CONTRIBUTION TO THE STUDY OF PLANT COMMUNITIES DOMINATED BY AILANTHUS ALTISSIMA (MILL.) SWINGLE, IN THE EASTERN ROMANIA (MOLDAVIA)

C. SÎRBU1*, Ad. OPREA2

*E-mail: culita69@yahoo.com

Received November 26, 2010

ABSTRACT. In this paper, we aimed to analyze the structure, ecology and syntaxonomy of the communities dominated by Ailanthus altissima, in the Eastern Romania (Moldavia). This study has been achieved during our research on alien plants, conducted in 2009-2010. A number of 20 vegetation relevés have been carried out according to the Braun-Blanquet's methodology, in the spontaneous communities of Ailanthus altissima. The investigations led to the description of a new plant association (Balloto nigrae-Ailanthetum altissimae ass. nova). It is subordinated to the alliance Balloto nigrae-Robinion Jurko ex Hadač & Sofron 1980, order Chelidonio-Robinietalia Jurko ex Hadač & Sofron 1980, class Robinietea Jurko ex Hadač & Sofron 1980. Recognition species are Ballota nigra and Ailanthus altissima. Besides these, among the characteristic species of higher syntaxa (alliance, order, class), the following species stand out: Bromus sterilis (constant), Urtica dioica and Galium aparine (sub-constant). The stands are found on sunny lands, on roadsides, railway embankments, railway stations, steep slopes, ravines, abandoned fields, abandoned orchards or vineyards on terraces, ruderal lands, sandy lands, degraded pastures, or on the edge of Robinia pseudacacia plantations. They are situated between 38 and 265 m a.s.l. In ecological terms, the association Balloto nigrae-Ailanthetum altissimae includes heliophilous (sub-heliophilous), moderate thermophilous, xero-mesophilous, neutrophilous and moderate nitrophilous phytocoenoses. The results are discussed against the background of similar investigations of anthropogenic woody plant communities carried out by others authors.

Key words: Ailanthus altissima; Anthropogenic plant communities; Invasive alien plants; Phytosociological studies.
C. SÎRBU, Ad. OPREA

REZUMAT – Contribuție la studiul comunităților vegetale dominate de Ailanthus altissima (Mill.) Swingle, în estul României (Moldova). În această lucrare, autorii si-au propus să analizeze structura, ecologia și sintaxonomia comunităților dominate de Ailanthus altissima, din partea de est a României (Moldova). Studiul acestor comunități a fost realizat pe parcursul cercetărilor de teren asupra plantelor adventive, efectuate în anii 2009-2010. Au fost realizate un număr de 20 relevări fitosociologice, în comunitățile spontane de Ailanthus altissima, după metoda elaborată de către Braun-Blanquet. Investigațiile efectuate au dus la descrierea unei noi asociații de plante (Balloto nigrae-Ailanthetum altissimae ass. nova). Aceasta se încadrează în alianța Balloto nigrae-Robinion Jurko ex Hadač & Sofron 1980, ordinul Chelidonio-Robinietalia Jurko ex Hadač & Sofron 1980, clasa Robinietea Jurko ex Hadač & Sofron 1980. Speciile de recunoaștere pentru această asociație sunt: Ballota nigra și Ailanthus altissima. Pe lângă acestea, dintre speciile caracteristice pentru sintaxonomii superioiri (alianță, ordin, clasa), se remarcă următoarele: Bromus sterilis (specie constantă), Urtica dioica și Galium aparine (specii sub-constante). Fitocenozele asociației au fost întâlnite pe terenuri însorite, la marginea drumurilor, pe terasamente de cale ferată, în gări, pe versanții abrupti, ravene, terenuri abandonate, livezi sau văi abandonate de pe terase, terenuri ruderale, terenuri nisipoase, pajiști degradate sau la marginea unor plantații de Robinia pseudacacia, între 38 și 265 m altitudine absolută. Din punct de vedere ecologic, asociația Balloto nigrae-Ailanthetum altissimae include fitocenoze heliofile (subheliofile), moderat termofile, xero-mezofile, neutrofile și moderat nitrofile. Rezultatele obținute au fost discutate în contextul investigațiilor similare asupra comunităților antropogene de plante lemnoase, efectuate de alți cercetători.

Cuvinte cheie: Ailanthus altissima; comunități antropogene de plante; plante adventive invazive; studii fitosociologice.

INTRODUCTION

The invasion of alien plants is widely recognized as one of the major threats to diversity and functions of natural and agricultural ecosystems, causing at the same time significant losses in economy and human health (Lonsdale, 1999; McNeely, 2001; Pimentel et al., 2000; Vitousek et al., 1997; Wittenberg and Cock, 2001). Among the invasive alien plant species in Europe, one of the most important is Ailanthus altissima (Anastasiu and Negrean, 2007; Arnaboldi et al., 2002; Basnou and Vilà, 2009; Essl and Rabitsch, 2002; Kowarik and Säumel, 2007; Udvardy, 2008; Wittenberg, 2005). This is a tree native to China, and according to Hu (1979), it was introduced in Europe (France), at 1740. Since then, it spread almost throughout Europe, being cultivated mainly for ornamental purposes, but also in forest plantations, for erosion control, or for ecological restoration of some industrial habitats. (Dumitriu-Tătăranu, 1960; Hu, 1979; Kowarik and Säumel, 2007; Udvardy, 2008).

In the meantime, Ailanthus altissima became a widely naturalized species in Central and Southern Europe (Albania, Austria, Azores, Belgium, Britain, Bulgaria, Corsica, the former Czechoslovakia, France, Germany, Greece, Switzerland, Spain, Hungary, Italy, the former Yugoslavia, Portugal, Romania,
Russia, Sardinia, Sicily) (Tutin, in Tutin et al. (eds), 1968), and in North America (Britton and Brown 1970; Hu, 1979), where it was introduced around 1784 (Hu, 1979), but also in South-Western Asia, Southern Africa and Australia (Kowarik and Säumel, 2007). It is now regarded as one of the worst invasive alien species in Europe, excepting Northern regions (Basnou and Vilà, 2009; Essl and Rabitsch, 2002; Kowarik and Säumel, 2007; Udvardy, 2008; Vilà et al., 2009; Wittenberg, 2005).

In Romania, this species was mentioned in the second half of the nineteenth century, as a cultivated plant (Brândză, 1879-1883; Fătu, 1871; Simionkai, 1886). Grecescu (1898) noted that Ailanthus altissima ("stinking tree") is "introduced and coarsen in Bucharest and surroundings". In the early twentieth century, Ailanthus altissima was cited as a sub-spontaneous tree in Moldavia, at Iaşi (Stamatin, 1906, cited by Răvăruţ, 1941). Borza (1925) considered that Ailanthus altissima is a "common trees near roads and houses", in Dobrogea, and that "peasants are not pleased to cultivate it". In the mid-twentieth century, according to Borza (1947), Ailanthus altissima was a sub-spontaneous tree in Moldavia, Banat and Dobrogea.

Nowadays, according to various authors (see below) and our unpublished data, Ailanthus altissima is spread (spontaneously) throughout the country, on the plains and hilly regions, usually in disturbed habitats: Maramureş - sporadic (Karácsonyi, 1995), Crişana - sporadic (Gergely et al., 1966; Udvardy, 2008), Transilvania - sporadic (Simionkai, 1886; Udvardy, 2008), Banat - relatively frequent (Anastasie et al., 2005 - pers. comm.; Doltu et al., 1983; Matacă, 2003; Roman, 1974; Sârbu A. et al., 2007), Oltenia - relatively frequent (Dec et al., 2006; Păun, 1965; Popescu, 1968; Popescu et al., 2005), Muntenia - frequent (Alexiu, 2005; Borza, 1966; Mihail, 2005; Morariu, 1943; Popescu A., 1966), Dobrogea (including the Danube Delta) - frequent (Borza, 1925; Borza, 1944; Ciocârlan, 1994; Dihoru and Doniţă, 1970; Dihoru and Negrean, 1976; Făgăraş et al., 2008; Prodan, 1931) and Moldavia - frequent (Borza, 1958; Coroi, 2001; Coroi A.M., 2001; Dobrescu et al., 1958; Dobrescu and Viţălari, 1984; Leocov and Topa, 1986; Mititelu and Barabaş, 1975; Mititelu and Nechita, 1992; Mititelu et al., 1968; 1989; Monah, 2001; Oprea, 1997; Nechita, 1992; 2003; Papp and Răvăruţ, 1938; Popa and Chifu, 2006; Sârbu, 1977; Sirbu, 2007; Stamatin, 1906, cited by Răvăruţ 1941; Ștefan, 1997).

