Experimental Identification of Hard Data Sets for Classification and Feature Selection Methods with Insights on Method Selection

Cuiju Luan
cjluan@shmtu.edu.cn
College of Information Engineering
Shanghai Maritime University
Shanghai, 201306, China

Guozhu Dong
guozhu.dong@wright.edu
Department of Computer Science and Engineering
Wright State University
Dayton, Ohio 45435, USA

Abstract
The paper first reports an experimentally identified list of benchmark data sets that are hard for representative classification and feature selection methods. This was done after systematically evaluating a total of 54 combinations of methods, involving nine state-of-the-art classification algorithms and six commonly used feature selection methods, on 129 data sets from the UCI repository (some data sets with known high classification accuracy were excluded). In this paper, a data set for classification is called hard if none of the 54 combinations can achieve an AUC over 0.8 and none of them can achieve an F-Measure value over 0.8; it is called easy otherwise. A total of 17 out of the 129 data sets were found to be hard in that sense. This paper also compares the performance of different methods, and it produces rankings of classification methods, separately on the hard data sets and on the easy data sets. This paper is the first to rank methods separately for hard data sets and for easy data sets. It turns out that the classifier rankings resulting from our experiments are somehow different from those in the literature and hence they offer new insights on method selection.

Keywords: classification methods, feature selection methods, hard data sets, method ranking, performance comparison

Running Title: Hard Data Sets for Major Classification Methods

1 Introduction

When faced with a classification job, an analyst will often want to select the best methods for the application; this can be a daunting task since there are a large number of methods available. Users will need insights, such as rankings of the methods, to guide them to make the best selection, and to go through the selection process in an easy-to-handle manner. Several studies on the experimental evaluation of various methods for classification have been reported recently (e.g., Fernández-Delgado et al., 2014; Van Hulse, Khoshgoftaar and Napolitano, 2007). Reference (Fernández-Delgado et al., 2014) is a main representative of such studies, which used 121 data sets to evaluate 179 classifiers.
However, to the best of our knowledge, all previous studies evaluated and ranked classification methods by considering all data sets in one pool – they did not distinguish the data sets based on their hardness. Moreover, there was no systematic study to identify which classification benchmark data sets are hard for traditional classification methods, and there were no rankings of methods based on their performance on hard data sets only. Filling these gaps is important, as the identified hard data sets can help future studies to develop new classification algorithms to complement existing classification algorithms, and the ranking of methods on hard data sets can help users select the best method when they are working with potentially hard data sets. We plan to fill this gap in this study.

This study will evaluate both classification algorithms and feature selection methods in combination. Specifically, it will identify hard data sets for which no combinations of representative classification algorithms and feature selection methods can produce accurate classification models. Moreover, the study will use the area under the ROC (AUC) and F-Measure, instead of the accuracy measure (as was done in Fernández-Delgado et al., 2014), to evaluate the performance of classification models. These measures were chosen based on the recent consensus that the accuracy measure has significant shortcomings when compared with the above two measures, especially AUC.

To identify a list of benchmark data sets that are hard for representative classification and feature selection methods, we perform a systematic evaluation of 54 combinations, involving nine representative classification algorithms and six commonly used feature selection methods, on 129 data sets from the UCI repository. We note that some data sets with known high classification accuracy based on results of Fernández-Delgado et al. (2014) were excluded in our experiments.

For ease of discussion, a data set for classification will be called hard if none of the 54 combinations can achieve an AUC over 0.8 and none of the 54 combinations can achieve an F-Measure value over 0.8; it is called easy otherwise. A total of 17 out of the 129 data sets were found to be hard in our experiments.

This paper also compares the performance of different methods separately on the hard data sets and on the easy data sets. This was done based on their performance on data sets for which complete results were obtained for all of the 54 combinations. It turns out that the method rankings resulting from our experiments are somehow different from those in the literature and hence they offer new insights on method selection.

The rest of the paper is organized as follows. Section 2 describes the classification algorithms and feature selection methods used in this study. Section 3 describes the data sets included in this study. Section 4 gives the experiment settings and the evaluation measures used. Section 5 presents the experimental results and the associated analysis. Section 6 concludes the paper.

2 Algorithms Used in the Study

In the experiments, we used multiple commonly-used representative classification algorithms and feature selection methods. The classification algorithms we used are Boosting, Decision Tree, Random Forest, Nearest Neighbor, Logistic Regression, and Support Vector Machine (SVM). The feature selection methods we used are correlation based method, information gain based method, and the relief-f method (all of which are filter based methods). During the
experiments, we also considered the wrapper based method, but we decided to exclude it due to its computational expensiveness (see Table X in Appendix) (it is seldom used in practice (Li et al., 2016) due to the same reason).

All the classification algorithms and feature selection methods we used are as implemented in Weka 3.8.0 (Hall et al., 2009). More details are given in the next two subsections.

