On the singularities of the Szegő kernels on CR orbifolds

Andrea Galasso and Chin-Yu Hsiao

Abstract

In this paper we study the microlocal properties of the Szegő kernel of a given compact connected orientable CR orbifold whose Kohn Laplacian has closed range. This last assumption is satisfied if certain geometric conditions hold true, as in the smooth case. As applications, we give a pure analytic proof of Kodaira-Bailey theorem and explain how to generalize a CR version of quantization commutes with reduction to orbifolds.

Contents

1 Introduction 1
2 Preliminaries 5
 2.1 Orbifolds 5
 2.2 CR orbifolds 7
 2.3 Group actions on orbifolds 9
 2.4 Operators on orbifolds 9
 2.5 Microlocal Szegő kernel 11
 2.6 Geometric conditions for the closed range property 13
3 Proof of Theorem 1.1 15
4 Applications 17
 4.1 Proof of Theorem 1.3 17
 4.2 Proof of Theorem 1.4 17
 4.3 Quantization commutes with reduction 19

Keywords: CR orbifolds
Mathematics Subject Classification: 32A2

1 Introduction

The study of Szegő kernels on CR manifolds play an important role in CR/Complex analysis and geometry. Boutet de Monvel and Sjöstrand [BS] showed that the Szegő kernel on a strongly pseudoconex CR manifold is a complex Fourier integral operator. Boutet de Monvel and Sjöstrand’s result has a profound impact in CR/Complex analysis and geometry. When X is a CR orbifold, the study of the associated Szegő kernel on X is a very natural question and could have some application in CR/Complex geometry and geometric quantization theory. For example, in [HMM] and [HH], the authors studied quantization commutes with reduction for strongly pseudococonex CR manifolds under the assumption that the group action G is free near $\mu^{-1}(0)$, μ is the associated momentum map. When the group action G is locally free near $\mu^{-1}(0)$, we need to understand the behaviour of the Szegő kernels on CR orbifolds. The main goal of

*Address: Room 407, Chee-Chun Leung Cosmology Hall, National Taiwan University; ORCID iD: 0000-0002-5792-1674; e-mail: andrea.galasso@ncts.ntu.edu.tw Address: Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No.1, Sec.4, Roosevelt; ORCHID iD: 0000-0002-1781-0013; email: chsiao@math.sinica.edu.tw; chinyu.hsiao@gmail.com
this paper is to study the associated Szegő kernel on a CR orbifold X with non-degenerate Levi form. As applications, we give a pure analytic proof of Kodaira-Bailey theorem and explain how to generalize a CR version of quantization commutes with reduction to orbifolds.

We now formulate our main results. We refer the reader to Section 2 for some notations and terminology used here. Let $(X, T^{1,0}X)$ be a compact orientable connected CR orbifold of dimension $2n + 1$, $n \geq 1$. In Section 2 we recall the basic material concerning orbifolds, we give definitions for the spaces of $(0, q)$-forms with $L^2(X)$ coefficients and for the Kohn Laplacian $\square_b^{(q)}$ on the orbifold X. We can then define abstractly the Szegő projector for X to be the projector

$$\Pi^{(q)} : L^2_{(0,q)}(X) \to \text{Ker}\square_b^{(q)}.$$

The main aim of this paper is to prove the following result, which is a generalization of Theorem 1.2 in [Hn].

Theorem 1.1. Assume that the Levi form is non-degenerate of constant signature (n_-, n_+) on X. Suppose $\square_b^{(q)}$ has closed range. Then

$$\Pi^{(q)} = \Pi_- + \Pi_+$$

where $\Pi_\pm \equiv 0$ if $q \neq n_\pm$. Let $q = n_-$. We have $WF'(\Pi_-) = \text{diag}(\Sigma^- \times \Sigma^-)$, $WF'(\Pi_+) = \text{diag}(\Sigma^+ \times \Sigma^+)$ if $q = n_- = n_+$,

$$\Sigma = \{(x, \lambda \omega_0(x)) \in T^*X : \lambda > 0\} ,$$

$WF'(\Pi_\pm) = \{(x, \xi, y, -\eta) \in T^*X \times T^*X; (x, \xi, y, \eta) \in WF(\Pi_\pm)\}$, $WF(\Pi_\pm)$ denotes the wave front set of Π_\pm in the sense of Hörmander. Moreover, Π_\pm has the following microlocal expression: Let $\Pi_\pm(x, y) \in D'(X \times X, T^{\ast 0,q}X \boxtimes (T^{\ast 0,q}X)^*)$ be the distribution kernel of Π_\pm. Consider an open set $U \subset X$ and an orbifold chart $(\tilde{U}, G_U) \to U$. We have

$$\Pi_\pm(x, y) = \sum_{g \in G_U} \left(\int_0^{+\infty} e^{it \varphi_{\pm}(\tilde{x}, g \tilde{y})} s_\pm(\tilde{x}, g \cdot \tilde{y}, t) dt + F_\pm(\tilde{x}, g \cdot \tilde{y}) \right) \text{ on } U \times U,$$

where $\pi(\tilde{x}) = x$, $\pi(\tilde{y}) = y$, $\pi : \tilde{U} \to U$ is the natural projection, F_\pm are smoothing operators on \tilde{U} and

$$s_\pm(\tilde{x}, \tilde{y}, t) \sim \sum_{j=0}^{\infty} s^j_\pm(\tilde{x}, \tilde{y}) t^{n-j}$$

in $S_{1,0}^{n} (\tilde{U} \times \tilde{U} \times \mathbb{R}_+, T^{\ast 0,q}X \boxtimes (T^{\ast 0,q}X)^*)$,

$$s^0_+(\tilde{x}_0, \tilde{x}_0) = 0 \text{ if } q \neq n_+$$

and

$$s^0_-(\tilde{x}_0, \tilde{x}_0) = \frac{1}{2} \pi^{-n-1} |\det L_{\tilde{x}_0}| \tau_{\tilde{x}_0, n_-}, \tilde{x}_0 \in \tilde{U},$$

if $q = n_- = n_+$,

$$s^0_+(\tilde{x}_0, \tilde{x}_0) = \frac{1}{2} \pi^{-n-1} |\det L_{\tilde{x}_0}| \tau_{\tilde{x}_0, n_+}, \tilde{x}_0 \in \tilde{U},$$

and the phase functions φ_-, φ_+ satisfy

$$\varphi_+, \varphi_- \in C^\infty(\tilde{U} \times \tilde{U}), \text{ Im } \varphi_+(\tilde{x}, \tilde{y}) \geq 0,$$

$$\varphi_-(\tilde{x}, \tilde{x}) = 0, \quad \varphi_-(\tilde{x}, \tilde{y}) \neq 0 \text{ if } \tilde{x} \neq \tilde{y},$$

$$d_x \varphi_-(\tilde{x}, \tilde{y})|_{\tilde{x} = \tilde{y}} = -\omega_0(\tilde{x}), \quad d_y \varphi_-(\tilde{x}, \tilde{y})|_{\tilde{x} = \tilde{y}} = \omega_0(\tilde{x}),$$

$$\bar{\varphi}_+(\tilde{x}, \tilde{y}) = \varphi_-(\tilde{x}, \tilde{y}).$$
Moreover, we have
\[
\sum_{g \in G_U} \left(\int_0^{+\infty} e^{it \varphi(x, g, \tilde{y})} s_+((x, g \cdot \tilde{y}), t) \, dt + F_+(x, g \cdot \tilde{y}) \right) = \sum_{h, g \in G_U} \left(\int_0^{+\infty} e^{it \varphi((h, x, g \cdot \tilde{y}), t) \right) s_+((h \cdot x, g \cdot \tilde{y}), t) \, dt + F_+(h \cdot x, g \cdot \tilde{y}) \right),
\]
where \(L_{\bar{x}_0} \) denotes the Levi form of \(X \) at \(\bar{x}_0 \), det \(L_{\bar{x}_0} = \lambda_1(\bar{x}_0) \cdots \lambda_n(\bar{x}_0) \), \(\lambda_j(\bar{x}_0), \quad j = 1, \ldots, n \), are the eigenvalues of \(L_{\bar{x}_0} \) with respect to the given Hermitian metric on \(CTX \) and \(\tau_{\bar{x}_0, n_\pm} \) are given by \((17) \).

The main idea of the proof is the following: On \(\tilde{U} \), by using approximate Szegő kernel \(S \) constructed in \([\text{HS}]\) to define a kernel
\[
S^{(q)}_{\tilde{U}}(x, y) := \sum_{g, h \in G_U} \frac{1}{|G_U|} S(h \cdot \tilde{x}, g \cdot \tilde{y})
\]
which is micro-locally given by the formulas above. We then show that \(S^{(q)}_{\tilde{U}} \) is micro-locally self-adjoint and it behaves as the identity when restricted to \(\text{Ker} \, \Box_b^{(q)} \), up to smoothing contributions. Moreover, by using the result in \([\text{HM}]\) about Szegő kernel asymptotics for lower energy forms, we can show that \(S^{(q)}_{\tilde{U}} \) satisfies \((1) \). Then using \(S^{(q)}_{\tilde{U}} \) one can define globally an operator \(S^{(q)} \) on \(X \) which we prove to be the projector \(\Pi^{(q)} \) up to some smoothing operator, if \(\Box_b^{(q)} \) has closed range. This is a consequence of the properties of \(S^{(q)}_{\tilde{U}} \) just mentioned and a theorem of functional analysis. The property \((1) \) is important for further study about the algebra of Toeplitz operators on CR orbifolds.

Now, assume that \(X \) admits a transversal and CR locally free \(S^1 \) action \(e^{i\theta} \). We take the Reeb vector field \(R \) to be the vector field on \(X \) induced by the \(S^1 \) action. For every \(\ell \in \mathbb{N} \), put
\[
X_\ell := \left\{ x \in X; \ : e^{i\theta} x \neq x, \theta \in \left[0, \frac{2\pi}{\ell} \right], \ e^{i\frac{2\pi}{\ell}} x = x \right\}.
\]
For every \(k \in \mathbb{Z} \), set
\[
\text{Ker} \, \Box_b^{(q)} : = \left\{ u \in \text{Ker} \, \Box_b^{(q)}; \ (e^{i\theta})^* u = e^{i\theta} u \right\}.
\]
Let
\[
\Pi_k^{(q)} : L^2((0, q), X) \to \text{Ker} \, \Box_b^{(q)}
\]
be the orthogonal projection and let \(\Pi_k^{(q)}(x, y) \in C^\infty(X \times X, T^{q, q} X \otimes (T^{q, q} X)^*) \) be the distribution kernel of \(\Pi_k^{(q)} \). From Theorem \([\text{GH2}] \) we can repeat the procedure in \([\text{GH2}]\) and get

Theorem 1.2. With the assumptions and notations used above, assume that the Levi form is non-degenerate of constant signature \((n_-, n_+)\) on \(X \) and let \(q = n_- \). Fix \(p \in X \) and assume that \(p \in X_\ell \), for some \(\ell \in \mathbb{N} \). Consider an open set \(U \subset X \), \(p \in U \), and an orbifold chart \((U, G_U) \to U \). We have as \(k \to + \infty \),
\[
\Pi_k^{(q)}(x, y) = \sum_{g \in G_U} \sum_{j=0}^{\ell-1} e^{\frac{2\pi i j}{\ell}} e^{ik \Psi(x, e^{i\frac{2\pi j}{\ell}} g \cdot \tilde{y})} \Psi(x, e^{i\frac{2\pi j}{\ell}} g \cdot \tilde{y}, k) + \sum_{g \in G_U} \sum_{j=0}^{\ell-1} F_k(x, e^{i\frac{2\pi j}{\ell}} g \cdot \tilde{y})
\]
where
\[
\Psi \in C^\infty(\tilde{U} \times \tilde{U}), \quad \Psi(\bar{x}, \bar{x}) = 0, \quad \text{for all} \ \bar{x} \in \tilde{U},
\]
\[
\frac{1}{C} \inf_{e^{i\theta} \in S^1} \left\{ d^2(\bar{x}, e^{i\theta} \tilde{y}) \right\} \leq \text{Im} \, \Psi(\bar{x}, \tilde{y}) \leq C \inf_{e^{i\theta} \in S^1} \left\{ d^2(\bar{x}, e^{i\theta} \tilde{y}) \right\}, \quad \forall (\bar{x}, \tilde{y}) \in \tilde{U} \times \tilde{U}, \quad C > 1 \text{ is a constant}.
\]
Fredholm, that is, Theorem 1.5.

As an application of Theorem 1.1, we generalize a CR version of quantization commutes with reduction to orbifolds. As an application of Theorem 1.2, we will give an analytic proof of the following Kodaira-Bailey embedding theorem we also have the following theorem, see also Corollary 1.1 in [P].

