Extreme sex chromosome differentiation, likely driven by inversion, contrasts with mitochondrial paraphyly between species of crowned sparrows

Quinn McCallum¹,³,⁴*, Kenneth Askelson¹, Finola Fogarty¹, Libby Natola¹, Ellen Nikelski¹,⁴,⁵, Andrew Huang²,³, and Darren Irwin¹

¹ Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
² Environment and Climate Change Canada, Pacific Wildlife Research Centre, Delta, BC, Canada
³ WildResearch Society, Richmond, BC, Canada
⁴ Present address: Department of Biological Sciences, University of Louisiana, Baton Rouge, LA, USA
⁵ Present address: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada

*Corresponding author email: quinn.a.mccallum@gmail.com

Abstract

Sympatric species pairs provide researchers with the opportunity to study patterns of genomic differentiation during the late stages of speciation and to identify the genomic regions underlying reproductive isolation. The Golden-crowned Sparrow (Zonotrichia atricapilla) and the White-crowned Sparrow (Zonotrichia leucophrys) are broadly sympatric songbirds found in western North America. These sister species are phenotypically differentiated and largely reproductively isolated despite possessing similar mitochondrial genomes, likely due to recent mitochondrial introgression. We used a genotyping-by-sequencing (GBS) approach to determine the structure of nuclear genomic differentiation between these species and also between two hybridizing subspecies of Z. leucophrys, across more than 45,000 single nucleotide polymorphisms (SNPs). The two Z. leucophrys subspecies showed moderate levels of relative differentiation, as well as patterns consistent with a history of recurrent selection in both ancestral and daughter populations. Z. leucophrys and Z. atricapilla show high levels of relative differentiation and strong heterogeneity in the level of differentiation among different chromosomal regions, with a large portion of the Z chromosome showing highly elevated differentiation. Patterns of relative and absolute differentiation and linkage disequilibrium suggest a large inversion on the Z chromosome, with inversion haplotypes that segregate between Z. atricapilla and Z. leucophrys. While mitochondrial DNA differentiation is often emphasized in studies of speciation, differentiation between these Zonotrichia sparrows appears to have occurred first in the Z chromosome and secondarily in autosomes, followed by mitochondrial introgression. This putative inversion has implications for reproductive isolation between these species and adds to a growing body of evidence for the importance of inversions and the Z chromosome in speciation.

Keywords: speciation, inversion, sex chromosomes, genomic differentiation, Aves

Introduction

Understanding how the genome evolves during speciation is of great interest to evolutionary biologists. Often, the nuclear genomes of diverging populations show highly heterogeneous patterns of differentiation (e.g., Irwin et al., 2018; Toews, Taylor, et al., 2016). Specific regions of the genome that show elevated differentiation can reveal genetic or chromosomal drivers of speciation. These differentiation peaks, also referred to as “islands of differentiation”, are typically the result of divergent selection and genetic hitchhiking (Cruickshank & Hahn, 2014; Irwin et al., 2016) or the presence of a locus that resists introgression (Cruickshank & Hahn, 2014). Thus, by comparing relative differentiation (FST), absolute differentiation (also known as DXY), and nucleotide diversity (Within), we can identify historical selection and introgression in particular genomic regions. At the same time, genome-wide comparisons of these statistics allow inference of the evolutionary processes that occurred during speciation.

Models typically invoked to explain peaks in differentiation include divergence with gene flow, divergence in allopatry, recurrent selection in ancestral and daughter populations, or introgression and selective sweeps followed by differentiation (Cruickshank & Hahn, 2014; Irwin et al., 2016, 2018). Empirical studies often find support for multiple patterns in different areas of the genome, and all these processes can act together to shape patterns of
genomic differentiation. Wild birds have served as important natural systems to study genomic differentiation, and have helped shape our understanding of speciation (reviewed in Toews, Campagna, et al., 2016). For example, many North American Passerine superspecies share a common biogeographic history of repeated isolation and secondary contact due to glacial cycles throughout the Pleistocene (Weir & Schluter, 2004). Some of these superspecies show a negative correlation between F_{ST} and $\pi_{Between}$, suggesting a history of repeated bouts of differentiation followed by hybridization and introgression, during periods of isolation and secondary contact caused by glacial cycles over the course of speciation (Irwin et al., 2018).

In birds, sex chromosomes (Z and W) often play an outsized role in speciation, as numerous studies report increased F_{ST} and reduced π_{Within} across the Z chromosome relative to autosomes (reviewed by Irwin, 2018; Mank et al., 2009; Presgraves, 2018). The effective population size of the avian Z chromosome is three quarters that of the autosomes, thus reduced nucleotide diversity across the Z chromosome is expected. However, many observed values of π_{Z}/π_{A} fall far below neutral expectations, implicating selection (Irwin, 2018). Differentiation can also be promoted by structural variants in the genome that reduce recombination, such as chromosomal inversions (Ortiz-Barrientos et al., 2016). Crossover events between inversion haplotypes cause large deletions and duplications, often resulting in inviable gametes by heterozygotes. This effectively prevents recombination between inversion haplotypes, preventing gene flow in these regions and allowing for the accumulation of differentiation (Noor et al., 2001; Ortiz-Barrientos et al., 2016; Riesebreg, 2001). Chromosomal inversions are thus often implicated in local adaptation (e.g., Lowry & Willis, 2010; Todesco et al., 2020a) and divergence between species (e.g. Hooper et al., 2019; Noor et al., 2001). Finally, narrow peaks of increased F_{ST} can be used to identify specific genes that have diverged between populations, providing valuable insights into genes and phenotypes that underlie reproductive isolation (reviewed in Toews, Campagna, et al., 2016).

In contrast to the nuclear genome, differentiation across the length of the mitochondrial genome is usually less variable. The mitochondrial genome lacks recombination and is thus inherited as a single locus (Ballard & Whitlock, 2004). Historically, the mitochondrial genome was considered a neutral marker and was used extensively in early molecular phylogenetics (e.g. Zink et al., 1991). However, recent scholarship suggests that the mitochondrial genome and its products are subject to selection (e.g., Hill 2019). Furthermore, hybridization can result in introgression of the mitochondrial genome across species boundaries (Wang et al. 2021) and an introgressed mitochondrial haplotype may then be subject to a selective sweep (e.g., Irwin et al. 2009; Taylor et al., 2021). Such a phenomenon results in discordance between the phylogenetic reconstructions based on mitochondrial and nuclear loci—a pattern observed in numerous avian clades (reviewed in Toews & Brelsford 2012). Here, we investigated the genomic landscape of differentiation between one such pair of birds which show deep divergence in the nuclear genome, but paraphyly of the mitochondrial genome (Taylor et al. 2021).

The Golden-crowned Sparrows (Zonotrichia atricapilla) and White-crowned Sparrows (Zonotrichia leucophrys) are an excellent model for studying genomic differentiation at the end stages of speciation, despite suggestions of recent gene flow between groups. These sister species show marked phenotypic differences (Zink 1982) and are easily distinguished by the color and pattern of their crowns (Fig. 1A). Interestingly, Z. leucophrys shows geographic variation between five recognized subspecies which differ slightly in bill colour, plumage, and migratory behaviour (Chilton et al., 2020). Previous phylogenetic work has found that the widely distributed Z. l. leucophrys, Z. l. orianthra, and Z. l. gambelii subspecies form a separate clade from Z. l. piagetensis and Z. l. nuttalli of the Pacific Coast (Taylor et al., 2021). In contrast, Z. atricapilla is restricted to the Pacific Coast of North America by the Rocky Mountains and shows no apparent geographic variation in phenotype (Norment et al., 2020). Notably, Z. atricapilla is sympatric over much of its breeding range with the gambelii subspecies of Z. leucophrys (Weckstein et al. 2001; Fig. 1A). Despite their extensive sympathy and similar ecologies, very few putative hybrids have been reported between these species, suggesting that reproductive isolation is nearly complete (Miller, 1940; Morton & Mewaldt, 1960).

