Diferenças entre pacientes com lesão renal aguda induzida por COVID-19 e pacientes com doença renal crônica

Differences between COVID-19-induced acute kidney injury and chronic kidney disease patients

Introdução: Este artigo descreve as principais diferenças entre a lesão renal aguda induzida por COVID-19 (LRA-COVID19) em pacientes com função renal normal prévia (LRA-FRN) e aqueles com doença renal crônica (LRA-DRC) atendidos em uma clínica de alta complexidade em Barranquilla (Colômbia).

Material e Métodos: Os pacientes incluídos neste estudo (n: 572) foram aqueles com um diagnóstico positivo de COVID-19 confirmado pela detecção de PCR positivo para SARS-CoV-2. Destes pacientes, 188 desenvolveram LRA durante sua internação. Foram registrados os dados epidemiológicos, os parâmetros séricos e o estado de fragilidade clínica dos pacientes. Foram feitas a análise estatística e a comparação entre pacientes com LRA-FRN, LRA-DRC, e pacientes sem LRA.

Resultados: A incidência de LRA induzida por COVID-19 foi de 33%, com a maioria classificada como AKIN 1, 16% exigindo terapia renal substitutiva, e a mortalidade por LRA-COVID19 foi de 68%. Foi registrada uma prevalência significativamente mais alta de hipertensão, doença cardíaca e proteína C reativa sérica e valores mais baixos de albumina em pacientes com LRA-DRC. A taxa de mortalidade, a necessidade de ventilação invasiva e os níveis de dímero-D foram significativamente mais altos em pacientes com LRA-FRN. Conclusão: Foram documentados padrões clínicos diferentes entre LRA-FRN e LRA-DRC.

Descritores: COVID-19; Injúria Renal Aguda; Insuficiência Renal Crônica.

Introduzione: This article describes the main differences between COVID-19-induced acute kidney injury (AKI-COVID19) in patients with previous normal renal function (AKI-NRF) and those with chronic kidney disease (AKI-CKD) treated in a high complexity clinic in Barranquilla (Colombia). Material and Methods: The patients included in this study (n: 572) were those with a positive diagnosis of COVID-19 confirmed by detection of a positive PCR for SARS-CoV-2. Of these patients, 188 developed AKI during their hospital stay. Patients’ epidemiological data, serum parameters, and clinical frailty status were recorded. Statistical analysis and comparison among AKI-NRF, AKI-CKD, and non-AKI patients were performed. Results: The incidence of COVID-19-induced AKI was 33%, with the majority classified as AKIN 1, 16% requiring renal replacement therapy, and AKI-COVID19 mortality of 68%. A significantly higher prevalence of hypertension, cardiovascular disease, and serum reactive C-protein and lower albumin values in AKI-CKD patients was recorded. Mortality rate, invasive ventilation requirement, and D-dimer levels were significantly higher in AKI-NRF patients. Conclusion: Different clinical patterns between AKI-NRF and AKI-CKD were documented.

Keywords: COVID-19; Acute Kidney Injury; Renal Insufficiency, Chronic.
INTRODUÇÃO
No final de 2019, um novo tipo de insuficiência respiratória aguda foi descrito em Wuhan, China. Posteriormente descobriu-se que foi causada por uma nova variedade de coronavírus (SARS-CoV-2), e a doença que causou foi denominada COVID-191,2. Embora a COVID-19 afete principalmente o sistema respiratório do paciente, esta condição também pode alterar outros órgãos, como rins, intestinos, medula óssea, coração e sistema nervoso3.

Com relação ao dano renal, foi relatada uma incidência de 3-9%, variando desde distúrbios urinários como albuminúria (34%), proteinúria (63%), hematuria (27%), proteinúria com hematuria (44%), até um aumento nos níveis séricos de creatinina e ureia devido a lesão renal aguda (LRA) (14-27%)4.

