Detour global domination number of some graphs

C. Jayasekaran1* and S.V. Ashwin Prakash2

Abstract
In this paper, we introduce the concept detour global domination number of a graph. Also detour global domination number of certain classes of graphs are determined and some of its general properties are studied. A set S of vertices in a connected graph $G = (V,E)$ is called a detour set if every vertex not in S lies on a longest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbor in D. A set $H \subseteq V(G)$ is called a global dominating set of G if it is a dominating set of both G and \overline{G}. A set S is called a detour global dominating set of G if S is both detour and global dominating set of G. The \textit{detour global domination number} is the minimum cardinality of a detour global dominating set in G.

Keywords
Detour set, Dominating set, Detour Domination, Global Domination, Detour Global Domination.

AMS Subject Classification
05C12, 05C69.

1 Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Tamil Nadu, India.
2Research Scholar, Reg. No.: 20113132091001, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil- 629003, Tamil Nadu, India.

Affiliated to Manonmaniam Sundaranar University, Abishekapatni, Tirunelveli-627012, Tamil Nadu, India.
*Corresponding author: 1 jaya.pk@yahoo.com; 2 ashwinprakash00@gmail.com

Article History: Received 10 January 2020; Accepted 01 May 2020

©2020 MJM.

1. Introduction

By a graph $G=(V,E)$ we mean a finite, connected, undirected graph with neither loops nor multiple edges. The order $|V|$ and size $|E|$ of G are denoted by p and q respectively. For graph theoretic terminology we refer west[9]. A vertex v of G is said to be an extreme vertex if the subgraph induced by its neighborhood is complete. The set of all extreme vertices is denoted by $\text{Ext}(G)$. For vertices x and y in a connected graph G, the detour distance $D(x,y)$ is the length of a longest $x-y$ path in G. An $x-y$ path of length $D(x,y)$ is called an $x-y$ detour. The closed interval $I_{D[x,y]}$ consists of all vertices lying on some $x-y$ detour of G. For $S \subseteq V, I_{D[S]} = \bigcup_{x,y \in S} I_{D[x,y]}$. A set S of vertices is a detour set if $I_{D[S]} = V$, and the minimum cardinality of a detour set is the detour number $dn(G)$. A detour set of cardinality $dn(G)$ is called a minimum detour set [3].

A set $S \subseteq V(G)$ in a graph G is a dominating set of G if for every vertex v in $V-S$, there exists a vertex $u \in S$ such that v is adjacent to u. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G[4]. The complement \overline{G} of a graph G also has $V(G)$ as its point set, but two points are adjacent in \overline{G} if and only if they are not adjacent in G. A set $S \subseteq V(G)$ is called a global dominating set of G if it is a dominating set of both G and \overline{G}[8].

A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called an end vertex or a pendant vertex. A vertex that is adjacent to a pendant vertex is called a support vertex. A vertex of degree $p-1$ is called a full vertex. The set of all full vertices is denoted by $Fx(G)$. A cycle of length three is also a triangle and a graph G containing no triangles is called triangle-free.

\textbf{Definition 1.1.} Let $G = (V,E)$ be a connected graph with at least two vertices. A set $S \subseteq V(G)$ is said to be a detour global dominating set of G if S is both detour and global dominating set of G. The detour global domination number, denoted by $\gamma_d(G)$ is the minimum cardinality of a detour global dominating set of G and the detour global dominating set with cardinality $\gamma_d(G)$ is called the γ_d-set of G or $\gamma_d(G)$-
set.

Example 1.2. For the graph G in Figure 1.1, $S_1 = \{v_1, v_2\}$ is a detour dominating set of G so that $\gamma_d(G) = 2$. But, $S_2 = \{v_1, v_2, v_3\}$ is a detour global dominating set of G so that $\bar{\gamma}_d(G) = 3$.

![Figure 1.1](image)

2. Some basic results

In this section, we recall some definitions and basic results of detour number and detour domination number of a graph which will be used throughout the paper.

Theorem 2.1. [3] Every end vertex of G belongs to every detour set of G.

Theorem 2.2. [3] For a non-trivial tree, $dn(G) = k$, where k is the number of end vertices of G.

Theorem 2.3. [5] Every end vertex of G belongs to every detour dominating set of G.

Theorem 2.4. [5] Every isolated vertex of G belongs to every detour dominating set of G.

Theorem 2.5. [5] Every end vertex of G belongs to every detour global dominating set of G.

Theorem 2.6. Let $S \subseteq V(G)$ be a detour dominating set of G. Then S is a detour global dominating set of G if and only if S is a dominating set of G.

Theorem 2.7. Every full vertex of a connected graph G of order p belongs to every detour global dominating set of G.

