Approximations for Monotone and Non-monotone Submodular Maximization with Knapsack Constraints

Ariel Kulik† Hadas Shachnai‡ Tami Tamir §

Abstract

Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location and marketing over social networks.

In this paper we consider the problem of maximizing any submodular function subject to d knapsack constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through extension by expectation of the submodular function. Formally, we show that, for any non-negative submodular function, an α-approximation algorithm for the continuous relaxation implies a randomized $(\alpha - \varepsilon)$-approximation algorithm for the discrete problem. We use this relation to improve the best known approximation ratio for the problem to $1/4 - \varepsilon$, for any $\varepsilon > 0$, and to obtain a nearly optimal $(1 - e^{-1} - \varepsilon)$-approximation ratio for the monotone case, for any $\varepsilon > 0$. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.

1 Introduction

A real-valued function f, whose domain is all the subsets of a universe U, is called submodular if, for any $S,T \subseteq U$,

$$f(S) + f(T) \geq f(S \cup T) + f(S \cap T).$$

The concept of submodularity, which can be viewed as a discrete analog of convexity, plays a central role in combinatorial theorems and algorithms (see, e.g., [11] and the references therein, and the comprehensive surveys in [10, 24, 19]). Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location and marketing over social networks (see, e.g., [13]).

In many settings, including set covering or matroid optimization, the underlying submodular functions are monotone, meaning that $f(S) \leq f(T)$ whenever $S \subseteq T$. In other settings, the function $f(S)$ is not necessarily monotone. A classic example of such a submodular function

* A preliminary version of this paper appeared in the Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, New York, January 2009.
† Computer Science Department, Technion, Haifa 32000, Israel. E-mail: ariel.kulik@gmail.com
‡ Computer Science Department, Technion, Haifa 32000, Israel. E-mail: hadas@cs.technion.ac.il. Work partially supported by the Technion V.P.R. Fund, by Smoler Research Fund, and by the Ministry of Trade and Industry MAGNET program through the NEGEV Consortium (www.negev-initiative.org).
§ School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. E-mail: tami@idc.ac.il
is \(f(S) = \sum_{e \in \delta(S)} w(e) \), where \(\delta(S) \) is a cut in a graph (or hypergraph) \(G = (V, E) \) induced by a set of vertices \(S \subseteq V \), and \(w(e) \) is the weight of an edge \(e \subseteq E \). An example for a monotone submodular function is \(f_{G,p} : 2^L \rightarrow \mathbb{R} \), defined on a subset of vertices in bipartite graph \(G = (L, R, E) \). For any \(S \subseteq V \), \(f_{G,p}(S) = \sum_{e \in N(S)} p_e \), where \(N(S) \) is the neighborhood function (i.e., \(N(S) \) is the set of neighbors of \(S \)), and \(p_e \geq 0 \) is the profit of \(v \), for any \(v \in R \). The problem \(\max \{ f_{G,p}(S) \mid |S| \leq k \} \) is classical maximum coverage.

In this paper we consider the following problem of maximizing a non-negative submodular set function subject to \(d \) knapsack constraints (SUB). Given a \(d \)-dimensional budget vector \(\bar{L} \), for some \(d \geq 1 \), and an oracle for a non-negative submodular set function \(f \) over a universe \(U \), where each element \(i \in U \) is associated with a \(d \)-dimensional cost vector \(\bar{c}(i) \), we seek a subset of elements \(S \subseteq U \) whose total cost is at most \(\bar{L} \), such that \(f(S) \) is maximized.

There has been extensive work on maximizing submodular monotone functions subject to matroid constraint.\(^1\) For the special case of uniform matroid, i.e., the problem \(\{ \max f(S) : |S| \leq k \} \), for some \(k > 1 \), Nemhauser et. al showed in [21] that a greedy algorithm yields a ratio of \(1 - e^{-1} \) to the optimum. Later works presented greedy algorithms that achieve this ratio for other special matroids or for variants of maximum coverage (see, e.g., [1, 15, 23, 5]). For a general matroid constraint, Calinescu et al. showed in [4] that a scheme based on solving a continuous relaxation of the problem followed by pipage rounding (a technique introduced by Ageev and Sviridenko [1]) achieves the ratio of \(1 - e^{-1} \) for maximizing submodular monotone functions that can be expressed as a sum of weighted rank functions of matroids. Subsequently, this result was extended by Vondrak [24] to general monotone submodular functions.

The bound of \(1 - e^{-1} \) is the best possible for all of the above problems. This follows from the lower bound of Nemhauser and Wolsey [20] in the oracle model, and the later result of Feige [9] for the specific case of maximum coverage, under the assumption that \(P \neq NP \).

Other variants of monotone submodular optimization were also considered. In [2], Bansal et al. studied the problem of maximizing a monotone submodular function subject to \(n \) knapsack constraints, for arbitrary \(n \geq 1 \), where each element appears in up to \(k \) constraints, and \(k \) is fixed. The paper presents a \(\frac{2e}{e-1} \) and \(\frac{e^2k}{e-1} + o(k) \) approximations for this problem. Demaine and Zadimoghaddam [8] studied bi-criteria approximations for monotone submodular set function optimization.

The problem of maximizing a non-monotone submodular function has been studied as well. Feige et al. [10] considered (unconstrained) maximization of a general non-monotone submodular function. The paper gives several (randomized and deterministic) approximation algorithms, as well as hardness results, also for the special case where the function is symmetric.

Lee et al. [19] studied the problem of maximizing a general submodular function under linear and matroid constraints. They proposed algorithms that achieve approximation ratio of \(1/5 - \varepsilon \) for the problem with \(d \) linear constraints and a ratio of \(1/(d+2+1/d+\varepsilon) \) for \(d \) matroid constraints, for any fixed integer \(d \geq 1 \).

