ORIGINAL ARTICLE

Causal models for estimating the effects of weight gain on mortality

JM Robins1,2

1Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA and 2Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA

Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. How would the counterfactual mortality of these 18 year olds have compared to their actual observed mortality through 2007? We describe in detail how this counterfactual contrast could be estimated from longitudinal epidemiologic data similar to that stored in the electronic medical records of a large health maintenance organization (HMO) by applying g-estimation to a novel of structural nested model (SNM). Our analytic approach differs from any alternative approach in that, in the absence of model misspecification, it can successfully adjust for (i) measured time-varying confounders such as exercise, hypertension and diabetes that are simultaneously intermediate variables on the causal pathway from weight gain to death and determinants of future weight gain, (ii) unmeasured confounding by undiagnosed preclinical disease (that is, reverse causation) that can cause both poor weight gain and premature mortality (provided an upper bound can be specified for the maximum length of time a subject may suffer from a subclinical illness severe enough to affect his weight without the illness becomes clinically manifest) and (iii) the presence of particular identifiable subgroups, such as those suffering from serious renal, liver, pulmonary and/or cardiac disease, in whom confounding by unmeasured prognostic factors is so severe as to render useless any attempt at direct analytic adjustment. However, (ii) and (iii) limit the ability to empirically test whether the SNM is misspecified. The other two g-methods—the parametric g-computation algorithm and inverse probability of treatment weighted estimation of marginal structural models—can adjust for potential bias due to (i) but not due to (ii) or (iii).

Keywords: BMI; confounders; g-estimation; reverse causation; structural nested failure time model

Introduction

Suppose, in contrast to the fact, in 1950, we had put the cohort of 18-year-old non-smoking American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. Specifically, each subject was weighed every day starting on the day before his eighteenth birthday. Whenever his weight was greater than or equal to this baseline weight, the subject’s caloric intake was restricted, without changing his usual mix of calorie sources and micronutrients, until the time (usually within 1–3 days) that the subject fell below baseline weight. (I restrict to men solely to avoid the complicating issue of how much weight gain to allow during pregnancy.) Thus, ignoring errors of a pound or two, no subject would ever weigh more than his baseline weight. No instructions or restrictions were given concerning exercise at any time or the amount or nature of what the subject ate during non-calorie-restricted periods. How would the counterfactual mortality of these 18 year olds have compared to the actual observed mortality through 2007?

Factually, a substantial fraction of 18-year-old American men gains more than 30 pounds from age 18 to 74 years. Thus, if the counterfactual mortality were much less than the observed mortality, then, it would make sense for individuals to maintain their baseline body weight by restricting caloric intake (regardless of whether or not a practical, non-mandatory public health intervention exists that would successfully maintain the baseline weight of most of the (non-smoking) US population). Here and throughout, we use the phrase ‘maintain their age x body-weight’ to mean that after age x a subject’s weight never exceeds his weight at the age of x, although it may drop below that weight.
The difference between the counterfactual mortality where no one exceeds their age 18 body weight and the actual observed mortality of the non-smoking US population has been discussed by Willett et al.\(^1\) as a useful way to conceptualize the effect of weight on mortality. A major goal of this paper is to show that g-estimation of structural nested models (SNMs) can be used to directly estimate this difference from longitudinal observational data. An SNM is a model that takes as inputs a subject's observed outcome, observed exposure (here, weight) history, and an unknown parameter and outputs the response that would have been observed if, possibly contrary to fact, the subject followed the stringent mandatory diet described above. The unknown parameter vector of an SNM is estimated through the g-estimation procedure introduced in Robins.\(^2\) Previous analytic approaches to the estimation of the effect of weight on mortality do not provide a direct estimate of this difference. In addition, previous approaches have suffered from one or more of the following sources of bias: (i) failure to adequately control for measured confounding due to time-varying exercise, blood lipids, blood pressure (BP), diabetes (Db) and other chronic diseases (once diagnosed) because of concerns that one will thereby be controlling for intermediate variables on the causal pathway from overweight to death, (ii) failure to adequately control for unmeasured confounding due to undiagnosed chronic disease such as cancer (that is, reverse causation) and (iii) failure to update the weight of a subject whose weight changes after start of follow-up, because of concerns about reverse causation and measurement error.

Bias due to confounding by measured time-varying confounders that are also intermediate variables can be controlled by the use of the so-called g-methods. g-Methods are statistical methods specifically designed to control bias attributable to time-varying confounders affected by previous exposure. In addition to g-estimation of SNMs, g-methods include the parametric g-formula estimator and inverse probability of treatment weighted (IPTW) estimators.\(^3,4\) As yet g-methods have not been used to estimate the effect of overweight on obesity with the exception of Robins et al.,\(^5\) where the parametric g-formula estimator was used. In this paper, we concentrate on g-estimation of SNMs, because as discussed below, of the three g-methods, only g-estimation of SNMs can adjust for unmeasured confounding due to undiagnosed chronic disease.

Finally, g-estimation of SNMs allows one to update the weight of a subject whose weight changes after start of follow-up without introducing any bias due to reverse causation. However, issues of measurement error are trickier and will be discussed in the final section of the paper.

Even if maintenance of age 18 weight improves mortality, perhaps a mandatory intervention that allowed weight gain of 0.3/12 pounds per month (that is, 3 pounds per decade) would produce an even lower mortality. Perhaps the mandatory intervention that would produce the lowest mortality (that is, the optimal intervention among all ‘weight-gain’ interventions\(^5,10\) is one that allows a weight gain of 0.3/12 pounds per month in subjects free of hypertension, Db, hyperlipidemia or clinical CHD, but of only 0.1/12 pounds per month (that is, 1 pound per decade) once a subject developed one of these risk factors.

To decide which mandatory intervention is optimal, we require a well-defined numerical measure of overall mortality that can be used to rank interventions. For example, one might use the total years of life (or quality-adjusted life) experienced by the cohort from 1950 to 2007 as a measure. Use of this measure is mathematically equivalent to the use of ‘years (or quality-adjusted years) of life lived from 1950 to 2007’ as the (subject specific) utility function in a decision problem whose goal is to maximize expected utility. ‘Years (or quality-adjusted years) of life lived’ measures have a much more natural and useful public health and policy interpretation than the rate ratio, attributable fraction and attributable risk measures routinely reported in epidemiologic studies.

However, even ‘years of life lived from 1950 to 2007’ is an inadequate utility function when follow-up of the cohort is not to extinction. This function inappropriately assigns the same utility not only to all subjects alive at the age of 74 years on 1 January 2008 regardless of their state of health but also to a subject who dies on 31 December 2007 at 23:59 hours. Clearly among survivors in 2008, the healthier ones (according to some agreed standard measure of current health) have a greater post-study expected survival (and thus warrant a higher utility) than the less healthy survivors and a much greater expected survival (and thus warrant a much higher utility) than the non-survivors who died in late December 2007. We will not discuss further precisely how to decide on an appropriate utility measure for the survivors, except to remark that such a discussion is necessary. Rather, we will simply assume that, at the end of follow-up, each cohort member has been given a utility measure \(Y\).

Note that the benefit of any of the above counterfactual interventions is an overall effect of the intervention. For example it is conceivable that the mortality benefit of the intervention that maintained baseline weight was wholly due to changes in exercise. Perhaps maintenance of baseline weight makes individuals feel so much better that they exercise more.

In the section Estimation of an overall effect, I assume we have observational retrospective follow-up data through 2007 on a random sample of the cohort of US males who were non-smokers and 18 in 1950. The data include detailed medical records, analogous to those currently available on subscribers to a comprehensive health maintenance organization (HMO). In the section Potential for measured and unmeasured confounding, I discuss three major sources of potential bias that complicate any attempt to estimate the overall effect of the mandatory intervention ‘maintain baseline weight’ on the expected utility of our cohort: (i) measured time-varying confounders such as exercise, hypertension and Db that are potentially intermediate variables, (ii) unmeasured confounding by undiagnosed preclinical disease (that is, reverse causation) that can cause both poor...
weight gain and premature mortality and (iii) the presence of particular identifiable subgroups, such as those suffering from serious renal, liver, pulmonary and/or cardiac disease, in whom confounding by unmeasured prognostic factors is so severe as to render useless direct analytic adjustment for confounding. In the section Estimation of the effect of the ‘maintain baseline weight intervention,’ I describe how estimation of a correctly specified SNM can appropriately adjust for these potential sources of bias (provided an upper bound can be specified for the maximum length of time a subject may suffer from a subclinical illness severe enough to affect his weight before the illness becomes clinically manifest). The SNM required for this adjustment is novel in two ways. First it is a joint SNM, combining a structural nested failure time model (SNFTM) for the counterfactual time to the earlier of death or the diagnosis of a chronic illness and a conditional structural nested mean model (SNMM) for the mean of a subject’s counterfactual utility given his counterfactual time to death or a diagnosed chronic illness. Second our SNM only models the causal effect of any increase in BMI between month m and m + 1 over a subject’s maximum previous BMI. In particular, it does not model and thus is agnostic about the causal effect a) of any decrease in BMI or b) of any increase in BMI between m and m + 1 that fails to attain the previous maximum. As a consequence, our SNM is more robust than standard SNMs that also model a) and b), because our model makes fewer assumptions than such alternative models, and thus is less likely to be misspecified. However, the small number of assumptions made by our SNM are sufficient to consistently estimate the parameter of interest. In the sections Are remarkable results due to some sleight of hand and Can we replace X_m by X revisited, however, I show that (ii) and (iii) limit the ability to empirically test whether the joint SNM is misspecified. I also show that, somewhat remarkably, to adjust for bias due to reverse causation one need not assume a deterministic rank-preserving (RP) SNM. This is important as a deterministic RP SNM assumes that the effect of weight gain on mortality is the same for all subjects, an assumption that is clearly biologically implausible. In the section Censoring, I consider how to account for censoring by administrative end of follow-up. In the section Maximum weight gain dietary intervention regimens, I consider the estimation of the expected utility under alternative dietary interventions. In the section Measurement error, I discuss the consequences of measurement error in body mass index (BMI). Proofs and statements of several new theorems are collected in Appendices 1 and 2. Finally, estimation of the optimal ‘weight gain’ intervention is discussed in Appendix 3.

Estimation of an overall effect

The data

I describe the observational data that is supposed to be available. First, I suppose that a subject’s BMI is recorded at the end of each month t, t = 0, 1, ..., K, where time t is in months since age 18 years and K + 1 = (2007–1950) × 12 is the duration of follow-up. Let A*(t) be the difference between BMI at the end of month t and at the end of month t–1. Let L(t) be the vector of covariate values recorded in month t and suppose L(t) precedes A*(t) temporally. L(t) includes BP, high-density lipoprotein and low-density lipoprotein (LDL) measures of cholesterol, any diagnoses of and clinical and laboratory characteristics of any chronic disease such as cancer, coronary artery disease, Db, asthma, chronic obstructive pulmonary disease, liver, renal disease, etc., level of exercise, measures of mobility and disability, etc. The vector L(t) also includes BMI(t), the BMI just before the beginning of month t rounded to the nearest pound. Thus,

\[A^*(t) = BMI(t + 1) - BMI(t) \]

L(t) also includes the indicator I(T > t) of vital status at the beginning of month t with T the death time of a subject and, for any proposition B, I(B) is the indicator function that takes the value 1 if B is true and zero otherwise. Thus I(T > t) = 1 if a subject is alive at t and zero if dead at t. If I(T > t) = 0, I include in L(t) the exact day of death.

By convention, set A*(t) and the remaining components of L(t) to zero once a subject has died.

The baseline covariates L(0) include covariate and BMI data on a subject before follow-up starts at the age of 18 years. Specifically, let BMI(0) denote BMI at (that is, just before) age 18 years (that is, time 0). Our inclusion of BMI just before age 18 years as a covariate rather than a treatment reflects the fact that ‘change’ in BMI since 18 years is our exposure. In particular, note that A*(0) is the difference between BMI recorded just before 18 years and 1 month and BMI recorded just before 18 years. As is standard in the literature, I have taken change in BMI rather than change in weight in pounds as the exposure variable. Let \(\Delta X(t) \) and \(\Delta^* X(t) = \Delta X(K) \) be the change in BMI and the covariate history through time t and \(\Delta^* X = \Delta X(K + 1) \) be a subject’s (change in) BMI history through month K and \(T = T(K + 1) \) be L(t) through the end of the study. A subject’s utility \(Y_s \), a measure of quality-adjusted survival, is calculated from \(T = T(K + 1) \) as \(T \) includes the survival time of non-survivors, health status measures for survivors at the end of follow-up and time-varying health status factors.

Potential for measured and unmeasured confounding

Reverse causation and unmeasured confounding by subclinical disease. In the literature on the effect of BMI on mortality, a controversy has arisen as whether and how to modify standard analytic methods to account for ‘reverse causation.’ Reverse causation refers to the well-accepted fact that preclinical (that is, undiagnosed) chronic disease, such as preclinical cancer, can cause both weight loss (or diminished weight gain) and death. It follows that among subjects with identical BMI history (\(\Delta^* X(t – 1) \), BMI(0)) and measured covariate history \(L(t) \) before age t, the subset whose monthly change \(A^*(t) \) in BMI is negative are not comparable with...
regard to mortality risk to the subset with positive $A^*(t)$, even if BMI has no causal effect on mortality. That is, reverse causation implies unmeasured confounding by undiagnosed chronic disease. In fact, by an analogous argument, even among the subset with $A^*(t)$ positive, there will be unmeasured confounding, because those with a small gain in BMI are more likely to have preclinical disease than those with a substantial gain.

It follows that one requires an analytic method that can adjust for unmeasured confounding due to the presence of preclinical disease. I will present a method that is appropriate under the additional assumption that we are able to specify an upper bound on the length of time a subject may have a subclinical illness severe enough to affect his weight, before that illness becomes clinically manifest.

Measured confounders that are also intermediate variables. I next turn to the issue of confounding by measured factors, that is, by components of the covariate vector $L(t)$. For pedagogic purposes, in this subsection, it will be simpler to imagine that the unmeasured confounding due to reverse causation discussed above is not present. Now it is fairly well accepted that obesity causes increased BP, increased LDLs, Db and decreased exercise and these four factors may in turn cause increased mortality. Thus, these four variables are intermediate variables on the causal pathway from BMI to mortality. To prevent underestimation of the overall effect of BMI on mortality due to adjusting for intermediate variables, many analyses of the effect of BMI on mortality have failed to adjust for BP, LDL, Db or exercise in the analysis. However, such a decision can only be justified if these potential intermediate variables do not also confound the BMI–mortality relationship.

A sufficient condition for these intermediate variables to be also confounders is that, among subjects with identical BMI history ($\text{BMI}(0), \overline{A}^*(t-1)$) until t, the subset whose change $A^*(t)$ in BMI is non-positive is not comparable with regard to past BP, LDL, Db and exercise history to the subset with positive $A^*(t)$. Such non-comparability implies that, if data on time-varying BP, LDL, Db and exercise history are not used in the analysis, there will exist a non-causal association between an increase in BMI during month t and subsequent adverse mortality, even under the null hypothesis of no overall effect of BMI on mortality. Such non-comparability can occur whenever some or all of these intermediate variables are either a cause of a change in BMI or are correlated with an unmeasured cause of a change in BMI.

For example, it is likely that lack of exercise causes weight gain. In that case, if regular exercise causes decreased mortality, then, in an analysis that fails to adjust for exercise history prior to t, the association between an increase of $A^*(t)$ in BMI during month t and subsequent adverse mortality will be an overestimate of the true causal effect of $A^*(t)$ on mortality, due to uncontrolled confounding by exercise.

Similarly, suppose that chronic emotional stress and low-grade depression not only cause weight gain by inducing overeating as a soothing, self-medicating behavior but also directly cause elevated BP, elevated LDL and Db independently through various stress-induced metabolic, immune and sympathetic nervous system effects. If, as is true in most observational databases, data on chronic emotional stress and low-grade depression are not recorded (that is, measured), then, even under the null hypothesis of no overall effect of BMI on mortality, the association between an increase in BMI and subsequent adverse mortality will tend to be positive, whether or not one adjusts for elevated BP, elevated LDL and Db in the analysis, due to uncontrolled confounding by chronic emotional stress and low-grade depression. However, these variables should be appropriately adjusted for in the analysis, because the magnitude of positive overestimation will often be much less if they are adjusted for, because of their correlation with the unmeasured causal confounder—chronic emotional stress and depression.

In contrast with the last paragraph, suppose there is no confounding by chronic emotional stress and low-grade depression; rather, in the observational database, most individuals who developed an elevated BP, elevated LDL or Db became concerned about their health and instituted a diet that resulted in their gaining less weight than those without these conditions. Then the association found between an increase in BMI and subsequent adverse mortality in an analysis that fails to adjust for these variables at t would tend to underestimate the true causal effect of BMI on mortality due to negative confounding. I conclude that elevated BP, elevated LDL and Db could confound the association between increase in BMI and subsequent adverse mortality in either a negative or positive direction, depending on which of the mechanisms described in this paragraph and the last two predominate.

In summary, time-dependent covariates such as exercise (that is, physical activity), BP, LDL or Db that are recorded in $L(t)$ may be both intermediate variables on the causal pathway from BMI to death and confounders of the BMI–death relationship. It follows that one requires an analytic method that can appropriately adjust for the effects of measured time-varying covariates that are simultaneously intermediate variables and time-dependent confounders.

Intractable unmeasured confounding in subgroups. There may be subgroups defined by measured variables in whom confounding by unmeasured factors is intractable. For example, among persons with diagnosed chronic renal, liver, pulmonary or cardiac disease, rapid weight gain can indicate increasing edema (water retention) due to unmeasured disease progression rather than increasing fat stores; as a consequence, among chronic disease patients with identical pasts, comparability would not hold because individuals experiencing rapid weight gain may be at increased risk of
death due to unmeasured progression of disease compared to those with lesser weight gain. In such a case, unmeasured confounding by disease progression may be intractable.

Using other arguments, various investigators have argued that in both the subgroup of subjects over age 70 years and the subgroup with BMI less than 21 kg/m², subjects gaining weight at different rates are not comparable owing to unmeasured confounding factors, even when data have been collected on many potential confounders.

Therefore, one needs an analytic method that can remain valid even when there exists intractable confounding among subjects with a diagnosed chronic disease, an age of greater than 70 years, or a BMI below 21 kg/m². In the next section, I describe an analytic method that satisfies the requirements of this and the two previous subsections.

A simplified description of g-estimation of SNMs
In this subsection, I give a non-technical, conceptual description of how, even in the presence of the measured and unmeasured confounding described in the section Potential for measured and unmeasured confounding, g-estimation of SNMs can be used to estimate the expected utility had, in contrast to the fact, all non-smoking 18-year-old American men in 1950 been put on a stringent mandatory diet that guaranteed that no one would ever weigh more than their weight at the age of 18 years. To avoid technical digressions and thereby keep the description centered on important conceptual issues, this non-technical description is neither complete nor fully accurate. Section Estimation of the effect of the 'maintain baseline weight intervention' onwards provides a complete and accurate description. This completeness and accuracy unfortunately place greater technical demands on the reader.

A locally RP SNM for Y is a rule that takes as input a subject's observed utility Y, their observed BMI and covariate history through the end of the study, and an unknown parameter β* and outputs the utility Y₀ that would have been observed if, possibly in contrast to the fact, the subject had followed the dietary intervention of the first paragraph of the Introduction. If the rule is correct and we knew the value of β* then we could calculate Y₀ for each study subject. The average of these Y₀ in the cohort of all non-smoking 18-year-old American men in 1950 is our quantity of interest: the expected (that is, average) utility had one implemented a dietary intervention that guaranteed that no one would ever weigh more than their weight at the age of 18 years. However, we do not know the value of β*. Thus, the challenge is to estimate β* from the data. When, as in the section Measured confounders that are also intermediate variables, all confounding is due to measured variables, Robins² proposed a method of estimation called g-estimation that is described next.