Diversos mecanismos têm sido implicados em danos renais induzidos por COVID-19. Alguns se devem ao efeito deletério direto do vírus sobre podócitos, células tubulares e endoteliais, enquanto outros estão envolvidos em danos renais indiretos induzidos por perfusão reduzida (choque), hipóxia (insuficiência respiratória), microangiopatia (coagulação intravascular disseminada: CIVD), pigmentúria (rabdomiólise), danos renais imunológicos (tempestade de citocinas) e toxicidade por medicamentos (AINEs)5-11.

Da mesma forma, a LRA-COVID19 tem sido relatada como ocorrendo principalmente em pacientes críticos, nos quais é um fator adicional de mau prognóstico, aumentando a mortalidade em até 92%6-8. Entre os fatores de risco que favorecem seu aparecimento estão a presença de doenças oncológicas, sepse, insuficiência cardíaca e CIVD8. No entanto, segundo temos conhecimento, a literatura ainda não descreveu se existem diferenças entre LRA-COVID19 em pacientes sem doença renal prévia e naqueles com DRC. Assim, decidiu-se realizar um estudo prospectivo para explorar se havia uma diferença significativa na resposta inflamatória e na mortalidade entre pacientes com LRA-COVID19 e pacientes com LRA sem COVID-19 que sofriam previamente de DRC, atendidos durante a primeira onda pandêmica (2020) na Clínica de la Costa, Barranquilla (Colômbia).

MATERIAL E MÉTODOS
Este foi um estudo observacional prospectivo com pacientes tratados no pronto-socorro da Clínica de la Costa, Barranquilla (Colômbia), de 01 de Abril a 11 de Julho de 2020, por suspeita de COVID-19. Foram incluídos no estudo pacientes com diagnóstico confirmado de COVID-19 por teste de reação em cadeia da polimerase (PCR) positivo. Além disso, os dados de pacientes internados com COVID-19 que desenvolveram LRA durante sua internação foram coletados em um registro eletrônico desenvolvido especificamente para este fim.

O grupo de pacientes com LRA foi dividido em dois subgrupos: aqueles que tinham função renal normal prévia (LRA-FRN) e aqueles que tinham doença renal crônica prévia (LRA-DRC). O diagnóstico de DRC foi obtido do prontuário clínico eletrônico do paciente, confirmado por pelo menos uma das seguintes alterações renais crônicas: taxa de filtração glomerular reduzida (≤ 90 mL/min/1,73 m²) com urinálise anormal (hematuria dismórfica, e/ou proteinúria), e/ou ultrassonografia renal anormal (múltiplos cistos, redução do tamanho dos rins, hiperecogenicidade do parênquima, perda da diferenciação córtico-medular)12.

Por fim, os parâmetros clínicos e bioquímicos foram comparados entre pacientes com LRA-FRN, LRA-DRC e SEM LRA, representados por aqueles indivíduos que não sofreram de LRA.

O manuseio e processamento de amostras para o diagnóstico de SARS-CoV-2 foram realizados de acordo com as diretrizes de transcrição reversa seguida de PCR em tempo real (RT-PCR) (Detecção de diagnóstico de 2019-nCoV por RT-PCR Charité Virology em tempo real, Berlim, Alemanha)10.

Pessoas com função renal normal prévia foram definidas como aquelas com taxa de filtração glomerular normal (> 90 mL/min/1,73 m²), urinálise normal, ultrassonografia renal normal e nenhum histórico pessoal de doença renal na admissão. A LRA em pessoas com função normal prévia foi definida como um aumento na creatinina de >0,3 mg/dL em comparação com seu valor basal de creatinina sérica na admissão. Além disso, cada episódio documentado de LRA foi classificado de acordo com os critérios AKIN (Tabela 1)11.

A LRA em indivíduos previamente diagnosticados com DRC foi definida como um aumento na creatinina de ≥ 1,5 vezes em relação ao seu valor basal de creatinina sérica na admissão. Além disso, cada episódio documentado de LRA foi classificado de acordo com os critérios AKIN (Tabela 1)11.

