Murine Leukemias with Retroviral Insertions at Lmo2 Are Predictive of the Leukemias Induced in SCID-X1 Patients Following Retroviral Gene Therapy

Utpal P. Dave1,2,4, Keiko Akagi3, Rati Tripathi1,2, Susan M. Cleveland1,2, Mary A. Thompson4, Ming Yi5, Robert Stephens5, James R. Downing6, Nancy A. Jenkins7, Neal G. Copeland7

1 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 2 Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 3 Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America, 4 Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 5 Advanced Biomedical Computing Center, National Cancer Institute, Frederick, Maryland, United States of America, 6 St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 7 Institute of Molecular and Cell Biology, Biopolis, Singapore, Singapore

Abstract

Five X-linked severe combined immunodeficiency patients (SCID-X1) successfully treated with autologous bone marrow stem cells infected ex vivo with an IL2RG-containing retrovirus subsequently developed T-cell leukemia and four contained insertional mutations at LMO2. Genetic evidence also suggests a role for IL2RG in tumor formation, although this remains controversial. Here, we show that the genes and signaling pathways deregulated in murine leukemias with retroviral insertions at Lmo2 are similar to those deregulated in human leukemias with high LMO2 expression and are highly predictive of the leukemias induced in SCID-X1 patients. We also provide additional evidence supporting the notion that IL2RG and LMO2 cooperate in leukemia induction but are not sufficient and require additional cooperating mutations. The highly concordant nature of the genetic events giving rise to mouse and human leukemias with mutations at Lmo2 are an encouraging sign to those wanting to use mice to model human cancer and may help in designing safer methods for retroviral gene therapy.

Introduction

SCID-X1 patients are deficient in the common γ chain of the interleukin-2 receptor (IL2RG) [1]. In three SCID-X1 trials, CD34+ hematopoietic stem cells were cultured ex vivo and transduced with a defective Moloney murine leukemia virus (MuLV) expressing IL2RG and then transplanted back to the patients. The possibility that retroviral gene therapy could induce cancer through insertional mutagenesis had been widely discussed but until these trials no cases had been reported. Among the five leukemias that have occurred (four in the French and one in the UK trial), four had insertional mutations at LM domain Only 2 (LM02) [2,3,4,5]. LM02 is a T-cell oncogene [6], suggesting that these leukemias resulted from insertional mutagenesis. SCID-X1 is caused, in part, by a failure of T-cell production, and the infusion of immature gene-corrected CD34+ cells into SCID-X1 patients favors the engraftment of the T-cell lineage over other lineages. This could explain why T-cell leukemias predominate in these patients. LM02 is also expressed early in hematopoiesis [6,7] which makes it a good target for insertional mutagenesis since retroviruses like to preferentially integrate near the 5’ end of actively transcribed genes [8]. LMO2 is not the only T-cell oncogene expressed during early hematopoiesis, however, indicating there must be other reasons that favor mutagenesis of LMO2. A murine T-cell leukemia with insertional mutations at Lmo2 and Il2rg has also been reported [9]. The probability of finding insertional mutations in both genes by chance in the same leukemia is exceedingly small and has led to the suggestion that Il2rg is a leukemia gene that cooperates with Lmo2. While IL2RG is not overexpressed in SCID-X1 leukemias [3] or in the mouse leukemia with an Il2rg insertion, subtle effects on its expression, such as an inability to downregulate its expression during T cell development, could be oncogenic [10].

Given the large number of IL2RG-infected cells transplanted into each patient, there is ample chance that a patient would receive a cell that contains an insertional mutation at LM02 [9]. Why then don’t all patients develop leukemia? The most likely explanation is that other cooperating mutations are needed for leukemia to occur. Consistent with this, leukemias take several years to develop and contain mutations in other T-cell oncogenes [3,11].
To provide further insights into this problem we cloned and sequenced the retroviral integrations from five murine leukemias containing insertional mutations at Lmo2 using high-throughput ligation-mediated PCR (LM-PCR)/sequencing method that makes it possible to identify most of the insertionally mutated genes in these leukemias. We then compared the microarray expression data from human leukemias with upregulated LMO2 expression and murine leukemias with insertional mutations at Lmo2. Our studies show that murine leukemias are highly predictive of the leukemias induced in SCID-X1 patients. They also support a model whereby deregulated IL2RG and LMO2 expression cooperate to induce leukemia but are not sufficient and require other cooperating mutations.

Results

Five Murine Leukemias with Insertional Mutations at Lmo2

The mouse Retroviral Tagged Cancer Gene Database (RTCGD) (http://rtcgd.abcc.ncifcrf.gov) lists four AKXD murine leukemias with insertional mutations at Lmo2 [9], in addition to the AKXD leukemia analyzed previously which contains insertional mutations at Lmo2 and Il2rg. All of the Lmo2 insertions are located 5′ of coding exons 4–6 and are in the same general location as the insertions identified at LMO2 in SCID-X1 patient leukemias and the chromosomal breakpoints at LMO2 identified in sporadic human T-ALL [3,12] (Figure 1A). Southern analysis showed these insertions are clonal (Figure 1A, bottom left panel, data not shown) and contain 2–4 clonal retroviral insertions each (Figure 1A, bottom right panel), as would be expected if they harbor mutations in Lmo2-cooperating genes.

