Please check this proof carefully for errors, once it is published online no further changes can be made. In particular, check that figures, tables and equations are correct.
Messinian productivity changes in the northeastern Atlantic and their relationship to the closure of the Atlantic–Mediterranean gateway: implications for Neogene palaeoclimate and palaeoceanography

JOSÉ N. PÉREZ-ASENSIO1,2, JULIO AGUIRRE1, GERHARD SCHMIEDEL3 & JORGE CIVIS4
1Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s.n., 18002 Granada, Spain
2Present address: Earth and Environmental Science Section, University of Geneva, Rue des Maraischers 13, 1205, Geneva, Switzerland
3Center for Earth System Research and Sustainability, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
4Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain
*Corresponding author (e-mail: Noel.PerezAsensio@unige.ch)

Abstract: The stable isotope composition of planktic and benthic foraminifera and the distribution of selected benthic foraminiferal species from a Messinian record of the lower Guadalquivir Basin, northeastern Atlantic Ocean, show that regional productivity changes were linked to glacioeustatic fluctuations. Glacial periods were characterized by poorly ventilated bottom waters as a result of weak Atlantic Meridional Overturning Circulation (AMOC), and by phases of high productivity related to intensified upwelling. In contrast, well-ventilated bottom waters owing to strong AMOC, the presence of degraded organic matter in the upper slope, and high input of degraded terrestrial organic matter derived from fluvial discharge to the outer shelf were recorded during interglacial periods. Before closure of the adjacent Guadalhorce Corridor at 6.18 Ma, which was the final active Betic Atlantic–Mediterranean gateway, the study area was alternately influenced by well-ventilated Mediterranean Outflow Water (MOW) and poorly ventilated Atlantic Upwelled Water (AUW). Following closure of the corridor, cessation of the MOW reduced the AMOC and promoted glacial conditions in the northern hemisphere, resulting in the establishment of local upwelling cells.

The dynamics of past global climate changes are intimately related to the exchange of CO2 between atmosphere and ocean, and feedbacks involving the marine biological pump and organic carbon cycling. Changes in the production, sequestration and remineralization of marine organic matter during glacial–interglacial cycles are closely linked to global thermohaline circulation and the distribution and intensity of upwelling systems (Sarmiento & Toggweiler 1984; Lyle et al. 1992).

At present, regions under upwelling influence are those with the highest primary productivities in the world ocean (Bakun et al. 2010). In the Atlantic Ocean, the main upwelling areas are located in its eastern parts, mainly along the West African coast and the Iberian Peninsula, and are driven by prevailing wind systems (Schmiedl et al. 1997; Martínez et al. 1999; Bakun et al. 2010).

The intensity and extent of upwelling currents are commonly controlled by Ekman pumping, which in the northern hemisphere is the vertical spiral movement of bottom waters induced by strong northerly trade winds and the Coriolis force (Tomczak & Godfrey 1994; Lebreiro et al. 1997; Smyth et al. 2001). The intensity of upwelling systems has changed with glacial–interglacial climate oscillations and the associated eustatic sea-level fluctuations and meridional temperature gradients. Thus, upwelling was more intense during glacial periods owing to strong wind stress (Lebreiro et al. 1997; Martínez et al. 1999; Salgueiro et al. 2010). Global palaeo-circulation patterns also influenced productivity related to upwelling. During glacial periods, the Atlantic Meridional Overturning Circulation (AMOC) was reduced (Broecker et al. 1985). Furthermore, large influxes of freshwater released in the North Atlantic decreased net water density and led to the collapse of the AMOC (McManus et al. 2004; Rogerson et al. 2010). Subsequently, in the early stages of interglacial periods, the intensification and shoaling of the dense Mediterranean Outflow Water (MOW) plume promoted an abrupt resumption of the AMOC (Rodgerson et al. 2006, 2012). Furthermore, reduction or interruption of the MOW resulted in decrease or interruption of the North Atlantic Deep Water formation (Rahmstorf 1998). As a result, the AMOC reduced and diminished poleward heat transport in the Atlantic, leading to cooling and ice sheet growth in the northern hemisphere (Zahn et al. 1997; Clark et al. 2002; McManus et al. 2004). This glaciation in turn promoted high-productivity conditions owing to stronger winds that induced Ekman pumping, once again stimulating upwelling and increased Atlantic Upwelled Water (AUW) influence in the NE Atlantic (Lebreiro et al. 1997; Zahn et al. 1997; Clark et al. 2002; Salgueiro et al. 2010).

In addition to primary productivity, organic matter in marine settings can be delivered as terrestrial input from rivers that discharge onto coastal shelves (McKee et al. 2004). A high supply of terrestrial organic matter can provide an important food resource for marine benthic ecosystems, and its degradation may result in oxygen depletion of the bottom and pore waters (van der Zwaan & Jorissen 1991; Jorissen et al. 1992; Donnici & Serandrei-Barbero 2005). Inner-shelf areas close to river mouths are excellent examples of high productivity localized by freshwater discharge, rich in nutrients and suspended terrestrial organic particles. High riverine discharge occurs during periods of intense rainfall, as at the Rhône and Tagus prodeltas, and the continental shelf of the Gulf of Cádiz, which is affected by the Guadalquivir River (Cabeças & Brogueira 1997; Lebreiro et al. 2006; Villanueva-Guiamares & Canado 2008; Rodrigues et al. 2009; Gomeau et al. 2011; Anfuso et al. 2013). Periods of intense riverine discharge are more frequent...
Biogeochemical cycles are also influenced by the opening and closure of oceanic gateways (e.g. Schneider & Schmittner 2006), as these palaeogeographical changes affected palaeo-circulation patterns. One of these was the temporary closure of Atlantic–Mediterranean connections during the late Messinian (Riding et al. 1998; Krijgsman et al. 1999; Pérez-Asensio et al. 2013). The interaction of this geological event with Atlantic circulation and glacio-eustatic sea-level changes is becoming better understood (e.g. Pérez-Asensio et al. 2012a; Rogerson et al. 2012), but little detailed analysis of its consequences for marine nutrient cycling and potential climate feedbacks has previously been undertaken. In the North Atlantic, cessation of the Mediterranean Outflow Water owing to the Messinian closure of the Betic gateways interrupted North Atlantic Deep Water production and weakened the AMOC, leading to cooling in the northern hemisphere (Pérez-Asensio et al. 2012a). Coincidently, small- or medium-scale glaciations with limited ice sheets developed in the northern hemisphere at about 7–6 Ma (Fronval & Jansen 1996; Thiede et al. 1998). This cooling would have reduced surface water temperatures in the North Atlantic, thereby enhancing coastal-parallel trade winds that promoted upwelling currents and high productivity (Hughen et al. 1996; Clark et al. 2002). Results inferred from modelling also suggest intense winds during the Messinian (Murphy et al. 2009), but there have been no previous studies of the relationship between productivity changes in the northeastern Atlantic and global climate and oceanography to validate these hypotheses.

