase until speed reaches 560 rpm; when speed exceeds 560 rpm, motor efficiency decreases as speed increase, the maximum efficiency is 89%. Motor efficiency for DDSRM with serial winding topology and hybrid winding topology are the same at speed of 618 rpm, motor efficiency with hybrid winding will be better than other winding topology between 618 rpm and 1235 rpm, the maximum efficiency for DDSRM with hybrid winding exists at 953 rpm with value 92%. Motor efficiency of DDSRM with hybrid winding topology and parallel winding topology are the same at 1235 rpm. Motor efficiency for DDSRM with parallel winding topology will be better than other case when speed exceeds 1235 rpm. We can see from Fig. 6(b), Fig. 6(c) and Fig. 6(d) that under
different load, motor efficiency for DDSRM with different winding topology show similar relationship, motor efficiency tends to increase as speed increase until a turning point, then motor efficiency decrease as speed increase, maximum efficiency exists on different speed with different topology.

Maximum bus current for DDSRM with different winding topology under different speed and load are shown in Fig. 7. For same working condition, DDSRM with parallel topology has biggest bus current, while DDSRM with serial topology has minimum bus current. For all types of winding topologies, maximum bus current decrease as speed increase due to adjustment in switching angles. Notably, the difference in maximum bus current is significant between different topology, however, the difference in output power will be smaller than that in maximum bus current.

From Fig. 6 and Fig. 7, we can see DDSRM with serial topology are suitable to operate at low speed when back-EMF is low, DDSRM with other topology could also operate at low speed, however, the bus current would be higher than DDSRM with serial topology, which introduce more copper loss. As speed increase, DDSRM with hybrid topology would has better efficiency, meanwhile, maximum bus current also decrease. DDSRM with parallel topology are suitable to operate at high speed, DDSRM with other topology could not reach high speed due to low VSPW. There are interaction points where two types of winding topology have same efficiency, it is reasonable to switch winding topologies at intersection points considering motor efficiency. These interaction points are listed in Tab. 2. With the interaction points given in Tab. 2 as segmentation points, we approximate the relation between interaction speed and load with a piecewise linear curve, which could be used to determine optimal switching speed for other load.

III. IMPLEMENTATION AND CONTROL STRATEGY FOR RECONFIGURABLE TOPOLOGY SRM

According to effect of winding topology on DDSRM performance, switching winding topology according to speed and load may leads to better performance. In this section, a new DDSRM driver system with capability to switch topologies adaptively will be proposed, the hardware of driver system and corresponding control strategy to switch topology are illustrated.

A. HARDWARE IMPLEMENTATION TO SWITCH TOPOLOGY

The reconfigurable topology in this paper does not change the structure of power converter, but change the connection of winding coils via topology switching module. Topology switching module is consist of relays and change connection state through energizing/de-energizing relay coil.

In this paper, a 24/16 3-phase DDSRM is used. Taken phase A as example, there are eight pole windings for phase A, pole winding coils connect each other through relays, which is different from conventional fixed connection. The relays are used to change winding topology conveniently, each relay has three contacts, named intermediate contact (IC), normally closed contact (NCC) and normally open contact (NOC), respectively. IC is connecting with NCC if relay coil is de-energized, meanwhile NOC remains un-connected; when relay coil is energized, IC would connect with NOC instead, NCC will be disconnected. Six relays are used to switch between three topologies, the connection between relays and pole winding coils are shown in Fig. 8.

TABLE 2. Interaction points between different topology for 24/16 out-rotor DDSRM considering efficiency

Mechanical load (N-m)	Optimal switching point 1 (serial->hybrid)	Optimal switching point 2 (hybrid->parallel)
3	618	1235
10	575	1036
18	341	803
25	296	602

FIGURE 4. Current waveforms of DDSRM with three topologies. (a)Serial. (b)Hybrid. (c)Parallel.
FIGURE 5. Diagram for multi-physics simulation

FIGURE 6. Efficiency of DDSRM different topologies and mechanical load. (a)3 N·m. (b)10 N·m. (c)18 N·m. (d)25 N·m.
FIGURE 7. Maximum bus current with different load. (a) 3 N·m. (b) 10 N·m. (c) 18 N·m. (d) 25 N·m.