2.1 Classification Algorithms and Parameter Settings

We selected representative classification algorithms, partly based on several papers that reported systematic evaluation of classification algorithms and partly based on common knowledge. In particular, reference (Fernández-Delgado et al., 2014) showed Random Forest and SVM are often better than the others, and reference (Wyner et al. 2015) gave a list of common-used successful classification algorithms. We selected Boosting, Decision Tree, Random Forest, Nearest Neighbor, Logistic Regression and SVM, as the representatives of existing classification algorithms. Table 1 shows the correspondence of classification algorithms and their implementations in Weka that we used in experiments. Some of the classification algorithms given in Table 1 have multiple versions due to different parameter settings, yielding a total of nine classification algorithms (discussed below).

Classification algorithm	Classifier in Weka	Abbreviation
Boosting	AdaBoostM1	AdaBoost
Decision Tree	J48	J48
Random Forest	RandomForest	RF
K Nearest Neighbor	IBk	IBk
Logistic	Logistic	LOG
SVM	LibSVM	SVM

Table 1: Classification algorithms and their implementations in Weka.

To better evaluate the six algorithms, two J48 and three SVM classifiers were examined. For J48, we examined the classifier using the default parameter values, and the other using no pruning and using Laplace smoothing (J48(-U-A)). The three LibSVM classifiers are SVM using linear (SVM-LN), polynomial (SVM-PN) and radial basis function (SVM-RBF) kernels respectively. For IBk, we used K=10 and crossValidate=True, with which the system will find the optional K value between 1 and 10. More details are given below.

1) AdaBoost uses the M1 method (Freund and Schapire, 1996) with DecisionStump as base classifiers.
2) J48 implements a pruned C4.5 (Quinlan, 1993) decision tree algorithm, with parameters confidenceFactor=0.25 and minNumObj=2.
3) J48(-U-A) implements a unpruned C4.5 decision tree algorithm with Laplace-based smoothening.
4) RF builds a forest of random trees (Breiman, 2001), with parameters bagSizePercent=100 and unlimited depth.
5) IBk implements the K-nearest neighbors classifier (Aha, Kibler and Albert, 1991), selecting the optimal value of K between 1 and 10 based on cross-validation.
6) LOG builds and uses a multinomial logistic regression model with a ridge estimator (Cessie and Houwelingen, 1992), with parameter ridge=1.0E-8.
7) SVM-LN uses the LibSVM library (Chang and Lin, 2011) with linear kernel, with parameters SVMType=C-SVC and cost=1.0.
8) SVM-PN uses the LibSVM library with polynomial kernel, with parameters SVMType=C-SVC, cost =1.0, degree=3, gamma=0.0 and coef0=0.
9) SVM-RBF uses the LibSVM library with radial basis function kernel, with parameters SVMType=C-SVC, cost=1.0 and gamma=0.0.

2.2 Feature Selection Methods

Feature selection methods are used to remove irrelevant, redundant, or noisy attributes, with the aim of speeding up the computation and improving the accuracy (Li et al., 2009; Liu and Yu, 2005; Dash and Liu, 1997). Our experiments examine the effectiveness of feature selection methods when used with various classification algorithms.

Many feature selection methods have been proposed, each with its own pros and cons. We selected the following filter methods because they are commonly used (Liu and Yu, 2005; Robnik-Šikonja and Kononenko, 2003): the correlation based method, the information gain based method and the relief-f method. We used Weka’s implementation of the three feature selection methods.

In order to better evaluate these methods, we used two different parameter settings, which dictate how many features are selected, as described below.

1) Let IG1 (similarly RLF1) denote the version of the Information Gain method (similarly Relief-F) that works to select 80 percent of the features if the total number of features of a given data set is no more than 50, and to select 40 features if the total number of features is more than 50.

2) Let IG2 (similarly RLF2) denote the version of the method that works to select 60 percent of the features if the total number of features is no more than 50, and it selects 25 features otherwise.

For ease of discussion, we consider “no attribute selection” as a feature selection method. Therefore, a total of 6 feature selection methods are considered.

We now give some more details on the feature selection methods.

1) CFS uses CfsSubsetEval as the attribute evaluator to evaluate the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them, and uses BestFirst as the search method to searches the space of attribute subsets by greedy hill-climbing augmented with a backtracking facility.

2) IG1 uses InfoGainAttributeEval as the attribute evaluator to evaluate the worth of attributes by measuring the information gain with respect to the class, and uses Ranker as the search method. If the total number of features is no more than 50, IG1 selects 80 percent of the features, and IG1 selects 40 features otherwise.

