New results on g-2 calculation

Stefano Laporta
Dipartimento di Fisica e Astronomia, Università di Padova,
Istituto Nazionale Fisica Nucleare, Sezione di Padova,
Via Marzolo 8,
I-35131 Padova, Italy
E-mail: stefano.laporta@pd.infn.it

Abstract. In this paper I summarize the current situation of the theoretical calculation of the electron g-2, including the result from the recent calculation of the QED mass-independent 4-loop contribution with a precision of 1100 digits.

A particle of mass m and spin s possesses a magnetic moment μ
\[\mu = \frac{g e \hbar}{4\pi mc}s, \]
where g is the gyromagnetic ratio. According to the Dirac’s theory [1], an electron has $g = 2$. This agreed with the experimental measurements until Kusch and Foley [2] measured a value of the anomaly a_e slightly different from zero:
\[a_e = \frac{g - 2}{2} = 0.001 15(4). \]
The deviation is due to the interaction of the electron with photons; using Q.E.D. Schwinger [3,4] was able to calculate at the first order that
\[a_e = \frac{\alpha}{2\pi} = 0.001 161\ldots, \]
where α is the fine structure constant
\[\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137}. \]
The current measurements of a_e are based on the Penning trap method, developed by the group at the University of Washington. This trap uses an axial magnetic field and a quadrupole electric field; the anomaly is expressed as the ratio of two frequencies, which can measured to a very high precision. For the development of this technique, the Nobel prize in Physics 1989 was awarded to H. Dehmelt. Their final results were [5]:
\[a_{e^-}^{exp} = 1 159 652 188.4(4.3) \times 10^{-12} \ \text{(4.3 ppb)}, \]
\[a_{e^+}^{exp} = 1 159 652 187.9(4.3) \times 10^{-12} \ \text{(4.3 ppb)}. \]

1 Invited talk to ACAT 2017, University of Washington, Seattle, 21-25 August 2017
2 since 1 September 2017
The QED contribution can be split up in mass-independent and mass-dependent parts:

The mass-independent coefficients at 1, 2 and 3 loop are known in analytical form \[3, 4, 8–10\]:

\[
A^{(1)} = \frac{1}{2},
\]

\[
A^{(2)} = \frac{197}{144} + \frac{1}{12} \pi^2 - \frac{1}{2} \pi^2 \ln 2 + \frac{3}{4} \zeta(3) = -0.328 478 965 579 \ldots,
\]

\[
A^{(6)} = \frac{83}{72} \pi^2 \zeta(3) - \frac{215}{24} \zeta(5) + \frac{100}{3} \left(a_4 + \frac{1}{24} \ln^4 2 \right) - \frac{1}{24} \pi^2 \ln^2 2
\]

\[
- \frac{239}{1260} \pi^4 + \frac{139}{18} \zeta(3) - \frac{298}{9} \pi^2 \ln 2 + \frac{17101}{810} \pi^2 - \frac{28259}{5184} = 1.181 241 456 \ldots,
\]

where \(\zeta(n) = \sum_{i=0}^{\infty} i^{-n} \), \(a_n = \sum_{n=0}^{\infty} 2^{-n} i^{-n} \). In table 1 we list some older theoretical evaluations of the two, three and four loop coefficients. In Ref. [11] I have evaluated up to 1100 digits of precision the 4-loop contribution \(A^{(8)} \), finalizing a twenty-year effort [13–19] begun after the completion of the calculation \(A^{(6)} \) [10]. The first digits of the result are

\[
A^{(8)} = -1.912245764926445574152647167439830054060873390658725345171329848\ldots.
\]

The full-precision result is shown in table 3. The result (13) is in excellent agreement (0.9\(\sigma \)) with the numerical value

\[
A^{(8)}(\text{Ref. [29]}) = -1.91298(84),
\]

latest result of a really impressive pluridecennial effort [20–29], and with the independent value

\[
A^{(8)}(\text{Ref. [30]}) = -1.87(12).
\]

