Effect of heat-killed \textit{Streptococcus thermophilus} on type 2 diabetes rats

Xiangyang Gao 1 Equal first author, Fei Wang 1 Equal first author, Peng Zhao 1, 2, Rong Zhang 1, Qiang Zeng Corresp. 1

1 Health Management Institute, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
2 Health Management Center, HangZhou Special Service Convalescent Center of Air Force, PLA, Hangzhou, China

Corresponding Author: Qiang Zeng
Email address: zengqianghospital@126.com

Background and Aims: The link between gut microbiota and type 2 diabetes (T2D) has been addressed by numerous studies. \textit{Streptococcus thermophilus} from fermented milk products, has been used as a probiotic in previous research. However, whether heat-killed \textit{S. thermophilus} can improve the glycaemic parameters of diabetic rats remains unanswered. In this study, we evaluated the effect of heat-killed \textit{S. thermophilus} on T2D model rats and the potential mechanisms of the effect.

Methods: Zucker diabetic fatty (ZDF) rats were used to generate a diabetic rat model induced by feeding a high-fat diet. Heat-killed \textit{S. thermophilus} were orally administered to normal and diabetic rats for 12 weeks. Intestinal microbiota analysis, histology analysis, oral glucose tolerance test (OGTT) and measurement of inflammatory factors were performed.

Results: We found that heat-killed \textit{S. thermophilus} treatment reduced fasting blood glucose levels and alleviated glucose intolerance and total cholesterol in diabetic ZDF rats. Additionally, heat-killed \textit{S. thermophilus} increased the IL-10 while reducing the levels of LPS, IL-6 and TNF-α in diabetic ZDF rats. The heat-killed \textit{S. thermophilus} treatment can normalize the structure of the intestinal and colon mucosal layer of diabetic rats. The characteristics of the gut microbiota in heat-killed \textit{S. thermophilus}-treated and control rats were similar. At the genus level, the abundances of beneficial bacteria, including Ruminococcaceae, Veillonella, Coprococcus and Bamesiella, were all significantly elevated by heat-killed \textit{S. thermophilus} treatment in ZDF diabetic rats.

Conclusion: Our study supports the hypothesis that treatment with heat-killed \textit{S. thermophilus} could effectively improve glycaemic parameters in T2D model rats. In addition, the potential mechanisms underlying the protection maybe include changing the composition of gut microbiota, reinforcing the intestinal epithelial barrier and the immunity of the intestinal mucosa, decreasing the level of inflammation, and then reducing the insulin resistance.
Effect of heat-killed *Streptococcus thermophilus* on type 2 diabetes rats

Xiangyang Gao¹*, Fei Wang¹*, Peng Zhao¹,², Rong Zhang¹, Qiang Zeng¹#

¹Health Management Institute, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.
²Health Management Center, HangZhou Special Service Convalescent Center of Air Force, PLA, HangZhou, China.
*These authors contributed equally to this work.
#Corresponding author:
Qiang Zeng
No.28, Fuxing road, Beijing, 100039, China.
Email address: zengqianghospital@126.com.
Abstract

Background and Aims: The link between gut microbiota and type 2 diabetes (T2D) has been addressed by numerous studies. *Streptococcus thermophilus* from fermented milk products, has been used as a probiotic in previous research. However, whether heat-killed *S. thermophilus* can improve the glycaemic parameters of diabetic rats remains unanswered. In this study, we evaluated the effect of heat-killed *S. thermophilus* on T2D model rats and the potential mechanisms of the effect.

Methods: Zucker diabetic fatty (ZDF) rats were used to generate a diabetic rat model induced by feeding a high-fat diet. Heat-killed *S. thermophilus* were orally administered to normal and diabetic rats for 12 weeks. Intestinal microbiota analysis, histology analysis, oral glucose tolerance test (OGTT) and measurement of inflammatory factors were performed.

Results: We found that heat-killed *S. thermophilus* treatment reduced fasting blood glucose levels and alleviated glucose intolerance and total cholesterol in diabetic ZDF rats. Additionally, heat-killed *S. thermophilus* increased the IL-10 while reducing the levels of LPS, IL-6 and TNF-α in diabetic ZDF rats. The heat-killed *S. thermophilus* treatment can normalize the structure of the intestinal and colon mucosal layer of diabetic rats. The characteristics of the gut microbiota in heat-killed *S. thermophilus*-treated and control rats were similar. At the genus level, the abundances of beneficial bacteria, including Ruminococcaceae, Veillonella, Coprococcus and Bamesiella, were all significantly elevated by heat-killed *S. thermophilus* treatment in ZDF diabetic rats.

Conclusion: Our study supports the hypothesis that treatment with heat-killed *S. thermophilus* could effectively improve glycaemic parameters in T2D model rats. In addition, the potential mechanisms underlying the protection maybe include changing the composition of gut microbiota, reinforcing the intestinal epithelial barrier and the immunity of the intestinal mucosa, decreasing the level of inflammation, and then reducing the insulin resistance.

INTRODUCTION

Diabetes is a chronic metabolic disease and an important cause of mortality and morbidity worldwide, the prevalence of which is dramatically increasing. The number of adults with diabetes, mostly Type 2 diabetes (T2D), has increased to 422 million around the world. Diabetes and its complications account for more than 2 million deaths every year.

Recently, immense evidence has been obtained linking T2D and gut microbiota. The significant correlations with specific gut microbes, bacterial genes, and metabolic pathways in T2D patients were showed by a human metagenome-wide association study. The data from animal and human models also suggest that T2D is associated with a moderate degree to profound gut microbial dysbiosis. Increasing evidence indicates that gut microbiota are strongly associated with diabetes development. Other studies even show that gut microbiota markedly contribute to the incidence of T2D. The dysbiosis of gut microbiota may damage the intestinal epithelial barrier, and increase the intestinal permeability, and thus promotes metabolic endotoxemia, and systemic inflammation, leading to the development of insulin resistance.
thereby increasing the risk of developing T2D. These studies suggest that the gut microbiota are potential targets for the treatment of T2D.

Probiotics have been proven to be effective in T2D. Administration of probiotics in a rat model effectively inhibited gluconeogenesis in T2D. Treatments with probiotics have been demonstrated to be efficacious against tissue inflammation, and insulin resistance by modulating the gut microbial structure. However the efficacy in T2D subjects varies, depending on the types and strains of probiotics.

Probiotics, as defined by the World Health Organization (WHO), are live microorganisms, that confer a health benefit to the host, when administered in adequate amounts. However, in many cases, probiotic preparations comprised of dead cells and their metabolites can also exert a biological response similar to that seen with live cells. For example, both live and heat-killed Lactobacillus GG had a similar anti-inflammatory effect.

Streptococcus thermophilus is classified as a lactic acid bacterium (LAB), and it is found in fermented milk products, and generally used in the dairy industry. *S. thermophilus* scavenges reactive oxygen radicals, thus demonstrating its antioxidant properties. *S. thermophilus* also shows immunomodulatory effects by stimulating the gut immune system. And *S. thermophilus* has been used as a probiotic to help prevent developing insulin resistance in previous research. However, to our knowledge, the question as to whether heat-killed *S. thermophilus* can improve glycaemic parameters remains unanswered. In addition, the potential mechanisms underlying the possible protection are still poorly understood. Therefore, the purpose of this research was to identify the beneficial effects of heat-killed *S. thermophilus* on diabetic rats and the potential mechanisms.