A LRA em indivíduos previamente diagnosticados com DRC foi definida como um aumento na creatinina de ≥ 1,5 vezes em relação ao seu valor basal de creatinina sérica na admissão11.

Os indivíduos SEM LRA foram definidos como pacientes internados sem LRA, LRA-FRN, ou LRA-DRC durante sua admissão.
Lesão renal aguda induzida por COVID-19

TABELA 1	ESTÁGIOS DE LESÃO RENAL AGUDA (LRA) (KDIGO 2012)
Estágio	AKIN
1	Aumento dos níveis de creatinina sérica >0,3 mg/dL ou 1,5-1,9 vezes o valor basal de creatinina, e/ou diminuição do débito urinário para 0,5 mL/kg/h por 6 h.
2	Aumento dos níveis séricos de creatinina de 2 a 2,9 vezes o valor basal de creatinina, e/ou diminuição do débito urinário para 0,5 mL/kg/h por 12 h.
3	Aumento dos níveis séricos de creatinina 3 vezes o valor basal da creatinina, aumento da creatinina sérica >4 mg/dL, início de TRS e/ou diminuição do débito urinário para 0,3 mL/kg/h por 24 h ou anúria por 12 h.

CrS: Creatinina sérica; TRS: Terapia renal substitutiva; KDIGO: Kidney Disease Improving Global Outcomes.

Os seguintes parâmetros foram obtidos diariamente de cada paciente durante sua internação: creatinina sérica, ureia, eletrolíticos, hemograma, bilirrubina, transaminases, lactato desidrogenase (LDH), troponina, proteína C reativa (PCR), ferritina, D-dímero e parâmetros de coagulação: tempo de tromboplastina parcial (TTP), tempo de protrombina (TP) e índice internacional normalizado (INR). Além disso, também foram documentados a presença de proteína urinária, hematuria e/ou leucocitúria, bem como o grau do estado de fragilidade pré-existente pela Escala Clínica de Fragilidade (CFS). (Tabela 2)

TABELA 2	ESCALA CLÍNICA DE FRAGILIDADE
1-Robusto	Pessoas robustas, ativas, com energia e motivadas. Essas pessoas normalmente se exercitam regularmente. Elas estão entre as mais em forma para sua idade.
2-Saudável	Pessoas que não apresentam sintomas e nenhuma doença ativa, mas que estão menos em forma do que as da categoria anterior. Elas frequentemente se exercitam ou são muito ativas ocasionais.
3-Regular	Pessoas cujos problemas de saúde são bem controlados mas não são regularmente ativas além da caminhada diária.
4-Vulnerável	Embora não dependam de outros para ajuda diária, seus sintomas muitas vezes limitam as atividades. Uma queixa comum é sentir-se "mais lento" e/ou estar cansado durante o dia.
5-Fragilidade leve	Essas pessoas geralmente apresentam uma lentidão mais evidente e precisam de ajuda em atividades mais complexas (gerenciamento de suas finanças, medicamentos, transporte e trabalhos domésticos pesados).
6-Fragilidade moderada	Essas pessoas precisam de ajuda em todas as atividades externas. Em ambientes internos, precisam de ajuda para limpeza, e muitas vezes têm problemas para subir escadas. Também precisam de ajuda para tomar banho e podem precisar de assistência mínima para se vestir.
7-Fragilidade grave	Completamente dependente para cuidados pessoais, seja por razões físicas ou cognitivas. Mesmo assim, são aparentemente estáveis e sem alto risco de óbito.
8-Fragilidade muito grave	Completamente dependentes, e próximos do fim de sua vida (dentro de 6 meses).
9-Doente terminal	Aproximando-se do fim da vida. Esta categoria se aplica a qualquer pessoa com uma expectativa de vida <6 meses, sem ser evidentemente frágil.

Este estudo foi aprovado pelo Comitê de Ética da Clínica de la Costa, Barranquilla (Colômbia), e obteve-se o consentimento livre e esclarecido de todos os pacientes.

