A Combined LIFO-Priority Scheme for Overload Control of E-commerce Web Servers

Naresh Singhmar Vipul Mathur Varsha Apte D. Manjunath
Indian Institute of Technology - Bombay
Powai, Mumbai, 400 076, India
{naresh,vipul,varsha}@cse.iitb.ac.in, dmanju@ee.iitb.ac.in

Abstract

E-commerce Web-servers often face overload conditions during which revenue-generating requests may be dropped or abandoned due to an increase in the browsing requests. In this paper we present a simple, yet effective, mechanism for overload control of E-commerce Web-servers. We develop an E-commerce workload model that separates the browsing requests from revenue-generating transaction requests. During overload, we apply LIFO discipline in the browsing queues and use a dynamic priority model to service them. The transaction queues are given absolute priority over the browsing queues. This is called the LIFO-Pri scheduling discipline. Experimental results show that LIFO-Pri dramatically improves the overall Web-server throughput while also increasing the completion rate of revenue-generating requests. The Web-server was able to operate at nearly 60% of its maximum capacity even when offered load was 1.5 times its capacity. Further, when compared to a single queue FIFO system, there was a seven-fold increase in the number of completed revenue-generating requests during overload.

Keywords: E-commerce, overload control, Web-servers, LIFO, priority.

1. Introduction

The capacity of a Web-server is measured in terms of the rate of requests/second that it can fulfill. When the request rate to a Web-server exceeds its capacity, the server is overloaded, its response time increases to an unacceptable level, and requests start timing out, i.e., they are abandoned, typically after some service has been received. Abandonments lead to retries, and the effective load on the server increases further. In this situation, in the absence of an overload control mechanism, the server ends up being busy doing unproductive work and the throughput degrades. E-commerce Web-servers, e.g., retail Web sites, often experience such overload situations, triggered by events such as closing time of a sale or intense shopping days [8].

Occurrence of overload situations can be minimized by appropriately sizing the server centers and by using techniques such as load balancing. However, overloads are not completely avoidable—unexpected consumer demand, partial server failures, or other such events can trigger unexpected overloads. We therefore need mechanisms to protect the Web-server from being pushed to an unproductive state during overloads. In this paper we propose and experimentally analyze one such mechanism. Specifically, we focus on E-commerce Web-servers, e.g., the server for an on-line store. For such Web-servers, the requirement is not only to be productive during overload, but to be able to differentiate between direct revenue-generating requests and browsing requests that generate revenue only indirectly. On typical shopping Web sites, the load due to the browsing requests far exceeds that of the revenue-generating requests and it is imperative that the browsing requests do not prevent revenue-generating requests from getting completed.

Overload control of telecommunication switches has been studied extensively, e.g., [5], and some of the principles developed there can be applied to Web-servers. However, there is an important difference between a Web-server and a telecommunication switch. The former is typically modeled as a single queue (with single or possibly multiple servers) while the latter is a multi-queue system. Furthermore, since the servers take the form of processor threads, the service rate of the servers is a decreasing function of the number of active servers. Thus it is not clear if the overload control methods developed for telecommunication switches will be directly applicable. Therefore experimental evaluation like the one that we do in this paper is necessary.

Overload control of Web-servers has gained much attention in the recent past. Approaches include admission control [3] or sophisticated scheduling policies [2], or both [6]. The fact that Web usage is session-oriented has been recognized, and several overload control mechanisms are
based on that. A mechanism that does not admit new sessions at overload was proposed in [3]. The mechanism proposed by [2] employs a dynamic weighted fair sharing policy to process requests from those sessions that are more likely to complete. This is done by dynamically adjusting the weights of the queues, as calculated by maximizing a productivity function. Elnikey et al [6] propose and implement an admission control and request scheduling policy, in which the resource requirement of a request is estimated by an external entity, and admission control is done based on that. Furthermore, a shortest job first scheduling approach is utilized for improving response times. A control theory based approach to overload control is described in [1]. The authors use a feedback control loop based mechanism to prevent overload by monitoring the utilization of server resources and switching to a degraded QoS level in overload conditions. However, their solution is meant primarily for static content as it relies on the availability of an alternate ‘degraded’ set of objects to be served. Thus, it does not take into account the variable execution time of scripts that are involved in serving dynamic content. Hence the approach of [1] is not directly applicable to an E-commerce scenario such as the one we have considered here.