While the rate of hybridization between Z. atricapilla and Z. leucophrys is apparently low, there is strong evidence for extensive mitochondrial introgression between the two taxa (Taylor et al., 2021; Weckstein et al., 2001). Early molecular phylogenies of Zonotrichia found remarkably little sequence differentiation between the mitochondrial genomes (mtDNA) of these species (Zink et al., 1991; Zink & Blackwell, 1996) but marked differences in allozyme sequences and morphology (Zink & Blackwell, 1996). This low mtDNA differentiation was further investigated by Weckstein et al. (2001) and later by Taylor et al. (2021), who found that the two species shared mitochondrial
haplotypes and were not reciprocally monophyletic based on mtDNA. However, the species showed deep divergence in a phylogeny built from nuclear loci (Taylor et al., 2021). This discordance between the nuclear and mitochondrial phylogenies is strong evidence for mitochondrial introgression between the species, possibly followed by a selective sweep for the introgressed Z. leucophrys mitochondrial genome in Z. atricapilla (Taylor et al., 2021). However, previous work on this system has not explored whether the high degree of nuclear differentiation between these species is genome-wide or driven by particular regions. Taken together, the low rate of hybridization across a region of broad sympatry suggests that reproductive isolation is nearly complete between these species, but recent mitochondrial capture suggests introgression may still occur. By contrast, the coastal and interior lineages of Z. leucophrys are parapatric, and secondary contact between Z. l. pugetensis and Z. l. gambelii is apparently very recent (Hunn & Beaudette, 2014). However, previous studies have detected gene flow between these groups, suggesting they are not reproductively isolated (Taylor et al., 2021). Comparing between Z. atricapilla and Z. leucophrys and between the two lineages of Z. leucophrys allows for the examination of patterns of genomic differentiation between pairs of taxa in the same clade that show different levels of reproductive isolation.

In 2018, two putative Z. atricapilla x leucophrys hybrids were captured and banded at the Iona Island Observatory (IIBO) in Richmond, British Columbia, during spring migration monitoring efforts (Fig. S1). The following spring we took genetic samples from all Z. atricapilla and Z. leucophrys captured at IIBO, and used Genotyping by Sequencing (GBS) to survey the landscape of genomic differentiation between the two species, as well as between two distinct lineages of Z. leucophrys. The goals of this study were to (1) identify regions of the nuclear genome driving the overall pattern of high nuclear differentiation observed by Taylor et al. (2021) and (2) compare the patterns of genomic differentiation observed between pairs of taxa that show differing levels of divergence. Given the phylogenetic relationship of these taxa, we predicted to find higher overall differentiation and broader genomic islands of differentiation between Z. atricapilla and Z. leucophrys than between the two Z. leucophrys lineages. Additionally, we present evidence for elevated differentiation between Z. atricapilla and Z. leucophrys over a large region of the Z chromosome, consistent with an inversion that may have played an outsized role during speciation in these taxa. This research provides further evidence for the importance of the avian Z chromosome and inversions in speciation and contributes to our broader understanding of how genomic differentiation progresses despite occasional hybridization between species.

Methods and Materials

Sample Collection

The first round of fieldwork was conducted at the Iona Island Bird Observatory (IIBO) in Richmond, British Columbia, in Spring 2019. Birds were captured passively in mist nets and banded as part of the station’s normal migration monitoring operations. We then took 10 – 40 μL of blood from the brachial vein of each bird of the target species and stored these samples in 500 μL of Queen’s Lysis Buffer (Seutin et al., 1991). We measured wing chord, tail length, tarsus length, mass, culmen length, beak depth, and beak width. A total of 19 Z. atricapilla and 14 Z. leucophrys of indeterminate subspecies were sampled during this initial period.

The second round of field sampling focused on increasing the sample size of Z. leucophrys and was conducted between June 16 and 26, 2020 at the Vancouver Campus of the University of British Columbia (UBC). Singing birds were located, and a mist net was set up nearby. Song recordings of local Z. leucophrys were used to attract birds to the net. Once birds were captured, they were immediately removed, banded, sampled, and measured using the methods outlined above. We sampled an additional 16 breeding Z. leucophrys individuals during this collection period, all of the pugetensis subspecies based on their bill colour and location. Additionally, we took samples of pectoral muscle tissue from seven unprepared specimens from the freezer of the Cowan Tetrapod Collection at the Beaty Biodiversity Museum of UBC that had been salvaged from throughout BC.

GBS Library Preparation

Genomic DNA was extracted from blood and tissue samples using a standard phenol-chloroform extraction procedure. DNA sample concentrations were measured using a Qubit fluorometer (Invitrogen), diluted to between 15 and 30 ng of DNA per μL, then run on 2% agarose gels to assess DNA fragmentation. Three out of our 56 samples did not produce DNA of sufficient quality for use.

The samples were genotyped using a genotyping-by-sequencing (GBS) procedure first described by Elshire et al. (2011) with modifications described in Alcaide et al. (2014) and Geraldes et al. (2019). We prepared two GBS libraries with a 400-500 bp fragment size. The library containing
samples from 2019 was sequenced on one lane of an Illumina HiSeq 4000 sequencer at the Genome Quebec Innovation Centre. The library containing samples from 2020 was sequenced on one lane of an Illumina NovaSeq 6000 SP also at the Genome Quebec Innovation Centre. Both sequencing platforms generated 150 bp paired-end reads.

The first stage of sequencing produced 290,502,080 reads from 94 individual birds, 37 of which were Zonotrichia sparrows collected in 2019 or prior for inclusion in this study (the others were for an unrelated study). The second stage of sequencing produced 525,322,895 reads from 88 individuals, 16 of which were sparrows collected in 2020 for this study. The disparity in sequence amount between the two plates was due to the different sequencing platforms used.

Bioinformatics Pipeline

Reads were demultiplexed using custom scripts from Baute et al. (2016), and sequences were trimmed for quality using Trimmomatic (version 0.36; Bolger et al., 2014). The reads were then aligned to the Taeniopygia guttata reference genome version bTaGeUt2.pat.W.v2 (Warren et al., 2010; Rhie et al., 2021; GenBank accession number GCA_000822105.2) using BWA-MEM (version 0.7.15; Li & Durbin, 2009). The resulting SAM files were converted to BAM files using Picard (version 2.23.8; Broad Institute https://broadinstitute.github.io/picard/), and single-end and paired-end BAM files were combined using SAMtools (version 1.3.2; Li et al., 2009). Single Nucleotide Polymorphisms (SNPs) were identified using the HaplotypeCaller tool in GATK (version 3.8; McKenna et al., 2010), which produced a gvcf file for each individual. Individual g.vcf files were then combined into a single vcf file using the GenotypeGVCFs tool in GATK. We filtered genomic sites using VCFtools (version 1.16; Danecek et al., 2011), first by removing indels and SNPs with more than 2 alleles. Using a custom Perl script (Owens et al., 2016), we removed sites with a mapping quality lower than 20 and a heterozygosity above 0.6. We then filtered for individuals with more than 60% missing data using VCFTools, removing three Z. atricapilla and three Z. leucophrys from the dataset. Finally, we used VCFtools to filter out SNPs missing from more than 20% of individuals and SNPs with a minimum allele frequency of less than 0.05.

A comparison of mean coverage for each individual across the sex chromosomes (W and Z) and a representative autosome (chromosome 3), revealed that coverage across the W chromosome was approximately three times higher than across the autosomes (Fig. S2). This was true for known female birds, as well as known males. Since females are heterogametic for the W chromosome and males are homogametic for the Z (Irwin, 2018), we expect coverage across the W to be roughly half that of autosomal coverage in females, and zero in males. These results indicate that many of the sequences from our short-read dataset that mapped to the Zebra Finch W chromosome cannot be from the Zonotrichia W chromosome. These likely represent sequences found on autosomes in Zonotrichia, but on the W chromosome in the Zebra finch, or repetitive elements found at high frequency in Zonotrichia, but infrequently in the Zebra Finch. After filtering and removal of the W sequences, a total of 45,986 SNPs were retained for analysis.

Principal Component Analysis

To visualize the population genetic clustering of individuals and identify potential backcrossed hybrids in our sample, we performed Principal Component Analysis (PCA) on the genotype data using custom R (version 3.6.3; R Core Team) scripts by Irwin et al. (2016), and the package pcaMethods (version 1.78.0; Stacklies et al., 2007) to impute missing data using svdImpute. Individual PCAs were also generated for each chromosome using the same method.

