The S-global dimensions of commutative rings

Xiaolei Zhanga, Wei Qib
Department of Basic Courses, Chengdu Aeronautic Polytechnic, Chengdu 610100, China
b. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610068, China
E-mail: zxlrghj@163.com

Abstract

Let R be a commutative ring with identity and S a multiplicative subset of R. First, we introduce and study the S-projective dimensions and S-injective dimensions of R-modules, and then explore the S-global dimension S-gl.dim(R) of a commutative ring R which is defined to be the supremum of S-projective dimensions of all R-modules. Finally, we investigated the S-global dimension of factor rings and polynomial rings.

Key Words: S-projective dimensions, S-injective dimensions, S-global dimensions, polynomial rings.

2010 Mathematics Subject Classification: 13D05, 13D07.

Throughout this article, R always is a commutative ring with identity and S always is a multiplicative subset of R, that is, $1 \in S$ and $s_1 s_2 \in S$ for any $s_1 \in S, s_2 \in S$. In 2002, Anderson and Dumitrescu [1] defined S-Noetherian rings R for which any ideal of R is S-finite. Recall from [1] that an R-module M is called S-finite provided that $sM \subseteq F$ for some $s \in S$ and some finitely generated submodule F of M. An R-module T is called uniformly S-torsion if $sT = 0$ for some $s \in S$ (see [12]). So an R-module M is S-finite if and only if M/F is uniformly S-torsion for some finitely generated submodule F of M. The idea derived from uniformly S-torsion modules is deserved to be further investigated.

In [14], the author of this paper introduced the class of S-projective modules P for which the functor $\text{Hom}_R(P, -)$ preserves S-exact sequences. The class of S-projective modules can be seen as a “uniform” generalization of that of projective modules, since an R-module P is S-projective if and only if $\text{Ext}_R^1(P, M)$ is uniformly S-torsion for any R-module M (see [14, Theorem 2.5]). The class of S-projective modules owns the following S-hereditary property: let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an S-exact sequence, if B and C are S-projective so is A (see [14, Proposition 2.8]). So it is worth to study the S-analogue of projective dimensions of R-modules.
Similarly, By the discussion of S-injective modules in [9], we can study the S-analogue of injective dimensions of R-modules. Together these, an S-analogue of global dimensions of commutative rings can also be introduced and studied.

In this article, we define the S-projective dimension $S\text{-}pd_R(M)$ (resp., S-injective dimension $S\text{-}id_R(M)$) of an R-module M to be the length of the shortest S-projective (resp., S-injective) S-resolution of M. We characterize S-projective dimensions (resp., S-injective) of R-modules using the uniform torsion property of the "Ext" functors in Proposition 2.4 (resp., Proposition 2.5). Besides, we obtain local characterizations of projective dimensions and injective dimensions of R-modules in Corollary 3.3. The S-global dimension $S\text{-}gl.dim(R)$ of a commutative ring R is defined to be the supremum of S-projective dimensions of all R-modules. We find that S-global dimensions of commutative rings is also the supremum of S-injective dimensions of all R-modules. A new characterization of global dimensions is given in Corollary 3.3. S-semisimple rings are firstly introduced in [14] for which any free R-module is S-semisimple. By [12, Theorem 3.11], a ring R is S-semisimple if and only if all R-modules are S-projective (resp., S-injective). So S-semisimple are exactly commutative rings with S-global dimension equal to 0 (see Corollary 3.4). In the final section, we investigate the S-global dimensions of factor rings and polynomial rings and show that $S\text{-}gl.dim(R[x]) = S\text{-}gl.dim(R) + 1$ (see Theorem 4.6).

1. Preliminaries

Recall from [12], an R-module T is called a uniformly S-torsion module provided that there exists an element $s \in S$ such that $sT = 0$. An R-sequence $M \xrightarrow{f} N \xrightarrow{g} L$ is called S-exact (at N) provided that there is an element $s \in S$ such that $s\text{Ker}(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \text{Ker}(g)$. We say a long R-sequence $\ldots \to A_{n-1} \xrightarrow{f_{n-1}} A_n \xrightarrow{f_n} A_{n+1} \to \ldots$ is S-exact, if for any n there is an element $s \in S$ such that $s\text{Ker}(f_{n+1}) \subseteq \text{Im}(f_n)$ and $s\text{Im}(f_n) \subseteq \text{Ker}(f_{n+1})$. An S-exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is called a short S-exact sequence. Let $\xi : 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an S-short exact sequence. Then ξ is said to be S-split provided that there is $s \in S$ and R-homomorphism $f' : B \to A$ such that $f'(f(a)) = sa$ for any $a \in A$, that is, $f' \circ f = s\text{Id}_A$ (see [14, Definition 2.1]).

An R-homomorphism $f : M \to N$ is an S-monomorphism (resp., S-epimorphism, S-isomorphism) provided $0 \to M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \to 0$, $0 \to M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \to 0$) is S-exact. It is easy to verify an R-homomorphism $f : M \to N$ is an S-monomorphism (resp., S-epimorphism, S-isomorphism) if and only if $\text{Ker}(f)$ (resp., $\text{Coker}(f)$, both $\text{Ker}(f)$ and $\text{Coker}(f)$) is a uniformly S-torsion module. Let R be a ring and S a multiplicative subset of R. Suppose M and N are R-modules. We say M is
Lemma 1.1. \cite[Proposition 1.1]{13} Let R be a ring and S a multiplicative subset of R. Suppose there is an S-isomorphism $f : M \to N$ for R-modules M and N. Then there is an S-isomorphism $g : N \to M$. Moreover, there is $s \in S$ such that $f \circ g = s\text{Id}_N$ and $g \circ f = s\text{Id}_M$.

