Choosing The Adaptive Cardiac Phase for Assessing Cardiac Dimensions Using Cardiac Computed Tomography for Heart Disease

Li Wang
Affiliated Hospital of Southwest Medical University

Jin-Rong Zhou
Affiliated Hospital of Southwest Medical University

Dong Chen
Affiliated Hospital of Southwest Medical University

Yu-Jiao Deng
Affiliated Hospital of Southwest Medical University

Jing Chen (yzqdcj@126.com)
Affiliated Hospital of Southwest Medical University

Research Article

Keywords: chamber dimension, wall thickness, cardiac phase, risk factors, cardiac computed tomography

DOI: https://doi.org/10.21203/rs.3.rs-126461/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Choosing a suitable cardiac cycle to measure cardiac chamber dimensions and wall thickness can be a more accurate assessment of cardiovascular disease.

Methods: Cardiac CT was performed on 137 patients for suspected coronary disease. The parameters of left atrium (LA), left ventricle (LV), right atrium (RA), and right ventricle (RV), as well as the wall thickness of LV were measured in different cardiac phases. The general linear mixed model was used to analyze differences in different phases and the correlation between these parameters and traditional risk factors. ROC analysis was performed to estimate LA enlargement.

Results: The dimensions of LA, RA, and LV wall thickness achieved the maximum at the phase of 35%–45%, and the dimensions of LV and RV reached the maximum at 95%–5%. Whereas, the changes of LA-B (antero-posterior diameter), LV-D1 (basal dimension), RA-B (minor dimension) and RV-D2 (mid cavity dimension) were relatively more stable during the cardiac cycle. The maximum LA-B diameter(95%CI 36.92,38.48mm), LV-D1 diameter(95%CI 44.36,45.83mm), RA-B diameter(95%CI 48.75,50.61mm), and RV-D2 diameter(95%CI 30.83,32.84mm) and the maximum interventricular septum thickness(95%CI 10.79,11.51mm) was acquired. Heart rate (HR) and smoking were potential indicators of LVD2 (mid cavity dimension), while HR and LV myocardial mass were potential indicators of LVD3 (apical-basal dimension). In phase 45%, the cut-off value of LA-A with 77.57mm has high specificity.

Conclusion: Cardiac chamber dimensions and wall thickness vary with the cardiac phase. Choosing the adaptive cardiac phase for evaluating these parameters obtained by cardiac CT could provide a more accurate clinical measurement.

Introduction

The heart is a hollow organ at the center of the circulatory system. Rhythmic contractions and dilations by the contraction of myocardial cells pump the blood. Assessing the dimensions of the cardiac chambers is useful for diagnosis of cardiac disease, risk stratification, and therapeutic decision making. For example, left atrial (LA) enlargement is associated with an increased risk of adverse cardiovascular events, such as atrial fibrillation, myocardial infarction, congestive heart failure, and stroke. Left ventricular (LV) enlargement is associated with an array of cardiac pathologies, including cardiomyopathy, ischemia, and valvular heart disease. These conditions can remain clinically silent until late in their progression. It is therefore important to recognize changes in cardiac chamber dimensions early in the course of these diseases. Additionally, LV wall thickness is a predictor of mortality and morbidity in heart disease and can aid decision making in some clinical guidelines. Right heart function is an independent determinant of clinical status and prognosis in many congenital and acquired disease states. Therefore, obtaining accurate diameters of the cardiac chambers is crucial to clinical decision-making, intervention, and operation decisions for cardiac diseases. Since the enlargement of the LA was more significant, we also measured this group of patients.

Considering these factors, there are many imaging approaches for evaluating the size of the cardiac chambers. Echocardiography is the most commonly used noninvasive modality, but it is heavily dependent on the sonographer’s skills and has poor repeatability. Cardiac MRI is considered the reference standard for evaluating cardiac size and function, but it is costly and time-consuming. Therefore, cardiac MRI is rarely performed as an initial investigation for evaluating cardiac size. Cardiac computed tomography (CT) is performed with retrospective electrocardiography (ECG) gating could provide heart images with high time resolution, and reconstruct multiple-phase images of the cardiac cycle. It can comprehensively evaluate lesions that cause the heart to enlarge for many reasons, and is emerging as a promising tool with respect to quantifying chamber volumes and cardiac structure.