Patterns of Genomic Differentiation

Our genome-wide PCA showed three distinct clusters representing Z. atricapilla, Z. l. pugetensis, and Z. l. gambelii (see Results), which we treated as separate taxa for all future analysis performed each possible pairwise comparison (i.e., Z. atricapilla versus Z. l. pugetensis, Z. atricapilla versus Z. l. gambelii, and Z. l. pugetensis versus Z. l. gambelii). First, F_{ST} was calculated for each filtered variant site, followed by genome-wide weighted mean F_{ST} using Weir and Cockerham’s (1984) estimation with VCFtools. To further investigate patterns of genomic differentiation, we calculated mean F_{ST}, π_{Between} (absolute sequence divergence between species) and π_{Within} (absolute nucleotide diversity within species) across sliding windows of 10,000 bases of mapped sequence, including both variant and invariant sites, using R scripts by Irwin et al. (2018). Note that these windows include unsequenced regions, and thus represent regions of the genome roughly 500kb to 1Mb in length. We randomly selected 15 individuals of each taxon to include in this analysis to prevent bias from uneven sampling. To characterize genome-wide differentiation patterns, windowed data were compared in scatterplots of π_{Between} versus mean π_{Within}, and F_{ST} versus π_{Between}. We performed a Spearman’s rank correlation test for each of these comparisons.
Comparing Z Chromosome and Autosomes
To test for differences in mean F_{ST}, $\pi_{Between}$, and π_{Within} between the Z chromosome and autosomes, we treated each 10,000 bp sliding window as a data point and performed a series of Welch’s two-sample t-tests. We compared mean F_{ST} across the Z chromosome ($F_{ST,Z}$) to mean autosomal F_{ST} ($F_{ST,A}$) in all comparisons. For comparisons of $\pi_{Between}$ and π_{Within}, we accounted for the increased mutation rate experienced by the Z chromosome by dividing the windowed stats from the Z chromosome by 1.1 ($\pi_{Between,Z} / 1.1 = \pi_{Between,Z}^*$; $\pi_{Within,Z} / 1.1 = \pi_{Within,Z}^*$), based on the calculations of Irwin (2018). We then compared mean $\pi_{Between,Z}^*$ to mean $\pi_{Between,A}$ for each comparison and mean $\pi_{Within,Z}^*$ to mean $\pi_{Within,A}$ for each taxon. Finally, we calculated ratios of mean $F_{ST,Z} / F_{ST,A}$ and mean $\pi_{Between,Z}^* / \pi_{Between,A}$ for each comparison, and mean $\pi_{Within,Z}^* / \pi_{Within,A}$ for each taxon. To test for selection on the Z chromosome, we also performed a Welch’s t-test to compare mean $\pi_{Within,Z}^*$ to the mean of $\pi_{Within,A}$ multiplied by 0.5625 (the lowest ratio that might be explainable without selection; Charlesworth, 2001; Irwin, 2018).

Investigating Putative Inversions
The Z chromosome and chromosome 1A contained large blocks showing patterns of F_{ST}, $\pi_{Between}$, and π_{Within} consistent with inversions. To investigate this further, we calculated pairwise linkage disequilibrium (LD) between each biallelic variant site on chromosomes 1A and Z for each group separately, and with relevant groups pooled together, using Plink (version 1.9; Chang et al., 2015) and visualized the data in R. Linkage disequilibrium is the non-random association of alleles between two loci, thus, regions that show increased F_{ST} between groups are expected to show concordant increases LD (R^2 close to 1) when calculated between groups. If these regions show low LD when calculated within groups, we can discount the possibility that the region intrinsically experiences reduced recombination rate, such as in centromeres. We also plotted the genotypes of individuals across these regions at all SNPs, and at all SNPs with an F_{ST} above 0.75 (Irwin et al., 2016).

Results
Three Genomic Clusters
Principal Component Analysis (PCA) revealed three distinct genetic clusters (Fig. 1B). Z. atricapilla and Z. leucophrys were highly separated along PC1, which accounts for 24.4% of the variation in the dataset. PC2, which accounts for 9.3% of the variation in the dataset, revealed two distinct genetic clusters in Z. leucophrys. These clusters are also observed...
Figure 2. Summary of genomic differentiation and variation between *Z. atricapilla* (GC) and *Z. l. gambelii* (GW) from sliding windows containing 10,000 bp of genotyped positions. (A) Mean F_{ST}, π_{Between} and π_{Within} for each taxon (*Z. atricapilla* in yellow and *Z. leucophrys* in blue) are shown plotted against the position for each chromosome. (B) Scatterplots in which each point represents a single 10,000 bp window depict relationships between F_{ST} and π_{Between} (Spearman’s rank correlation, $\rho = -0.243$, $p < 2.2 \times 10^{-16}$), and (C) between π_{Between} and mean π_{Within} (Spearman’s rank correlation $\rho = 0.889$, $p < 2.2 \times 10^{-16}$).
Figure 3. Summary of genomic differentiation and variation between *Z. atricapilla* (GC) and *Z. l. pugetensis* (PW) from sliding windows containing 10,000 bp of genotyped positions. (A) Mean F_{ST}, π_{Between} and π_{Within} for each taxon (*Z. atricapilla* in yellow and *Z. l. pugetensis* in red) are shown plotted against the position for each chromosome. (B) Scatterplots, where each point represents a single 10,000 bp window, depict relationships between F_{ST} and π_{Between} (Spearman’s rank correlation $\rho = -0.280$, $p < 2.2x10^{-16}$), and (C) between π_{Between} and mean π_{Within} (Spearman’s rank correlation $\rho = 0.901$, $p < 2.2x10^{-16}$).
Figure 4. Summary of genomic differentiation and variation between Z. l. gambelii (GW) and Z. l. pugetensis (PW) from sliding windows containing 10,000 bp of genotyped positions. (A) Mean F_{ST}, $\pi_{Between}$ and π_{Within} for each taxon (Z. l. gambelii in blue and Z. l. pugetensis in red) are plotted against each chromosome’s position. (B) Scatterplots, where each point represents a single 10,000 bp window, depict relationships between F_{ST} and $\pi_{Between}$ (Spearman’s rank correlation $\rho = -0.318$, $p < 2.2x10^{-16}$), and (C) between $\pi_{Between}$ and mean π_{Within} (C; Spearman’s rank correlation $\rho = 0.975$, $p < 2.2x10^{-16}$).
on most of the PCA’s for individual chromosomes (Fig. S3). In the lower right of Figure 1B, one cluster was composed of birds captured at IIBO in 2019 during spring migration and four individuals collected in Fort Nelson, BC, in May of 2012. Fort Nelson is within the range of Z. leucophrys gambellii, and all these individuals showed the orange bill characteristic of that subspecies. The birds captured at IIBO were likely migrating to more northerly breeding grounds. In the upper right, the other cluster was composed primarily of birds caught at UBC during the breeding season, and one individual captured at IIBO. These birds all showed the yellow bill characteristic of the subspecies Z. l. pugetensis. The distinct clustering of the two species and the two Z. leucophrys subspecies is consistent with Taylor et al. (2021). In further analyses, we treated these two Z. leucophrys groups separately.

One individual from the Z. l. gambellii group fell slightly outside the main gambellii cluster, in the direction of the pugetensis cluster. This individual, a female captured at IIBO in 2019 during spring migration, fell midway between the two groups on the PCAs for chromosomes 1, 6, 8, 11, 12, and 14, and clustered with the pugetensis group on the PCA for the Z chromosome (Fig. S3). Taken together, this suggests that this individual is the result of recent hybridization and backcrossing between these two subspecies of Z. leucophrys. Three other individuals were intermediate between the Z. leucophrys groups on the PCAs for chromosome 1A, and another was intermediate for chromosome 8 (Fig. S3). These patterns are consistent with ongoing gene flow between Z. l. gambellii and Z. l. pugetensis. The PCAs do not reveal evidence for hybridization and/or gene flow between Z. atricapilla and Z. leucophrys.

