Teleportation with Multiple Accelerated Partners

A. Sagheer,1,2,* H. Hamdoun,2 and N. Metwally2,3
1Department of Computer Science, Faculty of Computer Science and Information Technology, King Faisal University, Alahsa, Saudi Arabia
2Center for Artificial Intelligence and RObotics (CAIRO), Faculty of Science, Aswan University, Aswan, Egypt
3Department of Mathematics, College of Science, University of Bahrain, Bahrain

(Received February 28, 2015; revised manuscript received June 23, 2015)

Abstract As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger–Horne–Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network.

PACS numbers: 03.67.-a, 89.70.-a
Key words: non-inertial frames, entanglement, acceleration

1 Introduction

It is known that, entanglement is a fundamental resource for many of quantum information processing (QIP) themes,[1] such as quantum cryptography,[2] quantum computation,[3] and quantum communication.[4–6] One of the exciting applications of quantum communication, which are based on entanglement, is quantum teleportation. Recently, quantum teleportation has been paid much attention both theoretically and experimentally since it could make quantum communication essentially instant.[7] Most of the current quantum teleportation procedures achieve teleportation of non-accelerated information through non-accelerated states.[8–10] With the rapid development in communication domain, there is an urgent need to develop new procedures achieve teleportation of either accelerated or non-accelerated information through channel based on accelerated multi qubit entangled states with a high level of security and efficiency.

Since 20 years ago, the first teleportation protocol which uses two qubit channel is presented theoretically by Bennett et al.[11] Next, several protocols of quantum teleportation based on Bennett protocol have been developed, some of them are realized in experiments.[12–14] All of these protocols teleported unknown information from the sender to a remote receiver, where both of them are spatially separated via a classical channel. According to Bell basis measurements performed by the sender, the receiver applies the corresponding unitary operations on his single qubit and obtains the original information with certainty.

Next, the quantum teleportation with multi-qubit systems have been attracted much attention due to its generalization of the previous teleportation procedures with two qubit systems. The main difference between quantum teleportation of two qubit systems and that of three qubit systems is the existence of another receiver, who contributes to teleport the state from the sender to the receiver.[15] In most of these protocols, quantum teleportation with multi-qubit is achieved through non-accelerated states. Karlsson et al.[16] for example, demonstrated a teleportation with three-qubit channel capable to teleport unknown information from the sender to any of the two receivers. In Karlsson protocol, only one of the two receivers can fully reconstruct the teleported information conditioned on the measurement result of the other receiver. Later, Alsing et al. introduced the first protocol achieved teleportation through uniformly accelerated state.[17–18] They described the process of teleportation between the sender, who is not accelerated, and the receiver who is in a uniform acceleration with respect to the sender. Recently, Metwally discussed the possibility of using maximum and partial entangled qubits to perform accelerated quantum teleportation with accelerated or non-accelerated information.[19–20]

In this paper, we propose a quantum protocol achieves teleportation of either accelerated or non-accelerated in-
formation through channel based on accelerated multi-qubit state. The proposed protocol differs from other protocols in that all qubits of the used channels, here, are accelerated. In addition, we investigate here the behaviour of the teleported information, either accelerated or non-accelerated, through three kinds of channels and conduct a comparison among them. Theses channels are based on the W state, the Greenberger–Horne–Zeilinger (GHZ) state, and the GHZ-like state.

The proposed protocol teleports the information from the sender (Alice) to the receiver (Bob) with the help of the third qubit (Charlie) according to the following scenario. First, Alice performs Bell basis measurements on her two qubits, one is the information qubit and the other is the qubit entangled to other qubits. Second, she sends the measurement result to both Bob and Charlie. Third, Charlie performs a single qubit measurement according to Alice measurement result and, then, sends the measurement result to Bob. Finally, Bob can retrieve the teleported information.

The paper is organized as follows: Section 2 describes the accelerated states which are used as quantum channels. The teleportation procedure through the three channels are provided and discussed in Sec. 3. The fidelity of each channel is also investigated in this section. Finally, Sec. 4 concludes the paper and shows our future work.

