Sparse Signals Recovery from Noisy Measurements
by Orthogonal Matching Pursuit ∗†

Yi Shen ‡ and Song Li §

January 26, 2013

Abstract

Recently, many practical algorithms have been proposed to recover
the sparse signal from fewer measurements. Orthogonal matching pur-
suit (OMP) is one of the most effective algorithm. In this paper, we
use the restricted isometry property to analysis the algorithm. We
show that, under certain conditions based on the restricted isometry
property and the signals, OMP will recover the support of the sparse
signal when measurements are corrupted by additive noise.

1 Introduction

Compressed sensing shows that it is high possibility to reconstruct sparse
signals from their projection onto a small number of random vectors, poss-
sibly corrupted by noise. Let \(\|x\|_0 \) denote the number of nonzero entries of
vector \(x \). If \(\|x\|_0 < K \), a signal \(x \) is said to be \(K \)-sparse. Let \(A \) be an \(m \times n \)
measurement matrix with \(m < n \). In compressed sensing, we are interested
in recovering the \(K \)-sparse signal \(x \) from

\[
y = Ax + z, \tag{1.1}
\]

∗Research supported in part by the NSF of China under grant 10971189, the China
Postdoctoral Science Foundation under grant 20100481430 and Science Foundation of
Chinese University under grant 2010QNA3018.
†Keywords: Compressed sensing, restricted isometry property, orthogonal matching
pursuit, support recovery
‡Department of Mathematics and Science, Zhejiang Sci–Tech University, Hangzhou,
310018, P. R. China
§Corresponding author: songli@zju.edu.cn, Department of Mathematics, Zhejiang Uni-
versity Hangzhou, 310027, P. R. China
where \(z \) is the noise term. Then, the approach would be to solve the following \(l_0 \) minimization problem:

\[
\min_x \|Ax - y\|_2 \quad \text{subject to} \quad \|x\|_0 < K.
\]

(1.2)

A greedy algorithm named orthogonal matching pursuit (OMP) is one of the efficient approaches to solve (1.2). The basic idea of this iterative algorithm is to find the support of the unknown signal. At each iteration, one column of \(A \) that is the most correlated with the residue is selected. Then the residue is updated by projecting \(y \) onto the linear subspace spanned by the columns that have been selected. Basic reference for this method are [7, 14] and [16]. There are several natural stopping criteria for OMP [17]. Let \(r_k \) be the residual in the \(k \)th iteration.

1. Halt after a fixed number of iterations: \(k = K \).
2. \(l_2 \) bounded noise: Halt when no column explains a significant amount of energy in the residual: \(\|r_k\|_2 \leq \varepsilon \).
3. \(l_\infty \) bounded noise: Halt when no column explains a significant amount of energy in the residual: \(\|A^* r_k\|_\infty \leq \varepsilon \) where \(A^* \) denotes the transpose of \(A \).

The mutual incoherence property [8] and the restricted isometry property [5] of the measurement matrix have been used for the analysis of OMP. Let \(A_i \) be the \(i \)th column of the matrix \(A \). In this paper we assume \(\|A_i\|_2 = 1 \), \(i = 1, \ldots, n \). The mutual incoherence is defined by

\[
\mu(A) = \max_{i \neq j} |\langle A_i, A_j \rangle|,
\]

A given matrix \(A \) satisfies the restricted isometry property of order \(K \) if there exist a \(\delta_K \) such that

\[
(1 - \delta_K)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_K)\|x\|_2^2 \quad \text{for all} \quad \|x\|_0 \leq K.
\]

(1.3)

The smallest constant \(\delta_K \) is called the restricted isometry constant. Many types of random matrices satisfy the RIP with high probability, such as subgaussian random matrix [1] and random partial Fourier matrix [15]. The mutual incoherence property is stronger than the RIP: \(\delta_{K+1} \leq K \mu(A) \).

