Adaptive radiation of chemosymbiotic deep-sea mussels

Julien Lorion1, Steffen Kiel2, Baptiste Faure3, Masaru Kawato1, Simon Y. W. Ho4, Bruce Marshall5, Shinji Tsuchida1, Jun-Ichi Miyazaki6 and Yoshihiro Fujiwara1

1Marine Ecosystems Research Department, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka 237-0061, Japan
2Geoscience Center, Geobiology Group, University of Göttingen, Goldschmidtstrasse 3, Göttingen 37077, Germany
3Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
4School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
5Museum of New Zealand Te Papa Tongarewa, PO Box 467, 169 Tory St., Te Aro, Wellington 6011, New Zealand
6Faculty of Education and Human Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan

Adaptive radiations present fascinating opportunities for studying the evolutionary process. Most cases come from isolated lakes or islands, where unoccupied ecological space is filled through novel adaptations. Here, we describe an unusual example of an adaptive radiation: symbiotic mussels that colonized island-like chemosynthetic environments such as hydrothermal vents, cold seeps and sunken organic substrates on the vast deep-sea floor. Our time-calibrated molecular phylogeny suggests that the group originated and acquired sulfur-oxidizing symbionts in the Late Cretaceous, possibly while inhabiting organic substrates and long before its major radiation in the Middle Eocene to Early Oligocene. The first appearance of intracellular and methanotrophic symbionts was detected only after this major radiation. Thus, contrary to expectations, the major radiation may have not been triggered by the evolution of novel types of symbioses. We hypothesize that environmental factors, such as increased habitat availability and/or increased dispersal capabilities, sparked the radiation. Intracellular and methanotrophic symbionts were acquired in several independent lineages and marked the onset of a second wave of diversification at vents and seeps. Changes in habitat type resulted in adaptive trends in shell lengths (related to the availability of space and energy, and physiological trade-offs) and in the successive colonization of greater water depths.

1. Introduction

Adaptive radiation is broadly defined as the rapid diversification of species and of their adaptations to the environment in response to natural selection and ecological opportunities [1]. The radiations of Darwin’s finches and African Rift Lake cichlids are well known and have become popular beyond academic research, but these examples may just be the ‘tip of an evolutionary iceberg’, because adaptive radiations can take place on a broad range of time scales and taxonomic levels, and may even include the Cambrian explosion of life [2]. The fauna living at hydrothermal vents and cold seeps in the deep sea represents another remarkable, yet poorly understood case of radiation. These habitats are characterized by extreme physico-chemical features and a scarcity of primary photosynthetic production, and the animals living there thrive because of their symbiotic relationships with bacteria able to use sulfide and/or methane as energy sources [3]. Initially considered as archaic faunas that survived major extinction events [4], molecular age estimates and fossil records suggested that most of the modern vent and seep animals appeared during a short time interval between the Late Mesozoic and the Early Cenozoic [5,6].

Electronic supplementary material is available at http://dx.doi.org/10.1098/rspb.2013.1243 or via http://rspb.royalsocietypublishing.org.
Mussels of the bivalve family Mytilidae are particularly suitable as model organisms to study the roles of ecological opportunities, symbioses and other adaptations in the evolution of deep-sea chemosymbiotic faunas. Indeed, they dominate many vents and seeps, but are also common in other sulfide-rich habitats such as whale carcasses and sunken wood [7], which are considered to be evolutionary stepping stones to deep-sea vents [8]. In addition to this diversity of habitats, deep-sea mussels have a remarkable range of symbiotic types, including intracellular and extracellular symbionts, and the ability to host either or both sulfur-oxidizing and methanotrophic symbionts [7].

We investigated the evolutionary history of deep-sea symbiotic mussels by estimating phylogenetic relationships from a comprehensive dataset including all known lineages and 80% of the known species, collected from virtually all ocean basins. In an analysis of five gene fragments, including mitochondrial and nuclear DNA, calibrated with three reliable fossil species, we (i) characterized speciation rates through time; (ii) reconstructed the evolution of habitat use (environmental type and depth), body size, symbiont type (sulfur and/or methane oxidizer) and the degree of the physiological integration of the symbiont with the host (intracellular versus extracellular symbioses); and (iii) evaluated the impact of these biological and ecological factors on speciation rates, and their respective roles in the evolution of deep-sea symbiotic mussels.

2. Material and methods

(a) Sampling

Fourteen species of vent and seep mussels from the western Pacific were sampled using the manned submersible Shinkai 6500 and remotely operated Hyper Dolphin vehicle (see electronic supplementary material, table S1). From experimental bone deployments in Japanese waters, we collected the three undescribed species *Idas* sp SAL4, *Idas* evolutionary significant unit (ESU) D and *Idas* ESU R [9]. Upon recovery, pieces of the gills of *Bathymodiolus adaloides* and the three undescribed species were fixed with 2.5% glutaraldehyde in filtered seawater for 24 h and preserved in filtered seawater with 10 mM sodium azide at 4°C. Remaining tissues and other specimens were fixed in 99% ethanol for DNA analysis. We also analysed alcohol-fixed foot material, table S2) and less than 1 μg of DNA template were added to reaction mixtures. PCR products were generated by an initial denaturing step of 4 min at 94°C followed by 35 cycles at 94°C for 1 min, 55°C for COI and NADH4) for 1 min and 72°C, and by a final extension at 72°C for 7 min. They were purified using Wizard SV Gels and the PCR Clean-Up System (Promega, Madison, WI). PCR products of symbiont 16S were cloned into the pCR-TOPO vectors using a TOPO TA cloning kit (Invitrogen, USA). The DNA constructs were transferred into *Escherichia coli* TOP10 cells (Invitrogen). The sequencing reaction of bacterial 16S rRNA gene clones (20–50 clones per specimen and species) and amplified eukaryotic COI, NADH4, 16S, 28S and histone 3 genes was performed using a BigDye Terminators v. 3.1 Cycle Sequencing Kit (Applied Biosystems, USA). Sequencing was performed using an ABI PRISM v. 3730 Genetic Analyzer (Applied Biosystems). Sequences were proofread using CodonCode Aligner v. 3.7.1.1 (CodonCode Corporation, www.codoncode.com). Locations of symbionts in gill tissues of *B. adaloides*, *Idas* nsp SAL4 and *Idas* nsp ESU R were determined using transmission electron microscopy (see electronic supplementary material, figure S1), following protocols described elsewhere [11]. Symbionts were identified by comparing their 16S rRNA sequences with GenBank databases using BLAST searches.

