DEVELOPMENT OF THE SPECTROPHOTOMETRIC METHOD FOR QUANTITATIVE DETERMINATION OF METRONIDAZOLE IN CAPSULES

O.S.Golovchenko, V.A.Georgiyants, A.V.Myhal
National University of Pharmacy

Key words: metronidazole; capsules; spectroscopy, assay

Pathological conditions of the digestive system are quite common nowadays and rank first among other human diseases. Increasingly, both newly-diagnosed and recurrent cases of stomach ulcers, as well as duodenal ulcers are recorded. Among solid drug dosage forms capsules are considered to be the most rational since the drug substance exhibits a low degree of dispersion, which leads to better absorption, resists additional negative impact in the production process, as well as possesses a lower damaging action on the mucous membranes of the digestive tract, etc. Thereby capsules are more and more often recommended for use by preference. Therefore, developing a feasible method of quantitative determination of metronidazole in capsules – the method of spectrophotometry in the ultraviolet region of the spectrum has become particularly urgent since high performance liquid chromatography recommended by the BP and USP is not used widely in Ukraine. The object of research was metronidazole capsules. The research has found that the excipients have little effect on the absorption spectrum of metronidazole obtained by extraction with 0.1 M hydrochloric acid solution from the content of capsules. The test solution has proven to be complied with the Beer-Lambert-Bouguer law within the concentration range of 0.5·10⁻³ % – 3.0·10⁻³ %. The certification of the method developed on the model mixtures and a production sample has confirmed its correctness. The average results uncertainty ε in the former case was 0.11%, whereas in the latter it constituted 0.70%.

Materials and Methods

The substance of metronidazole (manufacturer: Lutoian Hongyuan Biochemical Co., LTD, China, batch 08111803) and “TRIKACIDE” capsules containing 500 mg of metronidazole (manufacturer: Pharmascience Inc., 6111, Royalmaunt Avenue, Montreal, Quebec, Canada, batch 6452653) meeting the requirements of the SPhU were chosen as the objects of study.

First of all, the necessary condition for safe use of medicines is the existence of quality control methods available in each particular region. The State Pharmacopoeia of Ukraine (SPhU) recommends to determine the quantitative content of metronidazole capsules by using the liquid chromatography method [3]. However, it should be noted that for Ukraine this method is not widely available because of the high cost of the analysis and impossibility of providing the drug quality control laboratories with chromatographs on a large scale [9].

The aim of our paper was to develop more available method for determining the quantitative content of metronidazole in the form of capsules by spectrophotometry in the ultraviolet region of the spectrum.
to 0.1000 g of metronidazole (approximately 0.1209 g) in a 100.0 ml volumetric flask, add 50 ml of 0.1 M hydrochloric acid solution, shake for 15 min, dilute with the same solvent to the volume. Filter the solution obtained, reject the first and the last portions of the filtrate. Take the aliquot of 1.0 ml of the solution obtained, place in a 100.0 ml volumetric flask and dilute with the same solvent to the volume. Measure the absorbance on a spectrophotometer at the wavelength of 277 nm in a cell with the layer thickness of 10 mm. In parallel, perform the measurement of the metronidazole standard sample solution.

Preparation of Metronidazole Standard Sample Solution. Place 0.1000 g of metronidazole standard sample in a 100.0 ml volumetric flask, dissolve in 0.1 M hydrochloric acid solution, and dilute with the same solvent to the volume. Take the aliquot of 1.0 ml of the solution obtained and place in a 100.0 ml volumetric flask and dilute with the same solvent to the volume.

Preparation of Placebo Solution. Place 90.50 mg of microcrystalline cellulose, 7.00 mg of silicon dioxide and 7.00 mg of magnesium stearate in a 100.0 ml volumetric flask, and dissolve in 0.1 M hydrochloric acid solution, mix thoroughly, dilute with the same solvent to the volume. Filter the solution obtained, reject the first and the last portions of the filtrate. Take the aliquot of 1.0 ml of the solution obtained in a 100.0 ml volumetric flask and dilute with the same solvent to the volume.

