Somatic rearrangement of the TP63 gene preceding development of mycosis fungoides with aggressive clinical course

Blood Cancer Journal (2014) 4, e253; doi:10.1038/bcj.2014.73; published online 17 October 2014

Cutaneous T-cell lymphomas (CTCLs) comprise a heterogeneous spectrum of T-cell neoplasms with widely varying clinical presentation, biologic behavior and overall outcome.1,2 The most common CTCL is mycosis fungoides (MF), which can range from a localized, indolent process to an aggressive lymphoma with widespread cutaneous and extracutaneous involvement and large-cell transformation (MF-LCT). This biologic and clinical heterogeneity is a feature shared with other T-cell lymphomas, including systemic peripheral T-cell lymphomas (PTCLs). Also common to both CTCLs and PTCLs is a limited understanding of genetic mechanisms of pathogenesis and progression, the elucidation of which could facilitate classification, prognostication and individualized therapy. For example, accurate classification of CTCLs often requires careful clinical and pathological follow-up over time, and an enhanced understanding of CTCL genetics might allow earlier, more definitive classification. Furthermore, genetic biomarkers that identify patients at greatest risk of aggressive clinical behavior could allow initiation of earlier or more intensive treatment protocols that might lead to better outcomes. Finally, knowledge of CTCL genetics could improve biologic understanding of this group of diseases and facilitate the development of more specific, targeted therapies.

Although CTCLs and PTCLs are clinically distinct groups of diseases, genetic data have highlighted similarities that suggest biologic interconnectedness. For example, we have shown that chromosomal rearrangements of the DUSP22/IRF4 locus on 6p25.3 are seen in about 30% of both primary cutaneous anaplastic large-cell lymphomas (cALCLs) and systemic ALK-negative ALCLs.3,4 More recently, we identified recurrent rearrangements of TP63 on 3q28 in PTCLs that were associated with poor clinical outcomes.4,5 TP63 encodes p63, a member of the p53 family of transcription factors. Interestingly, although our study was primarily focused on patients with systemic PTCLs, we also identified two patients with unusually aggressive cALCLs that had TP63 rearrangements. Therefore, we undertook the current multi-institutional study to determine the frequency and clinical significance of TP63 rearrangements in an independent series of CTCLs.

We reviewed CTCL biopsy specimens from 136 previously unreported patients (mean age, 60 years; age range, 14–96 years; male/female, 1.4:1). Classification followed World Health Organization criteria and is summarized in Table 1. All cases were evaluated for p63 protein expression by immunohistochemistry using the 4A4 clone as previously described,5 defining positivity as nuclear staining in ≥30% of tumor cells. FISH using dual-fusion and/or breakapart TP63 probes was performed as previously described6 in all cases that were p63 positive by immunohistochemistry. The validity of using immunohistochemistry to select cases for FISH analysis is supported by our previous data, which showed that TP63 fusion transcripts encoded the 4A4 epitope and that these immunohistochemical criteria identified all T-cell lymphomas with TP63 rearrangements.4,5 In the current study, we also performed TP63 FISH in 21 additional p63-negative CTCLs and all lacked TP63 rearrangements.

Immunohistochemistry for p63 was positive in 8 of 136 CTCLs tested (6%), including 5 cALCLs, 1 case of Sézary syndrome, and 2 cases of MF-LCT (Table 1). No positivity was seen in any other subtype, including MF without LCT. One case of MF-LCT had a TP63 rearrangement, representing 1 of 14 (7%) of the cases of MF-LCT examined in this series. This case was a skin biopsy from the elbow of a 79-year-old female obtained in 2006 (Figure 1a). Morphologic examination revealed a dense dermal infiltrate of hyperchromatic tumor cells with >25% large cells, meeting criteria for MF-LCT (Figures 1b and c). The tumor cells showed strong nuclear positivity for p63 by immunohistochemistry (Figure 1d). FISH was positive in the majority of cells using both dual-fusion (Figure 1e) and breakapart probes (not shown), indicating the presence of TBL1XR1/TP63 fusion corresponding to inv(3)(q26q28). Extra copies of the non-rearranged TBL1XR1 and TP63 genes also were present.

