Computing the order and the index of a subgroup in a polycyclic group

Bettina Eick

February 9, 2021

Abstract

This contains a new version of the so-called ‘non-commutative Gauss’ algorithm for polycyclic groups. Its results allow to read off the order and the index of a subgroup in an (possibly infinite) polycyclic group.

1 Introduction

Practical algorithms to compute with finite polycyclic groups have been described by Laue, Neubüser & Schoenwaelder in [3]. A main basis for most of these algorithms is the so-called ‘non-commutative Gauss’ algorithm. Given a finite polycyclic group G and a finite set of generators for a subgroup U, this computes a so-called induced polycyclic generating sequence for U. In turn, this allows to read off $|U|$ and $[G:U]$ and forms a basis for many other algorithms.

Eick [2] introduced various practical algorithms to compute with possibly infinite polycyclic groups. These also included an extended version of the ‘non-commutative Gauss’ algorithm. The proof of this extended version has gaps. It is the main aim here to cover this open problem and to introduce a practical and reliable version of the ‘non-commutative Gauss’ algorithm for possibly infinite polycyclic groups.

A GAP implementation of the code described here is available online, see [1].

2 Preliminaries

We first introduce the setting of the algorithm. We assume that the group G is given by a consistent polycyclic presentation; that is, it has generators g_1,\ldots,g_n and non-negative integers r_1,\ldots,r_n and relations of the form

\[
\begin{align*}
g_i g_j &= g_j^{a_{i,j}^1} \cdots g_n^{a_{i,j}^n} \text{ for } 1 \leq j < i \leq n, \\
g_i g_j^{-1} &= g_j^{-1} g_j^{b_{i,j}^1} \cdots g_n^{b_{i,j}^n} \text{ for } 1 \leq j < i \leq n \text{ with } r_i = 0, \\
g_i^{r_i} &= g_i^{c_i^1} \cdots g_n^{c_i^n} \text{ for } 1 \leq i \leq n \text{ with } r_i > 0,
\end{align*}
\]

where $a_{i,j,k}, b_{i,j,k}, c_{i,k}$ are integers that are contained in $\{0,\ldots,r_k - 1\}$ if $r_k > 0$. Additionally, it is required that for each element g of G there exists a unique $(e_1,\ldots,e_n) \in \mathbb{Z}^n$
with \(0 \leq e_k < r_k \) if \(r_k > 0 \) so that
\[
g = g_1^{e_1} \cdots g_n^{e_n}.
\]

We call \(g_1^{e_1} \cdots g_n^{e_n} \) the normal form of the element \(g \). It can be computed readily for any arbitrary word in the generators by iteratively applying the relations of the group.

Let \(G_i = \langle g_i, \ldots, g_n \rangle \) for \(1 \leq i \leq n \). The relations of \(G \) imply that \(G_{i+1} \leq G_i \) for \(1 \leq i \leq n-1 \) and \(G_i/G_{i+1} \) is cyclic. The consistency of the presentation implies that \([G_i : G_{i+1}] = r_i \) if \(r_i > 0 \) and \([G_i : G_{i+1}] = \infty \) if \(r_i = 0 \).

We introduce some further notation for elements in a group \(G \) given by a consistent polycyclic presentation. Let \(g = g_1^{e_1} \cdots g_n^{e_n} \) be a normal form and assume that \(g \neq 1 \). Then

- the depth of \(g \) is \(d \) if \(e_1 = \ldots = e_{d-1} = 0 \) and \(e_d \neq 0 \). Write \(d(g) \).
- the leading exponent of \(g \) is \(e_d \). Write \(l(g) \).
- the relative order of \(g \) is \(|gG_{d+1}| \). Write \(r(g) \).

If \(g = 1 \), then we say that \(g \) has depth \(n + 1 \) and leading exponent or relative order of \(g \) do not exist. If \(g \neq 1 \), then \(r(g) = \infty \) if \(r_d = 0 \) and \(r(g) \mid r_d \) otherwise.

3 Subgroups, Igs and Cgs

Let \(G \) be given by a consistent polycyclic presentation. A generating set \(u_1, \ldots, u_m \) of a subgroup \(U \) is an igs if the series \(U_i = \langle u_1, \ldots, u_m \rangle \) with \(1 \leq i \leq m \) coincides with the series \(G_i \cap U \) for \(1 \leq i \leq n \) where duplicates have been removed. The following has been proved in [2].

