Methicillin-Resistant *Staphylococcus aureus* ST9 in Pigs in Thailand

Jesper Larsen¹, Maho Imanishi², Soawapak Hinjoy²,³, Prasit Tharavichitkul⁴, Kwanjit Duangsong⁴, Meghan F. Davis⁵, Kenrad E. Nelson², Anders R. Larsen¹, Robert L. Skov¹

¹Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark, ²Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America, ³Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand, ⁴Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, ⁵Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America

Abstract

Background: Methicillin-resistant *Staphylococcus aureus* (MRSA) is an important nosocomial and community-associated pathogen. Recently, livestock-associated MRSA (LA-MRSA) has emerged and disseminated in Europe and North America and now constitutes a considerable zoonotic burden in humans with risk factors of pig exposure, whereas the extent of the livestock reservoir is relatively unknown on other continents.

Methodology/Principal Findings: From March through April 2011, MRSA was identified in pigs from 3 out of 30 production holdings in Chang Mai Province, Thailand. Representative isolates were subjected to molecular characterization and antimicrobial susceptibility testing; all isolates had genotypic and phenotypic characteristics of LA-MRSA previously characterized in the region: they belonged to ST9, lacked the lukF-lukS genes encoding Panton-Valentine leukocidin, and were resistant to multiple non-β-lactam antimicrobials. However, unlike other Asian LA-MRSA-ST9 variants, they were spa type t337 and harbored a different staphylococcal cassette chromosome mec IVX.

Conclusions/Significance: A novel MRSA-ST9 lineage has been established in the pig population of Thailand, which differs substantially from LA-MRSA lineages found in other areas of the continent. The emergence of novel LA-MRSA lineages in the animal agriculture setting is worrisome and poses a serious threat to global public health.

Citation: Larsen J, Imanishi M, Hinjoy S, Tharavichitkul P, Duangsong K, et al. (2012) Methicillin-Resistant *Staphylococcus aureus* ST9 in Pigs in Thailand. PLoS ONE 7(2): e31245. doi:10.1371/journal.pone.0031245

Editor: Tara C. Smith, University of Iowa, United States of America

Received October 28, 2011; Accepted January 5, 2012; Published February 17, 2012

Copyright: © 2012 Larsen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: JRL@ssi.dk

Introduction

Recent reports of methicillin-resistant *Staphylococcus aureus* (MRSA) in livestock, particularly pigs, and in humans with contact to livestock provided the first evidence of the existence of a true livestock-associated MRSA (LA-MRSA) reservoir throughout Europe [1,2]. Since then, LA-MRSA has been identified in Canada [3], United States [4], China [5–7], Malaysia [8], and Korea [9].

LA-MRSA isolates have unique characteristics that distinguish them from community- and healthcare-associated MRSA (CA-MRSA and HA-MRSA, respectively) isolates [reviewed in [10]]: the majority of isolates lacks human niche-specific genes including toxins such as Panton-Valentine leukocidin (PVL) and other enterotoxins; they carry unique staphylococcal chromosomal cassette (SCC)mec elements encoding β-lactam resistance; they exhibit co-resistance to many non-β-lactam antimicrobials (e.g., antibiotics and metals) including those commonly used in animal production.

Interestingly, multi-locus sequence typing (MLST) showed that closely related sequence types (STs) within clonal complex (CC)398 predominate in Europe and North America, whereas the vast majority of LA-MRSA isolates from Asia belongs to CC9 (ST9 and single-locus variants thereof).

There is still a comparative lack of information on the emergence of LA-MRSA and its burden on human disease in South-East Asia. The purpose of this study was to investigate whether pigs constitute an MRSA reservoir in Thailand. We present evidence that a novel MRSA-ST9 lineage has been established in the pig population of Thailand, which differs substantially from LA-MRSA lineages found in other areas of the continent.

