Etiology, Antibiotic Susceptibility and Prognostic Factors of Pediatric Community-Acquired Sepsis in Addis Ababa, Ethiopia

Abel Abera Negash (abel.abera@ahri.gov.et)
Armauer Hansen Research Institute (AHRI)

Daniel Asrat
Addis Ababa University

Workeabeba Abebe
Addis Ababa University

Tewodros Hailemariam
Yekatit 12 Medical College

Andualem Wubete
Addis Ababa University

Abraham Aseffa
Armauer Hansen Research Institute (AHRI)

Mario Vaneechoutte
Ghent University

Research Article

Keywords: Antibiotic resistance; community-acquired sepsis; Ethiopia; Klebsiella pneumoniae; Streptococcus pneumoniae

DOI: https://doi.org/10.21203/rs.3.rs-30916/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: There is a scarcity of data on pediatric community-acquired sepsis (CAS) in Ethiopia. We sought to determine the etiology, antibiotic susceptibility pattern, and prognostic factors in children with CAS in Addis Ababa, Ethiopia.

Methods: A prospective cross-sectional study of 101 children aged 0-15 yrs with suspected CAS was performed. Blood culture, antibiotic susceptibility testing, Polymerase Chain Reaction (PCR) of the autolysin (LytA) gene from whole blood samples and typing *Streptococcus pneumoniae* by sequencing the cpsB gene and using Quellung reaction were performed. Data were analyzed using descriptive statistics and binary logistic regression.

Results: The prevalence of culture-positive CAS was 14.9 % (15/101). *S. pneumoniae* (26.7%) and *Klebsiella pneumoniae* (26.7%) were the most common causes of CAS. The four isolated pneumococci belonged to serotypes 19A (n = 2), 33C and 12F. Half of *K. pneumoniae* isolates were resistant to gentamicin and ceftriaxone. The case-fatality rate was 11.9% (12/101). In univariate analysis, age of 28 days - 1 year (odds ratio (OR), 0.1; 95% confidence interval (CI), 0.01-0.98; \(P \), 0.048), body temperature of 37.5 °C - 38.5 °C (OR, 0.2; 95% CI, 0.05-0.82; \(P \), 0.026) were negatively associated with mortality. Presence of underlying comorbidity (adjusted odds ratio (aOR), 6.8; 95% CI, 1.59-28.7; \(P \), 0.009) was an independent predictor of mortality.

Conclusions: *Streptococcus pneumoniae* and *Klebsiella pneumoniae* were the major causes of CAS and there was a substantial level of antibiotic resistance among isolates. Presence of underlying comorbidity was a predictor of mortality. Large scale studies on etiology, antibiotic susceptibility pattern and prognostic factors of CAS in Ethiopia are warranted.

Background

Sepsis remains a huge burden and a leading cause of childhood morbidity and mortality worldwide. Although Africa is likely to account for a significant proportion of the global burden of sepsis, there are limited reports on the epidemiology, management and outcomes of sepsis in African countries.\(^1\)

Information about etiological agents involved in causing community-acquired bacteremia and their antibiotic resistance pattern will help to improve empiric antibiotic therapy and consequently patient outcomes.\(^2\) In developing countries, *Staphylococcus aureus*, *Klebsiella* spp. and *Escherichia coli* account for 55% (95% confidence interval (CI) 39–70%) of culture positive sepsis among neonates, while in infants the most prevalent pathogens are *S. aureus*, *E. coli*, *Klebsiella* spp., *S. pneumoniae* and *Salmonella* spp., which account for 59% (95% CI 26–92%) of culture-positive sepsis.\(^3\)

The distribution of etiological agents of sepsis in the pediatric population is changing considerably as a result of introduction of conjugate vaccines such as *Haemophilus influenzae* type b (Hib) vaccine and pneumococcal conjugate vaccines (PCVs) and it has become important to understand the role of
childhood vaccinations not only on the rate and distributions of causative organisms but also on the risk factors and long-term outcomes of sepsis.4

Case-fatality rates due to CAS range from 6\% to 13\% and factors such as age, severity of illness at onset of sepsis, presence of comorbidities, bacteremia and etiology have been associated with mortality.4–7

PCV10 was introduced in Ethiopia in October 2011 as a three dose primary series (3p+0) without any booster dose8. A study by Muhe and colleagues on CAS in children younger than three months of age in Addis Ababa Ethiopia performed two decades before the introduction of PCV10 in the country has identified \textit{S. pneumoniae} as the predominant cause of sepsis.9 There is however a scarcity of data on the etiology of sepsis and the role of \textit{S. pneumoniae} as a cause of sepsis after the introduction of PCV10 in the country.

