Tryblidiopsis magnesii sp. nov. from Picea glauca in Eastern Canada

J.B. Tanney*, K.A. Seifert

*Corresponding author: joey.tanney2@canada.ca

INTRODUCTION

The type species of Tryblidiopsis (Rhytismatales, Rhytismataceae), T. pinastri, is a common associate of Picea abies in Europe. Tryblidiopsis pinastri is an endophyte of twigs and branches, likely non-pathogenic or only weakly so, and may contribute to the self-pruning of suppressed branches in the lower crown (Smerlis 1973, Kowalski & Kehr 1992, Livsey & Minter 1994, but see Takahashi & Saho 1973). Relatively little is known about the colonization process by T. pinastri, although it is commonly isolated from both the outer bark (rhytidome and periderm) and inner bark (phellderm, phloem, and cambium) of P. abies (Kowalski & Kehr 1992, Barklund & Kowalski 1996). The presence of Tryblidiopsis pinastri appears to be a cryptic and early colonizer (Smerlis 1973, Kowalski & Kehr 1992, Barklund & Kowalski 1996). The presence of Tryblidiopsis pinastri is apparent following substrate death, when it produces black, ca. 1–2 mm diam, winter spores that grow in the bark. The 0–1-septate, clavate ascospores are, like most Rhytismataceae species, enveloped in a mucoid sheath, which facilitates surface adhesion and possibly conservation of water. Ascospores are typically released between spring and late summer, depending upon weather (Livsey & Minter 1994, Minter 1996). In moist conditions, the covering stroma opens by longitudinal or radial tears, revealing the hymenium and imparting the ascoma with a stellate or coronal appearance when viewed from above. The covering stroma alternately opens and retracts in moist and dry conditions, respectively.

Tryblidiopsis pinastri was thought to have a circumcavolar boreal distribution with Picea species (Livsey & Minter 1994). However, the delineation of a North American subspecies, T. pinastri subsp. americana, by Magnes (1997) and recent description of two Tryblidiopsis species from Picea in China (Wang et al. 2014) demonstrate that the traditional morphotaxonomic concept of T. pinastri probably encompasses several species and suggests that the natural range of T. pinastri s. str. is restricted to Europe. In an ongoing survey of conifer endophytes from Eastern Canada, at least two cryptic Tryblidiopsis species were thought to occur on North American Picea. However, previously published sequences of Picea foliar endophytes from Eastern Canada suggested the presence of at least two cryptic Tryblidiopsis species, distinct from T. pinastri and other known species. Our subsequent sampling of Tryblidiopsis ascomata from dead attached Picea glauca branches resulted in the collection of a putatively undescribed species previously isolated as a P. glauca endophyte. Morphological evidence combined with phylogenetic analyses based on nuclear ribosomal internal transcribed spacer (ITS) and large subunit ribosomal (LSU) DNA sequences support the distinctiveness of this species, described here as T. magnesii.

MATERIALS AND METHODS

Collecting, culturing, and morphological observations

Specimens of ascomata and conidiomata were collected from dead Picea glauca branches still attached to living trees in Ontario, Canada. Specimens were cultured by suspending ascomata from the top of Petri dish plate covers using drops of water and allowing ascospores to evert onto the surfaces of Petri dishes containing 2 % malt extract agar (MEA; 20 g Bacto malt extract, Difco Laboratories, Sparks, MD; 15 g agar, EMD Chemicals Inc., NJ; 1 L distilled water) or water agar (WA; 1.5 % water agar with 1 mL trace metal solution; Visagie et al. 2014). Attempts to culture from conidia involved streaking conidia on MEA, cornmeal agar (CMA; Acumedia Manufacturers Inc., Lansing, MI), WA, oatmeal agar (OA; Visagie et al. 2014), and spruce needle potato agar (SNPA; Su et al. 2012). Cultures were maintained on MEA at 16 °C under a 12 h fluorescent light cycle. Representative strains were deposited in the Canadian Collection of Fungal Cultures (DAOMC; Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada).
Sections of specimens were made using a freezing microtome or by hand using a safety razor blade and then mounted in either deionized water, 5 % KOH, or 85 % lactic acid for microscopy. Observations were made using an Olympus BX50F4 light microscope (Olympus, Tokyo, Japan) and an Olympus SZX12 stereomicroscope. Morphological descriptions and measurements were made with living material and colors were described using the alphanumeric codes of Kornerup and Wanscher (1978). Images were captured with an InfinityX-32 camera (Lumenera Corp., Ottawa, Canada) with Infinity Analyze (Lumenera Corp.) software. The photographic plate was assembled using Adobe Photoshop CC 2017 (Adobe Systems, San Jose, CA). Select specimens were deposited in the Canadian National Mycological Herbarium (DAOM; Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada) and Pacific Forestry Centre Forest Pathology Herbarium (DAVP; Victoria, British Columbia, Canada).

