Residential Segregation and Emergency Department Utilization Among an Underserved Urban Emergency Department Sample in North Carolina

Carlene A. Mayfield, Brisa Urquieta de Hernandez, Marco Geraci, Jan M. Eberth, Michael Dulin, Anwar T. Merchant

BACKGROUND Residential segregation is a spatial manifestation of structural racism. Racial disparities in emergency department (ED) utilization mirror social inequity in the larger community. We evaluated associations between residential segregation and ED utilization in a community with known disparities and geographically concentrated social and health risk.

METHODS Cross-sectional data were collected from electronic medical records of 101,060 adult ED patients living in Mecklenburg County, North Carolina in 2017. Community context was measured as residential segregation using the dissimilarity index, categorized into quintiles (Q1–Q5) using 2013–2017 American Community Survey estimates, and residency in a public health priority area (PHPA). The outcome was measured as total ED visits during the study period. Associations between community context and ED utilization were modeled using Anderson's behavioral model of health service utilization, and estimated using negative binomial regression, including interaction terms by race.

RESULTS Compared to areas with the lowest proportions of Black residents (Q1), living in Q4 was associated with higher rates of ED utilization among Black/Other (AME = 0.11) and White (AME = 0.23) patients, while associations with living in Q5 were approximately equivalent (AME = 0.12). PHPA residency was associated with higher rates of ED utilization among Black/Other (AME = 0.10) and White patients (AME = 0.22).

LIMITATIONS Associations should not be interpreted as causal, or be generalized to the larger community without ED utilization. Health system leakage is possible but limited.

CONCLUSIONS Residential segregation is associated with higher rates of ED utilization, as are PHPA residency and other individual-level determinants.

While the primary function of US emergency departments (EDs) is to stabilize seriously ill or injured patients, they are increasingly becoming a safety net for medically underserved patients to meet care demands that are inaccessible from other parts of the health care system [1]. EDs serve all patients, regardless of their ability to pay [2]. Thus, as the most accessible entry point into the health care system, EDs are a mirror of community social inequity [3]. Racial disparities in emergency medicine outcomes are widely documented [4–6]. Compared to their White counterparts, Black patients have longer lengths of hospital stay [7], higher odds of injury-related mortality [8, 9], lower rates of hospitalization for heart failure [10], and higher rates of 30-day readmission [11]. Community-level indicators of social and economic inequity have emerged as important contextual determinants of racial health disparities that highlight the mechanisms of structural disadvantage. With an increasing burden of health care occurring in the ED [12], more evidence is needed to highlight the complex relationships between community-level contextual factors and ED utilization.

Research has demonstrated that race and other individual-level demographic factors are determinants of ED utilization. Black patients are more likely to utilize the ED for ambulatory care-sensitive conditions (ACSC), conditions that are treatable or preventable in a primary care setting [13, 14] and have higher rates of avoidable ED utilization [15–17]. A prior case study among ED patients living in Charlotte, North Carolina, demonstrated higher odds of ACSC-related ED utilization among Black patients (odds ratio [OR] = 1.63; 95% confidence interval [CI], 1.56–1.70) compared to White patients [18]. Insurance status is a well-documented determinant of ED utilization, with higher rates of frequent or heavy ED utilization among patients with Medicaid or Medicare insurance [19, 20] and among those without insurance [21]. Heavy ED utilization is also an indication of underlying chronic disease and unmet health...
needs among those who use the ED for avoidable or preventable health care [22] and those with heavy use of the larger ambulatory health care system [23].

Residential segregation is a fundamental cause of racial disparities in health outcomes [24]. As a mechanism of community context, residential segregation is a spatial manifestation of structural racism [25] that results in the geographic concentration of poverty and associated risk factors among minority race communities [26, 27]. Prior research is limited by methodological flaws in the measurement of residential segregation [28, 29]. Despite the availability of theory-based indices [30, 31], most health services researchers use racial/ethnic composition (e.g., % of race/ethnicity population in a geographic unit) as a proxy measure of segregation [32]. Measures of composition fail to capture complex spatial inequality because they do not account for racial clustering or relative differences within the larger geographic region [33]. Only two studies currently identified have applied formal index measures of residential segregation to evaluate associations with ED utilization. One study found that exposure increased the odds of asthma-related ED visits among Medicaid-enrolled children (OR = 1.04; 95% CI: 1.01–1.08) [34]. Another study found a significant interaction effect by race among adults with end-stage renal disease with higher odds of ED readmission among Black residents and lower odds among White residents [35].

Mecklenburg County, North Carolina is a community with recognized health and economic disparities [36]. The purpose of this study was to evaluate the relationship between residential segregation and ED utilization among community residents and assess the extent to which associations vary by patient race. To improve upon methodological flaws in prior studies, a theory-driven formula of residential segregation was used.

