Investigating expression of a human optimized cas9 transgene in *Neurospora crassa*

Natalie Burrell*, Nicholas A. Rhoades*, Amy Boyd, Jim Mierendorf, Aykhan Yusifov, Austin Harvey, Kevin Edwards, Laura Vogel, and Thomas M. Hammond.

School of Biological Sciences, Illinois State University, Normal, Illinois 61790

*These authors contributed equally to this work.

1Corresponding author:

Thomas M. Hammond

School of Biological Sciences

Illinois State University

Normal, IL 61790

Phone: 309-438-2602

Email: tmhammo@ilstu.edu

Running title

Cas9 in *Neurospora crassa*

KEYWORDS

heterologous expression, codon optimization, translation, Cas9, fungi
ABSTRACT

The CRISPR-associated Cas9 enzyme is used in molecular biology to engineer the genomes of a wide range of organisms. While Cas9 can be injected or transfected into a target cell to achieve the desired goal, there are situations where stable expression of Cas9 within a target organism is preferable. Here, we show that the model filamentous fungus Neurospora crassa is recalcitrant to heterologous expression of a human-optimized version of Streptococcus pyogenes cas9. Furthermore, partial optimization of cas9 by synonymous codon exchange failed to improve its expression in the fungus. Finally, we show that transgene expression can be detected when cas9Hs sequences are placed in the 3’ UTR regions of transgene-derived mRNAs, but not when the same sequences are in the translated part of the transgene-derived mRNA. This finding suggests that the primary obstacle to high cas9Hs expression levels in N. crassa is translational in nature.
INTRODUCTION

The availability of CRISPR-associated (Cas) systems for use in genome engineering has accelerated research on organisms that were historically difficult to engineer with traditional techniques (Knott and Doudna 2018; Wang et al. 2020; Zhu et al. 2020). Cas technology has also accelerated the field of gene driver research, where it offers the possibility of engineering synthetic gene drivers for the control of disease spreading organisms (Esvelt et al. 2014). For these reasons, we sought to establish a robust Streptococcus pyogenes Cas9-based system for use in the model filamentous fungus Neurospora crassa.

MATERIALS AND METHODS

Strains and media

Strains are listed in Table 1. Vogel’s minimal medium (VMM) (Vogel 1956) with and without 2% agar was used for vegetative propagation of all strains. L-histidine was added to VMM at 500 mg / L when needed to support growth of his-3 strains. Hygromycin B (GoldBio, H-270) was included in media at concentrations of 200 μg / ml to select for hygromycin-resistant transformants. Crosses were performed on synthetic crossing medium (pH 6.5) with 1.5 % sucrose (Westergaard and Mitchell 1947).

N. crassa transformation

Transformation of N. crassa was performed as described by Rhoades et al. (2019b), except that the recovery step was omitted when transformants were selected for histidine prototrophy. N. crassa strain P8-42 was transformed with pAH41.4, a plasmid containing tef-1(p)-cas9^{his}. Transformants were selected by their ability to grow on medium lacking histidine.
Transformation vectors v76, v77, v95, v96, v97, v98, v100, v101, v102, v103, v104, v124, v125, v126, v161, v163, and v193, which convert a tef-1(P)-cas9^{Hs} transgene to a ccg-1(P)-gfp-cas9^{Hs} transgene, were transformed into strain ISU-4145. Transformants were selected for resistance to hygromycin B. Transformation vectors v76-stop, v77-stop, v95-stop, v96-stop, v97-stop, v98-stop, v100-stop, v101-stop, v102-stop, v103-stop, v104-stop, v124-stop, v126-stop, v161-stop, v163-stop, v193-stop, v296-stop, v307-stop, v308-stop, and v309-stop, which convert a tef-1(P)-cas9^{Hs} transgene to a ccg-1(P)-gfp-stop-cas9^{Hs} transgene, were transformed into strain ISU-4145. Transformants were selected for resistance to hygromycin B. Plasmids pNR206.2 and pNR207.1 contain gfp-cas9^{NcC213} and gfp-cas9^{NcC60} transgenes, respectively, and these plasmids were used to transform strain P8-43. Transformants were selected for histidine prototrophy. Homokaryotic strains were isolated from transformants by single spore purification (from conidium or ascospores) and confirmed to be homokaryotic with polymerase chain reaction (PCR)-based genotyping assays.

Transgene construction and insertion

tef-1(P)-cas9^{Hs}: A tef-1(P)-cas9^{Hs}-containing plasmid (pAH41.4) was constructed by amplifying the *N. crassa* tef-1 promoter region (*tef-1[P]*) from *N. crassa* genomic DNA with primers 598 and 599 by PCR and inserting the PCR product into the *SpeI* site of Plasmid 43802 (Addgene, DiCarlo *et al.* 2013). The resulting plasmid was used as the template for PCR-based amplification of tef-1(P)-cas9^{Hs} with primers 610 and 589. The PCR product was inserted into the *NcoI* site of the *his*-3-targeting plasmid pTH1150.11 (GenBank MN872812.1) to produce plasmid pAH41.4. Primer sequences are listed in Table S1. Sequences of *N. crassa* genes, such as tef-1 and the tef-1 promoter region, were obtained from FungiDB (Stajich *et al.* 2012).
The gfp-cas9Hs and gfp-stop-cas9Hs transgenes, including all truncated versions (e.g., gfp-cas9HsC1209, gfp-stop-cas9HsC1078, etc.) were constructed by double-joint PCR (DJ-PCR) (Hammond et al. 2011) with primers and templates described in Tables S1 and S2.

gfp-cas9HsC213: Primers 2021 and 2022 were used to amplify a single PCR product containing hph, ccg-1(P) (McNally and Free 1988), gfp, and a (GA)₅-linker from plasmid pTH1117.12 (GenBank JF749202.1). Primers 1980 and 624 were used to amplify a single PCR product containing cas9HsC213 from pNR177.2 (described below). The two products were fused by PCR, and the fusion product was used as a template for amplification with primers 2024 and 2025. The amplified product was digested with NorI and cloned into the NorI site of the his-3-targeting plasmid pTH1150.11 to create plasmid pNR206.2.

gfp-cas9NcC60: The gfp-cas9NcC60 transgene was assembled similarly to the gfp-cas9HsC213 transgene except that primer 1980 was exchanged for primer 1983. The final amplification product was cloned into the NorI site of pTH1150.11 to create plasmid pNR207.1.

Codon optimization

We used a publicly available RNAseq dataset (SRR1055991, Wu et al. 2014) to identify 100 of the most highly expressed protein-coding genes in the N. crassa nuclear genome (Table S3) by aligning RNA sequences to all predicted N. crassa protein coding genes as described in Samarajeewa et al. (2017). Genes with the highest “reads per kilobase exon model” (RPKM) values (Mortazavi et al. 2008) were considered to be the most highly expressed. Relative
adaptiveness (RA) values (Sharp and Li 1987) were then calculated for each codon (Table S4). RA values were calculated by dividing the observed frequency of each codon in the set of 100 highly expressed genes by the frequency of the most common synonymous codon in the same set of genes. Codon optimization of cas9 for expression in N. crassa was then performed by replacing cas9\textsubscript{Hs} codons in cas9\textsubscript{Hs} as follows: 1) the synonymous codon with the highest RA value was used for all occurrences of amino acids C, E, F, H, I, K, L, M, N, Q, W, and Y, as well as the stop codon; 2) the synonymous codon with the second highest RA value was used for all occurrences of A, D, G, P, and R; and, 3) a combination of synonymous codons with either the first or second highest RA values was used for amino acids S, T, and V. Use of the second most optimal codon for some amino acids helped reduce the overall GC content of the optimized sequence. Reducing GC content allowed the optimized sequence to be synthesized as a gBlock® (Integrated DNA technologies). A gBlock® DNA fragment containing the optimized cas9\textsubscript{Nc} sequence (Figure S1) was cloned to pJET1.2 to create pNR177.2.