MATERIALS AND METHODS

T2D animal model

The Zucker diabetic fatty (ZDF) rats were used as a T2D model. ZDF rats have been an important model for studying the mechanism of treatment on T2D. Seven-week-old male ZDF rats were purchased from Charles River (Beijing, China). After 1 week of acclimation, diabetes was then induced by feeding a high-fat diet of Purina5008 (17% kcal fat and 26.5% kcal protein, IPS Supplies, London, UK) for one month. Then, 12-week-old male ZDF rats were obtained, and fasting blood glucose (FBG) >11.1mmol/L was determined to be the standard concentration for the T2D model.

Control rats

Seven-week-old male Sprague-Dawley (SD) rats also were obtained from Charles River (Beijing, China). After acclimating for 1 week, they were used as control rats.

Both the ZDF and SD rats were maintained at 22±2°C with lights in an air-conditioned room with a 12-hour light/dark cycle, and were given free access to food and water. A standardized diet (kcal%: 10% fat, 20% protein, and 70% carbohydrate) was administered. All of the
experimental protocols were approved by the Animal Care Committee of the General PLA Hospital Animal Ethics Committee (Project CPLAGHAE-20171228-01).

Study design
The diabetic ZDF rats were randomly divided into two groups: a heat-killed *S. thermophilus*-treated diabetic group (DM + ST, KAWAI, Kawai Lactic Acid Bacteria Research Institute Co., Ltd., Japan, orally administered 0.21 g Kawai powder/kg body weight/day, n=5) and an untreated diabetic group (DM, orally administered the same volume of normal saline, n=5). Kawai powder contains 28.75% heat-killed *S. thermophilus* and 20.60% resistant dextrin, 20.00% isomaltooligosaccharide, 17.00% microcrystalline cellulose, 10.00% xylo-oligosaccharides, 2.55% Saccharomyces cerevisiae, and 1.10% lemon juice powder.

Control rats were randomly divided into an untreated control group (CON, administered normal saline, n=5) and a heat-killed *S.thermophilus*-treated control group (CON + ST, orally administered 0.21 g Kawai powder/kg body weight/day, n=5). After treatment for 12 weeks, fresh stool samples were obtained by stimulating the anus, and they were frozen and stored at -80°C for subsequent analysis. After food deprivation for 12 h, the rats were anesthetized, blood samples were collected from the aorta abdominalis, and then the rats were sacrificed.

Tissue collection and histology analysis
After rats were killed, the tissues of the ileum and colon were immediately excised, and then were cleaned with ice-cold phosphate-buffered saline solution. The tissues were fixed in 4% formalin solution, then embedded in paraffin before being cut into 4-μm slices, followed by hematoxylin-eosin (H&E) staining for measurement of villi length and crypt depth (10 villi and 10 crypts per section) under a light microscope (SZX16, Olympus, Japan).

Western blot analysis
The ileum and colon tissues were homogenized in RIPA lysis buffer containing protease inhibitor cocktail (Roche,Indianapolis, IN, USA). Protein homogenates were separated on SDS-PAGE gels and transferred to polyvinylidene difluoride membranes. After blocking for 1 h with 5% bovine serum albumin (BSA) in Tris-buffered saline with 0.1% Tween (TBST: 50mM Tris-HCl, 150mM NaCl, 0.1% Tween 20,pH 7.4), the membranes were incubated overnight with specific primary antibodies against Occludin(Abcam, Cambridge,UK), ZO-1 (Zonula occludens) (Santa Cruz Biotechnology, CA, USA), and β-actin (Zsbio, Beijing, China) at 4°C. Then, the membranes were incubated for 1 h with the appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies (anti-rabbit or anti-mouse IgG-HRP) (Jackson ImmunoResearch Inc, West Grove, PA, USA), and the bands were detected by using enhanced chemiluminescence. The blots were scanned by a Bio-Rad ChemiDoc XRS and the intensity of each protein was quantified by Gel Image system V4.00 software (Tanon, Shanghai, China).

Oral glucose tolerance test (OGTT)
At the end of the trial, an OGTT was performed after fasting for 12 h. Glucose (2 g/kg body weight) was orally administered to the rats. The blood glucose levels which were obtained from the tail were recorded with a OneTouch UltraEasy glucometer (Johnson & Johnson, New Brunswick, NJ, USA) before and 15, 30, 60, 90, and 120 min after the glucose load. The area under the curve (AUC) was calculated by using the linear trapezoid method.

Measurement of inflammatory factors, serum insulin, lipid profile, HOMA-IR, and HbA1c

After food deprivation for 12 h, rat serum was obtained to analyze inflammatory factors (interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) (ELISA, Elabscience, Wuhan, China), insulin (ELISA, Millipore, Billerica, MA, USA), total cholesterol (TC), triglyceride (TG, oxidase method; InTec Products, Fujian, China), high-density lipoprotein cholesterol concentrations (HDL-C), and low-density lipoprotein cholesterol concentrations (LDL-C, direct method, InTec Products, Fujian, China), according to the manufacturer's instruction. The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated by using the following formula: fasting blood glucose (FBG, mmol/L) × fasting serum insulin (μIU/ml)/22.5. Rat plasma was also analyzed for HbA1c (Immunoturbidimetry, InTec Products, Fujian, China).

Intestinal microbiota analysis

DNA extractions from total fecal bacteria were obtained using a QIAamp Stool DNA Extraction Kit (Qiagen, Valencia, CA, USA) according to the manufacturer's instructions. The microbial 16S rRNA hypervariable regions V3-V4 were amplified with indexes and adaptor-linked universal primers (341F: 50-ACTCCTACGGGAGGCAGCAG-30, 806R: 50-GGACTACHVGGGTWTCTAA-30T). PCR was performed by using a KAPA HiFi Hotstart PCR kit (KAPA Biosystems, Wilmington, DE, USA) with high fidelity enzyme in triplicate. Amplicon libraries were quantified using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and then sequenced on the Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA) for 250-bp paired-end reads. After discarding the singletons and removing chimeras, operational taxonomic units (OTUs) were generated using USEARCH (v7.0.1090) at 97% similarity by clustering the tags. Final OTUs were taxonomically classified based on the RDP classifier version 2.2 algorithm using the GreenGene database. Alpha diversity (Chao1, Shannon, Simpson) and beta diversity (principal coordinates analysis (PCoA) plots) were analyzed using QIIME version 1.7.0. In addition, a t test was performed to compare the differences between groups by using STAMP. The relative abundance of bacteria is expressed as the percentage (%).

Data analysis

The data are expressed as the mean ± standard deviation (SD). When the data were normal and variances were equal, differences among the groups were analyzed using t test. For non-normal distribution data, ln transformation was carried out before analysis. A p value <0.05 was
considered statistically significant. All of the statistical analyses were performed using the Statistical Package for Social Sciences version 17 software (SPSS Inc., Chicago, IL, USA).

Results

Body weight
The body weights of the heat-killed *S. thermophilus*–treated diabetic rats were comparable with those of the untreated diabetic rats (P > 0.05, Table 1). There was also no significant difference in body weight between the CON group and CON+ST group (P > 0.05, Table 2).

Fasting blood glucose level and glucose tolerance
The heat-killed *S. thermophilus* treatment reduced fasting blood glucose (FBG) levels in diabetic rats (P < 0.05, Figure 1). The blood glucose levels significantly decreased before and 15, 60, and 90 min after glucose load (P < 0.05, Figure 1) in the DM+ST group as compared to those in the DM group according to the OGTT. At the time points of 30 and 120 min after the glucose load, the blood glucose levels were lower in the DM+ST group than those in DM group, but the differences were not significant (P > 0.05, Figure 1). Compared with the DM group, the glucose area under the curve (AUC) for the OGTT in the DM+ST group exhibited a reduced glucose AUC by 14.7% (P < 0.05, Figure 2).

