Dealloying of Cr$_{48.24}$Cu$_{51.76}$ Alloy in H$_2$SO$_4$ Solution and the Effect of Ultrasonic Vibration

Danyang Xie*
Department of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract: Dealloying of Cr$_{48.24}$Cu$_{51.76}$ alloy in H$_2$SO$_4$ solution was investigated by using static immersing corrosion, the effect of ultrasonic vibration on dealloying of the alloy in H$_2$SO$_4$ solution was studied by optical microscope, X-ray diffraction, scanning electron microscope, transmission electron microscope and X-ray fluorescence spectrometer techniques, and the dealloying mechanism was discussed. The results show that dechromisation corrosion of Cr$_{48.24}$Cu$_{51.76}$ alloy happens in H$_2$SO$_4$ solution with certain temperature and concentration, the ultrasonic vibration can decrease temperature and concentration of H$_2$SO$_4$ solution that when the dechromisation occurs, increase the dechromisation rate, and weaken the microstructure of dechromisation layer. And yet, ultrasonic vibration scarcely has an effect on the dechromisation mechanism.

Key words: Cr$_{48.24}$Cu$_{51.76}$ alloy, dechromisation, H$_2$SO$_4$ solution, ultrasonic vibration.

1. Introduction

CrCu alloy is an excellent material for preparing components such as high strength and high conductivity devices and vacuum switch contacts due to its higher compressive strength and excellent electric conductivity [1-3]. With the rapid development of modern industry, applications of CrCu alloy in the correlative fields expands [4, 5]. According to report that CrCu coating successfully protected NARLOY-Z from corrosion under flowing corrosive gas at high temperature [6]. Research on the corrosion resistance of CrCu alloy has already attracted researchers’ attention [7-9]. In our recent work, it is observed that dealloying corrosion of CrCu alloy occurs in acid solutions under a certain condition. So far, the investigations of dealloying Cu alloys are mainly focused on dezincification of brass and dealuminization of aluminum bronze, but few reports were about CrCu alloys’ dechromisation. Because many of Cu alloy workpiece service in the eroding and vibrational medium, and the solutions for industrial application often contain H$_2$SO$_4$. Therefore, this article studied the condition and mechanism of dechromisation corrosion of Cr$_{48.24}$Cu$_{51.76}$ alloy in H$_2$SO$_4$ solution and investigated the effect of ultrasonic vibration on dechromisation corrosion. These results provide some reference data to the research and application of dealloying corrosion of CrCu alloy.

2. Experiment

The experimental material is Cr$_{48.24}$Cu$_{51.76}$ alloy (mass fraction, %), and its size is Φ 5 × 5 mm. Every surface of samples was polished with 1200$^{\#}$ metallic sand papers, washed with water and dried. Then, the samples were immersed into H$_2$SO$_4$ solutions with different concentrations and temperatures for corrosion. To test the effect of ultrasonic vibration on dechromisation of Cr$_{48.24}$Cu$_{51.76}$ alloy, the experiment is carried out in CQ50 ultrasonic cleaning machine and its vibrational frequency is 0 kHz, 20 kHz, 40 kHz, respectively. In this study the dechromisation of above mentioned samples was observed, the incubation time of dechromisation was tested for samples in different states in H$_2$SO$_4$ solution and the lowest concentration and temperature of H$_2$SO$_4$...
solution at which dechromisation took place, and the dechromisation rate was calculated:

\[\nu = \frac{h}{t} \]

where, \(h \) represents thickness of dechromisation layer (the thickness was measured from the cross-section of the sample by optical microscope), \(t \) represents the dechromisation time (timed from air bubble separating out in the samples’ surface and its datum is the mean value of three measured results). Surface components and microstructure after corrosion were observed and analyzed by means of ADVANTPXP-381 X-rays fluorescent spectrophotograph, Axiovert200MAT optical microscope, D/MAX-rB X-ray diffractometer (with graphite monochromator, \(K_{\alpha} \) radiation), H800 transmission electron microscope and S-3400N SEM (Scanning electron microscope) with EDS (energy dispersive spectrometer).