It is well-known that cardiac chamber dimensions and LV wall thickness change with the cardiac cycle, but the law is unknown. When the cardiac diameter is largest or smallest, and which is the best cardiac phase to evaluate the chamber size and wall thickness are also ambiguous. In recent years, many scholars have studied how cardiac chamber dimensions change with the cardiac cycle on CT, but most studies of cardiac chamber size have focused on end-systole and end-diastole. Moreover, different researchers have set different time points for systole and diastole in the cardiac cycle. This makes the assessment of the cardiac chamber dimensions inconsistent in the cardiac phase and results in different dimensions for the same structure. This would therefore lead to an inaccurate evaluation of the cardiac chamber dimensions and LV wall thickness. To date, there are no reports of measuring the cardiac chamber diameter and LV wall thickness of ten different cardiac cycles. Therefore, the first aim of our study was to assess the dynamic changes of the cardiac chamber dimensions and wall thickness in ten cardiac phases. We used a more detailed division of cardiac cycles compared with other studies and information on accurate cardiac phases for the measurement of the maximum diameter, which is required to diagnose cardiac disease. The another purpose of our study was to explore which diameters of the four cardiac chambers were most stable with changes in cardiac cycle.

Methods

This study was conducted in accordance with the the Declaration of Helsinki (2000 EDITION), and an application for the exemption of patients’ informed consent was approved by the Institutional Review Board of our hospital, due to the retrospective nature of the study. So all written informed consent forms are waived.
2.1 Patient selection

Two hundred consecutive patients underwent cardiac CT scans for suspected coronary disease between August and December 2019. Patients with normal cardiac chamber dimensions or LA enlargement on echocardiography (within three months of the CT study) and who were at least 18 years of age were enrolled. Exclusion criteria included patients with severe arrhythmia, pacemakers, cardiovascular surgical procedures, known heart disease and motion artifact. Patients with structural or functional abnormalities of the heart detected by echocardiography were also excluded.

2.2 CT scanning protocol

All CT angiography (CTA) scans were acquired using a 256-slice scanner (Philips Brilliance iCT; Philips Medical Systems, Cleveland, OH, USA) with retrospective ECG-gating. The scanning range is from the bifurcation of the pulmonary artery to the level of the diaphragm with a thickness of 0.5 cm. The scan is automatically triggered by setting the region of interest in the descending aorta (the threshold value was set as 250 Hounsfield units [Hu]). A high-pressure syringe was used to inject 75~85 mL of contrast agent (Iopamidol 370 mg/mL) through the elbow vein. Subsequently, 40 mL of physiological saline was injected at the same rate with a flow rate of 5.0~5.5 mL/s. We used 120 kV for patients with body weight \(\geq 75 \) kg, 100 kV for patients with body weight < 75 kg, 1200 mAs/slice for patients with body mass index (BMI) \(\geq 24 \), and 900 mAs/slice for patients with BMI < 24.

2.3 Image analysis

Multi-phase reconstructions were done from 5~95% in increments of 10% on a 256-slice spiral CT scanning workstation. The reconstruction vision of 10 cardiac cycles was extended to the entire thorax. All images were transferred to a post-processing workstation (Philips InteelliSpace Portal system) and loaded into the cardiac viewer application. Two experienced observers (both with three years of experience in the interpretation of cardiac CT images) who were blinded to the echocardiographic data independently reviewed the reconstructed CT images on a dedicated post-processing workstation.

The left atrial maximum transverse diameter (LA-A) and antero-posterior diameter (LA-B) were to be traced manually on an image showing the right inferior pulmonary vein insertion\(^{11}\). The thoracic vertebral diameter was measured at the same level\(^{12}\). The left atrial-vertebral ratio (LAssVR) was then obtained by dividing the LA diameter by the vertebral diameter (Fig. 1A). The left ventricular basal dimension (LVD1), mid cavity dimension (LVD2) and apical-basal dimension (LVD3) in different cardiac phases were measured in the long-axis view of LV\(^{13}\) (Fig. 1D). LV wall thickness (including 16 segmentations) at the basal, mid, and apical segments in different cardiac phases were measured in the short-axis view of the LV (Fig. 1C). The right atrial major dimension (RA-A), minor dimension (RA-B), right ventricular basal dimension (RVD1), mid cavity dimension (RVD2), and apical-basal dimension (RVD3) in different cardiac phases were measured in the apical four-chamber multiplanar reconstruction view\(^{14,15}\) (Fig. 1B).

2.4 Statistical analysis

The statistical software package R (Version 3.6.1; R Core Team, 2019) was used to perform analyses. Qualitative data were expressed by frequency and percentage, while quantitative data were expressed by mean ± standard deviation. Differences in wall thickness and cardiac chamber dimensions between cardiac cycles were detected using linear mixed model. The relationship between LV-D2/LV-D3 and clinical characteristics were also estimated by linear mixed model. ROC analyze together with area under curve, sensitivity and specificity were used to estimate the diagnosis value of single and combined parameters for left atrial enlargement. Intra- and inter-observer variability for reproducibility were assessed using intraclass correlation coefficient (ICCs). The significance level was set at \(p < 0.05 \).