According to the OGTT, although there were no significant differences before and 15, and 120 min after the glucose load between the CON group and CON+ST group, the blood glucose levels significantly decreased 30 and 60 min after the glucose load (P < 0.05, Figure 3) in the CON+ST group as compared to those in the CON group. The CON+ST group exhibited a reduced glucose AUC by 18.2% (P < 0.05, Figure 4) for the OGTT, compared with the CON group.

Fasting insulin, HbA1c, and HOMA-IR
The heat-killed *S. thermophilus* treatment reduced serum insulin levels, HbA1c, and HOMA-IR (P < 0.05, Table 1) in ZDF diabetic rats. However, compared to the CON group, the heat-killed *S. thermophilus* treatment rats failed to produce significantly lower serum insulin levels or HOMA-IR in the CON+ST group (P < 0.05, Table 2).

Serum biochemical parameters
There were no significant differences in the serum creatinine, alanine aminotransferase (ALT), carbamide, or uric acid levels between the two groups in ZDF diabetic rats. The level of TC significantly increased in the DM+ST group, while the heat-killed *S. thermophilus* treatment did not significantly reduce the TG, HDL-C, or LDL-C levels in diabetic rats (P < 0.05, Table 1). In contrast, there were no significant difference in serum biochemical parameters in the CON+ST group compared to the CON group (P > 0.05, Table 1).

Inflammatory factors
Compared with the DM group, the inflammatory factors LPS, IL-6, and TNF-α significantly decreased and IL-10 significantly increased in the DM+ST group (P < 0.05, Table 1). There were no significant differences in the inflammatory factors between the CON+ST group and CON group (P > 0.05, Table 2).

Histological analysis
We examined the heat-killed *S. thermophilus* effects on the villi length and crypt depth in the ileum. In the diabetic rats, the intestinal mucosal layer was characterized by disturbed mucosal architecture, shortened villi, blunted villus tips, and inflammatory cell infiltration. In the DM+ST group, oral administration of *S. thermophilus* restored the normal structure of the intestinal mucosal layer (Figure 5). The length of villi and depth of crypts in the DM+ST group were significantly increased compared to those in DM group (Figure 6). Additionally, goblet cells were counted per villus/crypt in the ileum. The ileum exhibited a significant increase in total goblet cell number after treatment with *S. thermophilus* (39.2±4.2 vs 20.9±5.0, p < 0.05). Similar findings were also seen in the colonic tissues (Figure 5 and 7). There were no differences in the villi length and crypt depth and the numbers of goblet cells between the CON and CON+ST groups (Figure 8).

Western blot analysis
To explore the mechanisms underlying the heat-killed *S. thermophilus* effects on the barrier function, the expression levels of Occludin and ZO-1 proteins were determined by Western blot analysis. The results showed that Occludin and ZO-1 proteins in the DM+ST group were significantly elevated compared with the DM group both in the ileum and colon tissues (1.76-fold increases for Occludin and 2.29-fold increases for ZO-1 in the ileum tissues; 1.64-fold increases for Occludin and 1.46-fold increases for ZO-1 in the colon tissues, vs. the DM group) (Figure 9). There were no differences in the expression levels of Occludin and ZO-1 in the ileum or colon tissues between the CON and CON+ST groups (Figure 10).

Characterization of gut microbiota
In ZDF diabetic rats, the richness of the gut microbiota was increased in the DM+ST group compared with the DM group; however, the difference was not significant, as shown in Table 3. Significant difference did not exist between the CON+ST group and the CON group. As shown in Fig.11, to assess the bacterial community between two groups, a principal coordinate analysis (PCoA) for the unweighted UniFrac distance matrices was performed. The first two principal coordinates of PCoA (components 1 and 2) were separated into DM+ST and DM groups, which shared overlapping regions. As in the above analysis, the DM+ST and DM groups, and COM+ST and CON groups exhibited similar alpha and beta diversities in the gut microbiota. The results indicate that the treatment with heat-killed *S. thermophilus* could not improve the richness of the gut microbiota.
At the genus level, the abundance of *Ruminococcaceae*, *Veillonella*, *Coprococcus*, and *Barnesiella* was significantly elevated by heat-killed *S. thermophilus* treatment in ZDF diabetic rats (P < 0.05, Fig. 12), whereas *Phascolarctobacterium* and *Dorea* abundances were reduced by heat-killed *S. thermophilus* treatment in SD control rats (P < 0.05, Fig. 13).

DISCUSSION

In this study, heat-killed *S. thermophilus* bacteria were administered to ZDF T2D rats to test whether they have a protective effect. The ZDF diabetic rat is a well-characterized model of T2D, and the rats has been used in many studies to examine human T2D pathophysiology and the effects of therapeutic options. Interestingly, we found that the heat-killed *S. thermophilus* treatment effectively moderated insulin resistance and glucose intolerance in the ZDF T2D rat model. To our knowledge, this is the first report about the effect of the heat-killed *S. thermophilus* treatment on glycaemic parameters of diabetic rats. Many previous studies focused on the relation between live *S. thermophilus* and human. For instance, a multispecies probiotic supplement consisting of *S. thermophilus* reduced the fasting plasma glucose and serum high-sensitivity C-reactive protein, and increased plasma total glutathione. And the probiotic mix VSL#3, which contains *S. thermophilus*, increased insulin sensitivity, and affected the composition of gut microbiota. So our work provides new insights into the function of the heat-killed *S. thermophilus*.

Another effect of the heat-killed *S. thermophilus* treatment is that of significantly reducing the level of TC in the diabetic rats used in this study. The effect of removing cholesterol probably occurs by two mechanisms: binding cholesterol to the cell surface or deconjugating bile salts to prevent their recycling.

In addition, we found that the heat-killed *S. thermophilus* treatment increased the abundance of *Ruminococcaceae*, *Veillonella*, *Coprococcus* and *Barnesiella* at the genus level in diabetic rats. The normal gut microbiota has many functions, such as protection against pathogens, immunomodulation, maintenance of the gut mucosal barrier structural integrity, and nutrient and drug metabolism. As a member of short chain fatty acid producers, *Ruminococcaceae* is inversely correlated with increased intestinal permeability, and alcoholic cirrhosis. The abundance of *Ruminococcaceae* has been observed to significantly increase after treatment with fucoidan. *Coprococcus* is a butyrate-producing genera. Dietary intervention including extensively hydrolyzed casein formula supplemented with *Lactobacillus rhamnosus GG* to enrich Coprococcus could accelerate tolerance acquisition in infants who are allergic to milk. *Veillonella* are normal bacteria found in the intestines of mammals, that are well known for their lactate fermenting abilities. A positive association has been found between lactose levels and the abundance of the *Veillonella* genus. Anaerobic bacteria belonging to the *Barnesiella* genus enable clearance of intestinal colonization by the highly antibiotic-resistant bacterium vancomycin-resistant Enterococcus. When compared with high-fat, high-sucrose-fed mice, *Barnesiella spp* are the main discriminative feature of chow-fed mice. Therefore, *Barnesiella* may have a beneficial impact on host metabolism.
Many effects of probiotics are mediated through immune regulation and through the balance of anti-inflammatory and pro-inflammatory cytokines. In this study, the heat-killed \textit{S. thermophilus} treatment significantly decreased the inflammatory factors LPS, IL-6, and TNF-α, and increased IL-10. From the membranes of gram-negative bacteria, LPS penetrates into the blood via impaired permeability of the intestinal mucosa, which is caused by the reduced expression of adhesion and tight junction proteins50. Then, LPS triggers a strong pro-inflammatory reaction and secretion of proinflammatory cytokines from the host cells, followed by metabolic endotoxemia51. Metabolic endotoxemia increases systemic inflammation and impairs insulin sensitivity in both adipose tissue and the liver52. It can also impair insulin signaling by inducing endoplasmic reticulum stress and the activity of a histone acetyltransferase53. The high circulating LPS characterizes both incident and prevalent diabetes in a clinical observation also suggests the relevance of this putative mechanism to humans54. As the product of pro-inflammatory cells, IL-6 is involved in many biological processes, such as the host response to acute-phase reactions, haematopoiesis, enteric pathogens, and terminal differentiation of B-lymphocytes55. IL-10 is a potent deactivator of macrophage/monocyte proinflammatory cytokine synthesis56, such as downregulation of TNF-α secretion by macrophages57.

