Characterizing the Rate-Memory Tradeoff in Cache Networks within a Factor of 2

Qian Yu*, Mohammad Ali Maddah-Ali†, and A. Salman Avestimehr*

* Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
† Nokia Bell Labs, Holmdel, NJ, USA

Abstract

We consider a basic caching system, where a single server with a database of N files (e.g., movies) is connected to a set of K users through a shared bottleneck link. Each user has a local cache memory with a size of M files. The system operates in two phases: a placement phase, where each cache memory is populated up to its size from the database, and a following delivery phase, where each user requests a file from the database, and the server is responsible for delivering the requested contents. The objective is to design the two phases to minimize the load (peak or average) of the bottleneck link. We characterize the rate-memory tradeoff of the above caching system within a factor of 2.00884 for both the peak rate and the average rate (under uniform file popularity), where the best proved characterization in the current literature gives a factor of 4 and 4.7 respectively. Moreover, in the practically important case where the number of files (N) is large, we exactly characterize the tradeoff for systems with no more than 5 users, and characterize the tradeoff within a factor of 2 otherwise. We establish these results by developing novel information theoretic outer-bounds for the caching problem, which improves the state of the art and gives tight characterization in various cases.

I. INTRODUCTION

Caching is a common strategy to mitigate heavy peak-time communication load in a distributed network, via duplicating parts of the content in memories distributed across the network during off-peak times. In other words, caching allows us to trade distributed memory in the network for communication load reduction. Characterizing this fundamental rate-memory tradeoff is of great practical interest, and has been a research subject for several decades. For single-cache networks, the rate-memory tradeoff has been characterized for various scenarios in 80th [1]. However, those techniques were found insufficient to tackle the multiple-cache cases. There has been a surge of recent results in information theory that aim at formalizing and characterizing such rate-memory tradeoff in cache networks [2]–[13]. In particular, the peak rate vs. memory tradeoff was formulated and characterized within a factor of 12 in a basic cache network with a shared bottleneck link [2]. This result has been extended to many scenarios, including decentralized caching [3], online caching [4], caching with nonuniform demands [5]–[7], device-to-device caching [8], caching on file selection networks [9], caching on broadcast channels [10], caching for channels with delayed feedback with channel state information [11], and hierarchical cache networks [12], [13], among others. Essentially, many of these extensions share similar ideas in terms of the achievability and the converse bounds. Therefore, if we can improve the results for the basic bottleneck caching network, the ideas can be used to improve the results in other cases as well.

In the literature, various approaches have been proposed for improving the bounds on rate-memory tradeoff for the bottleneck network. Several caching schemes have been proposed in [14]–[21], and converse bounds have also been introduced in [9], [22]–[26]. For the case, where the prefetching is uncoded, the exact rate-memory tradeoff for both peak and average rate (under uniform file popularity) and for both centralized and decentralized settings have been established in [20]. However, for the general case, where the cached content can be an arbitrary function of the files in the database, the exact characterization of the tradeoff remains open. In this case, the state of the art is an approximation within a factor of 4 for peak-rate [22] and 4.7 for average rate under uniform file popularity [9].

In this paper, we improve the approximation on characterizing the rate-memory tradeoff by proving new information-theoretic converse bounds, and achieve an approximation within a factor of 2.00884, for both the peak rate and the average rate under uniform file popularity. For this result, we consider the most general information theoretic framework, in the sense that there is no constraint on the caching or delivery process. In particular it is not limited to linear coding or uncoded prefetching. This is approximately a two-fold improvement with respect to the state of the art in current literature [9], [22]. Furthermore, in the practically important case where the number of files is large, we exactly characterize the rate-memory tradeoff for systems with no more than 5 users, and characterize the tradeoff within a factor of 2 otherwise.

To prove these results we develop two new converse bounds for cache networks. The first bound was developed based on the simple idea of enhancing the cutset bound, providing a set of linear functions of the users’ cache size that lower bound the required communication rates. One can show that this approach strictly improves the compound cutset bound, which was used in most of the prior works. We use the first converse bound to characterize the rate-memory tradeoff within a constant factor, together with the caching scheme reported in [20] as an upper bound, which strictly improves the scheme proposed in [2]. We show that for all possible values of the problem parameters, the achievable scheme attains a rate within a factor of 2.00884 of the converse bound.
We develop a second converse bound for an important special case where the number of files is large. In prior works, despite various attempts, this tradeoff has only been exactly characterized in two instances: the single-user case [2] and, more recently, the two-user case [25]. Our second converse bound improves the bounds introduced in those results, and allows us to characterize the rate-memory tradeoff for systems with up to 5 users. Furthermore, for networks with more than 5 users, we can achieve an approximate characterization of the rate-memory tradeoff within a factor of 2 (assuming that the number of files is large).

The rest of this paper is organized as follows. We formally define the caching framework and the rate-memory tradeoff in Section II. Section III summarizes the main results. Section IV proves the first main result, which characterizes the exact tradeoff within a constant factor of 2 for all possible values of the problem parameters, and characterizes the tradeoff within a factor of 2 when the number of files is large. Section V proves the second main result, which completely characterizes the tradeoff for systems with up to 5 users when the number of files is large. In these sections, we only prove these main results for the peak rate for brevity. The corresponding proofs for the average rates are postponed to the appendices. Specifically, the proof of the first main result for average rate can be found in Appendix D, and the proof of the second main result for average rate can be found in Appendix E.

II. System Model and Problem Formulation

In this section, we formally introduce the system model for the caching problem. Then we define the rate-memory tradeoff for both peak rate and average rate based on the introduced framework, and state the corresponding main problems studied in this paper.

A. System Model

We consider a system with one server connected to K users through a shared, error-free link (see Fig. 1). The server has access to a database of N files, each of size F bits. We assume that the contents of all files, denoted by W_1, \ldots, W_N, are i.i.d. random variables, each of which is uniformly distributed on set $\{1, \ldots, 2^F\}$. Each user k has an isolated cache memory Z_k of size MF bits, where $M \in [0, N]$. For convenience, we define a parameter $r = \frac{KM}{N}$.

The system operates in two phases: a placement phase and a delivery phase. In the placement phase, the users are given access to the entire database. Each user k can fill the contents of their caches, denoted by Z_k, using the database. In the delivery phase, only the server has access to the database of files. Each user k requests one of the files in the database. To characterize the requests from the users, we define $\text{demand } d = (d_1, \ldots, d_K)$, where d_k is the file requested by user k.

The server is informed of the demand and proceeds by generating a message of size RF bits, denoted by X_d, as a function of W_1, \ldots, W_N, and sends the message over the shared link. R is a fixed real number given the demand d. The quantities RF and R are referred to as the load and the rate of the shared link, respectively. Using the contents Z_k of its cache and the message X_d received over the shared link, each user k aims to reconstruct its requested file W_{d_k}.

B. Problem Definition

Based on the above framework, we define the rate-memory tradeoff using the following terminology. We characterize a prefetching scheme by its K caching functions $\phi = (\phi_1, \ldots, \phi_K)$, each of which maps the file contents to the cache content of a specific user:

$$Z_k = \phi_k(W_1, \ldots, W_N), \quad \forall k \in \{1, \ldots, K\}. \quad (1)$$

Given a prefetching scheme ϕ, we say that a communication rate R is ϵ-achievable if and only if, for every request d, there exists a message X_d of length RF that allows all users to recover their desired file d_k with a probability of error of at most ϵ.
Given parameters N, K, and M, we define the minimum peak rate, denoted by R^*, as the minimum rate that is ϵ-achievable over all prefetching schemes for large F and any $\epsilon > 0$. Rigorously,
\[
R^* = \sup_{\epsilon > 0} \lim_{F \to \infty} \min_{\phi} \{ R \mid R \text{ is } \epsilon\text{-achievable given prefetching } \phi \}
\]
(2)

Similarly for the average rate, we say that a communication rate R is ϵ-achievable for demand d, given a prefetching scheme ϕ, if and only if we can create a message X_d of length RF that allows all users to recover their desired file d_k with a probability of error of at most ϵ. Given parameters N, K, and M, we define the minimum average rate, denoted by R^*_{ave}, as the minimum rate over all prefetching schemes such that, we can find a function $R(d)$ that is ϵ-achievable for any demand d, satisfying $R^*_{\text{ave}} = \mathbb{E}_d[R(d)]$, where d is uniformly random in $D = \{1, ..., N\}^K$, for large F and any $\epsilon > 0$.

Finding the rate-memory tradeoff is essentially finding the values of R^* and R^*_{ave} as a function of N, K, and M. In this paper, we aim to find converse bounds that characterize R^* and R^*_{ave} within a constant factor. Moreover, we aim to better characterize R^* and R^*_{ave} for an important case where N is large, when K and $\frac{M}{N}$ are fixed.

III. MAIN RESULTS

Before summarizing our main results, we first define the follows to simplify the discussion:

Definition 1.
\[
R_a = \frac{K \cdot (K - \min\{K, N\})}{r + 1},
\]
\[
R_{a,\text{ave}} = \mathbb{E}_d \left[\frac{r + 1}{K} - \frac{K - N(d)}{r + 1} \right]
\]

for $r \triangleq \frac{KM}{N} \in \{0, ..., K\}$, where d is uniformly random in $D = \{1, ..., N\}^K$, and $N(d)$ denotes the number of distinct requests in d. For general $r \in [0, K]$, R_a and $R_{a,\text{ave}}$ equal the lower convex envelope of their values at $r \in \{0, 1, ..., K\}$.

As proved in [20], R_a and $R_{a,\text{ave}}$ exactly matches the minimum peak rate and the minimum average rate among caching schemes with uncoded prefetching. Given this definition, we summarize our main results in the following theorems.

