Deuterium equilibrium isotope effects in a supramolecular receptor for the hydrochalcogenide and halide anions†

Hazel A. Fargher, Russell A. Nickels, Thais P. de Faria, Michael M. Haley, Michael D. Pluth and Darren W. Johnson

Molecular recognition and host–guest binding in both biological and synthetic systems are often driven by a mixture of competitive and additive primarily non-covalent interactions. Understanding the role of each of these forces in a host–guest system can reveal insights into the driving forces behind binding and help inform on the molecular design of future hosts.1–4 Equilibrium isotope effects (EIE), also referred to as binding isotope effects (BIE) in structural molecular biology,4 measure the effect of isotopic substitution on supramolecular interactions through changes in the vibrational energy of the substituted bond. These studies can be used to elucidate the complex non-covalent forces involved in host conformational changes and host–guest binding.4,5

Examples from structural molecular biology have demonstrated that EIEs can reveal mechanistic information in enzyme–ligand binding events.4,6 Isotopic substitution in synthetic supramolecular systems has been used both for labelling purposes and for studying individual non-covalent interactions. For example, Bergman, Raymond, and coworkers used deuterium equilibrium isotope effects (DEIE) to study benzylphosphonium cation guest binding in a self-assembled supramolecular complex in aqueous solution.7 From these DEIE studies, the authors found that attractive cation⋯π interactions in the interior of the host were important for promoting guest binding, and that C–H⋯π and π⋯π interactions were relatively small contributors. In another example, Shimizu and coworkers studied the DEIE on the strength of C–H⋯π interactions in their molecular balances.8 Both computational and experimental results showed that the strength of C–H⋯π and C–D⋯π interactions were about equal, settling the debate on which interaction is stronger and easing concerns about using deuteration for spectroscopic and labelling applications.

Previously, we used DEIE to study Cl– binding with the arylethynyl bisurea supramolecular anion receptor 1H/D (Fig. 1) in DMSO-d6.9 We found an experimental DEIE of 1.019 ± 0.010, which matched the computationally-predicted DEIE of 1.020. Further computational analysis determined that the DEIE was due to a distorted N–H⋯Cl– hydrogen bond geometry, which resulted in changes in the C–H/D bond vibrational energy in the host–guest complex. In addition, Paneth and coworkers performed a computational study with 1H and other hydrogen bonding supramolecular Cl– receptors to determine the EIE of 35/37Cl–.

![Fig. 1](image_url) Arylethynyl bisurea receptors 1H and 1D used in our previous DEIE study of Cl– binding. Related receptors 2H and 2D are used in this study to avoid reaction of the nitro group with HS–.
Addition 4-methoxyphenyl isocyanate gave 2^D in 34% yield. Compound 2^D and intermediates were characterized through $^1\text{H}, ^3\text{H}, ^13\text{C}[^1\text{H}], \text{and} ^19\text{F} \text{NMR spectroscopy and high-resolution mass spectrometry (see ESI†).}

Previous work on the DEIE of Cl^- binding with $1^{\text{H,D}}$ in DMSO revealed an experimental isotope effect of 1.019 ± 0.010. Therefore, we expected similar small DEIEs for HS^-, Cl^-, and Br^- binding with $2^{\text{H,D}}$. Typical methods to determine binding constants (K_a) in supramolecular systems use non-linear regression fitting of titration data. Results from this method can be affected by small errors in the known initial host and guest concentration, quality of the titration isotherm, and subsequent data fitting, which when taken together often results in 2–15% errors in K_a. To increase the precision in K_a data for this study, we used the Perrin method of competitive titrations, which has been shown previously to reduce errors in EIE values significantly with errors as small as 0.0004. In this method, a linearized plot of the chemical shifts of 2^H (δ_H) and 2^D (δ_D) in fast exchange with an anionic guest is fit by linear regression to eqn (1):

$$
(\delta_\text{H} - \delta_\text{D})(\delta_\text{D} - \delta_\text{H}) = \text{DEIE}(\delta_\text{D}^0 - \delta_\text{D})(\delta_\text{H}^0 - \delta_\text{H})
$$

The slope of the linear regression is equal to the DEIE of the system. Because the linear regression only relies on chemical shift values and is independent of host and guest concentration, the precision of the method is limited to the precision of the NMR instrument and quality of data fitting.

