Spectroscopy for a few atoms harmonically-trapped in one dimension

Nate Harshman
American University
2014 March 18
Symmetries for any* trap and any† interaction

\[
\hat{H} = \sum_{i=1}^{N} \left(-\frac{1}{2m} \frac{\partial^2}{\partial x_i^2} + V_{\text{trap}} (|x_i|) \right) + \sum_{\langle i, j \rangle} V_{\text{int}} (|x_i - x_j|)
\]

\[S_N \times O(1) \times O(1)\]

Permutation symmetry

Relative parity

COM parity

*one-dimensional, symmetric, spin-independent
†one-dimensional, Galilean-invariant, spin-independent
Symmetries for harmonic trap and contact interaction

\[
\frac{\hat{H}}{\hbar \omega} = \frac{1}{2} \sum_{i=1}^{N} \left(-\frac{\partial^2}{\partial x_i^2} + x_i^2 \right) + g \sum_{\langle i, j \rangle} \delta(x_i - x_j)
\]

\[S_N \times O(1) \times U(1)\]

Permutation symmetry
Relative parity
COM harmonic oscillator

Additional symmetries:
- Contact symmetry \(U(N)\) when \(g = 0\)
- Spectrum generating symmetry \(SO(2,1)\) when \(g = 0\) or \(g \to \infty\)
Outline

• Motivation
• Symmetries of Configuration Space
• Spectroscopic Classification of Spatial States
• Secret Motivation
Motivation, Part I

\[
\frac{\hat{H}}{\hbar \omega} = \frac{1}{2} \sum_{i=1}^{N} \left(- \frac{\partial^2}{\partial x_i^2} + x_i^2 \right) + g \sum_{\langle i,j \rangle} \delta(x_i - x_j)
\]

• Mathematical physics
 – Symmetry and integrability
• Universality in few-body physics
 – Recent experiments
• Power of symmetry
 – Calculation and control: exact diagonalization, adiabatic evolution, quenches
• Limits of symmetry
 – Emergent complexity with increasing DOF
Harmonic Trap and Separation of Variables

\[\hat{H} = \frac{\hbar \omega}{2} \sum_{i=1}^{N} \left(-\frac{\partial^2}{\partial x_i^2} + x_i^2 \right) + \sum_{\langle i,j \rangle} V_{\text{int}} \left(|x_i - x_j| \right) \]

\[
\begin{pmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 R
\end{pmatrix}
= J_N
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{pmatrix}
= \begin{pmatrix}
 \frac{1}{\sqrt{2}} x_1 - \frac{1}{\sqrt{2}} x_2 \\
 \frac{1}{\sqrt{6}} x_1 + \frac{1}{\sqrt{6}} x_2 - \sqrt{\frac{2}{3}} x_3 \\
 \vdots \\
 \frac{1}{\sqrt{N}} x_1 + \frac{1}{\sqrt{N}} x_2 + \cdots + \frac{1}{\sqrt{N}} x_N
\end{pmatrix}

\rho = \sqrt{r_1^2 + \cdots + r_{N-1}^2}

\[\hat{H} = \frac{\hbar \omega}{2} \left(-\frac{\partial^2}{\partial R^2} + R^2 \right) + \frac{\hbar \omega}{2} \sum_{i=1}^{N-1} \left(-\frac{\partial^2}{\partial r_i^2} + r_i^2 \right) + \sum_{\langle i,j \rangle} V_{\text{int}} \left(|\tilde{d}_{ij} \cdot \vec{r}| \right) \]

\[\left(\tilde{d}_{ij} \right)_k = (J_N)_{ki} - (J_N)_{kj} \]
Symmetries for harmonic trap
and any† interaction

\[\hat{H} = \frac{1}{2} \left(-\frac{\partial^2}{\partial R^2} + R^2 \right) + \sum_{i=1}^{N-1} \left(-\frac{\partial^2}{\partial r_i^2} + r_i^2 \right) + \sum_{\langle i,j \rangle} V_{\text{int}} \left(|\vec{d}_{ij} \cdot \vec{r}| \right) \]

\[S_N \times O(1) \times U(1) \]
Two-Particle Configuration Space

\[m_1 = m_2 \]

\[R = 0 \]

\[r_1 = 0 \]

\[x_2 \]

\[x_1 \]

Symmetry group: \(S_2 \times O(1) \)

Transformations:

\[\pi, (12) \to \sigma_{r1} \]

\[\Pi \to C_2 \]

\[\Pi(12) \to \sigma_R \]

\[2m_1 = m_2 \]

\[R = 0 \]

\[r_1 = 0 \]

\[x_2 \]

\[x_1 \]

Symmetry group: \(O(1) \)

