Metals and Neurodegeneration [version 1; referees: 3 approved]

Pan Chen, Mahfuzur Rahman Miah, Michael Aschner
Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA

Abstract
Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.

This article is included in the F1000 Faculty Reviews channel.

Open Peer Review

Referee Status: ☑️ ☑️ ☑️

version 1
Invited Referees
1 2 3

Published: 17 Mar 2016

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty. In order to make these reviews as comprehensive and accessible as possible, peer review takes place before publication; the referees are listed below, but their reports are not formally published.

1 George Perry, University of Texas at San Antonio USA
2 Anthony White, University of Melbourne Australia
3 Anumantha Kanthasamy, College of Veterinary Medicine, Iowa State University USA

Discuss this article
Comments (0)
Introduction
Metals are a component of the earth’s crust and exist in the water, air, and a variety of ecosystems. They can generally be divided into two groups: essential and non-essential metals. Essential metals include chromium, cobalt, copper (Cu), iron (Fe), lithium, magnesium, manganese (Mn), nickel, selenium, and zinc (Zn). These trace metals usually act as a cofactor of enzymes to regulate cellular activities. For example, Mn is required for the activity of arginase, hydroxylases, lyases, glutamine synthetase, and superoxide dismutase (SOD)\(^1\). Thus, these metals are involved in a whole host of physiological processes, such as electron transport, oxygen transportation, protein modification, neurotransmitter synthesis\(^2,3\), redox reactions, immune responses, cell adhesion, and protein and carbohydrate metabolism\(^4\), to name a few. Metals accumulate in the brain, indicating their important roles in the nervous system. Deficiency of these metals has been associated with various neurological diseases. For example, Fe deficiency is related to restless leg syndrome, pediatric stroke, breath-holding spells, pseudotumor cerebri, and cranial nerve palsy\(^5\). Although metals are important for animals and plants, they usually are required in trace amounts. Excessive metal levels accumulate in various organs, including the brain. Elevated levels of metals may induce various detrimental intracellular events, including oxidative stress, mitochondrial dysfunction, DNA fragmentation, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, and activation of apoptosis\(^6,7\). These effects may alter neurotransmission and lead to neurodegeneration, which can manifest as cognitive problems, movement disorders, and learning and memory dysfunction. To date, metal-induced neurotoxicity has been associated with multiple neurological diseases in humans, including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), autism spectrum disorders (ASDs), Guillain–Barré disease (GBD), Gulf War syndrome (GWS), Huntington’s disease (HD), manganese, multiple sclerosis, Parkinson’s disease (PD), and Wilson’s disease (WD)\(^1,4–18\). Here, we address the neurotoxicity of several metals as well as the human neurological diseases associated with these metals.

Essential metals
Copper
Cu is an essential trace element and a transition metal required for physiological activities in mammals. Cu acts as a cofactor of various enzymes (such as cytochrome c oxidase and SODs), playing an important role in electron transport, oxygen transportation, protein modification, and neurotransmitter synthesis\(^2,3\). However, elevated Cu levels may result in the generation of reactive oxygen species (ROS), DNA damage, and mitochondrial dysfunction\(^9\). Excessive Cu has been associated with AD, ALS, HD, PD, WD, and prion diseases in humans\(^19,16,17\). Cu may enhance the self-aggregation of amyloid precursor proteins and β-amyloid peptide\(^20\), and increased levels of Cu in cerebrospinal fluid have been found in some patients with AD\(^21\). Similarly, Cu interacts with α-synuclein and promotes its aggregation, which could result in PD\(^22\). Gain-of-function mutations in Cu/Zn-SOD might result in oxidative stress through production of free radicals, possibly leading to motor neuron degeneration in patients with ALS\(^23\). It is also noteworthy that metals such as Cu and Zn are controlled by overlapping proteins, such as metallothionein\(^24\). Notably, Cu levels are also higher in HD patients compared with controls\(^25\).

Iron
Fe is an essential metal, serving as a cofactor for a variety of enzymes and proteins, most prominently hemoglobin\(^26\). Fe’s ability to interact with oxygen makes it important for oxygen transport in the cellular respiration pathway as well as for a variety of redox reactions\(^27\). Exposure to Fe is primarily through food consumption, although toxic levels of Fe accumulation are usually due to disrupted Fe homeostasis and metabolism in the brain\(^28,29\). Hemolysis, the breakdown of red blood cells, in the young brain with an immature blood-brain barrier (BBB) can also lead to aberrant Fe accumulation, which results in neuronal damages\(^30\). Fe accumulation can cause increased ROS levels, lipid peroxidation, protein oxidation, DNA damage, dopamine autoxidation, and mitochondrial fragmentation\(^31–36\).

Fe dyshomeostasis has been linked to a variety of neurological disorders, including PD, AD, HD, ALS, and neurodegeneration with brain iron accumulation (NBIA)\(^36,39–42\). Increased brain Fe deposition has been observed and Fe has been shown to promote aggregation of α-synuclein, which is found in patients with PD\(^43–45\). Increased Fe accumulation in the brains of patients with AD has also been observed along with evidence of Fe contributing to β-amyloid aberrant aggregation and toxicity, a hallmark of the disease\(^46–48\). Increased Fe is also seen in patients with HD, and Huntingtin (Htt), the central protein in HD pathology, is thought to mediate Fe homeostasis\(^49,50\). Patients with ALS show accumulation of Fe in the motor cortex, and SOD-1, a gene mutated in patients with ALS, has been shown to cause damage via Fe-induced oxidative stress\(^51–54\). Finally, NBIA, as the name implies, is an umbrella of heterogeneous neurodegenerative diseases that present with simultaneous Fe accumulation. Genetic studies indicate that the majority of the genes mutated in patients with NBIA are related not to Fe homeostasis but rather to autophagy, mitochondria metabolism, and lipid metabolism. This suggests that Fe accumulation in patients with NBIA may not be the initial insult of a disease pathology but rather a downstream phenomenon that serves to exacerbate already-present issues\(^55\). Alternatively, these genes may have
currently unknown Fe regulatory functions that have yet to be examined. This question of whether Fe is part of the cause of a disease, or vice versa, continues to be a point of controversy.