Theorem 1.3. Under the same assumptions and notations as in Theorem 1.2 above, assume that $X = X_{\ell_0} \cup X_{\ell_1} \cup \cdots \cup X_{\ell_u}$, $1 \leq \ell_0 < \ell_1 < \cdots < \ell_u$, $\ell_j \in \mathbb{N}$, $j = 0, 1, \ldots, u$, $u \in \mathbb{N}$. Denote by p the least common multiple of l_0, l_1, \ldots, l_u. We have

$$
\lim_{k \to +\infty} \frac{1}{(kp)^{n}} \dim \text{Ker} \, \Box_{b,k}^{(q)} = \frac{\ell_0}{2} \pi^{n-1} \int_{X} |\det L_x| \, dV_X.
$$

We work with the same assumptions and notations as in Theorem 1.2 above and assume that X is strongly pseudoconvex. Let M be the Hodge orbifold obtained by $M = X/S^1$. There exists a complex proper line orbibundle (L, h^k) such that $X \to M$ is the circle orbibundle $X \subset L^\ast$. For $k \in \mathbb{N}$, let $H^0(M, L^k)$ be the space of global holomorphic sections of M with values in L^k. The space $\text{Ker} \, \Box_{b,k}^{(0)}$ is isomorphic to $H^0(M, L^k)$. Let $\{f_j\}_{j=1}^{d_k} \subset H^0(M, L^k)$ be an orthonormal basis. The Kodaira-Bailey map is given by

$$
\Phi_k : M \to \mathbb{C}^{p_{d_k-1}},
$$

$$
x \mapsto [f_1(x), \ldots, f_{d_k}(x)].
$$

(5)

As an application of Theorem 1.3 we will give an analytic proof of the following Kodaira-Bailey embedding theorem

Theorem 1.4. With the same assumptions and notations as in Theorem 1.2 and suppose that X is strongly pseudoconvex. Then, the Kodaira-Bailey map $\Phi_{k,p} : M \hookrightarrow \mathbb{C}^{p^{d_k-1}}$ is an embedding for k sufficiently large, where p is the least common multiple of l_0, l_1, \ldots, l_u.

It should be mention that Ma and Marinescu [MM] also gave a proof of Theorem 1.4.

We assume that X admits a CR compact Lie group action G, $\dim G = d$. We do not assume that X admits a transversal and S^1 action. We will work with Assumption 2.1 below and suppose that X is strongly pseudoconvex. We refer the reader to Section 2.3 and Section 4.3 for the notations and terminology used here. We will assume that 0 is a regular value of the moment map μ and thus $\mu^{-1}(0)$ is a suborbifold of X. Put $X_G := \mu^{-1}(0)/G$. Note that both X and X_G are orbifolds. Let \Box_{b,X_G} be the Kohn Laplacian on the orbifold X_G. Let

$$(\text{Ker} \, \Box_{b,X_G}^{(0)})^G := \left\{ u \in \text{Ker} \, \Box_{b,X_G}^{(0)} : g^\ast u = u, \forall g \in G \right\}.$$

As an application of Theorem 1.4 we generalize a CR version of quantization commutes with reduction to orbifolds.

Theorem 1.5. There is a map $\sigma : (\text{Ker} \, \Box_{b,X_G}^{(0)})^G \subset L^2(X) \to \text{Ker} \, \Box_{b,X_G}^{(0)} \subset L^2(X_G)$ such that σ is Fredholm, that is,

(i) $\text{Ker} \, \sigma \cap (\text{Ker} \, \Box_{b,X_G}^{(0)})^G$ is a finite dimensional subspace of $C^\infty(X)$,

(ii) $\text{Coker} \, \sigma \cap \text{Ker} \, \Box_{b,X_G}^{(0)}$ is a finite dimensional subspace of $C^\infty(X_G)$.
We refer the reader to [17] for the explicit formula for σ.

Let us recall prior literature. First there is the paper [S], which deals with the Szegő kernel on an orbifold circle bundle. The semi-classical behavior of Bergman kernels on complex orbifolds was studied by Dai, Liu and Ma [DLM]. Our approach is closer in spirit to [DLM] where an explicit expression for an operator on a local chart $(U, G_U) \to U$ is given. This is also motivated by previous results concerning G-invariant Szegő kernel for locally free G-action on CR manifolds we obtained in [GH2], in this case the CR reduction is an orbifold.

It is known that a compact connected strongly pseudoconvex CR orbifold X with a transversal CR S^1 action can be identified with the circle orbibundle of a positive holomorphic orbifold line bundle $(L, h) \to M$ over a compact complex Hodge orbifold M. By this identification the k-th Fourier component of the Szegő kernel function and the Bergman kernel function for the k-th tensor power of the line bundle L are equal up to a constant factor of 2π. Hence in this paper we obtained a phase function version of the Bergman kernels expansions on orbifolds (see [MM, Theorems 5.4.10, 5.4.11] or [DLM, Theorem 1.4] for another version).

2 Preliminaries

2.1 Orbifolds

We recall basic definitions we need about orbifolds, for a more precise discussion see [MM] and [ALR] and references therein. Define \mathcal{M}_s to be the category whose objects are pairs (M, G), where M is a connected smooth manifold and G is a finite group acting smoothly on M, and whose morphisms $\Phi : (M, G) \to (M', G')$ are families of open embeddings $\varphi : M \to M'$ such that for each $\varphi \in \Phi$ there exists an injective group homomorphism $\lambda_{\varphi} : G \to G'$ satisfying

$$\varphi(g \cdot x) = \lambda_{\varphi}(g) \cdot \varphi(x), \quad x \in M, g \in G'.$$

Let X be a paracompact Hausdorff space and let \mathcal{U} be a covering of X consisting of connected open subsets. Then we say that the topological space X has an orbifold structure if

i) for each $U \in \mathcal{U}$ there exists $(\tilde{U}, G_U) \in \mathcal{M}_s$ and a ramified covering $(\tilde{U}, G_U) \to U$ such that $U \cong \tilde{U}/G_U$;

ii) for any $U, V \in \mathcal{U}$ there exists a morphism $\Phi_{V,U} : (\tilde{U}, G_U) \to (\tilde{V}, G_V)$ which covers the inclusion $U \subset V$ and satisfies $\varphi_{WU} = \varphi_{WV} \circ \varphi_{UV}$ for any $U, V, W \in \mathcal{U}$ such that $U \subset V \subset W$.

We recall that for each $x \in X$ one can always find local coordinates $(\tilde{U}, G_U), \tilde{U} \subseteq \mathbb{R}^n$, such that x is a fixed point of G_U and G_U acts linearly on $\mathbb{R}^n, x \equiv 0 \in \mathbb{R}^n$. If $|G_U| > 1$ then we say that x is a singular point, otherwise we say that x is regular. There exists an open and dense subset in X on which all the points have conjugated stabilizers (see [DK] p. 116), thus if the action of G on M in the definition of \mathcal{M}_s is assumed to be effective as in [MM], then set of regular points is open and dense in X.

A vector orbibundle (E, p) on an orbifold X is an orbifold E together with a continuous projection $p : E \to X$ such that for $U \in \mathcal{U}$ there exists a G_U-equivariant lift $\tilde{p} : \tilde{E}_U \to \tilde{U}$ defining a trivial vector bundle such that the diagram

$$
\begin{array}{ccc}
(\tilde{E}_U, G_U^E) & \xrightarrow{\tilde{p}} & (U, G_U) \\
\downarrow & & \downarrow \\
E_U & \xrightarrow{p} & U
\end{array}
$$

commutes. As before, when we say that $\tilde{p} : \tilde{E}_U \to \tilde{U}$ is G_U-equivariant we mean that there exists an injective group homomorphism $\lambda_{\tilde{p}} : G_U^E \to G_U$ such that

$$\tilde{p}(g \cdot e) = \lambda_{\tilde{p}}(g) \cdot \tilde{p}(e), \quad e \in \tilde{E}_U, g \in G_U^E;$$
if λ_p is a group isomorphism, we say that the vector orbibundle is proper.

A smooth section of a vector orbibundle (E, p) over X is a smooth map $s : X \to E$ such that $p \circ s = 1_X$, we denote the space of smooth sections as $C^\infty(X, E)$. We recall that a smooth map $f : X \to Y$ between orbifolds is a continuous map between the underlying topological spaces such that for each $U \in \mathcal{U}$ there exists a local lift (f_U, \tilde{U}) such that $f_U : \tilde{U} \to \tilde{V}$ is smooth, $\tilde{f}_U : G_U \to G_V$ is a group homomorphism, the diagram

$$(\tilde{U}, G_U) \xrightarrow{\tilde{f}_U} (\tilde{V}, G_V)$$

$$\downarrow \quad \downarrow$$

$$U \xrightarrow{f} V$$

commutes and \tilde{f}_U is \mathcal{F}_U-equivariant:

$$\tilde{f}_U(g \cdot x) = f_U(g) \tilde{f}_U(x), \quad g \in G_U,$$ $x \in \tilde{U}.$

Proposition 2.1. The tangent orbibundle T^*X is defined by gluing together the bundles defined over the charts

$$T^*_\tilde{U} \to T^*_U := T^*_\tilde{U}/G_U,$$

where the action of G_U is induced by differentiating the action on \tilde{U}, dg. It has a natural structure of proper vector orbibundle. The smooth sections of it are called vector fields.

We can then define the differential of a smooth map $f : X \to Y$ to be the smooth map $df : TX \to TY$ such that locally for a given $x \in U$, $f(x) \in V$ we have a commutative diagram

$$(T^*_\tilde{U}, G_U) \xrightarrow{d\tilde{f}} (T^*_\tilde{U}/G_U)$$

$$\downarrow \quad \downarrow$$

$$T^*_U \xrightarrow{df} T^*_U$$

where $d\tilde{f}$ is \mathcal{F}_U-equivariant. We say that f is an immersion at $x \in X$ if df is injective, so this means that there is a local lift $\tilde{f}_U : \tilde{U} \to \tilde{V}$ such that both $d\tilde{f}$ and \mathcal{F}_U are injective.

There are different ways to construct new vector bundles out of old, see [Mish] p. 29 and also [ALR] p. 14. Given any continuous functor \mathcal{F} from vector spaces to vector spaces we obtain a new orbibundle $\mathcal{F}(TX) \to X$ with fibers $\mathcal{F}(T^*_\tilde{U})/G_U$. In particular, this allows us to construct the cotangent orbibundle T^*X and exterior powers $\wedge^k T^*X$. We recall the definition of sub-orbibundle that we will require later to define $T^{1,0}X$. A sub-orbibundle (F, p_F) of a vector orbibundle (E, p) is a suborbifold of E being a vector bundle on X. We recall that an orbifold Y is a suborbifold of an orbifold X if there exists an immersion $\iota : Y \to X$, we identify Y with its image in X.

Example 2.1. Consider an action of a finite group G on \mathbb{R}^{2n+1}. A form on the orbifold \mathbb{R}^{2n+1}/G is a G-invariant form on \mathbb{R}^{2n+1}.

At this point we can give the definition of exterior derivative. Consider a chart $(\tilde{U}, G_U) \to U$ of an orbifold X, a k-form ω defines a G_U-invariant k-form ω_U on \tilde{U}, locally this is given by

$$\omega_U := f_U \, dx^{j_1} \wedge dx^{j_2} \wedge \cdots \wedge dx^{j_k}$$

on $\tilde{U} \subseteq \mathbb{R}^n$, where f_U is a G_U-invariant function on \tilde{U}. The exterior derivative of ω is given locally by

$$d\omega_U := \sum_{i=1}^{n} \frac{\partial f_U}{\partial x^i} \, dx^i \wedge dx^J$$

on $\tilde{U} \subseteq \mathbb{R}^n$, where J is the multi-index $J = (j_1, \ldots, j_n)$. It is easy to check that it defines a $(k+1)$-form which is invariant under the action of G_U.
If X is an oriented n dimensional orbifold, we define the integral of a smooth section ω of the orbibundle $\Lambda^n T^* X$ as follows. Suppose that $\text{supp}(\omega)$ is compactly supported on $U \in \mathcal{U}$, we define
\[
\int_U \omega := \frac{1}{|G_U|} \int_{\tilde{U}} \tilde{\omega}.
\]
In the general case, for every open cover of X by positively oriented charts, (U_i, G_{U_i}), we have a partition of unity $(\rho_i)_{i \in I}$ subordinate to this cover. We define,
\[
\int_X \omega := \sum_{i \in I} \frac{1}{|G_{U_i}|} \int_{\tilde{U}_i} \tilde{\rho}_i \tilde{\omega}.
\]
It remains to show that it does not depend on the choice of open cover and on the choice of partition of unity. Now, given another open cover $((V_j, G_{V_j}))_{j \in J}$ and an associated partition of unity $(\sigma_j)_{j \in J}$, since $\text{supp}(\rho_i \sigma_j) \subseteq U_i \cap V_j$ we have
\[
\frac{1}{|G_{U_i}|} \int_{\tilde{U}_i} \tilde{\rho}_i \tilde{\sigma}_j \tilde{\omega} = \frac{1}{|G_{V_j}|} \int_{\tilde{V}_j} \tilde{\rho}_{i,j} \tilde{\sigma}_j \omega V_j,
\]
where $\tilde{\sigma}_j$ is defined on \tilde{U}_i as the composition between $\sigma_j : U_i \to \mathbb{R}$ and the covering $\tilde{U}_i \to U_i$, in a similar way $\tilde{\rho}_{i,j}$ is defined. Now,
\[
\sum_{i \in I} |G_{U_i}| \int_{\tilde{U}_i} \tilde{\rho}_i \tilde{\omega} = \sum_{i \in I, j \in J} \frac{1}{|G_{U_i}|} \int_{\tilde{U}_i} \tilde{\rho}_i \tilde{\sigma}_j \tilde{\omega} = \sum_{i \in I, j \in J} \frac{1}{|G_{V_j}|} \int_{\tilde{V}_j} \tilde{\rho}_{i,j} \tilde{\sigma}_j \omega V_j = \sum_{j \in J} \frac{1}{|G_{V_j}|} \int_{\tilde{V}_j} \tilde{\sigma}_j \omega V_j,
\]
where we use the fact that
\[
\sum_{j \in J} \tilde{\sigma}_j = 1, \quad \sum_{i \in I} \tilde{\rho}_{i,j} = 1.
\]