Visualisation of GFP in conidia by fluorescence microscopy

Fluorescence microscopy and imaging was performed with a Leica DMBRE microscope or a Leica SP8 confocal microscope. For imaging with a Leica DMBRE system, N. crassa cultures were incubated on VMM for 1-2 days at 32°C followed by 2-4 days at room temperature. Conidial suspensions were placed on a standard microscope slide for imaging. A 40× objective was used. GFP-signal was collected with a 20 second exposure for all strains. Cropped raw images were used without additional modifications. For imaging with the Leica SP8 confocal microscope, the same growth conditions were followed as stated for imaging with the Leica DMBRE system. Conidial suspensions were prepared, and then incubated in a 37°C shaker for 2
hours before imaging. Conidial suspensions were placed on a standard microscope slide for imaging. All the images were acquired with the same settings so that they could be directly compared. A 63×/1.40 oil objective was used, with a white light laser set to a wavelength of 488 nm. Fluorescence was detected between the wavelengths of 500–560nm, with 8× line averaging. Images were assembled in Photoshop; GFP is shown with original contrast.

Quantification of GFP in conidia by flow cytometry

Fresh *N. crassa* cultures were prepared by qualitative transfer of conidia to 2.5 ml of solid VMM slants in 16×100 mm glass culture tubes. The inoculated culture tubes were incubated for two days in a 32°C incubator and 5–6 days at room temperature on a laboratory bench top. Sterile wood applicators were used to transfer conidia to 1× PBS (137 mM NaCl, 2,7 mM KCl, 10mM Na₂HPO₄, 1.8 mM KH₂PO₄, pH 7.4) (Figure S2). Conidial suspensions were then analyzed with a BD FACSMelody system (equipped with 488 nm, 561 nm, and 640 nm lasers) and FACSChorus software. Conidia were gated on FSC and SSC and MFI of GFP histograms were analyzed using a 1.5 neutral density filter. Raw MFI values are provided in Table S5.

RESULTS

A *cas9^{Hs}* transgene is poorly expressed in *N. crassa*

We began our studies by constructing a *cas9^{Hs}* transgene (Fig. 1A) and inserting it downstream of *his-3* on chromosome I (Fig. 1B). We then constructed a second transgene, *gfp-cas9^{Hs}* , to express a GFP-Cas9 fusion protein (Fig. 1, C–E). This second transgene was constructed to allow us to determine if Cas9, which includes an SV40 nuclear localization signal on its C-terminus, localizes to the *N. crassa* nucleus. However, when we examined the *gfp-cas9^{Hs}* strain
by fluorescence microscopy, we failed to detect a GFP signal (Fig 2, A–B). Because we focused our assays on *N. crassa* conidia (asexual spores), we considered the possibility that the promoter used to drive expression of gfp-cas⁹_{Hs} (ccg-1[P]) was insufficient for expression of the fusion protein in this cell type. Thus, as a control, we examined conidia from a gfp-sad-6 transgene-carrying strain. SAD-6 is a meiotic silencing by unpaired DNA (MSUD) protein (Samarajeewa *et al.* 2014) and it was chosen as a control for Cas9 expression because it is larger than Cas9 (210 kD vs 159 kD) and because, like the gfp-cas⁹_{Hs} transgene, the gfp-sad-6 transgene is driven by the ccg-1 promoter. In contrast to GFP-Cas9, GFP-SAD-6 was easily detected by fluorescence microscopy (Figure S3, compare A and B). These observations suggest that the ccg-1 promoter should be sufficient for expression of GFP-Cas9 in *N. crassa* conidia.

Partial codon optimization of cas9 for expression in N. crassa

The above results suggest that cas⁹_{Hs} sequences are poorly expressed in *N. crassa*. To identify a segment of cas⁹_{Hs} that could be expressed more robustly in the organism, and concomitantly identify regions of cas⁹_{Hs} that prevent its robust expression, we dissected the cas⁹_{Hs} coding region with a series of gfp-cas⁹_{Hs C#} transgenes (Fig. 1D). “C#” specifies the number of Cas9 amino acids in the GFP-tagged and N-terminally truncated Cas9 protein (for example, cas⁹_{Hs C60} encodes only the C-terminal 60 amino acids of Cas9. The number “60” does not include the seven amino acids of the C-terminal NLS). We constructed 16 of these gfp-cas⁹_{Hs C#} transgenes and examined GFP levels in conidia from the gfp-cas⁹_{Hs C#} transgene-carrying strains by flow cytometry. Interestingly, we found that all transgenes containing more than 212 cas⁹_{Hs} codons failed to produce a GFP signal at detectable levels and that GFP levels increased rapidly as the number of cas⁹_{Hs} codons approached zero (Fig 2, C and D; Fig. 3A).
We considered the possibility that robust expression of cas9Hs in N. crassa is restricted by the organism’s synonymous codon biases. To test this hypothesis, we altered the cas9 coding sequence in the gfp-cas9Hsc213 and gfp-cas9Hsc60 transgenes to produce equivalent gfp-cas9Nc213 and gfp-cas9Nc60 transgenes (Figure S3). Specifically, we replaced codons that are found at low frequency in highly expressed N. crassa mRNAs with synonymous codons that are found at high frequency in N. crassa mRNAs (see methods). Interestingly, despite replacing 120 of 220 codons to make cas9Nc213 (213 cas9Hs codons, 7 nls codons, and 1 stop codon) and replacing 40 of 68 codons to make cas9Nc60 (60 cas9Hs codons, 7 nls codons, and 1 stop codon), neither transgene produced more GFP fusion protein than their human-optimized counterparts (Fig. 4).

Translation of cas9Hs sequences negatively influences expression of gfp-cas9Hs transgenes

The tendency of GFP levels to increase as the length of cas9Hs-coding sequence decreases suggests that low GFP levels are due to problems encountered during translation of cas9Hs sequences by N. crassa ribosomes. To test this hypothesis, we constructed a set of gfp-stop-cas9Hsc transgenes. These transgenes are identical to the gfp-cas9Hsc transgenes except that they contain a stop codon between the gfp and cas9Hs coding sequences. Interestingly, we found that the placement of a stop codon between the gfp and cas9Hs coding sequences increased the level of GFP produced by all transgenes, but not in a completely uniform manner (Figure 3B and Table 3). For example, GFP levels appeared to increase around two maxima, one represented by the gfp-stop-cas9Hsc transgene and the other by the gfp-stop-cas9Hsc transgene (Figure 3B).

DISCUSSION
In this study, we have presented evidence demonstrating that a human-optimized cas9^{Hs} transgene is poorly expressed in <i>N. crassa</i>. Our major findings are as follows: 1) a <i>gfp-cas9^{Hs}</i> transgene is poorly expressed relative to a control transgene <i>gfp-sad-6</i>, 2) removing the majority of <i>cas9^{Hs}</i> coding sequences from the <i>gfp-cas9^{Hs}</i> transgene (e.g., with <i>gfp-cas9^{HsC#}</i> transgenes) improves expression levels, 3) increasing the number of <i>N. crassa</i>—“preferred” codons does not improve expression of at least two segments of the cas9 coding region, and 4) cas9^{Hs}-coding sequences negatively influence transgene expression in a translation dependent manner.

Our data suggest that the relatively large size of a GFP-Cas9 fusion protein should not prevent its detection by our chosen cytological and flow-cytometry-based methods because both methods allowed us to detect a GFP-SAD-6 fusion protein. Importantly, the <i>gfp-cas9^{Hs}</i> and <i>gfp-sad-6</i> transgenes use the same promoter (ccg-I[P]) and the same <i>gfp</i> coding sequences. This suggests that transcription rates of both transgenes should be relatively similar, as should the efficiency of ribosome loading onto the mRNAs derived from each transgene (e.g., because the mRNAs should have identical 5′ UTRs). However, the dissimilarities between the <i>gfp-cas9^{Hs}</i> and <i>gfp-sad-6</i> transgenes are numerous, and they include differences in coding sequences, 3′ UTRs, termination sequences, and locations in the genome. At this point, it is unclear which, if any, of these dissimilar factors are the primary cause of the poor expression of <i>gfp-cas9^{Hs}</i> in <i>N. crassa</i>.

