Morphological evolution of Pt-modified nanoporous gold after thermal coarsening in reductive and oxidative environments

A. A. El-Zoka1, 2, B. Langelier2, G. A. Botton2 and R. C. Newman3, 4, 5

Nanoporous gold made by dealloying AgAuPt (NPG-Pt) has been shown to exhibit several interesting catalytic properties, tied to its exceptionally high surface area; however, structural degradation may occur owing to thermal coarsening. To understand the effect of atmosphere chemistry on thermal coarsening and degradation, and means of limiting it, this study focuses on the high-resolution characterization of NPG-Pt layers coarsened in reductive Ar-H₂ atmosphere, and in oxidative air. Atom probe tomography (APT) analysis is performed on NPG-Pt, coarsened separately in either Ar-H₂ or air, to characterize the atomic-scale chemical changes in the nanoligaments and to develop a mechanistic view of the inherent processes. A tendency of Ag to segregate to the surface during coarsening is found to lead to complete elimination of the nanoligament core-shell structures in both cases. Large Pt segregates form during coarsening in Ar-H₂, but under the surface of the ligaments, having relatively little effect on the coarsening rate. The oxygen-induced segregation of Pt was observed to cause the inhibition of thermal coarsening after minor loss in surface area-to-volume ratio. Findings in this paper help in understanding further the thermal coarsening of heterogeneous nanomaterials made by dealloying, and the pertinent factors that come into play in different chemical environments.

RESULTS AND DISCUSSION
Thermal coarsening in reductive atmosphere

As is clear from the focused ion beam (FIB) cross-section images in Fig. 1c, the ligament sizes for the sample coarsened in the reductive atmosphere are significantly larger (~200 nm) than those observed previously in the APT study of as-dealloyed NPG-Pt5. Another observation in Fig. 1c, is the voids (dark feature highlighted in inset) present inside the large ligaments. A more recent in situ STEM study of coarsening in reductive atmosphere by the authors11 showed enclosed voids in NPG and NPG-Pt. Similar voids (or bubbles) were also observed previously using electron tomography59, and positron annihilation60. Kinetic Monte Carlo simulations by Erlebacher11 alluded to void formation being

INTRODUCTION
Nanoporous gold (NPG) is formed by the selective dissolution of Ag from a binary solid solution of Ag and Au1-3. Dealloying produces a nanoporous structure, which has a high surface area-to-volume ratio, making it a candidate material for surface area-driven energy applications4-6. The functionality of NPG, however, is limited by the stability of its nanostructure, especially if used at elevated temperatures.

NPG-Pt, made from AgAuPt precursors with systematic variation of Pt content, was shown by Vega and Newman to exhibit limited coarsening of ligaments during the dealloying process, making them as small as 3 nm7. 3D Atom probe tomography (APT) analysis of the ligaments by the present authors have revealed Pt clustering on nanoligament surfaces, to which the feature size refinement is attributed8, 9. The use of APT had been considered difficult for NPG and NPG-Pt owing to the high porosity. To address that, a electrodeposition method of Cu was developed to infiltrate the porosity and enable successful APT analysis10.

NPG-Pt was shown to coarsen significantly in reductive atmospheres, similar to NPG, at temperatures of 250 °C and above11. The coarsening of NPG-Pt by Ostwald ripening (OR) eventually leads to the complete annihilation of porosity (i.e., densification), especially when reaching temperatures of 400 °C and above11. This is mainly owing to the desegregation of Pt away from the surfaces of nanoligaments as shown by previous studies on Au-Pt nanosystems12, 13.

An interesting property investigated by Vega and Newman in a previous study11 is that the thermal coarsening of NPG-Pt in air is impeded in the range of 200–500 °C. Oxygen-induced segregation of Pt acts to inhibit the surface diffusion of Au, which is considered as the main facilitator for coarsening to occur at temperatures as low as 200 °C10. The favorable interaction of Pt with O (relative to that of Au with O), induces the segregation of Pt atoms to the surface, replacing Au atoms16.

