Investigating a rare methicillin-resistant \textit{Staphylococcus aureus} strain: first description of genome sequencing and molecular characterization of CC15-MRSA

Abiola C Senok1,a
Ali M Somily2
Peter Slickers3,4,6
Muhabat A Raji5
Ghada Garaween5
Atef Shibl5
Stefan Monecke3,4,6
Ralf Ehricht3,4

1Department of Basic Science, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; 2Department of Pathology and Laboratory Medicine, College of Medicine, King Khalid University Hospital and King Saud University, Riyadh, Saudi Arabia; 3Alere Technologies GmbH, Jena, Germany; 4InfectoGnostics Research and Health Sciences, Dubai, United Arab Emirates; 5Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; 6Technische Universität Dresden, Dresden, Germany

Purpose: Methicillin resistant \textit{Staphylococcus aureus} CC15 strains (CC15-MRSA) have only been sporadically described in literature. This study was carried out to describe the genetic make-up for this rare MRSA strain.

Methods: Four CC15-MRSA isolates collected in Riyadh, Saudi Arabia, between 2013 and 2014 were studied. Two isolates were from clinical infection and 2 from retail meat products. Whole genome sequencing was carried out using Illumina HiSeq2500 genome analyzer.

Results: All the CC15-MRSA isolates had the multilocus sequence typing profile ST1535, 13–13–1–1–81–11–13, which is a single locus variant of ST15. Of the 6 contigs related to the SCC element, one comprised a recombinase gene \textit{ccrAA}, a \textit{ccrC-PM1} paralog, and a helicase, another one included \textit{mvaS}, \textit{dru}, \textit{mecA} and 1 had \textit{yobV} and \textit{Q4LAG7}. The SCC element had 5 transposase genes, namely 3 identical paralogs of \textit{tnpIS431} and 2 identical paralogs of \textit{tnpIS256}. Two identical copies of a \textit{tnpIS256}-based insertion element flank the \textit{aacA-aphD} gene. Two copies of this insertion element were present with 1 located in the SCC element and another inserted into the \textit{sasc} gene. A short 3 kb region, which lacks any bacteriophage structural genes and site-specific DNA integrase, was inserted into the \textit{hbl} gene. The \textit{hsdM} and the 5'-part of the \textit{hsdS} gene are replaced by a copy of the \textit{hsdM/hsdS} paralogs from \textit{vSa} giving rise to a new chimeric paralog of \textit{hsdS} in \textit{vSaA}.

Conclusion: CC15-MRSA shows a novel SCCmeC-V/SCCfus composite element. Its variant of \textit{hsdM/hsdS} probably facilitated uptake of foreign mobile genetic elements that promoted emergence of CC15-MRSA. Close surveillance is needed to monitor spread and emergence of further CC15 MRSA strains.

Keywords: whole genome sequencing, MRSA, MLST, clonal complex, SCCmec, Saudi Arabia

Introduction

In recent years, the landscape of the molecular epidemiology of methicillin resistant \textit{Staphylococcus aureus} (MRSA) has been characterized by the emergence and dissemination of new strains. Clonal complex 15 (CC15) is ubiquitous and widely described in the literature, but these isolates are mostly methicillin susceptible \textit{S. aureus} (MSSA).1 CC15-MSSA was recently identified as a predominant nasal colonizer in a report from Saudi Arabia.2 Previously, methicillin resistant CC15 strains (CC15-MRSA) have only been sporadically described in literature.3,5 In a large scale genotyping study of MRSA isolates, no CC15-MRSA was identified.1 Two isolates of CC15-MRSA associated with nasal colonization have been reported in Iran and Saudi Arabia.3,5 While whole genome sequencing data are available for CC15-MSSA, there are, to the best of our knowledge, no publications on the genomic data for the rare CC15-MRSA. Recently, we reported the first
identification of CC15-MRSA from clinical infections and retail meat products in the Middle East.6,7 In light of the emergence of CC15-MRSA in our setting and to provide much-needed insight into the genetic make-up of this rare MRSA clone, we have carried out whole genome sequencing of these isolates.