(b) Molecular analyses

Template DNA from feet and gills were extracted to analyse host and symbiont genes, respectively, using the QIAamp DNA Micro Kit (Qagen, USA). A fragment of the small subunit 16S rRNA was amplified to characterize symbionts in 10 species that had not been studied previously (see electronic supplementary material, table S1). Fragments of mitochondrial COI, NADH4 and 16S, and nuclear 28S and histone 3, were amplified from host species for phylogenetic analysis. Polymerase chain reactions (PCRs) were performed using the Ex Taq PCR kit (TaKaRa, Japan). Forward and reverse primers (0.2 μM each; see electronic supplementary material, table S2) and less than 1 μg of DNA template were added to reaction mixtures. PCR products were generated by an

(c) Model selection and reconstruction of the host tree

DNA sequences from newly obtained hosts were complemented with data from GenBank and aligned using *PRORALIGN* v. 1.4 [12]. The best-fitting model of nucleotide substitution was selected for each gene and each partition within each gene using the corrected Akaike information criterion (AICc) in *JMODELTEST* v. 0.1.1 [13]. We inferred gene trees using the Bayesian method implemented in BEAST v. 1.7.2 [14] for each partitioning scheme. A Yule speciation model was used as a tree prior. We modelled rate variation among lineages using an uncorrelated lognormal relaxed clock, with the mean substitution rate fixed to 1 to get branch lengths in units of substitution per site [15]. Posterior distributions were estimated using Markovian Monte Carlo (MCMC) sampling. Samples were drawn every 1000 steps over a total of 10 million MCMC steps. Each analysis was run four times, with mixing and convergence assessed using *TRACER* v. 1.5. After discarding 10% of the samples as burn-in, samples from the four runs were thinned (sampling every 4000 steps) and pooled together. The best partitioning scheme was selected for each gene by comparing marginal likelihoods using approximate Bayes factors [16] in *TRACER*.

We then performed a combined analysis of all five genes, using the selected partitioning scheme and substitution models. Each gene was assigned an independent relaxed clock. The protocol of the combined analysis was the same as that used for single-gene analyses, except the number of MCMC steps was increased to 20 million. The maximum-clade-credibility tree was drawn from the pooled samples. Maximum-likelihood (ML) trees were inferred using *TREEFINDER* [17], with the same partitioning scheme and substitution models as those used in the Bayesian analyses. Bootstrapping analyses (1000 replicates) were used to evaluate support for the ML tree.

(d) Molecular dating

Three fossils were used as calibrations in the Bayesian relaxed-clock analysis and were implemented as prior distributions for ages of nodes in the tree [18].

Mussels from a Middle Eocene (45 Myr) seep deposit in Washington State (USA) were recently assigned with some hesitation to *Vulcanidas* (as *Vulcanidas? goederti* Kiel & Amano, 2013). This hesitation stemmed from the missing data on anatomy and muscle attachment scars, while in all available shell characters *Vulcanidas? goederti* was more similar to *Vulcanidas* than to any other genus of deep-sea mussels [19]. Therefore, we modelled the divergence time of the clade including *Vulcanidas insolitus*.
Cosel & Marshall, 2010 from other species (figure 1a, lineage L9) using an exponential prior with a hard minimum bound of 45 Myr and a mean of 1.2 Myr. This resulted in a soft maximum matching the beginning of the Middle Eocene (48.6 Myr).

Two fossil species from seep deposits on the eastern North Island of New Zealand were recently assigned to extant clades based on muscle attachment scars. The Middle Miocene (Lillburnian; 12.7–15.1 Myr) Gigantidas coseli Saether et al. 2010 was used to calibrate the divergence of Gigantidas (figure 1a, lineage L5) from other lineages. An exponential prior with a minimum bound of 15.1 Myr and a mean of 1.3 Myr was used for this node, resulting in a soft maximum matching the beginning of the Clifdenian stage (15.9 Myr). The Early Miocene (Waitakian; 21.7–25.2 Myr) Bathymodiolus heretaunga Saether et al. 2010 was assigned to the ’childressi’ clade (figure 1a, lineage L4 + L5) and the divergence of this clade was assigned an exponential prior with a minimum bound of 25.2 Myr and a mean of 0.7 Myr. This yielded a soft maximum matching the beginning of the Late Oligocene Duntroonian stage (27.3 Myr).

Each of the three fossil calibrations was used in a separate analysis, and then we combined them in a single analysis. For each analysis, four runs of 20 million MCMC steps, 10% burn-in...
3. Results and discussion

The species tree inferred from the concatenated dataset (figure 1a) revealed support for 10 clades, which were consistent with those observed in previous studies [9,33,34]. Our Bayesian relaxed-clock analysis, calibrated using fossils at three nodes, yielded an estimated mean age of all deep-sea symbiotic mussels of 85 Myr (95% HPD interval: 69–102). Although this result is consistent with their divergence from other Mytilidae in the Late Mesozoic or Early Cenozoic [5,33], there is a lack of mussels at the few methane seep deposits and organic falls of this age [35–39]. This discrepancy may be due to higher levels of homoplasy along deep branches and/or to the lack of age calibrations at deep nodes in the tree. Alternatively, earliest species might be absent from the fossil record [5].

