On differences between DP-coloring and list coloring

Anton Bernshteyn∗ Alexandr Kostochka†

Abstract

DP-coloring (also known as correspondence coloring) is a generalization of list coloring introduced recently by Dvořák and Postle [12]. Many known upper bounds for the list-chromatic number extend to the DP-chromatic number, but not all of them do. In this note we describe some properties of DP-coloring that set it aside from list coloring. In particular, we give an example of a planar bipartite graph with DP-chromatic number 4 and prove that the edge-DP-chromatic number of a d-regular graph with $d \geq 2$ is always at least $d + 1$.

1 Introduction

1.1 Basic notation and conventions

We use \mathbb{N} to denote the set of all nonnegative integers. For a set S, Pow(S) denotes the power set of S, i.e., the set of all subsets of S. All graphs considered here are finite, undirected, and simple, except in Section 4, which mentions (loopless) multigraphs. For a graph G, $V(G)$ and $E(G)$ denote the vertex and the edge sets of G respectively. For a subset $U \subseteq V(G)$, $G[U]$ is the subgraph of G induced by U. For two subsets $U_1, U_2 \subseteq V(G)$, $E_G(U_1, U_2) \subseteq E(G)$ is the set of all edges of G with one endpoint in U_1 and the other one in U_2. The maximum degree of G is denoted by $\Delta(G)$.

1.2 Graph coloring, list coloring, and DP-coloring

Recall that a proper coloring of a graph G is a function $f: V(G) \to C$, where C is a set of colors, such that $f(u) \neq f(v)$ for each edge $uv \in E(G)$. The chromatic number $\chi(G)$ of G is the smallest $k \in \mathbb{N}$ such that there exists a proper coloring $f: V(G) \to C$ with $|C| = k$.

List coloring is a generalization of ordinary graph coloring that was introduced independently by Vizing [23] and Erdős, Rubin, and Taylor [13]. As in the case of ordinary graph coloring, let C be a set of colors. A list assignment for a graph G is a function $L: V(G) \to \text{Pow}(C)$; if $|L(u)| = k$ for all $u \in V(G)$, then L is called a k-list assignment. A proper coloring $f: V(G) \to C$ is called an L-coloring if $f(u) \in L(u)$ for each $u \in V(G)$. The list-chromatic number $\chi_L(G)$ of G is the smallest $k \in \mathbb{N}$ such that G admits an L-coloring for every k-list assignment L for G. An immediate consequence of this definition is that $\chi_L(G) \geq \chi(G)$ for all graphs G, since ordinary coloring is the same as L-coloring with $L(u) = C$ for all $u \in V(G)$. On the other hand, it is well-known

∗Department of Mathematics, University of Illinois at Urbana–Champaign, IL, USA, bernsht2@illinois.edu. Research of this author is partially supported by the Illinois Distinguished Fellowship.

†Department of Mathematics, University of Illinois at Urbana–Champaign, IL, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia, kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-1600592 and grants 15-01-05867 and 16-01-00499 of the Russian Foundation for Basic Research.
that the gap between $\chi(G)$ and $\chi_\ell(G)$ can be arbitrarily large; for instance, $\chi(K_{n,n}) = 2$, while $\chi_\ell(K_{n,n}) = (1 + o(1)) \log_2(n) \to \infty$ as $n \to \infty$, where $K_{n,n}$ denotes the complete bipartite graph with both parts having size n.

In this paper we study a further generalization of list coloring that was recently introduced by Dvořák and Postle [12]; they called it correspondence coloring, and we call it DP-coloring for short. In the setting of DP-coloring, not only does each vertex get its own list of available colors, but also the identifications between the colors in the lists can vary from edge to edge.

Definition 1.1. Let G be a graph. A *cover* of G is a pair $\mathcal{H} = (L, H)$, consisting of a graph H and a function $L : V(G) \to \text{Pow}(V(H))$, satisfying the following requirements:

- (C1) the sets $\{L(u) : u \in V(G)\}$ form a partition of $V(H)$;
- (C2) for every $u \in V(G)$, the graph $H[L(u)]$ is complete;
- (C3) if $E_H(L(u), L(v)) \neq \emptyset$, then either $u = v$ or $uv \in E(G)$;
- (C4) if $uv \in E(G)$, then $E_H(L(u), L(v))$ is a matching.