Through its allelopathic properties, high capacity for vegetative and generative reproduction, rapid growth, pioneer character, superior competitive ability against other alien or native plants, Ailanthus altissima is able to form dense populations which dominates the invaded plant communities and inhibits growth of other plant species, often displacing native vegetation (Arnaboldi et al., 2002; Basnou and Vilã, 2009; Botta-Dukat, 2008; Dihoru and Doniţă, 1970; Gutte et al., 1987;
C. SÎRBU, Ad. OPREA

Landenberger et al., 2006; Kowarik and Säumel, 2007; Vilà et al., 2009; Wittenberg, 2005). In addition, the ailanthone, a quassinoid compound from the bark, is toxic to grazing stock and a skin irritant (Kowarik and Säumel, 2007; Wittenberg, 2005), and the pollen of Ailanthus altissima can induce allergic reactions to sensitive individuals (Ballero et al., 2003, in Kowarik and Säumel, 2007). For these reasons, Ailanthus altissima was included in the list of the most invasive alien species in Europe, which cause significant harm to biological diversity and socioeconomic values in this continent (Basnou and Vilà, 2009; Vilà et al., 2009).

In this paper we aimed to analyze the structure, ecology and syntaxonomy of the communities edified by Ailanthus altissima, in the Eastern Romania (Moldavia).

MATERIALS AND METHODS

Phytocoenoses of Ailanthus altissima were investigated in the historical province of Moldavia (Eastern Romania), during our recent field works on alien plants (years 2009-2010). The present study is based on 20 vegetation relevés. Phytosociological surveys were conducted according to the classical methodology of the Zürich-Montpellier school (Braun-Blanquet, 1964).

Only spontaneous stands with Ailanthus altissima were taken into consideration. The relevé areas were between 50 and 200 m². In each relevé, the following data were recorded: species composition; total coverage (%) and height (m) of vegetation; species abundance-dominance (AD), and in some cases (for Ailanthus altissima) number of individuals / m². After processing recorded relevés through the tabular method (Braun-Blanquet, 1964; Ivan, 1979) a new association was described. The association name is consistent with the International Code of Phytosociological Nomenclature (Weber et al., 2000). The proportions of life forms, and phytogeographical elements (according to Ciocărlean, 2009) were calculated, based on species presence. The proportion and average of indices for light (L), temperature (T), soil moisture (M), soil reaction (R), and nitrogen (N), was also calculated. All these ecological indices were used according to Ellenberg et al. (1992). The results are discussed against the background of similar investigations of anthropogenic tree communities carried out by others authors. The nomenclature of the higher syntaxa follows Hadač and Sofron (1980), for Robinietea class, and Mucina et al. (1993), for the other syntaxa. Plant nomenclature follows Tutin et al. (1964-1980) and Tutin et al. (1993).

RESULTS

Following our investigations of plant communities edified by Ailanthus altissima, in different habitat types on the territory of Moldavia, we described a new association, framed in the syntaxonomical system as follows:

Class ROBINIETEA Jurko ex Hadač & Sofron 1980

Order CHELIDONIO-ROBINIETALIA Jurko ex Hadač & Sofron 1980
Alliance **BALLOTO NIGRAE-ROBINION** Jurko ex Hadač & Sofron 1980

Association **Balloto nigrae-Ailanthetum altissimae** ass. nova.

Holotype: Table 1, relevé no. 3.

Phytosociological structure.

Plant composition and structural characteristics of the association **Balloto nigrae-Ailanthetum altissimae** (Fig. 1-3) are shown in Table 1. Within the analyzed relevés, a total number of 142 plant species were recorded, but most of them have a low constancy. Only 12 species are constant or sub-constant. The number of species per relevé is between 12 and 34, with a mean (±SD) of 23.4 ± 5.8.

Besides the recognition species of the association, **Ailanthus altissima** (dominant) and **Ballota nigra** (characteristic), among the recognition species of higher syntaxa (alliance, order, and class), the following species stand out: **Bromus sterilis** (constant), **Urtica dioica** and **Galium aparine** (sub-constant).

Figure 1- Phytocoenosis of Ailanthus altissima near Mălușteni village

(Vaslui county)

Into the plant composition, there are many recognition species for classes **Artemisietea vulgaris** (25%) and **Stellarietea mediae** (18%), as an expression of the disturbed nature of habitats in which such communities are installed, and as witnesses of the successional stages that led to their establishment. But many of these species, being more or less heliophilous, they usually grow at the periphery of phytocoenoses, and therefore they do not contribute in a large measure in the structure of
phytocoenoses (except *Elymus repens*, *Artemisia vulgaris*, *Leonurus cardiaca*, *Arctium lappa*, and *Bromus sterilis*). Due to the eutrophic nature of the biotope, the recognition species of the class *Galio-Urticetea* also have an important weight in plant composition (11%). Some of them, being less heliophilous (*Geum urbanum*, *Glechoma hederacea*, *Rubus caesius* etc.), can penetrate inside the phytocoenoses, contributing to the herbaceous layer. Other species come from the flora of the surrounding xero-mesophilous (*Festuco-Brometea*) or mesophilous (*Molinio-Arrhenatheretea*) grasslands or from the zonal shrubs (*Rhamno-Prunetea*) and forests (*Querco-Fagetea*).

![Figure 2 - Phytocoenosis of Ailanthus altissima near Pogana village (Vaslui county)](image)

Synmorphology and synphenology. The phytocoenoses are dense, with a general coverage up to 100%. They are dominated by *Ailanthus altissima*. The stands are three-layered. The tree layer, with a height of 4-8 m, and 75-100% coverage, is dominated almost exclusively by *Ailanthus altissima*. The middle layer, with a coverage between 5-60%, consists mainly of numerous clonal offspring of *Ailanthus altissima* (10-37/m²), and in a smaller proportion, some shrubs, such as: *Rosa canina*, *Rubus caesius*, *Lycium barbarum*, *Prunus spinosa* etc. The herbaceous layer shows a different coverage (up to 25%), depending on the season: on the spring, before leaf emergence of the dominant species, *Bromus sterilis* grows abundantly (vernal aspect). During the summer, when the foliage of the dominant species determines a
dense shadow, among the dry stalks of vernal species, some less heliophilous species can grow, such as: *Ballota nigra* (constant, characteristic), *Elymus repens* (constant), *Galium aparine*, *Geum urbanum*, *Glechoma hederacea*, *Urtica dioica* etc. (the summer aspect). Into the younger phytocoenoses, most individuals of *Ailanthus altissima* have the same height, so stratification is less obvious.

Figure 3 - Phytocoenosis of *Ailanthus altissima* in the surrounding of Huși town (Vaslui county)

Figure 4 - Life forms spectrum (*T*-therophytes; *Ht*-hemitherophytes; *H*-hemicryptophytes; *G*-geophytes; *Ch*-chamaephytes; *Ph*-phanerophytes)

Figure 5 - Phytogeographical spectrum (*Eua*-Eurasian; *Eur*-European; *Pont*-Pontic; *Circ*-Circumpolar; *Medit*-Mediterranean; *Cosm*-Cosmopolitan)
The hemicryptophytes (38%), therophytes (22%), hemitherophytes (16%) and phanerophytes (16%) prevail in the structure of biological forms (Fig. 4). Eurasian (46%), European (16%) and alien (14%) species dominate the phytogeographical spectrum of the association (Fig. 5). Other floristic elements are less represented.

