Introduction:
Staphylococcus aureus has emerged as one of the most important human pathogens and has over the past several decades, been a leading cause of hospital and a community acquired infections. It is associated with a variety of clinical infections including septicemia, pneumonia, wound sepsis, septic arthritis, osteomyelitis and post surgical toxic shock syndrome with substantial rates of morbidity and mortality. Staphylococcus aureus is a virulent organism showing resistance to most of the conventionally prescribed antibiotics. It is difficult to treat long term Staphylococcal infections. One reason these organisms are capable of defending themselves from host immune system is their capability to form biofilm. The interior of the bacterial biofilms present greater resistance to the opsonization by antibodies and to phagocytosis, which explains the chronic character of this infection.

As many as 60% of bacterial infections treated by physician are related to biofilm formation and are not easily eradicated by conventional antibiotic therapy. In vitro surface – associated in-vivo device associated bacterial biofilms are generally quite resistant to antibiotics. Despite decades of research in this area, treatment options are limited. A factor contributing to this unmet need is the lack of standardized method for determining the drug susceptibility of bacterial biofilms.

Infections due to the multiple drug resistant strains are becoming more critical due to their capacities to produce biofilm. The role of staphylococci in biofilm-associated human diseases, have allowed researchers to determine the mechanism of biofilm development and molecular basis of virulence in biofilm – forming S. epidermidis and S. aureus.

Intervention strategies are of great economical relevance because traditional antibiotic therapy is usually not sufficient to eradicate the biofilm based infections. One major reason for persistence seems to be the capability of the bacteria to grow within the biofilms that protects them from adverse environmental factors. Eradication of slime can achieved by means of minimization of the initial contamination of medical devices or inhibition of quorum sensing or by degradation of matrix. Combination therapy of antibiotics was used to combat the resistance disaster. But considering the ill effect of high dosage of antibiotics and their cost, the concept did not prove satisfactory.

Several investigators analyze the utility of clavulanic acid in combination with antibiotics which proved effective but clavulanic acid is only in case of Penicillin resistance so attention was switched onto analysis of the potentiating ability of cholic acid in combination with antibiotics. In nature, cholic acid is produced in the liver from cholesterol. The liver converts cholesterol into the conjugated salts of glycocholic and taurocholic acid which are excreted into the bile. With the emergence of many strains of multidrug-resistant bacteria, Cationic peptide antibiotics, which have been isolated in organism ranging from bacteria to animals, have received considerable attention in part because of their broad spectrum of activity. Generally, target of these antibiotics are bacterial membrane. Examples of this compound were shown to be bactericidal to broad spectrum of Gram-negative and Gram positive organisms. However little information is available on potentiating effect of cholic acid on antibacterial activity of antibiotics against multi-drug resistant biofilm producers. Therefore in present investigation the efficacy of antibiotic in combination with cholic acid on the antibacterial activity is proposed to analyze.

Considering the importance of S. aureus as a major human pathogen causing large variety of infections. The present work aimed to study the antibiotic susceptibility pattern among clinical isolates of S. aureus, prevalence of biofilm producing S. aureus and effect of cholic acid along with antibiotics against these isolates.

Material and Methods:
A total 60 clinical samples viz. blood, pus, urine burn wound were collected for the isolation of test organism. The clinical samples were collected from various hospitals and pathology laboratories of Akola city. All the samples were enriched in tryptcase soya broth and transferred to selective media. All plates were incubated at 37°C for 24 hrs. Typical colonies from selective media were selected and then subjected for the conventional biochemical analysis for the organism, identified and compared with the standard literature for identification of genus as per Bergy’s manual of systematic bacteriology.

Screening of biofilm producing isolates can be done by two phenotypic methods, Congo red agar (CRA) method and Standard tube (ST) method. In CRA method, Congo red agar medium was used which was prepared with Brain Heart Infusion (BHI) broth (Oxide UK) 37 g/L, Sucrose 50 g/L, agar no 1

