Mid-infrared passively switched pulsed dual wavelength Ho\(^{3+}\)-doped fluoride fiber laser at 3 \(\mu m\) and 2 \(\mu m\)

Jianfeng Li\(^1,2,3\), Hongyu Luo\(^1\), Lele Wang\(^1\), Yong Liu\(^1\), Zhijun Yan\(^2\), Kaiming Zhou\(^2\), Lin Zhang\(^2\) & Sergei K. Turistsyn\(^2\)

Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched \(\sim 3\, \mu m\) and gain-switched \(\sim 2\, \mu m\) pulses in a shared cavity was demonstrated with a Ho\(^{3+}\)-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of \(\sim 2\, \mu m\) pulses can be tuned between half and same as that of \(\sim 3\, \mu m\) pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.

Mid-infrared (mid-IR) lasers, generally defined as having an operation wavelength in the spectral region of 2~20\(\mu m\), have attracted tremendous scientific and technological interests owing to their widespread applications\(^1\). This wavelength range not only contains some strong vibration transitions of many important molecules, thus, exhibiting enormous potential in medical, spectroscopy, chemical and biomolecular sensing, but also covers the atmospheric transmission windows of 3~5\(\mu m\) and 8~13\(\mu m\) which are important for defense, atmospheric, security and industrial applications\(^1\). Currently, several diverse approaches including solid-state lasers\(^2\), Quantum cascade lasers (QCLs)\(^3\), difference frequency generation (DFG)\(^4\), sum frequency generation (SFG)\(^4\) and optical parametric oscillator (OPO)\(^5\) have been employed to generate the emission at different subranges of the mid-IR wavelength region. With the development of infrared glass fiber, mid-IR fiber lasers are attracting increasing attentions because they possess some inherent merits such as excellent beam quality, good heat dissipation, high efficiency and compact packaging compared to the previously mentioned sources\(^6\), though certainly, they cannot be regarded as a full replacement for the other lasers and rather provide complimentary capabilities. Recent research on mid-IR fiber lasers has mainly been focused at the short mid-IR regime (2~4\(\mu m\)) due to the limitation of current host materials and dopant technology\(^7\)-\(^16\). Tm\(^{3+}\), Ho\(^{3+}\), and Er\(^{3+}\) are main dopant trivalent rare earth ions in mid-IR fiber lasers, specifically Tm\(^{3+}\) produces gain around 2.0 and 2.3\(\mu m\)\(^7\)-\(^8\), Ho\(^{3+}\) produces gain at about 2.1, 2.8, 3.0, 3.2, and 4.0\(\mu m\)\(^9\)-\(^13\), and Er\(^{3+}\) produces gain at \(\sim 2.9\) and 3.5\(\mu m\)\(^14\)-\(^16\). Therefore, the emphasized \(\sim 2\, \mu m\) and \(\sim 3\, \mu m\) fiber lasers especially operating with

\(^1\)State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
\(^2\)Institute of Photonic and Technology (AIPT), Aston University, Birmingham, UK.
\(^3\)Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215123, China.

Correspondence and requests for materials should be addressed to J.L. (email: lijianfeng@uestc.edu.cn)
µs- or ns-wide pulses display enormous potential in some areas such as plastic and polymer processing, laser scalpels, non-invasive medical diagnosis, infrared countermeasures, and pumping OPOs and others. So far, laser operation in this waveband has been achieved by exploiting one of the following two techniques: the first is Q-switching, in particular, passively Q-switching, that is attractive owing to its simple structure and low loss, in which the cavity loss is modulated using a material saturable absorber (SA) e.g., single-wall carbon nanotubes (SWCNTs), graphene, a transition metal doped crystal (e.g., Fe:ZnSe, Cr:ZnSe, etc.) or a semiconductor saturable absorber mirror (SESAM); the second is gain-switching in which the pulsed pumping was employed to modulate the cavity gain.

In the past few years, a variety of passively Q-switched and gain-switched fiber lasers emitting at ~2 µm and ~3 µm have been reported. Since the first demonstration of SWCNTs-based pulsed fiber laser at 1.55 µm in 2000 and its controllable absorption band has been successfully exploited to Q-switching of ~1 µm and ~2 µm band lasers, but has failed at ~3 µm due to the difficulty in achieving bandgap control at the longer wavelengths. As another novel fashioning two-dimensional (2D) material, exhibits a prominent broadband saturable absorption property owing to its zero bandgap structure. Graphene has also been exploited in Q-switching ~2 µm and ~3 µm fiber lasers. However, the low ratio of modulation depth to total transmission as well as the intrinsic ultrastick recovery time is more suitable for mode-locking. The Cr:ZnSe and Fe:ZnSe crystal as SAs exhibit strong absorption at ~2 µm and ~3 µm, respectively, but they have the disadvantages of being bulk structures requiring complex confocal alignment and SESAM, as a mature SA, is constantly improving through innovations. It has a remarkably excellent performance as well as the ability of customize some of its parameters, i.e., modulation depth, non-saturable loss, recovery time, etc., mainly attributing to well-developed semiconductor technologies such as bandgap and defect engineering and growth. This technology is widely available in the commercial market despite the relatively complex fabrication process which is required. SESAM has been widely applied into ~2 µm Q-switching and recently into ~3 µm Q-switching where a specifically structured SESAM whose InAs absorber layer was sandwiched between an Au-coated mirror and a GaAs wafer. This new structure was designed to reduce the fabrication time and material consumption while improving the damage threshold and feedback band thus providing the feasibility of broadband Q-switching.

