Critical Perspectives

The Impact of Pesticides on Flower-Visiting Insects: A Review with Regard to European Risk Assessment

Philipp Uhl* and Carsten A. Brühl
iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany

Abstract: Flower-visiting insects (FVIs) are an ecologically diverse group of mobile, flying species that should be protected from pesticide effects according to European policy. However, there is an ongoing decline of FVI species, partly caused by agricultural pesticide applications. Therefore, the risk assessment framework needs to be improved. We synthesized the peer-reviewed literature on FVI groups and their ecology, habitat, exposure to pesticides, and subsequent effects. The results show that FVIs are far more diverse than previously thought. Their habitat, the entire agricultural landscape, is potentially contaminated with pesticides through multiple pathways. Pesticide exposure of FVIs at environmentally realistic levels can cause population-relevant adverse effects. This knowledge was used to critically evaluate the European regulatory framework of exposure and effect assessment. The current risk assessment should be amended to incorporate specific ecological properties of FVIs, that is, traits. We present data-driven tools to improve future risk assessments by making use of trait information. There are major knowledge gaps concerning the general investigation of groups other than bees, the collection of comprehensive data on FVI groups and their ecology, linking habitat to FVI exposure, and study of previously neglected complex population effects. This is necessary to improve our understanding of FVIs and facilitate the development of a more protective FVI risk assessment. Environ Toxicol Chem 2019;00:1–16. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

Keywords: Pollinator insects; Bees; Exposure; Effects; Regulatory deficits; Regulatory development

INTRODUCTION

The evidence that flower-visiting insects (FVIs) are in decline is continuously growing (Goulson et al. 2015; Potts et al. 2015; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016; Hallmann et al. 2017; Ollerton 2017; Powney et al. 2019; Vray et al. 2019). This is apparent in losses of domestic honey bee (Apis mellifera) hives in the many European Union countries and the United States of America along side a simultaneous decline in wild bee diversity and butterfly, moth, and syrphid fly populations (vanEngelsdorp et al. 2008; Goulson et al. 2015; Potts et al. 2015; Powney et al. 2019; Vray et al. 2019). Hallmann et al. (2017) showed a substantial long-term decline in flying insect biomass in nature reserves, which included many flower visitors such as butterflies, bees, flies, and beetles. This general decrease in species and abundances is caused by multiple, mostly anthropogenic, factors, one of which is exposure to pesticides (Goulson et al. 2015; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016; Ollerton 2017). Other causes discussed include habitat loss and fragmentation, resource diversity decrease, climate change, parasites and pathogens, invasive species, and environmental pollution (Goulson et al. 2015; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016; Ollerton 2017).

The FVIs provide a vital ecosystem service (pollination) that propels human food production and maintains flowering plant biodiversity (Klein et al. 2007; Ollerton et al. 2011). However, FVI protection is relevant not only for the protection of commercial yield and native flora, but also because FVIs form a major part of faunal biodiversity, approximately 30% of all arthropod species worldwide (Wardhaugh 2015).

According to the Convention on Biological Diversity (United Nations 1992), biodiversity should be protected. In 2016, the United Nations specifically called for pollinator conservation in agriculture in their Cancun Declaration (United Nations 2016). This resulted in the formation of the continuously growing Coalition of the Willing on Pollinators that commits to...
protecting pollinators and their habitat from harmful anthropogenic impact (Coalition of the Willing on Pollinators 2016). In Europe, Regulation (EC) 1107/2009 is in place, concerning the regulatory risk assessment framework to prevent unacceptable negative impacts of agricultural pesticide use on biodiversity (European Commission 2009). Therefore, FVI protection from significant adverse pesticide effects is required by European law. Because pesticides contribute to the ongoing FVI decline, it is possible that regulatory measures are insufficient to provide protection from pesticides (Goulson et al. 2015; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016; Ollerton 2017).

For the present review, we summarized the available scientific literature and regulatory documents to examine the impact of pesticides on FVIs. We further discuss the suitability of European risk assessment to prevent adverse consequences of pesticide use. Species decline has mostly been noted in bees because of an economic interest in preserving viable populations of these important pollinators (Klein et al. 2007; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016). However, many other FVI taxa are exposed to pesticides in the agricultural landscape, which may lead to negative effects on their populations (Godfray et al. 2014, 2015; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016; Potts et al. 2015). Consequently, we identified the relevant FVI groups by visitation frequency and abundance in crops and the surrounding area and describe their ecology and habitat. We used this knowledge to characterize preferential pesticide exposure pathways and to summarize quantitative exposure of relevant habitat compartments from residue studies. We collated effects studies to assess the impact of environmentally realistic pesticide doses on FVIs. This enabled us to critically discuss the suitability of the regulatory effect and exposure assessment. We further propose data-driven tools that improve FVI risk assessment. Finally, we show the major knowledge gaps that need to be closed to increase our understanding of FVIs and develop a sufficiently protective regulatory framework.

REVIEW METHODOLOGY

We searched the peer-reviewed English-language literature published until 2018 using Google Scholar. Keywords included the following terms and their combinations: “pollinator,” “flower visiting insect,” “bee,” “butterfly,” “moth,” “fly,” “beetle,” “habitat,” “trait,” “pesticide,” “insecticide,” “risk assessment,” “exposure,” “residue,” “effect,” and “toxicity.” We also considered Researchgate (2016) suggestions and results of a continuous Sparrho (2013) search that used the keywords “pollinator,” “pesticide,” and “bee.” Other studies were brought to our attention through recommendations from scientific colleagues, and we obtained additional papers from literature references. Semi-field and field effect studies were only included if they investigated the impact of environmentally realistic pesticide exposure levels. Finally, we screened European Union regulatory documents to gain detailed knowledge about European risk assessment for bees and non-target arthropods (NTAs).

FVI GROUPS

In the context of the present review, FVIs are defined as insect species that directly interact with flowers in at least the flying adult life stage, in accordance with Wardhaugh (2015). Most so-called pollinators have actually only been determined to be FVIs because the usual visual observations on flowers are not suitable to prove pollen deposition on the stigma, that is, pollination. The FVIs are an ecologically complex aggregation, which includes species with very different life strategies, for example, herbivores, predators, and parasites (Ollerton 2017). To assess the impact of pesticides on FVIs, it is important to identify the relevant groups that frequently visit flowers and are abundant in the agricultural landscape. In the past, the scientific literature sparsely identified FVI groups aside from bees. Lepidopterans (moths and butterflies), and flies (mainly hover flies) are acknowledged as important taxa. Beetles and wasps are mentioned as flower visitors of minor importance (Winfree et al. 2011). In recent years it was hypothesized that there are considerably more FVI species than previously assumed. The probable FVI groups span from bees, moths and butterflies, beetles, wasps, and ants to flies but also include less prominent groups such as thrips, true bugs, springtails, termites, and cockroaches (Wardhaugh 2015; Ollerton 2017). However, these classifications were only based on estimates and needed support from field research.

Several studies found that FVI communities in the agricultural landscape are indeed as diverse as theoretically suggested. Wildflower plantings were visited by many insect taxa aside from bees, lepidopterans, and hover flies in the central German agricultural landscape (Grass et al. 2016). In fact, non-bee/non-hover fly insects made up half of the visiting individual visits and 75% of FVI species (Figure 1). Non-hover fly dipterans were by far the largest portion of visiting species. In contrast, butterflies only made up a small share of FVI abundance, whereas the numbers of flower visits by beetle and non-hover fly dipteran individuals was comparable with those of honey bees (Grass et al. 2016). A large-scale meta-analysis also found that non-hover fly dipterans are at

FIGURE 1: Wildflower planting flower visitations in central Germany. The dashed line shows the cumulative fraction of honey bee and hover fly flower visits. Adapted from Grass et al. 2016.
least as relevant as hover flies because they made up the majority of dipteran flower visits (Orford et al. 2015). Such a distribution was also found in a common plant of the agricultural landscape that is widely distributed in Europe. The common buttercup *Ranunculus acris* was mostly visited by fly species, as shown in a large-scale, long-term project, Biodiversity Exploratories (Fischer et al. 2010; Figure 2). Beetles were detected in similar species and individual numbers as bees (Fischer et al. 2010; Nico Blüthgen, Technical University Darmstadt, Darmstadt, Germany, personal communication, 2012).

The diversity of FVI communities has been underestimated not only for native flora but also for crops. An extensive meta-analysis summarized the results of 39 field studies that investigated flower visits in several crop systems from 5 continents (Rader et al. 2015). Overall, non-bee species accounted for 38% of flower visits. The visits by non-bees of oilseed rape as a typical European mass-flowering crop were quite variable (5–80%) and varied even within countries (5–60%).

The FVI communities are far more diverse than it has been acknowledged in the past. In general, visit rates vary greatly between cropping systems, native habitats, and geographic locations (Orford et al. 2015; Rader et al. 2015; Grass et al. 2016). The available literature identifies the relevant European FVI groups in crops and their semi-natural surroundings as bees, flies (non-syrphids and syrphids), lepidopterans (moths and butterflies), and beetles. However, only limited information is available to evaluate all groups. Therefore, it is currently not possible to assess the relevance of all other suspected groups, for example, non-bee hymenopterans and hemipterans. After the identification of relevant FVI groups, it is necessary to examine their ecology and their habitat to assess their potential pesticide exposure.