Changes in the nanoscale chemical composition of as-dealloyed ligaments might not be limited to Pt and Au. Several theoretical studies on Au-Ag nanoparticles have shown the tendency of Ag to segregate to the surface at elevated temperatures57, 58. Preferential segregation of Ag to the surface was also shown for bulk AgAu alloy19. Investigating the changes to chemical and morphological properties of nanoligaments would help in understanding the thermal coarsening process and the functionality of NPG-Pt in reductive and oxidative atmospheres.

The present paper builds upon an atom probe study of dealloying in ternary AgAuPt alloys8. In this paper, different behaviors of Au, Ag, and Pt are correlated with the coarsening behavior of NPG-Pt (made from dealloying AgAuPt3) in Ar-H₂ and air at 300 °C, using recently developed APT methods10 to measure the chemical structure of nanoligaments at the atomic-scale and the associated nanoligament morphologies.
a result of solid-state Rayleigh instability, controlled by surface diffusion, during coarsening. Although atomistic simulations by Kolluri and Demkowicz22 suggested that the localized plasticity at nodes and within the ligaments leads to neighboring ligaments collapsing, and ultimately void formation. At this point, the source of these voids and their evolution during thermal coarsening is not yet fully concluded. Future studies focused on microstructural examinations of ligament/pore sizes after dealloying and at successive steps of thermal coarsening should clarify further the source of encased voids, and their role in coarsening.

The shrinkage observed in the nanoporous layer depth owing to coarsening also agrees well with previous measurements, supporting further that shrinkage in the dealloyed layer during thermal coarsening does exist at temperatures where ordinary lattice diffusion is not expected to contribute to the mass transport process. Atom maps for typical samples of NPG-Pt coarsened in Ar-H\textsubscript{2} are shown in Fig. 2, where coarsened ligaments and the surrounding Cu filling are shown.

A chemical profile across a single nanoligament coarsened at 300 °C in reducing atmosphere is presented in Fig. 3. The Ag and Au compositions are both observed to be uniform across the ligament. This result contrasts Ag and Au profiles for as-dealloyed NPG-Pt, as found in previous APT analysis8–10, which exhibited a clear core-shell structure. As the distribution of Ag and Au is now homogenous, the core-shell structure can be understood as having been eliminated by thermal coarsening. Nanoscale homogenization of originally segregated AgAu nanoparticles was observed previously in reducing environments at elevated temperatures23. As for Pt, a clear enrichment towards the core of the ligament, compared with being primarily surface-segregated in the as-dealloyed material, supports the desegregation of Pt from the surface in reductive atmospheres discussed by Vega and Newman14. The distribution of Pt is also not as uniform when compared with that of Ag and Au, showing evidence of clustering and segregation from the Ag and Au elements inside the nanoligament.

The surface diffusion dealloying model predicts a Au-rich nanoligament surface owing to the kinetic entrapment of Ag inside ligament cores during their formation10,24. More specifically to NPG-Pt, previous APT studies by the authors have observed the co-segregation of Au and Pt at nanoligament surfaces8. The current observation, suggesting a tendency of Ag to move to the ligament surface in reductive atmospheres during coarsening, is significant as it shows that Ag contributes to the coarsening process led by diffusion of atoms on nanoligament surfaces. This contribution could be eliminated by increasing the amount of Ag removed during dealloying, as that would decrease further the Ag retained inside nanoligaments by what is known as secondary dealloying7,25.

The considerable Ag surface enrichment observed at relatively low temperatures for NPG-Pt could be attributed to the role of curvature. A coarsening-mediated Ag surface segregation was shown to have accelerated Ag enrichment at the surface by Pia et al.26 considering NPG in an environment of CO and O\textsubscript{2}.

