Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation and/or airflow limitation due to pulmonary emphysema. Chronic bronchitis, pulmonary emphysema, and bronchial asthma may all be associated with airflow limitation; therefore, exacerbation of asthma may be associated with the pathophysiology of COPD. Furthermore, recent studies have suggested that the exacerbation of asthma, namely virus-induced asthma, may be associated with a wide variety of respiratory viruses. COPD and asthma have different underlying pathophysiological processes and thus require individual therapies. Exacerbation of both COPD and asthma, which are basically defined and diagnosed by clinical symptoms, is associated with a rapid decline in lung function and increased mortality. Similar pathogens, including human rhinovirus, respiratory syncytial virus, influenza virus, parainfluenza virus, and coronavirus, are also frequently detected during exacerbation of asthma and/or COPD. Immune response to respiratory viral infections, which may be related to the severity of exacerbation in each disease, varies in patients with both COPD and asthma. In this regard, it is crucial to recognize and understand both the similarities and differences of clinical features in patients with COPD and/or asthma associated with respiratory viral infections, especially in the exacerbative stage. In relation to definition, epidemiology, and pathophysiology, this review aims to summarize current knowledge concerning exacerbation of both COPD and asthma by focusing on the clinical significance of associated respiratory virus infections.

Keywords: asthma, COPD, respiratory virus, exacerbation, overlap syndrome, human rhinovirus, respiratory syncytial virus
airways or destruction of alveolar walls with protease-mediated degradation (Barnes, 2008). Of note, neutrophilic infiltration could be recognized in bronchial biopsied specimens as well as eosinophils in severe refractory asthma (Wenzel et al., 1999).

DIFFERENCES AND SIMILARITIES BETWEEN ASTHMA AND COPD

As described above, asthma is typically characterized by chronic allergic inflammatory airway inflammation associated with airway hyperresponsiveness that leads to recurrent episodes of bronchial obstruction. In contrast, COPD is characterized by persistent airflow limitation that is usually progressive and ultimately results in respiratory failure. Therefore, it is not difficult to differentiate clinically between the two disorders. However, determining whether a patient has asthma or an exacerbation of COPD is often difficult, because of their clinical similarity. The Table 1 summarizes the differences between these two diseases, and Tokuda and Miyagi (2007) provided an excellent review of rapid physical diagnosis for COPD patients that focused on inspection, palpation, percussion, auscultation, special maneuvers, and vital signs.

On physical examination, the sound of an expiratory wheeze is identical in asthma, COPD, congestive heart failure, and pneumonia, and it cannot be used to distinguish among these conditions (Kaplan et al., 2009). Thus, physical examination is relatively insensitive for the diagnosis of asthma, but COPD has its characteristic physical findings (Tokuda and Miyagi, 2007) that could be useful in rapid differentiation from those of asthma.

Recent understanding of the innate immune system suggests that it may function independently of the adaptive immune system in some cases or synergistically in others, and the relative contributions of the two systems may explain the disease heterogeneity among asthmatic patients, which might occur in patients with COPD (Holtzman, 2012). It has long been argued that asthma, chronic bronchitis, and emphysema could be considered
Table 1 | Differences between asthma and COPD.

	Asthma	COPD
Age at onset	At any age (usually <40 years)	Usually >40 years
Smoking history	Possible	Usually >10 pack-years
Cough at exacerbation	Usually between 2 and 6 am	Gradual increase
Sputum production	In frequent	Common
Allergy (eczema or allergic rhinitis)	Common	In frequent
Airway Inflammation		
Main portion	Large airways	Small airways
Pathophysiologic	Basement-membrane thickening	Fibrosis of small airways
Bronchial biopsies	Th2-dominant T cells	TH1-dominant T cells and T type1 CTL
Reversibility (peak flow results)	Normalizes with time	May improve, but do not normalize
Family History	Common	Uncommon

CTL: cytotoxic T cell; Mϕ: macrophage.

as different expressions of one disease entity. This view is called the "Dutch hypothesis" (Kraft, 2006), and it is still under debate, with no consensus about it. There are many similarities in asthma and COPD (Bleecker, 2004), and previous studies suggested that asthma may be a risk factor for the development of COPD (Saliba et al., 2004), while the coexistence of asthma and COPD, so-called “overlap syndrome,” has recently been attracting attention. Overlap syndrome accounts for about 15-23% of obstructive airway disease (Louie et al., 2013) and shows more frequent or severe exacerbations and higher mortality than COPD alone (Hoopers et al., 2000; Hardin et al., 2011). Furthermore, previous reports noted that exacerbations of asthma or COPD are associated with accelerated loss of lung function and quality of life and increased healthcare costs and mortality.

Thus, it is crucial to recognize and understand the clinical features of asthma and COPD patients, not only in the stable phase, but also in exacerbated phases associated with respiratory viral infections. Johnston and Searl (2006) reported that exacerbations of asthma and COPD appear to have a seasonal predilection in a similar fashion.

VIRUS-INDUCED EXACERBATIONS IN ASTHMA AND COPD

VIRUS-INDUCED EXACERBATIONS IN ASTHMA

In bronchial asthma, acute exacerbation involves several issues (Figure 3), such as the definition of acute exacerbation of asthma, recognition of the clinical symptoms of respiratory tract infection (RTI), assessment of the risk factors for acute exacerbation, considering the possibility of other diseases (differential diagnosis), diagnostic methods, appropriate sample collection, and treatment or prevention. An older study showed that asthmatic patients had a 6-2 times greater chance of having viral RTIs than a control group (Abramson et al., 1994), while Corné et al. (2002) found that the detection rates of human rhinovirus (HRV) in asthmatic (10.1%) and healthy participants (8.5%) were similar. The term virus-induced exacerbation of asthma is not uncommon, but only a small number of such studies were prospective (Nicholson et al., 1993; Johnston et al., 1995). Furthermore, RTIs do not always lead to an exacerbation, and there is little evidence that treating or preventing the infection may cure or prevent an exacerbation. In this regard, we mainly discuss the details of “viral infection and exacerbation of asthma,” focusing on the accumulation of useful expertise for understanding this unfavorable condition in adult asthmatic patients.

