Metamagnets in uniform and random fields

Serge Galam,

Laboratoire des Milieux Desordonnés et Hétérogènes
Université de Paris 6
Case 86, T13
4 Place Jussieu
Cedex 05, Paris, France

Carlos S. O. Yokoi, and Silvio R. Salinas

Instituto de Física
Universidade de São Paulo
Caixa Postal 66318
05315-970, São Paulo, SP, Brazil

(May 12, 2018)

Abstract

We study a two-sublattice Ising metamagnet with nearest and next-nearest-neighbor interactions, in both uniform and random fields. Using a mean-field approximation, we show that the qualitative features of the phase diagrams are significantly dependent on the distribution of the random fields. In particular, for a Gaussian distribution of random fields, the behavior of the model is qualitatively similar to a dilute Ising metamagnet in a uniform field.

75.10.Nr, 05.50.+q, 64.60.Cn
I. INTRODUCTION

The random-field Ising model has been a considerable source of research over the last twenty years. Systems with quenched random fields are experimentally realized in antiferromagnets with bond mixing or site dilution. A large variety of these systems have been subjected to detailed experimental studies.

Although most theoretical problems associated with the ferromagnetic Ising model in a random field (as the lower critical dimension, the pinning effects, and the existence of a static phase transition) have been solved, some questions are still open. In particular, there is still room to investigate the existence of a tricritical point and the exact relation to the dilute antiferromagnet in a uniform field. Depending on the choice of the random-field distribution, the mean-field approximation gives rise to a tricritical point (which is present for a symmetric double-delta distribution, but does not occur in the case of a Gaussian form). On the basis of the central limit theorem, some hand-wave arguments can be used to support the physical relevance of the Gaussian distribution (the tricritical point produced by the double-delta functions being a mere artifact of the mean-field approximation).

The proof of the equivalence between an Ising ferromagnet in a random field and a dilute antiferromagnet in a uniform field is based on renormalization-group arguments that can be applied for weak fields. In the mean-field approximation (or in the equivalent and exactly soluble model with infinite-range interactions), it is possible to establish a complete mapping between the parameters of the Ising ferromagnet in a random field and the dilute Ising antiferromagnet or metamagnet in a uniform field. In particular, it is known that the random fields should be associated with a symmetric double-delta distribution for arbitrary dilution, including the pure case where there is no dilution! This peculiar result suggests that, instead of describing the random fields generated by dilution, the mean-field approximation is just referring to the two-sublattice structure of the antiferromagnet (which is reflected in the symmetric double-delta distribution of the random fields). It should be mentioned that the mean-field approximation for the dilute Ising metamagnet in a uniform...
field suffers from other difficulties when confronted with Monte Carlo calculations\cite{20,21} and experimental results\cite{22,23}. Whereas numerical simulations and experiments indicate that the first-order transition is destroyed when the dilution is increased, no such effect is predicted in a mean-field calculation.

In this paper we use a mean-field approximation to consider an Ising metamagnet with nearest and next-nearest-neighbor interactions, in a uniform field and a random field. This model is equivalent to a dilute Ising metamagnet in a field for an appropriate choice of the random field distribution. Since the exact mapping of the dilution to the random fields is unknown, only a qualitative comparison can be made. We consider double-delta and Gaussian random-field distributions. The behavior of the model and the phase diagrams depend very much on these random-field distributions. The Gaussian form seems to be more appropriate for a description of the diluted system.

II. DEFINITION OF THE MODEL

We consider a regular lattice of N sites, with Ising spins $S_i = \pm 1$ at each site, that can be divided into two equivalent interpenetrating sublattices, A and B. The z nearest neighbor (nn) spins of a given spin are on the other sublattice, while the z' next-nearest neighbor (nnn) spins are all on the same sublattice. The Hamiltonian of the system is given by

$$
\mathcal{H} = J \sum_{nn} S_i S_j - J' \sum_{nnn} S_i S_j - \sum_i (H + H_i) S_i,
$$

where J is the nn exchange parameter, the sum \sum_{nn} is over all pairs of nn spins, J' is the nnn exchange parameter, the sum \sum_{nnn} is over all nnn spins, H is the strength of the external uniform magnetic field, and H_i is the strength of the local random field. We assume that the nn interactions are antiferromagnetic ($J > 0$), the nnn interactions are ferromagnetic ($J' \geq 0$), and the local random fields H_i are uncorrelated. Even though it is possible to consider sublattice-dependent probability distributions, in this paper we use the same probability distribution at every site.
III. MEAN-FIELD EQUATIONS

