Hypoxia promotes differentiation of adipose-derived stem cells into endothelial cells through demethylation of ephrinB2

Ting Shang 1†, Shuaijun Li 1†, Yun Zhang 1, Laiya Lu 3, Lei Cui 1,3* and Fang Fang Guo 2*

Abstract

Background: Delivery of endothelial cells into the ischemic tissue is emerging as an alternative approach in revascularization of injured tissues by means of angiogenesis to restore organ function. Adipose-derived stem cells (ASCs) are a readily accessible source of the mesenchymal stem cell with rapid expansion and multidifferentiation potential. The view has emerged that endothelial cells (ECs) differentiated from ASCs is a step forward for adult vascular repair in regenerative medicine and construction of the blood vessel by tissue engineering approach.

Methods: In this study, differentiation of human ASCs (hASCs) into vascular EC lineage was induced by combined treatment of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-4 (BMP4) under hypoxia condition. The expression of CD31, VEGF-R2, and VE-cadherin was determined by immunofluorescent staining, real-time PCR, and western blot analysis. These differentiated cells acquired functional characteristics of mature ECs as determined by their tube formation ability, Dil-ac-LDL uptake, and nitric oxide secretion in vitro. The methylation status in the proximal promoter CpGs was determined by bisulfite sequencing.

Results: hASCs expressed endothelial cell markers including CD31, VEGF-R2, and VE-cadherin by combined treatment of VEGF and BMP4 under hypoxia condition. These differentiated cells exhibited the angiogenesis potential in vitro, and injection of these differentiated cells enhanced angiogenesis in the ischemic hindlimb of diabetic mice. Furthermore, it was found that hypoxia increased significantly EphrinB2 expression EC differentiation, which is greatly downregulated with EphrinB2 blockage. The methylation status in the proximal promoter CpG results showed that methylation of EphrinB2 promoter decreased in hASCs with exposure to hypoxia.

Conclusion: Our data demonstrate that hASCs can be efficiently induced to differentiate into vascular EC lineages which are mediated by demethylation of ephrinB2 under hypoxia condition.

Keywords: Hypoxia, Adipose-derived stem cells, Vascular endothelial cell, Demethylation, ephrinB2

Introduction

As a single cell forming the lining layer of blood vessels, vascular endothelial cells (ECs) play an essential role in maintaining vascular homeostasis by responding to an angiogenetic stimulus, regulating vascular permeability, triggering the process of thrombosis, and interacting with multiple components in blood flow [1]. Delivery of endothelial cells into ischemic tissue is emerging as an alternative approach in revascularization of injured tissues by means of angiogenesis to restore organ function. In this context, a potential source of ECs for augmenting vessel growth is adipose-derived stem cells (ASCs), which are readily harvested, relative abundance, and multipotent that are capable of differentiating into three germ layers [2]. Several studies have demonstrated that administration of ASCs into the ischemic tissue improved revascularization with direct participation in vascular structures [3, 4]. In addition, our previous study showed that ASCs can function as a paracrine source of growth factors to augment angiogenesis in ischemic...
random-pattern skin flaps in a diabetic mouse model [5]. Thus, the view has emerged that ECs differentiated from ASCs are a step forward for adult vascular repair in regenerative medicine and construction of the blood vessel by tissue engineering approach.

Within the process of angiogenesis, a variety of growth factors working as a network regulates differentiation, sprouting, and tube formation of ECs, among which vascular endothelial growth factor (VEGF) acts as a major regulator during the formation of primitive vascular [6]. In addition, bone morphogenetic protein-4 (BMP4) pathway was reported to act synergistically with VEGF in vasculogenesis during embryonic development. According to Boyd et al., the formation of the primitive vascular network in human embryonic stem cell-derived embryo was remarkably promoted by stimulation with BMP4 [7]. Given that ASCs reside in a native physiological niche with low oxygen, and a lower oxygen tension facilitates MSC differentiation towards EC lineage, we hypothesized that a hypoxia environment can accelerate the acquisition of EC phenotype by ASCs under stimulation with pro-angiogenic factors.

The Eph receptor tyrosine kinase family is the largest family of tyrosine kinases and includes at least 14 Eph receptors and 8 ligands. The Eph/ephrin family is differentially expressed in various human tissues and involved in embryonic vasculature development [8]. EphrinB2, which has been represented as a marker of arterial endothelial cells, was found to be upregulated during physiological and pathological angiogenesis in the adult [9]. Recently, it was reported by Wang et al. that ephrinB2 acts as a key regulator in VEGF-triggered angiogenesis by stimulating internalization of VEGFR3 in primitive EC specification from their progenitors [10]. However, whether ephrin-B2 involves in EC differentiation of ASCs remains to be elucidated.

