Self-reported symptom study of COVID-19 chemosensory dysfunction in Malaysia

Shen-Han Lee1,2*, Zhi Xiang Yeoh1, Ida Sadja’ah Sachlin1, Norzi Gazali3, Shahrl Aidman Soeler2, Chee Yoong Foo1, Lee Lee Low4, Sharifah Baizura Syed Alwi6, Tengku Mohamed Izam Tengku Kamalden5, Jothish Shankugananathan6, Masliza Zaid4, Chun Yiing Wong8, Hock Hn Chua9, Suhaimi Yusuf10, Dzawani Muhamad11, Philip Rajan Devesahayam12, Hong Bee Ker13, Zulkiflee Salahuddin14, Mahiran Mustafa15, Halimuddin Sawali16, Heng Gey Lee17, Sobani Din18, Nor Arisah Mislan19, Amran Mohammad20, Mohd Noor Ismail21, Chenthilnathan Periasamy22, Ting Soo Chow23, Elang Kumaran Krishnan24, Chee Looon Leong25, Linda Pei Fang Lim26, Nor Zaila Zaidan27, Mohd Zambri Ibrahim28, Suhaila Abd Wahab29, Siti Sabzah Mohd Hashim1 & Malaysian COVID-19 Anosmia Research Group

Alterations in the three chemosensory modalities—smell, taste, and chemesthesis—have been implicated in Coronavirus Disease 2019 (COVID-19), yet emerging data suggest a wide geographic and ethnic variation in the prevalence of these symptoms. Studies on chemosensory disorders in COVID-19 have predominantly focused on Caucasian populations whereas Asians remain understudied. We conducted a nationwide, multicentre cross-sectional study using an online questionnaire on a cohort of RT-PCR-confirmed adult COVID-19 patients in Malaysia between 6 June and 30 November 2020. The aim of our study was to investigate their presenting symptoms and assess their chemosensory function using self-ratings of perceived smell, taste, chemesthesis, and nasal blockage. In this cohort of 498 patients, 41.4% reported smell and/or taste loss when diagnosed with COVID-19, which was the commonest symptom. Blocked nose, loss of appetite, and gastrointestinal disturbances were independent predictors of smell and/or taste loss when diagnosed with COVID-19, which was the commonest symptom. Blocked nose, loss of appetite, and gastrointestinal disturbances were independent predictors of smell and/or taste loss on multivariate analysis. Self-ratings of chemosensory function revealed a reduction in smell, taste, and chemesthesis across the entire cohort.
of patients that was more profound among those reporting smell and/or taste loss as their presenting symptom. Perceived nasal obstruction accounted for only a small proportion of changes in smell and taste, but not for chemesthesis, supporting viral disruption of sensorineural mechanisms as the dominant aetiology of chemosensory dysfunction. Our study suggests that chemosensory dysfunction in COVID-19 is more widespread than previously reported among Asians and may be related to the infectivity of viral strains.

Study Registration: NMRR-20-934-54803 and NCT04390165.

Chemosensory disorders—encompassing smell, taste, and chemesthesis—are increasingly recognised as important symptoms of the Coronavirus Disease 2019 (COVID-19) infection caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While early cohort studies reported the most prevalent symptoms to be fever, dry cough, dyspnoea, myalgia, diarrhoea, and sore throat, several self-reported symptom studies mainly from the United States, United Kingdom, and Europe have reported smell and taste loss with a prevalence as high as 60–80%. The link between COVID-19 and altered chemesthesis—the ability to detect chemically triggered sensations such as spiciness, burning, cooling, or tingling sensation via the trigeminal nerve—was described in a large-scale online survey study by the Parma et al. from the Global Consortium for Chemosensory Research (GCCR).

The extent to which findings from these studies, conducted predominantly in Caucasian populations, can be applied to other populations with differences in genetics, lifestyle, environmental, and cultural factors—as well as differences in infectivity of SARS-CoV-2 genetic variants—remains largely understudied. Understanding the extent of chemosensory disorders within other populations may offer insights into the infectivity of viral strains as well as aid the diagnosis and management of the COVID-19 pandemic within a particular region. A limited number of studies from Asia—derived mainly from health records rather than self-reporting of symptoms—have reported a much lower prevalence of smell and taste loss in COVID-19 (as low as 5%) while no study has reported chemesthesia loss in Asians. A meta-analysis by Von Bartheld et al. found a three-fold higher prevalence of smell and taste loss in Caucasians (54.8%) as compared to Asians (17.7%). The difference in prevalence was postulated to be due to geographical differences in the distribution of viral strains harbouring the more infectious D614G spike protein mutation and ethnic-specific differences in genetic variants of viral binding proteins, angiotensin-converting enzymes 2 (ACE-2) and transmembrane protease serine 2 (TMPRSS2), respectively.

Here, we report findings from a cross-sectional study that assessed smell, taste, and chemesthesis disturbances in a cohort of COVID-19 patients in Malaysia. Our primary aim was to investigate the timing, severity, qualitative, and quantitative changes of chemosensory function before and during COVID-19. Our secondary aims were to uncover independent predictors of loss of smell and/or taste in COVID-19 and to assess the relationship between changes in smell, taste, chemesthesis, and self-perceived nasal blockage.

Methods

Study design. This is a cross-sectional study involving 14 COVID-19 treating public hospitals across all states of Malaysia. A self-administered questionnaire was used to survey patients diagnosed with COVID-19 infection in Malaysia between 6 June and 30 November 2020.

Patient eligibility. A convenience sample of patients aged ≥ 18 years with COVID-19 infection confirmed with reverse transcription polymerase chain reaction were invited to participate in the survey. Participants were either inpatient or patients who were discharged back to the community at the time of survey administration. Inpatient participants were evaluated to be clinically stable prior to initiating the survey. Those who were in the intensive care unit at the time of study were excluded. An internet link to the questionnaire online was sent to an invited patient after they have given verbal and written informed consent to participate. Phone interviews were conducted to those who did not have internet access or who were illiterate.

Ethics approval. This study received ethics approval from the Medical Research and Ethics Committee, Ministry of Health, Malaysia (KKM/NIHSEC/P20–1112). All methods in this study were performed in accordance with the relevant guidelines and regulations.