By adjusting the status of the relay coil, three different types of winding topology can be obtained.
1) Parallel topology: relay K2, K4 and K6 are powered on, IC in such relays switched to NOC, while IC in other relays connects to NCC.
2) Hybrid topology: relay K1, K4 and K5 are powered on, IC in such relays switched to NOC, while IC in other relays connects to NCC.
3) Serial topology: relay K1, K3 and K5 are powered on, IC in such relays switched to NOC; while IC in other relays connects to NCC.

The status of relay are regulated by DDSRM controller, relay coil, output buffer circuit and external power supply are connected. Relay coil would be powered by external power supply when output buffer is switched on, and IC will switched to NOC once corresponding coil is powered, otherwise IC will connects with NCC. The topology of DDSRM winding could be changed according to control signal of the controller.

B. TOPOLOGY SWITCHING STRATEGY
According to the influence of winding topology on DDSRM performance, each winding topology has optimum velocity range within which its efficiency is better than other topologies. Switching winding topology according to velocity could lead to better overall performance. We name speed that two types of winding topology has same efficiency as critical speed, there are two critical speed between three types of winding topology, DDSRM with serial winding topology and hybrid winding topology have same performance at first critical speed, while DDSRM with hybrid winding topology and parallel winding topology have same performance at second critical speed.
critical speed. The flowchart to switch winding topology is shown in Fig.9, velocity of DDSRM is monitored, a winding topology selection strategy will be conducted according to velocity. When velocity is lower than first critical speed, DDSRM will switch to serial topology, relay K1, K3 and K5 will be energized; when velocity is between first critical speed and second critical speed, DDSRM will switch to hybrid topology, relay K1, K4 and K5 will be energized; when velocity is greater than second critical speed, DDSRM will switch to parallel topology, relay K2, K4 and K6 will be energized. Notable, to avoid transient oscillation of phase current, the winding topology switching would be implemented only when one phase is turned off.

IV. OPTIMAL TURN-ON AND TURN-OFF ANGLE SELECTION

Turn-on and turn-off angles are important parameters that affect SRM efficiency. In this paper, single-pulse control (SPC) strategy is used. To ensure DDSRM have maximum efficiency in each operating condition, the turn-on and turn-off angles need to be adjusted, the selection method will be discussed in this chapter.

The relationship between switching angles and power loss of DDSRM is first investigated, a fast power loss calculation model is built. Without considering stray loss, power loss of SRM includes copper loss and iron loss. Copper loss of SRM is proportional to square of phase current, however, calculation of iron loss for SRM is relatively complicated due to double salient pole structure of SRM and non-sinusoidal current waveform.

With SPC, flux linkage increase linearly after turn-on angle, as shown in Fig.10. Flux linkage, as well as current waveform, depend on switching angles and velocity. Linear flux linkage model (LFLM) will be used to calculate optimal turn-on and turn-off angles.

\[
\phi(\theta) = \begin{cases}
\frac{V}{u}(\theta - \theta_{on}) & \theta_{on} < \theta < \theta_{off} \\
\frac{V}{u}(2\theta_{off} - \theta_{on} - \theta) & \theta_{off} < \theta < 2\theta_{off} - \theta_{on} \\
0 & \text{other}
\end{cases}
\]

(10)

As shown in Fig.11, the magnetic field density is different at different position of DDSRM. To calculated iron loss concisely, flux path of DDSRM is separated into four
regions (stator teeth, stator yoke, rotor teeth and rotor yoke),
magnetic field density distributes relative uniformly in each
region, iron loss of each region can be calculated according
to magnetic field density and regional volume. The steps to
build fast power loss calculation model and optimize turn-on
and turn-off angle are as follows:

1) Use LFLM to calculate flux linkage within one elec-
trical period under different turn-on and turn-off angle.
Calculate flux density at different regions of DDSRM
with respect to rotor position, including stator teeth,
stator yoke, rotor teeth and rotor yoke.
2) Calculate copper loss of DDSRM. Magnetic resistance
(1/L) is presented as Fourier series, current harmonics
can be obtained using φL, total copper loss of
DDSRM can be calculated by superposition of copper
loss caused by current harmonics.
3) Calculate iron loss of DDSRM. Flux density at each
region is decomposed to obtain its harmonics, calculate
iron loss of each region based on Steinmetz formula.
Total iron loss of DDSRM equals to superposition of
iron loss of all regions.
4) Power loss of DDSRM consists of iron loss and copper
loss. Build relationship between DDSRM efficiency,
velocity and switching angles according to fast power
loss calculation model.
5) Find optimal switching angles through iterative search-
ing method.

