Vasectomy and Prostate Cancer Risk in the European Prospective Investigation Into Cancer and Nutrition (EPIC)

Karl Smith Byrne, Jose Maria Castaño, Maria Dolores Chirlaque, Hans Lilja, Antonio Agudo, Eva Ardanaz, Miguel Rodríguez-Barranco, Heiner Boeing, Rudolf Kaaks, Kay-Tee Khaw, Nerea Larrañaga, Carmen Navarro, Anja Olsen, Kim Overvad, Aurora Perez-Cornago, Sabine Rohrmann, María José Sánchez, Anne Tjønneland, Konstantinos K. Tsilidis, Mattias Johansson, Elio Riboli, Timothy J. Key, and Ruth C. Travis

ABSTRACT

Purpose
Vasectomy is a commonly used form of male sterilization, and some studies have suggested that it may be associated with an increased risk of prostate cancer, including more aggressive forms of the disease. We investigated the prospective association of vasectomy with prostate cancer in a large European cohort, with a focus on high-grade and advanced-stage tumors, and death due to prostate cancer.

Patients and Methods
A total of 84,753 men from the European Prospective Investigation into Cancer and Nutrition (EPIC), aged 35 to 79 years, provided information on vasectomy status (15% with vasectomy) at recruitment and were followed for incidence of prostate cancer and death. We estimated the association of vasectomy with prostate cancer risk overall, by tumor subtype, and for death due to prostate cancer, using multivariable-adjusted Cox proportional hazards models.

Results
During an average follow-up of 15.4 years, 4,377 men were diagnosed with prostate cancer, including 641 who had undergone a vasectomy. Vasectomy was not associated with prostate cancer risk (hazard ratio [HR], 1.05; 95% CI, 0.96 to 1.15), and no evidence for heterogeneity in the association was observed by stage of disease or years since vasectomy. There was some evidence of heterogeneity by tumor grade (P = .02), with an increased risk for low-intermediate grade (HR, 1.14; 95% CI, 1.01 to 1.29) but not high-grade prostate cancer (HR, 0.83; 95% CI, 0.64 to 1.07). Vasectomy was not associated with death due to prostate cancer (HR, 0.88; 95% CI, 0.68 to 1.12).

Conclusion
These findings from a large European prospective study show no elevated risk for overall, high-grade or advanced-stage prostate cancer, or death due to prostate cancer in men who have undergone a vasectomy compared with men who have not.

INTRODUCTION

Vasectomy is a commonly used form of male sterilization that has been performed globally in an estimated 40 million to 60 million men. Although a meta-analysis of five prospective cohort studies and a subsequent analysis in the Cancer Prevention Study II (CPS-II) found no significant elevated risk of prostate cancer associated with vasectomy, a recent investigation in the Health Professionals Follow-Up Study (HPFS) has reported a significant increase in risk of high-grade (hazard ratio [HR], 1.22; 95% CI, 1.03 to 1.45) and advanced-stage prostate cancer (HR, 1.20; 95% CI, 1.03 to 1.40) associated with having a vasectomy.

Various biologic mechanisms have been suggested to explain an association of vasectomy with prostate cancer, including immunologic effects, cellular proliferation, and sex hormone imbalances. However, none has been clearly supported in humans. Differences in health-seeking behaviors have been suggested as a possible explanation for any association; men who have had a vasectomy may be more likely to monitor their health, have a prostate-specific antigen (PSA) test, and be diagnosed with prostate cancer.
The current study investigated the association between vasectomy and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC), with a focus on tumor stage and grade, and death due to prostate cancer. We also examined the cross-sectional associations of vasectomy with PSA testing and with circulating concentrations of seminal proteins.

Patients and Methods

Study Population

EPIC included 142,239 men recruited at 19 centers in eight European countries (Denmark, Germany, Greece, Italy, The Netherlands, Spain, Sweden, and the United Kingdom). Recruitment was between 1992 and 2000, and at enrolment participants were mostly aged between 35 and 79 years. All participants provided written informed consent. Source populations were generally identified by geographic administrative boundaries constituting a sample of convenience invited in person or by mail to complete baseline EPIC questionnaires. Center-specific recruitment criteria are outlined by Riboli et al. There was modest heterogeneity of study practices by recruitment centers; estimates of response rates were between approximately 22% and 60% across centers. Approval for the study was obtained from the ethical review boards of the participating institutions and the International Agency for Research on Cancer.