1 Lemma: Let \(u_1, \ldots, u_m \) be a generating set for \(U \). Then \(u_1, \ldots, u_m \) is an igs for \(U \) if and only if

- \(u_i^{u_j} \in U_{j+1} \) for \(1 \leq j < i \leq m \),
- \(u_i^{r(u_i)} \in U_{i+1} \) for \(1 \leq i \leq m \) with \(r(u_i) > 0 \),
- \(d(u_1) < d(u_2) < \ldots < d(u_m) \).

Proof: We include a proof for completeness.

(1) First assume that \(u_1, \ldots, u_m \) is an igs. Choose \(j \) maximal with \(U_i = G_j \cap U \). Then \(U_{i+1} = G_{j+1} \cap U \) and thus \(U_{i+1} \leq U_i \) with \(U_i/U_{i+1} \) of order \(r(u_i) \). Thus all three items follow.

(2) Now assume that the three items are satisfied. By item (a) it follows that \(U_{i+1} \leq U_i \) and by construction and item (b) the quotient \(U_i/U_{i+1} \) is cyclic of order \(r(u_i) \) if \(r(u_i) > 0 \) and cyclic of order \(\infty \) if \(r(u_i) = 0 \). Induction now yields the desired result.

4 Computing an igs

We assume that generators \(h_1, \ldots, h_l \) for a subgroup \(U \) of \(G \) are given. Our aim is to determine an igs for \(U \).
4.1 Normalisations of elements

Let \(g \in G, \ g \neq 1 \), with depth \(d \), leading exponent \(a \) and relative order \(r_d \). If \(r_d = 0 \), then let \(e = \text{sign}(a) \) and call \(g^e \) the normalisation of \(g \). If \(r_d > 0 \), then write \(a = xy \) with \(x = \gcd(a, m) \) and \(y = a/x \). Note that \(z = y^{-1} \mod m \) exists and call \(g^z \) the normalisation of \(g \).

2 Remark: Let \(g \in G, \ g \neq 1 \), with depth \(d \) and normalisation \(h \).

(a) \(d(h) = d(g) \)
(b) \(l(h) \mid l(g) \).
(c) \(\langle g, G_{d+1} \rangle = \langle h, G_{d+1} \rangle \).

Remark 2 indicates why the normalisation of an element is of interest: in the cyclic group \(G_d/G_{d+1} \) it yields the unique generator of \(\langle gG_{d+1} \rangle \) with smallest leading exponent.

4.2 Partial Igs

A partial igs is a list of length \(n \) (the number of generators of the parent group \(G \)) whose \(i \)-th entry is either empty or a normalised element \(g \) in \(G \) of depth \(i \).

The following function takes a partial igs \(I \) and an arbitrary element \(g \in G \) and determines a new partial igs \(J \) so that \(\langle J \rangle = \langle I, g \rangle \).

AddGenToPIgs\((I, g)\):
(1) Initialise \(L \) as the list with a single entry \(g \).
(2) While \(L \) is not empty do:
 (a) Take an element \(h \) from \(L \) and eliminate it in \(L \).
 (b) Let \(d = d(h) \). If \(d > n \) then go back to (2).
 (c) If \(I[d] \) is empty then:
 (i) Insert the normalisation of \(h \) at position \(d \) in \(I \).
 (ii) If \(r_d > 0 \) then add \(h \cdot I[d]^{-l(h)/l(I[d])} \) to \(L \).
 (d) If \(I[d] \) is not empty then:
 (i) Let \(k = I[d] \) and \(b = l(k) \) and \(a = l(h) \).
 (ii) Let \(e = \gcd(a, b) = ua + vb \) and \(w = h^uk^v \).
 (iii) Insert the normalisation of \(w \) at position \(d \) in \(I \).
 (iv) Add \(h \cdot I[d]^{-l(h)/l(I[d])} \) to \(L \).
 (v) Add \(k \cdot I[d]^{-l(k)/l(I[d])} \) to \(L \).

First, note that in Steps (2d)(iv) and (2d)(v), the quotients \(l(h)/l(I[d]) \) and \(l(k)/l(I[d]) \) are integers, since \(l(I[d]) \mid l(w) = e = \gcd(a, b) \) and \(a = l(h) \) and \(b = l(k) \). Hence these Steps yield elements of \(G \) that are added to \(L \).

Second, in the Steps (2c)(ii), (2d)(iv) and (2d)(v) there are elements of \(G \) added to \(L \). All of these elements have depth greater than \(d \). This implies that the algorithm terminates eventually.
3 Lemma: Let $J = \text{AddGenToPIgs}(I, g)$. Then J is a partial igs satisfying $\langle J \rangle = \langle I, g \rangle$.

Proof: J is a partial igs, since we only add normalised elements at the places associated with their depth. It remains to prove $\langle J \rangle = \langle I, g \rangle$.

