ERIC-PCR genotyping of *Pseudomonas aeruginosa* isolates from haemorrhagic pneumonia cases in mink

Ming-ming Han,1 Lian-zhi Mu,1,2 Xu-ping Liu,1 Jing Zhao,1 Xiao-fei Liu,1 Hui Liu1

ABSTRACT

Background: *Pseudomonas aeruginosa* is a significant pathogen of mink and the cause of haemorrhagic pneumonia, an acute fatal disease in farmed mink.

Results: Among 90 *P. aeruginosa* isolates from haemorrhagic pneumonia in mink from 16 farms in Shandong province, China, 43 genotypes were identified by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), with a diversity index of 0.96. The most prevalent ERIC-PCR types were type 18, found in 16 isolates, and type 39, found in 15 isolates. Four serotypes were detected, with serotype G (55.6 per cent) being the most frequent.

Conclusions: These results showed that there was a high degree of clonal diversity among mink *P. aeruginosa* clinical isolates in this study.

INTRODUCTION

Pseudomonas aeruginosa is a significant pathogen of mink and the cause of haemorrhagic pneumonia, an acute fatal disease in farmed mink (Shimizu and others 1974). *P. aeruginosa* was first described as a cause of haemorrhagic pneumonia in mink in 1955 (Knox 1955). The disease is almost always seen in the autumn months and can cause an epizootic on the mink farm with mortality ranging from 1 to 50 per cent (Knox 1955, Honda and others 1977, Salomonsen and others 2013). *P. aeruginosa* is an opportunistic pathogen and is ubiquitous in the environment on mink and fox farms (Gierloff 1980).

Haemorrhagic pneumonia in mink was first discovered in China in 1983. Since 2000, haemorrhagic pneumonia has occurred in many provinces (Bai and others 2011). Approximately 84 million minks are farmed in Shandong province, and this province has the largest number of mink farms in China (Bai and others 2011). Bai and others (2011) and Qi and others (2014) showed that *P. aeruginosa* is present in most mink farms in the Shandong province, so it is necessary to understand the epidemiology of haemorrhagic pneumonia in mink in this region.

Genotyping of *P. aeruginosa* isolates by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) has been used to study the epidemiology of *P. aeruginosa* in Australia and Brazil (Stehling and others 2010, Kidd and others 2011). Previous studies in China have characterised *P. aeruginosa* isolates by serotype and pulsed field gel electrophoresis analysis. In this study, *P. aeruginosa* isolates from haemorrhagic pneumonia in mink were characterised by serotyping and ERIC-PCR.

METHODS

Ninety isolates of *P. aeruginosa* were recovered from 16 mink farms in Shandong by the Five-star Animal Health Pharmaceutical Factory of JILIN province during 2011–2012. Isolates were classified as *P. aeruginosa* based on the Microbial Biochemical Identification Tube System and PCR (Song and others 2000). Isolates were serotyped using the slide agglutination method according to the Homma schema (Homma 1976, Long and Gorham 1981) using standard sera.

Bacteria were grown on Luria–Bertani agar plates, and five colonies of each isolate were placed into 5 ml of Luria–Bertani broth and incubated for 12–14 h at 37°C on a rotating shaker. Using the TIANamp Bacteria DNA Kit, total DNA was extracted from a 1 ml suspension containing 10^6 colony forming units. Isolates were genotyped using ERIC-PCR according to Versalovic and others (1991).

RESULTS

With a diversity index (D) of 0.96, 43 genotypes (1–43) were identified among 90 isolates examined by ERIC-PCR (Fig 1). The most prevalent ERIC-PCR types were type 18, found in 16 isolates, and type 39, found in 15 isolates. The next most frequently
identified types were 20 (six isolates), 1 (five isolates) and 21 (four isolates). The remaining genotypes contained 1–3 isolates each.

The 90 isolates of *P. aeruginosa* were classified into four serotypes (G, B, C and I); serotype G was the most frequent (50/90, 55.6 per cent). Serotype C was found in 18 isolates, serotype I was found in 17 isolates and serotype B was found in five isolates.

DISCUSSION

In this study, we found that serotype G strains had the highest genetic diversity and were divided into 15 different genotypes. Diversity was also found within serotype C (13 genotypes), serotype I (eight genotypes) and serotype B (four genotypes). Strain diversity was observed within Shandong province; the highest diversity was identified in Weifang (29 isolates, four serotypes, eight
to assist in the control of
nosa is of value in understanding vaccine failures and
Therefore, knowledge of the genetic diversity of
between candidate vaccine strains and epidemic strains.
2011). Worldwide, inactivated vaccines are now used to
vaccination (Tazumi and others 2009, Macedo and others
was complex.
resulting in the best way to characterise
isolate serotype was relatively simple while the genotype
was complex.
Our results showed that genotyping by ERIC-PCR was
more discriminatory than serotyping of P. aeruginosa iso-
lates. Hence a combination of genotyping and serotyping
is the best way to characterise P. aeruginosa isolates.
ERIC-PCR can be used in outbreak investigations and
to assist in the control of P. aeruginosa in mink farms by
vaccination (Tazumi and others 2009, Macedo and others
11). Worldwide, inactivated vaccines are now used to
prevent haemorrhagic pneumonia in minks. The effect-
iveness of each vaccine is determined by the difference
between candidate vaccine strains and epidemic strains.
Therefore, knowledge of the genetic diversity of P. aerugi-
osa is of value in understanding vaccine failures and
helping to select strains for homotype vaccines.