Improved lower and upper bounds for non-constrained and constrained submodular maximization were recently derived by Gharan and Vondrák [12]. However, this paper does not consider knapsack constraints.

Several fundamental algorithms for submodular maximization (see, e.g., [1, 4, 24, 19]) use a continuous extension of submodular function, to which we refer as extension by expectation. Given a submodular function \(f : 2^U \rightarrow \mathbb{R} \), we define \(F : [0,1]^U \rightarrow \mathbb{R} \). For any \(\bar{y} \in [0,1]^U \), let

\(^1\) A (weighted) matroid is a system of ‘independent subsets’ of a universe, which satisfies certain hereditary and exchange properties [22].
$R \subseteq U$ be a random variable such that $i \in R$ with probability y_i (we say that $R \sim \bar{y}$). Then

$$F(\bar{y}) = E[f(R)] = \sum_{R \subseteq U} \left(f(R) \prod_{i \in R} y_i \prod_{i \not\in R} (1 - y_i) \right).$$

The general framework of these algorithms is to obtain first a fractional solution for the continuous extension, followed by rounding which yields a solution for the discrete problem.

Using the definition of F, we define the continuous relaxation of our problem called continuous SUB. Let $P = \{ \bar{y} \in [0, 1]^U | \sum_{i \in U} y_i \bar{c}(i) \leq L \}$ be the polytope of the instance, then the problem is to find $\bar{y} \in P$ for which $F(\bar{y})$ is maximized. For $\alpha \in (0, 1]$, an algorithm A yields α-approximation for the continuous problem with respect to a submodular function f, if for any assignment of non-negative costs to the elements, and for any non-negative budget, A finds a feasible solution for continuous SUB of value at least αO, where O is the value of an optimal (integral) solution for SUB with the given costs and budget.

For some specific families of submodular functions, linear programming can be used to derive such approximation algorithms (see e.g \[1, 4\]). For monotone submodular functions, Vondrák presented in \[24\] a $(1 - e^{-1} - o(1))$-approximation algorithm for the continuous problem. Subsequently, Lee et al. \[19\] considered the problem of maximizing any submodular function with multiple knapsack constraints and developed a $(\frac{1}{4} - o(1))$-approximation algorithm for the continuous problem; however, noting that the rounding method of \[18\] which proved useful for monotone functions, cannot be applied in the non-monotone case, a $(\frac{1}{4} - \varepsilon)$-approximation was obtained for the discrete problem, by using simple randomized rounding. This gap of approximation ratio between the continuous and the discrete case led us to further develop the technique in \[18\], so that it can be applied also for non-monotone functions.

1.1 Our Results

In this paper we establish a strong relation between the problem of maximizing any submodular function subject to d knapsack constraints and its continuous relaxation. Formally, we show (in Theorem 2.6) that for any non-negative submodular function, an α-approximation algorithm for the continuous relaxation implies a randomized $(\alpha - \varepsilon)$-approximation algorithm for the discrete problem. We use this relation to obtain approximation ratio of $1/4 - \varepsilon$ for SUB, for any $\varepsilon > 0$, thus improving the best known result for the problem, due to Lee et al. \[19\]. For the case where the objective function is monotone, we use this relation to obtain a nearly optimal $(1 - e^{-1} - \varepsilon)$ approximation, for any $\varepsilon > 0$. An important consequence of the above relation is that for any class of submodular functions, a future improvement of the approximation ratio for the continuous problem, to a factor of α, immediately implies an approximation ratio of $(\alpha - \varepsilon)$ for the original instance.

Our technique applies random sampling on the solution space, using a distribution defined by the fractional solution for the problem. In Section 3 we show how to convert a feasible solution for the continuous problem to another feasible solution with up to $O(\log |U|)$ fractional entries, given an oracle to the extension by expectation. This facilitates the usage of exhaustive search instead of sampling, which leads to a deterministic version of our technique. Specifically, we obtain a deterministic $(1/4 - \varepsilon)$-approximation for general instances and $(1 - e^{-1} - \varepsilon)$-approximation for instances where the submodular function is monotone. For the special case of maximum coverage with d knapsack constraints, that is, SUB where

\[18\] is a preliminary version of this paper.
the objective function is \(f = f_{G, \bar{p}} \) for a given bipartite graph \(G \) and profits \(\bar{p} \), this result leads to a deterministic \((1 - e^{-1} - \varepsilon) \)-approximation algorithm, since the extension by expectation of \(f_{G, \bar{p}} \) can be deterministically evaluated. Some basic properties of submodular functions are given in Appendix A.

1.2 Recent Developments

Subsequent to our study of maximizing monotone submodular functions subject to multiple knapsack constraints [18], Chekuri et al. [6] showed that, by using a more sophisticated rounding technique, the algorithm in [18] can be applied to derive a \((1 - e^{-1} - \varepsilon) \)-approximation for maximizing a submodular function subject to \(d \) knapsack constraints and a matroid constraint. Specifically, given a fractional solution for the problem, the authors define a probability distribution over the solution space, such that all of elements in the domain of the distribution are inside the matroid; these elements also satisfy Chernoff-type concentration bounds, which can be used to prove some of the probabilistic claims in [18]. The desired approximation ratio is obtained by using the algorithm of [18] with sampling replaced by the above distribution in the rounding step. Recently, the same set of authors improved in [7] the bound of \((1/4 - \varepsilon) \) presented here to 0.325.

2 Maximizing Submodular Functions

In this section we describe our framework for maximizing a submodular set function subject to multiple linear constraints. For short, we call this problem \textsc{SUB}.

2.1 Preliminaries

Notation: An essential component in our framework is the distinction between elements by their costs. We say that an element \(i \) is small if \(\bar{c}(i) \leq \varepsilon^3 \bar{L} \); otherwise, the element is big.

