THE INFLUENCE OF ROCK LITHOGENESIS TYPES ON POROSITY AND PERMEABILITY (THE CASE OF PERMO-CARBONIFEROUS DEPOSIT OF THE USINSKOE FIELD)

Nikita A. Popov, Ivan S. Putilov, Anastasia A. Guliaeva, Ekaterina E. Vinokurova, Iuliia V. Fairuzova

PermNIPIneft branch of LUKOIL-Engineering LLC in Perm (3a Permksaya st., Perm, 614015, Russian Federation)

Received / Published: 07.02.2020. Accepted / Принята: 15.04.2020. Published / Опубликована: 15.06.2020

Key words: laboratory core studies, porosity and permeability properties, anisotropy of properties, full-size core samples, mathematical and statistical analysis, the Dunham classification.

The paper analyzes a methodology aimed at differentiation of porosity, permeability and petrophysical properties depending on facies attributes. Based on the Dunham classification, we offer in-depth studies of the influence of rock fabric, including full-size core samples, on changes in porosity and permeability. The work deals with the Permo-Carboniferous deposit of the Usinskoye field. Reservoir properties of the considered strata are highly heterogeneous. Along with highly porous and cavernous rocks, there are low porous and fractured varieties in the section, which refer to rocks of various lithological compositions. The porosity and permeability Vp values were analysed for more than 9,000 standard core samples and approximately 1,000 full-size core samples, taking into account the scale factor and including microfractures, large caverns and rock matrix, commensurable with the sample sizes. The analysis of the maximum variation range is of particular importance for structurally complex carbonate reservoirs. Furthermore, based on the conducted lithologic, petrographic and petrophysical studies, the authors identified four types of reservoirs and eight different types of lithogenesis, as well as estimated structurally complex carbonate reservoirs. Furthermore, based on the conducted lithologic, petrographic and petrophysical studies, the authors identified four types of reservoirs and eight different types of lithogenesis, as well as estimated structural and geological parameters for each of them. Based on the cumulative correlation analysis, four zones of heterogeneity were identified. They are subject to the influence of properties of the core samples of different lithogenesis types. This is the first time that the lithotypes/lithotypes of influence of various petrophysical and petrophysical properties have been studied for the Usinskoye field based on the petrophysical and petrophysical research findings. All the conducted experiments show that the rocks of the Permo-Carboniferous deposit of the Usinskoye field are extremely heterogeneous in their permeability properties that vary much. Thus, it is necessary to differentiate the core-to-core petrophysical correlations depending on a void space fabric and lithology of rocks.

THE INFLUENCE OF ROCK LITHOGENESIS TYPES ON POROSITY AND PERMEABILITY (THE CASE OF PERMO-CARBONIFEROUS DEPOSIT OF THE USINSKOE FIELD)

Nikita A. Popov, Ivan S. Putilov, Anastasiia A. Guliaeva, Ekaterina E. Vinokurova, Iuliia V. Fairuzova

PermNIPIneft branch of LUKOIL-Engineering LLC in Perm (3a Permksaya st., Perm, 614015, Russian Federation)

Received / Published: 07.02.2020. Accepted / Принята: 15.04.2020. Published / Опубликована: 15.06.2020

Key words: laboratory core studies, porosity and permeability properties, anisotropy of properties, full-size core samples, mathematical and statistical analysis, the Dunham classification.

The paper analyzes a methodology aimed at differentiation of porosity, permeability and petrophysical properties depending on facies attributes. Based on the Dunham classification, we offer in-depth studies of the influence of rock fabric, including full-size core samples, on changes in porosity and permeability. The work deals with the Permo-Carboniferous deposit of the Usinskoye field. Reservoir properties of the considered strata are highly heterogeneous. Along with highly porous and cavernous rocks, there are low porous and fractured varieties in the section, which refer to rocks of various lithological compositions. The porosity and permeability Vp values were analysed for more than 9,000 standard core samples and approximately 1,000 full-size core samples, taking into account the scale factor and including microfractures, large caverns and rock matrix, commensurable with the sample sizes. The analysis of the maximum variation range is of particular importance for structurally complex carbonate reservoirs. Furthermore, based on the conducted lithologic, petrographic and petrophysical studies, the authors identified four types of reservoirs and eight different types of lithogenesis, as well as estimated structural and geological parameters for each of them. Based on the cumulative correlation analysis, four zones of heterogeneity were identified. They are subject to the influence of properties of the core samples of different lithogenesis types. This is the first time that the lithotypes/lithotypes of influence of various petrophysical and petrophysical properties have been studied for the Usinskoye field based on the petrophysical and petrophysical research findings. All the conducted experiments show that the rocks of the Permo-Carboniferous deposit of the Usinskoye field are extremely heterogeneous in their permeability properties that vary much. Thus, it is necessary to differentiate the core-to-core petrophysical correlations depending on a void space fabric and lithology of rocks.

THE INFLUENCE OF ROCK LITHOGENESIS TYPES ON POROSITY AND PERMEABILITY (THE CASE OF PERMO-CARBONIFEROUS DEPOSIT OF THE USINSKOE FIELD)

Nikita A. Popov, Ivan S. Putilov, Anastasiia A. Guliaeva, Ekaterina E. Vinokurova, Iuliia V. Fairuzova

PermNIPIneft branch of LUKOIL-Engineering LLC in Perm (3a Permksaya st., Perm, 614015, Russian Federation)

Received / Published: 07.02.2020. Accepted / Принята: 15.04.2020. Published / Опубликована: 15.06.2020

Key words: laboratory core studies, porosity and permeability properties, anisotropy of properties, full-size core samples, mathematical and statistical analysis, the Dunham classification.

