Effect of common and experimental anti-tuberculosis treatments on

Mycobacterium tuberculosis growing as biofilms

J.P. Dalton1,2,3, B. Uy1,2, N. Phummarin4, B. R. Copp3,4, W.A. Denny3,5, S. Swift2 and S. Wiles1,2,3,*

1Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand; 2Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; 3Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand; 4School of Chemical Sciences, University of Auckland, Auckland, New Zealand; 5Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.

*Corresponding author: Dr. Siouxsie Wiles

Mailing address:
Dept. Molecular Medicine and Pathology,
University of Auckland,
Private Bag 92019,
Auckland,
New Zealand.

Tel: +64 9 3737599 Extension 84284,
Fax: +64 9 3738784,
E-mail: s.wiles@auckland.ac.nz
Abstract

Much is known regarding the antibiotic susceptibility of planktonic cultures of *Mycobacterium tuberculosis*, the bacterium responsible for the lung disease tuberculosis (TB). As planktonically-grown *M. tuberculosis* are unlikely to be entirely representative of the bacterium during infection, we set out to determine how effective a range of anti-mycobacterial treatments were against *M. tuberculosis* growing as a biofilm, a bacterial phenotype known to be more resistant to antibiotic treatment. Light levels from bioluminescently-labelled *M. tuberculosis* H37Rv (strain BSG001) were used as a surrogate for bacterial viability, and were monitored before and after 1 week of treatment. After treatment, biofilms were disrupted, washed and inoculated into fresh broth and plated onto solid media to rescue any surviving bacteria. We found that in this phenotypic state *M. tuberculosis* was resistant to the majority of the compounds tested. Minimum inhibitory concentrations (MICs) increased by 20-fold to greater than 1000-fold, underlying the potential of this phenotype to cause significant problems during treatment.

Introduction

The bacterium *Mycobacterium tuberculosis* is responsible for the lung disease tuberculosis (TB). It is estimated that one third of the world’s population is infected with this deadly pathogen.\(^1\) While TB represents a huge burden on health care systems in its own right, it also complicates other serious illnesses such as HIV/AIDS.\(^1\) New compounds are desperately required to shorten the current TB treatment regimes, which routinely last longer than 6 months, and to combat the rise of resistant *M. tuberculosis* strains. Drug-resistant TB leads to extended hospital stays and treatment times and, in the worst case scenario, untreatable disease.\(^2, 3\)

Bacterial cells present in an infected host can display a range of phenotypes and occupy several divergent physiological niches.\(^4, 5\) For example, during infection, cells of *M. tuberculosis* can be both replicative and non-replicative\(^6\) and occupy a number of different niches, including macrophages\(^7\) and necrotic and non-necrotic lesions.\(^8\) *M. tuberculosis* growing in such diverse environments is unlikely to be accurately reflected by planktonically-grown laboratory cultures. Many bacteria can form microcolonies called biofilms, which can contain a mixture of replicating and non-replicating cells, and cells in different metabolic states.\(^9, 10\) Bacteria can form biofilms at the interface between a surface and the surrounding air or liquid. Alternatively, floating biofilms can form at a liquid/air interface. These floating biofilms are also known as pellicles. Within a biofilm or pellicle, bacterial cells are more resistant to disinfection and drug treatment and therefore represent a much harder
target to sterilise.11, 12 As such, the biofilm/pellicle represents a useful model for investigating the
efficacy of antibacterial treatments.

\textit{M. tuberculosis} can form pellicles in vitro13 and the presence of microcolonies of extracellular \textit{M. tuberculosis} in animal models has led to speculation that these are biofilms formed in vivo.14 Some
sources point to the possible presence of pellicles in the lung-air interface present in secondary TB in
humans;15-17 and indicate that the susceptibility of this phenotype to antibacterial compounds is of
particular relevance from a treatment standpoint. Here we describe the use of bioluminescently-
tagged \textit{M. tuberculosis} to investigate the susceptibility of pellicle cells to a range of anti-
mycobacterial compounds, including those in current clinical use as well as a selection of
experimental compounds.