In the present study, we investigated the effect of combined stimulation of VEGF and BMP4 on differentiation of ASCs towards EC lineage under hypoxia environment. We found that ephrinB2 plays a critical role in regulating EC differentiation by ASCs and that initiation of EphrinB2 expression triggered by low oxygen tension was a result of demethylation of EphrinB2 promoter.

Materials and methods
Isolation, culture, characterization, and differentiation of ASCs
Subcutaneous adipose tissue sites were obtained from 5 female donors (at an average age of 28 years) undergoing tumescent liposuction in accordance with procedures approved by the Ethics Committee. The adipose tissue was washed three times with phosphate-buffered saline (PBS) and digested with 0.1% collagenase type I (Gibco, Carlsbad, CA, USA) at 37 °C for 60 min. The digested lipoaspirates were centrifuged at 1200 g for 10 min to obtain a high-density stromal vascular fraction (SVF). The SVF collection was then treated with red blood cell lysis buffer (0.3 g/L ammonium chloride in 0.01 M Tris HCl buffer, pH 7.5, Sigma) for 5 min, centrifuged at 600 g for 10 min, and then filtered through a 40-μm strainer (BD Biosciences, Bedford, MA, USA). The cells were resuspended in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin, and plated in 100-mm culture dishes (Falcon, Oxnard, CA, USA) at a density of (4 × 10^4/cm^2 cells), with the medium changed every 2–3 days. When ~ 80–90% confluence was reached, cells were passaged and those at passage 3 were used in the following study. Multilineage differentiation capacity of hASCs was determined by their osteogenic, adipogenic, and chondrogenic differentiation which were detected with Alizarin red, Oil Red O staining, and immunohistochemical staining for collagen type II, respectively.

Induction of endothelial differentiation
At first, CD31- and flk-1-positive cells were removed by flow cytometry at passage 2. When reaching 70–80% confluence, ASCs at passage 5 were subjected to serum-free starvation for 24 h, followed by cultivation in different media under normoxia (21% O_2) and hypoxia (2% O_2) circumstances that assigned into 5 groups as follows: (1) DMEM supplemented with 10% FBS under normoxia as normal control; (2) EGM-2 supplemented with 50 ng/ml rhVEGF, 100 ng/mlBMP4, and 2%FBS under hypoxia; (3) EGM-2 supplemented with 50 ng/ml rhVEGF and 2%FBS under hypoxia; (4) EGM-2 supplemented with 100 ng/ml BMP4 and 2%FBS under hypoxia; (5) EGM-2 supplemented with 50 ng/ml rhVEGF, 100 ng/mlBMP4, and 2%FBS under normoxia; Human umbilical venous endothelia cells (hUVECs) maintained in EGM supplemented with 2%FBS served as a positive control. The culture media was changed every 2 days.

Immunofluorescence
Cells were fixed in 4% paraformaldehyde for 20 min at room temperature, permeabilized with methanol for 5 min, and blocked in 5% BSA. After PBS rinses, cells were incubated with primary antibodies against CD31, VEGFR2, VE-Cadherin, and EphrinB2 (Santa Cruz Biotechnology) overnight at 4 °C. After washing, cells were incubated with FITC-conjugated secondary antibodies and were viewed by a fluorescence microscope (Nikon, Tokyo, Japan).

For immunofluorescent staining of CD31-positive cells in the ischemic tissue, frozen sections were air-dried and fixed for 45 min in cold 4% PFA, followed by the same permeabilization and blocking procedures as cell culture. Tissue sections were incubated with FITC-conjugated...
anti-CD31 antibody at 4°C overnight, followed by washes with PBS at room temperature, and counterstained with DAPI (Life Technologies).

Flow cytometry analysis

For flow cytometry analysis, cells were harvested, fixed for 30 min in ice-cold 2% paraformaldehyde, and washed in flow cytometry buffer (FCB: 1 PBS, 2% FBS, 0.2% Tween 20). Single-cell suspensions of 10^6 cells/mL were incubated with anti-CD31-FITC, VEGFR2-FITC, and VE-cadherin-PE antibodies for 60 min on ice. After three further washes with PBS, flow cytometry was performed on a FACS Caliber flow cytometer (Becton Dickson, San Jose, CA, USA). In each experiment, an isotype-matched IgG control was also used.