It was also found that the heat-killed \textit{S. thermophilus} treatment protected the intestinal barrier. In our study, an increased ileum villus/crypt length and number of goblet cells were observed in the DM+ST group with \textit{S. thermophilus} administration compared with the DM group. This is consistent with previous studies reporting that probiotic administration markedly deepened jejunal crypts in healthy rats58, and both villus and crypt were lengthened after treatment by emu oil59. The main role of goblet cells is to protect the mucous membrane by secreting mucus60. There is a strong association between intestinal flora and secretion of mucin61, as goblet cells may be regulated by interactions between the gastrointestinal mucosa and specific bacterial peptides62. The results of our study also showed that the Occludin and ZO-1 proteins in the DM+ST group were significantly elevated compared with the DM group both in the ileum and colon tissues. Intestinal barrier integrity is maintained by the tight junctions those are made of transmembrane, scaffold and adaptor proteins. Occludin is transmembrane protein embedded in the intracellular actin through attachment to adaptor protein ZO-163. It is widely reported that commensal bacteria have profound effects on epithelial integrity and permeability, particularly, on tight junctions maintenance64. A dysbiosis adversely enhances intestinal permeability by modulating the expression of epithelial tight junction proteins ZO-1 and Occludin65. The mucosal barrier is very important for protecting the host tissue from damage that is mediated by toxic products or luminal pathogens obtained from food or pathogenic bacteria, while allowing uptake of nutrients at the same time. A previous study showed that feeding fermented milk produced by \textit{S. thermophilus} and \textit{Bifidobacterium breve} could reinforce the intestinal barrier66. Another study also showed that live \textit{S. thermophilus} significantly increased the transepithelial electrical resistance in the intestinal Caco-2 cell monolayer by enhancement.
(actinin, occludin) or maintenance (actin, ZO-1) of cytoskeletal and tight junctional protein phosphorylation. In the current study, the *S. thermophilus* used was heat-killed instead of live cells. Both live and dead cells are capable of generating a biological response. Our result is consistent with a recent study which shows that pasteurized *Akkermansia muciniphila* is able to ameliorate high-fat diet induced dysglycemia. In a meta-analysis, modified (heat-killed or sonicated) probiotics were found to have effects similar to those of the living probiotics in most trials. The effects of heat-killed probiotics may be attributed to the dead cells and/or their metabolites. For example, metabolites released by *S. thermophilus* exerted an anti-TNF-α effect and were capable of crossing the intestinal barrier. Besides, a recombinant protein isolated from the *A. muciniphila* membrane can lead to an improved gut barrier. Notably, even *A. muciniphila*-derived extracellular vesicles can decrease gut permeability by regulating the tight junctions. It has also been documented that bacterial muramyl dipeptide reduces inflammation and promotes insulin signaling in the state of metabolic endotoxemia, and glycemias. As a bacterial metabolite, indole is able to counteract the pro-inflammatory and metabolism-altering effects of LPS in the liver. Similarly, SCFAs can improve barrier function, decrease inflammation, and promote the metabolism of lipids and glucose. In addition, microbiota-derived succinate can also improve glucose metabolism by acting on intestinal gluconeogenesis.

One limitation to widespread use of probiotic therapy is the concern regarding adverse effects, which may cause some pathology of their own. Compared with live probiotics, heat-killed probiotics are safer for purposes such as application in immunosuppressed patients and children. Another problem with live probiotics is that they would have to survive proteolytic enzymes and the low pH of stomach acid. The recovery rate of total *S. thermophilus* from the terminal ileum of minipigs was very low after digesting a certain amount of live cells. The preparation and administration of heat-killed probiotics are convenient compared to live probiotics. Products based on dead cells are easier to standardize, and store, and they also have a long shelf-life. Therefore, heat-killed probiotics may be a promising and safer alternative to live probiotics.

After the analysis of numerous studies, it was proposed that there may be a bacteria mucosal immunity-inflammation-diabetes (BMID) axis, through which herbal monomers and formulae improve diabetes. In this study, heat-killed *S. thermophilus* may also affect diabetes through the BMID axis by increasing the abundance of beneficial bacteria, protecting the intestinal epithelial barrier, and suppressing IL-6, LPS, and TNF-α secretion, and the end result is moderation of insulin tolerance.

CONCLUSION

Our study supports the hypothesis that treatment with heat-killed *S. thermophilus* could effectively improve the glycaemic parameters of T2D model rats. In addition, the potential mechanisms underlying the protection may consist of changing the composition of gut
microbiota, reinforcing the intestinal epithelial barrier and the immunity of the intestinal mucosa, decreasing the level of inflammation, and then reducing insulin resistance.

Acknowledgements

We are very grateful to CapitalBio Technology Co., Ltd. for excellent technical assistance with 16s sequencing experiments, and thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

References

1. Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.; Danaei, G.; Bixby, H.; J Cowan, M.; Ali, M.; Taddei, C.; Lo, W.-C.; Reis-Santos, B.; A Stevens, G.; M Riley, L.; Miranda, J. J.; Bjerregaard, P.; Rivera, J.; Fouad, H.; Ma, G.; Ezzati, M., Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. *The Lancet* 2016; Vol. 387, p 1513-1530.

2. Li, C.; Li, X.; Han, H.; Cui, H.; Peng, M.; Wang, G.; Wang, Z., Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: A meta-analysis of randomized, controlled trials. *Medicine (Baltimore)* 2016, 95 (26), e4088.

3. Nadja, L.; Vogensen, F. K.; Berg, F. W. J. V. D.; Dennis Sandris, N.; Anne Sofie, A.; Pedersen, B. K.; Waleed Abu, A. S.; Rensen, S. R. J.; Hansen, L. H.; Mogensen, J., Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. *PloS one* 2010, 5 (2), e9085.

4. Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; Peng, Y.; Zhang, D.; Jie, Z.; Wu, W.; Qin, Y.; Xue, W.; Li, J.; Han, L.; Lu, D.; Wu, P.; Dai, Y.; Sun, X.; Li, Z.; Tang, A.; Zhong, S.; Li, X.; Chen, W.; Xu, R.; Wang, M.; Feng, Q.; Gong, M.; Yu, J.; Zhang, Y.; Zhang, M.; Hansen, T.; Sanchez, G.; Raes, J.; Falony, G.; Okuda, S.; Almeida, M.; LeChatelier, E.; Renault, P.; Pons, N.; Batto, J. M.; Zhang, Z.; Chen, H.; Yang, R.; Zheng, W.; Li, S.; Yang, H.; Wang, J.; Ehrlich, S. D.; Nielsen, R.; Pedersen, O.; Kristiansen, K.; Wang, J., A metagenome-wide association study of gut microbiota in type 2 diabetes. *Nature* 2012, 490 (7418), 55-60.

