Bacillus manliponensis – A new member of Bacillus cereus group isolated from marine algae Enteromorpha intestinalis (L) Nees (Chlorophyceae)

Ememal Sharon .S1 and Rani.G2
1,2 Department of Plant Biology and Plant Biotechnology, S.D.N.B.Vaishnav College for women Chrompet, Chennai, India

Abstract
New Bacillus sps, strain BL4-6T was isolated from the green marine algae Enteromorpha intestinalis (L) Nees (Chlorophyceae). BL4-6T cells are oxidase-positive, catalyse-positive, ammonia production-positive. Based on the comparative 16S rRNA gene sequence analysis, the isolate belongs to Bacillus cereus group and it is closely related to Bacillus cereus(97.99%), Bacillus anthracis(97.99%), Bacillus thuringiensis(97.81%), Bacillus toyonensis(97.81%), Bacillus mycoides(97.45%), Bacillus weihenstephanensis(97.45%). The growth of this nitrogen fixing bacteria is proved by the formation of pellicle in nitrogen deficient NFB medium. The utilization of different carbon substrates by the bacterium and the effect of various antibiotics on the bacterium is also studied. This is the first report on the occurrence of Bacillus manliponensis as an endophytic nitrogen fixing bacteria in marine algae Enteromorpha intestinalis (L) Nees (Chlorophyceae).

Keywords: Bacillus manliponensis, Nitrogen fixing bacteria, Bacillus cereus group, Liquid Seaweed fertilizer.

I. INTRODUCTION

The Bacillus cereus group, also known as B. cereus sensu lato, consists of Gram-positive, rod-shaped, aerobic bacteria that are wide spread in natural environments. The bacteria of the B. cereus group produce various valuable enzymes and metabolites, (Nilegaonkar et al., 2007) degrade different types of pollutants and promote growth of both animals and plants when used as probiotic (Guinebretiere, M.H et al., 2013; Hong, H.A., Duc, L.H & Cutting, S.M 2005). In light of the significance of the B. cereus group, the identification and taxonomy of the isolates within the group are of fundamental importance, and therefore have been extensively studied using various typing methods from phenotype to genotype. In the past, the bacteria of this group were classified into different species according to 16S rRNA gene sequences and characteristics such as the presence or absence of virulence plasmids (B. anthracis and B. thuringiensis), colonial morphology (B. mycoides and B. pseudomycoïdes), psychrophilic or thermotolerant ability (B. weihenstephanensis and B. cytotoxicus) (Yang Liu, 2015).

Bacillus cereus strain RS87 was previously studied for plant growth enhancement in several plant families and examined in both greenhouse and field experiments (jetiyanon, 2002; jetiyanon & plianbangchang, 2010; jetiyanon & plianbangchang, 2012). Multiple mechanisms of plant growth promotion by strain RS87 have been reported including indole-3-acetic acid (IAA) production, phosphate solubilization, siderophore production and nitrogen fixation (jetiyanon et al., 2008; jetiyanon & plianbangchang, 2010; jetiyanon, 2015). Xie et al. (1998) reported that the following species were nitrogen-fixing bacteria based on nitrogenase activity: Bacillus megaterium, Bacillus cereus, Bacillus pumilus, Bacillus circulans, Bacillus licheniformis, B. subtilis, Bacillus brevis and Bacillus firmus. However nifH gene was only detected in the following species: Paenibacillus azotofixans, P. macerans, P. polymyxā, P. graminis and P. odorifer (Achouak et al., 1999; Berge et al., 2002). Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus
pseudomycoides, and Bacillus weihenstephanensis are members of the B. cereus group (Ash et al., 1991; Drobniewski, 1993; Lechner et al., 1998). Sequence comparison of the 16S rRNA gene within this group has shown that they are very closely related and it is not easy to differentiate the taxa due to their high genetic homology (Kaneko et al., 1978; Ash et al., 1991; Henderson et al., 1994; Nakamura, 1998; Kim et al., 2008). There have been reports documenting that the only established difference between B. cereus and B. thuringiensis strains is the presence of genes coding for insecticidal toxins, usually present in plasmids (Thorne, 1993; Helgason et al., 2000). B. thuringiensis can no longer be distinguished from B. cereus when these plasmids are lost (Thorne, 1993). Helgason et al., (2000) contended that B. anthracis, B. thuringiensis, and B. cereus should be considered as belonging to the same species due to the close similarity of the genomes. Recently Jung et al., (2011) reported a new Bacillus species within the Bacillus cereus group. Millions of microbes inhabit the root zone of plants, some plants are capable of exploiting these microorganisms to meet their hormonal and nutritional needs to meet the demand for increasing productivity of economically important crop plants, several new plant microbe associations have been reported. (Kloeppe et al., 1980, Malik et al., 1999, Goel et al., 2001, Tilak et al., 2005).