To gain insight into which regions of the cas9^{Hs} coding sequence may negatively influence its expression, we systematically removed 5′ segments of increasing length from the cas9^{Hs} coding sequence with a series of <i>gfp-cas9^{HsC#}</i> transgenes. With this approach, we found it was necessary to remove nearly all the cas9^{Hs} coding sequence from a <i>gfp-cas9^{HsC#}</i> transgene.
before it would express GFP at detectable levels. One possibility is that mRNAs from transgenes with shorter \(\text{cas}^{9\text{Hs}} \) coding sequences are found at higher levels in \(\text{N. crassa} \) than are mRNAs with longer \(\text{cas}^{9\text{Hs}} \) coding sequences. If true, this could be due to differences in transcriptional efficiency or transcript stability. However, while we have not measured \(\text{gfp-cas}^{9\text{Hs}} \) mRNA levels in this study, we did measure GFP levels in strains carrying \(\text{gfp-stop-cas}^{9\text{Hs}} \) transgenes and we found that all \(\text{gfp-stop-cas}^{9\text{Hs}} \) transgenes express GFP at detectable levels, even if the transgene contained the full length \(\text{cas}^{9\text{Hs}} \) coding sequence. These findings suggest that \(\text{gfp-cas}^{9\text{Hs}} \) expression problems are encountered after \(\text{N. crassa} \) ribosomes finish translating \(\text{gfp} \) sequence and begin translating \(\text{cas}^{9\text{Hs}} \) sequences.

Codon optimization has long been considered a useful technique for improving the expression of heterologous sequences in transgenic organisms. In this study, we sought to improve the expression of \(\text{gfp-cas}^{9\text{HsC213}} \) and \(\text{gfp-cas}^{9\text{HsC60}} \) transgenes by increasing the codon adaptation index (CAI) (Sharp and Li 1987) of each transgene. This codon optimization strategy involves calculating relative adaptiveness (RA) values for each of the 64 possible codons from a set of species-specific high abundance mRNAs and exchanging codons with low RA values for synonymous codons with high RA values. We focused our efforts on \(\text{gfp-cas}^{9\text{HsC213}} \) and \(\text{gfp-cas}^{9\text{HsC60}} \) because the \(\text{cas}^{9\text{Hs}} \) coding sequences in both transgenes are relatively short, and even though \(\text{gfp-cas}^{9\text{HsC60}} \) expresses GFP, it does so at a level that is an order of magnitude below that of the shortest transgene examined in this study (i.e., \(\text{gfp-cas}^{9\text{HsC4}} \)). Therefore, there appears to be room to improve the expression of both \(\text{gfp-cas}^{9\text{HsC213}} \) and \(\text{gfp-cas}^{9\text{HsC60}} \) transgenes. Interestingly, the \(\text{N. crassa} \) optimized transgenes \(\text{gfp-cas}^{9\text{NcC213}} \) and \(\text{gfp-cas}^{9\text{NcC60}} \) did not express GFP at higher levels than their human optimized counterparts (Figure 4). This finding suggests
that *N. crassa* codon preferences are neither the major factor preventing expression of *gfp-cas9\textsubscript{HsC213}* at detectable levels, nor the major factor limiting expression of *gfp-cas9\textsubscript{HsC60}*.

A possible explanation of the results observed in this study is that the *N. crassa* translational machinery stalls within the *cas9\textsubscript{Hs}* segments of *cas9\textsubscript{Hs}*-containing mRNAs. To shed light on this possibility, we placed stop codons between *gfp* and *cas9\textsubscript{Hs}* sequences, effectively placing *cas9\textsubscript{Hs}* “coding” sequences in the 3′ UTR of each transgene-derived mRNA. The presence of *cas9\textsubscript{Hs}* coding sequences within the 3′ UTRs of *gfp-stop-cas9\textsubscript{Hs}* transgene derived mRNAs influenced expression in unexpected ways. For example, while transgene expression was detected for all *gfp-stop-cas9\textsubscript{HsC#}* transgenes, it was highest for transgenes containing the smallest number of *cas9\textsubscript{Hs}* codons in the 3′ UTR. This finding is consistent with the faux 3′ UTR model (Amrani et al. 2006; Nicholson et al. 2010; Zhang and Sachs 2015), where abnormally long 3′ UTRs are thought to trigger degradation of the mRNA by nonsense mediated decay. However, our observations are not completely consistent with the faux 3′ UTR model because transgene levels were not strictly directly proportional to the length of the 3′ UTR. For example, transgene expression levels were higher when the 3′ UTR contained between 796 and 612 *cas9\textsubscript{Hs}* codons than when the 3′ UTR contained between 535 and 213 codons. Currently, we do not have an explanation for this phenomenon. More importantly, we performed this set of experiments to determine if halting translation of *gfp-cas9\textsubscript{Hs}* transgenes before ribosomes entered the *cas9\textsubscript{Hs}* regions of an mRNA would improve their expression, and indeed, we found that it does. GFP production was higher from every *gfp-stop-cas9\textsubscript{HsC#}* transgene than from the equivalent *gfp-cas9\textsubscript{Hs}* counterpart, suggesting that the primary obstacle to *cas9\textsubscript{Hs}* expression in *N. crassa* occurs during translation of *cas9\textsubscript{Hs}* sequences.
Our investigation of cas9Hs expression in \textit{N. crassa} evolved from a desire to study cas9-based synthetic gene drivers in filamentous fungi, an area of research that complements our primary focus on fungal meiotic drive elements (Hammond \textit{et al.} 2012; Harvey \textit{et al.} 2014; Pyle \textit{et al.} 2016; Svedberg \textit{et al.} 2018; Rhoades \textit{et al.} 2019a). Although our current findings suggest that cas9Hs sequences are poorly expressed in \textit{N. crassa}, other researchers have successfully used cas9Hs to edit genes in \textit{N. crassa} (Matsu-Ura \textit{et al.} 2015). Additionally, Cas9-based technologies have been used with success in dozens of filamentous fungi (Song \textit{et al.} 2019). Still, identifying the mechanistic basis of cas9Hs’s poor expression in \textit{N. crassa} could help increase the usefulness of Cas9-based technologies in this organism.

ACKNOWLEDGEMENTS
We would like to thank past and present members of the Hammond Lab for technical assistance with this work. Specifically, we would like to thank ISU undergraduate student Turner Reed for early work on quantifying gfp-cas9Hs expression levels, as well as ISU undergraduate students Olu Bamidele, Logan Gaskill, Brock Lynn, Jackson Edwards, Trevor Hitzler, and Xhejs Lame for isolating some of the homokaryotic gfp-cas9HsC strains analyzed in this study. The ISU BDS FACSMelody system was funded by NSF MRI grant 1725199. The ISU Confocal Microscopy Facility was funded by NSF grant DBI-1828136. This work was supported by awards to TMH from the National Science Foundation (1615626 / 2005295).

LITERATURE CITED
Amrani N., S. Dong, F. He, R. Ganesan, S. Ghosh, et al., 2006 Aberrant termination triggers nonsense-mediated mRNA decay. Biochem. Soc. Trans. 34: 39–42.
https://doi.org/10.1042/BST20060039

DiCarlo J. E., J. E. Norville, P. Mali, X. Rios, J. Aach, et al., 2013 Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41: 4336–4343. https://doi.org/10.1093/nar/gkt135

Esvelt K. M., A. L. Smidler, F. Catteruccia, and G. M. Church, 2014 Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3: e03401.
https://doi.org/10.7554/eLife.03401

Hammond T. M., H. Xiao, D. G. Rehard, E. C. Boone, T. D. Perdue, et al., 2011 Fluorescent and bimolecular-fluorescent protein tagging of genes at their native loci in Neurospora crassa using specialized double-joint PCR plasmids. Fungal Genet. Biol. 48: 866–873.
https://doi.org/10.1016/j.fgb.2011.05.002

Hammond T. M., D. G. Rehard, H. Xiao, and P. K. T. Shiu, 2012 Molecular dissection of Neurospora Spore killer meiotic drive elements. Proc. Natl. Acad. Sci. U. S. A. 109: 12093–12098. https://doi.org/10.1073/pnas.1203267109

Harvey A. M., D. G. Rehard, K. M. Groskreutz, D. R. Kuntz, K. J. Sharp, et al., 2014 A critical component of meiotic drive in Neurospora is located near a chromosome rearrangement. Genetics. https://doi.org/10.1534/genetics.114.167007

Knott G. J., and J. A. Doudna, 2018 CRISPR-Cas guides the future of genetic engineering. Science 361: 866–869. https://doi.org/10.1126/science.aat5011
Matsu-Ura T., M. Baek, J. Kwon, and C. Hong, 2015 Efficient gene editing in *Neurospora crassa* with CRISPR technology. Fungal Biol. Biotechnol. 2: 4.
https://doi.org/10.1186/s40694-015-0015-1