2 The Model

In this paper, we adopt three different multi qubit states that used as communication quantum channels, namely, the W state, the GHZ state and the GHZ-like state. Assume that we have three partners called Alice, Bob, and Charlie respectively share one of maximum entangled states in the form:

\[
\psi_w = \frac{1}{\sqrt{3}} (|001\rangle + |010\rangle + |100\rangle),
\]

\[
\psi_G = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle),
\]

\[
\psi_{GL} = \frac{1}{2} (|001\rangle + |010\rangle + |100\rangle + |111\rangle),
\]

where \(\psi_w\), \(\psi_G\), and \(\psi_{GL}\) represent the W, GHZ, and GHZ-like states respectively.

2.1 Overview of Accelerated States

In the inertial frames, Minkowsik coordinates \((t, z)\) are used to describe Dirac field, while in the uniformly accelerated case, Rindler coordinates \((\tau, \chi)\) are more adequate. The relations between the Minkowski and Rindler coordinates are given by\(^{[18]}\)

\[
\tau = r \tanh \left(\frac{t}{z} \right), \quad \chi = \sqrt{t^2 - z^2},
\]

where \(-\infty < r < \infty\), \(-\infty < \chi < \infty\), and \(r\) is the acceleration of the moving particle. The transformations \((2)\) define two regions in Rindler’s spaces: the first region I for \(|t| < x\) and the second region II for \(x < -|t|\). A single mode \(k\) of fermions and anti-fermions in Minkowski space is described by the annihilation operators \(a_{kU}\) and \(b_{-kL}\) respectively, where \(a_{kU}|0_k\rangle = 0\) and \(b_{-kL}|0_k\rangle = 0\).

In terms of Rindler’s operator \((\rho^{(I)}_{kR} \rho^{(II)}_{-kL})\), the Minkowski operators can be written as\(^{[25]}\)

\[
a_{kU} = \cos r c_{k,R}^{(I)} - \exp(-i\phi) \sin r d_{-k,L}^{(II)},
\]

\[
b_{-kL} = \exp(i\phi) \sin r c_{k,R}^{(I)} + \cos r d_{-k,L}^{(II)},
\]

where the Unruh frequency parameter, \(r\), is given by \(\tan r = e^{-\pi(c/\alpha)}\), \(0 < r \leq \pi/4\), \(\alpha\) is the acceleration such that \(0 < \alpha \leq \infty\), \(\omega\) is the frequency of the travelling qubits, \(c\) is the speed of light, and \(\phi\) is an unimportant phase that can be absorbed into the definition of the operators. The operators \(c_{k,R}^{(I)}\) and \(d_{-k,L}^{(II)}\) are called the right and left Unruh modes.\(^{[26]}\) The most general creation operator can be written as a linear combination of the two Unruh creation operators as

\[
a_{kU} = q_{R} c_{k,R}^{(I)} + q_{L} d_{-k,L}^{(II)},
\]

where \(|q_R|^2 + |q_L|^2 = 1\). This means that the monochromatic Rindler modes can be rewritten as a superposition of a single Unruh modes.\(^{[28]}\) We use the single mode approximation,\(^{[17–18]}\) i.e., we choose \(q_R = 1\) and \(q_L = 0\), where we follow Hosler et al.\(^{[27]}\) It is clear that, the transformation \((3)\) mixes a particle in region I and an anti particle in region II as:\(^{[28]}\)

\[
|0_k\rangle_M = \cos r |0_k^+\rangle_{1II} + \sin r |1\rangle_{1II} |1_k\rangle_H,
\]

\[
|1_k\rangle_M = |1_k^+\rangle |0_k\rangle_H,
\]

where \(k = 0, 1, 2, \) and \(3\) for teleported information qubit, first, second and third qubit of channel, respectively. \(|n\rangle_I\) and \(|n\rangle_{II}\) \((n = 0, 1)\), indicate two causally disconnected regions in the Rindler space.\(^{[21–22]}\) It is assumed that each of these three states represents a channel that contains three qubits, where each qubit represents a partner who moves in uniform acceleration. Using the transformation in Eq. \((5)\), we get the final state in both of Rindler regions \(I\) and II. The final accelerated state in the region I is found by tracing out the states in the second region II.\(^{[23]}\)

\[
\rho_I^i = \text{Tr}_\text{II} \rho_{\text{final}}, \quad i = w, g, g\ell.
\]