Proxies that can be used to estimate palaeoproductivity changes include the relative abundance of benthic foraminifera, diatoms, radiolarians, fish debris, phosphorite grains, and stable C isotopes. In this study, foraminiferal stable oxygen and carbon isotope records and the distribution of selected benthic foraminiferal species have been analysed from the Montemayor-1 borehole (SW Spain, Fig. 1). This core is located in the Guadalquivir Basin, an open marine embayment that constituted the Atlantic side of the Guadalhorce Corridor, the final Betic Atlantic–Mediterranean gateway, and that closed at 6.18 Ma (Martin et al. 2001, 2009; Pérez-Asensio et al. 2012a). According to benthic foraminiferal assemblages, the Messinian record of the Montemayor-1 core represents a shallowing-upward sequence from middle- and upper-slope to shelf-edge and finally outer-shelf deposits (Pérez-Asensio et al. 2012b; Fig. 2).

The middle-slope and part of the upper-slope sediments deposited prior to closure of the Guadalhorce seaway were under the influence of the MOW (Pérez-Asensio et al. 2012a). The remainder of the upper-slope sediments, the shelf-edge and outer-shelf deposits are younger than 6.18 Ma and were not affected by the MOW. Palaeoceanographical changes produced by the MOW interruption affected the AMOC and climate, leading to cooling in the northern hemisphere (Pérez-Asensio et al. 2012a). The location of this core is therefore ideal to (1) investigate productivity changes and organic carbon cycling in the eastern North Atlantic during the Messinian, (2) assess effects of cessation of the MOW on palaeoproductivity, and (3) decipher relationships between Neogene productivity and global oceanography and climate.

Geographical and geological setting

The study area is located in the northwestern margin of the lower Guadalquivir Basin (SW Spain), an ENE–WSW-elongated Atlantic foreland basin that is bounded to the north by the Iberian Massif, to the south by the Betic Cordillera, and to the west by the Atlantic Ocean (Sanz de Galdeano & Vera 1992; Vera 2000; Braga et al. 2002). The sedimentary fill of the basin consists of marine deposits ranging from early Tortonian to late Pliocene (Aguirre 1992, 1995; Aguirre et al. 1995; Riaza & Martinez del Olmo 1996; Sierro et al. 1996).

The Guadalquivir Basin acted as a corridor, the ‘North Betic Strait’, connecting the Atlantic and the Mediterranean during the early Tortonian (Aguirre et al. 2007; Martin et al. 2009; Braga et al. 2010). Betic seaways that connected the Atlantic and the Mediterranean through the Guadalquivir Basin were progressively closed during the late Miocene (Esteban et al. 1996; Martin et al. 2001; Braga et al. 2003; Betzler et al. 2006; Martin et al. 2009), culminating in the closure of the Guadalhorce Corridor in the early Messinian (Martin et al. 2001; Pérez-Asensio et al. 2012a). Following its closure, the only remaining Atlantic–Mediterranean connections were through the Rifian Corridors in northern Morocco (Esteban et al. 1996).

Neogene deposits of the lower Guadalquivir Basin in the study area have been divided into four lithostratigraphic units formally described as formations. From bottom to top these are: (1) mixed carbonate–siliciclastic deposits of the Niebla Formation (Civis et al. 1987; Bacet & Pendón 1999); (2) greenish–bluish clays of the Arcillas de Gibraleón Formation (Civis et al. 1987); (3) fossiliferous sands and silts of the Arenas de Huelva Formation (Mayoral & Pendón 1987); (4) sands of the Arenas de Bonares Formation (Mayoral & Pendón 1987).

Materials and methods

The 260 m long continuous Montemayor-1 core was drilled close to Huelva (Fig. 1). The cored sediments range from latest Tortonian to early Pliocene in age (Larrasaúla et al. 2008; Pérez-Asensio et al. 2012a, 2013; Jiménez-Moreno et al. 2013). In this study, the 140 m interval from 240 to 100 m has been studied. It ranges from 6.67 to 5.38 Ma (Messinian) and is in marine sediments of the Arcillas de Gibraleón Formation (Fig. 3).

For faunal analyses, a total of 255 samples were collected at a sampling interval of 0.5 m. Samples were wet sieved over a 63 μm mesh and dried in an oven at 40°C. Using a microsplitter, samples were divided into subsamples containing at least 300 benthic foraminifera. Subsamples were dry-sieved over a 125 μm mesh, and the benthic foraminifera were identified and counted. The counts are expressed as percentages, representing the relative abundance of each taxon in the assemblage. To assess changes in flux,
provenance and degradation state of the organic matter we used the relative abundances of high-productivity target taxa including *Uvigerina peregrina* s.l. (*U. peregrina* + *U. pygmaea*), which thrives in environments with input of fresh marine organic matter, *Bulimina subulata* related to degraded marine organic matter, and *Brizalina spathulata* and *Bulimina acumelata* indicative of supply of degraded continental organic matter (Donnici & Serandrei-Barbero 2002; Schmiedl & Leuschner 2005; Murray 2006; Diz & Francés 2008; Duchemin et al. 2008; Schmiedl et al. 2010). In addition, changes in palaeo-oxygenation of the bottom water mass were analysed using the index of Schmiedl et al. (2003), (HO/(HO + LO) + Div) × 0.5, in which HO is the relative abundance of high-oxygen indicators (epifaunal taxa and miliolids), LO is the relative abundance of low-oxygen indicators (deep infaunal taxa), and Div is normalized benthic foraminiferal diversity using the Shannon index (H) calculated with the software PAST (Hammer et al. 2001).

For stable oxygen and carbon isotope analyses, a total of 160 samples were analysed. The sampling interval was 0.5 m from 240–170 m, and 2.5 m from 170–100 m. Two analyses per sample were performed, one with about 10 individuals of *Cibicidoides pachydermus* and another with 20 individuals of *Globigerina bulloides* picked from the size fraction >125 μm. Prior to the analyses, diagenetic alteration was assessed by checking for dissolution and/or recrystallization of shells under the SEM at 3000 to 10000× magnification. Any examples showing cement within skeletal pores or as overgrowths were discarded, as were any that showed evidence of dissolution. Foraminifera were cleaned with an ultrasonic bath and washed with deionized water. Samples were analysed at the Leibniz-Laboratory for Radiometric Dating and Isotope Research in Kiel (Germany), using a Finnigan MAT 251 mass spectrometer connected to a Kiel I (prototype) on-line CO₂ extraction device. Results are presented in δ-notation as per mil deviation from the Vienna Pee Dee belemnite (VPDB) standard. Analytical reproducibility monitored by repeated analyses of NBS-19 and calibrated internal laboratory CaCO₃ standards was <±0.05‰ for δ¹³C and <±0.07‰ for δ¹⁸O.

Pearson correlation coefficients (p) were calculated to assess the statistical correlation between O and C stable isotopes, relative abundance of target taxa, palaeo-oxygenation index and planktonic/benthonic ratio (P/B ratio), calculated as explained by Pérez-Armesto et al. (2012b) (Table 1). Only coefficients with a p-value <0.01 or <0.05 were considered significant.