Information about lifestyle factors (ie, smoking status, physical activity, and alcohol consumption), sociodemographic characteristics (ie, marital status and educational attainment), diet, and medical history (including vasectomy status and age at vasectomy) was collected via questionnaires at recruitment. For 6,771 (97.3%) of 6,961 men in the EPIC-Oxford cohort who completed a follow-up questionnaire, history of PSA testing and age at PSA test were collected 10 years after recruitment. Weight and height were measured at recruitment, except for part of the Oxford cohort for whom height and weight were self-reported. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared.

This analysis includes 84,753 men from Denmark, Germany, Spain, and the United Kingdom who provided information on vasectomy status at recruitment; data on vasectomy were missing for 712 men for these countries. Information on vasectomy was not available for men in Italy, The Netherlands, or Sweden (n = 45,960). Additionally, in the Greek recruitment center, only four men had had a vasectomy and there were no exposed incident cases of prostate cancer; therefore, because all analyses were stratified by recruitment center, Greek participants were excluded (n = 10,814).

Ascertainment of Prostate Cancer

Information on cancer diagnosis was obtained from national and regional registries for Denmark, Spain, and the United Kingdom. For Germany, active follow-up, including inquiries by mail or telephone to participants, municipal registries, regional health departments, physicians, and hospitals, was used. Information on death, including death due to prostate cancer as the underlying cause, was obtained from death certificates; available evidence suggests information on death due to prostate cancer is accurate. For analyses of incidence, follow-up continued from date of recruitment to date of any primary cancer diagnosis, death, or last completed follow-up (Denmark, December 31, 2012; Germany, January 5, 2011; Spain, October 19, 2013; and the United Kingdom, December 31, 2012), whichever was first. For analyses of death due to prostate cancer, follow-up continued until death or date of last completed follow-up. During the follow-up period, 4,377 men developed prostate cancer (International Classification of Diseases 10th revision codes, C6120).

Cancer-stage information was available for 2,733 (63.3%) of participants. The number of participants with tumor-node-metastasis (TNM) staging of T1-T3, N0/Nx, and M0/Mx, or stage coded in the recruitment center as having localized disease was 2,100; the number of participants identified as having advanced prostate cancer (T4 and/or N1-N3, and/or M1, or stage coded in the recruitment center as metastatic) was 633. Grade information was available for 2,986 (68.2%) of participants. The number of participants with low-intermediate grade (Gleason score < 8, or grade coded as well, moderately, or poorly differentiated) was 2,438. The number of participants identified as high-grade prostate cancer (Gleason score ≥ 8, or grade coded as undifferentiated) was 544. There was a small difference in the frequency of vasectomy between patients with prostate cancer who did and did not have tumor subtype information; thirteen percent of participants with information on tumor stage had had a vasectomy, compared with 17% of participants without tumor stage information; and 14% of participants with information on tumor grade had had a vasectomy, compared with 16% of participants without tumor grade information. By the end of follow-up, 15,285 men had died, of whom 632 had died of prostate cancer.

Laboratory Assays

Assay data were available for men in the EPIC cohort who had been selected as controls in an unpublished, matched nested case-control study of prostate cancer. Each control had been selected at random from the cohort of men who were alive and free of cancer (excluding nonmelanoma skin cancer) at the time of diagnosis of their index case, using an incidence density sampling protocol (further details on matching methods can be found in Travis et al.). Immunoassay measurements for total PSA, free PSA, intact PSA, human kallikrein 2 (hK2), and microseminoprotein-β (MSP) were conducted in samples from 1,469 men on the AutoDELFIA 1235 automatic immunoassay system (PerkinElmer, Turku, Finland) at the Wallenberg Research Laboratories, Department of Translational Medicine, Lund University, Skåne University Hospital, Sweden. All intra- and interassay coefficients of variation were < 9%.

Statistical Analyses

Cox proportional hazards models were used to estimate the HRs and 95% CIs for prostate cancer incidence, and were used separately for death due to prostate cancer, using age as the underlying time variable. The slope of the Schoenfeld residuals over time was used to verify the proportionality of hazards.