(i) The accelerated W-state, in the first region, \(\rho_w^{(I)}\), is described by \(8 \times 8\) matrix, where the non-zero elements are given by:

\[
\begin{align*}
\rho_{w}^{(22)} &= C_2^2 C_3^2, & \rho_{w}^{(23)} &= C_1 C_2 C_3^2, \\
\rho_{w}^{(25)} &= C_2 C_3^2 C_2, & \rho_{w}^{(33)} &= C_1^2 C_2^2, \\
\rho_{w}^{(55)} &= C_2 C_3 C_2, & \rho_{w}^{(44)} &= S_2^2 C_3 + S_1^2 C_3^2, \\
\rho_{w}^{(46)} &= C_2 S_1 C_3^2, & \rho_{w}^{(77)} &= S_2^2 C_1 + S_1^2 C_1^2, \\
\rho_{w}^{(66)} &= S_1^2 C_1^2 + S_2^2 C_2^2, & \rho_{w}^{(88)} &= S_2^2(S_2^2 + S_1^2) + S_1^2 S_3^2.
\end{align*}
\]

(ii) The accelerated GHZ-state in the first region, \(\rho_G^{(I)}\), is described by \(8 \times 8\) matrix, where the non-zero elements in this case are given by:

\[
\rho_{G}^{(11)} = C_1^2 C_2 C_3^2, \quad \rho_{G}^{(22)} = C_2 C_3^2, \\
\rho_{G}^{(1)} = \frac{1}{\sqrt{3}} (|001\rangle + |010\rangle + |100\rangle).
\]
It is assumed that the teleported information may be accelerated or non-accelerated. For the non-accelerated case and by applying Eq. (12), the information which described in Eq. (10) can be coded in the following single qubit:

\[
\rho_{v}^{ac} = \alpha^2 |0\rangle\langle 0| + \alpha \beta |0\rangle\langle 1| + \alpha \beta |1\rangle\langle 0| + \beta^2 |1\rangle\langle 1| .
\]

(13)

On the other hand and by applying definitions of Eqs. (5) and (12), the accelerated information is coded in the following single qubit:

\[
\rho_{v}^{ac} = \alpha^2 C_{0}^{2}|0\rangle\langle 0| + \alpha \beta C_{0}|0\rangle\langle 1|.
\]

In order to teleport the $|\psi_{0}\rangle$, the partners follow the following steps:

Step 1 Alice combines the teleported state with her qubit of the accelerated entangled state.

Step 2 Alice performs Bell Measurements (BM) on her two qubits. These measurements are described by:

\[
\rho_{\psi}^{\pm} = \frac{1}{2} \begin{bmatrix} 00 \rangle\langle 00| + 01 \rangle\langle 01| + 10 \rangle\langle 10| + 11 \rangle\langle 11| \end{bmatrix}.
\]

(11)

Step 3 Charlie makes the Von Neuman measurement on his qubit. Then, he and Alice send their measurements to Bob.

Step 4 Based on Alice and Charlie measurements, Bob does one of the appropriate unitary operation, bit-flip (X), phase flip (Z) or bit-phase flip (Y) qubit operation, to get the initial teleported state.

A schematic diagram of the proposed teleportation procedure is depicted in Fig. 1. Qubit 0 denotes the qubit which contains the coded information that will be teleported and qubit 1, 2 and 3 denote the three qubits of quantum channel (QC) that belong to Alice, Bob, and Charlie, respectively. Alice performs the appropriate Bell measurements on qubit 0 and qubit 1, then she informs both Bob and Charlie about her measurement through a classical channel (CC). For the sake of assisting Alice and Bob, Charlie makes a single qubit measurement (Von Neuman measurement, VNM) on his qubit 3 and, then, transmits his result to Bob across a classical communication channel. Finally, Bob performs an appropriate unitary operation (U) on qubit 2 in order to retrieve the teleported information.
Now, the channels are capable to send information from Alice to Bob according to the teleportation procedure which is described above. In the following, we evaluate the fidelity of the teleported information via the three accelerated states.