A cover $\mathcal{H} = (L, H)$ of G is k-fold if $|L(u)| = k$ for all $u \in V(G)$.

Remark 1.2. The matching $E_H(L(u), L(v))$ in Definition 1.1(C4) does not have to be perfect and, in particular, is allowed to be empty.

Definition 1.3. Let G be a graph and let $\mathcal{H} = (L, H)$ be a cover of G. An \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.

Remark 1.4. By definition, if $\mathcal{H} = (L, H)$ is a cover of G, then $\{L(u) : u \in V(G)\}$ is a partition of H into $|V(G)|$ cliques. Therefore, an independent set $I \subseteq V(H)$ is an \mathcal{H}-coloring of G if and only if $|I \cap L(u)| = 1$ for all $u \in V(G)$.

Definition 1.5. Let G be a graph. The *DP-chromatic number* $\chi_{DP}(G)$ of G is the smallest $k \in \mathbb{N}$ such that G admits an \mathcal{H}-coloring for every k-fold cover \mathcal{H} of G.

Example 1.6. Figure 1 shows two distinct 2-fold covers of the 4-cycle C_4. Note that C_4 admits an \mathcal{H}_1-coloring but not an \mathcal{H}_2-coloring. In particular, $\chi_{DP}(C_4) \geq 3$; on the other hand, it can be easily seen that $\chi_{DP}(G) \leq \Delta(G) + 1$ for any graph G, and so we have $\chi_{DP}(C_4) = 3$. A similar argument demonstrates that $\chi_{DP}(C_n) = 3$ for any cycle C_n of length $n \geq 3$.

![Figure 1: Two distinct 2-fold covers of a 4-cycle.](image)

One can construct a cover of a graph G based on a list assignment for G, thus showing that list coloring is a special case of DP-coloring and, in particular, $\chi_{DP}(G) \geq \chi_\ell(G)$ for all graphs G.

2
More precisely, let G be a graph and suppose that $L : V(G) \to \text{Pow}(C)$ is a list assignment for G, where C is a set of colors. Let H be the graph with vertex set

$$V(H) := \{(u, c) : u \in V(G) \text{ and } c \in L(u)\},$$

in which two distinct vertices (u, c) and (v, d) are adjacent if and only if

- either $u = v$,
- or else, $uv \in E(G)$ and $c = d$.

For each $u \in V(G)$, set

$$L'(u) := \{(u, c) : c \in L(u)\}.$$

Then $\mathcal{H} := (L', H)$ is a cover of G, and there is a natural bijective correspondence between the L-colorings and the \mathcal{H}-colorings of G. Indeed, if $f : V(G) \to C$ is an L-coloring of G, then the set

$$I_f := \{(u, f(u)) : u \in V(G)\}$$

is an \mathcal{H}-coloring of G. Conversely, given an \mathcal{H}-coloring $I \subseteq V(H)$ of G, $|I \cap L'(u)| = 1$ for all $u \in V(G)$, so one can define an L-coloring $f_I : V(G) \to C$ by the property

$$(u, f_I(u)) \in I \cap L'(u)$$

for all $u \in V(G)$.

1.3 DP-coloring vs. list coloring and the results of this note

Some upper bounds on list-chromatic number hold for DP-chromatic number as well. For instance, it is easy to see that $\chi_{DP}(G) \leq d + 1$ for any d-degenerate graph G. Dvořák and Postle [12] observed that for any planar graph G, $\chi_{DP}(G) \leq 5$ and, moreover, $\chi_{DP}(G) \leq 3$ if G is a planar graph of girth at least 5 (these statements are extensions of classical results of Thomassen [20, 21] on list colorings).