Larger Autosomes are Associated with Increased Differentiation and Reduced Nucleotide Diversity

Across the entire genome, weighted mean \(F_{ST} \) was 0.273 between Z. atricapilla and Z. l. gambellii, 0.303 between Z. atricapilla and Z. l. pugetensis, and 0.141 between the two Z. leucophrys groups (Table 1). A total of 661 fixed sites (i.e., with \(F_{ST} = 1 \)) were found between Z. atricapilla and Z. l. gambellii, and 657 fixed sites were found between Z. atricapilla and Z. l. pugetensis. In comparison, only 16 fixed sites were found between the two Z. leucophrys groups (see Fig. S4.)

Analyses of \(F_{ST} \), \(\pi_{Between} \), and \(\pi_{Within} \) across 10,000 bp windows were largely consistent between the two comparisons of Z. atricapilla (Figs. 2A and 3A) with a Z. leucophrys group. These comparisons showed numerous regions of elevated \(F_{ST} \), particularly on larger autosomes, such as 1, 1A, 2, 3, 4 and 5, and on the Z chromosome. In general, regions of elevated \(F_{ST} \) extended over large stretches of the chromosome, forming blocks of high differentiation rather than narrow peaks. Both comparisons showed a weak, but statistically significant, negative correlation between \(F_{ST} \) and \(\pi_{Between} \) (Figs 2B and 3B; Z. atricapilla vs. Z. l. gambellii: Spearman’s rank correlation \(\rho = -0.2431, p < 2.2x10^{-16}; \) Z. atricapilla vs. Z. l. pugetensis: Spearman’s rank correlation \(\rho = -0.2803, p < 2.2x10^{-16} \)). However, the splines fitted to the scatterplots had a concave upward shape, suggesting that this correlation was mainly driven by low \(F_{ST} \) windows, while high \(F_{ST} \) windows were generally associated with moderate values of \(\pi_{Between} \). Both comparisons showed positive correlation between \(\pi_{Between} \) and mean \(\pi_{Within} \) (Figs. 2C and 3C; Z. atricapilla vs. Z. l. gambellii: Spearman’s rank correlation \(\rho = 0.8891, p < 2.2x10^{-16}; \) Z. atricapilla vs. Z. l. pugetensis: Spearman’s rank correlation \(\rho = 0.9009, p < 2.2x10^{-16} \)).

The windowed analysis comparing the two Z. leucophrys groups showed lower overall differentiation, but still with some notable regions of elevated differentiation concentrated on larger chromosomes, particularly 1A, 5 and the Z Chromosome (Fig. 4A). In this comparison, the correlation between \(F_{ST} \) and \(\pi_{Between} \) was also negative and stronger than between the comparisons that included Z. atricapilla (Fig. 4B; Spearman’s rank correlation \(\rho = -0.3183, p < 0.0001 \)). However, once again, the highest \(F_{ST} \) windows showed moderate values of \(\pi_{Between} \). In this comparison, \(\pi_{Between} \) and mean \(\pi_{Within} \) showed a strong positive correlation (Fig. 4C; Spearman’s rank correlation \(\rho = 0.9752, p < 0.0001 \)).

In all comparisons, \(F_{ST} \) tended to increase with increasing chromosome length (Fig. 5). Both \(\pi_{Between} \) and \(\pi_{Within} \) decreased with increasing chromosomal size (Fig. 5). Furthermore, chromosomal PCAs for smaller chromosomes showed less distinct clustering than larger ones (Fig. S3). The PCAs for chromosomes 25 and 28 show overlap between the Z. atricapilla and Z. l. gambellii clusters, with the Z. l. pugetensis cluster somewhat separated from these (Fig. S3).

Weighted Mean \(F_{ST} \)	Z. atricapilla	Z. l. pugetensis
Z. l. gambellii	0.273	0.141
Z. l. pugetensis	0.303	-

Table 1. Summary of genome-wide weighted mean \(F_{ST} \) (Weir & Cockerham 1984) between pairwise comparisons of taxa.
Highly Differentiated Chromosome 1A Haplotypes between Z. leucophrys Groups

When comparing Z. l. gambelii and Z. l. pugetensis, chromosome 1A showed high relative differentiation relative to other autosomes (Fig. 5A right panel), due to the presence of a block of high F_{ST} (Fig. 4A). Three Z. l. pugetensis individuals showed high heterozygosity across this region for Z. l. gambelii alleles (Fig. S4A). These individuals otherwise clustered with the remainder of the Z. l. pugetensis individuals on the whole genome PCA, thus these individuals do not appear to be recent hybrids. This suggests the existence of two non-recombining haplotype blocks in this region. Non-recombining haplotype blocks could be caused by a structural rearrangement, such as an inversion. To further investigate this possibility, we calculated and plotted LD across chromosome 1A with individuals from both subspecies, and with only individuals from each subspecies. The three highly heterozygous individuals were not included in this analysis. The LD plots showed an increase in LD concordant with the region of increased F_{ST} only when calculated between the two species, but not when LD is calculated within groups (Fig. S4B). This pattern is consistent with an inversion, but could also be explained by a selective sweep in a region of low recombination.

Increased Differentiation in the Z Chromosome between Z. atricapilla and Z. leucophrys

Across all comparisons, the Z chromosome showed increased F_{ST} relative to the autosomes (Table 2; Welch’s two-sample t-tests: Z. atricapilla vs. Z. l. gambelii, $t = 19.967$, df = 123.14, $p < 0.0001$; Z. atricapilla vs. Z. l.
Table 2. Summary of mean F_{ST} across all Z chromosome windows ($F_{ST,Z}$), mean F_{ST} across all autosomal windows ($F_{ST,A}$), the ratio of $F_{ST,Z}$ / $F_{ST,A}$, mean π_{between} across all Z chromosome windows ($\pi_{\text{between},Z}$), mean π_{between}, Z corrected for mutation rate (π_{between,Z^*} = $\pi_{\text{between},Z} / 1.1$), mean π_{between} across all autosomal windows ($\pi_{\text{between},A}$) and the ratio of π_{between,Z^*} / $\pi_{\text{between},A}$ are given for each comparison. Results of Welch’s t-tests comparing autosomal and Z chromosome means are indicated by asterisks after each ratio. * indicates $p < 0.0001$.

Table 3. Summary of mean π_{within} across all Z chromosome windows ($\pi_{\text{within},Z}$), across the Z chromosome corrected for mutation rate (π_{within,Z^*}), mean π_{within} across all autosomal windows ($\pi_{\text{within},A}$), and the ratio of π_{within,Z^*} / $\pi_{\text{within},A}$ for each taxon. Results of Welch’s t-tests comparing mean $\pi_{\text{within},Z}$ and $\pi_{\text{within},A} \times 0.5625$ (see Irwin, 2018) are indicated by asterisks after each ratio. * indicates $p < 0.01$; ** indicates $p < 0.001$.

pugetensis, $t = 20.389$, $df = 123.03$, $p < 0.0001$), even compared to autosomes of similar size (Fig. 5). This increase in $F_{ST,Z}$ was more extreme in the comparisons involving Z. atricapilla than in the comparison of the Z. leucophrys groups. Mean π_{between,Z^*} was higher than mean $\pi_{\text{between},A}$ in both comparisons involving Z. atricapilla even after adjusting for the increase in mutation rate experienced by the Z chromosome (Table 2; Z. atricapilla vs. Z. l. gambelii, $t = 5.2402$, $df = 130.92$, $p < 0.0001$; Z. atricapilla vs. Z. l. pugetensis, $t = 4.0968$, $df = 134.64$, $p < 0.0001$). Mean π_{between,Z^*} was reduced relative to $\pi_{\text{between},A}$ between Z. l. gambelii and Z. l. pugetensis (Table 2; $t = -14.914$, $df = 144.05$, $p < 0.0001$). Finally, the Z chromosome in all three groups showed reduced π_{within,Z^*} compared to $\pi_{\text{within},A}$, with all $\pi_{\text{within},Z^*} / \pi_{\text{within},A}$ falling below the minimum possible value expected under neutrality, 0.5625, with extreme variance in male reproductive success (Charlesworth, 2001) (Table 3; Z. atricapilla, $t = -19.845$, $df = 148.9$, $p < 0.0001$; Z. l. gambelii, $t = -15.546$, $df = 141.96$, $p < 0.0001$; Z. l. pugetensis, $t = -17.641$, $df = 143.34$, $p < 0.0001$). The PCA for the Z chromosome (Fig. S3) showed a strong separation of Z. atricapilla and Z. leucophrys along PC1, which explained 68.7% of the variation. Z. l. gambelii and Z. l. pugetensis were separated along PC2, which explained 10.6% of the variation, aside from one Z. l. gambelii individual which clustered with Z. l. pugetensis.