Methods

Setting

Atrium Health is the one of the largest vertically integrated health care systems in the United States, spanning North Carolina, South Carolina, and Georgia. The system’s 2017 footprint included 35 EDs with an average of over 4200 visits per day. With headquarters in Mecklenburg County, Atrium Health provides a majority of the emergency medicine in the surrounding community across 6 local EDs, while also serving a majority of the Medicaid-insured and uninsured populations. Public health priority areas (PHPAs), identified by the county health department as having disproportionately low educational attainment and high poverty, are the focus of ongoing social and public health intervention [37, 38]. The geographic concentration of social and health risk factors in this community, along with the availability of secondary data from of a robust electronic medical record (EMR) infrastructure, provided an ideal opportunity for an in-depth evaluation of the relationship between community context and ED utilization.

Conceptual Framework

We applied Anderson’s behavioral model of health service utilization [39] to conceptualize ED utilization through a framework of predisposing, enabling, and need factors. According to the model, predisposing factors represent demographic and social structures including race as an individual-level determinant and residential segregation as an indicator of community context. Enabling factors facilitate utilization of health services, such as having insurance coverage, while needs factors motivate service utilization and include indicators of unmet health care needs such as avoidable ED utilization and/or concurrent heavy utilization of the larger ambulatory health care system. A conceptual framework is presented in Figure 1.

Study Design and Data Sources

The study design was cross-sectional and covered the period January 1 to December 31, 2017. Data were obtained from Atrium Health EMRs and the US Census Bureau American Community Survey (ACS) 5-year 2013-2017 estimates [40]. The research protocol was approved by the Atrium Health Institutional Review Board (IRB) and exempt from review by the University of South Carolina IRB.

Sample

Individual-level data were obtained from EMRs (Cerner Corporation, Kansas City, Kansas) of patients aged 18 years and older living in Mecklenburg County who visited an Atrium Health ED during the study period (n = 101 810). Records were identified by the home address associated with the first visit to the ED during the study period. Patients who died (n = 721) were removed to reduce misclassification bias for the dependent variable because they do not have a comparable opportunity for health care utilization, along with unknown gender (n = 16), and those with extreme and potentially miscoded ages (n = 13). The final individual-level sample was 101 060. County data were downloaded from the ACS public use files as estimated population counts of Black and non-Black residents by Mecklenburg County ZIP code tabulation areas (ZCTAs).

Measures

Predisposing Factors

Residential segregation. The dissimilarity index formula [41] was adapted to measure residential segregation by ZCTA. Dissimilarity represents the percentage of a group that would have to move for each ZCTA to have the same proportions as the larger county, calculated as the difference between total counts of Black and non-Black residents by ZCTA relative to the larger county using the following formula: $B_i/B_{total} - B_i^c/B_{total}^c$ where B is the number of Black residents in ZCTA i, and B_{total} is the number of Black residents in the larger county, B_i^c is number of non-Black residents in ZCTA i, and B_{total}^c is the number of non-Black residents in the larger county. Our application of this
formula produced a continuous score for each ZCTA ranging from negative values, representing a fewer number Black residents, to positive values, representing a greater number of Black residents. Values were categorized into quintiles for analysis, with quintile 1 (Q1) representing the bottom 20% of the distribution (i.e., areas with the lowest proportions of Black residents) and quintile 5 (Q5) representing the top 20% of the distribution (i.e., areas with highest proportions of Black residents). Patient home address ZCTAs were scored by quintile. Quintiles were analyzed in regression models using a categorical variable with Q1 serving as a reference group. This method has been applied in prior research to rank areas using a continuous index of geography-based exposure to sociodemographic risk factors [42].

Continuous scores were compiled into an index measuring residential segregation in the overall county using the standard dissimilarity index formula: \[\frac{1}{2} \sum_{i=1}^{N} |B_i/B_{total} - B_{i}^c/B_{total}^c|\]. The index ranges between 0 and 1 with a value ≥ 0.6 indicating high segregation, 0.3–0.6 indicating moderate segregation, and ≤ 0.3 indicating low segregation between ZCTAs relative to the larger county.

Public health priority area residency. A binary variable (Yes versus No) was created to indicate living in one of 6 ZCTAs identified as PHPAs: 28217, 28208, 28216, 28206, 28205, and 28212, as a proxy measure for exposure to concentrated social and health risk.

Demographics. Race was categorized into White, Black, and other/unknown groupings for analysis. Other characteristics adjusted for in the analysis were: gender (male or female), ethnicity (Hispanic/Latino and non-Hispanic/Latino), and age, defined as a continuous variable.

Enabling and Needs Factors

Insurance coverage. The primary source of payment indicated for the first visit in the study sample was used as a proxy for socioeconomic status using the categories Medicaid, Medicare, private, other, or uninsured. Patients indicating “self-pay” were recoded to represent the uninsured.

