Mowing alters nitrogen effects on the community-level plant stoichiometry through shifting plant functional groups in a semi-arid grassland

Shijie Li1,5, Fuwei Wang1, Mengfei Chen1, Zhengyi Liu1, Luyao Zhou1, Jun Deng1, Changjun Dong1, Guocheng Bao4, Tontho Bai1, Zhen Li1, Hui Guo1, Yi Wang2, Yunpeng Qiu1 and Shuijin Hu1,3

1 Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210018, People’s Republic of China
2 Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, People’s Republic of China
3 Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States of America
4 Ningxia Yunwu Mountains Grassland Natural Reserve Administration, Guyuan 756000, People’s Republic of China

E-mail: yunpeng_qiu@njau.edu.cn and shuijin_hu@hotmail.com

Keywords: Nitrogen fertilization, mowing, plant stoichiometry, plant community structure, plant diversity, photosynthetic active radiation, gross ecosystem productivity

Abstract
Land-use practices such as mowing and nitrogen (N) fertilization can have significant impacts on plant stoichiometry. However, the interactive effects of mowing and N fertilization on the community-level plant stoichiometry and the underlying processes are not well understood. We examined the impacts of mowing (once a year) and N fertilization (12 g N m⁻² yr⁻¹) on the community-level plant stoichiometry in a semi-arid grassland on the Loess Plateau. Results obtained showed that mowing alone had no effect on the community-level plant N or phosphorus (P) concentration. N fertilization alone significantly reduced the community-level plant P concentration, but did not affect the community-level plant N concentration, leading to an enhancement of plant N:P ratio. However, mowing altered the effects of N fertilization, leading to a higher plant N (and P) concentration than the fertilization-only plots. Also, mowing significantly reduced soil nitrate (NO₃⁻), but increased soil temperature, photosynthetic active radiation, plant diversity, richness and gross ecosystem productivity. In addition, mowing and N fertilization significantly affected plant community composition through shifting dominant plant functional groups (PFGs) (e.g. asteraceae, forbs and grass). Further, our structural equation modeling analysis showed that shifts in PFGs played an important role in regulating plant stoichiometry under mowing and N fertilization. Together, these results illustrate that effective management of mowing and N fertilization may induce changes in soil limiting nutrients and shifts in plant community composition, potentially altering plant N:P stoichiometry at the community level.

1. Introduction
The stoichiometric properties of plants, i.e. the relative concentrations of different nutrient elements in plants, critically affect ecosystem functions such as primary production and nutrient cycling (Aerts and Chapin 2000, Elser et al 2010). Different stoichiometric properties can influence the structure of plant community through conservative resource-use strategies in different functional groups (Xu et al 1994, Bai et al 2010). Land use practices such as mowing, grazing and fertilization can directly and/or indirectly affect nutrient availability, plant species composition and nutrient cycling, thereby altering nutrient stoichiometry in soil and plants (Xia et al 2009, Han et al 2014, Kotas and Choma 2017). Traditional regular mowing is a convenient management practice for forage removal and

5 These authors contribute equally.
prevention of land degradation by enhancing seedling recuitment and species richness (Williams et al 2007; Zhou et al 2019). Also, mowing removes nutrients through plant biomass harvest, stimulating shoot regrowth and improving nutrient recycling efficiency (Oelmann et al 2009, Giese and Han 2013). Therefore, mowing may increase species-level nitrogen (N) and phosphorus (P) concentrations and alter N:P ratios in plants (Han et al 2014, Kotas and Choma 2017). In addition, mowing may reduce (Venterink et al 2009) or increase (Hamilton and Frank 2001) soil available N, thereby modifying potential N losses through N leaching or N-trace gas emissions (Kotas and Choma 2017). Further, mowing can partially offset the decline of plant species richness caused by N fertilization (Leps and Wan 2014).

Reactive N inputs due to N deposition and/or fertilization can also significantly affect plant stoichiometry. N inputs can alter the relative availability of soil nutrients and modify soil chemical properties (Bardgett and Mcalister 1999, Zhang et al 2018a). Effects of N enrichment on soil nutrient status and plant community composition have been extensively studied in grasslands (Collins 1998; Suding et al 2005). Increased N availability can alleviate plant N limitation and enhance net primary productivity of terrestrial ecosystems. However, excessive N inputs may reduce plant diversity through inducing competitive exclusion by nitrophilic species (Simkin et al 2016). Particularly, N inputs can indirectly affect plant stoichiometry through altering soil pH and soil cation availability (Clark et al 2007, Ye et al 2018). For example, N addition may alter soil P availability by influencing soil properties such as soil pH and phosphatase activities, potentially modifying the balance between soil available N and P (Peñuelas et al 2013, Deng et al 2017). Yet, N addition may still decrease plant P concentration through the dilution effect (Perring et al 2008, Liu et al 2013) and increase plant N concentration resulting in higher N:P ratios (Hou et al 2019). Many studies have shown that mowing, N fertilization and their interaction often affect soil nutrient availability (Guo et al 2010, Wang et al 2015) and plant stoichiometry at the species level (Han et al 2014, Liu et al 2014). Yet, less attention has been directed towards assessing their impacts on plant nutrient concentration and stoichiometry at the community level, particularly in fragile ecosystems such as semi-arid grasslands on the Loess Plateau, Northwestern China.