Our survey suggests that although a number of mechanisms have been proposed, none of the work focuses on the essential difference between revenue-generating and browsing requests, that are a characteristic of an E-commerce Web site. In our work, we specifically recognize this difference, and work from there. We assume that the ultimate goal of an E-commerce Web site is to complete as many revenue-generating requests as possible—any work that an E-commerce Web-server does should be in support of this goal. We propose a simple combination of priority queuing and last-in-first-out (LIFO) scheduling during overload conditions. However, their solution is meant primarily for static content as it relies on the availability of an alternate ‘degraded’ set of objects to be served. Thus, it does not take into account the variable execution time of scripts that are involved in serving dynamic content. Hence the approach of [1] is not directly applicable to an E-commerce scenario such as the one we have considered here.

Our survey suggests that although a number of mechanisms have been proposed, none of the work focuses on the essential difference between revenue-generating and browsing requests, that are a characteristic of an E-commerce Web site. In our work, we specifically recognize this difference, and work from there. We assume that the ultimate goal of an E-commerce Web site is to complete as many revenue-generating requests as possible—any work that an E-commerce Web-server does should be in support of this goal. We propose a simple combination of priority queuing and last-in-first-out (LIFO) scheduling during overload, to achieve this goal. We have implemented and analyzed our mechanism experimentally, by emulating a typical E-commerce Web site. We use a session-based workload model that emulates realistic user behavior—variable abandonments, variable retries, and session abandonments as a result of request abandonments. We show that our mechanism performs well under all such realistic conditions.

Note that the use of LIFO for overload control when dealing with impatient customers is not new and has been proposed for telecommunication systems. Doshi and Heffes [5] provide an excellent analysis of this family of service disciplines for overload control. They have analytically shown that LIFO based schemes are more attractive at overload from both throughput and delay points of view. Note though, that in the absence of overload, the response time of LIFO will have a higher variance than that of FIFO and can hence cause more abandonments than FIFO. In fact, we have experimental results to show that this does happen in the case of Web-servers.

The rest of the paper is organized as follows. In Section 2 we propose an E-commerce workload model and describe our LIFO-priority based overload control mechanism. In Section 3 we describe the experimental setup and discuss the results. We conclude in Section 4 with discussions and suggestions for future work.

2. Proposed Overload Control Scheme for E-Commerce Web-Servers

The goal of an E-commerce Web site, is revenue generation, which it achieves by allowing visitors to browse through its merchandise (if it is a retailing Web site), and then buy. Since a large fraction of the browsing visitors do not intend to buy, it is important that those that have shown the intent to buy by beginning the buying process must be helped to complete the transaction without timing out and abandoning the transaction. This is especially important during overload conditions when the server strains under an increased overhead. Before describing the overload control scheme we present our model about a typical E-commerce workload.

2.1. An E-Commerce Workload Model

We assume that in an E-commerce Web site most of the users browse the site for some time and leave, while a few of these browsing users proceed towards a revenue-generating transaction that is a multi-step (multiple Web page) process. For example, in an online retail site, the user first visits the home page and then possibly browses or searches through the catalog. If the preferred product is available then more
details about that product may be sought. We term these requests as the *browsing requests*. Most of the users leave the site at this point; few who have the intention of buying some product proceed to the first step in a sequence of transactions, e.g., the ‘login’ page. From this point onward, the user is led through a multi-stage sequenced transaction (involving, e.g., entering payment and shipping details), usually culminating in a ‘confirm’ request, that finalizes the transaction. We term these the *transaction requests*. This movement of the user between the different types of pages can be represented by a finite state machine as shown in Fig. 1. To construct a tractable model that can simplify simulation and analysis, we assume that the transitions between the states are memoryless and that the probabilities are stationary. Thus the user behavior can be modeled as a stationary finite state Markov chain with states corresponding to the pages.

2.2. LIFO-Pri Overload Control Algorithm

Recall that our objectives are twofold—(1) maximize the throughput of revenue-generating requests while (2) improving overall throughput of the Web-server during overload. The mechanism that we propose in the sequel will be called *LIFO-Pri*.