Let us define A(t) to be the difference between a subject's observed BMI, BMI(t + 1), just prior to month t + 1 and his maximum value BMIₓₓₓₓ(t) of BMI prior to month t, whenever that difference is non-negative. When the difference is negative, we simply set A(t) to be zero. Formally then

\[A(t) = \text{BMI}(t + 1) - \text{BMI}_{\text{max}}(t) \quad \text{if} \quad \text{BMI}(t + 1) \geq \text{BMI}_{\text{max}}(t) \] (2)

\[A(t) = 0 \quad \text{if} \quad \text{BMI}(t + 1) < \text{BMI}_{\text{max}}(t). \] (3)

A(t) is non-negative.

If the only confounding is due to measured factors, then among subjects with the same BMI and covariate history prior to time t with positive A(t), the increase of A(t) in BMI between t and t + 1 will be conditionally uncorrelated with Yᵦ. Thus to estimate β*, we simply try many different guesses β. If a particular guess β were the true β*, then the output of the rule would be uncorrelated with A(t). Thus I choose as our estimate β of β*, the guess β that results in an output that has smallest conditional correlation with A(t) when we combine the information across all months t from 0 to the end of follow-up at K + 1.

When as in the section Intractable confounding in subgroups, there are certain identifiable subgroups in whom confounding is intractable, bias can result because the output of the rule will be conditionally correlated with A(t) even when β = β*. To eliminate this bias, it suffices to search for lack of correlation with A(t) only among subjects who are not in any of these intractable confounded subgroups at time t. That is, I simply restrict our g-estimation procedure at a given time t to subjects who are not currently members of any intractably confounded subgroup as in Joffe et al.¹⁶

When there is unmeasured confounding by subclinical disease such as in the section Reverse causation and unmeasured confounding by subclinical disease, I must modify our g-estimation procedure. Suppose one can specify an upper bound, say 6 years, on the length of time a subject may have a subclinical illness severe enough to affect weight gain, before that illness becomes clinically manifest. Then one can still validly estimate β* if one restricts the g-estimation procedure at a given time t to those subjects with positive A(t) who would have remained alive and free of a diagnosed chronic (that is, of clinical) disease for the 6 years following t had, possibly in contrast to the fact, they followed a diet that prevented any further weight gain over those 6 years; by our assumption of a 6-year upper bound, such subjects did not have their weight gain affected by an undiagnosed chronic disease. It does not suffice to restrict to subjects who actually remained alive and free of clinical disease for the 6 years following t, because if BMI change A(t) at t causally effects the onset of clinical disease and/or survival in the following 6 years, the variable 'survival without clinical disease for 6 years after t' is a response affected by the exposure A(t) and thus cannot be adjusted for without introducing selection bias as explained in Hernán et al.¹⁶ Thus to validly estimate β* using g-estimation, one must be able to determine those 'subjects who would have remained alive and free of clinical disease for the 6 years following t had, possibly contrary to fact, they followed a diet that prevented any further weight gain over those 6 years.'

International Journal of Obesity
Causal models
JM Robins
One can do so by specifying a second SNM, called a locally RP SNFTM, for the effect of change in BMI on the time X to the diagnosis of chronic disease or death (whichever comes first). A locally rank-preserving SNFTM is a rule that takes as input a subject’s observed time X to (the earlier of) death or a diagnosed chronic disease, their observed BMI and covariate history through the end of the study, and an unknown parameter ψ^*, and a time t and outputs the time X_t that would have been observed if, possibly in contrast to the fact, the subject had followed a dietary intervention in which no further weight was gained after time t. If ψ^* were known or well estimated, we could compute X_t for each subject, determine which subjects’ X_t failed to exceed t by more than 6 years, and exclude such subjects from the g-estimation procedure used to estimate β^*.

Thus, it only remains to estimate the parameter ψ^* of our locally rank-preserving SNFTM in the presence of unmeasured confounding by subclinical disease. Now among subjects’ with the same BMI and covariate history prior to time t with positive $A(t)$ who are not members of an identifiable subgroup with intractable confounding, the change $A(t)$ in BMI between t and t + 1 will be uncorrelated with X_t if we restrict to subjects with X_t exceeding t by more than 6 years. Thus to estimate ψ^*, I simply try many different guesses ψ. If a particular guess ψ were the true ψ^*, the output of the SNFTM rule would be uncorrelated with $A(t)$ when I restrict the g-estimation procedure to subjects whose output exceeds t by more than 6 years. Thus, I choose as the estimate $\hat{\psi}$ of ψ^*, the guess ψ that results in an output that, under this restricted g-estimation procedure, has the smallest conditional correlation with $A(t)$ when I combine the information across all times t.

Before proceeding to the more technical part of the paper, I provide a brief non-technical discussion of several important but subtle points about SNMs. First, locally rank-preserving SNMs assume that the effect of a given increase in BMI on the utility Y and on X is the same for any two subjects with the same past measured covariate history. This assumption is biologically implausible as unmeasured genetic and environmental factors will clearly modify the magnitude of the effect of weight gain on the responses Y and X. Fortunately, we prove in the section Estimation of the effect of the ‘maintain baseline weight intervention’ that our g-estimator of the mean of Y_0 remains valid even if we allow the magnitude of the effect of weight gain on Y and X to be modified in an arbitrary manner by unmeasured genetic and environmental factors.

The description of g-estimation of the parameters ψ^* of our SNFTM model for X assumed that the time X to death or diagnosed chronic disease was available for every study subject. However, by the end of follow-up, a number of study subjects will remain alive and free of chronic disease. Such subjects are said to be censored. In the section Censoring, I show how our g-estimation procedures can be modified to appropriately account for these censored observations.

The estimate of the mean of Y_0 will be biased if either the SNMM for Y or the SNFTM for X are misspecified. I discuss below how to construct tests for misspecification. However, I also show that the power of such tests to detect model misspecification can be quite limited in the presence of reverse causation by subclinical disease and intractable confounding in identifiable subgroups. In Section Intractable confounding in subgroups, I offer some suggestions on how the impact of this limited power on the quality of one’s inferences can be lessened if one is willing to change the parameter that is being estimated.

Estimation of the effect of the ‘maintain baseline weight intervention’

In this section, I describe how we can use g-estimation of SNMs to estimate the expected utility had one put all non-smoking 18-year-old American men on a stringent mandatory diet that guaranteed that no one would ever weigh more than their baseline weight established at the age of 18 years. For pedagogic reasons, I first consider the simpler setting in which there is no unmeasured confounding by preclinical disease.

Case 1: no unmeasured confounding by preclinical disease

A locally rank-preserving SNM. An SNM is a model for counterfactual variables Y_m that denote a subject’s utility measured at end of follow-up under the following counterfactual dietary intervention:

Time m dietary intervention: The subject follows his observed diet up to month m following his eighteenth birthday and, from month m onwards, the subject is weighed every day: (i) whenever his weight is greater than or equal to his maximum monthly BMI up to m (that is, $\text{BMI}_{\text{max}}(m) \equiv \text{max}[\text{BMI}(0), \ldots, \text{BMI}(m)]$), the subject’s caloric intake is restricted until the subject’s BMI falls below $\text{BMI}_{\text{max}}(m)$; (ii) whenever his weight is less than $\text{BMI}_{\text{max}}(m)$, the subject is allowed to eat as he pleases without any intervention.

A subject’s responses had, possibly in contrast to the fact, he been made to follow a time m dietary intervention are referred to as counterfactual responses. We assume that Y_m is well-defined in the sense that its value is insensitive to the unspecified details of exactly how the subject’s calories are to be restricted in (i). We also assume these counterfactual responses are observed only for those m for which a subject’s actual BMI history was consistent with his having followed the time m dietary intervention. For other values of m, the time m-specific counterfactuals remain unobserved.

The time 0 dietary intervention is the dietary intervention in the first paragraph of the Introduction. The counterfactual Y_0 is the utility corresponding to this regimen. Thus, the expected value $E[Y_0]$ of Y_0 is our parameter of interest: the expected utility had we placed in 1950 all non-smoking
18-year-old American men on a diet that guaranteed that no one would ever weigh more than they did at the age of 18 years.

Note that $Y_{K+1} = Y$: if one were to follow his actual observed diet up to the time $K + 1$ at which the study ends, then no dietary intervention would have occurred. Hence, the counterfactual Y_{K+1} must be the observed (that is, actual) Y.

By definition, a subject’s observed data through k (but before $k + 1$) is inconsistent or incompatible with following the ‘time m dietary intervention’ if and only if $\text{BMI}(k + 1) > \text{BMI}_{\text{max}}(m)$ for some $k > m$.

It follows that it is only when the individual’s observed data through time m are incompatible with the ‘time m dietary intervention’ that $A(m)$ is $\neq 0$. If an individual’s observed data are consistent with his having followed the ‘time m dietary intervention’, it is consistent with his having followed the ‘time t dietary intervention’ for $t > m$.

Note that $Y_{m+1} - Y_m = 0$ whenever $A(m) = 0$. If $A(m) \neq 0$, $Y_{m+1} - Y_m$ is the difference between (i) a subject’s utility when he has his observed $\text{BMI}(m)$ history and thereafter, possibly in contrast to the fact, the subject follows the dietary intervention that guarantees his BMI(k) for $k > m + 1$ never again exceeds BMI$_{\text{max}}(m+1)$ and (ii) his utility when he has his observed BMI(m) history and thereafter, possibly in contrast to the fact, the subject follows the dietary intervention that guarantees his BMI at $m + 1$ equals his observed BMI$_{\text{max}}(m)$ (rather than his observed BMI at $m + 1$) and that his BMI(k) for $k > m + 1$ never again exceeds BMI$_{\text{max}}(m)$. As a kind of shorthand for the previous sentence, whenever $A(m) \neq 0$, we will refer to $Y_{m+1} - Y_m$ as the causal effect of a final blip of exposure of magnitude $A(m)$ on the subject’s utility.

An additive locally rank-preserving SNM is a determinist model for the magnitude of the effect of a treatment $A(m)$ on $Y_{m+1} - Y_m$. Mathematically, an additive locally rank-preserving SNM assumes that for each time $m = 0, \ldots, K$,

$$Y_{m+1} - Y_m = \gamma_m[A(m), \overline{A}(m-1), \overline{I}(m), \beta^*]$$

(4)

where (i) β^* is the unknown true parameter vector, and (ii) $\gamma_m[A(m), \overline{A}(m-1), \overline{I}(m), \beta]$ is a known function such as $\{\beta_0 + \beta_1 \alpha + \beta_2 L(m)\}A(m)$] satisfying the restrictions $\gamma_m[A(m), \overline{A}(m-1), \overline{I}(m), \beta] = 0$ if $A(m) = 0$ or $\beta = 0$. Here, β_2 is a column vector of length equal to that of the vector $L(m)$.

Furthermore, T as a superscript denotes the transpose of a matrix or vector. The first restriction must logically hold because, by definition, if $A(m) = 0$, $Y_{m+1} = Y_m$. We now show that the second restriction guarantees that $\beta^* = 0$ encodes the sharp null hypothesis that ‘following a diet that prevents one’s BMI from ever exceeding the baseline BMI’ has no effect on any subject’s utility.

Recalling that $Y_{K+1} = Y$, the model (4) is seen to be equivalent to the model

$$Y_m = Y - \sum_{j=m}^K \gamma_j[A(j), \overline{A}(j-1), \overline{I}(j), \beta^*]$$

(5)

for $m = 0, 1, \ldots, K$. To help understand Equation (5), consider first the special case $m = K$. Then Equation (5) says that to calculate Y_K from Y, we remove the causal effect $\gamma_K[A(K), \overline{A}(K-1), \overline{I}(K), \beta^*]$ of exposure $A(K)$ at the last time K. Next consider the special case $m = 0$. Then Equation (5) says that to calculate Y_0, one successively removes the effect of exposure at times $K, K-1, \ldots, 0$. It follows from the restriction $\gamma_0[A(m), \overline{A}(m-1), \overline{I}(m), \beta^*] = 0$ for each m. Thus $\beta^* = 0$ encodes the sharp null hypothesis that $Y_0 = Y_{m=Y}$ for all subjects and all m. In other words, one’s utility at the end of the study will be the same regardless of whether or not one follows any ‘time m dietary intervention’.

As, by Equation (5), a locally rank-preserving SNM directly maps an individuals observed utility Y to the utility an individual would have under the ‘time m dietary intervention,’ it is a model for individual causal effects.

Possible choices of $\gamma_m[A(m), \overline{A}(m-1), \overline{I}(m), \beta]$ include (i) $\beta_0(m)$, (ii) $(\beta_0 + \beta_1 m) a(m)$, (iii) $(\beta_0 + \beta_1 m + \beta_2 m^2)\text{I}(m)a(m)$. In model (i), the effect of a change of $A(m)$ in BMI is the same for all m. Under model (ii), the effect varies linearly with time m. Under model (iii), the causal effect of $A(m)$ is modified by the most recent covariate history.

In the following, we assume the observed data O on each subject is $O = (Y, T, A) \equiv (Y, T(K+1), \overline{A}(K))$. That is O consists of a subject’s utility Y and his covariate and treatment histories through the end of the study. The inclusion of $\overline{A}(K)$ is actually redundant, as the A-history $\overline{A}(K)$ is determined by $\text{BMI}(K+1)$, and $\text{BMI}(K+1)$ is a component of $\overline{A}(K+1)$. Thus, we could write the observed data as simply $(Y, T(K+1))$. However, because we wish to use results on g-estimation of SNMs that were derived in previous papers in which $\overline{A}(K)$ was not determined by $\overline{T}(K+1)$, we will continue to write $O = (Y, T, A)$ and accept some redundancy in the notation. Let

$$Y_m(\beta) = Y - \sum_{j=m}^K \gamma_j[A(j), \overline{A}(j-1), \overline{I}(j), \beta]$$

(6)

so, under our model, $Y_m = Y_m(\beta^*)$. Note that, for each β, $Y_m(\beta)$ can be computed from the observed data (Y, T, A). Suppose we had a consistent estimate $\hat{\beta}$ of β^*. Then $Y_m(\hat{\beta})$ would be a consistent estimate of $Y_0 = Y_0(\beta^*)$. Thus, the average $\sum_{n=1}^n Y_m(\hat{\beta})/n$ over the n study subjects would be a consistent estimate of the parameter of interest $E[Y_0]$. Further, $\sum_{n=1}^n Y_m(\hat{\beta})/n - \sum_{n=1}^n Y_i/n$ would be a consistent estimate of the difference $E[Y_0] - E[Y]$ between the expected utility $E[Y_0]$ under a dietary intervention guaranteeing BMI never exceeds the baseline BMI and the expected utility $E[Y]$ in the absence of any dietary intervention. We show below how one can obtain a consistent estimate $\hat{\beta}$ by g-estimation if a certain comparability assumption holds.

The innovative aspect of our SNM: The most important and innovative aspect of our model is that it models the causal effect on the utility of an increase in BMI of $A(m)$ over a subject’s maximum past BMI, BMI$_{\text{max}}(m)$. It does not model
and thus is agnostic about the causal effect (a) of any decrease in BMI or (b) of any increase in BMI between m and m + 1 that fails to result in one’s BMI exceeding BMI_{max}(m).

Our model (4) is thus more robust than alternative models that would also model (a) or (b), because our model makes fewer assumptions than such alternative models, and thus is less likely to be misspecified. However, the small number of assumptions made by our model is sufficient for our purposes; if we can consistently estimate the parameter β*, we can consistently estimate our parameter of interest I[Y_{dl}].

Thus, it only remains to estimate β*. In this section, we will do so under the following assumption, which will be weakened in later sections. Define the indicator variable Ξ(m) taking values in the two-element set {0, 1} by

\[Ξ(m) = 1 ⇔ BMI(m + 1) ≥ BMI_{max}(m) \]

That is Ξ(m) takes the value 1 if a subject’s BMI just before m + 1 is at least as great as his maximum BMI up to time m. Otherwise Ξ(m) takes the value 0.

Comparability assumption (CO): Among subjects with the same \(\overline{X}(m - 1)\) and covariate history \(\overline{T}(m)\) (which includes BMI history \(BMI_{m}(m)\) and with \(Ξ(m) = 1\), \(A(m)\) is statistically independent of the counterfactual \(Y_{m}\). Formally, conditional on \((\overline{X}(m - 1), \overline{T}(m), Ξ(m) = 1)\), \(A(m)\) is independent of \(Y_{m}\). (As past \(A\)-history \(\overline{X}(m - 1)\) is determined by \(BMI_{m}(m), \overline{T}(m - 1)\) in the conditioning event \((\overline{X}(m - 1), \overline{T}(m))\) is redundant; nonetheless we shall retain the \(\overline{X}(m - 1)\).)

A comparability assumption such as CO is often referred to as an assumption of no confounding by unmeasured factors or as an assumption of sequential randomization.

Remark: To understand why we conditioned on \(Ξ(m) = 1\) in the CO assumption, imagine we had instead assumed that \(A(m)\) is independent of \(Y_{m}\) conditional on \((\overline{X}(m - 1), \overline{T}(m))\).

This would have implied that among the subset of subjects with a given \((\overline{X}(m - 1), \overline{T}(m))\), the subgroup with \(A(m) = 0\) would have the same distribution of the utility \(Y_{m}\) under the time \(m\)-dietary intervention as the subgroup with \(A(m) = 0\). But, under the time \(m\)-intervention, all subjects in the \(A(m) = 0\) subgroup would have BMI(m + 1) equal to their common BMI_{max}(m) in \(\overline{T}(m)\), whereas many subjects with \(A(m) = 0\) (specifically, those with \(Ξ(m) = 0\)) would have BMI(m + 1) < BMI_{max}(m). Thus, the \(A(m) = 0\) subgroup will have lower BMI at m + 1 than the \(A(m) ≠ 0\) subgroup under the time \(m\)-intervention. Suppose the null hypothesis of no biological BMI effect is false. Then, for an individual with \(A(m) = 0\), their utility \(Y_{m}\) should depend on their BMI at m + 1. As such, it extremely unlikely that the \(A(m) = 0\) and \(A(m) ≠ 0\) subgroups would be comparable. In contrast, if, as in assumption CO, we restrict the \(A(m) ≠ 0\) subgroup to a subset of the subjects with \(Ξ(m) = 1\), then given \(\overline{T}(m)\), this restricted \(A(m) = 0\) subgroup, like the \(A(m) ≠ 0\) subgroup, will have BMI(m + 1) equal to the common BMI_{max}(m) under the intervention, so the assumption of non-comparability is plausible.

Under the CO assumption, we can obtain a consistent estimator of β* by g-estimation as follows. We specify a linear regression model.

\[E(A(m)|Ξ(m), \overline{X}(m - 1), BMI(m) = 1) = x^T W(m) \text{ for } m = 0, ..., K. \]

Here \(W(m) = w_{m1}(\overline{X}(m), \overline{X}(m - 1))\) is a vector of covariates calculated from a subject’s past data, \(x^T\) is a row vector of unknown parameters, and each person-month is treated as an independent observation, so each person contributes up to \(K + 1\) observations. However, person months for which \(Ξ(m) ≠ 1\) are excluded from the regression. Examples of \(W(m) = w_{m1}(\overline{X}(m), \overline{X}(m - 1))\) would be the transpose of the row vector \((m, L^2(m, L^1(m))\). Let \(\hat{z}\) be the ordinary least squares (OLS) estimator of \(z\) computed using a standard statistical package.

For the moment assume β is one-dimensional (1D). Let \(β_{low}\) and \(β_{up}\) be much smaller and larger, respectively, than any substantively plausible value of β*.