Results

High-productivity target taxa and palaeo-oxygenation index

Changes in relative abundance of the four selected benthic foraminiferal species that indicate high productivity are shown in Figure 4. Both *Uvigerina peregrina* s.l. and *Bulimina subulata* show relatively high percentages from 6.67 to 5.87 Ma (Fig. 4), although some differences are evident. In this interval, *U. peregrina* s.l. displays significant minima at about 6.44 and 6.24 Ma, and maxima at 6.67 and 6.35 Ma, whereas *B. subulata* shows a slowly increasing trend with superimposed peaks and troughs (Fig. 4). In the interval from 5.87 to 5.38 Ma, the two species diminish in percentage, although in a different manner. *Uvigerina peregrina* s.l. relative abundance decreases sharply at 5.87 Ma and then remains with low average values around 10% (Fig. 4). In contrast, *Bulimina subulata* gradually decreases upwards to negligible values (Fig. 4).

The other two selected high-productivity target taxa, *Brizalina spathulata* and *Bulimina acumelata*, show increase in percentages towards the top of the studied interval that coincide with decrease in *U. peregrina* s.l. and *B. subulata* (Fig. 4). They are, however, nearly absent from the base of the studied section (6.67 Ma) to 5.87 Ma (Fig. 4).

The palaeo-oxygenation index shows relatively high values (>0.8) throughout the entire studied interval (Fig. 5). However, some oxygen depletion is recorded at 6.00, 5.99, 5.96, 5.91, and 5.87 Ma. After 5.87 Ma, the oxygen depletions are more severe than in the older sediments.

Stable isotope data

The benthic oxygen isotope record as measured in *Cibicidoides pachydermus* exhibits relatively low variations with an average value of +1% before 6.35 Ma, followed by a gradual decrease of 1.9% up to a minimum of ~0.9% that is reached by 6.18 Ma (Figs 4 and 5). In the same interval (6.67–6.18 Ma), the planktic (*Globigerina bulloides*) oxygen isotope record shows a fluctuating trend with average values between 0 and ~1.6% (Figs 4 and 5). From 6.18 Ma onwards, the planktic and benthic δ¹⁸O curves exhibit similar trends, as is indicated by the positive correlation (Table 1). In the interval from 6.18 to 5.79 Ma, both benthic and planktic average δ¹⁸O values gradually increase. They then show stepwise decrease with two drops, at 5.75 Ma and 5.52 Ma (Figs 4 and 5).
Prior to 6.18 Ma, the benthic and planktic carbon isotope record shows a fluctuating trend with average values of +0.4‰, and −0.8‰, respectively (Figs 4 and 5). From 6.18 to 5.9 Ma, benthic and planktic δ13C values decrease by 0.8‰ and 1.3‰, respectively. In the interval from 5.9 to 5.67 Ma, the benthic δ13C values remain near +0.4‰, and the planktic δ13C values show significant relative maximum around 0‰ from 5.85 and 5.77 Ma. Finally, benthic and planktic C values gradually decrease by 0.7‰ and 1.4‰, respectively (Figs 4 and 5).

Comparing the stable isotope records with the high-productivity target taxa, high values of the benthic and planktic δ18O coincide with low benthic δ13C values, and with high abundance of Uvigerina peregrina s.l. and low abundance of Bulimina subulata (Fig. 4). In the interval between 5.67 and 5.38 Ma, low benthic and planktic δ18O values correspond to low benthic and planktic δ13C values and high percentages of Brizalina spathulata and Bulimina aculeata.

Fig. 3. Correlation of the lithostratigraphic formations of the Montemayor-1 core with magnetostratigraphic and geochronological time scales, highlighting the study interval. Magnetostratigraphy is based on the ATNTS2004 (Lourens et al. 2004) and age estimation of the deposits is based on Jiménez-Moreno et al. (2013).

Discussion

Processes influencing the stable isotope signal of foraminifera and the species composition of benthic foraminiferal faunas at continental margins

Species associations and stable O and C isotope composition of planktic and benthic foraminifera from continental margins are influenced by a variety of global and regional processes and commonly reveal major fluctuations on glacial-to-interglacial time scales. The glacial increases of δ18O values in both planktic and benthic foraminifera are due to the storage of the lighter 18O isotope in continental ice caps (Rohling & Cooke 1999, and references therein; Fig. 6a). Conversely, the delivery of 18O to the ocean by melting of continental ice during interglacial periods results in a lowering of marine δ18O values (Fig. 6b). During the late Miocene, this global ice effect typically accounts for c. 0.4−0.5‰ (Vidal et al. 2002). In addition, the planktic δ18O signal contains a significant temperature signal and in near-coastal settings can be additionally altered by the inflow of isotopically light freshwater through riverine runoff (Rohling & Cooke 1999; Milker et al. 2012).

The foraminiferal δ13C signal is influenced by a variety of processes, mainly by changes in the global C budget, the residence time of the water mass, and local processes such as removal of 13C by primary production and release of 13C by remineralization in the water column and surface sediment (Rohling & Cooke 1999; Mackensen 2008). Decrease in the global C budget during glacial periods in the Quaternary resulted in marine δ13C values 0.46–0.32‰ lower than today (Piotrowski et al. 2005). However, Messinian changes in global C budget might have been smaller than those during the Quaternary owing to weaker glacial–interglacial contrasts and related vegetation changes, as well as shelf exposures. In addition, an increase in the residence time of water masses, as during a slowdown of the AMOC, favoured the accumulation of 13C-enriched carbon dioxide from oxidized organic matter. Primary production in the photic zone preferentially extracts 13C from the dissolved inorganic carbon reservoir, commonly resulting in higher δ13C in the surface water (Rohling & Cooke 1999). In upwelling areas, however, 13C-depleted CO2-rich subsurface waters enter the surface ocean and can result in a low δ13C signature. In deep-sea surface sediments below upwelling areas, enhanced remineralization rates of organic matter are reflected in low benthic δ13C signatures of shallow infanual benthic foraminifera (McCorkle et al. 1990). Such a process accounts for low δ13C values in infanual taxa from modern and Holocene sediments of the continental margin off NW Morocco, located beneath coastal upwelling cells (Eberwein & Mackensen 2006, 2008), and may also be expected to have operated in comparable environmental settings during the Messinian.

The microhabitat and species composition of deep-sea benthic foraminifera are principally influenced by food availability and oxygenation of bottom and pore waters, as described in the ‘TROX’ (TrOphic OXYgen) model of Jorissen et al. (1995). According to this model, oligotrophic and well-ventilated ecosystems are dominated by epifaunal taxa that have little food and high-oxygen requirements. In contrast, eutrophic and low-oxygen environments are inhabited by low-diversity faunas that are dominated by deep-infanual, low-oxygen tolerant taxa. Highest diversities and population of various microhabitats are established under mesotrophic conditions. More recent studies demonstrated that the distribution of certain taxa is additionally controlled by specific biogeochi-chemical conditions, seasonality and quality of the supplied food. Various opportunistic species respond to input of freshly produced marine phytodetritus, whereas other species are able to feed from degraded re-suspended organic matter or from terrestrial organic matter in the vicinity of river mouths (Fontanier et al. 2003; Diz & Francés 2008; Duchemin et al. 2008; Koho et al. 2008).

