The effect of minibars basalt fiber fraction on mechanical properties of high-performance concrete

Hayder Abbas Ashour Alaraza1,2, Makhmud Kharun1,3 and Paschal Chimeremezhi Chiadighikaobi4**

\textbf{Abstract:} Basalt fiber (BF) is one of the most important sustainable materials used to enhance high-performance concrete (HPC) in recent years. There are two types of BF, namely micro-BF and macro-BF. Despite that, macro-BF is a new material and there are few studies about it. A variety of standard material tests were carried out to examine the impact of MiniBars BF as well as its fractions (0.6–1.8\%) on the physical and mechanical properties of HPC, including compressive strength (f_{cm}), flexural strength (f_i), workability, and modulus of elasticity (E_c). The study applied the one variable at a time method by using an identical mix with different fractions of MiniBars BF to minimize the influence of other factors on the result of the test. Six different mixes were investigated. The experiment showed that the MiniBars BF fraction slightly affected the workability of the HPC mix. The results indicated that the small amount of MiniBars BF did not affect the f_{cm} and the E_c of HPC. But it has a negative effect after the dosage of MiniBars BF increased by more than 1.2\%. The MiniBars BF enhanced the f_i significantly even with a small percentage until it reached the optimum effect at 0.9\% then drop slightly.

\textbf{Subjects:} Mechanics; Materials Science; Civil, Environmental and Geotechnical Engineering

\textbf{Keywords:} Basalt fiber reinforced concrete; high-performance concrete; compressive strength; flexure strength; minibars; modulus of elasticity

\section*{ABOUT THE AUTHORS}

Hayder Abbas Ashour Alaraza holds a B.Sc. (Building and Construction Engineering), M.Sc. (Highway and Airport E.), and M.Eng. (Civil Engineering) degree. Currently, he is a Ph.D. candidate in Civil Engineering at RUDN University, Moscow, Russia. He has been working with the University of Kerbala as Assistant Professor. He has published articles in various national and international journals. His research interests include studies on Traffic Engineering, highways and Airports, and sustainable materials.

Makhmud Kharun is a Professor at the Department of Civil Engineering of the Peoples’ Friendship University of Russia (RUDN University). He serves as an Academician since September 2001.

Chiadighikaobi Paschal Chimeremezhi is a Nigerian. He is a Lecturer in the department of Civil Engineering, college of engineering, Afe Babalola University Ado-Ekiti, Ekiti State, Nigeria.

\section*{PUBLIC INTEREST STATEMENT}

The strength of concrete structures depends on many factors. Some of the factors considered in this paper are the properties of the Macro-BF (MiniBars) which serve as the strengthener (reinforcement material) of the concrete. The quantity of the MiniBars and the curing period of the concrete are also some of the factors. Extensive research and experiments were done to ascertain the effectiveness of MiniBars basalt fiber on high-performance concrete (HPC). The compressive and flexural strength of the concrete was derived experimentally while the modulus of elasticity was determined numerically. At the end of the analysis, it was confirmed that MiniBars basalt fiber improved the strength and modulus of elasticity of the HPC even at different curing periods.
1. Introduction
Concrete is one of the most used constructions and building materials. Engineers design new structures to meet the aspect of sustainable development in many countries. Therefore, there has been an increased recognition that more attention needs to be paid to enhancing the existing construction materials, especially concrete. Due to superior physical and chemical properties, High-Performance Concrete (HPC) is among the most important materials used to replace Plain Concrete (PC). By replacing the PC with HPC, you will reduce the volume of materials used, speed up the construction process, and increase the structure’s service life (Kosmatka & Wilson, 2011). However, HPC still provides better compressive strength (f_{cm}) and Flexure Strength (f_f) than PCs but it is still considered fragile low-tensile-strength material (Bharatkumar et al., 2005). The fiber has been introduced to overcome some of the inherent limitations of HPC and improve the f_f and tensile strength (f_t) of HPC (Bharatkumar et al., 2005; Lam et al., 2021; Shafieifar et al., 2017; Smarzewski, 2019; Wei et al., 2019).

Commonly, the composite material theory and the fiber spacing theory are adopted to explain the reinforcement mechanism of fiber-reinforced concrete. The former is built on the mixing rule of composite materials and the latter is the perfect bond theory between fiber and matrix. They explain the reinforcement effect of fiber on concrete from different perspectives. The theory of composite materials (Kaw, 2005) regards the strength and elastic modulus of fiber, and concrete as a superposition, to improve the performance of concrete. The theory is based on that the matrix is isotropic and homogeneous. The fibers are distributed parallel to the direction of stress, and there is no relative slip between the fibers and the matrix. However, to get the result of the enhanced function, the elastic modulus and strength of the fiber must be greater than that of the matrix. Under this condition, the larger the volume content of the fiber is, the more obvious the reinforcement effect will be. But the ideal result conflicted with the existing research results (Arshad et al., 2020; Dias & Thaumaturgo, 2005; Jiang et al., 2014; Sun et al., 2019; Torres & Lantsoght, 2019).

There are a few types of fibers compatible with concrete like steel fiber (SF), polypropylene fiber, and basalt fiber (BF). BF is considered a new sustainable construction material. Recent research shows that BF can provide high-class mechanical, chemical, and thermal properties (Gencel et al., 2022; Yavuz Bayraktar et al., 2021). BF is also environmentally friendly, non-toxic, and non-flammable with lower production costs (Boccardi et al., 2019; Feng et al., 2018; Jumaa & Yousif, 2019; Khandelwal & Rhee, 2020; Koksal et al., 2021; Militky et al., 2018; Shafieifar et al., 2017). Fiber is primarily used in concrete to inhibit tensile cracks growth, thus significantly increasing the post-crack f_t of the concrete. The addition of fiber to concrete significantly alters the mechanical properties of the concrete such as the increase in toughness (energy absorption), ductility, f_t, and f_f (Yavuz Bayraktar et al., 2021).

