Prediction of Cytokine Storm and Mortality in Patients with COVID-19 Admitted to ICU: Do Markers Tell the Story?

Rashid Nadeema Ashraf Mahmoud Elhoufia Naheed Elahi Iqbala Zainab Abdulameer Obaidaa Doaa Mohamed Elgoharya Mukesh Kumar Singha Shymaa Farouk Zoraeya Rami M. Abdallaa Sara Youssif Eltayebc Crystal Sharon Danthib Nouha Azazac Waleed Mohamed Ahmedc Muzammil Hafeezd Maryam AlSadab Fatima Farid Mirb

aIntensive Care Unit, Dubai Hospital, Dubai Health Authority, Dubai, UAE; bPediatrics Department, Dubai Hospital, Dubai Health Authority, Dubai, UAE; cInternal Medicine Department, Dubai Hospital, Dubai Health Authority, Dubai, UAE; dNeonatal Intensive Care Unit, Dubai Hospital, Dubai Health Authority, Dubai, UAE

Abstract

Introduction: COVID-19 has caused approximately one million deaths worldwide as of November 24, 2020. Markers of disease activity like ferritin, C-reactive protein (CRP), and D-dimers are frequently monitored to detect the best opportunity for intensive treatment. Methods: All patients of >18 years of age were included. The primary variables of interest, ferritin, CRP, and D-dimers, are frequently monitored to detect the best opportunity for intensive treatment. Results: The sample includes 235 records. More than 95% of patients have all markers on the day of admission to ICU were ferritin (median 1,278; IQR 1,424), D-dimer 1.21 (3.4), and CRP 129.5 (121). Daily average levels of markers were different from their admission day level: ferritin 1,395 (1,331), D-dimer 3.11 (5.52), and CRP 107 (75.8). Multiple logistic regression analysis determined that average CRP during the stay was the only predictor of survival. Discussion: Data on markers utilization to detect the acute phase of inflammation help clinicians focus on the opportunity window for intensive treatment. Conclusion: Average CRP during the stay in ICU is higher than CRP on admission. Average CRP is the only factor that predicts survival.
Optimal administration may prevent cytokine storms and abate the development of ARDS [6]. Markers of disease activity like ferritin, C-reactive protein (CRP), and D-dimers are frequently monitored to detect the best opportunity for intensive treatment [7]. Less commonly levels of interleukin 6 are used to detect and target the most intensive part of the disease phase although this test is expensive and only rarely available [8]. It may not be cost-effective for the developing world. Hence, identification of intense activity of virus and inflammation is of utmost importance.

Table 1. Sample characteristics (categorical variables)

Categorical variable	Total (N = 235) (%)	Alive (N = 116) (%)	Died (N = 119)	p value*
Gender (male)	206 (87.6)	100 (86)	106 (89)	0.30
Nationalities (expatriates)	229 (97.4)	113 (97.4)	116 (97.4)	0.60
Diabetes, N (%)	101 (42.9)	53 (45.6)	48 (40.3)	0.20
Hypertension (yes)	58 (24.6)	27 (23.2)	31 (26)	0.30
CAD (yes)	18 (7.6)	4 (3.4)	12 (10)	0.03
Prior renal impairment (yes)	28 (11.9)	7 (6)	21 (17.6)	0.01
Outpatient dialysis (yes)	16 (6.8)	6 (5.1)	10 (8.4)	0.24
Tachycardia on admission (yes)	184 (78.2)	84 (72.4)	100 (84)	0.02
Hypotension on admission (yes)	117 (49.7)	47 (40.5)	70 (58.8)	0.01
Mechanical ventilation (yes)	200 (85.1)	96 (82.7)	104 (87.3)	0.20
Vasopressors use (yes)	186 (79.1)	84 (72.4)	102 (85.7)	0.01
Dialysis required (yes)	71 (30.2)	21 (18.1)	50 (42)	0.01
Bacterial infection (yes)	121 (51.4)	57 (49.1)	64 (53.7)	0.28
Bacteremia (yes)	94 (40)	41 (35.3)	53 (44.5)	0.11
Chloroquine (yes)	207 (88)	108 (93.1)	99 (83.1)	0.02
Lopinavir/ritonavir (yes)	85 (36.1)	34 (29.3)	51 (42.8)	0.01
Favipiravir (yes)	187 (79.5)	102 (87.9)	85 (71.4)	0.01
Steroids (yes)	212 (90)	110 (94.8)	102 (85.7)	0.01
Received GI prophylaxis (yes)	225 (95.7)	112 (96.5)	113 (94.9)	0.37