Results

3.1 Baseline characteristics

We enrolled a total of 126 subjects (65 males and 61 females, mean age 55 years, range 47~77 years) with normal chamber dimensions and 118 subjects (61 men and 57 women, mean age 54 years, range 30~77 years) with normal wall thickness, 11 patients (6 men and 5 women, mean age 58 years, range 55~74 years) with LA enlargement. Table 1 shows the clinical characteristics of the study population.
Table 1
General clinical characteristics

Characteristics	NCD group (N = 126)	NWT group (N = 118)	LAE group (N=11)
Age(years)	55.52 ± 11.38	54.89 ± 11.18	64.5 ± 7.74
Sex(male,n,%)	65(51.6%)	61(51.7%)	6(54.5%)
BMI (kg/m²)	23.95 ± 2.68	24.17 ± 2.70	23.63 ± 2.29
BSA(ℓ)	1.65 ± 0.16	1.65 ± 0.15	1.67 ± 0.17
Smoking(n,%)	30(23.8%)	29(24.6%)	2(18.2%)
Drinking(n,%)	22(17.5%)	21(17.8%)	1(9%)
Hypertension(n,%)	34(27.0%)	30(25.4%)	5(45.5%)
Hyperglycemia(n,%)	15(11.9%)	15(12.7%)	1(9%)
Hyperlipemia(n,%)	32(25.4%)	31(26.3%)	3(27.3%)
HR(Beats/min)	62.98 ± 8.67	62.98 ± 8.72	64.64 ± 20.5
LVMM(g)	111.07 ± 26.75	110.39 ± 24.09	117.34 ± 33.14

BMI indicates body mass index; BSA, body surface area; HR, heart rates; LVMM, LV-myocardial mass; NCD, normal chamber dimensions; NWT, normal wall thickness

3.2 LA parameters in different cardiac cycles

Table 2 list the mean ± sd of LA-A, LA-B, and LAVR in different cardiac phases. Fig. 2A shows the change trends. For LA-A, LA-B, and LAVR, the maximum and minimum values were observed in the 35–45% phase and 5% phase, respectively. The maximum values of LA-A and LA-B were 67.03 ± 5.39 mm and 37.70 ± 4.40 mm respectively. The variation of LA-B in cardiac cycles was of statistical significance, LA-A and LAVR were not. Compared with LA-A, LA-B changes more stably during the cardiac cycle.

Table 2
Cardiac chamber dimensions in different cardiac cycles

Phase	LA-A	LA-B	LAVR	LV-D1	LV-D2	LV-D3	RA-A	RA-B	RV-D1	RV-D2	RV-D3
5%	54.26 ± 6.28	29.54 ± 4.43	1.77 ± 0.24	46.09 ± 4.16	50.44 ± 4.73	77.36 ± 8.36	39.46 ± 5.72	36.95 ± 4.84	42.13 ± 5.19	31.28 ± 5.19	74.35 ± 7.96
15%	56.24 ± 5.90	30.71 ± 4.69	1.84 ± 0.24	43.80 ± 4.69	45.99 ± 6.16	74.75 ± 7.04	42.24 ± 5.51	40.55 ± 5.29	41.70 ± 5.24	29.68 ± 4.95	71.06 ± 7.26
25%	61.49 ± 5.65	33.71 ± 4.52	1.90 ± 0.30	41.06 ± 4.67	37.98 ± 6.69	66.57 ± 7.47	44.55 ± 5.50	45.24 ± 5.45	38.60 ± 4.97	25.90 ± 4.87	65.21 ± 7.32
35%	65.74 ± 5.60	36.52 ± 4.44	1.92 ± 0.29	38.64 ± 4.85	30.89 ± 7.23	58.94 ± 8.38	45.37 ± 5.50	48.62 ± 5.27	36.13 ± 5.35	23.17 ± 4.99	60.11 ± 7.55
45%	67.03 ± 5.39	37.70 ± 4.40	1.91 ± 0.29	37.55 ± 5.43	31.15 ± 7.97	58.77 ± 8.36	45.58 ± 5.18	49.68 ± 5.26	36.00 ± 5.89	23.44 ± 5.40	58.63 ± 7.33
55%	63.99 ± 5.62	35.51 ± 5.07	1.90 ± 0.29	40.16 ± 5.57	39.88 ± 8.05	66.16 ± 9.53	44.90 ± 5.68	45.27 ± 5.77	39.07 ± 6.18	27.22 ± 5.85	63.02 ± 8.29
65%	61.22 ± 5.91	33.91 ± 4.65	1.88 ± 0.28	41.84 ± 4.47	44.56 ± 6.10	70.55 ± 7.51	45.01 ± 5.22	42.62 ± 5.25	41.15 ± 6.11	29.36 ± 6.04	65.92 ± 8.14
75%	60.52 ± 5.66	33.94 ± 4.33	1.85 ± 0.26	42.62 ± 4.17	45.42 ± 6.34	71.59 ± 7.39	44.56 ± 5.47	41.96 ± 4.84	41.20 ± 5.92	29.92 ± 5.96	67.28 ± 7.69
85%	59.69 ± 5.93	33.97 ± 4.22	1.82 ± 0.26	43.40 ± 4.19	46.56 ± 5.71	72.86 ± 7.10	43.76 ± 5.48	41.00 ± 4.83	41.40 ± 5.71	30.22 ± 5.71	68.54 ± 7.81
95%	55.67 ± 6.07	31.53 ± 4.75	1.80 ± 0.38	44.91 ± 4.07	49.66 ± 5.17	76.37 ± 7.25	39.44 ± 5.45	36.77 ± 5.02	41.95 ± 5.56	31.83 ± 5.69	73.50 ± 8.22
t	1.858	6.601	-0.317	2.938	6.699	3.700	1.624	-4.603	4.885	7.889	0.669
p-value	< 0.001	0.752	< 0.001	< 0.001	0.105	< 0.001	< 0.001	< 0.001	< 0.001	< 0.504	
The parameters were expressed as mean values ± standard deviations. LA-A—left atrial maximum transverse diameter; LA-B—left atrial antero-posterior diameter; LAVR—left atrial vertebral ratio; LV-D1—left ventricular basal dimension; LV-D2—left ventricular mid cavity dimension; LV-D3—left ventricular apical-basal dimension; RA-A—right atrial major dimension; RA-B—right atrial minor dimension; RV-D1—right ventricular basal dimension; RV-D2—right ventricular mid cavity dimension; RV-D3—right ventricular apical-basal dimension

