Delimitation and characterisation of Talaromyces purpurogenus and related species

Yilmaz, N.; Houbraken, J.; Hoekstra, E. S.; Frisvad, Jens Christian; Visagie, C. M.; Samson, Ramona

Published in:
Persoonia

Link to article, DOI:
10.3767/003158512X659500

Publication date:
2012

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Yilmaz, N., Houbraken, J., Hoekstra, E. S., Frisvad, J. C., Visagie, C. M., & Samson, R. (2012). Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia, 29, 39-54. DOI: 10.3767/003158512X659500
Delimitation and characterisation of *Talaromyces purpurogenus* and related species

N. Yilmaz¹, J. Houbraken¹, E.S. Hoekstra², J.C. Frisvad³, C.M. Visagie¹,⁴, R.A. Samson¹

Key words

Penicillium purpurogenum rubratoxin polyphasic taxonomy

Abstract

Taxa of the *Talaromyces purpurogenus* complex were studied using a polyphasic approach. ITS barcodes were used to show relationships between species of the *T. purpurogenus* complex and other *Talaromyces* species. *RPB1, RPB2, β-tubulin* and *calmodulin* sequences were used to delimit phylogenetic species in the complex. These data, combined with phenotypic characters, showed that the complex contains four species: *T. purpurogenus*, *T. rubrum* comb. nov. and two new species *T. amestolkiae* sp. nov. and *T. stollii* sp. nov. The latter three species belong to the *sanguineum* and *purpurogenus* groups respectively and are characterised by dark grey-green colonies with mycelium colonising a plate slowly. The two species share similar conidio- phore morphologies, but can be distinguished by macromorphological characters. *Talaromyces ruber* has a very distinct colony texture on malt extract agar (MEA), produces bright yellow and red mycelium on yeast extract sucrose agar (YES) and does not produce acid on creatine sucrose agar (CREA). In contrast, *T. amestolkiae* and *T. stollii* produce acid on CREA. These two species can be differentiated by the slower growth rate of *T. amestolkiae* on CYA incubated at 36 °C. Furthermore, *T. stollii* produces soft synnema-like structures in the centre of colonies on most media. Exotoxin analysis confirms the distinction of four species in the *T. purpurogenus* complex. The red diffusing pigment in *T. purpurogenus* is a mixture of the azaphilone extrolites also found in *Monascus* species, including N-glutarylrubropunctamine and rubropunctatin. *Talaromyces purpurogenus* produced four different kinds of mycotoxins: rubratoxins, luteskyrin, spiculisporic acid and rugulovasins and these mycotoxins were not detected in the other three species.

Article info

Received: 13 September 2012; Accepted: 17 October 2012; Published: 12 November 2012.

INTRODUCTION

Penicillium purpurogenum was described by Stoll (1903–1904) and the type culture (CBS 286.36) was isolated as a culture contaminant of *Aspergillus oryzae* in Japan. This species was characterised by dark grey-green colonies with mycelium varying from pinkish to yellow and yellow red, as well as the production of red pigments on potato agar. In the same paper, Stoll (1903–1904) also described *P. rubrum* and this isolate was provided by Grassberger, who authorised Stoll to describe the species. It was characterised by dark-green colonies on sugar-gelatine agar. The culture Stoll used for his description is no longer available and therefore it was re-described by Raper & Thom (1949) based on strains NRRL 1062 (CBS 370.48) and NRRL 2120. According to Raper & Thom’s concept, *P. purpurogenum* forms spreading dark yellow-green colonies with rough-walled conidia while *P. rubrum* produces more restricted grey-green colonies with smooth-walled conidia. Pitt (1980) used a broader species concept for *P. purpurogenum* and considered the differences proposed by Raper & Thom (1949) to distinguish *P. purpurogenum* from *P. rubrum* to be insignificant. He also considered *P. crateriforme* to be conspecific with *P. purpurogenum* based on the red pigments produced and its ability to grow at 37 °C, and based on the original descriptions he also considered *P. sanguineum* and *P. vanilliæ* synonyms (Pitt 1980).

Both *P. purpurogenum* and *P. rubrum* are claimed to produce rubratoxins (Wilson & Wilson 1962, Moss et al. 1968, Natori et al. 1970). Because *P. rubrum* was not accepted by Pitt (1980) and *P. purpurogenum* has been regarded as a producer of gluaconic acid rather than rubratoxins, Frisvad (1989) considered *P. crateriforme* to be the correct name for the species producing rubratoxins. Rubratoxin B is mutagenic, hepatotoxic, nephrotoxic and splenotoxic to several animals (Burnside et al. 1957, Lockard et al. 1981, Surjono et al. 1985, Engelhardt et al. 1987, Kihara et al. 2001). The first human rubratoxicosis was reported by Richer et al. (1997). Three teens drinking homemade rhubarb wine, which had a high level of rubratoxin B became critically ill, with one requiring immediate liver transplant. Even though rubratoxin B has negative health effects, it has potential as an anti-tumor agent (Wang et al. 2007, Wada et al. 2010). *Penicillium crateriforme* has also been reported to produce the mouse mycotoxin spiculisporic acid (Oxford & Raistrick 1934, Fujimoto et al. 1988). Later, spiculisporic acid has been used as a commercially available biosurfactant (Ishigami et al. 2000). Isolates belonging to *P. crateriforme* also produces the clavine alkaloids rugulovasines A and B and chlororugulovasines A & B (Dorner et al. 1980), the producer ATCC 44445 was identified as *P. rubrum* (see Table 2). *Penicillium purpurogenum* is an important species in biotechnology for its ability to produce enzymes such as xylanases and cellulases (Steiner et al. 1994, Belancic et al. 1995) and pigments, which are used as natural colorants and biosorbtion (Saw et al. 2004, Mapari et al. 2009, Jeya et al. 2010, Zou et al. 2012). *Penicillium purpurogenum* inoculated oak chips are used in artificial aging of Italian wines (Petruzzi et al. 2010, 2012).

¹ CBS-KNAW Fungal Biodiversity Centre, Uppsalaalan 8, 3584 CT Utrecht, The Netherlands; corresponding author e-mail: r.samson@csb.knaw.nl.

² Albert Schweitzerstraat 2, 6562 XA Groesbeek, The Netherlands.

³ Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark.

⁴ Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa.

⁵ Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
Table 1 Talaromyces strains used in this study.