CAD, coronary artery disease. *χ² test to assess the difference between groups.
Table 2. Sample characteristics (continuous variables)

Continuous variable	Total (N = 235)	IQR	Alive (N = 116)	IQR	Died (N = 119)	IQR	p value[¬]
Age, years	49	13	49	14	48.5	16	0.38
BMI, kg/m²	27.6	6.17	27.3	7.3	28.1	5.26	0.03
Days to seroconversion	13	17	18	19	15	9	0.01
Ferritin admission, ng/mL	1,278	1,424	1,315	1,667	1,352	1,204	0.34
Ferritin (average in ICU stay), ng/mL	1,395	1,331	1,209	1,102	1,665	1,605	0.01
D-dimer, ng/mL	1.21	3.4	1.14	2.85	1.8	5	0.04
D-dimer (average in ICU stay), ng/mL	3.11	5.52	2.42	4.19	3.74	7.1	0.01
CRP, mg/L	129	121	132	147	128	101	0.64
CRP (average in ICU stay), mg/L	107	75.8	81.2	54.8	135	87.4	0.01
Procalcitonin, ng/mL	0.34	0.59	0.34	0.55	0.29	0.77	0.11
Cr, mg/dL	0.9	0.35	0.9	0.3	0.9	0.85	0.01
CPK, units/L	231	616	207	577	310	623	0.04
ABG PH	7.37	0.13	7.40	0.13	7.37	0.15	0.78
PCO₂, Torr	37.3	15.4	36.5	15.4	38.1	14.97	0.69
PO₂, Torr	62.6	35.1	64.2	41.3	64.9	26	0.89
Lactate, mmol/L	1.7	1.1	1.5	1.1	1.85	1.4	0.03
Bicarbonate, mEq/L	21.6	5.3	22.5	4.7	22.1	5.7	0.74
Magnesium, mg/dL	2.04	0.36	2.04	0.37	2.06	0.35	0.46
Platelets, 10⁹/mL	203	111	213	119	189	86	0.05
Days on mech. vent	11	19	16	20	16.5	19	0.13
LOSICU, days	14	22	20.5	23	17	18	0.07
LOSH, days	19	29	36.5	31	20	21	0.01
APACHE 2 scores	16	7	15	7	16	9	0.02

CRP, C-reactive protein; CPK, Cr phosphokinase; LOSICU, length of stay in the intensive care unit. [¬] Median test p value.
importance. Viral load monitoring is impractical. Inflammatory markers’ effectivity for disease monitoring and success of treatment and their cost-effectiveness is important and largely unknown.

Aims: We aim to measure the pattern of these markers’ usage, their relationship with the disease and with each other, and their prediction of disease activity and utility for treatment success and clinical outcomes. Moreover, we aim to detect the most active phase of the disease if one exists.

Methods

All patients with confirmed COVID-19 admitted to ICU of Dubai Hospital between January 1, 2020, and June 30, 2020, were included. We excluded patients <18 years of age. The primary variable of interest, ferritin, CRP, and D-dimers, on admission to ICU and for each patient throughout the hospitalization were also recorded. Primary clinical outcomes of length of stay in the intensive care unit (LOSICU) and survival were also recorded. Demographics: age, gender, BMI, and nationality. Comorbidities: diabetes, hypertension, coronary artery disease (CAD), renal failure, and out-

Fig. 3. K-P survival plot for D-dimer level on admission.

Fig. 4. K-P survival plot for average D-dimer during ICU stay.
patient dialysis were recorded. Immune status, smoking status, and alcohol use were also recorded. Inpatient clinical evaluation details including vital signs, fever, tachycardia, blood pressure, hypoxia, use of mechanical ventilation, use of pressors, or dialysis were also recorded. Laboratory parameters for evidence of infection: WBC and bacteremia were also recorded. Therapy on admission: chloroquine, antivirals, and steroids were recorded. The APACHE 2 scores calculated within 24 h of admission to ICU were recorded to assess the severity of illness. Ferritin, CRP, and D-dimers were recorded daily if available for the whole ICU stay, and all other variables were recorded on admission day to ICU.