Manganese

Mn is a trace element and nutrient necessary for biological processes within the human body. Low concentrations of Mn are essential to the body; Mn serves as a cofactor in a variety of metalloproteins, including MnSOD and arginase, and is important in the function of a variety of enzymes, including glutamine synthetase, hydrolases, and lyases. Exposure to high levels of Mn may be toxic. Consumption of food is the primary route for entrance into the body. Mn can be inhaled as well, and this serves as an occupational hazard for those who work in welding and mining industries. Soy-based infant formula has been suggested as an exposure route for excess Mn, which may lead to mild neurological defects during critical stages of development. Mn is elevated in dopaminergic (DAergic) neurons of the substantia nigra, providing a possible basis for the motor deficits observed in manganism. Elevated Mn has been shown to affect a variety of cellular processes, including increased levels of transcription for ER-related genes, ROS production, mitochondrial dysfunction, autophagy, altered acetylcholinesterase (AChE) activity, changes in cyclic AMP (cAMP) signaling, iron dyshomeostasis, and dysfunctional astrocytic activity. Many markers of programmed cell death, including increased TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, internucleosomal DNA cleavage, activation of JNK, p38, the apoptotic initiator caspase-12, and pro-apoptotic effector caspase-3, have been observed in neurons in the presence of Mn exposure. Specifically, Mn has been shown to induce proteolytic cleavage of protein kinase C-δ (PKC-δ) as an essential player in Mn-induced neuronal death and in the neuroprotective activity of α-synuclein protein aggregation upon chronic Mn exposure. The induction of apoptosis is possibly mediated through ER stress and autophagy. In DAergic SH-SY5Y cells exposed to Mn, the levels of ER stress response proteins, including the ER chaperone GRP94 and the pro-apoptotic GADD153/CHOP protein, as well as phosphorylated eIF2α (eukaryotic translation initiation factor 2α) are increased significantly. In Mn-treated DAergic neurons, increased abnormal lysosomes, decreased expression of autophagy-related protein Beclin1, and activation of mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) signaling have been observed, possibly leading to DAergic neurodegeneration.

In addition, PD-related mutant genes (such as ATPase 12A3) have been shown to alter Mn homeostasis, supporting the link between Mn dyshomeostasis and PD. Interestingly, the newly identified Mn transporter SLC30A10 has been associated with dystonia, parkinsonism, and hypermanganemia when mutated. This protein is expressed at high levels in the liver and the basal ganglia. Loss-of-function mutants prevent Mn excretion and result in high levels of plasma Mn, which eventually accumulates in the basal ganglia of the brain. Indeed, Mn can also catalyze the autoxidation of dopamine, whose toxic metabolites can wreak havoc on DAergic cells, suggestive of similar pathology between PD and manganism. In regard to prion disease, a protective role for prion protein against Mn neurotoxicity has been suggested upon short-term exposure to Mn, although prolonged Mn exposure was shown to promote the stabilization and aggregation of the infectious protein. Although Mn is an essential metal, Mn homeostatic and signaling pathways are still being delineated, and further investigation may give insight into not only Mn regulation but also manganism and other forms of parkinsonism.

Zinc

Zn is an essential trace metal (the second most abundant transition metal after Fe) required for humans and many other living organisms. It is a cofactor for over 300 enzymes and metalloproteins, regulating gene transcription and the antioxidant response. The majority of Zn is in the testes, muscle, liver, and brain. In childhood, Zn deficiency affects mental and physical development as well as learning abilities. However, excess levels of Zn suppresses Cu and Fe absorption, promoting ROS production in the mitochondria, disrupting activities of metabolic enzymes, and activating apoptotic processes. Disruption of Zn homeostasis has been associated with AD, brain trauma, cerebral ischemia, epilepsy, and vascular-type dementia. At low concentrations (a few micromolars), Zn suppresses β-amyloid-induced neurotoxicity by selectively precipitating aggregation intermediates. However, at high levels, the binding of Zn to β-amyloid may enhance formation of fibrillar β-amyloid aggregation, leading to neurodegeneration. Zn also plays a critical role in ischemia-induced neuronal death and the pathogenesis of VD, evidenced by a correlation of increased Zn concentration with glutamate being packaged into synaptic clefts during membrane depolarization under ischemic conditions. Future research should assess the intracellular activities of supplemental and neurotoxic Zn in the nervous system and investigate optimal Zn doses needed for different groups of people, especially infants and children.