The Loess Plateau covers 6.2×10^5 km2 in northwestern China, and is crucially important for Chinese arid agriculture (Ren et al 2016). In this region, increasing N fertilizers have been applied to agricultural fields, significantly modifying nutrient status and cycling (Yang et al 2011, Liu et al 2017). A significant proportion of loess farmlands have been abandoned in the last several decades as farmers moved to cities and the government encourages grassland reclamation (Li 2004, Gang et al 2018). Farmers remove grasses as hay and start to apply N fertilizers to maintain the productivity (Wang et al 2007, Cooney et al 2017). Mowing and/or N fertilization can affect plant composition and plant stoichiometry at both species and community levels in semi-arid grasslands (Collins 1998; Yang et al 2012, Han et al 2014, Hou et al 2019), but few have examined these effects and the underlying mechanisms in this region.

We initiated a field experiment in a semi-arid grassland on the Loess Plateau to understand how mowing, N fertilization and their interactions affect soil N and P dynamics, plant community composition and stoichiometry. Our objectives were to (1) determine the direct effects of mowing and N fertilization on plant community composition and plant stoichiometry at the community level, and (2) examine how mowing mediates the effects of N fertilization on plant stoichiometry at the community level. We hypothesized that (i) both mowing and N fertilization can significantly alter the plant community structure and the community-level plant stoichiometry, and (ii) mowing-induced changes in soil nutrients and plant community composition would cascade up to affect plant stoichiometry at the community level.

2. Materials and methods

2.1. Study site

Our study site was located at Yunwushan National Nature Reserve ($106^\circ 21'$–$106^\circ 27'$ E, $36^\circ 10'$–$36^\circ 17'$ N, altitude 1800–2000 m), a typical semi-arid grassland on the Loess Plateau, Ningxia Hui Autonomous Region, China. The study site has a typical semi-arid climate with a mean annual air temperature of 7.01 °C, ranging from the lowest in January (−14 °C) and the highest in July (23 °C). In this area, mean annual potential evaporation is 1330–1640 mm (Su et al 2019). Mean annual precipitation is about 450 mm with 60%–75% of annual precipitation occurring between July and September (Ren et al 2016). The soil is a montane grey cinnamon soil in the Chinese taxonomic system, equivalent to a Haplic Calcisol in the FAO/UNESCO system (Wei et al 2016), well drained with a pH of 8.0, and contained 39.6 g C and 5.3 g N kg$^{-1}$ soil when the experiment started (Tao et al 2018). The dominant plant species in the study area were Artemisia gmelinii, Saussurea altaica DC, Dendranthema lavandulifolium, Heteropappus altaicus, Stipa capillata. The study site has been fenced off since 2014 to prevent any disturbance by large animals.

2.2. Experimental design

The experiment was initialized in June 2016 on a mountaintop, where the topography is largely flat. This experiment was a 2×2 factorial design with four treatments assigned into five blocks (replicates). The four different treatments were a) no mowing and
no N addition control (CK), b) mowing with no N addition (M), c) N addition with no mowing (N), and d) mowing with N addition (MN). There were a total of 20 plots (2-m × 2-m each) with each plot being separated by a 1 m buffer strip. Reactive N (6.0 g N m$^{-2}$ yr$^{-1}$), aqueous urea (CO(NH$_2$)$_2$), was added into each N addition plot twice a year (one each in late April and early July). The annual N deposition rate in this area was 21.8 kg N ha$^{-1}$ yr$^{-1}$ (Liang et al. 2015). Our N inputs were high compared to the natural N deposition, but were within the range of which N fertilizers are applied to enhance grass productivity (Wei et al. 2018, Chen et al. 2020). Also, (Wei et al. 2018) reported that high N inputs (20.0 g N m$^{-2}$ yr$^{-1}$), but not at low N addition (10.0 g N m$^{-2}$ yr$^{-1}$), significantly enhanced aboveground plant biomass. Mowing was conducted once a year at the end of the plant growing period in late August, and the clippings were manually removed from the mowed plots. Additionally, a 0.5 m × 0.5 m mental frame was inserted into the soil to a depth of about 3 cm in the central part of each plot for measuring photosynthesis (Xia et al. 2009).

2.3. Plant sampling
In late August 2018 when plant community achieved peak biomass, aboveground vegetation was sampled in a 0.5 m × 0.5 m quadrat in each plot. Three randomly selected individuals of each species were measured by tape-line to determine the plant height. All plants in the quadrat were cut at ca. 2 cm above the soil surface. Live vascular plants were sorted by species, oven-dried at 60 °C for 48 h and weighed. The number of plant species occurred in the quadrats was used to represent the community species richness. In this study, the 13 dominant plant species were classified into three plant functional groups (PFGs): asteraceae (Artemisia gmelinni, Dendranthema lavandulifolium, Heteropappus altaicus (Willd) novopokr, Sausurea alta DC); grass (Stipa grandis, Stipa przewalskyi rshoev, Leymus, Saururus); forbs (Scutellaria linn, Carex spp, Thymus mongolicus ronn, Potentilla bifurca and Androsace erecta maximo). On average, these 13 species accounted for ca. 90% of the total plant biomass in our grassland. While asteraceae species were easy to form canopy by perennial standing litter, whereas forbs species were mostly shorter therophyte. Grass species usually have better soil nutrient absorption than forbs, leading to higher N:P ratios under N fertilization (Zhang et al. 2018b, Hou et al. 2019). Also, grasses and forbs usually have different responses in their stoichiometric and nutrient resorption efficiency to fertilization (Jiang et al. 2012, Zhang et al. 2016).

After the aboveground biomass was sampled, three soil cores (5 cm dia.) were taken to a 10 cm depth in each plot to harvest plant roots. Roots were washed with tap water, collected on a 1 mm screen, oven-dried at 60 °C for 48 h and weighed to determine their biomass.

The oven-dried plant parts of each species were then mixed and finely ground to powder. Total N concentrations in plant samples were determined by an elemental analyzer (Elementar Vario Micro Cube, Germany). Total plant P concentrations were determined by digesting ground samples in H$_2$SO$_4$-H$_2$O$_2$ and then measured colorimetrically at 880 nm after reaction with molybdenum blue (Carter 1993; SpectraMax i3x). Plant N:P ratio was reported as mass ratio.