McNally M. T., and S. J. Free, 1988 Isolation and characterization of a *Neurospora* glucose-repressible gene. Curr. Genet. 14: 545–551. https://doi.org/10.1007/BF00434079

Mortazavi A., B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, 2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621–628.
https://doi.org/10.1038/nmeth.1226

Nicholson P., H. Yepiskoposyan, S. Metze, R. Zamudio Orozco, N. Kleinschmidt, *et al.*, 2010 Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell. Mol. Life Sci. 67: 677–700.
https://doi.org/10.1007/s00018-009-0177-1

Pyle J., T. Patel, B. Merrill, C. Nsokoshi, M. McCall, *et al.*, 2016 A meiotic drive element in the maize pathogen *Fusarium verticillioides* is located within a 102 kb region of chromosome V. G3 6: 2543–2552. https://doi.org/10.1534/g3.116.029728

Rhoades N. A., A. M. Harvey, D. A. Samarajeewa, J. Svedberg, A. Yusifov, *et al.*, 2019a Identification of *rfk-1*, a meiotic driver undergoing RNA editing in Neurospora. Genetics 212: 93–110. https://doi.org/10.1534/genetics.119.302122

Rhoades N. A., E. K. Webber, and T. M. Hammond, 2019b A nonhomologous end-joining mutant for *Neurospora sitophila* research. Fungal Genetics Reports: Vol. 64, Article 1.
https://doi.org/10.4148/1941-4765.2172
Samarajeewa D. A., P. A. Sauls, K. J. Sharp, Z. J. Smith, H. Xiao, et al., 2014 Efficient detection of unpaired DNA requires a member of the Rad54-like family of homologous recombination proteins. Genetics 198: 895–904. https://doi.org/10.1534/genetics.114.168187

Samarajeewa D. A., P. Manitchotpisit, M. Henderson, H. Xiao, D. G. Rehard, et al., 2017 An RNA recognition motif-containing protein functions in meiotic silencing by unpaired DNA. G3 Bethesda Md 7: 2871–2882. https://doi.org/10.1534/g3.117.041848

Sharp P. M., and W. H. Li, 1987 The codon adaptation index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281–1295. https://doi.org/10.1093/nar/15.3.1281

Song R., Q. Zhai, L. Sun, E. Huang, Y. Zhang, et al., 2019 CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Appl. Microbiol. Biotechnol. 103: 6919–6932. https://doi.org/10.1007/s00253-019-10007-w

Stajich J. E., T. Harris, B. P. Brunk, J. Brestelli, S. Fischer, et al., 2012 FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. 40: D675-681. https://doi.org/10.1093/nar/gkr918

Svedberg J., S. Hosseini, J. Chen, A. A. Vogan, I. Mozgova, et al., 2018 Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements. Nat. Commun. 9: 4242. https://doi.org/10.1038/s41467-018-06562-x

Vogel H. J., 1956 A convenient growth medium for Neurospora (Medium N). Microb. Genet Bull 13: 42–43.
Wang Y., Y. Liu, P. Zheng, J. Sun, and M. Wang, 2020 Microbial Base Editing: A powerful emerging technology for microbial genome engineering. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2020.06.010

Westergaard M., and H. K. Mitchell, 1947 Neurospora V. A synthetic medium favoring sexual reproduction. Am. J. Bot. 34: 573–577. https://doi.org/10.2307/2437339

Wu C., F. Yang, K. M. Smith, M. Peterson, R. Dekhang, et al., 2014 Genome-wide characterization of light-regulated genes in Neurospora crassa. G3 Bethesda Md 4: 1731–1745. https://doi.org/10.1534/g3.114.012617

Zhang Y., and M. S. Sachs, 2015 Control of mRNA stability in fungi by NMD, EJC and CBC factors through 3’UTR introns. Genetics 200: 1133–1148. https://doi.org/10.1534/genetics.115.176743

Zhu H., C. Li, and C. Gao, 2020 Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-00288-9
FIGURE LEGENDS

Figure 1 Transgene illustrations. (A) Diagram of the tef-1(P)::cas9Hs transgene. The cas9Hs transgene contains the N. crassa tef-1 promoter (tef-1[P]), the cas9Hs-coding sequence, an SV40 nuclear localization signal (nls), an S. cerevisiae cyc1 terminator (cyc1[T]), and a nourseothricin resistance cassette (nat). (B) Diagram of the N. crassa his-3 locus. The orange horizontal bar marks the DNA interval that was deleted and replaced with the tef-1(P)::cas9Hs transgene. The diagram is drawn to scale, and the orange bar represents a length of 919 bp. The his-3 coding region is depicted by the white rectangle. (C) Diagram of the ccg-I(P)::gfp-(GA)s construct used to construct gfp-cas9Hs transgenes. Note that the gfp sequence in every gfp-containing transgene examined in this study is immediately followed by the coding sequence for a ten amino acid glycine-alanine linker ([GA]s). (D) Diagram showing the DNA intervals of tef-1(P)::cas9Hs that were deleted and replaced with ccg-I(P)::gfp. The orange vertical dashed lines mark the two tef-1(P)::cas9Hs transgene borders. The orange horizontal bars mark the intervals that were deleted and replaced by ccg-I(P)::gfp with various transformation vectors (e.g., v76, v95, etc.). (E) Diagram of the ccg-I(P)::gfp-cas9Hs transgene obtained by transformation of strain ISU-4145 with transformation vector v76. (F) Diagram of the ccg-I(P)::gfp-cas9HsC318 transgene obtained by transformation of strain ISU-4145 with transformation vector v103.

Figure 2 Confocal microscopy-based analysis of transgene expression. (A–D) Conidia from a tef-1(P)-cas9Hs strain (ISU-4145), a gfp-cas9Hs strain (ISU-3994), a gfp-cas9HsC4 strain (ISU-4231), and a gfp-cas9HsC25 strain (ISU-4236) were examined by confocal microscopy. Upper panels, transmitted light image; middle panels, GFP signal; lower panels, overlay of transmitted and GFP images. The white horizontal bar represents 10 μm.
Figure 3 Flow cytometry-based analysis of transgene expression. (A) Conidia from *gfp-cas9^{Hs}* and *gfp-cas9^{HsC#}* strains were analyzed for the presence of GFP by flow cytometry. Mean fluorescence intensity (MFI) values are plotted on the Y axis relative to the *cas9^{Hs}* codon number to which *gfp* is fused in each transgene. Note that *cas9^{Hs}* contains 1380 codons, including seven codons for the SV40 NLS and one codon for the translational stop signal). The gray shaded region of the chart marks the range of MFI values (+/- standard deviation) obtained for negative control strains. The pink shaded region marks the MFI value (+/- standard deviation) obtained for the *gfp-sad-6* positive control strain. MFI values are averages obtained from two assays that were completed one day apart. Error bars are standard deviation values. The data used to construct the chart are provided in Table 2. Raw data is provided in Table S5. (B) Conidia from *gfp-stop-cas9^{Hs}* and *gfp-stop-cas9^{HsC#}* strains were analyzed for the presence of GFP by flow cytometry as in panel A. MFI values are averages of values obtained from two assays that were completed one day apart. The data used to construct the chart is provided in Table 3. Raw data is provided in Table S5.

Figure 4 Expression profiles of similar *gfp-cas9^{HsC#}* and *gfp-cas9^{NcC#}* transgenes. Conidia from *gfp-cas9^{HsC213}, gfp-cas9^{NcC213}, gfp-cas9^{HsC60}, and gfp-cas9^{NcC60} were analyzed for the presence of GFP by flow cytometry. The gray shaded region of the chart marks the range of MFI values (+/- standard deviation) obtained for negative control strains. The pink shaded region denotes the MFI values and standard deviation obtained for the *gfp-sad-6* positive control strain. The data used to construct the chart is provided in Table 2. Raw data is provided in Table S5.
Figure S1 cas9^{Nc}C₂₁₃ sequence. The sequence of cas9^{Nc}C₂₁₃ was ordered as a gBlock® (Integrated DNA technologies) and inserted into pJET1.2 to create plasmid pNR177.2. The cas9 coding sequence is depicted in red font. There are 221 codons: 213 codons for the cas9 C terminal end, seven codons for the SV40 NLS, and a single stop codon. The remainder of the sequence includes the <i>S. cerevisiae</i> cyc-1 terminator (black font) and a pTH1150.1 plasmid sequence to facilitate transformation vector construction (blue font).

