The present study is devoted to an attempt to improve the characteristics of nickel hydroxide electrochromic films. The study of optical and electrochemical characteristics of the films, prepared through the codeposition of nickel and aluminum and additional modification during the cycling of the prepared samples was conducted. The modification was realized through the cycling of films in the solution of potassium hydroxide with small amounts of potassium tungstate.

Over the course of the study, a series of films were obtained, which demonstrated different electrochemical and optical behavior. Thus, it was found that both the deposition method and the cycling regime have a significant effect on the characteristics of electrochromic films.

It is shown that for the potentiodynamic regime, the best characteristics were demonstrated by the film without modifications or additives. On the other hand, all modified films, codeposited with aluminum, demonstrated better characteristics in galvanostatic regimes over the reference film. It would appear that this is due to the physicochemical features of the films deposited in the presence of additives.

In turn, the use of high-rate cycling regime leads to a decrease of electrochromic characteristics, namely higher degree of irreversibility. Despite the difference of currents in different galvanostatic regimes by 4 times, the coloration degree did not differ much.

It was also found that the presence of 0.3 mM potassium tungstate in the cycling electrolyte resulted in a significant decrease in the electrochromic properties of the samples.

**Keywords:** electrochromism, nickel hydroxide, layered double hydroxide, aluminium, tungstate, polyvinyl alcohol, electrodeposition, cycling.

**References**

1. An, M., Kim, Y., Cho, W.-K. (2019). Effect of smart devices on the quality of CPR training: A systematic review. Resuscitation, 144, 145–156. doi: https://doi.org/10.1016/j.resuscitation.2019.07.011
2. Al-Taani, H., Arabasi, S. (2018). Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems. Sustainability, 10 (2), 508. doi: https://doi.org/10.3390/su10020508
3. Beneduci, A., Corrente, G. A., Chidichimo, G. (2019). Chapter 9. Electrochromic and Electrofluorescence Liquid Crystals Electrochromic Smart Materials, 261–292. doi: https://doi.org/10.1038/9781788016667-00261
4. Sheetah, G. H., Liu, Q., Senyuk, B., Fleury, B., Smalyukh, I. I. (2018). Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes. Optics Express, 26 (17), 22264–22272. doi: https://doi.org/10.1364/oe.26.022264
5. Lee, S. J., Lee, T.-G., Nahm, S., Kim, D. H., Yang, D. J., Han, S. H. (2020). Investigation of all-solid-state electrochromic devices with durability enhanced tungsten-doped nickel oxide as a counter electrode. Journal of Alloys and Compounds, 815, 152399. doi: https://doi.org/10.1016/j.jallcom.2019.152399
6. Ciobanu, M., Klein, J., Middendorf, M., Beladi Mousavi, S. M., Carl, F., Haase, M., Walder, L. (2019). High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide. Solar Energy Materials and Solar Cells, 203, 110186. doi: https://doi.org/10.1016/j.solmat.2019.110186
7. Ghosh, A., Norton, B. (2019). Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply. Renewable Energy, 131, 993–1001. doi: https://doi.org/10.1016/j.renene.2018.07.115
8. Ghosh, A., Norton, B., Duffy, A. (2016). Measured thermal performance of a combined suspended particle switchable device evacuated glazing. Applied Energy, 169, 469–480. doi: https://doi.org/10.1016/j.apenergy.2016.02.031
9. What is electrochromic device? Available at: https://www.sageglass.com/en/article/what-electrochromic-glass
10. “Smart” windows (electrochromic glass). Available at: https://www.explainthatstuff.com/electrochromic-windows.html
11. Yagmur, I., Ak, M., Bayrakpeken, A. (2013). Fabricating multicolored electrochromic devices using conducting copolymers. Smart Materials and Structures, 22 (11), 115022. doi: https://doi.org/10.1088/0964-1726/22/11/115022
12. Guzel, M., Torlak, Y., Karatas, E., Ak, M. (2019). Optical and Electrical Properties of Monolacunary Keggin-Type Polyoxometalate/Star-Shaped Polycarbazole Nanocomposite Film. Journal of The Electrochemical Society, 166 (8), H313–H319. doi: https://doi.org/10.1149/2.0531908jes
13. Pan, L., Han, Q., Dong, Z., Wam, M., Zhu, H., Li, Y., Mai, Y. (2019). Reactively sputtered WO3 thin films for the application in all thin film electrochromic devices. Electrochimica Acta, 328, 135107. doi: https://doi.org/10.1016/j.electacta.2019.135107
14. Mjejer, I., Gaudon, M., Rougier, A. (2014). Mo addition for improved electrochromic properties of V2O5 thick films. Solar Energy Materials and Solar Cells, 198, 19–25. doi: https://doi.org/10.1016/j.solmat.2014.04.010
15. Liu, J., Chiam, S. Y., Pan, J., Wong, L. M., Li, S. F. Y., Ren, Y. (2018). Solution layer-by-layer uniform thin film dip coating of nickel hydride and metal incorporated nickel hydride and its improved electrochromic performance. Solar Energy Materials and Solar Cells, 185, 318–324. doi: https://doi.org/10.1016/j.solmat.2018.05.044
16. Kotok, V., Kovalenko, V. (2019). Optimization of the deposition conditions for Ni(OH)2 films for electrochromic elements of “smart” windows. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 35–40. doi: https://doi.org/10.15587/1729-4061.2019.162572
17. Thongpan, W., Louloudakis, D., Porseckiew, P., Kumpika, T., Kantarak, E., Sroula, W. et. al. (2019). Porous CuWO4/WO3 composite films with improved electrochromic properties prepared by sparking method. Materials Letters, 257, 126747. doi: https://doi.org/10.1016/j.matlet.2019.126747
18. Yun, J., Song, Y., Cho, I., Ko, Y., Kwon, C. H., Cho, J. (2019). High-performance electrochromic films with fast switching times using transparent/conductive nanoparticle-modulated charge transfer. Nanoscale, 11 (38), 17815–17830. doi: https://doi.org/10.1039/c9nr06259a
19. Kumar, A., Pragpati, C. S., Sahay, P. P. (2019). Results on the microstructural, optical and electrochromic properties of spray-deposited MoO3 thin films by the influence of W doping. Materials Science in Semiconductor Processing, 104, 104668. doi: https://doi.org/10.1016/j.mssp.2019.104668
20. Shi, J., Lai, L., Zhang, P., Li, H., Qin, Y., Gao, Y. et. al. (2016). Aluminium doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route. Journal of Solid State Chemistry, 241, 1–8. doi: https://doi.org/10.1016/j.jssc.2016.05.032
21. Mondal, D., Vilmure, G. (2012). Improved reversibility of color changes in electrochromic Ni–Al layered double hydroxide films in presence of electroactive anions. Journal of Electroanalytical Chemical, 687, 58–63. doi: https://doi.org/10.1016/j.jelechem.2012.09.046
22. Mondal, D., Vilmure, G. (2009). Effect of the presence of [Co(bpy)]3+ on the electrochromic responses of films of a redox active Ni–Al-layered double hydroxide. Journal of Electroanalytical Chemistry, 628 (1-2), 67–72. doi: https://doi.org/10.1016/j.jelechem.2009.01.007
23. Mondal, D., Jack, M., Vilmure, G. (2014). Improved contrast between the coloured and transparent states in electrochromic Ni–Al layered double hydroxide films in mixtures of electroactive ions. Journal of Electroanalytical Chemistry, 722-723, 7–14. doi: https://doi.org/10.1016/j.jelechem.2014.02.025
24. Kotok, V., Kovalenko, V. (2019). A study of electrochromic Ni(OH)2 films obtained in the presence of small amounts of aluminum. Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 39–45. doi: https://doi.org/10.15587/1729-4061.2019.168863
25. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
26. Smart windows: electrochromic windows for building optimization. Available at: https://www.sageglass.com/sites/default/files/masdar_technology_journal_issue_5_september_2018_smart_windows.pdf

