HERMITIAN CATEGORIES, EXTENSION OF SCALARS AND SYSTEMS OF SESQUILINEAR FORMS

EVA BAYER-FLUCKIGER¹, URIYA A. FIRST², AND DANIEL A. MOLDOVAN¹

Abstract. We prove that the category of systems of sesquilinear forms over a given hermitian category is equivalent to the category of unimodular 1-hermitian forms over another hermitian category. The sesquilinear forms are not required to be unimodular or defined on a reflexive object (i.e. the standard map from the object to its double dual is not assumed to be bijective), and the forms in the system can be defined with respect to different hermitian structures on the given category. This extends a result obtained in [5].

We use the equivalence to define a Witt group of sesquilinear forms over a hermitian category, and also to generalize various results (e.g.: Witt’s Cancellation Theorem, Springer’s Theorem, the weak Hasse principle, finiteness of genus) to systems of sesquilinear forms over hermitian categories.

Introduction

Quadratic and hermitian forms were studied extensively by various authors, who have developed a rich array of tools to study them. It is well-known that in many cases (e.g. over fields), the theory of sesquilinear forms can be reduced to the theory of hermitian forms (e.g. see [18], [17] and works based on them). In the recent paper [5], an explanation of this reduction was provided in the form of an equivalence between the category of sesquilinear forms over a ring and the category of unimodular 1-hermitian forms over a special hermitian category.

In this paper, we extend the equivalence of [5] to hermitian categories, and moreover, improve it in such a way that it applies to systems of sesquilinear forms in hermitian categories that admit non-reflexive objects (see section 2). That is, we prove that the category of systems of sesquilinear forms over a hermitian category C is equivalent to the category of unimodular 1-hermitian forms over another hermitian category C'.

The sesquilinear forms are not required to be

¹École Polytechnique Fédérale de Lausanne, Switzerland.
²Hebrew University of Jerusalem, Israel.

Date: May 11, 2014.

2010 Mathematics Subject Classification. 11E39, 11E81.

Key words and phrases. sesquilinear forms, hermitian forms, systems of sesquilinear forms, hermitian categories, K-linear categories, scalar extension, Witt group.

The second named author is partially supported by an Israel-US BSF grant #2010/149 and an ERC grant #226135. The third named author was partially supported by the Swiss National Science Fundation, grant 200020-109174/1.
unimodular or defined on a reflexive object, and the forms in the system can be defined with respect to different hermitian structures on the category C.

Using the equivalence, we present a notion of a Witt group of sesquilinear forms, which is analogous to the standard Witt group of hermitian forms over rings with involution (e.g. see [14] or [20]). We also extend various results (Witt’s Cancellation Theorem, Springer’s Theorem, finiteness of genus, the Hasse principle, etc.) to systems of sesquilinear forms over hermitian categories (and in particular to systems of sesquilinear forms over rings with a family of involutions).

Sections 1 and 2 recall the basics of sesquilinear forms over rings and hermitian categories, respectively. In section 3 we prove the equivalence of the category of sesquilinear forms over a given hermitian category to a category of unimodular 1-hermitian forms over another hermitian category, and in section 4, we extend this result to systems of sesquilinear forms. Section 5 presents applications of the equivalence.

1. Sesquilinear and Hermitian Forms

Let A be a ring. An involution on A is an additive map $\sigma : A \to A$ such that $\sigma(ab) = \sigma(b)\sigma(a)$ for all $a, b \in A$ and $\sigma^2 = \text{id}_A$. Let V be a right A-module. A sesquilinear form over (A, σ) is a biadditive map $s : V \times V \to A$ satisfying $s(xa, yb) = \sigma(s(x, y))b$ for all $x, y \in V$ and $a, b \in A$. The pair (V, s) is also called a sesquilinear form in this case. The orthogonal sum of two sesquilinear forms (V, s) and (V', s') is defined to be $(V \oplus V', s \oplus s')$ where $s \oplus s'$ is given by

$$(s \oplus s')(x \oplus x', y \oplus y') = s(x, y) + s'(x', y')$$

for all $x, y \in V$ and $x', y' \in V'$. Two sesquilinear forms (V, s) and (V', s') are called isometric if there exists an isomorphism of A-modules $f : V \isom V'$ such that $s'(f(x), f(y)) = s(x, y)$ for all $x, y \in V$.

Let $V^* = \text{Hom}_A(V, A)$. Then V^* has a right A-module structure given by $(f \cdot a)(x) = \sigma(a)f(x)$ for all $f \in V^*$, $a \in A$. We say that V is reflexive if the homomorphism of right A-modules $\omega_V : V \to V^{**}$ defined by $\omega_V(x)(f) = \sigma(f(x))$ for all $x \in V$, $f \in V^*$ is bijective.

A sesquilinear space (V, s) over (A, σ) induces two homomorphisms of right A-modules $s_l, s_r : V \to V^*$ called the left and right adjoint of s, respectively. They are given by $s_l(x)(y) = s(x, y)$ and $s_r(x)(y) = s(y, x)$ for all $x, y \in V$. Observe that $s_r = s_l^* \omega_V$ and $s_l = s_r^* \omega_V$. The form s is called unimodular if s_r and s_l are isomorphisms. In this case, V must be reflexive.

Let $\epsilon = \pm 1$. A sesquilinear form (V, s) over (A, σ) is called ϵ-hermitian if $\sigma(s(x, y)) = \epsilon s(y, x)$ for all $x, y \in V$, i.e. $s_r = \epsilon s_l$. A 1-hermitian form is also called a hermitian form.

1 Some texts use the term sesquilinear space.
There exists a classical notion of Witt group for unimodular ϵ-hermitian forms over (A, σ) (e.g., see [14]): Denote by $\text{WG}^\epsilon(A, \sigma)$ the Grothendieck group of isometry classes of unimodular ϵ-hermitian forms (V, s) over (A, σ) with V finitely generated projective, the addition being orthogonal sum. A unimodular ϵ-hermitian class of unimodular ϵ-hermitian forms are isometries. For brevity, let $UH(A, \sigma)$ denote over (A, σ) as morphisms.

We let $H = H^1$, where H is an additive category, $\omega = (\omega_C)_{C \in \mathcal{C}} : \text{id} \to \text{**}$ is a natural transformation satisfying $\omega^*_C \omega_{C'} = \text{id}_{C'}$ for all $C \in \mathcal{C}$. In this case, the pair (\ast, ω) is called a hermitian structure on \mathcal{C}. It is customary to assume that ω is a natural isomorphism rather than a natural transformation. Such hermitian categories will be called reflexive. In general, an object $C \in \mathcal{C}$ for which ω_C is an isomorphism is called reflexive, so the category \mathcal{C} is reflexive precisely when all its objects are reflexive. We will often drop \ast and ω from the notation and use these symbols to denote the functor and natural transformation associated with any hermitian category under discussion.

A sesquilinear form over the category \mathcal{C} is a pair (C, s) with $C \in \mathcal{C}$ and $s : C \to C^\ast$. A sesquilinear form (C, s) is called unimodular if s and $s^* \omega_C$ are isomorphisms. (If C is reflexive, then s is bijective if and only if $s^* \omega_C$ is bijective.) Let $\epsilon = \pm 1$. A sesquilinear form (C, s) is called ϵ-hermitian if $s = \epsilon s^* \omega_C$. For brevity, 1-hermitian forms are often called hermitian forms. Orthogonal sums of forms are defined in the obvious way. Let (C, s) and (C', s') be two sesquilinear forms over \mathcal{C}. An isometry from (C, s) to (C', s') is an isomorphism $f : C \xrightarrow{\sim} C'$ satisfying $s = f^* s' f$. In this case, (C, s) and (C', s') are said to be isometric. We let $\text{Sesq}(\mathcal{C})$ stand for the category of sesquilinear forms over \mathcal{C} with isometries as morphisms.

Denote by $UH^1(\mathcal{C})$ the category of unimodular ϵ-hermitian forms over \mathcal{C}. The morphisms are isometries. For brevity, let $UH(\mathcal{C}) := UH^1(\mathcal{C})$. The hyperbolic
unimodular ϵ-hermitian forms over \mathcal{C} are the forms isometric to $(Q \oplus Q^*, H_Q^\epsilon)$, where Q is any reflexive object in \mathcal{C} and H_Q^ϵ is given by

$$H_Q^\epsilon = \left[\begin{array}{cc} 0 & id_{Q^*} \\ \epsilon\omega_Q & 0 \end{array} \right] : Q \oplus Q^* \rightarrow (Q \oplus Q^*)^* = Q^* \oplus Q^{**}.$$

Again, let $H_Q^\epsilon = H^1_Q$. The quotient of $\mathcal{W}G^\epsilon(\mathcal{C})$, the Grothendieck group of isometry classes of unimodular ϵ-hermitian forms over \mathcal{C} (w.r.t. orthogonal sum), by the subgroup generated by the hyperbolic forms is called the Witt group of unimodular ϵ-hermitian forms over \mathcal{C} and is denoted by $\mathcal{W}^\epsilon(\mathcal{C})$. For brevity, set $\mathcal{W}(\mathcal{C}) = \mathcal{W}^1(\mathcal{C})$.

Example 2.1. Let $\langle A, \sigma \rangle$ be a ring with involution. If we take \mathcal{C} to be $\text{Mod-}A$, the category of right A-modules, and define $*$ and ω as in section 1, then \mathcal{C} becomes a hermitian category. Furthermore, the sesquilinear forms (M, s) over $\langle A, \sigma \rangle$ correspond to the sesquilinear forms over \mathcal{C} via $(M, s) \mapsto (M, s_\sigma)$. This correspondence gives rise to isomorphisms of categories $\text{Sesq}(\langle A, \sigma \rangle) \cong \text{Sesq}(\mathcal{C})$ and $\mathcal{UH}^\epsilon(A, \sigma) \cong \mathcal{UH}^\epsilon(\mathcal{C})$. Now let \mathcal{C} be a subcategory of $\text{Mod-}A$ such that $M \in \mathcal{C}$ implies $M^* \in \mathcal{C}$. Then \mathcal{C} is still a hermitian category and it is reflexive if and only if \mathcal{C} consists of reflexive A-modules (as defined in section 1). For example, this happens if $\mathcal{C} = \mathcal{P}(A)$, the category of projective A-modules of finite type. In this case, the Witt group $\mathcal{W}^\epsilon(\mathcal{C}) = \mathcal{W}^\epsilon(\mathcal{P}(A))$ is isomorphic to $\mathcal{W}^\epsilon(A, \sigma)$.

2.2. Duality Preserving Functors.

Let \mathcal{C} and \mathcal{C}' be two hermitian categories. A **duality preserving functor** from \mathcal{C} to \mathcal{C}' is an additive functor $F : \mathcal{C} \rightarrow \mathcal{C}'$ together with a natural isomorphism $i = (i_M)_{M \in \mathcal{C}} : F* \rightarrow *F$. This means that for any $M \in \mathcal{C}$, there exists an isomorphism $i_M : F(M^*) \cong (FM)^*$ such that for all $N \in \mathcal{C}$ and $f \in \text{Hom}_{\mathcal{C}}(M, N)$, the following diagram commutes:

$$
\begin{array}{ccc}
F(N^*) & \xrightarrow{F(f)} & F(M^*) \\
\downarrow{i_N} & & \downarrow{i_M} \\
(FN)^* & \xrightarrow{(Ff)^*} & (FM)^*
\end{array}
$$

Any duality preserving functor induces a functor $\text{Sesq}(\mathcal{C}) \rightarrow \text{Sesq}(\mathcal{C}')$, which we also denote by F. It is given by

$$F(M, s) = (FM, i_M F(s))$$

for every $(M, s) \in \text{Sesq}(\mathcal{C})$. If the functor $F : \mathcal{C} \rightarrow \mathcal{C}'$ is faithful (resp. faithful and full, induces an equivalence), then so is the functor $F : \text{Sesq}(\mathcal{C}) \rightarrow \text{Sesq}(\mathcal{C}')$.