ABSTRACT
Microorganisms growing in a biofilm are associated with chronic and recurrent human infections and are highly resistant to antimicrobial agents. The objective of this study was to observe the biofilm forming abilities, which is an important virulence factor and to study antibiotic susceptibility pattern of clinical isolates of Staphylococcus aureus. Clinical specimens received from various hospitals and pathological laboratories of Akola city. Out of 38 isolates of S. aureus 20 (52.63%) isolates were found to be biofilm producers by Standard tube (ST) method and 11 (28.94%) were by Congo red agar (CRA) method. All the 38 isolates were checked for their antibiotic susceptibility by Kirby- Bauer method. It was found that multi drugs resistance (MDR) was shown by biofilm producers. The highest resistance was shown towards Penicillin, Ampicillin, Methicillin and Erythromycin while Vancomycin and Tetracycline were found to be the most effective agent against biofilm producing isolates. The susceptibility of isolates towards antibiotics was more amongst biofilm non producers. The cholic acid found to exert good antibacterial activity against drug resistant biofilm producers.
10 g/L and Congo red indicator 8 g/L. CRA plates were inoculated with the test organism and incubated at 37°C for 24 to 48 hrs aerobically. Black colonies with a dry crystalline consistency indicate strong biofilm production. Brownish or reddish growth was considered as negative biofilm formation.

In Standard tube method a loopful of test organism was inoculated in 10ml of Trypticase soya-broth with 1% glucose in test tubes. The tubes were incubated at 37°C for 24 hrs. After incubation, tubes were decanted and washed with phosphate buffer saline pH 7.3 and dried. Tubes were then stained with safranine or 0.1% crystal violet. Excess stain was washed with deionised water. Tubes were dried in inverted position. In positive biofilm formation, a visible stained film was seen along the walls and bottom of the tube.

All the isolates of S. aureus then subjected to in-vitro antibiotic susceptibility on Muller-Hinton agar and HI- MEDIA antibiotics disc as per the method described by Kirby and Bauer15. The zones of inhibition around the disc were measured and drug susceptible/resistance pattern was studied by using the interpretation chart supplied by the antibiotic disc Manufacturer (HI-MEDIA, Mumbai, India) according to the Guidelines of CLSI16. The Effect of 0.05% of sterile Cholic acid on antibacterial activity of antibiotic against biofilm producers has also been studied. Comparative studies were conducted amongst the zone of inhibition developed by antibiotic alone and in combination with cholic acid.

Results and Discussion:
Among 38 isolates of Staphylococcus aureus isolated from different clinical samples, 52.63% were found to be positive for biofilm production and 47.37% were found to be negative for biofilm production. The biofilm production of S. aureus strains with regard to source of isolation is depicted in Table No. 1. It was found that highest no. of biofilm producing S. aureus were from urine sample (83.33%) followed by blood (30.00%) and burn wound (25.00%) samples.

The biofilm detection among S. aureus isolates has been done by two methods. Out of 38 isolates of S. aureus 52.63% isolates were found to be positive for biofilm production by standard tube (ST) method while 28.94% were found to be positive biofilm producers by congo red agar (CRA) method (Table 2).

After screening the cultures for biofilm production, antibiotic studies were done by Kirby Bauer Disc Diffusion technique15. The antibiotic resistance exhibited by biofilm producers and non-producers against respective antibiotics was analysed and recorded in Table No. 3. It was observed that the sensitivity of isolates which were biofilm producers was less than those isolates which were non-producers towards different antibiotics.

Highest resistance was recorded against Penicillin, Ampicillin, Methicillin and Erythromycin as only 20%, 25%, 30% and 40% of the isolates found to be sensitive towards the respective antibiotics while sensitivity of isolates towards Kanamycin, Ciprofloxacin and Gentamycin ranges from 51 to 57%. While resistance to Tetracycline and Vancomycin recorded was less as only 10% and 5% isolates showed resistance respectively (Figure 3).

Growth response exhibited by biofilm producers in presence of cholic acid (0.05%) in combination with prescribed dosage of antibiotics was analysed. Change in susceptibility pattern exhibited by isolates was analysed and recorded in Table No. 4.

Table 1: Biofilm production of S. aureus strains with regard to source of isolation

Source	S. aureus (n = 38)	Biofilm +ve	Biofilm -ve	Total	
	No. %	No. %			
Urine	10	83.33	02	16.67	12

Table 2: Comparison of production of biofilm by clinical isolates of S. aureus by two conventional methods

Method	Biofilm +ve S. aureus (n = 38)
	No. %
Standard Tube Method	20
Congo Red Agar Method	11

Table 3: Antibiotic susceptibility pattern (%) of biofilm producing and non producing S. aureus isolates.

