On the experimental determination of the repulsive component of the potential from high pressure measurements: what is special about twelve?

R. Casalinia,b and T. C. Ransoma,b

Naval Research Laboratory, Chemistry Division, Washington DC 20375-5342

(Dated: 11 October 2021)

In this paper we present an overview of results in the literature regarding the thermodynamical scaling of the dynamics of liquids and polymers as measured from high-pressure measurements. Specifically, we look at the scaling exponent γ, and argue that it exhibits the limiting behavior $\gamma \to 4$ in regimes for which molecular interactions are dominated by the repulsive part of the intermolecular potential. For repulsive potentials of the form $U(r) \propto r^{-n}$, γ has been found to be related to the exponent n via the relation $\gamma = n/3$. Therefore, this limiting behavior for γ would suggest that a large number of molecular systems may be described by a common repulsive potential $U(r) \propto r^{-n}$ with $n \approx 12$.

The density and temperature dependence of dynamic properties of liquids and polymers (i.e. viscosity, relaxation and diffusion time) is well described by the thermodynamical scaling (TDS) behavior:

$$\log(X) = \mathcal{F}(T \rho^{-\gamma}),$$ \hfill (1)

where X is a dynamic property \mathcal{F} is an unknown function, T the temperature, ρ the density and γ a material dependent parameter. It has been argued that the density scaling of liquid dynamics is better described over a large thermodynamic range substituting ρ^2 in Eq. (1) with a density dependent activation energy $E_a(\rho)$ and “that a power-law description of the density dependence of $E_a(\rho)$, convenient as it may be, may not carry much physical content.” 5

Notwithstanding, disagreements on the use of Eq. (1), the behavior described by the TDS has been verified using different experimental observables for a large number of materials, all with system-dependent values of γ which have been found to be generally constant for each material 6. In particular, for more than fifty nonassociated liquids (Figure 1), Eq. (1) has been found to describe the dynamics over a large range of pressure and temperature with γ for each system lying in the range $3.5 \leq \gamma \leq 8.5$ 7 and 8. Probably the more extreme range of pressure over which the TDS behavior has been verified is that of the viscosity measurements of nitrogen for which $\gamma = 4$ for up to 10 GPa 9. It is noteworthy that of the fifty nonassociated liquids reported in Fig. 1 only two have $\gamma < 4$, and both liquids are extremely polar, propylene carbonate ($\gamma = 3.7, \mu \simeq 3.9 D$) and acetonitrile ($\gamma = 3.5, \mu \simeq 4.9 D$). Molecular dynamics simulations (MDS) have shown that a large dipole moment is expected to cause a decrease of γ, and therefore the polarity of these two liquids may explain their lower value of γ 10. Excluding these two, $\gamma \geq 4$ for all other nonassociated liquids.

Although γ has been found to be constant for many systems, some studies have previously reported deviations from the TDS in the form of a changing value of γ with density for the liquids Dibutyl phalate (DBP), Decahydroisoquinoline (DHIQ), and DC704,11-13. These findings were anomalous, and subsequent reports showed some inconsistencies in the experimental data of DC704 and DHIQ.14,15 For the case of DBP, it was found15 that there were some inconsistencies with the high pressure viscosity data utilized in Ref. 12, however, even rejecting the viscosity data, an optimal scaling was not found to be possible, and deviation from the scaling was evident in the dielectric data at long times 16. In particular, the deviation of DBP from the thermodynamical scaling accord-

aElectronic mail: riccardo.casalini@nrl.navy.mil
bElectronic mail: timothy.ransom.ctr@nrl.navy.mil
American Society for Engineering Education postdoc
ing to Ref. [11] corresponds to an increase of γ with increasing density (and pressure) from 2.6 to 3.9. It is worth nothing that the high pressure behavior of DBP is consistent with that of associated liquids (pressure derivative of the glass temperature, $dT_g/dP = 110$ K/GPa and ratio of isochoric and isobaric activation energies, $E_V/E_P = 0.7–0.74$) like tripropylene glycol ($dT_g/dP = 109$ K/GPa, $E_V/E_P = 0.8$) and 2-ethyl-1-hexanol ($dT_g/dP = 108$ K/GPa, $E_V/E_P = 0.67$). This is in contrast to the typical high pressure behavior of nonassociated liquids which have been found to have $E_V/E_P \sim 0.5$ and $dT_g/dP > 240$ K/GPa. Thus, in the following we consider DBP as a weakly associated liquid and reanalyze the pressure dependence of the parameter γ using a different method than in Ref. [11]. For a similar reasoning the high pressure behavior of Salol ($dT_g/dP = 204$ K/GPa and $E_V/E_P = 0.43$) is consistent with that of nonassociated liquids and it is included in Fig. 1.