Let $\lambda = \pm 1$. A duality preserving functor F is called λ-**hermitian** if

$$i_M^* F(\omega_M) = \lambda i_M^* \omega_{FM}$$
for all $M \in \mathcal{C}$. Let $\epsilon = \pm 1$. We recall from [14, pp. 80-81] that in this case, the functor $F : \text{Sesq}(\mathcal{C}) \to \text{Sesq}(\mathcal{C}')$ maps $\text{UH}^\epsilon(\mathcal{C})$ to $\text{UH}^{\epsilon \lambda}(\mathcal{C}')$ and sends ϵ-hermitian hyperbolic forms to $\epsilon \lambda$-hermitian hyperbolic forms. Therefore, F induces a homomorphism between the corresponding Witt groups:

$$W^\epsilon(F) : W^\epsilon(\mathcal{C}) \to W^{\epsilon \lambda}(\mathcal{C}') \text{.}$$

If F is an equivalence of categories, then $\text{Sesq}(F) : \text{UH}^\epsilon(\mathcal{C}) \to \text{UH}^{\epsilon \lambda}(\mathcal{C}')$ is also an equivalence of categories and the induced group homomorphism $W^\epsilon(F)$ is an isomorphism of groups.

2.3. **Transfer into the Endomorphism Ring.** The aim of this subsection is to introduce the method of transfer into the endomorphism ring, which allows us to pass from the abstract setting of hermitian categories to that of a ring with involution, which is more concrete. This method will be applied repeatedly in section 5. Note that it applies well only to reflexive hermitian categories.

Let \mathcal{C} be a reflexive hermitian category, and let M be an object of \mathcal{C}, on which we suppose that there exists a unimodular ϵ_0-hermitian form h_0 for a certain $\epsilon_0 = \pm 1$. Put $E = \text{End}_\mathcal{C}(M)$. According to [15, Lm. 1.2], the form (M, h_0) induces on E an involution σ, defined by $\sigma(f) = h_0^{-1} f^* h_0$ for all $f \in E$. Let $\mathcal{P}(E)$ denote the category of projective right E-modules of finite type. Then, using σ, we can consider $\mathcal{P}(E)$ as a reflexive hermitian category (see Example 2.1).

Recall that an idempotent $e \in \text{End}_\mathcal{C}(M)$ splits if there exist an object $M' \in \mathcal{C}$ and morphisms $i : M' \to M$, $j : M \to M'$ such that $ji = \text{id}_{M'}$ and $ij = e$.

Denote by $\mathcal{C}|_M$ the full subcategory of \mathcal{C} consisting of objects of \mathcal{C} which are isomorphic to a direct summand of a finite direct sum of copies of M. We consider the following functor:

$$T = T(M, h_0) := \text{Hom}(M, _ : \mathcal{C}|_M \to \mathcal{P}(E))$$

$$N \mapsto \text{Hom}(M, N), \quad \forall N \in \mathcal{C}|_M$$

$$f \mapsto T(f), \quad \forall f \in \text{Hom}(N, N'), \forall N, N' \in \mathcal{C}|_M,$$

where for all $g \in \text{Hom}(M, N)$, $T(f)(g) = fg$. In [15, Pr. 2.4], it has been proven that the functor T is fully faithful and duality preserving with respect to the natural isomorphism $i = (i_N)_{N \in \mathcal{C}|_M} : T^* \to \text{Hom}_E$ given by $i_N(f) = T(h_0^{-1} f^* \omega_N)$ for every $N \in \mathcal{C}|_M$ and $f \in \text{Hom}(M, N^*)$. In addition, if all the idempotents of $\mathcal{C}|_M$ split, then T is an equivalence of categories. By computation, we easily see that T is ϵ_0-hermitian.

Note that for any finite list of (reflexive) objects $M_1, \ldots, M_t \in \mathcal{C}$ and any $\epsilon_0 = \pm 1$, there exists a unimodular ϵ_0-hermitian form (M, h_0) such that $M_1, \ldots, M_t \in \mathcal{C}|_M$. Indeed, let $N = \bigoplus_{i=1}^t M_i$ and take $(M, h_0) = (N \oplus N^*, \mathbb{H}^\epsilon_0_N)$. This means that as long as we treat finitely many hermitian forms, we may pass to the context of hermitian forms over rings with involution.
2.4. Linear Hermitian Categories and Ring Extension. In this subsection we introduce the notion of extension of rings in hermitian categories.

Let K be a commutative ring. Recall that a K-category is an additive category \mathcal{C} such that for every $A, B \in \mathcal{C}$, $\text{Hom}_\mathcal{C}(A, B)$ is endowed with a K-module structure such that the composition is K-bilinear. For example, any additive category is in fact a \mathbb{Z}-category. An additive covariant functor $F : \mathcal{C} \to \mathcal{C}'$ between two K-categories is K-linear if the map $F : \text{Hom}_\mathcal{C}(A, B) \to \text{Hom}_{\mathcal{C}'}(FA, FB)$ is K-linear for all $A, B \in \mathcal{C}$. K-linear contravariant functors are defined in the same manner. A K-linear hermitian category is a hermitian category $(\mathcal{C}, \ast, \omega)$ such that \mathcal{C} is a K-category and \ast is K-linear.

Fix a commutative ring K. Let \mathcal{C} be an additive K-category and let R be a K-algebra (with unity, not necessarily commutative). We define the extension of the category \mathcal{C} to the ring R, denoted $\mathcal{C} \otimes K R$, to be the category whose objects are formal symbols $C \otimes K R$ with $C \in \mathcal{C}$ and its Hom-sets are defined by

$$\text{Hom} \mathcal{C} \otimes K R(A \otimes K R, B \otimes K R) = \text{Hom}_\mathcal{C}(A, B) \otimes C R.$$

The composition in $\mathcal{C} \otimes K R$ is defined in the obvious way. It is straightforward to check that $\mathcal{C} \otimes K R$ is also a K-category. Moreover, when R is commutative, $\mathcal{C} \otimes K R$ is an R-category. We define the scalar extension functor, $\mathcal{R}_{R/K} : \mathcal{C} \to \mathcal{C} \otimes K R$ by

$$\mathcal{R}_{R/K} M = M \otimes K R, \quad \forall M \in \mathcal{C} \quad \text{and}$$

$$\mathcal{R}_{R/K} f = f \otimes K 1, \quad \forall f \in \text{Hom}(M, N).$$

The functor $\mathcal{R}_{R/K}$ is additive and K-linear.

In case K is obvious from the context, we write $\mathcal{C} R, M R, f R$ instead of $\mathcal{C} \otimes K R, M \otimes K R, f \otimes K 1$, respectively. (Here, $M \in \mathcal{C}$ and f is a morphism in \mathcal{C}.)

Remark 2.2. The scalar extension we have just defined agrees with scalar extension of modules under mild assumptions, but not in general: Let S and R be two K-algebras and write $S_R = S \otimes_K R$. There is an additive functor $G : (\text{Mod}-S)_R \to \text{Mod}-(S_R)$ given by

$$G(M) = M \otimes_S S_R \quad \text{and}$$

$$G(f \otimes a)(m \otimes b) = fm \otimes ab$$

for all $M, N \in \text{Mod}-S$, $f \in \text{Hom}_S(M, N)$, $a, b \in R$, and the following diagram commutes

$$\begin{array}{ccc}
\text{Mod}-S & \xrightarrow{\mathcal{R}_{R/K}} & (\text{Mod}-S)_R \\
\Downarrow & & \Downarrow G \\
\text{Mod}-S & \xrightarrow{- \otimes_S S_R} & \text{Mod}-(S_R)
\end{array}$$

In general, G is neither full nor faithful. However, using standard tensor-Hom relations, it is easy to verify that the map

$$G : \text{Hom}_{(\text{Mod}-S)_R}(M, M') \to \text{Hom}_{\text{Mod}-(S_R)}(GM, GM')$$

(1)
is bijective if either (a) M is finitely generated projective or (b) R is a flat K-module and M is finitely presented. In particular, if \mathcal{C} is an additive subcategory of $\text{Mod-}S$ consisting of finitely presented modules and R is flat as a K-module, then \mathcal{C}_R can be understood as a full subcategory of $\text{Mod-}(S_R)$ in the obvious way. An example in which the map G of (1) is neither injective nor surjective can be obtained by taking $S = K = \mathbb{Z}$, $R = \mathbb{Q}$ and $M = M' = \mathbb{Z}_{[\frac{1}{p}]} / \mathbb{Z}$.

If $(\mathcal{C}, *, \omega)$ is a K-linear hermitian category and R/K is a commutative ring extension, then \mathcal{C}_R also has a hermitian structure given by $(M_R)^* = (M^*)_R$, $(f \otimes a)^* = f^* \otimes a$ and $\omega_{MR} = \omega_M \otimes 1$ for all $M, N \in \mathcal{C}$, $f \in \text{Hom}_\varphi(M, N)$ and $a \in R$. In this case, the functor $\mathcal{R}_{R/K}$ is a 1-hermitian duality preserving functor (the natural transformation $i : \mathcal{R}_{R/K} \to \mathcal{R}_{R/K}$ is just the identity). In particular, we get a functor $\mathcal{R}_{R/K} : \text{Sesq}(\mathcal{C}) \to \text{Sesq}(\mathcal{C}_R)$ given by $\mathcal{R}_{R/K}(M, s) := (M_R, s_R)$ and $\mathcal{R}_{R/K}$ sends ϵ-hermitian (hyperbolic) forms to ϵ-hermitian (hyperbolic) forms.

2.5. Scalar Extension Commutes with Transfer. Let R/K be a commutative ring extension, let \mathcal{C} be a reflexive K-linear hermitian category and let M be an object of \mathcal{C} admitting a unimodular ϵ-hermitian form h. Then (M_R, h_R) is a unimodular ϵ-hermitian form over \mathcal{C}_R. Let $E = \text{End}_\varphi(M)$ and $E_R = \text{End}_{\mathcal{R}_R}(M_R) = E \otimes_K R$. It is easy to verify that the following diagram (of functors) commutes

\[
\begin{array}{ccc}
\mathcal{C}_M & \xrightarrow{T_{(M,h)}} & \mathcal{P}(E) \\
\downarrow_{\mathcal{R}_{R/K}} & & \downarrow_{\otimes_E E_R} \\
\mathcal{C}_R|_{M_R} & \xrightarrow{T_{(M_R,h_R)}} & \mathcal{P}(E_R) \\
\end{array}
\]

(Note that by Remark 2.2, $\mathcal{P}(E_R)$ and $\otimes_E E_R$ can be understood as $\mathcal{P}(E)_R$ and $\mathcal{R}_{R/K}$, respectively.) Since all the functors are ϵ- or 1-hermitian, we get the following commutative diagram, in which the horizontal arrows are full and faithful.

\[
\begin{array}{ccc}
\text{UH}^\lambda(\mathcal{C}_M) & \xrightarrow{T_{(M,h)}} & \text{UH}^\lambda(\mathcal{P}(E)) \\
\downarrow_{\mathcal{R}_{R/K}} & & \downarrow_{\otimes_E E_R} \\
\text{UH}^\lambda(\mathcal{C}_R|_{M_R}) & \xrightarrow{T_{(M_R,h_R)}} & \text{UH}^\lambda(\mathcal{P}(E_R)) \\
\end{array}
\]

This diagram means that in order to study the behavior of $\mathcal{R}_{R/K}$ on arbitrary K-linear hermitian categories, it is enough to study its behavior on hermitian categories obtained from K-algebras with K-involution (as in Example 2.1).

3. An Equivalence of Categories

Let \mathcal{C} be a (not-necessarily reflexive) hermitian category. In this section we prove that there exists a reflexive hermitian category \mathcal{C}' such that the category
Sesq(\mathcal{C}) is equivalent to UH^1(\mathcal{C}'). (We explain how to extend this result to systems of sesquilinear forms in the next section.)

The category \mathcal{C}' resembles the category of double arrows presented in [2, §3], but is not identical to it. This difference makes our construction work for non-reflexive hermitian categories and, as we shall explain in the next section, for systems of sesquilinear forms, where the forms can be defined with respect to different hermitian structures on \mathcal{C}.

3.1. The Category of Twisted Double Arrows. Let (\mathcal{C}, *, \omega) be a hermitian category. We construct the category of twisted double arrows in \mathcal{C}, denoted A\tilde{\mathcal{R}}_2(\mathcal{C}), as follows: The objects of A\tilde{\mathcal{R}}_2(\mathcal{C}) are quadruples (M, N, f, g) such that f, g ∈ Hom_\mathcal{C}(M, N^*). A morphism from (M, N, f, g) to (M', N', f', g') is a pair (φ, ψ^op) such that φ ∈ Hom(M, M'), ψ ∈ Hom(N', N), f'φ = ψ^*f and g'φ = ψ^*g. The composition of two morphisms is given by (φ, ψ^op)(\phi', ψ'^op) = (φ\phi', (ψ\psi')^op).