3.1 The W-State as a Quantum Channel

In this section, we will use the accelerated W-state, described by Eq. (7), in order to teleport the non-accelerated information which is coded in Eq. (13). For example, if

\[|\varrho_{11}\rangle = \beta^2 C_2^2 C_3^2, \quad |\varrho_{12}\rangle = \alpha \beta C_1 C_3 C_2^2, \quad |\varrho_{13}\rangle = \alpha \beta C_1 C_2 C_3^2, \]
\[|\varrho_{22}\rangle = \alpha^2 C_1^2 C_2^2 + \beta^2 C_2^2 S_1^2 + \beta^2 S_2^2 C_1^2, \quad |\varrho_{23}\rangle = \alpha^2 C_2 C_1 C_3^3 + \beta^2 C_2 C_3 S_1^3, \]
\[|\varrho_{24}\rangle = \alpha C_1 C_3 S_3^3, \quad |\varrho_{32}\rangle = \alpha^2 C_2 C_3 C_1^3 + \beta^2 C_2 C_3 S_1^3, \]
\[|\varrho_{33}\rangle = \alpha^2 C_1 C_3^2 + \beta^2 C_3^2 S_2^2 + \beta^2 S_2^2 C_1^2, \quad |\varrho_{34}\rangle = \alpha \beta C_1 C_3 S_2^2, \]
\[|\varrho_{44}\rangle = \alpha^2 C_2^2 (S_2^2 + S_3^2) + \beta^2 S_2^2 (S_2^2 + S_3^2) + \beta^2 S_3^2 S_2^2. \]

Now, Charlie’s measurement decides the success or the failure of the teleportation process itself. If Charlie measures 1 the teleportation fails, whereas, if Charlie measures 0 the teleportation success. To obtain the final state, Bob can do an appropriate operation, from those given in Table 1, to retrieve the teleported information according to Alice and Charlie measurements.

Table 1	Bob unitary operation when Charlie measures “0”.	
Alice measurement	Charlie measurement	Bob unitary operation
ρ^+_w	0	X
ρ^-_w	0	Y
ρ^0_w	0	I
ρ^z_w	0	Z

Finally, Bob will get the coded information with a fidelity given by:

\[F^\text{wa}_w = \alpha^4 C_1^2 C_2^2 + \alpha^2 \beta^2 C_3^2 (S_1^2 + S_2^2) + 2\alpha^2 \beta C_3^2 C_1 C_2 S_3 + \beta^4 C_2^2 C_3^2. \]

On the other hand, the accelerated W-state, given in Eq. (7), is used to teleport the accelerated state which is given in Eq. (14) using the same proposed teleportation procedure. If Alice measures ρ^+_w, then the other two qubits are projected into a 4×4 matrix, its elements are given by:

\[\varrho_{11} = \alpha^2 C_1^2 C_2^2 C_3^2, \quad \varrho_{12} = \alpha \beta C_1 C_3 C_2^3, \quad \varrho_{13} = \alpha \beta C_1 C_2 C_3^3, \]
\[\varrho_{22} = \alpha^2 C_1^2 C_2^2 S_1^2 + \alpha^4 C_1^2 C_2^2 S_1^2 + \alpha^2 \beta^2 C_1^2 C_2^2 S_1^2 + \beta^2 C_1^2 C_2^2, \]
\[\varrho_{23} = \alpha^2 C_1 C_2 C_3 S_3^3 + \alpha^3 C_1 C_2 C_3 S_3^3 + \beta^2 C_1 C_2 C_3 S_3^3, \quad \varrho_{24} = \alpha \beta C_1 C_2 C_3 S_3^3, \]
\[\varrho_{32} = \alpha^2 C_1 C_2 C_3 S_3^3 + \alpha^3 C_1 C_2 C_3 S_3^3 + \beta^2 C_1 C_2 C_3 S_3^3, \quad \varrho_{33} = \alpha^2 C_1 C_2 C_3 S_2^2 + \alpha^3 C_1 C_2 C_3 S_2^2 + \beta^2 C_1 C_2 C_3 S_2^2, \]
\[\varrho_{34} = \alpha^2 C_1 C_2 C_3 S_2^2 + \alpha^3 C_1 C_2 C_3 S_2^2 + \beta^2 C_1 C_2 C_3 S_2^2 + \alpha^2 C_3^2 S_1^2 S_2^2. \]

Now, Bob can retrieve the teleported information using an appropriate operation, from those given in Table 1, with a fidelity given by:

\[F^\text{wc}_w = \alpha^4 C_1^2 C_2^2 C_3^2 (S_1^2 + S_2^2) + \alpha^2 \beta^2 C_1^2 C_2^2 (S_1^2 + S_2^2) + \alpha^2 \beta C_1^2 C_2^2 S_1^2 + \beta^4 C_2^2 C_3^2. \]

Figure 2 describes the fidelities of the teleported information which is coded in the qubit forms stated in Eqs. (13) and (14), for the non-accelerated and accelerated information, respectively. Figure 2(a) displays the behavior of the fidelity of both the accelerated information F^wc_w and the non-accelerated information F^wa_w. It is clear that, at zero acceleration of all qubits, the fidelities are maximum. However, the fidelities decrease to reach its minimum bounds when the accelerations r_i of channel qubits reach 0.8, where i refers to Alice, Bob, and Charlie. Also, we notice that, the degradation rate of F^wc_w is faster than that depicted for F^wa_w. This shows that, teleporting non-accelerated information is better than teleporting accelerated information through the accelerated W-state given in Eq. (7).

