Confirmation of the shell-boring oyster parasite *Polydora websteri* (Polychaeta: Spionidae) in Washington State, USA

Julieta C. Martinelli, Heather M. Lopes, Lorenz Hauser, Isadora Jimenez-Hidalgo, Teri L. King, Jacqueline L. Padilla-Gamiño, Paul Rawson, Laura H. Spencer, Jason D. Williams & Chelsea L. Wood

Invasions by shell-boring polychaetes such as *Polydora websteri* Hartman have resulted in the collapse of oyster aquaculture industries in Australia, New Zealand, and Hawaii. These worms burrow into bivalve shells, creating unsightly mud blisters that are unappealing to consumers and, when nicked during shucking, release mud and detritus that can foul oyster meats. Recent findings of mud blisters on the shells of Pacific oysters (*Crassostrea gigas* Thunberg) in Washington State suggest a new spionid polychaete outbreak. To determine the identity of the polychaete causing these blisters, we obtained Pacific oysters from two locations in Puget Sound and examined them for blisters and burrows caused by polychaete worms. Specimens were also obtained from eastern oysters (*Crassostrea virginica* Gmelin) collected in New York for morphological and molecular comparison. We compared polychaete morphology to original descriptions, extracted DNA and sequenced mitochondrial (cytochrome c oxidase I [mtCOI]) and nuclear (small subunit 18S rRNA [18S rRNA]) genes to determine a species-level molecular identification for these worms. Our data show that *Polydora websteri* are present in the mud blisters from oysters grown in Puget Sound, constituting the first confirmed record of this species in Washington State. The presence of this notorious invader could threaten the sustainability of oyster aquaculture in Washington, which currently produces more farmed bivalves than any other US state.

The most notorious invasive species simultaneously compromise the function of ecosystems and jeopardize the human societies that depend upon those ecosystems. Among these invaders is the spionid polychaete *Polydora websteri* Hartman, commonly known as a “mud worm” or “mud blister worm”¹, which bores into the shells of molluscs. By creating unsightly blisters on the shells of their commercially important hosts, these pests have led to significant economic losses for shellfish aquaculture. *Polydora websteri* can infest a variety of mollusc hosts (see reviews⁴⁻⁶), including oysters⁷⁻¹⁰, mussels¹¹⁻¹³, scallops¹⁴⁻¹⁶, and abalone¹⁷.

Polydora websteri and related polydorins (*sensu*¹⁸; a group of nine spionid genera with a modified fifth chaetiger) have compromised and collapsed oyster aquaculture industries around the world. In the late 1800s, the introduction of *Polydora websteri* with translocated oysters caused subtidal oyster beds in New South Wales, Australia to disappear⁸,¹⁹⁻²². When oyster transplants from Kaneohe Bay brought *Polydora websteri* to Kakuku, Hawaii, the introduction caused extensive damage to shellfish production²³,²⁴. Oyster farms on the east coast of the United States have been plagued with *Polydora websteri* infestations since the 1940s, resulting in substantial oyster farm losses²⁵⁻²⁷. In addition, high mortalities of the Japanese scallop *Mizuhopecten yessoensis* (Jay 1857) in British Columbia, Canada were attributed to *Polydora websteri*²⁸. These examples attest to the ability of *Polydora websteri* to successfully invade new locations and, once established, to significantly impact aquaculture production.

Polydora websteri infestations are detrimental to oyster aquaculture because the worms result in unsightly blisters on oyster valves, decreasing market value. The mud worm typically has a pelagic larval stage, after which the larvae settle onto the external side of a calcareous shell²²,²³,²⁹. The worm then forms a U-shaped burrow with two exterior openings²²⁻³⁴. As they grow, burrows breach the inner surface of the valve, causing the host to produce...
a brittle layer of nacre that walls off the burrow4,10,32–34. The worm continues to expand this burrow beneath the thin, calcareous layer produced by its host; as this space fills with detritus, mud, and worm feces, a “mud blister” is formed33,35. Blisters can be irregular in shape and darkly colored, compromising the presentation of oysters served on the half-shell (only the cupped or left valve is used for serving the oyster)40. Moreover, if a blister is nicked during oyster shucking, the mud and feces will foul the oyster meat, rendering it inedible9. This is particularly problematic for oyster-growing areas where a large proportion of production goes to the half-shell market.

In addition to their detrimental impact on aquaculture production, heavy mud worm infestations can also impact shell integrity, growth, and survivability of mollusc hosts37. When infested with \emph{Polydora ciliata} Johnston, the gastropod \emph{Liitiorina litoraea} (Linnaeus) has significantly reduced shell strength relative to uninfested individuals, making the infested gastropods more vulnerable to predation38. Pacific oysters (\emph{Crassostrea gigas}) infested by the polydorids \emph{Polydora hoplura} Claparède, \emph{Polydora cornuta} Bosc, and \emph{Boccardia semibranchiata} Radashevsky grow more slowly and have poorer body condition than do uninfested oysters39. Glycogen, protein, and lipid content relative to the shell cavity volume are lower in infested compared to uninfested \emph{Crassostrea} sp oysters7,25,40. Additionally, polydorins have been shown to increase mortality rates in Pacific oysters that are heavily infested41,42. These negative effects on growth and survivorship may be caused by the energetic demands of worm-induced nacre production10,43–46; that is, infested hosts may need to invest energy into isolating their tissue from the worm by building multiple costly shell layers instead of investing that energy into their own growth and reproduction9. Given these impacts on the growth and reproduction of the host, \emph{Polydora websteri} outbreaks may affect more than just the bottom line of the shellfish industry; they may also compromise the important ecosystem services provided by filter-feeding shellfish species48.

