High Lifetime Prevalence of Syphilis in Men Who Have Sex With Men and Transgender Women Versus Low Lifetime Prevalence in Female Sex Workers in Lima, Peru

Phoebe Hung, BS, Ethan Osias, BS, Kelika A. Konda, MHS, PhD, Gino M. Calvo, BS, E. Michael Reves-Díaz, BS, Silver K. Vargas, MS, Cameron Goldbeck, MS, Carlos F. Caceres, MD, MPH, PhD, and Jeffrey D. Klausner, MD, MPH*

From the *Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, CA; †Center for Interdisciplinary Investigation in Health, Sexuality, and AIDS, Universidad Peruana Cayetano Heredia, Lima, Peru

Acknowledgments: The authors would like to thank the staff at Barton Health Clinic, Caja de Agua Health Clinic, Tahuantinsuyo Health Clinic, and Epicenter for their assistance in implementation of this study.

Conflict of Interest and Sources of Funding: None declared.

Authors’ contributions: PH drafted the article. E.O., K.K., C.C., and J.K. critically reviewed the article. E.O., K.K., S.V., C.G., G.C., and M.R.D. contributed to study design and project implementation. C.C. and J.K. served as principal investigators for the study. All authors read and approved the final article.

Declarations: Approved by Universidad Peruana Cayetano Heredia in Lima, Peru, CEI 103093. Approved by University of California, Los Angeles Institutional Review Board IRB 18-001225.

Correspondence: Phoebe Hung, BS, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095. E-mail: phoebehung@mednet.ucla.edu

Received for publication February 4, 2020, and accepted May 4, 2020.

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Sexually Transmitted Diseases Association. This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background: The syphilis epidemic continues to cause substantial morbidity worldwide and is worsening despite ongoing control efforts. Syphilis remains an important public health problem among 3 key populations: men who have sex with men (MSM), transgender women, and female sex workers.

Methods: We conducted a retrospective chart review of patients that received rapid point-of-care treponemal antibody tests from January 2019 to July 2019 in 4 sexually transmitted infection (STI) clinics in Lima, Peru. We assessed patient medical records for human immunodeficiency virus (HIV) infection, history of STIs, as well as sociodemographic and behavioral characteristics. Cross-sectional descriptive analyses were used to determine factors associated with treponemal positivity.

Results: We included 401 patient records in our analyses: 252 MSM, 31 transgender women, and 118 female sex workers. The overall median age of patients was 29.0 years (interquartile range, 24.0–36.0 years). Positivity on the treponemal test was 28.9% (95% confidence interval [CI], 24.3%–33.3%) overall, 37.7% (95% CI, 31.7%–44.0%) for MSM, 54.8% (95% CI, 36.0%–72.7%) for transgender women, and 3.4% (95% CI, 0.9%–8.5%) for female sex workers. In the bivariate analysis, treponemal positivity was also associated with receptive anal sex in the last 6 months in MSM (P < 0.01). Additionally, treponemal positivity increased with age (P = 0.0012) and varied by socioeconomic status (P < 0.01). Multivariable Least Absolute Shrinkage and Selection Operator logistic regression showed that treponemal positivity was highly associated with HIV coinfection (adjusted odds ratio, 5.42) and previous STI other than HIV or syphilis (adjusted odds ratio, 1.54).

Conclusions: A review of the medical records of members of 3 key populations who had recently received a rapid point-of-care treponemal test in Lima, Peru, revealed that lifetime prevalence of syphilis was high among MSM and transgender women, but low among female sex workers. Those results may indicate a need for more frequent, regular testing among MSM and transgender women—possibly in conjunction with HIV testing, and appropriate treatment of those shown to be positive.

Syphilis remains a serious cause of morbidity worldwide with a global annual incidence of 5.6 million new cases per year and total prevalence of 56.1 million. The most affected are often members of 3 key populations: men who have sex with men (MSM), transwomen, and female sex workers. A recent study done in Lima, Peru reported a baseline prevalence of recently acquired syphilis of 16.8% for MSM, and 6.7% for transgender women. Factors, such as condomless anal sex, human immunodeficiency virus (HIV) infection, previous sexually transmitted infections (STIs), and lower education level, have also been associated with increased syphilis.

Syphilis is a bacterial infection caused by Treponema pallidum, subsp. pallidum (T. pallidum). Current diagnostic protocols include a rapid point-of-care treponemal antibody test that identifies host antibody response to T. pallidum antigens, which indicates a lifetime history of syphilis. A meta-analysis conducted in 2013 showed the rapid treponemal antibody test to be of comparable sensitivity (90.04%) and specificity (94.15%) to those of laboratory-based treponemal tests such as the T. pallidum particle agglutination assay and T. pallidum hemagglutination assay.