5. Tilg, H.; Moschen, A. R., Microbiota and diabetes: an evolving relationship. *Gut* 2014, 63 (9), 1513-1521.

6. Haro, C.; Montes-Borrego, M.; Rangel-Zúñiga, O. A.; Alcalá-Díaz, J. F.; Gómez-Delgado, F.; Pérez-Martínez, P.; Delgado-Lista, J.; Quintana-Navarro, G. M.; Tinahones, F. J.; Landa, B. B., Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. *Journal of Clinical Endocrinology & Metabolism* 2015, 101 (1), jc20153351.

7. Mejía-León, M. E.; Barca, A. M. C. D. L., Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution. *Nutrients* 2015, 7 (11), 9171-9184.

8. Baothman, O. A.; Zamzami, M. A.; Taher, I.; Abubaker, J.; Abu-Farha, M., The role of Gut Microbiota in the development of obesity and Diabetes. *Lipids in Health & Disease* 2016, 15 (1), 1-8.

9. Ningwen, T.; F Susan, W.; Li, W., The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. *Reviews in Endocrine & Metabolic Disorders* 2015, 16 (1), 55-65.

10. Prattichizzo, F.; Giuliani, A.; Mensà, E.; Sabbatinelli, J.; De Nigris, V.; Rippo, M. R.; La Sala, L.; Procopio, A. D.; Oливieri, F.; Ceriello, A., Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. *Ageing research reviews* 2018, 48, 87-98.
11. Winer, D. A.; Luck, H.; Tsai, S.; Winer, S., The Intestinal Immune System in Obesity and Insulin Resistance. *Cell metabolism* 2016, 23 (3), S1550413116000371.
12. Jorge, H. M.; Eran, E.; Chengcheng, J.; Liming, H.; Mehal, W. Z.; Till, S.; Thaiss, C. A.; Kau, A. L.; Eisenbarth, S. C.; Jurczak, M. J., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. *Nature* 2012, 482 (7384), 179-185.
13. Boulange, C.; Neves, A. L.; Chilloux, J.; Nicholson, J.; Dumas, M.-E., Impact of the gut microbiota on inflammation, obesity, and metabolic disease. 2016; Vol. 8.
14. Pedersen, H. K.; Gudmundsdottir, V.; Nielsen, H. B.; Hyotylainen, T.; Nielsen, T.; Jensen, B. A.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; Le Chatelier, E.; Levenez, F.; Dore, J.; Mattila, I.; Plichta, D. R.; Pofo, P.; Hellgren, L. I.; Arumugam, M.; Sunagawa, S.; Vieira-Silva, S.; Jorgensen, T.; Holm, J. B.; Trost, K.; Meta, H. I. T. C.; Kristiansen, K.; Brix, S.; Raes, J.; Wang, J.; Hansen, T.; Bork, P.; Brunak, S.; Oresic, M.; Ehrlich, S. D.; Pedersen, O., Human gut microbes impact host serum metabolome and insulin sensitivity. In *Nature*, 2016; Vol. 535, pp 376-81.
15. Hartstra, A. V.; Nieuwdorp, M.; Herrema, H., Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. 2016; Vol. 57.
16. Amandine, E.; Clara, B.; Lucie, G.; Ouwerkerk, J. P.; Céline, D.; Bindels, L. B.; Yves, G.; Muriel, D.; Muccioli, G. G.; Delzenne, N. M., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. *Proceedings of the National Academy of Sciences of the United States of America* 2013, 110 (22), 9066-9071.
17. Angela, M. P.; Alexander, N.; Yolanda, S., Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. *PloS one* 2015, 10 (7), e0126976.-
18. Na-Ri, S.; June-Chul, L.; Hae-Youn, L.; Min-Soo, K.; Tae Woong, W.; Myung-Shik, L.; Jin-Woo, B., An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. *Gut* 2014, 63 (5), 727-735.
19. FAO/WHO, Report on joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Available from: URL: http://www.fao.org./es/ESN/Probio/probio.htm 2001.
20. Dotan, I.; Rachmilewitz, D., Probiotics in inflammatory bowel disease: possible mechanisms of action. *Curr.opin.gastroenterol* 2005, 21 (4), 426.
21. Sashihara, T.; Sueki, N.; Ikegami, S., An Analysis of the Effectiveness of Heat-Killed Lactic Acid Bacteria in Alleviating Allergic Diseases. *Journal of dairy science* 2006, 89 (8), 2846-2855.
22. Liyan, Z.; Nan, L.; Ricardo, C.; Josef, C., Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-alpha-induced interleukin-8 production in Caco-2 cells. *Journal of Nutrition* 2005, 135 (7), 1752-6.
23. Ehud, B.; Felix, M.; Marisa, H.; Abraham, W., Lactobacillus GG bacteria ameliorate arthritis in Lewis rats. *Journal of Nutrition 2004*, 134 (8), 1964.
24. Kilic, A. O.; Pavlova Sima, W. G.; Tao, L., ANALYSIS OF LACTOBACILLUS PHAGES AND BACTERIOCINS IN AMERICAN DAIRY PRODUCTS AND CHARACTERIZATION OF A PHAGE ISOLATED FROM YOGURT. *Applied & Environmental Microbiology* 1996, 62 (6), 2111-2116.
25. Lin, M. Y.; Yen, C. L., Antioxidative ability of lactic acid bacteria. *J Agric Food Chem* 1999, 47 (4), 1460-1466.
26. Bruno-Barcena, J. M.; Andrus, J. M.; Libby, S. L.; Klaenhammer, T. R.; Hassan, H. M., Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. *Applied & Environmental Microbiology* 2004, 70 (8), 4702.
27. Donkor, O. N.; Ravikumar, M.; Proudfoot, O.; Day, S. L.; Apostolopoulos, V.; Paukovics, G.; Vasiljevic, T.; Nutt, S. L.; Gill, H., Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. *Clinical & Experimental Immunology* **2012**, *167* (2), 282-295.

28. Delorme, C., Safety assessment of dairy microorganisms: *Streptococcus thermophilus*. *International journal of food microbiology* **2008**, *126* (3), 274-277.

29. Asemi, Z.; Samimi, M.; Tabassi, Z.; Rad, M. N.; Foroushani, A. R.; Khorammian, H.; Esmailzadeh, A., Effect of daily consumption of probiotic yoghurt on insulin resistance in pregnant women: a randomized controlled trial. *Pakistan Journal of Biological Sciences Pjbs* **2013**, *60* (1), 71-74.

30. Finegood, D.; McArthur, M.; Kojwang, D.; Thomas, M.; Topp, B.; Leonard, T.; Buckingham, R., Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. *Diabetes* **2001**, *50* (5), 1021-1029.

31. Leonard, B. L.; Watson, R. N.; Loomes, K. M.; Phillips, A. R. J.; Cooper, G. J., Insulin resistance in the Zucker diabetic fatty rat: a metabolic characterisation of obese and lean phenotypes. *Acta Diabetologica* **2005**, *42* (4), 162-170.

