The Study of Concrete Durability with PPC Premium and PPC Non Premium Cement

Pramudiyanto, P Prapto, and A Manap
Civil Engineering and Planning Education Department, Faculty of Engineering, Yogyakarta State University, Yogyakarta - Indonesia
Corresponding author: pram@uny.ac.id

Abstract. Concrete structures reinforced with steel formed an important part of recent infrastructures. Today, the rate of use of cement is higher than 40 years ago. An approximation amount of 11 billion metric ton of cement per year has been consumed in the whole world. The aims of this research are: (1) to obtain the durability value of concrete with PPC Premium Cement and PPC Non-Premium Cement, (2) to obtain the degree of comparison of concrete durability, (3) to obtain the durability parameters. This research based on ASTM International standards, conducts in 224 days non-stop, to obtain following data: (1) compressive strength, (2) rebound number, (3) pulse velocity number, (4) modulus of rupture, and (5) corrosion rate. The test result: (1) PPC Premium cement give a relatively good performance rather than PPC Non-Premium cement. This is based on both destructive and non-destructive test, (2) the modulus of rupture’s value also giving the PPC Premium cement act relatively good than PPC Non-Premium cement, (3) test on severe environment, concrete treatment by mean of waterproofing proved to be effective to reduce the rate of steel destruction., (4) on a practical use, cement with high fineness modulus can give a better performance.

Keywords: cement, durability, severe environment

1. Introduction
On an article published by [1], two famous scientists on cement and concrete wrote “The most widely used construction material is concrete, commonly made by mixing Portland cement with sand, crushed rock, and water. Last year in the U.S. 63 million tons of Portland cement were converted into 500 million tons of concrete, five times the consumption by weight of steel. In many countries the ratio of concrete consumption to steel consumption exceeds ten to one. The total world consumption of concrete last year is estimated at three billion tons, or on ton for every living human being. Man consumes no material except water in such tremendous quantities”

Today, the rate of concrete use worldwide is higher than 40 years ago. It is assumed that 11 million tons per year have been consumed. It shows that concrete is still a chosen and favourite material in worldwide construction [2].

The U.S. used approximately 180 million metric cubic of ready mixed concrete each year. It is used on highways, roads, parking lot, bridges, high-rise buildings, dams, houses, sidewalks, etc. It is supported by the fast-growing development of cement industry. The cement industry is one of kind of
industry that support the concrete industry. In the U.S., the cement production is supported by 97 cement factories spread out on 36 states [3].

In Indonesia, the national consumption of cement can be shown on following chart.

![Cement consumption in Indonesia](image)

Figure 1. Cement consumption in Indonesia [4]

It is shown that following the recent acceleration on infrastructure development, it is triggered the development of cement industry in Indonesia. It is strengthening by the statement of The Director General of Chemical, Textile and Miscellaneous Industry of the Ministry of Industry in Indonesia that the Ministry of Industry predicted that the total national cement capacity on 2017 will be 102 million tons from the total required 70 million tons each year, following the high-investment realization on domestic cement industry [5].

This statement is strengthened by the new investors in cement industry to Indonesia. The Indonesian Cement Association (ASI – *Asosiasi Semen Indonesia*) has been gathered data from many sources regarding the cement producer in Indonesia on following table [6][7].

Table 1. Cement factory in Indonesia

Investor	Capacity per Year	Location
China Anhui	10 million tons	South-East-West Borneo, West Papua
	2.5 million tons	Tanjung, South Borneo
China Trio Int. Engineering Co. Ltd. (SDIC)	1.5 million tons	Subang, West Java
State Development and Investment Cooperation	1.0 million tons	Papua
Siam Cement Group – Thailand	1.8 million tons	Sukabumi, West Java
	1.2 million tons	Bayah, Banten
Pakubumi / Semen Karawan / PT. Jui Shin Indonesia	2.5 million tons	Karawang, West Java
PT. Semen Grobogan / Gajah Tunggal (China Triumph Int. Eng. Co. Ltd. – CTIEC)	1.5 million tons	Grobogan, Central Java
Wilmar Group	2.0 million tons	Banten
Ultra Tech Cement - India	4.0 million tons	Wonogiri, Central Java
Along with this newly cement industries, bring hope to the cement availability on both domestic and export requirements. With this industry the adequacy of cement to support the national infrastructure development can be provided.

