Relations between the SNO and the Super Kamiokande solar neutrino rates

Waikwok Kwong and S. P. Rosen
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019-0059
(February 12, 1996)

Abstract

By comparing the neutrino spectra measured by SNO and Super Kamiokande, we obtain inequalities between the ratios of observed rate to SSM rate for the two experiments. These inequalities apply to a possibly energy-dependent reduction of the SSM flux and to the case of neutrino oscillations. We use them to examine the relationship between the two experiments expected for the MSW and “Just-So” oscillation scenarios.

96.60.Kx, 12.15.Mm, 14.60.Pq
Two high statistics solar neutrino experiments will be coming on line in the near future. Super Kamiokande (SK) expects to begin taking data in April of 1996, and the Sudbury Neutrino Observatory (SNO) in November 1996. Both experiments will observe only the ^8B neutrinos, and they expect about ten events a day instead of the one event seen every few days in current experiments. Thus they will provide accurate determinations of the solar neutrino interaction rates and of the spectral shape of the final state electrons.

Here we will use a method we devised earlier to compare the neutrino spectra that are actually being measured by the two experiments, and to derive relations between their total rates.

Super Kamiokande can detect all three flavors of neutrinos through elastic scattering with atomic electrons, $\nu_e \rightarrow \nu_e$. In principle it is sensitive to neutrinos of the lowest energy, but in practice it is limited because of backgrounds from natural radioactivity. The correlation between the electron and the neutrino energy is poor because high energy neutrinos can produce soft scattered electrons.

One of the principle reactions at SNO is the charged-current process $\nu_e d \rightarrow p p e$, which is sensitive only to ν_e. The correlation between the electron and neutrino energy is much better than that of the elastic scattering—since the two-proton system is relatively heavy, the electron tends to carry off most of the neutrino energy. However, this reaction has a threshold of 1.442 MeV, and so it is not sensitive to very low energy neutrinos.

A general expression for total rates can be written in terms of the ^8B flux $\phi(E_{\nu})$ from the standard solar model (SSM), an electron-neutrino “survival probability” $P(E_{\nu})$, and an experimental cross section σ as

$$R = \int P(E_{\nu}) \phi(E_{\nu}) \sigma(E_{\nu}) dE_{\nu} . \quad (1)$$

The function $P(E_{\nu})$ parameterizes any, possibly energy-dependent, differences between the SSM flux and the one that is actually measured on Earth. These include overall reduction of neutrino fluxes due to solar physics and energy-dependent loss of flux due to oscillations into sterile neutrinos. All experimental parameters are hidden in the cross section σ which involves a convolution over an energy resolution function, a detection efficiency, and the theoretical cross section. The electron energy resolution for SNO is rather close to that of Super Kamiokande, $\Delta E/E$ at 10 MeV is about 10–12%. The detection efficiency above trigger threshold is very close to 100% for both experiments. In this analysis we will use the same parameters for both experiments: 11% for the energy resolution and a perfect efficiency with a 5 MeV trigger threshold. For the $\nu_e d$ theoretical cross section, we use the result of Ref. [5].

Since the functions $\phi \sigma(E_{\nu})$ are known quantities in both experiments, we compare their shapes by defining

$$f_{\text{SK}}(E_{\nu}) \equiv \frac{\phi \sigma(\nu_e e, E_{\nu})}{\int \phi \sigma(\nu_e e, E_{\nu}) dE_{\nu}} ,$$

$$f_{\text{SNO}}(E_{\nu}) \equiv \frac{\phi \sigma(\text{SNO}, E_{\nu})}{\int \phi \sigma(\text{SNO}, E_{\nu}) dE_{\nu}} , \quad (2)$$

which are plotted in Fig. 1. Now, let us write...
and maximize the constant α subject to the condition that the remainder function $r(E_\nu)$ be everywhere positive. The value obtained, $\alpha = 0.57$, is mainly controlled by the behavior of the cross sections at the upper end of the 8B spectrum: the cross section for elastic νe scattering rises linearly with the neutrino energy, but that for the charged-current interaction at SNO rises much more quickly. A consequence of this behavior is that variations at the low energy end, such as changes in the trigger thresholds and efficiencies, have no effect on α to first order; they affect α only indirectly through a small change in the normalization of $\phi \sigma$. This can be seen in Table 1, where we have listed the values of α for different energy resolutions for the two experiments.