Most of the previous studies on childhood sepsis in Ethiopia, have been on neonatal sepsis and do not distinguish clearly between community-acquired (CA) and hospital- acquired (HA) sepsis.10–12 Besides, \textit{S. pneumoniae} infections including sepsis are often quite rare in neonates.13

The aim of this study was therefore to determine the etiology, role of \textit{S. pneumoniae} as a cause of sepsis, antibiotic susceptibility pattern of isolates and prognostic factors in children with CAS, five years after introduction of PCV10 in Ethiopia.

Methods

Study design and setting

We carried out a prospective cross-sectional study from September 1, 2016 to August 30, 2017. The study was carried out in pediatric emergency departments of two large hospitals in Addis Ababa, Ethiopia; Tikur Anbessa Specialized Hospital (TASH) and Yekatit 12 Hospital.

Participant selection and inclusion criteria

Among children between the ages of 0 to 15 years presenting to the two pediatric emergency departments (PED) during the study period, the ones that were included in the study were, those presenting with suspected CAS and who had not taken antibiotics within two weeks prior to presenting to the hospital. CAS was defined as a case of suspected sepsis in children with no hospital or health care admissions in the two weeks prior to the current admission14 and identified from samples taken within 48 h of admission.15 Suspected sepsis was categorized based on the clinical decision of the attending physician and was defined as meeting the systemic inflammatory response syndrome (SIRS) criteria.16

Data collection and outcome measurement
Trained research nurses approached parents/guardians of 101 children, suspected with CAS during the study period. After obtaining informed consent, a structured questionnaire was used to obtain sociodemographic data and other relevant clinical data. List of antibiotics that were used for management of patients was extracted from medical records. Final outcome (discharge or death) was registered and length of stay in the hospital was recorded in days. The microbiological outcomes assessed were: culture positive CAS, pneumococcal CAS and antibiotic susceptibility pattern among isolates.

Laboratory procedures

Sample collection

At enrollment, venous blood (1 mL for < 1 month-olds and 2-5 mL for > 1 month-olds) was drawn aseptically and transferred into 20 ml Brain Heart Infusion (BHI) broth (Oxoid, Cheshire, England) bottles and mixed gently by inverting the bottle. In addition, 1-2 mL of blood, collected using Ethylenediaminetetraacetic acid (EDTA) vials was available for 69 children and was frozen at -80 °C for PCR.

Culture and identification

The inoculated BHI broth was cultured aerobically. After 24 hrs of incubation, Gram stain was done followed by subculture on Blood agar, Chocolate agar and MacConkey agar (Oxoid). Culture bottles that did not show growth were further incubated for 7 days and subcultured before being reported negative. Initial identification of bacteria was made by Gram stain, hemolytic activity on sheep blood agar plates, optochin sensitivity, bile solubility, coagulase test, colony morphology on MacConkey agar and growth on Mannitol salt agar at the Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia. Further identification was then performed on all isolates by Matrix-assisted laser desorption/ionization time of flight mass spectrometry at Ghent University, Ghent, Belgium. Coagulase negative staphylococci (CoNS), *Micrococcus* spp, and viridans streptococci were considered as contaminants when identified in the blood cultures.

Antibiotic susceptibility testing

Antibiotic susceptibility testing on a selected panel of antibiotics that are used locally was done using the Kirby-Bauer disk diffusion method. For pneumococcal isolates, penicillin resistance was initially measured using oxacillin discs and for isolates with zones \(\leq 19 \) mm, minimum inhibitory concentrations (MICs) were determined using E-Test strips (bioMerieux, Marcy-l’Etoile, France). Test results of both disc diffusion and MICs were interpreted according to the Clinical and Laboratory Standard Institute (CLSI) criteria. American Type Culture Collection (ATCC) strains: *Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 25923 and *Streptococcus pneumoniae* ATCC 49619 were used for quality control.
DNA extraction and amplification of *lytA* genes

DNA extraction was performed on available whole blood samples obtained from 69 children. Initial pretreatment of the samples was performed as described previously.\(^{19}\) DNA extraction was then carried out with the DNeasy® 96 Blood & Tissue Kit (Qiagen, Venlo, The Netherlands), following manufacturer’s instructions. Amplification of a 101-bp fragment of the *lytA* gene was carried out as previously described.\(^{20}\)