In [16], Tropp has shown \(\mu(A) < \frac{1}{2K-1} \) is a sufficient condition for reconstructing any \(K \)-sparse signal in the noiseless. Then Cai, Wang and Xu proved this condition is sharp in [2]. In [6], Davenport and Wakin have
showed that there exist matrices satisfying some RIP but not the mutual coherence condition via numerical experiments. This motivated them to establish the RIP-based sufficient conditions. They have proved that the restricted isometry constant $\delta_{3K} < \frac{1}{3\sqrt{K}}$ is sufficient for OMP to recover any K-sparse signal in K steps. Several papers have improved the sufficient condition, such as [10] and [11]. Very recently, Mo and Shen have improved the sufficient condition to

$$\delta_{K+1} < \frac{1}{\sqrt{K} + 1}.$$

For any $K \geq 2$, they also constructed a matrix with the restricted isometry constant $\delta_{K+1} = \frac{1}{\sqrt{K}}$ such that OMP cannot recover some K-sparse signal x in K iterations. Hence, the estimate (1.4) is near-optimal.

For the noise case, Cai and Wang have provided coherence-based guarantees for OMP [3]. This subject was also considered in [9] and [18]. However, there are few results on the general model (1.1) by using the RIP. Following the line of [12], we investigate the OMP in the noise case under the RIP-based conditions.

The rest of the paper is organized as follows. In Section 2, we shall introduce some notations and investigate some properties of the restricted isometry constants. In Section 3, the main results are established for OMP recovering the sparse signals with noise.

2 Preliminaries

Before going further, we introduce some notations. Suppose T is a subset of $\{1, \ldots, n\}$. Let $T^c = \{1, 2, \ldots, n\} \setminus T$. For a given matrix A, denote

$$A_T = \begin{cases} A_i, & i \in T, \\ 0, & \text{otherwise}. \end{cases}$$

For convenience, A_T also denotes the submatrix of A corresponding to T. We use the same way to define x_T for the vector $x \in \mathbb{R}^n$. Thus, we have

$$A_T x = Ax_T = A_T x_T.$$

The pseudo inverse of a tall, full-rank matrix A is defined by $A^\dagger = (A^*A)^{-1}A$. The support of $x = \{x_1, \ldots, x_n\}$ is denoted by $\text{supp}(x) = \{i : x_i \neq 0\}$. Let e_i be the ith coordinate unit vector in \mathbb{R}^n. We denote

$$S_i(x) := \langle Ae_i, Ax \rangle, \quad i = 1, \ldots, n,$$
Table 1: Orthogonal Matching Pursuit

Input: A, y
Set: $\Omega_0 = \emptyset$, $x_0 = 0$, $k = 1$
while not converge
$r_k = y - A_{\Omega_{k-1}}x_{k-1}$
$\Omega_k = \Omega_{k-1} \cup \arg \max_i
$x_k = (A_{\Omega_k}^* A_{\Omega_k})^{-1} A_{\Omega_k}^* y$
$k = k + 1$
end while
set: $\hat{x}_{\Omega_k} = x_k$, $\hat{x}_{\Omega_k^C} = 0$
Return: \hat{x}

$$S_T(x) := \max_{i \in T} |S_i(x)|,$$
and
$$E(z) := \max_{i \in \{1,\ldots,n\}} |\langle Ae_i, z \rangle|.$$

Table I shows the framework of OMP.

Now we investigate some properties of the restricted isometry constant. Lemma 2.1 were established by Needell and Tropp in [13].

Lemma 2.1. Let x be a K-sparse vector. Suppose the matrix A has the restricted isometry constant δ_K. Then for $T \subset \text{supp}(x)$,

1. $\|A_{T}^* A_{T^C} x\|_2 \leq \delta_K \|x_{T^C}\|_2$.
2. $\|(A_{T}^* A_{T})^{-1} x\|_2 \leq \frac{1}{1 - \delta_K} \|x\|_2$.

