Pseudobactrodesmium (Dactylosporaceae, Eurotiomycetes, Fungi) a Novel Lignicolous Genus

Wei Dong¹,²,³, Kevin D. Hyde³, Mingkwan Doilom⁴,⁵, Xian-Dong Yu¹, D. Jayarama Bhat⁶, Rajesh Jeewon⁷, Saranyaphat Boonmee³, Gen-Nuo Wang⁸, Sarunya Nalumpang² and Huang Zhang¹,⁹,¹⁰*

¹ Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China, ² Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, ³ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand, ⁴ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China, ⁵ World Agroforestry Centre, East and Central Asia, Kunming, China, ⁶ Retired, Curca, India, ⁷ Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius, ⁸ Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China, ⁹ Department of Botany, University of British Columbia, Vancouver, BC, Canada, ¹⁰ Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming University of Science and Technology, Kunming, China

During our ongoing surveys of fungi on submerged wood in the Greater Mekong Subregion, we collected two new species similar to *Bactrodesmium longisporum*. **Pseudobactrodesmium** gen. nov. is introduced to accommodate the new species, *P. aquaticum*, *P. chiangmaiensis* and *B. longisporum* is transferred to this genus. Fasciculate conidiophores, enteroblastic conidiogenous cells and subulate to fusiform, phragmoseptate conidia with a tapering apical cell and sheath characterize the genus. *Pseudobactrodesmium aquaticum* has longer conidia than *P. chiangmaiensis*. The placement of *Pseudobactrodesmium* in Dactylosporaceae (Eurotiomycetes) is a novel finding based on analyses of combined LSU, SSU, ITS and RPB2 sequence data. Our study reveals that *Pseudobactrodesmium* is likely to be a speciose genus with different species in streams around the world.

Keywords: Bactrodesmium, multi-gene, sheath, submerged wood, taxonomy

INTRODUCTION

Dactylosporaceae accommodates ecologically and morphologically diverse genera, and was reinstated by Diederich et al. (2018) to replace Sclerococcaceae (Reblóva et al., 2016). For example, the freshwater genus *Cylindroconidiis* has holoblastic conidiogenous cells (Yu et al., 2018), while the terrestrial genera *Pseudosclerococcum* and *Rhopalophora* are apothecial ascomycetes and dematiaceous phialidic hyphomycetes, respectively (Reblóva et al., 2016; Olariaga et al., 2019). The terrestrial and marine genus *Sclerococcum (= Dactylopora)* has loose sporodochia with catenate conidia or apothecia-like ascomata often growing on lichens or decaying wood (Hawksworth, 1975; Jones et al., 1999; Pang et al., 2014; Pino-Bodas et al., 2017). Additionally, *Fusichalara minuta*, which is a dematiaceous phialidic hyphomycete, and some beetle-associated strains also cluster in this family (Vargasasensio et al., 2014; Tedersoo et al., 2017).
Aquatic hyphomycetes are a morphologically diverse and polyphyletic group (Shenoy et al., 2006; Baschien et al., 2013; Su et al., 2016). Species with similar morphological characters are difficult to identify without molecular data. Previously, identification was mostly carried out based on morphology and only a few asexual taxa have been subjected to phylogenetic studies (Goh and Hyde, 1996; Cai et al., 2002; Cai and Hyde, 2007). With more molecular data becoming available for phylogenetic analyses, numerous new combinations have been proposed to accommodate poorly documented hyphomycete species (Lu et al., 2018; Yang et al., 2018a,b). Molecular data also demonstrated that some previously known congeneric species are now distributed in different families, e.g., Monodictys arctica in Leptosphaeriaceae (Day et al., 2006), M. capensis in Pleomonodictydaceae (Hernández-Restrepo et al., 2017), and some other Monodictys species in Parabambusicolaceae (Tanaka et al., 2015). Although the polyphyletic nature of some hyphomycetous genera were partially resolved, e.g., Dendryphion, Sporidesmium and torula-like species (Su et al., 2016), fresh collections with molecular data are still needed to obtain a natural classification of hyphomycetes.

Invalidly established by Berkeley and Broome (1865) with Sporidesmium abruptum as the type, the hyphomycetous genus Bactrodesmium was segregated from Sporidesmium, with B. abruptum as the lectotype (Hughes, 1958). Bactrodesmium is distributed worldwide with more than 48 species (Wijayawardene et al., 2017a; Index Fungorum database1). It was regarded as a member of Dothideomycetes based on the sexual-asexual morph connection between Bactrodesmium obliquum and Stuartella suttonii (Funk and Shoemaker, 1983; Wijayawardene et al., 2017b). However, with molecular evidence, Bactrodesmium was shown to be polyphyletic, as B. gabretae clustered within Helotiales, Leotiomycetes (Koukol and Kolárová, 2010), B. cubense had affinities to Morosphaeriaceae, Dothideomycetes (Hernández-Restrepo et al., 2017) and B. pallidum clustered in Savoryellaceae, Sordariomycetes (Hernández-Restrepo et al., 2017). Recently, Bactrodesmium fasciculare was transferred to a newly established genus Pleotrichocladium in Melanommataceae (Dothideomycetes) based on molecular data and morphology (Hernández-Restrepo et al., 2017). Moreover, the generic type B. abruptum was tentatively placed in Dothideomycetes based on morphological evidence but molecular data is still lacking (Pern et al., 2019). The phylogenetic position of other species still needs to be investigated.

We are studying the freshwater fungi on submerged wood along a north–south latitudinal gradient in the Asian/Australian region (Hyde et al., 2016) and have published several papers on the Greater Mekong Subregion (Zhang et al., 2011, 2012, 2013, 2014, 2016, 2017; Dong et al., 2018; Wei et al., 2018; Yu et al., 2018; Wang et al., 2019). In this study, two taxa morphologically similar to Bactrodesmium longisporum were collected from submerged wood. To clarify the classification of the two new collections, we analyzed a combined LSU, SSU, ITS and RPB2 sequence dataset and compared their morphological characters. Pseudobactrodesmium, a new genus with two new species, and one new combination are introduced. Morphologically similar genera are compared with Pseudobactrodesmium and the taxonomic placements of Bactrodesmium species are discussed.

MATERIALS AND METHODS

Isolation and Morphology

The decaying wood samples were collected from freshwater streams in Chiang Mai Province, Thailand and Yunnan Province, China. Specimens were placed in zip-lock plastic bags with moist cotton or tissue paper and taken to the laboratory. Morphological observations were carried out after incubation at room temperature for 1–2 weeks. Colonies were examined using a Nikon SMZ-171 dissecting microscope. Photomicrographs were made with a Nikon ECLIPSE Ni compound microscope fitted with a Canon EOS 600D digital camera. Measurements were made with the Tarosoft (R) Image Frame Work program. Images used for figures were processed with Adobe Photoshop CS5 software (Adobe Systems, United States). Single spore isolations were made from conidia onto potato dextrose agar (PDA) at room temperature, as detailed in Chomnunti et al. (2014) and cultured as outlined by Vijaykrishna et al. (2004) and Liu et al. (2010). Herbarium specimens (dry wood with fungal material) were deposited in the herbarium of Mae Fah Luang University (MFLU), Chiang Rai, Thailand and herbarium of Cryptogams, Kunming Institute of Botany Academia Sinica (HKAS), Kunming, China. Living cultures were deposited in Mae Fah Luang University Culture Collection (MFLUCC) and Kunming Institute of Botany Culture Collection (KUMCC). Facesoffungi and Index Fungorum numbers were registered as in Jayasiri et al. (2015) and Index Fungorum (2020), respectively.

