Evolutionary History and Diversity of Unionoid Mussels (Mollusca: Bivalvia) in the Japanese Archipelago

ISAO SANO1,*, TAKUMI SAITO2, JUN-Ichi MIYAZAKI3, AKIHISA SHIRAI4, TAKERU UECHI5, TAKAKI KONDO6 & SATOSHI CHIBA1,7

1 Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba, Sendai, Miyagi 980–8577, Japan
2 Department of Biology, Faculty of Science, Toho University, 2–2–1 Miyama, Funabashi, Chiba 274–8510, Japan
3 Faculty of Education, University of Yamanashi, 4327–204 Nakamachi, Nara, Nara 631–8505, Japan
4 Musashi High School and Junior High School, 1–26–1 Toyotamakami, Nerima, Tokyo 176–8534, Japan
5 Faculty of Agriculture, Kindai University, 3327–204 Nakamachi, Nara, Nara 631–8505, Japan
6 Osaka Kyoiku University, 4–698–1 Asahigaoka, Kashiwara, Osaka 582–8582, Japan
7 Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba, Sendai, Miyagi 980–8576, Japan

Received 31 July 2019; Accepted 20 January 2020 Responsible Editor: Shigeaki Kojima
doi: 10.3800/pbr.15.97

Abstract: The evolutionary history and diversity of unionoid mussels in East Asia need to be clarified and would shed light on the formation process of the unique fauna of Japan. Unionoid mussels (Mollusca: Bivalvia) are unique models for understanding the process by which organisms have diversified before and after the formation of the Japanese archipelago. Unionoid mussels have poor dispersal ability, so it is thought that they would have been strongly influenced by the archipelago’s formation. Therefore, the speciation and diversification processes of mussels before and after the archipelago’s formation were investigated by analyzing the nuclear and mitochondrial DNA of a wide range of species, particularly those inhabiting East Asia. The evolutionary history and divergence time of these mussels were examined. Unionoid mussels were found to have higher endemicity than other freshwater organisms. Although most of the endemic unionoid mussels of Japan are likely to have diverged before the formation of the Japanese archipelago, some other Japanese unionoid mussel species, including species endemic to Lake Biwa, an ancient lake in Japan, potentially diverged after the Japanese archipelago began to separate from the continent. This suggest that adaptation to the unique habitat of the ancient lake has caused diversification in the mussels endemic to it.

Key words: divergence time, Margaritiferidae, nuclear DNA, phylogeny, Unionidae

Introduction

Located at the eastern end of the Eurasian continent, the Japanese archipelago is a biodiversity hotspot (Ceballos & Brown 1995; Kerswell 2006; Fonseca 2009). The high biodiversity of the Japanese archipelago is seemingly due to the complex formation history of the Japanese fauna (Motokawa & Kajihara 2016). Japanese freshwater fauna also have a complex formation history (Watanabe et al. 2006; Tojo et al. 2017). 1) The formation of the Japanese archipelago dates back to about 15 million years ago (Hamanaka & Tosha 1985; Torii et al. 1985; Jolivet 1992). 2) After the formation of the archipelago, the freshwater fauna appeared to have interacted with continental fauna several times owing to the glacial-interglacial cycle (Cronin et al. 1994). 3) The Japanese archipelago has been historically affected by various climatic and environmental conditions because it is located in a wide latitude range spanning more than 3,000 km from north to south and has climate zones ranging from subarctic to subtropical (Kubota et al. 2017; Tojo et al. 2017). 4) Some regions and taxa in the archipelago are thought to have gone through large-scale extinctions (Nakajima 1986; Nakajima 1987; Watanabe & Uyeno 1999).

In contrast, the histories of the geographical formation and the regional fauna of each taxon are not always consistent. It is important to understand whether the formation of
freshwater fauna has been influenced mainly by common factors such as geographic isolations, or whether the dispersal capacity, interspecific relationships, and randomness of individual taxa have shaped freshwater fauna beyond such commonalities (Arbogast & Kenagy 2001).

To clarify this, it is important to construct and compare the molecular phylogenies of various taxa collected from both the Asian continent and the Japanese archipelago. However, reports of comparative studies that consider the historical relationship between organisms living on the Asian continent and those living in the Japanese archipelago have not been fully accumulated. Many studies using several freshwater organisms (Insect: Suzuki et al. 2014; Saito et al. 2016, 2018. Fish: Miyazaki et al. 2011; Gao et al. 2012; Tominaga et al. 2016; Tsao et al. 2016; Kano et al. 2018. Mollusca: Park & Kim 2003; Yamada et al. 2010; Hirano et al. 2015, 2019; Saito et al. 2018a, 2018c) have been conducted to verify the diversity of fauna in East Asia, mainly that of fauna in the Japanese archipelago. However, the evolutionary relationship between the fauna of the Asian continent and the Japanese archipelago has not been substantially clarified, with most studies having mainly used samples from the Japanese archipelago and only a few samples from the Asian continent. In recent years, studies using cyprinid fishes and planorbid snails have examined the process of faunal diversification using sufficient continental samples as well as samples from the Japanese archipelago (Saito et al. 2018b; Jang-Liaw et al. 2019). Small freshwater snails, such as planorbid, are passive dispersers that disperse across water systems via birds and within water systems via fishes (Rees 1965; Boag 1986; Wesselingh et al. 1999; Green & Figuerola 2005; Kaptes & Haase 2012; van Leeuwen & van der Velde 2012; van Leeuwen et al. 2012), whereas fishes are active dispersers that do not move outside water systems. Unionoid mussels are also passive dispersers that migrate within water systems; their larvae can disperse by attaching to fishes, though they do not move after larval settlement to the bottom of a water body. Levels of gene flow among populations of unionoid mussels are likely to reflect their passive dispersal ability. In addition, bitterling fishes have a unique trait of laying eggs in the gills of unionoid mussels, whereas unionoid larvae need to parasitize mainly freshwater fishes other than bitterlings (Smith et al. 2000a, 2000b, 2001; Mills & Reynolds 2002a, 2002b; Itoh et al. 2003; Kitamura 2005, 2006a, 2006b; Mills et al. 2005; Reichard et al. 2006, 2007, 2010). Thus, unionoid mussels, unlike cyprinid fishes and planorbid snails, form close symbiotic relationships with other freshwater organisms and are central to biological interactions in freshwater. The evolutionary history of these mussels, therefore, appears to reflect more strongly the history of geographic formation than that of other freshwater organisms and is therefore a good model for examining the relationship between the formations of fauna and geography.

There are many freshwater-mussel species that have not been analyzed or have been studied only piecemeal, and there is an increasing need for more accurate research on individual taxa. Kano et al. (2019) reported a phylogenetic tree of specimens in Japan based on mitochondrial 16S rDNA, but the positions of almost all clades on the tree, except those of species-level clades, were poorly supported. Furthermore, the samples they used were limited to those from Kyushu and the Ryukyu Islands, making it difficult to understand the diversification process of unionoid mussels in the Japanese archipelago.

