Correlational Approach to Predict the Enthalpy of Mixing for Chloride Melt Systems

Juliano Schorne-Pinto,* Jacob A. Yingling, Matthew S. Christian, Amir M. Mofrad, Mahmoud A. A. Aslani, and Theodore M. Besmann*

ABSTRACT: A methodology to estimate the heat of mixing ($\Delta_{\text{mix}}H$) for salt liquids in unexplored AkCl−AnCl$_3$/LnCl$_x$ (Ak = alkali, An = actinide, Ln = lanthanide) systems is developed. It improves upon previous empirical approaches by eliminating the need for arbitrarily choosing the required composition at maximum short-range ordering, the minimum $\Delta_{\text{mix}}H$ prior to performing the estimation, which avoids the intrinsic ambiguity of that approach. This semiempirical method has computationally reproduced the behavior of NaCl−UCl$_3$ and KCl−UCl$_3$ systems, providing $\Delta_{\text{mix}}H$ values that agree well with the reported measurements within a propagated two standard deviations (2σ). The capability of the approach is demonstrated in its application to the entirety of the AkCl−UCl$_3$ and AkCl−PuCl$_3$ systems, the results from which have facilitated the accurate thermodynamic modeling of these and other AkCl−AnCl$_3$/LnCl$_x$ systems. The resultant assessed Gibbs energy functions and models have been incorporated in the Molten Salt Thermal Properties Database—Thermochemical (MSTDB-TC).

1. INTRODUCTION

Research in molten salt systems has increased significantly in the last decade due to their application as solvents for metals, particularly for extraction processes, and in recycling and reprocessing of rare-earth elements used in electronics and magnets. Salt systems are also being developed as heat transfer media for solar-thermal systems and in molten salt reactors (MSRs), which use salts as a coolant for solid fuel or as a solvent for a liquid fuel containing actinides.

The newfound interest in MSRs, in particular, has led to a need for molten salt thermodynamic data to aid in modeling and simulation of the fuel/coolant, which is a central issue for material design and system optimization, reactor operation, and regulatory efforts. An important thermodynamic value is the heat of mixing or mixing enthalpy ($\Delta_{\text{mix}}H$), which represents interactions between system components and can be used to inform the development of thermodynamic descriptions through the CALculation of PHAse Diagram (CALPHAD) approach. Yet, there is a lack of information on the $\Delta_{\text{mix}}H$ for many lanthanide and other important salt systems because of the experimental challenge in measuring these values, and thus, a straightforward methodology for predicting $\Delta_{\text{mix}}H$ would be of great value. In principle, ab initio calculations can provide mixing enthalpies, but these are computationally expensive for salt melt systems and resultant values retain significant error. Thus, a more practical approach to predicting $\Delta_{\text{mix}}H$ for such salt systems is needed.

This work presents a significantly improved semiempirical approach to calculating $\Delta_{\text{mix}}H$ for AkCl−AnCl$_3$/LnCl$_x$ systems (Ak = alkali, An = actinide, Ln = lanthanide). It utilizes a unique method for determining the salt composition at maximum short-range order (SRO), which is associated with the most negative mixing enthalpy for the system, through
correlations of ionic charge and radius among similar cations. The ultimate goal of this effort is to provide support for the further development of the Molten Salt Thermal Properties Database—Thermochemical (MSTDB-TC), where predicted \(\Delta_{mix}H \) values are key information used for determining the overall thermodynamic models for salt systems. While the technique finds application with MSR-related salts, the approach is generally applicable to any family of salts and will find utility in many areas where thermodynamic descriptions of molten salts are needed.

1.1. Background. The enthalpy of mixing is defined as the energy released or absorbed upon mixing of pure components to obtain a single phase in an equilibrium state. This quantity is measured as the change in enthalpy upon mixing components at constant pressure, temperature, and composition such that

\[
\Delta_{mix}H(P, T, x_1, x_2, ..., x_n) = H(P, T, x_1, x_2, ..., x_n) - \sum x_i H_i^e(P, T)
\]

where \(H \) is the molar enthalpy of the mixture, \(x_i \) is the mole fraction of component \(i \) in the final mixture, and \(H_i^e \) is the molar enthalpy of pure liquid component \(i \). It should be noted that \(\Delta_{mix}H \) is generally calculated as the difference between two large quantities so relatively large errors can be introduced if \(H_i \) values are not well known or \(\Delta_{mix}H \) is small (near ideal mixing), i.e., on the order of a few hundred joules or less.

1.1.1. Influence of Alkali Ionic Radius on \(\Delta_{mix}H \). For some alkali mixed salts, \(\Delta_{mix}H \) is asymmetric with respect to composition. For example, as seen in Figure 1a, the most negative \(\Delta_{mix}H \) for alkali chlorides with CeCl\(_3\) occurs with \(x_{CeCl3} < 0.5 \). According to the conformal solution theory of Reiss, Katz, and Kleppa (RKK),

\(\lambda_{M} = \Delta_{mix}H x_{ACL3}^{23} \)

where \(x_{ACL3} \) is the mole fraction of \(ACL3 \). According to the conformal solution theory of Davis, the model parameters vary quadratically with \(\delta_{12} \)

\(\delta_{12} = \frac{(r_{Ak}^2 + r_{Cl}^2) - (r_{Ak}^{2+} + r_{Cl}^{-})}{(r_{Ak}^{2+} + r_{Cl}^{-})} \)

where \(r_{Ak}^{2+} \) and \(r_{Cl} \) are the ionic radii of the alkali (Figure 1b), lanthanide/actinide, and a chlorine atom, respectively, which are octahedral Shannon radii. Measurements on binary halides carried out by Papatheodorou et al. and Dienstbach and Blachnik have shown that the \(\lambda_{M} \) description of Davis is improved using a quadratic function for \(\delta_{12} \). In the Flengas and Kucharski theory of \(\Delta_{mix}H \), the model parameters vary quadratically with \(\delta_{12} \) within a family of metal dichlorides.