Most of the 10 extant clades started diverging from each other about 45 Ma (figure 1a), and the main vent and seep clades (L2, L4 and L5) diversified within the last 30 Myr, consistent with previous analyses using biogeographic calibration points [40]. The robustness of these date estimates was supported by the consistency of results obtained using each of the fossil calibrations separately (see electronic supplementary material, figure S2). Differences in mean estimates among fossil calibrations were at most 0.38% for the COI substitution rate, 0.61 Myr for the divergence between the sister species *Ba. thermophilus* and *Ba. antarcticus*, 4.05 Myr for the divergence of the genus *Gigantidias* Cosel & Marshall, 2003 (lineage L5), and 5.67 Myr for the divergence of the ‘*childressi*’ clade (lineages L4+L5). In the analysis including the three fossil calibrations, the COI substitution rate estimated across the entire tree was 1.62 × 10⁻² substitutions per site per Myr (95% HPD interval: 1.22 × 10⁻²–2.09 × 10⁻²), a value higher than that estimated in vent-endemic annelid taxa, but close to those found in other invertebrates from non-chemosynthetic shallow water environments [41,42]. Our estimate for the divergence between *Ba. thermophilus* and *Ba. antarcticus* was 2.77 Myr (95% HPD interval: 1.7–4.0), a result similar to those obtained from population genetic studies [20,43].

The inference that the diversifications among and within clades occurred within the last 45 Myr is remarkable because the ecological niche of deep-sea mussels—being epifaunal and taking up sulfide from the water column—was unoccupied since their inferred origin in the Late Cretaceous [44–45]. Even assuming the lower (younger) bound of the 95% HPD interval as the time of origin of the deep-sea symbiotic mussels still implies that it took 25 Myr from the origin to the diversification event seen in our tree (figure 1a). This long basal branch led other authors to propose the hypothesis that the genus *Benthomodiolus* (L10), which is a sister group to the remaining nine clades, may be a relic of lineages that became extinct during the global anoxia/dysoxia event associated with the Paleocene/Eocene thermal maximum (PETM) around 57 Ma [33,46]. We found some support for that hypothesis, since the likelihood of our ML and Bayesian maximum-credibility trees under a birth–death speciation model significantly improved (p = 0.002 and p = 0.024, respectively) when including an extinction event (5% survival rate) at 57 Ma. However, our simulations also show that a scenario without extinction during this time produced very similar trees, inducing a lack of statistical power in the case of Bayesian trees (figure 2). Overall, our analyses also suggested that chemosymbiotic mussels were not very diverse during the PETM and that it induced, if anything, a simple slowdown of the early diversification rather than a dramatic extinction event.

The slow initial evolution of deep-sea mussels contrasts with the timing of branching events that occurred from 45 Ma. A likelihood analysis of speciation and extinction
burst of diversification, although the association with sulfur-oxidizing symbionts did not trigger the Middle Eocene–Early Oligocene radiation, symbionts played a role in the subsequent evolution of the group. Pagel’s tests showed congruence of molecular age estimates for the chemosymbiotic bivalve family Vesicomyidae and the rise of whales, but it has been challenged because Eocene and Oligocene whale falls lacked associated vesicomyid fossils [48]. However, these early whale falls were abundantly colonized by mussels, and thus the ‘whale stepping stone’ hypothesis might apply to mussels. Alternatively, the geological record shows a rapid increase in the abundance of seep carbonates in the Late Eocene [49], indicating a worldwide increase in methane seepage. Analogous to the rationale of the ‘whale stepping stone’ hypothesis, this increase in habitat availability and in potential dispersal stepping stones could have triggered the Late Eocene radiation. A third possible trigger is a drop in deep-water temperature beginning in the Middle to Late Eocene, associated with the initial glaciation of Antarctica [50]. Low ambient water temperatures could have decreased the metabolic rate of mussel larvae, thus increasing their longevity and enhancing their dispersal capability. This would have been an advantage for mussels living in patchy deep-sea habitats such as vents, seeps and organic substrates.

Figure 2. Comparison between extinction-free birth–death models (H0) and models including a mass extinction at 57 Ma (H1). Analyses were performed on chronograms inferred using (a) non-parametric rate smoothing and (b) Bayesian phylogenetic analysis. Lineages-through-time plots (left) obtained from these trees are represented by solid black lines, with additional dashed black lines for the 95% HPD interval estimated from the entire distribution of sampled Bayesian trees. Red- and blue-shaded areas correspond to 95% CIs obtained by simulation under H0 and H1, respectively, and purple areas show the overlap in confidence intervals between models. Distributions of likelihood differences between both models fitted to datasets simulated under H0 (red) and H1 (blue) are given on the right. Dashed red lines represent H0’s 5% rejection levels. Likelihood differences calculated from real trees are given by solid vertical black lines, with an additional 95% HPD interval for Bayesian trees (vertical black dashed lines). Ma, million years ago; $\Delta \log(L)$, difference between natural logarithms of likelihood.

rates allowed us to identify a moderate but distinct increase in speciation rates, with about 0.17 speciation events per million years from 41 to 32 Ma (Middle Eocene to earliest Oligocene; figure 3). From 32 Ma to the present day, the estimated speciation rate was three times lower. The corresponding Yule model with three distinct speciation rates provided a significantly better fit ($p = 0.007$) to the tree than the best constant-rate model (i.e. pure birth), even in simulations assuming 25% ($p = 0.011$) and 35% ($p = 0.009$) sampling bias (table 1). Moreover, parts of the gene trees and species tree that fall within that interval are consistently characterized by poorly resolved nodes and short internode distances (figure 1a). It is worth noting that a complementary analysis of speciation rates from 41 Myr to the present suggests that a slow decrease of speciation rates, following a Weibull distribution ($\beta = 1.42$), might also be an alternative to the simple Yule model ($\chi^2 = 8.33$, $p = 0.004$). This indicates that mussels have continued to diversify after their initial radiation, as corroborated by the existence of several young species and species complexes [20,46].