In this study, we described the lifetime prevalence of syphilis based on positivity on a rapid point-of-care treponemal test and factors associated with positivity. Our sample came from 3 key populations: MSM, transgender women, and female sex workers. Characterization of those populations could help improve prevention and control measures and help to stem the growth of the syphilis epidemic. Here, we report baseline characteristics and behaviors associated with positivity on the rapid treponemal antibody test based on chart review of individuals who received a rapid treponemal antibody test in 1 of 4 STI clinics that treat predominantly lower-income MSM, transwomen, and female sex workers in Lima, Peru.

METHODS AND DESIGN

Study Procedure

We conducted a retrospective chart review at 4 STI clinics in Lima, Peru that are easily accessible to local residents. Three of those clinics—Tahuantinsuyo Health Center, Alberto Barton Health Center, and Caja de Agua Health Center—are government
health centers located in low-income neighborhoods in Lima and
serve MSM, transwomen and female sex workers. The fourth
clinic, Epicentro, is a community-based, nongovernmental health
center located in the middle-income district of Barranco that pro-
vides fee-based services to MSM and transwomen. All provide
regular clinical check-up appointments for HIV and other STI
screening and counseling, as well as clinical STI treatment and
referral for HIV treatment. All centers provide preexposure pro-
phylaxis (PrEP) or PrEP referral in the context of research or
demonstration studies as PrEP is not available from the Peruvian
Ministry of Health.

Study Population
As part of a larger study, PICASSO 2 (NIH award number:
5R01AI139265-02), we reviewed the records of patients that re-
ceived a rapid point-of-care treponemal test (Determine Syphilis
TP; Abbott, US) in Lima, Peru from January 2019 to July 2019.
All rapid treponemal tests were performed by trained laboratory
staff at each of the 4 clinics. Patients with positive rapid trepone-
mal tests received a confirmatory rapid plasma reagin (RPR) test
(RPR Quicktest, Stanbio, US). The laboratory staff diluted the
specimen to the lowest positive titer and reported the results on
the patient chart. The attending physicians designated the classifi-
cation of syphilis based on the rapid treponemal test results, RPR
results, and clinical presentation. Clinicians diagnosed patients as
“serofast” when patients had a positive RPR titer but had been re-
cently diagnosed with an active infection and received appropriate
treatment. Clinicians considered patients with a positive trepone-
mal rapid test and a nonreactive RPR titer to not have an active
syphilis infection and were not diagnosed with syphilis. These pa-
tients, however, were considered to have an active syphilis infec-
tion in the past.

Eligible patient medical records came from MSM, transwomen,
or female sex workers 18 years or older. Because we looked at re-
cords that came from those specific populations, patient medical
records were excluded if they were a heterosexual man with only
female sex partners or a heterosexual woman with no history of
sex work. These were the clinical records that were accessible to
the study team but do not represent all of the patients seen in this
period. However, this is a random selection of clinical histories. If
the patient had multiple visits in the given period, we used the
information from their most recent visit.

Behavioral characteristics were based on information in
the medical record. Trained professionals at each sexual health
clinic conduct patient interviews during each patient’s visit and
record self-reported behavior from the last 3 months. All indi-
viduals at the 4 sexual health clinics were tested for syphilis and
HIV regardless of reported behavior. The HIV coinfection status
was based on record of positive HIV rapid test as reported in the
clinical chart.

Data Collection and Analyses
We reviewed medical records for demographic, STI history
and treatment, past syphilis diagnoses and treatment, and sexual
behavior data. Patient demographic data included age, gender, ed-
ucation level, socioeconomic status based on district of residence,
and medical insurance. Sexually transmitted infection history in-
cluded past diagnoses of syphilis, HIV infection and antiretroviral
therapy treatment history, chlamydia, gonorrhea, hepatitis B, gen-
tal herpes, and human papilloma virus infection. Sexual behavior
data included primary role during anal sex (ie, insertive, receptive,
or both), history of sex work, and frequency of condom use in the
last 3 months. We used average income levels of the district in
which they lived to designate socioeconomic status.11

We abstracted medical records in a standardized fashion
and entered all data through REDCap (https://www.project-
redcap.org/), a web-based data management system that is cur-
cently used by both Universidad Peruana Cayetano Heredia and
University of California, Los Angeles. REDCap supports the entry
of clinical and laboratory data in a Health Insurance Portability
and Accountability Act-compliant environment. Data are accessed
through a password-protected web portal, making it secure and
easy to share data between institutions in different countries.