PCRSeqTyping and serotyping

DNA extraction from *S. pneumoniae* isolates was carried out by alkaline lysis as described previously.\(^{21}\) Amplification and sequencing of the 1061 bp of the *cpsB*-gene (encoding for phosphotyrosine phosphatase) were done using PCRSeqTyping as previously described.\(^{22}\) Twenty μl of the amplicons were sent for sequencing to GATC Biotech (Constance, Germany) and sequencing was performed using the Sanger sequencing technique. *cpsB* sequences were used to interrogate GenBank database (http://www.ncbi.nlm.nih.gov/blast). Serotype was assigned based on a BLAST bit score of > 99% sequence identity of the query *cpsB* nucleotide sequence with the reference sequences from GenBank. Because correct serotype could not be assigned by PCRSeqTyping for two of the isolates, serotyping was performed on all isolates by the Quellung reaction\(^{23}\) using pool and group antisera, obtained from the Statens Serum Institut (Copenhagen, Denmark).

Statistical analysis

Data were initially entered in ReDCap (Vanderbilt, USA), exported into Excel and analyzed using PASW Statistics 20 software (SPSS Inc., Chicago, Ill. USA). Age was stratified into four groups: < 28 days, 28 days-1 year, 2-5 years and ≥ 6 years. Continuous variables were reported as median and interquartile range (IQR). Descriptive statistics was used to analyze sociodemographic, clinical and laboratory characteristics. To identify prognostic factors of CAS, bivariate analysis using binary logistic regression was performed. Variables which were significant at \(P < 0.1\) were then used in multivariable model. Variables in the multivariable analysis were considered as significant when \(P < 0.05\). Results from the binary logistic regression analyses were reported as ORs and aORs with 95% CIs.

Ethical approval

The study procedures were in accordance with the Helsinki Declaration. The study was approved by the AHRI/All Africa Leprosy Rehabilitation and Training Hospital (ALERT) Ethics Review Committee, Addis Ababa University Institutional Review Board, Yekatit 12 Medical College Ethics Committee and the National Research Ethics Review Committee (No. 310/194/2017). The parents and/or guardians of all participants gave written informed consent.
Results

Characteristics of the study participants

Among 377 children with suspected sepsis admitted to TASH and Yekatit 12 hospitals during the study period, 101 (26.8%) met the study inclusion criteria and were enrolled (Table 1). The median age of the enrolled children was 2 months IQR (1 - 5.5) with most children (65.3%) aged between the age of 28 days and 1 year; and 58 (57.4%) were boys.

The most common sign was fever (> 37.5 °C), which was seen in 91.1% of the children, followed by irritability (74.3%) and vomiting (70.1%) (Table 2). A total of 32.7% of the children had comorbidities, with gastrointestinal comorbidities (8.9%) being the most frequent. The focus of infection was not determined in 35.6% of the cases and, in those with a focus; lower respiratory tract infections (44.6%) were the most common. In most children who presented to the two emergency departments (53.5%), the number of days since onset of symptoms reported by parents/guardians was < 3. Based on the data obtained from vaccination cards or words of parents/guardians, 69.3% of the children have received at least one dose of PCV10. Malnourishment (moderate or severe) was seen in 39.6% of the children.

Etiology of pediatric community-acquired sepsis

A pathogen was identified in 15 (14.9%) and a contaminant in 19 (18.8%) of the blood cultures. *S. pneumoniae*, 26.7% (4/15) and *Klebsiella pneumoniae*, 26.7% (4/15) were the two most common causes of CAS. Other important pathogenic isolates were: *Streptococcus pyogenes*, 13.3% (2/15); *Citrobacter koseri*, 6.7% (1/15); *E. coli*, 6.7% (1/15); *H. influenzae*, 6.7% (1/15); *Moraxella catarrhalis*, 6.7% (1/15) and *S. aureus*, 6.7% (1/15). Non-pathogenic bacteria which were considered contaminants were: CoNS (n = 13), *Kocuria* spp (n = 3) and viridans streptococci (n = 3).

Use of antibiotics

The most common antibiotics used for the management of children with CAS were a combination of ampicillin with gentamicin, 47.5% (48/101) followed by ceftriaxone, 16.7% (17/101) (Figure 1). Combinations of ampicillin and gentamicin and /or along with an additional antibiotics were used in 59.4% (60/101) of the cases. Ceftriaxone alone or along with other antibiotics were used in 41.6% (42/101) of the cases. Combinations of ampicillin/gentamicin or ceftriaxone alone or along with other antibiotics were used in 96% (97/101) of the cases overall.

Antibiotic susceptibility

All of the four *S. pneumoniae* isolates were susceptible to penicillin while two were resistant to trimethoprim/sulfamethoxazole and chloramphenicol, while one was resistant to erythromycin and none to
tetracycline (Table 3). Half of the *K. pneumoniae* isolates were resistant to gentamicin and ceftriaxone.

