Prevalence of Extra Power-Law Spectral Components in Short Gamma-Ray Bursts

Qing-Wen Tang1, Kai Wang1, Liang Li2, and Ruo-Yu Liu1,5

1 Department of Physics, School of Science, Nanchang University, Nanchang 330031, People’s Republic of China; qw tang@ncu.edu.cn
2 Department of Astronomy, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China; kaiwang@hust.edu.cn
3 ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy
4 School of Astronomy and Space Science, Nanjing University, Xianlin Road 163, Nanjing 210023, People’s Republic of China; ryliu@nju.edu.cn
5 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023, People’s Republic of China

Received 2021 March 2; revised 2021 September 9; accepted 2021 September 13; published 2021 December 6

Abstract

A prompt extra power-law (PL) spectral component that usually dominates the spectral energy distribution below tens of keV or above ~10 MeV has been discovered in some bright gamma-ray bursts (GRBs). However, its origin is still unclear. In this paper, we present a systematic analysis of 13 Fermi short GRBs, as of 2020 August, with contemporaneous keV–MeV and GeV detections during the prompt emission phase. We find that the extra PL component is a ubiquitous spectral feature for short GRBs, showing up in all 13 analyzed GRBs. The PL indices are mostly harder than −2.0, which may be well reproduced by considering the electromagnetic cascade induced by ultrarelativistic protons or electrons accelerated in the prompt emission phase. The average flux of these extra PL components positively correlates with that of the main spectral components, which implies they may share the same physical origin.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); High energy astrophysics (739); Astronomy data analysis (1858)

1. Introduction

Gamma-ray bursts (GRBs) are the most energetic explosions in the universe. They can be divided into two phenomenological categories based on their duration in the prompt phase, namely, long GRBs (LGRBs) and short GRBs (SGRBs), separated at about 2 s. Various physical models have been proposed to explain the prompt emission, such as the photospheric model (Rees & Mészáros 2005; Giannios & Spruit 2007; Pe’er 2008; Beloborodov 2011), the internal shock model (Rees & Mészáros 1994; Kobayashi et al. 1997; Daigne & Mochkovitch 1998), and the magnetic reconnection model (Spruit et al. 2001; Zhang & Yan 2011). Spectral analysis is thus the key to investigate the GRB radiation mechanism and can help us to understand their underlying physical processes. Observationally, GRB prompt emission exhibits diverse spectral properties. Those spectra in the keV–MeV energy range can generally be fitted by some empirical functions, such as the Band function (Band component) (Band et al. 1993), a simple power-law function (PL component), a PL with a high-energy exponential cutoff function (CPL component), and a smoothly broken PL function (SBPL component), based on 10 yr of observations by the Gamma-ray Burst Monitor (GBM) on board Fermi (Poo lakkil et al. 2021), hereafter the GBM catalog.

Combining these observations of the Large Area Telescope (LAT) on board Fermi, it is interesting to note that the keV–GeV spectra of some GRBs consist of more than one component, for example, a BAND component with a PL component for GRB 080916C, GRB 090510, GRB 0909026A, and GRB 110731A (Ryde et al. 2010; Ackermann et al. 2010, 2013); a CPL component with a PL component for GRB 090902B (time-integrated), GRB 100414A, and GRB 160709A (Ackermann et al. 2013; Tak et al. 2019); and a blackbody component (BB or multi-BB) with a PL component for GRB 081221, GRB 090902B (time-resolved), 110920A, GRB 160107A, and GRB 160709A (Basak & Rao 2013; Ryde et al. 2010; Iyyani et al. 2015; Kawakubo et al. 2018; Tak et al. 2019).

There are 186 GRBs reported in the 10 yr catalog (hereafter LAT catalog) of Fermi–LAT (Ajello et al. 2019), from 2008 August to 2018 August, among which 169 are LGRBs and 17 are SGRBs. In previous studies, only two SGRBs, namely, GRB 090510 and GRB 160709A, were discovered to show the extra PL component in the spectrum (Ackermann et al. 2010; Tak et al. 2019). In order to further search for and explore the properties of the extra PL component, here we perform a comprehensive joint spectral analysis of Fermi–GBM and Fermi–LAT data of selected SGRBs in the 8 keV–10 GeV energy range detected between 2008 August and 2020 August. The same analysis for LGRBs will be performed and reported elsewhere.

The physical origin of the extra PL spectral components has been extensively explored in the framework of both internal dissipation models (Asano et al. 2009; Bošnjak et al. 2009; Corsi et al. 2010a; Asano & Mészáros 2011; Arimoto et al. 2020) and external dissipation models (Mészáros & Rees 1994; Kumar & Bambi Duri n 2009; Beloborodov et al. 2014; Fraija et al. 2017), although the latter may have difficulty in explaining the correlated temporal behavior of the GeV emission and keV–MeV emission in some GRBs (Tang et al. 2017). Even in the internal dissipation models, it is not clear yet from which mechanism the extra PL component arises. As shown in previous literature, either the photoion production or the Bethe–Heitler pair production of relativistic protons can reproduce the additional spectrum component at GeV band. Aside from the hadronic origin model, the inverse Compton (IC) scattering of high-energy electrons can also reproduce such a spectral feature (Wang et al. 2018). Therefore, it may be difficult to reveal the origin of the extra component solely from GeV observations. As will also be discussed in this study, observations at lower energies may provide a clue to differentiate these models.

The rest of the paper is organized as follows. In Section 2, we perform the spectral analysis of selected GRBs. In Section 3, the
Table 1

Durations and Positions of 13 GRBs in Our Sample

GRB	GBM T_{0} a (s)	GBM T_{09} (s)	GBM T_{05} (s)	GBM T_{95} (s)	LLE Detectionb	LAT R.A.c	LAT Decl.c	LAT Ref.d
081024B	246576161.864	0.640	−0.064	0.576	Yes	321.01	20.84	(1)
081102B	247308301.506	1.728	−0.064	1.664	...	212.95	30.33	...
090510	263607781.971	0.960	−0.048	0.912	Yes	333.57	−26.62	...
110728A	333508824.816	0.704	−0.128	0.576	...	173.57	4.34	...
120830A	368003226.533	0.896	0	0.896	...	88.59	−28.79	...
120915A	369360044.638	0.576	−0.320	0.256	...	240.95	57.04	...
140402A	418090209.998	0.320	−0.128	0.192	...	207.66	5.97	...
141133A	437554966.503	0.448	−0.064	0.384	...	182.32	77.38	...
171011C	529447292.946	0.480	−0.448	0.032	...	168.48	10.03	...
160709A	489786547.512	0.448	0.320	0.768	Yes	236.11	−28.51	(2)
190515A	579587588.135	1.264	−0.112	1.152	...	137.69	29.28	(3)

Notes. a GBM burst trigger time in the format of the Fermi Mission Elapsed Time. b “Yes” indicates that Fermi–LAT Low-Energy (LLE) data are available. c Central position employed for the Fermi–LAT detection. d (1) Ajello et al. (2019); (2) Tak et al. (2019); (3) Kocevski et al. (2019). e For GRB 160709A, the selected time range is the main prompt GRB emission phase reported in Tak et al. (2019).

spectral fitting results are presented and discussed. In Section 4, we discuss the possible origin of the PL spectral component. The conclusions are presented in Section 5.