Statistical Analyses
Our primary objective of this study was to describe lifetime
prevalence of syphilis in 3 key populations in Peru through preva-
ience of treponemal positivity and to highlight factors related to
positivity. Our secondary objective was to compare the diagnosis
and treatment of active and serofast syphilis with recommended
guidelines in Peru.

For the descriptive analyses, we utilized χ² tests. We analyzed
the possible trend in increasing age and lifetime syphilis positivity
using the Cochran-Armitage trend test. We dealt with missing data
on a variable-by-variable basis. We included a group of “unknown
data” for variables with more than 10% missing data (education, in-
surance, role during anal sex, condom usage). In variables with less
than 10% missing data, we dropped missing cases from analysis.
Given the nature of the clinical charts reviewed, missing data are as-
sumed to be missing completely at random. Therefore, there is likely
no bias in the missing results and no influence on the outcome of our
analyses, except in decreasing the sample size.

Additionally, we conducted exploratory analyses using a
Least Absolute Shrinkage and Selection Operator (LASSO) logistic
regression model to find predictors of T. pallidum positivity sta-
 tus in MSM and transwomen.12 The LASSO regression adds a
penalty hyperparameter to model parameters when performing es-
timation. Also known as a “shrinkage parameter,” its inclusion
shrinks weak predictors to zero leaving few variables in the final
than originally entered, thereby performing variable selection for
strong predictors.13 We chose to construct a LASSO model as op-
posed to a standard multivariate regression because of LASSO’s
variable selection effect. Given our small sample size and few
potential exposures of interest, standard regression models were
limited in their complexity. In addition, we did not have strong
hypotheses to test a single predictor of interest regarding multi-
ivariate analyses. Therefore, we chose a LASSO model to explore
the relationships between these variables and for its variable
selection effect. Female sex workers were excluded due to the
statistically distinct nature of this population due to too few
treponemal-positive patients leading to insufficient power. Pop-
ulation type, MSM and transwomen, was a particular predictor
of interest to include in the model. To control for confounding by
population type, we additionally included other candidate vari-
ables if their bivariate association with population type had a
P value less than 0.05 was found or from an a priori hypothesis.
Variables with a statistically significant association with popula-
tion type are: education level, medical insurance, neighborhood
income level, condom usage in the past 3 months and insertive
or receptive role in anal sex. Variables included due to an a priori
hypothesis are: history of an STI, population type, and HIV status.

The model selected the following variables: history of an STI,
population type, education level, neighborhood income level, con-
don use in the past 3 months, insertive or receptive role in sex,
and HIV status. The LASSO regression was used to determine ad-
justed odds ratios of the selected variables. As is common in LASSO
models, confidence intervals (CIs) and significant values cannot be
readily or meaningfully calculated and thus are not reported.
Ethical Considerations

We obtained approval from the institutional review boards at University of California, Los Angeles, Universidad Peruana Cayetano Heredia, and Alberto Barton Health Center for the PICASSO 2 study (approval numbers: CIEI 103093, IRB 18-001225).

RESULTS

We included 401 patient records in our analyses: 252 from MSM, 31 from transwomen, and 118 from female sex workers. The overall median age of patients was 29.0 years old (interquartile range: 24.0, 36.0). The median age for MSM was 29.0 (interquartile range: 25.0, 36.0), for transgender women 26.0 (interquartile range: 25.0, 34.0), and for female sex workers 28.0 (interquartile range: 23.0, 35.0). Concerning the STI clinics of origin, 38.2% of records belonged to Epicentro, 15.2% to Caja de Agua Health Center, 14.5% to Tahuantinsuyo Health Center, and 32.2% to Alberto Barton Health Center. In terms of socioeconomic status, 71.1% lived in lower income districts, 4.7% in middle income districts, and 16.0% in higher income districts, while the remaining 8.2% could not be determined.

Positivity on the treponemal antibody test was 28.9% (n = 116; 95% CI, 24.5%–33.6%) overall; and 37.7% (n = 95; 95% CI, 31.7%–44.0%) among MSM, 54.8% (n = 17; 95% CI, 36.0%–72.7%) among transwomen, and 3.4% (n = 4, 95% CI: 0.9%, 8.5%) among female sex workers. The distribution of RPR titers is shown in Figure 1. In terms of current syphilis diagnosis, 78.6% were not currently infected with syphilis, 10.1% were diagnosed as serofast, 0.5% with primary syphilis infection, 0.5% with secondary syphilis infection, 6.9% with latent syphilis infection, and no patients with tertiary syphilis or neurosyphilis. The majority of individuals do not have active syphilis. Of those diagnosed with active infection, most were diagnosed with latent syphilis, indicating the inability to accurately place the time of infection.