DNA Extraction, PCR Amplification and Sequencing

Fungi were grown on PDA for 20–30 days at 25°C. A Biospin Fungus Genomic DNA Extraction Kit (Bioer Technology Co., Hangzhou, China) was used to extract total genomic DNA from fresh mycelia according to the manufacturer's instructions. DNA amplification was performed by polymerase chain reaction (PCR). LSU, SSU, ITS and RPB2 gene regions were amplified using the primer pairs LR0R/LR5, NS1/NS4, ITS5/ITS4 and RPB2-5F/RPB2-7CR, respectively (Vilgalys and Hester, 1990; White et al., 1990; Rehner and Samuels, 1994; Liu et al., 1999). The amplifications were carried out in a 25 µL reaction volume containing 9.5 µL ddH2O, 12.5 µL 2 × PCR Master Mix, 1 µL DNA template, 1 µL each primer (10 µM). The PCR thermal cycles for the amplification of the gene regions followed the methods in Jeewon et al. (2004); Réblová et al. (2011), and Su et al. (2015). PCR products were checked on 1% agarose electrophoresis gels stained with Gel Red. The sequencing reactions were carried out by Shanghai Sangon Biological Engineering Technology and Services Co., Shanghai, China.

Phylogenetic Analyses

The qualities of raw sequences generated in this study were checked with Finch TV version 1.4.0. Based on nucleotide

1http://www.indexfungorum.org/names/Names.asp
substitution rates AC = 1.300864, AG = 2.616909, AT = 1.328213, A = 0.256432, C = 0.229269, G = 0.279558, T = 0.234740; resulted in a best scoring likelihood tree selected with a final alignment length of 4381 total characters. The RAxML analysis comprised 79 strains (including two new strains) with an

Combined LSU, SSU, ITS, and RPB2 gene regions were employed for Phylogenetic Analyses.

RESULTS

Phylogenetic Analyses

Combined LSU, SSU, ITS, and RPB2 gene regions were employed to explore the taxonomy of new collections. The alignment comprised 79 strains (including two new strains) with an alignment length of 4381 total characters. The RAxML analysis resulted in a best scoring likelihood tree selected with a final value for the combined dataset ln L = −39819.188166. The matrix has 2564 distinct alignment patterns, with 62% of undetermined characters or gaps. Estimated base frequencies are as follows: A = 0.256432, C = 0.229269, G = 0.279558, T = 0.234740; substitution rates AC = 1.300864, AG = 2.616909, AT = 1.328213, CG = 1.028043, CT = 6.168383, GT = 1.000000; gamma distribution shape parameter \(\alpha = 0.360140 \).

In the phylogenetic tree (Figure 1), the two new isolates are shown in Eurotiomycetes and distantly related to Bactrodesmium cubense (Dohtheimycetes), B. gabretae (Leotiomycetes), and B. obovatum and B. pallidum (Sordariomycetes). The morphologically similar genera, e.g., Bactrodesmiuam, Dictyosporium, Digitodesmium, Distoseptispora, and Sporidesmium, have phylogenetically unrelated relationships with our new strains (Figure 1). Pseudobactrodesmium aquaticum and P. chiangmaiensis constitute a distinct clade in the family Dactylosporaceae (Figure 1).

Taxonomy

Pseudobactrodesmium H. Zhang, W. Dong & K. D. Hyde, gen. nov.

Index Fungorum number: IF557247; Facesoffungi number: FoF07525

Etymology: in reference to bactrodesmium-like morphology

Saprobic on submerged wood in freshwater or decaying wood in terrestrial habitats. Sexual morph: Undetermined.

Asexual morph: Hyphomycetous. Colonies sporodochial, superficial, effuse, gregarious or scattered, brown, punctiform. Mycelium mostly immersed, composed of sepatate, branched, hyaline hyphae. Conidiophores macronematous, mononematous, fuscate, compact, erect, subcylinidrle, septate, usually unbranched, brown, smooth. Conidiogenous cells enteroblastic, with inconspicuous proliferations, integrated, terminal, subcylinidrle, pale brown. Conidia acrogenous, solitary, dry, thin-walled, smooth-walled, clavate, subcylinidrle, narrowly fusiform or subulate, euseptate, phragmoseptate, brown, often enveloped by a hyaline, spherical sheath at the apex. Apical cells elongated, tapering gradually toward the apex, with globose tuberculate apex.

Type species: Pseudobactrodesmium aquaticum W. Dong, H. Zhang & K.D. Hyde

Notes: Pseudobactrodesmium is characterized by enteroblastic conidiogenous cells and subulate or fusiform, evenly pigmented conidia with a tapering apical cell. In contrast, Bactrodesmium as typified by B. abruptum is quite distinct in producing holoblastic conidiogenous cells and clavate to fusiform, unevenly colored conidia which are mid or dark brown at the upper part and becoming paler toward the basal cell, 3- to multi-transversely septate, with very dark bands at the septa, the upper one thick and black, unequal cells, the penultimate cell much longer than any of the others (Ellis, 1971). Pseudobactrodesmium nests well within the family Dactylosporaceae in our phylogenetic tree of the combined sequence dataset (Figure 1). The unique combination of morphological characters of Pseudobactrodesmium stands apart from other existing genera in this family (Hawksworth, 1975; Ellis, 1976; Jones et al., 1999; Réblová et al., 2016; Yu et al., 2018; Olariaga et al., 2019). Pseudobactrodesmium is morphologically similar to a few dematiaceous hyphomycetous genera with long or short, septate conidia, e.g., Bactrodesmiuam (Holubová-Jechová, 1984), Bactrodesmium (Ellis, 1971, 1976), Digitodesmium (Boonmee et al., 2016), Distoseptispora (Su et al., 2016), Scolecostigmina
TABLE 1 | Taxa used in the phylogenetic analysis and their corresponding GenBank accession numbers.