\emph{Polydora websteri} has been reported from locations all over the world (see reviews10,49–52), but due to its complex taxonomic history (see53–56), many records remain to be confirmed. Some historical reports of \emph{Polydora ciliata} (a non-boring species) have been re-identified as other, shell-boring polydorin species, including \emph{Polydora websteri}9, and additional erroneous historical reports might exist. \emph{Polydora websteri} is believed to be of Asian origin, and genetic homogeneity among North American, Hawaiian, and Asian specimens suggests that human-mediated transport produces high levels of connectivity among populations55. Although \emph{Polydora websteri} has been predicted to be present in Washington, USA49 based on records of its presence to the north in British Columbia28,57, and to the south in Oregon and California (e.g.29,58–60), it has never before been described from Washington. Its potential absence is a fortunate circumstance; as the United States’ leading producer of bivalve shellfish, Washington State’s bivalve aquaculture brings in over $92 million dollars in revenue annually61. Of Washington State’s cultured shellfish production, Pacific oysters (\emph{Crassostrea gigas}) contribute 38% by weight and 38% by value61. Pacific oysters are also culturally important to local communities, Native American tribes, family-owned farms, and recreational farmers and collectors62. As the industry has evolved in recent years, producers have shifted to the lucrative half-shell market, where the shell is presented to the consumer63. Utilizing the half-shell market, Washington’s oyster industry is structured in such a way that a \emph{Polydora websteri} outbreak could cause extensive damage if infested oysters result in lost value.

Washington State oysters have long been prized for the consistent color of their inner valves, in contrast to the mud-blorner-bledmed valves of oysters grown in other parts of North America (T. King, personal communication). However, in recent years, one of us (TK) began noticing mud blisters on the valves of Pacific oysters (\emph{Crassostrea gigas}) grown in Puget Sound (Fig. 1). Site visits with local oyster growers confirmed these observations, and suggested that Washington State – a globally important aquaculture region61 – may be experiencing a non-motile cirri on papillae along lateral edges of food groove and scattered on the abfrontal surface (Figs. 3E extending posteriorly for approximately 10–15 chaetigers, palps with a ventral food groove lined by frontal cilia, present in trapezoidal pattern between palps; occipital tentacle always absent (Figs. 3A–D and 4A–D). Palps (Figs. 3B and 4A,B) or chaetiger 3 (Fig. 3A); small, round, black eyes variable in number (0–4), commonly 4 and 4D) or ventrally to determine the bilobed nature. Caruncle extending posteriorly to end of chaetiger 2 opaque white to light tan. Methyl green staining (NY specimen) occurred on ventral sides of chaetigers 1–4, along

Results

Morphological identification. Specimens from both Washington (Fig. 3) and New York (Fig. 4) matched the taxonomically important features of \emph{Polydora websteri} in the original description27, redescription54 and more recent reports4,10,52,83.

\emph{Polydora websteri} Hartman in Loosanoff and Engle, 1943. **Morphology of adults.** Complete specimens of up 60–100+ chaetigers, approximately 1.0-mm wide at chaetiger 7. Prostomium bilobed anteriorly (Figs. 3A and 4A,C), sometimes appearing weakly notched but specimens must be examined en face (Figs. 3D and 4D) or ventrally to determine the bilobed nature. Caruncle extending posteriorly to end of chaetiger 2 (Figs. 3B and 4A,B) or chaetiger 3 (Fig. 3A); small, round, black eyes variable in number (0–4), commonly 4 present in trapezoidal pattern between palps; occipital tentacle always absent (Figs. 3A–D and 4A–D). Palps extending posteriorly for approximately 10–15 chaetigers, palps with a ventral food groove lined by frontal cilia, non-motile cirri on papillae along lateral edges of food groove and scattered on the abfrontal surface (Figs. 3E and 4E). When contracted, palps exhibit scalloped lateral edge (Fig. 4E). Longitudinal black pigment band was observed along lateral edge of palp, in some specimens pigmentation superficially resembled transverse bands when the palps were contracted. Color of body in alcohol opaque white to light tan. Methyl green staining (NY specimen) occurred on ventral sides of chaetigers 1–4, along
the sides of the caruncle (midway and between the palps), and as granular patches on dorsal surface near base of branchiae from middle segments posteriorly.

Chaetiger 1 with neurochaetae, without notochaetae, with digitiform notopodial lobes (Figs. 3A–D and 4A–D). Cilia of lateral organs present between notopodial lobe and neuropodial lobes of chaetiger 1 and present between notopodial and neurochaetae of chaetiger 2 (additional lateral organs may be present on more posterior chaetigers but have been lost during fixation). Winged capillary notochaetae of chaetigers 2–4, 6 and subsequent

Figure 1. *Crassostrea gigas* infested with *Polydora websteri* collected from Oakland Bay, WA. Pathology shown is associated with shell-boring mud worms. (a) Inner surface of an infested valve, (b) opened mud blister, and (c) closed mud blister filled with mud, detritus, and worm feces. In (b,c), scale bar indicates 2 mm.

Figure 2. Map of sampling sites in Southern Puget Sound, Washington State. Inset images show the position of Puget Sound in Washington State, and the position of Washington State in the United States. Oysters were obtained from culture sites in Oakland Bay (n = 69) and Totten Inlet (n = 114).
Figure 3. *Polydora websteri* from Oakland Bay, Washington extracted from *Crassostrea gigas*. (A) Anterior dorsal view of specimen lacking palps (USNM 1606131). (B) Anterior dorsal view of specimen with basal portion of right palp attached (USNM 1606127). (C) Anterior, right lateral view, same specimen as in A (USNM 1606131). (D) En face view of specimen showing anterior end of prostomium, same specimen as in A (USNM 1606131). (E) Lateral view of middle portion of palp, palp removed from specimen shown in B (USNM 1606131). (F) Dorsal view of fifth chaetiger spines (USNM 1606126). (G) Dorsal view of fifth chaetiger spines, same specimen as in B (USNM 1606127). (H) Lateral view of fifth chaetiger spines, close-up, same specimen as in B (USNM 1606127). Scale bars A–C = 250 μm, D = 200 μm, E = 100 μm, F = 50 μm, G, H = 25 μm.
chaetigers arranged in three successive rows, reduced to thin notochaetae in posterior chaetigers; no specialized posterior notochaetae. Winged capillary neurochaetae of chaetigers 2–4, 6 and subsequent chaetigers arranged in two vertical rows; 5–8 bidentate hooded hooks begin on chaetiger 7, not accompanied by capillaries, increasing to 8–10 in series at chaetiger 9; hooks with approximately right angle between main fang and shaft, with constriction