3. Results and Discussion

3.1 Dechromisation Corrosion

Fig. 1 shows the microstructure of Cr_{48.24}Cu_{51.76} alloy. It can be seen that the microstructure of Cr_{48.24}Cu_{51.76} alloy consists of Cu matrix and particulate Cr phases. When Cr_{48.24}Cu_{51.76} alloy samples were immersed in a certain concentration and temperature of H_2SO_4 solution to stay for some time (off chrome incubation period), the sample surface produce a lot of bubbles, the color of the sample surface change gradually from light gray to copper color and H_2SO_4 solution gradually become deep dark green. According to the analysis of Table 1 by a fluorescence spectrometer, the Cr content of the sample surface significantly reduces, only 2.41\% (mass fraction, \%). XRD (X-ray diffraction) (Fig. 2) shows that the sample surface is not present with Cr phase. Thus it can be concluded that the phenomenon is Cr_{48.24}Cu_{51.76} alloy dechromisation corrosion, and the higher the H_2SO_4 solution concentration and temperature are, the more prone to take off de-chrome corrosion of Cr_{48.24}Cu_{51.76} alloy will be occurred.

![Microstructure of Cr_{48.24}Cu_{51.76} alloy.](image)

Table 1 Composition of sample’s surface of the Cr_{48.24}Cu_{51.76} alloy immersed in H_2SO_4 solution (mass fraction, \%).

Sample	Cu	Cr	Others
Original	51.54	48.32	0.14
Dechromisation	97.24	2.41	0.35

![X-ray diffraction patterns.](image)

It can be known from the potential-PH chat that the electrode potential of Cr metal is lower than that of Cu metal in the acid region, and the potential difference between the electrodes is approximately 1.2 V. That is to say, CrCu alloy shows a strong tendency of selective corrosion in acid solutions theoretically. It can be concluded that Cu and Cr in the solutions compose a corrosion battery with Cr being the anode and Cu being the cathode, and the dechromisation corrosion happens. It can be described simply as:

\[\text{Cr} \rightarrow \text{Cr}^{3+} + 3e \] (Anodic reaction)
\[2\text{H}^+ + 2e \rightarrow \text{H}_2 \] (Cathodic reaction)

The gas produced on the sample is H_2, Cr^{3+} stay in solution, and porous copper remains in the alloy matrix.
In fact, the dechromisation corrosion of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy doesn’t immediately occur in lower temperature and concentration H\textsubscript{2}SO\textsubscript{4} solution. This may be caused by the passivation of Cr. After passivation, the electrode potential of Cr increases\cite{10}, and the tendency of dechromistion corrosion of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy decreases. As the acid can dissolve the metal surface oxide film, the movement of atoms can be accelerated to promote the destruction of the passive film as the temperature increases. Therefore, only when the concentration and the solution temperature of H\textsubscript{2}SO\textsubscript{4} solution meet certain conditions, the passive film of chromium surface can be damaged, and the dechromisation corrosion of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy can occur, and the higher H\textsubscript{2}SO\textsubscript{4} solution concentration and temperature are, the more prone to take off dechromisation of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy will be occurred.

3.2 The Microstructure of Dechromisation Layer

It can be seen from macro-observation that the dechromisation samples’ surface without ultrasonic vibration is compact, whereas the dechromisation samples’ surface under ultrasonic vibration is coarse, and the greater the frequency of ultrasonic vibration, the rougher the surface of the specimen will be. The microstructure of dechromisation layer of samples under different states was shown in Fig. 3, it shows that Cu phase exists in the dechromisation district, Cr phase fell out and some hollows remained. The pore size of the chromium layer without ultrasonic vibration is small, much smaller than the size of Cr phase of the original organization; while the pore size of chromium layer under 40 kHz ultrasonic oscillation is larger, as big as that of Cr phase in the original microstructure. The SEM observation (Fig. 4) reveals that there are more pores in the chromium layer microstructure under ultrasonic vibration, and the densification is poor; the dechromisation corrosion of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloys without ultrasonic vibration preferentially first occurs around the interface of Cu phase and Cr phase, then gradually extends to the center of Cr phase until Cr phase falls out completely. This shows that the ultrasonic vibration can deteriorate the off chrome layer organization Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy, but the ultrasonic oscillation has little effect on dechromisation corrosion mechanism of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy.