The paper analyzes a methodology aimed at differentiation of porosity, permeability and petrophysical properties depending on facies attributes. Based on the Dunham classification, we offer in-depth studies of the influence of rock fabric, including full-size core samples, on changes in porosity and permeability. The work deals with the Permo-Carboniferous deposit of the Usinskoye field. Reservoir properties of the considered strata are highly heterogeneous. Along with highly porous and cavernous rocks, there are low porous and fractured varieties in the section, which refer to rocks of various lithological compositions. The porosity and permeability Vp values were analysed for more than 9,000 standard core samples and approximately 1,000 full-size core samples, taking into account the scale factor and including microfractures, large caverns and rock matrix, commensurable with the sample sizes. The analysis of the maximum variation range is of particular importance for structurally complex carbonate reservoirs. Furthermore, based on the conducted lithologic, petrographic and petrophysical studies, the authors identified four types of reservoirs and eight different types of lithogenesis, as well as estimated structural and geological parameters for each of them. Based on the cumulative correlation analysis, four zones of heterogeneity were identified. They are subject to the influence of properties of the core samples of different lithogenesis types. This is the first time that the lithotypes/lithotypes of influence of various petrophysical and petrophysical properties have been studied for the Usinskoye field based on the petrophysical and petrophysical research findings. All the conducted experiments show that the rocks of the Permo-Carboniferous deposit of the Usinskoye field are extremely heterogeneous in their permeability properties that vary much. Thus, it is necessary to differentiate the core-to-core petrophysical correlations depending on a void space fabric and lithology of rocks.

THE INFLUENCE OF ROCK LITHOGENESIS TYPES ON POROSITY AND PERMEABILITY (THE CASE OF PERMO-CARBONIFEROUS DEPOSIT OF THE USINSKOE FIELD)

Nikita A. Popov, Ivan S. Putilov, Anastasiia A. Guliaeva, Ekaterina E. Vinokurova, Iuliia V. Fairuzova

PermNIPIneft branch of LUKOIL-Engineering LLC in Perm (3a Permksaya st., Perm, 614015, Russian Federation)

Received / Published: 07.02.2020. Accepted / Принята: 15.04.2020. Published / Опубликована: 15.06.2020

Key words: laboratory core studies, porosity and permeability properties, anisotropy of properties, full-size core samples, mathematical and statistical analysis, the Dunham classification.

The paper analyzes a methodology aimed at differentiation of porosity, permeability and petrophysical properties depending on facies attributes. Based on the Dunham classification, we offer in-depth studies of the influence of rock fabric, including full-size core samples, on changes in porosity and permeability. The work deals with the Permo-Carboniferous deposit of the Usinskoye field. Reservoir properties of the considered strata are highly heterogeneous. Along with highly porous and cavernous rocks, there are low porous and fractured varieties in the section, which refer to rocks of various lithological compositions. The porosity and permeability Vp values were analysed for more than 9,000 standard core samples and approximately 1,000 full-size core samples, taking into account the scale factor and including microfractures, large caverns and rock matrix, commensurable with the sample sizes. The analysis of the maximum variation range is of particular importance for structurally complex carbonate reservoirs. Furthermore, based on the conducted lithologic, petrographic and petrophysical studies, the authors identified four types of reservoirs and eight different types of lithogenesis, as well as estimated structural and geological parameters for each of them. Based on the cumulative correlation analysis, four zones of heterogeneity were identified. They are subject to the influence of properties of the core samples of different lithogenesis types. This is the first time that the lithotypes/lithotypes of influence of various petrophysical and petrophysical properties have been studied for the Usinskoye field based on the petrophysical and petrophysical research findings. All the conducted experiments show that the rocks of the Permo-Carboniferous deposit of the Usinskoye field are extremely heterogeneous in their permeability properties that vary much. Thus, it is necessary to differentiate the core-to-core petrophysical correlations depending on a void space fabric and lithology of rocks.
Introduction

Porosity and permeability data are essential when preparing an engineering design package, calculating oil and gas reserves, performing geological modelling and planning exploration activities. Based on the Dunham classification, this work offers an in-depth study of how a structure may change porosity and permeability of rock fabrics, including full-size core samples.

A new methodology is developed to differentiate porosity, permeability and petrographic properties depending on facies attributes. A correct estimation of porosity and permeability of reservoirs under development largely depends on sufficiency of the petrophysical basis [1-3]. Only laboratory studies of core samples can serve as a direct way of obtaining such information [4-9].

Laboratory Studies

The paper aims at studying the Perm-Carboniferous deposit of the Usinskoye field. The porosity and permeability properties were analysed for more than 9,000 standard core samples and approximately 1,000 full-size core samples, taking into account the scale factor and including microfractures, large caverns and rock matrix, commensurable with the sample sizes [10-16]. The coverage of the maximum variation range of porosity and permeability is of particular importance for structurally complex carbonate reservoirs [17]. The open porosity ratio for the standard core samples was determined by the fluid saturation method (the Preobrazhensky method) and hydrostatic weighing taking external caverns into account, according to the National Standard GOST 26450.1-85 [18]. While the open porosity ratio for the full-size samples was determined using the MR-ISM-03-OLFI-046-2013 method [19]. As a result of the lithologic, petrographic and petrophysical studies, it is revealed that the rocks of the studied section have heterogeneous but quite good porosity and permeability properties. This fact is associated with the facies attribute, i.e. the distribution of pores, caverns and fractures, as well as their morphological features. The lithological and petrographic data show that the studied rocks (in this section) have undergone a wide range of post-depositional alterations in their geological evolution, e.g. compaction, recrystallization, calcitization, dolomitization, silicification, stylolization, fracturing and leaching. Each of these secondary processes had an unclear effect on the void space formation at various lithogenesis stages. Therefore, their intensity varies in carbonate rocks of different textures.
they are intermittent and formed by the pale fine short-grained calcite or silica in individual cases.

For reservoirs of the second type, the role of fractures as additional flow paths of the bituminous organic matter is of great importance. The rock permeability is determined by secondary and primary pores. The primary pores feature sedimentation and diagenetic recrystallization pores, while the secondary pores feature leached pores, those inherited from the primary pores and those newly formed along the fractures and stylolites. The fractures are not consistent in width; they are extensive and short, tortuous and rectilinear. The fractures are leached in sections. There are multiple filamentary closed fractures.

Reservoirs of the third type feature changes in the porosity and permeability over a wide range. The pores and leached caverns are irregular, elongated and isometric in shape. The pores are interconnected. Some of the fine intergranular pores (dolomitization/ recrystallization pores) are partially or completely filled with the brown bituminous organic matter. Some voids are formed due to leaching of organic remains (dissolution porosity). Locally, the pores are filled with authigenic siliceous material represented by quartz and flabellate chalcedony, which is less common. Compared to Type 2, stylolite occurred less often in Type 3.