The following lemma was obtained by Cai and Wang in [3].

Lemma 2.2. Let x be a K-sparse vector with $\Omega = \text{supp}(x)$. Suppose that the matrix A has the restricted isometry constant δ_K. Then for $T \subset \Omega$,

1. $(1 - \delta_K)\|x_{\Omega \setminus T}\|_2 \leq \|A_{\Omega \setminus T}(I - A_{T} A_{T}^\dagger) A_{\Omega \setminus T} x_{\Omega \setminus T}\|_2 \leq (1 + \delta_K)\|x_{\Omega \setminus T}\|_2$.
2. $(1 - \delta_{K+1})\|x_{T^C}\|_2 \leq \|A(I - A_{T}^\dagger A) x\|_2$.

Lemma 2.3. Let x be a K-sparse vector. Suppose that the matrix A has the restricted isometry constant δ_K. Then for any $T \subset \text{supp}(x)$

$$\|(I - A_{T}^\dagger A) x\|_2 \leq \frac{\|x_{T^C}\|_2}{1 - \delta_K}. \quad (2.1)$$
Proof. Split $\mathbf{x} = \mathbf{x}_T + \mathbf{x}_{T^c}$, we have

\[
(I - A_T^\dagger A)x = \mathbf{x}_T + \mathbf{x}_{T^c} - A_T^\dagger A_T \mathbf{x}_T - A_T^\dagger A_{T^c} \mathbf{x}_{T^c} \\
= \mathbf{x}_T + \mathbf{x}_{T^c} - \mathbf{x}_T - A_T^\dagger A_{T^c} \mathbf{x}_{T^c} \\
= \mathbf{x}_{T^c} - A_T^\dagger A_{T^c} \mathbf{x}_{T^c}.
\]

By Lemma 2.1, we get

\[
\| (I - A_T^\dagger A) x \|_2 \leq \| \mathbf{x}_{T^c} \|_2 + \| A_T^\dagger A_{T^c} \mathbf{x}_{T^c} \|_2 \\
\leq \| \mathbf{x}_{T^c} \|_2 + \| (A_T^* A_T)^{-1} A_T^* A_{T^c} \mathbf{x}_{T^c} \|_2 \\
\leq \| \mathbf{x}_{T^c} \|_2 + \frac{\delta_K}{1 - \delta_K} \| \mathbf{x}_{T^c} \|_2 \\
\leq \frac{\| \mathbf{x}_{T^c} \|_2}{1 - \delta_K}
\]

\[\blacksquare\]

3 \textbf{ l_2 Bounded Noise}

In this section, we shall prove the main results of the paper. Both the stopping rule 2 and the stopping rule 3 of OMP for the noise case are considered. We first consider the noise \mathbf{z} is bounded by $\| \mathbf{z} \|_2 \leq B_2$. Then the stopping rule is $\| \mathbf{r}_k \|_2 \leq B_2$.

Lemma 3.1. Suppose $\delta_{K+1} < \frac{1}{\sqrt{K+3}}$, we have

\[
(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K}) > 0. \tag{3.1}
\]

Proof. Simple calculate shows that (3.1) is equal to

\[
\frac{1}{\delta_{K+1}} + \delta_{K+1} > \sqrt{K} + 3.
\]

Thus, $\delta_{K+1} < \frac{1}{\sqrt{K+3}}$ is the stronger condition. \[\blacksquare\]

The following results is a key tool in this paper.

Theorem 3.2. Assume $\delta_{K+1} < \frac{1}{\sqrt{K+3}}$. For any given K-sparse signal \mathbf{x}. Suppose that the measurement matrix A has the restricted isometry constant δ_{K+1} satisfying

\[
\| \mathbf{x}_{\Omega_k} \|_2 \geq \frac{2(1 - \delta_{K+1})E(\mathbf{z}_k)\sqrt{K-k}}{(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K-k})}. \tag{3.2}
\]
where \(z_k = (I - A_{\Omega_k} A_{\Omega_k}^\dagger)z \). Then OMP selects an index of the support of \(x \) at the \((k+1)\)th iteration.