2. Methodology

2.1. Sample Selection

The main criterion employed to select our sample is that high-energy photons need to be detected by the Fermi–LAT instrument during the GBM T_{95} interval, during which 90% of the burst fluence (50–300 keV) is accumulated. With a contemporaneous detection by the LAT and the GBM, we thus can perform a broadband spectral analysis between GBM T_{05} and GBM T_{95}, which are the start and end of GBM T_{95}.

Among the 17 short bursts presented in the LAT catalog, we exclude 5 GRBs with no high-energy photons detected above 100 MeV during the GBM T_{95} intervals, i.e., GRB 090531B, GRB 110529A, GRB 160829A, GRB 170127C, and GRB 180703B. Moreover, we also exclude GRB 160702A as its GBM data are not archived in the GBM catalog. Furthermore, we include in our sample a short burst, GRB 190515A (Kocevski et al. 2019), that satisfies our selection criterion and was detected after the LAT catalog time period, namely between 2018 August and 2020 August. Finally, we also include the long GRB 160709A, although both catalogs classify it as a long burst. Indeed, Tak et al. (2019) classify it as a short hard GRB. In the spectral analysis, we only consider the main bursting phase of GRB 160709A, ranging from 0.32 to −0.77 s post-trigger time, as discussed in Tak et al. (2019).

Our sample includes 13 SGRBs from 2008 August to 2020 August, which are listed in Table 1, where the GBM trigger time (T_{0} in Mission Elapsed Time, MET), T_{09}, T_{05}, and T_{95} are reported. Positions reported by the LAT catalog are employed for the LAT data reduction, as shown in Table 1.

2.2. Event Selection and Background Estimation

Fermi–GBM and Fermi–LAT data are used in our spectral analysis. For four GRBs shown in Table 1, Fermi–LAT Low-Energy (LLE) data are also combined in the spectral fitting. All data are available in the High Energy Astrophysics Science Archive Research Center.6

GBM data. For each GRB, we select the three NaI detectors closest to the GRB position and one BGO detector with the lowest angle of incidence, which are presented in Table 2. We analyze NaI time-tagged event (TTE) data with energy between 8 and 900 keV as well as BGO TTE data with energy between 250 keV and 40 MeV, excluding the overflow channels. The GBM backgrounds are usually estimated by fitting the observed TTE data tens of seconds before and after the source emission intervals. Because of the short durations (<2 s) in our sample, we found that two time intervals are reasonable to derive a good count-rate background for the selected GRB detectors through autodetermined polynomial fitting, such as [−25, −10] and [15, 30] away from the GBM trigger time. Instrument response files are selected with the rsp2 files; however, if no rsp2 files are included in the archived GBM data for some GRBs, such as GRB 120830A, GRB 120915A, GRB 140402A, and GRB 141113A, the rsp files are selected because our spectral analysis is performed for the GRBs with relatively short durations (von Kienlin et al. 2014; Narayana Bhat et al. 2016).

LLE data. There are four GRBs in our sample with LLE detection as shown in Table 2, such as GRB 081024B, GRB 090227B, GRB 090510, and GRB 160709A. Events with energy between 20 and 100 MeV are selected in our spectral analysis. The reduction of the LLE data is the same as that of the GBM data when estimating the background.

LAT data. LAT–Transient020E events with a zenith angle cut of 100° are selected for each burst, whose energy are between 100 MeV and 10 GeV. For GRB 090510, the highest photon energy is about 30 GeV; thus the maximum energy is 100 GeV. Region of interest (ROI) is chosen within the radius of 12° from the localization report in Table 1.

After the event selection, the count-rate light curve is built for each GRB. For example, the composite light curve for GRB 081024B is shown in Figure 1.

6 https://fermi.gsfc.nasa.gov/ssc/data/access/
2.3. Fitting Models

In order to test the existence of the additional PL spectral component, six typical empirical functions are employed as the fitting models to fit the broadband gamma-ray data of each GRB, which are described below:

(i) The blackbody (BB) function, which is usually modified by the Planck spectrum and given by the photon flux

\[
\frac{dN}{dE} = A_{BB} \frac{E^2}{\exp[E/kT] - 1},
\]

where \(k \) is the Boltzmann’s constant, and the joint parameter \(kT \) is an output parameter in common. It is found the peak energy in the \(E^2dN/dE \) spectrum of the BB is about 3.92 times the value of \(kT \), that is, \(E_{p,BB} \approx 3.92kT \). In all the functions here and below, \(A \) is the normalization constant.

(ii) The Band function (BAND), which is written in the same way as in Band et al. (1993),

\[
\frac{dN}{dE} = A_{BAND} \times \left(\frac{100 \text{ keV}}{E} \right)^{\alpha} e^{-E/(2+\alpha/E_p)} \times \left(\frac{100 \text{ keV}}{E} \right)^{\beta} \exp[-(\alpha-\beta)E_p/(\alpha-\beta)(E_p+100 \text{ keV})],
\]

where \(\alpha \) and \(\beta \) are the low-energy photon index and high-energy photon index respectively, and \(E_p \) is the peak energy in the \(E^2dN/dE \) spectrum, which is reported in Section 3, Results, as \(E_{p,BAND} \).

(iii) The cutoff power-law model (CPL), written as

\[
\frac{dN}{dE} = A_{CPL} \left(\frac{E}{100 \text{ keV}} \right)^{\alpha} e^{-E/E_c},
\]

where \(\alpha \) is the photon index and \(E_c \) is the cutoff energy, the peak energy in the \(E^2dN/dE \) spectrum for the CPL \((E_{p,CPL}) \) equals \((2+\alpha)E_c\), say, \(E_{p,CPL} = (2+\alpha)E_c \).

(iv) The composite function of the BB and a simple power-law function (BB+PL), that is,

\[
\frac{dN}{dE} = \left(\frac{dN}{dE} \right)_{BB} + A_{PL} \left(\frac{E}{100 \text{ keV}} \right)^{\Gamma_{PL}},
\]

where \(\left(\frac{dN}{dE} \right)_{BB} \) is the same as Equation (1) and \(\Gamma_{PL} \) is the photon index of the PL function.