Questionnaire design. The survey questionnaire was adapted from a pre-existing, validated online questionnaires developed by the GCCR and the American Academy of Otolaryngology-Head & Neck Surgery (AAO-HNS). After multiple iterations, a consensus on the final version of the questionnaire was reached among the investigators and satisfied adequate content and face validity per our local setting. Our questionnaire was available in Malay and English, two of the widest spoken languages in Malaysia (Supplementary Materials S1). Participants were asked to report demographic information, symptoms of their COVID-19 diagnosis, time of onset of smell and/or taste loss, severity of symptoms, and whether they had recovered from them at the time of filling the questionnaire. They were given the option to describe any specific changes in smell and taste qualities as a check-all-that applies (CATA) question. They were also asked to quantify their ability to smell, taste, and perceive cooling, tingling and burning sensations (chemesthesis), and perceived nasal obstruction before, during COVID-19, and at the time of filling the questionnaire on a 6-point visual analogue scale (VAS).
Sample size calculation. Sample size estimation was calculated using the population proportion formula\(^1^4\). Prior data indicate that the prevalence of COVID-19-associated chemosensory dysfunction was 47.4%\(^1^5\). With a Type I error probability of 5%, precision of 5%, and an estimated prevalence of 50%, we will need to study 384 samples. With an additional 20% dropout rate, the sample size needed was 480 samples.

Statistical analyses. Associations between categorical variables were tested using Chi-Square test, while differences in mean age were tested using an independent sample t-test. Variables associated with smell and taste disturbances were first tested using univariate analysis, and statistically significant variables were then tested in a multivariate logistic regression analysis. The relationship between the categories of symptom severity and the presence of hyposmia or anosmia was tested using Chi-squared test with post hoc Bonferroni correction. The relationship between the categories of symptom severity and self-ratings during COVID-19 diagnosis was tested using Spearman's rank correlation analysis. Self-ratings of smell, taste, chemesthesis, and nasal congestion before and during COVID-19 diagnosis were tested with Wilcoxon matched pairs signed-rank test. A level of p < 0.05 was considered statistically significant. All statistical analyses were performed using either GraphPad PRISM 9.0 (GraphPad Software Inc., San Diego, CA, USA) or IBM SPSS Statistics (SPSS) version 27.0 (IBM Corporation, Armonk, NY, USA). Principal component analysis (PCA) of the changes in self-ratings of smell, taste, chemesthesis, and nasal blockage [rating during COVID-19 diagnosis minus (rating before COVID-19 diagnosis)] was performed in the same manner as previously reported by Parma et al.\(^8\) using the prcomp function from the R default statistics package. PCA is an algorithm that reduces the dimensionality of a dataset while retaining most of the variation in the dataset by identifying directions—termed principal components—along which variation of the data is maximal. Results of the PCA were plotted using functions from the FactoMineR package\(^1^9\).

Results

Patient recruitment and characteristics. A sample of 827 eligible patients were invited to complete the questionnaire, 743 agreed to participate, and 532 responses were received (response rate 64.3%). 34 responses were excluded due to either not meeting the inclusion criteria, duplicate responses, or inconsistent responses, while the remaining 498 responses were analysed.

Overall, the age of the patients ranged from 18 to 87 (median ± interquartile range [IQR]: 36 ± 24.25 years old). There were 279 males (56%) and 219 (44%) females. The largest ethnic group in our cohort were Malays (76.7%), followed by Chinese (10.0%) and Indians (1.8%), while the remaining (11.5%) included several ethnic groups native to East Malaysia (e.g., Kadazan, Dusun, and Murut) and foreign nationals (3%). 54.4% of patients had at least one comorbidity, the most common being hypertension (17.3%) and diabetes mellitus (13.9%) (Table 1).

Prevalence, timing, and severity of smell and taste disorders. At time of COVID-19 testing, 206 patients (41.4%) reported either one of loss of smell and/or taste. Among them, 29.3% reported loss of both smell and taste, 7.4% reported loss of smell but not taste, and 5.0% reported loss of taste but not smell. Loss of smell and/or taste was the most common symptom besides fever (40.2%), ahead of cough (30.5%) and sore throat (25.5%) (Table 1). 34.6% of patients with smell loss reported experiencing this before other symptoms whereas 30.7% of patients with taste loss experienced this before other symptoms (Table 2). 7.7% and 3.0% of patients with smell and taste loss respectively experienced this as their only symptom.

In terms of symptom severity, 12.1% and 10.0% of patients with smell and taste loss respectively described their symptoms as “severe” to “as bad as it can be” in the preceding two weeks prior to diagnosis (Table 2). In the CATA question on the type of smell disorders, 73 patients (40.1%) reported complete loss of smell (anosmia) whereas 100 patients (55.5%) reported partial loss of smell (hyposmia). Of note, 17 patients (9.3%) reported fluctuating sense of smell (Table 2). There was no significant correlation between the six categories of symptom severity and the presence of anosmia or hyposmia, as determined by Chi-square test with post hoc Bonferroni correction [Z critical value = 2.86, adjusted alpha level = 0.004 (0.05/12)]. In addition, there was no correlation between these categories of symptom severity and changes in rating scores of the patients when diagnosed with COVID-19 (Spearman's rank correlation coefficient, r = 0.05, p = 0.5).

Factors predictive of smell and taste disorders. Loss of smell and/or taste were significantly associated with younger age group (< 50 years), female sex, and the presence of several other symptoms listed in Table 3 on univariate analyses. A multivariate logistic regression analysis was performed using these variables and found that the presence of blocked nose (p < 0.0001, OR 4.95, CI 2.41–10.15), loss of appetite (p < 0.0001, OR 4.16, CI 2.35–7.38), and gastrointestinal disturbances (p = 0.038, OR 2.17, CI 1.04–4.53) were independent predictors of loss of smell and/or taste (Table 3).

Quantitative changes of smell, taste, chemesthesis, and nasal obstruction during COVID-19. The distribution of patients’ self-ratings of smell, taste, chemesthesis, and nasal blockage before and during COVID-19 diagnosis are depicted in Fig. 1. There were statistically significant changes in self-ratings of smell, taste, chemesthesis, and nasal blockage in the total patient cohort and the subgroups before and during COVID-19 diagnosis as measured by Wilcoxon matched pairs signed-rank test (Table 4).