In phase 45%, the cut-off value of LA-A was 77.57 mm with 36.4% sensitivity, 97.6% specificity, 57.1% positive prediction value, 94.6% negative prediction value. The cut-off value of LA-B was 37.12 mm with 90.9% sensitivity, 37.6% specificity, 13.2% positive prediction value, 98.4% negative prediction value. And the combined diagnosis of LA-A and LA-B had 45.5% sensitivity, 98.4% specificity, 71.4% positive prediction value, 95.4% negative prediction value. Besides, LAVR had 1.845 cut-off value with 81.8% sensitivity, 52.4% specificity, 13% positive prediction value, 97.1% negative prediction value.

3.3 LV parameters in different cardiac cycles

Table 2 list the mean ± sd of LV chamber dimensions (LVD1, LVD2, LVD3) in different cardiac phases, Fig. 2A shows the change trends. The maximum and minimum values of LV dimensions were observed in the 5% phase and 35–45% phase, respectively. The maximum values of LV-D1, LV-D2, and LV-D3 were 45.09 ± 4.16 mm, 50.44 ± 4.73 mm, and 77.36 ± 8.36 mm, respectively. The variation of LV-D1, LV-D2, and LV-D3 in cardiac cycles was of statistical significance. Of these diameters, LV-D1 showed the most stable changes during the cardiac cycle.

Results from univariate analysis revealed that body surface area (BSA), heart rate (HR), LV-myocardial mass (LVMM), smoking, and diabetes were significantly related to LV-D2 and LV-D3 (Table 3). Multivariate analysis demonstrated that HR and smoking were potential indicators of LV-D2, and that HR and LVMM were potential indicators of LV-D3. One unit change in HR was associated with 0.187 unit decrease in the LV-D2. The average LV-D2 of smokers is 2.830 mm higher than that of non-smokers. The other variables were not significantly related to LV-D2. One unit change in HR was associated with 0.164 unit decease in the LV-D3, while one unit change in LVMM was associated with 0.124 unit increase in the LV-D3.

Characteristics	LVD2	t	p-value	LVD3	t	p-value
Age	0.021	0.482	0.631	-0.175	-3.256	0.001
BMI	0.149	0.804	0.423	-0.082	-0.346	0.730
BSA	8.500	2.750	0.007	14.096	3.642	< 0.001
HR	-0.222	-4.130	< 0.001	-0.231	-3.288	0.001
LVMM	0.058	3.242	0.002	0.140	6.965	< 0.001
Smoker No	41.29 ± 9.30	3.631	< 0.001	68.58 ± 10.16	2.352	0.020
Smoker Yes	45.34 ± 8.63			72.00 ± 9.37		
Drinker No	41.96 ± 9.03	1.231	0.221	68.87 ± 10.16	1.838	0.068
Drinker Yes	43.63 ± 10.44			71.88 ± 9.28		
Hypertension No	42.14 ± 9.43	0.402	0.688	69.47 ± 10.42	-0.175	0.861
Hypertension Yes	42.56 ± 8.98			69.19 ± 9.11		
Diabetes No	42.62 ± 9.34	-2.040	0.044	69.68 ± 10.15	-1.231	0.221
Diabetes Yes	39.52 ± 8.62			67.28 ± 9.29		
Dyslipidemia No	41.88 ± 9.28	1.315	0.191	69.34 ± 10.15	0.156	0.876
Dyslipidemia Yes	43.37 ± 9.30			69.56 ± 9.87		

