Potential Role of Atrial Myopathy in the Pathogenesis of Stroke in Rheumatoid Arthritis and Psoriasis: A Conceptual Framework and Implications for Prophylaxis

Milton Packer, MD

Patients with chronic systemic inflammatory diseases (including those with rheumatoid arthritis [RA] and psoriasis) are at increased risk of stroke. However, this risk cannot be explained by an increased prevalence of traditional cardiovascular risk factors that lead to accelerated atherosclerosis. Additionally, inflammatory involvement of the cerebral arteries is not an important contributor to acute ischemic cerebrovascular disease in these patients. Instead, the systemic inflammatory process that characterizes both RA and psoriasis may cause adverse structural and functional changes in the walls of the atria, particularly in the left atrium (LA). The resulting inflammation-related atrial myopathy leads to blood stasis, thrombus formation, and thromboembolic stroke.

RA and Psoriasis Increases the Risk of Stroke

Compared with those without RA, patients with RA have a 60% to 100% increase in the risk of ischemic stroke. The magnitude of the increased risk is particularly striking if afflicted individuals are younger than 65 years; their risk of stroke is increased 3-fold. RA not only increases the risk of an initial stroke, but it increases the risk of recurrent stroke. Importantly, the increase in stroke risk greatly exceeds that predicted by the presence of traditional cardiovascular risk factors; instead, its magnitude parallels the clinical severity and duration of the arthritic disease and the intensity of systemic inflammation.

Similarly, psoriasis is accompanied by a 60% to 100% increase in the risk of ischemic stroke. The increase in stroke is particularly striking in those who are young or have clinically severe disease, and the intensity of systemic inflammation greatly enhances the risk of stroke. As in the case of RA, the risk of stroke exceeds that expected from traditional cardiovascular risk factors, suggesting that the enhanced risk of stroke is not likely to be related to accelerated atherosclerotic disease. Instead, stroke appears to be linked to the occurrence of systemic thromboembolism.

Is Atrial Fibrillation the Cause of Increased Risk of Stroke in Rheumatoid Arthritis and Psoriasis?

Atrial fibrillation (AF) is an important risk factor for the occurrence of stroke in the general community. Is it possible that both RA and psoriasis increase the risk of stroke because the 2 disorders promote the development of AF?

Increased Risk of AF in RA and Psoriasis

Systemic inflammation predicts the occurrence of AF in the community. Not surprisingly, RA increases the incidence of AF by 25% to 50%, and this risk is evident even after adjustment for risk factors for AF (eg, hypertension). There is a strong parallelism between the incidence of AF and that of stroke in patients with RA in epidemiological studies. Analogously, psoriasis increases the incidence of AF by 25% to 50%; the risk is particularly apparent in those who are younger and have clinically severe disease and is accompanied by an increased risk of systemic thromboembolism. The development of AF may represent an extension of the systemic inflammatory process to the atria.

Is There a Causal Relation Between AF and the Occurrence of Stroke?

Is the increase in stroke in patients with RA and psoriasis related to the increased incidence of AF? Physicians have long believed that the chaotic contraction that is characteristic of AF drives thrombus formation; however, it is the decreased
flow velocity in the LA attributable to an underlying atrial myopathy that predisposes to thromboembolization,31 explaining why mitral regurgitation protects against the stasis of blood in the LA even though it increases the risk of AF by promoting LA dilatation.32 The inflammatory and fibrotic process in the LA is a primary determinant of the impairment of the chamber’s conduit functions, even in the absence of AF;33 in addition, inflammation and fibrosis may directly enhance the thrombogenicity of the atrial endocardium.34 Accordingly, atrial fibrosis predisposes to the occurrence of LA thrombus formation and stroke, independently of LA chamber size.35

Doubts about the primacy of AF in causing stroke have been reinforced by the results of longitudinal studies that utilized continuous electrocardiographic monitoring devices to detect AF in patients at risk for or with a history of stroke. In these studies, at-risk patients generally did not exhibit evidence of AF in the month preceding the occurrence of stroke.36,37 Patients who suffered a thromboembolic stroke manifested AF only very rarely and transiently,38 and in many patients, AF was observed only after the cerebrovascular event.39 Importantly, in a randomized controlled trial in 2718 patients who had implantable devices that would allow for continuous remote monitoring of their cardiac rhythms, the use of anticoagulants guided by the presence or absence of AF in individual patients at risk did not prevent thromboembolic events.40