Transformations:

\[\Pi \to C_2 \]
Three-Particle Configuration Space

Symmetry group:

\[S_3 \times O(1) \times O(1) \cong D_{6h} \]

\[S_3 \times O(1) \cong C_{6v} \]
Three-Particle Configuration Space

Symmetry group:

\[S_3 \times O(1) \cong C_{6v} \]

Relative inversion:

\(\pi \rightarrow C_2 \)

Reflections:

\((12), (13), (23) \)

\(\pi(12), \pi(13), \pi(23) \)

Rotations:

\((123), (132) \rightarrow 2C_3 \)

\(\pi(123), \pi(132) \rightarrow 2C_6 \)
Four-Particle Configuration Space

Symmetry group:

\(S_4 \times O(1) \sqsubset O_h \)

- \((12)\ldots \rightarrow 6\sigma_d\)
- \((123)\ldots \rightarrow 8C_3\)
- \((12)(34)\ldots \rightarrow 3C_2\)
- \((1234)\ldots \rightarrow 6S_4\)
- \(\pi \rightarrow i\)
- \(\pi (12)\ldots \rightarrow 6C_2'\)
- \(\pi (123)\ldots \rightarrow 8S_6\)
- \(\pi (12)(34)\ldots \rightarrow 3\sigma_h\)
- \(\pi (1234)\ldots \rightarrow 6C_4\)

Body diagonals are projections of particle axes, 3+1 clusters

Edge diagonals, 1+2+1 clusters

Face diagonals, 2+2 clusters
Five-Particle Configuration Space

\[S_5 \times O(1) \]

It is known, Khaleeshi.
Quantum numbers

$S_N \times O(1) \times U(1)$

$U(1), S_N^{O(1)} \overset{\text{COM excitation number}}{\longrightarrow} \begin{array}{c} n_R \left[p \right] ^\pi \tau; i \end{array}_g \overset{\text{Symmetric group irrep}}{\longrightarrow}$
Symmetric Group Irreps

[2]

[2]

[2]

[3]

[21]

[1^3]

[4]

[31]

[2^2]

[21^2]

[1^4]
Quantum numbers

\[S_N \times O(1) \times U(1) \]

\[U(1), S_N^O(1) \]

\[\hat{H} \left| n_R[p]^{\pi \tau; i} \right\rangle_g = E_{n_R[p]^{\pi \tau}} \left| n_R[p]^{\pi \tau; i} \right\rangle_g \]

Each energy is distinct except at non-interacting and infinite repulsion limit.

\[E_{n_R[p]^{\pi \tau}} = \hbar \omega \left(n_R + X_{[p]^{\pi \tau}} + \frac{N}{2} \right) \]
Symmetries for contact interaction

\[\hat{H} = \frac{1}{2} \left(-\frac{\partial^2}{\partial R^2} + R^2 \right) + \frac{1}{2} \sum_{i=1}^{N-1} \left(-\frac{\partial^2}{\partial r_i^2} + r_i^2 \right) + g \sum_{\langle i, j \rangle} \delta(\vec{d}_{ij} \cdot \vec{r}) \]

Contact symmetry

Spectrum generating symmetry

For any interaction strength

\[S_N \times O(1) \times U(1) \]

For zero interaction strength

\[U(N) \]

For infinite interaction strength

\[S_N \times O(1) \times U(1) \]

...and something else for \(N > 3 \... \]

\[SO(2,1) \]

\[X = 2n_\rho + \lambda \]
Three Particles: Harmonic Trap, Not Interacting

\[X_{n_\rho \lambda} = 2n_\rho + \lambda \]

\[d(X) = X + 1 \]

\[\epsilon(\lambda > 0) = 2 \]

\[\pi = (-1)^\lambda \]

\[n_\rho = 0; \lambda = 0 \]

\[n_\rho = 0; \lambda = 1 \]

\[n_\rho = 0; \lambda = 2 \]

\[n_\rho = 0; \lambda = 3 \]
Three Particles: Harmonic Trap, Unitary Limit

\[X_{n_{\lambda}} = 2n_{\lambda} + \lambda \quad \text{d}(X) = 3! \quad \lambda \in 3, 6, 9, 12, \ldots \quad \pi = (-1)^{\lambda} \]
Three Particle:
Adiabatic Mapping

\[\lambda = 3 + 6k \rightarrow [3]^+ \oplus [21]^+ \oplus [21]^- \oplus [1^3]^- \]

\[\lambda = 6 + 6k \rightarrow [3]^- \oplus [21]^- \oplus [21]^+ \oplus [1^3]^+ \]
$[3]^+ \quad X_{\text{max}} = 30 \quad 40 \text{ states}$
Four Particles:
Harmonic Trap, Not Interacting

\[X_{n_\rho \lambda \tau} = 2n_\rho + \lambda \quad d(X) = \frac{(X+1)(X+2)}{2!} \quad \varepsilon(\lambda) = 2\lambda + 1 \quad \pi = (-1)^\lambda \]
Lowest Energy Antisymmetric State

\[|n_R[p]^{\pi \tau; i} \rangle_g \rightarrow |0[1^4]^+ 0 \rangle_g \]