Then, separately, for each β on a grid from \(β_{low}\) to \(β_{up}\), say \(β_{low} = 0.1, β_{low} = 0.2, ..., β_{up}\) perform the score test of the hypothesis \(θ = 0\) in the extended linear model

\[E(A(m)|Ξ(m), \overline{X}(m - 1), Y_{m}(β), BMI(m) = 1) = d^T W(m) + θ Y_{m}(β) \]

that adds the covariate \(Y_{m}(β)\) at each time m to the above (pooled over persons and time) linear model. A 95% confidence interval for \(β^*\) is the set of \(β\) for which an \(α = 0.05\) two-sided score test of the hypothesis \(θ = 0\) does not reject. The g-estimate \(β^*\) of the value of \(β\) for which the score test takes the value zero (that is, the \(P\)-value is one).

The validity of g-estimation is proved as follows. By our comparability assumption, \(Y_{m}(β^*)\) and \(A(m)\) are conditionally independent given \((\overline{X}(m), \overline{X}(m - 1), Ξ(m) = 1)\). That is, \(Y_{m}(β^*)\) is not a predictor of \(A(m)\) given \((\overline{X}(m), \overline{X}(m - 1), Ξ(m) = 1)\), which implies that the coefficient \(θ\) of \(Y_{m}(β^*)\) must be zero in the extended model when \(β = β^*\), provided the model

\[E(A(m)|Ξ(m), \overline{X}(m - 1), BMI(m) = 1) = x^T W(m) \]

is correctly specified.

Now, we do not know the true value of \(β\). Therefore, any value \(β\) for which the data are consistent with the parameter \(θ\) of the term \(θ Y_{m}(β)\) being zero might be the true \(β^*\), and thus belongs in our confidence interval. If consistency with the data is defined at the 0.05 level, then our confidence interval will have coverage of 95%. Furthermore, the g-estimate \(β^*\) of \(β^*\) is that \(β\) for which adding the term \(θ Y_{m}(β)\) does not help to predict \(A(m)\) whatsoever, which is the \(β\) for which the score test of \(θ = 0\) is precisely zero. The g-estimate \(β^*\) is also the value of \(β\) for which the OLS estimator of \(θ\) is precisely zero.

It may appear peculiar that a function \(Y_{m}(β)\) of the response \(Y\) measured at the end of follow-up is being used to predict \(A(m)\) at earlier times. However, this peculiarity evaporates when one recalls that, for each \(β\) on our grid, we are testing the null hypothesis that \(β = β^*\), and, under this null, \(Y_{m}(β)\) is the counterfactual \(Y_{m}\), which we can view as already existing at time m (although we cannot observe its
value until time $K + 1$ and then only if $A(t)$ in the observed data is zero from m onwards.

Suppose next that the parameter β is a vector. To be concrete, suppose we consider the model with

$$\gamma_m[a(m), \overline{X}(m) - 1, \overline{Y}(m), \beta] = a(m)\{B_0 + B_1m + B_2^2[m]\}$$

so β is of dimension $\text{dim}(\overline{X}(m)) + 2$ where $\text{dim}(\overline{X}(m))$ is the dimension of $\overline{X}(m)$ which, for concreteness, we take to be 3. Hence β is 3D. Then we would use a 3D grid, one dimension for each component of β. So if we had 20 grid points for each component, we would have 20^3 different values of β on our 3D grid. Now to estimate five parameters one requires five additional covariates. Specifically, let $Q_m(\beta) = q_m[\overline{X}(m), \overline{A}(m - 1), Y_m(\beta)]$ be a 5D vector of functions of $(\overline{X}(m), \overline{A}(m - 1), Y_m(\beta))$, such as $Q_m(\beta) = [1, m, L^T(m)]Y_m(\beta)$. We used the extended model

$$E[A(m)|\overline{X}(m), \overline{A}(m - 1), Y_m(\beta), \Xi(m) = 1] = \exp[\gamma^T(m) + \delta_0Q_m(\beta)]$$

Our g-estimate $\hat{\beta}$ is the β for which the 5 degree of freedom score test that all five components of θ equal zero is precisely zero. The particular choice of the functions q_m does not affect the consistency of the point estimate, but it affects the width of the confidence interval.

When $\gamma_m[a(m), \overline{A}(m - 1), \overline{X}(m), \beta] = a(m)\beta R_m$ is linear in β with $R_m = r_m(\overline{X}(m), \overline{A}(m - 1))$ being a vector of known functions and we choose $Q_m(\beta) = Q_m^T(m)Y_m(\beta)$ linear in $Y_m(\beta)$, then, given the OLS estimator x^T in the model $E[A(m)|\overline{X}(m), \overline{A}(m - 1) = x^TW(m))$, there is an explicit closed form expression for $\hat{\beta}$ given by

$$\hat{\beta} = \left\{\sum_{i=1}^{n-m-K} \Xi_i(m)G_{im}(\overline{z})Q_{im}S_{im}\right\}^{-1} \times \sum_{i=1}^{n-m-K} \Xi_i(m)Y_iG_{im}(\overline{z})Q_{im}$$

with $G_{im}(\overline{z}) = [A_i(m) - \overline{x}^T(m)W(m)]$. $S_{im} = \sum_{j=0}^{m} A_i(j)R_{ij}$.

Identification: Suppose that two different values of β, say $\hat{\beta}$ and $\tilde{\beta}$, both make the 5 degree of freedom score test precisely zero and yet the two confidence interval for β^* centered at $\hat{\beta}$ and $\tilde{\beta}$ do not overlap. How should we choose between the estimates? (In such a case, the matrix whose inverse is required in (9) will not be invertible and so (9) will fail.) As we can use any five vectors $Q_m(\beta) = q_m[\overline{X}(m), \overline{A}(m - 1), Y_m(\beta)]$ in our procedure, one simple approach is to try other choices of $Q_m(\beta)$ until we find a $Q_m(\beta)$ for which our confidence interval for β^* includes only one of the β and $\hat{\beta}$, declare the one included to be our point estimate of β^* and ignore the excluded one. Will this approach always succeed? In general, this approach should succeed in rather quickly excluding all but one of the values of β that originally made the score test zero, provided that the model $\gamma_m[a(m), d(m-1), \overline{X}(m), \beta]$ is correct, except when β^* is not identified. By definition β^* is not identified if there is a β^{**} different from the true parameter β^* such that, with an infinite sample size, β^{**}, like β^*, makes the 5 degree of freedom score test precisely zero for all choices of $Q_m(\beta)$ that are linear in $Y_m(\beta)$. A detailed discussion of rank-preserving versus non-RP models occurs in the section Are remarkable results due to some slight of hand.
Alternative approaches: Under the CO assumption, it is shown in Robins\(^1\)\(^5\) that the \(E[Y_{m} | \Delta(m)]\) are non-parametrically identified for \(m = 0, \ldots, K\) from data \(O = (Y, T, A)\) by the IPTW formula

\[
E[Y|\Delta(m) = 0(m)] = \frac{E[Y|\Delta(m) = 0(m)]W(m)}{W(m)}
\]

where \(\Delta(m) = (\Delta(m), \ldots, A(K))\) and the IPTW weight

\[
W(m) = 1/ \prod_{k=m}^{K} \{pr(A(k) = 0|\bar{A}(k-1), T(k))\}^{\Xi(k)}
\]

is the inverse of the conditional probability that a subject had his observed treatment \(\Delta(m) = 0(m)\). That is, \(E[Y_{m}]\) is the weighted mean of the observed utility \(Y\) among subjects whose observed data were consistent with following the time \(m\) dietary intervention with weights given by the inverse of the conditional probability of having data consistent with following the intervention. Thus one could, in principle, consider estimating \(E[Y_{m}]\) non-parametrically by the weighted average of \(Y\) among subjects whose weight never exceeded their baseline weight at the age of 18 years with weights proportional to an estimate \(\bar{W}(0)\) of \(W(0)\). That is, by

\[
\mathbb{E}[\frac{\sum_{i=1}^{n} W_i(0)Y_i}{\sum_{i=1}^{n} W_i(0)}]
\]

The problem with this approach is that only the utility \(Y\) of the rare person whose weight never exceeds his age 18 weight contributes to the analysis. In contrast by specifying an SNMM, data on the utility \(Y\) of every subject contributes to the estimate of \(E[Y_{m}]\). The price paid for the greater efficiency of an SNMM is the possibility of bias if the SNMM is misspecified.

However, under the CO, \(E[Y_{m} | \Delta(m), T(m)] = E[Y_{m} | \Delta(m - 1), T(m)]\) and is non-parametrically identified by the formula

\[
E[Y|\Delta(m) = 0(m)] = \frac{E[Y|\Delta(m) = 0(m)]W(m)}{W(m)}
\]

Thus \(E[Y_{m,1} - Y_{m} | \Delta(m), T(m)]\) is non-parametrically identified for \(m = 0, \ldots, K\). Hence, given a sufficiently large sample size, one could in principle construct misspecification tests of the model (11) that have power against all alternatives when the model is incorrect. In practice, the available sample size may greatly limit the power to detect model misspecification.

IPTW estimation of marginal structural models and the parametric g-formula are alternative approaches to model-based estimation of \(E[Y_{m}]\) that also use data on every subject’s utility \(Y\). See Appendix 2 for further discussion.

Remark: The reader familiar with IPTW expects \(W(m)\) to be defined as

\[
\mathbb{E} = \frac{1}{\prod_{k=m}^{K} \{pr(A(k) = 0|\bar{A}(k-1), T(k))\}}
\]

rather than as

\[
\frac{1}{\prod_{k=m}^{K} \{pr(A(k) = 0|\bar{A}(k-1), T(k))\}}^{\Xi(k)}
\]

In fact, the two expressions are equal if, without loss of generality, we adopt the coding convention that the vector \(L(k)\) includes \(\Xi(k)\) as a component because, under this coding, \(pr(A(k) = 0|\bar{A}(k-1), T(k)) = 1\) whenever \(\Xi(k)\) takes the value zero.

Case 2: unmeasured confounding by preclinical disease

In this section, we no longer assume \(A(m)\) is statistically independent of \(Y_{m}\) given \(\bar{A}(m - 1), T(m), \Xi(m)\) = 1. To describe our new comparability assumption, we need to introduce some further notation. Let \(X = \min(T, D)\) be the minimum of the time \(T\) to death and the time \(D\) to the diagnosis of a chronic disease, such as cancer, severe emphysema, liver or renal disease, or any other chronic condition that would be severe enough to affect weight gain. At each time \(m\), the indicator \(I(X \leq m)\) is a component of \(L(m)\). Further if \(I(X \leq m) = 1\), the exact time \(X\) is observed and included in \(L(m)\). Thus \(X\) is observed if \(X\) is less than \(K + 1\). However, \(X\) is censored (that is, not observed) on subjects whose \(X\) exceeds \(K + 1\), the end of follow-up time.

For the present, we shall avoid the additional complications that arise from censoring by assuming that \(X\) is less than \(K + 1\) for all subjects, so that the data \(O = (Y, X, T, A)\) are observed on each subject. In the section Censoring, we relax this assumption and allow for censoring.

Let \(X_{m} = \min(T_{m}, D_{m})\) be the counterfactual version of \(X = \min(T, D)\) had ‘the time \(m\) dietary intervention’ been carried out. Then we make the following more realistic assumption.

Realistic comparability (RC) assumption: \(A(m)\) is statistically independent of \((Y_{m}, X_{m})\) given \(\Xi(m) = 1, \bar{A}(m - 1), T(m), U(m) = \bar{U}(m)\), where \(U(m) = 1\) if a subject has at \(m\) or had prior to \(m\), an undiagnosed chronic disease that was sufficiently advanced to interfere with his normal weight trajectory. Otherwise \(U(m) = 0\). We also assume \(U(m) = 1\) for subjects alive at \(m\) with \(X < m\) under the theory that there probably was a subclinical period prior to the time \(X\) of clinical diagnosis in which weight gain may have been altered. Note that \(U(0) = 0\) implies \(\bar{U}(m) = (U(0), \ldots, U(m)) = \bar{U}(m)\) is also zero.

Remark: The RC assumption cannot be recast as \((Y_{m}, X_{m})\) independent of \(A(m)\) given \(\bar{A}(m - 1), T(m), U(m)\) even had we used the coding convention that vector \(L(k)\) includes \(\Xi(k)\) as a component, because, even under this coding, \(pr(A(m) = 0|\bar{A}(m - 1) = \bar{A}(m - 1), T(m), U(m), (Y_{m}, X_{m}))\) would be neither zero nor one and could, under the RC assumption, depend on \((Y_{m}, X_{m})\) whenever \(U(m) \neq 0\) and \(\Xi(m) = 1\). For this reason it would perhaps be more precise to refer to the RC as a selective comparability assumption as it only implies comparability for a selected subset of the population.

We observe \((Y, X, T, A)\) but \(U = (U(0), \ldots, U(K))\) is, of course, generally unobserved. Thus, \(U\) is an unmeasured confounder. The most crucial of several assumptions needed to allow consistent estimation of the parameter of interest \(E[Y_{m}]\) in this setting is the following.

Clinical detection (CD) assumption: Any subject who has \(U(m) = 1\) (that is, a sufficiently advanced undiagnosed
chronic disease at (or before) \(m \) and thereafter follows ‘the
time \(m \) dietary intervention’ will either have died or been
diagnosed with clinical chronic disease by time \(m + \zeta \), where
\(\zeta \) is assumed known. Formally

\[
U(m) = 1 \Rightarrow X_m \leq m + \zeta
\]

(14)
or equivalently

\[
X_m > m + \zeta \Rightarrow U(m) = 0(m)
\]

(15)
Here \(\Rightarrow \) is translated as ‘implies.’ A typical choice for \(\zeta \) might be
72 months. It is useful to choose \(\zeta \) to be the minimal time for
which (15) holds as this increases both the efficiency of g-
estimators and the power of goodness-of-fit tests to detect
misspecification of an SNM and decreases the likelihood that
an SNM is non-identified. However, if the chosen \(\zeta \) is less
than the true minimum time for which (15) holds bias will
result. As a consequence, one should routinely include a table that shows how one’s estimate of \(E[Y_{0a}] \) changes as
\(\zeta \) is varied.

The RC and CD assumptions require that one record in \(X \)
the minimum time of clinical onset among the set of clinical
conditions whose preclinical phase could affect BMI. The
exact clinical conditions that belong in this subset is a
substantive question about which subject matter experts
should be consulted. Also it is straightforward to generalize
the CD assumption by replacing the constant \(\zeta \) with a known
non-negative function \(\zeta(\mathcal{T}(m)) \) of past covariate history.

Remark: We will consider the effect of replacing
the counterfactual \(X_m \) by the observed \(X \) in the CD assumption
later.

Estimation under a rank-preserving SNM for \(Y_mX_m \) with \(X_m \)
known. To consistently estimate \(E[Y_{0a}] \) under RC and CD, we
must replace our SNMM model with an additive SNMM model for
\(Y_mX_m \) that also conditions on and allows effect
modification by the counterfactual \(X_m \). For pedagogic
purposes, in this subsection we return to locally rank-
 preserving models. A locally rank-preserving SNM for \(Y_mX_m \) states that

\[
Y_{m+1} = Y_m = \gamma_m[A(m), \mathcal{X}(m-1), \mathcal{T}(m), X_m, \beta^*]
\]

(16)
where \(\beta^* \) is an unknown parameter and \(\gamma_m[A(m), \mathcal{X}(m-1),
\mathcal{T}(m), X_m, \beta^*] \) is a known function that can now depend on
\(X_m \) that takes the value zero if either \(A(m) = 0 \) or \(\beta = 0 \).
(We emphasize that it is \(X_m \) and not \(\mathcal{X}(m) \) that occurs in the
last equation.) This model is equivalent to assuming

\[
Y_m = Y_m(\beta^*)
\]

(17)
for each subject with \(Y_m(\beta) \) now redefined as

\[
Y_m(\beta) = Y - \sum_{j=m}^{K} \gamma_m[A(j), \mathcal{X}(j-1), \mathcal{T}(j), X_j, \beta]
\]

(18)
Now, of course the counterfactual variable \(X_m \) is itself
unobserved. However for pedagogic purposes, in this
subsection we unrealistically assume that in addition to the
observed data \((Y, X, \mathcal{T}, \mathcal{X})\), data on the counterfactuals \(X_m \) are
available.

Remark: We do not actually require a locally rank-
 preserving SNM for \(Y_mX_m \). A locally rank-preserving SNM
for \(Y_mX_m \) for certain known functions \(c(x) \) could be used instead.
This remark is explored further in the appendix.

Redefine \(Q_m(\beta) = q_m[\mathcal{T}(m), \mathcal{X}(m-1), X_m, Y_m(\beta)] \) to possibly
be a function of \(X_m \). Consider again the g-estimator \(\hat{\beta} \) that is
equal to the \(\beta \) for which the 5 degree of freedom score test of
\(\theta = 0 \) is precisely zero in the model

\[
E[A(m)\mathcal{T}(m), \mathcal{X}(m-1), X_m, \Xi(m) = 1, Y_m(\beta)]
= z^T W(m) + \theta^T Q_m(\beta)
\]

(19)
\(\hat{\beta} \) would be a consistent and asymptotically normal (CAN)
estimator of \(\beta^* \) under the CO assumption, but not under the RC
assumption. Under RC, the independence needed to make \(\theta = 0 \)
when \(\beta = \beta^* \) only holds when we also condition on \(\mathcal{U}(m) \).

However, consider the estimator \(\hat{\beta} \) obtained when, for each
time \(m \), we only fit the previous model to subjects for whom
\(X_m > m + \zeta \), excluding all subjects with \(X_m \leq m + \zeta \). This
exclusion can be expressed by saying that we now fit the model

\[
E[A(m)\mathcal{T}(m), \mathcal{X}(m-1), X_m, \Xi(m) = 1, Y_m(\beta), X_m > m + \zeta]
= z^T W(m) + \theta^T Q_m(\beta)
\]

(20)
Then the estimator \(\hat{\beta} \) is the \(\beta \) for which the 5 degree of
freedom score test of the hypothesis \(\theta = 0 \) is precisely zero in
this latter model. When \(X_m > m + \zeta \), \(\mathcal{U}(m) = \mathcal{O}(m) \),
by assumption CD. Hence, we can rewrite the Equation (19) as

\[
E[A(m)\mathcal{T}(m), \mathcal{X}(m-1), X_m, \Xi(m) = 1, Y_m(\beta), X_m > m + \zeta, \mathcal{U}(m) = \mathcal{O}(m)]
= z^T W(m) + \theta^T Q_m(\beta)
\]

(21)
showing that we have succeeded in conditioning on
\(\mathcal{U}(m) = \mathcal{O}(m) \), even though \(\mathcal{U}(m) \) is unmeasured! It follows that,
when the parameter \(\beta^* \) is identified, the estimator \(\hat{\beta} \) is
a CAN estimator of \(\beta^* \) under the RC and CD assumptions, as
these assumptions imply the coefficient \(\theta = 0 \) if \(\beta = \beta^* \).
However as discussed further below, under the RC and CD
assumptions, the positivity assumption no longer suffices to
guarantee identification.

In summary, all that was required to produce a CAN estimator \(\hat{\beta} \) of the parameter \(\beta^* \) of our locally rank-preserving
SNM (17) for \(Y_mX_m \) under the RC and CD assumptions was
to restrict the earlier g-estimation procedure at each time \(m \)
to those subjects with \(X_m > m + \zeta \).