To achieve the first goal of maximizing the throughput of revenue-generating requests, we employ a priority mechanism. Separate queues are maintained for each type of request. The transaction request queues are given a simple non-preemptive priority over the browsing request queues. We make a simplifying assumption that we would never want to serve any browsing request if a transaction request is waiting to be served. Between the transaction queues, the queue for the last request, e.g., ‘confirm’, in the multi-step transactions has the highest priority. The queue for the request, e.g., ‘payment’, just before ‘confirm’ has the second highest priority, and so on.

To achieve the second goal of maximizing the overall throughput, we propose a load-based LIFO mechanism—a FIFO policy during normal load and a LIFO policy during overload. As noted earlier LIFO based policies provide better throughput and delay performance at overload as compared to FIFO. This can be explained as follows. Since the mean delay at overload is high, the high variance of the delay works in our favor by having more requests that do not time out than would happen with FIFO.

We make the reasonable assumption that overload is primarily due to browsing requests. Hence we employ LIFO during overload only for the browsing queues while serving the transaction queues according to FIFO.

We also propose a dynamic priority mechanism for selecting requests from the browsing queues to allow those that may have a higher chance of leading to a transaction request to complete with a higher probability. We use dynamic priorities because static absolute priorities can lead to starvation of low priority queues. The proposed scheme is as follows. For the browsing queues, two different attributes are maintained for each queue:

- Number of pending requests in that queue \(N_i\).
- Utility of that queue \(U_i\).

The queue priority at any time is then given by \(U_i \times N_i\). The utility is an indicator of the relative importance of the queues. This utility could, for example, be based on the ‘revenue generation potential’, i.e., if the ‘details’ page request is more likely to lead to a buy request than a ‘search’ page request, then the ‘details’ page can be given a higher utility. The values for the utility may be obtained from the Markov chain describing the user behavior. By including the queue length in obtaining the priority, we prevent the lower priority queues from getting starved.

Algorithm 1 LIFO-Pri

```plaintext
SET_DISCIPLINE:
while alive do
    CPU_Util \leftarrow Utilization measured over an interval
    if (CPU_Util \geq CPU_Upper_Threshold) AND (Browsing_Policy = FIFO) then
        Browsing_Policy \leftarrow LIFO
    end if
    if (CPU_Util \leq CPU_Lower_Threshold) AND (Browsing_Policy = LIFO) then
        Browsing_Policy \leftarrow FIFO
    end if
end while

DYNAMIC_PRIORITY:
while alive do
    if (A worker thread is available) AND (At least one queue has a pending request) then
        for all \(1 \leq i \leq \text{Number of queues}\) do
            \(D_i \leftarrow N_i \times U_i\)
        end for
        \(Q \leftarrow \text{arg max}_i(D_i)\)
        Read a request from queue \(Q\) according to current service discipline.
        Assign worker thread to request.
    end if
end while
```

The service discipline used by LIFO-Pri for the browsing requests depends on the CPU utilization. If the CPU utilization crosses a predefined *upper threshold*, then it starts serving the browsing requests according to LIFO, and it continues with this discipline while the CPU utilization is above *lower threshold*. Recall that the transaction requests are always served in FIFO order.
The above discussion is summarized in Algorithm 1. Note that the two parts of the algorithm—\textsc{SetDiscipline} and \textsc{DynamicPriority} have to be executed in parallel, typically by separate threads.

3. Experimental Results and Discussions

The overload control policy as described in the above section was implemented in a Web-server. The Web-server architecture is as depicted in Fig. 2. Experiments were carried out to verify the performance of our overload control mechanism, by varying load on the Web-server that we have built. The experiments done can be divided into two parts:

- Experiments to compare FIFO and LIFO service order.
- Experiments with an E-commerce setup to test the LIFO-Pri policy.

The first set of experiments separately characterize performance of LIFO and FIFO under non-overload and overload conditions on the Web-servers. These experiments offer several insights that will be discussed later in this section. The second set of experiments test the effectiveness of the LIFO-Pri overload control mechanism.