Abbreviations as in Table 1

Table 4 lists the mean ± sd of LV wall thickness at the basal, mid, and apical segments in different cardiac phases. Figure 2B-C shows the change trend graph of LV wall thickness. The LV wall thickness achieved the minimum at the phase of 95–5%, and the maximum at 35–45%. The maximum values of the interventricular septum (Septum), anterior (Ant), antero-lateral (Ant-Lat), infero-lateral (Post-Lat), and inferior (Inf) at the basal segment.
were 10.80 ± 1.47 mm, 11.82 ± 2.46 mm, 11.87 ± 2.49 mm, 12.03 ± 2.32 mm, and 10.75 ± 2.10 mm, respectively. The variation of Ant and Ant-Lat in cardiac cycles were of statistical significance. The maximum values of Septum, Ant, Ant-Lat, Post-Lat, and inferior Inf at the mid segment were 11.15 ± 1.98 mm, 10.22 ± 2.53 mm, 10.75 ± 2.88 mm, 10.93 ± 2.56 mm, and 11.89 ± 2.39 mm, respectively. The variation of Septum, Ant, Ant-Lat, Post-Lat, Inf in cardiac cycles was of statistical significance. The maximum values of Septum, Ant, Ant-Lat, and Inf at the apical segment were 9.42 ± 2.19 mm, 10.83 ± 2.31 mm, 10.60 ± 2.14 mm, and 9.15 ± 2.03 mm, respectively. The variation of Septum, Ant, Ant-Lat, and Inf in the cardiac cycles were of statistical significance. In the three segments, the wall changes of the basal segment were the more stable than middle and apical segments.

Table 4
Left ventricular wall thickness in different cardiac cycles

Phase	Septum	Ant	Ant-Lat	Post-Lat	Inf	Septum	Ant	Ant-Lat	Post-Lat	Inf				
5%	7.76 ± 1.09	7.04 ± 1.30	7.38 ± 1.12	7.55 ± 1.19	7.52 ± 1.31	7.93 ± 1.59	6.08 ± 1.14	6.53 ± 1.04	6.63 ± 1.03	7.69 ± 1.30	5.93 ± 1.46	6.89 ± 1.36	6.61 ± 1.24	5.54 ± 1.15
15%	8.29 ± 1.18	7.45 ± 1.46	7.82 ± 1.42	7.73 ± 1.35	7.69 ± 1.33	8.48 ± 1.80	6.53 ± 1.12	7.02 ± 1.23	7.18 ± 1.27	8.18 ± 1.40	6.52 ± 1.79	7.66 ± 1.52	7.34 ± 1.57	5.88 ± 1.34
25%	9.60 ± 1.33	9.31 ± 2.23	9.28 ± 1.98	9.34 ± 1.88	8.90 ± 1.80	9.82 ± 2.02	8.19 ± 1.90	8.51 ± 2.06	8.79 ± 1.86	10.04 ± 2.08	7.79 ± 2.03	9.04 ± 1.94	8.94 ± 1.84	7.44 ± 1.83
35%	10.61 ± 1.45	11.82 ± 2.46	11.61 ± 2.59	11.41 ± 2.37	10.07 ± 1.94	11.15 ± 1.98	10.22 ± 2.53	10.75 ± 2.84	10.93 ± 2.56	11.89 ± 2.39	9.42 ± 2.19	10.79 ± 2.16	10.60 ± 2.14	9.15 ± 2.03
45%	10.80 ± 1.47	11.19 ± 2.63	11.87 ± 2.49	12.03 ± 2.32	10.75 ± 2.10	10.75 ± 1.98	9.48 ± 2.28	10.75 ± 2.88	10.79 ± 2.70	11.40 ± 2.47	9.39 ± 2.07	10.83 ± 2.31	10.51 ± 2.14	8.73 ± 2.03
55%	10.24 ± 1.58	9.05 ± 2.09	9.56 ± 3.31	9.35 ± 2.01	9.65 ± 4.13	9.29 ± 1.88	7.45 ± 1.45	7.93 ± 1.79	8.00 ± 2.06	9.04 ± 2.10	7.28 ± 1.78	8.71 ± 3.62	8.40 ± 2.01	6.95 ± 1.89
65%	9.22 ± 1.34	8.23 ± 1.57	8.49 ± 1.45	8.95 ± 1.51	8.71 ± 1.49	8.63 ± 1.66	6.67 ± 1.18	7.06 ± 1.24	7.13 ± 1.26	8.47 ± 1.52	6.61 ± 1.66	7.64 ± 1.55	7.47 ± 1.50	6.35 ± 1.49
75%	8.85 ± 1.32	7.93 ± 1.44	8.19 ± 1.19	8.86 ± 3.78	8.57 ± 1.44	8.45 ± 1.68	6.47 ± 1.15	6.91 ± 1.17	7.07 ± 1.31	8.47 ± 1.55	6.53 ± 1.58	7.57 ± 1.66	7.35 ± 1.63	6.30 ± 1.49
85%	8.59 ± 1.19	7.73 ± 1.45	8.36 ± 1.32	8.31 ± 1.37	8.28 ± 1.33	8.27 ± 1.62	6.29 ± 1.10	6.73 ± 1.08	7.16 ± 1.38	8.17 ± 1.43	6.38 ± 1.67	7.35 ± 1.62	7.16 ± 1.48	6.07 ± 1.48
95%	8.02 ± 1.22	7.03 ± 1.14	7.66 ± 1.12	7.85 ± 1.26	7.61 ± 1.27	7.81 ± 1.63	5.93 ± 0.95	6.38 ± 0.98	6.54 ± 1.28	7.72 ± 1.48	5.89 ± 1.41	6.87 ± 1.53	6.65 ± 1.41	5.60 ± 1.21
t	-1.892	-5.248	-2.879	-1.571	-0.596	-7.641	-8.179	-7.447	-6.332	-6.541	-6.940	-6.388	-7.132	-5.404
p-value	0.059	0.004	0.117	0.551	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Septum—interventricular septum; Ant—anterior; Ant-Lat—antero-lateral; Post-Lat—infero-lateral; Inf—inferior

