R Coronae Borealis stars in the Galactic bulge discovered by EROS-2*

P. Tisserand1,2, J. B. Marquette3, P. R. Wood1, É. Lesquoy2,3, J. P. Beaulieu3, A. Milsztajn2,**, C. Hamadache2, C. Afonso2,***, J. N. Albert4, J. Andersen5, R. Ansari4, É. Aubourg2, P. Bareyre2, X. Charlot3, C. Coutures2,3, R. Ferlet3, P. Fouqué6, J. F. Glicenstein2, B. Goldman2,†, A. Gould6, M. Gros6, J. Haisinski4, J. de Kat2, L. Le Guillou2,‡, C. Magneville2, É. Maurice9, A. Maury7,¶, M. Moniez4, N. Palanque-Delabrouille2, O. Perdereau4, Y. Rahaf4, J. Rich5, M. Spiro2, A. Vidal-Madjar3, and S. Zylberajch5

1 Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611, Australia e-mail: tisserand@mso.anu.edu.au
2 CEA, DSM, DAPNIA, Centre d’Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
3 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France
4 Laboratoire de l’Accélérateur Linéaire, IN2P3 CNRS, Université de Paris-Sud, 91405 Orsay Cedex, France
5 The Niels Bohr Institute, Astronomy Group, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
6 Observatoire Midi-Pyrénées, UMR 5572, 14 avenue Edouard Belin, 31400 Toulouse, France
7 European Southern Observatory, Casilla 19001, Santiago 19, Chile
8 Department of Astronomy, Ohio State University, Columbus, OH 43210, USA
9 Observatoire de Marseille, 2 place Le Verrier, 13248 Marseille Cedex 04, France

Received 9 October 2007 / Accepted 11 January 2008

ABSTRACT

Context. Rare types of variable stars may provide unique insight into short-lived stages of stellar evolution. The systematic monitoring of millions of stars and advanced light curve analysis techniques of microlensing surveys make them ideal for discovering such rare variable stars. One example is the R Coronae Borealis (RCB) stars, a rare type of evolved carbon-rich supergiant.

Aims. We have conducted a systematic search of the EROS-2 database for the Galactic catalogue Bulge and spiral arms to find Galactic RCB stars.

Methods. The light curves of ~100 million stars, monitored for 6.7 years (from July 1996 to February 2003), have been analysed to search for the main signature of RCB stars, large and rapid drops in luminosity. Follow-up spectroscopy has been used to confirm the photometric candidates.

Results. We have discovered 14 new RCB stars, all in the direction of the Galactic Bulge, bringing the total number of confirmed Galactic RCB stars to about 51.

Conclusions. After reddening correction, the colours and absolute magnitudes of at least 9 of the stars are similar to those of Magellanic RCB stars. This suggests that these stars are in fact located in the Galactic Bulge, making them the first RCB stars discovered in the Bulge. The localisation of the 5 remaining RCBs is more uncertain: 4 are either located behind the Bulge at an estimated maximum distance of 14 kpc or have an unusual thick circumstellar shell; the other is a DY Per RCB which may be located in optical wavelengths over a few days or weeks) thought to be due to the photosphere being obscured by newly formed dust clouds along the line of sight. As the dust clouds disperse, the original brightness gradually recovers over months. Several of these clouds have been directly observed in various directions.

Key words. stars: carbon – stars: AGB and post-AGB – supergiants – Galaxy: bulge

1. Introduction

The R Coronae Borealis (RCB) stars constitute a rare type of hydrogen deficient, carbon-rich supergiant star. Only 38 examples are currently known in the Galaxy (Clayton 1996; Zaniewski et al. 2005), 17 in the Large Magellanic Cloud (Alcock et al. 2001) and 6 in the Small Magellanic Cloud (Tisserand et al. 2004; Kraemer et al. 2005). This rarity presumably indicates a brief phase of stellar evolution. A detailed review of their characteristics has been written by Clayton (1996). RCBs exhibit spectacular, unpredictable, rapid declines in brightness (up to 9 mag in optical wavelengths over a few days or weeks) thought to be due to the photosphere being obscured by newly formed dust clouds along the line of sight. As the dust clouds disperse, the original brightness gradually recovers over months. Several of these clouds have been directly observed in various directions.

* Based on observations made with the CNRS/INSU MARLY telescope at the European Southern Observatory, La Silla, Chile.
** Deceased.
*** Now at Max-Planck-Institut für Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany.
† Now at Max-Planck-Institut für Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany.
‡ Now at LPNHE, IN2P3 CNRS and Universités Paris 6 and Paris 7, 4 place Jussieu, 75252 Paris Cedex 05, France.
¶ Now at Observatoire Astronomique de Strasbourg, UMR 7550, 11 rue de l’Université, 67000 Strasbourg, France.
§ Now at Obervatorio Astronomique de Strasbourg, UMR 7550, 11 rue de l’Université, 67000 Strasbourg, France.
¶ Now at San Pedro de Atacama Celestial Exploration, Casilla 21, San Pedro de Atacama, Chile.
around the RCB star RY Sgr, see de Laverny & Mekarnia (2004); Leão et al. (2007).

Up to now, there has been no reliable distance estimate to any Galactic RCB star, so their absolute magnitudes is only known from the RCBs discovered in the Magellanic Clouds (MC). A direct relation between effective temperature and absolute magnitude was observed by Alcock et al. (2001). Hipparcos gave lower limits to the distances to several of the brightest Galactic RCB stars (Trimble & Kundu 1997; Cottrell & Lawson 1998). Such limits imply that the RCB stars studied must be brighter than $M_V = -3$.

The true spatial distribution of RCB stars is still uncertain. This is due to the small number of known RCB stars, which is also biased toward higher Galactic latitudes as reddened stars in the Galactic plane can be missed in magnitude limited surveys (Lawson et al. 1990; Lawson & Cottrell 1990). Different views are found in the literature. Iben & Tutukov (1985) reported a scale height of ~400 pc for known RCB stars assuming $M_{bol} = -5$. Thus, RCB stars may be part of an old disk-like distribution. This idea is also supported by Zaniewski et al. (2005), who mention a possible thick-disk distribution. However, Cottrell & Lawson (1998) noted that the Hipparcos velocity dispersion of RCB stars is similar to those of other cool hydrogen-deficient carbon stars and extreme helium (EHe) stars, suggesting that RCB stars might have a Bulge-like distribution.

Two major evolutionary scenarios are suggested to explain their origin: the double degenerate scenario (DD) and the final common RCB signature of rapid fading. The EROS-2 project used the 1-m MARLY telescope at ESO La Silla Observatory, Chile. The primary purpose of the project was to search for microlensing events (Paczynski 1986) due to baryonic dark matter in the halo (Tisserand et al. 2007) or to ordinary stars in the Galactic plane (Hamadache et al. 2006; Derue et al. 2001). The observations were performed between July 1996 and February 2003 with two wide field cameras (0.69 m behind a dichroic cube splitting the light beam into two broad passbands. The so-called “blue” channel (420–720 nm, hereafter magnitudes B_E) overlapped the V and R standard bands while the “red” one (620–920 nm, hereafter magnitudes R_E) roughly matched the mean wavelength of the Cousins I band. Each camera was a mosaic of eight 2048 × 2048 CCDs with a pixel size of 0.6" on the sky.

The photometric calibration was obtained directly for 20% of our fields by matching our star catalogues with those of the OGLE-II collaboration (Uladski et al. 2002). To a precision of 0.1 mag, we found the following transformations with the standard V Johnson and I Cousins broadband:

$$R_E = I, \quad B_E = V - 0.4(V - I).$$

The calibration is sufficiently uniform that it can be extended with confidence to the remaining fields. We also note that the OGLE calibration used a colour range of observed standard stars (Landolt system, Landolt 1992) limited to $V-I < 2$ mag. For redder stars, they stressed that their transformations are extrapolations with a systematic error that may reach 0.25 mag at the very red edge ($V-I > 4$ mag). This is of particular interest for our study.