Pneumococcal serotypes and lytA PCR

Using PCRSqTyping, only two of the isolates were typed to serotype level (19A (n=2)) while the other two were only typed to subtype level (44, 12B/F, 32A/F and 35A/B/C/F, 33A/C/F). All isolates were then serotyped using the Quellung reaction. The ones initially identified to subtype level by PCRSqTyping were identified as serotypes 12F and 33C and there was 100% concordance between PCRSqTyping and Quellung for the remaining two isolates. All the four pneumococcal isolates were non-PCV10 types. Three of the four children had been vaccinated with PCV10; one of the three has been fully vaccinated while the other two have received two doses. Whole blood was available for only two of the four cases from which pneumococci was isolated and only one was lytA-PCR positive.

Factors associated with mortality

The overall case-fatality rate was 11.9% (12/101). The length of stay for the children who died was 5 (IQR: 3-14) days. Among 29 variables in Table 1 and Table 2 which were used for bivariate analysis using binary logistic regression, three were significant at P < 0.1 and were further used in the multivariable analysis (Table 4). Seven of the children who died (*i.e.* 58.8% of mortality cases), were aged between 28 days and 1 year, which is also the age group of most of the children in the study (65.3%). However, in bivariate analysis, compared to children aged > 6 years, children within this age group were less likely to die (OR, 0.1; 95% CI, 0.01-0.98; and *P*, 0.048) (Table 4). Children with body temperature of 37.5 °C - 38.5 °C were also less likely to die (OR, 0.2; 95% CI, 0.05-0.82; *P*, 0.026) compared to those with > 38.5 °C. In a multivariable analysis, children with comorbidities were 6.8 times more likely to die than children without comorbidities (aOR, 6.8; 95% CI, 1.59-28.7; *P*, 0.009). A pathogenic bacterium was isolated from only one of the children who died and it was a multi-drug resistant *K. pneumoniae*. There was no association between culture positivity and mortality (*P*, 0.459).

Discussion

Results from our study indicate that the prevalence of culture-positive sepsis was 14.9%. This finding is lower than results obtained in other studies in Gondar (32.1%) and Addis Ababa (27.9% and 44.7%), Ethiopia, in which most of the cases concern neonatal sepsis with nosocomial origin. Our finding is however higher than a study on CAS in Philippines (3.4%).

S. pneumoniae (26.7%) and *K. pneumoniae* (26.7%) were the two most common causes of sepsis. The prevalence of pneumococcal sepsis was 3.96% (4/101). Similarly, in a previous study in Addis Ababa, Ethiopia long before the introduction of PCV10; *S. pneumoniae* was identified as the most common cause of sepsis in children younger than 3 months of age while *K. pneumoniae* was uncommon. A recent report from Switzerland has indicated that after widespread vaccination with PCV7 and a transition to PCV13 in
2011, incidence of pneumococcal sepsis still remained substantial and was responsible for 25% of the CAS episodes in 2015. All four \textit{S. pneumoniae} isolates from this study were non-PCV10 serotypes with two of them being serotype 19A. In countries that have introduced PCVs, there is an increase in diseases due to non-vaccine serotypes. In Brazil, after introduction of PCV10, the proportion of serotype 19A among invasive pneumococcal disease strains increased from 2.8% in 2005–2009 (pre-PCV period) to 16.4% in 2016-2017 (6 to 7 years post-PCV). Lack of comprehensive pre-vaccine serotype data in Ethiopia and the limited sample size and isolates in the current study means that we could not make comparisons. Our findings however warrant further large scale studies in Ethiopia to assess the role \textit{S. pneumoniae} as a cause of sepsis in the post-PCV period.

Although they did not clearly distinguish between community-acquired and hospital-acquired cases, various studies on neonatal sepsis in Africa have identified \textit{Klebsiella} spp. as the most common cause. Kabwe and colleagues who analyzed 13 studies on neonatal sepsis in Africa, have reported that \textit{Klebsiella} spp. account for 32% (323/1009, range 0–59%) of the isolates identified.

We performed \textit{lytA} PCR for detection of \textit{S. pneumoniae} from whole blood samples that were available from 69 patients. Enhanced diagnosis of pneumococcal bacteremia by using \textit{lytA} PCR which resulted in up to 10.7% increased yields compared to blood culture has been previously reported. In our study \textit{lytA} PCR did not increase sensitivity. Whole blood was available for two of the samples from which \textit{S. pneumoniae} were isolated and only one was positive for \textit{lytA} PCR. Possible reasons for low sensitivity could be the small number of samples and limitations in transport and storage of samples.

