The Characterizing Properties of (Signless) Laplacian Permanental Polynomials of Almost Complete Graphs

Tingzeng Wu and Tian Zhou

School of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, China

Correspondence should be addressed to Tingzeng Wu; mathtzwu@163.com

Received 16 August 2021; Accepted 17 September 2021; Published 30 September 2021

Abstract

We use G to denote a simple graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$. The degree of a vertex $v \in V(G)$ is denoted by $d(v)$. The degree matrix of G, denoted by $D(G)$, is the diagonal matrix whose (i,i)th entry is $d(v_i)$. For a subgraph H of G, let $G - E(H)$ denote the subgraph obtained from G by deleting the edges of H. Let $c_1(G)$ and $p_1(G)$ denote, respectively, the numbers of i-cycles and i-vertex paths in G. Let $c_1(G_v)$ denote the number of triangles containing the vertex v of G. Let $G \cup H$ be the union of two graphs G and H which have no common vertices. For any positive integer l, let I_G be the union of l disjoint copies of graph G. For convenience, the complete graph, path, cycle, and star on n vertices are denoted by K_n, P_n, C_n, and $K_{1,n-1}$, respectively.

The permanent of the $n \times n$ matrix $X = (x_{ij})$ ($i, j = 1, 2, \ldots, n$) is defined as

$$\text{per}(X) = \sum_{\sigma} \prod_{i=1}^{n} x_{\sigma(i), i},$$

where the sum is taken over all permutations σ of $\{1, 2, \ldots, n\}$. Valiant [1] has shown that computing the permanent is \#P-complete even when restricted to $(0, 1)$-matrices.

Let M be an $n \times n$ matrix. The permanent polynomial of M, denoted by $\pi(M, x)$, is defined to be the permanent of the characteristic matrix of M, i.e.,

$$\pi(M) = \pi(M, x) = \text{per}(xI - M),$$

where I is the identity matrix of size n. Let $A(G)$ denote the adjacency matrix of G. The Laplacian matrix $L(G)$ and signless Laplacian matrix $Q(G)$ of G are defined by $L(G) = D(G) - A(G)$ and $Q(G) = D(G) + A(G)$, respectively. We call $\pi(L(G), x)$ (resp., $\pi(Q(G), x)$) the Laplacian (resp., signless Laplacian) permanental polynomial of G.

1. Introduction

In this paper, we show that almost complete graphs are determined by their (signless) Laplacian permanental polynomials.

Editor: Barbara Martinucci

Copyright © 2021 Tingzeng Wu and Tian Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let G be a graph with n vertices, and let $L(G)$ and $Q(G)$ denote the Laplacian matrix and signless Laplacian matrix, respectively. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of $L(G)$ (respectively, $Q(G)$). In this paper, we show that almost complete graphs are determined by their (signless) Laplacian permanental polynomials.
Laplacian permanental polynomial? Answer to the problem is very hard. Up to now, only a few results are known about the problem. Merris et al. computed the Laplacian permanent polynomials of all connected graphs on 6 vertices, and they found that there exist no nonisomorphic Laplacian copermanental graphs of such graphs. Based on the result, they stated that they do not know of a pair of nonisomorphic Laplacian copermanental graphs. Recently, Liu [19] showed that complete graph K_n and star S_n are determined by their (signless) Laplacian permanental polynomials.

Let G_n denote the set of graphs each of which is obtained from K_n by removing five or fewer edges. Cámara and Haemers [20] showed that all graphs in G_n are determined by their characteristic polynomials of adjacency matrices of these graphs. The authors [21] proved that all graphs in G_n are determined by their A_n-spectra. In this paper, our interest is to discuss which graph in G_n is determined by its (signless) Laplacian permanental polynomial. And, we prove the following result.

Theorem 1. All graphs in G_n are determined by their (signless) Laplacian permanental polynomial.

The rest of this paper is organized as follows. In Section 2, we present some characterizing properties of the (signless) Laplacian permanental polynomial and give some structural properties of graphs in G_n. In Section 3, we give the Proof of Theorem 1.

2. Preliminaries

Let G_n denote the set of graphs each of which is obtained from K_n by removing five or fewer edges. For $n \geq 10$, there exist exactly 45 nonisomorphic graphs each of which is obtained from K_n by removing five or fewer edges. These graphs are labeled by G_{ij}, $1 \leq i \leq 5$, $0 \leq j \leq 25$, and illustrated in Figure 1. For some properties of graphs in G_n, see [21, 22], among others.