Five distinct sky areas have been monitored in our galaxy. The main sky area corresponds to 83 fields centred on the Galactic Centre (60 fields in the south Galactic side ($b < 0$) and 23 in the north one). These bulge fields are designated "cgxxxq" where "xxx" is the number of the field and "qq" is the quadrant of a CCD. The remaining four zones are distributed in crowded regions along the spiral arms. They cover a surface of ~27.5 deg2 with 29 fields and are listed individually in Table 2. The photometry of individual images and the reconstruction of the light curves were processed using the Pidea package which has been specifically developed for the EROS experiment (Ansari 1996). A detailed discussion of the photometric accuracy can be found in Hamadache et al. (2006) for the Bulge fields and in Rahal (2003) for the spiral arms ones.

The photometric precision for Bulge clump-giant stars is better than 2% for $R_E < 17$ and about 4% for $R_E \sim 18$.

The template images are formed with 15 good seeing co-added images. They are used to detect sources and then form the initial object catalogue. With an exposure time of 120 s (except Muscae, 180 s), our detection limit reaches about the 21st magnitude while stars brighter than the ~11th magnitude are saturated. An average of one point every four nights was taken for each field during the Galactic Bulge observing season although the sampling frequency occasionally reached more than one point per night at mid-season. Stars were imaged on average at 800, 550 and 350 epochs for the cg, tm-gn and bs-gs fields respectively. Some low priority cg fields (18 out of the 83), less frequently observed (from ~80 to ~200 epochs), have also been considered in this analysis.
3. Previously known RCB stars

38 spectroscopically confirmed RCB stars are known in our galaxy: 31 RCBs were listed by Clayton (1996) and others spectroscopically confirmed RCB stars are known in our galaxy. 3. Previously known RCB stars

Table 1. Known Galactic R Coronae Borealis stars located in the EROS-2 fields.

Star name	Coordinates (J2000)	True MACHO Id	Situation on EROS-2	Large variations seen by EROS-2
V1783 Sgr	18:04:49.74 – 32:43:13.6	MACHO-123.24377.7	saturated, cg6422m	no
V739 Sgr	18:13:10.54 – 30:16:14.7	MACHO-123.24377.7	saturated, cg6425k	yes
V3795 Sgr	18:13:23.58 – 25:46:40.8	MACHO-161.24445.6	saturated, cg6273l	no
VZ Sgr	18:15:08.85 – 29:42:29.4	MACHO-115.25166.4693	saturated, cg6290n	yes
MACHO-135.27132.51	18:19:33.87 – 28:35:57.8		too faint, cg0353k	yes

Spectroscopy of RCB candidates was performed with the Dual-Beam Spectrograph (DBS) (Rodgers et al. 1988) attached to the ANU 2.3 m diameter telescope based at the Siding Spring Observatory. The DBS is a general purpose optical spectrograph, permanently mounted at the Nasmyth A focus. The visible waveband is split by a dichroic at around 600 nm and feeds two essentially similar spectrographs, with red and blue optimised detectors respectively. The full slit length is 6.7 arcmin. Observations in the redder part (530 to 1000 nm) are presented, with a 2-pixel resolution of 2 Å or 7.5 Å.

3. Previously known RCB stars

38 spectroscopically confirmed RCB stars are known in our galaxy: 31 RCBs were listed by Clayton (1996) and 7 others were recently discovered (Clayton et al. 2002; Hesselbach et al. 2003; Zaniewski et al. 2005). Fourteen of them lie in or near the area monitored by EROS-2.

Of the fourteen, eight are outside the EROS-2 fields: the newly active warm RCB V 2552 Ophiuchi (Hesselbach et al. 2005), but with wrong coordinates and thus also wrong MACHO identifiers. The correct values are listed in Table 1. We also indicate in this Table that three of those six RCB stars (V739 Sgr, VZ Sgr and MACHO-135.27132.51) showed large variations during the EROS-2 observation, but were not catalogued because they were either saturated or too faint on our reference images. For these stars, we then re-processed all our available EROS-2 data with our PSF photometry pipeline and new reference images to reconstruct their light curve. These re-processed light curves are presented in Fig. 8.

- V739 Sgr: This star was reported as a possible RCB star by Lloyd Evans et al. (1991) due to its carbon spectrum and observed long-term photometric variability of large amplitude (~4.5 mag). It has also been listed in the cool carbon star catalogue by Stephenson (1989). A smooth symmetric variation of 2.5 mag that lasts ~120 days is observed in its MACHO light curve.
- V3795 Sgr: This RCB star remained saturated in all EROS-2 epochs (subfield cg6273l). Its AAVSO light curve show 2 declines, one after the EROS-2 observations (HJD ~ 1500) and one after (HJD ~ 2700), both larger than 3 mag.
- The recovery phase of the first decline is also visible in the MACHO light curve, the second in the ASAS-3 V band light curve. We note that V3795 Sgr was saturated most of the time in the MACHO light curve, except for the portion below maximum light.
- VZ Sgr: The neighbourhood of this RCB star is very crowded. Its MACHO light curve shows a decline of 5 mag in about 20 days around JD-2 449 180. The MACHO curve consists of only 11 measurements, VZ Sgr being located in a low-sampling MACHO field.
- VZ Sgr is also located in a low-sampling EROS-2 field (cg0290n) and was saturated on our reference images. Its re-processed light curve shows variations of ~6 mag (Fig. 8). The MACHO and EROS variations can be better understood by comparison with the well sampled AAVSO light curve showing multiple declines since ~2 446 000.
- V1783 Sgr: This star was reported as a possible RCB star by Lloyd Evans et al. (1991) due to its H-poor carbon spectrum. It remained saturated in all EROS-2 epochs (located on subfield cg0842m). A slow decline (dV/dt ~ 0.009 mag day^-1) occurred only a few days after the end of the EROS-2 observations (see its ASAS and AAVSO light curve).
- MACHO-135.27132.51: This RCB star, located in a low-sampling EROS-2 field (cg0353k), was too faint on our reference images and was thus also not catalogued. However, its re-processed light curve shows multiple variations of ~8 mag and one fast decline (Fig. 8).
- MACHO-118.18666.100: This star was properly catalogued and monitored in the EROS-2 database (named EROS2-cg6075k26836). Its light curve is presented in Fig. 8. No drop in luminosity is observed, only some periodic oscillation features. Its classification as an RCB star being...
debatable, we took a spectrum during the night JD-2454 348. The spectrum, presented in Fig. 1, is typical of an M giant star, type M7e, with TiO features observable. Our spectrum is so different to the one presented by Zaniewski et al. (2005, Fig. 3) that, obviously, two different stars were observed. We are confident with our observation. We do not then support the classification of MACHO-118.18666.100 as an RCB star. Furthermore, we suggest that the \(\sim 1.2 \) mag variation in \(\sim 150 \) days observed in the MACHO light curve (Zaniewski et al. 2005, Fig. 1e) and the smaller one observed in the EROS2 light curve (see Fig. 8, JD 2451 900) are probably due to a sequence-D variation in a long secondary period (see Wood et al. 1999). A primary pulsation period, characteristic of such stars, is also seen.

In summary, six stars previously classified as RCBs are located in the EROS-2 fields; their status is summarized in Table 1. One of these stars is too faint and four others very bright and saturated in our reference images. Therefore, only one of the six was catalogued and monitored in the EROS-2 database, but its spectrum shows that it is not an RCB star, but an M giant. Overall, we failed to detect any of these known RCB stars. We also note that of those five, only three (MACHO-135.27132.51, VZ Sgr and V739 Sgr) showed detectable luminosity variations. Our light curve analysis would have detected them, had they been catalogued.

In view of this result, the completeness of our search is discussed in detail in Sect. 4.2.

