Quasi-two-body decays $B_{(s)} \rightarrow P \rho \rightarrow P \pi \pi$ in the perturbative QCD approach

Ya Li1‡, Ai-Jun Ma1, Wen-Fei Wang2† and Zhen-Jun Xiao1*

1 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China

2 Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006, China and

3 Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China

(Dated: April 19, 2018)

In this work, we calculate the CP-averaged branching ratios and the direct CP-violating asymmetries of the quasi-two-body decays $B_{(s)} \rightarrow P(\rho \rightarrow) \pi \pi$ by employing the perturbative QCD (PQCD) approach (here P stands for a light pseudoscalar meson π, K, η or η'). The vector current timelike form factor F_π, which contains the final-state interactions between the pion pair in the resonant region associated with the P-wave states $\rho(770)$ along with the two-pion distribution amplitudes, is employed to describe the interactions between the ρ and the pion pair under the hypothesis of the conserved vector current. We found that (a) the PQCD predictions for the branching ratios and the direct CP-violating asymmetries for most considered $B_{(s)} \rightarrow P(\rho \rightarrow) \pi \pi$ decays agree with currently available data within errors, (b) for $B(B \rightarrow \pi^0 \rho^0 \rightarrow \pi^0(\pi^- \pi^+)\pi^0)$, the PQCD prediction is much smaller than the measured one, and (c) for the $B^+ \rightarrow \pi^+(\rho^0 \rightarrow) \pi^+ \pi^-$ decay mode, there is a negative CP asymmetry $(-27.5^{+3.0}_{-5.7})\%$, which agrees with other theoretical predictions but is different in sign from those reported by BABAR and LHCb Collaborations.

PACS numbers: 13.20.He, 13.25.Hw, 13.30.Eg

I. INTRODUCTION

Experimental data from different collaborations, like BABAR [1–5], Belle [6–9] and LHCb [10–12], provide valuable information for the three-body hadronic B meson decays. For these decay modes, both the resonant and nonresonant contributions may appear, as well as the possible significant final-state interactions (FSIs) [13–15]. Different frameworks have been developed for the study of the three-body hadronic B meson decays, based on the symmetry principles [16–24] or factorization theorems [25–34]. The QCD-improved factorization (QCDF) [31–34] has been widely used in the study of the three-body charmless hadronic B meson decays [35–41]. In Refs. [40, 41], the authors studied the nonresonant contributions using heavy meson chiral perturbation theory (HMChPT) [42–44] with some modifications and analyzed the resonant contributions with the isobar model in terms of the usual Breit-Wigner formalism [45]. The perturbative QCD (PQCD) approach based on the k_T factorization theorem [46, 47] has also been adopted in Refs. [48, 52].

As discussed in Refs. [46, 49], the hard b-quark decay kernels containing two virtual gluons at leading order is not important due to the power-suppression. The contributions from the region, where there is at least one pair of light mesons having an invariant mass below $O(\Lambda m_B)$ [46, 47], $\Lambda = m_B - m_b$, being the B meson and b quark mass difference, is dominant. It’s reasonable that the dynamics associated with the pair of mesons can be factorized into a two-meson distribution amplitude $\Phi_{h_1 h_2}$ [53]. As a result, one can describe the typical PQCD factorization formula for a $B \rightarrow h_1 h_2 h_3$ decay amplitude as the form of [46, 47]

$$A = \Phi_B \otimes H \otimes \Phi_{h_1 h_2} \otimes \Phi_{h_3}. \quad (1)$$

With the hard kernel H describes the dynamics of the strong and electroweak interactions in three-body hadronic decays in a similar way as the one for the two-body $B \rightarrow h_1 h_2$ decays, the Φ_B and Φ_{h_i} are the wave functions

‡ Corresponding Author
* Electronic address: liyakelly@163.com
† Electronic address: theoma@163.com
§ Electronic address: wfwang@sxu.edu.cn
¶ Electronic address: xiaozhenjun@njnu.edu.cn
for the B meson and the final-state \(h_3 \), which absorb the non-perturbative dynamics in the process. The \(\Phi_{h_1h_2} \) is the two-hadron \((h_1 \) and \(h_2 \)) distribution amplitude proposed in Refs. [53-59], which describes the structure of the final-state \(h_1-h_2 \) pair.

With the help of the two-pion distribution amplitudes, quasi-two-body decays \(B \to K\rho \to K \pi\pi \), the subprocesses of the three-body decays \(B \to K\pi\pi \), have been studied in the Ref. [50] in the PQCD approach utilizing framework discussed in [40-49]. The consistency between the PQCD predictions and the data supports the usability of the quasi-two-body framework in Ref. [50] for the study of the three-body hadronic decays. In this work, we extend the previous studies in Ref. [50] to the quasi-two-body decays \(B \to P\rho \to P\pi\pi \), with the \(P \) standing for the light pseudoscalar mesons, \(P = (\pi, K, \eta \) or \(\eta' \)), as shown in Fig. 1. In literature, many works have been done for the decays of \(B \to P\rho \) in two-body framework [39] and some of the experimental data could be found in [64-67]. From [50], we know that the width of the resonant state \(\rho \) and the interactions between the final states pion pair will show their effects on the branching ratios especially on the direct \(CP \) violations of the quasi-two-body decays. We should not neglect these effects in \(B \to P\rho \) decays. In order to describe the strong interactions between the \(P \)-wave resonant state \(\rho \) and the final-state pion pair, vector current timelike form factor \(F_\pi \) containing final-state interactions between pion pair has been employed in Ref. [50]. Guaranteed by the Watson theorem [68], the results from the \(\pi-\pi \) scattering and \(\tau \) decays for the timelike form factor \(F_\pi \) could be borrowed for the study of quasi-two-body \(B \) meson decays. The detailed discussion of \(F_\pi \) could be found in [50] and its references.

This paper is organized as follows. In Sec. II, we give a brief introduction for the theoretical framework. The numerical values, some discussions and the conclusions will be given in last two sections.

II. FRAMEWORK

For the quasi-two-body \(B \to P(\rho \to\pi\pi) \) decays, the weak effective Hamiltonian can be specified as \([62]\):

\[
\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left\{ V_{ub}^* V_{cq} \left[C_1(\mu) O_1^u(\mu) + C_2(\mu) O_2^u(\mu) \right] - V_{tb}^* V_{tg} \sum_{i=3}^{10} C_i(\mu) O_i(\mu) \right\} + \text{H.c.},
\]

with \(q = d, s \), the \(C_i(\mu) (i = 1, \ldots, 10) \) are the Wilson coefficients and \(O_i \) are the local four-quark operators.

We let the pion pair and the final-state \(P \) move along the direction of \(n = (1,0,0_T) \) and \(v = (0,1,0_T) \) in the light-cone coordinates, respectively. The \(B \) meson momentum \(p_B \), the total momentum of the pion pair, \(p = p_1 + p_2 \), for \(\pi, K, \eta \) or \(\eta' \), respectively. The \(B \) meson of \(P \), the final-state pion pair, vector current timelike form factor \(F_\pi \), transition, as well as the diagrams \((\beta 1) \) and \((\beta 2) \) for annihilation contributions.

This paper is organized as follows. In Sec. II, we give a brief introduction for the theoretical framework. The numerical values, some discussions and the conclusions will be given in last two sections.

II. FRAMEWORK

For the quasi-two-body \(B \to P(\rho \to\pi\pi) \) decays, the weak effective Hamiltonian can be specified as \([62]\):

\[
\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left\{ V_{ub}^* V_{cq} \left[C_1(\mu) O_1^u(\mu) + C_2(\mu) O_2^u(\mu) \right] - V_{tb}^* V_{tg} \sum_{i=3}^{10} C_i(\mu) O_i(\mu) \right\} + \text{H.c.},
\]

with \(q = d, s \), the \(C_i(\mu) (i = 1, \ldots, 10) \) are the Wilson coefficients and \(O_i \) are the local four-quark operators.