2.2 CR orbifolds

In this section, we recall the definition of CR orbifolds. We also refer the reader to [KHH, Section 5]. Let X be a compact, connected and orientable orbifold of dimension $2n + 1$, $n \geq 1$, a CR structure on X is a sub-orbibundle $T^{1,0} X$ of rank n of the complexified orbifold tangent bundle $TX \otimes \mathbb{C}$ (which is defined locally for each $x \in X$ by taking $T_2 \tilde{U} \otimes \mathbb{C}$), satisfying $T^{1,0} X \cap T^{0,1} X = \{0\}$, where $T^{0,1} X = \overline{T^{1,0} X}$, and $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$, where \mathcal{V} is the space of smooth sections of the orbibundle $T^{0,1} X$. We also fix a Hermitian metric $\langle \cdot | \cdot \rangle$ on $TX \otimes \mathbb{C}$ so that $T^{1,0} X \perp T^{0,1} X$, as before we mean that $\langle \cdot | \cdot \rangle$ is defined locally on each local chart U as G_U-invariant Hermitian metric on $T_2 \tilde{U} \otimes \mathbb{C}$; from now on when it is clear how to define a geometric structure on an orbibundle we will not always recall the definition. Furthermore, notice that every Hermitian metric h' on \tilde{U} gives rise to a G_U-invariant metric h_U on \tilde{U} by averaging over the group:
\[
h_U(v, w) := \sum_{g \in G_U} h'(d_{\tilde{g}}(v), d_{\tilde{g}}(w)), \quad v, w \in T_{\tilde{g}} \tilde{U}.
\]
For $u \in TX \otimes \mathbb{C}$, we write $|u|^2 := \langle u | u \rangle$.

There is a unique sub-orbibundle HX of TX such that $HX \otimes \mathbb{C} = T^{1,0} X \oplus T^{0,1} X$, i.e. HX is the real part of $T^{1,0} X \oplus T^{0,1} X$. Let $J : HX \to HX$ be the complex structure map given by $J(u + \overline{u}) = iu - i\overline{u}$, for every $u \in T^{1,0} X$. By complex linear extension of J to $TX \otimes \mathbb{C}$, the i-eigenspace of J is $T^{1,0} X = \{V \in HX \otimes \mathbb{C}; JV = iV\}$. We shall also write (X, HX, J) to denote a CR orbifold.
We denote by \(\partial \) in the definition of the Hermitian quadratic form \(\langle \cdot | \cdot \rangle \) on \(T^\ast x \) of constant signature \((-2, 2) \) in \(C^\infty(0, \infty) \) be the completion of \(\Omega^0(0, q) \) over \(D \) and let \(\Omega^0\partial(U) \) be the subspace of \(\Omega^0(T^\ast x \otimes \mathbb{C}) \) whose elements have compact support in \(U \); more precisely an element \(u \in \Omega^0\partial(U) \) has a lift \(\tilde{u} \in \Omega^0\partial(U) \) which is \(G_U \)-invariant. The metric on \(T^\ast x \otimes \mathbb{C} \) induces a metric on \(\Lambda^q(T^\ast x \otimes \mathbb{C}) \), so we have a well-defined orthogonal projector

\[
\pi^0 q : \Lambda^q(T^\ast x \otimes \mathbb{C}) \to T^{\ast 0 q} x .
\]

We can define the tangential Cauchy-Riemann operator \(\partial_b \) by composing with the exterior differential

\[
\partial_b = \pi^0 q+1 \circ d : \Omega^0 q(X) \to \Omega^0 q+1(X) ,
\]

thus, on a local chart \((\tilde{U}, G_U) \to U\), \(\partial_b \) acts on \(G_U \)-invariant functions on \(\tilde{U} \) and commutes with the action of \(G_U \) on \(U \). Let \(dV_X(x) \) be the volume form on \(X \) induced by the Hermitian metric \(\langle \cdot | \cdot \rangle \). For a local chart \((\tilde{U}, G_U) \to U\), let \(dV_{\tilde{U}}(x) \) be the volume form on \(\tilde{U} \) induced by the Hermitian metric \(\langle \cdot | \cdot \rangle \). The natural global \(L^2 \) inner product \(\langle \cdot | \cdot \rangle \) on \(\Omega^0 q(X) \) induced by \(dV_X(x) \) and \(\langle \cdot | \cdot \rangle \) is given by

\[
\langle u | v \rangle := \int_X \langle u(x) | v(x) \rangle \, dV_X(x) , \quad u, v \in \Omega^0 q(X) .
\]

We denote by \(\mathbb{L}^2 (0, q) (X) \) the completion of \(\Omega^0 q(X) \) with respect to \(\langle \cdot | \cdot \rangle \). It should be clear that the elements in \(\mathbb{L}^2 (0, q) (X) \) are \(L^2 \) sections of the orbibundle \(\Lambda^q(T^\ast x \otimes \mathbb{C}) \), the integral appearing in the definition of the \(L^2 \) inner product \(\langle \cdot | \cdot \rangle \) is meant to be interpreted as in the previous section, see [3]. We extend \(\langle \cdot | \cdot \rangle \) to \(\mathbb{L}^2 (0, q) (X) \) in the standard way. For \(f \in \mathbb{L}^2 (0, q) (X) \), we denote \(\| f \|^2 := \langle f | f \rangle \). We extend \(\partial_b \) to \(\mathbb{L}^2 (0, r) (X) \), \(r = 0, 1, \ldots, n \), by

\[
\partial_b : \text{Dom} \partial_b \subset \mathbb{L}^2 (0, r) (X) \to \mathbb{L}^2 (0, r+1) (X) ,
\]
where \(\text{Dom} \overline{\partial}_b := \{ u \in L^2_{(0,r)}(X) : \overline{\partial}_b u \in L^2_{(0,r+1)}(X) \} \) and, for any \(u \in L^2_{(0,r)}(X) \), \(\overline{\partial}_b u \) is defined in the sense of distributions. We also write
\[
\overline{\partial}_b : \text{Dom} \overline{\partial}_b \subset L^2_{(0,r+1)}(X) \to L^2_{(0,r)}(X)
\]
to denote the Hilbert space adjoint of \(\overline{\partial}_b \) in the \(L^2 \) space with respect to \((\cdot, \cdot) \). Let \(\Box^{(q)}_{b} \) denote the (Gaffney extension) of the Kohn Laplacian given by
\[
\text{Dom} \Box^{(q)}_{b} = \left\{ s \in L^2_{(0,q)}(X) : s \in \text{Dom} \overline{\partial}_b \cap \text{Dom} \overline{\partial}_b, \overline{\partial}_b s \in \text{Dom} \overline{\partial}_b, \overline{\partial}_b s \in \text{Dom} \overline{\partial}_b \right\},
\]
\[
\Box^{(q)}_{b} s = \overline{\partial}_b \overline{\partial}_b s + \overline{\partial}_b \overline{\partial}_b s \text{ for } s \in \text{Dom} \Box^{(q)}_{b}.
\]

2.3 Group actions on orbifolds

Consider a compact connected Lie group action \(G \). A smooth action of \(G \) on an orbifold \(X \) is a continuous action \(\cdot \) between the underlying topological spaces such that for each \(g \in G \) the map \(g \cdot : X \to X \) is smooth by mean of definition in Section 2.1 this means that locally \((G_U, \tilde{U}) \to U \), for each \(g \in G \), there exists a local lift \((\tilde{g}^*_U, \tilde{\mathcal{F}}_U) \) such that \(\tilde{g}^*_U : \tilde{U} \to \tilde{V} \) is smooth, \(\tilde{g}^*_U : G_U \to G_V \) is a group homomorphism, the diagram
\[
(\tilde{U}, G_U) \xrightarrow{\tilde{g}^*_U} (\tilde{V}, G_V)
\]
\[
\downarrow \quad \downarrow
\]
\[
U \xrightarrow{g} V
\]
commutes and \(\tilde{g}^*_U \) is \(\tilde{\mathcal{F}}_U \)-equivariant:
\[
\tilde{g}^*_U(g \cdot x) = \tilde{\mathcal{F}}_U(g) \tilde{g}^*_U(x), \quad g \in G_U, \ x \in \tilde{U}.
\]

In this work, when \(X \) admits a compact Lie group action \(G \), we suppose that

Assumption 2.1. We assume \(g^* \omega_0 = \omega_0 \) on \(X \) and \(g_* J = J g_* \) on \(HX \), for every \(g \in G \), where \(g^* \) and \(g_* \) denote the pull-back map and push-forward map of \(G \), respectively.

Let \(\mathfrak{g} \) denote the Lie algebra of \(G \) and \(e \) denotes the identity element in \(G \). For a moment denote by \(f : G \times X \to X \) the action, so that \(f(g, x) = g \cdot x \). Fix \(x \in X \), define
\[
\xi_X(x) = d_e f(\cdot, x)(\xi).
\]
For any \(\xi \in \mathfrak{g} \), \(\xi_X \) is the so called vector field on \(X \) induced by \(\xi \).

By the motivation explained in the introduction, in Theorem [12] we assume that \(X \) admits a CR and transversal \(S^1 \)-action which is locally free, \(T \in C^\infty(X, TX) \) denotes the global real vector field given by the infinitesimal circle action. In this case, we will take \(T \) to be our Reeb vector field \(R \). Note that in Theorem [1,2] we do not assume that \(X \) admits a group action.

2.4 Operators on orbifolds

We first introduce some notations. Let \(U \subset X \) be an open set and let \(E \) be a vector orbibundle over \(U \). As smooth case, let \(\mathcal{D}'(U, E) \) denote the space of distribution sections over \(U \) and let \(\mathcal{E}'(U, E) \) denote the space of distribution sections over \(U \) whose elements have compact support in \(U \). Let \(C^\infty(U, E) \) denote the space of smooth sections over \(U \) and let \(C^\infty_c(U, E) \) denote the space of smooth sections over \(U \) whose elements have compact support in \(U \). For \(s \in \mathbb{R} \), let \(H^s_{\text{comp}}(U, E) \) denote the Sobolev space of sections over \(U \) of order \(s \) whose elements have compact support in \(U \). Put
\[
H^s_{\text{loc}}(U, E) := \left\{ u \in \mathcal{D}'(U, E) : \chi u \in H^s_{\text{comp}}(U, E), \forall \chi \in C^\infty_c(U) \right\}.
\]
Let $H^s(X, E)$ denote the Sobolev space of sections over X of order s. Let F be another vector orbibundle over U. We write $E \boxtimes F^*$ to denote the vector orbibundle over $U \times U$ with fiber over $U \times U$ consisting of the linear maps from F_y to E_x.

Let $H : C^\infty_c(U, E) \to \mathcal{D}'(U, E)$ be a continuous operator and let $H(x, y) \in \mathcal{D}'(U \times U, E \boxtimes E^*)$ be the distribution kernel of H. We say that H is smoothing on U if $H(x, y) \in C^\infty(U \times U, E \boxtimes E^*)$. When H is smoothing on U, we write $H \equiv 0$ on U or $H(x, y) \equiv 0$ on U. More precisely, let $(\bar{U}, G_U) \to U$ be an orbifold chart. $H \equiv 0$ means that we can find a $\tilde{H}(x, y) \in C^\infty(\bar{U} \times \bar{U}, E \boxtimes E^*)$ such that

$$H(x, y) = \sum_{h, g \in G_U} \frac{1}{|G_U|} \tilde{H}(h \cdot \bar{x}, g \cdot \bar{y}),$$

for all $(x, y) \in U \times U$, where $\pi(x) = x$, $\pi(y) = y$, $\pi : \bar{U} \to U$ is the natural projection and \tilde{E} is the lifting of E. Let $G(x, y) \in \mathcal{D}'(U \times U, E \boxtimes E^*)$. We will write G to denote the continuous operator $G : C^\infty_c(U, E) \to \mathcal{D}'(U, E)$ with distribution kernel $G(x, y)$.