Furthermore, there are statements about list coloring whose only known proofs involve DP-coloring in essential ways. For example, the reason why Dvořák and Postle originally introduced DP-coloring was to prove that every planar graph without cycles of lengths 4 to 8 is 3-list-colorable [12, Theorem 1], thus answering a long-standing question of Borodin [7, Problem 8.1]. Another example can be found in [5], where Dirac's theorem on the minimum number of edges in critical graphs [10, 11] is extended to the framework of DP-colorings, yielding a solution to the problem, posed by Kostochka and Stiebitz [17], of classifying list-critical graphs that satisfy Dirac's bound with equality.
On the other hand, DP-coloring and list coloring are also strikingly different in some respects. For instance, Bernshteyn [3, Theorem 1.6] showed that the DP-chromatic number of every graph with average degree d is $\Omega(d / \log d)$, i.e., close to linear in d. Recall that due to a celebrated result of Alon [2], the list-chromatic number of such graphs is $\Omega(\log d)$, and this bound is sharp for “small” bipartite graphs. In spite of this, known upper bounds on list-chromatic numbers often have the same order of magnitude as in the DP-coloring setting. For example, by Johansson’s theorem [16], triangle-free graphs G of maximum degree Δ satisfy $\chi'_\ell(G) = O(\Delta / \log \Delta)$. The same asymptotic upper bound holds for $\chi_{DP}(G)$ [3, Theorem 1.7]. Recently, Molloy [18] refined Johansson’s result to $\chi'_\ell(G) \leq (1 + o(1))\Delta / \ln \Delta$, and this improved bound, including the constant factor, also generalizes to DP-colorings [4].

Important tools in the study of list coloring that do not generalize to the framework of DP-coloring are the orientation theorems of Alon and Tarsi [1] and the closely related Bondy–Boppana–Siegel lemma (see [1]). Indeed, they can be used to prove that even cycles are 2-list-colorable, while the DP-chromatic number of any cycle is 3, regardless of its length (see Example 1.6). In this note we demonstrate the failure in the context of DP-coloring of two other list-coloring results whose proofs rely on either the Alon–Tarsi method or the Bondy–Boppana–Siegel lemma.

A well-known application of the orientation method is the following result:

Theorem 1.7 (Alon–Tarsi [1, Corollary 3.4]). Every planar bipartite graph is 3-list-colorable.

We show that Theorem 1.7 does not hold for DP-colorings (note that every planar triangle-free graph is 3-degenerate, hence 4-DP-colorable):

Theorem 1.8. There exists a planar bipartite graph G with $\chi_{DP}(G) = 4$.

This answers a question of Grytczuk (personal communication, 2016). We prove Theorem 1.8 in Section 2.

Our second result concerns edge colorings. Recall that the line graph $\text{Line}(G)$ of a graph G is the graph with vertex set $E(G)$ such that two vertices of $\text{Line}(G)$ are adjacent if and only if the corresponding edges of G share an endpoint. The chromatic number, the list-chromatic number, and the DP-chromatic number of $\text{Line}(G)$ are called the chromatic index, the list-chromatic index, and the DP-chromatic index of G and are denoted by $\chi'(G)$, $\chi'_\ell(G)$, and $\chi'_{DP}(G)$ respectively. The following hypothesis is known as the Edge List Coloring Conjecture and is a major open problem in graph theory:

Conjecture 1.9 (Edge List Coloring Conjecture, see [15]). For every graph G, $\chi'_\ell(G) = \chi'(G)$.

In an elegant application of the orientation method, Galvin [14] verified the Edge List Coloring Conjecture for bipartite graphs:

Theorem 1.10 (Galvin [14]). For every bipartite graph G, $\chi'_\ell(G) = \chi'(G) = \Delta(G)$.

We show that this famous result fails for DP-coloring; in fact, it is impossible for a d-regular graph G with $d \geq 2$ to have DP-chromatic index d:

Theorem 1.11. If $d \geq 2$, then every d-regular graph G satisfies $\chi'_{DP}(G) \geq d + 1$.

We prove Theorem 1.11 in Section 3.

Vizing [22] proved that the inequality $\chi'(G) \leq \Delta(G) + 1$ holds for all graphs G. He also conjectured the following weakening of the Edge List Coloring Conjecture:

Conjecture 1.12 (Vizing). For every graph G, $\chi'_\ell(G) \leq \Delta(G) + 1$.

We do not know if Conjecture 1.12 can be extended to DP-colorings:

Problem 1.13. Do there exist graphs G with $\chi'_{DP}(G) \geq \Delta(G) + 2$?