32. Zhang, Q.; Sun, X.; Xiao, X.; Zheng, J.; Li, M.; Yu, M.; Ping, F.; Wang, Z.; Qi, C.; Wang, T., Maternal Chromium Restriction Leads to Glucose Metabolism Imbalance in Mice Offspring through Insulin Signaling and Wnt Signaling Pathways. *International journal of molecular sciences* **2016**, *17* (10), 1767-1776.

33. Ferreira, L.; Teixeira-De-Lemos, E.; Pinto, F.; Parada, B.; Mega, C.; Vala, H.; Pinto, R.; Garrido, P.; Sereno, J.; Fernandes, R., Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). *Mediators of Inflammation* **2010**, (2010-05-31) **2010**, *2010* (1), 60-68.

34. Christos, T.; Wookey, P. J.; Riccardo, C.; Sof, A.; Thomas, M. C.; Cooper, M. E., Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat. *Diabetes* **2004**, *53* (4), 989-997.

35. Asemi, Z.; Zare, Z.; Shakeri, H.; Sabihi, S. S.; Esmailzadeh, A., Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. *Annals of nutrition & metabolism* **2013**, *63* (1-2), 1-9.

36. Rajkumar, H.; Mahmood, N.; Kumar, M.; Varikuti, S. R.; Challa, H. R.; Myakala, S. P., Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: a randomized, controlled trial. *Mediators of inflammation* **2014**, *2014* (9), 348959.

37. Kimoto, H.; Ohmomo, S.; Okamoto, T., Cholesterol Removal from Media by Lactococci. *Journal of dairy science* **2002**, *85* (12), 3182-3188.

38. Liong, M. T.; Shah, N. P., Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. *Journal of dairy science* **2005**, *88* (1), 55-66.

39. Iyer, R.; Tomar, S. K.; Maheswari, T. U.; Singh, R., *Streptococcus thermophilus* strains: Multifunctional lactic acid bacteria. *International Dairy Journal* **2010**, *20* (3), 133-141.

40. Kim, S.-J.; Hoon Park, S.; Sin, H.-S.; Jang, S.-H.; Lee, S.-W.; Kim, S.-Y.; Kwon, B.; Yu, K.-Y.; Kim, S. Y.; Kwon Yang, D., Hypocholesterolemic Effects of Probiotic Mixture on Diet-Induced Hypercholesterolemic Rats. 2017; Vol. 9, p 293.

41. Jandhyala, S. M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D. N., role of the normal gut microbiota. *World journal of gastroenterology* **2015**, *21* (29), 8787-8803.

42. Leclercq, S.; Matamoros, S.; Cani, P. D.; Neyrinck, A. M.; Jamar, F.; Starkel, P.; Windey, K.; Tremaroli, V.; Backhed, F.; Verbeke, K.; de Timiry, P.; Delzenne, N. M., Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. *Proceedings of the National Academy of Sciences of the United States of America* **2014**, *111* (42), E4485-93.
of human gut microbiome is associated with cirrhosis and its complications. *Journal of Hepatology* **2014**, *60*(5), 940-7.

44. Shang, Q.; Shan, X.; Cai, C.; Hao, J.; Li, G.; Yu, G., Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. *Food & Function* **2016**, *7*(7), 3224.

45. Fujio-Vejar, S.; Vasquez, Y.; Morales, P.; Magne, F.; Vera-Wolf, P.; Ugalde, J. A.; Navarrete, P.; Gotteland, M., The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. *Frontiers in Microbiology* **2017**, *8*, 1221.

46. Berni Canani, R.; Sangwan, N.; T Stefka, A.; Nocerino, R.; Paparo, L.; Aitoro, R.; Calignano, A.; A Khan, A.; Jack, G.; R Nagler, C., *Lactobacillus rhamnosus GG*-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. 2015; Vol. 10.

47. Pimentel, G.; Burton, K. J.; Rosikiewicz, M.; Freiburghaus, C.; Von, A. U.; Münger, L. H.; Pralong, F. P.; Vionnet, N.; Greub, G.; Badertscher, R., Blood lactose after dairy product intake in healthy men. *British Journal of Nutrition* **2017**, *118*(12), 1070.

48. Carles, U.; Vanni, B.; Silvia, C.; Ana, D.; Toussaint, N. C.; Michele, E.; Lauren, L.; Lilan, L.; Asia, G.; Daniel, N., Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. *Infection & immunity* **2013**, *81*(3), 965-973.

49. Anhê, F. F.; Nachbar, R. T.; Varin, T. V.; Vilela, V.; Dudonné, S.; Pilon, G.; Fournier, M.; Lecours, M. A.; Desjardins, Y.; Roy, D., A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. *Molecular Metabolism* **2017**, *6*(12), 1563-1573.

50. Cani, P. D.; Rodrigo, B.; Claude, K.; Aurélie, W.; Neyrinck, A. M.; Delzenne, N. M.; Rémy, B., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. *Diabetes* **2008**.

51. Bäckhed, F.; Normark, S.; Schweda, E. K. H.; Oscarson, S.; Richter-Dahlfors, A., Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. *Microbes & Infection* **2003**, *5*(12), 1057-1063.

52. Cani, P.; Amar, J.; Iglesias, M.; Poggi, M.; Krauf, C.; Bastelica, D.; Neyrinck, A.; Fava, F.; Tuohy, K.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.-F.; R Gibson, G.; Castella, L.; Burcelin, R., *Metabolic Endotoxemia Initiates Obesity and Insulin Resistance*. 2007; Vol. 56, p 1761-72.

53. Cao, J.; Peng, J.; An, H.; He, Q.; Boronina, T.; Guo, S.; White, M. F.; Cole, P. A.; He, L., Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. *Nature Communications* **2017**, *8*(1), 131.

54. Pussinen, P. J.; Havulinna, A. S.; Lehto, M.; Sundvall, J.; Salomaa, V., Endotoxemia is associated with an increased risk of incident diabetes. *Diabetes Care* **2011**, *34*(2), 392-397.

55. Adams, C. A., The probiotic paradox: live and dead cells are biological response modifiers. *Nutrition Research Reviews* **2010**, *23*(1), 37-46.

56. Clarke, C.; Hales, A.; Hunt, A.; Foxwell, B., IL-10-mediated suppression of TNF-alpha production is independent of its ability to inhibit NF kappa B activity. *European Journal of Immunology* **2015**, *45*(5), 1719-1726.

57. Fiorentino, D. F.; Zlotnik, A.; Mosmann, T. R.; Howard, M.; O’Garra, A., IL-10 inhibits cytokine production by activated macrophages. *Journal of Immunology* **1991**, *147*(11), 3815-22.

58. Tazuke, Y.; Wasa, M.; Satoko, N.; Fukuzawa, M., Protective mechanism of glutamine on the expression of proliferating cell nuclear antigen after cisplatin-induced intestinal mucosal injury. *Pediatric Surgery International* **2011**, *27*(2), 151-158.

59. Abimosleh, S. M.; Lindsay, R. J.; Butler, R. N.; Cummins, A. G.; Howarth, G. S., Emu oil increases colonic crypt depth in a rat model of ulcerative colitis. *Digestive Diseases & Sciences* **2012**, *57*(4), 887-896.
60. Catherine, R.; Calliope, C.; Bernadette, C.; Jean-Claude, M., Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. *Biochemical Journal* 2004, 384 (2), 307-16.

61. Yeung, C. Y.; Chan, W. T.; Jiang, C. B.; Cheng, M. L.; Liu, C. Y.; Chang, S. W.; Chiau, J. S. C.; Lee, H. C., Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model. *PloS one* 2015, 10 (9), e0138746.

