HYPOELLIPTICITY OF THE $\bar{\partial}$-NEUMANN PROBLEM AT EXPONENTIALLY DEGENERATE POINTS

TRAN VU KHANH AND GIUSEPPE ZAMPIERI

Abstract. We prove local hypoellipticity of the complex Laplacian \square in a domain which has compactness estimates, is of finite type outside a curve transversal to the CR directions and for which the holomorphic tangential derivatives of a defining function are subelliptic multipliers in the sense of Kohn.

MSC: 32F10, 32F20, 32N15, 32T25

1. Introduction

For the pseudoconvex domain $\Omega \subset \mathbb{C}^n$ whose boundary is defined in coordinates $z = x + iy$ of \mathbb{C}^n, by

$$2x_n = \exp \left(-\frac{1}{\left(\sum_{j=1}^{n-1} |z_j|^2 \right)^{\frac{1}{2}}} \right), \quad s > 0,$$

the tangential Kohn Laplacian $\square_b = \bar{\partial}_b \partial_b^* + \bar{\partial}_b^* \partial_b$ as well as the full Laplacian $\square = \partial \partial^* + \partial^* \partial$ show very interesting features especially in comparison with the “tube domain” whose boundary is defined by

$$2x_n = \exp \left(-\frac{1}{\left(\sum_{j=1}^{n-1} |x_j|^2 \right)^{\frac{1}{2}}} \right), \quad s > 0.$$

(Here z_j have been replaced by x_j at exponent.) Energy estimates are the same for the two domains. For the problem on the boundary $\partial \Omega$, they come as

$$\|(\log \Lambda)^{1/2} u\|_{\partial \Omega} \lesssim \|\bar{\partial}_b u\|_{\partial \Omega}^2 + \|\bar{\partial}_b^* u\|_{\partial \Omega}^2 + \|u\|_{\partial \Omega}^2$$

for any smooth compact support form $u \in C^\infty_c(\partial \Omega)$ of degree $k \in [1, n-2]$. Here $\log \Lambda$ is the tangential pseudodifferential operator with symbol $\log(1 + |\xi'|^2)^{\frac{1}{2}}$, $\xi' \in \mathbb{R}^{2n-1}$, the dual real tangent space. As for the problem on the domain Ω, one has simply to replace $\bar{\partial}_b, \bar{\partial}_b^*$ by ∂, ∂^* and take norms over Ω for forms u in D_{∂^*}, the domain of ∂^*, of degree $1 \leq k \leq n-1$; this can be seen, for instance, in [9]. In particular, these are superlogarithmic (resp. compactness) estimates if $s < 1$ (resp. for
any $s > 0$). A related problem is that of the local hypoellipticity of the Kohn Laplacian \square_b or, with equivalent terminology, the local regularity of the inverse (modulo harmonics) operator $N_b = \square_b^{-1}$. Similar is the notion of hypoellipticity of the Laplacian \square or the regularity of the inverse Neumann operator $N = \square^{-1}$. It has been proved by Kohn in [12] that superlogarithmic estimates suffice for local hypoellipticity of the problem both in the boundary and in the domain. (Note that hypoellipticity for the domain, [12] Theorem 8.3, is deduced from microlocal hypoellipticity for the boundary, [12] Theorem 7.1, but a direct proof is also available, [7] Theorem 5.4.) In particular, for (1.1) and (1.2), there is local hypoellipticity when $s < 1$.

As for the more delicate hypoellipticity, in the uncertain range of indices $s \geq 1$, only the tangential problem has been studied and the striking conclusion is that the behavior of (1.1) and (1.2) split. The first stays always hypoelliptic for any s (Kohn [11]) whereas the second is not for $s \geq 1$ (Christ [4]). When one tries to relate $(\bar{\partial}_b, \bar{\partial}_b^*)$ on $b\Omega$ to $(\bar{\partial}, \bar{\partial}^*)$ on Ω, estimates go well through (Kohn [12] Section 8 and Khanh [7] Chapter 4) but not regularity. In particular, the two conclusions about tangential hypoellipticity of \square_b for (1.1) and non-hypoellipticity for (1.2) when $s \geq 1$, cannot be automatically transferred from $b\Omega$ to Ω. Now, for the non-hypoellipticity in Ω in case of the tube (1.2) we have obtained with Baracco in [1] a result of propagation which is not equivalent but intimately related. The real lines x_j are propagators of holomorphic extendibility from Ω across $b\Omega$. What we prove in the present paper is hypoellipticity in Ω for (1.1) when $s \geq 1$.