In contrast, Sano et al. (2017) constructed phylogenetic trees using species living across the Japanese archipelago and evaluated the current systematics of Japanese unionoid mussels. However, the evolutionary relationships between mussels living in continental East Asia and those living in the Japanese archipelago remain unclear, as do the changes in unionoid divergence before and after the archipelago's formation. Therefore, it is necessary to analyze nuclear and mitochondrial DNA using a comprehensive set of species inhabiting the Asian continent and the archipelago.

In this study, we estimated phylogenetic relationships based on nuclear and mitochondrial sequences. In addition, we estimated the divergence times of East Asian unionoid mussel species to elucidate how unionoid mussels diversified before and after the formation of the Japanese archipelago.

Materials and Methods

Materials

Seventy-three unionoid specimens were collected in Japan and preserved in 99.5% ethanol. Prior to our genetic study, we identified specimens based on the morphological features of the shell and larvae described by Kondo (2008, 2015) and Lopes-Lima et al. (2017) and assigned them to Margaritiferidae (2 species) and Unionidae (16 species). In addition, we selected specimens from each species belonging to the same families as those living in the Japanese archipelago and obtained their data from the GenBank database. Detailed information on the specimens and sample abbreviations, including those of samples used by Sano et al. (2017), are given in Table 1.

DNA sequencing

To prepare samples for sequencing, we removed the foot muscle from each unionoid mussel and boiled it at 100°C. Then, total DNA was extracted using a DNeasy® Blood & Tissue Kit (QIAGEN GmbH, Hilden, Germany) according to the manufacturer's protocol. PCRs for nuclear 28S rDNA using primers, 28S-RD1.3f and 28S-rD4b (Whiting 2002), were conducted under the following condition: initial denaturation at 95°C for 3 min; 35 cycles of denaturation at 95°C for 45 sec, annealing at 60°C for 3 min, and extension at 72°C for 30 sec; followed by a final extension at 72°C for 7 min. Mitochondrial COI DNA was amplified
#	Family	Species	Sample Ab.	Locality	Accession No. of mitochondrial COI DNA	Accession No. of mitochondrial 16S rDNA	Accession No. of nuclear 28S rDNA
U1	Margaritiferaeae	Margaritifera laevis	Ma14-1SUTO	Gujo, Gifu, Japan	LC518956	LC223972*	
U2			Ma14-2SUTO	Gujo, Gifu, Japan	LC518957	LC223973*	LC519050
U3			Ma14-3SUTO	Gujo, Gifu, Japan	LC518958	LC223974*	
U4			Ma-u2	Teeshingawa River, Hokkaido, Japan	LC518959	LC519029	LC519051
U5		—	—	Iwaiizumi, Japan	KU763223*	EU590915*	
U6		—	—	Iwaiizumi, Honshu, Japan	KU763221*	EU590914*	
U7		—	—	Iwaiizumi, Town, Honshu, Japan	KU763222*	KU763192*	
U8	Margaritifera togakushiensis	Mt32-04	Togakushi, Nagano, Japan		LC518960	LC519030	LC519052
U9		Mt-k	Togakushi, Nagano, Japan		LC518961	LC224020*	LC519053
U10		—	Togakushi, Nagano, Japan		KU763244*	KU763215*	
U11		—	Togakushi, Nagano, Japan		KU763245*	KU763216*	
U12	Margaritifera marviana	—	Hunter, Creek, Alabama, USA		KU763243*	KU763214*	
U13	Margaritifera hembeli	—	Valentine, Creek, Louisiana, USA		KU763218*	KU763189*	
U14		—	Brown, Creek, Louisiana, USA		KU763219*	KU763190*	
U15	Margaritifera dahurica	—	Komissarivka River, Primorye, Terr, Russia		AY579123*	KF514426*	
U16	Margaritifera margaritifera	—	Barabassetse River, Maine, USA		KU763234*	KU763203*	
U17		—	Thurma River, Kola Peninsula, Russia		AF303334*	AF303296*	
U18		—	Locust Creek, Pennsylvania, USA		KU763227*	KU763196*	
U19		—	Regen River, Germany		KU763235*	KU763204*	
U20		—	Nore River, Ireland		AF303343*	AF303320*	
U21		—	Nore River, Ireland		AF303342*	AF303361*	
U22		—	Dereen River, Hacketstown, Ireland		KU763237*	AF303293*	
U23		—	Varraga River, Kola Peninsula, Russia		KU763238*	KU763208*	
U24		—	Varraga River, Kola Peninsula, Russia		KU763239*	KU763209*	
U25		—	Suomojoki, Finnlnd		KU763230*	KU763199*	
U26		—	Salmon Stream, Maine, USA		KU763232*	KU763201*	
U27		—	Salmon Stream, Maine, USA		KU763233*	KU763202*	
U28	Margaritifera rochechouartii	—	Nanxinxiang, Gan River, Jiangxi, China		MF072499*	MF072506*	
U29		—	Nanxinxiang, Gan River, Jiangxi, China		MF072498*	MF072505*	
U30		—	Nanxinxiang, Gan River, Jiangxi, China		MF072500*	MF072507*	
U31		—	Nanxinxiang, Gan River, Jiangxi, China		MF072501*	MF072508*	
U32		—	Nanxinxiang, Gan River, Jiangxi, China		MF072502*	MF072509*	
U33		—	Nanxinxiang, Gan River, Jiangxi, China		MG595548*		
U34	Margaritifera laosensis	—	Mun River, Thailand		KU763224*	KU763193*	
U35		—	Luang Prabang, Laos		KU763225*	KU763194*	
U36	Margaritifera auriculata	—	Canal Imperial Zaragoza, Spain		AF303309*	AF303274*	
U37		—	Ebro River, Tarragona, Spain		AY579125*	AY579083*	
U38		—	Canal Imperial Zaragoza, Spain		AF303313*	AF303278*	
U39	Margaritifera marocana	—	Ouat Er Rbia River, Dange Bradia, Morocco		EU429677*	EU429687*	
U40		—	Ouat Er Rbia River, Dange Bradia, Morocco		EU429678*	EU429689*	
U41		—	Abid River, Imnadahine Oued Abid, Morocco		EU429679*	EU429691*	
U42	Margaritifera falcata	—	Idaho, USA		AY579128*	AY579085*	
U43	Cumberlandia monodonta	—	Missouri, USA		AY579131*	AY579089*	
U44	Unionidae	Scabia crispa	—	Southeast Asia	KF795023*	KX713253*	
U45	Nodularia douglasiae	—	Bwatake 3	Lake Biwa, Shiga, Japan	LC518962	LC223961*	LC519054
U46		—	Lake Kawaguchiko, Yamanashi, Japan		LC518963	LC223964*	
U47		—	Lake Kawaguchiko, Yamanashi, Japan		LC518964	LC223965*	
U48	Un-n0-01	—	Wakayama, Japan		LC518965	LC223975*	
U49	Un-n0-02	—	Wakayama, Japan		LC518966	LC223976*	
U50	Un-n3-06f	—	Nakama, Fukuoka, Japan		LC518967	LC223977*	LC519055
U51	Un-n3-07f	—	Nakama, Fukuoka, Japan		LC518968	LC223978*	
U52	Un-u5	—	Yodo River, Osaka, Japan		LC518969	LC519031	
U53	Un-u6	—	Mukogawa River, Hyogo, Japan		LC518970	LC519032	
U54		—	China		NCO26111*	NCO26111*	
U55		—	China		KM657954*	KM657954*	
U56		—	Gan River, Jiangxi, China			MG595555*	
U57	Union delphinius	—	Portugal		NCO33854*	NCO33854*	
U58	Union pictorum	—	England, UK		K429109*	K429296*	
U59	Union crassus	—	Europe		NCO33976*	NCO33976*	
Table 1. Continued.