Compensation solution. 0.1 M solution of hydrochloric acid.

Calculation formula:

\[X_{\text{mg}} = \frac{A \cdot m_{\text{st}} \cdot 100.0 \cdot 100.0 \cdot 1.0 \cdot m_{\text{a.m.caps}}}{A_{\text{st}} \cdot m_{\text{caps}} \cdot 1.0 \cdot 100.0 \cdot 100.0} \]

where: \(A \) – is absorbance of Test solution; \(A_{\text{st}} \) – is absorbance of Standard solution; \(m_{\text{caps}} \) – is the weight amount of the drug studied; \(m_{\text{a.m.caps}} \) – is the average mass of the content of 20 capsules in the batch under study.

Results and Discussion

As a solvent 0.1 M hydrochloric acid solution was chosen, which the world’s leading Pharmacopoeias [3, 11, 15, 20] recommend to use for the assay of metronidazole in the substance and the dosage forms.

First of all, the influence of excipients on the absorption spectrum of metronidazole was determined. In order to do that, the absorption spectra of the metronidazole standard sample solution, the extract from the content of capsules and placebo solution were compared. The UV absorption spectrum of the extract of the content of metronidazole capsules almost coincides with the UV-spectrum of the metronidazole standard sample solution. The influence of optical absorption of the placebo solution on absorption of the extract solution from the capsules content is very insignificant at the analytical wavelength of 277 nm in the medium of 0.1 M hydrochloric acid solution (Fig. 1).

It has been found that the graph of dependence of the absorbance of metronidazole solution on its concentration is linear at the wavelength of \(\lambda = 277 \) nm (Fig. 2). The compliance of the test solutions with the Beer-Lambert-Bouguer law is observed within the concentrations from \(0.5 \times 10^{-3} \% \) to \(3.0 \times 10^{-3} \% \). The average value of the specific absorbance in the experiment was 363.

The method for quantitative determination of metronidazole in capsules proposed was assessed on model mixtures. The results are presented in Tables 1 and 2. The uncertainty of the average result \(\varepsilon = 0.11\% \) meeting the requirements of the SPhU.

The results of quantitative determination of metronidazole in capsules on the production sample of the drug and metrological characteristics obtained from the statistical processing of the measurement results, are presented in Tables 3 and 4 [1-3, 4, 6]. In this case, the uncertainty of the average result \(\varepsilon \) meets the SPhU and is 0.70%.
Fig. 2. The graph of dependence of absorbance on the concentration of metronidazole solution in 0.1 M hydrochloric acid solution.

Table 1

Metronidazole taken, g	The weight amount of the metronidazole standard sample, g	Absorbance of metronidazole	Absorbance of the metronidazole standard sample	Found, g
0.1000	0.1000	0.383	0.383	0.1000
		0.384	0.383	0.1003
		0.384	0.383	0.1003
		0.389	0.388	0.1001
		0.390	0.388	0.1004
		0.389	0.388	0.1001

Table 2

v	\(\bar{x} \)	\(S^2 \)	\(S \)	\(S_2 \)	\(\Delta_1 \)	\(\Delta_2 \)	\(\bar{\varepsilon} \), %
5	0.1002	0.0000000184	0.0001356	0.00005535	0.0002732	0.0001115	0.11

Table 3

The metronidazole capsules content taken, g	The weight amount of the metronidazole standard sample, g	Absorbance of metronidazole	Absorbance of the metronidazole standard sample	Found, g (m_{a,m} = 0.6045)
0.1212	0.1000	0.387	0.382	0.5032
0.1205		0.385	0.382	0.5043
0.1216		0.381	0.382	0.4959
0.1210		0.378	0.382	0.4953
0.1213		0.378	0.382	0.4945
0.1211		0.381	0.382	0.4983

Table 4

v	\(\bar{x} \)	\(S^2 \)	\(S \)	\(S_2 \)	\(\Delta_1 \)	\(\Delta_2 \)	\(\bar{\varepsilon} \), %
5	0.4986	0.00001787	0.004227	0.001726	0.00852	0.003477	0.70
Thus, these results confirm the possibility of quantitative determination of metronidazole in capsules by the method proposed.

