GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages

Yi Rang Na, Daun Jung, Gyo Jeong Gu, and Seung Hyeok Seok*

Granulocyte-macrophage colony stimulating factor (GM-CSF) has a role in inducing emergency hematopoiesis upon exposure to inflammatory stimuli. Although GM-CSF generated murine bone marrow derived cells have been widely used as macrophages or dendritic cells in research, the exact characteristics of each cell population have not yet been defined. Here we discriminated GM-CSF grown bone marrow derived macrophages (GM-BMMs) from dendritic cells (GM-BMDCs) in several criteria. After C57BL/6J mice bone marrow cell culture for 7 days with GM-CSF supplementation, two main populations were observed in the attached cells based on MHCII and F4/80 marker expressions. GM-BMMs had MHCII_{−/−}F4/80^{hi} as well as CD11c^{−/−}CD11b^{hi}CD80^{hi}CD64[−]MerTK[−] phenotypes. In contrast, GM-BMDCs had MHCII^{hi}F4/80^{lo} and CD11c^{lo}CD11b^{hi}CD80[−]CD64^{hi}MerTK[−] phenotypes. Interestingly, the GM-BMM population increased but GM-BMDCs decreased in a GM-CSF dose-dependent manner. Functionally, GM-BMMs showed extremely high phagocytic abilities and produced higher IL-10 upon LPS stimulation. GM-BMDCs, however, could not phagocytose as well, but were efficient at producing TNFα, IL1-β, IL-12p70 and IL-6 as well as in anti-inflammatory macrophages in inflamed tissues, for example. Nonetheless, GM-BMMs still have some characteristics from M-BMMs that are similar to inflammatory macrophages and resident macrophages, and GM-BMDCs are overlap with in vivo resident macrophages and dendritic cells, respectively. Taken together, our study shows the heterogeneity of GM-CSF derived cell populations, and specifically characterizes GM-CSF derived macrophages compared to dendritic cells.

INTRODUCTION

M Granulocyte-macrophage colony stimulating factor (GM-CSF) mediates various signals for cellular proliferation and survival, especially in hematopoietic cells (Hercus et al., 2009). As one can easily suppose from its name, GM-CSF helps form hematopoietic progenitor colonies, which can differentiate into granulocytes or macrophages. Although serum GM-CSF levels are distinctively absent in the steady state, (Cheers et al., 1994; Cebon et al., 1994; Alveolar macrophages showed reduced TNF-α and leukotrienes, indicating that GM-CSF has tissue specific activity in alveolar macrophages (Paine et al., 2001). In addition, elicited peritoneal macrophages (Becker et al., 2012) as well as inflammatory dendritic cells (DCs) were also diminished in GM-CSF deficient mice suggesting that GM-CSF has a role in inflammation. For mice research, the relative numbers of macrophages to be obtained from mice are low so isolating sufficient numbers for comprehensive studies can be logistically burdensome. Therefore the majority of applications currently rely on the in vitro generation of macrophages from murine bone marrow (BM) cells with the appropriate haematopoietic growth factor M-CSF (Xu et al., 2007). M-CSF grown BM-derived macrophages (M-BMMs) are used commonly because of their resemblance to resident homeostatic macrophages, and M-CSF can produce relatively homogenous macrophage populations in vitro. In contrast, although GM-CSF grown BM-derived macrophages (GM-BMM) are also accepted as source of macrophages, (Murray et al., 2014) they are contaminated with other cell types, predominantly DCs. Nonetheless, GM-BMMs still have some value as a macrophage source (Fleetwood et al., 2007) because GM-BMMs have different functional and phenotypic characteristics from M-BMMs that are similar to inflammatory macrophages such as thioglycollate-induced peritoneal macrophages (Becker et al., 2012; Fleetwood et al., 2007). Thus there are some benefits to use GM-BMMs such as in screening anti-inflammatory drugs or investigating the biology of inflammatory macrophages in inflamed tissues, for example. However, general experimental protocols produce GM-CSF grown BM-derived dendritic cells (GM-GMDCs) as well as GM-BMMs. Thus, we need to clarify the exact characteristics and composition of each population.