2.4. Soil sampling and analyses
After three years of treatments, soil samples were collected in August 2018. Three soil cores (5 cm dia. and 0–10 cm depth) were randomly collected from each plot and then combined to form one composite sample. Fresh samples were sieved through a 2 mm screen to remove rocks, and the visible plant roots or debris. All soil samples were stored in an ice box (approximately 4 °C) during transportation to the laboratory for chemical and microbial analyses.

A 20 g subsample of moist soil was oven-dried at 105 °C for 24 h to determine water content. Soil pH was measured in a 1:2.5 (soil: water) suspension. Soil nitrate (NO$_3^-$) and ammonium (NH$_4^+$) were extracted with 50 ml of 0.5 mol L$^{-1}$ K$_2$SO$_4$ and then determined using a flow injection auto analyzer (SEAL-AA3, SEAL Analytical Inc. Germany). Soil P availability was determined following the extraction with NaHCO$_3$ according to the Olsen method (Olsen et al. 1954). Total soil carbon (TC) and soil nitrogen (TN) were determined by an elemental analyzer (Elementar Vario Micro Cube, Germany). Microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were determined using the fumigation-extraction method (Vance et al. 1987). Briefly, a 12.5 g subsample (dry soil equivalent) was fumigated with ethanol-free chloroform for 48 h and then extracted with 50 ml of 0.5 M K$_2$SO$_4$ by shaking for 30 min. A non-fumigated subsample of soil (12.5 g) was immediately extracted with 0.5 M K$_2$SO$_4$ by shaking for 30 min and used as the control. Soil dissolved organic C (DOC) in the extracts was determined with a TOC analyzer (Elementar Vario Micro Cube, Germany). Inorganic N in the extracts was quantified on a flow injection auto analyzer (SEAL-AA3, SEAL Analytical Inc. Germany), after digestion with alkaline persulfate (Cabrera et al. 1993). The differences in extractable organic C and inorganic N between fumigated and nonfumigated soils were used to calculate MBC and MBN using a conversion factor of 0.33 (k$_{EC}$) and 0.45 (k$_{NS}$), respectively (Vance et al. 1987, Qiu et al. 2019).

2.5. Carbon flux and photosynthetic active radiation (PAR) measurements
We employed a static chamber method (Welker et al. 2004, Xia et al. 2009) to measure ecosystem C
fluxes, which were taken between 8:30 and 11:30 a.m weekly from April to August, 2018. Ecosystem C exchange was measured with a 0.5 × 0.5 × 0.5 m (length × width × height) transparent chamber connected to a Li-6400 CO₂ flux system (LI-COR Inc. Lincoln, NE, USA). During the measurement, the chamber was sealed to the surface of an iron frame, which was inserted into the soil to a depth of about 3 cm in the central part of each plot. Nine consecutive recordings of CO₂ concentrations were taken at 10 s intervals during a 70 s period after steady-state conditions were achieved inside the chamber. The CO₂ exchange was determined to calculate net ecosystem CO₂ exchange (NEE). Following NEE measurements, the chamber was vented for 30 s, put back on the mental frame, and covered with an opaque cloth. The CO₂ exchange was measured as ecosystem respiration (ER) rate as light was blocked and photosynthesis was eliminated. Gross ecosystem productivity (GEP) was estimated as NEE plus ER. Meanwhile, we employed the Tdr-100 (Spectrum) to measure the soil moisture (SM) and used portable temperature meter to determine the soil temperature (ST) (0–10 cm depth).

Transmitted PAR was estimated by AccuPAR LP-80 (Meter Group, Inc. USA). Averages of eight measurements of the above and below PARs were taken from the triplicates of each treatment by placing the probe perpendicularly to the rows above and below plant canopy between 8:30 a.m and 11:30 a.m. The method to calculate the PAR is as follows (1):

\[
PAR(\%) = 100 \times \frac{PAR_b}{PAR_t}
\]

where PAR_t: the average PAR at the top of the canopy (μmol m⁻² s⁻¹); PAR_b: the average PAR at the bottom of the canopy (μmol m⁻² s⁻¹)

2.6. Data analyses

Repeated measures ANOVA was employed to test the effects of mowing and N fertilization on ST, SM and GEP. Two-way ANOVA was used to evaluate the effects of mowing and N fertilization on soil and plant variables. Pearson correlation coefficients were used to evaluate relationships between the relative abundance of plant species and community-level plant N or P concentration. Also, α-diversity (Shannon Wiener diversity) of plant communities in different treatments was determined based on the relative abundances of different plant species. In addition, the total number of plant species occurred in the quadrats was used to represent the community species richness. Furthermore, in order to visualize differences in plant communities across experimental treatments, we used non-metric multidimensional scaling (NMDS) ordination with the ‘vegan’ package in R software with 1000 permutations. Bray-Curtis similarity matrices were created using the relative abundance of plant species biomass (Desai et al 2016). To test for the effects of the experimental treatments on plant community composition, we performed two-way permutational multivariate analyses of variance (PERMANOVA) using the default settings. All analyses were performed with R version 3.4.3 (R Development Core Team, 2016).

Finally, structural equation modeling (SEM) was conducted to quantify direct and indirect effects of mowing and N fertilization on plant N:P ratio at the community level. AMOS 24.0 (IBM, SPSS) was used to create a conceptual model of hypothetical relationships based on a prior and theoretical knowledge and the data was fitted into the model by using the maximum-likelihood estimation method, with a criteria of \(P > 0.05 \) to accept the fitted model. Several tests were used to assess model fit: the \(\chi^2 \)-test, comparative fit index (CFI) and root square mean error of approximation (RMSEM).