In terms of history of prior STI, 7.5% of all patients had a prior diagnosis of syphilis, 13.0% had been diagnosed with HIV infection, and 12.7% had a diagnosis of another STI other than HIV or syphilis in the past.

Characteristics Associated With Treponemal Positivity

Older age groups had higher levels of treponemal positivity overall (P = 0.019, Cochran-Armitage Trend Test). Among MSM, those who were older than 30 years had a frequency of treponemal positivity of 41.5% as opposed to a frequency of 27.3% in those 18 to 24 years (P = 0.086). This difference is not significant, but the data may be underpowered to show significance. In transwomen, those older than 30 years had a frequency of positivity of 54.5% compared with 42.9% in those 18 to 24 years. We observed no correlation between age and treponemal positivity in transgender women (P = 0.678), though because of a small sample, this test could be underpowered. Finally, 8.0% of older female sex workers were positive for treponemal antibodies compared with 0.0% in younger groups (P = 0.035; see Fig. 2).

Additionally, frequency of treponemal positivity varied by sexual behavior in MSM. Those who reported having exclusively insertive anal sex had a frequency of treponemal positivity of 26.9% as opposed to a frequency of 46.1% in those who reported either exclusive receptive anal sex or both receptive and insertive anal sex (P < 0.01). There was less variation in role in anal sex among transgender women. See Table 1 for frequencies of treponemal positivity of other socioeconomic characteristics.

Through the exploratory analyses conducted through LASSO logistic regression, we found that among MSM and transgender women the factors correlated with treponemal positivity were reported STI history, education, neighborhood income level, reported condom use, sexual intercourse role, and HIV infection status. Of those, the variables that most strongly predicted treponemal positivity were HIV coinfection compared with lack of HIV coinfection (adjusted odds ratio [aOR], 5.42) and reported STI history compared with no STI history (aOR, 1.54). Higher education compared with high school education only (aOR, 1.53), middle neighborhood income level compared with low income level (aOR, 1.93), lack of reported condom use compared with reported condom use (aOR, 0.60), and receptive sexual intercourse role compared with unknown role (aOR, 1.13) were also associated with treponemal positivity.

Treatment Data by Syphilis Diagnosis

We also noted that 88% of primary syphilis cases, 100% of secondary syphilis, and 94.3% of unknown latent syphilis were treated with 3 doses of 2.4 million units of benzathine penicillin G (BPG). Of those with a positive RPR result and clinically characterized as having serofast syphilis, 100% were not given treatment (see Table 2).

DISCUSSION

We completed a retrospective chart review of 401 patients at risk for syphilis, 252 MSM, 31 transgender women, and 118 female sex workers, who received a point-of-care rapid treponemal test in Lima, Peru. We found that several factors were associated
with treponemal positivity. The majority of patients with reported HIV infection had a positive treponemal test, indicating syphilis infection sometime in their lifetime. Among those that were infected with HIV, frequencies of treponemal positivity were 73.8% among MSM and 55.6% and transgender women. This association is well documented, and several studies have associated recent syphilis infection with HIV coinfection.\(^4\)\(^,\)\(^16\) Given the high levels of HIV coinfection in this population, we believe that PrEP should be considered as part of the Peru public health response.

Additionally, of those that reported a past STI other than HIV or syphilis, treponemal positivity was also high at 49.0%. In terms of behavioral characteristics, reported sexual practices were associated with varying levels of treponemal positivity. Men who have sex with men who reported insertive anal sex as their primary role had a frequency of treponemal positivity of 26.9%. This figure increased to 47.1% and 45.9% among those who primarily practice receptive anal sex and versatile anal sex, respectively.

Lifetime prevalence of syphilis of MSM (37.7%) and transgender women (54.8%) in our study is higher compared with studies in other countries. One study conducted in Central Brazil in 2015 of MSM and transgender women found lifetime prevalence of syphilis to be 26.3% among MSM and 50% among transgender women.\(^17\) Another study conducted in 2009 of MSM in Beijing, China found seroprevalence to be 19.8%.\(^18\) Yet another study of HIV-infected MSM in Turkey in 2020 reported overall seroprevalence to be 28.7%.\(^19\) Additionally, 1 study of transgender youth in the United States found that 55% of transgender females reported a syphilis diagnosis in their lifetime.\(^20\) Our findings support high rates of lifetime prevalence of syphilis found in MSM and transgender women around the world. With respect to MSM, this figure is higher than what has been reported in other countries, and among transgender women, our data corroborate a prevalence of ~50% in this particularly at-risk population.

