Woolgar, Eric; Wylie, William
Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes.
(English) J. Math. Phys. 57, No. 2, 022504, 12 p. (2016).

Summary: We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” $N = \infty$ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values $N \in (n, \infty)$ and $N \in (-\infty, 1]$. In the $N \in (n, \infty)$ case, no bound on f is required, while for $N \in (-\infty, 1]$ and $N = \infty$ we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when $N = 1$, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when $N = 1$ and appears to be a general feature.

©2016 American Institute of Physics

MSC:
- 83C75 Space-time singularities, cosmic censorship, etc.
- 83E30 String and superstring theories in gravitational theory
- 83E15 Kaluza-Klein and other higher-dimensional theories
- 53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
- 83F05 Relativistic cosmology
- 83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
- 83C10 Equations of motion in general relativity and gravitational theory

Keywords:
cosmological singularity theorems; splitting theorems; N-Bakry-Émery spacetimes; Lorentzian manifolds; scalar-tensor gravitation; Brans-Dicke theory; Kaluza-Klein dimensional reduction; string theory; future-inextendible timelike geodesics

Full Text: DOI arXiv

References:
[1] Brans, C.; Dicke, R. H., Mach’s principle and a relativistic theory of gravitation, Phys. Rev., 124, 925-935, (1961) - Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[2] Case, J. S., Singularity theorems and the Lorentzian splitting theorem for the Bakry-Émery-Ricci tensor, J. Geom. Phys., 60, 477-490, (2010) - Zbl 1188.53075 · doi:10.1016/j.geomphys.2009.11.001
[3] Faraoni, V., Cosmology in Scalar-Tensor Gravity, (2004), Kluwer: Kluwer, Dordrecht - Zbl 1057.83002
[4] Galloway, G. J., Maximum principles for null hypersurfaces and null splitting theorem, Ann. Henri Poincare, 1, 543-567, (2000) - Zbl 0965.53048 · doi:10.1007/s000230050006
[5] Galloway, G. J.; Woolgar, E., Cosmological singularities in Bakry-Émery spacetimes, J. Geom. Phys., 86, 359-369, (2014) - Zbl 1362.83018 · doi:10.1016/j.geomphys.2014.08.016
[6] Gerhardt, C., Curvature Problems, 39, (2006), International Press: International Press, Somerville, MA - Zbl 1131.53002
[7] Hawking, S. W.; Ellis, G. F. R., The Large Scale Structure of Space-Time, (1973), Cambridge University Press: Cambridge - Zbl 0265.53054
[8] Lieberman, G. M., Second Order Parabolic Differential Equations, (1996), World Scientific: World Scientific, Singapore - Zbl 0881.35001
Rupert, M.; Woolgar, E., Bakry-Émery black holes, Classical Quantum Gravity, 31, 025008, (2014) - Zbl 1302.83023 - doi:10.1088/0264-9381/31/2/025008

Tipler, F. J., General relativity and conjugate ordinary differential equations, J. Differ. Equations, 30, 165-174, (1978) - Zbl 0362.34023 - doi:10.1016/0022-0396(78)90012-8

Woolgar, E., Scalar-tensor gravitation and the Bakry-Émery-Ricci tensor, Classical Quantum Gravity, 30, 085007, (2013) - Zbl 1267.83094 - doi:10.1088/0264-9381/30/8/085007

Wylie, W., “A warped product version of the Cheeger-Gromoll splitting theorem,” preprint. - Zbl 1368.53031

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.