Western blot analysis

Cells after induction for 14 days were suspended in cell lysis buffer (Fermentas, Vilnius, Lithuania) and sonicated. After centrifugation, the protein content in the supernatants was determined by a BCA protein quantification kit (Pierce Biotechnology). Sixty milligrams of proteins were added to Laemmli sample buffer and boiled for 10 min. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride membranes. The membranes were blocked with 5% dried fat-free milk in Tris-buffered saline containing 0.1% Tween 20. Incubation with primary antibodies was performed at 4°C overnight. Immunoreactive bands were visualized by using an IRDye 700DX-and IRDye 800CW-conjugated secondary antibody (Rockland Immunochemical, Gilbertsville, PA, USA), and proteins were visualized by the Odyssey system (LI-COR Biosciences, Lincoln, NE, USA). The western blotting results were quantified using Gel-Pro Analyzer (Version 4.5) software.

Quantitative real-time PCR

Total RNA was extracted by using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. The RNA concentration was determined by optical density at 260 nm (OD260), using a spectrophotometer (Nano drop ND-1000, Wilmington, DE, USA). Complementary DNA (cDNA) was synthesized from RNA using High-Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Foster City, CA, USA). The sequences of the gene-specific primers are shown in Table 1. Briefly, quantitative RT-PCR was performed using Fast Start Universal SYBR Green master (Roche) and CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The expression level of CD31, VEGFR2, VE-Cadherin, and EphrinB2 was analyzed and normalized to β-actin for each cDNA sample.

Table 1 Primers for qPCR

Gene	Primers (F=forward; R=reverse)	size (bp)
CD31	F: 5'-AACAGTGGTACATGAGGAGCC-3'	148
	R: 5'-TGTAAACACACGATTCCTTT-3'	
Flk-1	F: 5'-GGCCCAATATACGAGTGGCA-3'	109
VE-Cadherin	F: 5'-GATCAAGTCAAGGATGCAGC-3'	114
	R: 5'-AGGCCTCTCAAGTGCAAACAC-3'	
β-actin	F: 5'-ATCATGTTGAGACCTCTAA-3'	318
	R: 5'-CATCTCTGTGCTGAAGCACA-3'	

AC low-density lipoprotein (LDL) uptake

Cells were seeded into 6-well plates at a density of 5 × 10^4 cells per well and incubated with acetylated low-density lipoprotein DiI complex (10μg/mL, DiI AcLDL, Invitrogen Corporation, Carlsbad, CA, USA) for 24 h. Following removal of the medium, cells were washed three times with PBS and observed under fluorescent microscopy.

Capillary-like tube formation assay

After induction for 14 days, 5 × 10^4 cells in 500μl of EGM2 were plated onto 4-well Culture Slide (BD Biosciences, San Jose, CA, USA) that has been pre-coated with 150μl of growth factor-reduced Matrigel (BD Biosciences) per well. Sixteen hours later, the development of capillary-like networks was examined by phase-contrast microscopy. Tube formation was defined as four times in length than its width. Numbers of tubular branches were counted in 10 random fields per well (Image-Pro Plus) as previously reported [3].

Production of nitric oxide

NO concentration in culture supernatants was assayed by Greiss method according to manufacturer’s protocol. A standard curve was prepared using 0.1-mM sodium nitrite. The supernatant was collected, mixed with Greiss solution containing sodium nitrate (at concentrations 6.25, 12.5, 25, 50, 100, and 200 μM) and subjected to ELISA analyzer in 540 nm and 630 nm filters.

Administration of induced hASCs into the ischemic hindlimb in diabetic mice

Female BABL/C-nu/nu mice (4–6 weeks old, 15–25 g) were injected intraperitoneally with 65 mg/kg of streptozotocin (STZ, Sigma, St. Louis, MO, USA) in 0.9% sterile saline daily for 3 days. Mice with mean fasting blood glucose greater than 16.7 mmol/l were used for the creation of unilateral hindlimb ischemia. Briefly, after the femoral artery in the left hindlimb was exposed, a ligation was performed with 3–0 silk suture at the proximal portion of the artery. The distal portion of the saphenous artery,
other arterial branches and veins were isolated free and ligated. After surgery, mice were carefully monitored until they have completely recovered from anesthesia. Blood flow in the hindlimb was measured using a Laser Doppler perfusion imager (LDPI; Moor Instrument, Delaware, DE, USA). The ischemic mice were randomly assigned into 3 groups (n = 6 in each group) and received intramuscular injection of 4 x 10⁶ of ASCs labeled with fluorescent Dil (V-22885, Molecular Probes, Eugene, OR, USA) in 100 μl saline according to the manufacturer’s recommendations: group 1, ASCs cultured under hypoxia without induction for 14 days; group 2, ASCs induced with VEGF and BMP4 under normoxia for 14 days; and group 3, ASCs induced with VEGF and BMP4 under hypoxia for 14 days. The normal hindlimb without intervention was served as blank control.

