Morphological differences in embryos of goldfish (*Carassius auratus auratus*) under different incubation temperatures

HIROTARO URUSHIBATA*,1,2, EISUKE TAKAHASHI1, YU SHIMIZU1, TOSHIYA MIYAZAKI2, TAKAFUMI FUJIMOTO1, KATSUTOSHI ARAI1 and ETSURO YAMAHA2

1Nanae Freshwater Station, Field Science Center for Northern Biosphere, Hokkaido University and 2Laboratory of Aquaculture Genetics and Genomics, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan

ABSTRACT The goldfish (*Carassius auratus auratus*) is a useful species for embryonic micromanipulations because of its large egg size and wide temperature tolerance. Here, we describe in detail the rate of development and morphological characteristics of goldfish embryos incubated at temperatures between 10°C and 30°C. The cleavage speed increased rapidly as temperature increased. Synchronized cell divisions occurred at 131 min intervals at 10°C, at 33 min intervals at 20°C, and at 19 min intervals at 30°C during the cleavage period. The rate of hatched abnormal embryos significantly increased at temperatures of 26°C and above, while there was no change in the number of abnormal embryos at temperatures less than 24°C. Moreover, the blastomeres around the center of the blastodisc rose in the direction of the animal pole at temperatures less than 14°C. At the lower temperatures, clusters of maternally-supplied germplasm were visualized both at the ends of the first three cleavage furrows and at the border between the lower and upper tiers at the 16- to 32-cell stage, with injection of artificial mRNA and *vasa* in situ hybridization. This study showed that temperature affects not only developmental speed but also the shape of the blastodisc and the distribution of maternally-supplied materials in the blastodisc. By controlling the temperature, it is possible for researchers to prepare many stages of embryos and shapes of the blastodisc from a single batch of eggs.

KEY WORDS: cleavage, embryonic development, morphogenesis, normal developmental, primordial germ cell, PGC

Introduction

The familiar ornamental goldfish (*Carassius auratus auratus*) has often been used in experiments of reproductive and developmental biology. For example, bisection at the early cleavage stage of goldfish resulted in the distribution of dorsal maternal factor(s) in the vegetal yolk hemisphere (Mizuno *et al.*, 1997). Graft transplantation showed that at the blastula stage, blastoderm cells are highly pluripotent (Kazama-Wakabayashi *et al.*, 1999, Mizuno *et al.*, 1997), and the yolk syncytial layer has mesoderm-inducing activity (Yamaha *et al.*, 1998). In addition, triploid and gynogenetic diploid embryos are easily induced in goldfish by inhibiting the second polar-body release with heat-shock treatment just after fertilization with normal and irradiated sperm, respectively. Germline chimera has been successfully produced in goldfish by transplantation of blastula graft (Yamaha *et al.*, 2001, Yamaha *et al.*, 2003) and using primordial germ cells (PGCs) (Goto *et al.*, 2012). These achievements suggest that goldfish eggs and embryos should have characteristics useful for micromanipulation and handling, such as easy artificial ovulation, easy dechorionation, relatively large egg size, and relatively tough chorion, as compared with other experimental model fish, such as *Danio rerio*. It is difficult to slow down developmental speed in zebrafish. Goldfish embryos are also able to survive and develop under a wide range of temperatures. Therefore, the goldfish has the potential to be an excellent host species for studying the interactions between donor germ cells and host somatic cells.

A clear description of each stage of embryonic development is vital to implement embryonic manipulation successfully. The

Abbreviations used in this paper: dpf, days post-fertilization; gfp, green fluorescent protein; hpf, hours post-fertilization; PGC, primordial germ cell.

*Address correspondence to: Hirotaro Urushibata. Laboratory of Aquaculture Genetics and Genomics, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-861 1, Japan. E-mail: hirotaro.urushibata@gmail.com - https://orcid.org/0000-0002-3546-8434

Supplementary Material (four figures) for this paper is available at: https://doi.org/10.1387/ijdb.190144hu

Submitted: 2 August, 2019; Accepted: 20 November, 2019; Edited by: Makoto Asashima

ISSN: Online 1696-3547, Print 0214-6282

© 2019 UPV/EHU Press

Printed in Spain
developmental stages of model animals have been described in great detail especially in zebrafish and medaka *Oryzias latipes* (Iwamatsu, 2004, Kimmel et al., 1995). In goldfish, the developmental stages before gastrulation of embryos incubated at 20°C were defined by Yamaha et al., (1999), and the stages before hatching at 24°C by Tsai et al., (2013). However, as the incubation temperature differed in those two studies, it is difficult to determine the speed of development based on external appearance of the embryos.