Non-essential metals

Aluminum

Aluminum (Al) is the third most abundant element and the most abundant metal in the earth’s crust. It has a wide range of uses, including in food preservation, cans, cookware, cars, and vaccine adjuvants, to name a few. The exact function of Al in animals remains unknown. Al is highly reactive with carbon and oxygen, making it toxic to living organisms. In humans, Al from dietary intake and environmental exposure is rapidly cleared by the kidney. However, Al salts in vaccine adjuvants remain biologically available and accumulate in the nervous system. Al has been associated with AD, ALS, ASDs, GBD, multiple sclerosis, and GWS in humans. In patients with dialysis-associated encephalopathy, Al accumulation was found in the brain together with β-amyloid peptide accumulation. Interestingly, the symptoms quickly abated after removal of Al from the dialysis solution. Recently, a meta-analysis showed that chronic Al exposure increased the risk of AD by approximately 70%. In addition, a correlation between the number of children with ASD and exposure to Al-adjuvanted vaccines was observed; higher levels of Al were found in the hair, blood, and urine of children with autism. In mice, injection of
Al hydroxide results in loss of long-term memory, increased anxiety, and neuronal death in the spinal cord and motor cortex14. The neurological damage may be due to oxidative stress12,13 and mitochondrial dysfunction95-96. However, the results of many of these reports do not address confounding variables such as genetic backgrounds that may predispose an organism to the susceptibility of Al-induced neurological damage. Taken together, genetic polymorphisms combined with environmental factors likely trigger AI-induced neurotoxicity. Future studies could be profitably directed at investigating the relationship between AI exposure and genetic risk factors of these neurological diseases.

Arsenic

Commonly used as a wood preservative in the past and known for its contamination of groundwater, Arsenic (As) is a toxic metalloid and well-known carcinogen, which over 200 million people worldwide are chronically exposed to97-100. Research suggests that As exposure induces mitochondrial oxidative stress, imbalance of intracellular Ca2+, disruption in ATP production, altered membrane potential, changes in cytoskeletal morphology, and neuronal cell death, among other effects97,101. Studies have shown that early-life exposure to As can cause lower brain weight and a reduction in glia and neurons98. As exposure is associated with AD and ALS99,102. Dimethylarsenic acid, a metabolite of As in humans, has been shown to increase β-amyloid levels, a key feature of AD103. Translocation of neurofilament (NF) was inhibited by As exposure and is linked to decreased NF content at peripheral nerves. This may be important in understanding the aberrant NF distribution that is a hallmark of ALS104. Owing to the persistent exposure of As to the human population, further investigation into the mechanisms of As poisoning is warranted.

Cadmium

Cadmium (Cd) is a non-essential transition heavy metal and known human carcinogen105. It can enter the peripheral and central neurons from the nasal mucosa or the olfactory bulb, which damages permeability of the BBB98. Miners, welders, smokers, and workers in battery production are at risk of high Cd exposure99. In cells, Cd can induce oxidative stress, suppress gene expression, and inhibit DNA damage repair and apoptosis97. Chronic exposure to Cd may severely interfere with normal function of the nervous system, and infants and children are more susceptible than adults106. Cd is a possible etiological factor of neurodegenerative diseases, including AD98 and PD12. The symptoms include headache, megrim, olfactory dysfunction, slowing of vasomotor functioning, decreased equilibrium and learning ability, and PD-like symptoms100. Jiang et al. found that Cd accelerates self-aggregation of Alzheimer’s tau peptide R3101, and it has been reported in a case study that a 64-year-old man developed PD symptoms 3 months after acute exposure to Cd fumes47. In zebrafish, Cd exposure resulted in decreased head size and unclear brain subdivision boundaries in the mid-hindbrain region102. In addition, Cd exposure has been shown to result in morphological changes of rat cortical neurons (axons and dendrites)100 and inhibited neurite outgrowth in PC12 cells111. Owing to Cd’s role as a carcinogen, the neurotoxicity induced by Cd is underestimated. Thus, future research should further investigate the mechanism of neurotoxic effect of Cd, especially that of chronic low-level Cd exposure.

Lead

Lead (Pb) is a non-essential heavy metal and a ubiquitously present pollutant in the ecosystem. In humans, inhalation and oral ingestion are the major routes of Pb exposure. In the body, Pb can be excreted in urine and bile, and some Pb can bind to red blood cells and eventually accumulate in bone122. Pb exposure results in oxidative stress, mitochondrial dysfunction, changes to the Golgi apparatus, and increased gliofilaments in astrocytes113. It also disrupts Ca2+ homeostasis114, interferes with the phosphorylation of PKC115, and decreases nitric oxide production116. The main target of Pb-induced toxicity is the nervous system, and children are particularly sensitive to Pb intoxication. The hippocampus is the primary region of Pb accumulation, although the metal may also accumulate in several other brain regions117. It has been reported that Pb exposure results in deficits in intelligence, memory, executive functioning and attention, processing speed, language, emotion, and visuospatial and motor skills112. For example, in children, Pb exposure results in decreased intellectual ability in a dose-dependent manner118,119, impaired verbal concept formation120, grammatical reasoning difficulty21, poor command following122, and so on. In adults, workers with occupational exposure to Pb have shown impairment of verbal memory and visual memory performance123, lower decision-making speed124, deficit in visuomotor coordination120, and increased interpersonal conflict125. Given the severe health issues caused by Pb, novel techniques for early diagnosis of Pb exposure (especially during pregnancy and childhood) and effective treatment after Pb exposure should be the focus of future research on Pb.