Analysis

From March through April 2011, nasal swabs were taken from 4 pigs from each of 20 small-scale and 10 large-scale confined production holdings located in Chiang Mai Province (Table 1). The different pig production systems were categorized based on the definitions (i.e., size of herds, production goals, and husbandry management) of the Food and Agriculture Organization of the United Nations [11]. The herd sizes ranged from 28 to 120 animals (mean, 50 animals) and from 240 to 3,330 animals (mean, 861 animals) on small- and large-scale confined production holdings, respectively. This study was approved by the local animal ethics committee.
committee and the Faculty of Medicine, Chiang Mai University (protocol no. 41/2553) and was performed according to national guidelines for animal care. All 30 holdings volunteered to participate in the study. The 4 nasal swabs from each holding were pooled and incubated overnight in Mueller-Hinton broth supplemented with NaCl (6.5%) followed by overnight incubation in tryptic soy broth (TSB) supplemented with cefoxitin (3.5 ug/ml). Ten microliters of TSB broth were plated on Baird-Parker agar (Oxoid, Basingstoke, United Kingdom) and incubated for 24 h at 37°C. Presumptive MRSA colonies were subcultured onto 5% sheep blood agar and evaluated phenotypically by coagulase and catalase production and dextrose and mannitol fermentation and genotypically by 16S rRNA gene sequencing and presence of mecA, using PCR assays and primers that have been described elsewhere [12].

A single MRSA colony from each positive holding was selected for further analysis. Staphylococcal protein A (spa) typing was performed using the Ridom Staph Type standard protocol (http://www.ridom.com) and the Ridom SpaServer (http://spa.ridom.de/index.shtml), and MLST types were determined as described previously [13]. STs were assigned through the MLST database (http://www.mlst.net). The eBURST algorithm was used to assign individual STs to specific CCs (http://www.mlst.net). Presence of lukF-PV and lukS-PV genes (encoding PVL) was investigated by a PCR assay that has been reported elsewhere [14]. Typing for the staphylococcal cassette chromosome mec (SCCmec) was performed using a PCR-based multiplex assay described by Kondo et al. [15].

The antimicrobial susceptibility profiles (spectinomycin, gentamicin, kanamycin, tobramycin, rifampin, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, linezolid, chloramphenicol, minocycline, tetracycline, and fusidic acid) were determined by the agar dilution method using Neo-Mupirocin, ciprofloxacin, minocycline, and tetracycline, with the exception of 1 isolate that was susceptible to erythromycin), and lacked the lukF-lukS genes encoding PVL.

Discussion

This study provides the first evidence of a porcine reservoir of MRSA-ST9-IX in Thailand. However, the extent and diversity of the MRSA reservoir in animals remains speculative because of the limited sample size and analysis of only a single colony per holding. It should be noted that the 3 positive holdings were located in the village of Tamao (Table 1), which supports limited geographical dispersal of this clone. It is also possible, however, that this rather specific geographic pattern is attributable to the fact that holdings from Tamao were overrepresented in this study, which may have increased the likelihood to recover MRSA.

The origin of LA-MRSA-ST9-IX (spa type t337) in Thailand is not known. The distribution of spa types associated with LA-MRSA-ST9 shows rather distinct geographic patterns with t899 and t4358 being the most common spa types in pigs from China and Malaysia, respectively [5-8]. In addition, SCCmec V predominates among LA-MRSA-ST9 from other Asian countries [5,6,8]. Conversely, the antimicrobial susceptibility profiles of LA-MRSA-ST9 isolates from different Asian countries, including Thailand, are highly homogeneous, with the important exception that Neela et al. [8] observed high rates of resistance to trimethoprim-sulfamethoxazole (100%) in LA-MRSA-ST9 from Malaysia.

To date, SCCmec IX has only been described in a single MRSA-ST398 isolate (spa type t034) recovered from a Thai participant at the 19th International Pig Veterinary Conference in Denmark.

Table 1. Distribution of methicillin-resistant *Staphylococcus aureus* among pig production holdings in Chang Mai Province, Thailand.