BF is usually made by pulling and twisting strands from a solution extracted from natural basalt rock (Pastuk et al., 2020). BF is extruded from molten basalt rock at diameters between 18 µm and 20 µm. BF products are available from various sources around the world mainly from Russia, Ukraine, and China. Basalt fiber reinforced polymer (BFRP) products are available in various forms such as bars, mesh, cages, spirals, fabric, and chopped fiber, and are useful as internal or external reinforcement of concrete structures (Anil, Len et al., 2013). It possesses a variety of unique characteristics, including superior mechanical capabilities, excellent thermal performance, and high environmental corrosion resistance, as well as exceptional bonding strength with polymeric glue due to its rough surface (Afroz et al., 2017; Branston, 2015; Ferrara et al., 2017; Jumaa & Yousif, 2019; X Wang et al., 2014; Zhang et al., 2017). Also, it improves the toughness and cracks resistance performance of the concrete (Khan & Cao, 2021; Zhou et al., 2020).
BF serves as a composite material in nonreinforced concrete, polypropylene composites, geopolymer concrete, epoxy composites, inorganic binders such as phosphates, and polysiloxane-based matrices, using its binding ability (Ding et al., 2011; M Wang et al., 2014). The microstructure of BF-modified concrete reveals good bonding in the early stages as compared to the latter (Jiang et al., 2014; Tassew & Lubell, 2014). The f_{cm}, fracture energy, f_t, and abrasion resistance of nonreinforced concrete could be improved significantly on account of BF incorporation in the concrete (Kabay, 2014). A major attribute of cementitious composites like cement mortar and concrete is their poor fracture toughness and tensile strength. These shortcomings can be resolved by introducing dispersed chopped fibers into the concrete matrix. They do so by limiting crack width and controlling crack propagation (Khan, Cao, Chu et al., 2022), which improves the toughness of the concrete reinforced with fiber.

Several research studies have been conducted on the use of fibers and polymers in concrete to improve strength-ductility (Ferdous et al., 2018; Khan, Cao, Ai et al., 2022; Xie et al., 2020). The incorporation of fibers in concrete could improve the post-cracking behavior of the concrete under compression (Caggiano et al., 2016). The incorporation of BF in concrete enhanced the strength of concrete (Chiadighiakaobi et al., 2022).

There were two types of BF used to improve the characteristics of the concrete micro-BF and macro-BF. The most common type is the micro-BF which is also known as chopped BF or BF only. The new type is called macro-BF and it is also known as MiniBars BF. Several studies have investigated the effectiveness of chopped BF on the mechanical properties like f_{cm}, f_t, and fracture energy of both PC and HPC (Alskar et al., 2021; Algin & Ozen, 2018; Alyousef, 2018; Arslan, 2016; Ayub, Shafiq, Nuruddin et al., 2014a, 2014b; Fiore et al., 2015; Khan et al., 2018; H Li et al., 2022; Y Li et al., 2022; B Liu et al., 2020; H Liu et al., 2017; Rawat et al., 2020; Zhang et al., 2022; Zheng et al., 2022). Therefore, there are very few studies about the effect of MiniBars BF on the PC and HPC (Alnahhal & Aljidda, 2018; C Zhang et al., 2021).

In general, MiniBars BF is considered a great replacement for the SF to reinforce concrete. MiniBars BF has a quarter the density of steel, is ecologically friendly, easy to mix with concrete, easy to pump, and does not sink or float in the mix (ReforceTech, 2021). The shear properties of HPC beams and small slabs reinforced with BFRP bars and macro-BF were studied in the research (Khan, Cao, Ai et al., 2022; Xie et al., 2020). The researchers used seven concrete mixes with five-volume fractions of MiniBars BF. The length of MiniBars BF used in the study was 43 mm and the fraction percentages included were 0.5%, 1.0%, 1.33%, 1.68%, and 2.0%, respectively. The f_{cm} was slightly affected, and it ranged between 92 and 96.2 MPa. The study also found that increasing the fiber content enhanced the punching shear capacity and ductility of the slabs marginally (Mohammadi Mohaghegh, Silferbrand, Årskog et al., 2018a, 2018b).

Sudeep et al. (Adhikari & Adhikari, 2013) tested the effect of different fiber volume fractions of basalt MiniBars on the mechanical properties of PC. Volume fractions of 2%, 6%, 8%, and 10% were used. No loss of workability had been reported for any of the concrete mixes. It was found that the modulus of rupture of concrete increased with the increase of fiber content. In addition, the basalt fiber reinforced concrete (BFRC) prisms showed higher ductility and better toughness than PC prisms. Fiber content was reported to not affect on the f_{cm} of the tested concrete. However, the modes of failure of the concrete cylinders made of BFRC mixes became more ductile with the increased fiber content. BFRC cylinders with high fiber volume fractions were capable to sustain loading with larger deflections than those with low fiber content.

Anil et al. studied the effect of MiniBars dosages on fresh and cured concrete properties (Anil, Sudeep et al., 2013). The MiniBars dosages ranged from 0.35% to 4% by volume. Physical inspection showed no segregation or balling of fibers during mixing. All concrete mixes showed acceptable slump with values ranging from 125 to 200 mm. The modulus of rupture was enhanced by increasing the fiber content. The highest enhancement in the modulus was obtained in the BFRC mix with 3% of MiniBars BF. A 25-percentage increase in its modulus over PC was recorded. Adding
fibers prevented the brittle failure of the concrete cylinders proving the ability of MiniBars to increase the energy absorption of concrete (Anil, Sudeep et al., 2013).

The impact of the chopped BF on the mechanical characteristics of the PC pavement was investigated by Sarkar and Hajihosseini. Three fiber doses (4, 8, and 12 kg/m³), two mixes, and two aggregate gradations were examined. According to test results, BF increased the compressive strength of a Portland cement sample by 4.3% to 9.4%. Despite this, the mechanical properties of Portland cement concrete are significantly influenced by the length and weight of this fiber as well as the quality of the aggregate. BF may have negative impacts or, under ideal circumstances, may only slightly increase split tensile and compression strength. This fiber’s greatest impact is an up to 20% increase in the flexural strength of concrete. Additionally, these fibers are ineffective at reducing the impact of chloride (or chlorine) on cement concrete (Sarkar & Hajihosseini, 2020).

Moreover, as a multifunctional fiber, BF possesses comprehensive and outstanding qualities: acidic and alkaline resistance, low- and high-temperature resistance, and excellent wettability (Lee et al., 2014; Zx Li et al., 2017).

2. Research objective and scope
This research investigated the behavior of the mechanical properties of HPC with newly developed MiniBars BF (Abed & Alhafiz, 2019). Most previous research focused on the impact of BF on the mechanical properties of normal concrete (Attia et al., 2020; Dilbas & Ö, 2020; John & Dharmar, 2021; Khandelwal & Rhee, 2020; Singh et al., 2019), with less on HPC. This study compared the effect of six MiniBars BF dosages on HPC and investigated the material’s influence on the density, \(f_{cm}, f_t \), and modulus of elasticity. Furthermore, the research also determined the optimal BF fraction to enhance the concrete properties and the effect of the MiniBars BF fraction on the HPC workability. The study also proposed the formulas for predicting the strengths of HPC reinforced with different MiniBars BF fractions in it aimed to determine the optimum MiniBars BF contents that could significantly enhance the mechanical properties of HPC.