Given a universe \(U \), we call a subset of elements \(S \subseteq U \) feasible if the total cost of elements in \(S \) is bounded by \(\bar{L} \). We say that \(S \) is \(\varepsilon \)-nearly feasible (or nearly feasible, if \(\varepsilon \) is known from the context) if the total cost of the elements in \(S \) is bounded by \((1 + \varepsilon) \bar{L} \). We refer to \(f(S) \) as the value of \(S \). Similar to the discrete case, \(\bar{y} \in [0, 1]^U \) is feasible if \(\bar{y} \in P \).

For any subset \(T \subseteq U \), we define \(f_T : 2^U \rightarrow \mathbb{R}_+ \) by \(f_T(S) = f(S \cup T) - f(T) \). It is easy to verify that if \(f \) is a submodular set function then \(f_T \) is also a submodular set function. Finally, for any set \(S \subseteq U \), we define \(c_r(S) = \sum_{i \in S} c_r(i) \), where \(1 \leq r \leq d \), and \(\bar{c}(S) = \sum_{i \in S} \bar{c}(i) \). For a fractional solution \(\bar{y} \in [0, 1]^U \), we define \(c_r(\bar{y}) = \sum_{i \in U} c_r(i) \cdot y_i \) and \(\bar{c}(\bar{y}) = \sum_{i \in U} \bar{c}(i) \cdot y_i \).

Overview: Our algorithm consists of two phases, to which we refer as rounding procedure and profit enumeration. The rounding procedure yields an \((\alpha - O(\varepsilon)) \)-approximation for instances in which there are no big elements, using an \(\alpha \)-approximate solution for the continuous problem. It relies heavily on Theorem 2.1 that gives some conditions on the probabilistic domain of solutions; these conditions guarantee that the expected profit of the resulting nearly feasible solution is high. This solution is then converted to a feasible one, by using a fixing procedure. We first present a randomized version and later show how to derandomize the rounding procedure.

The profit enumeration phase uses enumeration over the most profitable elements in an optimal solution; then it reduces a general instance to another instance with no big elements,
on which we apply the rounding procedure.

Finally, we combine the above results with an algorithm for the continuous problem (e.g., the algorithm of [24], or [19]) to obtain approximation algorithm for SUB.

2.2 A Probabilistic Theorem

We first prove a general probabilistic theorem which refers to a slight generalization of our problem (called generalized SUB). In addition to the standard input for the problem, there is also a collection of subsets $\mathcal{M} \subseteq 2^U$, such that if $T \in \mathcal{M}$ and $S \subseteq T$ then $S \in \mathcal{M}$. The goal is to find a subset $S \subseteq \mathcal{M}$, such that $\bar{c}(S) \leq \bar{L}$ and $f(S)$ is maximized.

Theorem 2.1 For a given input of generalized SUB, let χ be a distribution over \mathcal{M} and D a random variable $D \sim \chi$, such that

1. $E[f(D)] \geq \mathcal{O}/5$, where \mathcal{O} is an optimal solution for the given instance.
2. For any $1 \leq r \leq d$, $E[c_r(D)] \leq L_r$
3. For any $1 \leq r \leq d$, $c_r(D) = \sum_{k=1}^m c_r(D_k)$, where $D_k \sim \chi_k$ and D_1, \ldots, D_m are independent random variables.
4. For any $1 \leq k \leq m$ and $1 \leq r \leq d$, it holds that either $c_r(D_k) \leq \varepsilon^3 L_r$ or $c_r(D_k)$ is fixed.

Let $D' = D$ if D is ε-nearly feasible, and $D' = \emptyset$ otherwise. Then D' is always ε-nearly feasible, $D' \in \mathcal{M}$, and $E[f(D')] \geq (1 - O(\varepsilon))E[f(D)]$.

To prove the results in this section, it suffices to use a special case of Theorem 2.1 (formulated as our next result). We use this theorem in its full generality in [17], in developing approximation algorithms for variants of maximum coverage and GAP.

Lemma 2.2 Let $\bar{x} \in [0, 1]^U$ be a feasible fractional solution such that $F(\bar{x}) \geq \mathcal{O}/5$, where \mathcal{O} is the optimal solution for generalized SUB. Let $D \subseteq U$ be a random set such that $D \sim \bar{x}$ (i.e., for all $i \in U$, $i \in R$ with probability x_i), and let D' be a random set such that $D' = D$ if D is ε-nearly feasible, and $D' = \emptyset$ otherwise. Then D' is always ε-nearly feasible, and $E[f(D')] \geq (1 - O(\varepsilon))F(\bar{x})$.

Proof of Theorem 2.1 Define an indicator random variable F such that $F = 1$ if D is ε-nearly feasible, and $F = 0$ otherwise.

Claim 2.1 $Pr[F = 0] \leq d\varepsilon$.