Thus, if \(\gamma_m[A(m), \mathcal{X}(m-1), \mathcal{T}(m), X_m, \beta] = A(m)\beta R_m \)
linear in \(\beta \) with \(R_m = r_m(\mathcal{T}(m), X_m) \) being a vector of known
functions that can depend on \(X_m \) then, given the OLS estimator
\(\hat{\beta} \) of \(\beta^* \) in the model \(E[A(m)\mathcal{T}(m), \mathcal{X}(m-1), \Xi(m) = 1] = z^T W(m) \)
and \(Q_m(\beta) = Q_2 Y_m(\beta) \) linear in \(Y_m(\beta) \), the CAN estimator
\(\hat{\beta} \) exists in closed form as

\[
\hat{\beta} = \left\{ \sum_{i=0}^{m-n-K} I[X_{im} > m + \zeta] \Xi_{im} G_{im}(\hat{\beta}) [Q_{im}]^{-1} \right\}^{-1}
\times \left\{ \sum_{i=0}^{m-n-K} I[X_{im} > m + \zeta] \Xi_{im} Y_{im} G_{im}(\hat{\beta}) \right\}
\]

(21)
with \(G_{im}(\hat{\beta}) = A_i(m) - \hat{\beta}^T W_i(m), S_{im} = \sum_{j=1}^{m} A_i(j) R_{ij} \).
From the above, it follows that if, in addition to the observed data \((Y, X, T, X_m)\), data on the counterfactuals \(X_m\) are available for each \(m\), the sample average \(\sum_i^n Y_{0i}(\hat{\beta})/n\) is a CAN estimator of the parameter of interest \(E[Y_{0d}]\) under the RC and CD assumptions, provided \(\beta^*\) is identified and both our locally rank-preserving SNM for \(Y_{0d}|X_m\) and our model
\[
E[A(m)|\overline{I}(m), \overline{A}(m-1), \Xi(m) = 1] = \lambda^T W(m) \tag{22}
\]
are correct. Of course data on \(X_m\) are unavailable. However, in the next subsection, we prove an analog of this result holds without data on \(X_m\) under a locally rank-preserving SNFTM for the \(X_m\), which allows us to replace \(X_m\) by an estimate \(X_m(\hat{\psi})\), where \(\hat{\psi}\) estimates the parameter \(\psi^*\) of our SNFTM.

Before proceeding to the next subsection, several additional points need to be made.

Can we replace \(X_m\) by \(X\?): A natural question that arises is the following. Suppose we replaced \(X_m\) by the observed \(X\) in the CD assumption, in our definition of \(Y_{0d}(\beta)\), and wherever else \(X_m\) occurs in this subsection, with the exception of the RC assumption (as the RC assumption with \(X\) replacing \(X_m\) would clearly be false if BMI is a cause of \(T\) and/or \(D\) and thus of \(X\)). Do \(\hat{\beta}\) and \(\sum_i^n Y_{0i}(\hat{\beta})/n\) remain CAN estimators of \(\beta^*\) and \(E[Y_{0d}]\)? This question is natural in the sense that it is not obvious that the CD assumption and RP SNM based on \(X_m\) are more likely to be true than when based on \(X\). So if the answer is ‘yes’ it would be simpler and more straightforward to use \(X\) in place of \(X_m\). In particular, as \(X\) unlike \(X_m\) is observed, we would eliminate the need to replace \(X_m\) with the estimator \(X_m(\hat{\psi})\), thereby greatly simplifying the analysis.

Unfortunately, \(\hat{\beta}\) and thus \(\sum_i^n Y_{0i}(\hat{\beta})/n\) do not remain consistent when we use \(X\) in place of \(X_m\). For this, consider the model
\[
E[A(m)|\overline{I}(m), \overline{A}(m-1), X, Y_{0d}(\beta), X>m+z] = \lambda^T W(m) + \theta^T Q_m Y_{0d}(\beta) \tag{23}
\]
which has replaced \(X_m\) in Equation (19) with \(X\). Clearly, \(\hat{\beta}\) will only be consistent for the parameter \(\beta^*\) of our locally RP SNM if \(\theta = 0\) when \(\beta = \beta^*\). That is \(\hat{\beta}\) will only be consistent if \(Y_m = Y_{0d}(\beta^*)\) is independent of \(A(m)\) given \((\overline{I}(m), \overline{A}(m-1), \Xi(m) = 1, X, X>m+z)\). Now by the CD assumption with \(X\) replacing \(X_m\), \(X>m+z\) implies \(\overline{I}(m) = \overline{U}(m)\). Thus, consistency of \(\hat{\beta}\) requires \(Y_m(\beta^*)\) independent of \(A(m)\) given \((\overline{I}(m), \overline{A}(m-1), \Xi(m) = 1, X, X>m+z)\). Conversely, if \(\Xi(m) = 1, \overline{U}(m) = \overline{U}(m)\). However, we show in the next paragraph that this independence statement is not implied by the RC assumption and thus will generally be false, unless \(A(k)\) has no causal effect on \(X\) for \(k > m\) in which case \(X = X_m\) for each subject and we are back to Equation (20).

When \(A(m)\) has a causal effect on \(X\) (whether directly or through \(A(k), k > m\)) then \(X\) is a common effect of two causes \(A(m)\) and \(X_m\) that are independent conditional on the event \((\overline{I}(m), \overline{A}(m-1), \Xi(m) = 1, \overline{U}(m) = \overline{U}(m), Y_{0d}(\beta^*))\). Therefore, conditional on both the previous event and \((X, X>m+z), A(m)\) and \(X_m\) are dependent and thus so are \(A(m)\) and \(Y_m(\beta^*)\), as \(X_m\) and \(Y_{0d}(\beta^*)\) are highly correlated, since both are functions of \(T_m\).

However, even when \(A(m)\) has a causal effect on \(X\), a slight modification of the above estimation procedure can be used to obtain CAN estimators of \(\beta^*\) in the special case in which \(A(m)\) has a known minimal latent period (MLP) \(\gamma\) for its effect on \(X\) of at least \(\gamma\) months.

Definition of MLP for effect on \(X\): \(A(m)\) has an MLP for its effect on \(X\) of \(\gamma\) months if, for every subject and each time \(k > m\), \(X_k > m + \gamma \implies X_m > m + \gamma\) and \(X_k = X_m\) if \(X_m < m + \gamma\). In particular, by taking \(k = K + 1\), the last two statements become \(X > m + \gamma \implies X_m > m + \gamma\) and \(X = X_m\) if \(X_m < m + \gamma\).

When a known MLP \(\gamma\) exceeds \(\gamma\), we can obtain CAN estimators of \(\beta^*\) by simply replacing \(X > m + \gamma\) with \(X > m + \gamma^*\) in model (23) as then the event \((X > m + \gamma > X_m > m + \gamma)\) or \((X_m > m + \gamma, X > m + \gamma)\) is the event \((X_m, m + \gamma > X_m > m + \gamma)\) and we are back in the setting of Equation (19), except for the additional restriction, \(m + \gamma > X_m\), which does not introduce bias. Thus, the existence of an MLP of length \(\gamma\) greater than \(\gamma\) allows us to estimate \(\beta^*\) without the need to specify an SNFTM for the \(X_m\).

We now prove that under the RC and CD assumptions, an MLP of length \(\gamma\) greater than \(\gamma\) implies that
\[
X_m = m + \int_m^x \exp(\gamma A(t))dt \quad \text{if} \quad X > m \tag{24}
\]
and
\[
X_m = X \quad \text{if} \quad X \leq m \tag{25}
\]
where \(\gamma\) is an unknown parameter and \(A(t)\) is as defined previously when \(t\) is a whole number of months and
\[A(t) = A(\{ t \} | \text{when } t \text{ is not a whole number where } \{ t \} \text{ is the largest integer less than or equal to } t. \text{ Thus, by the definition of an integral as the area under a curve,} \]

\[
\int_m^X \exp(\psi^* A(t)) dt = \sum_{j=m}^{X} \exp(\psi^* A(j)) + [X - \{ X \}] \exp(\psi^* A(\{ X \}))
\]

A locally rank-preserving SNFTM directly maps an individual’s observed failure time \(X \) to the failure time \(X_m \) the individual would have under the ‘time \(m \) dietary intervention.’ Thus, it is a model for individual causal effects. If \(\psi^* = 0 \), \(\exp(\psi^* A(t)) \) is 1 and thus \(X_m = m + \int_0^X \exp(\psi^* A(t)) dt = m + X - m = X \) for any \(m \). Hence \(\psi^* = 0 \) encodes the sharp null hypothesis that \(X_0 = X \) for all subjects, that is, the ‘time 0 dietary intervention’ has no effect on any subject’s \(X = \min(T, D) \). It is useful to note that when \(\psi^* \neq 0 \), the SNFTM (24)–(25) indicates there is no minimal latent period for the effect of treatment on \(X \). A general class (although not the most general class) of locally RP SNFTMs that includes the above one parameter model assumes

\[
X_m = m + \int_m^X \exp\{\omega(A(t), I(t), \psi^*)\} dt \text{ if } X > m \tag{26}
\]

\[
X_m = X \text{ if } X \leq m \tag{27}
\]

where \(\omega(A(t), I(t), \psi) = \omega(A(t), A(t^-), I(t), \psi) \), is a known function satisfying \(\omega(A(t), A(t^-), I(t), \psi) = 0 \text{ if } A(t) = 0 \) or \(\psi = 0 \) and \(A(t^-) \) is the A-history until just prior to time \(t \). For example, we might have \(\omega(A(t), A(t^-), I(t), \psi) = A(t) [\psi_0 + \psi jL(t)] \) where \(L(t) = L(\{ t \}) \) and \(L(\{ t \}) \) is defined as earlier.

We next turn to estimation of \(\psi^* \). For the moment, suppose the CO assumption modified to have \(Y_m, X_m \) in place of \(Y_0 \) held and that \(Y \) was observed. Then we could consistently estimate \(\psi^* \) by g-estimation. Specifically, we define

\[
X_m(\psi) = m + \int_m^X \exp(\omega(A(t), I(t), \psi)) dt \text{ if } X > m \tag{28}
\]

\[
X_m(\psi) = X \text{ if } X \leq m \tag{29}
\]

so under our model, \(X_m = X_m(\psi^*) \). Note that, for each \(\psi \), \(X_m(\psi) \) can be computed from the observed data. Suppose, for concreteness, \(\psi^* \) is SD so we search over a 5D grid. We let \(Q_m^\mu(\psi) = q_m^\mu[A(m), \mu(m - 1), X_m(\psi)] \) be a SD vector of functions of \((\mu(m), \mu(m - 1), X_m(\psi)) \) such as \(Q_m^\mu(\psi) = X_m(\psi) \) \([1, \mu, \lambda(m)]\). We use an extended linear model

\[
E[A(m)|\mu(m), \mu(m - 1), \mu(m - 1)] = 1, X_m(\psi)] = \int_0^X W(m, \psi^*) + \theta^* Q_m^\mu(\psi)
\]

Our g-estimate \(\hat{\psi} \) is the \(\psi \) for which the 5 degree of freedom score test that all five components of \(\theta \) equal zero is precisely zero. Since, by the modified CO assumption, \(\theta = 0 \) if \(\psi = \psi^* \), the g-estimate \(\hat{\psi} \) is CAN for \(\psi^* \). The particular choice of the functions \(Q_m^\mu(\psi) \) does not affect the consistency of the point estimate, but it determines the width of its confidence interval. Because \(X_m(\psi) \) is a nonlinear function of \(\psi \), there is no closed form expression for \(\hat{\psi} \). However, the equation solved by \(\hat{\psi} \) is a smooth function of \(\psi \), so standard methods for solving nonlinear equations such as the Newton-Raphson algorithm can be used to compute \(\hat{\psi} \).

Next suppose the observed data are still \((Y, X, I, \mu)\), but the modified CO assumption does not hold. Rather, the CD and RC assumptions hold. Define the estimator \(\hat{\psi} \) for which the 5 degree of freedom score test of the hypothesis \(\theta = 0 \) is precisely zero in the model

\[
E[A(m)|\mu(m), \mu(m - 1), \mu(m - 1)] = 1, X_m(\psi), X_m(\psi) > m + \zeta]
\]

\[
= \int_0^X W(m, \psi^*) + \theta^* Q_m^\mu(\psi)
\]

Note the set of subjects who do not contribute to the score test of \(\theta = 0 \) (that is, subjects with \(X_\mu(\psi^*) < m + \zeta \)) depend on \(\psi \). When \(X_\mu = X_\mu(\psi^*) > m + \zeta \), then \(\mu(m) = \emptyset(m) \), by assumption CD. Hence, at \(\psi = \psi^* \), our procedure conditions on \(\mu(m) = \emptyset(m) \). It follows that, provided \(\psi^* \) is identified, the estimator \(\hat{\psi} \) is a CAN estimator of \(\psi^* \) under the RC assumption, as that assumption implies the coefficient \(\theta = 0 \) if \(\psi = \psi^* \). However, under the CD and RC assumptions, the positivity assumption does not guarantee identification.

Now let \(\beta(\psi) \) be defined like \(\beta \) except that everywhere \(X_m(\psi) \) replaces \(X_m \) so that \(\beta(\psi) \) is a function of the data \((Y, X, I, \mu)\) only. Next define

\[
Y_m(\beta, \psi) = Y - \sum_{j=m}^K \gamma_{m}[A(j), \mu(j - 1), \mu(j), X_j(\psi), \beta] \tag{30}
\]

Note, by both models (17) and (26) being locally rank preserving, \(Y_m(\beta^*, \psi^*) = Y_m \). Thus, when \(\psi^* \) and \(\beta^* \) are identified, the sample average \(\sum_j Y_m(\beta(\psi^*), \psi^*) \) is a CAN estimator of the parameter of interest \(E[Y_m] \) under the RC and CD assumptions, provided both our locally rank-preserving SNM (17) for \(Y_m | X_m \) our locally rank-preserving SNFTM (26) for \(X_m \) and our model (22) are all correctly specified.

Estimation of \(E[Y_m] \) under an SNMM and an SNFTM without rank preservation. As discussed earlier, the assumption of local rank preservation is biologically implausible. Thus, we will no longer assume that our locally rank-preserving models (17), and (26) are true. As a consequence, we can no longer assume that there exists some \((\beta^*, \psi^*) \) such that the unobserved counterfactuals \(X_m, Y_m \) equal the observed \(X_m(\psi^*), Y_m(\beta^*, \psi^*) \) when \((\beta, \psi) = (\beta^*, \psi^*) \). However, suppose with \(X_m(\psi^*), Y_m(\beta^*, \psi^*) \) still defined by (28), (29), and (30), we assume that, for each \(m \), there exists some \((\beta^*, \psi^*) \) such that

Assumption (i): when \(\psi = \psi^* \), \(X_m \) and \(X_m(\psi^*) \) have the same conditional distribution given \((A(m), I(m), \mu(m - 1)) \) and

Assumption (ii):

\[
E[Y_m | A(m), I(m), \mu(m - 1), X_m = x] = E[Y_m(\beta^*, \psi^*) | A(m), I(m), \mu(m - 1), X_m(\psi^*) = x]
\]

International Journal of Obesity
In contrast with the assumption of local RP, there is no a priori biological reason to exclude the possibility that both (i) and (ii) hold.

When assumptions (i) and (ii) hold for each m, we say the SNMM

$$y_m[A(m), \alpha(m-1), \mu(m), x, \beta]$$

(32)

for $$Y_m|X_m$$ and the SNFTM (28)-(29) for $$X_m$$ jointly hold with true parameter $$(\beta^*, \psi^*)$$. If the RC and CD assumptions, the model (22) and (i) and (ii) all hold, then $$\psi, \beta(\psi)$$ and $$\sum_i Y_{0i}[\beta(\psi), \psi]/n$$ as defined previously are CAN for $$\psi^*, \beta^*$$, and the parameter of interest $$E[Y_{0i}]$$, respectively, provided $$(\beta^*, \psi^*)$$ are identified and we choose $$Q_{0i}(\beta)$$ linear in $$Y_{0i}(\beta)$$. (In contrast, $$Q_{0i}^2(\psi)$$ need not be chosen linear in $$X_m(\psi)$$.)

In summary, $$\psi, \beta(\psi)$$ and $$\sum_i Y_{0i}[\beta(\psi), \psi]/n$$ have the same statistical properties under our joint SNMM model for $$Y_m|X_m$$ and SNFTM for $$X_m$$ when local rank preservation does not hold as when it does.

Are remarkable results due to some sleight of hand. The result summarized in the last sentence is striking for a number of reasons. Our comparability assumption, that is, the RC assumption, only assumes no unmeasured confounding conditional on $$U(m)$$. Yet neither the SNMM for $$Y_m|X_m$$ nor the SNFTM for $$X_m$$ is a model for causal effects conditional on the unmeasured $$U(m)$$. Thus, it is remarkable that these models can be used to estimate causal contrasts such as $$E[Y_{0i}^d-E(Y)_{0i}]$$ under the RC and CD assumptions. Furthermore, even though $$X_m(m+\zeta)$$ implies $$U(m) = \tilde{U}(m)$$ by the CD assumption, nonetheless, in the absence of local rank preservation, $$X_m(\psi^*) > m + \zeta$$ does not imply $$U(m) = \tilde{U}(m)$$. Hence when local rank preservation does not hold, even though we condition on $$X_m(\psi^*) > m + \zeta$$ in computing our g-estimates $$\psi, \beta(\psi)$$, we do not thereby restrict the analysis to a subset of subjects all of whom have the same value of $$U(m)$$; thus one might guess confounding by the unmeasured $$U(m)$$ has not been controlled and our estimates of $$\psi, \beta(\psi)$$ and $$\sum_i Y_{0i}[\beta(\psi), \psi]/n$$ must be inconsistent. Remarkably, such is not the case.

How did we pull off the seemingly remarkable ‘magic’ described in the preceding paragraph? We shall investigate whether we used some subtle ‘sleight of hand.’ We use a simple paradigmatic instance of our model that only involves a single time-independent exposure to guide our investigation. Specifically, we next provide an explicit proof that contains no ‘sleight of hand’ of our results in the case of a time-independent exposure. The general case is treated in the appendix. The reader who is interested more in the methodology and less interested in foundational issues may feel free to skip ahead to the section Censoring.

Paradigmatic instance of a time-independent exposure: We suppose that $$K+1 = 1$$ so time 0 is the only time of exposure. Further we assume there are no covariates. In this setting, the RC assumption becomes $$(Y_0, X_0)$$ independent of $$A(0)$$ given the unmeasured confounder $$U(0) = 0$$. The CD assumption becomes $$X_0(\psi^*) > m + \zeta$$ implies $$U(0) = 0$$. Our SNFTM for $$X_0$$ becomes

Assumption (i): $$X_0(\psi) = X \exp(\psi(0))$$ and $$X_0$$ have the same conditional distribution given $$A(0)$$ at $$\psi = \psi^*$$, whereas our SNMM for $$Y_m|X_m$$ becomes

Assumption (ii): $$E[Y_0^d(\beta^*, \psi^*)|A(0), X_0(\psi^*) = x]$$ where $$Y_0(\beta(\psi), \psi) = Y - Y_{0i}(\beta(\psi), \psi)/\tilde{U}(m)$$. Nevertheless, in the absence of local rank preservation does not hold, even

Neither model makes any reference to $$U(0)$$ and thus neither is a model for causal effects conditional on $$U(0)$$. Furthermore, although $$X_0(\psi^*) \succ U(0) = 0$$ by the CD assumption, nonetheless $$X_0(\psi^*) \succ U(0) = 0$$. Now to prove our results.

Proofs of our results:

Proof that $$\psi$$ is CAN for $$\psi^*$$: By assumption (i), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$. By the CD and then the RC assumptions, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

Furthermore, although $$X_0(\psi^*) \succ U(0) = 0$$ by the CD assumption, nonetheless $$X_0(\psi^*) \succ U(0) = 0$$.

Hence, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$ is a model for causal effects conditional on $$U(0)$$.

Now to prove our results.

Proofs of our results:

Proof that $$\psi$$ is CAN for $$\psi^*$$: By assumption (i), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$. By the CD and then the RC assumptions, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

Furthermore, although $$X_0(\psi^*) \succ U(0) = 0$$ by the CD assumption, nonetheless $$X_0(\psi^*) \succ U(0) = 0$$.

Hence, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$ is a model for causal effects conditional on $$U(0)$$.

Now to prove our results.

Proof that $$\psi$$ is CAN for $$\psi^*$$: By assumption (i), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

By assumption (ii), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

Thus, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

By assumption (ii), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

Hence, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$ is a model for causal effects conditional on $$U(0)$$.

Now to prove our results.