Figure 2(b) displays the behavior of F^wc_w, where it is as-
3.2 The GHZ State as a Quantum Channel

In the case of using the GHZ as a quantum channel, it is assumed that the channel can be used to teleport information, either accelerated or non-accelerated. The three qubits of GHZ state collaborate together to perform the quantum teleportation procedure as described in Sec. 3. Similarly, after Alice performs Bell Measurement (BM), the total state is projected into one of the four Bell states given in Eq. (11). For example, if Alice qubits are projected into ρ_{ψ}°, then the two other qubits are projected into a density operator described by the following 16 elements:

$$\psi_{11} = \alpha^2 C_1^2 C_2^2 C_3^2 + \beta^2 C_2^2 C_3^2 S_1^2,$$

$$\psi_{14} = \psi_{41} = \alpha\beta C_1 C_2 C_3,$$

$$\psi_{22} = \alpha^2 C_1^2 C_2^2 S_1^2 + \beta^2 C_2^2 S_2^2 C_3^2,$$

$$\psi_{23} = \alpha^2 C_1^2 C_2^2 S_1^2 + \beta^2 C_2^2 S_1^2 C_3^2,$$

$$\psi_{44} = \alpha^2 C_1^2 C_2^2 S_1^2 + \beta^2 (1 + S_1^2 S_3^2 S_4^2),$$

$$\psi_{12} = \psi_{13} = \psi_{24} = \psi_{24} = \psi_{34} = 0. \quad (20)$$

Finally, Bob can end the protocol by applying adequate operation given in Table 2 to retrieve the teleported information with a fidelity given as,

$$\mathcal{F}_{G}^{\text{noa}} = \alpha^4 C_1^2 C_2^2 (C_3^2 + S_3^2) + \alpha^2 \beta^2 S_1^2 (C_3^2 + S_3^2) + \alpha^2 \beta^2 C_1^2 S_2^2 (C_3^2 + S_3^2) + 2\alpha^2 \beta^2 C_1 C_2 C_3 \beta^4 S_1^2 S_2^2 (C_3^2 + S_3^2) + \beta^4. \quad (21)$$

Table 2	Bob unitary operations when Charlie measures at x-direction.	
Alice measurement	Charlie measurement	Bob unitary operation
ρ_ψ°	x_+	I
ρ_ψ°	x_+	I
ρ_ϕ°	x_+	X
ρ_ϕ°	x_+	Y
ρ_ϕ°	x_-	Z
ρ_ϕ°	x_-	I
ρ_ϕ°	x_-	Y
ρ_ϕ°	x_-	X

Similarly, if the GHZ state teleports the accelerated information, which as given in Eq. (14), the channel based on GHZ state achieves the proposed procedure to retrieve the teleported information at the receiver side with a fidelity takes the form:

$$\mathcal{F}_{G}^{\text{ac}} = \alpha^4 C_0^4 C_1^2 C_2^2 (C_3^2 + S_3^2) + \alpha^4 C_0^2 S_0^2 S_1^2 C_2^2 (C_3^2 + S_3^2) + \alpha^2 \beta^2 C_0^2 C_1^2 C_2^2 (C_3^2 + S_3^2) + 2\alpha^2 \beta^2 C_0^2 C_1 C_2 C_3 + \alpha^4 S_0^2 C_0^2 C_1^2 S_1^2 (C_3^2 + S_3^2) + \alpha^4 S_0^2 S_0^2 S_1^2 C_2^2 (C_3^2 + S_3^2) + \alpha^2 \beta^2 S_0^2 S_0^2 S_2^2 C_3^2 + \alpha^2 \beta^2 S_0^2 S_0^2 S_1^2 S_3^2 (C_3^2 + S_3^2) + \alpha^2 \beta^2 S_0^2 S_0^2 S_2^2 C_3^2 + \beta^2 (\alpha^2 S_0^2 + \beta^2). \quad (22)$$
3.3 The GHZ-Like State as a Quantum Channel