Theorem 1. For a caching system with K users, a database of N files, and a local cache size of M files at each user, we have
\[
\frac{R_a}{2.00884} \leq R^* \leq R_a,
\]
\[
\frac{R_{a,\text{ave}}}{2.00884} \leq R^*_{\text{ave}} \leq R_{a,\text{ave}}.
\]

where R_a and $R_{a,\text{ave}}$ are defined in Definition 1. Furthermore, if N is sufficiently large, we have
\[
\frac{R_a}{2} \leq R^* \leq R_a,
\]
\[
\frac{R_{a,\text{ave}}}{2} \leq R^*_{\text{ave}} \leq R_{a,\text{ave}}.
\]

Remark 1. The above theorem characterizes R^* and R^*_{ave} within a constant factor of 2.00884 for all possible values of parameters K, N, and M. To the best of our knowledge, this gives the best characterization to date. Prior to this work, the best proved constant factors were 4 for peak rate [22] and 4.7 for average rate (under uniform file popularity) [9]. Furthermore, Theorem 1 characterizes R^* and R^*_{ave} for large N within a constant factor of 2.

Remark 2. The converse bound that we develop for proving Theorem 1 also immediately results in better approximation of rate-memory tradeoff in other scenarios, such as online caching [4], caching with non-uniform demands [5], and hierarchical caching [13]. For example, in the case of online caching [4], where the current approximation result is within a multiplicative factor of 24, it can be easily shown that this factor can be reduced to 4.01768 using our proposed bounding techniques.

Remark 3. R_a and $R_{a,\text{ave}}$, as defined in Definition 1, are the optimum peak rate and the optimum average rate that can be achieved using uncoded prefetching, as we proved in [20]. This indicates that for the coded caching problem, using uncoded prefetching schemes is within a factor of 2.00884 optimal for both peak rate and average rate. More interestingly, we can show that even for the improved decentralized scheme we proposed in [20], where each user fills their cache independently without coordination but the delivery scheme was designed to fully exploit the commonality of user demands, the optimum rate is still achieved within a factor of 2.00884 in general, and a factor of 2 for large N.[1]

Remark 4. Based on the proof idea of Theorem 1 we can completely characterize the rate-memory tradeoff for the two-user case, for any possible values of N and M, for both peak rate and average rate. Prior to this work, the peak rate vs. memory tradeoff for the two-user case was characterized in [2] for $N \leq 2$, and is characterized in [25] for $N \geq 3$ very recently using non-parallel bounding techniques. However the average rate vs. memory tradeoff has never been completely characterized for

1This can be proved based on the fact that, in the proof of Theorem 1 we showed the communication rates of the decentralized caching scheme we proposed in [20] (e.g., $R_{\text{dec}}(M)$ for the peak rate) are within constant factor optimal as intermediate steps.
any non-trivial case. In this paper, we prove that the exact optimal tradeoff for the average rate for two-user case can be achieved using the caching scheme we provided in \[20\] (see Appendix E).

To prove the Theorem 1, we derive new converse bounds of \(R^*\) and \(R^*_{\text{ave}}\) for all possible values of \(K\), \(N\), and \(M\). We highlight the converse bound of \(R^*\) in the following theorem:

Theorem 2. For a caching system with \(K\) users, a database of \(N\) files, and a local cache size of \(M\) files at each user, \(R^*\) is lower bounded by

\[
R^* \geq s - 1 + \alpha - \frac{s(s - 1) - \ell(\ell - 1) + 2\alpha s}{2(N - \ell + 1)} M, \tag{9}
\]

for any \(s \in \{1, \ldots, \min\{N, K\}\}\), \(\alpha \in [0, 1]\), where \(\ell \in \{1, \ldots, s\}\) is the minimum value such that

\[
\frac{s(s - 1) - \ell(\ell - 1)}{2} + \alpha s \leq (N - \ell + 1)\ell. \tag{10}
\]

Remark 5. The above theorem improves the state of the art in various scenarios. For example, when \(N\) is sufficiently large (i.e., \(N \geq \frac{K(K+1)}{2}\)), the above theorem gives tight converse bound for \(\frac{K}{M} \leq 1\), as shown in \[39\]. The above matching converse can not be proved directly using converse bounds provided in \[9, 22-26\] (e.g., for \(K = 4, N = 10,\) and \(M = 1\), none of these bounds give \(R^* \geq 3\)).

Remark 6. Although Theorem 2 gives infinitely many linear converse bounds on \(R^*\), the region of the memory-rate pair \((M, R^*)\) characterized by Theorem 2 has a simple shape with finite corner points. Specifically, by applying the arguments used in the proof of Theorem 1, one can show that the exact bounded region given by Theorem 2 is bounded by the lower convex envelop of points \(\{(\frac{s+1}{s} + \frac{\ell(\ell - 1)}{2}) | s \in \{1, \ldots, J\}, \ell \in \{1, \ldots, s\}\} \cup \{(0, J)\}\), where \(J = \min\{N, K\}\).

For the case of large \(N\), we can exactly characterize the values of \(R^*\) and \(R^*_{\text{ave}}\) for \(K \leq 5\). We formally state this result in the following theorem:

Theorem 3. For a caching system with \(K\) users, a database of \(N\) files, and a local cache size of \(M\) files at each user, we have

\[
R^* = R^*_{\text{ave}} = R_a \tag{11}
\]

for large \(N\) when \(K \leq 5\), where \(R_a\) is defined in Definition 2.

Remark 7. As discussed in \[3\], the special case of large \(N\) is important to handle asynchronous demands, where we split each file into many subfiles, and deliver concurrent subfile requests using the optimum caching schemes. In this case, the number of subfiles becomes large, but fraction of files (or sub-files) that can be stored at each user is fixed. In this paper, we completely characterize this tradeoff for systems with up to 5 users, for both peak rate and average rate, while in prior works, this tradeoff has only been exactly characterized in two instances: the single-user case \[2\] and, more recently, the two-user case \[25\].

Remark 8. Although Theorem 3 only consider systems with up to 5 users, the converse bounds used in its proof also tightly characterize the minimum communication rate in many cases even for systems with more than 5 users. For both peak rate and average rate, we can show that more than half of the convex envelope achieved by \[20\] are optimal for large \(N\) (e.g., see Lemma 3 for peak rate).

To prove Theorem 3, we state the following Theorem, which gives tighter converse bounds on \(R^*\), for certain values of \(N\), \(K\), and \(M\).

Theorem 4. Consider a coded caching problem with parameters \(N\), \(K\) and \(M\). For any parameter \(n \in \{1, \ldots, K-1\}\) satisfying \(n > K - N\), let \(\alpha = \frac{N-1}{K-n}\) and \(\beta = N - \alpha(K-n)\). We have

\[
R^* \geq \frac{2K - n + 1}{n+1} - \frac{K(K+1)}{n(n+1)} M, \tag{12}
\]

if the following inequality holds:

\[
K\beta + \alpha \frac{(K-n)(K-n-1)}{2} \leq \frac{n(n+1)}{2}. \tag{13}
\]

Otherwise, we have

\[
R^* \geq \frac{2K - n + 1}{n+1} - \frac{2K(K-n)}{n(n+1)} M. \tag{14}
\]

Remark 9. The above theorem improves Theorem 2 and the state of the art in many cases. For example, whenever \(13\) holds for \(n = \left\lfloor \frac{KM}{N} + 1 \right\rfloor \in \{1, \ldots, K-1\}\) and \(n > K - N\), the converse bound given by \(12\) is tight and we have \(R^* = R_a\). This result can not be proved in general using the converse bounds provided in \[9, 22-26\] (e.g., for \(K = 4, N = 10,\) and \(M = 4\), none of these bounds give \(R^* \geq 1\)).

\(^2\)Such \(\ell\) always exists, because when \(\ell = s\), \(10\) can be written as \(\alpha s \leq (N-s+1)\ell\), which always holds true.
IV. PROOF OF THEOREM 1 AND THEOREM 2

In this section, we first prove Theorem 1 assuming the correctness of Theorem 2. Then we give the proof of Theorem 2. For brevity, we only prove Theorem 1 for the peak rate (i.e., inequalities (5) and (7)) within this section. The proof for the average rate (i.e., inequalities (6) and (8)) can be found in Appendix D.

A. Proof of Theorem 1 for peak rate

As mentioned in Remark 3, the upper bounds of \(R^* \) stated in Theorem 1 can be proved using the caching scheme provided in [20]. Hence to prove Theorem 1 for peak rate, it is sufficient to prove the lower bounds of (5) and (7). We first prove (5) as follows:

On a high-level, we first prove, assuming the correctness of Theorem 2, that the memory-rate pair \((M, R^*)\) is lower bounded by the lower convex envelope of a set of points in \(S_{\text{Lower}} \cup \{(0, J)\} \), where

\[
S_{\text{Lower}} = \left\{ (M, R) = \left(\frac{N - \ell + 1}{s}, \frac{s - 1}{2} + \frac{\ell(\ell - 1)}{2s} \right) \mid s \in \{1, ..., J\}, \ell \in \{1, ..., s\} \right\} \tag{15}
\]

where \(J = \min\{N, K\} \), given parameters \(N \) and \(K \). Then we upper bound \(R_u \) using the following inequality, which can be easily proved using the results of [20]:

\[
R_u^* \leq R_{\text{dec}}(M) \triangleq \frac{N - M}{M} \left(1 - (1 - \frac{M}{N})^J \right) \tag{16}
\]

Consequently, to bound the ratio between \(R^* \) and \(R_u \), it is sufficient to prove that the ratio of \(R_{\text{dec}}(M) \) to the lower convex envelope of \(S_{\text{Lower}} \cup \{(0, J)\} \) is at most 2.00884. Given that \(R_{\text{dec}}(M) \) is convex, the ratio can only be maximized at the corner points of the envelope, which is a subset of \(S_{\text{Lower}} \cup \{(0, J)\} \). Hence, we only need to check that \(R_{\text{dec}}(M) \leq 2.00884R \) holds for any \((M, R) \in S_{\text{Lower}} \cup \{(0, J)\} \).