We derive the mean-field equations from Bogoliubov’s variational principle

\[
\langle F \rangle_{\text{av}} \leq \langle F_t \rangle_{\text{av}} + \langle (\mathcal{H} - \mathcal{H}_t) \rangle_{\text{av}}, \tag{3.1}
\]

where \(\langle \cdots \rangle_{\text{av}}\) denotes averaging over the random-field distribution and \(\langle \cdots \rangle_t\) the thermal averaging with respect to the trial Hamiltonian \(\mathcal{H}_t\). Choosing the non-interacting trial Hamiltonian

\[
\mathcal{H}_t = -\sum_i (H + H_i)S_i - \eta_A \sum_{i \in A} S_i - \eta_B \sum_{i \in B} S_i, \tag{3.2}
\]

where \(\eta_A\) and \(\eta_B\) are the variational parameters, we obtain

\[
\langle F \rangle_{\text{av}} \leq -\frac{N}{2\beta} \langle \ln 2 \cosh \beta (H + H_i + \eta_A) \rangle_{\text{av}} - \frac{N}{2\beta} \langle \ln 2 \cosh \beta (H + H_i + \eta_B) \rangle_{\text{av}} + \frac{J N z}{2} m_A m_B - \frac{J' N z'}{4} (m_A^2 + m_B^2) + \frac{N}{2} \eta_A m_A + \frac{N}{2} \eta_B m_B, \tag{3.3}
\]

with

\[
m_A = \langle \tanh \beta (H + H_i + \eta_A) \rangle_{\text{av}}, \tag{3.4a}
\]

\[
m_B = \langle \tanh \beta (H + H_i + \eta_B) \rangle_{\text{av}}. \tag{3.4b}
\]

The condition that the right-hand side of Eq. (3.3) is stationary determines the variational parameters,

\[
\eta_A = -J z m_B + J' z' m_A, \tag{3.5a}
\]

\[
\eta_B = -J z m_A + J' z' m_B. \tag{3.5b}
\]

Inserting Eqs. (3.5a)-(3.5b) into Eqs. (3.4a)-(3.4b), we arrive at the mean-field equations,

\[
m_A = \langle \tanh \beta (H + H_i - J z m_B + J' z' m_A) \rangle_{\text{av}}, \tag{3.6a}
\]

\[
m_B = \langle \tanh \beta (H + H_i - J z m_A + J' z' m_B) \rangle_{\text{av}}. \tag{3.6b}
\]
The right-hand side of Eq. (3.3) at the stationary point gives the mean-field free energy per spin,

\[f = -\frac{1}{2}\beta \langle \ln 2 \cosh \beta (H + H_i - J z m_B + J' z' m_A) \rangle_{av} \]

\[- \frac{1}{2}\beta \langle \ln 2 \cosh \beta (H + H_i - J z m_A + J' z' m_B) \rangle_{av} \]

\[- \frac{J_z}{2} m_A m_B + \frac{J' z'}{4} (m_A^2 + m_B^2). \]

(3.7)

IV. LANDAU EXPANSION

In this Section we develop the Landau expansion along the same steps used for the pure case\[3.\]. It is convenient to introduce the reduced quantities

\[t = \frac{1}{\beta (J_z + J' z')}, \quad h = \frac{H}{J_z + J' z'}, \quad h_i = \frac{H_i}{J_z + J' z'}, \]

(4.1)

and the parameters

\[\epsilon = \frac{J' z'}{J_z} \geq 0, \quad \gamma = -\frac{J_z + J' z'}{J_z + J' z'} = \frac{\epsilon - 1}{\epsilon + 1}. \]

(4.2)

In terms of the uniform and staggered magnetizations,

\[M = \frac{m_A + m_B}{2}, \quad m_s = \frac{m_A - m_B}{2}, \]