Let $\tilde{H} : C^\infty_c(X, T^{a,q}X) \to \mathcal{D}'(X, T^{a,q}X)$ be a continuous operator. We say that \tilde{H} is a complex Fourier integral operator if let $(\bar{U}, G_U) \to U$ be any orbifold chart of X, there is a complex Fourier integral operator $\tilde{H}_U : \Omega^{0,q}(U) \to \Omega^{0,q}(U)$ has a distribution kernel $\tilde{H}_U(x, y) \in \mathcal{D}'(\bar{U} \times \bar{U}, T^{a,q}X \boxtimes (T^{a,q}X)^*)$ such that

$$H(x, y) \equiv \frac{1}{|G_U|} \sum_{g, h \in G_U} \tilde{H}_U(h \cdot \bar{x}, g \cdot \bar{y})$$

for $(x, y) \in U \times U$, where $\pi(x) = x$, $\pi(y) = y$, $\pi : \bar{U} \to U$ is the natural projection.

We recall Hörmander symbol space. Since we work on a given $\bar{U} \subset \mathbb{R}^{2n+1}$, we use notation x for an element $x \in \bar{U}$ instead of \bar{x}. Let $U \subset \mathbb{R}^{2n+1}$ be a local coordinate patch with local coordinates $x = (x_1, \ldots, x_{2n+1})$. We recall the following definition.

Definition 2.1. For $m \in \mathbb{R}$, $S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$ is the space of all smooth functions $a(x, y, t) \in C^\infty((U \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$ such that, for all compact $K \subset \bar{U} \times \bar{U}$ and all $\alpha, \beta \in \mathbb{N}_0^{2n+1}$, $\gamma \in \mathbb{N}_0$, there is a constant $C_{\alpha, \beta, \gamma} > 0$ such that

$$\left| \frac{\partial^\alpha_x \partial^\beta_y \partial^\gamma_t}{x^m} a(x, y, t) \right| \leq C_{\alpha, \beta, \gamma}(1 + |t|)^{m-\gamma},$$

for every $(x, y, t) \in K \times \mathbb{R}_+, t \geq 1$.

Put

$$S^{-\infty}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*) := \bigcap_{m \in \mathbb{R}} S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*).$$

Let $a_j \in S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$, $j = 0, 1, 2, \ldots$, with $m_j \to -\infty$, as $j \to \infty$. Then there exists $a \in S^0_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$ unique modulo $S^{-\infty}$, such that $a - \sum_{j=0}^{k-1} a_j \in S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$ for $k = 0, 1, 2, \ldots$.

If a and a_j have the properties listed above, then we write $a \sim \sum_{j=0}^\infty a_j$ (in the space $S^0_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$). Furthermore, we write

$$s(x, y, t) \in S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$$

if $s(x, y, t) \in S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$ and

$$s(x, y, t) \sim \sum_{j=0}^\infty s^j(x, y) t^{m-j} \in S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*),$$

$s^j(x, y) \in C^\infty(\bar{U} \times \bar{U}, T^{a,q}X \boxtimes (T^{a,q}X)^*)$, $j \in \mathbb{N}_0$.

We simply write $S^m_{1,0}$ to denote $S^m_{1,0}(\bar{U} \times \bar{U} \times \mathbb{R}_+, T^{a,q}X \boxtimes (T^{a,q}X)^*)$, $m \in \mathbb{R} \cup \{-\infty\}$.
Let \bar{E} be a vector bundle over \bar{U}. Let $m \in \mathbb{R}$, $0 \leq \rho, \delta \leq 1$. Let $S^{m}_{\rho,\delta}(T^*\bar{U}, \bar{E})$ denote the Hörmander symbol space on $T^*\bar{U}$ with values in \bar{E} of order m type (ρ, δ) and let $S^{m}_{cl}(T^*\bar{U}, \bar{E})$ denote the space of classical symbols on $T^*\bar{U}$ with values in \bar{E} of order m. Let $L_{\rho,\delta}^{m}(U, \tilde{E} \boxtimes \tilde{E}^*)$ be the space of pseudodifferential operators on \bar{U} of order m from sections of \bar{E} to sections of \bar{E} with full symbol $a \in S^{m}_{\rho,\delta}(T^*\bar{U}, \bar{E})$ $(a \in S^{m}_{cl}(T^*\bar{U}, \bar{E}))$. Let E be a vector orbibundle over X. Let $A : \mathcal{C}^{\infty}(X, E) \to \mathcal{D}'(X, E)$ be a continuous operator with distribution kernel $A(x, y) \in \mathcal{D}'(X \times X, E \boxtimes E^*)$. We write $A \in L_{\rho,\delta}^{m}(X, E \otimes E^*)$ $(A \in L_{\rho,\delta}^{m}(X, E \otimes E^*)$ if for any orbifold chart $(\bar{U}, \bar{G}_{U}) \to U$, there is a $\tilde{A}_{U} \in L_{\rho,\delta}^{m}(\bar{U}, \tilde{E} \boxtimes \tilde{E}^*)$ $(\tilde{A}_{U} \in L_{\rho,\delta}^{m}(\bar{U}, \tilde{E} \boxtimes \tilde{E}^*)$ such that

$$A(x, y) = \frac{1}{|G_{U}|} \sum_{\tilde{g}, \tilde{h} \in G_{U}} \tilde{A}_{U}(h \cdot \tilde{x}, g \cdot \tilde{y})$$

for $(x, y) \in U \times U$, where $\pi(\tilde{x}) = x$, $\pi(\tilde{y}) = y$, $\pi : \bar{U} \to U$ is the natural projection and \tilde{E} is the lifting of E.

2.5 Microlocal Szegő kernel

On each open set $U \subseteq X$, we define operators $S^{(q)}_{U}$ having the same microlocal structure described in our main results. We call this operators approximate Szegő kernels. We shall review some results in [Hs] concerning the existence of a microlocal Hodge decomposition of the Kohn Laplacian on an open set of a CR manifold where the Levi form is non-degenerate. Since the proofs are local we can carry out the same analysis on the chart (G_{U}, \bar{U}) for a given open set U. Since we work on a fix $\bar{U} \subset \mathbb{R}^{2n+1}$, we use notation x for an element $x \in \bar{U}$. For the following theorems we refer to Chapter 6, Chapter 7 and Chapter 8 of Part I in [Hs].

Theorem 2.1. We assume that the G_{U}-invariant Levi form is non-degenerate of constant signature (n_{-}, n_{+}) at each point of \bar{U}. Let $q \neq n_{-}, n_{+}$. Then, there is a properly supported operator $A_{U} \in L_{\frac{n_{-}}{2}, \frac{n_{+}}{2}}^{-1}(\bar{U}, T^{q,0,0} X \boxtimes (T^{q,0,0} X)^*)$ such that $\square^{(q)}_{b} A_{U} = I + F_{U}$ on \bar{U}, F_{U} is a smoothing operator on \bar{U}.

Until further notice, we assume that the Levi form is non-degenerate of constant signature (n_{-}, n_{+}) on X. Let $p_{0}(x, \xi) \in \mathcal{C}^{\infty}(T^{*}X)$ be the principal symbol of $\square^{(q)}_{b}$. Note that $p_{0}(x, \xi)$ is a G_{U}-invariant polynomial of degree 2 in ξ when written locally on \bar{U}. Recall that the characteristic manifold of $\square^{(q)}_{b}$ is given by $\Sigma = \Sigma^{+} \cup \Sigma^{-}$, where Σ^{+} and Σ^{-} are given by

$$\Sigma^{+} = \{(x, \lambda \omega_{0}(x)) \in T^{*}X; \lambda > 0\}, \quad \Sigma^{-} = \{(x, \lambda \omega_{0}(x)) \in T^{*}X; \lambda < 0\},$$

where $\omega_{0} \in \mathcal{C}^{\infty}(X, T^{*}X)$ is the uniquely determined global contact 1-form.

Theorem 2.2. With the same assumptions as in the previous theorem, let $q = n_{-}$ or n_{+}. Then, by adopting notation as in Section [2.4], there exist properly supported continuous operators $A \in L_{\frac{q}{2}, \frac{n_{+}}{2}}^{-1}(\bar{U}, T^{q,0,0} X \boxtimes (T^{q,0,0} X)^*)$, and operators $S_{-}, S_{+} \in L_{\frac{q}{2}, \frac{n_{-}}{2}}^{0}(\bar{U}, T^{q,0,0} X \boxtimes (T^{q,0,0} X)^*)$, such that

$$\square^{(q)}_{b} A + S_{-} + S_{+} = I \text{ on } \bar{U},$$

$\square^{(q)}_{b} S_{-} \equiv 0 \text{ on } \bar{U}, \quad \square^{(q)}_{b} S_{+} \equiv 0 \text{ on } \bar{U},$

$$A \equiv A^{*} \text{ on } \bar{U}, \quad S_{-} A = 0 \text{ on } \bar{U}, \quad S_{+} A = 0 \text{ on } \bar{U},$$

$$S_{-} \equiv S_{-}^{*} \equiv S_{2} \text{ on } \bar{U},$$

$$S_{+} \equiv S_{+}^{*} \equiv S_{2} \text{ on } \bar{U},$$

$$S_{-} S_{+} \equiv S_{+} S_{-} \equiv 0 \text{ on } \bar{U},$$

where A^{*}, S_{-}^{*} and S_{+}^{*} are the formal adjoints of A, S_{-} and S_{+} with respect to $(\cdot | \cdot)$ respectively and $S_{-}(x, y)$ satisfies

$$S_{-}(x, y) = \int_{0}^{\infty} e^{i\varphi_{-}(x,y)t} s_{-}(x, y, t) dt \text{ on } \bar{U}.$$
with a symbol $s_-(x, y, t) \in S^q_{cl}(\tilde{U} \times \tilde{U} \times \mathbb{R}^+, T^{*q}X \boxtimes (T^{*q}X)^*)$ such that

$$s_-(x, y, t) \sim \sum_{j=0}^{\infty} s^j_-(x, y)t^{n-j} \text{ in } S^q_{1,0}(\tilde{U} \times \tilde{U} \times \mathbb{R}_+, T^{*q}X \boxtimes (T^{*q}X)^*),$$

$$s^j_-(x, y) \in C^\infty(\tilde{U} \times \tilde{U}, T^{*q}X \boxtimes (T^{*q}X)^*), \quad j \in \mathbb{N}_0,$$

and phase function φ_- such that $\varphi = \varphi_-$ satisfies

$$\varphi \in C^\infty(\tilde{U} \times \tilde{U}), \quad \text{Im } \varphi(x, y) \geq 0,$$
$$\varphi(x, x) = 0, \quad \varphi(x, y) \neq 0 \text{ if } x \neq y,$$
$$d_x\varphi(x, y)\big|_{x=y} = -\omega_0(x), \quad d_y\varphi(x, y)\big|_{x=y} = \omega_0(x),$$
$$\varphi(x, y) = -\overline{\varphi(y, x)}.$$

Moreover, there is a function $f \in C^\infty(\tilde{U} \times \tilde{U})$ such that

$$p_0(x, \varphi'(x, y)) - f(x, y)\varphi(x, y)$$

vanishes to infinite order at $x = y$. Similarly,

$$S_+(x, y) \equiv \int_0^{\infty} e^{i\varphi_+(x, y)t}s_+(x, y, t)dt \text{ on } \tilde{U}$$

with $s_+(x, y, t) \in S^q_{cl}(\tilde{U} \times \tilde{U} \times \mathbb{R}^+, T^{*q}X \boxtimes (T^{*q}X)^*)$ satisfying

$$s_+(x, y, t) \sim \sum_{j=0}^{\infty} s^j_+(x, y)t^{n-j}$$

in $S^q_{1,0}(\tilde{U} \times \tilde{U} \times \mathbb{R}_+, T^{*q}X \boxtimes (T^{*q}X)^*)$,

$$s^j_+(x, y) \in C^\infty(\tilde{U} \times \tilde{U}, T^{*q}X \boxtimes (T^{*q}X)^*), \quad j \in \mathbb{N}_0,$$

and $-\overline{\varphi_+}(x, y)$ satisfies [13] and [14]. Moreover, if $q \neq n_+$, then $s_+(x, y, t)$ vanishes to infinite order at $x = y$. If $q \neq n_-$, then $s_-(x, y, t)$ vanishes to infinite order at $x = y$.

The operators S_+, S_- are called approximate Szegö kernels.