3. Results

3.1. Responses of soil variables to mowing and N fertilization

Mowing significantly increased soil temperature (ST) at the 10 cm depth during plant growing season (figure 1(a); table S3 (available online at: https://stacks.iop.org/ERL/15/074031/mmedia)) and enhanced soil C/N ratio (\(P < 0.05 \); table S1), but decreased soil nitrate (NO₃⁻) and soil N/P ratio (\(P < 0.05 \); figure S4; table S1). Compared to the control, N fertilization significantly increased soil NO₃⁻ by 38% (figure S4; table S1), but slightly decreased soil pH from 8.0 to 7.8 on average (\(P < 0.01 \); table S1). Also, N fertilization alleviated the effect of mowing on increasing ST (figure 1(a)). Neither mowing nor N fertilization, however, had any significant effects on SM, soil ammonium (NH₄⁺), TC, TN, MBC and MBN (table S1).

3.2. Response of PAR and ecosystem C flux to mowing and N fertilization treatments

Neither mowing nor N fertilization had any significant effect on GEP from April to June, whereas mowing significantly increased GEP from June to August in 2018 (figure 1(b); table S3). Compared to the control, mowing significantly enhanced PAR by 80% (table S2). Also, mowing significantly decreased total aboveground biomass by 53% (figure 2(a), table S2), whereas N fertilization had no significant impact.

3.3. Response of plant community composition to mowing and N fertilization treatments

Mowing significantly increased the Shannon-Wiener diversity (figure S2(a); table S2) and species richness of plant community (figure S2(c); table S2). However, N fertilization had no effect on either of
them (figure S2). NMDS ordination and PERMANOVA analysis showed that both mowing (Pseudo-F = 3.68, \(P < 0.05\)) and N fertilization (Pseudo-F = 3.72, \(P < 0.01\)) significantly altered overall plant community composition (figure 4; table 2).

Compared with the control, mowing and N fertilization significantly reduced the relative biomass of asteraceae by 28% and 30%, respectively (figure 2(b); table S2). However, N fertilization significantly increased the relative biomass of grass by 31% compared with the unfertilized plots. Mowing significantly increased the relative biomass of forbs by 30% (figure 2(b); table S2), whereas N fertilization had no significant effect on that.

3.4 Interactive effects of mowing and N fertilization on plant N and P concentrations, and N:P ratio at the community level

Mowing and N fertilization interacted to affect the plant N and P concentrations at the community level (figure 3). Mowing alone had no effect on plant N or P concentrations. Compared with the control, N fertilization significantly reduced plant P concentration by 16% (table S2) at the community level. Under the combination of mowing and N fertilization, both plant N and P concentrations were significantly higher than those under the fertilization-only treatment (figures 3(a) and (b)). N fertilization, but not mowing or the interaction of mowing and

Figure 1. Response of soil temperature (ST) (a) and gross ecosystem productivity (GEP) (b) to mowing and N fertilization treatments. CK, control; N, N fertilization with no mowing; M, mowing with no N fertilization; MN, mowing with N fertilization; T, time. Data shown are the means of five replicate plots.

Figure 2. Effects of mowing and N fertilization on total (a) and PFG (b) biomass of plant community. Asteraceae: Artemisia gmelinii, Dendranthema lavandulifolius, Heteropappus alticus (Willd) novoproko, Saussurea alata DC; Grass: Stipa grandis, Stipa przewalskii rochev, Leymus, Saururus; Forbs: Scutellaria linn, Carex spp, Thymus mongolicus ronn, Potentilla bifurca and Androsace erecta maxim. CK, control; N, N fertilization with no mowing; M, mowing with no N fertilization; MN, mowing with N fertilization. Data shown are mean ± SE (n = 5).
N fertilization, significantly increased plant N:P ratio (figure 3(c); table S2).

3.5. Relationships between the community-level plant N and P concentrations and the relative biomass of different species

Linear regressions showed that the relative biomass of *Dendranthema lavandulifolium* and *Saussurea alata* DC were positively related to the community-level plant P concentration ($P < 0.05$; table 1). The relative biomass of *Stipa grandis* had a significant positive relationship with the community-level plant N concentration, whereas the relative biomass of *Stipa przewalskyi roshev* was significantly negatively related with the community-level plant P concentration (table 1). However, the relative biomass of other species had no significant relationship with the community-level plant P or N concentration (table 1).

3.6. The main drivers of the community-level plant N and P responses to mowing and N fertilization

We used abiotic variables (i.e. PAR and soil NO$_3^-$) and biotic variables (i.e. the relative biomass of forbs, asteraceae and grass) to conduct the SEM analysis. To evaluate the effect of PFGs shifts via light competitiveness and soil N availability on plant N:P ratio, our SEM adequately fitted our data into two models (a: asteraceae-forbs model with $\chi^2 = 12.51$, df = 6, $P = 0.09$; b: grass-forbs model with $\chi^2 = 9.26$, df = 5, $P = 0.10$). Both models indicated that mowing and N fertilization had significant impacts on soil N availability and the shifts in PFGs. With respect to asteraceae-forbs model, the significant increase in relative biomass of grasses induced by soil available N mostly explained the higher plant N:P ratio through two major pathways: 1) the decreased relative biomass of asteraceae by both mowing and N fertilization and 2) the increase in forb biomass induced by direct effect from mowing and indirect effect through altered PAR (figure 5(a)). Different from asteraceae-forbs model, the significant increase in relative biomass of grasses induced by soil available N mostly explained the higher plant N:P ratio.
Light competition is critical for plant survival growth and reproduction in a dense stand (Demalach et al 2017). Plant height has been considered as a critical functional trait for a plant to effectively compete for light (Dickson et al 2014, Demalach et al 2017). One might expect taller plants to capture more light than lower ones in a dense stand where light availability decreases from the top downwards (Anten and Hirose 2001, Li et al 2017, Demalach et al 2017). The average height of asteraceae (24.1 cm) and grass (27.4 cm) was significantly higher than that of forbs (7.4 cm) in our field plots (figure S5). Also, mowing significantly reduced the relative biomass of asteraceae, but increased that of forbs (figures 2(b) and 5). This shift in the relative dominance in plant species often leads to higher light energy utilization efficiency by forbs (Flanagan et al 2015, Li et al 2017). (Demalach et al 2017) also showed that species in the lower canopy received lower amounts of light per unit size and experienced more intense light competition than taller plants, increasing the probability of losses of shorter plants. Our asteraceae-forbs model also confirmed that the PFG shift was significantly modified by dominant light competition (figure 5(a)).