Furthermore, pharmacological control or procedural abolition of AF does not reduce the risk of stroke in large-scale randomized controlled clinical trials. Randomized controlled trials that have compared rate-control and rhythm-control strategies in patients with established AF have demonstrated no reduction in the risk of systemic thromboembolism or stroke in patients assigned to rhythm control, even though these patients had a reduced burden of AF.41 Paradoxically, the rhythm-control group experienced an increased risk of thromboembolic events,42 possibly because oral anticoagulation was discontinued in some patients, based on the mistaken belief that AF (rather than the atrial myopathy) was the primary driver of stroke. Finally, abolition of AF by catheter ablation did not reduce the risk of stroke in a large-scale randomized controlled trial; in this study, oral anticoagulation therapy was maintained, although it was not likely to be in the therapeutic range in many patients.43

Importantly, the severity of LA disease drives the risk of stroke and vascular brain injury in patients, with or without AF.44,45 Accordingly, in patients who do not have risk factors that reflect the existence of an atrial myopathy, the risk of stroke in patients with AF is similar to that in patients without AF.34,46 Furthermore, current risk scores that are to guide the use of oral anticoagulants (which identify patients with an atrial myopathy) predict the occurrence of stroke, even in patients without AF,47 and in patients with high risk scores, the risk of thromboembolic events that is determined by the atrial myopathy is not increased further by the presence of AF.48 Accordingly, AF may simply be a biomarker for the severity of the underlying inflammation-related atrial myopathy.44–46,49

It is noteworthy that among individuals with known AF, the rate of stroke in patients with RA and psoriasis is greater than can be explained by the conventional CHA\textsubscript{2}DS\textsubscript{2}-VASc score that is used to guide the use of oral anticoagulants,18 presumably because it does not incorporate measures of systemic inflammation or assessments of the severity of the atrial myopathy.

Importance of Atrial Myopathy in Rheumatoid Arthritis and Psoriasis

The concept that many patients with RA and psoriasis have an undiagnosed atrial myopathy is strongly supported by the available evidence. These patients frequently show abnormalities of electrical activation in the atria, and derangements in atrial geometry and filling, particularly affecting the LA.50–54 Changes in LA structure progress more rapidly in patients with RA than in the general population.55 The magnitude of these abnormalities closely parallels the severity of clinical inflammation (Figure).

Pathogenesis of Atrial Disease in Systemic Inflammatory Disorders

The systemic inflammation in both RA and psoriasis is accompanied by coronary microvascular dysfunction as well as fibrosis; these abnormalities are related to the disease severity and duration, but are not explained by traditional

Figure. Proposed pathways by which rheumatoid arthritis and psoriasis can lead to an increased risk of ischemic stroke.
cardiovascular risk factors. Changes in LA geometry are directly linked to the intensity of systemic inflammation. In addition, the systemic inflammatory process in both RA and psoriasis can be transmitted to the adipose tissue residing in the epicardium, thereby expanding its mass and transforming its biology into a proinflammatory state. The secretion of proinflammatory adipocytokines from this epicardial fat depot can cause microcirculatory injury and fibrosis in the underlying tissues, particularly the atrial myocardium.

These observations explain several important findings. First, both RA and psoriasis are associated with an expansion of epicardial adipose tissue mass that is proportional to the clinical severity of the disease but independent of body mass. Second, in patients with AF, there is a close association between the thickness and inflammatory state of epicardial fat and the severity of electrical abnormalities in the adjacent myocardium. Accordingly, epicardial fat volume predicts the incidence of AF in the community even in the absence of cardiovascular disease. Epicardial adipose tissue mass increases as AF evolves from a paroxysmal to a persistent arrhythmia. Third, there is a strong association between epicardial adipose tissue mass and derangements in LA geometry and function, potentially explaining why an expansion of epicardial adipose tissue presages an exaggerated risk of thromboembolic events.

Conventional and Novel Approaches to Stroke Prevention in Patients With RA and Psoriasis

The current approach to stroke prevention in RA and psoriasis resembles that in other disorders, that is, control of traditional cardiovascular risk factors (particularly hypertension) and the judicious use of oral anticoagulation in patients who have elevated CHA2DS2-VASc risk scores. However, as noted above, the CHA2DS2-VASc risk score does not incorporate information about systemic inflammation, and thus, it underestimates the risk of thromboembolic events in patients with RA and psoriasis. Some have proposed that the CHA2DS2-VASc risk score be multiplied in patients with a systemic inflammatory disorder. Conceivably, oral anticoagulants might prevent stroke in patients with systemic inflammatory disorders who demonstrate an atrial myopathy, even without AF; however, randomized controlled trials supporting such an approach are lacking.

