Zero cycles on a twisted Cayley plane

V. Petrov, N. Semenov, K. Zainoulline

Abstract

Let k be a field of characteristic not 2 and 3. Let G be an exceptional simple algebraic group over k of type F_4, E_6 or E_7 with trivial Tits algebras. Let X be a projective G-homogeneous variety. If G is of type E_7 we assume in addition that the respective parabolic subgroup is of type P_7. The main result of the paper says that the degree map on the group of zero cycles of X is injective.

1 Introduction

Let k be a field and G a simple algebraic group over k. Consider a projective G-homogeneous variety X over k. Any such variety over the separable closure k_s of k becomes isomorphic to the quotient G_s/P, where P is a parabolic subgroup of the split group $G_s = G 	imes_k k_s$. It is known that the conjugacy classes of parabolic subgroups of G_s are in one-to-one correspondence with the subsets of the vertices Π of the Dynkin diagram of G_s: we say a parabolic subgroup is of type $\theta \subseteq \Pi$ and denote it by P_θ if it is conjugate to a standard parabolic subgroup generated by the Borel subgroup and all unipotent subgroups corresponding to roots in the span of Π with no θ terms (see [TW02, 42.3.1]).

In the present paper we assume k has characteristic not 2 and 3. G is an exceptional simple algebraic group over k of type F_4, E_6 or E_7 with trivial Tits algebras and X is a projective G-homogeneous variety over k. The goal of the paper is to compute the group of zero-cycles $\text{CH}_0(X)$ which is an important geometric invariant of a variety. Namely, we prove

Theorem. Let k be a field of characteristic not 2 and 3. Let G be an exceptional simple algebraic group over k of type F_4, E_6 or E_7 with trivial Tits algebras and X a projective G-homogeneous variety over k. If G is of type
E_7 we assume in addition that X corresponds to the parabolic subgroup of type P_7. Then the degree map \(\text{CH}_0(X) \to \mathbb{Z} \) is injective.

The history of the question starts with the work of I. Panin [Pa84], where he proved the injectivity of the degree map for Severi-Brauer varieties. For quadrics this was proved by R. Swan in [Sw89]. The case of involution varieties was considered by A. Merkurjev in [Me95]. For varieties of type F_4 it was announced by M. Rost.

Our work was mostly motivated by the paper of D. Krashen [Kr05], where he reformulated the question above in terms of \(R \)-triviality of certain symmetric powers and proved the injectivity for a wide class of generalized Severi-Brauer varieties and some involutive varieties, hence, generalizing the previously known results of Panin and Merkurjev. Another motivating point was the result of V. Popov [Po05], giving a full classification of generically \(n \)-transitive actions of a split linear algebraic group \(G \) on a projective homogeneous variety \(G/P \). For instance, the case of a Cayley plane \(X = G/P_1 \), where \(G \) is split of type E_6 (see [IM05]), provides an example of such an action for \(n = 3 \). As a consequence, one can identify the open orbit \(X^0 \) of this action with a homogeneous variety \(G/(T \cdot \text{Spin}_8) \), where \(T \) is the torus which is complementary to \(\text{Spin}_8 \). Then the results of Krashen reduce the question of injectivity to the question of \(R \)-triviality of the twisted form of \(X^0/S_3 \).

Apart from the main result concerning exceptional varieties we give shortened proofs for injectivity of the degree map for quadrics and Severi-Brauer varieties as well.

As mentioned to us by V. Chernousov and M. Rost, it is possible to prove the same results using Rost invariant and the Chain Lemma. Our proof doesn’t use these tools but only geometry and several classical results concerning exceptional groups.

The paper is organized as follows. In the first section we provide several facts about zero-cycles and symmetric powers. Then we prove the theorem for twisted forms of a Cayley plane (here prime 3 plays the crucial role). In the next section we prove injectivity for the twisted form of a homogeneous variety of type E_7 (this deals with prime 2). In the last section, we combine these two results together with some facts about rational correspondences and finish the proof of the main theorem.
2 Zero cycles and symmetric powers

In this section we collect some facts from [K05] on the interrelation between zero cycles on a projective variety X and classes of R-equivalence on symmetric powers of X.

2.1. We systematically use Galois descent language, i.e., identify a (quasi-projective) variety X over k with the variety $X_s = X \times_k k_s$ over the separable closure k_s equipped with an action (by semiautomorphisms of X_s) of the absolute Galois group $\Gamma = \text{Gal}(k_s/k)$. This means that for any $\sigma \in \Gamma$ we are given an automorphism φ_σ of X_s over k such that the diagram

$$
\begin{array}{ccc}
X_s & \xrightarrow{\varphi_\sigma} & X_s \\
\downarrow & & \downarrow \\
\text{Spec } k_s & \xrightarrow{\sigma^*} & \text{Spec } k_s
\end{array}
$$

is commutative, and $\varphi_{\sigma\tau} = \varphi_\sigma \varphi_\tau$.