In this study, we compared GM-BMMs and GM-BMDCs pro-

Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Korea

*Correspondence: lamseok@snu.ac.kr

Received 28 June, 2016; revised 18 September, 2016; accepted 19 September, 2016; published online 28 October, 2016

Keywords: dendritic cell, GM-CSF, macrophage, phenotype
duced in the same culture environment and found several differences. We found differences in cell surface markers, profiles of cytokine secretion, cell morphology, ability to phagocytize latex beads and ability to proliferate T cells. We also found that microarray profiling of GM-BMMs overlaps with resident macrophages, and GM-BMDCs overlaps with resident DCs in vivo. Thus, we present here the heterogeneity of GM-CSF generated bone marrow cells, and the functional and phenotypic characteristics of GM-BMMs and GM-BMDCs.

MATERIALS AND METHODS

Cell preparation

C57BL/6J mice were obtained from Jackson Laboratory. Male mice of five to ten weeks of age were used to isolate bone marrow cells. The mice were housed under specific pathogen-free (SPF) conditions and cared according to the Guide for the Care and Use of Laboratory Animals prepared by the Institution of Animal Care and Use Committee (IACUC) of Seoul National University. All of the experiments were approved by the IACUC of the Seoul National University (accession number SNU-130311-2-2). Isolated bone marrow cells from femurs and tibiae were cultured for 7 days at a density of 10^5/ml in RPMI medium (Thermo, USA) supplemented with 10% FBS (Gibco, Carlsbad, California, USA), 10 units/ml penicillin, 10 μg/ml streptomycin, 2 mM L-glutamine (Gibco, USA) (hereafter termed complete medium) and 25 ng/ml murine GM-CSF (Miltenyi Biotech, Germany) at 37°C in a humidified atmosphere with 5% CO2. On day 3, floating cells were discarded and fresh medium containing 25 ng/ml GM-CSF was added. Cells were further differentiated for 4 days with GM-CSF containing complete medium. Floating and attached cells were separately examined for their surface marker expressions and we obtained attached cells in this study by scraping after gently washing the culture plates with warm PBS twice.

Flow cytometry

Floating cells and attached cells were separately prepared for FACS analysis. Cells were then incubated for 20 min with antibodies diluted at the optimal concentrations in FACS buffer (PBS, 5% FBS, 5 mM EDTA, and 1% NaN3). LSRII (BD) was used for multiparameter analysis of stained cell suspensions, followed by analysis with FlowJo software (Tree Star) as described previously (Seok et al., 2013). Monoclonal antibodies to mouse F4/80 (BM8), CD11b (M1/70), IA/IE (M5/114.15.2), CD8α (53-6.7), CD115 (AFS98), FcγRI (MAR-1), Siglec F (ESO-2440, BD Biosciences), Ly6C (HK1.4), MerTK (clone 125518, R&D systems), CD64 (XS4-5/7.1, BD Biosciences), CD11c (HL3), CD80 (16-10A1, BD Biosciences), CD86 (GL1), and CD103 (2E7), were all from eBioscience, unless indicated. MHCII^high^F4/80^low^ populations and MHCII^low^F4/80^high^ populations were sorted with a FACSaria II (BD). Sorting purity was always checked and confirmed that was up to 95-98%.

Latex bead phagocytosis

Bone marrow cells were differentiated in a 12-well plate at a density of 10^5/ml for 7 days. After media change, cells were incubated with 1 μm diameter Alexa 350-tagged latex beads (Molecular Probe) for 2 h at 10°C concentration per well. Phagocytized beads counts were analyzed on a LSRII flow cytometer (BD Biosciences) and analyzed using FlowJo software. For imaging of beads phagocytized by DCs and macrophages, differentiated cells were sorted into DCs (MHCII^high^F4/80^low^ population) and macrophages (MHCII^low^F4/80^high^ population) and seeded in a 4-chamber well slide. After beads incubation for 2 h, attached cells were washed three times, fixed with 4% paraformaldehyde for 10 min, mounted and photographed using a Leica AF6000 fluorescence microscope.

Cytokine production

Sorted DCs and macrophages were seeded in 96-well plates at 5 × 10^2/200 μl with complete media and rested for 6 h. Cells were stimulated with LPS (100 ng/ml) or PolyI:C (50 μg/ml) for 24 h. Supernatants were collected and stored at -80°C until TNFα, IL-12p70, IL-6 and IL-10 quantification. For IL-1β quantitation, cells at 24 h time point were lysed in RIPA buffer and stored at -80°C. Cells in each well were analyzed for their protein concentration using the BCA assay kit (Thermo, USA) as a normalization factor for cytokine quantitation. Cytokine concentrations were determined using the duoset ELISA kit (R&D systems, USA).

