Foundations of Quantum Mechanics according to my teachers.

P. B. Lerner

“There are three reasons foundation of quantum mechanics are similar to sex:

1. Everyone considers herself/himself an educated amateur;
2. Professionals are treated with suspicion”
And I forgot the third.

Introduction

In my long and unhappy professional life, I had fortune to meet and listen to some of the titans of the 20th century quantum physics: Nobelists R. Peierls, H. Bethe, V. L. Ginzburg, S. Haroche as well as non-Nobel cult figures such as E. Teller, F. Dyson, Y. Aharonov or Ya. B. Zeldovich. But whatever insights and snippets were provided by their public lectures or overheard in private conversations, none of them concerned the foundations of quantum mechanics. Yet, meetings I had with the physicists of a lesser stature, sometimes in the context of my college studies and some—outside of it, had enlightened me with respect to this, deservedly suspicious (see epigraph) branch of speculative physics.

1 Independent researcher; this treatise relies on personal recollection, so others could remember mentioned events differently. I am responsible for all the factual and conceptual errors. Excerpts from copyrighted work are reproduced under the “fair use” doctrine.

2 Folk wisdom; to my recollection I heard it at the presentation in the seminar of Prof. I. Walmsley (now at Imperial College) at U. Maryland, Baltimore, 1993.
Act I. Micromegas of Dr. D. A. Kirzhnitz (1926-1998)\(^3\)

Place: V. L. Ginzburg seminar on theory.

This photograph is not placed here as a formality. This is precisely how I remember him…

Nobelist V. L. Ginzburg for many years conducted a seminar on theoretical physics. There gathered the best physics minds from Moscow, environs and, frequently, from far away. A. D. Sakharov was a regular participant. A constant presenter on the current literature was D. A. Kirzhnitz, professor of his theory department at MFTI, my alma mater.\(^4\)

K. “I always thought that a wave function was not a physical characteristic of an object but a representation of our knowledge of an object, something like a record of our knowledge about the object. For the imaginary being of cosmic size, the conventional Newtonian mechanics would be much like our quantum mechanics and for a microscopic sentient being, her quantum mechanics will be more similar to our classical one”.

The allegory of the galactic animal is more transparent. Being limited to the scattering test of stars interacting with planetary systems, she would find a description in terms of scattering amplitudes more natural than our coordinates and momenta as a function of time. Moreover, because the trajectories of orbiting planets and their velocities would not be easily observable, and ruined after observation, they will be described in terms of stationary frequencies.

The opposite example of microscopic observer requires a little bit more imagination. At the first glance, the observer has to be of atomic size, which naturally obviates this example because then quantum mechanics has to be applied to its thinking process as well. But lo, the creature has to be only mesoscopic. Indeed, its size, for it to sample quantum trajectories directly, must be comparable to a typical atomic scattering length or coherence length in a superconductor.

\(^3\) Micromegas is a short novel by Voltaire.

\(^4\) Among the people who could be considered pupils of Prof. Kirzhnits, one can mention A. Linde (Stanford), one of the pioneers of Inflation, the theory.
Scattering lengths in the case of Feschbach resonances (or Ramsauer scattering) can be pretty large compared to atoms. For the mesoscopic observer, we can imagine the picture somewhat reminiscent to the Fig. 2-1 in Feynman and Hibbs [Feynman1965], or the representation of the quantum world similar to the representation of macroscopic reality provided to the bat by its echolocation.

Fig. 1. A) Imagined quantum trajectories between vision cells of a mesoscopic animal; B) The field of ultrasonic vision of the bat imagined by the author; C) Fictional mesoscopic animal field of vision of electron-photon scattering. It observes X-ray photons through photoeffect in the “vision cells” and electrons through the Compton scattering of “soft” optical photons.
Act II. K. A. Ter-Martirosyan (1922-2005)

Place: Moscow subway

Ter-Martirosyan’s younger years fell on the dawn of the Soviet nuclear program and he was not internationally famous. Yet, similarly to P. Ehrenfest two generations ago, he participated in the rearing of a number of world-caliber physicists: A. Voloshin, M. A. Shifman (U. Minn.) and my coursemate, late Ya. I. Kogan (U. Cambridge). Ter-Martirosyan never taught me personally, but as a participant of his seminar, the pupil and friend of some of his students, I recollect this encounter.