As another alternative for pulse generation, gain switching has already exhibited great potential at both ~2 µm and ~3 µm bands. Some recent pivotal demonstrations, i.e. in-band fast gain switching based on short pulses, hybrid-pumping exploiting both continuous wave (CW) and pulse components and overcoming unstable relaxation oscillation in conventional gain switching have also emphasized the importance of this technique.

Although mid-IR pulsed fiber lasers at ~2 µm and ~3 µm have experienced fast development, most of them only emitted single wavelength due to excitation of only one transition. Pulsed lasers capable of simultaneously generating ~2 µm and ~3 µm emissions would undoubtedly exhibit more advantages e.g., flexibility, convenience, high efficiency etc. in some practical applications where the wavelength is alternatively required or both are needed simultaneously. Laser surgery is a typical example as both wavelengths are located at the absorption peaks of water molecules. Specifically, ~2 µm pulses exhibit excellent performance in spinal surgery (e.g., laser discektomy, laser foraminoplasty), urololg (e.g., lithotritpy) and arthroscopy (e.g., capsular shrinkage, cartilage smoothing, minisecotomy, synovectomy), while ~3 µm pulses have superiority in cutaneous surgery, bone surgery (e.g., oral surgery, implant dentistry), brain tissue treatment and ophthalmology. Therefore, the dual wavelength pulsed lasers can be alternatively selected according to the practical requirement. Besides, in some surgeries of tissue ablation, the ~2 µm and ~3 µm lasers at either CW or pulsed state are also simultaneously required owing to the improved ablation efficiency and reduced heat diffusion zone. Moreover, material processing is another area that could benefit from dual wavelength sources selectable. Better performance in the processing of plastics has been demonstrated using a ~2 µm instead of visible/near-infrared or CO₂ pulsed laser as a result of its moderate absorption by plastics, while ~3 µm pulses are a good candidate for cleaning of painted surfaces due to strong absorption by OH bonds at 2.94 µm. Other potential applications include free-space telecommunications, laser imaging radar and range finding which can all be carried out using either ~2 µm or ~3 µm pulses owing to both wavelength locating within the atmospheric transparency windows of 2.05–2.5 µm and 3–5 µm, respectively. Dual wavelength synchronously operation could facilitate the expansion of information propagation capability by increasing the number of channels and could enhance measurement accuracy as a result of double detections. Therefore, the availability of integrated dual wavelength ~2 µm and ~3 µm pulsed fiber sources can provide greater flexibility, convenience and selectivity for these applications and is also an interesting research topic.

Fortunately, the lower cascade transitions (i.e., 2I₁ → 1I₁ and 2I₁ → 1I₂) of Ho³⁺ doped ZBLAN fiber pumped by ~1150 nm are well-sitting in ~2 µm and ~3 µm emission bands thus providing the possibility of dual wavelength pulsing. Recently, we have utilized an acousto-optic modulator (AOM) to actively Q-switch cascade transitions and subsequently to Q-switch one transition thus inducing adjacent transition gain switching. Stable dual wavelength pulsing i.e., ~2 µm and ~3 µm was obtained in both cases. However, the employment of external driving AOM undoubtedly removes the intrinsic compactness and simplicity of fiber lasers.
In this paper, using a specifically designed SESAM optimized for \(\sim 3 \mu m \), we report the first investigation of a dual wavelength, passively switched, cascade pulsed Ho\(^{3+}\)-doped fluoride fiber laser. The results have confirmed the feasibility of simultaneously generating \(\sim 2 \mu m \) and \(\sim 3 \mu m \) passively switched pulses from a shared oscillator. In addition, the characteristics of the dual wavelength pulses, i.e., repetition rate, pulse width and time delay, have been investigated and analyzed in detail.