4. Mining the EROS-2 database

The initial object catalogue used in the present analysis is an extended version of the cleaned EROS-2 source star catalogue produced by Hamadache et al. (2006) and Rahal (2003) for the microlensing analysis. We decided to enlarge our cleaning selection criteria for two reasons. First, over the period covered by the reference images, the RCB stars might be in a high luminosity phase, causing saturation in one band, or in a low luminosity phase, making the star undetectable in one band. Second, the low latitude fields are highly absorbed, making some RCBs undetectable in the blue band. Because of this, we decided to consider as valid all objects detected in at least one of the two filters. This strategy allows us to find RCBs that may have been catalogued in only one filter. Unfortunately, most of the new objects are due to light curves affected by diverse optical or electronic artefacts.

About \(\sim 82 \) and \(\sim 25 \) million different objects are in the extended catalogues of the Galactic Centre and spiral arm fields. They all passed our simple artefact cleaning procedure that requires a minimum average flux of 300 ADU (\(R_0 \sim 20.7 \) and \(B_E \sim 21.4 \)) and a minimum of 30 measurements per light curve.

Two different strategies, described in the following sections, have been used to find RCB stars in the two catalogues. For both strategies, we search for the outstanding characteristic of RCBs: a rapid drop in luminosity, by \(\sim 2-8 \) mag. The first one is based on a series of selection cuts applied to each light curve, both filters being considered separately. The second is a visual inspection of the light curves of all EROS-2 objects catalogued either as a carbon star in the CGCS\(^5\) catalogue (Alksnis et al. 2001) and the Bulge carbon stars found by Azzopardi et al. (1991) or with a high infrared excess in the 2MASS database (Skrutskie et al. 2006). The second strategy was designed to verify the results of the first.

4.1. Light curve analysis

RCB optical light curves exhibit fast luminosity declines, at irregular intervals, followed by slow recoveries. Multiple consecutive fadeings can be observed before the original brightness is recovered. Superimposed on these variations are intrinsic pulsations which produce low-amplitude periodic variations (for a good example, see the light curve of the R Coronae Borealis star prototype, R CrB, monitored since 1843 by the AAVSO\(^4\)).

Guided by these properties, RCB candidates were selected by requiring that their light curves satisfy the 4 quantitative criteria given below. The light curves satisfying these criteria were then visually scanned to establish a list of spectroscopic targets. The selection criteria were:

1. The difference between maximum and minimum flux, \(F_{\text{max}} \) and \(F_{\text{min}} \), must exceed 2.5 mag. \(F_{\text{max}} \) and \(F_{\text{min}} \) are determined as the averages of the 10 extreme values after eliminating the five highest and lowest flux points.
2. The maximum flux must be higher than 5000 ADU, equivalent to a magnitude at maximum of about 18 (here, the maximum flux is averaged over 10 consecutive points).
3. The third selection criterion was designed to reject most short-period variable stars. We retain objects whose light curve crosses the median flux \(F_{\text{med}} \) defined as the dispersion of the flux of individual points from the flux obtained by linear interpolation between the two neighbouring points. Figure 2 illustrates the cuts applied in the plane of \(\sigma_{\text{pfp}}/F_{\text{med}} \) vs. \(\log F_{\text{med}} \) to remove artefact-dominated light curves, based on the location of a random sample of “normal” stars.
4. After application of the first three selection criteria, 28391 objects remained in the Bulge fields and 15731 in the spiral arm fields. The light curves of these objects are mainly due to artefacts and show irregular/erratic variations. A fourth criterion was therefore designed to eliminate light curves dominated by artefacts, based on the ratio \(R \) between the point-to-point dispersion of the light curve, \(\sigma_{\text{pfp}} \), and the median flux, \(F_{\text{med}} \). Here, \(\sigma_{\text{pfp}} \) is defined as the dispersion of the flux of individual points from the flux obtained by linear interpolation between the two neighbouring points. Figure 2 illustrates the cuts applied in the plane of \(\sigma_{\text{pfp}}/F_{\text{med}} \) vs. \(\log F_{\text{med}} \) to remove artefact-dominated light curves, based on the location of a random sample of “normal” stars.

The remaining 8524 stars (7181 in the cg field and 1343 in gs, gn, tm and bs, see Table 2) are mainly Mira and other Long-Period Variables. 23 of these stars were selected as RCB candidates by visual inspection, based on the main characteristic

\(^4\) CGCS: the Catalogue of Galactic Cool Carbon Stars, including 6891 entries collected from the literature.

\(^5\) American Association of Variable Star Observers, URL: http://www.aavso.org/vstar/vsots/0100.shtml
of RCB stars, a rapid and non-periodic drop in luminosity. But because of our irregular sampling may mislead our interpretation, we decided to use loose visual selection criteria. Thus, not all 23 RCB candidates have light curves with a large, rapid drop in luminosity. Half of them have only an infra-red excess \((J-K > 1)\) and large variations with no clear indication of periodicity, so their classification as RCB stars was considered uncertain. Hence, spectroscopy was obtained for these 23 stars, with results as described in Sect. 4.4.

4.2. Detection efficiency

The unpredictable nature of RCB light curves, our survey characteristics, and the interstellar extinction influence the results of our search. We discuss here how it affects our detection efficiency analysis.

4.2.1. Influence of the interstellar extinction

Without dust extinction along our lines of sight, RCB stars closer than \(\sim 16, \sim 12, \sim 8.8\) and \(\sim 5.8\) kpc for RCB absolute magnitudes \(M_V\) of \(\sim -5, \sim -4, \sim -3\) and \(\sim -2\), respectively, would not be detected by EROS-2, due to saturation of the detectors, assuming a distance modulus of 14.4 for the Galactic centre, corresponding to \(R_0 = 7.6 \pm 0.3\) kpc (Eisenhauer et al. 2005). In our fields at low Galactic latitude \((|b| < 8^\circ)\), see Fig. 3), the concentration of dust is high, and the photometry of the new RCB stars is most likely affected by extinction. As extinction increases with decreasing Galactic latitude, their detection depends on the field monitored.

As most known RCB stars have \(-5 < M_V < -3\), most RCB candidates in the Bulge would thus be saturated (and therefore undetected) in EROS-2 images unless extinction is significant. However, our fields with \(|b| < 5^\circ\) have sufficient absorption to ensure that Bulge RCB with \(M_V > -5\) are not saturated (see Sect. 5.2). Our detection efficiency is therefore independent of the absolute magnitude of Bulge RCBs in these fields, which constitute about 75\% (\(\sim 58\) deg\(^2\), 61 fields) of the total Bulge area monitored.

For \(|b| > 5^\circ\), bright RCBs would be saturated, but only 25\% of the EROS-2 fields are in this zone. We note the possibility that these bright RCBs could not be saturated on our reference images if they are in a declining phase, but it is less likely as the reference images are built with 15 images, distributed over time. These 25\% fields will not be used to measure the RCB scale height in Sect. 5.4. As the minimum extinction observed in those fields is \(A_R \sim 0.7\) mag, the detection loss due to saturation will not affect Bulge RCB stars fainter than \(M_V \lesssim -3.7\).

4.2.2. Influence of the survey characteristics

Two main factors have to be considered in estimating the proportion of RCB stars that are detectable in our survey. First, since the EROS-2 monitoring period of 6.7 years is finite, RCB stars can remain bright or faint throughout the entire observing period and thus be missed by our detection algorithm, which targets only large luminosity drops (>2.5 mag). The evaluation of this effect is complicated by the fact that the frequency of fadings varies from one RCB to another by a factor \(\sim 100\) (see Jurcsik 1996), this frequency being strongly correlated to the \([C/H]\) abundance ratio. Second, potential luminosity drops can also remain undetected because our light curve analysis is affected by the observational sampling. We tried to evaluate the effect of these factors by studying the behaviour of known RCB stars and by simulating synthetic RCB light curves. The details of the studies are as follows.