Endophytic interaction of marine algae and microorganisms has also been observed in some seaweeds which provides an interesting biotic environment for these bacterial communities (se-kwon kim., 1807). The seaweed surface provides a suitable substratum for the settlement of microorganisms and also secretes various organic substance that function as nutrients for multiplication of bacteria and the formation of microbial biofilms (Steinberg et al., 2002; Staufenberger et al., 2008; Singh, 2013). Some water-soluble monosaccharides such as rhamnose, xylose, glucose, mannose and galactose are part of algal polysaccharides that constitute part of the cell wall (Popper et al., 2011) and the rest storage material (Lahaye & Axelos, 1993; Michel et al., 2010a, b). These algal polysaccharides are a potential source of carbon and energy for numerous marine bacteria (Hehemann et al., 2012) that produce specific molecules, which in turn facilitate seaweeds–bacterial associations (Steinberg et al., 2002; Lachnit et al., 2013). Therefore, these interactions between seaweeds and bacteria have fascinated and attracted the attention of many researchers worldwide.

In the present study, we report a novel species of Bacillus manoliponensis as a new member isolated from the Bacillus cereus group as an endophytic nitrogen fixing bacteria from marine green algae Enteromorpha intestinalis (L) Nees (Chlorophyceae).

II. MATERIALS AND METHODS

2.1 SAMPLE COLLECTION

The marine alga Enteromorpha intestinalis (L) Nees (Chlorophyceae) was collected from the Kovalam coast 25 kms from Chennai (Fig: 1). The alga was identified with “The Structure and Reproduction of the Algae” (F.E.Fritsch 1967). The samples were collected in sterile plastic bags, stored and transported aseptically to the laboratory for further processing.

2.2 ISOLATION OF MARINE ENDOPHYTES

The marine algae were washed with sterile seawater, followed by two minutes wash in 70% ethanol and one-minute wash in 2% sodium hypochlorite. The samples were then rinsed with sterile seawater for five minutes with shaking and dried with tissue papers (Denise et al., 2002). The samples were cut into 2- 3 cm long segments using a sterile scalpel. The cut segments were then macerated using pestle and mortar, serially diluted and it is then inoculated in the (NFB) nitrogen free semisolid bromothymol blue malate medium(Dobereiner, J. and J.M.Day.1976).

The morphological characters such as colony size, pigmentation, edge and margin of the bacterial culture were recorded. The effect of Indole, Methyl red, Voges-Proskauer test, Citrate utilization, Lactose, Sucrose, Glucose fermentation, Triple sugar iron agar, Mannitol salt tolerance, Urease test, Nitrate reduction test, Starch, Casein hydrolysis, Pectinase, Cellulose assay, Production of HCN, and inorganic calcium phosphate on the nitrogen fixing bacteria was performed (Challa Krishna Kumara et al., 2013). 1% concentration of twenty-two different carbon sources such as
glucose, sucrose, malic acid, arabinose etc., were added separately to the NFB medium to study their effect on bacteria. Different amino acids such as alanine, valine, arginine, etc, were added separately to the NFB medium to study their effect on bacteria (Cavalcante; & Do¨bereiner, J. 1988). The isolates were cultured overnight in Mueller Hinton broth prepared using seawater. The plates were incubated by inverting for 24 hours at 37°C and the zones of inhibition were noted and recorded by disc diffusion method (Atlas, 1993).

2.3 DNA EXTRACTION AND PURIFICATION
Genomic DNA was extracted and purified by using the method of Marmur (1961) with some modification.