3) IG2 differs from IG1 as follows. It selects 60 percent of the features if the total number of features is no more than 50, and it selects 25 features otherwise.
4) RLF1 uses ReliefAttributeEval as the attribute evaluator to evaluate the worth of attributes by repeatedly sampling an instance and considering the value of the given attribute for the nearest instance belonging to the same and different classes. It uses Ranker as the search method. It selects 60 percent of the features if the total number of features is no more than 50, and it selects 25 features otherwise.

5) RLF2 differs from RLF1 as follows. It selects 60 percent of the features if the total number of features is no more than 50, and it selects 25 features otherwise.

6) NO means “no attribute selection is performed”.

3 Data Sets Included in the Study

Our experiments used 129 data sets, all from the UCI repository (Lichman, 2013). Table 2 lists the 98 data sets for which complete results for all of the 54 combinations were obtained; the remaining data sets are given Appendix.

Data set	#Instance	#Attribute	Data set	#Instance	#Attribute
abalone	4177	9	heart	270	14
Anneal	798	39	heart-cleveland	303	14
Arrhythmia	452	263	heart-switzerland	123	13
australian	690	15	heart-va	200	13
balloons_a	20	5	hepatitis	155	20
balloons_b	20	5	hill-valley	1212	101
balloons_c	20	5	leaf	340	16
balloons_d	16	5	led-display	1000	8
bankrupt_qualitative	250	7	letter-recognition	13339	17
Biodeg	1055	42	lung-cancer	32	57
Blogger	100	6	mfeat	2000	650
breast-cancer	286	10	monks-1	556	7
breast-cancer-wise	699	10	monks-2	601	7
breast-cancer-wise-diag	569	31	monks-3	554	7
breast-cancer-wisc-prog	198	34	occupancy	20560	7
breast-tissue	106	10	phishing	11055	31
chronic_kidney_disease	400	25	pima	768	9
climate	540	21	pittsb-bridges-material	106	8
congressional-voting	435	17	pittsb-bridges-rel-l	103	8
contrac	1473	10	pittsb-bridges-span	92	8
cortex_nuclear	1080	82	pittsb-bridges-t-or-d	102	8
credit_card	30000	24	pittsb-bridges-type	105	8
crx	690	16	planning	182	13
data_banknote_authentication	1372	5	post-operative	90	9
dr	1151	20	primary-tumor	330	18
dresses_attribute_sales	500	14	seismic-bumps	2584	19
eeg_data	14980	15	shuttle	58000	10
electricity-board	45781	5	spect	265	23
Data Set Name	Instances	Features	Description	Instances	Features
-------------------------------------	-----------	----------	------------------------------------	-----------	----------
fertility_diagnosis	100	10	statlog-australian-credit	690	15
flags	194	29	statlog-german-credit	1000	25
foresttypes	523	28	statlog-heart	270	14
gesture_phase_a1_raw	1747	20	statlog-image	2310	19
gesture_phase_a1_va3	1743	33	statlog-landsat	6435	37
gesture_phase_a2_raw	1264	20	statlog-shuttle	58000	10
gesture_phase_a2_va3	1260	33	statlog-vehicle	846	19
gesture_phase_a3_raw	1834	20	student-mat	395	33
gesture_phase_a3_va3	1830	33	student-por	649	33
gesture_phase_b1_raw	1073	20	teaching	151	6
gesture_phase_b1_va3	1069	33	thoracic_surgery_data	470	17
gesture_phase_b3_raw	1424	20	titanic	2201	4
gesture_phase_b3_va3	1420	33	urban_land_cover	675	148
gesture_phase_c1_raw	1111	20	user_modeling	403	6
gesture_phase_c1_va3	1107	33	vehicle	846	19
gesture_phase_c3_raw	1448	20	wholesale_customers_data_new	440	8
gesture_phase_c3_va3	1444	33	Wilt	4839	6
gesture_phase_raw	9901	20	Wine	178	14
gesture_va3	9873	33	wine-quality-red	1599	12
glass	214	10	wine-quality-white	4898	12
haberman-survival	306	4	yeast	1484	9

Table 2: Details of 98 data sets.

Below we discuss where the data sets are from and how we selected them.

(a) From the data sets studied in (Fernández-Delgado et al., 2014), we first selected 34 data sets such that the maximum reported accuracy of (Fernández-Delgado et al., 2014) is below 0.8. (This saved our effort by eliminating the data sets having high known accuracy.) Then we added another 11 data sets that are variations (sharing the same data set name at UCI) of some of the 34 data sets. As a result, this group has a total of 45 data sets.

(b) Because (Fernández-Delgado et al., 2014) only dealt with UCI data sets dated before March 2013, we examined the 91 UCI data sets whose dates are between January 2013 and June 2016. From these we selected 32 and excluded the other 59 for reasons such as “too many instances”, “having no classification attribute”, “having complex data structure requiring preprocessing”, “having no data”, and “inaccessible”. Some data sources provide multiple versions (e.g. 15 for actrecog, 16 for gesture, 10 for mhealth, 2 for student); we took each version as a different data set (e.g. 15 data sets from the 15 versions of actrecog). This group has a total of 71 data sets.