Taxon	Voucher/Culture	LSU	SSU	ITS	RPB2
Aquapoterium pinicola	ATCC MYA-4213	NG_056957	–	NR_111345	–
Ascotaiwania lignicola	NIL00005	HQ446364	HQ446284	HQ446341	HQ446419
Ascotaiwania mitriformis	HKUCC 3706	AF132324	–	–	–
Ascotaiwania sawadae	SS00051	HQ446363	HQ446283	HQ446340	HQ446418
Bactrodesmiastrium moniloides	FMR 10756	KF771879	–	–	–
Bactrodesmiastrium obovatum	FMR 6482	FR870266	–	–	–
Bactrodesmiastrium pyriforme	FMR 10747	FR870265	–	–	–
Bactrodesmium cubense	CBS 680.96	HE646637	–	–	–
Bactrodesmium gabretae	ZK171	FN561755	–	FN561756	–
Bactrodesmium obovatum	CBS 128766	MH876431	–	MH864978	–
Bactrodesmium pallidum	FMR 11345	KY83485	–	KY853425	–
beetle-associated isolate	INBio 4503Q	KM243200	–	–	–
beetle-associated isolate	INBio 4513J	KM243256	–	–	–
beetle-associated isolate	INBio 4513L	KM243258	–	–	–
cf. Sclerococcum montagnei	Air 1	EF210108	–	–	–
Cheilymenia stercorea	AFTOL 148	AY544661	AY544705	–	–
Clypeolocus akiatensis	KT 788	AB807543	AB797253	AB806931	–
Cylindroconidias aquaticus	MFLUCC 11-0294	MH236579	MH236580	MH236576	–
Dictyosporium meiosporum	MFLUCC 10-0131	KP710945	KP710946	KP710944	–
Dictyosporium olivaceosporum	KH 375	AB807514	AB797224	LC014542	–
Dictyosporium thailandicum	MFLUCC 13-0773	KP716707	–	KP716706	–
Digtodesmium bumbioscula	CBS 110279	DG018103	–	DG018091	–
Distoseptispora adscendens	HKUCC 10820	DQ408561	–	–	DQ435092
Distoseptispora leonensis	HKUCC 10822	DQ408566	–	–	DQ435089
Distoseptispora thailandica	MFLUCC 16-0270	MH260292	MH260334	MH275060	–
Distoseptispora xiuangshanganaensis	KUMCC 17-0290	MH260293	–	MH275061	MH412754
Fuscosporella pyriformis	MFLUCC 16-0570	KX550896	KX550900	–	–
Fusichalera minuta	CBS 709.88	KX537758	KX537773	KX537754	KX537770
Loramyces macrosporus	AFTOL-ID 913	DQ470957	DQ471005	–	DQ470907
Mollisia cinerea	AFTOL-ID 76	DQ470942	DQ470990	–	DQ470883
Morosphaeria velatispore	KH 218	AB807555	AB797265	–	–
Morosphaeria velatispore	KH 221	AB807566	AB797266	–	–
Mucispora obscurisepata	MFLUCC 15-0618	KX550892	KX550897	–	–
Parafuscosporella moniliformis	MFLUCC 15-0626	KX550895	KX550899	–	–
Pleurotheciella centanaria	DAOM 229631	JQ429234	JQ429246	JQ429151	JQ429265
Pleurotheciella rivularia	CBS 125238	JQ429232	JQ429244	JQ429160	JQ429263
Pleurotheciella rivularia	CBS 125237	JQ429233	JQ429245	JQ429161	JQ429264
Pleurothecium recurvatum	CBS 101580	JQ429247	JQ429147	–	–
Pleurothecium recurvatum	CBS 101581	JQ429248	JQ429148	JQ429266	–
Pseudoseptospora persoonii	A57-14C	AY590295	–	–	–
Pseudobactrodesmium aquaticum	MFLUCC 18-1015	MN335230	MN335226	MN335228	–
Pseudobactrodesmium chiangmaensis	MFLUCC 18-0982	MN335229	MN335225	MN335227	–
Pseudobactrodesmium sp.*	NBRC104945	–	–	–	–
Pseudosclerococcum golindoi	ARAN-Fungi 6619	MK759890	MK759887	MK759885	–
Rhopalophora clavispora	CBS 129.74	KX537755	–	KX537751	KX537767
Rhopalophora clavispora	CBS 281.75	KX537756	KX537771	KX537752	KX537768
Rhopalophora clavispora	CBS 637.73	KX537757	KX537772	KX537753	KX537769
Sclerococcum ahtii	RP23	KY661659	–	KY661686	–
Sclerococcum ahtii	RP127	–	–	KY661618	–
Sclerococcum ahtii	RP182	–	–	KY661622	–
Sclerococcum chiangraensis	MFLU 16-0570	MH718433	–	MH718440	–

(Continued)
(Braun et al., 1999), and *Sporidesmium* (Su et al., 2016), but they are separated by molecular evidence (Figure 1).

Pseudobactrodesmium aquaticum W. Dong, H. Zhang & K.D. Hyde, **sp. nov.**, Figure 2

Index Fungorum number: IF557248; Facesoffungi number: FoF07526

Etymology: aquaticum in reference to the aquatic habitat

Holotype: MFLU 18-1171

*Saprobi**c on submerged wood in freshwater. **Sexual morph:** Undetermined.

Asexual morph: Hyphomycetous. *Colonies* sporodochial, superficial, effuse, gregarious or scattered, brown, punctiform. *Mycelium* mostly immersed, composed of septate, branched, hyaline hyphae. *Conidiophores* 26–38 × 3–4.5 µm (x = 34 × 3.8 µm, n = 10), macronematous, mononematous, fasciculate, compact, erect, subcylindrical, the apex slightly wider than the base, septe, slightly constricted at septa, usually unbranched, brown, smooth. *Conidiogenous cells* enteroblastic, with inconspicuous proliferations, integrated, terminal, subcylindrical, pale brown. *Conidia* (80–)90–105 × 6–8.5 µm (x = 95 × 7.5 µm, n = 20), acrogenous, solitary, dry, thin-walled, smooth-walled, clavate when young, subcylindrical to narrowly fusiform, or subulate when mature, straight or slightly curved, euseptate, (15–)16–19-phragmoseptate, slightly constricted and darker at septa, pale brown to brown, obscurely guttulate, wedge-shaped at basal cell, with tapering apical cells, often enveloped by a hyaline, spherical, thin, gelatinous sheath at the apex, 13–20 µm diam. *Apical cells* elongated, up to 6 µm long, tapering gradually toward the apex, easily becoming senescent, subhyaline, with obscured, subglobose tuberculate ends.

Culture characteristics: On PDA, colony circular, slow growing, reaching 10 mm in 50 days at 25°C, gray to brown from above, dark gray from below, surface rough, dry, raised, entire at edge.

Material examined: CHINA, Yunnan Province, Pingbian City, on submerged wood in a stream, 20 September 2017, W. Dong, WF-24A-1 (MFLU 18-1171, **holotype**), ex-type living culture MFLUCC 18-1015; *ibid.* WF-24A-2 (HKAS 101707, **isotype**), ex-isotype living culture KUMCC 18-0056.