Figure 4. *Polydora websteri* from Long Island, New York extracted from *Crassostrea virginica*. (A) Anterior dorsal view of specimen lacking palps (USNM 1606133). (B) Anterior dorsal view of specimen with palps (USNM 1606134). (C) Anterior, right lateral view, same specimen as in A (USNM 1606133). (D) En face view of specimen showing anterior end of prostomium, same specimen as in B (USNM 1606134). (E) Lateral view of middle portion of palp, same specimen as in B (USNM 1606134). (F) Dorsal view of fifth chaetiger spines (USNM 1606135). (G) Dorsal view of fifth chaetiger spines, same specimen as in B (USNM 1606134). (H) Lateral view of fifth chaetiger spines, close-up, arrows indicate subdistal “tooth,” same specimen as in A (USNM 1606133). Scale bars A = 200 µm, B = 500 µm, C = 250 µm, D = 100 µm, E = 50 µm, F–H = 25 µm.
on shaft; glandular pouches near base of ventral-most hooded hook in chaetigers 7–8, observed by the external portion of secretory cells which appear as small papillae.

Chaetiger 5 almost twice as large as chaetigers 4 and 6, with slightly curved row of 5–7 exposed major spines and additional embedded spines, major spines alternating with pennoned companion chaetae; sometimes exhibiting frayed tips; anterior dorsal fascicle of 4–6 geniculate notochaetae present and tips directed posteriorly, ventral fascicle of 4–6 winged capillary neurochaetae below row of major spines (Figs. 3F–H and 4F–H). Major spines falcate, with shallow lateral flange, most visible in younger, posterior spines (Figs. 3G,H and 4G,H); older, anterior spines may appear to have lateral tooth but this is the remains of the worn flange (Fig. 4H).

Branchiae from chaetiger 7 (Figs. 3A,B and 4A–C), free from notopodial postchaetal lamellae, reaching full size at chaetigers 9–10 and overlapping middorsally, diminishing in length posteriorly and absent from posteriormost chaetigers; ciliary bands present on dorsal surface of chaetigers between branchiae (Figs. 3A and 4A,B). Pygidium broad, cup-shaped with dorsal gap.

Remarks. The specimens of *Polydora websteri* from WA and NY match the taxonomically important features of those in the original description (Hartman in29, rediscription34, and more recent reports5,10,12,18. Although the caruncle was described as extending to end of chaetiger 2 in the lectotypes of *Polydora websteri*34, others have found it reaching mid-chaetiger 3, end of chaetiger 30 or to chaetiger 415. In the present specimens the caruncle extended to mid-chaetiger 2 in some and through end of chaetiger 3 in others. As noted by34, in lateral view the caruncle can appear to extend further posteriorly because the middorsal boundaries between chaetigers are displaced backward in comparison to lateral boundaries (e.g., Fig. 4A caruncle extends to posterior end of chaetiger 2 but in lateral view it appears to extend to mid-chaetiger 3). The palps of this species may have a black line of pigmentation along the lateral edge of palp, as shown by others (see Fig. 1 in4; Fig. 5D in63. However, when the palps are contracted (Fig. 3E) pigmentation can become concentrated and appear as dark bands (as noted by other researchers for this species: Fig. 1a in5,35). After fixation in formalin and preservation in ethanol, the differences in palp pigmentation patterns are retained (e.g., USNM 1606136 from NY with line of pigmentation; USNM 1606128 from WA with bands of pigmentation). The methyl green staining pattern is similar to that observed by Read4, although he noted granular staining in anterior branchiae. Major spines are falcate, with a shallow lateral flange (Figs. 3G,H and 4G,H); although older anterior spines may appear to have a lateral tooth, this is the remains of the worn flange (Fig. 4H). Lateral organs (=lateral ciliated organs; see64) were present on chaetigers 1 and 2, but presence/absence on posterior chaetigers should be confirmed based on specimens fixed in glutaraldehyde. One of the specimens from WA (USNM 1606127; Fig. 3B) had hooded hooks beginning on chaetiger 6, but this seems to be an abnormal specimen; all other reports and specimens examined herein show that the hooded hooks begin on chaetiger 7.

Prevalence. Of the 183 oysters collected from south Puget Sound, 40% (74 individuals) were infested with at least one blister or burrow. Among oysters from Oakland Bay, in South Puget Sound (Fig. 2), 53% were infested; among oysters from Totten Inlet, 54% were infested.

Molecular identification. All of the specimens identified as *Polydora websteri* by morphological analysis were confirmed as belonging to that species by molecular analyses. Of the 13 specimens collected from Oakland Bay sequenced at 18S rRNA, 12 were identified as *Polydora websteri* (Table 1). Our 18S rRNA neighbor-joining phylogeny indicated that these 12 sequences clustered in the same clade as the *Polydora websteri* sequences from Genbank. As Rice et al.34 reported for sequences of *Polydora websteri* from several Atlantic coast, Gulf coast, and Hawaiian specimens, all *Polydora websteri* 18S rRNA sequences in our study were identical. The Oakland 18S rRNA sequences also match the four sequences from Long Island (Fig. 5) with the exception of sequence LI4B which had several unresolved bases. There was more structure evident in the phylogeny based on sequences from the mtCO1 gene. Even so, ten worms from Oakland Bay and the four from Long Island that were sequenced with mtCO1 also clustered with *Polydora websteri* in the mtCO1 neighbor-joining phylogeny (Fig. 6, Table 1) and were clearly divergent from all other published mtCO1 sequences for *Polydora sp* on Genbank. Some worms collected from Oakland Bay and all Totten Inlet worms were not included in our molecular analyses as we do not have clear morphological identifications and there are not matching, published molecular data available on Genbank for these specimens. In summary, however, both 18S rRNA and mtCO1 sequence analysis indicates that *Polydora websteri* is present in Oakland Bay, Puget Sound, Washington.

Haplotype diversity, nucleotide diversity and the average number of nucleotide differences were all substantially lower for the 18S rRNA gene sequences relative to the mtCO1 gene sequences (Table 2) as would be expected for the more conserved nuclear locus. For mtCO1, the mean intraspecific for *Polydora websteri* was 0.002 (n = 21, Table 3) and the interspecific distances between *Polydora websteri* and the other species ranged between 0.185 and 0.240 (Table 3). For nuclear 18S, the mean intraspecific distance for *Polydora websteri* was 0.00 (n = 21, Table 4) and the interspecific distances between *Polydora websteri* and the other species was 0.02 (Table 4).