Mixed leukocyte reaction

DCs and macrophages were sorted according to the above description. For M-CSF grown macrophages, C57BL/6J bone marrow cells were differentiated with 20% L929 culture supernatant for 7 days and sorted for the F4/80^+^CD11b^+^ population. To prepare T cells, Balb/c splenocytes were isolated and incubated in a 100μl dish for 2 h to remove attached cells. Floating splenocytes were collected and labeled with 5 μM CFSE (Molecular Probe) for 5 min at 37°C. Cells were washed with complete medium twice and seeded in a 96-well U bottom plate for mixed leukocyte reaction. Total 2 × 10^6 of antigen presenting cells and 10^5 of splenocytes were mixed and incubated for 5 days. CD4^+^ T cell proliferation was examined using FACS analysis.

Microarray analysis, normalization and data analysis.

RNA was prepared from sorted DCs and macrophages with Trizol reagent (Invitrogen, USA) according to the manufacturer’s instructions. Global gene expression analysis was performed using Affymetrix GeneChip® Mouse Gene 1.0 ST oligonucleotide arrays. Sample preparation was performed according to the instructions and recommendations provided by the manufacturer. Expression data were generated by Affymetrix Expressions Console software version1.1. For normalization, the RMA (Robust Multi-Average) algorithm was implemented in Affymetrix Expression Console software. Obtained microarray data of GM-BMDCs, GM-BMMs and M-BMMs in this study was assigned a GEO accession number GSE65425. Microarray gene expression data for lung DC, mesenteric lymph node CD8^+^ DC, splenic CD11b^+^ DC, thig-glycollate induced F4/80^high^ macrophage, lung CD11b^+^ macrophage and microglia were collected from the Immunological Genome Project (GSE15907) (Gautier et al., 2012; Heng et al., 2008). Expression data are pooled from 2 replicate microarray experiments.

For real-time PCR, cDNA was synthesized from 1-μg total RNA using M-MLT reverse transcriptase (Enzymics, Korea). Reverse-transcribed RNA (20 ng) was used as template for quantitative real-time PCR and set up in 96-well plates using Taqman Universal Mastermix II (Applied Biosystems, USA). The primers for RelB detection were: 5d-GTTCCAGTGA CCTCTCTTCCC-3′ (Forward), 5′-CAAAACCGTCTTCTCCT AATGTA-3′ (Reverse); for MafB detection were: 5′-GTTATA GGGAGGTCTAGG7T-3TAT (Forward), 5′-AAGCTCGTTT GCCTCTGAA-3′ (Reverse); for RelB detection were: 5d-GTTCCAGTGA CCTCTCTTCCC-3′ (Forward), 5′-CAAAACCGTCTTCTCCT AATGTA-3′ (Reverse); for MafB detection were: 5′-GTTATA GGGAGGTCTAGG7T-3TAT (Forward), 5′-AAGCTCGTTT GCCTCTGAA-3′ (Reverse).
GM-CSF Derived Macrophages and Dendritic Cells
Yi Rang Na et al.

RESULTS

GM-CSF generates various cell populations from bone marrow cells
As GM-CSF is known to induce the expansion of various myeloid lineages, we cultured bone marrow cells in the presence of GM-CSF for 7 days to examine the exact cell populations derived from GM-CSF in vitro culture. We found that attached cells were mainly composed of two populations, based on the MHCII and F4/80 expressions. We assumed that MHCIIhigh F4/80low and MHCIIlow F4/80high populations correspond to DCs and macrophages, respectively. These GM-CSF grown, bone marrow cell derived DCs (GM-BMDCs) comprised up to 18% of

CCGATGCAG-3' (Reverse), for Maf detection were: 5'-CTGC CGCTTCAAGAGGGTGCAG C-3' (Forward), 5'-GATCTCC TGCTTGAGGTGGTC-3' (Reverse). Gene expression levels were quantified using an ABI Prism 7900 sequence detection system (Applied Biosystems). The relative expression of each sample was normalized to 18Sr-RNA (Applied Biosystems) and compared with the controls according to the relative Ct method.