Soil N availability is another factor that can significantly affect the relative dominance of different plant species (Suding et al 2005, Hillebrand et al 2008). N addition has often been shown to promote the dominance of grasses over forbs in grasslands (Chapin et al 1995, You et al 2017), likely due to their different capacity for N uptake. Our results showed that mowing reduced, but N addition increased soil NO$_3^-$ (figure S4; table S1). The significant effects of mowing and N inputs on soil NO$_3^-$ were expected as mowing removes N from field (Yang et al 2011, Carey et al 2015, Liu et al 2017) and N addition directly adds N nutrients. Most grasses have highly branched fibrous root systems and may have a better ability to absorb more nutrients from the soil surface.

Table 1. Correlations (R) between species relative biomass and the community-level plant N or P concentration.

Groups	Species	Plant N concentration	Plant P concentration
Asteraceae	A. gmelinii	0.18	0.05
	D. lavandulifolium	0.08	0.45*
	H. altaicus. (Wild) novopokr	0.19	0.03
	S. alata DC	0.35	0.46*
Grass	S. grandis	0.64**	0.15
	S. przewalskyi roshev	0.3	0.72**
	Leymus	0.3	0.08
	Saururus	0.18	0.16
Forbs	S. Linn	0.06	0.07
	T. mongolicus ronn	0.21	0.16
	A. erecta maxim	0.38	0.24
	P. bifurca	0.03	0.07
	C. spp	0.08	0.23

Significant effects: * 0.01 < P < 0.05, **0.001 < P < 0.01. A. gmelinii, Artemisia gmelinii; D. lavandulifolium, Dendranthema lavandulifolium; H. altaicus (Wild) novopokr, Heteropappus altaicus (Wild) novopokr; S. alata, DC, Sesussurea alata DC; S. grandis, Stipa grandis; S. przewalskyi roshev, Stipa przewalskyi roshev, S. Linn, Scutellaria Linn; T. mongolicus ronn, Thymus mongolicus ronn; A. erecta. maxim, Androsace erecta maxima; P. bifurca, Potentilla bifurca; C. spp, Carex spp.

Table 2. Effects of mowing and N fertilization treatments on the structure of plant communities assessed by PERMANOVA analysis.

Factor	F	R2
CK vs. M	3.34*	0.29
CK vs. N	9.51**	0.54
CK vs. MN	3.85*	0.32
M vs. N	3.53*	0.31
M vs. MN	0.47	0.06
MN vs. N	2.65	0.25

Significant effects: * 0.01 < P < 0.05, ** 0.001 < P < 0.01. CK, control; N, N fertilization with no mowing; M, mowing with no N fertilization; MN, mowing with N fertilization.

4. Discussion

Our results showed that mowing and N fertilization significantly altered the plant community structure (figures 2 and 4) and the community-level plant stoichiometry (figure 3), which supports our first hypothesis. Plant N and P stoichiometry is indicative of the relative nutrient limitation to plant growth (Güsewell 2005) and sensitive to mowing and N fertilization (Han et al 2014, Hou et al 2019). Mowing and/or N fertilization can significantly alter the structure and functioning of grassland ecosystems by altering nutrient inputs, dominant species and plant community composition (Elser et al 2010, Shi et al 2015, Li et al 2017). Yet, their interactive effects on plant stoichiometry are less known, particularly in ecologically sensitive systems such as semi-arid grasslands on the Loess Plateau, Northwestern China. Our results showed that mowing, N fertilization and their interactions significantly shifted PFGs, which were induced by light permeation and/or soil N availability (figures 3 and 5).
and use these nutrients more effectively than forbs (Chapin et al. 1995; Yu et al. 2011, You et al. 2017). Our SEM results further confirmed that the shift in grasses and forbs was largely due to alterations of N availability under mowing and N fertilization (figure 5(b)). Our study also documented that the PFG shift (i.e. the decrease of asteraceae species and the increase of grass species induced by N fertilization) (figure 2(b)), rather than nutrient dilution (Perring et al. 2008), mostly explained the lower community-level plant P concentration and the higher N:P ratios in N-fertilized plots (figure 3(b)). The enhancement of N:P ratios under the interactive treatment likely stems from either the lower plant P concentration under N fertilization treatment or the higher plant N concentration (figure 3). Our SEM analysis also showed that the community-level plant N:P ratio was largely modified by the different PFG-shift mechanisms (figure 5). Together, these results indicated that mowing-induced changes in soil nutrient availability (e.g. soil NO$_3^-$) and plant community composition can scale up to affect plant stoichiometry at the community level, supporting our second hypothesis.