Proof that $$\psi$$ is CAN for $$\psi^*$$: By assumption (i), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

By assumption (ii), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

Thus, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

By assumption (ii), $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x] = E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$.

Hence, $$E[Y_0(\gamma, \psi^*)|A(0), X_0(\psi^*) = x]$$ is a model for causal effects conditional on $$U(0)$$.
analyze are correct.) We actually prove this result for an alternative, more intuitive, definition of an SNMM for X_m and an SNFTM for X_m and then prove these alternative definitions are logically equivalent to assumptions (i) and (ii). This is done in this subsection for the special case of a time-independent exposure and in the appendix for a general time-varying exposure.

Consider again, for simplicity, our paradigmatic instance. Write $A(0)$ as A. Suppose that Y, Y_0, X, X_0 are all non-negative continuous random variables with support on $(0, \infty)$, satisfying the consistency assumption $X = X_0$ and $Y = Y_0$ if $A = 0$. Let $S_0(x|A) = \text{pr}(X > x|A)$. Let $S_0(x|A) = \text{pr}(X > x|A)$. Let $S_0^{-1}(x|A)$ be the inverse of $S_0(x|A)$ with respect to the x argument. Define the function $x_0(x, A) = S_0^{-1}([S(x|A)]|A)$. Substituting 0 for A, we find $x_0(x, 0) = x$, so

$$x_0(x, 0) = X_{wp1} \tag{33}$$

Define $X_0^1 = x_0(X, 0)$. Then $X_0^1 = x_0(X, 0) = X$, when $A = 0$. It is well known that $X_0^1 = x_0(X, A)$ and X_0 have the same conditional distribution given A.

Define $S_0(t|A, X_0^1 = x) = \text{pr}(Y > t|A, X_0 = x)$ and $S_0(t|A, X_0 = x) = \text{pr}(Y > t|A, X_0 = x)$. Let $S_0^{-1}(t|A, X_0 = x)$ be the inverse of $S_0(t|A, X_0 = x) = \text{pr}(Y > t|A, X_0 = x)$ with respect to the t argument. Let $y_0(t, x, A) = S_0^{-1}([S_0(t|A, X_0^1 = x)|X_0 = x] = y_0(t, Y_0, X, A)$. Then $Y_0^A|X_0 = x$ and $Y_0^A_x|X_0 = x$ have the same conditional distribution. It follows that $y_0^A|X_0 = x$ and $Y_0^A_x|X_0 = x$ have the same joint conditional distribution. Thus,

$$E[Y_0^A|X_0^1 = x, A] = E[Y_0^A|X_0 = x, A] \tag{34}$$

Define

$$\gamma^*(A, x) = E[Y|X_0 = x, A] = E[Y_0^A|X_0^1 = x, A] \tag{35}$$

The last two equations imply that

$$E[Y - \gamma^*(A, X_0^1)|X_0^1 = x, A] = E[Y_0|X_0 = x, A] \tag{36}$$

and

$$\gamma^*(0, X, 0) = 0 \tag{37}$$

as, by $Y_0 = y_0(Y, X, A), Y_0 = Y$ when $A = 0$.

Here are the alternative definitions of an SNFTM for X_0 and an SNMM for $Y_0|X_0$.

Definition a: Let $x_0(t, a, \psi)$ be a known function monotone increasing in t for each (a, ψ) satisfying $x_0(t, a, \psi) = 1$ if $a = 0$ or $\psi = 0$. We say $x_0(t, a, \psi)$ is a correctly specified SNFTM for X_0 if there exists ψ^* such that $X_0(\psi^*) = x_0(X, A, \psi^*)$ equals X_0 with probability one.

Definition b: We say a known function $y(a, x, \beta)$ satisfying $y(a, x, \beta) = 0$ if $a = 0$ or $\beta = 0$ is a correctly specified SNMM for $Y_0|X_0$ if there exists β^* such that $Y_0(\beta^*) = y(X, A, \beta^*)$ with probability one.

Define $Y_0(\beta^*)$, $\psi^* = Y - \gamma^*(A, X_0(\psi^*), \beta^*)$.

It is obvious from definitions (a) and (b) that there always exist correctly specified SNMMs for $Y_0|X_0$ under definition (b) and correctly specified SNFTMs for X_0 under definition (a) as $\gamma^*(A, X)$ and $x_0^*(X, A)$ are well-defined functions of F, F_0 satisfying $\gamma^*(0, X) = 0$ and $x_0^*(X, 0) = X$ with probability one, where F and F_0, respectively, denote the joint distribution of (Y, X, A) and of (Y_0, X_0, A). Not $\gamma^*(A, X)$ and $x_0^*(X, A)$ do not depend on the conditional joint distribution of $(Y, X, A|V, X_0)$ given A. This is as desired as this joint is not non-parametrically identified from data (Y, X, A) even when A is randomly assigned.

Thus, it only remains to show the logical equivalence of the original and alternative definitions of an SNFTM for X_0 and an SNMM for $Y_0|X_0$.

The following Lemma shows that the alternative definitions of an SNFTM for X_0 and an SNMM for $Y_0|X_0$ imply the previous definitions.

Lemma: Suppose $x_0(t, a, \psi)$ is a correctly specified SNFTM for X_0 as defined in definition (a). Then $X_0(\psi^*)|A$ has the same distribution as $X_0|A$. Further assume that $\gamma(a, x, \beta)$ is a correctly specified SNMM for $Y_0|X_0$ as defined in definition (b). Then $E[Y_0|\beta^*, \psi^*]|A, X_0(\psi^*) = x] = E[Y_0|X_0 = x, A]$.

Proof: The first result follows immediately from X_0 and X_0 having the same conditional distribution given A. The second result follows from $E[Y - \gamma^*(A, x)|X_0^1 = x, A] = E[Y_0|X_0 = x, A]$.

Finally, the following Lemma shows that the original definitions imply the alternative definitions.

Lemma: Suppose $x_0(t, a, \psi)$ is monotone increasing in t for each (a, ψ) satisfying $x_0(t, a, \psi) = 1$ if $a = 0$ or $\psi = 0$. Further suppose that $X_0(\psi^*)|A$ has the same distribution as $X_0|A$ wp1 where $X_0(\psi^*) = x_0(X, A, \psi)$. Then $X_0(\psi^*)$ is a correctly specified SNFTM for X_0 under definition (a). In addition, suppose that $\gamma(a, x, \beta^*)$ is a function satisfying $\gamma(a, x, \beta) = 0$ if $a = 0$ or $\beta = 0$. Suppose $E[Y - \gamma^*(A, x, \beta^*)|X^1 = x, A = a] = E[Y_0|X_0 = x, A = a]$ for all (x, a) in a set of probability 1 under the law of (X_0, A). Then, $\gamma(a, x, \beta)$ is a correctly specified SNMM for $Y_0|X_0$ under definition (b).

Proof: The proof of the first part follows from the well-known result that $X_0^1 = x_0(X, A)$ is the only function $h(X, A)$ of (X, A) satisfying $h(X, A)|A$ has the same distribution as $X_0|A$ wp1 and $h(t, 0) = x$. The second part is proved by showing that $\gamma^*(a, x)$ is the unique function $h(t, x)$ with $h(0, x) = 0$ satisfying $E[Y - h(A, x)|X^1 = x, A = a] = E[Y_0|X_0 = x, A = a]$ for all (x, a) in a set of probability 1 as in Robins et al. and Lok et al.

Are $\gamma^*(a, x), x_0^*(x, a)$ and $E[Y_0|a]$ non-parametrically identified from data (Y, X, A) under our assumptions? In this subsection, we finally uncover some sleight of hand that provided us with such seemingly magical results. Although we restrict our discussion to the special case of a time-independent exposure, similar results apply in the general case. Specifically, we will show that $\gamma^*(a, x), x_0^*(x, a)$ and $E[Y_0]$ are not identified by the distribution of (Y, X, A) under the RC and CD assumptions. Previously, we saw that $\gamma^*(a, x), x_0^*(x, a)$ and $E[Y_0]$ are identified and equal $\gamma(a, x, \beta^*) = x_0^*(x, a, \psi^*)$ and $E[Y - \gamma^*(A, X, \beta^*)]$, respectively, when we assume a correctly specified SNFTM $x_0^*(x, a, \psi)$ for X_0 and an SNMM $\gamma(a, x, \beta)$ for $Y_0|X_0$.

S29
causal models

J M Robins

International Journal of Obesity

S30

Y0|x0 whose true parameters ψ* and β* are identified (by g-estimation). It follows that identification of \(γ^*(a, x) \) and \(E[Y_i|a] \) result from the functional form restrictions encoded in our models \(x_0(x, a, ψ) \) and \(γ(a, x, β) \). It follows that if we make the restrictions imposed by our models less rigid by adding additional parameters, we can lose identification of \(γ^*(a, x) \) and \(x_0(x, a, ψ) \) and the false parameters (ψ**, β**) both make the score tests in our g-estimation procedures exactly zero for all choices of \(Q_m(β) \) linear in \(Y_m(β) \) and all choices of \(Q_m(β) \). This loss of identification can be expressed by saying that the data (even were the sample size is infinite) cannot be used to determine whether the true causal quantities are \(γ(a, x, β*) \) and \(x_0(x, a, ψ*) \) and \(E[Y|γ(A, X, β*)] \) versus \(γ(a, x, β**), x_0(x, a, ψ**) \) and \(E[Y|γ(A, X, β**)] \).

In contrast, \(γ^*(a, x) \) and \(E[Y_i|a] \) are identified under the comparability assumption that \((Y_0, X_0) \) is independent of \(A_0 \), without any reliance on the functional form restrictions encoded in our models. However, in contrast with assumption RC, this comparability assumption contradicts our substantive knowledge, as it implies no unmeasured confounding by undiagnosed chronic disease.

The problem of lack of identification under the RC and CD assumptions has little to do with the question of local rank preservation. Suppose we have assumed a correctly specified SNFTM \(x_0(x, a, ψ) \) for \(X_0 \) and we do not assume RP. Suppose in truth RP holds. Nonetheless, a second investigator who assumes the RP version of the SNFTM model gains nothing thereby with regard to the estimation of \(x_0(x, a) \): the causal quantity \(x_0(x, a) \) is identified under the non-rank-preserving SNFTM if and only if it is identified under the RP SNFTM. However, a small amount could be gained by assuming rank preservation for an SNMM; rarely by assuming RP a non-identifiable SNMM can become identifiable as one can then use nonlinear functions \(Q_m(β) \) of \(Y_m(β) \) in g-estimation. But this advantage is not actually due to rank preservation. Rather it is due to the fact that an RP SNMM is actually a special case of a structural nested distribution model as defined in Robins’ and Robins and Wasserman. Our SNMM model \(γ(a, x, β) \) for \(Y_0|X_0 \) is a structural nested distribution model if \(Y|γ(A, X, β) \) is independent (rather than just mean independent) of \(A \) given \(X \). It is this independence (rather than rank preservation) that licenses the use of nonlinear functions \(Q_m(β) \) of \(Y_m(β) \) in g-estimation.

Non-identifiability of \(γ^*(a, x) \), \(x_0(x, a) \) and \(E[Y_i|a] \): Suppose we do not impose an SNFTM for \(X_0 \) or an SNMM for \(Y_0|X_0 \). Then, it is clear that all we can conclude under assumptions RC and CD is that \(X_0 = x_0(X, A) \) and \(A ≡ A(0) \) are independent given \(X_0 > γ \) and \(E[Y|γ(A, x)]|A(0), X_0 = x, X_0 > γ] = E[Y|γ(A, x)] \). As a consequence, our parameter of interest \(E[Y|a] \) is not identified. Specifically, under RC and CD, with \(p = P(a = 0) \)

\[E[Y|a] = \]

\[E[Y|X > γ, A = 0] \{pr[X > γ|A] \}

\[+ E[Y|X ≤ γ, A = 0] \{pr[X ≤ γ|A] \}

\[(39) \]

\[+ E[(Y − γ(A, X'))|X’ ≤ γ, A = 0] \{pr[X’ ≤ γ|A] \} \}

\[(1 − p) \]

\[(40) \]

Thus, if we have assumed a correctly specified assumptions has little to do with the question of local rank encoding in our models. However, in contrast with assumption RC, this comparability assumption contradicts our substantive knowledge, as it implies no unmeasured confounding by undiagnosed chronic disease.

The problem of lack of identification under the RC and CD assumptions has little to do with the question of local rank preservation. Suppose we have assumed a correctly specified SNFTM \(x_0(x, a, ψ) \) for \(X_0 \) and we do not assume RP. Suppose in truth RP holds. Nonetheless, a second investigator who assumes the RP version of the SNFTM model gains nothing thereby with regard to the estimation of \(x_0(x, a) \): the causal quantity \(x_0(x, a) \) is identified under the non-rank-preserving SNFTM if and only if it is identified under the RP SNFTM. However, a small amount could be gained by assuming rank preservation for an SNMM; rarely by assuming RP a non-identifiable SNMM can become identifiable as one can then use nonlinear functions \(Q_m(β) \) of \(Y_m(β) \) in g-estimation. But this advantage is not actually due to rank preservation. Rather it is due to the fact that an RP SNMM is actually a special case of a structural nested distribution model as defined in Robins’ and Robins and Wasserman. Our SNMM model \(γ(a, x, β) \) for \(Y_0|X_0 \) is a structural nested distribution model if \(Y|γ(A, X, β) \) is independent (rather than just mean independent) of \(A \) given \(X \). It is this independence (rather than rank preservation) that licenses the use of nonlinear functions \(Q_m(β) \) of \(Y_m(β) \) in g-estimation.

Under assumptions RC and CD, even if we unrealistically suppose that data on \(X_0 \) was available for all subjects, we could not identify \(β^* = (β_0^*, β_1^*) \) because \(β_0^* \) would not be identified, although \(β_1^* \) would be identified. This follows from the fact that, under RC and CD, no subject with \(X_0 < γ \) may contribute to g-estimation of \(β^* \). As a consequence, we cannot identify \(E[Y|a] \) because \(Y_0 = Y − β_1^* X_0 \) is not estimable on the subset of exposed subjects (\(A = 1 \)) with \(X_0 < γ \).

In contrast, when data on \(X_0 \) are available, \(β^* \) and \(E[Y_i|a] \) are identified in the RP SNM \(γ(A, X_0, β) = β_0 A + β_1 X_0 \) because both \(β_0 \) and \(β_1 \) can be estimated by g-estimation restricted to subjects with \(X_0 > γ \). Thus \(Y_0 = Y − β_1^* A − β_1^* X_0 \) can be estimated for all subjects, including those with \(A = 1 \) and \(X_0 < γ \), because, by having the same parameters apply to subjects with \(X_0 < γ \) as to subjects with \(X_0 > γ \), the model allows extrapolation from subjects with \(X_0 > γ \) to subjects with \(X_0 < γ \). One must weigh the benefit of extrapolation that comes with assuming the model \(γ(A, X_0, β) = β_0 A + β_1 X_0 \) against the risk that the model is misspecified for subjects with \(X_0 < γ \), as would be the case were the true model: \(γ(A, X_0, β) = \beta_0^* A(X_0 > γ) + \beta_1^* X_0(X_0 > γ) + β_0 A(X_0 < γ) + \beta_1 X_0(X_0 < γ) \) with \(β_0^* \) different from \(β_0 \) and with \(β_1^* \) different from \(β_1 \). Then the extrapolated value \(Y − β_1^* A − β_1^* X_0 \) for \(Y_0 \) based on the misspecified model would be a badly biased estimate of the true \(Y_0 \) for subjects with \(A = 1 \) and \(X_0 < γ \). Yet because the
model \(\gamma(A, X_0, \beta) = \beta_0 A + \beta_1 A X_0 \) is correct for subjects with \(X_0 > \zeta \), there exists no valid test of model fit that could detect the biased extrapolation when we only assume RC and CD.

Suppose now, as is true in practice, data on \(X_0 \) are unavailable for subjects with \(A = 1 \). Then, under assumptions RC and CD, without the help of a correct RP SNFTM for \(X_0 \) whose functional form provides for extrapolation, we can no longer identify any aspect of the distribution of \(X_0 \) for any identifiable subset of subjects with \(A \neq 0 \). This is because, although we know that the identified quantity \(E[Y | X > \zeta, A = 0] \) equals \(E[Y_0 | X_0 > \zeta, A \neq 0] \), we cannot identify which subjects with \(A \neq 0 \) have \(X_0 > \zeta \).

In summary, in the realistic setting of longitudinal time-dependent exposures, the possibility of sensitivity of one’s estimate of \(E[Y_0] \) to model extrapolation should be examined by reestimating \(E[Y_0] \) under a variety of models that differ in both the dimension of the parameter vectors and in functional form.

A final point is that no individual who has developed a chronic disease by time \(m \) is included in our g-estimation procedure at \(m \) because \(X_m(\psi) = X < m + \zeta \) for such subjects. Thus, our estimate of the effect of exposure at time \(m \) on a subject with a chronic disease at \(m \) is identified wholly by extrapolation from the effect on subjects without chronic disease at \(m \). One approach to lessening the degree of extrapolation is to require a subject to be rather ill before they meet the definition of having a diagnosed chronic disease. For example, mild to moderate Db or hypertension need not qualify as having a chronic disease, especially if regular data on BP and blood glucose have been recorded in the database, as unmeasured confounding by undiagnosed mild to moderate Db or hypertension should then be minimal. If our definition of a diagnosed chronic disease is sufficiently stringent, then few subjects who meet the definition at \(m \) will be observed to gain weight subsequent to \(m \). In that case, model-based extrapolation must be minimal—any model-based extrapolation is restricted to those gaining weight at \(m \) because our models are models for the causal effect of weight gain (not loss) at \(m \). In the section Intractable confounding in subgroups, we offer a different approach to lessening our reliance on model misspecification.

Can we replace \(X_m \) by \(X \) revisited. We revisit the issue of whether we could have replaced \(X_m \) by the observed \(X \) in the CD assumption if we are willing to assume an SNFTM for \(X_m \) so as to link the distribution of \(X \) with that of \(X_m \). We take the observed data to be \((\bar{Z}(K), T(K + 1), Y, X) \). We will study the implications of two different SNFTMs. The first SNFTM is the model discussed above that assumes \(X_m(\psi^*) \) and \(X_m \) have the same conditional distribution given \((\bar{L}(m), \bar{A}(m)) \). The second assumes \(X_m(\psi^*) \) and \(X_m \) have the same conditional distribution given \((\bar{L}(m), \bar{A}(m), \bar{U}(m) = 0) \). In both cases, \(X_m(\psi^*) \) is defined by Equations (28) and (29). Note a locally RP SNFTM implies \(X_m(\psi^*) = X_m \) and thus both models are true. When rank preservation does not hold, the truth of one model does not imply the truth of the other.

We first show that when rank preservation does not hold, under the RC assumption and the modified CD assumption in which \(X_m \) is replaced by the observed \(X \), the parameter \(\psi^* \) of the first SNFTM may not be identifiable; however, the parameter of the second model is estimable by g-estimation. Thus, one might assume we might impose the modified CD assumption and the second model in lieu of the unmodified CD assumption and the first model. However, we shall see this approach has a drawback: knowledge of the parameter \(\psi^* \) of the second model in contrast to that of the first model does not help identify the parameter of interest \(E[Y_0] \).

We now show that \(\psi^* \) is identifiable in the second SNFTM under both the modified CD assumption and the modified CD assumptions. Note \(X > \zeta + m \) is equivalent to

\[
\begin{align*}
X_m(\psi) = m + \int_0^X \exp\{c(\bar{A}(t), \bar{T}(t), \psi)\} dt > m + \zeta + m \\
+ \int_m^X \exp\{c(\bar{A}(t), \bar{T}(t), \psi)\} dt
\end{align*}
\]

Thus, the modified CD assumption implies that whenever

\[
X_m(\psi) \geq m + \int_m^{\zeta + m} \exp\{c(\bar{A}(t), \bar{T}(t), \psi)\} dt
\]

we have \(\bar{U}(m) = 0 \). However, even if we made the rank preservation assumption that \(X_m(\psi^*) = X_m \) we cannot therefore conclude from the RC assumption that \(A(m) \) is independent of \(X_m(\psi^*) \) given \((\bar{L}(m), \bar{A}(m), X_m(\psi^*) \geq m + \int_m^X \exp\{c(\bar{A}(t), \bar{T}(t), \psi)\} dt \); although this conditioning event indeed implies \(\bar{U}(m) = 0 \); nonetheless, the conditioning event also depends on \(A(t) \) for \(t > m \), whereas the conditioning events in the RC assumption do not.

