Arbuscular mycorrhizal fungi promote early flowering and prolong flowering in *Antirrhinum majus* L. by regulating endogenous hormone balance under field-planting conditions

Li-Jun XING\(^{1,2a}\), Wei LI\(^{1,2b}\), Yan-Lin ZHAI\(^{1,2}\), Xue-Yi HU\(^{1,2}\), Shao-Xia GUO\(^{1,2*}\)

\(^{1}\)Qingdao Agricultural University, College of Landscape Architecture and Forestry, Qingdao, Shandong, 266109, P.R. China; xljn312@163.com; lwcsu_caf@163.com; 1513751461@qq.com; 3287007019@qq.com; gsx2309@126.com (*corresponding author)

\(^{2}\)Qingdao Agricultural University, Institute of Mycorrhizal Biotechnology, Qingdao, Shandong, 266109, P.R. China

\(^a,b\)These authors contributed equally to this work

Abstract

It is well documented that arbuscular mycorrhizal fungi (AMF) affect growth and nutrient absorption in host plants under pot conditions. However, their effects on reproductive growth in ornamental plants under field conditions are unknown. Our study evaluated the effects of AMF on flowering and physiological traits in snapdragon (*Antirrhinum majus*) under greenhouse field conditions. Seedlings were inoculated with *Funneliformis mosseae* (Nicolson & Gerd.) and without as controls. Results showed that AMF inoculation significantly increased plant height, stem diameter, phosphorus, and soluble protein; decreased soluble sugar; and had no effect on total nitrogen, carbon, and potassium. AMF colonization increased concentrations of abscisic acid (ABA), indol-3-acetic acid (IAA), gibberellin (GA\(_3\)), and zeatin riboside (ZR); increased the ZR/IAA ratio; and reduced ABA/GA\(_3\) and ABA/IAA+GA\(_3\)+ZR ratios. AMF advanced flowering by five days and prolonged flowering by 13 days. Our study showed that AMF can promote flowering and prolong flowering in snapdragon, which may be due to the improvement of endogenous hormone equilibrium.

Keywords: arbuscular mycorrhizal fungi; flowering; endogenous hormone; snapdragon

Introduction

Flowering phenology is an important ecological trait for plant populations (Liu *et al*., 2018b; Song *et al*., 2020). Although flowering phenology is generally genetically determined (Brachi *et al*., 2010), it can be changed by many abiotic factors, such as temperature (Kopp *et al*., 2020; Yang *et al*., 2020), water resources (Song *et al*., 2020; Vorkauf *et al*., 2021), and soil fertility (Gondim *et al*., 2020), as well as by biotic factors, such as herbivorous animals (Fogelström *et al*., 2017; Ulrich *et al*., 2020), and soil microorganisms (Lu *et al*., 2018; Chaney and Baucom, 2020). Under controlled conditions, flowering time can be regulated by controlling temperature and applying water, fertilizer, plant growth regulators, and soil microorganisms (Liu *et al*., 2018b; Lu *et al*., 2018).
Arbuscular mycorrhizal fungi (AMF) are soil microorganisms, which establish symbiotic relationships with most terrestrial plants (Genre et al., 2020). AMF provide many benefits to host plants, such as enhancing plant growth, regulating hormone balance (Zhang et al., 2019), and promoting absorption of mineral elements (Liu et al., 2018b; Jiang et al., 2021; Zhang and Feng, 2021). Zhang et al. (2019) found that AMF could regulate endogenous hormones in trifoliate orange (Poncirus trifoliata) under drought stress, improve the ability of Poncirus trifoliata to absorb water and nutrients from the soil, and enhance drought tolerance in plants (Zhang et al., 2019). He et al. (2017) observed that AMF inoculation increased the concentrations of gibberellin (GA) and zeatin riboside (ZR) and the ratios of GA/abscisic acid (ABA), ZR/ABA, and indoleacetic acid (IAA)+GA+ZR/ABA in peanut (Arachis hypogaea) and tomato (Lycopersicon esculentum), which promoted plant growth and increased insect resistance (He et al., 2017). Liu et al. (2016) found that AMF enhanced IAA and ABA in leaves from trifoliate orange (Poncirus trifoliata) growing in saline soils and, thus, increased its ability for osmotic regulation, leading to higher leaf water potential despite saline conditions (Liu et al., 2016). Xie et al. (2018) showed that AMF could be used to regulate flowering in hyacinth (Hyacinthus orientalis), which led to earlier and prolonged flowering and could be due to changes in floral IAA and ZR levels that were caused by mycorrhization (Xie and Wu, 2018). However, at present, research on the effects of AMF to endogenous plant hormones is mainly focused on crops cultured in pots; whereas research on ornamental flowers is limited, especially under field conditions.