Palaeoproductivity changes and organic carbon cycling in the northeastern Atlantic during the Messinian

Changes in primary production greatly influence the interchange of dissolved inorganic carbon between oceanic and atmospheric reservoirs. Thus, sequestration of C in the oceans, or its release to
the atmosphere, can modify global climate. Fluctuation of sedimentary organic matter content over geological time is a dynamic balance between production, concentration and preservation, and depends upon global, regional and local factors. Accurately interpreting palaeoceanographic circulation, palaeoclimate and changes in ocean C budgets requires an understanding of how multiple factors interact to influence palaeoproductivity (e.g. sedimentation rate, sea level, ocean currents, water mass residence times, C budgets, fluvial outflow, upwelling, palaeogeography, oxygenation) and of temporal changes in organic matter supply.

In this study, the palaeo-oxygenation index is high (>0.8) throughout the studied interval (Fig. 5). This suggests that oxygen content did not control the observed stable carbon isotope signatures and changes in benthic foraminiferal abundance, and that the presence of an oxygen minimum zone can be ruled out. Instead, our data suggest significant changes in productivity and associated organic carbon fluxes and remineralization rates in the northeastern Atlantic. These changes were linked to global glacioeustatic fluctuations and to regional palaeogeographical changes owing to the closure of the Guadalhorce Corridor. Interruption of the outflow of Mediterranean

Table 1. Pearson correlation coefficients at p-value <0.01 and p-value <0.05 (in italics) of high-productivity benthic foraminiferal species, the planktic and benthic O and C isotopes, P/B ratio, and palaeo-oxygenation index

	Uvigerina peregrina s.l.	Bulimina subulata	Bulimina aculeata	Brizalina spathulata	P/B ratio	Benthic O	Benthic C	Planktic O	Planktic C	Palaeo-oxygenation index
Uvigerina peregrina s.l.	1									
Bulimina subulata		1								
Bulimina aculeata			1							
Brizalina spathulata	−0.301	−0.423	0.252	1						
P/B ratio	0.370	0.160	−0.460	1						
Benthic O	0.173	0.401	−0.211	1						
Benthic C	−0.218	0.159		1						
Planktic O	0.313	−0.199	0.376	−0.173	1					
Planktic C	−0.378	−0.198	0.349	−0.551	0.327					

Fig. 4. (a) Relative abundance (%) of Bulimina aculeata. (b) Relative abundance (%) of Brizalina spathulata. (c) Relative abundance (%) of Bulimina subulata. (d) Relative abundance (%) of Uvigerina peregrina s.l. (e) Benthic (upper curve) and planktic (lower curve) δ13C records in ‰ VPDB for the Montemayor-1 core. (f) Benthic (lower curve) and planktic (upper curve) δ18O records in ‰ VPDB for the Montemayor-1 core. Black curves are the three-point running averages of the data (grey curves). The vertical dashed lines indicate 10 events of high productivity related to upwelling currents in the upper slope (6.00, 5.99, 5.96, 5.91, 5.87 Ma) and outer shelf (5.69, 5.62, 5.55, 5.49, 5.41 Ma). The vertical black continuous line at 6.18 Ma marks the end of the Atlantic–Mediterranean Betic connection through the Guadalhorce Corridor. Distribution of palaeoenvironmental settings at the bottom of the figure is based on benthic foraminiferal assemblages (Pérez-Asensio et al. 2012b).
and the quality (fresh or degraded) of the organic matter. Cess processes affected both the provenance (upwelling versus continental) and the δ13C/δ18O values (Table 1). The observed glacial drop in δ13C of Uvigerina peregrina s.l. and Uvigerina peregrina s.l. from the middle-upper slope to the shelf-edge is characterized by increased abundance of Brizalina spathulata and Bulimina aculeata. The shallowing of the depositional environment over the studied time interval is also mirrored by a decrease of the planktic to planktic δ13C/δ18O values (Fig. 6a). This shallow-infaunal opportunistic species is characterized of mesotrophic conditions (e.g. Schmiedl et al. 2000; Phipps et al. 2012) and preferentially inhabits upwelling areas with high supply of fresh marine organic matter as a food source (Fontanier et al. 2003; Koho et al. 2008; Schmiedl et al. 2010). Thus, elevated productivity associated with Uvigerina peregrina s.l. in the study area is most probably attributable to intensified upwelling related to AUV (Figs 2 and 6a). This interpretation is supported by a negative correlation between the abundance of U. peregrina s.l. and benthic δ13C values (Table 1).

These high-productivity conditions related to upwelling occurred during glacial periods (Fig. 6a), as indicated by the weak positive correlation between abundance of U. peregrina s.l. and benthic δ18O values (Table 1). This is also supported by observations from analogous modern environments (Schmiedl et al. 1997; Mendez et al. 2004; Martins et al. 2006; Mojtahid et al. 2006). The glacial enhancement of upwelling in the lower Guadalquivir Basin was probably caused by stronger winds promoting Ekman pumping similar to glacial intervals of the Quaternary (Lebreiro et al. 1997; Schmiedl & Mackensen 1997; Poli et al. 2010; Salgueiro et al. 2010). Model experiments on Messinian wind intensity and direction (Murphy et al. 2009) reveal intensified northwesterly winds that might have promoted upwelling conditions, similar to the present situation (Lebreiro et al. 1997). The remineralization of upwelling-related organic matter resulted in temporary oxygen depletions in the upper-slope settings during glacial periods (Fig. 5).
The abundance of *U. peregrina s.l.* is negatively correlated with the δ¹³C signal of the planktic *G. bulloides* (Table 1), which inhabits waters from surface to intermediate depths (20–300 m) (Pujol & Vergnaud-Grazzini 1995). Low δ¹³C values of *G. bulloides* are consistent with the upwelling of nutrient-rich, ¹³C-depleted intermediate waters. In addition, the δ¹³C signal of *G. bulloides* may have been influenced by variable vital effects (Lebreiro et al. 1997; Naidu & Niitsuma 2004). Studies on modern planktonic foraminifera have shown that high nutrient availability is accompanied by faster calcification rates during strong upwelling events. This process is accompanied by higher respiration rates leading to the incorporation of more respired CO₂, enriched in ¹²C, into the test calcite (Naidu & Niitsuma 2004). Additionally, release of ¹²C during decomposition of organic matter in the lower part of the photic layer could contribute to the low δ¹³C observed in *G. bulloides*. These combined effects would explain the very low planktic δ¹³C signatures through the Montemayor-1 core.

In the upper-slope deposits of the Montemayor-1 core, peaks of *U. peregrina s.l.* alternate with high percentages of *Bulimina subulata* (Fig. 4). The former species, as mentioned above, dominated during glacial periods and the latter during interglacial intervals (Figs 4 and 5). *Bulimina subulata*, like related species of the same genus, feeds on more degraded organic matter (Schmiedl et al. 2000; Diz & Francés 2008). The specific trophic preferences of the two dominant taxa might have accounted for the low abundances of *B. subulata* during glacial periods when fresh organic matter was available on the sea floor and the opportunistic *U. peregrina s.l.* dominated the foraminiferal assemblages. In contrast, *B. subulata* was abundant during interglacial periods, suggesting the presence of more degraded marine organic matter (Fig. 6b).