Type 4 refers to the porous type of reservoir. The voids are created nonuniformly, mainly in cement, and they are less often in intramatrix cavities of organic residues. The cavities are highly diverse in shape. Individual cavities are partially or completely healed with calcite. Fine pores are sometimes filled with the brown bituminous organic matter. Some pores take the shape of organic remains (moldic porosity). Interparticle and moldic pores sometimes develop near stylolite seams, as well as in stylolite separation films and along mineral and open fractures.

Table 1 shows the distribution of the open porosity ratio and absolute gas permeability depending on the reservoir types. Based on the obtained statistical results, we can conclude that 173 core samples (3.2 %) pertain to the cavernous reservoir; 797 samples (14.7 %) pertain to the fractured cavernous porus reservoir; 1,675 samples (30.9 %) pertain to the cavernous porus reservoir; and 2,782 (51.2 %) pertain to the porus reservoir. Thus, most considered samples belong to the porus type of reservoir, while the least number of the samples belong to the fractured type. The fractured reservoir porosity is up to 2 %, while the permeability reaches the values of up to 10 D (darcy units). The open porosity of the fractured cavernous porus reservoir varies within the range from 0 to 17 %, and the gas permeability exceeds 1 D. For the cavernous porus reservoir, the open porosity lies in the range from 0 to 27 %, while the gas permeability is over 1 D. For the porus reservoir, the open porosity ranges from 0 to 37 %, and the gas permeability is up to 1 D.

Table 1

Parameter	Fractured reservoir	Fractured cavernous porous reservoir	Cavernous porous reservoir	Porous reservoir	Total number, pcs.					
	abs.	%								
K_{por}, %:										
From 0 to 5 (Zone 1)	173	7.2	665	27.5	714	29.5	866	35.8	2418	
From 5 to 12 (Zone 2)	0	0.0	131	10.3	595	46.6	551	43.1	1277	
From 12 to 20 (Zone 3)	0	0.0	1	0.1	339	33.9	661	66.0	1001	
Over 20 (Zone 4)	0	0.0	0	0.0	27	3.7	704	96.3	731	
Average value for all zones	173	3.2	797	14.7	1675	30.9	2782	51.2	5427	
K_{perm}, mD:										
0.01–1 (Zone 1)	56	2.0	450	16.1	835	29.9	1448	51.9	2789	
From 1 to 10 (Zone 2)	64	6.1	161	15.4	305	29.2	513	49.2	1043	
From 10 to 100 (Zone 3)	39	3.8	126	12.4	296	29.2	552	54.5	1013	
Over 100 (Zone 4)	14	2.4	60	10.3	239	41.1	269	46.2	582	
Average value for all zones	173	3.2	797	14.7	1675	30.9	2782	51.2	5427	
Analysis of the Obtained Results

Based on the conducted lithological and petrographic studies, we identified the lithogenesis types in the rocks of the Usinskoye field, such as Mudstone, Wackestone, Packstone, Grainstone, Boundstone, Floatstone, Rudstone and Crystalline Carbonate. Table 2 shows the comparison of the texture types (according to the Dunham classification) with their geological and physical parameters. The analysis of average dispersion values and parameter intervals shows that it is impossible to dividing the texture types into geological and geophysical parameters [39-46]. Among all the studied lithogenesis types, Crystalline Carbonate exhibits the best porosity and permeability properties: the average open porosity is 19.51 %, and the average absolute gas permeability is 106.71 mD. Floatstone exhibits the lowest porosity and permeability properties: the average open porosity is 7.65 %, while the average absolute gas permeability is 6.41 mD.

A graph of Pearson’s cumulative correlation against the open porosity ratio was plotted to offer an in-depth study of how the lithological features affect changes in permeability for 5,000 core samples (Fig. 2, a). The discontinuities, interruptions and curvature in the graph reflect changes in the structure of the pore space in different ranges and allow the inhomogeneity areas to be identified. There are four zones, which can be singled out in the graph, depending on the properties of the core samples that belong to different lithogenesis types.

To assess the impact of the different lithogenesis properties on permeability of the samples, we plotted a similar graph of Pearson’s cumulative correlation against the open porosity ratio by using more than 1,000 samples, for which it was possible to identify their attribution to a particular texture as per the Dunham classification (Fig. 2, b). Similarly to Fig. 2, a, four zones can be observed in the graph. Despite the smaller sample array, the nature of the graph is generally identical to that shown in Fig. 2, a. As it can be seen in Fig. 2 (a, b), in the open porosity range of 0 to 5 % in Zone 1, there is a scatter of points across the core samples. In the porosity range of 5 to 20 %, the correlation shows a smooth growth with some correlation discontinuities, which are due to the change in the void space structure and the influence of the rocks of various lithogenesis types. There starts a close-to-complete stabilisation with the porosity of 20 % (Zone 4), since only one lithogenesis type – Crystalline Carbonate – contributes to the void space of the rocks. Table 3 shows the contribution of the Dunham texture to the open porosity distribution over the entire property range for each zone. For the open porosity in the range from 0 to 20 %, the Boundstone contributes the most, while Crystalline Carbonate makes up more than 20 %. Mudstone, Wackestone and Floatstone have the least impacts.

