RESEARCH ARTICLE

The MTHFR C677T Polymorphism and Risk of Acute Lymphoblastic Leukemia: an Updated Meta-analysis Based on 37 Case-control Studies

Yuan Jiang1, Jing Hou1, Qiang Zhang1, Shu-Ting Jia2, Bo-Yuan Wang3, Ji-Hong Zhang2, Wen-Ru Tang2*, Ying Luo2*

Abstract

Background: The C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) has been associated with acute lymphoblastic leukemia (ALL). However, results were conflicting. The aim of this study was to quantitatively summarize the evidence for the MTHFR C677T polymorphism and ALL risk. Methods: Electronic searches of PubMed and the Chinese Biomedicine database were conducted to select case-control studies containing available genotype frequencies of C677T and the odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of any association. Results: Case-control studies including 6,371 cases and 10,850 controls were identified. The meta-analysis stratified by ethnicity showed that individuals with the homozygous TT genotype had decreased risk of ALL (OR= 0.776, 95% CI: 0.687-0.877, p< 0.001) in Caucasians (OR= 0.715, 95% CI: 0.655-0.781, p= 0.000). However, results among Asians (OR=0.711, 95% CI: 0.591-1.005, p= 0.055) and others (OR=0.913, 95% CI: 0.656-1.271, p= 0.590) did not suggest an association. A symmetric funnel plot, the Egger’s test (P=0.093), and the Begg’s test (P=0.072) were all suggestive of the lack of publication bias. Conclusion: This meta-analysis supports the idea that the MTHFR C677T genotype is associated with risk of ALL in Caucasians. To draw comprehensive and true conclusions, further prospective studies with larger numbers of participants worldwide are needed to examine associations between the MTHFR C677T polymorphism and ALL.

Keywords: MTHFR C677T - meta-analysis - acute lymphoblastic leukemia - risk factor

Asian Pac J Cancer Prev, 14 (11), 6357-6362

Introduction

Acute lymphoblastic leukaemia (ALL) is the maximum common pediatric leukemia accounting for 25-30% of all cases of childhood malignancies (Krajinovic et al., 1999). The disease-free survival of childhood ALL has surpassed 80% in the developed countries over the last years. Nevertheless, almost 20% of the children with ALL either revert or do not respond to treatment (Karathanasis et al., 2011). Even though the scientific, pathological and immunophenotypic types of the disease are well acknowledged, about leukemogenesis is little known (Krajinovic et al., 1999). A range of factors might be related to the biologic mechanisms and etiology of ALL. It is generally considered that the development of ALL is a comprehensive result of environment, genetic risk factors, and gene-environment interactions (Robien et al., 2003; Scelo et al., 2009). Folate deficiency and aberrant metabolism have been reported to be associated with ALL (Yang et al., 2011). Polymorphisms in genes involved in folate transport, metabolism, and distribution in vivo drew widespread attention in the last decade (McNeer 2011). The polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene C677T, has been associated with acute lymphoblastic leukemia. because they reduced MTHFR enzyme activity, leading to enhanced availability of 5,10-methylenetetrahydrofolate in the DNA synthesis pathway and reduced uracil misincorporation into DNA (Skibola et al., 1999).

The human MTHFR gene contains 11 exons, located on chromosome 1p36.3, and encodes methylenetetrahydrofolate reductase (MTHFR) a key enzyme in folate and homocysteine metabolism. MTHFR catalyzes the biologically irreversible reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, which provides the methyl group for the remethylation of homocysteine to methionine (Bailey et al., 1999). In the MTHFR enzyme, several
single nucleotide polymorphisms including the two most important, C677T and A1298C, can affect folate and total homocysteine (tHcy) status. The MTHFR C677T, which involves a cytosine (C) to a thymine (T) substitution at position 677, changes an alanine to a valine in the enzyme. The C677T increases thermolability of MTHFR and causes impaired folate binding and reduced activity of the MTHFR enzyme (Frosst et al., 1995). MTHFR C677T is associated with decreased concentrations of folate in serum, plasma, and red blood cells, and mildly increased plasma total homocysteine (tHcy) concentration (Frosst et al., 1995). Base on its biological functions, MTHFR C677T can be seen as a candidate gene for Acute lymphoblastic leukaemia. Accumulating studies have investigated the association between this polymorphism and Acute lymphoblastic leukaemia. However, the results were inconsistent. Therefore, we conducted a meta-analysis to quantitatively assess the effect of the MTHFRC677T polymorphism on the risk of Acute lymphoblastic leukaemia.

