Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation

Alexander G. Foote1 · Vlasta Lungova1 · Susan L. Thibeault1

Received: 15 June 2022 / Revised: 30 October 2022 / Accepted: 31 October 2022 / Published online: 14 November 2022 © The Author(s) 2022

Abstract

Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation—altering cytokeratin differentiation.

Keywords Vocal folds · Wound healing · Regeneration · Epithelial mechanoreceptors · Mechanobiology

Introduction

The larynx, situated along the airway, is richly innervated with nerves [1, 2]. Diversity of physiological inputs from peripheral afferents in mucosa [3–12] serves to elicit characteristic reflexes to guard and/or clear the airways [13, 14]. Free margins of the vocal fold (VF), covered by stratified squamous epithelium (SSE), sustain extensive physiological stress during the biomechanical acts of voicing and cough [15–21]. Under homeostatic conditions, cells are largely quiescent, exhibiting low rates of proliferation and cellular turnover. However, when significant disruption occurs in response to injury and insult, rapid VF epithelium regeneration is critical for long-term tissue survival and maintenance. Analogous to other tissues, acute VF mucosal injury initiates a tissue repair process comprising of overlapping wound healing cellular phases involving: (1) inflammation, (2) proliferation and re-epithelialization and (3) ECM synthesis and remodeling [22–25]. VF mucosal epithelial cells, not only offer self-renewal capacity but, provide first-line defense against physical and chemical insult from the laryngeal lumen [17, 26, 27], requiring an intact protective barrier [15].

As few other organs and/or tissues withstand such shearing and frictional forces during motion [28], VF epithelial cells represent a unique cell type to study mechanotransduction. In 2010, a new group of mammalian mechanically activated ion channels, Piezo1 and Piezo2 were discovered [29], prompting a surge of research into their functional roles in cells. Since their discovery, Piezo1 channels have been found to be inherently mechanosensitive [30], predominantly expressed in nonexcitable cell types, and shown to regulate the life cycle of epithelial cells [31–33]. In contrast, Piezo2 channels have been found primarily expressed in sensory neurons [29, 34–39], regulating critical roles in sensory processes such as gentle touch sensation [40], proprioception [41] and mechanical nociception [42].
Given challenging biomechanical vibration within the larynx and subjected to VF tissue [18], it is not surprising that rapidly adapting mechanoreceptors have been implicated as functional afferents in laryngeal mucosa [10]. However, current research has relied on observational studies (e.g. punctate/air pulse mechanical stimulation) [43–45] and electrophysiological responses in vagal activity [46], with little underlying biological evidence at the mucosa–airway interface. Furthermore, PIEZO1/2 localization to laryngeal epithelial cells has not been explored, with initial evidence suggesting airway threats may act upon upstream epithelial sentinel cells rather than directly on neurons [13, 47].

The purpose of this study was to test the hypothesis that Piezo1-expressing ion channels to VF epithelia are essential for differentiation of SSE during postnatal life, and function to modulate acute remodeling following injury. We adopted a relatively established murine model for lower airway epithelial injury using chemical naphthalene [48–54]; not previously tested in the upper airway. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa for repair strategies at 1, 3-, 7 and 14 days post-injury (dpi). We found that naphthalene facilitates VF mucosal injury with a noninvasive, reproducible and epithelial-targeted approach—most appreciated at 3 dpi in both wildtype and mutant colonies. Results demonstrated the role for Piezo1 in modulating self-renewal via effects on p63 transcription and YAP protein subcellular translocation. We noted irregular cytokeratin differentiation for downstream stratification events, most notably, ectopic K17 expression, with unique changes to the subglottis at the squamociliary junction. Regenerating epithelium was restored by 7 dpi for all genotypes and treatment conditions, albeit, by 14 dpi ZO1-marked tight junctions to apical cells were impaired for both uninjured and injured Piezo1 ablated epithelium, suggesting continued barrier compromise. Findings from this investigation improve our understanding of acute VF wound healing in the context of Piezo1 epithelial function and form the basis for an in vivo methodology to study VF responses to naphthalene injury.

Materials and methods

Mouse models and tissue harvesting

Shhgfpcr (JAX stock #05622), Piezo1floxB (JAX stock #029213), Piezo2Box (JAX stock #027720) and Rosa26-CAG-loxp-stop-loxp-tdTomato (JAX stock #007914) were obtained from Jackson Laboratory. Data reported herein have been compiled from the examination of multiple embryonic and postnatal time points for wildtype (WT), heterozygous and conditional knockout animals. Both male and female mice were used in this study; experimental comparisons that underwent naphthalene injury controlled for sex. Pregnant dams and adults were killed for experiments through CO2 asphyxiation and cervical dislocation followed by isolation of vital postnatal organs and embryos. Fetal and neonate mice (<10 days) were put on ice until motionless and euthanized via decapitation. Timed pregnancies were confirmed through visualization of vaginal plugs with noon on the day plugs were detected designated as E0.5. Mutant and control animals were studied at E15.5, E18.5, P0, P15 and 6 weeks of age. Mice were bred and housed in the University of Wisconsin-Madison Biomedical Research Model Services Laboratory. Animal procedures were approved by the University of Wisconsin-Madison Institutional Animal Care and Use Committee and conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals [55].

Generation of transgenic and mutant mouse models

All offspring were genotyped using primer pairs shown in Table S1. Shhcre/+ mice were maintained by crossing male heterozygotes (Shhcre/+ with WT female littermates on a C57BL/6 J background. Mice maintained on a B6 background were used as WT controls for immunofluorescence (IF) experiments to label endogenous PIEZO protein expression patterns. Shhcre/+ mice exhibited no abnormal phenotypes and were identical to WT colony controls. Shhcre/+ males were then crossed to ROSA26CAG-LSL-tdTomato females to generate Shhcre/+; ROSA26CAG-LSL-tdTomato (here referred to as ROSA_{LSL-tdTom}+) mutants. ROSA_{LSL-tdTom}+ controls were used to establish the baseline tdTomato levels for all experiments. Shhcre/+; Piezo1loxP/+, Piezo2loxP/+ males were crossed to Piezo1loxP/loxP, Piezo2loxP/loxP females to generate conditional Shhcre/+; Piezo1loxP/loxP, Piezo2loxP/loxP compound (here referred to as Shhcre/+; Piezo1/2_{loxP}) and single mutants (here referred to as Shhcre/+; Piezo1_{cre}, Piezo2_{cre} or Shhcre/+; Piezo1loxP/+, Piezo2_{loxP}); Shhcre/+; Piezo1loxP/+, Piezo2_{loxP} (here referred to as Shhcre/+; Piezo1/2_{loxP}) and mice without the Cre allele insertion were used as littermate genotype controls. Mice lacking Cre recombination with floxed Piezo1/2 insertions exhibited similar epithelium morphology to WT colony controls.

Histology and immunofluorescence

Larynges and control tissues were collected at the indicated ages or timepoints following confirmation of vaginal plug and/or naphthalene administration. For embryos and P0 pups, mouse neck regions were dissected, with isolation of the entire larynx for samples >P0. All samples were immediately fixed in 4% paraformaldehyde in phosphate-buffered saline at 4 °C overnight. Samples were
Piezo-expressing vocal fold epithelia modulate remodeling via effects on self-renewal...

Piezo1 expressing vocal fold epithelia modulate remodeling via effects on self-renewal...

Malized to β-actin (ΔCt) and control tissue (ΔΔCt).

Between control and experimental mutant larynges were nor-

In a 7500 Fast Real Time PCR System machine (Applied Biosystem), accord-

Green Master Mix (Applied Biosystem, Foster City, CA, USA) and run for 40 cycles in triplicates on a 7500 Fast Real Time qPCR (Table S1). Total volume of 0.4 μl of cDNA was used per 20 μl real time qPCR reaction using Power Up Sybr Green Master Mix (Applied Biosystem, Foster City, CA, USA) and run for 40 cycles to using the macro for these experiments, it was tested in comparison to manual cell counts of 40X images of VF sections from 4 serial EdU+ and P63+ labeled cells were enumerated using an automated counting macro “RGB fluorescent cell count v1.32.ijm” developed by Dr. David Ornelles (Wake Forest University, Winston-Salem, NC) as previously described [57, 58]. Prior to using the macro for these experiments, it was tested in comparison to manual cell counts of 40X images of VF sections from 4 serial EdU+ and P63+ stained slides. H2AX+ and SCGB1A1+ cells as well as YAP+ nuclei were manually counted using the built-in cell counter in ImageJ. Cytologically visible H2AX foci indicate DNA double-stranded breaks [59], with nuclei containing greater than 50% or more total area of H2AX foci considered positive.