Discussion

Our findings constitute the first report of *Polydora websteri* in Washington State, United States. The presence of this shell-boring polydorin poses a danger to the region’s valuable oyster aquaculture industry. All worms from Oakland Bay that were identified as *Polydora websteri* based on diagnostic morphological features also clustered with GenBank sequences of *Polydora websteri* both in the 18S rRNA and mtCO1 phylogenetic trees (Table 1, Figs. 5 and 6). Based on detailed morphological analysis, specimens of *Polydora websteri* from Oakland Bay (Fig. 3) matched previous descriptions and the newly collected material from Long Island, NY near the type locality (Fig. 4); the same specimens that we morphologically identified were also sequenced, and morphological and molecular diagnoses agreed. We therefore confirm the presence of *Polydora websteri*, a shell-boring mud worm, in the shells of Washington State Pacific oysters. *Polydora websteri* has never before been reported from Washington.
This blister-forming species could endanger an aquaculture industry that provides both multi-million-dollar revenues ($92 million in 2015) and valuable ecosystem services to Washington State.

The fact that Polydora websteri has never before been documented in Washington State oysters suggests a recent introduction, but it is also possible that the species has been present in the region for some time and has undergone a recent increase in prevalence perhaps associated to the aquaculture industry or environmental changes. Extensive exchange of shell and live oysters among regions in Washington continues to the present day, and to such an extent that Polydora websteri populations are genetically homogenous across broad swathes of their contemporary range. Washington State has a long history of exchange with other oyster-growing regions and polydorin pelagic larvae may also have been introduced through ballast water. Although it is likely that Polydora websteri is native to Asia and exotic to North America, we suggest that Polydora websteri be considered cryptic in Washington State until further research can resolve its origins. Considering the species is distributed north and south of Washington, it is likely that the species has been present in this region but has never before been reported because it occurred only at low prevalence until recently. The prevalence of Polydora websteri is sensitive to environmental change. For example, increasing siltation can increase the susceptibility to infestation. Because Polydora websteri can recruit to both live and dead oyster shells, the expansion of the oyster aquaculture industry, oyster restoration, and increased density of oysters in beds across the state might have promoted an increase in transmission and prevalence if the polychaete was already present. Whatever their origin or how affected they are by changing conditions, the blister-forming polychaetes we document here are a new challenge for Washington State oyster growers and the government agencies charged with management of shellfish stocks.

Because Polydora websteri is a generalist pest, it may impact other shellfish species of ecological, economic, and cultural importance to Washington State. An important example is the Olympia oyster (Ostrea lurida), an overexploited native species that is the focus of intensive restoration efforts. Mussel, scallop, and abalone species are also at risk. Given the important ecosystem services provided by filter-feeding shellfish species, a polydorin outbreak could affect more than just the bottom line of the shellfish industry; ecosystem functioning is also at risk.

We were not able to definitively identify the majority of worms collected from Totten Inlet (Fig. 2) using our combined morphological and molecular approach. However, our work indicates that the Puget Sound region hosts several cryptogenic spionid polychaetes species, all of which may pose a danger to the regions oyster aquaculture industry. In our research, we positively identified the notorious shell-boring polydorin, Polydora websteri, in commercially farmed Pacific oysters, providing the first formal documentation of this globally distributed pest in Washington State. The pathology caused by shell-boring mud worms results in unsightly blisters that reduce the market value of infested oysters, especially those served on the half-shell. Washington’s Pacific oyster industry is dominated by the half-shell market, and given the high prevalence of infestation found in this study, these pests have the potential to threaten the valuable Pacific oyster aquaculture operations in Washington State.

Methods

Oyster collections.

To assess whether shell-boring polychaetes were present in Washington Pacific oysters and to confirm the species identity of these worms, we purchased 183 commercially grown oysters from retail shellfish farms in Washington State, USA. Of these, 69 individuals came from Oakland Bay (47°13′45.93″, −123°3′19.43″, Fig. 2, Table 1), and 114 individuals were from Totten Inlet (47°9′43.09″, −122°59′19.62″, Fig. 2, Table 1). Both sites are in South Puget Sound, a region that yields 37% of the total mass of Washington State oysters.

Molecular ID	Morphological ID	Worm ID on trees	Location and host	Coords.	Date	USNM Voucher Number (SEM or EtOH)	GenBank Accession Numbers
Polydora websteri	Polydora websteri	—	—	47°13′45.93″, −123°3′19.43″	15 Aug 2018	1606126 (SEM)	MK695999 —
Polydora websteri	Polydora websteri	—	Oakland Bay, Washington State, USA; from shells of Crassostrea gigas	47°13′45.93″, −123°3′19.43″	15 Aug 2018	1606127 (SEM)	— —
Polydora websteri	Polydora websteri	—	—	47°13′45.93″, −123°3′19.43″	15 Aug 2018	1606128 (EtOH)	MK696002 —
Polydora websteri	Polydora websteri	OAK11	Same as above	—	1606129 (SEM)	MK696000 MK696586	
Polydora websteri	Polydora websteri	OAK12	Same as above	—	1606130 (SEM)	MK696001 MK696587	
Polydora websteri	Polydora websteri	OAK13	Same as above	—	1606131 (SEM)	MK696003 MK696588	
Polydora websteri	Polydora websteri	OAK14	Same as above	—	1606132 (SEM)	— —	

Table 1. Taxa, sampling location data, museum catalog numbers of voucher specimens and GenBank accession numbers of specimens for which we have matching molecular and morphological identifications. The rest of the specimens that only have molecular identification are presented in Supplementary Table 1. USNM = National Museum of Natural History, Smithsonian Institution, Washington D.C., USA; SEM = specimen prepared for scanning electron micrograph; EtOH = specimen preserved in ethanol. Specimens that were unresolved in the phylogenetic trees are not included in this table.
and 58% of the value of shellfish produced annually by Washington State. For comparison, we also collected commercially-grown eastern oysters (Crassostrea virginica Gmelin) from North Sea Harbor, Long Island, New York, USA (40°56′24.13″N, 72°25′3.97″W, Table 1), less than 65 kilometers from the type locality of Polydora websteri (“mouth of the Milford River”, presumably near the mouth of the Wepawaug River that flows into the Milford Harbor, CT).