Because BF affected the cementitious matrix component of concrete, HPC is a concrete composite with BF as the cause of increased \(f_t \) (Ma & Zhu, 2017). The fraction of BF in the cementitious matrix modified the mechanical characteristics and crack behavior under compression and flexural load. For the main four characteristics component is the \(f_{cm}, f_t \), crack, and failure behavior of HPC, aggregates with strong mechanical characteristics, cementitious materials, superplasticizer, and varying percentages of MiniBars BF were applied. MiniBars BF implied to minimize the macro cracks and deformation of the concrete (C Zhang et al., 2021). Therefore, BF has a significant impact on concrete plastic behavior and fracture extension in both compression and flexural tests. As a result, the cementitious matrix with MiniBars BF was able to absorb more energy and was more resistant to pre-cracked damage.

3. Materials and test methods
In this study, all the materials were measured and tested carefully in the same conditions to minimize the differences nonetheless it cannot be claimed that all specimens were the same.

3.1. Materials
The purpose of this study is to experimentally drive conclusive remarks about the effect of the MiniBars BF fraction and curing period on density, modulus of elasticity, \(f_{cm} \), and \(f_t \) of HPC. To prepare the minibar-basalt-fiber HPC (MiniBars BF HPC) specimens. The following materials were used

- Portland Cement M500 D0 = 500 kg was the main binder;
- Microsilica type MK-85 = 125 kg was the binding materials and mineral additives;
- Quartz powder of 50 µm = 100 kg/m³ was the mineral filler;
- Superplasticizer = 12.5 L/m³;
- Quartz Sand with a fineness modulus of 0.8–2.7 mm = 585 kg/m³ was the fine aggregate;
- Crushed Granite with fractions of 5–20 mm = 1005 kg/m³ was the coarse aggregate;
- Tap Water = 187.5 L/m³;
- Water cement ratio = 0.3

A locally manufactured Portland Cement M500 D0 (CEM I 42.5 N) Cement by South Ural mining and processing company in Russia. While The Microsilika MK-85 was produced by Novolipetsk Steel company (NLMK). Table 1 shows the chemical composition and physical properties of the cement while

Table 2 displays the physical and chemical properties of Microsilica MK-85.

Quartz powder was produced by SIBELCO Russia company. The chemical properties are shown in Table 3. Quartz Sand with a fineness modulus of 0.8–2.7 mm and Crushed Granite with fractions of 5–20 mm were used in this experiment. Figure 1 shows the particle size distribution. Quartz sand and crushed granite were gotten from the Ryazan region and supplied by SUKHOGRUZ Company.

Furthermore, BASF Stroitelnye Sistemy produces a Super Plasticizing admixture based on Polycarboxylic Ether (Glenium 115) that is used as a water-reducing additive. Table 4 displays the physical characteristics of Glenium 115. MiniBars BF was obtained from the Kamennye Vek company. Figure 2 and Table 5 show the physical characteristics and shape of the MiniBars BF used in the experiment. MiniBars BF with 18 mm length and 1.2 mm diameter is implemented because it can improve the anti-cracking performance of the concrete (D Wang et al., 2019).

3.2. Specimen and testing

To test the mechanical properties of the HPC, specimens were produced from each mixture. The concrete specimens required for each test were cast with a 0.32 water–binder ratio and proportions of 1:1.1:1.608 by mass of binding materials (Cement and Micro silica), fine aggregate, and coarse aggregate. Table 6 shows the details of the six combinations utilized in this study. In this experiment, the control group (Mix No. HPC0) did not contain MiniBars BF. The five HPC mixes with different proportions of MiniBars BF are the mixed group, which includes 0.60%, 0.90%, 1.2%, 1.5%, and 1.8%. These mixes are denoted as HPC0, HPC06, HPC09, HPC12, HPC15, and HPC18, respectively. The percentage of BF utilization in the mixture is reflected by the numbers after HPC. Therefore, to improve the fluidity and properties of the samples, Glenium 115 Superplasticizer (SP) was added to the admixture with a constant percentage of 2.0%.

A simple setup is employed to comprehend the effect of MiniBars BF on the behavior of HPC. As shown in Table 6, all the specimens used in the experiments had identical material fractions except MiniBars BF. The reference mix used the same materials and curing conditions as the other mixes. The laboratory pan mixer capacity was 130 liters. The mixer has a constant speed of 48 rpm. The ingredients were accurately weighed before being used. In the beginning, the aggregates blended for 60–120 seconds. Then, the first quarter of water was added for 60 seconds, and the binders were added and mixed for 120–180 seconds. The remaining liquid (water and superplasticizer) was added gradually to the mix to achieve a homogenous mix. Finally, the MiniBars BF was manually added at a rate of 10 grams per second to achieve uniform distribution. The cube specimens with dimensions 100 mm × 100 mm × 100 mm are used to perform the compressive test. While the rectangular prism specimen with dimensions 100 mm × 100 mm × 400 mm was used to test the flexural test. The room temperature of the laboratory was kept at 21 ± 3 for mold samples. The mold samples for the f_{cm} and f_r were kept for 48 hours and 72 hours, respectively. Later, moist cabinet machines were used to cure the samples at a temperature of 21°C and 95% humidity for 7, 14, and 28 days. The MATEST concrete compression machine (C025A) was used to perform the f_{cm} test for the samples at ages 7, 14, and 28 days. While the MATEST
Table 1. Physical and chemical properties of Cement M500 D0

Oxide (%)	Fineness (m²/kg)	Relative density
SiO₂	19.52	387
Fe₂O₃	4.04	
MgO	4.36	
SO₃	2.89	
Al₂O₃	4.81	
CaO	62.18	
K₂O	0.6	
LOI	1.62	

Abbas Ashour Alaraza et al., Cogent Engineering (2022), 9: 2136603
https://doi.org/10.1080/23311916.2022.2136603
Name of indicator	50 microns
Chemical composition	**50 microns**
Mass fraction of silicon dioxide (SiO$_2$), not less than %	99.48
Mass fraction of iron oxide (Fe$_2$O$_3$), not more than %	0.128
Mass fraction of alumina (Al$_2$O$_3$), not more than %	0.254
Mass fraction of calcium oxide (CaO), not more than %	0.015
pH	7
Loss on ignition, %	0.12
Mass fraction of sieve residue, %	
No. 0.16	2
No. 0.1	19
No. 0.063	39
No. 0.040	43
Median particle diameter, microns	**Medium D50**
	43
Maximum D90	123
Minimum D10	2
Oil consumption, g/100 g	17.8
Specific surface, m2/g	0.8
Mass fraction of moisture, no more than%	0.2
Density	2.65
Bulk density	1
Figure 1. Particle size distribution of the aggregates.

