GENERAL POLYNOMIALS OVER DIVISION ALGEBRAS AND
LEFT EIGENVALUES*

ADAM CHAPMAN†

Abstract. In this paper, an isomorphism between the ring of general polynomials over a division ring of degree \(p \) over its center \(F \) and the group ring of the free monoid with \(p^2 \) variables is presented. Using this isomorphism, the characteristic polynomial of a matrix over any division algebra is defined, i.e. a general polynomial with one variable over the algebra whose roots are precisely the left eigenvalues. Plus, it is shown how the left eigenvalues of a \(4 \times 4 \) matrices over any division algebra can be found by solving a general polynomial equation of degree 6 over that algebra.

Key words. General Polynomials, Characteristic Polynomial, Determinants, Left Eigenvalues, Quaternions.

AMS subject classifications. 12E15, 16S10, 11R52

1. Introduction.

1.1. Polynomial rings over division algebras. Let \(F \) be a field and \(D \) be a division ring over \(F \) of degree \(p \). We adopt the terminology in [2]. Let \(D_L[z] \) denote the usual ring of polynomials over \(D \) where the variable \(z \) commutes with every \(d \in D \). When substituting a value we consider the coefficients as though they are placed on the left-hand side of the variable. The substitution map is not a ring homomorphism in general. For example, for non-central \(d \in D \) and the substitution \(S_d : D_L[z] \to D \), if \(f(z) = az \) and \(ad \neq da \) then \(S_d(f^2) = S_d(a^2z^2) = a^2d^2 \) while \(S_d(f)^2 = S_d(az)^2 = (ad)^2 \neq S_d(f^2) \).

The ring \(D_G[z] \) is, by definition, the (associative) ring of polynomials over \(D \), where \(z \) is assumed to commute with every \(d \in F = Z(D) \), but not with arbitrary elements of \(D \). For example, if \(d \in D \) is non-central, then \(dz^2, zdz \) and \(z^2d \) are distinct elements of this ring. There is a ring epimorphism \(D_G[z] \to D_L[z] \), defined by \(z \mapsto z \), whose kernel is the ideal generated by the commutators \([d, z] \ (d \in D)\). Unlike the situation for \(D_L[z] \), the substitution maps from \(D_G[z] \) to \(D \) are all ring homomorphisms. Polynomials from \(D_G[z] \) are called “general polynomials”, for example \(ziz + jzi + zij + 5 \in H_G[z] \).

*Received by the editors on Month x, 200x. Accepted for publication on Month y, 200y Handling Editor:.
†Department of Mathematics, Bar-Ilan University, Ramat-Gan 52115, Israel (adamlchapman@yahoo.com). Ph.D student under the supervision of Prof. Uzi Vishne
Polynomials in $D_L[z]$ or and polynomials in $D_G[z]$ which “look like” polynomials in $D_L[z]$, i.e. the coefficients are placed on the left-hand side of the variable, are called “left” or “standard polynomials”, for example $z^2 + iz + j \in H_G[z]$.

Let $D\langle x_1, \ldots, x_N \rangle$ be the ring of multi-variable polynomials, where for all i, x_i commutes with every $d \in D$ and is not assumed to commute with x_j for $i \neq j$. This is the group algebra of the free monoid $\langle x_1, \ldots, x_N \rangle$ over D. The commutative counterpart is $D_L[x_1, \ldots, x_N]$, which is the ring of multi-variable polynomials where for all i, x_i commutes with every $d \in D$ and with every x_j for $i \neq j$.

For further reading on what is generally known about polynomial equations over division rings see [3].

1.2. Left eigenvalues of matrices over division algebras. Given a matrix $A \in M_n(D)$, a left eigenvalue of A is an element $\lambda \in D$ for which there exists a nonzero vector $v \in D^{n \times 1}$ such that $Av = \lambda v$.

For the special case of $D = H$ and $n = 2$ it was proven by Wood in [6] that the left eigenvalues of A are the roots of a standard quadratic quaternion polynomial. In [5] proved that for $n = 3$, the left eigenvalues of A are the roots of a general cubic quaternion polynomial.