Recently, an unambiguous deviation from the TDS was observed for the nonassociated liquid DC704, with γ decreasing with increasing pressure shown in Figure 2 from $\gamma = 6.6 \pm 0.4$ at atmospheric pressure to $\gamma = 4.2 \pm 0.4$ at $P = 0.9$ GPa. One particularly interesting part of this behavior is that γ appears to decrease rapidly at low pressure, but level off at high pressure close to 4, suggesting that at even higher pressures its value will still be $\gamma \approx 4$. As discussed in greater detail in Ref. [21], an earlier high pressure investigation on DC704 did not show this variation of γ to be evident because of the limited range of pressure and temperature, even though the range was typical of most investigations found in the literature. Therefore, it is likely that future investigations over similarly broad range of pressure and temperature will evidence more deviations from TDS such that found for DC704 in other simple liquids and some of the values reported previously may be found to represent an average value of γ.

Summarizing, current experimental results in the literature show that for low to moderately polar, nonassociated liquids: (i) the smallest value of γ is $\gamma \approx 4$, (ii) for liquids with $\gamma \approx 4$ at low pressure, no change is observed in γ even at 10 GPa, and (iii) for the only case in which a change of γ has been observed, an initially large value of γ tends to 4 at the highest pressure. This evidence would suggest the possibility of a common limiting value of $\gamma \approx 4$ at high densities for simple, nonassociated liquids; so a system with $\gamma \approx 4$ at atmospheric pressure will not change very much, but a system with $\gamma > 4$ at atmospheric pressure will experience a decrease until it approaches the $\gamma \approx 4$ limit.

In order to evaluate the behavior of the parameter γ for any system, we briefly show here a derivation of a simple equation which we then use to calculate the state point dependence of γ using a minimum of inputs. In Ref. [21], the parameter γ of DC704 at various state points was calculated using an approach similar to that used by Sanz et al., utilizing the expression

$$\gamma = \frac{\Delta V}{\kappa_T E_P - T \Delta V \alpha_p}, \quad (2)$$

where $\Delta V = RT (\partial \ln X / \partial P)_T$ is the activation volume, κ_T the isothermal compressibility, E_P the isobaric activation energy and α_p is the isobaric expansion coefficient.

Using the relationship introduced by Paluch et al. [25]

$$E_P = T \Delta V \frac{\partial P}{\partial T} X, \quad (3)$$

Eq. 2 can be rewritten as

$$\gamma = \frac{1}{T \left(\kappa_T \frac{\partial P}{\partial T} X - T \alpha_p \right)}, \quad (4)$$

The advantage of this new equation is that only the pressure derivative of the temperature at constant relaxation time (or viscosity (X)) is needed together with the pressure and temperature dependence of κ_T and α_p to determine the parameter γ at any state point.

Another class of materials for which many confirmations of the TDS behavior with a constant γ have been reported is that of polymers. For polymers however, the values of γ are generally smaller than for nonassociated liquids, with $1.8 \leq \gamma \leq 5.6$ [7]. Larger values of γ are associated with polymers having very small torsional potentials (siloxanes) in which the chain constraints are smaller [27]. On the other extreme (of γ) are polymers with large torsional potential like poly(methylmethacrylate) (PMMA) with $\gamma = 1.8$; interestingly for low molecular weight PMMA γ increases to $\gamma = 3.7$ for the PMMA trimer shown in the inset of Figure 2 [24]. Thus the behavior of nonassociated liquids is obtained in the case of polymers in the limits in which the intramolecular potential due to the polymer chain (i.e. torsional potential) is reduced.