We observed an increase in the percentage of patients with smell, taste, and chemesthesis ratings lower than a cut-off point of 4 compared to their baseline ratings prior to COVID-19 diagnosis (smell: 35.6% from 10.4%; taste: 34.2% from 10.0%; chemesthesis: 38.7% from 22.8%) (Fig. 1). Subgroup analysis of only those who reported smell loss as their presenting complaint (n = 182) revealed a higher increase in the proportion of smell ratings lower than 4 from 19.6% to 86.7%. Similarly, those who reported taste loss as their presenting complaint...
(n = 169) had a greater increase in the proportion of taste and chemesthesis ratings below 4 (taste, 82.9% from 16.1%; chemesthesis: 71.1% from 26%).

In parallel, we observed a slight increase in perceived nasal obstruction related to COVID-19. At baseline, 21% of patients reported a nasal blockage rating of greater than 1, which increased to 27.7% when diagnosed with COVID-19. Subgroup analysis of only patients who reported smell loss as their presenting symptom (n = 182) found 47.8% reporting a nasal blockage rating of greater than 1, from 27.4% at baseline. This observation is concordant with findings of significant association of smell loss with nasal congestion on multivariate analysis.

Relationship between self-ratings of smell, taste, chemesthesis, and nasal obstruction. To further characterise the relationship between changes in perceived nasal obstruction and changes in the three chemosensory modalities, we performed a principal component analysis of the changes in self-ratings of smell, taste, chemesthesis, and perceived nasal blockage (during minus before diagnosis of COVID-19) (Fig. 2). This

Characteristics	Total (N = 498)	Proportion (%)
Age, years	Median (IQR)	36 (28–52)
Sex		
Female	219	43.9
Male	279	56.0
Ethnicity		
Malay	382	76.7
Chinese	50	9.8
Indian	9	1.8
Other Malaysian ethnics	47	9.4
Other nationalities	10	2.0
Pre-existing comorbidities		
Hypertension	86	17.3
Diabetes	69	13.9
Smoker	56	11.2
Allergies/allergic rhinitis	35	7.0
Obstructive sleep apnoea	28	5.6
Rhinosinusitis	27	5.4
Chronic lung disease/asthma	24	4.8
Obesity	23	4.6
Cardiac disease	13	2.6
Psychiatric disorders	7	1.4
Dyslipidaemia	5	1.0
Previous sinonasal surgery	5	1.0
History of head trauma	4	0.8
Previous head/brain surgery	4	0.8
None	227	45.6
Presenting symptoms		
Loss of smell &/or taste	206	41.4
Loss of smell	182	36.6
Loss of taste	169	33.9
Fever	200	40.2
Cough	152	30.5
Sore throat	127	25.5
Malaise	119	23.9
Loss of appetite	108	21.7
Muscle ache	75	15.1
Headache	66	13.3
Nasal congestion	61	12.2
Shortness of breath	57	11.5
Rhinorrhoa	34	6.8
None	138	27.7

Table 1. Demographic and clinical characteristics of COVID-19 patients assessed for olfactory & taste disturbances.
analytic approach was previously employed by Parma et al.⁸ to determine whether changes in chemosensory function can be attributed to nasal obstruction. It leverages the orthogonal features of these principal components to evaluate the degree of statistical dependence between changes in chemosensory ability and perceived nasal obstruction. In our analysis, the two orthogonal principal components, Components 1 and 2, accounted for 59% and 22% of the total multidimensional variances respectively. Changes in self-ratings of smell, taste, and chemesthesis clustered together and correlated strongly with Component 1 (smell: $r = 0.837$, taste: $r = 0.871$, chemesthesis: $r = 0.815$), while showing negligible to weak positive correlation with the Component 2 (smell: $r = 0.066$, taste: 0.097, and chemesthesis: 0.333). In contrast, changes in self-ratings of nasal obstruction demonstrated only a moderate negative correlation with Component 1 ($r = -0.474$) but strong positive correlation ($r = 0.873$) with Component 2. The PCA loading vectors for changes in chemesthesis and nasal obstruction

Characteristics	No	Proportion (%)
Loss of smell⁴	182	36.5
Loss of taste	169	33.9
Loss of smell and taste	145	29.1
Loss of smell and/or taste	206	41.4
Loss of smell without loss of taste	37	7.4
Loss of taste without loss of smell	24	4.8

Timing of loss of smell⁵

Timing	No	Proportion (%)
First symptom	63	34.6
Same time as other symptoms	49	26.9
After other symptoms	56	30.7
Only symptom	14	7.7

Timing of loss of taste⁶

Timing	No	Proportion (%)
First symptom	52	36.7
Same time as other symptoms	47	27.8
After other symptoms	65	38.4
Only symptom	5	3

Decreased sense of smell 2 weeks before diagnosis⁷

Sense of smell	No	Proportion (%)
No problem	83	45.6
Very mild problem	20	11
Mild or slight problem	38	20.9
Moderate problem	19	10.4
Severe problem	10	5.5
Problem is as bad as it can be	12	6.6

Decreased sense of taste 2 weeks before diagnosis⁸

Sense of taste	No	Proportion (%)
No problem	78	46.1
Very mild problem	21	12.4
Mild or slight problem	35	20.7
Moderate problem	18	10.7
Severe problem	9	5.3
Problem is as bad as it can be	8	4.7

Type of smell disturbance⁴

Type	No	Proportion (%)
Anosmia	73	40.1
Hyposmia	100	55.5
Parosmia	28	15.3
Cacosmia	13	7.1
Phantosmia	19	10.4
Fluctuating sense of smell	17	9.3

Type of taste disturbance⁹

Type	No	Proportion (%)
Sweet	83	49.1
Salty	90	53.2
Sour	75	44.4
Bitter	72	42.6
Umami	48	28.4

Table 2. Characteristics of olfactory and taste disturbances in COVID-19 patients. ⁴Calculated as a proportion of total number of patients (N = 498). ⁵Calculated as a proportion of total number of patients with loss of smell (n = 182). ⁶Calculated as a proportion of total number of patients with loss of taste (n = 169).
formed a right angle indicating that they were not correlated and statistically independent of each other, whereas vectors for smell and taste changes formed a small obtuse angle with the vector for nasal obstruction, indicating a weak negative correlation. These PCA findings suggest that nasal obstruction could only account for a small proportion of smell and taste changes, but not for chemesthesis.

Qualitative changes of smell and taste during COVID-19. Qualitative changes in smell were uncommon among those who experienced smell disturbances—only 28 patients (15.3%) experienced parosmia, 19 patients (10.4%) experienced phantosmia, and 13 patients (7.1%) experienced cacosmia. The distinction between parosmia and cacosmia were made on the basis of patients’ selected response to Question 27 of the Questionnaire (Supplementary Material S1). Patients who selected “Smells smell different than they did before (the quality of smell has changed)” were considered to have parosmia, whereas those who selected “Smells smell unpleasant” were considered to have cacosmia.