The Ethiopian standard treatment guideline recommends ampicillin and gentamicin as a first line and ceftriaxone as a second line antibiotic therapy for pediatric sepsis.

Among 96% of the cases either the first line antibiotics with or without additional antibiotics or the second line antibiotics with or without other antibiotics were used for management of the patients. Among \textit{K. pneumoniae} isolates in this study, half were resistant to gentamicin and ceftriaxone. A recent review by Williams and colleagues revealed a high prevalence of \textit{Klebsiella} spp non-susceptibility to gentamicin (median 49%, IQR 48–58%) and ceftriaxone (range 33–50%) in sub-Saharan Africa. In developing countries, amikacin, which is effective against most MDR \textit{Klebsiella} spp. and has comparable cost to gentamicin, has been recommended as an alternative to gentamicin as second-line treatment in combination with penicillin. Our results indicate the need for continued surveillance of antibiotic resistance in Ethiopia and assessment of treatment options.

In the pediatric consensus definition of SIRS, abnormal core temperature is defined as a temperature of < 36 °C or > 38 °C measured by rectal, bladder, oral, or central catheter probe and a temperature of > 38.5 °C is used as it increases specificity. In our study, we used the local definition of fever (> 37.5 °C) measure via axillary route. We compared the final outcome of children with local definition of fever (> 37.5 °C) and fever as per the SIRS criteria (> 38.5 °C). In a univariate analysis, we were able to see that children with body temperature between 37.5 °C and 38.5 °C were less likely to die than children with body temperatures...
of > 38.5 °C. In a similar study performed in Dar es Salaam, Tanzania, George and colleagues found that children with a temperature of > 38.5 °C and > 2 SIRS criteria were seven times more likely to die (OR, 7.05; \(P \), 0.01).\(^{35}\)

The case-fatality rate in this study (11.9%) was higher than findings from European childhood life-threatening infectious disease study report (6%, increasing to 10% in the presence of septic shock)\(^6\) and was slightly lower than a report from Philippines.\(^5\) One of the noteworthy findings of this study is that children with underlying comorbidity were 6.8 times more likely to die than those without. Similarly, in a study on pediatric severe sepsis in the US, case-fatality rate was reported to be significantly higher in children with underlying comorbidity.\(^4\)

We acknowledge some limitations to our study. The sample size was small and more patients and data would have been useful for our analysis. Because the study hospitals are tertiary care facilities with shortage of beds, a selection bias might have occurred due to the possibility that children with comorbidities are preferentially admitted while those without comorbidities are referred to other health care centers. Since we did not perform serial blood cultures, the rate of culture positivity in the present study could be an underestimation. Limitations in proper transport and storage of whole blood might have also affected the results of lytA PCR.

Conclusions

The study identified that *S. pneumoniae* and *K. pneumoniae* are the main etiological agents of community-acquired sepsis among children at the two pediatric emergency departments. All the pneumococci isolates were non-PCV10 serotypes. There was a high rate of antimicrobial resistance to first and second line antibiotics used to treat sepsis among gram negative isolates which indicates the need for enhanced surveillance of antimicrobial resistance and assessment of treatment options in Ethiopia. Presence of comorbidity was a predictor of mortality. Further large scale studies on the etiology, antibiotic resistance and prognostic factors in Ethiopia are warranted.

Declarations

Funding: This research has been supported by a PhD Scholarship for AAN from the Belgian Development Cooperation through VLIR-UOS. The funder had no role in study design, data collection, analysis, interpretation and writing the manuscript.

Acknowledgements: We wish to express our sincere gratitude to all children and guardians who participated in the study, physicians and nurses who participated in patient recruitment and sample collection and AHRI's data management team.

Competing interests: None declared.

References
1. Kassebaum N, Kyu HH, Zoeckler L, Olsen HE, Thomas K, Pinho C, et al. Child and adolescent health from 1990 to 2015: Findings from the global burden of diseases, injuries, and risk factors 2015 study. *JAMA Pediatr.* 2017;171(6):573–92.

2. Abu NA, Nor FM, Microbiology M, Mohamad M, Siham A, Abidin Z, et al. Community-acquired bacteremia in paediatrics: Epidemiology, aetiology and patterns of antimicrobial resistance in a tertiary care centre, Malaysia. *Med J Malaysia.* 2016;71(3):117–21.