In Section 4 we discuss two natural ways to define edge-DP-colorings for multigraphs. According to one of them, the DP-chromatic index of the multigraph K^d_2 with two vertices joined by d parallel edges is $2d$.

2 Proof of Theorem 1.8

In this section we construct a planar bipartite graph G with DP-chromatic number 4. The main building block of our construction is the graph Q shown in Figure 3 on the left, i.e., the skeleton of the 3-dimensional cube. Let $\mathcal{F} = (L, F)$ denote the cover of Q shown in Figure 3 on the right.

![Figure 3: The graph Q (left) and its cover \mathcal{F} (right).](image)

Lemma 2.1. The graph Q is not \mathcal{F}-colorable.

Proof. Suppose, towards a contradiction, that I is an \mathcal{F}-coloring of Q. Since $L(a) = \{x\}$, we have $x \in I$, and, similarly, $y \in I$. Since z_1 is the only vertex in $L(c_1)$ that is not adjacent to x or y, we also have $z_1 \in I$, and, similarly, $z_2 \in I$. This leaves only 2 vertices available in each of $L(d_1)$, $L(d_2)$, $L(d_3)$, and $L(d_4)$, and it is easy to see that these 8 vertices do not contain an independent set of size 4 (cf. the cover \mathcal{H}_2 of the 4-cycle shown in Figure 1 on the right). \[\Box\]

Consider 9 pairwise disjoint copies of Q, labeled Q_{ij} for $1 \leq i, j \leq 3$. For each vertex $u \in V(Q)$, its copy in Q_{ij} is denoted by u_{ij}. Let $\mathcal{F}_{ij} = (L_{ij}, F_{ij})$ be a cover of Q_{ij} isomorphic to \mathcal{F}. Again, we assume that the graphs F_{ij} are pairwise disjoint and use u_{ij} to denote the copy of a vertex $u \in V(F)$ in F_{ij}. Let G be the graph obtained from the (disjoint) union of the graphs Q_{ij} by identifying the vertices a_{11}, ..., a_{33} to a new vertex a^* and the vertices b_{11}, ..., b_{33} to a new vertex b^*. Let H be the graph obtained from the union of the graphs F_{ij} by identifying, for each $1 \leq i, j \leq 3$, the...
vertices x_{i1}, x_{i2}, x_{i3} to a new vertex x_i and the vertices y_{ij}, y_{2j}, y_{3j} to a new vertex y_j. Define the map $L^*: V(G) \to \text{Pow}(V(H))$ as follows:

$$L^*(u) := \begin{cases}
L_{ij}(u) & \text{if } u \in V(Q_{ij}); \\
\{x_1, x_2, x_3\} & \text{if } u = a^*; \\
\{y_1, y_2, y_3\} & \text{if } u = b^*.
\end{cases}$$

Then $\mathcal{H} := (L^*, H)$ is a 3-fold cover of G. We claim that G is not \mathcal{H}-colorable. Indeed, suppose that I is an \mathcal{H}-coloring of G and let i and j be the indices such that $\{x_i, y_j\} \subset I$. Then I induces an \mathcal{F}_{ij}-coloring of Q_{ij}, which cannot exist by Lemma 2.1. Since G is evidently planar and bipartite, the proof of Theorem 1.8 is complete.

3 Proof of Theorem 1.11

Let $d \geq 2$ and let G be an n-vertex d-regular graph. If $\chi'(G) = d + 1$, then $\chi'_{DP}(G) \geq d + 1$ as well, so from now on we will assume that $\chi'(G) = d$. In particular, n is even. Indeed, a proper coloring of $\text{Line}(G)$ is the same as a partition of $E(G)$ into matchings, and if n is odd, then d matchings can cover at most $d(n - 1)/2 < dn/2 = |E(G)|$ edges of G.

Let $uv \in E(G)$ and let $G^u := G - uv$. Our argument hinges on the following simple observation:

Lemma 3.1. Let C be a set of size d and let $f : E(G') \to C$ be a proper coloring of $\text{Line}(G')$. For each $w \in \{u, v\}$, let f_w denote the unique color in C not used in coloring the edges incident to w. Then $f_w = f_{\bar{w}}$.