Snapdragon (Antirrhinum majus) is an important ornamental plant, which is commonly used for flower beds, flower borders, and cut flowers (Asrar et al., 2012). The purpose of our study was to evaluate the effects of AMF on flowering and physiological traits of snapdragon.

Materials and Methods

Study site
The study was conducted in a greenhouse field of Laixi (36˚86'N, 120˚53'E), Qingdao, China from November 21, 2019 to April 10, 2020. The annual average temperature is 12.6 °C, the lowest in January with a monthly average temperature of -2 °C, and the highest in August with a monthly average temperature of 25.7 °C (Liu et al., 2018a).

AMF, host plants and field soil preparation
Funneliformis mosseae (T.H. Nicolson & Gerd.) was provided by the Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, and propagated with Trifolium repens, which was grown in pots under greenhouse conditions. Spores, mycorrhizal hyphae root segments in sand media were used as inocula.

Seeds of snapdragon (Antirrhinum majus, cultivar: ‘General’) provided by Beijing Forestry University Forest Science Company were surface-sterilized in 7% sodium hypochlorite solution for 10 min, then rinsed with sterilized distilled water for sowing.

The greenhouse field soil was sandy loam, which was deeply tilled and flattened, with a pH of 7.1, 1.07% organic matter, available N of 153 mg kg\(^{-1}\), available P of 94.8 mg kg\(^{-1}\), and available K of 150 mg kg\(^{-1}\).

Experimental design, sowing, inoculation and field management
Two treatments were employed in this study: snapdragon seedlings inoculated with AMF and non-inoculated controls. The experiment was conducted with a randomized complete block design (RCBD) and three replicates. Plot area was 30 m\(^2\) (3.0 m × 10.0 m), with row spacing of 0.3 m and 0.15 m spacing in rows.

Seeds were sown into a tray hole, filled with autoclaved, moist peat that was mixed with 300 F. mosseae spores, to culture the seedlings for transplanting. The same amount of autoclaved inocula and 5 mL of inoculum filtrate (50 μm filter) were added to tray holes as non-inoculated controls. On November 21, 2019,
seedlings with 3-4 leaves were transplanted in field soil according to the planting design above. When the seedlings were planted in the field, 5 g of inocula (approximately 200 AMF spores) were added to each hole for the inoculation treatment. The same amount of autoclaved inocula was added to each non-inoculated control.

Throughout the experiment, the greenhouse was well ventilated, and plants were managed regularly. Weeds and insect pests were controlled manually and with sticky boards, respectively.

Assessments of plant growth, flowering, and mycorrhizal colonization

Seedling height and stem diameter were measured every 20 d after field planting. Seedling height was the vertical height of the aerial part of the plant (Guo et al., 2013; Liu et al., 2018a). Thirty seedlings were measured for each treatment.

The duration of first-flowering (first flower open), full-flowering (>50% of flowers open), and final-flowering (>95% of flowers open) of racemes was estimated from the sowing day.

Roots were collected from plants 80 d after transplanting. A sample (15 g) of fresh fine roots was excised from each plot, washed, cleared, and stained with acid fuchsin. Percent of mycorrhizal colonization and arbuscule colonization was determined by the method of Biermann and Linderman (1981) with a BX50 Olympus microscope (Olympus Optical Co., Ltd., Tokyo, Japan) (Biermann and Linderman, 1981).