DOI: 10.15587/1729-4061.2019.185391
IMPROVEMENT OF THE CURRENT CONTROL LOOP OF THE SINGLE-PHASE MULTIFUNCTIONAL GRID-TIED INVERTER OF PHOTOVOLTAIC SYSTEM (p. 14-22)

Alexandr Shavelkin
Kyiv National University of Technologies and Design, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0003-3914-0812

Jasim Mohmed Jasim Jasim
Al-Furat Al-Awsat Technical University Al-Mussaeb Technical college, Al-Kufa, Iraq
ORCID: http://orcid.org/0000-0002-2983-416X

Iryna Shvedchykova
Kyiv National University of Technologies and Design, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0003-3005-7385

Improvement of the current control loop of the multifunctional grid-tied inverter of the local object electrical power system is considered. The purpose is ensuring compliance with the quality standards of the grid current in the whole range of its values when connecting the load to the AC distribution grid and the converter unit of the photovoltaic system. The use of relay current controller with combined unipolar and bipolar modulation in combination with a modified algorithm of switching the inverter switches is proposed. It is shown that at a non-linear load, the jump-like change of the derivative of the inverter reference current leads to a sharp change in the switching frequency of the switches. This leads to the appearance of “splashes” in the grid current, which worsens its harmonic composition at small current values.

In the nonlinear reactor with an increase in the inverter current, the “splash” is also caused by changes in the switching frequency of the switches. This takes place in the areas of current growth (fall) due to a change in the reactor inductance. The dependence of the given deviation for the relay controller is established. In the case of a linear reactor, this provides a practically constant switching frequency for the inverter switches. It is proposed to take into account the derivative of the inverter current in the deviation reference of the relay controller. This eliminates an abrupt change in switches.
switching frequency. The necessity of taking into account the non-sinusoidal grid voltage during the determination of the voltage value at the inverter input is shown. It is proposed to reduce the capacitance of the filter capacitor at the point of common coupling and use of capacitor current coupling. This will improve the quality of the grid current at the non-sinusoidal voltage of the grid. The structure of the current control loop with a relay current controller with the combined modulation and regulation of the reference value of the controller deviation is proposed. Regulation is carried out in accordance with the reference value of the amplitude and the derivative of the inverter current. A mathematical model of the system “grid – grid inverter – load” with a block of determination of power losses in the switches and a nonlinear reactor is developed.

Keywords: relay current controller, unipolar and bipolar modulation, power losses, THD, simulation.