Species	CBS no.	Other numbers	Substrate and locality	ITS	β-tubulin	calmodulin	RPB1	RPB2
T. amestolkiae	DTO 173F3	Soil; Indonesia	JX965223	JX965330	JX965189	JX965248		
	FRR 1097	Chicken feed suspected to be toxic; Victoria, Australia	JX315668	JX315624	JX315654	JX315687	JX315706	
	IBT 20202	Greenhouse; Lyngby, Denmark	JX315669	JX315625	JX315653	JX315688	JX315707	
	IMI 061385 = KCTC 6774 = IBT 4538	Paper pulp; UK, 1955	JX965247	JX965331	JX965196	JX965284	JX965319	
	IMI 104624 = IBT 3968	Plastic; UK, 1963	JX965214	JX965321	JX965190	JX965249	JX965285	
	IMI 147406 = KCTC 6773 = IBT 21723	Malus pumila; Belfast, North Ireland, UK, 1970	JX965215	JX965322	JX965191	JX965250	JX965286	
	IBT 19715	Air, cake factory; Denmark	JX965216	JX965323	JX965192	JX965251	JX965287	
	IBT 23821	Soil; Scafati, Italy	JX315672	JX315626	JX315652	JX315687	JX315710	
	IBT 29986	Contaminant of agar plate; Denmark	JX315673	JX315627	JX315653	JX315689	JX315720	
	NRRL 1034	Narcissus bulb; the Netherlands	JX315702	JX315656	JX315687	JX315706	JX315706	
	AK 128/94 = AK 181/94	Soil; Chvaletice, Czech Republic	JX965215	JX965322	JX965191	JX965250	JX965286	
	ATCC 10445 = ATCC 8725 = CCTM 3641	Air contaminant; Washington DC, USA	JX965216	JX965323	JX965192	JX965251	JX965287	
	= CECT 2913 = DSM 2213 = IFO 5857 = IHEM 4008 = IMI 034912 = NRRL 1032a = QM 7562	Soil; Scafati, Italy	JX315672	JX315626	JX315652	JX315687	JX315710	
	DAOM 31954 = DSM 1184	Angiosperm wood; Ontario, Canada	JX965217	JX965324	JX965193	JX965252	JX965288	
	ATCC 10486 = IMI 040035 = NRRL 1066	Unknown source; USA	JX965217	JX965324	JX965193	JX965252	JX965288	
	= QM 1960	Sputum; Leiden, the Netherlands	JX965218	JX965325	JX965198	JX965253	JX965289	
	390.96	Contaminant of Coniothyrium minitans; Italy	JX965219	JX965326	JX965194	JX965254	JX965290	
	432.62	Ground domestic waste; Verona, Italy	JX965220	JX965327	JX965195	JX965255	JX965291	
	432.62	Alum solution; unknown origin	JX965221	JX965328	JX965197	JX965256	JX965292	
	626.93	Ananas camosus cultivar; Martinique	JX965219	JX965326	JX965194	JX965254	JX965290	
	884.72	Manure; France	JX965225	JX965333	JX965259	JX965293		
	101305	Soil; Hong Kong, China	JX965224	JX965332	JX965259	JX965293		
	101349	Soil; Hong Kong, China	JX965225	JX965333	JX965260	JX965294		
	102303	Raw coffee beans; unknown origin	JX965225	JX965334	JX965260	JX965295		
	102689	Air; Japan	JX965226	JX965335	JX965261	JX965295		
	113143	IMI079195 = NRRL 1132	Contaminant of culture; Washington DC, USA, 1940	JX965226	JX965335	JX965261	JX965295	
	132695	DTO 189C1 = IBT 23485	Wheat; Italy	JX965228	JX965338	JX965199	JX965262	JX965297
	132696	DTO 179F5	Ex-type strain of Talaromyces amestolkiae. House dust; South Africa	JX315660	JX315623	JX315650	JX315679	JX316698
	132697	DTO 189D1 = IBT 28795	Coffee cherries; Uganda	JX965227	JX965337	JX965263	JX965298	
	132698	DTO 189B5 = IBT 20197	Greenhouse; Lyngby, Denmark	JX965229	JX965336	JX965263	JX965298	

T. purpurogenus

Species	CBS no.	Other numbers	Substrate and locality	ITS	β-tubulin	calmodulin	RPB1	RPB2
	DTO 173E6	Soil; Indonesia	JX965230	JX965339	JX965284	JX965299		
	180H4 = IBT 18380; CCRC 32601	Dung of pig; Taipei City, Taiwan	JX965231	JX965340	JX965265	JX965300		
	193H1 = IBT 12779	Oregano; imported to Denmark	JX965232	JX965342	JX965266	JX965302		
	193H1 = IBT 3933		JX965233	JX965341	JX965267	JX965301		
	FRR 1047 = IMI 094165 = LSHB P154 = MUCL 29224	Ex-type of Penicillium crateriforme. Soil; Louisiana, USA	JX315665	JX315637	JX315658	JX315684	JX315703	
	= KCTC 6784 = Thom 4894.13	Soil; Indonesia	JX315665	JX315637	JX315658	JX315684	JX315703	
Strain Code	Source/Details	Notes						
------------	----------------	-------						
IM1091926	CECT 20441 = KCTC 6821	Ex-type strain of *Talaromyces purpurogenus*. Parasitic on a culture of *Aspergillus oryzae*, Japan.						
108923	LSHB P48 = NCTC 586 = Thom 17	Spumt; Leiden, Netherlands.						
ATCC 20204	IBT 4183 = IFO 5722	Unknown source, Japan.						
113158	IBT 11628	Wheat; Winnipeg, Canada.						
122411	IBT 17430 = DTO 49F6	Mould field corn; Wisconsin, USA.						
132707	IMI 136128 = MR 008 = IBT 3658	Unknown source; Japan.						
101965	DTO 49F7 = DTO 189 A4 = IBT 10612	Identified as *Penicillium purpurogenum* by Raper & Thom (1949); collected as *Penicillium sanguineum* by CBS.						
122434	DTO 49F7 = DTO 189 A4 = IBT 10612	Identified as *Penicillium purpurogenum* by Raper & Thom (1949); collected as *Penicillium sanguineum* by CBS.						
T. ruber	DFO 189A7 = IBO 13594 = DACM 215356	Soil in forest; Canada.						
FRR 1503	ATCC 48975 = IAM 13746	Weathered preserved wood stakes; North Queensland, Australia.						
195.88	NRRL 1110 = IBO 4423	Unknown source; USA.						
196.88	FRR 1714 = IBO 3951	Chickens in cold storage; unknown.						
237.93	ACC 828-81	Unknown.						
368.73	Unknown	Unknown.						
370.48	ATCC 10520 = IMI 400036 = NRRL 1062	Ex-neotype. Currency paper; Washington, USA.						
868.96	= VKM F-345 = IBO 3931	Tracheal secretion; Heidelberg, Germany.						
10144	IMI 117859 = IBO 10708	Ex experimental paint sample; Woolwich, UK.						
11340	DTO 193 H7 = IBO 19712	Air cake factory; Denmark.						
132799	DTO 18987 = IBO 21772	Ex sandy soil; Marhaba Club Beach, Sousse, Tunisia.						
132700	DTO 173G7	Soil; Indonesia.						
132703	DTO 1933 = IBO 10708 = IMI 170519	Ex experimental paint sample; Woolwich, UK.						
132704	DTO 193H6 = IBO 10703 = CBS 113137	Aircraft fuel tank; UK.						
T. stollii	NRRL 1033	Unknown substrate; South Africa identified as *Penicillium funiculosum* by Raper & Thom (1949).						
169.91	IMI 117859 = IBO 10708	Bronchoalveolar lavage of patient after lung transplantation (subclinical); France.						
265.93	IFO 5722	Faeaces of a woman; Hamburg.						
372.87	Ex-type strain of *Talaromyces stollii*. AIDS patient; the Netherlands.							
408.97	Unknown	Unknown.						
458.94	Unknown	Unknown.						
624.93	Aranas camosus cultivar; Martinique	Aranas camosus cultivar; Martinique.						
625.93	Aranas camosus cultivar; Martinique	Aranas camosus cultivar; Martinique.						
100372	Pineapple; location unknown	Pineapple; location unknown.						
132705	DTO 172F7	Soil; Indonesia.						
132706	DTO 28C1	Indoor air from bakery; Avenhorn, the Netherlands.						