Determination of physiological plant traits

Mature leaf samples were collected every 20 d after transplanting. Mature flowers were collected after 80 d from five plants. Samples were cleaned, weighed, immediately placed in liquid nitrogen, and stored in a -80 °C ultra-low-temperature freezer to determine the contents of soluble protein, GA3, ABA, IAA, and ZR. Remaining materials were dried in an 80 °C oven to constant weight for determining the contents of soluble sugar, total nitrogen, total carbon, phosphorus, and potassium. Soluble sugar was assayed by anthrone colorimetry (Li and Li, 2013). Soluble protein was assayed by Coomassie brilliant blue G-250 staining (Kaur and Kumar, 2020). Total nitrogen was assayed using a Kjeldahl apparatus (FOSS Kjeltec 8000, Denmark). Total carbon was assayed using a total organic carbon analyzer (XPERT-TOC/TN, m, Trace Elemental Instruments, Holland). Phosphorus and potassium were assayed by ICP-OES (Optima 8x00, PE, USA). Endogenous hormones were assayed by ultra-high pressure liquid chromatography-tandem mass spectrometry (Agilent Technologies, 1290/6460, USA).

Statistical analyses

Data were analysed by one-way analysis of variance (ANOVA) using SPSS Statistics 21.0 (IBM Corporation, Armonk, NY, USA). Duncan’s multiple range test was used to compare treatments at a 5% significance level. Independent samples t-tests were used to analyse flower data between the two treatments. We also used SPSS Statistics for correlation analyses. All figures were generated with Origin 9.0 (OriginLab Co., Northampton, MA, USA).

Results

Mycorrhizal colonization

Total mycorrhizal and arbuscule colonisations of snapdragon inoculated with *F. mosseae* were 79% and 46%, respectively. These colonisations were significantly higher than those of controls, which were 5% and little, respectively.
Effects of AMF on growth and flowering of snapdragon

The stem diameter of snapdragon inoculated with AMF was significantly greater than that of controls at 60 and 80 d after planting, while plant height was significantly higher than that of controls from 20 to 80 d (Figure 1).

Compared to the controls, first-flowering and full-flowering days of snapdragon inoculated with AMF were significantly earlier, while final-flowering days were significantly delayed (Table 1). Flowering duration time was significantly longer in snapdragon inoculated with AMF than in controls (Table 1).

Effects of AMF on soluble sugar and protein in snapdragon

There was no significant difference in leaf soluble sugar between the two treatments from 20 to 60 d after planting, but soluble sugar was significantly lower in snapdragon inoculated with AMF than in controls at 80 d (Figure 2a). Leaf soluble protein was significantly higher in snapdragon inoculated with AMF than in controls from 20 to 80 d (Figure 2b). Flower soluble sugar was significantly lower in snapdragon inoculated with AMF than in controls (Figure 3a), while flower soluble protein was significantly higher in snapdragon inoculated with AMF than in controls (Figure 3b).

Effects of AMF on minerals and carbon in snapdragon

There were no significant differences in total nitrogen, phosphorus, carbon, and the carbon-nitrogen ratio in leaves between the two treatments (Figure 4). Total nitrogen and phosphorus increased and then decreased, reaching their highest values at 40 d (Figure 4a, d). Total carbon fluctuated: increasing, then decreasing, and finally increasing (Figure 4b). The carbon-nitrogen ratio decreased and then increased, reaching its maximum at 80 d (Figure 4c). Potassium increased and then decreased, reaching its highest value at 60 d (Figure 4e). Phosphorus in flowers was significantly higher in snapdragon inoculated with AMF than in controls (Figure 5d).
Figure. 2 Effects of AMF on soluble sugar and soluble protein in leaves of snapdragon
AMF: arbuscular mycorrhizal fungi; NAMF: non-AMF control. Values are shown as mean ± SE (n = 5). Different letters denote significant differences (P ≤ 0.05) from Duncan’s test.