Proof: For any dimension $1 \leq r \leq d$, it holds that $E[c_r(D)] = \sum_{k=1}^m E[c_r(D_k)] \leq L_r$. Define $V_r = \{k | c_r(D_k) \text{ is not fixed}\}$. Then,

$$Var[c_r(D)] = \sum_{k=1}^m Var[c_r(D_k)] \leq \sum_{k \in V_r} E[c_r^2(D_k)]$$

$$\leq \sum_{k \in V_r} E[c_r(D_k)] \cdot \varepsilon^3 L_r \leq \varepsilon^3 L_r \sum_{k=1}^m E[c_r(D_k)] \leq \varepsilon^3 L_r^2.$$

The first inequality holds since $Var[X] \leq E[X^2]$, and the second inequality follows from the fact that $c_r(D_k) \leq \varepsilon^3 L_r$ for $k \in V_r$. Recall that, by the Chebyshev-Cantelli inequality, for any $t > 0$ and a random variable Z,

$$Pr[Z - E[Z] \geq t] \leq \frac{Var[Z]}{Var[Z] + t^2}.$$
Thus,
\[Pr\left[c_r(D) \geq (1 + \varepsilon)L_r\right] = Pr\left[c_r(D) - E[c_r(D)] \geq (1 + \varepsilon)L_r - E[c_r(D)]\right] \]
\[\leq Pr\left[c_r(D) - E[c_r(D)] \geq \varepsilon \cdot L_r\right] \leq \frac{\varepsilon^3 L_r^2}{\varepsilon^2 L_r^2} = \varepsilon. \]

By the union bound, we have that
\[Pr[F = 0] \leq \sum_{r=1}^{d} Pr[c_r(D) \geq (1 + \varepsilon)L_r] \leq d \varepsilon. \]

For any dimension \(1 \leq r \leq d\), let \(R_r = \frac{c_r(D)}{L_r}\), and define \(R = \max_r R_r\), then \(R\) denotes the maximal relative deviation of the cost from the \(r\)-th entry in the budget vector, where the maximum is taken over \(1 \leq r \leq d\).

Claim 2.2 For any \(\ell > 1\),
\[Pr[R > \ell] < \frac{d \varepsilon^3}{(\ell - 1)^2}. \]

Proof: By the Chebyshev-Cantelli inequality we have that, for any dimension \(1 \leq r \leq d\),
\[Pr[R_r > \ell] = Pr[c_r(D) > \ell \cdot L_r] \]
\[\leq Pr\left[c_r(D) - E[c_r(D)] \geq (\ell - 1)L_r\right] \leq \frac{\varepsilon^3 L_r^2}{(\ell - 1)^2 L_r^2} \leq \frac{\varepsilon^3}{(\ell - 1)^2}, \]
and by the union bound, we get that
\[Pr[R > \ell] \leq \frac{d \varepsilon^3}{(\ell - 1)^2}. \]

Claim 2.3 For any integer \(\ell > 1\), if \(R \leq \ell\) then
\[f(D) \leq 2d\ell \cdot O. \]

Proof: The set \(D\) can be partitioned to \(2d\ell\) sets \(D_1, \ldots, D_{2d\ell}\) such that each of these sets is a feasible solution. Hence, \(f(D_i) \leq O\). By Lemma \[A.1\] we have that \(f(D) \leq f(D_1) + \ldots + f(D_{2d\ell}) \leq 2d\ell O. \)

Combining the above results we have
Claim 2.4 \(E[f(D')] \geq (1 - O(\varepsilon))E[f(D)]. \)
Proof: By Claims 2.1 and 2.2, we have that

\[
E[f(D)] = E[f(D)|F = 1] \cdot Pr[F = 1] + \sum_{\ell \geq 1} E[f(D)|F = 0 \wedge (2^\ell \leq R < 2^{\ell+1})] \cdot Pr[F = 0 \wedge (2^\ell \leq R < 2^{\ell+1})]
\]

\[
\leq E[f(D)|F = 1] \cdot Pr[F = 1] + 4d^2 \varepsilon \cdot O + d^2 \varepsilon^3 \cdot O \sum_{\ell \geq 1} \frac{2^{\ell+2}}{(2^{\ell-1})^2}.
\]

Since the last summation is a constant, and \(E[f(D)] \geq O/2\), we have that

\[
E[F(D)] \leq E[f(D)|F = 1] \cdot Pr[F = 1] + \varepsilon \cdot c \cdot E[F(D)],
\]

where \(c > 0\) is some constant. It follows that

\[
(1 - O(\varepsilon))E[f(D)] \leq E[f(D)|F = 1] \cdot Pr[F = 1].
\]

Finally, since \(D' = D\) if \(F = 1\) and \(D' = 0\) otherwise, we have that

\[
E[f(D')] = E[f(D)|F = 1] \cdot Pr[F = 1] \geq (1 - O(\varepsilon))E[f(D)].
\]

By definition, \(D'\) is always \(\varepsilon\)-nearly feasible, and \(D' \in M\). This completes the proof of the theorem.

\[\square\]

2.3 Rounding Instances with No Big Elements

In this section we present an \((\alpha - O(\varepsilon))\)-approximation algorithm for SUB inputs with no big elements, given an \(\alpha\)-approximate solution for the continuous problem. Inputs with no big elements are easier to handle. Indeed, any nearly feasible solution for such input can be converted to a feasible one, with only a small harm to the total value.

Lemma 2.3 Let \(S \subseteq U\) be an \(\varepsilon\)-nearly feasible solution with no big elements, then \(S\) can be converted in polynomial time to a feasible solution \(S' \subseteq S\), such that \(f(S') \geq (1 - O(\varepsilon))f(S)\).

Proof: In fixing the solution \(S\) we handle each dimension separately. For any dimension \(1 \leq r \leq d\), if \(c_r(S) \leq L_r\) then no modification is needed; otherwise, \(c_r(S) > L_r\). Since all elements in \(S\) are small, we can partition \(S\) into \(\ell\) disjoint subsets \(S_1, S_2, \ldots, S_\ell\) such that \(\varepsilon L_r \leq c_r(S_j) < (\varepsilon + \varepsilon^3)L_r\) for any \(1 \leq j \leq \ell\), where \(\ell = \Omega(1/\varepsilon)\). Since the function \(f\) is submodular, by Lemma A.3 we have that \(f(S) \geq \sum_{j=1}^{\ell} f_{S \setminus S_j}(S_j)\). Hence, there exists a value \(j \in \{1, 2, \ldots, \ell\}\) such that \(f_{S \setminus S_j}(S_j) \leq \frac{f(S)}{\ell} = f(S) \cdot O(\varepsilon)\) (note that \(f_{S \setminus S_j}(S_j)\) may be negative). Now, \(c_r(S \setminus S_j) \leq L_r\), and \(f(S \setminus S_j) \geq (1 - O(\varepsilon))f(S)\). We repeat this step for all \(1 \leq r \leq d\) to obtain a feasible set \(S'\) satisfying \(f(S') \geq (1 - O(\varepsilon))f(S)\).