The distribution of flux linkage at different regions of
DDSRM depends on rotor position. Flux linkage for each
phase winding are represented as \(\phi \). The number of turns for each phase winding is \(N_p \). The positive
direction for stator/rotor teeth flux is from inner diameter to
outer diameter, and positive direction for stator/rotor yoke
flux is clockwise. The magnetic flux in different part of
DDSRM can be acquired according to magnetic circuit
theory [23].

Stator teeth flux \(\phi_{sp} \) can be represented as (11):

\[
\phi_{spA}(\theta) = \frac{\phi_A(\theta)}{N_p} \\
\phi_{spB}(\theta) = \frac{\phi_B(\theta)}{N_p} = \phi_A(\theta + \frac{2}{3}\pi) \\
\phi_{spC}(\theta) = \frac{\phi_C(\theta)}{N_p} = \phi_A(\theta + \frac{4}{3}\pi)
\]

The stator yoke flux \(\phi_{st} \) can be represented as (12):

\[
\phi_{st1}(\theta) = \frac{1}{2}(\phi_{spA}(\theta) + \phi_{spB}(\theta) + \phi_{spC}(\theta)) \\
\phi_{st2}(\theta) = \frac{1}{2}(\phi_{spA}(\theta) + \phi_{spB}(\theta) - \phi_{spC}(\theta)) \\
\phi_{st3}(\theta) = \frac{1}{2}(\phi_{spA}(\theta) - \phi_{spB}(\theta) - \phi_{spC}(\theta))
\]

The rotor yoke flux \(\phi_{rc} \) can be represented as (13):

\[
\phi_{rc1}(\theta) = \frac{1}{2} (\phi_{spA}(\theta) - \phi_{spB}(\theta) - \phi_{spC}(\theta)) \\
\phi_{rc2}(\theta) = \phi_{rc1}(\theta + 2\pi) \\
\phi_{rc3}(\theta) = \phi_{rc1}(\theta + 4\pi)
\]

Based on the above equations, flux linkage at each region
of DDSRM can be calculated. To verify the accuracy of
magnetic field density at different region, six points are
selected to record magnetic field density of DDSRM with
load of 3 N.m at 500 rpm through FEM, and will further
compared with the proposed equations. As shown in Fig. 11,
the selected points locate at stator yoke, stator teeth, rotor
teeth, and rotor yoke. The comparison results of magnetic
field density at selected points are shown in Fig. 12.

It can be seen from Fig. 12 that equations (11 - 14) are
effectively in predicting magnetic field density of DDSRM
in different regions. Notable, Fig. 12 only gives magnetic
field density at different region for unsaturated condition,
however, the relation between flux linkage and magnetic field
density along magnetic circuit is not affected by magnetic
saturation, equations (11-14) are also applicable for saturated
condition. With such analytical model, the harmonics of
magnetic field density in each region of DDSRM can be
obtained through Fourier transformation. The iron loss of
each region can be calculated using Steinmetz formula as (15).

\[
P_{fe} = C_h f \sum_{k=1}^{m} kB_m^2 + C_e f^2 \sum_{k=1}^{m} k^2B_m^2
\]
FIGURE 12. Comparison of magnetic field density in different regions of DDSRM between FEM and analytical method. (a)Point 1. (b)Point 2; (c)Point 3; (d)Point 4; (e)Point 5; (f)Point 6.
where C_h and C_e represent hysteresis loss coefficient and eddy current loss coefficient of iron core, respectively. They can be obtained from silicon steel manufacturer.