Remark 3.1. There can be more than one $\bar{\gamma}_d$-set of G. For the graph G given in Figure 1.1, $\{v_1, v_2, v_3\}$, $\{v_2, v_3, v_5\}$, $\{v_3, v_4, v_5\}$ and $\{v_1, v_4, v_5\}$ are $\bar{\gamma}_d$-sets of G.

Theorem 3.1. Every end vertex of G belongs to every detour global dominating set of G.

Proof. Every detour global dominating set is a detour dominating set of G and hence the result follows from Theorem 2.3.

Theorem 3.2. Every isolated vertex of G belongs to every detour global dominating set of G.

Proof. By Theorem 2.4, every isolated vertex of G belongs to every detour dominating set of G. Hence, every isolated vertex of G belongs to every detour global dominating set of G.

Theorem 3.3. For any connected graph G, $2 \leq \gamma_d(G) \leq \bar{\gamma}_d(G) \leq p$.

Proof. Every detour dominating set contains at least two vertices and so $\gamma_d(G) \geq 2$. Since, every detour global dominating set is also a detour dominating set, it follows that $\gamma_d(G) \leq \bar{\gamma}_d(G)$. Also, the set of all vertices of G is a detour global dominating set of G and so $\bar{\gamma}_d(G) \leq p$. Thus, $2 \leq \gamma_d(G) \leq \bar{\gamma}_d(G) \leq p$.

Remark 3.5. All inequalities in Theorem 3.4 can be strict. For example, consider the graph G given in Figure 3.1, where we have $2 < \gamma_d(G) = 3 < \bar{\gamma}_d(G) = 4 < p = 6$. Also, in K_2 all the inequalities in the above theorem become sharp.

![Figure 3.1](image)

Theorem 4.1. Let $S \subseteq V(G)$ be a detour dominating set of G. Then S is a detour global dominating set of G if and only if S is a dominating set of G.

Proof. The proof is obvious from the Definition 1.1.

Theorem 4.2. Let $S \subseteq V(G)$ be a detour dominating set of G. Then S is a detour global dominating set of G if and only if S is a dominating set of G.

Proof. The proof is obvious from the Definition 1.1.

Theorem 4.3. Every full vertex of a connected graph G of order p belongs to every detour global dominating set of G.

Proof. Let S be a detour global dominating set of G and u be a full vertex of G. If $u \notin S$, then u is an isolated vertex in G. Hence, u is not dominated by any other vertices in G. Therefore, S is not a detour global dominating set of G, contrary to our assumption. Hence, $u \in S$.

Theorem 4.4. For any complete graph $K_p, (p \geq 2), \bar{\gamma}_d(K_p) = p$.

Proof. All the vertices are isolated vertices in the complement graph of the complete graph K_p. Therefore, the detour global dominating set must contain all the vertices of K_p and hence, $\bar{\gamma}_d(K_p) = p$.

Theorem 4.5. Let G be a connected graph of order $p \geq 3$. If $\gamma_d(G) = p - 1$, then $\bar{\gamma}_d(G) = p$.
Proof. Let G be a connected graph of order $p \geq 3$ and let $\gamma_d(G) = p - 1$. Then by Theorem 2.5, it is clear that $G = K_1, p - 1$. Also, G contains a full vertex. Therefore, by Theorem 3.7, $\bar{\gamma}_d(G) = p - 1 + 1 = p$. \qed

Remark 3.10. The converse of the Theorem 3.9 need not be true. For example consider any complete graph K_p of order $p \geq 4$. It is clear that $\bar{\gamma}_d(K_p) = p$. But $\gamma_d(K_p) = 2 \neq p - 1$.

Theorem 3.11. For any star graph $K_{1,p-1}$, $(p \geq 2)$, $\bar{\gamma}_d(K_{1,p-1}) = p$.

Proof. For $p = 2$, $K_{1,1-1} = K_{1,1,0}$. By Theorem 3.8, $\bar{\gamma}_d(K_{1,1,0}) = 2$. Now, assume $p > 2$. Let $V(K_{1,p-1}) = \{v_1, v_2, \ldots , v_{p-1}\}$, where v is the only vertex of degree $p - 1$ and each v_i is an end vertex adjacent to v. By Theorem 2.1, $S = \{v_1, v_2, \ldots , v_{p-1}\}$ is a detour set in $K_{1,p-1}$ because v lies on every $v_i - v_j$ detour path of S. Also, clearly S is a dominating set of $K_{1,p-1}$. But the complement of $K_{1,p-1}$ contains two components K_1 and K_{p-1} where $V(K_1) = \{u\}$ and $V(K_{p-1}) = \{v_1, v_2, \ldots , v_{p-1}\}$. Hence, $S_1 = V(G)$ is the detour global dominating set of $K_{1,p-1}$ and so $\bar{\gamma}_d(K_{1,p-1}) = p$. \qed

Theorem 3.12. For the path graph P_p, $(p \geq 4)$, $\bar{\gamma}_d(P_p) = \gamma_d(P_p) = \lceil \frac{p-2}{2} \rceil$.

