"Worm within worm": acute appendicitis containing an adult Ascaris lumbricoides

INTRODUCTION
Appendicitis is the first etiology for abdominal surgical emergency, with a lifetime incidence of 7–14%.1 Acute appendicitis is often related to an obstruction of its lumen with multifactorial causes including fecoliths, lymphoid hyperplasia, tumors and intestinal parasites.2,3 Ascaris is an infection caused by a giant roundworm called Ascaris lumbricoides, with an estimated 760 million cases worldwide.4 It is particularly endemic in tropical and underdeveloped countries and mainly infects malnourished children living in unsanitary conditions.5 The surgical manifestations of abdominal roundworm are multiple and mainly related to the capacity of the worm to wander through the digestive and biliary tract.6,7 Cases of appendicitis associated with roundworm are infrequent. Besides, the responsibility of roundworm for the occurrence of acute appendicitis remains debated.8,9 We report the case of a 7-year-old patient living in a tropical area who consulted for acute right lower quadrant pain. The ultrasound suspected the diagnosis of appendicitis and also revealed multiple intestinal worms including one in contact with the inflamed appendix. Surgical exploration confirmed appendicitis associated with roundworm partly in the appendicular lumen through a perforation.

CASE DESCRIPTION
A 7-year-old male patient with no medical history was received at the emergency department for intense right lower quadrant pain evolving for 2 days and associated with nausea and vomiting. His general condition was preserved without any sign of dehydration. The temperature was elevated to 37.8°C and the rest of the vital signs were within normal ranges. Physical examination revealed tenderness of the right lower quadrant without abdominal distension or palpable mass. The rest of the examination was normal. The biological tests showed leukocytosis at 11700/mm3 (neutrophil at 80%) and a high level of CRP at 20 mg/L. With the suspicion of acute appendicitis, an abdominal ultrasound was required. It revealed multiple intestinal worms including one in contact with the inflamed appendix. Surgical exploration confirmed appendicitis associated with roundworm partly in the appendicular lumen through a perforation.

© 2022 The Authors. Published by the British Institute of Radiology. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
(Figure 1A). In contact with the appendix, another cylindrical structure was visualized giving a target appearance on axial sections (Figure 1B). Several other similar structures were also found, mobile within the intestinal loops (Figure 2A–B) without any sign of obstruction. There was no other anomaly identified. Totally, the ultrasound concluded with acute uncomplicated appendicitis of the right iliac fossa associated with several intestinal worms, one of which was in contact with the appendix.

The patient was taken to the operating room for an open appendectomy (McBurney incision). Surgical exploration showed an appendix with edema and inflammation with roundworm halfway into the lumen of the appendix through a perforation (Figure 3A). The appendectomy was completed and a 20 cm living roundworm was removed (Figure 3B). The patient was discharged after 3 days with anthelmintic treatment and the post-operative course was uneventful.

DISCUSSION

The earliest anatomical descriptions of the appendix date back to the 16th century. In 1561, Fallopian (which gave its name to the uterine tubes) compared the appendix to a worm, hence the name *appendix vermiformis*. Appendicitis is the most common condition leading to an abdominal surgical emergency. Its pathophysiology involves luminal obstruction which leads to an increase in intraluminal pressure leading to mucosal ischemia. With vascular congestion, the appendicular mucosa becomes hypoxic and begins to ulcerate, resulting in compromise of the mucous barrier and leading to invasion of the appendicular wall by intraluminal bacteria. Additionally, stasis of intraluminal contents leads to bacterial overgrowth in the inspissated mucus.

Ascariasis is endemic in underdeveloped areas and particularly affects children. Its clinical manifestations are polymorphic depending on the phase of infection. During the gastrointestinal phase, digestive signs are more common and may mimic acute abdominal emergency. However, they can be responsible for emergency abdominal surgery due to digestive or biliary obstruction. In fact, the adult worms roam the digestive system and this is how roundworms can end up in the appendicular lumen. It can cause appendicitis by obstruction according to the pathophysiological mechanism already described. However, the direct responsibility of roundworm in the occurrence of appendicitis remains debated. Suspected appendicitis caused by roundworm is most often diagnosed by finding roundworm eggs on appendectomy specimen. Hence, the importance of anatomopathological examination of all appendectomy specimen, particularly in tropical countries where helminth infections are endemic. In our patient, the ultrasound helped to identify a roundworm in contact with the appendix as well as other roundworms in the lumen of the digestive loops. These ultrasound signs in favor of roundworm have been described since the 1980s and should be known by radiologists and ultrasonographers, particularly in tropical areas. These ultrasound aspects are described as: thick echogenic strip with central anechoic tube; multiple linear or curvilinear echogenic strips without acoustic shadowing; “parallel lines”; “railway track” sign; “3-line” or “4-line” sign on longitudinal scan and a “doughnut” or “target” sign on “bull’s eye” appearances on transverse scan. It is also important to note that on ultrasound, especially on axial slices, the appendix is somewhat similar to *Ascaris lumbricoides*, both giving a target...
appearance.18 So, it is important to know the difference by highlighting the attachment of the appendix to its base in the cecum. The other differential diagnoses on ultrasound are nasogastric or jejunal feeding tube, surgical drainage tube, a ventriculoperitoneal shunt, or even anormal small bowel during peristalsis.17,19 Surgical exploration revealed an inflamed appendix containing roundworm through a perforation. This suggests that the roundworm entered the appendicular lumen and left it by puncturing it after causing appendicitis. After the appendectomy, our patient underwent anthelmintic treatment, especially as other intestinal Ascaris were identified on ultrasound. This treatment is still necessary for any appendicitis associated with roundworm in order to eliminates all potential other infraclinical locations.