Definitions of acute exacerbation of asthma

The diagnosis of asthma is usually defined based on history and variability of the peak expiratory flow rate (PEFR) and/or of forced expiratory volume in 1 s (FEV1) of at least 20%, either with therapy or spontaneously. There is no clear consensus definition for asthma exacerbation; clinical trials usually define a severe exacerbation as the need for treatment with systemic corticosteroids, hospital admission, or emergency treatment for worsening asthma, or a decrease in morning peak flow >25% baseline on two consecutive days (O’Byrne et al., 2001). According to the latest NIH National Asthma Education and Prevention Guidelines, asthma exacerbations are acute or sub-acute episodes of progressively worsening shortness of breath, cough, wheezing, and chest tightness, or some combination of these symptoms, characterized by decreases in expiratory airflow and objective measures of lung function (spirometry and peak flow) (National Asthma Education and Prevention Program, 2007), identical to the definition of the Global Initiative for Asthma guidelines (2012)2 (Figure 3). However, a joint task force of the American Thoracic Society and European Respiratory Society has recently defined asthma exacerbations as events characterized by a change from the patient’s previous status (Reddel et al., 2009). Severe exacerbations were defined as events that require urgent action to prevent hospitalization or death, whereas moderate exacerbations were defined as the status of an asthmatic patient who required a prompt change in treatment due to being outside the patient’s usual range of day-to-day asthma variation. Mild exacerbations are not defined because such events can be

2http://www.ginasthma.org/local/uploads/files/GINA_Report_March13.pdf
indistinguishable from loss of asthma control (Reddel et al., 2009; Figure 3).

Epidemiology

Asthma exacerbations are more common in female than in male patients, and the higher prevalence of asthma in adult women contrasts with the higher prevalence of asthma in male children (Bjornson and Mitchell, 2000). Between 14 and 43% of acute asthma exacerbations in children is thought to be related to viral RTIs. Although the incidence in adults is less clear, previous reports showed that RTIs associated with asthma exacerbation in adults ranged from 18–21% (Teichtahl et al., 1997) to 45–80% (Johnston et al., 1995; Atmar et al., 1998), of which 60% have HRV (Johnston et al., 1995; Atmar et al., 1998; Tan, 2005; Figure 1). Despite their widely differing designs, these studies suggest that viral infections are involved in about 50% of asthma exacerbations among adults and in probably substantially more childhood asthma exacerbations. Another report also showed that the virus most commonly implicated in asthma exacerbations appears to be HRV (Murray et al., 2004). In addition to HRV, other respiratory tract viruses, such as respiratory syncytial virus (RSV), influenza viruses, coronaviruses, human metapneumoviruses (HMPVs), parainfluenza viruses (PIVs), adenoviruses (AdVs), and bocaviruses, have all been detected in subjects with asthma exacerbations (Jackson and Johnston, 2010). In adults requiring hospital admission for an acute severe asthma exacerbation in a 1-year period, virus was identified in 29% of the subjects, with HRV and influenza A, the most commonly identified infectious agents (Teichtahl et al., 1997).

Diagnosis of viral infection: diagnostic methods and sample collection

Molecular methods of viral detection have superior sensitivity and specificity compared to cell culture-based methods (McErlean et al., 2010). In the setting of acute exacerbation, the reverse-transcriptase polymerase chain reaction (RT-PCR) method can detect viruses in approximately 80% of wheezing episodes in school-aged children and in approximately one-half to three-quarters of acute wheezing episodes in adults (Jackson and Johnston, 2010). With respect to sample collections for viral detection, Xiang et al. (2002) reported that nasopharyngeal secretions and induced sputum during acute exacerbations of asthma in adult patients were equal, while Falsay et al. (2012) found that the diagnostic yields using RT-PCR for detection of any virus...
in adults hospitalized with respiratory illness were superior in sputum samples (56%) than in nose and throat swabs (23%). However, the study had some limitations in that no test for HRV or AdV was used. Another report showed that the sensitivity rates for oropharyngeal swabs (OPS), nasopharyngeal swabs (NPS), and nasopharyngeal washings (NPW) obtained from hospitalized patients with acute febrile lower respiratory tract (LRT) infections were 54.2, 73.3, and 84.9%, respectively (for OPS vs. NPS and NPW, p < 0.0001; for NPS vs. NPW, p < 0.005; Lieberman et al., 2009). Taken together, these studies appear to suggest that induced sputum and NPS/NPW are better methods for identifying respiratory viruses. Regarding HRV, bronchoalveolar lavage (BAL) cells were positive for HRV RNA during infection in 80% of samples, whereas nasal lavage fluid was positive in the same patients in 100%, and BAL fluid was positive in only 37%. This suggests that HRV is able to infect the lower airways, and that HRV RNA is largely cell-associated (Murray et al., 2004).

Causes of acute asthma exacerbations

Eczema and a family history of asthma are the dominant non-infectious risk factors for pediatric asthma, while the triggers of adult-onset disease are less well defined. The causes for asthma exacerbations have been described and categorized. Of note, clinicians should recognize the seasonal trends for exacerbations of wheezing or asthma in adults, which occur 1–2 weeks later than in children, suggesting household transmission of the same strain (Johnston et al., 1996). HRV can be documented throughout the year, with a predilection for late spring and fall (Nagel et al., 2008). Taken together, these studies appear to suggest that induced sputum and NPS/NPW are better methods for identifying respiratory viruses. Regarding HRV, bronchoalveolar lavage (BAL) cells were positive for HRV RNA during infection in 80% of samples, whereas nasal lavage fluid was positive in the same patients in 100%, and BAL fluid was positive in only 37%. This suggests that HRV is able to infect the lower airways, and that HRV RNA is largely cell-associated (Murray et al., 2004).