Figure S2 Conidia sampling method. VMM slants were inoculated with <i>N. crassa</i> by qualitative transfer of conidia. After a 7–8 day incubation period (see methods), an approximately 2.5 mm path of conidia, from points “A” to “B” in the diagram, were transferred to tubes containing 1× PBS.

Figure S3 Fluorescence microscopy-based analysis of transgene expression. (A) Conidia from a control strain (ISU-4233), a gfp-cas9^{Hs} strain (ISU-3994), a gfp-cas9^{Hs}C₄ strain (ISU-4231), and a gfp-sad-6 strain (ISU-3121) were examined by fluorescence microscopy with a Leica DMBRE microscope and imaging system.

Figure S4 Comparison of cas9^{Hs}C₂₁₃ and cas9^{Nc}C₂₁₃ sequences. A sequence alignment of cas9^{Hs}C₂₁₃ and cas9^{Nc}C₂₁₃ is shown. A total of 120 codons in cas9^{Hs}C₂₁₃ were changed to synonymous codons that are found at higher frequencies in highly expressed <i>N. crassa</i> genes. The first codons in the cas9^{Hs}₆₀ and cas9^{Nc}₆₀ are marked with a blue horizontal bar.
Figure 1

A

B

C

D

E

F
Figure 2

A
\textit{tef-1(P)}-\textit{cas9}^{Hs}
(ISU-4145)

B
\textit{gfp-cas9}^{Hs}
(ISU-3994)

C
\textit{gfp-cas9}^{HsC4}
(ISU-4231)

D
\textit{gfp-cas9}^{HsC25}
(ISU-4236)
Figure 3

A

B

cas9 codon
top #: gfp fusion position
bottom #: cas9 codons remaining

cas9 codon
top #: gfp fusion position
bottom #: cas9 codons remaining
Figure 4
GTCAAGGGAGCTCTCGTATCCTACATATGGATCGAGTTCTTCTCTCCGAGAAGAACCCCTATCGATTTC
CCTCGAGCTACAGGTTTACAAGGAGTGTTAAGAGGATCTCATCATCAAGCTCCCTAAGTACTCTCT
TCTTCGAGGCTGAGAACGGTCGTAAGCGTATGCTCGCTTCCGCTGGTGAGCTCCAGAAGGGTAAC
GGGTCTCTGTTGAGGATAGCAGGACAGGACGACTCTTCGGTGAAGCGACAAAGCAGCTACCTCGAT
AGATCAGCAGGACGATCTCCGAGGCTCTCTAAGCGGTGTTTATCCTCGTGAAGCTAACCCTCGATA
GTCCTCTGTTACACAACAGCACCCTGTATAAGCCCTATCCGGAAGCGCTAGGAGAACCATCATCC
CTCTTCAACTCTCAACCACCTCCTGCTCTCTCTCTCTCTCTACTTAAAGTACTACTAATCGTAC
GGCTAAAGGTTTAACTCTTTCTCGAGTCATGTAATTAGTTATGTCAAGGTTACATTCACGGCCTCC
CCCCACATCCCCCTCCTAACCCTATACGAAGAAAGGATAGCAGCAGCTACTAGGTTGCTAACCCTT
TTTTTATAGTTATGTTATATATAAGAAGCTTTATATTATATTTAATTTTTTTTTTTTTTTTTTGTAC
AGACCGGTGCTACGCTAGTACATTATACGAAATACCTGGTGAGGAGTTTTGGAGCGCTCGAA
GGCTTTAACATTGCCGCCCGGTCATACCCCAATCTCCTCCTATAGTGCAGTGATACCGCCTACTTG
CGTCGTTTACACAAGCGTCTGACTGGGAAAACCCTGGCCTTACCCAACGTAAATCGCCTTGACGCA
ATCCCCGCGGCGGCTCTAGAACTAGTGACTCCCGGCGGCGAATTGCGCCCTAATATATAGCC
GCAACAGGTGTTGCTCTCTCGAGGACATAAAATACACACCGAGATTCATCATTGCTGAGTT
AGCATAACAGAATTTGGTGGAATGGGAGCGATTGCTCGGATTTTCGTTACGATGCGCCGAGTAGAG
GTGTGGCTCAATAA
Figure S2

N. crassa culture (day 0) N. crassa culture (day 7-8) N. crassa culture (day 7-8)

conidia

wood applicator

conidia transfer

1× PBS
Figure S3

	A	B	C	D
	gfp-cas9^{hs} (ISU-3994)	*gfp-sad-6* (ISU-3121)	*gfp-cas9^{C4}* (ISU-4231)	*wt* (ISU-4233)

Phase-contrast

GFP
Table 1 Strains used in this study

Strain name (alias)	Strain genotypea
F2-23 (RTH1005.1)	rid; fl A
F2-26 (RTH1005.2)	rid; fl a
ISU-3121 (RTH61.3.1.2)	rid his-3; gfp-sad-6-hph a
ISU-3866 (RAB1.8)	rid A
ISU-3994 (RAB22.4)	rid his-3⁺::gfp-cas9Hc₆-hph; mus-51Δ::bar A
ISU-4092 (TAB38.1)	rid his-3⁺::gfp-cas9Hc₆C991; mus-51Δ::bar a (ISU-4145 het)
ISU-4107 (TAB44.1)	rid his-3⁺::gfp-cas9Hc₆C318⁺; mus-51Δ::bar a (ISU-4145 het)
ISU-4145 (HAB11.53.2)	rid his-3⁺::tefl(p)-cas9Hc₆; mus-51Δ::bar a
ISU-4231 (RAB20.1)	rid his-3⁺::gfp-cas9Hc₆C213⁺; mus-51Δ::bar a
ISU-4232 (HAB45.1.1)	rid a
ISU-4233 (RAB1.7)	rid his-3⁺::gfp-cas9Hc₆C135⁺; mus-51Δ::bar a
ISU-4234 (HPM32.14.2)	rid his-3⁺::gfp-cas9Hc₆C70⁺
ISU-4235 (HPM33.11.2)	rid his-3⁺::gfp-cas9Hc₆C25⁺
ISU-4236 (HPM34.1.1)	rid his-3⁺::gfp-cas9Hc₆C62⁺
ISU-4522 (RAY25.1.4)	rid his-3⁺::gfp-cas9Hc₆C60⁺, mus-51Δ::bar a
ISU-4618 (RAY11.13)	rid his-3⁺::gfp-cas9Hc₆C40⁺
ISU-4624 (RAY13.1)	rid his-3⁺::gfp-stop-cas9Hc₆C213⁺; mus-51Δ::bar a
ISU-4875 (CTH293.3.3)	rid his-3⁺::gfp-cas9Nc₂₁₃⁺; mus-52Δ::bar A
ISU-4884 (CNR307.3.1)	rid his-3⁺::gfp-cas9Nc₂₁₃⁺; mus-52Δ::bar A
ISU-4886 (CNR308.4.1)	rid his-3⁺::gfp-cas9Hc₆C₁₂₀₉⁺; mus-51Δ::bar a
ISU-4888 (RABOB.36.4.1)	rid his-3⁺::gfp-cas9Hc₆C₁₀₇₈⁺; mus-51Δ::bar a
ISU-4889 (RABLG.37.1.2)	rid his-3⁺::gfp-cas9Hc₆C₈₈₈⁺; mus-51Δ::bar a
ISU-4892 (RABBL.39.1.1)	rid his-3⁺::gfp-cas9Hc₆₆₅⁺; mus-51Δ::bar a
ISU-4894 (RABJE.41.1.1)	rid his-3⁺::gfp-cas9Hc₅₃₅⁺; mat a
ISU-4895 (RABTrH.42.1.1)	rid his-3⁺::gfp-cas9Hc₄₄₃⁺; mat a
ISU-4897 (RAB.XL.43.2.2)	rid his-3⁺::gfp-stop-cas9Hc₆; mus-51Δ::bar a
ISU-4933 (CNR326.2.1/76.2.1)	rid his-3⁺::gfp-stop-cas9Hc₄⁺; mus-51Δ::bar a
ISU-4934 (CNR327.1.1/77.1.1)	rid his-3⁺::gfp-stop-cas9Hc₆C₂₁₃⁺; mus-51Δ::bar a
ISU-4935 (CNR336.1.1/104.1.1)	rid his-3⁺::gfp-stop-cas9Hc₆C₁₃₅⁺; mus-51Δ::bar a
ISU-4936 (CNR337.1.1/124.1.1)	rid his-3⁺::gfp-stop-cas9Hc₆C₂₅⁺; mus-51Δ::bar a
ISU-4937 (CNR339.1.1/126.1.1)	rid his-3⁺::gfp-stop-cas9Hc₆C₂₁₃⁺; mus-51Δ::bar a
ISU-4938 (CNR347.1.5/v193h.5)	rid his-3⁺::gfp-stop-cas9Hc₆C₂₅⁺; mus-51Δ::bar a
ISU-4939 (CNR340.2.1/161.2.1)	rid his-3⁺::gfp-stop-cas9Hc₆C₆₀⁺, mus-51Δ::bar a
ISU-4941 (CNR341.1.2/163.1.2)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs40}\); mus-51\(^A\)::bar A
-------------------------------	--
ISU-4942 (CNR328.1.1/95.1.1)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs1209}\); mus-51\(^A\)::bar A
ISU-4943 (CNR329.1.1/96.1.1)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs1078}\); mus-51\(^A\)::bar A
ISU-4944 (CNR330.1.1/97.1.1)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs991}\); mus-51\(^A\)::bar A
ISU-4945 (CNR331.1.1/98.1.1)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs888}\); mus-51\(^A\)::bar A
ISU-4946 (CNR332.1.1/v100.1.1)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs656}\); mus-51\(^A\)::bar A
ISU-4947 (CNR333.2.1/101.2.1)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs535}\); mus-51\(^A\)::bar A
ISU-4948 (CNR334.1.2/102.1.2)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs443}\); mus-51\(^A\)::bar A
ISU-4949 (CNR335.2.1/103.2.1)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs318}\); mus-51\(^A\)::bar A
ISU-4950 (CNR349.1.2/308.1.2)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs796}\); mus-51\(^A\)::bar A
ISU-4951 (CNR348.1.7/307.1.7)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs714}\); mus-51\(^A\)::bar A
ISU-4952 (CNR349.1.2/308.1.2)	rid his-3\(^+\)::gfp-stop-cas9\(^{Hs612}\); mus-51\(^A\)::bar A
ISU-4953 (CNR350.2.8/309.2.8)	rid his-3; mus-51\(^A\)::bar A