Role of Rhythm Control in Preventing Stroke in RA and Psoriasis

The available evidence suggests that the presence and severity of an atrial myopathy—and not AF—is the primary driver of the risk of stroke. Accordingly, a role of rhythm control in preventing stroke in patients with RA and psoriasis who have AF has not been demonstrated. As noted earlier, randomized controlled trials that have compared rate-control and rhythm-control strategies in patients with established AF have shown no reduction in the risk of systemic thromboembolism or stroke in patients assigned to rhythm control, even though these patients had a reduced burden of AF. Most strikingly, catheter ablation can abolish AF for meaningful periods of time in many patients, but those with an atrial myopathy are at increased risk of AF recurrence, and ablation adds to the preexisting fibrotic burden of the left atrium, further compromising chamber capacitance and its transport function. The atrial injury produced by ablation has important thrombogenic effects, explaining why the procedure itself carries a high immediate risk of systemic thromboembolism. Importantly, there was no reduction in stroke risk in the CABANA (Catheter Ablation Versus Antiarrhythmic Drug Therapy for Atrial Fibrillation) trial, even though AF was controlled more effectively in the patients who had ablation than those receiving antiarrhythmic drugs.

Role of Anti-Inflammatory Agents in Preventing Stroke in RA and Psoriasis

If systemic and epicardial adipose tissue inflammation leading to the development of an atrial myopathy is responsible for an increased risk of stroke, then other opportunities emerge for stroke prevention in RA and psoriasis. Although some work has identified potential proinflammatory mediators, the systemic inflammatory process (regardless of cause) can be targeted by disease-modifying biological anti-inflammatory agents; their use has been accompanied by a reduced risk of stroke in both RA and psoriasis. In contrast, the risk of stroke may be increased by the use of glucocorticoids, possibly because they have additional effects to promote adverse cardiac remodeling and thus exacerbate the atrial myopathy. Glucocorticoids can alter calcium kinetics in cardiomyocytes and can signal through mineralocorticoid receptors to promote myocardial inflammation and fibrosis. The adipogenic effects of glucocorticoids may also enhance epicardial adipose tissue mass and its deleterious biological effects.

Can the epicardial adipose tissue inflammation be targeted directly to reduce the risk of stroke? Interestingly, statins exert anti-inflammatory effects independent of their actions to lower serum cholesterol, and these actions may be sufficient to treat the arthritic and dermatological manifestations of RA and psoriasis, respectively. Statins can also reduce the mass and inflammatory state of epicardial adipose tissue, which may explain their actions to alleviate inflammation and the development of atrial myopathy. The use of statins is...
accompanied by a decrease in the risk of AF in randomized controlled trials\(^{98,99}\) and with a reduced likelihood of thromboembolic stroke in observational studies.\(^{100,101}\) The utility of statins in preventing systemic thromboembolism in patients with RA and psoriasis has yet to be fully evaluated.

Conclusions

Both RA and psoriasis are accompanied by an increased risk of stroke, which cannot be explained by an increased prevalence of traditional cardiovascular risk factors that are focused on atherosclerosis. Instead, the risk of stroke is likely to be related to an effect of systemic inflammation to promote the development of an atrial myopathy, resulting in blood stasis within the LA, thrombus formation, and systemic thromboembolism. The systemic inflammatory process in RA and psoriasis can directly impair the integrity of the endothelium of the coronary microcirculation of the atrial myocardium. In addition, systemic inflammation can cause expansion of the epicardial adipose tissue adjacent to the LA; the secretion of proinflammatory adipocytokines from the epicardial fat depot can exaggerate the adverse structural and functional changes in the LA, leading to the atrial myopathy that provides the substrate for thromboembolic stroke. Interventions that are directed toward alleviation of the atrial myopathy and the resulting risk of thrombus formation are worthy of further evaluation in reducing the burden of cerebrovascular disease in patients with RA and psoriasis.

Disclosures

Dr Packer has recently consulted for Abbvie, Actavis, Akcea, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Cardiorentis, Daichi Sankyo, Gilead, Johnson & Johnson, NovoNordisk, Pfizer, Relypsa, Sanofi, Synthetic Biologics, and Theravance. None of these relationships are relevant to the topic of this manuscript.

References

1. Fernández-Gutiérrez B, Perrotti PP, Gisbert JP, Domènech E, Fernández-Nebro A, Cañete JD, Ferrándiz C, Tornero J, García-Sánchez V, Panés J, Fonseca E, Blanco F, Rodríguez-Moreno J, Carneiro P, Julià A, Marsal S, Rodríguez-Rodríguez L; IMID Consortium. Cardiovascular disease in immune-mediated inflammatory diseases: a cross-sectional analysis of 6 cohorts. *Medicine (Baltimore)*. 2017;96:e7308.

