Reversible aqueous zinc-ion batteries (ZIBs) have great potential for large-scale energy storage owing to their low cost and safety. However, the lack of long-lifetime positive materials severely restricts the development of ZIBs. Herein, we report NaV$_6$O$_{15}$ microflowers as a cathode material for ZIBs with excellent electrochemical performance, including a high specific capacity of \sim300 mA h g$^{-1}$ at 100 mA g$^{-1}$ and 141 mA h g$^{-1}$ maintained after 2000 cycles at 5 A g$^{-1}$ with a capacity retention of \sim107%. The high diffusion coefficient and stable tunneled structure of NaV$_6$O$_{15}$ facilitate Zn$^{2+}$ intercalation/extraction and long-term cycle stability.

1. Introduction

To alleviate the increasingly severe energy crisis and climate-related challenges, the use of safe, green, reliable, and economical energy resources such as wind, solar, and water power is becoming a focus worldwide.\(^5\) Rechargeable battery technology provides a promising option for storing energy from these renewable energy systems. However, commercial Li-ion batteries cannot solve the problem of large-scale energy storage because of the limited lithium resources, high cost, safety issues, and environmental impact of toxic electrolytes.\(^4\) Recently, rechargeable aqueous Zn-ion batteries (ZIBs) have been introduced as prospects for large-scale electrochemical energy storage due to their intrinsic safety (no flammable organic electrolytes), easy assembly, low cost, and high ionic conductivity (two orders of magnitude higher than those of organic electrolytes).\(^4\)\(^-\)\(^8\)

To date, layered vanadium-based compounds have displayed better electrochemical performance than manganese-based compounds such as MnO$_2$ and ZnMn$_2$O$_4$.\(^1\)\(^-\)\(^4\) Among these compounds, sodium or potassium layered vanadate (e.g., Na$_2$V$_6$O$_{16}$·3H$_2$O, Na$_3$V$_{12}$O$_{32}$, Na$_{1.1}$V$_{0.7}$O$_{7.9}$, KV$_2$O$_6$, and K$_2$V$_6$O$_{16}$·1.57H$_2$O) are candidate cathode materials in ZIBs.\(^5\)\(^-\)\(^8\) The large lattice spacing in the layered structure and the “pillar” effect of Na’/K” between the vanadium oxygen interlayers might be responsible for the high capacity and good cycle performance, respectively. However, due to the weak interaction between the triconnected oxygen atoms on the layered surface and the Na’ or K” ions along with the strong electrostatic interaction between the inserted Zn$^{2+}$ and the unstable layers, the interlayer spacing in layered vanadate decreases, and the structure is destroyed.\(^0\)\(^-\)\(^2\)

Vanadium-based compounds with tunneled structures (e.g., Na$_{0.76}$V$_6$O$_{15}$, Na$_{0.33}$V$_2$O$_5$, K$_2$V$_6$O$_{11}$, and K$_{0.25}$V$_2$O$_5$) have also been reported as cathode materials for ZIBs.\(^20\)\(^-\)\(^22\) The stable tunneled structure provides an effective diffusion path for Zn$^{2+}$ insertion and avoids structural damage, resulting in excellent cycle performance. Mai et al. prepared Na$_{0.33}$V$_2$O$_5$ nanowires with a high capacity of 367 mA h g$^{-1}$ at 100 mA g$^{-1}$ and long-term cycle stability with a capacity retention of over 93% for 1000 cycles.\(^22\) Kim et al. synthesized NaV$_6$O$_{15}$ nanorods that delivered a high discharge capacity of 427 mA h g$^{-1}$ at 50 mA g$^{-1}$ and a capacity retention of 65% over 300 cycles at 1 A g$^{-1}$.\(^21\)

In our past work, high-performance NaV$_6$O$_{15}$ microflowers were successfully synthesized as a cathode material for Li/Na-ion batteries.\(^24\) Herein, Na$_6$V$_{15}$O$_{40}$ microflowers are also demonstrated to be a competitive cathode material for ZIBs based on the following parameters: a high initial specific capacity of \sim300 mA h g$^{-1}$ at 100 mA g$^{-1}$; 141 mA h g$^{-1}$ maintained after 2000 cycles at 5 A g$^{-1}$; and a capacity retention of \sim107%. Meanwhile, the storage mechanism of the cathode was also investigated.