We let the pion pair and the final-state \(P \) move along the direction of \(n = (1,0,0_T) \) and \(v = (0,1,0_T) \) in the light-cone coordinates, respectively. The \(B \) meson momentum \(p_B \), the total momentum of the pion pair, \(p = p_1 + p_2 \), for \(\pi, K, \eta \) or \(\eta' \), respectively. The \(B \) meson of \(P \), the final-state pion pair, vector current timelike form factor \(F_\pi \), transition, as well as the diagrams \((\beta 1) \) and \((\beta 2) \) for annihilation contributions.

This paper is organized as follows. In Sec. II, we give a brief introduction for the theoretical framework. The numerical values, some discussions and the conclusions will be given in last two sections.
and the final-state P momentum p_3 are chosen as
\[p_B = \frac{m_B}{\sqrt{2}}(1, 1, 0_T), \quad p = \frac{m_B}{\sqrt{2}}(1, \eta, 0_T), \quad p_3 = \frac{m_B}{\sqrt{2}}(0, 1 - \eta, 0_T), \] (3)
where m_B is the mass of B meson, the variable η is defined as $\eta = \omega^2/m_B^2$, the invariant mass squared $\omega^2 = p^2$. We define $\zeta = p_1^+/p^+$ as one of the pion pair’s momentum fraction, in terms of which the other kinematic variables of the two pions are expressed as
\[p_1 = (1 - \zeta)\frac{m_B}{\sqrt{2}}, \quad p_2 = (1 - \zeta)\frac{m_B}{\sqrt{2}}, \quad p_2 = \zeta\frac{m_B}{\sqrt{2}}. \] (4)

We employ x_B, z, x_3 to denote the momentum fraction of the positive quark in each meson, k_{BT}, k_T, k_{3T} stands for the transverse momentum of the positive quark, respectively. The momentum k_B of the spectator quark in the B meson, the momentum k for the resonant state ρ and k_3 for the final-state P are of the form of
\[k_B = \left(0, x_B \frac{m_B}{\sqrt{2}}, k_{BT}\right), \quad k = \left(\frac{m_B}{\sqrt{2}}, 0, k_T\right), \quad k_3 = \left(0, (1 - \eta)x_3 \frac{m_B}{\sqrt{2}}, k_{3T}\right), \] (5)
The momentum fractions x_B, z and x_3 run from zero to unity.

In this work, we use the wave function \[\Phi_B = \frac{i}{\sqrt{2N_c}}(p_B + m_B)\gamma_5\phi_B(k_1), \] for B^+, B^0 and B_s^0 mesons. And we adopt the widely used distribution amplitude \[[70–74] \]
\[\phi_B(x, b) = N_B x^2(1 - x)^2 \exp \left[-\frac{M_B^2 x^2}{2\omega^2} - \frac{1}{2}(\omega_B b)^2 \right], \] (7)
for them. With the normalization factor N_B depends on the value of ω_B and f_B, which is defined through the normalization relation \[\int_0^1 dx \phi_B(x, b = 0) = f_B/\sqrt{20} \]. $\omega_B = 0.40 \pm 0.04$ GeV and $\omega_{B_s} = 0.50 \pm 0.05$ GeV \[[70, 72, 74] \] will be employed in the following numerical calculations.

For the final-state $P (\pi, K, \eta$ or $\eta')$, we have the wave functions \[[71, 72] \]
\[\Phi_P(P_3, x_3) = \frac{i}{\sqrt{2N_c}}\gamma_5[p_3\phi^P_3(x_3) + m_{03}\phi^P_3(x_3) + m_{03}(\bar{q}b - 1)\phi^T_3(x_3)], \] (8)
where m_{03} is the corresponding meson chiral mass, P_3 and x_3 are the momentum and the momentum fraction of P, respectively. The expressions of the relevant distribution amplitudes of pion and kaon mesons are the following \[[77, 82] \]:
\[\phi^A(x) = \frac{3f_\pi^2}{\sqrt{6}} x(1 - x)[1 + 0.44C_2^{3/2}(t)], \] (9)
\[\phi^P(x) = \frac{f_\pi^2}{\sqrt{6}} [1 + 0.43C_2^{1/2}(t)], \] (10)
\[\phi^T(x) = \frac{f_\pi^2}{\sqrt{6}} [(1 - 2x)[1 + 0.55(10x^2 - 10x + 1)], \] (11)
\[\phi^K(x) = \frac{3f_K^2}{\sqrt{6}} x(1 - x)[1 + 0.17C_1^{3/2}(t) + 0.2C_2^{3/2}(t)], \] (12)
\[\phi^P_K(x) = \frac{f_K^2}{\sqrt{6}} [1 + 0.24C_2^{1/2}(t)], \] (13)
\[\phi^T_K(x) = -\frac{f_K^2}{\sqrt{6}} [C_1^{1/2}(t) + 0.35C_2^{1/2}(t)]. \] (14)

The distribution amplitudes $\phi^A,P,T_{q\bar{q}(s)}$ ($q = u, d$) for $\eta_{q(s)}$ are given as \[[77, 79, 83] \]:
\[\phi^A_{q\bar{q}(s)}(x) = \frac{f_{qs}(s)}{2\sqrt{2N_c}} 6x(1 - x) \left[1 + a_1^q C_4^{3/2}(2x - 1) + a_2^q C_2^{3/2}(2x - 1) + a_3^q C_4^{3/2}(2x - 1) \right], \] (15)
\[\phi^P_{q\bar{q}(s)}(x) = \frac{f_{qs}(s)}{2\sqrt{2N_c}} \left[1 + (30\eta_3 - \frac{5}{2} \rho_{q\bar{q}(s)}^2)C_1^{1/2}(2x - 1) - 3 [\eta_3 \omega_3 + \frac{9}{20} \rho_{q\bar{q}(s)}^2 (1 + 6a_2^q)] C_1^{1/2}(2x - 1) \right], \] (16)
\[\phi^T_{q\bar{q}(s)}(x) = \frac{f_{qs}(s)}{2\sqrt{2N_c}} (1 - 2x) \left[1 + 6(5\eta_3 - \frac{1}{2} \eta_3 \omega_3 - \frac{7}{20} \rho_{q\bar{q}(s)}^2 - \frac{3}{5} \rho_{q\bar{q}(s)}^2 a_2^q)(1 - 10x + 10x^2) \right]. \] (17)
with the Gegenbauer moments

\[a_0^1 = 0, \quad a_2^0 = 0.44, \quad a_4^0 = 0.25. \] (18)

The parameters \(\rho_{\eta} = 2m_\eta/m_0^0 \) with \(m_0^0 = 1.07 \text{GeV} \) for \(\eta \) and \(\rho_{\eta'} = 2m_{\eta'}/m_0^0 \) with \(m_0^0 = 1.92 \text{GeV} \) for \(\eta' \). The Gegenbauer polynomials \(C_n^m(t) \) (\(n = 1, 2, 3, 4 \) and \(v = 1/2, 3/2 \)) above could be found in Ref. \[82\].