Statistical analysis

All data were tested for normality and equal variance using the Shapiro–Wilks and F test, respectively. A Wilcoxon rank sum test was performed to calculate significance in mRNA abundance transcript levels. To analyze WT tissue, total epithelial cell counts (DAPI) between corn oil and naphthalene-injured VF epithelium were ana-

Naphthalene treatment

Adult 6wk mice received 0.275 mg/per gram body weight of Naphthalene (Millipore Sigma, cat# PFR1275-1G) administered with an insulin syringe 29-gauge needle dissolved in corn oil (Sigma, cat# C8267) interperitoneally. Corn oil alone injected littermates were used as control comparisons for each experimental condition with analysis at 1-, 3-, 7- and 14-dpi.

Image acquisition

Images were acquired on a Nikon Eclipse Ti2 inverted microscope (Nikon Instruments, Inc., Belmont, CA, USA) with Nikon DS-Ri2 camera and NIS Elements software (version 5.21.01). Images were uniformly adjusted for brightness and exposure using Nikon or ImageJ software. IF staining presence, relative intensity, and subcellular and tissue-level localization were described qualitatively. Sections from experimental groups were imaged using the same exposure settings or laser power for any given antibody combination. All schematic images were created in Procreate (version 5.2.2) or BioRender.com.

Cell count quantification

Epithelial cell counts were quantified with 40X magnification from 10 images across the length of VF ≥ 20 um apart. Images of either EdU+/H2AX+, P63+/SCGB1A1+ or P63+YAP+ stained tissues were opened in ImageJ (National Institutes of Health). Total epithelial cells, as well as EdU+ and P63+ labeled cells were enumerated using an automated counting macro “RGB fluorescent cell count v1.32.ijm” developed by Dr. David Ornelles (Wake Forest University, Winston-Salem, NC) as previously described [57, 58]. Prior to using the macro for these experiments, it was tested in comparison to manual cell counts of 40X images of VF sections from 4 serial EdU+ and P63+ stained slides. H2AX+ and SCGB1A1+ cells as well as YAP+ nuclei were manually counted using the built-in cell counter in ImageJ. Cytologically visible H2AX foci indicate DNA double-stranded breaks [59], with nuclei containing greater than 50% or more total area of H2AX foci considered positive.

Naphthalene treatment

Adult 6wk mice received 0.275 mg/per gram body weight of Naphthalene (Millipore Sigma, cat# PFR1275-1G) administered with an insulin syringe 29-gauge needle dissolved in corn oil (Sigma, cat# C8267) interperitoneally. Corn oil alone injected littermates were used as control comparisons for each experimental condition with analysis at 1-, 3-, 7- and 14-dpi.

Image acquisition

Images were acquired on a Nikon Eclipse Ti2 inverted microscope (Nikon Instruments, Inc., Belmont, CA, USA) with Nikon DS-Ri2 camera and NIS Elements software (version 5.21.01). Images were uniformly adjusted for brightness and exposure using Nikon or ImageJ software. IF staining presence, relative intensity, and subcellular and tissue-level localization were described qualitatively. Sections from experimental groups were imaged using the same exposure settings or laser power for any given antibody combination. All schematic images were created in Procreate (version 5.2.2) or BioRender.com.

Cell count quantification

Epithelial cell counts were quantified with 40X magnification from 10 images across the length of VF ≥ 20 um apart. Images of either EdU+/H2AX+, P63+/SCGB1A1+ or P63+YAP+ stained tissues were opened in ImageJ (National Institutes of Health). Total epithelial cells, as well as EdU+ and P63+ labeled cells were enumerated using an automated counting macro “RGB fluorescent cell count v1.32.ijm” developed by Dr. David Ornelles (Wake Forest University, Winston-Salem, NC) as previously described [57, 58]. Prior to using the macro for these experiments, it was tested in comparison to manual cell counts of 40X images of VF sections from 4 serial EdU+ and P63+ stained slides. H2AX+ and SCGB1A1+ cells as well as YAP+ nuclei were manually counted using the built-in cell counter in ImageJ. Cytologically visible H2AX foci indicate DNA double-stranded breaks [59], with nuclei containing greater than 50% or more total area of H2AX foci considered positive.

Statistical analysis

All data were tested for normality and equal variance using the Shapiro–Wilks and F test, respectively. A Wilcoxon rank sum test was performed to calculate significance in mRNA abundance transcript levels. To analyze WT tissue, total epithelial cell counts (DAPI) between corn oil control and naphthalene-injured VF epithelium were analyzed for comparison at each timepoint of interest (1-, 3-,
Proliferation and apoptosis (percentages of EdU+ cells and H2AX+ cells) as well as cell-marker indices (percentages of SCGBA1A+ cells, P63+ and YAP+ nuclei) were normalized to total DAPI+ cells for comparisons at 3 dpi timepoint. To analyze Piezo1 allele dose effect in heterozygote versus complete knockout, P63+ and YAP+ nuclei were compared using the Wilcoxon rank sum test. One-way analysis of variance (ANOVA) was used to compare group means for relative mRNA abundance of P63+, YAP1+ and K13+ and K17+ transcripts with Tukey’s HSD post hoc test to determine pairwise comparisons. Kruskal–Wallis test was used to compare group means for relative mRNA abundance of YAP2+. All statistical analyses were calculated with RStudio (v. 2021.09.0 Build 351) running R 4.1.2 (R Core Team). Results are reported as either mean ± SE or median (Q2) with lower (Q1) and upper (Q3) quartile ranges. The alpha level for significance was p ≤ 0.05.

Results

PIEZO proteins exhibit selective expression in laryngeal epithelia

To investigate how ablation of Piezo1 and Piezo2 disrupts VF epithelia, we first assessed PIEZO1 and PIEZO2 endogenous protein expression in the larynx and VF on the background of WT control mice (Fig. 1). Two regions selected for investigation were the mid-membranous and cartilaginous arytenoid VF, known for roles in tissue oscillation [60–62] and airway protection [43, 63], respectively (Figs. 1a; 2c). Within the larynx of P0 WT mice, we detected PIEZO1 to nonkeratinized SSE of the mid-membranous and ventral VF (Fig. 1b), and keratinized SSE of the hypopharynx and esophagus (Fig. 1b, Fig. S1). PIEZO2 expression was selective to ciliated, respiratory epithelia of the hypopharynx, arypepiglottic fold, superior surface of arytenoid, inferior laryngeal epiglottis and trachea at PO, however, additionally extended into the subglottic region by 6wks (Fig. 1b). PIEZO1 expression at the 6wk timepoint was localized to apical, differentiated squamous epithelia of the VF (Figs. 1b; 2d). We next determined de novo epithelial expression of PIEZO1 and PIEZO2 proteins by staining embryonic tissue at timepoints preceding and subsequent to VF recanalization. We established PIEZO1/2 de novo epithelial cell expression patterns shortly after VF recanalization (E16.5-E17.5), denoted by no expression at E15.5, and with peak expression at E18.5 and P0 (Figs. S2&S3). We further demonstrated PIEZO2 expression abuts PGP9.5 labeled neurons in the posterior glottis and near nerve endings arborizing in the supra- and subglottis at P0 (Fig. S4).