A class of materials for which the TDS has been found to have only limited applicability is hydrogen bonded liquids [28] and [29]. For these liquids the approximate value of γ at low
pressure is close to unity. In this study we used Eq. (4) to calculate the pressure dependence of γ for three associated liquids using available dynamic data and EOS data: glycerol (EOS was obtained combining the data from Ref. [30] and Ref. [31] (dT/dP)γ was obtained analyzing the dielectric relaxation data of Ref. [32], dipropyleneglycol (EOS and dielectric relaxation data in Ref. [33]) and dibutyl phthalate (EOS from Ref. [16] and dielectric relaxation data from Ref. [17]). The pressure behavior of γ for these three associated liquids is reported in Fig. 2 together with those for DC704. Note that the result for DBP is in agreement to that reported by Bøhling et al. [11]. Differently than for DC704, the three associated liquids show γ increasing with pressure rather than decreasing. For the case of glycerol and DBP the scaling exponent seems to tend to γ ≈ 4 as shown in figure 2. Since high pressure decreases the ability of molecules to associate (i.e. hydrogen bond), this observed behavior is suggestive of a high pressure regime in which associated liquids behaves like a nonassociated liquid with γ ≈ 4.

As discussed above, there are a series of results related with the TDS of associated liquids, nonassociated liquids, and polymers in which a limiting value of γ ≈ 4 is recurrent, which raises the questions: Is there something special about the value γ = 4? Is there a common element to the limiting conditions necessary for the systems to exhibit γ ≈ 4 behavior?

From a theoretical point of view the TDS behavior can be interpreted in terms of the intermolecular potential, \(U_{\text{LJ}} \) potential \(U_{\text{LJ}} \) [34]. Consider a generalized Lennard-Jones (LJ) potential \(U_{\text{LJ}} \) [35],

\[
U_{\text{LJ}} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{n} - a \left(\frac{\sigma}{r} \right)^{m} \right],
\]

where \(r \) is the intermolecular distance, \(n \) and \(m \) are the exponents of the repulsive and attractive terms, \(\varepsilon \) and \(\sigma \) are constants with the dimensions of energy and distance, respectively; while \(a \) is constant (equal to either unity or zero) introduced herein to simplify the discussion.

The TDS behavior is strictly predicted for liquids with a purely inverse power law potential (i.e. \(a = 0 \) in Eq. (5)) [35] and [36], with \(\gamma = n/3 \). While for liquids in which the attractive term cannot be neglected (i.e. \(a = 1 \) in Eq. (5)), the TDS has been found to still be valid using MDS [33, 37] and [38] with \(\gamma \geq n/3 \). This is because the attractive term makes the slope of the potential steeper in the region of the average intermolecular distance, resulting in an effective power law with an exponent seemingly larger than \(n \). For conditions of very high pressure and temperature, however, MDS show a decrease of γ with increasing density with γ → n/3 in the high pressure limit. It was remarked about this behavior in high pressure conditions, “this is consistent with the idea that the repulsive part, characterized by an effective inverse power law, dominates the fluctuations” [39]. Thus, in general for any material taken into consideration, in the high-pressure regime where the applied pressure is so high to render the attractive part of the potential negligible, we would expect that the parameter γ will give a measure of the slope exclusively from the repulsive part of the potential. The pressure range to determine this regime evidently depends on the material, with less dense materials (worse packing) expected to show a larger propensity to change, because the pressure can cause a larger change of the average intermolecular distance.

Since the repulsive part of the intermolecular potential is due to the repulsion of atomic charges, it would not be surprising if the slope of the repulsive part of \(U \) could be very similar between different molecules. In principle the repulsive interactions at small intermolecular distance are due to the superposition of electrical repulsion of atomic charges between neutral atoms constituting the molecules. With decreasing intermolecular distance (increasing pressure) the terms related to the closest atoms become dominant (smaller distance may be necessary to overcome the dipole-dipole repulsion in the presence of large dipolar moments). If, in fact, the repulsive part of \(U \) is actually very similar for various systems, we would expect that (i) all nonassociated liquids would have \(\gamma \geq n/3 \) at atmospheric pressure since the attractive part of the potential increases the local slope of the potential at low densities, (ii) for those materials in which \(\gamma \approx n/3 \) at low densities (very small attractive term, like for inert gases, i.e. nitrogen, krypton, argon and xenon) we would expect little or no change of γ even at extreme pressure, with the limiting value already attained at very low pressure, and (iii) for those materials having \(\gamma \) much larger than \(n/3 \) we would expect a decrease of γ with pressure towards \(\gamma \approx n/3 \). Therefore, current experimental results in the literature for simple nonassociated liquids described above are consistent with a common slope of the repulsive part of \(U \) that can be approximated by a power law \(r^{-n} \) with \(n \approx 12 \). Evidently, more experimental corroboration is needed to confirm the decrease with pressure of the scaling exponent γ in other nonassociated liquids, especially those that have been found to have a γ ≫ 4 at low pressure.