In this paper, we consider the meson \(\eta, \eta' \) as mixtures from \(\eta_q \) and \(\eta_{qs} \):

\[
\begin{pmatrix}
\eta \\
\eta'
\end{pmatrix} = \begin{pmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{pmatrix} \begin{pmatrix}
\eta_q \\
\eta_s
\end{pmatrix},
\] (19)

with

\[
\eta_q = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}), \quad \eta_s = s\bar{s},
\] (20)

The mixtures among the \(\eta_q, \eta_s \) and a possible glueball \[83\ \text{and} \ 88\] will be neglected in this work. For the decay constant and the mixing angle \(\phi \), we have the forms as \[80\ \text{and} \ 84\].

\[
f_q = (1.07 \pm 0.02)f_\pi, \quad f_s = (1.34 \pm 0.06)f_\pi, \quad \phi = 39.3^\circ \pm 1.0^\circ, \quad f_\pi = 0.131 \text{GeV}.
\] (21)

The two-pion distribution amplitudes are the same as those being used in Ref. \[50\],

\[
\Phi^{F}_{\pi\pi} = \frac{1}{2\sqrt{2}c} \left[\phi_0 F_{\pi\pi}^{T=1}(z, \zeta, \omega^2) + \omega \Phi_{\pi\pi}^{T=1}(z, \zeta, \omega^2) + \frac{\rho_{\pi\pi}}{m(2\zeta - 1)} \Phi_{\pi\pi}^{T=1}(z, \zeta, \omega^2) \right],
\] (22)

with

\[
\Phi_{\pi\pi}^{T=1} = \frac{3F_{\pi}(s)}{2\sqrt{2}c}(1 - 2z)
\]
(23)

\[
\Phi_{\pi\pi}^{T=1} = \frac{3F_{\pi}(s)}{2\sqrt{2}c}(1 - 2z)
\]
(24)

\[
\Phi_{\pi\pi}^{T=1} = \frac{3F_{\pi}(s)}{2\sqrt{2}c}(1 - 2z)
\]
(25)

where the Legendre polynomial \(P_1(2\zeta - 1) = 2\zeta - 1 \). We make tiny corrections of the Gegenbauer moments for the two-pion distribution amplitudes comparing with those in Ref. \[50\]. By referring to all the existing data of \(B \to P(\rho \to \pi \pi) \) in Ref. \[91\], we adjust \(a_0^{2\rho}, a_2^{2\rho}, a_4^{2\rho} \) to cater to the data and we have the new Gegenbauer coefficients \(a_0^{2\rho} = 0.30, a_2^{2\rho} = 0.70, a_4^{2\rho} = -0.40 \).

We adopt the same \(F_{\pi}(s) \) in this work as that in Ref. \[50\], the approximate relations \(F_{\pi,\pi}(s) \approx (f_{\phi}/f_{\rho})F_{\pi}(s) \) \[50\] will also be used in the following section. By taking the \(\rho - \omega \) interference and the excited states into account, the form factor \(F_{\pi}(s) \) can be written in the form of

\[
F_{\pi}(s) = \left[\frac{1 + c_\omega \text{BW}_{\omega}(s, m_\omega, \Gamma_\omega)}{1 + c_\omega} + \sum c_i \text{GS}_{s}(s, m_i, \Gamma_i) \right] \left[1 + \sum c_i \right]^{-1}
\] (26)

where \(s = m^2(\pi \pi) \) is the two-pion invariant mass squared, \(i = (\rho'(1450), \rho''(1700), \rho'''(2254)) \), \(\Gamma \) is the decay width for the relevant resonance, \(m_{\rho,\omega,i} \) are the masses of the corresponding mesons, respectively. The function \(\text{GS}_{s}(s, m_i, \Gamma_i) \) has been parameterized as the Gounaris-Sakurai (GS) model based on the Breit-Wigner (BW) model \[45\ \text{and} \ 92\]

\[
\text{GS}_{s}(s, m_i, \Gamma_i) = \frac{m_i^2 [1 + d(m_i)\Gamma_i/m_i]}{m_i^2 - s + f(s, m_i, \Gamma_i) - im_i \Gamma_i(s, m_i, \Gamma_i)},
\] (27)

with the functions

\[
\Gamma(s, m_i, \Gamma_i) = \frac{m_i^2 s}{4m_i^2} \left(\frac{\beta_i(s)}{\beta_i(m_i^2)} \right)^3,
\]

\[
d(m) = \frac{3}{\pi} \frac{m^2}{m^2 + 2k^2(m^2)} \ln \left(\frac{m + 2k(m^2)}{2m} \right) + \frac{m}{2\pi k^2(m^2)} - \frac{m^2 m}{\pi k^3(m^2)},
\]

\[
f(s, m_i) = \frac{\Gamma_i m_i^2}{k^3(m_i^2)} \left[k^2(s)[h(s) - h(m_i^2)] + (m_i^2 - s)k^2(m_i^2)h'(m_i^2) \right],
\]

\[
k(s) = \frac{1}{2} \sqrt{s} \beta_i(s),
\]

\[
h(s) = \frac{2k(s)}{\sqrt{s}} \ln \left(\frac{\sqrt{s} + 2k(s)}{2m} \right).
\] (28)
where $\beta_s(s) = \sqrt{1 - 4m_s^2/s}$. For $\rho(770)$ resonant state, for example, the measured value of its resonance width is $\Gamma_\rho = 0.149$ GeV to be used as input in the numerical calculations.

III. NUMERICAL RESULTS AND DISCUSSIONS

TABLE I: CP averaged branching ratios and direct CP-violating asymmetries of $B_{(s)} \rightarrow K(\rho \rightarrow \pi\pi)$ decays calculated in PQCD approach together with experimental data [91].

Modes	Quasi-two-body results	Experiment		
$B^+ \rightarrow K^+(\rho^0 \rightarrow \pi^+\pi^-)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	3.70 \pm 0.50
$B^0 \rightarrow K^+(\rho^- \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	37.0 \pm 10.0
$B_s^0 \rightarrow K^-(\rho^+ \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	7.00 \pm 0.90
$B_s^0 \rightarrow K^0(\pi^+ \rightarrow \pi^+\pi^-)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	20.0 \pm 11.0
$B^+ \rightarrow K^0(\rho^+ \rightarrow \pi^+\pi^-)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	8.00 \pm 1.50
$B^0 \rightarrow K^0(\rho^- \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	12.0 \pm 17.0
$B_s^0 \rightarrow K^0(\rho^+ \rightarrow \pi^+\pi^-)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	4.70 \pm 0.60
$B_s^0 \rightarrow K^0(\rho^- \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	0.00 \pm 0.00

TABLE II: CP averaged branching ratios and direct CP-violating asymmetries of $B_{(s)} \rightarrow \pi(\rho \rightarrow \pi\pi)$ decays calculated in PQCD approach together with experimental data [91].

Modes	Quasi-two-body results	Experiment		
$B^+ \rightarrow \pi^+(\rho^0 \rightarrow \pi^+\pi^-)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	8.30 \pm 1.20
$B^0 \rightarrow \pi^+(\rho^- \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	18.0 \pm 17.0
$B^0 \rightarrow \pi^0(\rho^- \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	23.00 \pm 2.30
$B^0 \rightarrow \pi^-(\rho^+ \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	8.00 \pm 8.00
$B_s^0 \rightarrow \pi^+(\rho^- \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	23.00 \pm 2.30
$B_s^0 \rightarrow \pi^0(\rho^- \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	13.0 \pm 6.00
$B_s^0 \rightarrow \pi^0(\rho^+ \rightarrow \pi^-\pi^0)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	2.00 \pm 0.50
$B^0 \rightarrow \pi^0(\rho^0 \rightarrow \pi^+\pi^-)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	0.00 \pm 0.00
$B_s^0 \rightarrow \pi^0(\rho^0 \rightarrow \pi^+\pi^-)$	$B(10^{-6})$	$A_{CP}(%)$	$\pm 0.22(a_{CP}^0)\pm 0.27(a_{CP}^0)\pm 0.35(a_{CP}^0)\pm 0.38(a_{CP}^0)$	0.00 \pm 0.00

aBranching fraction for the decay $B^0 \rightarrow \rho^\pm\pi^\mp$ in [91].

The following input parameters (the masses, decay constants and QCD scale are in units of GeV) will be used [91].

The values of the Wolfenstein parameters are the same as given in Ref. [91]: $\lambda = 0.22537 \pm 0.00061$, $\bar{\rho} = 0.117 \pm 0.021$, $\bar{\eta} = 0.353 \pm 0.013$.