In conclusion, the possibility of appendicitis caused by Ascaris in its adult form needs to be considered particularly in patients from endemic areas. In addition, radiologists and ultrasonographers should be familiar with the ultrasound aspects of roundworm and also know how to differentiate it from the appendix itself.

LEARNING POINTS

1. Ascariasis can mimic acute appendicitis, and is therefore one of its differential diagnoses.
2. However, as in this case, appendicitis can exceptionally be caused by roundworm.
3. In a tropical area with endemic roundworm, this diagnosis should be considered and looked for with ultrasound.

PATIENT CONSENT

Written informed consent for the case to be published (incl. images, case history and data) was obtained from the patient's father for publication of this case report.

REFERENCES

1. Solomon CG, Flum DR. Acute appendicitis — appendectomy or the “antibiotics first” strategy. N Engl J Med 2015; 372: 1937–43. https://doi.org/10.1056/NEJMep1215006
2. Kelly AOJ. The pathogenesis of appendicitis. Phil Med J 1899; 21: 119–37.
3. Singh I, Collins REC. Right iliac fossa pain. Br J Hosp Med (Lond) 2005; 66: M76–8. https://doi.org/10.12968/hmed.2005.66.Sup4.20041
4. Brooker SJ, Pullan RL. Ascaris lumbricoides and ascariasis: estimating numbers infected and burden of disease. Ascaris: the neglected parasite. Elsevier; 2013, pp. 343–62.
5. Yetim I, Ozkan OV, Semerci E, Abanoz R. Rare cause of intestinal obstruction, ascaris lumbricoides infestation: two case reports. Cases J 2009; 2: 7907–1–3. https://doi.org/10.4067/S1517-1626-2009-79070-1
6. Mehta V, Goyal S, Pandit S, Mittal A, Aggarwal A. Sonographic diagnosis of ascaris lumbricoides infestation as a cause of intestinal obstruction. Indian J Pediatr 2010; 77(7): 827. https://doi.org/10.1007/s12098-010-0114-1
7. Thiam O, Gueye ML, Toure AO, Seck M, Akpo LG, Deme H, et al. Biliary ascariasis: an unusual cause of biliary colic. OALib 2015; 02: 1–5. https://doi.org/10.4236/oalib.1102003
8. Karatepe O, Adas G, Tukenmez M, Battal M, Altikok M, Karahan S. Parasitic infestation as cause of acute appendicitis. G Chir 2009; 30: 426–28.
9. Dorfman S, Cardozo J, Dorfman D, Del Villar A. The role of parasites in acute appendicitis of pediatric patients. Invest Clin 2003; 44: 337–40.
10. Wani I, Maqbool M, Amin A, Shah F, Keema A, Singh J, et al. Appendiceal ascariasis in children. Ann Saudi Med 2010; 30: 63–66. https://doi.org/10.4103/0256-4947.59380
11. Hoshang MS, Alam T, Hamidi H, Rasouly N, Maroof S. Ascaris lumbricoides and acute appendicitis: a case report. PIR 2016; 26(1).
12. Bouree P, Bouree P. Les appendicitides infectieuses. Option/Bio November 2012; 23: 15–17. https://doi.org/10.1016/S0992-5945(12)71089-9
13. Crompton DW. Ascaris and ascariasis. Adv Parasitol 2001; 48: 285–375. https://doi.org/10.1016/s0065-308x(01)48008-0
14. Niang I, Kayemb A, Diop CT, Ly M, Niang FG, Ndong A, et al. A case of ultrasound diagnosis of intestinal ascariasis clinically simulating intussusception. OALib 2020; 07: 1–5. https://doi.org/10.4236/oalib.1106840
15. Sforza M, Andjelkov K, Zacheshu R, Ivanov D, Krstić S, Paganeli A. Un usual case of ascariasis of the appendix. Srp Arh Celok Lek 2011; 139: 809–11. https://doi.org/10.2298/ SARH112809S
16. Küpeli AH, Özdemir M, Topuz S, Sozütek A, Paksoy T. A rare cause of acute abdomen in adults: parasitic infection-related acute appendicitis. Ulus Cerrahi Derg 2015; 31: 180–81. https://doi.org/10.5152/UCD.2014.2427
17. Peck RJ. Ultrasonography of intestinal ascaris. J Clin Ultrasound 1990; 18: 741–43.
18. Prisca AE, Narindra RN, Farlacy R, Ahmad A. Parasitose intestinale simulant une appendicite à l’échographie: à propos de deux cas. Pan Afr Med J 2015; 21(1). https://doi.org/10.11604/pamj.2015.21.322.3339
19. Mahmoud T, Mansoor N, Quraishy S, Ilyas M, Hussain S. Ultrasoundographic appearance of ascaris lumbricoides in the small bowel. J Ultrasound Med 2001; 20: 269–74. https://doi.org/10.7863/jum.2001.20.3.269