(c) We also examined data sets having no dates marked at UCI, from which 10 data sets are included (the others are excluded due to complex data). Among the 10 data sets, balloon has 4 versions, yielding extra data sets. So this group has a total of 13 data sets.

Among the 129 data sets from the three groups, there were 31 (listed in Table XI in
Appendix) for which experiments could not be completed, hence they were excluded from Table 2. One of the 31 came from the (a) group and the other 30 from the (b) group.

4 Experimental Settings and Evaluation Measures

We used 10-fold cross validation to evaluate classification performance. For each fold of each data set, a classification model is built from the other 9 folds, using each of the 54 combinations involving nine classifiers and six feature selection methods.

As widely noted in the literature, the simple accuracy measure may be not adequate for imbalanced data sets. As some data sets used in our experiments are not balanced, we did not use the accuracy measure; we used the AUC and F-Measure measures instead.

AUC is equivalent to the probability that the underlying classifier will rank a randomly chosen positive instance higher than a randomly chose negative instance (Fawcett, 2006). It is also called ROC Area in Weka. The F-Measure is the harmonic mean of Precision and Recall. AUC has several desirable properties as a classification performance measure, such as being decision threshold independent and invariant to a priori class probabilities. AUC is widely accepted as one of the best ways to evaluate a classifier’s performance (Bradley, 1997) and it has been widely used to measure the performance in classification. We chose to include the F-Measure, in order to complement the AUC, and also to indicate the strength of the classifier in terms of Precision and Recall. (Reference (Hand, 2009) pointed out that for some situations, namely when the ROC curves cross, AUC has some weakness and it may give potentially misleading information.)

5 Experimental Results and Discussion

This section first presents the 17 identified hard data sets. It then analyzes the performance of classification and feature selection methods under several different conditions. It presents, for each hard data set, the combinations that are the best or worst for the data set. Based on that, it identifies the most frequent best classification algorithm, the most frequent best feature selection method, and so on. Similarly, it presents the worst combinations and identifies the most frequent worst methods. Finally, it also gives rankings of classification algorithms based on the number of data sets where they are the best and base on the average AUC; the rankings are given separately for the hard data sets and for the easy data sets. It should be noted that the rankings are based solely on results on the 98 data sets for which complete results were obtained for all of the 54 combinations.

For ease of discussion, we introduce a few terms and notations. For each data set, let \(\text{max}^{54}\text{AUC} \) denote the highest AUC achieved by the 54 classification-algorithm and feature-selection-method combinations, and similarly let \(\text{max}^{54}\text{FMeasure} \) denote the highest F-Measure. We say a data set is a hard data set if both max54AUC and max54FMeasure are no higher than 0.8, and we call the other data sets as easy data sets.

As the detailed experiment results require too much space, they are not listed here; they can be found as supplementary materials at http://cecs.wright.edu/~gdong/harddata/.

5.1 The 17 Hard Data Sets We Identified
Table 3 lists the data sets for which max54AUC is less than or equal to 0.8, and Table 4 lists the data sets for which max54FMeasure is less than or equal to 0.8. In both tables, the data sets are listed in increasing measure value order.

Table 3: Data sets having max54AUC <= 0.8.

Data set	Max54AUC
post-operative	0.523
planning	0.562
dresses_attribute_sales	0.59
statlog-australian-credit	0.61
heart-switzerland	0.626
heart-va	0.632
congressional-voting	0.632
thoracic_surgery_data	0.673
haberman-survival	0.691
contrac	0.704
fertility_diagnosis	0.707
breast-cancer	0.711
titanic	0.755
spect	0.758
seismic-bumps	0.764
credit_card	0.767
breast-cancer-wisc-prog	0.771
statlog-german-credit	0.797
primary-tumor	0.799
pittsburg-bridges-span	0.8

Table 4: Data sets having max54FMeasure <= 0.8.