3.4 RA parameters in different cardiac cycles

Table 2 list the mean ± sd of the right atrial major dimension (RA-A) and the mean values of the RA minor dimension (RA-B) in different cardiac phases, while Fig. 2C shows the change trends. For RA-A and RA-B, the maximum and minimum values were observed in the 45% phase and 95% phase, respectively. The maximum values of RA-A and RA-B were 45.58 ± 5.18 mm and 49.68 ± 5.26 mm, respectively. The variations of RA-B in cardiac cycles were of statistical significance, while the variations of RA-A in cardiac cycles were non-significant. Compared with RA-A, RA-B changes more stably during the cardiac cycle.

3.5 RV parameters in different cardiac cycles

Table 2 list mean ± sd of the RV chamber dimensions (RVD1, RVD2, RVD3) in different cardiac phases. The maximum and minimum values of RV dimensions were observed in the 95%–5% phase and 35–45% phase, respectively. The maximum values of RV-D1, RV-D2, and RV-D3 were 42.13 ± 5.19 mm, 31.83 ± 5.69 mm and 74.35 ± 7.96 mm, respectively. The variation of RV-D1 and RV-D2 in cardiac cycles was of statistical significance, while the variation of RV-D3 in cardiac cycles was non-significant. Among these diameters, RV-D2 showed the most stable changes during the cardiac cycle.

In addition, the comparison of clinical characteristics and cardiac parameters between male and female subjects revealed significant discrepancy in individual characteristics, including age, BSA, HR, LVMM, smoking, drinking, and diabetes. These differences were also significantly related to gender. Upper and lower reference limits were higher in men than in women. Therefore, we generated cardiac parameters reference ranges on cardiac CT in different cardiac phases for both genders for our population in supplemental material.
3.6 Reproducibility

Inter- and intraobserver ICCs were determined randomly among 126 patients. Interobserver ICCs of 0.913 for LA-A, 0.920 for LA-B, 0.935 for LV-D1, 0.926 for LV-D2, 0.917 for LV-D3, 0.925 for RA-A, 0.921 for RA-B, 0.936 for RV-D1, 0.956 for RV-D2 and 0.941 for RV-D3 were obtained. Also, intraobserver ICCs of 0.902 for LA-A, 0.912 for LA-B, 0.928 for LV-D1, 0.915 for LV-D2, 0.903 for LV-D3, 0.901 for RA-A, 0.907 for RA-B, 0.924 for RV-D1, 0.917 for RV-D2 and 0.916 for RV-D3 were obtained.

Discussion

This is the first study to conduct a detailed dynamic evaluation of the cardiac chamber dimensions and wall thickness with the reconstruction of ten cardiac phases in whole cardiac cycle. This allows us to choose the correct cardiac phase for measuring the maximum diameter required to predict cardiac disease. The dimensions of the cardiac chamber and wall thickness changes dynamically in different cardiac phases and match the physiological phase of that cycle16. We also found that LA-B, LV-D1, RA-B and RV-D2 were more stable than other diameters in the cardiac cycle. Therefore, we believe that the four diameters are most suitable for evaluating the condition of the heart on noncardiac CT images.