Now, we drop the term $r(E_\nu)$, multiply both sides of (3) with $P(E_\nu)$, and integrate over E_ν. This gives us an inequality between the total rates of the two experiments. Recognizing the denominators in (2) to be the respective SSM rates, we express the inequality in terms of the ratios of observed to SSM event rates for either oscillations of solar ν_e into sterile neutrinos, or for an energy dependent reduction of the solar ν_e flux. We define for Super Kamiokande and SNO

$$y \equiv \frac{R(SK)}{R_{SSM}(SK)}; \quad x \equiv \frac{R(SNO)}{R_{SSM}(SNO)},$$

and obtain our first inequality:

$$y \geq \alpha x \tag{5}$$

Next, let us consider the case of oscillations of ν_e into an active neutrino, i.e., ν_μ or ν_τ. The rate for SNO remains unchanged, but that for Super Kamiokande must be modified by the additional neutral-current scattering contributions coming from ν_μ and ν_τ:

$$R(SK) = \int \left(P \phi \sigma(\nu_\mu e, E_\nu) + (1 - P) \phi \sigma(\nu_\tau e, E_\nu) \right) dE_\nu,$$

$$= \int [0.85 P(E_\nu) + 0.15] \phi \sigma(\nu_e e, E_\nu) dE_\nu \tag{6},$$

where, $\sigma(\nu_\mu e, E_\nu)$ is the common cross section for $\nu_\mu e$ and $\nu_e e$ scattering. To obtain the second line, we have made the substitution $\sigma(\nu_\mu e, E_\nu) = 0.15 \sigma(\nu_e e, E_\nu)$, which is a very good approximation in the energy range under consideration [5]. It allows us to write the ratio of the actual Super Kamiokande rate to the SSM prediction in the general form.

SNO resolution	0.09	0.11	0.12	
SK resolution	0.10	0.569	0.575	0.581
0.11	0.566	0.572	0.578	
0.12	0.563	0.569	0.575	
\[y = (1 - \beta) \int P(E_\nu) f_{\text{SK}}(E_\nu) \, dE_\nu + \beta \]

(7)

\[\beta = \begin{cases}
0, & \text{oscillation into sterile neutrinos} \\
0.15, & \text{oscillation into active neutrinos}
\end{cases} \]

(8)

Making use of Eq. (3) we find the general inequality

\[y \geq (1 - \beta) \alpha x + \beta \]

(9)

which includes Eq. (5) when \(\beta = 0 \), and gives us our second inequality

\[y \geq 0.85 \alpha x + 0.15 \]

(10)

for oscillations into active neutrino species when \(\beta = 0.15 \).

The inequalities (I) and (II) are represented graphically in Fig. 2 with the ratio \(y \) as ordinate and the ratio \(x \) as abscissa. Combinations of observations from the two experiments can be represented by points in the diagram; when experimental errors are taken into account, the points become regions.

Inequality (I) requires that all observed regions lie above the line \(y = \alpha x \), \((\alpha = 0.57)\). Since this inequality has been derived under general conditions with few assumptions regarding solar or neutrino physics, all points below the line are unphysical. Put another way, experimental observations falling below the line would imply a fundamental error in present theories of the sun and solar neutrinos.

Inequality (II) defines a region above the line \(y = 0.85 \alpha x + 0.15 \), \((\alpha = 0.57)\). which is displaced vertically above \(y = \alpha x \) by 0.15 and has a 15% smaller slope. All points above this line are consistent with all solutions to the solar neutrino problem, solar physics and oscillations into active or sterile neutrinos. Points lying between the two lines are consistent with solar physics and oscillations into sterile neutrinos; therefore should the results from Super Kamiokande and SNO fall within this region, we will be able to rule out oscillations into active neutrinos and predict a smaller neutral-current signal in SNO than expected in the SSM.

