Rapid Publications

The Effect of Leptin Is Enhanced by Microinjection Into the Ventromedial Hypothalamus

Ralph J. Jacob, James Dziura, Matthew B. Medwick, Paola Leone, Sonia Caprio, Matthew During, Gerald I. Shulman, and Robert S. Sherwin

To determine whether changes in food intake produced by leptin involve targeting the hormone to distinct central nervous system regions, guide cannulas were positioned stereotaxically into three brain regions—the ventromedial hypothalamus (VMH) (bilaterally, n = 6), the dorsal raphe nucleus (n = 3), and the lateral ventricle (n = 3)—of nonobese male rats (400–500 g). Daily food intake and body weight changes were measured during twice-daily injections of saline (0.1 μl) followed by recombinant human leptin (0.05 μg) for 3 days via the brain cannulas. VMH-injected rats also were followed during a postleptin saline recovery interval. This small dose of leptin did not change food intake or body weight from that during the preceding saline injection period in ventricle-injected or dorsal raphe-injected rats. In sharp contrast, VMH-injected rats ate much less food (56 ± 8% basal) and lost 9 ± 3 g/day or 5% of their body weight during 3 days of leptin administration. VMH-injected animals fully recovered from leptin-induced effects within 3 days. We conclude that small doses of leptin that do not effect eating behavior when delivered to the ventricle or the dorsal raphe (another brain region believed to regulate feeding), suppress food intake when injected into the VMH. These data suggest that the VMH or a brain region in close proximity to it is a key target for the biological actions of leptin. Diabetes 46:150–152, 1997

Obesity and its resulting complications, such as heart disease, hypertension, dyslipidemia, and diabetes, have become increasingly significant public health concerns. The existence of a circulating satiety factor that contributes to the development of obesity has been suggested since the early parabiotic experiments of Coleman (1) showing reversal of obesity when the circulatory system of a morbidly obese (ob/ob) mouse was connected to that of a lean mouse. This hypothesis has been greatly strengthened by the recent cloning of the ob gene (2) and the identification of its product (leptin) as a 16-kDa protein secreted by adipose tissue into the circulation. In the ob/ob mouse, a mutation of the leptin gene results in the production of a truncated nonfunctional molecule. The importance of this genetic defect is underscored by data showing that systemic or intracerebroventricular (in smaller doses) administration of leptin produces reductions in food intake and body weight in leptin-deficient ob/ob mice (3–6). To produce similar effects in lean animals, much larger doses of leptin were required (3–6).

Although a wide variety of tissues appear to express leptin receptors and could potentially serve as target tissues, data demonstrating the greater effectiveness of intracerebroventricular administration of leptin (5,6) suggests its primary site of action lies within the central nervous system (CNS). The hypothalamus, in particular, is a likely target, since it is a major center for feeding control in rodents and humans and damage to it results in obesity and increased food intake (7). Moreover, in the parabiotic mouse model, lesions of the ventromedial hypothalamus (VMH) not only accelerate food intake in the lesioned animal but also decrease food intake in the nonlesioned animal (8). These findings are consistent with the hypothesis that a disruption of the VMH either directly or indirectly led to overproduction of leptin in the lesioned animal and a consequential suppression of appetite in the intact animal. The discovery of high-affinity leptin receptors in the hypothalamus provides further evidence for its importance as a site of leptin action (9).

This study was undertaken to evaluate the possible role of the VMH region as a target for leptin’s satiety signal. For this purpose, we microinjected very low doses of recombinant human leptin directly into the VMH and compared the effects on eating to those of similar small doses delivered into the lateral ventricle or into the dorsal raphe nucleus, another brain region believed to play a role in feeding behavior (10).

RESEARCH DESIGN AND METHODS

Male Sprague-Dawley rats (Charles River Raleigh, Boston, MA) were anesthetized using 60 mg/kg I.M. ketamine and 21 mg/kg I.P. pentobarbital, and their brains were stereotaxically cannulated 1 week before study. The animals were divided into three groups depending on the area cannulated: 1) VMH bilaterally (n = 6; from bregma, 20° medial-lateral [ML], −2.6 mm anterior-posterior [AP], ±3.8 mm ML, 8.2 mm dorsal-ventral [DV]); 2) lateral ventricle (n = 3; from bregma, −0.8 mm AP, 1.5 mm ML, 3.2 mm DV); and 2) dorsal raphe (n = 3; from bregma, 20° ML, 7.4 mm AP, 2.0 mm DV, 6.0 mm DV). On the day after surgery, all animals were presented with a pellet diet consisting of 60% carbohydrates, 3.7% fat, and 24.1% protein (Noyes, Lancaster, NH) to facilitate accurate measurement of food intake. Thereafter, both food and rats were weighed daily (9:00...
All animals (n = 12) stabilized their eating (28.5 ± 1.2 g/day) three groups of animals are compared in Fig. 1. Data are tachically positioned guide cannulas. Results are calibrated as per-
the brain cannulas using a Model 22 Harvard Pump (Harvard Apparatus, South Natick, MA). In the case of the VMH bilaterally cannulated animals, injec-
tions alternated between the left and right sides. During days 4-6 of the study, recombinant human leptin (provided by Chiron, Emeryville, CA) in a dose of 0.05 μg twice daily was added to the saline vehicle and administered at the same injection times as during saline alone. Three of the six VMH rats received saline injections (0.1 μl) for 3 additional days after the leptin injec-
tion period to examine their ability to recover from the effects of leptin.