(4.3)

the mean-field equations (3.6a) and (3.6b) can be written as

\[M = \frac{1}{2} \left[\langle \tanh \frac{1}{t} (h + h_i + \gamma M + m_s) \rangle_{av} + \langle \tanh \frac{1}{t} (h + h_i + \gamma M - m_s) \rangle_{av} \right], \]

(4.4)

and

\[m_s = \frac{1}{2} \left[\langle \tanh \frac{1}{t} (h + h_i + \gamma M + m_s) \rangle_{av} - \langle \tanh \frac{1}{t} (h + h_i + \gamma M - m_s) \rangle_{av} \right]. \]

(4.5)

Also, the free energy per spin, given by Eq. (3.7), may be written in the form

\[f = -\frac{t}{2} \langle \ln 2 \cosh \frac{1}{t} (h + h_i + \gamma M + m_s) \rangle_{av} \]

\[- \frac{t}{2} \langle \ln 2 \cosh \frac{1}{t} (h + h_i + \gamma M - m_s) \rangle_{av} - \frac{\gamma}{2} M^2 + \frac{1}{2} m_s^2. \]

(4.6)
Let us now write the uniform magnetization as $M = M_0 + m$, where M_0 is the paramagnetic solution, given by equation

$$M_0 = \langle \tanh \frac{1}{t} (h + h_i + \gamma M_0) \rangle_{av}. \quad (4.7)$$

The expansion of the right-hand side of Eqs. (4.4) and (4.5) in powers of $(\gamma m \pm m_s)$ gives the expressions

$$m = \frac{1}{2} \sum_{n=1}^{\infty} A_n [(\gamma m + m_s)^n + (\gamma m - m_s)^n], \quad (4.8a)$$

$$m_s = \frac{1}{2} \sum_{n=1}^{\infty} A_n [(\gamma m + m_s)^n - (\gamma m - m_s)^n], \quad (4.8b)$$

where the coefficients A_n are given by

$$A_1 = -\frac{1}{t} (T_2 - 1), \quad (4.9a)$$

$$A_2 = \frac{1}{t^2} (T_3 - T_1), \quad (4.9b)$$

$$A_3 = -\frac{1}{3t^3} (3T_4 - 4T_2 + 1), \quad (4.9c)$$

$$A_4 = \frac{1}{3t^4} (3T_5 - 5T_3 + 2T_1), \quad (4.9d)$$

$$A_5 = -\frac{1}{15t^5} (15T_6 - 30T_4 + 17T_2 - 2). \quad (4.9e)$$

with

$$T_k = \langle \tanh^k \frac{1}{t} (h + h_i + \gamma M_0) \rangle_{av}. \quad (4.10)$$

We now determine m in terms of m_s in the form

$$m = B_1 m_s^2 + B_2 m_s^4 + B_3 m_s^6 + \ldots. \quad (4.11)$$

Inserting this expansion into Eq. (4.8a), and equating the coefficients of same degree in m_s, we find the coefficients B_n in terms of A_n. Finally, substituting m, given by Eq. (4.11), into Eq. (4.8b) we obtain the expansion

$$a m_s + b m_s^3 + c m_s^5 + \cdots = 0, \quad (4.12)$$
where

\[
\begin{align*}
a &= 1 - A_1, \\
b &= \frac{2\gamma A_2^2}{\gamma A_1 - 1} - A_3, \\
c &= \frac{2\gamma^3 A_2^4}{(\gamma A_1 - 1)^3} - \frac{9\gamma^2 A_2^2 A_3}{(\gamma A_1 - 1)^2} + \frac{6\gamma A_2 A_4}{\gamma A_1 - 1} - A_5.
\end{align*}
\] (4.13)

The second order transition is found at \(a = 0 \) with \(b > 0 \). The tricritical point occurs for \(a = b = 0 \) with \(c > 0 \).

In the absence of random fields the model exhibits a tricritical point in the \(h - t \) phase diagram for \(\epsilon > 3/5 \). In the numerical calculations of the next sections, we just consider the case \(\epsilon = 1 \), which is typical for the range of values \(\epsilon > 3/5 \).