62. Leiper, K.; Campbell, B. J.; Jenkinson, M. D.; Milton, J.; Lugang, Y. U.; Democratis, J.; Rhodes, J. M., Interaction between bacterial peptides, neutrophils and goblet cells: a possible mechanism for neutrophil recruitment and goblet cell depletion in colitis. *Clinical Science* 2001, 101 (4), 395-402.

63. Zweimueller-Mayer, J.; Steinbacher, P.; Lametschwandtner, A.; Bauer, H.-C., The Dual Role of Zonula Occludens (ZO) Proteins. 2010; Vol. 2010, p 402593.

64. Alam, M. A.; Neish, A., Role of gut microbiota in intestinal wound healing and barrier function. 2018; Vol. 6, p 1-22.

65. Cani, P.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.; Muccioli, G.; Delzenne, N., Changes in Gut Microbiota Control Inflammation in Obese Mice through a Mechanism Involving GLP-2-Driven Improvement of Gut Permeability. 2009; Vol. 58, p 1091-103.

66. Terpend, K.; Blaton, M. A.; Candalh, C.; Wal, J. M.; Pochart, P.; Heyman, M., Intestinal barrier function and cow’s milk sensitization in guinea pigs fed milk or fermented milk. *Journal of Pediatric Gastroenterology & Nutrition* 1999, 28 (2), 191-8.

67. Resta-Lenert, S.; Barrett, K. E., Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). *Gut* 2003, 52 (7), 988-997.

68. Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; Myridakis, A.; Delzenne, N.; Klievink, J.; Bhattacharjee, A.; van der Ark, K.; Aalvink, S.; Martinez, L.; Dumas, M.-E.; Maiter, D.; Cani, P., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. 2016; Vol. 23.

69. Zorzela, L.; Ardestani, S. K.; McFarland, L. V.; Vohra, S., Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. *Beneficial microbes* 2017, 8 (5), 1-16.

70. Ménard, S.; Candalh, C.; Bambou, J. C.; Terpend, K.; Cerf-Bensussan, N.; Heyman, M., Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. *Gut* 2004, 53 (6), 821.

71. Chehakkot, C.; Choi, Y.; Kim, D. K.; Park, H. T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M. S.; Jee, Y. K.; Gho, Y. S., Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. *Experimental & Molecular Medicine* 2018, 50 (2), e450.

72. Cavallari, J. F.; Fullerton, M. D.; Duggan, B. M.; Foley, K. P.; Denou, E.; Smith, B. K.; Desjardins, E. M.; Henriksbo, B. D.; Kim, K. J.; Tuinema, B. R., Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. *Cell metabolism* 2017, 25 (5), 1063-1074.

73. Beaumont, M.; Neyrinck, A. M.; Olivares, M.; Rodriguez, J.; Nathalie, M. D., The gut microbiota metabolite indole alleviates liver inflammation in mice. *Faseb Journal* 2018, 32 (12), fj.201800544.

74. Elamin, E. E.; Masclee, A. A.; Jan, D.; Harm-Jan, P.; Jonkers, D. M., Short-Chain Fatty Acids Activate AMP-Activated Protein Kinase and Ameliorate Ethanol-Induced Intestinal Barrier Dysfunction in Caco-2 Cell Monolayers. *Journal of Nutrition* 2013, 143 (12), 1872-1881.

75. L. Sonnenburg, J.; Bäckhed, F., Diet-microbiota interactions as moderators of human metabolism. 2016; Vol. 535, p 56-64.
648 76. Canfora, E.; W Jocken, J.; Blaak, E., *Short-chain fatty acids in control of body weight and insulin sensitivity*. 2015; Vol. 11.

649 77. De, V. F.; Kovatchevadatchary, P.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G., Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. *Cell metabolism* 2016, 24 (1), 151-157.

650 78. Mhrouster-Stevens, L., Lactobacillus sepsis associated with probiotic therapy. *Journal of Urology* 2005, 174 (5), 1843-1843.

651 79. Berger, R. E., Lactobacillus Sepsis Associated With Probiotic Therapy. *Journal of Urology* 2005, 174 (5), 1843-1843.

652 80. Vintiñi, E. O.; Medina, M. S., Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei. *BMC Immunology*, 12, 1 (2011-08-11) 2011, 12 (1), 46-46.

653 81. Lick, S.; Drescher, K.; Heller, K. J., Survival of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the terminal ileum of fistulated Göttingen minipigs. *Applied & Environmental Microbiology* 2001, 67 (9), 4137-43.

654 82. Josef, N.; Ricardo, C., Probiotics: protecting the intestinal ecosystem? *Journal of Pediatrics* 2005, 147 (2), 143-146.

655 83. Gao, Z.; Li, Q.; Wu, X.; Zhao, X.; Zhao, L.; Tong, X., New Insights into the Mechanisms of Chinese Herbal Products on Diabetes: A Focus on the “Bacteria-Mucosal Immunity-Inflammation-Diabetes” Axis. *Journal of Immunology Research* 2017, 2017, 1-13.
Table 1 (on next page)

The differences in some variables between the DM+ST and DM groups

N=5 in each group. Data represented as means ± SD. ALT: Alanine aminotransferase, TC: Total cholesterol, HDL-C: High-density lipoprotein cholesterol, LDL-C: Low-density lipoprotein cholesterol, LNIL6: Ln transformation of interleukin-6, LNIL10: Ln transformation of interleukin-10, LnTNF-α: Ln transformation of tumornecrosisfactor-α, LPS: Lipopolysaccharide, HOMA-IR: Homeostasis model assessment of insulin resistance, FBG: Fasting blood glucose.

The heat-killed *S. thermophilus* treatment reduced TC, LPS, IL-6, IL-10, TNF-α, fasting insulin levels, HbA1c, FBG, and HOMA-IR in ZDF diabetic rats; *P < 0.05.*
Variables	DM	DM+ST	t	p
Weight (g)	354.2±35.2	360.2±33.0	-0.3	0.788
Creatinine (umol/l)	16.0±6.2	15.0±2.1	0.3	0.742
ALT (U/L)	119.4±51.5	123.4±52.7	-0.1	0.906
Carbohydrate (mmol/l)	6.0±0.8	7.2±1.6	-1.6	0.159
Uric acid (umol/l)	116.2±32.6	122.6±18.2	-0.4	0.711
TC (mmol/l)	5.5±0.4	4.7±0.2	4.1	0.003*
Triglyceride (mmol/l)	3.0±0.9	2.5±0.3	1.2	0.304
HDL-C (mmol/l)	2.7±0.2	2.5±0.2	1.8	0.115
LDL-C (mmol/l)	1.2±0.2	0.9±0.1	2.5	0.063
LPS (ng/ml)	0.7±0.1	0.5±0.1	2.9	0.019*
LNIL6 (pg/ml)	4.6±0.6	3.9±0.3	2.7	0.038*
LNIL10 (pg/ml)	4.0±0.3	4.5±0.3	-2.4	0.046*
LnTNF-α (pg/ml)	4.1±0.3	3.6±0.2	3.0	0.017*
Fasting insulin (uIU/ml)	107.6±18.1	67.0±8.3	4.6	0.002*
HOMA-IR	106.7±25.5	40.8±3.8	5.7	0.004*
HbA1c (%)	12.0±2.0	8.6±1.2	3.3	0.011*
FBG (mmol/L)	22.3±3.6	13.7±1.0	3.1	0.036*
The differences in some variables between the CON+ST and CON groups