CONCLUSIONS
1. The characteristics of metronidazole solution meeting the requirements of the method of spectrophotometry have been confirmed.
2. The insignificant effect of the excipients on absorption of metronidazole in capsules has been found.
3. The method for quantitative determination of metronidazole in capsules by spectrophotometry in the ultraviolet and visible regions of the spectrum has been developed for the first time.

REFERENCES
1. Бевз Н.Ю., Грудько В.О., Георгіянц В.А. // Актуальні питання фармац. і мед. науки та практики. – 2012. – №1. – С. 23-26.
2. Бобрицька Л.О., Назарова О.С. // Управління, економіка та забезпечення якості в фармації. – 2012. – №2. – С. 38-43.
3. Державна фармацевтична України // Державне підприємство «Науково-експертний фармакопейний центр». – Доп. 4. – 1-е вид. – Х.: РІРЕГ, 2011. – 538 с.
4. Єстіфєвська О.А., Проскуріна К.І., Хмельова М.О. // Вісник фармації. – 2013. – №2. – С. 41-44.
5. Кількіні фармация (фармацевтична опіка): Підруч. для студ. вищ. мед. (фармац.) навч. закл. / За ред. В.П.Черних, І.А.Зупанця. – Х.: Золоті сторінки, 2011. – 704 с.
6. Монаїкина Ю.В., Васюк С.О., Гладишев В.В. // Актуальні питання фармац. і мед. науки та практики. – 2013. – №2. – С. 111-113.
7. Основи клінічної медицини: симптоми та синдроми в практичній фармації: навч. посіб. / За ред. В.П.Черних, І.А.Зупанця. – Х.: Орисінал; Вид-во НФаУ, 2012. – 92 с.
8. Технології зв’язків промислового виробництва: Підруч. в 2 ч. Ч.1. / Під ред. В.І.Чуєшова. – Х.: Орисінал; Вид-во НФаУ, 2012. – 696 с.
9. Фармацевтичний аналіз: Навч. посіб. для студ. вищ. фармац. навч. закл. III-IV рівні акредитації / За ред. проф. В.А.Георгіянц. – Х.: Вид-во НФаУ; Золоті сторонки, 2013. – 552 с.
10. Alahdab Y.O., Kalayci C. // World J. of Gastroenterol. – 2014. – №20(18). – P. 5302-5307. [Електронний документ]. – Режим доступу: http://www.wjgnet.com/1007-9327/full/v20/i18/5302.htm.
11. British Pharmacopoeia. – London. The Stationary Office. – 2001. – Vol. 1-2. – 3199 р.
12. Chey W.D., Wong B.C. // Am. J. Gastroenterol. – 2007. – №102. – P. 1808-1825. [Електронний документ]. – Режим доступу: http://www.nature.com/ajg/journal/v102/n8/full/ajg2007348a.pdf.
13. Clarke’s Analysis of Drugs and Poisons [Electronic version] // London: Pharmaceutical Press. – 2005.
14. Current European concepts in the management of Helicobacter pylori infection. The Maastricht Consensus Report. // Gut. – 1997. – Vol. 41. – P. 8-13.
15. European Pharmacopoeia. 6-th ed. Vol. 2.2. – Council of Europe: Strasbourg. – 2007. – P. 2414-2415.
16. Malfertheiner P., Bazzoli F., Delchier J.C. et al. // Lancet. – 2011. [Електронний документ]. – Режим доступу: http://www.thelancet.com/journals/lancet/article/PiIs0140-6736(11)60020-2/fulltext/
17. Malfertheiner P., Megraud F., O’Morain C. et al. // Gut. – 2012. – №61. – P. 646-664. [Електронний документ]. – Режим доступу: http://gut.bmj.com/content/61/5/646.long.
18. Malfertheiner P., Megraud F., O’Morain C. et al. // Gut. – 2007. – №56. – P. 772-781. [Електронний документ]. – Режим доступу: http://gut.bmj.com/content/56/6/772.long.
19. United States Pharmacopoeia 26. – USP Convention Inc. – Rockville, 2007. [Electronic version].
Разработка спектрофотометрической методики количественного определения метронидазола в капсулах