We first prove that \(R^* \) is lower bounded by the convex envelope. To prove this statement, it is sufficient to show that any linear function that lower bounds all points in \(S_{\text{Lower}} \cup \{(0, J)\} \), also lower bounds the point \((M, R^*)\). We prove this for any such linear function, denoted by \(A + BM \), by first finding a converse bound of \(R^* \) using Theorem 2 with certain parameters \(s \) and \(\alpha \), and then proving that this converse bound is lower bounded by the linear function. We consider the following 2 possible cases:

If \(A \geq 0 \), note that \((0, J)\) should be lower bounded by the linear function, so we have \(A \leq J \). Thus, we can choose \(s = \lceil A \rceil \), \(\alpha = A - s + 1 \), and let \(\ell \) be the minimum value in \(\{1, ..., s\} \) such that \((10) \) holds. Because \(\left(\frac{N - \ell + 1}{s}, \frac{s - 1}{2} + \frac{\ell(\ell - 1)}{2s} \right) \in S_{\text{Lower}} \), we have

\[
A + B \frac{N - \ell + 1}{s} \leq \frac{s - 1}{2} + \frac{\ell(\ell - 1)}{2s} \tag{17}
\]

By the definition of \(\alpha \), we have \(A = s - 1 + \alpha \). Consequently, the slope \(B \) can be upper bounded as follows:

\[
B \leq \frac{s(s - 1) + \ell(\ell - 1) - 2As}{2(N - \ell + 1)} \tag{18}
\]

Thus, for any \(M \geq 0 \), we have

\[
A + BM \leq s - 1 + \alpha - \frac{s(s - 1) - \ell(\ell - 1) + 2\alpha s}{2(N - \ell + 1)} M \leq R^* \tag{19}
\]

If \(A < 0 \), let \(s = \ell = 1 \), we have \((N, 0) \in S_{\text{Lower}} \) from (15). Hence \(A + BN \leq 0 \), and for any \(M \in [0, N] \) we have

\[
A + BM = \frac{A(N - M) + (A + BN)M}{N} \leq 0 \tag{20}
\]

Obviously \(R^* \geq 0 \), hence we have \(A + BM \leq R^* \).

Combining the above two cases, we have proved that the memory-rate pair \((M, R^*)\) is lower bounded by the lower convex envelope of \(S_{\text{Lower}} \cup \{(0, J)\} \). Consequently, we only need to prove that this lower convex envelope is lower bounded by \(R_{\text{dec}}(M) \). As mentioned at the beginning of this proof, it is sufficient to show that for any corner point \((M, R)\) of the envelope, which belongs to the set \(S_{\text{Lower}} \cup \{(0, J)\} \), we have \(R_{\text{dec}}(M) \leq 2.00884R \).

When \((M, R) = (0, J)\), we have \(R_{\text{dec}}(M) = J \leq 2.00884R \). Otherwise, we can find \(s \in \{1, ..., J\} \) and \(\ell \in \{1, ..., s\} \) such that

\[
(M, R) = \left(\frac{N - \ell + 1}{s}, \frac{s - 1}{2} + \frac{\ell(\ell - 1)}{2s} \right) \tag{21}
\]

Then we prove \(R_{\text{dec}}(M) \leq 2.00884R \) for this case by considering the following 3 possible scenarios:

3Here the upper bound \(R_{\text{dec}}(M) \) is the exact minimum communication rate needed for decentralized caching with uncoded prefetching, as proved in [20].

4When \(M = 0 \), \(R_{\text{dec}}(M) \triangleq J \).
a). If \(N \geq 9s \), we first have the follows given \(^{(16)}\):
\[
R_{\text{dec}}(M) \leq \frac{N - M}{M}.
\]

Due to \(^{(21)}\), the above inequality is equivalent to
\[
R_{\text{dec}}(M) \leq s - 1 + \frac{s(\ell - 1)}{N - \ell + 1}.
\]

Recall that \(s \geq \ell \) and \(N \geq 9s \), we have
\[
R_{\text{dec}}(M) \leq s - 1 + \frac{s(\ell - 1)}{N - s}
\leq s - 1 + \frac{\frac{\ell - 1}{8}}{s}.
\]

Since \(s \geq \ell \), we have \(\frac{\ell - 1}{s} \leq \frac{s - 1}{s} \). Consequently,
\[
R_{\text{dec}}(M) \leq s - 1 + \sqrt{\frac{\ell - 1}{8}} \cdot \sqrt{\frac{s - 1}{s} \cdot \ell}
\leq s - 1 + 2 \cdot \sqrt{\frac{s - 1}{256} \cdot \frac{\ell(\ell - 1)}{s}}.
\]

Applying the AM-GM inequality to the second term of the RHS, we have
\[
R_{\text{dec}}(M) \leq s - 1 + \frac{s - 1}{256} + \frac{\ell(\ell - 1)}{s}.
\]

Because \(\ell \geq 1 \), we can thus upper bound \(R_{\text{dec}}(M) \) as a function of \(R \), which is given in \(^{(21)}\):
\[
R_{\text{dec}}(M) \leq (2 + \frac{1}{128})(\frac{s - 1}{2} + \frac{\ell(\ell - 1)}{2s})
\leq 2.00884R.
\]

b). If \(N < 9s \) and \(N \leq 81 \), we upper bound \(R_{\text{dec}}(M) \) as follows:
\[
R_{\text{dec}}(M) \leq \frac{N - M}{M}(1 - (1 - \frac{M}{N})^N).
\]

Note that both the above bound and \(R \) are functions of \(N \), \(s \) and \(\ell \), which can only take values from \(\{1, \ldots, 81\} \). Through a brute-force search, we can show that \(R_{\text{dec}}(M) \leq 2.00R \leq 2.00884R \).

c). If \(N < 9s \) and \(N > 81 \), recall that \(M = \frac{N - \ell + 1}{s} \) from \(^{(21)}\), we have
\[
M \leq \frac{N}{s} < 9.
\]

Similarly, \(R \) can be lower bounded as follows given \(^{(21)}\):
\[
R = \frac{s - 1}{2} + \frac{(N - sM)(N - sM + 1)}{2s}
= \frac{(1 + M^2)s}{2} + \frac{N(N + 1)}{2} - (N + \frac{1}{2})M - \frac{1}{2}.
\]

Applying the AM-GM inequality to the first two terms of the RHS, we have
\[
R \geq \frac{\sqrt{1 + M^2}}{2}N(N + 1) - (N + \frac{1}{2})M - \frac{1}{2}.
\]

From \(^{(29)}\), \(N > 81 > M^2 \), we have \(\sqrt{N(N + 1)} \geq \sqrt{M^2(M^2 + 1) + N - M^2} \). Consequently,
\[
R \geq \sqrt{1 + M^2}(\sqrt{M^2(M^2 + 1) + N - M^2}) - (N + \frac{1}{2})M - \frac{1}{2}
= (N - 81)(\sqrt{1 + M^2} - M) + (81 - M^2)(\sqrt{1 + M^2} - M) + \frac{M - 1}{2}.
\]

On the other hand, we upper bound \(R_{\text{dec}}(M) \) as follows:
\[
R_{\text{dec}}(M) \leq \frac{N - M}{M} \left(1 - (1 - \frac{M}{N})^N\right)
\leq \frac{N - M}{M} \left(1 - e^{\ln(1 - \frac{M}{N})}\right)
\leq \frac{N - M}{M} \left(1 - e^{-M} \cdot \frac{9}{16} \cdot \frac{M^2}{N}\right).
\]

From \(^{(29)}\), \(\frac{M}{N} < \frac{9}{81} = \frac{1}{9} \), it is easy to show that \(\ln(1 - \frac{M}{N}) \geq -\frac{M}{N} - \frac{9}{16} \cdot \frac{M^2}{N^2} \). Hence,
\[
R_{\text{dec}}(M) \leq \frac{N - M}{M} \left(1 - e^{-M} \cdot \frac{9}{16} \cdot \frac{M^2}{N}\right)
\leq \frac{N - M}{M} \left(1 - e^{-M} \left(1 - \frac{9}{16} \frac{M^2}{N}\right)\right)
\leq \frac{N - M}{M} \left(1 - e^{-M} + \frac{N}{M} e^{-M} \frac{9}{16} \frac{M^2}{N}\right).
\]
convention will be used throughout this paper. For any positive integer i, we define $p_i = (i, i+1)$. We now continue to prove Theorem 2 assuming the correctness of Lemma 1. Proof of this lemma in Appendix A. One can show that this approach strictly improves the compound cutset bound, which holds for any prefetching scheme.

To conclude, $R_{\text{dec}}(M) \leq 2.00884R$ holds for any $(M, R) \in \mathcal{S}_{\text{Lower}}$ for all three cases. Consequently, we have $R_u \leq 2.00884R^*$ for all possible values of parameters K, N, and M.

Now we prove the converse bound for inequality (7): In order to prove $R^* \geq R_u$, we define $R_u = K - \frac{K^2 + K}{2} \cdot \frac{M}{N}$. As defined in Definition 1, Let $s = K$, we can derive the following bounds from (39):

$$R^* \geq K - \frac{K^2 + K}{2} \cdot \frac{M}{N} = R_u - \frac{R_u}{2}.$$

If $\frac{KM}{N} > 1$, let $s = \lfloor \frac{N}{M} \rfloor$, we have $\frac{M}{N} \in \big(\frac{1}{s+1}, \frac{1}{s}\big)$. Consequently, we can derive the following lower bound on R^*:

$$R^* \geq s - \frac{s^2 + s}{2} \cdot \frac{M}{N} = \frac{N - M}{2M} + \frac{s^2 + s}{2} \cdot \frac{N}{M} \cdot \left(\frac{M}{N} - \frac{1}{s+1}\right) \cdot \left(\frac{1}{s} - \frac{M}{N}\right) \geq \frac{N - M}{2M}.$$

As mentioned earlier in this section, the following bound can be easily proved using the results of [20]:

$$R_u \leq \frac{N - M}{M} \left(1 - (1 - \frac{M}{N})^K\right).$$

Consequently, we have $R_u \leq \frac{N-M}{M} \leq 2R^*$. To conclude, we have proved $R^* \geq \frac{R_u}{2}$ for both cases. Hence, inequality (7) holds for large N for any possible values of K and M.