DNA sequencing and phylogenetic analyses

Total genomic DNA was extracted from 8–12-wk-old cultures using the Ultraclean Microbial DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA) following the manufacturer’s protocol. Nuclear ribosomal internal transcribed spacer (ITS) region, partial nuclear large subunit of the ribosomal DNA (LSU), and partial actin (ACT) gene sequences were amplified and sequenced according to the methods of Tanney & Seifert (2017). Sequence contigs were assembled and trimmed using Geneious Prime 2019.0.4 (http://www.geneious.com).

GenBank sequences were used to populate both an ITS and a concatenated ITS-LSU dataset, which were aligned using the MAFFT v. 7.017 algorithm within Geneious Prime (Katoh et al. 2002). The purpose of the ITS dataset was to explore the phylogeny of Tryblidiopsis and related but unidentified endophyte sequences, while the concatenated ITS-LSU dataset was used to construct a phylogeny of identified Tryblidiopsis species with available ITS and LSU sequences. Coccomyces strobi (Rhytismataceae) was used as the outgroup for phylogenetic analysis of both datasets based on the results of Lantz et al. (2011) and McMutlin et al. (2019). The best nucleotide substitution models for each dataset (SYM+G for ITS, GTR+G for ITS-LSU) were determined with jModelTest v. 2.1.10 (Darriba et al. 2012). For each alignment, MrBayes v. 3.2.3 was used to perform Bayesian inference (BI) phylogenetic reconstruction (Ronquist et al. 2012) with three independent Metropolis-coupled Markov chain Monte Carlo (MCMC/MCMC) samplings performed with 11 heated chains and one cold chain. Sampling occurred every 500 generations until the standard deviation of split frequencies reached a value < 0.01. The first 25 % of trees were discarded as burn-in and the remaining trees were retained and combined into one 50 % majority rule consensus tree. The consensus tree was visualized in FigTree v. 1.4.2 (available at http://tree.bio.ed.ac.uk/software/figtree/) and exported in SVG format and edited in Adobe Illustrator v. 10 (Adobe Systems, San Jose, CA, USA). While ACT appears to be a sufficient barcode marker for Rhytismatales species (Tanney & Seifert 2017), we did not use this gene for phylogenetic reconstruction because of the paucity of available reference sequences. Sequences generated in this study were accessioned in GenBank (accession numbers in Table 1).

RESULTS

Tryblidiopsis specimens collected from white spruce branches consisted of ascomata and sometimes co-occurring conidiomata. Polyspore strains were easily obtained from ascospores ejected on MEA but strains were not obtained from conidia, which did not germinate on any of the tested media. Initial study showed that ascomata were morphologically distinct from T. pinastri by the conspicuous pigmentation of the inner layer of the covering stroma (Fig. 1). ITS sequences of cultures derived from ascomata collections made in Dunsford and Thunder Bay, Ontario were identical and, based on an NCBI BLAST query, distinct from available sequences of known Tryblidiopsis species.