FVI ECOLOGY, HABITAT, AND EXPOSURE PATHWAYS

Ecology

Other than visiting flowers in at least their adult stage, FVIs differ substantially in their ecology (Ollerton 2017). A comprehensive review of FVI ecology is beyond the scope of the present review. We therefore concentrate on bee species because they are extensively studied in the ecotoxicological context and cover many of the general FVI traits. Specific additional properties of other groups will also be mentioned.

All bee species are obligate florivores in larval and adult life stages. This distinguishes them from all other FVI taxa for which only a subset of species are flower visitors and mostly adults are florivores. Adult bees feed predominantly on nectar, whereas larvae feed mostly on pollen (Michener 2007). Other FVI groups such as moths and butterflies and beetles also have herbivore life stages (Koch and Freude 1992; Ebert 1994; Scoble 1995). Aside from the well-known domesticated western honey bee *Apis mellifera*, there are a multitude of ecologically variable wild bee species in Europe. Some species are eusocial, that is, they live in colonies or aggregations, but most species are solitary. In addition, there are many parasitic species that exploit their bee host to feed and tend to their offspring (Westrich 1990; Michener 2007). Bees have several nesting strategies. Most species burrow into the soil to build their nests, but others also excavate deadwood, occupy pre-existing cavities in soil or deadwood, or they construct nests from collected material (Michener 2007). Other FVI groups also contain soil-dwelling larval stages, for example, flies and beetles (Koch and Freude 1992; Frouz 1999). There are food generalists (polylectic) and specialists (oligolectic) that in some cases forage on just one specific plant (Westrich 1990; Michener 2007). The active flight period and length of flight differs between bee species. Many species start mating and foraging flights in spring whereas others do not begin their adult phase before summer and continue until autumn (Westrich 1990). Most species have only one brood/year (univoltine), whereas some lay eggs throughout the year (multivoltine). Voltinism varies with geography and climate (Michener 2007). Daily activity usually peaks at mid-day but can also peak in the morning and evening (Thompson 2001; Steen 2016). Bee species vary greatly in their foraging range, that is, the distance they can cover to search for food resources, which ranges from hundreds of meters to 10 or more kilometers (Zurbuchen et al. 2010).

Habitat

Due to their ecological profile, FVI species need a set of compartments inside a habitat to fulfill basic needs: food, water, shelter, mating space, and nesting grounds (Table 1). The agricultural landscape generally comprises viable habitats that can be categorized as crop plantings and nontarget areas, for example, managed flower strips and field edge structures (Marshall and Moonen 2002; Hahn et al. 2015; Tschumi et al. 2015). These areas differ in many aspects such as structure, plant species inventory, spatial and temporal food resource availability, natural enemies, or anthropogenic stress (Marshall and Moonen 2002; Hahn et al. 2015; Tschumi et al. 2015). Therefore, habitat quality varies significantly, which theoretically enables us to assess habitat attractiveness for FVIs.

Numerous crops have been classified as bee attractive (Supplemental Data, Table S1; European Food Safety Authority 2013). However, it is currently not possible to quantitatively evaluate the suitability of a certain crop as a FVI food source. Most studies were
only performed with honey bees and focus on major sources of pollen/nectar in their diet rather than the food spectrum (European Food Safety Authority 2013). Mass-flowering crops such as oilseed rape Brassica napus and sunflower Helianthus annuus are used as food sources by wild and managed bees. Their overabundant supply of floral resources will be used to some degree even if they are not the preferred food plant of an FVI species (Holzschuh et al. 2013; Coudrain et al. 2015; Requier et al. 2015). Even virtually non-attractive crops plantings such as corn or cabbage might be FVI habitats if there is undergrowth of crop-associated wild plants, for example, cornflower or poppy species (Storkey and Westbury 2007; Balmer et al. 2014; Manandhar and Wright 2016). Furthermore, crops can still provide habitat functions for FVIs even if they are not flowering, for example, as nesting grounds or temporary refuge.

Aside from crops, there are non-target areas that are used as habitat by FVIs. Field edge structures are semi-natural habitats in intensely managed agricultural areas. They provide multiple habitat functions for FVI species such as refugia, feeding and breeding grounds, and migration corridors for FVI species (Marshall and Moonen 2002; Marshall et al. 2006; Denisow and Wrzesień 2015). Flower strips are sown with seed mixtures for insect conservation, with an emphasis on sustaining pollinator populations. They ensure crop pollination and also favor predacious beneficials to support biological pest control (Haaland et al. 2011; Feltham et al. 2015; Tschumi et al. 2015). These nontarget areas, however, have also not been adequately studied to discuss their habitat suitability in more detail.

In the absence of sufficient information and to exercise the precautionary principle, we assume in the present review that the entire agricultural landscape is FVI habitat. Therefore, FVIs may potentially be exposed to pesticides while interacting with habitat compartments of crop and non-target areas.

Exposure pathways

Pesticides are transported into FVI habitats by direct application to crops (primary processes) or unintentional redirection of a fraction of the applied pesticide amount into adjacent areas (secondary processes; Figure 3). Primary processes include spray and solid application, by seed treatment or granules, for example (Walker 2001; Nuyttens et al. 2013). Stem application and irrigation methods play a minor role in Europe (Düker and Kubiak 2015; Miorini et al. 2017). Secondary processes are spray drift, field-edge overspray, dust dispersion, and run-off. As a result of this pesticide input into crops and non-target areas, all FVI habitat compartments are potentially contaminated (Sgolastra et al. 2019).

Exposure of airspace, pollen and nectar, stems/leaves, soil, and water sources (rivers/lakes, puddles, guttation water) can subsequently lead to FVI exposure (Figure 3). Pesticide applications on less attractive crops can still cause FVI exposure if there is flowering weed undergrowth (e.g., cornflower or poppy species in cereal fields), or by transport into attractive off-crop areas (Botías et al. 2015; Simon-Delso et al. 2017). The identification of potentially contaminated habitat compartments does not allow for an estimation of FVI pesticide exposure. It is therefore necessary to quantify the exposure of habitat compartments and link it to FVI contamination to identify important pathways.

EXPOSURE TO PESTICIDES

Individuals

Investigations of pesticide residues levels in FVI individuals are required to assess pesticide exposure. Unfortunately, these data are only available for bees at the moment. Most bee exposure studies in recent years have investigated the chemical

TABLE 1: Habitat compartments used by flower-visiting insects

Compartment	Life stage	Function
Airspace	Adults	Food search (foraging), mate search, nest search
Flowers	Adults and florevore larvae	Food collection (foraging), shelter, mating, nesting, nest material collection
Stems/leaves	Adults and herbivore larvae	Nesting, shelter
Soil	Adults and soil-dwelling larvae	Water collection/consumption

FIGURE 3: Exposure pathways from application to habitat compartments in in- and off-crop habitats. Yellow up/down arrows indicate primary and pink side/down arrows secondary transport processes.
class of neonicotinoids. Furthermore, the vast majority of these studies is concerned with honey bee exposure (Blacquière et al. 2012; Godfray et al. 2014, 2015; Bonmatin et al. 2015; Wood and Goulson 2017). Hence, such research is overrepresented compared with other pesticide classes or bee species in the following sections.

Bees are exposed to a plethora of pesticides. Brood and adult bee samples from North American honey bee colonies contained 46 pesticides of different pesticide classes and their metabolites (Mullin et al. 2010). A French study found residues of 19 compounds in honey bee colony samples (Chauzat et al. 2011). All major pesticide classes are detected in honey bees (insecticides, fungicides, and herbicides), according to the comprehensive list compiled by the EFSA Authority Plant Protection Products and Their Residues Panel (2012). A more recent study investigated pesticide residues in differentbumble bee species and found at least one insecticide or fungicide in over half of the analyzed individuals (Botías et al. 2017). The majority of these individuals were exposed to multiple compounds.

Nectar and pollen

Nectar and pollen are major carriers of pesticide loads for FVIs. The North American and French studies mentioned in the previous Individual sections found residues of 98 and 19 pesticides and metabolites in collected pollen, respectively (Mullin et al. 2010; Chauzat et al. 2011). A more recent Italian study registered 18 different insecticides and fungicides in pollen over a 3-yr sampling period (Tosi et al. 2018). The maximum neonicotinoid residues in pollen and nectar were determined to be 10^6 to 10^7 ng/g and 10^3 ng/g, respectively (Goulson 2013; Godfray et al. 2014; Wood and Goulson 2017). Residue levels fluctuate between crops by one order of magnitude, but pollen doses are consistently higher than nectar doses (Wood and Goulson 2017; Gierer et al. 2019). Several parameters such as dose and mode of treatment, physicochemical properties of the pesticide, crop type, season, location, soil type, weather, and sampling time of day influence pesticide doses in both matrices (Wood and Goulson 2017; Gierer et al. 2019).

Pesticide load in bee-collected pollen and nectar is often similar to residues in crops (Rundlöf et al. 2015; Wood and Goulson 2017). However, there are also studies that found much lower contamination (Cutler and Scott-Dupree 2014; Rolke et al. 2016). Because bees collect pollen and nectar from a wide variety of plants, the dietary spectrum partly determines their contamination. The highest levels of residues are found when a large proportion of crop pollen is collected (Pohorecka et al. 2013; Cutler and Scott-Dupree 2014; Botías et al. 2015; Rundlöf et al. 2015; David et al. 2016). Noncultivated plants adjacent to crops are often also contaminated with pesticides in greatly variable doses that can reach comparable levels (Botías et al. 2015; Mogren and Lundgren 2016; Wood and Goulson 2017). In general, high doses in nectar and pollen temporally coincide with the bloom of mass-flowering crops such as oilseed rape (Wood and Goulson 2017). However, chronic exposure of species with a long active flight period, such as honey bees or bumble bees, might be driven by wildflower foraging. One study found that 97% of total neonicotinoid residues in pollen in June and August were actually derived from wildflowers (Botías et al. 2015).