Table 4. The physical characteristics of the Glenium 115

INDEX	Values
Appearance	Homogeneous liquid of light-yellow color
Density, kg/m3	1050–1090
Hydrogen exponent, pH	5–8
Content of CI-ion, in mass. %, no more	0.1
concrete flexural machine (C091) used to perform the \(f_t \) at 14 and 28 days. Figure 3 shows the MATEST machine used in the experiments. All the tests were performed according to ASTM (American Society for Testing and Materials (ASTM), 2015, American Society for Testing and Materials (ASTM), 2002) and GOST standards (Betony, 2013).

Table 5. Mechanical properties of MiniBars BF
Length (mm)

18

4. Results and discussion

4.1. Compressive strength results

The cube samples (100 mm × 100 mm × 100 mm) are used to test the \(f_{cm} \) of the HPC. Nine samples were tested for each configuration of HPC. Figure 4 shows the results of the \(f_{cm} \) test for the different mixes of MiniBars BF HPC. The figure shows the development of the \(f_{cm} \) during the curing. The average bulk weight density, \(f_{cm} \) (cube and cylinder samples), and the Coefficients of Variation (CoV) are shown in Table 7. For the 7-day test, the \(f_{cm} \) of plain HPC was higher than that of specimens with MiniBars BF. Moreover, the \(f_{cm} \) of plain HPC was slightly higher than the MiniBars BF HSC with 0.6% and 0.9% MiniBars BF fractions. The reduction in the \(f_{cm} \) in the HPC06 and HPC09 were 5.3% and 1.6%, respectively. However, the \(f_{cm} \) of the other mixes with MiniBars BF higher than 1.2% MiniBars BF dropped significantly. The reduction in the \(f_{cm} \) in the HPC12, HPC15, and HPC18 was between 12% and 21%. Therefore, MiniBars BF fraction percentage does not affect the \(f_{cm} \) of HPC if it is fraction is less than 0.9% but after that, it increases the MiniBars BF leading to a decrease of the \(f_{cm} \) of HPC in the early ages.

For the 14-day test, the \(f_{cm} \) of plain HPC was higher than that of specimens with MiniBars BF. Moreover, the \(f_{cm} \) of plain HPC was slightly higher than the MiniBars BF HSC with 0.6% and 0.9% MiniBars BF fractions. The decrease in the \(f_{cm} \) in the HPC06 and HPC09 were 2.6% and 4.7%, respectively. However, the \(f_{cm} \) of the other mixes with MiniBars BF higher than 1.2%, MiniBars BF dropped significantly. The reduction in the \(f_{cm} \) in the HPC12, HPC15, and HPC18 were between 10% and 19%.

For the 28-day test, the \(f_{cm} \) of MiniBars BF mortar with a 0.9% volume fraction was higher than the plain HPC slightly by 3.9%. Also, the \(f_{cm} \) of both plain HPC and MiniBars BF mortar with 0.6% were equivalent. Therefore, the \(f_{cm} \) of the rest of the mixes was slightly lower. The decrease in the \(f_{cm} \) in the HPC12, HPC15, and HPC18 were 10.7%, 11.8%, and 4.7%, respectively, as compared to the plain samples. From these results, there is an optimum fraction of MiniBars BF that can improve the \(f_{cm} \) of HPC. Similar research on micro-BF on plain concretes found that the \(f_{cm} \) is increased with BF until the MiniBars BF percentage reaches 2% (Ma & Zhu, 2017; Ronad et al., 2016). Hence, it reduced the HPCs \(f_{cm} \) (Khurun & Koroteev, 2018; D Wang et al., 2019). The curing period has a significant influence on HPC \(f_{cm} \). Therefore, the samples after 7 days reached 75–85% of its \(f_{cm} \) on day 28. Figure 5 shows a sample of the failure pattern at 28 days. These findings are in line with results reported by other research (Mohammadi Mohaghegh, Silfwerbrand, Arskog et al., 2018a). When compared to plain specimens, the addition of BF can improve the failure mode of cement mortar specimens under compressive loading. During testing, HPC specimens were revealed to have brittle failure modes. A significant number of mortar fragments were chipped off the matrix when the specimen cracked. The MiniBars BF reinforced HPC mixes, on the other hand, demonstrate a plastic deformation. The specimens’ crack dimensions were finer, the number of cracks increased, and the specimens’ structure was maintained. The difference in failure mode...
Specimen Code	Cement (kg/m³)	Micro Silica (kg/m³)	Granite (kg/m³)	Quartz Sand (kg/m³)	Quartz Powder (kg/m³)	Plasticizing (L/m³)	Water (L/m³)	MiniBars BF (kg/m³)
HPC0	500	125	1005	585	100	12.5	187.5	0
HPC06	500	125	1005	585	100	12.5	187.5	12.6 (0.6%)
HPC09	500	125	1005	585	100	12.5	187.5	18.9 (0.9%)
HPC12	500	125	1005	585	100	12.5	187.5	25.2 (1.2%)
HPC15	500	125	1005	585	100	12.5	187.5	31.5 (1.5%)
HPC18	500	125	1005	585	100	12.5	187.5	37.8 (1.8%)
became more ductile as the fiber concentration increased. It was because the addition of fibers effectively limits fracture propagation and reduces crack convergence, absorbing more destructive energy in the process (Khan & Cao, 2021).