Data set	Max54FMeasure	
heart-va	0.399	
primary-tumor	0.423	
heart-switzerland	0.434	
student-por	0.443	
student-mat	0.455	
contrac	0.555	
congressional-voting	0.558	
heart-cleveland	0.586	
dresses_attribute_sales	0.6	
pittsburg-bridges-type	0.601	
yeast	0.608	
planning	0.623	
post-operative	0.626	
plant-shape	0.64	
Data set	Max54AUC	Max54FMeasure
-----------------------------	----------	---------------
electricity-board	0.658	
abalone	0.666	
statlog-australian-credit	0.668	
gesture_phase_c3_va3	0.675	
gesture_phase_a2_va3	0.676	
gesture_phase_va3	0.682	
flags	0.689	
wine-quality-white	0.692	
pittsburg-bridges-span	0.693	
wine-quality-red	0.694	
teaching	0.702	
arrhythmia	0.709	
haberman-survival	0.711	
breast-cancer	0.726	
led-display	0.731	
pittsburg-bridges-rel-1	0.731	
breast-tissue	0.739	
spect	0.743	
gesture_phase_c1_va3	0.749	
balloons_d	0.75	
gesture_phase_a1_va3	0.75	
dr	0.752	
titanic	0.77	
leaf	0.77	
statlog-german-credit	0.77	
pima	0.772	
lung-cancer	0.779	
hill-valley	0.78	
thoracic_surgery_data	0.794	
breast-cancer-wisc-prog	0.795	
gesture_phase_b3_va3	0.797	
glass	0.798	

Table 4: Data sets having max54FMeasure \leq 0.8.

Table 5 reports the hard data sets having both max54AUC and max54FMeasure less than or equal to 0.8 --- they are precisely those that appear in both Tables 3 and 4.

Data set	Max54AUC	Max54FMeasure
post-operative	0.523	0.626
planning	0.562	0.623
dresses_attribute_sales	0.59	0.6
statlog-australian-credit	0.61	0.668
Table 5: Hard data sets (having max54AUC <= 0.8 & max54FMeasure <= 0.8).

5.2 Best and Worst Method Combinations for the Hard Data Sets

For each hard data set, we identified the best combination of classification and feature selection methods obtaining the highest AUC; the result is reported in Table 6. Summarizing the table we have the following:

- At the individual algorithm level, RF and IG1 make the most-frequent best combination (being the best for 4 hard data sets).
- The best combinations for ten (10) of the 17 hard data sets involve the use of feature selection methods (58.8%); the best combinations for three (3) do not use feature selection methods (17.6%); for the remaining four (4) data sets, multiple combinations achieved the best AUC (23.5%), some of which involve feature selection methods and some do not.
- Focusing on the feature selection methods, we see that IG1 and NO (no attribute selection) are used in the best combinations for 7 hard data sets (41.2%), IG2 is used for 4 hard data sets (23.5%), RLF1 is used for 3 hard data sets (17.6%), CFS is used for 2 hard data sets (11.8%) and RLF2 is used for 1 hard data set (5.9%).
- Focusing on classification algorithms, we see that RF appears in the best combinations of 8 hard data sets (47.1%), LOG appears in 5 (29.4%), AdaBoost appears in 2 (11.8%), and SVM and IBk each appears in 1 (5.9%).

So, for the 17 hard data sets, RF is the most-frequent best classification algorithm, IG1 and NO (no attribute selection) is the most-frequent best feature selection method, and the combination of RF and IG1 is the most-frequent best combination.
Table 6: Classification & feature selection methods giving best AUC for hard data sets.

We now turn to the worst combination of classification and feature selection methods getting lowest AUC for the hard data sets; the result is given in Table 7. Summarizing the table we have the following:

- At the individual algorithm level, AdaBoost & IG2 and AdaBoost & NO (no attribute selection) are the most-frequent worst combinations, each being the worst for 4 hard data sets.
- The worst combinations for ten (10) of the 17 hard data sets involve the use of feature selection methods (58.8%); the worst combinations for three (3) do not involve the use of feature selection methods (17.6%); for the remaining four (4), multiple combinations obtained the worst AUC (23.5%), some of which involve feature selection methods and some do not.
- Focusing on the feature selection methods, we see that RLF2 and NO (no attribute selection) are used in the worst combinations for 7 hard data sets (41.2%), CFS and IG2 are used for 6 hard data sets (35.3%), RLF1 is used for 4 hard data sets (23.5%), and IG1 is used for 3 hard data sets (17.6%).
- Focusing on classification algorithms, we see that SVM-PN and AdaBoost appears in the worst combinations of 5 hard data sets (29.4%), SVM-RBF and J48 appears in 2 (11.8%), and RF, IBk and LOG each appears in 1 (5.9%).

So, for the 17 hard data sets, SVM-PN and AdaBoost are the most-frequent worst classification algorithms, RLF2 and NO (no attribute selection) are the most-frequent worst
feature selection methods, and AdaBoost & IG2 and AdaBoost & NO (no attribute selection) are the most-frequent worst combinations.