Village	Small-scale confined production holdings	Large-scale confined production holdings
Rongkhud	0/1 (0)	
Sunkuangcome	0/2 (0)	
Tamao	3/15 (20)	
Tungtor	0/2 (0)	
Moo 1	0/1 (0)	0/2 (0)
Moo 2	0/1 (0)	
Moo 3	0/2 (0)	
Moo 4	0/1 (0)	
Moo 5	0/2 (0)	
Moo 6	0/1 (0)	
Moo 7	0/1 (0)	
Total	3/20 (15)	0/10 (0)

Table 1. Distribution of methicillin-resistant *Staphylococcus aureus* among pig production holdings in Chang Mai Province, Thailand.
[18,19], which suggests that SCCmec IX is geographically restricted. Notably, the 18-kb J1 region of the large SCCmec IX (43,675 bp) contains a cadX operon, a copB gene, and two arsenate resistance operons, arsRBC and arsDARBC [19]. The presence of multiple genes that confer resistance to both metals and β-lactam antibiotics in LA-MRSA isolates may reflect antimicrobial use patterns in animal agriculture, and may affect the emergence, dissemination, and persistence of methicillin resistance in this setting through co-selective processes.

Methicillin-susceptible S. aureus (MSSA) lineages with spa types t034 (CC398), t1333 (CC30), and t337 (CC9) are predominant in the pig population [20], and it is therefore possible that the geographically confined LA-MRSA-ST9-IX variant in Thailand was derived from an LA-MSSA-ST9 strain belonging to spa type t337 through local acquisition of SCCmec IX. If this is the case, other MSSA CC9 (and CC30) populations circulating in the animal agriculture setting around the world may also have the propensity to acquire SCCmec, thereby expanding the porcine MRSA reservoir.

The presence of SCCmec IX in LA-MRSA CC9 and CC398 from Thailand suggests that SCCmec transfer can occur between these lineages, although the direction of transfer remains unclear. However, it is also possible that other MRSA types or methicillin-resistant coagulase-negative staphylococci are the source of SCCmec IX in S. aureus CC9 and CC398. Additional studies investigating the role and direction of horizontal transfer in the evolution of S. aureus CC9 and CC398 are currently under way.

The carriage rate among humans with contact to pigs was not investigated in this study. Nevertheless, zoonotic transmission of LA-MRSA-ST9 from pigs to humans with contact to pigs has been previously reported in China and Malaysia [5,8], and it is therefore possible that the LA-MRSA-ST9-IX variant in Thailand also constitutes a zoonotic burden in humans with risk factors of pig exposure.

Cases of MRSA-CC9 carriage and infections in human populations have not been reported in Thailand, unlike in other countries of the region where MRSA-ST9 (spa type t899) and MRSA-ST394 have been isolated from sporadic cases of infection in China and Cambodia, respectively [21,22]. Interestingly, MRSA-ST394 was subsequently found to be the predominant CA-MRSA type in Cambodia [23]. CA-MRSA-ST394 has unique characteristics compared with LA-MRSA-ST9: it is a double-locus variant of ST9, it harbors SCCmec IV; it exhibits high rates of resistance to rifampin (90%) and trimethoprim-sulfamethoxazole (90%), whereas rates of resistance to gentamicin (13%), chloramphenicol (3%), and ciprofloxacin (20%) are low [23]. These findings provide support for the view that distinct variants of MRSA-CC9 circulate in the community and animal agriculture settings as has been suggested for S. aureus CC398 [24].

In conclusion, our findings demonstrate that MRSA is present in the Thai pig population. However, the extent of the porcine MRSA reservoir and its implications for MRSA carriage and disease in humans in Thailand and other Asian countries has still to be determined.

Author Contributions
Conceived and designed the experiments: MI SH PT MF D. Performed the experiments: JL PT KD. Analyzed the data: JL PT KD KEN ARL RLS. Contributed reagents/materials/analysis tools: MI PT KEN ARL RLS. Wrote the paper: JL.