All models were stratified by the participant's age at enrolment (< 50, 50-54, 55-59, 60-64, 65-69, and ≥ 70 years) and EPIC recruitment center. Multivariable models were adjusted for factors suspected to be associated with prostate cancer or vasectomy, including education (less than university, university graduate), smoking status (never, former, current), BMI (< 20, 20-24, 25-29, and ≥ 30 kg/m²), alcohol intake (< 8, 8-15, 16-39, and ≥ 40 g/d ethanol), and physical activity (inactive, moderately inactive, moderately active, active). Missing values were assigned to separate categories for education (3.8%), smoking status (1.5%), BMI (0.6%), and physical activity (0.8%), and missing indicators were used in the statistical models. Additional analyses were conducted adjusting for marital status (single, married, divorced, or widower); however, this information was only available for Germany and the United Kingdom. Adjustment was also made for protein from dairy sources (fourths) because this was previously identified as having incident cases of prostate cancer; therefore, because all analyses were stratified by recruitment center, Greek participants were excluded (n = 10,814).

The frequency of vasectomy between patients with prostate cancer who did and did not have tumor subtype information; thirteen percent of participants with information on tumor stage had had a vasectomy, compared with 17% of participants without tumor stage information; and 14% of participants with information on tumor grade had had a vasectomy, compared with 16% of participants without tumor grade information. By the end of follow-up, 15,285 men had died, of whom 632 had died of prostate cancer.

Cancer-stage information was available for 2,733 (63.3%) of participants. The number of participants with tumor-node-metastasis (TNM) staging of T1-T3, N0/Nx, and M0/Mx, or stage coded in the recruitment center as having localized disease was 2,100; the number of participants identified as having advanced prostate cancer (T4 and/or N1-N3, and/or M1, or stage coded in the recruitment center as metastatic) was 633. Grade information was available for 2,986 (68.2%) of participants. The number of participants with low-intermediate grade (Gleason score < 8, or grade coded as well, moderately, or poorly differentiated) was 2,438. The number of participants identified as high-grade prostate cancer (Gleason score ≥ 8, or grade coded as undifferentiated) was 544. There was a small difference in the frequency of vasectomy between patients with prostate cancer who did and did not have tumor subtype information; thirteen percent of participants with information on tumor stage had had a vasectomy, compared with 17% of participants without tumor stage information; and 14% of participants with information on tumor grade had had a vasectomy, compared with 16% of participants without tumor grade information. By the end of follow-up, 15,285 men had died, of whom 632 had died of prostate cancer.

Laboratory Assays

Assay data were available for men in the EPIC cohort who had been selected as controls in an unpublished, matched nested case-control study of prostate cancer. Each control had been selected at random from the cohort of men who were alive and free of cancer (excluding nonmelanoma skin cancer) at the time of diagnosis of their index case, using an incidence density sampling protocol (further details on matching methods can be found in Travis et al.). Immunoassay measurements for total PSA, free PSA, intact PSA, human kallikrein 2 (hK2), and microseminoprotein-β (MSP) were conducted in samples from 1,469 men on the AutoDELFIA 1235 automatic immunoassay system (PerkinElmer, Turku, Finland) at the Wallenberg Research Laboratories, Department of Translational Medicine, Lund University, Skåne University Hospital, Sweden. All intra- and interassay coefficients of variation were < 9%.

Statistical Analyses

Cox proportional hazards models were used to estimate the HRs and 95% CIs for prostate cancer incidence, and were used separately for death due to prostate cancer, using age as the underlying time variable. The slope of the Schoenfeld residuals over time was used to verify the proportionality of hazards.

All models were stratified by the participant’s age at enrolment (< 50, 50-54, 55-59, 60-64, 65-69, and ≥ 70 years) and EPIC recruitment center. Multivariable models were adjusted for factors suspected to be associated with prostate cancer or vasectomy, including education (less than university, university graduate), smoking status (never, former, current), BMI (< 20, 20-24, 25-29, and ≥ 30 kg/m²), alcohol intake (< 8, 8-15, 16-39, and ≥ 40 g/d ethanol), and physical activity (inactive, moderately inactive, moderately active, active). Missing values were assigned to separate categories for education (3.8%), smoking status (1.5%), BMI (0.6%), and physical activity (0.8%), and missing indicators were used in the statistical models. Additional analyses were conducted adjusting for marital status (single, married, divorced, or widower); however, this information was only available for Germany and the United Kingdom. Adjustment was also made for protein from dairy sources (fourths) because this was previously identified as having incident cases of prostate cancer; therefore, because all analyses were stratified by recruitment center, Greek participants were excluded (n = 10,814).