Analysis of Variance (ANOVA) test was applied to evaluate the significance of the difference in some factors which include the weight of the sample, curing age, and the MiniBars BF percentage. All statistical analyses were performed using Minitab 19 software. These tests are also used to determine if there is any relationship between these variables and the f_{cm} of HPC and MiniBars BF HPC. P values of 0.05 or less are considered statistically significant in the analysis. The analysis shows that the weight of the sample does not affect the f_{cm} of the concrete therefore it was removed from further investigation. Since the concrete density was approximately equal for all mixtures, the sample weight did not affect the compressive strength. The curing age of the samples was statistically significant with a very small P-value. According to the experimental
Table 7. Physical properties and \(f_{cm} \) for cube and cylinder samples

Mixture Code	Bulk Wet Density (kg/m\(^3\))	MiniBars BF%	7 day	14 day	28 day			
			\(f_{cm} \) Cube (MPa)	CoV%	\(f_{cm} \) Cube (MPa)	CoV%	\(f_{cm} \) Cylinder (MPa)	CoV%
HPC0	2455.2	0	86.38	5.4	93.31	0.5	101.43	0.5
HPC06	2460.8	0.6	81.75	2.4	90.85	2.0	101.43	3.8
HPC09	2428.7	0.9	85.01	2.6	88.92	3.0	105.39	0.8
HPC12	2433.4	1.2	70.57	5.7	75.12	3.5	90.50	1.3
HPC15	2410.1	1.5	67.55	3.1	80.13	2.7	89.51	1.7
HPC18	2421.2	1.8	75.80	3.8	83.90	0.7	92.30	0.6

*CoV = Coefficient of Variation.
data, Equation 1 was developed to calculate the f_{cm} of MiniBars BF HPC depending on the age and MiniBars BF fraction. The coefficient of determination (R^2) was 79.23% for the equation.

$$f_{cm-MBF} = 79.8 - 8.213\rho + 0.9124\omega$$

where:

f_{cm-MBF}: the compressive strength of the MiniBars BF HPC in MPa.

ρ: the MiniBars BF volume fraction percentage and.

ω: the age of the sample in days (7, 14, and 28 days).

Figure 5 shows the cubes f_{cm} failure at 28-day test for MiniBars BF HPC. When the load was increased, the MiniBars BF HPC was crushed with a loud noise. The surrounding concrete was crushed and spalled after the maximum load due to the cyclo-hoop effect, and the concrete block was pyramidal, as illustrated in Figure 5.

4.2. Theoretical Modulus of Elasticity (E_c)

Young’s modulus or the modulus of elasticity (E_c) of concrete is defined as the ratio of the stress to strain. The bulk wet density of each sample was measured before the test with high accuracy scale. The results of the general linear model (ANOVA) test show that the MiniBars BF has only a negligible effect on the density of HPC. ACI-318 recommended calculating the modulus of elasticity (E_c) by using Equation 2 (318-19A. 318-19 Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, 2019):

$$E_c = 0.043\omega^{1.5} \sqrt{f_c}$$
where:

\(f_c \): 28-Day compressive strength of Concrete in MPa.

\(w_c \): Weight of Concrete (kg/m³).

Table 7 shows the bulk wet density and the cylinder \(f'_{cm} \) used to estimate the \(E_c \). The \(E_c \) values of HPC at different fiber volume fractions are shown in Figure 6. Compared to the PC, the \(E_c \) of fiber-reinforced concretes is insignificantly affected by increasing the dosage of fiber. MiniBars BF HPC has an \(E_c \) of 48,930–43,916 MPa according to ACI-318 (Zheng et al., 2022). While the \(E_c \) for the HPC was 48,633 MPa. Also, there is no effect in the \(E_c \) for the mixes with MiniBars BF fraction less or equal to 0.9%. The increase of the MiniBars BF fraction after 0.9% decreased in the \(E_c \) of HPC. \(E_c \) depends on stress–strain relation up to 0.4 \(f'_{cm} \) before occurring the cracks, while fibers action starts after that. These results are consistent with the results obtained from the use of chopped BF in previous studies (Kizilkanat et al., 2015).

4.3. Flexural Strength Result

The 100 mm × 100 mm × 400 mm specimen samples used to test the \(f_f \) of the HPC. The flexural test results were calculated automatically by the computer connected to the device test MATEST concrete flexural machine (C091). Figure 7 shows the \(f_f \) results obtained from the experiment. The effect of the MiniBars BF deviation of the samples tested in this experiment. The increase in the percentage of MiniBars BF will increase the \(f_f \) of the HPC mix until it reaches the maximum value then it decreases. For the 14-day test, the \(f_f \) for the HPC without MiniBars BF (control mix) was 12.54 MPa. All the mixes with MiniBars BF showed a significant improvement in the \(f_f \) test. The initial increments in flexural tests were 20.8%, 43.2%, 13.5%, 26.5%, and 33.9% with the inclusion of 0.6%, 0.9%, 1.2%, 1.5%, and 1.8%, respectively, compared with that of regular HPC. The ultimate value of the \(f_f \) recorded at the HPC09 mix is 18.0 MPa.

For the 28-day test, the \(f_f \) of the HPC mix was 14.09 MPa. All the mixes showed improvement in the \(f_f \) the test compared to plain HPC. The final increment of the \(f_f \) was 18.6%, 40.4%, 21.8%, 16.4%, and 21.3% respectively for the 0.6%, 0.9%, 1.2%, 1.5% and 1.8%, respectively. The maximum value of the \(f_f \) recorded at 0.9% MiniBars BF was 19.77 MPa. The results (see Table 8) showed
that the MiniBars BF started affecting the HPC from an early age and keeps improving to the late age of HPC. For all samples, \(f_f \) increased at first with MiniBars BF content and then peaks at 0.9% (18.9 kg/m\(^3\)) MiniBars BF. A further increase in MiniBars BF resulted in additional reductions in the \(f_f \) of the HPC. This suggests that there is an optimum BF dosage beyond which increasing the BF dosage reduces \(f_f \). The tangling of fibers and the cementitious matrix is the primary cause of increasing \(f_f \) in BF HPC.

The main effect of the MiniBars BF was the bridging effect inside the concrete mix which leads to providing extra strength and improving the \(f_f \) (Ganesh & Muthukannan, 2021). On one hand, even a small percentage of MiniBars BF such as 0.6% showed a significant impact on the \(f_f \) of HPC as it enhances it by 18.6%. On the other hand, a high percentage of MiniBars BF (more than 1.2% MiniBars BF) did not enhance the \(f_f \) much but it also decreases the \(f_{cm} \). The increase of the MiniBars BF by more than 0.9% might prevent the complete interlock of aggregates together in the mix which leads to a decrease in the compressive strength of the mix. In general, the experiment result showed that the \(f_f \) of samples tested at 14 days of age represents 91–95% of the 28-day test. The enhancement of the \(f_f \) started from 18.6% with 0.6% MiniBars BF until it reached 40.434% at 0.9% MiniBars BF.