Notes: *Pseudobactrodesmium aquaticum* is introduced as the type species of *Pseudobactrodesmium* having the typical euseptate, phragmoseptate conidia with apical sheath. The enteroblastic conidiogenous cells are particularly obvious in Figure 2e. **Pseudobactrodesmium chiangmaiensis** X. D. Yu, W. Dong & K. D. Hyde, **sp. nov.,** Figure 3

TABLE 1 | Continued

Taxon	Voucher/Culture	GenBank accession number			
	LSU	SSU	ITS	RPB2	
Sclerococcum deminutum	RP235	–	–	KY661629	–
Sclerococcum fusiformis	MFLU 16-0593	MH718434	–	MH718441	–
Sclerococcum fusiformis	MFLU 18-0678	–	–	MH718442	–
Sclerococcum glaucomaroids	RP275	KY661660	–	KY661632	–
Sclerococcum halotrophophilum	ATCC-MYA-3590	FY176855	FY176802	–	FJ238344
Sclerococcum halotrophophilum	J.K. 5129B	FJ713617	–	–	FJ713614
Sclerococcum lobareillum	Diederich 17109	MH698499	–	–	–
Sclerococcum lobareillum	Diederich 17708	MH698498	–	–	–
Sclerococcum lobareillum	ARAN-Fungi 10091	MK759891	–	–	–
Sclerococcum mangrovei	CBS 110444	FJ718890	FJ718836	–	FJ238375
Sclerococcum parasiticum	ARAN-Fungi 2724	MK759892	MK759888	–	–
Sclerococcum parasiticum	RP422	KY661666	–	KY661646	–
Sclerococcum parasiticum	F283586	MK759894	–	–	–
Sclerococcum parasiticum	F283587	MK759895	–	–	–
Sclerococcum parasiticum	ARAN-Fungi A3044025	MK759890	–	–	–
Sclerococcum parasiticum	RP391	KY661664	–	–	–
Sclerococcum sphaerale	Diederich 17279	JX081672	–	–	–
Sclerococcum sphaerale	Diederich 17283	JX081673	–	–	–
Sclerococcum sphaerale	Erz 17425	JX081674	–	–	–
Sclerococcum stygium	ARAN-Fungi 3395	MK759896	MK759889	–	–
Sclerococcum vriemoediae	NTOU 4002	KC692153	KC692152	–	KC692154
Sporidesmium aquaticum	MFLUCC 15-0420	KU376273	–	–	–
Sporidesmium bambusica	HKUC 3578	DQ408562	–	–	–
Sporidesmium fluminicola	MFLUCC 15-0346	KU376271	–	–	–
Sporidesmium smurserum	MFLUCC 15-0421	KU376272	–	–	–
Sporidesmium thailandense	MFLUCC 15-0964	MF374370	–	MF374361	MF370955
Vibriomsea truncorum	CUP-62562	AVY789402	AVY789401	AVY789403	–

Ex-type strains are in bold; newly generated sequences are highlighted in red. *The LSU, SSU, and ITS sequences of Pseudobactrodesmium sp. NBRC 104945 are available online at https://www.nite.go.jp/nbrc/catalogue/NBRCCatalogueDetailServlet?ID=NBRC&CAT=00104945.*
Dong et al. A Novel Lignicolous Genus Pseudobactrodesmium

FIGURE 1 | Continued

Eurotiomycetes, Dactylosporaceae

- terrestrial, lichenicolous
- soil
- marine, lignicolous
- freshwater, lignicolous
- terrestrial, lignicolous
- beetle-associated

- Sclerococcum parasiticum F283586
- Sclerococcum parasiticum F283587
- Sclerococcum parasiticum ARAN-Fungi A3044025
- Sclerococcum parasiticum RP422
- Sclerococcum parasiticum ARAN-Fungi 2724
cf Sclerococcum montagnei ALr 1
- Sclerococcum lobellatum Diederich 18109
- Sclerococcum lobellatum Diederich 17708
- Sclerococcum lobellatum ARAN-Fungi 10091
- Sclerococcum sphaerale Diederich 17283
- Sclerococcum sphaerale Diederich 17279
- Sclerococcum sphaerale Ertz 17425
- Sclerococcum fusiformis MFLU 18-0678
- Sclerococcum fusiformis MFLU 16-0593
- Sclerococcum chiaingraiensis MFLU 16-0570
- Sclerococcum stygium ARAN-Fungi 3395
- Sclerococcum halotremphum J.K. 5129B
- Sclerococcum halotremphum ATCC:MYA-3590
- Sclerococcum vrijmoedai NTU 4002
- Sclerococcum mangrovei CBS 110444
- Sclerococcum ahtii RP23
- Sclerococcum ahtii RP182
- Sclerococcum ahtii RP127
- Sclerococcum glaucomarioides RP275
- Sclerococcum deminutum RP235
- Sclerococcum sp. RP391
- Pseudobactrodesmium chiaingmaiensis MFLUCC 18-0982
- Pseudobactrodesmium sp. NBRC104945
- Pseudobactrodesmium aquatnicum MFLUCC 18-1015
- Pseudosclerococcum golindi ARAN-Fungi 6619
- Rhopalophora clavispora CBS 129.74
- Rhopalophora clavispora CBS 281.75
- Rhopalophora clavispora CBS 637.73
- Cylindroconidius aquaticus MFLUCC 11-0294
- Fusichalara minuta CBS 709.88
- beetle-associated isolate 4513L
- beetle-associated isolate 4513J
- beetle-associated isolate 4503Q
- Mollisia cinerea AFTOL-ID 76
- Loramyes macrosporus AFTOL-ID 913
- Vbrissea trancorum CUP-62562
- Aquapotierium pinicola ATCC MYA-4213
- Bactrodesmium gabraetae ZK171
Dong et al. A Novel Lignicolous Genus Pseudobactrodesmium

Index Fungorum number: IF557249; Facesoffungi number: FoF07527

Etymology: name reflects Chiang Mai, from where the species was collected.

Holotype: MFLU 18-0994

Saprobic on submerged wood in freshwater. Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies sporodochial, superficial, effuse, gregarious or

Figure 1 RaXML tree generated from combined LSU, SSU, ITS, and RPB2 sequence data. Bootstrap support values for maximum likelihood (the first value) equal to or greater than 60% and Bayesian posterior probabilities (the second value) equal to or greater than 0.95 are given above or below the nodes. The tree is rooted to *Cheilymenia stercorea* (AFTOL 148) (Pezizomycetes). The ex-type strains are indicated in bold and newly generated sequences are indicated in blue. Four bactrodesmium-like species are highlighted in gray background. Symbols after generic names in Eurotiomycetes indicate the habitats of taxa as explained in the phylogram.
Dong et al. A Novel Lignicolous Genus Pseudobactrodesmium

FIGURE 2 | Pseudobactrodesmium aquaticum (MFLU 18-1171, holotype). (a,b) Colonies on submerged wood. (c,d) Conidiophores bearing conidia. (e) Enteroblastic conidiogenous cells (arrow). (f) Conidiophore. (g–i) Conidia. (j) Conidial tips with sheaths. (k) Colony on PDA (front view). (l) Colony on PDA (bottom view). Scale bars: (a) 200 µm, (b) 100 µm, (c,d,h,k) 20 µm, (e,g,i,j) 10 µm, (f) 5 µm.