Fewer studies have looked at lifetime prevalence of syphilis in at-risk groups in Peru. One study of high-risk, HIV-uninfected MSM and transgender women conducted in a sexual health clinic in Lima, Peru in 2012 reported that 18% of total participants had positive serology for syphilis.\(^21\) We find in our study that positivity on the treponemal test is 27.6% and 54.5% for MSM and transgender women who are HIV-uninfected, respectively. These numbers are concerning because they may suggest higher lifetime prevalence of syphilis in those key populations in recent years.

In contrast with MSM and transgender women, frequencies of treponemal positivity were low among female sex workers. Of 118 female sex workers, only 4 were positive for treponemal antibodies, a frequency of 3.4%, and notably none of those cases were younger than 30 years. Additionally, among the 4 that were positive for treponemal antibodies, only one had active syphilis infection. Two had nonreactive RPRs, one had an RPR result of 1:1 and was diagnosed clinically as a serofast result, and one had an RPR result of 1:1 and was diagnosed clinically with latent syphilis. Compared with female sex workers in other countries, the lifetime prevalence of syphilis among the female sex workers in our study (3.4%) is lower than what has been reported in female sex workers in Moscow (13.9%)\(^22\) and in female prisoners who report having ever received money for sex in Brazil (12.5%).\(^23\) Our findings were higher than a study of female sex workers in Iran (0.4%).\(^24\) Notably, none of the female sex workers in our population were infected with HIV while HIV prevalence was reported in Moscow (3.1%)\(^22\) and Iran (2.1%).\(^24\) Past studies in Peru corroborate this low incidence of syphilis infection. In a 2002 household based survey of 4485 female sex workers, only 0.8% had an active syphilis infection.\(^25\) Treponemal positivity may be much lower in female sex workers in Peru compared with other countries due to monthly “control” check-ups that are required to maintain their sex worker license.\(^26\) These check-ups include a clinical check-up, STI testing, monthly sexual health counseling, and condom distribution. Due to low incidence of syphilis infection in this population, decreasing syphilis testing to once a quarter could potentially save testing resources without impacting the quality of care.

We also found that the clinicians in the STI clinics studied tend to treat recently acquired syphilis with 3 doses of 2.4 million units of BPG via intramuscular injection, which is not in line with the Peruvian national STI treatment guidelines of 1 dose of 2.4 million units of BPG.\(^27\) This finding indicates potentially wasted medical resources such as the medication itself, as well as additional staff time and patient visits to provide subsequent injections. Additionally, this result may point to a need for stronger educational efforts for clinicians, as the apparent standard of care does not follow national guidelines. It may be that some clinicians treat with 3 doses to approximate prophylaxis from further doses, which could preempt re-infection from partners who do not come in for care. This has been reported to our team as a tactic by physicians in these clinics.
Additionally, we found that 10.1% of the patients of our study population were diagnosed with serofast syphilis and a large percentage of the RPR results of those with treponemal positivity fell between 1:1 and 1:4, dilutions that are not high enough to make a diagnosis of active syphilis infection per national guidelines27 (see Fig. 1). Further research is necessary to improve diagnostic strategies for those patients.

Our study has several limitations. First, our study population was not population-based. The medical records used were the clinical records that were accessible to the study team but do