Statistical analysis
All data unless otherwise indicated are shown as mean ± SEM and were tested using two-tailed Student’s t test or two-way ANOVA using GraphPad Prism 4.
total attached cells. In contrast, GM-CSF grown bone marrow cell derived macrophages (GM-BMMs) were the main cells (57% of the attaching cells) of the mixed populations. Floating cells consisted of monocytes (CD115+CD11b+, 56.5±57% of the attaching cells) of the mixed populations. Floating cell derived macrophages (GM-BMMs) were the main cells of the total attached cells. In contrast, GM-CSF grown bone marrow cells with varying concentrations of GM-CSF. Bone marrow cells were differentiated with 5, 10, 25 or 100 ng/ml of GM-CSF for 7 days. Attached cells were examined for their population compositions of GM-BMDCs and GM-BMMs. Data are representative of three independent experiments. (B) Quantitative graph showing relative population compositions of GM-BMDCs and GM-BMMs examined in (A).

GM-CSF derived DCs and macrophages have distinct surface marker expressions

DCs and macrophages themselves show heterogeneous phenotypes in vivo (Hashimoto et al., 2011). To characterize GM-BMDCs and GM-BMMs more clearly, we next investigated the surface marker expressions of these cells in detail (Fig. 2). As expected, MHCII/F4/80GM-BMDCs expressed high levels of CD11c and CD11b. GM-BMMs expressed relatively higher levels of CD11b but lower levels of CD11c compared to GM-BMDCs (Fig. 2A). GM-BMMs also expressed more CD64 and MerTK, which are known resident macrophage markers (Gautier et al., 2012). CD80 expression was only observed on GM-BMDCs. Taken together, we show that GM-CSF differentiates mixed DC and macrophage populations with distinct marker expressions in that GM-BMDC has MHCII/F4/80lowCD11cCD80CD80 MerTKlow phenotype and GM-BMM has MHCII/F4/80highCD11cCD11blowCD80 highCD64*MerTKlow phenotype.

Macrophage population is increased dependent of GM-CSF concentration

GM-CSF concentration varies depending on inflammatory conditions in vivo. Because GM-CSF can induce different signaling pathways depending on the extracellular concentration (Hercus et al., 2009), we investigated dose dependent effects of GM-CSF on the ratio of DCs and macrophages differentiation in vitro culture conditions. We treated bone marrow cells with 5, 10, 25 and 100 ng/ml of GM-CSF and cultured them for 7 days. At 5 ng/ml, we could not distinguish DC and macrophage populations clearly in a MHCII and F4/80 scatter plot (Fig. 3A). Two populations were distinguished with treatment of 10 ng/ml of GM-CSF. At the usual concentration (25 ng/ml) of GM-CSF, the DC:macrophage ratio increased to 1:3~1:4 as already shown in Figs. 1 and 2. Interestingly, GM-BMDCs decreased in a GM-CSF dose-dependent manner. At 100 ng/ml, 67.3% of attached cells were GM-BMMs but only 7.6% was comprised of GM-BMDCs. A quantitative population graph of GM-BMDCs and GM-BMMs with various doses of GM-CSF is depicted in Fig. 3B. From this results, we can see that high dose of GM-CSF favors macrophage differentiation.

GM-BMMs have enhanced phagocytic ability compared to GM-BMDCs

Macrophages are efficient at phagocytosis and scavenging cellular debris in vivo. To compare the functional differences between GM-BMDCs and GM-BMMs, we first examined their phagocytic abilities. As expected, only 7.7% of MHCII/F4/80GM-BMDCs contained beads. In contrast, most MHCII/F4/80GM-BMMs (76.8%) had beads, illustrating their superior phagocytic ability (Fig. 4A). Bead count per cell was also significantly different between GM-BMDCs and GM-BMMs (Fig. 4B). The 7.3% of DCs had an uptake of 1 to 2 beads per cell, whereas 27.2% of macrophages had an uptake of more than 5 beads per cell. In accordance with this data, we obtained enriched phagocytosis gene ontology biological processes (GO: BP) in GM-BMMs by microarray analysis (Table 1). To observe any cellular morphology differences between the two populations, we seeded sorted GM-BMDCs and GM-BMMs in a chamber well slide, incubated them with latex beads and imaged them using fluorescence microscope (Fig. 4C). GM-BMDCs were relatively round and had many dendrites. On the other hand, GM-BMMs seemed to be flatter, had no evident dendrites and had many beads in their cytoplasm. Collectively, these results demonstrated that GM-CSF derived macrophages have sufficient phagocytic ability but DCs do not.
GM-CSF Derived Macrophages and Dendritic Cells
Yi Rang Na et al.