- We estimate the average probability that an RCB star would not have a luminosity drop larger than 2.5 mag during the 6.7-year observing period. We know that 3 of the 5 known Galactic RCB stars located in our fields (60\%) remained bright during that period (see Sect. 3). However, we found a larger value of ~94\% by studying the AAVSO light curves of two well known RCB stars, R CrB and RY Sgr, which have been monitored for more than a century with a median sampling of ~0.3 day. This last value corresponds to the probability that a survey with a time window identical to that of EROS-2 will not encounter a drop in brightness of more than 2.5 mag. But as those two RCB stars might not be representative, but have different dust production rates and thus drop in luminosity with different frequencies, we used the value estimated by Alcock et al. (2001) based on a larger sample. They found that only 23 of 31 known Galactic RCB stars monitored by AAVSO had experienced at least one decline deeper than 3 mag during the 7 years of their observation. It corresponds to a probability of ~75\%, which is also an intermediate value between the two previous ones.

- RCB stars could also stay non-detectable in a faint phase during all the EROS-2 observation, but it is difficult to estimate the probability of this occurring. We know that R CrB and RY Sgr have never shown a faint phase that lasted longer than 3.3 years. However, most of the known RCBs could be only the tip of the iceberg, as higher dust production could be a more general case. For example, the SMC star MSX-SMC-014 was recently found to be an RCB candidate by Kraemer et al. (2005) from its infrared spectral characteristics, but we found no optical counterpart in the EROS-2 database and also no brightness variation during the 6.7 years observation (EROS-2 SMC magnitude limit: \(R_{E} > 22.4\) and \(R_{E} > 21.7\)). Another good example is the RCB star V854 Cen. It is the
If an RCB star is too faint on our reference images, it will not be catalogued and thus detected. As 15 images, distributed in time, were used to build the reference image, the chance of missing an RCB star at that step is low. Of the 17 LMC observed fields (they are shown in Fig. 3). Therefore, from those 22 known RCB stars we estimate our detection efficiency for the final detection efficiency by more than 5%. Overall, this simple simulation showed that our detection efficiency for obscured RCB stars is excellent. On average, it exceeds 94% for the 112 main sky areas monitored (Galactic centre and spiral arms) and drops to ~45% for the 18 less frequently observed fields (they are shown in Fig. 3).

In summary, the detection of RCB stars should be of the order of ~60% (0.75 × 0.95 × 0.94) complete for the majority of our survey (~80%). Some infrequently observed fields may be less complete in RCB star detection.

4.3. Visual inspection of pre-selected catalogued stars
As a check of the light curve analysis, we inspected the light curves of all stars in our EROS-2 fields that match two characteristics of RCB stars: a carbon star spectrum and an infrared excess.

Therefore, we inspected the light curves of all stars listed in the carbon star catalogue (Alksnis et al. 2001) and showing an infrared excess (J – K > 1), the Bulge carbon stars found by Azzopardi et al. (1991) and objects in the 2MASS catalogue with a high infrared excess (see the selection area delimited in Fig. 5). 35 carbon stars and 2082 2MASS objects (with an EROS-2 matched object within 2 arcsec) were inspected. The visual inspection resulted in the rediscovery of 10 RCBs already detected by the light curve analysis, but no new RCB stars appeared. This supports the efficiency of our first analysis. The rediscovered RCBs show a high infrared excess in Fig. 5 since the 2MASS epochs for nine of them happened to be, by chance, either in a faint or declining/recovering phase.

4.4. Spectroscopic selection
If a well-sampled light curve is available, identification with the RCB class can be made with fairly high confidence because of the final detection efficiency by more than 5%. Overall, this simple simulation showed that our detection efficiency for obscured RCB stars is excellent. On average, it exceeds 94% for the 112 main sky areas monitored (Galactic centre and spiral arms) and drops to ~45% for the 18 less frequently observed fields (they are shown in Fig. 3).

In summary, the detection of RCB stars should be of the order of ~60% (0.75 × 0.95 × 0.94) complete for the majority of our survey (~80%). Some infrequently observed fields may be less complete in RCB star detection.

4.3. Visual inspection of pre-selected catalogued stars
As a check of the light curve analysis, we inspected the light curves of all stars in our EROS-2 fields that match two characteristics of RCB stars: a carbon star spectrum and an infrared excess.

Therefore, we inspected the light curves of all stars listed in the carbon star catalogue (Alksnis et al. 2001) and showing an infrared excess (J – K > 1), the Bulge carbon stars found by Azzopardi et al. (1991) and objects in the 2MASS catalogue with a high infrared excess (see the selection area delimited in Fig. 5). 35 carbon stars and 2082 2MASS objects (with an EROS-2 matched object within 2 arcsec) were inspected. The visual inspection resulted in the rediscovery of 10 RCBs already detected by the light curve analysis, but no new RCB stars appeared. This supports the efficiency of our first analysis. The rediscovered RCBs show a high infrared excess in Fig. 5 since the 2MASS epochs for nine of them happened to be, by chance, either in a faint or declining/recovering phase.

4.4. Spectroscopic selection
If a well-sampled light curve is available, identification with the RCB class can be made with fairly high confidence because of
the distinct nature of the RCB brightness drops. Of the 23 candidates, half showed a drop of less than 4 mag and were thus not strong RCB candidates. Spectroscopic information was necessary to reveal their real nature.

Twenty one candidates were observed during the nights JD-2 454 215 and JD-2 454 348; the last two were too faint (cg0334k19434, cg6271119693). Of the 21, 13 have spectra with carbon features due to C$_2$ and/or CN molecules (see Fig. 4) and are therefore considered as confirmed new R Coronae Borealis stars. In addition to these 13 stars, we retain one other RCB candidate (cg003013740), because its light curve has multiple declines of more than 8 mag. The spectrum of this star (Fig. 4) is
Radial velocities of confirmed RCBs

Radial velocities were obtained by cross-correlating spectra obtained at resolutions of 17, 45, 72 or 151 km s\(^{-1}\)/pixel during the night JD-2454348, using the spectrum of the carbon star X Vel as a template. The radial velocity of X Vel was taken to be \(-5.4\) km s\(^{-1}\) (determined from high resolution echelle spectra which were cross-correlated against the radial velocity standard \(\alpha\) Cet with a velocity of \(-25.8\) km s\(^{-1}\)). The heliocentric radial velocities and their errors are listed in Table 5. We did not measure the radial velocity of RCB-1 as its spectrum shows no carbon features.

The measured radial velocities cover a large range, from \(-325\) to 115 km s\(^{-1}\), with no convincing trend with Galactic latitude. This large range of values is consistent with the radial velocities found for OH/IR stars, oxygen-rich evolved stars, located in the Galactic Bulge at that particular Galactic longitude (see Sevenster 1999, Fig. 12).

4.4.2. \(^{13}\)C test and Ca II triplet

The absence of enhanced \(^{13}\)C is a characteristic of RCB stars (Pollard et al. 1994). We tried to estimate the abundance of \(^{13}\)C using \(^{13}\)CN band at 6260 Å (see Lloyd Evans 1991). It was possible to determine the absence of a significative presence of \(^{13}\)C for seven RCBs of the 14 new RCBs. The spectra of these 7 RCBs are higher resolution (2 Å). For the remaining RCBs, the low resolution spectra and the small signal due to extinction prevent us from determining the abundance of \(^{13}\)C. The results are summarized in Table 5.

An interesting feature in the spectrum of warm carbon stars is the infrared triplet due to ionised calcium (\(\lambda \sim 8498, 8543\) and 8662 Å). Richer (1971) shows that the intensity of those lines is a good indicator of the carbon star temperature; the cooler the...
Table 5. Heliocentric radial velocities and \(^{13}\)C presence.

