Length of Incubation for Enumerating Nitrifying Bacteria Present in Various Environments

V. A. MATULEWICH, P. F. STROM, AND M. S. FINSTEIN

Department of Environmental Science, Cook College, Rutgers University, New Brunswick, New Jersey 08903

Received for publication 15 October 1974

The effect of incubation time on most-probable-number estimates of autotrophic nitrifying bacteria was investigated by using waters, rooted aquatic plants, sediments, and slimes as inoculum sources. Maximum most probable numbers of the NH$_4^+$-oxidizing group were attained in 20 to 55 days (median, 25). Estimates of NO$_2^-$ oxidizers were highest at termination (103 to 113) days.

Viable autotrophic nitrifying bacteria in environmental materials are usually enumerated by indirect most-probable-number (MPN) techniques. Various lengths of incubation have been used. Most commonly, estimates of nitrifying populations in soils have been based on examinations of the media 21 days after inoculation (1, 11, 13, 16, 17). A 28-day incubation has also been used (5). Ammonium oxidizers in seeded synthetic river water were enumerated by means of a 28-day incubation, but 42 days was allowed to elapse before making the estimates of NO$_3^-$ oxidizers (15). In marine environments 60-day MPN procedures have been used for both groups (18), although an earlier qualitative study (2) used incubations lasting up to 90 days.

Ideally the incubation should last just long enough to account for all of the inoculum cells capable of growth under the conditions provided. The present report concerns the effect of time on MPN estimates of nitrifying bacteria, using standardized incubation conditions. To encounter potentially disparate responses, different types of aquatic materials and sewage treatment plant effluents were used as inoculum sources.

MATERIALS AND METHODS

Media. Both media consisted of: NaCl, 2.0 g; K$_2$HPO$_4$, 0.50 g; MgSO$_4$·7H$_2$O, 0.05 g; CaCl$_2$·H$_2$O, 0.02 g; KHCO$_3$, 0.02 g; NaMoO$_4$·2H$_2$O, 2.4 µg; trace metals mixture no. 44 (3), 1 ml; and distilled deionized water, 1 liter. Either 0.50 g of (NH$_4$)$_2$SO$_4$ or 0.10 g of KNO$_3$ was added as the nitrogen and energy source. The components were autoclaved separately (the metals mixture was filter sterilized) and then combined. Six-milliliter portions were transferred to sterile tubes (16 by 150 cm) containing approximately 0.1 g of CaCO$_3$, which were capped with polypropylene culture tube closures. The pH of the NH$_4^+$ medium was 7.8 and that of the NO$_3^-$ medium was 8.0.

Sampling locations. Aquatic materials were obtained from the Passaic River in northeast New Jersey and from Mine Brook in Somerset County. The Passaic is highly polluted from numerous domestic and industrial effluents, whereas Mine Brook receives the discharge of one domestic wastewater activated sludge treatment plant.

Sample collection and preparation. Water samples were skimmed from the river surface. Sediments were removed from the sediment-water interface (0 to 1 cm) and from a deeper level in the profile (9 to 10 cm) with the aid of a 4.8-cm (inner diameter) glass tube. Slimes scraped from rocks, rooted aquatic plant materials, and effluents were dispersed by blending in the cold with a Sorvall Omnimixer. Further details are available elsewhere (6).

Serial 10-fold dilutions of the inoculum sources were prepared in phosphate buffer solution (pH 7.2), and 1-ml portions were transferred to 10 replicate tubes per dilution for each type of medium. Incubation was at 28 ± 1 C. The tubes were slanted to promote aeration.

MPN estimates. The medium in each tube was examined periodically by aseptically removing a few drops to a spot plate depression containing NO$_3^-$ test reagent (14). If the NH$_4^+$ medium gave a strong reaction (dark red) compared with the uninoculated control, the tube was scored positive for NH$_4^+$ oxidizers. When necessary to guard against a false-negative score, Devarda alloy was added to test for NO$_3^-$. Tubes containing NO$_3^-$ medium were scored positive for NO$_3^-$ oxidizers if the test indicated that this substrate had decreased in concentration or disappeared. Tubes scored negative and those showing weak reactions were reincubated. Control NH$_4^+$ medium developed a light pink reaction to the reagent, which became darker as the experiment progressed. Control NO$_3^-$ medium did not change perceptibly. The MPN values were obtained from a table (10).

RESULTS

At inoculation, each tube contained 7 ml of liquid. This decreased to 2 to 5 ml during the
103- to 113-day incubation period. A total of 1.5 ml at most was removed for the NO₃⁻ tests. Additional losses were by evaporation.

With few exceptions, the appearance of NO₃⁻ in NH₄⁺ medium, and its disappearance from NO₂⁻ medium, were abrupt, indicating a period of rapid growth during the interval since the previous observation. The resultant tube score patterns were as expected of viable bacteria subjected to a dilution-to-extinction procedure (e.g., 10+, 5+, 0+).

In all of the trials (Tables 1 and 2), NH₄⁺ oxidizers appeared to have completed their response within the experimental period. The median length of incubation necessary to attain a stable maximum MPN estimate of this group was 25 days (range, 20 to 55). Completion of the response was not observed for the NO₃⁻ oxidizers.