Once fast power loss calculation model is built, the relationship between motor efficiency and control parameters (turn-on and turn-off angle) can be developed, and optimal switching angles that increase motor efficiency can be obtained by genetic algorithm. Fig. 13 shows optimal turn-on and turn-off angles obtained based on fast power loss calculation model.

V. EVALUATION OF DDSRM PERFORMANCE WITH RECONFIGURABLE WINDING TOPOLOGY

A. SIMULATION

The performance of DDSRM with topology switching control and optimal switching angle control are evaluated using multi-physics simulation. The topology switching point and optimal turn-on and turn-off angles in simulation are given in Tab. 2 and Fig. 13.

Torque-speed characteristic of DDSRM with different topology are given in Fig. 14. For low speed and high torque condition, serial topology will be used. It can be seen from Fig. 14(a) that maximum torque can reach 61 N·m at 50 rpm, which accommodates the requirement of maximum torque for DDSRM using in rinse mode, however, the maximum speed with serial topology is limited by 670 rpm with load of 3 N·m. For high speed, parallel topology will be used, it can be seen from Fig. 14(b) that maximum speed can reach 2100 rpm with load of 3 N·m. The requirement of high operating speed in dehydration mode is satisfied. It can be deduced from Fig. 14 that DDSRM with onefold topology can’t satisfy the requirement to work at low speed with high torque while maintain wild speed range, the topology switching strategy is crucial for DDSRM to use in washing machine.

The efficiency of DDSRM with reconfigurable winding topology is given in Fig. 14. DDSRM can achieve speed range of 50 rpm - 2200 rpm with load of 3 N·m, motor efficiency is above 60% within speed range. With load of 25 N·m, DDSRM can reach up to 1120 rpm. Motor efficiency for DDSRM operating at 50 rpm with load of 25 N·m is relatively low, phase current is high to generate required torque, cooper loss dominates power consumption in this condition, which leads poor performance of DDSRM. Motor efficiency increase rapidly as velocity increase with load of 25 N·m, it could reach 64% when velocity exceeds 70 rpm. The simulation results convince that topology switching strategy and optimal switching angle control work well, the proposed DDSRM with reconfigurable winding topology can meet performance requirements of washing machines.

B. EXPERIMENT

The performance of DDSRM is evaluated in experiments. The experimental setup is shown in Fig. 16, a 24/16 3-phase DDSRM is fabricated and used in experiment, structure of the prototype are consistent with that used in simulation. A magnetic powder brake is used as mechanical load, torque transducer is assembled between DDSRM and magnetic powder brake to measure output torque as shown in Fig. 16(a). Pole windings of the prototype are connected through relays as shown in Fig. 16(b), winding topology is switched when relay state change. DDSRM driver is shown in Fig. 16(c); SPC is used to regulate DDSRM speed, the control program is implemented on DSP TMS320F2812 as shown in Fig. 16(d). Both phase current, output torque and velocity are sample through data acquisition (DAQ) card to calculate motor efficiency. The control system for DDSRM is given in Figure 16. Considering load uncertain in experiment and real application, an online turn on/off angle adaption mechanism is embedded into the speed control loop. A PI controller is used to generate torque command according to speed error between real speed and speed command. The torque command, as well as two look-up-tables (LUTs), are used to determine winding topology and optimal switching angles. LUT 1 is a 1D interpolation table between interaction speed and torque. Topology control module calculate interaction speed according to torque command from LUT 1, and then determine which winding topology to be implemented through comparing interaction speed and current speed. LUT 2 is a 2D interpolation table between switching angles, speed and torque, which is generated according to optimal switching angles in Figure 13. Switching angle control module calculate optimal switching angles according to torque command and current speed from LUT 2. Optimal switching angles are then used to generated drive signals for power converter. The parameters P and I are tuned according to DDSRM performance in experiment.

Before measuring efficiency, the stray losses, caused by friction, wind resistance and shaft eccentricity, need to be calibrated. DDSRM operated at different velocity with brake unpowered, phase current are recorded and used to calculate power input without mechanical load (PIOML). PIOML should be considered to accurately calculate efficiency of DDSRM. When calculating DDSRM efficiency, output power of DDSRM are calculated by combine PIOML and brake load.