\textbf{Materials and methods}

\textit{Strains and growth conditions}

In this study we used \textit{M. tuberculosis} BSG00118, a stable bioluminescent derivative of H37Rv
transformed with the integrating plasmid pMV306hspLuxABG13CDE.19 Cultures of BSG001 were
grown at 37°C with gentle shaking (100rpm) in Middlebrook 7H9 broth (Fort Richard, Auckland)
supplemented with 10\% Middlebrook ADC enrichment media (Fort Richard) and 0.5\% glycerol
(Sigma-Aldrich), or on 7H11 agar (Fort Richard) supplemented with 10\% Middlebrook OADC
enrichment media (Fort Richard) and 0.5\% glycerol. We grew pellicles in sterile, black 96 well plates
(Nunc) using a previously described method.11 Briefly, we grew \textit{M. tuberculosis} BSG001 in liquid
culture for 2 weeks at 37°C and then adjusted the cultures to give an optical density at 600nm
(\textit{OD}_{600}) of 1.0, before diluting them 1:100 in modified Sauton’s media (0.5 g/L KH\textsubscript{2}PO\textsubscript{4}, 0.5 g/L
MgSO\textsubscript{4}, 4 g/L L-Asparagine, 2 g/L Citric acid, 0.05 g/L Ferric Ammonium Citrate, 60 mL/L glycerol,
0.1\% ZnSO\textsubscript{4}, pH 7.0 [all chemicals from Sigma-Aldrich]) and adding 100 \textmu L aliquots to each inner well
of a 96 well plate. We filled the outer wells with 200 \textmu L of sterile water to reduce evaporation from
the \textit{M. tuberculosis} containing wells. We incubated the cultures without shaking for 8 weeks at 37°C.

\textit{Determination of compound activity}

Once pellicles had established, we determined how much media remained in the wells by removing
all liquid from 12 non-tested wells and taking an average volume. This is necessary as some
evaporation occurs because of the long incubation time, and this has to be accounted for when
calculating final compound concentrations. Similar levels of liquid were lost from all wells tested. We
added test compounds (Table 1 & Fig. 1, all supplied by Sigma Aldrich with the exception of the
nitroimidazole and 2-(quinoline-4-yloxy) acetamide-based compounds) dissolved in Sauton’s media
to the *M. tuberculosis* pellicles in a two-fold dilution gradient at a range of concentrations.
Concentrations of each compound were chosen based on the minimum inhibitory concentrations
(MIC) for planktonically-grown *M. tuberculosis* BSG001, which vary greatly between the compounds
tested. We tested up to 1000-fold the planktonic MIC concentration, depending on the solubility of
the test compound. Each concentration was done in duplicate, using three independent BSG001
cultures. Biofilms were incubated for a further 7 days at 37°C with no shaking and light levels (given
as Relative Light Units [RLU]) were measured before and after treatment using a Victor X-3
luminometer (Perkin Elmer). We have defined the MIC as causing a 1 log reduction in light
production, as previously described.²⁰

To determine the minimum bactericidal concentration (MBC), pellicles were removed from the
wells, disrupted by pipetting and washed 3 times in Sauton’s media supplemented with 0.05% tween
80. The cells were then resuspended in fresh 7H9 broth (5ml, supplemented as described above)
and plated onto 7H11 agar (supplemented as described above). We have defined the MBC as the
concentration which resulted in no growth. We incubated broth cultures for 2 weeks and plate
cultures for 8 weeks to recover any surviving bacteria. All experiments were performed using three
biological replicates of *M. tuberculosis* BSG001 and two technical replicates. Biological replicates
were grown separately and tested on different days.