3. Downie L, Armiento R, Subhi R, Kelly J, Clifford V, Duke T. Community-acquired neonatal and infant sepsis in developing countries: Efficacy of WHO’s currently recommended antibiotics - Systematic review and meta-analysis. *Arch Dis Child.* 2013;98(2):146–54.

4. Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis. *Pediatr Crit Care Med.* 2013;14(7):686–93.

5. Quiambao BP, Simoes EAF, Ladesma EA, Gozum LS, Lupisan SP, Sombrero LT, et al. Serious community-acquired neonatal infections in rural Southeast Asia (Bohol Island, Philippines). *J Perinatol.* 2007;27(2):112–9.

6. Boeddha NP, Schlapbach LJ, Driessen GJ, Herberg JA, Rivero-Calle I, Inwald DP, et al. Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). *Crit Care.* 2018;22(1):1–13.

7. Schlapbach LJ, MacLaren G, Festa M, Alexander J, Erickson S, Beca J, et al. Prediction of pediatric sepsis mortality within 1h of intensive care *Intensive Care Med.* 2017;43(8):1085–96.

8. Ministry of Health Federal Republic of Ethiopia. *Introducing Pneumococcal Conjugate Vaccine in Ethiopia: Training Manual for Health Workers.*

9. Muhe L., Tilahun M., Lulseged S., Kebede S., Enaro D., Ringertz S., et al. Etiology of pneumonia, sepsis and meningitis in infants younger than three months of age in Ethiopia. *Pediatr Infect Dis J.* 1999;18(10):S56–61.

10. Shitaye D, Asrat D, Woldeamanuel Y, Worku B. Risk factors and etiology of neonatal sepsis in Tikur Anbessa University Hospital, Ethiopia. *Ethiop Med J.* 2010;48:11–21.

11. Negussie A, Mulugeta G, Bedru A, Ali I, Shimeles D, Lema T, et al. Bacteriological profile and antimicrobial susceptibility pattern of blood culture isolates among septicemia suspected children in selected hospitals Addis Ababa, Ethiopia. *Int J Biol Med Res.* 2016;6(1):4709–17.

12. Gebreyesus T, Moges F, Eshetie S, Yeshitela B, Abate E. Bacterial etiologic agents causing neonatal sepsis and associated risk factors in Gondar, Northwest Ethiopia. *BMC Pediatr.* 2017;17(1):137–47.

13. Hoffman JA, Mason EO, Schutze GE, Tan TQ, Barson WJ, Givner LB, et *Streptococcus pneumoniae* Infections in the Neonate. *Pediatrics.* 2003;112(5):1095–102.

14. McKay R, Bamford C. Community-versus healthcare-acquired bloodstream infections at groote schuur hospital, Cape Town, South Africa. *South African Med J.* 2015;105(5):363–9.

15. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections. *Am J Infect Control.* 1988;16:128–40.
16. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. *Pediatr Crit Care Med.* 2005;6(1):2–8.

17. Bauer AW, Kirby WMM, Sherris JC, And, Truck M. Antibiotic susceptibility testing by a standardized single disk method. *Am J Clin Pathol.* 1966;45:493–6.

18. Clinical and Laboratory Standards Institute. *Performance standards for antimicrobial susceptibility testing. CLSI supplement M100.* 28th ed. Wayne, PA: Clinical and Laboratory Standards Institute;

19. Moïsi JC, Moore M, Da Gloria Carvalho M, Sow SO, Siludjai D, Knoll MD, et al. Enhanced diagnosis of pneumococcal bacteremia using antigen-and molecular-based tools on blood specimens in Mali and Thailand: A prospective surveillance study. *Am J Trop Med Hyg.* 2016;94(2):267–75.

20. Verhelst R, Kajjalainen T, De Baere T, Verschraegen G, Claey G, Van Simaeys L, et al. Comparison of five genotypic techniques for identification of optochin-resistant pneumococcus-like isolates. *J Clin Microbiol.* 2003;41(8):3521–5.

21. Vaneeschoutte M, Claey G, Steyaert S, Baere D, Peleman R, Verschraegen G, et al. Isolation of *Moraxella canis* from an ulcerated metastatic lymph node. *J Clin Microbiol.* 2000;38(10):3870–2.

22. Nagaraj G, Ganaie F, Govindan V, Ravikumar KL. Development of PCRSeqTyping—a novel molecular assay for typing of *Streptococcus pneumoniae*. *Pneumonia.* 2017;9:8–17.

23. Sørensen UBS. Typing of pneumococci by using 12 pooled antisera. *J Clin Microbiol.* 1993;31(8):2097–100.

24. Gebrehiwot A, Lakew W, Moges F, Moges B, Anagaw B, Unakal C, et al. Predictors of positive blood culture and death among neonates with suspected neonatal sepsis in Gondar University Hospital, Northwest Ethiopia. *Euro J Exp Biol.* 2012;2(6):2212–8.