Proof. For each $c \in C$, let $M_c \subseteq E(G')$ denote the matching formed by the edges e with $f(e) = c$. Then $|M_c| \leq n/2$ for all $c \in C$. Moreover, by definition, $\max\{|M_w|, |M_{\bar{w}}|\} \leq n/2 - 1$. Thus, if $f_w \neq f_{\bar{w}}$, then

$$\frac{dn}{2} - 1 = |E(G')| = \sum_{c \in C} |M_c| \leq \frac{dn}{2} - 2;$$

a contradiction. \hfill \blacksquare

Let \mathbb{Z}_d denote the additive group of integers modulo d and let H be the graph with vertex set

$$V(H) := E(G) \times \mathbb{Z}_d,$$

in which the following pairs of vertices are adjacent:

- (e, i) and (e, j) for $e \in E(G)$ and $i, j \in \mathbb{Z}_d$ with $i \neq j$,
- (e, i) and (h, i) for $eh \in E(\text{Line}(G'))$ and $i \in \mathbb{Z}_d$,
- (uv, i) and (u', i) for $uv \in E(G')$ and $i \in \mathbb{Z}_d$,
- (uv, i) and $(u'v, i + 1)$ for $u'v \in E(G')$ and $i \in \mathbb{Z}_d$.

For each $e \in E(G)$, let $L(e) := \{e\} \times \mathbb{Z}_d$. Then $\mathcal{H} := (L, H)$ is a d-fold cover of $\text{Line}(G)$. We claim that $\text{Line}(G)$ is not \mathcal{H}-colorable (which proves Theorem 1.11). Indeed, suppose that I is an \mathcal{H}-coloring of $\text{Line}(G)$. For each $e \in E(G')$, let $f(e)$ denote the unique element of \mathbb{Z}_d such that $(e, f(e)) \in I$. Then f is a proper coloring of $\text{Line}(G')$ with \mathbb{Z}_d as its set of colors. Let f_w be the
unique element of Z_d that is not used in coloring the edges incident to u. Then the only element of $L(uv)$ that can, and therefore must, belong to I is (uv, i). On the other hand, Lemma 3.1 implies that i is also the unique element of Z_d that is not used in coloring the edges incident to v, and, in particular, for some $u'v \in E(G')$, $f(u'v) = i + 1$. Since (uv, i) and $(u'v, i + 1)$ are adjacent vertices of H, I is not an independent set, which is a contradiction.

4 Edge-DP-colorings of multigraphs

One can extend the notion of DP-coloring to loopless multigraphs, see [6]. The definitions are almost identical; the only difference is that in Definition 1.1, (C4) is replaced by the following:

(C4′) If u and v are connected by $t \geq 1$ edges in G, then $E_H(L(u), L(v))$ is a union of t matchings.

An interesting property of DP-coloring of multigraphs is that the DP-chromatic number of a multigraph may be larger than its number of vertices. For example, the multigraph K^t_k obtained from the complete graph K_k by replacing each edge with t parallel edges satisfies $\chi_{DP}(K^t_k) = \Delta(K^t_k) + 1 = tk - t + 1.$ (See [6, Lemma 7].)

Similarly to the case of simple graphs, the line graph $\text{Line}(G)$ of a multigraph G is the graph with vertex set $E(G)$ such that two vertices of $\text{Line}(G)$ are adjacent if and only if the corresponding edges of G share at least one endpoint. Notice that, in particular, $\text{Line}(G)$ is always a simple graph. Sometimes, instead of $\text{Line}(G)$, it is more natural to consider the line multigraph $\text{MLine}(G)$, where if two edges of G share both endpoints, then the corresponding vertices of $\text{MLine}(G)$ are joined by a pair edges. Line multigraphs were used, e.g., in the seminal paper by Galvin [14] and also in [8, 9].