RESULTADOS

Dos 720 indivíduos avaliados no pronto socorro da Clínica de la Costa, Barranquilla (Colômbia) de 01 de Abril a 11 de Julho de 2020, por suspeita de...
Lesão renal aguda induzida por COVID-19

COVID-19, 572 foram admitidos com diagnóstico confirmado de infecção por SARS-CoV-2 (teste PCR positivo). A maioria era do sexo masculino (59%) com mediana de idade de 55 anos (variação: 37-70). A hipertensão foi a comorbidade mais frequente (36%), seguida por obesidade (23%), diabetes mellitus (18%), doença cardíaca (5%) e doença pulmonar obstrutiva crônica (DPOC) (9%). Com relação ao seu estado clínico, quase todos eram indivíduos robustos (97%), que apresentavam um escore funcional ideal (CFS 1: 76%). Enquanto isso, uma minoria de pacientes era frágil (3%), com escore de fragilidade leve (CFS: 4-5).

O sintoma mais frequente apresentado pelos pacientes no início da internação foi temperatura corporal elevada (65%), seguido de dispneia (58%) e tosse seca (53%), enquanto hipogeusia, anosmia e tosse produtiva foram seus sintomas menos frequentes (10%).

Quarenta por cento dos pacientes com COVID-19 internados necessitaram de ventilação mecânica (VM) assistida (20% VM invasiva e 20% VM não invasiva) e 9% necessitaram de terapia renal substitutiva. Por fim, a presença de dispneia e fadiga foi mais frequentemente observada em pacientes com LRA-COVID19, seja LRA-FRN (82%) ou LRA-DRC (77%) em comparação com pacientes SEM LRA (47%), enquanto a cefaleia foi mais frequentemente documentada em pacientes SEM LRA (25%) em comparação com pacientes com LRA (13%). O período de hospitalização foi significativamente mais longo para pacientes com LRA (8 dias, intervalo de 3-14) do que para pacientes SEM LRA (2 dias, intervalo: 1-6) (p: <0,0001).

Em relação à necessidade de suporte de órgãos artificiais, o suporte de ventilação invasiva foi ligeiramente mais necessário no grupo LRA-FRN em comparação com o grupo LRA-DRC (p: 0,05), mas bem mais necessário em comparação com o grupo SEM LRA (p: <0,001). Por outro lado, o suporte de ventilação não invasiva foi significativamente mais necessário no grupo SEM LRA em comparação com os grupos LRA-DRC e LRA-FRN (p: <0,001) (Tabela 4).

Com relação à hemodiálise, a modalidade intermitente (67%) foi a mais comumente utilizada, sendo mais significativamente necessária por pacientes com LRA-DRC (42%) do que por pacientes com LRA-FRN (22%), p: <0,0001 (Tabela 4).

Não houve diferença significativa entre os grupos estudados em parâmetros laboratoriais, exceto para os níveis séricos de creatinina e ureia no momento do diagnóstico de LRA, que apresentaram o nível mais alto no grupo LRA-DRC, seguido pelo grupo LRA-FRN, e os valores mais baixos foram para o grupo SEM LRA (p: <0,001) (Tabela 5).

A glicose sérica e a maioria dos parâmetros inflamatórios (leucócitos, LDH e ferritina) foram significativamente mais elevados em pacientes com LRA em comparação com pacientes SEM LRA. Os níveis séricos de PCR foram ligeiramente mais altos e
Lesão renal aguda induzida por COVID-19