Antimicrobial Agent	Biofilm Producer (%)	Biofilm non producer (%)
Penicillin	20	22.22
Ampicillin	25	55.55
Methicillin	30	66.66
Erythromycin	40	72.22
Kanamycin	50	83.33
Ciprofloxacin	55	88.88
Gentamycin	55	94.44
Nalidixic acid	60	94.44
Amoxyclavine	70	70.12
Tetracycline	90	91.22
Vancomycin	95	96.11

Table 4: Antibiotic susceptibility pattern (%) of biofilm producing S. aureus in presence of cholic acid.

Name of Antibiotic	Susceptibility of biofilm producing S. aureus (%)
Penicillin	25
Ampicillin	30
Methicillin	35
Erythromycin	45
Kanamycin	60
Ciprofloxacin	60
Gentamycin	65
Nalidixic acid	70
Amoxyclavine	75
Tetracycline	100
Vancomycin	100
A total of 38 clinical isolates of staphylococci isolated from various clinical samples. They were further identified by standard conventional methods. We tested 38 clinical isolates of S. aureus by two in vitro screening procedures for their ability to form biofilm. Standard tube method could detect 52.63% of S. aureus isolates to be biofilm producers. Similar results have been reported by Mathur et al., 19 that 53.9% of Staphylococci were biofilm producers in their study whereas Bose et al., 20 reported that 54.19% staphylococci were biofilm producers. By CRA method only 28.94% of biofilm producers were detected. Other studies also detected less biofilm producers using CRA method 21. The reason behind this is the CRA method was found to be easier and faster to perform than other phenotypic methods but could probably identify only strong biofilm producers. It was noticed that slime production and multi drug resistance were associated with each other. Reason behind this may be delayed or blocked penetration of antibiotic inside the bacterial cell which automatically makes it resistant to several antibiotics or the altered growth rate in biofilm associated cells making them less susceptible as compared to their planktonic counter parts. Other physiological changes may be delayed or blocked penetration of antibiotic inside the bacterial cell. This also embarks the possibility of utilization of cholic acid in combination therapy with antibiotics to eradicate Staphylococcal infections associated with biofilm production.

Conclusions:
There is an association between biofilm production with persistent infection and antibiotic therapy failure. Hence identification of infection caused by biofilm producing S. aureus might help to modify the antibiotic therapy and prevent infection. Standard tube method is found to be the most reliable method according to our findings for detection of biofilm producing S. aureus. Biofilm producing strains were found to be more resistant to almost all the groups of antibiotics as compared to biofilm non-producing strains. This finding is important because treatment of patients with Staphylococcal infections becomes further more difficult when the strain is biofilm producer as biofilm is known to impede the delivery of antibiotics. Cholic acid found to induce a potentiating effect on antibacterial activity of antibiotics as it may lead to enhancement in penetration of antibiotics across the slime layer which results in increase susceptibility of isolates toward antibiotics. Further studies on some highly accurate methods like PCR analysis to detect ica gene as virulence marker of biofilm and effect of different surface active compounds like cholic acid with antibiotic used in chemotherapy in detail may enlight the good scope in the management of slime producing organisms.
REFERENCE