To test if and how symbiont type and location have influenced the diversification of mussels, we estimated the ancestral states of these characters. Our results indicate that sulfur-oxidizing symbionts are an early acquisition going back to the stem of the group, almost 30 Myr before the main burst of diversification (figure 1b). In contrast, the ability to host intracellular symbionts was detected in our tree from the Late Oligocene onward, and methanotrophic symbionts only from the Middle Miocene onward (figures 1c,d and 3). This suggests that the evolution of the various symbiotic relationships did not trigger the Middle Eocene–Early Oligocene burst of diversification, although the association with sulfur-oxidizing symbionts was probably a prerequisite. A potential environmental trigger for this burst might have been the appearance of whales, because their carcasses, which produce large amounts of sulfide, are thought to be dispersal stepping stones [47]. This hypothesis was originally based on the congruence of molecular age estimates for the chemosymbiotic bivalve family Vesicomyidae and the rise of whales, but it has been challenged because Eocene and Oligocene whale falls lacked associated vesicomyid fossils [48]. However, these early whale falls were abundantly colonized by mussels, and thus the ‘whale stepping stone’ hypothesis might apply to mussels. Alternatively, the geological record shows a rapid increase in the abundance of seep carbonates in the Late Eocene [49], indicating a worldwide increase in methane seepage. Analogous to the rationale of the ‘whale stepping stone’ hypothesis, this increase in habitat availability and in potential dispersal stepping stones could have triggered the Late Eocene radiation. A third possible trigger is a drop in deep-water temperature beginning in the Middle to Late Eocene, associated with the initial glaciation of Antarctica [50]. Low ambient water temperatures could have decreased the metabolic rate of mussel larvae, thus increasing their longevity and enhancing their dispersal capability. This would have been an advantage for mussels living in patchy deep-sea habitats such as vents, seeps and organic substrates.

Even if the acquisition of intracellular and methanotrophic symbionts was not involved in the Middle Eocene to Early Oligocene radiation, symbionts played a role in the subsequent evolution of the group. Pagel’s tests showed that both the presence of methanotrophic symbionts and the intracellular location of symbionts are correlated with the occurrence at vents and seeps (table 2). This supports the
Figure 3. (a) Global and (b–d) character-dependent lineages-through-time plots (log-scaled) estimated from the ML tree smoothed using non-parametric rate smoothing (dashed lines) and from the Bayesian chronogram (solid lines). Shaded areas represent 95% HPD intervals estimated from the entire distribution of sampled Bayesian trees. Vent and seep lineages from figure 1a were pooled together in the habitat-dependent plot. Colour-coded groups in plots based on the location and the presence/absence of methanotrophic symbionts match the distribution of character states among taxa in figure 1d and 1c, respectively. Vertical dashed lines represent shifts of the net diversification rate estimated in the likelihood analysis of speciation and extinction rates.

Table 1. Results of the likelihood analysis of speciation and extinction rates (LASER). Characteristics of each model are abbreviated as follows: RC, rate constant; RV, rate variable; L, likelihood; \(r_1 \), first diversification rate; \(r_2 \), second diversification rate; \(r_3 \), third diversification rate; \(a \), extinction fraction of the birth–death model (ratio extinction/speciation); \(x_p \), \(x \)-parameter from the exponential variant of the density-dependent speciation rate (DDX) model; \(k \), \(k \)-parameter from the logistic variant of the density-dependent speciation rate (DDL) model; \(s_1 \), first break in diversification rate (million years); \(s_2 \), second break in diversification rate (million years); dAIC, the difference in AIC scores between the model and the overall best-fit model.

model	parameters	type	L	\(r_1 \)	\(r_2 \)	\(a \)	\(k \)	\(x_p \)	\(s_1 \)	\(s_2 \)	\(r_3 \)	AIC	dAIC
pure birth	\(r_1 \)	RC	-54.49	0.05	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	111.0	12.4
birth–death	\(r_1, a \)	RC	-54.44	0.04	n.a.	0.02	n.a.	n.a.	n.a.	n.a.	n.a.	112.9	14.3
DDL	\(r_1, k \)	RV	-54.45	0.05	n.a.	n.a.	429	n.a.	n.a.	n.a.	n.a.	112.9	14.3
DDX	\(r_1, x \)	RV	-54.03	0.03	n.a.	n.a.	n.a.	-0.13	n.a.	n.a.	n.a.	112.1	13.5
Yule 2 rates	\(r_1, r_2, t_s \)	RV	-50.30	0.01	0.05	n.a.	n.a.	n.a.	39.6	n.a.	n.a.	1066	8.0
Yule 3 rates	\(r_1, r_2, r_3, s_1, s_2 \)	RV	-44.29	0.01	0.17	n.a.	n.a.	n.a.	41.2	33.8	0.05	98.6	0.0
adaptive significance of these two character states and the hypothesis that symbionts increase the metabolic capabilities, and therefore the number of ecological niches colonized by mussels [51, p. 475]. We further explored this hypothesis by comparing simple Yule speciation models with models in which the diversification rates depend on character states. Even when assuming high levels of sampling bias, the results suggest that diversification rates are higher in lineages hosting intracellular symbionts and methanotrophic symbionts (table 3). The acquisition of these two characters is correlated with a second wave of mussel diversification at vents and seeps (figure 3), and is probably the key to the success of vent species living on sparse organic debris would benefit from the increased size of species living there [54]. By contrast, species living on sparse organic debris reach sexual maturity quickly and at much smaller size [56–58] than their vent and seep relatives [59].