The resulting ITS dataset consisted of 18 taxa and 469 characters and the ITS-LSU dataset consisted of 7 taxa and 1074 characters. The ITS and ITS-LSU phylogenies revealed that the Tryblidiopsis sp. formed a strongly supported (posterior probability (PP) = 1.0) clade distinct from known Tryblidiopsis species (Figs 2, 3). This Tryblidiopsis sp. is therefore described as a new species, T. magnesii, below based on morphological and phylogenetic evidence. The ITS phylogeny contained sequences of unidentified Picea endophytes, including a Picea glauca endophyte from New Brunswick now identified as T. magnesii [KX901893, CBS 120380; identicals = 441/443 (99%), gaps = 0/443 (0%)] (Fig. 2). A well-supported (PP = 0.99) clade sister to T. magnesii and Tryblidiopsis sp. (KC312675, HOU 662) consisted of foliar endophytes isolated from Picea glauca in Alaska, P. mariana in Quebec, and P. rubens in New Brunswick. The concatenated ITS-LSU phylogeny placed T. sichuanensis as the basal species and T. magnesii sister to a clade comprised by T. pinastri, T. sinensis, and Tryblidiopsis sp.

Taxonomy

Tryblidiopsis magnesii J.B. Tanney & K.A. Seifert, sp. nov. MycoBank MB829496. Fig 1.

Etymology: Named for the Austrian mycologist Dr. Martin Magnes, who distinguished North American T. pinastri subsp. americana from European T. pinastri specimens based on ascoma morphology.

Diagnosis: Tryblidiopsis magnesii differs from T. pinastri by the pigmented inner layer of the covering stroma, from T. sichuanensis by larger ascospores (18–24 × 4–6 μm in T. sichuanensis) and unilocular conidiomata, and from T. sinensis by the absence of hyaline apical appendages and larger, more obtuse or clavate ascospores (18–30 × 2.5–4.5 μm in T. sinensis).

Description: Conidiomata co-occurring with ascomata on substratum, superficially similar in appearance to immature ascomata, 150–700 μm diam, globose to peg-shaped, smooth or wrinkled in appearance, semi-immersed, erumpent from bark, opening by irregular tear without ostiole, covering layer 22–40 μm thick, unilocular, locule 120–500 μm diam. Conidiophores hyaline, septate, simply branched, lining entire locular cavity. Conidiogenous cells holoblastic, sympodial, 10–15–20) × (1.5–3–2–3(–4) μm, hyaline, thin-walled, smooth, ampulliform, often swollen above midpoint before tapering to a long cylindrical colllum. Conidia hyaline, filiform, falcate, or sigmoid, (18–)20–26(–29) × (1–)1.5–2 μm (length: n = 20, x = 23 μm, SD = 2.9 μm, SE = 0.6 μm, 95 % CI = 1.27; width: n = 20, x = 1.6 μm, SD = 0.4
Table 1. Sequences generated and used in the phylogenetic analyses in this study.

Species	Reference	GenBank Accession No.	LSU	ITS	Voucher No.
Tryblidiopsis magnesii	This study	MK748168			DQ979631
Tryblidiopsis pinastri	Higgins et al. (2007)	MK748174			DQ979636
Tryblidiopsis sichuanensis	Higgins et al. (2016)	MH457201			DQ979634
Tryblidiopsis sp.	U'Ren & Arnold (2016)	MH457217			DQ979635
Tryblidiopsis sp.	Solheim et al. (2013)	MH457225			DQ979637
Tryblidiopsis sp.	Solheim et al. (2013)	MH457230			DQ979638
Tryblidiopsis sp.	Wang et al. (2014)	MK748179			DQ979639
Tryblidiopsis sp.	Wang et al. (2014)	MK748181			DQ979640
Tryblidiopsis sp.	Wang et al. (2017)	MK748183			DQ979641
Tryblidiopsis sp.	McCormick et al. (2019)	MK748185			DQ979642
Tryblidiopsis sp.	McMullin et al. (2019)	MK748186			DQ979643
Tryblidiopsis sp.	Solheim et al. (2013)	MK748187			DQ979644
Tryblidiopsis sp.	Wang et al. (2014)	MK748188			DQ979645
Tryblidiopsis sp.	Wang et al. (2014)	MK748189			DQ979646

μm, SE = 0.1 µm, 95 % CI = 0.16), germination not observed on CMA, MEA, OA, or WA.