To determine the effect of Piezo removal specifically from shh-positive airway epithelial cells, we generated triple transgenic mice carrying the sonic hedgehog (shh) Cre, floxed Piezo1 and floxed Piezo2 alleles, referred to as Shhcre/+; Piezo1/2cko throughout the text (Fig. 2a, b). We first verified that Cre recombinase was expressed exclusively in VF epithelial cells using a tdTomato reporter (Shhcre/+; ROSALSL–tdTom+) which expresses a red fluorescent protein (RFP) following Cre recombinase (Fig. 2a and e). ROSALSL–tdTom+ and no primary negative controls were used to establish baseline tdTomato levels and effective antiserum against RFP, respectively (Fig. S5). We then harvested P0 whole larynges from control and Shhcre/+; Piezo1/2cko to verify effective Piezo1/2 epithelial cell ablation, which revealed significantly reduced mRNA for both Piezo1 (W = 186, p = 0.0001) and Piezo2 (W = 174, p = 0.0019) (Fig. 2f). Immunofluorescence analysis validated reduced protein expression following Piezo1 genetic ablation (Fig. S6a). Mutant combinations at P0, P15 and 6wk timepoints were collected to establish morphology following Piezo1 and/or Piezo2 loss. To our surprise, no epithelial morphological differences were appreciated to the mid-membranous VF across all mutant combinations at P0, P15 (Fig. S7) and/or 6wk stages (Fig. 2g). IF analysis confirmed normal cytokeratin differentiation expression of SSE markers K13 and K14 in Shhcre/+; Piezo1/2cko compound mutant compared to control tissue (Fig. 2h), albeit, downregulated ZO1 to apical epithelium following Piezo ablation (Fig. 2i). To further investigate epithelial structural changes, we stained for MUC1, an important mucin previously characterized in human VF epithelium [64]. Interestingly, we found overexpression of MUC1 following Piezo1 deletion, which suggests the VF epithelium compensates via downregulating ZO1 and upregulating MUC1 production ultimately priming signaling cascades for repair strategies (Fig. S8).

NAPH-induced injury results in hyperplasia to WT VF epithelium

NAPH exposure in mice results in airway epithelium-specific injury, which has proven valuable for study of regeneration in distal lung and tracheal airways [48–51, 65, 66]. Adult 6wk control, Shhcre/+; Piezo1/2loxP/+ haploinsufficient and Shhcre/+; Piezo1cko, Piezo2loxP/+ knockout animals were treated with NAPH or vehicle-treated (corn oil) control and sacrificed at 1-, 3-, 7-, and 14-dpi (Fig. 3a). To test feasibility of NAPH chemical exposure to result in VF epithelial injury, WT controls were used in our initial analyses. No epithelial injury was observed in WT controls on day 1 following NAPH exposure, however,
by 3 dpi, WT VF epithelium exhibited hyperplasia with increased stratification of squamous cells and with significantly increased total epithelial cells compared to corn oil uninjured controls (173 ± 45 corn vs. 242 ± 52 naph, p < 0.0001) (Fig. 3b, c). This increased stratification and resulting hyperplasia was noted across the full length of the VF (Fig. 3d). IF analysis corroborated histological findings, demonstrating increased EdU+ epithelia (1.71 ± 1.35 corn vs. 6.56 ± 5.01 naph, p < 0.0001) and H2AX+ epithelia (0.67 ± 0.92 corn vs. 1.74 ± 1.08 naph, p < 0.0001), compared to controls at 3 dpi only (Fig. 3e). Hyperplastic changes were largely resolved by 7 dpi (Fig. 3b), with no differences in epithelial cell counts (148 ± 26 corn vs. 154 ± 31 naph, p = 0.1988) (Fig. 3c). Abnormal cell morphology was localized to the VF subglottic region (Fig. 3d), which was defined as below the larynx to display coronal sections (red dashed line) attained for analysis of cartilaginous and mid-membranous vocal fold epithelium. Serial sections of PIEZO1 (green) and PIEZO2 (green) immunofluorescence protein localization in wildtype murine Bl6 vocal fold. At P0, cartilaginous vocal fold exhibit PIEZO1 selective expression to stratified, squamous epithelia of the hypopharynx, with PIEZO2 selective expression to respiratory, non-squamous epithelial cells of the hypopharynx, superior surface of arytenoids and subglottic regions. At 6wk, cartilaginous vocal fold exhibit PIEZO1 and PIEZO2 selective expression to the superior surface of arytenoid with PIEZO2 expression extending into subglottic regions. At P0, PIEZO1 expression was exhibited to epithelial cells of the mid-membranous vocal fold, however, PIEZO2 expression was noted to supra- and subglottic regions with no expression to mid-membranous vocal fold. At 6wk, PIEZO1 selective expression to differentiated, apical squamous epithelia, however, with no PIEZO2 expression. DAPI is in blue. All images 20X magnification. Scale bar represents 100 µm. H&E hematoxylin and eosin, WT wildtype, VF vocal fold, P0 postnatal day 0, TSA tyramide signal amplification
point where squamous epithelium of the VF reaches its inferior extent (a.k.a. squamociliary junction). Further characterization of serial sections revealed increased EdU+ epithelia along the dorsal–ventral plane to the arytenoid and mid-membranous regions compared to ventral sections (Fig. 3g), with increased concentrated labeling of EdU+ cell proliferation to the subglottic region of the mid-membranous fold (Fig. 3h).

To determine potential mechanism for NAPH-induced epithelial injury and resulting hyperplasia, VF sections were stained for P63 and SCGB1A1, indices for basal cell progenitor and secretory cells, respectively. NAPH-injured WT VF epithelium exhibited expansion to P63+ cells within the basal compartment (Fig. 4a). Cell count quantification revealed significantly increased P63+ cells following NAPH injury at 3 dpi only (58.0 ± 8.14 corn vs. 70.2 ± 9.85 naph, p < 0.05).
Fig. 3 NAPH-injured WT VF epithelium exhibits epithelial hyperplasia with increased cell cycle activation of EdU+/H2AX+ by 3 dpi. a Schematic illustration of the analysis for VF epithelial NAPH injury. b H&E-stained VF sections from 3dpi control (left) compared to 1, 3, 7, and 14 dpi following NAPH treatment. c Quantification of total epithelial cells comparing corn oil controls versus naphthalene-injured VF sections at 1, 3, 7, and 14 dpi exhibit significantly increased total epithelia by 3dpi for NAPH-injured group. n = 6 for each treatment condition per timepoint. d H&E-stained serial sections of WT VF across the dorsal–ventral plane at 3dpi for corn oil control versus NAPH-injured. Yellow boxes indicate subglottic regions with abnormal epithelial morphology characterized by irregular apical and basolateral polarity. e Quantification of EdU+DNA synthesis (cell proliferation) and H2AX+DNA damage (double-stranded breaks) in WT controls for corn oil versus NAPH-injured VF sections at 1, 3, 7, 14dpi exhibit significantly increased EdU+H2AX+ at 3dpi only. n = 3 for each treatment condition and timepoint per target. f Schematic illustration of murine anatomic axis. g IF analysis of VF serial sections along the dorsal–ventral (left-to-right) plane for EdU+ (green) and H2AX+ (red) exhibit increased EdU+ marked epithelial cell proliferation to the dorsal VF. h Highly concentrated EdU+ proliferative cells are exhibited to unique subglottic cell compartment in NAPH-injured group only with white arrows denoting suprabasal EdU+ cells undergoing S-phase DNA synthesis. DAPI is in blue. Images taken at 60X in b, d and 40X magnification in g, h. Scale bar represents 100 µm in b, d, g, h. Data are presented as the mean (Q2) with lower (Q1) and upper (Q3) quartile ranges. Test: Student’s t test or Mann–Whitney–Wilcoxon was performed for all target analyses at each timepoint of interest in c, e. WT wildtype, NAPH naphthalene, IF immunofluorescence, dpi days post-injury, Arty arytenoid, mVF mid-membranous vocal fold, vVF ventral vocal fold, LP lamina propria. *p < 0.05

p < 0.0001) (Fig. 4b). IF analysis also exhibited ablation of SCGB1A1+ secretory cells to the mid-membranous fold at 3dpi compared to corn oil controls (Fig. 4a). SCGB1A1+ secretory cells were demonstrated across the full length of VF in WT corn oil controls in both squamous and cuboidal epithelia (Fig. 4e). Furthermore, quantification comparing injured to uninjured controls at each timepoint revealed transient epithelial sensitivity to NAPH with significant cell decrease by 1dpi (3.70 ± 1.79 corn vs. 2.21 ± 1.89 naph, p = 0.003), significant near complete ablation by 3dpi (4.33 ± 2.61 corn vs. 0.21 ± 0.49 naph, p < 0.0001), albeit, population rebound by 7dpi (4.67 ± 2.45 corn vs. 4.54 ± 3.19 naph, p = 0.8608) and no significance differences at either 7 or 14dpi (3.78 ± 1.9 corn vs. 2.83 ± 1.93 naph,
Lastly, we stained markers for K13 and K14, known to be important for maturation and differentiation of murine SSE [26, 56, 67], along with the stress cytokeratin marker K17. Most interestingly, expression of K13 extended into the subglottic region with apparent positivity to non-squamous epithelia at the squamociliary junction (Fig. 4f), with K14 overexpression extending into the tracheal lower airway following NAPH injury compared to controls (Fig. S9). No K17 expression was noted in either treatment group (Fig. 4f).