Fitting \(\Delta_{mix}H \) data usually uses eq 2 in a polynomial form,

\(\lambda_{M} = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \)

where \(x \) is the mole fraction of \(ACL3 \). This model is adequate for charge symmetric systems that exhibit minima near the equimolar composition. However, it is not well adapted to represent charge-asymmetric systems. To address this issue, Hatem and co-workers developed an approach referred to as the surrounded ion model (SIM) (eqs 4 and 5), which takes into account the charge on the ions. In this work, we utilized the SIM

\[
\Delta_{mix}H = [(1 - x)pq + xrs](1 + x')(f_1 + f_2 x' + f_3 x'^2)
\]

where \(p = q = s = 1, r = 3, \) and \(f_i \) are fitting coefficients.

1.1.2. Temperature Dependence of \(\Delta_{mix}H \). Papatheodorou and Kleppa used calorimetry to study the influence of temperature on \(\Delta_{mix}H \) for the charge-asymmetric systems AkCl–MnCl\(_2\) and AkCl–FeCl\(_3\) (Ak = Li, Cs) at 1083 and 963 K, reporting an estimated maximum experimental error of 6%. A later study on KCl–YCl\(_3\) at 1143 and 1053 K was reported, although no values for experimental error were indicated. The \(\Delta_{mix}H \) values for the melts of CsCl–FeCl\(_3\) and KCl–YCl\(_3\) are shown in Figure 2a,b for two different temperatures, with their error limits propagated to obtain values for two standard deviations (2\(\sigma \)).
temperature dependence of their diversity. For instance, the KCl–BiCl₃ system studied at 690 K; however, they do not contain lanthanides or actinides and are also considered at relatively low temperatures compared with those for the systems of this study.

1.2. Regression Analysis. In the current work, the relations for Δₘₑ₈H were computed using a Python version 3.8-developed code for regression analysis with calculations carried out using NumPy version 1.19.5. The Levenberg–Marquardt algorithm (LMA) in SciPy version 1.4.1 was used in a χ²-minimization to fit the coefficients of the SIM using Δₘₑ₈H values

\[χ^2 = \sum \left(\frac{r_i}{\sigma_i} \right)^2 \]

where rᵢ is the calculated residual and σᵢ is the error in the measurement.

Experimental errors are usually reported in the literature thanks to extensive work published in the 1960s on mixtures of alkali chlorides and actinide trichlorides, as it is demonstrated in the plots of Figure 3 for three pseudobinary systems.

For CsCl–FeCl₃ at 1083 and 963 K, the most negative Δₘₑ₈H values are −23610 ± 425 and −23700 ± 467 J/mol, respectively, both at x₉FeCl₃ = 0.43. Similarly, the KCl–YCl₃ system has minima at x₉YCl₃ = 0.35 of −22770 ± 283 J/mol at 1143 K and −22180 ± 580 J/mol at 1053 K. We note that the difference in values due to temperature for each set is within 2σ, as is only a maximum difference of 2.6%, and thus the temperature dependence of Δₘₑ₈H can be disregarded for a ΔT of ≤120 K. The result is not surprising as the enthalpy of molten salts is understood to change slowly with temperature, as is defined as the integral of the heat capacity, which are reported with small or no temperature dependence.

1.1.3. Alkali–Lanthanide/Actinide Chloride Systems. The experimental Δₘₑ₈H data for alkali chloride mixtures with lanthanide and yttrium trichlorides are abundant in the literature, thanks to extensive work published in the 1960s–1970s by Kleppa and co-workers, and in the last few decades by Gaune-Escard’s group. However, work on mixtures of alkali chlorides and actinide trichlorides appears to be nonexistent with the exception of that for the NaCl–UCl₃ and KCl–UCl₃ systems. The Δₘₑ₈H of the 48 sets of data available for these systems were extracted for our analysis and are listed in Table 1.