The test-bed contains a server and a client machine. The server machine is based on an Intel P-IV 1.6 GHz CPU with 256 MB RAM, running Debian GNU/Linux Sid. The Web-server runs on this machine with a maximum limit of 30 worker threads. It must be noted that the priority assignment is only for the assignment of a worker thread and the transaction queues are not given priority in execution by the operating system. The client machine is based on an Intel P-IV 2.4 GHz CPU with 256 MB RAM running Debian GNU/Linux Sid. The client is used to generate load on the Web-server using \texttt{httperf} [7].

3.1. Comparison of FIFO and LIFO

Since we are specifically comparing the performance of LIFO and FIFO service disciplines, we carried out a set of experiments on a basic Web-server with a single queue and not with the E-commerce setup model of Fig. 1. The load is generated by repeatedly making a request for a CPU-intensive CGI file. The distribution of the inter-arrival time between requests is exponential.

3.1.1. Experimental Setup

The Web-server is configured with a single queue with a buffer capacity of fifty. To compare the FIFO and LIFO approaches, we repeat the experiments with the following three different service policies. In the first case, called \textit{Always-FIFO}, the Web-server always serves the requests in FIFO order. In the second case, termed Always-LIFO, the Web-server always serves the requests in LIFO order. In the third case, that we call \textit{LIFO-at-overload}, the service discipline alternates between LIFO and FIFO as is done in LIFO-Pri.

3.1.2. Results

The experiments were performed to study the server response as a function of increasing load. In this set of experiments, we use a fixed timeout value for all the requests.

Denote the server intensity (ratio of arrival rate to service rate) by ρ. When the offered load is below the capacity of the server, i.e., $\rho < 1.0$, the number of requests that are either dropped or timed out is almost zero for all the three cases. Fig. 3 shows the unconditional complementary distribution of the response time\footnote{All response time distribution graphs in this paper are the unconditional complementary distributions. This allows us to treat the response time of the timed out or dropped requests to be infinity.} for $\rho = 0.941$. Observe the
Table 1. Comparison of FIFO and LIFO based service disciplines in a single queue system. Server throughput at $\rho = 1.47$ with a timeout of 40 and 20 seconds.

	Timeout of 40 seconds		
	Always-FIFO	Always-LIFO	LIFO-at-overload
Requests Completed	86.7	84.4	84.6
Requests Timeout	0.0	2.3	2.0
Requests Dropped	13.3	13.4	13.4
	Timeout of 20 seconds		
Requests Completed	21.9	81.0	76.8
Requests Timeout	64.9	5.4	9.7
Requests Dropped	13.3	13.6	13.4

longer tail for the case of Always-LIFO implying that a significant fraction of requests have a long response time. This effect is not seen when LIFO-at-overload is used. Thus, using LIFO is not appropriate when the load is less than the capacity of the Web-server.

When the offered load is higher than the capacity of the server, requests are dropped or are abandoned due to timeouts. We consider two timeout values—40 seconds and 20 seconds to model less patient customers. It can be seen in Table 1 that the percentage of requests dropped is almost identical for all the three service schemes but the abandonment rate depends significantly on the timeout value. First, consider the case when the timeout value is 40 seconds. Here, as is to be expected, Always-FIFO has the lowest percentage of abandoned requests. A large timeout value favors FIFO, because the FIFO response time does not have the “long tail” of LIFO. Note that even for the same average queue length, LIFO may result in much larger response time values than FIFO (a request that gets “pushed” to the end of the queue may never get served, and will eventually timeout). With a 20 second timeout, the Always-FIFO policy now shows a much larger abandonment rate than the LIFO policies. Further, the FIFO policy is able to achieve only 21.9% success rate as opposed to about 80% for the LIFO policies.

Fig. 4 shows the response time histogram and distribution for the case of $\rho = 1.47$ and a timeout of 40 seconds. Observe that for Always-FIFO the mode is at 20 seconds. Also see that for Always-FIFO all the requests have a response time of less than 24 seconds (which explains no abandonments, since the timeout is 40 seconds). For the two LIFO-based policies we observe two interesting phenomena—the mode occurs at about 7 seconds but a significant number of the requests have a very large response time, even as large as 40 seconds. This is also reflected in the long tail of the LIFO response time distribution.