The set of k-rational points of X is precisely the set of k_s-rational points of X_s stable under the action of Γ.

2.2. Let X be a variety over k. Two rational points $p, q \in X(k)$ are called elementary linked if there exists a rational morphism $\varphi: \mathbb{P}^1_k \to X$ such that $p, q \in \text{Im}(\varphi(k))$. The R-equivalence is the equivalence relation generated by this relation. A variety X is called R-trivial if there exists exactly one class of R-equivalence on X, and algebraically R-trivial if $X_K = X \times_k K$ is R-trivial for any finite field extension K/k.

The n-th symmetric power of X is by the definition the variety $S^nX = X^n/S_n$, where S_n is the symmetric group acting on X^n via permutations.

Let p be a prime number. A field k is called prime-to-p closed if there is no proper, finite field extension K/k of degree prime to p. For any field k we denote by k_p its prime-to-p closure that is the algebraic extension of k which is prime-to-p closed.

Let X be a projective variety over k. By $\widetilde{\text{CH}}_0(X)$ we denote the kernel of the degree map:

$$
\widetilde{\text{CH}}_0(X) = \text{Ker}(\deg: \text{CH}_0(X) \to \mathbb{Z}).
$$

The following results will play a crucial role in the sequel:
2.3 Proposition. ([Kr05, Lemma 1.3]) If \(\tilde{\text{CH}}_0(X_{k_p}) = 0 \) for each prime \(p \) then \(\tilde{\text{CH}}_0(X) = 0 \).

2.4 Proposition. ([Kr05, Theorem 1.4]) Suppose that \(k \) is prime-to-\(p \) closed and the following conditions are satisfied:

1. \(S^p X \) is algebraically \(R \)-trivial for some \(n \geq 0 \),
2. For any field \(K/k \) such that \(X(K) \neq \emptyset \) the variety \(X_K \) is \(R \)-trivial.

Then \(\tilde{\text{CH}}_0(X) = 0 \).

2.5. As an easy application of these results we sketch a proof of the well-known result (first appearing in [Pa84, Theorem 2.3.7]) that \(\tilde{\text{CH}}_0(\text{SB}(A)) = 0 \), where \(A \) is a central simple algebra over \(k \) (a more general case of flag varieties is settled in [Kr05]). For simplicity we assume \(\deg A = p \) is prime.

By Proposition 2.3 we may assume the base field \(k \) is prime-to-\(p \) closed (for a prime \(q \) different from \(p \) the algebra \(A \) splits over \(k_q \)). According to Proposition 2.4 it suffices to show that \(S^p \text{SB}(A_K) \) is \(R \)-trivial for every finite extension \(K/k \) (the second hypothesis of 2.4 holds for any twisted flag variety). Changing the base we may assume \(K = k \). If \(A \) is split, the assertion is trivial; so we may assume \(A \) is not split.

According to our conventions (see 2.4) the variety \(\text{SB}(A) \) is the variety of all parabolic subgroups \(P \) of type \(P_1 \) in the group \(\text{PGL}_1(A \otimes_k k_s) \) with the action of \(\Gamma \) coming from its action on \(k_s \). Therefore, \(S^p X \) is the variety of all unordered \(p \)-tuples \([P^{(1)}, \ldots, P^{(p)}] \) of parabolic subgroups of type \(P_1 \) of \(\text{PGL}_1(A \otimes_k k_s) \). Let \(U \) be an open subset of \(S^p X \) defined by the condition that the intersection \(P^{(1)} \cap \ldots \cap P^{(p)} \) is a maximal torus in \(\text{PGL}_1(A \otimes_k k_s) \). Every maximal torus \(T \) in \(\text{PGL}_1(A \otimes_k k_s) \) is contained in precisely \(p \) parabolic subgroups of type \(P_1 \), whose intersection is \(T \). Therefore, \(U \) is isomorphic to the variety of all maximal tori in \(\text{PGL}_1(A) \). This variety is known to be rational (and therefore \(R \)-trivial since it is homogeneous). Moreover, one can check that if \(A \) is not split then the embedding \(U \to S^p X \) is surjective on \(k \)-points. So \(S^p X \) is \(R \)-trivial, and we are done.

2.6. The same method can be applied to prove that \(\tilde{\text{CH}}_0(Q) = 0 \) for a nonsingular projective quadric \(Q \) over a field of characteristic not 2 (the result of Swan [Sw89]).