Worm collections. All oysters were shucked, and the soft tissues removed. We observed right and left valves under a stereomicroscope for indications of mud worm infestation, such as burrows and blisters. All oysters (with or without infestation) were photographed and measured (height and length of the shell) using a digital caliper (results in Supplementary Table 2). We removed any worms present in blisters or burrows with a probe or forceps, or by fracturing shells with a hammer to expose worms in their burrows. Once removed from the shell, we photographed the worms and fixed them whole in 95% ethanol for molecular analysis or, in some cases, sectioned worms such that molecular analysis of a worm (typically middle and posterior chaetigers) could be linked with morphological analysis of the same worm (typically anterior ends).

Morphological examination. For morphological examination, worms were fixed in 4% formalin/seawater overnight, washed in warm tap water, and transferred to 70% ethyl alcohol (EtOH) for storage. For examination with a scanning electron microscope (SEM), the specimens were dehydrated in an ascending ethanol series through 100% EtOH. Drying was accomplished with a Samdri 795 Critical Point Dryer. Once dried, the specimens were mounted on aluminum stubs, coated with gold using an EMS-550 Sputter coater, and viewed with a FEI Quanta 250 SEM. Voucher specimens (Table 1) were deposited in the National Museum of Natural History, Smithsonian Institution, Washington DC, USA (USNM).

Infestation prevalence. We considered any oyster that had at least one blister or burrow to be infested. Prevalence was calculated as the proportion of infested oysters in each sample. We also calculated the number of blisters/burrows per oyster.

Figure 5. Neighbor-joining phylogeny based on Kimura 2-parameter distances using trimmed 18S1 rRNA sequences (1000 replicates). The optimal tree with the sum of branch length = 0.087 is shown. Clades which were recovered in greater than 80% of replicate trees in the bootstrap test are shown along the branches leading to the clade nodes. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). Pseudopolydora dayii (KY677907) was used as an outgroup. New sequences reported in this study labeled with OAK and LI were collected in Oakland Bay and Long Island respectively.
DNA extraction, PCR amplification, and sequencing. Within the family Spionidae, species display variable morphology, making it challenging to obtain an accurate species-level identification based solely on morphological traits63,64,72. For this reason, we combined the morphological analysis, described above, with

Figure 6. Neighbor-joining phylogeny based on Kimura 2-parameter distances using trimmed mtCO1 sequences (1000 replicates). The optimal tree with the sum of branch length = 1.20 is shown. Clades which were recovered in greater than 80% of replicate trees in the bootstrap test are shown along the branches leading to the clade nodes. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). \textit{Pseudopolydora dayii} (KY677907) was used as an outgroup. New sequences reported in this study labeled with OAK and LI were collected in Oakland Bay and Long Island respectively.
sequencing and phylogenetic analysis of variation at the nuclear 18S rRNA and mitochondrial cytochrome c oxidase I \([\text{mtCOI}]\) genes\(^7^3\). We followed the protocol of\(^7^3\) in using a molecular approach to identify worms recovered from blisters and burrows.

For a subset \((n = 27)\) of the total number of worms vouched \((n = 107)\) and for four additional worms collected from Long Island, New York, we extracted DNA using DNeasy 96 Blood & Tissue Kit (Qiagen, Valencia, CA) following the manufacturers’ instructions. We used two genes for molecular identification: the nuclear 18S rRNA \([18S \text{rRNA}]\) and the mitochondrial cytochrome c oxidase I \([\text{mtCOI}]\). For the 18S rRNA gene, three regions were amplified: 18S-1F1/18S-1R632, 18S-2F576/18S-2R1209, and 18S-3F1129/18S-R1172 \(^7^4\). For mtCOI, we amplified one region: Dorid_COI.3 F/Dorid_COI.1R\(^7^3\). Primer sequences are presented in Table 5. The expected length of the fragments was between 680 and 780 bp. We used polymerase chain reaction (PCR) to amplify DNA using a C1000 Touch (Bio-Rad, Hercules, CA) thermocycler. PCR reactions consisted of 2.5 µM of each primer, 2.0 µl of template DNA, 5 µl of 2X PCR buffer (Phusion\textsuperscript® Hot Start Flex, Thermo Scientific, Foster City, CA), and 0.5 µl MgSO\textsubscript{4} in a 10-µl reaction. 18S rRNA was PCR-amplified with an initial activation step of three minutes at 98 °C, followed by 35 cycles of denaturation (30 seconds at 98 °C), annealing (30 seconds at 54 °C), and extension (30 seconds at 72 °C) with a final extension step (10 minutes at 72 °C). Only the first of the three regions for 18S rRNA (18S-1F1/18S-1R632) was used for analysis because the other two did not amplify consistently. mtCOI was PCR-amplified with an initial activation step of 98 °C, followed by 30 cycles of: denaturation (30 seconds at 98 °C), annealing (30 seconds at 45 °C), and extension (60 seconds at 72 °C) with a final step of five minutes at 72 °C. The size of the PCR amplicons was checked in a 1.5% agarose gel. PCR products were sequenced in both directions using the amplification primers at Molecular Cloning Laboratories (San Francisco, CA).

Table 2. Sequences alignment statistics for 18S and COI sequences for *Polydora websteri*. Values were calculated using MEGA7.0.26.

Variable	18S COI	
Sample size	16	
Final length of aligned sequences in bp	614	
No. variable nucleotides	22/614	164/554
Haplotype diversity	0.009	
Nucleotide diversity	0.01	
Transitions/transversions ratio	1.02	

Table 3. Intraspecific and interspecific Kimura-2-parameter (KP2) distances for the mitochondrial COI sequences of the *Polydora websteri* from our dataset and GenBank.