Soil

The majority of European bee species (60–70%) nest in soil either by actively burrowing nests or using existing cavities (Westrich 1990). Therefore, pesticide exposure by soil contact may be an important, yet underestimated pathway (Gradish et al. 2019; Sgolastra et al. 2019). Soil exposure may also be relevant for soil-dwelling life stages of other FVI groups such as fly and beetle larvae (Koch and Freude 1992; Frouz 1999). Systemic pesticides are usually applied directly to the soil to be taken up by crops. Only a fraction of the applied pesticide load enters the plant body whereas the major part remains in the soil (Sur and Stork 2003; Alford and Krupe 2017). Agricultural soils are therefore often contaminated with multiple pesticides (Hvězdová et al. 2018). Measurable neonicotinoid residues in various crop soils range from 10^{-1} to 10^1 ng/g (Jones et al. 2014; Botías et al. 2015; Heimbach et al. 2016; Wood and Goulson 2017). To assess pesticide exposure, it is important to know not only the (peak) concentrations but also the persistence in the soil matrix. Half-lives of neonicotinoid insecticides range from several days to years (Goulson 2013). Values greater than 1 yr suggest possible accumulation or continuing exposure from applications in previous years. Both scenarios have been demonstrated for neonicotinoids by chemical analysis of crop soils (Bonmatin et al. 2005; Goulson 2013; Jones et al. 2014).

Stem/leaves

Systemic pesticides are designed to be taken up by crops from the soil. Depending on the crop, 1.6 to 20% of the applied amount of neonicotinoids is absorbed into the plant body (Alford and Krupe 2017; Sur and Stork 2003). Several studies have also found neonicotinoid residues in wild plant stems or leaves from field margins at levels of 10^0 to 10^2 ng/g (Pecenka and Lundgren 2015; Botías et al. 2016; Mogren et al. 2016). Exposure of FVIs by stem or leaf material may not be restricted to herbivore life stages. Because they use the plant body as a refuge or collect parts of it as nesting material (as do leaf cutter bees; *Megachile* spp.), FVI adults might also be exposed to pesticide residues by contact (Sgolastra et al. 2019).

Water sources

The FVIs can potentially take up pesticides from different water sources. Ephemeral puddles on farmland have been shown to contain maximum neonicotinoid concentrations of 10^1 ng/mL that may represent a risk to bees (Samson-Robert et al. 2014; Schaafsma et al. 2015). Another potential water source for FVIs are guttation droplets that are exuded by some plant species under moist conditions. Concentrations of systemic neonicotinoids in crop guttation fluid vary greatly
Tapparo et al. 2011; Reetz et al. 2016; Wirtz et al. 2018). Maximum concentration have been measured at 10^5 ng/mL (Godfray et al. 2014; Schmolke et al. 2018). Exposure at toxicologically relevant doses is only expected in crops treated with systemic pesticides, because spray treatments lead to doses that are lower by 3 orders of magnitude (Bonmatin et al. 2015). In addition, there is first evidence that seed treatment of crops can lead to contamination of guttation fluid in weeds that grow in proximity (Mörtl et al. 2019). Field-adjacent rivers and lakes are heavily contaminated with pesticides at levels that often present a risk for aquatic invertebrates (Morrissey et al. 2015; Stehle and Schulz 2015). Exposure through surface waters might also be toxicologically relevant for bee species (Sánchez-Bayo et al. 2016).

Linking habitat to individual exposure

The FVI habitats in crops and nontarget areas are exposed to pesticides. However, it is generally difficult to connect the exposure of these habitats to the contamination of FVI individuals. For nectar, pollen, and stem/leaf material, this would require that FVI food intake be broken down and quantified. Bee adults usually procure their energy from carbohydrate-rich nectar, whereas larvae feed on pollen provision/pollen bread, a mixture of mostly protein-rich pollen and minor nectar content (Westrich 1990). Because polylectic bee species forage on a wide variety of plant species (Coudrain et al. 2015; Sickel et al. 2015), their larval pesticide uptake is highly dependent on the proportion of contaminated nectar and pollen in their diet. Data on the FVI food spectrum and corresponding pesticide exposure are scarce. There are some quantitative estimates of adult and larval bee food consumption, but it is not clear how this would translate into an individual bee pesticide load (European Food Safety Authority 2013). Food intake varies greatly between bee species, which makes it impossible to generalize single-species estimates (Müller et al. 2006). In addition, there is insufficient information to connect stem or leaf exposure to FVI contamination (Sgolastra et al. 2019).

Linking soil to FVI exposure is even more difficult. Pesticides can be sorbed to the soil and become bound residues with decreased bioavailability and degradation rates, especially when the chemicals are hydrophobic (Gevao et al. 2000; Semple et al. 2003). Water-soluble compounds such as neonicotinoids might not be so prone to sorption and might therefore retain their bioavailability to a greater extent. There is currently no approach toward estimating FVI exposure after soil contact.

The details of FVI water uptake are nearly unknown. There are estimates of the daily water intake of the honey bee and one wasp species (European Food Safety Authority 2013). Still, the majority of FVI species have not been studied, and it is unclear which water sources are used and to what degree. In the case of guttation, it has been stated that this phenomenon rarely occurs in most crops, especially in high enough concentrations to be of toxicological relevance (Schmolke et al. 2018; Wirtz et al. 2018). This may also be true for exposure via surface waters and puddles. There is currently no clear link between pesticide residues in the available water sources and pesticide uptake of FVIs (Wood and Goulson 2017).

Because FVIs are exposed to pesticides in their habitat, the subsequent effects need to be assessed to evaluate the consequences for FVI populations and communities.

PESTICIDE EFFECTS

General considerations

To determine the risk of pesticide applications for FVIs, it is necessary to investigate their sensitivity to such chemicals. Only detailed information for a representative amount of species would allow an assessment of the entire group of FVIs. Because the honey bee is a test organism in European pesticide risk assessment, there are extensive acute toxicity data on all registered pesticides for this species. However, other bee species’ sensitivity to pesticides is practically unknown and may differ substantially.

The European Commission restricted the use of the neonicotinoids imidacloprid, clothianidin, and thiamethoxam in 2013 because of high acute risks for bees. Since then, several complex semi-field and field studies have been carried out to investigate neonicotinoid effects on honey bees, non-Apis, and wild bee species at environmentally realistic exposure levels. Unfortunately, there is still nearly no information on pesticide effects on all other non-bee FVI groups. Several colony-level honey bee studies found limited to negligible effects after neonicotinoid exposure (Pilling et al. 2013; Cutler et al. 2014; Dively et al. 2015; Rundlöf et al. 2015). Honey bee effects from these studies are hardly translatable to all other European bee species because of substantial ecological differences, mainly social structure and sheer individual numbers in a population (Stoner 2016; Wood and Goulson 2017). Therefore, honey bee field effects will not be elaborated on in the present review. See the following review articles for further information on honey bee field effects: Blacquière et al. (2012), Godfray et al. (2014, 2015), Goulson (2013), and Pisa et al. (2017, 2015).

Semi-field studies

Reproduction. Several (semi)-field studies have investigated non-Apis bee reproduction and colony growth effects in similar experimental setups, mostly with Bombus terrestris. Bumble bee colonies were exposed either by feeding them contaminated nectar but letting them forage without restriction or setting them up next to farmland to which pesticides had been applied. To summarize, in most studies neonicotinoid exposure led to reductions in worker, male, and queen offspring (colony growth), reduced individual growth, and skewed sex ratio (Gels et al. 2002; Whitehorn et al. 2012; Cutler and Scott-Dupree 2014; Moffat et al. 2015, 2016; Rundlöf et al. 2015; Ellis et al. 2017; Main et al. 2018). Impaired reproduction is caused not only by neonicotinoids but also by application of new substance classes such as sulfoximine insecticides (Siviter et al. 2018). Only one study examined field effects on solitary bees and recorded a total reduction in brood cell construction by
Osmia bicornis next to clothianidin-treated oilseed rape (Rundlöf et al. 2015). However, there are also a few studies that found no adverse effects on bumble bees and solitary bees in field settings (Peters et al. 2016; Sterk et al. 2016; Ruddle et al. 2018). Discrepant outcomes between these and the majority of studies most likely result from different exposure levels. In comparison to Rundlöf et al. (2015), these 3 studies used a very similar setup: bumble bee colonies and solitary bee trap nests were placed next to seed-treated oilseed rape. However, Sterk et al. (2016) and Peters et al. (2016) used the winter variety of oilseed rape and Rundlöf et al. (2015) used the spring variety. This resulted in a nearly 10-fold difference in maximum pollen residues, which is a highly likely cause for the contrasting effects.