Lemma 1 (see [22]). Let $H \subseteq K_n$ be a graph with l edges and let $G = K_n - E(H)$. Then,

$$c_{4}(G) = \binom{n}{3} - l(n - 2) + \sum_{v \in V(H)} \binom{d(v)}{2} - c_3(H). \quad (3)$$

In [22], the first author calculated the number of quadrangles of some $G \in G_n$, see Table 2.

Lemma 3 (see [21]). Let $c_3(G_v)$ denote the number of triangles containing the vertex v of G. Using the principle of inclusion-exclusion, we can obtain the following result. Let $H \subseteq K_n$ be a graph with k edges and let $G = K_n - E(H)$. Let $v \in V(G)$ and let v be an endpoint of l edges in $E(H)$. Then,

$$c_3(G_v) = \binom{n - 1}{2} - (k - l) - (n - 1 - l) - \binom{l}{2} + c_3(G(v_l)) + |P|, \quad (5)$$

Lemma 4 (see [19]). Let G be a graph with n vertices and m edges, and let (d_1, d_2, \ldots, d_n) be the degree sequence of G. Suppose that $\pi(L(G), x) = \sum p_i (G)x^{n-i}$. Then,

(i) $p_0(G) = 1$
(ii) $p_1(G) = -2m$
(iii) $p_2(G) = 2m^2 + m - (1/2)\sum d_i^2$
(iv) $p_3(G) = - (1/2) \sum d_i^2 + (m + 1) \sum d_i - (4/3) m^3 - 2m^2 + 2c_1(G)$
(v) $p_4(G) = - (1/4) \sum d_i^2 + ((2/3)m + 1) \sum d_i^3 - (1/2)$
\hspace{1cm} \begin{align*}
&\quad (2m^2 + 5m + 1) \sum d_i^3 + (1/8) (\sum d_i^2)^2 + \sum_{(v,y) \in E(G)} d_y d_j d_{c_3(G_v)} + 2c_4(G) - 4mc_3(G) + (2/3) \\
&\quad m^4 + 2m^3 + (1/2)m^2 + (1/2)m
\end{align*}$

Lemma 5 (see [19]). Let G be a graph with n vertices and m edges, and let (d_1, d_2, \ldots, d_n) be the degree sequence of G. Suppose that $\pi(Q(G), x) = \sum q_i (G)x^{n-i}$. Then,

(i) $q_0(G) = 1$
(ii) $q_1(G) = -2m$
(iii) $q_2(G) = 2m^2 + m - (1/2)\sum d_i^2$
(iv) $q_3(G) = - (1/3) \sum d_i^2 + (m + 1) \sum d_i - (4/3) m^3 - 2m^2 + 2c_1(G)$
(v) $q_4(G) = - (1/4) \sum d_i^2 + ((2/3)m + 1) \sum d_i^3 - (1/2)$
\hspace{1cm} \begin{align*}
&\quad (2m^2 + 5m + 1) \sum d_i^3 + (1/8) (\sum d_i^2)^2 + \sum_{(v,y) \in E(G)} d_y d_j d_{c_3(G_v)} + 2c_4(G) + 4mc_3(G) + (2/3) \\
&\quad m^4 + 2m^3 + (1/2)m^2 + (1/2)m$
Figure 1: The graphs obtained from K_n by deleting five or fewer edges drawn as lines in a disk.

Table 1: The numbers of triangles of some graphs in \mathcal{G}_n.

Graph	$c_4(G)$
G_{30}	$\left(\frac{n}{3}\right) - 3n + 9$
G_{32}, G_{33}	$\left(\frac{n}{3}\right) - 3n + 8$
G_{41}, G_{47}	$\left(\frac{n}{3}\right) - 4n + 11$
G_{44}, G_{46}, G_{410}	$\left(\frac{n}{3}\right) - 4n + 12$
G_{50}, G_{51}, G_{514}	$\left(\frac{n}{3}\right) - 5n + 12$
G_{52}	$\left(\frac{n}{3}\right) - 5n + 11$
G_{54}	$\left(\frac{n}{3}\right) - 5n + 20$
$G_{53}, G_{57}, G_{518}, G_{519}, G_{522}$	$\left(\frac{n}{3}\right) - 5n + 14$
G_{51}	$\left(\frac{n}{3}\right) - 3n + 7$
G_{40}	$\left(\frac{n}{3}\right) - 4n + 14$

Table 1: Continued.