The experimental tests are conducted under load of 3N-m, 10N-m, 18N-m, and 25N-m, respectively. Both topology switching strategy and optimal switching angle control are implemented. Phase current and bus current are recorded between 50 rpm -1500 rpm according to requirement of washing machine. When velocity reaches topology switching point, DDSRM can automatically switch the winding topology. Fig. 18 shows phase currents of DDSRM with different winding topology under load of 3N-m at 100 rpm, we can see current waveforms of DDSRM with three winding topologies are different. Both input power and output power of DDSRM are calculated based on DAQ data, then DDSRM efficiency can be calculated. The efficiency-velocity map can be obtained with different load, as shown in Fig. 19. Maximum velocity of DDSRM can reach 1520 rpm with load of 3N-m, while it
FIGURE 13. Optimum switching angles for DDSRM with different winding topology. (a) 3N·m. (b) 10N·m. (c) 18N·m. (d) 24N·m.

FIGURE 14. Efficiency of DDSRM with different velocity and mechanical load.

can also reach 810 rpm with load of 25 N·m. The proposed DDSRM with reconfigurable winding topology can meet performance requirements of washing machines.

With load of 3 N·m, serial topology is adopted when velocity is under 620 rpm, motor efficiency of DDSRM is 46% at 50 rpm and keep increasing as velocity increase. However, motor efficiency for DDSRM with serial topology achieve its maximum value at 600 rpm, motor efficiency at 620 rpm is lower than that of 600 rpm, then, winding topology is switched to hybrid topology at 620 rpm, motor efficiency keep increasing after switching to hybrid topology. Efficiency of DDSRM with hybrid winding topology reaches its maximum value at 980 rpm, then winding topology is switched to parallel type at 1050 rpm. After winding topology switching to parallel type, motor efficiency of DDSRM begins to increase. With load of 10 N·m, 18 N·m and 25 N·m, efficiency of DDSRM with three topologies show similar relationship. The experiments demonstrate that efficiency of DDSRM is improved by switching winding topology.
Comparing Fig. 14 and Fig. 19, it is found that DDSRM efficiency obtained from experiment is slightly lower than that obtained from simulation, iron loss calculated by FEM is lower than actual value due to neglection of saturation.
FIGURE 18. Current waveforms of DDSRM with different topology in experiment. (a) Serial topology. (b) Hybrid topology. (c) Parallel topology.

FIGURE 19. DDSRM efficiency with different velocity and mechanical load in experiment.

VI. CONCLUSION

In this paper, a new type of direct-drive motor system is proposed for washing machines, which requires high torque output at low speed while maintaining wide speed range. The concept of reconfigurable winding topology is proposed to expand operation range of DDSRM. The effect of winding topology on DDSRM efficiency is analyzed through multi-physics simulation, then topology switching strategy for DDSRM are determined. Since turn-on and turn-off angles have significant effect on motor efficiency, the relationship between motor efficiency and switching angles is deduced theoretically, optimal turn-on and turn-off angles for DDSRM with different topologies under different operating conditions are given. Both simulation and experiments are conducted to evaluate performance of DDSRM with reconfigurable winding topology, the results demonstrate that topology switching strategy and optimal switching angles control could improve DDSRM efficiency. DDSRM with reconfigurable winding topology is of great value in promoting direct-drive technology for washing machines and facilities with similar operating condition.

REFERENCES

[1] R. Stamminger, A. Bues, F. Alfieri, and M. Cordella, “Durability of washing machines under real life conditions: Definition and application of a testing procedure,” Journal of Cleaner Production, vol. 261, p. 121222, Jul 2020.

[2] C.-S. Jin, D.-S. Jung, K.-C. Kim, Y.-D. Chun, H.-W. Lee, and J. Lee, “A study on improvement magnetic torque characteristics of ipmsm for direct drive washing machine,” IEEE Transactions on Magnetics, vol. 45, no. 6, p. 2811–2814, 2009.

[3] W. Cheng, H. Zhiwei, and G. J. Jinian, “The application of a novel motor in washing machines,” in ICEMS 2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501), vol. 2, 2001, p. 1030–1033 vol.2.

