A compact group which is not Valdivia compact

WIESLAW KUBIŚ AND VLADIMIR USPENSKIJ

Abstract. A compact space K is Valdivia compact if it can be embedded in a Tikhonov cube I^A in such a way that the intersection $K \cap \Sigma$ is dense in K, where Σ is the sigma-product (= the set of points with countably many non-zero coordinates). We show that there exists a compact connected Abelian group of weight ω_1 which is not Valdivia compact, and deduce that Valdivia compact spaces are not preserved by open maps.

1. Introduction

Let $\{X_\alpha : \alpha \in A\}$ be a family of spaces, and let a point x^*_α be given in each X_α. The sigma-product Σ of the family $\{X_\alpha\}$ with the base point $\{x^*_\alpha\}$ is the subset of the product $\prod X_\alpha$ consisting of all points $\{x_\alpha\}$ such that the set $\{\alpha \in A : x_\alpha \neq x^*_\alpha\}$ is countable. A compact space K is Valdivia compact if it can be embedded in a Tikhonov cube I^A in such a way that $K \cap \Sigma$ is dense in K, where Σ is the sigma-product of intervals with the zero base point. The class of Valdivia compact spaces is a natural extension of the class of Corson compact spaces, which are defined as compact subspaces of sigma-products of intervals. A compact space is Corson compact if and only if it is Valdivia compact and countably tight. While Corson compact spaces are preserved by maps (we use the word “map” to mean a continuous map), this is not true for Valdivia compact spaces (however, if a Valdivia compact space is mapped onto a countably tight space X, then X is Corson compact [7]).

The class of Valdivia compact spaces was introduced by Argyros, Mercourakis and Negrepontis in [1], they showed among others that these spaces admit ‘sufficiently many’ retractions, which gives a projectional resolution of the identity on their spaces of continuous functions, see [13]. The name Valdivia compact was introduced by Deville and Godefroy in [3]. Valdivia compacta have been extensively studied by Kalenda; we refer to his survey article [9]. Kalenda proved in [8] that an open image of a Valdivia compact space is Valdivia provided it contains a dense set of G_δ points. The general question whether Valdivia compact spaces are preserved by open maps had remained open, see [9]. In the present paper we answer this question in the negative.

To this end, we construct a compact connected Abelian group G which is not Valdivia compact. Every compact Abelian group is a homomorphic image of a product of compact metrizable groups. Indeed, in virtue of the Pontryagin duality this assertion is equivalent to the following: every Abelian group embeds into a direct sum of countable groups. To see that this is true, note that every Abelian group embeds into a divisible group [11 Thm. 24.1], and every Abelian divisible group is a direct sum

Date: 1 November 2003.
Key words and phrases. Valdivia compact space, open map, retract, indecomposable group.
2000 Mathematics Subject Classification: Primary: 54D30. Secondary: 54C15, 22C05.
of countable groups [4, Thm. 23.1]. Noting that: (1) any continuous onto homomorphism between compact groups is open; (2) compact metric spaces are Valdivia; (3) Valdivia compact spaces are preserved by products – we conclude that open maps do not preserve Valdivia compactness.

Our compact group G is the Pontryagin dual of an uncountable indecomposable torsion-free Abelian group A. The above argument can be made easier in this case: A is a subgroup of the vector space $A \otimes \mathbb{Q}$ over the field \mathbb{Q} of rationals, hence $G = A^*$ is a homomorphic image of a power of the compact metrizable group \mathbb{Q}^*.

The class of Valdivia compact spaces is contained in a wider class that was denoted by \mathcal{R} in [2]. Recall the definition of this class. A map $f : X \to Y$ is right-invertible if there exists a map $g : Y \to X$ such that $fg : Y \to Y$ is the identity. A map $f : X \to Y$ is right-invertible if and only if it is homeomorphic to a retraction.

The class \mathcal{R} is defined as the smallest class containing all compact metric spaces which is closed under inverse limits of continuous transfinite sequences whose bonding mappings are right-invertible (in that case the limit projections are right-invertible as well [2, Proposition 4.6]). An inverse sequence $\{X_\alpha, p_\alpha^\beta : \alpha < \beta < \kappa\}$ is continuous if for every limit ordinal $\delta < \kappa$ the space X_δ is naturally homeomorphic to $\lim_{\delta < \kappa} \{X_\alpha, p_\alpha^\beta : \alpha < \beta < \delta\}$. To see that Valdivia compact spaces are in \mathcal{R}, note that every Valdivia compact space of uncountable weight is the inverse limit of a continuous transfinite sequence of Valdivia compacta of smaller weight whose all bonding maps are retractions, see [1] or [9, Thm. 3.6.2].

The compact group that we construct is not in the class \mathcal{R}. Thus our example shows that the image of a product of compact metric spaces under an open map need not be in \mathcal{R}. Our example has the smallest possible weight, namely ω_1. It has been proved in [10] that a 0-dimensional open image of a Valdivia compact space is Valdivia if its weight does not exceed ω_1.

Let us also mention that every compact group is a Dugundji space [11, 12] and every 0-dimensional Dugundji space is Valdivia [10]. It is unknown whether the class of Valdivia compacta is stable under retractions; in [10] an affirmative answer is given in the case where the retract has weight ω_1.

2. Proof of the main theorem

Theorem 2.1 (Main Theorem). There exists a compact connected Abelian group of weight ω_1 which is not in the class \mathcal{R} and hence is not Valdivia compact.

We need some prerequisites.