FIGURE 3 | Pseudobactrodesmium chiangmaiensis (MFLU 18-0994, holotype). (a) Colonies on submerged wood. (b,c) Conidiophores bearing conidia. (d) Conidial tips with sheaths (arrow). (e) Apex of conidiophores. (f–h) Conidia. (i) Colony on PDA (front view). (j) Colony on PDA (bottom view). Scale bars: (a) 500 µm, (b,g,h) 20 µm, (c,d) 30 µm, (e) 10 µm, (f) 50 µm.

Culture characteristics: On PDA, colony circular, reaching 15 mm in 20 days at 25°C, dark gray to dark brown from above, dark gray to black from below, surface rough, dry, raised, margin entire.

Material examined: Thailand, Chiang Mai Province, on submerged wood in a stream, 9 February 2018, X.D. Yu, Y11 (MFLU 18-0994, holotype), ex-type living culture MFLUCC 18-0982.

Notes: Pseudobactrodesmium chiangmaiensis differs from P. aquaticum in having shorter conidia (40–90 × 5.5–8.5 µm vs. 80–90–105 × 6–8.5 µm), longer apical cells (up to 16 µm vs. up to 6 µm), as well as darker colonies on the host (dark brown to black vs. brown). The conidial sheaths are obscure in P. chiangmaiensis when mounted in water, while they are easily observed in P. aquaticum. This is probably because the specimens were senescent which led the sheaths to deliquesce. In our phylogenetic tree, P. chiangmaiensis groups with P. aquaticum with strong bootstrap support (100% MLBS, 1.00 PP, Figure 1). However, a comparison of sequence data between P. chiangmaiensis and P. aquaticum shows a difference of 6, 7, 20, and 32 nucleotides in LSU, SSU, ITS, and TEF gene regions, respectively. This indicates that they are distinct species according to guidelines of Jeewon and Hyde (2016).

Pseudobactrodesmium longisporum (M.B. Ellis) W. Dong & K.D. Hyde, **comb. nov.**

Index Fungorum number: IF557250; Facesoffungi number: FoF07466

scattered, dark brown to black, punctiform. Mycelium mostly immersed, composed of septate, branched, hyaline hyphae. Conidiophores 15–23 × 2.5–4 µ.m (x = 21.5 × 3.5 µ.m, n = 10), macronematous, mononematous, fasciculate, compact, erect, subcylindrical, septate, slightly constricted at the septa, usually unbranched, brown, smooth. Conidiogenous cells enteroblastic, with inconspicuous proliferations, integrated, terminal, subcylindrical, pale brown. Conidia 40–90 × 5.5–8.5 µ.m (x = 70 × 7 µ.m, n = 50), acrogenous, solitary, dry, thin-walled, smooth-walled, clavate when young, subcylindrical to narrowly fusiform, or subulate when mature, straight or slightly curved, euseptate, 6–19-phragmoseptate, slightly constricted and darker at septa, pale brown to brown, obscurely guttulate, wedge-shaped at basal cell, with tapering apical cells, often enclosed by a hyaline, spherical, thin, gelatinous sheath at the apex, 17–21 µ.m diam. Apical cells elongated, up to but rarely 16 µ.m long, tapering gradually toward apex, subhyaline, with subglobose tuberculate ends.
Bactrodesmium longisporum M.B. Ellis, More Dematiaceous Hyphomycetes (Kew): 68 (1976)

Stigmina longispora (M.B. Ellis) S. Hughes, N. Z. Jl Bot. 16(3): 353 (1978)

Bactrodesmium stillboideum R. F. Castañeda & G. R. W. Arnold, Revta Jardín bot. Nac., Univ. Habana 6(1): 48 (1985)

Stigmina longispora var. stillboidea (R. F. Castañeda & G. R. W. Arnold) J. Mena & Mercado, Reporte de Investigacion del Instituto de Ecología y Sistematia, Academia de Ciencias de Cuba, Ser. Bot. 17: 10 (1987)

Holotype: On dead wood of Alnus sp. in Great Britain (IMI 63746 B)

Known distribution: New Zealand (Hughes, 1978), Australia (Vijaykrishna and Hyde, 2006), Brazil (Barbosa and Gusmão, 2011; Barbosa et al., 2013; Santa Izabel and Gusmão, 2016, 2018), Cuba (Castañeda Ruiz and Arnold, 1985), Great Britain (Ellis, 1976), Hong Kong, China (Wong and Hyde, 2001), India (Prabhugaonkar, 2011), Venezuela (Castañeda Ruiz et al., 2009), México (Heredia et al., 2018), Peru (Shearer et al., 2015), Philippines (Cai et al., 2003), South Africa (Hyde et al., 1998), Thailand (Hu et al., 2010; this study), United States (Raja et al., 2007).

Notes: Bactrodesmium longisporum was described by Ellis (1976) with a line-drawing. It was subsequently synonymized with Stigmina longispora by Hughes (1978) who observed percurrently proliferating conidiophores in old specimens from New Zealand. Bactrodesmium stillboideum is another synonym listed in Index Fungorum database. However, they can be distinguished by the aggregation of conidiophores (synnematous in B. stillboideum vs. mononematous, fasciculate conidiophores in B. longisporum) (Ellis, 1976; Castañeda Ruiz and Arnold, 1985).

A Thai strain of B. longisporum (NBRC 104945) clustered with Pseudobactrodesmium chiangmaiensis (MFLUCC 18-0982) in our phylogenetic tree (Figure 1). A comparison of sequence data between NBRC 104945 and MFLUCC 18-0982 shows a difference of 2, 281, 5 nucleotides in LSU, SSU and ITS gene regions, respectively (NBRC 104945 has 3 major insertions spanning over 281 nucleotides in SSU gene). In this study, we name NBRC 104945 as Pseudobactrodesmium longisporum sp. until its morphological characters are established to formally name this isolate. Five additional strains with only ITS2 sequence data are named as Bactrodesmium longisporum in GenBank. However, their status should be treated with caution as they represent OTUS from a metagenomic study of a heap leaching system (Hu et al., 2015) and further evidence of conspecificity is needed.