To monitor the change in Pt distribution across the nanoligaments, chemical mappings across a horizontal 2 nm-thick slice of a few interconnected ligaments are presented in Fig. 4. Large segregates of Pt are observed. In the bigger nanoligament, Pt clusters are located inside the ligament, consistent with the chemical profile in Fig. 3. Yet other Pt segregates, on the relatively thinner ligaments seem to be at the surfaces. This observation

Fig. 1 Cross-sectional analysis and APT specimen preparation of NPG-Pt thermally coarsened in reductive atmosphere. SEM images showing FIB sample preparation of an APT sample for Cu-filled NPG-Pt, heated at 300 °C in Ar-H\textsubscript{2}. a Sample surface (scale bar is 20 μm). b FIB cross-section cut showing the Cu-filled NPG layer, between the Cu deposition and bulk alloy (scale bar is 2 μm). c A high magnification image showing the coarsened ligaments and the inset showing an example of entrapped voids (V) within a ligament (L), completely independent from a Cu-filled pore (P) (scale bar is 200 nm). d The APT needle following annular milling (scale bar is 200 nm). e The final APT specimen after low-kV sharpening (scale bar is 200 nm).

Fig. 2 Atom maps of a single thermally coarsened nanoligament. 3D APT atom maps of Cu-filled NPG-Pt heated at 300 °C in Ar-H\textsubscript{2} showing Ag, Au, Pt, and Cu atoms. Scale bar is 10 nm. Refer to supplementary video for 3D reconstruction.
might appear counterintuitive, as a non-favorable interaction with the reducing atmosphere is expected to drive Pt desegregation from the surface. However, considering coarsening kinetics, we postulate that these Pt segregates found at the surfaces of thinner nanoligaments are a result of Pt having a much lower surface mobility than Au. This causes the Pt to be left behind at the surfaces of very thin nanoligaments that are shrinking and on the verge of collapsing.

Although it is expected that Pt has a high mobility when moving on a surface of Au, it is important to note that Pt is already clustered in as-dealloyed NPG-Pt, making Pt rearrangement even slower. Clusters of several Pt atoms would also have a higher activation energy for moving around as a cluster. Meanwhile, the extremely immobile Pt segregates are increasing in size, due to the tendency to minimize interaction surface area with the reducing atmosphere, especially at areas of the nanoligaments with high curvature (saddle points).

Inhibited thermal coarsening in oxidative atmosphere

In contrast to NPG-Pt annealed in Ar-H₂, the ligament/pore sizes in the air-annealed NPG-Pt do not show the same coarsening. This can be seen in both the SEM images of the NPG-Pt (Fig. 5) and the APT data (Fig. 6). The cross-sectional image of Fig. 5c reveals a thicker layer of NPG-Pt, compared with H₂-annealed NPG-Pt, and with small feature size, not dissimilar to that observed in as-dealloyed NPG-Pt. This is further supported by a direct comparison of the APT data for the two respective ligament structures, as shown in Fig. 7. Clearly, the thermal coarsening of ligaments was inhibited owing to the oxidative environment, such that the ligament network remains visibly similar in size and scale to the as-dealloyed material.

To understand the effect of the oxidizing environment on the chemical distribution across nanoligaments, chemical mappings are examined. These are shown for a vertical cross-section in Fig. 8. Significant Pt enrichment is observed at ligament surfaces.

Inhibited thermal coarsening in oxidative atmosphere

In contrast to NPG-Pt annealed in Ar-H₂, the ligament/pore sizes in the air-annealed NPG-Pt do not show the same coarsening. This can be seen in both the SEM images of the NPG-Pt (Fig. 5) and the APT data (Fig. 6). The cross-sectional image of Fig. 5c reveals a thicker layer of NPG-Pt, compared with H₂-annealed NPG-Pt, and with small feature size, not dissimilar to that observed in as-dealloyed NPG-Pt. This is further supported by a direct comparison of the APT data for the two respective ligament structures, as shown in Fig. 7. Clearly, the thermal coarsening of ligaments was inhibited owing to the oxidative environment, such that the ligament network remains visibly similar in size and scale to the as-dealloyed material.

To understand the effect of the oxidizing environment on the chemical distribution across nanoligaments, chemical mappings are examined. These are shown for a vertical cross-section in Fig. 8. Significant Pt enrichment is observed at ligament surfaces.