2.4 16S rRNA AMPLIFICATION AND SEQUENCING
Universal eubacterial 16S rDNA primers, fD1 - 5’-GAG TTT GAT CCT GGC TCA-3’ and rP2 - 5’-ACG GCT AAC TTG TTA CGA CT-3’ (Weisburg et al., 1991). The PCR cycling conditions were as follows: an initial denaturation for 5 min at 95 ºC, followed by 30 cycles of denaturation at 94ºC for 1 min, annealing at 59ºC for 1 min and extension at 72 ºC for 2 min and then a final extension for 5 min at 72ºC.

The rDNA amplification reaction mixture (30µl) consists of 2X Amplicon Red master mixes (amplicon®) with 10 ng of total genome of each isolate, 10 pmol of each forward and reverse primer. The amplified PCR products were electrophoresed on 1% agarose gel. The gel was stained in ethidium bromide. The amplified fragments were purified and sequenced by Eurofins Scientific (Bangalore). For species level identification, sequences were compared with the Genbank database using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

III. RESULTS AND DISCUSSION

3.1 ISOLATION OF NITROGEN FIXING BACTRIA
The diluted seaweed extract which was inoculated in the NFB medium clearly showed the pellicle formation thus proving the presence of nitrogen fixing bacteria. This was subcultured to obtain pure isolates and stored at 4 ºC for further morphological and biochemical studies (Fig. 2). Maximum number of colonies were observed in the dilution 10^-6 number of colonies observed were 150 X 10^6 CFU/ml. The colony characterization showed the diameter ranging from 0.1 - 0.2cm, yellowish pigmentation with smooth margin.

3.2 BIOCHEMICAL ANALYSIS AND 16S rRNA SEQUENCING
The biochemical reactions of the bacteria showed the presence of oxidase enzyme by the change of oxidase disc to blue colour. Addition of hydrogen peroxide on the culture drop showed the effervescence thus showing the presence of catalyse enzyme in the bacteria. The bacteria also showed the production of ammonia with Nesseler’s reagent. The isolate showed the positive results for Methyl red, Citrate utilization, glucose fermentation test, Triple sugar iron Test, Starch and Casein hydrolysis. The isolated endophytic bacteria was treated with various antibiotics of which, it was susceptible to Amikacin Chloramphenicol, Ciprofloxacin, Gentamicin, Streptomycin, Tetracycline and resistant to Penicillin-G, and Ampicillin. (Fig:3). The growth of bacteria was not observed in the medium supplemented with aminoacids Arginine, Valine, Leucine, Phenyl-alanine, cysteine, histidine, serine, showing that the bacteria does not utilize these aminoacids for their growth, however abundant growth was observed in the NFB medium supplemented with the aminoacids Amino-butryic acid, Tryptophan, Lycine, Methionine.

Bacteria was grown in NFB medium supplemented with twenty-two carbon sources of which the growth was not seen in malonic acid, oxalic and o xo-glutaric acid showing that the bacteria does not utilize these carbon sources for their growth. Other carbon sources namely Azelic acid, Fructose, Galactose, Glucose, Lactose, Mannitol, Meso-erythriol Meso-inositol, Malic acid, Maltose, Mannose, Rhamnose, Sorbitol, Sucrose, Xylose supported the growth of bacteria. As pointed out by Popper et al., (2011), some of the above mentioned carbon sources such as rhamnose, xylose, glucose, mannose and galactose which are the algal polysaccharides that constitute the part of
cellwall, may promote the growth of these bacteria. There are reports on algal polysaccharides as a potential source of carbon and energy for numerous marine bacteria (Hehemann et al., 2012), that produce specific molecules, which in turn facilitate seaweed–bacterial associations (Steinberg et al., 2002; Lachnit et al., 2013). Therefore, these interactions between seaweeds and bacteria have fascinated and attracted the attention of many researchers worldwide.

Fig. 1. Enteromorpha intestinalis - Habit, Fig. 2. Nitrogen fixing bacterial Culture and Fig. 3 & 4. Effect of antibiotics on Nitrogen fixing bacteria
a) Amikacin, b) Ciprofloxacin, c) Chloramphenicol, d) Ampicillin, e) Tetracycline f) Gentamicin, g) Streptomycin , h) Penicillin-G

Based on the comparative 16s rRNA gene sequence analysis, the isolate belong to the genus Bacillus cereus group and it is closely related to Bacillus cereus (97.99%), Bacillus anthracis(97.99%), Bacillus thuringiensis(97.81%), Bacillus toyonensis(97.81%), Bacillus mycoides(97.45%), Bacillus weihenstephanensis(97.45%).