Unfortunately, the holotype specimen of B. longisporum (IMI 63746 B), does not exist in herbarium IMI. According to protologue description of the holotype (Ellis, 1976), B. longisporum (IMI 63746 B) has similar conidial size to P. chiangmaiensis (MFLUCC 18-0994) (50–80 ù 7–8 µm in former vs. 40–90 × 5.5–8.5 µm in latter). However, P. chiangmaiensis has elongated apical cells (up to 16 µm long) with subglobose tuberculate ends, which were not described and drawn in protologue of B. longisporum (Ellis, 1976). The conidiophores of B. longisporum are up to 50 µm long, but only 15–23 µm long in P. chiangmaiensis. The size of apical sheath of B. longisporum is also unclear. Thus, we treat them as different species and synonymize B. longisporum under Pseudobactrodesmium as the third species in the genus. Epitypification of Pseudobactrodesmium longisporum is needed using a collection from its type locality.

DISCUSSION

Bactrodesmium longisporum has been recorded as having a worldwide distribution, however these records have not been verified with molecular data. The type of B. longisporum also appears to be lost and therefore its identity cannot be verified. We therefore designate our new species of Pseudobactrodesmium from China as the generic type, describe a second species from Thailand and transfer Bactrodesmium longisporum to the new genus. However, it is likely that many collections of this species have been misidentified and as more collections are made from different countries, we would expect Pseudobactrodesmium to become speciose.

Bactrodesmium is a complex genus in need of extensive taxonomic reassessment. Pem et al. (2019) reviewed the holotype material of Bactrodesmium abruptum (≡ Sporidesmium abruptum) and tentatively placed the generic type in Dothideomycetes incertae sedis based on morphology. Both B. cubense and B. ovovatum produce clavate or obovate conidia with darker septa and unequal cells, similar to the type species B. abruptum (Ellis, 1971; Zucconi and Lunghini, 1997). However, our phylogenetic study shows that they belong to different classes, Dothideomycetes and Sordariomycetes, respectively (Figure 1). Bactrodesmium gabretae differs from B. abruptum by its transversely or occasionally oblique, distoseptate conidia, and phylogenetically clustered in Leotiomycetes (Figure 1). Bactrodesmium pallidum is different from B. abruptum but similar to our new genus Pseudobactrodesmium in conidial shape (Ellis, 1959), and phylogeny places this species in Sordariomycetes (Figure 1). Our phylogenetic study is in agreement with the studies of Koukol and Kolárová (2010) and Hernández-Restrepo et al. (2017).

Although molecular data of B. abruptum is still missing, the working hypothesis of Bactrodesmium sensu stricto in Dothideomycetes provides further evidence for the introduction of Pseudobactrodesmium. Pseudobactrodesmium shares some morphological characters with Digitodesmium in having acrogenous, long, transversely septate conidia with a hyaline sheath at the apex (Kirk, 1981; Boonme et al., 2016). However, the semi-macronematous, moniliform conidiophores and digitate conidia of Digitodesmium are clearly distinguishable from the macronematous, subcylindrical conidiophores and subcylindrical to narrowly fusiform, or subulate conidia of Pseudobactrodesmium. Phylogeny also segregates them into different classes, viz. Pseudobactrodesmium in Eurotiomycetes,
and *Digitodesmium* in Dothideomycetes (Tsui et al., 2006; Boonmee et al., 2016; this study). The conidia of *Scolecostigmina* are superficially similar to those of *Pseudobactrodesmium*, but the former is characterized by conspicuously annellate conidiogenous cells, thick-walled, smooth to verrucose conidia occasionally with a few longitudinal or oblique septa or a few intermixed distosepta, contrasting with in conspicuously proliferating conidiogenous cells and thin-walled, smooth, transversely phragmosporeata conidia with a hyaline, spherical sheath at the apex in *Pseudobactrodesmium* (Braun et al., 1999; Crous et al., 2013). *Scolecostigmina*, typified by *S. mangiferae*, clustered in Capnodiales (Dothideomycetes) (Crous et al., 2013), while *Pseudobactrodesmium* clustered in Dictyosporiaceae (Eurotiomycetes). *Pseudobactrodesmium longisporum* is superficially similar to *Gangliostilbe malabarica* in the conidial shape and apical sheath, but the synnemata and apically rounded conidia of the latter can easily be separated from the former (Xia et al., 2015). These characters of *G. malabarica* are also distinguished from those in the collection of Castañeda Ruiz and Arnold (1985) bearing the name *Bactrodesmium stilboideum*.

It is challenging to reconstruct the phylogeny of *Bactrodesmium* considering lack of living cultures of *B. abruptum*. The species having clavate or obovate, long or short, transversely septate conidia with or without apical sheath are common and scattered in different groups (Ellis, 1976; Hughes, 1978; Holubová-Jechová, 1984; Braun et al., 1999; Koukol and Kolárová, 2010; Crous et al., 2013; Xia et al., 2015; Boonmee et al., 2016; Su et al., 2016; Hernández-Restrepo et al., 2017; Videira et al., 2017). These groups of fungi are morphologically similar and therefore molecular characters are of crucial importance to clarify their taxonomy. The sequence data of *B. abruptum* is needed in the future to clarify the natural classification of *Bactrodesmium*.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the NCBI GenBank: MN335230, MN335226, MN335228, MN335229, MN335225, and MN335227.

REFERENCES

Barbosa, F., and Gusmão, L. (2011). Conidial fungi from semi-arid Caatinga biome of Brazil. Rare freshwater hyphomycetes and other new records. Mycosphere 2, 475–485.

Barbosa, F. R., Raja, H. A., Shearer, C. A., and Gusmão, L. F. P. (2013). Some freshwater fungi from the Brazilian semi-arid region, including two new species of hyphomycetes. Cryptogam. Mycol. 34, 243–258. doi: 10.1007/s10267-013-0324-4

Baschien, C., Tsui, C. K. M., Gulis, V., Szewzyk, U., and Marvanová, L. (2013). The molecular phylogeny of aquatic hyphomycetes with affinity to the leotiomycetes. Fungal Biol. 117, 660–672. doi: 10.1016/j.funbio.2013.07.004

Berkeley, M. J., and Broome, C. E. (1865). Notices of British fungi (1038–1062). Ann. Mag. Nat. Hist. 15, 400–404.

Boonmee, S., Dsouza, M. J., Luo, Z. L., Pinruan, U., Tanaka, K., Su, H. Y., et al. (2016). Dictyosporiaceae fam. nov. Fungal Divers. 80, 457–482. doi: 10.1007/s13225-016-0363-z

Berkeley, M. J., and Broome, C. E. (1865). Notices of British fungi (1038–1062). Ann. Mag. Nat. Hist. 15, 400–404.

Boonmee, et al., 2016; this study). The conidia of *Scolecostigmina* are superficially similar to those of *Pseudobactrodesmium*, but the former is characterized by conspicuously annellate conidiogenous cells, thick-walled, smooth to verrucose conidia occasionally with a few longitudinal or oblique septa or a few intermixed distosepta, contrasting with in conspicuously proliferating conidiogenous cells and thin-walled, smooth, transversely phragmosporeata conidia with a hyaline, spherical sheath at the apex in *Pseudobactrodesmium* (Braun et al., 1999; Crous et al., 2013). *Scolecostigmina*, typified by *S. mangiferae*, clustered in Capnodiales (Dothideomycetes) (Crous et al., 2013), while *Pseudobactrodesmium* clustered in Dictyosporiaceae (Eurotiomycetes). *Pseudobactrodesmium longisporum* is superficially similar to *Gangliostilbe malabarica* in the conidial shape and apical sheath, but the synnemata and apically rounded conidia of the latter can easily be separated from the former (Xia et al., 2015). These characters of *G. malabarica* are also distinguished from those in the collection of Castañeda Ruiz and Arnold (1985) bearing the name *Bactrodesmium stilboideum*.