The last place I met him was Moscow subway, in 1986 or 1987 where we returned home—we lived along the same line—after Rudolf Peierls delivered his lecture in Kapitsa Institute (Institute for Physical Problems) as a harbinger of beginning perestroika. I noticed to K. A. his accented but excellent Russian—he had Russian-born wife, Eugenia Kanegisser—a member of Landau’s circle and the sister of executed poet and revolutionary terrorist Leonid Kanegisser.

On his question of my opinion of the lecture, I could not offer but a few laudatory platitudes. But Karen Aveticovich was nonplussed—Peierls talked about quantum properties of the particle—an old chestnut, “but the pertinent question now is the situation when the quantum properties of the measurement device start to manifest themselves”.

This was the end of our conversation because we reached his station but the fact, that many modern approaches to the foundations of quantum mechanics: QBism, decoherence, Quantum Darwinism, consistent histories—do not include “reduction” or “collapse of the wavepacket” testifies to the prescience of his remark. We do not need to draw an artificial boundary between the classical and quantum worlds—on the opposite, we have to explain the emergence of the observable, approximately Newtonian world from quantum mechanics and the theory of relativity.
I did not study with D. I. Blokhintsev—he taught at Moscow State University—but I used his textbook extensively and socialized with his grad students.

The origin of Blokhintsev’s views on foundations of quantum mechanics was ironic—after the Stalinist pogrom of Soviet biology in the aftermath of the Second World War, there were demands to apply Marxist-Leninist dogma to physics. Stalin was not supportive of these demands because he was informed that the imposition of “Marxist view” on physical sciences can threaten his nuclear bomb project. Yet, Dmitrii Blokhintsev as a true soldier of the Party responded to the call to reconcile quantum mechanics to “materialist” philosophy. What he produced was so ahead of his time that friend of Paul Dirac and Nobelist himself, Igor Tamm, who was a firm supporter of Copenhagen interpretation, exclaimed: “Why he writes all this nonsense? He could have known better”.

Namely, Blokhintsev proposed that what is called “the reduction of the wave packet”, namely the disappearance of the off-diagonal elements of the density matrix happens because of inevitable interaction of the observed quantum system with a measurement device. This point of view was later called “decoherence” and ascribed to H.-D. Zeh and V. Zurek. Because both grew up close to the Soviet sphere of influence it is hard to imagine that both of them were completely unaware of Blokhintsev’s textbook. [Blokhinstev1964, Blokhintsev1969]

I provide a photocopy of the pages from his book Quantum Mechanics, Select Problems [Blokhintsev88] to demonstrate, how close he came to decoherence. Namely, he produced a thought experiment with the measurement device consisting of a model potential (Fig. 2), in which a probe particle undergoes zero-point oscillations. When acted upon by an external particle, it slides from a very large potential barrier in the direction of momentum transfer. Because of large (i.e. “macroscopic”) dimensions of the confining potential, the interference terms between right-moving and left-moving wavepackets are negligible. Henceforth, though the wavefunction of the probe particle is symmetric with respect to rightward and leftward motion—a natural feature of the wave equations—because of large amplification of transferred momentum and a negligible tunneling matrix elements between the localized “left” and “right” states, the probe behaves practically as a Newtonian particle.

Further ahead of other versions of decoherence, Blokhintsev suggested from the beginning that interaction with a measurement apparatus could be enough in most cases, to provide decoherence, without attaching an external bath.6

5 The reputation of Vojczech Zurek as a great Quantum Mechanic seems secure enough with his “no-cloning” theorem and establishing continuity between wave and particle properties in quantum mechanics—both papers co-authored with W. Wootters—and can only be enhanced by recognition of Blokhintsev’s insights ahead of his time.

6 This idea was inverted by the author in co-authorship with Paolo Tombesi (Phys. Rev. A, 1993, 47(5):4436-4440), in which measurement procedure itself was described as an external bath of thermally excited oscillators. To my great consternation, the editors did not correct my (awful, at the time) English and the paper did not receive acceptance it deserved.
Leonid Ponomarev taught me quantum mechanics in the 1977-1978 school year. His outlook on the wavefunction (or density matrix) was pretty close to what we already discussed in the Abram Kirzhnits section—“the wavefunction as a notebook of our knowledge about quantum system”.