Piezo1 ablation results in increasingly severe VF epithelial defects

We hypothesized that following NAPH insult and loss of Piezo1 to apical VF epithelial cells that we would...
observe epithelial remodeling defects. Given data from WT controls, we expected severe injury to occur by 3 dpi. Consistent with our hypothesis, we noted a Piezo1 allele dose effect such that following Piezo1 loss mutant epithelium exhibited increasingly severe cell defects compared to NAPH-treated control and/or Shhcre/+/Piezo1/2loxP/+ heterozygotes (Fig. 5a–c). Phenotypic abnormalities to Shhcre/+/Piezo1cko,Piezo2loxP/+ mutants were characterized by loss of stratification, disorganized/large squamous cells with polymorphous nuclei, irregular nuclear borders and large amounts of cytoplasm with indistinct cell borders (Fig. 5b, c). Epithelium defects across all genotype conditions were resolved by 7 dpi with no differences to corn oil controls, characterized by re-epithelization and complete restoration (Fig. 6a–c).

Previous findings from our lab have demonstrated the importance of Hippo/YAP pathway for VF epithelium morphogenesis [68]. Moreover, Piezo1 and Piezo2 have been implicated as upstream components for signal transduction pathways resulting in YAP transcriptional activity for stem cell differentiation [69]. Mice were investigated at 3dpi due to the appreciated phenotypic differences (Fig. 7a). Adult VF epithelium expresses mainly cytoplasmic YAP with very few cells exhibiting nuclear expression mainly localized to apical cells (Fig. 7b) and indicating a role in epithelial cell stratification [68]. Prior work has also revealed a role for both P63 and YAP in epidermal basal SC proliferation and epithelial stratification [70–73], with additional evidence implicating their genetic interaction in the airway epithelium [74].

Piezo1 modulates self-renewal via repressive effects on p63 and YAP subcellular localization

Fig. 5 Piezo1 ablation results in increasingly severe VF epithelial defects following NAPH injury at 3 dpi. a Schematic illustration of the analysis for VF epithelial NAPH injury. b NAPH injury induces epithelial defects at 3 dpi in both Shhcre/+/Piezo1/2loxP/+ and Shhcre/+/Piezo1cko,Piezo2loxP/+ mutants characterized by loss of stratification, disorganized/large squamous cells with polymorphous nuclei, irregular nuclear borders and large amounts of cytoplasm with indistinct cell borders. c 150× highly magnified images comparing corn oil to NAPH-injured VF epithelium medial edge. Images taken at 40× in (b) and 150× magnification in c. Scale bar represents 100 μm in b and 1 mm in c. dpi days post-injury, WT wildtype, NAPH naphthalene
We reasoned that injury to the VF may result in increased YAP+P63+ epithelial cells with nuclear YAP translocation in our controls which exhibited hyperplasia and increased keratin expression. We also hypothesized analogous loss of YAP expression following \(\text{Piezo1} \) loss-of-function in our mutant epithelium given prior work [69, 75]. IF analysis revealed upregulated YAP in control epithelium following NAPH injury at 3 dpi, albeit, with grossly cytoplasmic expression localized to the basal cell compartment (Fig. 7c, d). More intriguing was the translocation to nuclear YAP expression in \(\text{Shh}^{+/+};\text{Piezo1}^{+}\text{loxpP}\text{Piezo2}^{+}\text{loxpP} \) and \(\text{Shh}^{+/+};\text{Piezo1}^{-}\text{ko} \cdot \text{Piezo2}^{+}\text{loxpP} \) injured mutant VF epithelium (Fig. 7c, d). We also appreciated increased co-localization of nuclear P63 and YAP expression in \(\text{Shh}^{+/+};\text{Piezo1}^{-}\text{ko} \cdot \text{Piezo2}^{+}\text{loxpP} \) mutant VF epithelia (Fig. 7c, d). Cell count quantification revealed significantly increased nuclear YAP+ (7.87 ± 5.78 \(\text{Shh}^{+/+};\text{Piezo1}^{+}\text{loxpP}\text{Piezo2}^{+}\text{loxpP} \) vs. 22.1 ± 10.2 \(\text{Shh}^{+/+};\text{Piezo1}^{-}\text{ko} \cdot \text{Piezo2}^{+}\text{loxpP} \), \(p<0.0001 \) and YAP+P63+ (4.72 ± 3.97 \(\text{Shh}^{+/+};\text{Piezo1}^{+}\text{loxpP}\text{Piezo2}^{+}\text{loxpP} \) vs. 10.4 ± 7.46 \(\text{Shh}^{+/+};\text{Piezo1}^{-}\text{ko} \cdot \text{Piezo2}^{+}\text{loxpP} \), \(p=0.002 \)) VF epithelia following \(\text{Piezo1} \) loss in NAPH-exposed groups (Fig. 7e). Additionally, we performed quantitative-PCR analysis for \(p63, \text{Yap1}, \) and \(\text{Yap2} \) transcripts to assess mRNA abundance across genotype comparisons. We found \(p63 \) mRNA exhibited an inverse relationship following \(\text{Piezo1} \) loss in NAPH-exposed groups, such that \(p63 \) expression increased in a linear manner from control to \(\text{Shh}^{+/+};\text{Piezo1}^{-}\text{ko} \cdot \text{Piezo2}^{+}\text{loxpP} \) mutant VF epithelium (Fig. 7f). One-way ANOVA test revealed significant group differences (\(F(2,6)=101, \ p<0.0001 \)), with Tukey-adjusted HSD post hoc tests exhibiting significantly different \(p63 \) mRNA expression (\(p<0.0001 \)) for all genotype pairwise comparisons. This supports \(\text{Shh}^{+/+};\text{Piezo1}^{-}\text{ko} \cdot \text{Piezo2}^{+}\text{loxpP} \) histologic findings of nuclear hypertrophy, with IF analysis corroborating...
Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal.

Fig. 7 Piezo1 loss results in nuclear YAP with co-localization of YAP*P63* to VF basal epithelia. a Schematic illustration of the analysis for VF epithelial NAPH injury. b IF analysis exhibiting corn oil control and Shhcre+:Piezo1cko,Piezo2 loxP/+ mutant VF epithelium expresses mainly cytoplasmic YAP with very few cells exhibiting nuclear expression mainly localized to apical cells denoted by white arrows. c Hypothetical schema showing that, following Piezo1 loss, basal cells increase co-localization of YAP and P63 markers. d IF analysis of total YAP (green) and basal cell marker P63 (red) exhibit cytoplasmic-to-nuclear YAP translocation expression pattern comparing controls to Shhcre+:Piezo1/2loxP/+ and Shhcre+:Piezo1cko,Piezo2 loxP/+ mutants. Red arrows represent YAP+P63−, while white arrows represent YAP+P63+ nuclear co-localization. DAPI is in blue. e Quantification reveals significantly different percentage of nuclear YAP+ and YAP+P63+ marked cells comparing Shhcre+:Piezo1/2loxP/+ to Shhcre+:Piezo1cko,Piezo2 loxP/+ mutants following Piezo1 loss. Data are presented as the mean (Q2) with lower (Q1) and upper (Q3) quartile ranges. n = 3 for each genotype condition. f Quantitative-PCR analysis shows significantly increased p63 mRNA expression following Piezo1 haploinsufficient and null allele loss. No significant change in mRNA expression of Yap1 and/or Yap2 target genes following Piezo1 loss. Data are presented as mean ± SEM. n = 3 digested larynges for each genotype condition. g IF analysis of basal cell marker P63 (red) exhibit Piezo1 allele dose effect via increased expression with nuclear cell hypertrophy following Piezo1 loss. White dashed line indicates epithelium and LP transition boundary. All images taken at 60× magnification. Scale bar represents 100 µm. Test: One-Way ANOVA with Tukey’s HSD post-hoc for p63 and Yap1 analysis; Kruskal–Wallis for Yap2 analysis in f and Mann–Whitney-Wilcoxon in g. VF vocal fold, IF immunofluorescence, dpi days post-injury, NAPH naphthalene. *p < 0.05