Causes of asthma exacerbation,

By 1 year of age, 50–65% of children will have been infected with this virus, and by 2 years of age, nearly 100% has been infected (Openrecht, 1995). The exact mechanisms by which respiratory viral infection causes asthma exacerbation remains to be determined, but the respiratory viruses implicated in exacerbations have themselves been largely identified (Figure 1). The role of severe RSV infection as a risk factor for asthma in adulthood is less certain, but it is still under study. RSV is an important pathogen of young children and accounts for ~70% of severe infantile viral bronchiolitis and/or pneumonia cases, most of whom have wheezing, and it is the most common cause of hospital admission in the winter season during the first year of life (Blanken et al., 2013). Furthermore, this study showed the strongest evidence that human RSV-mediated bronchiolitis has long-term effects using palivizumab (a humanized monoclonal antibody against RSV F protein that prevents infection by RSV in infancy). In children under 5 years, RSV and AdV are the most common pathogens, whereas in older children, rhinovirus and influenza A virus are more prevalent (Bosley et al., 1988). Even in elderly persons, RSV causes pneumonia (Falsay et al., 2006), exacerbations of COPD, and acute deterioration in those with cardiac disease, and it contributes substantially to excess deaths in the winter season (Olszewka and Openrecht, 2009).

Human rhinovirus. Recent studies have identified infection with HRV as a predominant respiratory pathogen associated with asthma later in life (Kusel et al., 2007). HRV is the most important virus type associated with exacerbations of asthma leading to hospital admission in both adults and children (Johnston et al., 1996). Tan et al. (2003) reported that picornaviruses (rhinovirus/c enterovirus) and AdV were most commonly identified in near-fatal asthma, whereas influenza virus predominated in COPD. Conne et al. (2002) found that the detection rates of HRV in asthmatic (10.1%) and healthy participants (8.3%) were similar, but the LRT symptoms were significantly more severe and longer-lasting in the asthmatic group than in the healthy group. Thus, HRV is the most common and important cause of exacerbation in both children and adults (Johnston et al., 1996; Rakes et al., 1999; Copenhaver et al., 2004; Message et al., 2008; Dougherty and Fahy, 2009; Olene et al., 2010; Jackson et al., 2012). HRV can now be classified into three species (HRV-A, B, and C) based on their genetic properties (http://www.ictvonline.org/), while over 100 serotypes have been identified. Molecular epidemiological studies suggest that HRV-A and -C are the major prevalent species, with wide genetic divergence (Fujitsuka et al., 2014).

Adenovirus. Adenoviruses are well known as a primary cause of acute respiratory infections, particularly in young children. AdV are associated with up to 7% of virus-related asthma exacerbations (McEllan et al., 2010), and they cause a wide variety of clinical syndromes, such as diarrhea, keratoconjunctivitis, and hemorrhagic cystitis (Brodzinski and Ruddy, 2009). It has been demonstrated that 94% of children with refractory asthma has detectable AdV antigens, compared with 0% of controls (Macek et al., 1994; Figure 1).

Parainfluenza virus. As previously noted, PIV is one of the most common pathogens for asthma exacerbation in children under 5 years. In adults with asthma, PIV infections have also been commonly demonstrated in several longitudinal studies of RTIs, but they have been identified less commonly in studies of patients seen in the hospital or emergency department (Atmar et al., 1998).

Other viruses. Most asthma studies describe relatively low levels of influenza viruses in asthmatic patients with exacerbations, approximately 1–9% of all virus-related asthma exacerbations. Several studies indicated that human bocaviruses (Gendrel et al., 2007; Valler et al., 2009) and HMPV (Williams et al., 2005; Ong et al., 2007) are associated with exacerbations of asthma, especially in children.

Bacteria. Mycoplasma pneumoniae and Chlamydia pneumoniae are found more frequently in the airways of patients with asthma than in healthy patients (Nisar et al., 2007), but their role in exacerbations is less clear (Sepanadaki et al., 2008). In previous studies, some have reported mycoplasmal infection in up to 25% of children with wheezing (Henderson et al., 1979) or identified it in 20% of exacerbations in asthmatic children requiring hospitalization and in 50% of children experiencing their first asthmatic
attack (Bisardi et al., 2004). However, others have not been able to confirm these observations (Cunningham et al., 1998).

Other specific pathogens, including Haemophilus influenzae, Streptococcus pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, HRV, and RSV, have been shown to increase mucus secretion, which is recognized in asthma or COPD by characteristic goblet cell hyperplasia or enhanced mucus secretion (Fahy, 2002; Bagul et al., 2007; Kraft et al., 2008).

Fungi. Allergic bronchopulmonary aspergillosis (ABPA) is a unique form of asthma caused by colonization of the LRT (Vlahakis and Aksamit, 2001). ABPA is caused by an exaggerated T helper type 2 response to the ubiquitous mold Aspergillus spp., by which colonization leads to allergic and/or asthma symptoms (Edwards et al., 2012).

Other factors. The diverse etiologies for asthma exacerbation are well known, including viruses, allergens (dust mite, pollen, animal dander), smoking, gastroesophageal reflux disease, obesity, rhinosinusitis, stress, occupational exposures, hormones (menstrual asthma), drugs (acetylsalicylic acid, non-steroidal anti-inflammatory drugs, beta-blockers), exercise, and air pollutants. Physicians should be aware of these risk factors for asthma exacerbation (Dougherty and Fahy, 2009).