Tabela 3 - Média de idade, sexo e condições crônicas dos grupos

	LRA-FRN (26%)	LRA-DRC (8%)	SEM LRA (66%)	Valor de p
Idade (média, intervalo de anos)	64 (53-74)	63 (55-77)	48 (33-65)	1: <0,0001
				2: NS
				3: <0,0001
				1: <0,0001
Masculino	74%	70%	51%	2: NS
				3: <0,0001
				1: <0,0001
Fragilidade	9%	7%	0,3%	2: NS
				3: <0,0001
				1: <0,0001
Hipertensão	54%	79%	25%	2: 0,02
				3: <0,0001
				1: 0,015
Obesidade	31%	30%	18%	2: NS
				3: 0,015
				1: 0,002
DM	26%	25%	14%	2: NS
				3: 0,002
				1: 0,0015
DPOC	16%	16%	6%	2: NS
				3: 0,0015
				1: <0,0001
DC	8%	18%	3%	2: <0,0001
				3: <0,0001

LRA-FRN: lesão renal aguda em indivíduos com função renal normal prévia; LRA-DRC: lesão renal aguda em pacientes com doença renal crônica; DPOC: doença pulmonar obstrutiva crônica; DM: diabetes mellitus; DC: doença cardíaca; NS: comparações não significativas do teste de Bonferroni: LRA-FRN vs SEM LRA (1), LRA-FRN vs LRA-DRC (2), LRA-DRC vs SEM LRA (3).

Tabela 4 - Necessidade de suporte artificial de órgãos vitais nos grupos

	LRA-FRN (26%)	LRA-DRC (8%)	SEM LRA (66%)	Valor de p
				1: <0,0001
Ventilação Não-Invasiva	32%	39%	73%	2: NS
				3: <0,0001
				1: <0,0001
Ventilação Invasiva	68%	60%	27%	2: 0,05
				3: <0,0001
Diálise	22%	42%	0%	2: <0,0001

LRA-FRN: lesão renal aguda em indivíduos com função renal normal prévia; LRA-DRC: lesão renal aguda em pacientes com doença renal crônica; NS: comparações não significativas do teste de Bonferroni: LRA-FRN vs SEM LRA (1), LRA-FRN vs LRA-DRC (2), LRA-DRC vs SEM LRA (3).
Tabela 5: Principais parâmetros séricos nos grupos

	LRA-FRN (26%)	LRA-DRC (8%)	SEM LRA (66%)	Valor de p
	mediana, intervalo			
CrS (mg/dL)	1,5 (1,1-2,3)	4,3 (1,8-7,3)	0,7 (0,6-0,9)	1: <0,0001
				2: <0,0001
				3: <0,0001
				1: <0,0001
US (mg/dL)	92 (51-145)	105 (58-156)	30 (21-41)	2: NS
				3: <0,0001
				1: 0,04
GS (mg/dL)	136 (101-196)	123 (79-181)	102 (84-139)	2: NS
				3: NS
				1: 0,03
AS (g/dL)	2,4 (2,2-3,4)	2,9 (1,8-3,0)	3,3 (2,9-4,2)	2: 0,05
				3: NS
				1: 0,0003
Leuco (mm³)	12.450 (8,575-18,975)	10.200 (6,450-14,925)	9.100 (6,400-12,950)	2: 0,03
				3: NS
				1: <0,0001
LDH (UI/L)	562 (366-917)	492 (294-824)	312 (248-461)	2: 0,06
				3: NS
				1: 0,002
PCR (mg/dL)	25 (6,3-35)	8 (2,9)	5,9 (1-11)	2: 0,06
				3: NS
				1: 0,03
Ferritina (Ug/L)	1070 (858-2014)	892 (327-1875)	530 (253-946)	2: 0,06
				3: NS
				1: 0,03
D-Dímero (ng/mL)	4487 (1032-6469)	4050 (990-5903)	1015 (329-4798)	2: 0,05
				3: 0,03

LRA-FRN: lesão renal aguda em indivíduos com função renal normal prévia; LRA-DRC: lesão renal aguda em pacientes com doença renal crônica; CrS: creatinina sérica; US: ureia sérica; GS: glicose sérica; AS: albúmina sérica; Leuco: leucócitos; PCR: Proteína C reativa; NS: comparações não significativas do teste de Bonferroni: LRA-FRN vs SEM LRA (1), LRA-FRN vs LRA-DRC (2), LRA-DRC vs SEM LRA (3)
a albumina foi menor no grupo LRA-FRN do que no grupo LRA-DRC. O D-dímero sérico foi levemente mais alto no grupo LRA-FRN do que no grupo LRA-DRC. O grupo SEM LRA apresentou PCR e D-dímero séricos significativamente mais baixos, bem como um valor mais elevado de albumina sérica em comparação com o grupo LRA (Tabela 5).