In [4], Macías-Virgós and Pereira-Sáez gave another proof to Wood’s result. Their proof makes use of the Study determinant.

Given a matrix $A \in M_n(H)$, there exist unique matrices $B, C \in M_n(C)$ such that $A = B + Cj$. The Study determinant of A is $\det \begin{bmatrix} B & -C \\ C & B \end{bmatrix}$. The Dieudonné determinant is (in this case) the square root of the Study determinant. For further information about these determinants see [1].

2. The isomorphism between the ring of general polynomials and the group ring of the free monoid with $[D : F]$ variables. Let $N = p^2$, i.e. N is the dimension of D over its center F. In particular there exist invertible elements $a_1, \ldots, a_{N-1} \in D$ such that $D = F + a_1 F + \ldots + a_{N-1} F$.

Let $h : D_G[z] \to D(x_1, \ldots, x_N)$ be the homomorphism for which $h(d) = d$ for all $d \in D$, and $h(z) = x_1 + a_1 x_2 + \ldots + a_{N-1} x_N$. $D_L[x_1, \ldots, x_N]$ is a quotient ring of $D(x_1, \ldots, x_N)$. Let $g : D(x_1, \ldots, x_N) \to D_L[x_1, \ldots, x_N]$ be the standard epimorphism.

In [2, Theorem 6] it says that if D is a division algebra then homomorphism
$g \circ h : D_G[z] \to D_L[x_1, \ldots, x_N]$ is an epimorphism. The next theorem is a result of this fact.

Theorem 2.1. The homomorphism $h : D_G[z] \to D(x_1, \ldots, x_N)$ is an isomorphism, and therefore $D_G[z] \cong D(x_1, \ldots, x_N)$.

Proof. h is well-defined because z commutes only with the center.

Both $D_G[z]$ and $D(x_1, \ldots, x_N)$ can be graded, $D_G[z] = G_0 \oplus G_1 \oplus \ldots$ and $D(x_1, \ldots, x_N) = H_0 \oplus H_1 \oplus \ldots$ such that for all n, G_n and H_n are spanned by monomials of degree n.

For all n, $h(G_n) \subseteq H_n$. Furthermore, the basis of G_n as a vector space over F is $\{b_1z b_2 \ldots b_n z b_{n+1} : b_1, \ldots, b_n, b_{n+1} \in 1, a_1, \ldots, a_{N-1}\}$, which means that $[G_n : F] = N^{n+1}$. Plus, the basis of H_n as a vector space over F is $\{b x_k_1 x_k_2 \ldots x_k_n : b \in \{1, a_1, \ldots, a_{N-1}\}, \forall j, k_j \in \{1, \ldots, N\}\}$, hence $[H_n : F] = N \cdot N^n = N^{n+1} = [G_n : F]$.

Consequently, it is enough to prove that $h|_{G_n} : G_n \to H_n$ is an epimorphism. For that, it is enough to prove that for each $1 \leq k \leq N$, x_k has a co-image in G_1. The reduced epimorphism $g|_{G_1}$ is an isomorphism and since $g \circ h|_{G_1}$ is an epimorphism, $h|_{G_1}$ is also an epimorphism, and that finishes the proof. \[\square\]

Here is a suggested algorithm for finding the co-image of x_k for any $1 \leq k \leq N$:

Algorithm 2.2. Let $p_1 = z$, therefore $h(p_1) = x_1 + a_1 x_2 + \ldots + a_{N-1} x_N$. We shall define a sequence $\{p_j : j = 1, \ldots, n\} \subseteq G_1$ as follows: If there exists a monomial in $h(p_j)$ whose coefficient a does not commute with the coefficient of x_k, denoted by c, then we shall define $p_{j+1} = ap_j a^{-1} - p_j$, by which we shall annihilate at least one monomial (the one whose coefficient is a), and yet the element x_k will not be annihilated, because $c x_k$ does not commute with a.

If c commutes with all the other coefficients then we shall pick some monomial which we want to annihilate. Let b denote its coefficient. Now we shall pick some $a \in D$ which does not commute with cb^{-1} and define $p_{j+1} = bap_j b^{-1} a^{-1} - p_j$.