Other alkali chloride mixtures with the trichlorides have been reported, e.g., the KCl–AlCl₃ system studied at 543 K, the KCl–FeCl₃ system studied at 970–1000 K, and the KCl–BiCl₃ system studied at 690 K; however, they do not contain lanthanides or actinides and are also considered at relatively low temperatures compared with those for the systems of this study.
estimating $\Delta_{\text{mix}}H$. Unfortunately, estimation of $\Delta_{\text{mix}}H$ at any composition other than the composition of maximum SRO creates ambiguity (see Figure 4). Therefore, an unambiguous application of the Davis's,22,23 method to charge-asymmetric salt systems requires a means for selecting the composition of maximum SRO.59,60 We will now address this problem by correlating the composition of maximum SRO with a previously described property of the salt structure, δ_{12}. The composition at maximum SRO, i.e., where $\Delta_{\text{mix}}H$ is most negative, was determined for each system of Table 1 by

Table 1. Alkali and Actinide Pseudobinary Systems for Which $\Delta_{\text{mix}}H$ Values Are Available and Considered in the Current Analysis Together with the Nonalkali Metal Shannon Radius, Compositional Range, Number of Data Points, and Reported Error Limits2.

system	Ln. & An	exp. temp.	radius (non-Ak)4	x (non-Ak) range	data points	error	reference
LiCl	LaCl$_3$	1173	1.032	[0.196–0.787]	7	5.0	Papatheodorou and Ostvold25
CeCl$_3$	1130	0.010	0.15–0.92	6	5.0	Papatheodorou and Kleppa26	
PrCl$_3$	1044	0.990	0.014–0.942	20	6.0	Rycerz et al.27	
NdCl$_3$	1044	0.983	0.031–0.958	13	6.0	Rycerz et al.27	
GdCl$_3$	1263	0.938	0.15–0.68	6	5.0	Dienstbach and Blachnik26	
TbCl$_3$	1109	0.923	[0.0286–0.9017]	15	6.0	Rycerz and Gaune-Escard41	
YCl$_3$	1143	0.900	[0.056–0.907]	6	5.0	Papatheodorou et al.24	
TmCl$_3$	1130	0.880	[0.098–0.912]	9	6–8	Chojnacka et al.28	
NaCl	LaCl$_3$	1173	1.032	[0.046–0.852]	10	5.0	Papatheodorou and Ostvold25
CsCl	LaCl$_3$	1173	1.032	[0.09–0.72]	11	5.0	Dienstbach and Blachnik26
UCl$_3$	1113	1.025	[0.0048–0.949]	23	6.0	Matsuura et al.69	
CeCl$_3$	1153	1.010	0.04–0.81	9	5.0	Dienstbach and Blachnik26	
CeCl$_3$	1118	1.010	0.05–0.90	11	5.0	Papatheodorou and Kleppa26	
PrCl$_3$	1122	0.990	[0.104–0.953]	14	6.0	Gaune-Escard et al.44	
NdCl$_3$	1124	0.983	[0.0511–0.9500]	16	6.0	Gaune-Escard et al.44	
SmCl$_3$	1153	0.958	0.04–0.80	9	5.0	Dienstbach and Blachnik26	
GdCl$_3$	1263	0.938	[0.08–0.82]	9	5.0	Dienstbach and Blachnik26	
TbCl$_3$	1109	0.923	[0.0472–0.9007]	19	6.0	Rycerz and Gaune-Escard41	
DyCl$_3$	1153	0.912	[0.03–0.79]	9	5.0	Dienstbach and Blachnik26	
DyCl$_3$	1100	0.912	0.05–0.95	20	6.0	Gaune-Escard et al.44	
YCl$_3$	1143	0.900	[0.047–0.890]	10	5.0	Papatheodorou et al.24	
ErCl$_3$	1153	0.890	[0.03–0.79]	9	5.0	Dienstbach and Blachnik26	
TbCl$_3$	1130	0.880	[0.02–0.891]	21	6–8	Chojnacka et al.28	
YbCl$_3$	1153	0.866	[0.10–0.79]	11	5.0	Dienstbach and Blachnik26	
KCl	LaCl$_3$	1173	1.032	[0.043–0.899]	14	5.0	Papatheodorou and Ostvold25
CsCl	LaCl$_3$	1173	1.032	[0.0502–0.9048]	12	6–8	Rycerz et al.47
CsCl	1113	1.025	[0.05–0.90]	17	5.0	Papatheodorou and Kleppa10	
CsCl	1118	1.010	0.05–0.90	17	5.0	Papatheodorou and Kleppa10	
CsCl	1122	0.990	[0.0101–0.9470]	20	6.0	Gaune-Escard et al.44	
CsCl	1065	0.983	[0.0899–0.9430]	28	6.0	Gaune-Escard et al.44	
CsCl	1263	0.938	[0.10–0.79]	8	5.0	Dienstbach and Blachnik26	
CsCl	1109	0.923	[0.0240–0.9532]	28	6.0	Rycerz and Gaune-Escard41	
CsCl	1143	0.900	[0.045–0.901]	13	5.0	Papatheodorou et al.24	
CsCl	1053	0.900	[0.048–0.917]	9	5.0	Papatheodorou et al.24	

“Ionic radius in the octahedral geometry from Shannon.19
smaller than that for the \(\Delta_{\text{mix}}H \) measurements, they are assumed to be error-free. The linear behavior seen in Figure 5 within a relatively narrow 2\(\sigma \) band allows reasonably accurate interpolation of the composition at maximum SRO for systems lacking such values. As that is the case for uranium- and plutonium-containing systems, they were used to find their compositions at maximum SRO, which are reported in Table 2 along with their respective 2\(\sigma \) values.