2. Crowson CS, Matteson EL, Roger VL, Raggi P, Gabriel SE, Slezak T; IMID Consortium. Cardiovascular disease in immune-mediated inflammatory diseases: a cross-sectional analysis of 6 cohorts. *J Am Coll Cardiol*. 2014;64:366–370.

3. Sathish S, Banerjee A, Marschallin R, Schmitt C, Schwab S, et al. Atrial fibrillation promotion in a rat model of rheumatoid arthritis. *Am Heart Assoc*. 2015;6:007320. DOI: 10.1161/JAHA.117.007320.

4. Dai H, Wang X, Yin S, Zhang Y, Han Y, Yang N, Xu J, Sun L, Yuan Y, Sheng L, Gong Y, Li Y. Atrial fibrillation promotion in a rat model of rheumatoid arthritis. *Am Heart Assoc*. 2017;6:e007320. DOI: 10.1161/JAHA.117.007320.

5. Wiseman SJ, Ralston SH, Wardlaw JM. Cerebrovascular disease in rheumatic diseases: a systematic review and meta-analysis. *Stroke*. 2016;47:943–950.

6. Solomon DH, Goodson NJ, Katzn J, Weinblatt ME, Avorn J, Setoguchi S, Canning C, Schneeweiss S. Patterns of cardiovascular risk in rheumatoid arthritis. *Ann Rheum Dis*. 2006;65:1608–1612.

7. Fransen J, Kazemi-Bajestani SM, Bredie SJ, Popa CD. Rheumatoid arthritis disadvantages younger patients for cardiovascular diseases: a meta-analysis. *PLoS One*. 2014;11:e0157360.

8. Tiosano S, Yavne Y, Gendelman O, Watan A, Comanescut D, Shenfeld Y, Cohen A, Amital D. Stroke among rheumatoid arthritis patients: does age matter? A real-life study. *Neuroepidemiology*. 2017;49:99–105.

9. Chen YR, Hsieh Fl, Lien LM, Hu C, Jeng JS, Peng GS, Tang SC, Chi NF, Sung YF, Chioi HY. Rheumatoid arthritis significantly increased recurrence risk after ischemic stroke/transient ischemic attack. *J Neurol*. 2018;265:1810–1818.

10. Xin F, Fu L, Liu H, Xu Y, Wei T, Chen M, Exploring metabolic and inflammatory abnormalities in rheumatoid arthritis patients developing stroke disease: a case-control study using electronic medical record data in northern China. *Clin Rheumatol*. 2019;38:1401–1411.

11. Crowson CS, Rollefstad S, Iukahit E, Kitas GD, van Riel PLCM, Gabriel SE, Matteson EL, Kien TK, Douglas K, Sandoo A, Arts E, Wallberg-Jonsson S, Innala L, Karpozus G, Dessein PH, Tsang L, El-Gabalawy H, Highton C, Ramos VP, Yáñez IC, Sifakis PP, Zampelli E, Gonzalez-Gay MA, Corrales A, Laar MV, Vunkeneman HE, Meek I, Semb AG. A Trans-Atlantic Cardiovascular Cohort for Rheumatoid Arthritis (ATACCA). Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. *Ann Rheum Dis*. 2018;77:48–54.

12. Zhang J, Chen L, Delzel E, Munthor P, Hillegass WB, Safford MM, Millian YL, Crowson CS, Curtis JR. The association between inflammatory markers, serum lipids and the risk of cardiovascular events in patients with rheumatoid arthritis. *Ann Rheum Dis*. 2014;73:1301–1308.

13. Masuda H, Miyazaki T, Shimada K, Tamura N, Matsuda R, Yoshihara T, Ohsaka H, Sai E, Matsumori R, Fukushima K, Hiki M, Kume A, Kiyangi T, Takasaki Y, Daida H. Disease duration and severity impacts on long-term cardiovascular events in Japanese patients with rheumatoid arthritis. *J Cardio*. 2014;6:366–370.

14. Fernández-Armenteros JM, Gómez-Arbonés X, Buti-Soler M, Betriu-Bars A, Sammartin-Novell V, Ortega-Bravo M, Martín-Alonso M, Gari E, Portero-Otín M, Santamaría-Bab L, Casanova-Seuma JM. Psoriasis, metabolic syndrome and cardiovascular risk factors. A population-based study. *J Eur Acad Dermatol Venereol*. 2019;33:128–135.

15. Ahlehoff O, Gislason GH, Jørgensen CH, Lindhardsen J, Charlot M, Olesen JB, Abildstram SZ, Skov L, Torp-Pedersen C, Hansen PR. Psoriasis and risk of atrial fibrillation and ischaemic stroke: a Danish Nationwide Cohort Study. *Eur Heart J*. 2012;33:2054–2064.