[4] S. M. Castano, R. Yang, C. Mak, B. Bilgin, and A. Emadi, “External-rotor switched reluctance motor for direct-drive home appliances,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018.

[5] M. Asgar, E. Afjei, A. Behbahani, and A. Siadatan, “A 12/8 double-stator switched reluctance motor for washing machine application,” in The 6th Power Electronics, Drive Systems Technologies Conference (PEDSTC2015), 2015, p. 168–172.

[6] E. Elhomy, G. Li, J. Liu, S. Bukhari, and W.-P. Cao, “Design and experimental verification of a 72/48 switched reluctance motor for low-speed direct-drive mining applications,” Energies, vol. 11, no. 1, p. 192, Jan 2018.

[7] X. Sun, K. Diao, G. Lei, Y. Guo, and J. Zhu, “Study on segmented-rotor switched reluctance motors with different rotor pole numbers for bg system of hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 68, no. 6, p. 5537–5547, Jun 2019.

[8] V. Rallabandi, J. Wu, A. M. Cramer, D. M. Ionel, and P. Zhou, “Optimal design of outer rotor switched reluctance machines for direct drive rim applications,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, p. 6104–6109.

[9] G. Davarpanah and J. Faiz, “A novel structure of switched reluctance machine with higher mean torque and lower torque ripple,” IEEE Transactions on Energy Conversion, vol. 35, no. 4, p. 1859–1867, 2020.

[10] J. W. Ahn and D. H. Lee, “Performance of passive boost switched reluctance converter for single-phase switched reluctance motor,” Journal of Electrical Engineering 38; Technology, vol. 6, no. 4, p. 505–512, 2011.
C. Ma and L. Qu, “Multiobjective optimization of switched reluctance machines,” in Proceedings of the IEEE International Conference on Electrical Machines (ICEM), 2018, pp. 2026–2031.

W. Ding, Z. H. J, and Y. Z. M, “Magnetic flux and iron loss estimation of switched reluctance machines,” IEEE Transactions on Energy Conversion, vol. 33, no. 1, pp. 166–178, 2018.

S. Kittiratsatcha, P. Kerdtuad, and C. Bunlaksananusorn, “Output power estimation,” in Proceedings of the 2017 International Conference on Smart Systems and Technologies (ICSSST), 2017, pp. 444–448.

Q. Yu, B. Bilgin, and A. Emadi, “Loss and efficiency analysis of switched reluctance machines using a new calculation method,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3072–3080, 2015.

Y. Zhu, C. Yang, Y. Yuan, C. Zhao, and Z. Yan, “Development and analysis of a two-phase excitation switched reluctance motor with novel winding distribution used in electric vehicles,” Journal of Electrical Engineering Technology, vol. 13, no. 6, pp. 2364–2375, 2018.

Y. Z. Xu, R. Zhong, L. Chen, and S. L. Lu, “Analytical method to optimize turn-off angle and turn-off angle for switched reluctance motor drives,” IET Electric Power Applications, vol. 6, no. 9, pp. 593–603, 2012.

H. J. Chen and J. Y. Li, “A simple turn-on and turn-off angles searching method for copper loss minimization of the switched reluctance motor,” COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36, no. 4, pp. 1059–1074, 2017.

B. Mocrow, R. Martin, and S. Gadoue, “Effects of winding distribution used in electric vehicles,” Journal of Electrical Engineering, vol. 13, no. 6, pp. 2364–2375, 2018.

S. Ogasawara, “Torque density and efficiency improvements of a switched reluctance motor without rare-earth material for hybrid vehicles,” IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1240–1246, 2011.

Q. Ding, S. Yang, and Y. Hu, “A novel boost converter for segmented-stator hybrid-excitation switched reluctance motor drive with high performance,” 2018, p. 1223–1228.

Y. Zhu, C. Yang, Y. Yuan, C. Zhao, and Z. Yan, “Development and analysis of a two-phase excitation switched reluctance motor with novel winding distribution used in electric vehicles,” Journal of Electrical Engineering Technology, vol. 13, no. 6, pp. 2364–2375, 2018.