Methylmercury

Methylmercury (MeHg) is a xenobiotic toxic organic metal compound derived from inorganic mercury (Hg). Hg finds itself in our environment primarily through anthropogenic sources such as industrial waste, coal mining, and natural sources such as volcanoes and forest fires that release Hg back into the atmosphere123. Hg that pollutes the aquatic arena through these paths can be readily methylated into MeHg by sulfate-reducing bacteria and a variety of other anaerobic bacteria126. MeHg bioaccumulates in the aquatic food chain, and seafood consumption remains one of the main forms of exposure for humans127. MeHg has a high affinity for sulfur and can cross the BBB by binding onto thiol groups of proteins; it can also bind to luteoycte, mimicking the structure of methionine, allowing for the possibility of uptake by amino acid transporters126,129. MeHg can accumulate in the brain and has led to epidemics in the past at Minamata Bay and Iraq, where those affected, particularly children, presented with a variety of central nervous system (CNS) disorders, including ataxia, paralysis, retardation, dysarthria, dysesthesia, and cerebral palsy130. A case study of autopsies in a family that was exposed to high levels of MeHg revealed that exposure to MeHg leads to inorganic Hg buildup in the brain. Furthermore, cerebellar and occipital lobe atrophy was observed in patients who had experienced motor and vision issues. Differential distribution of Hg content was also observed, and the greatest amounts were in the occipital lobe and cerebellum and basal ganglia, reflective of the areas important for vision and movement131. At the cellular level, MeHg is known to affect a variety of neuronal activities including dopamine metabolism132, neural stem cell differentiation133, generation of ROS134, increased calcium...
influx, aberrant autophagy, DNA damage, and mitochondrial dysfunction. In addition, MeHg exposure has been shown to increase β-amyloid in the hippocampus and decrease it in the cerebrospinal fluid, both hallmarks of AD. Currently, treatment options for those exposed to MeHg are not prevalent. Prevention of exposure has been the major development in the past few decades whereby government advisories have been established to inform and protect their respective populations. Limitations on fully understanding the effect of MeHg on the CNS include the confounding beneficial nature of seafood by which MeHg usually enters the human body.

Thallium

Thallium (Tl), a naturally occurring trace element, is an extremely toxic heavy metal, sparsely found in the earth’s crust. Sources of Tl include industrial processing of cement and non-industrial means such as rodenticide and eating foods from contaminated soils. Tl can make its way into the body not only through consumption but also via the skin and inhalation. Non-neurological symptoms include alopecia, hepatic dysfunction, gastroenteritis, and Mees' lines, and CNS-related disorders include polynuropathy, cranial nerve deficits, paresthesia, loss of sensation, ataxia, and psychosis. Victims of Tl poisoning complain of peripheral neuropathy. It has been shown that Tl exposure can lead to inhibition of AChE, an enzyme catalyzing breakdown of the neurotransmitter acetylcholine (Ach), which may explain peripheral neuropathy. Studies have shown that Tl concentrations in the brain are lower than in other parts of the body, and that the highest concentrations in the brain are in the hypothalamus. Tl interferes with a host of K+-dependent processes because of similarities in size and the univalent nature of the two ions; one of the affected processes is ATP generation. At the cellular level, higher levels of Tl have been shown to cause a decrease in ATP production, increase in ROS formation, glutathione oxidation, and decreases in dopamine and serotonin levels in the brain. Owing to available treatments for this xenobiotic metal and lack of major risk of exposure to the general public, clarity in signaling pathways remains an issue. Furthermore, the complicated symptoms may cause misdiagnosis of Tl poisoning, which points to the need for health professionals to be more aware of the features of Tl-induced poisoning and neurotoxicity.

Neurotoxicity induced by metal mixture

The neurotoxicity of metals is usually studied on an individual metal basis. However, the fact is that we are exposed to an environment of mixed metals, which makes it more complicated to study. It is noteworthy that changes in the level of one metal may have significant effect on the homeostasis of other metals, given that various metals (such as Mn, Fe, Cd, Cu, and Zn) are transported by shared transporters or controlled by overlapping signaling pathways. There are limited studies focusing on the combined effect of mixed metal exposure. The neurotoxicity of Pb with other metals (As, Cd, Hg, and Mn) is well studied. Prenatal exposure to Pb and As tends to increase the probability of intellectual disability when compared with exposure to a single metal. High Pb levels might affect mental and psychomotor development in children with high prenatal Cd exposure. Co-exposure to high levels of Pb and Mn together in the prenatal period led to larger deficits in cognition and language development in children at two years of age compared with single-metal exposure. Pb exposure was associated with lower IQ scores but only among children with high blood Mn levels. In contrast to the synergetic effect between Pb and As, Pb along with Cd, Mn, or Hg exposure tends to work in an antagonistic way, given that the combined effect on cognitive deficits caused by MeHg and Pb exposure was less than additive.

In rodents, it has been reported that co-administration of two metals might increase the retention and redistribution of individual metals. Co-exposure of Se and Hg increased the retention of both metals and resulted in a redistribution of Hg in the blood and organs. Chandra et al. reported that oral intake of Mn and intraperitoneal administration of Pb in rats resulted in alternations in motor activity, learning ability, and biogenic amine levels and Pb levels in the brain, which were more severe than in rats exposed to either Mn or Pb alone. Similarly, rat brain weight decreased to a larger degree under conditions of co-exposure to both Mn and Pb than with either metal alone. An interaction of As/Pb has been reported to affect the central monaminergic systems in mice. The As/Pb mixture enhanced Pb accumulation but reduced As accumulation in the brain, decreased norepinephrine levels in the hippocampus, and increased serotonin levels in the midbrain and frontal cortex, when compared with single-metal exposure. In rats with oral consumption of mining waste (containing As, Cd, Mn, and Pb), accumulation of As and Mn was found in the brain, and dopamine release decreased with a long-standing polarization, when compared with the control. Mn may exacerbate the well-documented neurotoxic effects of Pb among children, particularly at younger ages. The metal mixture (As, Mn, and Pb) significantly decreased rat motor parameters compared with the single-metal exposure. Given that humans are exposed to multiple metals simultaneously in real life and neurotoxicity is commonly accompanied with metal overexposure, more studies are needed to investigate the health impacts of metal mixture in the near future to better understand their synergetic or antagonistic effect.