However, if we let \(d(m, \psi, \zeta) \) be the maximum value of \(X_m(\psi) \) among all subjects with \(m < X < \zeta + m \) (that is, subjects with \(m < X_m(\psi) < m + \int_m^{\zeta + m} \exp\{c(\bar{A}(t), \bar{T}(t), \psi)\} dt \), then \(X_m(\psi) > d(m, \psi, \zeta) \) implies \(X > \zeta + m \) and thus \(\bar{U}(m) = 0 \). Thus, we can conclude from the RC assumption that, under a rank-preserving model, \(A(m) \) and \(X_m(\psi^*) \) are independent given \((\bar{L}(m), \bar{A}(m), X_m(\psi^*) \geq d(m, \psi^*, \zeta)) \), as \(d(m, \psi, \zeta) \) does not vary among the subjects. (Technically, this independence only holds if we replace \(d(m, \psi, \zeta) \) by its probability limit. But this distinction is unimportant for inference because \(d(m, \psi, \zeta) \) converges to its probability limit at a rate even faster than \(n^{1/2} \) under mild regularity conditions.) Thus, given a rank-preserving SNFTM, we can use g-estimation to obtain a CAn estimate \(\hat{\psi} \) of \(\psi^* \) under the RC and modified CD assumptions. Specifically, \(\hat{\psi} \) is the \(\psi \) for which the 5 degree of freedom score test of the hypothesis \(\theta = 0 \) is precisely zero in the model

\[
E[A(m) | \bar{L}(m), \bar{A}(m) = 1, X_m(\psi), X_m(\psi) > d(m, \psi, \zeta)] = \mathbf{x}^T \mathbf{W}(m) + \mathbf{\theta}^T \mathbf{Q}_m(\psi)
\]
Suppose now rank preservation is absent. If we assume the second SNFTM, we know $X_m(\psi^*)$ and X_m have the same distribution given $I(m)$, $\bar{A}(m)$, $U(m) = 0$. Thus, by the RC assumption $A(m)$ and $X_m(\psi^*)$ are independent given $(I(m)$, $\bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta), U(m) = 0$). Hence, $A(m)$ and $X_m(\psi^*)$ are independent given $(I(m)$, $\bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta)$ as the event $I(m)$, $\bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta)$ is equivalent to the event $I(m)$, $\bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta), U(m) = 0$. So ψ generally remains CAN for ψ^*.

We next show that ψ^* is not identifiable in the first SNFTM model under RC and the modified CD assumptions. Under the first SNFTM, we only know $X_m(\psi^*)$ and X_m have the same distribution given $I(m)$, $\bar{A}(m)$. Thus $X_m(\psi^*)| I(m), \bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta)$ has the same distribution as $X_m| I(m), \bar{A}(m), X_m > d(m, \psi^*, \zeta)$.

Thus, by equivalence of the conditioning events, both $X_m(\psi^*)| I(m), \bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta)$ and $X_m(\psi^*)| I(m), \bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta), U(m) = 0$ have the same distribution as $X_m| I(m), \bar{A}(m), X_m > d(m, \psi^*, \zeta)$. However, under the first SNFTM and without rank preservation, this equality does not allow us to invoke the RC assumption, as the conditioning event $I(m), \bar{A}(m)$, $X_m > d(m, \psi^*, \zeta), U(m) = 0$ in that assumption differs from the conditioning event $I(m), \bar{A}(m)$, $X_m > d(m, \psi^*, \zeta)$. Thus, we cannot conclude $A(m)$ and $X_m(\psi^*)$ are independent given $(I(m)$, $\bar{A}(m)$, $X_m(\psi^*) > d(m, \psi^*, \zeta)$ and so ψ will not be CAN for ψ^* under the first SNFTM. Indeed identification is not possible.

Finally, we argue that knowledge of the parameter ψ^* of the second model in contrast to that of the first model does not help identify $E[Y_o]$. Under the second model, we only learn the causal effect of treatment at time m among those with $U(m) = 0$. This does not allow us to estimate the distributions of X_m and thus Y_m for all subjects. In fact, the counterfactual distribution of X_m and thus Y_m are not even identified in those with $U(m) = 0$ for $m < K$, because the distributions of X_K and thus Y_K are not identifiable in those with $U(m) = 0$ but $U(K) = 0$. One way to understand the difference is that the second model does not allow for the extensive model-based extrapolation that the first model does. Whether that is viewed as a drawback of the second model clearly depends on one’s faith in versus skepticism about model-based extrapolation.

Intractable confounding in subgroups

Our comparability assumption RC that $A(m)$ is statistically independent of (Y_m, X_m) given both $I(m)$ and $U(m) = \bar{U}(m)$ at time m may not be reasonable for particular, identifiable subgroups of the study population. That is, there may be identifiable subgroups in whom confounding by unmeasured factors is intractable, where, by definition, a subgroup is intractable at time m if membership in the subgroup is determined by the measured variables $I(m)$. In the section “Intractable unmeasured confounding in subgroups,” we noted that possible examples of such subgroups include subjects with a diagnosed chronic disease, an age of greater than 70 years, or a BMI below 21 kg/m2. In fact, as we have assumed $U(m) = 1$ whenever $X < m$, we have all along been assuming intractable confounding in the identifiable subgroup consisting of those alive with a diagnosed chronic disease at time m ($X < m, T > m$). We have therefore been excluding them from our g-estimation procedure by requiring $X_m > m + \zeta$ for inclusion. Recall that if $X < m$, then $X = X_m$.

Suppose therefore we wish to conduct an analysis where no comparability assumption (neither CO nor RC) is assumed at time m for subjects who, at m, have an age of greater than 70 years, or a BMI below 21 kg/m2. To do so, we simply redefine $\Xi(m)$ to be zero for such subjects regardless of whether or not their BMI$(m + 1) \geq$ BMI$_{max}(m)$, so that they too are excluded from contributing to g-estimation at time m. In so doing, we do not change the models that are fit, the interventions under consideration or the parameter of interest $E[Y_o]$. Rather we only change, by decreasing, the number of person-time observations used to estimate our model parameters. We thereby sacrifice some power and efficiency. As a consequence, even where willing to make assumption CO for the remaining subjects with $\Xi(m) = 1$, $E[Y_o]$ would no longer be non-parametrically identified, because model-based extrapolation is now being used for identification.

In contrast to g-estimation of SNMs, when confounding by unmeasured factors is present in certain subgroups of the study population, neither IPTW estimation nor the parametric g-formula estimator can be used to estimate $E[Y_o]$.

If a substantial fraction of the total person time is accrued by subjects in identifiable subgroups with intractable confounding, then either identification will fail or, more often, the validity of one’s estimate of $E[Y_o]$ will rely heavily on model extrapolation. One, albeit not altogether satisfactory, way to decrease the reliance on model extrapolation is to give up the attempt to estimate the parameter of interest $E[Y_o]$. Instead, let $I(m)$ be the indicator of intractable confounding in identifiable subgroups that takes the value 1 if at time m a subject is in an identifiable subgroup with intractable confounding and 0 otherwise. Note that, based on the above discussion, subjects alive at m with $X < m$ have $I(m) = 1$.

Define Y_{mT}^e to be one’s counterfactual outcome when following the time m^T dietary intervention in which a subject follows his observed diet up through month m and is thereafter weighed daily. On any day in month $k > m$ that his weight exceeds his previous maximum monthly weight, the subject’s caloric intake is restricted whenever $I(\Xi(k)) = 0$. However, during months in which a subject is in an intractable subgroup $[I(\Xi(k)) = 1]$, we place no restrictions on his diet or weight gain, reflecting the fact that due to intractable confounding, we are unable to estimate the effect of preventing weight gain among subjects with $I(m) = 1$, except by model extrapolation. In this section a superscript T does not denote matrix transposition.
Our new goal becomes to estimate $E[Y_{i0}^0]$ the mean utility under an intervention in which, starting at the age of 18 years, each time m a subject with $\text{IN}(m) = 0$ exceeds his past maximum BMI, we caloric restrict him to prevent further weight gain. To estimate $E[Y_{i0}^0]$ by g-estimation, we proceed exactly as above except (i) we define new variables $A'(m)$ and $\Xi'(m)$ that equal $A(m)$ and $\Xi(m)$ whenever $\text{IN}(m) = 0$ but are zero whenever $\text{IN}(m) = 1$, and (ii) everywhere replace $A(m)$ and $\Xi(m)$ in our g-estimation procedure by $A'(m)$ and $\Xi'(m)$. Then, our algorithm that had estimated $E[Y_{i0}^0]$ will now output an estimator of $E[Y_{i0}^0]$. In summary, at the cost of estimating a parameter $E[Y_{i0}^0]$ of lesser interest than $E[Y_{i0}]$, we have eliminated the model extrapolation required to estimate the effect of weight gain among subjects with $\text{IN}(m) = 1$.

However, the procedure in the preceding paragraph has not eliminated the model extrapolation required to estimate the effect of weight gain among the intractably confounded non-identifiable subgroup defined by $m < X_m < m + \xi$. As a consequence $E[Y_{i0}^0]$, like $E[Y_{i0}]$, fails to be non-parametrically identified and must rely on model extrapolation for identification. Specifically, the subgroup with $m < X_m < m + \xi$ is intractably confounded by $U(m)$. It is not identifiable because the observed data cannot determine membership. For example, among subjects with $A'(m) > 0$, we cannot determine if a subject with X observed to be between m and $m + \xi$ is a subject with $m < X_m < m + \xi$ versus a subject with $X_m < m + \xi$, with X occurring before $m + \xi$ owing to the causal effect of his weight gain $A'(m)$. As a consequence, it is not possible to assign all members of the intractably confounded subgroup with $m < X_m < m + \xi$ the value $\text{IN}(m) = 1$, while assigning all members of the unconfounded subgroup with $m + \xi < X_m$ the value $\text{IN}(m) = 0$. The latter subgroup is unconfounded under the RC assumption because $m + \xi < X_m$ implies $U(m) = 0(m)$ by the CD assumption.

In fact, an MLP with length $\chi > \xi$ must exist for non-parametric identification of $E[Y_{i0}^0]$. For the remainder of this subsection, assume such an MLP. Then subjects with $m < X_m < m + \xi$ form an identifiable subgroup, as $m < X < m + \xi$ and $m < X_m < m + \xi$ are equivalent. Similarly, subjects with $X_m > m + \xi$ now form an identifiable subgroup. Thus we can now assign $\text{IN}(m) = 1$ to all subjects in the confounded subgroup $m < X_m < m + \xi$ and $\text{IN}(m) = 0$ to all members of the subgroup $X_m > m + \xi$ who were not already known to have $\text{IN}(m) = 1$ by virtue of membership in some other intractably confounded subgroup (for example, age greater than 70 years). Once we have assigned all members of the subgroup $m < X_m < m + \xi$ the value $\text{IN}(m) = 1$, our time m^+ dietary interventions no longer restrict the diet of any subject of any intractably confounded subgroup. As a consequence, $E[Y_{i0}^0]$ is now non-parametrically identified. A formal proof is given in the appendix where it is also shown that, owing to the non-parametric identification, $E[Y_{i0}^0]$ can be estimated using the parametric g-formula estimator and the IPTW estimator, as well as by g-estimation of SNMs.

Censoring

We now consider the small setting in which the available data are $O = \mathcal{X}(k), \mathcal{I}(k + 1), Y, X(k + 1)$, indicating that X is not observed in subjects for whom X exceeds the end of follow-up time $K + 1$. For such censored subjects, $X_m(\psi)$ is not observed. As a consequence, g-estimation as described above cannot be done. We will describe a modified estimation procedure that can be validly applied to censored data. In the interest of brevity, we only consider a procedure that is easy to describe. The down side is that the procedure we describe is not as efficient as other more complex procedures.

Given an SNFM X_0 we can still use g-estimation to obtain CAN estimates $\hat{\psi}$ of $\hat{\psi}^*$ from censored data by replacing everywhere $X_m(\psi)$ by $C_m(\psi)$ in the g-estimation procedure, where

$$K_m(\psi) = m + \min\{i; X_i > X_{m}(\psi) + 1\} \left\{ \int_{m}^{\psi} \exp\{\omega(\mathcal{X}_i(t), \mathcal{I}(t), \psi)\} dt \right\}$$

is the smallest possible value of $X_m(\psi)$ any censored subject could possibly have as $m + \{J_{K_m(\psi)} \exp\{\omega(\mathcal{X}_i(t), \mathcal{I}(t), \psi)\} dt\}$ would be $X_m(\psi)$ for a given censored subject had he died, unbeknownst to us, immediately after end of follow-up. Note $C_m(\psi) > m + \xi$ implies $X_m(\psi) > m + \xi$ so our g-estimation procedures remain restricted to subjects with $U(m) = 0$.

Similarly, given an SNMM model we can still use g-estimation to obtain CAN estimates $\hat{\psi}$ of $\hat{\psi}^*$ from censored data by replacing $X_m(\psi)$ by $C_m(\psi)$, everywhere in the g-estimation procedure. However, there is a subtlety in interpretation. Specifically, define the function $c_m(x, \psi) = \min(x, K_m(\psi))$, so $c_m(X_m(\psi), \psi) = C_m(\psi)$. Set $C_m = c_m(X_m, \psi^*)$. The correct definition of our SNMM model is

$$E[Y_m | A(m), \overline{I}(m), \overline{I}(m - 1), C_m = x] = E[Y_m | A(m), \overline{I}(m), \overline{I}(m - 1), C_m(\psi^*) = x]$$

where now,

$$Y_m(\beta, \psi) = Y - \sum_{j=1}^{K} \gamma_j A(j), \mathcal{X}(j - 1), \mathcal{I}(j), C_j(\psi), \beta$$

We refer to this model as an SNMM model for $Y_m | C_m$. Technical details are given in the appendix. Finally, a CAN estimator of $E[Y_0]$ from censored data is $\sum_{i=1}^{n} \gamma_i | Y_i, (\hat{\beta}(\psi), \hat{\psi})| / n$ as before with $\hat{\beta}(\psi)$ and $\hat{\psi}$ as redefined in this section.

Maximum weight gain dietary intervention regimens

We use g_m to denote a general maximum weight gain dietary intervention regimen beginning at time m. Mathematically g_m is a collection of functions $g_m = \{g_{l}(\mathcal{I}(k - 1), \mathcal{I}(k)); k = m, \ldots, K\}$. Under a regimen g_m, a subject follows his own observed diet history prior to m and then, for $K\geq k\geq m$, $g_{l}(\mathcal{I}(k - 1), \mathcal{I}(k))$ is a non-negative function that specifies the increase in maximum BMI to be allowed at time k for a
subject with past BMI and covariate history \([\pi(k-1), T(k)]\). See the definition in the following paragraph for a precise statement. We use \(g\) as a shorthand for a regimen \(g_0\) beginning at time 0. Note that any regimen \(g = g_0 = \{g_0[\pi(k-1), T(k)]\; \text{for} \; k=0, \ldots, K\} \) is naturally associated with a particular regimen \(g_m\); the regimen \(g_m = \{g_0[\pi(k-1), T(k)]; k=m, \ldots, K\} \) where one follows his observed diet up till time \(m\) and then follows regimen \(g_m\) using functions \(g_0[\pi(k-1), T(k)]\) specified by \(g\) for \(k \geq m\). Therefore, we can define the following counterfactuals.

Let \(Y_m^0\) be a subject’s utility measured at the end of follow-up when the counterfactual intervention \(g_m\) is followed. Similarly, let \(\text{BMI}_m^1(k), \text{BMI}_m^\text{max}(k), \text{BMI}_m^\text{max}(k)\) be a subject’s BMI, covariate, maximum BMI and \(A\)-history through \(k\) under \(g_m\). Note \(\text{BMI}_k^1(m) \in T_m(k)\). Then we have the following formal definition.

Definition of a general time \(m\) maximum weight gain dietary intervention regimen \(g_m\): The subject follows his observed diet up to \(m\) and from \(m\) onwards, the subject is weighed every day: (i) if \(A(m) = \text{BMI}(m+1) - \text{BMI}_{\text{max}}(m) \geq g_m[\pi](m-1), T(m)\), the subject’s caloric intake is restricted until the subject’s BMI falls below \(\text{BMI}_{\text{max}}(m) + g_m[\pi](m-1), T(m)\); (ii) for \(m+1 \leq k < K\), if \(A(k+1) = \text{BMI}_{\text{max}}(k+1) - \text{BMI}_{\text{max}}^\text{max}(k) > g_m[\pi](k-1), T(k)\), the subject’s caloric intake is restricted until the subject’s BMI falls below \(\text{BMI}_{\text{max}}^\text{max}(k) + g_m[\pi](k-1), T(k)\); (b) if his BMI is less than \(\text{BMI}_{\text{max}}(m) + g_m[\pi](m-1), T(m)\), the subject is allowed to eat as he pleases without any intervention.

Note, by definition, \(T_k^m(k) = \text{BMI}_k^1(m), \text{BMI}_m^\text{max}(k), \text{BMI}_m^\text{max}(k)\) for \(k \leq m\). Furthermore, given a regimen \(g = g_m\), we say a subject’s observed data are consistent with following the associated regimen \(g_m\) if and only if \(A_k^m(k) \leq g_m[\pi](k-1), T(k)\) for \(k \geq m\). It follows that if a subject’s observed data are consistent with following the associated regimen \(g_m\), then that subject’s observed data are consistent with following the associated regimen \(g_m\) for any \(k > m\).

If for all \(k \geq m, g_m[\pi(k-1), T(k)]\) is a constant \(a\) that does not depend on \(\pi(k-1), T(k)\), the regimen \(g_m\) is said to be non-dynamic or static and is written \(g_m = a(m)\). Otherwise it is dynamic. An intervention that allowed a BMI gain of 0.12 per month (that is, of one per decade) starting at time 0 (age 18 years) is the regimen \(g_m = a(0)\) with each \(a(m) = 0.12\) at 0. Dynamic intervention starting at time 0 that allows a BMI gain of 0.12 per month in subjects free of hypertension, Db, hyperlipidemia or clinical CHD, but of only 0.05/12 per month once a subject developed one of these risk factors is a dynamic regimen \(g_m\), \(g_m[\pi(k-1), T(k)] = 0.12\) if \(T(k)\) indicates a subject is free at \(k\) of hypertension, Db, hyperlipidemia or clinical CHD and \(g_m[\pi(k-1), T(k)] = 0.05/12\) otherwise.

The expected value \(E[Y_m^0]\) is our parameter of interest associated with the regimen \(g\). The expected utility had we placed in 1950 all 18-year-old non-smoking American men on the maximum weight gain intervention regimen \(g\).