25. Asner SA, Agyeman PAK, Gradoux E, Posfay-Barbe KM, Heininger U, Giannoni E, et al. Burden of *Streptococcus pneumoniae* sepsis in children after introduction of pneumococcal conjugate vaccines—a prospective population-based cohort study. *Clin Infect Dis.* 2019;69 (9), 1574-1580.

26. Balsells E, Guillot L, Nair H, Kyaw MH. Serotype distribution of *Streptococcus pneumoniae* causing invasive disease in children in the post-PCV era: A systematic review and meta-analysis. *PLoS One.* 2017;12(5):e0177113.

27. Cassiolato AP, Almeida SCG, Andrade AL, Minamisava R, Brandileone MC de C. Expansion of the multidrug-resistant clonal complex 320 among invasive *Streptococcus pneumoniae* serotype 19A after the introduction of a ten-valent pneumococcal conjugate vaccine in Brazil. *PLoS One.* 2018;13(11):1–13.

28. Acquah SEK, Quaye L, Sagoe K, Ziem JB, Bromberger PI, Amponsem AA. Susceptibility of bacterial etiological agents to commonly-used antimicrobial agents in children with sepsis at the Tamale Teaching Hospital. *BMC Infect Dis.* 2013;13(1):89–95.

29. Hamer DH, Darmstadt GL, Carlin JB, Zaidi AKM, Yeboah-Antwi K, Saha SK, et al. Etiology of bacteremia in young infants in six countries. *Pediatr Infect Dis J.* 2015;34(1):e1–8.

30. Kohli-Kochhar R, Omuse RG, Revathi G. A ten-year review of neonatal bloodstream infections in a tertiary private hospital in Kenya. *J Infect Dev Ctries.* 2011;5(11):799–803.
31. Mhada T V., Fredrick F, Matee MI, Massawe A. Neonatal sepsis at Muhimbili National Hospital, Dar es Salaam, Tanzania; Aetiology, antimicrobial sensitivity pattern and clinical outcome. *BMC Public Health*. 2012;12(1):904–9.

32. Kabwe M, Tembo J, Chilukutu L, Chilufya M, Ngulube F, Lukwesa C, et al. Etiology, antibiotic resistance and risk factors for neonatal sepsis in a large referral center in Zambia. *Pediatr Infect Dis J*. 2016;35(7):e191–8.

33. Drug Administration and Control Authority of Ethiopia. *Standard treatment guideline for health centers*. Addis Ababa, Ethiopia;

34. Williams PCM, Isaacs D, Berkley JA. Antimicrobial resistance among children in sub-Saharan Africa. *Lancet Infect Dis*. 2018;18(2):e33–44.

35. George U, Ringo FH, Mwafongo V, Kautz J, Runyon MS, Reynolds T. The systemic inflammatory response syndrome as a predictor of mortality among febrile children in the emergency department. *Afr J Emerg Med*. 2013;3(4):S11-25.

Tables

Table 1. Sociodemographic Characteristics of 101 Children Suspected with CAS, Aged 0-15 yrs

Variables	Category	All children (n = 101)	
		No.	%
Gender	Male	58	57.4
	Female	43	42.6
Age	< 28 days	19	18.8
	28 days-1 yr	66	65.3
	2-5 yrs	12	11.9
	≥ 6 yrs	4	4
Premature birth	Yes	15	14.9
Birth weight	< 2.5 kg	16	15.8
	≥ 2.5 kg	85	84.2
Day care/ pre-school attendance	Yes	13	12.9
Child has siblings aged < 5	Yes	33	32.7
Breast feeding child	Yes	73	72.3