Following the study, histological examination was performed to verify the placement of brain cannulas. Only animals with correct cannula placement as well as stable food intake and body weight during the saline control injection phase were used. All data, expressed as means ± SE, were analyzed using analysis of variance, followed by post-hoc Newman-Keuls tests to localize effects statistically (CRUNCH software, San Francisco, CA).

RESULTS
All animals (n = 12) stabilized their eating (28.5 ± 1.2 g/day) during the 4-day basal preinjection period. The effects on daily food intake during the saline and leptin periods in the three groups of animals are compared in Fig. 1. Data are expressed as percentages of basal food intake to control for the regulation of feeding behavior (10), did not noticeably alter food intake or body weight. The differential response of these regions to our procedure, which bypasses the blood brain barrier, may be more significant from a physiological perspective, since the blood brain barrier is complete in the region of the dorsal raphe, whereas it is not in the region of the VMH (11).

Previous reports have shown that the administration of sys-
temic injections of leptin to mice dramatically decreased food intake and body weight in a dose-response fashion. Although these effects were more pronounced in obese mice, large amounts of leptin significantly altered feeding in lean rodents as well. For example, when leptin was administered intraperitoneally to nonobese mice, very large doses (25 μg · g⁻¹ · day⁻¹) were needed to produce significant changes in food...

FIG. 1. Effect of leptin on daily food intake in normal rats. Leptin (0.05 μg twice daily for 3 days) or saline (0.1 μl twice daily) were injected directly into the lateral ventricle (n = 3), dorsal raphe nucleus (n = 3), or the VMH (each nucleus was injected daily, n = 6) via stereo-
taxically positioned guide cannulas. Results are calibrated as per-
centage of intake during the basal (pre-injection) period. Data represent mean ± SE. *P < 0.05 vs. saline injection.

FIG. 2. The effect of leptin on daily body weight changes in normal rats receiving injections in the ventricle, VMH, or dorsal raphe nucleus. Data shown are mean ± SE. *P < 0.05 lept-
in vs. saline.
intake and body weight, which decreased by ~50 and ~10%, respectively. The importance of the CNS as a site of leptin action is supported by data showing that to achieve similar changes in lean mice, much smaller amounts of leptin were necessary when it was given via the intracerebroventricular route (0.06 µg · g⁻¹ · day⁻¹). It is noteworthy that in the present study a much smaller leptin dose (~0.0002 µg · g⁻¹ · day⁻¹) was sufficient to evoke comparable marked reductions in food intake (~50%) and body weight (~10%) when locally delivered to the VMH. This dose was not seen to have an effect when delivered intracerebroventricularly.

While these data imply that the region of the VMH is particularly sensitive to the biological effects of leptin and is therefore a key site of hormone action, it is possible that adjacent brain structures, particularly the arcuate nucleus, may have been exposed to leptin during these studies. It is noteworthy that the arcuate nucleus has a high level of leptin receptor gene expression and that neuropeptide Y, a known appetite stimulant produced in the arcuate nucleus, is suppressed by leptin (6,12). Thus, it is possible that our injections of leptin may have acted on the VMH or the arcuate or both structures.

ACKNOWLEDGMENTS

We wish to thank Wendy Fantel, PhD (Chiron, Emeryville, CA), for providing the recombinant human leptin, Drs. William Tamborlane and David Maggs for their contributions to the design of the experiment, and Edward Meloni for his assistance with the injection methodology and histological preparations.

REFERENCES

1. Coleman DL: Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9:294–298, 1973
2. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM: Prenatal clonalization of the mouse obese gene and its human homologue. Nature 372:425–431, 1994
3. Pellymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F: Effects of the obese gene product on body weight regulation in ob-null mice. Science 269:540–543, 1995
4. Hallas, J, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lalowicz RI, Burley SK, Friedman JM: Weight regulation effects of the plasma protein encoded by the obese gene. Science 269: 543–546, 1995
5. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P: Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity in central neural networks. Science 269:546–548, 1995
6. Stephens TW, Basinski M, Bristo PK, Burgeleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsiung HM, Kriacuivas A, MacKellar W, Rostock TR Jr, Schoner B, Smith D, Tinsley FC, Zhang X, Heiman M: The role of neuropeptide Y in the antilolisa action of the obese gene product. Nature 377:530–532, 1995
7. Leibowitz SF, Hamner NJ, Chang K: Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol Behav 27:1031–1040, 1981
8. Hervey GR: The effects of lesions on the hypothalamus in parobiotic rats. J Physiol 145:336–352, 1959
9. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark PK, Deeds J, Muir C, Sanker S, Moriarty A, Moore KA, Smirko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI: Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271, 1995
10. Llajquist R: Interaction of taurine and related compounds with GABAergic neurones in the nucleus raphe dorsalis. Pharmacol Biochem Behav 44:107–112, 1993
11. deGroot J: Correlative Neuroanatomy. Norwalk, CT, Appleton and Lange, 1991, p. 121–122
12. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG: Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98:1101–1106, 1996