Tumors 98-031 and 86-277 are T cell in origin [9]. Tumors 7105 and 7107 are also likely to be T cell as they have clonal Igh and T-cell receptor Jβ1 rearrangements (Figure 1B). The origin of tumor 3095 is unclear. It was isolated from a mouse with thymomegaly and lymphadenopathy and contains Igh but no T-cell receptor gene rearrangements (Figure 1B, Jβ2 not shown). Tumors 3095 and 7105 showed aberrant B220 staining (Figure 1C), which has been seen before in T-cell tumors from Lmo2 transgenic mice [13] and in some human T-ALLs expressing B-cell markers [14].

Large-Scale Cloning and Sequencing of Viral Integration Sites

To identify genes that might cooperate with Lmo2 in tumor induction we adapted an LM-PCR method to amplify the other viral insertions present in the five AKXD leukemias [8,15]. Following nested PCR using virus-specific and adaptor-specific primers, the amplified products were shotgun cloned. The inserts were then sequenced and BLAST-searched against the mouse genome and nearby candidate cancer genes identified (Table 1). These data were then combined with a less robust data set generated using inverse PCR (IPCR) [16]. This analysis identified 84 insertions in the five tumors (see Dataset S1). The percentage of cells in a tumor that harbor an insertion can be estimated from the number of shotgun clones isolated (Freq % in Dataset S1). Insertions present in all tumor cells will be enriched during PCR relative to insertions present in only a fraction of tumor cells and will thus be overrepresented in the shotgun library.

Remarkably, 35 insertions are located at common insertion sites (CISs), a highly significant result (Fisher’s exact test p = 7.4 × 10⁻⁶⁹ (Table 1). CISs are regions in the genome that are mutated by viral insertion at a rate higher than predicted by random chance and are thus likely to harbor a cancer gene [16]. Thirty-one of these genes are also mutated in human cancer, another highly significant result (Fisher’s exact test p = 5.7 × 10⁻⁵⁵ (Table S1, Dataset S1) [17]. This strongly suggests that some of these genes are Lmo2-cooperating genes.

A Second Tumor with an Insertion at Il2rg

Surprisingly, tumor 7107 contains two Il2rg insertions (Table 1), which was confirmed by conventional cloning and sequencing (Figure 2A). Thus, 2 of the AKXD murine leukemias with insertions at Lmo2 also contain insertions at Il2rg, a highly significant result (p = 1.34 × 10⁻⁹, see Text S1 for calculation). Likewise, tumor 7107 has two insertions at Irs2 (Figure 2B); another highly significant result (p = 1.16 × 10⁻⁵, see Text S1 for calculation). Il2rg and Irs2 are functionally linked in lymphoid cells where it has been shown that Il2rg can promote the phosphorylation of Irs2 by binding to and activating the tyrosine kinase Jak3 [18], which may explain the co-selection for mutations in these genes. To quantitate the Irs2 and Il2rg insertions, we amplified one Lmo2 and one Il2rg insertion using insertion-site-specific primers and real time PCR. The Irs2 insertion was present at about one copy per cell (Figure 2B), indicating it is present in every tumor cell. The other Irs2 insertion must therefore be in the same tumor cell, either on the same or different chromosome. In contrast, the Il2rg insertion was present at 0.5 copies per cell (Figure 2B), suggesting it is present in only half the tumor cells of this male mouse. We ruled out hyperploidy for the Il2rg locus and also confirmed that the Il2rg gene was present at one copy per cell (see Figure S4). The two Irs2 insertions must therefore have occurred first and in the same tumor cell followed by the two Il2rg insertions in different subpopulations of tumor cells. Similar to what was reported previously [9], Il2rg is not misexpressed in tumor 7107 (see Figure S5). Most of the genes that were insertionally mutated in this tumor were also highly overexpressed when compared to normal thymus control (Figure 2C). Since our prior study, exons for the Med12 gene were annotated and are shown to direct transcription in the opposite orientation to Il2rg (see Figure 2A). All the tumors have insertions in the same orientation to Med12 except tumor 98-031 and one of the
Figure 1. AKXD Leukemias have frequent clonal Lmo2 insertions of T-cell origin. A) The mouse Lmo2 gene is shown above the human gene and the five independent viral insertions cloned from AKXD tumors indicated with red arrows. Tumor names are shown above the arrows. The human LMO2 gene has six exons; gray exons are noncoding and yellow are coding. The bracket indicates chromosomal breakpoints in T-ALL.
Insertions disrupt the second coding exon of Meld12. Meld12 was not found to be up-regulated in the tumors and no spliced fusion transcript between provirus and Meld12 could be identified (see Figure S3). It is conceivable that these insertions implicate Meld12 in tumorigenesis and not Il2g, however, the RTCGD contains many common insertion sites in genes of the Il2g pathway (e.g. Il2a, Il4a, Il7, Jak1, Stat3a/3b).