Medaka embryos can develop at temperatures ranging from 14 to 34°C. Because the unfertilized eggs of that species can be kept at low temperatures, time-consuming manipulation, such as nuclear transplantation, can be successfully performed with sufficient time (Wakamatsu, 2008). Medaka embryos are also important as educational materials for successive observations of embryogenesis owing to easy preparation of embryos at various stages as induced by different temperatures. Goldfish embryos also develop under a range of temperatures, from 10 to 30°C. However, the developmental staging of goldfish has not been described for incubation under different temperatures.

Here, we describe the developmental stages of goldfish, up to 100% epiboly, under different incubation temperatures, ranging from 10 to 30°C. The stages of embryonic development from epiboly to hatching at 20°C are described in particular detail for comparison with the stages under 24°C as described in Tsai et al., (2013). We observed embryonic development at temperatures from 10 to 30°C. Incubation under lower temperatures affected the early cleavage pattern and distribution of the germplasm. The results are helpful not only in studies of micromanipulation using goldfish embryos before the late blastula stage, but also for making detailed descriptions of the external appearance of embryos at each developmental stage.

**Results**

**Embyronic development**

The developmental stages of goldfish embryos incubated at 20°C are summarized in Table 1, and given in comparison with descriptions of their development under 24°C as reported by Tsai et al., (2013). As the chorion of goldfish eggs is opaque, dechorionated eggs were used to describe each developmental stage. The embryonic period was subdivided into several stages following Fujimoto et al., (2006). Each developmental stage was named using morphological features in accordance with the stages for zebrafish (Kimmel et al., 1995). Embryonic development of the goldfish was divided into five periods (Table 1): cleavage, blastula, gastrula (Supplementary Fig. S1), segmentation, and hatching (Supplementary Fig. S2). Somite number increased on average by three pairs every 2 h (Supplementary Fig. S3). Hatching in the earliest batch was first observed at 96 hpf, and finished at 138 hpf. Another batch started hatching at the same time, but did not finish until 180 hpf (Supplementary Fig. S4). Fifty percent of the embryos hatched between 114 and 180 hpf. At 20°C, the average hatching time for the three batches was 120 hpf.

**Development under different temperatures**

Based on embryo morphology under 20°C, the developmental rate to 100% epiboly was determined for different temperatures ranging from 10 to 30°C (Table 2, Fig. 1). Incubated embryos developed rapidly at higher temperatures (>20°C) and slowly at lower temperatures (<20°C). The rate of cell division during early development (before the midblastula transition [MBT]) increased proportionally with increasing temperature (Fig. 1A). Cell division during cleavage was synchronized and occurred at 131 min intervals at 10°C, 33 min intervals at 20°C, and 19 min intervals at 30°C. Between development at the lowest (10°C) and highest (30°C) temperatures, there was a difference of 220 min (about 3.7 h) at the 2-cell stage, 1,230 min (20.5 h) at the 1-cell stage (i.e. MBT), and 1,690 min (about 28 h) at the late-blastula stage. The time taken from fertilization to each cell division during cleavage
Lower temperature alters distribution of cytoplasm

**Frequency of abnormal development at different temperatures**

The effect of different temperatures on subsequent development was assessed. Embryos incubated at different temperatures were transferred to 20°C after the 1k-cell stage, and the survival rate and frequency of abnormality, namely body curvature or short body were examined at 5 dpf (Fig. 2). The lowest number of abnormalities was found in embryos incubated at 20°C. As the temperature increased, the number of abnormal embryos at the hatching stage significantly increased. At temperatures of >26°C, more than half of the embryos were abnormal (20°C: 11.2%, 15.2% and 50.0%, 26°C: 53.1%, 34.8% and 66.7%). The frequency of abnormalities did not commensurately increase at temperatures of <20°C, as compared with those kept at >26°C.

**External appearance of embryos incubated at lower temperatures**

The shape of the blastodisc differed between embryos incubated at the lower and higher temperatures. The blastodisc was round in embryos incubated at the lower temperatures (<14°C), and flat in embryos incubated at the higher temperatures (>14°C) (Fig. 3). The height of the blastodisc decreased with increasing temperatures, whereas the width increased with increasing temperatures (Fig. 4).