1 NRRL 1032a was identified as *Penicillium funiculosum* by Raper & Thom (1949). |
2 Identified as *Penicillium purpurogenum* var. rubisclerotiorum by Raper & Thom (1949). It produced limited numbers of dark red sclerotia. |
3 The isolate was sent to CBS by S. Ochiai, Jonquil Consulting Inc., Tokyo, Japan. |
4 Raper & Thom (1949) reported faster growth and floccose margins for this strain. Pitt (1980) does not mention this strain. |
5 NRRL 1062 was used by Raper & Thom (1949) to describe *Penicillium rubrum*. |
6 NRRL 1033 was identified as *Penicillium funiculosum* by Raper & Thom (1949). |
7 Identified as *Penicillium dendriticum*. The isolate was received from Dr. E. Dollefeld, Hamburg. |
Fig. 1 Agar colonies of species of the *Talaromyces purpurogenus* complex on different media. Columns, left to right: *T. ruber* (CBS 370.48), *Talaromyces* sp. (NRRL 2120), *T. ruber* (CBS 132704T), *T. amestolkiae* (CBS 132596T), *T. stollii* (CBS 408.93T), *T. purpurogenus* (CBS 132707), *P. crateriforme* (CBS 184.27T), *P. sanguineum* (CBS 122434). Rows to bottom: MEA obverse, MEA reverse, CYA obverse, CYA reverse, DG18 obverse, DG18 reverse, YES obverse, YES reverse, OA obverse, OA obverse, CREA reverse incubated at 25 °C for 7 d.
Benjamin (1955) introduced the name Talaromyces as a sexual morph and this genus was characterised as producing soft yellow ascomata that consist of interwoven hyphae. Following the concept of single name nomenclature, 40 species from Penicillium subg. Biverticillium were transferred and combined into Talaromyces (Samson et al. 2011). The morphologically circumscribed species Penicillium purpurogenum sensu Pitt (1980) is one of several complexes of cryptic phylogenetic species that occur in the genus.

In the current study, the T. purpurogenus species complex was revised based on a polyphasic approach incorporating macro- and micro-morphology, extrolite production and multi-gene derived phylogeny. The phylogenetic relationships between species of the T. purpurogenus complex and other members of Talaromyces are studied using ITS barcodes. For the detailed delimitation of phylogenetic species, sequences of four alternative genes, β-tubulin, calmodulin, RPB1 and RPB2, were used.

MATERIALS AND METHODS

Strains

Cultures used for comparisons in this study were obtained from the culture collections of the CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands, the IBT culture collection, Lyngby, Denmark and fresh isolates deposited in the working collection of the Department of Applied and Industrial Mycology (DTO), housed at CBS. Strains studied are listed in Table 1.

Morphological analysis

Macroscopic characters were studied on Czapek yeast extract agar (CYA), CYA supplemented with 5 % NaCl (CYAS), yeast extract sucrose agar (YES), creatine sucrose agar (CREA), dichloran 18 % glycerol agar (DG18), oatmeal agar (OA) and malt extract agar (Oxoid) (MEA). The strains were inoculated at three points on 90-mm Petri dishes and incubated for 7 d at 25 °C in darkness. All media were prepared as described by Samson et al. (2010). The temperature-growth response of strains was studied on CYA. Strains were inoculated at 3 points and incubated at 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36 and 40 °C for 7 d in darkness. After incubation, the colony diameter on the various agar media was measured. The degree of sporulation, obverse and reverse colony colours and the production of soluble pigments were also determined. Colony colours were described using Kornerup & Wanscher (1967). Colonies were photographed with a Canon EOS 400D. Species were characterised microscopically by preparing slides from MEA. Lactid acid was used as mounting fluid. Specimens were examined using a Zeiss AxioSkop2 plus microscope, and the NIS-Elements D software package from Nikon was used for making photographs and taking measurements.

DNA extraction, PCR amplification and sequencing

DNA extractions were prepared from strains grown for 7 to 14 d on MEA using the Ultraclean™ Microbial DNA isolation Kit (MoBio, Solana Beach, USA). Extracted DNA was stored at -20 °C. The ITS regions and regions of the β-tubulin, calmodulin, RPB1 and RPB2 genes were amplified and sequenced according to previously described methods (Houbraken et al. 2007, 2011, 2012, Houbraken & Samson 2011, Samson et al. 2011).

Data analysis

Sequence contigs were assembled using Seqman from DNAStar Inc. Newly generated ITS sequences were included in a dataset obtained from the Samson et al. (2011) study. For the alternative genes, only isolates belonging to the T. purpurogenus species complex were included in the analysis. Datasets were
aligned using the Muscle software within MEGAS5 (Tamura et al. 2011). Neighbour-joining analyses on individual datasets were performed in MEGAS and node confidence determined using bootstrap analysis with 1 000 replicates. Trichocoma paradoxa (CBS 788.83) was selected as outgroup for ITS analysis. For the alternative gene phylogenies, T. purpurogenus was selected as outgroup. Unique, newly generated sequences were deposited in GenBank and their accession numbers are shown in Table 1.

Extrolites

Extrolites were extracted from fungal strains grown on CYA, YES, and some strains were additionally grown on MEA and
OA at 25 °C for 7 d for extrtolite extraction. Three agar plugs of each medium were extracted as described in Nielsen et al. (2011) and Houbraken et al. (2012). The extracts were analysed by using high performance liquid chromatography with diode-array detection (HPLC-DAD) (Frisvad & Thrane 1987) for extracts made before 2011 and by UHPLC-DAD (Houbraken et al. 2012) for extracts made later. The compounds eluting and detected were identified by comparing retention time, retention index and UV spectra measured from 200–600 nm. The UV spectra were compared to a database of UV spectra (Nielsen et al. 2011), and to literature data (see for example the UV spectrum of pestalasin A shown in Nonaka et al. 2011).

RESULTS

Morphological examination of strains previously identified as T. purpurogenus showed the presence of four distinguishable morphological groups and these are treated here as distinct species (Fig. 1): T. purpurogenus, T. ruber comb. nov., T. stolii sp. nov. and T. amestolkiae sp. nov. Talaromyces purpurogenus is distinct from the other three species by its inability to grow below 18 °C, slow growth on the agar media CYA, the production of a bright red diffusing pigment on CYA at 25 °C and bright yellow and orange mycelium on DG18 at 25 °C. Talaromyces ruber has a velvety texture on both CYA and MEA at 25 °C and produces bright yellow and red mycelium on YES. It also produces a very distinct colony texture on MEA, where bundles of hyphae are produced underneath the velvety texture. Talaromyces amestolkiae and T. stolii are distinguished from T. ruber and T. purpurogenus by the production of acid on CREA. Talaromyces stolii, however, does grow faster on CYA at 36 °C than T. amestolkiae and some of the studied T. amestolkiae strains produced sclerotia after 2 wk incubation at 25 °C. Furthermore, T. stolii has soft synnemata-like or tufted structures at the centre of colonies on most media. Morphological data is supported by phylogenetic results, as discussed below (Fig. 2, 3). Barcodes of the ITS locus were used to study the phylogenetic relationship between strains previously identified as T. purpuro-