Full-field laser perfusion imager (FLPI)

Detection of blood flow perfusion in the hindlimb was performed at 14 days after cell transplantation using FLPI (Moor instrument, UK) measurements. Briefly, the CCD camera was positioned 31 cm above the limb surface; a display rate of 25 Hz, time constant of 1.0 s, and camera exposure time of 20 ms were set for low-resolution/high–speed images. The contrast images were processed to produce a color-coded live flux image (red denoted high perfusion, blue signified low perfusion). Every measurement lasted at least 1 min, produced 10 image frames, and was acquired after blood flow had been stabilized under anesthesia. Mean values of perfusion were calculated from the stored digital color-coded images. The level of blood flow of the ischemic (left) limb was normalized to that of the non-ischemic (right) limb to avoid data variations caused by ambient light and temperature.

Bisulfite sequencing analysis

Genomic DNA was isolated using a DNeasy kit (Qiagen, Valencia, CA, USA). Bisulfite genomic sequencing was performed on 1 μg of genomic DNA using an EZ DNA Methylation-Direct Kit (Zymo Research, Irvine, CA, USA) in accordance with the instruction manual. Briefly, bisulfite-modified DNA was amplified using primers designed according to the online MethPrimer software (www.urogene.org/methprimer/). Purified PCR products were subcloned into the pMD19-T vector (TaKaRa, China). Three independent amplification experiments were performed for each sample. Three to four clones from each independent set of amplification and cloning were sequenced, in which a minimum of nine clones were selected for DNA sequencing (BGI, China). Bisulfite sequencing data and C-T conversion rates were analyzed by BIQ analyzer software.

Statistical analysis

Data were represented as the mean ± standard error of the mean. Quantitative data are presented as the means’ standard deviation (SD). The data were analyzed by two-tailed Student’s t test for means’ analysis to compare two data groups or ANOVA to compare three or more data groups. Statistically significant values were defined as p < 0.05.

Results

Differentiation of hASCs into ECs with the induction of VEGF and BMP4 under hypoxia

FAC analysis showed that hASCs were positive for CD13, CD44, CD90, CD105, CD166, and CD49d, but negative for CD14, CD31, and CD45 (Fig. 1A). Osteogenic, adipogenic, and chondrogenic differentiation of hASCs was determined by matrix mineralization, intracellular accumulation of lipid droplet, and collagen type II expression, respectively (Fig. 1B). To investigate whether hASCs could differentiate along endothelial cell pathway, we first treated hASCs with VEGF (50 ng/ml), BMP4 (100 ng/ml) alone, or in a combination of them, respectively, for 14 days under normoxia circumstances. Cells treated with VEGF and BMP4 in combination exhibited a spindle morphology under normoxia (Fig. 1C). It has been reported that hypoxia play a critical role in angiogenesis; we thus transfer hASCs of each group to a hypoxia (2%) environment. Under hypoxia condition for 14 days, hASCs treated with VEGF alone did not show an evident change in their morphology, while BMP4 alone treatment leads to a slight change to polygon shape (Fig. 1C). Subjecting to hypoxia resulted in remarked cell shape change, from spindle to typical cobblestone-like ones in the group that cells were treated with VEGF and BMP4 in combination (Fig. 1C). The proliferation of hASCs subjected to different circumstances within a duration of 14 days was determined by DNA assay using Hoechst 33258 dye. Our results showed that ASCs growing under normoxia, either treated with VEGF, BMP4 alone, or in combination, exhibited a comparable proliferation pattern as cells growing under normoxia alone. Hypoxia significantly suppressed the proliferation of ASCs that treated with VEGF, BMP4 alone, or in a combination of them (Fig. 1D).