Remark 2.1. With the notations and assumptions used in Theorem 2.2, furthermore suppose that $q = n_- \neq n_+$. Since $s_+(x, y, t)$ vanishes to infinite order at $x = y$, we have $S_+ \equiv 0$ on \tilde{U}. Similarly, if $q = n_+ \neq n_-$, then $S_- \equiv 0$ on \tilde{U}.

We pause and introduce some notations. For a given point $p \in \tilde{U}$, let $\{W_j\}_{j=1}^n$ be an orthonormal frame of $(T^{1,0}\tilde{U}, (\cdot, \cdot))$ near p, for which the Levi form is diagonal at p. Put

$$L_p(W_j, W_\ell) = \mu_j(p)\delta_{j,\ell}, \quad j, \ell = 1, \ldots, n.$$

We will denote by

$$\det L_p = \prod_{j=1}^n \mu_j(p).$$

(16)

Let $\{e_j\}_{j=1}^n$ denote the basis of $T^{*0,1}\tilde{U}$, dual to $\{W_j\}_{j=1}^n$. We assume that $\mu_j(p) < 0$ if $1 \leq j \leq n_-$ and $\mu_j(p) > 0$ if $n_- + 1 \leq j \leq n$. Put

$$N(p, n_-) := \{c_1e_1(p) \wedge \ldots \wedge e_{n_-}(p); c \in \mathbb{C}\},$$
$$N(p, n_+) := \{c_{n_-+1}e_{n_-+1}(p) \wedge \ldots \wedge e_n(p); c \in \mathbb{C}\}.$$
and let
\[\tau_{p,n_-} : T^*_{0,q}U \rightarrow N(p,n_-), \quad \tau_{p,n_+} : T^*_{p, n-q}U \rightarrow N(p,n_+), \]

(17)
is be the orthogonal projections onto \(N(p,n_-)\) and \(N(p,n_+)\) with respect to \(\langle \cdot | \cdot \rangle\), respectively. For \(J = (j_1, \ldots, j_q), 1 \leq j_1 < \cdots < j_q \leq n\), let \(e_J := e_{j_1} \wedge \cdots \wedge e_{j_q}. \) For \(|I| = |J| = q, I, J\) are strictly increasing, let \(e_I \otimes (e_J)^*\) be the linear transformation from \(T^*_{0,q}X\) to \(T^*_{0,q}X\) given by
\[(e_I \otimes (e_J)^*)(e_K) = \delta_{J,K}e_I, \]

for every \(|K| = q, K\) is strictly increasing, where \(\delta_{J,K} = 1\) if \(J = K, \delta_{J,K} = 0\) if \(J \neq K\). For any \(f \in T^*_{0,q}X \otimes (T^*_{0,q}X)^*\), we have
\[f = \sum' c_{I,J}e_I \otimes (e_J)^*, \]
where \(c_{I,J} \in \mathbb{C}\), for all \(|I| = |J| = q, I, J\) are strictly increasing, where \(\sum'\) means that the summation is performed only over strictly increasing multi-indices. We call \(c_{I,J}e_I \otimes (e_J)^*\) the component of \(f\) in the direction \(e_I \otimes (e_J)^*\). Let \(I_0 = (1, 2, \ldots, q)\). We can check that
\[\tau_{p,n_-} = e_{I_0}(p) \otimes (e_{I_0}(p))^*. \]

The following formula for the leading term \(s^0\) on the diagonal follows from [Hs, §9]. The formula for the leading term \(s^1\) on the diagonal follows similarly.

Theorem 2.3. Let \(q = n_-\). For the leading term \(s^0(x,y)\) of the expansion (12) of \(s_-(x,y,t)\), we have
\[s^0(x_0, x_0) = \frac{1}{2} \pi^{-\frac{1}{2}} |\det L_{x_0}| \tau_{x_0,n_-}, \quad x_0 \in \tilde{U}. \]

Let \(q = n_+\). For the leading term \(s^0(x,y)\) of the expansion (13) of \(s_+(x,y,t)\), we have
\[s^0(x_0, x_0) = \frac{1}{2} \pi^{-\frac{1}{2}} |\det L_{x_0}| \tau_{x_0,n_-}, \quad x_0 \in \tilde{U}. \]

2.6 Geometric conditions for the closed range property

We recall that, given \(q \in \{0, \ldots, n\}\), the Levi form is said to satisfy condition \(Y(q)\) at \(p \in X\), if \(L_p\) has at least either \(\min(q + 1, n - q)\) pairs of eigenvalues with opposite signs or \(\max(q + 1, n - q)\) eigenvalues of the same sign.

Remark 2.2. Assume that the Levi form is non-degenerate of constant signature \((n_-, n_+)\). Given \(q \in \{0, \ldots, n\}\), then \(Y(q)\) holds if \(q \notin \{n_-, n_+\}\). Furthermore, notice that if \(q = n_- = n_+, q - 1 \notin \{n_-, n_+\}\) and \(q + 1 \notin \{n_-, n_+\}\), then \(Y(q - 1)\) and \(Y(q + 1)\) hold. Eventually, we remark that if \(q = n_-\) and \(|n_- - n_+| > 1\), then then \(Y(q - 1)\) and \(Y(q + 1)\) hold. In particular if \(X\) is a strongly pseudoconvex CR orbifold of dimension greater than 5, then \(Y(1)\) holds.

We can repeat the same proof as in manifold case with small modification and get the following:

Theorem 2.4. Let \(X\) be a compact CR orbifold and suppose that \(Y(q)\) holds. Then, \(\Box^{(q)}_b\) has closed range.

Furthermore, suppose that \(Y(q)\) fails but \(Y(q - 1)\) and \(Y(q + 1)\) hold, then \(\Box^{(q)}_b\) has closed range.

In the following, we will give a proof of the first part of Theorem 2.3 under the assumption that the Levi form is non-degenerate of constant signature \((n_-, n_+)\). Since the proof is related to the construction of parametrix for Kohn Laplacians on orbifolds, therefore we think it is worth to give a proof under the assumption that the Levi form is non-degenerate of constant signature \((n_-, n_+)\). We suppose that \(Y(q)\) holds. Then, \(q \notin \{n_-, n_+\}\). We shall prove:
\[\exists C > 0 \text{ such that } ||\Box^{(q)}_b u|| \geq C ||u|| \text{ } \forall u \perp \text{Ker } \Box^{(q)}_b ; \]

(18)

which is equivalent to prove that \(\Box^{(q)}_b\) has closed range, see Lemma C.1.1 in [MM]. We need the following lemma.
Lemma 2.1. There exists a continuous operator

\[A : H^s(X, T^{s,0,q}X) \to H^{s+1}(X, T^{s,0,q}X), \quad \forall s \in \mathbb{R}, \]

such that \(\square^{(q)}_b A = I + F \) where \(F \) is smoothing on \(X \).

Proof of Lemma 2.1. Fix an orbifold chart \((G_U, \tilde{U}) \to U\). By Theorem 2.1 we can define on \(\tilde{U} \),

\[\hat{A}_U(x, y) = \sum_{g,h \in G_U} \frac{1}{|G_U|} A_U(h \cdot x, g \cdot y) \quad \text{and} \quad \hat{F}_U(x, y) = \sum_{g,h \in G_U} \frac{1}{|G_U|} F_U(h \cdot x, g \cdot y), \]

so that \(\hat{A}_U : H^s_{\text{comp}}(\tilde{U}, T^{s,0,q}X) \to H^{s+1}_{\text{loc}}(\tilde{U}, T^{s,0,q}X) \) is continuous, for all \(s \in \mathbb{R}, \hat{F}_U \) is smoothing and they satisfy the following

\[\square^{(q)}_b \hat{A}_U = I + \hat{F}_U \quad \text{on} \quad U, \]

where \(\hat{A}_U \) and \(\hat{F}_U \) are as in Theorem 2.1. Now, since \(X \) is compact we can consider an open cover \(\{U_j\}_{j \in J}, (\tilde{U}_j, G_{U_j}) \to U_j \) orbifold chart, for every \(j \), and a partition of unity \(\chi_j \in C^\infty_c(U_j) \) so that we have

\[\square^{(q)}_b \hat{A}_{U_j} \chi_j = \chi_j + \hat{F}_{U_j} \chi_j \quad \text{on} \quad U_j. \]

Eventually, set \(\hat{A} = \sum_j \hat{A}_j \chi_j \) and \(\hat{F} = \sum_j \hat{F}_j \chi_j \), we can check

\[\square^{(q)}_b \hat{A} = I + \hat{F}, \]

globally on \(X \) and we get the lemma.

We are ready to prove (18). Suppose by the contrary that (18) does not hold. Then there exists a sequence of \((0, q)\) forms such that \(u_j \in L^2_{(0,q)}(X), j = 1, 2, \ldots, \) with \(\|u_j\| = 1 \) and \(u_j \perp \text{Ker} \square^{(q)}_b \) such that \(\|\square^{(q)}_b u_j\| < \frac{1}{j} \|u_j\| \) for each \(j = 1, 2, \ldots. \) By Lemma 2.1 we have

\[\hat{A}^* \square^{(q)}_b u_j = u_j + \hat{F}^* u_j, \quad j = 1, 2, \ldots, \]

where \(\hat{A}^* \) and \(\hat{F}^* \) are adjoints of \(\hat{A} \) and \(\hat{F} \) respectively. Since \(\hat{A}^* : L^2_{(0,q)}(X) \to H^1(X, T^{s,0,1}X) \) is continuous, we get

\[\|u_j\|_1 - \|\hat{F}^* u_j\|_1 \leq \|\hat{A}^* \square^{(q)}_b u_j\|_1 \leq C \|\square^{(q)}_b u_j\| \leq \frac{C}{j} \|u_j\|_1, \]

for all \(j = 1, 2, \ldots, \) where \(\|\cdot\|_1 \) denotes the Sobolev norm of order one and \(C > 0 \) is a constant independent of \(u_j \). Since \(\hat{F} : L^2_{(0,q)}(X) \to H^1(X, T^{s,0,q}X) \) is continuous, we get

\[\|u_j\|_1 \leq C', \quad \text{for all} \quad j = 1, 2, \ldots, \]

where \(C' > 0 \) is a constant independent of \(j \). By Rellich’s Lemma, there is a subsequence \(1 \leq j_1 < j_2 < \ldots \) such that \(u_{j_s} \to u \) in \(L^2_{(0,q)}(X) \) as \(s \to +\infty \). Since \(u_j \perp \text{Ker} \square^{(q)}_b \) for each \(j \), then \(u \perp \text{Ker} \square^{(q)}_b \); but \(\square^{(q)}_b u = \lim_s \square^{(q)}_b u_{j_s} = 0 \) and thus we get a contradiction.

We can repeat the proof of [HM, Theorem 6.24] with minor change and get the following

Theorem 2.5. Assume that the Levi form is non-degenerate of constant signature \((n_-, n_+)\) on \(X \). Suppose that \(X \) admits a transversal and CR \(\mathbb{R}\)-action. For any \(q \in \{0, 1, \ldots, n\}, \)

\[\square^{(q)}_b : \text{Dom} \square^{(q)}_b \subset L^2_{(0,q)}(X) \to L^2_{(0,q)}(X) \]

has closed range.
3 Proof of Theorem 1.1

Let

\[\Pi^{(q)} : L^2_{(0,q)}(X) \to \text{Ker } \Box_b^{(q)} \]

be the orthogonal projection (Szegő projection). Let us recall the following known global result.

Theorem 3.1. Suppose that the Kohn Laplacian \(\Box_b^{(q)} : \text{Dom } \Box_b^{(q)} \subset L^2_{(0,q)}(X) \to L^2_{(0,q)}(X) \) has closed range, then there exits a bounded operator \(N : L^2_{(0,q)}(X) \to \text{Dom } \Box_b^{(q)} \) such that

\[N\Box_b^{(q)} + \Pi^{(q)} = I \quad \text{on } \text{Dom } \Box_b^{(q)} \quad \text{and} \quad \Box_b^{(q)} N + \Pi^{(q)} = I \quad \text{on } L^2_{(0,q)}(X). \]

Consider an orbifold chart \((G_U, \tilde{U}) \to U\), let

\[S_-, S_+, A : \Omega^{0,q}_c(\tilde{U}) \to \Omega^{0,q}_c(\tilde{U}) \]

be as in Theorem 2.2. Recall that \(S_-, S_+ \) and \(A \) are properly supported on \(\tilde{U} \). Define on \(\tilde{U} \) the following \(G_U \)-invariant smooth kernels

\[\tilde{S}_-(x,y) = \sum_{h,g \in G_U} \frac{1}{|G_U|} S_-(h \cdot x, g \cdot y), \quad \tilde{S}_+(x,y) = \sum_{h,g \in G_U} \frac{1}{|G_U|} S_+(h \cdot x, g \cdot y), \]

\[\tilde{A}(x,y) = \sum_{h,g \in G_U} \frac{1}{|G_U|} A(h \cdot x, g \cdot y). \]

It is not difficult to see that \(\tilde{S}_-, \tilde{S}_+ \) and \(A \) are properly supported. For every \(u \in \Omega^{0,q}_c(U) \), we have

\[\tilde{A}u = \sum_{h,g \in G_U} \frac{1}{|G_U|} \int_{\tilde{U}} A(h \cdot x, g \cdot y) u(y) dV_{\tilde{U}}(y) = \sum_{h,g \in G_U} \frac{1}{|G_U|} \int_{\tilde{U}} A(h \cdot x, y) u(g^{-1} \cdot y) dV_{\tilde{U}}(y), \]

which is in \(\Omega^{0,q}_c(U) \) because \(A \) is proper and \(u \circ g^{-1} \) is compactly supported. Similarly one can deal with \(\tilde{S}_- \) and \(\tilde{S}_+ \). Thus, we have \(\tilde{S}_-, \tilde{S}_+, \tilde{A} : \Omega^{0,q}_c(U) \to \Omega^{0,q}_c(U) \).