Contributors M-mH performed the ERIC-PCR genotyping of Pseudomonas aeruginosa isolates and wrote the manuscript. L-zM analysed all of the
results. M-mH, X-pL and JZ isolated all of the P. aeruginosa strains. M-mH, X-fL and HL identified all of the isolates. All authors reviewed the manuscript and approved submission to the journal.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided that the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

Bai X., Chai X. L., Yan X. L. Gao H., Zhang H. L., Zhao J. J., Zhang L., Shao X. Q., Luo, G. L., Wang C. F. (2011) Biological characteristics and serotyping of Pseudomonas aeruginosa isolated from the minks. Animal Husbandry and Veterinary Medicine 43, 31–35 (in Chinese, with English abstract).

Gierloff B. (1980) Pseudomonas aeruginosa. IV. Pyocine typing of strains
isolated from the blue fox (Alopex lagopus), mink (Mustela vison), and
dog (Canis familiaris) and from their environment. Nordisk Veterinaermedicin 32, 697–704.

Hammer A. S., Pedersen K., Andersen T. H., Jørgensen J. C., Dietz H. H. (2003) Comparison of Pseudomonas aeruginosa isolates from mink by
serotyping and pulsed-field gel electrophoresis. Veterinary Microbiology
94, 237–243.

Homey J. Y. (1976) Designation of the thirteen O-group antigens of
Pseudomonas aeruginosa. The Japanese Journal of Experimental Medicine 52, 317

Honda E., Homma J. Y., Abe C., Tanamoto K., Noda H., Yanagawa R. (1977) Effects of common protective antigen (OEP) and toxoids of protease and elastase from Pseudomonas aeruginosa on protection against hemorrhagic pneumonia in mink. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung
Origine. Reihe A: Medizinische Mikrobiologie und Parasitologie 237, 163–185.

Kidd T. J., Gibson J. S., Moss S., Greer R. M., Cobbold R. N., Wright J. D., Grimwood K., Bell S. C. (2011) Clonal complex Pseudomonas aeruginosa in horses. Veterinary Microbiology 149, 508–512
Knock B. (1953) Pseudomonas aeruginosa som årsag til enzootiske
infektioner hos mink. Nordisk Veterinaermedicin 4, 731–760 (in Danish,
with English abstract).

Long G. G., Gorham J. R. (1981) Field studies: pseudomonas pneumonia of mink. American Journal of Veterinary Research 42, 2129–2133

Macedo N. R., Oliceira S. R., Lage A. P., Sanros J. L., Araujo M. R., Guedes R. M. C. (2011) ERIC-PCR genotyping of Haemophilus parasuis isolates from Brazilian pigs. The Veterinary Journal 188, 362–364

Nordstoga K. (1968) Pseudomonas infection in mink with special
reference to Pseudomonas vasculitis in pulmonary lesions. Acta
Veterinaria Scandinavica 9, 33–40

Qi J., Li L., Du Y., Wang S., Wang J., Luo Y., Che J., Lu J., Liu H., Hu G.,
Li J., Cong Y., Wang G., Hu M., Shi G., Liu Y. (2014) The identification,
typing, and antimicrobial susceptibility of Pseudomonas aeruginosa
isolated from mink with hemorrhagic pneumonia. Veterinary Microbiology 170, 461–465

Salomonsen C. M., Themudo G. E., Jelsbak L., Molin S., Heitby N.,
Hammer A. S. (2013) Typing of Pseudomonas aeruginosa from
hemorrhagic pneumonia in mink (Neovison vison). Veterinary
Microbiology 163, 103–109

Shimizu T., Homma J. Y., Aoyama T., Onodera T., Noda H. (1974)
Virulence of Pseudomonas aeruginosa and spontaneous spread of
Pseudomonas pneumonia in a mink ranch. Infection and Immunity 10,
16–20

Song K. P., Chan T. K., Ji Z. L., Wong S. W. (2000) Rapid identification of Pseudomonas aeruginosa from ocular isolates by PCR using exotoxin
A-specific primers. Molecular and Cellular Probes 14, 199–204

Stehling E. G., Leite D. S., Sileira W. D. (2010) Molecular typing and
biological characteristics of Pseudomonas aeruginosa isolated from
cystic fibrosis patients in Brazil. The Brazilian Journal of Infectious Diseases 14, 462–467

Tazumi A., Maeda Y., Buckley T., Millar B. C., Goldsmith C. E., Dooley J. S. G., Eldorn J. S., Matsuda M., Moore J. E. (2009)
Molecular epidemiology of clinical isolates of Pseudomonas aeruginosa isolated from horses in Ireland. Irish Veterinary Journal 62, 456–459

Veraslovic J., Koeuth T., Lupski J. R. (1991) Distribution of repetitive DNA
sequences in eubacteria and application to fingerprinting of bacterial
genomes. Nucleic Acids Research 19, 6823–6831