The element x_k is not annihilated in this process, because if we assume that it does at some point, let us say it is annihilated in $h(p_{j+1})$, then $bacb^{-1} a^{-1} = c = 0$. Therefore $c^{-1}bacb^{-1} a^{-1} = 1$, hence $cb^{-1} a^{-1} = (c^{-1}ba)^{-1} = a^{-1} b^{-1} c$ and, since b commutes with c, a monomials with cb^{-1} and that creates a contradiction.

In each iteration the length of $h(p_j)$ (the number of monomials in it) decreases by at least one, and yet the element x_k always remains, and since the length of $h(p_j)$ is finite, this process will end with some p_m for which $h(p_m)$ is a monomial. In this case, $h(q_m) = cx_k$ and consequently $x_k = h(c^{-1} q_m)$.

\[\text{An easy exercise}\]
2.1. Real Quaternions. Let \(D = \mathbb{H} = \mathbb{R} + i\mathbb{R} + j\mathbb{R} + ij\mathbb{R} \). Now \(h(z) = x_1 + x_2i + x_3j + x_4ij \)
\[
h(z - jzj^{-1}) = h(z + jzj) = 2x_2i + 2x_4ij
\]
\[
h((z + jzj) - ij(z + jzj)(ij)^{-1}) = 2x_2i + 2x_4ij - ij(2x_2i + 2x_4ij)(ij)^{-1} = 4x_2i
\]
therefore \(h^{-1}(x_2) = -\frac{1}{4}((z + jzj) + ij(z + jzj)ij)) = -\frac{1}{4}(iz + jzz - jzij + zi) \).

Similarly, \(h^{-1}(x_1) = \frac{1}{4}(z - izi - jjzj - jzij) \), \(h^{-1}(x_3) = \frac{1}{4}(jz - ijz + izij + zj) \) and
\[
h^{-1}(x_4) = -\frac{1}{4}((z - izi - jjzj + jzij). Consequently, \(\lambda = h^{-1}(x_1 + x_2i + x_3j + x_4ij) = h^{-1}(x_1 - x_2i - x_3j - x_4ij) = -\frac{1}{2}(z + izi + jzj + izij) \).

3. The characteristic polynomial. Let \(D, F, p, N \) be the same as they were in the previous section.

There is an injection of \(D \) in \(M_p(K) \) where \(K \) is a maximal subfield of \(D \). (In particular, \([K : F] = p\).) More generally, there is an injection of \(M_k(D) \) in \(M_{kp}(K) \) for any \(k \in \mathbb{N} \). Let \(\hat{A} \) denote the image of \(A \in M_{kp}(K) \) for any \(A \in M_k(D) \).

The determinant of \(\hat{A} \) is equal to the Dieudonné determinant of \(A \) to the power of \(p \). \(\square \)

Therefore \(\lambda \in D \) is a left eigenvalue of \(A \) if and only if \(\det(\hat{A} - \lambda I) = 0 \). Considering \(D \) as an \(F \)-vector space \(D = F + Fa_1 + \ldots + Fa_{N-1} \), we can write \(\lambda = x_1 + x_2a_1 + \ldots + x_Na_{N-1} \) for some \(x_1, \ldots, x_N \in F \). Then \(\det(\hat{A} - \lambda I) \in F[x_1, \ldots, x_N] \) and can also be considered as an polynomial in \(D(x_1, \ldots, x_N) \). Now, there is an isomorphism \(h : D_G[z] \to D(x_1, \ldots, x_N) \), and so \(\det(\hat{A} - \lambda I) \in D_G[z] \).

Defining \(p_A(z) = h^{-1}(\det(\hat{A} - \lambda I)) \) to be the characteristic polynomial of \(A \), we get that the left eigenvalues of \(A \) are precisely the roots of \(p_A(z) \).

The degree of the characteristic polynomial of \(A \) is therefore \(kp \).