For the decay $B \to P(\rho \to \pi \pi)$, the differential branching ratio is written as [91],
\[
\frac{d\mathcal{B}}{ds} = \tau_B \frac{|\vec{p}_\pi|^2 |\vec{p}_P|^2}{32\pi^3 m_B^2} |\mathcal{A}|^2,
\]
where τ_B is the mean lifetime of B meson, and s is the invariant mass squared $s = \omega^2 = p^2$. The kinematic variables $|\vec{p}_\pi|$ and $|\vec{p}_P|$ denote the magnitudes of one π meson in the pion pair and P’s momenta in the center-of-mass frame of the pion pair,
\[
|\vec{p}_\pi| = \frac{1}{2} \sqrt{s - 4m_\pi^2}, \quad |\vec{p}_P| = \frac{1}{2} \sqrt{((m_B^2 - M_P^2)^2 - 2(m_B^2 + M_P^2)s + s^2)/s}.
\]

By using the differential branching fraction in Eq. (39) and the decay amplitudes in the Appendix, we calculate and list the CP averaged branching ratios (B) and direct CP-violating asymmetries (A_{CP}) for $B_{(s)} \to K(\rho \to \pi \pi)$ in the third column of Table I and $B_{(s)} \to \eta(\rho \to \pi \pi)$ in Table II. The first error of these PQCD predictions comes from $\omega_B = (0.40 \pm 0.04)$ GeV for B^+, B^0 mesons and $\omega_B = (0.50 \pm 0.05)$ GeV for B_s meson, the second error is from $a_{\rho}^{\pi \pi} = -0.40 \pm 0.10$, while the other two errors result from $a_{\rho}^0 = 0.70 \pm 0.20$ and $a_{\rho}^{\pi \pi} = 0.30 \pm 0.05$, respectively.

From the numerical results as shown in above three tables, one can address some issues as follows:

- Although we have made small changes for the three Gegenbauer moments $a_{\rho}^{0, s, t}$, the PQCD predictions for the branching ratios and direct CP asymmetries of the quasi-two-body decays $B^+ \to K^+(\rho^0 \to \pi^+\pi^-)$, $B^0 \to K^0(\rho^+ \to \pi^+\pi^0)$, $B^0 \to K^+(\rho^- \to \pi^-\pi^0)$ and $B^0 \to K^0(\rho^- \to \pi^+\pi^-)$ agree well with those as given previously in Ref. [54]. The PQCD predictions for the decay rates of these four decay modes are consistent with currently available data [91]. For the decay $B^+ \to K^+(\rho^0 \to \pi^+\pi^-)$, the predicted direct CP asymmetry $A_{CP} = (50.7^{+5.1}_{-5.0})\%$ matches the measured value (37.0 \pm 10\%)%.
TABLE IV: For the measured decay mode $B^+ \rightarrow K^+(\rho^0 \rightarrow \pi^+\pi^-)$, the Γ_ρ-dependence of the PQCD predictions for the branching ratios and the direct \(CP\)-violating asymmetries, assuming $0 \leq \Gamma_\rho \leq 0.149$ GeV.

Γ_ρ(GeV)	0	0.005	0.015	0.060	0.090	0.120	0.149
$B(10^{-6})$	5370.2	105.5	35.4	9.2	6.3	4.9	4.0
A_{CP}(%)	50.9	53.3	52.8	51.8	51.2	50.8	50.7

- For $B^+ \rightarrow \pi^+(\rho^0 \rightarrow \pi^+\pi^-)$ decay, the PQCD prediction for its branching ratio is well consistent with the world average $(8.3^{+1.2}_{-1.3}) \times 10^{-6}$ within errors, but its \(CP\) asymmetry is found to be negative: $A_{CP} = (-27.5^{+3.0}_{-3.2})\%$ numerically. The BABAR and LHCb measurements for this quantity, however, prefer a positive \(CP\) asymmetry in the $(m^{\pi^+\pi^-})$ region peaked at m_ρ. The theoretical predictions based on the QCDF, PQCD and SCET all give a negative \(CP\) asymmetry of order -0.20 for $B^+ \rightarrow \rho^0\pi^+$ (see Table XIII of [93]). This puzzle concerning the sign of $A_{CP}(\rho^0\pi^+)$ needs to be resolved in the near future.

- The agreements of PQCD predictions with the data could be achieved for $B \rightarrow \pi(\rho \rightarrow \pi\pi)$ decays with the results in Ref. [60]. The sum of the branching ratios of the $B^0 \rightarrow \pi^+(\rho^0 \rightarrow \pi\pi)$ and $B^0 \rightarrow \pi^{-}(\rho^0 \rightarrow \pi\pi)$ decays are in consistent with the world average data. The calculated $A_{CP}(B^0 \rightarrow \pi^+(\rho^0 \rightarrow \pi\pi)) = (8.2^{+2.0}_{-1.9})\%$ agree with the data $(13.0 \pm 6.0)\%$. We also obtain $A_{CP}(B^0 \rightarrow \pi^-(\rho^0 \rightarrow \pi\pi)) = (-31.4^{+4.9}_{-5.3})\%$ which needs to be tested precisely in the future experiments.

- For the branching ratios and \(CP\) violations of the quasi-two-body $B \rightarrow \eta^{(')}(\rho \rightarrow \pi\pi)$ and find that $A_{CP}(B^0 \rightarrow \eta(\rho \rightarrow \pi\pi) = (-0.3^{+0.4}_{-0.3})\%$ and $A_{CP}(B^+ \rightarrow \eta'(\rho \rightarrow \pi\pi)) = (21.0^{+4.4}_{-2.5})\%$ agree with the data. The contributions of the tree diagrams are larger than those of the penguin ones by roughly a factor of 200 for the decay $B^+ \rightarrow \eta(\rho \rightarrow \pi\pi)$ and a factor of 40 for the $B^+ \rightarrow \eta'(\rho \rightarrow \pi\pi)$. The tree contributions is therefore dominant for the decay $B^+ \rightarrow \eta(\rho \rightarrow \pi\pi)$, its direct \(CP\) asymmetry is really small in size. We also give predictions for $B^0 \rightarrow \eta(\rho \rightarrow \pi\pi)$ and $B^+ \rightarrow \eta'(\rho \rightarrow \pi\pi)$ decays.

- For all the $B \rightarrow K(\pi, \eta^{(')}(\rho \rightarrow \pi\pi)$ decay channels considered in this paper, we can compare our PQCD predictions with those given in Table VII and Table VIII of Refs. [82, 94]. From the \(CP\) averaged branching ratios, for example, our results for decays $B_s \rightarrow K(\pi, \eta^{(')}(\rho \rightarrow \pi\pi)$ are a little larger than the corresponding ones in Table VII of Ref. [82]. As verified in Ref. [50], it may be more appropriate to treat $B \rightarrow K(\pi, \eta^{(')}(\rho \rightarrow \pi\pi)$ as the quasi-two-body decays. For $B^0 \rightarrow \pi^{-}(\rho^0 \rightarrow \pi\pi)\pi^0$ and $B^0 \rightarrow \eta(\rho^0 \rightarrow \pi\pi)$ decays, we obtain sizeable negative \(CP\) asymmetries which could be examined in the forthcoming experiments. Our PQCD predictions for the direct \(CP\) asymmetries of $B^0 \rightarrow K^{-}(\rho^0 \rightarrow \pi\pi)$, $B^0 \rightarrow K(\rho^0 \rightarrow \pi\pi)$ decays are positive and sizable.