Early cleavage patterns were altered in embryos incubated at 10°C. In the 16-cell stage, the fourth cleavage at 10°C differed from

---

### TABLE 1

DEVELOPMENTAL STAGES OF GOLDFISH EMBRYOS AT 20°C

| Stage name         | Time (20°C) | Tsai et al., 2013 (24°C) | Characteristics                                                                 |
|--------------------|-------------|--------------------------|--------------------------------------------------------------------------------|
| Cleavage period    |             |                          |                                                                                |
| 1-cell             | 40 min      | 0 min                    | Formation of the blastodisc on the animal pole                                |
| 1st cleavage       | 50 min      | 0 min                    | Beginning of first cleavage                                                   |
| 2-cell             | 1 h         | 24 min                   | The first cleavage furrow                                                     |
| 4-cell             | 1 h 30 min  | 51 min                   | The blastodisc formed by 2x2 array blastomeres                                |
| 8-cell             | 2 h 10 min  | 1 h 18 min               | Formed by 2x4 array blastomeres                                               |
| 16-cell            | 2 h 40 min  | 1 h 45 min               | Formed by 4x4 array blastomeres                                               |
| 32-cell            | 3 h 10 min  | 2 h 12 min               | The fifth horizontal cleavage in the monolayered blastomeres                  |
| 64-cell            | 3 h 50 min  | 2 h 39 min               | Uncountable blastomeres                                                       |
| Early blastula     |             |                          |                                                                                |
| 128-cell           | 4 h 20 min  | 3 h 6 min                | Mid-Blastula transition, E-YSL formation                                       |
| 256-cell           | 4 h 50 min  | 3 h 33 min               |                                                                                |
| 512-cell           | 5 h 30 min  | 4 h                      |                                                                                |
| 1k-cell            | 6 h         | 4 h 27 min               |                                                                                |
| Late blastula      |             |                          |                                                                                |
| Oblong             | 8 h         | 5 h 21 min               | I-YSL formation, ellipsodal shape                                             |
| Sphene             | 10 h        | 5 h 48 min               | Spherical shape                                                               |
| Dome               | 10 h 30 min | 6 h 15 min               | Beginning of epiboly, bulging                                                 |
| 30% epiboly        | 11 h        | 6 h 42 min               | Progress of epiboly, 30% coverage of a yolk by the blastoderm                 |
| Gastrula period    |             |                          |                                                                                |
| 50% epiboly        | 12 h        | 8 h                      | Half coverage of a yolk cell                                                  |
| Germ ring          | 13 h        | 8 h 30 min               | Arrest of the epiboly, germ ring                                              |
| Embryonic shield   | 13 h 30 min | 8 h 36 min               | Formation of an embryonic shield                                              |
| 70% epiboly        | 16 h        | 11 h                     | 70% coverage of a yolk cell                                                   |
| 90% epibody        | 18 h        | 12 h                     | 90% coverage of a yolk cell, yolk plug                                        |
| 100% epibody       | 20 h        | 12 h                     | Completion of coverage, tail bud                                              |
| Segmentation period|             |                          |                                                                                |
| 1–3-somite         | 24 h        |                          | EL=2.1 mm, first somatic furrow, optic primordium                             |
| 4–6-somite         | 26 h        | 14 h                     | EL=2.1 mm, a horizontal crease in the optic primordium, Kupffer’s vesicle     |
| 7–9-somite         | 28 h        |                          | EL=2.1 mm                                                                     |
| 10–12-somite       | 30 h        | 16 h                     | EL=2.1 mm                                                                     |
| 13–15-somite       | 32 h        | 20 h                     | EL=2.1 mm, otic placode                                                       |
| 16–18-somite       | 34 h        |                          | EL=2.5 mm, HTA=105°, OVL=0.25 mm, otic vesicle, formation of yolk extension   |
| 19–21-somite       | 36 h        |                          | EL=2.9 mm, HTA=140°, OVL=0.25 mm, optic cup and lens placode                  |
| 30-somite          | 42 h        |                          | EL=3.3 mm, HTA=105°, OVL=0.20 mm, completion of somites, weak heartbeat       |
| Post segmentation  |             |                          |                                                                                |
| 2 dpf              | 48 h        |                          | EL=5.0 mm, HTA=105°, OVL=0.15 mm, otolith, median fin fold, early pigment in retina and skin |
| 3 dpf              | 72 h        |                          | EL=5.8 mm, HTA=180°, OVL=0.10 mm, PF/(H/W)=1.0, pectoral fin, anus             |
| 4 dpf              | 96 h        |                          | EL=7.0 mm, HTA=45°, PF/(H/W)=2.0                                             |
| Hatching period    |             |                          |                                                                                |
| 5 dpf              | 120 h       |                          | EL=8.1 mm, HTA=30°, PF/(H/W)=3.5, hatch                                       |