2.2. Demonstration of Methodology via Application to NaCl–UCl\(_3\). The two alkali–actinide metal chloride systems with available experimental data for the heat of mixing are the NaCl–UCl\(_3\) system, which was studied by Matsuura et al.\(^{40}\) who measured 23 mixtures at 1113 K; and the KCl–UCl\(_3\) system recently reported by Rycerz et al.\(^ {47}\) in which 12 mixtures were also studied at 1113 K. These \(\Delta_{\text{mix}}H \) values were used to test our correlational approach, where we intentionally omitted those values in generating the linear fit of Figure 5b. The predicted \(\Delta_{\text{mix}}H \) value for the composition of maximum SRO of \(x_{\text{UCl}_3} = 0.459 \) interpolated from Figure 5b is obtained from the curve of Figure 6a. From the comparison with the measurements of \(\Delta_{\text{mix}}H \) for the NaCl–UCl\(_3\) system seen in Figure 6b, it is clear that our predictions (\(x_{\text{UCl}_3} = 0.459 \pm 0.017 \) and \(\Delta_{\text{mix}}H = -7299 \pm 350 \text{ J/mol} \)) are in good agreement with the observations of Matsuura et al.\(^{40}\) within their reported 6\% experimental error (SIM-calculated \(x_{\text{UCl}_3} = 0.447 \) and \(\Delta_{\text{mix}}H = -7290 \pm 437 \text{ J/mol} \)). Further, a similar estimation for the KCl–UCl\(_3\) system (\(x_{\text{UCl}_3} = 0.432 \pm 0.028 \) and \(\Delta_{\text{mix}}H = -15851 \pm 1003 \text{ J/mol} \)) agrees with the measurements of Rycerz et al.\(^ {47}\) within their reported 8\% uncertainty range (SIM-calculated \(x_{\text{UCl}_3} = 0.440 \) and \(\Delta_{\text{mix}}H = -18270 \pm 1462 \text{ J/mol} \)).

2.3. Determining \(\Delta_{\text{mix}}H \) for UCl\(_3\) or PuCl\(_3\) with AkCl. Encouraged by the comparative results for the NaCl–UCl\(_3\) and KCl–UCl\(_3\) systems, our methodology was applied to the remaining alkali–uranium and alkali–plutonium chloride systems. The \(\Delta_{\text{mix}}H \) calculated for each system at the predicted maximum SRO and with related \(\delta_{12} \) values were fit to a quadratic polynomial with 2\(\sigma \) intervals produced as previously described by propagating the errors calculated from the \(\Delta_{\text{mix}}H \) SIM regression at the composition of maximum SRO (Figure 7). Thus, the \(\Delta_{\text{mix}}H \) predictions incorporate the calculated errors from fitting the experimental \(\Delta_{\text{mix}}H \) values as well as the relative dispersion around the nominal fit (Figure 7 and Table 3).

Figure 3. Typical pseudobinary \(\Delta_{\text{mix}}H \) results from the SIM: (a) LiCl–CeCl\(_3\) at 1130 K; (b) LiCl–PrCl\(_3\) at 1044 K; and (c) KCl–TbCl\(_3\) at 1109 K.

Figure 4. Example of the potential for ambiguity in \(\Delta_{\text{mix}}H \) solutions, here showing a selection of the equimolar composition for asymmetric halide salts.
The methodology for determining $\Delta_{\text{mix}}H$ is used in CALPHAD modeling of the NaCl−PuCl$_3$ system to provide an example of its utility. Limited experimental data are available for this system, consisting of only end-member values and phase equilibria (Figure 8a). The excess enthalpy (Figure 8b) for the melt was obtained from our estimation of the $\Delta_{\text{mix}}H$ at 1123 K, which is near the average temperature of the $\Delta_{\text{mix}}H$ data set (1142 K), and identification of the composition at maximum SRO. In the development of the set of consistent thermodynamic models of the system, the melt was represented by the modified quasichemical model in the quadruplet approximation (MQMQA), which takes into account SRO between first- and second-nearest neighbors on a lattice or sublattice.

For the MQMQA, the first-nearest-neighbor (FNN) coordination numbers, z_{ij}, were specified as:

$$z_{\text{Na}/\text{Cl}} = z_{\text{Pu}/\text{Cl}} = 6; z_{\text{Pu}/\text{Cl}} = 2$$

Table 2. Composition at Maximum SRO for AkCl−UCl$_3$ and AkCl−PuCl$_3$ Systems with Their 2σ Values

alkali	x_{UCl_3}	2σ interval	x_{PuCl_3}	2σ interval
LiCl	0.455	0.503	0.420	0.458
	0.407	0.477	0.436	0.450
NaCl	0.459	0.442	0.415	0.440
KCl	0.432	0.404	0.393	0.439
RbCl	0.431	0.417	0.417	0.428
CsCl	0.425	0.414	0.399	0.428

2.4. Use of Computed $\Delta_{\text{mix}}H$ in CALPHAD Modeling.

The methodology for determining $\Delta_{\text{mix}}H$ is used in CALPHAD modeling of the NaCl−PuCl$_3$ system to provide an example of its utility. Limited experimental data are available for this system, consisting of only end-member values and phase equilibria (Figure 8a). The excess enthalpy (Figure 8b) for the melt was obtained from our estimation of the $\Delta_{\text{mix}}H$ at 1123 K, which is near the average temperature of the $\Delta_{\text{mix}}H$ data set (1142 K), and identification of the composition at maximum SRO. In the development of the set of consistent thermodynamic models of the system, the melt was represented by the modified quasichemical model in the quadruplet approximation (MQMQA), which takes into account SRO between first- and second-nearest neighbors on a lattice or sublattice.