\(A^{(1)} \)	\(A^{(2)} \)	\(A^{(3)} \)
-2.973	1.496	-1.434
-0.328 478 965 579	1.195	1.766
(6)	(8)	(10)

Table 1. Numerical results of the evaluations of \(A^{(1)} \), \(A^{(6)} \), \(A^{(8)} \) and \(A^{(10)} \).
At 5-loop level there is only the numerical evaluation by the Kinoshita’s group

\[A_1^{(10)} \text{(Ref. [29])} = 6.599(223) \]

Concerning the mass-dependent part \(A_2(r) \), \(A_2^{(4)}(r) \) is known in analytical form [36], as well as \(A_2^{(6)}(r) \) [37–41]; the first terms of the expansion for small \(r \) of the 4-loop coefficient \(A_2^{(8)}(r) \) are known analytically [42,43]. \(A_2^{(10)}(m_e/m_\mu) \) and \(A_2^{(10)}(m_e/m_\tau) \) have been calculated numerically [29]; the first terms of the expansion for small mass ratios of \(A_3^{(6)}(m_e/m_\mu, m_e/m_\tau) \) and \(A_3^{(8)}(m_e/m_\mu, m_e/m_\tau) \) are known analytically [43]. The hadronic and weak contribution are

\[
\begin{align*}
 a_e(\text{hadronic v.p.}) & = 1.866(11) \times 10^{-12} \quad \text{(see Ref. [44])} , \\
 a_e(\text{hadronic v.p.,NLO}) & = -0.223(1) \times 10^{-12} \quad \text{(see Ref. [45])} , \\
 a_e(\text{hadronic v.p.,NNLO}) & = 0.028(1) \times 10^{-12} \quad \text{(see Ref. [45])} , \\
 a_e(\text{hadronic I-1}) & = 0.035(10) \times 10^{-12} \quad \text{(see Ref. [46])} , \\
 a_e(\text{weak}) & = 0.0297(5) \times 10^{-12} \quad \text{(see Ref. [47])} .
\end{align*}
\]

Inserting Eq.s (11-16,17-21), the known \(A_2^{(j)} \) and the measurement of the fine structure constant [48,49]

\[\alpha^{-1} = 137.035 998 996(85) \quad (0.62 \text{ ppb}) , \]

into Eq.s (8-10) one finds

\[a_e^{\text{th}} = 1 159 652 182.031(15)(15)(720) \times 10^{-12} , \]

where the first error comes from \(A_1^{(10)} \), the second one from the hadronic and electroweak corrections, the last one from \(\alpha \), respectively. The values of the single contributions to \(a_e \) are listed in table 2. Conversely, assuming the validity of the theory and using the experimental measurement (7) one finds

\[a_e^{-1}(a_e) = 137.035 999 1500(18)(18)(330)(0.25 \text{ ppb}) , \]

where the errors come from \(A_1^{(10)} \), hadronic and electroweak corrections, and \(a_e \), respectively.

contribution	value in units of 10^{-12}
\(A_1^{(10)}(\alpha/\pi) \)	1 610 409 783.631(720)
\(A_2^{(4)}(\alpha/\pi)^2 \)	-1 772 305.065(3)
\(A_3^{(6)}(\alpha/\pi)^3 \)	14 804.263
\(A_4^{(8)}(\alpha/\pi)^4 \)	-55.667
\(A_5^{(10)}(\alpha/\pi)^5 \)	0.446(15)
\(A_2^{(6)}(m_e/m_\mu)(\alpha/\pi)^2 \)	2.804
\(A_2^{(8)}(m_e/m_\mu)(\alpha/\pi)^4 \)	-0.992
\(A_2^{(10)}(m_e/m_\mu)(\alpha/\pi)^6 \)	0.026
\(A_2^{(4)}(m_e/m_\tau)(\alpha/\pi)^2 \)	-0.0002
\(A_2^{(6)}(m_e/m_\tau)(\alpha/\pi)^4 \)	0.010
\(a_e(\text{hadronic v.p.}) \)	1.866(11)
\(a_e(\text{hadronic v.p.,NLO}) \)	-0.223(1)
\(a_e(\text{hadronic v.p.,NNLO}) \)	0.028(1)
\(a_e(\text{hadronic I-1}) \)	0.035(10)
\(a_e(\text{weak}) \)	0.0297(5)