#	Family	Species	Sample Ab.	Locality	Accession No. of mitochondrial COI DNA	Accession No. of mitochondrial 16S rDNA	Accession No. of nuclear 28S rDNA
U60	Cuneopsis pisciculus				NC026306*		
U61	Cuneopsis celiformis				NC026306*		
U62	Lamprotula gottschei				NC023806*		
U63	Inversiunio reinianus	Inr07-01	Lake Biwa, Shiga, Japan		LC158971	LC223979*	
U64	Inversiunio jokohamensis	Ij25-01	Sakai, Yamagata, Japan		LC158977	LC223980*	LC519058
U70	Inversiunio yanagawensis	Iy09-10	Gion, Okayama, Japan		LC158986	LC223987*	LC519060
U79	Arcoma lanceolata				NC023955*		
U88	Lanceolaria grayana				NC026886*		
U90	Lanceolaria gladiola				NC026886*		
U91	Lepidodesma languilati				NC029491*		
U92	Aculamprotula tientinensis				NC029491*		
U93	Lamprotula caveata				NC029491*		
U94	Obovalis omiensis				NC029491*		
U99	Ptychorhynchus pfisteri				NC029491*		
U103	Pronodularia japonensis	Pj25-06	Sakai, Yamagata, Japan		LC158998	LC223996*	
U104	Pj14-02f	Gifu, Japan			LC158999	LC223997*	
U105	Pj14-05f	Gifu, Japan			LC159000	LC223998*	LC519066
U106	Pj04-01SUTO	Hiroshima, Japan			LC159001	LC224001*	LC519067
U107	Pj04-03SUTO	Hiroshima, Japan			LC159002	LC224002*	
U117	Sinohyriopsis schlegeli	Hsz21-02f	Lake Anemura, Aomori, Japan		LC159006	LC224005*	LC519070
U118	Hsz21-05f	Lake Anemura, Aomori, Japan			LC159007	LC224006*	LC519071

* Data obtained from GenBank.
Table 1. Continued.

#	Family	Species	Sample Ab.	Locality	Accession No. of mitochondrial COI DNA	Accession No. of mitochondrial 16S rDNA	Accession No. of mtDNA 28S rDNA
U119	Sinohyriopsis cumingii	—	China		HQ641406*	HQ641406*	
U120	—	China			HM347668*	HM347668*	
U121	—	Poyang Lake, Jiangxi, China					
U122	Lampsis cardium	—	Illinois, USA		KX713142*	KX713142*	MG95611*
U123	Cristaria plicata	Cp21-10f	Lake Anenuma, Aomori, Japan	LC519008	LC224007*	LC519072	
U124	Cp21-11f	Lake Anenuma, Aomori, Japan	LC519009	LC224008*			
U125	Cp31-01fmg	Joetsu, Niigata, Japan	LC519010	LC224009*			
U126	YAMAKARA 1	Lake Yamanakako, Yamanashi, Japan	LC519011	LC223968*			
U127	YAMAKARA 2	Lake Yamanakako, Yamanashi, Japan	LC519012	LC223969*			
U128	YAMAKARA 5	Lake Yamanakako, Yamanashi, Japan	LC519013	LC223971*			
U129	YAMAKARA 6	Lake Yamanakako, Yamanashi, Japan	LC519014	LC223970*			
U130	—	Zhejiang, China	FJ986302*	FJ986302*			
U131	—	Gan River, Jiangxi, China			MG955485*		
U132	Sinonodonta lauta	fk168	Ishikawa, Japan	LC519015	LC224010*	LC519074	
U133	KONZAIYSU E	Lake Biwa, Shiga, Japan	LC519016	LC223967*			
U134	FUKUNUMA 22	Minamisoma, Fukushima, Japan	LC519017	LC223966*			
U135	Sinonodonta japonica	fk20f	Kyoto, Japan	LC519018	LC224011*		
U136	fk35f	Kushiro, Hokkaido, Japan	LC519019	LC224012*			
U137	fk59f	Kagawa, Japan	LC519020	LC519046			
U138	Sinonodonta calypygus	bk221	Lake Biwa, Shiga, Japan	LC519021	LC224013*		
U139	bk222	Lake Biwa, Shiga, Japan	LC519022	LC519047			
U140	Sinonodonta oguare	bk156	Yodo River, Osaka, Japan	LC519023	LC224015*		
U141	bk-01	Osaka, Japan	LC519024	LC519048			
U142	Sinonodonta woodiana	—	China	NCO24943*	NCO24943*		
U143	Sinonodonta lucida	—	Asian continent	NCO26673*	NCO26673*		
U144	Sinonodonta angula	—	Anren County, Hunan, China			MG95575*	
U145	Anemina arcusiformis	fk36f	Kagawa, Japan	LC519025	LC224014*		
U146	fk90f	Ishikari, Hokkaido, Japan	LC519026	LC519049			
U147	—	Asian continent	KF667530*	KF667530*			
U148	—	Qinglan Lake, Jiangxi, China			MG95464*		
U149	Anemina eucosphys	—	China	NCO26792*	NCO26792*		
U150	Pletholobus tenais	P43-02	Munakata, Fukuoka, Japan	LC519027	LC224017*		
U151	P43-03	Munakata, Fukuoka, Japan	LC519028	LC224018*			
U152	Alasmidonta varicosa	—	Connecticut River, Croyden, Brook, USA	MG938673*	MG938673*		
U153	Acuticosta chinensis	—	Gan River, Jiangxi, China			MG95450*	
U154	Acalamprodula tortuosa	—	Qinglan Lake, Jiangxi, China			MG95443*	
U155	Alasmidonta heterodon	—	USA	NCO37431*	NCO37431*		
U156	Lasmigona compressa	—	USA	HM856638*	HM856638*		
U157	Pyganodon grandis	—	USA	FJ809754*	FJ809754*		
U158	Utterbackia imbecilla	—	USA	HM856637*	HM856637*		
U159	Utterbackia peninsularis	—	USA	HM856636*	HM856636*		
U160	Anodonta anatina	—	Poland	NCO22803*	NCO22803*		
U161	Anodonta cygnea	—	Germany	NCO36488*	NCO36488*		
U162	Schistodesmus lampeyanus	—	Gan River, Jiangxi, China			MG95569*	
U163	Solenaia olivora	—	Poyang Lake, Jiangxi, China			MG95618*	
U164	Hyriidae	Hyridella australis	BivAToL-378	Australia, New South Wales	KX713467*	KX713224*	
U165	Velenusinio ambiguus	—	Australia, New South Wales	KC429106*	KC429263*		
U166	Tripodon corrugatus	BivAToL-380	Peru	KX713505*	KX713262*		
U167	Hyridae	Mycetopodidae	Anodontites elongata	BivAToL-323	Peru	KX713444*	KX713190*
U168	Lamproscapha ensiformis	BivAToL-382	BivAToL-382	KX713471*	KX713225*		
U169	Etheriidae	Etheria elliptica	BivAToL-404	Zambia	KX713462*	KX713219*	
U170	Iriridae	Aspasharia pfeifferiana	BivAToL-330	Zambia	KC429107*	KC429264*	
U171	Chambradaria wahlbergii	BivAToL-405	Zambia	KX713448*	KX713202*		
U172	Muteidae	Muteidula harkeri	BivAToL-401	Zambia	KX713482*	KX713237*	
U173	Trigonidae	Neotrigonia margaritacea	—	Australia	KX713243*	KX713243*	
U174	Neotrigonia lamarkii	—	Queensland, Australia	KC429262*	KC429262*		
U175	—	Queensland, Australia	AM779652*				
using nested PCR. The first set of PCR reactions was conducted using the sense and antisense primers FWCO1-2F, 5'-CAA ACC TAT CTG GAT AAT CAG AAT ACC GAC GAG G-3' and FWCO2-2R, 5'-TGA GCT TTT GGG GTC AAT TAG GGT TTC A-3' under the following conditions: initial denaturation at 95°C for 3 min; 45 cycles of denaturation at 95°C for 45 sec, annealing at 60°C for 10 min, and extension at 72°C for 1 min; followed by a final extension at 72°C for 7 min. The second set of PCR reactions was performed using the sense and antisense primers HCO2198-1F, 5′-TAC ACT TCA GGA TGA CCA AAA AAC CA-3′ and LCO1490-1R, 5′-GTT GAT TGT GTT CTA CTA ATC ATA AGG ATA TTG G-3′ under the following conditions: initial denaturation at 95°C for 3 min; 30 cycles of denaturation at 95°C for 45 sec, annealing at 60°C for 3 min, and extension at 72°C for 30 sec; followed by a final extension at 72°C for 7 min.