The following result says that a short S-exact sequence induces a long S-exact sequence by the functor ‘Ext’ as the classical case.

Lemma 1.2. Let R be a ring and S a multiplicative subset of R. Let L, M and N be R-modules. If $f : M \to N$ is an S-isomorphism, then $\text{Ext}^n_R(L, f) : \text{Ext}^n_R(L, M) \to \text{Ext}^n_R(L, N)$ and $\text{Ext}^n_R(f, L) : \text{Ext}^n_R(N, L) \to \text{Ext}^n_R(M, L)$ are all S-isomorphisms for any $n \geq 0$.

Proof. We only show $\text{Ext}^n_R(L, f) : \text{Ext}^n_R(L, M) \to \text{Ext}^n_R(L, N)$ is an S-isomorphism for any $n \geq 0$ since the other one is similar. Consider the exact sequences: $0 \to \text{Ker}(f) \to M \xrightarrow{\pi_{\text{im}(f)}} \text{Im}(f) \to 0$ and $0 \to \text{Im}(f) \xrightarrow{i_{\text{im}(f)}} N \to \text{Coker}(f) \to 0$ with $\text{Ker}(f)$ and $\text{Coker}(f)$ uniformly S-torsion. Then there are long exact sequences

\[
\text{Ext}^n_R(L, \text{Ker}(f)) \to \text{Ext}^n_R(L, M) \xrightarrow{\text{Ext}^n_R(L, \pi_{\text{im}(f)})} \text{Ext}^n_R(L, \text{Im}(f)) \to \text{Ext}^{n+1}_R(L, \text{Ker}(f))
\]

and

\[
\text{Ext}^{n-1}_R(L, \text{Coker}(f)) \to \text{Ext}^n_R(L, \text{Im}(f)) \xrightarrow{\text{Ext}^n_R(L, i_{\text{im}(f)})} \text{Ext}^n_R(L, N) \to \text{Ext}^n_R(L, \text{Coker}(f)).
\]

Since $\text{Ext}^n_R(L, \text{Ker}(f))$, $\text{Ext}^{n+1}_R(L, \text{Ker}(f))$, $\text{Ext}^{n-1}_R(L, \text{Coker}(f))$ and $\text{Ext}^n_R(L, \text{Coker}(f))$ are all uniformly S-torsion by \cite[Lemma 4.2]{9}, we have

\[
\text{Ext}^n_R(L, f) : \text{Ext}^n_R(L, M) \xrightarrow{\text{Ext}^n_R(L, \pi_{\text{im}(f)})} \text{Ext}^n_R(L, \text{Im}(f)) \xrightarrow{\text{Ext}^n_R(L, i_{\text{im}(f)})} \text{Ext}^n_R(L, N)
\]

is an S-isomorphism. \hfill \Box

Theorem 1.3. Let R be a ring, S a multiplicative subset of R and M and N R-modules. Suppose $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is an S-exact sequence of R-modules. Then for any $n \geq 1$ there is an R-homomorphism $\delta_n : \text{Ext}^{n-1}_R(M, C) \to \text{Ext}^n_R(M, A)$ such that the induced sequences

\[
0 \to \text{Hom}_R(M, A) \to \text{Hom}_R(M, B) \to \text{Hom}_R(M, C) \to \text{Ext}^1_R(M, A) \to \cdots \to \text{Ext}^{n-1}_R(M, B) \to \text{Ext}^{n-1}_R(M, C) \xrightarrow{\delta_n} \text{Ext}^n_R(M, A) \to \text{Ext}^n_R(M, B) \to \cdots
\]

and
0 \to \text{Hom}_R(C, N) \to \text{Hom}_R(B, N) \to \text{Hom}_R(A, N) \to \text{Ext}^1_R(C, N) \to \cdots \to \\
\text{Ext}^{n-1}_R(B, N) \to \text{Ext}^{n-1}_R(A, N) \xrightarrow{\delta_n} \text{Ext}^n_R(C, N) \to \text{Ext}^n_R(B, N) \to \cdots

are \ S\text{-exact}.

Proof. We only show the first sequence is \(S \)-exact since the other one is similar. Since the sequence \(0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 \) is \(S \)-exact at \(B \). There is an exact sequence \(0 \to \text{Ker}(g) \xrightarrow{i_{\text{Ker}(g)}} B \xrightarrow{\pi_{\text{Im}(g)}} \text{Im}(g) \to 0. \) So there is a long exact sequence of \(R \)-modules:

\[
0 \to \text{Hom}_R(M, \text{Ker}(g)) \to \text{Hom}_R(M, B) \to \text{Hom}_R(M, \text{Im}(g)) \to \\
\text{Ext}^1_R(M, \text{Ker}(g)) \to \cdots \to \text{Ext}^{n-1}_R(M, B) \to \text{Ext}^{n-1}_R(M, \text{Im}(g)) \xrightarrow{\delta_n} \\
\text{Ext}^n_R(M, \text{Ker}(g)) \to \text{Ext}^n_R(M, B) \to \cdots
\]