Fig. 5 shows the histogram and the distribution of the response time with a timeout of 20 seconds. Comparing with the 40 second timeout case, we observe that the difference in histograms for Always-LIFO and for LIFO-at-overload does not change significantly with the timeout value except that the tail is shortened. However, for the case of Always-FIFO the mode of the distribution is at about 18 seconds. Also, for Always-LIFO and for LIFO-at-overload, nearly 80% of the requests have a response time of less than 10 seconds, whereas for Always-FIFO, less than 5% of requests experience this response time.

Thus by using LIFO-at-overload approach we have achieved not only higher throughput, but also significantly better response time distribution at higher load.

3.2. Experimental Analysis of LIFO-Pri

In the experiments described in the previous section the workload consisted of a random sequence of requests for URLs and did not correspond to a transaction. We verified the claim that using LIFO service discipline improves the performance of a Web-server during overload in the presence of impatient users. We now present results of experiments that were performed to test the proposed LIFO-Pri mechanism.

3.2.1. Experimental Setup For validating our mechanism, we set up a Web site that emulates the characteristics of a typical E-commerce Web site as per our model of Fig. 1. Some of the possible transitions in the model were assigned a probability of zero so as to minimize the effect of ‘unknown’ factors in the controlled experiments.

The eight types of pages shown in Fig. 1 are generated using Perl CGI scripts that have interleaved random busy and waiting periods. The busy periods represent local processing and the waiting periods represent time spent in the back-end server calls such as database lookups. Table 2
shows the mean execution times (including the delay in servicing back-end requests) of these CGI scripts.

We use `httperf` with the `--wsesslog` option to generate the E-commerce workload. i.e., `httperf` reads session descriptions from a file of 1000 randomly generated session descriptions according to the Markov chain shown in Fig. 1 and keeps cycling through them until a specified total number of sessions have been completed. This is necessary because we did not have a load generator that could generate such a randomly distributed workload. Each session consists of a sequential set of requests which must be completed for the session to succeed. The session arrival process is modeled to be Poisson.

As in the previous section, we model the ‘impatience’ of the users by using timeouts for the requests. `httperf` supports two kinds of timeouts. The basic timeout is called `--timeout` and it is the amount of time that the load generator waits for a server reaction, i.e., forward progress must be made within this timeout value while creating a TCP connection, sending a request, waiting for or receiving a reply. An additional `--think-timeout` is added to the basic timeout while waiting for a reply after issuing a request. This is used to allow for the additional response time that the server might need to initiate sending a reply for a re-
request, since we are running time-consuming CGI scripts and not merely fetching a static file. The think-timeout is particularly important in our case because it directly corresponds to the ‘impatience’ of customers. httpperf (up to version 0.8) supported only fixed values for these timeouts. We modified the code to implement exponentially distributed -- think-timeout values. This allowed us to use variable and random timeouts in our experiments to enable us to more reasonably model user impatience. Note that most other experimental works assume fixed timeout values.

Since we are modeling abandonments by timeouts, we must also model the user behavior of retrying an abandoned request. The retry model that we use is as follows. Whenever a request times out, it retries with a probability of p and abandons with probability of $1 - p$. The number of retries per request is upper bounded by M. We added this new functionality, which is accessed with the -- retry-model option, to httpperf.

If any request in a session fails, even after the retries, the entire session is considered to have failed. The remaining requests in that session are not issued in such a case. This is the realistic model for a Web-server because users would most likely ‘give up’ and leave the Web site, after failing to load a desired page. Thus, for a transaction request to be generated, all the preceding browsing requests of that session must have been completed successfully. This clearly implies that to have a higher amount of revenue generation under overload conditions, we must also increase the number of browsing requests that are completed. This would increase the chances of success for a session that would result in a revenue-generating transaction. Our proposal of giving a strictly higher priority to a transaction request over browsing requests would then ensure that if a transaction request is generated, it has a very high chance of completion.

The server is configured with eight queues: four queues for browsing requests and four for transaction requests. Thus each queue, and each type of request has its own parameters and handling mechanisms. We perform three sets of experiments as follows.

