ON DISCS IN BIDISCS

Josip Globevnik

Abstract

Let Δ be the open unit disc in \mathbb{C}. We show that there is no continuous map $F: \Delta \to \Delta^2$, holomorphic on Δ and such that $F(b\Delta) = b(\Delta^2)$.

Denote by Δ the open unit disc in \mathbb{C}. Given a bounded convex domain $D \subset \mathbb{C}^2$ we consider holomorphic maps $F: \Delta \to D$ which extend continuously to $\overline{\Delta}$ and which are proper, that is, satisfy $F(b\Delta) \subset bD$. We ask how large $F(\overline{b\Delta})$ can be. In particular, can we have $F(\overline{b\Delta}) = bD$? It is known that the answer is positive in the case of the ball $D = B = \{(z, w): |z|^2 + |w|^2 < 1\}$.

Proposition 1 [G, Cor. 2] There is a continuous map $F: \Delta \to \overline{bB}$, holomorphic on Δ, and such that $F(b\Delta) = b\overline{B}$.

In the present note we show that in general the answer to the preceding question is no. In particular, it is negative for $D = \Delta^2$:

Proposition 2 There is no continuous map $F: \Delta \to \Delta^2$, holomorphic on Δ and such that $F(b\Delta) = b(\Delta^2)$.

Definition A set of the form $\{\zeta\} \times \Delta$ or $\Delta \times \{\zeta\}$ where $\zeta \in b\Delta$ is called an open face of the bidisc Δ^2.

Proof of Proposition 2. Let $F = (f, g): \Delta \to \Delta^2$ be a continuous map, holomorphic on Δ and such that $F(b\Delta) \subset \overline{b\Delta^2}$.

If one of the components, say f, is a constant α then $F(b\Delta) \subset \{\alpha\} \times \overline{\Delta}$ so $F(b\Delta)$ cannot equal $b(\Delta^2)$. So assume that both f, g are nonconstant. We shall show that for any open face Φ of Δ^2 the set $F(b\Delta) \cap \Phi$ has no cluster point in Φ. In fact, we show that given $\xi \in b\Delta$ there is no injective sequence $\zeta_n \in b\Delta$ such that $f(\zeta_n) = \xi$ for all n and such that the sequence $g(\zeta_n)$ has a cluster point in Δ.}

Assume the contrary, so that $\zeta_n \in b\Delta$ is an injective sequence such that $f(\zeta_n) = \xi$ for all n and such that $g(\zeta_n)$ has a cluster point in Δ. Passing to a subsequence we may assume that ζ_n converges to $\zeta_0 \in b\Delta$ and that $\lim g(\zeta_n) = g(\zeta_0) \in \Delta$. Passing to a subsequence we may assume that all ζ_n are contained in a small open arc $J \subset b\Delta$ centered at ζ_0 such that $|g(\zeta)| < 1$ ($\zeta \in J$). Since $F(b\Delta) \subset \overline{b(\Delta^2)}$ it follows that $|f(\zeta)| = 1$ ($\zeta \in J$). Denote by $*$ the reflection across $b\Delta$ so for $z \in \Delta \setminus \{0\}$ write $z^* = 1/\overline{z}$. By the reflection principle there is a narrow open neighbourhood U of J in \mathbb{C} such that $U^* = U$ and such that by defining f on $U \cap (\mathbb{C} \setminus \overline{\Delta})$ by $f(w) = [f(w^*)]^*$ ($w \in U \cap (\mathbb{C} \setminus \overline{\Delta})$.
the function f is holomorphic on $\Delta \cup U$ and satisfies

$$|f(\zeta)| < 1 \ (\zeta \in U \cap \Delta) \ \text{and} \ |f(\zeta)| > 1 \ (\zeta \in U \cap [\mathbb{C} \setminus \Delta]).$$

We show that the derivative f' has no zero on J. Indeed, if $f'(z) = 0$ for some $z \in J$ then since f is not a constant, z is an isolated zero of f' and the function $w \mapsto f(w) - f(z)$ has a zero of order at least two at z. This means that for every sufficiently small circle γ centered at z and contained in U the winding number of $f \circ \gamma$ around $f(z)$ is at least two which is impossible since by (2) f maps $\gamma \cap \Delta$ to Δ and $\gamma \cap [\mathbb{C} \setminus \Delta]$ to $\mathbb{C} \setminus \Delta$. This implies that f is locally one to one on J. In particular, f is one to one in a neighbourhood of ζ_0 in J which contradicts the fact that $f(\zeta_n) = \xi$ for all n and that the injective sequence ζ_n converges to ζ_0. This proves (1) and the same holds with the roles of f and g interchanged. This completes the proof of Proposition 2.

REMARK If one drops the requirement about boundary continuity one can do much more. For instance, one can show that given any bounded convex domain D there is a proper holomorphic embedding $F: \Delta \to D$ such that $\overline{F(\Delta)} \setminus F(\Delta) = bD$ [FGS].

REFERENCES

[FGS] F. Forstnerič, J. Globevnik, B. Stensones: Embedding holomorphic discs through discrete sets. Math. Ann, 305 (1996)559-569

[G] Globevnik, J.: Boundary interpolation and proper holomorphic maps from the disc to the ball. Math Z. 198 (1988) 143-150