Note that there are \(S \)-isomorphisms \(t_1 : A \to \text{Ker}(g), t'_1 : \text{Ker}(g) \to A, t_2 : \text{Im}(g) \to C \) and \(t'_2 : C \to \text{Im}(g) \) by Lemma \[1.1\]. So, by Lemma \[1.2\], \(\text{Ext}^n_R(M, t'_1) : \text{Ext}^n_R(M, \text{Ker}(g)) \to \text{Ext}^n_R(M, A) \) and \(\text{Ext}^n_R(M, t'_2) : \text{Ext}^n_R(M, C) \to \text{Ext}^n_R(M, \text{Im}(g)) \) are \(S \)-isomorphisms for any \(n \geq 0 \). Setting \(\delta_n = \text{Ext}^n_R(M, t'_1) \circ \delta_n' \circ \text{Ext}^n_R(M, t'_2) \), we have an \(S \)-exact sequence

\[
0 \to \text{Hom}_R(M, A) \to \text{Hom}_R(M, B) \to \text{Hom}_R(M, C) \to \text{Ext}^1_R(M, A) \to \cdots \to \\
\text{Ext}^{n-1}_R(M, B) \to \text{Ext}^{n-1}_R(M, C) \xrightarrow{\delta_n} \text{Ext}^n_R(M, A) \to \text{Ext}^n_R(M, B) \to \cdots
\]

\[\Box\]

Recall from \[14\], Definition 3.1] that an \(R \)-module \(P \) is called \(S \)-projective provided that the induced sequence

\[
0 \to \text{Hom}_R(P, A) \to \text{Hom}_R(P, B) \to \text{Hom}_R(P, C) \to 0
\]

is \(S \)-exact for any \(S \)-exact sequence \(0 \to A \to B \to C \to 0 \). And recall from \[9\] Definition 4.1] that an \(R \)-module \(E \) is called \(S \)-injective provided that the induced sequence

\[
0 \to \text{Hom}_R(C, E) \to \text{Hom}_R(B, E) \to \text{Hom}_R(A, E) \to 0
\]

is \(S \)-exact for any \(S \)-exact sequence \(0 \to A \to B \to C \to 0 \). Following from \[12\] Theorem 3.2], an \(R \)-module \(P \) is projective if and only if \(\text{Ext}^1_R(P, M) \) is uniformly \(S \)-torsion for any \(R \)-module \(M \), if and only if every \(S \)-short exact sequence \(0 \to A \xrightarrow{f} B \xrightarrow{g} P \to 0 \) is \(S \)-split. Similarly, an \(R \)-module \(E \) is \(S \)-injective if and only if \(\text{Ext}^1_R(M, E) \) is uniformly \(S \)-torsion for any \(R \)-module \(M \), if and only every \(S \)-short exact sequence \(0 \to E \xrightarrow{i} A \xrightarrow{\delta} B \to 0 \) is \(S \)-split by \[9\] Theorem 4.3] and \[14\] Proposition 2.3]. Following from Theorem \[1.3\] we have the following result.
Corollary 1.4. Let R be a ring, S a multiplicative subset of R and M and N R-modules. Suppose $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is an S-exact sequence of R-modules.

1. If B is S-projective, then $\text{Ext}^n_R(C, N)$ is S-isomorphic to $\text{Ext}^n_R(A, N)$ for any $n \geq 0$.
2. If B is S-injective, then $\text{Ext}^n_R(M, A)$ is S-isomorphic to $\text{Ext}^n_R(M, C)$ for any $n \geq 0$.

2. On the S-Projective Dimensions and S-Injective Dimensions of Modules

In this section we mainly introduced the the S-versions of projective dimensions and injective dimensions of R-modules.

Definition 2.1. Let R be a ring, S a multiplicative subset of R and M an R-module. We write S-$pd_R(M) \leq n$ (S-pd abbreviates S-projective dimension) if there exists an S-exact sequence of R-modules

$$0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$$

where each F_i is S-projective for $i = 0, \ldots, n$. The S-exact sequence (\diamond) is said to be an S-projective S-resolution of length n of M. If such finite S-projective S-resolution does not exist, then we say S-$pd_R(M) = \infty$; otherwise, define S-$pd_R(M) = n$ if n is the length of the shortest S-projective S-resolution of M.

Definition 2.2. Let R be a ring, S a multiplicative subset of R and M an R-module. We write S-$id_R(M) \leq n$ (S-id abbreviates S-injective dimension) if there exists an S-exact sequence of R-modules

$$0 \to M \to E_0 \to E_1 \to \ldots \to E_{n-1} \to E_n \to 0$$

where each E_i is S-injective for $i = 0, \ldots, n$. The S-exact sequence (\ast) is said to be an S-injective S-resolution of length n of M. If such finite S-injective S-resolution does not exist, then we say S-$id_R(M) = \infty$; otherwise, define S-$id_R(M) = n$ if n is the length of the shortest S-injective S-resolution of M.

Trivially, S-$pd_R(M) \leq pd_R(M)$ and S-$id_R(M) \leq id_R(M)$. And if S is composed of units, then S-$pd_R(M) = pd_R(M)$. It is also obvious that an R-module M is S-projective if and only if S-$pd_R(M) = 0$, and is S-injective if and only if S-$id_R(M) = 0$.