Results
The passively switched, dual wavelength laser was designed and constructed as described in the Methods part. In this section, the performances of each output band are studied as a function of the pump levels. As the launched pump power was increased to 0.41 W, only CW \(\sim 3 \mu m \) laser initiated from broadband ASE operation was observed as a result of a low laser threshold for \(^3I_6 \rightarrow ^3I_7 \) transition, as shown in Fig. 1(a). At this pump level, no sign of pulsing can be observed indicating that the intra-cavity \(\sim 3 \mu m \) emission intensity was not high enough to activate the nonlinear absorption of the SESAM. Once the pump power was increased to 0.48 W, a stable \(\sim 3 \mu m \) Q-switched pulse train was observed in temporal domain as depicted in Fig. 2(a), albeit with a low SNR of \(\sim 33 \text{ dB} \). The relatively low repetition rate of 26 kHz and large pulse duration of 5.54 \(\mu \text{s} \) were mainly due to the low upper level \(^3I_6 \) population accumulation rate and the small intra-cavity net gain coefficient at this low pump level. Further increasing the pump level to 3.76 W, stable \(\sim 3 \mu m \) Q-switched pulses were maintained with a significantly improved SNR of \(\sim 40 \text{ dB} \). In this pump power range (0.48 W \(\sim 3.76 \text{ W} \)), the repetition rate increased from 26 kHz to 73.7 kHz and the pulse duration decreased from 5.5 \(\mu \text{s} \) to 1.4 \(\mu \text{s} \), as shown in Fig. 2(d). This is because of the faster population buildup and higher energy storage on \(^3I_6 \) level. As shown in Fig. 2(e), the output power increased near linearly from 6.1 mW to 345.2 mW at a slope efficiency of 9.76% while the pulse energy increased from 0.23 \(\mu \text{J} \) to 4.68 \(\mu \text{J} \).

Once the pump power was increased above 3.76 W, the passively switched the \(\sim 2 \mu m \) pulses emitted from the \(^3I_2 \rightarrow ^3I_3 \) transition were observed as shown in Fig. 3(b), while stable \(\sim 3 \mu m \) Q-switched pulses were still maintained. Their optical and RF spectra were measured giving a center wavelength and SNR of 2068.55 nm and \(\sim 39 \text{ dB} \) for the \(\sim 2 \mu m \) pulses, and 2952.0 nm and \(\sim 43 \text{ dB} \) for the \(\sim 3 \mu m \) pulses, respectively, as shown in Fig. 3(a,b). The \(\sim 2 \mu m \) pulses were confirmed to be the gain-switched pulses rather than Q-switched pulses as will be discussed below. It is also observed from Fig. 2(b) that the \(\sim 2 \mu m \) pulse train has halved the repetition rate of the \(\sim 3 \mu m \) pulse train and displayed a \(\mu \text{s} \) level time delay (specifically 2.96 \(\mu \text{s} \) at this pump level) relative to the \(\sim 3 \mu m \) pulse train. The discrepancy in the repetition rate between the \(\sim 3 \mu m \) and \(\sim 2 \mu m \) pulses was mainly due to not achieving the sufficient populations for \(^3I_2 \) level with only one \(\sim 3 \mu m \) Q-switched pulse at low pump power levels. Moreover, the time delay between each \(\sim 2 \mu m \) pulses and its adjacent \(\sim 3 \mu m \) pulse should be noted, since this was not equal to the typical buildup time of a gain switched pulse. In this case (see Fig. 2(b)), each temporal domain period includes two \(\sim 3 \mu m \) pulses and one \(\sim 2 \mu m \) pulse. As illustrated in Fig. 1(b), the first \(\sim 3 \mu m \) pulse was not strong enough to induce populations on \(^3I_3 \) level to arrive at the laser threshold level, however, the population on the \(^3I_3 \) level was accumulated continuously. During the time interval between the two \(\sim 3 \mu m \) pulses, the population on \(^3I_3 \) level was partly consumed by some parasitic processes i.e., energy transfer upconversion (ETU\(_3\)) and excited-state absorption (ESA\(_3\)), as shown in Fig. 1(a). Fortunately, the ETU\(_3\) process has only a small contribution owing to the low transition rates in a low Ho\(^{3+}\) dopant concentration system\(^{33}\). Moreover, the ESA\(_3\) process will only decrease the population on \(^3I_3 \) level slightly as a result of the low pumping rate in this cladding pump system\(^{33}\). With the appearance of the second \(\sim 3 \mu m \) pulse, the population on the \(^3I_3 \) level will continue to be increased and consequently exceeded the required level for the \(\sim 2 \mu m \) laser. As shown in Fig. 2(d), the repetition rate and pulse duration of \(\sim 3 \mu m \) pulses were increased to 102.1 kHz and reduced to 1.1 \(\mu \text{s} \) respectively as the pump power was increased.