In conclusion, the evolutionary history of chemosymbiotic deep-sea mussels shows all the characteristics of an adaptive radiation: a burst of diversification into a suite of new habitats coincides with habitat transitions from organic substrates to deeper water than organic falls (Mann–Whitney: \(p \approx 0.001 \)). Thus, the colonization of greater depth might just be a consequence of the habitat transitions. Alternatively, there may be a systematic sampling bias because wood and bones are much more difficult to locate on the vast deep-sea floor than vents and seeps, which can be detected using temperature anomalies or seismically reflective sediment layers [60,61].

In Table 2, tests of correlations between characters. Model used, number of species for which data were available, criteria estimated, degrees of freedom (d.f.) and \(p \)-values are given for each pair of characters.

model	variables	species	criterion	d.f.	\(p \)-value
Pagel’s test	methanotroph \~ symbiont location	24	\(\Delta \log(L) = 4.916 \)	0.001	
	methanotroph \~ habitat	36	\(\Delta \log(L) = 3.900 \)	0.024	
	symbiont location \~ habitat	24	\(\Delta \log(L) = 4.331 \)	0.006	
pGLS	\log(size) \~ depth	48	\(F = 6.132 \)	1	0.057
	\log(size) \~ symbiont location	24	\(F = 9.571 \)	1	0.005
	\log(size) \~ methanotroph	36	\(F = 3.341 \)	1	0.057
	\log(depth) \~ symbiont location	24	\(F = 6.994 \)	1	0.015
	\log(depth) \~ methanotroph	36	\(F = 6.153 \)	1	0.018

Miocene onwards and towards smaller shells in lineages living on organic falls (figure 1c). This pattern is remarkably consistent with the fossil record, which shows that seep-inhabiting mussels did not exceed 50 mm in length until the Early Miocene [53–55], and then rapidly increased in size from 100 mm in the Middle Miocene to more than 300 mm today. Compared with the typically small and ephemeral organic substrates on the seafloor, vents and seeps provide large amounts of energy and habitable space that might explain the increased size of species living there [54]. By contrast, species living on sparse organic debris would benefit from the increased size of species living there, while seep species might have limited energy and habitable space that might explain the increased size of species living there [54].

Earlier studies indicated a trend of successive adaptation to greater water depth among mussels [33]. This trend is also seen in our data for post-Eocene taxa (figure 1f); however, it coincides with habitat transitions from organic substrates to vents and seeps, and the latter habitats typically occur in deeper water than organic falls (Mann–Whitney: \(p = 0.001 \)). Thus, the colonization of greater depth might just be a consequence of the habitat transitions. Alternatively, there may be a systematic sampling bias because wood and bones are much more difficult to locate on the vast deep-sea floor than vents and seeps, which can be detected using temperature anomalies or seismically reflective sediment layers [60,61].
Table 3. Impact of methanotrophic symbionts and symbiont location on diversification rates. Character-dependent Bisse (H1: diversification rate λ_0 under state 0 and λ_1 under state 1) and simple Yule (H0: global diversification rate λ_{Yule}) speciation models were fitted to sampled data and patterns inferred during the Bayesian analysis. Levels of sampling bias considered are expressed as ratios and reflect estimated proportions of extant species with state 0 and 1 included in the phylogeny. Likelihood ratios (LRs) calculated between Bisse and Yule models and associated p-values (p) are given.

dataset	methanotrophic symbionts	symbiont location								
	$\lambda_0^{\text{absent}}$	$\lambda_0^{\text{present}}$	λ_{Yule}	LR	p-value	$\lambda_0^{\text{extracellular}}$	$\lambda_0^{\text{intracellular}}$	λ_{Yule}	LR	p-value
sampled data	0.010	0.088	0.037	12.938	0	0.004	0.055	0.028	10.276	0.001
sampled data, bias $\sim 0.75:1$	0.012	0.099	0.041	12.517	0	0.003	0.064	0.031	9.891	0.002
sampled data, bias $\sim 0.65:1$	0.013	0.105	0.043	12.346	0	0.003	0.068	0.033	9.749	0.002
sampled data, bias $\sim 1:0.75$	0.039	0.010	0.091	14.312	0	0.007	0.057	0.031	11.562	0.001
sampled data, bias $\sim 1:0.65$	0.039	0.010	0.093	14.880	0	0.007	0.060	0.032	12.303	0
inferred pattern	0.022	0.099	0.043	14.711	0	0.021	0.084	0.043	8.146	0.004
inferred pattern, bias $\sim 0.75:1$	0.027	0.107	0.049	11.871	0.001	0.038	0.084	0.047	6.948	0.008
inferred pattern, bias $\sim 0.65:1$	0.030	0.112	0.052	10.562	0.001	0.041	0.084	0.050	5.928	0.015
inferred pattern, bias $\sim 1:0.75$	0.022	0.105	0.045	17.79	0	0.021	0.092	0.046	12.515	0
inferred pattern, bias $\sim 1:0.65$	0.022	0.107	0.045	19.315	0	0.033	0.110	0.047	16.696	0
evidence that an early burst might be rare in adaptive radiations [62]. The link of the burst of diversification in the Middle Eocene to Early Oligocene to ecological opportunities such as increased habitat availability or dispersal capability raises the question of whether other chemosymbiotic deep-sea taxa were similarly affected. Interestingly, a compilation and reassessment of molecular age estimates for 14 vent/seep taxa showed that the inferred origins of six of these (Alvinellidae, Lepetodrilidae, Alviniconcha/Ifremeria, Provenanis, Bresiliidae and Bythograeidae) fall within the time interval of the mussels’ burst of diversification [41]. For the mussels, we consider the acquisition of sulfur-oxidizing symbionts as a prerequisite for their adaptation to, and successful radiation within, chemosynthetic environments. By contrast, the subsequent acquisition of methanotrophic symbionts allowed the colonization of new niches within the vent and seep environment, and resulted in a second wave of diversification.