Synecology. The stands are found on sunny lands, on roadsides, railway embankments, railway stations, steep slopes, ravines, abandoned yards, abandoned orchards or vineyards on terraces, vacant lands, sandy lands, degraded pastures, or on the edge of Robinia pseudacacia plantations. They are situated between 38 and 265 m a.s.l. (average altitude ± SD is 133.9 ± 61.0 m a.s.l.). The average values of ecological indices for this association are as follows: \(L_{7.4}T_{6.2}M_{4.3}R_{7.3}N_{5.8}\). So, the association \(Ballo\) to nigrae-Ailanthetum altissimae includes heliophilous (sub-heliophilous), moderate thermophilous, xero-mesophilous, neutrophilous and moderate nitrophilous phytocoenoses. However, a large number of species in floristic structure of the association has a wide ecological tolerance to soil reaction and temperature (45% and 20%, respectively) (Fig. 6).

Syndynamic aspects. The analysis of the plant composition shows that this communities are usually installed in disturbed habitats, originally occupied by different groups of ruderal weeds (\(Stellariet\)ea mediae, \(Artemisiet\)ea vulgaris), or by some degraded pastures (\(Festuco-Bromete\)a), in various succesional stages. The presence of some sporadic
individuals of native shrubs (*Rosa canina*, *Prunus spinosa*, *Crataegus monogyna* etc.) or trees (*Ulmus minor*, *Acer campestre*), which do not grow in prosperous circumstances, could be an evidence of previous successional processes developed before the invasion of *Ailanthus altissima*. However, shading caused by the mass development of *Ailanthus altissima* individuals, and perhaps their allelopathic effects, prevent the gradual replacement of this anthropogenic plant community by zonal vegetation. Thus, these phytocoenoses, once consolidated, can have a long-term stability.

Synchorology. Phytocoenoses of this plant association have been studied in various localities from Galați, Vaslui and Iași counties (the localities are shown beneath the Table 1).

DISCUSSION

The invasion of *Ailanthus altissima* in various native habitats (segetal and ruderal weed communities, degraded xero- mesophilous and mesophilous grasslands, scrubs, thermophilous forests etc.) is well documented, both in Europe (see Arnaboldi *et al.*, 2002; Botta-Dukat, 2008; Gutte *et al.*, 1987; Kowarik & Säumel, 2007) and North America (Call and Nilsen, 2003; Heisey, 1997; Knapp and Canham, 2000; Pan and Bassuk, 1986).

Ailanthus altissima has also been identified in Romania, as a casual or invasive species, in phytocoenoses belonging to different plant associations. In this sense, for the Eastern Romania, the next associations can be listed (Chifu *et al.*, 2006): *Cirsietum lanceolati-arvensi* Mititelu 1972 (alliance *Onopordion acanthii* Br.-Bl. *et al.* 1936), *Arctietum lappae* Felföldy 1942, *Polygoneto dumetori-Bryonietum albae* Ștefan 1997 (alliance *Aktion lappae* R. Tx. 1937), *Taraxaco serotinae-Festucetum valesiacae* (Burduja *et al.*, 1956, Răvâruț *et al.* 1956) Sârbu, Coldea et Chifu 1999 (alliance *Festucion valesiacae* Klika 1931), *Bromo sterilis-Robinietum* (Počs 1954) Soó 1964 (alliance *Balloto nigrae-Robinion* Jurko ex Hadač and Sofron 1980), *Cynodonto-Atriplicetum tataricae* Morariu 1943, *Kochietum densiflorae* Gutte et Klotz 1985 (alliance *Atriplicion nitentis* Passarge 1978), *Erigeronto-Lactucetum serriolae* Lohmeyer in Oberd. 1957 em. Mucina 1978, *Hordeetum murini* Libbert 1933 (alliance *Sisymbriion officinalis* R. Tx., Lohmeyer et Preising in R. Tx 1950).

Both in Europe (Dihoru & Doniță, 1970; Dobrescu et Vițălăriu, 1984; Gutte *et al.*, 1987; Kowarik and Säumel, 2007; Mucina *et al.*, 1993; Schubert, 2001) and North America (Heisey, 1997; Pan and Bassuk, 1986), *Ailanthus altissima* often forms nearly pure stands in ± disturbed habitats, that are resistant to invasion by other tree species.
L. f. Phyt. el.	Relevant number	Altitude (m)	Surface (m²)	Aspect	Slope (degrees)	Number of species	Tree layer	Herbaceous layer	Shrub and juvenile layer	Coverage (%)	Medium Coverage (%)
						16	100	100	5		
		1	2	3*	4	5	6	7	8	9	10
		11	12	13	14	15	16	17	18	19	20
		21	22	23	24	25	26	27	28		

Table 1 - Ass. Balloto nigrae-Ailanthetum altissimae ass. nova

MPh	Alien: E As	Ailanthus altissima	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
		Ailanthus altissima																						
		(juv.)																						

Balloto nigrae - Robinion

H	Cosm	Urtica dioica subs. dioica	+	-	+	-	+	+	-	-	+	-	-	-	-	+	-	+	III	0.2						
T	Circ	Galium aparine	-	+	-	+	+	-	-	+	-	-	-	-	-	+	-	+	-	+	-	1	+	III	0.5	
MPh	Alien: N Am	Robinia pseudacacia	1	-	+	-	-	+	-	-	+	-	-	-	-	+	-	+	-	-	-	-	-	II	0.4	
MPh	Alien: W As, E Eur	Prunus cerasus (juv.)	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.3
H	Eua	Chelidonium majus	-	-	+	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1	
MPh	Alien: N Am	Gleditsia triacanthos	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1
MPh	Alien: N Am	Acer negundo	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1
T	Pont-Medit	Anthriscus cerefolium subsp. trichosperma	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1
MPh	Alien: SE Eur, As	Prunus cerasifera	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1

Chelidonio - Robinieta & Robiniotea

H	Eua (sMedit)	Sambucus ebulus	+	-	-	-	-	-	+	-	-	+	-	-	-	-	+	+	-	+	-	+	1	III	0.5
H Circ	Geum urbanum	+	-	-	+	-	-	+	-	-	-	+	-	-	-	+	-	+	-	+	-	-	-	II	0.1
H	Eua	Glechoma hederacea	-	-	+	-	-	+	-	-	+	-	-	+	-	-	-	+	-	-	+	-	-	II	0.1

Gallo-Urticetalia
Relevé number	1	2	3*	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Altitude (m)	98	63	172	93	43	138	140	124	124	140	150	145	88	38	260	265	196	180	90	130			
Surface (m²)	50	100	100	150	50	50	100	50	60	64	60	100	100	100	50	200	100	100	60	100			
Aspect	-	-	SE	W	E	W	SE	SE	-	W	W	S	S	N	SW	-	-	-	-	-	-		
Slope (degrees)	0	0	10	10	0	40	0	10	20	5	10	0	20	40	15	10	45	35	30	25			
Number of species	16	26	26	19	26	30	12	20	28	20	30	25	26	20	20	26	20	16	25	21	17	30	34
Tree layer Coverage (%)	100	100	90	90	85	95	95	100	100	100	90	100	100	90	100	100	75	90	100				
Shrub and juvenile layer	5	10	20	25	5	10	15	10	40	15	5	60	5	10	20	5	20	30	20	10			
Herbaceous layer	5	5	10	10	5	5	10	15	20	5	10	15	20	5	10	15	20	5	10	15			
Ht Eua	Silene alba	-	-	-	-	-	-	-	-	+	+	+	-	-	-	-	-	+	+	II	0.1		
nPh Eua	Rubus caesius var. arvalis	-	-	-	-	+	-	-	-	-	+	1	-	-	+	-	-	+	-	II	0.4		
H Eua	Humulus lupulus	-	-	-	-	-	+	-	+	-	-	-	-	-	-	-	-	-	-	I	0.3		
T Circ	Polygonum dumetorum	-	-	-	-	+	-	-	-	-	-	-	-	-	+	-	-	-	-	I	0.1		
Ht Eur	Carduus crispus	-	-	-	-	+	+	-	+	-	-	-	-	-	-	-	-	-	-	I	0.1		
G Medit	Aristolochia clematitis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1		
H Eua	Saponaria officinalis	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-	-	I	0.1		