Table 1. The Distribution of the MTHFR C677T Variant for Cases and Controls

Author, year	Case	Control	Ethnicity	Country	P*				
Azhar et al., 2012	35	31	6	65	34	10	Other	Iran	0.089
Chan et al., 2011	140	43	2	122	51	4	Asian	Indonesia	0.620
Yang et al., 2011	96	180	96	84	168	115	Asian	China	0.136
Sood et al., 2010	54	38	3	173	71	11	other	India	0.290
Yeo et al., 2010	184	111	23	163	150	32	Asian	Singapore	0.765
Lightfoot et al., 2010	374	341	90	359	314	84	Caucasian	UK	0.223
Damjanovic et al., 2010	45	28	5	163	190	59	Caucasian	Serbia	0.762
Tong et al., 2010	135	192	34	173	257	73	Asian	China	0.152
Lv et al., 2010	38	65	24	72	83	27	Asian	China	0.700
Jonge et al., 2009	130	93	22	219	223	54	Caucasian	New Zealand	0.805
Kim et al., 2009	29	51	27	540	863	297	Asian	Korea	0.133
Kantar et al., 2009	8	9	3	11	5	1	other	Turkey	0.679
Alcasabas et al., 2008	145	41	32	66	6	6	Asian	Philippines	0.227
Liu et al., 2008	34	23	26	38	36	9	Asian	China	0.914
Giovannetti et al., 2008	51	11	3	26	6	0	Asian	Indonesia	0.558
Giovannetti et al., 2008	26	6	0	51	11	3	Asian	Indonesia	0.039
Giovannetti et al., 2008	224	234	45	47	31	8	Caucasian	Surabaya	0.391
Kamel et al., 2007	39	42	7	156	135	20	other	Egypt	0.195
Petra et al., 2007	30	33	5	112	110	36	Caucasian	Slovenia	0.287
Oh et al., 2007	49	55	14	138	229	60	Asian	Korea	0.023
Kim et al., 2006	17	38	11	24	55	21	Asian	Korea	0.313
Reddy et al., 2006	51	77	7	79	58	5	other	India	0.148
Yu, 2006	30	14	7	20	23	10	Asian	China	0.466
Zanrosso et al., 2006	43	35	8	59	50	10	mixed	Brazil	0.987
Zanrosso et al., 2006	53	21	5	37	32	10	mixed	Brazil	0.462
Chatzidakis et al., 2006	31	18	3	32	47	9	Caucasian	Greece	0.169
Oliveira et al., 2005)	48	50	5	45	57	9	Caucasian	Portugal	0.120
Schnakenberg et al., 2005	195	201	47	184	152	43	Caucasian	Germany	0.179
Thirumaran et al., 2005	199	195	59	600	681	167	Caucasian	Germany	0.210
Gemmati et al., 2004	52	53	9	78	128	51	Caucasian	Italy	0.908
Balta et al., 2003	71	60	11	90	87	8	other	Turkey	0.020
Krajnovic et al., 2004	112	127	31	126	128	46	Caucasian	Canada	0.159
Aung et al., 2004	15	14	0	18	41	8	Asian	China	0.029
Deligezer et al., 2003	27	31	4	74	73	14	other	Turkey	0.501
Franco et al., 2001	36	28	6	22	36	13	mixed	Brazil	0.796
Wiemels et al., 2001	98	91	27	89	79	32	Caucasian	UK	0.047
Skibola et al., 1999	35	29	5	61	39	14	Caucasian	England	0.061