Proof. For a given \(K \)-sparse signal \(x \), denote the support of \(x \) by \(\Omega \). Consider the \((k+1)\)-th iteration,

\[
r_{k+1} = y - A_{\Omega_k} x_k
= Ax + z - A_{\Omega_k} A_{\Omega_k}^\dagger (Ax + z)
= A(I - A_{\Omega_k}^\dagger A_{\Omega_k})x + (I - A_{\Omega_k} A_{\Omega_k}^\dagger)z.
\]

For simplify, let \(t_k = (I - A_{\Omega_k}^\dagger A_{\Omega_k})x \). Then we get

\[
\langle Ae_i, r_{k+1} \rangle = \langle Ae_i, y - A_{\Omega_k} x_k \rangle
= \langle Ae_i, At_k + z_k \rangle
= S_i(t_k) + \langle Ae_i, z_k \rangle.
\]

Note that the residual \(r_k \) are orthogonal to all the selected columns of \(A \), so no index is selected twice. Thus, the sufficient condition for choosing an index from \(\Omega \setminus \Omega_k \) in the \((k+1)\)th iteration is

\[
S_{\Omega \setminus \Omega_k}(t_k) - E(z_k) > |S_i(t_k)| + E(z_k) \quad \text{for all} \quad i \in \Omega^c. \tag{3.3}
\]

In the rest of the proof, we shall give a sufficient condition for \((3.3)\) holds.

Note the support of \(t_k \) is a subset of \(\Omega \). By Lemma 2.1 in [4], we have

\[
|S_i(t_k)| = |\langle Ae_i, At_k \rangle| \leq \delta_{K+1} \|t_k\|_2 \quad \text{for all} \quad i \in \Omega^c. \tag{3.4}
\]

Combine \((2.1)\) and \((3.4)\) leads to

\[
|S_i(t_k)| \leq \frac{\delta_{K+1}}{1 - \delta_{K+1}} \|x_{\Omega_k^c}\|_2, \quad \text{for all} \quad i \in \Omega^c. \tag{3.5}
\]

By Lemma 2.2 we obtain

\[
S_{\Omega \setminus \Omega_k}(t_k) \geq \frac{\|A_{\Omega \setminus \Omega_k} At_k\|_2}{\sqrt{K - k}} \geq \frac{(1 - \delta_K)\|x_{\Omega_k^c}\|_2}{\sqrt{K - k}}. \tag{3.6}
\]

It follows from \((3.5)\) and \((3.6)\) that the sufficient condition for \((3.3)\) holds is

\[
\frac{(1 - \delta_K)\|x_{\Omega_k^c}\|_2}{\sqrt{K - k}} - \frac{\delta_{K+1}}{1 - \delta_{K+1}} \|x_{\Omega_k^c}\|_2 > 2E(z_k)
\]

which is simplified to \((3.2)\). \(\square\)
Theorem 3.3. Suppose $\|z\|_2 < B_2$ and $\delta_{K+1} < \frac{1}{\sqrt{K+3}}$. Then OMP with the stopping rule $\|r_k\|_2 \leq B_2$ finds the support of x if all the nonzero coefficients x_i satisfy

$$|x_i| > \frac{2(1 - \delta_{K+1})B_2}{(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K})}.$$ \hspace{1cm} (3.7)

Proof. We first estimate the $E(z_k)$. Since $\|z\|_2 \leq B_2$, we have

$$|\langle Ae_i, z_k \rangle| \leq \|A\|_2 \|(I - A_{\Omega_k} A_{\Omega_k}^\dagger)z\|_2 \leq \|z\|_2 \leq B_2.$$

This implies

$$E(z_k) \leq B_2.$$

Hence, (3.2) is followed by

$$\|x_{\Omega_k}^c\|_2 > \frac{2(1 - \delta_{K+1})B_2\sqrt{K - k}}{(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K - k})}. \hspace{1cm} (3.8)$$