Results

**Decreased susceptibility of pellicle-grown *M. tuberculosis* to front-line and experimental
compounds.**

Of the four main first line drugs only rifampicin was seen to inhibit pellicles of *M. tuberculosis* at the
concentrations tested (Table 1, Fig. 2B, Fig. 3B). Isoniazid also led to some inhibition but below the
threshold defined (Fig. 2C, Fig. 3C). In the case of rifampicin the MIC and MBC for pellicle-grown
BSG001 were determined to be 4 mg/L, 100 times the concentration required to produce a similar
result with planktonic cells (Table 1). High levels of pyrazinamide, isoniazid and ethambutol (20,
6000 and 1000 times the MIC’s for planktonic cells, respectively) failed to sufficiently reduce light to
be classed as inhibitory (Table 1, Fig. 2A-D, Fig. 3A-D). More success was observed with non-first line
antibiotics, with MICs obtained for pellicle-grown BSG001 for streptomycin (125 mg/L), amikacin
(250 mg/L) and rifabutin (8 mg/L) (Table 1, Fig. 2E-G, Fig. 3E-G). These pellicle-MICs represent an
increase of 250, 62.5 and 200 times the MIC's obtained for planktonic cultures, respectively (Table 1).

When novel and experimental compounds were examined, none of the current derivations of the nitroimidazole based compounds (delamanid, pretomanid and SN30488) were able to reduce light from the pellicle-grown *M. tuberculosis* at the concentrations tested (Table 1, Fig.2H-J, Fig.3H-J). The same resistance to drug-killing was seen with experimental compounds based on 2-(quinoline-4-yloxy) acetonitriles (QOA 1, QOA 2 and QOA 3) (Table 1, Fig. 2K-M, Fig.3K-M). In contrast, the fluoroanthranilic-acid based compounds, 5-fluoroanthranilic acid (5-FAA) and 6-fluoroanthranilic acid (6-FAA), which target the tryptophan biosynthetic pathway were seen to be quite effective at inhibiting light from *M. tuberculosis* BCG001 growing as a pellicles (Table 1, Fig.2N/O, Fig.3N/O). Ascorbic acid was also seen to cause inhibition at 2.8 g/L, 4 times the MIC for planktonically-grown *M. tuberculosis* (Table 1, Fig. 2P, Fig.3P).

Discussion

Many infectious bacteria form biofilms within their host. Bacteria living within a biofilm are notoriously difficult to treat and can persist for extended periods of time, as they have the ability to resist the immune system, display increased virulence and can become phenotypically more resistant to antibiotics. It is common for antibiotic concentrations required to control bacteria within biofilms to be 100 to 1000 fold greater than those needed to treat planktonic forms. This was seen to be true of the majority of compounds tested in this study. In many cases this is not too surprising. Biofilms can affect drug activity by acting as a physical barrier to entry into the cell. The phenotypic state of the cells within the biofilm could also make the cells less susceptible. Isoniazid’s mode of action relates to mycolic acid synthesis. When growing as a pellicle, it is possible that mycolic acid synthesis is minimal or nonessential. Similarly ethambutol, delamanid and pretomanid are also thought to affect various steps in cell wall biosynthesis and formation; none of these were seen to have an effect. Pyrazinamide relies on conversion to pyrazinoic acid, which requires acidic conditions to become active. This could indicate that these conditions are not present in mycobacterial pellicles or that the drug is unable to penetrate the cells in this phenotype. If it is due to the lack of an acidic environment this could represent a limitation in using this model for drug testing. In contrast, antibiotics that affect protein synthesis, such as rifampicin, rifabutin, amikacin and streptomycin, displayed some degree of inhibitive activity towards pellicle-grown *M. tuberculosis*, although this activity was lower than the activity against planktonically-grown cells. The 2-(quinoline-4-yloxy)
acetamide based compounds also showed little activity against this biofilm form. The mode of action
of these compounds is likely due to electron transport inhibition of cytochrome bc1 oxidase. As
the cells are actively metabolising, the lack of an effect from these compounds is most likely due to
an inability to access the cells.