EL, embryo length; HTA, head-trunk angle; OVL, otic vesicle length; PF, pectoral fin; H/W, height/width.

* a

* b

* Hours and minutes after fertilization.
that at 20°C. The first latitudinal cleavage appeared sooner, in the 16-cell stage at 10°C as compared with in the 64-cell stage at 20°C (Fig. 5). The blastomeres around the center of the blastodisc rose in the direction of the animal pole and formed a multilayer (Fig. 5). The stage at which the multilayer first appeared was related to temperature (Fig. 6). At 10–14°C, a blastodisc with a multilayer first appeared in the 16-cell stage, while a multilayer was formed in the 64-cell stage in embryos incubated at 18–20°C. When a single blastomere in the upper layer was injected with fluorescein isothiocyanate (FITC), the dye was maintained in the descendant cells without any diffusion to neighboring blastomeres, indicating that the injected blastomere was isolated (Fig. 7).

**Germplasm aggregation pattern at different temperatures**

In several fish species, such as ice goby *Leucopsarion petersii* and pond smelt *Hypomesus olidus*, it was reported that germplasm aggregated between the upper and lower tiers of the blastomeres (Saito et al., 2004, Takahashi et al., 2017). To confirm the distribution of the germplasm under cultivation at 10°C, GFP-buc mRNA was injected into fertilized embryos at 1-cell stage, thereafter cultivated at 10°C and 20°C, visualized GFP signals in 16-cell embryos were observed in the area around the margin of the blastodisc; however, GFP signals in embryos cultured at 10°C were distributed not only in the marginal area, but also in the boundary between the upper and lower layers (Table 3, Fig. 8). When in *situ* hybridization against *vasa* mRNA was performed, positive signals were detected at both ends of the early cleavage furrows and at the boundary between the upper and lower tiers of the blastomeres (Fig. 8). In many of the embryos kept at 10°C, blastomeres, which were stained with a mottled pattern, were observed with *vasa in situ* hybridization as proof (Fig. 8).

**Discussion**

**Developmental characteristics of goldfish compared with other species**

The embryonic development of goldfish under different temperatures was previously described by Tsai et al., (2013). In this study, we described the developmental stages of goldfish from fertilization to hatching, using dechorionated embryos incubated at 20°C. Morphological features, organogenesis, and the head–trunk angle (HTA) (Kimmel et al., 1995) were used to define the different embryonic stages. The sequence of development that we observed did not differ from that reported for goldfish by other authors (Tsai et al., 2013), however the rate of development varied with temperature. The developmental stages described for zebrafish (Kimmel et al., 1995) are similar to those observed in goldfish, although the timing of differentiation, such as the development of otoliths, median-fin folds, and pigmentation, all differed. These differences may relate to numbers of somites and the body proportions of adult fish, although both species belong to the Cyprinidae. Developmental sequences of the loach *Misgurnus anguillicaudatus* (Fujimoto et al., 2006), a species of Cobitidae, differed considerably from the goldfish in regard to the larger numbers of somites.

**TABLE 3**

**THE NUMBER OF GFP SIGNALS IN 16-CELL EMBRYOS AT 10°C INJECTED WITH GFP-BUC mRNA**

| No. of GFP signals in each embryo | Average |
|-----------------------------------|---------|
| 1(1),1(0),1(0),1(1),1(1),1(1),1(2),2(0),2(2),3(0),3(1),3(1),3(1),3(2),3(2),3(3),3(4),4(0),4(1),4(2) | 2.4(0.95) |
Developmental characteristics at different temperatures