Mechanisms of viral-induced asthma exacerbations

Respiratory virus infection affects the pathogenesis of asthma. Bronchial epithelial cells are at the site of respiratory virus infection and replication. Respiratory virus infection induces production of various cytokines or chemokines and causes injury to epithelial cells or disruption of tight junctions. This inflammatory process may be amplified by intrinsic factors (susceptibility gene, family history of atopy, lung development) or environmental factors (respiratory virus infection, allergen exposure, smoking, and air pollutants, etc.; Hashimoto et al., 2008; Dougherty and Fahy, 2009). Some studies showing a deficiency in interferon (IFN)-β and IFN-α production in response to HRV inoculation in airway epithelial cells cultured from asthmatic versus normal subjects (Hotzman, 2012) suggested that asthmatic patients have deficient IFN-β, IFN-α, and perhaps some of the IFN-αs, but the precise mechanism or mechanisms behind deficient IFN production in these patients remain unknown.

Virus-associated clinical symptoms and exacerbations of asthma

In general, upper respiratory tract (URT) symptoms include rhinorrhea, sneezing, blocked nose, sore throat, hoarse voice, head or face ache, chill, and fever, while LRT symptoms include symptoms such as wheeze, cough, shortness of breath, and chest tightness (Cortin et al., 2002). Tan et al. (2003) reported that virus-positive patients had a significantly increased frequency of URT symptoms of rhinorrhea, sore throat, fever, chills, and malaise. Nicholson et al. (1993) reported that, in adults with asthma, about a quarter of laboratory-confirmed viral and chlamydial acute upper respiratory infections was associated with mean decreases in peak expiratory flow of > 50 L/min, and half was associated with mean decreases of >25 L/min. The report also noted that respiratory pathogens were implicated in almost half of the most severe asthma exacerbations with a > 50 L/min mean decrease in peak expiratory flow. Viral infections have been shown to enhance both the reactivity of the lower airway and the magnitude of bronchoconstriction in response to inhaled contractile substances in asthma. The latter effect can persist for several weeks after infection, presenting as LRT symptoms (Cheung et al., 1995) accompanied by a decrease in peak expiratory flow. Thus, physicians should be aware of decreased peak expiratory flow, URT, or LRT symptoms associated with viral infections.

Treatment

The term “virus-induced exacerbation” is not uncommon, but only a small number of prospective studies have been conducted so far (Nicholson et al., 1993; Johnston et al., 1995). Importantly, respiratory infections do not always result in an exacerbation, and there is little evidence that treating or preventing the infection may cure or prevent an exacerbation (Seypakdaki and Papadopoulos, 2010). However, another study found that URT infections were strongly associated with exacerbations of asthma leading to hospital admission, in both adults and children (Johnston et al., 1996), and they may have contributed to asthma mortality, especially in the setting of hospital admission. Specific anti-viral therapies have not been established except for influenza viral infection, which have been recommended for persons with asthma or COPD. Furthermore, regarding preventive therapy for RSV, palivizumab as described above is now commercially available, and it might be appropriate for infants and young children with congenital heart disease, bronchopulmonary dysplasia, and prematurity before 35 weeks of gestation (Dawson-Caswell and Münici, 2011). Blanken et al. (2011) stated that palivizumab treatment in healthy preterm infants born at a gestational age of 33–35 weeks reduced the number of wheezing days during the first year of life.

In this regard, several therapeutic strategies would need to be taken early in the course of infection to maximize the effects of treatments such as systemic corticosteroids, antibiotics if necessary, and short-acting β-agonist inhalers (SABAs), followed by inhaled corticosteroid (ICS) and long-acting β-agonist combination (LABA) therapy. Kerstiens et al. (2012) reported that additive long-acting muscarinic antagonist (LAMA) therapy with tiotropium (known as a cornerstone of COPD treatment) significantly increased the time to the first exacerbation and improved FEV₁0 in poorly controlled asthmatic patients with standard therapy (ICS and LABA). Similarly, tiotropium improved lung function and reduced the chance of rescue inhaler (SABA) in patients with overlap syndrome (Magnussen et al., 2008).

VIRUS-INDUCED EXACERBATIONS IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE

DEFINITION OF EXACERBATION IN COPD

Exacerbation of COPD is an event characterized by an acute increase in respiratory symptoms beyond normal day-to-day variation (Vestbo et al., 2013). Clinicians and researchers should always keep in mind that exacerbations of COPD are neither defined nor matched in individual studies. Definitions of exacerbations are roughly divided into two groups, event-based exacerbations and symptom-based exacerbations, depending on
the patients’ symptoms or clinical events, respectively. Symptoms were defined and include dyspnea, cough, and sputum volume or purulence. Clinical events were defined as a status requiring additional treatments such as systemic antimicrobials or steroids with or without admission. Diseases such as pneumonia, congestive heart failure, and pulmonary embolism that mimic and/or aggravate exacerbations were generally excluded from exacerbations of COPD.

CLINICAL IMPORTANCE OF EXACERBATION

The clinical course of COPD, as well as that of asthma, is punctuated by exacerbations, which are characterized by sudden symptom worsening beyond the expected daily variation. Exacerbations are important events in the clinical course of COPD, because they are associated with significant mortality. The hospital mortality rate of patients admitted to the hospital with exacerbations of COPD was 8%, increasing to 23% after 1 year of follow-up (Groomweeget et al., 2003). Exacerbations are correlated with accelerated loss of lung function and quality of life and increased healthcare costs (Seemungal et al., 1998; Donaldson et al., 2002; Miravitlles et al., 2002).