B. Proof of Theorem 2

Before proving the converse bound stated in Theorem 2, we first present the following key lemma, which gives a lower bound on any ϵ-achievable rate given any prefetching scheme.

Lemma 1. Consider a coded caching problem with parameters N and K. Given a certain prefetching scheme, for any demand d, any ϵ-achievable rate R is lower bounded by

$$R \geq \frac{1}{F} \left(\min \{N, K\} \sum_{k=1}^{\min \{N, K\}} H(W_{d_k} | Z_{1, \ldots, k}, W_{(d_1, \ldots, d_{k-1})}) \right) - \min \{N, K\} \frac{1}{F} + \epsilon \right)^5.$$

The above lemma was developed based on the simple idea of enhancing the cutset bound, which is further explained in the proof of this lemma in Appendix A. One can show that this approach strictly improves the compound cutset bound, which was used in most of the prior works. We now continue to prove Theorem 2 assuming the correctness of Lemma 1.

We observe that the caching problem proposed in this paper assumes that all users has the same cache size, and all files are of the same size. To fully utilize this homogeneity, we define the following useful notations, which will be used throughout the paper. For any positive integer i, we denote the set of all permutations of $\{1, \ldots, i\}$ by \mathcal{P}_i. For any set $S \subseteq \{1, \ldots, i\}$ and any permutation $p \in \mathcal{P}_i$, we define $pS = \{p(s) \mid s \in S\}$. For any subsets $\mathcal{A} \subseteq \{1, \ldots, N\}$ and $\mathcal{B} \subseteq \{1, \ldots, K\}$, we define

$$H^*(W_{\mathcal{A}}, Z_{\mathcal{B}}) \triangleq \frac{1}{N! K!} \sum_{p \in \mathcal{P}_N, q \in \mathcal{P}_K} H(W_{p\mathcal{A}}, Z_{q\mathcal{B}}).$$

3By an abuse of notation, we denote a sub-array by using a set of indices as the subscript. Besides, we define $\{d_1, \ldots, d_{k-1}\} = \emptyset$ for $k = 1$. Similar convention will be used throughout this paper.
Similarly, we define the same notation for conditional entropy in the same way. We can verify that the functions defined above satisfies all Shannon’s inequalities. I.e., for any sets of random variables \(A, B\) and \(C\), we have
\[
H^*(A|B) \geq H^*(A|B,C).
\] (44)

Note that from the homogeneity of the problem, for any \(\epsilon\)-achievable rate \(R\), Lemma 1 holds for any demands, under any possible relabeling of the users. Thus, we have
\[
R \geq \frac{1}{F}(\sum_{k=1}^{\min\{N,K\}} H(W_k|Z_{(1,...,k)}, W_{(1,...,k-1)})) - \min\{N, K\}(\frac{1}{F} + \epsilon)
\] (45)
for any \(p \in \mathcal{P}_K\) and \(q \in \mathcal{P}_N\). Averaging the above bound over all possible \(p\) and \(q\), we have
\[
R \geq \frac{1}{F}(\sum_{k=1}^{\min\{N,K\}} H^*(W_k|Z_{(1,...,k)}, W_{(1,...,k-1)})) - \min\{N, K\}(\frac{1}{F} + \epsilon).\] (46)
Recall that \(R^*\) is defined to be the minimum \(\epsilon\)-achievable rate over all prefetching scheme \(\phi\) for large \(F\) for any \(\epsilon > 0\), we have
\[
R^* \geq \sup_{\epsilon > 0} \lim_{F \to \infty} \sup_{\phi} \frac{1}{F}(\sum_{k=1}^{\min\{N,K\}} H^*(W_k|Z_{(1,...,k)}, W_{(1,...,k-1)})) - \min\{N, K\}(\frac{1}{F} + \epsilon)
\]
(47)
To simplify the discussion, we define \(R_A(F, \phi) = \frac{1}{F} \sum_{k=1}^{\min\{N,K\}} H^*(W_k|Z_{(1,...,k)}, W_{(1,...,k-1)}))\). Consequently,
\[
R^* \geq \inf_{F \in \mathbb{N}_+} \min_{\phi} R_A(F, \phi).
\] (48)
Hence, to prove Theorem 2, we only need to prove that for any prefetching scheme \(\phi\), the rate \(R_A(F, \phi)\) is lower bounded by the RHS of (49), for any parameters \(s\) and \(\alpha\).

Now we consider any \(s \in \{1,...,\min\{N,K\}\}\) and \(\alpha \in [0, 1]\). From the definition of \(R_A(F, \phi)\) and the non-negativity of entropy functions, we have
\[
R_A^*(F, \phi) F \geq \sum_{k=1}^{s-1} H^*(W_k|Z_{(1,...,k)}, W_{(1,...,k-1)})) + \alpha H^*(W_s|Z_{(1...,s)}, W_{(1,...,s-1)}))
\] (49)
Each term in the above lower bound can be bounded in the following 2 ways:
\[
H^*(W_k|Z_{(1,...,k)}, W_{(1,...,k-1)})) \geq \frac{H^*(W_{k,...,N})|Z_{(1,...,k)}, W_{(1,...,k-1)}))}{N-k+1} \geq \frac{F - H^*(Z_{(1,...,k)}|W_{(1,...,k-1)}))}{N-k+1}
\]
(50)
\[
H^*(W_k|Z_{(1,...,k)}, W_{(1,...,k-1)})) = F - H^*(Z_{(1,...,k)}|W_{(1,...,k-1)})) + H^*(Z_{(1,...,k)}|W_{(1,...,k-1)}) \geq F - H^*(Z_{(1,...,k)}|W_{(1,...,k-1)}) + \frac{k}{k+1} H^*(Z_{(1,...,k+1)}|W_{(1,...,k)}))
\]
(51)
We aim to use linear combinations of the above two bounds in (49), such that the coefficient of each \(H^*(Z_{(1,...,k)}|W_{(1,...,k-1)})\) in the resulting lower bound is 0 for all but one \(k\). To do so, we define the following sequences:
\[
a_x = 2\alpha s + s(s - 1) - (x + 1)x,
\]
(52)
\[
b_x = 2\alpha s + s(s - 1) - x(x - 1)
\]
(53)
We can verify the following equations:
\[
\frac{1 - a_x}{N - x + 1} + a_x = b_x,
\]
(54)
\[
\frac{x + 1}{N - x + 1} a_x = b_{x+1}.
\]
(55)
Let \(\ell \in \{1,...,s\}\) be the minimum value such that (51) holds, we can prove that \(a_x \in [0, 1]\) for \(x \in \{\ell,...,s - 1\}\). Because \(\ell\) is the minimum of such values, we can also prove that \(b_{\ell} \geq \frac{1}{\ell} F\). Using the above properties of sequences \(a\) and \(b\), we lower

\textit{Rigorously, (51) requires }k < K. \textit{However, we will only apply this bound for }k < s, \textit{which satisfies this condition.}
bound $R_A(F, \phi)$ as follows:

For each $x \in \{\ell, \ldots, s-1\}$, by computing $(1 - a_x) \times (50) + a_x \times (51)$, we have

$$
H^*(W_x|Z_{1,\ldots,x}, W_{1,\ldots,x-1}) \geq (1 - a_x) \left(F - \frac{H^*(Z_{1,\ldots,k})|W_{1,\ldots,k-1})}{N-k+1} \right) + a_x \left(F - H^*(Z_{1,\ldots,k})|W_{1,\ldots,k-1}) \right)
+ \frac{k}{k+1} H^*(Z_{1,\ldots,k+1})|W_{1,\ldots,k})
$$

$$
= F - \frac{1 - a_x}{N-x+1} + a_x H^*(Z_{1,\ldots,x-1})|W_{1,\ldots,x-1}) + a_x \frac{x}{x+1} H^*(Z_{1,\ldots,x+1})|W_{1,\ldots,x})
= F - b_x H^*(Z_{1,\ldots,x})|W_{1,\ldots,x-1}) + b_x H^*(Z_{1,\ldots,x+1})|W_{1,\ldots,x}).
$$

(56)

Moreover, we have the follows from (50):

$$
\alpha H^*(W_s|Z_{1,\ldots,s}, W_{1,\ldots,s-1}) \geq \alpha \left(F - \frac{H^*(Z_{1,\ldots,s})|W_{1,\ldots,s-1})}{N-s+1} \right)
= \alpha F - b_s H^*(Z_{1,\ldots,s})|W_{1,\ldots,s-1}).
$$

(57)

Consequently,

$$
\sum_{k=\ell}^{s-1} H^*(W_k|Z_{1,\ldots,k}, W_{1,\ldots,k-1}) + \alpha H^*(W_s|Z_{1,\ldots,s}, W_{1,\ldots,s-1}) \geq (s - \ell + \alpha)F - b_t H^*(Z_{1,\ldots,t})|W_{1,\ldots,t-1}).
$$

(58)

On the other hand,

$$
\sum_{k=1}^{\ell-1} H^*(W_k|Z_{1,\ldots,k}, W_{1,\ldots,k-1}) \geq \sum_{k=1}^{\ell-1} \left(F - H^*(Z_{1,\ldots,k})|W_{1,\ldots,k-1}) + \frac{k}{k+1} H^*(Z_{1,\ldots,k+1})|W_{1,\ldots,k}) \right)
$$

$$
= \sum_{k=1}^{\ell-1} \left(F - \frac{1}{k} H^*(Z_{1,\ldots,k})|W_{1,\ldots,k-1}) \right) + \frac{\ell-1}{\ell} H^*(Z_{1,\ldots,\ell})|W_{1,\ldots,\ell-1})
\geq (\ell - 1)F - (\ell - 1)MF + \frac{\ell - 1}{\ell} H^*(Z_{1,\ldots,\ell})|W_{1,\ldots,\ell-1}).
$$

(59)

Combining (49), (58), and (59), we have

$$
R_A(F, \phi)F \geq (\ell - 1)F - (\ell - 1)MF + \frac{\ell - 1}{\ell} H^*(Z_{1,\ldots,\ell})|W_{1,\ldots,\ell-1}) + (s - \ell + \alpha)F - b_t H^*(Z_{1,\ldots,t})|W_{1,\ldots,t-1})
$$

$$
=(s - 1 + \alpha)F - (\ell - 1)MF + \left(\frac{\ell - 1}{\ell} - b_t \right) H^*(Z_{1,\ldots,\ell})|W_{1,\ldots,\ell-1}).
$$

(60)

Recall that $b_t \geq \frac{\ell - 1}{\ell}$, we have

$$
R_A(F, \phi)F \geq (s - 1 + \alpha)F - (\ell - 1)MF - (b_t - \frac{\ell - 1}{\ell})MF
$$

$$
=(s - 1 + \alpha)F - \frac{s(s - 1) - \ell(\ell - 1) + 2\alpha s}{2(N - \ell + 1)MF}.
$$

(61)

Because the above lower bound is independent of the prefetching scheme ϕ, we can bound R^* as follows:

$$
R^* \geq \inf_{F \in \mathbb{N}_+} \min_{\phi} R^*_A(F, \phi)
$$

$$
\geq (s - 1 + \alpha) - \frac{s(s - 1) - \ell(\ell - 1) + 2\alpha s}{2(N - \ell + 1)M},
$$

(62)

which proves Theorem 2.