Statistical Analysis
All the variables were analyzed and found that they were not normally distributed; therefore, median with interquartile ratios was calculated. The average level of the marker was determined by adding all values available and dividing by the number of days values available. χ² test was performed to detect the difference between variables if they were categorical, and median test was performed if the variable was continuous. For survival analysis, multiple logistic regression was performed with survival (mortality) as dependent variables and all other variables as independent predictors.

Since LOSICU is very skewed and the variance of LOSICU across the levels of CRP was heterogeneous, data were transformed into log LOSICU and least square regression was performed for log LOSICU and markers (CRP) only for survivors. We used IBM SPSS Statistics for Windows, version 26 (IBM Corp., Armonk, NY, USA).

Results
Characteristics of the sample $N = 235$ are described in Tables 1 and 2. More than 95% of patients have all markers on the day of admission to ICU. Average levels of markers were different from their admission day level which suggest levels were changing. Multiple logistic re-

| Table 3. Logistic regression analysis (predictors of survival) |
|-------------------------------|-----------------|-----------------|-----------------|
| Variables | B | Odds ratio | 95% CI for odds ratio |
| Age (years) | 0.049 | 1.050 | 0.952 to 1.158 |
| Gender (male/female) | −1.076 | 0.341 | 0.024 to 4.825 |
| BMI, kg/m² | 0.005 | 1.005 | 0.933 to 1.083 |
| Days swab test turns negative | −0.175 | 0.840 | 0.754 to 0.935 |
| Diabetes | −0.291 | 0.747 | 0.151 to 3.707 |
| Hypertension | 0.444 | 1.559 | 0.126 to 19.268 |
| CAD | −2.358 | 0.095 | 0.000 to 28.265 |
| Dialysis (outpatient) | 1.150 | 3.158 | 0.143 to 69.724 |
| Mechanical ventilation | −1.765 | 0.171 | 0.002 to 14.335 |
| Vasopressors | 0.902 | 2.464 | 0.017 to 355.829 |
| Bacterial infection | 2.103 | 8.193 | 0.927 to 72.388 |
| Chloroquine | −1.468 | 0.230 | 0.010 to 5.532 |
| Lopinavir/ritonavir | 2.106 | 8.216 | 0.998 to 67.629 |
| Favipiravir | −0.741 | 0.477 | 0.030 to 7.697 |
| Steroids | −2.688 | 0.068 | 0.002 to 2.699 |
| Ferritin, ng/mL | 0.000 | 1.000 | 0.999 to 1.001 |
| D-dimer, ng/mL | 0.016 | 1.016 | 0.936 to 1.102 |
| Procalcitonin, ng/mL | −0.103 | 0.902 | 0.556 to 1.464 |
| CRP, mg/L | −0.002 | 0.998 | 0.989 to 1.008 |
| Cr | −0.133 | 0.875 | 0.526 to 1.456 |
| Cr phosphokinase | 0.000 | 1.000 | 0.999 to 1.001 |
| ABG PH | −4.947 | 0.007 | 0.000 to 93.309 |
| PCO₂, Torr | −0.010 | 0.990 | 0.894 to 1.095 |
| PO₂, Torr | 0.017 | 1.017 | 1.001 to 1.033 |
| Platelets (10³/mL) | −0.003 | 0.997 | 0.986 to 1.009 |
| APACHE 2 score | −0.116 | 0.891 | 0.766 to 1.036 |
| Average ferritin in ICU stay | 0.000 | 1.000 | 1.000 to 1.000 |
| Average D-dimer in ICU stay | −0.015 | 0.985 | 0.805 to 1.205 |
| Average CRP in ICU stay | 0.029 | 1.030 | 1.010 to 1.050 |

CAD, coronary artery disease; CRP, C-reactive protein. * For all categorical variables, odds ratios are for presence versus absence of the variable.
Elevation of Inflammatory Markers in COVID-19 Infection

Regression model showed only elevated average CRP during ICU stay-predicted survival (Table 3). Comparing the effects of marker levels on survival, a Kaplan-Meier plot (Fig. 1–6) was constructed for all markers (4th quartile vs. 1st quartile). Only higher level of average CRP level predicts worse survival (Fig. 6). Ferritin and D-dimer do not predict survival differences. For LOSICU prediction, linear regression on log-transformed LOSICU showed that the days that the swab takes to turn negative, bacterial infection, Cr, and ABG PH on the day of admission to
ICU predicted LOSICU (Table 4). Specific regression for log LOSICU for CRP in the survivors’ group does not predict LOSICU (Fig. 7, 8).