1. Lowy, F. D. (1998): Staphylococcus aureus causes infection. N. England J. Med., 338 : 520 – 532. | 2. Boyce, J. M., (1997): Epidemiology and prevention of nosocomial infections. In the staphylococci in human disease Edited by: Crossley KB, Archer GL. Churchill Livingstone, and New York 309-329 | 3. Engemann, J. J., Y. Carmeli, S. E. Cosgrove, V. G. Fowler, M. Z. Bronstein, S. L. Trivette, J. P. Briggs, D. J. Sexton, K. S. Kaye, (2003): Adverse clinical and economic outcomes attributable to methicillin resistance among patients which Staphylococcus aureus surgical site infection. Clin. Infect Dis., 36 : 592-598. | 4. Patel R. (2005): Biofilm and antimicrobial resistance. Clin Orthop. Rel at Res., 437 : 41-47. | 5. Leid JG, Shtrift M., COSTERTON JW, Stoodley AP (2002): Human leucocytes adhere to, penetrate and respond to Staphylococcus aureus biofilms. Infect Immun 70 : 6339-6345. | 6. Dunn W (2002): Bacterial adherence: Seeany good biofilms lately? Clin Microbial Rev, 15 : 155-66. | 7. Stecekol, J., S. R. St, D. E. Nuvens, L. Brewer and R. K. Winger (2009): Microbial inactivation properties of new antimicrobial/anthrhythmocatheter lock solution (citrate/methylene blue/parabens), Department of Food Science, Purdue | 8. Patel R. (2005): Biofilm and antimicrobial resistance. Clin Orthop. Rel at Res., 437 : 41-47. | 9. Van Laethem, Lagast Y., Husson M. and Klastersky, J. (1983): Serum bactericidal activity of cefoperazone and Ceftazidime at increasing dosages against P. aeruginosa. Journal of Antimicrobial Chemotherapy, 12 : 475-80. | 10. Van Landuyt J. W., Denoff B. And Lambert A. (1981): Comparative activity of ticarcillin and ticarcillin plus calvulanic acid against beta-lactamase producing clinical isolates. Current Chemotherapy and immunotherapy, proceeding 12th International Congress of Chemotherapy, Florence, Ity 767-70. | 11. Erica J. Schmidt, J. Scott Boswell, Joshua P. Walsh, (2001): Activity of cholic acid derived antimicrobial agents against Multidrug-resistant bacteria. Journal of Antimicrobial Chemotherapy, 47, 671-674. | 12. Bergey's Manual of determinative bacteriology, 8th edition, (1986). | 13. Freeman DJ, Falkner FR, Keane CT. (1989): New method for detecting slime production by coagulase negative staphylococci. Clin pathol, 42: 872-874. | 14. Christensen G. D. Bisno AL, Simpson WA, Beachey EH (1982): Adherence of slime producing strain of Staphylococcus epidermidis smooth surfaces. Infect Immun, 37 : 318-326. | 15. Bauer A. W., Kirby W.M. AND Sheroes J.C. (1996): Antibiotic susceptibility testing by standardized single disc method. An J. Clin pathol, 48 : 493-497. | 16. National Committee for Clinical Laboratory Standards (NCCLS) (2004) : NCCLS document M 100-S15. Performance Standards for Antimicrobial Susceptibility Testing, 8th ed. Pennsylvania: NCCLS: Wayne. | 17. Chen L and Wen (2011): The role of bacterial biofilm in persistent infections and control strategies. Int J. Oral Sci., 3 : 66-73. | 18. Saltou K, Furuhatu K, Kawakami Y, Fukuyama M. (2009): Biofilm formation abilities and disinfectant resistance of Pseudomonas aeruginosa isolate from cockroaches captured in hospital. Bio control Sci, 14 : 65-68. | 19. Mathur singhal S, Khan S, Upadhyay, Fatima T, Rattan A. (2006): Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian Journal of Medical Microbiology, 24 (1): 25-9. | 20. Bose S., Khodke M., Basak S., Mallick S. K. (2009): Detection of biofilm producing Staphylococci : need of the hour. J. Clin. Diagn. Res., 3 : 1915 – 20. | 21. Samant Sharwari and Pai Chirag G (2012): Evaluation of different detection methods of biofilm formation in clinical isolates of Staphylococci. International journal of Pharma and Bio Science 3(4): 724-733. | 22. Kandel S. K., Ghatele M. P., Takpera A. Y., Hittinhal V B., Yemul V L. (2003): Bacteriophage typing and antibiotic sensitivity pattern of Staphylococcus aureus from clinical specimen in and around Solapur (South Maharashtra). J. Commun. Dis., 35 : 17 – 23. | 23. Kesah, C. N., F. T. Ogunsola M. T., Neemogha and T. O. Odunbemi (1997): An in vitro study against Staphylococcus aureus 1994-1996. Nig. Q. E. J. Hosp. Med., 7(3) : 286 – 88. | 24. Suci, P. A., Mittelman M. W., Yu. F. P. and Geesey G. G. (1994): Investigation of ofrophosacin penetration in to Pseudomonas aeruginosa biofilm. Antimicro. Agents. Chemother, 38 : 2125 – 2133. | 25. Sheikh I. A., Mishra S. H., M. Musaddique (2012): In vitro assessment of cholic acid permeabilizing ability in combination with antibiotic to combat microbial resistance exhibited biofilm producing bacteria. Asian J. of Microbio. Biotwech. & Env. Sci., 14 (1) : 123 – 127.