References
1. Ko, S.-H., Lee, S.-R., Delbione, H., Nayar, C. V. (2006). A Grid-Connected Photovoltaic System with Direct Coupled Power Quality Control. IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. doi: https://doi.org/10.1109/iecon.2006.347757
2. Zeng, Z., Yang, H., Zhao, R., Cheng, C. (2013). Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review. Renewable and Sustainable Energy Reviews, 24, 223–270. doi: https://doi.org/10.1016/j.rser.2013.03.033
3. Shavelkin, A. A. (2018). Structures of single-phase converters units for combined electrical supply systems with photoelectric solar panels. Tekhnichna Elektrodynamika, 2, 39–46. doi: https://doi.org/10.15407/techned2018.02.039
4. Shavelkin, A., Shvedchykova, I. (2018). Multifunctional converter for single-phase combined power supply systems for local objects with a photovoltaic solar battery. Tekhnichna Elektrodynamika, 5, 92–95. doi: https://doi.org/10.15407/techned2018.05.092
5. Vignesh, T., Kumarappan, N. (2017). Grid interconnection of renewable energy sources using multifunctional grid-interactive converters: A fuzzy logic based approach. Electric Power Systems Research, 151, 359–368. doi: https://doi.org/10.1016/j.epsr.2017.06.010
6. Brochures. ABB solar inverters. Available at: https://new.abb.com/power-converters-inverters/solar
7. 519-1992 - IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. doi: https://doi.org/10.1109/ieeestd.1993.114370
8. 1547-2018 - IEEE Standard for Interconnection and interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. doi: https://doi.org/10.1109.ieeestd.2018.8332112
9. Da Silva, S. A. O., Sampiao, L. P., Campanhol, L. B. G. (2014). Single-phase grid-tied photovoltaic system with boost converter and active filtering. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE). doi: https://doi.org/10.1109/isie.2014.6865301
10. Martins, D. C. de Souza, K. C. A. (2008). A Single-Phase Grid-Connected PV System With Active Power Filter. International Journal of Circuits, Systems and Signal Processing, 2 (1), 50–55.
11. Vaquero, J., Vázquez, N., Soriano, I., Vázquez, J. (2018). Grid-Connected Photovoltaic System with Active Power Filtering Functionality. International Journal of Photoenergy, 2018, 1–9. doi: https://doi.org/10.1155/2018/2140797
12. Mendez, I., Vazquez, N., Vaquero, J., Vazquez, J., Hernandez, C., Lopez, H. (2015). Multifunctional grid-connected photovoltaic-system controlled by sliding mode. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. doi: https://doi.org/10.1109/iecon.2015.7392286
13. Shavelkin, A. A. (2019). Improvement of the structure for the current control loop with the use of PWM for the grid inverter of the combined power supply system. Tekhnichna Elektrodynamika, 3, 37–45. doi: https://doi.org/10.15407/techned2019.03.037
14. Ma, T.-T. (2012). Power Quality Enhancement in Micro-grids Using Multifunctional DG Inverters. Proceedings of the International MultiConference of Engineers and Computer Scientists. Vol. II, IMECS 2012. Hong Kong, 996–1001.
15. Mao, H., Yang, X., Chen, Z., Wang, Z. (2012). A Hysteresis Current Controller for Single-Phase Three-Level Voltage Source Inverters. IEEE Transactions on Power Electronics, 27 (7), 3330–3339. doi: https://doi.org/10.1109/tpele.2011.2181149
16. Shavelkin, O., Shvedchykova, I. (2018). Forming of Current of the Single-Phase Grid Inverter of Local Combined Power Supply System with a Photovoltaic Solar Battery. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). doi: https://doi.org/10.1109/ieps.2018.8559540
17. Wu, T.-F., Nien, H.-S., Shen, C.-L., Chen, T.-M. (2005). A Single-Phase Inverter System for PV Power Injection and Active Power Filtering With Nonlinear Inductor Consideration. IEEE Transactions on Industry Applications, 41 (4), 1075–1083. doi: https://doi.org/10.1109/tia.2005.851035
18. Machado, S. M., Da Silva, N. (2016). Stability and Harmonic Rejection Analysis of Single-Phase Grid-Connected Inverter Intended for Renewable Energy Systems Considering Distorted Grid Conditions. 2016 CIGRE C4 International Colloquium on EMC, Lightning and Power Quality Considerations for Renewable Energy Systems Available at: https://www.researchgate.net/publication/299524329
19. IEEE Std EN 50160:2010. Voltage characteristics of electricity supplied by public electricity networks.
20. IGBT Modules. SEMIKRON. Available at: https://www.semikron.com/products/product-classes/igbt-modules.html
21. Shavelkin O. O., Stanovskyi Y. Yu., Pidhainyi M. O. (2019). Modeling of the combined electricpower system of a local object with multifunctionalconverter unit of photovoltaic battery. Visnyk Kyivskoho natsionalnoho universytetu tekhnolohii ta diazynu, 4 (156), 20–33. doi: https://doi.org/10.30857/1813-6796.2019.4.2

DOI: 10.15587/1729-4061.2019.181247

IMPROVEMENT OF THE TOOLSET FOR DIAGNOSING UNDERGROUND PIPELINES OF OIL AND GAS ENTERPRISES CONSIDERING CHANGES IN INTERNAL WORKING PRESSURE (p. 23-29)

Larysa Yuzevych
Lviv University of Business and Law, Lviv, Ukraine
ORCID: http://orcid.org/0000-0002-2529-3491

Larysa Yankovska
Lviv University of Business and Law, Lviv, Ukraine
ORCID: http://orcid.org/0000-0003-1853-0169

Lyubomyr Sopilnyk
Lviv University of Business and Law, Lviv, Ukraine
ORCID: http://orcid.org/0000-0001-6581-7255
A new criterion of strength and a set of informative parameters have been devised for modelling the stressed-strained state (SSS) of the underground metal pipeline (UMP) taking into consideration the system of defects of the cavity type, atop of which there is a crack.

We have inspected the surface of pipes made from structural carbon steel 20, which are exposed to the internal hydrostatic pressure. It has been proposed that the strength criterion of a pipe's metal, which is in contact with the soil electrolyte, should take into consideration the stages of elastic and plastic deformation.

The strength criterion has been supplemented with ratios for a corrosion current (the Kaesche type) and internal pressure, which acts on a cylindrical pipe, taking into consideration the inelastic energy characteristic of the surface layer.

For a pipeline, in a neutral soil environment, we have measured polarization potentials and corrosion currents using the PPM (polarization capacity meter) and CCM (contactless current meter) equipment. Results measure respective defects of the cavity type (pitting), formed at the outer surface of an underground pipeline.

For five variants of internal pressure $p_i=5.5$, 6.7, 7.5 MPa, the CCM and PPM devices determined currents and voltages for characteristic surface defects and, based on them, we have estimated the effective time it takes for a crack to reach critical depth (a pipe resource), as well as the reliability parameter $\beta$ (a safety characteristic).

By comparing results from experimental study and appropriate calculations it has been established that the relative changes in the rate of corrosion $V_{cr}$ is 2.8 times, and, accordingly, the UMP resource parameter $t_{cr}$ is 3.1 times larger, while the reliability parameter $\beta$ is 6.9 times less, than the relative changes in internal pressure changes $p_i$.

Based on analysis of the parameter $t_{cr}$, which characterizes the UMP resource, it has been found that this dependence $t_{cr}$ on internal pressure $p_i$ is nonlinear and tends to saturation.

The specified information is important for improving the methods of control over UMP at oil and gas enterprises, specifically, procedures for correct estimation of anode current density in metal defects at the outer surface of an underground pipeline, taking into consideration changes in internal hydrostatic pressure.

**Keywords:** underground pipelines, oil and gas enterprises, mechanical stresses, hydrostatic pressure, corrosion currents, crack opening.