Other Mutably Mutated Genes

Several other genes are also mutated more than once in the Lmo2 tumors, indicating that they might also represent Lmo2-cooperating genes. Two tumors have insertions in the leukemia transcription factor oncogene Pdml6 (Figure 3A) but only one insertion in tumor 7107 is clonal (Figure 3A, bottom left panel). Quantitative RT-PCR/sequencing revealed marked upregulation of a Pdml6 fusion transcript in tumor 7107 that initiates in the viral 5′LTR and splices to Pdml6 exon 2 (Figure 3A, bottom right panel). This transcript is predicted to encode a truncated protein similar to that expressed in human leukemias with PRDM16 mutations [19].

Remarkably, 3 tumors also have insertions in intron 2 of Me2c (Figure 3B, top panel), which is a transcription factor oncogene that cooperates with Sox4 in leukemia induction [20]. All insertions are in the same transcriptional direction as Sox4 and are clonal (Figure 3B, bottom left panel). Quantitative RT-PCR/sequencing revealed high expression of Me2c fusion transcripts in these tumors. The transcripts all initiated in the viral 5′LTR and spliced into the first coding exon of Me2c (Figure 3B, bottom right panel), similar to what is reported for other leukemias with Me2c insertions [20]. Tumor 7107 also showed high Me2c expression (Figure 3B, bottom right panel) and has an insertion located 390 kb upstream of Me2c (Table 1). There is precedent for long-range enhancer effects exerted by proviruses [21,22], potentially accounting for the high Me2c expression. Thus, 4 of 5 AKXD tumors have insertions at or near Me2c, strongly suggesting that Me2c is an Lmo2-cooperating oncogene. Consistent with this, tumors 98-031, 7105 and 86-277 also had insertions near the Me2c-cooperating gene Sox4, although only the insertion in tumor 7105 was clonal (data not shown).

Finally, tumors 98-031 and 7105 have insertions in the 5′ end of the putative acetylglucosaminyltransferase gene, B3glnt1 (Table 1). Very little is known about this gene so the significance of this result is unclear.

Mutations in E2A-Related Genes

We also identified insertions in two E2A-related genes, Tcf212a (TCF3 in humans) and Tcf12 (Table 1), suggesting a role for E2A-related genes in the Lmo2 tumors (p = 0.008). TCF3 is translocated to a number of fusion partners in pre- and pro-B-ALL [23], while TCF12 is fused to NR4A3 in Extraskeletal mixedoid chondrosarcoma [24]. The Tcf12 insertion is located in intron 5 and is in the same transcriptional orientation as Tcf12 (Figure 4A). 5′RACE showed that it induces a fusion transcript, which initiates in the 5′LTR and splices to Tcf12 exon 9 (Figure 4B). The first ATG is located in exon 9 and is in-frame with Tcf12 coding sequences. Assuming this is the preferred translational start site, the predicted polypeptide would lack 219 residues from the amino terminus, which was confirmed by in vitro transcription and translation studies (Figure 4C, left panel). The major polypeptide migrated at 55 kDa, similar to its predicted mass of 52 kDa. A faint 50-kDa band was also observed. Both proteins were immunoprecipitated with a rabbit polyclonal antibody specific to Tcf12, confirming they are Tcf12-derived (Figure 4C, right panel). The smaller protein could arise from an alternate translational initiation site or be due to protein degradation.

Tcf12 and Tcf12a are class I bHLH transcription factors. The amino terminus of Tcf12 encodes two transactivation domains, AD1 and AD2. AD1 is similar to AD1 of the related E2A proteins, which has been shown to have greater potency in transactivation than AD2 [25]. While there are no mutagenesis data on the homologous domains of Tcf12, the truncated Tcf12 transcript expressed in tumor 3095 would lack the AD1 domain but have an intact AD2 domain, which could result in attenuated transactivation.

Microarray analysis showed there was considerable differential expression of E2A target transcripts when the five tumors were compared to normal thymus [26] (Figure 4D). Similar, but somewhat less, differential expression, was observed when the tumors were compared with tumor 7065, which has an insertion at Notch1 (Figure 4D). With the exception of Gfi1b, targets activated by E2A are poorly expressed as expected if E2A signaling is attenuated. Conversely, Gm2a, which is repressed by E2A, was highly expressed. These results provide further evidence that the E2A pathway is attenuated in tumors with mutations at Lmo2.

Microarray expression analysis also showed that these tumors express Talt as well as the other experimentally verified Lmo2 binding partners, consistent with the involvement of Lmo2 in these tumors (Figure S1).

Insertionally Mutated Genes Are Highly Expressed in Human T-ALL with High LMO2 Expression

To provide additional evidence that the genes insertionally mutated in murine Lmo2 tumors are causally associated with human T-ALL, we examined the raw data from three large human T-ALL microarray data sets (total of 118 cases) [27,28,29] and asked whether any of the murine genes are deregulated in human T-ALL with high LMO2 expression. We separated the human T-ALL cases into LMO2-high and LMO2-low expression classes and performed clustering analysis to identify the genes differentially expressed in the LMO2-high class (p<0.001 significance level). The data sets were remarkably consistent in the genes that were upregulated in the LMO2-high class, despite different array platforms and patient heterogeneity. When genes that were consistently deregulated in the LMO2-high class were queried against the RTCGD, a statistically significant number were located at CISs or are insertionally mutated in murine tumors.
with *Lmo2* insertions (Figure S2), and the number of such genes is much higher than expected by chance (Figure S2; Ferrando et al, \(p = 1.1 \times 10^{-3} \) and Yeoh et al, \(p = 1.1 \times 10^{-3} \); Chiaretti et al, \(p = 4.1 \times 10^{-6} \)).

Remarkably, *MEF2C* was overexpressed in the *LMO2*-high group in all three T-ALL data sets (Figure 5A). This is extremely unlikely to have occurred by chance and further confirms the role of this gene in human T-ALL. Likewise, *LAPTMS5*, which is the site of an insertion in tumor 7107, was identified in all three data sets, while *AM41C*, an insertion site in tumor 7105, was identified in two microarray data sets (Figure 5A). *STAT5A* was found in two data sets. *Stat5a* is not insertionally mutated in the murine tumors but it is a validated leukemia gene and functions in the same signaling pathway as *IL2RG*. Most of the genes that clustered with the

Tumor	Gene symbol	Protein function	Location	Distance	Dir
Tumor 3095	Lmo2	Transcriptional regulator	5 prime	36.35 kb	inv
	Ccnd3	Cell cycle regulator	5 prime	57.392 kb	inv
	Mef2c	Transcription factor	intron 2	not disrupt CDS	same
	St3gal6	Glycosyltransferase	intron 2	not disrupt CDS	inv
	Tcf12	Transcription factor	intron 5	disrupt CDS	same
Tumor 98-031	Lmo2	Transcription factor	5 prime	69.237 kb	inv
	Il2rg	Cytokine receptor	5 prime	6.244 kb	same
	B3gnt1	Glycosyltransferase	5 prime	0.739 kb	same
	Mef2c	Transcription factor	intron 2	not disrupt CDS	same
	Bmi1	Transcription factor	5 prime	67.614 kb	inv
	Rap1gds1	G-protein regulator	intron 2	disrupt CDS	inv
	Sox4	Transcription factor	exon 1	not disrupt CDS	same
Tumor 7105	Lmo2	Transcriptional regulator	5 prime	68.071 kb	inv
	B3gnt1	Glycosyltransferase	5 prime	13.488 kb	same
	Me3	Malic enzyme	intron 7	disrupt CDS	inv
	Mef2c	Transcription factor	intron 2	not disrupt CDS	same
	Nmyc	Transcription factor	3 prime	815 kb	same
	Pou2fQ	Transcription factor	intron 1	disrupt CDS	inv
	Prdm16	Transcriptional regulator	intron 1	disrupt CDS	same
	Sox4	Transcription factor	exon 1	not disrupt CDS	same
	Tce2a	Transcription factor	5 prime	2.717 kb	inv
Tumor 7107	Lmo2	Transcriptional regulator	5 prime	68.387 kb	inv
	Il2rg	Cytokine receptor	5 prime	6.396 kb	inv
	Il2rg	Cytokine receptor	5 prime	6.759 kb	inv
	Irs2	Adaptor for signal transduction	intron 1	disrupt CDS	same
	Irs2	Adaptor for signal transduction	intron 1	disrupt CDS	same
	Mef2c	Transcription factor	5 prime	389.868	inv
	Ccnd3	Cell cycle regulator	5 prime	110.927 kb	inv
	Fgfr3	Growth factor receptor	3 prime	8.94 kb	inv
	Laptm5	Lysosomal protein	intron 1	disrupt CDS	inv
	Prdm16	Transcriptional regulator	intron 1	disrupt CDS	same
	Rere	Transcriptional regulator	N/D	N/D	
Tumor 86-277	Lmo2	Transcription factor	5 prime	0.955 kb	inv
	Flt1	Transcription factor	intron 1	disrupt CDS	same
	Fnbp4	Cytoskeletal protein	5 prime	0.443 kb	inv
	Sox4	Transcription factor	5 prime	38.481 kb	inv

Genes nearest the sites are shown below the tumor names. Predicted or known protein function and the distance and orientation of the insertions with respect to the nearby gene are shown. All these insertions are CIS in the RTCGD (see text).

doi:10.1371/journal.pgen.1000491.t001
LMO2-high class were also highly expressed in the mouse tumors and some showed differential expression in comparison to normal thymus or tumor 7065 (Figure 5B). Multiple RAP1 pathway genes also clustered with the LMO2-high group, including RAP1B, RAP1A and RAPGEF5. None are insertionally mutated in AKXD tumors, however, Rap1gds1 is insertionally mutated in tumor 98-031 and is the site of a recurrent chromosomal translocation in human T-ALL [30]. Rap1gds1 stimulates the exchange of GTP for GDP on Rap1 and is an activator of the Rap1 pathway. Upregulation of Rap1gds1 could therefore produce the same effect as upregulating RAP1B, RAP1A or RAPGEF5. Pathway analysis on genes shared in at least two microarray datasets (mouse and human combined) also suggested a role for cytokine signaling in tumor development (see Figure S5).

Discussion

To provide a better mechanistic understanding of SCID-X1 patient leukemias, we have analyzed five murine T-ALLs with insertional mutations at Lmo2. In each case these insertions are clonal. Therefore, they must have occurred early in tumor induction, similar to four of the five cases of gene therapy-induced leukemias. Transcriptional profiles of these T-ALLs showed high expression of the Tal1 and Lyl1 oncogenes as well as other Lmo2-binding partners such as Gata1 and Gata2. TAL1 and LYL1 are class II bHLH transcription factors that are frequently overexpressed along with LMO2 in human T-ALLs [27,31]. Consistent with this, patient #4, who developed leukemia in the French trial, and patient #8, who developed leukemia in the English trial, showed rearrangement of the SIL-TAL1 loci along with insertional activation of LMO2 [3,5,32].

Retroviral Insertional Mutagenesis

PLoS Genetics | www.plosgenetics.org 6 May 2009 | Volume 5 | Issue 5 | e1000491

LMO2-high class were also highly expressed in the mouse tumors and some showed differential expression in comparison to normal thymus or tumor 7065 (Figure 5B).

Multiple RAP1 pathway genes also clustered with the LMO2-high group, including RAP1B, RAP1A and RAPGEF5. None are insertionally mutated in AKXD tumors, however, Rap1gds1 is insertionally mutated in tumor 98-031 and is the site of a recurrent chromosomal translocation in human T-ALL [30]. Rap1gds1 stimulates the exchange of GTP for GDP on Rap1 and is an activator of the Rap1 pathway. Upregulation of Rap1gds1 could therefore produce the same effect as upregulating RAP1B, RAP1A or RAPGEF5. Pathway analysis on genes shared in at least two microarray datasets (mouse and human combined) also suggested a role for cytokine signaling in tumor development (see Figure S5).

Discussion

To provide a better mechanistic understanding of SCID-X1 patient leukemias, we have analyzed five murine T-ALLs with insertional mutations at Lmo2. In each case these insertions are clonal. Therefore, they must have occurred early in tumor induction, similar to four of the five cases of gene therapy-induced leukemias. Transcriptional profiles of these T-ALLs showed high expression of the Tal1 and Lyl1 oncogenes as well as other Lmo2-binding partners such as Gata1 and Gata2. TAL1 and LYL1 are class II bHLH transcription factors that are frequently overexpressed along with LMO2 in human T-ALLs [27,31]. Consistent with this, patient #4, who developed leukemia in the French trial, and patient #8, who developed leukemia in the English trial, showed rearrangement of the SIL-TAL1 loci along with insertional activation of LMO2 [3,5,32].

Murine T-ALLs with Lmo2 insertions also showed consistent downregulation of genes activated by E2A and upregulation of genes repressed by E2A, consistent with previous studies suggesting that Lmo2 redirects E2A activity by binding it through its partner proteins, Tal1 or Lyl1 [6]. Genes that are activated by the Lmo2/Tal1/E2A/Gata1-containing complex in normal erythrocyte development were also overexpressed in one murine T-ALL with high Gata1 expression. These findings suggest that murine T-ALLs with Lmo2 insertions resemble human T-ALLs that are initiated by LMO2 deregulation.

Our high throughput insertion site analysis identified additional disease-related genes that are likely to cooperate with Lmo2 in leukemia induction. We identified a second tumor (7107), in addition to tumor (98-031) described previously [9] that has an
Il2rg insertion. Remarkably, this tumor has two insertions at Il2rg that occurred independently suggesting strong selection for Il2rg deregulation in Lmo2-initiated T-ALL. In addition, tumor (7065) has insertions in Notch1 and Il2rg, suggesting that Il2rg might be able to cooperate with other T-cell oncogenes (i.e. Notch1) in leukemia induction.

The newly identified insertions are also close to or within the Med12 gene. Similar to Il2rg, this gene is not activated or downregulated by the insertions. We favor Il2rg as the retroviral target since the RTCGD is replete with common insertions in cytokine receptors that act in the exact same pathway as Il2rg. More recently, we have found Il2rb is a common insertion site in a retroviral insertional mutagenesis screen in Lmo2 transgenic mice (U.P. Daveé, unpublished observation). Other Il2rg binding partners, Il7ra and Jak1, were insertionally activated in the same screen which has not reached saturation. While still somewhat controversial, two studies provide additional evidence that Il2rg can function as an oncogene under some circumstances [33,34]. A statistically significant enrichment of Il2rg-dependent cytokine pathways in murine T-ALLs containing Lmo2 insertions and human LM02-overexpressing T-ALLs was also observed by Ingenuity pathway analysis (see Figure S5). A role for these pathways in T-ALL is further supported by studies showing that cytokines, which depend on Il2rg for signaling can induce T-ALL in transgenic mice, and by the murine T-ALL with two Il2rg and two Irs2 insertions. This murine T-ALL is significant since Irs2 encodes a protein adaptor that is phosphorylated by JAK3 tyrosine kinase in response to cytokine ligation by Il2rg and its heterodimeric partners such as Il7ra, Il4ra and Il9ra [18,35]. The occurrence of leukemias in the SCID-X1 gene therapy trials also lends compelling support to the notion that IL2RG is oncogenic and a cooperating “hit” with LM02.

Il2rg expression was not upregulated in any of these three tumors but there is precedent for cancer genes being dysregulated without gross overexpression or at specific developmental stages [36,37,38]. Similarly, the IL2RG transgene was not overexpressed.
in patients receiving gene therapy or in those developing T-ALL [5,11]. We theorize that a gene is less able to be silenced if there is a nearby retroviral insertion. Enforced expression of \textit{Il2rg} has been shown to cause T-cell leukemias without gross overexpression [33,39]. In the study by Woods et al, they specifically remark that transgene levels in thymic lymphomas were comparable to \textit{Il2rg} expression levels seen in developing thymi [34]. Another compelling possibility is that \textit{Il2rg} is misexpressed in a target cell population where \textit{Il2rg} is not normally found such as a cell more primitive than a thymocyte precursor. The study by Shou et al presents an alternate hypothesis that the SCID-X1 background is required for leukemia development perhaps due to altered numbers of hematopoietic precursors or stem cells [33]. It may be that the lack of \textit{Il2rg} creates a differentiation block that expands a cell type that is susceptible to transformation. Recurrent insertions in genes that are also CIS in the RTCGD were identified by Shou et al but \textit{Lmo2} was not one of them. The tumors were not analyzed for \textit{Lmo2} overexpression or for \textit{Notch1} activating mutations. Our data suggests that leukemia requires many ‘‘hits’’ and in their model somatic mutation in cooperating oncogenes or tumor suppressor genes may be more likely than insertional mutation since their vector was replication-defective.

Retroviral insertion site profiles have recently been published for the French and English cohorts of SCID-X gene therapy patients (n = 14) [4,5,11,40]. Presently, there is no statistical difference between the incidence of leukemia in the French (4 of 10) and English patients (1 of 10) and with long term follow-up, even the insertion site profiles may be quite similar in the two studies. Comparison of the insertion sites identified in the French patients with those in RTCGD showed there was a statistically

Figure 4. \textit{Tcf12} insertion creates a truncated protein. A) Top panel shows the mouse \textit{Tcf12} gene with arrows indicating the ubiquitous promoter and an alternate promoter found in thymus (Alt). Yellow exons are coding and the red arrow indicates the retroviral insertion cloned from tumor 3095. B) Panel shows the sequence of the viral fusion transcript cloned by RT-PCR from this tumor. 5’ RACE showed transcription was initiated in the viral 5’LTR and spliced into exon 9. The partial sequence of the viral fusion transcript is shown. Red indicates viral sequences, LTR and 5’ of gag. Yellow denotes the start of exon 9 of \textit{Tcf12}. The first ATG codon (blue) is in frame with the rest of gag. The in vitro translated proteins were derived from \textit{Tcf12} since they were immunoprecipitated with an antibody specific to the protein’s COOH-terminus (right panel). D) This heat map shows microarray analysis of the \textit{Lmo2}-clonal tumors with selected E2A targets. The genes shown are normally up-regulated by E2A except for \textit{Gm2a} which is repressed. Included in the comparison is tumor 7065 which had a clonal insertion in \textit{Notch1} and no up-regulation of \textit{Lmo2}.

doi:10.1371/journal.pgen.1000491.g004
Figure 5. Human microarray studies show consistent high-level expression of genes and pathways insertionally mutated in AKXD Lmo2 tumors. A) Genes selectively expressed in LMO2-overexpressing patients from three human microarray analyses are shown. Below the first author citations are shown the number of patients in each study. The genes shown in red are retroviral insertions in the mouse Lmo2-clonal tumors. B) Select genes that were expressed in the LMO2-high class of patients were probed in the mouse tumors and are shown in the heat map. Several of these genes (e.g. Mef2c, Hhex, Syk, Lyn, Mycn) are differentially expressed in the mouse tumors in comparison to normal thymus and tumor 7065. doi:10.1371/journal.pgen.1000491.g005
significant number of insertions in these patients, which are located at CISS in murine hematopoietic tumors (63/554, Fisher’s exact test, p = 4.5x10^{-27}). Remarkably, patient #10 of the French trial showed clonal insertions in LMO2 and BMI1; these two insertions were observed in tumor 90-031, underscoring the predictive power of our mouse models [11].

In designing safer vectors for transduction, it will be important to consider self-inactivating LTRs and perhaps lentiviral backbones, which have different insertion site preferences than gammaretroviruses, which may carry a lower risk of insertional mutation [41]. With the high transduction efficiencies achieved in these gene therapy trials, one could also see clonal expansion in cases where the transduced gene is not oncogenic. This, in fact, happened recently in two chronic granulomatous disease patients treated by retroviral gene therapy [42]. In both patients, a clonal expansion of the myeloid compartment was observed that began 3 to 5 months post-transplant. Clonal expansion was associated with insertional mutation of just three genes: MDS/EVI1, PRDM16, or SETBP1. Astonishingly, in the mouse, insertional mutation of these same genes has been associated with immortalization of early hematopoietic progenitor and/or myeloid progenitor cells [19]. Insertional mutations in these genes may have been selected in transplant patients due to their effects on increased self-renewal or engraftment potential. Prdm16 is also insertional mutated in two of the murine T-ALLs with Lmo2 insertions so this gene’s involvement in tumor induction might not be limited to the myeloid lineage.

Materials and Methods

Ethics Statement

Mice were aged in SPF facilities according to approved IACUC protocols at NCI-Frederick.

Mice, Tumors, and DNA/RNA Preparation

Various AKXD strains were developed at the Jackson Laboratory. These are recombinant inbreds that have a high spontaneous rate of leukemia or lymphoma onset due to the presence of an endogenous retrovirus [43,44]. The mice are viremic from birth and perhaps in utero and develop disease at various latencies, usually over six months of age. Murine leukemia viruses are not introduced. The mice are simply aged in SPF facility until the onset of disease. At the first appearance of morbidity, mice were sacrificed and gross necropsies performed. Organomegaly and abnormal features were noted and lymphoid and hematopoietic tissue was harvested and flash frozen in liquid nitrogen. Tissue was also fixed in formalin for immunohistochemistry. Frozen tissue was used in the preparation of high molecular weight DNA and whole RNA as previously described [45].

Tumor Histochemistry and Southern Analysis

Tumor genomic DNA was restriction digested and loaded on to agarose gels for overnight runs. The gels were transferred as described to Nitrocellulose (Amersham) [44]. Membranes were baked and UV-crosslinked. They were hybridized with ^32P-labeled probes and exposed to film. For quantitation, blots were exposed to phosphorimager plates and a Fuji phosphorimager used for quantitation. Details on probes used are available upon request.

Retroviral Insertion Site Cloning and Analysis

In vitro translated Tcf123095RIS was resuspended in RIPA buffer and immunoprecipitated using antibody against the COOH-terminus of Tcf12 (sc-357, Santa Cruz Biotechnology).

Gene Expression Analyses of Mouse Tumors

Tumors were homogenized in Trizol reagent (Sigma) and whole RNA was isolated by manufacturer’s protocol. First strand cDNA was synthesized using oligo-dT primer and Superscript II or III reverse transcriptase enzymes (Invitrogen). Primers used for RT-PCR are available upon request. For real time PCR, we used Biorad’s MyIQ or ABI 7700 machines with either Sybr green or master mixes (Biorad) or Taqman probes (Applied Biosystems). Probe assays used are available upon request and were validated by Applied Biosystems. RNA was processed for hybridization to the Affymetrix chips according to standard protocols (see Text S1).

Microarray Analyses of Human T-ALL Datasets

Microarray analysis was performed with BRB-ArrayTools (version 3.2.3) developed by Biometric Research Branch at the National Cancer Institute. LMO2-positive and LMO2-negative tumors were compared by using univariate significance tests at the significance level of 0.001. The maximum false discovery proportions were restricted to 0.1 using multivariate permutation tests. As for the criteria of LMO2-positive and LMO2-negative tumors, there was no clear cut-off level for classifying a sample as having either high or low expression. We used artificial cut-off values to classify tumors into two groups. At first, we identified the median value of LMO2 expression signals as an initial indicator for the classification, and then we removed the marginal cases from the comparisons. For example, in the case of St Jude’s data, we classified tumors with LMO2 signal>2000 as LMO2-positive group (13 cases), tumors with LMO2 signal<1000 as LMO2-negative group (14 cases).

Statistical comparison between tumor classes was done using the “BRB Array Tools” software (http://linus.nci.nih.gov/BRB-ArrayTools.html). We collated CEL file format of Affymetrix data by using the ‘RMA’ method [47] of the ‘affy’ package from
BioConductor (http://www.bioconductor.org/). To identify genes that were differentially expressed among the two classes, we used a random-variance t-test. The random-variance t-test is an improvement over the standard separate t-test as it permits sharing information among genes about within-class variation without assuming that all genes have the same variance [40]. Genes were considered statistically significant if their p values were less than 0.001. A stringent significance threshold was used to limit the number of false positive findings. We also performed a global test of whether the expression profiles differed between the classes by permuting the labels of which arrays corresponded to which classes. For each permutation, the p values were re-computed and the number of genes significant at the 0.001 level was noted. The proportion of the permutations that gave at least as many significant genes as with the actual data was the significance level of the global test. We performed cluster analysis of genes and produced a heat map image to represent the over- and under-expression of each gene in each sample. We used quantile data ranges to ensure the even presence of all available colors on the map.

For comparison of mouse and human datasets, we used Fisher’s exact test, binomial distribution and Chi-square tests to generate p values. Please see Text S1 regarding specific statistical questions analyzed.

Supporting Information

Figure S1 AKXD Lmo2 tumors co-express Tal1. A) quantitative RT-PCR shows Lmo2 and Tal1 are overexpressed in the tumors with respect to normal thymus. To the right are two heat maps from microarray T-cell expression data. B) This panel shows T-cell leukemia transcription factors and their expression in the Lmo2-clonal tumors. RNA from normal thymus and tumor 7065, which has a clonal, activating mutation in Notch1, are included in the comparison. Lmo2-clonal tumors have higher class II bHLH transcription factor expression and lower expression of E2A genes when compared to normal thymus and tumor 7065. C) This heat map shows documented Notch1 targets and their expression in the same tumors. All genes shown are normally up-regulated by Notch1 except for Ebf1, Sfpi1, and Flt3, which are repressed. The Lmo2-clonal tumors show low expression of Notch1 target genes and higher expression of genes that are repressed. Tumor 98031 has higher expression of Hes1 and I2rg and lower expression of Ebf1, consistent with a heterozygous mutation in the heterodimerization domain of Notch1. The rest of the tumors had wild type Notch1 sequences. D) Experimentally confirmed Lmo2-binding partners are shown on this heat map. All of these were expressed at levels higher than normal thymus and tumor 7065. The Lmo2-clonal tumors had high expression of Gata1 and Gata2. Gata1 was very high in tumor 98031 and so we assayed the expression of erythroid genes in this tumor. E) Numerous erythroid genes were up-regulated in 98031. The genes denoted by the black arrows are activated by an Lmo2/Gata1/2/Tal1/E47/Ldb1-containing oligomeric complex that binds to promoter E box/Gata motifs. Log2 intensity scales are shown for the heat maps.

Found at: doi:10.1371/journal.pgen.1000491.s001 (2.29 MB TIF)

Figure S2 Human T-ALL microarray analysis shows representation of many CIS in the transcriptional profile of LMO2-overexpressing patients. Raw data were retrieved from three large published T-ALL studies and cases were clustered into LMO2-high and LMO2-low expressing classes. We next sought to find the most statistically significant genes that clustered with the LMO2-high group. The studies’ first authors are cited as well as the platforms used. In parentheses, we show how many probes were on the chip used. Below this, we show the number of CIS divided by the total number of genes that clustered with the LMO2-high expressing cases. The last number is the p value for identifying these CIS as calculated by Fisher’s exact test.

Found at: doi:10.1371/journal.pgen.1000491.s002 (2.78 MB TIF)
References

1. Kovarne PE, Leonard WJ (2004) Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukin 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev 202: 67–83.

2. Hacine-Bey-Ashina M, Garriga A, Wang GP, Soulier J, Lim A, et al. (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest.

3. Hacine-Bey-Ashina S, Von Kalle C, Schmidt M, McCormack MP, Wuillart N, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419.

4. Deichmann A, Hacine-Bey-Ashina S, Schmidt M, Garriga A, Brugman MH, et al. (2007) Vector integration is nonrandom and clustered and influences the fate of lymphoproliferation in SCID-X1 gene therapy. J Clin Invest 117: 2225–2232.

5. Howe SJ, Mansour MR, Schwarzwaldner K, Bartholomae C, Hubank M, et al. (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118: 3143–3150.

6. Nam CH, Rabbits TH (2006) The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther 13: 15–25.

7. Pike-Ovezet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, et al. (2007) Ectopic retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell development from CD34(+) cells: implications for leukemogenesis in gene therapy. Leukemia 21: 754–765.

8. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300: 1749–1751.

9. Dave UP, Jenkins NA, Copeland NG (2004) Gene therapy insertional mutagenesis insights. Science 303: 333.

10. Pike-Ovezet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, et al. (2006) Gene therapy: is IL2RG oncogenic in T-cell development? Nature 443: 1749–1751.

11. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

12. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

13. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

14. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

15. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

16. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

17. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

18. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

19. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

20. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

21. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

22. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

23. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

24. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

25. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

26. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

27. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

28. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

29. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

30. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

31. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

32. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

33. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

34. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

35. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

36. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

37. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

38. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

39. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

40. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

41. Nakamura T, Vartanian K, Cools J (2005) Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.
40. Schwarzwaelder K, Howe SJ, Schmidt M, Brugman MH, Deichmann A, et al. (2007) Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 117: 2241–2249.
41. Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, et al. (2007) Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110: 1770–1778.
42. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, et al. (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12: 401–409.
43. Copeland NG, Jenkins NA (1999) The mouse as a gene discovery tool in the modern genome era. Harvey Lect 95: 137–155.
44. Gilbert DJ, Neumann PE, Taylor RA, Jenkins NA, Copeland NG (1993) Susceptibility of AKXD recombinant inbred mouse strains to lymphomas. J Virol 67: 2083–2090.
45. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436: 221–226.
46. Suzuki T, Minehata K, Akagi K, Jenkins NA, Copeland NG (2006) Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. Embo J 25: 3422–3431.
47. Irizarry RA, Behtad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e13.
48. Wright GW, Simon RM (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19: 2448–2455.