LA size is a marker of the severity and chronicity of diastolic dysfunction17. These LA diameters measured on a conventional axial cross-section can be used for detecting of patients with possible LA enlargement on routine chest CTA, prompting confirmatory evaluation with echocardiography. Stoyan Popkirov proposed that Coronary CTA should be performed in patients with acute stroke, and that the measurement of chest echocardiography was not accurate, indicating the importance of CT measurement of LA enlargement18. Our study found that the LA-B was more stabler than the LA-A in the cardiac cycle. Therefore, we believe that LA-B is most suitable for evaluating the condition of the LA on noncardiac CT images. LAVR is a simple new measure directly scaling the left atrial diameter to the anthropomorphic characteristics of the patient. With the use of ROC analysis, cardiac CT measurements that provided a optimal test characteristics for identifying LAE by echocardiography as the reference standard were determined.

LV is an integral part of the heart's pumping function. Historically, linear dimension of LV was measured at the base of the LV in the long-axis view. However, the base of the LV does not reflect the true (maximal) diameter of the ellipsoid mode, leading to underestimation of chamber size19. Measurement of linear dimensions at the midventricular level (LV-D2) better reflects the ellipsoid geometry of the LV cavity and provides a more accurate estimate of LV mass and size as compared with the traditionally recommended basal level13. In addition, the LV contains obliquely-oriented myofibers superficially, longitudinally-oriented myofibers in the subendocardium, and predominantly circular fibers in between. This contributes to the more complex movement of the LV, including torsion, translation, rotation, and thickening20. It is difficult to comprehensively evaluate the size of the chamber using a single diameter measurement method. Therefore, in this study, we measured three dimensions of LV in different cardiac phases. Multivariate analysis demonstrated that HR and smoking are potential indicators of LV-D2. HR and LVMM are potential indicators of LV-D3.

The ventricular septum is the central structure of both ventricles. The helical ventricular band model explains the close relationship between biventricular function and ventricular septum21. Perhaps this is one of the reasons why myocardial wall hypertrophy first appears as ventricular septal hypertrophy. In this study, the ventricular septum thickness was significantly related to age and hypertension.

There is increasing evidence that RA enlargement is an outcome predictor in various cardiac conditions22. To date, diameters and areas measured in the apical four-chamber view are the only recommended methods for assessing RA size23.

RV function is an independent determinant of clinical status and prognosis in a number of pathologies, but its accurate quantification remains a challenge. As compared with LV, the unique features of the RV are its complex geometry, its wider range of loading conditions, and its greater heterogeneity of regional function. RV failure is usually caused by left heart dysfunction. Both conditions coexist24. Ventricular interdependence is not only manifested in function, but also in size, which is more obvious in diastole.

Limitations

The most obvious limitation of this study was the radiation dose generated by using CT. However, the radiation dose was at a safe level and CT was necessary for evaluating coronary artery disease. Moreover, it was a cross-sectional study, and only patients with clear image qualities were evaluated. Our research requires further follow-up.

Conclusion

This study provides applicable quantification cardiac CT cardiac chamber dimensions and LV wall thickness reference ranges in different cardiac phases. Reconstruction and measurement performed in the maximum phase using cardiac CT could result in a more accurate diameter in cardiac disease assessment during the varied cardiac cycle.

Declarations
Acknowledgements

This work was partly supported by the Joint project of Luzhou City and Southwest Medical University in Sichuan Province(00021675).

Author contributions

L.W., J.Z., and J.C. designed this concept. L.W. and J.Z. collected the data and wrote the paper, D.C. and J.D. pre-processed and analyzed the data. J.C. helped revised the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.C.

References

1. Takemoto Y, Barnes ME, Seward JB, Lester SJ, Appleton CA, Gersh BJ, et al. Usefulness of left atrial volume in predicting first congestive heart failure in patients > or = 65 years of age with well-preserved left ventricular systolic function. Am J Cardiol. 2005;96(6):832-6. doi:10.1016/j.amjcard.2005.05.031

2. Moller JE, Hillis GS, Oh JK, Seward JB, Reeder GS, Wright RS, et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation.2003;107(17);2207-12. doi:10.1161/01.CIR.0000066318.21784.43

3. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270-6. doi:10.1093/eurheartj/ehm342

4. American College of Cardiology Foundation Task Force on Expert Consensus Documents, Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 2010;55(23):2614-62. DOI:10.1016/j.jacc.2009.11.011