Ascomata on dead, often brittle, twigs and branches still attached to living stem of host, usually found in lower crown where self-pruning occurs. External appearance: outline circular to slightly undulate when viewed from above, pseudostipitate, black, matte to slightly glossy, texture leathery to pebbly, erumpent from bark, occurring singly to gregariously; young ascomata spherical to peg-shaped, becoming urceolate to discoid with maturity; 1.25–2 mm diam when mature and fresh or rehydrated, up to 1.3 mm tall, pedicel up to 350 µm tall and more evident in young ascomata. Covering stroma often opening first by slit then 3–6(–9) irregular radial fissures in humid conditions with outline appearing stellate and revealing dispensed, pale orange to orange grey (5A2–5B2) hymenium, subsequently retracting and covering the hymenium in dry conditions and reopening when humid conditions arise, (40–) 46–75(–90) µm thick, +/- consistent thickness enveloping ascoma, sometimes thinner towards base, composed of three distinct layers: (1) outer layer carbonaceous, textura angularis, 13.5–23 µm wide, composed of (1–)2–3(–4) rows of dark brown (6F6) to black, melanized, thick-walled (1–2 µm), globose to angular cells, (4.5–)6.5–11(–12) × (4.5–)6–9(–9.5) µm; (2) middle layer textura angularis, 12–26 µm wide, composed of (4–)5–6(–7) rows of hyaline, thin- to thick-walled (1 µm), globose to angular cells, (4.5–)5.5–(10.5) × (4–)4.5–7.5(–9) µm, embedded in gel; (3) inner layer textura angularis, 9–34 µm wide, composed of 2–4 rows of brown (5F8) thin- to thick-walled (1 µm), globose to angular cells, (4.5–)5–8(–8.5) × (4–)5–6.5(–7.5) µm. Basal stroma well developed, 500–700 µm deep, comprised of hyaline branching hyphae embedded in gelatinous substrate, crystalline material often present, especially towards base. Subhymenium 18–30 µm thick, hyaline, textura intricata. Paraphyses exceeding length of ascii, 1–2 µm wide, thin-walled, hyaline, filiform, unbranched, sepalate, apices rounded to clavate or occasionally oosiform, 3.45(–5) µm wide, frequently linked near the base by hyphal bridges. Asci arising from crosiers, maturing sequentially, (120–)125–150 (–165) × (12–)13–15.5(–17) µm, cylindrical-clavate, apex obtuse to rounded, thin-walled, inamyloid, eight-spored. Ascospores biseriate, sometime uniseriate towards base, (22–)25–30(–31) × (4.5–)5–6(–6.5) µm (length: n = 30, X = 27.5 µm, SD = 2.4 µm, SE = 0.4 µm, 95 % CI = 0.86; width: n = 30, X = 5.4 µm, SD = 0.4 µm, SE = 0.1 µm, 95 % CI = 0.15), ellipsoidal-fusiform to fusiform-clavate, apical
end often more obtuse to clavate with basal end acute, hyaline, 0–1-septate, 2-septate ascospores rarely observed, septum median or supramedian, covered with (1.5–)2.5–3.5(–4.5) µm thick gelatinous sheath.

Culture characteristics: Colonies 6–11 mm diam after 14 d in the dark at 20 °C on MEA, flat, sparse aerial hyphae, margin entire, hyaline, surface and reverse white to pale yellow or light orange (4A3–5A5), exudates and soluble pigments absent; older colonies show high variability in colouration and exudates, with some colonies turning dark brown and exuding brown pigments into surrounding agar. Mycelium consisting of hyaline, smooth, septate, branched, hyphae 1.5–3.5 µm diam. Cardinal temperatures range 5–30 °C, optimum 20 °C, minimum slightly < 5 °C, maximum slightly > 30 °C.