RCB	\(l\)	\(b\)	\(V_{\text{hel}}\) (km s\(^{-1}\))	\(\sigma_V\) (km s\(^{-1}\))	\(^{13}\)C presence?
	(deg)	(deg)			
1	0.65107	−1.32119	−	−	−
2	0.96560	−1.25721	68.4	13.7	−
3	−2.3331	−3.37369	46.9	2.6	no
4	−3.3663	−2.21249	−246.4	3.1	no
5	−4.1175	−2.99090	−323.1	0.7	no
6	−2.79018	2.15220	114.2	3.5	no
7	−3.31629	2.00684	−111.4	6.8	no
8	0.10674	1.68854	111.9	3.7	no
9	4.23037	1.80687	112.5	1.0	−
10	4.59793	2.82737	76.4	3.8	no
11	5.43103	2.47977	73.0	4.4	no
12	−3.99599	4.05891	−43.7	5.4	−
13	2.96514	−2.43305	−292.1	0.9	−
14	3.98548	−4.72163	−11.4	0.8	−

5.2. Extinction correction and distances

If all new RCBs are in the Bulge, then their apparent luminosity is strongly affected by reddening. The extinction towards small areas of the Bulge can be determined from the position of the red-giant clump in the colour–magnitude diagram. The selection of clump-giant samples was performed for each quarter-CCD subfield (about 10.3' \(\times\) 10.3') as described in Hamadache et al. (2006). The result is presented in the top panel of Fig. 6, where the expected linear dependence between the fitted magnitudes \(B_{E,\text{clump}}\) and the colours \((B-I)_{0,\text{clump}}\) of the clump centre for different samples is shown. The all-sky COBE/DIRBE extinction map by Schlegel et al. (1998) was not used to estimate reddening because it overestimates the amount of dust in high-extinction areas (Staene 1998; Arce & Goodman 1999; Dutra et al. 2003). The lower panel of Fig. 6 confirms the non-linear dependence between the reddening \((B-V)\) from Schlegel et al. (1998) and the reddening \((B-I)_{0,\text{clump}}\) derived here. However, the lower panel of Fig. 6 can be used to define the EROS-2 zero-extinction colour of the Bulge red clump giant centre. We find \((B-I)_{0,\text{clump}} \approx 1.0\) for the giant clump in the Bulge (Sumi 2004).

From Fig. 6, we obtained the following visual extinction law:

\[
A_R = -1.77 + 2.95 (B-I)_{0,\text{clump}}
\]

From this relation, we estimated the extinction to each RCB star based on the colour of clump-giant stars located within 3 arcmin. The correction applied to each RCB star colour and magnitude at maximum is given on Table 7.

The positions of the de-reddened RCB stars are shown in the \(M_I\) vs. \(V-I\) diagram, Fig. 7, and the derived intrinsic values, \(M_I\) and \(V-I\), are given in Table 7. The \(V\) and \(I\) magnitudes were obtained from \(B_I\) and \(R_I\) using Eq. (1). The positions of 10 (resp. 3) common RCBs\(^6\) and 4 (resp. 2) DY Per-like RCBs in the LMC (resp. SMC) (Alcock et al. 2001; Tisserand et al. 2004) are also shown in Fig. 7. We used the EROS-2 light curve to measure the maximum brightness of each RCB star. The distance modulus used was 14.4 mag for the Galactic Centre (the present best measure of the galactocentric distance is \(R_0 = 7.6 \pm 0.3\) kpc, see Eisenhauer et al. 2005), 18.5 mag for the LMC and 18.9 mag for the SMC. We also corrected the LMC and SMC magnitudes for the total reddening (Galactic foreground + intrinsic dust), corresponding to \((B-V)_{\text{LMC}} \approx 0.17\) and \(A_{V,\text{LMC}} \approx 0.5\) mag for the LMC (Alcock et al. 2001), \((B-V)_{\text{SMC}} \approx 0.06\) and \(A_{V,\text{SMC}} \approx 0.17\) mag for the SMC (Zaritsky et al. 2002).

The fact that the Bulge reddening correction results in an overlap in Fig. 7 between Galactic and Magellanic Cloud RCB stars suggests that most of the new RCB stars are indeed in the Galactic Bulge (the Bulge occupies a region between 6 and 10 kpc). Note that without the reddening correction, the new Galactic RCB stars would be the coolest RCBs known \((T_{\text{eff}} < 3600\,\text{K},\) with a median at \(\sim 3000\,\text{K})\). With the reddening correction, the effective temperatures of most of the new RCB stars are as expected for RCB stars. Most currently known RCB stars are carbon-rich supergiants with an effective temperature between 5000 and 7000 K (Clayton 1996), which is true also for the RCB stars in the LMC.

Even with the Bulge extinction correction, four of the new Galactic RCBs (EROS2-CG-RCB-5, -9, -12 and -14) are cooler than the others. We note that EROS2-CG-RCB-2 is in the region of Fig. 5 occupied by the DY Per class of RCB stars. This result, along with the DY Per-like light curve, confirms the membership of this star in the DY Per class of RCB stars.

We note that all new RCB stars have entries in the MSX6C Infrared Point Source Catalog (Egan et al. 2003), except the DY Per-like RCB EROS2-CG-RCB-2 and EROS2-CG-RCB-12.

6 Three LMC RCB stars were not used: MACHO-6.6575.13 which never reached its maximum brightness in the EROS-2 data, HV 12842 which is outside the EROS-2 fields, and the hot RCB star MACHO-11.8632.2507.
Table 6. Near-IR photometry.

RCB name	JD Epoch 2MASS	J2MASS	H2MASS	K2MASS	JD Epoch DENIS	JDENIS	JDENIS	KDENIS
EROS2-CG-RCB-1	2451010.6571	12.502	10.845	9.077	2451404.57744	14.582	13.635	9.615
EROS2-CG-RCB-2	2451010.6591	11.389	10.061	9.290	2451410.59416	14.394	11.223	9.177
EROS2-CG-RCB-3	2451040.5447	12.702	10.348	8.538				
EROS2-CG-RCB-4	2451039.6137	10.312	9.087	7.936				
EROS2-CG-RCB-5	2451039.6095	15.524	12.715	9.977				
EROS2-CG-RCB-6	2451035.6283	10.193	9.151	8.277	2450313.53086	13.882	9.487	
EROS2-CG-RCB-7	2451035.6272	11.806	10.310	9.061	2450216.79336	14.755	10.494	
EROS2-CG-RCB-8	2450996.7036	13.152	11.518	9.895				
EROS2-CG-RCB-9	2451010.6160	12.458	10.484	8.808	2451074.74752	16.633	12.509	8.854
EROS2-CG-RCB-10	2450963.8322	11.117	9.534	7.975	2451103.66233	14.878	9.202	
EROS2-CG-RCB-11	2450950.8589	10.106	9.059	8.109	2451074.74555	12.535	10.345	8.183
EROS2-CG-RCB-12	2451035.5272	13.848	11.949	10.425	2451381.63688	16.678	12.951	9.876
EROS2-CG-RCB-13	2451364.6757	13.203	11.330	9.490	2450174.90133	15.374	13.393	9.699
EROS2-CG-RCB-14	2451749.4873	11.347	9.807	8.340				

*: During a faint phase, O: during a bright phase, V and ∧: during a dimming or recovering phase, ?: phase unknown.

Fig. 5. The J – H versus H – K colour diagram. All the known RCB stars, including those of DY Per type, are represented. The black stars are the 31 confirmed Galactic RCBs listed by (Clayton 1996) plus ES Aql and V2552 Oph. The 4 open red triangles are the ones recently found by Zaniewski et al. (2005). The blue circles are the 17 RCB stars found in the LMC (Alcock et al. 2001). The green open squares are the 5 RCBs found in the SMC (Tisserand et al. 2004) and the full green square is the SMC RCB star MSX-SMC-014 (Kraemer et al. 2005). The 14 new EROS-2 Galactic RCB stars are indicated with red dots. The location of the DY Per stars is delimited by the dashed ellipse, which also encloses the area occupied by most carbon-rich stars. The dotted curve corresponds to the combination of blackbodies consisting of a 5500 K star and a 1000 K dust shell in various proportions ranging from all "star" to all "shell" (from Feast 1997). The area delimited by straight lines shows the zone in the 2MASS database from which stars in the EROS-2 fields were selected for light curve examination (see Sect. 4.3). The line on the right side represents the reddening vector from Rieke & Lebofsky (1985). Also shown are the expected position (lines in the bottom-left side) for common dwarf (green) and giant (black) stars from Bessell & Brett (1988).

