10-2001

Crystal Structure of MtaN, a Global Multidrug Transporter Gene Activator

Michael H. Godsey
Oregon Health & Science University, mgodsey@cu-portland.edu

Natalya N. Baranova
University of Illinois at Chicago

Alexander A. Neyfakh
University of Illinois at Chicago

Richard G. Brennan
Oregon Health & Science University

Follow this and additional works at: http://commons.cu-portland.edu/msfacultyresearch

Part of the [Chemistry Commons](http://commons.cu-portland.edu/msfacultyresearch)

Recommended Citation

Godsey, Michael H.; Baranova, Natalya N.; Neyfakh, Alexander A.; and Brennan, Richard G., "Crystal Structure of MtaN, a Global Multidrug Transporter Gene Activator" (2001). *Faculty Research*. 37.
http://commons.cu-portland.edu/msfacultyresearch/37

This Article is brought to you for free and open access by the Math & Science Department at CU Commons. It has been accepted for inclusion in Faculty Research by an authorized administrator of CU Commons. For more information, please contact libraryadmin@cu-portland.edu.
Crystal Structure of MtaN, a Global Multidrug Transporter Gene Activator*

Received for publication, June 22, 2001, and in revised form, September 27, 2001
Published, JBC Papers in Press, October 1, 2001, DOI 10.1074/jbc.M105819200

Michael H. Godsey‡, Natalya N. Baranova§, Alexander A. Neyfakh§, and Richard G. Brennan‡¶

From the ¶Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97201-3098 and the §Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607

MtaN (Multidrug Transporter Activation, N terminus) is a constitutive, transcriptionally active 109-residue truncation mutant, which contains only the N-terminal DNA-binding and dimerization domains of MerR family member Mta. The 2.75 Å resolution crystal structure of apo-MtaN reveals a winged helix-turn-helix protein with a protruding 8-turn helix (α5) that is involved in dimerization by the formation of an antiparallel coiled-coil. The hydrophobic core and helices α1 through α4 are structurally homologous to MerR family member BmrR bound to DNA, whereas one wing (Wing 1) is shifted. Differences between the orientation of α5 with respect to the core and the revolution of the antiparallel coiled-coil lead to significantly altered conformations of MtaN and BmrR dimers. These shifts result in a conformation of MtaN that appears to be incompatible with the transcription activation mechanism of BmrR and suggest that additional DNA-induced structural changes are necessary.

Bacterial multidrug resistance (MDR)1 is a growing threat to human health. One key component of MDR is the efflux of structurally and chemically diverse compounds, including antibiotics, antiseptics, and disinfectants, by membrane-bound multidrug transporters (1, 2). Although often regulated by global regulators (3, 4) such as MarA (5), which activates over a multidrug transporters (1, 2). Although often regulated by global antibiotics, antiseptics, and disinfectants, by membrane-bound structurally and chemically diverse compounds, including an-1 through blt of Mta remain unknown.

The N-terminal domain of each MerR subunit, the most conserved segment, contains a winged helix-turn-helix motif (20) and the dimerization region, which comprises half of an antiparallel coiled-coil (21). This —110-residue domain is the signature of the MerR family, and it is likely to be structurally and functionally conserved. Beyond the winged helix-turn-he-11011lix motif, there appears to be no significant sequence or struc-11011tural homology between MerR family members and other known gene regulators. The variable length C-terminal domain of MerR proteins contains ligand or coactivator binding elements that have been tailored to recognize their widely diver-11011gent and non-overlapping signals. Not surprisingly, the larger proteins bind larger coactivators, whereas the smaller proteins appear to be the minimum size necessary to respond to a divalent cation.

The function of the C terminus is to modulate the transcriptional activation of MerR family members by keeping the protein/DNA complex in a transcriptionally inactive form until a coactivator is bound, at which time repression is relieved, and the protein is able to up-regulate transcription (13, 22). MtaN is an unusual MerR family member because the protein lacks this modulation domain, which leads to its constitutive activation of cognate promoters (13). Because MtaN constitutively activates its own transcription, cells containing mtaN produce high levels of this protein through positive feedback. Eventually, elevated levels of MtaN overcome its lower affinities for the blt and bmr promoters, and those genes are activated (13). MtaN appears to represent the smallest active form of the MerR family of transcriptional regulators.

An unusual feature of the genes that are regulated by MerR family members is the 19-base pair (bp) separation of the —10 and —35 promoter elements (23), which is 17 bp in most bacterial promoters (24, 25). The 19-bp spacer appears to prevent open complex formation by RNA polymerase in the absence of

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

www.rcsb.org/.
MATERIALS AND METHODS

Data Collection and Phase Determination—MtaN was expressed, purified, and crystallized as previously reported (22). Both multivavelength anomalous diffraction (MAD) and native x-ray intensity data were collected on cryocooled crystals at ~170 °C at the Stanford Synchrotron Radiation Laboratory (SSRL) on beamlines 1-5 and 7-1, respectively (22). Native intensity data were collected at λ = 1.08 Å. MAD data were collected from a selenomethionine-containing protein crystal at four wavelengths (Table I). Data were processed using MOSFLM (28). The structure of MtaN was determined by MAD phasing (29) as a monohydrate in the asymmetric unit of MtaN at 2.75 Å resolution. Comparison of the structures of MtaN and DNA/drug-bound BmrR reveals their overall structural similarity, as well as significant tertiary and quaternary differences.

RESULTS AND DISCUSSION

Overall Structure—The asymmetric unit contains a monomer of MtaN (Fig. 1). The electron density is clear for 99% of all residues in the most favored region of the Ramachandran plot and none in the generously allowed or disallowed regions. Figs. 1, 2, 5, and 6 were produced with Swiss PDB viewer (50) and POV-ray (www.povray.org).

Acknowledgments—We thank the Structural Genomics Consortium (www.sgc.org) for providing access to the MAD phasing facility and the Stanford Synchrotron Radiation Laboratory (SSRL) on beamlines 1-5 and 7-1, respectively.

References—This work was supported by Genentech (M. S. K., M. M. P., S. T., and S. B. E.), the National Institute of General Medical Sciences (R. H. M.), and the National Science Foundation (M. J. A.). The atomic coordinates and structure factor amplitudes have been deposited in the Protein Data Bank (accession code 1JBG).

Downloaded from http://www.jbc.org/ by guest on October 14, 2016
or native structures. The side chains of residues Glu-67, His-71, Asn-73, and Lys-90 are disordered and have been modeled as alamines.

The topological arrangement of secondary structural elements of MtaN begins with β1 (residues 2–4), followed by α1 (residues 5–12) and α2 (residues 16–24), which are connected by a 3-residue turn and comprise the conserved and predicted helix-turn-helix motif (20). Residues 25–31 form a loop that connects α2 to strand β2 (residues 32–34), which is followed by a type II β-hairpin turn (residues 34–37) and strand β3 (residues 38–41). β3 is the center strand of a 3-stranded antiparallel β-sheet. A dipeptide connects β3 to helix α3 (residues 43–58), which leads into a tight 3-residue turn that connects to helix α4 (residues 62–70). A poorly structured loop (residues 71–75) connects the body (β1 through α4) to a protruding 8-turn helix α5 (residues 76–104). Thus, the topology of the MtaN monomer (β1–α1–α2–β2–β3–α3–α4–α5) is the same as that of the N terminus of BmrR (27) (Fig. 2).

The monomer contains two functional domains: the N-terminal DNA-contacting domain from β1 to α4 and the dimerization domain consisting of helix α5 (Fig. 2). The DNA-binding domain is a member of the winged helix-turn-helix family of proteins (39), consisting of a four-helix bundle and a three-stranded antiparallel β-sheet. The dimerization domain consists of the 8-turn α5 helix that forms a two-helix antiparallel coiled-coil with the other subunit. In BmrR α5 contains three additional turns of helix that extend into the C-terminal domain. The strong conservation of this fold and that described for BmrR (28% sequence identity) confirms the hypothesis that this structure would be general for the MerR family.

DNA-binding Domain—The structure of MtaN is stabilized by a hydrophobic core, which consists of side chains from α1 (Val-5, Val-8, Ala-9), α2 (Leu-19, Tyr-22, Asp-23), β3 (Arg-39, Tyr-41), α3 (Leu-46, Leu-49, Ile-52, Phe-55, Ile-58), and α4 (Leu-62, Ile-65, Met-68, Leu-69) and turns between α1 and α2 (Val-14), α2 and β2 (Ile-25, Leu-27, Leu-28, Pro-30), and α3 and α4 (Phe-60). All but 2 of these 23 core residues (Ile-25 and Pro-30) are well conserved across the MerR family (Fig. 3).

In addition to the hydrophobic component of the core, Asp-23 and Arg-39 form a buried salt bridge. This salt bridge buttresses the position of β3. In BmrR, this arginine (BmrR:Arg-43) is turned away from the carboxylate group of the aspartate (BmrR:Asp-26) to contact the DNA phosphate backbone. An Arg is absolutely conserved at this position across the MerR family and the Asp is either an Asp or Glu in all members but MerR, where it is a Gln. Whereas a formal possibility is that the Asp-23-Arg-39 salt bridge is in equilibrium with an unbridged conformer, such as that seen in BmrR, the high ionic strength of the MtaN crystallization conditions (up to 5.0 M LiCl) would be expected to disfavor the formation of this observed salt bridge strongly. Given that Asp-23 and Arg-39 are found to interact in this environment indicates that this is a stable and physiologically relevant interaction. Thus this salt bridge interaction, and its subsequent DNA-induced breaking, is likely to be conserved in all MerR family members.

The reason for sequence conservation of MtaN and BmrR is clear. Of the body, defined as β1 through α4, 26 of 69 MtaN and BmrR residues are identical, and of those 26, 15 are found in the core, and an additional 5 in turns. When conservative substitutions are included, the number of homologous residues rises to 36 and of those, 21 are found in the core. Thus, the observed sequence conservation between the two proteins ensures the structural conservation of this hydrophobic core. The same reasoning appears to apply across the whole family as these residues are among the most conserved in the N-terminal domain. Our analysis leads to the conclusion that DNA binding by MerR proteins does not significantly alter the structure of the hydrophobic core of the DNA-binding domains.

An overlay of Cα carbons of helices α1 through α4 of MtaN onto the corresponding BmrR atoms results in a root mean square (r.m.s.) deviation of 0.75 Å. That these four helices overlay so well suggests that either this domain of MtaN has taken the DNA-bound formation even in the absence of DNA, or more likely there is no difference in relative positions of these helices between the DNA-bound and free forms. However, residues Asp-47 and Ser-48 of BmrR α3 are displaced.
from their MtaN counterparts (Asp-43 and Ala-44) by their connection to the β-sheet, which takes a different conformation, and by their direct interaction with the drug-binding domain of BmrR, which is not present in MtaN.

Whereas the cores of MtaN and BmrR and the positions of the body helices (β1-β4) are the same, a structural difference is evident in the position of Wing 1 (β2-turn-β3). Specifically, MtaN displays a type II β-turn (Thr-34-Gly-37), whereas BmrR does not contain this classic hairpin because of a single residue insertion in this area, and is thus better described as a small loop. In addition, MtaN Wing 1 makes crystal lattice contacts, whereby Tyr-38 stacks against a symmetry-related Tyr-38. In BmrR this residue (BmrR:Tyr-42) interacts with a base in the minor groove. As a result, the Cα of Asp-35 (BmrR:Asp-39), which is located at the crux of the β-turn, moves 8.3 Å. Either interaction (protein-protein or protein-DNA) might be enough to displace the end of this β-sheet and therefore, Wing 1. Such wing flexibility is well documented in other winged-helix proteins (40, 41). Regardless of its position in the current structure, Tyr-38 is likely to be involved in DNA binding by MtaN as well. The more global shift in the rest of the wing is more likely because of the absence of DNA and the different interactions of conserved residue Arg-39, which forms a salt bridge to Asp-23 in MtaN and a DNA backbone contact in BmrR (BmrR:Arg-43).

Dimerization Domain—The MtaN dimer is stabilized primarily by the formation of an antiparallel coiled-coil between the amphipathic β5 helices. Coiled-coils are characterized by a heptad repeat (abcdefg)7 in which the a and d positions are typically occupied by hydrophobic residues and form the interface between the interacting helices (42, 43). In MtaN, the hydrophobic core of the interface consists of the side chains of residues Leu-80 (d1), Leu-87 (d2), Met-94 (d3), Ile-98 (a3), Ile-101 (d4) and Leu-105 (a4), and the methylene carbons of Lys-84 (a1) and Lys-91 (a2). In the antiparallel conformation
found in MtaN, van der Waals contacts are from d1 to a4′, a1 to d4′, d2 to a3′, a2 to d3′, (where ′ indicates the dimer partner) as well as the symmetry imposed interactions (Fig. 4). In addition to forming the antiparallel coiled-coil, the C-terminal end of the a5 helix also interacts with the C terminus of a3′. Contacts are found between the side chain of Phe-54 and Cγ of Thr-104′, and the alkyl side chains of Ile-58 and Ile-101′. van der Waals contacts between Glu-57 and Met-97 complete the dimerization interface. Dimerization buries 738 Å² of accessible surface area per monomer, which is average for many oligomeric proteins (44).

Beyond the hydrophobic interactions, two a residues of MtaN, Lys-84 and Lys-91 and their dyadic mates, form salt bridges to Asp-102′ and Asp-95′, respectively, whereas the corresponding BmrR residues do not. Interhelix ionic interactions are common among both parallel and antiparallel coiled-coils and serve to stabilize the dimer and prevent unwanted heterodimerization (45, 46). Heterodimerization has not been observed between MerR family members.

An antiparallel coiled-coil was first indicated in MerR (47–49) and predicted to occur in all MerR family members (21), which was confirmed by the structure determination of BmrR. In both MtaN and BmrR, all d positions are occupied by hydrophobic residues, whereas their a positions vary significantly (Fig. 4). Specifically, at MtaN a positions Lys-91, Ile-98, and Leu-105, the respective BmrR residues are Leu, Glu, and Lys. Where both proteins have hydrophilic a residues they are oppositely charged (MtaN:Lys-84, BmrR:Glu-88). Overall, the buried residues of the coiled-coil (80 through 105) are only partially conserved across the family, even between MtaN and TipAL, the most closely related MerR protein (13) (49% sequence identity). Only residues corresponding to Ile-101, which is always hydrophobic, and Leu-80, Leu-87, Met-94, and Ile-98, which are usually hydrophobic, are reasonably conserved (Fig. 3). Thus, the variation of buried residues serves to stabilize the dimer and contributes to the prevention of heterodimerization.

Conformational Differences between Two MerR Family Members—An overlay of the conserved four-helix core of one monomer of MtaN onto the corresponding core of DNA-bound BmrR revealed a significant shift in the relative positions of the recognition helix (α2′) of the other subunit (Fig. 5). In MtaN the center-to-center distance of these helices is 33.3 Å, close to the 34 Å repeat distance of canonical B-form DNA and consistent with their binding to consecutive major grooves. In the transcription-activated conformation of BmrR these helices are only 30.6 Å apart, which corresponds to their major-groove binding to a shortened and undertwisted DNA double helix (27). In addition to the distances, the relative positions of these helices have changed with respect to each other. The resulting position of the MtaN α2′ is offset from the BmrR α2′ by 7.5 Å, largely because of the lateral twist of 15° of the dimer partner, rather than a simple direct lengthening between the major groove binding helices (Fig. 5, a and b).

The rotation between subunits is the result of two conformational changes that occur in the antiparallel coiled-coil. When MtaN and BmrR helices a1 through a4 are overlaid, a shift in the relative positions of their a5 helices is evident (Fig. 5, a and b).
b). In comparison to MtaN α5, the BmrR α5 has rotated ~6.5° up and away. The body of the dimer partner moves to match this relocation to maintain the contacts between helices α5 and α3. This relatively small rotation is doubled by the same rotation of the dimer partner, and further amplified by the length of the coiled-coil. In addition to the rotation of the α5 helix, the relative conformations of the antiparallel coiled-coils of MtaN and BmrR are different. When α5 of MtaN is overlaid onto the α5 of BmrR (r.m.s. deviation is 0.63 Å for the Ca carbons), the α5′ helices do not overlay (Fig. 5, c and d). Rather, the C-terminal end of the MtaN α5′ helix has revolved ~15° in a counter-clockwise direction around the overlaid α5 helices. The movement of the N terminus of α5′ helix is smaller, but changes the direction of the helical axis to match the revolution that occurs at the C-terminal end. This revolution rotates the body, i.e. the DNA-binding domain, of the dimer partner around the axis of the coiled-coil and swings it toward the other body domain, thereby accounting for the observed expansion of the recognition helices of MtaN.

DNA-induced Conformational Changes—MtaN is a constitutive activator, yet the dimer structures of MtaN and BmrR, the latter of which is in its transcription-activated conformation, are different. Perhaps the differences reflect dissimilar DNA-binding modes in which MtaN twists its promoter DNA to a lesser degree. Alternatively, the DNA binding site might play a role in the induction of additional conformational changes in MtaN so that it more closely resembles BmrR.

DNA-docking experiments reveal that the MtaN dimer is unable to bind the BmrR-activated DNA (27) because its α2 major groove recognition helices are too far apart and in the wrong orientation to fit into the major grooves (Fig. 5). MtaN is also unable to bind canonical B-form DNA because the α2 helices are tilted incorrectly to fit directly into adjacent major grooves and Wing 1 clashes with the DNA backbone. Thus at the least, MtaN requires minor structural adjustment in the twist of its α2 helices and more significant changes in the position of its β-sheet (Wing 1) to bind either DNA conformation (Figs. 5 and 6).

Given the results of our docking experiments a binding and activation mechanism can be envisioned. In this proposal the first step is MtaN binding to a B-like DNA conformation. This would likely be concomitant with or followed by the breaking of the Asp-23–Arg-39 salt bridge. The disruption would allow Arg-39 to contact the DNA phosphate backbone, perhaps as observed in the BmrR-bmr promoter complex (27) and remove a key constraint that holds MtaN in a non-activating conformation. Additional structural changes would be transmitted through the coiled-coil and allow the MtaN conformation to maximize its DNA contacts. This in turn could elicit DNA conformational changes, which would result in an activated conformation of the MtaN-mta promoter complex that would more closely resemble that of the BmrR-bmr complex. The structure of an MtaN-mta promoter complex should provide more understanding of the DNA-binding and transcription activation mechanisms of this MerR family member.

Acknowledgments—We thank E. E. Zheleznova-Heldwein for sharing the BmrR coordinates with us prior to publication. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the United States Department of Energy, Office of Basic Energy Sciences. The SRNL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences.

REFERENCES

1. Paulsen, I. T., Brown, M. H., and Skurray, R. A. (1996) Microbiol. Rev. 60, 575–608
2. van Veen, H. W., Putman, M., Margolles, A., Sakamoto, K., and Konings, W. N. (1999) Biochim. Biophys. Acta 1461, 203–206
3. Grkovic, S., Brown, M. H., and Skurray, R. A. (2001) Semin Cell Dev. Biol. 12, 225–237
4. Putman, M., van Veen, H. W., and Konings, W. N. (2000) Microbiol. Mol. Biol. Rev. 64, 672–693
5. Rhee, S., Martin, R. G., Rosen, J. L., and Davies, D. R. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 10413–10418
6. Alsaklan, M. N., and Levy, S. B. (1997) Antimicrob. Agents Chemother. 41, 2067–2075
7. Barbosa, T. M., and Levy, S. B. (2000) J. Bacteriol. 182, 3467–3474
8. Grkovic, S., Brown, M. H., Roberts, N. J., Paulsen, I. T., and Skurray, R. A. (2000) J. Bacteriol. 182, 2328–2334
9. Lomovskaya, O., Lewis, K., and Matin, A. (1995) J. Bacteriol. 177, 2328–2334
10. Ahmed, M., Borsch, C. M., Taylor, S. S., Vazquez-Laslop, N., and Nefakh, A. A. (1994) J. Biol. Chem. 269, 28506–28513
11. Ahmed, M., Lyass, L., Markham, P. N., Taylor, S. S., Vazquez-Laslop, N., and Nefakh, A. A. (1995) J. Bacteriol. 177, 3904–3910
12. Summers, A. O. (1992) J. Bacteriol. 174, 3097–3101
13. Baranova, N. N., Danchin, A., and Nefakh, A. A. (1999) Mol. Microbiol. 31, 1549–1559
14. Outten, C. E., Outten, F. W., and O’Halloran, T. V. (1999) J. Biol. Chem. 274, 37517–37524
15. Outten, F. W., Outten, C. E., Hale, J., and O’Halloran, T. V. (2000) J. Biol. Chem. 275, 31024–31029
16. Noll, M., Petrokhin, K., and Lutsenko, S. (1998) J. Biol. Chem. 273, 21395–21401
17. Hidalgo, E., Ding, H., and Demple, B. (1997) Trends Biochem. Sci. 22, 207–210
18. Sadowsky, M. J., Cregan, P. B., Gettelfert, M., Sharma, A., Gerhold, D., Rodriguez-Quinones, F., Keyser, H. H., Hennekem, H., and Stacey, G. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 637–641
19. Holmes, D. J., Case, J. L., and Thompson, C. J. (1990) EMBO J. 12, 3183–3191
20. Shewchuk, L. M., Helmann, J. D., Ross, W., Park, S. J., Summers, A. O., and Walsh, C. T. (1989) Biochemistry 28, 2340–2344
21. Caguiat, J. J., Watson, A. L., and Summers, A. O. (1999) J. Bacteriol. 181, 3462–3471
22. Godsey, M. H., Baranova, N. N., Nefakh, A. A., and Brennan, R. G. (2000) Acta Crystallogr. Sect. D 56, 1456–1458
23. Parkhill, J., and Brown, N. L. (1990) Nucleic Acids Res. 18, 5157–5162
24. Helmann, J. D. (1995) Nucleic Acids Res. 23, 2551–2560
25. McClure, W. R. (1985) Annu. Rev. Biochem. 54, 171–204
26. Ansari, A., Chael, M. L., and O’Halloran, T. V. (1992) Nature 355, 87–89
27. Zheleznova-Heldwein, E. E., and Brennan, R. G. (2001) Nature 409, 378–382
Crystal Structure of MtaN

28. Leslie, A. G. W. (1992) Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography, Vol. 26
29. Hendrickson, W. A. (1991) Science 254, 51–58
30. Ramakrishnan, V., and Biou, V. (1997) Methods Enzymol. 276, 538–557
31. Terwilliger, T. C., and Berendzen, J. (1999) Acta Crystallogr. Sect. D 55, 849–861
32. Brünger, A. T., Adams, P. D., Clore, G. M., DeLange, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr. Sect. D 54, 905–921
33. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard. (1991) Acta Crystallogr. Sect. A 47, 110–119
34. Kissinger, C. R., Gehlhaar, D. K., and Fogel, D. B. (1999) Acta Crystallogr. Sect. D 55, 484–491
35. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Cryst. 26, 283–291
36. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673–4680
37. Barton, G. J. (1993) Protein Eng. 6, 37–40
38. Livingstone, C. D., and Barton, G. J. (1993) Comput. Appl. Biosci. 9, 745–756
39. Gajiwala, K. S., and Burley, S. K. (2000) Curr. Opin. Struct. Biol. 10, 110–116
40. Jin, C., and Liao, X. (1999) J. Mol. Biol. 292, 641–651
41. Jin, C., Marsden, I., Chen, X., and Liao, X. (1999) J. Mol. Biol. 289, 683–690
42. Nishikawa, K., and Scheraga, H. A. (1976) Macromolecules 9, 395–407
43. Fujinaga, M., Berthet-Colominas, C., Yarechuk, A. D., Tukalo, M. A., and Cusack, S. (1993) J. Mol. Biol. 234, 222–233
44. Conte, L. L., Chothia, C., and Janin, J. (1999) J. Mol. Biol. 285, 2177–2198
45. Zhou, N. E., Kay, C. M., and Hodges, R. S. (1994) J. Mol. Biol. 237, 500–512
46. Monera, O. D., Kay, C. M., and Hodges, R. S. (1994) Biochemistry 33, 3862–3871
47. Zeng, Q., Stahlhanske, C., Anderson, M. C., Scott, R. A., and Summers, A. O. (1998) Biochemistry 37, 15885–15895
48. Lupas, A. (1997) Curr. Opin. Struct. Biol. 7, 388–393
49. Wolf, E., Kim, P. S., and Berger, B. (1997) Protein Sci. 6, 1179–1189
50. Guex, N., and Peitsch, M. C. (1997) Electrophoresis 18, 2714–2723