Combined with Theorem 2.1 we have the following rounding algorithm.

Randomized Rounding Algorithm for SUB with No Big Elements

Input: A SUB instance, a feasible solution \(\bar{x}\) for the continuous problem, with \(F(\bar{x}) \geq O/5\).

1. Define a random set \(D \sim \bar{x}\). Let \(D' = D\) if \(D\) is \(\varepsilon\)-nearly feasible, and \(D' = \emptyset\) otherwise.
2. Convert D' to a feasible set D'' as in the proof of Lemma 2.3 and return D''.

Clearly, the algorithm returns a feasible solution for the problem. By Theorem 2.1, $E[f(D')] \geq (1 - O(\varepsilon))F(\bar{x})$. By Lemma 2.3, $E[f(D'')] \geq (1 - O(\varepsilon))F(\bar{x})$. Hence, we have

Lemma 2.4 For any instance of SUB with no big elements, any feasible solution \bar{x} for the continuous problem with $F(\bar{x}) \geq O/5$ can be converted to a feasible solution for SUB in polynomial running time with expected profit at least $(1 - O(\varepsilon))\cdot F(\bar{x})$.

2.4 A Randomized Approximation Algorithm

Given an instance of SUB and a subset $T \subseteq U$, define another instance of SUB, to which we refer as the residual problem with respect to T, with f remaining the objective function. The budget for the residual problem is $\bar{L}' = \bar{L} - \bar{c}(T)$, and the universe U' consists of all elements $i \in U \setminus T$ such that $\bar{c}(i) \leq \varepsilon^3\bar{L}'$, and all elements in T. Formally,

$$U' = T \cup \{ i \in U \setminus T | \bar{c}(i) \leq \varepsilon^3\bar{L}' \}.$$

The new cost of element i is $\bar{c}'(i) = \bar{c}(i)$ for any $i \in U' \setminus T$, and $\bar{c}'(i) = 0$ for any $i \in T$. It follows that there are no big elements in the residual problem. Let S be a feasible solution for the residual problem with respect to T. Then $\bar{c}(S) \leq \bar{c}'(S) + \bar{c}(T) \leq \bar{L}' + \bar{c}(T) = \bar{L}$. Thus, any feasible solution for the residual problem is also feasible for the original instance.

Consider the following algorithm.

A Randomized Approximation Algorithm for SUB

Input: A SUB instance and an α-approximation algorithm A for continuous SUB with respect to the function f.

1. For any $T \subseteq U$ such that $|T| \leq h = [d \cdot \varepsilon^{-4}]$

 (a) Use A to obtain an α-approximate solution \bar{x} for the continuous residual problem with respect to T.

 (b) Use the Randomized Rounding Algorithm of Section 2.3 to convert \bar{x} to a feasible solution S for the residual problem.

2. Return the best solution found.

Lemma 2.5 The above approximation algorithm returns an $(\alpha - O(\varepsilon))$-approximate solution for SUB and uses a polynomial number of calls to algorithm A.

Proof: By Lemma 2.4 in each iteration the algorithm finds a feasible solution S for the residual problem. Hence, the algorithm always returns a feasible solution for the given SUB instance.

Let $O = \{i_1, \ldots, i_k\}$ be an optimal solution for the input I (we use O to denote both an optimal sub-collection of elements and the optimal value). For $\ell \geq 1$, let $K_\ell = \{i_1, \ldots, i_\ell\}$, and assume that the elements are ordered by their residual profits, i.e., $i_\ell = \arg\max_{i \in O \setminus K_{\ell-1}} f_{K_{\ell-1} \{i\}}$. Consider the iteration in which $T = K_h$, and define $O' = O \cap U'$. The set O' is clearly a feasible solution for the residual problem with respect to T. We show a lower bound for $f(O')$. The set $R = O \setminus O'$ consists of elements in $O \setminus T$ that are big with respect to the residual instance. The total cost of elements in R is bounded by \bar{L}' (since O is a feasible solution), and thus $|R| \leq \varepsilon^{-3} \cdot d$.

Since $T = K_h$, for any $j \in \mathcal{O} \setminus T$ it holds that $f_T(j) \leq \frac{f(T)}{|T|}$, and we get $f_T(R) \leq \sum_{j \in R \setminus T} f_T(j) \leq \varepsilon^{-3} \cdot \frac{f(T)}{|T|} = \varepsilon f(T) \leq \varepsilon O$. Thus, $f_{O^c}(R) \leq f_T(R) \leq \varepsilon O$. Since $f(O) = f(O') + f_{O^c}(R) \leq f(O') + \varepsilon f(O)$, we have that $f(O') \geq (1 - \varepsilon)f(O)$.

Thus, in this iteration we get a solution \bar{x} for the residual problem with $F(\bar{x}) \geq \alpha(1 - \varepsilon)f(O)$, and the solution S obtained after the rounding satisfies $f(S) \geq (1 - \varepsilon\alpha)f(O)$.

We summarize in the next result.

Theorem 2.6 Let f be a submodular function, and suppose there is a polynomial time α-approximation algorithm for the continuous problem with respect to f. Then there is a polynomial time randomized $(\alpha - \varepsilon)$-approximation algorithm for SUB with respect to f, for any $\varepsilon > 0$.