Table 2. Clinical and Laboratory Characteristics in Children Suspected with CAS, Aged 0-15 yrs
Variables	Category	All children (n = 101)
	No.	%
URTI in the last 3 months	Yes	7
		6.9
LRTI in the last 3 months	Yes	9
		8.9
Hospital admission in the last 3 months	Yes	17
		16.8
Signs and Symptoms	Fever (> 37.5 °C)	92
		91.1
	Hypothermia	9
		8.9
	Tachypnea	67
		67.3
	Tachycardia	66
		65.3
	Respiratory distress	55
		54.5
	Apnea	10
		9.9
	Vomiting	71
		70.1
	Irritability	75
		74.3
	Hypo-perfusion	15
		14.9
	Hypotension	7
		6.9
Underlying comorbidity	Yes	33
		32.7
	Gastrointestinal	9
		8.9
	Respiratory	8
		7.9
	Cardiovascular	7
		6.9
	Hematologic	3
		2.9
	Developmental	3
		2.9
	Renal	2
		2
	Neuromuscular	1
		1.9
	No	68
		67.3
Primary infection focus	Yes	65
		64.4
	Lower respiratory tract infections	45
		44.6
	Gastroenteritis	16
		15.8
	Skin and soft tissue infections	2
		2.0
	Urinary tract infections	2
		2.0
	No	36
		35.6
PICU admission	Yes	5
		5%
PCV vaccination statusa	Vaccinated	
	1 dose	33
		32.7
	2 doses	12
		11.9
	Fully vaccinated	25
		24.8
	Unvaccinated	31
		30.7
Nutritional statusb	Well-nourished	61
		60.4
	Moderately malnourished	10
		9.9
	Severely malnourished	30
		29.7
Length of stay, median (IQR), d		6 (4-9)
Laboratory results

White Blood Cells (cells/ml)	< 5000	6	5.9
5000-15, 500	39		38.7
15, 500-17, 500	10		9.9
>17, 500	46		45.5

Immature neutrophils (%)	> 10%	73	72.3
≤ 10%	28		27.7

Platelets (per ml)	< 150,000	20	19.8
≥ 150,000	81		80.2

Legend: Abbreviations: CAS, community-acquired sepsis; LRTI, lower respiratory tract infection; PCV, pneumococcal conjugate vaccine; URTI, upper respiratory tract infection; PICU, pediatric intensive care unit

a Vaccinated with at least one dose of PCV10

b WHO child growth standard of weight for age z score (WAZ) was used to determine nutritional status. Accordingly, well-nourished: z-score ≥ -2.0 <, moderately malnourished: -3.0 < z-score < -2.0; severely malnourished: z-score < -3.0

Table 3. Antibiotic Susceptibility Pattern of Bacterial Isolates in Children Suspected with CAS, Aged 0-15 yrs, Number of Non-susceptible Isolates

Bacterial species	Total N	Antibiotics									
		PEN	AMX	AMC	CRO	ERY	TE	SXT	GEN	C	CIP
Gram positive											
Streptococcus pneu moniae	4	0	-	-	-	1	0	2	-	2	-
Streptococcus pyogenes	2	1	1	1	0	1	1	1	-	0	0
Staphylococcus aureus	1	1	1	0	0	0	0	0	0	0	0
Gram negative											
Klebsiella pneumoniae	4	-	4	1	2	3	1	2	2	2	0
Citrobacter koseri	1	-	1	0	1	1	1	1	0	0	0
Escherichia coli	1	-	1	1	1	0	1	1	0	0	0
Haemophilus influenzae	1	-	1	1	1	0	0	0	-	0	0
Moraxella catarrhalis	1	-	-	0	-	0	0	0	-	-	-
Table 4. Risk Factors Associated with Mortality from CAS in Ethiopian Children Aged 0-15 yrs

Variables^a	Category	Final Outcome	Odds of Mortality				
		Discharged (n=89)	Died (n=12)	Bivariate	Multivariable		
Age		(%)	(%)	OR (95% CI)	p^b	AOR (95% CI)	P^b
< 28 days		19.1	16.7	0.1 (0.01-1.36)	0.087	0.33(0.02-4.92)	0.424
28 days - 1 yr		66.3	58.3	0.1 (0.01-0.98)	0.048	0.48(0.04-5.31)	0.547
2 - 5 yrs		12.4	8.3	0.1 (0.005-1.56)	0.097	0.21(0.01-4.49)	0.316
≥ 6 yrs		2.2	16.7				
Body temperature (Axillary)							
< 36 °C		10.1	8.3	0.4 (0.04-3.55)	0.402	0.5(0.05-5.2)	0.541
> 37.5-38.5 °C		58.4	25	0.2 (0.05-0.82)	0.026	0.2(0.05-0.99)	0.082
> 38.5 °C		31.5	66.7				
With comorbidity				8.13 (2.03-32.55)	**0.003**	6.8 (1.59-28.7)	**0.009**

^aAmong 29 variables in Table 1 and Table 2 used for bivariate analysis using binary logistic regression, 3 were significant at P < 0.1 and were further used in the multivariable analysis.

^bP-value of bivariate and multivariable logistic regression analyses, those in bold are with P < 0.05.

Figures
Figure 1

Types of antibiotics and their frequency of usage for the management of CAS in Ethiopian children aged 0-15 yrs.