О.С. Головченко, В.А. Георгиянц, А.В. Мигаль

Ключевые слова: метронидазол; капсулы; спектрофотометрия; количественное определение

Патологии органов пищеварения являются достаточно распространенными на сегодняшний день и занимают первые места среди других заболеваний человека. Все чаще фиксируются случаи как впервые появившихся язвенных дефектов желудка и двенадцатиперстной кишки, так и их рецидивы. Среди твердых лекарственных форм капсулы считаются наиболее рациональными, поскольку лекарственное вещество имеет маленькую дисперсность, что способствует лучшему всасыванию, не подвергается дополнительному негативному влиянию в процессе производства, имеет более низкое повреждающее действие на слизистые оболочки желудочно-кишечного тракта и т. д. В связи с этим все чаще рекомендуют использовать именно данную форму. Поэтому актуальным является вопрос разработки доступного метода количественного определения метронидазола в капсулах — метода спектрофотометрии в ультрафиолетовой области спектра, поскольку высокоэффективная жидкостная хроматография, рекомендованная BP и USP, не имеет широкого применения в Украине. Объектом исследования стали капсулы метронидазола. В ходе исследования установлено, что вспомогательные вещества незначительно влияют на спектр поглощения раствора метронидазола, полученную путем экстракции из содержимого капсул 0,1 М раствором кислоты хлористоводородной. Доказано подчинение исследуемого раствора закону Бугера-Ламберта-Бера в границах концентраций 0,5·10^{-3} % — 3,0·10^{-3} %. Аттестация разработанной методики на модельных смесях и серийном образце препарата подтвердила ее корректность. Неопределенность среднего результата ε в первом случае составила 0,11 %, а во втором — 0,70 %.

О. С. Головченко, В. А. Георгиянц, А. В. Мигаль

Ключевые слова: метронидазол; капсулы; спектрофотометрия; количественное определение

Патологии органов пищеварения являются достаточно распространенными на сегодняшний день и занимают первые места среди других заболеваний человека. Все чаще фиксируются случаи как впервые появившихся язвенных дефектов желудка и двенадцатиперстной кишки, так и их рецидивы. Среди твердых лекарственных форм капсулы считаются наиболее рациональными, поскольку лекарственное вещество имеет маленькую дисперсность, что способствует лучшему всасыванию, не подвергается дополнительному негативному влиянию в процессе производства, имеет более низкое повреждающее действие на слизистые оболочки желудочно-кишечного тракта и т. д. В связи с этим все чаще рекомендуют использовать именно данную форму. Поэтому актуальным является вопрос разработки доступного метода количественного определения метронидазола в капсулах — метода спектрофотометрии в ультрафиолетовой области спектра, поскольку высокоэффективная жидкостная хроматография, рекомендованная BP и USP, не имеет широкого применения в Украине. Объектом исследования стали капсулы метронидазола. В ходе исследования установлено, что вспомогательные вещества незначительно влияют на спектр поглощения раствора метронидазола, полученную путем экстракции из содержимого капсул 0,1 М раствором кислоты хлористоводородной. Доказано подчинение исследуемого раствора закону Бугера-Ламберта-Бера в границах концентраций 0,5·10^{-3} % — 3,0·10^{-3} %. Аттестация разработанной методики на модельных смесях и серийном образце препарата подтвердила ее корректность. Неопределенность среднего результата ε в первом случае составила 0,11 %, а во втором — 0,70%.