Lemma 2.3. Let R be a ring, S a multiplicative subset of R. If A is S-isomorphic to B, then S-$pd_R(A) = S$-$pd_R(B)$ and S-$id_R(A) = S$-$id_R(B)$.
Proof. We only prove S-pd$_R(A) = S$-pd$_R(B)$ as the S-injective dimension is similar. Let $f : A \to B$ be an S-isomorphism. If $\ldots \to P_n \to \ldots \to P_1 \to P_0 \xrightarrow{f} A \to 0$ is an S-projective resolution of A, then $\ldots \to P_n \to \ldots \to P_1 \to P_0 \xrightarrow{f \circ g} B \to 0$ is an S-projective resolution of B. So S-pd$_R(A) \geq S$-pd$_R(B)$. Similarly we have S-pd$_R(B) \geq S$-pd$_R(A)$ by Proposition 1.1. □

Proposition 2.4. Let R be a ring and S a multiplicative subset of R. The following statements are equivalent for an R-module M:

1. S-pd$_R(M) \leq n$;
2. Ext$_R^{n+k}(M, N)$ is uniformly S-torsion for all R-modules N and all $k > 0$;
3. Ext$_R^{n+k}(M, N)$ is uniformly S-torsion for all R-modules N;
4. if $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$ is an S-exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are S-projective R-modules, then F_n is S-projective;
5. if $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$ is an S-exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are S-projective R-modules, then F_n is S-projective;
6. if $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$ is an exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are S-projective R-modules, then F_n is S-projective;
7. if $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$ is an exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are S-projective R-modules, then F_n is S-projective;
8. there exists an S-exact sequence $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$, where $F_0, F_1, \ldots, F_{n-1}$ are S-projective R-modules and F_n is S-projective;
9. there exists an exact sequence $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$, where $F_0, F_1, \ldots, F_{n-1}$ are S-projective R-modules and F_n is S-projective;
10. there exists an exact sequence $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$, where F_0, F_1, \ldots, F_n are S-projective R-modules.

Proof. (1) \Rightarrow (2): We prove (2) by induction on n. For the case $n = 0$, we have M is S-projective, then (2) holds by [14] Theorem 2.5. If $n > 0$, then there is an S-exact sequence $0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0$, where each F_i is S-projective for $i = 0, \ldots, n$. Set $K_0 = \text{Ker}(F_0 \to M)$ and $L_0 = \text{Im}(F_1 \to F_0)$. Then both $0 \to K_0 \to F_0 \to M \to 0$ and $0 \to F_n \to F_{n-1} \to \ldots \to F_1 \to L_0 \to 0$ are S-exact. Since S-pd$_R(L_0) \leq n-1$ and L_0 is S-isomorphic to K_0, S-pd$_R(K_0) \leq n-1$ by Lemma [2.3]. By induction, Ext$_R^{n-1+k}(K_0, N)$ is uniformly S-torsion for all R-modules N and all $k > 0$. It follows from Corollary [1.4] that Ext$_R^{n+k}(M, N)$ is uniformly S-torsion.

(2) \Rightarrow (3), (4) \Rightarrow (5) \Rightarrow (7) and (4) \Rightarrow (6) \Rightarrow (7): Trivial.

(3) \Rightarrow (4): Let $0 \to F_n \xrightarrow{d_n} F_{n-1} \xrightarrow{d_{n-1}} F_{n-2} \ldots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} M \to 0$ be an S-exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are S-projective. Then F_n is S-projective if and only if Ext$_R(F_n, N)$ is uniformly S-torsion for all R-modules N, if and only if

...
\[\text{Ext}^2_R(\text{Im}(d^{n-1}), N) \text{ is uniformly } S\text{-torsion for all } R\text{-modules } N. \] Iterating these steps, we can show \(F_n \) is \(S\)-projective if and only if \(\text{Ext}^{n+1}_R(M, N) \) is uniformly \(S\)-torsion for all \(R\)-modules \(N \).

(9) \(\Rightarrow \) (10) \(\Rightarrow \) (1) and (9) \(\Rightarrow \) (8) \(\Rightarrow \) (1): Trivial.

(7) \(\Rightarrow \) (9): Let ... \(P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0 \) be a projective resolution of \(M \). Set \(F_n = \text{Ker}(d^{n-1}) \). Then we have an exact sequence \(0 \rightarrow F_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0 \). By (7), \(F_n \) is \(S\)-projective. So (9) holds.

\[\square \]

Similarly, we have the following result.

Proposition 2.5. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). The following statements are equivalent for an \(R\)-module \(M \):

1. \(S\text{-id}_R(M) \leq n; \)
2. \(\text{Ext}^{n+k}_R(N, M) \text{ is uniformly } S\text{-torsion for all } R\text{-modules } N \text{ and all } k > 0; \)
3. \(\text{Ext}^{n+1}_R(N, M) \text{ is uniformly } S\text{-torsion for all } R\text{-modules } N; \)
4. if \(0 \rightarrow M \rightarrow E_0 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \) is an \(S\)-exact sequence, where \(E_0, E_1, \ldots, E_{n-1} \) are \(S\)-injective \(R\)-modules, then \(F_n \) is \(S\)-injective;
5. if \(0 \rightarrow M \rightarrow E_0 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \) is an \(S\)-exact sequence, where \(E_0, E_1, \ldots, E_{n-1} \) are \(S\)-injective \(R\)-modules, then \(E_n \) is \(S\)-injective;
6. if \(0 \rightarrow M \rightarrow E_0 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \) is an exact sequence, where \(E_0, E_1, \ldots, E_{n-1} \) are \(S\)-injective \(R\)-modules, then \(E_n \) is \(S\)-injective;
7. if \(0 \rightarrow M \rightarrow E_0 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \) is an exact sequence, where \(E_0, E_1, \ldots, E_{n-1} \) are \(S\)-injective \(R\)-modules, then \(E_n \) is \(S\)-injective;
8. there exists an \(S\)-exact sequence \(0 \rightarrow M \rightarrow E_0 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \), where \(E_0, E_1, \ldots, E_{n-1} \) are injective \(R\)-modules and \(E_n \) is \(S\)-injective;
9. there exists an exact sequence \(0 \rightarrow M \rightarrow E_0 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \), where \(E_0, E_1, \ldots, E_{n-1} \) are injective \(R\)-modules and \(E_n \) is \(S\)-injective;
10. there exists an exact sequence \(0 \rightarrow M \rightarrow E_0 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \), where \(E_0, E_1, \ldots, E_n \) are \(S\)-injective \(R\)-modules.