GM-BMDCs produce much more pro-inflammatory cytokines compared to GM-BMMs
Both DCs and macrophages are known to produce inflammatory cytokines and stimulate innate immune responses upon Toll-like receptor ligation. To study the cytokine responses of GM-BMDCs and GM-BMMs, we sorted the two populations and stimulated them with Myd88/TRIF dependent TLR4 agonist LPS or TRIF dependent TLR3 agonist Poly(I:C) for 24 h (Fig. 5). Interestingly, GM-BMDCs synthesized much more TNFα, IL-12p70 and IL-6 compared to GM-BMMs upon LPS stimulation. Conversely, GM-BMMs produce much more IL-10 than DCs.

GM-BMDCs have enhanced T-cell proliferation ability than GM-BMMs
DCs are professional antigen presenting cells with an ability to stimulate T cells (Banchereau and Steinman, 1998). To ascertain T cell proliferating ability of GM-BMDCs, we performed mixed leukocyte reaction (Fig. 6). CD11b*F4/80* M-CSF grown bone marrow derived macrophages (M-BMMs) were also examined to compare T cell proliferation ability. Sorted GM-BMDCs or GM-BMMs were mixed with allogeneic MHCII-carrying Balb/c splenocytes for 5 days and CFSE-labeled CD4 T cells were examined for their proliferation by flow cytometry. As expected, GM-BMDCs expanded T cells most extensively, resulting in the proliferation of 90.1% of CD4+ T cells (Fig. 6A). GM-BMMs and M-BMMs resulted in 65.3% and 40.9% of proliferated T cells, respectively. In support of this, we also obtained enriched GO:BP of antigen processing and peptide presentation or polysaccharide antigen presentation via MHC class II in DC population by microarray analysis (Table 2). A quantitative graph showing proliferated CD4+ T cells reveals sequential T cell stimulation abilities of GM-BMDCs, GM-BMMs and M-BMMs (Fig. 6B).

Whole transcriptome analysis shows that GM-BMDCs and GM-BMMs are clustered with tissue resident DCs and macrophages, respectively
Due to the ambiguity of characterizing cell populations using surface markers or specific functions, we sought to define GM-BMDCs and GM-BMMs based on their profiles of gene transcripts (Satpathy et al., 2012). Using gene hierarchical clustering and principal component analysis (PCA) of tissue resident DC and macrophage populations from the ImmGen Project (Gautier et al., 2012), we confirmed that in vitro-generated GM-BMDCs and GM-BMMs resemble organ DCs and macrophages, respectively. Surprisingly, GM-BMMs overlap with M-BMMs as well as CD11b+ lung macrophages, microglia and thioglycollate induced peritoneal macrophages, but not with GM-BMDCs (Fig. 7A). As shown in the PCA result of all expressed genes (Fig. 7B), although resident macrophages from three specific organs have diverse gene expression patterns compared to DC populations from mesenteric lymph node, lung and spleen, GM-BMDCs most resemble tissue resident DC populations, and GM-BMMs as well as M-BMMs most resemble resident macrophage populations when comparing 2 principle component criteria. Finally, we compared lineage specific transcription factor gene expressions by real-time PCR. Expression of RelB, a transcription factor of DC (Egawa et al., 2013), was significantly higher in sorted GM-BMDC than GM-BMMs (Fig. 7C). In contrast, gene expression levels of MafB and Maf, both of which are used as macrophage lineage specific markers, were higher in sorted GM-BMMs than GM-BMDCs (Fig. 7D). Collectively, our results indicated that GM-CSF generates mixed DC and macrophage populations in vitro culture conditions, and these share some degree of similarities to their corresponding in vivo populations.

DISCUSSION
GM-CSF grown bone marrow cells are widely used as a model system for DC development and function (Nikolic et al., 2003; Zhang et al., 1998), although bioinformatics analysis of their transcriptome indicates that they are closer to macrophages...
GM-CSF Derived Macrophages and Dendritic Cells
Yi Rang Na et al.