Ambulatory care utilization. The total number of visits to ambulatory care (AC) was measured as the total number of unique encounters to Atrium Health facilities under the specialty categories of: Allergy, Cardiovascular, Dermatology, Endocrinology, Family Medicine, Internal Medicine, Primary Care Behavioral Health, Rheumatology, Sleep Medicine, Sports Medicine, Urgent Care, and General Obstetrics and Gynecology. Total AC visits were categorized into 0 visits, 1 visit, and >1 visit levels.

Avoidable emergency department utilization. The avoidability of ED visits during the study period was determined using the New York University Emergency Department algorithm (NYU Algorithm), a validated classification system that estimates the probability of an ED visit as being: 1) nonemergent, 2) emergent, primary care treatable, 3) emergent, preventable or avoidable, and 4) emergent, not preventable or avoidable [43]. Visits for drug and/or alcohol use, mental health conditions, and injury are separated from the avoidability classification, including those visits that are unable to be classified by the algorithm. Visits were classified as avoidable if the probability of categories 1-3 was 50% or greater, and consistent with prior research [44, 45]. Avoidable ED utilization (AED) was quantified in the analysis as a binary variable (Yes versus No) to indicate if a patient had any ED visit during the study period classified as avoidable.

FIGURE 1. The Anderson Model of Health Care Utilization to Explain the Relationship Between Residential Segregation, Race, and Emergency Department Utilization
TABLE 1.
Patient Characteristics by Community Context Factors (N = 101,060)

Characteristic	Residential Segregation Quintile	Total						
	Q1 No. (%)							
	Q2 No. (%)							
	Q3 No. (%)							
	Q4 No. (%)							
	Q5 No. (%)							
	Total No. (%)							
	Yes No. (%)							
	No. (%)							
Insurance Coverage								
Medicaid	1,415 (8.60)	1,732 (16.19)	2,286 (15.51)	4,090 (19.73)	8,034 (20.90)	7,677 (22.77)	9,880 (14.67)	17,557 (17.37)
Medicare	3,850 (23.41)	2,001 (13.87)	2,002 (10.05)	5,469 (14.23)	4,488 (13.31)	11,333 (16.83)	15,821 (15.66)	
Private	7,888 (47.95)	4,112 (21.32)	6,000 (30.71)	32,54 (32.38)	12,445 (32.48)	26,444 (36.49)	37,190 (36.80)	
Other	219 (1.30)	131 (1.22)	257 (1.45)	300 (1.45)	516 (1.34)	409 (1.21)	1,014 (1.41)	1,423 (1.41)
Uninsured	3,077 (18.71)	2,725 (16.19)	4,195 (25.46)	7,097 (34.23)	11,975 (31.15)	16,846 (36.06)	29,069 (29.06)	
Gender								
Female	9,563 (58.14)	6,296 (38.84)	8,434 (56.98)	11,812 (57.16)	22,587 (57.16)	19,268 (58.26)	27,921 (58.80)	58,692 (58.08)
Male	6,886 (41.86)	4,405 (21.16)	6,306 (30.17)	8,919 (13.31)	15,852 (13.31)	14,441 (16.63)	27,927 (15.82)	42,368 (11.92)
Age								
Mean (SD)	47.56 (20.03)	44.29 (18.60)	42.07 (16.53)	39.89 (16.48)	41.08 (15.96)	40.72 (18.09)	42.38 (17.44)	42.38 (17.44)
Race								
White	9,963 (60.57)	4,498 (58.84)	4,447 (56.98)	3,426 (15.34)	4,898 (15.34)	4,490 (15.34)	22,742 (33.77)	27,232 (26.95)
Black	3,461 (21.04)	4,372 (21.86)	7,228 (14.04)	12,864 (72.61)	27,912 (70.58)	23,793 (47.58)	32,044 (55.25)	55,837 (55.25)
Other/Unknown	3,025 (18.39)	1,831 (17.11)	3,065 (16.53)	4,441 (16.44)	5,629 (16.10)	5,426 (18.66)	12,565 (18.66)	17,991 (17.80)
Ethnicity								
Non-Hispanic/Latino	12,920 (78.55)	8,318 (77.73)	11,626 (78.87)	16,042 (77.38)	30,941 (80.49)	27,181 (80.63)	52,666 (78.20)	79,847 (79.01)
Hispanic/Latino	1,619 (9.84)	1,153 (10.77)	2,099 (14.24)	2,912 (14.05)	3,755 (14.17)	3,865 (14.17)	7,674 (14.12)	11,539 (11.42)
Declined/Unknown	1,910 (11.61)	1,230 (11.49)	1,015 (6.89)	1,716 (8.57)	3,743 (14.17)	2,663 (14.17)	7,011 (14.17)	9,674 (9.57)
AC Utilization								
0 visit	8,628 (52.45)	6,389 (59.70)	9,913 (67.25)	9,913 (70.74)	26,878 (69.92)	24,433 (72.48)	42,040 (62.42)	66,473 (65.78)
1 visit	1,177 (71.6)	774 (72.3)	599 (6.51)	1,371 (6.61)	2,557 (6.65)	2,177 (6.46)	4,661 (6.92)	6,838 (6.77)
>1 visit	6,644 (40.39)	3,538 (33.06)	3,868 (26.24)	4,695 (22.65)	9,004 (23.42)	7,099 (21.06)	20,650 (30.66)	27,749 (27.46)
AED Utilization								
Yes	8,965 (54.50)	6,320 (59.06)	9,280 (62.96)	13,456 (64.91)	25,107 (65.32)	22,615 (67.09)	40,513 (60.15)	63,128 (62.47)
No	7,484 (45.50)	4,381 (40.94)	5,460 (37.04)	7,275 (35.09)	13,332 (34.68)	11,094 (32.91)	26,838 (39.85)	37,932 (37.53)