more robust P63 nuclear expression following Piezo1 loss compared to heterozygote epithelium (Fig. 7g). There were no group differences in Yap1 (F(2,6) = 2.607, p = 0.153) and/or Yap2 (H(2) = 4.3556, p = 0.1133) mRNA abundance across genotype conditions (Fig. 7f). While overall Yap mRNA transcript levels are unchanged, the clear shift from cytoplasmic- to nuclear YAP protein localization suggests posttranslational modification, which may have a functional effect on p63 resulting in appreciated basal progenitor cell proliferation and epithelial stratification events.

Piezo1 loss alters differentiation programs for VF remodeling events

K17, not normally expressed in healthy VF epithelium, is known for its role in wound healing and DNA damage
Prior work has also established reciprocal effects of K17 emergence with K13 loss in head and neck squamous cell carcinoma (SCC) [79–81]. We therefore postulated that aberrant K13/K17 expression may be partly contributing to abnormal stratification events appreciated in our Piezo1 ablated epithelium. To test this, we stained control, Shhcre+/Piezo1/2loxP/ and Shhcre+/Piezo1cko,Piezo2loxP/ mutant tissue at 3 dpi following NAPH or corn oil exposure (Fig. 8a). K13/K17 expression patterns were consistent with prior characterization data such that K13 was increased after injury localized to apical VF epithelia with a lack of K17 expression to VF epithelium in either treatment condition (Fig. 4f; Fig. 8b, c). Interestingly, K17 expression was exhibited to the subglottis at the squamociliary junction in corn oil uninjured Shhcre+/Piezo1/2loxP/+ mutant epithelium increasing to surrounding VF SSE following NAPH injury (Fig. 8d). Shhcre+/Piezo1/2loxP/+ mutant larynx displayed preferential K17 expression to squamous epithelia of the VF, as well as squamous and

Fig. 8 Piezo1 loss results in ectopic K17 expression to VF epithelial cells following NAPH-injury. a Schematic illustration of the analysis for VF epithelial NAPH injury. b Hypothetical schema showing that, following Piezo1 allele loss, VF stratified squamous epithelial cells ectopically express K17. c IF analysis of K17 (green) and K13 (red) exhibit ectopic switch to K17 expression pattern comparing control to Shhcre+/Piezo1/2loxP/+ and Shhcre+/Piezo1cko,Piezo2loxP/+ mutants. DAPI is in blue. d IF analysis of Shhcre+/Piezo1/2loxP/+ mutant epithelium comparing corn oil controls to NAPH-injured mid-membranous section displays ectopic K17 focal emergence to squamociliary junction in absence of injury with spread to entire epithelium following injury. e Quantitative-PCR analysis shows significantly increased K17 mRNA expression following Piezo1 haplo-insufficient and null allele loss. No significant change in K13 mRNA expression following Piezo1 loss. Data are presented as mean ± SEM. n = 3 digested larynges for each genotype condition. f IF analysis for markers of epithelial-to-mesenchymal transition N-cadherin (green) and SNAIL1 (green) exhibit lack of protein expression in Shhcre+/Piezo1cko,Piezo2loxP/+ mutants following NAPH-injury. White dashed line indicates epithelium and LP transition boundary. Image in c, d 60× and f 40× magnification. Scale bar represents 100 μm in c, d, f. Test: One-Way ANOVA with Tukey’s HSD post hoc for K13 and K17 analysis in d, dpi days post-injury, IF immunofluorescence, NAPH naphthalene, VF vocal fold, K keratin. *p < 0.05
intermediate epithelia of the laryngeal surface of the epiglotis (Fig. S10). Further investigation revealed what seemed to be reciprocal expression patterns in Shh$^{cre/+};$Piezo1$^{loxp/}$ haploinsufficient and Shh$^{cre/+};$Piezo1$^{cko},$ Piezo2$^{loxp/}$ mutant VF epithelium following injury, whereas loss of K13$^+$ epithelia resulted in increased ectopic K17$^+$ epithelia (Fig. 8c). However, quantitative-PCR analysis confirmed no difference for K13 mRNA across genotype conditions (F(2,6) = 0.63, p = 0.565), albeit, group differences were noted comparing K17 mRNA abundance across conditions (F(2,6) = 20.168, p = 0.002). Tukey-adjusted post hoc pairwise tests revealed significantly increased K17 mRNA comparing controls to Shh$^{cre/+};$Piezo1$^{loxp/}$;Piezo2$^{loxp/}$ (p = 0.0039) and Shh$^{cre/+};$Piezo1$^{cko},$ Piezo2$^{loxp/}$ (p = 0.0034) mutants following NAPH injury (Fig. 8e). To further explore if aberrant K13/K17 differentiation was related to epithelial-to-mesenchymal transition (EMT) (Fig. 8f).

Barrier integrity is compromised up to 14 dpi in Shh$^{cre/+};$Piezo1$^{cko},$ Piezo2$^{loxp/}$ mutant VF epithelium

Damage to the epithelial stratum results in barrier function compromise, associated with acute phases of VF injury and ensuring tissue remodeling [15, 17, 25, 85–89]. We performed IF analysis at 3- and 14-dpi for adheren junction marker, E-cadherin and tight-junction marker, ZO1. At 3 dpi, we found normal E-cadherin cell–cell expression with localized ZO1 expression to suprabasal epithelia in corn oil controls (Fig. 9). However, NAPH-injured WT VF exhibited increased E-cadherin and ZO1 to hyperplastic epithelium with mislocalized ZO1 penetrating to the basal cell layer (Fig. 9). As expected, NAPH-injured Shh$^{cre/+};$Piezo1$^{cko},$ Piezo2$^{loxp/}$ mutant VF epithelium displayed discontinuous expression patterns of E-cadherin and ZO1 resulting from epithelial defects at 3 dpi. Interestingly, ZO1 discontinuous expression was also noted in corn oil treated Shh$^{cre/+};$Piezo1$^{cko},$ Piezo2$^{loxp/}$ control epithelium (Fig. 9). By 14 dpi, corn oil control and NAPH-injured Shh$^{cre/+};$Piezo1$^{cko},$ Piezo2$^{loxp/}$ mutant VF epithelium continued to exhibit discontinuity of ZO1 expression to apical epithelia, suggesting continued structural compromise to restored epithelium (Fig. 9).