The symbols \(cas9^{Hs}\) and \(cas9^{Nc}\) are used for human and \(N. crassa\) optimized Cas9 coding sequences, respectively.
Table 2 *gfp-cas*^{Hs} expression levels

Strain name	Transgene name	vector	*gfp* seq^a	*cas9* seq^b	Average MFI^c	stdev
Control strains						
ISU-4233	*none*	na	na	na	107.30	6.78
ISU-3866	*none*	na	na	na	101.15	5.32
ISU-4145	*cas9^{Hs}*	na	na	no^d	113.12	28.33
ISU-3121	*gfp-sad-6*	na	yes	na	445.07	13.30
Test strains						
ISU-3994	*gfp-cas9^{Hs}*	v76	no	no	107.22	21.42
ISU-4888	*gfp-cas9^{Hs}C1209*	v95	yes	no	107.82	0.56
ISU-4889	*gfp-cas9^{Hs}C1078*	v96	yes	no	102.49	7.25
ISU-4092	*gfp-cas9^{Hs}C991*	v97	no	no	103.45	14.27
ISU-4892	*gfp-cas9^{Hs}C888*	v98	yes	no	113.74	13.53
ISU-4894	*gfp-cas9^{Hs}C656*	v100	yes	no	112.94	19.64
ISU-4895	*gfp-cas9^{Hs}C535*	v101	yes	no	116.87	19.95
ISU-4897	*gfp-cas9^{Hs}C443*	v102	yes	no	101.96	21.30
ISU-4107	*gfp-cas9^{Hs}C318*	v103	no	no	104.77	15.48
ISU-4232	*gfp-cas9^{Hs}C213*	v104	yes	yes	116.96	11.79
ISU-4234	*gfp-cas9^{Hs}C135*	v124	yes	yes	155.74	21.98
ISU-4235	*gfp-cas9^{Hs}C70*	v125	yes	yes	227.29	10.30
ISU-4522	*gfp-cas9^{Hs}C62*	v193	yes	yes	440.88	99.47
ISU-4618	*gfp-cas9^{Hs}C60*	v161	yes	yes	1686.60	799.05
ISU-4624	*gfp-cas9^{Hs}C40*	v163	yes	yes	4674.03	783.60
ISU-4236	*gfp-cas9^{Hs}C25*	v126	yes	yes	13973.04	2898.18
ISU-4231	*gfp-cas9^{Hs}C4*	v77	yes	yes	21681.28	3130.25
ISU-4884	*gfp-cas9^{Nc}C213*	v293	yes	yes	97.65	4.33
ISU-4886	*gfp-cas9^{Nc}C60*	v294	yes	yes	519.11	116.86

^a “yes” indicates that the *gfp* coding sequence and the ten amino acid GAGAGAGAGA linker of the *gfp-cas*⁹ transgene were confirmed to be free of mutations in the indicated strain by Sanger sequencing. “no” means the sequence is assumed to be correct but it was not confirmed by Sanger sequencing.

^b “yes” indicates that the *cas9* coding sequence was confirmed to be free of mutations in the indicated strain by Sanger sequencing. “no” means the sequence is assumed to be correct but it was not confirmed by Sanger sequencing.

^c Average mean fluorescence intensity (MFI) values were calculated from MFI measurements of the same strain taken on different days (replicate assays separated in time by one day).

^dThe *cas9^{Hs}* coding sequence in plasmid pAH41.1 was confirmed to be free of mutations by Sanger sequencing but the *cas9^{Hs}* coding sequence was not confirmed to be mutation free after integration into the *N. crassa* genome.
Standard deviation values (stdev) are provided. na, not applicable.
Table 3 gfp-stop-cas9^{Hs} expression levels

Strain name	Transgene name	vector	gfp seq^a	cas9 seq^b	Average MFI^c	stdev
Control strains						
ISU-4233	none	na	na	na	107.30	6.78
ISU-3866	none	na	na	na	101.15	5.32
ISU-4145	cas9^{Hs}	na	na	no^d	113.12	28.33
ISU-3121	gfp-sad-6	na	yes	na	445.07	13.30
Test strains						
ISU-4933	gfp-stop-cas9^{Hs}	v76-stop	yes	no	229.49	44.12
ISU-4942	gfp-stop-cas9^{Hs}C1209	v95-stop	yes	no	249.28	73.12
ISU-4943	gfp-stop-cas9^{Hs}C1078	v96-stop	yes	no	184.49	17.75
ISU-4944	gfp-stop-cas9^{Hs}C991	v97-stop	yes	no	427.81	19.80
ISU-4945	gfp-stop-cas9^{Hs}C888	v98-stop	yes	no	294.55	34.53
ISU-4951	gfp-stop-cas9^{Hs}C796	v307-stop	yes	no	718.78	134.25
ISU-4952	gfp-stop-cas9^{Hs}C714	v308-stop	yes	no	975.18	405.91
ISU-4946	gfp-stop-cas9^{Hs}C656	v100-stop	yes	no	926.00	27.67
ISU-4953	gfp-stop-cas9^{Hs}C612	v309-stop	yes	no	1937.17	1077.00
ISU-4947	gfp-stop-cas9^{Hs}C535	v101-stop	yes	no	412.50	44.49
ISU-4948	gfp-stop-cas9^{Hs}C443	v102-stop	yes	no	353.63	39.77
ISU-4949	gfp-stop-cas9^{Hs}C318	v103-stop	yes	no	281.53	92.79
ISU-4975	gfp-stop-cas9^{Hs}C213	v296-stop	yes	no	479.87	9.64
ISU-4935	gfp-stop-cas9^{Hs}C211	v104-stop	yes	no	464.78	24.76
ISU-4936	gfp-stop-cas9^{Hs}C135	v124-stop	yes	no	4370.11	793.21
ISU-4938	gfp-stop-cas9^{Hs}C62	v193-stop	yes^e	no	2611.50	844.40
ISU-4939	gfp-stop-cas9^{Hs}C60	v161-stop	yes	no	16852.27	4310.24
ISU-4941	gfp-stop-cas9^{Hs}C40	v163-stop	yes	no	16753.66	5419.47
ISU-4937	gfp-stop-cas9^{Hs}C25	v126-stop	yes	no	21235.32	5861.72
ISU-4934	gfp-stop-cas9^{Hs}C4	v77-stop	yes	no	39746.19	7110.40

^a“yes” indicates that the gfp coding sequence, ten amino acid <abbr>GAGAGAGAGAG</abbr> linker, and stop codon of the gfp-stop-cas9 transgene were confirmed to be free of mutations in the indicated strain by Sanger sequencing. “no” means the sequence is assumed to be correct but it was not confirmed by Sanger sequencing.