Abbreviations. SD, standard deviation; AC utilization, ambulatory care utilization; AED utilization, avoidable emergency department utilization

*Residential segregation quintiles (Q1-Q5) calculated using continuous scores from the dissimilarity index formula [41] as the difference between total counts of Black and non-Black residents by ZCTA relative to the larger county. Q1 depicts areas with the lowest relative proportions of Black residents and Q5 depicts areas with the highest relative proportions of Black residents.

*AC utilization calculated as the total number of unique encounters to Atrium Health facilities defined under the specialty categories of: Allergy, Cardiovascular, Dermatology, Endocrinology, Family Medicine, Internal Medicine, Primary Care Behavioral Health, Rheumatology, Sleep Medicine, Sports Medicine, Urgent Care; and General Obstetrics and Gynecology.

*AED utilization was classified using the New York University Algorithm [43] as having at least 1 emergency department visit during the study period with a combined probability of nonemergent, emergent primary care treatable, or emergent preventable or avoidable utilization as 50% or greater.
Outcome

The total number of ED visits was calculated as the total billed unique ED encounters by individual, identified by a unique patient identification number.

Analyses

Descriptive statistics were used to quantify demographic differences between levels of exposure to community context factors (quintiles and PHPA residency). The associations between predisposing (quintiles, PHPA residency, and race), enabling (insurance coverage), and needs (AC utilization and AED utilization) factors and the outcome of ED utilization were modeled using a zero-truncated negative binomial regression to account for overdispersion and the absence of zero responses [46], adjusted for gender, ethnicity, and age. The significance of the overdispersion parameter was tested using Poisson regression models for comparison. Estimates were exponentiated and interpreted as incident rate ratios. Due to high collinearity between community context factors, 2 distinct versions of the model were estimated with either quintiles or PHPA residency included as the primary exposure of interest.

To evaluate the extent to which race impacts the relationship between community context and ED utilization, an interaction term between each exposure and race was tested for significance. Models with significant interaction terms were stratified by race and estimates were reported for each race stratum as average marginal effects in alignment with best practices [47]. Standard errors for all models were estimated using block bootstrap (with blocks defined by ZCTAs) with 50 replications to account for correlation between patients by ZTCA. Statistical significance was considered as a P-value of less than 0.05. All analyses were performed using R version 3.5.1 [48].

Results

The study sample consisted of 101 060 Mecklenburg County residents who visited an Atrium Health ED during 2017. Characteristics of the sample are presented in Table 1 across levels of exposure to community context factors. The overall county dissimilarity index score was 0.38 on a 0–1 scale, indicating moderate segregation and a 38% difference in the proportions of Black and non-Black residents between ZCTAs compared to the proportions in the overall county. Quintiles are visualized in Supplemental Figure A.

Results from regression analysis including quintiles as a measure of community context are presented in Table 2. No significant associations between quintiles and ED utili-
zation were observed. Black patients (versus White) had a 6% higher rate of ED utilization (incident rate ratio [IRR] = 1.06; 95% CI, 1.02–1.10). Having Medicaid insurance (versus private insurance) was associated with a 44% higher rate of ED utilization (IRR = 1.44; 95% CI, 1.40–1.49). A similar association was observed among those who were uninsured, although the magnitude of effect was notably smaller. Patients without AC utilization during the study period had an 8% lower rate of ED utilization (IRR = 0.92; 95% CI, 0.91–0.93) compared to those with more than one AC visit. Having at least one AED visit during the study period was associated with a 62% higher rate of ED utilization (IRR = 1.62; 95% CI, 1.56–1.68).

Regression results with PHPA residency as a measure of community context are presented in Table 2. Almost identical associations were observed. In contrast, PHPA residency was significantly associated with a 7% higher rate of ED utilization (IRR = 1.07; 95% CI, 1.01–1.13) (Table 2).