Materials and methods

The human isolates were identified as part of a larger MRSA study for which ethical approval was obtained from the Institutional Review Board, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia. Patient consent was waived as the study involved use of archived isolates from specimens submitted for routine diagnostic tests and without use of patient identifiers. Four CC15-MRSA isolates collected in Riyadh, Saudi Arabia between 2013 and 2014 were studied. Two isolates (RUH-2 and RUH-71) were from patients with sepsis and wound infection, respectively, while the other 2 (RUH-98 and RUH-99) were from retail camel meat.

S. aureus identification and confirmation of methicillin resistance was performed as previously described.6,7 Genomic DNA was extracted using Qiagen DNA isolation kit (Qiagen, Hilden, Germany) in accordance with manufacturer’s instructions. Whole genome sequencing was carried out using the Illumina HiSeq2500 genome analyzer.

Sequencing reads were assembled de novo with SPAdes and the final assembly was done with SPAdes version 3.10.1 (http://bioinf.spbau.ru/spades).8 Contigs shorter than 500 nt were dropped. Reads were mapped to the SPAdes contigs but also to the reference sequence (ST15-MSSA strain ST20130938, GenBank: CP012972.1) with the Burrow–Wheeler aligner “bwa” using the local aligning algorithm “mem” (“bwa” version 0.7.12-r1039, https://github.com/lh3/bwa).10 We also used “bwa-mem” to map the whole SPAdes contigs on the reference sequence (ST15-MSSA strain ST20130938, GenBank: CP012972.1). Read mappings and coverage were visually inspected with “tablet” (“tablet” version 1.14.10.21, https://ics.hutton.ac.uk/tablet/).11 We manually scaffolded and annotated the contigs from isolate RUH-2, which cover the genomic islands of *Sa* and *b*, a 3 kb element inserted into the *hlb* gene and the SCC element. We used the GenomeDiagram module from Biopython to draw sketches from the manually annotated sequences.12

The reads and the SPAdes contigs were submitted to NCBI sequence database. The manually scaffolded and annotated regions were submitted to Genbank as short sequences.

Results

For each isolate, a de-novo assembly of the genomic sequence was carried out. The assemblies comprised 73 and 71 contigs for the human isolates RUH-2 and RUH-71, respectively. Isolates RUH-98 and RUH-99 from camel meat had 72 and 66 contigs, respectively. The overall G/C content for the chromosomal contigs was 33%. All the CC15-MRSA isolates had the MLST profile 13–13–1–1–81–11–13. All of the 4 isolates sequenced carried a 30-kb plasmid harboring additional antibiotic resistance genes, namely *cadD*, *cadX*, *blal*, *blaR*, *blaZ*, *lnuA*, *aadD*. In addition, isolate (RUH-71, from human wound infection) harbored another putative plasmidic contig encoding *tetK*. A comparison of the genomic features of the 4 CC15-MRSA isolates reported in this study (RUH-2, RUH71, RUH-98, RUH-99), with CC15-MSSA sequences in the NCBI GenBank (VCU006, MPROS1797, 08–02119, ST20130938, ST20130940, ST20130941) is given in Table S1.

The 6 contigs related to the SCC element (Figure 1) were identical in all isolates. One contig comprised a recombinase gene “cerAA”, *ccrC-PM1*, *fusC* and a helicase; another contig included *mvaS*, *dru*, *mecA* and 1 contig had *yoB* and *Q4LAG7* (putative protein associated with SCCmec V/N). The SCC element presumably comprises 5 transposase genes, namely 3 identical paralogs of tnpIS431 (size 675 nt) and 2 identical paralogs of tnpIS256 (size 1173 nt) (Figure 1). Two identical copies of a tnpIS256-based insertion element flank the bifunctional kanamycin resistance determinant *aacA-aphD*. Two copies of this insertion element were present in the genome with 1 copy located in the SCC element and another copy inserted into the *sasC* gene encoding a surface protein.

The CC15-MRSA isolates had a short 3 kb region inserted into the *hlb* gene (Figure 2). The 3 kb insertion element lacks any bacteriophage structural genes and site-specific DNA integrase. The insertion element comprised 5 genes, including *scn* (staphyloccocal complement inhibitor) and *chp* (chernotaxis inhibitor), but *sak* (staphylokinase) was absent (Figure 2).