Treatment for metal-induced neurotoxicity

Upon occurrence of metal poisoning, patients should be transferred out of the exposing environment first, followed by gastrointestinal decontamination. For example, a rapid decrease in blood plasma Mn levels has been noticed with discontinued Mn supplementation in children with cholostasis receiving total parental nutrition. However, this therapy might not work well for patients with chronic metal exposure, given that metals have already accumulated in the nervous system, bones, and other tissues rather than in the plasma. Currently, chelation therapy is a common treatment to remove additional metals in the body for both chronic and acute metal poisoning. Chelators include British antilewisite (BAL), succimer (DMSA), Prussian blue, calcium disodium edetate (CaNa₂EDTA), and D-Penicillamine (Cuprimine). However, the chelators themselves may have adverse effects, such as headache, fatigue, renal failure, nasal congestion, gastrointestinal side effects, and life-threatening hypocalcemia, to name a few. The specificity of these chelators and the dosage to use are the major concerns when performing chelation therapy. The discovery of specific metal exporters provides novel therapeutics for metal-induced neurotoxicity. For example, SLC30A10 is a newly identified Mn transporter facilitating...
efflux of excessive intracellular Mn; patients with mutations in the gene presented with dystonia, hypermanganeseamia, parkinsonism, and manganism12,13,166-168. Although a study of its complete substrates has not been finished, this protein seems to transport Mn exclusively167,168. Pharmaceutical compounds enhancing the exporting activity of SLC30A10 will promote specifically Mn efflux but leave other metals untouched. This can bypass the side effects caused by chelation to a great degree. Unfortunately, specific transporters for different metals like SLC30A10 for Mn remain largely unknown. Future studies to identify metal-specific transporters are in great need to design therapeutics to treat metal-induced toxicity.

Conclusions and future directions

Metals play an important role in our daily life as they are widely involved in numerous enzymatic activities. Some of them are essential at trace amounts; however, excessive amounts in the human body usually result in neurotoxicity. AD, ALS, autism, and PD are commonly associated with metal overexposure. Once metals have accumulated in the nervous system, oxidative stress, mitochondrial dysfunction, and protein misfolding are the most common deficits associated with metal-induced toxicity16-13. Once injured, neurons have to expend greater energy to synthesize neurotransmitters and maintain homeostasis. The increased burden combined with the neurotoxicity may lead to neuronal death. When some neurons are lost, the job has to be passed on to other neurons, initiating a vicious cycle of toxicity. Given that the nervous system does not regenerate as well as other systems do, the neurodegeneration and impairments usually become progressive with age, as typically seen in AD and PD. With the increase of lifespan among the general population, there is arguably a longer duration of exposure to greater levels of metals for individuals and potential increase in frequency of occurrence of neurological diseases. Accordingly, there is a growing demand to investigate the neurotoxicity resulting from metal exposure. Future studies need to focus more on the joint effect of metal mixture exposure, identifying specific transporters of each metal as well as developing target-specific therapeutics for patients with metal poisoning.

Competing interests
The authors declare that they have no competing interests.

Grant information
The preparation of this manuscript was supported by National Institutes of Health grants NIEHS R01 10563, NIEHS R01 07331, and IR01 ES020852.

References

1. Chen P, Parmalee N, Aschner M: Genetic factors and manganese-induced neurotoxicity. Front Genet. 2014; 5: 265. Published Abstract | Publisher Full Text | Free Full Text
2. Bani L: Metallokins and the Cell. Dordrecht: Springer Netherlands; 2013; 12. Publisher Full Text
3. Desai V, Kaler SG: Role of copper in human neurological disorders. Am J Clin Nutr. 2008; 88(3): 855–8. Published Abstract
4. Rangananj S, DSouza GA: Restless legs syndrome in Indian patients having iron deficiency anemia in a tertiary care hospital. Sleep Med. 2007; 8(3): 247–51. Published Abstract | Publisher Full Text
5. Yager JY, Hartfield DS: Neurologic manifestations of iron deficiency in childhood. Pediatr Neurol. 2002; 27(2): 85–92. Published Abstract | Publisher Full Text
6. Wright RO, Baccarelli A: Metals and neurotoxicology. J Nutr. 2007; 137(12): 2809–13. Published Abstract
7. Angel S, Barhydt T, Jacobs R, et al.: Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Mol Membr Biol. 2014; 4(10): 1816–23. Published Abstract | Publisher Full Text | Free Full Text
8. Zhang J, Cao R, Cai T, et al.: The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotox Res. 2013; 24(4): 478–90. Published Abstract | Publisher Full Text | Free Full Text
9. Seo Y, Li Y, Westling-Rensvik M: Iron depletion increases manganese uptake and potentiates apoptosis through ER stress. Neurotoxicology. 2013; 38: 67–73. Published Abstract | Publisher Full Text | Free Full Text
10. Gunter TE, Gershen B, Lester T, et al.: An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol. 2010; 249(1): 65–75. Published Abstract | Publisher Full Text | Free Full Text
11. Malecki EA: Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull. 2001; 55(2): 225–8. Published Abstract | Publisher Full Text
12. Bondy SC, Guo-Ross SX, Pien J: Mechanisms underlying the aluminum-induced potentiation of the pro-oxidant properties of transition metals. Neurotoxicology. 1998; 19(1): 65–71. PubMed Abstract
13. Strong MJ, Garnuto RM, Joshi JG, et al.: Can the mechanisms of aluminum neurotoxicity be integrated into a unified scheme? J Toxicol Environ Health. 1996; 48(6): 599–613. PubMed Abstract | Publisher Full Text
14. Shaw CA, Tomjenovic L: Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmune. Immunol Res. 2013; 56(2–3): 304–16. PubMed Abstract | Publisher Full Text
15. Authier FJ, Cherin P, Creange A, et al.: Central nervous system disease in patients with macrophagic myofascititis. Brain. 2001; 124(PT 5): 974–83. Published Abstract | Publisher Full Text
16. Strausak D, Mercer JF, Dieter HH, et al.: Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull. 2001; 52(2): 175–85. PubMed Abstract | Publisher Full Text
17. Okuda B, Iwamoto Y, Tachibana H, et al.: Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg. 1997; 99(4): 263–5. Published Abstract | Publisher Full Text
18. Chen P, Chakraborty S, Peres TV, et al.: Manganese-induced Neurotoxicity: From C. elegans to Humans. Toxicol Res (Camb). 2015; 4(2): 191–202. PubMed Abstract | Publisher Full Text | Free Full Text
19. Valensin D, Padula EM, Hecel A, et al.: Specific binding modes of Cu(II) and Ag(II) with neurototoxic domain of the human prion protein. J Inorg Biochem. 2016; 155: 26–35. PubMed Abstract | Publisher Full Text | F1000 Recommendation
20. Ha C, Ryu J, Park CB: Metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochim Biophys Acta. 2007; 1769(20): 6118–25. PubMed Abstract | Publisher Full Text | F1000 Recommendation
21. Roos PM, Vesterberg O, Nordberg M: Metals in motor neuron diseases. Exp Biol Med (Maywood). 2006; 231(9): 1481–7. PubMed Abstract
22. Rasia RM, Bertocconi CW, Marsh D, et al.: Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci U S A. 2005; 102(12): 4294–9.
PubMed Abstract | Publisher Full Text | Free Full Text