16. Samarasekera EJ, Neilsen JM, Warren RB, Parsham J, Smith CH. Incidence of cardiovascular disease in individuals with psoriasis: a systematic review and meta-analysis. *J Invest Dermatol*. 2013;133:2340–2346.

17. Armstrong EJ, Harshkamp CT, Armstrong AW. Psoriasis and major adverse cardiovascular events: a systematic review and meta-analysis of observational studies. *J Am Heart Assoc*. 2013;2:e000662. DOI: 10.1161/JAHA.113.000662.

18. Ahlehoff O, Gislason GH, Charlot M, Jørgensen CH, Lindhardsen J, Olesen JB, Abildstram SZ, Skov L, Torp-Pedersen C, Hansen PR. Psoriasis is associated with clinically significant cardiovascular risk: a Danish nationwide cohort study. *J Intern Med*. 2011;270:147–157.

19. Gelfand JM, Dommasch ED, Shn DB, Azfar RS, Kurd SK, Wang X, Troxel AB. The risk of stroke in patients with psoriasis. *J Invest Dermatol*. 2009;129:2411–2418.

20. Ma C, Schupp CW, Armstrong EJ, Armstrong AW. Psoriasis and dyslipidemia: a population-based study analyzing the National Health and Nutrition Examination Survey (NHANES). *J Eur Acad Dermatol Venereol*. 2018;28:1109–1112.

21. Rhee TM, Lee JH, Choi EK, Han KY, Jang HH, Lee H, Park CS, Hwang D, Lee SR, Lim WH, Kang SH, Cha MJ, Cho Y, Oh IF, Oh S. Increased risk of atrial fibrillation and thromboembolism in patients with severe psoriasis: a nationwide population-based study. *Scirep*. 2017;7:9973.

22. Schnabel RB, Larson MG, Yamamoto JF, Sullivan LM, Yamamoto JF, Sullivan LM, Yamamoto JF, Sullivan LM. Psoriasis and major adverse cardiovascular events in Japanese patients with rheumatoid arthritis. *Ann Rheum Dis*. 2015;74:1050–1054.

23. Ungprasert P, Srinivi S, Kittanamongkolchai W. Risk of incident atrial fibrillation in patients with rheumatoid arthritis: a systematic review and meta-analysis. *Int J Rheum Dis*. 2017;20:434–441.
24. Bacani AK, Crowson CS, Roger VL, Gabriel SE, Matteson EL. Increased incidence of atrial fibrillation in patients with rheumatoid arthritis. *Biomed Res Int*. 2015;2015:809514.

25. Kim SC, Liu J, Solomon DH. The risk of atrial fibrillation in patients with rheumatoid arthritis. *Ann Rheum Dis*. 2014;73:1091–1095.

26. Lindhardsen J, Ahlehoff O, Gislason GH, Madsen OR, Olesen JB, Svendsen JH, Torp-Pedersen C, Hansen PR. Risk of atrial fibrillation and stroke in rheumatoid arthritis: a Danish nationwide cohort study. *BMJ*. 2012;344:e1257.

27. Ungprasert P, Srivari N, Kittanamongkolchai W. Psoriasis and risk of incident atrial fibrillation: a systematic review and meta-analysis. *Indian J Dermatol Venereol Leprol*. 2016;82:489–497.

28. Upala S, Shahnawaz A, Sanguankeo A. Psoriasis increases risk of new-onset atrial fibrillation: a systematic review and meta-analysis of prospective observational studies. *J Dermtatol Treat*. 2017;28:406–410.

29. Parisi R, Rutter MK, Lunt M, Young HS, Symmons DPM, Griffin MF. Association between atrial fibrillation and subclinical atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. *J Am Coll Cardiol*. 2011;57:831–838.

30. Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf C, Vergara G, Kholmovski E, McCann CJ, Parker D, Brachmann J, Macleod RS, Marrouche NF. Association of left atrial fibrillation detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. *J Am Coll Cardiol*. 2011;57:831–838.

31. Hirsh BJ, Copeland-Halter RS, Halperin JL. Fibrotic atrial cardiomyopathy, atrial fibrillation, and thromboembolism: mechanistic links and clinical consequences. *J Am Coll Cardiol*. 2015;65:2239–2251.

32. Parsons C, Patel SI, Cha S, Shen WK, Desai S, Chamberlain AM, Lu SA, Aguilir MJ, Demaerschalk BM, Mookadam F, Shamsun F. CHA2DS2-VASc score: a predictor of thromboembolic events and mortality in patients with an implantable monitoring device without atrial fibrillation. *Mayo Clin Proc*. 2017;92:360–369.