than known RCB stars ($T_{\text{eff}} \sim 3800$ K) and have unusually faint absolute magnitudes of $M_V \sim 0$. For three of them (EROS2-CG-RCB-5, -9 and -14), we have an indication from the presence of a strong Ca II triplet in their spectrum (see Sect. 4.4.2) that they are actually hotter with a temperature more likely similar to classical RCBs ($T_{\text{eff}} \sim 5000$ K, which corresponds to an intrinsic $V - I$ colour of ~ 1.2). Therefore these 3 RCB stars are certainly subject to a supplementary extinction. We retain 3 hypotheses. First, they could be located beyond the Galactic Bulge at a maximum distance of ~ 14 kpc. We have thus assumed that the supplementary extinction comes from dust located beyond the Bulge. Second, these 3 RCBs may still be located inside the Bulge, but have circumstellar extinctions that are higher than those for known RCBs ($A_{V_{\text{circ}}} \sim 3$ mag is needed). Thus, we would have not observed the maximum luminosity of these RCBs. The reddening vector due to a carbon shell is different from the interstellar one: a factor of 3.5 in the slope can be observed in Fig. 6. The reddening vectors due to carbon clouds have been estimated for three of the new RCB stars during a decline. Third, there may be a higher foreground extinction due to compact interstellar dust clouds that happen to be in the line of sight.

However, we consider this possibility the least likely as the 3 Galactic RCBs would still be located in the colour magnitude diagram at about 1.3 mag below the LMC ones (if $T_{\text{eff}} \sim 5000$ K), implying that their location is behind the Bulge without extra reddening in the line of sight. We would thus be confronted with the improbable case where only the 3 RCB stars located beyond the Bulge in our new sample would be affected by a compact foreground cloud in their line of sight. We note also that if the last hypothesis is true, we should observe the converse, some RCB stars that have been over-corrected due to a lower extinction than average. But this is not the case.

In the case of EROS-CG-RCB-12, we have already mentioned in Sect. 4.4.2 that this star is intrinsically cooler than the other RCBs. Its position in Fig. 7 is therefore less surprising. It could be similar to the cool RCB star discovered in the SMC, EROS2-sm0067m28134b (Tisserand et al. 2004; Kraemer et al. 2005). However, the calculated absolute

7 After reddening correction due to the supplementary extinction, $A_{V_{\text{circ}}} \sim 2$ mag, the three RCBs are still located in the colour magnitude diagram (Fig. 7) at about 1.3 mag below the LMC ones.

8 We selected only three RCBs based on the colour variation during decline (see Figs. 9–9); we did not retain some RCBs that become bluer due to a blend with a bluer star.

9 This can be observed in one case: the chart of the star EROS2-CG-RCB-5 (Fig. 10) shows a local high extinction area close to its position.

10 We note that the SMC star EROS2-sm0067m28134b may not have reached its maximum brightness in the EROS-2 light curve, as the maximum observed lasted only a few days. If so, this cool SMC RCB star should also be brighter and bluer.
P. Tisserand et al.: 14 new Galactic R Coronae Borealis stars from EROS-2

Fig. 6. Top panel: apparent magnitude $B_{E,\text{clump}}$ vs. $(B_{E} - R_{E})_{\text{clump}}$ for the centre of the red giant clump in each quarter-CCD subfield. The expected linear relation due to reddening can be observed. The vectors on the left side represent the absorption due to carbon cloud, estimated for three RCBs during a decline. Bottom panel: the reddening $E(B-V)$ to the Bulge derived from the COBE/DIRBE data by Schlegel et al. (1998) versus $(B_{E} - R_{E})_{\text{clump}}$.

magnitude with a Bulge distance hypothesis, $M_V \sim 0$, is unusual. As for the previous three RCB stars, it is more likely that EROS-CG-RCB-12 has an unusually thick circumstellar shell or is located behind the Bulge: with an estimated low temperature of $T_{\text{eff}} \sim 4400$ K (which corresponds to an intrinsic $V-I$ colour of ~ 1.9), the maximum distance found is also of the order of ~ 14 kpc.

After extinction correction, the Galactic DY Per-like RCB star EROS2-CG-RCB-2 has a $V-I$ colour that corresponds to that of the Magellanic DY Per-like RCB stars (note also that the prototype DY Per star is very cool, $T_{\text{eff}} \sim 3500$, see Keenan & Barnbaum 1997). However, it is 1–2 mag fainter than the DY Per-like RCB stars found in the SMC and LMC. This discrepancy may be due to EROS2-CG-RCB-2 being more distant, but correction for a (probable) additional extinction would make the star bluer and brighter.

Confirmation of the location of the stars could come from an equivalent width measurement of the interstellar lines of sodium ($\text{Na I, } 5890.0, 5895.9$ Å) and/or potassium ($\text{K I, } 7699$ Å) as there is a direct relation with reddening (see Munari & Zwitter 1997). The KI line should be more helpful due to the high extinction ($E(B-V) \geq 0.4$) and also because NaI D absorption lines are usually observed during declines in an RCB star spectrum (Clayton 1996). This study needs high resolution spectroscopy and has therefore not been performed with our data. We note that strong NaI D absorption lines are observed in our two highest resolution spectra of EROS2-CG-RCB-8 and EROS2-CG-RCB-10 as well as in most of the low resolution spectra in the left panel of Fig. 4.

We now comment on two issues related to the empirical clump giant method used to correct our magnitudes for extinction. First, the calculated extinction is a regional average value, using clump giant stars located at less than 3 arcmin from each RCB. If there is a localised low (high) extinction zone coinciding with the RCB, this method will over(under)-estimate the extinction. Second, most RCB stars have an intrinsic $V-I$ colour higher than that of the clump giant stars ($(V-I)^0_{\text{clump}} \sim 1.0$). The applied absorption coefficient $R_{B_{E}} = A_{B_{E}} / E(B_{E} - R_{E})_{\text{clump}}$ should depend on the spectrum slope, which is measured by the intrinsic
Table 7. Properties of the new Galactic RCB stars, including reddening estimates and derived absolute magnitudes and intrinsic colours.

RCB Number	$R_{E,\text{max}}$	$\frac{dR_{E}}{dt}_{\text{max}}$	Drop R_{E}	$B_{E,\text{max}}$	$\frac{dB_{E}}{dt}$	Drop B_{E}	$E(B-V)$	A_R	$\Delta(B_{E} - R_{E})$	M_V	$(V-I)_0$
1	12.44	0.038	>8.3	14.40	0.042	>7.1	1.42	4.31	1.46	-3.98	0.83
2	14.48	0.021	>3.0	17.10	0.019	>2.4	2.56	4.43	1.50	-0.98	1.87
3	11.17	0.037	>6.9	12.65	0.044	7.4	1.26	2.42	0.82	-3.73	1.10
4	12.54	0.067	>8.2	14.75	0.052	>6.6	2.03	4.43	1.50	-3.61	1.18
5	13.52	0.102	>6.0	15.75	0.094	>5.7	1.38	2.24	0.76	0.09	2.45
6	12.75	0.034	>6.2	14.77	0.036	>5.6	2.40	3.66	1.24	-2.77	1.30
7	14.05	0.033	>6.6	16.80	0.027	>4.6	3.82	5.63	1.91	-2.07	1.40
8	13.04	nd	>7.6	15.37	nd	>6.0	1.39	4.28	1.45	-2.72	1.47
9	15.20	0.033	>6.0	18.01	0.035	1.8	3.14	4.37	1.48	0.13	2.22
10	12.46	0.060	6.0	14.26	0.058	5.4	0.98	2.40	0.81	-1.88	1.65
11	12.35	0.058	5.8	14.34	0.060	5.1	1.14	2.83	0.96	-2.20	1.72
12	14.14	0.025	3.2	16.48	0.031	3.9	1.06	2.86	0.97	0.13	2.28
13	11.42	0.043	5.1	13.29	0.066	6.2	1.38	2.51	0.85	-2.94	1.70
14	12.45	0.026	>8.3	14.24	0.033	>7.2	0.49	1.18	0.40	-0.41	2.32

nd = not detected, * from Schlegel et al. (1998).