\section*{V. PHASE DIAGRAMS FOR THE DOUBLE-DELTA DISTRIBUTION}

In this Section we study the phase diagrams for the case of a double-delta distribution,

\[
P(h_i) = \frac{1}{2} [\delta(h_i - \sigma) + \delta(h_i + \sigma)].
\] (5.1)

Fig. 1 shows the phase diagrams in the \(h - t \) plane for various values of the randomness \(\sigma \).

The case of no randomness (\(\sigma = 0 \)) corresponds to the pure Ising metamagnet. The phase diagram comprises a metamagnetic phase (\(m_s \neq 0 \)) at low fields and a paramagnetic phase (\(m_s = 0 \)) at high fields. The transitions between these phases are first-order for low temperatures and second-order for high temperatures, being separated by a tricritical point at \(t = 2/3 \), as shown in Fig. 1(a).

For \(\sigma > (2/3) \tanh^{-1}1/\sqrt{3} = 0.438 \ldots \), there is a second tricritical point at lower fields, as illustrated by Figs. 1(d)–(e). Also, for the randomness in the interval 0 < \(\sigma < 0.5 \), there is a first-order transition line inside the metamagnetic phase at low temperatures. Through this transition line the staggered magnetization decreases discontinuously as the field is increased. This internal first-order transition line ends at a critical point. Finally, for \(\sigma > 0.5 \), the internal and lower first-order transition lines merge into a single first-order transition line ending at the tricritical point, as illustrated in Fig. 1(f).
For the particular case of the double-delta distribution and $\epsilon = 1$ or $\gamma = 0$ that we are considering, the phase diagrams in the $\sigma - t$ plane are exactly the same as in the $h - t$ plane. This comes from the invariance of Eqs. (4.5) and (4.6), for the staggered magnetization and the free energy, respectively, under the interchange between h and σ (and from the independence of the free energy on the uniform magnetization M). Therefore, Fig. 4 also represents the phase diagrams in the $\sigma - t$ plane if we interchange h and σ throughout this figure and in its caption. The phase diagram comprises a metamagnetic phase ($m_s \neq 0$) for small σ and a paramagnetic phase ($m_s = 0$) for high values of σ. In particular, the phase diagram for $h = 0$ is equivalent (after flipping all the spins on a sublattice) to the diagram of a ferromagnetic Ising model in a double-delta random field.

VI. PHASE DIAGRAMS FOR THE GAUSSIAN DISTRIBUTION

Now we study the phase diagrams for the Gaussian distribution,

$$
P(h_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{h_i^2}{2\sigma^2}\right).
$$

(6.1)

In Fig. 2, we show the $h - t$ plane for various values of the randomness σ. Again, the case of no randomness ($\sigma = 0$) corresponds to the pure Ising metamagnet, with a first-order separated from a second-order transition line by a tricritical point at $t = 2/3$. The tricritical temperature decreases as the randomness is increased until $\sigma = 0.5$, when the transition between the metamagnetic and paramagnetic phases becomes everywhere of second-order. The similarity of these phase diagrams as a function of σ with those of a dilute metamagnet as a function of dilution is quite striking. It suggests that a Gaussian random field gives, at least qualitatively, a good description of the random fields generated by dilution in a metamagnet.

In Fig. 3, we show the phase diagram in the $\sigma - t$ plane for various values of the uniform field h. The case $h = 0$ is equivalent (after flipping all the spins on a sublattice) to the ferromagnetic Ising model in a Gaussian random field. The transition line is of second-order for all temperatures and it crosses the σ axis at $\sigma = \sqrt{2/\pi} = 0.79\ldots$ For large σ the
transition at low fields becomes first-order and a tricritical point separates the first-order and the second-order lines. For still larger randomness, the transition becomes first-order always.

VII. CONCLUSIONS

We have used the mean-field approximation to show that the phase diagrams of an Ising metamagnet in the presence of a uniform and of random fields are strongly dependent on the form of the distribution of probabilities of the random fields. In particular, if the model exhibits a first-order transition in zero random field, then a double-delta distribution never destroys this first-order transition, in contradistinction to the case of a Gaussian distribution. In this respect, there is a striking similarity in the qualitative behavior of the metamagnet in a Gaussian random field and a dilute metamagnet. This suggests that, by keeping the two-sublattice structure and choosing an appropriate random field distribution, we can give a better description of the dilute metamagnet than the previous mean-field studies that map dilute Ising metamagnets in a uniform field into Ising ferromagnets in a double-delta distribution of random fields.