Graph	$c_4(G)$
G_{41}	$\left(\frac{n}{3}\right) - 4n + 9$
G_{42}, G_{45}, G_{48}	$\left(\frac{n}{3}\right) - 4n + 10$
G_{59}, G_{524}	$\left(\frac{n}{3}\right) - 5n + 17$
$G_{55}, G_{512}, G_{520}, G_{523}$	$\left(\frac{n}{3}\right) - 5n + 15$
$G_{58}, G_{511}, G_{513}, G_{517}$	$\left(\frac{n}{3}\right) - 5n + 13$
$G_{50}, G_{510}, G_{515}, G_{516}, G_{525}$	$\left(\frac{n}{3}\right) - 5n + 16$

By Lemmas 4 and 5, we have the following.

Corollary 1. Let G be a graph with n vertices and m edges, and let (d_1, d_2, \ldots, d_n) be the degree sequence of G. Suppose that $\pi(L(G), x) = \sum_i r_i \pi_i(G) x^{n-i}$ and $\pi(Q(G), x) = \sum_i q_i \pi_i(G) x^{m-i}$. Then,
Lemma 8. We give some lemmas to prove Theorem 1 before. First, by Lemma 4 (iv) and Table 1, we have

\[\sum_{i=1}^{n} d_i^2(G_{10}) = \frac{1}{3} \left(\sum_{i=1}^{n} d_i^3(G_{30}) - \sum_{i=1}^{n} d_i^3(G_{32}) \right) + 2(c_3(G_{30}) - c_3(G_{32})) = 4. \]
Lemma 10. The following statements hold:

(i) Graphs G_{41}, G_{43}, and G_{47} are not pairwise (signless) Laplacian copemanental

(ii) Graphs G_{42} and G_{48} are not (signless) Laplacian copemanental

(iii) Graphs G_{44} and G_{410} are not (signless) Laplacian copemanental

Proof

(i) By Lemma 4 (iv) and Table 1, we get that $p_4(G_{41}) - p_4(G_{43}) = 4, p_4(G_{43}) - p_4(G_{47}) = 2$ and $p_4(G_{42}) - p_4(G_{47}) = 2$. Furthermore, by Corollary 1 (i), Table 1 and the equations above, we obtain $q_4(G_{41}) - q_4(G_{43}) = 4 - 4(3 + 4) = 0, q_4(G_{43}) - q_4(G_{47}) = 2 - 4(3 + 4) = 2$, and $q_4(G_{42}) - q_4(G_{47}) = 2 - 4(3 + 4) = -6$. Furthermore, by Lemma 5 (v) and Tables 1–3, we have $q_4(G_{41}) - q_4(G_{43}) = -2$. These mean that graphs G_{41}, G_{43}, and G_{47} are not pairwise (signless) Laplacian copemanental.

(ii) From Table 4, we obtain that $\sum_{i=1}^n d_i^2(G_{42}) = \sum_{i=1}^n d_i^2(G_{48}) = n^2 - 2n^2 - 15n + 28$. By Lemma 4 (v) and Tables 1–3, we have $p_4(G_{48}) = p_4(G_{42}) = 7$. By Corollary 1 (ii), $p_4(G_{48}) - p_4(G_{42}) = -7$. Tables 1 and 3, and the equation above, we obtain that $q_4(G_{48}) - q_4(G_{42}) = -7 - 4\sum_i d_i c_i(G_{48}) - \sum_i d_i c_i(G_{42}) + 8m(3 + 4) = 1$. This implies that G_{42} and G_{48} are not (signless) Laplacian copemanental.

(iii) Similarly, by Lemma 4 (iv) and Table 1, we have $p_4(G_{44}) = p_4(G_{410}) = -2$. By Corollary 1 (i), Table 1 and the equation above, we obtain $q_4(G_{44}) - q_4(G_{410}) = -2 - 4(3 + 4) = -2$. These indicate that G_{44} and G_{410} are not (signless) Laplacian copemanental.