Figure 1. (a) Simplified energy level of cascade Ho\(^{3+}\)-doped fluoride fiber, (b) schematic illustration of dual wavelength pulses of laser upper levels populations and temporal domain evolution.
to 5.84 W. This behavior is typical of Q-switched pulses. The corresponding gain-switched ~2 μm component displayed a synchronized evolution with its pump signal. The higher repetition rate and narrower pulse duration of the ~3 μm pulses lead to faster pumping of the 5I7 level, thus accelerating the formation of ~2 μm pulses. Hence, its repetition rate increased from 36.8 kHz to 51.1 kHz and the pulse duration decreased from 1.12 μs to 0.73 μs as the pump power was increased from 3.76 W to 5.84 W. Furthermore, the pulse duration of the ~2 μm pulses was narrower than their pump signals, i.e., Q-switched ~3 μm pulses, and this is typical of a gain switched feature. As shown in Fig. 2(e), the output power of the ~3 μm pulses increased to 629.2 mW with an improved slope efficiency of 14.95% when the pump power was increased to 5.84 W while their pulse energy increased to 6.16 μJ. This is because of the cascaded ~2 μm lasing which rapidly depletes the population on the lower laser level of the 5I6 → 5I7 transition. Note that the increased energy of ~3 μm pulses also results in faster population accumulation on the 5I7 level thus narrowing the ~2 μm pulse. In a similar way to ~3 μm pulse, the pulse power for the ~2 μm components was observed to increase from 11.7 mW to 175.5 mW at a slope efficiency of 8.01% and the pulse energy increased from 0.32 μJ to 3.44 μJ. Furthermore, the time delay between the ~2 μm pulse and its adjacent ~3 μm pulse decreased to 1.22 μs when the pump power was increased to 5.84 W, as shown in Fig. 2(f), indicating that the high pumping rate accelerated the formation of ~2 μm pulses.
Once this pump level was exceeded, stable ~3μm Q-switched pulses but with following unstable ~2μm pulses were observed. The ~2μm pulse train exhibited severe timing jitter and its repetition rate jumped between a half and matching that of the ~3μm pulse train suggesting the ~2μm pulses operated at a threshold state in which the inversion population for ~2μm transition was induced by two ~3μm pulses or one ~3μm pulse as a result of the increasing ~3μm pulse energy. Fluctuation of the energy and duration of ~3μm pulse caused system to switch between these two states, and consequently led to the repetition rate jumping.

When the pump power was increased to 6.47 W, stable ~2μm pulses were observed again with their repetition rate matched to the ~3μm pulses, as show in Fig. 2(c). Their optical and RF spectra were measured as shown in Fig. 3(c,d) exhibiting slightly red-shifted center wavelengths of 2073.05 nm and 2954.7 nm and increased SNRs of ~45 dB and ~50 dB, respectively. Compared to the pulses generated at a pump power of 5.84 W, the energy of the ~2μm pulses fell from 3.44 μJ to 2.17 μJ as a result of its doubled repetition rate. Its duration also jumped from 0.73 μs to 0.95 μs resulting from the decreased accumulated populations on ⁵I₇ level. The increased time delay from 1.22 μs to 2.47 μs as shown in Fig. 3(f) suggests that a longer build-up time (calculated from its adjacent ~3μm pulse) of ~2μm pulse was needed for population at threshold level to be induced by a single ~3μm pulse instead of two. Stable ~2μm and ~3μm pulses were maintained when the pump power was increased to the maximum of 6.84 W. At this point, the maximum output power of 808.9 mW and pulse energy of 7.47 μJ were achieved for the ~3μm pulses with a repetition rate of 108.34 kHz and a pulse duration of 0.99 μs, while maximum output power of 255.3 mW and pulse energy of 2.17 μJ were obtained for ~2μm pulses with a repetition rate of 108.29 kHz and a pulse duration of 0.85 μs. Meanwhile, the time delay between adjacent ~2μm and ~3μm pulses was further shortened to 1.82 μs.

In the demonstrated dual wavelength laser system, the ~2μm and ~3μm pulses shared the same cavity formed by the broadband SESAM and a perpendicularly cleaved fiber end. In order to determine if the cascaded ~2μm pulses were Q-switching or gain-switching, two extra experiments were subsequently performed. Firstly, we designed an experimental setup for generating Q-switched ~3μm induced ~2μm gain switched pulse. A dichroic mirror labeled C with >90% transmission at ~3μm and ~87% reflection at ~2μm was placed between the SESAM and the dichroic mirror A. Thus, the laser cavities were partly altered; the ~3μm laser cavity was still defined by the SESAM and the perpendicularly cleaved fiber end while the dichroic mirror C only acts as a linear loss mechanism; however the ~2μm laser cavity was terminated by the dichroic mirror C instead of the SESAM. These new composite
cavities prevented ~2μm emission from being modulated by the SESAM thus excluding the possibility of SESAM Q-switched ~2μm emission. In this case, the altered laser produced similar pulse evolution of ~2μm pulses with almost identical repetition rate to that displayed in Fig. 3(b,c) though with slightly decreased laser thresholds. Therefore, the previously produced ~2μm pulses appeared to be generated by gain switching; although there remains the small possibility of SESAM Q-switching. Accordingly, another experiment was performed where the dichroic mirror C was replaced by a dichroic mirror labeled D with ~90% transmission at ~2μm and >95% reflection at ~3μm. Thus the cavities of the ~2μm and ~3μm emissions were exchanged, i.e., the ~2μm and ~3μm emissions were terminated by the SESAM and the dichroic mirror D, respectively. In this case, the SESAM will provide more feedback for the ~2μm emission compared to the residual reflection from dichroic mirror D and 8° cleaved fiber end. However, over the whole available pump range, the dual wavelength components were essentially operated in a CW state. This was mainly due to the wavelength related saturable influence of the SESAM and the power level of ~2μm emission. The measured saturable influence of 1771μJ/cm² at ~1μm and 70μJ/cm² at ~3μm, indicate that the saturable influence decreases dramatically with increasing wavelength. Thus, the saturable influence at ~2μm should be much larger than that at ~3μm. On the other hand, the power level of ~2μm emission is lower than that of ~3μm emission at a same pump level resulting from cascading induced higher threshold. Therefore, the saturable influence of the SESAM at ~2μm was not reached and consequently the ~2μm Q-switched pulses were not observed. However, the ~2μm Q-switching should be also possible if the power of ~2μm emission can be further improved by increasing the pump power and decreasing the threshold. Therefore this also excludes the possibility of SESAM Q-switched ~2μm emission in the original shared cavity. According to the above experiments, the original cascade ~2μm passively switched pulses were verified to be ~2μm gain switched components which were induced by the ~3μm passively Q-switched pulses.