Além disso, a LRA-COVID19 mostrou uma associação significativa com desfecho negativo do paciente (p: <0,0001), uma vez que os óbitos hospitalares foram mais frequentes em pacientes com LRA (LRA-FRN e LRA-DRC), do que em pacientes SEM LRA (68,46%, 55,81% e 15,49%, respectivamente). Neste sentido, ambas as condições podem induzir alterações renais (por exemplo, nefroangiosclerose e síndrome cardiorrenal, respectivamente) ou ser a consequência de retenção excessiva de sódio e sobrecarga de volume devido à nefropatia crônica.

Além disso, houve uma tendência para maior mortalidade, maior necessidade de ventilação mecânica invasiva, marcadores inflamatórios séricos mais elevados (PCR, ferritina, LDH, leucócitos) e níveis séricos de D-dímero (um marcador de geração de trombina e fibrinólise relacionado a danos endoteliais) no grupo LRA-FRN em comparação com o grupo LRA-DRC. Ao mesmo tempo, pacientes com LRA-DRC apresentaram necessidade significativamente maior de terapia renal substitutiva do que LRA-FRN (42 vs. 22%, respectivamente). Este fenômeno pode ser explicado pela seguinte hipótese: ambos os subgrupos de LRA apresentaram idade avançada, fragilidade e comorbidades semelhantes, o que explica sua pior evolução em comparação com os indivíduos mais jovens, robustos e com menos comorbidades do grupo SEM LRA. Entretanto, a evolução relativamente melhor dos pacientes com LRA-DRC em comparação com os pacientes com LRA-FRN pode ser explicada por seu status de imunossupressão crônica associado à nefropatia crônica, que pode evitar a reação hiperinflamatória (tempestade de citocinas); a base dos danos induzidos pela COVID-19.

Com relação ao subtipo de LRA documentado (AKIN) no momento do diagnóstico de lesão renal, a classe mais prevalente foi AKIN 1 e a menos frequente foi AKIN 2, o que está de acordo com alguns relatos anteriores. No entanto, outros estudos relataram que AKIN 3 foi a classe mais comum, seguida por AKIN 1. Esta discrepância pode ser atribuída a diferentes momentos do estágio de LRA nos quais a condição foi diagnosticada em cada estudo, ou seja, quanto mais cedo foi feito o diagnóstico, mais baixo foi o escore AKIN relatado.

A terapia renal substitutiva (TRS) foi necessária em 22% dos pacientes com LRA-FRN e em 42% dos pacientes com LRA-DRC. Isto está de acordo com o que tem sido relatado na literatura, onde o uso de TRS oscila entre 14-38%.

Discussão

Em nosso estudo, a incidência de LRA-COVID19 foi de 33%, sendo 26% em indivíduos com função renal normal prévia e 7% em pacientes com DRC. Como esperado, a maioria dos pacientes com DRC que foram afetados pela COVID-19 (91%) desenvolveram LRA, provavelmente devido a sua maior suscetibilidade a danos renais. A incidência de LRA-COVID19 em outros relatos varia entre 5 e 76%. Esta diferença notória pode ser devida a diversas características epidemiológicas (idade, comorbidades, etc.) e gravidade da doença (ambulatorial, cuidados intensivos, etc.) entre as populações estudadas.