(v) The composite function of the BAND and a simple power-law function (BAND+PL), that is,

\[
\frac{dN}{dE} = \left(\frac{dN}{dE} \right)_{BAND} + A_{PL} \left(\frac{E}{100 \text{ keV}} \right)^{\Gamma_{PL}},
\]

where \(\left(\frac{dN}{dE} \right)_{BAND} \) is the same as Equation (2) and \(\Gamma_{PL} \) is the photon index of the PL function.

(vi) The composite function of the CPL and a simple power-law function (CPL+PL), that is

\[
\frac{dN}{dE} = \left(\frac{dN}{dE} \right)_{CPL} + A_{PL} \left(\frac{E}{100 \text{ keV}} \right)^{\Gamma_{PL}},
\]

where \(\left(\frac{dN}{dE} \right)_{CPL} \) is the same as Equation (3) and \(\Gamma_{PL} \) is the photon index of the PL function.

2.4. Spectral Fitting and the Best-fitting Model Selection

In this work, we use the Markov Chain Monte Carlo (MCMC) fitting technique based on the Bayesian statistic by using the Multi-Mission Maximum Likelihood package (3ML; Vianello et al., 2015) to carry out all spectral analyses and parameter estimation, which requires the corresponding informative priors and the posterior sampling of the parameter space in each fitting model.

2.4.1. Informative Priors Selection

The informative priors are adopted by using the typical spectral parameters from the Fermi-GBM catalog (Poolakkil et al., 2021), hereafter we call it typical priors (TP). For all parameters in the TP scenario, we set the initial parameter values and the parameter range to be the same as the default value in the 3ML package except for the normalization \(A \), whose lower bound and upper bound are calculated as \(10^{-5} \) and \(10^5 \) times its initial value, respectively. The distribution of the normalization \(A \) is the logarithm uniform distribution \(\text{LogU} \), the photon indices \((\alpha, \beta, \Gamma) \) have a Gaussian distribution \(\text{G} \), and parameters in units of keV \((E_p, E_c, kT) \) are distributed in a logarithm normal distribution \(\text{LogN} \). For
all Gaussian distributions (G), the central value (μ) equals the initial parameter value and the one standard deviation (σ) is fixed at 0.5. For all logarithm normal distributions (LogN), both μ and σ are at the initial parameter values. The TP scenario has been used in several publications for the spectral analysis of the Fermi-GBM GRBs (Li 2019; Yu et al. 2019; Li et al. 2021). The details of these priors are presented in Table 3. For the composite models (BB+PL, BAND+PL, and CPL+PL), we use the joint informative priors above. We also test the uniform priors (UP) for all spectral parameters, whose initial values and parameter ranges are the same as those in the TP scenario but with the uniform parameter distributions. Results in the UP scenario are presented in Appendix A, which draws the conclusion that the resultant parameters in both scenarios are consistent with each other; therefore, the results in the TP scenario are presented in the following sections.

2.4.2. Posterior Sampling and the Best-fitting Model Selection

We employ emcee, a sampling method included in the 3ML package, to sample the posterior, which is an extensive, pure-Python implementation of Goodman & Weare’s Affine Invariant MCMC Ensemble sampler (Goodman & Weare 2010). emcee uses multiple walkers to explore the parameter space of the posterior. For each sampling, we set the number of chains (walkers) to 20; the number of learning samples to 3000, which

Table 3

Function	Parameter	Initial Value	Parameter Range	TP Scenario
PL	A, Γ	10^{-4}, −2.0	[10^{-9}, 10], [−10.0, 10.0]	logU, G
BB	A, kT	10^{-4}, 30	[10^{-9}, 10], [0, 10^5]	logU, LogN
BAND	A, α, β, E_p	10^{-4}, −1.0, −2.0, 500	[10^{-9}, 10], [−1.5, 3.0], [−5.0, −1.6], [0, 10^7]	logU, G, G, LogN
CPL	A, α, E_c	10^{-4}, −2.0, 30	[10^{-9}, 10], [−10.0, 10.0], [0, 10^7]	logU, G, LogN

Note. For the typical priors (TP), LogU represents the logarithm uniform distribution, G represents the Gaussian distribution, and LogN is the logarithm normal distribution.
we do not include in the final results; and the number of global samples to 15,000. MCMC fittings are performed twice, one with the initial parameter values, and the other one with the resultant median parameter values.

In order to know which of a suite of models best represents the data, two information criteria are usually presented to choose the best-fitting model for our sampling SGRBs, such as the Akaike Information Criterion (AIC; Akaike 1974) and the Bayesian Information Criterion (BIC; Schwarz 1978). Here we prefer the BIC for selecting a best-fitting model due to the large sampling in our MCMC fittings. Given any two estimated models, the preferred model is the one that provides the smaller BIC value. Here we use the difference in BIC value (ΔBIC = BICmodel B − BICmodel A) to describe the evidence against a candidate model (model B) to the best model (model A) in the model comparisons. If ΔBIC is larger than 10, the evidence against the candidate model is very strong (Kass & Raftery 1995).

3. Results

3.1. Best-fitting Models

Comparison results of different models of 13 SGRBs are presented in Table 4. We identify three subclasses according to the best-fit models: eight GRBs are best fitted by the BB+PL model (Class A), four GRBs by the CPL+PL model (Class B), and GRB 090510 by the BAND+PL model (Class C). The spectral energy distributions (SEDs) for 3 GRBs from each subclass, namely GRB 081024B, GRB 090227B, and GRB 090510, are plotted together with the marginal posterior distributions in Figure 2, while the SEDs for the other 10 GRBs are shown in Appendix Figures B2 and B3. In all SEDs, we calculated the residual values by \(\left(f_\text{obs} - f_m \right)^2 / \sigma_f^2 \), where \(f_\text{obs} \) and \(\sigma_f \) are the binned observational Fermi data and the corresponding 1σ errors, and \(f_m \) are the fluxes calculated by the best-fitting models. All residuals in 13 GRBs are between 0 and 3.0, which imply good spectral fittings for all GRBs. All resultant parameters of the best-fitting models are presented in Table 5.

Hereafter, we categorize the BB, BAND, and CPL functions as the main component and the PL function as the extra PL component. The extra PL component is present in all 13 analyzed SGRBs, which might imply the common existence of an extra energy dissipation process in SGRBs.

3.2. Parameter Distributions

For the main components, we calculate the peak energy \((E_p) \) in the \(E^2dN/dE \) spectrum. For the standard BB component, the peak energy is found to be about 3.92 times \(\Delta T_\text{BB} \) in our sample, that is, \(E_p,\text{BB} \approx 3.92 \Delta T_{\text{BB}} \), which is also employed in Zhang et al. (2020) and Tak et al. (2019). For the CPL component, the peak energy is calculated as \(E_p,\text{CPL} = (2 + \alpha)E_c \). The values of the peak energy \((E_p,\text{BB}, E_p,\text{CPL}, \text{and } E_p,\text{BAND}) \) are reported in Table 5. As shown in Figure 3, \(E_p \) ranges from \(\sim 200 \text{ keV} \) to \(\sim 3 \text{ MeV} \). We found that the peak energies of the main components of GRBs that are best-fitted with CPL or BAND are larger than those best-fitted with BB.