In our study, we observed that M. tuberculosis growing as a pellicle is susceptible to a concentration
of ascorbic acid similar to that reported for planktonically-grown cells. This concentration was also
sufficient to cause death of the M. tuberculosis pellicle within 1 week of treatment. The activity of
ascorbic acid is thought to be due to the generation of highly reactive hydroxyl radicals via presence
of iron and Fenton reaction chemistry. Killing due to this mechanism would be non-specific and not
dependant on uptake. Interestingly the fluoroanthranilic acid tryptophan biosynthesis inhibitors
were also seen to be effective at inhibiting and killing pellicles, indicating that this is a pathway
worthy of further consideration for drug targeting.

It is possible that the comparative ease in which test compounds can access bacteria within a
pellicle, that is from both above and below, as compared to a biofilm attached to a surface which
cannot be accessed from the surface side, make this form of biofilm easier to kill. While it is still
unknown if M. tuberculosis forms biofilms/pellicles in vivo, many mycobacterial species do form
complex, secondary structures such as pellicles in vitro. Researchers have also reported histological
evidence for the presence of multicellular structures involving M. tuberculosis outside of the
macrophage. Others have reported the presence of cells that resembles biofilms/pellicles in the
cavities formed during secondary tuberculosis which would indicate that this phenotype is likely to
play a role in human disease. The biphasic response of M. tuberculosis infections, in which a
large kill is seen early on in drug treatment followed by a marked reduction in the bactericidal
activity of therapeutic agents due to phenotypic rather than genetic resistance, could also be
evidence that M. tuberculosis is able to form biofilms/pellicles in vivo. Such structures could act as a
reservoir for drug tolerant bacilli which are responsible for the increased duration of drug treatment
required in cases of TB. Regardless, the M. tuberculosis-pellicle model is a useful multi-phenotypic
environment in which a novel compound can be tested against cells with a range of susceptibilities.
The susceptibility of M. tuberculosis within this model indicates that drugs which can attack the
surface of the cell or can pass through the extracellular matrix of the pellicle represent the best
option for treatment. We also saw that the inhibition of tryptophan biosynthesis could be utilised in
TB treatment and their design should be further investigated.
References

