SHORT COMMUNICATION

Chemical composition and antimicrobial activity of essential oils from Acantholippia deserticola, Artemisia proceriformis, Achillea micrantha and Libanotis buchtormensis against phytopathogenic bacteria and fungi

Diego A. Sampietro, Emilio F. Lizarraga, Zharkyn A. Ibatayev, Akerke B. Omarova, Yerlan M. Suleimen and Cesar A. N. Catalán

Facultad de Bioquímica, Química y Farmacia, Labifito, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Inquinoa-Conicet, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina; The Institute of Applied Chemistry, Chemistry Department, L.N. Gumilev Eurasian National University, Astana, the Republic of the Kazakhstan

ABSTRACT

Essential oils from aerial parts of Acantholippia deserticola, Artemisia proceriformis, Achillea micrantha and Libanotis buchtormensis were analysed by GC–MS. The major compounds identified were β-thujone (66.5 ± 0.2%), and trans-sabinyl acetate (12.1 ± 0.2%) in A. deserticola; α-thujone (66.9 ± 0.4%) in A. proceriformis; 1,8-cineole (26.9 ± 0.5%), and camphor (17.7 ± 0.3%) in A. micrantha and cis-β-ocimene (23.3 ± 0.3%), and trans-β-ocimene (18.4 ± 0.2%) in L. buchtormensis. The oils showed a weak antimicrobial effect (MIC > 1.5 mg/ml) on most phytopathogens tested. A moderate antimicrobial activity (MIC between 0.5 and 1.5 mg/ml) was displayed by the oils of A. deserticola, A. micrantha and L. buchtormensis on Septoria tritici and by the oil of A. deserticola on Septoria glycine. The antimicrobial activity was associated to the contents of β-thujone, trans-sabinyl acetate and trans-sabinol. Our results indicate that the tested essential oils have little inhibitory potency not suitable for use as plant protection products against the phytopathogens assayed.

ARTICLE HISTORY

Received 16 April 2015
Accepted 28 August 2015

KEYWORDS

Aspergillus; Erwinia; essential oils; Fusarium; Pseudomonas; Septoria; Xanthomonas

CONTACT

D. A. Sampietro dasampietro2006@yahoo.com.ar

Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/14786419.2015.1091453.
1. Introduction

Essential oils are complex natural mixtures of volatile secondary metabolites obtained from taxonomically diverse groups of plants (Juliani et al. 2002). They are generally considered as low toxicity for humans and wildlife and environmentally safe. Compared to neem and other botanical antimicrobials, the active ingredients of many essential oils are reasonably priced and are commonly used as flavours and fragrances (Tripathi et al. 2008). Several studies have shown that some essential oils possess biocidal and/or biostatic antimicrobial activities. Moreover, because of the multiple sites of action through which an essential oil can act, the development of microbial resistance is very low (Koul et al. 2008). These advantageous properties and the public concern about the impact of synthetic antimicrobials on the environment and non-target species increase the interest in the identification of new sources of essential oils able to control phytopathogenic micro-organisms.

The medicinal aromatic plants Acantholippia deserticola (Phil) Moldelke, Libanotis buchtormensis (Fisher) DC, Achillea micrantha Willd. and Artemisia proceriformis Krasch are used in folk medicine of several countries (Rojo et al. 2006; Yari et al. 2006; Liang et al. 2007; Abad et al. 2012). A. deserticola is used to treat several gastrointestinal, cardiovascular and central nervous system conditions (Villagran et al. 2003). The essential oils of its aerial parts showed pesticidal potential against mites (Brevipalpus chilensis Baker, and Tetranychus urticae Koch) and the insect pest Aleurothrixus floccosus (Maskell). L. buchtormensis is an herbal remedy against inflammation, rheumatism and the common cold (Liang et al. 2007), A. micrantha has been used against inflammation, and as a vulnerary and wound-healing remedy (Yari et al. 2006). A. proceriformis is used to treat upper airway disorders and its essential oils showed in vitro anti-candidiasis and insect repellent activities (Obistioiu et al. 2014). Some of the medicinal properties of these plants and related species are attributed to their essential oils (Küçükbay et al. 2012; Petretto et al. 2013; Rouis et al. 2013; Venditti et al. 2014; Kazemi & Rostami 2015). The aim of this research was to investigate the chemical composition and antiphytopathogenic activity of the essential oils from aerial parts of A. deserticola, L. buchtormensis, A. micrantha and A. proceriformis.