As above, we may assume that \(p = 2 \) and \(Q \) is anisotropic. It suffices to prove that \(S^2 Q \) is \(R \)-trivial. Let \(q \) be the corresponding quadratic form on
a vector space V. The quadric Q can be viewed as the variety of lines $\langle v \rangle$, where $v \in V \otimes_k k_s$ satisfies $q(v) = 0$, with the obvious action of Γ. So S^2Q can be identified with the variety of pairs $[\langle v_1 \rangle, \langle v_2 \rangle]$ of lines of this kind, with induced action of Γ. Consider the open subset U defined by the condition $b_q(v_1, v_2) \neq 0$ (b_q stands for the polarization of q). Clearly, the embedding $U \to S^2Q$ is surjective on k-points (otherwise the subspace $\langle v_1, v_2 \rangle$ defines a totally isotropic subspace over k_s). So it is enough to check that U is R-trivial.

Consider the open subvariety W of $\text{Gr}(2, V)$ consisting of planes $H \subset V \otimes_k k_s$ such that $q|_H$ is nonsingular. For every such a plane there exists up to scalar factors exactly one hyperbolic basis $\{v_1, v_2\}$ over k_s. Therefore, the map from U to W sending $[\langle v_1 \rangle, \langle v_2 \rangle]$ to $\langle v_1, v_2 \rangle$ is an isomorphism. But any open subvariety of $\text{Gr}(2, V)$ is R-trivial, and we are done.

We shall use in the sequel the following observation.

2.7 Lemma. Let $H \subset K \subset G$ be algebraic groups over k. Suppose that the map $H^1(k, H) \to H^1(k, K)$ is surjective. Then the morphism $G/H \to G/K$ is surjective on k-points.

Proof. An element x of $G/K(k)$ is presented by an element $g \in G(k_s)$ satisfying the condition $\gamma(\sigma) = g^{-1} \cdot \sigma \cdot g$ lies in $K(k_s)$ for all $\sigma \in \Gamma$. But γ is clearly a 1-cocycle with coefficients in K. Therefore by assumption, there exists some $h \in K$ such that $h^{-1} \gamma(\sigma) \cdot \sigma \cdot h = (gh)^{-1} \cdot \sigma \cdot (gh)$ is a 1-cocycle with coefficients in H. But then gh presents an element of $G/H(k)$ which goes to x under the morphism $G/H \to G/K$, and the lemma is proved.

3 Twisted forms of a Cayley plane

In the present section we prove the injectivity of the degree map in the case when X is a twisted form of a Cayley plane.

3.1. Let J denote a simple exceptional 27-dimensional Jordan algebra over k, and N_J its norm (which is a cubic form on J). An invertible linear map $f : J \to J$ is called a similitude if there exists some $\alpha \in k^*$ (called the multiplier of f) such that $N_J(f(v)) = \alpha N_J(v)$ for all $v \in J$. The group $G = \text{Sim}(J)$ of all similitudes is a reductive group of type 1E_6, and every group of type 1E_6 with trivial Tits algebras can be obtained in this way up to isogeny (see [Ga01, Theorem 1.4]).
3.2. The \textit{(twisted) Cayley plane} $\mathbb{OP}^2(J)$ is the variety obtained by Galois descent from the variety of all parabolic subgroups of type P_1 in $\text{Sim}(J \otimes_k k_s)$ (see [IM05]). This variety can be identified with the variety of all lines $\langle e \rangle$ spanned by elements $e \in J_s = J \otimes_k k_s$ satisfying the condition $e \times e = 0$ (see [Ga01] Theorem 7.2)).

The goal of the present section is to prove

\textbf{3.3 Theorem.} $\tilde{\text{CH}}_0(\mathbb{OP}^2(J)) = 0$.

We start the proof with the following easy reduction.

\textbf{3.4.} By Proposition 2.4 it is enough to prove that $(S^p \mathbb{OP}^2(J)) \times_k K$ is R-trivial for any prime p and any finite field extension K/k_p. Making the base change, it suffices to prove it for $K = k_p$. Moreover, we may assume J is not reduced (otherwise $\mathbb{OP}^2(J)$ is a rational homogeneous variety and, hence, is R-trivial).

Assume $p \neq 3$, then $\mathbb{OP}^2(J)(k_p) \neq \emptyset$ (and, hence, is R-trivial). Indeed, choose any cubic étale subalgebra L of J (see [Inv] Proposition 39.20]). It splits over k_p and, therefore, $L \otimes_k k_p$ contains a primitive idempotent e. As an element of $J \otimes_k k_p$ it satisfies the condition $e \times e = 0$ (see [SV, Lemma 5.2.1(i)]). So we may assume $p = 3$.