Table 2

Texture type as per Dunham	Number of definitions	Permeability, \(10^3 \mu\text{m}^2\)	Porosity, %	Density min., g/cm\(^3\)	Calcite content, %	Dolomite content, %	Insoluble constituent, %
Mudstone	6	152.42 ± 129.17 3.27–227.00	10.14 ± 7.18	2.68 ± 0.01	35.90 ± 28.20	3.00 ± 5.25	61.00 ± 33.46
Wackestone	14	8.08 ± 12.30 0.01–26.01	5.35 ± 0.93 3.99–6.00	2.70 ± 0.02 2.67–2.72	93.10 ± 10.60	0.70 ± 1.45	6.20 ± 10.95
Packstone	225	9.13 ± 33.47 0.01–257.20	6.22 ± 5.84 0.59–27.02	2.70 ± 0.02 2.64–2.83	86.50 ± 22.16	5.20 ± 16.52	8.30 ± 15.90
Grainstone	190	13.16 ± 35.41 0.01–242.60	9.33 ± 6.32 0.51–22.45	2.70 ± 0.01 2.66–2.74	95.60 ± 7.10	0.10 ± 0.61	4.40 ± 7.05
Boundstone	427	97.85 ± 325.33 0.01–2016.00	6.90 ± 5.98 0.37–25.58	2.70 ± 0.02 2.64–2.84	93.50 ± 11.36	1.00 ± 7.68	5.40 ± 8.07
Floatstone	43	6.41 ± 13.95 0.01–46.97	7.65 ± 6.64 0.73–21.91	2.73 ± 0.05 2.68–2.88	88.20 ± 22.81	7.30 ± 21.04	4.50 ± 3.80
Rudstone	197	10.87 ± 46.56 0.01–300.50	4.50 ± 4.00 0.98–21.89	2.69 ± 0.02 2.62–2.78	94.10 ± 8.63	3.00 ± 7.69	2.90 ± 3.57
Crystalline Carbonate	148	106.71 ± 200.27 0.01–1055.27	19.51 ± 9.73 0.94–37.02	2.80 ± 0.04 2.69–2.84	18.40 ± 32.87	0.00–99.00	7.00 ± 6.98

Note: the gas permeability ratio (mD) is in the numerator; the zone number is in the denominator.
Fig. 2. Graph of Pearson’s correlation coefficient change: a – against the open porosity for all the samples; b – against the open porosity for the samples with the identified Dunham texture; c – against the absolute gas permeability for all the samples; d – against the absolute gas permeability for the samples with the identified Dunham texture. The graphs show standard-size samples.

Table 3

Parameter	Mudstone	Wackestone	Packstone	Grainstone	Boundstone	Floatstone	Rudstone	Crystalline Carbonate	Total
Kpor, %:									
From 0 to 5 (Zone 1)	1	0.4	2	0.8	60	22.6	25	9.40	95
From 5 to 12 (Zone 2)	–	–	4	2.4	41	24.6	19	11.4	56
From 12 to 20 (Zone 3)	2	1.4	1	0.8	17	12.9	38	28.8	34
Over 20 (Zone 4)	1	1.4	3	4.1	15	20.3	7	9.5	16
Average value for all zones	4	0.6	10	1.6	133	20.8	89	13.9	201
Kperm, mD:									
0.01–1 (Zone 1)	–	–	5	1.4	86	24.7	41	11.8	110
From 1 to 10 (Zone 2)	2	1.6	3	2.3	22	17.1	20	15.5	38
From 10 to 100 (Zone 3)	–	–	2	1.7	20	17.4	24	20.9	32
Over 100 (Zone 4)	2	4.3	–	–	5	10.6	4	8.5	21
Average value for all zones	4	0.6	10	1.6	133	20.8	89	13.9	201
In order to determine how the lithological features change the flow properties of 5,000 core samples, we plotted a graph of Pearson’s cumulative correlation against the absolute gas permeability ratio for all the samples (Fig. 2, c) and for the samples with the identified Dunham texture (Fig. 2, d). The number of zones in the graphs is drawn by analogy with the data given in Figure 2 (a, b), which results from the influence similarity of the lithogenesis type on the porosity and permeability properties of the reservoirs.

For the absolute gas permeability distribution over the entire range of properties, Boundstone contributes the most (Table 3), which indicates their uniform distribution and strong influence over the entire property range. Mudstone, Wackestone and Floatstone have the least impacts.

A pronounced anisotropy of the flow properties is a distinctive feature of the field reservoirs. The permeability of the full-size samples depending on direction varies by 1-2 and sometimes 3 orders of magnitude. In certain cases, the difference reaches 4 orders of magnitude. A comparison of the gas permeability depending on direction is shown in Fig. 3. There are four zones outlined in the graph. It can be seen that different degrees of azimuthal heterogeneity are determined depending on a zone. In Zone 1 and Zone 2, azimuthal anisotropy is not as significant as in Zone 3 and Zone 4.

The gas permeability measured in the direction parallel to bedding varies within the range of $(0.01-15578.66) \times 10^{-3} \mu m^2$ with an average value of $430.20 \times 10^{-3} \mu m^2$, and perpendicular to the bedding within the range of $(<0.01-11467.87) \times 10^{-3} \mu m^2$ with an average value of $222.37 \times 10^{-3} \mu m^2$. The anisotropy ratio (a value expressed by the square root of the quotient of the formation permeability in the horizontal direction by its vertical permeability) was 1.58. It should be noted that the rocks of the Usinskoye field exhibit vertical anisotropy, as well as lateral anisotropy. The ratio of lateral anisotropy is 1.34.

Conclusions

Based on the lithological, petrographic and petrophysical research findings, we studied how various petrotypes/lithotypes change the porosity and permeability of the reservoirs for the Usinskoye field. The authors identified four types of reservoirs and eight different types of lithogenesis, and assessed the geological and physical parameters for each of them. Based on the cumulative correlation plots, we identified four zones of heterogeneity that are subject to the influence of the core samples’ properties of various lithogenesis types. The influence of the structural heterogeneity and lithogenesis type on changes in the porosity and permeability over their entire range was assessed. This is the first time that the full-size core studies with account for the identified zones have been studied, which made it possible to assess the degree of azimuthal anisotropy for each of the zones. The experiments proved that the rocks of the Permo-Carboniferous deposit of the Usinskoye field have extremely heterogeneous permeability properties that vary much. Thus, it is necessary to differentiate the core-to-core petrophysical correlations depending on a fabric of its void space and lithology of rocks.

References

1. Gurbatova I.P., Melekhin S.V., Iur'ev A.V. Osobennosti izucheniia petrofizicheskikh i uprugikh svoistv kerna v slozhnopostroennykh kollektorakh nefti i gaza pri modelirovanii termobaricheskikh plastovykh uslovi [Research features of petrophysical and elastic core characteristics in oil and gas compound reservoirs under thermobaric in-place conditions simulation]. Geologiia, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2010, no. 5, pp. 67-72.