Uvigerina peregrina s.l. and *B. subulata* abundances decrease differently after 5.87 Ma (Fig. 4). At this point, *U. peregrina s.l.* disappears almost instantaneously whereas *B. subulata* diminishes gradually. Pérez-Asensio et al. (2012b) showed that the sharp reduction of *U. peregrina s.l.* coincided with an increase in epifaunal taxa, mainly *Planulina ariminensis*. This species inhabits oligotrophic shelf-edge settings, and thus the microfaunal replacement can be interpreted as a palaeoenvironmental shift from upper-slope to shelf-edge conditions (Pérez-Asensio et al. 2012b). The relatively high planktic δ¹³C values at the shelf edge suggest the absence of nutrient-rich upwelling waters in this setting (Fig. 4).

Fig. 6. Simplified conceptual models showing the interrelation between the various environmental factors (global palaeoclimate, river runoff and upwelling) that control palaeoproductivity and benthic foraminiferal distribution in the study case. (a) During glacial periods, both planktic and benthic oxygen isotopes show high values, whereas carbon isotopes show low values. Fresh organic matter comes from nutrient-enriched upwelling currents reaching the upper–middle-slope area. Benthic foraminiferal assemblages in the upper–middle slope are dominated by *Uvigerina peregrina s.l.* but *Bulimina subulata* is rare. (b) During interglacial periods, δ¹⁸O is low and δ¹³C is low. Intense rainfall increased runoff, thus degraded organic matter entered the ocean, favouring the profuse development of *Brizalina spathulata* and *Bulimina aculeata* in the outer shelf and *Bulimina subulata* in the upper–middle slope.
The establishment of these particularly oligotrophic conditions on the shelf edge during a glacial period may have been caused by the presence of contour currents flowing along the platform margin that prevented the upwelling of intermediate waters (Fig. 2). As a consequence, the lack of sufficient fresh organic matter resulted in the sharp decrease in *U. peregrina* s.l. (Fig. 2). At the same time, *B. subulata* diminished more gradually than *U. peregrina* s.l. because more degraded organic matter was still present at the sea floor.

Outer platform degraded organic matter linked to continental runoff

The transition from a shelf edge to an outer shelf at 5.77 Ma, characterized by the disappearance of *Planulina ariminensis* (Pérez-Asensio et al. 2012a; Fig. 2), was coeval with a significant sea-level fall close to glacial stage TG 20 (5.75 Ma) (Pérez-Asensio et al. 2012a, 2012b; Jiménez-Moreno et al. 2013). From 5.77 to 5.67 Ma, the average values of planktic δ¹³C increased by 1‰ whereas average benthic δ¹⁸O values decreased by 0.9‰ (Fig. 4), pointing to a decrease in productivity most probably related to reduced influence of upwelling currents during interglacial conditions.

The outer-shelf deposits were characterized by high abundance of *Brizalina spathulata* and *Bulimina aculeata* (Pérez-Asensio et al. 2012b) (Fig. 4). Both species tolerate low-oxygen conditions and prefer environments with supply of continental degraded organic matter related to riverine discharges (Fig. 6b; Schmiedl et al. 2000, 2010; Donnici & Serandrei-Barbero 2002; Duchemin et al. 2008; Pérez-Asensio & Aguirre 2010), although *B. aculeata* is also able to feed on fresh organic matter (Schmiedl & Leuschner 2005). Therefore, the predominance of both *B. spathulata* and *B. aculeata* in our study can be taken to indicate supply of continental degraded organic matter related to riverine discharges (Fig. 6b).

The highest percentages of *Bulimina aculeata* and *Brizalina spathulata* on the outer shelf occurred during interglacial periods (Figs 4 and 6b) and alternated with peak abundances of the upwelling-related *U. peregrina* s.l. during glacial periods (Fig. 4). This inverse relationship, shown by a negative correlation between *U. peregrina* s.l. and *B. spathulata* (Table 1), points to renewed supply of fresh organic matter to the outer shelf from centres of upwelling during cool periods (Fig. 4).

In a global warming context, rainfall would have been high in many areas owing to the enhancement of the hydrological cycle (Frei et al. 1998). Palynological analysis in the Montemayor-1 core indicates that interglacial periods were characterized by warm and humid climates that promoted higher river runoff (Jiménez-Moreno et al. 2013; Fig. 6b). This is consistent with the gradual increase of *B. spathulata* concomitant with a long-term decrease of 0.7‰ in benthic δ¹³C values and 1.4‰ in planktic δ¹³C values, as well as low δ¹⁸O values from 5.67 to 5.38 Ma (Fig. 4). The shallowing upward trend in the core also supports the progressively larger influence of degraded organic matter in the outer-shelf deposits (Pérez-Asensio et al. 2012b). Repeated pulses of oxygen depletion on the outer shelf during interglacial periods can be associated with phases of particularly strong river runoff and input of terrestrial organic matter (Fig. 5).

Strongly depleted δ¹³C values of *G. bulloides* at 5.44 and 5.41 Ma (Figs 4 and 5) may reflect enhanced rainfall, as recorded in sediments from the Mallorca shelf during the early Holocene humid phase (Milker et al. 2012). Increased humidity could have been related to global warming linked to interglacial stage TG 11 (5.52 Ma), which commenced before the Miocene–Pliocene boundary and persisted until the mid-Pliocene (Vidal et al. 2002; Jiménez-Moreno et al. 2013; Pérez-Asensio et al. 2013).

Effect of the Mediterranean Outflow Water interruption on palaeoproductivity in the northeastern Atlantic during the Messinian

Our results document temporal variations in productivity and carbon cycling in the northeastern Atlantic Ocean during the Messinian. This was an important time period that led to one of the most dramatic episodes in the geologically recent history of the Mediterranean Sea. Progressive restriction of the various Betic and Rifian corridors connecting the Atlantic and Mediterranean resulted in the isolation of the Mediterranean from the world ocean (Benson et al. 1991; Martin & Braga 1994; Esteban et al. 1996; Riding et al. 1998; Krijgsman et al. 1999; Martin et al. 2001; Braga et al. 2006). This, in turn, forced the formation of extensive evaporite deposits in the central Mediterranean and in its peripheral basins during the Messinian ‘Salinity Crisis’ (Hsiü et al. 1973, 1977).

The Montemayor-1 core is located close to the last active Betic gateway, the Guadalhorce Corridor, which closed at 6.18 Ma (Martin et al. 2001; Pérez-Asensio et al. 2012a, 2013). The final closure of the corridors terminated Mediterranean–Atlantic water exchange through the Betic straits. This in turn altered the circulation patterns in the NE Atlantic (Pérez-Asensio et al. 2012a), affecting the regional surface water productivity. In this section, we analyse how the interplay of the Mediterranean Outflow Water and NE Atlantic palaeocurrents affected primary production before and after closure of the Guadalhorce Corridor. This issue has been largely overlooked by researchers (but see van der Laan et al. 2006, 2012) and is crucial to understanding of the ultimate consequences of Mediterranean isolation.