We can represent the present measurements from Kamiokande II, namely, \(y = 0.51 \pm 0.07 \) as a horizontal band in the diagram. Within statistical fluctuations, the observations from Super Kamiokande are expected to fall inside this band.

There are various fits [7–11] to the existing solar neutrino data based upon the MSW mechanism and the Just-So oscillations, and it is useful to see how they are represented in our plot. The “small angle” MSW solution can be characterized by an electron survival probability

\[P(E_\nu) = e^{-C/E_\nu}, \]

(11)

where the constant \(C \) is proportional to the product of \(\sin^2 2\theta \) times \(\Delta m^2 \) and is close to 10 MeV in magnitude. In the standard \(\Delta m^2 – \sin^2 2\theta \) oscillation parameter space, the allowed small-angle region can be represented in a log-log plot of constant-probability (or constant-rate) contours by a series of parallel lines each corresponding to a different value for the product \(\Delta m^2 \sin^2 2\theta \); in our Super Kamiokande vs SNO rate plot, each of these lines maps
into a single point in the x-y rate-space, which represents a specific rate for each experiment. As we move from one line to another in the parameter space, the single points in rate-space map out a line.

To determine the equation for this line, we consider small changes in the parameter C around the value $C_0 = 10$ MeV. The survival probability can then be written

$$P(E_\nu) = e^{-(C_0+\Delta C)/E_\nu} \approx (1 - \Delta C/E_\nu)e^{-C_0/E_\nu},$$

(12)

where ΔC is assumed to be much smaller than E_ν. Both y and x are now linear in ΔC, which can be eliminated to give a straight line

$$y = (1 - \beta) B x + (1 - \beta) A + \beta,$$

(13)

where A and B are calculable constants:

$$B = B_{SK}/B_{SNO}, \quad A = A_{SK} - A_{SNO}B,$$

$$A_{SK,SNO} = \int e^{-C_0/E_\nu} f_{SK,SNO}(E_\nu) dE_\nu,$$

$$B_{SK,SNO} = \int \frac{1}{E_\nu} e^{-C_0/E_\nu} f_{SK,SNO}(E_\nu) dE_\nu.$$

(14)

The appropriate lines evaluated using (11) instead of its linear approximation (12) are shown in Fig. 2 as thin solid lines passing through the point (1,1), as required. The upper line ($\beta = 0.15$) is for oscillation into active neutrinos and the lower line ($\beta = 0$) is for oscillation into sterile neutrinos. These two lines are only very slightly curved, indicating that the approximation (12) is valid for a wide range of values for C.

The “large angle” MSW solution has an electron-neutrino survival probability

$$P(E_\nu) = \sin^2 \theta$$

(15)

which is independent of energy and Δm^2. Thus it maps vertical lines in parameter space into single points in rate-space, and as we move from one line to another the points in rate-space trace a line. Using the above survival probability in the expression for x and y, we obtain the equation of the line as

$$y = (1 - \beta)x + \beta.$$

(16)

It is a straight line that always passes through the point (1,1) corresponding to no oscillations, and becomes $y = x$ in the sterile case ($\beta = 0$). It is plotted in Fig. 2 as the dot-dashed lines for the active and sterile cases.

In the Just-So solution, the electron neutrino survival probability is given by

$$P(E_\nu) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E_\nu} \right).$$

(17)

The value of Δm^2 must be chosen to yield an oscillation length of the same order as the Earth–Sun distance L. Thus, for some energy E_0 within the spectrum of solar neutrinos.
\[\frac{\Delta m^2 L}{4E_0} = \left(n + \frac{1}{2} \right) \pi . \]

(18)

Letting \(\Delta m^2 = A \times 10^{-11} \text{eV}^2 \) and measuring \(E_\nu \) in MeV, we can express the \(y \) and \(x \) coordinates as

\[
y = 1 - (1 - \beta) \sin^2 2\theta \int \sin^2 \left(\frac{1.90A}{E_\nu} \right) f_{\text{SK}} dE_\nu
\]