2. Kostin N.G., Gubaidullin M.G. Vliianie razmerov issleduemykh obraztsov kerna na velichinu koeffitsienta poristosti karbonatnykh i terrigennykh reser-voiv [The influence of the sizes of the studied core samples on the value of the porosity coefficient of carbonate and terrigenous reservoirs]. Geologicheskie opasnosti. Materialy KhV Vserossiiskoi konferentsii s mezhdunarodnym uchas-tiem. Arkhangelsk, 2009, pp. 248-250.

3. Petersi'e V.I., Rabits E.G., Belov Iu.Ia. Metody i apparatura dla izucheniia fil'trino-emkostnykh svoistv porod-kollektorov na obraztsakh bol'shogo razmera [Methods and
apparatus for studying the reservoir properties of reservoir rocks on large samples]. Moscow, Nedra, 1980, 53 p.

4. Aleksin G.A., Kleshchev A.A., Rossikhin Iu.A. Perspektivy poiskov nefti i gaza na severe Timano-Pechorskoi provinsii [Prospects for oil and gas exploration in the north of the Timan-Pechora province]. Moscow, VNIIOENG, 1982, 44 p.

5. Douglas R., Rasoul A. Reconsidering Klinkenbergs permeability data. SCA. Norway, 2018, 1 p.

6. Arabjamaloei R., Daniels D., Ebeltoft E. Validation of permeability and relative permeability data using mercury injection capillary pressure data. SCA. Norway, 2018, 2 p.

7. Shaw D., Mastaghimi P., Hussein F., Armstrong R. Insights, trends and challenges associated with measuring goal relative permeability. SCA. Norway, 2018, 10 p.

8. Pruno S., Rodvent H.E., Scjaeveland O. Measurement of spontaneous imbibition capillary pressure saturation and resistivity index by counter technique at net reservoir stress and elevated temperature. SCA. Norway, 2018, 2 p.

9. Faurissoux P., Lutui-Tefuka M., Caubit C., Lalanne B., Nicot B. A fast method for trapped gas determination. SCA. Norway, 2018, 2 p.

10. Gurbatova I.P., Mikhailov N.N. Izuchenie anizotropii slozhnopostronnykh karbonatnykh kollektorov laboratornymi metodami [Laboratory study of anisotropy of complex carbonate reservoirs]. Aktual'naia problema razvitiiia neftegazovogo kompleksa Rossii. Sbornik tezisov dokladov VIII Vserossiiskoi nauchno-tekhnicheskoi konferentsii. Moscow, 2010, part 1, pp. 94-95.

11. Gurbatova I.P., Kuz'min V.A., Mikhailov N.N. Vliianie struktury porovogo prostranstva na mashtabnyi effekt pri izuchenii filtratsionno-empkostnykh svoistv slozhnopostronnykh karbonatnykh kollektorov [Influence of pore space structure on the scale effect in studying permeability storage capacity of complicatedly built carbonate reservoirs]. Geologiia nefti i gaza, 2011, no. 2, pp. 74-82.

12. Gurbatova I.P., Glushkov D.V., Rekhachev P.N., Melekhin S.V., Popov N.A. Osobennosti izucheniia karbonatnykh porod-kollektorov laboratornymi metodami, filial OOO "LUKOIL-Inzhiniring" "PermNIPIneft'" v gorode Permi [Features of the study of carbonate reservoir rocks by laboratory methods, PermNIPIneft branch of PermNIPIneft LLC in Perm]. Perm: Aster Didzhital, 2017, 264 p.

13. Mikhailov N.N., Gurbatova I.P. Mashtabnyi effekt pri laboratornom opredelenii fil'tratsionno-empkostnykh svoistv slozhnopostronnykh karbonatnykh kollektorov [Scale Effect at Laboratory Determination of Permeability and Porosity Properties of Complex Structured Carbonate Reservoirs]. Tekhnologii nefti i gaza, 2011, vol. 75, no. 4, pp. 32-35.

14. Putilov I.S., Rekhachev P.N., Gurbatova I.P., Barkovskii N.N., Iakimov O.I., Morozuk A.O. Epokha polnorazmernogo kera pri laboratornykh issledovaniakh tekhnologii povysheniia nefteotdaich plastov [Full-size core epoch at laboratory research of cor technologies]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiia. Neftegazovoe i gornoe delo, 2016, vol. 15, no. 19, pp. 155-164. DOI: 10.15593/2224-9923/2016.19.6

15. Sukhodanova S.S. Sozdanie 3D-modeli zalezhii s karbonatnymi treshchinovatymi kollektorami na osnove kompleksirovaniia gidrodinamicheskikh, geofizicheskikh, seismicheskikh i promyslovikh dannykh (na primere nizhnepermskikh otlozhenii Varandeyeskogo mestorozhdeniia) [Creation of a 3D-model of a reservoir with carbonate fractured reservoirs based on a combination of hydrodynamic, geophysical, seismic and field data (for example, the Lower Permian deposits of the Varandey field)]. Ph.D. thesis: 25.00.17. Moscow, 2016, 157 p.

16. Advances in core evaluation. Accuracy and precision in reserves estimation. Reviewed Proceedings of the First Society of Core Analysts European Core Analysis Symposium. London, 1990, 567 p.

17. Sbornik smetnykh norm na geologorazvedochnye raboty. Vypusk 7. Laboratornye issledovaniia poleznikh iskopаемых i gornykh porod [Collection of estimated standards for exploration. Iss. 7. Laboratory studies of minerals and rocks]. Moscow: VIEMS, 1993, 70 p.

18. GOST 26450.1-85. Porody gorny. Metod opredelenia koeffitsienta otkrytoy poristosti zhidkostenasyshcheniem [GOST 26450.1-85. The rocks are mountain. Method for determining the coefficient of open porosity by liquid saturation]. Moscow: Izdatel'stvo standartov, 1985, 7 p.

19. MR-ISM-03-OLFI-046-2013. Gorny porody. Metod opredelenia koeffitsienta otkrytoy poristosti gasovolumetricheskim metodom [MR-ISM-03-OLFI-046-2013. Rocks. Determination of the coefficient of open porosity by the gas-volumetric method]. Perm, Filial OOO «LUKOIL-Inzhiniring» «PermNIPIneft'» v Perm, 2013, 22 p.