23. Rasia RM, Bertocconi CW, Marzillo A, et al.: Metallotheriins: uncoordinated proteins from unconventional animals: a long journey from nematodes to mammals. Biocell. 2014; 4(2): 435–57.
PubMed Abstract | Publisher Full Text | Free Full Text

24. Fox JH, Kama JA, Lieberman G, et al.: Mechanism of copper ion mediated Huntington’s disease progression. PLoS One. 2007; 2(3): e334.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

25. Thackray AM, Knight R, Haswell SJ, et al.: Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J. 2002; 362(Pt 1): 253–6.
PubMed Abstract | Publisher Full Text | Free Full Text

26. Song BS, Chen SG, Colucci M, et al.: Aberrant metal binding by prion protein in human prion disease. J Neurochem. 2001; 78(6): 1400–9.
PubMed Abstract | Publisher Full Text | Free Full Text

27. Quaglio E, Chiesa R, Harris DA: Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem. 2001; 276(14): 11432–8.
PubMed Abstract | Publisher Full Text | Free Full Text

28. Pass R, Fridd K, Barnett JP, et al.: Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc. Mol Cell Neurosci. 2015; 68: 186–93.
PubMed Abstract | Publisher Full Text | Free Full Text

29. Hijazi N, Shaked Y, Rosenmann H, et al.: Copper binding to PrP may inhibit prion disease progression. Brain Res. 2003; 993(1–2): 150–200.
PubMed Abstract | Publisher Full Text | Free Full Text

30. Basiotti G, Di Lorenzo D, Archetti S, et al.: Iron and Neurodegeneration: Is ferritinophagy the link? Mol Neurobiol. 2015; 1–33.
PubMed Abstract | Publisher Full Text | Free Full Text

31. Shetler AD, Mason AB, Pinka P: The long history of iron in the Universe and in health and disease. Biochim Biophys Acta. 2012; 1820(3): 161–87.
PubMed Abstract | Publisher Full Text | Free Full Text

32. Chatterjee S, Sarkar S, Bhattacharya S: Toxic metals and autophagy. Chem Res Toxicol. 2014; 27(11): 1887–900.
PubMed Abstract | Publisher Full Text | Free Full Text

33. Aribe CE, Li A, Houlden H, et al.: Insights into molecular mechanisms of disease in neurodegeneration with iron brain accumulation: unifying theories. Neuropathol Appl Neurobiol. 2015.
PubMed Abstract | Publisher Full Text | Free Full Text

34. Akar E, Onaip A, Diniz G, et al.: Investigation of iron’s neurotoxicity during cerebral maturation in the neonatal rat model of haemolysis. Folia Neuropatol. 2010; 53(3): 262–9.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

35. Noh H, Kozlov AV, Gille L, et al.: Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans. 2003; 31(Pt 6): 1308–11.
PubMed Abstract | Publisher Full Text | Free Full Text

36. Salvador GA, Uraga RM, Giusto NM: Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis. 2010; 2011: 720658.
PubMed Abstract | Publisher Full Text | Free Full Text

37. Shen XM, Dryhurst G: Iron- and manganese-catalyzed autoxidation of dopamine in the presence of metalloprion: Possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Chem Res Toxicol. 1998; 11(7): 824–37.
PubMed Abstract | Publisher Full Text | Free Full Text

38. Park J, Lee DH, Kim B, et al.: Iron overload triggers mitochondrial fragmentation via calcium-sensing signals in HFT-22 hippocampal neuronal cells. Toxicology. 2005; 337: 39–46.
PubMed Abstract | Publisher Full Text | Free Full Text