1. WHO. Global tuberculosis report 2015. Geneva, Switzerland, 2015.
2. Klopper M, Warren RM, Hayes C, Gey van Pittius NC, Streicher EM, Müller B, Sirgel FA, Chabula-Nxiweni M, Hoosain E, Coetzee G, David van Helden P, Victor TC, Trollip AP. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis 2013; 19: 449-55.
3. WHO. World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis - 2011 update. Geneva, Switzerland:, 2011.
4. Sendi P, Johansson L, Dahesh S, Van-Sorge NM, Darenberg J, Norgren M, Sjölin J, Nizet V, Norrby-Teglund A. Bacterial phenotype variants in group B streptococcal toxic shock syndrome. Emerg Infect Dis 2009; 15: 223-32.
5. Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V, Niemann S, Holzinger D, Roth J, Proctor RA, Becker K, Peters G, Löffler B. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 2011; 3: 129-41.
6. Wayne LG, Sohaskey CD. Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 2001; 55: 139-63.
7. Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 2005; 102: 8327-32.
8. Fenhalls G, Stevens L, Moses L, Bezuidenhout J, Betts JC, Helden Pv Pv, Lukey PT, Duncan K. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect Immun 2002; 70: 6330-8.
9. Rice AR, Hamilton MA, Camper AK. Movement, replication, and emigration rates of individual bacteria in a biofilm. Microb Ecol 2003; 45: 163-72.
10. Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Micro 2008; 6: 199-210.
11. Kulka K, Hatfull G, Ojha AK. Growth of Mycobacterium tuberculosis biofilms. J Vis Exp 2012; 15: pii: 3820. doi: 10.3791/3820.
12. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37: 1771-6.
13. Sambandan D, Dao DN, Weinrick BC, Vilchèze C, Gurcha SS, Ojha A, Kremer L, Besra GS, Hatfull GF, Jacobs WR Jr. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio 2013; 4: e00222-13.
14. Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, Cantarero L, Orme IM, Basaraba RJ. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 2007; 51:3338-45.
15. Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 2006; 36: 371-86.
16. Hunter RL, Armitige L, Jagannath C, Actor JK. TB Research at UT-Houston; A review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis 2013; 89: S18-S25.
17. Hunter RL, Actor JK, Hwang SA, Karev V, Jagannath C. Pathogenesis of post primary tuberculosis: immunity and hypersensitivity in the development of cavities. Ann Clin Lab Sci 2014; 44: 365-87.
18. Wang J, Pearce AN, Chan ST, Taylor RB, Page MJ, Valentin A, Bourguet-Kondracki ML, Dalton JP, Wiles S, Copp BR. Biologically Active Acetylenic Amino Alcohol and N-Hydroxylated 1,2,3,4-Tetrahydro-beta-carboline Constituents of the New Zealand Ascidian Pseudodistoma opacum. J Nat Prod 2016; 79: 607-10.
19. Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, Ripoll J, Parish T, Bancroft GJ, Schaible U, Robertson BD, Wiles S. Optimisation of bioluminescent reporters for use with mycobacteria. PLOS One 2010; 5: e10777.
20. Andreu N, Fletcher T, Krishnan N, Wiles S, Robertson BD. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J Antimicrob Chemother 2012; 67: 404-14.
21. Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC. Novel drugs against tuberculosis: a clinician's perspective. Eur Respir J 2015; 45: 1119-31.
22. Palmer BD, Thompson AM, Sutherland HS, Blaser A, Kmentova I, Franzblau SG, Wan B, Wang Y, Ma Z, Denny WA. Synthesis and structure-activity studies of biphenyl analogues of the tuberculosis drug (6S)-2-nitro-6-[(4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J Med Chem 2010; 53: 282-94.
23. Phummarin N, Boshoff HI, Tsang PS, Dalton JP, Wiles S, Barry CE 3rd, Copp BR. SAR and identification of 2-(quinolin-4-yloxy)acetamides as Mycobacterium tuberculosis cytochrome bc1 inhibitors. Med Chem Comm 2016. In press. DOI: 10.1039/C6MD00236F
24. Toyn JH, Gunyuzlu PL, White WH, Thompson LA, Hollis GF. A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 2000; 16: 553-60.
25. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15: 167-93.
26. Al Safadi R, Abu-Ali GS, Sloup RE, Rudrik JT, Waters CM, Eaton KA, Manning SD. Correlation between in vivo biofilm formation and virulence gene expression in Escherichia coli O104:H4. PLOS One 2012; 7: e41628.
27. Wand ME, Bock LJ, Turton JF, Nugent PG, Sutton JM. Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. J Med Microbiol 2012; 61: 470-7.
28. Vilchèze C, Hartman T, Weinrick B, Jacobs WR Jr. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 2013; 4: 1881.
29. Ojha AK, Hatfull GF. Biofilms of Mycobacterium tuberculosis: New Perspectives of an Old Pathogen. In: Cardona DP-J, ed. Understanding Tuberculosis - Deciphering the Secret Life of the Bacilli. InTech, 2012.
| | Planktonic MIC1 | Biofilm MIC1 | Planktonic MBC2 | Biofilm MBC2 |
|------------------|---------------------|-----------------|--------------------|-----------------|
| Pyrazinamide | 50 mg/L | >1000 mg/L | 50 mg/L | >1000 mg/L |
| Rifampicin | 0.04 mg/L | 4 mg/L | 0.04 mg/L | 4 mg/L |
| Isoniazid | 0.04 mg/L | >256 mg/L | 0.08 mg/L | >256 mg/L |
| Ethambutol | 1 mg/L | >2000 mg/L | 2 mg/L | >2000 mg/L |
| Streptomycin | 0.5 mg/L | 125 mg/L | 0.5 mg/L | 1000 mg/L |
| Amikacin | 4 mg/L | 250 mg/L | 4 mg/L | 1000 mg/L |
| Rifabutin | 0.04 mg/L | 8 mg/L | 0.04 mg/L | 16 mg/L |
| Ascorbic acid | 700 mg/L | 2800 mg/L | 700 mg/L | 2800 mg/L |
| Delamanid | 0.042 mg/L | >53.45 mg/L | 0.042 mg/L | >53.45 mg/L |
| Pretomanid | 0.011 mg/L | >3.6 mg/L | 0.011 mg/L | >3.6 mg/L |
| SN30488 | 0.0056 mg/L | >4.2 mg/L | 0.0056 mg/L | >4.2 mg/L |
| QOA1 | 0.5 mg/L | >128 mg/L | 0.5 mg/L | >128 mg/L |
| QOA2 | 0.25 mg/L | >128 mg/L | 0.25 mg/L | >128 mg/L |
| QOA3 | 0.25 mg/L | >128 mg/L | 0.25 mg/L | >128 mg/L |
| 5-FAA3 | 9.7 mg/L | 19.4 mg/L | 19.4 mg/L | 19.4 mg/L |
| 6-FAA3 | 9.7 mg/L | 19.4 mg/L | 19.4 mg/L | 19.4 mg/L |