PCR products for the nuclear 28S and mitochondrial COI were purified using a QIAquick™ PCR Purification Kit (QIAGEN GmbH, Hilden, Germany). Sequence reactions were performed using a GenomeLab™DTCS-Quick Start Kit (Beckman Coulter Inc., California, USA) and the same primers for the final PCR under the following conditions: 30 cycles of denaturation at 96°C for 20 sec, annealing at 50°C for 20 sec, and extension at 60°C for 4 min. Direct sequencing of the double-stranded PCR products was performed using a CEQ™ 2000XL DNA Analysis system (Beckman Coulter Inc., California, USA) according to the manufacturer's instructions. Mitochondrial 16S rDNA was amplified and sequenced as described previously (Sano et al. 2017).

Phylogenetic analysis

Alignments of nuclear 28S rDNA, mitochondrial COI, and 16S rDNA sequences were performed using MUSCLE v3.8 (Edgar 2004). The results were confirmed by visual inspection using MEGA 6.0 (Tamura et al. 2013). Then, trimAl v1.4 (Capella-Gutiérrez et al. 2009) was used to remove regions of the 16S rDNA and 28S rDNA aligned sequences unsuitable for phylogenetic analysis. We constructed trees using 413-bp 28S rDNA. We also used 937-bp concatenated COI DNA+16S rDNA sequences, including 532-bp COI DNA and 405-bp 16S rDNA, for the construction of trees.

Bayesian (BI) trees were constructed using MrBayes5d version 3.1.2.2012.12.13 (Ronquist et al. 2012; Tanabe et al. 2008), based on a model evaluation performed using PartitionFinder v2.1.1 (Lanfear et al. 2016) (Table 2). The Markov chain Monte Carlo (MCMC) lengths for nuclear and mitochondrial DNA, respectively. The program Tracer v. 1.6 (Rambaut et al. 2013) was used to evaluate MCMC chain convergence and to compute marginal posterior distributions of parameters, after the removal of 10% of the chain as burn-in. In the case of the mitochondrial DNA analysis, when the temperature was the initial setting, the likelihood did not cease, so the temperature was set to 0.15. A maximum-likelihood (ML) tree was constructed using IQ-TREE (Nguyen et al. 2014) based on a model evaluation performed using PartitionFinder v2.1.1 (Lanfear et al. 2016) (Table 2). The tree reliability was evaluated by generating 1,000 bootstrap replicates.

Recent studies have published evidence that could be useful for more accurately estimating the divergence times of unionoid mussels. Fossil records were reported (Huang et al. 2018) and molecular clock rates based on geographic events were estimated for unionoid mussels (Froufe et al. 2016). Fossil records are based primarily on shell morphology. However, because previous studies have shown that there are cases in which the shell morphology and molecular lineage of unionoid mussels are not consistent (Pfeiffer & Graf 2013), there is a possibility of overestimating the divergence time based on fossil records. Thus, we conducted divergence time estimation based on the molecular clock rates in addition to fossil record-based estimation. Both nuclear and mitochondrial sequences of the same individuals have rarely been published, and much more sequence data have been published for mitochondrial genes than for nuclear genes. Therefore, we estimated the divergence time using BEAST2 v2.4.4. (Bouckaert et al. 2014) without the nuclear sequence dataset. The Bayesian inference was based on the substitution rates estimated using geological events (tree prior=Yule process; ngen=3.6×10⁶; samplefreq=1,000; clock models=uncorrelated lognormal relaxed clock) and based on molecular clock node calibrations estimated by fossil records (tree prior=Yule process; ngen=5.4×10⁵; samplefreq=1,000; clock models=uncorrelated lognormal relaxed clock). When we used substitution rates estimated based on geological events, we made estimates using a substitution rate for COI of 0.265±0.06%/million years, which was reported by Froufe et al. (2016). Froufe et al. (2016) examined the impact of the Strait of Gibraltar, which appeared around 5.33 Mya (Krijgsman et al. 1999), on the diversification of Unio species. Using the

Partition contents	Model of sequencing evolution: MrBayes and IQ-TREE	Model of sequencing evolution: BEAST
28S	GTR+G	—
COI 1st	GTR+I+G	TRN+I+G+X
COI 2nd	TIM+I	GTR+I+X
COI 3rd	GTR+G	GTR+G+X
16S	GTR+I+G	GTR+I+G+X

Table 2. Partitioning schemes and best fit models identified using PartitionFinder for the nuclear and combined mitochondrial dataset. "+X" was added when base frequencies were estimated.
results of this study, they calculated the substitution rates, which are currently the most reliable within Unionoida. In contrast, when we used molecular clock node calibrations estimated based on fossil records, the constraints, as indicated by Huang et al. (2018), were as follows: (1) The tree root height of Palaeoheterodonta (normal distribution prior, mean=475, stdev=2); (2) Margaritiferidae+Unionidae (exponential prior, min=230 Ma, lambda=30); (3) Unionidae (exponential prior, min=152 Ma, lambda=20); (4) The most recent common ancestor (MRCA) of _M. falcata_–_M. laevis_ (exponential prior, min=46 Ma, lambda=12.5); (5) The MRCA of _M. dahuica_–_M. margaritifera_ (exponential prior, min=34 Ma, lambda=9.3); and (6) The MRCA of _M. marocana_–_M. auricularia_ (exponential prior, min=35 Ma, lambda=9.5). Huang et al. (2018) estimated the divergence time, mainly within Margaritiferidae, using fossils of the early Ordovician genus _Noradonta_ and the oldest fossil _Shifangella_ assigned to Margaritiferidae. We examined convergence and effective sample size (ESS) using Tracer v. 1.6 (Rambaut et al. 2013). Substitution models of each partition were selected from the available evolutionary models of BEAST2 v2.4.4 (Bouckaert et al. 2014) using PartitionFinder v2.1.1 (Lanfear et al. 2016) (Table 2). We used _Neotrigonia_ (KX713243, KC429262, and AM779652) sequences as the outgroup (Table 1).