Fig. 5. Cytokine productions of GM-BMDCs and GM-BMMs. Sorted GM-BMDCs and GM-BMMs were seeded in 96-well plates at 5×10^5 cells per well. Cells were stimulated with LPS (100 ng/ml) or polyI:C (50 μg/ml) for 24 h. TNFα, IL-12p70, IL-6 and IL-10 in culture supernatants were quantified using ELISA. IL-1β was analyzed in the cell lysates using ELISA. Data are representatives of three independent experiments. Error bars, SEM, ***, p < 0.001 analyzed by one-way ANOVA with Bonferroni correction, n = 3.

Fig. 6. Mixed leukocyte reactions (MLR) of GM-BMDCs, GM-BMMs and M-BMMs. (A) Histograms showing CFSE-labeled CD4+ T cells after MLR mixed with C57BL/6J bone marrow derived cells. Gates indicate proliferated T cell percentages. GM-BMDCs and GM-BMMs were sorted into MHCIIhighF4/80low and MHCIIlowF4/80high populations after 7 days of differentiation of bone marrow cells with GM-CSF. M-BMMs were sorted into F4/80+CD11b+ population after differentiation for 7 days in 20% L-cell culture media. These cells were used as antigen presenting cells and mixed with Balb/c originated CFSE-labeled splenocytes at a 1:1 ratio (10^5 cells per well each). After 5 days of co-culture, floating cells were examined for their CFSE dye intensities after CD4 positive cell gating using flow cytometry. Data are representatives of three independent experiments. Error bars, SEM, ***, p < 0.001 compared by one-way ANOVA with Bonferroni correction, n = 3.

Quantitative graph indicating proliferated CD4+ T cell percentages mixed with GM-BMDCs, GM-BMMs and M-BMMs. Error bars, SEM, ***, p < 0.001 analyzed by one-way ANOVA with Bonferroni correction, n = 3.

than DCs (Crozat et al., 2010; Robbins et al., 2008). It was recently suggested that GM-CSF grown bone marrow derived macrophages are still acceptable as macrophage sources (Murray et al., 2014), however the authors worried about the contamination with DC populations. M-CSF grown macrophages, the preferred source for macrophages, show much similarity with tissue macrophages, but as we stated, GM-CSF grown macrophages have unique utility as an experimental platform to investigate inflammation specific exacerbated signaling pathways because they resemble inflammatory macrophages (Fleetwood et al., 2007). In fact, these GM-CSF grown macrophages could produce even more extensive proinflammatory cytokines compared to M-CSF grown, INFγLPS polarized macrophages (preliminary data). Despite the remarkable inflammatory phenotype of GM-CSF grown macrophages, there is much confusion about the use of these cells because they have been used as both macrophages and DCs without any guiding criteria (Bhattacharya et al., 2011; Chung et al., 2015; Ganesh et al., 2009). Consequently, we sought to distinguish amongst the heterogenous populations of GM-CSF derived cells and especially focused on characteristics of GM-BMMs compared to GM-BMDCs in this study.

It is not surprising that we found two populations in the attached cells based on F4/80 and MHCII expression (Fig. 1A), as GM-CSF is known to produce granulocytes, macrophages and DCs from common progenitor cells (Inaba et al., 1993). We
GM-CSF Derived Macrophages and Dendritic Cells

Yi Rang Na et al.

consider the MHCIIhighF4/80low population as GM-BMDCs in several aspects. They expressed high CD11c, showed a low phagocytic ability and had a standard DC-like morphology with small round shapes and many dendrites (Xu et al., 2007). In addition, they could expand T cells efficiently, with similar gene ontology enrichment of antigen presentation. Recently reported classical DC-specific genes including Zbtb46, Flt3, kit and ccr7 were all upregulated in GM-BMDCs compared to GM-BMMs and M-BMMs, further indicating their resemblance with DCs (Supplementary Fig. S1), rather than macrophages. As Xu et al. (2007) had reported that DCs derived in vitro with GM-CSF/IL-4 are the equivalents of induced inflammatory Tip-DCs in vivo, we also found that GM-BMDCs extensively produced TNFα upon LPS stimulation in this study, indicating their inflammatory DC phenotype.