Theorem 1.1. Let Ω be a pseudoconvex domain of \mathbb{C}^n in a neighborhood of $z_0 = 0$ and assume that the $\bar{\partial}$-Neumann problem satisfies the following properties

1. there are local compactness estimates,
2. there are subelliptic estimates for $(z_1, ..., z_{n-1}) \neq 0$,
3. $\partial z_j r, j = 1, ..., n - 1$, are subelliptic multipliers (cf. [10]).

Then \square is locally hypoelliptic at z_0.

The proof follows in Section 2. It consists in relating the system on Ω to the tangential system on $b\Omega$ along the guidelines of [12] Section 8, and then in using the argument of [11] simplified by the additional assumption (i).

Remark 1.2. The domain with boundary (1.1), but not (1.2), satisfies the hypotheses of Theorem 1.1 for any $s > 0$: (i) is obvious, and (ii) and (iii) are the content of [11] Section 4.
Notice that $\partial \Omega$ is given only locally in a neighborhood of z_0. We can continue $\partial \Omega$ leaving it unchanged in a neighborhood of z_0, making it strongly pseudoconvex elsewhere, in such a way that it bounds a relatively compact domain $\Omega \subset \subset \mathbb{C}^n$ (cf. [14]). In this situation \square is hypoelliptic at every boundary point. Also, it is well defined a H^0 inverse Neumann operator $N = \square^{-1}$, and, by Theorem [1.1] the $\bar{\partial}$-Neumann solution operator $\bar{\partial}^* N$ preserves $C^\infty(\Omega)$-smoothness. It even preserves the exact Sobolev class H^s according to Theorem 2.7 below. In other words, the canonical solution $u = \bar{\partial}^* N f$ of $\bar{\partial} u = f$ for $f \in \text{Ker } \bar{\partial}$ is H^s exactly at the points of $b\Omega$ where f is H^s. The Bergman projection B also preserves $C^\infty(\bar{\Omega})$-smoothness on account of Kohn’s formula $B = \text{Id} - \bar{\partial}^* N \bar{\partial}$.

Aknowledgments. The authors are grateful to Emil Straube for suggesting the argument which leads to the hypoellipticity of the operator \square from that of the system $(\bar{\partial}, \bar{\partial}^*, \Delta)$.

2. HYPOELLIPTICITY OF \square AND EXACT HYPOELLIPTICITY OF $\bar{\partial}^* N$

We state properly hypoellipticity and exact hypoellipticity of a general system (P_j).

Definition 2.1. (i) The system (P_j) is locally hypoelliptic at $z_0 \in b\Omega$ if

$$P_j u \in C^\infty(\bar{\Omega})^k_{z_0} \text{ for any } j \text{ implies } u \in C^\infty(\bar{\Omega})^k_{z_0},$$

where $C^\infty(\bar{\Omega})^k_{z_0}$ denotes the set of germs of k-forms smooth at z_0.

(ii) The system (P_j) is exactly locally hypoelliptic at $z_0 \in b\Omega$ when there is a neighborhood U of z_0 such that for any pair of cut-off functions ζ and ζ' in $C^\infty_c(U)$ with $\zeta'|_{\text{supp}(\zeta)} \equiv 1$ we have for any s and for suitable c_s

$$||\zeta u||_s^2 \leq c_s \left(\sum_j ||\zeta' P_j u||_s^2 + ||u||_0^2 \right), \quad u \in C^\infty(\bar{\Omega})^k \cap D(P_j).$$

If (P_j) happens to have an inverse, this is said to be locally regular and locally exactly regular in the situation of (i) and (ii) respectively.

Remark 2.2. By Kohn-Nirenberg [13] the assumption $u \in C^\infty$ can be removed from (2.1). Precisely, by the elliptic regularization, one can prove that if $\zeta' P_j u \in H^s$ and $\zeta' u \in H^0$, then $\zeta u \in H^s$ and satisfies (2.1). This motivates the word “exact”, that is, Sobolev exact. Not only the local C^∞- but also the H^s-smoothness passes from $P_j u$ to u.

Let ϑ be the formal adjoint of $\bar{\partial}$ and $\Delta = \bar{\partial} \vartheta + \vartheta \bar{\partial}$ the Laplacian; it acts on forms by the action of the usual Laplacian on its coefficients.
If \(u \in D_{\Box} \), then \(\Box u = \Delta u \). We first prove exact hypoellipticity of the system \((\bar{\partial}, \bar{\partial}^*, \Delta) \); hypoellipticity of \(\Box \) itself will follow by the method of Boas-Straube.