Discussion

In this section, further performance of the demonstrated passively switched cascade dual wavelength pulsed fiber laser in terms of pulse repetition rates, time delay, durations and energies will be discussed.

Firstly, we will discuss the repetition rates of the dual wavelength components. Here, we found that the ~2μm gain switched pulses operated at either the half or at the same repetition rate as the ~3μm Q-switched pulses, depending on the pump power level. No ~2μm pulses at one third or even quarter repetition rate of ~3μm pulses was observed at lower pump level due to the limitation of ~2μm laser threshold. Therefore, more temporal operation modes could be expected if the ~2μm laser threshold was further reduced by for example: lowering the Ho³⁺ ions dopant concentration while maintaining sufficient ~3μm gain, or increasing the ~2μm emission feedback. However, the laser will consequently have the same repetition rate in both wavebands when the pump power increase to or above the threshold level. Moreover, it is predicted that the oscillation relaxation or multiple pulsing in each ~2μm pulse period could occur at very high pump levels where the populations on 5I level provided by one ~3μm pulse can not be depleted by one ~2μm pulse.

Secondly, the time delay between ~2μm and ~3μm pulses could be a critical parameter concerned in some practical applications and appears strongly related to the population accumulation rate on the 5I level. Accordingly, the transition rates of all processes relating to the 5I7 level including 5I6 → 5I7 transition, rate in low-concentration cladding pumped cascade system, 5I6 → 5I7 transition becomes the key provider. In this section, further performance of the demonstrated passively switched cascade dual wavelength pulsed fiber laser operating at wavelengths ~2μm and ~3μm has been demonstrated. As increasing pump power, the oscillator experienced different regimes: CW, stable ~3μm Q-switching, stable ~3μm Q-switching pulses, depending on the pump power level. No ~2μm pulses at one third or even quarter repetition rate of ~3μm pulses was observed. However, the ~2μm Q-switching could be ~2μm Q-switching, stable ~3μm Q-switching pulses, which has been verified in previous experimental and theoretical demonstrations. However, comprehensive optimization for all the cavity parameters including core size, fiber length, dopant concentration, etc., are required for further narrowing of pulse duration and improving of pulse energy.

Conclusions

In this paper, an SESAM passively Q-switched induced gain-switched dual wavelength cascade pulsed fiber laser operating at wavelengths ~2μm and ~3μm has been demonstrated. As increasing pump power, the oscillator experienced different regimes: CW, stable ~3μm Q-switching, stable ~3μm Q-switching pulses, which has been verified in previous experimental and theoretical demonstrations. However, comprehensive optimization for all the cavity parameters including core size, fiber length, dopant concentration, etc., are required for further narrowing of pulse duration and improving of pulse energy.
and stable ~2 μm gain switching with a half repetition rate as ~3 μm, stable ~3 μm Q-switching and unstable ~2 μm gain switching with jumping repetition rate, and finally stable ~3 μm Q-switching and stable ~2 μm gain switching with the same repetition rate as ~3 μm. A μs-level time delay between ~2 μm and its adjacent ~3 μm pulse was observed as a result of the time consumption for accumulating populations on the {2I} level to arrive at the laser threshold level. Furthermore, some relevant variants, e.g., ~2 μm passively Q-switching induced ~3 μm gain switching based on a lower saturable influence SA at ~2 μm or passively Q-switching ~2 μm and ~3 μm pulses simultaneously based on a broadband SA, such as graphene, are expected to offer more flexibility for some practical applications. In addition, this result puts forward an universal approach for obtaining dual wavelength pulses in rare earth ions doped cascade transitions systems e.g., current well developed 976 nm pumped Er⁺³ and 1150 nm pumped Ho⁺³-doped ZBLAN fibers¹¹,¹⁴, and future available 1710 nm pumped Dy⁺³⁻, 2040 nm pumped Pr⁺³⁻, 2950 nm pumped Tb⁺³⁻-doped chalcogenide fibers which correspond to far mid-IR emissions ranging from 3200 nm to 7500 nm⁵⁷.

