A Case Series of Children With Coronavirus Disease 2019: What Have We Learned?

Jasper Fuk-Woo Chan,1,2 Kelvin Kai-Wang To,1,2 and Kwok-Yung Yuen1,2

1State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China, and 2Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China

(See the Brief Report by Jiehao et al on pages 1547–51.)

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in Wuhan, China, in December 2019 and rapidly disseminated globally to cause a pandemic of coronavirus disease 2019 (COVID-19) within less than 4 months [1]. SARS-CoV-2 can transmit efficiently among humans, with a case-fatality rate of about 0.5% to 10% depending on locality [2]. Because most of the initial cohorts of patients with COVID-19 were focused on adult and elderly patients, the clinical characteristics of children with COVID-19 have not been well described. Several articles recently published in Clinical Infectious Diseases have provided valuable information about the clinical course of COVID-19 among pediatric patients and their mothers.

Among the 4 neonates born to women with laboratory-confirmed COVID-19 in the third trimester, only 1 neonate had virological confirmation of COVID-19 with positive pharyngeal reverse transcription–polymerase chain reaction (RT-PCR) results [3–5]. This was similar to the findings in a systematic investigation on perinatal transmission among 5 pregnant patients with severe acute respiratory syndrome (SARS) and their neonates, in which none of the neonates developed SARS [6]. Notably, all of the 4 neonates born to mothers with COVID-19 were immediately separated from their mothers after birth to avoid transmission via close contact or droplets, suggesting that stringent infection control measures were useful to prevent perinatal mother-to-neonate transmission of SARS-CoV-2. In the single laboratory-confirmed case of neonatal COVID-19, it remains undetermined whether intrauterine transmission of SARS-CoV-2 occurred as serial maternal and fetal blood samples were not available for testing [3]. All 4 neonates and their mothers had good clinical outcome. Only 1 of the 4 neonates developed reduced fetal movement and fetal heart rate variability, which required preterm delivery by emergency cesarean section at 30 weeks of gestation, and the neonate remained well after birth [4]. Notably, pregnant patients with SARS were significantly more likely to develop renal failure, disseminated intravascular coagulopathy, and death compared with nonpregnant patients with SARS [7]. Increased risks of spontaneous miscarriage, preterm delivery, intrauterine growth retardation, and severe gastrointestinal morbidity have also been reported in pregnant patients with COVID-19 [6, 8]. Thus, pregnant patients with COVID-19 should be monitored closely for the development of any severe complications that would require urgent interventions and delivery of the fetus.

Also published in this issue of Clinical Infectious Diseases were the reports by Cai et al [9] and Kam et al [10] on 11 children with laboratory-confirmed COVID-19. All of the children were either asymptomatic or had mild to moderate disease. Consistent with a previous report, asymptomatic children could be shedding high viral loads in their respiratory tract specimens [1]. Moreover, SARS-CoV-2 RNA could be detected in extrapulmonary specimens, including blood and feces. Viral RNA could be detected for up to 22 days in nasopharyngeal and throat swabs and more than 30 days in feces [9]. The Centers for Disease Control and Prevention recommended the consideration of RT-PCR testing results for decisions on discontinuing transmission-based precautions for COVID-19 [11]. Prolonged viral shedding reported in children may pose a challenge for the saturated healthcare systems in areas where the number of COVID-19 cases is increasing rapidly. Further studies are required to determine the transmissibility of children with prolonged viral shedding.

One key question is whether mothers with COVID-19 can continue to breastfeed their neonates. SARS-CoV-2 RNA
was not detected in any of the breast milk samples in these reports. However, the optimal period for withholding breastfeeding should be determined on a case-to-case basis. For example, the mother should probably refrain from breastfeeding while still shedding the virus from the respiratory tract as the majority of the world’s population remains nonimmune to SARS-CoV-2 and lack neutralizing maternal antibodies that could be transferred to the child.

From the experience of SARS in 2002–2003, the clinical course of neonates and children could be quite different from that of adults. Pediatric patients with SARS had much better outcomes than adult patients with SARS [12]. This was also observed in patients with COVID-19. A large series of 70,000 patients in China showed that only 1% of the patients were younger than 10 years old [13]. The biological basis of this apparent mild illness in children is not clear but may be related to different host immune response. One hypothesis for adults having more severe disease is the presence of cross-reactive disease-enhancing immunity induced by prior human coronavirus infection. Immunization of the 2003 SARS-CoV was shown to worsen infection due to SARS-like coronaviruses in a mouse model [14]. Since coronavirus antibodies are less common in children than in adults, the relative lack of disease-enhancing antibodies may limit the disease severity [15].

For influenza virus, immune imprinting has been shown to be associated with vaccine effectiveness [16]. Whether immune imprinting due to prior exposure to other human coronaviruses affects immune response towards SARS-CoV-2 remains to be determined.

Notes

Author contributions. J. F.-W. C., K. K.-W. T., and K.-Y. Y. had roles in data collection, data analysis, data interpretation, and writing of the manuscript. All authors reviewed and approved the final version of the manuscript.

Potential conflicts of interest. The authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; doi: 10.1016/ S0140-6736(20)30554-9.
2. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report-85. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200415-sitrep-86-covid-19.pdf?sfvrsn=e615ea20_4. Accessed 15 April 2020.
3. Wang S, Guo L, Chen L, et al. A case report of neonatal COVID-19 infection in China. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa225.
4. Wang X, Zhou Z, Zhang J, Zhu F, Tang Y, Shen X. A case of 2019 novel coronavirus in a pregnant woman with preterm delivery. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa200.
5. Fan C, Lei D, Fang C, et al. Perinatal transmission of COVID-19 associated SARS-CoV-2: should we worry? Clin Infect Dis 2020. Epub ahead of print. pii: ciaa226. doi: 10.1093/cid/ciaa226
6. Shuk CC, Ng PC, Fung GP, et al. Infants born to mothers with severe acute respiratory syndrome. Pediatrics 2003; 112:e254.
7. Lam CM, Wong SF, Leung TN, et al. A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome. BJOG 2004; 111:771–4.
8. Wong SF, Chow KM, Leung TN, et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol 2004; 191:292–7.
9. Cai J, Xu J, Lin D, et al. A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa198.
10. Sam KO, Yung CE, Cai L, et al. A well infant with coronavirus disease 2019 (COVID-19) with high viral load. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa201.
11. Centers for Disease Control and Prevention. Interim guidance for discontinuation of transmission-based precautions and disposition of hospitalized patients with COVID-19. 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/disposition-hospitalized-patients.html. Accessed 14 March 2020.
12. Hon KL, Leung CW, Cheng WT, et al. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet 2003; 361:1701–3.
13. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020; doi: 10.1001/jama.2020.2648.
14. Menachery VD, Yount BL Jr, Debink K, et al. A SARS-like cluster of circulating but coronaviruses shows potential for human emergence. Nat Med 2015; 21:1508–13.
15. Chan CM, Tse H, Wong SS, et al. Examination of seroprevalence of coronavirus HKU1 infection with S protein-based ELISA and neutralization assay against viral spike pseudotyped virus. J Clin Virol 2009; 45:54–60.
16. Kelvin AA, Zambon M. Influenza imprinting in childhood and the influence on vaccine response later in life. Euro Surveill 2019; 24: doi: 10.2807/1560-7917.ES.2019.24.48.1900720