Artem slyeta

G Circ	Elymus repens subsp. repens	+	+	1	1	1	1	+	+	+	+	1	1	+	+	1	+	+	1	V	2.5	
H Eua	Artemisia absinthium	-	-	-	+	+	+	+	-	-	-	-	-	-	+	+	+	+	+	III	0.2	
H Circ	Artemisia vulgaris	+	-	-	-	+	+	+	+	+	-	-	-	-	-	-	+	+	+	III	0.3	
Ht Eua	Conium maculatum	+	-	-	+	+	+	+	-	-	-	-	-	+	-	-	+	+	+	II	0.2	
Ht Eua	Arctium lappa	-	+	-	+	-	-	-	-	+	-	-	+	-	-	-	+	+	+	II	0.1	
Ht Eur	Carduus acanthoides	-	+	-	+	-	+	-	-	-	-	-	-	-	-	-	+	+	1	II	0.4	
G Eua-Medit	Cardaria draba	-	+	-	-	+	+	+	-	-	-	-	-	-	-	-	+	+	+	II	0.1	
H Eua	Tanacetum vulgare	-	+	-	-	-	-	-	-	-	+	+	+	-	-	-	-	-	-	II	0.2	
H Eua	Leonurus cardiaca	-	-	+	+	+	-	-	+	+	+	+	-	-	-	-	-	-	-	II	0.2	
H c Eua	Rumex patientia	+	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	I	0.1	
Ht Eua	Cirsium vulgare	-	+	-	-	-	-	-	-	+	-	-	-	-	-	-	+	+	+	I	0.1	
Ht Eua	Melilotus officinalis	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	+	I	0.1	
Ht Eua	Berteroa incana	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	I	0.1	
Ht Allen: N Am	Engeron annuus subsp. annuus	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	I	0.1
Ht Pont-Medit	Cephalaria transsylvanica	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1	
| L. f. | Phyt. el. | Relevé number | 1 | 2 | 3* | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|---------|------------------------------|---------------|---|---|----|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| Altitude (m) | 98 63 172 93 43 139 140 124 140 150 145 88 38 260 265 196 180 90 130 |
| Surface (m²) | 50 100 100 150 50 50 100 50 60 64 60 100 100 100 50 200 100 100 60 100 |
| Aspect | S E W E W SE SE W W S S S S S N S SW |
| Slope (degrees) | 0 0 10 10 0 40 0 10 20 5 10 0 20 40 15 10 45 35 30 25 |
| Number of species | 16 26 26 19 26 30 12 20 28 30 25 25 26 20 20 16 25 21 17 30 34 |
| Coverage (%) | Tree layer | 100 100 90 90 85 95 95 100 100 100 90 100 100 90 100 100 75 90 100 |
| Shrub and juvenile layer | 5 10 20 25 5 10 15 5 10 15 5 10 5 10 5 20 5 20 30 20 10 |
| Herbaceous layer | 5 5 10 10 15 5 <5 5 10 15 20 <5 <5 <5 5 15 25 10 15 |
| Medium coverage (%) | K | 0.1 |

Ht	Euu	Onopordum acanthium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
H	Euu	Cichorium intybus	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	
H c Euu	Bromus inermis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Ht	Euu	Daucus carota subsp. carota	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ht	Euu	Picris hieracioides	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Stellarietalia mediae

T Cosm	Chenopodium album	+	+	+	+	+	-	-	-	-	-	-	+	-	-	-	-	-	-	-	III	0.2				
Ht	Euu	Lactuca serriola	-	-	-	+	+	+	-	-	-	-	-	-	+	+	+	+	+	+	-	-	II	0.2		
T Circ	Atriplex patula	-	-	-	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.2	
T Allen: N Am	Iva xanthifolia	+	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.1
T Allen: N Am	Conyza canadensis	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.1
T Cosm	Polygonum aviculare	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.1
T Allen: N Am	Amaranthus retroflexus	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.1
T Allen: N Am	Ambrosia artimisiifolia	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.1
T Euu	Atriplex tatarica	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.1
T Cosm	Capsella bursa-pastoris	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.1
T Euu	Hordeum murinum	-	1	-	1	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.5
T Allen: As	Kochia scoparia	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1
T C Eur	Torilis arvensis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1
T C Euu	Cannabis ruderalis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1
T Allen: c Euu	Artemisia annua	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1

Festuco-Brometea

| H Euu | Hypericum perforatum | - | - | - | - | - | + | - | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - | I | 0.1 |
L. f.	Phyt. el.	Relevé number	1	2	3*	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20					
		Altitude (m)	98	63	172	93	43	135	140	124	124	140	150	145	88	38	260	265	196	180	90	130					
		Surface (m²)	50	100	100	150	50	50	100	50	60	60	100	100	100	50	200	100	100	60	100	100					
		Aspect						E		W		SE		W		E		W	SE	SE	W	S	S	S	N	SW	
		Slope (degrees)	0	0	10	10	0	40	0	10	20	5	10	0	20	40	10	45	35	50	25						
		Number of species	16	26	26	19	26	30	12	20	28	30	25	26	20	20	16	25	21	17	30	34					
		Tree layer	100	100	90	90	85	95	95	100	100	100	90	100	100	90	100	100	75	90	100						
		Shrub layer	5	10	20	25	5	10	15	10	40	15	5	60	5	10	20	5	20	30	20	10					
		Herbaceous layer	5	5	10	10	15	5	<5	5	10	15	20	<5	<5	<5	5	15	25	10	15						
		K coverage (%)																									
H	Pont-Balc	Galium humifusum	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	I	0.1	
H c	Eu a	Achillea setacea	-	-	+	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1	
Ch	c Eu a	Artemisia austriaca	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1	
H	Pont-Medit	Salvia nemorosa	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	I	0.1
T	Pont-Medit	Xeranthemum annuum	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I	0.1	

Molinio-Arrhenatheretalia

H	Medit	Dactylis glomerata subsp. glomerata	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+	+	II	0.1			
H	Eu a	Vicia cracca	-	-	-	-	-	-	+	+	+	-	-	-	-	+	-	-	-	-	-	-	-	-	I	0.1
H	Eu a	Achillea millefolium	+	-	-	-	-	-	+	+	+	-	-	-	-	-	+	-	-	-	-	-	-	-	I	0.1
H	Circ	Agrostis stolonifera subsp. stolonifera	-	-	-	-	-	-	-	-	-	-	+	+	-	1	-	-	-	-	-	-	-	I	0.3	

Quercio-Fagetalia

| MPh | Eur | Ulmus minor | - | - | - | - | + | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | I | 0.1|
| nPh | Eur | Euonymus europaeus | - | - | - | - | - | - | - | - | + | + | + | - | - | - | - | - | - | - | - | - | - | - | I | 0.1|

Rhamno-Prunetalia

nPh	Eur	Rosa canina	+	-	+	-	+	-	-	-	+	+	+	-	-	-	-	-	-	-	-	-	-	-	III	0.2
nPh	Alien: E As	Lycium barbarum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	II	0.4
nPh	Eur	Prunus spinosa	-	-	+	-	-	-	-	-	+	1	-	-	-	-	-	+	-	-	-	-	-	I	0.3	
nPh	C Eur	Clematis vitalba	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	+	-	-	-	-	-	I	0.1	
L. f. Phyt. el.	Relevé number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
	Altitude (m)	98	63	172	93	43	139	140	124	124	140	150	155	88	38	260	265	196	180	90	130	
	Surface (m²)	50	100	100	150	50	50	50	60	64	60	100	100	100	50	200	100	60	100	100	100	
	Aspect	-	-	S	E	W	E	W	SE	SE	-	W	W	S	S	S	S	N	SW			
	Slope (degrees)	0	0	10	10	0	40	0	10	20	5	10	0	20	40	15	10	45	35	30	25	
	Number of species	16	26	26	19	26	12	20	28	30	25	26	20	20	16	25	21	17	30	34		
Coverage (%)		Tree layer	100	100	90	90	85	95	95	100	100	100	90	100	100	90	100	100	75	90	100	
		Shrub and juvenile layer	5	10	20	25	5	10	15	5	60	5	10	20	5	20	30	20	10			
		Herbaceous layer	5	10	15	10	5	<5	5	10	15	20	<5	<5	<5	<5	20	15	25	10		

Species in one relevé only (relevé no:

- *Chelidonio - Robinietalia & Robinietea*: *Morus alba* (19°), *Galiu-Urticetea*: *Alliaria petiolata* (17°), *Armoracia rusticana* (4°), *Cucubalus baccifer* (16°), *Sisymbrium strictissimum* (11°), *Viola odorata* (16°), *Artemisietea* s.l.: *Centaurea solstitialis* (4°), *Crepis foetida* subsp. *roheadifolia* (2°), *Cynoglossum officinale* (2°), *Echinops sphaerocephalus* (13°), *Echium vulgare* (2°), *Euphorbia esula* (13°), *Falcaria vulgaris* (19°), *Linaria genistifolia* (13°), *Malva sylvestris* (20°), *Medicago sativa* (17°), *Melilotus alba* (11°), *Poa angustifolia* (19°), *Reseda lutea* (5°), *Rumex crispus* (6°), *R. obtusifolius* (4°), *Salvia verticillata* (6°); *Sisymbrietea & Stellarietea mediae* s.l.: *Anthriscus caucalis* (2°), *Bromus tectorum* (19°), *Centaurea diffusa* (2°), *Chenopodium hybridum* (9°), *Cirsium arvense* (5°), *Descurainia sophia* (15°), *Polygonum convolvulus* (9°), *Portulaca oleracea* (9°), *Setaria verticillata* (5°), *S. viridis* (6°); *Festuco-Brometea*: *Achillea collina* (9°), *Agropyron cristatum* subsp. *pectinatum* (3°), *Chondrilla juncea* (3°), *Cynodon dactylon* (8°), *Dichanthium ischaemum* (3°), *Euphorbia glareosa* (3°), *Eryngium campestre* (6°), *Marrubium peregrinum* (6°), *Plantago*
scabra (16'), Senecio erucifolius (13'); Molinio-Arrhenatheretum: Crepis biennis (12'), Lotus corniculatus (2'), Odontites vernus subsp. serrotinus (16'), Taraxacum officinale (20'); Querco-Fagetea: Acer campestre (juv.) (10'), Brachypodium sylvaticum (18'), Fraxinus excelsior (12'); Rhamno-Prunetea: Cornus sanguinea (11'), Physalis alkekengi (12'), Rhamnus cathartica (12'); Variae syntaxa: Fraxinus pennsylvanica (1'), Plantago lanceolata (5').

Place and date of relevé: 1 - Munteni de Jos (Vaslui county), roadside, 28.08.09; 2 - Bărlad (Vaslui county), railway station, 28.08.09; 3* - Pogana (Vaslui county), ravine, 28.09.09; 4 - Ezăreni (Iași county), roadside, near sunflower, 11.09.09; 5 - Iași (IS), at the crossroads Săulescu and Cloșca (abandoned yard), 01.08.09; 6 - Crâiești (Galați county), steep slope, near the road, 02.08.09; 7 - Negrești (Vaslui county), vacant land near Bărlad river, 13.08.09; 8, 9 - Huși (Vaslui county), slopes near the railway embankment, 22.08.09; 10 - Iași (Iași county), Adamachi farm, abandoned orchards, on terrace platform, 20.09.09; 11 - Iași (Iași county), Adamachi farm, abandoned orchards, on terrace slope, 20.09.09; 12 - Iași (Iași county), Adamachi farm, abandoned vineyard, 15.07.09; 13 - Stoiași (Vaslui county), steep slope, 07.08.10; 14 - Murgeni (Vaslui county), railway embankment, 08.08.10; 15 - Mălușteni (Vaslui county), steep slope, near the road, 09.08.10; 16 - Mălușteni (Vaslui county), grassland, on sandy ground, 09.08.10; 17 - Huși to Crasna (Vaslui county), strongly inclined slope, 09.08.10; 18 - Șerbești (Vaslui county), slope with degraded grassland near Robinia pseudacacia plantation, 26.08.10; 19 - between Epureni and Floreni (Vaslui county), railway embankment, 27.08.10; 20 - Crâiești (Galați county), degraded grassland, 26.07. 2010.

Legend: L. f. - Raunkyaer's life forms (according to Ciocărălan, 2009); Phyt. el. - phytogeographical elements (according to Ciocărălan, 2009); * holotype of the association (relevé no. 3); K - constancy classes (see Braun-Blanquet, 1964; Ivan, 1979).
C. SÎRBU, Ad. OPREA

Dihoru, in his PhD thesis (1969), thereafter Dihoru and Doniţă (1970), in Flora and Vegetation of Babadag Plateau, have proposed a new plant community, namely "Ailanthetum altissimae prov.", with a brief description and a picture, but without a phytosociological table, or even a list of species. Following these authors, on Babadag Plateau (Dobrogea), "... such groups of Ailanthus are common in crops, gardens, pastures (sometimes in steep, loessoid places)...", but "...they also appear in Bucharest on disturbed or excavated places, near the pits etc., normally preferring Southern exhibitions...". This syntaxon was also mentioned in the literature (as "Ailanthetum altissimae Dihoru (1969) 1970" or "Ailanthetum altissimae Dihoru 1970") from Moldavia, at Bivoları, Iaşi county (one relevé) (Dobrescu and Viţăllariu, 1984), from Muntenia, at Malul Moştiţei - Mănăstirea and at Valea Argovei (without relevés) (Sanda et al., 1980), from Măcin Mountains (without relevés) (Doniţă et al., 2007), but also in Central Europe (Germany) (Schubert, 2001).

According to Dobrescu and Viţăllariu (1984), phytocoenoses of "Ailanthetum altissimae Dihoru (1969) 1970" can be met in several places from Moldavia. However, they published only one single relevé, which they considered as representative one, with a surface of 150 m², and which were recorded on an eastern slope, with a declivity of 30°, in a ruderal place, on waste deposits. In addition, according to Doniţă et al. (2007), in the Măcin Mountains (Valea Sulucului, near Regie), phytocoenoses of the association "Ailanthetum altissimae Dihoru (1969) 1970" conquer areas of 300-400 m², in some xerophilous grasslands of Festucetum callierii Şerbănescu 1965 apud Dihoru (1969) 1970, and Cynodonti – Poëtum angustifoliiæ (Rapaics 1927) Soó 1957, preferring those lands with excess of nitrogenous substances, especially those with ash deposits which resulted either from household activities, either from intentional burning of spontaneous vegetation.

However, according to the International Code of Phytosociological Nomenclature (Weber et al. 2000), "Ailanthetum altissimae prov.", published by Dihoru and Doniţă (1970), is not a valid name, because it is suggested by the authors as a provisional name (Art. 3b), and in addition, the authors did not publish neither a vegetation relevé, nor a synoptic table or even a list of species, for the proposed association, so it is not accompanied by a sufficient original diagnosis (Art. 2b, Art. 7).

Dihoru and Doniţă (1970) classified those communities of Ailanthus altissima into the alliance Arction lappae R.Tx. 1937, order Onopordetalia acanthii Br.-Bl. et R. Tx. ex Klika et Hadač 1944, class Artemisietea vulgaris Lohmeyer et al. ex von Rochow 1951. This classification has subsequent been used by all other Romanian botanists.
BALLOTO NIGRAE-AILANTHETUM ALTISSIME ASS. NOVA

(Dobrescu and Vițălariu, 1984; Doniță et al., 2007; Sanda et al., 1980), but in Germany, Schubert (2001) includes "Ailanthetum altissimae Dihoru 1970" into the alliance Arctio-Sambucion nigrae Doing 1962, order Sambucetalia nigrae Oberd. 1957, class Urtico-Sambucetea (Doing 1962) Pass. 1968 (nitrophilous, elder scrubs of derelict habitats in the Atlantic zone).

Other authors do not consider at all that neophytic tree communities can form true associations, because of their allochthonous status within the boundaries of a study area, their lability, and the absence of characteristic species (Tüxen and Ellemberg, 1947, cited by Hadač and Sofron, 1980). Mucina et al. (1993) includes the communities of Ailanthus altissima (as Ailanthus altissima-(Lamio albi-Chenopodietalia)-Gesellschaft), in „Andere Gessellschaften der Ordnung Lamio albi-Chenopodietalia-Gruppe von Gehölz-Gessellschaften". Similarly, Pott (1995) includes Ailanthus altissima-Gesellschaften, in "Gebüsche und Vorwälder, anthropogene Gehölzgesellschaften". However, the possibility of the classification of vegetation stands with non-native tree species as true associations, parts of the system of natural plant communities, has been well argued by many authors, starting with Jurko 1963 (see Exner and Willner, 2004; Hadač and Sofron, 1980; Zerbe, 2003). According to Hadač and Sofron (1980), the anthropogenic tree communities are not necessarily more labile and poorer in characteristic species than many natural associations. In addition, many plant communities of ruderal or segetal weeds, dominated by alien plants, are recognized in the literature as true associations, and there is no substantial reasons that anthropogenic tree communities should not be similarly treated (Hadač and Sofron, 1980).