This analogy was expounded on in his popularization “Under the sign of quantum” illustrated by the pen graphics by the author himself (see [Ponomarev2007] and Appendix B). Leonid Ivanovich was so kind as to send the copy of this wonderful book to me in my Upstate NY wilderness.

Namely, he compared a wavefunction—the analogy with density matrix seems more appropriate because of a two dimensional visual representation—as the record of a chess party that used to be published in general-audience magazines and newspapers in the last century.

He asserted that, for instance, we do not know many details of the sensational 1927 match between Capablanca and Alexander Alekhine. We will never know positions and coordinates of the air particles, nor the exact number of attendants, the location of chairs and so on. But we have a transcript of their chess moves and that is all information we need to reconstruct the same game, at any time, any place (see the copy in Russian).

I would go even further: even in our “classical” world we rarely use Newtonian coordinates and momenta to plan our own movements! Imagine that one plans a trip to Italy. It would be totally impractical to work with coordinates and momenta. Instead, we mark a notebook, or now a smartphone with the places of interest, the most convenient routes and train schedules, etc. etc.

Even an absence of instantaneous one-to-one correspondence of particle with its coordinates and moment has a classical analogy. Imagine one’s “entanglement” with a wife. She has a conference in Verona and for the day X you planned to visit Roman amphitheater together after your return from trip to Bologna. But on the day X amphitheater was closed and your wife took a train to Bologna and bumped into you in one busy street before she informed you of the changing plans.

This analogy is not to suggest that our world, on some level, is Newtonian or Bohmian. But to find out that you and your wife are not quantum particles—what means that your de Broglie wavelengths are minuscule and you do not interfere (Ha! Ha!), or that your action is an
astronomical multiple of \(h \)–one needs some weird version of Bell’s inequalities and, anyway, one cannot make statistically reproducible experiments with one’s wife as scientists do with electrons. [Bell1987]⁷

Conclusion

There is no conclusion for the debate about foundations of quantum mechanics in sight. In the view of this author, the Many Worlds interpretation of quantum mechanics, which replaced Copenhagen interpretation as the one accepted by doyens of physical sciences, first and foremost, the cosmologists—cannot currently provide an example of experimentum crucis—to allow for its certain refutation or uncertain support. A commendable effort in this direction by Rauchiger and Brenner (FR2018) does not seem to be inconsistent with standard quantum mechanics (Lerner2019). Thank you, my teachers!

⁷For canonical form of Bell inequalities, see e.g. Bell, 1987, Chapter 7. Also, compare my “wife paradox” with beginning of his lecture in Chapter 16.
Appendix A. Excerpts from Blokhintsev’s 1988, providing more detailed rendering of the argument from his 1964 Principles of Quantum Mechanics. English version of similar material can be obtained from Blokhintsev, 1969.
Возникает необходимость для освещения вопроса о возможной взаимосвязи между критическими и несущими системами
(для получения информации о $p_u(0)$, а N_u частицы
на взаимосвязи на высоте H (для получения информа-
ции о $p_u(0)$). Другим интересным примером
на взаимосвязи в атомном реакторе, обозначенный в Габе (Западная
Африка), который существовал примерно два десятилетия тому назад и работал более восьми лет [25].

Весы, где в природе протекают химические процессы, мы имеем дело с квантовыми ассамблеями.
Такие ассемблинг обычно приводят к типу квантовых и других ассамблей.

Лекция 12: Пример взаимодействия микрочастиц с измерительным прибором

Рассмотрим пример, относящийся к микрочастицам, которые имеют массу и координату общность с веществом, для которых зависимость между координатой и моментом нелинейна. Предположим, что измерение, которое мы проводим, зависит от координаты x и момента p. Момент может быть отнесен к какому-то событию, и мы хотим узнать, какое направление движения импульса.

Уравнение верхнего конуса Φ_1 будет иметь вид $\Phi_1 = \psi_1(x)$. Положение функции верхнего конуса Φ_1 можно считать плоской.

Верхний конус имеет форму плоской кривой $\Phi_1 = \psi_1(x)$. Положение функции верхнего конуса Φ_1 можно считать плоской.