Table 2

Original number	Other collection numbers	Toxin reported	Reference	Isolate data
P-13	NRRL 3290 = NRRL A-11785 = ATCC 26940 = KCTC 6825 = BRCC 31680 = IBT 3936	Rubratoxin A and B*	Wilson & Wilson (1962)	From Dennis N. Cox, Georgia, USA
1968-10-28a	IMI 136126 = MR 006 = IBT 10710	Rubratoxin A and B	Moss & Hill (1970)	Mould field corn, Wisconsin, EB Smalley
1968-10-28b	IMI 136127 = MR 007 = IBT 5016	Rubratoxin A and B	Moss & Hill (1970)	Mould field corn, Wisconsin, EB Smalley
1968-10-28c	IMI 136128 = MR 008 = IBT 3658 = IBT 5015 = DTO 189 A1	Rubratoxin A and B	Moss & Hill (1970)	Mould field corn, Wisconsin, EB Smalley
IMI 129717 = MR 043/RC	Rubratoxin A and B	Moss & Hill (1970)	PKC Austwick	
IMI 129718 = MR 043/OB6	Rubratoxin A and B	Moss & Hill (1970)	PKC Austwick	
IMI 129719 = MR 043/OA	Rubratoxin A and B	Moss & Hill (1970)	PKC Austwick	
IMI 129716 = MR 180	Rubratoxin B	Moss & Hill (1970)	Van der Walt, South Africa	
NRRL 2019 = IBT 3549	Rubratoxin B	Data reported here	Unknown source	
FAT 1141	ATCC 20204 = IBT 4183 = IFO 5722 = CBS 113158	Rubratoxin B*	Data reported here	Japan, S. Abe
CP 187	ATCC 44445 = IBT 4433 = IBT 10711 = KCTC 16067 = CBS 113159	Rugulovasine A* and B*, chlororugulovasine A and B	Dornier et al. (1980)	Field corn kernel, Georgia, RA Hill
ATCC 44445	CBS 286.36 = IMI 091926 = CECT 20441 = KCTC 6821 = LSHB P.48 = NCTC 586 = NCTG Ad 36 = Thom 17	Rubratoxin B*	Data reported here	Field corn kernel, Georgia, RA Hill
NRRL 1057 = CBS 124.27 = MUC1 29224 = LSHB P154 = ATCC 52215 = IMI 094165 = KCTC 6784 = Thom 4894.13 = FRR 1047	Rubratoxin B*	Soil, Louisiana, Gilman and Abbott (ex-type of P. crateriforme)		
NRRL 1059 = IBT 10612 = IBT 3560 = CCRC 31681 = BCRC 31681 = Thom 5694.11 = NCIM 762 = ATCC 10064	Data reported here	C.W. Emmons (P. sanguineum)		
FA 184-WZ-15	IBT 11628 = CBS 113161	Rubratoxin B*	Data reported here	Wheat, Winnipeg, Canada, JT Mills
FA 158-B1-1X	IBT 11632	Rubratoxin B*	Data reported here	Barley, Winnipeg Canada, JT Mills
FA 156-B1-1	IBT 11694	Rubratoxin B*	Data reported here	Barley, Winnipeg Canada, JT Mills
U-92-10 MB nr. 4	IBT 12779			Oregano imported to Denmark
U-92-5-6	IBT 13014			Oregano imported to Denmark
DANL 451(20)	IBT 17318 = CBS 113162			Air in cake factory, Denmark
KELS 9a	IBT 17326			Air in cake factory, Denmark
UAMH 8046	IBT 17340, IBT 17341, IBT 17342 = CBS 113160, IBT 17343	Rubratoxin B*	Richer et al. (1997)	Mouldy home-made rhubarb wine, Canada, L. Sigler
F1150 (B)	IBT 17540			Unknown origin
CCRC 32601	IBT 18380			Dung of pig, Taipei City, Taiwan, S.S. Tzean
Pr	IBT 20484			Rye flour, Denmark
Det 287/98 nr. 146	IBT 21742			Agricultural soil, Canada, Keith Seifert
Lee no. 3	IBT 23074			Soil, South Korea, H.B. Lee
Lucab 201_LAB01	IBT 30226			Soil, Serro de Cip, Brazil, Lucas Abreau

* Confirmed chemically in this study.
genus and other Talaromyces species. The ITS alignment included eight strains and was 469 bp characters long. The results showed that strains belonging to *T. amestolkiae*, *T. ruber* and *T. stollii* form a phylogenetically distinct clade, separate from the distinctly related *T. purpurogenus* clade. ITS gave low bootstrap support within the clade where *T. amestolkiae*, *T. ruber* and *T. stollii* are located and thus detailed analysis was performed using four more variable protein-coding genes. For *T. stollii* 'm328' (≡ berkeleyacetal) eight strains and was 469 bp characters long. The results excluded eight strains and were resolved in the clade (Fig. 2). Many strains previously detected by HPLC-DAD. Extrolite production by Talaromyces amestolkiae, *T. purpurogenus*, *T. ruber* and *T. stollii* as detected by HPLC-DAD.

Species	Extrolite	Strains producing the extrolite
T. amestolkiae	Berkelic acid	CBS 329.48, CBS 368.43, CBS 437.62, CBS 436.62, CBS 436.72, CBS 437.72, CBS 353.93, CBS 277.95, CBS 113143, CBS 132695, CBS 132697, FRK 1095, IBT 20202, IBT 23821, IMI 061385, IMI 104624, IMI 474406
	N-Glutarylrubropunctamine	CBS 365.48, CBS 436.62, IMI 147406
	Mitorubrinic acid	CBS 343.62, CBS 343.62, CBS 32695, FRK 1095, IBT 20202, IBT 23821
	Pestalasin A	CBS 252.31, CBS 365.48, CBS 436.62, CBS 436.72, CBS 113143, CBS 132695, FRK 1095, IBT 19175, IBT 23821, IMI 061385, IMI 147406
	A purpactin	CBS 433.62, CBS 436.62
	Vermicillin	CBS 433.62, CBS 132695, FRK 1095
	'm328' (= berkeleyacetal)	CBS 252.31, CBS 433.62, CBS 353.96, CBS 263.93, CBS 277.95, CBS 390.96, CBS 113143, CBS 132695, FRK 1095, IBT 19175, IBT 20202, IBT 23821, IMI 061385, IMI 147406
	'HHH' (blue fluorescent)	CBS 232.31, CBS 329.48, CBS 365.48, CBS 436.32, CBS 884.72, CBS 263.93, CBS 368.73, CBS 353.93, CBS 274.95, CBS 390.96, CBS 113143, CBS 132695, FRK 1095, IBT 19175, IBT 20202, IBT 23821, IMI 061385, IMI 147406
T. purpurogenus	N-Glutarylrubropunctamine	CBS 184.27, CBS 286.36, CBS 113160, IBT 11632, IBT 12779, IMI 112715, IMI 136126, IMI 136127, IMI 136128, NRRL 3290
	Luteoskyrin	ATCC 20204 (weak), CBS 113160, IMI 136127, IMI 136128, NRRL 1749, NRRL 3290
	Mitorubrin, mitorubrinol, mitorubrinic acid	ATCC 20204, ATCC 44445, CBS 184.27, CBS 286.36, CBS 113160, IBT 11632, IBT 12779, IBT 17540, IBT 31167, IMI 112715, IMI 136126, IMI 136127, IMI 136128, NRRL 1749, NRRL 3290
	Purpactins	ATCC 20204, ATCC 44445, CBS 286.36, CBS 113160, IBT 11632, IBT 12779, IBT 17540, IMI 31167, IMI 112715, IMI 136126, IMI 136127, NRRL 1749, NRRL 3290
	Rubratoxin A & B	ATCC 20204, ATCC 44445, CBS 184.27, CBS 286.36, CBS 113160, IBT 11632, IBT 12779, IBT 17540, IMI 31167, IMI 112715, IMI 136126, IMI 136127, NRRL 1749, NRRL 3290
	Rugulovasine A and B	ATCC 44449, CBS 184.27, IBT 12779, IMI 31167, IMI 136127, IMI 136128, NRRL 3290
T. ruber	Austin and austinol	CBS 370.48, CBS 368.73, CBS 196.88, CBS 196.88, CBS 237.93, CBS 113140, FRK 1503, IMI 113729, IMI 139462, IMI 178519, NRRL 1180
	N-Glutarylrubropunctamine	CBS 196.88, IBT 22364
	Monascorubramine	CBS 368.73, CBS 237.93, CBS 132699, FRK 1503
	Pestalasin A	CBS 196.88, CBS 237.93, CBS 113140, FRK 1503, IMI 113729, IMI 139462, NRRL 1180
	A purpactin	CBS 368.73, CBS 237.93, CBS 132699, FRK 1503
	Vermicillin	CBS 368.73, CBS 196.88, CBS 237.93, CBS 237.93, CBS 868.96, CBS 113140, FRK 1503, IBT 22364, IMI 113729, IMI 139462, NRRL 1180
	'DDD'	CBS 368.73, CBS 196.88, CBS 237.93, CBS 868.96, CBS 113140, IMI 112729, IMI 139462, IMI 178519, NRRL 1180
	'm334'	CBS 132706, CBS 100372
	'HHH'	CBS 408.93, CBS 132706, DFO 60-D5, CBS 286.35, IMI 582.94

1 Spiculisporic acid was found in CBS 184.27 (Oxford & Raistrick 1934), but could not be detected by us using HPLC-DAD, as it has UV end-absorption below 200 nm.