Among participants who reported gustatory changes, 33 patients (19.5%) reported impairment of a single taste quality and 106 patients (62.7%) reported impairment of 2 or more taste qualities in the CATA question. 30

Table 3. Factors associated with smell and/or taste disturbances among COVID-19 patients in Malaysia. Bold values indicate statistical significance (p < 0.05). (–) not included in multivariate model. \(^a\) p-values were calculated using Chi square test (or Fisher’s exact test when n < 5 in any cell). \(^b\) p-values for multivariate analysis were calculated using multiple logistic regression (Forward method).

Variables	Smell &/or taste disturbance	Univariate analysis	Multivariate analysis			
	Present, n (%)	Absent, n (%)	Odds ratio (95% CI)	p-value \(^a\)	Odds ratio (95% CI)	p-value \(^b\)
Age group (years)						
≤ 50	163 (45.0)	199 (55.0)	1.77 (1.17–2.72)	0.007	1.30 (0.82–2.08)	0.27
> 50	43 (31.6)	93 (68.4)	1.00 (reference)	1.00 (reference)		
Sex						
Male	103 (36.9)	176 (63.1)	0.6591 (0.46–0.94)	0.02	0.71 (0.47–1.07)	0.10
Female	103 (47.0)	116 (53.0)	1.00 (reference)	1.00 (reference)		
Ethnicity						
Malay	166 (43.5)	216 (56.5)	1.46 (0.95–2.26)	0.09	0.71 (0.31–1.13)	0.10
Chinese	20 (40.0)	30 (60.0)	0.94 (0.52–1.69)	0.84	0.71 (0.31–1.13)	0.10
Indian	5 (55.6)	4 (44.4)	1.00 (reference)	1.00 (reference)		
Other Malaysian ethnics	15 (31.9)	32 (68.1)	0.59 (0.31–1.13)	0.10		
Comorbidities						
Hypertension	32 (37.2)	54 (62.8)	0.81 (0.51–1.29)	0.40	0.71 (0.31–1.13)	0.10
Diabetes	25 (36.2)	44 (63.8)	0.78 (0.46–1.31)	0.43		
Smoking	21 (37.5)	35 (62.5)	0.83 (0.48–1.48)	0.57		
Allergies/allergic rhinitis	16 (45.7)	19 (54.3)	1.21 (0.63–2.41)	0.60	0.71 (0.31–1.13)	0.10
Obstructive sleep apnoea	14 (50.0)	14 (50.0)	1.16 (0.53–2.59)	0.84	0.71 (0.31–1.13)	0.10
Rhinosinusitis	12 (44.4)	15 (55.6)	1.00 (reference)	1.00 (reference)		
Chronic lung disease/asthma	14 (53.9)	12 (46.2)	1.70 (0.80–3.78)	0.22		
Obesity	12 (52.2)	11 (47.8)	1.01 (0.59–3.10)	0.52		
Cardiac disease	6 (46.2)	7 (53.9)	1.00 (reference)	1.00 (reference)		
Psychiatric disorders	3 (42.8)	4 (57.1)	1.06 (0.27–4.00)	0.99		
Previous sinonasal surgery	3 (42.8)	4 (57.1)	1.06 (0.27–4.00)	0.99		
History of head trauma	1 (25.0)	3 (75.0)	1.00 (reference)	1.00 (reference)		
Previous head/brain surgery	1 (20.0)	4 (80.0)	0.35 (0.03–2.14)	0.65		
Associated symptoms						
Fever	119 (55)	90 (45)	2.53 (1.78–3.69)	<0.001	1.47 (0.92–2.348)	0.11
Cough	74 (48.7)	78 (51.3)	1.54 (1.03–1.57)	0.03	0.64 (0.39–1.05)	0.08
Sore throat	74 (58.3)	53 (41.7)	2.53 (1.67–3.80)	<0.001	1.53 (0.93–2.54)	0.10
Malaise	72 (60.5)	47 (39.5)	2.80 (1.81–4.24)	<0.001	0.93 (0.52–1.68)	0.81
Loss of appetite	79 (73.8)	28 (26.2)	5.87 (3.64–9.59)	<0.001	4.17 (2.35–7.38)	<0.001
Muscle ache	43 (57.3)	32 (42.7)	2.14 (1.29–3.55)	0.003	0.71 (0.36–1.39)	0.32
Headache	46 (69.7)	20 (30.3)	3.91 (2.21–6.71)	<0.001	1.40 (0.68–2.89)	0.36
Nasal congestion	46 (76.7)	14 (23.3)	5.71 (3.02–10.37)	<0.001	4.95 (2.41–10.15)	<0.001
Rhinorrhea	22 (64.7)	12 (35.3)	2.79 (1.36–5.64)	<0.001	1.24 (0.52–2.97)	0.63
Chills	20 (64.5)	11 (35.5)	2.75 (1.26–6.04)	0.007	1.48 (0.60–3.69)	0.40
Gastrointestinal disturbances	44 (73.3)	16 (26.7)	4.69 (2.56–8.52)	<0.001	2.17 (1.84–5.33)	0.04
Figure 1. Self-ratings of smell, taste, chemesthesis, and nasal congestion before and during COVID-19. Interleaved histograms represent self-ratings for smell, taste, chemesthesis, and nasal congestion on a 6-point visual analogue scale before and during COVID-19 in all patients (A,C,E,G), and the subset of patients who report changes in smell (B,H) and taste (D,F).
patients (17.8%) did not respond to this question (Table 2). Salty taste was the most frequently reported change (53.2%) followed by sweet (49.1%), sour (44.4%), bitter (42.6%), and umami/savoury (28.4%) taste.

Recovery of smell and taste disorders. Among the patients with smell and/or taste disorders, 90.2% (n = 186) of them reported recovery of their symptoms at the time of answering the questionnaire. This was on average 113 ± 31 days (mean ± SD) from the date of their COVID-19 diagnosis. Self-ratings of sense of smell, taste, chemesthesis, and nasal congestion at this time-point returned to pre-COVID-19 baseline levels in all patients and in the subset of patients who reported the chemosensory disorders [Mean smell rating: all patients 4.66 ± 0.86; smell disturbance only 4.49 ± 0.93; mean taste rating: all patients 4.74 ± 0.78; taste disturbance only

Table 4. Self-ratings of smell, taste, chemesthesis, and nasal obstruction before and during COVID-19. A For smell, taste and chemesthesis, ratings are below the cut-off score of 4. For nasal blockage, ratings are above the cut-off score of 1. B Wilcoxon matched pairs signed-rank test.