Interaction terms were significant at $P < 0.05$, indicating that the relationship between community context measures and ED utilization varied by race of the individual. The sample was stratified by race into Black/Other and White strata. Results are presented by stratum in Table 3. Quintiles and PHPA residency were positively associated with ED utilization among both strata, with a larger magnitude of effect observed among the White stratum for some associations. Black/Other patients living in Q4 (versus Q1) had an 11% higher rate of ED utilization (AME = 0.11) while White patients living in Q4 (versus Q1) had a 23% higher rate of ED utilization (AME = 0.23) representing a relative 116% difference between strata. When comparing the most extreme quintiles (Q1 versus Q5), the associations among Black/Other and White strata are approximately equivalent (AME = 0.12). Living in a PHPA was associated with a 10% higher rate of ED utilization among Black/Other patients (AME = 0.10) and a 22% higher rate of ED utilization among White patients (AME = 0.22) with a similar 115% relative difference. Predicted rates of ED utilization as a function of quintiles and PHPA residency are presented in Figure 2 by race stratum (Figure 2).

TABLE 2. Associations Between Community Context, Patient Characteristics, and Emergency Department Utilization

Predisposing factors	Model 1: Residential segregation quintile*	Model 2: PHPA residencyb
	IRR 95% CI P value	IRR 95% CI P value
Quintile (ref = Q1)		
Q2	1.05 0.98 to 1.12 0.195	
Q3	1.06 0.98 to 1.15 0.165	
Q4	1.09 0.98 to 1.21 0.117	
Q5	1.07 1.00 to 1.15 0.053	
Race (ref = White)		
Black	1.06 1.02 to 1.10 0.001	Black
	1.07 1.03 to 1.11 <0.001	Other/Unknown
	0.90 0.87 to 0.93 <0.001	

Enabling factors	Insurance coverage (ref = Private)	Insurance coverage (ref = Private)
	Medicaid	Medicaid
	1.44 1.40 to 1.49 <0.001	1.43 1.39 to 1.48 <0.001
	Medicare	Medicare
	1.29 1.26 to 1.31 <0.001	1.29 1.26 to 1.31 <0.001
	Other	Other
	1.11 1.05 to 1.17 <0.001	1.11 1.05 to 1.17 <0.001
	Uninsured	Uninsured
	1.15 1.13 to 1.18 <0.001	1.15 1.12 to 1.17 <0.001

Need factors	AC utilizationc (ref = >1 visit)	AC utilizationd (ref = >1 visit)
AC utilization	0.96 0.94 to 0.98 <0.001	0.96 0.94 to 0.98 <0.001
0 visit	0.92 0.91 to 0.93 <0.001	0.92 0.91 to 0.93 <0.001

AED utilizationd (ref = No)	AED utilizationd (ref = No)
Yes	Yes
1.62 1.56 to 1.68 <0.001	1.62 1.56 to 1.68 <0.001

Abbreviations. PHPA, public health priority areas; IRR, incident rate ratios; CI, confidence interval; AC utilization, ambulatory care utilization; AED utilization, avoidable emergency department utilization.

Note. Estimates calculated using a zero-truncated negative binomial model, adjusted for ethnicity, gender, and age.

*Residential segregation quintiles (Q1–Q5) calculated using continuous scores from the dissimilarity index formula [41] as the difference between total counts of Black and non-Black residents by ZCTA relative to the larger county. Q1 depicts areas with the lowest relative proportions of Black residents and Q5 depicts areas with the highest relative proportions of Black residents.

*PHPA residency defined as living in one of six ZIP code tabulation areas identified by the county health department as areas with disproportionately low educational attainment and high poverty.

*AC utilization calculated as the total number of unique encounters to Atrium Health facilities defined under the specialty categories of: Allergy, Cardiovascular, Dermatology, Endocrinology, Family Medicine, Internal Medicine, Primary Care Behavioral Health, Rheumatology, Sleep Medicine, Sports Medicine, Urgent Care; and General Obstetrics and Gynecology.

*AED utilization was classified using the New York University Algorithm [43] as having at least 1 emergency department visit during the study period with a combined probability of non-emergent, emergent primary care treatable, or emergent preventable or avoidable utilization as 50% or greater.
Discussion

Our study highlighted relationships between community context and ED utilization among Mecklenburg County ED patients. Patients in our sample were disproportionately exposed to geography-based indicators of social and economic risk. Over 50% lived in areas with the highest proportions of Black residents, and 33% were PHPA residents compared to 22% in the overall county. Visualization of residential segregation quintiles showed the geographic concentration of areas with higher proportions of Black residents along a central ridge, known locally as the “crescent” that includes PHPAs. Prior work has shown that residents of PHPAs (versus. non-PHPAs) have higher rates of chronic health conditions including overweight/obesity (66% versus 60%) and high blood pressure (44% versus 27%) along with higher death rates per 100,000 persons for diabetes (23.2 versus 12.4) and heart disease (113.6 versus 107.7) [37].