References
1. Armand-Lefèvre I, Ruimy R, Andremont A (2005) Clonal comparison of Staphylococcus aureus isolates healthy pig farmers, human controls, and pigs. Emerg Infect Dis 11: 711–714.
2. Voss A, Loeflen F, Bakker J, Kliaassen C, Wulf M (2005) Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11: 1965–1966.
3. Khanna T, Friendship R, Dewey C, Weese JS (2008) Methicillin-resistant Staphylococcus aureus from hogs and workers in Canada. Emerg Infect Dis 14: 1152–1155.
4. Smith TC, Male MJ, Harper AL, Kroeger AS, Tinkler GP, et al. (2008) Investigation of reduced susceptibility to glycopeptides among Staphylococcus aureus isolates in primary skin infections and pneumonia. Clin Infect Dis 29: 1120–1132.
5. Kondo Y, Ito T, Ma XX, Watanabe S, Kriswirih BN, et al. (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, coe, and major differences in junkyard regions. Antimicrob Agents Chemother 51: 264–274.
6. Clinical and Laboratory Standards Institute (2011) Performance standards for antimicrobial susceptibility testing: Twenty-First Informational Supplement M100-S21. Wayne (PA): The Institute.
7. Fitzgibbon MM, Rosney AS, O’Connell B (2007) Investigation of reduced susceptibility to glycopeptides among Staphylococcus aureus isolates from patients in Ireland and evaluation of agar screening methods for detection of heterogeneous glycopeptide-intermediate S. aureus. J Clin Microbiol 45: 3265–3269.
8. Wulf MW, Sorum M, van Nes A, Skow R, Melchers WJ, et al. (2008) Prevalence of methicillin-resistant Staphylococcus aureus among veterinarians: an international study. Clin Microbiol Infect 14: 29–34.
9. Li S, Skov RL, Han X, Larsen AR, Larsen J, et al. (2011) Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 55: 3096–3100.
10. Lim SK, Nam HM, Jang GC, Lee HS, Jung SC (2011) The first detection of ST398 methicillin-resistant Staphylococcus aureus in Korea. J Clin Microbiol 49: 659–663.
11. Food and Agriculture Organization of the United Nations/World Organisation for Animal Health/World Bank (2010) Good practices for biosecurity in the pig production sector and for Animal Health/World Bank. 74 p.
12. Voss A, Loeflen F, Bakker J, Kliaassen C, Wulf M (2005) Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11: 1965–1966.
13. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38: 1008–1015.
14. Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, et al. (1999) Involvement of Panton-Valentine leucocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29: 1120–1132.
15. Fitzgibbon MM, Rosney AS, O’Connell B (2007) Investigation of reduced susceptibility to glycopeptides among Staphylococcus aureus isolates from patients in Ireland and evaluation of agar screening methods for detection of heterogeneous glycopeptide-intermediate S. aureus. J Clin Microbiol 45: 3265–3269.
16. Wulf MW, Sorum M, van Nes A, Skow R, Melchers WJ, et al. (2008) Prevalence of methicillin-resistant Staphylococcus aureus among veterinarians: an international study. Clin Microbiol Infect 14: 29–34.
17. Li S, Skov RL, Han X, Larsen AR, Larsen J, et al. (2011) Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 55: 3096–3100.
18. Hasman H, Moodley A, Guardabassi L, Stegger M, Skov RL, et al. (2010) Prevalence of methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J Clin Microbiol 47: 4138–4140.
19. Hasman H, Moodley A, Guardabassi L, Stegger M, Skow RL, et al. (2010) spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet Microbiol 141: 326–331.
20. Liu Y, Wang H, Hu N, Shen E, Chen H, et al. (2009) Molecular evidence for spread of two major methicillin-resistant Staphylococcus aureus clones with a unique geographic distribution in Chinese hospitals. Antimicrob Agents Chemother 53: 512–518.
21. Chibeng K, Tarquínio S, Wuthiekanun V, Sin L, Thaipadungsapit J, et al. (2009) Emergence of community-associated methicillin-resistant Staphylococcus aureus associated with pediatric infection in Cambodia. PLoS One 4: e6630.
22. Nickerson EK, Wuthiekanun V, Kumar A, Amornchai P, Wongsuteethai N, et al. (2011) Emergence of community-associated methicillin-resistant Staphylococcus aureus carriage in children in Cambodia. Am J Trop Med Hyg 84: 313–317.
23. Davies PR, Wagtrom EA, Bender JB (2011) Lethal necrotizing pneumonia caused by an ST398 Staphylococcus aureus strain. Emerg Infect Dis 17: 1152–1153.