The CC15-MRSA isolates showed a variant of *hsdM/hsdS* at the major pathogenicity island *vSaC* compared with the reference CC15-MSSA genome (Figure 3). The *hsdM* and the 5’-part of the *hsdS* gene were replaced by a copy of the *hsdM/hsdS* paralogs from *vSaF*. This gives rise to a new chimeric paralog of *hsdS* in *vSaA* (Figure 3). The chimeric *hsdS* has an intact reading frame. We can see this recombination in all of the 4 CC15-MRSA isolates. Furthermore, a *Sau3AI* restriction system is present in all of the CC15 isolates analyzed, while the type IV restriction system *SauUSI* is absent (Table S1).

Discussion

All the CC15-MRSA isolates had the MLST profile 13–13–1–1–81–11–13, which is a single locus variant of ST15. This
MLST profile has been assigned to ST1535 (https://pubmlst.org/bigsdb?db=pubmlst_saureus_isolates&page=profiles) and comprises pta-81 instead of pta-12 in canonical ST15. This pta-81 differs from pta-12 by only 1 single-nucleotide polymorphism, which was present in all our isolates. Three of the 4 isolates assigned to ST1535 in the PUBMLST database are MSSA (https://pubmlst.org/bigsdb?db=pubmlst_saureus_isolates&page=profiles). The fourth is MRSA isolate.
MPROS1797, which has a similar SCC element as the CC15 MRSA in this study (https://www.ncbi.nlm.nih.gov/biosample/SAMEA2664415; Table S1). Due to the presence of repeats, the SCC element could not be scaffolded into a single contiguous sequence. The overall constellation of the SCC element as shown in Figure 1 was interpreted as a novel SCCmec-V/SCCfus composite element. A very similar element has also been found by microarray hybridization in CC97-MRSA from Saudi Arabia.13 Furthermore, reports from Saudi Arabia have described MRSA isolates from other lineages that also harbored SCCfus in addition to SCCmec IV or V elements.6,13 Insertion elements flanked by 2 antiparallel copies of a transposase are common in bacteria, and often found in association with antibiotic resistance genes. The sasC gene, which is interrupted by insertion of another copy of the tnpIS256-based insertion element, has been linked with biofilm production in S. aureus.14

In S. aureus, an insert in the hlb gene is typically a prophage comprising several structural genes encoding the capsule, head and tail of the phage alongside an integrase at the terminus. It also frequently carries virulence associated genes like sea, sep (N315), see, chp, sak and scn in

Figure 2 The hlb-3kb-insert in CC15-MRSA.
Notes: The hemolysin beta gene (hlb) is interrupted by a 3 kb insertion element in CC15-MRSA genomes.
Abbreviation: MRSA, methicillin-resistant Staphylococcus aureus.

Figure 3 hsdM/hsdS recombination in CC15-MRSA.
Notes: The Figure shows the contents of genomic islands vSaα and vSaβ in isolate RUH-2 (ST1535/CC15, MF185202, MF185203) and in ST20130398 (ST15/CC15, Genbank accession CP012972.1). The reference genome CP012972.1 comprises two distinct paralog of hsdM/hsdS in genomic islands alpha and beta. The mapping of the sequencing reads from isolate RUH-2 onto the reference sequence CP012972.1 reveals, that hsdM-alpha and the 5’-end of hsdS-alpha are missing in RUH-2, while the coverage of hsdM-beta and the 5’-end of hsdS-beta is doubled with respect to other chromosomal genes, indicating that this stretch of DNA is duplicated in RUH-2. We extracted the duplicated region of vSaβ from the SPAdes contigs and were able to link it to contigs mapping to vSaα.
Abbreviation: MRSA, methicillin-resistant Staphylococcus aureus.
of the ssl_10 and ssl_11 superantigen-like genes. A second pair typically located in the genomic island the specificity determinate). One pair of hsdM/hsdS genes resides in genomic island CC15-MRSA isolates showed a different variant of the hsdM/hsdS system and the type II R-M locus facilitated uptake of foreign mobile genetic elements, that is, of SCCmec/SCCfus by the ancestral CC15-MSSA promoting emergence of CC15-MRSA.