Foraging. A general pattern has emerged showing that the number of bee trips to flowers increases but foraging efficiency decreases after pesticide exposure. Pesticide effects on bumble bee foraging were investigated in (semi-)field studies similar to the experiments just described in the Reproduction section. However, bees were exposed through pesticide-spiked sugar water in all studies. Several experiments detected an increased length of trips or a reduced number of successful trips (Gill et al. 2012; Feltham et al. 2014; Gill and Raine 2014; Stanley et al. 2015; Stanley and Raine 2016). A single study found only minor changes in foraging activity and pollen collection (Arce et al. 2016).

Immune system. Neonicotinoid exposure has been linked to increased disease and parasite susceptibility in honey bees in (semi-)field experiments (e.g., Vidau et al. 2011; Pettis et al. 2012; Alburaki et al. 2015; Dively et al. 2015). Such effects were not studied in wild bees. Because their nervous and immune systems are very similar to those of honey bees, it is possible that neonicotinoids also make wild bees more prone to disease and parasites (Wood and Goulson 2017). Fungicide effects on immune functions may also be relevant. Pettis et al. (2013) investigated the impact of collected crop pollen on Nosema ceranae prevalence in honey bees and found a correlation of infestations and pollen fungicide load.

Neglected effects

Source–sink effects. There are ecologically more complex effects resulting from intra- and interspecific interactions that have thus far been barely considered by researchers. These effects are most relevant at the population and community levels. They are not exclusive to FVIs but are especially relevant for this group (European Food Safety Authority 2015).

The FVIs can easily move between multiple in-field and off-field habitats within a landscape. Spatial movement has therefore to be considered when pesticide effects on FVI populations are investigated. Migration from semi-natural off-field habitats to pesticide-treated in-field areas could possibly result in source–sink dynamics: Individuals from a sustaining habitat migrate to a nonsustaining habitat and subsidize the sink population but also deplete the source population (Topping et al. 2015). This process can be mistaken for in-field recovery when the off-field surroundings are not considered. It has been shown in modeling studies that landscape-scale effects of pesticides cannot be sufficiently estimated using small-scale data (Topping et al. 2014, 2015). Migratory population dynamics in time and space are difficult to detect using field experiments due to limited duration and restricted spatial scale. Landscape-scale modeling approaches represent promising methods to assess source–sink effects of pesticides (Topping et al. 2015).

Indirect effects. Aside from direct effects, pesticides can also impact FVIs indirectly through trophic interactions. Habitat quality may be adversely affected by reduction or modification of food and nesting resources (Relyea and Hoverman 2006; Rohr et al. 2006). One of the main causes of FVI decline is decreased diversity and abundance of flower and nesting resources. This is caused by habitat destruction through agricultural land use practices, such as pesticide use (Goulson et al. 2015; Forister et al. 2016; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016; Ollerton 2017). Scheper et al. (2014) combined pollen load data from entomological museum collections with population trends of wild bees. Decline of preferred food plant species was identified as one of 2 main factors associated with bee species declines. Therefore, herbicide applications might reduce FVI food plant supply and consequently lead to adverse population effects. Unfortunately, there is no information available that would allow us to evaluate the relevance of indirect pesticide effect on FVIs.

Ecosystem services (pollination/biodiversity). In contrast to protection goals that were defined by authorities (United Nations 1992; European Commission 2009), there is little to no research regarding the effects of pesticide applications on FVI ecosystem services, such as pollination or biodiversity. First evidence of a direct pesticide pollination effect in a field setting was found in a semi-field cage experiment (Stanley et al. 2015). Bombus terrestris females were exposed to thiamethoxam and allowed to forage on apple trees, which subsequently reduced apple seed production. However, this is not a pollination effect in the economic sense because the number of seeds does not influence apple market value.

It is difficult to directly detect FVI diversity or population effects in field experiments, because it would take years and extensive sampling campaigns to collect the necessary data. A meta-analysis related bee species distribution monitoring data over an 18-yr period in the United Kingdom to neonicotinoid use in oilseed rape (Woodcock et al. 2016). Population persistence was negatively affected in both bee species that forage on oilseed and those that usually do not. However, the effect was 3 times stronger in oilseed rape foragers. Therefore, neonicotinoid use in a mass-flowering crop possibly caused bee species decline. However, this result of pesticide effects on FVI diversity is only correlative and cannot be connected directly to pesticide use.
After collating information on the relevant groups, their ecology and habitat, exposure to pesticides, and subsequent effects, we now critically evaluate the European exposure and effect assessment for its suitability concerning FVIs.

REGULATORY DEFICITS AND DEVELOPMENT

European risk assessment

The European pesticide risk assessment is a proactive administrative measure that should ensure the protection of non-target species as outlined in Regulation (EC) 1107/2009 (European Commission 2009). The FVIs are currently covered by risk assessment schemes for bees (European and Mediterranean Plant Protection Organization 2010a, 2010b) and NTAs (Candolfi 2001) within the framework of the terrestial ecotoxicology guidance document (Health and Consumer Protection, European Commission 2002).

However, ongoing FVI declines that are partly caused by pesticides suggest the possibility that the current risk assessment is not sufficiently protective (Godfray et al. 2015; Goulson et al. 2015; Potts et al. 2015; Intergovernmental Platform on Biodiversity and Ecosystem Services 2016). The European Food Safety Authority (EFSA) identified major shortcomings in FVI risk assessment and suggested improvements for the bee and NTA guidance documents (European Food Safety Authority 2015; European Food Safety Authority Plant Protection Products and Their Residues Panel 2012). Consequently, they drafted a new bee guidance document that should improve the risk assessment process (European Food Safety Authority 2013). This process of revising old guidance and devising a new framework is far from finished. The revised bee guidance document has yet to be ratified, and an NTA guidance document has not yet been developed. Therefore, scientific input is needed to facilitate the regulatory development.

Bee risk assessment

In the current regulatory framework, the impact of pesticides on bee species is assessed in a separate scheme, in contrast to all other FVIs (European and Mediterranean Plant Protection Organization 2010a, 2010b). Exposure and effect assessment is generally carried out as follows.

Potential exposure of bees is estimated for in-field scenarios (Table 2). At the first tier, contact contamination of individuals is evaluated by using application rates of pesticide products. Furthermore, oral exposure is considered by using data from plant residue and metabolism studies. Higher tier exposure assessment includes pesticide residue studies of relevant matrices such as dead bees, nectar, pollen, wax, or honey (European and Mediterranean Plant Protection Organization 2010a, 2010b). First-tier risk assessment requires effect testing for acute contact and oral mortality in honey bees. In the case of systemic pesticides, brood feeding tests may be necessary. In higher tier testing, several more realistic honey bee test systems can be used to refine the evaluation process if further information is required (e.g., chronic oral tests, semi-field studies using tunnel tents, or field tests; European and Mediterranean Plant Protection Organization 2010a, 2010b).

In a revision of the current guidance, the EFSA identified major deficits with regard to the ecology of FVIs (European Food Safety Authority 2013; European Food Safety Authority Plant Protection Products and Their Residues Panel 2012). The current exposure assessment does not include off-field areas, which are also FVI habitat and should therefore be considered (Table 2). Furthermore, FVI contaminations by dust from solid application as well as exposure by water sources are not incorporated. It has been noted that the entire spectrum of bee species is not well represented because the honey bee is used as the only surrogate. Other bee species’ sensitivity to pesticides is usually unknown (Arenda and Sgolastra 2014; Uhl et al. 2016). Because relative susceptibility varies for different pesticides, it is difficult to extrapolate acute toxicity data from the honey bee to wild bees (Biddinger et al. 2013; Uhl et al. 2016).

Wild bee species also have different ecological properties than the honey bee, which leads to contrasting results in complex higher tier tests (Arenda and Sgolastra 2014; Rundlöf et al. 2015; Stoner 2016). The EFSA has further stated that current semi-field and field designs generally allow for too much data variance and do not provide enough statistical power (European and Mediterranean Plant Protection Organization 2010a, 2010b).

As a reaction to the deficits in current bee risk assessment, the EFSA drafted the new bee guidance document, which includes substantial improvements (European Food Safety Authority 2013). Exposure assessment incorporates additional pesticide uptake pathways such as dust from seed treatment, guttation water, puddles, and surface water (Table 2). Aside from in-field exposure, off-field exposure is also incorporated via deposition factors for spray, granular, and seed treatment application. Residue studies should also include plant material or bees foraging on the treated crop as well as bees returning to the hive in higher tier exposure assessment (European Food Safety Authority 2013). Two additional test species were selected because of their different acute sensitivity and ecological differences that are relevant for higher tier testing: a bumble bee (B. terrestris) and a solitary bee (Osmia bicornis/ comata). In first-tier effect assessment, chronic oral and larval toxicity tests were added. The EFSA further called for modified study designs in higher tier effect assessment to decrease data variance and enhance statistical power (European Food Safety Authority 2013). Such designs include larger tunnel/field size, higher number of replicates and colonies/site, greater distance between sites, the use of sister queens in colonies, and prolonged study duration.

In spite of the extensive regulatory changes that the EFSA proposed (European Food Safety Authority 2013), deficits and open questions remain that arise from the recommendations (Table 2). The suggested exposure assessment does not include soil as a contamination source, although it is acknowledged to be relevant (Gradish et al. 2019; Sgolastra et al. 2019). The recommendations discuss honey dew and extrafloral nectar as potential exposure sources but do not provide...
information to justify their importance for FVI exposure. Regarding effect assessment, there is reasonable doubt that the proposed additional test species will decrease uncertainty. Notwithstanding the limited available database, it can be concluded that both species are usually less sensitive than the honey bee in acute toxicity tests (Uhl et al. 2016). It may still be reasonable to use these species for higher tier testing in which ecological differences influence toxicity to a greater extent (Cutler and Scott-Dupree 2014; Rundlöf et al. 2015). However, there are currently no established chronic or larval laboratory, semi-field, or field test protocols for both species. Furthermore, the ambitious study design improvements might be difficult to implement.