The current study investigated the association between vasectomy and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC), with a focus on tumor stage and grade, and death due to prostate cancer. We also examined the cross-sectional associations of vasectomy with PSA testing and with circulating concentrations of seminal proteins.
RESULTS

Overall, 84,743 men were followed up for a median of 15.4 years (range, 0-20 years), of whom 4,377 developed prostate cancer. The mean age at recruitment was 58 years, which ranged from 50 years in Spain to 56 years in Denmark. The mean age at diagnosis of prostate cancer was 68 years, with a range of 65 years in Germany to 71 years in the United Kingdom. The proportion of men with self-reported vasectomy was 15% (n = 12,712), which ranged from 4.1% (n = 863) in Germany to 20.5% (n = 4,640) in the United Kingdom. For the 97.9% (n = 12,455) of men who had undergone vasectomy and who also provided age at vasectomy, median age at recruitment was 53 years, which ranged from 50 years (range, 0-20 years), of whom 4,377 developed prostate cancer. The mean age at recruitment was 54 years (range, 0-57 years) in the United Kingdom. For the 97.9% (n = 12,455) of men who had undergone vasectomy and who also provided age at vasectomy, median age at vasectomy was 38 years.

Compared with men without a vasectomy, men with a vasectomy were, on average, older at recruitment (54 years vs 52 years), had a higher educational level (university graduate, 33% vs 26%), and were less physically active (14% vs 19%). Vasectomy status also varied significantly by smoking status and alcohol consumption, although the magnitude of the differences was small (Table 1). Additionally, an analysis in the EPIC-Oxford subcohort showed that men who had undergone a vasectomy were 54% more likely to have had a PSA test when compared with men without a vasectomy (odds ratio, 1.54; 95% CI, 1.35 to 1.76).

Vasectomy and Prostate Cancer

Of the 4,377 men with prostate cancer for whom vasectomy status was available, 641 (14.6%) had a self-reported vasectomy at recruitment. Vasectomy was not significantly associated with prostate cancer risk after stratification by recruitment center and age at recruitment (HR, 1.05; 95% CI, 0.96 to 1.15). Additional adjustment for BMI, smoking status, marital status, educational attainment, alcohol consumption, physical activity, and protein from dairy sources did not alter results (HR, 1.05; 95% CI, 0.96 to 1.15). No evidence of heterogeneity was found in the association between vasectomy and prostate cancer by the stage of disease (P = .6) or recruitment country (P = .09; data not shown). However, there was evidence of heterogeneity by tumor grade (P = .02); vasectomy was associated with an increased risk of low-intermediate grade (HR, 1.14; 95% CI, 1.01 to 1.29) but not of high-grade prostate cancer (HR, 0.83; 95% CI, 0.64 to 1.07) (Table 2). Additionally, there was no significant association of vasectomy with death due to prostate cancer (HR, 0.88; 95% CI, 0.68 to 1.12).

There was significant heterogeneity in the association by median age at vasectomy (38 years) (P = .04). Compared with men who had not had a vasectomy, men who had a vasectomy when they were younger than the median age were at a significantly increased risk of prostate cancer (HR, 1.18; 95% CI, 1.03 to 1.35), whereas there was no significant association with prostate cancer in men who had a vasectomy when they were older than the median age (HR, 0.99; 95% CI, 0.89 to 1.09). There was also significant heterogeneity for the association of vasectomy with prostate cancer by median-defined strata of alcohol consumption (P = .03; data not shown). In men with below median alcohol consumption, those who had a vasectomy were at a significantly increased risk of prostate cancer (HR, 1.16; 95% CI, 1.02 to 1.31) compared with men without a vasectomy, whereas for men with above median alcohol consumption, vasectomy was not associated with prostate cancer (HR, 0.96; 95% CI, 0.84 to 1.08). No heterogeneity was observed for subgroup analyses by BMI, physical activity, marital status, educational attainment, or smoking status (data not shown). There was no heterogeneity (P = .9) in the association with prostate cancer risk by time since vasectomy.

Circulating Concentrations of Seminal Proteins and Vasectomy

Compared with men without a vasectomy, men with a vasectomy had significantly higher concentrations of MSP (multivariable-adjusted HR, 1.36; 95% CI, 1.14 to 1.62). When stratified by time since vasectomy, the association was no longer significant (P = .4; data not shown). The results of this analysis are consistent with the results of previous studies that have shown circulating concentrations of MSP to be higher in men with a history of vasectomy compared with men without a vasectomy.
adjusted geometric mean, 14.2 ng/mL (95% CI, 12.9 to 15.6) versus 12.8 ng/mL (95% CI, 12.4 to 13.1; \(P = .03 \)). No significant differences by vasectomy status were observed for PSA level (total, free, intact, free-to-total) or hK2 (all \(P > .05 \); Table 3).}

DISCUSSION

In this large, prospective European study, vasectomy was not associated with risk of prostate cancer overall, with risk for high-grade or advanced-stage tumors, or with death due to prostate cancer. However, there was some evidence that vasectomy may be associated with an elevated risk of low-intermediate–grade disease, and that having had a vasectomy is associated with also having had a PSA test.