Discussion

We have leveraged the recent discovery of Piezo1 [29], a mechanosensitive channel known to regulate the life cycle of epithelial cells [31–33], to test the hypothesis that Piezo1 is a critical mechanoprotein for VF SSE and repair pathways for acute VF remodeling events. PIEZO expression displayed selectivity to distinct laryngeal epithelia, such that PIEZO1 was expressed to differentiated, apical SSE of the VF, hypopharynx and esophagus, while PIEZO2 expression was restricted to respiratory and intermediate epithelia of supra- and subglottic regions. Cell expression patterns are likely the result of evolved function for various airway epithelium. Human studies have shown that the mid-membranous VF is largely unresponsive to stimulation of the mucosa, suggesting lack of laryngeal adductor reflex (LAR) sensory receptors, and a physiological advantage due to the high biomechanical loads endured during phonation [43, 63]. On the contrary, PIEZO2-expressing epithelia predominated in LAR sensory hotspots [1, 43, 63, 90, 91], and abutted PGP9.5-labeled arborizing nerve fibers (Fig. S4), suggesting a possible role for laryngeal mechanosensation. Direct links to Piezo2 mechanosensory function in the larynx, however, has not been established. Contrary to expectations, Piezo1 was dispensable for proper specification and maturation of developing VF epithelium with normal histology and cytokeratin differentiation in Shh$^{cre/+};$Piezo1$^{cko},$ Piezo2$^{loxp/}$ compound mutant epithelium at the 6wk timepoint. We suspect that during normal development and epithelial homeostasis of the murine VF that the mechanical environment is not elevated enough to result in Piezo1 activation, thus lacking aberrant pathway signaling following Piezo1 loss. While previous evidence suggests that mice are capable of VF vibration [92–94], the primary mode of vocal communication is done using ultrasonic vocalization (USV), which is produced in the larynx [95–97]. Audible cries, also attributed to VF vibration, is produced in laboratory mice, albeit, to a limited extend with USV predominating for close-distance mating and social contexts [95]. Given the lack of impact collisional forces during VF vibration in these settings, we suspect the mechanical challenge to VF mucosa is quite low in laboratory-housed mice. In other words, the reduced biomechanical challenge to VF mucosa in laboratory-housed mice may explain why we see limited Piezo1 localized expression in sparse epithelia of the apical layer and not more widespread throughout the epithelium. The opposite could also be argued, such that Piezo1 expression may be limited given the repetitive biomechanical demands to murine VF mucosa. Recent work may support the latter notion, indicating transduction limits of Piezo channels, which turn out to be poor discriminators and inefficient transducers of continuous high-frequency stimulations in other organs/cell types [98]. It will be of interest for future work to investigate Piezo1 in human VF mucosa to identify species similarities/comparisons and functional roles for translational impact.

VF epithelia are short-lived and undergo constant turnover and renewal throughout life. In addition, epithelial
3 dpi	14 dpi
CORN OIL	**CORN OIL**

| WT control | Shh<sup>cre⁺;Piezo1^{cko},Piezo2^{loxP/+} |

NAPH	E-cad

| ZO1 | DAPI |

[Images of histological sections]
cells are the initial cell type in the VF to encounter toxic exposure, which may make them principal modulators of VF disease development [15, 17]. We utilized the chemical toxin naphthalene, commonly found in a variety of pollutants/irritants (wood smoke, tar, asphalt, fossil fuels), and inhaled carcinogens (tobacco smoke) [48, 52, 99], to injure VF mucosa which specifically targets damage to epithelial cells via its effect on the cytochrome P450 system [48–54]. To assess Piezo1-mediated repair pathways, adult 6wk control and mutant VF epithelium underwent injury for analysis at 1-, 3-, 7- and 14-dpi. NAPH exposure to WT VF epithelium resulted in appreciated injury at 3 dpi, characterized by epithelial hyperplasia along with increased EdU+ cell proliferation and H2AX+ DNA damage. We also demonstrated that NAPH injury resulted in P63+ basal cell compartment expansion with transient sensitivity to SCGB1A1+ epithelia, denoted by near complete ablation at 3 dpi with population rebound by 7 dpi. Our data confirm previous molecular findings regarding NAPH effect on airway epithelium, albeit, with varying rates of cellular injury and repair [48, 50, 65].

We then hypothesized that injury to VF mutant epithelium would mimic an elevated mechanical environment, ultimately surpassing Piezo1 channel thresholds, for activation of aberrant downstream pathways following Piezo1 loss. The basis of this assumption was that Piezo1-expressing VF epithelial ion channels are likely of the high-threshold type that only respond to intense mechanical stimuli and/or injury [100]. Consistent with our hypothesis, NAPH-exposure in Piezo1 mutant epithelium resulted in increasingly severe VF injury at 3 dpi. Specifically, Shh+;Piezo1+/−,Piezo2loxp/loxp mutant epithelium exhibited discontiguous ZO1-marked tight junctions indicated by white arrows in either corn oil control and NAPH-injured conditions, while E-cad-marked adheren junctions were disrupted only following NAPH-induced injury. By 14 dpi, mutant epithelium continued to exhibit compromised barrier integrity indicated by discontiguous ZO1 expression patterns following Piezo1 loss. DAPI is in blue. All images taken at 60X magnification. Scale bar represents 100 µm. dpi days post-injury, NAPH naphthalene treatment.

To assess downstream cell signaling events for SSE remodeling, we stained cytokeratin differentiation markers K13 and K14, as well as K17—a marker known to be upregulated during wounding [77] and DNA damage [76]. K14 has been shown preferentially located to basal VF epithelium with diffusion across all cell layers [56, 64], believed to play a pivotal role in cell shape and resistance to mechanical trauma in mouse epidermis [78]. Our data confirm previous work with increased K14 expression across all layers of WT VF epithelium at 3 dpi, extending into distal trachea to K14+ basal cells and submucosal compartments. In addition, K13, a marker of differentiated SSE, was overexpressed in rodent VF injury models [25, 85–89], epithelium regeneration and structural restoration was appreciated by 7 dpi in WT control and mutant colonies. Previous in vitro work has shown the role of mechanosensitive channels as primary transducers in force transmission to the nucleus [101], with shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells [102].
survival rates [79–81], in addition to its role in mouse papillomavirus [57]. Interestingly, Shhcre/+;Piezo1/2loxP/+ mutant epithelium exhibited ectopic K17 focal emergence to the squamociliary junction in uninjured corn oil controls, extending to SSE of the VF and laryngeal surface of the epiglottis following NAPH injury. Emergence of K17 with analogous loss of K13 has been found associated with more invasive malignant disease in oral SCC [79]. NAPH-exposed Shhcre/+;Piezo1cko, Piezo2loxP/+ mutant epithelium revealed what seemed to be reciprocal expression patterns for K13/K17, such that ectopic K17 expression to VF epithelial cells led to an inverse loss of K13 expression. qPCR analysis confirmed significantly increased K17 mRNA fold change comparing Piezo1 mutant epithelium to control, albeit, no K13 differences were exhibited. Researchers have hypothesized that K17 may serve as an early marker for epithelial transformation [81], therefore, we stained for N-cadherin and SNAIL1, known markers for EMT during gastrulation and tumorigenesis [106, 107]. Results were negative, ruling out the possibility of EMT to VF epithelium following Piezo1 loss with combined NAPH injury. While our data suggest possible links between Piezo1 signaling in K13-expressing VF apical epithelia and aberrant K17 expression, downstream pathways remain unclear with further work warranted.

Lastly, we were interested in long-term remodeling effects to VF barrier integrity following Piezo1 loss. SSE provides the VF with a protective barrier against mechanical, chemical and biological insult. Two well-known proteins important for maintaining cell–cell adhesion in SSE include E-cadherin and ZO1, markers of adheren and tight junctions, respectively. By 3 dpi, WT NAPH-injured controls demonstrated excessive E-cadherin and ZO1 proteins, with mislocalized ZO1 penetrating to basal stratum compared to corn oil controls. By 3 dpi, NAPH-exposed Shhcre/+;Piezo1cko, Piezo2loxP/+ mutant epithelium exhibited disrupted E-cadherin and ZO1 proteins. Interestingly, fragmented ZO1 expression was displayed along the apical edge of corn oil uninjured Shh cre/+;Piezo1cko, Piezo2loxP/+ mutant epithelium. By 14 dpi, Shhcre/+;Piezo1cko, Piezo2loxP/+ mutant epithelium continued to exhibit compromise to barrier integrity by fragmented ZO1 expression in both corn oil-uninjured and NAPH-injured treatment conditions. This suggests that despite structural epithelial restoration by 7 dpi, barrier integrity may be delayed up to 14 days or longer following injury within an epithelium that lacks Piezo1 epithelial cell ion channels. Ongoing compromise of regenerated epithelium implies that VFs may remain at risk for recurrent damage, pathogen invasion and remodeling. More long-term studies for Piezo1 importance to VF barrier function following injury are required in both animal and in vitro human air–liquid interface model systems for comparative analysis and translational impact.