Extrölike data

The four species treated here produce many extrötes. *Talaromyces purpurogenus* isolates can produce four different mycotoxins: rubratoxins (A & B) (Moss et al. 1968, 1971, Moss & Hill 1970), rugulovasines (A and B) and chlororugulovasines A and B (Cole et al. 1976, Dorner et al. 1980, Mapari et al. 2009), luteoskyrin (reported here) and spiculisporic acid (Oxford & Raistrick 1934) (Table 2, 3) (see Frisvad 1989, as *P. crateriforme*), in addition to mitorubrins (mitorubrin, mitorubrinol, mitorubrin acetate, mitorubrinic acid) (Büchi et al. 1965, Chong et al. 1971), N-glutarylrubropunctamine, PP-R, monascin and monascorubramine (Mapari et al. 2009, as *P. crateriforme*) and purpactins (Nishida et al. 1991, Tomoda et al. 1991). We could confirm the production of rubratoxins, rugulovasines, luteoskyrin, mitorubrin, 'Monascus red pigments' and purpactins in *T. purpurogenus* (Table 3). The red azaphilone 'Monascus pigments' are diffusible in *T. purpurogenus*, but not in the other three species (Fig. 1).

Talaromyces ruber isolates produced austins, mitorubrins, *Monascus* pigments, pestalasin A, a purpactin, and chromo-
phore groups ‘DDD’ and ‘m334’ and the antibiotic vermicellin (Fuska et al. 1979). Talaromyces stollii isolates produced austins and chromophore group ‘HHH’. Talaromyces amestolkiae produced berkelic acid, mitorubrinic acid, red ‘Monascus pigments’, a purpactin and vermicellin, and the chromophore groups ‘HHH’, ‘m328’ and ‘m334’. A strain identified as Penicillium rubrum was isolated from the acid and metal polluted Berkeley Pit Lake in Montana (Stierle et al. 2006), and this strain is probably T. amestolkiae. Of the exrolites extracted from this strain, berkelic acid was one of them. In addition to

Fig. 4 Morphological characters of Talaromyces amestolkiae (CBS 132696). a. Colonies incubated on CYA, MEA, YES, CREA, from left to right (top row = obverse, bottom row = reverse); b. colony texture on MEA; c–g. conidiophores produced on MEA; h. conidia. — Scale bars: c = 50 µm; g = 10 µm and applies to d–h.
these extrolites, all species produce other extrolites that were unique to one of the species or in common between several of the four species.

Taxonomy

Talaromyces amestolkiae Yilmaz, Houbraken, Frisvad & Samson, sp. nov. — MycoBank MB801358; Fig. 4

Etymology. Latin, *amestolkiae*: named in honour of Amelia C. Stolk, who pioneered taxonomic studies on *Penicillium* and *Aspergillus* at CBS from 1940–1976.

Typus. Herbarium CBS H-21050 (dried specimen), also maintained under CBS 132696, isolated from house dust from South Africa.

Conidiophores biverticillate, subterminal branches present, have a greenish to brownish pigmentation; stipes smooth walled, 93–164 × 2.5–3 µm; branches 2–3 when present, 15–49 × 2–3 µm; metulae in verticils of 3–5, 11–13 µm across apex, 9.5–14 × 3–4 (av. ± std dev = 11.9 ± 1.2 × 3.4 ± 0.2) µm; phialides acerose, 3–6 per metula, 9.5–12 × 2.5–3 (av. ± std dev = 11.9 ± 1.0 × 2.6 ± 0.2) µm; conidia smooth, some rough, ellipsoidal, 2–3 × 1.5–2.5 (av. ± std dev = 2.6 ± 0.2 × 1.9 ± 0.2) µm.

Colony morphology — CYA, 7 d: 12 °C growth, 15 °C no growth, 18 °C growth, 18 °C no growth, 21 °C 6–15 mm, 24 °C 11–20 mm, 27 °C 18–27 mm, 30 °C 18–27 mm, 33 °C 18–25 mm, 36 °C 14–25 mm, 40 °C no growth. CYA, 25 °C, 7 d: Colonies 29–30 mm, low, raised at centre, margins wide (2–3 mm), entire; mycelium white and yellow, red in centre; texture floccose with overlying funiciles and tufts; sporulation moderately dense to dense; *conidia* en masse greyish green (26E6–26E7); exude absent; soluble pigment very weak, with inconspicuous red pigment in some strains, reverse coloration dark brownish red (11F8–12F8). MEA, 25 °C, 7 d: Colonies 33–42 mm, low, plane; margins very wide (3–5 mm), entire; mycelium white, red at centre; texture tufted at centre, elsewhere floccose with overlying funiciles, floccose at margins; sporulation moderately dense to dense; *conidia* en masse greyish to dull green (25D4–26D4); exude absent; soluble pigment absent; reverse coloration dark brownish red (9F8) at centre, greyish yellow to greyish orange (3C5–5C5) at margins. OA, 25 °C, 7 d: Colonies 50–52 mm, low, plane; margins very wide (5–6 mm), entire; mycelium white and yellow, red at centre; texture floccose with overlying funiciles; sporulation dense; *conidia* en masse greyish green (25D4–25D6); exude present in some strains, clear; soluble pigment absent; reverse coloration red (11F4) at centre, red pigmentation absent in some strains. DG18, 25 °C, 7 d: Colonies 17–18 mm, low, slightly raised at centre; margins narrow (1 mm), entire; mycelium white; texture velvety with overlying funiciles; sporulation moderately dense; *conidia* en masse similar to CYA; exude present in some strains, clear; reverse coloration dark brown (8F8). YES, 25 °C, 7 d: Colonies 27–28 mm, low, sultate; margins narrow (1–2 mm), entire; mycelium white, red at centre; texture floccose with tufts present; sporulation moderately dense, *conidia en masse* similar to CYA; exude absent; soluble pigment absent; reverse coloration brownish red (11F8–12F8). CREA, 25 °C, 7 d: Colonies 15–24 mm, poor acid production, only within colony periphery. CYAS, 25 °C, 7 d: Typically no growth, some strains restricted growth, 6–8 mm.

Distinguishing characteristics — *Talaromyces amestolkiae* belongs to the same clade as *T. ruber* and *T. stollii*. It is distinguishable from *T. ruber* and *T. purpurogenus* by acid production on CREA, and floccose and funiculose texture on MEA. It is distinguished from *T. stollii* by its slower growth at 37 °C.

Talaromyces purpurogenus (Stoll) Samson, Yilmaz, Frisvad & Seifert — MycoBank MB560667; Fig. 5

Basionym. Penicillium purpurogenum Stoll, Beitr. Morph. Biol. Char. Penicill.: 32. 1904.

= *Penicillium sanguineum* Sopp, Skr. Vidensk.-Selsk. Christiansia, Math.-Naturvidensk. Kl. 11: 175. 1912.

= *Penicillium crateriforme* J.C. Gilman & E.V. Abbott, Iowa State Coll. J. Sci. 1: 293. 1927.

Typus. CBS 286.36° (the ex-type strain is deteriorated, CBS 132707 can be regarded as typical for the species).

Conidiophores strictly biverticillate, subterminal branches absent; stipes smooth walled, 150–250 × 2.5–3.5 µm; metulae in verticils of 3–5, 9–13 µm across apex, 12–14.5 × 2.5–4 (av. ± std dev = 13.2 ± 0.8 × 3.2 ± 0.5) µm; phialides acerose, 3–6 per metula, 12–13.5 × 2–3 (av. ± std dev = 12.8 ± 0.5 × 2.4 ± 0.3) µm; *conidia* smooth, ellipsoidal, 3–3.5 × 2–2.5 (av. ± std dev = 3.1 ± 0.2 × 2.3 ± 0.1) µm.