Since

$$\frac{\|x_{\Omega_k}^c\|_2}{\sqrt{K - k}} \geq \min_{i \in \Omega_k^c} |x_i|,$$

(3.8) is implied by

$$|x_i| > \frac{2(1 - \delta_{K+1})B_2}{(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K})}, \text{ for all } i \in \Omega_k^c.$$ \hspace{1cm} (3.9)

Now we prove that the OMP do not stop for some $j + 1 < k$. Consider the $j + 1$ iteration for some $j + 1 < k$, by Lemma 2.2 we have

$$\|r_{j+1}\|_2 = \|y - A_{\Omega_j} x_j\|_2 = \|A(I - A_{\Omega_j}^\dagger A_{\Omega_j})x + (I - A_{\Omega_j} A_{\Omega_j}^\dagger)z\|_2 \geq \|A(I - A_{\Omega_j}^\dagger A_{\Omega_j})x\|_2 - \|(I - A_{\Omega_j} A_{\Omega_j}^\dagger)z\|_2 > (1 - \delta_{K+1})\|x_{\Omega_j}^c\|_2 - B_2. \hspace{1cm} (3.9)$$

By (3.7), we obtain

$$(1 - \delta_{K+1})\|x_{\Omega_j}^c\|_2 \geq \frac{2(1 - \delta_{K+1})^2 B_2}{(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K})} \geq 2B_2. \hspace{1cm} (3.10)$$

It follows from (3.9) and (3.10) that $\|r_{j+1}\|_2 > B_2$. \hspace{1cm} \square
We assume that \(z \) is zero-mean white Gaussian noise with covariance \(\sigma^2 I_{m \times m} \). Cai, Xu and Zhang have shown that \(z \sim N(0, \sigma^2 I_{m \times m}) \) satisfies
\[
P(z \in B_2) \geq 1 - 1/m
\]
where \(B_2 = \{ z : \|z\|_2 \leq \sigma \sqrt{m + 2\sqrt{m \log m}} \} \). With this argument and Theorem 3.3, we obtain the following result.

Theorem 3.4. Suppose \(z \sim N(0, \sigma^2 I_{m \times m}) \), \(\delta_{K+1} < \frac{1}{\sqrt{K+3}} \) and nonzero coefficients \(x_i \) satisfy
\[
|x_i| > \frac{2(1 - \delta_{K+1}) \sigma \sqrt{m + 2\sqrt{m \log m}}}{(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K})}.
\]
Then OMP with the stopping rule \(\|r_k\|_2 \leq \sigma \sqrt{m + 2\sqrt{m \log m}} \) finds the support of \(x \) with probability at least \(1 - 1/m \).

Now we give the RIP-based sufficient conditions for OMP with \(l_\infty \) bounded noise case. Then the stopping rule is \(\|A^* r_k\|_\infty \leq B_\infty \).

Theorem 3.5. Suppose \(\|A^* z\|_\infty < B_\infty \) and \(\delta_{K+1} < \frac{1}{\sqrt{K+3}} \). Then OMP with the stopping rule \(\|A^* r\|_\infty < B_\infty \) finds the support of \(x \) if all the nonzero coefficients \(x_i \) satisfy
\[
|x_i| > \frac{2(1 - \delta_{K+1}) B_\infty}{(1 - \delta_{K+1})^2 - \delta_{K+1}(1 + \sqrt{K})} \left(1 + \frac{\sqrt{K}}{\sqrt{1 - \delta_{K+1}}} \right).
\]