A few limitations of the present work need to be addressed. First, while experiments explored mechanistic insight by which Piezo1 functions to regulate VF epithelium, inherent genetic redundancy of Piezo mechanoreceptors to tissue- and cell-function exist [108, 109]. This effect is assumed across many upstream transduction mechanisms [110], enacting safeguards for continued cell function and repair strategies. We accounted for this scenario by creating double mutants for Piezo1 and Piezo2 null alleles from the
Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal…

shh promotor. This, however, both extended our study for mutant tissue collection and limited our total number for investigative analyses. We found Piezo1, only, to be important for VF epithelium. To this end, we did not appreciate a phenotype without concurrent injury, thus, we cannot rule out that this may be due to inefficient complete genetic Piezo1 deletion. Residual Piezo1 expression may have been sufficient to prevent aberrant epithelial signaling, albeit, with injury this threshold may have been surpassed leading to our phenotype. Another limitation was that NAPH-induced injury was not 100% reproducible. Visual examination of WT histologic samples exhibited a 60% success rate for VF injury at 3 dpi (n = 16) with a 100% survival rate by 14 dpi (n = 5). Evidence suggests dose concentration [111], time of dose (circadian rhythms) [112], murine background strain [113], sex [51] and likely host immune response all contribute to variability in injury uptake and severity. Prior research in the lung and tracheal airways has utilized intraperitoneal dose concentrations ranging from 200 to 300 mg/kg [48–51, 65, 66, 111]. We chose a higher dose of 275 mg/kg given less concentrated secretory cells in the larynx and work suggesting higher doses are required for injury in proximal lung regions. For our intent purposes, we were able to use the proximal tracheal airway as an internal control for injury uptake at earlier timepoint analyses (1 & 3 dpi) due to the large effect on concentrated club cells in tracheal epithelium, especially at this higher dose. Furthermore, on account of our initial data we mainly focused our efforts on characterizing injury at day 3 following NAPH exposure. A thorough examination of all time points across wound healing phases is necessary to elucidate VF remodeling events in a murine model of regeneration.

Taken together, findings from this investigation improve our understanding of acute VF wound healing in the context of Piezo1 epithelial function and form the basis for an in vivo methodology to study VF responses to NAPH injury. In vitro model systems with Piezo1 gain-of- and loss-of-function are warranted to further clarify and refine the mechanism of Piezo1 action in VF regeneration and remodeling following NAPH exposure. In addition, use of pharmacological agents, such as Piezo1 agonists (Yoda1, Jedi1/2) and/or antagonists (Dooku1, Gadolinium, GsMTx4) would provide evidence for a potential use as therapeutic interventions. Recent interest has been given to the emerging role of Piezo1 in meningeal nociception leading to migraine headache, [114, 115] with speculation into roles for modulating/mitigating VF mucosal injury. We conclude that Piezo1 mechanosensitive ion channels play a crucial role in VF regeneration and remodeling, likely through regulating epithelial self-renewal via effects on p63 transcription and YAP subcellular localization—altering cytokeratin differentiation (Fig. 10).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00018-022-04622-6.

Acknowledgements We gratefully acknowledge Sierra Raglin for her expert assistance with tissue sample preparation, David Yang for help with histopathology, Julianna Tibbett for assistance with genotyping and Xin Sun for helpful discussions.

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis was performed by AGF. Writing—original draft preparation: AGF. Writing—review and editing: AGF and SLT. All authors read and approved the final manuscript.

Funding This work was supported by grants NIH NIDCD R01 DC04336, NIDCD R01 012773 and F31 DC018978.

Data availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Ethical approval All procedures performed in the study were in accordance with the University of Wisconsin-Madison Biomedical Research Model Services Laboratory (BRMS). The ethical principles established by the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 8523, revised 2011) were followed. The research protocol was approved by the University of Wisconsin-Madison Institutional Animal Care and Use Committee (Protocol No. M005669).

Consent to participate N/A.

Consent to publish N/A.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sanders I, Mu L (1998) Anatomy of the human internal superior laryngeal nerve. Anat Rec 252(4):646–656. https://doi.org/10.1002/(SICI)1097-0185(199812)252:4%3C646::AID-AR115%3E3.0.CO;2-E
2. Bradley RM (2000) Sensory receptors of the larynx. Am J Med 108(Suppl 4a):47S-50S. https://doi.org/10.1016/s0002-9343(99)00339-3
16. Erickson E, Sivasankar M (2010) Simulated reflux decreases laryngeal cold receptors of the arytenoid: a comparison of human and mouse. Laryngoscope. https://doi.org/10.1002/lary.27931

17. Hamamoto T, Takumida M, Hirakawa K, Tatsukawa T, Ishibashi (2009) Localization of transient receptor potential vanilloid (TRPV) in the human larynx. Acta Otolaryngol 129(5):560–568. https://doi.org/10.1080/00346680802273108

18. Yamamoto Y, Taniguchi K (2005) Immunolocalization of VR1 and VR1L in rat larynx. Auton Neurosci 117(1):62–65. https://doi.org/10.1016/j.autneu.2004.11.003

19. Uno T, Koike S, Bamba H, Hirota R, Hisa Y (2004) Capsaicin receptor expression in rat laryngeal innervation. Ann Otol Rhinol Laryngol 113(5):356–358. https://doi.org/10.1177/0003489041130503

20. Andreatta RD, Mann EA, Poletto CJ, Ludlow CL (2002) Mucosal afferents mediate laryngeal adductor responses in the cat. J Appl Physiol 93(5):1622–1629. https://doi.org/10.1152/japplphysiol.00417.2002

21. Davis PJ, Nail BS (1987) Quantitative analysis of laryngeal mechanosensitivity in the cat and rabbit. J Physiol 388:467–485. https://doi.org/10.1113/jphysiol.1987.sp016625

22. Hammer MJ, Krueger MA (2014) Voice-related modulation of mechanosensory detection thresholds in the human larynx. Exp Brain Res 232(1):13–20. https://doi.org/10.1007/s00221-013-3703-1

23. Prescott SL, Umans BD, Williams EK, Brust RD, Liberser SD (2020) An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181(3):574–89.e14. https://doi.org/10.1016/j.cell.2020.03.004

24. Ludlow CL (2015) Laryngeal reflexes: physiology, technique, and clinical use. J Clin Neurophysiol 32(4):284–293. https://doi.org/10.1097/WNP.0000000000000187

25. Levendoski EE, Leydon C, Thibeault SL (2014) Vocal fold epithelial barrier in health and injury: a research review. J Speech Lang Hear Res 57(5):1679–1691. https://doi.org/10.1044/2014_JSLHR-S-13-0283

26. Erickson E, Sivasankar M (2010) Simulated reflux decreases vocal fold epithelial barrier resistance. Laryngoscope 120(8):1569–1575. https://doi.org/10.1002/lary.20983

27. Erickson-DiRenzo E, Easaawan M, Martinez JD, Dewan K, Sung CK (2021) Mainstream cigarette smoke impacts the mouse vocal fold epithelium and mucus barrier. Laryngoscope. https://doi.org/10.1002/lary.29572

28. Titze IR (1994) Mechanical stress in phonation. J Voice 8(2):99–105

29. Novaleski CK, Kimball EE, Mizuta M, Rousseau B (2016) Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium. Tissue Cell 48(5):407–416. https://doi.org/10.1016/j.tice.2016.08.007

30. Khosla S, Murugappan S, Gutmark E (2008) What can vortices tell us about vocal fold vibration and voice production. Curr Opin Otolaryngol Head Neck Surg 16(3):183–187
37. Assaraf E, Blecher R, Heinemann-Yerushalmi L, Krief S, Carmel Vinestock R, Biton IE et al (2020) Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat Commun 11(1):3168. https://doi.org/10.1038/s41467-020-16971-6

38. Alcinio C, Knutson KR, Treichel AJ, Yildiz G, Stgere PR, Linden DR et al (2018) A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci U S A 115(32):E7632–E7641. https://doi.org/10.1073/pnas.1804938115

39. Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y, Qiu Z et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509(7502):622–626. https://doi.org/10.1038/nature13251

40. Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621

41. Woo S-H, Lukacs V, De Nooij JC, Zaytseva D, Criddle CR, Francescone A et al (2015) Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18(12):1756–1762

42. Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) Piezo2 mediate mechanotransduction essential for bone formation. J Physiol 557(Pt 2):543–558. https://doi.org/10.1113/jphysiol.2003.057885

43. Prescott SL, Liberdes SL (2022) Internal senses of the vagus nerve. Neuron 110(4):579–599. https://doi.org/10.1016/j.neuron.2021.12.020