Corollary 2.6. Let \(R \) be a ring and \(S' \subseteq S \) multiplicative subsets of \(R \). Suppose \(M \) is an \(R\)-module, then \(S\text{-pd}_R(M) \leq S'\text{-pd}_R(M) \) and \(S\text{-id}_R(M) \leq S'\text{-id}_R(M) \).

Proof. Suppose \(S' \subseteq S \) are multiplicative subsets of \(R \). Let \(M \) and \(N \) be \(R\)-modules. If \(\text{Ext}^{n+1}_R(M, N) \) is uniformly \(S'\)-torsion, then \(\text{Ext}^{n+1}_R(M, N) \) is uniformly \(S\)-torsion. The result follows by Proposition 2.4. \[\square \]

7
Proposition 2.7. Let R be a ring and S a multiplicative subset of R. Let $0 \to A \to B \to C \to 0$ be an S-exact sequence of R-modules. Then the following assertions hold.

1. S-$pd_R(C) \leq 1 + \max\{S$-$pd_R(A), S$-$pd_R(B)\}$.
2. If S-$pd_R(B) < S$-$pd_R(C)$, then S-$pd_R(A) = S$-$pd_R(C) - 1 > S$-$pd_R(B)$.
3. S-$id_R(A) \leq 1 + \max\{S$-$id_R(B), S$-$id_R(C)\}$.
4. If S-$id_R(B) < S$-$id_R(A)$, then S-$id_R(C) = S$-$id_R(A) - 1 > S$-$id_R(B)$.

Proof. The proof is similar with that of the classical case (see [11, Theorem 3.5.6] and [111 Theorem 3.5.13]). So we omit it. \qed

Proposition 2.8. Let $0 \to A \to B \to C \to 0$ be an S-split S-exact sequence of R-modules. Then the following assertions hold.

1. S-$pd_R(B) = \max\{S$-$pd_R(A), S$-$pd_R(C)\}$.
2. S-$id_R(B) = \max\{S$-$id_R(A), S$-$id_R(C)\}$.

Proof. We only show the first assertion since the other one is similar. Since the S-projective dimensions of R-modules are invariant under S-isomorphisms by Lemma 2.3, we may assume $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is an S-split exact sequence. So there exists R-homomorphisms $f' : B \to A$ and $g' : C \to B$ such that $f' \circ f = s_1\text{Id}_A$ and $g \circ g' = s_2\text{Id}_C$ for some $s_1, s_2 \in S$. To prove (1), we just need to show that $0 \to \text{Ext}_R^n(M, A) \xrightarrow{\text{Ext}_R^n(M, f')} \text{Ext}_R^n(M, B) \xrightarrow{\text{Ext}_R^n(M, g)} \text{Ext}_R^n(M, C) \to 0$ is an S-exact sequence for any R-module M. Since the composition map $\text{Ext}_R^n(M, f') \circ \text{Ext}_R^n(M, f) : \text{Ext}_R^n(M, A) \to \text{Ext}_R^n(M, A)$ is equal to $\text{Ext}_R^n(M, s_1\text{Id}_A)$ which is just the multiplication map by s_1, we have $\text{Ext}_R^n(M, f)$ is an S-split S-monomorphism. Similarly, $\text{Ext}_R^n(M, g)$ is an S-split S-epimorphism. \qed

Let p be a prime ideal of R and M an R-module. Denote p-$pd_R(M)$ (resp., p-$id_R(M)$) to be $(R-p)$-$pd_R(M)$ (resp., $(R-p)$-$id_R(M)$) briefly. The next result gives a new local characterization of projective dimension and injective dimension of an R-module.

Proposition 2.9. Let R be a ring and M an R-module. Then

$$pd_R(M) = \sup\{p$-$pd_R(M) | p \in \text{Spec}(R)\} = \sup\{m$-$pd_R(M) | m \in \text{Max}(R)\}.$$ and

$$id_R(M) = \sup\{p$-$id_R(M) | p \in \text{Spec}(R)\} = \sup\{m$-$id_R(M) | m \in \text{Max}(R)\}.$$

Proof. We only show the first equation since the other one is similar. Trivially, $\sup\{m$-$pd_R(M) | m \in \text{Max}(R)\} \leq \sup\{p$-$pd_R(M) | p \in \text{Spec}(R)\} \leq pd_R(M)$. Suppose
sup\{m-pd_R(M) \mid m \in \text{Max}(R)\} = n. For any \(R \)-module \(N \), there exists an element \(s^m \in R - m \) such that \(s^m \text{Ext}_R^{n+1}(M, N) = 0 \) by Proposition 2.4. Since the ideal generated by all \(s^m \) is \(R \), we have \(\text{Ext}_R^{n+1}(M, N) = 0 \) for all \(R \)-modules \(N \). So \(pd_R(M) \leq n \). Suppose \(\sup\{m-pd_R(M) \mid m \in \text{Max}(R)\} = \infty \). Then for any \(n \geq 0 \), there exists a maximal ideal \(m \) and an element \(s^m \in R - m \) such that \(s^m \text{Ext}_R^{n+1}(M, N) \neq 0 \) for some \(R \)-module \(N \). So for any \(n \geq 0 \), we have \(\text{Ext}_R^{n+1}(M, N) \neq 0 \) for some \(R \)-module \(N \). Thus \(pd_R(M) = \infty \). So the equalities hold. \(\square \)

3. On the \(S \)-global dimensions of rings

Recall that the global dimension \(\text{gl.dim}(R) \) of a ring \(R \) is the supremum of projective dimensions of all \(R \)-modules (see [11, Definition 3.5.17]). Now, we introduce the \(S \)-analogue of global dimensions of rings \(R \) for a multiplicative subset \(S \) of \(R \).