(19)

\[
x = 1 - \sin^2 2\theta \int \sin^2 \left(\frac{1.90A}{E_\nu} \right) f_{\text{SNO}} dE_\nu
\]

(20)

For specific values of \(\Delta m^2 \), or \(A \), the two integrals can be integrated numerically. Again, eliminating \(\sin^2 2\theta \) from the two equations gives us a linear relationship between \(x \) and \(y \). As \(\sin^2 2\theta \) is varied from 0 to 1, the point \((x, y)\) traces a straight line starting from \((1, 1)\) and ends at a point \((x_0, y_0)\) with \(x_0 > 0 \) and dependent on the value of \(\Delta m^2 \). By varying also \(\Delta m^2 \), the entire parameter space is mapped into finite regions in Fig. 3: oscillations into active neutrinos give rise to the area enclosed by the solid curve and oscillations into sterile neutrinos give rise to the one enclosed by the dotted curve. A point falling outside these two regions cannot be explained using the Just-So oscillations.

So far, these lines and closed regions we have discussed represent the entire parameter space within the individual approximations. Existing data from Kamiokande II, the Chlorine experiment, and the two gallium experiments GALLEX and SAGE favor certain ranges of the oscillation parameters. For this we use the global fit of Ref. [1] for the small- and large-angle MSW solutions (the large-angle solution for sterile neutrinos has been ruled out according to this fit) and the result of Ref. [10] for the Just-So solution (depending on how the fitting is done, the sterile case can also be rule out here, see [10] for details). Both analyses took into consideration theoretical uncertainties. The allowed regions at 95\% confidence from these constraints on the SNO and Super Kamiokande rates are shown in both Fig. 2 and 3 as heavy black lines and shaded patches.

By considering the overlap of the regions corresponding to different solar neutrino solutions, we can anticipate the implications of measurements to be made by SNO and Super Kamiokande.

Our first observation is that the Just-So solutions occupy the largest area in the rate-space of the two experiments and are therefore the most difficult ones to rule out. From the total rates of SNO and Super Kamiokande alone, it would be practically impossible to rule out the Just-So oscillations without also ruling out both the small- and large-angle MSW solutions. There is only a very small window with \(x \lesssim 0.16 \) and \(0.15 \lesssim y \lesssim 0.25 \) for active neutrinos, or \(0 \lesssim y \lesssim 0.15 \) for sterile neutrinos, in which this is possible. In contrast, the large- and small-angle MSW solutions occupy zero area in rate-space. This makes them extremely sensitive to the Super Kamiokande and SNO measurements: the data point must falls right on top of one of the lines in Fig. 2, to within experimental uncertainty.

Our second observation is that from the total rates alone, it would be difficult to distinguish between the large- and small-angle MSW solutions at the 3-\(\sigma \) level. The solar neutrino rate of Super Kamiokande is about 50 times that of Kamiokande II; in about five years Super Kamiokande will have accumulated 50 times as much data as the present Kamiokande II. This translates into a factor of seven in the statistical uncertainty so that the ratio of
observed to SSM rate for Super Kamiokande will have a 1σ uncertainty of ±0.01 (instead of ±0.07 for Kamiokande II), provided that it is not limited by systematic uncertainties. On the other hand, Fig. 2 shows that the maximum distance in the y direction between the large- and small-angle lines are only about 0.02. It would be easier to distinguish between the sterile and the active case of the MSW solutions, especially if both experiments yield rates that are no larger than about half their SSM values.

With the help from the four existing experiments, some of these difficulties may be overcome. For example, depending on where the future data point falls, we may be able to distinguish the large-angle MSW solution for active neutrinos (the short heavy black line in Fig. 2 and 3) from the small-angle one but probably not from the Just-So solution.

Implications obtained from rate measurements can be tested by examining the spectra of recoil electrons observed in both Super Kamiokande and SNO. Although the differences tend to be rather subtle, the combination of high statistics and the “normalized spectral ratio” method [3] should enable us to distinguish between active and sterile neutrinos. In addition, the Just-So solution is much more sensitive to the BOREXINO experiment [12] than to either Super Kamiokande or SNO because of the monenergetic ^7Be lines. This should help us separate the Just-So oscillations from the MSW solutions.