Table 1: 1Minimum inhibitory concentrations (MIC) and 2minimum bactericidal concentrations (MBC) for biofilm and planktonic forms of *M. tuberculosis* BSG001 for a variety of experimental and non-experimental compounds. 3 fluoroanthranilic acid.
Figure legends

Figure 1. Chemical structures of the experimental compounds used in this study.

Figure 2. The effect of clinically-used and experimental compounds on *M. tuberculosis* BSG001 pellicles. The inhibitory effect of first line (A-D) and second line (E-G) anti-tuberculosis drugs used in the clinic and experimental compounds (H-P), including those based on nitroimidazole (H-J), (2-(quinoline-4-yloxy) acetamides (K-M) and fluoroanthranilic-acid (N,O), is presented as a reduction in bioluminescence plotted as relative light units (RLU) per well on day 7 of treatment. The dashed line indicates the limit of detection. The solid and open arrows indicate the MBC's (the concentration which resulted in the recovery of no bacterial colonies) obtained for planktonically-grown cells and pellicles, respectively. All compounds were tested in three biological replicates on separate days with multiple technical replicates. Results are given as box whisker plots with the box representing values from the lower to upper quartile and the whiskers representing the range.

Figure 3. The relative effect of clinically-used and experimental compounds on *M. tuberculosis* BSG001 pellicles. The relative change in bioluminescence (relative light units [RLU]) following the treatment of *M. tuberculosis* BSG001 biofilms with first line (A-D) and second line (E-G) anti-tuberculosis drugs used in the clinic and experimental compounds (H-P), including those based on nitroimidazole (H-J), (2-(quinoline-4-yloxy) acetamides (K-M) and fluoroanthranilic-acid (N,O), is shown as the ratio of RLU before treatment and RLU after 7 days of treatment. The dashed line indicates the level at which no change occurs; values above the dashed line indicate an increase in light levels (and hence survival/growth) over the course of the experiment, while those below indicate a decrease (and hence inhibition/death). The solid and open arrows indicate the MBC's (the concentration which resulted in the recovery of no bacterial colonies) obtained for planktonically-grown cells and pellicles, respectively. Results are given as box whisker plots with the box representing values from the lower to upper quartile and the whiskers representing the range.
Figure 1

- Pretomanid
- Delamanid
- SN30488
- QOA 1
- QOA 2
- QOA 3
- 5-fluoroanthranilic acid
- 6-fluoroanthranilic acid