Species	No. indiv.	Origin	GenBank accession numbers	Intrasp. distance	Interspecific distance
Polydora aura	5	China	KR052136 - 40	0.0124	
Polydora brevpalpa	11	China	KP231319 - 25, KR052121 - 4	0.0026	0.258
Polydora hoplura	10	South Africa	KY677860 - 3, KY002977 - 82	0.0202	0.176, 0.190
Polydora linghuenensis	8	China	KY002963 - 37	0.0051	0.222, 0.207, 0.202
Polydora nuchalis	4	South Africa	KY677867, KY002983-85	0	0.215, 0.267, 0.210, 0.245
Polydora websteri	21	South Africa, China, United States	KR337469 - 72, KY002986 - 88, samples from this contribution	0.002	0.240, 0.185, 0.208, 0.218, 0.261

Table 4. Intraspecific and interspecific Kimura-2-parameter (KP2) distances for the nuclear 18S sequences of *Polydora websteri* from our dataset and GenBank.

Species	No. indiv.	Origin	GenBank accession numbers	Intrasp. distance	Interspecific distance
Polydora brevpalpa	8	China	KP231289 - 96	0.00	
Polydora linghuenensis	5	China	K562236 - 40	0.00	0.02
Polydora websteri	21	South Africa, Japan, China, Australia, United States	KY003046 - 48, KY677904 - 06, AB705402, AB705405, KP231302	0.00	0.02, 0.02

Molecular analysis. We combined forward and reverse complementary sequences of 18S rRNA and mtCOI genes using Geneious (version 11.0.5) to create consensus sequences. The consensus sequences were submitted to NCBI and registered in GenBank (accession nos. in Table 1 and Supplementary Table 1). The 18S rRNA sequences we generated with primers 18S-1F1 and 18S-1R632 were approximately 660 bp in length, but were trimmed the final alignment to a common length of 614 bp to remove poorly aligned terminal ends. Similarly,
mtCOI sequences were initially 680 bp in length and were trimmed to 554 bp for analysis. Initially, we aligned our partial consensus sequences of 18S rRNA and mtCOI genes with sequences from the *Polydora websteri* and other species in the genus *Polydora*, obtained from GenBank (Table 6). For this alignment we only employed Genbank sequences that have been published along with a clear morphological description of the species. We reconstructed phylogenetic trees using the neighbor-joining method based on Kimura 2-parameter model with 1000 bootstrap replications. We used a gamma distribution (shape parameter = 1) to model the rate variation among sites. The 18S rRNA analysis involved 25 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 566 positions in the final dataset and the optimal total branch length was 0.097. The mtCOI analysis involved 58 sequences and a total of 540 positions with an optimal total branch length of 1.2.

Primer name	Sequence 5’-3’	Length	Reference
18S - 1F1	AACCTGGTGATYCTGCCAG	1780 bp	Nishitani et al. 2012
18S - 1R632	ACTAAGGCTTTTAACTGCARC	1780 bp	Nishitani et al. 2012
Dorid COI - 3F	AAGGWAACACCTAGAAARATACC	684 bp	Williams et al. 2017
Dorid COI - 1R	CTGTGAATAGGGRAATCAGTTTAT	684 bp	Williams et al. 2017

Table 5. PCR and sequencing primers of 18S and COI genes used in this study.

Species	Acc No.	Country	Host	Ref.
Polydora websteri	AB705402	Japan	*Crassostrea gigas*	63
Polydora hoplura	AB705410	Australia	*Haliotis laevigata*	65
Polydora aura	AB705409	Japan	*Crassostrea gigas*	65
Polydora onagawaensis	AB691768	Japan	*Crassostrea gigas*	75
Polydora calcarea	AB705403	Japan	*Crassostrea gigas*	65
Polydora brevipalpa	AB705407	Japan	*Mizuhapteon yessoensis*	65
Polydora lingluensis	KJ562238	China	*Pinctada imbricata*	76
Polydora mchalis	KJ677902	South Africa	N/A	75
Pseudopolydora dayii	KJ677907	South Africa	N/A	75

Table 6. Details for 18S and COI sequences from GenBank that were used for phylogenetic analyses.
References