Figure. 3 Effects of AMF on soluble sugar and soluble protein in flowers of snapdragon
AMF: arbuscular mycorrhizal fungi; NAMF: non-AMF control. Values are shown as mean ± SE (n = 5). Asterisks indicate significant differences between treatments from an independent samples t-test: **P ≤ 0.01 and *P ≤ 0.05.
Figure 4: Effects of AMF on leaf stoichiometric traits in snapdragon
AMF: arbuscular mycorrhizal fungi; NAMF: non-AMF control. Values are shown as mean ± SE (n = 5). Different letters denote significant differences (P ≤ 0.05) from Duncan’s test.
Figure 5 Effects of AMF on flower stoichiometric traits in snapdragon
AMF: arbuscular mycorrhizal fungi; NAMF: non-AMF control. Values are shown as mean ± SE (n = 5). Asterisks indicate significant differences between treatments from an independent samples t-test: **P ≤ 0.01, *P ≤ 0.05, and ns P > 0.05.

Effects of AMF on endogenous hormones in snapdragon
ABA and GA3 concentrations in leaves were significantly higher in snapdragon inoculated with AMF than in controls at 80 d (Figure 6a-b). Leaf IAA was significantly higher in snapdragon inoculated with AMF than in controls from 20 to 40 d and at 80 d (Figure 6c). GA3 and ZR concentrations in flowers were significantly higher in snapdragon inoculated with AMF than in controls (Figure 7b, d).

AMF significantly increased ABA/ZR and GA3/IAA ratios in snapdragon leaves at 60 and 80 d, respectively (Figure 8b-c). The ratio of ZR/IAA in flowers was significantly higher in snapdragon inoculated with AMF than in controls, while the ratios of ABA/GA3 and ABA/IAA+GA3+ZR were significantly lower in snapdragon inoculated with AMF than in controls (Figure 9d, f).
Figure 6 Effects of AMF on endogenous hormone levels in snapdragon leaves
AMF: arbuscular mycorrhizal fungi; NAMF: non-AMF control. Values are shown as mean ± SE (n =5). Different letters denote significant differences (P ≤ 0.05) from Duncan’s test.

Figure 7 Effects of AMF on endogenous hormone levels in snapdragon flowers
AMF: arbuscular mycorrhizal fungi; NAMF: non-AMF control. Values are shown as mean ± SE (n =5). Asterisks indicate significant differences between treatments from an independent samples t-test: ***P ≤ 0.001, **P ≤ 0.01, and *P ≤ 0.05.
Figure 8 Effects of AMF on endogenous hormone ratios in snapdragon leaves
AMF: arbuscular mycorrhizal fungi; NAMF: non-AMF control. Values are shown as mean ± SE (n =5). Different letters denote significant differences (P ≤ 0.05) from Duncan’s test.
Correlation analyses between endogenous hormones and flowering in snapdragon

In leaves, GA₃, ZR, and GA₃/IAA were significantly negatively correlated with first-flowering and full-flowering times. Among these, the greatest correlation was between ZR and first-flowering time, and GA₃ had greater correlation with full-flowering time than first-flowering time. IAA was significantly positively correlated with final-flowering time and flowering duration time, while GA₃ was significantly positively correlated with flowering duration time. Overall, IAA had the greatest positive correlation with final-flowering time and flowering duration time (Table 2).

In flowers, GA₃ had a significant negative correlation with first-flowering time and a significant positive correlation with flowering duration time. ZR and ZR/IAA were significantly positively correlated with final-flowering time and flowering duration time. ABA/GA₃ and ABA/IAA+GA₃+ZR were significantly positively correlated with first-flowering and full-flowering times. Overall, first- and full-flowering times had the greatest
correlation with ABA/IAA+GA3+ZR, whereas final-flowering time and flowering duration time had the greatest correlation with ZR/IAA (Table 3).