The category A\tilde{\mathcal{R}}_2(\mathcal{C}) is easily seen to be an additive category. Moreover, it has a hermitian structure: For every (M, N, f, g) ∈ A\tilde{\mathcal{R}}_2(\mathcal{C}), define (M, N, f, g)^* = (N, M, g^*ω_N, f^*ω_N) and ω_{(M,N,f,g)} = (id_M, id_N^op). In addition, for every morphism (φ, ψ^op) : (M, N, f, g) → (M', N', f', g'), let (φ, ψ^op)^* = (ψ, φ^op). It is now routine to check that (A\tilde{\mathcal{R}}_2(\mathcal{C}), *, \omega) is a reflexive hermitian category. Also observe that ** is just the identity functor on A\tilde{\mathcal{R}}_2(\mathcal{C}). The following proposition describes the hermitian forms over A\tilde{\mathcal{R}}_2(\mathcal{C}).

Proposition 3.1. Let Z := (M, N, f, g) ∈ A\tilde{\mathcal{R}}_2(\mathcal{C}) and let α, β ∈ Hom_\mathcal{C}(M, N). Then (Z, (α, β^op)) is a hermitian form over A\tilde{\mathcal{R}}_2(\mathcal{C}) ⇐⇒ α = β and α^*f = g^*ω_Nα and let (Z, (α, β^op)) be a hermitian form over A\tilde{\mathcal{R}}_2(\mathcal{C}).

Proof. By definition, Z^* = (N, M, g^*ω_N, f^*ω_N), so (α, β^op) is morphism from Z to Z^* if and only if β^*f = g^*ω_Nα and β^*g = f^*ω_Nα. In addition, by computation, we see that (α, β^op) = (α, β^op)^*ω_2 precisely when α = β. Therefore, (Z, (α, β^op)) is a hermitian form if and only if α = β, α^*f = g^*ω_Nα and α^*g = f^*ω_Nα. It is therefore enough to show α^*f = g^*ω_Nα if and only if α^*g = f^*ω_Nα. Indeed, if α^*f = g^*ω_Nα, then α^*ω_N^*g^** = f^*α^**. Therefore, α^*g = α^*ω_N^*g^**ω_M = f^*α^**ω_M = f^*ω_N^*ω_M = id_{N^*} in the computation). The other direction follows by symmetry. □

Theorem 3.2. Let \mathcal{C} be a hermitian category. Define a functor F : Sesq(\mathcal{C}) → UH(A\tilde{\mathcal{R}}_2(\mathcal{C})) by

\[F(M, s) = ((M, M, s^*ω_M, s), (id_M, id_N^op)), \]

\[F(ψ) = (ψ, (ψ^{-1})^op) \]

for all (M, s) ∈ Sesq(\mathcal{C}) and any morphism ψ in Sesq(\mathcal{C}). Then F induces an equivalence of categories between Sesq(\mathcal{C}) and UH(A\tilde{\mathcal{R}}_2(\mathcal{C})).
Proof. Let \((M, s) \in \text{Sesq}(\mathcal{C})\). That \(F(M, s)\) does lie in \(\text{UH}(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C}))\) follows from Proposition 3.1. Let \(\psi : (M, s) \to (M', s')\) be an isometry. Then

\[
F(\psi)^*(\text{id}_{M'}, \text{id}^\text{op}_{M'})F(\psi) = (\psi, (\psi^{-1})^*\text{id}_{M'}, \text{id}^\text{op}_{M'})((\psi, (\psi^{-1})^*) = (\psi^{-1}, \psi^\text{op})(\text{id}_{M'}, \text{id}^\text{op}_{M'})((\psi, (\psi^{-1})^*) = (\psi^{-1})\text{id}_{M'} \psi, (\psi^{-1} \text{id}_{M'} \psi)^\text{op}) = (\text{id}_M, \text{id}^\text{op}_M).
\]

Thus, \(F(\psi)\) is an isometry from \(F(M, s)\) to \(F(M', s')\). It is clear that \(F\) respects composition, so we conclude that \(F\) is a functor.

To see that \(F\) induces an equivalence, we construct a functor \(G\) such that \(F\) and \(G\) are mutual inverses. Let \(G : \text{UH}(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C})) \to \text{Sesq}(\mathcal{C})\) be defined by

\[
G((M, N, f, g), (\alpha, \alpha^\text{op})) = (M, \alpha^* g)
\]

for all \(((M, N, f, g), (\alpha, \alpha^\text{op})) \in \text{UH}(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C}))\) and any morphism \((\phi, \psi^\text{op})\) in \(\text{UH}(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C}))\).

Let \((Z, (\alpha, \alpha^\text{op})), (Z', (\alpha', \alpha'^\text{op})) \in \text{UH}(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C}))\) and let \((\phi, \psi^\text{op}) : (Z, (\alpha, \alpha^\text{op})) \to (Z', (\alpha', \alpha'^\text{op}))\). It is easy to see that \(G(Z, (\alpha, \alpha^\text{op})) \in \text{Sesq}(\mathcal{C})\), so we turn to check that \(G(\phi, \psi^\text{op})\) is an isometry from \(G(Z, (\alpha, \alpha^\text{op}))\) to \(G(Z', (\alpha', \alpha'^\text{op}))\). Writing \(Z = (M, N, f, g)\) and \(Z' = (M', N', f', g')\), this amounts to showing \(\alpha^* g = \phi^* \alpha'^* g' \phi\). Indeed, since \((\phi, \psi^\text{op})\) is morphism from \(Z\) to \(Z'\), we have \(g' \phi = \psi^* g\), and since \((\phi, \psi^\text{op})\) is an isometry, we also have \((\phi, \psi^\text{op})^* (\alpha', \alpha'^\text{op})(\phi, \psi^\text{op}) = (\alpha, \alpha^\text{op})\), which in turn implies \(\psi \alpha' \phi = \alpha\). We now have \(\phi^* \alpha'^* g' \phi = \phi^* \alpha'^* \psi^* g = (\psi \alpha' \phi)^* g = \alpha^* g\), as required. That \(G\) preserves composition is straightforward.

It is easy to see that \(GF\) is the identity functor on \(\text{Sesq}(\mathcal{C})\), so it is left to show that there is a natural isomorphism from \(FG\) to \(\text{id}_{\text{UH}(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C}))}\). Keeping the notation of the previous paragraph, we have

\[
FG((M, N, f, g), (\alpha, \alpha^\text{op})) = ((M, M, (\alpha^* g)^* \omega_M, \alpha^* g), (\text{id}_M, \text{id}^\text{op}_M)).
\]

By Proposition 3.1 we have \(\alpha^* f = g^* \omega_N \alpha\), hence \((\alpha^* g)^* \omega_M = (\omega_N \alpha)^* = \alpha^* f\). Thus,

\[
FG((M, N, f, g), (\alpha, \alpha^\text{op})) = ((M, M, \alpha^* f, \alpha^* g), (\text{id}_M, \text{id}^\text{op}_M)).
\]

Define a natural isomorphism \(t : \text{id}_{\text{UH}(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C}))} \to FG\) by \(t_{(Z, (\alpha, \alpha^\text{op}))} = (\text{id}_M, \text{id}^\text{op}_M)\).

Using [2], it is easy to see that \(t_{(Z, (\alpha, \alpha^\text{op}))}\) is indeed an isometry from \((Z, (\alpha, \alpha^\text{op}))\) to \(FG(Z, (\alpha, \alpha^\text{op}))\). The map \(t\) is natural since for \(Z'\), \((\phi, \psi^\text{op})\) as above, we have \(FG(\phi, \psi^\text{op})t_{(Z, (\alpha, \alpha^\text{op}))} = (\phi, (\phi^{-1})^* \text{id}_M, \text{id}^\text{op}_M) = (\phi, (\alpha \phi^{-1})^\text{op}) = (\phi, (\psi \alpha')^\text{op}) = (\text{id}_M, \text{id}^\text{op}_M)(\phi, \psi^\text{op}) = t_{(Z', (\alpha', \alpha'^\text{op}))}(\phi, \psi^\text{op})\) (we used the identity \(\psi \alpha' \phi = \alpha\) verified above).

Remark 3.3. On the model of [5, §3], one can also construct the category of (non-twisted) double arrows in \(\mathcal{C}\), denoted \(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C})\). Its objects are quadruples \((M, N, f, g)\) with \(M, N \in \mathcal{C}\) and \(f, g \in \text{Hom}(M, N)\). A morphism from \((M, N, f, g)\) to \((M', N', f', g')\) is a pair \((\phi, \psi)\), where \(\phi \in \text{Hom}(M, M')\) and \(\psi \in \text{Hom}(N, N')\) satisfy \(\psi f = f' \phi\) and \(\psi g = g' \phi\). The category \(\mathcal{A}_{\mathcal{R}_2}(\mathcal{C})\) is obviously...
additive and moreover, it admits a hermitian structure given by \((M, N, f, g)^* = (N^*, M^*, g^*, f^*)\), \((\phi, \psi)^* = (\psi^*, \phi^*)\) and \(\omega(M,N,f,g) = (\omega_M, \omega_N)\).

There is a functor \(T : \text{A} \rightarrow \text{A}^2(C) \rightarrow \text{A}_2(C)\) given by \(T(M, N, f, g) = (M, N^*, f, g)\) and \(T(\phi, \psi) = (\phi, \psi^*)\). This functor induces an equivalence if \(C\) is reflexive, but otherwise it need neither be faithful nor full. In addition, provided \(C\) is reflexive, one can define a functor \(F' : \text{Sesq}(C) \rightarrow \text{UH}(\text{A}^2(C))\) by \(F'(M, s) = ((M, M^*, s^* \omega_M, s), (\omega_M, \text{id}_{M^*})\) and \(F'(\psi) = (\psi, (\psi^{-1})^*)\). This functor induces an equivalence of categories; the proof is analogous to [3 Th. 4.1].

3.2. Hyperbolic Sesquilinear Forms

Let \(\mathcal{C}\) be a hermitian category. The equivalence \(\text{Sesq}(\mathcal{C}) \sim \text{UH}(\text{A}^2\mathcal{C})\) of Theorem 3.2 allows us to pull back notions defined for unimodular hermitian forms over \(\text{A}^2\mathcal{C}\) to sesquilinear form over \(\mathcal{C}\). In this subsection, we will do this for hyperbolicity and thus obtain a notion of a Witt group of sesquilinear forms.

Throughout, \(F\) denotes the functor \(\text{Sesq}(\mathcal{C}) \rightarrow \text{UH}(\text{A}^2\mathcal{C})\) defined in Theorem 3.2.

Definition 3.4. A sesquilinear form \((M, s)\) over \(\mathcal{C}\) is called hyperbolic if \(F(M, s)\) is hyperbolic as unimodular hermitian form over \(\text{A}^2\mathcal{C}\).

The following proposition gives a more concrete meaning to hyperbolicity of sesquilinear forms over \(\mathcal{C}\).

Proposition 3.5. Up to isometry, the hyperbolic sesquilinear forms over \(\mathcal{C}\) are given by

\[
(M \oplus N, \begin{bmatrix} 0 & f \\ g & 0 \end{bmatrix})
\]

where \(M, N \in \mathcal{C}\), \(f \in \text{Hom}_\mathcal{C}(N, M^*)\), \(g \in \text{Hom}_\mathcal{C}(M, N^*)\) and \(\begin{bmatrix} 0 & f \\ g & 0 \end{bmatrix}\) is an element of \(\text{Hom}_\mathcal{C}(M \oplus N, M^* \oplus N^*)\) given in matrix form. Furthermore, a unimodular \(\epsilon\)-hermitian form is hyperbolic as a sesquilinear form (i.e. in the sense of Definition 3.4) if and only if it is hyperbolic as a unimodular \(\epsilon\)-hermitian form (see section 2).