V. PROOF OF THEOREM 3 AND THEOREM 4

In this section, we first prove Theorem 3 assuming the correctness of Theorem 2. Then we give the proof of Theorem 4. For brevity, we only prove Theorem 3 for the peak rate (i.e., $R^* = R_N$ for large N) within this section. The proof for the average rate (i.e., $R^*_\text{ave} = R_a$ for large N) can be found in Appendix B.

A. Proof of Theorem 3 for peak rate

As mentioned previously, the rate R_a can be exactly achieved using the caching scheme proposed in [20]. Hence, to prove Theorem 3 it is sufficient to show that $R^* \geq R_a$ for large N when $K \leq 5$. This statement can be easily proved using the following lemma:

Lemma 2. For a caching problem with parameters K, N, and M, we have $R^* \geq R_a$ for large N, if $\frac{KM}{N} \leq 1$ or $\frac{KM}{N} \geq \lceil \frac{K-3}{2} \rceil$.

See Appendix B for the detailed proof of the above lemma, using Theorem 2 and Theorem 4.
Assuming the correctness of Lemma 2 and noting that the condition in Lemma 2 (i.e., \(\frac{KM}{N} \leq 1 \) or \(\frac{KM}{N} \geq \lceil \frac{K-3}{2} \rceil \)) always holds true for \(K \leq 5 \), we have \(R^* \geq R_B \) for large \(N \) and for all possible values of \(M \), in any caching system with no more than 5 users.

B. Proof of Theorem 4

Before proving the converse bounds stated in Theorem 4, we first present the following key lemma, which gives a lower bound on any \(\epsilon \)-achievable rate given any prefetching scheme.

Lemma 3. Consider a coded caching problem with parameters \(N \) and \(K \). Given a certain prefetching scheme, any \(\epsilon \)-achievable rate \(R \) is lower bounded by

\[
RF \geq H^*(W_1|Z_1) + \frac{2}{n(n+1)\alpha} \left(\alpha n(K-n)F - nH^*(Z_1|W_{1,\ldots,\beta}) - \sum_{i=0}^{K-n-1} H^*(Z_1|W_{1,\ldots,\beta+i\alpha}) \right) - \frac{2K-n+1}{n+1}(1+\epsilon F)
\]

for any integer \(n \in \{1, \ldots, K-1\} \) satisfying \(n > K-N \), with \(\alpha = \lfloor \frac{N-1}{2n} \rfloor \) and \(\beta = N - \alpha(K-n) \).

We postpone the proof of the above lemma to Appendix C and continue to prove Theorem 4, assuming the correctness.

To simplify the discussion, we define

\[
R_B(F, \phi) = \frac{1}{F} \left(H^*(W_1|Z_1) + \frac{2}{n(n+1)\alpha} \left(\alpha n(K-n)F - nH^*(Z_1|W_{1,\ldots,\beta}) - \sum_{i=0}^{K-n-1} H^*(Z_1|W_{1,\ldots,\beta+i\alpha}) \right) \right).
\]

Using Lemma 3, we have

\[
R \geq R_B(F, \phi) - \frac{2K-n+1}{n+1}(1 + \epsilon F)
\]

if \(R \) is \(\epsilon \)-achievable. Recall that \(R^* \) is defined to be the minimum \(\epsilon \)-achievable rate over all prefetching scheme \(\phi \) for large \(F \) for any \(\epsilon > 0 \), we have the following lower bound on \(R^* \):

\[
R^* \geq \sup_{\epsilon > 0} \liminf_{F \to \infty} \sup_{\phi} \left\{ R_B(F, \phi) - \frac{2K-n+1}{n+1}(1 + \epsilon F) \right\}
= \sup_{\epsilon > 0} \liminf_{F \to \infty} \sup_{\phi} R_B(F, \phi)
\geq \inf_{F \in \mathbb{N}_+} \min_{\phi} R_B(F, \phi).
\]

Hence, to prove Theorem 4 we only need to prove that for any prefetching scheme \(\phi \), \(R_B(F, \phi) \) is lower bounded by the converse bounds given in Theorem 4 for any valid parameter \(n \).

Now consider any \(n \in \{1, \ldots, K-1\} \). For brevity, we define

\[
\theta = \left(K\beta + \frac{(K-n)(K-n-1)}{2} \right).
\]

Equivalently, we have

\[
\theta = n\beta + \sum_{i=0}^{K-n-1} (\beta + i\alpha).
\]

Hence,

\[
\theta H^*(W_1|Z_1) \geq nH^*(W_{1,\ldots,\beta}|Z_1) + \sum_{i=0}^{K-n-1} H^*(Z_1|W_{1,\ldots,\beta+i\alpha})Z_1
= \theta F + nH^*(Z_1|W_{1,\ldots,\beta}) + \sum_{i=0}^{K-n-1} H^*(Z_1|W_{1,\ldots,\beta+i\alpha}) - KH^*(Z_1).
\]

From (64) and (69), we have

\[
R_B(F, \phi)F \geq \left(1 - \frac{2\theta}{n(n+1)\alpha} \right) H^*(W_1|Z_1) + \frac{2}{n(n+1)\alpha} (\theta F - KH^*(Z_1) + \alpha n(K-n)F).
\]

Depending on the value of \(\theta \), we bound \(H^*(W_1|Z_1) \) in 2 different ways:

When (13) holds, i.e., \(1 \geq \frac{2\theta}{n(n+1)\alpha} \), we use the following bound:

\[
H^*(W_1|Z_1) \geq F - \frac{H^*(Z_1)}{N}.
\]

[1] Here we adopt the notation of \(H^*(W_A, Z_B) \) which was defined in the proof of Theorem 2.
Consequently,
\[R_B(F, \phi) F \geq \left(1 - \frac{2\theta}{n(n+1)\alpha}\right) \left(F - \frac{H^*(Z_1)}{N}\right) + \frac{2}{n(n+1)\alpha} (\theta F - KH^*(Z_1) + \alpha n(K - n) F). \]
(72)

Given \(\theta \) defined in (67), and \(\beta = N - \alpha(K - n) \) as defined in Lemma 3, we have
\[R_B(F, \phi) F = \frac{2K - n + 1}{n + 1} F - \frac{K(K + 1)}{n(n + 1)} \cdot H^*(Z_1) \]
\[\geq \frac{2K - n + 1}{n + 1} F - \frac{K(K + 1)}{n(n + 1)} \cdot M F. \]
(73)

Hence we have the follows from (66):
\[R^* \geq \frac{2K - n + 1}{n + 1} - \frac{K(K + 1)}{n(n + 1)} \cdot M F. \]
(74)

On the other hand, when (13) does not hold, we use \(H^*(W_1 | Z_1) \leq F \). Similarly,
\[R_B(F, \phi) F \geq \left(1 - \frac{2\theta}{n(n+1)\alpha}\right) F + \frac{2}{n(n+1)\alpha} (\theta F - KH^*(Z_1) + \alpha n(K - n) F) \]
\[= \frac{2K - n + 1}{n + 1} F - \frac{2K(K - n)}{n(n + 1)} \cdot H^*(Z_1) \]
\[\geq \frac{2K - n + 1}{n + 1} F - \frac{2K(K - n)}{n(n + 1)} \cdot M F. \]
(75)

Hence,
\[R^* \geq \inf_{F \in \mathcal{N}_k} \min_{\phi} R_B(F, \phi) \]
\[\geq \frac{2K - n + 1}{n + 1} - \frac{2K(K - n)}{n(n + 1)} \cdot M F. \]
(76)

To conclude, we have proved that the converse bound given in Theorem 4 holds for any valid parameter \(n \).

APPENDIX A

PROOF OF LEMMA 1

If \(R \) is \(\epsilon \)-achievable, we can find message \(X_d \) such that for each user \(k \), \(W_{d_k} \) can be decoded from \(Z_k \) and \(X_d \) with probability of error of at most \(\epsilon \). Using Fano’s inequality, the following bound holds:
\[H(W_{d_k} | Z_k, X_d) \leq 1 + \epsilon F \quad \forall k \in \{1, ..., K\}. \]
(78)

Equivalently,
\[H(X_d | Z_k) \geq H(W_{d_k} | Z_k) + H(X_d | W_{d_k}, Z_k) - (1 + \epsilon F) \quad \forall k \in \{1, ..., K\}. \]
(79)

Note that the LHS of the above inequality lower bounds the communication load. If we lower bound the term \(H(X_d | W_{d_k}, Z_k) \) on the RHS by 0, we obtain the single user cutset bound. However, we enhance this cutset bound by bounding \(H(X_d | W_{d_k}, Z_k) \) with non-negative functions. On a high level, we view \(H(X_d | W_{d_k}, Z_k) \) as the communication load on an enhanced caching system, where \(W_{d_k} \) and \(Z_k \) are known by all the users. Using similar approach, we can lower bound \(H(X_d | W_{d_k}, Z_k) \) by the sum of a single cutset bound on this enhanced system, and another entropy function that can be interpreted as the communication load on a further enhanced system. We can recursively apply this bounding technique until all user demands are publicly known.