Proof. Let $v_1v_2\ldots v_p$ be the path, $p \geq 4$. By Theorem 3.2, for any detour dominating set S, both v_1 and v_p is in S. If $p \equiv 0$ (mod 3), then $S = \{v_1, v_4, \ldots , v_{p-2}, v_p\}$ is a minimum detour dominating set of P_p. Similarly, if $p \equiv 1$ (mod 3) or $p \equiv 2$ (mod 3), then $S = \{v_1, v_4, \ldots , v_{p-3}, v_p\}$ or $S = \{v_1, v_4, \ldots , v_{p-1}, v_p\}$ is a minimum detour dominating set of P_p respectively and so $\gamma_d(P_p) = \lceil \frac{p-2}{2} \rceil$. Now we show that S is a detour global dominating set of P_p. In P_p, there are two types of vertices, end vertices are of degree 1 and $p - 2$ internal vertices are of degree 2. In P_p, v_1 is adjacent to every vertex while v_p and v_{p-1} is adjacent to every vertex rather than v_1 and v_p is adjacent to every vertex rather than v_p. Since, $v_1, v_p \in S$, S is a dominating set of P_p. By Theorem 3.6, S is a detour global dominating set of P_p and so $\bar{\gamma}_d(P_p) \leq \gamma_d(P_p)$. By Theorem 3.4, $\gamma_d(P_p) \leq \bar{\gamma}_d(P_p)$ and hence we conclude that $\bar{\gamma}_d(P_p) = \gamma_d(P_p) = \lceil \frac{p-2}{2} \rceil$. \qed

Theorem 3.13. For the cycle graph C_p, where $p \geq 6$, $\bar{\gamma}_d(C_p) = \gamma_d(C_p) = \lceil \frac{p}{2} \rceil$.

Proof. Let C_p be the cycle $v_1v_2\ldots v_pv_1$ where $p \geq 6$. If $p \equiv 0$ (mod 3), then $S = \{v_1, v_4, \ldots , v_{p-2}\}$ is a minimum detour dominating set of C_p. Similarly, if $p \equiv 1$ (mod 3) or $p \equiv 2$ (mod 3), then $S = \{v_1, v_4, \ldots , v_{p-3}\}$ or $S = \{v_1, v_4, \ldots , v_{p-1}\}$ is a minimum detour dominating set of C_p respectively and so $\gamma_d(C_p) = \lceil \frac{p}{2} \rceil$. Now we show that S is a detour global dominating set of C_p. By Theorem 3.6, it’s enough to prove that S is a dominating set of C_p. In C_p, every vertex is of degree 2 and C_p is a triangle free implies any two vertices in S dominates C_p. Thus, S is a detour global dominating set of C_p and so $\bar{\gamma}_d(C_p) \leq |S| = \gamma_d(C_p)$. By Theorem 3.4, we conclude that $\bar{\gamma}_d(C_p) = \gamma_d(C_p) = \lceil \frac{p}{2} \rceil$. \qed

Theorem 3.14. For the wheel graph $W_p = K_1 + C_{p-1}$ $(p \geq 6)$, $\bar{\gamma}_d(W_p) = 3$.

Proof. Let $v_1v_2\ldots v_{p-1}v_1$ be the outer cycle C_{p-1} and v be the central vertex of W_p. Then $deg(v) = p - 1$ and $deg(v_i) = 3$ for each $i \in \{1, 2, \ldots , p - 1\}$.

Consider, $S = \{v, v_i\}$, then S is a detour dominating set of W_p. Clearly $\bar{\gamma}_d(W_p) = K_1 \cup C_{p-1}$ where $V(K_1) = \{v\}$. Choose any vertex v_j from C_{p-1} such that $v_j \notin S$. Clearly, v_i and v_j dominates every vertex from C_{p-1}. Therefore, $S_1 = S \cup \{v_j\} = \{v, v_i, v_j\}$ is a minimum detour global dominating set of W_p and hence $\bar{\gamma}_d(W_p) = 3$. \qed

Theorem 3.15. For a complete graph K_p and $e \in E(K_p)$, then $\bar{\gamma}_d(K_p - e) = p - 1$.