^b“yes” indicates that the cas9 coding sequence was confirmed to be free of mutations in the indicated strain by Sanger sequencing. “no” means the sequence is assumed to be correct but it was not confirmed by Sanger sequencing.

^cAverage MFI values were calculated from measurements of the same strain taken on different days (replicate assays were separated in time by one day).
The cas9^{Hs} coding sequence in plasmid pAH41.1 was confirmed to be free of mutations by Sanger sequencing but the cas9^{Hs} coding sequence was not confirmed to be mutation free after integration into the *N. crassa* genome.

Strain ISU-4938 contains a single nucleotide deletion in the coding sequence for the ten amino acid GAGAGAGAGA linker. The deleted nucleotide causes a frameshift that changes the amino acids at the end of GFP from GAGAGAGAGA to GAGARVRLESTCLL.

Standard deviation values (stdev) are provided. na, not applicable.
Primer Name	Sequence (5’ > 3’)
298	GTTGGTTAGGTGGGAACGCTTGT
550	GCGCGTCATTCCGCATTTCA
551	CGCTCCAGCACCCGGACCCGCTCCT
589	TTTTTCGCGCCGGGATGTGCTGCAAGCGGATTA
598	CCATTGTCTTTCCCTGTGTT
599	TTTTACTAGTTTTGGCTGATGTGCTGACTGG
610	TTGTGCGGCCGCTGAAGCTTGTGGGTAGCGTAGGA
624	CCGAGCAAATGCTGCAAATC
877	TCAAGCTATTGAGGACGAGGAGT
878	GCACCTGGAATGGCGAACGGACGCGTAAAGACACCATTTCCCACGCTCC
879	CAGGACGGGTGCGCGGTGCTGGAGCGATGGACGATTGAGTAATCCCATATGGGCTCGA
880	CTGTTCGGCGCTCAATGTATC
881	TGTGAGACAGGAGCTTCCCGTCAG
882	GGTGCGGTTGATGAGTTGTTTCTT
888	CAGGAGCGGGTGCGCGGTGCTGGAGCGAGCGGGCTGAGACCAAGCAAGAG
889	CAGGACGGGTGCGCGGTGCTGGAGCGGAGCGT
890	CCTCAATGTATCCCGCGTACG
891	AGTCTTGGTGTTGCTGATCATA
892	CAGGACGGGTGCGCGGTGCTGGAGCGGACGTTCCCATGCGTCTG
893	TCGATGAAGGACTGGGCAGAGG
894	GTAGGGTATCCGAAATGTGAGG
895	CAGGAGCGGGTGCGCGGTGCTGGAGCGGACG
896	CCTCACTCGCGCATTTCAACA
897	TTCTCTGATTCCCGTATC
898	CAGGACGGGTGCGCGGTGCTGGAGCGGAGCGGCTGAGACCAAGCAAGG
899	AGTTCGCGTTGCAACACTCATC
900	GCGTAAATTTCCAAGCGGTTT
904	CAGGAGCGGGTGCGCGGTGCTGGAGCGGACGTTCCCATGCGTCTG
905	CAGACAGCGACCTCGTCAGC
906	TAGGAGGAGTTATCATCCTCTT
907	CAGGAGCGGGTGCGCGGTGCTGGAGCGGAGCGGCTGAGACCAAGC
908	GGTGCGTTTGCGCTATTTTCGCT
909	TGAATAAGTCGATGCTCATTCAC
910	CAGGAGCGCGTGCCCGGTGCTGGAGCGGACGTCATATCCGCTGCCCCAGTC
911	CAGCTTGCGCTGATTTTCGCT
912	CGGTCTTGATCTCTGTTT
913	CAGGAGCGGGTGCGCGGTGCTGGAGCGGAGGAGATTCCGGAAGCGC
914	CAGGAGACCCCTGGAGCAGCTT
915	CCGTTTCAGCCTCAAAGAGAG
916	CAGGAGCGGGTGCGCGGTGCTGGAGCGGCTCAAGGAACGCGCTGCCCCAGTC
917	CCTGCTGTCTCCACCGAGCTG
Table S2 Primer combinations for transformation vector construction by DJ-PCR

Vector name	Left Fr	Left Rv	Cen Fr	Cen Rv	Right Fr	Right Rv	Nest Fr	Nest Rv
v76	877	878	550	551	879	880	881	882
v76-stop	877	878	550	551	2083	880	881	882
v77	877	878	550	551	888	298	881	624
v77-stop	877	878	550	551	2099	298	881	624
v95	877	878	550	551	1089	1090	881	1091
v95-stop	877	878	550	551	2084	1090	881	1091
v96	877	878	550	551	1092	1093	881	1094
v96-stop	877	878	550	551	2085	1093	881	1094
v97	877	878	550	551	1095	1096	881	1097
v97-stop	877	878	550	551	2086	1096	881	1097
v98	877	878	550	551	1098	1099	881	1100
v98-stop	877	878	550	551	2087	1099	881	1100
v100	877	878	550	551	1104	1105	881	1106
v100-stop	877	878	550	551	2088	1105	881	1106
v101	877	878	550	551	1107	1108	881	1109
v101-stop	877	878	550	551	2089	1108	881	1109
v102	877	878	550	551	1110	1111	881	1112
v102-stop	877	878	550	551	2090	1111	881	1112
v103	877	878	550	551	1113	1114	881	1115
v103-stop	877	878	550	551	2091	1114	881	1115
v104	877	878	550	551	1116	1117	881	1118
v104-stop	877	878	550	551	2092	1117	881	1118
v124	877	878	550	551	1167	298	881	624
v124-stop	877	878	550	551	2093	298	881	624
v125	877	878	550	551	1166	298	881	624
v125-stop	877	878	550	551	2094	298	881	624
v126	877	878	550	551	1165	298	881	624
v126-stop	877	878	550	551	2098	298	881	624
v161	877	878	550	551	1387	298	881	624
v161-stop	877	878	550	551	2096	298	881	624
v163	877	878	550	551	1389	298	881	624
v163-stop	877	878	550	551	2097	298	881	624
v193	877	878	550	551	1528	298	881	624
v193-stop	877	878	550	551	2095	298	881	624
Construction of transformation vectors by DJ-PCR was performed by amplification of left flanks, center fragments, and right flanks with the primers indicated above. For left and right flanks, genomic DNA from strain ISU-4145 was used as the template. For center fragments, plasmid pTH1117.12 (GenBank JF749202.1) was used as the template. After the flanks and center fragments were fused by PCR, the fusion products were amplified with nested primers. Please see Hammond et al. (2011) for a more complete description of DJ-PCR. Abbreviations are as follows: Left flank forward primer, Left Fr; Left flank reverse primer, Left Rv; Center fragment forward primer, Cen Fr; Center fragment reverse primer, Cen Rv; Right flank forward primer, Right Fr; Right flank reverse primer, Right Rv; Nested forward primer, Nest Fr; and, Nested reverse primer, Nest Rv.
Table S3 A set of 100 *N. crassa* high abundance mRNAs