X. Deng, B. Mocrow, R. Martin, and S. Gadoue, “Effects of winding connection on performance of a six-phase switched reluctance machine,” IEEE Transactions on Energy Conversion, vol. 33, no. 1, pp. 166–178, 2018.

S. Kocan, P. Rafajdus, P. Makys, and R. Bastovansky, “Design of high speed switched reluctance motor,” in Proceedings of the 2015 International Conference and Exposition on Electrical And Power Engineering (EPE), 2015, p. 0421–0426.

I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched reluctance generators,” IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1062–1071, 2006.

A. Chiba, Y. Takano, M. Takeno, T. Imakawa, N. Hoshi, M. Takemoto, and S. Ogasawara, “Torque density and efficiency improvements of a switched reluctance motor without rare-earth material for hybrid vehicles,” IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1240–1246, 2011.

Q. Yu, B. Bilgin, and A. Emadi, “Loss and efficiency analysis of switched reluctance machines using a new calculation method,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3072–3080, 2015.

Y. Z. Xu, R. Zhong, L. Chen, and S. L. Lu, “Analytical method to optimise turn-on angle and turn-off angle for switched reluctance motor drives,” IET Electric Power Applications, vol. 6, no. 9, pp. 593–603, 2012.

H. J. Chen and J. Y. Li, “A simple turn-on and turn-off angles searching method for copper loss minimization of the switched reluctance motor,” COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36, no. 4, pp. 1059–1074, 2017.

S. Kittiratsatcha, P. Kerdtuad, and C. Bunlaksananusorn, “Output power control using artificial neural network for switched reluctance generator,” Sensors and Materials, vol. 33, no. 7, pp. 2427, 2021.

C. Ma and L. Qu, “Multiojective optimization of switched reluctance motors based on design of experiments and particle swarm optimization,” IEEE Transactions on Energy Conversion, vol. 30, no. 3, pp. 1144–1153, 2015.

W. Ding, Z. H. J, and Y. Z. M, “Magnetic flux and iron loss estimation of a switched reluctance motor,” Electric Machines and Control Application, vol. 33, no. 6, pp. 11–17, 2006.

PENG YANG received the B.S. degree in mechanical engineering from Shanghai JiaoTong University, Shanghai, China, in 2008, and the Master’s degree in mechatronics from Shanghai Jiaotong University, in 2011. He is pursuing the Ph.D degree in Aeronautical and Astronautical Science and Technology in Shanghai Jiaotong University, he also serves as senior engineer in Shanghai Aircraft Design and Research Institute, COMAC. His current research interests include aircraft landing gear, brake system, and system integration.

WEI SHI was born in Nantong, Jiangsu, China, in 1996. He received the B.S. degree in electromechanical engineering and automation from Yangzhou University, Yangzhou, China, in 2018. Now, he is pursuing Master’s Degree in University of Shanghai for Science and Technology. His current research interests include motor design and optimization based on multi-physics analysis.

YUE QIU received the Master’s degree in electrical engineering from DALIAN JIAOATONG University, Dalian, China, in 2015. He is currently working in CRRC Industrial Research Institute (Qingdao). His current research interests include motor design for high-speed railway and new generation of TSN-based train communication.

BINGCHU LI (M’22) received the B.S. degree in mechanical engineering from Central South University, Hunan, China, in 2008, and the Ph.D. degree in mechanical engineering from Shanghai Jiao Tong University, Shanghai, China, in 2019. He is currently an assistant professor with University of Shanghai for Science and Technology. His current research interests include intelligent robotics, high reliable actuators, and electromechanical system design with emphasis on switched reluctance machines.

YI GAN received the Ph.D. degree in mechanical engineering from Tongji University, Shanghai, China, in 2004. From 2004-2006, he served as an assistant professor in School of Mechanical Engineering in University of Shanghai for Science and Technology. From 2006-2017, he served as an associate professor in School of Mechanical Engineering in University of Shanghai for Science and Technology. Since 2017, he has been a Professor in School of Mechanical Engineering in University of Shanghai for Science and Technology. He is also an co-researcher in Faculty of Science and Engineering, Chuo University, Kyoto, Japan. His current research interests cover intelligent mechatronics system design and intelligent manufacturing.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/