We modeled determinants of ED utilization using Anderson’s behavioral model of health service utilization framework. Race was a significant predisposing, individual-level factor with higher rates of ED utilization among Black patients compared to their White counterparts. Insurance coverage is an enabling factor for overall health care utilization. In our study, ED patients with Medicaid or Medicare insurance, and patients without insurance coverage, had higher rates of ED utilization compared to those with private insurance. This result is consistent with prior studies showing heavy ED use among the Medicaid-insured population [19, 20] and could be an indicator of unmet health needs. Results for need factors included in our models align with this evidence, showing that ED patients with greater AC utilization and AED utilization during the study period had higher rates of ED utilization [22, 23].

The relationships between predisposing community context factors and ED utilization varied by patient race. Among both race groupings, living in areas with the highest proportions of Black residents was associated with higher rates of ED utilization, as was living in a PHPA. These relationships could be explained by prior evidence showing associations between residential segregation and lower rates of health insurance coverage [49], worse access to a usual source of care [50], and environmental disparities in health care resources [51–53]. While the predicted rate of ED utilization was higher among Black/Other patients across all levels of exposure to community context factors, some associations were stronger among White patients. David R. Williams explains the relationship between racism and health through pathways of institutional/structural racism, cultural racism, and the accumulation of psychosocial stress from individual experiences of racial discrimination [54], including well-documented discriminatory health care practices and implicit physician bias [55–62]. Thus, exposure to residential segregation and concentrated social and health risk factors among White patients does not include residual

![FIGURE 2](image_url)

Predicted Incident Rate Ratio of Emergency Department Visits by Quintiles of Residential Segregation (A) and Public Health Priority Area Residency (B): Interaction Effect Between Black/Other (solid) and White (dashed) Patients

Note. Residential segregation quintiles (Q1 – Q5) calculated using continuous scores from the dissimilarity index formula [41] as the difference between total counts of Black and non-Black residents by ZCTA relative to the larger county. Q1 depicts areas with the lowest relative proportions of Black residents and Q5 depicts areas with the highest relative proportions of Black residents. Public Health Priority Area (PHPA) residency defined as living in one of 6 ZIP code tabulation areas identified by the county health department as areas with disproportionately low educational attainment and high poverty.
TABLE 3: Average Marginal Effects of Community Context and Emergency Department Utilization by Race

Quintile (ref = Q1)	Black/Other	White	% Differencea		
	AME (SE)	P value	AME (SE)	P value	Differencea
Q2	0.08 (0.03)	0.002	0.06 (0.02)	0.012	26.31
Q3	0.08 (0.02)	< 0.001	0.09 (0.02)	< 0.001	-6.75
Q4	0.11 (0.02)	< 0.001	0.23 (0.03)	< 0.001	-115.59
Q5	0.12 (0.02)	< 0.001	0.12 (0.02)	< 0.001	-2.40
PHPA residency (ref = No)					
Yes	0.10 (0.01)	< 0.001	0.22 (0.02)	< 0.001	-114.64

Abbreviations. AAME, average marginal effect; SE, standard error; PHPA, public health priority area
Note. Estimates calculated using a zero-truncated negative binomial model, adjusted for insurance coverage, ambulatory care utilization, avoidable emergency department utilization, ethnicity, gender, and age.
aResidential segregation quintiles (Q1–Q5) calculated using continuous scores from the dissimilarity index formula [41] as the difference between total counts of Black and non-Black residents by ZCTA relative to the larger county. Q1 depicts areas with the lowest relative proportions of Black residents and Q5 depicts areas with the highest relative proportions of Black residents.
bPHPA residency defined as living in one of 6 ZIP code tabulation areas identified by the county health department as areas with disproportionately low educational attainment and high poverty.

% Difference calculated as the difference between Black/Other AAME and White AAME, divided by Black/Other AAME.

Conclusions

Living in residentially segregated areas with higher proportions of Black residents and areas with geographically concentrated social and health risk is associated with higher rates of utilization among ED patients. Weaker associations among Black patients than among White patients may be attributed to the confounding effects of structural racism that are uniquely experienced by communities of color. Results can provide evidence for local efforts to improve health care access and available resources in high-risk communities. NCMJ

Carlene A. Mayfield, PhD, MPH director, Impact Evaluation and Grants Management, Department of Community Health, Atrium Health, Charlotte, North Carolina.
Brisa Urquieta de Hernandez, PhD system director, CommonSpirit Population Health, CommonSpirit Health, San Francisco, California.