By the properties of \(S_-, S_+ \) and \(A \), we have

\[\Box_b^{(q)} \tilde{A} + \tilde{S}_- + \tilde{S}_+ = I \quad \text{on } \tilde{U} \quad (19) \]

and

\[\Box_b^{(q)} \tilde{S}_- = 0 \quad \text{on } \tilde{U}. \quad (20) \]

Now, apply \(\Pi^{(q)} \) to (19), for each \(u \in \Omega^{0,q}_c(U) \) we have

\[\Pi^{(q)}(\Box_b^{(q)} \tilde{A} + \tilde{S}_- + \tilde{S}_+)u = \Pi^{(q)}u, \quad (21) \]

where \(\Pi^{(q)}u \in L^2_{(0,q)}(X) \) and the left hand side is well-defined since we have already checked that \(\tilde{S}_-, \tilde{S}_+, \tilde{A} \) are properly supported. Now, notice that for each \(u,v \in \Omega^{0,q}_c(U) \) we have (\(\Pi^{(q)} \Box_b^{(q)} \tilde{A}u \mid v) = (\tilde{A}u \mid \Box_b^{(q)} \Pi^{(q)}v) = 0 \) which implies \(\Pi^{(q)} \Box_b^{(q)} \tilde{A} = 0 \) on \(\Omega^{0,q}_c(U) \). Thus, by (21), we also get the following desired property

\[\Pi^{(q)}(\tilde{S}_- + \tilde{S}_+) = \Pi^{(q)} \quad \text{on } \Omega^{0,q}_c(U). \quad (22) \]

Recall from Theorem 3.1 the existence of the operator \(N; \) since \(\tilde{S}_- \) and \(\tilde{S}_+ \) are properly supported we have

\[N\Box_b^{(q)}(\tilde{S}_- + \tilde{S}_+) + \Pi^{(q)}(\tilde{S}_- + \tilde{S}_+) = \tilde{S}_- + \tilde{S}_+ \quad \text{on } \Omega^{0,q}_c(U). \]
Now, we get that $\Box_{b,\tilde{U}}^{(q)}(\hat{S}_- + \hat{S}_+)$ is a smoothing operator on U, which we will denote by F. Thus, by (22) we write
\[NF + \Pi^{(q)} = \hat{S}_- + \hat{S}_+ =: \hat{S} \quad \text{on } \Omega_{0,q}^{00}(U). \] (23)

We recall that since F is smoothing and properly supported on U, it maps $\mathcal{E}'(U, T^{0,q}_X)$ to compactly supported smooth sections, so $F : \mathcal{E}'(U, T^{0,q}_X) \to \Omega_{0,q}^{00}(U)$. Thus, by composition we get in (23) an operator $NF : \mathcal{E}'(U, T^{0,q}_X) \to L_{0,q}^2(X)$. Taking the adjoint in (24), we get $\hat{S}^* - \Pi^{(q)} = F^* N$ on $\Omega_{0,q}^{00}(U)$ and thus by making use again of (23) we obtain
\[(\hat{S}^* - \Pi^{(q)})(\hat{S} - \Pi^{(q)}) = F^* N^2 F \quad \text{on } \Omega_{0,q}^{00}(U) \] (24)
where it is easy to see that the right hand side is smoothing. Thus, the left hand side of (24) is also smoothing and we have
\[\hat{S}^* \hat{S} - \hat{S}^* \Pi^{(q)} - \Pi^{(q)} \hat{S} + \Pi^2 \equiv 0. \]
Eventually by (22) we have
\[\Pi^{(q)} \equiv \hat{S}^* \hat{S}. \] (25)

From (19) and $\hat{S}^* \Box_{b}^{(q)} \equiv 0$, we get
\[\hat{S}^* \hat{S} \equiv \hat{S}. \] (26)

From (25) and (26), we get
\[\Pi^{(q)} \equiv \hat{S}_- + \hat{S}_+. \] (27)

Define on \tilde{U} the following kernels
\[\tilde{S}_-(x, y) = \sum_{g \in G_U} S_-(x, g \cdot y), \quad \tilde{S}_+(x, y) = \sum_{g \in G_U} S_+(x, g \cdot y). \]
Note that $\tilde{S}_-(x, y)$ and $\tilde{S}_+(x, y)$ are not G_U-invariant. Put $\tilde{S} := \tilde{S}_- + \tilde{S}_+$.

Lemma 3.1. With the notations used above, we have
\[\hat{S} \equiv \tilde{S} \quad \text{on } \tilde{U}. \] (28)

Proof. The open set \tilde{U} is a non-compact CR manifold. Let
\[\Box_{b,\tilde{U}}^{(q)} : \text{Dom } \Box_{b,\tilde{U}}^{(q)} \subset L_{0,q}^2(\tilde{U}) \to L_{0,q}^2(\tilde{U}) \]
be the Gaffney extension of Kohn Laplacian on \tilde{U} with respect to $\langle \cdot, \cdot \rangle$ and $dV_{\tilde{U}}$. $\Box_{b,\tilde{U}}^{(q)}$ is self-adjoint. Fix $\lambda > 0$ and set $\Pi_{\leq \lambda, \tilde{U}}^{(q)} := 1_{[0,\lambda]}(\Box_{b,\tilde{U}}^{(q)})$, where $1_{[0,\lambda]}(\Box_{b,\tilde{U}}^{(q)})$ denotes the functional calculus of $\Box_{b,\tilde{U}}^{(q)}$ with respect to $1_{[0,\lambda]}$. From [HM] Theorem 4.7, we have
\[\Pi_{\leq \lambda, \tilde{U}}^{(q)} \equiv S_- + S_+ \quad \text{on } \tilde{U}. \] (29)

Let $L_{0,q}^2(\tilde{U})^{G_U}$ be the space of G_U-invariant $L^2(0, q)$ forms. Let
\[Q : L_{0,q}^2(\tilde{U}) \to L_{0,q}^2(\tilde{U})^{G_U} \]
be the orthogonal projection. We claim that
\[Q \circ \Pi_{\leq \lambda, \tilde{U}}^{(q)} = \Pi_{\leq \lambda, \tilde{U}}^{(q)} \circ Q \quad \text{on } L_{0,q}^2(\tilde{U}). \] (30)
Let $\tau \in C^\infty_c([0,\lambda])$. Since Q commutes with $\Box^{(q)}_{b,kp}$, we have

$$Q(z - \Box^{(q)}_{b,kp})^{-1} = (z - \Box^{(q)}_{b,kp})^{-1}Q \quad \text{on} \quad L^2((0,q))(\tilde{U}),$$

(31) for every $z \in \mathbb{C}$ with $\operatorname{Im} z \neq 0$. From (31) and Helffer-Sjöstrand formula, we have

$$\tau(\Box^{(q)}_{b,kp})Q = \frac{1}{2\pi i} \int_C \frac{\partial \tilde{\tau}}{\partial z}(z - \Box^{(q)}_{b,kp})^{-1}Qdz \wedge d\overline{z}$$

$$= \frac{1}{2\pi i} \int_C Q \frac{\partial \tilde{\tau}}{\partial z}(z - \Box^{(q)}_{b,kp})^{-1}dz \wedge d\overline{z} = Q\tau(\Box^{(q)}_{b,kp}),$$

(32) where $\tilde{\tau}$ is an almost analytic extension of τ. From (32), we get the claim (30).

From (29) and (30), we get

$$Q \circ (S_- + S_+) \equiv (S_- + S_+)Q \equiv Q(S_- + S_+)Q.$$

(33)

Note that $\hat{S} = |G_U|Q(S_- + S_+)Q$, $\tilde{S} = |G_U|(S_- + S_+)Q$. From this observation and (33), we get (28).

From (27) and (28), Theorem 1.1 follows.

4 Applications

4.1 Proof of Theorem 1.3

We have the following formula

$$\dim \text{Ker} \Box^{(q)}_{b,kp} = \int_X \text{Tr} \Pi^{(q)}_{k,p}(x, x)dV_X(x).$$

As explained in the introduction, X can be written as a disjoint union based on the orbit type induced by the circle action and X_{t_0} is an open and dense subset of X. Moreover, from (27), we see that there is a constant $C > 0$ independent of k such that

$$\text{Tr} \Pi^{(q)}_{k,p}(x, x) \leq C k^n,$$

(34)

for all $x \in X$. From (34), we can apply Lebesgue’s dominated convergence theorem and get

$$\lim_{k \to +\infty} k^{-n} \dim \text{Ker} \Box^{(q)}_{b,kp} = \int_{X_{t_0}} k^{-n} \text{Tr} \Pi^{(q)}_{k,p}(x, x) dV_X(x).$$

(35)

From (2) and (35), Theorem 1.3 follows.

4.2 Proof of Theorem 1.4

We will identify $H^0(M, L^{kp})$ with $\text{Ker} \Box^{(0)}_{b,kp}$ and since we work locally on an orbifold chart $(\tilde{U}, G_U) \to U$ we always write x for local coordinates on \tilde{U}. Let us first proof that the differential of the map Φ_{kp} is injective, if $k \gg 1$. Consider an open set U around a point $x_0 \in X_{t_0}$ and an orbifold chart $(\tilde{U}, G_U) \to U$ such that x_0 is a fix point of G_U. Let $x = (x_1, \ldots, x_{2n+1})$ be local coordinates of U with $x(x_0) = 0$ and $T = \partial/\partial x_{2n+1}$. Let $z = (z_1, \ldots, z_{n}) \in \mathbb{C}^n$, $z_j = x_{2j-1} + i x_{2j}$, $j = 1, \ldots, n$. Let $\chi \in C^\infty_c(\tilde{U})$ with $\int_X \chi dV_X = 1$. For $k \in \mathbb{N}$, put

$$\chi_k(x) = \chi(k^{\frac{1}{2} + \varepsilon} z, k^{1+\varepsilon} x_{2n+1}) \quad \text{and} \quad \hat{\chi}_k(x) := \sum_{g \in G_U} \chi_k(g \cdot x),$$

where $\varepsilon > 0$ is a small constant. Let us define

$$u_k := k^{1+(2n+1)\varepsilon} \Pi^{(0)}_{k,p}(\hat{\chi}_k) \in \text{Ker} \Box^{(0)}_{b,kp},$$

and u_k is a small constant. Let $u_k := k^{1+(2n+1)\varepsilon} \Pi^{(0)}_{k,p}(\hat{\chi}_k) \in \text{Ker} \Box^{(0)}_{b,kp}$.
From (2), we can check that
\[
\lim_{k \to +\infty} u_k(x_0) = p^n \frac{\ell}{2} \pi^{-n-1} |\det \mathcal{L}_{x_0}|. \tag{36}
\]
For each \(j = 1, \ldots, n\), it is easy to see that the function
\[
f_j : \tilde{U} \to \mathbb{C}, \quad z \mapsto f_j(z) = \sum_{g \in G_U} g \cdot z_j
\]
is \(G_U\)-invariant and smooth and thus descends naturally to a continuous function \(f_j : U \to \mathbb{C}\) on \(U\). Let us also set
\[
u_k^{(j)} = k^{1+(2n+1)\pi} \Pi_{kp}^{(0)} (f_j \chi_k) \in \ker \Pi_{b,k}^{(0)}.
\]

From \(\Psi(x, x) = 0\) and by using integration by parts, we get
\[
\lim_{k \to +\infty} \left(\frac{\partial}{\partial z_q} \nu_k^{(j)} \right)(x_0) = \delta_{j,q} p^n \frac{\ell}{2} \pi^{-n-1} |\det \mathcal{L}_{x_0}|, \tag{37}
\]
for every \(j, q = 1, \ldots, n\). Now, consider sections \(\gamma_1, \ldots, \gamma_{d_{kp}-n-1}\) such that
\[
\{ u_k, u_k^{(1)}, \ldots, u_k^{(n)}, \gamma_1, \ldots, \gamma_{d_{kp}-n-1} \}
\]
is a basis of \(H^0(M, L^{kp})\). As a consequence of (36) and (37), it is easy to see that the map
\[
x \mapsto \begin{pmatrix} u_k^{(1)}(x) & \cdots & u_k^{(n)}(x) & \gamma_1(x) & \cdots & \gamma_{d_{kp}-n-1}(x) \end{pmatrix}
\]
(38)
is injective if \(k\) is sufficiently large. The Kodaira embedding map is constructed by using an orthonormal basis of \(H^0(M, L^{kp})\); the basis used to define the map (36) is not orthonormal in general. By considering the change of basis matrix we get that \(d\Phi_{kp}\) is injective if \(k\) is sufficiently large.