To evaluate whether shape change of hASCs subjected to hypoxia is correlated to endothelial cell differentiation, expression of CD31, flk-1, and VE-Cadherin was determined by immunofluorescent staining, which showed that merely under hypoxia circumstances, cells treated with combined VEGF (50 ng/ml) and BMP4 (100 ng/ml) showed an evident increase compared to their corresponding controls (Fig. 2A). Furthermore, FACs analysis indicated that, as a result of exposure to hypoxia, CD31-, flk-1-, and VE-cadherin-positive cells reached 80.03 ± 0.71%, 81.80 ± 1.78% and 80.90 ± 0.26%,
respectively, in hASCs treated with the combination of VEGF and BMP4 (Fig. 2A). The expression of these markers was further assessed by real-time PCR and western blot, which revealed either mRNA levels or protein levels of these EC markers were greatly upregulated under hypoxia (Fig. 2C, D).

Next, we examined the angiogenic ability of hASCs in an in vitro model of tube sprouting. Cells from different groups were seeded within three dimensions for 16 h, and the formation of the tubular structure and spontaneous branching of neo-generated tubes were calculated. EC-hASCs showed robust capillary tube formation and branching in 3D gels. As determined by tube area and total loop number calculation, hypoxia-exposed hASCs treated with VEGF and BMP4 exhibited the most angiogenesis potential among different groups (Fig. 3A).

To ascertain whether EC-hASCs are able to incorporate ac-LDL, a function of which has been used to characterize endothelial cells, we incubated cells with Dil-ac-LDL and subsequently observed under fluorescence microscopy. As shown in Fig. 3B, take up of ac-LDL was remarked increased in EC-hASCs as compared with cells in other groups. Furthermore, EC-hASCs exhibited a comparable capacity in NO secretion as that of HUVEC controls, which is significantly higher than that of other groups (Fig. 3C).

Injection of induced hASCs enhanced angiogenesis in the ischemic hindlimb of diabetic mice
As we demonstrated that endothelial cells differentiated from hASCs possessed comparable angiogenesis capacity in the in vitro model, we thus explored their regenerative potential using a limb ischemia model. Hindlimb ischemic injuries were induced in recipient diabetic mice by ligation of the femoral artery, hASCs induced with VEGF and BMP4 together that either exposed to hypoxia or normoxia for 14 days were injected intramuscularly into the ischemic limbs. On day 14 after ligation, the occurrence of amputation, foot necrosis, and salvage in each group was calculated, and blood flow of the hindlimb was evaluated with FLPI. Injection of EC differentiated from hASCs exposed to hypoxia significantly improved limb salvage with reduction of amputation and foot necrosis occurrence as compared with mice injected...
with cells of controls (Fig. 4A). Further, we quantified analysis amputation, foot necrosis, and limb salvage of mice in each group (n = 6) (Fig. 4B). Accordingly, FLPI analysis showed significant improvement of blood flow in the limbs with transplantation of EC-hASCs (Fig. 4C). Quantification of blood flow recovery was performed as the ratio of the ischemic to the non-ischemic limb (from the knee to toe) in blood blow (Fig. 4D).

Immunofluorescent staining of CD31 revealed an increased distribution of the capillary vessels in the subcutaneous tissue from EC-hASC-treated group (Fig. 4E). According to the result of immunofluorescent staining, the percentage of CD31-positive cells was identified by quantitative analysis (Fig. 4F). These results suggest that EC-hASCs are effective in promoting angiogenesis in the ischemic tissue in vivo.

To determine whether injected ASCs participated in angiogenesis of the ischemic tissue, we labeled cells with fluorescent CM-DiI before transplantation. On day 14 after injection, labeled hASCs that induced under hypoxia were observed to be localized in a pattern of aggregation close to vasculature, some of which was incorporated in the vascular wall, indicating that ECs induced from hASCs directly involved in neo-generation of capillary vessels. However, little labeled cells could be detected in the wall of the blood vessels with the injection of either hASCs or induced hASCs exposed to normoxia (Fig. 4G).