Variable	Before COVID-19	During COVID-19	Ratings below/above cut-off score (%)	p-value	
	Mean SE	Mean SE	Before COVID-19	During COVID-19	A
Smell ratings					
All patients	4.53 0.05	3.62 0.08	10.4 35.6	< 0.001	
Smell disturbance only	4.25 0.10	1.74 0.12	19.6 86.7	< 0.001	
Taste ratings					
All patients	4.54 0.05	3.63 0.08	10.0 34.2	< 0.001	
Taste disturbance only	4.40 0.09	1.83 0.12	16.1 82.9	< 0.001	
Chemesthesis ratings					
All patients	4.07 0.07	3.52 0.08	22.8 38.7	< 0.001	
Taste disturbance only	4.05 0.12	2.52 0.13	26.0 71.1	< 0.001	
Nasal blockage ratings					
All patients	0.85 0.07	1.00 0.07	21.0 27.7	< 0.01	
Smell disturbance only	0.97 0.10	1.66 0.12	27.4 47.8	< 0.001	

Figure 2. Principal component analysis (PCA) of difference scores of ratings of smell, taste, and chemesthesis [(rating during COVID-19 diagnosis) minus (rating before COVID-19 diagnosis)]. The findings of the PCA are depicted by a correlation circle of vectors representing changes in perceived smell, taste, chemesthesis and nasal blockage with the first (Dimension 1, abscissa) and second (Dimension 2, ordinate) principal components.

- Salty taste was the most frequently reported change (53.2%) followed by sweet (49.1%), sour (44.4%), bitter (42.6%), and umami/savoury (28.4%) taste.

Recovery of smell and taste disorders. Among the patients with smell and/or taste disorders, 90.2% (n = 186) of them reported recovery of their symptoms at the time of answering the questionnaire. This was on average 113 ± 31 days (mean ± SD) from the date of their COVID-19 diagnosis. Self-ratings of sense of smell, taste, chemesthesis, and nasal congestion at this time-point returned to pre-COVID-19 baseline levels in all patients and in the subset of patients who reported the chemosensory disorders [Mean smell rating: all patients 4.66 ± 0.86; smell disturbance only 4.49 ± 0.93; mean taste rating: all patients 4.74 ± 0.78; taste disturbance only
perception of smell and taste23–25. In addition, the D614G mutation of the coronavirus spike protein and ethnic reasons for this may include the influence of cultural context and geographical location on the awareness and physician-reporting in health records19–21. The rarity of patients reporting parosmia and phantosmia in our studies is likely because self-reporting is more sensitive in identifying symptom-based conditions compared to physician-reporting in health records19–21. The rarity of patients reporting parosmia and phantosmia in our study was consistent with the findings of Parma et al8, although other studies have reported higher prevalence of parosmia and phantosmia34,35.

Discussion

Our survey which involved close to 500 patients treated in 14 COVID-19-treating public hospitals in Malaysia revealed that loss of smell and/or taste was not only an early symptom of COVID-19 infection, but also the commonest symptom in this cohort, involving 40.2% of our patients. In comparison, a previous multicentre nationwide study from Malaysia based on the health records of 5889 hospitalised patients found the most common clinical manifestation of COVID-19 to be cough (32.2%), fever (29.5%), sore throat (14.3%), rhinorrhea (10.3%) and shortness of breath (5.3%), whereas anosmia and ageusia only constituted a small minority of cases (2.8% and 0.7%, respectively)36. In addition, a single-centre Malaysian study of the health records of 199 COVID-19 patients reported only 6.25% of cases experiencing anosmia37. By comparison, a telephone questionnaire study from another single-centre Malaysian study of 145 patients reported the prevalence of olfactory dysfunction and dysgeusia to be 21.4% and 23.4% respectively38. The discrepancy between our findings and these previous studies is likely because self-reporting is more sensitive in identifying symptom-based conditions compared to physician-reporting in health records19–21. The rarity of patients reporting parosmia and phantosmia in our study was consistent with the findings of Parma et al8, although other studies have reported higher prevalence of parosmia and phantosmia34,35.

The findings of chemosensory self-ratings revealed that COVID-19 chemosensory loss in our cohort was not only confined to smell and taste but also involved chemesthesia. While the proportion of smell and taste loss in our cohort is higher than that observed in other Asian studies3–7, its magnitude and extent is not as marked as that reported by Parma et al8 and other studies involving predominantly Caucasian populations3–7. Possible reasons for this may include the influence of cultural context and geographical location on the awareness and perception of smell and taste25–27. In addition, the D614G mutation of the coronavirus spike protein and ethnic differences in the frequency of variants of the virus-binding entry proteins (ACE-2 and TMPRSS2) have been proposed to facilitate virus entry in the olfactory epithelium and taste buds, thus increasing the likelihood of smell and taste disturbance42,43. A recent systematic review and meta-analysis found that South Asian populations infected predominantly with G614 virus had a much higher prevalence of anosmia compared with the same ethnic population infected mostly with the D614 strain, suggesting that D614G mutation is a major contributing factor that increases the prevalence of anosmia in COVID-1936. In a study on predominantly South Asian foreign workers with mild or no symptoms at a COVID-19 community isolation facility in Singapore, the prevalence of anosmia and ageusia was 3.0% and 2.6% respectively27. Retrospective analysis of publicly-available SARS-CoV-2 genome sampled from this population found a predominance of D614 strain, supporting the hypothesis of D614G mutation-mediated increase in the prevalence of anosmia28. While the majority of early cases of COVID-19 in Malaysia between February to April 2020 involved the SARS-CoV-2 lineage B.6 that did not harbour the D614G mutation29, the rapid spread of new cases in Malaysia between the months of May to December 2020 was found to be due to an increase in frequency of viral strains harbouring the D614G mutation30. Hence, it is plausible that the higher proportion of chemosensory disturbances in our cohort relative to other studies from Asia may also reflect the increasing frequency of viral strains harbouring the D614G mutation during the period of our study, although further work is needed to verify this hypothesis.