Several specific issues are generally not included in European risk assessment and are also not considered by the EFSA (European Food Safety Authority 2013). Neglected effects include landscape-scale source–sink effects, indirect effects through trophic interactions, and ecosystem service effects (pollination, biodiversity). These effects have not been well studied but are very relevant for the environmental safety evaluation of pesticide products. In addition, there is no assessment of effects after exposure to multiple pesticides, for example, through tank mixtures or sequential applications.

NTA risk assessment (non-bee FVIs)

All non-bee FVI groups are covered within the current NTA risk assessment framework (Candolfi 2001). An NTA exposure assessment is performed separately for in-field overspray and off-field spray drift scenarios, which include calculations of maximum residue levels (Table 2). The NTA effect evaluation is performed with several predatory or parasitic arthropods (e.g., Aphidius rhopalosiphi, Typhlodromus pyri). In a first-tier evaluation, acute and chronic mortality laboratory tests are conducted, whereas higher tier testing includes extended laboratory and aged pesticide residue studies, semi-field, and field experiments to study more subtle pesticide impacts under more realistic conditions, that is, lethal and sublethal effects. Four additional beneficial test species are proposed for products with a special mode of action or higher tier assessment which are used in integrated pest management (Orius laevigatus, Chrysoperla carnea, Coccinella septempunctata, and Aleochara bilineata).

Similar to bee risk assessment, the current NTA scheme needs to be adjusted to allow for a protective evaluation of pesticide impact on non-bee FVIs (Table 2). As discussed by the EFSA (European Food Safety Authority 2015), exposure caused by dust drift after sowing of pesticide-treated seeds needs to be assessed. Furthermore, there is no oral toxicity testing in the first-tier assessment, which would be relevant for FVs that consume nectar, pollen, or stem/leaf material. Moreover, non-bee FVIs are not specifically accounted for by surrogate organisms.

To alleviate shortcomings in the current guidance, the EFSA published a scientific opinion on NTA risk assessment that is the precursor of an upcoming new NTA guidance document.
(European Food Safety Authority 2015). They revised the exposure evaluation to include estimates of pesticide uptake through food (nectar, pollen, stem/leaf material) and dust as well as contamination of soil surfaces (Table 2). Furthermore, one explicit FVI species (lepidopteran larvae) has been proposed as an additional test species for effect assessment. They proposed a landscape-scale risk assessment for mobile species such as FVIs which is a major change from previous concepts. This should ensure that in-field effects do not lead to unacceptable reductions in off-field populations (European Food Safety Authority 2015). Previously neglected issues such as indirect effects, source–sink dynamics, and ecosystem service effects are also discussed. They further mention that sequential and simultaneous use of different pesticides should be included in risk assessment.

However, the EFSA did not address all deficits of the current framework and raised open questions with their recommendations for a future revised NTA guidance (European Food Safety Authority 2015; Table 2). Exposure assessment of guttation water is not included, nor is in-soil residue evaluation. Due to the multitude of different life strategies and ecological niches of non-bee FVIs, it remains unclear whether one test species will sufficiently represent this group, especially in higher tier effect assessment. Overall, the NTA scientific opinion is lacking in concrete protocols for effect and exposure assessment. A new NTA guidance document is supposed to follow up with more tangible recommendations.

Upcoming FVI guidance should make use of data-driven approaches to pesticide impact assessment. These regulatory tools allow for large-scale evaluations of FVI population by incorporating ecological information.

FUTURE REGULATORY TOOLS

Trait-based analysis

Our knowledge of the species we want to protect and their environments can enable us to develop a risk assessment that is better suited for specific groups such as FVIs. Researchers have noted that it is difficult to identify representative surrogate species for this diverse group (Uhl et al. 2016; Heard et al. 2017). Therefore, alternative approaches have to be considered that facilitate the assessment of pesticide impact on FVI communities. Ecological traits (i.e., species-specific properties) determine the breadth of the ecological niche and therefore the susceptibility of FVI populations to environmental factors. The narrower the niche, the higher the sensitivity to external stressors (Williams et al. 2010; de Palma et al. 2015; Forrest et al. 2015; Hofmann et al. 2019). Therefore, it is possible to allocate FVI species to ecologically similar categories and assess their population’s vulnerability to stressors such as pesticides (Brittain and Potts 2011; Hofmann et al. 2019; Sponsler et al. 2019; Figure 4). A number of traits have been identified as relevant for population vulnerability in bee species (e.g., mobility, sociality, nesting, length of flight season/duration, and volatilism; Supplemental Data, Table S2). By combining toxicity and trait data in a modeling approach, it should be possible to make broader predictions about the consequences of pesticide use on FVI communities (Williams et al. 2010; Brittain and Potts 2011; de Palma et al. 2015; Forrest et al. 2015).

Trait-based approaches for risk assessment have already been proposed with an emphasis on the aquatic environment (Rubach et al. 2011; Van den Brink et al. 2011). The underlying concept can be easily translated to FVIs and their specific properties. A comprehensive trait database for European bees is already available for bee species vulnerability classification (Roberts et al. 2016, Trait database of European bees, unpublished data). Vulnerability models would need to be validated with extensive monitoring data. Unfortunately, for all other FVI groups there is significantly less information about the ecological parameters that influence vulnerability, and no applicable databases are available.

Similar to the effect assessment, exposure evaluation of FVI species could also be improved by analyzing trait data. The influx of pesticides into FVI habitats does not necessarily result in exposure of FVI species. However, ecological trait information can be used to assess uptake probability and identify relevant exposure pathways (Brittain and Potts 2011; de Palma et al. 2015; Sgolastra et al. 2019; Sponsler et al. 2019). A combination of trait data with pesticide application information and residue levels in habitat matrices could enable a quantitative estimation of FVI contamination through specific pathways. There are a number of traits that influence exposure potential. These ecological properties include flight activity throughout the year, daily flight activity, food plant preference (nectar), nesting (location and construction), sociality, and mobility for bees (Thompson 2001; Brittain and Potts 2011; de Palma et al. 2015; Sgolastra et al. 2019). Application dates in field cultures and pesticide persistence can be combined with the active flight period of bee species to assess the proportion of species that are potentially exposed to a specific substance (Sponsler et al. 2019). A trait-based exposure analysis could also be performed for European bee species using the database just described (Roberts et al. 2016, unpublished data). A linkage of habitat to FVI exposure is currently not possible for many relevant matrices such as soil, stem or leaf material, and non-nectar fluids. If the existing information gaps are closed, it may be possible to devise a holistic general framework that connects trait-based effect and exposure assessment, as was proposed for aquatic organisms (Rubach et al. 2011; Van den Brink et al. 2011).

Landscape-scale modeling

Because FVIs are mobile species, knowledge of their spatiotemporal population dynamics is required for a protective assessment of pesticide impact. This was recognized by the EFSA in their NTA scientific opinion, where they argued that a landscape-scale risk assessment should be developed (European Food Safety Authority 2015). A feasible approach is employing a model system that predicts the effects of pesticide applications on populations within the agricultural landscape (Rortais et al. 2017). The animal, landscape, and man simulation system (ALMaSS) is one possible framework that could be used to evaluate pesticide impact on predefined key species.
This system can be used to implement agent-based animal population models within a comprehensive and dynamic landscape simulation. This allows for a realistic simulation of pesticide use patterns on a spatio-temporal scale. Animal behavior parameters are modeled to predict exposure and effects at the individual level that translates into population impact. The ALMaSS suite of models can presently be applied to several arthropod, bird, and mammalian species. However, such a complex system requires detailed knowledge of the investigated landscape (land use and management) as well as extensive information about the ecology of model species (Topping et al. 2003). Landscape-scale models also need to be accompanied by FVI monitoring to validate their predictions for the use in risk assessment. There are other approaches such as the BEEHAVE model that might be easier to implement at the cost of reduced explanatory power at the landscape level (Becher et al. 2014; Rortais et al. 2017). This model was designed to simulate pesticide risk to honey bee colonies. An adapted version has been developed to provide the same functionality for bumble bees (Becher et al. 2018). It is unclear whether FVIs groups other than bees can be integrated into this framework.

Both trait-based analysis and landscape-scale modeling regulatory approaches are suitable to improve future pesticide risk assessment. The main limiting factor for their application is FVI ecological data availability.