\subseteq: Each element that is inserted into I during the algorithm is a product of elements of $I \cup \{g\}$. Hence $J \subseteq \langle I, g \rangle$ and this part follows.

\supseteq: We show that $\langle L, I \rangle$ does not change in the course of the algorithm. Since $I\cup\{g\} = I\cup L$ to begin with and $J = I \cup L$ at the end, this yields the desired result. We consider the changes made to I and L in the course of the algorithm. In Step (2a) we take an element h from L. There are several cases:

(Case 1): $I[d]$ is empty and $r_d = 0$. Then we add h or h^{-1} to I and the result follows.

(Case 2): $I[d]$ is empty and $r_d > 0$. Then we add the normalization h^z to I and $h \cdot (h^z)^{-q}$ to L for some q. Hence $h = h \cdot (h^z)^{-q} \cdot (h^z)^q$ can be obtained from L and I and the result follows.

(Case 3): $I[d] = k$. Then we add the normalization of $(h^a k^v)$ to I and suitable quotients of h and k to L. As in Case 2, the quotients yield that h and k can be recovered from L and $I[d]$. Hence the result follows in this case also. •

We note two obvious improvements of the algorithm.

(1) If there exists $l \in \{1, \ldots, n\}$ so that $l(I[d]) = 1$ for $l \leq d \leq n$, then we can improve the break in Step (2b) to: 'If $d \geq l$ then go back to (2)'. We can also replace the elements in I so that $I[d] = g_d$ for $d \geq l$.

(2) In Step (2d) we insert the normalization of w only if its leading exponent is not equal to b. Further, if the leading exponent of the normalization of w equals either a or b, then only one left quotient needs to be added to L.

4.3 Computing an igs

The following algorithm takes a list L of elements of G and determines an igs for the subgroup they generate. The algorithm is based on Lemma 4.

IgsByGenerators(L):

(1) Initialise I as a list of length n with empty entries.

(2) While L is not empty do:

(a) Take an element g from L and eliminate it in L.

(b) Run $\text{AddGenToPIgs}(I, g)$.

(c) Let N denote the list of changes to I in (2b).

(d) For g in N do:

(i) If $r(g)$ is finite, then add $g^{r(g)}$ to L.

(ii) For h in I with $h \neq g$ add $[g, h]$ to L.

(3) Return I.

4
The algorithm terminates, since the depths of the elements in \(L \) increases in each step. The algorithm determines an igs for \(\langle L \rangle \), since it returns a list that generates \(\langle L \rangle \) and satisfies the conditions of Lemma 1.

5 Computing the order and the index

Suppose that a subgroup \(U \) of \(G \) is given by a set of generators. Then \(U \) and \([G : U] \) can both be read off from an igs of \(U \).

4 Lemma: Let \(u_1, \ldots, u_m \) be an igs for \(U \), let \(D = \{ d(u_i) \mid 1 \leq i \leq m \} \) and let \(\overline{D} = \{1, \ldots, n\} \setminus D \).
(a) \(|U| = r(u_1) \cdots r(u_m) \).
(b) \([G : U] = l(u_1) \cdots l(u_m) \cdot \prod_{d \in \overline{D}} r_d \).

6 Testing equality of subgroups

Suppose that two subgroups \(U \) and \(V \) of \(G \) are given. We would like to have an effective test for \(U = V \). We say that an igs \(u_1, \ldots, u_m \) is canonical if the normal forms
\[
u_i = g_1^{e_{i1}} \cdots g_n^{e_{in}}
\]
satisfy that if \(d(u_k) = d \) then \(e_{id} \in \{0, \ldots, l(u_k) - 1\} \) for \(1 \leq i \leq m \). It is not difficult to determine a canonical igs from an arbitrary one by replacing \(u_i \) by \(u_i \cdot u_k^{-q} \) for all \(i \) and \(k \) where \(e_{id} = l(u_k)q + r \) with \(0 \leq r < l(u_k) \) is determined by division with remainder.

5 Lemma: Two subgroups \(U \) and \(V \) are equal if and only if their canonical igs coincide.

References

[1] B. Eick. Implementation of code. www.iaa.tu-bs.de/beick/soft/igs.gi (2021)

[2] B. Eick. Algorithms for polycyclic groups. Habilitationsschrift, Universität Kassel, 2001.

[3] R. Laue, J. Neubüser, and U. Schoenwaelder. Algorithms for finite soluble groups and the SOGOS system. In Computational Group Theory, pages 105 – 135, London, New York, 1984. (Durham, 1982), Academic Press.