sample E (548bp)=
>GGCGGACGGGTAGTAACACGTGGTAAACCTGCCATAAGACTGGGATAACTCCGGGAAACCGGCTACTACCCGAGTATTTCTGGAACCCGATGCTTTTGAAACTTGAAGGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCTAGCCGACCAGCTGAGGATGCTAAAGGCGCAGGATGCTAGGAAATTTGCAATGGGCGGAAAGTCTGACGGAGCAACGCCGCGTGAACGATGGGCCTTTCTGCCGATAGTTGGCTTAAAGTCTGCTTGTTAGGGAAGAAACTACCTACGCGGAGGCAGCAATGGAGAATCCGGCGAACATGGACGGAAGTCTGACGGAGCAACGCCGCGTGAACGATGGGCCTTTCTGCCGATAGTTGGCTTAAAGTCTGCTTGTTAGGGAAGAAACTACCTACGCGGAGGCAGCAATGGAGAATCCGGCGAACATGGACGGAAGTCTGACGGAGCAACGCCGCGTGAACGATGGGCCTTTCTGCCGATAGTTGGCTTAAAGTCTGCTTGTTAGGGAAGAA

ATTATTGGGGGCTTACCGTGGAGGGTCATTGGA
The 16S rRNA gene sequences of strain BL4-6T is available in the Gene Bank data base under the accession number (KY847541).

Bacillus manliponensis isolated from marine algae Enteromorpha intestinalis (L) Nees (Chlorophyceae) formed pellicle in NFB showing that it is a nitrogen fixing bacteria. Seaweeds are generally used as liquid seaweed fertilizers for many crop plants (Abtez.P. 1980, Bhosle et al., 1975, Rajkumar and S.K.Subramanium 1999). Gandhiyappan, K and Perumal (2001) have studied the effect of liquid seaweed fertilizer of Enteromorpha intestinalis (L) Nees (Chlorophyceae) as a growth promoting substance. However though there are many reports on liquid seaweed fertilizer obtained from various marine algae as growth promoting fertilizers for various crop plants, the present work substantiate that the growth promoting characteristics of liquid seaweed fertilizer could be due to the presence of nitrogen fixing endophytic bacteria of Bacillus cereus group. The present work is the first report on the isolation of Bacillus manliponensis from the green algae Enteromorpha intestinalis (L) Nees (Chlorophyceae).

BIBLIOGRAPHY

[1] Abetz, P. 1980. Seaweed extracts: have they placed in Australian Agriculture or Horticulture. J. Aus. Inst. Agric. Sci., 46: 23-29.
[2] Achouak, W., Normand, P. and Heulin, T. 1999. Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int J Syst Bacteriol., 49: 961–967.
[3] Ash, C., J.A. Farrow, S. Wallbanks, and M.D. Collins. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol.,13: 202–206.
[4] Atlas, R.M.1993. Handbook of microbiological media CRC Press Boca Raton, FL.1228.
[5] Berge, O., Guinebretiere, M.H., Achouak, W., Normand, P. and Heulin, T. 2002. Paenibacillus graminis sp. nov. and Paenibacillus Odorifer sp. nov., isolated from plant roots, soil and food. Int J SystEvolMicrobiol., 52: 607–616.
[6] Bhosle, N.B; Untawale A.G; and Dhargalker V.K; 1975. Effect of seaweed extract on growth of Phaseolus vulgaris. Indian J.Mar.Sci., 4:208–210.
[7] Cavalcante, V.A. and Do’bereiner, J. 1988. A new acid-tolerant bacterium associated with sugarcane. Plant Soil.,108: 23–31.
[8] Challa Krishna Kumari, Ravuri Jaya Madhuri and Chilakapati Damodar Reddy. 2013. Antimicrobial Potencial of Marine bacterial isolates from different coastal regions of Andhra Pradesh and Tamilnadu, India Int.J.Curr.Microbiol.App.Sci., 2(10): 230-237.
[9] Denise, K.Z, Pat, L.N, Harris, B.N, Feng, Z, Daniel, K, Higley, P, Carol, A.I, Alahari A, Raul, G.B, Anne, K.V. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants Appl. Environ. Microbiol., 68: 2198 2208.
[10] Dobereiner.J. and Day, J.M. 1976. Associative symbiosis in tropical grasses; Characterization of microorganisms and dinitrogen fixing sites In: Proc.First Inter. Symp. On N2 Fixation (W.E.Newton and C.J. Nyman, Eds.), Washington University Press, Pullman., 518-538.
[11] Drobniewski, F.A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev., 6: 324-338.
[12] Fritsch, F.E. The Structure and Reproduction of the Algae Vol.I/II. XII und 791, XIV und 939 S., 245 und 336 Abb., 2 und 2 Karten. Cambridge 1965 (reprinted): Cambridge University Press 90 S JE Band: 168-169.