RESEARCH RECOMMENDATIONS

In the present review, we identified the relevant FVI groups in the agricultural landscape as bees, flies (non-syrphids and syrphids), lepidopterans (moths and butterflies), beetles, and wasps (Orford et al. 2015; Rader et al. 2015; Grass et al. 2016). Only very limited information is available to evaluate all possible groups such as the non-bee Hymenoptera and Hemiptera. Proportions of species and individuals of the respective groups vary in different crop systems (Rader et al. 2015) and semi-natural habitats (Orford et al. 2015; Grass et al. 2016). The FVIs are flying, mobile species that live in the entire agricultural landscape. They use both farmland and non-target areas such as flower strips, field margins, and hedgerows as habitat (e.g., Marshall and Moonen 2002; Holzschuh et al. 2013; Coudrain et al. 2015; Denisow and Wrzesień 2015; Feltham et al. 2015; Tschumi et al. 2015). There is insufficient information available to assess suitable habitats of the specific FVI groups and their function in more detail. They use several compartments of these habitats to fulfill specific ecological functions such as foraging, mating, and nesting (Westrich 1990; Michener 2007). Pesticide applications on crops theoretically lead to contamination of FVI habitat compartments. Therefore, FVIs are potentially exposed to pesticides through multiple pathways. Analytic studies show that FVIs are contaminated with numerous pesticides (Mullin et al. 2010; Chauzat et al. 2011; Botías et al. 2017). There is also extensive evidence of pesticide residues in crops and non-target areas (Wood and Goulson 2017). In all habitat compartments, pesticide residues have been detected, including nectar and pollen (e.g., Mullin et al. 2010; Chauzat et al. 2011; Tosi et al. 2018), soil (Jones et al. 2014; Hvězdová et al. 2018), stems and leaves (Botías et al. 2016; Mogren and Lundgren 2016), and water sources (Samson-Robert et al. 2014; Schaafsma et al. 2015; Stehle and Schulz 2015; Schmolke et al. 2018; Wirtz et al. 2018). However, it is not possible to link habitat to FVI exposure with the current knowledge base. There is a lack of information regarding the exposure of all non-bee FVI groups. The FVIs are affected by many pesticides, most notably neonicotinoid insecticides, at environmentally realistic doses. Bee (semi-)field studies found adverse effects on ecologically relevant parameters such as reproduction, foraging, and immune functions (e.g., Gill et al. 2012; Whitehorn et al. 2012; Alburaki et al. 2015; Dively et al. 2015; Feltham et al. 2015; Rundlöf et al. 2015). Furthermore, there are ecologically important...
effects at the population/community level that have been neglected so far by research such as source–sink effects, indirect effects, and effects on the ecosystem services pollination and biodiversity (European Food Safety Authority 2015).

The existing and proposed future risk assessment frameworks contain some deficits regarding the exposure and effect evaluation for FVs. Both the current bee and NTA risk assessments (Candolfi et al. 2001; European and Mediterranean Plant Protection Organization 2010a, 2010b) fail to cover the specific ecological properties of FVI species. The EFSA has drafted new regulatory documents that improve the risk assessment process (European Food Safety Authority 2013, 2015). However, there are still unaddressed issues and uncertainties that need to be resolved to achieve a protective risk assessment scheme for FVs. Data-driven tools can help to improve FVI risk assessment by using ecological information. Trait data can be used to determine their exposure to pesticides and the vulnerability of FVI populations to stressors (Rubach et al. 2011; Van den Brink et al. 2011). This information could be combined with toxicity, pesticide application, and residue data to assess pesticide impact on FVI communities in a connected framework. Another promising approach is landscape-scale modeling, which allows for an evaluation of the pesticide exposure of FVI populations and subsequent effects, in space and time (Topping et al. 2003; Rortais et al. 2017). Both approaches require comprehensive databases (currently not sufficiently available) that include FVI species traits, landscape composition, land use, pesticide toxicity, and residues in relevant matrices.

Throughout the present review, we highlighted knowledge gaps that need to be closed to better understand FVs and assess the effects of pesticide applications in their habitat. Therefore, we call for general research on the following subjects: 1) identification of all relevant FVI groups aside from bee species; 2) study of the ecology and habitat of all FVI groups; 3) implementation of extensive FVI population monitoring campaigns to determine the threat level of specific groups; 4) creation of a comprehensive FVI ecological trait database; 5) determination of FVI habitat exposure with consideration of relevant matrices and creation of a pesticide residue database; 6) linkage of habitat to FVI exposure with special regard to non-bee FVs; 7) assessment of pesticide effects with a focus on population-relevant parameters, especially for non-bee FVs; 8) investigation of neglected source–sink, indirect, and ecosystem service effects (pollination, biodiversity); and 9) development and advancement of suitable trait-based approaches for a impact assessment on the landscape scale.

Aside from this scientific input, there is a need for regulatory decision-making processes to move away from arbitrary conservative assumptions and overcomplicated risk assessment schemes toward a more substantiated and holistic approach that incorporates large-scale evaluation methods and utilizes ecological information.

Acknowledgment—We thank R. Bereswil and M. Meller with whom we worked together in the R+D project that initiated this review (German Environment Agency [UBA], Protection of wild pollinators in pesticide risk assessment and management, FKZ 3715 64 409 0). Furthermore, we appreciate the cooperation with D. Süßenbach as our contact at the UBA, which funded the research.

Conflict of Interest—The present review is in large part the result of a R+D Project funded by the German Environment Agency (Protection of wild pollinators in pesticide risk assessment and management, FKZ 3715 64 409 0). P. Uhl was supported through this project as a freelance scientist.

Data Availability Statement—Aside from the Supplemental Data, there are no data to be reported.

REFERENCES

Alburaki M, Boutin S, Mercier P-L, Loubléri Y, Chagnon M, Derome N. 2015. Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and pathogen susceptibility in field trials. PloS One 10:e0125790.

Alford A, Krupeck CH. 2017. Translocation of the neonicotinoid seed treatment clothianidin in maize. PLoS One 12:e0173836.

Arce AN, David TJ, Randall EL, Ramos Rodrigues A, Colgan TJ, Wurm Y, Gill RJ. 2016. Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. J Appl Ecol 54:1199–1208.

Arena M, Sgolastra F. 2014. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–334.

Balmer O, Geneau CE, Belz E, Weishaupt F, Bforder G, Moos S, Ditner N, Juric I, Luka H. 2014. Wildflower companion plants increase pest parasitization and yield in cabbage fields: Experimental demonstration and call for caution. Biol Control 76:19–27.

Becher MA, Grimm V, Thorbek P, Horn J, Kennedy PJ, Osborne J.I. 2014. BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. J Appl Ecol 51:470–482.

Becher MA, Twiston-Davies G, Penny TD, Goulson D, Rotheray EL, Osborne J.I. 2018. Bumble-BEEHAVE: A systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community levels. J Appl Ecol 55:2790–2801.

Biddinger DJ, Robertson JL, Mullin C, Fraizer J, Ashcraft SA, Rajotte EG, Joshi MC, Vaughan M. 2013. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L) and Osima cornifrons (Radoszkowski). PLoS One 8:e72587.

Blacquière T, Smagge G, Gestel CM, Mommaerts V. 2012. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992.

Bonmatin JM, Marchand PA, Charvet R, Moinneau I, Bengsch ER, Colin ME. 2005. Quantification of imidacloprid uptake in maize crops. J Agric Food Chem 53:5336–5341.

Bonmatin J-M, Giorgio C, Girolami V, Goulson D, Kreutzweiser DP, Krupeck C, Liess M, Long E, Marzaro M, Mitchell EA, Noone DA, Simon-Delso N, Tapparo A. 2015. Environmental fate and exposure: neonicotinoids and fipronil. Environ Sci Pollut Res Int 22:35–67.

Botías C, David A, Horwood J, Abdul–Sada A, Nicholls E, Hill E, Goulson D. 2015. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ Sci Technol 49:12731–12740.

Botías C, David A, Hill EM, Goulson D. 2016. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ 566–567:269–278.

Botías C, David A, Hill EM, Goulson D. 2017. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ Pollut 222:73–82.

Brittain C, Potts SG. 2011. The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12:321–331.
Candolfi M, ed. 2001. Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods: From the ESCORT 2 workshop (European Standard Characteristics of Non-Target Arthropods Regulatory Testing), a joint BART, EPOC/CoE, OECD and IOBC Workshop organized in conjunction with SETAC-Europe and the University of Wageningen, The Netherlands, 21–23 March 2000. SETAC, Pensacola, FL, USA.

Chauzat M-P, Martel AC, Coughoule N, Porta P, Lachaize J, Zeganne S, Aubert M, Berteau P, Fauchon JP. 2011. An assessment of honeybee colony matrices, *Apis mellifera* (Hymenoptera: Apidae) to monitor pesticide presence in continental France. *Environ Toxicol Chem* 30:103–111.

Coalition of the Willing on Pollinators. 2016. Declaration on the Coalition of the Willing on Pollinators. Signed at the Conference of the Parties on Biodiversity, Cancun, Mexico, December 4–18, 2016.

Coudrain V, Ritterin S, Herzog F, Tanner W, Entling MH. 2015. Landscape distribution of food and nesting sites affect larval diet and nest size, but not abundance of *Osma bicornis*. *Insect Sci* 23:746–753.

Cutler GC, Scott-Dupree CD. 2014. A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. *Ecotoxicology* 23:1903–1916.

Cutler GC, Scott-Dupree CD, Sultan M, McFarlane AD, Brewer L. 2014. A large scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success. *Peel J* 2:652.

David A, Botías C, Abdul-Sada A, Nicholls E, Rotheray EL, Hill EM, Goulson D. 2016. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crop fields in the UK. *Environ Int* 88:169–178.

de Palma A, Kuhlman M, Roberts SPM, Potts SG, Borger L, Hudson LN, Lysenko I, Newbold T, Purvis A. 2015. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. *J Appl Ecol* 52:1567–1577.