1. Lauckner, G. Diseases of Mollusca: Bivalvia. In: Kinne, O. ed. Diseases of Marine Animals, Volume II, Bivalvia to Scaphopoda. Hamburg, Germany: Biologische Anstalt Helgoland (1983).
2. Blake, J. A. Reproduction and larval development of Polydora from Northern New England (Polychaeta: Spionidae). Ophelia 7, 1–63 (1969).
3. Shinn, A. et al. Economic costs of protozan and metazoan parasites to global mariculture. Parasitology 142, 196–270 (2015).
4. Blake, J. & Evans, J. Polydora and other related Polychaeta Spionidae as borers in mollusk shells and other calcareous substrates. Veliger 15, 235–249 (1973).
5. Martin, D. & Britaye, T. A. Symbiotic polychaetes: Review of known species. Oceanography and Marine Biology: an Annual Review 36, 217–340 (1998).
6. Simon, C. A. & Sato-Okoshi, W. Polydorid polychaetes on farmed molluscs: distribution, spread and factors contributing to their success. Aquaculture Environment Interactions 7, 147–166 (2015).
7. Royer, J., Ropert, M., Mathieu, M. & Costil, K. Presence of spionid worms and other epibionts in Pacific oysters (Crassostrea gigas) cultured in Normandy, France. Aquaculture 253, 461–474 (2006).
8. Ogburn, D. M., White, I. & McPhee, D. P. The disappearance of oyster reefs from eastern Australian estuaries: Impact of colonial settlement or mudworm invasion? Coastal Management 35, 271–287 (2007).
9. Read, G. B. Comparison and history of Polydora websteri and Polydora hasselli (Polychaeta: Spionidae) as mud-blower worms in New Zealand shellfish. New Zealand Journal of Marine and Freshwater Research 44, 83–100 (2010).
10. Rice, L. N., Lindsay, S. & Rawson, P. Genetic homogeneity among geographically distant populations of the blister worm Polydora websteri. Aquaculture Environment Interactions 10, 437–446 (2018).
11. Kent, R. The influence of heavy infestations of Polydora ciliata on the flesh content of Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom 59, 289–297 (1979).
12. Kent, R. The effect of Polydora ciliata on the shell strength of Mytilus edulis. Journal du Conseil International pour l'Exploration de la Mer 39, 252–255 (1981).
13. Read, G. B. & Handley, S. New alien mudworm now becoming a pest in longline mussels. Water and Atmosphere 12, 30–31 (2004).
14. Evans, J. W. Borers in the shell of the sea scallop, Placopecten magellanicus. American Zoologist 9, 775–782 (1969).
15. Bergman, K., Elner, R. & Risk, M. The influence of Polydora websteri borings on the strength of the shell of the sea scallop, Placopecten magellanicus. Canadian Journal of Zoology 60, 2551–2556 (1982).
16. Mori, K., Sato, W., Nomura, T. & Imagima, M. Infestation of the Japanese scallop Patinopecten yessoensis by the boring polychaetes Polydora, on the Okhotsk Sea coast of Hokkaido, especially in Abashiri waters. Nippon Suisan Gakkaishi 51, 371–380 (1985).
17. Hahn, K. Handbook of Culture of Abalone and Other Marine Gastropods. Boca Raton, FL: CRC Press (1989).
18. Radashkevich, V. I. Spionidae (Annelida) from shallow waters around the British Islands: an identification guide for the NMBAQC Scheme with an overview of spionid morphology and biology. Zoosystema 31:1–35 (2012).
19. Whitelegg, T. Report on the worm disease affecting the oysters on the coast of New South Wales. Records of the Australian Museum 1, 41–54 (1890).
20. Roughley, T. Oyster Culture on the Georgie's River, New South Wales. Sydney, Australia: William Applegate Gullick, Government Printer (1922).
21. Roughley, T. The Story of the Oyster: Its History, Growth, Cultivation and Pests in New South Wales. Sydney, Australia: Alfred James Kent, Government Printer (1925).
22. Nell, J. Controlling mudworms in oysters. New South Wales, Australia: New South Wales Department of Primary Industries (2007).
23. Bailey-Brock, J. & Ringwood, A. Methods for control of the mud bluster worm, Polydora websteri, in Hawaiian oyster culture. Sea Grant Quarterly 4, 1–6 (1982).
24. Bailey-Brock, J. Phylum Annelida. In: Reef and Shore Fauna of Hawaii. Honolulu, HI: Bernice P Bishop Museum Special Publications. pp. 213–454 (1987).
25. Lutz, G. R. The annelid worm, Polydora, as an oyster pest. Science 92, 310 (1940).
26. Lutz, G. R. Polydora, a pest in South Carolina oysters. Journal of the Elkhis Mitchell Scientific Society 57, 273–283 (1941).
27. Loosanoff, V. L. & Engle, J. B. Polydora websteri in oysters suspended in the water. Biological Bulletin 85, 69–78 (1943).
28. Bowser, S., Blackbourn, S., Meyer, G. & Nishimura, D. Diseases of cultured Japanese scallops (Patinopecten yessoensis) in British Columbia, Canada. Aquaculture 107, 201–210 (1992).
29. Blake, J. A. The Annelida Part 3. Polycheata: Orbiniidae to Cossuridae. In: Blake, J. A., Hilbig, B. & Scott, P. H., eds. Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel. Santa Barbara, CA: Santa Barbara Museum of Natural History (1996).
30. Clements, J. C., Bourque, D., McLaughlin, J., Stephenson, M. & Comeau, L. A. Wanted dead or alive: Polydora websteri recruit to both live oysters and empty shells of the eastern oyster, Crassostrea virginica. Journal of Fish Diseases 41, 855–858 (2018).
31. Hopkins, S. H. The planktonic larvae of Polydora websteri Hartman (Annelida, Polychaeta) and their settling on oysters. Bulletin of Marine Science 8, 268–277 (1958).
32. Korrirga, P. The shell of Ostrea edulis as a habbait. Archives Néerlandaises de Zoologie 10, 32–146 (1954).
33. Haigler, S. A. Boring mechanism of Polydora websteri inhabiting Crassostrea virginica. American Zoologist 9, 821–828 (1969).
34. Zottoli, R. A. & Carrilier, M. R. Burrow morphology, tube formation, and microarchitecture of shell dissolution by the spionid polychaete Polydora websteri. Marine Biology 27, 307–316 (1974).
35. Handley, S. J. & Bergquist, P. R. Spionid polychaete infestations of intertidal pacific oysters Crassostrea gigas (Thunberg). Mahurangi Harbour, northern New Zealand. Aquaculture 153, 191–205 (1997).
36. Morse, D. L., Rawson, P. D., Kraeuter, J. N. Mud bluster worms and oyster aquaculture. Orono, ME: Maine Sea Grant and the University of Maine Cooperative Extension (2015).
37. Sato-Okoshi, W., Abe, H., Nishitani, G. & Simon, C. A. And then there was one: Polydora uncinita and Polydora hoplora (Annelida: Spionidae), the problematic polydorid pest species represent a single species. Journal of the Marine Biological Association of the United Kingdom 97, 1675–1684 (2017).
38. Buschbaum, C., Buschbaum, G., Schrey, I. & Thielges, D. W. Shell-boring polychaetes affect gastropod shell strength and crab predation. Marine Ecology Progress Series 329, 123–130 (2007).
39. Chambon, C. et al. Influence of the parasite worm Polydora sp. on the behaviour of the oyster Crassostrea gigas: A study of the respiratory impact and associated oxidative stress. Marine Biology 152, 329–338 (2007).
40. Wargo, R. N. & Ford, S. E. The effect of shell infestation by Polydora sp. and infection by Haplosporidium nelsoni. Estuaries 16, 229–234 (1993).
41. Owen, H. Etiological studies on oyster mortality. II. Polydora websteri Hartmann (Polychaeta: Spionidae). Bulletin of Marine Science of the Gulf and Caribbean 7, 35–46 (1957).
42. Dinamani, P. Potential disease-causing organisms associated with mantle cavity of Pacific oyster Crassostrea gigas in northern New Zealand. Diseases of Aquatic Organisms 2, 55–63 (1986).
43. Kojima, H. & Imagima, M. Burrowing polychaetes in the shells of the abalone Haliotis discolor and Haliotis aspersa of the species Polydora. Nippon Suisan Gakkaiishi 48, 31–35 (1982).
44. Leenart, M., Handliger, J. & Powell, M. Spionid mudworm infestation of farmed abalone (Haliotis spp.). Aquaculture 221, 85–96 (2003).
54. Radashevsky, V. I. Description of the proposed lectotype for Polydora websteri Hartman in Loosanoff & Engle, 1943. Ophelia 51, 107–113 (1999).