Ecology and distribution: On dead Picea glauca branches, often the suppressed branches of lower canopy, and as a foliar endophyte of P. glauca. Common in Eastern Canada (Ontario, Quebec, New Brunswick).

Typus: Canada, Ontario, Kawartha Lakes, Dunsford, 44.4834 -78.6524, alt. 254 m, on dead attached Picea glauca branch, 24 Aug. 2014, J.B. Tanney NB-630 (holotype DAVFP 29737; ex-type strain DAOMC 252096).

Additional materials examined: Canada, Ontario, Kawartha Lakes, Dunsford, 44.4834 -78.6524, alt. 254 m, on dead attached Picea glauca branch, 24 May 2015, J.B. Tanney NB-647; Ontario, Kawartha Lakes, Dunsford, 44.4834 -78.6524, alt. 254 m, on dead attached Picea glauca branch, 17 Aug. 2016, J.B. Tanney NB-790; Ontario, Thunder Bay, Centennial Park, on dead attached Picea glauca branch, 29 Jul. 2015, J.B. Tanney NB-678/DAOM 867427/DAOMC 252041; Ontario, Thunder Bay, Centennial Park, on dead attached Picea glauca branch, 29 Jul. 2015, J.B. Tanney NB-679/DAOM 250760/DAOMC 252042; Ontario, Thunder Bay, Lakehead University, on dead attached Picea glauca branch, 29 Jul. 2015, J.B. Tanney NB-680; New Brunswick, Sussex, isolated as Picea glauca foliar endophyte, 28 Nov. 2003, M. Sumarah CBS 120380.

Notes: Tryblidiopsis magnesii occurs in eastern Canada, T. pinastri in Europe, and T. sichuanensis and T. sinensis in China. The primary morphological difference between T. magnesii and other Tryblidiopsis species is the melanized inner wall of the covering stroma. Magnes (1997) differentiated N. American specimens of T. pinastri from their European counterparts based on their larger ascomata and the melanized interior stromatal covering and subsequently erected T. pinastri subsp. americana. ITS sequences of Tryblidiopsis strains isolated as foliar endophytes from Picea rubens and P. mariana in New Brunswick, Canada suggest the presence of additional cryptic Tryblidiopsis species (McMullin et al. 2017). Therefore, the concept of T. pinastri subsp. americana probably encompasses a species complex given evidence suggesting additional cryptic species and the broad geographic and host range attributed to T. pinastri subsp. americana (Magnes 1997). Tryblidiopsis magnesii is probably distinct from T. pinastri subsp. americana sensu stricto, given that the ascospores reported for T. pinastri subsp. americana are narrower, 3–4(–5.5) µm, and the type specimen is from Picea engelmannii in Oregon, USA; however this distinction requires confirmation. Morphological differences combined with rDNA phylogenetic analysis support the recognition of T. magnesii, distinct from T. pinastri and the Asian species T. sichuanensis and T. sinensis.

Key to Tryblidiopsis species

1. Inner wall of covering stroma melanized ... T. magnesii
2. Inner wall of covering stroma hyaline ... 2

2. Conidiomata multilocular, ascomata single or in clusters of 2–3 .. T. sichuanensis
3. Conidiomata unilocular, ascomata single or in clusters of 2–6 .. T. pinastri
4. Ascospores clavate, bottom usually more acute than top, 1-septate, 25–32 × 4–6 µm .. T. pinastri
5. Ascospores fusiform, slightly acute ends, 0–1-septate, 18–30 × 2.5–4.5 µm T. sinensis