We now need to prove that \(\Phi_{kp}\) is globally injective. By absurd, up to passing to a subsequence, suppose that there are \(x_k, y_k \in M\) with \(x_k \neq y_k\) such that \(\Phi_{kp}(x_k) = \Phi_{kp}(y_k)\), for each \(k\). We prove the theorem by showing that we get a contradiction.

Assume that \(\lim_{k \to +\infty} x_k = x_0, \lim_{k \to +\infty} y_k = y_0\). If \(x_0 \neq y_0\), we can repeat the procedure in [HS1] and find \(u_k, v_k \in H^0(M, L^{kp})\) such that \(|u_k(x_k)|_{h^{L^{kp}}}^2 \geq Ck^n, |v_k(x_k)|_{h^{L^{kp}}}^2 \leq \frac{C}{k^n}\), \(|u_k(y_k)|_{h^{L^{kp}}}^2 \leq \frac{C}{k^n}\), \(|v_k(y_k)|_{h^{L^{kp}}}^2 \geq Ck^n\), for all \(k \gg 1\), where \(C > 0\) is a constant independent of \(k\). Thus, \(\Phi_{kp}(x_k) = \Phi_{kp}(y_k)\), for \(k\) large. We get a contradiction and thus we must have \(x_0 = y_0\).

For every \(k \in \mathbb{N}\), put
\[
A_k := \{ (x, y) \in M \times M; \Phi_k(x) = \Phi_k(y) \}.
\]

We need

Lemma 4.1. There is a constant \(k_0\) such that for every \(j \in \mathbb{N}\) and every \(k \in \mathbb{N}\) with \(k \geq k_0\), we have
\[
A_{j+k} \subset A_j.
\]

Proof. From the proof of (36), we see that there is a \(k_0 \in \mathbb{N}\) such that for every \(x \in X\) and every \(k \in \mathbb{N}, k \geq k_0\), we can find \(u_k \in \ker \Pi_{b,k}^{(0)}\) such that \(|u_k(x)| \geq \frac{1}{2}\). Fix \(j \in \mathbb{N}\), let \(k \in \mathbb{N}\) with \(k \geq k_0\) and let \((x, y) \notin A_j\). We claim that \((x, y) \notin A_{j+k}\). Since \((x, y) \notin A_j\), we can find \(v_j \in \ker \Pi_{b,jp}^{(0)}\) so that \(v_j(x) = 1\) and \(v_j(y) = 0\). Let \(u_k \in \ker \Pi_{b,kp}^{(0)}\) such that \(|u_k(x)| \geq \frac{1}{2}\). Then, \(u_kv_j \in \ker \Pi_{b,(j+k)p}^{(0)}\), \(|(u_kv_j)(x)| \geq \frac{1}{2}, |(u_kv_j)(y)| = 0\). Thus, \((x, y) \notin A_{j+k}\). The lemma follows. \(\square\)
We now have \(\lim_{k \to +\infty} x_k = \lim_{k \to +\infty} y_k = 0 \). Consider an open set \(U \) around a given point \(x_0 \in X_\ell \) and an orbifold chart \((\hat{U},G_U) \to U \) such that \(x_0 \) is a fix point of \(G_U \). Let \(x = (x_1, \ldots, x_{2n+1}) \) be local coordinates of \(\hat{U} \) with \(x(x_0) = 0 \). For every \(j \in \mathbb{N} \), take \(k_j \in \mathbb{N} \) with \(k_j \geq k_0 \) such that
\[
|x_{j+k_j}| \leq \frac{1}{j^3} \quad \text{and} \quad |y_{j+k_j}| \leq \frac{1}{j^3}.
\] (39)

From Lemma 4.1, we see that \((x_{j+k_j}, y_{j+k_j}) \in A_j\). Thus, for every \(j \), we replace \((x_j, y_j)\) by \((x_{j+k_j}, y_{j+k_j})\) and conclude that there are \(x_k, y_k \in M, x_k \neq y_k \) such that \(\Phi_{kp}(x_k) = \Phi_{kp}(y_k) \), for each \(k \) and
\[
\lim_{k \to +\infty} k^2 |x_k| = \lim_{k \to +\infty} k^2 |y_k| = 0.
\] (40)

Put
\[
 f_k(t) = \frac{||\Pi_{kp}^{(0)}(tx_k + (1-t)y_k, y_k)||^2}{||\Pi_{kp}^{(0)}(tx_k + (1-t)y_k)||^{2}\Pi_{kp}^{(0)}(y_k)}
\]
where we write \(\Pi_{kp}^{(0)}(x) = \Pi_{kp}^{(0)}(x, x) \), for any \(x \in X \). From (40), we can check that
\[
f_k(t) = \sum_{g \in G_U} \frac{e^{-2kp \Im \Psi(tx_k + (1-t)y_k, g \cdot y_k) \cdot \left[1 + \frac{1}{k} \tilde{R}_k(t) + \varepsilon_k(t) \right]}}{\Pi_{kp}^{(0)}(tx_k + (1-t)y_k)||^{2}\Pi_{kp}^{(0)}(y_k)}
\] (41)
where
\[
|\partial_t^j \tilde{R}_k(t)| \leq C_j |x_k - y_k|^j \quad \text{and} \quad |\partial_t^j \varepsilon_k(t)| \leq C_{N,j}k^{-N} |x_k - y_k|^j,
\]
for all \(j \in \mathbb{N} \cup \{0\} \) and every \(N \in \mathbb{N} \), where \(C_j, C_{N,j} > 0 \) are constants independent of \(k \). For ease of notation, pose \(F_k(t) := -2kp \Im \Psi(tx_k + (1-t)y_k, g \cdot y_k) \) for given \(x_k, y_k \) and \(g \in G_U \). From (40), we have
\[
|F_k(t)| = |\langle -2kp \Im \Psi'_x(tx_k + (1-t)y_k, g \cdot y_k), x_k - y_k \rangle| \leq \frac{1}{c_0k} |x_k - y_k|
\]
and
\[
F_k(t) = \langle -2kp \Im \Psi'_x(tx_k + (1-t)y_k, g \cdot y_k), x_k - y_k \rangle < -c_0k |x_k - y_k|^2
\]
for the computation of the second derivative of (41), here \(c_0 \) is a positive constant. We get
\[
\lim_{k \to +\infty} f''(t) < 0
\] (42)
for each \(t \).

By Cauchy-Schwartz inequality we have \(0 \leq f_k(t) \leq 1 \), for any \(t \in [0, 1] \). From \(\Phi_{kp}(x_k) = \Phi_{kp}(y_k) \), for each \(k \), we can check that \(f_k(0) = f_k(1) = 1 \). Thus, for each \(k \), there is a \(t_k \in [0, 1] \) such that \(f''(t_k) = 0 \). Hence,
\[
\lim_{k \to +\infty} f''(t_k) \geq 0
\]
which contradicts (42).

4.3 Quantization commutes with reduction

In this section, we assume that \(X \) admits a CR compact Lie group action \(G \), \(\dim G = d \). We will work Assumption 2.1 and suppose that \(X \) is strongly pseudoconvex. We will use the same notations as in Section 2.3. The moment map associated to \(\omega_0 \) is the map given by \(\mu : X \to \mathfrak{g}^* \) such that for all \(x \in X \) and \(\xi \in \mathfrak{g} \), we have
\[
\langle \mu(x), \xi \rangle = \omega_0(x)(\xi_X).
\] (43)

Let us recall the following theorem which is well-known in the setting of symplectic manifolds. Throughout this section we will always assume that 0 is a regular value, and thus \(\mu^{-1}(0) \) is a suborbifold of \(X \).
Proposition 4.1. Suppose that 0 is a regular value, then the action of \(G \) on \(\mu^{-1}(0) \) is locally free.

Proof. Since 0 is a regular value then for each \(p \in \mu^{-1}(0) \), \(d_p \mu : T_p X \to g^* \) is surjective. Let us identify \(g \cong g^* \), then for every \(\xi \in g \setminus \{0\} \) there exists \(V \in T_p X \) such that \(d_p \mu(V) = \xi \). Thus, we have

\[
0 \neq \langle d_p \mu(V), \xi \rangle = d_p \omega_0(\xi_X(p), V) = -b_p(\xi_X(p), J_p V)
\]

and we can conclude that \(\xi_X(p) \neq 0 \).

Proposition 4.2. Suppose 0 is a regular value, then \(X_G = \mu^{-1}(0)/G \) is an orbifold.

Proof. By the previous proposition the action of \(G \) on \(\mu^{-1}(0) \) is locally free. From the proof of Corollary B.31 in \[GGK\] we can conclude.

Corollary B.31 in \[GGK\] is a consequence of the Slice Theorem which states that there exists a \(G \)-equivariant diffeomorphism \(\phi \) between \(G \times_G D \) and a tubular neighborhood of the orbit \(G \cdot x \), we refer to Appendix B in \[GGK\] for precise definitions. More precisely, \(\phi \) is induced by the exponential map \(E_p : U_0 \to U \subseteq M \), where \(U_0 \) is an open neighborhood of 0 in \(T_x M \). We have \(G_x \) equivariant decomposition

\[
T_x X = T_x (G \cdot x) \oplus W
\]

where \(W \) is the normal bundle to \(G \cdot x \). As a consequence of this, it is easy to see the the CR orbifold structure on \(X \) descends naturally to a \(G \) orbifold structure on \(X \) and so the other \(G \)-invariant structures defined on \(X \). Moreover, we can repeat the proof of [HMM] Theorem 2.5 and deduce that \(X_G \) is a strongly pseudoconvex CR orbifold.

We take the Hermitian metric \(\langle \cdot, \cdot \rangle \) on \(CTX \) so that \(\langle \cdot, \cdot \rangle \) is \(G \)-invariant. Let \(\langle \cdot, \cdot \rangle_{X_G} \) be the Hermitian metric on \(CTX_G \) induced by \(\langle \cdot, \cdot \rangle \) and let \(\langle \cdot, \cdot \rangle_{X_G} \) be the inner product on \(L^2(X_G) \) induced by \(\langle \cdot, \cdot \rangle_{X_G} \). Let \(\Box_{b,X_G}^{(0)} \) be the Kohn Laplacian on the orbifold \(X_G \) with respect to \(\langle \cdot, \cdot \rangle_{X_G} \). Let \(\Pi_{X_G} : L^2(X_G) \to \Box_{b,X_G}^{(0)} \) be the Szegő projection. Fix \(p \in \mu^{-1}(0) \). Let \((\tilde{U}, G_U) \to U \) be an orbifold chart of \(X \), \(p \in U \). By the previous discussion we have that \(G \cdot p = \{ p \} \times X_G \) and a sufficiently small neighborhood \(U_{\{p\}} \) in \(X_G \) has a orbifold local chart \((G_p \times G_U, \tilde{W}) \to U_{\{p\}} \), where \(\tilde{W}/G_p = (\tilde{U} \cap \mu^{-1}(0))/G_p \) and \(G_p := \{ g \in G ; gp = p \} \). Thus, from Theorem [4], the Szegő kernel for the orbifold \(X_G \) has the following expression in the local chart \((G_p \times G_U, \tilde{W}) \to U_{\{p\}} \)

\[
\Pi_{X_G}(x, y) \equiv \sum_{h \in G_U, g \in G_p} \int_0^{+\infty} e^{it \varphi^{X_G}_z (\bar{z}, \bar{g} \cdot h \cdot \bar{y})} s^{X_G}_z (x, g \cdot h \cdot \bar{y}, t) \, dt
\]

where \(x, y \in U_{\{p\}} \) and \(\varphi^{X_G}_z \) and \(s^{X_G}_z \) are respectively the complex phase function and the symbol of \(S^{X_G}_z \) as described in Theorem [4] for the CR orbifold \(X_G \).

Let use recall that \(\left(\ker \Box_{b}^{(0)} \right)_G := \{ u \in \ker \Box_{b}^{(0)} ; g^* u = u, \forall g \in G \} \).

Let \(\Pi_G : L^2(X) \to \left(\ker \Box_{b}^{(0)} \right)_G \) be the orthogonal projection \((G\text{-invariant Szegő projection}) \). In \[HH\] and \[GH2\], we studied the \(G \)-invariant Szegő kernel.