Discussion

Inflammatory markers are frequently checked. Ferritin and D-dimer on admission do not predict mortality. Only average CRP level for ICU stay predicts mortality. Using the 4th quartile against the first quartile as a categorical variable, CRP predicts mortality. Ferritin and D-dimers do not. Zhou et al. [9] found that ferritin is significantly elevated in nonsurvivors than survivors, but they did not consider other factors predicting mortality; therefore, their results show the only association of ferritin with mortality. Zhang et al. [10] showed D-dimer on admission greater than 2.0 μg/mL (4-fold increase) predict in-hospital mortality in patients with COVID-19. They also did not adjust for confounding factors by re-

Table 4. Regression for factors determining LOSICU (log LOSICU and predictor variables)

Variable	Stand. coefficients beta	95% CI for beta lower bound	Upper bound	p value
Age (years)	−0.025	−0.010	0.008	0.830
Gender (male/female)	0.054	−0.159	0.271	0.602
BMI, kg/m²	0.123	−0.002	0.008	0.181
Days turn test negative	0.239	0.001	0.013	0.029
Diabetes	0.068	−0.101	0.191	0.541
Hypertension	−0.122	−0.280	0.088	0.301
CAD	−0.109	−0.679	0.266	0.386
Renal failure	0.015	−0.263	0.294	0.912
Outpatient dialysis	0.209	−0.086	0.537	0.153
Immunosuppressed	0.045	−0.278	0.411	0.701
Mechanical ventilation	−0.082	−0.452	0.182	0.396
Vasopressors	0.096	−0.137	0.354	0.380
CRRT	0.128	−0.070	0.243	0.273
Bacterial infection	0.464	0.120	0.543	0.003
Bacteremia	0.003	−0.229	0.232	0.988
Line infection	0.009	−0.198	0.210	0.953
Chloroquine	0.045	−0.208	0.310	0.694
Lopinavir/ritonavir	−0.087	−0.213	0.091	0.426
Favipiravir	−0.097	−0.351	0.120	0.329
Steroids	0.087	−0.164	0.371	0.442
WBC	0.017	−0.015	0.017	0.878
Ferritin, ng/mL	−0.050	0.000	0.000	0.771
D-dimer, ng/mL	0.038	−0.006	0.009	0.742
Procalcitonin, ng/mL	0.043	−0.008	0.013	0.657
CRP, mg/dL	−0.095	−0.001	0.000	0.404
Cr, mg/dL	−0.338	−0.090	−0.009	0.017
ABG PH	−0.442	−2.626	−0.079	0.038
PCO₂, Torr	−0.388	−0.024	0.001	0.077
PO₂, Torr	0.180	−0.001	0.003	0.173
Lactate, mmol/L	−0.218	−0.097	0.013	0.128
Bicarbonate, mEq/L	0.124	−0.018	0.035	0.532
Magnesium, mg/dL	0.030	−0.204	0.272	0.777
Platelets (10³/mL)	−0.011	−0.001	0.001	0.921
APACHE 2 score	0.095	−0.009	0.019	0.493
Average ferritin stay in ICU	0.014	0.000	0.000	0.906
Average D-dimer stay in ICU	0.143	−0.010	0.027	0.348
Average CRP stay in ICU	−0.183	−0.002	0.000	0.088

LOSICU, length of stay in the intensive care unit; CRRT, continuous renal replacement therapy; CAD, coronary artery disease; CRP, C-reactive protein.
Elevation of Inflammatory Markers in COVID-19 Infection

We did not find that comorbid conditions such as CAD, renal failure, or secondary bacterial infections predict mortality. Barman et al. [13] found in their sample that CAD is an independent predictor of mortality. Cheng et al. [14] also found that kidney disease is associated with in-hospital death of patients with COVID-19. Ruan et al. [15] found that secondary infection was associated with high mortality in their 150 patients from Wuhan, China.