The association between loss of appetite and gastrointestinal disturbances with loss of smell or taste on multivariate analysis is congruent with observations from large-scale population studies of COVID-19 symptoms that demonstrated association between anosmia with loss of appetite and gastrointestinal symptoms28,31,32. The physiological relevance of these findings is highly plausible since our appetite is tightly linked to smell and taste, and may reflect concomitant SARS-CoV-2 viral infection of the olfactory and gastrointestinal tract epithelia33,34.

Our findings from the principal component analysis suggest that factors other than nasal congestion underlie most of the chemosensory changes, and that sensorineural impairment was likely the dominant mechanism in our cohort with only a small proportion of smell and taste loss may be attributed to nasal congestion. Importantly, chemesthesia loss was independent of nasal congestion. Olfactory dysfunction has been proposed to be due to conductive loss from mucosal obstruction of the olfactory cleft35 or sensorineural impairment from the direct effect of the virus on olfactory epithelium36–40. In particular, SARS-CoV-2 viral infection has been shown to cause anosmia by infecting the non-neuronal sustentacular cells in the olfactory epithelium that express ACE-2, the receptor required for viral entry into the cell36,37. Other mechanisms have implicated damage to the olfactory neurons from pro-inflammatory cytokines39 and disruption of signalling from olfactory sensory neurons to the olfactory bulb40. However, whether loss of neuronal cells actually occurs in COVID-19 and causes anosmia is currently controversial due to a lack of convincing evidence for this41.

Mechanisms for taste loss is less clear, since taste is closely linked to smell and nasal congestion. However, SARS-CoV-2 may infect taste chemoreceptor cells since ACE-2 is expressed on tongue keratinocytes42,43 or cranial nerves responsible for gustation (cranial nerves VII, IX and X) although evidence for this is lacking. Loss of chemesthesia have been hypothesised to be due to viral infection of the trigeminal nerve although, again, evidence for this is lacking4. Our findings support a dominant role for sensorineural mechanisms in SARS-CoV-2-related loss of smell, taste, and chemesthesia.

The major limitation of our study is the reliance on self-reporting of chemosensory function, which is subjective. Objective assessment of olfactory dysfunction in COVID-19 have been reported using a number of psychophysical tests such as Sniffin’ Sticks test44, Connecticut Chemosensory Research Centre orthonasal olfactory test45, and the University of Pennsylvania Smell Identification Test46. Likewise, gustatory dysfunction in COVID-19 have also been studied using objective tools such as a four-item taste test (sweet, sour, salty, and bitter)47 and taste-strips impregnated with four taste qualities47. Nonetheless, self-reporting of chemosensory function...
function is still widely used with reasonable accuracy rates between 70 and 80%18,19, and may be useful for remote assessment of patients in the setting of a pandemic. Moreover, there is evidence to suggest that objective testing is not always the most sensitive approach in detecting smell and taste loss in COVID-19. Boscutti et al. recently published a systematic-review and meta-analysis of all observational studies reporting the prevalence and longitudinal trajectories of olfactory and gustatory disorders in COVID-19 using patient self-reporting and objective psychophysical tests50. They found higher prevalence from self-reporting compared to psychophysical testing in some studies whereas the opposite was true for other studies, leading them to conclude that psychophysical testing was not always the most sensitive measure50. The replicability of tests across different countries has been suggested as a possible confounding factor50. Therefore, while objective tests for smell and taste are important, there is value in studying the chemosensory disorder in COVID-19 using self-reporting. Other limitations of our study include recall bias, the use of convenient sampling, and the lack of validation of the translated version of the questionnaire within our Malaysian population.

We accounted for individual differences in baseline chemosensory abilities and the use of rating scales in two ways—first, our study used a within-subject design where the participants rated their abilities at different time points (before and during COVID-19). The same individual participates in all conditions, hence controlling for differences in participant characteristics. Second, we analysed the differences in ratings between the two time-points (“during COVID-19” minus “before COVID-19”), instead of using absolute ratings. Hence, this approach precludes the need to normalise ratings to the baseline since we are not analysing the absolute values. Of note, this study design and method of analysis have been previously employed in large scale studies of chemosensory loss in COVID-19 using self-ratings51,52.

Our study also unveils opportunities to improve our understanding of COVID-19-associated chemosensory disturbances in Asian versus Caucasian populations. Future studies should compare these self-reported findings to culturally-adapted smell identification tests, such as a recently developed Malaysian version of Sniffin’ Stick Smell Identification test53, psychophysical tests of smell and taste, and imaging to assess the patency of the olfactory clefts and nasal cavity. Recent loss of smell has been suggested to be the best predictor of COVID-19 diagnosis54, and therefore, it would be of significant clinical importance to determine whether or not this is the case in Asian populations.

Conclusion

In summary, our study reveals widespread loss of smell, taste, and chemesthesias in Malaysian COVID-19 patients that manifested as early symptoms of infection. These chemosensory losses largely cannot be accounted for by nasal blockage, suggesting a predominantly sensorineural aetiology. These findings challenge earlier reports that smell and taste loss in COVID-19 are less common among Asians, suggesting that these symptoms may be more common than previously thought and may be related to the infectivity of the SARS-CoV-2 strains.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Received: 8 August 2021; Accepted: 21 January 2022
Published online: 08 February 2022