References
1. Morganti KG, Bauhoff S, Blanchard JC, et al. The evolving role of emergency departments in the United States. Rand Heal Q. 2013;3(2):3. PMID: 28083290.
2. Fields WW, Asplin BR, Larkin GL, et al. The Emergency Medical Treatment and Labor Act as a federal health care safety net program. Acad Emerg Med. 2001;8(11):1064–1069. doi: 10.1111/j.1553-2712.2001.tb0116.x
3. Anderson ES, Hsieh D, Alter HJ. Social emergency medicine: em-
24. Williams DR, Collins C. Racial residential segregation: a fundamental cause of racial disparities in health. Public Health Rep. 2001;116(5):404–416. doi: 10.1093/phi/116.5.404
25. Riley AR. Neighborhood disadvantage, residential segregation, and beyond—lessons for studying structural racism and health. J Racial Ethn Heal Disparities. 2018;5(2):357–365. doi: 10.1007/s40615-017-0378-5
26. Massey DS, Fischer MJ. How segregation concentrates poverty. Ethn Racial Stud. 2000;23(4):670–691. https://doi.org/10.1080/01419870050033676
27. Stretesky PB, Schuckt AM, Hogan MJ. Space matters: An analysis of poverty, poverty clustering, and violent crime. Justice Q. 2004;21(4):817–841. https://doi.org/10.1080/0741882040096601
28. Li G, Grabowski JG, McCarthy ML, Kelen GD. Neighborhood characteristics and emergency department utilization. Acad Emerg Med. 2003;10(8):853–859. doi: 10.1111/j.1553-2712.2003.tb00628.x
29. Gaskin DJ, Winmdidge GY, Chan KS, McCleary R. Residential segregation and disparities in health care services utilization. Med Care Res Rev. 2012;69(2):158–175. doi: 10.1111/j.1553-2712.2011.01401.x
30. Massey DS, Gross AB, Shibuya K. Migration, segregation, and the geographic concentration of poverty. Am Sociol Rev. 1999;54(3):425–445. https://doi.org/10.2307/2095942
31. Massey DS. American apartheid: segregation and the making of the underclass. Am J Sociol. 1990;96(2):329–357. https://www.jstor.org/stable/2781050
32. White K, Haas JS, Williams DR. Elucidating the role of place in health care disparities: the example of racial/ethnic residential segregation. Health Serv Res. 2012;47(3 pt 2):1278-1299. doi: 10.1111/j.1475-6733.2012.01410.x
33. Kramer MR, Cooper HL, Drechs-Botsch CD, Waller LA, Hogue CR. Do measures matter? Comparing surface-density-derived and census-tract-derived measures of racial residential segregation. Int J Health Geogr. 2010;9(29). doi:10.1186/1476-772X-9-29
34. Baltrus P, Xu J, Immergluck L, Gaglioti A, Adesokan A, Rust G. Individual and county level predictors of asthma related emergency department visits among children on Medicaid: a multilevel approach. J Asthma. 2017(54)(1):53–61. doi: 10.1080/02770933.2016.1193637
35. Thomas-Hawkins C, Flynn L, Zha P, Savage B. Associations among race, residential segregation, community income, and emergency department use by adults with end-stage renal disease. Public Health Nurs. 2019;36(5):645–652. doi: 10.1111/phn.12644
36. Chetty R, Hendren N, Kline P, Saez E. Where is the land of opportunity? The geography of intergenerational mobility in the United States. Q J Econ. 2014;129(4):1553–1623. doi:10.1093/qje/qju022
37. Cole AJ. Collaboration is critical: working together to optimize health in our communities. N C Med J. 2017;78(4):255–257. doi:10.18043/ncm.78.4.255
38. Tilson EC, Muse A, Colville K, Cole A, Koller CF. Investing in whole person health: working toward an integration of physical, behavioral, and social health. N C Med J. 2020;81(3):177-180. doi:10.18043/ncm.81.3.177
39. Andersen RM. Revisiting the behavioral model and access to medical care: does it matter? J Health Soc Behav. 1995;36(1):1-10. PMID: 7738325.
40. US Census Bureau. 2013-2017 American Community Survey 2013-2017 5-year Data Release. December 6, 2018. Accessed August 15, 2019. https://www.census.gov/newsroom/press-kits/2018/acs-5year.html
41. Cutler DM, Glaeser EL, Vigdor JL. The rise and decline of the American ghetto. J Pol Econ. 1999;107(3):455-506. https://doi.org/10.1086/305069
42. Chamberlain AM, Finney Rutten LJ, Wilson PM, et al. Neighborhood socioeconomic disadvantage is associated with multimorbidity in a geographically-defined community. BMC Public Health. 2020;20(13). doi:10.1186/s12889-019-8123-0
43. Ballard DW, Price M, Fung V, et al. Validation of an algorithm for categorizing the severity of hospital emergency department visits. Med Care. 2010;48(1):58–63. doi:10.1097/MLR.0b013e3181b49ad
44. Gandhi SO, Sabik L. Emergency department visit classification using the NYU algorithm. Am J Manag Care. 2014;20(4):315-320. PMID: 24884862
45. Cee AB, Moczyngeba LR, Ogbonna KC, Parsons PL, Slattum PW, Mazmanian PE. Predictors of emergency emergency department vis-
its and costs in community-dwelling older adults. Heal Serv Insights. 2018;11:1178632918790256. doi: 10.1177/1178632918790256.