Low abundance of *U. peregrina* s.l. and high benthic δ¹³C values at 6.44 and 6.24 Ma (Fig. 4) indicate the presence of well-ventilated bottom waters with low organic fluxes to the sea floor. This probably implies the presence of MOW that was characterized by a high δ¹⁴C signature relative to Atlantic waters, reflecting the relatively low residence time of the MOW (Vergnaud-Grazzini 1983; Schönfeld & Zahn 2000; Raddatz et al. 2011). Presence of the MOW would have increased bottom-water oxygenation, as shown by the relatively high oxygen content prior to interruption of this current at 6.18 Ma (Figs 5 and 7a) when the Guadalhorce Corridor was finally closed (Pérez-Asensio et al. 2012a). High benthic δ¹³C values during interglacial periods may also be related to well-ventilated bottom waters linked to a strong Atlantic meridional overturning circulation (AMOC), as occurred during the Quaternary (Broecker et al. 1985).

In contrast, high abundance of *U. peregrina* s.l. and coinciding low benthic δ¹³C values at 6.67 and 6.35 Ma (Fig. 4) point to the influence of low-oxygen AUW (Fig. 7b). In addition, low benthic δ¹³C values in Atlantic and Caribbean Messinian records suggest a general reduction of the AMOC, provoked by low North Atlantic Deep Water formation during glacial conditions (Zahn et al. 1997; Bickert et al. 2004; van der Laan et al. 2012; Fig. 7b). After closure of the Guadalhorce Corridor at 6.18 Ma, there was a gradual decrease of 0.8‰ in benthic δ¹³C values that can be related to the interruption of the MOW and the influence of nutrient and C-rich AUW (Figs 4 and 7c). The planktic δ¹³C values show a progressive decrease of 1.3‰, also indicating the AUW influence. Concomitantly, *U. peregrina* s.l., which thrives under upwelling conditions, gradually increased to its highest abundance (Fig. 4). Therefore, after cessation of the MOW, only AUW reached the upper slope in the study area, promoting high productivity (Fig. 7c). In addition, high productivity could have been favoured by cessation of the MOW, which weakened the AMOC and promoted northern hemisphere cooling, as shown by the onset of some increase in ice sheets in the Iceland–Norwegian Sea and Baffin Bay.
(Alaska) at c. 7–6 Ma (Fronval & Jansen 1996; Thiede et al. 1998; Pérez-Asensio et al. 2012a). This cooling would have intensified trade winds that enhanced upwelling (Hughen et al. 1996; Clark et al. 2002).

During the transition from middle–upper-slope to shelf-edge deposits between 5.87 and 5.77 Ma (Figs 2 and 4), well after corridor closing, oligotrophic conditions prevailed as mentioned above. The local reduction of productivity was probably related to currents parallel to the shelf-break that prevented the AUW from reaching the study area (Fig. 7d).

Conclusions

Palaeoproductivity changes and organic carbon cycling in the northeastern Atlantic during the Messinian were intimately connected with global glacioeustasy. Glacial periods (cold and dry climate) were characterized by high planktic and benthic δ18O values, low benthic δ13C values, high abundance of U. peregrina s.l., and moderate oxygen depletion. These results point to high productivity related to upwelling currents during glacial periods. The upwelling was produced by Ekman pumping owing to intensified northwesterly trade winds. In contrast, interglacial periods (warm and humid climate) showed low planktic and benthic δ18O values, high oxygen depletion and high abundance of B. subulata in the upper slope, and of B. spathulata and B. aculeata in the outer shelf. These results suggest the presence of more degraded marine organic matter in the upper slope and a supply of degraded continental organic matter derived from enhanced river runoff and transport to the outer shelf.

Before closure of the Guadalhorce Corridor, which was the final Betic Atlantic–Mediterranean gateway, the study area was alternately influenced by the well-ventilated MOW and poorly ventilated AUW. Once this Betic seaway was closed at 6.18 Ma, the interruption of the MOW reduced the AMOC and promoted glacial conditions in the northern hemisphere, thus favouring high-productivity conditions in the study region. Our data show how cessation of the MOW caused global oceanographic and climatic changes that affected productivity in the northern hemisphere. In addition, variability in the AMOC is recorded by fluctuations in benthic δ13C values. High benthic δ13C values indicate well-ventilated bottom waters owing to strong AMOC during interglacial periods. In contrast, low values reflect poor ventilation as a result of weak AMOC during glacial periods.

We are very grateful to two anonymous reviewers and the editor J. Hendry for their thorough reviews of an early version of the paper. This work was funded by the Research Projects CGL2010-20857 and CGL2009-11539/BTE of the Ministerio de Ciencia e Innovación of Spain, and the Research Group RNM-190 of the Junta de Andalucía. J.N.P.A. was funded by a research F.P.U. grant (ref. AP2007-00345) awarded by the Ministerio de Educación of Spain. We thank N. Andersen (Leibniz-Laboratory, Kiel, Germany) for stable isotope analyses, R. Riding for checking the English text, and E. Samankassou for reading the paper and his suggestions.

References

Aguirre, J. 1992. Evolución de las asociaciones fósiles del Plioceno marino de Cabo Roche (Cádiz). Revista Española de Paleontología Extra, 3, 3–10.
Aguirre, J. 1995. Implicaciones paleoambientales y paleogeográficas de dos discontinuidades estratigráficas en los depósitos pliocénicos de Cádiz (SW de España). Revista de la Sociedad Geológica de España, 8, 161–174.
Aguirre, J., Castillo, C., Pérez, F.J., Aguilo, J. & Oriol, O. 1995. Marine–continental magnetostratigraphic correlation of the Dolomys subzone (middle of Late Rupelian): Implications for the Late Rupelian age. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 139–152. http://dx.doi.org/10.1016/0031-0182(94)00123-P.
Aguirre, J., Braga, I.C. & Martín, J.M. 2007. El Mioceno marino del Prebético occidental (Cordillera Bética, SE de España): historia del cierre del Estrecho Norbético. In: Aguire, J., Company, M. & Rodríguez-Tovar, F.J. (eds) XIII Jornadas de la Sociedad Española de Paleontología: Guía de Excursiones. Instituto Geológico y Minero de España, Madrid; Universidad de Granada, Granada, 53–66.
Palaeontologists and Mineralogists, Concepts in Sedimentology and Palaeontology, 5, 55–72.

Fontanier, C., Jorissen, F.J., Charleux, G., David, C., Ansчетt, P. & Lafon, V. 2003. Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay. Deep-Sea Research, Part I, 50, 457–494, http://dx.doi.org/10.1016/S0967-0637(02)00167-X.

Frei, C., Schär, C., Luthi, D. & Davies, H.C. 1998. Heavy precipitation processes in warmer climate. Philosophical Transactions, 25, 1431–1434, http://dx.doi.org/10.1098/RSTL.1998.0199.

Fronval, T. & Jansen, E. 1996. Late Neogene paleoclimates and paleoceanography in the Iceland-Norwegian Sea: Evidence from the Iceland and Voring Plateaux. In: Meyers, A.M. et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 151, 455–468, http://dx.doi.org/10.2973/odp.proc.151.134.1996.

Gonzaу, A., Fontanier, C. et al. 2011. Live (stained) benthic foraminifera from the Rhône prodelta (Gulf of Lion, NW Mediterranean): Environmental controls on a river-dominated shelf, Journal of Sedimentary Research, 85, 58–75, http://dx.doi.org/10.1130/j.sedres.2010.07.007.