20. Guibaidullin M.G., Belozerov I.P., Iur'ev A.V. Eksperimental'nye issledovaniia otnositel'nykh fazovykh pronitsaemostei i koeffitsienta vytesneniiia
nefti vodoi v slozhnospostronnykh kollektorakh [Experimental study of relative phase permeability and factors of oil replacement by water in complicatedly-composed reservoirs]. Geologiya, geofizika i razrabotka neftianykh i gazovykh mestorozhdenii, 2017, no. 2, pp. 49-52.

21. Dmitriev M.N., Kadet V.V., Kravchenko M.N., Rossokhin S.G. Dvukkhaznaya filtratsiya v transversal'no-izotropnoi poristoi srede. Teoria i eksperiment [Two-phase filtration in a transversely isotropic porous medium. Theory and experiment]. Izvestiya Rossiskoi akademii nauk, 2004, no. 4, pp. 92-97.

22. Dmitriev N.M., Kuz'michev A.N., Mikhailov N.N., Maksimov V.M. Eksperimental'noe izuchenie filtratsionnykh svoistv anizotropnykh kollektorov uglevodorodnogo syr'ia [Experimental study of filtration properties of hydrocarbons anisotropic fields]. Burenie i neft', 2015, no. 11, pp. 6-9.

23. Zheltov Iu.V., Kudinov V.I., Malofeev G.E. Razrabotka slozhnospostronnykh mestorozhdenii viazkoi nefti v karbonatnykh kollektorakh [Development of complex viscous oil fields in carbonate reservoirs]. Moscow: Neft' i gaz, 1997, 387 p.

24. Zainutdinov R.S. Sovershenstvovanie metoda opredeleniia ostatchnykh neftenasyshchennosti plastov po kerno dla otsenki koeffitsientov vytesneniya nefti vodoi [Improving the method for determining the residual oil saturation of the strata from the core to assess the coefficients of oil displacement by water]. Ph.D. thesis: 05.15.06. Moscow: NITs Reguliarnaia i poristoi srede, 1998, 162 p.

25. Zhubkov M.Iu., Mikulina O.I., Pushin A.V. Rezultaty issledovaniia otnositel'nykh fazovykh pritsisaemostei raznovozrastnykh produktivnykh otoleshennykh Krasnoleninskogo mestorozhdenii [The results of studies of the relative phase permeabilities of different age productive deposits of the Krasnoleninsky field]. Vestnik nedropol'zo-vaniia Khanty-Mansiiskogo avtonomnogo okruha, 2012, no. 25, pp. 42-52.

26. Masket M. Techenie odnorodnykh zhidkostei v poristoi srede [The flow of homogeneous liquids in a porous medium]. Moscow: NITs Reguliarnaia i khaoticheskaia dinamika, 2004, 629 p.

27. Mikhailov N.N., Dzhemesiuk A.V., Kol'chitskaia T.N., Semenova N.A. Izuchenie ostatchnogo neftenasyshchienia razrabatyvaemykh plastov [The study of residual oil saturation of the developed formations]. Moscow: VNIIOENG, 1990, 59 p.

28. Tul'bol'ovich B.I. Metody izuchenia porokollektorov nefti i gaza [Methods for the study of reservoir rocks of oil and gas]. Moscow: Nedra, 1979, 301 p.

29. Khairedinov N.Sh., Gubaidullin A.A., Ludintsev E.A., Blinov S.A. Nekotorye rezultaty otsenki vliianiia sposobov ekstraktii neftenasyshchennykh karbonatnykh porod na ikh kollektorskie svoistva [Some results of evaluating the influence of methods for the extraction of oil-saturated carbonate rocks on their reservoir properties]. Trudy TatNIPIneft'. Bugulma, 1987, no. 60, pp. 103-109.

30. Shvanov V.N., Frolov V.T., Sergeeva E.I. Sistematika i klassifikatsiya osadochnykh porod i ikh analogov [Systematics and classification of sedimentary rocks and their analogues]. Saint Petersburg: Nedra, 1998, 521 p.

31. Herrera R.G., Fernando S.V., Hernandez F.P. On the Petrophysics of Carbonate Reservoirs Through Whole Cole Analysis. Society of Petroleum Engineers, International Petroleum Conference and Exhibition of Mexico, 10-13 October, Veracruz, Mexico, 1994.

32. Pore Geometry of Carbonate Rocks and Capillary Pressure Curves / R.L. Jodry, G.V. Cinilin-garian, S.J. Mazzuiloand, H.H. Rieke. Carbonate Reservoir Characterization: A Geologic-Engineering Analysis, part I, Elsevier, Amsterdam, 1992, 670 p.

33. Samaniego V.F., Chilingarian G.V., Mazzullo S.J., Rieke H.H. Fluid Flow Through Carbonate Rock Systems. Carbonate Reservoir Characterization: A Geologic-Engineering Analysis, part I, Elsevier, New York, 1992, pp. 439-503.

34. Skopec R.A. Proper Coring and Wellsite Core Handling Procedures: The First Step Toward Reliable Core Analysis. J. Pet. Tech. April, 1994, vol. 33, no. 3, 280 p.

35. Chilingarin G.V., Mazzullo S.J., Rieke H.H. Carbonate reservoir characterization: a geologic - engineering analysis, part 2, Elsevier, 1996, 993 p.

36. Denney D. Whole Core vs. Plugs: Integrating Log and Core Data to Decrease Uncertainty in Petrophysical Interpretation and Oil-In-Place Calculations. Journal of Petroleum Technology, 2011, vol. 63, SPE, no. 0811-0058-JPT, pp. 58-60.

37. Honarpour M.M., Mahmood S.M. Relative-Permeability Measurements: An Overview. Journal of Petroleum Technology, 1998, vol. 40, SPE, no. 18565-PA, pp. 15-19.

38. McPhee C.A., Arthur K.G. Relative Permeability Measurements: An Inter-Laboratory Comparison. European Petroleum Conference, 25-27 October, London, United Kingdom, 1994, pp. 199-211.