\textbf{3.5.} From now on $p = 3$ and the field k is prime-to-p closed. By definition $S^3(\mathbb{OP}^2(J))$ is the variety of all unordered triples $[\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle]$, where e_i are the elements of $J_s = J \otimes_k k_s$ satisfying the conditions $e_i \times e_i = 0$, with the natural action of Γ. Denote by U the open subvariety of $\mathbb{OP}^2(J)$ defined by the condition

$$N_{J_s}(e_1, e_2, e_3) \neq 0,$$

where N is the polarization of the norm.

The embedding $U \to S^3(\mathbb{OP}^2(J))$ is surjective on k-points. Indeed, if $[\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle]$ is stable under the action of Γ and $N_{J_s}(e_1, e_2, e_3) = 0$, then $\langle e_1, e_2, e_3 \rangle$ gives by descent a k-defined subspace V of J such that $N|_V = 0$. But then J is reduced by [SV, Theorem 5.5.2], which leads to a contradiction. So it is enough to show that U is R-trivial.

\textbf{3.6.} Choose a cubic étale subalgebra L in J. Over the separable closure we have

$$L \otimes_k k_s = k_se_1 \oplus k_se_2 \oplus k_se_3$$
where e_1, e_2, e_3 are primitive idempotents. Then we have $e_i \times e_i = 0$ in J_s, $i = 1, 2, 3$, the norm $N_{J_s}(e_1, e_2, e_3) = N_{L \otimes k_s}(e_1, e_2, e_3)$ is trivial and the triple $[e_1, e_2, e_3]$ is stable under the action of Γ (since so is L). Hence, the triple $[(e_1), (e_2), (e_3)]$ is a k-rational point of U.

By [SV68 Proposition 3.12] the group G acts transitively on U. Therefore, we have

$$U \simeq G/\text{Stab}_G([(e_1), (e_2), (e_3)])$$

The stabilizer is defined over k, since it is stable under Γ. Moreover, it coincides with $\text{Stab}_G(L)$. Indeed, one inclusion is obvious, and the other one follows from the fact that e_1, e_2, e_3 are the only elements e of $L \otimes k_s$ satisfying the condition $e \times e = 0$, up to scalar factors (see [SV Theorem 5.5.1]).

3.7. Consider the Springer decomposition $J = L \oplus V$ of J with respect to L. The pair (L, V) has a natural structure of a twisted composition, and there is a monomorphism $\text{Aut}(L, V) \to \text{Aut}(J)$ sending a pair (φ, t) (where $\varphi: L \to L$, $t: V \to V$) to $\varphi \oplus t: J \to J$ (see [Inv, § 38.A]). Note that $\text{Aut}(L, V)$ coincides with the stabilizer of L in $\text{Aut}(J)$.

3.8 Lemma. The following sequence of algebraic groups is exact

$$1 \to \text{Aut}(L, V) \to \text{Stab}_G(L) \to R_{L/k}(\mathbb{G}_m) \to 1,$$

$$f \mapsto f(1)$$

where $R_{L/k}$ stands for the Weil restriction.

Proof. Exactness at the middle term follows from [3.7] and the fact that the stabilizer of 1 in G coincides with $\text{Aut}(J)$ (see [SV Proposition 5.9.4]). To prove the exactness at the last term observe that a k_s-point of $R_{L/k}(\mathbb{G}_m)$ is a triple of scalars $(\alpha_0, \alpha_1, \alpha_2) \in k_s \times k_s \times k_s$. Multiplying f by the scalar transformation with the coefficient $(\alpha_0 \alpha_1 \alpha_2)^\frac{1}{3}$ (which is an element of $\text{Stab}_G(L)(k_s)$) we may assume that $\alpha_0 \alpha_1 \alpha_2 = 1$. Choose a related triple (t_0, t_1, t_2) of elements of $\text{GO}^+(\mathbb{O}_d, N_{\mathbb{O}_d})$ (\mathbb{O}_d is the split Cayley algebra) such that $\mu(t_i) = \alpha_i$, $i = 0, 1, 2$ (see [Inv Corollary 35.5]). Now the transformation f of J defined by

$$
\begin{pmatrix}
\varepsilon_0 & c_2 & \\
\cdot & \varepsilon_1 & c_0 \\
\varepsilon_0 & \cdot & c_1
\end{pmatrix}
\mapsto
\begin{pmatrix}
\alpha_0 \varepsilon_0 & t_2(c_2) & \\
\cdot & \alpha_1 \varepsilon_1 & t_0(c_0) \\
\cdot & \cdot & \alpha_2 \varepsilon_2
\end{pmatrix}

$$

lies in $\text{Sim}(J)$ by [Ga01 (7.3)], stabilizes $L_{k_s} = \text{diag}(k_s, k_s, k_s)$ and sends $1 \in J_s$ to $\text{diag}(\alpha_0, \alpha_1, \alpha_2)$. □
3.9. Since $\text{H}^1(k, L^*) = 1$ (by Hilbert ’90), the map $\text{H}^1(k, \text{Aut}(L, V)) \to \text{H}^1(k, \text{Stab}_G(L))$ is surjective. By Lemma 2.7 the morphism

$$G / \text{Aut}(L, V) \to G / \text{Stab}_G(L) \simeq U$$

is surjective on k-points. Therefore, it suffices to show that $G / \text{Aut}(L, V)$ is R-trivial.