33. Melgaard L, Gorst-Rasmussen A, Lane DA, Rasmussen LH, Larsen TB, Lip GY. Assessment of the CHA2DS2-VASc score in predicting ischemic stroke, thromboembolism, and death in patients with heart failure with and without atrial fibrillation. *JAMA*. 2015;314:1030–1038.

34. Calenda BW, Fuster V, Halperin JL, Granger CB. Stroke risk assessment in nonvalvular atrial fibrillation: a systematic review and meta-analysis. *J Am Soc Echocardiogr*. 2009;2:474–480.

35. Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf C, Vergara G, Kholmovski E, McCann CJ, Parker D, Brachmann J, Macleod RS, Marrouche NF. Association of left atrial fibrillation detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. *J Am Coll Cardiol*. 2011;57:831–838.

36. Dryden DM, Identi C, Blomkalns AM, McKillop MA, Datalink. Cardiovascular events: cohort study using the Clinical Practice Research Datalink. *BMJ*. 2015;350:h2755.

37. Van Gelder IC, Hohnloser SH, Carlson M, Fain E, Nakamya J, Mairesse GH, Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf C, Vergara G, Kholmovski E, McCann CJ, Parker D, Brachmann J, Macleod RS, Marrouche NF. Association of left atrial fibrillation detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. *J Am Coll Cardiol*. 2011;57:831–838.

38. Venkateshwaran A, Sarajlic P, Lund LH, Früden C, Nørgård B, Opava CH, Lundberg IS, Larsson SC, Manourous A, Black M. Impaired left atrial dynamics and its improvement by guided physical activity reveal left atrial strain as a novel early indicator of reversible cardiac dysfunction in rheumatoid arthritis. *Eur J Prev Cardiol*. 2018;25:1106–1108.

39. Malolberti A, Riva M, Tadic M, Valena C, Villa P, Boggioni I, Pozzi MR, Grassi G. Association between atrial, ventricular and vascular morphofunctional alterations in rheumatoid arthritis. *High Blood Press Cardiovasc Prev*. 2018;25:97–100.

40. Yildiz A, Ucmak D, Oylumlu M, Akkurt MT, Yuksel M, Akil MA, Acet H, Polat N, Aydin M, Bilik MZ. Assessment of atrial electromechanical delay and F-wave dispersion in patients with psoriasis. *Echocardiography*. 2014;31:1071–1076.

41. Aksan G, Nar G, Soyku Y, Inci S, Yuksel S, Ocal HS, Yuksel EP, Gulel O. Assessment of atrial electromechanical delay and left atrial mechanical functions in patients with psoriasis vulgaris. *Echocardiography*. 2015;32:615–622.

42. Atas H, Kepez A, Bozbay M, Gencosmanoglu DS, Cincin A, Sunbul M, Bozbay AY, Danishova R, Ergun T. Assessment of left atrial volume and function in patients with psoriasis by using real time three-dimensional echocardiography. *Klin Wochenschr*. 2015;127:858–863.

43. Davis JM III, Lin G, Oh J, Crowson CS, Achenbach SJ, Themeau TM, Matteson EL, Rodeheffer RJ, Gabriel SE. Five-year changes in cardiac structure and function in patients with psoriatic arthritis compared with the general population. *Int J Cardiol*. 2017:240:379–385.

44. Recio-Mayoral A, Mason JC, Kasci JK, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. *Eur Heart J*. 2009;30:1837–1843.

45. Amigues I, Russo C, Giles JT, Tugcu A, Weinberg R, Bokhari S, Bathon JM. Myocardial microvascular dysfunction in rheumatoid arthritis quantification by 13N-ammonia positron emission tomography/computed tomography. *Circ Cardiovasc Imaging*. 2019;12:e007495.

46. Kobayashi Y, Giles JT, Hirano M, Yokoe I, Nakajima Y, Bathon JM, Lima JA, Kaski JC, Harari OA, Camici PG. Kobayashi Y. Assessment of myocardial abnormalities in rheumatoid arthritis using a comprehensive cardiac magnetic resonance approach: a pilot study. *Arthritis Res Ther*. 2010;12:R171.

47. Gullu H, Cilkan G, Dursun M, Rcfi O, Guven A, Muderrisoglu H. Impaired coronary microvascular function and its association with disease duration and inflammation in patients with psoriasis. *Echocardiography*. 2013;30:912–918.