Colony morphology — CYA, 7 d: 12 °C no growth, 15 °C no growth, 18 °C no growth, 21 °C 6–15 mm, 24 °C 11–20 mm, 27 °C 18–27 mm, 30 °C 18–27 mm, 33 °C 18–25 mm, 36 °C 14–25 mm, 40 °C no growth. CYA, 25 °C, 7 d: Colonies 20–25 mm, moderately deep, sultate; margins very narrow (0.5–1 mm); mycelium white and red; texture floccose; sporulation sparse to moderately dense; *conidia* en masse dull green (27D3–28D3); exude absent, soluble pigment typically bright red, absent in some isolates; reverse coloration dark brown to violet brown (9F8–11F8) fading to reddish brown (9D8), in non-soluble pigment producers pale and light red. MEA, 25 °C, 7 d: Colonies 33–41 mm, low slightly at point of inoculation; margins wide (3–4 mm), entire; mycelium orange and white; texture floccose, with some velvety areas, some strains covered by white sterile mycelium; sporulation moderately dense, in some strains absent, *conidia* en masse dull green (26E4–26E5); exude absent, sometimes clear droplets; soluble pigment absent; reverse coloration brownish yellow to brownish orange (5C7–6C7). OA, 25 °C, 7 d: Colonies 28–35 mm, low, plane; margins wide (2–3 mm), entire; mycelium white and orange; texture velvety and floccose; sporulation moderately dense to dense, *conidia* en masse dull green (26E4–26E5); exude absent; soluble pigment absent; reverse coloration dull red (9C4), colour lacking in some. Colonies produce an apple-like fruity odour. DG18, 25 °C, 7 d: Colonies 11–15 mm, low, plane; margins wide (1–2 mm), entire; mycelium white and bright orange; texture velvety, some floccose mycelium present; sporulation sparse to moderately dense, *conidia* en masse dark green (27F5); exude absent; soluble pigment absent; reverse coloration light to brownish orange (5A4–5C4).

YES, 25 °C, 7 d: Colonies 25–35 mm, low, sultate; margins wide (1–2 mm), entire; mycelium white and orange, yellow in strains; texture floccose; sporulation moderately dense, *conidia* en masse dull to greyish green (26E4–26E5); exude absent; soluble pigment absent; reverse coloration light yellow to brown (4A5–6D7), some strains dark red to dark brown (8F4). CREA, 25 °C, 7 d: Colonies 7–11 mm. Typically no acid production; strain CBS 122434 has poor acid production. CYAS, 25 °C, 7 d: No growth to microcolonies of up to 5 mm.

Distinguishing characteristics — *Talaromyces purpurogenus* is distinct from the other three very similar species. It is not able to grow at temperatures below 18 °C, grows slower and produces a bright red diffusing pigment on CYA at 25 °C and has bright yellow and orange mycelium on DG18 at 25 °C.

Talaromyces ruber (Stoll) Yilmaz, Houbraken, Frisvad & Samson, comb. nov. — MycoBank MB801360; Fig. 6

Basionym. Penicillium rubrum Stoll, Beitr. Morph. Biol. Char. Penicill.: 35. 1904.
Typus. Since no holotype is known herbarium CBS-H-21052 (dried specimen) is here designated as neotype. It is derived from CBS 132704, isolated from aircraft fuel tank from United Kingdom. CBS 370.48 was used by Raper & Thom to describe Penicillium rubrum, but it no longer displays all diagnostic characters.

Conidiophores biverticillate; stipes smooth walled, 110–232 × 2.5–3 µm; metulae in verticils of 3–5, 7.5–11 µm across apex, 7.5–10.5 × 2.0–3 (av. ± stdev = 9.6 ± 1.0 × 2.3 ± 0.3) µm; phi-alides acerose, 3–6 per metula, 9–12 × 2–2.5 (av. ± stdev = 9.8 ± 2.8 × 2.1 ± 0.2) µm; conidia smooth, ellipsoidal, 2.5–3.5 × 1.5–2 (av. ± stdev = 2.9 ± 0.2 × 1.8 ± 0.1) µm.

Fig. 5 Morphological characters of Talaromyces purpureogenus (CBS 132707). a. Colonies incubated on CYA, MEA, YES, CREA, from left to right (top row = obverse, bottom row = reverse); b. colony texture on MEA; c–g. conidiophores produced on MEA; h. conidia. — Scale bars: c = 50 µm; g = 10 µm and applies to d–h.
Colony morphology — CYA, 7 d: 12 °C 3–5 mm, 15 °C 5–10 mm, 18 °C 9–13 mm, 21 °C 15–20 mm, 24 °C 17–25 mm, 27 °C 20–30 mm, 30 °C 24–30 mm, 33 °C 20–26 mm, 36 °C 14–17 mm, 40 °C no growth. CYA, 25 °C, 7 d: Colonies 22–30 mm, low, radially sulcate, in CBS 370.48T colonies are pink with no sporulation; margins low, wide (2–3 mm), entire; mycelium white, yellow and red; texture velvety, sometimes with funicles near margins; sporulation moderately dense, conidia en masse bright olive green to greyish green (26D4–27D4); exudate present in some strains, small clear and red droplets; soluble reddish pigment typically present, absent in some strains; reverse coloration brownish red (8E8–8F8). MEA,
25 °C, 7 d: Colonies 35–38 mm, low, plane; margins low, very wide (5–6 mm), entire; mycelium, white and yellow; texture velvety, ropes of mycelium produced very close to media and sometimes inside the medium (Fig. 6b) sporulation dense, conidia en masse greyish green (26D4–26E4), some strains a lighter greyish green (26B3); exudate absent; soluble pigment absent; reverse coloration brownish red to dark brown (8F8–8C8) at centre, elsewhere greyish yellow to greyish orange (4B4–4C4–5B4). OA, 25 °C, 7 d: Colonies 40–42 mm, low; plane; margins very wide (4–5 mm), entire, low; mycelium white and yellow; texture velvety and floccose; sporulation moderately dense, conidia en masse dull to dark green (27D4–27F8);

Fig. 7 Morphological characters of Talaromyces stollii (CBS 408.93T). a. Colonies incubated on CYA, MEA, YES, CREA, from left to right (top row = obverse, bottom row = reverse); b. colony texture on MEA; c–g. conidiophores produced on MEA; h. conidia. — Scale bars: c = 50 µm; g = 10 µm and applies to d–h.
exudate absent, in some strains clear; soluble pigment absent; reverse coloration reddish brown (BD7). DG18, 25 °C, 7 d: Colonies 14–16 mm, plane, low, with a brownish orange col-
our; margins narrow (2–3 mm), entire; mycelium white; texture floccose; sporulation sparse, conidia en masse similar to CYA; exudate small clear droplets; soluble pigment absent; reverse coloration greyish green (30D6–30E6) at centre, elsewhere greenish white (30A2). YES, 25 °C, 7 d: Colonies 22–30 mm, low, raised at centre, radially and concentrically sulcate; margins low, narrow (1–2 mm), entire; mycelium yellow and red, in some strains, e.g. CBS 868.96; texture floccose; sporulation sparse to moderate dense, conidia en masse greyish green (27C5–27E6–27E7); exudate clear small droplets; reverse coloration greyish brown to brown (5F8–5F3) near centre, at margins brownish orange to light brown (5C4–5D4). CREA, 25 °C, 7 d: Colonies 10–14 mm, restricted growth, no acid production. CYAS, 25 °C, 7 d: Typically no growth, sometimes microcolonies up to 4 mm.