3.2.2. Experimental Results

Fig. 6 shows the overall throughput as a function of the offered load. We can see

Request queue	Utility
Main Page (Br-1)	27
Browsing (Br-2)	22
Searching (Br-3)	36
Details (Br-4)	73
Login (Tr-1)	3650
Shipping (Tr-2)	4050
Payment (Tr-3)	4500
Confirm (Tr-4)	5000

Table 3. Utility values for queues.
that when the load is below the capacity of the server, i.e., $\rho = 1$, (corresponds to 5.6 requests/second for this workload model), all the three schemes have similar throughput. When $\rho > 1$, the throughput of the SQ system drops significantly and is the minimum of the three cases for $\rho > 1.3$. In the 8Q-AF system a larger number of transaction requests complete and we can see a marginal improvement in the throughput. The best performance is clearly in the 8Q-LIFO-Pri system with a throughput of almost 3.5 requests/second (about 63% of the server capacity) even for $\rho = 2.0$.

We now discuss the results in more detail and analyze it at the requests level. Table 4 shows the composition of requests for each value ρ, along with the number of requests completed, requests timed out, and requests dropped for each scheme (SQ, 8Q-AF and 8Q-LIFO-Pri) from each of the queues. For 8Q-AF and 8Q-LIFO-Pri, the data for the browsing queues is combined. Table 5 shows the overall percentage of requests completed, requests dropped, requests timed out and requests that were not generated because the session aborted before completion.

We can see that when the offered load is less then the capacity of the server, ($\rho = 0.85$ case) the percentages are the same in all the three schemes with 100% of the sessions getting completed.

When the offered load exceeds server capacity, requests timeout and generate retries which further increases the offered load to the server. However, since some sessions are aborted, the requests after the session abortion are not offered and this can cause some reduction in the offered load. This effect is seen in the reduced number of browsing and transaction requests generated under each policy—42,029 requests are generated in SQ as compared to 43,402 in 8Q-AF and 45,310 in 8Q-LIFO-Pri. The end result is that the number of the Tr-4 requests (the direct revenue-generating request) completed increases from 8 in SQ to 15 in 8Q-AF and to 50 in 8Q-LIFO-Pri. Recall that this number should be the primary measure of performance of an E-commerce Web-server.

Our experimental setup represents the fact that browsing requests are important in the sense that they are the source of transaction arrivals. Increasing the browsing request completion rate, coupled with priority to transaction service, results in an overall increase in the transaction completion rate.

Table 4 shows that with $\rho = 1.4$, the LIFO-Pri scheme increases the number of ‘login’ requests generated to 195, out of which 187 are actually completed, only 8 time out and there are zero drops. This is due to the fact that a larger number of browsing requests are completed, which in turn leads to the generation of transaction requests.

Some more observations from Table 4:

- The number of timed-out transactions is higher for LIFO-Pri than for 8Q-AF. Although this may seem surprising, observe that that a significantly larger number were generated, e.g., 195 Tr-1 requests for LIFO-Pri as compared to 24 for 8Q-AF.
- The effect of LIFO on reducing abandonments is clearer from the browsing requests where the difference in the number generated is not very significant (44,826 vs. 43,324). However, only 19,852 completed in 8Q-AF vs. 30,851 in LIFO-Pri—a result

2 The seemingly disproportionate decrease in these numbers as compared to the non-overload case can be attributed to the lack of a load generator that could generate our randomly distributed workload. However, the numbers are sufficient for highlighting the performance improvement in LIFO-Pri as compared to other schemes in overload conditions.
Table 4. Throughput data for the different types of requests for different values of ρ.

ρ	Case	Requests Generated	Browsing	Tr-1	Tr-2	Tr-3	Tr-4
0.85	SQ	54480	888	792	720	648	
	Completed	54480	888	792	720	648	
	Timed out	0	0	0	0	0	
	Dropped	0	0	0	0	0	
1.4	8Q-AF	54480	888	792	720	648	
	Completed	54480	888	792	720	648	
	Timed out	0	0	0	0	0	
	Dropped	0	0	0	0	0	
	8Q-LIFO-Pri	54480	888	792	720	648	
	Completed	54480	888	792	720	648	
	Timed out	0	0	0	0	0	
	Dropped	0	0	0	0	0	

Table 5. Throughput data (in percentage) for different values of ρ.