Definition 3.1. The \(S \)-global dimension of a ring \(R \) is defined by

\[S-\text{gl.dim}(R) = \sup\{S-pd_R(M) \mid M \text{ is an } R\text{-module}\} \]

Obviously, \(S-\text{gl.dim}(R) \leq \text{gl.dim}(R) \) for any multiplicative subset \(S \) of \(R \). And if \(S \) is composed of units, then \(S-\text{gl.dim}(R) = \text{gl.dim}(R) \). The next result characterizes the \(S \)-global dimension of a ring \(R \).

Proposition 3.2. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). The following statements are equivalent for \(R \):

1. \(S-\text{gl.dim}(R) \leq n \);
2. \(S-pd_R(M) \leq n \) for all \(R \)-modules \(M \);
3. \(\text{Ext}_R^{n+k}(M, N) \) is uniformly \(S \)-torsion for all \(R \)-modules \(M, N \) and all \(k > 0 \);
4. \(\text{Ext}_R^{n+1}(M, N) \) is uniformly \(S \)-torsion for all \(R \)-modules \(M, N \);
5. \(S-\text{id}_R(M) \leq n \) for all \(R \)-modules \(M \).

Proof. (1) \(\Rightarrow \) (2) and (3) \(\Rightarrow \) (4): Trivial

(2) \(\Rightarrow \) (3) and (5) \(\Rightarrow \) (3): Follows from Proposition 2.4

(4) \(\Rightarrow \) (2): Let \(M \) be an \(R \)-module and \(0 \rightarrow F_n \rightarrow \ldots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0 \) an exact sequence, where \(F_0, F_1, \ldots, F^{n-1} \) are projective \(R \)-modules. To complete the proof, it suffices, by Proposition 2.4 to prove that \(F_n \) is \(S \)-projective. Let \(N \) be an \(R \)-module. Thus \(S-pd_R(N) \leq n \) by (4). It follows from Corollary 1.4 that \(\text{Ext}_R^1(N, F_n) \cong \text{Ext}_R^{n+1}(N, M) \) is uniformly \(S \)-torsion. Thus \(F_n \) is \(S \)-projective.

(4) \(\Rightarrow \) (5): Let \(M \) be an \(R \)-module and \(0 \rightarrow M \rightarrow E_0 \rightarrow \ldots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0 \) an exact sequence with \(E_0, E_1, \ldots, E_{n-1} \) are injective \(R \)-modules. By dimension shifting, we have \(\text{Ext}_R^{n+1}(M, N) \cong \text{Ext}_R^1(E_n, N) \). So \(\text{Ext}_R^1(E_n, N) \) is uniformly \(S \)-torsion for any \(R \)-module \(N \). Thus \(E_n \) is \(S \)-injective by [9, Theorem 4.3]. Consequently, \(S-\text{id}_R(M) \leq n \) by Theorem 2.5. \(\square \)
Consequently, we have $S\text{-gl.dim}(R) = \sup\{S-pd_R(M) | M \text{ is an } R\text{-module}\} = \sup\{S-id_R(M) | M \text{ is an } R\text{-module}\}$.

Let p be a prime ideal of a ring R and $p\text{-gl.dim}(R)$ denote $(R - p)\text{-gl.dim}(R)$ briefly. By Proposition 2.9, we have a new local characterization of global dimensions of commutative rings.

Corollary 3.3. Let R be a ring. Then

$$gl.dim(R) = \sup\{p\text{-gl.dim}(R) | p \in \text{Spec}(R)\} = \sup\{m\text{-dim}(R) | m \in \text{Max}(R)\}.$$

Recall from [14] that an R-module M is called S-semisimple provided that any S-short exact sequence $0 \to A \to M \to C \to 0$ is S-split. And R is called an S-semisimple ring provided that any free R-module is S-semisimple. Thus by [14] Theorem 3.5, the following result holds.

Corollary 3.4. Let R be a ring and S a multiplicative subset of R. The following assertions are equivalent:

1. R is an S-semisimple ring;
2. every R-module is S-semisimple;
3. every R-module is S-projective;
4. every R-module is S-injective;
5. R is uniformly S-Noetherian and S-von Neumann regular;
6. there exists an element $s \in S$ such that for any ideal I of R there is an R-homomorphism $f_I : R \to I$ satisfying $f_I(i) = si$ for any $i \in I$.
7. $S\text{-gl.dim}(R) = 0$.

The following example shows that the global dimension of rings and the S-global dimension of rings can are be wildly different.

Example 3.5. Let $T = \mathbb{Z}_2 \times \mathbb{Z}_2$ be a semi-simple ring and $s = (1, 0) \in T$. Let $R = T[x]/\langle sx, x^2 \rangle$ with x the indeterminate and $S = \{1, s\}$ be a multiplicative subset of R. Then $S\text{-gl.dim}(R) = 0$ by [14] Theorem 3.5. Since R is a non-reduced noetherian ring, $gl.dim(R) = \infty$ by [4] Corollary 4.2.4.