Rank	Gene	Rank	Gene	Rank	Gene
1	NCU06110T0	35	NCU05804T0	69	NCU00726T0
2	NCU01528T0	36	NCU03302T0	70	NCU08964T0
3	NCU09345T0	37	NCU03150T0	71	NCU09089T0
4	NCU16635T0	38	NCU00618T0	72	NCU07808T0
5	NCU00315T0	39	NCU05498T0	73	NCU01546T0
6	NCU04553T0	40	NCU04552T0	74	NCU07014T0
7	NCU07562T0	41	NCU00979T0	75	NCU01776T0
8	NCU05667T0	42	NCU0634T0	76	NCU03148T0
9	NCU02003T0	43	NCU02193T0	77	NCU09109T0
10	NCU10042T0	44	NCU03102T0	78	NCU07829T0
11	NCU05599T0	45	NCU1948T0	79	NCU01949T0
12	NCU00294T0	46	NCU06432T0	80	NCU08960T0
13	NCU01418T0	47	NCU06431T0	81	NCU07439T0
14	NCU03988T0	48	NCU10498T0	82	NCU02181T0
15	NCU05561T0	49	NCU09475T0	83	NCU07857T0
16	NCU01754T0	50	NCU06047T0	84	NCU00635T0
17	NCU00971T0	51	NCU08332T0	85	NCU03757T0
18	NCU08389T0	52	NCU00258T0	86	NCU05816T0
19	NCU07817T0	53	NCU03753T0	87	NCU03565T0
20	NCU09476T0	54	NCU07962T0	88	NCU06226T0
21	NCU08963T0	55	NCU07182T0	89	NCU00413T0
22	NCU03738T0	56	NCU01962T0	90	NCU08502T0
23	NCU08627T0	57	NCU05274T0	91	NCU02437T0
24	NCU02250T0	58	NCU04779T0	92	NCU01221T0
25	NCU00464T0	59	NCU03703T0	93	NCU16844T0
26	NCU01317T0	60	NCU02707T0	94	NCU02744T0
27	NCU01827T0	61	NCU01452T0	95	NCU07826T0
28	NCU06661T0	62	NCU06892T0	96	NCU05032T0
29	NCU03806T0	63	NCU05338T0	97	NCU04114T0
30	NCU05554T0	64	NCU09477T0	98	NCU05810T0
31	NCU08990T0	65	NCU10069T0	99	NCU06185T0
32	NCU00475T0	66	NCU07776T0	100	NCU00706T0
33	NCU01552T0	67	NCU06743T0		
34	NCU07830T0	68	NCU02905T0		

The genes were ranked from highest mRNA abundance (rank 1) to lowest abundance (rank 100).
Table S4 Codon RA value estimates for *N. crassa*

Amino acid	Codon	Total^a	RA	Amino acid	Codon	Total^a	RA
*	TAA	86	1.00	M	ATG	366	1.00
*	TAG	9	0.10	N	AAC	625	1.00
*	TGA	5	0.06	N	AAT	27	0.04
A	GCC	1044	1.00	P	CCC	576	1.00
A	GCT	582	0.56	P	CCT	168	0.29
A	GCG	79	0.08	P	CCG	46	0.08
A	GCA	22	0.02	P	CCA	24	0.04
C	TGC	205	1.00	Q	CAG	527	1.00
C	TGT	10	0.05	Q	CAA	48	0.09
D	GAC	519	1.00	R	CGC	726	1.00
D	GAT	234	0.45	R	CGT	374	0.52
E	GAG	945	1.00	R	AGA	57	0.08
E	GAA	55	0.06	R	AGG	44	0.06
F	TTC	491	1.00	R	CGG	38	0.05
F	TTT	42	0.09	R	CGA	13	0.02
G	GGC	709	1.00	S	TCC	567	1.00
G	GGT	583	0.82	S	TCT	233	0.41
G	GGA	41	0.06	S	AGC	187	0.33
G	GGG	12	0.02	S	TCG	119	0.21
H	CAC	362	1.00	S	TCA	22	0.04
H	CAT	31	0.09	S	AGT	17	0.03
I	ATC	750	1.00	T	ACC	722	1.00
I	ATT	165	0.22	T	ACT	223	0.31
I	ATA	9	0.01	T	ACG	53	0.07
K	AAG	1563	1.00	T	ACA	22	0.03
K	AAA	34	0.02	T	ACG	53	0.07
L	CTC	852	1.00	V	GTC	953	1.00
L	CTT	249	0.29	V	GTT	285	0.30
L	CTG	125	0.15	V	GTA	19	0.02
L	TTT	92	0.11	W	TGG	158	1.00
L	CTA	7	0.01	Y	TAC	414	1.00
L	TTA	3	0.00	Y	TAT	43	0.10

^aTotal is the total number of occurrences of each codon in the coding sequences of the 100 genes listed in Table S3. Relative adaptiveness (RA) values were calculated according to the method of Sharp and Li (1987).
Data set^a	Strain Name	Vector	cas9 codons remaining	gfp fusion position on cas9	MFI 7-day culture	MFI 8-day culture
all	ISU-3121	na	na (PC)	na (PC)	435.66	454.47
all	ISU-3886	na	na (NC)	na (NC)	104.91	97.38
all	ISU-4145	na	na (NC)	na (NC)	133.15	93.09
all	ISU-4233	an	na (NC)	na (NC)	112.09	102.5
cas	ISU-3994	v76	1372	1	122.36	92.07
cas	ISU-4888	v95	1209	164	107.42	108.21
cas	ISU-4889	v96	1078	295	107.62	97.36
cas	ISU-4092	v97	991	382	113.54	93.36
cas	ISU-4892	v98	888	485	123.31	104.17
cas	ISU-4894	v100	656	717	126.82	99.05
cas	ISU-4895	v101	535	838	130.97	102.76
cas	ISU-4897	v102	444	930	117.02	86.9
cas	ISU-4107	v103	318	1055	115.71	93.82
cas	ISU-4232	v104	213	1160	125.3	108.62
cas	ISU-4234	v124	135	1238	171.28	140.2
cas	ISU-4235	v125	70	1303	220.01	234.57
cas	ISU-4522	v193	62	1311	511.21	370.54
cas	ISU-4618	v161	60	1313	2251.61	1121.58
cas	ISU-4624	v163	40	1333	5228.12	4119.94
cas	ISU-4236	v126	25	1349	16022.36	11923.71
cas	ISU-4231	v77	4	1369	23894.7	19467.86
opt	ISU-4884	v293	213	1160	94.59	100.71
opt	ISU-4886	v294	60	1313	601.74	436.47
stop	ISU-4933	v76-stop	1372	1	260.68	198.29
stop	ISU-4942	v95-stop	1209	164	300.98	197.57
stop	ISU-4943	v96-stop	1078	295	197.04	171.94
stop	ISU-4944	v97-stop	991	382	413.81	441.81
stop	ISU-4945	v98-stop	888	485	318.96	270.13
stop	ISU-4951	V307-stop	796	577	813.71	623.85
stop	ISU-4952	V308-stop	714	659	1262.2	688.16
stop	ISU-4946	v100-stop	656	717	945.56	906.43
stop	ISU-4953	v309-stop	612	761	2698.72	1175.61
stop	ISU-4947	v101-stop	535	838	381.04	443.96
stop	ISU-4948	v102-stop	443	930	325.51	381.75
stop	ISU-4949	v103-stop	318	1055	347.14	215.91
stop	ISU-4875	v296-stop	213	1160	486.69	473.05
stop	ISU-4935	v104-stop	213	1160	482.28	447.27
stop	ISU-4936	v124-stop	135	1238	4930.99	3809.22
stop	ISU-4938	v193-stop	62	1311	3208.58	2014.42
stop	ISU-4939	v161-stop	60	1313	19900.07	13804.47
The data were used to construct the charts presented in Figure 3 and Figure 4. Dataset: all, strains provided the positive and negative control values in all charts; cas9, strains provided the values used to produce the chart in Figure 3A and Figure 4; stop, strains provided the values used to produce the chart in Figure 3B. Abbreviations: na, not applicable, PC, positive control, GFP-SAD-6 strain; NC, negative control, no GFP transgenes present.

	ISU-4941	v163-stop	40	1333	20585.8	12921.51
stop	ISU-4937	v126-stop	25	1348	25380.18	17090.45
stop	ISU-4934	v77-stop	4	1369	44774	34718.37