Since there is a $(1/4 - o(1))$-approximation algorithm for general instances of continuous SUB [19], we have

Theorem 2.7 There is a polynomial time randomized $(1/4 - \varepsilon)$-approximation algorithm for SUB, for any $\varepsilon > 0$.

Since there is a $(1 - e^{-1} - o(1))$ approximation algorithm for SUB with monotone objective function [24] we have

Theorem 2.8 There is a polynomial time randomized $(1 - e^{-1} - \varepsilon)$-approximation algorithm for SUB with monotone objective function, for any $\varepsilon > 0$.

3 A Deterministic Approximation Algorithm

In this section we show how the algorithm of Section 2.3 can be derandomized, assuming we have an oracle for F, the extension by expectation of f. For some families of submodular functions, F can be directly evaluated; for a general function f, F can be evaluated with high accuracy by sampling f, as in [24].

The main idea is to reduce the number of fractional entries in the fractional solution \bar{x}, so that the number of values a random set $D \sim \bar{x}$ can get is polynomial in the input size (for a fixed value of ε). Then, we go over all the possible values, and we are promised to obtain a solution of high value.

A key tool in our derandomization is the *pipage rounding* technique of Ageev and Sviridenko [1]. We give below a brief overview of the technique. For any element $i \in U$, define the unit vector $\bar{i} \in \{0, 1\}^U$, in which $i_j = 0$ for any $j \neq i$, and $i_i = 1$. Given a fractional solution \bar{x} for the problem and two elements i, j, such that x_i and x_j are both fractional, consider the vector function $\bar{x}_{i,j}(\delta) = \bar{x} + \delta i - \delta j$ (Note that $\bar{x}_{i,j}(\delta)$ is equal to \bar{x} in all entries except i,j). Let $\delta_{\bar{x},i,j}^+$ and $\delta_{\bar{x},i,j}^-$ (for short, δ^+ and δ^-) be the maximal and minimal value of δ for which $\bar{x}_{i,j}(\delta) \in [0, 1]^U$. In both $\bar{x}_{i,j}(\delta^+), \bar{x}_{i,j}(\delta^-)$, the entry of either i or j is integral.

Define $F_{i,j}^z(\delta) = F(\bar{x}_{i,j}(\delta))$ over the domain $[\delta^-, \delta^+]$. The function $F_{i,j}^z$ is convex (see [3] for a detailed proof), thus $\bar{x}' = \text{argmax}_{(\bar{x}_{i,j}(\delta^+), \bar{x}_{i,j}(\delta^-))} F(\bar{x})$ has fewer fractional entries than \bar{x}, and $F(\bar{x}') \geq F(\bar{x})$. By appropriate selection of i, j, such that \bar{x}' maintains feasibility (in some sense), we can repeat the above step to gradually decrease the number of fractional entries. We use the technique to prove the next result.

Lemma 3.1 Let $\bar{x} \in [0, 1]^U$ be a solution having k or less fractional entries (i.e., $\{|i | 0 < x_i < 1\} \leq k$), and $c(\bar{x}) \leq L$ for some L. Then \bar{x} can be converted to a vector \bar{x}' with at
most \(k' = \left(\frac{8 \ln(2k)}{\varepsilon} \right)^d \) fractional entries, such that \(\bar{c}(\bar{x}') \leq (1 + \varepsilon)\bar{L} \), and \(F(\bar{x}') \geq F(\bar{x}) \), in time polynomial in \(k \).

Proof: Let \(U' = \{ i \mid 0 < x_i < 1 \} \) be the set of all fractional entries. We define a new cost function \(\bar{c}' \) over the elements in \(U \).

\[
\bar{c}'(i) = \begin{cases}
 c_r(i) & i \notin U' \\
 0 & c_r(i) \leq \frac{\varepsilon \cdot L_r}{2k} \\
 \frac{\varepsilon \cdot L_r}{2k} (1 + \varepsilon/2)^j & c_r(i) < \frac{\varepsilon \cdot L_r}{2k} (1 + \varepsilon/2)^j + 1
\end{cases}
\]

Note that for any \(i \in U' \), \(\bar{c}'(i) \leq \bar{c}(i) \), and

\[
c_r(i) \leq \left(1 + \frac{\varepsilon}{2} \right) c_r(i) + \frac{\varepsilon \cdot L_r}{2k},
\]

for all \(1 \leq r \leq d \). The number of different values \(\bar{c}'(i) \) can get for \(i \in U' \) is bounded by \(\frac{8 \ln(2k)}{\varepsilon} \) (since all elements are small, and \(\ln(1 + x) \geq x/2 \)). Hence the number of different values \(\bar{c}'(i) \) can get for \(i \in U' \) is bounded by \(k' = \left(\frac{8 \ln(2k)}{\varepsilon} \right)^d \).

We start with \(\bar{x}' = \bar{x} \), and while there are \(i,j \in U' \) such that \(x'_i \) and \(x'_j \) are both fractional and \(\bar{c}'(i) = \bar{c}'(j) \), define \(\delta^+ = \delta^+_{i,j} \) and \(\delta^- = \delta^-_{i,j} \). Since \(i \) and \(j \) have the same cost (by \(\bar{c}' \)), it holds that \(\bar{c}'(\bar{x}_{i,j}(\delta^+)) = \bar{c}'(\bar{x}_{i,j}(\delta^-)) = \bar{c}'(\bar{x}) \). If \(F_{i,j}(\delta^+) \geq F(\bar{x}) \), then set \(\bar{x}' = \bar{x}_{i,j}(\delta^+) \); otherwise \(\bar{x}' = \bar{x}_{i,j}(\delta^-) \). In both cases \(F(\bar{x}') \geq F(\bar{x}) \) and \(\bar{c}'(\bar{x}') = \bar{c}'(\bar{x}) \). Now, repeat this step with \(\bar{x}' = \bar{x}'' \). Since in each iteration the number of fractional entries in \(\bar{x}' \) decreases, the process will terminate (after at most \(k \) iterations) with a vector \(\bar{x}' \) such that \(F(\bar{x}') \geq F(\bar{x}) \), \(\bar{c}'(\bar{x}') = \bar{c}'(\bar{x}) \leq \bar{L} \), and there are no two elements \(i,j \in U' \) with \(\bar{c}'(i) = \bar{c}'(j) \), where \(x'_i \) and \(x'_j \) are both fractional. Also, for any \(i \notin U' \), the entry \(x'_i \) is integral (since \(x_i \) was integral and the entry was not modified by the process). Thus, the number of fractional entries in \(\bar{x}' \) is at most \(k' \). Now, for any dimension \(1 \leq r \leq d \),