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. 2001. PAST: Palaeontological Statistics software package for education and data analysis. Palaeoecology Electronic, 4, 1–9.

Hsu, K.J., Ryan, W.B.F. & Cita, M.B. 1973. Late Miocene desiccation of the Mediterranean. Nature, 242, 240–244, http://dx.doi.org/10.1038/242240a0.

Hsu, K.J., Montaунet, L. et al. 1977. History of the Mediterranean salinity crisis. Science, 197, 1053–1057, http://dx.doi.org/10.1126/science.643446.

Huguen, K.A., Overpeck, J.T., Peterson, L.C. & Troubridge, S. 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51–54, http://dx.doi.org/10.1038/380051a0.

Jimeнez-Moreno, G. & Perez-Avila, M. 2007. Sea-level and climate changes during the Messinian Salinity Crisis. Remote Sensing, 95, 207–223, http://dx.doi.org/10.1016/j.rse.2007.09.008.

Jensen, J.T., Jorgensen, B.S. & Van der Zwan, G.J. 1992. Vertical distribution of benthic foraminifera in the northern Adriatic Sea: The relation with the organic flux. Marine Micropaleontology, 19, 131–146, http://dx.doi.org/10.1016/0377-8338(92)90025-F.

Jorissen, F.J., De Stijger, H.C. & Widmark, J.G.V. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26, 3–15.

Koh, K.A., Garcia, R., De Stijger, H.C., Epinge, E., Konig, E., Kroоenivenkoo, T.J. & Van Der Zwan, G.J. 2008. Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: A case study from Lisbon–Setúbal Canyon (southern Portugal). Progress in Oceanography, 79, 55–82, http://dx.doi.org/10.1016/j.pocean.2008.07.004.

Kroоenivenkoo, T.J., Sedeenkranztz, M.-S. & Van Der Zwan, G.J. 1999. Deep-water changes: the near-synchronous disappearance of a group of benthic foraminifera from the Late Miocene Mediterranean. Palaeoecology, 152, 259–281, http://dx.doi.org/10.1016/S0031-0182(99)00005-6.

Kroоdin, W., Huguen, K., Raif, I., Sieroо, F.J. & Wilm, D.S. 1999. Chronology, causes and precursors of the Messinian salinity crisis. Nature, 400, 652–655, http://dx.doi.org/10.1038/23231.

Larrasaооa, J.C., Gonzalez-Delaоooa, J.A., Jiménez-Moreno, G. & Alonso, F.M. 2008. Magnetobiostratigraphic dating and environmental magnetism of Late Neogene marine sediments recovered at the Huvdal-a and Montemayor-1 boreholes (lower Gualdalquivir basin, Spain). Geo-Temas, 10, 1175–1178.

Llebreоo, S.M., Moreоo, J.C., Aранanaа, F.F. & Pieluurman, U. 1997. Productivity and paleoceanographic implications on the Tore Scourant (Iberian Margin) during the last 25kyr: foraminiferal evidence. Paleoecology, 12, 718–727, http://dx.doi.org/10.1029/97PA01748.

Llebreоo, S.M., Frаncе, G. et al. 2006. Climate change and coastal hydrographic response along the Atlantic Iberian margin (Tagus Prodelia and Muros Ra) during the last two millennia. Holocene, 16, 1003–1015, http://dx.doi.org/10.1191/0959683606ho909rp.

Lourаsns, L.J., Helgеn, F.J., Shаckleet, N.J., Lskаr, J. & Wilm, D.S. 2004. The Neogene Period. In: Grаedеn, F.M., Ogu, J.G. & Smith, A.G. (eds) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 409–440.

Loutit, T.S. & Kе寺院, L.D. 1982. Stable isotopic evidence for latest Miocene sea-level fall in the Mediterranean region. Nature, 300, 163–166, http://dx.doi.org/10.1038/300163a0.

Lyе, M.L., Pраhе, F.G. & Sраrkо, M.A. 1992. Upwelling and productivity changes inferred from a temperature record in the central equatorial Pacific. Nature, 339, 812–815, http://dx.doi.org/10.1038/355812a0.

Mackен, A. 2008. On the role of benthic foraminifera δ13C in paleoceanography: constraints from primary proxy relationships. In: Austin, W.L. and James, R.H. (eds) Biogeochemical Controls on Paleoeceanscopic Environmental Proxries. Geological Society, London, Special Publications, 303, 121–133.
MARTIN, J.M. & BRAGA, J.C. 1994. Messinian events in the Sorbas basin in southeastern Spain and their implications in the recent history of the Mediterranean. *Sedimentary Geology*, 90, 257–268, http://dx.doi.org/10.1016/0037-0738(94)90042-6.

MARTIN, J.M., BRAGA, J.C. & BETZLER, C. 2001. The Messinian Guadalhorce Corridor: the last northern, Atlantic–Mediterranean gateway. *Terra Nova*, 13, 418–424, http://dx.doi.org/10.1046/j.1365-3121.2001.00376.x.

MAZUMDAR, R.S., KITAJIMA, J.C., AGUIRRE, J. & PUGNAUD, G. 2008. History and evolution of the North-Betic Strait (Prebetic Zone, Betic Cordillera): A narrow, early Tortonian, tidal-dominated, Atlantic–Mediterranean marine passive. *Sedimentary Geology*, 216, 80–90, http://dx.doi.org/10.1016/j.sedge.2009.01.005.

MARTINEZ, P., BERTRAND, B., SHIMMID, G.B., COCHIANI, K., JORESSEN, J., FOSTER, J.M. & DIONG, M. 1999. Upwelling intensity and ocean productivity changes off Cape Blanc (Northwest Africa) during the last 70,000 years: Geochemical and micropalaeontological evidence. *Marine Geology*, 158, 57–74, http://dx.doi.org/10.1016/S0025-3227(99)00161-3.

MARTINS, V., JOUANNEAU, J.-M., WERNER, O. & ROCHA, F. 2006. Tracing the late Holocene evolution of the NW Iberian upwelling system. *Marine Micropaleontology*, 59, 35–55, http://dx.doi.org/10.1016/j.marmic.2005.12.002.

MAYORAL, E. & PENDON, J.G. 1987. Icenocies and sedimentation in zona costera. Phcenico superior (?), litoral de Huelva. *Acta Geologica Hispánica*, 21, 507–513.

MCCULLOCH, D.C., KEOWN, L.D., COLENS, B.H. & EMMERSON, S.R. 1990. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 56, 161–185.

MCKE, B.A., ALLER, R.C., ALLISON, M.A., BLANCH, T.S. & KINKE, G.C. 2004. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes. *Continental and Shelf Research*, 24, 899–926, http://dx.doi.org/10.1016/j.csr.2004.02.009.

MOORE, J.F., FORDE, R., KEOWN, L.D. & BROWN-LEGER, S. 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. *Nature*, 428, 834–837, http://dx.doi.org/10.1038/nature02494.

MENDES, L., GONZALEZ, R., DIAS, J.M.A., LEBO, F. & MARTINS, V. 2004. Factors influencing recent benthic foraminifera distribution on the Guadiana shelf (Southwestern Iberia). *Marine Micropaleontology*, 51, 171–192, http://dx.doi.org/10.1016/j.marmic.2003.11.001.