The N:P ratio represents the relative availability of N to P (Aerts and Chapin 2000) and is a valuable indicator of the nutrient status for plant growth.
(Elser et al. 2010). It is usually accepted that a N:P ratio less than 14 suggests N limitation, while a ratio greater than 16 indicates P limitation (Koerselman and Meuleman 1996, Aerts and Chapin 2000). (Lü et al. 2013) reported that the positive effects of N addition on plant N concentration could result in the higher N:P ratios. In contrast, our results showed that the higher N:P ratios following N addition resulted from the higher sensitivity of plant P concentration than that of plant N concentration. The N:P ratios (at 17.4 and 17.2 under N and MN treatments, respectively) observed in this study were higher than other observations (Elser et al. 2000, Reich and Oleksyn 2004), suggesting that plant nutrient limitation shifted from N in the CK and M treatments (with N:P ratios at 13.7 and 13.1, respectively) to P under N fertilization.

A shift in the dominant species in a plant community can not only affect the community-level stoichiometry but also may significantly affect functioning of the ecosystem (Bai et al. 2010), such as GEP. Usually, GEP positively relates with the aboveground biomass (Goudriaan et al. 1985, Peng et al. 2017). Interestingly, the dominant community with forbs and grass under our interactive treatment with lower aboveground biomass still had higher GEP than that in un-mowed plots (figure 1(b)), except for the trophophase when the regrowing shoots did not germinate well from April to June in 2018. This occurred probably due to the increased recourses of light to the whole plant communities. Also, accompanying with more fixed carbon via higher photosynthesis induced by mowing, the new-born forbs and grasses would take up more N due to carbon-nitrogen coupling (Langley and Megonigal 2010). In addition, mowing altered PFG composition with an enhancement of forbs, leading to a higher Shannon Wiener diversity and richness of plant communities (Bobbink et al. 1987; Fynn 2004). A recent study adjacent to our field plots showed that both climate warming and rainfall changes tended to increase the relative contribution of the dominant species to the total biomass (Su et al. 2019). The temperature at our site has increased by 1.92 °C from 1960 to 2013 (Guo et al. 2011, Sun et al. 2016), while the global average temperature has increased by ca. 0.85 °C from 1880 to 2012 (IPCC 2013). Finally, rainfall has become more variable on the Loess Plateau (Wan et al. 2013, Sun et al. 2016, Wang et al. 2019). Together, these changes in temperature and rainfall, combined with the increasing N deposition in this area, suggest that local plant diversity may be at risk under future climate change scenarios. Mowing may provide a tool to moderate the ecological effects of climate change factors under the frequent occurrences of extreme climate events.

5. Conclusions

Our results showed that mowing significantly changed the plant community structure through altering the light competitiveness between forbs and asteraceae, whereas N fertilization significantly changed the plant community composition through altering soil available N. Mowing mediated the effects of N fertilization on the community-level plant N:P ratio through the multiple PFG shifts. The enhancement of plant N:P ratio with both mowing and N fertilization is of significance in understanding the shifts of relative N or P limitation within soil and plants. Our results may provide guidance for designing management practices that prevent the grassland degradation, while promoting the functioning of the ecosystem through increasing species richness and primary production in arid and semi-arid Loess Plateau. Future studies should examine how climate change factors mediate the effect of mowing and N fertilization on plant-soil-microbial interactions and potential long-term feedbacks.

Acknowledgments

We thank Qilai Yang for field assistance in field. We are grateful to the Ningxia Yunwu Mountain Reserve Administration for providing logistic support. This study was supported by National Key R&D Program of China (No. 2017YFC0503902) and National Science Foundation of China (No. 41671269).

Data availability statements

Any data that support the findings of this study are included within the article.

ORCID iD

Hui Guo https://orcid.org/0000-0001-6347-5976

References

Aerts R and Chapin F 2000 The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns Adv. Ecol. Res. 30 1–67
Anten N and Hirose T 2001 Limitations on photosynthesis of competing individuals in stands and the consequences for canopy structure Oecology 129 186–96
Bai Y, Wu J, Clark C, Naem S, Pan Q, Huang J, Zhang L and Han X 2010 Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands Glob. Change Biol. 16 358–72
Bardgett R and Mcalister E 1999 The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands Biol. Fertil. Soils 29 282–90

Anten N and Hirose T 2001 Limitations on photosynthesis of competing individuals in stands and the consequences for canopy structure Oecologi 129 186–96
Bai Y, Wu J, Clark C, Naem S, Pan Q, Huang J, Zhang L and Han X 2010 Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands Glob. Change Biol. 16 358–72
Bardgett R and Mcalister E 1999 The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands Biol. Fertil. Soils 29 282–90
Bobrink R, During H, Schreurs J, Willems J and Zielman R 1987 Effects of selective clipping and mowing time on species diversity in chalk grassland *Folia Geobotanica* 22 363–76

Cabrera M and Bear M 1993 Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts *Soil Sci. Soc. Am. J.* 57 1007–12

Carey C, Beman J, Eviner V, Malmstrom C and Hart S 2015 Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands *Front. Microbiol.* 6 466

Carter M 1993 Soil sampling and methods of analysis *J. Environ. Qual.* 38 15–24

Chapin F, Shaver G, Giblin A, Nadelhoff K and Laundre J 1995 Responses of Arctic tundra to experimental and observed changes in climate *Ecology* 76 694–711

Chen Z, Xiong P, Zhou J, Yang P, Wang Z and Xu B 2020 Grassland productivity and diversity changes in responses to N and P addition depend primarily on tall clonal and annual species in semiarid Loess Plateau *Ecol. Eng.* 145

Clark C, Celand E, Collins S, Fargione J, Gough L, Gross K, Pennings S, Suding K and Grace J 2007 Environmental and plant community determinants of species loss following nitrogen enrichment *Ecol. Lett.* 10 596–607