2. Results and discussion

Steam distillation from aerial parts of A. deserticola yielded 2.80 ± 0.1% (w/w) of essential oil. This yield was 14 times higher than those obtained for the plant materials of A. proceriformis (0.20 ± 0.2%), A. micrantha (0.20 ± 0.1%) and L. buchtormensis (0.15 ± 0.2%). The essential oil yields of both A. deserticola and A. proceriformis were lower than those previously reported (5.5 and 0.40%, respectively). Yields were not found in the literature for the remaining plant species investigated. The chemical composition of the four essential oils is listed in Table 1. As can be seen, A. deserticola, contained mainly β-thujone (66.5 ± 0.2%), and trans-sabinyl acetate (12.1 ± 0.2%); A. proceriformis showed dominance of α-thujone (66.9 ± 0.4%); A. micrantha contained 1,8-cineole (26.9 ± 0.5%) and camphor (17.7 ± 0.3%); and L. buchtormensis showed cis-β-ocimene (23.3 ± 0.3%) and trans-β-ocimene (18.4 ± 0.2%) as major constituents. Previous studies on the essential oil of A. deserticola from Taparaca region in Chile and from San Antonio de los Cobres in Salta province (Argentina) also reported β-thujone as the main component (77.9 and 92.1% respectively) (Torres et al. 1981; Rojo et al. 2006). These oils shared 70 and 100% of their constituents, respectively, with those of the
Table 1. Composition of the essential oils from aerial parts of *A. deserticola*, *A. proceriformis*, *A. micrantha* and *L. buchtormensis*.