For the MQMQA, the first-nearest-neighbor (FNN) coordination numbers, z_{ij}, were specified as:

$$z_{\text{Na}/\text{Cl}} = z_{\text{Pu}/\text{Cl}} = 6; z_{\text{Pu}/\text{Cl}} = 2$$

Figure 5. Maximum SRO vs δ_{12} plots with interpolated values for uranium and plutonium alkali chlorides: (a) LiCl−MCl$_3$ series; (b) NaCl−MCl$_3$ series; (c) KCl−MCl$_3$ series; (d) RbCl−MCl$_3$; and (e) CsCl−MCl$_3$ series. The fitted coefficients b and m were determined from the relation $x_{\text{SRO}} = m\delta_{12} + b$.
The values of cation−cation, i.e., the second-nearest-neighbor (SNN) coordination numbers, Z_i, that best represent the phase equilibria were found to be $Z_{36}, 2.4$. A value of 0.333 was used for the required ratio $Z_{\text{NaPu/Cl}}/(Z_{\text{NaPu/Cl}} + Z_{\text{PuCl}})$ to represent the average coordination number of plutonium complex species $\text{PuCl}_6^{3−}$. The presence of the $\text{PuCl}_6^{3−}$ is seen as the reason why the composition at maximum SRO is skewed toward lower PuCl_3 compositions.

The excess Gibbs free energy for the NaCl–PuCl$_3$ melt was determined by optimizing the known system phase equilibria, the predicted $\Delta_{\text{mix}}H$, and the thermodynamic values for the compounds in Table 4, and is expressed as

$$\Delta g_{\text{NaPu/Cl}}(\text{J/mol}) = -8685.7 - 0.993T - 4079.8\chi_{\text{NaPu}} - 6004.6\chi_{\text{PuNa}}$$

where χ_{NaPu} and χ_{PuNa} represent the cation pair fractions as defined in the MQMQA. The system has a eutectic composition as described by Benes and Konings, and Yin et al., each describing a similar calculated phase diagram with their models differing by values of $\Delta_{\text{mix}}H$ (Figure 8b). Yin et al. predicted $\Delta_{\text{mix}}H$ assumed a minimum at an equimolar composition. Consequently, our predicted $\Delta_{\text{mix}}H$ is over 10% more negative than theirs (Figure 8b).

3. CONCLUSIONS

We have developed a correlational approach to estimate the composition of maximum SRO, which is the point at which $\Delta_{\text{mix}}H$ is most negative. Additionally, the correlation can propagate the errors reported for experimental measurements to ultimate $\Delta_{\text{mix}}H$ values. As experimental measurements of $\Delta_{\text{mix}}H$ are often unavailable or difficult to obtain, the demonstrated relations and developed methodology meet a critical need for efficiently generating thermodynamic properties of molten salts.
Along with propagated errors from the underlying experimental data, our method provides valuable information for the development of unambiguous thermodynamic models for halide salts. Hence, we have produced a complete set of heretofore unknown values for the thermodynamic properties of the AkCl–UCl₃ and AkCl–PuCl₃ salt systems at potential MSR temperatures. The results reported here are being used to provide models for systems that are being integrated into the Melted Salt Thermal Properties Database—Thermochemical (MSTDB-TC)¹⁵ to serve as a resource for the MSR and related communities. Although we focused on the application of molten salt melts for MSRs, the approach to determine $\Delta_{\text{mix}} H$ solution can be used for a wide variety of technologically interesting halide salt systems that require thermodynamic models for their effective implementation.

Table 4. Thermodynamic Properties of Compounds Used in the NaCl–PuCl₃ Optimization

Compound	T range (K)	$H_{298.15}$ (J/mol)	$S_{298.15}$ (J/mol.K)	c_p (J/mol.K)	ref
NaCl (s)	298.15–15000	−411120	72.132	45.94 + 0.016318(T/K)	66
NaCl (l)	298.15–1500	−394956	76.076	77.7638 – 0.0075312 (T/K)	66
	1500–2000	66.944			
PuCl₃ (s)	298.15–2000	−959600	161.4	91.412 + 0.03716(T/K) – 27400(T/K)²	65
PuCl₃ (l)	298.15–2000	−931116	170.463	144	65

Figure 8. (a) Computed phase diagram for NaCl–PuCl₃ from this work as well as those of Beneš and Konings⁶⁵ and Yin et al.⁵⁴, together with phase equilibria measurements.⁶¹ (b) $\Delta_{\text{mix}} H$ values from this work and those of Beneš and Konings⁶⁵ and Yin et al.⁵⁴

Our analysis of 48 charge-asymmetric actinide/lanthanide systems indicates that the previously observed quadratic (or nearly linear) relationship of δ_{12} to $\Delta_{\text{mix}} H$ applies within families of alkali chlorides mixed with lanthanide and actinide trichloride salts. We have uniquely observed that there appears to be a linear correlation between δ_{12} and the pseudobinary composition at maximum SRO, which represents the most negative $\Delta_{\text{mix}} H$ values. This correlation has allowed the development of a novel, simple, and yet accurate method to predict such values for the pseudobinary systems of interest. When coupled with the Davis’¹²,²³ approach, the methodology provides a new means for well-predicting $\Delta_{\text{mix}} H$ at the composition of maximum SRO, the value for which no longer needs to be assumed a priori. Additional $\Delta_{\text{mix}} H$ predictions of unmeasured AkCl–LnCl₃ systems are provided in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c04755.