DISCUSSION

The identification of a novel Tryblidiopsis species in N. America is not unexpected given Magnes’ (1997) morphological distinction of N. American T. pinastri specimens and subsequent introduction of T. pinastri subsp. americana and pinastri. Tryblidiopsis diversity is probably still underestimated in both N. America and Asia, where host Picea species diversity is greater than in Europe. For example, Wang et al. (2014) described two novel Tryblidiopsis species from Picea in China and also recognized a third novel species (Tryblidiopsis sp. HOU 662) based on an rDNA phylogeny, but declined to formally describe it because it was represented by only one collection of immature ascomata. Based on the ITS phylogeny presented here, T. magnesii and this undescribed Asian Tryblidiopsis sp. (HOU 662) are sister to T. pinastri with strong support (PP = 1; Fig. 2). The ITS phylogeny also reveals an unidentified cryptic Tryblidiopsis species known only from strains isolated as foliar
endophytes of *Picea glauca* in Alaska (U’Ren & Arnold 2016), *P. mariana* in Quebec (Higgins et al. 2007), and *P. rubens* in New Brunswick (McMullin et al. 2017) (Fig. 2). In an ongoing survey of foliar endophytes of the Acadian Forest Region, we also isolated several corresponding *Tryblidiopsis* sp. strains as endophytes of *Picea mariana* and *P. rubens* needles in New Brunswick; however, we defer the description of this species pending the eventual collection of its ascomata (J.B. Tanney, unpubl. info.). The diversity of *Tryblidiopsis* in N. America is clearly more complex than previously realized and future work should involve additional field collections from eastern and western N. America.

Tryblidiopsis magnesii is another example of a cryptic *Rhytismataceae* species endemic on N. American hosts and long misidentified as its European counterpart. Overall, European *Rhytismataceae* species ostensibly reported from endemic N. American hosts potentially represent undescribed species and warrant reexamination. For example, Tanney & Seifert (2017) described *Lophodermium resinosum*, a cryptic species from *Pinus resinosa* needles, which was also present in herbarium collections under the name *L. pinastri*. Similarly, *L. macci* is a N. American species previously misidentified as *L. pinastri* in collections from *Pinus strobus* (Sokolski et al. 2004). *Rhytisma americanum*, the causal agent of tar spot on red maple (*Acer rubrum*) and silver maple (*A. saccharinum*) in N. America, was generally assumed to be *R. acerinum*, a species found on *A. platanoides* trees native to Europe and planted abroad (Hudler et al. 1998). Salas-Lizana & Oono (2018) recently described *L. fissuratum*, a species occurring sympatrically with the morphologically similar *L. nitens*, from *Pinus lambertiana* and *P. monticola* in the Pacific Northwest. Furthermore, the ongoing descriptions of novel *Rhytismataceae* species, cryptic and otherwise, from Asia also indicate a greater global species diversity than previously recognized (e.g.: Kaneko 2003, Fan et al. 2012, Masumoto et al. 2015, Zhang et al. 2015, Li et al. 2016). *Rhytismataceae* host preferences should be further investigated, especially for putative host-jumping in introduced trees. For example, does *T. magnesii* occur on ornamental *Picea abies* trees planted in eastern N. America and do *T. magnesii* and *T. pinastri* occur sympatrically among *Picea glauca* trees planted in Europe?

Tryblidiopsis magnesii was previously isolated as an unidentified foliar endophyte of *Picea glauca* (CBS 120380; Sumarah et al. 2008, McMullin et al. 2017). To our knowledge, this is the first identified record of *Tryblidiopsis* occurring as a foliar endophyte; however, based on GenBank accessions, previous studies detected unidentified *Tryblidiopsis* sequences from *Picea* endophytes (Table 1; Higgins et al. 2007, U’Ren & Arnold 2016). Tanney et al. (2018) suggested that while *Tryblidiopsis* is known to sporulate only from dead branches and twigs, it is conceivable that foliar infections or colonization represent an important life history phase, for example as a pathway of infection allowing the fungus to gain entry into the host plant from the needle (e.g. stomata) and spread to the inner bark. This proposed pathway is known in the pathogen *Elytroderma deformans* (*Rhytismataceae*), causal agent of a needle cast and broom disease of *Pinus* species in western N. America, which is capable of colonizing branches and stems
by means of initial foliar infections (Waters 1962). Additionally, Darker (1932) noted claims of mycelium invading young stems and branches from needles by the Rhytismataceae species Meloderma desmazieri (Fron 1911) and Lophodermium pinastri (Tubeuf 1901). Foliar colonization might also permit the persistence and dispersal of Tryblidiopsis in the absence of the primary host substrate (sensu Carroll 1999). Coccomyces strobi and Therrya species, which occur on Pinus and appear to have a similar biology and ecology as Tryblidiopsis (i.e.: associated with dead attached lower branches), have also been identified as foliar endophytes from their Pinus hosts (Botella & Diez 2011, Solheim et al. 2013, McMullin et al. 2019). The overall life histories and role of needle, cambium, and bark colonization should be further investigated for Tryblidiopsis and other branch-inhabiting Rhytismataceae species.