5. Juergens KU, Grude M, Maintz D, Fallenberg EM, Wichter T, Heindel W, et al. Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 2004;230(2):403–10. DOI:10.1148/radiol.2302030042

6. Yamamuro M, Tadamura E, Kubo S, Toyoda H, Nishina T, Ohba M, et al. Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 2005;234(2):381–90. DOI:10.1148/radiol.2342031271

7. Nevsky G, Jacobs JE, Lim RP, Donnino R, Babb JS, Srichai MB. Sex-specific normalized reference values of heart and great vessel dimensions in cardiac CT angiography. AJR Am J Roentgenol 2011; 196(4): 788–94. DOI:10.2214/AJR.10.4990

8. Roberts WT, Bax JJ and Davies LC. Cardiac CT and CT coronary angiography: technology and application. Heart 2008; 94(6): 781-92. DOI:10.1136/hrt.2007.116392

9. Stolzmann P, Scheffel H, Trindade PT, Plass AR, Husmann L, Leshka S, et al. Left Ventricular and Left Atrial Dimensions and Volumes: Comparison Between Dual-Source CT and Echocardiography. Invest Radiol 2008;43(5):284-9. DOI:10.1097/RLI.0b013e3181626853

10. Lin FY, DeVereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, et al. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. JACC Cardiovasc Imaging 2008;1(6):782-6. DOI:10.1016/j.jcmg.2008.04.015

11. Eifer DA, Nguyen ET, Thavendiranathan P, Hanneman K. Diagnostic Accuracy of Sex-Specific Chest CT Measurements Compared With Cardiac MRI Findings in the Assessment of Cardiac Chamber Enlargement. AJR Am J Roentgenol 2018;211(5) :993-9. DOI:10.2214/AJR.18.19805

12. Baque-Juston M, Volondat M, Fontas E, Roger C, Brunner P, Padoani B, et al. Left atrio-vertebral ratio: A new computed-tomography measurement to identify left atrial dilatation. Eur J Radiol 2016;85(1) :255-60. DOI:10.1016/j.ejrad.2015.11.016

13. Chetrit M, Roujol S, Picard MH, Timmins L, Manning WJ, Rudski LG, et al. Optimal Technique for Measurement of Linear Left Ventricular Dimensions. J Am Soc Echocardiogr 2019;32(4) :476-83.e1. DOI:10.1016/j.echo.2018.12.001

14. Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging 2014;15(6) :680-90. DOI:10.1093/ehjci/jet284

15. Rose M, Rubal B, Hulten E, Slim JN, Steel K, Furgerson JL, et al. Chamber dimensions and functional assessment with coronary computed tomographic angiography as compared to echocardiography using American Society of Echocardiography guidelines. SAGE Open Med 2014;2:2050312114522789. DOI:10.1177/2050312114522789
16. Deng W, Yang ZG, Peng LQ, Dong ZH, Chu ZG, Wang QL. Morphological and dynamic features of normal mitral valve evaluated by dual-source computed tomography. Int J Cardiol 2010;145(3):633-6. DOI: 10.1016/j.ijcard.2010.09.077

17. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002;90(12) 1284–9. DOI:10.1016/s0002-9149(02)02864-3

18. Popkirov, S. Left Atrial Enlargement Could Be Detected on Extended Computed Tomography Angiography Within Initial Stroke Assessment. JAMA Neurol.2020,77(1):134

19. Aurigemma GP, Silver KH, McLaughlin M, Mauser J, Gaasch WH. Impact of chamber geometry and gender on left ventricular systolic function in patients > 60 years of age with aortic stenosis. Am J Cardiol 1994;74(8):794-8. DOI:10.1016/0002-9149(94)90437-5

20. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right Ventricular Function in Cardiovascular Disease, Part I: Anatomy, Physiology, Aging, and Functional Assessment of the Right Ventricle. Circulation.2008;117(11) :1436-48. DOI:10.1161/CIRCULATIONAHA.107.653576

21. Buckberg GD, RESTORE Group. The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothorac Surg 2006;Suppl 1():S272-8. DOI:10.1016/j.ejcts.2006.02.011

22. Cioffi G, de Simone G, Mureddu G, Tarantini L, Stefanel C. Right atrial size and function in patients with pulmonary hypertension associated with disorders of respiratory system or hypoxemia. Eur J Echocardiogr 2007;8(5):322-31. DOI:10.1016/j.euje.2006.06.006

23. Ghio S, Klersy C, Magrini G, D’Armini AM, Scelsi L, Raineri C, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 2010; 140(3):272-8. DOI:10.1016/j.ijcard.2008.11.051

24. Schwarz K, Singh S, Dawson D, Frenneaux MP. Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circ 2013;22(7):507-11. DOI:10.1016/j.hlc.2013.03.072