The preceding argument proposes that the behavior of non-associated liquids can be explained in terms of a pressure dependent contribution of the attractive part of the potential to the exponent γ. This contribution becomes progressively smaller with increasing pressure (this can occur at very low pressure in the case of small attractive interactions like for inert gases), but can we use similar arguments to explain the behavior described above for polymers and hydrogen-bonded liquids? For polymers, we noted that where a large torsional potential is present, the value of γ is quite a bit lower than 4, but where absent γ approaches values close to 4. This torsional potential acts as an intramolecular barrier to rearrangement, reducing the relative influence of intermolecular repulsive potential barriers in regards to molecular relaxation. In the limit of low torsional potential as in the case of siloxanes or the PMMA trimer, the intermolecular potential dominates and the behavior for γ becomes like that of nonassociated liquids. A similar argument can be made for hydrogen-bonded systems, except instead of a torsional potential reducing the relative effect of volume changes, it is hydrogen-bonding networks which compete with and reduce the relative importance of the intermolecular repulsive potential in relation to molecular rearrangements, causing γ < n/3. With increasing pressure the H-bonding network breaks up causing an increase of γ (figure 2) and at pressures high enough that the associating
potential is overcome by repulsive term, we again obtain the limiting value of \(\gamma \approx 4 \) indicative of interactions dominated by the repulsive potential with the common slope approximated by a \(r^{-n} \) power law with \(n \approx 12 \).

One of the most commonly used potentials in MDS is the 6-12 LJ potential (\(n = 12, m = 6, a = 1 \) in Eq. (5)). However, to date, the value \(n = 12 \) for the 6-12 LJ potential has never been deduced from first principles or determined experimentally, and it is often used more for convenience than for fundamental reasons. In fact, other forms of \(U \) are used in the literature for MDSs with different functional forms of the repulsive term, like for the Buckingham potential where the attractive term is described by an exponential term rather than an inverse power law.

Our review of the data currently available in the literature is consistent with \(\gamma \approx 4 \) as limit behavior for both associated and nonassociated liquids. However, additional measurements of the dynamic properties and equation of state over a broad range of temperature and pressure, are necessary to corroborate our observation, especially for the case of nonassociated liquids having \(\gamma \gg 1 \). Considering the general correlation found between \(\gamma \) and \(\chi \), the nonassociated liquids of more interest (i.e. with the larger \(\chi \)) are those with the smaller isochoric fragility.

In conclusion, we find that the experimental results at high pressure discussed above are consistent with an inverse power law for MDSs with different functional forms of the attractive term, like for the Buckingham potential where the attractive term is described by an exponential term rather than an inverse power law.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research. TCR acknowledges an American Society for Engineering Education postdoctoral fellowship.