3.10. Consider the morphism

$$\psi : G / \text{Aut}(L, V) \to G / \text{Aut}(J).$$

By [Kr05, Corollary 3.14] it suffices to show that

1. ψ is surjective on k-points;
2. $G / \text{Aut}(J)$ is R-trivial;
3. The fibers of ψ (which are isomorphic to $\text{Aut}(J) / \text{Aut}(L, V)$) are unirational and R-trivial.

3.11. In order to prove surjectivity of ψ on k-points it is enough by Lemma 2.7 to prove surjectivity of the map $\text{H}^1(k, \text{Aut}(L, V)) \to \text{H}^1(k, \text{Aut}(J))$. The set $\text{H}^1(k, \text{Aut}(L, V))$ classifies all twisted compositions (L', V') which become isomorphic to (L, V) over k_s and $\text{H}^1(k, \text{Aut}(J))$ classifies all (exceptional 27-dimensional) Jordan algebras J'. It is easy to verify that the morphism sends (L', V') to the Jordan algebra $L' \oplus V'$ and, hence, the surjectivity follows from the fact that any Jordan algebra admits a Springer decomposition (cf. [Inv, Proposition 38.7]).

3.12. Let W be the open subvariety of J consisting of elements v with $N_J(v) \neq 0$. Then G acts transitively on W (see [SV, Proposition 5.9.3]) and the stabilizer of the point 1 coincides with $\text{Aut}(J)$. So $G / \text{Aut}(J) \simeq W$ is clearly R-trivial.

3.13. Consider the variety Y of all étale cubic subalgebras of J. By [Inv, Proposition 39.20(1)] there is a map from an open subvariety J_0 of regular elements in J to Y (sending a to $k[a]$), surjective on k-points. Therefore Y is unirational and R-trivial 24-dimensional irreducible variety.

The group $\text{Aut}(J)$ acts on Y naturally. Let L' be any k-point of Y. The stabilizer of L' in $\text{Aut}(J)$ obviously equals to $\text{Aut}(L', V') (J = L' \oplus$
4 Case E_7/P_7

In the present Section we prove the injectivity of the degree map for twisted forms of a projective homogeneous variety corresponding to an exceptional group of type E_7 and a parabolic subgroup of type P_7.

4.1. Let B denote a 56-dimensional Brown algebra over k. It defines naturally up to a scalar factor a skew-symmetric form b on B and a trilinear map t from $B \times B \times B$ to B such that (B, t, b) is a Freudenthal triple system (see [Ga01, Definition 3.1] and [Ga01, § 4]). An invertible linear map $f: B \to B$ is called a similitude if there exists some $\alpha \in k^*$ (called the multiplier of f) such that $b(f(u), f(v)) = \alpha b(u, v)$ and $t(f(u), f(v), f(w)) = \alpha f(t(u, v, w))$ for all $u, v, w \in B$. The group $G = \text{Sim}(B)$ of all similitudes is a reductive group of type E_7 and every group of type E_7 with trivial Tits algebras can be obtained in this way up to isogeny (cf. [Ga01, Theorem 4.16]).

An element e is called singular (or strictly regular following [Fe72]) if $t(e, e, B) \subseteq \langle e \rangle$. In this case $t(e, e, v) = 2b(v, e)$ for every $v \in V$. An equivalent definition is that $t(e, e, e) = 0$ and $e \in t(e, e, B)$ (see [Fe72, Lemma 3.1]). B is called reduced if it contains singular elements. There do exist anisotropic groups of type E_7 with trivial Tits algebras over certain fields (see [Ti90]).

4.2. Let $X(B)$ be the variety obtained by the Galois descent from the variety of all parabolic subgroups of type P_7 in $\text{Sim}(B \otimes_k k_s)$ (the action of $\Gamma = \text{Gal}(k_s/k)$ comes from the action on k_s). This variety can be identified with the variety of all lines $\langle e \rangle$ spanned by singular elements $e \in B \otimes_k k_s$ (see [Ga01, Theorem 7.6]).