Compounds^a	Rcalc^b	RF^c	*A. deserticola*	*A. proceriformis*	*A. micrantha*	*L. buchtormensis*
cis-salvene	845	847	0.5 ± 0.1	0.4 ± 0.1	–	–
Tricycleyne	921	921	–	–	0.3 ± 0.1	–
α-Thuyene	924	924	–	0.2 ± 0.1	1.3 ± 0.1	0.2 ± 0.0
α-Pineen	931	932	0.7 ± 0.2	1.8 ± 0.2	5.3 ± 0.2	7.9 ± 0.3
α-Fenchene	943	945	–	0.7 ± 0.1	–	–
Camphene	946	946	–	–	6.2 ± 0.2	0.5 ± 0.1
Sabinene	970	969	2.8 ± 0.1	3.8 ± 0.2	6.2 ± 0.3	5.8 ± 0.2
β-Pineen	973	974	0.8 ± 0.2	0.4 ± 0.1	2.5 ± 0.2	0.9 ± 0.1
Myrcene	989	988	0.3 ± 0.1	0.5 ± 0.1	0.7 ± 0.1	7.1 ± 0.3
α-Terpineen	1014	1014	tr	0.6 ± 0.1	1.8 ± 0.1	0.3 ± 0.1
p-Cimene	1022	1020	0.1 ± 0.0	1.5 ± 0.1	3.5 ± 0.2	1.6 ± 0.2
Limonene	1024	1024	0.2 ± 0.1	–	–	9.9 ± 0.3
β-Phellandrene	1025	1026	1.1 ± 0.2	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0
1,8-Cineole	1026	1026	0.1 ± 0.0	1.2 ± 0.1	26.9 ± 0.5	–
cis-β-ocimene	1034	1032	–	tr	0.1 ± 0.1	23.3 ± 0.3
trans-β-ocimene	1044	1044	0.3 ± 0.1	0.1 ± 0.0	0.5 ± 0.0	18.4 ± 0.2
γ-Terpineen	1056	1054	0.1 ± 0.0	1.1 ± 0.1	2.8 ± 0.2	3.8 ± 0.1
cis-sabinene hydrate	1065	1065	tr	–	0.8 ± 0.1	0.6 ± 0.1
Terpinolene	1085	1086	0.3 ± 0.1	0.7 ± 0.3	–	–
trans-sabinene hydrate	1098	1098	–	0.5 ± 0.1	–	–
α-Thujone	1103	1101	7.4 ± 0.3	66.9 ± 0.4	–	–
Menth-2-em-1-ol-<cis-p>	1110	1118	–	0.2 ± 0.1	–	–
β-Thujone	1114	1112	66.5 ± 0.2	4.0 ± 0.3	–	–
Chrysanthenone	1123	1124	–	0.2 ± 0.0	–	–
Thujanol-<iso-3->	1132	1134	–	0.2 ± 0.1	–	–
trans-pino-carveol	1134	1135	–	0.2 ± 0.0	–	–
trans-sabinol	1138	1137	5.4 ± 0.1	0.5 ± 0.1	–	–
Ocimene	1140	1140	–	–	0.2 ± 0.0	–
Camphor	1141	1141	–	17.7 ± 0.3	–	–
neo-iso-3-thujanol	1151	1147	0.1 ± 0.0	0.7 ± 0.2	–	–
Sabina ketone	1154	1154	–	0.2 ± 0.0	–	–
Pinocarveol	1160	1160	–	0.3 ± 0.2	–	–
Thujanol-<3->	1164	1164	–	0.2 ± 0.0	–	–
Borneol	1165	1165	–	–	2.7 ± 0.3	–
Terpinen-4-ol	1174	1174	0.2 ± 0.1	1.5 ± 0.2	2.9 ± 0.1	0.3 ± 0.1
Thuj-3-en-10-al	1181	1181	–	0.2 ± 0.1	–	–
Myrtenal	1195	1195	–	0.4 ± 0.1	–	–
trans-Carveol	1215	1215	–	0.1 ± 0.0	–	–
Citronellol	1223	1223	0.1 ± 0.1	–	–	–
Carvacrol methyl ether	1240	1241	–	–	0.3 ± 0.0	–
Carvotanacetone	1247	1244	0.5 ± 0.1	–	–	–
Piperitone	1247	1249	–	0.4 ± 0.1	–	–
iso-3-thujanol acetate	1270	1267	0.3 ± 0.1	–	–	–
Bornyl acetate	1284	1287	–	0.3 ± 0.0	0.4 ± 0.1	–
trans-sabinyl acetate	1289	1289	12.1 ± 0.2	–	–	–
trans-caryl acetate	1342	1339	tr	–	–	–
α-Terpinyl acetate	1349	1346	0.5 ± 0.1	–	–	–
Eugenol	1356	1356	–	0.1 ± 0.0	–	–
cis-caryl acetate	1367	1365	0.2 ± 0.1	–	–	–
α-Copaene	1374	1374	0.2 ± 0.0	1.9 ± 0.1	0.4 ± 0.2	–
β-Bourbonene	1387	1387	0.7 ± 0.1	0.3 ± 0.1	0.3 ± 0.1	–
β-Elemene	1389	1389	–	–	1.2 ± 0.1	–
Methyl eugenol	1403	1403	–	–	0.1 ± 0.0	–
β-Caryophyllene	1417	1417	1.0 ± 0.1	0.4 ± 0.1	1.2 ± 0.2	–
β-Copaene	1430	1430	0.1 ± 0.0	–	–	–
Aromadendrene	1439	1439	–	0.2 ± 0.0	–	–
trans-β-farnesene	1440	1454	tr	–	2.0 ± 0.1	–
α-Amorphene	1483	1483	–	0.2 ± 0.1	0.2 ± 0.0	–
Germacrene-D	1484	1484	4.2 ± 0.2	1.2 ± 0.2	1.2 ± 0.2	–

(Continued)
A. deserticola oil reported here. An oil from dried aerial parts of A. proceriformis collected in the Karaganda Oblast (Kazakhstan) had the same constituents as our sample from the Akmola region, with α-thujone (66.3%) and β-thujone (22.3%) as major components (Suleimenov et al. 2010). In contrast, oils from the aerial part of A. proceriformis collected in Lublin (Poland) contained davanone (16.75%), piperitone (17.51%) and 1,8-cineole (12.54%) as major constituents, with a total of 51% of sesquiterpenes (Kowalski et al. 2007) while a sample from Cuba contained 33.4% of trans-sabinyl acetate with a total of 78.3% monoterpenes (Pino et al. 2011). These oils shared only 26 and 33.4% of their components with those present in our leaf oil of A. proceriformis. As far as we know, this is the first report of the oil composition obtained from leaves of A. micrantha and L. buchtormensis.

The antimicrobial activity of the oils was assayed against strains of A. carbonarius, A. niger, Septoria tritici, Septoria glycines, Fusarium graminearum, Fusarium verticillioides, Erwinia carotovorans, Pseudomonas corrugata, Pseudomonas syringae and Xanthomonas vesicatoria. Prothioconazole, streptomycin, potassium sorbate, calcium propionate and thyme oil were used as reference standards. The results are summarised in Table S1. MIC100 values of essential oils between 0.05 and 0.5 mg/ml indicate a strong antimicrobial activity, while MIC100 values between 0.6 and 1.5 mg/ml and over 1.5 mg/ml reveal a moderate to weak activity, respectively (Sartoratto et al. 2004). In this context, the oils of A. deserticola, A. micrantha and L. buchtormensis on S. tritici and A. deserticola oil on S. glycine showed a

Table 1. (Continued.)