Denisow B, Wrzesień M. 2015. The importance of field-margin location for maintenance of food niches for pollinators. *J Apic Sci* 59:27–37.

Dively GP, Embrey MS, Kamei A, Hawthorne DJ, Pettis JS. 2015. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. *PLoS One* 10:e0118748.

Düker A, Kubiak R. 2015. Stem application of metalaxyl for the protection of *Cucurbita pepo* L. *Agric Ecosyst Environ* 204:123–130.

Forrest ML, Cousins B, Harrison JG, Anderson K, Thorne JH, Waehtjen D, Nice CC, De Parsia M, Hladik ML, Meese R, van Vliet H, Shapiro AM. 2016. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. *Biol Lett* 12:20160475.

Forster JRK, Thorp RW, Kremen C, Williams NM, Clough Y. 2015. Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. *J Appl Ecol* 52:706–715.

Frouz J. 1999. Use of soil dwelling Diptera (*Insecta, Diptera*) as bio-indicators: A review of ecological requirements and response to disturbance. *Agric Ecosyst Environ* 74:167–186.

Gels JA, Held DW, Potter DA. 2002. Hazards of insecticides to the bumble bees *Bombus impatiens* (*Hymenoptera: Apidae*) foraging on flowering white clover in turf. *J Econ Entomol* 95:722–728.

Gevao B, Semple K, Jones K. 2000. Bound pesticide residues in soils: A review. *Environ Pollut* 108:3–14.

Gienies E, Vaughan S, Slater M, Thompson HM, Emlore JS, Girling RD. 2019. A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure. *Environ Pollut* 249:236–247.

Gill RJ, Raine NE. 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. *Funct Ecol* 28:1459–1471.

Gill RJ, Ramos-Rodriguez D, Raine NE. 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. *Nature* 491:105–108.

Godfray HCJ, Blacquiere T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, Vanbergen AJ, MeLean AR. 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. *Proc R Soc B Biol Sci* 281:20140558.

Godfray HCJ, Blacquiere T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, Vanbergen AJ, MeLean AR. 2015. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. *Proc R Soc B Biol Sci* 282:20151821.

Goulson D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides. *J Appl Ecol* 50:977–987.

Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science* 347:1255957.

Grass I, Albrecht J, Jauker F, Diekötter T, Warzecha D, Weisser WW. 2010. Implementing large *Flower strips for insect plantings* support highly divergent flower-visitor communities from complex to structurally simple agricultural landscapes. *Agric Ecosyst Environ* 125:45–53.

Haaland C, Naisbit RE, Bersier L-F. 2011. Sown wildflower strips for insect conservation: A review. *Insect Conserv Divers* 4:60–80.

Hahn M, Schmidt T, Brühl CA 2015. Pesticides and non-target terrestrial invertebrates. In Brühl CA, Alschler A, Berger G, Bethwell C, Graef F, Hahn M, Schmidt T, Weber B, eds, *Protection of Biodiversity in the Risk Assessment and Risk Management of Pesticides with a Focus on Arthropods, Soil Organisms, and Amphibians*. Report of the Research and Development Project 3709 65 421, Vol 76 of Texte. Federal Environment Agency, Dessau, Germany.

Hallman CA, Sorg M, Jongejan S, Siepel H, Hofland N, Schwan H, Stennans W, Muller A, Sumser H, Horren T, Goulson D, de Kroon H. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. *PLoS One* 12:e0185809.

Health and Consumer Protection, European Commission. 2002. Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC. European Commission Health & Consumer Protection Directorate-General and Directorate-E Food Safety, plant health animal health and...
welfare and international questions and E1-Plant health. Brussels, Belgium.

Heard MS, Baas J, Dorne JL, Lahive E, Robinson AG, Rortais A, Spurgeon DJ, Svendsen C, Hesketh H. 2017. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species? Sci Total Environ 578:357–365.

Heimbach F, Russ A, Schimmer M, Born K. 2016. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: Implementation of the monitoring project and its representativeness. Ecotoxicology 25:1630–1647.

Hofmann MM, Zohner CM, Renner SS. 2019. Narrow habitat breadth and late-summer emergence increases extinction vulnerability in Central European bees. Proc R Soc B Biol Sci 286:1898.

Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I. 2013. Mass-flowering crops enhance wild bee abundance. Oecologia 172:427–484.

Hvězdová M, Kosubova P, Koskova M, Scherr KE. 2018. Currently and recently used pesticides in Central European arable soils. Sci Total Environ 613–614:361–370.

Intergovernmental Platform on Biodiversity and Ecosystem Services. 2016. The assessment report on pollinators, pollination and food production of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany.

Jones A, Harrington P, Turnbull G. 2014. Neonicotinoid concentrations in mass flowering crops in Northern Germany: Implementation of the monitoring project and its representativeness. Sci Total Environ 477:14–25.

Klein A, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 274:303–313.

Koch K, Freude H. 1992. Die Käfer Mitteleuropas: Ökologie, Vol 3. Goecke & Evers, Keltern, Germany.

Main AR, Webb EB, Goyne KW, Mengel D. 2018. Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: A meta-analysis. Ecol Appl 28:1232–1244.

Manandhar R, Wright MG. 2016. Effects of interplanting flowering plants on the biological control of corn earworm (Lepidoptera: Noctuidae) and thrips (Thysanoptera: Thripidae) in sweet corn. J Econ Entomol 109:113–119.

Marshall E, West TM, Kleijn D. 2006. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric Ecosyst Environ 113:36–44.

Marshall EJ, Moonen AC. 2002. Field margins in northern Europe: Their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–19.

Michener CD. 2007. The Bees of the World, 2nd ed. Johns Hopkins Uni- versity, Baltimore, MD, USA.

Miorini TJ, Raetano CG, Everhart SE. 2017. Control of white mold of dry bean and residual activity of fungicides applied by chemigation. Crop Protect 94:192–202.

Moffat C, Pacheco JG, Sharp S, Samson AJ, Bollan KA, Huang J, Buckland ST, Connolly CN. 2016. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). FASEB J 29:2112–2119.

Moffat C, Bollan KA, McArthur R, Pino VC, Huang J, Connolly CN. 2016. Neonicotinoid target distinct nicotinic ace- tylycholine receptors and neurons, leading to differential risks to bumblebees. Sci Rep 6:24764.

Mogren CL, Lundgren JG. 2016. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Sci Rep 6:29608.

Mogren CL, Lundgren JG. 2016. The effects of crop intensification on the diversity of native pollinator communities. Environ Entomol 45:865–872.

Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Ließ M, Cavallaro MC, Liber K. 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ Int 74:291–303.

Mörth M, Darvas B, Vehovszky A, Györi J, Székács A. 2019. Contamination of the guttation liquid of two common weeds with neonicotinoids from coated maize seeds planted in close proximity. Sci Total Environ 649:1117–1143.

Müller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dom S. 2006. Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee–flower relationships. Biol Conserv 130:604–615.

Mullin CA, Frazier M, Frazier JL, Aschraft S, Simonds R, vanEngelsdorp D, Pettis JS. 2010. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS One 5:e9754.

Nuyttens D, Devarrewarea W, Verboven P, Fouqué D. 2013. Pesticide-laden dust emission and drift from treated seeds during seed drilling: A review. Pest Manage Sci 69:564–575.

Ollerton J. 2017. Pollinator diversity: Distribution, ecological function, and conservation. Annual Rev Ecol Evol Syst 48:353–376.

Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals? Oikos 120:321–326.

Orford KA, Vaughan IP, Memmott J. 2015. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Roc R Soc B Biol Sci 282:20142934–20142934.

Pecenka JR, Lundgren JG. 2015. Non-target effects of clothianidin on monarch butterflies. Naturwissenschaften 102(3–4):1270.

Peters B, Gao Z, Zumkier U. 2016. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: Effects on red mason bees (Osmia bicornis). Eco- toxicology 25:1679–1690.

Pettis JS, vanEngelsdorp D, Johnson J, Dively G. 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:153–158.

Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D. 2013. Crop pollution exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182.

Pilling E, Campbell P, Coulson M, Ruddle N, Torrieri I. 2013. A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS One 8:e77193.

Pisa LW, Ameral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzerweis DP, Krupke C, Liess M, McField F, Morrissey CA, Noone DA, Settele J, Simon-Delso M, Stark JD, van der Sluijs J, Van Dyck H, Wiemers M. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res Int 22:68–102.

Pisa L, Goulson D, Yang EC, Gibbons D, Sanchez-Bayo F, Mitchell E, Aebi A, van der Sluijs K, MacQuarrie CJK, Gionio C, Yrn Long E, McField M, van Lexmond MB, Bonmatin JM. 2017. An update of the Worldwide In- tegrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ Sci Pollut Res DOI: 10.1007/s11356-017-0341-3.

Pohorecka K, Semkiv P, Skubida P, Miszczak A. 2013. Effects of exposure of honey bee colonies to neonicotinoid seed-treated maize crops. J Apic Res 52:199–208.

Potz SG, Biesmeijer K, Bommarco R, Breeze T, Carvalheiro L, Franz M, Gonzalez-Varejo JP, Holzschuh A, Kleijn D, Klein A-M, Kunin B, Lecoq T, Lundin O, Michez D, Neumann P, Nieto A, Penev L, Rasmont P, Ratamaki O, Redinger V, Roberts SMP, Rundlof M, Schepers J, Sørensen P, Steffan-Dewenter L, Stoep V, Vila M, Schweiger O. 2015. Status and trends of European pollinators. Key findings of the STEP project. Pensoft, Sofia, Bulgaria.

Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcock BA, Isaac NJB. 2019. Widespread losses of pollinating insects in Britain. Nat Commun 10:1018.

Rader R, Bartomeus I, Lucas A, Garibaldi LA, Garratt MPD, Howlett BG, Winfree R, Cunningham SA, Mayfield MM. 2015. Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 112:146–151.

Reetze J, Schulz W, Setza W, Spitteler M, Zühlke S, Armbruster W, Wallner K. 2016. Uptake of neonicotinoid insecticides by water-foraging honey bees (Hymenoptera: Apidae) through guttation fluid of winter oilseed rape. J. Ecol Environ 109:31–40.

Relyea RA, Hoverman J. 2006. Assessing the ecology in ecotoxicology: A review and synthesis in freshwater systems. Ecol Lett 9:1157–1171.

Requier F, Odoux J-F, Tamic T, Moreau N, Henry M, Decourtye A, Bretagnolle V. 2015. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol Appl 25:881–890.
Research Gate. 2016. ResearchGate. Berlin, Germany. [cited 2019 March 29] Available from: https://www.researchgate.net

Rohr JR, Kerby JL, Sih A. 2006. Community ecology as a framework for predicting contaminant effects. Trends Ecol Evol 21: 606–613.

Rolke D, Persigehl M, Peters B, Sterk G, Blenau W. 2016. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: Residues of clothianidin in pollen, nectar and honey. Ecotoxicology 25:1691–1701.

Rortais A, Arnold G, Dome J-L, More SJ, Sperandio G, Streissl F, Szentcs, Verdonck F. 2017. Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority. Sci Total Environ 58758:524–537.

Rubach MN, Ashauer R, Buchwalter DB, De Lange H, Hammer M, Preuss DG, Topke K, Maunde SJ. 2011. Framework for traits-based assessment in ecotoxicology. Integr Environ Assess Manag 7:172–186.

Ruddle N, Elston C, Klein O, Hamberger A, Thompson H. 2018. Effects of exposure to winter oiled rape grown from thiamethoxam-treated seed on the red mason bee Osmia bicorna: Thiamethoxam-treated oiled rape and Osmia bicorna reproduction. Environ Toxicol Chem 37:1071–1083.

Rundlöf M, Andersson GK, Bommarco R, Fries I, Hederstrom V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG. 2015. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80.

Samson-Robert O, Labrie G, Chagnon M, Fournier V. 2014. Neonictinoid-contaminated puddles of water represent a risk of intoxication for honey bees. PLoS One 9:e108443.

Sánchez-Bayo F, Goka K, Hayasaka D. 2016. Contamination of the aquatic environment with neonictinoids and its implication for ecosystems. Front Environ Sci DOI: 10.3389/fenvs.2016.00071.

Schafmsa A, Limay-Rios V, Baute T, Smith J, Xue Y. 2015. Neonictinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in southwestern Ontario. PLoS One 10:e0118139.

Scheper J, Reemer M, van Kaats R, Ozinga WA, van der Linden GTJ, Scheper J, Reemer M, van Kaats R, Ozinga WA, van der Linden GTJ, Scheper J, Reemer M, van Kaats R, Ozinga WA, van der Linden GTJ, Scheper J, Reemer M, van Kaats R, Ozinga WA, van der Linden GTJ.

Schmolke A, Kearns B, O'Neill B. 2018. Plant guttation water as a potential route for pesticide exposure in honey bees: A review of recent literature. Apidologie 49:637–646.

Scoble MJ. 1995. The Lepidoptera. Form, Function and Diversity. Oxford University, New York, NY, USA.

Semple KT, Morriss AWJ, Paton Gi. 2003. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818.

Sgolastra F, Hinerejos S, Pitts Sponsler DB, Grozinger CM, Hitaj C, Rundlof M, Botias C, Code A, Lonsdorf Eric. 2017. Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority. Sci Total Environ 58758:524–537.

Siviter H, Brown MJF, Leadbeater E. 2018. Sulfoxaflor analysis. Trends Ecol Evol 33:1499–1507.

Sivasithamparam P. 2014. Recovery based on plot experiments is a poor predictor of colony losses of honey bee colonies in the U.S., Fall 2007 to Spring 2008. J Insect Conserv 18:213–219.

Smith AD, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE. 2015. Neonictinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528:548–550.

Stein R. 2016. Diei activity, frequency and visit duration of pollinators in focal plants: In situ automatic camera monitoring and data processing. Methods Ecol Evol 8:205–213.

Stehle S, Schulz R. 2015. Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci U S A 112:5750–5755.

Sterk G, Peters B, Gao Z, Zumkler U. 2016. Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating insects in Northern Germany: Effects on large eart bumble bees (Bombus terrestris). Ecology 25:1666–1678.

Stoner KA. 2016. Current pesticide risk assessment protocols do not adequately address differences between honey bees (Apis mellifera) and bumble bees (Bombus spp.). Front Environ Sci DOI: 10.3389/fenvs.2016.00079.

Storkey J, Westbury DB. 2007. Managing arable weeds for biodiversity. Pest Manage Sci 63:517–523.

Sur R, Stork A. 2003. Uptake, translocation and metabolism of imidacloprid in plants. Bull Insectol 56:35–40.

Tapparo A, Giorio C, Marzaro M, Marton D, Soldá L, Girolami V. 2011. Rapid analysis of neonictinoid insecticides in guttation drops of corn seedlings obtained from coated seeds. J Environ Monit 13.1564.

Thompson HM. 2001. Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32:305–321.

Toeging CJ, Hansen TS, Jenssen TS, Jepsen JU, Nikolajsen F, Odderskov P. 2013. ALMaSS, an agent-based model for animals in temperate European landscapes. Ecol Model 167:65–82.

Toeging CJ, Kjaer LK, Hømmen U, Høye TT, Preuss TG, Sibly RM, van Plet A. 2014. Recovery based on plot experiments is a poor predictor of landscape-level population impacts of agricultural pesticides: Agent-based simulation of population recovery. Environ Toxicol Chem 33:1499–1507.

Topping CJ, Craig PS, de Jong F, Klein M, Laskowski R, Manichini B, Peiper S, Smith R, Sousa JP, Streissl F, Swarowsky K, Tiktak A, Van der Linden T. 2015. Towards a landscape scale management of pesticides: ERA using changes in modelled occupancy and abundance to assess long-term population impacts of pesticides. Sci Total Environ 537:159–169.

Tosi S, Costa C, Vesco U, Quagliola G, Guido G. 2018. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci Total Environ 615:208–218.

Tschumi M, Albrecht M, Entling MH, Jacot K. 2015. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc R Soc B Biol Sci 282:1814.

Uhl P, Franke LA, Rehberg C, Wollmann C, Stahlhschmidt P, Jeker L, Brühl CA. 2016. Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Sci Rep 6:34439.

United Nations. 1992. Convention on Biological Diversity. New York, NY, USA.

United Nations. 2016. Cancun Declaration on Mainstreaming the Conservation and Sustainable Use of Biodiversity for Well-Being. New York, NY, USA.

Van den Brink PJ, Alexander AC, Desrosiers M, Goedkoop W, Goethals PL, Liess M, Dyer SD. 2011. Traits-based approaches in bioassessment and ecological risk assessment: Strengths, weaknesses, opportunities and threats. Integr Environ Assess Manag 7:198–208.

vanEngelsdorp D, Hayes J Jr, Underwood RM, Pettis J. 2008. A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. PLoS One 3:e4071.

Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viques B, Brunet JL, Texier C, Vayssier T, Gouëth D, Gaugler JF, Le Gall F, Rasmont P, Dufrêne M, Michez D, Dendoncker N. 2019. A new method for assessing the sensitivity of bees towards dimethoate and imidacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:21550.

Vray S, Rollin O, Rasmont P, Dufrêne M, Michez D, Dendoncker N. 2019. A century of local changes in bumblebee communities and landscape composition in Belgium. J Insect Conserv DOI: 10.1007/s10841-019-00139-9.

Walker CH. 2001. Principles of Ecotoxicology, 2nd ed. ebrary, London, UK.

Wardhaug CW. 2015. How many species of arthropods visit flowers? Arthropod-Plant Interact 9:547–565.

Westrich P. 1990. Die Wildbienen Baden-Württembergs: [Im Rahmen des Artensteckprogrammes Baden Württemberg]. Ulmer, Stuttgart, Germany.

Whitehorn PR, O’Connor S, Wackers FL, Goulson D. 2012. Neonictinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352.
Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG. 2010. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291.

Winfree R, Bartomeus I, Cariveau DP. 2011. Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol System 42:1–22.

Wirtz IP, Hauer-Jákli M, Schenke D, Ladewig E, Märländer B, Heimbach U, Pistorius J. 2018. Investigations on neonicotinoids in guttation fluid of seed treated sugar beet: Frequency, residue levels and discussion of the potential risk to honey bees. Crop Protect 105:28–34.

Wood TJ, Goulson D. 2017. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ Sci Pollut Res 24:17285–17325.

Woodcock BA, Isaac NJB, Bullock JM, Roy DB, Garthwaite DG, Crowe A, Pywell RF. 2016. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat Commun 7:12459.

Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dom S. 2010. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676.