It is challenging to reconstruct the phylogeny of *Bactrodesmium* considering lack of living cultures of *B. abruptum*. The species having clavate or obovate, long or short, transversely septate conidia with or without apical sheath are common and scattered in different groups (Ellis, 1976; Hughes, 1978; Holubová-Jechová, 1984; Braun et al., 1999; Koukol and Kolárová, 2010; Crous et al., 2013; Xia et al., 2015; Boonmee et al., 2016; Su et al., 2016; Hernández-Restrepo et al., 2017; Videira et al., 2017). These groups of fungi are morphologically similar and therefore molecular characters are of crucial importance to clarify their taxonomy. The sequence data of *B. abruptum* is needed in the future to clarify the natural classification of *Bactrodesmium*.

AUTHOR CONTRIBUTIONS

WD conducted the experiments, analyzed the data, and wrote the manuscript. KH planned the experiments. MD analyzed the data. X-DY conducted the experiments. DB and RJ revised the manuscript. SB funded the experiments. G-NW conducted the experiments. SN planned the experiments. HZ planned the experiments, analyzed the data, and wrote the manuscript. All authors revised the manuscript.

FUNDING

This work was mainly supported by National Natural Science Foundation of China (Project ID: NSF 31500017 to HZ), Yunnan young and middle aged academic and technical leaders reserve talents (Project ID: 2018BB008). KH thanks the Foreign Experts Bureau of Yunnan Province, Foreign Talents Program (2018; grant no. YNZ2018002), Thailand Research grants entitled Biodiversity, phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans (grant no: RSA5980068), the future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, Rhododendron species and Dracaena species (grant no: DBG6080013), Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (grant no: RDG6130001). KH also thanks Chiang Mai University for the award of visiting Professor. MD would like to thank the 5th batch of Postdoctoral Orientation Training Personnel in Yunnan Province (grant no: Y934283261) and the 64th batch of China Postdoctoral Science Foundation (grant no: Y913082271). SB would like to thank the National Research Council of Thailand (No. 61215320023).

ACKNOWLEDGMENTS

WD would like to thank Prof. Eric H. C. McKenzie for correcting English on manuscript. RJ thanks Mae Fah Luang University and University of Mauritius for support.
Hughes, S. J. (1978). New Zealand fungi 25. Miscellaneous species. N.Z. J. Bot. 16, 311–370. doi:10.1080/0028825X.1978.10425143

Hyde, K. D., Fryar, S., Tian, Q., Bahkali, A. H., and Xu, J. C. (2016). Lichenicolous freshwater fungi along a north–south latitudinal gradient in the Asian/Australasian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecol. 19, 190–200. doi:10.1016/j.fusco.2015.07.002

Hyde, K. D., Goh, T. K., and Steinke, T. D. (1998). Fungi on submerged wood in the Palmett River, Durban, South Africa. Afr. J. Bot. 64, 151–162. PMID:NOPMID

Index Fungorum, (2020). Available online at: http://www.indexfungorum.org/ names/names.asp (accessed January, 2020).

Jayasiri, S. C., Hyde, K. D., Ariyawansa, H. A., Bhat, J., Buyck, B., Cai, L., et al. (2015). The Faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Divers. 74, 3–18. doi:10.1007/s11235-015-0351-8

Jeewon, R., and Hyde, K. D. (2016). Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7, 1669–1677. doi:10.5943/mycosphere/7/11/4

Jeewon, R., Liew, E. C. Y., and Hyde, K. D. (2004). Phylogenetic evaluation of species nomenclature of Pseudotipula in relation to host association. Fungal Divers. 17, 39–55.

Jones, E. B. G., Abdel-Wahab, M. A., Alias, S. A., and Hsieh, S. Y. (1999). Dactylospora mangrovei sp. nov. (Discomycetes, ascomycota) from mangrove wood. Mycologia 101, 317–320. doi:10.1080/00268655.2013.780625

Kazutaka, K., and Standley, D. M. (2016). A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32, 1933–1942. doi:10.1093/bioinformatics/btw108

Kirk, P. (1981). New or interesting microfungi II. Dematiaceous hyphomycetes from Esther Common, Surrey. Trans. Br. Mycol. Soc. 77, 279–297. doi:10.1016/S0028-825X(81)80013-9

Koukol, O., and Kolárová, Z. (2010). Bactrodesmium gabretae (anamorphic Helotiales), a new sporodochial species described from spruce needles. Nova Hedwig. 91, 243–248. doi:10.1127/0029-5035/2010/0091-0243

Larget, B., and Simon, D. L. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16, 750–759. doi:10.1093/oxfordjournals.molehr.a026160

Liu, A.-R., Chen, S.-C., Wu, S.-Y., Xu, T., Guo, L.-D., Jeewon, R., et al. (2010). Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Mol. Phylogenet. Evol. 57, 528–535. doi:10.1016/j.ympev.2010.07.017

Liu, Y. J., Whelen, S., and Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 16, 1799–1808. doi:10.1093/oxfordjournals.molbev.a026692

Lu, Y.-Z., Liu, J.-K., Hyde, K. D., Xing, X.-C., Fan, C., et al. (2018). A taxonomic reassessment of tubeufailes based on multi-locus phylogeny and morphology. Fungal Divers. 92, 131–144. doi:10.1007/s11235-018-0411-y

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). “Creating the CIPRES science gateway for inference of large phylogenetic trees,” in Proceedings of the Gateway Computing Environments Workshop (GCE) (New Orleans, LA: IEEE), 1–8.

Miller, M. A., Schwartz, T., Pickett, B. E., He, S., Klem, E. B., Scheuermann, R. H., et al. (2015). A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinform. 11, 43–48. doi:10.4137/EBO.S25101

Olariaga, I., Teres, J., Martin, J., Prieto, M., and Baral, H.-O. (2019). Pseudocercospora gloindoi gen. et sp. nov., a new taxon with apothecial ascoma and a Chalara-like anamorph within the Sclerococcaceae (Eurotiomycetes). Mycol. Prog. 18, 895–905. doi:10.1007/s11557-019-01500-7

Pang, K. L., Guo, S. Y., Alias, S. A., Hafellner, J., and Jones, E. B. G. (2014). A new species of marine Dactylosphora and its phylogenetic affinities within the Eurotiomycetes, Ascomycota. Bot. Mar. 57, 315–321. doi:10.1515/bot-2014-0025

Pem, D., Jeewon, R., Bhat, D. J., Dollom, M., Boonmee, S., Hongsanan, S., et al. (2019). Mycosphere notes 275-324: a morpho-taxonomic revision and typification of obscure Dolioidemycetes genera (incertae sedis). Mycosphere 10, 1115–1246. doi:10.5943/mycosphere/10/1/22

Pino-Bodas, R., Zhurbenko, M. P., and Stenroos, S. (2017). Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera. Persoonia 39, 91–117. doi:10.3767/persoonia.2017.39.05
Vijaykrishna, D., and Hyde, K. D. (2006). Inter- and intra stream variation of lignicolous freshwater fungi in tropical Australia. *Fungal Divers.* 21, 203–224.