Remark 3.1. If one proves that the Dieudonné determinant of \(A - \lambda I \) is the absolute value of some polynomial \(q(x_1, \ldots, x_N) \in D_L[x_1, \ldots, x_N] \) then we will be able to define the characteristic polynomial to be \(h^{-1}(q(x_1, \ldots, x_N)) \) and obtain a characteristic polynomial of degree \(k \).

4. The left eigenvalues of a \(4 \times 4 \) quaternion matrix. Let \(Q \) be a quaternion division \(F \)-algebra. Calculating the roots of the characteristic polynomial as defined in Section \(\ref{sec:quaternion} \) is not always the best way to obtain the left eigenvalues of a given matrix.

The reductions Wood did in \(\ref{sec:wood} \) and So did in \(\ref{sec:so} \) suggest that in order to obtain the left eigenvalues of a \(2 \times 2 \) or \(3 \times 3 \) matrix one can calculate the roots of a polynomial of degree 2 or 3 respectively, instead of calculating the roots of the characteristic polynomial.
In the next proposition we show how (under a certain condition) the eigenvalues of a 4×4 quaternion matrix can be obtained by calculating the roots of three polynomials of degree 2 and one of degree 6.

Proposition 4.1. If $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ where $A, B, C, D \in M_2(Q)$ and C is invertible then λ is a left eigenvalue of M if and only if it is either $e(\lambda) = f(\lambda)g(\lambda) = 0$ or $e(\lambda) \neq 0$ and $e(\lambda)e(\lambda)h(\lambda) - g(\lambda)e(\lambda)f(\lambda) = 0$ where $C(A - \lambda I)C^{-1}(D - \lambda I) - CB = \begin{bmatrix} e(\lambda) & f(\lambda) \\ g(\lambda) & h(\lambda) \end{bmatrix}$.

Proof. Let M be a 4×4 quaternion matrix. Therefore $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ where A, B, C, D are 2×2 quaternion matrices.

An element λ is a left eigenvalue if $\det(M - \lambda I) = 0$. Assuming that $\det(C) \neq 0$, we have $\det(M - \lambda I) = \det(C(A - \lambda I)C^{-1}(D - \lambda I) - CB)$ (This is an easy result of the Schur complements identity for complex matrices extended to quaternion matrices in).

The matrix $C(A - \lambda I)C^{-1}(D - \lambda I) - CB$ is equal to $\begin{bmatrix} e(\lambda) & f(\lambda) \\ g(\lambda) & h(\lambda) \end{bmatrix}$ for some quadratic polynomials e, f, g, h.

Now, if $e(\lambda) \neq 0$ then $\det\begin{bmatrix} e(\lambda) & f(\lambda) \\ g(\lambda) & h(\lambda) \end{bmatrix} = 0$ if and only if $h(\lambda) - g(\lambda)e(\lambda)^{-1}f(\lambda) = 0$.

This happens if and only if $e(\lambda)e(\lambda)h(\lambda) - g(\lambda)e(\lambda)f(\lambda) = 0$.

As we saw in Subsection 2.1, $e(\lambda)$ is also a quadratic polynomial, which means that $e(\lambda)e(\lambda)h(\lambda) - g(\lambda)e(\lambda)f(\lambda)$ is a polynomial of degree 6, while the characteristic polynomial of M as defined in Section 3 is of degree 8.

REFERENCES

[1] H. Aslaksen. Quaternionic determinants. *Math. Intelligencer*, 18 no. 3:57–65, 1996.
[2] B. Gordon and T. S. Motzkin On the Zeros of Polynomials over Division Rings. *Transactions of the American Mathematical Society*, 116:218–226, 1965.
[3] J. Lawrence and G. E. Simons Equations in Division Rings - A Survey. *The American Mathematical Monthly*, 96:220–232, 1989.
[4] E. Macías-Virgós and M. J. Pereira-Sáez Left eigenvalues of 22 symplectic matrices. *Electron. J. Linear Algebra*, 18:274–280, 2009.
[5] W. So. Quaternionic Left Eigenvalue Problem. *Southeast Asian Bulletin of Mathematics*, 29:555–565, 2005.

[6] R. M. W. Wood Quaternionic eigenvalues. *Bull. London Math. Soc.*, 17 no. 2:137–138, 1985.