From (78), we have
\[H(W_{d_k} | Z_{1,...,k}, X_d, W_{d_1,...,d_{k-1}}) \leq 1 + \epsilon F \quad \forall k \in \{1, ..., K\}. \]
(80)

Equivalently,
\[H(X_d | Z_{1,...,k}, W_{d_1,...,d_{k-1}}) \geq H(W_{d_k} | Z_{1,...,k}, W_{d_1,...,d_{k-1}}) + H(X_d | Z_{1,...,k}, W_{d_1,...,d_{k-1}}) - (1 + \epsilon F) \quad \forall k \in \{1, ..., K\}. \]
(81)

Adding the above inequality for \(k \in \{1, ..., \min\{N, K\}\} \), we have
\[H(X_d | Z_{1}) \geq \sum_{k=1}^{\min\{N, K\}} \left(H(W_{d_k} | Z_{1,...,k}, W_{d_1,...,d_{k-1}}) - (1 + \epsilon F) \right) + H(X_d | Z_{1,...,\min\{N, K\}}, W_{d_1,...,d_{\min\{N, K\}}}) \]
\[\geq \sum_{k=1}^{\min\{N, K\}} H(W_{d_k} | Z_{1,...,k}, W_{d_1,...,d_{k-1}}) - \min\{N, K\}(1 + \epsilon F). \]
(82)
Thus, R is bounded by

$$R \geq \frac{1}{F} H(X_d|Z_{(1)})$$

$$\geq \frac{1}{F} \left(\sum_{k=1}^{\min\{N,K\}} H(W_{d_k}|Z_{(1),...,k}, W_{(d_1,...,d_{k-1})}) \right) - \min\{N,K\} (\frac{1}{F} + \epsilon).$$

(83)

One can show that this approach strictly improves the compound cutset bound, which was used in most of the prior works.

APPENDIX B

Proof of Lemma

Recall that $r = \frac{K^M}{N}$, to prove Lemma 2, it is sufficient to show that $R^* \geq R_0$ holds for $r \leq 1$, or $r \geq \lceil \frac{K-3}{2} \rceil$. When $r \leq 1$, this is already proved in Section IV and given by (39). If $r \geq K - 1$, we have $R^* \geq 1 - \frac{M}{N} = R_0$, which can be proved by choosing $s = 1$ and $\alpha = 1$ for Theorem 2. Hence, we only need to show that for any $r \in \left[\max\left\{ \lceil \frac{K-3}{2} \rceil, 1 \right\}, K - 1 \right)$, we can find parameter $n \in \{1, \ldots, K - 1\}$ for Theorem 4 such that the corresponding converse bound is tight for large N.

Let $n = \lfloor r + 1 \rfloor$, we have

$$R_0 = \frac{2K - n + 1}{n + 1} - \frac{K(K + 1)}{n(n + 1)} \cdot \frac{M}{N}$$

(84)

by definition, for large N (i.e., $N \geq K - n + 1$). On the other hand, we have $n \in \{1, \ldots, K - 1\}$ given $r \in \{1, K - 1\}$. Hence, we can use n as the parameter of Theorem 4. Now we prove the tightness of this converse bound by considering the following two possible cases:

If $n > \frac{K-1}{2}$, we have

$$\left(\frac{K-n}{K-n-1}\right)^{n(n+1)} \leq \frac{n(n+1)}{2},$$

(85)

Hence, when N is sufficiently large (i.e., $N \geq \frac{(K+1)(K-n)}{n(n+1)-K}$), we can prove that (13) holds. Consequently,

$$R^* \geq \frac{2K - n + 1}{n + 1} - \frac{K(K + 1)}{n(n + 1)} \cdot \frac{M}{N} = R_0.$$

(86)

If $n \leq \frac{K-1}{2}$, because $r \geq \lceil \frac{K-3}{2} \rceil$, we have $n = \frac{K-1}{2}$. Hence, we can verify that (13) does not hold. Consequently,

$$R^* \geq \frac{2K - n + 1}{n + 1} - \frac{2K(K-n)}{n(n+1)} \cdot \frac{M}{N} = R_0.$$

(87)

When N is large, β is upper bounded by a constant, we have $\lim_{N \to \infty} \frac{N}{N-\beta} = 1$. Hence

$$R^* \geq \frac{2K - n + 1}{n + 1} - \frac{2K(K-n)}{n(n+1)} \cdot \frac{M}{N}$$

$$= \frac{2K - n + 1}{n + 1} - \frac{K(K+1)}{n(n+1)} \cdot \frac{M}{N}$$

$$= R_0.$$

(88)

APPENDIX C

Proof of Lemma

To simplify the discussion, we adopt the notation of $H^*(W_{A_d}, Z_{B})$ which was defined in the proof of Theorem 2. Moreover, we generalize this notation to include the variables for the messages X_d. For any permutations $p \in P_N$, $q \in P_K$ and for any demand $d \in \{1, \ldots, N\}^K$, we define $d(p,q)$ be a demand where for each $k \in \{1, \ldots, K\}$, user $q(k)$ requests file $p(d_k)$. Then for any subset for demands $D \subseteq \{1, \ldots, N\}^K$, we define $D(p,q) = \{d(p,q)|d \in D\}$. Now for any subsets $A \subseteq \{1, \ldots, N\}$, $B \subseteq \{1, \ldots, K\}$ and $D \subseteq \{1, \ldots, N\}^K$, we define

$$H^*(X_D, W_{A_d}, Z_{B}) \triangleq \frac{1}{N!K!} \sum_{p \in P_N, q \in P_K} H(X_{D(p,q)}, W_{p,A_d}, Z_{q,B}).$$

(89)

Similarly, we define the same notation for conditional entropy in the same way.

For any $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, \alpha\}$ let $d^{i,j}$ be a demand satisfying

$$d^{i,j}_l = \begin{cases}
 l - i + (j - 1)(K-n) + \beta & \text{if } i + 1 \leq l \leq i + K - n, \\
 1 & \text{otherwise}.
\end{cases}$$

(90)

Note that for all demands $d^{i,j}$, user 1 requests file 1, hence we have

$$H(W_i|X_{d^{i,j}}, Z_1) \leq 1 + \epsilon F.$$

(91)
using Fano’s inequality. Consequently,
\[
RF \geq H(X_{d^+,j}) \\
\geq H(X_{d^+,j}|Z_1) + H(W_1|X_{d^+,j}, Z_1) - (1 + \epsilon F) \\
= H(W_1|Z_1) + H(X_{d^+,j}|W_1, Z_1) - (1 + \epsilon F).
\] (92)

Due to the homogeneity of the problem, we have
\[
RF \geq H^*(W_1|Z_1) + H^*(X_{d^+,j}|W_1, Z_1) - (1 + \epsilon F).
\] (93)

For each \(i \in \{1, \ldots, n\}\), \(j \in \{1, \ldots, \alpha\}\), and \(k \in \{1, \ldots, \beta\}\), we have the following identity:
\[
H^*(X_{d^+,j}|W_1, Z_1) = H^*(X_{d^+,j}|W_1, Z_k).
\] (94)

Hence, we have
\[
RF \geq H^*(W_1|Z_1) + \frac{2}{n(n+1)} \sum_{k=1}^{n} \sum_{i=k}^{n} H^*(X_{d^+,j}|W_1, Z_k) - (1 + \epsilon F).
\] (95)

For \(k \in \{1, \ldots, n\}\), let \(D_k^+\) denote the following set of demands:
\[
D_k = \{d_k^j|j \in \{1, \ldots, \alpha\}\},
\] (96)
\[
D_k^+ = \bigcup_{i=k}^{n} D_i,
\] (97)
we have
\[
RF \geq H^*(W_1|Z_1) + \frac{2}{n(n+1)} \sum_{k=1}^{n} H^*(X_{D_k^+}|W_1, Z_k) - (1 + \epsilon F) \\
\geq H^*(W_1|Z_1) + \frac{2}{n(n+1)} \sum_{k=1}^{n} H^*(X_{D_k^+}|W_{1,\ldots,\beta}, Z_k) - (1 + \epsilon F) \\
\geq H^*(W_1|Z_1) + \frac{2}{n(n+1)} \sum_{k=1}^{n} (H^*(Z_k, X_{D_k^+}|W_{1,\ldots,\beta}) - H^*(Z_k|W_{1,\ldots,\beta})) - (1 + \epsilon F).
\] (98)

To further bound \(R_e\), we only need a lower bound for \(n \sum_{k=1}^{n} H^*(Z_k, X_{D_k^+}|W_{1,\ldots,\beta})\), which is derived as follows:

For each \(i \in \{1, \ldots, K-n\}\), let \(S_i\) be subset of files defined as follows:
\[
S_i = \{i + (j-1)(K-n) + \beta| j \in \{1, \ldots, \alpha\}\}.
\] (99)

From the decodability constraint, for any \(k \in \{1, \ldots, n\}\), each file in \(S_i\) can be decoded by user \(i+k\) given \(X_{D_k}\). Using Fano’s inequality, we have
\[
H^*(W_{S_i}|X_{D_k}, Z_{i+k}) \leq \alpha(1 + \epsilon F).
\] (100)

Let \(S_i^-\) be subset of files defined as follows
\[
S_i^- = \left(\bigcup_{j=1}^{i} S_j \right) \cup \{1, \ldots, \beta\}.
\] (101)

We have
\[
0 \geq H^*(W_{S_i}|X_{D_k^+}, Z_{i+k}, W_{S_i^-}) - \alpha(1 + \epsilon F) \\
= H^*(X_{D_k^+}, Z_{i+k}|W_{S_i}, W_{S_i^-}) + H^*(W_{S_i}|W_{S_i^-}) - H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-}) - \alpha(1 + \epsilon F) \\
= H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-}) + \alpha F - H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-}) - \alpha(1 + \epsilon F).
\] (102)