For the extra components, the observed spectra are generally hard, with the spectral index (\(\Gamma_\text{PL} \)) ranging from \(\sim 2.1 \) to \(\sim 1.5 \), e.g., 10 out of 13 GRBs in our sample with central values of \(\Gamma_\text{PL} \) larger than \(\sim 2.0 \). Note that it does not necessarily mean the absence of a softer PL component in reality, because GRBs with softer PL components may not be detectable to Fermi–LAT.

3.3. Correlation between \(F_\text{main} \) and \(F_\text{PL} \)

Spectral fluxes between \(8\text{keV} \) and \(E_\text{max} \) (the maximum photon energy detected by Fermi–LAT) are calculated by integrating the \(E^2dN/dE \) spectrum, denoted by \(F_\text{main} \) for the main component and \(F_\text{PL} \) for the extra PL component. Then, we test the correlation between them by a linear fit in logarithmic space, such as

\[
\log F_\text{PL} = m + n \log F_\text{main},
\]

where \(m \) and \(n \) are the free parameters. This fitting is performed by the basic linear regression analysis in the popular Origin scientific package, which can give the coefficient of determination \(R^2 \), \(0 < R^2 < 1 \). For the linear fit, two variables, such as \(F_\text{main} \) and \(F_\text{PL} \) in our work, are positively correlated if the Pearson correlation coefficient \(R \), \(-1 < R < 1 \) is close to 1.

We found a moderate correlation between \(F_\text{main} \) and \(F_\text{PL} \) for all GRBs in our sample, with \(R = 0.62, m = -2.17 \pm 1.67, \) and \(n = 0.80 \pm 0.31 \). The best fit for the correlation is written as

\[
\log F_\text{PL} = 10^{-2.17 \pm 1.67} + (0.80 \pm 0.31) \log F_\text{main},
\]

where both \(F_\text{PL} \) and \(F_\text{main} \) are in units of \(\text{erg cm}^{-2} \text{ s}^{-1} \). This correlation is plotted in the left panel of Figure 4, in which two
Figure 2. Best-fitting spectral energy distributions (SEDs) and the marginal posterior distributions for SGRBs in our sample. In each SED (a, c, e), gray points are the binned observational data by Fermi, the red dotted line is the modeled main component, the green dashed line is the modeled extra PL component, and the blue solid line represents the sum of both components.
4. Possible Origin of the Extra PL Components

In order to explore the possible origins of the extra PL components, we need to understand two main features of this spectral component, namely, the spectral slope, which is found to approximatively range between $[-2.0, -1.5]$ (see the middle panel of Figure 3) and the flux amplitude relative to that of the main spectral component (see the bottom panel of Figure 3). The origin of the extra high-energy emission (especially above 100 MeV) is still under debate. The late-time and long-lasting high-energy gamma-ray emission from GRBs, such as 080916C, 090510, and 090902B, may arise from afterglow emission rather than the prompt emission (Kumar & Barniol Duran 2009; Ghisellini et al. 2010; Razzaque 2011). However, the high-energy emission in the early stage presents a rapid variability and a temporal correlation with the keV/MeV emission, implying an internal dissipation origin (Maxham et al. 2011; Tang et al. 2017). The origin of the extra high-energy emission, which is usually detected by Fermi-LAT in the brightest GRBs, has been explained via various high-energy processes, such as Comptonized thermal, self-synchrotron Compton (SSC) (Rees & Mészáros 1994; Asano & Inoue 2007), proton-induced cascade (Vietri 1997; Dermer & Atoyan 2006; Asano et al. 2009; Wang et al. 2018), and proton synchrotron emission (Totani 1998). Except for the one-zone model, multi-zone leptonic models including the SSC scenario (Corsi et al. 2010; Diagne et al. 2011), the external IC scenario (Toma et al. 2011; Pe’er et al. 2012), and the synchrotron radiation scenario (Ioka 2010) have been invoked as well.

4. Possible Origin of the Extra PL Components

Class	Main Component	Extra PL Component				
BB+PL	A_{BB}^a	$E_{BL, BB}^b$	F_{BB}^c	A_{PL}^d	Γ_{PL}^e	F_{PL}^f
081024B	19.9 ± 15.0	301 ± 86	7.2 ± 5.4	1710 ± 51.3	−1.74 ± 0.06	9.1 ± 2.7
081102B	13.1 ± 4.5	297 ± 32	4.4 ± 1.5	1610 ± 41.8	−1.85 ± 0.12	5.4 ± 1.4
11072A	23.6 ± 11.5	244 ± 40	3.7 ± 1.8	179 ± 17.7	−1.93 ± 0.42	0.4 ± 0.4
120915A	12.5 ± 4.5	347 ± 42	8.0 ± 2.9	9.9 ± 9.6	−1.89 ± 0.42	0.2 ± 0.2
14040A	3.8 ± 1.4	588 ± 79	20.0 ± 7.5	19.8 ± 18.7	−2.13 ± 0.52	0.3 ± 0.2
14111A	3.0 ± 1.6	539 ± 111	11.3 ± 5.9	58.7 ± 53.7	−1.87 ± 0.35	1.7 ± 1.6
17101C	23.8 ± 3.5	209 ± 46	67.9 ± 1.5	17.2 ± 14.8	−1.90 ± 0.46	0.4 ± 0.4
19051A	2.4 ± 0.6	679 ± 114	22.2 ± 5.9	49.8 ± 40.3	−1.83 ± 0.25	1.7 ± 1.4

Table 5

Derived Parameters of the Best-fitting Model in the TP Scenario

Class	Main Component	Extra PL Component					
CPL+PL	A_{CPL}^a	β_{CPL}^b	$E_{p,CPL}^c$	F_{CPL}^d	A_{PL}^e	Γ_{PL}^f	F_{PL}^g
090227B	10.8 ± 0.5	−0.35 ± 0.04	1915 ± 106	880 ± 37.7	813 ± 220.0	−1.48 ± 0.04	106.0 ± 28.7
090228A	10.0 ± 0.4	−0.27 ± 0.09	767 ± 85	192 ± 8.7	438 ± 238.0	−2.06 ± 0.22	6.0 ± 3.3
12083A	2.0 ± 0.1	−0.16 ± 0.11	1005 ± 159	67.2 ± 4.1	23.8 ± 23.5	−2.02 ± 0.43	0.4 ± 0.4
16070A	2.6 ± 0.2	−0.13 ± 0.08	1784 ± 180	269 ± 23.1	380 ± 100.0	−1.66 ± 0.05	24.7 ± 6.5