The goal of this section is to prove

4.3 Theorem. $\overline{\text{CH}}_0(X(B)) = 0$.

We start with the similar reduction as in the case of E_6
4.4. Assume first that G has Tits index $E_{7,1}^{66}$ (see [Ti66, Table II]). Its anisotropic kernel is of type D_6, and, since G has trivial Tits algebras, the anisotropic kernel corresponds to a 12-dimensional nondegenerate quadratic form q with split simple factors of its Clifford algebra. A straightforward computation (see [Br05, Thm. 7.4]) shows that

$$M(X(B)) \simeq M(Q) \oplus M(Y)(6) \oplus M(Q)(17),$$

where Q is the projective quadric corresponding to q, Y is a twisted form of the maximal orthogonal grassmanian of a split 12-dimensional quadric, and M denotes Chow motive. Therefore, $\tilde{CH}_0(X(B)) = \tilde{CH}_0(Q) = 0$, the last equality due to Swan.

4.5. By Proposition 2.4 it is enough to prove that $(S^p X(B)) \times_k K$ is R-trivial for any prime p and any finite field extension K/k_p. Making the base change, it suffices to prove it for $K = k_p$. Moreover, we may assume B is not reduced (otherwise $X(B)$ is rational and, hence, R-trivial).

Assume $p \neq 2$, then $B \otimes k_p$ is reduced by [Fe72, Corollary 3.4] and, therefore, $X(B)(k_p) \neq \emptyset$. So we may assume $p = 2$.

From now on $p = 2$ and $k = k_p$. Since B is not reduced, the group G has Tits index either $E_{7,0}^{133}$ or $E_{7,1}^{66}$ (see [Ti71, 6.5.5] and [Ti66 Table II]). By 4.4 we may assume G is anisotropic (has index $E_{7,0}^{133}$).

4.6. By definition $S^2(X(B))$ is the variety of all unordered pairs $[(e_1), (e_2)]$, where e_i are singular elements of $B \otimes_k k_s$, with the natural action of Γ. Denote by U the open subvariety of $X(B)$ defined by the condition $b(e_1, e_2) \neq 0$.

4.7 Lemma. The embedding $U \to S^2(X(B))$ is surjective on k-points.

Proof. Consider the diagonal action of G on $X(B) \times X(B)$ (we may assume in this proof that G is simple). Over k_s this action has four orbits: the minimal orbit which is the diagonal and, hence, is isomorphic to G_s/P_7, the open dense orbit which is isomorphic to the quotient $G_s/L(P_7)$, where $L(P_7)$ denotes the Levi part of P_7, and two locally closed orbits. Indeed, there is a one-to-one correspondence between the orbits of the G_s-action and double coset classes $P_7 \backslash G_s/P_7$ given by mutually inverse maps $G_s \cdot (x, y) \mapsto P_7 x^{-1} y P_7$ and $P_7 w P_7 \mapsto G_s \cdot (1, w)$. Observe that the minimal orbit corresponds to the class of the identity and the open dense orbit to the class of the longest element w_0 of the Weyl group of G_s.

10
Consider the diagonal action of G on $S^2(X(\mathcal{B}))$. Over k_s the subset U is the open dense orbit in $S^2(X(\mathcal{B}))$ (see 4.8). Assume that there exists a k-rational point on $S^2(X(\mathcal{B})) \setminus U$. Then the stabilizer H of this point is a subgroup of G defined over k. Observe that over k_s the connected component of the identity H^0 is the stabilizer of one of the non-open orbits for the action of G on $X(\mathcal{B}) \times X(\mathcal{B})$ considered above, i.e., can be identified with the intersection of two parabolic subgroups $H^0_s = P_7 \cap wP_7w^{-1}$, where w is the double coset representative corresponding to the orbit. By [DG, Exposé XXVI, Theorem 4.3.2] H^0_s is reductive iff H^0_s is the Levi subgroup of P_7, i.e., iff $P_7wP_7 = P_7w_0P_7$. Therefore, H^0_s is non-reductive and so is H. The latter implies that G must have a unipotent element over k. But according to [Ti86, p. 265], if G is anisotropic and char $k \neq 2, 3$, then this is impossible, a contradiction.

According to the lemma it suffices to show that U is R-trivial.

4.8. The Brown algebra $\mathcal{B} \otimes_k k_s$ is split, that is isomorphic to the Brown algebra of matrices of the form

$$ \begin{pmatrix} F & J_d \\ J_d & F \end{pmatrix}, $$

where J_d is the split Jordan algebra. Set

$$ e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. $$

The pair $[\langle e_1 \rangle, \langle e_2 \rangle]$ is stable under an arbitrary semiautomorphism of $\mathcal{B} \otimes_k k_s$ (see [Ga01, Proof of Theorem 2.9]) and, in particular, under the action of Γ. Therefore, $[\langle e_1 \rangle, \langle e_2 \rangle]$ is a k-rational point of U. Moreover, $\langle e_1, e_2 \rangle$ defines by descent the (k-defined) étale quadratic subalgebra L of \mathcal{B}.