This work was supported in part by the U.S. Department of Energy Grant No. DE-FG03-96ER40943. The authors would like to thank Gene Beier and Hank Sobel for providing the experimental parameters for SNO and Super Kamiokande. One of the authors (SPR) would like to thank Geoffrey West and the Los Alamos National Laboratory for their hospitality at the 1995 Summer Workshop and Plamen Krastev for a conversation which initiated this work.
REFERENCES

[1] Y. Totsuka, “Super Kamiokande,” Univ. of Tokyo Report No. ICRR-227-90-20, 1990 (unpublished).
[2] G. T. Ewan et al., “Sudbury Neutrino Observatory Proposal,” Report No SNO-87-12, 1897 (unpublished); “Scientific and Technical Description of the Mark II SNO Detector,” edited by E. W. Beier and D. Sinclair, Report No. SNO-89-15, 1989 (unpublished).
[3] Waikwok Kwong and S. P. Rosen, Phys. Rev. D 51, 6159 (1995).
[4] Waikwok Kwong and S. P. Rosen, Phys. Rev. Lett. 73, 369 (1994).
[5] F. J. Kelly and H. Überall, Phys. Rev. Lett. 16, 145 (1966); S. D. Ellis and J. N. Bahcall, Nucl. Phys. A114, 636 (1968).
[6] See, e.g., J. N. Bahcall, Neutrino Astrophysics (Cambridge University Press, 1989), Sec. 8.2, p. 214–243.
[7] GALLEX Collaboration, P. Anselmann et al., Phys. Lett. B 285, 390 (1992).
[8] V. Barger, R. J. N. Phillips, and K. Whisnant, Phys. Rev. Lett. 69, 3135 (1992).
[9] N. Hata and P. Langacker, Phys. Rev. D 50, 632 (1994).
[10] P. I. Krastev and S. T. Petcov, Phys. Rev. Lett. 72, 1960 (1994).
[11] J. N. Bahcall and P. I. Krastev, Institute of Advanced Studies Report No. IASSNS 95-56, [hep-ph/9512378].
[12] C. Arpesella et al., “The BOREXINO Proposals,” vol. 1 and 2, edited by G. Bellini et al. (University of Milano Report, 1992); R. S. Raghavan, Science 267, 45 (1995).
FIG. 1. The normalized shapes of $\phi\sigma$ for SNO and Super Kamiokande.

FIG. 2. The MSW solutions in the Super Kamiokande-SNO rate-space. The inequalities (I) and (II) divide the rate-space into three regions labeled “allowed by (I) and (II)”, “(I) only”, and “forbidden”. The small-angle MSW solution must lie on the solid thin lines and the large-angle solution must lie on the dot-dashed lines. The upper pair is for oscillation into active neutrinos and the lower pair for sterile neutrinos. Bounds from existing data are represented by the heavy black lines. The patches of shaded areas are bounds from the Just-So solution, shown here for comparison.

FIG. 3. The Just-So solutions in the Super Kamiokande-SNO rate-space. The region bounded by the thin solid and dotted curves are the solution spaces for Just-So oscillations into active and sterile neutrinos respectively. See also Fig. 2.
\[\frac{\phi(E) \sigma(E)}{\int \phi \sigma \, dE} \]

Fig. 1
Fig. 2

\[y = \frac{\text{observed rate}}{\text{SSM rate}}_{\text{SuperK}} \]

\[x = \frac{\text{observed rate}}{\text{SSM rate}}_{\text{SNO}} \]

allowed by (I) and (II)

(Kam II)

(II) only

forbidden
allowed by (I) and (II)

Kam II

\(y = \frac{\text{observed rate}}{\text{SSM rate}}_{\text{SuperK}} \)

\(x = \frac{\text{observed rate}}{\text{SSM rate}}_{\text{SNO}} \)

forbidden

(I) only

Fig. 3