FREQUENCY OF EXACERBATIONS

Previous studies showed that the annual rate of event-based exacerbations of COPD was 0.85–1.30 per patient per year (Calverley et al., 2007; Tashkin et al., 2008; Seemungal et al., 2009; Hurst et al., 2010). The INSPIRE study showed that the rate of symptom-based exacerbations was about two times as high as that of event-based exacerbations (Seemungal, et al., 2009). In the ECLIPSE study, the exacerbation rates were 0.85 per person for patients with moderate disease (GOLD stage 2) and 2.00 for those with very severe disease (GOLD stage 4; Hurst et al., 2010). Thus, the rate of exacerbation seems to depend on the disease severity (GOLD stage). However, it is particularly worth noting that the ECLIPSE study showed a subgroup of COPD patients that appeared to be susceptible to exacerbations, irrespective of GOLD stage. Other factors for exacerbations were several environmental factors, such as seasons or inhalation of harmful substances, as well as some patients’ symptoms and quality of life.

CAUSES OF EXACERBATIONS

It has been reported that exacerbations are predominantly caused by bacterial and viral respiratory infections (Figure 2), and air pollution has a minor contribution. Previous studies showed that bacteria (H. influenzae, S. pneumoniae, Moraxella catarrhalis, and P. aeruginosa) and respiratory viruses (HRV, RSV, influenza virus, HMPV, coronavirus, and AdVs) were recognized during exacerbations. Bacteria, such as H. influenzae, S. pneumoniae, Moraxella catarrhalis, and P. aeruginosa were also detected in stable patients (Sapay and Stockley, 2006; Sethi and Murphy, 2008). When strains of bacteria are changed among the same species or there is emergence of other bacteria, this might cause inflammation in the lung of COPD patients and result in exacerbation (Sethi et al., 2002).

The role of atypical respiratory pathogens, such as Mycoplasma pneumoniae and C. pneumoniae, in exacerbations of COPD is poorly recognized (Sapay and Stockley, 2006; Sethi and Murphy, 2008; Perotin et al., 2013). On the other hand, Blasi et al. (2002) showed that C. pneumoniae may be associated with exacerbation of COPD. Viruses such as HRV, RSV, and influenza virus have a higher prevalence in patients with exacerbations of COPD than in stable patients (Rohde et al., 2003; Wilkinson et al., 2006a).

ROLES OF RESPIRATORY VIRAL INFECTION IN COPD EXACERBATIONS

A few decades ago, it was considered that the role of respiratory viral infections was not a major cause in exacerbations of COPD because of the low sensitivity for viral detection, which depended on conventional technical methods such as viral culture or serological tests. However, recent studies have used new diagnostic technologies such as PCR or RT-PCR methods, which have a higher sensitivity for viral detection than conventional methods. Viral detections accounted for 25–57% of exacerbations of COPD in recent studies (Figure 4) using PCR or RT-PCR with observational periods of at least 1 year. The major viruses associated with exacerbations were HRV (K.1–26.6%), RSV (0.7–40.5%), and influenza virus (2.0–22.4%; Seemungal et al., 2001; Rohde et al., 2003; Tan et al., 2003; Beckham et al., 2005; Papi et al., 2006; Hutchinson et al., 2007; Ko et al., 2007; McManus et al., 2008; Kherad et al., 2010; Dimopoulos et al., 2012; Perotin et al., 2013).

Major respiratory viruses detected during exacerbations of COPD were HRV, RSV, and influenza virus, similar to those of
TSLP gene were associated with various allergic diseases, including bronchial asthma (Hirota et al., 2011; Ober and Yao, 2011). Association studies showed that polymorphisms near or within the asthma (Redhu and Gounni, 2012). In addition, genome-wide is a key pro-allergic cytokine that has recently been linked to (Calven et al., 2012).

HRV infection via a Toll-like receptor (TLR)3-dependent pathway (Yerkovich et al., 2012). Thymic stromal lymphopoietin (TSLP) body than those not hospitalized with COPD exacerbations exacerbations had lower serum levels of rhinovirus-specific anti-unrelated to exacerbation of COPD. Patients hospitalized with COPD to severe exacerbations. Impaired humoral immunity was also reduced IFN production was observed in COPD patients compared to control subjects, which may be associated with the infection led to elevation of neutrophil elastase, which is associated with reduction of antimicrobial peptides such as secretory leukoprotease inhibitor and elafin. This reduction of antimicrobial peptides predisposes to secondary bacterial infection (Mallia et al., 2011, 2012). Previous reports showed that COPD exacerbations may be associated with an impaired host response to HRV. For example, reduced IFN production was observed in COPD patients compared to control subjects, which may be associated with the mechanism of viral and subsequent bacterial infection related to severe exacerbations. Impaired humoral immunity was also related to exacerbation of COPD. Patients hospitalized with COPD exacerbations had lower serum levels of rhinovirus-specific antibodies, but not those hospitalized with COPD exacerbations (Yerkovich et al., 2012). Thymic stromal lymphopoietin (TSLP) is a key pro-allergic cytokine that has recently been linked to asthma (Redhu and Gounni, 2012). In addition, genome-wide association studies showed that polymorphisms near or within the TSLP gene were associated with various allergic diseases, including bronchial asthma (Hirota et al., 2011; Ober and Yao, 2011). TSLP may contribute to exacerbations of the pathogenic effects of HRV infection via a Toll-like receptor (TLR)3-dependent pathway (Calven et al., 2012).

RSV Respiratory syncytial virus has been detected in both stable and exacerbated cases of COPD. RSV detection in stable COPD patients might be associated with insidious airway inflammation and accelerated decline in FEV1 (Willkinson et al., 2006a). However, this was not confirmed by another study (Failely et al., 2006). RSV increases the expression of TLR3 on the surface of airway epithelial cells, which is associated with increased sensitization to double-stranded RNA and its related infections (Groskreutz et al., 2006).