Compoundsa	Rcalc b	RI c	A. deserticola	A. proceriformis	A. micrantha	L. buchtormensis
β-Selinene	1489	1489	–	–	0.2 ± 0.0	0.2 ± 0.0
α-Zingiberene	1493	1493	–	–	–	1.0 ± 0.2
Bicyclogermacrene	1498	1500	–	0.4 ± 0.1	–	–
α-Muurolene	1502	1500	–	0.1 ± 0.1	0.2 ± 0.1	0.2 ± 0.0
β-Bisabolene	1505	1505	–	–	–	0.7 ± 0.1
δ-amarphone	1511	1511	0.2 ± 0.1	0.2 ± 0.0	–	–
γ-Cadinene	1513	1513	–	–	–	0.2 ± 0.1
β-Sesquiphellandrene	1521	1521	–	–	–	2.3 ± 0.1
δ-Cadinene	1522	1522	–	0.4 ± 0.1	0.7 ± 0.2	–
Elemol	1548	1548	–	0.3 ± 0.1	–	–
Germacrene B	1559	1559	–	–	–	0.2 ± 0.0
Spathulenol	1577	1577	–	–	0.2 ± 0.2	0.5 ± 0.1
Neryl isovalerate	1580	1582	–	–	–	–
Caryophyllene oxide	1582	1582	–	0.1 ± 0.0	0.4 ± 0.1	–
β-Eudesmol	1649	1649	–	0.2 ± 0.0	–	–
Selin-11-en-4α-ol	1658	1658	–	0.5 ± 0.1	–	–
Hydrocarbonated monoterpenes	5.8 ± 0.1	12.5 ± 0.1	53.3 ± 0.2	80.0 ± 0.1		
Oxygenated monoterpenes	93.3 ± 0.1	76.5 ± 0.1	32.1 ± 0.1	1.6 ± 0.1		
Hydrocarbonated sesquiterpenes	0.2 ± 0.1	7.3 ± 0.1	5.3 ± 0.2	10.2 ± 0.2		
Oxygenated sesquiterpenes	–	1.1 ± 0.1	0.6 ± 0.1	0.6 ± 0.1		
Total	99.3 ± 0.3	97.4 ± 0.2	91.3 ± 0.2	92.4 ± 0.2		

aCompounds listed based on elution from a non-polar DB-5 column.
bRetention Index calculated from retention times in relation to those of a series of n-alkanes on a 30 m DB-5 capillary column.
cRetention Index taken from Adams (2007).
dPercentage of total area; tr = traces; – not detected.
moderate antimicrobial effect. The remaining MIC\textsubscript{100} values of the oils indicated a weak inhibitory activity. The \textit{T. vulgaris} oil, known for its high antimicrobial activity, showed a strong inhibitory effect on \textit{Septoria}, a moderate effect on \textit{Fusarium} and \textit{Pseudomonas}, and a weak antimicrobial effect on the other microbial strains tested. The MIC\textsubscript{100} values of streptomycin, prothioconazole and food preservatives were one or more orders of magnitude lower (i.e. more active) than those of the essential oils of the four medicinal plants tested. The Pearson correlation matrix of a principal component analysis based on relative participation of main constituents and MIC\textsubscript{100} values of the essential oils, shows that the increase in contents of β-thujone, \textit{trans}-sabinyl acetate and \textit{trans}-sabinol were inversely correlated ($r^2 > 0.60$, $p = 0.05$) with the increase in the MIC\textsubscript{100} values. This is visualised in the bidimensional graph of component 1 (PC1) and 2 (PC2) of Figure S1 by the obtuse angles between vectors of the mentioned oxygenated monoterpenes and the MIC\textsubscript{100} of the microbial species.

3. Conclusion

The essential oils from aerial parts of \textit{A. deserticola}, \textit{A. micrantha}, \textit{A. proceriformis} and \textit{L. buchtormensis} showed a significant variation in the composition and quantity of their chemical constituents. They displayed moderate or weak antimicrobial activity on the tested phytopathogens.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Abad MJ, Bedoya LM, Apaza L, Bermejo P. 2012. The \textit{Artemisia} L. genus: a review of bioactive essential oils. Molecules. 17:2542–2566.