Proof. Let \(G\) be the functor \(\text{UH}(\text{A}^2\mathcal{C})) \rightarrow \text{Sesq}(\mathcal{C})\) defined in the proof of Theorem 3.2. Since \(F\) and \(G\) are mutual inverses, the hyperbolic sesquilinear forms over \(\mathcal{C}\) are the forms isometric to \(G(Z \oplus Z^*, \mathbb{H}_Z)\) for \(Z \in \text{A}^2\mathcal{C}\). Write \(Z = (M, N, h, g)\). Then

\[
(Z \oplus Z^*, \mathbb{H}_Z) = \left((M \oplus N, N \oplus M, \begin{bmatrix} h & 0 \\ 0 & g^* \omega_N \end{bmatrix} ; \begin{bmatrix} 0 & g^* \omega_N \\ g & 0 \end{bmatrix}; \begin{bmatrix} 0 & \text{id}_{Z^*} \\ \omega_Z & 0 \end{bmatrix}\right).
\]

Observe that \(\begin{bmatrix} 0 & \text{id}_{Z^*} \\ \omega_Z & 0 \end{bmatrix} = \begin{bmatrix} 0 & \text{id}_N \\ (\text{id}_M, \text{id}_{N^*}) \end{bmatrix} = \begin{bmatrix} 0 & \text{id}_N \\ \text{id}_M & 0 \end{bmatrix} \left(\begin{bmatrix} 0 & \text{id}_{N^*} \\ \text{id}_M & 0 \end{bmatrix}\right)^\text{op}\). Thus,

\[
G(Z \oplus Z^*, \mathbb{H}_Z) = (M \oplus N, \begin{bmatrix} 0 & \text{id}_N \\ \text{id}_M & 0 \end{bmatrix}^* \begin{bmatrix} g & 0 \\ 0 & h^* \omega_N \end{bmatrix}),
\]

and since \(\begin{bmatrix} 0 & \text{id}_N \\ \text{id}_M & 0 \end{bmatrix}^* \begin{bmatrix} g & 0 \\ 0 & h^* \omega_N \end{bmatrix} = \begin{bmatrix} 0 & \text{id}_{N^*} \\ \text{id}_M & 0 \end{bmatrix}^* \begin{bmatrix} g & 0 \\ 0 & h^* \omega_N \end{bmatrix} = \begin{bmatrix} 0 & h^* \omega_N \\ g & 0 \end{bmatrix}\), we see that \(G(Z \oplus Z^*, \mathbb{H}_Z)\) matches the description in the proposition. Furthermore, by
putting $h = f^* \omega_M$ for $f \in \text{Hom}_E(N, M^*)$, we get $h^* \omega_N = \omega_M^*, f^* \omega_N = \omega_M^* \omega_M^* f = f$. Thus, $(M \oplus N, \begin{bmatrix} 0 & f \\ -g & 0 \end{bmatrix})$ is hyperbolic for all M, N, f, g, as required.

To finish, note that we have clearly shown that $(Q \oplus Q^*, \mathbb{H}_Q)$ is hyperbolic as a sesquilinear form for every $Q \in \mathcal{C}$. To see the converse, assume $(M \oplus N, \begin{bmatrix} 0 & f \\ -g & 0 \end{bmatrix})$ is ϵ-hermitian and unimodular. Then

$$\begin{bmatrix} 0 & f \\ -g & 0 \end{bmatrix} = \epsilon \begin{bmatrix} 0 & f \\ -g & 0 \end{bmatrix}^* \omega_M \oplus N = \epsilon \begin{bmatrix} 0 & g^* \\ f^* & 0 \end{bmatrix} \begin{bmatrix} \omega_M & 0 \\ 0 & \omega_N \end{bmatrix} = \begin{bmatrix} 0 & \epsilon f^* \omega_M \\ \epsilon^* \omega_N & 0 \end{bmatrix},$$

hence $g = \epsilon f^* \omega_N$ and $f = \epsilon g^* \omega_M$. Since $\begin{bmatrix} 0 & f \\ -g & 0 \end{bmatrix}$ is unimodular, f and g are bijective and hence, so are ω_N and ω_M. In particular, M is reflexive. It is now routine to verify that the map $\text{id}_M \oplus f : M \oplus N \to M \oplus M^*$ is an isometry from $(M \oplus N, \begin{bmatrix} 0 & f \\ -g & 0 \end{bmatrix})$ to $(M \oplus M^*, \mathbb{H}_M^*)$, so the former is hyperbolic in the sense of section 2.

Let (A, σ) be a ring with involution. In case \mathcal{C} is the category of right A-modules, considered as a hermitian category as in Example 2.1, we obtain a notion of hyperbolic sesquilinear forms over (A, σ). These hyperbolic forms can be characterized as follows.

Proposition 3.6. A sesquilinear form (M, s) over (A, σ) is hyperbolic if and only if there are submodules $M_1, M_2 \leq M$ such that $s(M_1, M_1) = s(M_2, M_2) = 0$ and $M = M_1 \oplus M_2$. Furthermore, if (M, s) is unimodular and ϵ-hermitian, then (M, s) is hyperbolic as a sesquilinear space if and only if it is hyperbolic as an ϵ-hermitian unimodular space.

Proof. Recall that for any two right A-modules M_1, M_2, we identify $(M_1 \oplus M_2)^*$ with $M_1^* \oplus M_2^*$ via $f \leftrightarrow (f|_{M_1}, f|_{M_2})$. Let (M, s) be a sesquilinear space and assume $M = M_1 \oplus M_2$. By straightforward computation, we see that s_r is of the form $\begin{bmatrix} 0 & f \\ -g & 0 \end{bmatrix} \in \text{Hom}_A(M, M^*) = \text{Hom}_A(M_1 \oplus M_2, M_1^* \oplus M_2^*)$ if and only if $s(M_1, M_1) = s(M_2, M_2) = 0$. The proposition therefore follows from Proposition 3.5.

3.3. Witt Groups of Sesquilinear Forms. Let \mathcal{C} be a hermitian category. Denote by $\text{WG}_S(\mathcal{C})$ the Grothendieck group of isometry classes of sesquilinear forms over \mathcal{C}, with respect to orthogonal sum. It is easy to see that the hyperbolic isometry classes span a subgroup of $\text{WG}_S(\mathcal{C})$, which we denote by $\mathbb{H}(\mathcal{C})$. The Witt group of sesquilinear forms over \mathcal{C} is defined to the quotient

$$W_S(\mathcal{C}) = \text{WG}_S(\mathcal{C})/\mathbb{H}(\mathcal{C}) .$$

By definition, we have $W_S(\mathcal{C}) \cong W(A_2(\mathcal{C}))$. Taking \mathcal{C} to be the category of all (resp. reflexive, projective) right A-modules of finite type and their duals, we obtain a notion of a Witt group for sesquilinear forms over (A, σ). Also observe that there is a homomorphism of groups $W'(\mathcal{C}) \to W_S(\mathcal{C})$ given by sending the class of a unimodular ϵ-hermitian form to its corresponding class in $W_S(\mathcal{C})$. Corollary 5.14 below presents sufficient conditions for the injectivity of this homomorphism.
3.4. Extension of Scalars. Let R/K be a commutative ring extension and let \mathcal{C} be a K-linear hermitian category. Then the category $\widetilde{\operatorname{A}_{2}}(\mathcal{C})$ is also K-linear. For later usage, we now check that the scalar extension functor $\mathcal{R}_{R/K}$ of subsection 2.3 “commutes” with the functor F of Theorem 3.2.

Proposition 3.7. There is a 1-hermitian duality preserving functor $J : \operatorname{A}_{2}(\mathcal{C})_{R} \to \operatorname{A}_{2}(\mathcal{C})_{R}$ given by

$$J((M, N, f, g)) = (M_{R}, N_{R}, f_{R}, g_{R}),$$

for all $(M, N, f, g) \in \operatorname{A}_{2}(\mathcal{C})$ and any morphism (ϕ, ψ^{op}) in $\operatorname{A}_{2}(\mathcal{C})$. (The associated natural isomorphism $i : J * \to * J$ is the identity map.) The functor J is faithful and full, and it makes the following diagram commute:

$$\begin{array}{ccc}
\text{Sesq}(\mathcal{C}) & \xrightarrow{F} & \text{UH}(\operatorname{A}_{2}(\mathcal{C})) \\
\downarrow \mathcal{R}_{R/K} & & \downarrow \mathcal{R}_{R/K} \\
\text{Sesq}(\mathcal{C})_{R} & \xrightarrow{F} & \text{UH}(\operatorname{A}_{2}(\mathcal{C})_{R})
\end{array}$$

Proof. We only check that J is faithful and full. All other assertions follow by computation. Let $Z, Z' \in \operatorname{A}_{2}(\mathcal{C})$. Define $I : \operatorname{Hom}_{\operatorname{A}_{2}(\mathcal{C})_{R}}(JZ, JZ'_{R}) \to \operatorname{Hom}_{\operatorname{A}_{2}(\mathcal{C})_{R}}(Z_{R}, Z'_{R})$ by

$$I(\sum_{i} f_{i} \otimes a_{i}, (\sum_{j} g_{j} \otimes b_{j})^{op}) = \sum_{i,j} ((f_{i}, 0^{op}) \otimes a_{i} + (0, g_{j}^{op}) \otimes b_{j}).$$

Then it is routine to verify that I is an inverse of $J : \operatorname{Hom}_{\operatorname{A}_{2}(\mathcal{C})_{R}}(Z, Z'_{R}) \to \operatorname{Hom}_{\operatorname{A}_{2}(\mathcal{C})_{R}}(JZ, JZ'_{R})$. Thus, J is full and faithful.

As an immediate corollary, we get:

Corollary 3.8. Let (M, s), (M', s') be two sesquilinear forms over \mathcal{C}. Then $\mathcal{R}_{R/K}(M, s)$ is isometric to $\mathcal{R}_{R/K}(M', s')$ if and only if $\mathcal{R}_{R/K}F(M, s)$ is isometric to $\mathcal{R}_{R/K}F(M', s')$.

4. Systems of Sesquilinear Forms

In this section, we explain how to generalize the results of Section 3 to systems of sesquilinear forms.

Let A be a ring and let $\{\sigma_{i}\}_{i \in I}$ be an nonempty family of (not necessarily distinct) involutions of A. A system of sesquilinear forms over $(A, \{\sigma_{i}\}_{i \in I})$ is a pair $(M, \{s_{i}\}_{i \in I})$ such that (M, s_{i}) is a sesquilinear space over (A, σ_{i}) for all i. An isometry between two systems of sesquilinear forms $(M, \{s_{i}\}_{i \in I})$, $(M', \{s'_{i}\}_{i \in I})$ is an isomorphism $f : M \to M'$ such that $s'_{i}(fx, fy) = s_{i}(x, y)$ for all $x, y \in M$, $i \in I$.

Observe that each of the involutions σ_{i} gives rise to a hermitian structure $(*_{i}, \omega_{i})$ on $\text{Mod-}A$, the category of right A-modules. In particular, a system
of sesquilinear forms \((M, \{s_i\})\) gives rise to homomorphisms \((s_i)_r, (s_i)_\ell : M \to M^{*}\) given by \((s_i)_r(x)(y) = \sigma_i(s_i(y,x))\) and \((s_i)_\ell(x)(y) = s_i(x, y)\), where \(M^{*} = \text{Hom}_A(M, A)\), considered as a right \(A\)-module via the action \((f \cdot a) m = \sigma_i(a)f(m)\).

This leads to the notion of systems of sesquilinear forms over hermitian categories.

Let \(\mathcal{C}\) be an additive category and let \(\{*_i, \omega_i\}_{i \in I}\) be a nonempty family of hermitian structures on \(\mathcal{C}\). A system of sesquilinear forms over \((\mathcal{C}, \{*_i, \omega_i\}_{i \in I})\) is a pair \((M, \{s_i\}_{i \in I})\) such that \(M \in \mathcal{C}\) and \((M, s_i)\) is a sesquilinear form over \((\mathcal{C}, *_i, \omega_i)\). An isometry between two systems of sesquilinear forms \((M, \{s_i\}_{i \in I})\) and \((M', \{s'_i\}_{i \in I})\) is an isomorphism \(f : M \sim M'\) such that \(f^{*} s'_i f = s_i\) for all \(i \in I\).