**References**

1. Cui, G.-F., Wang, J.-H., Ni, L., Huang, X.-Q. (2006). A single precursor pit for pitting corrosion on defect of tinplate alloy layer visualized by atomic force microscopy. Materials Chemistry and Physics, 97 (2-3), 488–493. doi: https://doi.org/10.1016/j.matchemphys.2005.08.052
2. Roberge, P. R. (2000). Handbook of Corrosion Engineering. McGraw-Hill, 1140. Available at: https://corrosion-doctors.org/Books/Handbook.htm
3. Babu, G. L. S., Srivastava, A. (2010). Reliability Analysis of Buried Flexible Pipe–Soil Systems. Journal of Pipeline Systems Engineering and Practice, 1 (1), 33–41. doi: https://doi.org/10.1061/(asce)ps.1949-1204.0000041
4. Cooke, R., Jager, E. (1998). A Probabilistic Model for the Failure Frequency of Underground Gas Pipelines. Risk Analysis, 18 (4), 511–527. doi: https://doi.org/10.1111/j.1539-6924.1998.tb00365.x
5. Yuzevych, L., Skrynkovskyy, R., Yuzevych, V., Lozovan, V., Pawlowski, G., Yasinskyi, M., Ogirko, I. (2019). Improving the diagnostics of underground pipelines at oil and gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks. Eastern-European Journal of Enterprise Technologies, 4 (5 (100)), 56–64. doi: https://doi.org/10.15587/1729-4061.2019.174488
6. Landolfo, R., Cascini, L., Portioli, F. (2010). Modeling of Metal Structure Corrosion Damage: A State of the Art Report. Sustainability, 2 (7), 2163–2175. doi: https://doi.org/10.3390/ su2072163
7. Peterka, P., Krešák, J., Kropuch, S. (2002). Equipment for Internal and External Diagnostics of Pipelines and its Development at SOL – SKTC 147 of Faculty BERG Technical University, Košice. Acta electrotechnica et informatica, 2 (3). Available at: http://www.aei.tuke.sk/papers/2002/3/PETERKA.pdf
8. Strofek, E., Lesso, I. (2001). Acoustic Method for Measurement of Young's Modulus of Steel Wire Ropes. Metallurgy, 40 (4), 219–221. Available at: https://brck.srcr.by/128617
9. Lozovan, V., Dzhala, R., Skrynkovskyy, R., Yuzevych, V. (2019). Detection of specific features in the functioning of a system for the anti-corrosion protection of underground pipelines at oil and gas enterprises using neural networks. Eastern-European Journal of Enterprise Technologies, 1 (5 (97)), 20–27. doi: https://doi.org/10.15587/1729-4061.2019.154999
10. Lozovan, V., Skrynkovskyy, R., Yuzevych, V., Yasinskyi, M., Pawlowski, G. (2019). Forming the toolset for development of a system to control quality of operation of underground pipelines by oil and gas enterprises with the use of neural networks. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 41–48. doi: https://doi.org/10.15587/1729-4061.2019.161484
11. Yuzevych, V., Skrynkovskyy, R., Komarn, B. (2018). Intelligent Analysis of Data Systems for Defects in Underground Gas Pipeline. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478560
12. Chiodo, M. S. G., Ruggieri, C. (2009). Failure assessments of corroded pipelines with axial defects using stress-based criteria.
Numerical studies and verification analyses. International Journal of Pressure Vessels and Piping, 86 (2-3), 164–176. doi: https://doi.org/10.1016/j.ijpvp.2008.11.011

13. Chen, Y. (2018). Cathodic Protection of X100 Pipeline Steel in Simulated Soil Solution. International Journal of Electrochemical Science, 9642–9653. doi: https://doi.org/10.20964/2018.10.23

14. Din, M. M., Ithnin, N., Zain, A. M., Noor, N. M., Siraj, M. M., Rassol, R. M. (2015). An artificial neural network modeling for pipeline corrosion growth prediction. ARPN Journal of Engineering and Applied Sciences, 10 (2), 512–519. Available at: http://www.arpnjournals.com/jeas/research_papers/wp_2015/jeas_0215_1484.pdf

15. Nagaman, Y., Kotaki, H., Nomura, Y., Kato, N., Sudu, Y. (2011). Estimation Method of the Radius, Depth and Direction of Buried Pipes with Ground Penetrating Radar. Journal Of The Japanese Society for Non-Destructive Inspection, 60 (9), 548–553. doi: https://doi.org/10.11396/jjnsdi.60.548

16. Ji, J., Zhang, C., Kodikara, J., Yang, S.-Q. (2015). Prediction of stress concentration factor of corrosion pits on buried pipes by least squares support vector machine. Engineering Failure Analysis, 55, 131–138. doi: https://doi.org/10.1016/j.engfailanal.2015.05.010

17. Koman, B., Yuzevich, V. (2018). Self- organizing processes and interphase interaction in solid-state structures. Transylvanian Review, XXVI (29), 7639–7651.

18. Yuzevych, V. M., Dzhala, R. M., Koman, B. P. (2018). Analysis of Metal Corrosion under Conditions of Mechanical Impacts and Aggressive Environments. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 39 (12), 1655–1667. doi: https://doi.org/10.15407/mftn.39.12.1655

19. Follas, E. S. (1965). An axial crack in a pressurized cylindrical shell. International Journal of Fracture Mechanics, 1 (2), 104–113. doi: https://doi.org/10.1007/bf00186748

20. Žilinkas, A. (2006). Strength and fracture criteria. Kaunas: Technologija, 208.

21. Kiefer, J. F., Masey, W. A., Eiber, R. J., Duffy, A. R. (1973). Failure Stress Levels of Flaws in Pressurized Cylinders. Progress in Flaw Growth and Fracture Toughness Testing, 461–481. doi: https://doi.org/10.1520/stp49657s

22. ASME B31G–1991: Manual for determining the remaining strength of corroded pipelines (1991). New York: American Society of Mechanical Engineering. 56. Available at: https://law.resource.org/pub/us/cfr/ibr/002/asme.b31g.1991.pdf

23. Quality Assurance for Pipeline Fittings Workscope Summary Report. National Energy Board (NEB). Available at: https://www.energycanada.ca/sftvnmnt/sft/plpntnl/sltssrmmrsfrpt-eng.pdf

24. Pipeline Fittings Quality Assurance Technical Paper (2017). National Energy Board of Canada, DVN-GL. Project No.: P179886, 29.

25. Skrynkovskyi, R. (2008). Investment attractiveness evaluation technique for machine-building enterprises. Actual Problems of Economics, 7 (85), 228–240.