Table 2. Correlation analysis between endogenous hormones in leaves and flowering time in snapdragon

Hormone and ratio	First-flowering time	Full-flowering time	Final-flowering time	Flowering duration time
ABA	-0.523	-0.544	0.364	0.482
GA3	-0.703*	-0.704*	0.571	0.704*
IAA	-0.607	-0.570	0.706*	0.756*
ZR	-0.718*	-0.653*	0.561	0.704*
ABA/IAA	0.022	-0.020	-0.271	-0.199
ABA/GA3	0.416	0.415	-0.447	-0.493
ABA/ZR	0.443	0.350	-0.200	-0.332
ABA/IAA+GA3+ZR	0.397	0.392	-0.442	-0.481
GA3/IAA	-0.641*	-0.684*	0.362	0.532
ZR/IAA	-0.524	-0.467	0.199	0.367

* Correlation is significant at the 0.05 level
** Correlation is significant at the 0.01 level

Table 3. Correlation analysis between endogenous hormones in flowers and flowering time in snapdragon

Hormone and ratio	First-flowering time	Full-flowering time	Final-flowering time	Flowering duration time
ABA	-0.260	-0.217	0.625	0.550
GA3	-0.646	-0.620	0.561	0.672
IAA	-0.200	-0.238	0.228	0.246
ZR	-0.557	-0.576	0.653	0.699
ABA/IAA	-0.176	-0.110	0.464	0.400
ABA/GA3	0.760	0.740	-0.327	-0.559
ABA/ZR	0.350	0.395	-0.548	-0.535
ABA/IAA+GA3+ZR	0.777	0.768	-0.308	-0.553
GA3/IAA	-0.497	-0.462	0.405	0.499
ZR/IAA	-0.597	-0.606	0.770**	0.798**

* Correlation is significant at the 0.05 level
** Correlation is significant at the 0.01 level

Discussion

Previous studies have shown that AMF can promote early flowering (Garmendia and Mangas, 2012; Bona et al., 2015), postpone flowering (Dubsky et al., 2002; Nowak, 2004), or have no effect on flowering (Gaur and Adholeya, 2005). AMF can also prolong (Jin et al., 2015) or shorten flowering duration (Banla et al., 2015). Our results showed that AMF significantly advanced flowering and prolonged its duration, which may be due to the improvement of physiological metabolism in snapdragon by AMF.

Soil phosphorus can affect flowering duration and flower number (Liu et al., 2018b) because phosphorus promotes flower development and induces flowering (McArthur and Eaton, 1989; Wang et al., 2011). Although AMF can enhance the uptake of phosphorus and other nutrients by host plants (Smith and Smith, 2012; Jiang et al., 2021), and subsequently improve flowering, this may play a minor role in the present study.

Endogenous hormones are important factors in regulating plant reproduction and flowering (Shamshiri et al., 2012; Xie and Wu, 2018). AMF colonization may directly or indirectly regulate hormone balance, thus affecting flower development and flowering (Pozo et al., 2015). For example, GA3 plays an important role in flower formation in ornamental plants (Zhang et al., 2014). Previous studies have shown that AMF inoculation...
increases the concentration of ZR in plants, thus promoting growth and development in plants (Liu et al., 2016; He et al., 2017; Xie and Wu, 2018). Our study found that AMF significantly increased GA$_3$ and ZR in leaves and flowers during the flowering period of snapdragon. Correlation analyses confirmed that GA$_3$ and ZR had a very significant negative correlation with first-flowering and full-flowering times and a positive correlation with final-flowering time and flowering duration time; higher concentrations of GA$_3$ and ZR were associated with earlier first-flowering and full-flowering times, later final-flowering times, and longer flowering duration time. Increases in GA$_3$ and ZR, induced by AMF, may be why AMF promotes flower development and early flowering (Kobayasi and Atsuta, 2010).

Previous studies have shown that auxin plays an important role in plant morphogenesis, and AMF colonization can increase IAA levels in plants (Alabadí et al., 2009; Xie and Wu, 2018; Zhang et al., 2019). Our study found that AMF inoculation significantly increased leaf IAA during the growth cycle of snapdragon (except for at 60 d). Our correlation analyses also verified that IAA in leaves was significantly positively correlated with final-flowering time and flowering duration time; higher concentration of IAA was associated with longer final-flowering time and flowering duration time. This implies that AMF may regulate flower development and flowering by accelerating IAA synthesis.