We then examined the relationship of the TP63 rearrangement to the development of LCT. The patient first sought medical attention for her skin disease in September 2001. At that time she reported a 6-month history of pruritic scaly papules and plaques involving multiple anatomic sites. We obtained her original skin biopsy from 2001, which had been interpreted as suggestive of evolving MF. The biopsy showed clusters of atypical small lymphocytes, without prominent large cells (Figures 1f and g). Interestingly, many of the dermal lymphocytes were positive by p63 immunohistochemistry (Figures 1h), a finding absent in other cases of MF without LCT examined in the current series (Table 1). FISH demonstrated cells with both the TP63 rearrangement and extra copies of non-rearranged TBL1XR1 and TP63, identical to the subsequent MF-LCT specimen. These findings indicate that TP63 rearrangement and copy number abnormalities involving 3q occurred before the LCT.

The patient’s prior medical history was significant for stage Ib, grade 2 endometrial adenocarcinoma in 1999 for which she underwent total abdominal hysterectomy/bilateral salpingo-oophorectomy with pelvic and para-aortic lymphadenectomy. No metastatic carcinoma was identified in the lymph nodes. Because the origins of early cells leading to MF are poorly understood, we reexamined the lymphadenectomy specimen, which showed preservation of the nodal architecture and patent sinuses containing small lymphocytes (Figures 1j and k). Immunohistochemical staining performed retrospectively demonstrated CD3-positive T cells in and around the sinuses, some of which had nuclear irregularities and were positive for p63 (Figures 1l and m). FISH identified the presence of TBL1XR1/TP63 fusion and extra copies of both genes in these areas (Figure 1n) but showed a normal FISH signal pattern in background reactive cells and in the
Table 1. Frequency of p63 protein expression and TP63 rearrangement in cutaneous T-cell lymphomas

Cutaneous T-cell lymphoma subtype	Number positive/number tested (%)	Present study	Blood 2012	Total
	p63 protein expression			
Mycosis fungoides without	0/48 (0)	0/48 (0)	0/5 (0)	0/53
large-cell transformation				
Mycosis fungoides with	2/14 (14)	1/14 (7)	1/2 (50)	2/16
large-cell transformation				
Sézary syndrome	1/6 (17)	0/6 (0)	0/0 (0)	1/6
Primary cutaneous anaplastic	5/22 (23)	0/22 (0)	7/19 (37)	12/41
large-cell lymphoma				
Lymphomatoid papulosis	0/32 (0)	0/32 (0)	0/0 (0)	0/32
Primary cutaneous peripheral	0/7 (0)	0/7 (0)	0/0 (0)	0/7
T-cell lymphoma, not otherwise				
specified				
Subcutaneous panniculitis-like	0/4 (0)	0/4 (0)	Not tested	0/4
T-cell lymphoma				
Extramodal NK/T-cell lymphoma,	0/2 (0)	0/2 (0)	0/0 (0)	0/2
nasal type				
Primary cutaneous CD4-positive	0/1 (0)	0/1 (0)	0/0 (0)	0/1
small/medium T-cell lymphoma				
Total	8/136 (6)	1/136 (1)	8/26 (31)	16/162