2. Experimental

NaV$_6$O$_{15}$ microflowers were fabricated by a simple hydrothermal method. NaOH (0.24 g), Na$_2$CO$_3$ (0.053 g), and NH$_4$VO$_3$ (0.234 g) were dissolved together in 40 mL of deionized water under magnetic stirring at 80 °C for 20 min. When the solution was cooled to room temperature, 1 mL of 3% H$_2$O$_2$ was added into the solution. Subsequently, the pH of the solution was adjusted to 1.9 via the dropwise addition of dilute hydrochloric acid (2 M). The orange solution was then transferred to a 50 mL Teflon-lined sealed autoclave and maintained at 200 °C for 24 h. After centrifugation, the yellow precursors were washed three times with distilled water and alcohol followed by drying for 10 h. NaV$_6$O$_{15}$ powders were finally obtained by heating the precursors at 400 °C in air for 4 h.
The crystal structure of the as-prepared product was evaluated by X-ray diffraction (XRD; XRD-7000, Shimadzu) with a Cu Kα X-ray source. The morphology of the sample was investigated by scanning electron microscopy (SEM) with a Hitachi-4800 scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was conducted using an Escalab250 spectrometer equipped with an Al Kα source. Galvanostatic charge–discharge experiments were performed using a battery testing system (Neware CT-3008) in the voltage window of 0.2–1.6 V. Cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT) measurements were carried out using a BioLogic VSP-300 multichannel.

Our cathode electrode for testing was prepared by mixing 70 wt% active material, 20 wt% acetylene black, and 10 wt% polytetrafluoro-ethylene (PTFE) binder to form a homogeneous mud pie, which was then rolled into a film on a carbon paper. The loading density of active material in the film was approximately 1 mg cm⁻². Finally, the film was dried at 60 °C under vacuum for 10 h. To assemble the 2032-type coin cell, we choose 3 M Zn(CH₃F₃SO₃)₂ aqueous solution as the electrolyte to obtain good electrochemical performance. Metallic zinc foil was used as the anode, and glass microfiber served as the separator.

3. Results and discussion

The XRD pattern of the NaV₆O₁₅ microflowers is shown in Fig. 1a. All the diffraction peaks can be well indexed to the monoclinic layered NaV₆O₁₅ phase (PDF #24-1155), and no other impurities are detected. An SEM image of microflower-like NaV₆O₁₅ with a diameter of ~5 μm is shown in Fig. 1b. The microflower is composed of nanorods with lengths of ~2 μm and widths of ~300 nm. Fig. 1c and d show the crystalline structure of NaV₆O₁₅. The layered NaV₆O₁₅ is composed of VO₆ octahedra and VO₅ square pyramids along the b-axis, and the layers are bonded with single-connected oxygen atoms; this structure is more stable than those of other layered vanadium oxides.²⁵,²⁶ The interlayer sodium ions along the a-axis act as pillars to further increase the stability of the layered vanadium oxide during Zn insertion/extraction.²⁷,²⁸ The tunneled structure along the b-axis (Fig. 1d) provides additional space, which also facilitates Zn insertion/extraction.

Fig. 2a shows the cyclic voltammogram of the NaV₆O₁₅ electrode at a scan rate of 0.1 mV s⁻¹ in the first three cycles. Two reduction/oxidation peaks appeared at approximately 0.82 V/1.01 V and 0.51 V/0.75 V, which can be attributed to the V⁵⁺/V⁴⁺ and V⁴⁺/V³⁺ redox couples in NaV₆O₁₅, respectively.²⁹ The redox couple at approximately 1.10 V/1.25 V might indicate a phase transformation of the NaV₆O₁₅ electrode. The CV curves remained similar after the first cycle, demonstrating the good structural stability and high electrochemical reversibility of the electrode. The galvanostatic charge–discharge profiles of the NaV₆O₁₅ electrodes with Zn at a current density of 100 mA g⁻¹ are shown in Fig. 2b. The NaV₆O₁₅ electrode delivered an initial specific discharge/charge capacity of 297/293 mA h g⁻¹ with a high coulombic efficiency (98.6%). After the first three cycles,
a higher discharge/charge capacity of 348/347 mA h g\(^{-1}\) was obtained with \(\sim\)100% coulombic efficiency. The similar discharge/charge profiles compared to the first cycle also demonstrate the good electrochemical stability of the NaV\(_6\)O\(_{15}\) electrode.