Proposition 2.2. Let a compact space X be in the class \mathcal{R}. For every countable Abelian group G and every integer $n \geq 0$ the cohomology group $H^n(X, G)$ is covered by its countable direct summands.

The cohomology theory that we use is the Čech theory or any of its equivalents (Alexander – Spanier, sheaves, etc.), not the singular theory.

Proof. The cohomology functor turns inverse limits of compact spaces into direct limits of Abelian groups and right-invertible maps into left-invertible homomorphisms, which are injective homomorphisms onto a direct summand. If X is compact metric, the group $H^n(X, G)$ is countable. (To see this, consider first the case of compact polyhedra, and then represent X as the limit of an inverse sequence of polyhedra.)
It follows that the class R' of all compact spaces X for which the proposition holds contains compact metric spaces and is stable under limits of continuous inverse sequences with right-invertible bonding maps and projections. Since R is the smallest class with these properties, we have $R \subset R'$.

Let $T = \{ z \in \mathbb{C} : |z| = 1 \}$ be the circle group. For an Abelian group A we denote by A^* its Pontryagin dual (= the group of all characters $\chi : A \to T$, considered as a compact group, see e.g. [6, Ch. 6]).

The following proposition is well-known.

Proposition 2.3. For every torsion-free Abelian group A there exists a natural isomorphism $\phi : A \to H^1(X, \mathbb{Z})$, where $X = A^*$.

Proof. The homomorphism ϕ can be described as follows. Every $a \in A$ can be identified with a character $\chi_a : X \to T$. Pick a generator $u \in H^1(T, \mathbb{Z})$, and put $\phi(a) = H^1(\chi_a)(u) \in H^1(X, \mathbb{Z})$.

If $A = \mathbb{Z}^n$ and $X = A^* = T^n$, it is clear that ϕ is an isomorphism. The general case follows by passing to limits: every torsion-free Abelian group is the direct limit of finitely-generated free groups; the Pontryagin duality turns direct limits of discrete groups into inverse limits of compact groups; and the cohomology functor turns inverse limits of compact spaces back to direct limits. □

Proof of Theorem 2.1. There exists a torsion-free Abelian group A of cardinality ω_1 which is indecomposable [7, Sections 88 and 89], that is, A has no proper direct summands. Let $X = A^*$. We claim that the compact group X has the required properties.

The duals of torsion-free discrete groups are connected [6 Theorem 24.25], so X is connected. According to Proposition 2.3, the cohomology group $H^1(X, \mathbb{Z})$ is isomorphic to A and therefore indecomposable. Proposition 2.2 implies that X is not in the class R. □

Corollary 2.4. There exists a compact metric space K and an open onto map $f : K^{\omega_1} \to X$ such that X is not in the class R and hence not Valdivia.

Proof. We explained the construction in Section 1: Let A and $X = A^*$ be as in the preceding proof. Embed A into $A \otimes \mathbb{Q} = \mathbb{Q}^{(\omega_1)}$. Passing to the duals, we get a homomorphism of compact groups $K^{\omega_1} \to X$, where $K = \mathbb{Q}^*$ (we consider \mathbb{Q} as a discrete group). □

References

[1] S. Argyros, S. Mercourakis, S. Negrepontis, *Functional-analytic properties of Corson-compact spaces*, Studia Math. **89** (1988), no. 3, 197–229.

[2] M. Burke, W. Kubiś, S. Todorcević, *Kadec norms on spaces of continuous functions*, preprint.

[3] R. Deville, G. Godefroy, *Some applications of projective resolutions of identity*, Proc. London Math. Soc. (3) **67** (1993), no. 1, 183–199.

[4] L. Fuchs, *Infinite Abelian Groups*, Vol. I, Pure and Applied Mathematics, Vol. 36. Academic Press, New York-London, 1970.

[5] L. Fuchs, *Infinite Abelian Groups*, Vol. II. Pure and Applied Mathematics. Vol. 36-II. Academic Press, New York-London, 1973.
[6] E. Hewitt, K. Ross, *Abstract Harmonic Analysis*, Vol. I: Structure of topological groups. Integration theory, group representations. Die Grundlehren der mathematischen Wissenschaften, Bd. 115. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

[7] O. Kalenda, *Embedding of the ordinal segment $[0,\omega_1]$ into continuous images of Valdivia compacta*, Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777–783.

[8] O. Kalenda, *A characterization of Valdivia compact spaces*, Collect. Math. 51 (2000), no. 1, 59–81.

[9] O. Kalenda, *Valdivia compact spaces in topology and Banach space theory*, Extracta Math. 15 (2000), no. 1, 1–85.

[10] W. Kubiš, H. Michalewski, *Small Valdivia compact spaces*, preprint.

[11] V. Uspenskij, *Why compact groups are dyadic*, General Topology and its relations to modern analysis and algebra VI: Proc. of the 6th Prague topological Symposium 1986, Frolik Z. (ed.), Berlin: Heldermann Verlag, 1988, pp. 601-610.

[12] V. Uspenskij, *Topological groups and Dugundji compacta*, Matem. Sbornik 180 (1989), No. 8, 1092–1118 (Russian); English transl. in: Math. USSR Sbornik 67 (1990), 555–580.

[13] M. Valdivia, *Projective resolution of identity in $C(K)$ spaces*, Arch. Math. (Basel) 54 (1990), no. 5, 493–498.

Department of Mathematics, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

Current address: The Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto, Ontario M5T 3J1, Canada

E-mail address: kubis@cs.bgu.ac.il

Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701, USA

E-mail address: uspensk@math.ohiou.edu