In addition, ^{13}C NMR spectroscopy is sensitive to isotopic labelling and can show changes in chemical shifts between

![Scheme 1](image-url)
isotopomers. We were able to differentiate between the 13C NMR signals for Cab, C^1 and C^2 for free and bound 2^H and 2^D (Fig. 2a) in 10% DMSO-d_6/CD$_3$CN, which were similar to those reported for 1^HD in DMSO-d_6. Competitive 13C NMR spectroscopy titrations were performed in anaerobic and anhydrous 10% DMSO-d_6/CD$_3$CN at 25 °C with mixtures of 2^H and 2^D in combined concentrations between 5.71 and 13.46 mM. Aliquots of the tetrabutylammonium (TBA) salts of HS^- and Br^- were added until the system had reached saturation (Titration method A in ESI†). In an effort to decrease reactivity of HS^- with $2^H/D$ and DMSO over long periods of time and decrease oxygen and water contaminations, some titrations with HS^- were performed by splitting the host solution of $2^H/D$ between four J- young NMR tubes. For each point in the competitive titration, TBASH was added to a new solution of $2^H/D$ inside an N$_2$- filled glovebox shortly before obtaining a 13C NMR spectrum (Titration method B in ESI†). The Cab, C^1 and C^2 13C NMR signals were tracked for 2^H and 2^D in each titration for each anion. A representative competitive titration and linearized plots for Cl^- binding is shown in Fig. 2.

The DEIE data calculated from tracking the chemical shifts of the Cab, C^1 and C^2 13C NMR signals from Cl^- and Br^- binding are summarized in Table 1. The results shown are an average of three trials. Analysis of the data for competitive titrations of $2^H/D$ with Cl^- reveals a normal DEIE of 1.014 ± 0.002, calculated from monitoring the C^2 13C NMR signal. The Cab and C^1 13C NMR signals have the largest percent error in the calculated DEIE and show no statistically significant DEIE (i.e., DEIE = 1) for Cl^- binding; however, because there is only one DEIE in the system, these positions must not be sensitive enough to the vibrational energy of the C–H/D bond in the free host and the host–guest complex to reveal the normal DEIE.

Table 1 Calculated DEIE for Cl^- and Br^- binding. Goodness of fit (R^2) of the titration data to eqn (1) through linear regression is included in parentheses.

NMR Signal	DEIE (R^2)	Cl^-	Br^-
Cab	$0.983 \pm 0.017 (0.997)$	$1.006 \pm 0.010 (0.999)$	
C^1	$1.006 \pm 0.007 (0.999)$	$1.009 \pm 0.018 (0.997)$	
C^2	$1.014 \pm 0.002 (1.00)$	$0.990 \pm 0.046 (0.981)$	

Fig. 2 (a) Representation of the host–guest equilibrium between $2^H/D$ and Cl^-. (b) Differences in the chemical shifts between the 2^H and 2^D isotopologues are observed in the 13C NMR signals for the Cab, C^1, and C^2 carbons. 13C NMR signals for the Cab, C^1, and C^2 carbons in $2^H/D$ are tracked throughout a titration. (c–e) Linearized plots from fitting the chemical shifts of the Cab, C^1, and C^2 throughout a titration to eqn (1).
study is in a less polar solvent system (10% DMSO/CH$_3$CN, $\epsilon \sim 42$) compared to the previous study (DMSO, $\epsilon = 47$). We hypothesize that the decreased polarization of the C-H/D bond and the lower solvent polarity either relieve the distorted N-H···Cl$^-$ hydrogen bonding geometry or decrease their influence on the vibrational frequency of the C-H/D bond in the host–guest complex. To deconvolute and better understand the role of both C-H/D hydrogen bond donor polarity and solvent on the DEIE of Cl$^-$ binding in these receptors, a systematic study of these two variables would be required, similar to those previously reported, which we intend to pursue in future work.14,27,28