The external appearance of goldfish embryos and the timing of the first latitudinal cleavage differed between those incubated at low (<14°C) and high (>14°C) temperatures. Temperature altered the blastodisc height and the cleavage pattern of goldfish embryos in this study. Cytoplasmic structure is supported by microtubules and/or microfilaments that make up the cytoskeleton (Beams et al., 1985). There are many microtubules around the cortex of fertilized eggs in zebrafish. When the cytoskeleton is disrupted, abnormalities are induced in subsequent stages. High temperatures and high hydrostatic pressure can cause depolymerization of tubulin filaments, affecting dorso-ventral specification, and resulting in the occurrence of rotational symmetry, microcephaly, a truncated head, or cyclops embryos (Yamaha et al., 2002). In the toad *Xenopus laevis* the microtubular density decreased at a low temperature (Alvarez and Fadic, 1992). In the present study, the time from fertilization to each cleavage stage in goldfish embryos took longer at the lower temperatures (10–14°C). The kinetics of tubulin polymerization in goldfish may change at 16- and 32-cell stage at 10-14°C in contrast to 20°C. Therefore, the morphological changes observed in goldfish embryos may be related to changes in tubulin polymerization as a result of changes in temperature.

In medaka the rate of development was altered with incubation temperature (Iwamatsu, 2004). Medaka embryos survive at temperatures up to 40°C, but development occurs most rapidly at 34°C. The relationship between temperature and incubation period under 34°C for this species is not proportional but exponential. By changing the incubation temperature, developmental speed can be controlled. In goldfish, developmental speeds during the cleavage stage also increased exponentially with increasing incubation temperatures of up to 30°C. There was little difference in the rates of development at 10°C and 12°C. The longer incubation period at lower temperatures had little effect on the survival rate of fertilized eggs, in contrast with incubation at higher temperatures. Although the external appearance of blastula-stage embryos differed at 10°C and 20°C, these characteristics changed and epiboly could conclude normally.

**Germplasm localization**

In the present study, GFP signals after injection with GFP-buc mRNA and *vasa* signals following *in situ* hybridization were both detected at the boundaries between the lower and upper tiers of blastomeres at the 16- to 32-cell stages in embryos kept at 10°C. In bony fishes, PGCs originated from cells in the maternal cytoplasm, and germplasm aggregated at the site of early cleavage.
In zebrafish, the germplasm may be visualized by injection with artificial GFP-buc mRNA (Bontems et al., 2009). Therefore, the present results show that the germplasm in goldfish aggregates at the boundaries between the lower and upper tiers of blastomeres, in addition to the normal positions, at the ends of the first three cleavage furrows, under cultivation at lower temperatures. It is reported that germplasm components in zebrafish, which include dead-end, nanos1, and vasa RNAs, are initially present in a wide cortical band at the animal pole and recruited toward the blastodisc periphery by microtubule-dependent movement (Theusch et al., 2006). Low-temperature conditions may affect the movement of germplasm in goldfish embryos. As evidence in this study, mottled staining was observed in the embryos with vasa in situ hybridization. This indicated retardation of germplasm movement during the early cleavage stage, though more detailed analysis will be required.

Conclusions

Goldfish (Carassius auratus auratus) embryos are useful for embryo manipulation because of their relatively large size and tolerance to a wide temperature range. Developmental speed can be slowed by lowering the temperature, thus enabling researchers to perform complicated and delicate microsurgical operations that require long times. In addition, the round shape of blastoderms in embryos cultivated at lower temperatures enables easy handling for manipulation. Our study shows that the rate of development in goldfish embryos can be changed by altering the temperature, and the embryos are tolerant to such temperature changes. Researchers can prepare embryos of different developmental stages using a single batch of eggs simply by controlling the temperature. In addition, PGCs may increase under low-temperature cultivation, which is useful when employing techniques such as heterochronic...
Lower temperature alters distribution of cytoplasm

Fig. 7. (Left) Schematic illustrations of the blastomere position in goldfish embryos incubated at 10°C or 20°C. (A–F) Top view of the 1-cell to 16-cell stages. (A) Outer circle denotes the yolk, and inner ellipse the uncleaved blastodisc; AP, animal pole. (B) 2-cell stage; (C) 4-cell stage; (D) 8-cell stage; (E) 16-cell stage, all at 20°C; (F) 16-cell stage at 10°C. (G–I2) Diagrammatic lateral view of the animal pole, showing morphological changes in embryos at the 4-cell to 16-cell stages, when incubated at 10°C or 20°C. (I1) 16-cell stage at 20°C, and (I2) multilayered 16-cell stage at 10°C. H, M and L indicate positions of the blastomeres in the blastoderm, as high, middle or low, respectively. (J, K) 16-cell stage goldfish embryo incubated at 10°C, and injected with FITC solution at this stage; the dye was maintained in the single cell without diffusion. (J) Bright view; (K) fluorescent view. Scale bar, 500 μm.

transplantation and germ-cell transplantation (Saito et al., 2010). Thus, notable embryological phenomena, such as the differentiation potency of blastomeres at early stages, can be studied using goldfish embryos.