Theorem 2.3. In the situation of Theorem 1.1, we have, for a neighborhood \(U \) of \(z_0 \) and for any couple of cut-off \(\zeta \) and \(\zeta' \) with \(\zeta' \mid_{\text{supp} \zeta} \equiv 1 \)

\[
|\zeta u|^2_s \lesssim |\zeta' \bar{\partial} u|^2_s + |\zeta' \bar{\partial}^* u|^2_s + |\zeta' \Delta u|^2_{s-2} + ||u||^2_0, \quad u \in D_{\bar{\partial}}.
\]

In particular, the system \((\bar{\partial}, \bar{\partial}^*, \Delta)\) is exactly locally hypoelliptic at \(z_0 = 0 \).

Remark 2.4. The hypoellipticity of \(\Box_b \) under (ii) and (iii) of Theorem 1.1 is proved by Kohn in [11]. It does not require (i) but it is not exact hypoellipticity (the neighborhood \(U \) of (2.1) depends on \(s \)). However, inspection of his proof shows that, if (i) is added, then in fact (2.1) holds for \((P_j) = \Box_b\). Our proof consists in a reduction to the tangential system.

Proof. We proceed in several steps which are highlighted in two intermediate propositions. We use the standard notation \(Q(u, u) \) for

\[
||\bar{\partial} u||^2_0 + ||\bar{\partial}^* u||^2_0 \text{ and some variants as, for an operator } Op, Q_{Op}(u, u) := ||Op \bar{\partial} u||^2_0 + ||Op \bar{\partial}^* u||^2_0; \text{ most often, in our paper, } Op \text{ is chosen as } \Lambda^s \zeta'.
\]

We decompose a form \(u \) as

\[
\begin{cases}
 u = u^\tau + u^\nu, \\
 u^\tau = u^{\tau^+} + u^{\tau^-} + u^{\tau^0},
\end{cases}
\]

where the first is the decomposition in tangential and normal component and the second is the microlocal decomposition \(u^{\tau^\pm} = \Psi^{\tau^\pm} u^{\tau} \) in which \(\Psi^{\tau^\pm} \) are the tangential pseudodifferential operators whose symbols \(\psi^{\tau^\pm} \) are a conic decomposition of the unity in the space dual to \(\mathbb{R}^{2n-1} \) the real orthogonal to \(\partial r \) (cf. Kohn [12]). We begin our proof by remarking that any of the forms \(u^\# = u^\nu, u^{\tau^-}, u^{\tau^0} \) enjoys elliptic estimates

\[
|\zeta u^\#|^2_s \lesssim |\zeta' \bar{\partial} u^\#|^2_s + |\zeta' \bar{\partial}^* u^\#|^2_s + |\zeta' \Delta u^\#|^2_{s-2} + ||u^\#||^2_0, \quad s \geq 2.
\]

We refer to [6] formula (1) of Main theorem as a general reference but also give an outline of the proof. For this, we have to call into play the tangential \(s \)-Sobolev norm which is defined by \(|||u|||_s = |||\Lambda^s u|||_0 \). We start from

\[
|\zeta u^\#|^2_s \lesssim Q(\zeta u^\#, \zeta u^\#) + ||u^\#||^2_0,
\]

\[
|\zeta u^\#|^2_s \lesssim |||u^\#|||^2_s \lesssim Q(\zeta u^\#, \zeta u^\#) + ||u^\#||^2_0,
\]
this is the basic estimate for \(u^\nu \) (which vanishes at \(b\Omega \)) whereas it is Lemma 8.6 for \(u^{\tau -} \) and \(u^{\tau 0} \). Applying (2.4) to \(\zeta'\Lambda^{s-1}\zeta u^\# \) one gets the estimate of tangential norms for any \(s \). Finally, by non-characteristicity of \((\bar{\partial}, \bar{\partial}^*)\) one passes from tangential to full norms along the guidelines of Theorem 1.9.7. The version of this argument for \(s \) is the first which is the most central

We decompose

\[
\tau^+ = u^{\tau+}(h) + u^{\tau+}(0),
\]

where \(u^{\tau+}(h) \) is the “harmonic extension” in the sense of Kohn and \(u^{\tau+}(0) \) is just the complementary part. We denote by \(\bar{\partial}^r \) the extension of \(\bar{\partial}_b \) from \(b\Omega \) to \(\Omega \) which stays tangential to the level surfaces \(r \equiv \text{const} \). It acts on tangential forms \(u^\tau \) and it is defined by \(\bar{\partial}^ru^\tau = (\bar{\partial}u^\tau)^r \). We denote by \(\bar{\partial}^ru^\tau \) its adjoint; thus \(\bar{\partial}^ru^\tau = \bar{\partial}r(u^\tau) \). We use the notations \(\Box^r \) and \(Q^r \) for the corresponding Laplacian and energy. We notice that over a tangential form \(u^\tau \) we have a decomposition

\[
Q = Q^r + ||\bar{L}_nu^\tau||_0^2.
\]