26. Skrynkovskyi, R. M. (2011). Methodical approaches to economic estimation of investment attractiveness of machine-building enterprises for portfolio investors. Actual Problems of Economics, 118 (4), 177–186. Available at: http://www.scopus.com/inward/record.uri?eid=2-s2.0-84930489016&partnerID=40

27. Dzhala, R. M., Verbenets’, B. Y., Mel’nyk, M. I., Mytsyk, A. B., Savula, R. S., Semenyuk, O. M. (2017). New Methods for the Corrosion Monitoring of Underground Pipelines According to the Measurements of Currents and Potentials. Materials Science, 52 (3), 732–741. doi: https://doi.org/10.1007/s11003-017-0016-8

28. Zhang, S., Zhou, W. (2013). System reliability of corroding pipelines considering stochastic process-based models for defect growth and internal pressure. International Journal of Pressure Vessels and Piping, 111-112, 120–130. doi: https://doi.org/10.1016/j.ijpvp.2013.06.002

29. Wittek, M. (2016). Gas transmission pipeline failure probability estimation and defect repairs activities based on in-line inspection data. Engineering Failure Analysis, 70, 255–272. doi: https://doi.org/10.1016/j.engfailanal.2016.09.001

30. Pichugin, S., Zyma, O., Vynnykov, P. (2015). Reliability level of the buried main pipelines linear part. Zbirnyk naukovykh prats [Pol-tavskoho natsionalnoho tekhnichnoho universytetu im. Yu. Kondratiuka]. Ser.: Haluzeve mashynobuduvannia, budivnytstvo, 1, 17–28. Available at: http://nbuv.gov.ua/UJRN/Znpgmb_2015_1_4

31. Phillip, E. J. (2014). Piping and Pipeline Calculations Manual. Construction, Design Fabrication and Examination. Elsevier, 412. doi: https://doi.org/10.1016/c2012-0-07933-1

DOI: 10.15587/1729-4061.2019.183003
EXPERIMENTAL DETERMINATION OF INDICATORS OF THERMAL STATE OF REFRIGERATOR CARS UNDER OPERATING CONDITIONS (p. 30-38)

Viktor Osmak
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0003-2459-554X

Vadym Ishchenko
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-5539-4251

Ivan Kulbovskyi
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-5329-3842

Alina Nychyporuk
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0003-4392-7220

For the experimental determination of the thermal state of refrigerator cars under operating conditions, a procedure for separate determination of heat and mass transfer parameters is proposed. Its peculiarity lies in the fact that conditions, methods and means of thermal tests used in the construction, operation and repair of refrigerator cars are used for the experimental determination of conductive heat transfer and tightness indicators. For separate determination of the true heat transfer coefficient $\overline{K}$ and effective opening $F_{nk}$ experimental conditions of the thermal process of heating air in the cargo space of the car body and measurement of the volume of air flow through leaks under constant standard overpressure of 49 Pa in the body were used.

Based on the values of the true heat transfer coefficient $\overline{K}$ and effective opening $F_{nk}$, taking into account the thermophysical properties of cargo and using MS Excel tools, graphical dependences of changes in cargo temperature in the refrigerator car on transportation conditions are constructed.

The results of the study are proposed to be used for separate determination of heat and mass transfer indicators and evaluation of thermal properties of the body sheathing of refrigeration cars under operating conditions. Based on the value of the true heat transfer coefficient $\overline{K}$ and effective opening, it is possible to determine changes in cargo temperature in transportation conditions, taking into account the temperature difference of the atmosphere-ric air.
**Keywords:** refrigerator car, thermal insulation, thermal tests, heat and mass transfer, heat transfer coefficient, effective opening, mathematical model.

**References**

1. Osmak, V. (2015). The railway isothermal rolling equipment classification considering the main body enclosure thermotechnical properties criteria. Metallurgical and Mining Industry, 3, 265–267. Available at: http://www.metaldojournal.com.ua/assets/journal/english-edition/MHI_2015_3_033%20Osmak.pdf

2. Shi, S., Gao, H. X., Li, M., Liu, B. (2013). Calculation of Coach Body Heat Transfer Coefficient for the High-Speed Railway Train in China. Advanced Materials Research, 805-806, 562–569. doi: https://doi.org/10.4028/www.scientific.net/AMR.805-806.562

3. Hódas, S., Pultžnerová, A. (2017). Modelling of Railway Track Temperature Regime with Real Heat-Technical Values for Different Climatic Characteristics. Civil and Environmental Engineering, 13 (2), 134–142. doi: https://doi.org/10.1515/cce-2017-0018

4. Faramarzi, R., Navaz, H. K., Kamensk, K. (2018). Transient Air Infiltration/Exfiltration in Walk-In Coolers. ASHRAE JOURNAL, 60 (3). Available at: https://www.osti.gov/servlets/purl/1435907

5. Celik, M., Paulussen, G., van Erp, D., de Jong, W., Boe, B. (2018). Transient Modelling of Rotating and Stationary Cylindrical Heat Pipes: An Engineering Model. Energies, 11 (12), 3458. doi: https://doi.org/10.3390/en11123458

6. Chugunov, M., Oseya, V., Kudaev, S., Kuzmichyov, N., Klyomin, V. (2014). Analysis and Design of Rolling Stock Elements. Science and Education of the Bauman MSTU, 14 (09). doi: https://doi.org/10.1563/0914.0726307

7. Gonçalves, J. C., Costa, J. J., Lopes, A. M. G. (2019). Analysis of the air infiltration through the doorway of a refrigerated room using different approaches. Applied Thermal Engineering, 159, 113927. doi: https://doi.org/10.1016/j.applthermaleng.2019.113927

8. Fomin, O. V. (2015). Increase of the freight wagons ideality degree and prognostication of their evolution stages. Scientific Bulletin of National Mining University, 3, 68–76.

9. Kelvykh, M., Fomin, O. (2014). Perspective directions of planning carrying systems of gondolas. Metallurgical and Mining Industry, 6, 64–67.