The sharp increase in F_{ST} and fixed differences is consistent with physical linkage and reduced recombination across the Z chromosome; one possibility is that an inversion may explain this pattern. To further investigate this, we examined genotypes (Fig. 7A) and calculated LD (Fig. 7B) across the Z chromosome with individuals from both species, and with only individuals from each species. These results show a sharp increase in LD concordant with the region of increased F_{ST} when calculated between the two species, but not when LD is calculated within groups (Fig. 7B). Plots of the genotype of each individual at SNPs with an F_{ST} of 1 exist within this region. In contrast, comparing the two Z. leucophrys groups did not show this large block of highly elevated F_{ST} (Fig. 6B). Furthermore, π_{between} was high across the Z chromosome in the comparisons that include Z. atricapilla but moderate or low across this block in comparing the Z. leucophrys groups. In all three groups, π_{within} tends to be decreased across this block relative to the ends of the chromosome.

Detailed plots of sliding windowed data across the Z chromosome (Fig. 6) from comparisons that include Z. atricapilla revealed a sudden increase in F_{ST} across a large block spanning the middle of the chromosome, with decreased F_{ST} at either end. Numerous fixed differences between the two species (SNPs with an F_{ST} of 1) exist within this region. In contrast, comparing the two Z. leucophrys groups did not show this large block of highly elevated F_{ST} (Fig. 6B). Furthermore, π_{between} was high across the Z chromosome in the comparisons that include Z. atricapilla but moderate or low across this block in comparing the Z. leucophrys groups. In all three groups, π_{within} tends to be decreased across this block relative to the ends of the chromosome.
Figure 6. Patterns of F_{ST}, Between, and Within across the Z chromosome in comparisons (A) between *Z. atricapilla* and *Z. l. gambelii*, and *Z. atricapilla* and *Z. l. pugetensis* and (B) between *Z. l. gambelii* and *Z. l. pugetensis*. Black dots represent individual SNPs, while coloured lines represent average across 10,000 bp sliding windows.
Discussion

Our results show that the landscape of differentiation between the nuclear genomes of *Z. leucophrys* and *Z. atricapilla* is highly heterogeneous, with large regions of the nuclear genome showing vastly higher differentiation than that previously seen in mitochondrial DNA (Taylor et al. 2021). Differentiation peaks are concentrated on larger chromosomes, especially the Z chromosome, which appears to harbour a large inversion with haplotypes that segregate between the two species and that account for the high degree of overall nuclear differentiation observed previously (Taylor et al. 2021). This apparent Z-linked inversion may play a role in reproductive isolation between these taxa.

Genome-wide weighted mean F_{ST} values between *Z. atricapilla* and the *Z. leucophrys* subspecies calculated from our SNP dataset are similar to those reported by Taylor et al. (2021). These values are consistent with those typically reported in avian species pairs that show extensive reproductive isolation (e.g., Cowles & Uy, 2019; Mikkelsen & Irwin, 2021) and are much higher than other species pairs that engage in extensive hybridization (Irwin et al., 2018; Toews, Taylor, et al., 2016; Wang et al., 2020). Both
comparisons show a weakly negative correlation between F_{ST} and π_{Between} for autosomal windows. However, many highly differentiated windows show low π_{Within}, but moderate π_{Between} (Figs 2C and 3C). Taken together, these results suggest that autosomal divergence has primarily been driven by divergent selection, with some recurrent selection between the ancestral and contemporary species or introgression followed by differentiation, driving the slight negative correlation between F_{ST} and π_{Between} (Cruickshank & Hahn, 2014; Irwin et al., 2016, 2018). However, our sample shows no evidence of recent hybridization between these species, despite the evidence of somewhat recent mtDNA introgression. Notably, the mtDNA introgression seems to have occurred between Z. atricapilla and the currently allopatric Z. l. pugetensis, but not between Z. atricapilla and the currently sympatric Z. l. gambelii (Taylor et al., 2020; Weckstein et al., 2001). Thus, some gene flow, including mitochondrial introgression, may have occurred thousands of years ago, possibly during a recent glacial maximum when Z. atricapilla was sympatric with the more southerly Z. pugetensis (as suggested by Weckstein et al., 2001), but gene flow has since become cut off between Z. atricapilla and Z. l. gambelii.

For Z. l. gambelii and Z. l. pugetensis, patterns in F_{ST}, π_{Between}, and π_{Within} are more consistent with a history of recurrent selection (Cruickshank & Hahn, 2014), or possibly “sweep-before-differentiation” in which globally advantageous mutations spread between populations and then become differentiated (Irwin et al., 2016). This possibility is supported by our evidence of ongoing hybridization and gene flow between those taxa. Genome-wide F_{ST} was much lower between these taxa, which is expected given their more recent divergence. However, it is still higher than what has been reported between several boreal-breeding North American species pairs (Irwin et al., 2018). In this comparison, the correlation across autosomal windows between F_{ST} and π_{Between} is negative and stronger than in the comparisons that include Z. atricapilla. High F_{ST} windows are associated with low to moderate π_{Between} (Fig. 4B). There is also a much stronger correlation between π_{Between} and π_{Within} in this comparison (Fig. 4C) than in the comparisons involving Z. atricapilla (Figs. 2C and 3C). These patterns are consistent with a history of selection in the ancestral population followed by divergent selection at these loci in daughter populations, or introgression of adaptive alleles between populations, followed by divergent selection on those loci (Cruickshank & Hahn, 2014; Irwin et al., 2016, 2018).

In contrast to the comparisons involving Z. atricapilla, which showed broad regions of increased differentiation, differentiation peaks between Z. l. gambelii and Z. l. pugetensis are short and localized, aside from one large block on chromosome 1A (discussed below). The whole-genome and per chromosome PCAs show clear evidence of hybridization between Z. l. gambelii and Z. l. pugetensis, with one back-crossed individual in the dataset, and several others that show evidence of introgression. Considering the limited sample sizes in this study, this suggests that hybridization is more common between these subspecies than one might expect from their allopatric distributions. A block on chromosome 1A shows the highest autosomal F_{ST} between Z. l. gambelii and Z. l. pugetensis. Furthermore, three individuals are heterozygous for different haplotypes across this block despite being otherwise genetically Z. l. pugetensis, which suggests that recombination is suppressed in this region. The increase in LD between the groups relative to within groups in this region is only slight, suggesting that if recombination in the region is suppressed due to an inversion, it would have occurred very recently, as the inversion haplotypes would not have had sufficient time to differentiate and develop strong LD between loci. Across this block, π_{Within} is slightly reduced in both species and is concordant with an overall level of π_{Between} that appears similar to the rest of the genome (Fig S5), suggesting that differentiation across this region could also be the result of divergent selection in an area of reduced recombination. Chromosome 1A has been implicated in divergence in other avian systems (Baiz et al., 2020; Irwin et al., 2018; Wang et al., 2020) and warrants further investigation in this taxon.