Materials and Methods

Ethics
This study was carried out in accordance with the Guide for the Care and Use of Laboratory Animals in Hokkaido University and Field Science Center for Northern Biosphere, Hokkaido University, Japan (#22-1).

Eggs and sperm
Parent goldfish were kept at the Nanae Freshwater Laboratory at Hokkaido University. Fish were maintained at 10–14°C. Artificial fertilization of goldfish eggs was performed as described by Yamaha et al., (2001).

Dechorionation and incubation conditions
Dechorionated embryos were incubated in 1% agar-coated petri dishes filled with Ringer’s culture solution (128 mM NaCl, 2.8 mM KCl, 1.8 mM CaCl₂; pH 7), plus 0.01% penicillin, 0.01% streptomycin, and 1.6% albumen.

Intact embryos and dechorionated embryos were divided into 11 groups. Each group of embryos was incubated at a different temperature (10, 12, 14, 16, 18, 20, 22, 24, 26, 28 or 30°C). The intact embryos were observed until the 16-cell stage to determine the exact cleavage speed. The dechorionated embryos were held in 96-well plates and kept at the designated temperature in an incubator until the embryos reached the gastrula period. After gastrulation, the temperature was altered and all embryos were kept at 20°C until the observations were completed. During development, any abnormal embryos were counted and removed.

Measuring the shape of the embryos
The shape of the blastodiscs were measured. At least 10 embryos were randomly selected and the height and width were measured.

Description of developmental stages
The developmental stages of the goldfish were defined using the morphological characteristics described by Tsai et al., (2013). Embryos were observed at 10 min intervals until 24 hours post-

Fig. 8. (Left) Goldfish embryo germplasm at the 16-cell stage. (A) Incubated at 20°C; arrowheads indicate visualized germplasm in the area around the margin of the blastodisc. (B) Incubated at 10°C; arrowheads indicate visualized germplasm in the area around the margin of the blastodisc and arrows indicate those between the upper and lower layers. (A1, B1) Germplasm visualized using green fluorescent protein (GFP) after injection with GFP-buc mRNA. (A2, B2, B3) Germplasm visualized with in situ hybridization of vasa probe. Note the blastomeres stained with a mottled pattern in B3. Scale bar, 500 μm.
fertilization (hpf); at 1 h intervals from 24 to 48 hpf; and at 24 h intervals after 48 hpf. At least 20 embryos were randomly selected and observed until epiboly was completed. Following the segmentation period, at least five embryos were randomly selected for observation. After completion of epiboly, the embryonic stages were further described using embryo length (EL), head–trunk angle (HTA), olic vesicle length (OVL), pectoral-fin height (PF), and pectoral-fin height/wide (H/W), based on Kimmel et al., (1995), Tsai et al., (2013).

Photographing the external appearance of developing embryos

Embryos without the chorion were incubated in petri dishes with 1% agar, in preparation for photographing. The petri dish containing the embryo was incubated on a heat plate (ThermoPlate, FTP-28190; AS ONE company, Osaka, Japan). The external appearance of each embryo was photographed using a stereoscopic microscope (Leica, MZ16F-RCFL, DFC300FX).

Visualization of a single blastomere

If the 16-cell embryos make multilayered blastoderm, a single blastomere of the 16-cell stage was labeled with fluorescein isothiocyanate conjugated with dextran (FITC-Dextran). Five percent FITC-Dextran (Sigma) solution in 0.2 M KCl was injected into a single blastomere in the animal pole and observed 10 min after the injection.

Analyzing a germplasm localization

Artificially synthesized GFP-buc mRNA was injected into the animal or vegetal pole of fertilized eggs to investigate the origin of PGCs, in accordance with the method of Bontems et al., (2009). Capped mRNAs were synthesized in vitro using a MESSAGE mMESSAGE mMachine® Kit (Ambion). The artificially synthesized mRNAs were dissolved in 0.2 M KCl at a concentration of 300 mg/ml.