10. Açıklalp, E. (2013). Models for optimum thermo-ecological criteria of actual thermal cycles. Thermal Science, 17 (3), 915–930. doi: https://doi.org/10.2298/tds110918095a

11. Moradi, A., Rafiee, R. (2013). Analytical solution to convection-radiation of a continuously moving fin with temperature-dependent thermal conductivity. Thermal Science, 17 (4), 1049–1060. doi: https://doi.org/10.2298/tds110425005m

12. Milošević, M., Stamenković, D., Milojević, A., Tomic, M. (2012). Modeling thermal effects in braking systems of railway vehicles. Thermal Science, 16, 515–526. doi: https://doi.org/10.2298/tds120503188m

13. Bartosh, E. T., Ivanov, K. V. (1972). Metod neravnovesnykh rezhimov dlya osenki infiltrotsii kuzova vagona. Trudy VNIZhHTa, 436, 100–109.

14. Fomin, O., Sulym, A., Kulibovskiy, I., Khozia, P., Ishchenko, V. (2018). Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-European Journal of Enterprise Technologies, 2 (1 (92)), 63–71. doi: https://doi.org/10.5557/1729-4061.2018.126080

15. Nikulshin, V., Bailey, M., Nikulshina, V. (2006). Thermodynamic analysis of air refrigerator on exergy graph. Thermal Science, 10 (1), 99–110. doi: https://doi.org/10.2298/tcsc0601099n

16. Budiyanto, M. A., Shinoda, T. (2017). Stack Effect on Power Consumption of Refrigerated Containers in Storage Yards. International Journal of Technology, 8 (7), 1182. doi: https://doi.org/10.14716/ijtech.v8i7.771

17. Bubnov, V. M., Myamilin, S. V., Hurzhay, N. L. (2009). The Improvement of the rolling stock design for containers transportation. Nauka Progresu Transportu, 26, 11–14.

18. Ting, H.-H., Hou, S.-S. (2016). Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux. Materials, 9 (7), 376 doi: https://doi.org/10.3390/ma9070576

**DOI:** 10.15587/1729-4061.2019.185136

**IMPROVING EFFICIENCY IN DETERMINING THE INDUCTANCE FOR THE ACTIVE PART OF AN ELECTRIC MACHINE’S ARMATURE BY METHODS OF FIELD MODELING (p. 39-47)**

Mykhailo Kotsur

Zaporizhzhia Polytechnic National University, Zaporizhzhia, Ukraine

ORCID: http://orcid.org/0000-0002-0672-5437

Dmytro Yarymbash

Zaporizhzhia Polytechnic National University, Zaporizhzhia, Ukraine

ORCID: http://orcid.org/0000-0003-2324-9303

Igor Kotsur

Zaporizhzhia Polytechnic National University, Zaporizhzhia, Ukraine

ORCID: http://orcid.org/0000-0001-6394-7849

Serhiy Yarymbash

Zaporizhzhia Polytechnic National University, Zaporizhzhia, Ukraine

ORCID: http://orcid.org/0000-0003-4661-7076

Theoretical studies of electromagnetic processes in the active part of an electric machine’s armature have been carried out in a dynamic short-circuit mode using a three-dimensional magnetic field model represented as a combination of electrical circuits of phase windings and a geometric 3D region. An approach was proposed to determine self- and mutual inductances between phases of the electric machine armature winding based on decomposition of electromagnetic processes by means of various combinations of powering the armature phase windings. Laws of electromagnetic processes resulting from self- and mutual effects of the armature phase currents causing appearance of effects of self- and mutual induction with and without taking into account magnetic properties of materials were established. The phenomena of self induction in phases of the armature winding, formation of components of induced currents in the phase as a result of action of currents in neighboring phases and their magnetizing and demagnetizing properties were considered. Influence of these processes leads to an asymmetry of the systems of mutual inductance between the winding phases. However, symmetry of total inductance of the armature phase windings is not violated. To determine with high accuracy inductive parameters of the electric machine armature winding according to the classical method, corresponding correction coefficients were proposed. This will minimize current errors and ensure adequacy of known widely used three- and two-phase models of electric machines based on systems.
of differential equations of the first order. Reliability and accuracy of the data obtained in 3D modeling of magnetic fields were confirmed by the results of physical tests. When taking into account magnetic properties of materials used in the active part of the electric machine armature, relative current errors did not exceed $2.68\%$ and when magnetic properties were not taken in account, the errors measured $103.09\% - 106.32\%$.