We proceed now to the last quantum channel, which is the GHZ-like state given in Eq. (9). In case of teleporting non accelerated information and according to Alice measurement, the other two qubit of the channel are projected into the following density operator:

\[\rho_{11} = \beta^2 C_2C_3^2 , \quad \rho_{12} = \rho_{21} = \alpha \beta C_1 C_3 C_2^2 , \]

\[\rho_{13} = \rho_{31} = \alpha \beta C_1 C_2 C_3^2 , \quad \rho_{14} = \rho_{41} = \beta^2 C_2 C_3 , \]

\[\rho_{22} = \alpha^2 C_1^2 C_3^2 + \beta^2 C_2 S_1^2 + \beta^2 C_2 S_3^2 , \]

\[\rho_{23} = \alpha^2 C_2 C_3 S_2^2 + \beta^2 C_2 C_3 S_1^2 + \beta^2 C_2 C_3 S_3^2 , \]

\[\rho_{24} = \rho_{42} = \alpha \beta C_0 C_1 C_2 (1 + S_3^2) , \]

\[\rho_{33} = \beta^2 C_2 C_3^2 , \quad \rho_{34} = \rho_{43} = \alpha \beta C_0 C_1 C_2 (1 + S_3^2) , \]

\[\rho_{44} = \alpha^2 C_1^2 (S_2^2 + S_3^2) + \beta^2 C_2 C_3^2 (S_1^2 + S_2^2) \]

Bob ends the procedure after he performs an appropriate operation from those given in Table 3 with a fidelity depending on Alice and Charlie measurements. Here we have two different cases for example:

Table 3 Bob unitary operations when Charlie measures “0” and “1”.

Alice measurement	Charlie measurement	Bob unitary operation
\(\rho_{0}^\phi \)	0	X
\(\rho_{0}^\phi \)	0	Y
\(\rho_{0}^\phi \)	0	I
\(\rho_{0}^\phi \)	1	I
\(\rho_{0}^\phi \)	1	Z
\(\rho_{0}^\phi \)	1	X
\(\rho_{0}^\phi \)	1	Y

(i) If Alice measures \(\rho_{0}^\phi \) and Charlie measures “0”, then the fidelity of the teleported information is given as

\[F_{ga}^{ma} = \alpha^4 C_2^4 C_3^4 + 2 \alpha^2 \beta^2 C_3^2 (S_1^2 + S_2^2) + \beta^2 C_1^4 C_3^4 + 2 \alpha^2 \beta^2 C_1 C_2 C_3^2 . \]

(ii) If Alice measures \(\rho_{0}^\phi \) and Charlie measures “1”, then the fidelity of the teleported information is given as

\[F_{ga}^{ma} = \alpha^4 S_2^2 (S_2^2 + S_3^2) + \alpha^2 \beta^2 C_1^2 (S_1^2 + S_2^2) + \alpha^2 \beta^2 C_2^2 (S_1^2 + S_3^2) \]
The fidelity of the teleported state is given as:

\[F_{\alpha} = \alpha^2 C_0 C_1 C_2 (\alpha^2 S_0^2 + \beta^2) + \alpha^2 S_0^2 C_1 C_2 (\alpha^2 S_0^2 + \beta^2) + \alpha^2 S_1^2 C_1 C_2 (\alpha^2 S_1^2 + \beta^2) + 2 \alpha^2 \beta C_1 C_2 (1 + S_1^2) \].

(25)

The fidelity of the teleported information through the GHZ-like state is depicted in Fig. 4. It is shown that the fidelity degrades as the acceleration of the qubits of the channel based on GHZ-like state increases. Also, the degradation rate depends on the measurements performed by the qubit of GHZ-like state. Figure 4(a) shows the behavior of the fidelity of information, either accelerated or non-accelerated, in the situation that Alice performs Bell measurement using \(\phi^+ \) and Charlie measures “0”. It is clear that the degradation rate of the fidelity for accelerated information is faster than that depicted for the non-accelerated information, same performance in case of the W-state. Figure 4(b) shows the behavior of \(F_{\alpha} \) for different values of accelerated information, \(r_0 \), where the fidelity degrades as the acceleration of all the qubits of the channel based on GHZ-like, \(r_1 \), increases.