46. Zeileis A, Kleiber C, Jackman S. Regression models for count data in R. J Stat Softw. 2008;27(8):1–25. doi: 10.18637/jss.v027.i08

47. Mize TD. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol Sci. 2019;6:81-117. doi: 10.15195/v6.a4

48. R Core Team. R Project. Published 2019. Accessed August 15, 2019. http://www.r-project.org/

49. Anderson KF, Fullerton AS. Racial residential segregation and access to health-care coverage: A multilevel analysis. Res Sociol Health Care. 2012;30:133–158. https://doi.org/10.1108/0275-4959(2012)0000030009

50. Caldwell JT, Ford CL, Wallace SP, Wang MC, Takahashi LM. Racial and ethnic residential segregation and access to health care in rural areas. Health Place. 2017;43:104–112. doi: 10.1016/j.healthplace.2016.11.015

51. Gaskin DJ, Dinwiddie GY, Chan KS, McCleary RR. Residential segregation and the availability of primary care physicians. Health Serv Res. 2012;47(6):2353–2376. doi: 10.1111/j.1475-6773.2012.01417.x

52. Dai D. Black residential segregation, disparities in spatial access to health care facilities, and late-stage breast cancer diagnosis in metropolitan Detroit. Health Place. 2010;16(5):1038–1052. doi: 10.1016/j.healthplace.2010.06.012

53. Greene J, Blustein J, Weitzman BC. Race, segregation, and physicians’ participation in medicaid. Milbank Q. 2006;84(2):239–272. doi: 10.1111/j.1468-0009.2006.00447.x

54. Williams DR, Mohammed SA. Racism and health I: pathways and scientific evidence. Am Behav Sci. 2013;57(8):1152-1173. doi: 10.1177/0002764213487340

55. Chapman EN, Kaatz A, Carmes M. Physicians and implicit bias: how doctors may unwittingly perpetuate health care disparities. J Gen Intern Med. 2013;28(11):1504-1510. doi: 10.1007/s11606-013-2441-1

56. Burgess DJ, Crowley-Matoka M, Phelan S, et al. Patient race and physicians’ decisions to prescribe opioids for chronic low back pain. Soc Sci Med. 2008;67(11):1852-1860. doi: 10.1016/j.soscimed.2008.09.009

57. Pillay T, Zyl HA van, Blackbeard D. Chronic pain perception and cultural experience. Procedia - Soc Behav Sci. 2014;113:151-160. https://doi.org/10.1016/j.sbspro.2014.01.022

58. Green AR, Carney DR, Pailin DJ, et al. Implicit bias among physicians and its prediction of thrombolysis decisions for black and white patients. J Gen Intern Med. 2007;22(9):1231-1238. doi: 10.1007/s11606-007-0258-5

59. Corbin TJ, Tabb LP, Rich JA. Commentary on facing structural racism in emergency medicine. Acad Emerg Med. 2020;27(10):1067-1069. doi: 10.1111/acem.14093

60. Green CR, Anderson KO, Baker TA, et al. The unequal burden of pain: confronting racial and ethnic disparities in pain. Pain. 2003;4(3):277-294. doi: 10.1016/j.1526-4637.2003.03034.x

61. Pezzin LE, Keyl PM, Green GB. Disparities in the emergency department evaluation of chest pain patients. Acad Emerg Med. 2007;14(2):149-156. doi: 10.1197/j.aem.2006.08.020

62. Hanchate AD, Paasche-Orlow MK, Baker WE, Lin M-Y, Banerjee S, Feldman J. Association of race/ethnicity with emergency department destination of emergency medical services transport. JAMA Netw Open. 2019;2(9):e1910816. doi: 10.1001/jamanetworkopen.2019

63. Lyons TW, Olson KL, Palmer NP, Horwitz R, Mandl KD, Fine AM. Patients visiting multiple emergency departments: patterns, costs, and risk factors. Acad Emerg Med. 2017;24(11):1349-1357. doi: 10.1111/acem.13304

64. Giannouchos TV, Washburn DJ, Kum H-C, Sage WM, Ohsfeldt RL. Predictors of multiple emergency department utilization among frequent emergency department users in 3 states. Med Care. 2020;58(2):137-145. doi: 10.1097/MLR.0000000000001228

65. Latham LP, Ackroyd-Stolarz S. Defining potentially preventable emergency department visits for older adults. Int J Healthc. 2017;3(2):1. https://doi.org/10.5430/ijh.v3n2p1