Table 2. Contributions to \(a_e \).
Table 3. First 1100 digits of $A_{1}^{(8)}$.

Methods of calculation of $A_{1}^{(8)}$
I sketch here the methods of calculation used in the literature, only for comparison. For further information on the technical aspects of my calculation of the 4-loop coefficient $A_{1}^{(8)}$, see Ref. [51] in these proceedings.

In QED the contributions to g^{-2} at n loops can be expressed as combinations of n-loop 4-dimensional Feynman integrals, belonging to a variety of Feynman diagrams.

- In Ref. [29], the n-loop 4-dimensional integrals are transformed in $(3n-2)$-dimensional integrals of (huge) rational functions of Feynman parameters. The integrals are computed using the MonteCarlo adaptative routine VEGAS [50]; an enormous amount of computing time is needed to sample adequately the integrands; for more information, see Ref. [20–29].

- My method, used in [11], consists in:
 (i) reduction of contributions from each Feynman diagram to a small number (334 for $A_{1}^{(8)}$) of n-loop D-dimensional master integrals by using a suitable algorithm [10, 13];
 (ii) determination of systems of difference or differential equations satisfied by the master integrals [13];
 (iii) high precision calculation of these integrals by solving these systems of equations by means of rapidly convergent series expansions [13, 14];

This method allowed to obtain 1100 digits of $A_{1}^{(8)}$ (and up to 9800 digits for some selected important integrals). See Ref. [51] for further details.

- In Ref. [30] the contributions of the various diagrams are reduced to combinations of a small number of master integrals. Most of these master integrals are computed with MonteCarlo methods.

- I note the alternative approach recently introduced by S. Volkov in Ref. [52, 53]. It is also based on MonteCarlo integration. It seems promising at 5-loop level.