The rate capabilities of the NaV\(_6\)O\(_{15}\) electrodes were also investigated (Fig. 2c). The average discharge capacities were 346, 321, 265, 222, and 83.2 mA h g\(^{-1}\) at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 A g\(^{-1}\), respectively. When the current density returned to 0.2 A g\(^{-1}\), a capacity of 329 mA h g\(^{-1}\) was recovered, indicating the good reversibility of the NaV\(_6\)O\(_{15}\) electrode. The cycling stability of the electrode at 100 mA g\(^{-1}\) and 5 A g\(^{-1}\) was evaluated (Fig. 2d and e, respectively). The initial discharge capacity at 100 mA g\(^{-1}\) increased from 298 to 389 mA h g\(^{-1}\) (maximum capacity) after approximately 40 cycles. The reason for this is discussed later in detail. After 100 cycles, the capacity was reduced to 225 mA h g\(^{-1}\) with a capacity retention of 57.8% and 98% coulombic efficiency; this might
explain the partial dissolution of the active material and poor electronic conductivity.29 At the higher current density of 5 A g⁻¹, an initial discharge capacity of 132 mA h g⁻¹ was obtained. After 2000 cycles, the NaV₆O₁₅ electrode still maintained a discharge capacity of 141 mA h g⁻¹ with a high coulombic efficiency of ~100% and a capacity retention of ~107%.

To explore the mechanism of the increased capacity and stable cycle performance of the NaV₆O₁₅ electrode, ex situ XRD and XPS were carried out, respectively. To more clearly observe Zn²⁺. Meanwhile, the intensity of the Na 1s signal was gradually decreased. A new peak at 515.3 eV appeared, which can be attributed to V⁴⁺. After charging to 1.6 V, the signals of V⁵⁺ and V⁶⁺ almost disappeared, also indicating the extraction of Na⁺ from the structure of NaV₆O₁₅. Combined with the ex situ XRD results, it can be concluded that the tunnel structure of [V₄O₁₃]⁻ is stable despite the displacement of Zn²⁺ by Na⁺ and the extraction of Na⁺ during the discharge/charge process.

To further understand the electrochemical reaction kinetics of the NaV₆O₁₅ microflower-like electrode, the CV curves were measured at various scanning rates (0.1–1.0 mV s⁻¹) to investigate the pseudocapacitive-controlled and diffusion-controlled processes (Fig. 4a). As the scanning rate increased, the peaks gradually broadened, while the curve shapes remained similar. Based on the sweep voltammetry test data, the electrochemical kinetic process can be described by the following equation:29

\[i = av^b \]

(1)

where \(i \) is the peak current, \(v \) is the scan rate, and \(a \) and \(b \) are variable parameters, with \(b \) varying from 0.5–1.0. For a given system, a \(b \) value of 0.5 reflects a diffusion-controlled process. In contrast, \(b = 1.0 \), indicates a capacitive process. By calculating the slope of the curve of \(\log(I) \) versus \(\log(v) \) (Fig. 4b), the \(b \) values were determined to be 0.53, 0.56, and 0.62, indicating that the electrochemical kinetics were primarily dominated by diffusion. As the scanning rate was increased incrementally from 0.1 to 1.0 mV s⁻¹, the capacitive contribution gradually increased from 10.4% to 26.7%; thus, diffusion still controlled an overwhelming proportion of the kinetic process. This result differs from most layered vanadium-based compounds, for which the kinetic processes are primarily capacitive controlled. This might be attributed to the tunneled structure of NaV₆O₁₅, which is similar to structures of manganese-based materials such as ZnMn₂O₄,31 MnO₂,32 and Mn₃O₄.33

GITT was used to calculate the diffusion coefficient of zinc ions (\(D_{Zn} \)). As shown in Fig. 4d, the cell was discharged at a constant current of 0.1 A g⁻¹ for 10 min followed by a 60 min open-circuit step to bring the voltage back to equilibrium. This process was repeated until the voltage reached 0.2 V. The \(D_{Zn} \) value of the NaV₆O₁₅ electrode (Fig. 4e) was evaluated by the following equation:34

\[D_{Zn} = \frac{4}{\pi \tau} \left(\frac{m_B V_M}{M_B S} \right)^2 \left(\frac{\Delta E_f}{\Delta E_i} \right)^2 \]