Results

Fig. 1 shows the phylogenetic relationships among Japanese unionoid mussels based on the sequences of their nuclear 28S rDNA (413 bp). There were 145 variable and 103 informative sites in the 28S tree. The topologies depicted by the BI trees were essentially identical to those depicted by the ML tree. Japanese unionoid mussels were divided into two clades corresponding to the two families Margaritiferidae and Unionidae. In Unionidae, there were two clades corresponding to the subfamilies Unioninae, and Gonideinae. The resolution of distal clades, however,
Fig. 2. Phylogeny of the Japanese unionoid mussels based on mitochondrial COI and 16S rDNA. This phylogenetic tree was constructed based on a total of 937 bp of mitochondrial COI and 16S genes. *Neotrigonia* was used as an outgroup. Bayesian inference (BI) posterior probabilities (left) and maximum-likelihood (ML) bootstrap values (right) are specified near the relevant nodes. The operational taxonomic units (OTUs) accompanied by “*” live in the Japanese archipelago. “***” indicates the endemic species in Japan. Nodes, supported by a probability of 1.00/100, were written as “+++".
Fig. 3. Time estimation based on substitution rates based on geological events. This phylogenetic tree was constructed based on a total of 937 bp of mitochondrial COI and 16S genes. *Neotrigonia* was used as an outgroup. The gray node bar represents the 95% confidence interval for the divergence time. The operational taxonomic units (OTUs) accompanied by "*" live in the Japanese archipelago. "**" indicates the endemic species in Japan.
Fig. 4. Time estimation based on fossil records. This phylogenetic tree was constructed based on a total of 937 bp of mitochondrial COI and 16S genes. *Neotrigonia* was used as an outgroup. The gray node bar represents the 95% confidence interval for the divergence time. The operational taxonomic units (OTUs) accompanied by "*" live in the Japanese archipelago. "**" indicates the endemic species in Japan. The numbers in parentheses indicate the locations of the constraints used in the analysis.
was poor, and detailed phylogenetic relationships among species and among genera could not be obtained.

Fig. 2 shows the phylogenetic relationships of Japanese unionoids based on combined sequences (937 bp) of the 16S rRNA and COI genes. There were 264 variable and 249 informative sites in the COI and 283 variable and 227 informative sites in the 16S rRNA. The topologies depicted by the BI trees were essentially identical to those depicted by the ML tree. We presented the 16S rDNA tree in our previous study (Sano et al. 2017) and revised it here by adding the newly collected specimens of Nodularia douglasiae, Inversiunio jokohamensis, I. reinianus, Lanceolaria grayii, Anemina arcaeformis, Sinanodonta ogurae, S. japonica, S. calipygos, Obovalis omiensis, Margaritifera laevis, and M. togakushiensis.

Japanese unionoid mussels were divided into two clades corresponding to two families, the Margaritiferidae and Unionidae. In Unionidae, there were three clades corresponding to the subfamilies Parreysiinae, Unioninae, and Gonideinae. Most clades corresponding to each genus were formed with high statistical support. The only exception was Sinanodonta (0.44/79).

Most species living in the Japanese archipelago formed clades with robust statistical supports, even though the specimens of some species were collected from distant localities. Based on Kondo (2008, 2015), species living in the Japanese archipelago can be broadly divided into two types: a) species that are not endemic to the Japanese archipelago and are found on both the Asian continent and Japan, and b) species that are endemic to Japan and occur only in the Japanese archipelago. The above type a) species include M. laevis, A. arcaeformis, Pletholophus tenuis, Cristaria plicata, L. grayii, and N. douglasiae. All these species formed their own clade, except for A. arcaeformis. Type b) species include M. togakushiensis, Pronodularia japonensis, O. omiensis, Inversidens brandti, Sinohyriopsis schlegeli, S. lauta, S. japonica, S. calipygos, S. ogurae, I. jokohamensis, I. yanagawensis, and I. reinianus. All these species formed their own clade, except for S. lauta, S. japonica, S. calipygos, and I. yanagawensis. Three Sinanodonta species, S. lauta, S. calipygos, and S. japonica, did not form their own clades and exhibited complicated relationships with S. ogurae.

Two types of divergence time estimations were made: one based on evolutionary rates (Fig. 3) and another based on fossil records (Fig. 4). The divergence times among the major clades were older for those estimated by fossil records than for those by molecular clock rates, but their 95% confidence intervals were mostly overlapped. When we assumed that the Japanese archipelago started to develop at the time of the formation of the Sea of Japan (Figs. 3 and 4); 10 of the 12 endemic Japanese species were found to diverge before the formation of the Japanese archipelago (M. togakushiensis, P. japonensis, O. omiensis, I. brandti, S. lauta, S. japonica, S. calipygos, S. ogurae, I. jokohamensis, and I. yanagawensis). In contrast, two species, S. schlegeli and I. reinianus, may have diverged after the formation of the Japanese archipelago.

Discussion

In this study, we sequenced all 18 species of the order Unionoida from Japan and examined the evolutionary history and species diversity of the order before and after the formation of the Japanese archipelago using published data for the Asian continent. The results revealed that nuclear sequences did not have as much phylogenetic information as mitochondrial sequences in the case of Unionoida. Nuclear 28S rDNA was suitable for estimating family-level and subfamily-level phylogenetic relationships, but not for estimating lower-order phylogenetic relationships (Fig. 1). Thus, the results based on mitochondrial DNA are discussed.

Unionoid mussels living in the Japanese archipelago were found to be highly endemic. Detailed genetic analysis revealed that most of the 12 species endemic to the Japanese archipelago formed monophyletic groups and differentiated independently (Fig. 2). In contrast, our results also confirmed that some species of the genera Sinanodonta and Inversiunio showed morphological and molecular phylogenetic inconsistencies, and Sinanodonta lauta, S. japonica, S. calipygos, and Inversiunio yanagawensis were not found to form their own clade upon molecular phylogenetic analysis. In general, diverse morphologies are found within several mollusk genera and species, often interfering with species recognition based on the concept of reproductive isolation (Pfeiffer & Graf 2013; Hirano et al. 2015). Furthermore, it is suggested that species within a genus may have undergone plastic changes in morphology as they adapted to their habitat, because each of these genera formed a separate monophyletic group. All species of the genus Inversiunio are endemic to Japan: i) I. jokohamensis is found mainly east of Lake Biwa; ii) I. yanagawensis is found mainly west of Lake Biwa; and iii) I. reinianus is found only in Lake Biwa (Kondo 2008, 2015). Judging from the phylogenetic trees in this study, it is suggested that the endemic species of Lake Biwa, I. reinianus, was possibly differentiated from I. yanagawensis. Furthermore, while I. yanagawensis formed a paraphyletic group, the clade of I. reinianus=I. yanagawensis was supported with high confidence, suggesting that a rapid evolution of morphology has occurred in Lake Biwa. Phylogenetic trees based on the nuclear 28S rDNA did not have sufficient information to elucidate the differentiation process within the genus Inversiunio. The results of this study indicate that morphological classification and phylogenetic relationships are not necessarily concordant, as is the case for Sinanodonta and Inversiunio. It is unclear whether this is due to a plastic change in morphology or because the molecular markers used in this study do not correctly reflect the differentiation among morphological species. Therefore, it is necessary to analyze a large amount of genomic informa-
tion in combination with morphological re-examination to clarify this issue.