Collins S 1998 Modulation of diversity by grazing and mowing in native tallgrass prairie *Science* 280 745–7

Conway D, Kim H and Quinn L 2017 Switchgrass as a bioenergy crop in the Loess Plateau, China *Potential lignocellulosic feedstock production and environmental conservation* *J. Integr. Agric.* 16 1211–26

Demalach N, Zaady E and Kadmon R 2017 Light asymmetry explains the effect of nutrient enrichment on grassland diversity *Ecol. Lett.* 20 60–69

Deng Q, Hui D, Dennis S and Reddy K 2017 Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis *Glob. Ecol. Biogeogr.* 26 713–28

Desai N, Wilson A and Powers J 2014 Ecotrophicrization of diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica *Environ. Res. Lett.* 11 125007

Dickson T, Mittelbach G, Reynolds H and Gross K 2014 Height and clonality traits determine plant community responses to fertilization *Ecology* 95 1–10

Elser J, Fagan W, Denno R, Dobberfuhl D, Folarin A and Huberty T 2010 Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change *New Phytol.* 186 593–608

Flanagan L, Sharp E and Gamon J 2015 Application of the photosynthetic light-use efficiency model in a northern Great Plains grassland *Remote Sens. Environ.* 168 239–51

Fynn R 2004 Effects of burning and mowing on grass and forb diversity in a long-term grassland experiment *Appl. Veg. Sci.* 7 1–10

Gang C, Zhao W, Zhao T, Zhang Y, Gao X and Zhongjing Wen Z 2018 The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China *Sci. Total Environ.* 645 827–36

Giese M and Han X 2013 N balance and cycling of *Inner Mongolia* typical steppe: A comprehensive case study of grazing effects *Ecol. Monogr.* 83 195–219

Goudriaan J, Laar H, Keulen H and Louwverse W 1985 Photosynthesis, CO2 and plant production *Wheat Growth Modell.* 86 107–22

Guo J, Liu Y, Zhang J, Shen W, Zhang W, Christie K, Goulding P and Vitousek P 2010 Significant acidification in major Chinese croplands *Science* 327 1008–10

Guo R, Li F, He W, Yang S and Sun G 2011 Spatial and temporal variability of annual precipitation during 1958–2007 in Loess Plateau, China *Comput. Comput. Technol. Agric.* Part II, IFIP AICT 345 551–60

Güsewell S 2005 High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges *New Phytol.* 166 537–550

Hamilton E and Frank D 2001 Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass *Ecology* 82 2397–402

Han X, Sistla S, Zhang Y, Liu X and Han X 2014 Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe *Plant Soil* 382 175–87

Hillebrand H, Bennett D and Cadotte M 2008 Consequences of dominance: a review of evenness effects on local and regional ecosystem processes *Ecology* 89 1510–20

Hou S, Lü X, Yin J, Yang J and Han X 2019 The relative contributions of intra- and inter-specific variation in driving community stoichiometric responses to nitrogen deposition and mowing in a grassland *Sci. Total Environ.* 666 887–93

IPCC 2013 Summary for Policymakers. *Climate Change (2013)* The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 33

Jiang C, Yu G, Li Y, Cao G, Yang Z, Sheng W and Yu W 2012 Nutrient resorption ofcoexistence species in alpine meadow of the qinghai-tibetan plateau explains plantadaptation to nutrient-poor environment *Ecol. Environ. Sci. Rep.* 4 1–9

Koerselman W and Meuleman A 1996 The vegetation N/P ratio: a new tool to detect the nature of nutrient limitation *J. Appl. Ecol.* 33 1441–50

Kotas P and Choma M 2017 Linking above- and belowground responses to 16 years of fertilization, mowing, and removal of the dominant species in a temperate grassland *Ecosystems* 20 354–67

Langley J and Megonigal J 2010 Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift *Nature* 466 96–99

Lepš J and Wan S 2014 Scale- and time-dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15-year experiment *J. Appl. Ecol.* 51 978–87

Li J, Zheng Z, Xie H, Zhao N and Gao Y 2017 Increased soil nutrition and decreased light intensity drive species loss after eight years grassland enclosures *Sci. Rep.* 7 44525

Li Z 2004 A policy review on watershed protection and poverty alleviation by the Grain for Green Programme in China *Forests for Poverty Reduction (Bangkok: Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific)* pp 133–8.

Liang T, Tong Y, Xu W, Wei L, Lin W, Pang Y, Liu F and Liu X 2015 Atmospheric nitrogen deposition in the Loess area of China *Atmos.Pollut. Res.* 6 447–53.

Liu Z, Meng Y, Cai M and Zhou J 2017 Coupled effects of mulching and nitrogen fertilization on crop yield, residual soil nitrate, and water use efficiency of summer maize in the Chinese Loess Plateau *Eviron. Sci. Pollut. Res. 24* 1–12

Lü X, Djikstra F, Kong D, Wang Z and Han X 2014 Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland *Sci. Rep.* 4 4817

Lü X, Reed S, Yu Q, He N, Wang Z and Han X 2013 Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland *Glob. Change Biol.* 19 2775–84

Oelmann Y, Broll G, Hölzel N, Kleinebecker T, Vogel A and Schwartz P 2009 Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of north-western Germany *Biol. Conserv.* 142 2941–2948

Olesen J, Cole C, Watanabe W and Deane L 1945 *Decay Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate* (Washington, DC: USDA Circular 939 U.S. Government Printing Office)

Peng Y, Li F, Zhou G, Fang K, Zhang D and Li C 2017 Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe *Glob. Change Biol.* 23 5249–59
Peñuelas J, Poulter B, Sanders J, Ciais P and Veldt M 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the global Nat. Commun. 4 2934

Perring M, Hedin L, Levin S, Mégroddy M and Mazancourt C 2008. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc. of the Natl. Acad. Sci. USA. 105 1971–6

Qiu Y, Jiang Y, Guo L, Zhang L, Burkey K, Shew H, Zobel R and Hu S 2019 Shifts in the composition and activities of denitrifiers dominate CO₂-stimulation of N₂O emissions Environ. Sci. Technol. 53 11204–13

Reich P and Oleksyn J 2004 Global patterns of plant leaf N and P in relation to temperature and latitude Proc. of the Plateau 101 11001–6.