The proof of (2.2) for \(u^{\tau+} \) requires two crucial technical results. Here is the first which is the most central

Proposition 2.5. For the harmonic extension \(u^{\tau+}(h) \) we have

\[
|||\zeta u^{\tau+}(h)|||_s^2 \lesssim Q_{\Lambda^s}\zeta(u^{\tau+}(h), u^{\tau+}(h)) + ||u^{\tau+}(h)||_0^2.
\]

Proof. We apply compactness estimates (cf. e.g. Section 6) for \(\zeta'\Lambda^s\zeta u^{\tau+}(h) \),

\[
||\zeta'\Lambda^\ast\zeta u^{\tau+}(h)||^2_2 \leq \epsilon Q(\zeta'\Lambda^s\zeta u^{\tau+}(h), \zeta'\Lambda^s\zeta u^{\tau+}(h)) + c_\epsilon ||\zeta'\Lambda^s\zeta u^{\tau+}(h)||^2_{-1}.
\]

We decompose \(Q \) according to (2.5). We calculate \(Q^r \) over \(\zeta'\Lambda^s\zeta u^{\tau+}(h) \) and compute errors coming from commutators \([Q^r, \zeta'\Lambda^s\zeta]\). In this calculation we assume that the cut off functions are of product type \(\zeta(z')\zeta(t) \) where \(z' \) (resp. \(t \)) are complex (resp. totally real) tangential coordinates in \(T_{z_0}b\Omega \). We have

\[
Q^r(\zeta'\Lambda^s\zeta u^{\tau+}(h), \zeta'\Lambda^s\zeta u^{\tau+}(h)) \lesssim Q^r(\zeta'\Lambda^s\zeta u^{\tau+}(h), u^{\tau+}(h)) + ||\zeta'\tau^+(h)||_{-1}^2 + ||\zeta'\tau^+(h)||_{-1}^2
\begin{align*}
+ \left(||(|\dot{\zeta}(z')| + |\dot{\zeta}(z')|)\Lambda^s\tau^+(h)||_0^2 + || \sum_{j=1}^{n-1} |r_{z^j}[(|\dot{\zeta}(t)| + |\dot{\zeta}(t)|)\Lambda^s\tau^+(h)||_0^2 \right).
\end{align*}

We explain (2.8). First, the commutators $[\bar{\partial}^r, \zeta' \Lambda^s \zeta]$ (and similarly as for $[\bar{\partial}^r, \zeta' \Lambda^s \zeta]$) are decomposed by Jacobi identity as

$$[\bar{\partial}^r, \zeta' \Lambda^s \zeta] = [\bar{\partial}^r, \zeta'] \Lambda^s \zeta + \zeta'[\bar{\partial}^r, \Lambda^s] \zeta + \zeta' \Lambda^s [\bar{\partial}^r, \zeta].$$

The central commutator $[\bar{\partial}^r, \Lambda^s]$ produces the error term $|||\zeta u^{r+\langle h \rangle}|||^2_n$.

As for the two others, we have

$$[\bar{\partial}^r, \zeta(z') \zeta(t)] = [\bar{\partial}^r, \zeta(z')] \zeta(t) + \zeta(z')[\bar{\partial}^r, \zeta(t)],$$

and similarly for ζ replaced by ζ' and ∂^r by $\bar{\partial}^r$. Now,

$$(2.9) \quad [\bar{\partial}^r, \zeta(z')] \sim \zeta(z').$$

On the other hand, we first notice that it is not restrictive to assume that $\partial_{z_1}, ..., \partial_{z_{n-1}}$ are a basis of $T_0^{1.0} \Omega$ for otherwise, owing to (iii), we have subelliptic estimates from which local regularity readily follows. Thus, each $\tilde{L}_j, \ j = 1, ..., n-1$, is of type $\tilde{L}_j = r_{z_j} \partial_{z_n} - r_{z_n} \partial_{z_j}$, and then

$$[\bar{\partial}^r, \zeta(t)] \sim \sum_{j=1}^{n-1} [\tilde{L}_j, \zeta(t)] \sim \sum_{j=1}^{n-1} r_{z_j} \dot{\zeta}(t). \quad (2.10)$$