EphrinB2 mediates endothelial cell differentiation of hASCs

Given that hASCs adopted a differentiation pathway towards the endothelial cell merely under hypoxia condition, we next evaluated at what degree did hypoxia affect EC differentiation by hASCs. As determined by real-time PCR and immunofluorescent staining, hypoxia stimulation resulted in an enhanced expression of CD31, Flk-1, and VE-cadherin under hypoxia condition. We found that hypoxia alone can increase EphrinB2 expression in a time-dependent manner, reaching its highest level after 36 h of exposure to hypoxia. Again, EphrinB2 expression was observed unchanged in
normoxia (Fig. 5C). Furthermore, in the process of endothelial cell differentiation by hASCs, real-time PCR results showed that the expression of EphrinB2 was greatly upregulated in hASCs induced by VEGF and BMP4 under hypoxia, reaching a comparable level to that in HUVECs. It is noticeable that exposure to hypoxia resulted in relative increase of EphrinB2 expression in different groups, whereas it is retained unchanged in cells exposed to normoxia (Fig. 5D). More importantly, with the addition of neutralizing EphrinB2-Fc as the previous report, the expression of CD31, VEGF-R2, and VE-cadherin distinctly decreased to similar levels of hASC controls without induction (Fig. 5E). To further investigate, the role of DNA methylation on EphrinB2 transcription that has been proved to mediate EC differentiation by hASCs, we examined the expression of EphrinB2 in EC-hASCs with addition of DAC (5-aza-dC), an inhibitor of DNA methyltransferase. Treatment with DAC at a concentration of 2.5 μM for 72 h clearly enhanced the expression of EphrinB2 in hASCs (Fig. 5F).
Bisulfate sequencing analysis was performed to investigate the methylation profile in the promoter regions of EphrinB2. The putative CpG islands were calculated with the EMBOSS CpG plot program. The DNA methylation status of the EphrinB2 promoter-associated CpG island (from −537 to and 863) was examined in three different individual ASCs treated by hypoxia for 36 h. As shown in Fig. 6, bisulfite sequencing analysis shows that EphrinB2 were demethylated greatly after hypoxia exposure (Fig. 6B, D, and F). However, EphrinB2 were retained methylated status after exposed to normoxia (Fig. 6A, C, and E). These results indicate that the EphrinB2 promoter region examined is strongly methylated in ASCs but displays demethylation in differentiation into endothelial cells.

Discussion
As a readily obtained adult mesenchymal stem cell, adipose-derived stem cells have been characterized in many studies by their intrinsic characteristics of self-renewal, long-term viability, multilineage differentiation capacity into cells of mesodermal origin (osteoblasts, chondrocytes, and adipocytes), and even non-mesodermal lineages (such as hepatocytes [11]). The number of ASCs in the adipose tissue is reported 100–500 times larger than that of bone marrow resident mesenchymal stem cell [12], which makes ASCs a promising cell source in therapeutic revascularization and regenerative medicine. In this study, we have generated vascular ECs from human ASCs. The induced cells exhibited EC surface marker profile and acquired mature...
EC functions of LDL uptake and tubular formation in vitro. More importantly, ECs that differentiated from hASCs improved substantially the revascularization when injected topically in an ischemic limb model.

The role of VEGF in modulating EC fate determination during the process of angiogenesis in ischemic or injured tissue administrated with stem cells is well documented. However, treatment with VEGF alone shows little effect on differentiation of ASCs towards endothelial cells. Given that the role of BMP4 in vascular and hematopoietic development was recognized recently, we chose BMP4 to act synergistically with VEGF to induce ASCs to differentiate to vascular ECs. ASCs failed to adopt an EC phenotype even under the combined stimulation of BMP4 and VEGF in our experiment. In fact, it has been previously revealed that oxygen concentration in the physiology niche that ASCs reside in the fat tissue is as low as 3% [13], indicating that a hypoxia microenvironment could be beneficial for differentiation of ASCs into vascular ECs. Furthermore, the expression of

Fig. 5 Differentiation of hASCs into vascular ECs is modulated through demethylation of ephrinB2 with exposure to hypoxia. Expression of CD31, Flk-1, and VE-cadherin under hypoxia condition was determined by a real-time PCR and b immunofluorescent staining. Scale bar: 50 um. c Real-time PCR analysis shows that hypoxia alone enhances expression of ephrinB2 in hASCs in a time-dependent manner. d Real-time PCR data showing that ephrinB2 expression was significantly increased in hASCs treated with VEGF and BMP4 in combination under hypoxia. e Expression of CD31, Flk-1, and VE-cadherin was significantly decreased with addition of neutralizing agent against ephrinB2 as determined by real-time PCR. f Expression of ephrinB2 was detected by real-time PCR at 72 h after addition of DAC (1.0 uM, 2.5 uM), respectively. Data are presented as mean ± SD. *P < 0.05
angiogenic growth factors such as VEGF and FGF-2 in ASCs were significantly increased under hypoxia conditions. We thus induced ASCs with a combination of VEGF and BMP4 under hypoxia environment. Exposure to hypoxia resulted in a significant increase in the expression of EC markers including CD31, flk-1, and VE-cadherin. However, either VEGF or BMP4 alone combined with hypoxia exposure shows no inductive effect on ASC differentiation. The induced ASCs under hypoxia not only exhibited the EC markers but also acquired EC functions including LDL uptake, NO production, and tubular formation in 3D culture in vitro. However, hypoxia itself did not stimulate the expression of EC markers in hASCs. These findings are consistent with the findings of other authors assessing the differentiation capacity of MSCs to endothelial cells under low oxygen tension [14, 15].

