SUPPLEMENTARY MATERIAL

Chemical Constituents of *Eugenia catharinae* and their antioxidant activity

Henrique H. Moresco, Guilherme Colla, Ingrid D. Cavalcante, Gustavo S. Queiroz, Moacir G. Pizzolatti and Inês M. C. Brighente*

Laboratório de Química de Produtos Naturais, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil.

Corresponding author

* Corresponding author. Email: ines.maria@ufsc.br

Abstract

Nine compounds were isolated from the leaves of *Eugenia catharinae*, namely monomethyl olivetol (1), β-sitosterol (2), stigmasterol (3), uvaol (4), erythrodiol (5), rotundic acid (6), quercetin (7), catechin (8) and myricitrin (9). The structures of 1-9 were established through analysis of their spectroscopic (1H and 13C NMR) and spectrometric (MS) data. Compounds 1 and 6 are reported the first time in the *Eugenia* genus. In addition these data were compared with those reported in the literature. The antioxidant activity of plant samples and compounds was measured using the DPPH radical scavenging assay. Flavonoids 7, 8, 9 and the ethanolic extract showed the best results, with IC$_{50}$ values of 20.94 µM, 44.20 µM, 30.01 µM and 58.82 µg/mL, respectively.

Keywords: *Eugenia catharinae*; DPPH; rotundic acid; monomethyl olivetol
Experimental

Plant material

The leaves of *Eugenia catharinae* were collected in Florianópolis, Santa Catarina State, Brazil, in July 2010, from a healthy and agrotoxic-free plant. Botanical identification was performed by Dr. Daniel de Barcellos Falkenberg. A voucher specimen (FLOR 27820) has been deposited in the Herbarium FLOR, at the Universidade Federal de Santa Catarina, Santa Catarina, Brazil.

General experimental procedures

UV analyses were recorded on a Perkin-Elmer Lambda2S UV/VIS spectrophotometer. Infrared (IR) spectra were recorded on ABB FTIR – FTLA2000 spectrometer with KBr and expressed in cm\(^{-1}\). Nuclear magnetic resonance spectra were recorded at 400 MHz for \(^1\)H and 100 MHz for \(^13\)C on a VARIAN NMR AS 400 spectrometer taking TMS as internal standard. Column chromatography was performed on silica gel (60-120 mesh, Carvalhaes, Macherey-Nagel, Germany). Thin layer chromatography (TLC) was performed on a pre-coated silica gel type-60 plate (Macherey-Nagel).

Extraction and Isolation

Dried and pulverized leaves of *E. catharinae* (475.2 g) were extracted at room temperature (ca. 25°C) with 96% EtOH to give 73.9 g of crude extract. The crude extract was suspended in an EtOH-H\(_2\)O (1:1) solution and stored in a refrigerator for one day. After this procedure, the extract was filtered and an insoluble material was obtained (26.8 g). The filtrate was then partitioned into hexane, EtOAc and BuOH. The solvents were evaporated to give hexane (9.10 g), EtOAc (22.3 g), BuOH (7.05 g) and aqueous (8.55 g) fractions.

The insoluble material (26.0 g) was chromatographed over silica gel using hexane and EtOAc with increasing polarity. Sixty-nine fractions (A1-A69) were collected, analyzed by TLC and then grouped according to their chromatographic profiles. From fractions A13-A20, monomethyl olivetol (1) was obtained as an orange oil (627.6 mg). Chromatography of the A23-A30 fractions (87.6 mg) using a gradient system of hexane/EtOAc (10:0 to 0:10) afforded twenty-one subfractions (B1-B21). Two of these fractions (B5-B6), after grouping, were purified by successive recrystallization with MeOH, providing 7.62 mg of a mixture of steroids, β-sitosterol (2) and stigmasterol (3).

A sample (7.50 g) of the hexane fraction was chromatographed over silica gel, eluting with hexane while gradually increasing the polarity with EtOAc and EtOH. Twenty-three
fractions (C1-C23) were collected, analyzed by TLC and then grouped according to their chromatographic profiles. Fractions C4-C9, after grouping, were purified by successive recrystallization with EtOAc and MeOH providing 53.0 mg of a mixture of triterpenes, uvaol (4) and erythrodiol (5).

The EtOAc fraction (10.0 g) was chromatographed over silica gel, eluting with hexane while gradually increasing the polarity with EtOAc and EtOH. Twenty-nine fractions (D1-D29) were collected, analyzed by TLC and then grouped according to their chromatographic profiles. Flash column chromatography of the D8-D9 fraction (170 mg) using hexane:EtOAc (20:80) as an isocratic eluting mixture afforded sixty-three subfractions (E1-E63). The subfractions E4-E6 and E11-E48 after successive recrystallization in methanol yielded 8.10 mg of rotundic acid (6) and 33.2 mg of quercetin (7), respectively. The fractions D12 and D17 were purified by successive recrystallization with CHCl₃, providing 96.8 mg of cathechin (8) and 88.3 mg of myricitrin (9), respectively.

Antioxidant activity

Antioxidant activity of the isolated compounds was evaluated using assays to determine the DPPH radical (2,2-diphenyl-1-picrylhydrazyl) scavenging activity. For this assay 1 mL of the ethanol sample (5-100 µg/mL) was added to 2 mL of a solution of DPPH radicals in methanol (0.004%). The mixture was shaken vigorously and allowed to stand for 30 min at room temperature. In order to subtract the absorbance promoted by staining of sample an ethanol (2.0 mL) and isolated compound (1.0 mL) solution was used as the blank (Absblank). A DPPH (2.0 mL) and ethanol (1.0 mL) solution was used as the control (Abscontrol) which is regarded as 100% of DPPH. The absorbance (Abssample) of the resulting solution was measured at 517 nm and converted into percentage of antioxidant activity (AA) using the following formula: AA% = 100-{[(Abssample - Absblank)×100]/Abscontrol}. Ascorbic acid was used as standard. The radical scavenger activity was expressed in terms of the amount of antioxidants necessary to decrease the initial DPPH absorbance by 50% (IC₅₀). The IC₅₀ value for each sample was determined graphically by plotting the percentage disappearance of DPPH as a function of the sample concentration.
Figure S1. 1H-NMR (400 MHz, CDCl$_3$) Spectrum of Compound 1
Figure S2. APT (100 MHz, CDCl₃) Spectrum of Compound 1
Figure S3. 1H-NMR (400 MHz, CDCl$_3$) Spectrum of mixture of steroidsM1
Figure S4. 13C-NMR (100 MHz, CDCl$_3$) Spectrum of mixture of steroids M1
Figure S5. 1H-NMR (400 MHz, CDCl$_3$) Spectrum of mixture of triterpenes M2
Figure S6. 13C-NMR (100 MHz, CDCl$_3$) Spectrum of mixture of triterpenesM2
Figure S7. 1H-NMR (200 MHz, Py-d5) Spectrum of Compound 6
Figure S8. 13C-NMR (50 MHz, Py-d5) Spectrum of Compound 6
Figure S9. 1H-NMR (400 MHz, CD$_3$OD) Spectrum of Compound 7
Figure S10. 1H-NMR (400 MHz, CD$_3$OD) Spectrum of Compound 8
Figure S11. 13C-NMR (100 MHz, CD$_3$OD) Spectrum of Compound 8
Figure S12. 1H-NMR (400 MHz, CD$_3$OD) Spectrum of Compound 9
Figure S13. 13C-NMR (100 MHz, CD$_3$OD) Spectrum of Compound 9