Acknowledgements. The authors are thankful to P. Lemey and S. Hïenæa for their patient help with Bayesian diffusion models and the R package TESS, respectively. We are also indebted to S. Samadì, C. R. Fisher, D. Jollivet, E. C. Southward, P. Bouchet, S. Duperron, J. Thubaut, T. Maruyama, T. Haga and R. C. Vrijenhoek for providing additional samples and valuable discussions. We also gratefully acknowledge two anonymous reviewers for constructive and helpful comments on the first version of the manuscript. Computations were performed from the Cipres Science Gateway.

Data accessibility. Mussel sequences were deposited in Genbank under accession numbers H9345021–H9345099. Symbiont sequences were deposited under accession numbers KF657320–KF657326. The Beast xml file including the full dataset is available as an electronic supplementary file.

Funding statement. Financial support was provided by the Japanese Ministry of Education, Culture, Sports, Sciences and Technologies and the Japanese Society for the Promotion of Science (grant no. P10721) to J.L. and by the Deutsche Forschungsgemeinschaft through grant no. Ki802/6-1 to S.K.

References

1. Simpson GG. 1953 The major features of evolution. New York, NY: Columbia University Press.
2. Gloor RE. 2010 Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251–270. (doi:10.1146/annurev.ento.39.110707.173447)
3. Dubillier N, Bergin C, Lott C. 2008 Symbiotic biota and their bacterial symbioses. In Trends Ecol. Evol. 23, 313 – 324. (doi:10.1016/j.tsev.2008.08.009)
4. Newman W. 1985 The abyssal hydrothermal vent invertebrate fauna. A glimpse of antiquity? Bull. Biol. Soc. Washington 6, 231 – 242.
5. Little CTS, Vrijenhoek RC. 2003 Are hydrothermal vent animals living fossils? Trends Ecol. Evol. 18, 582 – 588. (doi:10.1016/j.tree.2003.08.009)
6. Kiel S, Little CTS. 2006 Cold-seep mollusks are older than the general marine mollusk fauna. Science 313, 1429 – 1431. (doi:10.1126/science.1126286)
7. Duperron S. 2010 The diversity of deep-sea mussels and their bacterial symbioses. In The vent and seep biota (ed. S Kiel), pp. 137 – 167. New York, NY: Springer.
8. Dietl DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR. 2000 Marine ecology: do mussels take wooden steps to deep-sea vents? Nature 403, 725 – 726. (doi:10.1038/35001667)
9. Loron J, Beuge B, Cruaud C, Samadi S. 2010 New insights into diversity and evolution of deep-sea Metylidae (Mollusca: Bivalvia). Mol. Phylogenet. Evol. 57, 71 – 83. (doi:10.1016/j.ympev.2010.05.027)
10. Bouchet P, Héroux V, Lozouet P, Maestrati P. 2008 A quarter-century of deep-sea malacological exploration in the South and West Pacific: where do we stand? How far to go? In Mémoires du Muséum national d’histoire naturelle (ed. Editions du Muséum.), pp. 9 – 40. Paris, France: Editions du Muséum.
11. Fujiiwa Y, Kawato M, Noda C, Kinohita G, Yamanaka I, Fujita Y, Uematsu K, Miyazaki J-I. 2010 Extracellular and mixotrophic symbiosis in the whale-fall mussel Adipocala pacifica: a trend in evolution from extra- to intracellular symbiosis. PLoS ONE 5, e11808. (doi:10.1371/journal.pone.0011808)
12. Rosshan U, Livesay DR. 2006 Probabilistic multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22, 2715 – 2721. (doi:10.1093/bioinformatics/bti0472)
13. Posada D. 2008 jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253 – 1263. (doi:10.1093/molbev/msn083)
14. Drummond AJ, Rambaut A. 2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. (doi:10.1186/1471-2148-7-214)
15. Drummond AJ, Ho SY-W, Phillips MJ, Rambaut A. 2006 Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, 699 – 710. (doi:10.1371/journal.pbio.0040088)
16. Suchard MA, Weiss RE, Sinheimer JS. 2001 Bayesian selection of continuous-time Markov chain evolutionary models. Mol. Biol. Evol. 18, 1001 – 1013. (doi:10.1093/oxfordjournals.molbev.a003872)
17. Jobb G, van Haeseler A, Strimmer K. 2004 TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 4, 18. (doi:10.1186/1471-2148-4-18)
18. Ho SY-W, Phillips MJ. 2009 Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367 – 380. (doi:10.1093/sysbio/syp035)
19. Kiel S, Amano K. 2013 The earliest bathymodiolin mussels: an evaluation of Eocene and Oligocene methanotrophic symbionts. Proc. Biol. Soc. Washington 255, 169 – 184. (doi:10.1093/oxfordjournals.molbev.a025731)
20. Sanderson MJ. 2003 R8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301 – 302. (doi:10.1093/bioinformatics/bt3.2.301)
21. Lemey P, Rambaut A, Drummond AJ, Suchard MA. 2009 Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520. (doi:10.1371/journal.pcbi.1000520)
22. Lemey P, Rambaut A, Welch JJ, Suchard MA. 2010 Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877 – 1885. (doi:10.1093/molbev/msq067)
23. Rabosky DL. 2006 LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol. Bioinformatics 2, 247 – 250.
24. Høhna S. 2013 Fast simulation of reconstructed phylogenies under global, time-dependent birth-death processes. Bioinformatics 29, 1367 – 1374. (doi:10.1093/bioinformatics/btt153)
25. Maddison WP, Midford PE, Otto SP. 2007 Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701 – 710. (doi:10.1080/1063515071070033)
26. FitzJohn RG. 2012 Diverstat: comparative phylogenetic analyses of diversification in R. Meth. Ecol. Evol. 3, 1084 – 1092. (doi:10.1111/j.2041-210X.2012.00234.x)
27. Pagel M. 1994 Detecting correlated evolution on trees. Syst. Biol. 43, 572 – 579. (doi:10.1093/sysbio/43.3.572)
28. Garland T, Dickerman AW, Janis CM, Jones JA. 1993 Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265 – 292. (doi:10.2307/2992464)
31. Harman LJ, Weir JT, Brock CD, Gorl RE, Challenger W. 2008 GEGER: investigating evolutionary radiations. Bioinformatics 24, 129 – 131. (doi:10.1093/bioinformatics/btm658)