BAND+PL	A_{BAND}^a	α_{BAND}^b	$E_{p,BAND}^c$	F_{BAND}^d	A_{PL}^e	Γ_{PL}^f	F_{PL}^g
090510	2.0 ± 0.2	−0.68 ± 0.06	3322 ± 316	241.0 ± 20.9	235.0 ± 103.0	−1.56 ± 0.05	229.0 ± 101.0

Notes.

a Normalizations for the main components, A_{BB} in units of 10^{-7} ph keV$^{-1}$ cm$^{-2}$ s$^{-1}$, and A_{CPL} and A_{BAND} in units of 10^{-2} ph keV$^{-1}$ cm$^{-2}$ s$^{-1}$.

b Peak energy of the E^2dN/dE spectrum in units of keV.

c Fluxes of the main components in units of 10^{-7} erg cm$^{-2}$ s$^{-1}$.

d Normalization for the extra component in units of 10^{-5} ph keV$^{-1}$ cm$^{-2}$ s$^{-1}$.

e Flux of the extra PL component in units of 10^{-7} erg cm$^{-2}$ s$^{-1}$.

GRBs, GRB 081024B and 081102B, are far from the best-fitting line compared with the other GRBs. Therefore, a similar linear fit is performed by excluding GRBs 081024B and 081102B. In this case, F_{main} and F_{PL} have a stronger positive correlation than that in Equation (8), with $R = 0.80$, $m = −0.50 ± 1.55$, and $n = 1.15 ± 0.29$, which is presented as

$$\log F_{PL} = 10^{-0.50±1.55} + (1.15 ± 0.29) \log F_{main},$$

shown in the right panel of Figure 4. In this strong positive correlation, GRBs 081024B and 081102B deviate from the correlation at about the 3σ level, with an excessively high ratio of the PL component to the main component with respect to the ratios in other GRBs. This requires an efficient conversion of the jet’s kinetic energy to nonthermal particles in the prompt emission phase of the GRB or implies an important contribution from the early afterglow. In the latter case, it requires an early deceleration of the GRB jet by the interstellar medium, probably caused by a high initial bulk Lorentz factor Γ_0 for the jet given the deceleration timescale of $t_{dec} = 0.5(t_{ISM}/1\text{cm}^{-3})^{1/3}(E_0/10^{50}\text{erg})^{1/3}(\Gamma_0/1000)^{-8/3}\text{ s}$ (Mészáros & Rees 1994).
Figure 3. Top: distributions of $E_{p,\text{BB}}$, $E_{p,\text{CPL}}$, and $E_{p,\text{BAND}}$. Middle: distribution of indices of the extra PL component (Γ_{PL}). Bottom: distributions of the average flux of both components (F_{main} and F_{PL}). The cyan shading is for the class of BB+PL, the yellow shading is for the class of the CPL+PL, and the magenta shading is for the class of the BAND+PL.

Figure 4. Left: linear fit for F_{main} and F_{PL} in the logarithm space for all GRBs in our sample. Right: linear fit for F_{main} and F_{PL} in the logarithm space excluding GRB 081024B and GRB 081102B. The solid line is the best fit, and the cyan and green dotted lines represent the 2σ and 3σ deviations from the best fit, respectively.
photons drop below the threshold of the pair production process. Such a process is called the electromagnetic (EM) cascade. It will largely modify the spectrum of the initially generated high-energy gamma-rays and dominate the PL component. To deal with the EM cascade process, we follow the treatment described by Wang et al. (2018). Note that we do not aim to explain the main spectral component, so we simply treat it as a target photon field for $\gamma \gamma$ annihilation and IC radiation. For the main spectral component, although most of the GRB prompt emission spectra around keV–MeV are present with a nonthermal shape and usually can be modeled as a smoothly broken power law, i.e., the BAND function, thermal emission originating from the photosphere is a natural prediction of the generic fireball scenario (Paczynski 1986; Shemi & Piran 1990; Mészáros et al. 1993; Pe’er et al. 2012; Hascoët et al. 2013). The relative strength of thermal emission and nonthermal emission should depend on the various environments (Daigne & Mochkovitch 2002; Ryde 2005). For the SGRB samples in this paper, the main spectral components of most of them can be described better by a BB emission. The detailed origin of the main spectral component is beyond the scope of this paper; here we only approximate it to be a BB emission in the calculation although in some GRBs the main spectral components are found to be best described with CPL or BAND.

We consider a GRB located at $z=1$ with a bulk Lorentz factor of $\Gamma = 300$ and a dissipation radius $R = 10^{14}$ cm. The main spectral component is assumed to be a diluted BB distribution with a temperature of $kT = 100(1+z)$ keV and an isotropic-equivalent luminosity of $L_{BB} = 6 \times 10^{52} \text{erg} \text{s}^{-1}$.

For the hadronic model, the radiation at GeV energies is dominated by the EM cascade initiated by the hadronic processes, including the photomeson (PM) process and the Bethe–Heitler (BH) process. Protons can be accelerated at the dissipation radius by some processes, e.g., internal shocks or magnetic recombinations. In this case, we define a magnetic equipartition coefficient (ε_B) as the ratio of the magnetic field energy density U_B to the photon energy density of the BB component U_{bb}, i.e., $\varepsilon_B = U_B/U_{bb}$. The proton spectrum is assumed to be a PL distribution with a slope of $p = -2$ and a maximum proton energy $E_{p,\text{max}} > 0.15 \text{GeV}^2/kT \approx 10^{37} \text{eV}$ in order to have an efficient photomeson process. The isotropic-equivalent luminosity for protons is taken to be $6 \times 10^{53} \text{erg} \text{s}^{-1}$, corresponding to a baryon loading factor of 10. The accelerated protons can generate high-energy gamma-rays and electrons through the PM and BH processes and then initiate the EM cascade in the photon field and the magnetic field. As shown in Wang et al. (2018), different values of ε_B can lead to different indexes of cascade emission, due to the different ratios between the contributions from the synchrotron radiation and that of the IC radiation. Indeed, as we can see in the top panel of Figure 5, for a larger ε_B, the photon index is close to -2, while for a smaller ε_B, the photon index tends to be larger. The photon index of the cascade emission in the 1–10 keV energy range is about -1.5 in all the cases because it is mainly produced by the electrons cooled from higher energies and hence an E^{-2} spectrum is expected for these cooled electrons (Wang et al. 2018).