By [Fe72, Proposition 7.6] G acts transitively on U. Therefore,

$$ U \simeq G / \text{Stab}_G([\langle e_1 \rangle, \langle e_2 \rangle]). $$

This stabilizer clearly coincides with $\text{Stab}_G(L)$ (one inclusion is obvious, and the other one follows from the fact that e_1, e_2 are the only singular elements of $L \otimes_k k_s$ up to scalar factors).

4.9 Lemma. There is an exact sequence of algebraic groups

$$ 1 \longrightarrow \text{Aut}(\mathcal{B}) \longrightarrow \text{Stab}_G(L) \longrightarrow R_{L/k}(\mathbb{G}_m) \longrightarrow 1. $$

$$ f \mapsto f(1) $$

11
Proof. This follows from the fact that the stabilizer of 1 in G coincides with $\text{Aut}(B)$. Indeed, we have an obvious injection $\text{Aut}(B) \to \text{Stab}_G(1)$. To prove the surjectivity we can assume that k is separably closed. Let f be an element of G preserving 1. Since a decomposition into a sum of two nonorthogonal singular elements is unique by [Fe72, Lemma 3.6] and $1 = e_1 + e_2$, the element f must preserve the pair $[e_1, e_2]$. By [Fe72, Lemma 7.5] f has a form η_λ^π, where η is a similitude of J with a multiplier ρ, π is a permutation on $\{1, 2\}$, $\lambda \in k^*$, and η_λ acts on B by formulae [Fe72, (15)]. Now it follows that $\lambda^{-1}\rho^{-1} = 1$ and $\lambda^2\rho = 1$ and therefore $\lambda = \rho = 1$. So f is an automorphism of B, as claimed.

The surjectivity of the last map also follows from [Fe72, Lemma 7.5].

4.10. Since $H^1(k, L^*) = 1$, the map $H^1(k, \text{Aut}(B)) \to H^1(k, \text{Stab}_G(L))$ is surjective. By Lemma 2.7 the morphism

$$G/\text{Aut}(B) \to G/\text{Stab}_G(L) \simeq U$$

is surjective on k-points. Therefore, it suffices to show that $G/\text{Aut}(B)$ is R-trivial.

4.11. Let W be the open subvariety of B consisting of elements v such that $b(v, t(v, v, v)) \neq 0$. Then G acts transitively on W (it follows easily from [Fe72, Theorem 7.10] or [SK77, p. 140]) and the stabilizer of the point 1 coincides with $\text{Aut}(B)$. So $G/\text{Aut}(B) \simeq W$ is clearly R-trivial, and we finished the proof of 4.3.

5 Other homogeneous varieties

In this section using the results of [Mc] and [Ti66] we finish the proof of the theorem of the introduction. We start with the following

5.1 Lemma. Let X and Y denote projective homogeneous varieties over a field k. Assume X is isotropic over the function field of Y and Y is isotropic over the function field of X. Then the groups of zero-cycles of X and Y are isomorphic.

Proof. The fact that X is isotropic over $k(Y)$ is equivalent to the existence of a rational map $Y \dashrightarrow X$. Hence, we have two composable rational maps $f: Y \dashrightarrow X$ and $g: X \dashrightarrow Y$, and the compositions $f \circ g$ and $g \circ f$ correspond to taking a $k(X)$-point on X and a $k(Y)$-point on Y respectively.
Consider the category of rational correspondences $\text{RatCor}(k)$ introduced in [Mc]. The objects of this category are smooth projective varieties over k and morphisms $\text{Mor}(X,Y) = \text{CH}_0(Y_{k(X)})$. The key property of this category is that the CH_0-functor factors through it. Namely, CH_0 is a composition of two functors: the first is given by taking a graph of a rational map (any rational map gives rise to a morphism in $\text{RatCor}(k)$), the second is the realization functor (see [Mc, Thm. 3.2]).

The maps f and g give rise to the morphisms $[f]$ and $[g]$ in $\text{RatCor}(k)$. By definition the compositions $[f \circ g]$ and $[g \circ f]$ give the identity maps in the category $\text{RatCor}(k)$. Hence, the realizations $[f]_*$ and $[g]_*$ give the respective mutually inverse isomorphisms between $\text{CH}_0(X)$ and $\text{CH}_0(Y)$. \hfill \Box

The next lemma finishes the proof of the theorem of introduction.

5.2 Lemma. Let X be an anisotropic projective G-homogeneous variety, where G is a group of type F_4 or 1E_6 with trivial Tits algebras. Then $\tilde{\text{CH}}_0(X) = 0$.