*p value for Hardy–Weinberg equilibrium in control group

Materials and Methods

Publication Search

We searched the PubMed and Chinese biomedicine databases for all articles on the association between MTHFR C677T and acute lymphoblastic leukemia risk (last search update, march 1, 2013). The following key words were used: “MTHFR”, “polymorphism” and “Acute lymphoblastic leukaemia” or “leuki”. Case-control studies containing available genotype frequencies of C677T were chosen. Of the studies with overlapping data published by the same author, only the most recent or complete study was included in this meta-analysis.

Statistical analysis

For control group of each study, the observed genotype frequencies of the MTHFR C677T polymorphism were evaluated for Hardy Weinberg-Equilibrium (HWE) using the \(\chi^2 \) test. The strength of association between MTHFR C677T gene and Acute lymphoblastic leukaemia was evaluated using the \(\chi^2 \) test.
Table 2. ORs and 95% CI for ALL and the MTHFR C677T Polymorphism under Different Genetic Models

Genetice model	(population)	p	p-value	Begg	Egger
p-value	p-value				
Additive (T vs. C)					
Caucasian	0.715[0.655–0.781]	0.000	0.260	0.493	0.218
Asian	0.711[0.591–1.005]	0.055	0.000	0.392	0.580
Others	0.913[0.656–1.271]	0.590	0.000	0.061	0.275
overall	0.776[0.687–0.877]	0.000	0.000	0.072	0.093
Dominant (T-carriers vs. C-carriers)					
Caucasian	0.863[0.718–1.036]	0.114	0.000	0.273	0.197
Asian	0.939[0.769–1.148]	0.025	0.025	0.815	0.584
Others	1.122[0.776–1.622]	0.001	0.001	0.297	0.574
overall	0.944[0.828–1.076]	0.000	0.000	0.289	0.447
Recessive (TT vs. CT-carriers)					
Caucasian	0.794[0.644–0.980]	0.143	0.131	0.002	
Asian	1.009[0.723–1.409]	0.005	0.005	0.392	0.464
Others	0.861[0.593–1.251]	0.433	0.433	0.532	0.564

accessed by calculating crude odds ratios (ORs) and 95% confidence intervals (CIs). The pooled ORs were performed for additive genetic model (T vs. C), dominant model (TT+CT vs. CC), and recessive model (TT vs. CT+ CC) respectively. Heterogeneity assumption was evaluated by a chi-square based Q-test. A P-value of <0.05 for the Q-test indicated heterogeneity among the studies, the summary OR estimate of each study was calculated by the random effects model (DerSimonian et al., 1986; Mantel, 1959). The potential for publication bias was examined by a Begg’s test (funnel plot method) and Egger’s linear regression test (P<0.05 considered representative of statistical significance) (Egger et al., 1997). All analyses were performed using Stata software (version 8.2; Stata Corporation, College Station, TX).

Results

Eligible studies

We identified a total of 37 relevant publications that association between MTHFR C677T and Acute lymphoblastic leukaemia, including 6371 Acute lymphoblastic leukaemia cases and 10850 controls in our meta-analysis (Table 1). Since C677T genotypes in the control group by Giovannetti (Giovannetti et al., 2008), Oh (Oh et al., 2007), Balta (Balta et al., 2003), Jiang (Jiang et al., 2004), Wiemels (Wiemels et al., 2001), were not in HWE, these data (537 cases and 944 controls) were excluded from our meta-analysis. Therefore, our final data pooling consisted of 32 publications, including 5834 cases and 9906 controls.