For the leptonic model, some electrons in the GRB fireball, in addition to those responsible for the main spectral component, are assumed to be accelerated up to ultrarelativistic energies with a PL distribution $dN/dE = A E^{-\Gamma}$. The IC scattering on both the BB component and the synchrotron radiation of these ultrarelativistic electrons themselves can give rise to high-energy radiation. Similar to that in the hadronic model, the high-energy radiation produced will trigger an EM cascade. The relative contribution from the synchrotron process and the IC process of the cascade emission depends on the equipartition coefficient ε_B in the same way shown in the hadronic scenario. So here we mainly explore the influence of the injection spectral index Γ_e in the bottom panel of Figure 5 while fixing $\varepsilon_B = 0.01$, the flux of synchrotron radiations of primary electrons at 100 keV and the maximum electron Lorentz factor emitting a typical photon energy of $\sim 1 \text{MeV}$. For $\Gamma_e = -2.8$, the spectral shape of the extra component is a quite flat PL with photon index ~ -1.9, and for a larger Γ_e, the spectra become harder with a larger photon index.

We have also checked the dependence of our results on the assumed model parameters, e.g., the temperature of the BB, which spans two orders of magnitude in Figure 3 and a background photon field with the BAND function distribution. The BAND function distribution with the typical values of the low-energy photon index $\alpha = -1.0$, the high-energy photon index $\beta = -2.2$, the peak energy $E_p (1+z) = 100 \text{keV}$, and the peak flux of $10^{-5} \text{erg cm}^{-2} \text{s}^{-1}$, is adopted to replace the BB distribution. To explore the dependence on the different temperatures and background photon field distributions, the same PL distribution $dN/dE = A E^{-\Gamma}$ is used.
distribution and a BAND function with two temperatures (value of 10
the different temperatures of the BB component, the peak
the leptonic model, respectively
parameters are the same as the red lines in Figure 5 for the hadronic model and
component to be 10
fl
density, inducing lower cascade emission. When a BAND function

\[\alpha = -1.0, \quad \Gamma_e = -2.2, \quad \text{and the same flux of } 10^{-5} \text{ erg cm}^{-2} \text{s}^{-1} \text{ as the BB component.} \]

The other parameters are the same as the red lines in Figure 5 for the hadronic model and the leptonic model, respectively (see text for details).

\[\Gamma_e = -2.8 \text{ are assumed for simplicity for the leptonic model, the same proton distribution as in Figure 5 is assumed for the hadronic model, and the same } \epsilon_p = 0.01 \text{ is adopted for both models. The final cascade emission depends on whether the EM cascade is fully developed and on the total low-energy photon field including the initial photon field (BB or BAND distribution) and the cascade emission in the keV to MeV energy range. In the GRB environment, the EM cascade is likely fully developed due to the relatively high photon density. As shown in Figure 6, for the leptonic model, different temperatures (black and blue solid lines) would produce similar radiations because the EM cascade is fully developed and the low-energy photons from keV to MeV energies are approximately dominated by the high-flux cascade emission. For the BAND function distribution as the background photon field, the cascade emission shows a similar spectral shape and the magnitude of the cascade flux depends principally on the background photon field and the adopted electron distribution. For the hadronic model in Figure 6, because the low-energy photons ranging from keV to MeV energies from the cascade emission is weaker than those from the initial BB component, the initial BB component with the same peak flux and a higher temperature provides a lower photon density, inducing lower cascade emission. When a BAND function distribution is involved in the hadronic model, a higher cascade flux is expected because we fixed the flux of the BAND component to be $10^{-5} \text{ erg cm}^{-2} \text{s}^{-1}$, the same as that of the BB component, and the low-energy photon index of the BAND component, -1.0, is much smaller than that of the BB component so that the BAND component provides much more photons with energies below E_p than the BB component and makes the hadronic processes (PM and BH) more efficient, inducing a higher injection luminosity for the cascade emission. At the eV to keV energy range, the radiation becomes flat (the red dashed line in Figure 6) as the radiation below keV is mainly produced through the synchrotron radiation process by electrons from photon–photon annihilation rather than by the electrons cooled from higher energies (the latter one usually shows a typical fast cooling photon index, i.e., ~ -1.5). The BAND function distribution provides much more target photons with energies below E_p and increases the photon–photon annihilation opacity. Except for the flattening at the eV–keV energy range for the BAND function in the hadronic model, the other characteristics of the spectral shapes for either the hadronic model or leptonic model at different temperatures of the BB component or even treating the background photon field as a BAND function do not change significantly compared with those in Figure 5. In addition, even when taking such flattening at the eV to keV energy range into account, the spectra for a quite large energy range extending from eV to GeV could be treated approximately as a PL component.

In summary, as shown in Figure 5, both models can produce an approximate PL component ranging from keV to GeV energies within a certain range of indices, which is consistent with our result of extra PL component for the SGRBs. However, for a flat PL component with a photon index close to -2.0, the low-energy excess up to 10 keV could be helpful to tell us which model is preferred because for the former one the photon index of the low-energy excess is close to -1.5 while for the latter one it is $(\Gamma_e - 1)/2$. Nevertheless, the poor statistics at a few keV makes it difficult to differentiate the two models with current observations. On the other hand, the cascade emissions of both models can extend down to the optical band, as shown in Figure 5, and the flux difference at the optical band between the two models becomes distinct. Therefore, in the future, observations in the optical band of the prompt emission of GRBs may tell us which model is preferable. In addition, the hadronic model usually needs to invoke a relatively larger kinetic luminosity than the leptonic model due to the lower radiation efficiency of protons than electrons and maybe exceed the typical energy budgets of GRBs. The hadronic model also naturally predicts neutrino production, which might be constrained by the stacking observation of IceCube as it was done in the case of LGRBs (Aartsen et al. 2015, 2016, 2017).

5. Summary and Conclusion

In this paper, we looked into the extra PL spectral components of short GRBs. By analyzing the combined Fermi–GBM and LAT data, we identified the PL component in all 13 short GRBs in our sample, including GRB 090510 and GRB 160709A, whose extra PL component was already previously reported in the literature. The average flux of the PL components within the T_{90} scale positively correlates with that of the main spectral components. The slopes of the extra PL components of short GRBs are distributed in the range between -2.0 to -1.5, which may be well reproduced by considering the EM cascade induced by ultrarelativistic protons or electrons accelerated in the prompt emission phase. In the future, observations with more statistics around the keV energy band and observations of the prompt optical GRB emission may tell us which model is preferable. In addition, the next-generation neutrino telescopes might play a key role in determining which is the preferred one of these two models.

We thank the anonymous referee, who helped improve the manuscript, and the statistics editor for helpful suggestions. We are grateful to Yu Wang and Donggeun Tak for helpful discussions. This research made use of the High Energy Astrophysics Science Archive Research Center (HEASARC) Online Service at the NASA/Goddard Space Flight Center.
In this section, we test the uniform-distribution priors for all parameters of six models, hereafter named UP. In the UP scenario, all normalizations (A), photon indices (\(\alpha\), \(\beta\), and \(\Gamma\)), and parameters of the break energy (\(kT\), \(E_c\), and \(E_p\)) are distributed uniformly, employing the same range as that in the typical priors (TP) scenario.