Fig. 8. EROS-2 light curves of MACHO-118.18666.100 (re-classified as an M giant star, see Sect. 3) and three known Galactic RCB stars, MACHO-135.27132.51, V739 Sgr and VZ Sgr. The dashed vertical lines indicate the 2MASS epochs. The photometry of the last three RCB stars has been reprocessed as these stars were either saturated or too faint on the original EROS-2 reference images.
star colour. Hence, use of R_{B_R} derived from clump giants will not be exact for RCB stars. This effect may not be negligible, particularly with our wide EROS-2 bands (see Tammann et al. 2003, for an example of the variation of R for Cepheids). We note that the small difference in slope in Fig. 7, between the Magellanic and Galactic Bulge RCBs, may be due to this effect: the 3 Bulge RCB stars with $V - I \sim 1.0$ match well the position of the Magellanic RCBs in the colour magnitude diagram, whereas a small shift in luminosity is observed with the 6 redder Bulge RCBs, with $1.2 < V - I < 1.8$.

5.3. Proper motion test

We measured the proper motion for the 14 new RCBs using all available EROS-2 images, but no positive result was obtained. The study was complicated by blending which causes correlations between flux and position. This is particularly evident for the RCB star EROS2-CG-RCB-14, which is listed in the NOMAD catalogue with a significant proper motion ($\mu_\alpha = 82\pm9$ and $\mu_\delta = 15.4\pm9$ mas/yr). We can explain this apparent movement by blending.

5.4. Galactic latitude distribution

We note that the density of RCB stars strongly increases towards the Galactic plane. We estimate a density in our fields of $\sim 0.6\pm0.2$ RCB per deg2 for low Galactic latitude ($1^\circ < |b| < 3^\circ$) and $\sim 0.09\pm0.05$ RCB per deg2 at higher latitude ($3^\circ < |b| < 5^\circ$). For this calculation, only the 14 new EROS-2 RCB stars were used and all fields higher than $|b| > 5^\circ$ were not considered due to a dependence of our detection efficiency on Bulge RCBs absolute magnitude (see Sect. 4.2.1).

For the latitude range $|b| < 5^\circ$, we applied the method of maximum likelihood to measure the scale height h_{RCB}. We suppose a latitude distribution of the form $\exp(-b/h)$. If we use the
Fig. 9. continued.

14 new RCBs, we find \(0.6 < \frac{h_{\text{RCB}}}{h_{\text{Bulge}}} < 2.75\) deg (95% C.L.) with a most likely value of 1.0 deg. It corresponds at the distance of the Galactic Centre to a scale height of \(137^{+239}_{-55}\) pc. But if we restrict our analysis to the 9 new RCB stars that are most likely to be located inside the Bulge, we found smaller 95% C.L. limits: \(0.45 < \frac{h_{\text{RCB}}}{h_{\text{Bulge}}} < 2.0\) deg with a most likely value of 0.8 deg, i.e. \(109^{+137}_{-48}\) pc at the distance of the Galactic centre.

Such a small scale height is marginally consistent with the Bulge scale heights (270 to 360 pc) found by Dwek et al. (1995) from the COBE/DIRBE data, using three different exponential triaxial Bulge models. The measured scale height is significantly less than that expected for a thick disk (>1 kpc) and is similar to that for young/intermediate age thin-disk populations.

The small statistic prevent us from having a clear view of the distribution of the new RCBs; however, their distances and scale height seem to indicate a disk-like distribution inside the Bulge. We note that such small scale heights have already been observed in the Galactic Bulge for OH/IR stars, which are oxygen-rich evolved stars (see Sevenster et al. 1995; Sevenster 1999). If confirmed, this result may help to constrain the age of the RCB stars, as a disk structure inside the Galactic Bulge could only be younger than the Galactic Bulge itself.

The observed scale height is lower than the one measured by Iben & Tutukov (1985), \(\sim 400\) pc, using known RCB stars outside the Galactic Bulge and assuming \(M_{\text{Bulge}} = -5\). This difference in scale height, between the inner part (Bulge) and the outer part (disk) of the Galaxy, has also been observed with OH/IR stars (Sevenster 1999).

No RCB stars have been found in the 29 spiral arms fields. This is not a significant result, as few RCB stars would be expected in these fields. Assuming a disk scale length of 2.5 kpc and the density found in our low Galactic latitude fields, we expected to find only \(~2\) RCB stars in the spiral arms fields.
5.5. Individual stars

EROS2-CG-RCB-9, EROS2-CG-RCB-10 and EROS2-CG-RCB-11 all show multiple drops in brightness in their light curves, as well as carbon-rich spectra. They are undoubtedly members of the RCB class. None of these stars was previously catalogued as variable.

EROS2-CG-RCB-1 is the only new RCB star that has not been confirmed spectroscopically. Its spectrum is almost totally featureless, although some weak CN bands are present; the star was very faint during the observation on JD-2 454 348. However its light curve has multiple declines of more than 8 mag, making it a strong RCB candidate. After extinction correction, EROS2-CG-RCB-1 is the hottest RCB from the new sample. Its spectrum looks typical of a warm RCB star such as W Men (see Fig. 1 Alcock et al. 2001) with a fair amount of interstellar extinction $A_{B_{0}} = 4.31$.

EROS2-CG-RCB-2 is a DY Per star candidate due to its slow decline and symmetric recovery, plus a location in the $J - H$ versus $H - K$ diagram (Fig. 5) where all other DY Per stars are found. The spectrum confirms that the star is carbon-rich.

EROS2-CG-RCB-3 is the second hottest RCB star found in this analysis, after reddening correction. Its spectrum shows strong Ca II triplet lines as well as strong C_{2} (Swan bands from 5500 to 6500 Å) and CN features. The lack of measurements in the red band before the year 2000 is due to an electrical problem in CCD number 2.

EROS2-CG-RCB-4, named Terz V 2046 by Terzan & Ounnas (1988) was listed as a variable star due to its impressive luminosity change (close to 9 mag). Its R-band magnitude was measured at 9.2 in 1968, but fainter than 18 in 1981.

EROS2-CG-RCB-5 presents the quickest decline (~ 0.1 mag day$^{-1}$) with a fast recovery 200 days later and the highest IR excess with $J - H \sim 2.74$. Its spectrum shows strong Ca II triplet lines indicating that the star is hotter than the cool temperature estimated after a Bulge extinction correction.
EROS2-CG-RCB-6, named V1135 Sco in the GCVS\(^{12}\), was incorrectly classified as a Mira variable by Alard et al. (1996). No indication of periodicity is seen in its light curve.

EROS2-CG-RCB-7 was named Terz V 1680 by Terzan & Ounnas (1988) with a variation in brightness of 5 mag between 1980 and 1976. Multiple aperiodic drops in luminosity (more than 6 mag) are visible in the EROS-2 light curve.

EROS2-CG-RCB-8 was named Terz V 2960 by Terzan & Gosset (1991). Its brightness varied by more than 3.3 mag between 1968 and 1987. No sudden drop was observed in the EROS-2 light curve, but with a total amplitude change of more than 7.6 mag in the \(R_e \) band, a slow recovery of its maximum brightness (nearly 2.5 years) and a carbon type spectrum, EROS2-CG-RCB-8 is a strong RCB star candidate.

EROS2-CG-RCB-12 shows one characteristic decline around JD-2 450 900 along with many variations of large amplitude at maximum brightness. The total variation is slightly more than 3 mag over the 6.7 years of observations. Its spectrum shows clear evidence of carbon molecules in its atmosphere, making this star a strong RCB candidate. Surprisingly, its spectrum shows no Ca II triplet lines indicating that this RCB star is the coolest of the classical new RCB star found.