The use of five activated sludge sewage treatment plant effluents as inoculum sources yielded results similar to those tabulated above.

DISCUSSION

In practice, the selection of appropriate periods of incubation must balance convenience against the purposes of the study. The disadvantages of an unnecessarily prolonged incubation are many, including the delayed acquisition of data that could aid in framing experimental questions. Too brief an incubation of either nitrifying group results in an underestimation of unknown and variable magnitude. These results, derived from various nonmarine aquatic habitats and effluents, suggest that a 35-day period would generally be sufficient to attain the maximum estimate of NH₄⁺ oxidizers possible under the incubation conditions described. Obviously it is difficult to make a specific recommendation for NO₃⁻ oxidizers.

These results also indicate that the incubation period reported in some investigations of nitrifying bacteria may be too short to yield maximum estimates. It would appear that NO₃⁻ oxidizers have been more seriously underestimated than NH₄⁺ oxidizers. Because a number of different medium formulations have been used, any retrospective evaluation must be tentative.

The time period required for maximum recovery is a function of the physiological state of the inoculum cells as it influences the duration of the lag phase of growth, and of the growth rate once active proliferation commences. In the present study, the NO₃⁻ oxidizers that manifested themselves at high inoculum dilutions did so after a very long period of incubation. The literature provides no opportunity for a comparative evaluation of this finding. It cannot easily be explained on the basis of unusually

Table 1. Effect of incubation time on estimates of nitrifying bacteria in waters and sediments

Incubation time (days)	Mine Brook water*	Estimate (MPN/ml of water or sediment)	Passaic River									
	NH₄⁺ oxid	NO₃⁻ oxid	NH₄⁺ oxid	NO₂⁻ oxid	NH₄⁺ oxid	NO₃⁻ oxid	NH₄⁺ oxid	NO₂⁻ oxid	NH₄⁺ oxid	NO₃⁻ oxid	NH₄⁺ oxid	NO₂⁻ oxid
5	2.7 ND*	2.3 ND	329 ND	4.5 ND	275 ND	23.1 ND						
10	298 ND	31.0 ND	49,300 ND	3,990 ND	150 ND	27,500 ND	39.9 ND	1,300 ND				
15	2,750 ND	288 ND	130,000 ND	15,000 ND	365 ND	101,000 ND	39.9 ND	2,750 ND				
20	3,290 ND	1,710 ND	275,000 ND	62,200 ND	875 ND	197,000 ND	79.2 ND	5,890 ND				
25	NC 0.9	1,960 2.8	NC 2.8	NC 101,000	2,280 ND	275,000 ND	79.2 ND	4,190 ND				
30	NC 3.3	NC 7,920 300	130,000	3,990 ND	NC 3,990 300	39.9 ND	101,000 ND	39.9 ND				
35	NC 4.0	NC 24,000	NC 6,220 400	15,000 NC	10,100 NC 1,710	39.9 ND	101,000 ND	39.9 ND				
40	NC 7.9	NC 32,900	NC 27,500	NC 24,000	NC 24,000	NC 27,500	NC 24,000	NC 27,500				
55	NC 27.5	NC 49,300	NC 39,900	NC 116,000	NC 24,000	NC 24,000	NC 24,000					
70	NC 62.2	NC 62,200	NC 39,900	NC 116,000	NC 24,000	NC 24,000						
103-113	NC 298	NC 11.6	NC 62,200	NC 116,000	NC 24,000							

*Collected approximately 4 miles (about 6.4 km) below the discharge point of the treatment plant. Oxid, Oxidizer.

*Collected at Chatham.

*Collected at Pine Brook where the sediment (Sed) consists of a black organic ooze.

*Collected at Pine Brook where the sediment is sandy.

*ND, None detected.

*NC, No change.
slow growth rates, which, contrary to observation, would have resulted in a gradual disappearance of substrate. It can be inferred, therefore, that the NO$_3^-$ oxidizing cells responsible for late accretions to the MPN estimate passed through a prolonged lag phase. This analysis is consistent with the observation that NH$_4^+$ and NO$_3^-$ oxidizers are capable of similar logarithmic growth rates (4, 8, 9).

It should be noted that the spot test used for scoring the tubes is more sensitive to changes in the NH$_4^+$ medium than in the one formulated with NO$_3^-$. This could bias the results in the direction of an apparently faster response by NH$_4^+$ oxidizers. Because of the length of the intervals between observations, any such bias is probably slight.

Existing data on the optimization of growth conditions of nitrifying bacteria (12) may be only marginally relevant to the problem of enumerating viable cells in the environment. Such information has been obtained with the use of active pregrown cultures or with continuous cultures. Conditions that promote a short generation time by cells in the logarithmic phase of growth are not necessarily those that best initiate active growth by cells recently removed from the environment.

The wide range of incubation times needed for NO$_3^-$-oxidizing bacteria to manifest themselves could reflect, in part, the presence of different strains in a common habitat. This is open to investigation by means of the fluorescent antibody technique, which has been used to distinguish between *Nitrobacter agilis* and *N. winogradskyi* (7).