**Keywords:** electric machine, electromagnetic field, inductive parameters, three-dimensional field model.

**References**

1. Kopylov, I. P., Klokov, B. K., Morozkin, V. P. (2005). Proektirovanie elektromashin. Moscow: Vysshaya shkola, 327.
2. Ivanov-Smolenskiy, A. V. (2006). Elektricheskie mashiny. Moscow: Izdatel'skiy dom MEI, 532.
3. Ledovsky, A. N. (1985). Elektricheskie mashiny s vosyokoerkstivnymi postoyannymi magnitami. Moscow: Energoatomizdat, 168.
4. Grebenkov, V. V., Pryymak, M. V. (2009). Isledovanie vliyaniya konfiguratsii magnitnoy sistemy na momentnye karakteristiki elektrodvigatelya s postoyannymi magnitami. Elektrotehnika i elektroenergetika, 2, 57–60.
5. Lushchyk, V. D., Ivanenko, V. S. (2011). Bahatopoliusni kaskadni ktorodynamika. Moscow: Izdatel'skiy dom MEI, 532.
6. Tykhovod, S. M. (2014). Transients modeling in transformer circuit of three phase transformers using field simulation methods. Eastern-European Journal of Enterprise Technologies, 2, 49–54.
7. Tolochko, O. I., Ryzhkov, A. M. (2018). Synthesis and analysis of modal control system for crane mechanism motion taking into account the work of lifting mechanism. Tekhnichna Elektrodynamika, 2018 (4), 131–134. doi: https://doi.org/10.15407/techned2018.04.131
8. Kotsur, M. I., Andrienko, P. D., Kotsur, I. M., Bliznyakov, O. V. (2017). Converter for frequency-current slip-power recovery scheme. Scientific Bulletin of National Mining University, 4, 54–59.
9. Tykhovod, S. M. (2014). Transients modeling in transformers on the basis of magnetoelectric equivalent circuits. Electrical Engineering and Power Engineering, 1, 39–68. doi: https://doi.org/10.15588/1607-6761-2014-2-8
10. Tolochko, O. I., Buhrovyi, A. A. (2016). Improving dynamic of the system based on permanent magnet synchronous motor using optimal control strategies. Tekhnichna Elektrodynamika, 2016 (5), 35–37. doi: https://doi.org/10.15407/techned2016.05.035
11. German-Galkin, S. G. (2008). Matlab & Simulink. Proektirovaniem elektromashin. Moscow: Vysshaya shkola, 368.
12. Yu, D., Huang, X., Wu, L., Fang, Y. (2019). Design and Analysis of Outer Rotor Permanent-Magnet Vernier Machines with Overhang Structure for In-Wheel Direct-Drive Application. Energies, 12 (7), 1238. doi: https://doi.org/10.3390/en12071238
13. Wardach, M., Paplicki, P., Palka, R. (2018). A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges. Energies, 11 (3), 676. doi: https://doi.org/10.3390/en11030676
14. Han, G., Chen, H., Shi, X. (2017). Modelling, diagnosis, and tolerant control of phase-to-phase fault in switched reluctance machine. IET Electric Power Applications, 11 (9), 1527–1537. doi: https://doi.org/10.1049/iet-epa.2017.0185
15. Bezverkhnya, Yu. S. (2019). Voltage loss preliminary estimation in ac busbars. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 73–78. doi: https://doi.org/10.29202/nvnu/2019/4/13
16. Yarymbash, D., Yarymbash, S., Kylymnyk, I., Divchuk, T., Litvinov, D. (2017). Features of defining three-phase transformer no-load parameters by 3D modeling methods. 2017 International Conference on Modern Electrical and Energy Systems (MEES). doi: https://doi.org/10.1109/mees.2017.8248870
17. Paiva Jr. R. D., Silva, V. C., Nabet, S. I., Chalu, I. E. (2017). Magnetic topology with axial flux concentration: a technique to improve permanent-magnet motor performance. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16 (4), 881–899. doi: https://doi.org/10.1590/2179-10742017v16n4057
18. Meng, X., Wang, S., Qiu, J., Zhu, J. G., Guo, Y. (2010). Cogging torque reduction of Bldc motor using level set based topology optimization incorporating with triangular finite element. International Journal of Applied Electromagnetics and Mechanics, 33 (3–4), 1069–1076. doi: https://doi.org/10.3233/iae-2010-1222
19. Shkaruppylo, V., Skrupsky, S., Oliynyk, A., Kolpakova, T. (2017). Development of stratified approach to software defined networks simulation. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 67–73. doi: https://doi.org/10.15387/1729-4061.2017.110142
20. Aden Diriyé, A., Amara, Y., Barakat, G., Hlioui, S., De la Barrière, O., Gabsi, M. (2016). Performance analysis of a radial flux PM machine using a hybrid analytical model and a MBG reluctance network model. European Journal of Electrical Engineering, 18 (1–2), 9–26. doi: https://doi.org/10.3166/eje.18.9-26
21. Kotsur, M., Yarymbash, D., Yarymbash, S., Kotsur, I. (2017). A new approach of the induction motor parameters determination in short-circuit mode by 3D electromagnetic field simulation. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF). doi: https://doi.org/10.1109/ysf.2017.8126620
22. Yarymbash, D., Kotsur, M., Subbotin, S., Oliynyk, A. (2017). A new simulation approach of the electromagnetic fields in electrical machines. 2017 International Conference on Information and Digital Technologies (IDT). doi: https://doi.org/10.1109/dit.2017.8024332
23. Benhamida, M. A., Ennassiri, H., Amara, Y. (2018). Reluctance network lumped mechanical & thermal models for the modeling and predescent of concentrated flux synchronous machine. Open Physics, 16 (1), 692–705. doi: https://doi.org/10.1515/phys-2018-0088
24. Thul, A., Steentjes, S., Schauerte, B., Klimeczyk, P., Denke, P., Hameyer, K. (2018). Rotating magnetizations in electrical machines: Measurements and modeling. AIP Advances, 8 (5), 056815. doi: https://doi.org/10.1063/1.5007731
25. Yazdani-Armani, M., Gholamian, S. A., Mirimani, S. M., Adabi, J. (2018). Calculation of AC Magneticizing Loss of ReBCO Superconducting Tapes Subjected to Applied Distorted Magnetic Fields. Journal of Superconductivity and Novel Magnets, 31 (12), 3875–3888. doi: https://doi.org/10.1007/s10948-018-4695-7
26. Yarymbash, D., Yarymbash, S., Kotsur, M., Divchuk, T. (2018). Analysis of inrush currents of the unloaded transformer using the circuit-field modelling methods. Eastern-European Journal of Enterprise Technologies, 3 (5 (93)), 6–11. doi: https://doi.org/10.15387/1729-4061.2018.134248
27. Yarymbash, D., Yarymbash, S., Kotsur, M., Divchuk, T. (2018). Enhancing the effectiveness of calculation of parameters for short circuit of three-phase transformers using field simulation methods. Eastern-European Journal of Enterprise Technologies, 4 (5 (94)), 22–28. doi: https://doi.org/10.15587/1729-4061.2018.140236
It has been determined that the most expedient and economically beneficial flaw detection method for plywood is the impact method. Samples of plywood with and without a defect were used for the research. Among the acoustic techniques, the most accurate is considered to be ultrasound; its implementation, however, requires that the surface of plywood should be treated with a special substance, which makes the method impractical for plywood raw materials. Nevertheless, given the accuracy of the method, we have performed a correlation analysis involving the impact method. The chosen initial parameters for the shock method were the number of pulsations, the oscillation frequency and the coefficient of harmonic distortions of a shock sensor’s signal. The ultrasound study has been found to produce almost identical results with previous experiments, especially regarding a harmonic distortion coefficient ($K_h = 0.84$). This allows us to argue that the selected parameters make it possible to reliably detect a defect in plywood. Solutions for automating the flaw detection process have been suggested. A device has been designed to control quality and to enable the automated selective sorting of plywood, as well as a multichannel automated quality control system for plywood to be installed at a production line. The proposed systems would make it possible to perform the automated flaw detection in plywood, both in the form of finished products and at the production stage. Information on the quality of plywood can be transferred both to workers at a warehouse and to a transportation robot, as well as to a production line in order to run an analysis and identify causes of defects and to correct the technological process parameters. Automating the flaw detection process would improve its speed and accuracy. We have proposed an easy-to-use relative criterion of plywood quality, which makes it possible to eliminate measurement errors caused by instability in the plywood oscillation amplitude at a sensor’s impact. That makes it possible to significantly improve the accuracy of detecting internal defects in the non-destructive quality control.