Other than ABG PH no factor predicted LOSICU including ferritin, CRP, CAD, and secondary bacterial infection. Moratto et al. [16] found that high ferritin level on admission is associated with prolonged duration of hospitalization. To our knowledge, we are not aware of a study that recorded daily ferritin level and determines the impact of average ferritin level on the length of ICU stay. Moreover, we performed linear regression analysis considering the impact of >20 significant confounding factors. This suggests that finding association in other studies may be from different methodology or from not adjusting for other significant variables.

We identify the following limitations. Small sample size and single-center retrospective study may have provided results, not generalizable to other populations. Our extensive daily record of all markers of the whole sample and on each patient provided the dynamic changes dur-

Fig. 7. Linear regression for LOSICU and CRP on admission. LOSICU, length of stay in the intensive care unit; CRP, C-reactive protein.

Fig. 8. Linear regression for LOSICU and average CRP during ICU stay. LOSICU, length of stay in the intensive care unit; CRP, C-reactive protein.
ing ICU stay within a sample and for each patient therefore it provided more reliable measurements. Extensive including of confounding factors allowed us to estimate the real and actual impact of markers on the outcome.

Conclusion

Inflammatory markers are elevated in COVID-19 infection. A single level of CRP on admission does not predict outcome although the average CRP level during the stay in ICU predicts survival. Other markers do not predict survival.

Statement of Ethics

Ethical approval was provided by Emirates Institutional Review Board for COVID-19 Research, DSREC/2020/1324/approved on July 13, 2020.

References

1. World Health Organization. *Coronavirus disease (COVID-19) pandemic*. Geneva: World Health Organization; 2020. p. 310.
2. World Health Organization. *Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, 09 July 2020*. Geneva: World Health Organization; 2020. No. WHO/2019-Nov/Sci_Brief/Transmission_modes/2020.3.
3. Goh KJ, Kalimuddin S, Chan. KS. Rapid progression to acute respiratory distress syndrome: review of current understanding of critical illness from coronavirus disease 2019 (COVID-19) infection. *Ann Acad Med Singapore*. 2020; 49:108–18.
4. Jaramillo CB, Cevallos D, Sanches-SanMiguel H, Unigarro L, Zalakeviciute R, Gadian N, et al. Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review. *Diagn Microbiol Infect Dis*. 2020 Sept;98:115094.
5. Chowdhury R, Heng K, Shawon MSR, Goh G, Okonotua D, Ochoa-Rosales C, et al. Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. *Eur J Epidemiol*. 2020;35(5):389–99.
6. Konig MF, Powell M, Staedtke V, Bai RY, Thomas DL, Fischer N, et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. *J Clin Invest*. 2020;130(7):3345.
7. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. “Hematological findings and complications of COVID-19”. *Am J Hematol*. 2020;95:834–47.
8. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. *Clin Infect Dis*. 2020;71:1937–42.
9. Zhou F, Ting Y, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet*. 2020;395:1054–62.
10. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. *J Thromb Haemost*. 2020;18(6):1324–9.
11. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. *J Clin Virol*. 2020;127:104370.
12. Tan C, Huang Y, Shi F, Tan K, Ma Q, Chen Y, et al. “C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early.” *J Med Virol*. 2020;92:856–62.
13. Barman HA, Atici A, Sahin I, Alici G, Aktas Tekin E, Baycan OF, et al. Prognostic significance of cardiac injury in COVID-19 patients with and without coronary artery disease. *Coron Artery Dis*. 2020.
14. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. *Kidney Int*. 2020;97:829–38.
15. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. *Intensive Care Med*. 2020;46(5):846–8.
16. Moratto D, Chiarini M, Giustini V, Serana F, Magro P, Maria Roccaro A, et al. Flow cytometry identifies risk factors and dynamic changes in patients with COVID-19. *J Clin Immunol*. 2020;40:970–3.

Conflict of Interest Statement

None for all authors.

Funding Sources

The authors did not receive any funding.

Author Contributions

R.N.: conceived the research idea, proposal writing, data collection, data analysis, and manuscript writing. A.H.: conceived the idea, proposal writing, and review of the final manuscript. N.I.: idea conception and data collection. D.E.: data collection. Z.O., M.S., S.Z., R.A., S.E., C.S., N.A., W.A., M.A., and F.M.: idea conception and data collection. M.H.: data collection and manuscript writing.