![Fig. 3](image3.png)
Fig. 3 Morphology of dechromisation layer of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy in 4.23 mol·L-1, 60 °C H\textsubscript{2}SO\textsubscript{4} solution: (a) 0 kHz; (b) 40 kHz.

![Fig. 4](image4.png)
Fig. 4 SEM images of dechromisation area of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy in 4.23 mol·L-1, 60 °C H\textsubscript{2}SO\textsubscript{4} solution: (a) 0 kHz; (b) 40 kHz.
Since Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy consist of almost immiscible phase Cu and Cr phases, the atomic arrangement at the junction surface of these two phases is not continuous and the density is low. Therefore, the movement resistance of atoms in the interface is small resulting in the easily accessible movement from the interface to the outside. So the dechromisation corrosion priority occur in a two-phase Cu and Cr junction surface. For microstructure of dechromisation layer, without ultrasonic vibration, the size of the hole left by the Cr phase in the removal of the chromium layer is smaller than the size of the Cr phase in the original microstructure. This indicates that Cu atoms take up the position of Cr atoms. Under ultrasonic vibration, the activity of Cr atom increases, that may make the moving rate of Cr atoms from center to outside is larger than that of Cu atoms, resulting in larger pore size in dechromisation layer under ultrasonic oscillation and lower dense in off chrome layer microstructure, which remains to be further explored.

3.3 The Lowest Concentration and Temperature in H\textsubscript{2}SO\textsubscript{4} Solution When Dechromisation Occurs

Fig. 5 shows the relationship between concentration and temperature of H\textsubscript{2}SO\textsubscript{4} solution when the dechromisation occurs in different states. It can be seen that the higher concentration of H\textsubscript{2}SO\textsubscript{4} solution when dechromium of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy occurs, the lower the temperature of the solution. At the same temperature or concentration, the concentration or temperature of H\textsubscript{2}SO\textsubscript{4} solution can be reduced by ultrasonic oscillation when the dechromisation of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy occurs, and the greater the frequency of ultrasonic vibration, the more obvious of the effect will be. The results show that when the temperature is 60 °C, the concentration is 4.23 mol·L-1 without ultrasonic vibration during dechromisation. However, at the same temperature, the concentrations are 3.96 mol·L-1 and 3.82 mol·L-1 during dechromisation under 20 kHz and 40 kHz ultrasonic vibration, respectively. When the concentration is 3.34 mol·L-1, the temperature is 80 °C during dechromisation without ultrasonic vibration. However, at the same concentration, the temperatures are 75 °C and 72 °C during dechromisation under 20 kHz and 40 kHz ultrasonic vibration. The results of the test (Fig. 6) show that ultrasonic oscillations can shorten the incubation time of dechromisation and increase the the dechromisation rate of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy. This means that the ultrasonic vibration can increase the tendency of dechromisation and accelerate the dechromisation process of Cr\textsubscript{48.24}Cu\textsubscript{51.76} alloy.

Ultrasonic vibration can bring strong liquid vibration to accelerate breakage of passivation layer, abbreviate the incubation time of dechromisation, and
4.23 mol·L⁻¹, 60 °C H₂SO₄ solution.

reduce the concentration and temperature of H₂SO₄ solution when dechromisation of Cr₄₈.₂₄Cu₅₁.₇₆ alloy occurs. Meanwhile, ultrasonic vibration penetrates into the bare cracks of the interface of Cu phase and Cr phase, which leads to vibration of Cr atoms, accelerates the Cr atom to move out, and increases the dechromisation rate. Hence, it is helpful for the dechromisation corrosion of the alloy.