Previous studies have shown that ABA affects flower bud development in ornamental plants and can stimulate plant senescence (Koshita et al., 1999; Ronen and Mayak, 1981). Our study showed that increases in ABA concentration at the flowering stage in snapdragon had little correlation with flowering phenology. We speculated that AMF may not be the main factor affecting flowering duration time in snapdragon. Our results also confirmed that AMF colonization may directly or indirectly regulate plant hormone balance, thus affecting flower development and flowering.

The effects of hormones on flower formation is not only represented by a single hormone but also by the balance of multiple hormones (Li et al., 2019). Previous studies found that higher ratios of ZR/IAA, ABA/IAA, ABA/GA$_3$, and ABA/IAA+GA$_3$+ZR promote flower bud differentiation (Mo et al., 2015; Wan et al., 2018; Yan et al., 2019). AMF also promote hormone balance in host plants (Nowak, 2004; Bona et al., 2015). We found that AMF had strong effects on regulating hormone balance, especially in ZR/IAA, ABA/GA$_3$, and ABA/IAA+GA$_3$+ZR ratios in flowers. Correlation analyses showed that ZR/IAA had a very significant positive correlation with final-flowering time and flowering duration time, whereas ABA/GA$_3$ and ABA/IAA+GA$_3$+ZR ratios had very significant positive correlations with first-flowering and full-flowering times. Therefore, AMF can promote early flowering and prolong flowering in snapdragon by adjusting endogenous hormone balance in snapdragon.

Conclusions

AMF can improve plant growth and flowering in snapdragon by advancing flowering by five days and prolonging flowering by 13 days. Our results showed that AMF can regulate flowering by controlling endogenous hormone levels and balance in reproductive organs. Therefore, AMF can be employed to regulate early flowering and/or prolong flowering in the field. Future work should examine mycorrhizal effects on transcriptional levels of relevant flowering genes in snapdragon and the interaction between mycorrhizae and other elements (Ca, Mg, et al.) on flowering in snapdragon.

Authors’ Contributions

S.G. designed the experiment. L.X. and Y.Z. performed the experiment. L.X. participated in writing the manuscript. S.G., X.H., and WL participated in revising the manuscript. All authors read and approved the final manuscript.
Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

The research was supported by grants from Natural Science Foundation of Shandong Province, China (No. ZR2020MC147). We would like to thank EditorBar (www.editorbar.com) for English language editing.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Alabadi D, Blázquez MA, Carbonell J, Ferrándiz C, Pérez-Amador MA (2009). Instructive roles for hormones in plant development. International Journal of Developmental Biology 53:1597. https://doi.org/10.1387/ijdb.072423da.

Asrar A, Abdel-Fattah G, Elhindi K (2012). Improving growth, flower yield, and water relations of snapdragon (Antirrhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50:305-316. https://doi.org/10.1007/s11099-012-0024-8.

Banla EM, Banito A, Sogbedji JM (2015). Effects of arbuscular mycorrhizal fungi on the production of tomato in Togo. International Journal of Biological and Chemical Sciences 9:1270-1276. http://dx.doi.org/10.4314/ijbcs.v9i3.12.

Biermann B, Linderman R (1981). Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization. New Phytologist 87:63-67. https://doi.org/10.1111/j.1469-8137.1981.tb01690.x.

Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, ... Avidano L (2015). AM fungi and PG pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181-193. https://doi.org/10.1007/s00572-014-0599-y.

Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, ... Roux F (2010). Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genetics 6:e1000940. https://doi.org/10.1371/journal.pgen.1000940.

Chaney L, Baucom RS (2020). The soil microbial community alters patterns of selection on flowering time and fitness-related traits in Ipomoea purpurea. American Journal of Botany 107:186-194. https://doi.org/10.1002/ajb2.1426.

Dubsky M, Sramek F, Vosatka M (2002). Inoculation of cyclamen (Cyclamen persicum) and poinsettia (Euphorbia pulcherrima) with arbuscular mycorrhizal fungi and Trichoderma harzianum. Rostlinna Vyroba 48:63-68.