References

1. Guan, W. et al. Clinical characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. \textbf{382}, 1708–1720 (2020).
2. Goyal, P. et al. Clinical characteristics of Covid-19 in New York City. N. Engl. J. Med. \textbf{382}, 2372–2374 (2020).
3. Giacomelli, A. et al. Self-reported olfactory and taste disorders in patients with Severe Acute Respiratory Coronavirus 2 Infection: A cross-sectional study. \textit{Clin. Infect. Dis.} \textbf{71}, 889–890 (2020).
4. Spinato, G. et al. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. \textit{JAMA} \textbf{323}, 2089–2090 (2020).
5. Lechien, J. R. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. \textit{Eur. Arch. Otorhinolaryngol.} \textbf{227}, 2251–2261 (2020).
6. Menni, C. et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. \textit{Nat. Med.} \textbf{26}, 1037–1040 (2020).
7. Kaye, R., Chang, C. W. D., Kazahaya, K., Brereton, J. & Dennyen, J. C. COVID-19 anosmia reporting tool: Initial findings. \textit{Otolar- yngol. Neck Surg.} \textbf{163}, 132–134 (2020).
8. Parma, V. et al. More than smell—COVID-19 is associated with severe impairment of smell, taste, and chemesthesias. \textit{Chem. Senses} \textbf{45}, 609–622 (2020).
9. Mao, L. et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan China. \textit{JAMA Neurol.} \textbf{77}, 683–690 (2020).
10. Lee, Y., Min, P., Lee, S. & Kim, S. W. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. \textit{J. Korean Med. Sci.} \textbf{35}, e174 (2020).
11. Tham, A. C. et al. Olfactory taste disorder as a presenting symptom of COVID-19: A large single-center Singapore study. \textit{Eur. Arch. Otorhinolaryngol.} \textbf{278}, 1853–1862 (2021).
12. Butowt, R., Bilinska, K. & Von Bartheld, C. S. Chemosensory dysfunction in COVID-19: Integration of genetic and epidemiological data points to D614G spike protein variant as a contributing factor. \textit{ACS Chem. Neurosci.} \textbf{11}, 3180–3184 (2020).
13. Von Bartheld, C. S., Butowt, R. & Hagen, M. M. Prevalence of chemo- sensory dysfunction in COVID-19 patients: A systematic review and meta-analysis reveals significant ethnic differences. \textit{ACS Chem. Neurosci.} \textbf{11}, 2944–2961 (2020).
14. Lemeshow, S., Hosmer, D. W., Klar, J. & Lwanga, S. K. \textit{Adequacy of sample size in health studies.} (John Wiley & Sons, Inc., 1990).
15. Lé, S., Josse, J. & Husson, F. \textit{FactoMineR: An R package for multivariate analysis.} \textit{J. Stat. Softw.} \textbf{25}, 1–18 (2008).
16. Sim, B. L. H. et al. Clinical characteristics and risk factors for severe COVID-19 infections in Malaysia: A nationwide observational study. \textit{Lancet Reg. Heal. West. Pacific} \textbf{4}, 100053 (2020).
17. Ng, B. H. et al. COVID-19 detected from targeted contact tracing, attempting to see the pattern in random happenings: Early lessons in Malaysia. \textit{Med. J. Malaysia} \textbf{75}, 582–584 (2020).
H.G.L., S.D., N.A.M., A.M., M.N.I., C.P., T.S.C., E.K.K., C.L.L., L.P.F.L., N.Z.Z., M.Z.I., and S.A.W. provided ses. S.A.S., L.L.L., S.B.S.A., T.M.I.T.K., J.S., M.Z., C.Y.W., H.H.C., S.Y., D.M., P.R.D., H.B.K., Z.S., M.M., H.S., the acquisition, analysis, and interpretation of data. S.-H.L., S.A.S., and C.Y.F. performed the statistical analy-
S.-H.L., Z.X.Y., I.S.S., N.G., S.A.S., and S.S.M.H. conceived and designed the study. All authors were involved in
Author contributions
permission to publish this article. We are grateful to John R. Griffiths, DPhil, FRCP (Cancer Research UK Cam-
We would like to thank our patients for participating, and acknowledge all healthcare workers involved in the
Acknowledgements
18. Ramasamy, K., Saniaiaya, I. & Abdul Gani, N. Olfactory and gustatory dysfunctions as a clinical manifestation of Coronavirus Disease 2019 in a Malaysian tertiary center. Ann. Otol. Rhinol. Laryngol. 130, 513–519 (2021).
19. Viołan, C. et al. Comparison of the information provided by electronic health records data and a population health survey to estimate prevalence of selected health conditions and multimorbidity. BMC Public Health 13, 251 (2013).
20. Basché, E. et al. Patient versus clinician symptom reporting using the National Cancer Institute Common Terminology Criteria for Adverse Events: Results of a questionnaire-based study. Lancet Oncol. 7, 903–909 (2006).
21. Fromme, E. K., Eilers, K. M., Mori, M., Hsieh, Y. C. & Beer, T. M. How accurate is clinician reporting of chemotherapy adverse effects? A comparison with patient-reported symptoms from the Quality-of-Life Questionnaire C30. J. Clin. Oncol. 22, 3485–3490 (2004).
22. Hopkins, C. et al. Six month follow-up of self-reported loss of smell during the COVID-19 pandemic. Rhinology 59, 26–31 (2021).
23. Majid, A., Burenhult, N., Stensmyr, M., De Valk, J. & Hansson, B. S. Olfactory language and abstraction across cultures. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170339 (2018).
24. Majid, A. Human olfaction at the intersection of language, culture, and biology. Trends Cogn. Sci. 25, 111–123 (2021).
25. Baharuddin, A. R. & Shariﬁdun. The impact of geographical location on taste sensitivity and preference. Int. Food Res. J. 22, 731–738 (2015).
26. Von Bartheld, C. S., Hagen, M. M. & Butotw, R. The D614G virus mutation enhances anosmia in COVID-19 patients: Evidence from a systematic review and meta-analysis of studies from South Asia. ACS Chem. Neurosci. 12, 3535–3549 (2021).
27. Soh, S. H. L. et al. Prevalence of olfactory and taste dysfunction in COVID-19 patients: A community care facility study. Eur. Arch. Otorhinolaryngol. 278, 3375–3380 (2021).
28. See, A., Ko, K. K. K. & Toh, S. T. Epidemiological analysis in support of hypothesis that D614G virus mutation is a major contributing factor to chemosensory dysfunction in COVID-19 patients. Eur. Arch. Otorhinolaryngol. 278, 3595–3596 (2021).
29. Chong, Y. M. et al. SARS-CoV-2 lineage B.6 was the major contributor to early pandemic transmission in Malaysia. PLoS Negl. Trop. Dis. 14, 1–12 (2020).
30. Mat Yassin, A. S. et al. COVID-19 outbreak in Malaysia: Decoding D614G mutation of SARS-CoV-2 virus isolated from an asymptomatic case in Pahang. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.02.387 (2021).
31. Sudre, C. et al. Symptom clusters in COVID-19: a potential clinical prediction tool from the COVID Symptom study app. Preprint at medRxiv https://doi.org/10.1101/2020.06.12.20129056 (2020).
32. Elliott, J. et al. Symptom reporting in over 1 million people: community detection of COVID-19. Preprint at medRxiv https://doi.org/10.1101/2021.02.21.21251480 (2021).
33. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).
34. Xiao, F. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158, 1831–1833.e3 (2020).
35. Eliezer, M. et al. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol. Neck Surg. 146, 674–675 (2020).
36. Bilinska, K., Jakubowksa, P., Von Bartheld, C. S. & Butotw, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci. 11, 1555–1562 (2020).
37. Brann, D. H. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6, 5801–5832 (2020).
38. Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2020).
39. Cazzolla, A. P. et al. Taste and smell disorders in COVID-19 patients: Role of interleukin-6. ACS Chem. Neurosci. 11, 2774–2781 (2020).
40. Rodriguez, S. et al. Innate immune signaling in the olfactory epithelium reduces odorant receptor levels. Modeling transient smell loss in COVID-19 patients. Preprint at medRxiv https://doi.org/10.1101/2020.06.14.20131128 (2020).
41. Butotw, R., Meunier, N., Bryche, B. & von Bartheld, C. S. The olfactory nerve is not a likely route to brain infection in COVID-19: A critical review of data from humans and animal models. Acta Neuropathol. 141, 809–822 (2021).
42. Sato, T. et al. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats: Implications on COVID 19 Infections. Laryngoscope 131, E932–E939 (2021).
43. Xu, H. et al. High expression of ACE2 receptor of 2019-ncov on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12, 8 (2020).
44. Lechien, J. R. et al. Loss of smell and taste in 2013 European patients with mild to moderate covid-19. Ann. Intern. Med. 173, 672–675 (2020).
45. Vaira, L. A. et al. Olfactory and gustatory function impairment in COVID-19 patients: Italian objective multicenter-study. Head Neck 42, 1560–1569 (2020).
46. Moein, S. T. et al. Smell dysfunction: A biomarker for COVID-19. Int. Forum Allergy Rhinol. 10, 944–950 (2020).
47. Hintschich, C. A. et al. Psychophysical tests reveal impaired olfaction but preserved gustation in COVID-19 patients. Int. Forum Allergy Rhinol. 10, 1105–1107 (2020).
48. Lötsch, J. & Hummel, T. Clinical usefulness of self-rated olfactory performance—a data science-based assessment of 6000 patients. Chem. Senses 44, 357–364 (2019).
49. Hoffman, H. J., Rawal, S., Li, C. M. & Duffy, V. B. New chemosensory component in the US National Health and Nutrition Examination Survey (NHANES): first-year results for measured olfactory dysfunction. Rev. Endocr. Metab. Disord. 17, 221–240 (2016).
50. Boscotti, A. et al. Olfactory and gustatory dysfunctions in SARS-CoV-2 infection: a systematic review. Brain, Behav. Immun. - Heal. 15, 100268 (2021).
51. Gerkin, R. C. et al. Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem. Senses 46, bjaa081 (2021).
52. Cecchetto, C. et al. Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic. Sci. Rep. 11, 17504 (2021).
53. Sai-Guan, L., Husain, S., Zahedi, F. D., Ahmad, N. & Gendeh, B. S. Cultural adaptation of Sniffin’ Sticks smell identification test: the Malaysian version. Iran. J. Otorhinolaryngol. 32, 213–222 (2020).