Standard 25 ng/ml of GM-CSF concentration resulted in a domination of MHCIIhighF4/80low GM-BMMs among attached cells. We could omit the possibility of these cells as immature DCs (Mellman and Steinman, 2001) because they highly expressed F4/80 on their surface and had low gene transcripts of CD80 and CD86 compared to GM-BMDCs (Supplementary Fig. S1). Macrophage specific marker CD64 (Gautier et al., 2012) was only detected on the surface of GM-BMDCs, albeit not highly expressed. A substantial level of CD11c was also detected on GM-BMDCs, indicating that DCs are not the sole CD11c-positive cells. Actually the expression of F4/80 and CD11c often overlap in macrophages and DCs in nonlymphoid tissues, and our results show that GM-BMMs express F4/80, MHCII as well as CD11c like with colonic macrophages and lung macrophages (Miller et al., 2012). MafB and Maf, lineage specific transcription factors for macrophages, were also expressed higher in GM-BMMs compared to GM-BMDCs (Fig. 7C). Most of all, they demonstrated remarkable phagocytic ability, comparable to M-BMMs (data not shown), and showed a morphology typical of macrophages (Fig. 4). Enriched gene ontology biological process pathways in GM-BMDCs includes lysosome organization, phagocytosis, tissue remodeling, tissue homeostasis and response to wounding, all indicating macrophage specific functions of these cells (Table 1). Interestingly, the macrophage population increased in a GM-CSF concentration dependent manner, suggesting a preference toward macrophage development by newly infiltrated haematopoietic cells in a highly inflammatory environment.

In an effort to ensure the heterogeneity of GM-CSF derived cells, Helft et al. (2015) has been recently published an article in accord of most of our data. They found that CD11c$^{+}$CD11bhigh MHCIIhigh cell population, previously considered as immature BMDCs, actually corresponds to macrophage expressing CD64, CD115 and CD14 whereas CD11c$^{+}$CD11bInt MHCIIhi cell population, previously considered as immature macrophages, expressed higher in GM-BMMs compared to GM-BMDCs. Although they showed sufficient data supporting the existence of two populations in GM-CSF mouse bone marrow cultures, they originally focused on the characteristics of macrophages and showed decreased DC population in attached GM-CSF derived bone marrow cells. We also revealed GM-CSF dose-dependent formation of macrophages as well as their phagocytic abilities and pronounced IL-10 productions compared to GM-BMDCs. Our data will give relevant information to readers having interests in using GM-CSF derived macrophages.

Collectively, our results clarify the characteristics of GM-CSF grown, bone marrow derived murine macrophages. They have a MHCIIhighF4/80highCD11c$^{+}$CD64$^{+}$ phenotype and are efficient at phagocytosis. GM-CSF also simultaneously produces a MHCIIhighF4/80high attached DC population, but this rate of formation diminishes with increasing GM-CSF concen-
tration. Using mixed populations in experimental settings is common; however, it may be desirable to enhance macrophage purity as much as possible. This study might give useful information for researchers using bone marrow derived macrophages.

Note: Supplementary information is available on the Molecules and Cells website (www.molcells.org).

ACKNOWLEDGEMENTS
This work was supported by Bumsuk Academic Research Fund in 2014.

REFERENCES
Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252.

Beciker, L., Liu, N.C., Averill, M.M., Yuan, W., Peng, Y., Irwin, A.D., Fu, X., Bomford, K.E., and Heinecke, J.W. (2012). Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One 7, e33937.

Bhattacharya, P., Gopisetty, A., Ganesh, B.B., Sheng, J.R., and Prabhakar, B.S. (2011). GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J. Leukocyte Biol. 89, 235-249.

Cebon, J., Layton, J.E., Maher, D., and Morstyn, G. (1994). Endogenous haemopoietic growth factors in neutropenia and infection. Br. J. Haematol. 86, 265-274.

Cheers, C., Haigh, A.M., Kelso, A., Metcalf, D., Stanley, E.R., and Cebon, J., Layton, J.E., Maher, D., and Morstyn, G. (1994). Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. J. Leukocyte Biol. 56, 247-251.

Chung, S., Ranjan, R., Lee, Y.G., Park, G.Y., Karupurapu, M., Deng, J., Xiao, L., Kim, J.Y., Unterman, T.G., and Christman, J.W. (2015). Distinct role of FoxO1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia. J. Leukocyte Biol. 97, 327-339.