ACKNOWLEDGMENTS

V. A. M. received financial support from the Office of Water Research and Technology, Department of Interior (grant A-30-N.J.).

We thank Robert A. Rapaport for valuable technical assistance.

LITERATURE CITED

1. Alexander, M., and F. E. Clark. 1965. Nitrifying bacteria, p. 1477-1483. In C. A. Black (ed.), Methods of soil analysis, part 2. American Society of Agronomists, Madison, Wis.

2. Carey, C. 1938. The occurrence of nitrifying bacteria in the sea. J. Mar. Res. 1:291-304.

3. Cohen-Brazire, G., W. R. Sistrion, and R. Y. Stanier. 1957. Kinetics of pigment synthesis. J. Cell. Comp. Physiol. 49:25-68.

4. Downing, A. L., H. A. Painter, and G. Knowles. 1964. Nitrification in the activated sludge process. J. Inst. Sewage Purification (Great Britain) 63:130-158.

5. Eno, C. F., and H. W. Ford. 1958. Distribution of microorganisms, nitrate production, and nutrients in the profile of Lakeland fine sand and related soils. Soil Sci. Soc. Fl. Proc. 18:88-96.

6. Finstein, M. S., and V. A. Matulewich. 1974. Distribution of autotrophic nitrifying bacteria in a polluted stream. Report A-030-N.J. Water Resources Research Institute, Rutgers University, New Brunswick, N.J.

7. Fiermans, C. B., B. B. Bohlool, and E. L. Schmidt. 1974. Autecological study of the chemosynthetic *Nitrobacter* by immunofluorescence. Appl. Microbiol. 27:124-129.

8. Gould, G. W., and H. Lees. 1965. The isolation and culture of the nitrifying organisms. Part I. *Nitrobacter* Can. J. Microbiol. 4:299-307.

9. Knowles, G., A. L. Downing, and M. J. Barrett. 1965. Determination of kinetic constants for nitrifying bacte-

Table 2. Effect of incubation time on estimates of nitrifying bacteria in slimes on rocks and plant surfaces

Incubation time (days)	Estimate (MPN/g of slime or plant material)	Mine Brook	Passaic River	Yellow pond lily	Pondweed			
		Rocks (above outfall)	Rocks (below outfall)					
NH$_4^+$ oxid	NO$_3^-$ oxid							
5	16,300	ND*	2,740,000	ND	3,710	26.6	1,900	6.6
10	64,500	54.6	30,200,000	ND	271,000	147	24,800	1,690
15	245,000	NC*	NC	121	2,220,000	3,360	363,000	3,840
20	639,000	4,640	36,200,000	220	3,100,000	NC	581,000	NC
25	464,000	5,760	NC	1,110	NC	NC	5,820	
30	NC	13,700	NC	3,020	NC	NC	6,910	
35	NC	16,300	NC	6,840	NC	NC	58,000	
40	NC	34,800	NC	11,100	NC	NC	58,000	
55	NC	113,000	NC	54,200	NC	11,400	668,000	189,000
70	NC	NC	NC	111,000	NC	NC	248,000	
103-113	NC	198,000	NC	143,000	NC	14,700	350,000	

* Rocks collected from 30 m above or 200 m below the treatment plant outfall. oxid. Oxidizer.
* *Nuphar advena* (Alt.) Ait. F.
* *Potamogeton diversifolius* Raf.
* ND, None detected.
* NC, No change.

Vol. 29, 1975

INCUBATION TIME FOR NITRIFYING BACTERIA

267
ria in mixed culture, with the aid of an electronic computer. J. Gen. Microbiol. 38:263–278.

10. Meynell, G. G., and E. Meynell. 1965. Theory and practice of experimental bacteriology. Cambridge University Press, Cambridge.

11. Molina, J. A. E., and A. D. Rovira. 1964. The influence of plant roots on autotrophic nitrifying bacteria. Can. J. Microbiol. 10:249–257.

12. Painter, H. A. 1970. A review of the literature on inorganic nitrogen metabolism in microorganisms. Water Res. 4:393–450.

13. Smith, W. H., F. H. Bormann, and G. E. Likens. 1968. Response of chemoautotrophic nitrifiers to forest cutting. Soil Sci. 100:471–473.

14. Strickland, J. D. H., and R. R. Parsons. 1960. A manual of sea water analysis. Fish. Res. Board Can. Bull. 125.

15. Symona, J. M., S. R. Weibel, and G. G. Robeck. 1965. Impoundment influence on water quality. J. Am. Water Works Assoc. 57:51–75.

16. Walker, R. H., D. W. Thorne, and P. E. Brown. 1937. The numbers of ammonia-oxidizing organisms in soil as influenced by soil management practices. J. Am. Soc. Agron. 29:854–864.

17. Wilson, J. K. 1927. The numbers of ammonia-oxidizing organisms in soil. Proc. Int. Congr. Soil Sci. 1st Congr. 3:14–22.

18. Yoshida, Y. 1967. Studies on the marine nitrifying bacteria: with special reference to characteristics and nitrate formation of marine nitrite formers. Bull. Misisaki Marine Biol. Inst. 11:1–58.