Analysis of the data for competitive titrations of 2H/D with Br$^-$ revealed no DEIE at any of the tracked 13C NMR signals; however, each calculated DEIE has a relatively large percent error (0.99–4.64%, compared to 0.20% for the DEIE of Cl$^-$ binding), which could potentially obscure small DEIEs. We attribute these large percent errors to a limitation in the Perrin method that assumes that the hosts are fully bound by guest at saturation. This limitation can potentially decrease the precision of this method for weakly bound guests with low K_a, such as Br$^-$ which has a K_a of 173 ± 9 M$^{-1}$ with 2H in 10% DMSO-d$_6$/CD$_3$CN at 25 °C.14

Using the combined data from 11 experiments, we were unable to determine a DEIE for HS$^-$ binding. The Cl$^-$ 13C NMR signal appeared to be the most sensitive to the change in vibrational energy of the C-H/D bond in the free host and the host–guest complex; however, in over half these trials, data from the Cl$^-$ 13C NMR signal showed a poor linear fit ($R^2 < 0.99$). In addition, we were unable to triplicate any DEIE from the data which showed a good linear fit ($R^2 > 0.99$). We hypothesize that the high nucleophilicity and air and water sensitivity of HS$^-$ made it incompatible with the long experiment times needed for 13C NMR spectroscopy titrations. In addition it is important to note that HS$^-$ is the only protic guest investigated in these studies, and it is also possible that vibrational coupling between the S-H motif and the receptor may further complicate the measurement of these small EIEs. Such coupling between S-H and other motifs has been implicated previously in the IR inactivity of S-H stretching modes in many metal-sulphydryl complexes.29

In conclusion, deuterium equilibrium isotope effects (DEIE) can be used to elucidate non-covalent driving forces behind anion binding in our arylethynyl bisurea receptors. We endeavored to use DEIE studies to further investigate a preference of polarized C–H hydrogen bond donors for HS$^-$ over Cl$^-$ and Br$^-$ which we reported previously.24 In this current work, we highlight a convenient method to selectively and completely deuterate the aryl C–H hydrogen bond donor in our supramolecular anion receptors. We then found a DEIE of 1.014 ± 0.002 for Cl$^-$ binding with 2H/D. This DEIE was smaller than the computed DEIE of Cl$^-$ binding with 1H/D which features a more polarized C–H hydrogen bond donor and in a more polar solvent. Finally, we reveal challenges in using the Perrin method and 13C NMR spectroscopy titrations in determining small and precise EIE for weakly binding or highly reactive guests.

From this work, we have identified several areas that need further research. The first is to study how solvent and hydrogen bond donor polarity affect EIE of guest binding. A computational study from Paneth and coworkers suggest that both these variables can be used to influence 35,37Cl EIE in supramolecular hosts.13 We also were unable to determine a DEIE of HS$^-$ binding in our receptors, likely due to its high reactivity. A new method to determine small, precise EIE of reactive species such as HS$^-$ is needed in order to learn more about the supramolecular chemistry of this biologically relevant anion and to develop new strategies for selectively binding HS$^-$ over other competing anions.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Research reported in this publication was supported by National Institutes of Health (R01-GM087398 to D. W. J./M. M. H.), the NSF (CHE-2107602 to M. D. P.), and the UO Knight Campus Undergraduate Scholars program (scholarship to R. A. N.). This work was also supported by the Bradshaw and Holzapfel Research Professorship in Transformational Science and Mathematics to D. W. J. We also thank Professor Charles L. Perrin for helpful discussions.