The best-fitting models are shown in Table A1. Of 13 GRBs with \(\Delta\text{BIC} = 0\) (Best Model), 10 GRBs prefer the one-component model and 3 GRBs the two-component model. There are several candidate models with \(\Delta\text{BIC} < 10\), which cannot be rejected by the best-model-selection method described in Section 2.4.2. Therefore, in the UP scenario, we divided the best-fitting models into the best-fitting one-component models (Best 1C Model) and the best-fitting two-component models (Best 2C Model).

Table A1

\(\Delta\text{BIC}\) and the Best-fitting Models in the UP Scenario

GRB	BB	Band	CPL	BB+PL	BAND+PL	CPL+PL	Best Model\(^a\)	Best 1C Model\(^b\)	Best 2C Model\(^c\)
081024B	>10\(^d\)	0	7	5	>10	7	BAND	BAND	BB+PL
081102B	>10	6	0	6	>10	>10	CPL	CPL	BB+PL
090227B	>10	>10	>10	>10	7	0	CPL+PL	...	CPL+PL
090228A	>10	7	2	>10	5	0	CPL+PL	CPL	CPL+PL
090510	>10	6	>10	>10	0	>10	BAND+PL	BAND	BAND+PL
110728A	0	>10	6	8	>10	>10	BB	BB	BB+PL
120830A	>10	6	0	>10	>10	8	CPL	CPL	CPL+PL
120915A	0	>10	4	9	>10	>10	BB	BB	BB+PL
140402A	0	>10	6	7	>10	>10	BB	BB	BB+PL
141115A	0	7	1	9	>10	>10	BB	BB	BB+PL
160709A	>10	0	>10	>10	2	1	BAND	BAND	CPL+PL
171011C	0	>10	4	8	>10	>10	BB	BB	BB+PL
190515A	1	6	0	9	>10	>10	CPL	CPL	BB+PL

Notes.

\(^a\) Best-fitting model with \(\Delta\text{BIC} = 0\).

\(^b\) Best-fitting model with the lowest \(\Delta\text{BIC}\) among the BB, BAND, and CPL models.

\(^c\) Best-fitting model with the lowest \(\Delta\text{BIC}\) among the BB+PL, BAND+PL, and CPL+PL models.

\(^d\) >10 represents the best model against this candidate model.

Table A2

Derived Parameter Values of the Best 2C Model in the UP Scenario

Class	Main Component	Extra PL component			
BB+PL	\(A_{\text{BB}}\)^\(^b\)	\(E_{p,\text{BB}}\)^\(^b\)	\(A_{\text{PL}}\)^\(^c\)	\(\Gamma_{\text{PL}}\)	
081024B	21.8 \(\pm\) 15.9	297 \(\pm\) 85	175.0 \(\pm\) 50.1	175.0 \(\pm\) 50.1	1.74 \(\pm\) 0.06
081102B	13.3 \(\pm\) 4.6	295 \(\pm\) 32	162.0 \(\pm\) 42.3	162.0 \(\pm\) 42.3	1.85 \(\pm\) 0.12
110728A	21.9 \(\pm\) 16.8	231 \(\pm\) 42	37.7 \(\pm\) 30.8	37.7 \(\pm\) 30.8	1.91 \(\pm\) 0.38
120915A	12.7 \(\pm\) 4.7	346 \(\pm\) 43	17.7 \(\pm\) 16.3	17.7 \(\pm\) 16.3	1.85 \(\pm\) 0.37
140402A	3.8 \(\pm\) 1.4	586 \(\pm\) 75	29.4 \(\pm\) 25.8	29.4 \(\pm\) 25.8	2.21 \(\pm\) 0.61
141113A	3.0 \(\pm\) 1.7	535 \(\pm\) 116	76.8 \(\pm\) 58.7	76.8 \(\pm\) 58.7	1.85 \(\pm\) 0.32
171011C	30.4 \(\pm\) 17.1	212 \(\pm\) 43	19.9 \(\pm\) 39.7	19.9 \(\pm\) 39.7	1.89 \(\pm\) 0.43
190515A	2.4 \(\pm\) 0.6	674 \(\pm\) 110	57.3 \(\pm\) 39.8	57.3 \(\pm\) 39.8	1.85 \(\pm\) 0.24
CPL+PL	\(A_{\text{CPL}}\)^\(^e\)	\(\alpha_{\text{CPL}}\)	\(E_{p,\text{CPL}}\)^\(^b\)	\(A_{\text{PL}}\)^\(^c\)	\(\Gamma_{\text{PL}}\)
090227B	10.8 \(\pm\) 0.5	-0.35 \(\pm\) 0.04	1915 \(\pm\) 106	824.0 \(\pm\) 214.0	1.48 \(\pm\) 0.04
090228A	9.6 \(\pm\) 0.4	-0.34 \(\pm\) 0.09	767 \(\pm\) 79	452.0 \(\pm\) 221.0	2.02 \(\pm\) 0.02
120830A	1.9 \(\pm\) 0.1	-0.14 \(\pm\) 0.11	1000 \(\pm\) 155	36.7 \(\pm\) 32.6	-2.01 \(\pm\) 0.40
160709A	2.6 \(\pm\) 0.2	-0.14 \(\pm\) 0.08	1794 \(\pm\) 182	386.0 \(\pm\) 95.5	-1.66 \(\pm\) 0.05
BAND+PL	\(A_{\text{BAND}}\)^\(^a\)	\(\alpha_{\text{BAND}}\)	\(E_{p,\text{BAND}}\)^\(^b\)	\(A_{\text{PL}}\)^\(^c\)	\(\Gamma_{\text{PL}}\)
090510	2.0 \(\pm\) 0.2	-0.68 \(\pm\) 0.06	3348 \(\pm\) 318	252.0 \(\pm\) 98.9	1.56 \(\pm\) 0.05

Notes.

\(^a\) Normalization for the main components, \(A_{\text{BB}}\) in units of \(10^{-7}\) ph keV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\), and \(A_{\text{BAND}}\) and \(A_{\text{BAND}}\) in units of \(10^{-2}\) ph keV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\).

\(^b\) Peak energy of the \(E^2dN/dE\) spectrum in units of keV.

\(^c\) Normalization for the extra components in units of \(10^{-3}\) ph keV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\).
In order to compare results in the UP scenario with those in the TP scenario, we thus selected the Best 2C model. As shown in Table A1, the Best 2C model of each GRB in the UP scenario is the same as the best model of the corresponding GRB in the TP scenario. The resultant parameters in the Best 2C model are reported in Table A2.

After all parameters are available in both the UP scenario and the TP scenario, we thus plotted the correlations of the same parameters in two scenarios, which are shown in Figure A1. The parameters of the photon indices, the peak energies and the normalizations in both scenarios, are almost lying at the equality \(y = x \) line.