| TABLE 1. Frequency of *T. pallidum* Antibody Positivity Among MSM, Male-to-Female Transgender Patients, and Female Sex Workers, Lima, Peru, January 2019 to July 2019 |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Characteristics | All MSM TP Pos | TP Positivity (%) | All TW TP Pos | TP Positivity (%) | All FSW TP Pos | TP Positivity (%) |
| All | 252 | 95 | 37.7 | 31 | 17 | 54.8 | 118 | 4 | 3.4 |
| Site* | | 151 | 62 | 41.1 | 1 | 1 | 100.0 | 1 | 0 | 0.0 |
| Epicentro | | 30 | 12 | 40.0 | 11 | 7 | 63.6 | 20 | 0 | 0.0 |
| Caja de Agua | | 46 | 12 | 26.1 | 11 | 5 | 45.5 | 1 | 1 | 100.0 |
| Tahuantinsuyo | | 25 | 9 | 36.0 | 8 | 4 | 50.0 | 96 | 3 | 3.1 |
| Barton | | 55 | 15 | 27.3 | 7 | 3 | 42.9 | 38 | 0 | 0.0 |
| Age, y | | 88 | 34 | 38.6 | 12 | 7 | 58.3 | 29 | 0 | 0.0 |
| 18–24 | | 106 | 44 | 41.5 | 11 | 6 | 54.5 | 50 | 4 | 8.0 |
| 25–30 | | 3 | 2 | 66.7 | 1 | 1 | 100.0 | 1 | 0 | 0.0 |
| Education† | | 55 | 17 | 30.9 | 17 | 12 | 70.6 | 15 | 0 | 0.0 |
| No higher education | | 157 | 65 | 41.4 | 2 | 0 | 0.0 | 5 | 0 | 0.0 |
| Has higher education | | 40 | 13 | 32.5 | 12 | 5 | 41.7 | 98 | 4 | 4.1 |
| Medical insurance† | | 36 | 12 | 33.3 | 10 | 6 | 60.0 | 40 | 1 | 2.5 |
| Yes | | 42 | 17 | 40.5 | 11 | 5 | 45.5 | 66 | 1 | 1.5 |
| No | | 174 | 66 | 37.9 | 10 | 6 | 60.0 | 12 | 2 | 16.7 |
| Unknown | | 14 | 5 | 35.7 | 1 | 0 | 0.0 | 18 | 1 | 5.6 |
| District of residence* | | 63 | 22 | 34.9 | 0 | 0 | 0.0 | 1 | 0 | 0.0 |
| High income | | 15 | 10 | 66.7 | 0 | 0 | 0.0 | 4 | 0 | 0.0 |
| Middle income | | 160 | 58 | 36.3 | 30 | 17 | 56.7 | 95 | 3 | 3.2 |
| Low income | | 14 | 5 | 35.7 | 1 | 0 | 0.0 | 18 | 1 | 5.6 |
| Unknown | | 52 | 14 | 26.9 | 1 | 1 | 100.0 | 0 | 0 | 0.0 |
| Role during anal sex† | | 17 | 8 | 47.1 | 22 | 11 | 50.0 | 0 | 0 | 0.0 |
| Insertive | | 74 | 34 | 45.9 | 5 | 3 | 60.0 | 0 | 0 | 0.0 |
| Receptive | | 109 | 39 | 35.8 | 3 | 2 | 66.7 | 109 | 4 | 3.7 |
| Versatile (both insertive and receptive) | | 38 | 16 | 42.1 | 17 | 9 | 52.9 | 90 | 4 | 4.4 |
| Unknown | | 102 | 40 | 39.2 | 11 | 6 | 54.5 | 24 | 0 | 0.0 |
| Role during anal sex† | | 112 | 39 | 34.8 | 3 | 2 | 66.7 | 4 | 0 | 0.0 |
| Use of a condom, last 3 months† | | 25 | 23 | 92.0 | 5 | 5 | 100.0 | 0 | 0 | 0.0 |
| Yes | | 227 | 72 | 31.7 | 26 | 12 | 46.2 | 118 | 4 | 3.4 |
| No | | 145 | 44 | 30.3 | 13 | 7 | 53.8 | 48 | 1 | 2.1 |
| No. prior RPRs* last 2 y | | 70 | 33 | 47.1 | 11 | 5 | 45.5 | 30 | 1 | 3.3 |
| 1–2 | | 37 | 18 | 48.6 | 7 | 5 | 71.4 | 40 | 2 | 5.0 |
| 3+ | | 199 | 55 | 27.6 | 22 | 12 | 54.5 | 115 | 4 | 3.5 |
| HIV coinfection* | | 75 | 24 | 32.0 | 15 | 9 | 60.0 | 0 | 0 | 0.0 |
| Not HIV infected | | 124 | 31 | 25.0 | 7 | 5 | 42.9 | 115 | 4 | 3.5 |
| Enrolled in PrEP*† | | 42 | 31 | 73.8 | 9 | 5 | 55.6 | 1 | 0 | 0.0 |
| HIV infected | | 22 | 16 | 72.7 | 7 | 3 | 42.9 | 0 | 0 | 0.0 |
| Reported use of ART | | 39 | 19 | 48.7 | 5 | 4 | 80.0 | 5 | 0 | 0.0 |
| History of any STI | | 12 | 6 | 50.0 | 1 | 1 | 100.0 | 1 | 0 | 0.0 |
| Prior diagnosis of chlamydia | | 17 | 10 | 58.8 | 1 | 1 | 100.0 | 0 | 0 | 0.0 |
| Prior diagnosis of gonorrhea† | | 2 | 1 | 50.0 | 0 | 0 | 0.0 | 0 | 0 | 0.0 |
| Prior diagnosis of hepatitis B | | 4 | 3 | 75.0 | 2 | 2 | 100.0 | 1 | 1 | 100.0 |
| Prior diagnosis of HPV | | 19 | 8 | 42.1 | 1 | 0 | 0.0 | 3 | 0 | 0.0 |