- For the $B^0 \rightarrow \pi^0\rho^0 \rightarrow \pi^0\pi^+\pi^-$ decay process, PQCD prediction is $B = (0.11^{+0.07}_{-0.03}) \times 10^{-6}$ at leading-order in the quasi-two-body framework in this work, such a branching ratio is much smaller than the value $(2.0 \pm 0.5) \times 10^{-6}$ in [97]. Similar with the $\pi\pi$, πK or $\rho\rho$ puzzles discussed in Refs. [84, 95, 102], the $B \rightarrow \pi\rho$ puzzle has been noticed by some groups [103, 104]. For example, in Ref. [103], the authors found the role of $\pi\pi$ channel in the Dalitz plot analysis of $\rho\pi$ decays and concluded that the effect of σ to $B^0 \rightarrow \rho^0\pi^0$ is not important. While in [104], the authors found that $B^0 \rightarrow \rho^0\pi^0$ process could receive large contributions from the heavy-meson B^* and B_0 backgrounds. Since the isospin-violating effect is visible in the $e^+e^- \rightarrow \pi^+\pi^-$ data at $s = m^2_\pi$ [110], the ρ^0-ω mixing need to be taken into studies [105, 111, 112]. We leave the gap between the data in [91] and the PQCD prediction $B = (0.11^{+0.07}_{-0.03}) \times 10^{-6}$ to the future studies.

For the considered $B/B_s \rightarrow P(\rho \rightarrow \pi\pi)$ decays, we know that the introduction of the resonance width Γ_ρ is one of the crucial differences between the two-body formalism and the quasi-two-body one and may play an important role in our theoretical predictions for the \(CP\) averaged branching ratios and the \(CP\)-violating asymmetries. In order to check the Γ_ρ-dependence of these physical observables, we vary Γ_ρ in Eqs. (26-27) in the range of $0 \leq \Gamma_\rho \leq 0.149$ GeV and list our PQCD predictions in Table [IV]. For the sake of simplicity, we take the experimentally measured decay mode $B^+ \rightarrow K^+(\rho^0 \rightarrow \pi^+\pi^-)$ as an example, and make numerical calculations for the seven fixed values of Γ_ρ. From the numerical results in Table [IV] we find easily that

- Our PQCD predictions for the branching ratios are very sensitive on the variations of the given value of the resonance width Γ_ρ. For $\Gamma_\rho = \Gamma_\rho^{exp} = 0.149$ GeV, the PQCD prediction $B(B^+ \rightarrow K^+(\rho^0 \rightarrow \pi^+\pi^-) \approx 4.0 \times 10^{-6}$ agrees well with the measured value $(3.7 \pm 0.5) \times 10^{-6}$ [91].
• For CP asymmetries \mathcal{A}_{CP}, the Γ_ρ-dependence is indeed negligible.

IV. CONCLUSION

In this paper, we calculated the CP-averaged branching ratios and direct CP-violating asymmetries of the quasi-two-body decays $B_{s}(s) \to (\pi, K, \eta, \eta')\rho \to (\pi, K, \eta, \eta')\pi\pi$ by using the PQCD factorization approach. The two-pion distribution amplitude $\Phi_{\pi\pi}$ with the P-wave timelike form factor F_{π} was employed to describe the resonant state ρ and its interactions with the pion pair. General agreements between the PQCD predictions and the data achieved by making a little adjustments of the Gegenbauer moments of the P-wave two-pion distribution amplitudes. We listed the PQCD predictions for those considered decay channels, which will be tested at the LHCb and Belle-II experiment. From the numerical results, we found the following points:

• Except for the $B \to \pi^{0}\rho^{0} \to \pi^{0}(\pi^{+}\pi^{-})$ decay mode, the PQCD predictions for the branching ratios of other $B_{s}(s) \to (\pi, K, \eta, \eta')\rho \to (\pi, K, \eta, \eta')\pi\pi$ decays agree with currently available data within errors.

• For $B(\to \pi^{0}\rho^{0} \to \pi^{0}(\pi^{+}\pi^{-}))$ decay, the PQCD prediction is about $(0.11^{+0.07}_{-0.06}) \times 10^{-6}$ and is much smaller than the measured one: $(2.0 \pm 0.5) \times 10^{-6}$.

• For $B^{+} \to \pi^{+}(\rho^{0} \to \pi^{+}\pi^{-})$ decay mode, we found a negative CP asymmetry $(-27.5\pm3.0\%)$, which agrees with theoretical predictions based on QCDF or other factorization approaches, but different in sign from the measured ones in the $m(\pi^{+}\pi^{-})$ region peaked at m_{ρ}, as reported by BABAR and LHCb Collaboration. Such difference should be tested in the forthcoming experimental measurements.

Acknowledgments

Many thanks to Hsiang-nan Li, Cai-Dian Lü, Xin Liu, Rui Zhou and Wei Wang for valuable discussions. This work was supported by the National Natural Science Foundation of China under the No. 11235005 and No. 11547038.

Appendix A: Decay amplitudes

The total decay amplitude for each considered decay mode in this work are given as follows:

\[
\mathcal{A}(B^{+} \to K^{+}(\rho^{0} \to \pi^{+}\pi^{-})) = \frac{G_{F}}{2}\{V_{ub}^{*}V_{us}[C_{1} + C_{2}](F_{e\rho}^{LL} + F_{a\rho}^{LL}) + (C_{1} + C_{2})F_{\rho}^{LL} + C_{2}M_{\rho}^{LL} \\
+ C_{1}(M_{\rho}^{LL} + M_{\rho}^{LR}) - V_{tb}^{*}V_{ts}[C_{3} + C_{4} + C_{9} + C_{10}]F_{e\rho}^{LL} + F_{\rho}^{LL} \\
+ (C_{5} + C_{6} + C_{7} + C_{8})(F_{\rho}^{SP} + F_{\rho}^{SP}) + (C_{3} + C_{9})M_{\rho}^{LL} + M_{\rho}^{LR}) \\
+ (C_{5} + C_{7})(M_{\rho}^{LR} + M_{\rho}^{LR}) + \frac{3C_{9}}{2}M_{\rho}^{SP} + \frac{3C_{10}}{2}M_{\rho}^{SP} \\
+ \frac{3}{2}(C_{7} + \frac{C_{8}}{3} + C_{9} + \frac{C_{10}}{3})F_{\rho}^{LL}\} ,
\]
(A1)

\[
\mathcal{A}(B^{0} \to K^{+}(\rho^{0} \to \pi^{+}\pi^{-})) = \frac{G_{F}}{\sqrt{2}}\{V_{ub}^{*}V_{us}[\frac{C_{1}}{3} + C_{2}]F_{e\rho}^{LL} + C_{1}M_{\rho}^{LL} - V_{tb}^{*}V_{ts}[C_{3} + C_{9}]M_{\rho}^{LL} \\
+ (C_{3} + C_{4} + C_{9} + C_{10})F_{e\rho}^{LL} + (C_{5} + C_{6} + C_{7} + C_{8})F_{e\rho}^{SP} \\
+ (C_{5} + C_{7})M_{\rho}^{LR} + (C_{3} + C_{4} - \frac{1}{2}(C_{9} + C_{10}))F_{\rho}^{LL} + (C_{3} - C_{9})M_{\rho}^{LR} \\
+ (C_{5} + C_{6} - \frac{1}{2}(C_{7} + C_{8}))F_{\rho}^{SP} + (C_{5} - C_{7}/2)M_{\rho}^{LR}\} ,
\]
(A2)
\[A(B_s^0 \to K^-(\rho^+ \to \pi^+ \pi^0)) = \frac{G_F}{\sqrt{2}} \left\{ V^*_{ub} V_{ud} \left[\frac{(C_3 + C_2) F_{\rho}^{LL} + C_1 M_{\rho}^{LL}}{2} \right] - V^*_{tb} V_{td} \left[(C_3 + C_9) M_{\rho}^{LL} \right] + \left(\frac{C_3}{3} + C_4 + \frac{C_9}{3} + C_{10} \right) F_{\rho}^{LL} + (C_5 + C_7) M_{\rho}^{LR} \right. \\
+ \left(\frac{C_3}{3} + C_4 - \frac{1}{2} C_9 + C_{10} \right) F_{\rho}^{LL} + (C_5 - C_7) M_{\rho}^{LR} \left. \right) \\
+ (C_3 - \frac{C_9}{2}) M_{\rho}^{LR} + (C_5 - \frac{C_7}{2}) M_{\rho}^{LR} \right]. \] (A3)