ρ	$\rho = 0.85$	$\rho = 1.4$				
Case	SQ	8Q-AF	8Q-LIFO-Pri	SQ	8Q-AF	8Q-LIFO-Pri
Completed	100	100	100	29.9	36.6	57.5
Timed out	0	0	0	36.8	29.9	7.5
Dropped	0	0	0	10.6	13.1	18.2
Not Generated	0	0	0	22.8	20.4	16.8

- The reduction of the number of request abandonments from 16,305 to 4,075.
- For 8Q-AF no transaction requests are dropped even at high loads because these queues have a high priority and also very few are offered.
- Using LIFO in the browsing queues along with priority for transaction queues as in 8Q-LIFO-Pri retains the benefits of giving high priority to the transaction requests. This can be seen in Table 4 where the number of transaction requests dropped in 8Q-LIFO-Pri is zero even in overload conditions.

Fig. 7 shows the response time distribution of Br-1 requests for $\rho = 1.4$; we see that for 8Q-LIFO-Pri, nearly 80% of the requests have a response time less than 5 seconds, whereas in SQ and in 8Q-AF only about 10% of the requests achieve this.

Fig. 8 shows the graph between the average response time (of completed transactions) as a function of ρ for the three policies. The response time with the LIFO-Pri policy is significantly better during overload. Given the improved throughput performance of LIFO-Pri, as was observed from Table 4, this is not surprising because in the presence of abandonments it is necessary to improve response time performance to be able to increase throughput. Improving response time reduces request abandonments, which in turn causes fewer session abandonments and an increased overall throughput.
4. Summary and Discussion

In this paper, we proposed and experimentally evaluated an overload control scheme for Web-servers under a reasonably realistic model of for E-commerce workload. The LIFO-Pri scheme proposed in this paper is an extremely simple, yet effective, mechanism for overload control. The experimental results are highly encouraging—the server could operate at nearly 60% of its maximum capacity even when offered a load 1.5 times its capacity and has a factor of 7 increase in the number of direct revenue-generating requests completed as compared to a single queue model during overload.

The benefits of LIFO were observed by Dalal and Jordan [4], however, the results were not for an E-commerce environment, and no implementation and experiments were done (validation was by simulation). We believe our work confirms experimentally the truly remarkable effect on performance during overload of the LIFO policy along with a priority for revenue-generating requests. Although the LIFO service policy seems to always imply high variability and unfairness, the abandonment and retry behavior of users during overload, turns LIFO into a compelling choice.

Future work includes having better indicators for overload—this work assumed that the CPU was the bottleneck resource and used CPU utilization as the indicator. We would like to extend this to cases where we do not know the bottleneck resource. Work is also needed to model user behavior even more appropriately (e.g. longer response times should discourage ‘repeat’ visits). Lastly, analytical models are necessary to gain further insight into overload control mechanisms for Web-servers.

References

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for web server end-systems: A control-theoretical approach. *IEEE Transactions on Parallel and Distributed Systems*, 13(1):80–96, January 2002.

[2] H. Chen and P. Mohapatra. Session-based overload control in QoS-aware Web servers. In *IEEE INFOCOM*, 2002.

[3] L. Cherkasova and P. Phaal. Session-based admission control: A mechanism for peak load management of commercial Web sites. *IEEE Transactions on Computers*, pages 669–685, June 2002.

[4] A. C. Dalal and S. Jordan. Improving user-perceived performance at a World Wide Web server. In *Proceedings of Globecom 2001*, San Antonio, Texas, September 2001.

[5] B. T. Doshi and H. Heffes. Overload performance of several processor queuing disciplines for the M/M/1 queue. *IEEE Transactions on Communications*, C-35:538–546, June 1986.

[6] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A method for transparent admission control and request scheduling in E-commerce Web sites. In *Proceedings of the 13th international conference on World Wide Web*, pages 276–286. ACM Press, 2004.

[7] D. Mosberger and T. Jin. httperf—a tool for measuring Web server performance. *ACM SIGMETRICS Performance Evaluation Review*, 26(3):31–37, 1998.

[8] Online Retail Sites Strain Under Black Friday. Url: http://www.internetweek.com/story/showArticle.jhtml?articleID=16600028.