Proof. Since the proof is similar as the proof of Theorem 4 in [3]. We include a sketch for the completeness. To make sure (3.2) of Theorem 3.2 hold, we first give an estimation of \(E(z_k) \) in the \((k+1) \)-th iteration. We have
\[
|\langle A e_i, z_k \rangle| \leq |A^*_i z| + |\langle A e_i, A_{\Omega_k} A_{\Omega_k}^\dagger z \rangle| \leq B_\infty \left(1 + \frac{\sqrt{K}}{\sqrt{1 - \delta_{K+1}}} \right).
\]
Together with (3.11), it implies that (3.2) holds. Now consider the \(t \)-th iteration with \(t < k + 1 \). We obtain
\[
\|A^* z_t\|_\infty \geq \frac{1 - \delta_{K+1}}{\sqrt{K} - t} \|x_{\Omega_t}\|_2 - \left(1 + \frac{\sqrt{t}}{\sqrt{1 - \delta_{K+1}}} \right) B_\infty
\]
\[
\geq 2 \left(1 + \frac{\sqrt{K}}{\sqrt{1 - \delta_{K+1}}} \right) B_\infty - \left(1 + \frac{\sqrt{1}}{\sqrt{1 - \delta_{K+1}}} \right) B_\infty
\]
\[
\geq B_\infty.
\]
The second inequality is implied by (3.11). Therefore, the OMP does not stop after t-th iteration.

References

[1] R.G. Baraniuk, M. Davenport, R.A. DeVore, and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constr. Approx., 28(3):253-263, 2008.

[2] T. Cai, L. Wang, and G. Xu. New bounds for restricted isometry constants, IEEE Trans. Inf. Theory 56, 4388-4394.

[3] T. Cai and L. Wang, Orthogonal matching pursuit for sparse signal recovery with noise, manuscript.

[4] E.J. Candès, The restricted isometry property and its implications for compressed sensing, C. R. Math. Acad. Sci. Paris, Ser. I, 346 589-592, 2008.

[5] E.J. Candès and T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory, 51:4203-4215, 2005.

[6] M.A. Davenport and M.B. Wakin, Analysis of orthogonal matching pursuit using the restricted isometry property, IEEE Trans. Inform. Theory, 56(9) 4395-4401, 2010.

[7] G. Davis, S. Mallat and M. Avellaneda, Adaptive greedy approximation, J. Constr. Approx., 13 57-98, 1997.

[8] D.L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via ell1 minimization. Proc. Natl. Acad. Sci. USA, 100(5):2197-2202, 2003.

[9] Z.B. Haim, Y.C. Eldar, and M. Elad, Coherence-based performance guarantees for estimating a sparse vector under random noise, IEEE Trans. Signal Process. 58(10), 5030-5042, 2010.

[10] S.S Huang and J.B. Zhu, Recovery of sparse signals using OMP and its variants: convergence analysis based on RIP, Inverse Problems, 27 (2011) doi:10.1088/0266-5611/27/3/035003.
[11] E. Liu and V. N. Temlyakov, Orthogonal super greedy algorithm and applications in compressed sensing, preprint, 2010.

[12] Q. Mo and Y. Shen, A remark on the restricted isometry property in orthogonal matching pursuit, IEEE Trans. Inform. Theory, to appear.

[13] D. Needell and J.A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comp. Harmonic Anal., 26(3) 301-321, 2009.

[14] Y.C. Pati, R. Rezaiifar and P.S. Krishnaprasad, Orthogonal Matching Pursuit: Recursive function approximation with applications to wavelet decomposition. in Proc. 27th Ann. Asilomar Conf. on Signals, Systems and Computers, Nov. 1993.

[15] H. Rauhut, Compressive sensing and structured random matrices, in: M. Fornasier (Ed.), Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series Comp. Appl. Math. 9, De Gruyter, 2010.

[16] J.A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform. Theory, 50(10) 2231-2242, 2004.

[17] J.A. Tropp, Computational methods for sparse solution of linear inverse Problems, Proc. IEEE, 98(6), 948C958, 2010.

[18] T. Zhang, On the consistency of feature selection using greedy least squares regression, J. Machine Learning Research, 10, 555-568.