Data set	#Instance	#Attribute	#SelAttr	Classifier	FS method	Min54AUC
post-operative	90	9	6	IBK	RLF2	0.279
planning	182	13	13	LOG	NO	0.345
heart-switzerland	123	13	2	RF	CFS	0.454
dresses_attribute_sales	500	14	9	J48	IG2	0.458
dresses_attribute_sales	500	14	9	J48	CFS	0.458
thoracic_surgery_data	470	17	17	AdaBoost	NO	0.476
thoracic_surgery_data	470	17	15	AdaBoost	RLF1	0.476
heart-va	200	13	9	AdaBoost	IG2	0.484
haberman-survival	306	4	3	J48	RLF2	0.489
congressional-voting	435	17	15	SVM-PN	RLF1	0.49
breast-cancer-audit	690	15	10	SVM-PN	RLF2	0.491
breast-cancer	286	10	7	SVM-PN	RLF2	0.528
pittsburg-bridges-span	92	8	8	AdaBoost	NO	0.545
pittsburg-bridges-span	92	8	5	AdaBoost	CFS	0.545
pittsburg-bridges-span	92	8	7	AdaBoost	IG1	0.545
pittsburg-bridges-span	92	8	6	AdaBoost	IG2	0.545
contrac	1473	10	10	AdaBoost	NO	0.549
contrac	1473	10	4	AdaBoost	CFS	0.549
contrac	1473	10	9	AdaBoost	IG1	0.549
contrac	1473	10	7	AdaBoost	IG2	0.549
contrac	1473	10	9	AdaBoost	RLF1	0.549
spect	265	23	23	SVM-PN	NO	0.581
statlog-german-credit	1000	25	25	SVM-PN	NO	0.598
primary-tumor	330	18	18	AdaBoost	NO	0.609
primary-tumor	330	18	10	AdaBoost	CFS	0.609
primary-tumor	330	18	15	AdaBoost	IG1	0.609
primary-tumor	330	18	12	AdaBoost	IG2	0.609
primary-tumor	330	18	15	AdaBoost	RLF1	0.609
primary-tumor	330	18	12	AdaBoost	RLF2	0.609
titanic	2201	4	3	SVM-RBF	RLF2	0.672
titanic	2201	4	3	SVM-RBF	IG2	0.672

Table 7: Worst classification algorithm obtaining the lowest AUC for hard data sets.

5.3 Maximum and Minimum AUC by All Combinations for the Hard/Easy Data Sets

For each data set, let min54AUC be defined similarly to max54AUC, and let span54AUC
denote $\text{max}54\text{AUC} - \text{min}54\text{AUC}$.

Figure 1 presents $\text{max}54\text{AUC}$ and $\text{min}54\text{AUC}$ for the hard data sets. We note that maximum span54AUC, minimum span54AUC, and average span54AUC are 0.277, 0.083 and 0.182 respectively. So the choice of classification and feature selection methods often has big impact on the classification accuracy for the hard data sets.

Figure 2 presents $\text{max}54\text{AUC}$ and $\text{min}54\text{AUC}$ for all easy data sets. We note that maximum span54AUC, minimum span54AUC, and average span54AUC are 0.603, 0.056 and 0.351 respectively. Moreover, span54AUC is greater than 0.3 for 66.7% of the easy data sets. While several easy data sets can be classified well by all of the 54 combinations, for more than half of the easy data sets the difference in classification performance by different combinations is large.
5.4 Average AUC and Average F-Measure for the Hard/Easy Data Sets

Figure 3 shows the average AUC and average F-Measure for the nine classification algorithms on (1) the 17 hard data sets (upper panel) and (2) all of the easy data sets (lower panel). We observe that, based on average AUC, LOG is the best, followed by RF, for the hard data sets, and RF is the best for the easy data sets.

![Graph showing average AUC and average F-Measure](image)

The slope of curve in the upper panel is gentle (almost flat): the maximum average AUC is 0.64, the minimum average AUC is 0.56, and their difference is 0.08; the maximum average F-Measure is 0.594, the minimum average F-Measure is 0.563, and their difference is 0.031. The slope of the curve in the lower panel is fairly steep: the maximum average AUC is 0.91, the minimum average AUC is 0.673, and their difference is 0.237; the maximum average F-Measure is 0.817, the minimum average F-Measure is 0.579, and their difference is 0.238. In summary, the difference among the performance of the classification algorithms for the 17 hard data sets is fairly small; in contrast, the difference for the easy data sets is fairly large.

We note that RF is the best or the second best for both easy and hard data sets, which is in strong agreement with the ranking of algorithms provided by (Fernández-Delgado et al., 2014). However, Figure 3 shows that SVM-PN is the last one in the rank for both easy and hard data sets, which is very different from the ranking give by (Fernández-Delgado et al., 2014) (which found SVM to be the second best classification algorithm). There are at least three potential reasons for the disagreement: We used AUC and F-Measure whereas (Fernández-Delgado et al., 2014) used accuracy. (2) In our study we excluded a number of
data sets for which (Fernández-Delgado et al., 2014) reported high classification accuracies (by any of the classification algorithms) and we included some data sets not studied in (Fernández-Delgado et al., 2014). (3) In our ranking, we separated data sets into a hard pool and an easy pool, whereas (Fernández-Delgado et al., 2014) considered all data sets in one pool.