Fogelström E, Olofsson M, Posledovich D, Wiklund C, Dahlgren JP, Ehrlé J (2017). Plant-herbivore synchrony and selection on plant flowering phenology. Ecology 98:703-711. https://doi.org/10.1002/ecs.1676.

Garmendia I, Mangas V (2012). Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Spanish Journal of Agricultural Research 166-174. http://dx.doi.org/10.5424/sjar/2012101-086-11.

Gaur A, Adholeya A (2005). Diverse response of five ornamental plant species to mixed indigenous and single isolate arbuscular-mycorrhizal inocula in marginal soil amended with organic matter. Journal of Plant Nutrition 28:707-723. https://doi.org/10.1081/PLN-200052647.

Genre A, Lanfranco L, Perotto S, Bonfante P (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews in Microbiology 18:649-660. https://doi.org/10.1038/s41579-020-0402-3.

Gondim EX, dos Santos Ferreira BH, Reis LF, Guerra A, Abrahao M, Ajalla AC, ... Garcia LC (2020). Growth, flowering and fruiting of Campomanesia adamantium (Cambess) O. Berg intercropped with green manure species in Agroforestry Systems. Agroforestry Systems 95:1261-1273. https://doi.org/10.1007/s10457-020-00533-2
Guo X, Guo W, Luo Y, Tan X, Du N, Wang R (2013). Morphological and biomass characteristic acclimation of trident maple (*Acer buergerianum* Miq.) in response to light and water stress. Acta Physiologiae Plantarum 35:1149-1159. https://doi.org/10.1007/s11738-012-1154-0.

He L, Li C, Liu R (2017). Indirect interactions between arbuscular mycorrhizal fungi and *Spodoptera exigua* alter photosynthesis and plant endogenous hormones. Mycorrhiza 27:525-535. https://doi.org/10.1007/03650340.2018.1563780.

Jiang F, Zhang L, Zhou J, George TS, Feng G (2021). Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytologist 230:304-315. https://doi.org/10.1111/nph.17081.

Jin Z, Li J, Li Y (2015). Interactive effects of arbuscular mycorrhizal fungi and copper stress on flowering phenology and reproduction of *Elsholtzia splendens*. PLoS One 10:e0145793. https://doi.org/10.1371/journal.pone.0145793.

Kobayasi K, Atsuta Y (2010). Sterility and poor pollination due to early flowering induced by methyl jasmonate. Plant Production Science 13:29-36. https://doi.org/10.1626/pps.13.29.

Kopp CW, Neto-Bradley BM, Lipsen LP, Sandhar J, Smith S (2020). Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region. International Journal of Biometeorology 64:873-880. https://doi.org/10.1007/s00484-020-01877-1.

Koshita Y, Takahara T, Ogata T, Goto A (1999). Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (*Citrus unshiu* Marc.). Scientia Horticulturae 79:185-194. https://doi.org/10.1016/S0304-4238(98)00209-X.

Li J, Lian X, Wang L (2019). Study on the regulation mechanism of endogenous hormones in delayed flowering of *Lonicera japonica*. Acta Horticulturae Sinica 46:1399-1408. https://doi.org/10.16420/j.issn.0513-353x.2018-0827.

Liu S, Guo H, Xu J, Song Z, Song S, Tang J, Chen X (2018b). Arbuscular mycorrhizal fungi differ in affecting the flowering of a host plant under two soil phosphorus conditions. Journal of Plant Ecology 11:623-631. https://doi.org/10.1093/jpe/rtx038.

Liu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, ... Peñuelas J (2018). Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:1-12. https://doi.org/10.1186/s40168-018-0615-0.

McArthur D, Eaton G (1989). Cranberry growth and yield response to fertilizer and paclobutrazol. Scientia Horticulturae 38:131-146. https://doi.org/10.1016/0304-4238(89)90026-5.