In all comparisons, autosomal differentiation tends to be higher on larger autosomes (Fig 5). Relative differentiation increases with chromosome length, and larger autosomes tend to have broader islands of differentiation while smaller chromosomes generally show narrow peaks of differentiation, if any at all (Figs 2A, 3A, and 4A). This is consistent with patterns observed in the Chicken ($Gallus$ gallus) genome (Mugal et al., 2013) and the White-throated Sparrow ($Zonotrichia albicollis$) genome (Huynh et al., 2010), which is closely related to the $Zonotrichia$ sparrows investigated here. The avian microchromosomes experience a higher recombination rate than the macrochromosomes, and are thus predicted to have higher diversity (Groenen et al., 2009; Mugal et al., 2013). This may also explain why peaks of differentiation on the microchromosomes are narrower than those on larger chromosomes, as higher recombination rates would reduce the strength of genetic hitchhiking.
Comparisons of F_{ST}, $\pi_{Between}$, and π_{Within} across the Z chromosome and autosomes suggest that the Z chromosome has played an outsized role in divergence between Z. atricapilla and Z. leucophrys. While increased relative differentiation on the Z chromosome relative to autosomes has been observed in many avian species pairs, the $F_{ST, Z} / F_{ST, A}$ ratios for comparisons involving Z. atricapilla are high. In contrast, the ratio for the two Z. leucophrys is similar to those found in other passerines (Irwin, 2018). Increased F_{ST} across the Z chromosome is typically driven by decreased π_{Within} since the effective population size of the Z chromosome tends to be reduced relative to the autosomes (Charlesworth, 2001; Ellegren, 2009). Ratios of $\pi_{Within, Z^*} / \pi_{Within, A}$ that fall below the value of 0.5625 cannot be explained merely by a neutral model with extreme variance in male reproductive success (Charlesworth, 2001; Irwin, 2018). The ratios of $\pi_{Within, Z^*} / \pi_{Within, A}$ were below 1 in all taxa in this study and significantly below 0.5625 for both Z. atricapilla and Z. l. leucophrys, suggesting increased impact of diversity-reducing selection on the Z chromosome relative to the autosomes in both these taxa. It should be noted that a ratio of $\pi_{Within, Z^*} / \pi_{Within, A}$ of 0.5625 only occurs without selection when there is extreme variance in reproductive success of males, such as in lekking species. While some studies have found that upwards of 38% of Z. leucophrys nestlings were the result of extra-pair paternity (Sherman & Morton, 1988), the majority are monogamous breeders with a high degree of parental care provided by the male (Norment, 1991). Hence, while the observed $\pi_{Within, Z^*} / \pi_{Within, A}$ ratio for Z. l. gambelii of 0.5469 was not significantly below 0.5625, we still view this as evidence that the Z chromosome may have been subject to selection in this lineage as well. Regardless of the evolutionary force driving it, reduced π_{Within, Z^*} contributes to the increased differentiation of the Z chromosome in all three groups. Furthermore, the extreme increase in F_{ST} in the comparisons involving Z. atricapilla is also driven by an increase in $\pi_{Between, Z}$ that is not observed in the comparison between the two Z. leucophrys groups. In other species pairs, $\pi_{Between, Z}$ is often reduced relative to $\pi_{Between, A}$ (Irwin et al., 2016, 2018), possibly due to reduced effective population size of the Z chromosome in the common ancestor. While this is the case when comparing Z. l. gambelii and Z. l. pugetensis, $\pi_{Between, Z}$ was increased relative to the autosomes in comparisons between Z. atricapilla and Z. leucophrys. This suggests reduced gene flow, and an increased coalescence time between these species for the Z chromosome compared to the autosomes (Cruickshank & Hahn, 2014).

These patterns are consistent with a large chromosomal inversion spanning most of the Z chromosome, with inversion haplotypes segregating between Z. atricapilla and Z. leucophrys. Increased $\pi_{Between, Z}$ suggests decreased gene flow, which could be explained by a large chromosomal inversion repressing recombination between the Z chromosomes for an extended period of time, even when there was still substantial gene flow between these species at other parts of the genome. F_{ST} increases sharply and remains elevated across most of the chromosome, and the genotypes of individuals across this region are consistently hemi or homozygous for a species-specific haplotype. Furthermore, linkage disequilibrium plots suggest that recombination is suppressed across a broad area of the Z chromosome between the two species, but not within either species. This pattern in linkage disequilibrium is similar to those observed in other systems across chromosomal inversions (Hooper et al., 2019; Todesco et al., 2020a). Despite the high level of synteny of the avian genome, rearrangements and inversions within the Z chromosome are common (Backström et al., 2006; Yazdi & Ellegren, 2018), and Z-linked inversions have a higher fixation rate than autosomal inversions (Hooper & Price, 2017). Thus, an inversion is a plausible explanation for the observed patterns. The regions of reduced F_{ST} and LD within the putative inversion may represent translocations relative to the reference genome, given the long history of independent evolution between Zonotrichia and the Zebra Finch (Oliveiros et al., 2019).

Inversions are challenging to investigate with the short-read and reduced representation sequencing techniques used in this study. Further evidence for an inversion could be provided by aligning reference genomes constructed from these two species to one another (e.g. Todesco et al., 2020b), but constructing such a reference genome is beyond the scope of this study. Evidence could also be provided by analyzing heterozygosity and linkage disequilibrium across the putative inversion in hybrids (Hooper et al., 2019). This may be a challenge for the putative Z chromosome inversion, as hybrids are rare, and there is no specific region in which hybridization is more likely to occur. The Iona Island Bird Observatory in Richmond, British Columbia, was selected as the primary sampling site for this study based on capturing two putative Z. leucophrys × atricapilla hybrids during the previous spring migration monitoring period, when genetic samples were not being collected. Consistent with previous descriptions of putative hybrids (Miller, 1940), these individuals showed intermediate crown phenotype between the species, with a medial yellow crown stripe similar to Z. atricapilla and the white supercilium of
Z. leucophrys (Fig S8). Unfortunately, we did not capture any hybrids during our field season for the present study, but IIBO is located along the pacific flyway, a common migratory route for songbirds, and regularly captures both Z. atricapilla and Z. l. gambelii on migration (Lisovski et al., 2019), as well as Z. l. pugetensis which can be found in the Lower Mainland year-round (Campbell et al., 2001). Since the sympatric zone between Z. atricapilla and Z. leucophrys is vast, migration stopover sites like IIBO may be ideal places to sample hybrids, as many individuals concentrate in these sites during migration. Genomic analysis of these putative hybrids could further elucidate the nature of reproductive isolation between Z. atricapilla and Z. leucophrys. For example, if all putative hybrids are F1s, it would suggest that they are not able to reproduce, especially given the lack of evidence for current gene flow in our genomic analysis of these two species.

Given the evidence of a chromosomal inversion on the Z chromosome, what is the possible significance of this structural variant to the history and future of speciation in this system? Patterns of differentiation across the autosomes as well as the distributions of these species (Weir & Schluter, 2004) are consistent with periods of geographic separation and differentiation, likely during past glacial maxima. In one of the two incipient species during this period, the inversion may have arisen and become fixed. Upon secondary contact, the inversion would suppress recombination and prevent local introgression between the two inversion haplotypes (Rieseberg, 2001). Any genes within the inversion that contribute to isolation in these species would be tightly linked and essentially act additively as a single locus (Rieseberg, 2001). This lack of recombination and introgression would also allow for further differentiation and accumulation of genetic incompatibilities that further reduce the hybrid fitness (Noor et al., 2001). Given the number of genes on the Z chromosome implicated in plumage pigmentation (e.g. Campagna et al., 2017; Sæther et al., 2007; Toews, Taylor, et al., 2016), a key component of avian sexual signalling and species recognition, it is possible that this inversion has captured differential alleles for some of these genes, and thus may be involved in pre-mating isolation between the two species. Large inversions such as this are also likely to capture loci involved in genetic incompatibilities. Such incompatibilities are relatively common (Noor et al., 2001; Presgraves, 2003), which would contribute to post-mating isolation between these species. Thus, the putative inversion reported here may contribute to both pre- and post-mating isolation, and may have helped prevent the homogenization of the genome and collapse of these species during past secondary contact.