We let \(\text{Sesq}_I(\mathcal{C})\) (or \(\text{Sesq}_I(\mathcal{C}, \{*_i, \omega_i\})\)) denote the category of systems of sesquilinear forms over \((\mathcal{C}, \{*_i, \omega_i\}_{i \in I})\) with isometries as morphisms.

Keeping the notation of the previous paragraph, the results of section \S 3 can be extended to systems of sesquilinear forms as follows: Define the category of twisted double \(I\)-arrows over \((\mathcal{C}, \{*_i, \omega_i\}_{i \in I})\), denoted \(\text{A}\tilde{A}_I(\mathcal{C})\), to be the category whose objects are quadruples \((M, N, \{f_i\}_{i \in I}, \{g_i\}_{i \in I})\) with \(M, N \in \mathcal{C}\) and \(f_i, g_i \in \text{Hom}_\mathcal{C}(M, N^{*})\). A morphism \((M, N, \{f_i\}, \{g_i\}) \to (M', N', \{f'_i\}, \{g'_i\})\) is a formal pair \((\phi, \psi^\text{op})\) such that \(\phi \in \text{Hom}(M, M')\), \(\psi \in \text{Hom}(N', N)\) and \(\psi^{*} f_i = f'_i \phi, \psi^{*} g_i = g'_i \phi\) for all \(i \in I\). The composition is defined by the formula \((\phi, \psi^\text{op})(\phi', \psi'^\text{op}) = (\phi \phi', (\psi \psi')^\text{op})\).

The category \(\text{A}\tilde{A}_I(\mathcal{C})\) can be made into a reflexive hermitian category by letting \((M, N, \{f_i\}, \{g_i\})^* = (N, M, \{g_i^{*\text{op}} \omega_i,N\}, \{f_i^{*\text{op}} \omega_i,M\})\), \((\phi, \psi^\text{op})^* = (\psi, \phi^\text{op})\) and \(\omega_{(M,N),f_i},\{g_i\}) = (\text{id}_M, \text{id}_N^\text{op})\). It is now possible to prove the following theorem, whose proof is completely analogous to the proof of Theorem \S 3.2.

Theorem 4.1. Define a functor \(F : \text{Sesq}_I(\mathcal{C}) \to \text{UH}(\text{A}\tilde{A}_I(\mathcal{C}))\) by

\[
F(M, \{s_i\}) = ((M, M, \{s_i^{*\text{op}} \omega_i,M\}, \{s_i\}), (\text{id}_M, \text{id}_M^\text{op})),
\]

\[
F(\psi) = (\psi, (\psi^{-1})^\text{op})
\]

Then \(F\) induces an equivalence of categories.

Proof (sketch). It is easy to see that any hermitian form over \(\text{UH}(\text{A}\tilde{A}_I(\mathcal{C}))\) has the form \((M, N, \{f_i\}, \{g_i\}, (\alpha, \alpha^\text{op}))\). Define a functor \(G : \text{UH}(\text{A}\tilde{A}_I(\mathcal{C})) \to \text{Sesq}_I(\mathcal{C})\) by

\[
G((M, N, \{f_i\}, \{g_i\}, (\alpha, \alpha^\text{op})) = (M, \{\alpha^{*\text{op}} g_i\}),
\]

\[
G(\phi, \psi^\text{op}) = \phi.
\]

By arguing as in the proof of Theorem \S 3.2, we see that \(F\) and \(G\) are mutual inverses. \(\square\)

As we did in section \S 3, we can use Theorem 4.1 to define hyperbolic systems of sesquilinear forms. Namely, a system of forms \((M, \{s_i\})\) over \(\mathcal{C}\) will be called hyperbolic if \(F(M, \{s_i\})\) is hyperbolic over \(\text{A}\tilde{A}_I(\mathcal{C})\). The following two propositions are proved in the same manner as Propositions \S 3.5 and \S 3.6 respectively.
Proposition 4.2. A system of sesquilinear forms \((M, \{s_i\})\) over \(\mathcal{C}\) is hyperbolic if and only if there are \(M_1, M_2 \in \mathcal{C}\), \(f_i \in \text{Hom}(M_2, M_1^*)\), \(g_i \in \text{Hom}(M_1, M_2^*)\) such that \(M = M_1 \oplus M_2\) and for all \(i \in I\),

\[
s_i = \begin{bmatrix} 0 & f_i \\ g_i & 0 \end{bmatrix} \in \text{Hom}(M, M^*) = \text{Hom}(M_1 \oplus M_2, M_1^* \oplus M_2^*) .
\]

In this case, each of the sesquilinear forms \((M, s_i)\) (over \((\mathcal{C}, \ast_i, \omega_i)\)) is hyperbolic.

Proposition 4.3. Let \(A\) be a ring and let \(\{\sigma_i\}_{i \in I}\) be a nonempty family of involutions of \(A\). A system of sesquilinear forms \((M, \{s_i\})\) over \((A, \{\sigma_i\})\) is hyperbolic if and only if there are submodules \(M_1, M_2 \leq M\) such that \(M = M_1 \oplus M_2\) and \(s_i(M_1, M_1) = s_i(M_2, M_2) = 0\) for all \(i \in I\). In this case, each of the sesquilinear forms \((M, s_i)\) (over \((A, \sigma_i)\)) is hyperbolic.

The notion of hyperbolic systems of sesquilinear forms can be used to define Witt groups. We leave the details to the reader.

Let \(R/K\) be a commutative ring extension. If \(\mathcal{C}\) and all the hermitian structures \(\{\ast_i, \omega_i\}_{i \in I}\) are \(K\)-linear, then the scalar extension functor \(\mathcal{R}_{R/K}: \mathcal{C} \to \mathcal{C}_R\) is 1-hermitian and duality preserving with respect to \((\ast_i, \omega_i)\) for all \(i \in I\). Therefore, we have a functor \(\mathcal{R}_{R/K}: \text{Sesq}_I(\mathcal{C}) \to \text{Sesq}_I(\mathcal{C}_R)\) given by \(\mathcal{R}_{R/K}(M, \{s_i\}_{i \in I}) = (M_R, \{(s_i)_R\}_{i \in I})\). We thus have a notion of scalar extension for systems of bilinear forms (and it agrees with the obvious scalar extension for systems of bilinear forms over a ring with a family of involutions, provided the assumptions of Remark 2.2 hold). Using the ideas of subsection 3.3 one can show:

Corollary 4.4. Let \((M, \{s_i\}), (M', \{s'_i\})\) be two systems of sesquilinear forms over \((\mathcal{C}, \{\ast_i, \omega_i\})\). Then \(\mathcal{R}_{R/K}(M, \{s_i\})\) is isometric to \(\mathcal{R}_{R/K}(M', \{s'_i\})\) if and only if \(\mathcal{R}_{R/K} F(M, \{s_i\})\) is isometric to \(\mathcal{R}_{R/K} F(M', \{s'_i\})\).

5. Applications

The following section uses the previous results to generalize various known results about hermitian forms (over rings or reflexive hermitian categories) to systems of sesquilinear forms over (not-necessarily reflexive) hermitian categories. Some of the consequences to follow were obtained in [5] for hermitian forms over rings. Here we rephrase them for hermitian categories, extend them to systems of sesquilinear forms and drop the assumption that the base module (or object) is reflexive.

5.1. Witt’s Cancelation Theorem. Quebbemann, Scharlau and Schulte ([15, \S 3.4]) have proven Witt’s Cancelation Theorem for unimodular hermitian forms over hermitian categories \(\mathcal{C}\) satisfying the following conditions:

(a) All idempotents in \(\mathcal{C}\) split (see subsection 2.3).

(b) For all \(C \in \mathcal{C}\), \(E := \text{End}_\mathcal{C}(C)\) is a complete semilocal ring in which 2 is invertible.
Recall that complete semilocal means that $E/\text{Jac}(E)$ is semisimple (i.e. E is semilocal) and that the standard map $E \to \varprojlim \{E/\text{Jac}(R^n)\}_{n \in \mathbb{N}}$ is an isomorphism (i.e. E is complete in the $\text{Jac}(E)$-adic topology). In fact, condition (a) can be dropped since idempotents can be split artificially (see subsection 5.5 below), or alternatively, since by applying transfer (see subsection 2.3) one can move to a module category in which idempotents split.

We shall now use the Quebbemann-Scharlau-Schulte cancelation theorem together with Theorem 4.1 to give several conditions guaranteeing cancelation for systems of sesquilinear forms.

Our first criterion is based on the following well-known lemma.

Lemma 5.1. Let K be a commutative noetherian complete semilocal ring (e.g. a complete discrete valuation ring). Then any K-algebra A which is finitely generated as a K-module is complete semilocal.

Proof. For brevity, write $I = \text{Jac}(K)$ and $J = \text{Jac}(A)$. By [10, Th. 2] and the proof of [9, Pr. 8.8(i)] (for instance), $A = \varprojlim \{A/A(I^n)\}_{n \in \mathbb{N}}$. That $A = \varprojlim \{A/J^n\}_{n \in \mathbb{N}}$ would follow if we verify that $J^m \subseteq AI \subseteq J$ for some $m \in \mathbb{N}$. The right inclusion holds since $1 + AI$ consists of right invertible elements. Indeed, for all $a \in AI$, we have $aA + AI = A$, so by Nakayama’s Lemma (applied to the K-module A), $aA = A$. The existence of m, as well as the fact that A is semilocal, follows by arguing as in [19, Ex. 2.7.19(ii)] (for instance). \square

Theorem 5.2. Let K be a commutative noetherian complete semilocal ring with $2 \in K^\times$, let \mathcal{C} be a K-category equipped with K-linear hermitian structures $\{s_i, \omega_i\}_{i \in I}$, and let $(M, \{s_i\}), (M', \{s'_i\}), (M'', \{s''_i\})$ be systems of sesquilinear forms over $(\mathcal{C}, \{s_i, \omega_i\})$. Assume that $\text{Hom}_\mathcal{C}(M, N)$ is finitely generated as a K-module for all $M, N \in \mathcal{C}$. Then

$$(M, \{s_i\}) \oplus (M', \{s'_i\}) \cong (M, \{s_i\}) \oplus (M'', \{s''_i\}) \iff (M', \{s'_i\}) \cong (M'', \{s''_i\}).$$

Proof. In light of Theorem 4.1, it is enough to prove cancelation of unimodular 1-hermitian forms over the the category $\text{A}_{2I}(\mathcal{C})$ (note that the equivalence of Theorem 4.1 respects orthogonal sums). This would follow from the cancelation theorem of [15, §3.4] if we show that the endomorphism rings of objects in $\text{A}_{2I}(\mathcal{C})$ are complete semilocal rings in which 2 is invertible. Indeed, let $Z := (M, N, \{f_i\}, \{g_i\}) \in \text{A}_{2I}(\mathcal{C})$. Then $E := \text{End}(Z)$ is a subring of $\text{End}_\mathcal{C}(M) \times \text{End}_\mathcal{C}(N)^{\text{op}}$, which is a K-algebra by assumption. Since the hermitian structures $\{s_i, \omega_i\}$ are K-linear, E is in fact a K-subalgebra, which must be f.g. as a K-module (because this is true for $\text{End}_\mathcal{C}(M) \times \text{End}_\mathcal{C}(N)^{\text{op}}$ and K is noetherian). Thus, we are done by Lemma 5.1 and the fact that $2 \in K^\times$. \square

As corollary, we get the following result which resembles [5, Th. 8.1].

Corollary 5.3. Let K be a commutative noetherian complete semilocal ring with $2 \in K^\times$, let A be a K-algebra which is finitely generated as a K-module, and let
\(\{\sigma_i\}_{i \in I} \) be a family of \(K \)-involutions on \(A \). Then cancellation holds for systems of sesquilinear forms over \((A, \{\sigma_i\})\) which are defined on finitely generated right \(A \)-modules.

For the next theorem, recall that a ring \(R \) is said to be *semiprimary* if \(R \) is semilocal and \(\text{Jac}(R) \) is nilpotent. For example, all artinian rings are semiprimary. Note that all semiprimary rings are complete semilocal. It is well-known that for a ring \(R \) and an idempotent \(e \in R \), \(R \) is semiprimary if and only if \(eRe \) and \((1 - e)R(1 - e) \) are semiprimary. As a result, if \(M, N \) are two objects in an additive category, then \(\text{End}(M \oplus N) \) is semiprimary if and only if \(\text{End}(M) \) and \(\text{End}(N) \) are semiprimary.