In situ hybridization of vasa mRNA was performed to analyze the localization of maternal germplasm, with slight modifications using a 0.4-Kb fragment from the 3′-UTR region of vasa cDNA in zebrafish as a template, in accordance with the method of Fujimoto et al., (2006). The embryos under incubation at 10°C and 20°C were fixed at the 16- to 32-cell stages with 4% paraformaldehyde for 10 h.

Acknowledgments

The authors are grateful to Shizuo Kimura, Miyuki Kawashima, and members of the Nanase Freshwater Laboratory (Field Science Center for Northern Biosphere, Hokkaido University) for advice and help with the breeding of fish. Cynthia Kulongowski (MSc), with the Edanz Group (www.edanzediting.com/ac), edited a draft of this manuscript. This work was supported by JSPS KAKENHI Grant Numbers 2458163 and 24080099 (to EY).

References

ALVAREZ, J. and FADIC, R. (1992). Assembly and disassembly of axonal microtubules of the toad Xenopus laevis under the effect of temperature. J. Exp. Zool. 264: 261-266.

BEAMS, H.W., KESSEL, R.G., SHIH, C.Y. and TUNG, H.N. (1985). Scanning electron microscope studies on blastodisc formation in the zebrafish, Brachydanio rerio. J. Morphol. 184: 41-49.

BONTEMS, F., STEIN, A., MARLOW, F., LYAUTEY, J., GUPTA, T., MULLINS, M.C. and DOSCH, R. (2009). Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 19: 414-422.

FUJIMOTO, T., KATAOKA, T., SAKAO, S., SAITO, T., YAMAHA, E. and ARAI, K. (2006). Developmental stages and germ cell lineage of the loach Misgurnus anguillicaudatus. Zool Sci 23: 977-989.

GOTO, R., SAITO, T., TAKEDA, T., FUJIMOTO, T., TAKAGI, M., ARAI, K. and YAMAHA, E. (2012). Germ cell lineage and primary factor for sexual fate determination in goldfish. Dev Biol 370: 98-109.

IWAMATSU, T. (2004). Stages of normal development in the medaka Oryzias latipes. Mech Dev 121: 605-618.

KAZAMA-WAKABAYASHI, M., YAMAHA, E. and YAMAZAKI, F. (1999). The Elimination and Duplication of Lower Part of Blastoderm Effects on the Number of Primordial Germ Cells in Goldfish. Fisheries Sci. 65: 577-582.

KIMMEL, C.B., BALLARD, W.W., KIMMEL, S.R., ULLMANN, B. and SCHILLING, T.F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203: 253-310.

MIZUNO, T., YAMAHA, E. and YAMAZAKI, F. (1997). Localized axis determinant in the early cleavage embryo of the goldfish, Carassius auratus. Dev Genes Evol 206: 389-396.

OTANI, S., MAEGAWA, S., INOUYE, K., ARAI, K. and YAMAHA, E. (2002). The germ cell lineage identified by vas-mRNA during the embryogenesis in goldfish. Zool Sci 19: 519-526.

SAITO, T., GOTO-KAZETO, R., FUJIMOTO, T., KAWAKAMI, Y., ARAI, K. and YAMAHA, E. (2010). Inter-species transplantation and migration of primordial germ cells in cyprinid fish. Int J Dev Biol 54: 1481-1486.

SAITO, T., OTANI, S., FUJIMOTO, T., SUZUKI, T., NAKATSUJI, T., ARAI, K. and YAMAHA, E. (2004). The germ line lineage in ugori, Gynnogobius species (Teleostei: Gobiidae) during embryonic development. Int J Dev Biol 48: 1079-1085.

Takahashi, E., Shimizu, Y., Urushibata, H., Kawakami, Y., Arai, K. and Yamada, E. (2017). Migration behavior of PGCs and asymmetrical gonad formation in pond smelt Hypomesus nipponensis. Int J Dev Biol 61: 397-405.

Theusch, E.V., Brown, K.J. and Pelegri, F. (2006). Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Dev Biol 292: 129-141.

Tsai, H.Y., Chang, M., Liu, S.C., Abe, G. and Ota, K.G. (2013). Embryonic development of goldfish (Carassius auratus): a model for the study of evolutionary change in developmental mechanisms by artificial selection. Dev Dyn 242: 1262-1283.