Methods

Experimental setup. The schematic diagram of the passively switched cascade dual wavelength pulsed Ho⁺³⁻-doped fluoride fiber laser is shown in Fig. 4. A two-end pumping method was employed to increase the pump power using two pairs of commercially available 1150 nm laser diodes (LDs) (Eagleyard Photonics, Berlin). Each pair of diode lasers was coupled into the gain fiber using polarization multiplexing via a polarized beam splitter (PBS) and focused using an anti-coated ZnSe objective lens (83%T@1150 nm, 70%T@~2 μm and ~3 μm) (Innovation Photonics, LFO-5-6-0.975/3 μm, 0.25 NA) with a 6.0 mm focal length. This lens also functions as the collimator for light coupled from the fiber core. Two identical dichroic mirrors (96%T@1150 nm, 95%R@ ~2 μm and ~3 μm) were respectively placed between the PBS and the ZnSe objective lens in each beam path at an angle of 45° with respect to the pump beam to couple the generated ~2 μm and ~3 μm emissions. Specifically, the dichroic mirror A was used to direct the dual wavelength laser onto the SESAM InAs-based broadband SESAM (BATOP GmbH) via another ZnSe objective lens (<5%T@1150 nm, 80%T@~2 μm and ~3 μm). In this case, a reversed design is employed in the SESAM. The InAs saturable absorber layer is sandwiched between a bottom Au-coated mirror and an upper 625 μm GaAs wafer with an additional buffer layer to remove the negative influence of large lattice misfit. The Au-coated mirror has the advantage of broad operation band and excellent heat dissipation compared to conventional distributed Bragg reflector (DBR). At the upper surface of the GaAs wafer, an AR film for 3 μm was coated. In our previous work²⁳, the non-linear reflectivity of the SESAM was measured at 1 μm wavelength due to lack of suitable mid-infrared pulsed source. Its modulation depth of 40.8%, non-saturable loss of 27.2% and saturation fluence of 1771 μJ/cm² were obtained by using the typical saturable absorption model to fit. In general, the ratio of modulation depth to non-saturable loss of the SESAM (i.e., 1.5 for our SESAM) mainly depends on the growth temperature and is independent of wavelength. Thus, this ratio can be used to estimate the
modulation depths and non-saturable losses at other wavelengths. Specifically, the SESAM reflections were measured to be 47.3% and 52.2% using two lower power level CW ~2μm and ~3μm fiber lasers, respectively. According to the ratio of 1.5, the modulation depth and non-saturable loss were estimated to be 31.6% and 21.1% at ~2μm and 23.3% and 15.5% at ~3μm, respectively. Besides, some important parameters e.g., the relaxation time of ~10 ps, the damage threshold of 350 MW/cm² and the saturable fluence of 70μJ/cm² at ~3μm were also provided by the producer of the SESAM. The second dichroic mirror B was used to output the dual wavelength emissions. A ~3μm bandpass filter (78%T@~3μm) and a ~2μm bandpass filter (81%T@~2μm) were respectively placed along the output laser to remove the residual pump and separately extract the ~3μm and ~2μm emissions. The gain fiber in this case was a double clad fluoride fiber with a dopant concentration of 1.5 mol. % having a D-shaped pump core with a diameter of 125μm across the circular cross section and a numerical aperture (NA) of 0.5, and a 10μm core diameter with an NA of 0.2. The selected 7.0 m fiber length could provide ~95% pump absorption efficiency. In the experiment, the fiber end towards dichroic mirror B was perpendicularly cleaved and hence acted as both an output coupler and a cavity feedback with the aid of 4% Fresnel reflection. The other end of fiber was cleaved at an angle of ~8° to avoid parasitic lasing and constructing the single output scheme to ensure that most of laser radiation interacted with the SESAM. Thus, both the ~3μm and ~2μm emissions shared a common cavity can be terminated by the perpendicularly cleaved fiber on one end and the SESAM at the other.

Measurement method. The output pulse trains were measured using an InAs photodetector with a response time of ~2 ns connected to a 500 MHz digital oscilloscope. A monochromator with a resolution of 0.1 nm (Princeton instrument Acton SP2300) was employed to measure the optical spectrum of the laser output radiation. An RF spectrum analyzer (Advantest R3267) with an adjustable resolution from 10 Hz to 100 MHz was connected to the same photodetector and used to measure the repetition rate and signal-to-noise ratio (SNR) of the output pulses.