39. Zucca FA, Segura-Aguilar J, Ferrari E, et al.: Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2015; pii: S0031-0008(15)00101-X.
PubMed Abstract | Publisher Full Text | Free Full Text

40. Greenwood MA, Camakaris J, Bush AI: Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int. 2013; 62(5): 540–55.
PubMed Abstract | Publisher Full Text | Free Full Text

41. Meyer E, Kurian MA, Hayflick SJ: Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiologic Mechanisms. Annu Rev Genomics Hum Genet. 2015; 16: 257–79.
PubMed Abstract | Publisher Full Text | Free Full Text

42. Bloom JM, Krueger C: Newly characterized forms of neurodegeneration with brain iron accumulation. Curr Neurosci Rep. 2013; 13(12): 413.
PubMed Abstract | Publisher Full Text | Free Full Text

43. Pyatigorskaya N, Sharmar M, Convol JC, et al.: High nigral iron deposition in LRRK2 and Parkin mutation carriers using R2* relaxometry. Mov Disord. 2015; 30(8): 1077–84.
PubMed Abstract | Publisher Full Text | Free Full Text

44. Febraro F, Giorgi M, Caldara S, et al.: α-Synuclein expression is modulated at the translational level by iron. Neuroreport. 2012; 23(9): 576–80.
PubMed Abstract | Publisher Full Text | Free Full Text

45. Uversky VN, Li J, Fink AL: Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular link between Parkinson’s disease and heavy metal exposure. J Biol Chem. 2001; 276(47): 44284–96.
PubMed Abstract | Publisher Full Text

46. Alyson S, Le P, Bush AI: Metalloastin in Alzheimer’s disease. Free Radic Biol Med. 2013; 62: 76–89.
PubMed Abstract | Publisher Full Text | Free Full Text

47. Banerjee P, Sahoo A, Anand S, et al.: Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SH-SYSY cells: protective action of neogene. Neuro molec Med. 2014; 16(4): 787–98.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

48. Liu B, Moloney A, Meehan S, et al.: Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem. 2011; 286(9): 4248–56.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

49. Lumsden AL, Henshall TL, Dayan S, et al.: Huntington-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet. 2007; 16(16): 1905–20.
PubMed Abstract | Publisher Full Text | Free Full Text

50. Kwan JY, Jeong SY, Van Gelderen P, et al.: Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One. 2012; 7(4): e35241.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

51. Yu J, Qi F, Wang N, et al.: Increased iron level in motor cortex of amyotrophic lateral sclerosis patients: an in vivo MR study. Amyotroph Lateral Scler Frontotemporal Degener. 2014; 15(5–6): 357–61.
PubMed Abstract | Publisher Full Text | Free Full Text

52. Lee JK, Shin JH, Gwag BJ, et al.: Iron accumulation promotes TACE-mediated TNF-α secretion and neurodegeneration in a mouse model of ALS. Neurobiol Dis. 2015; 80: 63–9.
PubMed Abstract | Publisher Full Text | Free Full Text

53. Hadshteva M, Kirches E, Wilsch-Neumann A, et al.: Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neurosci. 2013; 230: 94–101.
PubMed Abstract | Publisher Full Text | Free Full Text

54. Horing KJ, Call SW, Topps KG, et al.: Manganese is Essential for Neuronal Health. Annu Rev Nutr. 2015; 35: 71–108.
PubMed Abstract | Publisher Full Text | Free Full Text

55. Michalke B, Frensenber K: New insights into manganese toxicity and speciation. J Trace Elem Med Biol. 2014; 28(2): 106–16.
PubMed Abstract | Publisher Full Text | Free Full Text

56. Gorell JM, Rybicki BA, Cole Johnson C, et al.: Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology. 1999; 18(6): 303–8.
PubMed Abstract | Publisher Full Text | Free Full Text

57. Kwaeye GF, Paoliello MM, Mukhopadhyay S, et al.: Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. J Environ Res Public Health. 2015; 12(7): 7519–40.
PubMed Abstract | Publisher Full Text | Free Full Text

58. Williams M, Todd GD, Roney N, et al.: Toxicological Profile for Manganese. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2012 Sep.
PubMed Abstract | Publisher Full Text

59. Kraft P, Chakraborty S, Mukhopadhyay S, et al.: Manganese homeostasis in the nervous system. J Neurochem. 2015; 134(4): 601–10.
PubMed Abstract | Publisher Full Text | Free Full Text

60. Michalke B, Frensenber K: New insights into manganese toxicity and speciation. J Trace Elem Med Biol. 2014; 28(2): 106–16.
PubMed Abstract | Publisher Full Text | Free Full Text

61. Gorojod RM, Alaimo A, Porte Alcon S, et al.: Iron reduces the levels of α-synuclein and increases the development of Parkinson’s disease. F1000 Research 2016, 5(F1000 Faculty Rev): 366 Last updated: 17 MAR 2016
PubMed Abstract | Publisher Full Text | Free Full Text
89. Edwardson JA, Candy JM, Ince PG, et al.: Aluminum accumulation, beta-amyloid deposition and neurofilibrillary changes in the central nervous system. Ciba Found Symp. 1992; 169: 165–79; discussion 179–85. PubMed Abstract

90. Harrington CR, Wischik CM, McArthur FK, et al.: Alzheimer’s disease-like changes in tau protein processing: association with aluminum accumulation in brains of renal dialysis patients. Lancet. 1994; 343(8904): 993–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

91. Flendig JA, Krous H, Das HA, editors: Aluminium intoxication: the cause of dialysis dementia? Proc Eur Dial Transplant Assoc. 1976.