39. Dement'ev L.F. Statisticheskie metody obrabotki i analiza promyslo-geologicheskikh
1. Гурбатова И.П., Мелекин С.В., Юрьев А.В. Особенности изучения нефте- и газоносных скоплений в карбонатных коллекторах на основе геолого-геофизических исследований. – М.: Наука, 1980. – 33 с.

2. Алексин Г.А., Клеццев А.А., Родионов Ф.А. Перспективы долгосрочных прогнозов нефти и газа на севере Сибири. – М.: Изд-во ИГЕС, 1982. – 44 с.

3. Douglas R., Rasoul A. Reconsidering Klinkenberg’s permeability data. – SCA. Norway, 2018. – 1 p.

4. Arabjamaloei R., Daniels D., Ebeltoft E. Validation of permeability and relative permeability data using mercury injection capillary pressure data. – SCA. Norway, 2018. – 2 p.

5. Shaw D., Mastaghami P., Hussein F., Armstrong R. Insights, trends and challenges associated with measuring oil relative permeability. – SCA. Norway, 2018. – 10 p.

6. Pruno S., Rodvent H.E., Scjaeveland O. Measurement of spontaneous imbibition capillary pressure saturation and resistivity index by counter technique at net reservoir stress and elevated temperature. – SCA. Norway, 2018. – 2 p.

7. Гурбатова И.П., Михайлов Н.Н. Изучение газоносности сложнопостроенных карбонатных коллекторов на основе геология. – М.: Наука, 1980. – 33 с.

8. Алексин Г.А., Клеццев А.А., Родионов Ф.А. Перспективы долгосрочных прогнозов нефти и газа на севере Сибири. – М.: Изд-во ИГЕС, 1982. – 44 с.

9. Douglas R., Rasoul A. Reconsidering Klinkenberg’s permeability data. – SCA. Norway, 2018. – 1 p.

10. Arabjamaloei R., Daniels D., Ebeltoft E. Validation of permeability and relative permeability data using mercury injection capillary pressure data. – SCA. Norway, 2018. – 2 p.

11. Шау, Д., Мастахами, П., Хусейн, Ф., Армстронг, Р. Обзоры, тенденции и вызовы в измерении относительной проницаемости нефти. – СКА, Норвегия, 2018. – 10 с.

12. Гурбатова И.П., Михайлов Н.Н. Методы геостатистики в геологии. – М.: Мир, 1980. – 33 с.

13. Алексин Г.А., Клеццев А.А., Родионов Ф.А. Перспективы долгосрочных прогнозов нефти и газа на севере Сибири. – М.: Изд-во ИГЕС, 1982. – 44 с.

14. Douglas R., Rasoul A. Reconsidering Klinkenberg’s permeability data. – SCA. Norway, 2018. – 1 p.

15. Arabjamaloei R., Daniels D., Ebeltoft E. Validation of permeability and relative permeability data using mercury injection capillary pressure data. – SCA. Norway, 2018. – 2 p.

16. Advances in core evaluation. Accuracy and precision in reserves estimation // Reviewed

Библиографический список

1. Гурбатова И.П., Мелекин С.В., Юрьев А.В. Особенности изучения нефте- и газоносных скоплений в карбонатных коллекторах на основе геолого-геофизических исследований. – М.: Наука, 1980. – 33 с.

2. Алексин Г.А., Клеццев А.А., Родионов Ф.А. Перспективы долгосрочных прогнозов нефти и газа на севере Сибири. – М.: Изд-во ИГЕС, 1982. – 44 с.

3. Douglas R., Rasoul A. Reconsidering Klinkenberg’s permeability data. – SCA. Norway, 2018. – 1 p.

4. Arabjamaloei R., Daniels D., Ebeltoft E. Validation of permeability and relative permeability data using mercury injection capillary pressure data. – SCA. Norway, 2018. – 2 p.

5. Shaw D., Mastaghami P., Hussein F., Armstrong R. Insights, trends and challenges associated with measuring oil relative permeability. – SCA. Norway, 2018. – 10 p.

6. Pruno S., Rodvent H.E., Scjaeveland O. Measurement of spontaneous imbibition capillary pressure saturation and resistivity index by counter technique at net reservoir stress and elevated temperature. – SCA. Norway, 2018. – 2 p.

7. Гурбатова И.П., Михайлов Н.Н. Изучение газоносности сложнопостроенных карбонатных коллекторов на основе геология. – М.: Наука, 1980. – 33 с.

8. Алексин Г.А., Клеццев А.А., Родионов Ф.А. Перспективы долгосрочных прогнозов нефти и газа на севере Сибири. – М.: Изд-во ИГЕС, 1982. – 44 с.

9. Douglas R., Rasoul A. Reconsidering Klinkenberg’s permeability data. – SCA. Norway, 2018. – 1 p.

10. Arabjamaloei R., Daniels D., Ebeltoft E. Validation of permeability and relative permeability data using mercury injection capillary pressure data. – SCA. Norway, 2018. – 2 p.
Proceedings of the First Society of Core Analysts European Core Analysis Symposium. – London, 1990. – 567 p.

17. Сборник сметных норм на геолого-разведочные работы. – Вып. 7: Лабораторные исследования полезных ископаемых и горных пород. – М.: ВИЭМС, 1993. – 70 с.

18. ГОСТ 26450.1-85. Породы горные. Метод определения коэффициента открытой пористости жидкостенасыщением. – М.: Изд-во стандартов, 1985. – 7 с.

19. МР-ИСМ-03-ОЛФИ-046-2013. Горные породы. Определение коэффициента открытой пористости газометодическим методом. – Пермь: Филиал ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми, 2013. – 22 с.

20. Губайдуллин М.Г., Белоzerов И.П., Юрьев А.В. Экспериментальные исследования относительных фазовых проницаемостей и коэффициента вытеснения нефти водой в сложнопостроенных коллекторах // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2017. – № 2. – С. 49–52.

21. Двухфазная фильтрация в трансверсально-изотропной пористой среде. Теория и эксперимент / М.Н.Дмитриев, В.В. Кадет, М.Н. Крачченко, С.Г. Россохин // Известия РАН. – 2004. – № 4. – С. 92–97.