32. Grafen A. 1989 The phylegetic regression. Phil. Trans. R. Soc. Lond. B 326, 119 – 157. (doi:10.1098/rstb.1989.0106)
33. Jones WJ, Won YJ, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC. 2006 Evolution of habitat use by deep-sea mussels. Mar. Biol. 148, 841 – 851. (doi:10.1007/s00227-005-0115-1)
34. Kyuno A, Shintaku M, Fujita Y, Matsumoto H, Miyazaki J-I, Martins LD, Fujita Y, Matsumoto H, Collins M, Alfaro AR. In press. Cretaceous methane-seep mussels of the genus Bathymodiolus (Mytilidae, Bathymodioideae). Acta Palaeontol. Pol. 7, 329 – 342.
35. Kiel S, Amano K, Hikida Y, Fujiwara Y, Jenkins RG. 2008 Chemosynthesis-based associations on Cretaceous Yezo forearc basin in Hokkaido, northern Japan. Palaeontol. Res. 1155/2009/625672. (doi:10.1002/prpsj.2008.0106)
36. Kiel S, Fajer R, Hall L. 2001 Trends, rhythms, and aberrations in global climate 65 Ma to present. Annu. Rev. Ecol. Evol. Syst. 32, 292 – 313. (doi:10.1146/annurev.ecolsys.32.110900.110503)
37. Kasamatsu T, Tanabe K. 2008 Chemosynthesis-based associations from Late Cretaceous deep-water sediments of Hokkaido, Japan. — with remarks on the evolution of the genus Bathymodiolus (s. L.), Nautilus 125, 29 – 35.
38. Kiel S. 2010 The fossil record of vent and seep mussels. In The vent and seep biota (ed. S. Kiel), pp. 255 – 278. New York, NY: Springer.
39. Kiel S, Kaim A, Little CTS, Iba Y, Tanabe K, Campbell KA. 2013 Worldwide distribution of modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrothermal seeps. Acta Palaeontol. Pol. 58, 357 – 382.
40. Kiel S, Kaim A, Little CTS, Iba Y, Tanabe K, Campbell KA. 2013 Worldwide distribution of modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrothermal seeps. Acta Palaeontol. Pol. 58, 357 – 382.
41. Kiel S, Kaim A, Little CTS, Iba Y, Tanabe K, Campbell KA. 2013 Worldwide distribution of modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrothermal seeps. Acta Palaeontol. Pol. 58, 357 – 382.
42. Lessios HA. 2008 The Great American Schism: divergence of marine organisms after the rise of the Central American isthmus. Annu. Rev. Ecol. Evol. Syst. 39, 63 – 91. (doi:10.1146/annurev.ecolsys.38.091206.095815)
43. Faure B, Jollivet D, Tanguy A, Bonhomme F, Bierne N. 2009 Speciation in the deep sea: multi-locus analysis of divergence and gene flow between two hybridizing species of hydrothermal vent mussels. PLoS ONE 4, e4685. (doi:10.1371/journal.pone.0004685)
44. Kiel S. 2010 The fossil record of vent and seep mussels. In The vent and seep biota (ed. S. Kiel), pp. 255 – 278. New York, NY: Springer.
45. Jenkins RG, Kaim A, Little CTS, Iba Y, Tanabe K, Campbell KA. 2013 Worldwide distribution of modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrothermal seeps. Acta Palaeontol. Pol. 58, 357 – 382.
46. Olu-Le Roy K, von Cosel R, Hourdez S, Carney SL, Jollivet D. 2007 Amphi-Atlantic cold-seep Bathymodiolus species complexes across the equatorial belt. Deep-Sea Res. I 54, 1890 – 1911. (doi:10.1016/j.dsr.2007.07.004)
47. Baco AR, Smith CR, Peek AS, Roderick GK, Vinhhoek RC. 1999 The phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences. Mar. Ecol. Progr. Ser. 182, 137 – 147. (doi:10.3354/meps182137)
48. Kiel S, Goerdert JL. 2006 Deep-sea food bonanzas: Early Eocene whale-fall communities resemble wood-fall rather than seep communities. Proc. R. Soc. B 273, 2625 – 2631. (doi:10.1098/rspb.2006.3620)
49. Kiel S. 2009 Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurassic. Terra Nova 21, 279 – 284. (doi:10.1111/j.1365-3121.2009.00882.x)
50. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001 Trends, rhythms, and alterations in global climate 65 Ma to present. Science 292, 686 – 693. (doi:10.1126/science.1059412)
51. Cavanaugh CM, McKinnis JP, Newton ILG, Stewart FJ. 2006 Marine chemosynthetic symbioses. In The Procyarcia: a handbook on the biology of bacteria: symbiotic associations, biotechnology, applied microbiology (eds M Dwarkin, S Falkow, E Rosenberg, K Schleifer, E Stackebrandt), 3rd edn, pp. 475 – 507. New York, NY: Springer.
52. Von Cosel R. 2002 A new species of bathymodioline mussel (Mollusca, Bivalvia, Mytilidae) from Mauritania (West Africa), with comments on the genus Bathymodiolus Kenk & Wilson 1985. Zoosystema 24, 259 – 271.
53. Kiel S, Campbell KA, Gaillard C. 2010 New and little known mussels from ancient chemosynthetic environments. Zootaxa 2390, 26 – 48.
54. Tyler PA, Marsh L, Baco-Taylor A, Smith CR. 2009 Protandric hermaphroditism in the whale-fall bivalve mussel Idas washingtonia. Deep-Sea Res. Part II 56, 1689 – 1699. (doi:10.1016/j.dsr2.2009.05.014)
55. Ockelmann KW, Dinesen GE. 2011 Life on wood — the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia). Mar. Biol. Res. 7, 71 – 84. (doi:10.1080/174510010301374504)
56. Gaudron SM, Demoyenocurt D, Duperson S. 2012 Reproductive traits of the cold-seep symbiotic mussel Idas modioliformis: gametogenesis and larval biology. Biol. Bull. 222, 6 – 16.
57. Berg CJ. 1985 Reproductive strategies of mussels from abyssal hydrothermal vent communities. Bull. Biol. Soc. Wash. 6, 185 – 187.
58. Hornbach MJ, Holbrook WS, Gorman AR, Hackwith KL, Lizaradle D, Pecher I. 2003 Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics 68, 92 – 100. (doi:10.1190/1.1534196)
59. German CR, Yoerger DR, Jakuba M, Shank TM, Langmuir CH, Nakamura K-I. 2008 Hydrothermal exploration with the Autonomous Benthic Explorer. Deep-Sea Res. Part I 55, 203 – 219. (doi:10.1016/j.dsr.2007.11.004)
60. Harmen LJ et al. 2010 Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385 – 2396. (doi:10.1111/j.1558-5646.2010.01025.x)
Addendum