\(N=5 \) in each group. Data represented as means ± SD. ALT: Alanine aminotransferase, TC: Total cholesterol, HDL-C: High-density lipoproteincholesterol, LDL-C: Low-density lipoproteincholesterol, LNIL6: Ln transformation of interleukin-6, LNIL10: Ln transformation of interleukin-10, LnTNF-α: Ln transformation of tumornecrosisfactor-α, LPS: Lipopolysaccharide, HOMA-IR: Homeostasis model assessment of insulin resistance, FBG: Fasting blood glucose. Compared to the CON group, the heat-killed S. thermophilus treatment rats failed to show significant variations.
Variables	CON+ST	CON	t	p
Weight(g)	503.2±48.5	476.8±37.3	1.0	0.363
Creatinine(umol/l)	24.2±2.8	26.2±4.7	-0.8	0.437
ALT(U/L)	37.6±9.8	36.8±7.6	0.1	0.889
Carbamide(mmol/l)	6.1±1.4	5.7±1.5	0.4	0.709
Uric acid(umol/l)	122.8±21.7	154.0±66.6	-1.0	0.348
TC(mmol/l)	1.4±0.3	1.8±0.4	-1.8	0.11
Triglyceride (mmol/l)	0.7±0.2	0.7±0.3	0.1	0.963
HDL-C(mmol/l)	0.8±0.2	0.9±0.2	-1.3	0.246
LDL-C(mmol/l)	0.3±0.1	0.4±0.1	-1.6	0.16
LPS(ng/ml)	0.4±0.1	0.4±0.1	-1.0	0.369
Inln6(pg/ml)	4.0±0.2	4.1±0.3	-0.6	0.585
InlnL10(pg/ml)	4.3±0.5	4.1±0.1	0.8	0.465
InTNF-α(pg/ml)	3.9±0.4	4.1±0.3	-1.1	0.323
Fasting insulin (uIU/ml)	41.1±7.0	42.2±12.5	-0.2	0.863
FBG (mmol/L)	6.7±0.6	6.9±0.6	-0.4	0.72
HOMA-IR	12.3±2.8	12.7±2.9	-0.2	0.857
Table 3 (on next page)

Alpha diversity indices

Data are presented as means ± SD (n = 5). In ZDF diabetic rats, the richness of the gut microbiota was increased in the DM+ST group compared with the DM group; however, the difference was not significant (P>0.05, t test and Wilcoxon rank-sum test). Significant difference did not exist between the CON+ST group and the CON group (P>0.05, t test and Wilcoxon rank-sum test).
	CON	CON+ST	DM	DM+ST
OTUs	1497.40 ± 327.41	1504.20 ± 275.38	1064.60 ± 230.90	1298.60 ± 323.53
Chao1	4143.66 ± 490.57	4218.70 ± 524.60	3253.11 ± 518.16	3185.49 ± 733.41
Shannon	117.34 ± 11.09	121.01 ± 11.65	86.96 ± 8.13	90.94 ± 20.40
Simpson	6.76 ± 0.66	6.88 ± 0.39	4.92 ± 0.70	5.72 ± 1.22
PD_whole_tree	0.93 ± 0.04	0.93 ± 0.02	0.81 ± 0.08	0.87 ± 0.09
Figure 1 (on next page)

The effect of heat-killed S.thermophilus on blood glucose during the OGTT in the DM+ST and DM groups

OGTT: oral glucose tolerance test. Error bars represent one standard deviation. The blood glucose levels significantly decreased before and 15, 60, and 90 min after glucose load in the DM+ST group as compared to those in the DM group according to the OGTT. * p<0.05.
Area under the curve (AUC) for the OGTT in the DM+ST and DM groups

Compared with the DM group, the glucose area under the curve (AUC) for the OGTT in the DM+ST group exhibited a reduced glucose AUC by 14.7%; *P<0.05.
AUC (mmol/L/min)

DM
DM + ST

*
The effect of heat-killed S.thermophilus on blood glucose during the OGTT in the CON+ST and CON groups

OGTT: oral glucose tolerance test. Error bars represent one standard deviation. According to the OGTT, although there were no significant differences before and 15, and 120 min after the glucose load between the CON group and CON+ST group, the blood glucose levels significantly decreased 30 and 60 min after the glucose load in the CON+ST group as compared to those in the CON group. * p<0.05.
Figure 4 (on next page)

Area under the curve (AUC) for the OGTT in the CON+ST and CON groups

The CON+ST group exhibited a reduced glucose AUC by 18.2% for the OGTT, compared with the CON group; *P<0.05.
Figure 5

Representative histology of the ileum and colon with HE stain in T2D model rats.

(A) Histology of the ileum in the DM group, (B) histology of the ileum in the DM+ST group, (C) histology of the colon in the DM group, and (D) histology of the colon in the DM+ST group. The image acquisition phase was performed with a 50X objective. Scale bar = 200 μm. In the diabetic rats, the intestinal mucosal layer was characterized by disturbed mucosal architecture, shortened villi, blunted villus tips, and inflammatory cell infiltration. In the DM+ST group, oral administration of *S. thermophilus* restored the normal structure of the intestinal mucosal layer.
The length of villi and depth of crypts in the ileum of diabetic rats

The length of villi and depth of crypts in the ileum in the DM+ST group were significantly increased compared to those in DM group; *P<0.05.
Figure 7 (on next page)

The length of villi and depth of crypts in the colon of diabetic rats

The length of villi and depth of crypts in the colon in the DM+ST group were significantly increased compared to those in DM group; *P<0.05.
Figure 8

Representative histology of the ileum and colon with HE stain in SD rats

(A) Histology of ileum in the CON group, (B) Histology of ileum in the CON+ST group, (C) Histology of colon in the CON group, (D) Histology of colon in the CON+ST group. The image acquisition phase was performed with a 50X objective. Scale bar = 200 μm. The characteristics of the intestinal mucosal layer were similar between the CON+ST group and CON group. There were no differences in the villi length and crypt depth and the numbers of goblet cells between the CON+ST group and CON group.
Figure 9 (on next page)

Effects of the heat-killed *S. thermophilus* treatment on tight junction proteins in the DM+ST and DM groups.

(A) Ileum and colon extracts from DM+ST and DM groups were used for Western blot analysis; (B) Expression levels of Occludin were quantified by measuring band densities; (C) Expression levels of ZO-1 were quantified by measuring band densities. β-actin was used as a loading control. * p<0.05.
Figure 10 (on next page)

Effects of the heat-killed *S. thermophilus* treatment on tight junction proteins in the CON+ST and CON groups

(A) Ileum and colon extracts from CON+ST and CON groups were used for Western blot analysis; (B) Expression levels of Occludin were quantified by measuring band densities; (C) Expression levels of ZO-1 were quantified by measuring band densities. β-actin was used as a loading control.
Figure 11

PCoA of unweighted UniFrac distances of the gut bacterial communities between the DM+ST and DM groups

The first two principal coordinates of PCoA were separated into DM+ST and DM groups, which shared overlapping regions.
Figure 12 (on next page)

The t test results of the relative abundance (%) of bacteria from the DM+ST and DM groups.

At the genus level, the abundance of *Ruminococcaceae, Veillonella, Coprococcus, and Bamesiella* was significantly elevated by heat-killed *S. thermophilus* treatment in ZDF diabetic rats.
Figure 13(on next page)

The t test results of the relative abundance (%) of bacteria from the CON+ST and CON groups

Compared with the CON group, Phascolarctobacterium and Dorea abundances were reduced by heat-killed S. thermophilus treatment in the CON+ST group.