Table 8 shows the average AUC and average F-Measure for the six feature selection methods on the hard data sets (left table) and the easy data sets (right table). For the hard data sets, the NO (no attribute selection) and IG1 methods are the best; for the easy data sets, RLF1 is the best, followed by NO (no attribute selection). We note that the average AUC and average F-Measure of NO are all just 0.002 below those of RLF1.

More specifically, for the hard data sets (Table 8, left), the maximum average AUC is 0.607 and the minimum average AUC is 0.593, and the difference is just 0.014; the maximum average F-Measure is 0.589, the minimum average F-Measure is 0.575, and the difference is just 0.014. For the easy data sets (Table 8, right), the maximum average AUC is 0.8, the minimum average AUC is 0.783, and the difference is 0.017; the maximum average F-Measure is 0.701, the minimum average F-Measure is 0.688, and the difference is 0.013. The above suggests that there is little difference on the classification performance whether feature selection methods are used, or which feature selection methods are used, based on average performance. We must note that the above statement is based on average performance over a large number of data sets, and the experiments used default parameter settings without data set-specific parameter tuning. As noted above, the exclusion of a fairly large number of data sets with known high classification accuracy may also contribute to the above findings.

Method	AVG_AUC	AVG_FMeasure
CFS	0.593	0.575
RLF2	0.594	0.579
RLF1	0.6	0.582
IG2	0.602	0.582
IG1	0.607	0.588
NO	0.607	0.589

Method	AVG_AUC	AVG_FMeasure
CFS	0.783	0.688
IG2	0.791	0.692
RLF2	0.796	0.7
IG1	0.798	0.699
NO	0.798	0.699
RLF1	0.8	0.701

Table 8: Average AUC and average F-Measure for the six feature selection methods on the hard data sets (left) and the easy data sets (right).

5.5 Summary of Classifier Rankings on Hard Data Sets and on Easy Data Sets

Tables 9 and 10 summarize the rankings of the 9 classification algorithms for the hard and easy data sets respectively. Each gives two classifier rankings, one based on the number of data sets for which the classifier is the best, and the other based on average AUC. #DatasetsBest is the number of data sets for which a given algorithm obtained the maximum AUC. There are several classifiers obtaining the maximum AUC for some easy data sets, so the sum of #DatasetsBest in Table 10 (left panel) is larger than the number of easy data sets.
Classifier	#Datasets	Best	Classifier	AVG_AUC
RF	8		LOG	0.640
LOG	5		RF	0.637
AdaBoost	2		J48(-U-A)	0.618
SVM-PN	1		IBk	0.611
IBK	1		AdaBoost	0.592
SVM-RBF	0		J48	0.588
SVM-LN	0		SVM-RBF	0.580
J48	0		SVM-LN	0.580
J48(-U-A)	0		SVM-PN	0.560

Table 9: Classifier rankings for hard data sets: based on number of data sets an algorithm is the best (left), and based average AUC (right).

Classifier	#Datasets	Best	Classifier	AVG_AUC
RF	61		RF	0.910
LOG	21		IBk	0.861
J48(-U-A)	10		J48(-U-A)	0.859
IBK	10		LOG	0.850
AdaBoost	9		J48	0.828
J48	7		AdaBoost	0.754
SVM-RBF	5		SVM-LN	0.727
SVM-LN	4		SVM-RBF	0.687
SVM-PN	1		SVM-PN	0.673

Table 10: Classifier rankings for easy data sets: based on number of data sets an algorithm is the best (left), and based average AUC (right).

6 Conclusions

This paper reported a systematic evaluation of classification performance by representative state-of-the-art classification algorithms and feature selection methods on 129 data sets from UCI. It identified a list of benchmark data sets that are hard for representative classification and feature selection methods. It ranked the classification algorithms based on their performance on the hard data sets, and on their performance on the easy data sets. It also compared the effectiveness of feature selection methods. To the best of our knowledge, this study is the first to give a list of hard benchmark data sets in the machine learning literature, and to rank classification algorithms by considering their performance on hard data sets. This list of hard benchmark data sets can be useful for motivating the development of new classification and feature selection algorithms, and for use in the evaluation of such algorithms.

Acknowledgements

This work was partly supported by the Shanghai Natural Science Foundation (Grant No.
The authors wish to thank Dr Huan Liu and Dr Lei Yu for encouraging us to carry out this study. Part of the first author’s work was done while visiting the Data Mining Research Lab at Wright State University.

Appendices

Below, Table X gives the run time for the wrapper method on several data sets, showing that the method is very time consuming.