Como relatado anteriormente na literatura, a LRA-COVID19 apareceu dentro da primeira semana de hospitalização em nosso estudo. Da mesma forma, também foi documentada em outros relatos sua prevalência no sexo masculino e em indivíduos idosos, frágeis, diabéticos, obesos e com DPOC. Tem sido sugerido que estas condições inflamatórias crônicas contribuem para o efeito deletério da reação excessiva do sistema imunológico (tempestade de citocinas), que caracteriza a doença da COVID-19.

O aumento da interleucina-6, ferritina, transferrina, D-dímero, fibrinogênio e PCR séricos estão entre as características mais documentadas da síndrome inflamatória sistêmica associada à infecção aguda por SARS-CoV-2. A ferritina é uma proteína de armazenamento intracelular de ferro que aparece no sangue durante o estresse sistêmico e estimula as células da imunidade inata que desencadeiam a tempestade de citocinas.

Vale mencionar que hipertensão e doença cardíaca foram significativamente mais comuns no grupo LRA-DRC do que no grupo LRA-FRN. Este fenômeno pode ser explicado pelo aumento da prevalência de hipertensão e cardiopatia em pacientes com DRC. Neste sentido, ambas as condições podem induzir alterações renais (por exemplo, nefroangiosclerose e síndrome cardiorrenal, respectivamente) ou ser a consequência de retenção excessiva de sódio e sobrecarga de volume devido à nefropatia crônica.

Além disso, a LRA-COVID19 mostrou uma associação significativa com desfecho negativo do paciente (p: <0,0001), uma vez que os óbitos hospitalares foram mais frequentes em pacientes com LRA (LRA-FRN e LRA-DRC), do que em pacientes SEM LRA (68,46%, 55,81% e 15,49%, respectivamente). Neste sentido, ambas as condições podem induzir alterações renais (por exemplo, nefroangiosclerose e síndrome cardiorrenal, respectivamente) ou ser a consequência de retenção excessiva de sódio e sobrecarga de volume devido à nefropatia crônica.
Diversos mecanismos têm sido propostos para justificar porque a COVID-19 pode predispor ao aparecimento de LRA. Eles podem ser resumidos da seguinte forma⁹,¹⁶-²⁰:

- **Pré-renal:** hipovolemia real (depleção de volume), hipovolemia efetiva (insuficiência cardíaca, sepse), microangiopatia (coagulopatia).
- **Renal:** efeito citotóxico viral, dano de citocinas (hiperinflamação), hipóxia (desconforto pulmonar), toxicidade por medicamentos, glomerulopatia colapsante.
- **Obstrução intra-renal:** mioglobina (rabdomiólise).

Com relação aos sintomas no momento da admissão, dispneia e fadiga foram mais frequentes entre pacientes com LRA, tanto para LRA-FRN (82%) quanto para LRA-DRC (77%), em comparação com pacientes SEM LRA (47%). Isto pode ser explicado pelo surgimento de pior comprometimento pulmonar induzido por COVID e/ou congestão pulmonar em pacientes com LRA. Esta última condição pode ser explicada pela retenção inadequada de volume secundária à redução da taxa de filtração glomerular.

A glicose sérica e os parâmetros inflamatórios (níveis séricos elevados de leucócitos e ferritina) ou de destruição celular (nível sérico elevado de LDH) foram significativamente maiores em pacientes com LRA em comparação com pacientes SEM LRA (Tabela 5). Estes achados são aceitáveis porque, primeiro, o diabetes mellitus foi mais prevalente em pacientes com LRA e, segundo, o estado inflamatório, representado pela presença de níveis mais elevados de leucócitos, ferritina e LDH, foi provavelmente pior em pacientes que desenvolveram LRA do que em pacientes SEM LRA.

Como esperado, o grupo SEM LRA, que foi o menos doente, apresentou os níveis mais elevados de albúmina sérica e os níveis mais baixos de parâmetros inflamatórios séricos, necessidade de VM invasiva e mortalidade. A mortalidade associada à COVID-19 em pacientes com LRA-FRN, LRA-DRC e SEM LRA foi de 68,46, 55,81, e 15,49%, respectivamente. A mortalidade por COVID-19 em relatos anteriores variou de 16,1 a 62%¹³-¹⁵,²⁴.