Lemma 11. The following statements hold:

(i) Graphs G_{50} and G_{51} are not (signless) Laplacian copemanental

(ii) Graphs $G_{52}, G_{57}, G_{513}, G_{519}, G_{522}$ are not pairwise (signless) Laplacian copemanental

(iii) Graphs G_{58}, G_{511}, G_{514}, and G_{517} are not pairwise (signless) Laplacian copemanental

(iv) Graphs G_{55}, G_{519}, G_{520}, and G_{523} are not pairwise (signless) Laplacian copemanental

(v) Graphs G_{59} and G_{516} are not (signless) Laplacian copemanental

(vi) Graphs G_{510} and G_{524} are not (signless) Laplacian copemanental

(vii) Graphs G_{56}, G_{512}, G_{515}, and G_{525} are not pairwise (signless) Laplacian copemanental
Proof. By Table 4, we have that

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{50}) = \sum_{i=1}^{n} d_{i}^{2}(G_{51}) = n^3 - 2n^2 - 19n + 34,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{53}) = \sum_{i=1}^{n} d_{i}^{2}(G_{55}) = \sum_{i=1}^{n} d_{i}^{2}(G_{513}) = \sum_{i=1}^{n} d_{i}^{2}(G_{519}) = \sum_{i=1}^{n} d_{i}^{2}(G_{522}) = n^3 - 2n^2 - 19n + 38,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{58}) = \sum_{i=1}^{n} d_{i}^{2}(G_{518}) = \sum_{i=1}^{n} d_{i}^{2}(G_{515}) = \sum_{i=1}^{n} d_{i}^{2}(G_{523}) = n^3 - 2n^2 - 19n + 40,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{56}) = \sum_{i=1}^{n} d_{i}^{2}(G_{512}) = \sum_{i=1}^{n} d_{i}^{2}(G_{515}) = \sum_{i=1}^{n} d_{i}^{2}(G_{525}) = n^3 - 2n^2 - 19n + 42,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{5a}) = \sum_{i=1}^{n} d_{i}^{2}(G_{511}) = \sum_{i=1}^{n} d_{i}^{2}(G_{514}) = \sum_{i=1}^{n} d_{i}^{2}(G_{517}) = n^3 - 2n^2 - 19n + 36,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{5b}) = \sum_{i=1}^{n} d_{i}^{2}(G_{516}) = n^3 - 2n^2 - 19n + 46,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{5c}) = \sum_{i=1}^{n} d_{i}^{2}(G_{512}) = \sum_{i=1}^{n} d_{i}^{2}(G_{515}) = \sum_{i=1}^{n} d_{i}^{2}(G_{525}) = n^3 - 2n^2 - 19n + 42,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{5d}) = \sum_{i=1}^{n} d_{i}^{2}(G_{511}) = \sum_{i=1}^{n} d_{i}^{2}(G_{514}) = \sum_{i=1}^{n} d_{i}^{2}(G_{517}) = n^3 - 2n^2 - 19n + 36,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{5e}) = \sum_{i=1}^{n} d_{i}^{2}(G_{516}) = n^3 - 2n^2 - 19n + 46,
\]

\[
\sum_{i=1}^{n} d_{i}^{2}(G_{5f}) = \sum_{i=1}^{n} d_{i}^{2}(G_{524}) = n^3 - 2n^2 - 19n + 44.
\]
and the equation above, we have $q_3(G_{510}) - q_3(G_{512}) = 2$. These mean that graphs G_{510} and G_{512} are not (signless) Laplacian coprmental.

(vi) By Lemma 4 (iv) and Table 1, we have that $p_3(G_{510}) - p_3(G_{512}) = -6$. By Corollary 1 (i), Table 1, and the equation above, we obtain that $q_3(G_{510}) - q_3(G_{512}) = -2$. Obviously, graphs G_{510} and G_{512} are not (signless) Laplacian coprmental.

(vii) By Lemma 4 (iv) and Table 1, we have that $p_3(G_{510}) - p_3(G_{512}) = 8, p_3(G_{515}) - p_3(G_{510}) = 6, p_3(G_{512}) - p_3(G_{515}) = 4, p_3(G_{512}) - p_3(G_{513}) = -2, p_3(G_{512}) - p_3(G_{515}) = -4$, and $p_3(G_{510}) - p_3(G_{515}) = -2$. Furthermore, by Corollary 1, Tables 1–3, and the equations above, we have $q_3(G_{510}) - q_3(G_{512}) = 4, q_3(G_{512}) - q_3(G_{515}) = 6, q_3(G_{512}) - q_3(G_{513}) = 4, q_3(G_{512}) - q_3(G_{515}) = 2, q_3(G_{512}) - q_3(G_{512}) = 6, q_3(G_{512}) - q_3(G_{512}) = -2$, and $q_3(G_{512}) - q_4(G_{512}) = 24$. Obviously, graphs $G_{510}, G_{512}, G_{515}$, and G_{515} are not pairwise (signless) Laplacian coprmental. □

Proof of Theorem 1. From Lemmas 6–11, we directly obtain Theorem 1. □

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 11761056), by Natural Science Foundation of Qinghai Province (no. 2020-ZJ-920), and the Scientific Research Innovation Team in Qinghai Nationalities University.