Let \([t]\) denote the smallest integer less than or equal to \(t\) and define \(b_0 = b\) if \(b \geq 0\) and \(b_0 = 0\) if \(b < 0\). Note because data are only obtained monthly, for any non-negative real number \(t, A(t) = A(t+1) - L(t+1)\) and \(L(t) = L(t+1)\). Given a regimen \(g\), let \(A_m^g(t) = \{A(t) - g_m[\pi](t) - L(t)\} + \text{BMI}[L(t)] + \text{BMI}_{\text{max}}(t) + g_m[\pi](t)\). \(A_m^g(t)\) is our parameter of interest. Assume \(g_m[\pi](t)\leq 0\) for all \(t\) and only if a subject’s observed data are consistent with following regimen \(g\) from time 0. When \(A_m^g(t)
eq 0\), \(A_m^g(t)\) measures how much greater one’s observed weight gain is than the maximum prescribed by \(g\). Define

\[
X_m^0(\psi) = m + \int_{m}^{X} \exp\{\omega(A_m^g(t), T(t), T(t), \psi)\} \, dt \quad \text{if} \quad X > m
\]

(49)

\[
X_m^0(\psi) = X \quad \text{if} \quad X \leq m
\]

(50)

\[
Y_m^0(\beta, \psi) = Y - \sum_{m=1}^{K} \gamma_m[A_m^g(m), \pi(m-1), T(m), X_m^0(\psi), \beta]
\]

(51)

where the functions \(\omega(a(t), \pi(t), T(t), \psi, \beta)\) and \(\gamma_m(a(m), \pi(m-1), T(m), \beta)\) are known functions satisfying \(\omega(a(t), \pi(t), T(t), \psi, \beta) = 0\) if \(a(t) = 0\) or \(\psi = 0\) and \(\gamma_m(a(m), \pi(m-1), T(m), \beta) = 0\) if \(a(m) = 0\) or \(\beta = 0\).

Given a regimen \(g\), we say that (49) and (50) is a correctly specified SNFTM for \(Y_m^0\) and (51) is a correctly specified SNMM for \(Y_m^0[X_m^0]\) with true parameters \((\beta^*, \psi^*)\) when there exists some \((\beta^*, \psi^*)\) such that, for each \(m\),

Assumption (i): \(X_m^0(\psi^*)\) and \(X_m^0(\beta^*)\) have the same conditional distribution given \((A_m^g(j), \pi(j-1), T(j))\) and

Assumption (ii):

\[
E[Y_m^0[A_m^g(m), \pi(m-1), T(m), X_m^0(\psi^*))] = E[Y_m^0(\beta^*, \psi^*)]A_m^g(m), \pi(m-1), T(m), X_m^0(\psi^*)] = x
\]

(52)

Recall \(\pi(m-1)\) is a function of \(T(m)\) and thus its appearance in the conditioning event is redundant. Define

\[
\Xi(m) = 1 \Leftrightarrow \pi(m+1) \geq \text{BMI}_{\text{max}}(m)
\]

(53)

so \(A_m^g(m) > 0\) implies \(\Xi(m) = 1\).

Given a regimen \(g\), let the RCS assumption be the RC assumption but with \(X_m^0\) replacing \(Y_m^0\), and CD assumption but with \(X_m^0\) replacing \(Y_m^0\) and ‘time \(m\) dietary intervention’ replaced by ‘the' \(g_m\) dietary intervention.’ Henceforth we assume the CD and the RCS hold for all regimens \(g\).

Suppose we carry out \(g\)-estimation as in the section Estimation of the effect of the ‘maintain baseline weight intervention’ except with \(X_m^0(\psi), Y_m^0(\beta, \psi), \Xi(m)\) replacing their counterparts without \(g\) and \(A_m^g\) replacing \(A\). Let CD and RCS be the CD assumption but with \(X_m^0\) replacing \(Y_m^0\) and ‘time \(m\) dietary intervention’ replaced by ‘the’ \(g_m\) dietary intervention.’ Henceforth we assume the CD and the RCS hold for all regimens \(g\).
are ψ^*, β^* and the parameter of interest $E[Y_{Y(t)}^\delta]$ respectively, provided (β^*, ψ^*) are identified and we choose $Q_m(\beta)$ linear in $Y_{Y(t)}^\delta$.

Measurement error

In studies of the effect of a time-independent exposure, random exposure measurement error generally leads to bias toward the null and loss of power. However, the consequences of random exposure measurement error are much more complex in longitudinal studies of a time-dependent exposure in the presence of time-varying confounders. Specifically, in such a study, exposure history prior to time t needs to be considered as a potential confounder for the effect of exposure at t, even under the sharp null hypothesis of no causal effect of exposure at any time on the outcome Y. As random measurement error in a confounder can cause bias in any direction, random error in recorded BMI can, in principle, cause bias even under the null! See Robins'13. Furthermore this random error should be seen as including not only errors in measurement of BMI but also short-term fluctuations in BMI due to illness, a New Years resolution to lose weight, etc. These random fluctuations in BMI may have little effect on eventual mortality, but they can easily obscure the actual trend in someone’s BMI for periods of up to a year. Thus, if we use a monthly scale of analysis as described above, the random fluctuations in BMI may dominate any trend within a subject. Further given that past BMI must be controlled for in the regression models for current BMI used in g-estimation, the true correlation between past and present BMI trends within a person will be obscured by random fluctuations, which can even result in bias away from the null. This can occur when the confounding effect of past trends in BMI are inadequately controlled due to the random mismeasurement in past BMI. What to do?

One approach would be to specify a complex statistical model for the relationship between true and mismeasured BMI. At present I tend to seriously doubt the robustness of such an approach owing to inevitable model misspecification.

The alternative is to increase the ‘time’ between measurements used in the analysis from say 1 month up to as high as 5–6 years. By increasing the time between measurements, the problem of random fluctuations in BMI is markedly reduced, as the BMI signal (the true difference between measurement occasions) is made much greater, whereas the random fluctuations may not increase or may even decrease if the fluctuations are autocorrelated on a timescale of a few months. The drawback of increasing the ‘time’ between measurements in the analysis is that this can lead to poorer control of the confounding attributable to evolving time-varying factors. As an example, because the temporal ordering of events between the measurement times used in the analysis is lost, the confounding effect of changes in exercise may be incorrectly attributed to a causal effect of BMI.

At present I would recommend repeating one’s analysis using a number of different between measurements ‘times’ and report all results. In this way, the sensitivity of one’s conclusions to the choice of the ‘time’ between measurements will be known. If important, this sensitivity will stimulate further discussion and the development of better analytic methods.

Conflict of interest

The author declared no financial interests.

References

1 Willett WC, Dietz WH, Colditz GA. Guidelines for healthy weight. *N Engl J Med* 1999; 341: 427–434.
2 Robins JM. Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. *Biometrika* 1992; 79: 321–334.
3 Robins JM, Wasserman L. Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In: Geiger D, Shenoy P (eds). *Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence*, Providence Rhode Island, 1–3 August 1997. Morgan Kaufmann: San Francisco, 1997, pp 409–420.
4 Robins JM. Association, causation, and marginal structural models. *Synthese* 1999; 121: 151–179.
5 Robins JM, Hernan MA, Siebert U. Effects of multiple interventions. In: Ezzati M, Lopez AD, Rodgers A, Murray CJL (eds). *Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors*, vol I. World Health Organization: Geneva, 2004, pp 2191–2230.
6 Herman MA, Hernandez Diaz S, Robins JM. A structural approach to selection bias. *Epidemiology* 2004; 15: 615–625.
7 Robins JM. Connecting for non-compliance in randomized trials using structural nested mean models. *Commun Stat* 1994; 23: 2379–2412.
8 Robins JM. Optimal structural nested models for optimal sequential decisions. In: Lin DY, Heagerty P (eds). *Proceedings of the Second Seattle Symposium on Biostatistics*. Springer-Verlag: New York, 2004.
9 Robins JM. Causal inference from complex longitudinal data. In: Berkane M (ed). *Latent Variable Modeling and Applications to Causality. Lecture Notes in Statistics* (120). Springer-Verlag: New York, 1997, pp 69–117.
10 Murphy SA. Optimal dynamic treatment regimes. *J R Stat Soc Ser B* 2003; 65: 331–366.
11 Robins JM, Scharfstein D, Rotnitzky A. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In: Halloran ME, Berry D (eds). *Statistical Models in Epidemiology: the Environment and Clinical Trials*. Springer-Verlag: New York, 1999, pp 1–94.
12 Lok JJ, Gill RD, van der Vaart AW, Robins JM. Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models. *Stat Neerl* 2001; 58: 271–295.
13 Robins JM. General methodological considerations. *J Econom* 2003; 112: 89–106.
14 Robins JM. Testing and estimation of direct effects by reparameterizing directed acyclic graphs with structural nested models. In: Glymour C, Cooper G (eds). *Computation, Causation, and Discovery*. AAAI Press/The MIT Press: Menlo Park, CA; Cambridge, MA, 1999, pp 349–405.
15 Robins JM. Analytic methods for estimating HIV treatment and cofactor effects. In: Ostrow DG, Kessler R (eds). *Methodological Issues of AIDS Mental Health Research*. Plenum Publishing: New York, 1993, pp 213–290.
16 Joffe MM, Hoover DR, Jacobson LP, Kingsley L, Chmiel JS, Fischer BR et al. Estimating the effect of Zidovudine on Kaposis’s sarcoma from observational data using a rank preserving failure time model. *Stat Med* 1998; 17: 1073–1102.
Appendix 1

A formal definition of a joint SNFTM for X_m and a SNMM for $Y_m|X_m$

The definition here is the alternative, more intuitive and more general definition mentioned in the main text. The equivalence with the definitions in the main text is proved below.

We first consider the uncensored case. The observed data are $O = \{K, L(K + 1), X, Y\}$, where X is a continuous time to event variable and Y is measured at $K + 1$. The counterfactual data are (\tilde{X}_m, Y_m), $m = 0, \ldots, K + 1$, denoting X and Y under treatment regimens where one experiences his observed treatment $A – (m – 1)$ up to m and then receives no treatment (treatment level 0) thereafter. We make the assumption that $X_{K + 1} = X$, $Y_{K + 1} = Y$. The covariate $L(k)$ precedes $A(k)$ which precedes $L(k + 1)$.

The function $x_m^1(x, L(m), \tilde{A}(m)) = S^{-1}_{X_m|\tilde{A}(m), X_m}([S_{X_m, m|\tilde{A}(m), X_m}(x)])$ is a counterfactual conditional quantile-quantile function, where S and S^1 denote a survivor function and its inverse. It is a standard result that $x_m^1(x, L(m), \tilde{A}(m))$ is the unique function for which $X_m \equiv x_m^1(X_{m + 1}, L(m), \tilde{A}(m))$ and X_m have the same conditional distribution, that is

$$X_m^1(L(m), \tilde{A}(m)) \sim X_m|L(m), \tilde{A}(m) \quad (54)$$

Define $X_m^0 = X$ and then recursively define $X_m \equiv x_m^1(X_{m + 1}, L(m), \tilde{A}(m), \tilde{A}(m))$. Robins and Wasserman\(^3\) proved the following

Theorem A1:

$$X_m(L(m), \tilde{A}(m)) \sim X_m^1(L(m), \tilde{A}(m)) \quad (55)$$

where we silently take such equations to hold for all $m = 0, \ldots, K$.

Furthermore, Robins and co-workers\(^{11,14}\) and Lok\(^{15}\) proved the function x_m^u is unique. That is if the above equation holds for with X_m replaced by some $h_m = h_m(L_{m + 1}, L(m), \tilde{A}(m)$) and $H_{K + 1} = X$, then the function h_m must be the function x_m^u.

An SNFTM for X_m assumes

$$X_m(L(m), \tilde{A}(m); \psi^*) = x_m^u(L_{m + 1}, L(m), \tilde{A}(m)) \quad (56)$$

for a known function $x_m(x, L(m), \tilde{A}(m); \psi)$ satisfying

$$x_m(x, L(m), \tilde{A}(m), \psi) = x \quad \text{if} \quad \psi = 0 \quad \text{or} \quad A(m) = 0 \quad \text{with} \quad \psi^* \text{ an unknown parameter vector.}$$

It follows immediately that

$$X_m(\psi^*)|L(m), \tilde{A}(m) \sim X_m^1|L(m), \tilde{A}(m) \quad (57)$$

with

$$X_{K + 1}(\psi^*) = X \quad \text{and} \quad X_m(\psi^*) \equiv x_m^1(L_{m + 1}(\psi^*), L(m), \tilde{A}(m); \psi^*) \quad (58)$$

The uniqueness of x_m^u implies that SNFTMs as defined in the text are also SNFTMs as defined here.

Recall $X_m \equiv x_m^1(X_{m + 1}, L(m), \tilde{A}(m))$ and define

$$\gamma_m^1(L(m), \tilde{A}(m), x) \equiv E[Y_{m + 1} - \gamma_m(X_{m + 1}, L(m), \tilde{A}(m), X_{m + 1} = x) \quad (59)$$

which is equivalent to

$$E[Y_{m + 1} - \gamma_m^1(L(m), \tilde{A}(m), X_{m + 1} = x)] \quad (60)$$

Define $Y_{K + 1} = Y$ and then recursively define $Y_m = Y_{m + 1} - \gamma_m^1(L(m), \tilde{A}(m), X_m)$.

We prove the following theorem below.

Theorem A2:

$$E[Y_m|\tilde{A}(m), X_m] = E[Y_m|L(m), \tilde{A}(m), X_m = x] \quad (61)$$

Furthermore the function γ_m^1 is unique. That is if the above equation holds with Y_m replaced by some $H_m = H_{m + 1} - h_m(L(m), \tilde{A}(m), X_m)$ and $H_{K + 1} = Y$, then the function h_m must be the function γ_m^1.

An additive SNMM for $Y_m|X_m$ assumes

$$\gamma_m(L(m), \tilde{A}(m), x, \beta^* - \gamma_m(L(m), \tilde{A}(m), x) \quad (62)$$

for a known function $\gamma_m(L(m), \tilde{A}(m), x; \beta)$ satisfying

$$\gamma_m(L(m), \tilde{A}(m), x; \beta) = 0 \quad \text{if} \quad \beta = 0 \quad \text{or} \quad A(m) = 0 \quad \text{with} \quad \beta^* \text{ an unknown parameter vector.}$$

It follows immediately that

$$E[Y_m|\tilde{A}(m), X_m = x] = E[Y_m|L(m), \tilde{A}(m), X_m = x] \quad (63)$$

with

$$Y_{K + 1}(\beta^*, \psi^*) = Y \quad \text{and} \quad Y_m(\beta^*, \psi^*) = Y_{m + 1}(\beta^*, \psi^*)$$

$$- \gamma_m(L(m), \tilde{A}(m), X_m(\psi^*); \beta) \quad (64)$$

The uniqueness of γ_m implies that an additive SNMM for $Y_m|X_m$ as defined in the text is equivalent to the additive SNMM for $Y_m|X_m$ as defined here.

Proof of Theorem A2: By backward induction.

Case 1: $m = K$.\(^{-2}\)

$$E[Y_{K + 1}|L(K), \tilde{A}(K), X_K^* = x] = E[Y_{K + 1} - \gamma_K(L(K), \tilde{A}(K), X_K^*; \tilde{A}(K), \tilde{K}(K), X_K^* = x]$$

$$= E[Y_{K + 1} - \gamma_K(L(K), \tilde{A}(K), X_K^*; \tilde{A}(K), \tilde{K}(K), X_K^* = x]$$

$$= E[Y_K|\tilde{A}(K), L(K), X_K = x]$$

where the first equality uses the definition of Y_K and that $Y_{K + 1} = Y_{K + 1}^*$, the second uses that $X_K^* = X_K^*$ by $X_K + 1 = X_K + 1$, and the third is the definition of $\gamma_K(L(K), \tilde{A}(K), X_K^*)$.

Case 2: Assume true for m. We prove true for $m + 1$.

$$E[Y_{m + 1}|\tilde{A}(m), L(m), X_m^* = x]$$

$$= E[Y_{m + 1} - \gamma_m^1(L(m), \tilde{A}(m), X_m^*|L(m), \tilde{A}(m), X_m^* = x)]$$

(because of $Y_{m + 1}^*$)

$$= E\left[\{ E[Y_{m + 1}^*|L(m + 1), \tilde{A}(m + 1), X_{m + 1} = x] + \text{def} Y_{m + 1}^* \right] \text{def} \gamma_m^1(L(m), \tilde{A}(m), X_m^* = x) \quad (65)$$

(by the laws of probability)
In the section Censoring, our approach requires that we (by fixed indexed by X of X_m and $t(X_m+1, \tilde{m}, \tilde{m})$ for analyzing censored data due to administrative censoring (by the definition of X and Y_m). Define $Y_K = \gamma_0(Y_m, \tilde{m}, \tilde{m})$, and $K_{m+1} = Y$, then the function Y_{m+1} must be the function γ_m.

Proof of A.3: We only describe where the proof differs from that of its special case Theorem A.2. The proof is essentially identical except for the replacement of X_m by C_m, X by c and $x_m(X_m+1, \tilde{m}, \tilde{m})$ by $c_m(x_m(X_m+1, \tilde{m}, \tilde{m}), \tilde{m}, \tilde{m})$ (68)

An additive SNMM for $Y_m|C_m$ assumes

$$\gamma_m(\tilde{m}, \tilde{m}, c; \beta^*) = \gamma_m(\tilde{m}, \tilde{m}, c)$$ (69)

for a known function $\gamma_m(\tilde{m}, \tilde{m}, c; \beta)$ satisfying $\gamma_m(\tilde{m}, \tilde{m}, c; \beta) = 0$ if $\beta = 0$ or $A(m) = 0$ with β^* an unknown parameter vector.

Then given a SNFTM $X_m(X_m+1, \tilde{m}, \tilde{m}; \psi^*)$ for X_m and a function $c_m(x, \tilde{m}, \tilde{m})$ that may depend on the functions $x_j(\cdot, \cdot), j > m$, suppose we can define a parametrized class of functions $c_m(x, \tilde{m}, \tilde{m}, \psi^*)$ satisfying

$$c_m(x, \tilde{m}, \tilde{m}, \psi^*) = c_m(x, \tilde{m}, \tilde{m}, \tilde{m})$$ (70)

For example, in the section on censoring in the main text, we took $c_m(x, \tilde{m}, \tilde{m}, \psi^*) = \min(x, K_m(\psi))$.

Then defining $C_m(\psi) = c_m(X_m(\psi), \tilde{m}, \tilde{m}, \tilde{m}, \psi)$, we have

$$E[Y_m(\beta^*, \psi^*)|\tilde{m}, \tilde{m}, \tilde{m}, \psi^*) = x] = E[Y_m|\tilde{m}, \tilde{m}, \tilde{m}, \psi^* = x] = x]$$ (71)

with

$$Y_{m+1}(\beta^*, \psi^*) = Y$$ and $Y_m(\beta^*, \psi^*) \equiv Y_{m+1}(\beta^*, \psi^*)$ (72)

Appendix 2

Estimation of effects with the parametric g-formula and IPTW when a sufficiently long MLP exists

In this section, we show that the parametric g-formula and IPTW can be used to estimate certain causal effects when there exists a sufficiently long MLP. We begin with a preliminary discussion of these two methods of estimation.

Preliminaries. In this preliminary discussion, we assume that, as in the section A locally rank-preserving SNM, there is neither confounding by preclinical disease nor an MLP. Specifically we assume, for each regimen g, the COF assumption that, for each j, $(Y_0, X_0, A(j)|E(j), \tilde{A}(j)|0, 1)$, $\Xi(j) = 1$ holds, with $\Xi(m)$ defined in Equation (53) of

$$E[Y_0|\tilde{m}, \tilde{m}, \tilde{m}, \tilde{m}, \tilde{m}, \tilde{m}, \tilde{m}, \psi^*) = x] = x]$$ (71)

with

$$Y_{m+1}(\beta^*, \psi^*) = Y$$ and $Y_m(\beta^*, \psi^*) \equiv Y_{m+1}(\beta^*, \psi^*)$ (72)

Appendix 2

Estimation of effects with the parametric g-formula and IPTW when a sufficiently long MLP exists

In this section, we show that the parametric g-formula and IPTW can be used to estimate certain causal effects when there exists a sufficiently long MLP. We begin with a preliminary discussion of these two methods of estimation.