Meta-analysis

Differences in allelic distribution by ethnicity could be partially responsible for the observed differences in the association between MTHFR C677T and acute lymphoblastic leukaemia. The results of the association between the MTHFR C677T polymorphism and Acute lymphoblastic leukaemia and the heterogeneity test are shown in Table 2. The association was most pronounced for carriers of the T allelic gene (additive model: R=

Figure 1. Forest Plot of ORs of Recurrent Pregnancy Loss for T Allele When Compared to the C Allele. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the study-specific weight. The diamond represents the pooled OR and 95% CI accessed by calculating crude odds ratios (ORs) and 95% confidence intervals (CIs). The pooled ORs were performed for additive genetic model (T vs. C), dominant model (TT+CT vs. CC), and recessive model (TT vs. CT+ CC) respectively. Heterogeneity assumption was evaluated by a chi-square based Q-test. A P-value of <0.05 for the Q-test indicated heterogeneity among the studies, the summary OR estimate of each study was calculated by the random effects model (DerSimonian et al., 1986; Mantel et al., 1959). The potential for publication bias was examined by a Begg’s test (funnel plot method) and Egger’s linear regression test (P<0.05 considered representative of statistical significance) (Egger et al., 1997). All analyses were performed using Stata software (version 8.2; Stata Corporation, College Station, TX).

Publication bias

Funnel plot and Egger’s test were performed to quantitatively evaluate the publication bias of literatures on Acute lymphoblastic leukaemia. The results of Egger’s test provided statistical evidence for funnel plot symmetry (P=0.285) in overall results, suggesting the absence of publication bias.

Discussion

Acute lymphoblastic leukaemia, an important clinical problem, has been well-studied but the mechanism of ALL is still relatively unclear. Single nucleotide polymorphisms (SNPs) can be used as a implement in investigating genetic variations and disease susceptibility. ALL is speculated to be associated with inherited thrombophilias that encompass diverse conditions including the thermolabile variant of the MTHFR (Jilma et al., 2003). Methylene tetrahydrofolate reductase is an enzyme in homocysteine metabolism. The MTHFR C677T, which is found within the enzyme catalytic domain, result in both a thermolabile protein and increased tHcy. Through its effect
risk of Acute lymphoblastic leukaemia on Caucasians, whereas did not appear to have an effect in both Asians and Others. Future well designed large studies might be necessary to validate this association in different populations incorporated with environmental factors in the susceptibility of Acute lymphoblastic leukaemia.

Acknowledgements

This work was financially supported by the Science and Technology Innovation Project of Yunnan Province (No. 2011DH011). The author(s) declare that they have no competing interests.

References

Alcasabas P, Ravindranath Y, Goyette G, et al (2008). 5, 10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and the risk of acute lymphoblastic leukemia (ALL) in Filipino children. Pediatr Blood Cancer, 51, 178-82.

Azhar MR, Rahimi Z, Vaisi-Raygani A, et al (2012). Lack of association between MTHFR C677T and A1298C polymorphisms and risk of childhood acute lymphoblastic leukaemia in the Kurdish population from Western Iran. Genet Test Mol Biomarkers, 16, 198-202.

Bailey LB, Gregory JF, 3rd (1999). Folate metabolism and requirements. J Nutr, 129, 779-82.

Balta G, Yuksek N, Ozuyrek E, et al (2003). Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol, 73, 154-60.

Chan JY, Ugrasena DG, Lum DW, et al (2011). Xenobiotic and folate pathway gene polymorphisms and risk of childhood acute lymphoblastic leukaemia in Javanese children. Hematol Oncol, 29, 116-23.

Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F, et al (2010). Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia in Serbian children. J Pediatr Hematol Oncol, 33, e148-50.

de Jonge R, Tissing WJ, Hooijberg JH, et al (2009). Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood, 113, 2284-9.

Deligezer U, Akisik E, Dalay N (2003). Genotyping of the MTHFR gene polymorphism, C677T in patients with leukemia by melting curve analysis. Mol Diagn, 7, 181-5.

DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88.

Egger M, Davey Smith G, Schneider M, Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34.

Franco RF, Simoes BP, Tone LG, et al (2001). The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia. Br J Haematol, 115, 616-8.

Frost P, Blom HJ, Milos R, et al (1995). A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet, 10, 111-3.

Gemmati D, Ongaro A, Scapoli G L, et al (2004). Common gene polymorphisms in the metabolic folate and methylation
pathway and the risk of acute lymphoblastic leukemia and non-Hodgkin’s lymphoma in adults. Cancer Epidemiol Biomarkers Prev, 13, 787-94.

Giovannetti E, Ugrasena DG, Supriyadi E, et al (2008). Methylene tetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia. Leuk Res, 32, 19-24.

Golbahar J, Amirizadeh MA, Sharifizadeh MB, Rezaian GR (2005). Association of red blood cell 5-methyltetrahydrofolate and severity of coronary artery disease: a cross-sectional study from Shiraz, southern Iran. Heart Vessels, 20, 203-6.

Govindaiah V, Naushad SM, Prabhakara K, et al (2009). Association of parental hyperhomocysteinemia and C677T Methylene tetrahydrofolate reductase (MTHFR) polymorphism with recurrent pregnancy loss. Clin Biochem, 42, 380-6.

Jiang H, Gu LJ, Xue HL (2004). Methylene tetrahydrofolate reductase gene polymorphism of childhood acute lymphoblastic leukaemia. Zhonghua Xue Ye Xue Za Zhi, 25, 439-40.

Jilma B, Kamath S, and Lip GY (2003). ABC of antithrombotic therapy: Antithrombotic therapy in special circumstances. BMJ, 326, 93-6.

Kamel AM, Moussa HS, Ebid GT, et al (2007). Synergistic effect of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifier of pediatric acute lymphoblastic leukemia. J Egypt Natl Canc Inst, 19, 96-105.

Kantar M, Kosova B, Cetingul N, et al (2009). Methylene tetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma, 50, 912-7.

Karathanasis NV, Sitakaki E, Goulielmos GN, and Kalmanti M (2011). The role of the methylenetetrahydrofolate reductase 677 and 1298 polymorphisms in Cretan children with acute lymphoblastic leukemia. Genet Test Mol Biomarkers, 15, 5-10.

Kim HK, Kim YK, Lee JK, et al (2009). Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res, 33, 82-7.

Kim NK, Chong SY, Jang MJ, et al (2006). Association of the methylenetetrahydrofolate reductase polymorphism in Korean patients with childhood acute lymphoblastic leukemia. Anticancer Res, 26, 2879-81.

Krajnovic M, Labuda D, Richer C, et al (1999). Susceptibility to childhood acute lymphoblastic leukaemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood, 93, 1496-501.

Krajnovic M, Lamotho S, Labuda D, et al (2004). Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood, 103, 252-7.

Li X L, Yu F, Zhang Y, et al (2011). [Study on the association between 5, 10-methylenetetrahydrofolate reductase C677T polymorphism and acute lymphoblastic leukemia risk: a Meta-analysis]. Zhonghua Liu Xing Bing Xue Za Zhi, 32, 1030-6.

Lightfoot TJ, Johnston WT, Painter D, et al (2010). Genetic variation in the folate metabolic pathway and risk of childhood leukemia. Blood, 115, 3923-9.

Liu JX, Chen JP, Tan W, Lin D X (2008). [Association between mthfr gene polymorphisms and toxicity of HDMTX chemotherapy in acute lymphocytic leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 16, 488-92.

Lv L, Wu C, Sun H, et al (2010). Combined 677CC/1298AC genotypes of methylenetetrahydrofolate reductase (MTHFR) reduce susceptibility to precursor B lymphoblastic leukemia in a Chinese population. Eur J Haematol, 84, 506-12.

Mantel N, Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.