[13] Gandhijiappan, K. and P. Perumal 2001. Growth promoting effect of seaweed liquid fertilizer (Enteromorpha intestinalis L.). Seaweed Res. Utltn., 23:23-25.

[14] Goel, A. K., Sundhu, S. S. and Dadarwal, K. R., In Recent Advances in Biofertilizer Technology (eds Yadav, A. K., Motsara, M. R. and Chaudhuri, R. S.), Society for Promotion and Utilisation of Resources and Technology, New Delhi, 2001: 207–256.

[15] Guinebretière, M. H. et al. 2013 Bacillus cytotoxicus sp. nov. is a novel thermo tolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol., 63: 31–40.

[16] Hehemann J.H, Correc G, Thomas F, Bernard T, Barbeyron T, Jam M, Helbert W, Michel G & Czjzek M. 2012. Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans. J BiolChem., 287: 30571–30584.

[17] Helgason, E., O.A. Okstad, D.A. Caugant, H.A. Johansen, A. Fouet, M. Mock, I. Hegna, and A.B. Kolsto. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - One species on the basis of genetic evidence. Appl. Environ. Microbiol., 66: 2627-2630.

[18] Henderson, I., Duggleby, C.J. and Turnbull, P.C.B. 1994. Differentiation of Bacillus antiracis from other Bacillus cereus group bacteria with the PCR. Int. J. Syst. Bacteriol., 44:99-105.

[19] Hong, H. A., Duc, L. H. & Cutting, S. M. 2005. The use of bacterial spore formers as probiotics. FEMS microbiology reviews., 29:813–835.

[20] Jetiyanon, K. 2002. Potential use of natural rhizobacteria for plant growth promotion and yield increase. In Thailand Toray Foundation (Ed.), The 10th Anniversary Thailand Toray Science Foundation. Bangkok, Thailand: Thailand Toray Foundation.

[21] Jetiyanon, K., Wittaya-Areekul, S., & Plianbangchang, P. 2008. Film coating of seeds with Bacillus cereus strain RS87 spores for early plant growth enhancement. Canadian Journal of Microbiology., 54 (10): 861-867.

[22] Jetiyanon, K., & Plianbangchang, P. 2010. Dose-responses of Bacillus cereus RS87 for growth enhancement in various Thai rice cultivars. Canadian Journal of Microbiology, 56(12), 1011-1019. Retrieved from http://www.nrcresearchpress.com/journal/cjm.

[23] Jetiyanon, K., & Plianbangchang, P. 2012. Potential of Bacillus cereus strain RS87 for partial replacement of chemical fertilisers in the production of Thai rice cultivars. Journal of the Science of Food and Agriculture., 92: 1080-1085.

[24] Jetiyanon, K. 2015. Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. Songklanakarin Journal of Science and Technology., 37(1): 1-8.

[25] Jetiyanon, K., Wittaya-Areekul, S., Plianbangchang, P., & Lohithnavy, O. 2015. Pellet formulation containing rhizobacteria. Thai Petty Patent No. 1503000365 (Transcript in Thai; submitted to Department of Intellectual property on March 20, 2014).

[26] Kaliaperumal, N. Kalimuthu S. and. Ramalingam J.R.2004. Present scenario of seaweed exploitation and industry in India. Seaweed Res Utltn., 26(1&2): 47-53.

[27] Kaneko, T., R. Nozaki, and K. Aizawa. 1978. Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol., 22: 639-641.

[28] Kim, W., J.Y. Kim, S.L. Cho, S.W. Nam, J.W. Shin, Y.S. Kim, and H.S. Shin. 2008. Glycosyltransferase - a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group. J. Med. Microbiol., 57: 279-286.