\[A(B^+ \to K^0(\rho^+ \to \pi^+ \pi^0)) = \frac{G_F}{\sqrt{2}} \left\{ V^*_{ub} V_{uc} \left[\frac{(C_3 + C_2) F_{\rho}^{LL} + C_1 M_{\rho}^{LL}}{2} \right] - V^*_{tb} V_{tc} \left[(C_3 - \frac{C_9}{2}) M_{\rho}^{LL} \right] + \left(\frac{C_3}{3} + C_4 - \frac{1}{2} C_9 + C_{10} \right) F_{\rho}^{LL} + (C_5 + C_7) M_{\rho}^{LR} \right. \\
+ \left(\frac{C_3}{3} + C_4 + \frac{C_9}{3} + C_{10} \right) F_{\rho}^{LL} + (C_5 - C_7) M_{\rho}^{LR} \left. \right) \\
+ (C_3 + C_6 + \frac{C_7}{3} + C_8) F_{\rho}^{LL} + (C_5 + C_7) M_{\rho}^{LR} \right]. \] (A4)

\[A(B^0 \to K^0(\rho^+ \to \pi^+ \pi^-)) = \frac{G_F}{2} \left\{ V^*_{ub} V_{ud} \left[(C_1 + \frac{C_2}{3}) F_{\rho}^{LL} + C_2 M_{\rho}^{LL} \right] - V^*_{td} V_{tc} \left[\frac{3C_8}{2} M_{\rho}^{SP} \right] + \left(\frac{C_3}{3} + C_4 + \frac{5C_9}{3} + C_{10} + \frac{3}{2} \left(C_7 + \frac{C_8}{3} \right) \right) F_{\rho}^{LL} \right. \\
+ \left(\frac{C_3}{3} + C_4 + \frac{5C_9}{3} + C_{10} + \frac{3}{2} \left(C_7 + \frac{C_8}{3} \right) \right) F_{\rho}^{LL} \left. \right) \\
+ (C_3 + C_6 + \frac{C_7}{3} + C_8) F_{\rho}^{LL} + (C_5 + C_7) M_{\rho}^{LR} \right]. \] (A5)

\[A(B_s^0 \to K^0(\rho^+ \to \pi^+ \pi^-)) = \frac{G_F}{2} \left\{ V^*_{ub} V_{ud} \left[(C_1 + \frac{C_2}{3}) F_{\rho}^{LL} + C_2 M_{\rho}^{LL} \right] - V^*_{tb} V_{td} \left[\frac{3C_8}{2} M_{\rho}^{SP} \right] + \left(\frac{C_3}{3} + C_4 + \frac{5C_9}{3} + C_{10} + \frac{3}{2} \left(C_7 + \frac{C_8}{3} \right) \right) F_{\rho}^{LL} \right. \\
+ \left(\frac{C_3}{3} + C_4 + \frac{5C_9}{3} + C_{10} + \frac{3}{2} \left(C_7 + \frac{C_8}{3} \right) \right) F_{\rho}^{LL} \left. \right) \\
+ (C_3 + C_6 + \frac{C_7}{3} + C_8) F_{\rho}^{LL} + (C_5 + C_7) M_{\rho}^{LR} \right]. \] (A6)

\[A(B^+ \to \pi^+(\rho^0 \to \pi^+ \pi^-)) = \frac{G_F}{2} \left\{ V^*_{ub} V_{ud} \left[(C_1 + \frac{C_2}{3}) F_{\rho}^{LL} + C_2 M_{\rho}^{LL} \right] - V^*_{tb} V_{td} \left[\frac{3C_8}{2} M_{\rho}^{SP} \right] + \left(\frac{C_3}{3} + C_4 + \frac{5C_9}{3} + C_{10} + \frac{3}{2} \left(C_7 + \frac{C_8}{3} \right) \right) F_{\rho}^{LL} \right. \\
+ \left(\frac{C_3}{3} + C_4 + \frac{5C_9}{3} + C_{10} + \frac{3}{2} \left(C_7 + \frac{C_8}{3} \right) \right) F_{\rho}^{LL} \left. \right) \\
+ (C_3 + C_6 + \frac{C_7}{3} + C_8) F_{\rho}^{LL} + (C_5 + C_7) M_{\rho}^{LR} \right]. \] (A7)
A(B^0 \to \pi^- (\rho^+) \to \pi^+ \pi^0) = \frac{G_F}{\sqrt{2}} \{ V_{ub}^* V_{ud} [(C_1 + \frac{C_2}{3}) F_{a\rho}^{LL} + (\frac{C_1}{3} + C_2) F_{e\rho}^{LL} + C_2 M_{e\rho}^{LL} + C_1 M_{e\rho}^{LL}] \\
- V_{tb}^* V_{td} [(\frac{C_4}{3} + C_4 + \frac{C_9}{3} + C_{10}) F_{e\rho}^{LL} + (C_4 + C_{10}) M_{e\rho}^{LL}] \\
+ (C_3 + \frac{C_4}{3} - C_5 - \frac{C_6}{3} - C_7 - \frac{C_8}{3} + C_9 + \frac{C_{10}}{3}) F_{a\rho}^{LL} \\
+ (C_3 + C_9) M_{e\rho}^{LL} + (C_5 + C_7) M_{e\rho}^{LR} + (C_5 - \frac{C_7}{2}) M_{e\rho}^{LR} \\
+ (\frac{4}{3}(C_3 + C_4 - \frac{C_9}{2} - \frac{C_{10}}{2}) - C_3 - \frac{C_6}{3} + \frac{1}{2}(C_7 + \frac{C_8}{3})) F_{a\rho}^{LL} \\
+ (C_5 + C_6 - \frac{1}{2} (C_7 + C_8)) F_{a\rho}^{SP} + (C_6 - \frac{C_8}{2}) M_{a\rho}^{SP} \\
+ (C_3 + C_4 - \frac{C_9}{2} - \frac{C_{10}}{2}) M_{a\rho}^{LL} + (C_6 + C_8) M_{a\rho}^{SP}] \}, \quad (A8)

A(B^0 \to \pi^+ (\rho^-) \to \pi^- \pi^0) = \frac{G_F}{\sqrt{2}} \{ V_{ub}^* V_{ud} [(\frac{C_1}{3} + C_2) F_{a\rho}^{LL} + (C_1 + \frac{C_2}{3}) F_{e\rho}^{LL} + C_1 M_{e\rho}^{LL} + C_2 M_{e\rho}^{LL}] \\
- V_{tb}^* V_{td} [(\frac{C_4}{3} + C_4 + \frac{C_9}{3} + C_{10}) F_{e\rho}^{LL} + (C_3 + C_9) M_{e\rho}^{LL} \\
+ (\frac{C_5}{3} + C_6 + \frac{C_7}{3} + C_8) F_{e\rho}^{SP} + (C_5 + C_7) M_{e\rho}^{LR} + (C_6 + C_8) M_{a\rho}^{SP} \\
+ (\frac{4}{3}(C_3 + C_4 - \frac{C_9}{2} - \frac{C_{10}}{2}) - C_3 - \frac{C_6}{3} + \frac{1}{2}(C_7 + \frac{C_8}{3})) F_{a\rho}^{LL} \\
+ (C_5 + C_6 - \frac{1}{2} (C_7 + C_8)) F_{a\rho}^{SP} + (C_3 + C_4 - \frac{C_9}{2} - \frac{C_{10}}{2}) M_{a\rho}^{LL} \\
+ (C_5 - \frac{C_7}{2}) M_{a\rho}^{LR} + (C_6 - \frac{C_8}{2}) M_{a\rho}^{SP} + (C_4 + C_{10}) M_{a\rho}^{LL} \\
+ (C_3 + \frac{C_4}{3} - C_5 - \frac{C_6}{3} - C_7 - \frac{C_8}{3} + C_9 + \frac{C_{10}}{3}) F_{a\rho}^{LL}] \}, \quad (A9)