Em nosso estudo, as variáveis que mostraram uma correlação direta significativa com a mortalidade secundária à COVID-19 foram: idade, fragilidade e presença de LRA. Além disso, o tempo de internação foi significativamente maior em pacientes com LRA do que em pacientes SEM LRA (p = 0,0001). Estes achados podem ser explicados pelo fato de que estes pacientes necessitam de mais tempo para lidar com a infecção por SARS-CoV-2 por diversos motivos, tais como resposta imunológica insuficiente (envelhecimento, fragilidade) e inflamação excessiva (LRA).

Por fim, as comparações entre LRA-FRN e LRA-DRC com uma tendência para a significância (valor de p limítrofe) podem ser devidas ao número relativamente pequeno de pacientes com DRC neste estudo (n: 43). Estudos futuros podem esclarecer a real significância destes achados.

CONCLUSÃO

Este estudo relatou uma tendência a uma resposta inflamatória maior e uma taxa de mortalidade significativamente mais alta na LRA de novo em pacientes com COVID-19 do que em pacientes com LRA com COVID-19 que sofriam anteriormente de DRC.

AGRADECIMENTOS

Os autores agradecem a valiosa colaboração de Zulay Mondol (MD), Carlos Caceres (MD), e William Riascos (MD).

CONTRIBUIÇÃO DOS AUTORES

GAM, ACB, CGM: Desenho do estudo. LAE, MVV, SCN, SH, MAHV: Coleta de dados. ZE, CGM: Análise de dados. CGM: Redação do artigo. GAM, CGM: Discussão dos dados.

CONFLITO DE INTERESSE

Os autores declaram não haver conflito de interesses a declarar.

REFERÊNCIAS

1. World Health Organization (WHO). COVID-19 - China. Geneva: WHO; 2020.
2. Gorbalenya AE, Baker SC, Baric RS, Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group. Biorxiv. 2020;1-15.
3. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Mar;323(11):1061-9.
4. Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The novel coronavirus 2019 epidemic and kidneys. Kidney Int. 2020 May;97(5):824-8. DOI: https://doi.org/10.1016/j.kint.2020.03.001
5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Mar;323(11):1061-9.
6. Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The novel coronavirus 2019 epidemic and kidneys. Kidney Int. 2020 May;97(5):824-8. DOI: https://doi.org/10.1016/j.kint.2020.03.001
7. Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020 Jul;98(1):219-27. DOI: https://doi.org/10.1016/j.kint.2020.04.003
8. Garbarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with...
COVID-19. Intensive Care Med. 2020 Jun;46(7):1339-48. DOI: https://doi.org/10.1007/s00134-020-06153-9
7. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney impairment is associated with in-hospital death of COVID-19 patients. Kidney Int. 2020 May;97(5):829-38. DOI: https://doi.org/10.10111/j.2010.02.18.20203242
8. Sang L, Chen S, Zheng X, Guan W, Zhang Z, Liang W, et al. The incidence, risk factors and prognosis of acute kidney injury in severe and critically ill patients with COVID-19 in Mainland China: a retrospective study. BMC Pulm Med. 2020 Nov;20:290.
9. Shafi ST. COVID-19 and acute kidney injury: recent updates. Pak J Kidney Dis. 2020;4(2):225-7.
10. Corman V, Landr O, Kaiser M, Molenkamp R, Meijer A, Chu N, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. EUR Surveill. 2020;25(3):23-30. DOI: https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
11. Kidney Disease – Improving Global Outcomes (KDIGO). KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012 Mar;2(1):1-38.
12. Musso CG, Jauregui JR, Núñez JFM. Frailty phenotype and COVID-19. Kidney360. 2020 Aug;1(8):819-27. DOI: https://doi.org/10.34067/KID.0003352020