The limitation of our work is that the gaps between the contigs, which are presumably caused by repeated sequence elements, could not be resolved since the average fragment size of the Illumina library was only about 250 nt. Also, we were unable to determine the spa type reliably from our assembly since spa is a highly repetitive locus of a variable number of imperfect repeats. This genomic arrangement typically provokes artifacts in read assembly.

Accession numbers

The raw read sequences have been deposited in the Sequence Read Archive database (Bioproject PRJNA386092) with accession numbers: SAMN06925301, SAMN06925302, SAMN06925303, SAMN06925304.

De-novo assembled contigs have been deposited at DDBJ/ENA/GenBank under the accession NHZV00000000, NHZW00000000, NHZX00000000. The version described in this paper is version NHZV01000000, NHZW01000000, NHZX01000000. The manually scaffolded sequences for $\text{hlb}_3\text{kb} _\text{insert}$, vsaa, vsaf and the 6 SCC element contigs have been submitted to the GenBank under the following accession numbers: MF185201, MF185202, MF185203, MF185204, MF185205, MF185206, MF185207, MF185208, MF185209

Conclusion

We provide the molecular characterization of a MRSA strain from a common lineage that until recently gave rise only to very few MRSA. The findings indicate that CC15-MRSA has a novel SCC$mecV$/SCCfus composite element. Changes in the hsdM/hsdS system and the type II R-M locus probably played a role in the emergence of this rare MRSA strain. Close surveillance is needed, especially with regard to spread among humans and livestock in the Middle East and emergence of further CC15-MRSA strains.

Acknowledgment

This work was presented in part at the 27th European Congress of Clinical Microbiology and Infectious Diseases (22–25 April 2017, Vienna, Austria).

Disclosure

The authors report no conflicts of interest in this work.
References

1. Monecke S, Coombs G, Shore AC, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One. 2011;6(4):e17936.

2. Sarkar A, Raji A, Garaween G, et al. Antimicrobial resistance and virulence markers in methicillin sensitive Staphylococcus aureus isolates associated with nasal colonization. Microb Pathog. 2016;93:8–12.

3. Abou Shady HM, Bakr AE, Hashad ME, Alzohairy MA. Staphylococcus aureus nasal carriage among outpatients attending primary health care centers: a comparative study of two cities in Saudi Arabia and Egypt. Braz J Infect Dis. 2015;19(1):68–76.

4. Campanile F, Bongiorno D, Borbone S, Stefani S. Hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) in Italy. Ann Clin Microbiol Antimicrob. 2009;8:22.

5. Japoni-Nejad A, Rezazadeh M, Kazemian H, Fardmousavi N, van Belkum A, Ghaznavi-Rad E. Molecular characterization of the first community-acquired methicillin-resistant Staphylococcus aureus strains from Central Iran. Int J Infect Dis. 2013;17(11):e949–e954.

6. Senok A, Ehricht R, Monecke S, Al-Saedan R, Somily A. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates during the progression from acute to chronic bone and joint infections in patients. Cell Microbiol. 2016;18(10):1405–1414.

7. Raji MA, Garaween G, Ehricht R, Monecke S, Shihl AM, Senok A. Genetic characterization of Staphylococcus aureus isolated from retail meat in Riyadh, Saudi Arabia. Front Microbiol. 2016;7:911.

8. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477.

9. Trouillet-Assant S, Lelievre L, Martins-Simoes P, et al. Adaptive processes of Staphylococcus aureus isolates during the progression from acute to chronic bone and joint infections in patients. Cell Microbiol. 2016;18(10):1405–1414.

10. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013; arXiv:1303.3997v2. Available from: https://arxiv.org/abs/1303.3997. Accessed August 24, 2017.

11. Milne I, Stephen G, Bayer M, et al. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013;14(2):193–202.

12. Pritchard L, White JA, Birch PR, Toth IK. GenomeDiagram: a python package for the visualization of large-scale genomic data. Bioinformatics. 2006;22(5):616–617.

13. Monecke S, Shihani L, Hasan R, et al. Characterization of MRSA strains isolated from patients in a hospital in Riyadh, Kingdom of Saudi Arabia. BMC Microbiol. 2012;12:146.

14. Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol. 2014;4:171.

15. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188(4):1310–1315.

16. Monecke S, Luedicke C, Slickers P, Ehricht R. Molecular epidemiology of Staphylococcus aureus in asymptomatic carriers. Eur J Clin Microbiol Infect Dis. 2009;28(9):1159–1165.

17. Wieckowska-Szakiel M, Sadowska B, Rozalska B. Staphylokinase production by clinical Staphylococcus aureus strains. Pol J Microbiol. 2007;56(2):97–102.

18. Waldron DE, Lindsay JA. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol. 2006;188(15):5578–5585.

19. Seeber S, Kessler C, Gotz F. Cloning, expression and characterization of the Sau3AI restriction and modification genes in Staphylococcus carnosus TM300. Gene. 1990;94(1):37–43.

20. Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P. A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res. 2011;39(13):5597–5610.
Table S1 Comparison of CC15-MRSA and CC15-MSSA

Isolate name	RUH-2	RUH-71	RUH-98	RUH-99	VCU006	MPROS1797	08-02,119	ST2,01,30,938	ST2,01,30,940	ST2,01,30,941
Biosample accession	SAMN06925302	SAMN06925301	SAMN06925303	SAMN06925304	SAMN00138234	SAMEA2664415	SAMN04939716	SAMN04166246	SAMN04166494	SAMN04166543
Collection date	07-Nov-2013	04-Apr-2014	26-Oct-2014							
Collection place	Saudi Arabia: Riyadh									
Host	Homo sapiens	Homo sapiens	Camelus dromedarius							
Host disease	Sepsis	Wound infection	Retail meat, neighborhood meat shop							
Isolation source										
MLST	1535	1535	1535	1535	1535	1535	1535	1535	1535	1535
Clonal complex	15	15	15	15	15	15	15	15	15	15
SCC element	SCCmecV / SCCfus									
Paired end sequencing	2×51	2×51	2×51	2×51	2×51	2×51	2×51	2×51	2×51	2×51
Average insert size	300	290	290	290	290	290	290	290	290	290
Fragments sequenced	106707798	983979006	860190990	782081124	570533600	2852668	310	260	190	190
Total number of bases	10461449	9646853	8433245	7667462	70533600	2852668	310	260	190	190
Estimated coverage	73 contigs	71 contigs	72 contigs	66 contigs	300	300	300	300	300	300
WGS accession	SAMN06925302	SAMN06925301	SAMN06925303	SAMN06925304	AGTZ00000000.1	NHZU00000000.0	NHZV00000000.0	NHZW00000000.0	NHZX00000000.0	NHZ00000000.0
Number of contigs	8	8	8	8	8	8	8	8	8	8
capsular genotype (assembly)										
agr type (assembly)	II									
RIDOM spa type (assembly)	t328, uneven coverage									
RIDOM spa profile	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34	07–23:12:34–34
RIDOM spa repeat count	14	14	14	14	14	14	14	14	14	14

(Continued)
Table S1 Comparison of CC15-MRSA and CC15-MSSA

Isolate name	RUH-2	RUH-71	RUH-98	RUH-99	VCU006	MPROS01797	08-02,119	ST2,01,30,938	ST2,01,30,940	ST2,01,30,941		
cna (assembly)	Missing											
sarT/sarU (assembly)	Present											
sacC	Truncated	Truncated	Truncated	Truncated	Intact	Truncated	Intact	Intact	Intact	Intact	Intact	Intact
tetK	Missing	Present	Missing									
blaZ	Present											
fusC	Present											
mecA	Present	Present	Present	Present	Missing	Present	Missing	Missing	Missing	Missing	Missing	Missing
hlb	Truncated											
scn	Present											
chr	Present											
3 kb hlb insert	Present											
sau3AI	Present											
sauUSI	Missing											

Notes: Comparison genome properties of CC15-MRSA from this study with those of CC15-MSSA/MRSA from the NCBI GenBank.

Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin susceptible S. aureus; MLST, multilocus sequence typing; WGS, whole genome shotgun.
CC15-MRSA genome sequencing