4. S-GLOBAL DIMENSIONS OF FACTOR RINGS AND POLYNOMIAL RINGS

In this section, we mainly consider the S-global dimensions of factor rings and polynomial rings. Firstly, we give an inequality of S-global dimensions for ring homomorphisms. Let $\theta : R \to T$ be a ring homomorphism. Suppose S is a multiplicative subset of R, then $\theta(S) = \{\theta(s) | s \in S\}$ is a multiplicative subset of T.

Proposition 4.1. Let $\theta : R \to T$ be a ring homomorphism, S a multiplicative subset of R. Suppose M is an T-module. Then
Proposition 4.2. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \). Then \(\pi : R \to R/I \) is a ring epimorphism and \(\pi(S) := S/I = \{ s + I \in R/I | s \in S \} \) is naturally a multiplicative subset of \(R/I \).

Let \(R \) be a ring, \(I \) an ideal of \(R \) and \(S \) a multiplicative subset of \(R \). Then \(\pi : R \to R/I \) is a ring epimorphism and \(\pi(S) := S/I = \{ s + I \in R/I | s \in S \} \) is naturally a multiplicative subset of \(R/I \).

Proposition 4.2. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \). Let \(a \) be a non-zero-divisor in \(R \) which does not divide any element in \(S \). Written \(\overline{R} = R/aR \) and \(\overline{S} = \{ s + aR \in \overline{R} | s \in S \} \). Then the following assertions hold.

1. Let \(M \) be a nonzero \(\overline{R} \)-module. If \(\overline{S} \)-\(\text{pd}_{\overline{R}}(M) \) < \(\infty \), then
\[
\overline{S} \text{-pd}_{\overline{R}}(M) = \overline{S} \text{-pd}_{\overline{R}}(M) + 1.
\]

2. If \(\overline{S} \text{-gl.dim}(\overline{R}) \) < \(\infty \), then
\[
\overline{S} \text{-gl.dim}(R) \geq \overline{S} \text{-gl.dim}(\overline{R}) + 1.
\]

Proof. (1) Set \(\overline{S} \text{-pd}_{\overline{R}}(M) = n \). Since \(a \) is a non-zero-divisor which does not divide any element in \(S \), then the exact sequence \(0 \to aR \to R \to R/aR \to 0 \) does not \(S \)-split. Thus \(S \text{-pd}_{\overline{R}}(R) = 1 \). By Proposition 4.11 we have \(S \text{-pd}_{\overline{R}}(M) \leq \overline{S} \text{-pd}_{\overline{R}}(M) + 1 = n + 1 \). Since \(\overline{S} \text{-pd}_{\overline{R}}(M) = n \), then there is an injective \(\overline{R} \)-module \(C \) such that \(\text{Ext}^{n}_{\overline{R}}(M, C) \) is not uniformly \(\overline{S} \)-torsion. By [11, Theorem 2.4.22], there is an injective \(R \)-module \(E \) such that \(0 \to C \to E \to E \to 0 \) is exact. By [11, Proposition 3.8.12(4)], \(\text{Ext}^{n+1}_{\overline{R}}(M, E) \cong \text{Ext}^{n}_{\overline{R}}(M, C) \). Thus \(\text{Ext}^{n+1}_{\overline{R}}(M, E) \) is not uniformly \(S \)-torsion. So \(S \text{-pd}_{\overline{R}}(M) = \overline{S} \text{-pd}_{\overline{R}}(M) + 1 \).

(2) Let \(n = \overline{S} \text{-gl.dim}(\overline{R}) \). Then there is a nonzero \(\overline{R} \)-module \(M \) such that \(\overline{S} \text{-pd}_{\overline{R}}(M) = n \). Thus \(S \text{-pd}_{\overline{R}}(M) = n + 1 \) by (1). So \(S \text{-gl.dim}(R) \geq \overline{S} \text{-gl.dim}(\overline{R}) + 1 \).
Lemma 4.3. Let R be a ring and M an R-module. $R[x]$ denotes the polynomial ring with one indeterminate, where all coefficients are in R. Set $M[x] = M \otimes_R R[x]$, then $M[x]$ can be seen as an $R[x]$-module naturally. It is well-known $\text{gl.dim}(R[x]) = \text{gl.dim}(R)$ (see [13] Theorem 3.8.23]). In this section, we give a S-analogue of this result. Let S be a multiplicative subset of R, then S is a multiplicative subset of $R[x]$ naturally.

Proof. Suppose P is an S-projective $R[x]$-module. Then there exists a free $R[x]$-module F and a S-split $R[x]$-short exact sequence $0 \to K \to F \xrightarrow{s} P \to 0$. Thus we have an $R[x]$-homomorphism $\pi' : P \to F$ such that $\pi \circ \pi' = s \text{Id}_P$ for some $s \in S$. Note that π' is also an R-homomorphism. So $0 \to K \to F \xrightarrow{s} P \to 0$ is also S-split over R. Note that F is also a free R-module. So P is S-projective over R by [14] Proposition 2.8].

□

Proposition 4.4. Let R be a ring, S a multiplicative subset of R and M an R-module. Then $\text{S-pd}_{R[x]}(M[x]) = S\text{-pd}_{R}(M)$.

Proof. Assume that $S\text{-pd}_{R}(M) \leq n$. Then M has an S-projective resolution over R:

$$0 \to P_n \to \cdots \to P_1 \to P_0 \to M \to 0.$$

Since $R[x]$ is free over R, $R[x]$ is an S-flat R-module by [14] Proposition 2.7. Thus the natural sequence

$$0 \to P_n[x] \to \cdots \to P_1[x] \to P_0[x] \to M[x] \to 0$$

is S-exact over $R[x]$. Consequently, $S\text{-pd}_{R[x]}(M[x]) \leq n$ by Proposition 2.4.