The failure of plain HPC during the flexure test was very immediate and quick. After cracks appeared as the load increased, the specimen was broken into two sections as shown in Figure 8. However, there was a delay between the emergence of cracks and the withdrawal of MiniBars BF from the HPC matrix. Despite the short time frame, it was demonstrated that concrete toughness improved. The crack length and width of MiniBars BF HPC were bigger than that of PC in terms of crack width as shown in Figure 9. Zhou et al. noticed a similar effect for the chopped BF on the tensile failure but it is more noticeable with MiniBars BF (Zhou et al., 2020). In addition, MiniBars BF HPC showed failure without collapse of the sample, and it was hard to separate the two sections from each other.
Statistical analyses were performed by applying a significance level of 0.05. Additionally, relatively large statistical differences were identified in the cases of MiniBars BF fractions and the curing period. The P-value of both cases was statistically significant (less than 0.01). Equation 3 shows the relationship between the f_f and the cube f_{cm} and MiniBars BF fractions at the 28-day test. The R^2 of equation 3 is equal to 96.42%.

$$f_{f',MBF} = 194.7 - 3.316f_{cm} - 51.15\rho + 0.01513f_{cm}^2 + 0.5516f_{cm} \times \rho$$ \hspace{1cm} (3)

where $f_{f',MBF}$ is the f_f of the MiniBars BF HPC (MPa), f_{cm} is the f_{cm} of the MiniBars BF HPC; and ρ is the MiniBars BF volume fraction.

5. Summary and conclusion

The main mechanical properties of the MiniBars BF HPC and HPC include f_{cm}, f_f, crack extension, and failure modes are all discussed in this paper. The cementitious matrix of concrete developed against flexural stress when MiniBars BF was used in HPC, and this component of concrete also made basalt-reinforced HPC more durable than standard HPC. BF had
a favorable effect on enhancing f_t but had a negative influence on f_{cm}, according to the results of the experiments.

- The f_{cm} of BF HPC at the 7-day test represents 75–85% of the f_{cm} of the 28-day test. Fiber addition had no significant effect on the f_{cm} of HPC. However, the f_{cm} of concrete slightly reduced when the dosage of MiniBars BF increased.
- MiniBars BF fraction improves the f_t by 21.8%, 16.4%, and 21.3% but it decreases the f_{cm} by 10.8%, 11.8%, and 9% for HPC12, HPC15, and HPC18, respectively, compared with regular HPC.
- The MiniBars BF can provide extra safety measures to the concrete as it delays and prevents sudden failure.
- The f_t reached 91–95% of the concrete strength after the 14-day test in comparison to the 28-day test.
- The MiniBars BF has an insignificant effect on the workability of the concrete.
- Statistical analysis test shows that the MiniBars BF fraction had a significant effect on the mechanical properties of HPC.
- A small amount of MiniBars BF did not affect the HPC’s E_c. When the dosage of MiniBars BF increased by more than 1.2%, the E_c of HPC was slightly reduced. Therefore, even a small amount of MiniBars BF could lead to a significant improvement to the f_t of the HPC without a side effect on the f_{cm} and E_c.
- HPC with 0.9% MiniBars BF represented the optimum MiniBars BF percentage to improve the mechanical properties of HPC.
- Two equations were developed in this research to estimate the f_{cm} and f_t of MiniBars BF HPC at 28-day age depending on the f_{cm} of HPC, MiniBars BF fraction percentage, and other factors.

Acknowledgements
The publication has been prepared with the support of the “RUDN University Program 5-100”.

Funding
This work was supported by the funding.

Author details
Hayder Abbas Ashour Alaraza1,2
Makhmud Kharun3,4
Paschal Chimeremeze Chiadighiakoib
E-mail: chiadighiakoibPaschal@abuad.edu.ng
ORCID ID: http://orcid.org/0000-0003-7269-8166
1 Department of Civil Engineering, RUDN University, Russia.
2 Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala, Iraq.
3 Department of Reinforced Concrete & Stone Structures, Moscow State University of Civil Engineering, Russia.
4 Department of Civil Engineering, Afe Babalola University, Ado-Ekiti, Nigeria.

Disclosure statement
No potential conflict of interest was reported by the authors.

Availability of Data and Materials
The data and supportive information are available within the article.

Citation information
Cite this article as: The effect of minibars basalt fiber fraction on mechanical properties of high-performance concrete, Hayder Abbas Ashour Alaraza, Makhmud Kharun & Paschal Chimeremeze Chiadighiakoib, Cogent Engineering (2022), 9: 2136603.

References
318-19A. 318-19 Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute. (2019). Epub ahead of print. 28 May 2019 https://doi.org/10.14359/51716937
Abed, F., & Alhafiz, A. R. (2019). Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars. Composite Structures, 215, 23–34. https://doi.org/10.1016/j.compstruct.2019.02.050
Adhikari, S., & Adhikari, S. (2013). MECHANICAL AND STRUCTURAL CHARACTERIZATION OF MINI-BAR REINFORCED CONCRETE BEAMS. The University of Akron. https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=akron1386682169&disposition=inline
Afroz, M., Potnikuni, L., & Venkateson, S. (2017). Chemical durability and performance of modified basalt fiber in concrete medium. Construction and Building Materials, 154, 191–203. https://doi.org/10.1016/j.conbuildmat.2017.07.153
Alaskar, A., Alibad, A., Alqarni, A. S., Alyousef, R., & Mohammadhosseini, H. (2021). Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. Journal of Building Engineering, 35, 102108. https://doi.org/10.1016/j.jobe.2020.102108
Algin, Z., & Ozen, M. (2018). The properties of chopped basalt fiber reinforced self-compacting concrete. Construction and Building Materials, 186, 678–685. https://doi.org/10.1016/j.conbuildmat.2018.07.089
Alnahhal, W., & Aljjidda, O. (2018). Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates. Construction and Building Materials, 169, 165–178. https://doi.org/10.1016/j.conbuildmat.2018.02.135
Alyousef, R. (2018). Self-Compacting Concrete Using Different Type of Fibers. Rev Rom Mater Rom J Mater, 48, 355–361.
American Society for Testing and Materials (ASTM). (2002). ASTM C78/C78M –18 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM Int, 04(2), 1–3.
American Society for Testing and Materials (ASTM). (2015). ASTM-C293. C293 - 15 Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading). ASTM Int, 1–3.
Anil, P., Len, M., & Sudeep, A. (2013). Basalt FRP minbar reinforced concrete. Fibre Concrete 2013, 1–10.