Predictions of enthalpy of mixing for 27 unexplored AkCl–LnCl₃ systems: LiCl–PmCl₃, LiCl–SmCl₃, LiCl–EuCl₃, LiCl–DyCl₃, LiCl–HoCl₃, LiCl–ErCl₃, NaCl–PmCl₃, NaCl–EuCl₃, NaCl–HoCl₃, KCl–PmCl₃, KCl–SmCl₃, KCl–EuCl₃, KCl–HoCl₃, KCl–ErCl₃, RbCl–PrCl₃, RbCl–PmCl₃, RbCl–SmCl₃, RbCl–EuCl₃, RbCl–DyCl₃, RbCl–HoCl₃, RbCl–ErCl₃, CsCl–PrCl₃, CsCl–PmCl₃, CsCl–SmCl₃, CsCl–EuCl₃, CsCl–DyCl₃, and CsCl–HoCl₃ (PDF)

AUTHOR INFORMATION

Corresponding Authors

Juliano Schorne-Pinto — Nuclear Engineering Program, Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States; orcid.org/0000-0003-4208-4815; Email: julianos@mailbox.sc.edu

Theodore M. Besmann — Nuclear Engineering Program, Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States; Email: besmannn@sc.edu

Authors

Jacob A. Yingling — Nuclear Engineering Program, Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States

Matthew S. Christian — Nuclear Engineering Program, Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States; orcid.org/0000-0002-3416-413X

Amir M. Mofrad — Nuclear Engineering Program, Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States

https://doi.org/10.1021/acsomega.1c04755

ACS Omega 2022, 7, 362–371
Mahmoud A. A. Aslani — Nuclear Engineering Program, Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States; Institute of Nuclear Sciences, Ege University, 35100 Izmir, Turkey

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c04755

Author Contributions

J.S.P. and J.A.Y. were responsible for the writing and development of ideas for the manuscript with feedback given by all authors. J.S.P. compiled and critically evaluated the available data. J.A.Y. performed the statistical analysis and error propagation. M.S.C., M.A.A.A., and A.M.M. advised J.S.P. and J.A.Y. in various matters including graphical design, document structure, methodology, and statistical analysis. T.M.B directed the research.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge support from the MSTDB-TC development effort under the Nuclear Energy Advanced Modeling and Simulation Program administered by Los Alamos National Laboratory, which is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract number 89233218NCA000001.

ABBREVIATIONS

Ak, alkali; An, actinide; Ln, lanthanide; MSTDB-TC, Molten Salt Thermal Properties Database—Thermochemical; MSRs, molten salt reactors; CALPHAD, CALculation of PHase diagrams; SIM, surrounded ion model; SRO, short-range order; MQMAQ, the modified quaasichemical model in the quadruplet approximation; FNN, first-nearest neighbor; SNN, second-nearest neighbor