4. Conclusions

The dechromisation corrosion of Cr₄₈.₂₄Cu₅₁.₇₆ alloy can occur when the concentration and the solution temperature of H₂SO₄ solution meet certain conditions, and the higher the H₂SO₄ solution concentration and temperature are, the Cr₄₈.₂₄Cu₅₁.₇₆ alloy more prone to take off dechromisation corrosion occurred.

Ultrasonic vibration can reduce the concentration and temperature of H₂SO₄ solution when dechromisation of Cr₄₈.₂₄Cu₅₁.₇₆ alloy occurs, shorten the incubation time of dechromisation and increase the dechromisation rate, benefiting the occurrence of dechromisation corrosion in the alloy.

The ultrasonic oscillation can reduce the density of off chrome layer and has little effect on dechromisation corrosion mechanism of Cr₄₈.₂₄Cu₅₁.₇₆ alloy.

Acknowledgements

This work was supported by the natural science foundation of Hebei Province, China (E2014203135) and Independent research project of YanShan University Young teachers, China (14LGA015).

References

[1] Chang, S. H., Chen, S. H. and Huang, K. T. 2012. “Sintered Behaviors and Electrical Properties of Cr₅₀Cu₅₀ Alloy Targets via Vacuum Sintering and HIP Treatments.” Materials Transactions 53 (9): 1689-94.
[2] Ma, Y. Q. 2013. “Effects of 4 GPa Pressure Heat Treatment on Mechanical Properties and Electrical Conductivity of CuCrNiAl Alloy.” Materials Transactions 54 (5): 725 -8.
[3] Zhao, J., Yin, S., Chen, J. C., Wang, Z., Wen, Q. X. and Yang, Y. M. 2013. “Effects of High Pressure Treatment on Thermal Diffusion Coefficient and Thermal Expansion of Cu-50.84Cr-0.48Al Alloy.” Chinese Journal of Rare Metals 37 (5): 834-9.
[4] Kikuchi, S. and Baba, N. 2008. “Effects of Te Addition on the Mechanical Properties of Cr-Cu Sintered Materials (2).” Journal of the Japan Society of Powder and Powder Metallurgy 55 (8): 555-60.
[5] Terao, H., Kobiki, H., Itoh, T. and Kanetake, N. 2014. “Development of Cr-Cu Heat-Sink for Semiconductor Devices.” Journal of the Japan Society of Powder and Powder Metallurgy 61 (2): 85-92.
[6] Chiang, K. T. 1999. “Hot Gas Erosion Resistance of a Vapor-Deposited Cu-Cr Coating.” Surface and Coating Technology 114 (1): 1-6.
[7] Kwok, C. T., Wong, P. K. and Man, H. C. 2009. “Effect of PH on Corrosion Behavior of CuCrZr in Solution Without and with NaCl.” Journal of Nuclear Materials 394 (1): 52-62.
[8] Cao, Z. Q., Bian, J., Xue, R. and Liu, W. H. 2007. “Electrochemical Corrosion Behavior of Cu40Ni20Cr Alloys with Different Grain Sizes in Solutions Containing Chloride Ions.” Transactions of Nonferrous Metals Society of China 17 (6): 1236-41.
[9] Xu, T., Chang, L. M. and Liu, J. H. 2006. “Corrosion Behavior of a CuCrNiAl Alloy in the Presence of NaCl Deposit.” Rare Metals 25 (3):210-5.
[10] Yu, C. Y., Chang, L. M., Zhou, L. M. and Lin, H. Y. 2006. “Corrosion Behavior of a CuCrNiAl Alloy in HCl Solutions.” Transactions of Nonferrous Metals Society of China 16 (1): 229-33.