Anil, P., Sudeep, A., & Cato, S. P. (2013). BASALT FRP MINBAR REINFORCED CONCRETE.

Ashshod, S., Sharif, M. B., Irfan-ul-Hassan, M., Khan, M., & Zhong, J.-L. Efficiency of Supplementary Cementitious Materials and Natural Fiber on Mechanical Performance of Concrete. (2020). Arabian Journal of Science and Engineering, 45(10), 8577–8589. 2020 4510. https://doi.org/10.1007/s13369-020-04769-9

Arlsan, M. E. (2016). Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Construction and Building Materials, 114, 383–391. https://doi.org/10.1016/j.conbuildmat.2016.03.176

Atta, K., El Refai, A., & Almashal, W. (2020). Flexural Behavior of Basalt Fiber-Reinforced Concrete Slab with BFRP Bars: Experimental Testing and Numerical Simulation. Journal of Composites for Construction, 24(2), 04020007. https://doi.org/10.1061/(ASCE)CC.1943-5614(2020)1-106

Ayub, T., Shaﬁq, N., & Nuruddin, M. F. (2016a). Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Engineering, 77, 131–139. https://doi.org/10.1016/j.proeng.2014.07.029

Ayub, T., Shaﬁq, N., & Nuruddin, M. F. (2016b). Effect of chopped basalt ﬁbers on the mechanical properties and microstructure of high performance ﬁber reinforced concrete. Advances in Materials Science and Engineering, 2014, 1–14. Epub ahead of print 2014. https://doi.org/10.1155/2014/587686

Betony, G. O. S. T., 1. 0. 1. 8. O. (2013). Metody opredeleniya prochnosti po kontrolnym osbrotsam [Concretes. Methods for determination of strength by control samples]. 36.

Bharat Kumar, B. H., Raghoprasad, B. K., Ramachandranmurthy, D. S., Narayan, R., & Gopalakrishnan, S. (2005). Effect of fly ash and slag on the fracture characteristics of high performance concrete. Materials and Structures, 38(1), 63–72. https://doi.org/10.1007/s11001-004-8057-6

Boccardi, S., Boﬁfa, N. D., & Carliomagnu, G. M. (2019). Lock-in thermography and ultrasound testing of impacted basalt ﬁbers reinforced thermoplastic matrix composites. Applied Sciences, 9(15), 3025. https://doi.org/10.3390/app9153025

Brancaccio, J. S. (2015). Properties and applications of basalt ﬁbre reinforced concrete. University of Windsor. https://scholar.uwindsor.ca/etd/5628

Caggiano, A., Gamborelli, S., Martinell, E., Nistico, N., & Pepe, M. (2016). Experimental characterization of the post-cracking response in Hybrid Steel/Polypolypropylene Fiber-Reinforced Concrete. Construction and Building Materials, 122, 1035–1061. https://doi.org/10.1016/j.conbuildmat.2016.08.068

Chidigihkaobi, P. C., Muritila, A. A., Mohamed, I. A. M., Abd Noor, A. A., Ibitogbe, E. M., & Niazmand, A. M. (2022). Mechanical characteristics of hardened basalt fiber expanded clay concrete cylinders. Case Stud Constr Mater, 17, e01368. https://doi.org/10.1007/s13369-2022-e01368

Dias, D. P., & Thaumaturgo, C. (2005). Fracture toughness of geopolymeric concretes reinforced with basalt ﬁbers. Cement and Concrete Composites, 27(1), 49–54. https://doi.org/10.1016/j.cemconcomp.2004.02.044

Dibiaso, H., & O, C. (2009). Inﬂuence of basalt ﬁber on physical and mechanical properties of treated recycled aggregate concrete. Construction and Building Materials, 254, 119216. https://doi.org/10.1016/j.conbuildmat.2020.119216

Ding, Z., Lu, Z., & Li, Y. (2011). Feasibility of Basalt Fiber Reinforced Inorganic Adhesive for Concrete Strengthening. Advanced Materials Research, 287–290, 1197–1200. https://doi.org/10.4028/www.scientiﬁc.net/AMR.287-290.1197

Feng, J., Tian, Y., Wang, X., Luo, C., & Sun, M. (2018). Basalt ﬁbers functionalized with gold nanoparticles for in-tube solid-phase microextraction. Journal of Separation Science, 41(5), 1149–1155. https://doi.org/10.1002/jssc.201710027

Ferdous, W., Almutairi, A. D., Huang, Y., & Bao, Y. (2018). Short-term flexural behaviour of concrete ﬁlled pultruded GFRP cellular and tubular sections with pin-eye connections for modular retaining wall construction. Composite Structures, 206, 1–10. https://doi.org/10.1016/j.compstruct.2018.08.025

Ferraro, L., Park, Y. D., & Shah, S. P. (2007). A method for mix-design of ﬁber-reinforced self-compact concrete. Cement and Concrete Research, 37(6), 957–971. https://doi.org/10.1016/j.cemconres.2007.03.014

Fiore, V., Scalicci, T., Di Bella, G., & Valenza, A. (2015). A review on basalt ﬁbre and its composites. Composites Part B: Engineering, 74, 74–94. https://doi.org/10.1016/j.compositesb.2014.12.034

Ganesh, A. C., & Muthukannan, M. (2021). Development of high performance sustainable optimized ﬁber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, 124543. https://doi.org/10.1016/j.jclepro.2020.124543

Gencel, O., Nadehi, M., Yavuz Boyraktar, O., Kaplan, G., Benli, A., Gholampour, A., & Ozbakaloglu, T. (2022). Basalt ﬁber-reinforced foam concrete containing silica fume: An experimental study. Construction and Building Materials, 326, 126861. https://doi.org/10.1016/j.conbuildmat.2022.126861

Jiang, C., Fan, K., Wu, F., & Chen, D. (2014). Experimental study on the mechanical properties and microstructure of chopped basalt ﬁbre reinforced concrete. Materials & Design, 58, 187–193. https://doi.org/10.1016/j.matdes.2014.01.056

John, V. J., & Dharmar, B. (2021). Inﬂuence of basalt ﬁbers on the mechanical behavior of concrete—A review. Structural Concrete, 22(1), 691–502. https://doi.org/10.1002/suco.201900086

Jumaa, G. B., & Yousif, A. R. (2019). Size Effect in Shear Failure of Reinforced Concrete Beams without Stirrup Reinforced with Basalt FRP Bars. KSJE Journal of Civil Engineering, 23(4), 1636–1650. https://doi.org/10.1007/s12205-019-0121-3