References
[1] Dirac P A M 1928 Proc. Roy. Soc. Lond. A 117 610
[2] Foley H M and Kusch P 1948 Phys. Rev. 73 416
[3] Schwinger J 1948 Phys. Rev. 73 416
[4] Schwinger J 1949 Phys. Rev. 75 898
[5] Van Dyck R S, Schwinberg P B and Dehmelt H G 1987 Phys. Rev. Lett. 59 26
[6] Hanneke D, Fogwell S and Gabrielse G 2008 Phys. Rev. Lett. 100 120801
[7] Hanneke D, Hoogerheide S F and Gabrielse G 2011 Phys. Rev. A 83 052122
[8] Petermann A 1957 Helv. Phys. Acta 30 407
[9] Sommerfeld C M 1957 Phys. Rev. 107 328
[10] Laporta S and Remiddi E 1996 Phys. Lett. B 379 283
[11] Laporta S 2017 Phys. Lett. B 772 232
[12] Karplus R and Kroll N M 1950 Phys. Rev. 77 536
[13] Laporta S 2000 Int. J. Mod. Phys. A 15 5087
[14] Laporta S 2001 Phys. Lett. B 504 188
[15] Laporta S 2001 Phys. Lett. B 523 95
[16] Laporta S 2003 *Acta Phys. Polon.* B **34** 5323
[17] Laporta S, Mastrolia P and Remiddi E 2004 *Nucl. Phys.* B **688** 165
[18] Laporta S 2008 *Int. J. Mod. Phys.* A **23** 5007
[19] Laporta S 2009 *Subnucl. Ser.* **45** 409
[20] Kinoshita T and Lindquist W B 1983 *Phys. Rev.* D **27** 867
[21] Kinoshita T and Lindquist W B 1983 *Phys. Rev.* D **27** 877
[22] Kinoshita T and Lindquist W B 1983 *Phys. Rev.* D **27** 886
[23] Kinoshita T and Lindquist W B 1989 *Phys. Rev.* D **39** 2407
[24] Kinoshita T and Lindquist W B 1990 *Phys. Rev.* D **42** 636
[25] Kinoshita T and Nio M 2000 *Phys. Rev.* D **73** 013003
[26] Aoyama T, Hayakawa M, Kinoshita T and Nio M 2007 *Phys. Rev. Lett.* **99** 110406
[27] Aoyama T, Hayakawa M, Kinoshita T and Nio M 2008 *Phys. Rev.* D **77** 053012
[28] Aoyama T, Hayakawa M, Kinoshita T and Nio M 2012 *Phys. Rev. Lett.* **109** 111807
[29] Aoyama T, Hayakawa M, Kinoshita T and Nio M 2015 *Phys. Rev.* D **91** no.3 033006; Erratum: 2017 *Phys. Rev.* D **96** no.1 019901
[30] Marquard P, Smirnov A V, Smirnov V A, Steinhauser M and Wellmann D 2017 *preprint* arXiv:1708.07138 [hep-ph]
[31] Levine M J and Wright J 1971 *Phys. Rev. Lett.* **26** 1351
[32] Cvitanovic P and Kinoshita T 1974 *Phys. Rev.* D **10** 4007
[33] Kinoshita T 1990 *Quantum Electrodynamics* ed Kinoshita T (Singapore: World Scientific) pp 218-321
[34] Kinoshita T 1995 *Phys. Rev. Lett.* **75** 4728
[35] Hughes V W and Kinoshita T 1999 *Rev. Mod. Phys.* **71** S133
[36] Elend H H 1966 *Phys. Lett.* **20** 682
[37] Samuel M A and Li G W 1991 *Phys. Rev.* D **44** 3935; Erratum: 1993 *Phys. Rev.* D **48** 1879
[38] Li G W, Mendel R and Samuel M A 1993 *Phys. Rev.* D **47** 1723
[39] Laporta S and Remiddi E 1993 *Phys. Lett.* B **301** 440
[40] Laporta S 1993 *Nuovo Cim.* A **106** 675
[41] Passera M 2007 *Phys. Rev.* D **75** 013002
[42] Kataev A L 2012 *Phys. Rev.* D **86** 013010
[43] Kurz A, Liu T, Marquard P and Steinhauser M 2014 *Nucl. Phys.* B **879** 1
[44] Nomura D and Teubner T 2013 *Nucl. Phys.* B **867** 236
[45] Kurz A, Liu T, Marquard P and Steinhauser M 2014 *Phys. Lett.* B **734** 144
[46] Prades J, de Rafael E and Vainshtein A 2009 *Lepton Dipole Moments* ed Roberts B L and Marciano W J (Singapore: World Scientific) pp 303-319
[47] Mohr P J, Taylor B N and Newell D B 2012 *Rev. Mod. Phys.* **84** 1527
[48] Bouchendira R, Ccliffe P, Guellati-Khelifa S, Nez F and Biraben F 2011 *Phys. Rev. Lett.* **106** 080801
[49] Mohr P J, Newell D B and Taylor B N 2016 *Rev. Mod. Phys.* **88** no.3 035009
[50] Lepage G P 1978 *J. Comput. Phys.* **27** 192
[51] Laporta S “High-precision calculation of the 4-loop contribution to the electron g-2 in QED” in *these proceedings*
[52] Volkov S A 2016 *J. Exp. Theor. Phys.* **122** 1008
[53] Volkov S A 2016 *Zh. Eksp. Teor. Fiz.* **149** 1164