References

1. Pile, D., Horiiuchi, N., Won, RPC & Graydon, O. Extending opportunities. Nat. Photon. 6, 407 (2012).
2. Sorokina, I. T. [Crystalline Mid-Infrared Lasers] Solid-State Mid-Infrared Laser Sources [Sorokina, I. T. & Vodopyanov, K. L. (ed.)] [262–358] (Springer, Berlin, 2003).
3. Yao, Y., Hoffman, A. J. & Gmachl, C. F. Mid-infrared quantum cascade lasers. Nat. Photon. 6, 432–439 (2012).
4. Fischer, C. & Sigrist, M. W. [Mid-IR Difference Frequency Generation] Solid-State Mid-Infrared Laser Sources [Sorokina, I. T. & Vodopyanov, K. L. (ed.)] [99–143] (Springer, Berlin, 2003).
5. Ebrahimzadeh, M. [Mid-Infrared Ultrafast and Continuous-Wave Optical Parametric Oscillators] Solid-State Mid-Infrared Laser Sources [Sorokina, I. T. & Vodopyanov, K. L. (ed.)] [184–244] (Springer, Berlin, 2003).
6. Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6, 423–431 (2012).
7. Jackson, S. D. & King, T. A. High-power diode-cladding-pumped Tm-doped silica fiber laser. Opt. Lett. 23, 1462–1464 (1998).
8. Allen, R. & Esterowitz, L. CW diode pumped 2.3 μm fiber laser. Appl. Phys. Lett. 55, 721–722 (1989).
9. Liu, J., Li, J., Shi, Sheneng, L. & Jackson, S. D. Highly efficient holmium fibre laser diode pumped at 1.94 μm. Electron. Lett. 47, 1989–1990 (2011).
10. Jackson, S. D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86μm. Opt. Lett. 29, 334–336 (2004).
11. Li, J. F., Hudson, D. D. & Jackson, S. D. High power diode pumped fiber laser operating at 3μm. Opt. Lett. 36, 3642–3644 (2011).
12. Carbonnier, C., Tuffen, B. & Urenra, U. B. Room temperature CW fiber laser at 3.2 μm. Electron. Lett. 34, 893–894 (1998).
13. Schneider, J., Carbonnier, C. & Urenra, U. B. Characterization of a Ho+3-doped fluoride fiber laser with a 3.9 μm emission wavelength. Appl. Opt. 36, 8595–8600 (1997).
14. Jackson, S. D., Pollnau, M. & Li, J. F. Diode pumped erbium cascade fiber laser. IEEE J. Quantum Electron. 47, 471–477 (2011).
15. Tuffen, B. Room temperature CW fiber laser at 3.5 μm in Er3+ doped ZBLAN glass. Electron. Lett. 28, 1361–1363 (1992).
16. Henderson-Saprit, O., Munch, J. & Ottaway, D. J. Mid-infrared fiber lasers at and beyond 3.5 μm using double-wavelength pumping. Opt. Lett. 39, 493–496 (2014).
17. Zhou, W. et al. Passively Q-switched Tm-doped fiber lasers with carbon nanotubes. Chin. Opt. Lett. 10, 21411 (2012).
18. Liu, J., Xu, J. & Wang, P. Graphene-based passively Q-switched 2μm thulium-doped fiber laser. Opt. Commun. 285, 5319–5322 (2012).
19. Wei, C. et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser. Opt. Lett. 38, 3233–3236 (2013).
20. Qamar, F. Z. & King, T. A. Passive Q-switching of the Tm-silica fibre laser near 2 μm by a Cr2+: ZnSe saturable absorber crystal. Opt. Commun. 248, 501–508 (2005).
21. Wei, C., Zhu, X. S., Norwood, R. A. & Peghambarian, N. Passively Q-switched 2.8-μm nanosecond fiber laser. IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
22. Kivisist, S. et al. Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression. Opt. Express 16, 22058–22063 (2008).
23. Li, J. F. et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser. Laser Phys. Lett. 11, 065102 (2014).
24. Jiang, M. & Tavehati, P. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser. Opt. Lett. 32, 1797–1799 (2007).
25. Gorjan, M., Petkoveš, Š., Mariniček, M. & Ćopić, M. High-power pulsed diode-pumped Er: ZBLAN fiber laser. Opt. Lett. 36, 1923–1925 (2011).
26. Set, Y. Y. et al. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. Optical Fiber Communication Conference, Postdeadline V, Atlanta, Georgia United States, DOI: (10:1109/OFC.2003.1248625) (March 23, 2003).
27. Al-Masoodi, A. H. H. et al. Q-switched Yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber. Microw. Opt. Technol. Lett. 56, 1770–1773 (2014).
28. Zheng, Z. W. et al. Microwave and optical saturable absorption in graphene. Opt. Express 20, 23201–23214 (2012).
29. Tang, Y. L., Yu, X. C., Li, X. H., Yan, Z. Y. & Wang, Q. J. High-power thulium fiber laser Q switched with single-layer graphene. Opt. Lett. 39, 614–617 (2014).
30. Zhu, G. W., Zhu, X. S., Balakrishnan, K., Norwood, R. A. & Peyghambarian, N. Fe3+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 µm. Opt. Mater. Express 3, 1365–1377 (2013).
31. Martínez, A. & Sun, Z. P. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photon. 7, 842–845 (2013).
32. Sahu, J. et al. Passively Q-switched thulium-doped silica fiber laser. Conference on Lasers and Electro-Optics, Novel Fiber Laser Architectures, San Francisco, California United States, OSA (May 16, 2004).
33. Kiwistö, S. et al. 2 Watt 2 µm Ti:Ho fiber laser system passively Q-switched by antimonide semiconductor saturable absorber. Solid State Lasers and Amplifiers III, Infrared Lasers, Strasbourg, France, SPIE (DOI:10.1117/12.780487) (April 16, 2008).