48. Osto E, Plasierco S, Maddalozzo A, Forchetti G, Montisci R, Famoso G, Giovagnoni A, Pescatori A, Iliceto S, Tona F. Impaired coronary flow reserve in young patients affected by severe psoriasis. *Atherosclerosis*. 2012;221:113–117.

49. Psychiatry SNP, Apostolos T, Sinos I, Hamodrak N, Galos E, Kremastinos DT. Relations of elevated C-reactive protein and interleukin-6 levels to left atrial
size and duration of episodes in patients with atrial fibrillation. Am J Cardiol. 2005;95:764–76.
62. Verbeeten N, Guglielmi V, Balse E, Gabrot B, Cottillard A, Atassi F, Amour J, Leprince P, Dutour A,克莱门特K, Hatem SN. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipokines. Eur Heart J. 2015;36:795–805a.
63. Chen WJ, Danad I, Raijmakers PG, Halbmeijer R, Harms HJ, Lammertsma AA, van Rossum AC, Diamant M, Knaapen P. Effect of type 2 diabetes mellitus on epicardial adipose tissue volume and coronary vasomotor function. Am J Cardiol. 2014;113:90–97.
64. Alpaydın S, Buyukterzi Z, Akkurt HE, Yılmaz H. Impaired left ventricular diastolic functions and thickened epicardial adipose tissue in rheumatoid arthritis patients is correlated with DAS-28 score. Acta Cardiol Sin. 2012;28:182–187.
65. Lima-Martínez MM, Campo E, Salazar J, Paoli M, Maldonado I, Acosta C, Rodney M, Contreras M, Cabrera-Regó JD, Iacobellis G. Epicardial fat thickness as cardiovascular risk factor and therapeutic target in patients with rheumatoid arthritis treated with biological and nonbiological therapies. Arthritis. 2014;78:2850.
66. Wang X, Guo Z, Zhu Z, Bao Y, Yang B. Epicardial fat tissue in patients with psoriasis: a systematic review and meta-analysis. Lipids Health Dis. 2016;15:103.
67. Mazurek T, Kiliszek M, Kobylecka M, Skubisz-Gluchowska J, Kochman J, Filipiak K, Krolicki L, Opolski G. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol. 2014;114:1505–1510.
68. Bos D, Vernooij MW, Shahzad R, Kovavsi M, Hofman A, van Walsum T, Deckers JW, Ikram MA, Heerling JA, Franco OH, van der Lugt A, Leening MJG. Epicardial fat volume and the risk of atrial fibrillation in the general population free of cardiovascular disease. JACC Cardiovasc Imaging. 2015;8:1405–1414.
69. Oba K, Maeda M, Maimaituxun G, Yamaguchi S, Arasaki O, Fukuda D, Yagi S, Oba K, Maita H, Morita A, Nakajima S, et al. Impact of epicardial adipose tissue on the prevalence of paroxysmal and persistent atrial fibrillation. J Am Coll Cardiol. 2015;65:1887–1898.
70. Yorgun H, Canpolat U, Aytemir K, Hazir Y, Nisho I, lwase T, Takao S, Kusunose K, Yamada H, Soeki T, Wakatsuki T, Harada M, Masuzaki H, Sata M, Shimabukuro M. Effect of the epicardial adipose tissue volume on the prevalence of paroxysmal atrial fibrillation. JACC Cardiovasc Imaging. 2015;8:1405–1414.
71. Psychar SN, Tsokalas D, Varvarousis D, Papaspyropoulos A, Gkika E, Kotsakou A, Paraskevadis IA, Iliodromiti EK. Opposite relations of epicardial adipose tissue volume on the prevalence of paroxysmal and persistent atrial fibrillation. SAGE Open Med. 2018;6:2050312118799908.
72. Chu CY, Lee WH, Hsu PC, Lee MK, Lee HH, Chiu CA, Lin TH, Lee CS, Yen HW, Voon WC, Lai WT, Sheu SH, Su HM. Association of increased epicardial adipose tissue thickness with adverse cardiovascular outcomes in patients with atrial fibrillation. Circ J. 2018;82:1778–1787.
73. Zha AM, Di Napoli M, Behrouz R. Prevention of stroke in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2019;71:498–511.
74. Greenberg JD, Kremer JM, Curtis JR, Hochberg MC, Reed G, Tsao P, Farkouh ME, Nasir A, Setoguchi S, Solomon DH; CORRONA Investigators. Tumour necrosis factor antagonist use and associated risk reduction of cardiovascular events among patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70:576–582.
75. De P, Roy SG, Kar D, Bandyopadhyay A. Excess of glucocorticoids induces myocardial remodeling and alteration of calcium signaling in cardiomyocytes. J Endocrinol. 2011;209:105–114.