Classification of anthropogenic tree communities in higher syntaxa varies greatly into the phytosociological literature. We agree with Hadač and Sofron (1980), Chytrý and Tichý (2003), and Exner and Willner (2004), which state that these must be placed into a distinct class, namely: Robinietea Jurko ex Hadač & Sofron 1980. This class includes anthropogenic tree communities, colonizing disturbed habitats, such as deforested lands, selvedges, agricultural and industrial fallows etc., and according to Chytrý and Tichý (2003), it has the following characteristic species: Robinia pseudacacia (diagnostic, constant, dominant), Chelidonium majus (diagnostic, constant); Poa nemoralis, Impatiens parviflora, Sambucus nigra (constant, dominant), Galeopsis pubescens, Galium aparine, Geranium robertianum, Geum urbanum, Rubus fruticosus agg., Urtica dioica (constant).

According to Hadač and Sofron (1980), and Chytrý and Tichý (2003), the class Robinietea includes a single order, Chelidonio-Robinietalia Jurko ex Hadač & Sofron 1980, with the
C. SÎRBU, Ad. OPREA

same characters as the class, subordinating two alliances, namely:

- **Chelidonio-Robinion** Hadač & Sofron 1980 (communities on loamy, mesic, eutrophic soils, or on solidified screes, usually on Southern, Eastern or Western slopes; characteristic combination: *Robinia pseudacacia, Prunus spinosa, Sambucus nigra, Chelidonium majus, Galium aparine, Impatiens parviflora, Poa nemoralis, Solidago gigantea subsp. serotina, Urtica dioica*);

- **Balloto nigrae-Robinion** Hadač & Sofron 1980 (communities on relatively poor sandy, dry soils, mainly in lowlands; characteristic combination: *Robinia pseudacacia, Sambucus nigra, Ballota nigra, Bromus sterilis, Galium aparine, Lactuca serriola, Poa angustifolia, Torilis japonica*). Some of these species, such as *Robinia pseudacacia, Sambucus nigra*, and *Galium aparine*, being common to the two alliances, they should be considered characteristic for the higher syntaxa (order, class).

Other classifications of anthropogenic tree communities, such as in the classes *Artemisietea vulgaris* Lohmeyer *et al.* ex von Rochow 1951 (Dihoru and Doniţă, 1970; Dobrescu and Viţălăriu, 1984), *Galio-Urticetea* Pass. *et Kopecky* 1969 (Mucina *et al.*, 1993), *Urtico-Sambucetea* (Doing 1962) Pass. 1968 (Schubert, 2001) or in *Crataego monogynae-Prunetea spinosae* Tüxen 1962 (Boef *et al.*, 2007; Ferner, 2009), violate the criterion of physiognomic homogeneity of higher syntaxa and are not consistent with current syntaxonomical approaches in other vegetation units (Exner and Willner, 2004).

As it has been stated, *Ailanthus altissima* is listed among the most invasive alien species in Europe, causing significant harm to biological diversity and socio-economic values (Basnou and Vilà, 2009; Vilà *et al.*, 2009). Therefore, the active involvement of professional organizations and authorized institutions is required, in order to limit its spread in Romania, to prohibit its further cultivation, and to prevent or minimise adverse impacts of this invasive alien species in agricultural or natural ecosystems. In other words, it must respect the principles set out in various international conventions to which Romania is part: *Convention on the Conservation of European Wildlife and Natural Habitats* - Bern, 1979; *European Strategy on Invasive Alien Species* - Bern, 2002 etc. (see also: Heywood and Brunel, 2008).

CONCLUSIONS

A new association was described in this paper, namely **Balloto nigrae-Ailanthetum altissimae** ass. nov., which was subordinated to the alliance **Balloto nigrae-Robinion** Jurko ex Hadač & Sofron 1980, order **Chelidonio-Robinietalia** Jurko ex Hadač & Sofron 1980, and class **Robinietea** Jurko ex Hadač & Sofron 1980.
The association includes heliophilous (sub-heliophilous), moderate thermophilous, xero-mesophilous, neutrophilous and moderate nitrophilous phytocoenoses, that invade anthropogenic and even natural habitats from Eastern Romania and which, once consolidated, can have a long-term stability.

Aggressive nature of the species *Ailanthus altissima*, requires an active involvement of professional organizations and authorized institutions to limit its spread in Romania and to prohibit its further cultivation.

Acknowledgements. This work was supported by CNCSIS - UEFISCDI, project number PNII - IDEI _1227/2008.

REFERENCES

Alexiu V., 2005 - Trivale forest reservation, Pitești, Argeș County. *Contr. Bot. Cluj*, 40: 89-99.

Anastasiu P., G. Negrean, 2007 - Invadatori vegetali în România (Plant invaders in Romania). Edit. Univ. București, pp. 81.

Arnaboldi F., M. Conedera, G. Maspoli, 2002 - Distribuzione e potenziale invasivo di *Ailanthus altissima* (Mill.) Swingle nel Ticino centrale. *Boll. Soc. Ticinese Sci. Nat.*, 90(1-2): 93-101.

Basnou C., M. Vilă, 2009 - *Ailanthus altissima* (Mill.) Swingle, tree of heaven (*Simaroubaceae, Magnoliophyta*). In DAISIE, Handbook of alien species in Europe. Springer Science+Business Media B.V, pp. 342.

Boeuf R., A. Untereiner, M. Wolff, P. Holveck, Ph. Hum, 2007 - Aperçu et cartographie des groupements végétaux de la ZSC Lauter et de l’hippodrome d’Altenstadt (Bas-Rhin - France) - *Natura 2000 - Prog. LIFE - Doc. ONF-DIREN 2v: 38p + Tab. + cartes.*

Borza Al., 1925 - Flora grădinilor târânești române. II. Plantele de podoabă, de leac, de farmece și credințe. (The flora of Romanian rural gardens. II. Plants for ornament, healing, witchcraft and faiths). Bul. Grăd. Bot. Univ. Cluj, 5(3-4): 49-74.

Borza Al., 1944 - Materiale pentru flora Mangaliei (Materials for the flora of Mangalia city). Bul. Grăd. Bot. Univ. Cluj, 24(1-2): 15-29.

Borza Al., 1947 - Conspectus Floraie României Regionumque Affinium. Edit. Cartea Românească, 360 pp.

Borza Al., 1958 - Contribuții la flora și vegetația din răsăritul României (Contributions to the flora and vegetation from the Eastern Romania). *Contr. Bot. Cluj*, 127-158.

Borza Al., 1966 - Cercetări asupra florei și vegetației din Câmpia Română, I. (Research on flora and vegetation of the Romanian Plain, I). *Contr. Bot. Cluj*, (2): 141-162.

Botta-Dukát Z., 2008 - Invasion of alien species to Hungarian (semi-) natural habitats. *Acta Bot. Hung.* 50: 219-227.

Braun-Blanquet J., 1964 - *Pflanzensoziologie*. 3rd Ed., Springer-Verlag, Wien, New York, 865 pp.

Brâncză D., 1879-1883 - Prodomul Florei Române (Introduction to the Flora of Romania). București: Edit. Acad. Române, 568 pp.

Britton N., A. Brown, 1970 - An illustrated flora of the Northern United States and Canada, I-III. Dover Publ. Inc. New York.

Call L.J., E.T. Nilsen, 2003 - Analysis of spatial patterns and spatial association between the invasive tree-of-heaven (*Ailanthus altissima*) and the native black locust (*Robinia pseudoacacia*). Amer. Midl. Naturalist, 150(1): 1-14.
C. SÎRBU, Ad. OPREA

Chifu T., C. Mânzu, O. Zamfirescu, 2006 - Flora & vegetația Moldovei (România). II. Vegetația. (The flora & vegetation of Moldavia (Romania). II. The vegetation). Edit. Univ. Al. I. Cuza, Iași, 698 pp.