Particle basis, Slater determinant:

\[|0[1^4]^+ 0 \rangle_g = \frac{1}{\sqrt{24}} \sum_{p \in S_4} \text{sign}(p) |n_{p_1} n_{p_2} n_{p_3} n_{p_4} \rangle \]

Jacobi hypercylindrical:

\[|0[1^4]^+ 0 \rangle_g = \sum_{\mu=-6}^{6} c_\mu |n_R n_\rho 6 \mu \rangle \]
Four Particles: Harmonic Trap, Non-interacting Including Spin

$$\mathcal{H} = S \otimes K$$

number of components	component pattern	number of components	\(\lambda \)															
1	\((4)_B\)	1	1	0	1	1	1	1	1	1	1	2						
2	\((31)_B\)	2	1	1	1	1	1	2	2	3	3	3	4	4	4	4	5	
2	\((22)_B\)	3	1	1	1	2	3	3	4	4	4	4	5	5	5	6	6	7
3	\((2111)_B\)	4	1	1	2	3	3	4	4	4	4	5	5	5	6	6	7	7
1	\((4)_F\)	5	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
2	\((31)_F\)	6	1	0	0	1	1	2	2	3	3	3	3	3	3	4		
2	\((22)_F\)	7	1	0	0	1	1	2	3	3	3	3	3	3	4			
3	\((2111)_F\)	8	1	0	0	1	1	2	3	3	4	4	4	4	5	5	5	6
4	\((11111)\)	9	1	3	5	7	9	11	13	15	17	19	21	23	25			
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

\(s = 0 \) Total: 1

\(2D^0 \) Total: 1
Four Particles: Harmonic Trap, Unitary Limit

\[X_{n_\rho, \lambda} = 2n_\rho + \lambda \quad d(X) = 4! \lambda \in 6,8,9,10,12,13,\ldots \quad \pi = (-1)^\lambda \]

\[\lambda = 6 \]

\[[1^4]^+ \quad [4]^+ \]
\[\lambda = \text{even} \rightarrow [4]^+ \oplus [31]^+ \oplus 2[2^2]^+ \oplus [21^2]^+ \oplus [1^4]^+ \oplus 2[31]^- \oplus 2[21^2]^- \]

\[\lambda = \text{odd} \rightarrow 2[31]^+ \oplus 2[21^2]^+ \oplus [4]^- \oplus [31]^- \oplus 2[2^2]^- \oplus [21^2]^- \oplus [1^4]^- \]

MYSTERY SYMMETRY
Caveat emptor
Irrep Reduction for Five Particles

Non-interacting

λ	5	4
0	1	1
1	0	0
2	0	0
3	1	0
4	1	0
5	1	0
6	1	0

no. of comps.	component pattern	\([5]\)	\([41]\)	\([3^2]\)	\([3]^2\)	\([2^21]\)	\([21^3]\)	\([1^4]\)
1	\((5)_B\)	1	0	0	0	0	0	0
2	\((41)_B\)	1	1	0	0	0	0	0
2	\((32)_B\)	1	1	1	0	0	0	0
2	\((311)_B\)	1	2	1	1	0	0	0
3	\((221)_B\)	1	2	2	1	1	0	0
4	\((2111)_B\)	1	3	3	3	2	1	0
1	\((5)_F\)	0	0	0	0	0	0	1
2	\((41)_F\)	0	0	0	0	0	1	1
2	\((32)_F\)	0	0	0	0	1	1	1
2	\((311)_F\)	0	0	0	1	2	1	1
3	\((221)_F\)	0	0	1	1	2	2	1
4	\((2111)_F\)	0	1	2	3	3	3	1
5	\((11111)\)	1	4	5	6	5	4	1

odd λ	3	2
0	2	2
2	4	2
4	2	2
6	2	2

Unitary limit

Working on more efficient state construction method
Secret Motivation

Integrability, separability and entanglement

- Abstractly: Particles and Tailored Observables
- Directly: Few body systems as a resource for quantum information processing
THE FUTURE

• Identify mystery symmetry
• Basis transformation coefficients, matrix elements
• More particles
 – Five is different
 – Heterogeneous particle mixtures
• More dimensions
 – Symmetry is less constraining
• More traps, more interactions
 – Lose spectrum generating group and $U(N)$ symmetry

Thanks: students, colleagues, organizers & INT, DC NASA Spacegrant Consortium