[29] Kloepper, J. W., Leong, J., Teintze, M. and Schrot, M. N., Nature, 1986. 286: 883-884.

[30] Lacknicht T, Fischer M, Kfenzel S, Baines J.F & Harder R T. 2013. Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol., 84:411-420.

[31] Lahaye M. & Axelos M.A.V.1993. Gelling properties of water soluble polysaccharides from proliferating marine green seaweeds (Ulvaspp). Carbohydr Polym., 22: 261.

[32] Lechner, S., R. Mayr, K.P. Francis, B.M. Pruss, T. Kaplan, E. Wiessner-Gunkel, G.S. Stewart, and S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychro tolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol., 48: 1373–1382.

[33] Malik, R. D. S., Kavimandan, S. K. and Tilak, K. V. B. R., 1999. Indian J. Exp. Biol., 37: 92-108.

[34] Marmur, J. 1961. A procedure for the isolation of DNA from microorganisms. J Mol Biol., 3: 208–218.

[35] Metting, B, Zimermann W.J., Crouch J. and Van Staden J. 1990. Agronomic uses of seaweed and microalgae. In: Introduction to applied phycology. J.Akatstuko (ed.) S.P.B. Academic Publishing, The Netherlands. 5532, p. 169.

[36] Michel G, Tonon T, Scornet D, Cock J.M & Kloareg.B. 2010a. Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus. Insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol., 188: 67–81.

[37] Michel G, Tonon T, Scornet D, Cock J.M & Kloareg.B. 2010b. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol., 188: 82–97.

[38] Min Young Jung, Joong-Su Kim, Woon Kee Paek, Jeongheui Lim, Hansoo Lee, Pyoung Il Kim, Jin Yeul Ma, Wonyong Kim, and Young-Hyo Chang 2011. Bacillus manoliponensis sp. nov; a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol., 49:1027-1032.
[39] Nakamura, L.K. and M.A. Jackson. 1995. Clarification of the taxonomy of Bacillus mycoides. J. Appl. Microbiol., 45: 46–49.

[40] Nilegaonkar, S. S., Zambare, V. P., Kanekar, P. P., Dhakephalkar, P. K. & Sarnaik, S. S. 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresource Technol., 98: 1238–1245.

[41] Popper Z.A, Michel G, Herve C, Domozych D.S, Willats W.G.T, Tuohy M.G, Kloareg B & Stengel. 2011 Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol., 62: 567–590.

[42] Rajkumar Immanuel, S. and S.K. Subramaniam. 1999. Effect of fresh extracts and seaweed liquid fertilizers on some cereals and millets. Seaweed Res. Utiln., 2 (1&2): 91-94.

[43] Se-Kwon Kim. 1807. Marine Microbiology: Bioactive Compounds and Biotechnological Applications. Wiley & Co., 520.

[44] Singh R.P, Shukla M.K, Mishra A, Reddy C.R.K & Jha, B. 2013. Bacterial extracellular polymeric substances and their effect on settlement of zoospore of Ulva fasciata. Colloids Surf B., 103: 223–230.

[45] Staufenberger T, Thiel V, Wiese J & Imhoff, J.F. 2008. Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol., 64: 65–77.

[46] Steinberg P.D, de-Nys R & Kjelleberg S. 2002. Chemical cues or surface colonization. J Chem Ecol., 28: 1935–1951.

[47] Thorne, C.B. 1993. Bacillus anthracis A.L. Sonenshein, J.A. Hoch, and R. Losick (eds.), Bacillus subtilis and other gram-positive bacteria, pp. 113-124. American Society for Microbiology, Washington D.C, USA.

[48] Tilak, K. V. B. R. et al., 2005. Curr. Sci., 89: 136–150.

[49] Weisburg W.G., Barns S.M, Peetier D.A, Lane DJ. 1991. “16S ribosomal DNA amplification for phylogenetic study”. J Bacteriol., 173(2):697-703.

[50] Xie, G.H., Su, B.L. and Cui, Z.J. 1998. Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze River valley. Acta Microbiol. Sin 3: 480–483.

[51] Yang Liu, Qiliang Lai, Markus Göker, Jan P. Meier-Kolthoff, Meng Wang, Yamin Sun, Lei Wang & Zongze Shao. 2015. Genomic insights into the Taxonomic status of the Bacillus cereus group. Sci. Rep., 5: 14082.