Chytrý M., L. Tichý, 2003 - Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Folia Fac. Sci. Nat. Univ. Masaryk, Brno, Biol., 108: 1-231.

Ciocîrlan V., 1994 - Flora Deltei Dunării (The flora of Danube Delta). Edit. Tehnopress, Iași, 411 pp.

Coroi A.M., 2001 - Flora și vegetația din bazinul râului Milcov (Flora and vegetation of Milcov river basin). Edit. Tehnopress, Iași, 398 pp.

Coroi M., 2001 - Flora și vegetația din bazinul râului Şușița (Flora and vegetation of Şușița river basin). Edit. Tehnopress, Iași, 398 pp.

Decă Ş., A. Năstase, I. Tiță, 2006 - Plante lemnoase din sud-vestul Olteniei (Woody plants from South-Western Oltenia). Stud. Com. Ști. Nat., Muz. Olt. Craiova, 22: 91-97.

Dihoru G., N. Doniță, 1970 - Flora și vegetația Podișului Babadag (Flora and vegetation of the Babadag Plateau). București, Edit. Acad. R. S. România, 338 pp.

Dihoru Gh., G. Negrean, 1976 - Flora of the Danube Delta. Peuce, Muz. Deltei Dunării, Tulcea, 217-251.

Dobrescu C., Gh. Vițălariu, 1984 - Contribuții la studiul vegetației din Moldova (Contributions to the study of vegetation in Moldavia). Analele Științ. Univ. Al. I. Cuza Iași, sec. II, a. Biologie, 30: 52-65.

Dobrescu C., C. Bărcă, M. Lazăr, 1958 - Schiță floristică și geobotanică a Văii Cîrcic, cu referire specială la iazul și pădurea Cîrcic-Iași (An introductory study on the flora and vegetation from Cîrcic Valley, with special reference to the lake and forest Cîrcic-Iași). Analele Științ. Univ. Al. I. Cuza Iași, sec. II (Științ. Nat.), 4(1): 5-44.

Doltu M. I., V. Sanda, A. Popescu, 1983 - Caracterizarea ecologică și fitocenologică a florei nisipoase din România (Ecological and phytosociological characterization of psammophilous flora from Romania). Stud. Com. Științ. Nat., Muz. Brukenthal, Sibiu, 25: 87-152.

Doniță N., A. Popescu, B. Băjenaru, 2007 - Cercetări asupra vegetației Parcului Național "Munții Măcinului" (Research on vegetation of the National Park "Măcin Mountains"), http://www.parcmacin.ro/studii-biodiversitate.html, 149 pp.

Dumitriu-Tătăranu I., 1960 - Arbori și arbuști forestieri și ornamentali cultivate în R. P. R (Forest and ornamental trees and shrubs grown in the People’s Republic of Romania). Edit. Agro-Silvică, București.

Ellenberg H., H. Weber, R. Düll, V. Wirth, W. Werner, D. Paulißen, 1992 - Indicator values of plants in Central Europe. Scripta Geobot., 18: 1-166.

Essl F., W. Rabitsch (eds.), 2002 - Neobiota in Österreich. Umweltbundesamt GmbH, Wien, pp. 432.

Exner A., W. Willner, 2004 - New syntaxa of shrub and pioneer forest communities in Austria. Hacquetia, 3(1): 27-47.

Făgăraș M., M. Skolka, P. Anastasiu, P. Cogălniceanu, G. Negrean, G. Bănică, M. Tudor, C. Samoiă, 2008 - Biodiversitatea zonei costiere a Dobrogei dintre Capul Midia și Capul Kaliakra (Biodiversity of the coastal area between Cape Midia and Cape Kaliakra, Dobrogea). Edit. Ex Ponto, Constanța, 428 pp.

Fătu A., 1871 - Enumeraționea speciilor de plante cultivate în Grădina
Botanică din Iassy, până în anul 1870 (A list of plants species cultivated in the Botanic Garden of Iassy, until 1870). București: Noua Tipogr. Labor. România, 60 pp.

Ferner T., 2009 - Typologie et inventaire quantitatif des groupements végétaux de la Vôge: Amélioration de la connaissance et évaluation des habitats de France-Comté. Conservatoire botanique national de France-Comté, DIREN de France-Comté, Conseil général de Haute-Saône, 281 pp.

Gergely I., N. Boșcai, O. Rațiu, 1966 - Flora spermatofitica în Defileul Crișului Repede (Spermatophyte flora from Crișului Repede Gorge). Contr. Bot. Cluj, (1): 112-149.

Grecescu D., 1898 - Conspectul florei României (Conspectus of the Romanian flora). Tipogr. Dreptatea, București, 835 pp.

Gutte P., S. Klotz, C. Lahr, A. Trefflich, 1987 - Ailanthus altissima (Mill.) Swingle - eine vergleichend pflanzengeographische Studie. Folia Geobot. Phytotax., 22: 241-262.

Hadač E., J. Sofron, 1980 - Notes on syntaxonomy of cultural forest communities. Folia Geobot. Phytotax., 15: 245-258.

Heisey R. M., 1997 - Allelopathy and the secret life of Ailanthus altissima. Arnoldia: 28-36.

Heywood V., S. Brunel, 2008 - Code of conduct on horticulture and invasive alien plants. 28th Meeting of Convention on the Conservation of European Wildlife and Natural Habitats Standing Committee, T-PVS/Inf, 24-27 November 2008, Strasbourg, 35 pp.

Hu S., 1979 - Ailanthus. Arnoldia, 39(2): 29-50.

Ivan D., 1979 - Fitocenologie și vegetația Republicii Socialist România (Phytocenology and the vegetation of Socialist Republic of Romania). Edit. Did. Ped., București, 332 pp.

Karácsmajori C., 1995 - Flora și vegetația județului Satu Mare (Flora and vegetation of Satu Mare County). Edit. Muz. Sătmărean, Satu Mare.

Knapp L. B., C.D. Canham, 2000 - Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J. Torrey Bot. Soc., 127(4): 307-315.

Kowarik I., I. Säumel, 2007 - Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Persp. Pl. Ecol., Evol. Syst., 8: 207-237.

Landenberger R. E., N.L. Kota, J.B. McGraw, 2006 - Seed dispersal of the non-native invasive tree Ailanthus altissima into contrasting environments. Plant Ecol., 192: 55-70.

Leocov M., E. Țopa, 1986 - Unele plante lemnioase mai deosebite, care s-au adaptat la condițiile pedoclimatice ale Grădinii Botanice din Iași (Some exotic woody plants that have adapted to the climatic conditions of the Botanical Garden of Iași). Analele Științ., Univ. Iași, ser. II, a. Biol., 32(supl.): 139-140.

Lonsdale W. M., 1999 - Global patern of plant invasions and the concept of invasibility. Ecology, 80: 1522-1536.

Matacă S. S., 2003 - Parcul Natural Porțile de Fier. Floră, vegetație și protecția naturii (Porțile de Fier Natural Park. Flora, vegetation and nature protection). Edit. Universitaria, Craiova, 550 pp.

McNeely J. A., 2001 - An introduction to human dimensions of invasive alien species. In: McNeely J.A. (ed), 2001 - The great reshuffling: human dimensions of invasive alien species. IUCN, Gland, Switzerland, and Cambridge, UK, pp 5-20.

Mihail D., 2005 - Flora ruinelor curții domnești din Târgoviște (The flora of ruins of the princely court Târgoviște). Stud. Com. Știint. Nat., Muz. Olteniei, Craiova, 21: 29-32.

Mititelu D., N. Barabaș, 1975 - Vegetația din luncă Prutului (Vegetation of Prut river meadow). Stud. Com. Muz. Știint. Nat. Bacău, 219-285.
C. SÎRBU, Ad. OPREA

Mititelu D., F. Nechita, 1992 - Flora muntelui Hășmaș și din Cheile Bicazului (Flora from Hășmaș Mountain and Bicazului Gorges). Stud. Cerc. Muz. Știint. Nat. Piatra Neamț, 6: 16-26.

Mititelu D., Z. Gociu, A. Pătrașcu, V. Gheorghiu, 1968 - Flora și vegetația Pădurii-Parc Gârboavele-Galăț (Flora and vegetation of the Forest-Park Gârboavele-Galați). Analele Știint. Univ. Al. I. Cuza Iași, Ser. a. Biol., 14(1): 163-173.