The Japanese archipelago is geographically close to the Asian continent, and a lot of lineages of its endemic fauna are closely related to continental lineages. These Japanese lineages may have originated on the Asian continent. *Cristaria plicata* and *Nodularia douglasiae* are distributed widely in East Asia, while they could not be genetically separated between Japan and the Asian continent. This can be explained by "back dispersal" (Tojo et al. 2017) from the Japanese archipelago to the Asian continent. This may also be explained by artificial genetic contamination, as is observed between Japanese *Sinohyriopsis schlegeli* and Chinese *S. cumingii* (Shirai et al. 2010). However, to address this issue, further genetic research is needed.

The Japanese archipelago is geographically close to the Asian continent; however, the margaritiferid mussels in the archipelago are genetically close to species associated with the North American continent. The larvae of unionoid mussels are known to be salt-tolerant while being parasitic to host fishes (Itoh et al. 2017), suggesting that margaritiferid mussels may have invaded the Japanese archipelago from North America by dispersion through ocean currents. The parasitism period of glochidia on fishes has not yet been fully elucidated, but is reported to be approximately twenty five days for *S. schlegeli* (Hatano & Ishizaki 2016) and approximately ten days for *N. douglasiae* (Itoh 2013), and it is believed that unionoid mussels are often parasitic for more than one week. It is also known that the lower the water temperature, the longer the parasitism period (Hurukawa et al. 1965). Therefore, it is considered that the parasitism period becomes longer in environments with low water temperature, such as the Bering Sea, the Sea of Okhotsk, and the Sea of Japan. In future research, it is necessary to examine the parasitism period of glochidia on fishes in detail to investigate whether or not freshwater mussels can disperse across the sea. The larval hosts of the Margaritifera in Japan and western North America are the salmonids *Oncorhynus* and *Salmo* (Taylor & Uyeno 1965). The distribution ranges of these mussels overlap with those of salmonids. Therefore, it is possible that the salmonids carried the glochidia of these mussels from North America to the Japanese archipelago.

The estimations of the divergence time suggest that the unionoid species that are now widely distributed in East Asia diversified on the Asian continent long before the formation of the Japanese archipelago (Figs. 3, 4). The diversification of most Japanese endemic species began before the Japanese archipelago separated from the Asian continent because the Sea of Japan was formed 15 million years ago. Although taxon sampling of continental species might be insufficient to estimate the exact age, this study provides the most reliable estimation for the divergence time of the East Asian unionoid mussels so far; all of the genera and their representative species of the East Asian region described by Lopes-Lima et al. (2017) are included in this study. An alternative hypothesis is that continental species that are phylogenetically closely related to Japanese extant species have already gone extinct. Previous studies on insect fauna have shown that the formation of the Japanese archipelago caused high species diversity in Japan (Gamboa et al. 2019). Future surveys using fossil records from the Asian continent are needed to address this issue. However, unionoid mussels have proportionally many more endemic species than other organisms such as insects, suggesting that unionoid mussels have a lower dispersal ability than other organisms. Adult unionoid mussels have a lower dispersal ability than other freshwater organisms, and their passive dispersal ability in the larval stage is also limited. The limited passive dispersal ability of unionoid mussels may reflect the low dispersal ability of the fishes that carry parasitic larvae of unionoid mussels. Because of their lower dispersal ability, it is most likely that the diversification of Japanese unionoid mussels had started long before the formation of the Japanese archipelago.

Likewise, mussels diverged at earlier times than freshwater fishes and snails. Japanese planorbid snails diverged 6.5 million years ago (mya), whereas Japanese cyprinid fishes diverged around 18 mya (Saito et al. 2018b; Jang-Liaw et al. 2019). In contrast, species of the unionoid genus endemic to Japan were found to have diverged earlier than approximately 60 mya (for example, 63.5 and 86.3 mya for *Inversidens*, as shown in Fig. 3 and in Fig. 4, respectively). This indicates that mussels are genetically more unique than other freshwater organisms.

In contrast, some species may have diverged after the formation of the Sea of Japan (*S. schlegeli* and *I. reiniana*). These species are endemic to Lake Biwa, one of the ancient lakes in Japan. Since Lake Biwa began to form about 4 mya (Satoguchi 2012), the values of the divergence time estimations obtained in this study are within the estimated range of time in which *S. schlegeli* and *I. reiniana* adaptively differentiated to the habitat of Lake Biwa. Two other endemic species of Lake Biwa are known: *S. calipygos* and *S. ogurae*. The results of this study showed that these two species diverged before the formation of the Japanese archipelago. However, *S. ogurae* may have had an excessively large divergence times because of the extinction of related species. In fact, fossils of *Kobiwakodonta nakajimai*, which is considered to be a closely related extinct species of *S. ogurae*, have been excavated from the Kobiwako Group (Nakano et al. 2003). In addition, it was shown that *S. calipygos* is a polyphyletic group (Fig. 2). This result suggests the parallel morphological evolution of *S. calipygos*; however, the cause for this is not yet fully understood and may be the standing variation or low resolution of the trees.

Most freshwater creatures face high risks of extinction (Strayer et al. 2004; Walker et al. 2014). Unionoid mussels are especially likely to suffer the impacts of anthropogenic activities because of their poor dispersal ability and symbiosis with freshwater fishes during their development. This
study could contribute to the promotion of future taxonomic revisions and morphological and molecular phylogenetic and phylogeographic studies, as well as the proposal of scientifically refined plans to conserve unionoids.

Acknowledgements

We express our sincere appreciation to Mr. Osamu Inaba, Mr. Koji Fujimoto, Dr. Shigefumi Kanao, and Mr. Shigeharu Togashi for their assistance in collecting unionoid specimens. Thanks are also extended to Dr. Takahiro Hirano, Dr. Daishi Yamazaki, Dr. Kazuki Kimura, Dr. Naoto Hanzawa, Dr. Jun Nakajima, Dr. Mitsunori Nakano, Dr. Daisuke Tanaka, Mr. Toshiro Nakajima, Mr. Akihiro Kuwahara, Tomoki Hirose, Tadashi Okoba, Akimasa Hattori, Bin Ye for generously supplying us with Japanese unionoid specimens. Thanks are also extended to Dr. Tomoki Seo, Dr. Keiji Matsuoka, Dr. Naoto Hanzawa, Dr. Jun Nakajima, Dr. Mitsunori Nakano, Dr. Daisuke Tanaka, Mr. Toshio Nakajima, Mr. Akihiro Kuwahara, Mr. Tomoki Hirose, Mr. Tadashi Okoba, Mr. Akimasa Hattori, and Mr. Bin Ye for generously supplying us with Japanese unionoid specimens. We would also like to thank Dr. Keiji Matsuoka, Dr. Yasufumi Fujimoto, Dr. So Ishida, and Mr. Yuuki Yashima for providing useful information on mussels. We thank the two anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. This study was supported in part by Research Grant for Young Scholars funded by Yamanashi Prefecture.