Inhibited thermal coarsening in oxidative atmosphere

In contrast to NPG-Pt annealed in Ar-H₂, the ligament/pore sizes in the air-annealed NPG-Pt do not show the same coarsening. This can be seen in both the SEM images of the NPG-Pt (Fig. 5) and the APT data (Fig. 6). The cross-sectional image of Fig. 5c reveals a thicker layer of NPG-Pt, compared with H₂-annealed NPG-Pt, and with small feature size, not dissimilar to that observed in as-dealloyed NPG-Pt. This is further supported by a direct comparison of the APT data for the two respective ligament structures, as shown in Fig. 7. Clearly, the thermal coarsening of ligaments was inhibited owing to the oxidative environment, such that the ligament network remains visibly similar in size and scale to the as-dealloyed material.

To understand the effect of the oxidizing environment on the chemical distribution across nanoligaments, chemical mappings are examined. These are shown for a vertical cross-section in Fig. 8. Significant Pt enrichment is observed at ligament surfaces.
of collapsing had immobile Pt segregates at the surface, left behind by the more mobile Ag and Au.

In oxidative environments, thermal coarsening is inhibited owing to the enrichment of Pt at nanoligament surfaces, via the positive interaction between O and Pt. The nanoligament size showed little change as a result. The core-shell structure of as-dealloyed ligaments is also eliminated in oxidative air, even though the change in surface area-to-volume ratio is minimal and surface diffusion of Ag, Au is practically inhibited. Compositional changes across the entire dealloyed layer remain to be further investigated, with particular focus on local chemistry at the dealloying interface.

Fig. 5 Cross-sectional analysis and APT specimen preparation of NPG-Pt thermally coarsened in oxidative atmosphere. SEM images showing FIB sample preparation of an APT sample for Cu-filled NPG-Pt, heated at 300 °C in air. a Sample surface (scale bar is 20 μm). b Cut out showing the Cu-filled NPG layer, between the Cu deposition and bulk alloy (scale bar is 2 μm). c A high magnification image showing the fine ligament-pore structure (scale bar is 200 nm). d The APT needle following annular milling (scale bar is 500 nm). e The final APT specimen after low-kV sharpening (scale bar is 200 nm).

Fig. 6 Atom map of NPG-Pt layer along with the parent alloy (AgAuPt) after coarsening in air. 3D APT atom maps of Cu-filled dealloyed layer on NPG-Pt, air-annealed at 300 °C for 2 h showing Au, Ag, Pt, and Cu atoms. Scale bar is 50 nm. Refer to supplementary video for 3D reconstruction.

Fig. 7 Retained ligament-pore structure in NPG-Pt after annealing in air, owing to impeded thermal coarsening. a 3D atom maps showing ligaments of a NPG-Pt air-annealed at 300 °C for 2 h, and b as-dealloyed NPG-Pt (full methodology for spatially-determining the ligament boundaries and data for as-dealloyed NPG-Pt from ref. 9). Scale bar is 20 nm.

Fig. 8 Formation of nanoscale Pt surface segregates and elimination of core-shell distribution of AgAu. Concentration maps taken from 5 nm-thick slices of APT volumes of NPG-Pt air-annealed at 300 °C for 2 h, along the longitudinal axis. Scale bar is 30 nm.
APT analysis was conducted using a Cameca local electrode atom probe (LEAP) >4000 HR (Cameca Instruments, USA). Data were acquired while operating in laser-pulsing mode (λ = 355 nm) with a pulse of 40–60 pJ and a pulse rate of 100–125 kHz. The target evaporation rate was set to 0.003 or 0.005 ions per pulse (0.3 or 0.5%) by adjusting an applied DC voltage (typically ranging from ~2 to 5 kV). The base temperature for the specimen stage during analysis was ~60 K, and the chamber pressure was approximately 10^{-8} Pa. Reconstruction and analysis were performed using IVAS 3.8 software, using SEM images of the tips to assist with spatial calibration of the reconstructions.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding authors upon request.