A number of studies have shown that ASCs secrete significant quantities of angiogenic factors. These findings further encouraged a series of in vivo studies that focused on evaluating the therapeutic potential of cells based particularly on their paracrine and angiogenic effects [16]. In this study, a significant increase of revascularization was found in an ischemic hindlimb model that received a topical injection of induced ASCs. Compared with animals received administration of non-induced ASC controls and ASCs induced with VEGF and BMP4 in combination under normoxia, mice administrated with hASCs induced

![Fig. 6](image)

hASCs that harvested from 3 individuals were exposure to hypoxia (b, d, f) and normoxia (a, c, e) for 36 h, respectively. The methylation level of CpG sites in ephrinB2 promoter was calculated with EMBOSS Cpgplots. Each black and open cycle represents a methylated and unmethylated CpG dinucleotide, respectively.
by VEGF and BMP4 in combination under hypoxia showed the highest salvage and lowest amputation rate. Evidence was also provided for the restored blood flow as observed by laser perfusion analysis. Furthermore, by labeling cells with DIL, we found the incorporation of labeled EC-hASCs in the vascular wall after injection for 14 days, indicating a direct participation of EC-hASCs in angiogenesis within the ischemic tissue. Together with the histological evidence showing elevated capillary vessel regeneration, these data clearly show that induced hASCs with exposure to hypoxia are capable of stimulating neo-vascular formation in ischemic tissues.

During both developmental and pathological angiogenesis, EphrinB2 has been revealed to play crucial roles in regulating VEGF receptor-2 internalization and down-regeneration, which is under control of EphrinB2 activation. Hypoxia exposure accelerates revascularization in an ischemic limb model. Induction of hASC differentiation into vascular endothelial cells provides a promising alternative of cell source for vascular tissue engineering and other therapeutic revascularization. In conclusion, this study demonstrates that, with exposure to hypoxia, a combination of VEGF and BMP4 induces the differentiation of hASCs into vascular endothelial cells which is under control of EphrinB2 activation. Hypoxia acts as a prerequisite for EC differentiation by hASCs and induces demethylation of EphrinB2 promoter region in hASCs. With exposure to hypoxia, a significant demethylation was detected in hASCs. The mechanism regulating demethylation of the EphrinB2 promoter by hypoxia exposure in hASCs needs to be elucidated. In accordance with our study, it was recently reported that hMSCs with stable knockdown of Dnmt1/ Dnmt3a were highly angiogenic and expressed several arterial-specific transcription factors and marker genes.

Conclusion

In conclusion, this study demonstrates that, with exposure to hypoxia, a combination of VEGF and BMP4 induces the differentiation of hASCs into vascular endothelial cells which is under control of EphrinB2 activation. Hypoxia acts as a prerequisite for EC differentiation by hASCs and induces demethylation of EphrinB2 promoter regions. Local injection of the induced ECs preconditioned with hypoxia exposure accelerates revascularization in an ischemic limb model. Induction of hASC differentiation into ECs provides a promising alternative of cell source for vascular tissue engineering and other therapeutic revascularization in the future.

Abbreviations

Abbreviation	Definition
VEGF	Vascular endothelial growth factor
BMP4	Bone morphogenetic protein-4
DIL	1,1′-Dioctadecy-3,3′,3″,3‴-tetramethyfluorescein carboxyanine perchlorate
EC	Endothelial cell
FBS	Fetal bovine serum
PBS	Phosphate-buffered saline
VEGF-R2	Vascular endothelial growth factor receptor-2
hASCs	Human adipose-derived stem cells
hUVECs	Human umbilical venous endothelia cells
LDL	Low-density lipoprotein
NO	Nitric oxide
ActRII-ID1/ID3-dependent pathway	

By Veeraraghavan et al. Stem Cell Research & Therapy (2019) 10:133
Acknowledgements
We thank the Beijing Yangfan Project (XMLX2.01611), Beijing Natural Science Foundation (No. L182074), and Chinese Natural Science Foundation (No. 81701845) for the financial support.

Funding
This work was supported by the Beijing Yangfan Project (XMLX2.01611), Beijing Natural Science Foundation (No. L182074), and Chinese Natural Science Foundation (No. 81701845).