Mititelu D., T. Chifu, P. Pascal, 2001 - Flora și vegetația jurilului Suceava (Flora and vegetation of Suceava County). Anuarul Muz. Științ. Nat. Suceava, 10: 93-120.

Monah F., 2001 - Flora și vegetația cormofitelor din lunca Siretului (Flora and vegetation of cormophytes from the Siret river meadow). Edit. Constantin Nastasă Piatra Neamț, 268 pp.

Morariu I., 1943 - Asociații de plante antropofile din jurul Bucureștiului, cu observații asupra răspândirii lor în țară și mai ales în Transilvania (Antropophilous plant associations around Bucharest, with comments on their spread in the country and especially in Transylvania). Bul. Știint. Univ. Al. I. Cuza Iași, Ser. a. Biol., 16(2): 61-64.

Mucina L., G. Grabherr, T. Ellmayer, 1993 - Die Pflanzengesellschaften Osterreichs. Teil. I. Anthropogene Vegetation. Gustav Fischer Verlag Jena, Stuttgart.

Nechita N., 1992 - Contribuții la cunoașterea florei din localitatea Dulcești (jud. Neamț) (Contributions to the knowledge of the flora from the village Dulcești (Neamț County)). Stud. Cerc. Biol., Muz. Ști. Nat. Piatra Neamț, 6: 61-64.

Nechita N., 2003 - Flora și vegetația cormofitelor din Masivul Hășmaș, Cheile Bicazului și Lacul Roșu (Flora and vegetation of cormophytes from Hășmaș Mountain, Bicazului Gorges, and Red Lake). Edit. Constantin Mătasă, Piatra Neamț.

Oprea A., 1997 - Contribuții coenotaxonomice din Câmpia Tecuciului (Coenotaxonomical contributions from the Tecuci Plain). Bul. Grăd. Bot. Iași, 6 (2): 434-440.

Pan E., N. Bassuk, 1986 - Establishment and distribution of Ailanthus altissima in the urban environment. J. Environ. Hort., 4(1): 1-4.

Papp C., M. Răvăruț, 1938 - Plante vasculare cuprinzând și chei dichotomice pentru determinarea pănă la genuri a Briofitelor, din împrejurimile orașului Iași (Vascular plants and dichotomous keys to identify genera of bryophytes, from surroundings of Iași town). Iași: Edit. Lab. Botanic.

Păun M., 1965 - Contribuții la flora raionului Balș, regiunea Oltenia (Contributions to the flora of the district Balș, region Oltenia). Bul. Știint. Univ. Craiova, 7: 27-59.

Pimentel D., L. Lach, R. Yoniga, D. Morrison, 2000 - Environmental and economic costs of nonindigenous species in the United States. BioScience, 50: 53-65.

Popa D., T. Chifu, 2006 - The vascular flora from the Covurlui Plateau and Plain. Anuarul Compl. Muz. Bucovina, 17-19: 115-136.

Popescu A., 1966 - Flora pădurii Trivale și a împrejurimilor sale (Flora of the Trivale forest and its surroundings). Stud. Cerc. Biol., Seria Bot., 18(6): 549-560.

Popescu Gh., 1968 - Flora din împrejurimile stațiunii Govora (judeteul Vâlcea) (Flora from surroundings of Govora resort (Vâlcea County)). Bul. Știint. Univ. Craiova, 10: 21-34.

Popescu Gh., I. Costache, D. Răduțoiu, V. Boruz, I. Ciortan, 2005 - Contributions to the knowledge of the vascular flora from the Sohodol gorges and the Oltețului Gorges. Analele Univ. Craiova, ser. Biol.,
BALLOTO NIGRAE-AILANTHETUM ALTISSIME ASS. NOVA

Horticult., T.P.P.A., Ing. Med., 10 (46): 5-9.

Pott R., 1995 - Die Pflanzengesellschaften Deutschlands, 2 Aufl. Verlag Eugen Ulmer, Stuttgart., pp. 622.

Prodan I., 1931 - Die Flora der Dobrudscha und ein kurzer überblick über die Flora der Meeresküste Rumaniens. Bul. Minist. Agricoluit. Dom., 6 (11-12): 3-95.

Răvaruţ M., 1941 - Flore et vegetation du district de Jassy. Ann. Sci. L'Univ. Jassy, sect. II, Sci. nat., 27(1): 1-388.

Roman N., 1974 - Flora şi vegetaţia din sudul Podişului Mehediţii (Flora and vegetation from the Southern Mehedinţi Plateau). Edit. Acad. R. S. România, Bucureşti.

Sanda V., A. Popescu, M.I. Doltu, 1980 - Cenotaxonomia şi corologia grupărilor vegetale din România (Cenotaxonomy and chorology of plant communities from Romania). Stud. Com. Muz. Știint. Nat., Brukenthal (supl.), 24: 1-171.

Sârbiu I., 1977 - Contribuţii la flora Moldovei (Contributions to the flora of Moldavia). Anuarul Muz. Știint. Nat. Piatra Neamţ, ser. Bot.-Zool., 3: 65-67.

Sârbiu A., G. Negrean, G. Pascale, D. Smarandache, C. Mihai, 2007 - The Nera mini-delta - botanical contributions. Acta Horti Bot. București., 34: 63-71.

Schubert R., 2001 - Prodromus der Pflanzengesellschaften Sachsen-Anhalts. Botanischer Verein Sachsen-Anhalt e. V., 688 pp.

Simonkai L., 1886 - Erdély edényes flórájának helyesített fogalata / Enumeratio florae Transsilvanicae vesculosae critica. Budapest: Kiadja a Kir. Magyar Természettudományi Társulat, 678 pp.

Sîrbu C., 2007 - Research regarding the alien plant species in the surroundings of Huşi town (Vaslui county, România). Proc. 1st Internat. Conf. Environment, Natural Sciences, Food Industry (ENSFJ), 16-17 nov. 2007, Baia Mare, România, 306-311.

Ștefan N., 1997 - Contribution à la phytocoenologie de la végétation ségétale dans les plantations viticoles. Bul. Grăd. Bot. Iaşi, 6(1): 191-194.

Tatin T.G., V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters, D.A. Webb (eds.) (1964-1980) - Flora Europaea, Vol. 1-5. 1st Ed., Cambridge University Press, Cambridge, 464, 455, 370, 523, 467 pp.

Tatin T.G., N.A. Burges, A.O. Chater, J.R. Edmonson, V.H. Heywood, D.M. Moore, D.H. Valentine, S.M. Walters, D.A. Webb (eds.) (1993) - Flora Europaea, Vol. 1 (Psilotaceae to Platanaceae). 2nd Ed., Cambridge University Press, Cambridge, 581 pp.

Udvardy L., 2008 - Tree of Heaven (Ailanthus altissima (Mill.) Swingle). In Botta-Dukát Z., Balogh L., 2008 - The most important invasive plants in Hungary, pp. 121-127. Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, Hungary.

Vilâ M., C. Başnou, S. Gollasch, M. Josefsson, J. Pergl, R. Scalera, 2009 - One hundred of the most invasive alien species in Europe. In DAISIE, Handbook of alien species in Europe. Springer Science+Business Media B.V, pp. 265-268.

Vitousek P.M., C.M. D'Antonio, L.L. Lloyd, M. Rejmánek, R. Westbrooks, 1997 - Introduced species: a significant component of human caused global-change. New Zealand J. Ecol., 21:1-16.

Webber H.E., J. Moravec, J.P. Theurillat, 2000 - International Code of Phytosociological Nomenclature. 3rd Ed., J. Veg. Sci., 11: 739-768.

Wittenberg R., M.J.W. Cock, 2001 - Invasive alien species. How to address one of the greatest threats
C. SÎRBU, Ad. OPREA

to biodiversity: A toolkit of best prevention and management practices. CAB International, Wallingford, Oxon, UK, 215 pp.

Wittenberg R. (ed.), 2005 - An inventory of alien species and their threat to biodiversity and economy in Switzerland. CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape.

Zerbe S., 2003 - The differentiation of anthropogenous forest communities: a synsystematical approach. Mitt. Naturwiss. Ver. Steiermark, 133: 109-117.