Уравнение нижнего конуса Φ_2 имеет вид $\Phi_2 = \psi_2(x)$. Положение функции нижнего конуса Φ_2 можно считать плоской.

Верхний конус имеет форму плоской кривой $\Phi_1 = \psi_1(x)$. Положение функции верхнего конуса Φ_1 можно считать плоской. **Уравнение нижнего конуса** Φ_2 имеет вид $\Phi_2 = \psi_2(x)$. Положение функции нижнего конуса Φ_2 можно считать плоской.

Верхний конус имеет форму плоской кривой $\Phi_1 = \psi_1(x)$. Положение функции верхнего конуса Φ_1 можно считать плоской. **Уравнение нижнего конуса** Φ_2 имеет вид $\Phi_2 = \psi_2(x)$. Положение функции нижнего конуса Φ_2 можно считать плоской.

Верхний конус имеет форму плоской кривой $\Phi_1 = \psi_1(x)$. Положение функции верхнего конуса Φ_1 можно считать плоской. **Уравнение нижнего конуса** Φ_2 имеет вид $\Phi_2 = \psi_2(x)$. Положение функции нижнего конуса Φ_2 можно считать плоской.

Верхний конус имеет форму плоской кривой $\Phi_1 = \psi_1(x)$. Положение функции верхнего конуса Φ_1 можно считать плоской. **Уравнение нижнего конуса** Φ_2 имеет вид $\Phi_2 = \psi_2(x)$. Положение функции нижнего конуса Φ_2 можно считать плоской.
Аналогично, выполняется, что при движении шарика в области \(-c < Q < c \) учитывается интерфер- ция состояний, приводящих к различным направ- лениям движения шарика. По достижении области \(Q > |c| \) шарик будет наделён вращением или нале- во, набрав как угодно большую энергию \(U_0 \). Этот вклад анализируемая функция нашего измери- тельного устройства: по вращению шарика справа или слева мы узнаем знак импульса частицы \(\mu \).

ЛИНЕЙНАЯ ТЕРМОДИНАМИЧЕСКАЯ НЕСТОЙКОСТЬ

В этой лекции рассматривается измерительный прибор, предложеный для определения направле- ния симметричности \(\mu \) [21]. Предполагается, что эта частица обладает магнитным моментом \(\mu \).

\[
\vec{\mu} = r(\vec{r}, \vec{r}'),
\]

где \(r(\vec{r}, \vec{r}') \) — скалярный вектор, а \(\vec{r}, \vec{r}' \) — радиус-векторы первичной и вторичной частиц соответственно. Функция \(\mu(\vec{r}, \vec{r}') \) определяется статистическим оператором \(R(\vec{r}, \vec{r}') \), имеющим матричные элементы:

\[
\hat{\mu}(\vec{r}, \vec{r}') = \hat{R}(\vec{r}, \vec{r}') \hat{\mu}(\vec{r}, \vec{r}') + \hat{R}(\vec{r}', \vec{r}) \hat{\mu}(\vec{r}, \vec{r}'),
\]

где \(\hat{R}(\vec{r}, \vec{r}') \) — матрица Паули. Пусть частица \(\vec{r} \) будет двигаться в направлении \(\hat{z} \) и \(\hat{R}(\vec{r}, \vec{r}') = R(\vec{r}, \vec{r}') \), где \(R(\vec{r}, \vec{r}') \) — скалярное волновое уравнение частицы. С помощью неопределенного поля, параллельного оси \(OZ \), пусть фаза \(\phi(\vec{r}) \) будет равна \(\phi(\vec{r}) = -\vec{r} \cdot \hat{z} \)

Половину функции \(\varphi(\vec{r}) \) — состояние частицы \(\mu \) и с проекцией спин на ось \(OZ \), равной \(\pm1/2 \), в волнах фаза \(\varphi(\vec{r}) \) представлена состоянием с проекцией спин на ось \(OZ \), равной \(\pm1/2 \). Эти состояния равнове- роятны, так что \(P_{\mu} = P_{\mu} = 1/2 \).