This study is part of an ongoing research program concerning endophyte diversity of conifers in the Acadian forest, which has resulted in: (1) the identification of novel and biologically active compounds; (2) the description of novel species and insight into the biology and ecology of conifer endophytes; and, (3) large-scale field testing of select endophytes strains to assess their role in mitigating damage caused by the important spruce forest pest (spruce budworm) (Darker 1932). The Hypodermataceae of conifers. Contributions of the Arnold Arboretum of Harvard University 1: 1–131. Darriba D, Taboada GL, Doallo R, et al. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. Fan L, Lin Y-R, Wang S, et al. (2012). Two species of Lirula on Abies from Yunnan, Southwest China. Mycological Progress 11: 279–286.

REFERENCES
Barklund P, Kowalski T (1996). Endophytic fungi in branches of Norway spruce with particular reference to Tryblidiopsis pinastri. Canadian Journal of Botany 74: 673–678.
Botella L, Diez JJ (2011). Phylogenetic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Diversity 47: 9–18.
Carroll G (1999). The foraging ascomycete. St Louis, Missouri: International Botanical Congress.
Darker GD (1932). The Hypodermataceae of conifers. Contributions of the Arnold Arboretum of Harvard University 1: 1–131. Darriba D, Taboada GL, Doallo R, et al. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. Fan L, Lin Y-R, Wang S, et al. (2012). Two species of Lirula on Abies from Yunnan, Southwest China. Mycological Progress 11: 279–286.
Fron G (1911). Maladie du Pinus strobus déterminée par Lophodermium brachysporum Rostrup. Bulletin de la Société Mycologique de France 27: 44–46.
Higgins KL, Arnold AE, Miadlikowska J, et al. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution 42: 543–555. Huëdler GW, Jensen-Tracy S, et al. (1998). Rhytisma americanum sp. nov.: a previously undescribed species of Rhytisma on maples (Acer spp.). Mycotaxon 68: 405–416.
Kaneko S (2003). Two new species of Lirula on Abies from Japan. Mycoscience 44: 335–338. Kornerup A, Wanscher JH (1978). Methuen handbook of colour. Eyre Methuen, London, United Kingdom.
Kowalski T, Kehr R (1992). Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 44: 137–168.
Lantz H, Johnston PR, Park D, et al. (2011). Molecular phylogeny reveals a core clade of Rhytismatales. Mycologia 103: 57–74.
Li Z-J, Taylor J, Hou C-L (2016). An unusual Lophodermium species on needles of Pinus taiwanensis from China. Mycological Progress 15: 122–1237.
Livsey S, Minter D (1994). The taxonomy and biology of Tryblidiopsis pinastri. Canadian Journal of Botany 72: 549–557.
Magnes M (1997). Weltmonographie der Trichlidiaceae. Bibliotheca Mycologica, 165. J. Cramer, Germany.

ACKNOWLEDGMENTS
This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) PGS2-459312-2014 to J.B. Tanney and the NSERC CRDPJ 421782-11 to J.D. Miller, K.A. Seift, and D.W. Malloch. We thank the Microbiology Molecular Technologies Laboratory (MMTL) group of the Ottawa Research and Development Centre (Agriculture and Agri-Food Canada) for processing DNA sequences and are especially grateful to R. Assabgui for his assistance in sequencing and culture preservation.