76. Chai W, Hoffland J, Jansen PM, Garrels IM, de Vries R, van den Bogaard AJ, Feelders RA, de Jong FH, Danser AH. Steroidogenesis vs. steroid uptake in the heart: do corticosteroids mediate effects via cardiac mineralocorticoid receptors? J Hypertens. 2010;28:1044–1053.
77. Roy SG, De P, Mukherjee D, Chaner V, Konar A, Bandyopadhyay D, Bandyopadhyay A. Excess of glucocorticoids induces cardiac dysfunction via activating angiotensin II pathway. Cell Physiol Biochem. 2009;24:1–10.
78. Kitterer D, Latus J, Henes J, Birkmeier S, Backes M, Braun N, Sechtem U, Dominik A, Mahrholdt H, Greulich S. Impact of long-term steroid therapy on epicardial and pericardial fat deposition: a cardiac MRI study. Cardiovasc Diabetol. 2014;13:140.
79. Mowla K, Rajai E, Ghorbani A, Dargahi-Malamar M, Bahadoram M, Mohamadi S. Effect of atorvastatin on the disease activity and severity of rheumatoid arthritis: double-blind randomized controlled trial. J Clin Diagn Res. 2016;10:DC26–A.
80. Lv S, Liu Y, Zou Z, Li F, Zhao S, Shi R, Bian R, Tian H. The impact of statins therapy on disease activity and inflammatory factor in patients with rheumatoid arthritis: a meta-analysis. Clin Exp Rheumatol. 2013;31:69–76.
81. Ghazizadeh R, Tosa M, Ghazizadeh M. Clinical improvement in psoriasis with treatment of associated hyperlipidemia. Am J Med. 2011;34:31–34.
82. Orenstein M, Young KS, Petraglia L, De Labriolle A, Grimard C, Zannad N, Babuty D, French Society of Dermatology. Psoriasis in France and associated risk factors: results of a case-control study based on a large community survey. Dermatology. 2009;218:103–109.
83. Parisi V, Petraglia L, D’Esposito V, Cabaro S, Rengo G, Caruso A, Grimaldi MG, Baldascino F, De Bellis A, Vitale D, Formisano R, Ferro A, Paolillo S, Davin L, Lancellotti P, Formisano P, Perrone Filardi P, Ferrara N, Leosco D. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int J Cardiol. 2019;274:326–330.
84. Alopexolus N, Melek BH, Arepalli CD, Hartlage GR, Chen Z, Kim S, Stillman AE, Raggi P. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J Am Coll Cardiol. 2013;61:1956–1961.
85. Yag O, Qi X, Yang Y, Li Y, Song X, Hao H. Effects of atorvastatin on atrial remodeling in a rabbit model of atrial fibrillation produced by rapid atrial pacing. BMC Cardiovasc Disord. 2016;16:142.
86. Wang M, Li Z, Zhang X, Xie X, Zhang Y, Wang X, Hou Y. Rosuvastatin attenuates atrial structural remodelling in rats with myocardial infarction through the inhibition of the p38 MAPK signalling pathway. Heart Lung Circ. 2015;24:386–394.
87. Li YD, Tang BP, Guo F, Li JX, Han W, Tang Z, Zhang Y. Effect of atorvastatin on left atrial function in patients with paroxysmal atrial fibrillation. Genet Med. 2013;12:3488–3494.
88. Fauchier L, Pierre B, de Labriolle A, Grimald C, Zannad N, Babuty D. Antiarrhythmic effect of statin therapy and atrial fibrillation: a meta-analysis of randomized controlled trials. J Am Coll Cardiol. 2008;51:828–835.
99. Fang WT, Li HJ, Zhang H, Jiang S. The role of statin therapy in the prevention of atrial fibrillation: a meta-analysis of randomized controlled trials. Br J Clin Pharmacol. 2012;74:744–756.

100. Kumagai N, Nusser JA, Inoue H, Okumura K, Yamashita T, Kubo T, Kitaoka H, Origasa H, Atarashi H; J-RHYTHM Registry Investigators. Effect of addition of a statin to warfarin on thromboembolic events in Japanese patients with nonvalvular atrial fibrillation and diabetes mellitus. Am J Cardiol. 2017;120:230–235.

101. Flint AC, Conell C, Ren X, Kamel H, Chan SL, Rao VA, Johnston SC. Statin adherence is associated with reduced recurrent stroke risk in patients with or without atrial fibrillation. Stroke. 2017;48:1788–1794.

Key Words: atrial strain • psoriasis • rheumatoid arthritis • stroke