By combining (2.9) with (2.10) (and using the analogous for ζ' and $\bar{\partial}^r$), we get the last line of (2.8). This establishes (2.8). Next, since $(\bar{\partial}^r, \bar{\partial}^r)$ has subelliptic estimates, say η-subelliptic, for $z' \neq 0$ and hence in particular over $\text{supp} \ \dot{\zeta}(z')$ and $\text{supp} \ \dot{\zeta}'(z')$ and since the r_{z_j} are, say, η-subelliptic multipliers even at $z' = 0$, then the last line of (2.8) is estimated by $|||\zeta'' \Lambda^{s-\eta} \zeta u^{r+\langle h \rangle}|||^2$ where $\zeta'' \equiv 1$ over $\text{supp} \ \zeta'$. This shows, using iteration over increasing k such that $k\eta > s$ and over decreasing j from $s - 1$ to 0, that (2.7) and (2.8) imply (2.6) provided that we add on the right side the extra term $|||\tilde{L}_n \zeta' \Lambda^s \zeta u^{r+\langle h \rangle}|||^2$. Note that, as a result of the inductive process, we have to replace $Q_{C' \Lambda^s \zeta}$ in (2.8) by $Q_{\Lambda^s \zeta'}$ in (2.6).

Up to this point the argument is the same as in [11] and does not make any use of the specific properties of the harmonic extension $u^{r+\langle h \rangle}$. We start the new part which is dedicated to prove that $|||\tilde{L}_n \zeta' \Lambda^s \zeta u^{r+\langle h \rangle}|||^2$ can be removed from the right of (2.6). For this we have to use the main property of this extension expressed by [12] Lemma 8.5, that is,

$$(2.11) \quad |||\tilde{L}_n \zeta u^{r+\langle h \rangle}|||^2_0 \lesssim \sum_{j=1}^{n-1} |||\tilde{L}_j \zeta u^{r+\langle h \rangle}|||^2_{b_{n-1}^{-\frac{1}{2}}} + |||u^{r+\langle h \rangle}|||^2_0.$$
Note that (2.11) differs from [12] Lemma 8.5 by $[\bar{L}_n, \Psi^{\dagger}]$; but this is an error term which can be taken care of by $u^\tau 0$ to which elliptic estimates apply. Applying (2.11) to $\zeta' \Lambda^s \zeta u^\tau + (h)$ (for the first inequality below), and using the classical inequality $|| \cdot ||_{b, -\frac{1}{2}}^2 \leq c_i || | \zeta^0 || + \epsilon || | \partial_{\tau} \cdot ||_{-1}^2$ (cf. e.g. [8] (1.10)) together with the splitting $\partial_{\tau} = \bar{L}_n + Tan$ (for the second), we get

$$|| \bar{L}_n \zeta' \Lambda^s \zeta u^\tau + (h) ||_0^2 \leq \sum_{j=1}^{n-1} || \bar{L}_j \zeta' \Lambda^s \zeta u^\tau + (h) ||_{b, -\frac{1}{2}}^2 + || \zeta' \Lambda^s \zeta u^\tau + (h) ||_0^2$$

$$\leq c_i \sum_{j=1}^{n-1} || \bar{L}_j \zeta' \Lambda^s \zeta u^\tau + (h) ||_0^2 + \epsilon \sum_{j=1}^{n-1} || \bar{L}_n \bar{L}_j \zeta' \Lambda^s \zeta u^\tau + (h) ||_{-1}^2$$

$$+ \epsilon \sum_{j=1}^{n-1} || || Tan \bar{L}_j \zeta' \Lambda^s \zeta u^\tau + (h) ||_{-1}^2 + || \zeta' \Lambda^s \zeta u^\tau + (h) ||_0^2.$$

The first term on the right of the last inequality is controlled by

$$\sum_{j=1}^{n-1} || \zeta' \Lambda^s \zeta \bar{L}_j u^\tau + (h) ||^2 + || \zeta u^\tau + (h) ||_s^2 + || \zeta' u^\tau + (h) ||_{s-1}^2$$

by the first part of the proposition; moreover, we have the immediate estimate

$$\sum_{j=1}^{n-1} || \zeta' \Lambda^s \zeta \bar{L}_j u^\tau + (h) ||^2 \sim Q_{\Lambda^s \zeta'}(u^\tau + (h), u^\tau + (h)).$$

The term which carries ϵTan, after Tan has been annihilated by the Sobolev norm of index -1, has the same estimate as the first term. It remains to control the second term in the right which involves $\epsilon \bar{L}_n$. We rewrite $\bar{L}_n \bar{L}_j = \bar{L}_j \bar{L}_n + [\bar{L}_n, \bar{L}_j]$; when \bar{L}_j moves in first position, it is annihilated by -1 and what remains is absorbed in the left. As for the commutator, we have

$$|| || \bar{L}_n, \bar{L}_j || \zeta' \Lambda^s \zeta u^\tau + (h) ||_{s-1}^2 \leq || \zeta u^\tau + (h) ||_s^2 + || \partial_{\tau} \zeta' \Lambda^s \zeta u^\tau + (h) ||_{s-1}^2$$

$$\leq \epsilon || \zeta u^\tau + (h) ||_s^2 + || \bar{L}_n \zeta' \Lambda^s \zeta u^\tau + (h) ||_{s-1}^2,$$

where we have used the splitting $\partial_{\tau} = Tan + \bar{L}_n$ in the second inequality. Again, the term with \bar{L}_n, which now comes in -1 norm, is absorbed in the left of (2.12). Summarizing up, we have got

$$|| \bar{L}_n \zeta' \Lambda^s \zeta u^\tau + (h) ||_0^2 \sim c_i Q_{\Lambda^s \zeta'}(u^\tau + (h), u^\tau + (h))$$

$$+ || \zeta u^\tau + (h) ||_s^2 + || \zeta' u^\tau + (h) ||_{s-1}^2.$$

But $|| \bar{L}_n \cdot ||_0^2$ comes with a factor ϵ of compactness and hence the term in s-norm in the last line can be absorbed in the left of the initial
inequalities \eqref{2.7} or \eqref{2.6}. Finally, we use an inductive argument to go down from \(s - 1 \) to 0. This concludes the proof of the proposition.

We remark now that
\[
|||\zeta u^{\tau + (h)}|||^0_0 \lesssim |||\zeta u^{\tau +}_b|||^2_{b, -\frac{1}{2}} \\
\lesssim |||\zeta u^{\tau +}|||^2_0 + |||\partial_r \zeta u^{\tau +}|||^2_{-1} \\
\lesssim |||\zeta u^{\tau +}|||^2_0 + |||\bar{L}_n \zeta u^{\tau +}|||^2_{-1} + |||\Tan \zeta u^{\tau +}|||^2_{-1} \\
\lesssim Q_{\Lambda - 1\zeta}(u^{\tau +}, u^{\tau +}) + |||\zeta u^{\tau +}|||^2_{0}.
\] (2.14)

The same inequality also holds for \(u^{\tau + (h)} \) replaced by \(u^{\tau + (0)} \) on account of the identity \(u^{\tau + (0)} = u^{\tau +} + u^{\tau + (h)} \). We need another preparation result

Proposition 2.6. We have
\[
Q^r_{\Lambda - 1\zeta'}(u^{\tau + (h)}, u^{\tau + (h)}) \lesssim Q^r_{\Lambda - 1\zeta'}(u^{\tau +}, u^{\tau +}) + Q^r_{\partial_r \Lambda^{s - 1}\zeta'}(u^{\tau +}, u^{\tau +})
\] (2.15)
and
\[
|||\zeta' u^{\tau + (0)}|||^2_s \lesssim Q^r_{\Lambda^{s - 1}\zeta'}(u^{\tau +}, u^{\tau +}) + Q^r_{\partial_r \Lambda^{s - 2}\zeta'}(u^{\tau +}, u^{\tau +}) \\
+ |||\zeta' \Delta u^{\tau +}|||^2_{s - 2} + ||u^{\tau +}||^2_0.
\] (2.16)

Proof. The proof of \eqref{2.15} is an immediate combination of the formulas \(|||\zeta' u^{\tau + (h)}|||^0 \lesssim |||\zeta' u^{\tau +}_b|||^2_{b, -\frac{1}{2}} \), and \(|||\zeta' u^{\tau +}|||^2_{b, -\frac{1}{2}} \lesssim ||\zeta' u^{\tau +}||^0 + |||\partial_r \zeta' u^{\tau +}|||^2_{-1} \).

We prove now \eqref{2.16}. By elliptic estimate for \(u^{\tau + (0)} \) (which vanishes at \(\partial \Omega \)) with respect to the order 2 elliptic operator \(\Delta \), we have
\[
|||\zeta' u^{\tau + (0)}|||^2_s \lesssim |||\zeta' \Delta u^{\tau + (0)}|||^2_{s - 2} + ||u^{\tau + (0)}||^2_0.
\] (2.17)

This result of Sobolev regularity at the boundary is very classical: it is formulated, for functions in \(H^1_0 \) such as the coefficients of \(u^{\tau + (0)} \), e.g., in Evans [5] Theorem 5 p. 323. Owing to the identity \(\Delta u^{\tau + (0)} = \Delta u^{\tau +} + P^1 u^{\tau + (h)} \) for a 1-order operator \(P^1 \) (cf. [12] p. 241), we can replace \(\Delta u^{\tau + (0)} \) by \(\Delta u^{\tau +} \) on the right side of \eqref{2.17} putting the contribution of \(P^1 \) into an error term of type \(|||\zeta' u^{\tau + (h)}|||^0_{s - 1} + |||\zeta' \partial_r u^{\tau + (h)}|||^0_{s - 2} \), which can be estimated, on account of the splitting \(\partial_r = \bar{L}_n + \Tan \), by \(|||\zeta' u^{\tau + (h)}|||^0_{s - 1} + |||\zeta'' u^{\tau + (h)}|||^0_{s - 2} + Q^r_{\Lambda^{s - 2}\zeta'}(u^{\tau + (h)}, u^{\tau + (h)}) \). We write the terms of order \(s - 1 \) and \(s - 2 \) as a common \(|||\zeta'' u^{\tau + (h)}|||^0_{s - 1} \) that we can estimate, using \eqref{2.6} and \eqref{2.15}, by
\[
|||\zeta'' u^{\tau + (h)}|||^2_{s - 1} \lesssim Q^r_{\Lambda^{s - 1}\zeta''}(u^{\tau +}, u^{\tau +}) + Q^r_{\Lambda^{s - 2}\partial_r \zeta''}(u^{\tau +}, u^{\tau +}).
\]
This brings down from $s - 1$ to 0 the Sobolev index in the error term. This 0-order term $||u^{\tau + (h)}||^2_0$, together with its companion $||u^{\tau + (0)}||^2_0$ in the right of (2.17), is estimated, because of (2.14), by $||u^{\tau +}||^2_0$ up to a term $Q_{\Lambda - 1, \zeta}$ which is controlled by the right side of (2.16). This concludes the proof of (2.16).

□

End of proof of Theorem 2.3. We prove (2.2) for $u^{\tau +}$; this implies the conclusion in full generality according to the first part of the proof. We have

\begin{equation}
|||\zeta u^{\tau + (h)}|||^2_s \lesssim Q^{\tau}_{\Lambda, \zeta'}(u^{\tau + (h)}, u^{\tau + (0)}) + ||u^{\tau + (h)}||^2_0
\end{equation}

by (2.19)

\begin{equation}
\lesssim Q^{\tau}_{\Lambda, \zeta'}(u^{\tau +}, u^{\tau +}) + Q^{\tau}_{\partial, \Lambda^{-1}, \zeta'}(u^{\tau +}, u^{\tau +}) + ||u^{\tau +}||^2_0.
\end{equation}

We combine (2.18) with (2.16); what we get is

\begin{equation}
|||\zeta u^{\tau +}|||^2_s \lesssim |||\zeta u^{\tau + (h)}|||^2_s + |||\zeta u^{\tau + (0)}|||^2_s
\end{equation}

\begin{equation}
\lesssim |||\zeta' \bar{\partial} u^{\tau +}|||^2_s + |||\zeta' \bar{\partial}^* u^{\tau +}|||^2_s + |||\zeta' \Delta u^{\tau +}|||^2_{s - 2} + ||u^{\tau +}||^2_0.
\end{equation}

By the non-characteristicity of Q, we can replace the tangential norm $||| \cdot |||_s$ by the full norm $|| \cdot ||_s$ in the left of (2.19). (The explanation of this point can be found, for example, in [12] second part of p. 245.) This proves (2.2) for $u^{\tau +}$ and thus also for a general u.

□

We modify $b\Omega$ outside a neighborhood of z_0 where it satisfies the hypotheses of Theorem 1.1 so that it is strongly pseudoconvex in the modified portion and bounds a relatively compact domain; in particular, there is well defined the H^0 inverse N of \Box in this domain. There is an immediate crucial consequence of Theorem 2.3

Theorem 2.7. We have that

\begin{equation}
\bar{\partial}^* N \text{ is exactly regular over } \text{Ker}\bar{\partial}
\end{equation}