Availability of data and materials
All data generated and/or analyzed during this study are included in this published article.

Authors’ contributions
LC and FFG designed the research. TS and SL performed most of the experiments and wrote the manuscript. YZ and LL assisted in the data analysis, discussion, and interpretation of the results. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The experimental protocol relating to the mouse was approved by the Beijing Shijitan Hospital Ethics Committee.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1. Department of Plastic Surgery, Beijing Shijitan Hospital affiliated to Capital Medical University, 10 Tieyi Road, Beijing, China. 2. Department of Plastic and Reconstructive Surgery, Zhongda Hospital, Southeast University, 87 Dingjiaqiao street, Nanjing, Jiangsu Province, China. 3. Department of Orthopedics, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China.

Accepted: 10 April 2019 Published online: 20 May 2019

References
1. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.
2. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13: 4297–99.
3. Sanz-Ruíz R, Santos ME, Munoa MD, Martin IL, Parma R, Fernandez PL, et al. Adipose tissue-derived stem cells: the friendly side of a classic cardiovascular foe. J Cardiovasc Transl Res. 2008;1:55–63.
4. Madonna R, Geng YJ, De Caterina R. Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol. 2009;29:1723–9.
5. Gao W, Qiao X, Ma S, Cui L. Adipose-derived stem cells accelerate neovascularization in ischaemic diabetic skin flap via expression of hypoxia-inducible factor-1alpha. J Cell Mol Med. 2011;15:2575–85.
6. Phng UK, Gerhardt H. Angiogenesis: A team effort coordinated by notch. Dev Cell. 2009;16:196–208.
7. Boyd NL, Dhara SK, Rekaya R, Godbey EA, Hasneen K, Rao RR, et al. BMP4 promotes formation of primitive vascular networks in human embryonic stem cell-derived embryoid bodies. Exp Biol Med. 2007;232:833–43.
8. Pasquali EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.
9. Gerety SS, Anderson DJ. Cardiovascular ephrinb2 function is essential for embryonic angiogenesis. Development (Cambridge, England). 2002;129: 1397–410.
10. Wang Y, Nakayama M, Pituësçu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-b2 VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465:483–6.
11. Liang L, Ma T, Chen W, Hu J, Bai X, Li J, et al. Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res. 2009;39:822–32.
12. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.
13. Pasarica M, Sereda OR, Redman LM, Albarbary DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58:718–25.
14. Rasmussen JG, Frobert O, Ilggaard L, Kastrup J, Simonsen U, Zachar V, et al. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy. 2011;13: 318–28.
15. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells (Dayton, Ohio). 2007;25:2563–70.
16. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17:279–90.
17. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pituësçu ME, Acker T, et al. Ephrin-b2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 2010;465:487–91.
18. Gerety SS, Wang HU, Chen ZT, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-b2 in cardiovascular development. Mol Cell. 1999;4:403–14.
19. Saliucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon SO, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:5576.
20. Daar IO. Non-SH2/PDZ reverse signaling by ephrins. Semin Cell Dev Biol. 2012;23:65–74.
21. Vihanto MM, Plock J, Enni D, Frey BM, Frey FJ, Huyhn-Do U. Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin. FASEB J. 2005;19:1689–91.
22. Sohl M, Lanner F, Farnebo F. Sp1 mediate hypoxia induced ephrinB2 expression via a hypoxia-inducible factor independent mechanism. Biochem Biophys Res Commun. 2010;391:24–7.
23. Kim JH, Peacock MR, George SC, Hughes CC. BMP9 induces EphrinB2 expression in endothelial cells through an Akt1-BMPR/ActrII-ID1-ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis. 2012;15:497–509.
24. Shrodkar AV, St Bernard R, Gavryushova A, Kop A, Knight BJ, Yan MS, et al. A mechanistic role for DNA methylation in endothelial cell (ec)-enriched gene expression: relationship with DNA replication timing. Blood. 2013;121:3531–40.
25. Lagarkova MA, Volchkov PY, Philonenko ES, Kiselev SL. Efficient differentiation of HESCs into endothelial cells in vitro is secured by epigenetic changes. Cell Cycle (Georgetown, Tex). 2008;7:2929–35.
26. Zhang R, Wang N, Zhang LN, Huang N, Song TF, Li ZZ, et al. Knockdown of BNMT1 and BNMT3a promotes the angiogenesis of human mesenchymal stem cells leading to arterial specific differentiation. Stem cells (Dayton, Ohio). 2016;34:1273–83.

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online acceptance
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions