MINIMAL FIXED POINT SET OF MAPS ON TORUS
FIBER BUNDLES OVER THE CIRCLE

WESLEM L. SILVA

Abstract. The main purpose this work is to study the minimal fixed point set of fiber-preserving maps for spaces which are fiber bundles over the circle and the fiber is the torus. Using the one-parameter fixed point theory is possible to describe these sets in terms of the fundamental group and the induced homomorphism.

1. Introduction

Let $S \to M \overset{p}{\to} B$ be a fiber bundle, where S, M, B are closed manifolds, and $f : M \to M$ be a fiber-preserving map. The minimum number $MF_B[f] = \min\{\#\pi_0(Fix(f'))|f' \sim_B f\}$ of path components of fixed point subspaces of M among all pairs fiberwise homotopic to f is finite, see [6]. The symbol “\sim_B” means a fiberwise homotopy.

To determine when the number $MF_B[f]$ is zero, that is, when the fiber-preserving map f can be deformed by a fiberwise homotopy to a fixed point free map is a problem that has been considered by many authors, see for example, [2], [3] and [8]. The study of the minimal fixed point set of a fiber-preserving map is a problem of interest in fixed point theory. These sets have been studied using bordism techniques, that in general are difficult to compute, see [6].

In this paper we present a method to compute $MF_B[f]$, using one-parameter fixed point theory, when the base B is the circle S^1. This

Date: May 11, 2014.

2000 Mathematics Subject Classification. Primary 55M20; Secondary 55R10.

Key words and phrases. fiber bundle, fiberwise homotopy, minimal fixed point set, one-parameter fixed point theory.

1This work is part of the doctoral thesis of the author, made at University Federal of São Carlos under the supervision of Professor Daniel Vendruscolo.

This work was supported by CAPES.
technique allows us to present the minimal fixed point set of a fiber-preserving map in terms of the fundamental group of M, and of the induced homomorphism $f_\#$. The one-parameter fixed point theory also allow us to describe each path component of $Fix(f')$ for each fiber-preserving map f' fiberwise homotopic to f.

Let $f : M \to M$ be a fiber-preserving map, where M is a fiber bundle over the circle and the fiber is the torus, T. Such fiber bundles M are obtained from $T \times [0,1]$ by identifying $(x,0)$ with $(A(x),1)$, where A is a homeomorphism of T. We write

$$M(A) = M = \frac{T \times [0,1]}{(x,0) \sim (A(x),1)}$$

The elements of $M(A)$ are denoted by $\langle [(x,y)], t >$. Here $[(x,y)]$ denote a point in T. We can identify A with a matrix with integer coefficients and determinant 1 or -1, the details are in section 2. The projection map $p : M(A) \to S^1 = I/0 \sim 1$, is given by $p(\langle [(x,y)], t >) = \langle t >$.

Since f is a fiber-preserving map and the base is S^1, the fixed point set of f can be seen as the fixed point set of a homotopy of the torus. In this paper we study the minimal fixed point set for homotopies using one-parameter fixed point theory developed by R. Geoghegan and A. Nicas in [4].

This paper is organized into five sections, besides this one. In section 2 we considered fiber-preserving maps in fiber bundles over the circle with fiber torus. In section 3 we present the relation between fixed point sets of fiber-preserving maps and fixed point sets of homotopies. In section 4 we present preliminaries about the one-parameter fixed point theory. In section 5 we prove the main result, which is theorem 5.1.

2. Torus fiber-preserving maps

Let T be, the torus, defined as the quotient space $\mathbb{R} \times \mathbb{R}/\mathbb{Z} \times \mathbb{Z}$. We denote by (x,y) the elements of $\mathbb{R} \times \mathbb{R}$ and by $[(x,y)]$ the elements in T.

Let $M(A) = \frac{T \times [0,1]}{([(x,y)],0) \sim ([A(x)],1)}$ be the quotient space, where A is a homeomorphism of T induced by an operator in \mathbb{R}^2 that preserves
The space $M(A)$ is a fiber bundle over the circle S^1 where the fiber is the torus. For more details on these bundles see [3].

Given a fiber-preserving map $f : M(A) \rightarrow M(A)$, i.e. $p \circ f = p$ we want to compute the number $MF_{S^1}[f]$. More precisely we want to study the path components of $Fix(f')$ for each map f' fiberwise homotopic to f.

Consider the loops in $M(A)$ given by: $a(t) =< [(t,0)], 0 >$, $b(t) =< [(0,t)], 0 >$ and $c(t) =< [(0,0)], t >$ for $t \in [0,1]$. We denote by B the matrix of the homomorphism induced on the fundamental group by the restriction of f to the fiber T. From [3] we have the following theorem that provides a relationship between the matrices A and B.

Theorem 2.1. (1) $\pi_1(M(A), 0) = \langle a, b, c | [a, b] = 1, cac^{-1} = a^2 b^2, cbc^{-1} = a^3 b^3 \rangle$

(2) B commutes with A.

(3) If f restricted to the fiber is deformable to a fixed point free map then the determinant of $B - I$ is zero, where I is the identity matrix.

(4) Consider $w = A(v)$ if the pair v, w generators $\mathbb{Z} \times \mathbb{Z}$, otherwise let w be another vector so that v, w span $\mathbb{Z} \times \mathbb{Z}$. Define the linear operator $P : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by $P(v) = (1, 0)$ and $P(w) = (0, 1)$. Consider an isomorphism of fiber bundles, also denoted by P, $P : M(A) \rightarrow M(A^1)$ where $A^1 = P \circ A \circ P^{-1}$. Then $M(A)$ is homeomorphic to $M(A^1)$ over S^1. Moreover we have one of the cases of the table below with $B^1 = P \circ A \circ P^{-1}$ and $B \neq I$, except in case I:
From [3] we have the following theorem:

Theorem 2.2. If \(f : M(A) \to M(A) \) is a fiber-preserving map, then in the case I we have \(MF_{S^1}[f] = 0 \), and in the cases II and III we have \(MF_{S^1}[f] = 0 \) if and only if \(c_1(b_4 - 1) - c_2b_3 = 0 \).

The Theorem 2.2 in [3] provides also conditions for remaining cases. We omit them, since here we will study only II and III.

3. Fixed point set of fiber-preserving maps

Given a fiber-preserving map \(f : M(A) \to M(A) \) the set \(Fix(f) \) is given by: \(\{ < [(x, y)], t > \in M(A) \mid f(< [(x, y)], t >) = < [(x, y)], t > \} \).

Since \(f \) is a fiber-preserving map then the map \(f \) is given by formula:

\[
f(< [(x, y)], t >) = < F([(x, y)], t), t >
\]

where \(F : T \times I \to T \) is a homotopy. We call this homotopy \(F \) the homotopy induced by \(f \). If \(f \) has no fixed points in \(t = 0,1 \), then the study of the set \(Fix(f) \) is equivalent to the study of the set \(Fix(F) \), that is,

\[
Fix(f) \approx Fix(F).
\]

This happens since, in the fiber bundle \(M(A) \) the class \(< [(x, y)], t > \) contains only one unique point if \(t \neq 0,1 \). Notice that

Case	\(A^1 = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \end{pmatrix} \), \(B^1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
I	\(a_3 \neq 0 \)
II	\(A^1 = \begin{pmatrix} 1 & a_3 \\ 0 & 1 \end{pmatrix} \), \(B^1 = \begin{pmatrix} 1 & b_3 \\ 0 & b_4 \end{pmatrix} \)
	\(a_3(b_4 - 1) = 0 \)
III	\(A^1 = \begin{pmatrix} 1 & a_3 \\ 0 & -1 \end{pmatrix} \), \(B^1 = \begin{pmatrix} 1 & b_3 \\ 0 & b_4 \end{pmatrix} \)
	\(a_3(b_4 - 1) = -2b_3 \)
IV	\(A^1 = \begin{pmatrix} -1 & a_3 \\ 0 & 1 \end{pmatrix} \), \(B^1 = \begin{pmatrix} 1 & b_3 \\ 0 & b_4 \end{pmatrix} \)
	\(a_3(b_4 - 1) = 0 \)
V	\(A^1 = \begin{pmatrix} -1 & a_3 \\ 0 & 1 \end{pmatrix} \), \(B^1 = \begin{pmatrix} 1 & b_3 \\ 0 & b_4 \end{pmatrix} \)
	\(a_3(b_4 - 1) = 2b_3 \)
Proposition 3.1. Let \(M(A) \) be a fiber bundle as in theorem 2.1. If \(f : M(A) \to M(A) \) is a fiber-preserving map such the restriction to each fiber \(f_{|T} \) can be deformed to a fixed point free map, then \(f \) can be deformed to a map \(f' \) such that \(f'(\langle [(x, y)], 0 \rangle) : T \to T \) is a fixed point free map.

Proof. Let \(f : M(A) \to M(A) \) be a fiber-preserving map given by \(f(\langle [(x, y)], t \rangle) = F(\langle [(x, y)], t \rangle, t >) \). As \(M(A) \) is a locally trivial bundle thus we can choose \(\frac{1}{2} > \epsilon > 0 \) such that \(p^{-1}(\epsilon, 1 - \epsilon) \approx T \times (\epsilon, 1 - \epsilon) \). We take the homotopy \(H : M(A) \times I \to M(A) \) defined by:

\[
H(\langle [(x, y)], t \rangle, s) = \begin{cases}
<F(\langle [(x, y)], 0 \rangle, t) & \text{if } 0 \leq t \leq \epsilon s \\
<F(\langle [(x, y)], \frac{1}{1-2\epsilon}(t - s\epsilon) \rangle, t) & \text{if } \epsilon s \leq t \leq 1 - \epsilon s \\
<F(\langle [(x, y)], 0 \rangle, t) & \text{if } 1 - \epsilon s \leq t \leq 1
\end{cases}
\]

By hypothesis there is one homotopy \(h : T \times I \to T \) satisfying \(h(\langle [(x, y)], 1 \rangle) = F(\langle [(x, y)], 0 \rangle) \) and \(h(\langle [(x, y)], 0 \rangle) \) is a fixed point free map. Therefore we can define the following homotopy:

\[
G(\langle [(x, y)], t \rangle, s) = \begin{cases}
<h(\langle [(x, y)], \frac{t-n}{n} s + 1 \rangle, t) & \text{if } 0 \leq t \leq \epsilon \\
<F(\langle [(x, y)], \frac{1}{1-2\epsilon}(t - \epsilon) \rangle, t) & \text{if } \epsilon \leq t \leq 1 - \epsilon \\
h(\langle [(x, y)], \frac{1}{1-s}\epsilon s + 1 \rangle, t) & \text{if } 1 - \epsilon \leq t \leq 1
\end{cases}
\]

The fiber-preserving homotopy \(J : M(A) \times I \to M(A) \) defined by:

\[
J(\langle [(x, y)], t \rangle, s) = \begin{cases}
H(\langle [(x, y)], t \rangle, 2s) & \text{if } 0 \leq s \leq \frac{1}{2} \\
G(\langle [(x, y)], t \rangle, 2s - 1) & \text{if } \frac{1}{2} \leq s \leq 1
\end{cases}
\]
satisfies the condition of the theorem. \(\square \)

Note that if a fiber-preserving map \(f : M(A) \to M(A) \), where \(M(A) \) is as in Theorem 2.1 has no fixed points in \(t = 0 \) then \(f \) has no fixed points in \(t = 1 \) also. In fact, suppose that \(f \) has one fixed point in \(t = 1 \). We have, \(f(\langle [(x, y)], 0 \rangle) = f(\langle [A(x)], 1 \rangle) \). Using which the matrix \(A \) is invertible in \(\mathbb{Z} \), see section 2 then there should be one point \(\langle [(u, v)], 0 \rangle \), satisfying \(f(\langle [(u, v)], 0 \rangle) = \langle [(u, v)], 0 \rangle \), but this is a contradiction.

Proposition 3.2. Let \(F : T \times I \to T \) be the homotopy induced by a fiber-preserving map \(f : M(A) \to M(A) \), i.e, \(f(\langle [(x, y)], t \rangle) = \langle [(x, y)], t \rangle \).
< F([(x, y)], t), t >. If \(P : T \to T \) is an isomorphism and \(g : M(A^1) \to M(A), A^1 = P \circ A \circ P^{-1} \), is a fiber-preserving map defined by \(g(< [(x, y)], t >) = < P \circ F \circ (P^{-1} \times Id) (\tilde{\sigma}, t), t > \), then the numbers \(MF_{S^1} [f] \) and \(MF_{S^1} [g] \) are equals.

\[
\begin{array}{ccc}
M(A) & \xrightarrow{f} & M(A) \\
\downarrow P & & \downarrow P \\
M(A^1) & \xrightarrow{g} & M(A^1)
\end{array}
\]

Proof. Note that the homotopy \(G : T \times I \to T \) induces the fiber-preserving map \(g : M(A^1) \to M(A) \). Since that \(G = P \circ F \circ (P^{-1} \times Id) \) then we have \(MF_{S^1} [f] = MF_{S^1} [g] \).

By Proposition 3.1 the study of the minimal fixed point set, over \(S^1 \), of a fiber-preserving map \(f : M(A) \to M(A) \) is equivalent to study of the minimal fixed point set for the homotopy induced by \(f \). In this paper, we applied the one-parameter fixed point theory developed by R. Geoghegan and A. Nicas in [4] to determine the minimal fixed point set of the homotopy \(F \). Since \(T \) is orientable then the fixed point set of \(F \) consists of oriented arcs as Figure 1, see [1], [5] and [9].

![Figure 1. Fixed point set of a homotopy on the torus.](image)

As \(f \) has no fixed points in \(t = 0, 1 \), then in Figure 1 above we have only circles. The one-parameter trace give us the “minimum amount” these circles. In the next section we shall describe some concepts of the one-parameter fixed point theory, for more details see [4].

4. **One-parameter fixed point theory**

4.1. **Hochschild Homology Traces.** Let \(R \) be a ring and \(M \) an \(R - R \) bimodule, that is, a left and right \(R \)-module satisfying \((r_1m)r_2 =
The Hochschild chain complex \(\{C_*(R, M), d\} \) is given by \(C_n(R, M) = R^\otimes n \otimes M \) where \(R^\otimes n \) is the tensor product of \(n \) copies of \(R \), taken over the intergers, and

\[
d_n(r_1 \otimes \ldots \otimes r_n \otimes m) = r_2 \otimes \ldots r_n \otimes mr_1 \\
+ \sum_{i=1}^{n-1} (-1)^i r_1 \otimes \ldots \otimes r_{i+1} \otimes \ldots \otimes r_n \otimes m \\
+ (-1)^n r_1 \otimes \ldots \otimes r_{n-1} \otimes r_nm.
\]

The \(n - th \) homology of this complex is the Hochschild homology of \(R \) with coefficient bimodule \(M \). It is denoted by \(HH_n(R, M) \). For computed \(HH_1 \) and \(HH_0 \) we have the formulae \(d_2(r_1 \otimes r_2 \otimes m) = r_2 \otimes mr_1 - r_1r_2 \otimes m + r_1 \otimes r_2m \) and \(d_1(r \otimes m) = mr - rm \).

Lemma 4.1. If \(1 \in R \) is the unit element and \(m \in M \) then the 1-chain \(1 \otimes m \) is a boundary.

Proof. \(d_2(1 \otimes 1 \otimes m) = 1 \otimes m - 1 \otimes m + 1 \otimes m = 1 \otimes m. \)

The Hochschild homology will arise in the following situation: let \(G \) be a group and \(\phi : G \rightarrow G \) an endomorphism. Also denote by \(\phi \) the induced ring homomorphism \(\mathbb{Z}G \rightarrow \mathbb{Z}G \). Take the ring \(R = \mathbb{Z}G \) and \(M = (\mathbb{Z}G)^\phi \) the \(\mathbb{Z}G - \mathbb{Z}G \) bimodule whose underlying abelian group is \(\mathbb{Z}G \) and the bimodule structure is given by \(g.m = gm \) and \(m.g = m\phi(g) \).

Two elements \(g_1, g_2 \) in \(G \) are semiconjugate if and only if there exists \(g \in G \) such that \(g_1 = gg_2\phi(g^{-1}) \). We write \(C(g) \) for the semiconjugacy class containing \(g \) and \(G^\phi \) for the set of semiconjugacy classes. Thus, we can decompose \(G \) in the union of its semiconjugacy classes. This partition induces a direct sum decomposition of \(HH_*(\mathbb{Z}G, (\mathbb{Z}G)^\phi) \).

In fact, each generating chain \(\gamma = g_1 \otimes \ldots \otimes g_n \otimes m \) can be written in canonical form as \(g_1 \otimes \ldots \otimes g_n \otimes g_n^{-1} \otimes \ldots g_1^{-1}g \) where \(g = g_1\ldots g_nm \in G \) “marks” a semiconjugacy class. Thus, the decomposition \((\mathbb{Z}G)^\phi \cong \bigoplus_{C \in G^\phi} \mathbb{Z}C \) as a direct sum of abelian groups determines a decomposition of chains complexes \(C_*(\mathbb{Z}G, (\mathbb{Z}G)^\phi) \cong \bigoplus_{C \in G^\phi} C_*(\mathbb{Z}G, (\mathbb{Z}G)^\phi)_C \) where \(C_*(\mathbb{Z}G, (\mathbb{Z}G)^\phi)_C \) is the subgroup of \(C_*(\mathbb{Z}G, (\mathbb{Z}G)^\phi) \) generated by those generating chains whose markers lie in \(C \). Thus we have the following isomorphism: \(HH_*(\mathbb{Z}G, (\mathbb{Z}G)^\phi) \cong \bigoplus_{C \in G^\phi} HH_*(\mathbb{Z}G, (\mathbb{Z}G)^\phi)_C \).
where the summand $HH_* (\mathbb{Z}G, (\mathbb{Z}G)^\phi)_C$ corresponds to the homology classes marked by the elements of C. This summand is called the $C-$component.

Let $Z(h) = \{g \in G | h = gh\phi(g^{-1})\}$ be the semicentralizer of $h \in G$. Choosing representatives $g_C \in C$, then we have the following proposition whose proofs is in \cite{4}:

Proposition 4.2. Choosing representatives $g_C \in C$ then we have

$$HH_* (\mathbb{Z}G, (\mathbb{Z}G)^\phi) \cong \bigoplus_{C \in G_\phi} H_*(Z(g_C))_C$$

where $H_*(Z(g_C))_C$ corresponds to the summand $HH_* (\mathbb{Z}G, (\mathbb{Z}G)^\phi)_C$.

Given a $m \times n$ matrix over R and a $n \times m$ matrix over M we define $A \otimes B$ to be the $m \times m$ matrix with entries in $R \otimes M$ given by $(A \otimes B)_{ij} = \sum_{k=1}^{n} A_{ik} \otimes B_{kj}$. The trace of $A \otimes B$, written $\text{trace}(A \otimes B)$, is given by

$$\sum_{i=1}^{m} \sum_{k=1}^{n} A_{ik} \otimes B_{ki} \in C_1(R, M).$$

We have that the 1–chain $\text{trace}(A \otimes B)$ is a cycle if and only if $\text{trace}(AB) = \text{trace}(B\phi(A))$, in which case we denote its homology class by $T_1(A \otimes B) \in HH_1(R, M)$.

4.2. One-parameter Fixed Point Theory

Let X be a finite connected CW complex and $F : X \times I \to X$ a cellular homotopy. We consider $I = [0, 1]$ with the usual CW structure and orientation of cells, and $X \times I$ with the product CW structure, where its cells are given the product orientation.

Pick a basepoint $(v, 0) \in X \times I$, and a basepath τ in X from v to $F(v, 0)$. We identify $\pi_1(X \times I, (v, 0)) \cong G$ with $\pi_1(X, v)$ via the isomorphism induced by projection $p : X \times I \to X$. We write $\phi : G \to G$ for the homomorphism;

$$\pi_1(X \times I, (v, 0)) \xrightarrow{F} \pi_1(X, F(v, 0)) \xrightarrow{\phi} \pi_1(X, v)$$

We choose a lift \tilde{E} in the universal cover, \tilde{X}, of X for each cell E and we orient \tilde{E} compatibly with E. Let $\tilde{\tau}$ be the lift of the basepath τ which starts at in the basepoint $\tilde{v} \in \tilde{X}$ and $\tilde{F} : \tilde{X} \times I \to \tilde{X}$ the unique lift of F satisfying $\tilde{F}(\tilde{v}, 0) = \tilde{\tau}(1)$.
We can regard $C_*(\tilde{X})$ as a right $\mathbb{Z}G$ chain complex as follows: if ω is a loop at ν which lifts to a path $\tilde{\omega}$ starting at $\tilde{\nu}$ then $\tilde{E}[\omega]^{-1} = h_{[\omega]}(\tilde{E})$, where $h_{[\omega]}$ is the covering transformation sending $\tilde{\nu}$ to $\tilde{\omega}(1)$.

The homotopy \tilde{F} induces a chain homotopy $\tilde{D}_k : C_k(\tilde{X}) \to C_{k+1}(\tilde{X})$ given by $\tilde{D}_k(\tilde{E}) = (-1)^{k+1}F_k(\tilde{E} \times I) \in C_{k+1}(\tilde{X})$, for each cell $\tilde{E} \in \tilde{X}$. This chain homotopy satisfies: $\tilde{D}(\tilde{E}g) = \tilde{D}(\tilde{E})\phi(g)$ and the boundary operator $\tilde{\partial}_k : C_k(\tilde{X}) \to C_{k-1}(\tilde{X})$ satisfies: $\tilde{\partial}(\tilde{E}g) = \tilde{\partial}(\tilde{E})g$.

Define endomorphism of, $\bigoplus_k C_k(\tilde{X})$, by $\tilde{D}_* = \bigoplus_k (-1)^{k+1}D_k$, $\tilde{\partial}_* = \bigoplus_k \tilde{\partial}_k$, $\tilde{F}_0* = \bigoplus_k (-1)^k\tilde{F}_{0k}$ and $F_1* = \bigoplus_k (-1)^k\tilde{F}_{1k}$. We consider trace($\tilde{\partial}_* \tilde{D}_*$) $\in HH_1(\mathbb{Z}G,(\mathbb{Z}G)\phi)$. This is a Hochshcild 1-chain whose boundary is: $\text{trace}(\tilde{D}_*\phi(\tilde{\partial}_*) - \tilde{\partial}_*\tilde{D}_*)$.

We denote by $G_\phi(\tilde{\partial}(F))$ the subset of G_ϕ consisting of semiconjugacy classes associated to fixed points of F_0 or F_1.

Definition 4.3. The one-parameter trace of homotopy F is;

$$R(F) \equiv T_1(\tilde{\partial}_* \tilde{D}_*; G_\phi(\tilde{\partial}(F))) \in \bigoplus_{C \in G_\phi - G_\phi(\tilde{\partial}(F))} HH_1(\mathbb{Z}G,(\mathbb{Z}G)\phi)_C$$

$$\cong \bigoplus_{C \in G_\phi - G_\phi(\tilde{\partial}(F))} H_1(Z(g_C)).$$

Definition 4.4. The C-component of $R(F)$ is denoted by $i(F; C) \in HH_1(\mathbb{Z}G,(\mathbb{Z}G)\phi)_C$. We call it the fixed point index of F corresponding to semiconjugacy class $C \in G_\phi$. The one-parameter Nielsen number, $N(F)$, of F is the number of nonzero fixed point indices.

The one-parameter Lefschetz class, $L(F)$, of F is defined by;

$$L(F) = \sum_{C \in G_\phi - G_\phi(\tilde{\partial}(F))} j_C(i(F; C))$$

where $j_C : H_1(Z(g_C)) \to H_1(G)$ is induced by the inclusion $Z(g_C) \subset G$.

From [4] we have the following theorems:

Theorem 4.1 (one-parameter Lefschetz fixed point theorem). If $L(F) \neq 0$ then every map homotopic to F relative to $X \times \{0, 1\}$ has a fixed point not in the same fixed point class as any fixed point in $X \times \{0, 1\}$. In particular, if F_0 and F_1 are fixed point free, every map homotopic to F relative to $X \times \{0, 1\}$ has a fixed point.
Theorem 4.2 (one-parameter Nielsen fixed point theorem). Every map homotopic to F relative to $X \times \{0,1\}$ has at least $N(F)$ fixed point classes other than the fixed point classes which meet $X \times \{0,1\}$. In particular, if F_0 and F_1 are fixed point free maps, then every map homotopic to F relative to $X \times \{0,1\}$ has at least $N(F)$ path components.

4.3. Semiconjugacy classes in the torus. In this subsection we describe some results about the semiconjugacy classes in the torus.

We take $w = [(0,0)] \in T$ and $G = \pi_1(T,w) = \{u,v|uvu^{-1}v^{-1} = 1\}$, where $u \equiv a$ and $v \equiv b$. Thus, given a homomorphism $\phi : G \to G$ we have $\phi(u) = u^{b_1}v^{b_2}$ and $\phi(v) = u^{b_3}v^{b_4}$. Therefore, $\phi(u^mv^n) = u^{mb_1+nb_3}v^{mb_2+nb_4}$, for all $m, n \in \mathbb{Z}$. We denote this homomorphism by the matrix:

$$[\phi] = \begin{pmatrix} b_1 & b_3 \\ b_2 & b_4 \end{pmatrix}$$

Proposition 4.5. Two elements $g_1 = u^{m_1}v^{n_1}$ and $g_2 = u^{m_2}v^{n_2}$ in G belong to the same conjugacy class, if and only if there are integers m, n satisfying the following equations:

$$\begin{cases} m(b_1 - 1) + nb_3 = m_2 - m_1 \\ mb_2 + n(b_4 - 1) = n_2 - n_1 \end{cases}$$

Proof. If there is $g = u^mv^n \in G$ satisfying $g_1 = gg_2\phi(g)^{-1}$ then we obtain the equation of the proposition. The other direction is analogous. \qed

We take the isomorphism $\Theta : G \to \mathbb{Z} \times \mathbb{Z}$ such that $\Theta(u^mv^n) = (m,n)$. By above proposition two elements $g_1 = u^{m_1}v^{n_1}$ and $g_2 = u^{m_2}v^{n_2}$ in G belong to the same conjugacy class, if and only if there is $z \in \mathbb{Z} \times \mathbb{Z}$ satisfying; $([\phi] - I)z = \Theta(g_2g_1^{-1})$, where I is the identity matrix. If $\det([\phi] - I) \neq 0$ will have an infinite amount of semiconjugacy classes.

Corollary 4.6. The semicentralizer $Z(g)$ of a element $g \in G$ is isomorphic to the kernel of $[\phi] - I$.

Lemma 4.7. The 1-chain, $u^kv^l \otimes u^mv^n$, is a cycle if and only if the element $(k,l) \in \mathbb{Z} \times \mathbb{Z}$ belongs to the kernel of $[\phi] - I$.

Proof. If $u^kv^l \otimes u^mv^n$ is a cycle, then $0 = d_1(u^kv^l \otimes u^mv^n) = u^m v^n \phi(u^kv^l) - u^kv^l u^m v^n$
$= u^m v_n u^{kb_1 + lb_3 v^{kb_2 + lb_4} - u^k v^l u^m v^n} = u^{m + kb_1 + lb_3 v^{kb_2 + lb_4} + n} - u^{k + m + l + n}$. This implies $k(b_1 - 1) + lb_3 = 0$ and $kb_2 + l(b_4 - 1) = 0$. The other direction is analogous.

Proposition 4.8. The 1-chain, $u^k \otimes u^m v^n$, is homologous to the 1-chain, $ku \otimes u^{m+k-1} v^n$, for all $k, m, n \in \mathbb{Z}$.

Proof. Note that for $k = 0$ and 1 the proposition is true. We suppose that for some $s > 0 \in \mathbb{Z}$, $u^s \otimes u^m v^n \sim su \otimes u^{m+s-1} v^n$. Considering the to 2-chain $u^s \otimes u \otimes u^m v^n$ then we have

$$d_2(u^s \otimes u \otimes u^m v^n) = u \otimes u^m v^n - u^{s+1} \otimes u^m v^n + u^s \otimes u^{1+m} v^n$$
$$\sim u \otimes u^m v^n - u^{s+1} \otimes u^m v^n + su \otimes u^{1+m+s-1} v^n$$
$$= (s + 1)u \otimes u^{m+(s+1)-1} v^n - u^{s+1} \otimes u^m v^n.$$

Therefore $(s + 1)u \otimes u^{m+(s+1)-1} v^n \sim u^{s+1} \otimes u^m v^n$. Using induction, we have the result. The case in which $k < 0$ is analogous.

Lemma 4.9. Each 1-chain, $\sum_{i = 1}^{t} a_i u^{k_i} v^{l_i} \otimes u^{m_i} v^{n_i}$, is homologous to a 1-chain, $\sum_{i = 1}^{t} \tilde{a}_i u^{\tilde{k}_i} v^{\tilde{l}_i} \otimes u^{\tilde{m}_i} v^{\tilde{n}_i}$, where all elements $\tilde{l}_i, i = 1, ..., t$, are positive.

Proof. We denote by $w_i = a_i u^{k_i} v^{l_i} \otimes u^{m_i} v^{n_i}$ and $\alpha = \sum_{i = 1}^{t} a_i u^{k_i} v^{l_i} \otimes u^{m_i} v^{n_i}$. If there is some $l_i \leq 0$ then considering the to 2-chain $\gamma_i = a_i u^{k_i} v^{l_i} \otimes u^{k_i} v^{-l_i} \otimes u^{m_i - k_i} v^{m_i - l_i}$ we obtain; $d_2(\gamma_i) = w_i - g_i + h_i$, where $g_i = -a_i u^{2k_i} \otimes u^{m_i - k_i} v^{m_i - l_i}$ and $h_i = a_i u^{k_i} v^{-l_i} \otimes u^{m_i + k_i(b_1 - 1) + l_i b_3 v^{l_i + k_i b_2 + l_i(b_4 - 1)}}$.

Thus, $w_i \sim g_i - h_i$, and g_i, h_i have the desired form.

In the following proposition we consider $b_1 = 1$ and $b_2 = 0$.

Proposition 4.10. If the Hochschild 1-chain; \(\sum_{i=1}^{t} a_i u^{k_i} v^{l_i} \otimes u^{m_i} v^{n_i} \), is a 1-cycle then the 1-chain ; \(\sum_{i=1}^{t} a_i u^{k_i} v^{l_i} \otimes u^{m_i} v^{n_i} \), is a 1-cycle for all \(m, n \in \mathbb{Z} \).

Proof. We take a 1-chain, \(\sum_{i=1}^{t} a_i u^{k_i} v^{l_i} \otimes u^{m_i} v^{n_i} \), with \(d_1(\sum_{i=1}^{t} a_i u^{k_i} v^{l_i} \otimes u^{m_i} v^{n_i}) = \sum_{i=1}^{t} a_i u^{m_i+k_i} v^{l_i+n_i} - a_i u^{m_i+k_i} v^{l_i+n_i} = 0 \). We denote \(e_i = u^{m_i+k_i} v^{l_i+n_i} \) and \(f_i = u^{m_i+k_i} v^{l_i+n_i} \). The last equality implies the following equality on the ring group \(ZG \):

\[
\sum_{i=1}^{t} a_i e_i = \sum_{i=1}^{t} a_i f_i.
\]

Thus, for each \(i, 1 \leq i \leq t \) there is \(j, 1 \leq j \leq t \) such that \(a_i = a_j \) and \(e_i = f_j \), that is, we have

\[
(I) \left\{ \begin{array}{l}
m_i + k_i b_1 + l_i b_3 = k_j + m_j \\
l_i b_4 + k_i b_2 + n_i = l_j + n_j
\end{array} \right.
\]

If \(i = j \) then the equality above says that the vector \((k_i, l_i) \) satisfies the equation; \(([\phi] - I) (k_i, l_i) = 0 \), i.e , belongs the to kernel of the \(([\phi] - I) \).

If \(i \neq j \) then fixing \(j \) there is \(q, 1 \leq q \leq t \) such that \(a_j = a_q \) and \(e_j = f_q \). This implies the following equation:

\[
(II) \left\{ \begin{array}{l}
m_j + k_j b_1 + l_j b_3 = k_q + m_q \\
l_j b_4 + k_j b_2 + n_j = l_q + n_q
\end{array} \right.
\]

Adding the corresponding lines of the \((I) \) and \((II) \) we obtain;

\[
\left\{ \begin{array}{l}
(k_i + k_j)(b_1 - 1) + (l_i + l_j)b_3 = k_q - k_i + m_q - m_i \\
(k_i + k_j)b_2 + (l_i + l_j)(b_4 - 1) = l_q - l_i + n_q - n_i
\end{array} \right.
\]

If \(i = q \) then \((k_i + k_j)(b_1 - 1) + (l_i + l_j)b_3 = 0 \) and \((k_i + k_j)b_2 + (l_i + l_j)(b_4 - 1) = 0 \), which is equivalent to say that the vector, \((k_i + k_j, l_i + l_j) \), satisfies the equation; \(([\phi] - I) (k_i + k_j, l_i + l_j) = 0 \). Thus, we can take a new \(i', 1 \leq i' \leq t \), and do the same process. If \(i \neq q \) then we can do the same process above and to obtain a new equation, \((III) \), exactly like in the equation \((II) \), and so forth.
Therefore, after making the process for all indices $1 \leq i \leq t$, just add all vectors and conclude that the vector: $(\sum_{j} k_{j}, \sum_{j} l_{j})$ belongs to the kernel of the $(|\phi| - I)$. Thus, the 1-chain $\sum_{i=1}^{t} a_{i} u^{k_{1}+...+k_{i}} v^{l_{1}+...+l_{i}} \otimes u^{m} v^{n}$, is a cycle, for all $m, n \in \mathbb{Z}$. \hfill \square

Note that if the homomorphism ϕ is induced by a homotopy which is induced by a fiber-preserving map as in Theorem 2.1, then the set $\{u \otimes u^{m} v^{n}| m, n \in \mathbb{Z}\}$ is one generating set for $HH_{1}(\mathbb{Z}G, (\mathbb{Z}G)^{\phi}) \cong \bigoplus_{C \in G_{\phi}} H_{1}(Z(g_{C})) \cong \bigoplus_{C \in G_{\phi}} \mathbb{Z}$. Since $u \otimes u^{m-1} v^{n} \sim u^{-1} \otimes u^{m+1} v^{n}$, for all $m, n \in \mathbb{Z}$ we use the generating set $\{u^{-1} \otimes u^{m} v^{n}| m, n \in \mathbb{Z}\}$.

5. Computing the number $MF_{S^{1}}[f]$

In this section we prove the following theorem:

Theorem 5.1 (Main theorem). If $f : M(A) \rightarrow M(A)$ is a fiber-preserving map then the homomorphism $f_{#} : \pi_{1}(M(A)) \rightarrow \pi_{1}(M(A))$ is given by: $f_{#}(a) = a$, $f_{#}(b) = a^{b_{3}} b_{4}$ and $f_{#}(c) = a^{c_{1}} b_{2} c$ where a, b, c are generators of $\pi_{1}(M(A), 0)$ previously described. If $M(A)$ is one of the fiber bundle given below:

In the case II

\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & n(b_{4} - 1) \\ 0 & b_{4} \end{pmatrix}
\]

\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & b_{3} \\ 0 & -1 \end{pmatrix}
\]

In the case III

\[
A = \begin{pmatrix} 1 & 2k \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & b_{3} \\ 0 & b_{4} \end{pmatrix}
\]

\[
A = \begin{pmatrix} 1 & a_{3} \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & a_{3} \\ 0 & -1 \end{pmatrix}
\]

where $n, k, b_{3}, b_{4}, c_{1}, c_{2}, a_{3} \in \mathbb{Z}$, then the minimal fixed point set of f is composed by $|c_{1}(b_{4} - 1) - c_{2} b_{3}|$ disjoint circles. This implies; $MF_{S^{1}}[f] = |c_{1}(b_{4} - 1) - c_{2} b_{3}|$.
Given a fiber-preserving map \(f' : M(A) \to M(A) \) fiberwise homotopic to \(f \) then the set \(\text{Fix}(f') \) is composed by circles. The phrase “minimal fixed point set of \(f \)” in the theorem above means that we consider the minimum in terms of the first homology group, that is, we consider; \(\min\{\text{rank}(H_1(\text{Fix}(f')))|f' \sim_B f\} \).

Proof. Initially let us consider the case \(b_3 = 0 \) and \(b_4 - 1 \neq 0 \). In this situation we must have \(a_3 = 0 \) in both of cases. We take the homotopy \(F : T \times I \to T \) defined by:

\[
F([[x, y]], t) = \begin{cases}
[(x + 2c_1t - \frac{1}{2}, b_4y)] & \text{if } 0 \leq t \leq \frac{1}{2} \\
[(x + \frac{2a_3 - 1}{2} - \frac{1}{2}, b_4y + 2c_2t - c_2)] & \text{if } \frac{1}{2} \leq t \leq 1
\end{cases}
\]

The homotopy \(F \) induces a fiber-preserving map \(f : M(A) \to M(A) \) defined by \(f(< [(x, y)], t >) =< F([(x, y)], t), t > \). Note that the induced homomorphism by \(f \) satisfies; \(f_#(a) = a, f_#(b) = b^{b_4} \) and \(f_#(c) = a^{a_1}b^{b_2}c \). The map \(f \) has not fixed points in \(t = 0, 1 \). This implies that \(\text{Fix}(f) \approx \text{Fix}(F) \).

We use the one-parameter trace of \(F, R(F) \), to compute the minimum number \(MF_{S^1}[f] \).

We choose the cellular decomposition for \(T \) which consist of two 0-cells; \(E_0^0 = \{(0, 0)\}, E_2^0 = \{\{(\frac{1}{2}, 0)\}\} \), four 1-cells; \(E_1^1 = \{(x, 0)||0 \leq x \leq \frac{1}{2}\}, E_2^1 = \{(x, 0)||\frac{1}{2} \leq x \leq 1\}, E_3^1 = \{(0, y)||0 \leq y \leq 1\}, E_4^1 = \{(\frac{1}{2}, y)||0 \leq y \leq 1\} \) and two 2-cells; \(E_5^2 = \{(x, y)||0 \leq x \leq \frac{1}{2}, 0 \leq y \leq 1\}, E_6^2 = \{(x, y)||\frac{1}{2} \leq x \leq 1, 0 \leq y \leq 1\} \). For this decomposition the homotopy \(F \) is cellular.

We orient the cells above as in Figure 2. By Proposition 4.1 of [4] the one-parameter trace \(R(F) \) is independent of the choice of orientation of cells and the choice of lifts to the universal cover.

Figure 2. Cellular decomposition, case \(b_4 - 1 \neq 0 \) and \(b_3 = 0 \).
For cellular decomposition above we choose in the universal cover \mathbb{R}^2 the lifts which consist of two 0-cells; $\tilde{E}_1^0 = (0, 0)$, $\tilde{E}_2^0 = (\frac{1}{2}, 0)$, four 1-cells; $\tilde{E}_1^1 = \{(x, 0)|0 \leq x \leq \frac{1}{2}\}$, $\tilde{E}_2^1 = \{(x, 0)|\frac{1}{2} \leq x \leq 1\}$, $\tilde{E}_3^1 = \{(0, y)|0 \leq y \leq 1\}$, $\tilde{E}_4^1 = \{(\frac{1}{2}, y)|0 \leq y \leq 1\}$ and two 2-cells; $\tilde{E}_1^2 = \{(x, y)|0 \leq x \leq \frac{1}{2}, 0 \leq y \leq 1\}$, $\tilde{E}_2^2 = \{(x, y)|\frac{1}{2} \leq x \leq 1, 0 \leq y \leq 1\}$.

We consider $w = [(0, 0)]$ the basepoint and τ basepath, the linear path between w and $F(w, 0)$. We take the lifts $\tilde{w} = (0, 0)$ and $\tilde{\tau}$ the linear path between \tilde{w} and $(-\frac{1}{2}, 0)$. The unique lift $\tilde{F} : \mathbb{R}^2 \times I \to \mathbb{R}^2$ of F mapping $(\tilde{w}, 0)$ to $\tilde{\tau}(1)$ is given by;

$$\tilde{F}(x, y, t) = \begin{cases} (x + 2c_1t - \frac{1}{2}, b_4y) & \text{if } 0 \leq t \leq \frac{1}{2} \\ (x + \frac{2c_1-1}{2}, b_4y + 2c_2t - c_2) & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}$$

If $G = \pi_1(T, [(0, 0)]) = \{u, v|uvu^{-1}v^{-1} = 1\}$ then matrices of operators $\tilde{\partial}_1$, $\tilde{\partial}_2$, \tilde{D}_0 and \tilde{D}_1 are given by;

$$[\tilde{\partial}_1] = \begin{pmatrix} -1 & u^{-1} & v^{-1} - 1 & 0 \\ 1 & -1 & 0 & v^{-1} - 1 \end{pmatrix}$$

$$[\tilde{\partial}_2] = \begin{pmatrix} v^{-1} - 1 & 0 \\ 0 & v^{-1} - 1 \\ 1 & -u^{-1} \\ -1 & 1 \end{pmatrix}$$

$$[\tilde{D}_0] = \begin{pmatrix} -\tilde{X}(c_1) & -\tilde{X}(c_1) \\ -\tilde{Y}(c_1) & -\tilde{X}(c_1) \\ 0 & -u^{-c_1}\tilde{W}(c_2) \\ -u^{1-c_1}\tilde{W}(c_2) & 0 \end{pmatrix}$$

$$[\tilde{D}_1] = \begin{pmatrix} 0 & u^{1-c_1}\tilde{W}(c_2) & \tilde{X}(c_1)\tilde{W}(b_4) & \tilde{X}(c_1)\tilde{W}(b_4) \\ u^{1-c_1}\tilde{W}(c_2) & 0 & \tilde{Y}(c_1)\tilde{W}(b_4) & \tilde{X}(c_1)\tilde{W}(b_4) \end{pmatrix}$$

where

$$\tilde{X}(m) = \begin{cases} \sum_{j=1}^{m} u^{1-j} & \text{if } m > 0 \\ 0 & \text{if } m = 0 \end{cases}$$

$$\tilde{Y}(m) = \begin{cases} \sum_{j=1}^{m} u^{2-j} & \text{if } m > 0 \\ 0 & \text{if } m = 0 \end{cases}$$

$$\sum_{j=1}^{-m} u^j & \text{if } m < 0 \end{cases}$$

$$\sum_{j=1}^{-m} -u^{j+2} & \text{if } m < 0 \end{cases}$$
\[W(m) = \begin{cases}
\sum_{j=1}^{m} v^{1-j} & \text{if } m > 0 \\
0 & \text{if } m = 0 \\
\sum_{j=1}^{-m} -v^{j} & \text{if } m < 0
\end{cases} \]

Thus we have:

\[R(F) = T_1(\tilde{\partial}_s \otimes \tilde{D}_s) = u^{-1} \otimes \tilde{Y}(c_1) - 2 \otimes \tilde{X}(c_1) + 1 \otimes \tilde{Y}(c_1) + 1 \otimes \tilde{X}(c_1) \tilde{W}(b_4) - u^{-1} \otimes \tilde{Y}(c_1) \tilde{W}(b_4). \]

Two elements \(g_1, g_2 \in G \) belong to the same conjugacy class if and only if there is an element \(g \in G \) satisfying to equation: \(g_1 = gg_2\phi(g^{-1}). \)

In this case two elements \(u^{-1} \otimes u^n v^s \) and \(u^{-1} \otimes u^n v^t, \) \(m, n, s, t \in \mathbb{Z}, \) belong the same semiconjugate class if and only if there is \(k \in \mathbb{Z} \) satisfying:

\[\begin{cases}
m = n \\
k = (b_4 - 1) + t
\end{cases} \]

If \(c_1(b_4 - 1) \neq 0 \) then we have \(N(F) = |c_1(b_4 - 1)|. \) Since \(Fix(F) \) consist of \(|c_1(b_4 - 1)| \) circles, \(MF[F] \) is composed of \(|c_1(b_4 - 1)| \) disjoint circles, see Figure 3. Therefore the minimal fixed point set of \(f \) consist of \(|c_1(b_4 - 1)| \) disjoint circles. If \(c_1(b_4 - 1) = 0 \) then \(MF_{S1}[f] = 0. \) Thus the number \(MF_{S1}[f] = |c_1(b_4 - 1)|. \)

\[\text{Figure 3. The set Fix(F) in the case } c_1 \text{ and } b_4 - 1 \text{ positives.} \]

Now in the case II with \(b_3 = n(b_4 - 1), \) \(n \in \mathbb{Z} \) we take the homotopy \(F : T \to T \) given by \(F([(x,y)], t) = [(x + b_3y + c_1t - \frac{1}{2}, b_4y + c_2t)] \) and the fiber-preserving map \(f : M(A) \to M(A) \) induced by \(F. \) We consider the isomorphism of fiber bundle \(P : M(A) \to M(A^1), \) \(A^1 = \)
$P \circ A \circ P^{-1}$, induced by the isomorphism on torus which also is denoted by $P : T \rightarrow T$ given by the following matrix:

$$P = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$$

By proposition \ref{prop:homotopy}, the fiber-preserving map $g : M(A^1) \rightarrow M(A^1)$ induced by homotopy $G = P \circ F \circ (P^{-1} \times I)$ has $MF_{S^1}[g] = MF_{S^1}[f]$. Here the homotopy G is given by; $G([(x, y)], t) = [(x + (c_1 - nc_2)t - \frac{1}{2}, b_4y + c_2t)]$.

$$\begin{array}{ccc}
M(A) & \xrightarrow{f} & M(A) \\
p \downarrow & & \downarrow p \\
M(A^1) & \xrightarrow{g} & M(A^1)
\end{array}$$

Note that the homotopy G is homotopic, relative to $T \times \{0, 1\}$, to the homotopy G' given by;

$$G'([(x, y)], t) = \begin{cases} [(x + 2(c_1 - nc_2)t - \frac{1}{2}, b_4y)] , & 0 \leq t \leq \frac{1}{2} \\
[(x + (c_1 - nc_2) - \frac{1}{2}, b_4y + 2c_2t - c_2)] , & \frac{1}{2} \leq t \leq 1
\end{cases}$$

In fact, using the notation $G([(x, y)], t) = [(\alpha(x, y, t), \beta(x, y, t))]$, where $\alpha(x, y, t) = x + (c_1 - nc_2)t - \frac{1}{2}$ and $\beta(x, y, t) = b_4y + c_2t$, then $H : T \times I \times I \rightarrow T$ defined by;

$$H([(x, y)], t, s) = \begin{cases} [(\alpha(x, y, t), \beta(x, y, t))] & \text{if} & 0 \leq t \leq s \\
[(\alpha(x, y, 2t - s), \beta(x, y, s))] & \text{if} & s \leq t \leq \frac{(1+s)}{2} \\
[(\alpha(x, y, 1), \beta(x, y, 2t - 1))] & \text{if} & \frac{(1+s)}{2} \leq t \leq 1
\end{cases}$$

is a homotopy, relative to $T \times \{0, 1\}$, between G and G'. Thus, we have $R(G) = R(G')$. Therefore, we can use the previously case and proposition \ref{prop:homotopy} to show that the minimal fixed point set of f over S^1 is composed by $|c_1(b_4 - 1) - c_2b_3|$ disjoint circles.

In the case III we have $a_3(b_4 - 1) = -2b_3$. Therefore if a_3 is even then $b_3 = \frac{-a_3}{2}(b_4 - 1)$. Thus we can use a similar argument as in the case above and show that the minimal fixed point set of a fiber-preserving map $f : M(A) \rightarrow M(A)$ in this situation is composed by
\(|c_1(b_4 - 1) - c_2b_3|\) disjoint circles. Note that if \(a_3\) is even, then a fiber-preserving map \(f : M(A) \to M(A)\) in a fiber bundle \(M(A)\) with

\[
A = \begin{pmatrix} 1 & a_3 \\ 0 & -1 \end{pmatrix}
\]

has the minimal fixed point set over \(S^1\) composed by \(|c_1(b_4 - 1) - c_2b_3|\) disjoint circles.

Now, let us consider the cases \(II\) and \(III\) in the following situation; \(b_4 = -1\) and \(b_3 = 2k + 1, k \in \mathbb{Z}\). Note that the case \(b_3\) even has already been solved. First we take \(b_3 = 1\).

Consider the fiber-preserving map \(f : MA \to MA\) induced by homotopy \(F : T \times I \to T\) given by:

\[
F([(x, y)], t) = \begin{cases}
\left[(x + y + 2c_1t + \frac{1}{2}, -y + \frac{1}{2}) \right], & 0 \leq t \leq \frac{1}{2} \\
\left[(x + y + \frac{2a_1 + 1}{2}, -y + 2c_2t - c_2 + \frac{1}{2}) \right], & \frac{1}{2} \leq t \leq 1
\end{cases}
\]

Note that if \(f\) has no fixed point in \(t = 0, 1\). For compute the one-parameter trace \(R(F)\) we consider the cellular decomposition of the torus which consist of four 0-cells; \(E_0^0 = \{(0, 0)\}, E_2^0 = \{(\frac{1}{2}, 0)\}, E_3^0 = \{(0, \frac{1}{2})\}, E_4^0 = \{(\frac{1}{2}, \frac{1}{2})\}\), twelve 1-cells; \(E_1^1 = \{(x, 0)\} 0 \leq x \leq \frac{1}{2}\), \(E_2^1 = \{(x, 0)\} \frac{1}{2} \leq x \leq 1\), \(E_3^1 = \{(0, y)\} 0 \leq y \leq \frac{1}{2}\), \(E_4^1 = \{(y, -y + \frac{1}{7})\} 0 \leq y \leq \frac{1}{7}\), \(E_5^1 = \{(\frac{1}{7}, y)\} 0 \leq y \leq \frac{1}{7}\), \(E_6^1 = \{(y, -y+1)\} \frac{1}{7} \leq y \leq 1\), \(E_7^1 = \{(x, \frac{1}{7})\} 0 \leq x \leq \frac{1}{7}\), \(E_8^1 = \{(x, \frac{1}{7})\} \frac{1}{7} \leq x \leq 1\), \(E_9^1 = \{(0, y)\} \frac{1}{2} \leq y \leq 1\), \(E_{10}^1 = \{(y, -y+1)\} 0 \leq y \leq \frac{1}{7}\), \(E_{11}^1 = \{(\frac{1}{7}, y)\} \frac{1}{2} \leq y \leq 1\), \(E_{12}^1 = \{(y + \frac{1}{2}, -y+1)\} 0 \leq y \leq \frac{1}{2}\), and eight 2-cells; \(E_1^2 = \{((x, y)) 0 \leq x \leq \frac{1}{2}, 0 \leq y \leq -x + \frac{1}{2}\}, E_2^2 = \{((x, y)) 0 \leq x \leq \frac{1}{2}, -x + \frac{1}{2} \leq y \leq \frac{1}{2}\}, E_3^2 = \{((x, y)) \frac{1}{2} \leq x \leq 1, 0 \leq y \leq -x + 1\}, E_4^2 = \{((x, y)) \frac{1}{2} \leq x \leq 1, -x + 1 \leq y \leq \frac{1}{2}\}, E_5^2 = \{((x, y)) 0 \leq x \leq \frac{1}{2}, \frac{1}{2} \leq y \leq -x + 1\}, E_6^2 = \{((x, y)) 0 \leq x \leq \frac{1}{2}, -x + 1 \leq y \leq 1\}, E_7^2 = \{((x, y)) \frac{1}{2} \leq x \leq 1, \frac{1}{2} \leq y \leq -x + \frac{1}{2}\}, E_8^2 = \{((x, y)) \frac{1}{2} \leq x \leq 1, -x + \frac{3}{2} \leq y \leq 1\}.

These cells are oriented as in the figure below. For this cellular decomposition the homotopy \(F\) is cellular.

For the cellular decomposition above we choose in the universal cover \(\mathbb{R}^2\) the lifts which consist of four 0-cells; \(\tilde{E}_0^0 = \{(0, 0)\}, \tilde{E}_2^0 = \{(\frac{1}{2}, 0)\}, \tilde{E}_3^0 = \{(0, \frac{1}{2})\}, \tilde{E}_4^0 = \{(\frac{1}{2}, \frac{1}{2})\}\), twelve 1-cells; \(\tilde{E}_1^1 = \{(x, 0)\} 0 \leq x \leq \frac{1}{2}\),
We take $w = [(0,0)]$ the basepoint and τ basepath, the linear path between w and $F(w,0)$. We take the lifts $\tilde{w} = (0,0)$ and $\tilde{\tau}$ the linear path between \tilde{w} and $(0,\frac{1}{2})$. The unique lift $\tilde{F} : \mathbb{R}^2 \times I \to \mathbb{R}^2$ of F mapping $(\tilde{w},0)$ to $\tilde{\tau}(1)$ is given by:

$$
\tilde{F}((x, y), t) = \begin{cases}
(x + y + 2c_1 t + \frac{1}{2}, -y + \frac{1}{2}) , & 0 \leq t \leq \frac{1}{2} \\
(x + y + 2c_2 t - c_2 + \frac{1}{2}, -y + 2c_2 t - c_2 + \frac{1}{2}) , & \frac{1}{2} \leq t \leq 1
\end{cases}
$$

If $G = \pi_1(T, [(0,0)]) = \{u, v | uvu^{-1}v^{-1} = 1\}$ then

$$
[\tilde{G}] = \begin{pmatrix}
-1 & u^{-1} & -1 & 0 & 0 & u^{-1} & 0 & 0 & v^{-1} & -v^{-1} & 0 & 0 \\
1 & -1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & v^{-1} & -v^{-1} \\
0 & 0 & 1 & -1 & 0 & 0 & -1 & u^{-1} & -1 & 0 & 0 & u^{-1} \\
0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 0 & 1 & -1 & 0
\end{pmatrix},
$$
\[[\bar{\partial}_2] = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -v^{-1} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & -v^{-1} \\ -1 & 0 & 0 & u^{-1} & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}, \]

\[[\bar{D}_0] = \begin{pmatrix} 0 & 0 & -u^{-1}\bar{X}(c_1) & -u^{-2}\bar{X}(c_1) \\ 0 & 0 & -u^{-1}\bar{X}(c_1) & -u^{-1}\bar{X}(c_1) \\ 0 & -v^{-1}\bar{W}(c_2) & -u^{-c_1-1}\bar{W}(c_2) & 0 \\ 0 & 0 & 0 & 0 \\ -u^{-c_1}v^{-1}\bar{W}(c_2) & 0 & 0 & -u^{-c_1-1}\bar{W}(c_2) \\ 0 & 0 & 0 & 0 \\ -u^{-c_1}\bar{X}(c_1) & -u^{-1}\bar{X}(c_1) & 0 & 0 \\ -\bar{X}(c_1) & -u^{-1}\bar{X}(c_1) & 0 & 0 \\ 0 & -u^{-c_1-1}\bar{W}(c_2) & -u^{-c_1-1}\bar{W}(c_2) & 0 \\ 0 & 0 & 0 & 0 \\ -u^{-c_1}\bar{W}(c_2) & 0 & 0 & -u^{-c_1}\bar{W}(c_2) \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

and with the following data:

\[
\begin{align*}
\bar{D}_1(\bar{E}_1^1) &= \tilde{E}_3^2u^{-c_1}v^{-1}\bar{W}(c_2)+\tilde{E}_4^2u^{-c_1}v^{-1}\bar{W}(c_2)+\tilde{E}_5^2u^{-c_1}\bar{W}(c_2)+\tilde{E}_6^2u^{-c_1}\bar{W}(c_2), \\
\bar{D}_1(\bar{E}_2^1) &= \tilde{E}_1^2u^{-c_1-1}v^{-1}\bar{W}(c_2)+\tilde{E}_2^2u^{-c_1-1}v^{-1}\bar{W}(c_2)+\tilde{E}_3^2u^{-c_1-1}\bar{W}(c_2)+\tilde{E}_4^2u^{-c_1-1}\bar{W}(c_2), \\
\bar{D}_1(\bar{E}_3^1) &= \tilde{E}_1^2u^{-c_1}\bar{X}(c_1)+\tilde{E}_2^2u^{-c_1}\bar{X}(c_1)+\tilde{E}_3^2(u^{-c_1}\bar{X}(c_1)+u^{-c_1}v^{-1}\bar{W}(c_2)) \\
&+ \tilde{E}_4^2(\bar{X}(c_1)+u^{-c_1}\bar{W}(c_2))+\tilde{E}_5^2u^{-c_1}\bar{W}(c_2)+\tilde{E}_6^2u^{-c_1}\bar{W}(c_2), \\
\bar{D}_1(\bar{E}_4^1) &= \tilde{E}_1^2u^{-c_1}\bar{X}(c_1)+\tilde{E}_2^2u^{-c_1}\bar{X}(c_1)+\tilde{E}_3^2u^{-c_1}\bar{X}(c_1)+\tilde{E}_4^2u^{-c_1}\bar{X}(c_1), \\
\bar{D}_1(\bar{E}_5^1) &= \tilde{E}_1^2(u^{-2}\bar{X}(c_1)+u^{-c_1-1}v^{-1}\bar{W}(c_2))+\tilde{E}_2^2(u^{-1}\bar{X}(c_1)+u^{-c_1-1}\bar{W}(c_2)) \\
&+ \tilde{E}_3^2u^{-1}\bar{X}(c_1)+\tilde{E}_4^2u^{-1}\bar{X}(c_1)+\tilde{E}_5^2u^{-c_1-1}\bar{W}(c_2)+\tilde{E}_6^2u^{-c_1-1}\bar{W}(c_2), \\
\bar{D}_1(\bar{E}_6^1) &= \tilde{E}_1^2u^{-2}\bar{X}(c_1)+\tilde{E}_2^2u^{-2}\bar{X}(c_1)+\tilde{E}_3^2u^{-1}\bar{X}(c_1)+\tilde{E}_4^2u^{-1}\bar{X}(c_1),
\end{align*}
\]
and proposition 3.2 we can conclude that the minimal fixed point set
\[\text{Fix}(\tilde{F}) = \tilde{F}(\tilde{x}) = \tilde{x}. \]

Similar to the case \(b \neq 0 \), we obtain;
\[N(F) = |2c_1 + c_2| = |c_1(b_4 - 1) - c_2b_3|. \]

Since \(Fix(F) \) is composed by \(|c_1(b_4 - 1) - c_2b_3| \) disjoint circles, then
the minimal fixed point set of \(f : M(A) \to M(A) \) induced by \(F : T \times I \to T \) is composed by \(|c_1(b_4 - 1) - c_2b_3| \) disjoint circles. Therefore,
\[MF_{S^1}[f] = |c_1(b_4 - 1) - c_2b_3|. \]

The case \(b_3 = 2k + 1 \) with \(k \neq 0 \), we take the fiber-preserving map
\(f : M(A) \to M(A) \) induced by \(F : T \times I \to T \) given by \(F([(x, y)], t) = [(x + b_3y + c_1t + \frac{-k+1}{2}, -y + c_2t + \frac{1}{2})] \). Conjugating the homotopy \(F \) by
the isomorphism \(P : T \to T \) given by
\[[P] = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \]
we obtain the homotopy \(G = P \circ F \circ (P^{-1} \times I) \). The fiber-preserving
map \(g : M(A^1) \to M(A^1), A^1 = P \circ A \circ P^{-1} \), given by \(g(<[(x, y)], t >) = G([(x, y)], t) \), has \(MF_{S^1}[g] = MF_{S^1}[f] \). By the case above
and proposition 3.2 we can conclude that the minimal fixed point set
of f is composed by $|c_1(b_4 - 1) - c_2b_3|$ disjoint circles. This implies $MF_{S^1}[f] = |c_1(b_4 - 1) - c_2b_3|$. □

Remarks 5.1. Note that by Theorem 2.2 the number $|c_1(b_4 - 1) - c_2b_3|$ appeared in [3] only to decide when a fiber-preserving map, in the cases II and III, can be deformed by a fiberwise homotopy to a fixed point free map. In Theorem 5.1 we have shown that the number $|c_1(b_4 - 1) - c_2b_3|$ is exactly the number of circles of minimal fixed point set of a fiber-preserving map in the cases II and III.

Acknowledgments. I would like to thank Prof. Daniel Vendrúuscolo and Prof. João P. Vieira by supervising doctoral thesis [7], Prof. Peter Wong for pointed the paper [1] and Prof. Michael Kelly for help in to improving the exposition this paper.

References

1. D. Dimovski and R. Geoghegan; *One-parameter fixed point theory*, Forum Math. 2, 1990, 125-154.
2. E. Fadell and S. Husseini; *A fixed point theory for fiber preserving maps*, Lecture Notes in Math., vol. 886, Springer Verlag, 1981, 49-72.
3. D. L. Gonçalves, D. Penteado and J. P. Vieira; *Fixed Points on Torus Fiber Bundles over the Circle*, Fund. Math., vol. 183, 1, 2004, 1-38.
4. R. Geoghegan and A. Nicas; *Parametrized Lefschetz-Nielsen fixed point theory and Hochschild homology traces*, Amer. J. Math. 116, 1994, 397-446.
5. R. Geoghegan, A. Nicas and D. Schütz; *Obstructions to homotopy invariance in parametrized fixed point theory*, Geometry and Topology: Aarhus, Contemp. Math. vol. 258, 2000, 351-369.
6. U. Koschorke; *Fixed points and coincidences in torus bundles*, Journal of Topology and Analysis, vol. 3, No. 2, 2011, 177-212.
7. W. L. Silva; *Conjuntos minimais de ponto fixo e coincidência de aplicações fibradas*, Doctorate thesis, UFSCar, 2012.
8. W. L. Silva and J.P.Vieira; *Coincidences of self-maps on Klein bottle fiber bundles over the circle*, JP Journal of Geometry and Topology, Vol. 12, Number 1, 2012, 55-97.
9. H. Schirmer; *Fixed points sets of homotopies*, Pacific J. Math. 108, 1983, 191–202.
MINIMAL FIXED POINT SET OF MAPS ON T-BUNDLES OVER S^1

(Weslem Liberato Silva) Department of Mathematics and Computer Science, Loyola University, 6363 St Charles Avenue, New Orleans, LA 70118, U.S.A.

E-mail address: weslemliberato@gmail.com