REFERENCES

(1) Minh, N. Q. Extraction of Metals by Molten Salt Electrolysis: Chemical Fundamentals and Design Factors. JOM 1985, 37, 28–33.
(2) Iizuka, M.; Koyama, T.; Kondo, N.; Fujita, R.; Tanaka, H. Actinide Recovery from Molten Salt/Liquid Metal System by Electrochemical Methods. J. Nucl. Mater. 1997, 247, 183–190.
(3) Jiao, S.; Zhu, H. An Investigation into the Electrochemical Recovery of Rare Earth Ions in a CsCl-Based Molten Salt. J. Hazard. Mater. 2011, 189, 821–826.
(4) Kuznetsov, S. A.; Gaune-Escard, M. Redox Electrochemistry and Formal Standard Redox Potentials of the Eu(III)/Eu(II) Redox Couple in an Equimolar Mixture of Molten NaCl-KCl. Electrochim. Acta 2001, 46, 1101–1111.
(5) Takeda, O.; Okabe, T. H. Current Status on Resource and Recycling Technology for Rare Earths. Metall. Mater. Trans. E 2014, 1, 160–173.
(6) Schulze, R.; Abbassalizadeh, A.; Bulach, W.; Schebek, L.; Buchert, M. An Ex-Ante LCA Study of Rare Earth Extraction from NdFeB Magnet Scrap Using Molten Salt Electrolysis. J. Sustainable Metall. 2018, 4, 493–505.
(7) Okabe, T. H.; Takeda, O.; Fukuda, K.; Umetsu, Y. Direct Extraction and Recovery of Neodymium Metal from Magnet Scrap. Mater. Trans. JIM 2003, 44, 798–801.
(8) Xu, M.; Smolenski, V.; Liu, Q.; Novoselova, A.; Jiang, K.; Yu, J.; Liu, J.; Chen, R.; Zhang, H.; Zhang, M.; Wang, J. Thermodynamics, Solubility and the Separation of Uranium from Cerium in Molten In/3LiCl-2KCl System. J. Electrochem. Soc. 2020, 167, No. 136506.
(9) Claquesin, J.; Lemoine, O.; Gibilaro, M.; Massot, L.; Chamelot, P.; Boures, G. Electrochemical Behavior of Plutonium Fluoride Species in LiF-CalF3 Eutectic Melt. Electrochim. Acta 2019, 301, 80–86.
(10) DOE U. S. Generation IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems 2002; p GIF-002-00.
(11) Williams, D. F.; Brit, P. F. Technology and Applied R&D Needs For Molten Salt Chemistry. Molten Salt Chemistry Workshop at Oak Ridge National Laboratory, 2017.
(12) Besmann, T. M.; Schorne-Pinto, J. Developing Practical Models of Complex Salts for Molten Salt Reactors. Thermo 2021, 1, 168–178.
(13) Chang, Y. A.; Chen, S.; Zhang, F.; Yan, X.; Xie, F.; Schmid-Fetzner, R.; Oates, W. A. Phase Diagram Calculation: Past, Present and Future. Prog. Mater. Sci. 2004, 49, 313–345.
(14) Pelton, A. Phase Diagrams and Thermodynamic Modeling of Solutions; Elsevier, 2018.
(15) Ard, J.; Johnson, K.; Christian, M.; Schorne-Pinto, J.; Yingling, J.; Besmann, T.; McMurray, J.; Peng, J. FY20 Status Report on the Molten Salt Thermodynamic Database (MSTDB) Development; ORNL/SPR-2020/1648, 2020; p 16.
(16) Reiss, H.; Katz, J. L.; Kleppa, O. J. Theory of the Heats of Mixing of Certain Fused Salts. J. Chem. Phys. 1962, 36, 144–148.
(17) Flengas, S. N.; Kucharski, A. S. Theory of Enthalpy of Mixing in Reactive Charge Asymmetrical Molten Salt Systems. Part I. Binary Solutions. Can. J. Chem. 1971, 49, 3971–3985.
(18) Papatheodorou, G. N.; Kleppa, O. J. Thermodynamic Studies of Binary Charge Unsymmetrical Fused Salt Systems. Cerium(III) Chloride-Alkali Chloride Mixtures. J. Phys. Chem. A 1974, 78, 178–181.
(19) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Intermolecular Distances in Halides and Chalcogenides. Acta Crystallogr., Sect. A 1976, 32, 751–767.
(20) Kleppa, O. J. Thermodynamic Properties of Molten Salt Solutions. In Thermodynamics in Geology; Fraser, D. G., Ed.; NATO Advanced Study Institutes Series; Springer: Netherland; Dordrecht, 1977; Vol. 81I, pp 279–299.
(21) Hong, K. C.; Kleppa, O. J. Thermochromy of the Liquid Mixtures of the Alkaline Earth Fluorides with Alkali Fluorides. J. Phys. Chem. B 1978, 82, 1596–1603.
(22) Davis, H. T. Theory of Heats of Mixing of Certain Charge-Unsymmetrical Fused Salts. J. Chem. Phys. 1964, 41, 2761–2766.
(23) Davis, H. T. Theory of Heats of Mixing of Certain Charge-Unsymmetrical Molten Salts. J. Phys. Chem. C 1972, 76, 1629–1631.
(24) Østvold, T.; Kleppa, O. J.; Sood, M. S.; Nielsen, B. E.; Ljunggren, H.; Ehrenberg, L. Enthalpies of Mixing in Binary Liquid Alkali Sulfate Mixtures. Acta Chem. Scand. 1971, 25, 919–929.
(25) Papatheodorou, G. N.; Østvold, T. Thermodynamic Studies of Binary Charge Unsymmetrical Fused Salt Systems. Calorimetric and Electromotive Force Measurements of Liquid Lanthanum(III) Chloride-Alkali Chloride Mixtures. J. Phys. Chem. D 1974, 78, 181–185.
(26) Dienstbach, F.; Blachnik, R. Mischungsenthalpien von Geschmolzenen Alkalihalogenid-Lanthanoidehalogenidensystemen. Z. Anorg. Allg. Chem. 1975, 412, 97–109.
(27) Ryckera, L.; Okamoto, Y.; Gaune-Escard, M. Enthalpy of Mixing of the PrCl4-LiCl and NdCl3-LiCl Molten Salt Systems. Z. Naturforsch., A 2005, 60, 196–200.
(28) Hatem, G. Semi-Emperical Deference of the Excess Functions of Asymmetrical Molten Salt Systems. Thermochim. Acta 1999, 338, 95–102.
(29) Hatem, G.; Gaune-Escard, M.; Pelton, A. D. Calorimetric Measurements and Coupled Thermodynamic Phase-Diagram Analysis in the Sodium, Potassium/Fluoride, Sulfate System. J. Phys. Chem. E 1982, 86, 3039–3046.
(30) Gaune-Escard, M. Thermodynamic Models of Molten Salt Mixtures. Pure Appl. Chem. 1983, 55, 505–514.
(31) Gaune-Escard, M.; Mathieu, J.-C.; Desré, P.; Doucet, Y. Modèle Statistique de Solution Binaire de Sels Fondus à Cation Ou Anion Commun: II. — X Conséquences Du Choix de Deux Formes Particulières Des Énergies Potentielle et de Vibration Sur Les Grandeurs Thermodynamiques de Mélange. J. Chem. Phys. 1972, 69, 1397–1401.