92. Wang Z, Wei X, Yang J, et al.: Chronic exposure to aluminum and risk of Alzheimer’s disease: A meta-analysis. Neurosci Lett. 2016; 610: 200–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

93. Lopes MM, Caldas LOA, et al.: Young children with autism spectrum disorders: Can aluminum body burden cause metabolism disruption? Toxicol Lett. 2011; 205(Supplement): S92. Publisher Full Text

94. De Marchi U, Manson M, Battaglia V, et al.: Influence of reactive oxygen species production by monoamine oxidase activity on aluminum-induced mitochondrial permeability transition. Cell Mol Life Sci. 2004; 61(19–20): 2664–71. PubMed Abstract | Publisher Full Text

95. Murakami K, Yoshino M: Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria. J Cell Biochem. 2004; 93(6): 1267–71. PubMed Abstract | Publisher Full Text

96. Niu PY, Niu Q, Zhang GL, et al.: Aluminum impairs rat neural cell mitochondrial function in vitro. Int J Immunopathol Pharmacol. 2005; 18(4): 683–9. PubMed Abstract | Publisher Full Text

97. Prakash C, Som M, Kumar V: Mitochondrial oxidative stress and dysfunctions in arsenic neurotoxicity: A review. J Appl Toxicol. 2016; 36(2): 179–88. PubMed Abstract | Publisher Full Text

98. Tolsin M, Ruchmawat M, Landgrren P: The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health. 2014; 80(4): 303–14. PubMed Abstract | Publisher Full Text

99. Breuer C, On J, Nokemper D, et al.: Successful detoxicisation and liver transplantation in a severe poisoning with a chemical wood preservative containing chromium, copper, and arsenic. Transplantation. 2015; 99(4): e29–30. PubMed Abstract | Publisher Full Text

100. Mclintock TR, Chen Y, Budsonsch J, et al.: Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects. Sci Total Environ. 2012; 429: 76–91. PubMed Abstract | Publisher Full Text | F1000 Recommendation

101. Aung KH, Tsuchakura S, Maekawa F, et al.: Role of Environmental Chemical insult in Neuronal Cell Death and Cytoskeleton Damage. Biol Pharm Bull. 2015; 38(8): 1109–12. PubMed Abstract | Publisher Full Text | F1000 Recommendation

102. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B: Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015; 9: 124. PubMed Abstract | Publisher Full Text | F1000 Recommendation

103. Zarazia S, Bürger S, Delgado JM, et al.: Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP. Int J Dev Neurosci. 2011; 29(4): 389–96. PubMed Abstract | Publisher Full Text | F1000 Recommendation

104. DeFuria J, Shea TB: Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: roles of JNK and GSK-3beta. Brain Res. 2007; 1181: 74–82. PubMed Abstract | Publisher Full Text

105. Luveno J, Damodaran C: A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol. 2014; 33(3): 183–94. PubMed Abstract | Publisher Full Text | F1000 Recommendation

106. Wang B, Du Y: Cadmium and its neurotoxic effects. Oxd Med Cell Longev. 2013; 2013: 894304. PubMed Abstract | Publisher Full Text | F1000 Recommendation

107. Bishak YK, Payahoo L, Osatdrahimi A, et al.: Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac J Cancer Prev. 2015; 16(1): 9–21. PubMed Abstract | Publisher Full Text

108. Chow ES, Hui MN, Lin CC, et al.: Cadmium inhibits neurogenesis in zebrafish embryonic brain development. Aquat Toxicol. 2008; 87(3): 157–69. PubMed Abstract | Publisher Full Text | F1000 Recommendation

109. López E, Figueroa S, Osset-Gasque MJ, et al.: Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol. 2003; 138(6): 901–11. PubMed Abstract | Publisher Full Text | F1000 Recommendation

110. Radio NM, Breier JM, Shafar TJ, et al.: Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Toxicol Sci.

Page 9 of 12
Yorifuji T, Debes F, Weihe P, et al.: Prenatal exposure to lead and cognitive deficit in 7- and 14-year-old children in the presence of concomitant exposure to similar molar concentration of methylmercury. Neurotoxicol Teratol. 2011; 33(2): 205–11.

Kalia K, Murthy RC, Chandra SV: Tissue disposition of Mn in lead pretreated rats. Ind Health. 1984; 22(1): 49–52.

Mejía JJ, Díaz-Barriga F, Calderón J, et al.: Effects of lead-arsenic combined exposure on central monoaminergic systems. Neurotoxicol Teratol. 1997; 19(6): 489–97.

Rodríguez VM, Dufour L, Carriazes L, et al.: Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum. Environ Health Perspect. 1998; 106(8): 487–91.

Andrade V, Mateus ML, Batoréu MC, et al.: Changes in rat urinary porphyrin profiles predict the magnitude of the neurotoxic effects induced by a mixture of lead, arsenic and manganese. Neurotoxicology. 2014; 46: 168–77.

Hambidge KM, Sokol RJ, Fidanza SJ, et al.: Plasma manganese concentrations in infants and children receiving parenteral nutrition. JPN J Parenter Enteral Nutr. 1989; 13(2): 168–71.
Open Peer Review

Current Referee Status: ✔️ ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1 Anumantha Kanthasamy, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
 Competing Interests: No competing interests were disclosed.

2 Anthony White, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
 Competing Interests: No competing interests were disclosed.

3 George Perry, Neuroscience Institute, University of Texas at San Antonio, San Antonio, Texas, USA
 Competing Interests: No competing interests were disclosed.