Somewhat surprisingly, Shannon’s bound $\chi'(G) \leq 3\Delta(G)/2$ [19] on the chromatic index of a multigraph G does not extend to $\chi_{DP}(\text{MLine}(G))$. Indeed, if $G \cong K^d_2$, i.e., if G is the 2-vertex multigraph with d parallel edges, then $\text{MLine}(G) \cong K^d_2$, so

$$\chi_{DP}(\text{MLine}(G)) = \chi_{DP}(K^d_2) = 2d - 1 = 2\Delta(G) - 1.$$

This is in contrast with the result in [8] that $\chi'_G(G) \leq 3\Delta(G)/2$ for every multigraph G. However, we conjecture that the analog of Shannon’s theorem holds for line graphs:

Conjecture 4.1. For every multigraph G, $\chi_{DP}(\text{Line}(G)) \leq 3\Delta(G)/2$.

References

[1] N. Alon and M. Tarsi. *Colorings and orientations of graphs*, Combinatorica, vol. 12 (1992), 125–134.

[2] N. Alon. *Degrees and choice numbers*, Random Structures & Algorithms, vol. 16 (2000), 364–368.

[3] A. Bernshteyn. *The asymptotic behavior of the correspondence chromatic number*, Disc. Math., vol. 339 (2016), 2680–2692.

[4] A. Bernshteyn. *The Johansson–Molloy theorem for DP-coloring*, preprint, 2017; arXiv:1708.03843.
[5] A. Bernshteyn and A. Kostochka. *Sharp Dirac’s theorem for DP-critical graphs*, preprint, 2016; arXiv:1609.09122.

[6] A. Bernshteyn, A. Kostochka, and S. Pron. *On DP-coloring of graphs and multigraphs* (in Russian), Sib. Math. J., vol. 58 (2017), n. 1, 36–47; English version: arXiv:1609.00763.

[7] O. Borodin. *Colorings of plane graphs: a survey*, Disc. Math., vol. 313 (2013), 517–539.

[8] O.V. Borodin, A. Kostochka, and D.R. Woodall. *List edge and list total colourings of multigraphs*, J. Combin. Theory, Ser. B, vol. 71 (1997), 184–204.

[9] O.V. Borodin, A. Kostochka, and D.R. Woodall. *On kernel-perfect orientations of line graphs*, Disc. Math., vol. 191 (1998), 45–49.

[10] G.A. Dirac. *A theorem of R.L. Books and a conjecture of H. Hadwiger*, Proc. London Math. Soc., vol. 7 (1957), n. 3, 161–195.

[11] G.A. Dirac. *The number of edges in critical graphs*, J. für die reine und angewandte Mathematik, 268–269, 1974, 150–164.

[12] Z. Dvořák and L. Postle. *List-coloring embedded graphs without cycles of lengths 4 to 8*, preprint, 2015; arXiv:1508.03437.

[13] P. Erdős, A.L. Rubin, and H. Taylor. *Choosability in graphs*, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI (1979), 125–157.

[14] F. Galvin. *The list chromatic index of a bipartite multigraph*, J. of Combin. Theory, Ser. B, vol. 63 (1995), 153–158.

[15] T.R. Jensen and B. Toft. *12.20 List-edge-chromatic numbers*, Graph Coloring Problems, New York: Wiley-Interscience, 1995, 201–202.

[16] A. Johansson. *Asymptotic choice number for triangle free graphs*. Technical Report 91–95, DIMACS, 1996.

[17] A.V. Kostochka and M. Stiebitz. *A list version of Dirac’s theorem on the number of edges in colour-critical graphs*, J. of Graph Theory, vol. 39 (2002), n. 3, 165–177.

[18] M. Molloy. *The list chromatic number of graphs with small clique number*, preprint, 2017; arXiv:1701.09133.

[19] C.E. Shannon. *A theorem on coloring the lines of a network*, J. Math. Physics, vol. 28 (1949), 148–151.

[20] C. Thomassen. *Every planar graph is 5-choosable*, J. Combin. Theory, Ser. B, vol. 62 (1994), 180–181.

[21] C. Thomassen. *3-list-coloring planar graphs of girth 5*, J. Combin. Theory, Ser. B, vol. 64 (1995), 101–107.

[22] V.G. Vizing *On an estimate of the chromatic class of a p-graph* (in Russian), Diskret. Analiz., vol. 3 (1964), 25–30.

[23] V.G. Vizing. *Vertex colorings with given colors* (in Russian), Diskret. Analiz., vol. 29 (1976), 3–10.