Consequently,
\[
0 \geq \sum_{k=1}^{n} \sum_{i=1}^{K-n} (H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-}) + \alpha F - H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-}) - \alpha(1 + \epsilon F)) \\
= \sum_{k=1}^{n} \sum_{i=1}^{K-n} (H^*(X_{D_k^+}, Z_{i+k-1}|W_{S_i^-}) - H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-})) + H^*(X_{D_k^+}, Z_{i+k-1}|W_{S_i^-}) - H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-}) \\
+ \alpha n (K-n)(F - 1 - \epsilon F) \\
\geq \sum_{k=1}^{n} \sum_{i=1}^{K-n} (H^*(X_{D_k^+}, Z_{i+k-1}|W_{S_i^-}) - H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-})) + H^*(X_{D_k^+}, Z_{i+k}|W_{S_i^-}) + \alpha n (K-n)(F - 1 - \epsilon F).
\] (103)
Hence, we obtain the following lower bound:

\[
\sum_{k=1}^{n} H^*(X_{D_k^+}, Z_k|W_{S_0^+}) \geq \sum_{k=1}^{n} \sum_{i=1}^{K-n} (H^*(X_{D_k^+}, Z_{i+k-1}|W_{S_{i-1}^-}) - H^*(X_{D_k^+}, Z_{i+k}|W_{S_{i-1}^-})) + \alpha n (K-n)(F-1-\epsilon F) \\
= \sum_{i=1}^{K-n} \sum_{k=1}^{n} (H^*(X_{D_k^+}, Z_{i+k-1}|W_{S_{i-1}^-}) - H^*(X_{D_k^+}, Z_{i+k}|W_{S_{i-1}^-})) + \alpha n (K-n)(F-1-\epsilon F) \\
= \sum_{i=1}^{K-n} \sum_{k=1}^{n} (H^*(Z_{i+k-1}|X_{D_k^+}, W_{S_{i-1}^-}) - H^*(Z_{i+k}|X_{D_k^+}, W_{S_{i-1}^-})) + \alpha n (K-n)(F-1-\epsilon F)
\]

(104)

Note that \(D_k^+ \subseteq D_{k-1}^+\), we have \(H^*(Z_{i+k}|X_{D_k^+}, W_{S_{i-1}^-}) \geq H^*(Z_{i+k}|X_{D_k^+}, W_{S_{i-1}^-})\). Consequently,

\[
\sum_{k=1}^{n} H^*(X_{D_k^+}, Z_k|W_{S_0^+}) \geq \sum_{i=1}^{K-n} (H^*(Z_i|X_{D_k^+}, W_{S_{i-1}^-}) - H^*(Z_{i+n}|X_{D_k^+}, W_{S_{i-1}^-})) + \alpha n (K-n)(F-1-\epsilon F) \\
\geq - \sum_{i=1}^{K-n} H^*(Z_{i+n}|W_{S_{i-1}^-}) + \alpha n (K-n)(F-1-\epsilon F) \\
= - \sum_{i=1}^{K-n} H^*(Z_i|W_{\{1, \ldots, \beta+\alpha\}}) + \alpha n (K-n)(F-1-\epsilon F).
\]

(105)

Applying (105) to (98), we have

\[
RF \geq H^*(W_1|Z_1) + \frac{2}{n(n+1)\alpha} \left(\alpha n (K-n)(F-1-\epsilon F) - \sum_{k=1}^{n} H^*(Z_k|W_{\{1, \ldots, \beta\}}) - \sum_{i=0}^{K-n-1} H^*(Z_i|W_{\{1, \ldots, \beta+\alpha\}}) \right) \\
-(1+\epsilon F) \\
= H^*(W_1|Z_1) + \frac{2}{n(n+1)\alpha} \left(\alpha n (K-n)F - nH^*(Z_1|W_{\{1, \ldots, \beta\}}) - \sum_{i=0}^{K-n-1} H^*(Z_i|W_{\{1, \ldots, \beta+\alpha\}}) \right) \\
- \frac{2K-n+1}{n+1}(1+\epsilon F).
\]

(106)

APPENDIX D

PROOF OF THEOREM [1] FOR AVERAGE RATE

Here we prove Theorem [1] for the average rate (i.e. inequalities (6) and (8)). The upper bounds of \(R_{ave}\) in these inequalities can be achieved using the caching scheme provided in [20], hence we only need to prove their lower bounds. To do so, we define the following terminology:

We divide the set of all demands, denoted by \(D\), into smaller subsets, and refer them to as *types*. We use the same definition in [20], which are stated as follows: Given an arbitrary demand \(d\), we define its statistics, denoted by \(s(d)\), as a sorted array of length \(N\), such that \(s_i(d)\) equals the number of users that request the ith most requested file. We denote the set of all possible statistics by \(S\). Grouping by the same statistics, the set of all demands \(D\) can be broken into many subsets. For any statistics \(s \in S\), we define type \(D_s\) as the set of queries with statistics \(s\). Note that for each demand \(d\), the value \(N_s(d)\) only depends on its statistics \(s(d)\), and thus the value is identical across all demands in \(D_s\). For convenience, we denote that value by \(N_s\).

Given a prefetching scheme \(\phi\) and a type \(D_s\), we say a rate \(R\) is \(\epsilon\)-achievable for type \(D_s\) if we can find a function \(R(d)\) that is \(\epsilon\)-achievable for any demand \(d\) in \(D_s\), satisfying \(R = \mathbb{E}_d[R(d)]\), where \(d\) is uniformly random in \(D_s\). Hence, to characterize \(R_{ave}\), it is sufficient to lower bound the \(\epsilon\)-achievable rates for each type individually, and show that for each type, the caching scheme provided in [20] is within the given constant factors optimal for large \(F\) and small \(\epsilon\).

We first lower bound the any \(\epsilon\)-achievable rate for each type as follows: Within a type \(D_s\), we can find a demand \(d\), such that users in \(\{1, \ldots, N_s(s)\}\) requests different files. We can easily generalize Lemma [1] to this demand, and any \(\epsilon\) achievable rate of this demand, denoted by \(R_{ave}\), is lower bounded by the following inequality:

\[
R_d \geq \frac{1}{F} \left(\sum_{k=1}^{N_s(s)} H(W_{d_k|Z_{\{1, \ldots, k\}}, W_{\{d_1, \ldots, d_{k-1}\}}} - N_s(s)(1/F + \epsilon). \right)
\]

(107)

Applying the same bounding technique to all demands in type \(D_s\). We can prove that any rate that is \(\epsilon\)-achievable for \(D_s\),
denoted by R_s, is bounded by the follows:

$$R_s \geq \frac{1}{F} \left(\sum_{k=1}^{N_e(s)} H^*(W_k | Z_{1,...,k}, W_{1,...,k-1}) \right) - N_e(s)(\frac{1}{F} + \epsilon),$$

(108)

where function $H^*(\cdot)$ is defined in the proof of Theorem 2.

Following the same steps in the proof of Theorem 2, we can prove that

$$R_s \geq s - 1 + \alpha \cdot \frac{s(s-1)}{2} \frac{M - N_e(s)(\frac{1}{F} + \epsilon)}{(N - \ell + 1)}$$

(109)

for arbitrary $s \in \{1,...,N_e(s)\}$, $\alpha \in [0,1]$, where $\ell \in \{1,...,s\}$ is the minimum value such that

$$\frac{s(s-1)}{2} \frac{M - N_e(s)(\frac{1}{F} + \epsilon)}{(N - \ell + 1)}.$$

(110)

On the other hand, the caching scheme provided in [20] achieves an average rate of $\text{Conv} \left(\left(\frac{(K - N_e(s))}{e^{\ell+1}} \right) \right)$ within each type D_s. Using the results in [20], we can easily prove that this average rate can be upper bounded by $R_{\text{dec}}(M,s)$, defined as

$$R_{\text{dec}}(M,s) \triangleq \frac{N - M}{M} (1 - (1 - \frac{M}{N})^N_e(s)).$$

(111)

Hence, in order to prove (6) and (8), it suffices to prove that for large F and small ϵ, any ϵ-achievable rate R_s for any type D_s satisfies $R_s \geq R_{\text{dec}}(M,s)/2.00884$ in the general case, and $R_s \geq R_{\text{dec}}(M,s)/2$ when N is large.

Note that the above characterization of R_s exactly matches a characterization of R^* for a caching system with N files and $N_e(s)$ users. Specifically, the lower bound of R_s given by (109) exactly matches Theorem 2, and the upper bound $R_{\text{dec}}(M,s)$ defined in (111) exactly matches the upper bound $R_{\text{dec}}(M)$ defined in (114). Thus, by reusing the same arguments in the proof of Theorem 2 for the peak rate, we can easily prove that $R_s \geq R_{\text{dec}}(M,s)/2.00884$ holds for the general case, and $R_s \geq R_{\text{dec}}(M,s)/2$ holds for large N when $N_e(s)M/N > 1$. Hence, to prove Theorem 1 for the average rate, we only need $R_s \geq R_{\text{dec}}(M,s)/2$ for large N to also hold when $N_e(s)M/N \leq 1$, which can be easily proved as follows:

Using the same arguments in the proof of Theorem 1 for the peak rate, the following inequality can be derived from (109) for large N, large F and small ϵ:

$$R_s \geq N_e(s) - \frac{N_e(s)(N_e(s) + 1)(\frac{M}{N})}{2},$$

(112)

which is a linear function of M. Furthermore, since $R_{\text{dec}}(M,s)$ is convex, we only need to check that

$$\frac{R_{\text{dec}}(M,s)}{2} \leq N_e(s) - \frac{N_e(s)(N_e(s) + 1)(\frac{M}{N})}{2},$$

(113)

holds at $N_e(s)M/N \in \{0,1\}$.