2. Methods
The research method can be describe as follow:

![Research flowchart](image1)

Figure 2. Research flowchart

![Modulus of rupture specimen](image2)

Figure 3. Modulus of rupture specimen
3. Result and Discussion
The compressive strength is the first shown parameter on this research. From the compressive strength, it can be referred into other parameters. The compressive strength test then compared with other two non-destructive testing, Schmidt rebound hammer test and ultrasonic pulse velocity. The result can be shown as follow:
Figure 7. Compressive strength test

Figure 8. Schmidt hammer test 0 deg

Figure 9. Schmidt hammer test 90 deg
The bending test on beam is intended to get the modulus of rupture value, which can be used as a parameter for a specimen before rupture. The modulus of rupture of the beam for two different cement type, as follow.

![Figure 10. Ultrasonic pulse velocity test](image)

The test on severe environment was conducted to model the environment of sea water, which has particular salt content. On this test, the specimens were treated with waterproofing layer to examine the effectiveness of corrosion rate resistance on concrete reinforcement [11].

![Figure 11. Bending test on the beam](image)
According to test result, it is shown that the premium cement has the relatively better performance rather than cement non-premium, generally. This indication is shown from the early compressive strength which have the more stable curvature. This result is also strengthen with the reading of Schmidt hammer test and ultrasonic pulse velocity, which are shown the similar behaviour. Regarding the collapse of the beam, whether concrete with premium cement or non-premium cement behave the same and have almost similar performance, and when dealt with severe environment, the waterproofing treatment also give a significantly better performance rather than non-waterproofing treatment. Even the damage still happen, but the rate of damage is reduced into significant level.

4. Conclusion
According to discussion, there are conclusions as follow:

- The PPC Premium cement give relatively better performance rather than PPC non-premium cement. It is shown from the concrete quality of both destructive and non-destructive testing
- On the bending strength test, the PPC Premium cement also give the modulus of rupture relatively better performance rather than PPC non-premium
- The waterproofing treatment on severe environment can resist the damage process on the reinforcement. It can be shown from the corrosion rate and weight loss of the reinforcement

Figure 12. Reinforcement loss weigh measurement

Figure 13. Corrosion rate measurement
For practical application, cement with high finess modulus can give better performance

5. References

[1] Brunauer S and Copeland L E 1964 The Chemistry of Concrete Scientific American 210 (4) 80-93
[2] Mehta P K and Monteiro P J M 2006 Concrete, Microstructure, Properties and Materials Kosmatka S H and Wilson M L 2011 Design and Control of Concrete Mixtures, The guide to applications, methods, and materials 15th Edition, Portland Cement Association, Illinois, United States of America
[3] Anonymous 2017 Pasokan Semen Nasional 102 Juta Ton pada 2017 Retrieved on March 22, 2017 from http://www.kemenperin.go.id/artikel/12223/pasokan-semen-Nasional-102-juta-ton-pada-2017
[4] Anonymous 2017 Konsumsi dan Ekspor Semen Indonesia dari Tahun ke Tahun Available at: https://id.wikipedia.org/wiki/Semen#Pengembangan_Industri_Semen_Indonesia
[5] Anonymous 2017 Calon-calon Investor Baru Pada Industri Semen Retrieved on March 22, 2017 from: http://www.asi.or.id/berita-106-caloncalon-investor-baru-pada-industri-semen.html
[6] Anonymous 2017 KEIN: Industri Semen BUMN Dukung Pembangunan Infrastruktur Retrieved on March 22, 2017 from http://industri.bisnis.com/read/20170305/257/634172/kein-industri-semen-bumn-dukung-pembangunan-infrastruktur
[7] ASTM G 109 – 2003 Standard Test Method Chemical Admixture on the Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments, ASTM International Standard Worldwide, United States of America.
[8] Ahmad S 2009 Techniques for Inducing Accelerated Corrosion of Steel in Concrete, The Arabian Journal of Science and Engineering 34 (2c) 95-104
[9] Baboian R 2005 Corrosion Test and Standards, Application and Interpretation 2nd Edition, ASTM International Standard Worldwide, United States of America
[10] ASTM G 102 – 89, Standard Practice for Calculating of Corrosion Rate and Related Information from Electrochemical Measurements, ASTM International Standard Worldwide, United States of America.

Acknowledgments
This research was supported by the research grant of the State University of Yogyakarta. We thank our colleagues from the Civil and Planning Engineering Education Department, Faculty of Engineering, State University of Yogyakarta who provided insight and expertise that greatly assisted the research.