Three of the seven previous cohort studies on vasectomy have reported an increased risk of prostate cancer in men with vasectomies.\(^4,10,32\) However, aside from the recent HPFS\(^4\) and the CPS-II cohort,\(^3\) all cohort studies have had a low number of incident cases with vasectomy (<150), and so risk estimates have been subject to substantial uncertainty. The results from the HPFS cohort suggested a modest 10% elevated risk of overall prostate cancer. However, there was some evidence that vasectomy may be associated with an elevated risk of low-intermediate–grade disease, and that having had a vasectomy is associated with also having had a PSA test.

Table 2. HR and 95% CIs for Vasectomy and Prostate Cancer in Men Enrolled in EPIC

Variable	Patients, No.	Minimally Adjusted HR (95% CI)*	Multivariable Adjusted HR (95% CI)†	\(P \)
Total prostate cancer				
Without vasectomy	3,736	1.00 (reference)	1.00 (reference)	
With vasectomy	641	1.05 (0.96 to 1.15)	1.05 (0.96 to 1.15)	
Age at vasectomy				
Without vasectomy	2,532	1.00 (reference)	1.00 (reference)	
With vasectomy	246	1.17 (1.02 to 1.34)	1.18 (1.03 to 1.35)	
\(< 38 \) years	396	0.99 (0.89 to 1.10)	0.99 (0.89 to 1.09)	
Years since vasectomy				
Without vasectomy	3,736	1.00 (reference)	1.00 (reference)	
With vasectomy	258	1.07 (0.94 to 1.22)	1.07 (0.94 to 1.22)	
\(\geq 38 \) years	378	1.06 (0.95 to 1.18)	1.06 (0.95 to 1.19)	
Localized prostate cancer				
Without vasectomy	1,826	1.00 (reference)	1.00 (reference)	
With vasectomy	274	1.07 (0.94 to 1.22)	1.07 (0.94 to 1.22)	
Advanced prostate cancer				
Without vasectomy	545	1.00 (reference)	1.00 (reference)	
With vasectomy	88	1.03 (0.82 to 1.31)	1.03 (0.82 to 1.30)	
Low-intermediate-grade prostate cancer				
Without vasectomy	2,090	1.00 (reference)	1.00 (reference)	
With vasectomy	348	1.15 (1.02 to 1.29)	1.14 (1.01 to 1.29)	
High-grade prostate cancer				
Without vasectomy	475	1.00 (reference)	1.00 (reference)	
With vasectomy	69	0.82 (0.63 to 1.07)	0.83 (0.64 to 1.07)	
Fatal prostate cancer				
Without vasectomy	555	1.00 (reference)	1.00 (reference)	
With vasectomy	77	0.87 (0.68 to 1.11)	0.88 (0.68 to 1.12)	

Abbreviations: EPIC, European Prospective Investigation into Cancer and Nutrition; HR, hazard ratio.
*From a Cox proportional hazards model stratified by recruitment center and age at recruitment.
†From a Cox proportional hazards model stratified by recruitment center and age at recruitment, and adjusted for body mass index, smoking status, marital status, educational attainment, alcohol consumption, physical activity, and protein from dairy sources.
‡Test for heterogeneity was by likelihood ratio test.
§Test for heterogeneity was by competing risks method.

Table 3. Adjusted Geometric Means and 95% CIs of Plasma Concentrations of Seminal Analytes by Vasectomy Status in a Subset of Men Without Prostate Cancer in the EPIC Study

Seminal Analytes	Without Vasectomy (n = 1,327)	With Vasectomy (n = 142)	\(P^* \)
Microseminoprotein-\(b \), ng/mL	12.8 (12.4 to 13.1)	14.2 (12.9 to 15.6)	.03
Total PSA, ng/mL	0.87 (0.83 to 0.91)	0.86 (0.75 to 0.98)	.9
Intact PSA, ng/mL	0.13 (0.12 to 0.14)	0.12 (0.10 to 0.14)	.3
Free PSA, ng/mL	0.28 (0.27 to 0.29)	0.27 (0.24 to 0.30)	.7
Free-to-total PSA, %‡	31.7 (31.1 to 32.4)	31.3 (29.3 to 33.4)	.7
Human kallikrein protein 2, ng/mL	0.029 (0.027 to 0.029)	0.029 (0.025 to 0.033)	.9

Abbreviation: PSA, prostate-specific antigen.
*\(P \) values were calculated from analyses of variance adjusted for age, body mass index, recruitment center, and laboratory batch.
‡For free-to-total PSA data, there were 1,325 men without vasectomy.
cancer and an elevated risk for aggressive tumor subtypes, with a 22% increased risk of high-grade and a 20% increased risk of advanced-stage tumors for men with vasectomies, compared with men without vasectomies. In contrast, both the current study and CPS-II found no significant association of vasectomy with prostate cancer overall, high-grade or advanced-stage disease, or death from prostate cancer. Thus, our findings do not support the previously hypothesized role of vasectomy as a risk factor for prostate cancer overall or for more aggressive tumors.

There is no established biologic rationale for an association of vasectomy with prostate cancer. During a vasectomy, the vas deferens is cut, blocked, or sealed to prevent the sperm from reaching the seminal fluid. Although previous studies have investigated a series of theoretical mechanisms that include immunologic response, changes to cell proliferation, and endocrine function, the biologic significance of these pathways in humans is unclear. This study addressed a recent suggestion that there may be differential regulation of seminal analytes in men after vasectomy; unclear. This study might be at least partly explained by differences in the use of PSA testing than men without a vasectomy. There was also some evidence for heterogeneity by age at vasectomy and alcohol intake, but the implications of these subgroup analyses are unclear. Evidence from the European Randomized Study of Screening for Prostate Cancer suggests that when PSA testing is offered to all men, it reduces prostate cancer mortality by approximately 28% at 13 years of follow-up. If we assume that the use of PSA testing is 20% among men who have not had a vasectomy and 40% among men who have (data from EPIC-Oxford), it is possible that increased screening in the latter could result in a 5.6% reduced risk of death due to prostate cancer. This suggests that although it is possible that an adverse effect of vasectomy on the risk of potentially lethal prostate cancer is being partly masked by a beneficial effect of increased PSA testing, any such bias is likely small. Nevertheless, it remains a limitation of the current investigation that, because of limited information on PSA testing, we were unable to more fully address the role of PSA testing in the proposed association of vasectomy with prostate cancer. This should be considered in future studies.

Due to the lack of updated data collection for vasectomy status, it is possible that our results were biased by misclassification of men who had undergone vasectomy as being nonvasectomized. However, for the EPIC-Oxford subcohort, updated data on vasectomy status were available and showed that 5.1% of men without a vasectomy at baseline reported having had a vasectomy during the 10 years after recruitment. Furthermore, a recent report suggested that a small misclassification of men who had undergone vasectomy as nonvasectomized would likely result in only a minimal underestimate of any association of vasectomy with prostate cancer risk.

In conclusion, this investigation of 84,753 men in the EPIC cohort did not find a significant association between vasectomy and overall prostate cancer, high-grade or advanced-stage tumors, or death due to prostate cancer. The small increase in the risk of low-intermediate–grade prostate cancer in men who had had a vasectomy may be due to differences in health-monitoring behaviors.

Disclosures provided by the authors are available with this article at jco.org.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Conception and design: Karl Smith Byrne, Eva Ardanaz, Heiner Boeing, Elio Riboli, Timothy J. Key, Ruth C. Travis
Collection and assembly of data: Eva Ardanaz, Miguel Rodríguez-Barranco, Heiner Boeing, Carmen Navarro, Mattias Johansson, Elio Riboli, Timothy J. Key, Ruth C. Travis
Data analysis and interpretation: Karl Smith Byrne, Jose Maria Castaño, Maria Dolores Chirlaque, Hans Lilja, Antonio Agudo, Eva Ardanaz, Rudolf Kaaks, Kay-Tee Khaw, Nerea Larrañaga, Carmen Navarro, Anja Olsen, Kim Overvad, Aurora Perez-Cornago, Sabine Rohrmann, María José Sánchez, Anne Tjønneland, Konstantinos K. Tsilidis, Mattias Johansson, Timothy J. Key, Ruth C. Travis
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHOR CONTRIBUTIONS

REFERENCES
1. Schwingl PJ, Guess HA: Safety and effectiveness of vasectomy. Fertil Steril 73:923-936, 2000
2. Dennis LK, Dawson DV, Resnick MI: Vasectomy and the risk of prostate cancer: A meta-analysis examining vasectomy status, age at vasectomy, and time since vasectomy. Prostate Cancer Prostatic Dis 5:193-203, 2002
3. Jacobs EJ, Anderson RL, Stevens VL, et al: Vasectomy and prostate cancer incidence and mortality in a large US cohort. J Clin Oncol 34:3880-3885, 2016
4. Siddiqui MM, Wilson KM, Epstein MM, et al: Vasectomy and risk of aggressive prostate cancer: A
European Prospective Investigation of Cancer. Br J Cancer 88(suppl 1):95-103, 1999
16. Juel K, Helweg-Larsen K: The Danish registers of causes of death. Dan Med Bull 46:354-357, 1999
17. Storm HH, Michielsen EV, CmrenmennIH, et al: The Danish Cancer Registry—history, content, quality and use. Dan Med Bull 44:535-539, 1997
18. Pérez-Gómez B, Aragónés N, Pollán M, et al: Accuracy of cancer death certificates in Spain: A summary of available information. Gac Sanit 20(suppl 3):42-51, 2006
19. Turner EL, Metcalfe C, Donovan JL, et al: Contemporary accuracy of death certificates for coding prostate cancer as a cause of death: Is reliance on death certification good enough? A comparison with blindend review by an independent cause of death evaluation committee. Br J Cancer 115: 90-94, 2016
20. World Health Organization: ICD-10. International Statistical Classification of Diseases and Related Health Problems (10th ed). Geneva, Switzerland, World Health Organization, 1992
21. Travis RC, Crowe FL, Allen NE, et al: Serum vitamin D and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Epidemiol 169:1223-1232, 2009
22. Mitrusen K, Pettersson K, Piironen T, et al: Dual-label one-step immunoassay for simultaneous measurement of free and total prostate-specific antigen concentrations and ratios in serum. Clin Chem 41:1115-1120, 1995
23. Nurmikko P, Pettersson K, Piironen T, et al: Discrimination of prostate cancer from benign disease by plasma measurement of intact, free prostate-specific antigen lacking an internal cleavage site at Lys145-Lys146. Clin Chem 47:1415-1423, 2001
24. Piironen T, Lövgren J, Karp M, et al: Immuno-fluorometric assay for sensitive and specific measurement of human prostatic glandular kalikrein (Hk2) in serum. Clin Chem 42:1034-1041, 1996
25. Abrahamsson P-A, Andersson C, Björk T, et al: Radioimmunoassay of beta-microsemminoprotein, a prostastic-secreted protein present in sera of both men and women. Clin Chem 35:1497-1503, 1989
26. Valtone-André C, Sávblom C, Fernlund P, et al: Beta-microsemminoprotein in serum correlates with the levels in seminal plasma of young, healthy males. J Androl 29:330-337, 2008
27. Vickers A, Cronin A, Roobol M, et al: Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: An independent replication. J Clin Oncol 28:2493-2498, 2010
28. Haiman CA, Stram DO, Vickers AJ, et al: Levels of beta-microsemminoprotein in blood and risk of prostate cancer in multiple populations. J Natl Cancer Inst 105:237-243, 2013
29. Wareham NJ, Jakes RW, Rennie KL, et al: Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6: 407-413, 2003
30. Key TJ. Nutrition, hormones and prostate cancer risk: Results from the European prospective investigation into cancer and nutrition, Prostate Cancer Prevention. Recent Results Cancer Rev 202: 39-46, 2014
31. Lunn M, McNeill D: Applying Cox regression to competing risks. Biometrics 51:524-532, 1995
32. Giovannucci E, Tosteson TD, Speizer FE, et al: A retrospective cohort study of vasectomy and prostate cancer in US men. JAMA 269:878-882, 1993
33. Howards SS: Possible biological mechanisms for a relationship between vasectomy and prostate cancer. Eur J Cancer 29A:1060-1062, 1993
34. Batruch I, Lecker I, Kagedan D, et al: Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res 10:941-953, 2011
35. Lilja H, Abrahamsson PA: Three predominant proteins secreted by the human prostate gland. Prostate 12:29-38, 1988
36. Anahi Franchi N, Avendaño C, Molina RI, et al: Beta-Microsemminoprotein in human spermatozoa and its potential role in male fertility. Reproduction 136: 157-166, 2008
37. Schröder FH, Hugosson J, Roobol MJ, et al: Screening and prostate cancer mortality: Results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet 384:2027-2035, 2014