Influenza virus Influenza virus has been associated with mortality and morbidity in chronic lung diseases (Harper et al., 2009). A meta-analysis showed that influenza vaccination prevented exacerbations in COPD patients (Poole et al., 2003) and reduced the mortality and morbidity in elderly persons (Nichol et al., 2007). Anti-viral treatment such as neuraminidase inhibitors may reduce the severity of disease (Kaiser et al., 2003). Thus, treatment to prevent influenza has been recommended for COPD patients (Harper et al., 2009).

DIFFERENCES IN VIRAL AND NON-VIRAL EXACERBATIONS Several studies have suggested that respiratory virus-associated exacerbations are more critical events than those due to other causes, in that viral-detected exacerbations showed a larger decline in lung function and longer recovery time than non-viral exacerbations (Seemungal et al., 2001; Bafadhel et al., 2011). As described in the chapter on HRV, respiratory viral infections themselves exacerbated COPD patients and tended to provoke secondary bacterial infections. Viral and sequential bacterial infections may be associated with severe respiratory symptoms (Willkinson et al., 2006b; Harper et al., 2009; Mallia et al., 2012).

MECHANISMS OF VIRUS-INDUCED COPD EXACERBATIONS As shown in the Table 1, the pathological features of COPD are fibrosis around small airways involving several different cells (neutrophils, macrophage, CD8 lymphocytes) and destruction of lung parenchyma. Neutrophils have been found to be associated with both stable and exacerbated COPD (Hogg et al., 2004; Papi et al., 2006). Changes in neutrophil counts during exacerbations in both sputum and peripheral blood have been found to be related to the FEV1 value. Levels of tumor necrosis factor-alpha and interleukin (IL)-8 in sputum were associated with neutrophilic inflammation (Keatings et al., 1996). Especially in patients who suffered from frequent exacerbations, they had persistently higher systemic IL-6 and C-reactive protein (CRP) levels, which may explain the greater decline in lung function (Perera et al., 2007).

Inflammatory cytokines in sputum during exacerbations have been found to be elevated regardless of whether the infection was viral or bacterial (Aaron et al., 2001), and their levels were higher with exacerbations than when stable. Eosinophils are considered characteristic cells in asthma, but they are also detected with exacerbations of COPD (Saetta et al., 1994). Indeed, Papi et al. (2006) demonstrated that virus-associated exacerbations in COPD patients were related to increased eosinophil counts and the level of eosinophil cationic protein. Furthermore, Bafadhel et al. (2011) showed that serum C-X-C motif chemokine 10 (CXCL10) is implicated as a more potent predictive maker for
virus-associated exacerbations, and it is known as IFN-α-induced protein 10.

TREATMENT OF STABLE AND EXACERBATION STATES

Inhaled bronchodilators, LAMA and LABA, are the main pharmacological therapies in stable COPD patients (Tashkin et al., 2008; Vestbo et al., 2013). Although Vogelmeier et al. (2013) reported that the tiotropium (LAMA)-treated group had a lower exacerbation rate than the salmeterol (LABA)-treated group in their head-to-head study, both LAMA and LABA treatments decreased exacerbation rates and improved lung function or health-related quality of life. Tashkin et al. (2009) found that combination LAMA/LABA therapy improved pulmonary function (FEV1) and respiratory symptoms better than LAMA therapy alone. ICS, the main treatment for asthma, is also prescribed in COPD patients and may reduce airway inflammation and decrease exacerbation rates only in moderate and severe COPD patients (Calverley et al., 2007). Treatment with macrolide antibiotics has been reported to prevent COPD exacerbations and improve patient quality of life and symptoms, especially in patients who have frequent exacerbations (Albert et al., 2011; Yamaya et al., 2012a), although this intervention could lead to unfavorable events such as increasing the prevalence of macrolide-resistant pathogens or cardiac toxicity.

It has been estimated that most exacerbations of COPD are due to respiratory viral and/or bacterial infections. Thus, the major pharmacological components of managing exacerbations of COPD include SABAs, short-course systemic glucocorticoids, and antibiotics (Vestbo et al., 2013). However, anti-viral therapies are rarely prescribed, because specific anti-viral therapies do not exist, except for influenza virus and RSV. Treatment for influenza virus-associated exacerbations, and it is known as IFN-α-induced protein 10. The clinical findings of both asthma and COPD, so-called “overlap syndrome,” are commonly recognized in general practice, and virus-associated exacerbations in this disease may lead to a poor prognosis.

REFERENCES

Asadullah, K., De, S., Jung, J. B., Luan, M., Wright, K., Fex, C., Le Sauz, N., et al. (2001). Granulocyte inflammatory markers and airway inflammation during acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 349–355. doi: 10.1164/rccm.200010-0596OC

Barnes, P. J. (2008). The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 118, 1341–1346. doi: 10.1172/JCI36130

Bjornson, C. L., and Mitchell, I. (2000). Allergies, upper respiratory tract infections, and asthma. J. Asthma 37, 567–574. doi: 10.1080/02770909409061316

Alpert, R. K., Connolly, J., Bailey W. C., Casaburi, R., Cooper, J. A., Criner, G. J., et al. (2011). Antithrombin for prevention of exacerbations of COPD. N. Engl. J. Med. 363, 689–699. doi: 10.1056/NEJMoa1104623

Altman, R. L. Gay, E. Guntupalli, K. K., Zimmermann, J. L., Baxi, V. D., Baxter, B. D., et al. (1998). Respiratory viral infections in inner-city asthmatic adults. Arch. Intern. Med. 158, 2452–2459. doi: 10.1001/arch-Intern-med.158.21.2452