Kaboy, N. (2014). Abrasion resistance and fracture energy of concretes with basalt ﬁber. Construction and Building Materials, 50, 95–101. https://doi.org/10.1016/j.conbuildmat.2013.09.040

Kaw, A. K. Mechanics of Composite Materials. CRC Press. Epub ahead of print. 2 November 2005 https://doi.org/10.1201/9781420058291

Khan, M., & Cao, M. (2021). Effect of hybrid basalt ﬁbre length and content on properties of cementitious composites. Magazine of Concrete Research, 73(10), 487–498. https://doi.org/10.1680/jmacr.19.00226

Khan, M., Cao, M. A., Cao, M. A., & Hussain, A. (2022). Basalt Fibers in Modified Whisker Reinforced Cementitious Composites. Period Polytech Civ Eng, 66, 344–354. https://doi.org/10.3311/Ppce.18965

Khan, M., & Cao, M. (2018). Effect of basalt ﬁbers on mechanical properties of calcium carbonate whisker-steel ﬁber reinforced concrete. Construction and Building Materials, 192, 742–753. https://doi.org/10.1016/j.conbuildmat.2018.10.159
Khan, M., Coo, M., Chu, S. H., & Ali, M. (2022). Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding conditions. Construction and Building Materials, 322, 126340. https://doi.org/10.1016/j.conbuildmat.2022.126340

Khandelwal, S., & Rhee, K. Y. (2020). Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Composites Part B: Engineering, 192, 108011. https://doi.org/10.1016/j.compositesb.2020.108011

Khurana, M., & Karoteev, D. (2018). Effect of basalt fibres on the parameters of fracture mechanics of MB modifier based high-strength concrete. MATEC Web of Conferences, 251, 02003. https://doi.org/10.1051/matecconf/201825102003

Kizilkanat, A. B., Kobay, N., Akyüncü, V. et al. (2015). Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials, 100, 218–224. https://doi.org/10.1016/j.conbuildmat.2015.10.006

Koksal, F., Yildirim, M. S., Benli, A., & Gencel, O. (2021). Hybrid effect of micro-steel and basalt fibers on physico-mechanical properties and durability of mortars with silica fume. Case Stud Constr Mater, 15, e00649. https://doi.org/10.1016/j.cscem.2021.e00649

Kosmatka, S. H., & Wilson, M. L. (2011). Design and Control of Concrete Mixtures – The Guide to Applications, Methods and Materials. Lam, L., Huang, L., Xie, J. H., & Chen, J.-F. (2021). Compressive behavior of ultra-high performance concrete confined with FRP. Composite Structures, 274, 114321. https://doi.org/10.1016/j.comstruct.2021.114321

Lee, J. J., Song, J., & Kim, H. (2014). Chemical stability of basalt fiber in alkaline solution. Fibers Polym 2014 1511, 15, 2329–2334. https://doi.org/10.1007/s12221-014-2329-7

Li, H., Lin, J., Lei, X., & Wei, T. (2022). Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm. Materials Today Communications, 30, 103117. https://doi.org/10.1016/j.mtcomm.2021.103117

Li, Z. X., Li, C. H., Shi, Y. D., & Zhou, X.-J. (2017). Experimental investigation on mechanical properties of Hybrid Fibre Reinforced Concrete. Construction and Building Materials, 157, 930–942. https://doi.org/10.1016/j.conbuildmat.2017.09.098

Liu, B., Guo, J., Zhou, J., Wen, X., Deng, Z., Wang, H., & Zhang, X. (2020). The mechanical properties and microstructure of carbon fibers reinforced coral concrete. Construction and Building Materials, 249, 118771. https://doi.org/10.1016/j.conbuildmat.2020.118771

Liu, H., Yang, J., Kong, X., & Xue, X. (2017). Basic Mechanical Properties of Basalt Fiber Reinforced Recycled Aggregate Concrete. The Open Civil Engineering Journal, 11(1), 43–53. https://doi.org/10.2174/1874149501711010043

Li, Y., Zhang, J., He, Y., Huang, G., Li, J., Niu, Z., & Gao, B. (2022). A review on durability of basalt fiber reinforced concrete. Composites Science and Technology, 225, 109519. https://doi.org/10.1016/j.compscitech.2022.109519

Ma, Q., & Zhu, Y. (2017). Experimental research on the microstructure and compressive and tensile properties of nano-SiO2 concrete containing basalt fibers. Underground Space, 2(3), 175–181. https://doi.org/10.1016/j.undesp.2017.07.001

Miličky, J., Mishra, R., & Jamshaid, H. (2018). Basalt fibers. Handb Prop Text Tech Fibres, 805–840.
prestressing application. Materials & Design, 59, 558–564. https://doi.org/10.1016/j.matdes.2014.03.009
Wang, M., Zhang, Z., Li, Y., Li, M., & Sun, Z. (2008). Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites. 10.1177/0731684X07040819
Wei, J., Li, J., & Wu, C. (2019). An experimental and numerical study of reinforced conventional concrete and ultra-high performance concrete columns under lateral impact loads. Engineering Structures, 201, 109822. https://doi.org/10.1016/j.engstruct.2019.109822
Xie, C., Cao, M., Si, W., & Khan, M. (2020). Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites. Construction and Building Materials, 265, 120292. https://doi.org/10.1016/j.conbuildmat.2020.120292
Yavuz Bayraktar, O., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. https://doi.org/10.1016/j.conbuildmat.2021.123128
Zhang, C., Hao, H., & Hao, Y. (2021). Development of double-helix macro BFRP fibers for concrete reinforcement. Materials and Structures, 54(4), 1–16. https://doi.org/10.1617/s11527-021-01762-2
Zhang, H., Ji, S., Wang, L., Jin, C., Liu, X., & Li, X. (2022). Study on dynamic splitting tensile damage characteristics of basalt fiber reinforced concrete based on AE and DSCM. Journal of Building Engineering, 57, 104905. https://doi.org/10.1016/j.jobe.2022.104905
Zheng, Y., Zhuo, J., Zhang, P., & Ma, M. (2022). Mechanical properties and meso-microscopic mechanism of basalt fiber-reinforced recycled aggregate concrete. Journal of Cleaner Production, 370, 133555. https://doi.org/10.1016/j.jclepro.2022.133555
Zhou, H., Jia, B., Huang, H., & Mou, Y. (2020). Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials (Basel), 13(6), 1362. https://doi.org/10.3390/m13061362