and

\begin{equation}
\bar{\partial} N \text{ is exactly regular over } \text{Ker}\bar{\partial}^*.
\end{equation}
Proof. As for (2.20), we put \(u = \bar{\partial}^* Nf \) for \(f \in \text{Ker} \bar{\partial} \). We get
\[
\begin{align*}
\bar{\partial} u &= f, \\
\bar{\partial}^* u &= 0, \\
\Delta u &= (\partial \bar{\partial} + \bar{\partial} \partial) \bar{\partial}^* Nf \\
&= \partial (\bar{\partial} \bar{\partial}^* + \bar{\partial}^* \bar{\partial}) Nf + \bar{\partial} \partial \bar{\partial}^* Nf \\
&= \vartheta \Box Nf = \vartheta f.
\end{align*}
\]
Thus, by (2.2)
\[
||\zeta u||_s^2 \lesssim ||\zeta' f||_s^2 + ||\zeta' \vartheta f||_{s-2}^2 + ||u||_0^2
\]
(2.22)
\[
\lesssim ||\zeta' f||_s^2 + ||u||_0^2.
\]
To prove (2.21), we put \(u = \partial Nf \) for \(f \in \text{Ker} \bar{\partial} \). We have a similar calculation as above which leads to the same formula as (2.22) (with the only difference that \(\vartheta \) is replaced by \(\bar{\partial} \) in the intermediate inequality). Thus from (2.22) applied both for \(\bar{\partial}^* N \) and \(\bar{\partial} N \) on \(\text{Ker} \bar{\partial} \) and \(\text{Ker} \bar{\partial}^* \) respectively, we conclude that these operators are exactly regular.

We are ready for the proof of Theorem 1.1. This follows from Theorem 2.7 by the method of Boas-Straube.

Proof of Theorem 1.1. From the regularity of \(\bar{\partial}^* N \) it follows that the Bergman projection \(B \) is also regular. (Notice that exact regularity is perhaps lost by taking \(\partial \bar{\partial} \) in \(B \).) We exploit formula (5.36) in [15] in unweighted norms, that is, for \(t = 0 \):
\[
N_q = B_q(N_q \partial)(\text{Id} - B_{q-1})(\bar{\partial}^* N_q)B_q \\
+ (\text{Id} - B_q)(\bar{\partial}^* N_{q+1})B_{q+1}(N_{q+1} \partial)(\text{Id} - B_q).
\]
Now, in the right side, the \(\partial N \)'s and \(\bar{\partial}^* N \)'s are evaluated over \(\text{Ker} \partial \) and \(\text{Ker} \bar{\partial} \) respectively; thus they are exactly regular. The \(B \)'s are also regular and therefore such is \(N \). This concludes the proof of Theorem 1.1.

References

[1] L. Baracco, T.V. Khanh and G. Zampieri—Propagation of regularity for solutions of the Kohn Laplacian in a flat boundary, arxiv 0908.2149 (2009)

[2] D. Catlin—Subelliptic estimates for the \(\partial \)-Neumann problem on pseudo-convex domains, Ann. of Math. 126 (1987), 131-191

[3] M. Christ—Hypoellipticity: geometrization and speculation, Progress in Math. Birkhäuser Basel, 188 (2000), 91–109
Hypoellipticity of the $\bar{\partial}$-Neumann Problem

[4] M. Christ—Hypoellipticity of the Kohn Laplacian for three-dimensional tubular Cauchy-Riemann structures, *J. of the Inst. of Math. Jussieu* 1 (2002), 279–291
[5] L. Evans—Partial Differential Equations, *Graduate Studies in Math.* 19 (1997)
[6] G.B. Folland and J.J. Kohn—The Neumann problem for the Cauchy-Riemann complex, *Ann. Math. Studies, Princeton Univ. Press, Princeton N.J.* 75 (1972)
[7] T.V. Khanh—A general method of weights in the $\bar{\partial}$-Neumann problem, Ph.D. Thesis, Padua (2009)
[8] T.V. Khanh and G. Zampieri—Estimates for regularity of the tangential $\bar{\partial}$-system, preprint (2009)
[9] T.V. Khanh and G. Zampieri—Regularity of the $\bar{\partial}$-Neumann problem at a flat point, preprint (2009)
[10] J.J. Kohn—Subellipticity of the $\bar{\partial}$-Neumann problem on pseudoconvex domains: sufficient conditions, *Acta Math.* 142 (1979), 79–122
[11] J.J. Kohn—Hypoellipticity at points of infinite type, *Contemporary Math.* 251 (2000), 393–398
[12] J.J. Kohn—Superlogarithmic estimates on pseudoconvex domains and CR manifolds, *Annals of Math.* 156 (2002), 213–248
[13] J.J. Kohn and L. Nirenberg—Non-coercive boundary value problems, *Comm. Pure Appl. Math.* 18 (1965), 443–492
[14] J. D. McNeal—Lower bounds on the Bergman metric near a point of finite type. *Ann. of Math.* 136 (1992), 2, 339–360.
[15] E. Straube—Lectures on the L^2-Sobolev theory of the $\bar{\partial}$-Neumann problem, *ESI Lect. in Math. and Physics* (2010)
[16] G. Zampieri—Complex analysis and CR geometry, *AMS ULECT 43* (2008)

Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy

E-mail address: khanh@math.unipd.it, zampieri@math.unipd.it