References

[1] L. G. Valiant, “The complexity of computing the permanent,” Theoretical Computer Science, vol. 8, no. 2, pp. 189–201, 1979.
[2] R. Merris, K. R. Rebman, and W. Watkins, “Permanental polynomials of graphs,” Linear Algebra and Its Applications, vol. 38, pp. 273–288, 1981.
[3] I. Faria, “Permanental roots and the star degree of a graph,” Linear Algebra and Its Applications, vol. 64, pp. 255–265, 1985.
[4] P. Botti, R. Merris, and C. Vega, “Laplacian permanents of trees,” SIAM Journal on Discrete Mathematics, vol. 5, no. 4, pp. 460–466, 1992.
[5] R. A. Brualdi and J. L. Goldwasser, “Permanent of the Laplacian matrix of trees and bipartite graphs,” Discrete Mathematics, vol. 48, no. 1, pp. 1–21, 1984.
[6] G. G. Cash and I. Gutman, “The Laplacian permanent polynomials: formulas and algorithms,” MATCH-Communications in Mathematical and in Computer Chemistry, vol. 51, pp. 129–136, 2004.
[7] X. Geng, S. Hu, and S. Li, “Permanental bounds of the Laplacian matrix of trees with given domination number,” Graphs and Combinatorics, vol. 31, no. 5, pp. 1423–1436, 2015.
[8] Y. Shi, M. Dehmer, X. Li, and I. Gutman, Graph Polynomials, CRC Press, Boca Raton, FL, USA, 2017.
[9] S. Li and L. Zhang, “Permanental bounds for the signless Laplacian matrix of bipartite graphs and unicyclic graphs,” Linear and Multilinear Algebra, vol. 59, no. 2, pp. 145–158, 2011.
[10] S. Li and L. Zhang, “Permanental bounds for the signless Laplacian matrix of a unicyclic graph with diameter d,” Graphs and Combinatorics, vol. 28, no. 4, pp. 531–546, 2012.
[11] X. Liu and T. Wu, “Computing the permanental polynomials of graphs,” Applied Mathematics and Computation, vol. 304, pp. 103–113, 2017.
[12] X. Liu and T. Wu, “On the normalized Laplacian permanental polynomial of a graph,” Bulletin of the Iranian Mathematical Society, vol. 45, no. 5, pp. 1303–1321, 2019.
[13] R. Merris, “The Laplacian permanent polynomial for trees,” Czechoslovak Mathematical Journal, vol. 32, no. 3, pp. 397–403, 1982.
[14] T. Wu and W. So, “Permanental sums of graphs of extreme sizes,” Discrete Mathematics, vol. 344, Article ID 112353, 2021.
[15] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs, Academic Press, New York, NY, USA, 1982.
[16] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, UK, 2010.
[17] E. R. van Dam and W. H. Haemers, “Which graphs are determined by their spectrum?” Linear Algebra and Its Applications, vol. 373, pp. 241–272, 2003.
[18] E. R. van Dam and W. H. Haemers, “Developments on spectral characterizations of graphs,” Discrete Mathematics, vol. 309, no. 3, pp. 576–586, 2009.
[19] S. Liu, “On the (Signless) Laplacian permanental polynomials of graphs,” Graphs and Combinatorics, vol. 35, no. 3, pp. 787–803, 2019.
[20] M. Câmara and W. H. Haemers, “Spectral characterizations of almost complete graphs,” Discrete Applied Mathematics, vol. 176, pp. 19–23, 2014.
[21] T. Wu and T. Zhou, “A, Spectral characterizations of some joins,” Journal of Mathematics, vol. 2020, Article ID 8294312, 8 pages, 2020.
[22] H. Zhang, T. Wu, and H.-J. Lai, “Per-spectral characterizations of some edge-deleted subgraphs of a complete graph,” Linear and Multilinear Algebra, vol. 63, no. 2, pp. 397–410, 2015.