Table XI lists the 31 data sets for which our experiments with the 54 classification algorithm and feature selection method combinations were not completed due to reasons such as “lack of memory”, “taking too much time” (that is, for some of the combinations, the 10 folds cross validation took more than 120 hours), “abnormal program termination” etc. For each of the 31 data sets computation for at least one of the 54 combinations was completed. From the partial results of the finished experiments, we get the maximum AUC and maximum F-Measure for these data sets. Based on the partial results we are quite certain that the 31 data sets all belong to the easy data set category except the first one. We are not sure whether the first data set is a hard data set or not, because its maximum AUC and maximum F-Measure are all less than 0.8 based on the partial results.

Data set	Instance	Attribute	Classifier	Runtime(seconds)
pima	768	9	SVM-PN	193623
crx	690	16	SVM-PN	105864
flags	194	29	SVM-LN	96216
anneal	798	39	RF	19652

Table X: Run time for the wrapper method on several data sets, on a laptop with Intel 2.3GHz processor, 4GB RAM, and 64-bit operating system

Data set	#Instance	#Attribute	MaxAUC	MaxFMeasure
diabetic_data	101766	50	0.662	0.537
actrecog1	162499	5	1	1
actrecog2	137730	5	1	1
actrecog3	102339	5	1	1
actrecog4	122199	5	1	1
actrecog5	159999	5	1	1
actrecog6	140669	5	1	1
actrecog7	162999	5	1	1
actrecog8	137794	5	1	1
actrecog9	163739	5	1	1
actrecog10	126799	5	1	1
actrecog11	104449	5	1	1
actrecog12	114700	5	1	1
actrecog13	67649	5	1	1
Dataset	Count	MaxAUC	MaxFMeasure	
-------------------------	-------	--------	-------------	
actrecog14	116099	5	1	
actrecog15	103499	5	1	
har-puc-rio	165633	19	0.999	0.987
jsbach_chorals_harmony	5665	17	0.982	0.762
mhealth_subject1	161280	24	0.996	0.974
mhealth_subject2	130561	24	0.996	0.97
mhealth_subject3	122112	24	0.997	0.972
mhealth_subject4	116736	24	0.996	0.97
mhealth_subject5	119808	24	0.996	0.969
mhealth_subject6	98304	24	0.997	0.971
mhealth_subject7	104448	24	0.996	0.963
mhealth_subject8	129024	24	0.997	0.973
mhealth_subject9	135168	24	0.994	0.961
mhealth_subject10	98304	24	0.998	0.971
plant-shape	1600	65	0.978	0.64
sensorless_drive_diagnosis	58509	49	1	0.999
Wle	39242	159	1	1

Table XI: Data sets for which experiments were not complete; the MaxAUC and MaxFMeasure were based on the finished experiments

References

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hundreds of classifiers to solve real world classification problems? *The Journal of Machine Learning Research*, 15(1): 3133-3181, 2014.

Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri Napolitano. Experimental perspectives on learning from imbalanced data. In *Proceedings of the 24th Annual International Conference on Machine Learning*, pages 935-942, 2007.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu. Feature selection: A data perspective. *arXiv*:1601.07996, 2016.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. The WEKA Data Mining Software: An Update. *SIGKDD Explorations*, 11(1): 10-18, 2009.

Abraham J. Wyner, Matthew Olson, Justin Bleich, and David Mease. Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers. *arXiv*:1504.07676, 2015.

Huan Liu and Lei Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. *IEEE Transactions on Knowledge and Data Engineering*, 17(4): 491-502, 2005.

M. Dash and H. Liu. Feature Selection for Classification. *Intelligent Data Analysis*, 1: 131–156, 1997.

Marko Robnik-Šikonja and Igor Kononenko. Theoretical and empirical analysis of ReliefF and RRReliefF. *Machine Learning*, 53(1): 23–69, 2003.

M. Lichman. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2013.
Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. *Pattern Recognition*, 30(7): 1145–1159, 1997.

David J. Hand. Measuring classifier performance: a coherent alternative to the area under the ROC curve. *Machine Learning*, 77(1):103-123, 2009.

Yoav Freund and Robert E. Schapire: Experiments with a new boosting algorithm. In *Proceedings of the 13th Annual International Conference on Machine Learning*, pages 148-156, 1996.

Ross Quinlan. *C4.5: Programs for Machine Learning*. Morgan Kaufmann Publishers, San Mateo, CA, 1993.

Leo Breiman. Random Forests. *Machine Learning*, 45(1): 5-32, 2001.

David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms. *Machine Learning*, 6(1): 37-66, 1991.

S. le Cessie and J.C. van Houwelingen. Ridge Estimators in Logistic Regression. *Applied Statistics*, 41(1):191-201, 1992.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. *ACM Transactions on Intelligent Systems and Technology*, 2(3): 27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Tom Fawcett. An Introduction to ROC Analysis. *Pattern Recognition Letters*, 27(8): 861–874, 2006.