Ren X, Zhang P, Chen X, Guo J and Jia Z 2016 Effect of different mulches under rainfall concentration system on corn production in the semi-arid areas of the Loess Plateau Sci. Rep. 6 19019

Shi Z, Sherry R, Xu X, Hararuk O, Souza L, Jiang L, Xia J, Liang J, Luo Y and Bardgett R 2015 Evidence for long-term shift in plant community composition under decadal experimental warming J. Ecol. 103 1351–40

Simkin S, Allen E, Bowman W, Clark C, Belnap J, Brooks M, Cade B, Collins S, Geiser I. and Gilliam F 2016 Conditional sensitivity of plant diversity to atmospheric nitrogen deposition across the United States Proc. Natl. Acad. Sci. USA 113 4086

Su F, Wang F, Guo J, Zhang J, Wang Y, Guo H and Hu S 2019 Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau Ecol. Evol. 9 7628–38

Suding K, Collins S, Gough L, Clark C, Cleland E, Gross K and Penning S 2005 Functional- and abundance-based mechanisms explain diversity loss due to N fertilization Proc. Natl Acad. Sci. USA 102 4387–92

Sun W, Xu X, Song X, Dan W, Cheng A and Qiu B 2016 Changes in extreme temperature and precipitation events in the loess plateau (China) during 1960–2013 under global warming Atmos. Res. 168 33–48

Tao J, Bai T and Xiao R 2018 Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese Loess Plateau and their responses to nitrogen inputs Sci. Total Environ. 635 240–8

Vance E, Brookes P and Jenkinson D 1987 An extraction method for measuring soil microbial biomass C Soil Biol. Biochem. 19 703–7

Venterink H, Kardel I, Kotowski W, Peeters W and Wassen M 2009 Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland Oecologia 93 235–52

Wan L, Zhang X, Ma Q, Zhang J, Ma T and Sun Y 2013 Spatiotemporal characteristics of precipitation and extreme events on the Loess Plateau of China between 1957 and 2009 HydroL. Process 28 3650–60

Wang C, Butterbach-Bahl K, He N, Wang Q, Xing X and Han X 2015 Nitrogen addition and mowing affect microbial nitrogen transformations in a C₄ grassland in northern china Eur. J. Soil Sci. 66 485–95

Wang X, Lu C, Fang J and Shen Y 2007 Implications for development of grain-for-green policy based on cropland suitability evaluation in desertification-affected North China Land Use Policy 24 417–24

Wang X, Wang B and Xu X 2019 Effects of large-scale climate anomalies on trends in seasonal precipitation over the Loess Plateau of China from 1961 to 2016 Ecol. Indic. 107 1470–160X

Wei L, Liu J, Su J, Jing G, Zhao J, Cheng J and Jin J 2016 Effect of clipping on soil respiration components in temperate grassland of Loess Plateau Eur. J. Soil Biol. 75 157–67

Wei L, Su J, Jing G, Zhao J, Liu J, Cheng J and Jin J 2018 Nitrogen addition decreased soil respiration and its components in a long-term fenced grassland on the Loess Plateau J. Arid Environ. 152 37–44

Welker J, Falmestock J, Henry G, O’Dea K and Chimner R 2004 CO₂ exchange in three Canadian high arctic ecosystems: response to long-term experimental warming Glob. Change Biol. 10 1981–95

Williams D, Jackson L and Smith D 2007 Effects of frequent mowing on survival and persistence of forbs seeded into a species-poor grassland Restor. Ecol. 15 24–33

Xia J, Niu S and Wan S 2009 Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe Glob. Change Biol. 15 1544–56

Xu Z, Bai Y and Duan C 1994 Study on patterns of carbohydrate reserves in Inner Mongolia steppe Acta Pratuculturae Sin. 3 27–31

Yang H, Jiang L, Li L, Li A, Wu M and Wan S 2012 Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment Ecol. Lett. 15 619–26

Yang X, Li P, Zhang S, Sun B and Chen X 2011 Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil J. Plant Nutr. Soil Sci. 174 775–84

Ye C, Chen D, Hall S, Pan S and Hu S 2018 Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls Ecol. Lett. 21

You C, Wu F and Gan Y 2017 Grass and forbs respond differently to nitrogen addition: A meta-analysis of global grassland ecosystems Sci. Rep. 7

Yu Q, Elser J, He N, Wu H, Chen Q, Zhang G and Han X 2011 Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland Oecologia 166 1–10

Zhang J, Yan X and Su F 2018b Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow Sci. Total Environ. 625 440–8

Zhang J et al 2018a Atmospheric CO₂ enrichment and reactive nitrogen inputs interactively stimulate soil cation losses and acidification Environ. Sci. Technol. 52 6895–902

Zhang R, Shi X, Li W, Wang G and Guo R 2016 Effects of nitrogen and phosphorus addition on the plant aboveground biomass on a sub-alpine meadow Ecol. Sci. 35 15–20

Zhou J, Wilson G and Cobb A B 2019 Phosphorus and mowing improve native alfalfa establishment, facilitating restoration of grassland productivity and diversity Land Degrad. Dev. 30 647–57