Mo C, Tu D, Huang J, Ma X, Pan L, Yao S, Feng S, Bai L (2015). Morphological and endogenous hormones characteristics of flower bud of Siraitia grosvenorii during its differentiation. Acta Botanica Boreali-Occidentalia Sinica 35:98-106.

Nowak J (2004). Effects of arbuscular mycorrhizal fungi and organic fertilization on growth, flowering, nutrient uptake, photosynthesis and transpiration of geranium (*Pelargonium hortorum* LH Bailey’Tango Orange). Symbiosis. Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist 205:1431-1436. https://doi.org/10.1111/nph.13252.

Ronen M, Mayak S (1981). Interalternship between abscisic acid and ethylene in the control of senescence processes in carnation flowers. Journal of Experimental Botany 32:759-765. https://doi.org/10.1093/jxb/32.4.759.

Shamshiri M, Usha K, Singh B (2012). Growth and nutrient uptake responses of Kinnow to vesicular arbuscular mycorrhizae. International Scholarly Research Notices 2012:7. https://doi.org/10.5402/2012/535846.

Smith SE, Smith FA (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1-13. https://doi.org/10.3852/11-229.

Song Z, Fu YH, Du Y, Li L, Ouyang X, Ye W, Huang Z (2020). Flowering phenology of a widespread perennial herb shows contrasting responses to global warming between humid and non-humid regions. Functional Ecology 34:1870-1881. https://doi.org/10.1111/1365-2435.13634.
Ulrich J, Bucher SF, Eisenhauer N, Schmidt A, Türke M, Gebler A, … Römermann C (2020). Invertebrate decline leads to shifts in plant species abundance and phenology. Frontiers in Plant Science 11:1410. https://doi.org/10.3389/fpls.2020.54215.

Vorkauf M, Kahmen A, Körner C, Hiltbrunner E (2021). Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alpine Botany 131:73-88. https://doi.org/10.1007/s00035-021-00252-z.

Wan C, Mi L, Chen B, Li J, Huo H, Xu J, Chen X (2018). Effects of nitrogen during nursery stage on flower bud differentiation and early harvest after transplanting in strawberry. Brazilian Journal of Botany 41:1-10. https://doi.org/10.1007/s40415-017-0417-9.

Wang S, Jiang J, Li T, Li H, Wang C, Wang Y, Liu G (2011). Influence of nitrogen, phosphorus, and potassium fertilization on flowering and expression of flowering-associated genes in white birch (Betula platyphylla Suk.). Plant Molecular Biology Reporter 29:794-801. https://doi.org/10.1007/s11105-010-0281-2.

Xie M-M, Wu Q-S (2018). Arbuscular mycorrhizal fungi regulate flowering of hyacinths orientalis l. Anna marie. Emirates Journal of Food and Agriculture;144-149. https://doi.org/10.9755/ejfa.2018.v30.i2.1614.

Yan B, Hou J, Cui J, He C, Li W, Chen X, Li M, Wang W (2019). The effects of endogenous hormones on the flowering and fruiting of Glycyrrhiza uralensis. Plants 8:519. https://doi.org/10.3390/plants8110519.

Yang Y, Wu Z, Guo L, He HS, Ling Y, Wang L, … Li M-H (2020). Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region. Science of the Total Environment 725:138323. https://doi.org/10.1016/j.scitotenv.2020.138323.

Zhang D, Ren L, Yue J-h, Wang L, Zhuo L-h, Shen X-h (2014). GA4 and IAA were involved in the morphogenesis and development of flowers in Agapanthus praecox ssp. orientalis. Journal of Plant Physiology 171:966-976. https://doi.org/10.1016/j.jplph.2014.01.012.

Zhang F, Wang P, Zou Y-N, Wu Q-S, Kuča K (2019). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science 65:1316-1330. https://doi.org/10.1080/03650340.2018.1563780.

Zhang T, Feng G (2021). Arbuscular mycorrhizal fungi alleviate the negative effects of increases in phosphorus (P) resource diversity on plant community structure by improving P resource utilization. Plant and Soil 461:295-307. https://doi.org/10.1007/s11104-020-04825-5.