Theorem 5.4. Let \(\mathcal{C} \) be an additive category with hermitian structures \(\{*, \omega_i\} \) and let \((M, \{s_i\}), (M', \{s'_i\}), (M'', \{s''_i\})\) be systems of sesquilinear forms over \((\mathcal{C}, \{*, \omega_i\})\). Assume that \(\text{End}_\mathcal{C}(M), \text{End}_\mathcal{C}(M'), \text{End}_\mathcal{C}(M'') \) are semiprimary rings in which \(2 \) is invertible. Then
\[
(M, \{s_i\}) \oplus (M', \{s'_i\}) \cong (M, \{s_i\}) \oplus (M'', \{s''_i\}) \iff (M', \{s'_i\}) \cong (M'', \{s''_i\}).
\]

Proof. As in the proof of Theorem 5.2 it is enough to show that the objects in \(\mathcal{A}_\mathcal{C}(\mathcal{C}) \) have a complete semilocal endomorphism ring. In fact, we may restrict to those objects \(Z := (M, N, \{f_i\}, \{g_i\}) \) for which \(\text{End}_\mathcal{C}(M) \) and \(\text{End}_\mathcal{C}(N) \) are semiprimary. (These do form a hermitian subcategory of \(\mathcal{A}_\mathcal{C}(\mathcal{C}) \) by the comments above.) Fix such \(Z \) and let \(H = \bigoplus_{i \in I} \text{Hom}_\mathcal{C}(M, N^*) \). We view the morphism \(\{f_i\} \) and \(\{g_i\} \) as elements of \(H \) in the obvious way. Let \(A = \text{End}(M) \) and \(B = \text{End}(N) \). We endow \(H \) with a \((B^{op}, A)\)-bimodule structure by setting \(b^{op} \circ (\bigoplus_{i \in I} h_i) \circ a = \bigoplus_{i \in I} (b^{*} \circ h_i \circ a) \) for all \(a \in A, b \in B, \bigoplus_{i \in I} h_i \in H \). This allows us to construct the ring \(S := [^A_H B^{op}] \). It is now straightforward to check that \(\text{End}(Z) \) consists of those elements in \(A \times B^{op} = [^A_B] \) that commute with \([^g_i 0] \) and \([0 0] \) for all \(i \in I \). Thus, \(\text{End}(Z) \) is a semi-centralizer subring of \(A \times B^{op} \) in the sense of [9, §1]. By [9, Th. 4.6], a semi-centralizer subring of a semiprimary ring is semiprimary, so \(\text{End}(Z) \) is semiprimary, and in particular complete semilocal.

Corollary 5.5. Let \(A \) be a semiprimary ring with \(2 \in A^\times \), and let \(\{\sigma_i\}_{i \in I} \) be a family of involutions on \(A \). Then cancellation holds for systems of sesquilinear forms over \((A, \{\sigma_i\})\) which are defined on finitely presented right \(A \)-modules.

Proof. By [6, Th. 4.1] (or [9, Th. 7.3]), the endomorphism ring of a finitely presented \(A \)-module is semiprimary. Now apply Theorem 5.4. \(\square \)

Corollary 5.6. Let \(\mathcal{C} \) be an abelian category equipped with hermitian structures \(\{*, \omega_i\} \). Assume that \(\mathcal{C} \) consists of objects of finite length. Then cancellation holds for systems of sesquilinear forms over \((\mathcal{C}, \{*, \omega_i\})\).

Proof. By the Hadara-Sai Lemma ([19, Pr. 2.9.29]), the endomorphism ring of an object of finite length in an abelian category is semiprimary, so we are done by
Theorem 5.4. Alternatively, one can check directly that the category $\mathcal{A}\tilde{\mathcal{R}}_{2I}(\mathcal{C})$ is abelian and consists of objects of finite length, apply the Hadara-Sai Lemma to $\mathcal{A}\tilde{\mathcal{R}}_{2I}(\mathcal{C})$, and then use the cancelation theorem of \[13\] §3.4.

Remark 5.7. It is not hard to deduce from a theorem of Camps and Dicks \[7\] Cr. 2] that if the endomorphism rings of \mathcal{C} are semilocal, then so are the endomorphism rings of $\mathcal{A}\tilde{\mathcal{R}}_{2I}(\mathcal{C})$. (Simply check that $\text{End}(M, N, \{f_i\}, \{g_i\})$ is a rationally closed subring of $\text{End}_{\mathcal{F}}(M) \times \text{End}_{\mathcal{F}}(N)^{\text{op}}$ in the sense of \[7\] p. 204].) By applying transfer (see subsection \[2.3\]) to $\mathcal{A}\tilde{\mathcal{R}}_{2I}(\mathcal{C})$, one can then move to the context of unimodular 1-hermitian forms over semilocal rings. Cancelation theorems for such forms were obtained by various authors including Knebusch \[13\], Reiter \[16\] and Keller \[12\]. However, none of these apply to the general case, as in fact cancelation is no longer true; see \[12\] §2. Nevertheless, the cancelation results of \[12\] can still be used to get some partial results about systems of sesquilinear forms over \mathcal{C}; we leave the details to the reader.

5.2. Finiteness Results. In the following two subsections, we generalize the finiteness results of \[5\] §10] to systems of sesquilinear forms.

For a ring A, we denote by $T(A)$ the \mathbb{Z}-torsion subgroup of A. Recall that if R is a commutative ring, A is said to be R-finite if $A_R = A \otimes_{\mathbb{Z}} R$ is a finitely generated R-module and $T(A)$ is finite. Note that being R-finite passes to subrings.

The proofs of the results to follow are completely analogous to the proofs of the corresponding statements in \[5\] §10]; they are based on applying the equivalence of Theorem 4.1 and then using the finiteness results of \[1\], possibly after applying transfer.

Throughout, \mathcal{C} is an additive category and $\{*, \omega_i\}_{i \in I}$ is a nonempty family of hermitian structures on \mathcal{C}. Fix a system of sesquilinear forms $(V, \{s_i\}_{i \in I})$ over $(\mathcal{C}, \{i, \omega_i\})$ and let $Z(V, \{s_i\}) = (V, V, \{s_i^*, \omega_{i,V}\}, \{s_ir\}) \in \mathcal{A}\tilde{\mathcal{R}}_{2I}(\mathcal{C})$. (Note that $F(V, \{s_i\}) = (Z, (\text{id}_V, \text{id}_V^{\text{op}}))$ with F as in Theorem 4.1.)

Theorem 5.8. If there exists a non-zero integer m such that $\text{End}_{\mathcal{F}}(V)$ is $\mathbb{Z}[1/m]$-finite, then there are finitely many isometry classes of summands of $(V, \{s_i\})$.

Theorem 5.9. Assume that there is a non-zero integer m such that the ring $\text{End}_{\mathcal{A}\tilde{\mathcal{R}}_{2I}(\mathcal{F})}(Z(V, \{s_i\}))$ is $\mathbb{Z}[1/m]$-finite (e.g. if $\text{End}_{\mathcal{F}}(V)$ is $\mathbb{Z}[1/m]$-finite). Then there exist only finitely many isometry classes of systems of sesquilinear forms $(V', \{s'_i\}_{i \in I})$ over \mathcal{C} such that $Z(V', \{s'_i\}) \cong Z(V, \{s_i\})$ (as objects in $\mathcal{A}\tilde{\mathcal{R}}_{2I}(\mathcal{C})$).

5.3. Finiteness of The Genus. Let \mathcal{C} be a hermitian category admitting a nonempty family of hermitian structures $\{*, \omega_i\}_{i \in I}$. We say that two systems of sesquilinear forms $(M, \{s_i\}), (M', \{s'_i\})$ are of the same genus if they become isometric after applying $\mathcal{R}_{\mathbb{Z}_p/\mathbb{Z}}$ for every prime number p (where \mathbb{Z}_p are the p-adic integer). (See Remark 2.2 for conditions under which this definition of genus agrees with the naive definition of genus for module categories.) As in \[5\] Th. 10.3, we have:
Theorem 5.10. Let \((M, \{s_i\})\) be a system of sesquilinear forms over \((\mathcal{C}, \{\ast_i, \omega_i\})\), and assume that \(\text{End}(M)\) is \(\mathbb{Q}\)-finite. Then the genus of \((M, \{s_i\})\) contains only a finite number of isometry classes of systems of sesquilinear forms.

5.4. Forms That Are Trivial in The Witt Group. Let \(\mathcal{C}\) be a hermitian category. By definition, a unimodular \(\epsilon\)-hermitian (resp. sesquilinear) form \((M, s)\) is trivial in \(W^\epsilon(\mathcal{C})\) (resp. \(W_\mathcal{S}(\mathcal{C})\)) if and only if there are unimodular \(\epsilon\)-hermitian (resp. sesquilinear) hyperbolic forms \((H_1, h_1)\), \((H_2, h_2)\) such that \((M, s) \oplus (H_1, h_1) \simeq (H_2, h_2)\). In this section, we will show that under mild assumptions, this implies that \((M, s)\) is hyperbolic.

Lemma 5.11. Let \(M \in \mathcal{C}\), and assume that \(M\) is a (finite) direct sum of objects with local endomorphism ring. Then, up to isometry, there is at most one \(\epsilon\)-hermitian hyperbolic form on \(M\).

Proof. For \(X \in \mathcal{C}\), let \([X]\) denote the isomorphism class of \(X\). The Krull-Schmidt Theorem (e.g. see [19, pp. 237 ff.]) implies that if \(M \cong \bigoplus_{i=1}^t M_i\) with each \(M_i\) indecomposable, then the unordered list \([M_1], \ldots, [M_t]\) is determined by \(M\).

Let \((M, s)\) be an \(\epsilon\)-hermitian hyperbolic form on \(M\), say \((M, s) \simeq (N \oplus N^\ast, \mathbb{H}_N^\epsilon)\). Write \(N \cong \bigoplus_{i=1}^t N_i\) with each \(N_i\) indecomposable. Then \(s \simeq \bigoplus_{i=1}^t \mathbb{H}_{N_i}^\epsilon\). It is easy to check that the isometry class of \(\mathbb{H}_N^\epsilon\) depends only on the set \([\{[N_1], [N_1^\ast]\}, \ldots, {[\{N_r], [N_r^\ast]\}]\) is uniquely determined by \(M\). It follows that \((M, s)\) is isometric to a sesquilinear form which is determined by \(M\) up to isometry. \(\square\)

Proposition 5.12. Let \(\mathcal{C}\) be a hermitian category satisfying conditions (a), (b) of subsection 5.4. Then a unimodular \(\epsilon\)-hermitian form \((M, s)\) is trivial in \(W^\epsilon(\mathcal{C})\) if and only if it is hyperbolic.

Proof. Note first that conditions (a) and (b) imply that every object of \(\mathcal{C}\) is a sum of objects with local endomorphism ring, hence we may apply the Krull-Schmidt Theorem to \(\mathcal{C}\). (For example, this follows from [19, Th. 2.8.40] since the endomorphism rings of \(\mathcal{C}\) are semiperfect.) Let \((M, s)\) be a unimodular \(\epsilon\)-hermitian form such that \((M, s) \equiv 0\) in \(W^\epsilon(\mathcal{C})\). Then there are unimodular \(\epsilon\)-hermitian hyperbolic forms \((H_1, h_1)\), \((H_2, h_2)\) such that \((M, s) \oplus (H_1, h_1) \simeq (H_2, h_2)\). Using the Krull-Schmidt Theorem, it is easy to see that there is \(N \in \mathcal{C}\) such that \(M \cong N \oplus N^\ast\). Thus, we may consider \(\mathbb{H}_N^\epsilon\) as a hermitian form on \(M\). By Lemma 5.11, we have \(\mathbb{H}_N^\epsilon \oplus h_1 \simeq h_2\), implying \(\mathbb{H}_N^\epsilon \oplus h_2 \simeq s \oplus h_2\). Therefore, by the cancelation theorem of [15] §3.4, \(s \simeq \mathbb{H}_N^\epsilon\), as required. \(\square\)

Proposition 5.13. Let \(\mathcal{C}\) be a hermitian category in which all idempotents split and such that either

1. \(\mathcal{C}\) is \(K\)-linear, where \(K\) is a noetherian complete semilocal ring with \(2 \in K^\times\), and all Hom-sets in \(\mathcal{C}\) are finitely generated as \(K\)-modules, or
2. for all \(M \in \mathcal{C}\), \(\text{End}_\mathcal{C}(M)\) is semiprimary and \(2 \in \text{End}_\mathcal{C}(M)^\times\).
Then a sesquilinear form \((M, s)\) is trivial in \(W_S(\mathcal{C})\) if and only if it is hyperbolic.