Wakamatsu, Y. (2008). Novel method for the nuclear transfer of adult somatic cells in medaka fish (Oryzias latipes): use of diploidized eggs as recipients. Dev Growth Differ 50: 427-436.

Yamaha, E., Kazama-Wakabayashi, M., Otani, S., Fujimoto, T. and Arai, K. (2001). Germ-line chimera by lower-part blastoderm transplantation between diploid goldfish and triploid crucian carp. Genetica 111: 227-236.

Yamaha, E., Mizuno, T., Hasebe, Y., Takeda, H. and Yamazaki, F. (1998). Dorsal specification in blastoderm at the blastula stage in the goldfish, Carassius auratus. Dev Growth Differ 40: 257-275.

Yamaha, E., Mizuno, T., Matsushita, K. and Hasebe, Y. (1999). Developmental Staging in Goldfish during the Pre-gastrula Stage. Nippon Suisan Gakkaish 65: 709-717.

Yama, E., Mura, K., Hada, T., Otani, S., Fujimoto, T., Tanaka, M., Saka, S., Kimura, S., Sato, S. and Arai, K. (2003). Recovery of fertility in male hybrids of a cross between goldfish and common carp by transplantation of PGC (primordial germ cell)-containing graft. Genetica 119: 121-131.

Yamaha, E., Otani, S., Minami, A. and Arai, K. (2002). Dorsoventral axis perturbation in goldfish embryos caused by heat and pressure-shock treatments for chromosome set manipulation. Fisheries Sci. 68: 313-319.

Yoon, C., Kawakami, K. and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124: 3157-3165.
Further Related Reading, published previously in the *Int. J. Dev. Biol.*

**Preparation of a fish embryo for micromanipulation: staging of development, removal of the chorion and traceability of PGCs in Prochilodus lineatus**
Geovanna C.Z. Coelho, Isaac S. Yo, Tatiana M. Mira-López, Paulo S. Monzani, Dilberto R. Arashiro, Takafumi Fujimoto, José A. Senhorini and George S. Yasui  
*Int. J. Dev. Biol.* (2019) 63: 57-65  
https://doi.org/10.1387/ijdb.180348gc

**Inter-species transplantation and migration of primordial germ cells in cyprinid fish**
Taiju Saito, Rie Goto-Kazeto, Takafumi Fujimoto, Yutaka Kawakami, Katsutoshi Arai and Etsuro Yamaha  
*Int. J. Dev. Biol.* (2010) 54: 1481-1486  
https://doi.org/10.1387/ijdb.103111ts

**Developmental potential of embryonic cells in a nucleocytoplasmic hybrid formed using a goldfish haploid nucleus and loach egg cytoplasm**
Takafumi Fujimoto, Taiju Saito, Suzu Sakao, Katsutoshi Arai and Etsuro Yamaha  
*Int. J. Dev. Biol.* (2010) 54: 827-835  
https://doi.org/10.1387/ijdb.092896tf

**The formation of primordial germ cells from germline cells in spherical embryos derived from the blastodisc of 2-cell embryos in goldfish, Carassius auratus**
Satoshi Otani, Tomoe Kitauchi, Taiju Saito, Suzu Sakao, Shingo Maegawa, Kunio Inoue, Katsutoshi Arai and Etsuro Yamaha  
*Int. J. Dev. Biol.* (2005) 49: 843-850  
http://www.intjdevbiol.com/web/paper/052027so

**Electrically fused-egg induction and its development in the goldfish, Carassius auratus**
E Yamaha and F Yamazaki  
*Int. J. Dev. Biol.* (1993) 37: 291-298  
http://www.intjdevbiol.com/web/paper/8398675

**Developmental incompatibility between cell nucleus and cytoplasm as revealed by nuclear transplantation experiments in teleost of different families and orders**
S Y Yan, M Tu, H Y Yang, Z G Mao, Z Y Zhao, L J Fu, G S Li, G P Huang, S H Li and G Q Jin  
*Int. J. Dev. Biol.* (1990) 34: 255-266  
http://www.intjdevbiol.com/web/paper/2386727

**Mitochondrial DNA content and mitochondrial gene transcriptional activities in the early development of loach and goldfish**
G Wang and S Yan  
*Int. J. Dev. Biol.* (1992) 36: 477-482  
http://www.intjdevbiol.com/web/paper/1338287