(2)

where \(\tau, m_B, V_M, M_B, \) and \(S \) are the duration of the current pulse, mass of the active material, molar volume of the electrode, molecular weight of the electrode material, and area of the electrode material, respectively. \(\Delta E_i \) is related to the change in voltage during the constant current pulse, and \(\Delta E_f \) is the steady-
The value of D_{Zn} was calculated to be approximately 10^{-7} to 10^{-9} cm2 s$^{-1}$. The high value of D_{Zn} can be attributed to the intrinsic tunneled structure of NaV$_6$O$_{15}$, which is responsible for the remarkable electrochemical performance of the NaV$_6$O$_{15}$ electrode.
The Ragone plots of the NaV6O15 electrode are shown in Fig. 4f. The specific energy and power values were considered based on the active mass of the cathode electrode. Compared to \(\alpha \)-MnO\(_2\), \(\beta \)-MnO\(_2\), ZnMn\(_2\)O\(_4\), \(\text{Zn}_{0.25}\text{V}_2\text{O}_5 \cdot \text{H}_2\text{O} \), and Zn\(_3\)V\(_2\)O\(_7\)(OH)\(_2\) \(\cdot \) \(\text{H}_2\text{O} \), the NaV\(_6\)O\(_{15}\) electrode exhibited a competitive energy density and power density (225 W h kg\(^{-1}\) at 65 W kg\(^{-1}\)). When the power density was as high as 1100 W kg\(^{-1}\), the energy density remained at a high value of 91 W h kg\(^{-1}\), indicating that the NaV\(_6\)O\(_{15}\) microflowers have a high-power capability for ZIBs.

4. Conclusions

We hydrothermally synthesized NaV\(_6\)O\(_{15}\) microflowers with high specific capacity (~300 mA h g\(^{-1}\) at 100 mA g\(^{-1}\)) and excellent cycling stability (141 mA h g\(^{-1}\) maintained after 2000 cycles at 5 A g\(^{-1}\)) in aqueous ZIBs. Ex situ XRD and XPS analyses demonstrated that the NaV\(_6\)O\(_{15}\) electrode has a stable and reversible structure during the zinc intercalation/extraction process, even after long-term cycling. The findings show that NaV\(_6\)O\(_{15}\) microflowers are a promising cathode material for aqueous ZIBs.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (51674168) and the Nature Science Fund of Liaoning Province (20180550200).

References

1. Q. Zhao, Z. Yan, C. Chen and J. Chen, Chem. Rev., 2017, 117, 10121–10211.
2. N. T. Suen, S. F. Huang, Q. Quan, N. Zhang, Y. J. Xu and H. M. Chen, Chem. Soc. Rev., 2017, 46, 337–365.
3. Q. Zhao, W. W. Huang, Z. Q. Luo, L. J. Liu, Y. Lu, Y. X. Li, L. Li, J. Y. Hu, M. Ma and J. Chen, Sci. Adv., 2018, 4, 1761.
4. N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chem. Rev., 2014, 114, 11636.
5. B. Scrosti, J. Hassoun and Y. K. Sun, Energy Environ. Sci., 2011, 4, 3287–3295.
6. G. J. May, A. Davidson and B. Monahov, J. Energy Storage, 2018, 15, 145–157.
7. M. Armand and J. M. Tarascon, Nature, 2008, 451, 652–657.
8. Y. G. Wang, J. Yi and Y. Y. Xia, Adv. Energy Mater., 2012, 2, 830–840.
9. P. He, M. Y. Yan, G. B. Zhang, R. M. Sun, L. N. Chen, Q. Y. An and L. Q. Mai, Adv. Energy Mater., 2017, 7, 601920.
10. Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, J. Zhou, C. Wang, L. Wang and S. Liang, Energy Environ. Sci., 2018, 11, 3157–3162.
11. M. Song, H. Tan, D. Chao and H. J. Fan, Adv. Funct. Mater., 2018, 28, 1802564.
12. S. Zhao, B. Han, D. T. Zhang, Q. Huang, L. Xiao, L. B. Chen, D. G. Ivey, Y. D. Deng and W. F. Wei, J. Mater. Chem. A, 2018, 6, 5733–5739.
13. D. Selvakumaran, A. Q. Pan, S. Q. Liang and G. Z. Cao, J. Mater. Chem. A, 2019, 7, 18209–18236.