Notes and references

1 H.-J. Schneider, Int. J. Mol. Sci., 2015, 16, 6694.
2 M. M. G. Antonisse and D. N. Reinshoudt, Chem. Commun., 1998, 443.
3 M. M. J. Smulders, S. Zarra and J. R. Nitschke, J. Am. Chem. Soc., 2013, 135, 7039.
4 K. Swiderek and P. Paneth, Chem. Rev., 2013, 113, 7851.
5 Z. R. Laughrey, T. G. Upton and B. C. Gibb, Chem. Commun., 2006, 970.
6 D. Rechavi, A. Scarso and J. Rebek, J. Am. Chem. Soc., 2004, 126, 7738.
7 Y.-L. Zhao, K. N. Houk, D. Rechavi, A. Scarso and J. Rebek, J. Am. Chem. Soc., 2004, 126, 11428.
8 T. Haino, K. Fukuta, H. Iwamoto and S. Iwata, Chem.–Eur. J., 2009, 15, 13286.
9 D. Wade, Chem.-Biol. Interact., 1999, 117, 191.
10 J. S. Mugridge, R. G. Bergman and K. N. Raymond, J. Am. Chem. Soc., 2012, 134, 2057.
11 C. Zhao, R. M. Parrish, M. D. Smith, P. J. Pellechia, C. D. Sherrill and K. D. Shimizu, J. Am. Chem. Soc., 2012, 134, 14306.
12 B. W. Tresca, A. C. Brueckner, M. M. Haley, P. H.-Y. Cheong and D. W. Johnson, J. Am. Chem. Soc., 2017, 139, 3962.
13 A. Paneth and P. Paneth, J. Phys. Chem. B, 2021, 125, 1874.
14 H. A. Fargher, N. Lau, H. C. Richardson, P.-H.-Y. Cheong, M. M. Haley, M. D. Pluth and D. W. Johnson, J. Am. Chem. Soc., 2020, 142, 8243.
15 R. Wang, Physiol. Rev., 2012, 92, 791.
16 B. K. Czyzewski and D.-N. Wang, Nature, 2012, 483, 494.
17 D. Sippel, M. Rohde, J. Netzer, C. Trncik, J. Gies, K. Grunau, I. Djurdjevic, L. Decamps, S. L. A. Andrade and O. Einsle, Science, 2018, 359, 1484.
18 M. D. Hartle, R. J. Hansen, B. W. Tresca, S. S. Prakel, L. N. Zakharov, M. M. Haley, M. D. Pluth and D. W. Johnson, Angew. Chem., Int. Ed., 2016, 55, 11480.
19 N. Lau, L. N. Zakharov and M. D. Pluth, Chem. Commun., 2018, 54, 2337.
20 J. Vázquez and V. Sindelar, Chem. Commun., 2018, 54, 5859.
21 H. A. Fargher, N. Lau, L. N. Zakharov, M. M. Haley, D. W. Johnson and M. D. Pluth, Chem. Sci., 2018, 10, 67.
22 F. W. Wassmundt and W. F. Kiesman, J. Org. Chem., 1995, 60, 1713.
23 D. M. Lindsay, W. Dohle, A. E. Jensen, F. Kopp and P. Knochel, Org. Lett., 2002, 4, 1819.
24 C. N. Carroll, O. B. Berryman, C. A. Johnson, L. N. Zakharov, M. M. Haley and D. W. Johnson, Chem. Commun., 2009, 252.
25 C. L. Perrin and M. A. Fabian, Anal. Chem., 1996, 68, 2127.
26 C. L. Perrin and P. Karri, J. Am. Chem. Soc., 2010, 132, 12145.
27 B. W. Tresca, R. J. Hansen, C. V. Chau, B. P. Hay, L. N. Zakharov, M. M. Haley and D. W. Johnson, J. Am. Chem. Soc., 2015, 137, 14959.
28 T. J. Sherbow, H. A. Fargher, M. M. Haley, M. D. Pluth and D. W. Johnson, J. Org. Chem., 2020, 85, 12367.
29 M. D. Pluth and Z. J. Tonzetich, Chem. Soc. Rev., 2020, 49, 4070.