55. ICZN. Opinion 1974. Polydora websteri Hartman in Loosanoff & Engle, 1943 (Annelida: Polychaeta): Specific name conserved by a ruling that it is not to be replaced for P. caca-West, 1879, and a lectotype designated for Polydora websteri. Bulletin of Zoological Nomenclature 58, 152–153 (2001).

56. Hobson, K. D. & Banse, K. Sedentarie and archianellid polychaetes of British Columbia and Washington. Canadian Bulletin of Fisheries and Aquatic Sciences 209, 1–144 (1981).

57. Bower, S. Shellfish diseases on the west coast of Canada. Bulletin of the Aquaculture Association of Canada 90, 19–22 (1990).

58. Hartman, O. The marine annelids of San Francisco Bay and its environs, California. Occasional Papers of the Allan Hancock Foundation 15, 1–20 (1954).

59. Hartman, O. Polychaetous annelids from California. Los Angeles, CA: University of Southern California, pp. 152–153 (2001).

60. Hartman, O. Atlas of the Sedentarie Polychaetous Annelids from California. Los Angeles, CA: University of Southern California, pp. 152–153 (2001).

61. Washington Sea Grant Shellfish aquaculture in Washington State. Final report to the Washington State Legislature, 84 p (2015).

62. Rice, S. A., Karl, S. & Rice, K. A. The Washington Sea Grant Shellfish aquaculture in Washington State. Final report to the Washington State Legislature, 84 p (2015).

63. Sato-Okoshi, W. & Abe, H. Morphology and molecular analysis of the 18S rRNA gene of oyster shell borers, Polydora species (Polychaeta: Spionidae), from Japan and Australia. Journal of the Marine Biological Association of the United Kingdom 93, 1279–1286 (2013).

64. Radashevsky, V. I. & Pankova, V. V. The morphology of two sibling sympatric Polydora species (Polychaeta: Spionidae) from the Sea of Japan. Journal of the Marine Biological Association of the United Kingdom 86, 245–252 (2006).

65. Fofonoff, P. W., Ruiz, G. M., Steves, B., Carlton, J. T. In ships or on ships? Mechanisms of transfer and invasion for non-native species to the coasts of North America. In: Ruiz, G. M. & Carlton, J. T. eds. Invasive Species: Vectors and Management Strategies. Washington, DC: Island Press, pp. 152–182 (2003).

66. Carlton, J. T. & Geller, J. B. Ecological roulette: the global transport of nonindigenous marine organisms. Science 261, 78–82 (1993).

67. Drake, J. M. & Lodge, D. M. Global hot spots of biological invasions: Evaluating options for ballast-water management. Proceedings of the Royal Society B 275, 571–580 (2004).

68. Carlton, J. T. Biological invasions and cryptogenic species. Ecology 77, 1635–1655 (1996).

69. Clements, J. C., Bourque, D., McLaughlin, J., Stephenson, M. & Comeau, L. A. Siltation increases the susceptibility of surface-cultured eastern oysters (Crassostrea virginica) to parasitism by the mudworm Polydora websteri. Aquaculture Research 48, 4707–4717 (2017a).

70. Clements, J. C., Bourque, D., McLaughlin, J., Stephenson, M. & Comeau, L. A. Extreme ocean acidification reduces the susceptibility of eastern oyster shells to a polydorid parasite. Journal of Fish Diseases 40, 1573–1585 (2017b).

71. White, J. M., Buhle, E. R., Ruesink, J. L. & Trimble, A. C. Evaluation of Olympia oyster (Ostrea lurida Carpenter 1864) status and restoration techniques in Puget Sound, Washington, United States. Journal of Shellfish Research 28, 107–112 (2009).

72. Rice, S. A., Karl, S. & Rice, K. A. The Polydora corustra complex (Annelida: Polychaeta) consists populations that are reproductively isolated and genetically distinct. Invertebrate Biology 127, 45–64 (2008).

73. Williams, L. G., Karl, S. A., Rice, S. S. & Simon, C. Molecular identification of polydorid polychaetes (Annelida: Spionidae): Is there a quick way to identify pest and alien species? African Zoology 52, 105–117 (2017).

74. Nishitani, G. et al. Multiple plastids collected by the dinoflagellate Dinophytis mitra through kleptoplasty. Applied and Environmental Microbiology 78, 813 (2012).

75. Teramoto, W., Sato-Okoshi, W., Abe, H., Nishitani, G. & Endo, Y. Morphology, 18S rRNA gene sequence and life history of a new Polydora species (Polychaeta: Spionidae) from northeastern Japan. Aquatic Biology 18, 31–45 (2013).

76. Ye, L. et al. Mudworm Polydora linghiuensis sp. n is a new species that inhabits both shell burrows and mudtubes. Zootaxa 3986, 088–100 (2015).

77. Ye, L., Yao, T., Wu, L., Lu, J. & Wang, J. Morphological and molecular diagnoses of Polydora brevipalpa Zachs, 1933 (Annelida: Spionidae) from the shellfish along the coast of China. Journal of Oceanology and Limnology 37, 713–723 (2019).

Acknowledgements

The authors thank Marissa Leatherman for assistance with field and lab work. Luke Tornabene provided help with sequences processing and GenBank submissions. CLW was supported by a Sloan Research Fellowship from the Alfred P. Sloan Foundation. This work was funded in part by a grant to Washington Sea Grant, University of Washington from the National Oceanic and Atmospheric Administration (Award No. NA14OAR4170078 AM12) to CLW and by a grant from the National Science Foundation (DBI-1337525) to JDW. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies.

Author contributions

J.C.M. & H.M.L. carried out fieldwork, sample processing, molecular analysis, prepared figures, analyzed data and wrote the manuscript. P.R., I.J.H. and L.H. provided assistance and guidance with molecular analyses. J.D.W. carried out morphological analysis and SEM imaging. T.L.K., J.L.P.G. and L.H.S. assisted oyster collections. P.R., J.D.W. and C.L.W. provided critical feedback and contributed to writing. All authors reviewed the manuscript and approved the final version of it.
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-60805-w.
Correspondence and requests for materials should be addressed to J.C.M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020