Received: 2 July 2020; Accepted: 31 October 2020; Published online: 07 December 2020
22. Kolluri, K. & Demkowicz, M. J. Coarsening by network restructuring in model nanoporous gold. Acta Mater. 59, 7645–7653 (2011).
23. Yen, C. W. et al. CO oxidation catalyzed by Au-Ag bimetallic nanoparticles supported in mesoporous silica. J. Phys. Chem. C. 113, 17831–17839 (2009).
24. Liu, Y., Bliznakov, S. & Dimitrov, N. Factors controlling the less noble metal retention in nanoporous structures processed by electrochemical dealloying. J. Electrochem. Soc. 157, K168–K176 (2010).
25. Ye, X.-L. et al. Primary and secondary dealloying of Au(Pt)-Ag: structural and compositional evolutions, and volume shrinkage. J. Electrochem. Soc. 161, C517–C526 (2014).
26. Pia, G., Sogne, E., Falqui, A. & Delogu, F. Ag surface segregation in nanoporous Au catalysts during CO oxidation. Sci. Rep. 8, 15208 (2018).
27. Göbel, H. & von Blanckenhagen, P. A study of surface diffusion on gold with an atomic force microscope. Surf. Sci. 331–333, 885–890 (1995).
28. Lin, T. S. & Chung, Y. W. Measurement of the activation energy for surface diffusion in gold by scanning tunneling microscopy. Surf. Sci. 207, 539–546 (1989).
29. Leppert, L., Albuquerque, R. Q. & Foster, A. S. & Kümmler, S. Interplay of electronic structure and atomic mobility in nanoalloys of au and pt. J. Phys. Chem. C. 117, 17268–17273 (2013).
30. Deák, R., Nédá, Z. & Barna, P. B. A kinetic Monte Carlo approach for self-diffusion of Pt atom clusters on a Pt(111) surface. Commun. Comput. Phys. 10, 920–939 (2011).
31. Liu, S., Zhang, Z., Nerskov, J. & Metiu, H. The mobility of Pt atoms and small Pt clusters on Pt(111) and its implications for the early stages of epitaxial growth. Surf. Sci. 321, 161–171 (1994).
32. Schoeb, A. M. et al. Driving force for surface segregation in bimetallic catalysts. Surf. Sci. 278, L125–L130 (1992).
33. Zhou, C. et al. Growth pathway of Pt clusters on α-Al2O3(0001) surface. J. Phys. Chem. C. 111, 13786–13793 (2007).
34. Oudenhuijzen, M. K., Bitter, J. H. & Koningsberger, D. C. The nature of the Pt-H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt-H antibonding shaperesonance and Pt-H EXAFS. J. Phys. Chem. B 105, 4616–4622 (2001).
35. Stephan, J. J., Ponec, V. & Sachtler, W. M. H. The temperature programmed desorption of hydrogen from platinum and platinum-gold films. Surf. Sci. 47, 403–412 (1975).
36. Fujita, T. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775–780 (2012).
37. Schumacher, D., Seeger, A. & Härlin, O. Vacancies, divacancies, and self-diffusion in platinum. Phys. Status Solidi 25, 359–371 (1968).
38. Thompson, K. et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007).

ACKNOWLEDGEMENTS
The authors acknowledge support by an NSERC Discovery Grant (RGPIN-2014-03995) and Accelerator Supplement (RGPAS 462039-14) awarded to R.C. Newman. The authors acknowledge the facilities, scientific, and technical assistance from the Canadian Centre for Electron Microscopy (CCEM) a facility supported by the Canada Foundation for Innovation under the Major Science Initiative program, NSERC and at McMaster University.

AUTHOR CONTRIBUTIONS
A.E. and R.C.N. designed the research. A.E. carried out the dealloying, heat treatment, and inner-pore electroweaponsolysis. B.L. carried out the FIB sample preparation and APT experiments. B.L., G.B., A.E., R.C.N. analyzed the APT data. A.E. lead the writing of the manuscript. All authors contributed to the editing of the paper, and approval of the content in its current form.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/s41522-020-00143-4.

Correspondence and requests for materials should be addressed to A.A.E.-Z. or R.C.N.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.