\[
\bar{c}(\bar{x}') = \sum_{i \notin U'} x'_i c_r(i) + \sum_{i \in U'} x'_i c_r(i)
\]

\[
\leq (1 + \varepsilon/2) \cdot \sum_{i \notin U'} x'_i c_r'(i) + \sum_{i \in U'} x'_i \left((1 + \varepsilon/2) c_r'(i) + \frac{\varepsilon \cdot L_r}{2k} \right)
\]

\[
= (1 + \varepsilon/2) \cdot \sum_{i \notin U'} x'_i c_r'(i) + \sum_{i \in U'} x'_i \frac{\varepsilon \cdot L_r}{2k} \leq (1 + \varepsilon)L_r.
\]

This completes the proof. \(\square \)

Using the above lemma, we can reduce the number of fractional entries in \(\bar{x} \) to a number that is poly-logarithmic in \(k \). However, the number of values \(D \sim \bar{x} \) remains super-polynomial. To reduce further the number of fractional entries, we apply the above step twice, that is, we convert \(\bar{x} \) with at most \(|U| \) fractional entries to \(\bar{x}' \) with at most \(k' = \left(\frac{8 \ln(2|U|)}{\varepsilon} \right)^d \). We can then apply the conversion again, to obtain \(\bar{x}'' \) with at most \(k'' = O(\log |U|) \) fractional entries.

Lemma 3.2 Given a vector \(\bar{L} \) and a constant \(\varepsilon > 0 \), let \(\bar{x} \in [0,1]^U \) be a vector satisfying \(\bar{c}(\bar{x}) \leq \bar{L} \). Then \(\bar{x} \) can be converted in time polynomial in \(|U| \) to a vector \(\bar{x}' \) with at most
\[k'' = O(\log |U|) \] fractional entries, such that \(\bar{c}(\bar{x}') \leq (1 + \varepsilon)^2 \bar{L}, \) and \(F(\bar{x}') \geq F(\bar{x}), \)

The next result follows immediately from Lemma 2.2 (\(\mathcal{O} \) is the value of an optimal solution for SUB).

Lemma 3.3 Given \(\bar{x} \in [0, 1]^U \) such that \(\bar{x} \) is a feasible fractional solution with \(F(\bar{x}) \geq \mathcal{O}/5 \), there exists a realization of the random variable \(D \sim \bar{x} \), such that the solution \(D \) is nearly feasible, and \(F(D) \geq (1 - O(\varepsilon))F(\bar{x}) \).

Consider the following rounding algorithm.

Deterministic Rounding Algorithm for SUB with No Big Elements

Input: A SUB instance, a feasible solution \(\bar{x} \) for the continuous problem, with \(F(\bar{x}) \geq \mathcal{O}/5 \).

1. Define \(\bar{x}' = (1 + \varepsilon)^{-2} \cdot \bar{x} \) (note that \(F(\bar{x}') \geq (1 + \varepsilon)^{-2} \cdot F(\bar{x}) \)).

2. Convert \(\bar{x}' \) to \(\bar{x}'' \) such that \(\bar{x}'' \) is fractionally feasible, the number of fractional entries in \(\bar{x}'' \) is \(O(\log |U|) \), and \(F(\bar{x}) \geq (1 + \varepsilon)^{-2} F(\bar{x}'') \geq (1 - e^{-1} - O(\varepsilon))\mathcal{O}, \) as in Lemma 3.2.

3. Enumerate over all possible realizations of \(D \sim \bar{x}'' \). For each such realization, if the solution \(D \) is \(\varepsilon \)-nearly feasible convert it to a feasible solution \(D' \) (see Lemma 2.3). Return the solution with maximum value among the feasible solutions found.

By Theorem 2.1 the algorithm returns a feasible solution of value at least \((1 - O(\varepsilon))F(\bar{x}) \). Also, the running time of the algorithm is polynomial when \(\varepsilon \) is a fixed constant. Replacing the randomized rounding step in the algorithm of Section 2.4 with the above Deterministic Rounding Algorithm, we get the following result.

Theorem 3.4 Let \(f \) be a submodular function, and assume we have an oracle for \(F \). If there is a deterministic polynomial time \(\alpha \)-approximation algorithm for the continuous problem with respect to \(f \), then there is a polynomial time deterministic \((\alpha - \varepsilon)-approximation algorithm for SUB with respect to \(f \), for any \(\varepsilon > 0 \).

We note that, given an oracle to \(F \), both the algorithms of [24] and [19] for the continuous problem are deterministic, thus we get the following.

Theorem 3.5 Given an oracle for \(F \), there is a polynomial time deterministic \((1 - e^{-1} - \varepsilon)-approximation algorithm for SUB with a monotone function, for any \(\varepsilon > 0 \).