aNine cases of reactive dermatitis also were tested in the present study and all were negative. bProtein expression was defined by nuclear staining in ≥30% of tumor cells by immunohistochemistry. TP63 rearrangement was considered absent if protein expression was absent and/or negative by FISH, as supported by previous studies. cWithout including the single case (Figures 1F-i) identified retrospectively in a previous biopsy from a patient with mycosis fungoides with large-cell transformation that demonstrated both p63 protein expression and TP63 rearrangement.
Figure 1. MF with TP63 rearrangement. (a) Nodules and plaques on the upper extremity of a 79-year-old female with a history of MF. This photograph was taken in 2006, on the date of the biopsy included in the current series. (b) At low magnification (×100), a hematoxylin and eosin (H&E)-stained section of the biopsy showed an extensive, vaguely nodular lymphocytic infiltrate in the dermis. (c) At higher magnification (×1000), most of the cells were large, transformed lymphocytes, and mitotic figures were readily identified (arrow). These findings supported a diagnosis of MF with large-cell transformation. (d) Immunohistochemistry for p63 performed retrospectively as a part of the current study showed strong positivity in tumor cell nuclei. (e) Dual-fusion FISH demonstrated abnormal fusion signals (arrows), corresponding to TBL1XR1/TP63 fusion in tumor cell nuclei (T; ×600). Extra non-rearranged copies of both TBL1XR1 (green) and TP63 (red) also were observed. FISH also demonstrated nuclei with a normal signal pattern (N), showing two non-rearranged copies each of TBL1XR1 and TP63. (f) Review of a skin biopsy at the time of initial presentation in 2001 showed clusters of lymphocytes in the upper dermis with focal epidermal exocytosis (×200). (g) At higher magnification, the lymphocytes were mostly small and had irregular, hyperchromatic nuclei. (h) Scattered nuclei within the clusters of lymphocytes were positive for p63 by immunohistochemistry. (i) Dual-fusion FISH showed TBL1XR1/TP63 fusion and extra non-rearranged copies of TBL1XR1 and TP63, similar to the 2006 biopsy. (j) Retrospective review of pelvic lymph nodes obtained at the time of hysterectomy for endometrial carcinoma showed normal nodal architecture and expanded sinuses containing histiocytes and lymphocytes (×40). (k) At higher magnification, scattered medium-sized lymphocytes with irregular, hyperchromatic nuclei were observed. (l) Immunohistochemistry for CD3 performed retrospectively highlighted these atypical, sometimes cerebriform cells (arrow). (m) The atypical cells also were positive for p63. (n) Dual-fusion FISH showed TBL1XR1/TP63 fusion and extra non-rearranged copies of TBL1XR1 and TP63, similar to both subsequent biopsies.
CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
Supported by the Center for Individualized Medicine and the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; and by Award Numbers R01 CA177734 (ALF) and P50 CA97274 (University of Iowa/Mayo Clinic Lymphoma SPORE), National Cancer Institute. ALF is a Damon Runyon Clinical Investigator supported by the Damon Runyon Cancer Research Foundation (C-48-09).

REFERENCES
1. Quintanilla-Martinez L, Jansen PM, Kinney MC, Swerdlow SH, Willemze R. Non-mycosis fungoides cutaneous T-cell lymphomas: report of the 2011 Society for Hematopathology/European Association for Haematopathology workshop. Am J Clin Pathol 2013; 139: 491–514.
2. Song SX, Willemze R, Swerdlow SH, Kinney MC, Said JW. Mycosis fungoides: report of the 2011 Society for Hematopathology/European Association for Haematopathology workshop. Am J Clin Pathol 2013; 139: 466–490.
3. Wada DA, Law ME, Hsi ED, Dicaudo DJ, Ma L, Lim MS et al. Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Pathol 2011; 24: 596–605.
4. Parilla Castellar ER, Jaffe ES, Said JW, Swerdlow SH, Ketterling RP, Knudson RA et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014; 124: 1473–1480.
5. Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p33-related genes in peripheral T-cell lymphomas. Blood 2012; 120: 2280–2289.
6. Crum CP, McKeen FD. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol 2010; 5: 349–371.
7. Graziano V, De Laurenzi V. Role of p63 in cancer development. Biochim Biophys Acta 2011; 1816: 57–66.
8. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 2006; 9: 45–56.
9. Trink B, Osada M, Ratovitski E, Sidransky D. p63 transcriptional regulation of epithelial integrity and cancer. Cell Cycle 2007; 6: 240–245.
10. Diamandidou E, Colome-Grimmer M, Fayad L, Duvic M, Kurzrock R. Transformation of mycosis fungoides/Sezary syndrome: clinical characteristics and prognosis. Blood 1998; 92: 1150–1159.
11. Dmitrovsky E, Matthews MJ, Bunn PA, Schechter GP, Makuch RW, Winkel C et al. Cytologic transformation in cutaneous T cell lymphoma: a clinicopathologic entity associated with poor prognosis. J Clin Oncol 1987; 5: 208–215.
12. Prochazkova M, Chevet E, Beylot-Barry M, Vergier B, Sobotka J, Merlio JP. Large cell transformation of mycosis fungoides: tetraploidization within skin tumor large cells. Cancer Genet Cytogenet 2005; 163: 1–6.
13. Hallermann C, Niermann C, Schulze HJ. Regulatory T-cell phenotype in association with large cell transformation of mycosis fungoides. Eur J Haematol 2007; 78: 260–263.
14. Roulland S, Kelly RS, Morgado E, Sungalee S, Solal-Celigny P, Colombat P et al. t(14;18) Translocation: a predictive blood biomarker for follicular lymphoma. J Clin Oncol 2014; 32: 1347–1355.
15. Vignel A, El-Rifai W, Zaika A. Therapeutic prospects for p73 and p63: rising from the shadow of p53. Drug Resist Updat 2008; 11: 152–163.