(32) Gaune-Escard, M.; Mathieu, J.-C.; Desré, P.; Doucet, Y. Modèle Statistique de Solution Binaire de Sels Fondus à Cation Ou Anion Commun: I. — Traitement Général d’un Système AB — A’B. J. Chem. Phys. 1972, 69, 1390–1396.

(33) Papatheodorou, G. N.; Kleppa, O. J. Enthalpies of Mixing in the Liquid Mixtures of the Alkali Chlorides with MnCl₂, FeCl₂ and CoCl₂. J. Inorg. Nucl. Chem. 1971, 33, 1249–1278.

(34) Papatheodorou, G. N.; Warnes, O.; Østvold, T.; Holm, A.; Toubro, N. H.; Krantz, A.; Laureni, J. Thermodynamic Studies of Binary Charged Unsymmetrical Fused Salt Systems. Calorimetric and Electromotive Force Measurements of Yttrium(III) Chloride - Alkali Chloride Mixtures. Acta Chem. Scand. 1979, 33a, 173–178.

(35) Redkin, A. A.; Zaikov, Y. P.; Korzun, I. V.; Resnitskii, O. G.; Yaroslavtsева, T. V.; Kум kole, S. I. Heat Capacity of Molten Halides. J. Phys. Chem. B 2020, 105, 3917–3921.

(36) Chase, M. W. NIST-JANAF Thermochemical Tables; 4th ed.; American Institute of Physics, -1, 1998.

(37) Kleppa, O. J. A New Twin High-Temperature Reaction Calorimeter. The Heats of Mixing in Liquid Sodium-Potassium Nitrates. J. Phys. Chem. F 1960, 64, 1937–1940.

(38) Papatheodorou, G. N.; Kleppa, O. J. Enthalpies of mixing of charge unsymmetrical binary fused salt systems: ZnX₂-AX (A = Li, Cs, Ag; X = Cl, Br). Z. Anorg. Allg. Chem. 1973, 401, 132–144.

(39) Hong, K. C.; Kleppa, O. J. A New Twin High-Temperature Reaction Calorimeter. The Heats of Mixing in Liquid Sodium-Potassium Nitrates. J. Phys. Chem. G 1978, 82, 176–182.

(40) Matsuura, H.; Takagi, R.; Rycerz, L.; Gaune-Escard, M. Enthalpies of Mixing in Molten UCl₃-NaCl System. J. Nucl. Sci. Technol. 2002, 39, 632–634.

(41) Rycerz, L.; Gaune-Escard, M. Mixing Enthalpy of TbCl₃-MCl Liquid Mixtures (M = Li, Na, K, Rb, Cs). High Temp. Mater. Processes 1998, 2, 483–496.

(42) Choijnacka, I.; Rycerz, L.; Kapala, J.; Gaune-Escard, M. Calorimetric Investigation of TmCl₃-MCl Liquid Mixtures (M = Li, Na, K, Rb, J). J. Mol. Liq. 2020, 319, No. 113935.

(43) Gaune-Escard, M.; Rycerz, L.; Szczepaniak, W.; Bogacz, A. Calorimetric Investigation of PrCl₃-NaCl and PrCl₃-KCl Liquid Mixtures. Thermochim. Acta 1994, 236, 59–66.

(44) Gaune-Escard, M.; Bogacz, A.; Rycerz, L.; Szczepaniak, W. Calorimetric Investigation of NdCl₃-MCl Liquid Mixtures (Where M Is Na, K, Rb, Cs). Thermochim. Acta 1994, 236, 67–80.

(45) Gaune-Escard, M.; Rycerz, L.; Bogacz, A. Enthalpies of Mixing in the DyCl₃-NaCl, DyCl₃-KCl and DyCl₃-PrCl₃ Liquid Systems. J. Alloys Compd. 1994, 204, 185–188.

(46) Lukas, W.; Gaune-Escard, M.; Brous, J. P. Enthalpy of Mixing of (1–x)KCl-xBiCl₃ at 690 K. J. Chem. Thermodynamics. 1987, 19, 717–720.

(47) Rycerz, L.; Kapala, J.; Gaune-Escard, M. Experimental Mixing Enthalpy and Thermodynamic Modelling of UCl₃-KCl System. J. Mol. Liq. 2021, 342, No. 116963.

(48) Hatem, G.; Østvold, T. Enthalpies of Mixing of KCl-AlCl₃ Melts. Ber. Bunsenges. Phys. Chem. 1989, 93, 546–548.

(49) Cook, C. M.; Dunn, W. E. The Reaction of Ferric Chloride with Sodium and Potassium Chlorides. J. Phys. Chem. H 1961, 65, 1505–1511.

(50) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, M.; Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, T. E. Array Programming with NumPy. Nature 2020, 585, 357–362.

(51) Moré, J. J. The Levenberg-Marquardt Algorithm: Implementation and Theory. In Numerical Analysis; Watson, G. A., Ed.; Lecture Notes in Mathematics; Springer: Berlin, Heidelberg, 1978; pp 105–116.

(52) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovskiy, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272.