Vijaykrishna, D., Mostert, L., Jeewon, R., Gams, W., Hyde, K. D., and Crous, P. W. (2004). *Pleurostomophora*, an anamorph of *Pleurostoma* (Calosporaceae), a new anamorph genus morphologically similar to *Phialostruma*. *Mycol. Stud.* 50, 387–395.

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. *J. Bacteriol.* 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990

Wang, G.-N., Yu, X.-D., Dong, W., Bhat, D. J., Boonmee, S., Zhang, D., et al. (2019). Freshwater hyphomycetes in Eurotiomycetes: a new species of *Minnmelanolocus* and a new collection of *Thysanorea papuana* (*Heperticheliaceae*). *Mycol. Prog.* 18, 511–522. doi: 10.1007/s11557-019-01473-7

Wei, M. J., Zhang, H., Dong, W., Boonmee, S., and Zhang, D. (2018). Introducing *Dictyochaeta aquatica* sp. nov. and two new species of *Chloridium* (*Chaetothyriaceae*, Sordariomycetes) from aquatic habitats. *Phytotaxa* 362, 187–199. doi: 10.11646/phytotaxa.362.2.5

White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in *PCR Protocols: A Guide to Methods and Applications*, eds M. A. Innis, D. H. Gelfand, J. J. Sninsky, and J. J. White (New York: Academic Press), 315–322. doi: 10.1016/b978-0-12-372180-8.50042-1

Wijayawardene, N. N., Hyde, K. D., Rajeshkumar, K. C., Hawkesworth, D. L., Madrid, H., Kirk, P. M., et al. (2017a). *Notes for genera: Ascomycota. Fungal Divers.* 86, 1–594. doi: 10.3852/13223-017-0386-0

Wijayawardene, N. N., Hyde, K. D., Tibbromma, S., Wanasinghe, D. N., Thambukula, K. M., Tian, Q., et al. (2017b). Towards incorporating asexaul fungi in a natural classification: checklist and notes 2012–2016. *Mycosphere* 8, 1457–1555. doi: 10.5943/mycoosphere/8/9/10

Wong, M. K. M., and Hyde, K. D. (2001). Diversity of fungi on six species of *Grinnanea* and one species of *Cyperaceae* in Hong Kong. *Mycol. Res.* 105, 1485–1491. doi: 10.1017/S095375620004695

Xia, J.-W., Ma, Y.-R., Gao, J.-M., Li, Z., and Zhang, X.-G. (2015). *Sporidesmiopsis malloti* sp. nov. and new records from southern China. *Mycoses* 58, 187–193. doi: 10.1111/myco.12432

Y. Long, J., Li, J. K., Hyde, K. D., Jones, E. B. G., and Liu, Z. Y. (2018a). New species in *Dictyopyriformia*, new combinations in *Dictyochytriopora* and an updated backbone tree for *Dictyochytriopora*. *Mycokeys* 36, 83–105. doi: 10.3897/mycokeys.36.27051

Y. Long, J., Li, N. G., Liu, J. K., Hyde, K. D., Jones, E. B. G., and Liu, Z. Y. (2018b). Phylogenetic placement of *Cryptothiele*, *Cryptothielle*, *Nawannia*, *Neowannia* gen. nov. and *Phialosporotislibe*. *Mycologia* 9, 1132–1150. doi: 10.5937/myco9915

Yang, L., Wang, G.-N., Yu, X.-D., Dong, W., Bhat, D. J., Boonmee, S., Zhang, D., and Zhang, H. (2018). *Cylindroconidium aquaticus* gen. et sp. nov., a new lineage of aquatic hyphomycetes. *Phytophthora* 372, 79–87. doi: 10.11646/phytophthora.372.1.6

Zhang, H., Dong, W., Hyde, K. D., Bakhali, A. H., Liu, J. K., Zhou, D. Q., et al. (2016). Molecular data shows *Didymella apertospora* is a new genus in *Bambusicolaecae*. *Phytotaxa* 247, 99–108. doi: 10.11646/phytotaxa.247.2.1

Zhang, H., Dong, W., Hyde, K. D., Maharachchikumbura, S. S. N., Hongsanan, S., Jayarama Bhat, D., et al. (2017). Towards a natural classification of *Anulatasaceae*-like taxa: introducing *Atractosporales* ord. nov. and six new families. *Fungal Divers.* 85, 75–110. doi: 10.1007/s13225-017-0387-2

Zhang, H., Hyde, K. D., Abdel-Wahab, M. A., Abdell-Aziz, F. A., Ariyawansa, H. A., Ko, T. W. K., et al. (2013). A modern concept for *Helicascus* with a Pleurophomopsis-like asexual state. *Sydowia* 65, 147–166.

Zhang, H., Hyde, K. D., Mckenzie, E. H. C., Bakhali, A. H., and Zhou, D. Q. (2012). Sequence data reveals phylogenetic affinities of *Acroclamyca aquatica* sp. nov., *Aquasphaira micrensis* gen. et sp. nov. and *Clothesomyces aquaticus* (freshwater coelomycetes). *Cryptogam. Mycol.* 33, 333–346. doi: 10.7872/cyrv.v33.i3.2012.333
Zhang, H., Hyde, K. D., Zhao, Y. C., McKENZIE, E. H. C., and Zhou, D. Q. (2014). Freshwater ascomycetes: Lophiostoma vaginatispora comb. nov. (Dothideomycetes, Pleosporales, Lophiostomaceae) based on morphological and molecular data. Phytotaxa 176, 184–191. doi: 10.11646/phytotaxa.176.1.18

Zhang, H., Jones, E. B. G., Zhou, D. Q., Bahkali, A. H., and Hyde, K. D. (2011). Checklist of freshwater fungi in Thailand. Cryptogam. Mycol. 32, 199–217. doi: 10.7872/crym.v32.iss2.2011.199

Zucconi, L., and Lunghini, D. (1997). Studies on Mediterranean hyphomycetes. VI. Remarks on Bactrodesmium, and B. cubense comb. nov. Mycotaxon 63, 323–328.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Dong, Hyde, Doilom, Yu, Bhat, Jeewon, Boonmee, Wang, Nalumpang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.