MILKER, Y., SCHMID, G., BITZLER, C., ANDERSEN, N. & THEODOR, M. 2012. Response of tropical east Atlantic outer shelf environments to an early Holocene humid phase. *Marine Micropaleontology*, 90–91, 1–12, http://dx.doi.org/10.1016/j.marmic.2012.04.001.

MOITTAID, M., JORESSEN, F., DURRIE, J., GALGANO, F., HOVA, H., REDUG, F. & CAMPS, R. 2006. Benthic foraminifera as bio-indicators of drill cutting disposal in deep-water and benthic ecosystems during the past 22000 years. *Marine Micropaleontology*, 56, 51–74, http://dx.doi.org/10.1016/j.marmic.2006.06.001.

MUDROCH, N., KERSHAW, P., KIRK-DAVIES, D.B., MAITLAND, N. & OTTO-BLUMER, B.L. 2009. A numerical study of the climate response to lowered Mediterranean Sea level during the Messinian Salinity Crisis. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 279, 41–59, http://dx.doi.org/10.1016/j.palao.2009.04.016.

MÜLLER, J.W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge University Press, Cambridge.

NAIDU, P. & NITSCHE, N. 2004. Atypical δ18C signature in Globigerina bulloides at the ODPS Site 723An (Arabian Sea): Implications of environmental changes caused by upwelling. *Marine Micropaleontology*, 53, 1–10, http://dx.doi.org/10.1016/j.marmic.2004.01.005.

PEREZ-ANSENSO, J.N. & AGUIRRE, J. 2010. Benthic foraminiferal assemblages in temperate coral-bearing deposits from the Late Pliocene. *Journal of Foraminiferal Research*, 40, 61–78, http://dx.doi.org/10.2113/gsqf.40.1.61.

PEREZ-ANSENSO, J.N., AGUIRRE, J., SCHMID, G. & CIVIS, J. 2012a. Impact of restriction of the Atlantic–Mediterranean gateway on the Mediterranean Outflow Water and eastern Atlantic circulation during the Messinian. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 297, PA3222, http://dx.doi.org/10.1016/j.palaeo.2012.02.008.

PEREZ-ANSENSO, J.N., AGUIRRE, J., JIMENEZ-MORENO, G., SCHMID, G. & CIVIS, J. 2012b. Messinian paleoenvironmental evolution in the lower Guadalquivir Basin (SW Spain) based on benthic foraminifera. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 326–328, 135–151, http://dx.doi.org/10.1016/j.palaeo.2012.02.014.

PEREZ-ANSENSO, J.N., AGUIRRE, J., JIMENEZ-MORENO, G., SCHMID, G. & CIVIS, J. 2013. Glacioeustatic control on the origin and cessation of the Messinian salinity crisis. *Global and Planetary Change*, 111, 1–8, http://dx.doi.org/10.1016/j.gloplacha.2013.08.008.

PIPS, M., JONES, J., PUGNÉD, A., BIANCHELLI, S. & DE STIGTER, H. 2012. Live benthic foraminiferal faunas along a bathymetrical transect (282–498 m) on the Portuguese margin (NE Atlantic). *Journal of Foraminiferal Research*, 42, 66–81, http://dx.doi.org/10.2113/gsqf.42.1.66.
Quaternary Science Reviews, 29, 3006–3020, http://dx.doi.org/10.1016/j.quascirev.2010.07.002.

Schneider, B. & Schmidt, A. 2006. Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling. Earth and Planetary Science Letters, 246, 367–380, http://dx.doi.org/10.1016/j.epsl.2006.04.028.

Schönfeld, J. & Zahn, R. 2000. Late Glacial to Holocene history of the Mediterranean Outflow. Evidence from benthic foraminiferal assemblages and stable isotopes at the Portuguese margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 159, 85–111, http://dx.doi.org/10.1016/S0031-0182(00)00035-3.

Sierro, F.J., González-Delgado, J.A., Darro, C.J., Flores, J.A. & Cisús, J. 1996. Late Neogene depositional sequences in the foreland basin of Guadalquivir (SW Spain). In Friend, P. & Darro, C.J. (eds) Tertiary Basins of Spain. Cambridge University Press, Cambridge, 339–345.

Smith, T.J., Miller, P.I., Groom, S.B. & Lavender, S.J. 2001. Remote sensing of sea surface temperature and chlorophyll during Lagrangian experiments at the Iberian margin. Progress in Oceanography, 51, 269–281, http://dx.doi.org/10.1016/S0079-6611(01)00070-2.

Theide, J., Wö lenser, A., et al. 1998. Late Cenozoic history of the polar North Atlantic: results from ocean drilling Quaternary Science Reviews, 17, 185–208, http://dx.doi.org/10.1016/S0277-3791(97)00076-0.

Tomczak, M. & Godfrey, J.S. 1994. Regional Oceanography: An Introduction. Pergamon, Oxford.

Van der Laan, E., Hilgen, F.J., Lourens, L.J., de Kaenel, E., Gaboridi, S. & Iaccariino, S. 2012. Astronomical forcing of Northwest African climate and glacial history during the late Messinian (6.5–5.5 Ma). Palaeogeography, Palaeoeclimatology, Palaeoecology, 313–314, 107–126, http://dx.doi.org/10.1016/j.palaeo.2011.10.013.

Van der Zwaan, G.J. & Jorissen, F.J. 1991. Biofacial patterns in river-induced shelf anoxia. In: Tyson, R.V. & Pearson, T.H. (eds) Modern and Ancient Continental Shelf Anoxia. Geological Society, London, Special Publications, 58, 65–82.

Vera, J.A. 2000. El Terciario de la Cordillera Bética: estado actual de conocimientos. Revista de la Sociedad Geológica de España, 13, 345–373.

Veronaud-Graziani, C. 1983. Reconstruction of Mediterranean Late Cenozoic hydrography by means of carbon isotope analyses. Utrecht Micropaleontological Bulletins, 30, 25–47.

Vidal, L., Bickert, T., Weger, G. & Rohr, U. 2002. Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: relation to Messinian events. Marine Geology, 189, 71–85, http://dx.doi.org/10.1016/S0025-3227(01)00206-7.

Villanueva-Geimerans, P. & Canudo, I. 2008. Assemblages of recent benthic foraminifera from the northeastern Gulf of Cadiz. Geogaceta, 54, 139–142.

Vincent, E., Kellingley, J.S. & Berger, W.H. 1980. The magnetic epoch-6 carbon shift: A change in the ocean’s 13C/12C ratio 6.2 million years ago. Marine Micropaleontology, 5, 185–203, http://dx.doi.org/10.1016/0377-8398(80)90010-9.

Zahn, R., Schönfeld, J., Kudrass, H.R., Park, M.H., Erlenkeuser, H. & Grootes, P. 1997. Thermohaline instability in the North Atlantic during meltwater events: Stable isotope and ice-rafterd detritus records from core SO75-26KL, Portuguese margin. Paleoceanography, 12, 696–710, http://dx.doi.org/10.1029/97PA00581.