Distinguishing characteristics — *Talaromyces ruber* can be distinguished from *T. purpurogenus* by growth at lower temperatures, having a velvety texture on MEA, yellow mycelia and bright green conidia on YES after 7 d incubation at 25 °C. *Talaromyces ruber* can be distinguished from *T. stollii* and *T. amestolkiae* by absence of acid production on CREA. *Talaromyces ruber* has a velvety structure on both CYA and MEA at 25 °C, produces a very distinct colony texture on MEA and produces bright yellow and red mycelia on YES.

Talaromyces stollii Yilmaz, Houben, Frisvad & Samson, sp. nov. — MycoBank MB801359; Fig. 7

Etymology. Latin, stolli: named in honour of Otto Stoll, a pharmacist who first described *P. rubrum* and *P. purpurogenum* for his PhD thesis at the K. Bayr Julius Maximilians University in Würzburg, Germany in 1905.

Type. Herbarium: CBS H-21053 (dried specimen), derived from CBS 408.93, isolated from an AIDS patient, the Netherlands.

Conidiophores biverticillate, subterminal branches present, have a greenish to brownish pigmentation; stipes smooth walled, 94–247 × 3–4.5 µm; metulae in verticils of 3–5, 9.5–10 µm across apex, 11.5–14.6 × 2–3.5 (av. ± stdev = 12.5 ± 0.3 × 2.9 ± 0.4) µm; phialides acerosé, 3–6 per metula, 13–17 × 2–2.5 (av. ± stdev = 14.2 ± 1.2 × 2.1 ± 0.2) µm; conidia smooth to lightly roughened, ellipsoidal, 2.5–4 × 2–2.5 (av. ± stdev = 3.2 ± 0.3 × 2.1 ± 0.2) µm.

Colonmy morphology — CYA, 7 d: 12 °C 4–6 mm, 15 °C 5–10 mm, 18 °C 13–18 mm, 21 °C 19–25 mm, 24 °C 30–35 mm, 27 °C 36–43 mm, 30 °C 38–44 mm, 33 °C 35–44 mm, 36 °C 24–35 mm, 40 °C no growth. CYA, 25 °C, 7 d: Colonies 38–42 mm, low, raised at centre, lightly radially sulcate; marg-
ins wide (2–3 mm), entire; mycelium white and red; texture floccose; sporulation sparse, conidia en masse greyish to dull green (27C4–27D4); exudate present, small pinkish or yellow-
ish droplets; soluble pigment absent; reverse coloration dark brown (8F8) at point of inoculation, elsewhere greyish red (7B5). MEA, 25 °C, 7 d: Colonies 45–50 mm, low, plane; margins wide (3–4 mm), entire; mycelium white, at centre sometimes red, sometimes yellow; texture floccose and funiculose, white sterile tufts covering colonies; sporulation moderately dense, conidia en masse greyish to dull green (27C4–27D4); exudate absent; soluble pigment absent; reverse coloration brownish orange to brownish yellow (5C6–6C7). OA, 25 °C, 7 d: Colonies 44–48 mm, low, plane; margins very wide (4–7 mm), entire; mycelium white; texture floccose, with funiculose that rise from colony centre similar to synnemata; sporulation sparse, conidia en masse similar to CYA; exudate present, clear; soluble pigment absent; reverse coloration reddish at centre, green elsewhere, some strains yellowish. DG18, 25 °C, 7 d: Colonies 18–25 mm, low, plane; margins long, wide (2–3 mm), entire; mycelium white; texture floccose; sporulation absent; exudates absent, sometimes yellow droplets; soluble pigment absent; reverse coloration pale, some strains brownish orange (5C6) at cen-
tre, fading into pale yellow (4A3) at margins. YES, 25 °C, 7 d: Colonies 33–38 mm, low, lightly sulcate; margins wide (3–4 mm), entire; mycelium white; texture floccose; sporulation very sparse; exudate absent; soluble pigment absent; reverse coloration similar to CYA. CREA, 25 °C, 7 d: Colonies 20–30 mm; sparse sporulation, poor acid production, only within colony periphery. CYAS, 25 °C, 7 d: No growth to microcolonies of up to 5 mm.

Distinguishing characteristics — *Talaromyces stollii* is distinguished from *T. ruber* and *T. purpurogenus* by acid production on CREA. *Talaromyces stollii* does, however, grow faster on CYA at 36 °C than *T. amestolkiae*. In addition, *T. stollii* has unique soft synnemata-like or tufted structures in the centre of colonies on most media.

DISCUSSION

Cultures that previously were identified as *P. purpurogenum* or *P. rubrum* were analysed in this study and phylogenetic, morphological and extrolite results show that the *T. purpuro-
genus* complex consists of four distinct species. The species described below are quite common on textiles, paper, soil, dung, plant debris, coffee-berries, corn, indoor air and dust, and are distributed worldwide. *Talaromyces purpurogenus* has been implicated in the biodeterioration of cellulose materials such as textiles, paper and adhesives, while it also has the ability to grow on plant material such as corn, where it may produce mycotoxins (Moss et al. 1971). *Talaromyces purpurogenus* produces four types of mycotoxins: rubratoxin A & B, rugulosavin, spiculisporic acid and luteoskyrin, and none of the other three species treated have been found to produce mycotoxins. The newly described species *T. amestolkiae* and *T. stollii* grow well at 37 °C and some strains were isolated from AIDS patients and might be opportunistic pathogens. It is not yet known if any other species in this group can be opportunistic patho-
gens. *Talaromyces purpurogenus* was reported as the causal agent of a disseminated mycosis in a German shepherd dog (Zanatta et al. 2006), but it remains unknown if this identification is correct using the newly proposed taxonomy. This group is also biotechnologically important, because of their production of enzymes (Carvalho et al. 2003, Jeya et al. 2010) and extrolites. For example, the mycotoxin rubratoxin A & B produced by *T. purpurogenus* has been shown to act as cancer metastasis suppressors (Wada et al. 2010) and spiculisporic acid can be used as a detergent (Ishigami et al. 2000). From a biotechnological point of view we would recommend using *T. ruber* for enzyme production, because *T. purpurogenus* produces four types of mycotoxins and *T. amestolkiae* and *T. stollii* are potentially pathogenic to immuno-compromised persons. However, it is not known whether the enzymes reported from *T. purpurogenus* (Steiner et al. 1994, Belancic et al. 1995) are indeed from this species or one of the other three taxa treated here or even any of them.

Most of the isolates produced the extrolites characteristic of the species (Table 3), but some isolates should be grown on other media to examine whether they can also produce the remaining extrolites found in productive strains. Most extrolites supported the phylogram in Table 3. Production of purpactin, pestalasin A, vermicillin and ‘m334’ supported that *T. ruber* and *T. amestolkiae* are closely related. On the other hand common production of ‘HHH’ indicated that *T. amestolkiae* and *T. stollii* are closely related, while common production of austin indicates that *T. ruber* and *T. stollii* are closely related. Purpactin was pro-
duced by the outgroup *T. purpurogenus* but also by *T. ruber* and *Talaromyces amestolkiae*. Rubratoxins, spiculisporic acid, rugulovasins, and luteoskyrin were autapomorphic for *T. purpurogenus*, while berkelic acid and m328 were autapomorphic for *T. amestolkiae*. Metabolite ‘DDD’ was autapomorphic for *T. ruber* and a larger number of derivatives of ‘HHH’ were autapomorphic for *T. stollii*. It should be noted that some of these extrolites are also found outside the *T. purpurogenus* complex. For example, luteoskyrin is produced by *T. islandicus* (Uraguchi et al. 1961) and spiculisporic acid is produced by *T. trachyspermus* (Clutterbuck et al. 1931) and *T. ucrainicus* (Fujimoto et al. 1988).