Balaban, M., Mikkola, S., Torry, S., Mistry, V., Reid, C., Haltrich, B., et al. (2012). Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am. J. Respir. Crit. Care Med. 185, 1500–1504. doi: 10.1164/rccm.201104-0590OC

Barnes, P. J. (2009). The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 118, 1341–1346. doi: 10.1172/JCI36130

Bosler, K., Galmon, E. D., Harmon, Y., Holit, P. E., O’Donnell, T. V., and Tolsa, M. (1998). Viral respiratory tract infection and exacerbations of asthma in adult patients. Thorax 45, 679–685. doi: 10.1136/thx.43.9.679

Bothe, J. D., Padula, A. P., Glidden, W. P., Gensborg, S. R., et al. (2001). Respiratory viral infections in patients with chronic obstructive pulmonary disease. J. Infect. 39, 322–330. doi: 10.1016/j.jinf.2000.12.025

Buczkó, S., Loréot, M., Marc, E., Mosin, F., Boutet-Perolat, B., Halstøen, C., et al. (2004). Microparticles, pulmonary and asthma in children. Clin. Infect. Dis. 38, 1341–1346. doi: 10.1086/392488

Borgard, H., Harnoncourt, M. N., Budwald, F., Loelard, L., Halme, A. B., Bennekele, K., et al. (2007). Childhood asthma after bacterial colonization of the airways in neonates. N. Engl. J. Med. 357, 1497–1499. doi: 10.1056/NEJMoa0702632

Byrom, C. L., and Mitchell, I. (2001). Gender differences in asthma in childhood and adolescence. J. Genet. Specif. Med. 3, 57–61.

Blanken, M. O., Rovere, M. M., Mole- den, J. M., Wolter-Schierle, P. E., Meijer, A., Kimpen, J. L. C., et al. (2013). Respiratory syncytial virus and recurrent wheezing in healthy preterm infants. N. Engl. J. Med. 368, 1791–1799. doi: 10.1056/NEJMoa1211917

Brui, F., Dumato, S., Cosentini, R., Tari, N., Paccandoli, R., Catanzari, S., et al. (2002). Chloramphenicol monotherapy and chronic bronchitis association with severity and bacterial clearance following treatment. Thorax 57, 672–676. doi: 10.1136/thorax.57.8.672

Brouwer, B. E. (2004). Similari- ties and differences in asthma and COPD. The Dutch Hypothesis. Curr. Opin. Allergy Clin. Immunol. 126, 955–959. doi: 10.1378/choi.126.2_suppl.1.955

Brodlinska, H., and Ruddly, R. M. (2009). Review of new and newly discovered respiratory tract viruses in children. Pediatr. Emerg. Care 25, 355–360. doi: 10.1097/PEC.0b013e3181a4047a

Cabero, J., Yudin, E., Halloquin, O., Westbrook-Thomson, G., Davary, D. E., Beaudelain, A., et al. (2012). Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomalTLR3 and cytokine RIG-I-like heli- cons. J. Innate Immun. 4, 86–99. doi: 10.1159/000332933

"fmicb-04-00293" — 2013/9/27 — 20:00 — page 9 — #9
Kurai et al. Virus in asthma and COPD

Copenhaver, C. C., Gern, J. E., Li, Z., Dimopoulos, G., Lerikou, M., Tsiodras, G., Donaldson, G. C., Seemungal, T. A., Cunningham, A. F., Johnston, S. L., Dougherty, R. H., and Fahy, J. V. (2002). Relationship between COPD and asthma. *Respir Res.* 12, 127. doi: 10.1186/1465-9921-12-127

Harper, S. A., Bradley, J. S., England, J. A., Liu, T. M., Geronemus, S., Hayden, F. G., et al. (2009). Seasonal influenza in adults andchildren—diagnosis, treatment, rheumato-

pneumology, and institutional outbreak management: clinical practice guidelines of the Infectious Diseases Society of America. *Clin Infect Dis.* 48, 1013–1012. doi: 10.1093/clinids/48.7.1013

Huang, H., Fstu, T-H., Leor, M., and Wouters, E. F. (2003). Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. *Am J Respir Crit Care Med.* 168, 1667–1672. doi: 10.1164/rccm.200304-033OC

Kim, H., and Mcivor, R. A. (2009). Acute exacerbations of chronic obstructive pulmonary disease. *Clin Exp Allergy.* 39, 193–202. doi: 10.1111/j.1365-2222.2008.03157.x

Kobayashi, T. (2008). Viral infection in the Japanese population. *Nat Genet.* 95, 183–190. doi: 10.1038/ng.1510

Lauer, R. J., Sheaffer, C. I., et al. (2009). Community-based, time-matched, case-control study of respiratory viruses and exacerbations of COPD. *Respir Med.* 101, 2472–2481. doi: 10.1016/j.rmed.2007.07.015

Lauer, R. J., Sheaffer, C. I., et al. (2009). Tiotropium bromide attenuates respiratory syncytial virus replication in epithelial cells. *Respir Med.* 103, 448–451. doi: 10.1016/j.rmed.2008.12.009

Lee, M. W., et al. (2012). Evidence for a causal relationship between allergic sensitization and rhinovirus wheezing in early life. *Am J Respir Crit Care Med.* 185, 281–285. doi: 10.1164/rccm.201104-0466OC

Liu, Q., Tanumi, K., Saito, K., Ogawa, T., Sakaguchi, S., Ida, Y., et al. (2008). Tiotropium bromide attenuates respiratory syncytial virus replication in epithelial cells. *Respir Med.* 103, 448–451. doi: 10.1016/j.rmed.2008.12.009

Liu, Q., Tone, S., Takahashi, K., et al. (2008). Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. *Am J Respir Crit Care Med.* 178, 667–672. doi: 10.1164/rccm.200705-900OC

McLachlan, A., Lim, M., and Municic, H. L. J. (2011). Respiratory syncytial virus infection in children. *Am J Respir Crit Care Med.* 183, 141–146.