This study found that Z. atricapilla and Z. leucophrys show high nuclear genomic differentiation that varies greatly among different parts of the genome, pointing to a long history of divergence due in part to geographic separation but with some periods of gene flow. The regions of high nuclear differentiation contrast markedly with the close similarity in mitochondrial DNA, pointing to somewhat recent hybridization, introgression, and replacement of mitochondrial DNA (Taylor et al., 2021). Despite this evidence for mitochondrial gene flow and their current broadly overlapping ranges, we found no evidence of current nuclear gene flow between Z. atricapilla and Z. leucophrys, suggesting a recent cut-off of gene flow between the species. In contrast, the subspecies Z. l. gambelii and Z. l. pugetensis show lower genomic differentiation, patterns of nucleotide diversity characteristic of recurrent selection in ancestral and daughter populations, and evidence of ongoing gene flow between the two groups. Differentiation between all three taxa is particularly strong on the Z chromosome, and distinct Z chromosome inversion haplotypes that segregate between Z. atricapilla and Z. leucophrys may have driven early divergence between these groups and contributed to reproductive isolation between them. This finding adds to the growing body of evidence for the outsized role of inversions in divergence between taxa, and further investigation into this species pair could allow us to better understand the role of inversions in speciation.

Acknowledgments

We would like to acknowledge and thank WildResearch, especially the staff and volunteers at the Iona Island Bird Observatory, as well as Madelyn Ore, Ben Freeman, Julian Heavyside, Jen Muñoz, Kimberly Dohms, Matthias Bieber, Max Edworthy, Daniel Froehlich, and Coni Rivas, for their help with field sample collection. Thanks to Ildiko Szabo for additional samples from the Cowan Tetrapod Collection. Thank you to the rest of the Irwin Lab group for the feedback and thought-provoking discussions. Thank you to Metro Vancouver Parks for permission to collect samples from IIBO, and the Federal Bird Banding Office at Environment and Climate Change Canada for the permit to take blood samples (permit number 10746 P).
Funding

Fieldwork for this project was funded by an NSERC USRA (to QM), and most sequencing costs were financed by a Werner and Hildegard Hesse Undergraduate Research Award (to QM). Laboratory and computational expenses were supported by grants from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-03919 and RGPAS-2017-507830 to DI).

Author Contributions

KA, QM, and DI conceived the study; AH coordinated fieldwork with IIBO; QM, FF, and LN collected the samples; QM, FF, EN, and LN performed DNA extractions and constructed GBS libraries; QM analyzed the data with advice from KA and DI; QM, KA and DI wrote the manuscript; all authors contributed to drafts and gave final publication approval.

Literature Cited

Alcaide, M., Scordato, E. S. C., Price, T. D., & Irwin, D. E. (2014). Genomic divergence in a ring species complex. *Nature*, 511(7507), 83–85. https://doi.org/10.1038/nature13285

Backström, N., Brandström, M., Gustafsson, L., Qvarnström, A., Cheng, H., & Ellegren, H. (2006). Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): Conserved synteny but gene order rearrangements on the avian Z chromosome. *Genetics*, 174(1), 377–386. https://doi.org/10.1534/genetics.106.058917

Baiz, M. D., Wood, A. W., Brelsford, A., Lovette, I. J., & Toews, D. P. L. (2020). Pigmentation Genes Show Evidence of Repeated Divergence and Multiple Bouts of Introgression in Setophaga Warblers. *Current Biology*, 1–7. https://doi.org/10.1016/j.cub.2020.10.094

Ballard, J. W., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. *Molecular Ecology*, 13, 729–744.

Baute, G. J., Owens, G. L., Bock, D. G., & Rieseberg, L. H. (2016). Genome-wide genotyping-by-sequencing data provide a high-resolution view of wild helianthus diversity, genetic structure, and interspecies gene flow. *American Journal of Botany*, 103(12), 2170–2177. https://doi.org/10.3732/ajb.1600295

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Campagna, L., Repenning, M., Silveira, L. F., Fontana, C. S., Tubaro, P. L., & Lovette, I. J. (2017). Repeated divergent selection on pigmentation genes in a rapid finch radiation. *Science Advances*, 3(5), 1–12. https://doi.org/10.1126/sciadv.1602404

Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. *GigaScience*, 4(1), 1–16. https://doi.org/10.1186/s13742-015-0047-8

Charlesworth, B. (2001). The effect of life-history and mode of inheritance on neutral genetic variability. *Genetical Research*, 77(2), 153–166. https://doi.org/10.1017/S0016672301004979

Chilton, G., Baker, M. C., Barrentine, C. D., & Cunningham, M. A. (2020). White-crowned Sparrow (Zonotrichia leucophrys), version 1.0. In *Birds of the World* (A. F. Poole and F. B. Gill, Editors). Cornell Lab of Ornithology. https://doi.org/https://doi.org/10.2173/bow.whcspa.01

Cowles, S. A., & Uy, J. A. C. (2019). Rapid, complete reproductive isolation in two closely related Zosterops White-eye bird species despite broadly overlapping ranges*. *Evolution*, 73(8), 1647–1662. https://doi.org/10.1111/evo.13797

Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. *Molecular Ecology*, 23(13), 3133–3157. https://doi.org/10.1111/mec.12796

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Ellegren, H. (2009). The different levels of genetic diversity in sex chromosomes and autosomes. *Trends in Genetics*, 25(6), 278–284. https://doi.org/10.1016/j.tig.2009.04.005

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. *PloS ONE*, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379

Geraldes, A., Askelson, K. K., Nikelski, E., Doyle, F. I., Harrower, W. L., Winker, K., & Irwin, D. E. (2019). Population genomic analyses reveal a highly differentiated and endangered genetic cluster of northern goshawks (Accipiter gentilis laingtai) in Haida Gwaii. *Evolutionary Applications*, 12(4), 757–772. https://doi.org/10.1111/eva.12754

Groenen, M. A. M., Wahlberg, P., Foglio, M., Cheng, H. H., Megens, H. J., Crooijmans, R. P. M. A., Besnier, F., Lathrop, M., Muir, W. M., Wong, G. K. S., Gut, I., & Andersson, L. (2009). A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. *Genome Research*, 19(3), 510–519. https://doi.org/10.1101/gr.086538.108

Grossen, C., Seneviratne, S. S., Croll, D., & Irwin, D. E. (2016). Strong reproductive isolation and narrow genomic tracts of differentiation among three woodpecker species in secondary contact. *Molecular Ecology*, 25(17), 4247–4266. https://doi.org/10.1111/mec.13751

Hill, G. E. (2019). *Mitonuclear Ecology*. Oxford University Press.

Hooper, D. M., Griffith, S. C., & Price, T. D. (2019). Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. *Molecular Ecology*, 28(6), 1246–1262. https://doi.org/10.1111/mec.14874

Hooper, D. M., & Price, T. D. (2017). Chromosomal inversion differences correlate with range overlap in passerine birds. *Nature Ecology and Evolution*, 1(10), 1526–1534. https://doi.org/10.1038/s41559-017-0284-6

Hunn, E. S., & Beaudette, D. (2014). Apparent sympatry of two subspecies of the White-Crowned Sparrow, Zonotrichia leucophrys pugetensis and gambelli, in Washington state. *Western Birds*, 45, 132–140.

Huynh, L. Y., Maney, D. L., & Thomas, J. W. (2010). Contrasting population genetic patterns within the white-throated sparrow genome (Zonotrichia albicollis). *BMC Genetics*, 11(1), 96. https://doi.org/10.1186/1471-2156-11-96

Irwin, D. E. (2018). Sex chromosomes and speciation in birds and otherZW systems. *Molecular Ecology*, 27(19), 3831–3851. https://doi.org/10.1111/mec.14537

Irwin, D. E., Rubtsov, A. N., & Panov, E. N. (2009). Mitochondrial introgression and replacement between yellowhammers (Emberiza 18tironella) and pine buntings (Emberiza leucocephalos) (Aves: Passeriformes). *Biological Journal of the Linnean Society*, 98, 422–438.

Irwin, D. E., Alcaide, M., Delmore, K. E., Irwin, J. H., & Owens, G. L. (2016). Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. *Molecular Ecology*, 25(18), 4488–4507. https://doi.org/10.1111/mec.13792

Irwin, D. E., Milá, B., Toews, D. P. L., Brelsford, A., Kenyon, H. L., Porter, A. N., Grossen, C., Delmore, K. E., Alcaide, M., & Irwin, J. H. (2018). A comparison of genomic islands of differentiation across three young avian species pairs. *Molecular Ecology*, 27(23), 4839–4855. https://doi.org/10.1111/mec.14858

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Lowry, D. B., & Willis, J. H. (2010). A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. *PloS Biology*, 8(9). https://doi.org/10.1371/journal.pbio.1000500
Mank, J. E., Vicoso, B., Berlin, S., & Charlesworth, B. (2010). Effective population size and the Faster-X effect: empirical results and their interpretation. *Evolution*, 64, 663–674.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altschuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20, 1297–1303. https://doi.org/10.1101/gr.107524.110.