McNeer JL (2011). The complex interplay between folate metabolism and risk of acute lymphoblastic leukemia. Leuk Lymphoma, 52, 1621-2.

Nelen WL, Bulten J, Steegers EA, et al (2000). Maternal homocysteine and chorionic vascularization in recurrent early pregnancy loss. Hum Reprod, 15, 954-60.

Oh D, Kim NK, Jang MJ, et al (2007). Association of the 5, 10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) polymorphisms in Korean patients with adult acute lymphoblastic leukemia. Anticancer Res, 27, 3419-24.

Oliveira E, Alves S, Quental S, et al (2005). The MTHFR C677T and A1298C polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in Portugal. J Pediatr Hematol Oncol, 27, 425-9.

Preta BG, Janez J, Vita D (2007). Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma, 48, 786-92.

Reddy H, Jamil K (2006). Polymorphisms in the MTHFR gene and their possible association with susceptibility to childhood acute lymphocytic leukemia in an Indian population. Leuk Lymphoma, 47, 1333-9.

Robien K, Ulrich CM (2005). 5, 10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE mini-review. Am J Epidemiol, 157, 571-82.

Scelo G, Metayer C, Zhang L, et al (2009). Household exposure to paint and petroleum solvents, chromosomal translocations, and the risk of childhood leukemia. Environ Health Perspect, 117, 133-9.

Schnakenberg E, Mehlies A, Cario G, et al (2005). Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. BMC Med Genet, 6, 23.

Skibola CF, Smith MT, Kane E, et al (1999). Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A, 96, 12810-5.

Sood S, Das R, Trehan A, et al (2010). Methylene tetrahydrofolate reductase gene polymorphisms: association with risk for pediatric acute lymphoblastic leukemia in north Indians. Leuk Lymphoma, 51, 928-32.

Thirumaran RK, Gast A, Flohr T, et al (2005). MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Blood, 106, 2590-1; author reply 1-2.

Tong N, Fang Y, Li J, et al (2010). Methylene tetrahydrofolate reductase polymorphisms, serum methylenetetrahydrofolate reductase levels, and risk of childhood acute lymphoblastic leukemia in a Chinese population. Cancer Sci, 101, 782-6.

Trabetti E (2008). Homocysteine, MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J Appl Genet, 49, 267-82.

Wang H, Meng L, Zhao L, et al (2012). Methylenetetrahydrofolate reductase polymorphism C677T is a protective factor for recurrent pregnancy loss. Heart Vessels, 27, 3419-24.

Zhonghua Xue Ye Xue Za Zhi, 38, 642-5.

Zhonghua Liu Xing Bing Xue Za Zhi, 34, 786-92.

doi:10.7314/APJCP.2013.14.11.6357

Asian Pacific Journal of Cancer Prevention, Vol 14, 2013 6361
of childhood acute leukemia. *Proc Natl Acad Sci U S A*, 98, 4004-9.

Yan J, Yin M, Dreyer ZE, et al (2012). A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. *Pediatr Blood Cancer*, 58, 513-8.

Yang L, Liu L, Wang J, et al (2011). Polymorphisms in folate-related genes: impact on risk of adult acute lymphoblastic leukemia rather than pediatric in Han Chinese. *Leuk Lymphoma*, 52, 1770-6.

Yeh A, Lu Y, Chan JY, et al (2010). Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: results from the Malaysia-Singapore ALL Study Group. *Leuk Res*, 34, 276-83.

Yu H, Jin RM, Bai Y, et al (2006). The relationship between the methylenetetrahydrofolate reductase C677T gene polymorphism and acute lymphocytic leukemia in children. *J Clin Hematol*, 19, 205-6, 9.

Zanrosso CW, Hatagima A, Emerenciano M, et al (2006). The role of methylenetetrahydrofolate reductase in acute lymphoblastic leukemia in a Brazilian mixed population. *Leuk Res*, 30, 477-81.