In summary, the results of the best 2C models in the UP scenario are consistent with that of the best models in the TP scenario. Therefore, only the results in the TP scenario are presented in the main text.

Appendix B

Spectral Energy Distributions with the Best-fitting Model for the Other 10 SGRBs

In this section, we plot the spectral energy distributions with the best-fitting model for the other 10 SGRBs in Figure B2 and Figure B3.
Figure B2. Same as the SEDs in Figure 2, but for GRBs (a) 081102B, (b) 090228A, (c) 110728A, (d) 120830A, (e) 120915A, and (f) 140402A.
Figure B3. Same as the SEDs in Figure 2, but for (a) GRBs 141113A, (b) 160709A, (c) 171011C, and (d) 190515A.

References

Aartsen, M., Abraham, K., Ackermann, M., et al. 2016, ApJ, 824, 115
Aartsen, M., Ackermann, M., Adams, J., et al. 2015, ApJL, 805, L5
Aartsen, M. G., Ackermann, M., Adams, J., et al. 2017, ApJ, 843, 112
Ackermann, M., Ajello, M., Asano, K., et al. 2013, ApJS, 209, 11
Ackermann, M., Asano, K., Atwood, W. B., et al. 2010, ApJ, 716, 1178
Ajello, M., Arimoto, M., Axelson, M., et al. 2019, ApJ, 878, 52
Akaike, H. 1974, ITAC, 19, 716
Arimoto, M., Asano, K., Tachibana, Y., et al. 2020, ApJ, 891, 106
Asano, K., & Inoue, S. 2007, ApJ, 655, 762
Asano, K., Guiriec, S., & Mészáros, P. 2009, ApJL, 705, L191
Asano, K., & Mészáros, P. 2011, ApJ, 739, 103
Band, D., Matteson, J., Ford, L., et al. 1993, ApJ, 413, 281
Basak, R., & Rao, A. R. 2013, ApJ, 768, 187
Beloborodov, A. M. 2011, ApJ, 737, 68
Beloborodov, A. M., Hascoët, R., & Vurm, I. 2014, ApJ, 788, 36
Bošnjak, Z., Daigne, F., & Dubus, G. 2009, A&A, 498, 677
Corsi, A., Guetta, D., & Piro, L. 2010a, A&A, 524, A92
Corsi, A., Guetta, D., & Piro, L. 2010b, ApJ, 720, 1008
Daigne, F., Bosnjak, Z., & Dubus, G. 2011, A&A, 526, 110
Daigne, F., & Mochkovitch, R. 1998, MNRAS, 296, 275
Daigne, F., & Mochkovitch, R. 2002, MNRAS, 336, 1271
Dermer, C. D., & Atoyan, A. 2006, NJPh, 8, 122
Fang, Z., Wang, J., Liu, B.-Y., & Gong, W.-B. 2012, Handbook of Optimization in Complex Networks (Berlin: Springer), 55
Fraija, N., Lee, W. H., Araya, M., et al. 2017, ApJ, 848, 94
Giannios, D., & Spruit, H. C. 2007, A&A, 469, 1
Ghisellini, G., Ghirlanda, G., Nava, L., & Celotti, A. 2010, MNRAS, 403, 926
Goodman, J., & Weare, J. 2010, ArXiv e-prints
Hascoët, R., Daigne, F., & Mochkovitch, R. 2013, A&A, 551, A124
Ioka, K. 2010, PTEP, 124, 667
Iyyani, S., Ryde, F., Ahlgren, B., et al. 2015, MNRAS, 450, 1651
Kasa, R., & Raftery, A. 1995, J Am Stat Assoc, 90, 773
Kawakubo, Y., Sakamoto, T., Nakahira, S., et al. 2018, PASJ, 70, 6
Kocevski, D., Axelsson, M., Scotton, L., et al. 2019, GCN, 24560, 1
Kobayashi, S., Piran, T., & Sari, R. 1997, ApJ, 490, 92
Kumar, P., & Bambi, D. 2009, MNRAS, 400, L75
Li, L. 2019, ApJS, 245, 7
Li, L., Ryde, F., Pe'er, A., et al. 2021, ApJS, 254, 35
Maxham, A., Zhang, B.-B., & Zhang, B. 2011, MNRAS, 415, 77
Mészáros, P., Laguna, P., & Rees, M. J. 1993, ApJ, 415, 181
Mészáros, P., & Rees, M. J. 1994, MNRAS, 269, L41
Mitzenmacher, M. 2004, Internet Math., 1, 2
Narayan Bhat, P., Meegan, C. A., von Kienlin, A., et al. 2016, ApJS, 223, 28
Paczynski, B. 1986, ApJ, 308, L43
Pe'er, A. 2008, ApJ, 682, 463
Pe'er, A., Zhang, B.-B., Ryde, F., et al. 2012, *MNRAS, 420, 468*
Poolakkil, S., Preece, R., Fletcher, C., et al. 2021, *ApJ, 913, 60*
Razzaque, S. 2011, *ApJ, 724, L109*
Reed, W. J., & Jorgensen, M. 2004, *Commun. Stat, 33, 8*
Rees, M. J., & Mészáros, P. 1994, *ApJ, 430, L93*
Rees, M. J., & Mészáros, P. 2005, *ApJ, 628, 847*
Ryde, F. 2005, *ApJ, 625, L95*
Ryde, F., Axelsson, M., Zhang, B. B., et al. 2010, *ApJL, 709, L172*
Schwarz, G. 1978, *AnSta, 6, 461*
Shemi, A., & Piran, T. 1990, *ApJ, 365, L55*
Spruit, H. C., Daigne, F., & Drenkhahn, G. 2001, *A&A, 369, 694*

Tak, D., Guiriec, S., Uhm, Z. L., et al. 2019, *ApJ, 876, 76*
Tang, Q.-W., Wang, X.-Y., & Liu, R.-Y. 2017, *ApJ, 844, 56*
Toma, K., Wu, X. F., & Mészáros, P. 2011, *MNRAS, 415, 1663*
Totani, T. 1998, *ApJ, 509, L81*
Vetri, M. 1997, *PhRvL, 78, 4328*
Vianello, G., Lauer, R. J., Younk, P., et al. 2015, arXiv:1507.08343
von Kienlin, A., Meegan, C. A., Paciesas, W. S., et al. 2014, *ApJS, 211, 13*
Wang, K., Liu, R.-Y., Dai, Z.-G., & Asano, K. 2018, *ApJ, 857, 24*
Yu, H.-F., Dereli-Bégue, H., & Ryde, F. 2019, *ApJ, 886, 20*
Zhang, B., & Yan, H. 2011, *ApJ, 726, 90*
Zhang, Z. B., Jiang, M., Zhang, Y., et al. 2020, *ApJ, 902, 40*