ACKNOWLEDGMENTS

This work was supported by the program USP/COFECUB (Grant No. 94.1.19622.1.0–UC–12/94). C.S.O.Y. and S.R.S. acknowledge partial financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
REFERENCES

1 Y. Shapir, in *Recent Progress in Random Magnets*, edited by D. H. Ryan (World Scientific, Singapore, 1992), pp. 309–334.

2 M. Gofman, J. Adler, A. Aharony, A. B. Harris, and M. Schwartz, Phys. Rev. B 53, 6362 (1996).

3 M. E. J. Newman and G. T. Barkema, Phys. Rev. E 53, 393 (1996).

4 S. Fishman and A. Aharony, J. Phys. C 12, L729 (1979).

5 J. L. Cardy, Phys. Rev. B 29, 505 (1984).

6 D. P. Belanger, in *Recent Progress in Random Magnets*, edited by D. H. Ryan (World Scientific, Singapore, 1992), pp. 277–308.

7 A. Maritan, M. R. Swift, M. Cieplak, M. H. W. Chan, M. W. Cole, and J. R. Banavar, Phys. Rev. Lett. 67, 1821 (1991).

8 M. R. Swift, A. Maritan, M. Cieplak, and J. R. Banavar, J. Phys. A 27, 1525 (1995).

9 M. R. Swift, A. J. Bray, A. Maritan, M. Cieplak, and J. R. Banavar, Europhys. Lett. 38, 273 (1997).

10 A. Aharony, Phys. Rev. B 18, 3318 (1978).

11 T. Schneider and E. Pytte, Phys. Rev. B 15, 1519 (1977).

12 S. Galam, Phys. Rev. B 31, 7274 (1985).

13 J. Fernando Perez, L. F. Pontin, and J. A. Baêta Segundo, Phys. Lett. A 116, 287 (1986).

14 J. M. G. Amaro de Matos, J. A. Baêta Segundo, and J. F. Perez, J. Phys. A 25, 2819 (1992).

15 H. T. Diep, S. Galam, and P. Azaria, Europhys. Lett. 4, 1067 (1987).
16 H. T. Diep, S. Galam, and P. Azaria, J. Phys. (Paris) Colloq. C8-49, 1261 (1988).

17 S. Galam, P. Azaria, and H. T. Diep, J. Phys. C 1, 5473 (1989).

18 J. Kushauer and W. Kleemann, J. Magn. Magn. Mater. 140–144, 1551 (1995).

19 J. Mattsson, J. Kushauer, D. Bertrand, J. Ferré, P. Meyer, J. Pommier, and W. Kleemann, J. Magn. Magn. Mater. 152, 129 (1996).

20 H. B. Callen, *Thermodynamics and an Introduction to Thermostatistics*, 2nd ed. (John Wiley & Sons, New York, 1985).

21 J. M. Kincaid and E. G. D. Cohen, Phys. Rep. 22, 57 (1975).
FIG. 1. Phase diagrams in $h - t$ plane in the case of a double-delta distribution for (a) $\sigma = 0$, (b) $\sigma = 0.3$, (c) $\sigma = 0.4$, (d) $\sigma = 0.45$, (e) $\sigma = 0.49$ and (f) $\sigma = 0.65$. The solid lines represent continuous transitions. The dashed lines are first-order transitions. The filled circles are tricritical points, and the empty circles are critical points.
FIG. 2. Phase diagrams in $h - t$ plane in the case of a Gaussian distribution for (a) $\sigma = 0$, (b) $\sigma = 0.4$, (c) $\sigma = 0.6$, (d) $\sigma = 0.7$ and (e) $\sigma = 0.75$. The solid lines represent continuous transitions. The dashed lines are first-order transitions. The filled circles are tricritical points.
FIG. 3. Phase diagrams in $\sigma - t$ plane in the case of a Gaussian distribution for (a) $h = 0$, (b) $h = 0.3$, (c) $h = 0.4$, (d) $h = 0.47$ and (e) $h = 0.49$. The solid lines represent continuous transitions. The dashed lines are first-order transitions. The filled circle is a tricritical point.