Preliminaries. In this preliminary discussion, we assume that, as in the section A locally rank-preserving SNM, there is neither confounding by preclinical disease nor an MLP. Specifically we assume, for each regimen g, the COF assumption that, for each j, $(Y_0, X_0, A(j)|E(j), \tilde{A}(j)|0, 1)$, $\Xi(j) = 1$ holds, with $\Xi(m)$ defined in Equation (53) of
Recoding: Without loss of generality, we henceforth redefine (that is, recode) \(T(j) \) such that \(\Xi(t) \) is now one of the components of \(L(j) \) but we remove from \(L(j) \) the components corresponding to \(X \), that is, the components \((X(I(X \leq j), I(X \leq j)))\). Then we can write the \(CO^\delta \) assumption as

\[
CO^\delta : (Y_i^\delta, X_i^\delta) \mid A^\delta_i(j) \mid L(j), A^\delta_i(j) = 1 \]

\[
= \overline{0}(j - 1), (XI(X \leq j), I(X \leq j))
\]

(73)
as from these definitions, \(\Xi(t) = 0 \) implies \(A^\delta_i(j) = 0 \). The \(CO^\delta \) assumption implies

\[
(Y_0^\delta, X_0^\delta) \mid A_0^\delta(j) \mid L(j), A_0^\delta(j) = 1
\]

(74)
as \(\overline{0}(j - 1) = \overline{0}(j - 1) \) implies \((Y_0^\delta, X_0^\delta) = (Y_0^\delta, X_0^\delta)\). This last equation is the standard definition of no unmeasured confounding given \((L(j), (XI(X \leq j), I(X \leq j)))\) for the effect of \(A_0^\delta(j) \) on the counterfactuals \(Y_0^\delta, X_0^\delta \). Let \(\lambda(t) := \lim_{u \to t} \mu[u < X + u \leq t, u \leq X]/h \) be the conditional hazard of \(X \) given the information in \(\cdot \).

Robins\(^4,15\) proves that Equation (74) implies that \(S_{X_0^\delta}(u) \equiv \text{pr}[X_0^\delta > u] \) is identified through

\[
S_{X_0^\delta}(u) = \prod_{m=0}^{m=\infty} \text{exp}\left\{- \int \lambda(t)L(t), A_0^\delta(t) = 0 \right\} \text{dr}
\]

(75)

with

\[
\Psi^\delta(u) = 1/ \prod_{m=0}^{m=\infty} \text{pr} \{A_0^\delta(m) = 0 | L(m), A_0^\delta(m - 1), X > m \}
\]

(76)

where the first formula for \(S_{X_0^\delta}(u) \) is referred to as the g-computation algorithm formula (g-formula, for short) and the second formula as the IPTW formula. To shorten the formulae, we have written \(\overline{0} \) as a shorthand for \(\overline{0}(t) \) when the time \(t \) is clear. In fact Robins\(^4,15\) shows that the assumption

\[
(Y_0^\delta, X_0^\delta) \mid A_0^\delta(j) \mid L(j), A_0^\delta(j) = 1 \]

(77)

which is implied by the assumption of Equation (74), suffices to establish the identifying formulae. To estimate \(S_{X_0^\delta}(u) \), we can use either the parametric g-formula estimator that replaces the unknowns \(\lambda(t)L(t), A_0^\delta(t) = 0 \) and \(f[L(m)|L(m - 1), A_0^\delta(m - 1) = 0, X > m] \) in the first formula by estimates based on parametric models or the IPTW estimator that replaces the unknown \(\text{pr}[A_0^\delta(m) = 0 | L(m - 1), A_0^\delta(m - 1) = 0, X > m] \) in the second formula with a parametric estimate and the unknown expectation with a sample average. Both approaches are alternatives to g-estimation of structural nested models (SNMs).

Robins\(^4,15\) proves \(E[Y_0^\delta] \) is identified under the assumption of Equation (74) by

\[
E[Y_0^\delta] = \int_0^{K+1} \int \int \lambda(x)L(x), A_0^\delta(x) = 0 \right\} \text{dr}
\]

(78)

\[
\times \prod_{m=0}^{m=\infty} \text{dF}[L(m)|L(m - 1), A_0^\delta(m - 1) = 0, X > m]
\]

\[
\times \prod_{m=0}^{m=\infty} \text{dF}[L(m)|L(m - 1), A_0^\delta(m - 1) = 0, X = x]
\]

(79)

\[
\times E[Y|L(K + 1), A_0^\delta(K) = 0, X = x]
\]

In the above formulae, we have assumed for simplicity that \(X \) has support on \((0, K + 1)\) so censoring for \(X \) is absent.

We next consider whether \(S_{X_0^\delta}(u) \) and \(E[Y_0^\delta] \) remain identified in the presence of confounding by preclinical disease and a sufficiently long MLP.

Identification and estimation of \(S_{X_0^\delta}(u) \):

The following theorem establishes the identification of \(S_{X_0^\delta}(u) \). First note under our recoding, the RC\(^\delta \) assumption becomes

\[
RC^\delta : (Y_0^\delta, X_0^\delta) \mid A_0^\delta(j) \mid L(j), A_0^\delta(j) = 1.
\]

(80)

Theorem A4: A induced regime \(g \), let a g-specific MLP satisfy the definition of an MLP of the section Estimation under a rank-preserving SNM for \(Y_m|X_m \) with \(X_m \) known, except with \(X_0 \) and \(X_m \) replaced by \(X_0^\delta \) and \(X_m^\delta \) and \(Am \) replaced by \(A_0^\delta(m) \). Suppose \(A_0^\delta(m) \) has a g-specific MLP of \(t \) months for its effect on \(X \). When \(\gamma \) exceeds the time \(\tau \) in the CD\(^\delta \) assumption. Then, under the CD\(^\delta \) and RC\(^\delta \) assumptions, \(S_{X_0^\delta}(u) \) remains identified by both the g-formula and the IPTW formula when the recoded \(L(t) \) and \(A_0^\delta(t) \) are redefined as \(L^\delta(t) \) and \(A_0^\delta(t) \) where

\[
L^\delta(t) = L(t - \tau), A_0^\delta(t) = A_0^\delta(t - \tau)
\]

(81)

The theorem thus states that the identifying formulae are the usual g-formula and IPTW formula except we replace both the treatment variable \(A_0^\delta(t) \) and the covariate variable \(L^\delta(t) \) by their values \(\tau \) time units earlier. (For the IPTW formula, the transformation is applied to \(\Psi^\delta(u) \).) It is important to emphasize that a similar transformation is not applied to \(X \). Thus, the conditioning event
\[L(m-1), \overline{A}_i^m(m-1) = \overline{\Omega}, X > m \] transforms to
\[(m-1 - \chi), \overline{A}_i^m(m - \chi) = \overline{\Omega}, X > m. \]

Proof of theorem: It suffices to show Equation (78) holds when \(L(t) \) and \(A_3(t) \) are replaced by \(L'(t) \) and \(A_3'(t) \). By RC\(d \), \((Y^t, X^t) \mid \overline{A}_i^m(j)\mid L(j), \overline{A}_i^m(j - 1) = \overline{\Omega}, \overline{U}(j) = \overline{\Omega}, X > j \). Thus, \((Y^t, X^t) \mid \overline{A}_i^m(j)\mid L(j), \overline{A}_i^m(j - 1) = \overline{\Omega}, \overline{U}(j) = \overline{\Omega}, X > j, X^t_j < \zeta + \chi \) under CD\(d \) because \(X^t_j < j + \chi \) does not imply \(\overline{U}(j) = \overline{\Omega} \).

Proof that \(E[Y_0^t] \) **is non-parametrically identified when a sufficiently long MLP exists.** In the section Intractable confounding in subgroups, we stated that \(E[Y_0^t] \) is non-parametrically identified under the conditions of the previous theorem with the regimen \(g \) in the theorem being the regimen that always assigns exposure zero. A proof follows.

Let IN, \(A_1^t, \Xi^T, Y_{m^+}, X_{m^+}^T \) be defined as in the section Intractable confounding in subgroups where we recall that because of the existence of the MLP of length \(\chi \) all subjects with \(z < X_{m^+} + \zeta + \chi \) have IN(m) = 1. First in Equations (78), (81) and (82) we replace \(Y_{m^+}, X^T_{m^+} \) by \(Y^t, X^t_{m^+} \), \(A_1^m(m) \) by \(A_1^{opt}(m-\chi) \), and redefine \(L(m) \) as \(L(m-\chi) \) with the component \(\Xi^T(m) \) of \(L(m) \) being replaced by \(\Xi^T(m-\chi) \). Equation (82) now holds trivially because with probability one \(m-\chi + \zeta > X \) implies IN(m-\chi) = 1 and thus \(\Xi^T(m-\chi) = 0 \) and \(A_1^T = (m-\chi) = 0 \). Furthermore, the proofs of Equations (78) and (81) go through as above with only minor notational changes. We therefore conclude that Equation (74) holds and thus that \(E[Y_0^t] \) is non-parametrically identified. The identifying IPTW formula is explicitly given by

Appendix 3

Optimal regimen models

Suppose we now wish to estimate the regimen \(g_{opt} \) that maximizes \(E[Y_0^t] \) over all regimens \(g \). We will do so by specifying an optimal regimen SNMM and associated SNFTM.

To begin, consider the dietary intervention \(a(k) \), \(g_{opt, k+1} \) in which one follows his observed diet up to month \(k \), allows a BMI increase of \(a(k) \) over his maximum previous BMI in month \(k \), and follows the unknown optimal regimen \(g_{opt} \) thereafter. Let \(Y_{a(k),g_{opt,k+1}}, X_{a(k),g_{opt,k+1}} \) be the associated counterfactuals. When \(A(k) = a(k) \), write \(g_{opt,k+1} \) for the regimen \(A(k), g_{opt,k+1} \). Note \(X_{a(k),g_{opt,k+1}} = X \).

We will make the following assumptions:

Optimal regimen CD assumption: \(A(m) \) is statistically independent of \(Y_{a(m),g_{opt,m+1}}, X_{a(m),g_{opt,m+1}} \) given \(\Xi(m) = 1, L(m), A(m-1) \) and \(\overline{U}(m) = \overline{\Omega}(m) \) for each \(a(m) \geq 0 \).

Optimal regimen CD assumption:

\[X^T_{a(m)}, m > m + \zeta \Rightarrow \overline{U}(m) = \overline{\Omega}(m) \]
We next recursively define random variables $X^{(m)}_{opt,m+1}(\psi)$ by the relationship that $X^{(m)}_{opt,m+1}(\psi) = X$ and, for $m = K, \ldots, 0,$

$$X^{(m)}_{opt,m+1}(\psi) = m + \exp[\omega(a_m, \overline{A}(m-1), \overline{L}(m), \psi)]$$

if $0 < X^{(m)}_{opt,m+1}(\psi) - m < 1$

$$X^{(m)}_{opt,m+1}(\psi) = X^{(m)}_{opt,m+1}(\psi) + \{\exp[\omega(a_m, \overline{A}(m-1), \overline{L}(m), \psi)] - 1\}$$

if $1 < X^{(m)}_{opt,m+1}(\psi) - m$

These equations recursively define $X^{(m)}_{opt,m+1}(\psi)$ in terms of the observed data, the regimen $g_{opt,m+1}$ and the parameter vector ψ as can be verified by noting that these equations imply the following relationship between $X^{(m)}_{opt,m+1}(\psi)$ and $X^{(m)}_{opt,m+1}(\psi)$.

Above $\omega(a(t), a(t-1), \overline{L}(t), \psi)$ and $g_{opt}(a(t), a(t-1), \overline{L}(t), x, \beta)$ are known functions satisfying $\omega(a(t), a(t-1), \overline{L}(t), \psi) = 0$ if $a(t) = 0$ or $\psi = 0$ and $g_{opt}(a(t), a(t-1), \overline{L}(t), x, \beta) = 0$ if $a(t) = 0$ or $\beta = 0$.

The optimal regimen itself remains unknown. However, we show below that the following algorithm evaluated at the true (β^a, ψ^a) would find the optimal regimen g_{opt} under the following additional condition, that we henceforth assume to hold.

Additional condition: For each $a(m-1), \overline{L}(m)$, x, β, m the function $\omega(a(m), a(m-1), \overline{L}(m), x, \beta)$ is either everywhere zero or is strictly concave downward in $a(m)$ on the support of $A(m)$.

Optimal regimen algorithm: Given any (β, ψ), calculate $S_{opt,\beta,\psi} = \{S_{opt,\beta,\psi,m}[\overline{A}(m), \overline{L}(m)]; m = K, \ldots, 0\}$ as follows.

Calculate $X^{(K)}_{opt,K+1}(\psi)$. Define

$$S_{opt,\beta,\psi,K}[\overline{A}(K), \overline{L}(K)] = I(\overline{X} \leq K) \arg \max_{a_K} \{g_{opt}[a(K), \overline{A}(K-1), \overline{L}(K), x, \beta] + I(\overline{X} > K)$$

$$\times \arg \max_{a(m)\in A(m)} E[\gamma_{opt}(a(m), \overline{A}(m-1), \overline{L}(m), \psi)]$$

$$[\overline{A}(K-1), \overline{L}(K), x, k]$$

Calculate

$$S_{opt,\beta,\psi,m}[\overline{A}(m), \overline{L}(m)] = \min\{a(m), g_{opt,\beta,\psi,m}[\overline{A}(m-1), \overline{L}(m)]\}$$

Calculate $X^{(m)}_{opt,m+1}(\psi) = X^{(m)}_{opt,m+1}[\overline{A}(m), \overline{L}(m), x, \beta]$. Recursively for $m = K-1, \ldots, 0$, calculate $X^{(m)}_{opt,m+1}(\psi)$,

$$S_{opt,\beta,\psi,m}[\overline{A}(m-1), \overline{L}(m)] = I(\overline{X} \leq m) \arg \max_{a(m)\in A(m)} E[\gamma_{opt}(a(m), \overline{A}(m-1), \overline{L}(m), x, \beta)]$$

$$\times \arg \max_{a(m)\in A(m)} E[\gamma_{opt}(a(m), \overline{A}(m-1), \overline{L}(m), x, \beta)]$$

$$[\overline{A}(m-1), \overline{L}(m), x, m]$$

Calculate

$$S_{opt,\beta,\psi,m}[\overline{A}(m), \overline{L}(m)] = \min\{a(m), g_{opt,\beta,\psi,m}[\overline{A}(m-1), \overline{L}(m)]\}$$

Calculate

$$X^{(m)}_{opt,m+1}(\psi) = X^{(m)}_{opt,m+1}[\overline{A}(m), \overline{L}(m), x, \beta]$$

for an unknown value ψ^* of the vector ψ.

We assume an optimal regimen SNFTM given by

$$X^{(m)}_{opt,m+1}(\psi^*) = X^{(m)}_{opt,m+1}(\psi^*) \text{ wp1}$$

for an unknown value ψ^* of the vector ψ.
To understand why this is the correct algorithm, we first note that any regimen at \(m \) can be a function of \(X \) only if \(X \leq m \), so that \(X \) is known by \(m \). When \(X > m \), we must average over \(X^{(m)}(\xi_{m-1}^{(x,m)}) \) because \(X^{(m)}(\xi_{m-1}^{(x,m)}) \) is a function of \(X \). When \(X > m \), \(X^{(m)}(\xi_{m-1}^{(x,m)}) \) will be the value of \(X^{(m)}(\xi_{m-1}^{(x,m)}) \) if the optimal regimen \(\xi_{m-1}^{(x,m)} \) dictates the exposure \(a(m) \). The optimal regimen will choose the \(a(m) \) that optimizes the contribution to the utility at time \(m \). But the optimizing \(a(m) \) depends on the \(a(k) \) chosen for the regimen for \(k > m \). Thus, we need to use backward recursion to estimate the optimal regimen.

To be more specific, consider the subgroup of subjects with a history \((A(K−1), \mathcal{T}(K), X) \) with \(X < K \) so \(X = \xi^{(K)}_{m,K−1}(\psi^*) \in \mathcal{T}(K) \). Then \(a(K) = \xi_{m}^{(K)} \{[\mathcal{T}(K − 1), \mathcal{T}(K)] \} \) that maximizes \(g(a(K), \mathcal{T}(K − 1), \mathcal{T}(K), X, \psi^*) \) is the optimal treatment choice at \(K \). However, we are only considering regimens (interventions) that do not force subjects to gain weight. We now argue that for any subject with \(A(K) \) less than \(\xi_{m}^{(K)} \{[\mathcal{T}(K − 1), \mathcal{T}(K)] \} \), the optimal decision is not to intervene at all, so the subject receives his observed treatment \(A(K) \). The subject with \(A(K) \) less than \(\xi_{m}^{(K)} \{[\mathcal{T}(K − 1), \mathcal{T}(K)] \} \) could still have received any treatment between 0 and \(A(K) \). However, among these set of treatments, the treatment \(A(K) \) is optimal by the concavity condition above.

Next consider the subgroup of subjects with a history \((\mathcal{A}(K−1), \mathcal{T}(K), X) \) with \(X > K \). To find the optimal treatment, we average over \(X^{(K)}(\xi_{K−1}(\psi^*)) \) of a function that is concave in \(a(K) \) for every possible value of \(X^{(K)}(\xi_{K−1}(\psi^*)) \) remains a concave function of \(a(K) \), we again take \(\xi_{m}^{(K)} \{[\mathcal{A}(K − 1), \mathcal{T}(K)] \} = \min\{A(K), \xi_{m}^{(K)} \{[\mathcal{A}(K − 1), \mathcal{T}(K)] \} \} \).

That the same argument holds for each \(m \) is a standard dynamic programming argument as discussed in Robins.\(^8\)

As \((\beta^*, \psi^*) \) are unknown we must estimate them by g-estimation. Define

\[
X_{m}^{g(\psi^*)}(\psi) = X_{m}^{g(\beta, \psi)}(\psi)
\]

\[
Y_{m}^{g(\beta, \psi)}(\beta, \psi) = Y - \sum_{j=m}^{K} g_{m}(j, \mathcal{A}(j), \mathcal{T}(j), X_{j}^{g(\beta, \psi)}(\psi), \beta).
\]

Note these equations are much more complex than the equations for \(\psi \) using an SNFTM and SNM for a fixed \(g \) in that \(S_{\text{opt}} \) is now not known but depends on the parameters \((\beta, \psi) \) through the above algorithm for \(S_{\text{opt}}(\beta, \psi) \). Thus, we can no longer estimate \(\psi^* \) independently of \(\beta^* \) as \(X_{m}^{g(\psi^*)}(\psi) \) is now a function of \(\beta \) as well as \(\psi \) through its dependence on \(S_{\text{opt}}(\beta, \psi) \). Rather, we must solve both pairs of g-estimation equations simultaneously.

Specifically, given the optimal regimen \(RC \) and CD assumptions to obtain CAN estimators of the unknown parameters, we find jointly \((\beta, \psi) \) so that both the score test for the covariate vector depending on \(X_{m}^{g(\psi^*)}(\psi) \) is precisely zero and the score test for the covariate vector depending on \(Y_{m}^{g(\beta, \psi)}(\beta, \psi) \) is precisely zero (both tests are restricted to subjects with \(X_{m}^{g(\psi^*)}(\psi) > \zeta \) and \(\Xi(m) = 1 \)). This turns out to be a very difficult computational problem. Robins\(^8\) describes a number of computational simplifications, but they are beyond the scope of the current paper. Finally, we obtain \(S_{\text{opt}}(\beta, \psi) \) as our estimate of the optimal regimen \(S_{\text{opt}}(\beta, \psi^*) \) and \(m^{-1} \sum_{j=m}^{K} Y_{j}^{g(\beta, \psi)}(\beta, \psi) \) as our estimate of the expected utility \(E[Y_{0}] \) under the optimal regimen.

Both estimation of \(E[Y_{0}] \) for a known \(g \) and of \(E[Y_{0}^{g(\psi^*)}] \) can be modified to allow for censoring at the end of follow-up at \(K = 1 \) and for intractable unmeasured confounding in certain subgroups using methods exactly analogous to the methods for the estimation of \(E[Y_{0}] \).