22. Экспериментальное изучение фильтрационных свойств ангиозтропных коллекторов угледородного сырья / Н.М. Дмитриев, А.Н. Кузьмицев, Н.Н. Михайлов, В.М. Максимов // Бурение и нефть. – 2015. – № 11. – С. 6–9.

23. Желтов Ю.В., Кудинов В.И., Малефеев Г.Е. Разработка сложнопостроенных месторождений вязкой нефти в карбонатных коллекторах. – М.: Нефть и газ, 1997. – 387 с.

24. Зайнулдинов Р. С. Совершенствование метода определения остаточной нефтенасыщенности пластов по керну для оценки коэффициентов вытеснения нефти водой: дис. … канд. техн. наук: 05.15.06. – Уфа, 1998. – 162 с.

25. Зубков М.Ю., Микулина О.И., Пущин А.В. Результаты исследований относительных фазовых проницаемостей разнообразных продуктивных отложений Красноярского месторождения // Вестник недропользования Ханты-Мансийского автономного округа. – 2012. – № 25. – С. 42–52.

26. Маскет М. Течение однородных жидкостей в пористой среде. – М.: Издательство НИЦ Регулярная и хаотическая динамика, 2004. – 629 с.

27. Изучение остаточного нефтенасыщения разрабатываемых пластов / Н.Н. Михайлов, А.В. Джемесюк, Т.Н. Козычевская, Н.А. Семенова. – М.: Изд-во ВНИИОЭНГ, 1990. – 59 с.

28. Тубьбович Б.И. Методы изучения пород-коллекторов нефти и газа. – М.: Недра, 1979. – 301 с.

29. Некоторые результаты оценки влияния способов экстракции нефтенасыщенных карбонатных пород на их коллекторские свойства / Н.Ш. Хайдринов, А.А. Губайдуллин, Е.А. Юдинцев, С.А. Блинов // Труды ГатНИПИнефть. – Бугульма, 1987. – № 60. – С. 103–109.

30. Шванов В.Н., Фролов В.Т., Сергеева Э.И. Систематика и классификация осадочных пород и их аналогов. – СПб.: Недра, 1998. – 521 с.

31. Herrera R.G., Fernando S.V., Hernandez F.P. On the petrophysics of carbonate reservoirs through whole core analysis // Society of Petroleum Engineers, International Petroleum Conference and Exhibition of Mexico, 10–13 October. – Veracruz, Mexico, 1994.

32. Pore geometry of carbonate rocksand capillary pressure curves / R.L. Jodry, G.V. Cinilin-garian, S.J. Mazzuiloand, H.H. Rieke // Carbonate Reservoir Characterization: A Geologic-Engineering Analysis. – Part I. – Elsevier, Amsterdam, 1992. – 670 p.

33. Fluid flow through carbonate rock sytems / V.F. Samaniego, G.V. Chilingarian, S.J. Mazzullo, H.H. Rieke // Carbonate Reservoir Characterization: A Geologic-Engineering Analysis. – Part I. – Elsevier, NewYork, 1992. – Р. 439–503.

34. Skopec R.A. Proper coreing and wellsite core handling procedures: the first step toward reliable core analysis // J. Pet. Tech. April. – 1994. – Vol. 33, № 3. – 280 p.

35. Chilingarin G.V., Mazzullo S.J., Rieke H.H. Carbonate reservoir characterization: a geologic – engineerin analysis. – Part 2. – Elsevier, 1996. – 993 p.

36. Denney D. Whole Core vs. plugs: integrating log and core data to decrease uncertainty in petrophysical interpretation and oil-in-place calculations // Journal of Petroleum Technology. – 2011. – Vol. 63. – SPE, № 0811-0058-JPT. – P. 58–60.

37. Honarpour M.M., Mahmood S.M. Relative-permeability measurements: an overview // Journal of petroleum technology. – 1998. – Vol. 40. – SPE, № 18565-PA. – P. 15–19.

38. McPhee C.A., Arthur K.G. Relative Permeability Measurements: An Inter-Laboratory Comparison // European Petroleum Conference, 25–27 October. – London, United Kingdom, 1994. – P. 199–211.
39. Demet’ev L.F. Statisticheskie metody obrabotki i analiza promyslovogo-geologicheskikh
dannykh. – M.: Nedra, 1966. – 206 c.
40. Mirzadzhanzade A.X., Stepanova G.C.
Matematicheskaya teoriya eksperimenta v dobyche
nefti i gaza. – M.: Nedra, 1977. – 228 c.
41. Chini R.F. Statisticheskie metody v
goleogii. – M.: Mir, 1986. – 189 c.
42. Shaparov I.P. Primenenie matematicheskoi
statistiki v goleogii. – M.: Nedra, 1965. –
260 c.

43. Johnson N.L., Leone F.C. Statistics and
experimental design. – New York – London – Sydney –
Toronto, 1977. – 606 p.
44. Montgomery D.C., Peck E.A. Introduction to
liner regression analysis. – New York: John Wiley &
Sons, 1982. – 504 p.
45. Watson G.S. Statistic on spheres. – New York:
John Wiley and Sons, Inc., 1983. – 238 p.
46. Yarus J.M. Stochastic modeling and
geostatistics // AAPG. – Tulsa, Oklahoma, 1994. –
231 p.

Please cite this article in English as:
Popov N.A., Putilov I.S., Guliaeva A.A., Vinokurova E.E., Fairuzova Iu.V. Influence of the lithogenesis type of rocks on
porosity and permeability properties (the case of the Permo-carboniferous deposit of the Usinskoye field). Perm Journal
of Petroleum and Mining Engineering, 2020, vol.20, no.2, pp.104-114. DOI: 10.15593/2224-9923/2020.2.1

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом:
Влияние литогенетического типа горных пород на фильтрационно-емкостные свойства (на примере пермокарбоновой
залежи Усинского месторождения) / Н.А. Попов, И.С. Путилов, А.А. Гуляева, Е.Е. Винокурова, Ю.В. Файрузова //
Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и
gорное дело. – 2020. – Т.20, №2. – С.104–114. DOI: 10.15593/2224-9923/2020.2.1