We pause and introduce some notations. Fix \(x \in \mu^{-1}(0) \), consider the map

\[
R_x : g^* \to g^*,
\]

\[
u \to R_x \nu, \quad \langle R_x \nu | v \rangle = (d\omega_0(x), Ju \wedge v), \quad v \in g^*,
\]

where \(J \) is the natural complex structure map on \(HX := \text{Re}T^{1,0}X \). Let

\[
\det R_x = \lambda_1(x) \cdots \lambda_d(x),
\]
functions over Γ such that

$$Y_x := \{ gx \in \mu^{-1}(0); \ g \in G \}$$

and let dV_{Y_x} be the volume form on Y_x induced by the given Hermitian metric $\langle \cdot | \cdot \rangle$. Put

$$V_{\text{eff}} := \int_{Y_x} dV_{Y_x}.$$

We now come back to our situation. From Theorem [4.1] we can repeat the procedure in [GH2] and deduce the following: Fix $p \in \mu^{-1}(0)$. Let $(U, G_U) \to U$ be an orbifold chart of X, $p \in U$. Then, the distributional kernel of Π_G satisfies

$$\Pi_G(x, y) \equiv \sum_{h \in G_U, g \in G_p} \int_{0}^{\infty} e^{it \Phi_-(\widetilde{x}, g \cdot h \cdot \widetilde{y})} a_-(\widetilde{x}, g \cdot h \cdot \widetilde{y}, t) \, dt \quad \text{on } U \times U,$$

where

$$a_-(\widetilde{x}, \widetilde{y}, t) \sim \sum_{j=0}^{+\infty} a^j_-(\widetilde{x}, \widetilde{y}) t^{n-d/2-j} \in S^{n-d/2}_1(\widetilde{U} \times \widetilde{U} \times \mathbb{R}),$$

$a^j_- \in C^\infty(\widetilde{U} \times \widetilde{U})$, $j \in \mathbb{N}_0$, and for every $\widetilde{x} \in \mu^{-1}(0)$, $\mu^{-1}(0) \subset \widetilde{U}$ is the lifting of $\mu^{-1}(0)$ on \widetilde{U}, we have

$$a^0_-(\widetilde{x}, \widetilde{x}) = 2^{d-1} \frac{1}{V_{\text{eff}}(x)} \pi^{-n-1+\delta} |\det R_x|^{-\frac{1}{2}} |\det L_\xi|.$$

We refer to [HH] or [GH2] for a precise description of the complex phase function Φ_- and the symbol a_-. Notice that x and y can be assumed to be $x = \exp_p(v)$ and $y = \exp_p(w)$ for some $v, w \in W$ since S^G_1 is G-invariant.

Now we can introduce explicitly a map $\sigma : (\ker \Box_{b,X_G}^{(0)})^G \to \ker \Box_{b,X_G}^{(0)}$. Let $C^\infty(\mu^{-1}(0))^G$ denote the set of all G-invariant smooth functions on $\mu^{-1}(0)$. Let

$$\iota_G : C^\infty(\mu^{-1}(0))^G \to C^\infty(X_G)$$

be the natural identification. Let $\iota : \mu^{-1}(0) \to X$ be the natural inclusion and let $\iota^* : C^\infty(X) \to C^\infty(\mu^{-1}(0))$ be the pull-back of ι. Let

$$f(x) = \sqrt{V_{\text{eff}}(x)} G_x.$$

Eventually, let $E \in L^{d}_c(X_G)$ be an elliptic pseudodifferential operator with principal symbol $\sigma^0_E(x, \xi) = |\xi|^{-\delta} \tau$, we define

$$\sigma : C^\infty(X) \to \ker \Box_{b,X_G}^{(0)},$$

$$u \mapsto \Pi_{X_G} \circ E \circ \iota_G \circ f \circ \iota^* \circ \Pi_G u.$$

Let $\sigma^* : C^\infty(X_G) \to D'(X)$ be the formal adjoint of σ. Following the same computations as in [HH] with some modification, by an application of stationary phase lemma of [MeSt] and by making use of [44], which is a consequence of Theorem [4.1] and by equation [46], we obtain

Theorem 4.1. Under the hypothesis of this section, suppose that $\Box_{b,X_G}^{(0)}$ has closed range. Then, σ^* maps $C^\infty(X_G)$ continuously to $C^\infty(X)$. Hence, $\sigma^* \sigma : C^\infty(X) \to C^\infty(X)$ is a well-defined continuous operator whose distribution kernel satisfies

$$\sigma^* \sigma = \Pi_G + \Gamma,$$

where $\Gamma : C^\infty(X) \to C^\infty(X)$ is a continuous map and satisfies the following: there exists $\varepsilon > 0$ such that $\Gamma : H^s(X) \to H^{s+\varepsilon}(X)$ is continuous for every $s \in \mathbb{R}$, $H^s(X)$ is the Sobolev space of functions over X order s.

21
Moreover,
\[\sigma \sigma^* = \Pi_{X_G} + \Gamma, \]
(49)

where \(\hat{\Gamma} : C^\infty(X_G) \to C^\infty(X_G) \) is a continuous map and satisfies the following: there exists \(\delta > 0 \) such that \(\hat{\Gamma} : H^s(X_G) \to H^{s+\delta}(X_G) \) is continuous for every \(s \in \mathbb{R} \), \(H^s(X_G) \) is the Sobolev space of functions over \(X_G \) of order \(s \).

From Theorem 4.1, we see that \(\sigma \) can be extended by density to
\[\sigma : L^2(X) \to \text{Ker} \Box_{b,X_G}^{(0)}. \]
(50)

Corollary 4.1. Under the preceding assumptions and notations, the map \(\sigma \) given by (47) and (50) has the following properties:

(i) \(\text{Ker} \sigma \cap (\text{Ker} \Box_b^{(0)})^G \) is a finite dimensional subspace of \(\mathcal{C}^\infty(X) \).

(ii) \(\text{Coker} \sigma \cap \text{Ker} \Box_b^{(0)}_{b,X_G} \) is a finite dimensional subspace of \(\mathcal{C}^\infty(X_G) \).

Moreover, we have \(\sigma : (\text{Ker} \Box_b^{(0)})^G \to \text{Ker} \Box_b^{(0)}_{b,X_G} \) is a Fredholm map.

Proof. Let \(u \in \text{Ker} \sigma \cap (\text{Ker} \Box_b^{(0)})^G \). From (48), we have
\[0 = \sigma^* \sigma u = (\Pi_G + \Gamma) u = u + \Gamma u. \]
(51)

From the previous theorem and (51), we deduce that \(u \in H^s(X) \). By applying again the previous theorem and (51), we get \(u \in H^{s+\delta}(X) \). Continuing in this way, we conclude that \(u \in \mathcal{C}^\infty(X) \).

Suppose that \(\text{Ker} \sigma \cap (\text{Ker} \Box_b^{(0)})^G \) is not a finite dimensional subspace of \(\mathcal{C}^\infty(X) \). We can find \(u_j \in \text{Ker} \sigma \cap (\text{Ker} \Box_b^{(0)})^G, \ j = 1, 2, \ldots, \) \((u_j | u_k) = \delta_{j,k} \), for every \(j, k = 1, \ldots. \) From the previous theorem and (51), we notice that \(\{u_j\}_{j \in \mathbb{N}} \) is a bounded set in \(H^s(X) \). By Rellich’s lemma, there is a subsequence \(1 \leq j_1 < j_2 < \cdots, \lim_{s \to +\infty} j_s = +\infty, \) such that \(u_{j_s} \to u \) in \(L^2(X) \) as \(s \to +\infty \), for some \(u \in L^2(X) \). Since \((u_j | u_k) = \delta_{j,k} \), for every \(j, k = 1, \ldots, \) we have
\[\|u_{j_s} - u_k\|_{L^2} = \sqrt{2} \]
and we get a contradiction since \(u_{j_s} \) and \(u_k \) converge to \(u \) as \(k, j_s \) goes to infinity. Thus, \(\text{Ker} \sigma \cap (\text{Ker} \Box_b^{(0)})^G \) is a finite dimensional subspace of \(\mathcal{C}^\infty(X) \).

We can repeat the procedure above with minor change and deduce that \(\text{Coker} \sigma \cap \text{Ker} \Box_b^{(0)}_{b,X_G} \) is a finite dimensional subspace of \(\mathcal{C}^\infty(X_G) \).

Recall that when \(X \) is a circle orbibundle, we have a natural circle action which commutes with the action of \(G \) on \(X \) and it is transversal to the CR structure. This induces a decomposition of \((\text{Ker} \Box_b^{(0)})^G \) into Fourier components \((\text{Ker} \Box_b^{(0)})_k^G \) and similarly \(\text{Ker} \Box_b^{(0)}_{b,X_G} \) splits as a direct sum \(\text{Ker} \Box_b^{(0)}_{b,X_G}, k \in \mathbb{Z} \). Now, we can take the limits as \(k \) goes to infinity in the previous corollary and we get that quantization commutes with reduction for \(k \) large, \(X \) and \(X_G \) may be orbifolds.

Acknowledgments: This project was started during the first author’s postdoctoral fellowship at the National Center for Theoretical Sciences in Taiwan; we thank the Center for the support. Andrea Galasso thanks Yi-Sheng Wang for conversations about orbifolds. Chin-Yu Hsiao was partially supported by Taiwan Ministry of Science and Technology projects 108-2115-M-001-012-MY5, 109-2923-M-001-010-MY4.
References

[ALR] Adem, A., Leida, J., Ruan, Y., *Orbifolds and Stringy Topology*, Cambridge Tracts in Mathematics, Cambridge: Cambridge University Press (2007).

[BG] C. P. Boyer and K. Galicki, *Sasakian geometry*, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.

[BS] L. Boutet de Monvel, J. Sjöstrand, *Sur la singularité des noyaux de Bergman et de Szegö*, Astérisque 34-35 (1976), 123–164.

[DLM] X. Dai, K. Liu, and X. Ma, *On the asymptotic expansion of Bergman kernel*, J. Differential Geom. 72 (2006), no. 1, 1–41.

[DK] J.J. Duistermaat, Johan A.C. Kolk *Lie Groups*, Universitext, Springer-Verlag Berlin Heidelberg (2000), ISBN 978-3-642-56936-4.

[GGK] V. Ginzburg, Y. Karshon, V. Guillemin, *Moment map, cobordisms and Hamiltonian group actions*, Mathematical Surveys and Monographs Volume: 98; 2002; 350 pp.

[GH2] A. Galasso, C.-Y. Hsiao, *Toeplitz operators on CR manifolds and group actions*, arxiv.org/abs/2108.11061.

[GH2] A. Galasso, C.-Y. Hsiao, *Functional calculus and quantization commutes with reduction for Toeplitz operators on CR manifolds*, arXiv:2112.11257.

[KHH] K. Fritsch, H. Herrmann and C.-Y. Hsiao, *G-equivariant embedding theorems for CR manifolds of high codimension*, Michigan Math. J. Advance Publication 1–44 (2021), DOI: 10.1307/mmj/20205864.

[HH] C.-Y. Hsiao, R.-T. Huang, *G-invariant Szegö kernel asymptotics and CR reduction*, Calc. Var. Partial Differential Equations 60 (2021), no. 1, Paper No. 47, 48 pp.

[HMM] C.-Y. Hsiao, X. Ma and G. Marinescu, *Geometric quantization on CR manifolds*, arXiv:1906.05627.

[Hs] C.-Y. Hsiao, *Projections in several complex variables*, Mémoires de la Société Mathématique de France 123 (2010), 1-136.

[Hs1] C.-Y. Hsiao, *Bergman Kernel Asymptotics and a Pure Analytic Proof of the Kodaira Embedding Theorem*, Complex Analysis and Geometry, 2015, Springer Proceedings in Mathematics and Statistics.

[HM] C.-Y. Hsiao, G. Marinescu *On the singularities of the Szegö projections on lower energy forms*, J. Diff. Geom. 107 (2017), no. 1, pp 83–155.

[MM] G. Marinescu, X. Ma *Holomorphic Morse inequalities and Bergman kernels*, Progress in Mathematics, Series Volume 254, 2007, Birkhäuser Basel.

[MeSj] A. Melin and J. Sjöstrand, *Fourier integral operators with complex valued phase functions*, Springer Lecture Notes in Math 459 (1074), pp. 120-223, Springer-Verlag, Berlin.

[MiSt] J. W. Milnor and J. D. Stasheff, *Characteristic classes*, Princeton University Press (1974), Princeton, New Jersey.

[P] R. Paoletti, *Asymptotics of Szegö kernels under Hamiltonian torus actions*, Israel Journal of Mathematics 191 (2012), no. 1, 363–403.

[S] J. Song, *The Szegö kernel on an orbifold circle bundle*, arXiv:math/0405071.