* χ² Test significant with P ≤ 0.05, unknown responses if present considered missing and unused.
† χ² Test significant with P ≤ 0.05, unknown responses used.
TP indicates *T. pallidum*; ART, antiretroviral therapy; HPV, human papilloma virus.
not represent all of the patients seen in this period. However, those included are a random selection of clinical histories. Second, we did not repeat treponemal antibody tests, and therefore, there is a chance there were false positives included in the study. We believe this chance is low due to the high specificity of the treponemal antibody test used.10 Additionally, the medical records were physical documents, often with incomplete information. These records included standardized questions about sexual behavior over the last 3 months as opposed to lifetime behavior. These data would be most reflective of risk of recently acquired syphilis and does not necessarily reflect lifetime risk. Moreover, it was unknown if the factors listed in the medical record were present at the time of syphilis infection. We also measured income levels indirectly through district of residence, and thus it is possible that it is not reflective of the participant's true socioeconomic status. In addition, transcribing the information to REDCap could have led to potential translational error although we tried to mitigate those effects through training of our data abstractors. Finally, the number of transwomen included in our study was much lower than the number of MSM or female sex workers, giving us limited statistical power to make conclusions about this population. Statistical limitations include using complete case analysis; this reduced the sample size available for analysis and can bias results. Also, utilizing LASSO regression does not provide CIs or \(P \) values, which help to further quantify significance.

We successfully completed a retrospective chart review of MSM, transgender women, and female sex workers that received a rapid point-of-care treponemal test in Lima, Peru. We found the incidence of lifetime prevalence of syphilis to be high among MSM and transgender women and low among female sex workers. Those results indicate a need for more frequent, regular testing among MSM and transgender women—possibly in conjunction with HIV testing, and appropriate treatment of those shown to be positive. Current testing recommendations for MSM and transgender women include a clinical check-up, STI testing, monthly sexual health counseling, and condom distribution every 3 months. Additionally, given the high frequency of coinfection with HIV and other STIs, current public health strategies should aim to improve syphilis and HIV prevention among those individuals.

TABLE 2. Syphilis Treatment by Diagnosis in High-Risk Patients in Lima, Peru, July 2019

Syphilis Treatment by Diagnosis	All Participants	MSM	TW	Female Sex Workers
Primary syphilis	n (%)	n (%)	n (%)	n (%)
1 dose of penicillin G*	25 (100.0)	23 (100.0)	2 (100.0)	0 (0.0)
3 doses of penicillin G	3 (12.0)	3 (13.0)	0 (0.0)	0 (0.0)
Secondary syphilis	2 (66.6)	2 (100.0)	0 (0.0)	0 (0.0)
1 dose of penicillin G	2 (100.0)	2 (100.0)	0 (0.0)	0 (0.0)
3 doses of penicillin G	1 (100.0)	0 (0.0)	1 (100.0)	0 (0.0)
Early latent syphilis	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
1 dose of penicillin G	1 (100.0)	0 (0.0)	1 (100.0)	0 (0.0)
3 doses of penicillin G	1 (100.0)	0 (0.0)	1 (100.0)	0 (0.0)
Latent syphilis, time not specified	35 (27)	1 (1)		
1 dose of penicillin G	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
3 doses of penicillin G	33 (94.3)	25 (92.6)	7 (100.0)	1 (100.0)
2 weeks of doxycycline†	1 (2.9)	1 (3.7)	0 (0.0)	0 (0.0)
4 weeks of doxycycline	1 (2.9)	1 (3.7)	0 (0.0)	0 (0.0)
Serofast syphilis	50 (100.0)	38 (76)	11 (100)	1 (100)
No treatment	50 (100.0)	38 (76.0)	11 (100.0)	1 (100.0)

*1 dose of penicillin G = 2.4 million units of BPG via intramuscular injection.
\[\text{†}\]Daily dosage of doxycycline = 100 mg doxycycline po BID.

FIGURE 1. Flowchart of Serofast treponemal test results in high-risk patients in Lima, Peru, 2019.

REFERENCES

1. Centers for Disease Control and Prevention (CDC). 2017 Sexually Transmitted Diseases Surveillance. https://www.cdc.gov/std/stats17/Syphilis.htm. Published 2018. Accessed2019.

2. Newman L, Rowley J, Vänder Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 2015; 10:e014304.

3. Vos T, Ababiovit AA, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries in 195 countries, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Infect Dis 2017; 390:1211–1259.

4. Zoni AC, González MA, Sjögren HIW. Syphilis in the most-at-risk populations in Latin America and the Caribbean: A systematic review. Int J Infect Dis 2013; 17:e64–e92.

5. Clark JL, Caceres CF, Lescano AG, et al. Prevalence of same-sex sexual behavior and associated characteristics among low-income urban males in Peru. PLoS One 2007; 2:e778–e778.