REFERENCES

1. R. Casalini and C. M. Roland, Phys. Rev. E 69, 062501 (2004).
2. C. Dreyfus, A. Le Grand, J. Gapiński, W. Steffen, and A. Patkowski, Eur. J. Phys. B 42, 309 (2004).
3. C. Alba-Simionesco, A. Cailliaux, A. Alegria, and G. Tarjus, Europhys. Lett. 68, 58 (2004).
4. C. Alba-Simionesco, D. Kivelson, and G. Tarjus, J. Chem. Phys. 116, 5033 (2002).
5. C. Alba-Simionesco and G. Tarjus, J. non-cryst. solids 352, 4888 (2006).
6. C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. in Phys. 68, 1405 (2005).
7. R. Casalini and C. M. Roland, Phys. Rev. E 72, 031503 (2005).
8. D. Fragiadakis and C. M. Roland, Phys. Rev. E 83, 031504 (2011).
9. E. H. Abramson, J. Phys. Chem. B 118, 11792 (2014).
10. D. Fragiadakis and C. M. Roland, J. Chem. Phys. 138, 12A502 (2013).
11. L. Bohling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C. Dyre, and T. B. Schroder, New J. Phys. 14, 113035 (2012).
12. K. Niss, C. Dulle-Ferrier, G. Tarjus, and C. Alba-Simionesco, J. Phys.-Condens. Mat. 19, 076102 (2007).
13. A. Sanz, T. Hecksher, H. W. Hansen, J. C. Dyre, K. Niss, and U. R. Pedersen, Phys. Rev. Lett. 122, 055501 (2019).
14. T. C. Ransom, R. Casalini, D. Fragiadakis, A. P. Holt, and C. M. Roland, arXiv preprint arXiv:1904.01424 (2019).
15. R. Casalini and C. M. Roland, J. Chem. Phys. 144, 024502 (2016).
16. R. Casalini, S. S. Bair, and C. M. Roland, J. Chem. Phys. 145, 064502 (2016).
17. M. Sekula, S. Pawlus, S. Hensel-Bielowka, J. Ziolo, M. Paluch, and C. M. Roland, J. Phys. Chem. B 108, 4997 (2004).
18. R. Casalini and C. M. Roland, J. Chem. Phys. 119, 11951 (2003).
19. D. Fragiadakis, C. M. Roland, and R. Casalini, J. Chem. Phys. 132, 144505 (2010).
20. R. Casalini, M. Paluch, and C. M. Roland, J. Phys. Chem. A 107, 2369 (2003).
21. T. C. Ransom, R. Casalini, D. Fragiadakis, and C. M. Roland, submitted to Journal of Chemical Physics (2019).
22. D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey, B. Jakobsen, T. Christensen, N. B. Olsen, T. B. Schroeder, D. Fragiadakis, R. Casalini, C. M. Roland, J. C. Dyre, and K. Niss, Nature Phys. 7, 816 (2011).
23. R. Casalini, R. F. Gamache, and C. M. Roland, J. Chem. Phys. 135, 224501 (2011).
24. R. Casalini, C. M. Roland, and S. Capaccioli, J. Chem. Phys. 126, 184903 (2007).
25. M. Paluch, J. Gapiński, A. Patkowski, and E. W. Fischer, J. Chem. Phys. 114, 8048 (2001).
26. Note that in Ref. [23] Eq. (4) is obtained considering that the isobaric fragility \(m = E_p/RT \ln(10) \).
27. R. Casalini and C. M. Roland, Colloid Polym. Sci. 283, 107 (2004).
28. C. M. Roland, R. Casalini, R. Bergman, and J. Mattsson, Phys. Rev. B 77, 012201 (2008).
29. C. M. Roland, S. Bair, and R. Casalini, J. Chem. Phys. 125, 124508 (2006).
30. I. Cibulková, L. Hnědkovský, and T. Takagi, J. Chem. & Eng. Data 42, 415 (1997).
31. P. W. Bridgman, in Proc. Am. Ac. Arts Sci., Vol. 61 (JSTOR, 1926) pp. 57–99.
32. G. P. Johari and E. Whalley, in Far. Symp. Chem. Soc., Vol. 6 (Royal Society of Chemistry, 1972) pp. 23–41.
33. D. Coslovich and C. M. Roland, J. Phys. Chem. B 112, 1329 (2008).
34. N. H. March and M. P. Tosi, Introduction to liquid state physics (Singapore: World Scientific, 2002).
35. W. G. Hoover and M. Rossj, Contemp. Phys. 12, 339 (1971).
36. Y. Hiyawari, H. Matsuda, T. Ogawa, N. Ogita, and A. Ueda, Prog. Theor. Phys. 52, 1105 (1974).
37. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schroder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
38. G. Tsoulou, V. G. Mavrantzas, and D. N. Theodorou, Macromolecules 38, 1478 (2005).
39. L. Bohling, N. P. Bailey, T. B. Schroder, and J. C. Dyre, J. Chem. Phys. 140, 124510 (2014).
40. R. A. Buckingham, Proc. Royal Soc. A 168, 264 (1938).