The species in this complex generally produce yellow, orange and red pigments in the mycelium or as diffusing pigments. Extrolites responsible for these colours are two groups of azaphilone polyketide pigments the mitorubrins (mitorubrin, mitorubrinol, mitorubrinol acetate and mitorubrinic acid) (Büchi et al. 1965) and the *Monascus* red pigments (N-glutaryl monascorubramin, N-glutarylrubropunctamin, monascorubramine, monascin, PP-R and others (Mapari et al. 2009)). These azaphilone polyketides are produced by all the species treated in this paper and several other species in *Talaromyces*, but they appear to be produced in different ratios and amounts in different isolates and species (Frisvad et al. 1990, van Reenen-Hoekstra et al. 1990, Samson et al. 2011). Also, especially on MEA, we observed that when a strain that produced red pigment was transferred to another MEA plate, the strain sometimes lost the ability to produce the red pigment. However, red pigment production was consistent on CYA. Apart from the medium employed for extrolite production, the age of the strain may also play a role: older strains of *T. purpurogenus* (CBS 196.88) and *T. minioluteus* (CBS 642.68T) were autapomorphic for *T. purpurogenus* complex. For example, luteoskyrin is produced by *T. purpurogenus* (CBS 196.88), *T. ruber* (CBS 642.68T) is a subculture of the same strain obtained from the IMI in 1988, but it morphologically fits Biorge’s description of *P. purpurogenum*. It was therefore considered the correct neotype of the species as discussed in earlier studies (van-Heune-Hoeckstra et al. 1990). Our phylogenetic data show that *T. minioluteus* (CBS 642.68T) remains in a clade distantly related to *T. ruber* (CBS 196.88).

This study resulted in the delimitation of *T. amestolkiae* and *T. stollii*, two new species closely related to *T. ruber*. *Talaromyces amestolkiae* and *T. stollii* are distinguished from *T. purpurogenus* and *T. ruber* by their acid production on CREA and floccose to fumiculous texture of MEA. Compared to *T. amestolkiae*, *T. stollii* grows faster on CYA at 36 °C, as well as producing unique synnemata/tufted mycelium on most media. *Talaromyces amestolkiae* and *T. stollii* share the production of the ‘HHH’ family of extrolites. Although these species are resolved amongst known sexual species, we did not observe cleistothecia for strains studied. Future studies that aim to induce sexual reproduction would be interesting, especially for explaining the morphological and genetic variation observed between *T. stollii* strains. Also, sclerotia were produced by *T. amestolkiae* strains, but these never matured into cleistothecia. Many strains previously identified as *P. purpurogenum* var. rubrisclerotium were resolved in a clade with *T. amestolkiae*. However, the ex-type strain of *P. purpurogenum* var. rubrisclerotium (CBS 270.35”) is resolved in a distinct clade closely related to *T. minioluteus* (Samson et al. 2011).

This paper addressed the taxonomic difficulties experienced in the *T. purpurogenus* complex. Results showed that this complex contains four distinct species and that they can be identified using morphological characters, extrolites and/or genetic data. The ITS barcodes could reliably separate the four species within this complex. However there is only one base pair difference between *T. ruber* and *T. amestolkiae*, and thus the alternative genes were needed for taxon identification. Although calmodulin could not resolve *T. amestolkiae* from *T. ruber*, RBP1, RBP2 and β-tubulin gave a clear species delineation and can be used for identifying species within this clade.

Acknowledgements We thank Dr Uwe Braun for nomenclatorial advice and Dr Keith Seifert for helpful suggestions. We also acknowledge Dr Seifert for hosting Ellen Hoekstra in 1998 for her sabbatical.

REFERENCES

Belancic A, Scarpa J, Peirano A, Diaz R. 1995. Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes. Journal of Biotechnology 41: 71–79.

Benjamin CR. 1955. Asoccarpa of Aspergillus and Penicillium. Mycologia 47: 669–687.

Büchi G, White JD, Wogan GN. 1965. The structures of mitorubrin and mitorubrinic acid. Philosophical Transactions of the Royal Society of London. Series B 220: 301–330.

Chong R, Gray RW, King RR, Whalley WB. 1971. Chemistry of fungus. 62. Synthesis of (+)-mitorubrin, a metabolite of Penicillium rubrum. Journal of the Chemical Society C 1971: 3571–3575.

Clutterbuck PW, Raistrick H, Rintoul ML. 1931. Studies in the biochemistry of micro-organisms. Part XVI. On the production from glucose by Penicillium spiculisporum Lehman of a new polybasic fatty acid, C_{18}H_{28}O_5 (the lactone of γ-hydroxy-β,δ-dicarboxypentadecanoic acid). Philosophical Transactions of the Royal Society of London. Series B 220: 301–330.

Pitt (1980) neotypified *P. minioluteum* using strain IMI 893771i (CBS 196.88). CBS 642.68T is a subculture of the same strain obtained from the IMI in 1988, but it morphologically fits Biorge’s description of *P. minioluteum*. It was therefore considered the correct neotype of the species as discussed in earlier studies (van Heune-Hoeckstra et al. 1990). Our phylogenetic data show that *T. minioluteus* (CBS 642.68T) remains in a clade distantly related to *T. ruber* (CBS 196.88).

With regards to conidia ornamentation, all strains examined of both these species produced smooth-walled conidia and this character is thus not diagnostic for species recognition. No type material was designated for *T. ruber*, therefore Raper & Thom (1949) centred their description of *T. ruber* on NRRL 1062 and NRRL 2120. Our analysis shows these two strains belong to different species. NRRL 1062 (= CBS 370.48) is designated here as the neotype of *T. ruber*, while NRRL 2120 represents a new phylogenetically unrelated species (Fig. 2).

Penicillium sanguineum and *P. crateriforme* are considered synonyms of *T. purpurogenus*. In Sopp’s description of *P. sanguineum*, he states that this species produces bright red pigments, which colours the entire gelatine medium, as well as producing yellow coloured mycelium (Sopp 1912). Although no type material exist for this species, the description by Sopp (1912) indicates that it belongs to the *T. purpurogenus* complex. *Penicillium crateriforme* (CBS 184.27”) is resolved in a clade together with the ex-type cultures for *T. purpurogenus* (CBS 286.36”) and is considered a synonym of *T. purpurogenus*.

Belancic A, Scarpa J, Peirano A, Diaz R. 1995. Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes. Journal of Biotechnology 41: 71–79.

Benjamin CR. 1955. Asoccarpa of Aspergillus and Penicillium. Mycologia 47: 669–687.

Büchi G, White JD, Wogan GN. 1965. The structures of mitorubrin and mitorubrinic acid. Journal of the American Chemical Society 87, 15: 3484–3489. Burns ide JE, Sippen WL, Forgacs J, Carli WT, Abwood MB, Doll ER. 1957. A disease of swine and cattle caused by eating molyd corn: Experimental production with pure cultures of molds. American Journal of Veterinary Research 18: 817–824.

Carvallo M, Ioannes P de, Navarro C, Chavez N, Peirano A, Bull P, Eyza-guirre J. 2003. Characterization of an α-L-arabinofuranosidase gene (abf1) from Penicillium purpurogenum and its expression. Mycological Research 107: 388–394.

Chong R, Gray RW, King RR, Whalley WB. 1971. Chemistry of fungus. 62. Synthesis of (+)-mitorubrin, a metabolite of Penicillium rubrum. Journal of the Chemical Society C 1971: 3571–3575.

Clutterbuck PW, Raistrick H, Rintoul ML. 1931. Studies in the biochemistry of micro-organisms. Part XVI. On the production from glucose by Penicillium spiculisporum Lehman of a new polybasic fatty acid, C_{18}H_{28}O_5 (the lactone of γ-hydroxy-β,δ-dicarboxypentadecanoic acid). Philosophical Transactions of the Royal Society of London. Series B 220: 301–330.