Proof. Consider an edge $e = xy \in E(K_p)$. Let $S = \{x, z\}$ be a subset of $V(K_p - e)$, where z is distinct from both x and y. Then for every vertex $w \in V(K_p - e) - S$, there exists a $x - z$ detour path of length $p - 1$ containing all w. Hence, S is a minimum detour set of $K_p - e$. Also, $N[S] = V(K_p - e)$. Therefore, S is a dominating set of $K_p - e$. Let T be the set of all full vertices in $K_p - e$. Then, $T = V - \{x, y\}$ and hence $|T| = p - 2$ and $z \in T$. Clearly, $K_p - e = K_2 \cup (p - 2)K_1$, where K_2 is the edge xy. By Theorem 3.3, $S' = S \cup T$ is a minimum detour global dominating set of $K_p - e$. Hence, $\bar{\gamma}_d(K_p - e) = |S'| = |S \cup T| = |S| + |T| - |S \cap T| = 2 + p - 2 - 1 = p - 1$.

Theorem 3.16. For the graph $G = K_p - \{e_1, e_2\}$, obtained by removing the edges e_1 and e_2 from K_p, where $(p > 4)$, $\bar{\gamma}_d(G) = p - 2$.

Proof. The edges e_1 and e_2 are either adjacent or non-adjacent in K_p. We consider the following two cases

Case 1. e_1 and e_2 are non-adjacent edges in K_p

Let $e_1 = uv$ and $e_2 = xy$. Let $S = \{u, x\} \cup \{v, y\}$ be a subset of $V(G)$. Then for every vertex $t \in V(G) - S$, there exists a $u - x$ or $v - y$ detour path of length $p - 1$ containing all t. Hence, S is a minimum detour set of G and also a dominating set of G, since $N[S] = V(G)$. Let T be the set of all full vertices in G. Then, $|T| = p - 4$. Clearly, $G = 2K_2 \cup (p - 4)K_1$, where the $2K_2$'s are the edges e_1 and e_2 and the K_1's are the vertices in T. Hence, by Theorem 3.3, $S' = S \cup T$ is a minimum detour global dominating set of G and so $\bar{\gamma}_d(G) = |S'| = |S \cup T| = |S| + |T| - |S \cap T| = 2 + p - 4 - 0 = p - 2$.

Case 2. e_1 and e_2 are adjacent edges in K_p

Let y be the common vertex to both e_1 and e_2. Let $e_1 = xy$ and $e_2 = yz$. Let $S = \{u, y\}$ be a subset of $V(G)$, where u is distinct from x, y, and z. Then for every vertex $w \in V(G) - S$, there exists a $u - y$ detour path of length $p - 1$ containing all w. Hence, S is a minimum detour set of G and also a dominating set of G, since $N[S] = V(G)$. Therefore, S is a dominating set of G. Let T be the set of all full vertices in G then, $|T| = p - 3$ and $|S \cap T| = 2 + p - 4 - 0 = p - 2$.
\{x, y, z\} and \(N[T] = \phi\) in \(G\). Hence, \(\gamma_d(G) = |S'| = |S \cup T| = |S| + |T| - |S \cap T| = 2 + p - 3 - 1 = p - 2.\)

4. Conclusion

In this paper, we get a deep knowledge about detour global domination of some graphs. It has many applications in the field of social networking and modern technologies. For our future work we can extend it for large families of graphs.

Acknowledgment

The authors wish to thank the anonymous referees for their comments and suggestions.

References

[1] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, (1990).
[2] G. Chartrand, H. Escuadro and B. Zang, Detour distance in graph, *J. Combin. Math. Combin. Comput.*, 53 (2005), 75–94.
[3] G. Chartrand, N. Johns and P. Zang, Detour Number of a graph, *Util. Math.*, 64(2003), 97–113.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater *Fundamentals of Domination in Graphs*, Marcel Dekker,Inc., New York, (1998).
[5] J. John and N. Arianayagam, The detour domination number of a graph, *Discrete Mathematics, Algorithms and Applications*, 9(1)(2017), 1–10.
[6] A. Nellai Murugan, A. Esakkimuthu and G. Mahadevan, Detour Domination Number of a Graph, *International Journal of Science, Engineering and Technology Research (IJSETR)*, 5(2)(2016), 12–20.
[7] S. Robinson Chellathurai and X. Lenin Xaviour, Geodetic Global Domination in Graphs, *International Journal of Mathematical Archive*, (2018), 29–36.
[8] E. Sampath Kumar, The Global Domination Number of a Graph, *Journal of Mathematical and Physical Sciences*, 23(5)(1989), 377-385.
[9] D.B. West, *Introduction to Graph Theory*, Second Ed., Prentice-Hall, Upper Saddle River, NJ, (2001).