Acknowledgements
We would like to thank our patients for participating, and acknowledge all healthcare workers involved in the management of COVID-19 cases in Malaysia. We thank the Director-General of Health, Malaysia for granting permission to publish this article. We are grateful to John R. Griffiths, DPhil, FRCP (Cancer Research UK Cambridge Institute, University of Cambridge, United Kingdom) for his comments on the paper.

Author contributions
S.-H.L., Z.X.Y., I.S.S., N.G., S.A.S., and S.S.M.H. conceived and designed the study. All authors were involved in the acquisition, analysis, and interpretation of data. S.-H.L., S.A.S., and C.Y.F. performed the statistical analyses. S.A.S., L.L.L., S.B.S.A., T.M.I.T.K., J.S., M.Z., C.Y.W., H.H.C., S.Y., D.M., P.R.D., H.B.K., Z.S., M.M., H.S., H.G.L., S.D., N.A.M., A.M., M.N.I., C.P., T.S.C., E.K.K., C.L.L., L.P.F.L., N.Z.Z., M.Z.I., and S.A.W. provided
administrative, technical, or material support. S.-H.L. drafted the manuscript with critical input from C.Y.F. and S.A.S. All authors reviewed the manuscript and approved the final version. S.-H.L. and S.S.M.H. jointly supervised the study.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-06029-6.

Correspondence and requests for materials should be addressed to S.-H.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Malaysian COVID-19 Anosmia Research Group

Nurul Asyikin Bachok30, Linger Sim8, Tiana Ti9, Teng Huei Lee8, Siti Nurul Aliaa Mohd Nor8, Kim Siang Tay9, Abirami Gouri Pagan9, Anura Aman10, Kamariah Mohamed Awang10, Jamal Nasser Salleh10, Harridas Manickam10, Nursyamimi Mohamad Zak10, Cheng Keat Moh12, Ruthran Thurairaju12, Ho Hwee Yee12, Nabilah Abd Aziz12, Rosdi Ramli13, Rosli Mohd Noor14, Anilawati Mat Jelani15, Mohd Fakri Alimi Mustapha16, Abdul Aziz Ab Azir16, Kribananthan Lohanadan16, Siti Farhana Abdul Razak16, Yen Tsen Saw17, Jason Henn Leong Kong17, Carren Sui Lin Teh18, Kuldirp Kaur Prem Singh19, Arvinda Karunakaran18, Nesha Rajendram18, Nik Hajarani Nik Mohd20, Nurul Amilin Ja’afar20, Siti Sarah Che Mohd Razali20, Shamesh Baskaran22, Farrah Hani Hassan24, Kalaiselvi Thuraisingam24, Hanisah Hithayathullah24, Prempreet Kaur Manjeet Singh24, Shen-Han Lee3, Nadiyah Hanim Zainul4, Man Chek Ooi5, Siti Aishah Mahazir5, Nurul Affah Mohd Yusoff5, Anees Fatimah Mohammad Iliyas5, Yi Shan Tan6, Ibtsiam Ismail6, Huan Keat Chan7, Jeyasakthy Saniasiaya31, Ting Ng32, Kuganathan Ramasamy32 & Fatin Farha Mohd Saifuddin29

30Hospital Enche’ Besar Hajjah Khalsom, Johor, Malaysia. 31Department of Otorhinolaryngology, Hospital Tuanku Ja’afar, Negeri Sembilan, Malaysia. 32Department of Medicine, Hospital Tuanku Ja’afar, Negeri Sembilan, Malaysia.