Proof. According to Proposition 2.3 it is enough to prove the lemma over fields k_p, where $p = 2$ or 3.

Assume $p = 2$ and $k = k_2$. Consider a Jordan algebra J corresponding to the group G. The algebra J is reduced and, hence, comes from an octonion algebra \mathcal{O}. Consider the variety Y of norm zero elements of \mathcal{O}. It can be easily deduced from Tits diagrams that the algebras $J_{k(X)}$ and $J_{k(Y)}$ split. This means the varieties $X_{k(Y)}$ and $Y_{k(X)}$ are isotropic. By Lemma 5.1 $\tilde{\text{CH}}_0(X) = \tilde{\text{CH}}_0(Y) = 0$, where the last equality holds by [Sw89].

Assume $p = 3$ and $k = k_3$. In this case apply similar arguments to the pair X and Y, where $Y = \mathcal{O}\mathbb{P}^2(J)$. We obtain $\tilde{\text{CH}}_0(X) = \tilde{\text{CH}}_0(Y) = 0$, where the last equality holds by Theorem 3.3. \hfill \Box

Acknowledgements

We express our thanks to V. Chernousov, N. Karpenko, I. Panin and M. Rost for useful discussions. We are very grateful to S. Garibaldi for comments concerning exceptional groups.

The first and the second authors are sincerely grateful to A. Bak for his hospitality, advice, and reading of the manuscript. The first author is very thankful to N. Vavilov for substantial remarks and would like to acknowledge
DAAD *Jahresstipendium* and INTAS 03-51-3251. The second author appreciates the support of INTAS 00-566. The last author is grateful to AvH Stiftung and Max-Planck-Institute für Mathematik for support.

References

[Br05] P. Brosnan. On motivic decompositions arising from the method of Bialynicki-Birula. *Invent. Math.* **161** (2005), no. 1, 91–111.

[DG] M. Demazure, A. Grothendieck. Schémas en groupes. III: Structure des schémas en groupes réductifs. SGA 3. Lecture Notes in Math. 153, 1962/1964.

[Fe72] J. C. Ferrar. Strictly regular elements in Freudenthal triple systems. *Trans. Amer. Math. Soc.* **174** (1972), 313–331.

[Ga01] R. S. Garibaldi. Structurable algebras and groups of type E_6 and E_7. *J. of Algebra* **236** (2001), 651–691.

[IM05] A. Iliev, L. Manivel. On the Chow ring of the Cayley plane. *Compositio Math.* **141** (2005), 146–160.

[Inv] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol. The book of involutions. AMS Colloquium Publications, vol. 44, 1998.

[Kr05] D. Krashen. Zero cycles on homogeneous varieties. Preprint LAG (2005). http://www.math.uni-bielefeld.de/LAG

[Me95] A. Merkurjev. Zero-dimensional cycles on some involutive varieties. *Zap. Nauchn. Sem. POMI* **227** (1995), 93–105.

[Me] A. Merkurjev. Rational correspondences (after M. Rost). Preprint. http://www.math.ucla.edu/~merkurev

[Pa84] I. Panin. Application of K-theory in algebraic geometry. PhD thesis LOMI, Leningrad (1984).

[Po05] V. Popov. Generically multiple transitive algebraic group actions. Preprint LAG (2005). http://www.math.uni-bielefeld.de/LAG
[SK77] M. Sato, T. Kimura. A classification of irreducible prehomogeneous vector spaces and their relative invariants. *Nagoya Math. J.* **65** (1977), 1–155.

[SV] T. Springer, F. Veldkamp. Octonions, Jordan algebras and exceptional groups. Springer-Verlag, Berlin et al., 2000.

[SV68] T. Springer, F. Veldkamp. On Hjelmslev-Moufang planes. *Math. Z.* **107** (1968), 249–263.

[Sw89] R. Swan. Zero cycles on quadric hypersurfaces. *Proc. Amer. Math. Soc.* **107** (1989), no. 1, 43–46.

[Ti66] J. Tits. Classification of algebraic semisimple groups. In *Algebraic Groups and Discontinuous Subgroups (Proc. Symp. Pure Math.),* Amer. Math. Soc., Providence, R.I., 1966.

[Ti71] J. Tits. Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque. *J. Reine Angew. Math.* **247** (1971), 196–220.

[Ti86] J. Tits. Unipotent elements and parabolic subgroups of reductive groups. II. In *Algebraic Groups, Utrecht 1986*, Lect. Notes in Math. **1271**, 265–284.

[Ti90] J. Tits. Strongly inner anisotropic forms of simple algebraic groups. *J. of Algebra* **131** (1990), 648–677.

[TW02] J. Tits, R. Weiss. Moufang polygons. Springer Monographs in Math., Springer-Verlag, Berlin, 2002, 535pp.