© 2019 Westerdijk Fungal Biodiversity Institute
Masumoto S, Tojo M, Uchida M, et al. (2015). Morphological and molecular characterization of Rhytisma filamentosum sp. nov. from Nagano Prefecture, Japan. Mycological Progress 14: 1–6.

McMullin DR, Green BD, Miller JD (2015). Antifungal sesquiterpenoids and macrolides from an endophytic Lophodermium species of Pinus strobus. Phytochemistry 14: 148–152.

McMullin DR, Green BD, Prince NC, et al. (2017). Natural products of Picea endophytes from the Acadian Forest. Journal of Natural Products 80: 1475–1483.

McMullin DR, Tanney JB, McDonald KP, et al. (2019). Pthalalides produced by Coccomyces strobii (Rhytismataceae, Rhytismatales) isolated from needles of Pinus strobus. Phytochemistry Letters 29: 17–24.

Minter D (1996). Trybliopsis pinastri. IMI Descriptions of Fungi and Bacteria No. 1299. Mycopathologia 136: 179–182.

Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

Salas-Lizana R, Oono RJM (2018). A comparative analysis of Lophodermium fissuratum, sp. nov., found in haploxylen pine needles in the Pacific Northwest, and other Lophodermium endophytes. Mycologia 110: 797–810.

Smerlis E (1973). Pathogenicity tests of some discomycetes occurring on conifers. Canadian Journal of Forest Research 3: 7–16.

Sokolski S, Piché Y, Bérubé JA (2004). Lophodermium macci sp. nov., a new species on senesced foliage of five-needle pines. Mycologia 96: 1261–1267.

Solheim H, Torp TB, Hietala AM (2013). Characterization of the ascomycetes Theryya fuckelii and T. pini fruiting on Scots pine branches in Nordic countries. Mycological Progress 12: 37–44.

Su Y-Y, Qi Y-L, Cai L (2012). Induction of sporulation in plant pathogenic fungi. Mycology 3: 195–200.

Sumarah MW, Kesting JR, Sørensen D, et al. (2011). Antifungal metabolites from fungal endophytes of Pinus strobus. Phytochemistry 72: 1833–1837.

Sumarah MW, Puniani E, Blackwell BA, et al. (2008). Characterization of polyketide metabolites from foliar endophytes of Picea glauca. Journal of Natural Products 71: 1393–1398.

Sumarah MW, Walker AK, Seifert KA, et al. (2015). Screening of fungal endophytes isolated from eastern white pine needles. In: The Formation, Structure and Activity of Phytochemicals (Jetter R, ed). Springer, Cham, Switzerland: 195–206.

Takahashi I, Saho H (1973). Trybliopsis pinastri (Pers.) Karsten causing dieback of Picea and Pinus in Japan. Journal of the Japanese Forestry Society 55: 75–77.

Tanney JB, McMullin DR, Miller JD (2018). Toxigenic foliar endophytes from the Acadian Forest. In: Endophytes of Forest Trees: Biology and Applications (Frank A, Pirttilä AM, eds). Springer, Cham, Switzerland: 343–381.

Tanney JB, Seifert KA (2017). Lophodermium resinosum sp. nov. from red pine (Pinus resinosa) in Eastern Canada. Botany 95: 773–784.

Tubef C von. (1901). Studien über die Schüttekrankheit der Kiefer. Arbeiten aus der Kaiserlichen Biologischen Anstalt für Land- und Forstwirtschaft 2: 1–178.

U’Ren JM, Arnold AE (2016). Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ 4: e2768.

Visagie C, Houbraken J, Frisvad JC, et al. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology 78: 343–371.

Wang S, Cannon P, Li Z-J, et al. (2014). Multigene phylogenetic analysis detects cryptic species of Trybliopsis in China. Mycologia 106: 95–104.

Waters CW (1962). Significance of life history studies of Elytroderma deformans. Forest Science 8: 250–254.

Zhang T-T, Tong X, Lin Y-R, et al. (2015). A new species and a new combination of Terriera based on morphological and molecular data. Mycological Progress 14: 1–6.