Crozat, K., Gulton, R., Guilliams, M., Henri, S., Baranek, T., Schwartz-Cornil, I., Malissen, B., and Dalod, M. (2010). Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. ImmunoL Rev. 234, 177-198.

Egawa, M., Mukai, K., Yoshikawa, S., Iki, M., Mukaida, N., Kawanou, Y., Minegishi, Y., and Karasuyama, H. (2013). Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 38, 570-580.

Fleetwood, A.J., Lawrence, T., Hamilton, J.A., and Cook, A.D. (2007). Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178, 5245-5252.

Ganesh, B.B., Cheatem, D.M., Sheng, J.R., Vasu, C., and Prabhakar, B.S. (2009). GM-CSF-induced CD11c+CD8α- dendritic cells facilitate Foxp3+ and IL-10+ regulatory T cell expansion resulting in suppression of autoimmune thyroiditis. Int. Immunol. 21, 269-282.

Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K.G., Gordonon, S., et al. (2012). Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118-1128.

Hashimoto, D., Miller, J., and Merad, M. (2011). Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323-335.

Helft, J., Böttcher, J., Chakravarty, P., Zelenay, S., Huotari, J., Schraml, B.U., Goubau, D., and Reis e Sousa, C. (2015). GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCIIC+ macrophages and dendritic cells. Immunity 42, 1197-1211.

Heng, T.S., Painter, M.W., and Immunological Genome Project, C. (2008). The Immunological Genome Project: networks of gene expression in immune cells. Nat. Methods 5, 1091-1094.

Hercus, T.R., Thomas, D., Guthridge, M.A., Ekert, P.G., King-Scott, J., Parker, M.W., and Lopez, A.F. (2009). The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114, 1293-1300.

Inaba, K., Inaba, M., Deguchi, M., Hagi, K., Yasumizu, R., Ikehara, S., Muramatsu, S., and Steinman, R.M. (1993). Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc. Natl. Acad. Sci. USA 90, 3038-3042.

Mellman, I., and Steinman, R.M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255-258.

Miller, J.C., Brown, B.D., Shay, T., Gautier, E.L., Jojic, V., Cohic, A., Pandey, G., Leboeuf, M., Elpek, K.G., Helft, J., et al. (2012). Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888-899.

Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S., Gordon, S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., et al. (2014). M-CSF, granulocyte-macrophage colony-stimulating factor: nomenclature and experimental guidelines. Immunology 41, 14-20.

Nikolic, T., de Bruijn, M.F., Lutz, M.B., and Leenen, P.J. (2003). Developmental stages of myeloid dendritic cells in mouse bone marrow. Int. Immunol. 15, 515-524.

Park, J.R., 3rd, Morris, S.B., Wilcoxen, S.E., Phare, S.M., Moore, B.B., Coffey, M.J., and Toews, G.B. (2001). Impaired functional activity of alveolar macrophages from GM-CSF-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1210-1218.

Robbins, S.H., Walzer, T., Dembele, D., Thibault, C., Defays, A., Bessou, G., Xu, H., Vivier, E., Seillars, M., Pierre, P., et al. (2008). Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 9, R17.

Saraiva, M., and O'Garra, A. (2010). The regulation of IL-10 activities: implications for CSF blockade in inflammation. J. Immunol. 184, 1705-1718.

Satpathy, A.T., Wu, X., Albring, J.C., and Murphy, K.M. (2012). Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145-1154.

Seok, S.H., Heo, J.I., Hwang, J.H., Na, Y.R., Yun, J.H., Lee, E.H., Park, J.W., and Cho, C.H. (2013). Angiopoietin-1 elicits pro-inflammatory responses in monocytes and differentiating macrophages. Mol. Cells 35, 550-556.

Xu, Y., Zhan, Y., Lew, A.M., Naik, S.H., and Kershaw, M.H. (2007). Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J. Immunol. 179, 7577-7584.

Zhang, Y., Harada, A., Wang, J.B., Zhang, Y.Y., Hashimoto, S., Naito, M., and Matsushima, K. (1998). Bifurcated dendritic cell differentiation in vitro from murine lineage phenotype-negative c-kit+ bone marrow hematopoietic progenitor cells. Blood 92, 118-128.