С помощью неопределенного поля, параллельного оси \(OZ \), пусть \(\varphi(\vec{r}) \) и \(\varphi(\vec{r}) \) можно разделить пространственно так, что каждая направлена в свой детектор \(D_1 \) или \(D_2 \) (см. рис.). Эта часть выполнена три- функцию — магнитное поле, воздействующее на осколок со стороны частицы \(\mu \). Это поле учитывает формулу:

\[
\chi(\vec{r}, \vec{r}') = R(\vec{r}, \vec{r}') \chi(\vec{r}, \vec{r}'),
\]

В этой формуле \(\chi(\vec{r}, \vec{r}') \) — магнитное поле, воздействующее на осколок со стороны частицы \(\mu \). Это поле вычисляется формулой:

\[
\chi(\vec{r}, \vec{r}') = R(\vec{r}, \vec{r}') R(\vec{r}, \vec{r}'),
\]

В этой формуле \(R = \) расторение от частицы \(\mu \) до осколка. Для нашей цели достаточно использовать рассмотрение двухмерной задачи. Будем считать, что осколок образуется в плоскости \(xy \) — кристаллического размера \(d_0 \). Далее будем считать, что длина волны частицы \(\mu, \psi \).

Предположим, что частица поляризована в направ- лении оси \(OZ \). При этом условиях скалярное произведение \(\langle \mu(\vec{r}) \rangle \) (13.4) равно нулю. Условие (13.4) позволяет записать волновую функцию в виде (13.4) на ее среднее значение, так что \(\langle \mu(\vec{r}) \rangle = \mu(\vec{r}) \langle \mu(\vec{r}) \rangle \), а затем выражение энергии взаимодействия частиц, и \(\mu \)-го осколка принимает простой вид:

\[
\langle \mu(\vec{r}) \rangle = \mu(\vec{r}) \langle \mu(\vec{r}) \rangle.
\]

Где частоты \(\omega = \omega(\vec{r}) \) — частота поля, \(\omega(\vec{r}) \) — частота \(\mu \)-го осколка — оператор проекции магнитного момента \(\mu \)-го осколка на ось \(OZ \), \(\mu \)-поло- дительный угол. Значения отличаются двух возможных характера спинов частиц. Достаточно ограничиться одной из возможностей.
Appendix B. Excerpt from the 2007 “Under the Sign of Quantum” by L. I. Ponomarev

говорится о том, что происходит с электроном в момент схвачения, так сказать, на полпути между двумя стационарными состояниями. А все, и Гейзенберг в том числе, по-прежнему делали абстрактные вычисления, не вынося их на этот вопрос. Но в какой-то момент ему стало ясно, что просто не существует на бывает «мгновенного» стационарного состояния, такого, которое у нас просто нет.

А что было дальше? Тем не менее, после этого утверждения, уже не было никаких доказательств. Они не являются уникальными. Но уже после этого, все они постепенно исчезли, но все же они, как некая особенность, являлись неким источником.

Дело в том, что, когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна проходит через атом, а когда излучение электронов в атоме удаляется от свободного состояния электрона, то объемная излучающаяся волна пр...
References

[Bell1987] Bell, J. S., *Speakable and Unspeakable in Quantum Mechanics*, Cambridge UP: Cambridge.

[Blokhinstev1964] Blokhintsev, D., *Principles of Quantum Mechanics*, Allyn and Bacon, Boston.

[Blokhintsev1969] Blokhintsev, D., *The Philosophy of Quantum Mechanics*, D. Reidel: Dordrect, Holland.

[Blokhintsev1988] Blokhintsev, D. I., *Quantum Mechanics. Lectures on Select Problems*, Moscow University Press (in Russian)

[Feynman1965] Feynman, R. P. and A. R. Hibbs, *Quantum Mechanics and Path Integrals*, McGraw Hill: New York, NY.

[FR2018] Frauchinger, D. and R. Renner, Quantum theory cannot consistently describe the use of itself, *Nature Comm.*, 9, 3711.

[Lerner2019] Lerner, P. B., Comment on Frauchiger and Renner paper (Nat. Commun. 9, 3711 (2018)): the problem of stopping times, arXiv:1906.02333 [quant-ph]

[Ponomarev2007] Ponomarev, L. I., *Under the Sign of Quantum*, Fizmatlit: Moscow.