34. Yang, W., Hou, J., Zhang, B., Song, R. & Liu, Z. J. Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 µm. Appl. Opt. 51, 5664–5667 (2012).
35. Tang, Y. L. & Xu, J. Q. Hybrid-pumped gain-switched narrow-band thulium fiber laser. Appl. Phys. Express 5, 072702 (2012).
36. Dickinson, B. C., Golding, P. S., Pollnau, M., King, T. A. & Jackson, S. D. Investigation of a 2.19 µm pulsed-pumped 2.7 µm Er3+-doped ZBLAN fiber laser. Opt. Commun. 191, 315–321 (2001).
37. Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 12, 555–563 (1973).
38. Scholle, K., Lamrini, S., Koopmann, P. & Fuhrberg, P. [2 µm Laser Sources and Their Possible Applications] Frontiers in Guided Wave Optics and Optoelectronics [Pal, B. (ed.)] [471–500] (InTech, Croatia, 2010).
39. Grasso, M. Experience with the holmium laser as an endoscopic lithotriptor. Urology 48, 199–206 (1996).
40. Chan, K. F. et al. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg. Med. 25, 22–37 (1999).
41. Kaufmann, R. & Hibst, R. Pulsed erbium:YAG laser ablation in cutaneous surgery. Lasers Surg. Med. 19, 324–330 (1996).
42. Stübinger, S. Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry. Clinical, Cosmetic and Investigational Dentistry 2, 47–47 (2010).
43. Gülsoy, M., Celikel, T., Kurt, A., Canbeyli, R. & Cilesiz, I. Er:YAG Laser Ablation of Cerebellar and Cerebral Tissue. Lasers Med. Sci. 16, 40–43 (2004).
44. Brazitikos, P. D., D’Amico, D. J., Bernal, M. T. & Walsh, A. W. Erbium:YAG Laser Surgery of the Vitreous and Retina. Ophthalmology 102, 278–290 (1995).
45. Pratisto, H. et al. High-power continuous-wave 3- and 2-µm cascade Ho3+: ZBLAN fiber laser and its medical applications. IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
46. Pratisto, H., Ith, M., Frenz, M. & Weber, H. P. Infrared multiwavelength laser system for establishing a surgical delivery path through water. Appl. Phys. Lett. 67, 1963–1965 (1995).
47. Pratisto, H. et al. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. Appl. Opt. 35, 3328–3337 (1996).
48. Watanabe, T., Iwai, K., Katagiri, T. & Matsuura, Y. Synchronous radiation with Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues. Biomed. Opt. Express 1, 337–346 (2010).
49. Geng, J. & Jiang, S. The 2 µm laser heats up. Opt. and Photon. News 25, 36–41 (2014).
50. Ostrowski, R. et al. Er:YAG laser system for cleaning of painted surfaces. Conference on Lasers and Electro-Optics Europe, Munich, Germany, IEEE (DOI:10.1109/CLEOE.2005.1568452) (June 17, 2005).
51. Li, J. F., Hu, T. & Jackson, S. D. Dual wavelength Q-switched cascade laser. Opt. Lett. 37, 2208–2210 (2012).
52. Li, J. F., Hu, T. & Jackson, S. D. Q-switched induced gain switching of a two-transition cascade laser. Opt. Express 20, 13123–13128 (2012).
53. Li, J. J., Gomes, L. K. & Jackson, S. D. Numerical modeling of holmium-doped fluoride fiber lasers. IEEE J. Quantum Electron. 48, 596–607 (2012).
54. Li, J. F., Luo, H. Y., Liu, Y., Zhang, L. & Jackson, S. D. Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers. IEEE J. Sel. Top. Quantum Electron. 20, 1–14 (2014).
55. Braun, B., Kärtner, F. X., Zhang, G., Moser, M. & Keller, U. 56-ps passively Q-switched diode-pumped microchip laser. Opt. Lett. 22, 381–383 (1997).
56. Larsen, C., Hansen, K. P., Mattsson, K. E. & Bang, O. The all-fiber cladding-pumped Yb-doped gain-switched laser. Opt. Express 22, 1490–1499 (2014).
57. Sójka, Ł. et al. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+. Opt. Mater. Express 2, 1652–1660 (2012).

Acknowledgements
This work was supported by National Nature Science Foundation of China (Grant No. 61435003, 61377042 and 61327004), European Commission’s Marie Curie International Incoming Fellowship (Grant No. 911333), Open Fund of State Key Laboratory of Modern Optical Instruments of Zhejiang University, Open Fund of Medical Optical Key Laboratory of Jiangsu Province (Grant No. JKLMO201403), Fundamental Research Funds for the Central Universities (Grant No. ZYGX2013J058) Open Fund of High Energy Laser Science and Technology Key Laboratory of China Academy of Engineering Physics (Grant No. 2013005580).

Author Contributions
J.L. designed and H.L. performed the laser experiment, and both wrote most of the manuscript text. L.W. and Y.L. prepared all the figures and also contributed to the experimental description. Z.Y. and K.Z. carried out the data processing and analysis. L.Z. provided the technical support and S.T. supervised the project. All authors discussed the results and commented on the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, J. et al. Mid-infrared passively switched puls ed dual wavelength Ho3+-doped fluoride fiber laser at 3 µm and 2 µm. Sci. Rep. 5, 10770; doi: 10.1038/srep10770 (2015).