Keywords: plywood, flaw detection, impact method, selective sorting, non-destructive testing, quality control.

References
1. Pinchevska, O., Smirdriakova, M. (2016). Wood particleboard covered with slices made of pine tree branches. Acta Facultatis Xylologiae Zvolen, 58 (1), 67–74.
2. Sklar, D., Smirdriakova, M., Sedliacik, J. (2017). Selected physical and mechanical properties of plywood faced with wood slices. Acta Facultatis Xylologiae Zvolen, 59 (1), 97–105. doi: http://doi.org/10.17423/afx.2017.59.109
3. Bal, B. C., Bektaş, I., Mengeloglu, F., Karakuş, K., Ökçe Demir, H. (2015). Some technological properties of poplar plywood panels reinforced with glass fiber fabric. Construction and Building Materials, 101, 952–957. doi: https://doi.org/10.1016/j.conbuildmat.2015.10.152
4. Bekhta, P., Salca, E.-A. (2018). Influence of veneer densification on the shear strength and temperature behavior inside the plywood during hot press. Construction and Building Materials, 162, 20–26. doi: https://doi.org/10.1016/j.conbuildmat.2017.11.161
This paper presents the techniques for mathematical modeling of the geometric characteristics of surfaced surfaces, which make it possible to predict the result of experimental studies. The accuracy of existing techniques for assessing the geometric parameters of a penetration zone has been determined.

It has been established that by using the distribution scheme of a heating source over a rectangular region it becomes possible to bring the estimation data closer to experimental in the surfacing rate range of 6–12 m/h. At a distribution parameter of the heating source over a width of 1.5 mm, the maximum discrepancy between the estimated and experimental values for a penetration depth does not exceed 15 % for strips with a width of 60 to 90 mm. This is due to that a given model is adequate only for cold-rolled solid strip electrodes. We have investigated an estimation scheme of temperature distribution in a semi-infinite body from a movable linear heat source with the distribution of temperature by width, making it possible to adequately assess the depth of penetration of the basic metal at surfacing with a strip electrode. The arc, which moves along the end of the strip, does not form a significant crater as is the case at surfacing with a wire electrode. The efficiency of heat transfer from arc to the main metal is determined by the convection of a liquid metal in the active part of the pool, which decreases at low surfacing speeds. The movement of a metal in this zone is linked to its movement throughout the entire volume of the weld pool. It has been established that a decrease in the temperature of a metal in the liquid layer of the weld pool within 300–500 °C when using a strip electrode, compared to the wire one, relates to the phenomenon of arc displacement along the end of a strip electrode and to a change in the heat source’s concentration ratio.

Keywords: strip electrode, temperature distribution, semi-infinite body, penetration depth, heating source.

References

1. Ivanov, V., Lavrova, E. (2014). Improving the Efficiency of Strip Cladding by the Control of Electrode Metal Transfer. Applied Mechanics and Materials, 682, 266–269. doi: https://doi.org/10.4028/www.scientific.net/amm.682.266
2. Ivanov, V., Lavrova, E. (2018). Development of the Device for Two-Strip Cladding with Controlled Mechanical Transfer. Journal of Physics: Conference Series, 1059, 012020. doi: https://doi.org/10.1088/1742-6596/1059/1/012020
3. Lavrova, E. V., Ivanov, V. (2018). Controlling the Depth of Penetration in the Case of Surfacing with a Strip Electrode at an Angle to the Generatrix. Materials Science Forum, 938, 27–32. doi: https://doi.org/10.4028/www.scientific.net/MSF.938.27
4. Kravtsov, T. G. (1978). Elektrodugovaya naplavka elektrodnoy lentoy. Moscow: Mashinostroenie, 168.
5. Razmyshlyaev, A. D. (2013). Avtomaticheskaya elektrodugovaya naplavka lentochnym elektrodom pod flyusom. Mariupol: GVU «PGTU», 179.
6. Burlaka, V. V., Gulakov, S. V., Padnabennaya, S. K. (2017). A three-phase high-frequency AC/DC converter with power-factor correction. Russian Electrical Engineering, 88 (4), 219–222. doi: https://doi.org/10.3103/s1068371217040058
7. Padnabennaya, S. K., Burlaka, V. V., Gulakov, S. V. (2018). Development of Three Phase Power Supplies for Resistance Welding Machines. 2018 IEEE 38th International Conference on Electronics
14. Huang, J. K., Yang, M. H., Chen, J. S., Yang, F. Q., Zhang, Y. M., Fan, D. (2018). The oscillation of stationary weld pool surface in the GTA welding. Journal of Materials Processing Technology, 256, 57–68. doi: https://doi.org/10.1016/j.jmatprotec.2018.01.018

15. Ibrahim, I. A., Mohamat, S. A., Amir, A., Ghalib, A. (2012). The Effect of Gas Metal Arc Welding (GMAW) Processes on Different Welding Parameters. Procedia Engineering, 41, 1502–1506. doi: https://doi.org/10.1016/j.proeng.2012.07.342

16. Kawahito, Y., Uemura, Y., Doi, Y., Mizutani, M., Nishimoto, K., Kawakami, H. et. al. (2016). Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation. Welding International, 31 (3), 206–213. doi: https://doi.org/10.1080/09507116.2016.1223204

17. Limmaneevichitr, C., Kou, S. (2000). Visualization of Marangoni convection in simulated weld pools containing a surface-active agent. Welding Journal, 79 (11), 324-S–330-S.

18. Wu, J. F., Huang, J. (2012). The Mathematical Model of Welding Process Comparative Study of Identification Method. Advanced Materials Research, 472-475, 2241–2244. doi: https://doi.org/10.4028/www.scientific.net/amr.472-475.2241

19. Dave, S. N., Narkhede, B. E. (2016). Study of the electro slag strip cladding process & effect of its parameters on welding. International Journal of Advance Engineering and Research Development, 3 (12), 101–108.