44. Karagiannis TC, Li X, Tang MM, Orlowski C, El-Osta A, Tang ML et al (2012) Molecular model of naphthalene-induced DNA damage in the murine lung. Hum Exp Toxicol 31(1):42–50. https://doi.org/10.1177/0960327111402007

45. Aviv JE, Martin JH, Keen MS, Debell M, Blitzer A (1993) Air pulse quantification of supraglottic and pharyngeal sensation: a new technique. Ann Otol Rhinol Laryngol 102(10):777–780. https://doi.org/10.1177/096034999310201007

46. Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurons mediating cough in anaesthetized guinea-pigs. J Physiol 557(Pt 2):543–558. https://doi.org/10.1113/jphysiol.2003.057885

47. Prescott SL, Liberdes SL (2022) Internal senses of the vagus nerve. Neuron 110(4):579–599. https://doi.org/10.1016/j.neuron.2021.12.020

48. Aviv JE (1997) Sensory discrimination in the larynx and hypopharynx. Otolaryngol Head Neck Surg 116(3):331–334. https://doi.org/10.1016/S0194-9987(97)00268-7

49. Aviv JE, Martin JH, Keen MS, Debell M, Blitzer A (1993) Air pulse quantification of supraglottic and pharyngeal sensation: a new technique. Ann Otol Rhinol Laryngol 102(10):777–780. https://doi.org/10.1177/096034999310201007

50. Aviv JE, Martin JH, Keen MS, Debell M, Blitzer A (1993) Air pulse quantification of supraglottic and pharyngeal sensation: a new technique. Ann Otol Rhinol Laryngol 102(10):777–780. https://doi.org/10.1177/096034999310201007

51. Lungova V, Chen X, Wang Z, Kendziorzski C, Thibeault SL (2019) Human induced pluripotent stem cell-derived vocal fold mucosa mimics development and responses to smoke exposure. Nat Commun 10(1):4161. https://doi.org/10.1038/s41467-019-12069-w

52. Lungova V, Chen X, Wang Z, Kendziorzski C, Thibeault SL (2019) Human induced pluripotent stem cell-derived vocal fold mucosa mimics development and responses to smoke exposure. Nat Commun 10(1):4161. https://doi.org/10.1038/s41467-019-12069-w

53. Fang S, Zhang S, Dai H, Hu X, Li C, Xing Y (2019) The role of keratin 17 in airway epithelial injury in the lung. Toxicol Sci 177(2):334–346. https://doi.org/10.1093/toxsci/kfxa114

54. Mohad V, Lungova V, Verheyden J, Thibeault SL (2021) Inactivation of Lats1 and Lats2 highlights the role of hippo pathway effector YAP in larynx and vocal fold epithelium morphogenesis. Dev Biol 473:33–49. https://doi.org/10.1016/j.ydbio.2021.01.012

55. Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong Q et al (2020) Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of Nfat1-Yap1-Sen causing. Elife. https://doi.org/10.7554/elif.e.52779

56. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144(5):782–795
71. Zhang H, Pasolli HA, Fuchs E (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci U S A 108(6):2270–2275. https://doi.org/10.1073/pnas.1019603108

72. Romano R-A, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S et al (2012) ΔNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 139(4):772–782

73. Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR (2004) p63 in the molecular switch for initiation of an epithelial stratification program. Genes Dev 18(2):126–131. https://doi.org/10.1101/gad.1165104

74. Zhao R, Fallon TR, Saladi SV, Villoria J, Mou H et al (2014) Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell 30(2):151–165. https://doi.org/10.1016/j.devcel.2014.06.004

75. Duchemin AL, Vignes H, Vermot J (2019) Mechanically activated piezo channels modulate outflow tract valve development through the Yap1 and Klf2-Notch signaling axis. Elife. https://doi.org/10.7554/eLife.44706

76. Troy TC, Turksen K (1999) In vitro characteristics of early epidermal progenitors isolated from keratin 14 (K14)-deficient mice: insights into the role of keratin 17 in mouse keratinocytes. J Cell Physiol 180(3):409–421. https://doi.org/10.1002/(SICI)1079-7452(199909)180:3<409::AID-JCP12>3.0.CO;2-V

77. Zhang X, Yin M, Zhang LJ (2019) Keratin 6, 16 and 17 critical for keratinocytes growth and differentiation in skin. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1813769116

78. Nair RR, Hsu J, Jacob JT, Pineda CM, Hobbs RP, Coulombe PA (2021) A role for keratin 17 during DNA damage response and tumor initiation. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.200510118

79. Mikami T, Cheng J, Maruyama S, Kobayashi T, Funayama A, Suehiro A et al (2018) Process of tight junction recovery in the injured vocal fold epithelium: morphological and paracellular permeability analysis. Laryngoscope 128(4):E150–E156. https://doi.org/10.1002/lary.26959

80. Lewis AH, Cui AF, McDonald MF, Grandl J (2017) Transduction of repetitive mechanical stimuli by Piezo1 and Piezo2 ion channels. Cell Rep 19(12):2572–2585. https://doi.org/10.1016/j.celrep.2017.08.079

81. Preuss R, Angerer J, Drexler H (2003) Naphthalene—an environmental and occupational toxicant. Int Arch Occup Environ Health 76(8):556–576. https://doi.org/10.1007/s00420-003-0458-1

82. Olson W, Dong P, Fleming M, Luo W (2016) The specification and wiring of mammalian cutaneous low-threshold mechanoreceptors. Wiley Interdiscip Rev Dev Biol 5(3):389–404. https://doi.org/10.1002/wdev.229

83. Jetta D, Gottlieb PA, Verma D, Sachs F, Coggin CR (1992) Histological sectioning of the rodent larynx for inhalation toxicity testing. Toxicol Pathol 20(1):118–121. https://doi.org/10.1080/01926339202000115

84. Lewis DJ (1991) Morphological assessment of pathological changes within the rat larynx. Toxicol Pathol 19(4 Pt 1):352–357
Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal…

105. Kashima H, Mounts P, Leventhal B, Hruban RH (1993) Sites of predilection in recurrent respiratory papillomatosis. Ann Otol Rhinol Laryngol 102(8 Pt 1):580–583. https://doi.org/10.1177/003489499310200802

106. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK et al (2019) The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. https://doi.org/10.3390/cells8101118

107. Scheibner K, Schirge S, Burtscher I, Buttner M, Sterr M, Yang D et al (2021) Epithelial cell plasticity drives endoderm formation during gastrulation. Nat Cell Biol 23(7):692–703. https://doi.org/10.1038/s41556-021-00694-x

108. Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM et al (2018) PIEZO1 mediates neuronal sensing of blood pressure and the baroreceptor reflex. Science 362(6413):464–467. https://doi.org/10.1126/science.aau6324

109. Zhang M, Wang Y, Geng J, Zhou S, Xiao B (2019) Mechanically activated Piezo channels mediate touch and suppress acute mechanical pain response in mice. Cell Rep 26(6):1419–31.e4. https://doi.org/10.1016/j.celrep.2019.01.056

110. Kafri R, Springer M, Pilpel Y (2009) Genetic redundancy: new tricks for old genes. Cell 136(3):389–392. https://doi.org/10.1016/j.cell.2009.01.027

111. West JA, Pakehham G, Morin D, Fleschner CA, Buckpitt AR, Plopper CG (2001) Inhaled naphthalene causes dose dependent Clara cell cytotoxicity in mice but not in rats. Toxicol Appl Pharmacol 173(2):114–119. https://doi.org/10.1006/taap.2001.9151

112. Gibbs JE, Beesley S, Plumb J, Singh D, Farrow S, Ray DW et al (2009) Circadian timing in the lung; a specific role for broncholar epithelial cells. Endocrinology 150(1):268–276. https://doi.org/10.1210/en.2008-0638

113. Lawson GW, Van Winkle LS, Toskala E, Senior RM, Parks WC, Plopper CG (2002) Mouse strain modulates the role of the ciliated cell in acute tracheobronchial airway injury-distal airways. Am J Pathol 160(1):315–327. https://doi.org/10.1016/S0002-9440(10)64375-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.