6. Kojima N, Park H, Konda KA, et al. The PICASSO cohort: Baseline characteristics of a cohort of men who have sex with men and male-to-female transgender women at high risk for syphilis infection in Lima, Peru. BMC Infect Dis 2017; 17:255–255.

7. Arando M, Fernandez-Naval C, Mota-Feix, M, et al. Early syphilis: Risk factors and clinical manifestations focusing on HIV-positive patients. BMC Infect Dis 2019; 19:727–727.

8. Gomes NCRC, Meier DAP, Pieri FM, et al. Prevalence and factors associated with syphilis in a reference center. Rev Soc Bras Med Trop 2017; 50:27–34.

9. (WHO) WHO. The Use of Rapid Syphilis Tests. Special Programme for Research & Training in Tropical Diseases (TDR). The Sexually Transmitted Diseases Diagnostics Initiative (SDI) Web site. https://apps.who.int/iris/bitstream/handle/10665/43590/TDR_SDI_06_1.pdf;jsessionid=4F874D402D9CE47F4C21C7C6725CB97?sequence=1. Published 2006. Accessed2019.

10. Jafari Y, Peeling RW, Shivkumar S, et al. Are Treponema pallidum specific rapid and point-of-care tests for syphilis accurate enough for screening in resource limited settings? Evidence from a meta-analysis. PLoS One 2013; 8:e54695–e54695.
12. Kim SM, Kim Y, Jeong K, et al. Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography. Ultrasonography 2018; 37:36–42.
13. McNeish DM. Using Lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences. Multivar Behav Res 2015; 50:471–484.
14. Solomon MM, Mayer KH, Glidden DV, et al. Syphilis predicts HIV incidence among men and transgender women who have sex with men in a preexposure prophylaxis trial. Clin Infect Dis 2014; 59:1020–1026.
15. Snowden JM, Konda KA, Leon SR, et al. Recent syphilis infection prevalence and risk factors among male low-income populations in coastal Peruvian cities. Sex Transm Dis 2010; 37:75–80.
16. Pizzicato LN, Vagenas P, Gonzalez P, et al. Active syphilis and its association with HIV and sexual risk behaviours in a multicity sample of men who have sex with men and transgender women in Peru. Sex Health 2017; 14:304–312.
17. Fernandes FR, Zanini PB, Rezende GR, et al. Syphilis infection, sexual practices and bisexual behaviour among men who have sex with men and transgender women in Peru. Sex Health 2017; 14:304–312.
18. Ruan Y, Luo F, Jia Y, et al. Risk factors for syphilis and prevalence of HIV, hepatitis B and C among men who have sex with men in Beijing, China: Implications for HIV prevention. AIDS Behav 2009; 13:663–670.
19. Koksal MO, Beku H, Evlce O, et al. Syphilis seroprevalence among HIV-infected males in Istanbul, Turkey. Rev Argent Microbiol 2020.
20. Reiner SL, Vettes R, White JM, et al. Laboratory-confirmed HIV and sexually transmitted infection seropositivity and risk behavior among sexually active transgender patients at an adolescent and young adult urban community health center. AIDS Care 2015; 27:1031–1036.
21. Galea JT, Kinsler JJ, Galan DB, et al. Factors associated with visible anogenital warts among HIV-uninfected Peruvian men who have sex with men and transwomen: A cross-sectional study. Sex Transm Dis 2015; 42:202–207.
22. Bernier A, Rumyantseva T, Reques L, et al. HIV and other sexually transmitted infections among female sex workers in Moscow (Russia): Prevalence and associated risk factors. Sex Transm Infect 2020.
23. da Silva Santana R, Kerr L, Mota RS, et al. Lifetime syphilis prevalence and associated risk factors among female prisoners in Brazil. Sex Transm Dis 2020; 47:105–110.
24. Mirazzadeh A, Shokoohi M, Karamouzian M, et al. Declining trends in HIV and other sexually transmitted infections among female sex workers in Iran could be attributable to reduced drug injection: A cross-sectional study. Sex Transm Infect 2020; 96:68–75.
25. Carcamo CP, Campos PE, Garcia PJ, et al. Prevalences of sexually transmitted infections in young adults and female sex workers in Peru: A national population-based survey. Lancet Infect Dis 2012; 12:765–773.
26. García Bendezú L. Las trabajadoras sexuales buscan un reglamento para su oficio. Perú Web site. Published 2017. Accessed 2019.
27. Perú MdS. Guías Nacionales de Atención Integral de la Salud Sexual y Reproductiva. Dirección Ejecutiva de Atención Integral de Salud. http://bvs.minsa.gob.pe/local/dgsp/63_guisnac.pdf. Published 2004. Accessed 2019.