Cite this article: Lorion J, Kiel S, Faure B, Kawato M, Ho SYW, Marshall B, Tsuchida S, Miyazaki J-I, Fujiwara Y. 2014 Adaptive radiation of chemosymbiotic deep-sea mussels. Proc. R. Soc. B 281: 20132972.

http://dx.doi.org/10.1098/rspb.2013.2972

In our paper, we used transmission electron microscopy images from a specimen labelled OGS 45 by Duperron et al. [1] as evidence for the presence of extracellular, sulfur-oxidizing symbionts in the species *Adipicola iwaotakii*. We were made aware by P. Bouchet and S. Samadi (Museum National d’Histoire Naturelle, Paris), who we warmly thank here for their contribution that the identity of the specimen was established only after the publication by Duperron et al. [1]. While our own manuscript was in review, new results regarding the symbiosis in *A. iwaotakii* were published by Thubaut et al. [2]. Their results confirm the findings in [1] and constitute a more appropriate reference for our purpose because they are based on clearly identified and vouchered specimens, including microbial 16S rRNA sequences, and important data regarding the biology of *A. iwaotakii*. We thus updated our electronic supplementary material (data S1) with data published by Thubaut et al. [2], including the reference, and we have also linked names of other species for which we used literature data with specimen labels from original publications.

We take the opportunity of this minor amendment to further thank the contributors to our sampling. Material from Japan was collected during 11 cruises on board of R/V Natsushima, R/V Katyo and R/V Kairei with Y. Fujiwara, K. Kubokawa, H. Kimura, T. Yamanaka, F. Pradillon, K. Okoshi and B. Thornton as PIs. Material from the MNHN was collected on board of M/VDA-BFAR (PANGLAO 2005, Co-PI P. Bouchet and L. Labe and Aurora 2007, Co-PI M. Manuel, and P. Bouchet) and on board of R/V Alis (SantoBOA and BOA1, Co-PI B. Richer de Forges and S. Samadi; SANTO2006, Co-PI P. Bouchet, O. Pascal and H. Le Guyader; BORDAU 1, Salomon2 and EBISCO, Co-PI B. Richer de Forges and P. Bouchet). The sampling would not have been possible without the following funding agencies: Japanese Ministry of Education, Culture, Sports, Sciences and Technologies, Total Foundation, Philippines Bureau of Fisheries and Aquatic Resources, National Museum of the Philippines and Lounsbery Foundation.

None of the above alters the content of the original manuscript.

References

1. Duperron S, Lorion J, Samadi S, Gros O, Gaill F. 2009 Symbioses between deep-sea mussels (Mytilidae: Bathymodiolinae) and chemosynthetic bacteria: diversity, function and evolution. Comptes Rendus Biologies 332, 298 – 310.

2. Thubaut J, Corbani L, Gros O, Duperron S, Couloux A, Samadi S. 2013 Integrative biology of *Idas iwaotakii* (Habe, 1958), a ‘model species’ associated with sunken organic substrates. PLoS ONE 8(7): e69680. (doi:10.1371/journal.pone.0069680)