Mikkelsen, E. K., & Irwin, D. E. (2021). Ongoing production of low-fitness hybrids limits range overlap between divergent cryptic species. *BioRxiv Preprint*, 2021.1.13.

Miller, A. H. (1940). A Hybrid between Zonotrichia coronata and Zonotrichia leucophrys. *The Codor*, 42(1), 45–48.

Morton, M. L., & Mewaldt, L. R. (1960). Further Evidence of Hybridization between Zonotrichia atricapilla and Zonotrichia leucophrys. *The Condor: Ornithological Applications*, 62(6), 485–486. https://doi.org/10.1093/condor/62.6.485

Mugal, C. F., Nabholz, B., & Ellegren, H. (2013). Genome-wide analysis in chicken reveals that local levels of genetic diversity are mainly governed by the rate of recombination. *BMC Genomics*, 14(1). https://doi.org/10.1186/1471-2164-14-86

Navarro, A., & Barton, N. H. (2003). Accumulating postzygotic isolation genes in parapatry: A new twist on chromosomal speciation. *Evolution*, 57(3), 447–459. https://doi.org/10.1111/j.0014-3820.2003.tb01537.x

Noor, M. A. F., Gratos, K. L., Bertucci, L. A., & Reiland, J. (2001). Chromosomal inversions and the reproductive isolation of species. *Proceedings of the National Academy of Sciences of the United States of America*, 98(21), 12084–12088. https://doi.org/10.1073/pnas.221274498

Norment, C. J., Hendricks, P., & Santonocito, R. (2020). *Golden-crowned Sparrow (Zonotrichia atricapilla), version 1.0. In Birds of the World (A. F. Poole and F. B. Gill, Editors)*. Cornell Lab of Ornithology. https://doi.org/https://doi.org/10.2173/bow.gocsipa.01

Oliveros, C. H., Field, D. J., Ksepka, D. T., Keith Barker, F., Aleixo, A., Andersen, M. J., Alström, P., Benz, B. W., Braun, E. L., Braun, M. J., Bravo, G. A., Brumfield, R. T., Terry Chesser, R., Claramunt, S., Cracraft, J., Cuervo, A. M., Derryberry, E. P., Glenn, T. C., Harvey, M. G., … Faircloth, B. C. (2019). Earth history and the passerine superradiation. *Proceedings of the National Academy of Sciences of the United States of America*, 116(16), 7916–7925. https://doi.org/10.1073/pnas.1813206116

Ortiz-Barrientos, D., Engelstädter, J., & Rieseberg, L. H. (2016). Recombination Rate Evolution and the Origin of Species. *Trends in Ecology and Evolution*, 31(3), 226–236. https://doi.org/10.1016/j.tree.2015.12.016

Owens, G. L., Baute, G. J., & Rieseberg, L. H. (2016). Revisiting a classic case of introgression: hybridization and gene flow in Californian sunflowers. *Molecular Ecology*, 25(11), 2630–2643. https://doi.org/10.1111/mec.13569

Presgraves, D. C. (2003). A fine-scale genetic analysis of hybrid incompatibilities in Drosophila. *Genetics*, 163(3), 955–972. https://doi.org/10.1093/genetics/163.3.955

Presgraves, D. C. (2018). Evaluating genomic signatures of “the large X-effect” during complex speciation. *Molecular Ecology*, 27, 3822–3830.

Rchie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Chaisson, M., Gedman, G. L., Cantin, L. J., Thibaud-Nissen, F., Haggerty, L., Bista, I., Smith, M., … Jarvis, E. D. (2021). Towards complete and error-free genome assemblies of all vertebrate species. *Nature*, 592(7856), 737–746. https://doi.org/10.1038/s41586-021-03451-0

Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. *TRENDS in Ecology & Evolution*, 16(7), 351–358. http://tree.trends.com

Sæther, S. A., Sætre, G.-P., Borge, T., Wiley, C., Svedin, N., Andersson, G., Veen, T., Haavie, J., Servedio, M. R., Bureš, Š., Král, M., Hjernquist, M. B., Gustafsson, L., … McCallum et al., Aug 2022 - preprint
Träff, J., & Qvarnström, A. (2007). Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. *Science, 318*(5847), 95–97.

Sherman, P. W., & Morton, M. L. (1988). Extra-pair fertilizations in mountain white-crowned sparrows. *Behavioral Ecology and Sociobiology, 22*(6), 413–420. https://doi.org/10.1007/BF00294979

Seutin, G., White, B. N., & Boag, P. T. (1991). Preservation of avian blood and tissue samples for DNA analyses. *Canadian Journal of Zoology, 69*(1), 82–90. https://doi.org/10.1139/z91-013

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) PcaMethods – a Bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164-1167

Taylor, R. S., Bramwell, A. C., Clemente-Carvalho, R., Cairns, N. A., Bonier, F., Dares, K., & Lougheed, S. C. (2021). Cytomeric discordance in the crowned-sparrows, Zonotrichia atricapilla and Zonotrichia leucophrys. *Molecular Phylogenetics and Evolution, 162*, 107216. https://doi.org/10.1016/j.ympev.2021.107216

Thomas, J. W., Cáceres, M., Lowman, J. J., Morehouse, C. B., Short, M. E., Baldwin, E. L., Maney, D. L., & Martin, C. L. (2008). The chromosomal polymorphism linked to variation in social behavior in the white-throated sparrow (Zonotrichia albicollis) is a complex rearrangement and suppressor of recombination. *Genetics, 179*(3), 1455–1468. https://doi.org/10.1534/genetics.108.088229

Todesco, M., Owens, G. L., Bercovich, N., Légaré, J. S., Soudi, S., Burge, D. O., Huang, K., Ostevik, K. L., Drummond, E. B. M., Imerovski, I., Lande, K., Pascual-Robles, M. A., Nanavati, M., Jahani, M., Cheung, W., Staton, S. E., Muños, S., Nielsen, R., Donovan, L. A., … Rieseberg, L. H. (2020b). Massive haplotypes underlie ecotypic differentiation in sunflowers. *Nature, 584*(7822), 602–607. https://doi.org/10.1038/s41586-020-2467-6

Todesco, M., Owens, G. L., Bercovich, N., Légaré, J. S., Soudi, S., Burge, D. O., Huang, K., Ostevik, K. L., Drummond, E. B. M., Imerovski, I., Lande, K., Pascual-Robles, M. A., Nanavati, M., Jahani, M., Weckstein, J. D., Zink, R. M., Blackwell-Rago, R. C., & Nelson, D. A. (2001). Anomalous Variation in Mitochondrial Genomes of White-Crowned
(Zonotrichia leucophrys) and Golden-Crowned (Z. atricapilla) Sparrows: Pseudogenes, Hybridization, or Incomplete Lineage Sorting? The Auk, 118(1), 231–236. https://doi.org/10.2307/4089773

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x

Weir, J. T., & Schluter, D. (2004). Ice sheets promote speciation in boreal birds. Proceedings of the Royal Society B: Biological Sciences, 271(1551), 1881–1887. https://doi.org/10.1098/rspb.2004.2803

Yazdi, H. P., & Ellegren, H. (2018). A genetic map of ostrich Z chromosome and the role of inversions in avian sex chromosome evolution. Genome Biology and Evolution, 10(8), 2049–2060. https://doi.org/10.1093/gbe/evy163

Zink, R. M., & Blackwell, R. C. (1996). Patterns of allozyme, mitochondrial DNA, and morphometric variation in four sparrow genera. The Auk, 113(1), 59–67.

Zink, R. M., Dittmann, D. L., & Rootes, W. L. (1991). Mitochondrial DNA Variation and the Phylogeny of Zonotrichia. The Auk, 108(3), 578–584.