References

Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28: 819–825.

Boag DA (1986) Dispersal in pond snails: potential role of waterfowl. Can J Zool 64: 904–909.

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10: e1003537.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.

Ceballos G, Brown JH (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol 9: 559–568.

Cronin TM, Kitamura A, Ikeya N, Watanabe M, Kamiya T (1994) Late Pliocene climate change 3.4–2.3 Ma: paleoecographic record from the Yabuta Formation, Sea of Japan. Palaeoecograph Palaeoclimatol Palaeoecol 108: 437–455.

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

Fonseca CR (2009) The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv Biol 23: 1507–1515.

Froufe E, Gonçalves DV, Teixeira A, Sousa R, Varandas S, Ghamizi M, Zieritz A, Lopes-Lima M (2016) Who lives where? Molecular and morphometric analyses clarify which Unio species (Unionida, Mollusca) inhabit the southwestern Palearctic. Org Diversity Evol 16: 597–611.

Gamboa M, Muraydi D, Kanmorii S, Watanabe K (2019) Molecular phylogeny and diversification timing of the Nemouriidae family (Insecta, Plecoptera) in the Japanese Archipelago. PLoS One 14: e0210269.

Gao Y, Wang SY, Luo J, Murphy RW, Du R, Wu SF, Zhu CL, Li Y, Poyarkov AD, Nguyen SN, Luan PT, Zhang YP (2012) Quaternary palaeoenvironmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae). J Biogeogr 39: 2264–2278.

Green AJ, Figuerola J (2005) Recent advances in the study of long - distance dispersal of aquatic invertebrates via birds. Diversity Distr 11: 149–156.

Hamano Y, Tosa T (1985) Movement and paleomagnetism in Northeast Japan. Kagaku 55: 476–483. (in Japanese)

Hatano M, Ishizaki D (2016) Feeding of juvenile freshwater pearl mussel Hyriopsis schlegeli. Venus 74: 3–4. (in Japanese with English summary)

Hirano T, Saito T, Chiba S (2015) Phylogeny of freshwater viviparid snails in Japan. J Molluscan Stud 81: 435–441.

Hirano T, Saito T, Tsunamoto Y, Koseki J, Ye B, Do VT, Mura O, Suyama Y, Chiba S (2019) Enigmatic incongruence between mtDNA and nDNA revealed by multi-locus phylogenomic analyses in freshwater snails. Sci Rep 9: 6223.

Huang XC, Wu RW, An CT, Xie GL, Su JH, Ouyang S, Zhou CH, Wu XP (2018) Reclassification of Lamprotula rochechouartii as Margaritifera rochechouartii comb. nov. (Bivalvia: Margaritiferidae) revealed by time-calibrated multi-locus phylogenetic analyses and mitochondrial phylogenomics of Unionoida. Mol Phylogenet Evol 120: 297–306.

Hurukawa M, Kobayashi Y, Hiratsuka T (1965) Research on artificial proliferation of Hyriopsis schlegeli—II. Bull Fish Exp Stn Shiga Prefect 18: 59–65. (in Japanese)

Itoh T, Oda N, Maruyama T (2003) Availability of host fish for glochidia of the freshwater unionid mussel Pronodularia japonensis. Jpn J Ecol 53: 187–196. (in Japanese with English summary)

Itoh T (2013) Two alien species, largemouth bass and tadpole of false gudgeon, Carassius auratus (Cypriniformes, Cyprinidae). J Biogeogr 39: 2264–2278.

Jang-Liaw NH, Tominaga K, Zhang C, Zhao Y, Nakajima J, Onishi T, Oda N, Maruyama T (2003) Availability of host fish for glochidia of the freshwater unionid mussel Unio douglasiae nipponensis in the Kanto area, Central Japan. Venus 74: 3–4. (in Japanese with English summary)

Itoh T, Kohno H (2017) Salinity tolerance of six adults (Inversiunio jokohamensis, Hyriopsis schlegeli, Pronodularia japonensis, Cristaria plicata, Cristaria tenuis, and Sinamodonta sp.) and two glochidia (Cristaria plicata and Cristaria tenuis) of unionid mussels. Jpn J Limnol 78: 87–96. (in Japanese with English summary)

Jang-Liaw NH, Tominaga K, Zhang C, Zhao Y, Nakajima J, Onikura N, Watanabe K (2019) Phylogeography of the Chinese false gudgeon, Abbottina rivularis, in East Asia, with special reference to the origin and artificial disturbance of Japanese populations. Ichthyol Res 66: 460–478.

Jolivet L (1992) Neogene kinematics in the Japan Sea region and the volcanic activity of the Northeast Japan arc. Proc Ocean Drill Program Sci Results 127: 1311–1331.