EROS2-CG-RCB-13 has been monitored by both EROS-2 and the MACHO experiment (MACHO-118.18666.100). The first 2 drops observed by EROS-2 are also present in the MACHO light curve, while EROS-2 shows another drop around the epoch JD-2 451 100. Its spectrum indicates a carbon-rich atmosphere so it is also a strong RCB candidate.

EROS2-CG-RCB-14 has been catalogued in the NOMAD catalogue with a significant proper motion, which we ascribe to blending. This is the RCB star that shows the largest drop in luminosity in the new Galactic sample, with a variation of more than 8.3 mag in the \(R_e \) band.

6. Summary

Our search for new RCB stars in the EROS-2 Galactic photometry resulted in the discovery of 14 new RCB stars, one being a

\(^{12}\) GCVS: General Catalogue of Variable Stars (Kukarkin et al. 1971).
Fig. 10. Charts of the new Galactic RCB stars (2′ × 2′). North is up, East is to the left.
(e.g. VISTA13) should be able to discover many RCB stars near the Galactic Centre.

Acknowledgements. This paper is dedicated to the memory of Alain Milsztajn (1955–2007).

We would like to thank the referee, G. Clayton, for his comments that improved the paper and K.C. Freeman for useful discussions. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Centre California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The DENIS data have also been used. DENIS is the result of a joint effort involving human and financial contributions of several Institutes mostly located in Europe. It has been supported financially mainly by the French Institut National des Sciences de l’Univers, CNRS, and French Education Ministry, the European Southern Observatory, the State of Baden-Wuerttemberg, and the European Commission under networks of the SCIENCE and Human Capital and Mobility programs, the Landessternwarte, Heidelberg and Institut d’Astrophysique de Paris. J.A. acknowledges support from the Danish Natural Science Research Council.

References

Alcock, C., Terzan, A., & Guibert, J. 1996, A&AS, 120, 275
Alcock, C., Allsman, R. A., Alves, D. R., et al. 2001, ApJ, 554, 298
Alksnis, A. 1994, Balt. Astron., 3, 410
Alksnis, A., Balikatsas, A., Dzervitis, U., et al. 2001, Balt. Astron., 10, 1
Ansari, R. 1996, Vist. Astron., 40, 519
Arce, H. G., & Goodman, A. A. 1999, ApJ, 512, L135
Asplund, M., Lambert, D. L., Kipper, T., Pollacco, D., & Shetrone, M. D. 1999, A&A, 343, 507
Azzopardi, M., Rebeirot, E., Lequeux, J., & Westerlund, B. E. 1991, A&AS, 88, 265
Belczynski, K., Bulik, T., & Ruiter, A. J. 2005, ApJ, 629, 915
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Clayton, G. C. 1996, PASP, 108, 225
Clayton, G. C., & De Marco, O. 1997, AJ, 114, 2679
Clayton, G. C., Geballe, T. R., Herwig, F., Fryer, C., & Asplund, M. 2007, ApJ, 662, 1220
Clayton, G. C., Hammond, D., Lawless, J., et al. 2002, PASP, 114, 846
Clayton, G. C., Kerber, F., Pirzkal, N., et al. 2006, ApJ, 646, L69
Cottrell P. L., & Lawson, W. A. 1998, Publ. Astron. Soc. Austr., 15, 179
de Laverny, P., & Mékarnia, D. 2004, A&A, 428, L13
Dutra, C. M., Santiago, B. X., Bica, E. L. D., & Barbuy, B. 2003, MNRAS, 338, 253
Dwek, E., Arenth, R. G., Hauser, M. G., et al. 1995, ApJ, 445, 716
Egan, M. P., Price, S. D., Kraemer, K. E., et al. 2003, VizieR Online Data Catalog, 5114, 0
Eisenhauer, F., Genzel, R., Alexander, T., et al. 2005, ApJ, 628, 246
Feast, M. W. 1997, MNRAS, 285, 339
Gonzalez, G., Lambert, D. L., Wallester, G., et al. 1998, ApJS, 114, 133
Hamadache, C., Le Guillou, L., Tisserand, P., et al. 2006, A&A, 454, 185
Hesselbach, E., Clayton, G. C., & Smith, P. S. 2003, PASP, 115, 1301
Iben, I. J., Tutukov, A. V., & Yungelson, L. R. 1996, ApJ, 456, 750
Jurcsik, J. 1996, Acta Astron., 46, 325
Keenan, P. C., & Barnbaum, C. 1997, PASP, 109, 969
Kilkenny, D. 1997, The Observatory, 117, 205
Kraemer, K. E., Sion, G. C., Wood, P. R., Price, S. D., & Egan, M. P. 2005, ApJ, 631, L147
Kukarkin, B. V., Khlopov, P. N., Pskovsky, Y. P., et al. 1971, in General Catalogue of Variable Stars, 3rd edn.
Landolt, A. U. 1992, AJ, 104, 372
Lawson, W. A., & Cottrell, P. L. 1990, in Confrontation Between Stellar Pulsation and Evolution, ed. C. Cacciari, & G. Clementini, ASP Conf. Ser., 11, 566
Lawson, W. A., Cottrell, P. L., Kilmartin, P. M., & Gilmore, A. C. 1990, MNRAS, 247, 91
Leão, I. C., de Laverny, P., Chesneau, O., Mékarnia, D., & de Medeiros, J. R. 2007, A&A, 466, L1
Lloyd Evans, T. 1991, MNRAS, 249, 409
Lloyd Evans, T., Kilkenny, D., & van Wyk, F. 1991, The Observatory, 111, 244
Mílone, L. A. 1990, Ap&SS, 172, 263
Munari, U., & Zwitter, T. 1997, A&A, 318, 269
Paczynski, B. 1986, ApJ, 304, 1
Polomski, G. 1997, Acta Astron., 47, 467
Pollard, K. R., Cottrell, P. L., & Lawson, W. A. 1994, MNRAS, 268, 544
Pollard, Y. F. 2003, Ph.D. Thèses UnivPS, Paris 6
Renzini, A. 1990, in Confrontation Between Stellar Pulsation and Evolution, ed. C. Cacciari, & G. Clementini, ASP Conf. Ser., 11, 549
Richer, H. B. 1971, ApJ, 167, 521
Rieke, G. H., & Lebofsky, M. J. 1985, ApJ, 288, 618
Rodgers, A. W., Conroy, P., & Bloxham, G. 1988, PASP, 100, 626
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Sevenster, M. N. 1999, MNRAS, 310, 629
Sevenster, M. N., Dejonghe, H., & Hubing, H. J. 1995, A&A, 299, 689
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Stanek, K. Z. 1998, ARA&A, 36, 1
Stephenson, C. B. 1989, Publ. of the Warner & Swasey Observatory, 3, 53
Sumi, T. 2004, MNRAS, 349, 193
Tamman, G. A., Sandage, A., & Reindl, B. 2003, A&A, 404, 423
Terzan, A., & Gosset, E. 1991, A&AS, 90, 451
Terzan, A., & Ounans, C. 1988, A&AS, 76, 205
Tisserand, P., Le Guillou, L., & the EROS-2 Coll. 2007, A&A, 469, 387
Tisserand, P., Marquette, J. B., Beaulieu, J. P., et al. 2004, A&A, 424, 245
Trimble, V., & Kundu, A. 1997, PASP, 109, 1089
Udalski, A., Szymanski, M., Kubiak, M., et al. 2002, Acta Astron., 52, 217
Webbink, R. F. 1984, ApJ, 277, 355
Wood, P. R., Alcock, C., Allsman, R. A., et al. 1999, in Asymptotic Giant Branch Stars, ed. T. Le Bertre, A. Lebre, & C. Waelkens, IAU Symp., 191, 151
Zamowska, A., Clayton, G. C., Welch, D. L., et al. 2005, AJ, 130, 2293
Zaritsky, D., Harris, J., Thompson, I. B., Grebel, E. K., & Massey, P. 2002, AJ, 123, 855

13 Visible and Infrared Survey Telescope for Astronomy, URL: \url{http://www.vista.ac.uk/}