Let $0 \to F_n \to \cdots \to F_1 \to F_0 \to M[x] \to 0$ be an exact sequence with each F_i S-projective over $R[x]$ ($1 \leq i \leq n$). Then it is also S-projective resolution of $M[x]$ over R by Lemma 4.3. Thus $\text{Ext}^{n+1}_R(M[x], N)$ is uniformly S-torsion for any R-module N by Proposition 2.4. It follows that $s\text{Ext}^{n+1}_R(M[x], N) = s \prod_{i=1}^{\infty} \text{Ext}^{n+1}_R(M, N) = 0$. Thus $\text{Ext}^{n+1}_R(M, N)$ is uniformly S-torsion. Consequently, $S\text{-pd}_{R}(M) \leq S\text{-pd}_{R[x]}(M[x])$ by Proposition 2.4 again.

Let M be an $R[x]$-module then M can be naturally viewed as an R-module. Define $\psi : M[x] \to M$ by

$$\psi(\sum_{i=0}^{n} x^i \otimes m_i) = \sum_{i=0}^{n} x^i m_i, \quad m_i \in M.$$
And define $\varphi : M[x] \to M[x]$ by
$$
\varphi \left(\sum_{i=0}^{n} x^i \otimes m_i \right) = \sum_{i=0}^{n} x^{i+1} \otimes m_i - \sum_{i=0}^{n} x^i \otimes xm_i, \quad m_i \in M.
$$

Lemma 4.5. [11, Theorem 3.8.22] Let R be a ring, S a multiplicative subset of R. For any $R[x]$-module M,
$$
0 \to M[x] \xrightarrow{\varphi} M[x] \xrightarrow{\psi} M \to 0
$$
is exact.

Theorem 4.6. Let R be a ring, S a multiplicative subset of R. Then S-gl.dim$(R[x]) = S$-gl.dim$(R) + 1$.

Proof. Let M be an $R[x]$-module. Then, by Lemma 4.5 there is an exact sequence over $R[x]$:
$$
0 \to M[x] \to M[x] \to M \to 0.
$$

By Proposition 2.7, Proposition 4.1 and Proposition 4.4,
$$
S$-pd$_R(M) \leq S$-pd$_{R[x]}(M) \leq 1 + S$-pd$_{R[x]}(M[x]) = 1 + S$-pd$_R(M)
$$
(*).

Thus if S-gl.dim$(R) < \infty$, then S-gl.dim$(R[x]) < \infty$.

Conversely, if S-gl.dim$(R[x]) < \infty$, then for any R-module M, S-pd$_R(M) = S$-pd$_{R[x]}(M[x]) < \infty$ by Proposition 4.4. Therefore we have S-gl.dim$(R) < \infty$ if and only if S-gl.dim$(R[x]) < \infty$. Now we assume that both of these are finite. Then S-gl.dim$(R[x]) \leq S$-gl.dim$(R) + 1$ by (*). Since $R \cong R[x]/xR[x]$, S-gl.dim$(R[x]) \leq S$-gl.dim$(R) + 1$ by Proposition 4.2. Consequently, we have S-gl.dim$(R[x]) = S$-gl.dim$(R) + 1$. \hfill \Box

Corollary 4.7. Let R be a ring, S a multiplicative subset of R. Then for any $n \geq 1$ we have
$$
S$-gl.dim$(R[x_1, \ldots, x_n]) = S$-gl.dim$(R) + n.
$$

Acknowledgement.
The author was supported by the Natural Science Foundation of Chengdu Aeronautic Polytechnic (No. 062026) and the National Natural Science Foundation of China (No. 12061001).

References
[1] D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Commun. Algebra 30 (2002), 4407-4416.
[2] D. Bennis, M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512.
[3] L. Fuchs, L. Salce, Modules over Non-Noetherian Domains, Providence, AMS, 2001.
[4] S. Glaz, *Commutative Coherent Rings*, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989.

[5] J. W. Lim, *A Note on S-Noetherian Domains*, Kyungpook Math. J. 55, (2015), 507-514.

[6] J. W. Lim, D. Y. Oh, *S-Noetherian properties on amalgamated algebras along an ideal*, J. Pure Appl. Algebra 218, (2014), 2099-2123.

[7] I. Kaplansky. *Commutative Rings*, Allyn and Bacon, Boston, 1970.

[8] H. Kim, M. O. Kim, J. W. Lim, *On S-strong Mori domains*, J. Algebra 416, (2014): 314-332.

[9] W. Qi, H. Kim, F. G. Wang, M. Z. Chen, W. Zhao, *Uniformly S-Noetherian rings*, submitted.

[10] B. Stenström, *Rings of Quotients*, Die Grundlehren Der Mathematischen Wissenschaften, Springer-Verlag, 1975.

[11] F. G. Wang, H. Kim, *Foundations of Commutative Rings and Their Modules*, Singapore, Springer, 2016.

[12] X. L. Zhang, *Characterizing S-flat modules and S-von Neumann regular rings by uniformity*, arxiv.org/abs/2105.07941v1.

[13] X. L. Zhang, *The S-weak global dimension of commutative rings*, https://arxiv.org/abs/2106.00535.

[14] X. L. Zhang, *Characterizing S-projective modules and S-semisimple rings by uniformity*, https://arxiv.org/abs/2106.10441.