Proof. It is enough to verify that \(F(M, s)\) is hyperbolic in \(\tilde{A}(\mathcal{C})\) (Theorem 3.2). The proofs of Theorems 5.2 and 5.4 imply that \(\tilde{A}(\mathcal{C})\) satisfies condition (b) of subsection 5.1, and condition (a) is routine (see also Lemma 5.17(ii) below). Therefore, \(F(M, s)\) is hyperbolic by Proposition 5.13. \(\square\)

Corollary 5.14. Under the assumptions of Proposition 5.13, the map \(W(\mathcal{C}) \to W_S(\mathcal{C})\) is injective.

Proof. This follows from Propositions 5.13 and 3.5. \(\square\)

5.5. Odd Degree Extensions. Throughout this subsection, \(L/K\) is an odd degree field extension and \(char K = 2\). A well known theorem of Springer asserts that two unimodular hermitian forms over \(K\) become isometric over \(L\) if and only if they are already isometric over \(K\). Moreover, the restriction map (i.e. the scalar extension map) \(r_{L/K} : W(K) \to W(L)\) is injective. Both statements were extended to hermitian forms over finite dimensional \(K\)-algebras with \(K\)-linear involution in [2] Pr. 1.2 and Th. 2.1] (see also [8] for a version in which \(L/K\) is replaced with an extension of complete discrete valuation rings). In this section, we extend these results to sesquilinear forms over hermitian categories.

Theorem 5.15. Let \(\mathcal{C}\) be an additive \(K\)-category such that \(dim_K \text{Hom}(M, M')\) is finite for all \(M, M' \in \mathcal{C}\). Let \(\{\ast_i, \omega_i\}_{i \in I}\) be a nonempty family of \(K\)-linear hermitian structures on \(\mathcal{C}\) and let \((M, \{s_i\})\), \((M', \{s'_i\})\) be two systems of sesquilinear forms over \((\mathcal{C}, \{\ast_i, \omega_i\})\). Then \(R_{L/K}(M, \{s_i\}) \simeq R_{L/K}(M', \{s'_i\})\) if and only if \((M, \{s_i\}) \simeq (M', \{s'_i\})\).

Proof. By Corollary 4.4, it is enough to prove \(R_{L/K} F(M, \{s_i\}) \simeq R_{L/K} F(M', \{s'_i\})\) if and only if \(F(M, \{s_i\}) \simeq F(M', \{s'_i\})\) (with \(F\) as in Theorem 1.1). Write \((Z, (\alpha, \alpha^{op})) = F(M, \{s_i\}) \oplus F(M', \{s'_i\})\) and let \(E = \text{End}(Z)\). Then \(E\) is a \(K\)-subalgebra of \(\text{End}(M \oplus M') \times \text{End}(M \oplus M')^{op}\), which is finite dimensional. By applying \(T_{(Z, (\alpha, \alpha^{op}))}\) (see subsection 2.3), we reduce to showing that two 1-hermitian forms over \(E\) are isometric over \(E \otimes_K L\) if and only if they are isometric over \(E\), which is just [2] Th. 2.1. (Note that we used the fact that transfer commutes with \(R_{L/K}\) in the sense of subsection 2.3.) \(\square\)

Corollary 5.16. Let \(A\) be a finite dimensional \(K\)-algebra and let \(\{\sigma_i\}_{i \in I}\) be a nonempty family of \(K\)-involutions on \(A\). Let \((M, \{s_i\})\), \((M', \{s'_i\})\) be two systems of sesquilinear forms over \((A, \{\sigma_i\})\). If \(M\) and \(M'\) are of finite type, then \(R_{L/K}(M, \{s_i\}) \simeq R_{L/K}(M', \{s'_i\})\) if and only if \((M, \{s_i\}) \simeq (M', \{s'_i\})\).

To state the analogue of the injectivity of \(r_{L/K} : W(K) \to W(L)\) for hermitian categories, we need to introduce additional notation.

An additive category \(\mathcal{C}\) is called pseudo-abelian if all idempotents in \(\mathcal{C}\) split. Any additive category \(\mathcal{C}\) admits a pseudo-abelian closure (e.g. see [11] Th. 6.10), namely, a pseudo-abelian additive category \(\mathcal{C}^\circ\) equipped with an additive functor
$A \mapsto A^\circ : \mathcal{C} \to \mathcal{C}^\circ$, such that the pair $(\mathcal{C}^\circ, A \mapsto A^\circ)$ is universal. The category \mathcal{C}° is unique up to equivalence and the functor $A \mapsto A^\circ$ turns out to be faithful and full. The category \mathcal{C}° can be realized as the category of pairs (M,e) with $M \in \mathcal{C}$ and $e \in \text{End}_\mathcal{C}(M)$ an idempotent. The Hom-sets in \mathcal{C}° are given by $\text{Hom}_{\mathcal{C}^\circ}((M,e),(M',e')) = e' \text{Hom}_\mathcal{C}(M,M')e$ and the composition is the same as in \mathcal{C}. Finally, set $M^\circ = (M,\text{id}_M)$ and $f^\circ = f$ for any object $M \in \mathcal{C}$ and any morphism f in \mathcal{C}. For simplicity, we will use only this particular realization of \mathcal{C}°. Nevertheless, the universality implies that the statements to follow hold for any pseudo-abelian closure.

Assume \mathcal{C} admits a K-linear hermitian structure (\ast, ω). Then \mathcal{C}° is clearly a K-category, and moreover, it has a K-linear hermitian structure given by $(M,e)^\circ = (M^\ast,e^\ast)$ and $\omega_{(M,e)} = e^\ast \omega_{M,e} \in \text{Hom}_{\mathcal{C}^\circ}((M,e),(M^\ast,e^\ast))$. Furthermore, the functor $M \mapsto M^\circ$ is 1-hermitian and duality preserving (the isomorphism $(M^\ast)^\circ \to (M^\ast)^\circ$ being id_M), so we have a faithful and full functor $(M,s) \mapsto (M,s)^\circ = (M^\circ,s)$ from Sesq(\mathcal{C}) to Sesq(\mathcal{C}°). Henceforth, consider \mathcal{C} (resp. Sesq(\mathcal{C})) as a full subcategory of \mathcal{C}° (resp. Sesq(\mathcal{C}°)), i.e identify M° (resp. $(M,s)^\circ$) with M (resp. (M,s)).

Lemma 5.17. Let \mathcal{C}, \mathcal{C}' be two hermitian categories and let $F : \mathcal{C} \to \mathcal{C}'$ be an ϵ-hermitian duality preserving functor. Then:

(i) F extends to an ϵ-hermitian duality preserving functor $F^\circ : \mathcal{C}^\circ \to \mathcal{C}^\circ$. If F is faithful and full, then so is F°.

(ii) There is a 1-hermitian duality preserving functor $G : \mathcal{A}(\mathcal{C})^\circ \to \mathcal{A}(\mathcal{C}^\circ)$. The functor G fixes $\mathcal{A}(\mathcal{C})^\circ$ and induces an equivalence of categories.

Proof. (i) Define $F^\circ(M,e) = (FM,Fe) \in \mathcal{C}^\circ$. The rest is routine.

(ii) Let G send $((M,M',f,g),(e,e^\text{op})) \in \mathcal{A}(\mathcal{C})^\circ$ to $((M,e),(M',e'),e^\ast f e,e^\ast g e)$ and any morphism to itself. The details are left to the reader. \square

Observe that the category \mathcal{C}_L may not be pseudo-abelian even when \mathcal{C} is. We thus set $\mathcal{C}_L^\circ := (\mathcal{C}_L)^\circ$.

Theorem 5.18. Let $(\mathcal{C}, \ast, \omega)$ be a pseudo-abelian K-linear hermitian category such that $\text{dim}_K \text{Hom}(M,M')$ is finite for all $M, M' \in \mathcal{C}$. Then the maps

$W^\ast(\mathcal{R}_{L/K}) : W^\ast(\mathcal{C}) \to W^\ast(\mathcal{C}_L^\circ)$ and $W(\mathcal{R}_{L/K}) : W_\mathcal{S}(\mathcal{C}) \to W_\mathcal{S}(\mathcal{C}_L^\circ)$

are injective.

Proof. We begin by showing that $W^\ast(\mathcal{R}_{L/K}) : W^\ast(\mathcal{C}) \to W^\ast(\mathcal{C}_L^\circ)$ is injective. Let $(M,s) \in \text{UH}^\ast(\mathcal{C})$ be such that $(M_L,s_L) \equiv 0$ in $W^\ast(\mathcal{C}_L^\circ)$. Then there are objects $N, N' \in \mathcal{C}_L$ such that $s_L \oplus \mathbb{H}_N \simeq \mathbb{H}_{N'}$. Let $(U,h) = (M,s) \oplus (N',\mathbb{H}_{N'})$, $E = \text{End}_{\mathcal{C}_L}(U)$ and let σ be the involution induced by h on E. Also set $E_L = E \otimes_K L = \text{End}_{\mathcal{C}_L}(U_L)$ and $\sigma_L = \sigma \otimes_K \text{id}_L$. Subsection 2.5 implies that $\mathcal{R}_{L/K}(T_{(U,h)}(M,s)) = T_{(U_L,\mathcal{H}_L)}(M_L,s_L) \equiv 0$ in $W^\ast(E_L,\sigma_L)$, and by [2, Prp. 1.2], this means $T_{(U,h)}(M,s) \equiv 0$ in $W^\ast(E,\sigma)$ (here we need $\text{dim}_K E < \infty$). Since \mathcal{C}
is pseudo-abelian, the map $T_{(U,h)} : \mathcal{C}|_U \to \mathcal{P}(E)$ is an equivalence of categories, hence the induced map $W^r(T_{(U,h)}) : W^r(\mathcal{C}|_U) \to W^r(\mathcal{P}(E)) = W^r(E,\sigma)$ is an isomorphism of groups. Therefore, $(M,s) \equiv 0$ in $W^r(\mathcal{C}|_U)$. In particular, the same identity holds in $W^r(\mathcal{C})$.

Now let $(M,s) \in \text{Sesq}(\mathcal{C})$ be such that $(M_L,s_L) \equiv 0$ in $W_S(\mathcal{C}_L^\circ)$. Then by Proposition 5.13, (M_L,s_L) is hyperbolic in \mathcal{C}_L (but, a-priori, not in \mathcal{C}_L°). Let F be the functor defined in Theorem 3.2 and let J be the functor $\tilde{A}_2(\mathcal{C})^L \to \tilde{A}_2(\mathcal{C})^L$ of Proposition 3.7. By the lemma, there is a fully faithful 1-hermitian duality preserving functor $J' := GJ^\circ : \tilde{A}_2(\mathcal{C})^L \to \tilde{A}_2(\mathcal{C})^L$. Since (M_L,s_L) is hyperbolic in \mathcal{C}_L^0, there is $Q \in \tilde{A}_2(\mathcal{C}_L^0)$ such that $F(M_L,s_L) \simeq (Q \oplus Q^*,\mathbb{H}_Q)$. Let $Z(M,s) := (M,M,s^*\omega_M,s)$ and $Z(M_L,s_L) = (M_L,M_L,s^*_L\omega_M,s_L)$. Recall that $F(M_L,s_L) = F\mathcal{R}_{L/K}(M,s) = J\mathcal{R}_{L/K}F(M,s)$ (Proposition 3.7) and hence $Q \oplus Q^* \simeq Z(M_L,s_L) = J(Z(M,s)_L) = J'(Z(M,s)_L)$. As J' is fully faithful and its image is pseudo-abelian, we may assume $Q = J'H$ for some $H \in \tilde{A}_2(\mathcal{C})^L_0$. We now have $J'(H \oplus H^*,\mathbb{H}_H^\circ) = (Q \oplus Q^*,\mathbb{H}_Q) \simeq F(M_L,s_L) = J'\mathcal{R}_{L/K}F(M,s)$, hence $(H \oplus H^*,\mathbb{H}_H^\circ) \simeq \mathcal{R}_{L/K}F(M,s)$ in $\tilde{A}_2(\mathcal{C})^L_0$. In particular, $\mathcal{R}_{L/K}F(M,s) \equiv 0$ in $W(\tilde{A}_2(\mathcal{C})^L_0)$. By the previous paragraph, this means $F(M,s) \equiv 0$ in $W(\tilde{A}_2(\mathcal{C})^L_0)$ and hence, $(M,s) \equiv 0$ in $W_S(\mathcal{C})$. □

We also have the following weaker version of Springer’s Theorem that works without assuming \mathcal{C} is pseudo-abelian.