Kano Y, Tabata R, Nakajima J, Takada-Endo M, Zhang C, Zhao Y, Yamashita T, Watanabe K (2018) Genetic characteristics and possible introduced origin of the paradise fish Macropro-
das opercularis in the Ryukyu Archipelago, Japan. Ichthyol Res 65: 134–141.
Kano Y, Kurita Y, Kanno K, Saito K, Hayashi H, Onikura N, Yamasaki T (2019) Photo images, 3D/CT data and mtDNA of the freshwater mussels (Bivalvia: Unionidae) in the Kyushu and Ryukyu Islands, Japan, with SEM/EDS analysis of the shell. Biodiv Data J 7: e32114.
Kappes H, Haase P (2012) Slow, but steady: dispersal of freshwater molluscs. Aquat Sci 74: 1–14.
Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87: 2479–2488.
Kitamura J (2005) Factors affecting seasonal mortality of rosy bitterling (Rhodeus ocellatus kurumeus) embryos on the gills of their host mussel. Popul Ecol 47: 41–51.
Kitamura J (2006a) Adaptive spatial utilization of host mussels by the Japanese rosy bitterling Rhodeus ocellatus kurumeus. J Fish Biol 69: 263–271.
Kitamura J (2006b) Reproductive ecology and host utilization of four sympatric bitterling (Acheilognathinae, Cyprinidae) in a lowland reach of the Harai River in Meiwara, Japan. Environ Biol Fish 78: 37–55.
Kondo T (2008) Monograph of Unionoida in Japan (Mollusca: Bivalvia). Malacological Society of Japan, Ibaraki, 69 pp.
Kondo T (2015) Catalogue of Japanese Unionid Shells in Takaki Kondo's Collection. Osaka Kyoiku University, Osaka, 58 pp. (in Japanese)
Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652–655.
Kubota Y, Kusumoto B, Shiono T, Tanaka T (2017) Phylogenetic properties of Tertiary relict flora in the East Asian continental islands: imprint of climatic niche conservatism and in situ diversification. Ecography 40: 436–447.
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34: 772–773.
Lopes-Lima M, Froufe E, Do VT, Ghamizi M, Mock KE, Kebapçu Ü, Klishko O, Kovitvadhi S, Kovitvadhi U, Paulo OS, Pfeiffer JM, Raley M, Riccardi N, Šerefišan H, Sousa R, Teixeira A, Varandas S, Wu X, Zanatta DT, Zieritz A, Bogan AE (2017) Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): defining modern subfamilies and tribes. Mol Phylogenet Evol 106: 174–191.
Mills SC, Reynolds JD (2002a) Mussel ventilation rates as approximated cue for host selection by bitterling, Rhodeus sericeus. Oecologia 131: 473–478.
Mills SC, Reynolds JD (2002b) Host species preferences by bitterling, Rhodeus sericeus, spawning in freshwater mussels and consequences for offspring survival. Anim Behav 63: 1029–1036.
Mills SC, Taylor MI, Reynolds JD (2005) Benefits and costs to mussels from ejecting bitterling embryos: a test of the evolutionary equilibrium hypothesis. Anim Behav 70: 31–37.
Miyazaki JI, Dobashi M, Tamura T, Beppu S, Sakai T, Mihara M, Hosoya K (2011) Parallel evolution in eight-barbel loaches of the genus Lefua (Balitoridae, Cypriniformes) revealed by mitochondrial and nuclear DNA phylogenies. Mol Phylogenet Evol 60: 416–427.
Motokawa M, Kajihara H (2016) Species Diversity of Animals in Japan. Springer Japan, Tokyo, 721 pp.
Nakajima T (1986) Pliocene cyprinid pharyngeal teeth from Japan and East Asia Neogene cyprinid zoogeography. In: Indo-Pacific Fish Biology, Proceedings of the Second International Conference on Indo-Pacific Fishes (eds Uyeno T, Arai R, Taniuchi T, Matsuura K), Ichthyological Society of Japan, Ibaraki, pp. 502–513.
Nakajima T (1987) Freshwater fishes of Japan: their distribution, variation, and speciation. In: Formation and speciation of fish fauna in Lake Biwa (ed Nakajima T), Tokai University Press, Tokyo, pp. 215–229.
Nakano S, Kawabe T, Harayama S, Mizuno K, Takagi T, Komura R, Kumura K (2003) Geology of the Minakuchi district. Quadrangle Series, 1: 50,000. Geological Survey of Japan, AIST, Tokyo, 83 pp. (in Japanese with English abstract)
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268–274.
Park JK, Kim W (2003) Two Corbicula (Corbiculidae: Bivalvia) mitochondrial lineages are widely distributed in Asian freshwater environment. Mol Phylogenet Evol 29: 529–539.
Pfeiffer JM, Graf DL (2013) Re-analysis confirms the polyphyly of Lambrotula Simpson, 1900 (Bivalvia: Unionidae). J Molluscan Stud 79: 249–256.
Rambaut A, Drummond AJ, Suchard M (2013) Tracer v1.6. Available at: http://tree.bio.ed.ac.uk/software/tracer/ (accessed on 17 February 2019)
Rees WJ (1965) The aerial dispersal of Mollusca. J Molluscan Stud 36: 269–282.
Reichard M, Ondračková M, Przybylski M, Liu H, Smith C (2006) The costs and benefits in an unusual symbiosis: experimental evidence that bitterling fish (Rhodeus sericeus) are parasites of unionid mussels in Europe. J Evol Biol 19: 788–796.
Reichard M, Przybylski M, Kaniewska P, Liu H, Smith C (2007) A possible evolutionary lag in the relationship between freshwater mussels and European bitterling. J Fish Biol 70: 709–725.
Reichard M, Polačik M, Tarkan AS, Spence R, Gágyusuz Ö, Ercan O, Ondračková M, Smith C (2010) The bitterling-mussel coevolutionary relationship in areas of recent and ancient sympathy. Evolution 64: 3047–3056.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542.
Saito R, Jo J, Sekiné K, Bae YJ, Tojo K (2016) Phylogenetic analyses of the isonychiid mayflies (Ephemeroptera: Isonychiidae) in the northeast palearctic region. Entomol Stud 79: 249–256.
Saito R, Kato S, Kuranishi RB, Nozaki T, Fujino T, Tojo K (2018) Phylogeographic analyses of the Stenopsyche caddisflies (Trichoptera: Stenopsychidae) of the Asian Region. Freshwater Sci 37: 562–572.
Saito T, Prozorova L, Sihnikova T, Surenkhloroo P, Hirano T, Morii Y, Chiba S (2018a) Molecular phylogeny of glacial relic species: a case of freshwater Valvatidae molluscs (Mol-
Saito T, Do VT, Prozorova L, Do VT, Sulikowska-Drozd A, Sitnikova T, Surenkhorloo P, Yamazaki D, Morii Y, Kameda Y, Fukuda H, Chiba S (2018b) Phylogeography of freshwater planorbid snails reveals diversification patterns in Eurasian continental islands. BMC Evol Biol 18: 164.

Saito T, Do VT, Prozorova L, Hirano T, Fukuda H, Chiba S (2018c) Endangered freshwater limpets in Japan are actually alien invasive species. Conserv Genet 19: 947–958.

Sano I, Shirai A, Kondo T, Miyazaki JI (2017) Phylogenetic relationships of Japanese Unionoida (Mollusca: Bivalvia) based on mitochondrial 16S rDNA sequences. J Water Resour Prot 9: 493–509.

Shirai A, Kondo T, Kajita T (2010) Molecular markers reveal genetic contamination of endangered freshwater pearl mussels in pearl culture farms in Japan. Venus 68: 151–163.

Smith C, Reynolds JD Sutherland WJ (2000a) Population consequences of reproductive decisions. Proc R Soc Lond B 267: 1327–1334.

Smith C, Reynolds JD, Sutherland WJ, Jurajda P (2000b) Adaptive host choice and avoidance of superparasitism in the spawning decisions of bittering (Rhodeus sericeus). Behav Ecol Sociobiol 48: 29–35.

Smith C, Rippon K, Douglas A, Jurajda P (2001) A proximate cue for oviposition site choice in the bitterling (Rhodeus sericeus). Freshw Biol 46: 903–911.

Strayer DL, Downing JA, Haag WR, King TL, Layzer JB, Newton TJ, Nichols JS (2004) Changing perspectives on pearly mussels, North America’s most imperiled animals. BioScience 54: 429–439.

Suzuki T, Kitano T, Tojo K (2014) Contrasting genetic structure of closely related giant water bugs: phylogeography of Appasus japonicus and Appasus major (Insecta: Heteroptera, Belostomatidae). Mol Phylogenet Evol 72: 7–16.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.

Tanabe AS (2008) MrBayes5D. Available at: https://www.fifthdimension.jp/products/mrbayes5d/ (Accessed on 22 December 2018)

Taylor DW, Uyeno T (1965) Evolution of host specificity of freshwater salmonid fishes and mussels in the north pacific region. Venus 24: 199–209. (in Japanese with English summary)