Theorem 3.6 Given an oracle for \(F \), there is a polynomial time deterministic \((1/4 - \varepsilon)-approximation algorithm for SUB for any \(\varepsilon > 0 \).

For the problem of maximum coverage with \(d \) knapsack constraints, i.e., SUB where the objective function is \(f = f_{G, \bar{p}} \), for a given bipartite graph \(G \) and profits \(\bar{p} \), the function \(F \) can be evaluated deterministically (see [1]). This yields the following result.

Theorem 3.7 There is a polynomial time deterministic \((1 - e^{-1} - \varepsilon)-approximation algorithm for maximum coverage with \(d \) knapsack constraints.

4 Discussion

In this paper we established a strong relation between the continuous relaxation of SUB and the discrete problem. This relation is nearly optimal and suggests that future research should focus on deriving better approximation ratios for the continuous problem.
The question whether better rounding exists remains open; namely, is it possible to obtain an α-approximation algorithm for SUB, given an $\alpha < 1$ approximation algorithm for the continuous problem? And more specifically, is there a polynomial time $(1 - e^{-1})$-approximation for SUB with monotone objective function?

Finally, the running times of our algorithms are exponential in $1/\varepsilon$, thus rendering them impractical. Yet, the hardness results for d-dimensional Knapsack (see, e.g., [14, 15, 16]), a special case of SUB, hint that significant improvements over these running times may be impossible.

References

[1] A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms with proven performance guarantee. *J. Combinatorial Optimization*, 8(3):307–328, 2004.

[2] N. Bansal, N. Korula, V. Nagarajan, and A. Srinivasan. On -column sparse packing programs. In F. Eisenbrand and F. B. Shepherd, editors, *IPCO*, volume 6080 of *Lecture Notes in Computer Science*, pages 369–382. Springer, 2010.

[3] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint. *SIAM Journal on Computing, to appear*.

[4] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint. In *IPCO*, pages 182–196, 2007.

[5] C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints and applications. In *APPROX-RANDOM*, pages 72–83, 2004.

[6] C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized rounding via exchange properties of combinatorial structures. In *FOCS*, 2010.

[7] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via the multilinear relaxation and contention resolution schemes. *Manuscript*, 2010.

[8] E. D. Demaine and M. Zadimoghaddam. Scheduling to minimize power consumption using submodular functions. In *SPAA*, pages 21–29, 2010.

[9] U. Feige. A threshold of $\ln n$ for approximating set cover. *J.of ACM*, 45(4):634–652, 1998.

[10] U. Feige, V.S.Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. In *FOCS*, 2007.

[11] T. Fujito. Approximation algorithms for submodular set cover with applications. *IEICE Trans. Inf. and Systems*, E83-D(3), 2000.

[12] S. O. Gharan and J. Vondrák. Submodular maximization by simulated annealing. *CoRR*, abs/1007.1632, 2010.

[13] J. D. Hartline, V. S. Mirrokni, and M. Sundararajan. Optimal marketing strategies over social networks. In *WWW*, pages 189–198, 2008.

[14] H. Kellerer, U. Pferschy, and D. Pisinger. *Knapsack Problems*. Springer, October 2004.
A Basic Properties of Submodular Functions

In this section we give some simple properties of submodular functions. Recall that $f : 2^U \to \mathbb{R}$ is a submodular function if $f(S) + f(T) \geq f(S \cup T) + f(T \cap S)$ for any $S, T \subseteq U$. We define $f_T(S) = f(S \cup T) - f(T)$.

Lemma A.1 Let $f : 2^U \to \mathbb{R}$ be a submodular function with $f(\emptyset) \geq 0$, and let $S = S_1 \cup S_2 \cup \ldots \cup S_k$, where S_i are disjoint sets. Then

$$f(S) \geq f(S_1) + f(S_2) + \ldots f(S_k).$$

Proof: By induction on k. For $k = 2$, since f is a submodular function, we have that

$$f(S_1) + f(S_2) \geq f(S_1 \cup S_2) + f(S_1 \cap S_2) = f(S) + f(\emptyset),$$

and since $f(\emptyset) \geq 0$, we get that $f(S) \leq f(S_1) + f(S_2)$.

For $k > 2$, using the induction hypothesis twice, we have

$$f(S) \leq f(S_1) + f(S_2) + \ldots f(S_{k-2}) + f(S_{k-1} \cup S_k) \leq f(S_1) + f(S_2) + \ldots f(S_k).$$

\[\square\]
Lemma A.2 Let $f: 2^U \to \mathbb{R}_+$ be a submodular function, and let $S, T_1, T_2 \subseteq U$ such that $T_1 \subseteq T_2$ and $S \cap T_2 = \emptyset$. Then, $f_{T_2}(S) \leq f_{T_1}(S)$.

Proof: Since f is submodular,

$$f(S \cup T_1) + f(T_2) \geq f(S \cup T_1 \cup T_2) + f((S \cup T_1) \cap T_2) = f(S \cup T_2) + f(T_1).$$

Hence, $f_{T_2}(S) \leq f_{T_1}(S)$.

Lemma A.3 Let $f: 2^U \to \mathbb{R}_+$ be a submodular function, and let $S = S_1 \cup S_2 \cup \ldots \cup S_k$, where S_i are disjoint sets. Then,

$$f(S) \geq \sum_{i=1}^{k} f_{S \setminus S_i}(S_i).$$

Proof: We note that

$$f(S) = \sum_{i=1}^{k} f_{S_1 \cup \ldots \cup S_{i-1}}(S_i).$$

By Lemma A.2, for each $i > 1$, $f_{S_1 \cup \ldots \cup S_{i-1}}(S_i) \geq f_{S \setminus S_i}(S_i)$. Hence,

$$f(S) \geq \sum_{i=1}^{k} f_{S \setminus S_i}(S_i).$$