Theorem 5.19. Let $(\mathcal{C},*,\omega)$ be a K-linear hermitian category such that $\dim_K \text{Hom}(M,M')$ is finite for all $M,M' \in \mathcal{C}$. Then the map $W^r(\mathcal{R}_{L/K}) : W^r(\mathcal{C}) \to W^r(\mathcal{C}_L)$ is injective.

Proof. Let $(M,s) \in \text{UH}^r(\mathcal{C})$ be such that $(M_L,s_L) \equiv 0$ in $W^r(\mathcal{C}_L)$. Then there are objects N_L,N'_L such that $s_L \oplus \mathbb{H}_{N_L}^r \simeq \mathbb{H}_{N'_L}^r$. Since $\mathbb{H}_{N_L}^r = (\mathbb{H}_N^r)_L$ and $\mathbb{H}_{N'_L}^r = (\mathbb{H}_{N'}^r)^L$, we have $(s \oplus \mathbb{H}_N^r)_L \simeq (\mathbb{H}_{N'}^r)_L$. By Theorem 5.15, this means $s \oplus \mathbb{H}_N^r \simeq \mathbb{H}_{N'}^r$, hence $(M,s) \equiv 0$ in $W^r(\mathcal{C})$. □

5.6. Weak Hasse Principle.

In this final subsection, we prove a version of the **weak Hasse principle** for systems of sesquilinear forms over hermitian categories. Recall that the weak Hasse principle asserts that two quadratic forms over a global field k are isometric if and only if they are isometric over all completions of k. This actually fails for systems of quadratic forms, and we refer the reader to [3] and [4] for necessary and sufficient conditions for the weak Hasse principle to hold in this case. A weak Hasse principle for **sesquilinear** forms defined over a skew field with a unitary involution was obtained in [5].

Let K be a commutative ring admitting an involution σ, and let k be the fixed ring of σ. Let \mathcal{C} be an additive K-category. A hermitian structure (\ast,ω) on \mathcal{C} is called **(K,σ)-linear** if $(fa)^* = f^*\sigma(a)$ for all $a \in K$ and any morphism f in \mathcal{C}. (This means that the functor \ast is k-linear.) In this case, $\text{End}(M)$ is a
K-algebra for all $M \in \mathcal{C}$, and for any unimodular ϵ-hermitian form (M, s) over \mathcal{C}, the restriction of the involution $f \mapsto s^{-1}f^*s$ to $K \cdot \text{id}_M$ is σ.

Suppose now that K is a global field of characteristic not 2 admitting an involution σ of the second kind with fixed field k, and that \mathcal{C} admits a nonempty family of (K, σ)-linear hermitian structures $\{\ast_i, \omega_i\}_{i \in I}$. For every prime spot p of k, let k_p be the completion of k at p and set $K_p = K \otimes_k k_p$, $\sigma_p = \sigma \otimes_k \text{id}_{k_p}$ and $\mathcal{C}_p = \mathcal{C} \otimes_k k_p$. Then each of the hermitian structures (\ast_i, ω_i) gives rise to a (K_p, σ_p)-linear hermitian structure on \mathcal{C}_p, which we also denote by (\ast_i, ω_i).

Theorem 5.20. Let K be a global field of characteristic not 2 admitting an involution σ of the second kind with fixed field k. Let \mathcal{C} be a K-category such that $\dim_K \text{Hom}(M, N)$ is finite for all $M, N \in \mathcal{C}$, and assume there is a nonempty family $\{\ast_i, \omega_i\}_{i \in I}$ of (K, σ)-linear hermitian structures on \mathcal{C}. Then the weak Hasse principle (with respect to k) holds for systems of sesquilinear forms over $(\mathcal{C}, \{\ast_i, \omega_i\})$. That is, two systems of sesquilinear forms over $(\mathcal{C}, \{\ast_i, \omega_i\})$ are isometric if and only if they are isometric after applying $\mathcal{R}_{kp/k}$ for all p.

We will need the following lemma. (The lemma seems to be known, but we could not find an explicit reference, and hence included here an ad-hoc proof.)

Lemma 5.21. Let L/K be any field extension, and let \mathcal{C} be an additive K-category such that $\dim_K \text{Hom}_\mathcal{C}(M, N)$ is finite for all $M, N \in \mathcal{C}$. Then for all $N, M \in \mathcal{C}$, we have $N \cong M \iff N_L \cong M_L$.

Proof (sketch). By applying $\text{Hom}_\mathcal{C}(M \oplus N, _)$, we may assume M and N are f.g. projective right modules over $R := \text{End}(M \oplus N)$, which is a finite dimensional K-algebra by assumption. Let J be the Jacobson radical of R. By tensoring with R/J, we may assume R is semisimple. Let $\{V_i\}$ be a complete list of the simple right R-modules and write $(V_i)_L = \bigoplus_j W_{ij}$ with $\{W_{ij}\}_j$ being pairwise non-isomorphic indecomposable R_L-modules. The R_L-modules $\{W_{ij}\}_{i,j}$ are pairwise non-isomorphic because W_{ij} and $W_{ij'}$ are non-isomorphic as R-modules when $i \neq i'$ (the W_{ij} is isomorphic as an R-module to a direct sum of copies of V_i). Assume $M_L \cong N_L$ and write $M \cong \bigoplus_i V_i^{m_i}$, $M \cong \bigoplus_i V_i^{m_i'}$. Then $\bigoplus_{ij} W_{ij}^{m_in_{ij}} \cong M_L \cong \bigoplus_{ij} W_{ij}^{m'n_{ij}}$. By the Krull-Schmidt Theorem (see for instance [19] pp. 237 ff.), we have $m_i n_{ij} = m'i n_{ij}$ for all i, j, hence $m_i = m_i'$ and $M \cong N$. \hfill \square

Proof of Theorem 5.20. By Corollary 4.34 it is enough to verify the Hasse principle (with respect to k) for 1-hermitian forms in the category $\mathcal{G} := \mathcal{A}_{11}(\mathcal{C})$. Our assumptions imply that \mathcal{G} is a (K, σ)-linear category such that $\dim_K \text{Hom}(Z, Z')$ is finite for all $Z, Z' \in \mathcal{G}$. We now use the ideas developed in [3, §9].

Let (Z, h), (Z', h') be two unimodular 1-hermitian forms over \mathcal{G} such that $\mathcal{R}_{kp/k}(Z, h) \cong \mathcal{R}_{kp/k}(Z', h')$ for all p. By Lemma 5.21 this is implies that $Z \cong Z'$, so we may assume $Z = Z'$.

Fix a 1-hermitian form h_0 on Z and let τ be the involution induced by h_0 on $E := \text{End}(Z)$ (i.e. $\tau(x) = h_0^{-1} x^* h_0$). There is an equivalence relation on
the elements of E defined by $x \sim y \iff$ there exists an invertible $z \in E$ such that $x = zy \tau(z)$. Let $H(\tau, E^\times)$ be the set of equivalence classes of invertible elements $x \in E^\times$ for which $x = \tau(x)$. In the same manner as in [5, Th. 5.1], we see that there is a one-to-one correspondence between isometry classes of unimodular 1-hermitian forms on Z and elements $H(\tau, E^\times)$. It is given by $(Z, t) \mapsto h_{0}^{-1}t$.

Applying the same argument to $Z_p = \mathcal{R}_{k_p/k}Z \in \mathcal{G}_p$, we see that the weak Hasse principle is equivalent to the injectivity of the standard map

$$\Phi : H(\tau, E^\times) \rightarrow \prod_p H(\tau_p, E_p^\times)$$

where $E_p = \text{End}(Z_p) = E \otimes_k k_p$ and $\tau_p = \tau \otimes_k \text{id}_{k_p}$. Observe that since \mathcal{G} is (K, σ)-linear, τ is a unitary involution (and in fact, $\tau|_K = \sigma$). By [5] §9, this means that Φ is injective, hence the weak Hasse principal holds.

Corollary 5.22. Let K be a global field of characteristic not 2 admitting an involution σ of the second kind with fixed field k. Let A be a finite dimensional K-algebra admitting a nonempty family of involutions $\{\sigma_i\}_{i \in I}$ such that $\sigma_i|_K = \sigma$. Then the weak Hasse principle (with respect to k) holds for systems of sesquilinear forms over $(A, \{\sigma_i\})$.

Acknowledgements

The third named author would like to thank Emmanuel Lequeu for many interesting and useful discussions.

References

[1] E. Bayer-Fluckiger, C. Kearton, and S. M. J. Wilson. Hermitian forms in additive categories: finiteness results. *J. Algebra*, 123(2):336–350, 1989.

[2] E. Bayer-Fluckiger and H. W. Lenstra, Jr. Forms in odd degree extensions and self-dual normal bases. *Amer. J. Math.*, 112(3):359–373, 1990.

[3] Eva Bayer-Fluckiger. Intersections de groupes orthogonaux et principe de Hasse faible pour les systèmes de formes quadratiques sur un corps global. *C. R. Acad. Sci. Paris Sér. I Math.*, 301(20):911–914, 1985.

[4] Eva Bayer-Fluckiger. Principe de Hasse faible pour les systèmes de formes quadratiques. *J. Reine Angew. Math.*, 378:53–59, 1987.

[5] Eva Bayer-Fluckiger and Daniel Arnold Moldovan. Sesquilinear forms over rings with involution. *J. Pure Appl. Algebra*, 218(3):417–423, 2014.

[6] J.-E. Björk. Conditions which imply that subrings of semiprimary rings are semiprimary. *J. Algebra*, 19:384–395, 1971.

[7] Rosa Camps and Warren Dicks. On semilocal rings. *Israel J. Math.*, 81(1-2):203–211, 1993.

[8] L. Fainsilber. Formes hermitiennes sur des algèbres sur des anneaux locaux. In *Théorie des nombres, Années 1992/93-1993/94*, Publ. Math. Fac. Sci. Besançon, page 10. Univ. Franche-Comté, Besançon, 199?

[9] Uriya A. First. Semi-invariant subrings. *J. Algebra*, 378:103–132, 2013.

[10] Yukitoshi Hinohara. Note on non-commutative semi-local rings. *Nagoya Math. J.*, 17:161–166, 1960.
[11] Max Karoubi. *K-theory*, volume 226 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1978.

[12] Bernhard Keller. A remark on quadratic spaces over noncommutative semilocal rings. *Math. Z.*, 198(1):63–71, 1988.

[13] Manfred Knebusch. Isometrien über semilokalen Ringen. *Math. Z.*, 108:255–268, 1969.

[14] Max-Albert Knus. *Quadratic and Hermitian forms over rings*, volume 294 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni.

[15] H.-G. Quebbemann, W. Scharlau, and M. Schulte. Quadratic and Hermitian forms in additive and abelian categories. *J. Algebra*, 59(2):264–289, 1979.

[16] H. Reiter. Witt’s theorem for noncommutative semilocal rings. *J. Algebra*, 35:483–499, 1975.

[17] C. Riehm and M. A. Shrader-Frechette. The equivalence of sesquilinear forms. *J. Algebra*, 42(2):495–530, 1976.

[18] Carl Riehm. The equivalence of bilinear forms. *J. Algebra*, 31:45–66, 1974.

[19] Louis H. Rowen. *Ring theory. Vol. I*, volume 127 of *Pure and Applied Mathematics*. Academic Press Inc., Boston, MA, 1988.

[20] Winfried Scharlau. *Quadratic and Hermitian forms*, volume 270 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1985.