A(B_s^0 \to \pi^- (\rho^+) \to \pi^+ \pi^0) = \frac{G_F}{\sqrt{2}} \{ V_{ub}^* V_{us} [(C_1 + \frac{C_2}{3}) F_{a\rho}^{LL} + C_2 M_{a\rho}^{LL}] - V_{tb}^* V_{ts} [(C_6 + C_8) M_{a\rho}^{SP} \\
+ (C_3 + \frac{C_4}{3} - C_5 - \frac{C_6}{3} - C_7 - \frac{C_8}{3} + C_9 + \frac{C_{10}}{3}) F_{a\rho}^{LL} \\
+ (C_4 + \frac{C_10}{2}) M_{a\rho}^{LL} + (C_6 + C_8) M_{a\rho}^{SP} + (C_4 + C_{10}) M_{a\rho}^{LL}] \}, \quad (A10)

A(B_s^0 \to \pi^+ (\rho^-) \to \pi^- \pi^0) = \frac{G_F}{\sqrt{2}} \{ V_{ub}^* V_{us} [(C_1 + \frac{C_2}{3}) F_{a\rho}^{LL} + C_2 M_{a\rho}^{LL}] - V_{tb}^* V_{ts} [(C_4 - \frac{C_{10}}{2}) M_{a\rho}^{LL} \\
+ (C_3 + \frac{C_4}{2} - \frac{1}{2} (C_9 + \frac{C_{10}}{3}) - C_5 - \frac{C_6}{3} + \frac{1}{2}(C_7 + \frac{C_8}{3}) F_{a\rho}^{LL} \\
+ (C_6 - \frac{C_8}{2}) M_{a\rho}^{SP} + (C_4 + C_{10}) M_{a\rho}^{LL} + (C_6 + C_8) M_{a\rho}^{SP} \\
+ (C_3 + \frac{C_4}{3} - C_5 - \frac{C_6}{3} - C_7 - \frac{C_8}{3} + C_9 + \frac{C_{10}}{3}) F_{a\rho}^{LL}] \}, \quad (A11)
\[A(B^+ \to \pi^0(\rho^+ \to)\pi^+\pi^0) = \frac{G_F}{2} \{ V_{ub} V_{ud}[(C_1 + \frac{C_2}{3}) F_{ep}^{LL} + (\frac{C_1}{3} + C_2)(-F_{ap}^{LL} + F_{cP}^{LL} + F_{aP}^{LL})] \\
+ C_2 M_{ep}^{LL} + C_1(-M_{ap}^{LL} + M_{ep}^{LL} + M_{aP}^{LL})] - V_{ub} V_{td}[\frac{3C_8}{2} M_{eP}^{SP} \\
+ \left(-\frac{C_3}{3} - C_4 - \frac{3}{2}(C_7 + \frac{C_8}{3}) + \frac{5C_9}{3} + C_{10}\right) F_{ep}^{LL} \\
+ \left(-\frac{C_3}{3} - C_6 + \frac{1}{2}(C_7 + C_8)\right) F_{SP}^{SP} + \left(-C_3 + \frac{C_9}{2} + \frac{3C_{10}}{2}\right) M_{ep}^{LL} \\
+ \left(\frac{C_3}{3} + C_4 + \frac{C_9}{3} + C_{10}\right)(-F_{ap}^{LL} + F_{cP}^{LL} + F_{aP}^{LL}) \\
+ \left(\frac{C_5}{3} + C_6 + \frac{C_7}{3} + C_8\right)(-F_{SP}^{SP} + F_{aP}^{SP}) + \left(-\frac{C_5}{2}\right) M_{ep}^{LR} \\
+ (C_3 + C_9)(-M_{ap}^{LR} + M_{ep}^{LR} + M_{aP}^{LR}) \right), \quad (A12) \]

\[A(B^0 \to \pi^0(\rho^0 \to)\pi^+\pi^-) = \frac{G_F}{2\sqrt{2}} \{ V_{ub} V_{vd}[(C_1 + \frac{C_2}{3}) (F_{ep}^{LL} - F_{ap}^{LL} + F_{eP}^{LL} - F_{aP}^{LL})] \\
+ C_2(M_{ep}^{LL} - M_{ap}^{LL} + M_{ep}^{LL} - M_{aP}^{LL})] - V_{ub} V_{td}[\frac{3C_8}{2} (M_{eP}^{SP} + M_{eP}^{SP}) \\
+ \left(-\frac{C_3}{3} - C_4 - \frac{3}{2}(C_7 + \frac{C_8}{3}) + \frac{5C_9}{3} + C_{10}\right)(F_{ep}^{LL} + F_{cP}^{LL}) \\
+ \left(-\frac{C_5}{3} - C_6 + \frac{1}{2}(C_7 + C_8)\right) F_{SP}^{SP} + \left(-C_3 + \frac{C_9}{2} + \frac{3C_{10}}{2}\right) (M_{ep}^{LL} + M_{ep}^{LL}) \\
+ \left(-\frac{C_3}{3} - C_4 + \frac{C_7}{2}\right) (M_{ep}^{PP} + M_{eP}^{PP}) - (2C_6 + \frac{C_8}{2})(M_{ap}^{SP} + M_{SP}^{SP}) \\
\left(-\frac{7C_3}{3} + 5C_4 - 2(C_5 + C_6) + \frac{1}{2}(C_7 + C_8) + \frac{C_9}{3} - \frac{2}{3}(C_9 - C_{10})\right) (F_{ap}^{LL} + F_{aP}^{LL}) \\
- \left(\frac{C_5}{3} + C_6 - \frac{1}{2}(C_7 + C_8)\right) (F_{SP}^{SP} + F_{aP}^{SP}) - \left(-\frac{C_5}{2}\right) (M_{ap}^{LR} + M_{ep}^{LR}) \\
+ (C_3 + 2C_4 - \frac{C_9}{2} + \frac{C_{10}}{2})(M_{ap}^{LL} + M_{aP}^{LL}) \right), \quad (A13) \]

\[A(B_s^0 \to \pi^0(\rho^0 \to)\pi^+\pi^-) = \frac{G_F}{2\sqrt{2}} \{ V_{ub} V_{us}[(C_1 + \frac{C_2}{3}) (F_{ep}^{LL} + F_{aP}^{LL}) + C_2(M_{ap}^{LL} + M_{aP}^{LL})] \\
- V_{ub} V_{us}[(2(C_3 + \frac{C_4}{3} - C_5 - C_6) - \frac{1}{2}(C_7 + C_8) - \frac{C_9}{3} - C_{10})(F_{ap}^{LL} + F_{aP}^{LL}) \\
+ (2C_4 + \frac{C_{10}}{2})(M_{ap}^{LL} + M_{aP}^{LL}) + (2C_6 + \frac{C_8}{2})(M_{ap}^{SP} + M_{SP}^{SP}) \} \}, \quad (A14) \]