Affiliations

Karl Smith Byrne, Hans Lilja, Aurora Perez-Cornago, Timothy J. Key, and Ruth C. Travis, University of Oxford, Oxford; Kay-Tee Kwaw, School of Clinical Medicine, University of Cambridge, Cambridge, Konstantinos K. Tsilidis and Elio Riboli, Imperial College London, London, United Kingdom; Jose Maria Cañasto, Maria Dolores Chirlaque, and Carmen Navarro, Murcia Regional Health Council; Maria Dolores Chirlaque, IMIB-Arraxia, Murcia; Jose Maria Cañasto, Maria Dolores Chirlaque, Eva Ardanaz, Miguel Rodríguez-Barranco, Nerea Larrañaga, Carmen Navarro, and Maria José Sánchez, Center for Biomedical Research Network for Epidemiology and Public Health, Madrid; Antonio Agudo, Catalan Institute of Oncology-IDIBELL, Barcelona, Spain; Eva Ardanaz, Navarra Institute for Health Research, Pamplona; Miguel Rodríguez-Barranco and Maria José Sánchez, Universidad de Granada, Granada; Nerea Larrañaga, Public Health Division of Gipuzkoa, Regional Government of the Basque Country, Donostia, Spain; Hans Lilja, Memorial Sloan Kettering Cancer Center, New York, NY; Lund University, Malmö, Sweden; Heiner Boeing, German Institute of Human Nutrition, Potsdam-Rehbrücke; Rudolf Kaaks, German Cancer Research Center, Heidelberg, Germany; Anja Olsen and Anne Tjonneland, Danish Cancer Society Research Center, Copenhagen; Kim Overvad, Aarhus University, Aarhus, Denmark; Sabine Rohrmann, University of Zurich, Zurich, Switzerland; Konstantinos K. Tsilidis, University of Ioannina School of Medicine, Ioannina, Greece, and Mattias Johansson, International Agency for Research on Cancer, Lyon, France.

Support

Supported by Cancer Research UK (Grant No. C8221/A19170) and the Clarendon Fund, University of Oxford. The coordination of this study was financially supported by the European Commission (DG SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Danish Cancer Society (Denmark); German Cancer Aid, German Cancer Research Center (German...
Cancer Consortium), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); Health Research Fund (FIS), Grant No. PI13/00061 to Granada, Grant No. PI13/01162 to EPIC-Murcia, Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, Instituto de Salud Carlos III, Network for Cooperative Research in Health (Grant No. RD06/0020; Spain); Cancer Research UK (Grant No. 14136 to EPIC-Norfolk; Grant No. C570/A16491 to EPIC-Oxford), Medical Research Council (Grant No. 1000143 to EPIC-Norfolk, Grant No. MR/M012190/1 to EPIC-Oxford; United Kingdom).
AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Vasectomy and Prostate Cancer Risk in the European Prospective Investigation Into Cancer and Nutrition (EPIC)

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Karl Smith Byrne
No relationship to disclose

Jose Maria Castaño
No relationship to disclose

Maria Dolores Chirlaque
No relationship to disclose

Hans Lilja
No relationship to disclose

Antonio Agudo
No relationship to disclose

Eva Ardanaz
No relationship to disclose

Miguel Rodriguez-Barranco
No relationship to disclose

Heiner Boeing
No relationship to disclose

Rudolf Kaaks
No relationship to disclose

Kay-Tee Khaw
No relationship to disclose

Nerea Larrañaga
No relationship to disclose

Carmen Navarro
No relationship to disclose

Anja Olsen
No relationship to disclose

Kim Overvad
No relationship to disclose

Aurora Perez-Cornago
No relationship to disclose

Sabine Rohrmann
No relationship to disclose

Maria José Sánchez
No relationship to disclose

Anne Tjønneland
No relationship to disclose

Konstantinos K. Tsilidis
No relationship to disclose

Mattias Johansson
No relationship to disclose

Elio Riboli
No relationship to disclose

Timothy J. Key
No relationship to disclose

Ruth C. Travis
No relationship to disclose
Acknowledgment

We thank the participants in the EPIC study, and Carine Biessy and Bertrand Hemon at IARC for their expertise in data handling. For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at http://epic.iarc.fr/access/index.php.