For $N_e(s)M/N = 0$, we have

$$\frac{R_{\text{dec}}(M,s)}{2} = \frac{N_e(s)}{2} \leq N_e(s) - \frac{N_e(s)(N_e(s) + 1)(\frac{M}{N})}{2}.$$

(114)

For $N_e(s)M/N = 1$, we have

$$\frac{R_{\text{dec}}(M,s)}{2} = \frac{N_e(s) - 1}{2} \frac{1}{(1 - (1 - \frac{1}{N_e(s)})^{N_e(s)})} \leq \frac{N_e(s) - 1}{2} \frac{N_e(s) - 1}{2} = \frac{N_e(s) - N_e(s)(N_e(s) + 1)(\frac{M}{N})}{2}.$$

(115)

This completes the proof of Theorem 1.

APPENDIX E

THE EXACT RATE-MEMORY TRADEOFF FOR TWO-USER CASE

As mentioned in Remark 2, we can completely characterize the rate-memory tradeoff for average rate for the two-user case, for any possible values of N and M. We formally state this result in the following corollary:

Corollary 1. For a caching system with 2 users, a database of N files, and a local cache size of M files at each user, we have

$$R^*_{\text{ave}} = R_{u,\text{ave}},$$

(116)

where $R_{u,\text{ave}}$ is defined in Definition 7.

Proof. For the single-file case, only one possible demand exists. The average rate thus equals the peak rate, which can be easily characterized. Hence we omit the proof and focus on cases where $N \geq 2$. Note that $R_{u,\text{ave}}$ can be achieved using the scheme provided in [20], we only need to prove that $R^*_{\text{ave}} \geq R_{u,\text{ave}}$.
As shown Appendix [3] the average rate within each type D_α is bounded by (108). Hence, the minimum average rate under uniform file popularity given a prefetching scheme ϕ, denoted by $R(\phi)$, is lower bounded by

$$R(\phi) \geq \mathbb{E}_s \left[\frac{1}{F} \left(\sum_{k=1}^{N(s)} H^*(W_k|Z(1, \ldots, k), W(1, \ldots, k-1)) \right) - N_c(s)(\frac{1}{F} + \epsilon) \right]. \quad (117)$$

Note that for the two-user case, $N_c(s)$ equals 1 with probability $\frac{1}{N}$, and 2 with probability $\frac{N-1}{2N}$. Consequently,

$$R(\phi) \geq \frac{1}{F} \left(H^*(W_1|Z_1) + \frac{N-1}{N} \cdot H^*(W_2|Z(1,2), W_1) \right) - \frac{2N-1}{N} \cdot (\frac{1}{F} + \epsilon). \quad (118)$$

Using the technique developed in proof of Theorem 2, we have the following two lower bounds

$$R(\phi) \geq \frac{1}{F} \left(H^*(W_1|Z_1) + \frac{N-1}{N} \cdot H^*(W_2|Z(1,2), W_1) \right) - \frac{2N-1}{N} \cdot (\frac{1}{F} + \epsilon)$$

Hence we have

$$R_{\text{ave}}^* \geq \max \left\{ 1 - \frac{M}{N} - \frac{2N-1}{N} \cdot (\frac{1}{F} + \epsilon), \frac{2N-1}{N} \right\} = R_{\text{ave}}. \quad (121)$$

APPENDIX F

PROOF OF THEOREM [5] FOR AVERAGE RATE

To prove Theorem 5 for the average rate, we need to show that $R_{\text{ave}}^* = R_a$ for large N, for any caching system with no more than 5 users. Note that when N is large, with high probability all users will request distinct files. Hence, we only need to prove that the minimum average rate within the type of worst case demands (i.e., the set of demands where all users request distinct files) equals R_a. Since R_a can already be achieved according to [20], it suffices to prove that this average rate is lower bounded by R_a.

Similar to the peak rate case, we prove that this fact holds if $\frac{KN}{N} \leq 1$ or $\frac{KN}{N} \geq K - 1$, this can be proved the same way as Lemma 2 while for the other case (i.e., $\frac{KN}{N} \in \max\{\frac{K-3}{2}, 1\}$), we need to prove a new version of Theorem 4 which lower bounds the average rate within the type of worst case demands. To simplify the discussion, we adopt the notation of $H^*(X_D, W_A, Z_B)$ which was defined in (89). We also adopt the corresponding notation for conditional entropy. Suppose rate R is achievable for the worst case type, we start by proving converse bounds of R for large N.

Recall that $r = \frac{KM}{N}$, and let $n = \lfloor r \rfloor + 1$. Because $r \in [1, K-1]$, we have $n \in \{2, \ldots, K-1\}$. Let $\alpha = \lfloor \frac{N-K}{K} \rfloor$ and $\beta = N - \alpha(K-n)$. Suppose N is large enough, such that $\alpha > 0$. For any $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, \alpha\}$ let $d^{i,j}$ be a demand satisfying

$$d_{i,j} = \begin{cases}
 l - i + (j - 1)(K-n) + \beta & \text{if } i + 1 \leq l \leq i + K - n, \\
 l & \text{otherwise}.
\end{cases} \quad (122)$$

Note that the above demands belong to the worst case type, so we have $RF \geq H^*(X_{d^{i,j}})$ for any i and j. Following the same steps of proving Lemma 3, we have

$$RF \geq H^*(W_1|Z_1) + \frac{2}{n(n+1)} \left(\alpha n(K-n)F - nH^*(Z_1|W(1,\ldots,\beta)) - \sum_{i=0}^{K-n-1} H^*(Z_i|W(1,\ldots,\beta+\alpha)) \right) - \frac{2K-n+1}{n+1} \cdot \left(\frac{1}{F} + \epsilon \right). \quad (123)$$

Then following the steps of proving Theorem 4, we have

$$R \geq \frac{2K-n+1}{n+1} - \frac{K(K+1)}{n(n+1)} \cdot \frac{M}{N} - \frac{2K-n+1}{n+1} \cdot \left(\frac{1}{F} + \frac{1}{F} \right) \quad (124)$$

if the following inequality holds:

$$K\beta + \frac{(K-n)(K-n-1)}{2} \leq \frac{n(n+1)}{2} \alpha. \quad (125)$$
Otherwise, we have

$$R \geq \frac{2K - n + 1}{n + 1} - \frac{2K(K - n)}{n(n + 1)} \cdot \frac{M}{N - \beta} - \frac{2K - n + 1}{n + 1} (\epsilon + 1) F. \quad (126)$$

Similar to the proof of Lemma 2, we have proved that $R \geq R_u$ from the above bounds if $r \in \left[\max\{\lceil \frac{K-3}{2} \rceil, 1\}, K - 1 \right]$ for large N, large F, and small ϵ. Consequently, we proved that $R^*_{\text{ave}} = R_u$ if $r \leq 1$ or $r \geq \lceil \frac{K-3}{2} \rceil$ for large N. For systems with no more than 5 users, this gives the exact characterization.

REFERENCES

[1] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,” Communications of the ACM, vol. 28, no. 2, pp. 202–208, 1985.
[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60, pp. 2856–2867, May 2014.
[3] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23, pp. 1029–1040, Aug. 2015.
[4] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,” IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 836–845, 2016.
[5] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” IEEE Transactions on Information Theory, 2016.
[6] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and coded multicasting with random demands,” arXiv preprint arXiv:1502.03124, 2015.
[7] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distributions,” in Proc. ITA, pp. 98–107, Feb. 2015.
[8] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, pp. 849–869, Feb. 2016.
[9] S. H. Lim, C.-Y. Wang, and M. Gastpar, “Information theoretic caching: The multi-user case,” arXiv preprint arXiv:1604.02333, 2016.
[10] S. S. Bidokhti, M. Wigger, and R. Timo, “Noisy broadcast networks with receiver caching,” arXiv preprint arXiv:1605.02317, 2016.
[11] J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless BC: Interplay of coded-caching and CSIT feedback,” arXiv preprint arXiv:1511.03961, 2015.
[12] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded caching,” in Proc. IEEE ISIT, pp. 56–60, 2014.
[13] S. G. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hierarchical coded caching,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3212–3229, 2016.
[14] Z. Chen, “Fundamental limits of caching: Improved bounds for small buffer users,” arXiv preprint arXiv:1407.1935, 2014.
[15] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users than files,” arXiv preprint arXiv:1601.06383, 2016.
[16] S. Sahraei and M. Gastpar, “K users caching two files: An improved achievable rate,” in Proc. CISS, pp. 620–624, 2016.
[17] C. Tian and J. Chen, “Caching and delivery via interference elimination,” arXiv preprint arXiv:1604.08690, 2016.
[18] M. M. Amiri and D. Gunduz, “Fundamental limits of caching: improved delivery rate-cache capacity trade-off,” arXiv preprint arXiv:1604.03888, 2016.
[19] M. M. Amiri, Q. Yang, and D. Gunduz, “Coded caching for a large number of users,” arXiv preprint arXiv:1605.01993, 2016.
[20] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff for caching with uncoded prefetching,” arXiv preprint arXiv:1609.07817, 2016. Submitted to IEEE Trans. Inf. Theory.
[21] J. Gómez-Vilardebó, “Fundamental limits of caching: Improved bounds with coded prefetching,” arXiv preprint arXiv:1612.09071, 2016.
[22] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,” in Proc. IEEE ISIT, June 2015.
[23] A. Sengupta and R. Tandon, “Improved approximation of storage-rate tradeoff for caching via new outer bounds,” in Proc. IEEE ISIT, June 2015.
[24] C.-Y. Wang, S. H. Lim, and M. Gastpar, “A new converse bound for coded caching,” arXiv preprint arXiv:1601.05690, 2016.
[25] C. Tian, “Symmetry, outer bounds, and code constructions: A computer-aided investigation on the fundamental limits of caching,” arXiv preprint arXiv:1611.00024, 2016.
[26] N. S. Prem, V. M. Prabhakaran, R. Vaze, et al., “Critical database size for effective caching,” arXiv preprint arXiv:1501.02549, 2015.