Adams RP. 2007. Identification of essential oil components by gas chromatography–mass spectrometry. Carol Stream (IL): Allured Publishing.

Juliani HR, Biurrun F, Koroch AR, Oliva MM, Demo MS, Trippi VS, Zygadlo JA. 2002. Chemical constituents and antimicrobial activity of the essential oil of \textit{Lantana xenica}. Planta Med. 68:762–764.

Kazemi M, Rostami H. 2015. Chemical composition and biological activities of Iranian \textit{Achillea wilhelmsii} L. essential oil: a high effectiveness against \textit{Candida} spp. and \textit{Escherichia} strains. Nat Prod Res. 29:286–288.

Koul O, Walia S, Dhaliwal GS. 2008. Essential oils as green pesticides: potential and constraints. Biopest Int. 4:63–84.

Kowalski R, Wawrzykowski J, Zawislak G. 2007. Analysis of essential oils and extracts from \textit{Artemisia abrotanum} L. and \textit{Artemisia dranunculus} L. Herba Pol. 53:246–254.

Küçükbaş FZ, Kuyumcu E, Bilenler T, Yıldız B. 2012. Chemical composition and antimicrobial activity of essential oil of \textit{Achillea cretica} L. (Asteraceae) from Turkey. Nat Prod Res. 26:1668–1675.

Liang B, Li B, Ma F, Yang Z, Dou L. 2007. Essential oil composition of \textit{Libanotis buchtormensis} from Tabai mountain in China. Chem Nat Prod. 43:730–732.

Obistioiu D, Cristina RT, Schmerold I, Chizzola R, Stolze K, Nichita I, Chiurciu V. 2014. Chemical characterization by GC–MS and \textit{in vitro} activity against \textit{Candida albicans} of volatile fractions prepared from \textit{Artemisia dracunculus}, \textit{Artemisia abrotanum}, \textit{Artemisia absinthium} and \textit{Artemisia vulgaris}. Chem Cent J. 8:1–11.

Petretto GL, Chessa M, Piana A, Masia MD, Foddai M, Mangano G, Culeddu N, Affi FU, Pintore G. 2013. Chemical and biological study on the essential oil of \textit{Artemisia caerulescens} L. ssp. \textit{densiflora} (Viv.). Nat Prod Res. 27:1709–15.
Pino J, Marbot R, Martín M. 2011. Leaf oil of Artemisia abrotanum K. grown in Cuba. J Essent Oil Res. 23:119–120.

Rojo L, Benites J, Rodrigues A, Venâncio F, Ramalho R, Teixeira A, Feio S, Dob M, Costab C. 2006. Composition and antimicrobial screening of the essential oil of Acantholippia deserticola (Phil.ex F. Phil.) Moldenke. J Essent Oil Res. 18:695–697.

Rouis Z, Maggio A, Venditti A, Bruno M, Senatore F. 2013. Chemical composition and free radical scavenging activity of the essential oil of Achillea ligustica growing wild in Lipari (Aeolian Islands, Sicily). Nat Prod Commun. 8:1629–1632.

Sartoratto A, Machado AL, Delarmelina C, Figueira G, Duarte M, Rehder V. 2004. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol. 34:275–280.

Suleimenov EM, Tkachev AV, Adekenov SM. 2010. Essential oils from Kazakhstan Artemisia species. Chem Nat Compd. 46:135–139.

Torres OA, Iglesias DL, Catalán CA. 1981. Essential oil from Acantholippia punensis Botta (Verbenaceae). Essenze Deriv Agrum. 3:275–278.

Tripathi P, Dubery NK, Shukla AK. 2008. Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J Microbiol Biotechnol. 24:39–46.

Venditti A, Maggi F, Vittori S, Papa F, Serrilli AM, Di Cecco M, Ciaschetti G, Mandrone M, Poli F, Bianco A. 2014. Volatile compounds from Achillea tenorii (Grande) growing in the Majella National Park (Italy). Nat Prod Res. 28:1699–704.

Villagran C, Romo M, Castro V. 2003. Ethnobotany of the southern Andes within the first region of Chile: a connection between altiplano cultures and the high canyons of the superior Loa. Chungara. 35:73–124.

Yari LM, Hosein M, Surmaghi S, Amin G, Badami N, Emami M, Asgari T. 2006. Phytochemical and antimicrobial investigation of Taleghan plants species. Planta Med. 72:112–115.