Mendoza, G., Uitenhove, S., and Zwinderman, H. A. (2012). Viral epidemiology of acute exacerbations of chronic obstructive pulmonary disease. *Pulm Pharmacol Ther.* 25, 12–18. doi: 10.1016/j.pupt.2011.08.004

Montague, G. C., Seemungal, T. A., Bhosle, A., and Wachholz, J. A. (2002). Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. *Thorax.* 57, 847–852. doi: 10.1136/thorax.57.10.847

Dougherty, R. H., and Fahy, J. V. (2009). Acute exacerbations of asthma: epidemiology and the exacerbation-prone phenotype. * Clin Exp Allergy.* 39, 193–202. doi: 10.1111/j.1365-2222.2008.03157.x

Maurer, K., van der Hulst, L. M., and van der Ven, C. (2007). “fmicb-04-00293” — 2013/9/27 — 20:00 — page 10 — #10
Kurai et al. Virus in asthma and COPD

COPD Clin Exp Allergy 42, 994–
1005. doi: 10.1111/j.1365-2222.2011. 05919.x

Saletta, M., Di Stefano, A., Masetti, R., Turato, G., Ruggeri, M. P., Roggeri, A., et al. (1994) Air-
way eosinophilia in chronic bron-
chitis during exacerbations. Am. J. Respir. Crit. Care Med. 150, 1648–
1652. doi: 10.1164/015561

Jasper, E., and Stockley, R. A. (2006) COPD exacerbations. 2: aetiology. Thorax 61, 250–256. doi:10.1136/thx.2005.048222

Seemungal, T., Anderson, G., Mora, I., Sundar-
son, G., Maguire, S., et al. (2002) Respiratory viruses, symptoms, and inflammation markers in acute exac-
erbations of chronic obstructive pul-
monary disease. Am. J. Respir. Crit. Care Med. 165, 1646–
1650. doi: 10.1164/rccm.200125-1116OC

Taplin, D. P., Philp, J., Lewis, D., and Varghese, S. T. (2009) Cytomegalovirus and rhinovirus compared with rhinovirus alone for treatment of COPD. COPD 6, 17–25. doi:10.3233/COPD-20090973

Teichahl, H., Buckman, N., and Petrikovits, E. (1997) The inci-
dence of respiratory tract infection in adults requiring hospitalisation for asthma. Chest 112, 591–596. doi:10.1378/chest.112.5.591

Tobin, V., and Myoggi, S. (2007) Phys-
iological impact of chronic obstructive pulmonary disease. Intens. Med. 36, 1851–1892. doi:10.1007/s00134-007-1962-8

Vallet, C., Pons-Castano, C., Mas-
quera, A., Waimb, A., Raimond, J., Labrun, P., et al. (2009) Human bronchiectasis: a cause of severe asthma exacerbation in children. J. Pediatr. 155, 268–270. doi:10.1016/j.jpeds.2009.01.069

Veneto, L., Hurdi, S. S., Agasti, S., Gustafsson, L., Vanhatalo, A., Amoroso, A., et al. (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease—GOLD executive summary. Am. J. Respir. Crit. Care Med. 187, 547–563. doi:10.1164/rccm.201304-
0094FP

Vlahakis, N. E., and Abraham, T. R. (2001) Diagnosis and treat-
ment of alveolar bronchiolitis in neonates. Mayo Clin. Proc. 76, 930–938. doi:10.1016/S0025- 6196(01)71140-9

Vlahakis, N. E., and Abraham, T. R. (2001) Diagnosis and treat-
ment of alveolar bronchiolitis in neonates. Mayo Clin. Proc. 76, 930–938. doi:10.1016/S0025-
6196(01)71140-9

Xiang, X., Qin, D., Chen, K. P., Chan, S. H., Hogg, R. G., and Tan, W. C. (2002) Com-
parsion of three methods for res-
piratory virus detection between induced sputum and nasophary-
geal aspirate specimens in acute asthma. J. Virol. Methods 103, 127–
135. doi: 10.1016/S0166-0262(01)
00431-1

Yamaya, M., Arama, A., Takahara, K., Kedera, J., Tanemura, K., and Kadoh, S. (2012) Microbial effects on the prevention of COPD exacerbations. Eur. Respir. J. 40, 485–494. doi: 10.1183/09031936.00200111

Yamaya, M., Nishimura, H., Handa, Y., Yanada, H., Dong, X., Suzuki, T., et al. (2012b) Inhibitory effects of tiotropium on rhinovirus infection in human airway epithelial cells. Eur. Respir. J. 40, 122–132. doi:10.1183/09031936.0005111

Zerkowski, S. T., Halin, B. J., Carroll, M. L., Burdl, J. G., Tomatis, M., A., Smith, D. J., et al. (2012) Reduced rhinovirus-specific antibodies are associated with acute exacerbations of chronic obstructive pulmonary disease requiring hospitalisation. BMC Pulm. Med. 12, 17. doi:10.1186/1471-2466-12-37

Conflict of Interest Statement: The authors declare that there was no research conducted in the absence of any com-
mmercial or financial relationships that could be construed as a potential con-
flict of interest.

Received: 30 June 2013; accepted: 10 September 2013; published online: 01 October 2013.

Clinere, K.; Saraya, T.; Ishii H. and Takahara H. (2013) Virus-induced exacerbations in asthma and COPD. Prost. Membr. 40, 209–215. doi: 10.3389/ frontimm.2013.00283

This article was submitted to Virology, a section of the Journal Frontiers in Microbiology.

Copyright © 2013 Kurai, Saraya, Ishii and Ishikawa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permis-
sed which does not comply with these terms.