\[A(B^+ \to \eta(\rho^+ \to)\pi^+\pi^0) = \frac{G_F}{2} \{ V_{ub} V_{ud}[(C_1 + \frac{C_2}{3}) F_{ep}^{LL} + (\frac{C_1}{3} + C_2)(F_{ap}^{LL} + F_{cP}^{LL} + F_{aP}^{LL})] \\
+ C_2 M_{ep}^{LL} + C_1(-M_{ap}^{LL} + M_{ep}^{LL} + M_{aP}^{LL})] - V_{ub} V_{td}[(C_5 - \frac{C_7}{2}) M_{eP}^{LR} \\
+ \left(\frac{7C_3}{3} + 5C_4 - 2(C_5 + C_6) - \frac{1}{2}(C_7 + C_8) + \frac{C_9}{3} - \frac{2}{3}(C_9 - C_{10})\right) F_{ep}^{LL} \\
+ \left(\frac{C_5}{3} + C_6 - \frac{1}{2}(C_7 + C_8)\right) F_{SP}^{SP} + \left(C_3 + 2C_4 - \frac{C_9}{2} + \frac{C_{10}}{2}\right) M_{ep}^{LL} \\
+ \left(\frac{C_3}{3} + C_4 + \frac{C_9}{3} + C_{10}\right)(F_{ap}^{LL} + F_{cP}^{LL} + F_{aP}^{LL}) \\
+ \left(\frac{C_5}{3} + C_6 + \frac{C_7}{3} + C_8\right)(F_{SP}^{SP} + F_{aP}^{SP}) + \left(C_3 + C_9\right)(M_{ap}^{LR} + M_{ep}^{LR} + M_{aP}^{LR}) \\
+ (C_5 + C_7)(M_{ap}^{LR} + M_{aP}^{LR} + M_{aP}^{LR}) + (2C_6 + \frac{C_8}{2})(M_{eP}^{SP}) \} \}, \quad (A15) \]
\[A(B^+ \to \eta_s(\rho^+ \to \pi^+ \pi^0)) = \frac{G_F}{\sqrt{2}} \left\{ -V_{tb}^* V_{td} [(C_3 + \frac{C_2}{3} - C_5 - \frac{C_6}{3} + \frac{1}{2}(C_7 + \frac{C_8}{3} - C_9 - \frac{C_{10}}{3}))F_{e\rho}^{LL} + (C_4 - \frac{C_{10}}{2})M_{e\rho}^{LL} + (C_6 - \frac{C_8}{2})M_{e\rho}^{SP}] \right\} \]

\[A(B^+ \to \eta(\rho^+ \to \pi^+ \pi^0)) = A(B^+ \to \rho^+ \eta_s) \cos \phi - A(B^+ \to \rho^+ \eta) \sin \phi, \]

\[A(B^+ \to \eta(\rho^+ \to \pi^+ \pi^0)) = A(B^+ \to \rho^+ \eta_s) \sin \phi + A(B^+ \to \rho^+ \eta) \cos \phi, \]

\[A(B^0 \to \eta(\rho^0 \to \pi^+ \pi^-)) = -\frac{G_F}{\sqrt{2}} \left\{ -V_{ub}^* V_{ud} [(C_3 + \frac{C_2}{3} - C_5 - \frac{C_6}{3} + \frac{1}{2}(C_7 + \frac{C_8}{3} - C_9 - \frac{C_{10}}{3}))F_{e\rho}^{LL} + (C_4 - \frac{C_{10}}{2})M_{e\rho}^{LL} + (C_6 - \frac{C_8}{2})M_{e\rho}^{SP}] \right\} \]

\[A(B^0 \to \eta(\rho^0 \to \pi^+ \pi^-)) = A(B^0 \to \rho^0 \eta_s) \cos \phi - A(B^0 \to \rho^0 \eta) \sin \phi, \]

\[A(B^0 \to \eta(\rho^0 \to \pi^+ \pi^-)) = A(B^0 \to \rho^0 \eta_s) \sin \phi + A(B^0 \to \rho^0 \eta) \cos \phi, \]

where \(G_F \) is the Fermi coupling constant. \(V_{ij} \)'s are the Cabibbo-Kobayashi-Maskawa matrix elements. The functions \((F_{e\rho}^{LL}, F_{e\rho}^{SP}, M_{e\rho}^{LL}, M_{e\rho}^{SP}, \cdots) \) appeared in above equations are the individual decay amplitudes corresponding to different currents, and their explicit expressions can be found in the Appendix of Ref. [50].

[1] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 092001 (2004).
A. Kusaka et al. (Belle Collaboration), Phys. Rev. Lett. 98, 221602 (2007).
B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 051802 (2004).
J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 88, 012003 (2013).
K. M. Watson, Phys. Rev. 88, 1163 (1952).
G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Rev. D 63, 054008 (2001).
T. Kurimoto, H. N. Li, and A. I. Sanda, Phys. Rev. D 65, 014007 (2001).
C. D. Lü and M. Z. Yang, Eur. Phys. J. C 28, 515 (2003).
H. N. Li, Prog. Part. Nucl. Phys. 51, 85 (2003) and references therein.
Z. J. Xiao, W. F. Wang and Y. Y. Fan, Phys. Rev. D 85, 094003 (2012).
Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Lett. B 504, 6 (2001).
C. D. Lü, K. Ukai and M. Z. Yang, Phys. Rev. D 63, 074009 (2001).
P. Ball, V. M. Braun, Y. Koike, and K. Tanaka, Nucl. Phys. B 529, 323 (1998).
P. Ball, J. High Energy Phys. 09, 005 (1998).
P. Ball, J. High Energy Phys. 01, 010 (1999).
P. Ball and R. Zwicky, Phys. Rev. D 71, 014015 (2005).
P. Ball and R. Zwicky, J. High Energy Phys. 04, 046 (2006).
A. Ali et al., Phys. Rev. D 76, 074018 (2007).
Z. J. Xiao, Y. Li, D. T. Lin, Y. Y. Fan and A. J. Ma, Phys. Rev. D 90, 114028 (2014).
H. N. Li, S. Mishima and A. I. Sanda, Phys. Rev. D 72, 114005 (2005) and references therein.
Y. Y. Fan, W. F. Wang, S. Cheng, and Z. J. Xiao, Phys. Rev. D 87, 094003 (2013).
F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 648, 267 (2007).
R. Escribano and J. Nadal, J. High Energy Phys. 05, 006 (2007).
W. F. Wang, Y. Y. Fan, M. Liu and Z. J. Xiao, Phys. Rev. D 87, 097501 (2013).
T. Feldmann, P. Kroll and B. Stech, Phys. Rev. D 58, 114006 (1998).
T. Feldmann, P. Kroll and B. Stech, Phys. Lett. B 449, 339 (1999).
K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
G. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21 (1968) 244.
H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).
H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114026 (2009).
X. Q. Li and Y. D. Yang, Phys. Rev. D 72, 074007 (2005).
Y. D. Yang, R. M. Wang and G. R. Lu, Phys. Rev. D 73, 015003 (2006).
Q. Chang, X. Q. Li and Y. D. Yang, J. High Energy Phys. 09, 038 (2008).
Q. Chang, X. Q. Li and Y. D. Yang, J. High Energy Phys. 05, 056 (2009).
Q. Chang, X. Q. Li and Y. D. Yang, Int. J. Mod. Phys. A 26, 1273-1294 (2011).
Y. L. Zhang, X. Y. Liu, Y. Y. Fan, S. Cheng and Z. J. Xiao, Phys. Rev. D 90, 014029 (2014).
X. Liu, H. N. Li and Z. J. Xiao, Phys. Rev. D 91, 114019 (2015).
X. Liu, H. N. Li and Z. J. Xiao, Phys. Rev. D 93, 014024 (2016).
A. Deandrea et al., Phys. Rev. D 62, 036001 (2000).
A. Deandrea and A. D. Polosa, Phys. Rev. Lett. 86, 216-219 (2001).
S. Gardner and Ulf-G. Meißen, Phys. Rev. D 65, 094004 (2002).
J. Tandean and S. Gardner, Phys. Rev. D 66, 034019 (2002).
Ulf-G. Meißen and S. Gardner, Eur. Phys. J. A 18, 543-545 (2003).
J. A. Oller, arXiv:hep-ph/0306294.
A. D. Polosa, arXiv:hep-ph/0306298.
J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86, 032013 (2012).
R. Enomoto and M. Tanabashi, Phys. Lett. B 386, 413 (1996).
S. Gardner, H. B. O’Connell and A. W. Thomas, Phys. Rev. Lett. 80, 1834 (1998).
O. Leitner, X. H. Guo and A. W. Thomas, Eur. Phys. J. C 31, 215 (2003).
O. Leitner, X. H. Guo and A. W. Thomas, J. Phys. G 31, 199 (2005).
M. Gronau and J. Zupan, Phys. Rev. D 71, 074017 (2005).