![Graphs showing the behavior of fidelity](image)

Fig. 4 The GHZ-like state (a) The fidelity \(F_{\alpha} \) of the accelerated information when Alice projects the system into \(\rho^\alpha_0 \) (dashed curve) and the fidelity \(F_{\alpha} \) of the non-accelerated information (dotted curve), both when Charlie measures “0”. (b) The fidelity \(F_{\alpha} \) where \(r_0 = 0.1, 0.4, 0.7 \) for, the dashed, dotted, and solid curves, respectively.

4 Conclusion and Future Work

In this paper, we investigate the possibility of using multi-accelerated qubits as a quantum channel to perform quantum teleportation. Namely, these states are the W, the GHZ and the GHZ-like states. In general, we find that the fidelity of the teleported information degrades as the acceleration of the qubits of the used states increases.

It is shown in the paper that, the degradation rate of the teleported state is large for accelerated information in the case of using the W state and the GHZ-like state as a quantum channel where it is small in the case of using the GHZ state as a quantum channel. This certifies that the rate of fidelity degradation depends on the used channel. The comparison among the three channels showed that the GHZ state is the optimum, comparing to the W-state and GHZ-like state, for teleporting information either accelerated or non-accelerated.

In addition, the paper investigate the effect of different values of the accelerated information through each accelerated state. We find that, the initial fidelity of information decreases at high values of acceleration of the information. The minimum value, which the fidelity approaches, depends on the used state and acceleration rate of the information. However, the minimum values of the fidelities through the W and GHZ-like states are smaller than that depicted in the case of the GHZ state.

Overall, the contribution of the paper is concluded in the following two items:

(i) The three accelerated states: the W, the GHZ and the GHZ-like state can be used as accelerated quantum channel to teleport accelerated or non-accelerated information.

(ii) The fidelity of teleporting accelerated or non-accelerated information through the accelerated GHZ state as quantum channel is much better than either the W or the GHZ-like states.

Using the proposed teleportation procedure in quantum communication applications is one of our future tar-
We are looking forward to develop a prototype for communication via accelerated entangled quantum network written by a high-level programming language.

References

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81 (2009) 865.
[2] C. Bennett and G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore India (1984) p. 175-179.
[3] E. Rieffel and W. Polak, ACM Computing Survey 32 (2000) 300.
[4] N. Metwally, M. Abdelaty, and A.S.F. Obada, Chaos, Solitons & Fractals 22 (2004) 529.
[5] N. Metwally, Int. J. Mod. Phys. C 20 (2009) 769.
[6] N. Metwally, J. Opt. Soc. Am B 29 (2012) 389.
[7] R. Ursin, T. Jennewein, and M. Aspelmeyer, Nature (London) 430 (2004) 849.
[8] V. Gorbachev, A. Trubilko, A. Rodichkina, and A. Zhiliba, Quantum Inform. Comput. 2 (2002) 367.
[9] J. Joo, Y. Park, S. Oh, and J. Kim, New Journal of Physics 5 (2003) 136.
[10] K. Yang, L. Huang, W. Yang, and F. Song, Int. J. Theor. Phys. 48 (2009) 516.
[11] C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, Phys. Rev. Lett. 70 (1993) 1895.
[12] D. Bouwmeester, J.W. Pan, M. Mattle, H. Weinfurter, and A. Zeilinger, Nature (London) 390 (1997) 575.
[13] X.S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Koller, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, Nature (London) 489 (2012) 269.
[14] I. Capraro, A. Tommello, A. DallArche, R.U.F. Gerlin, G. Vallone, and P. Villores, Phys. Rev. Lett. 109 (2012) 200502.
[15] J. Jin, S. Park, and Y. Kwon, Chaos, Solitons & Fractals 28 (2006) 313.
[16] A. Karlsson and M. Bourennane, Phys. Rev. A 58 (1998) 4394.
[17] P.M. Alsing and G.J. Milburn, Phys. Rev. Lett. 91 (2003) 4.
[18] P.M. Alsing, Journal of Optics B: Quantum and Semiclassical 6 (2004) S834.
[19] N. Metwally, Journal of the Optical Society of America B 30 (2013) 233.
[20] N. Metwally, International Journal of Modern Physics B 27 (2013) 135.
[21] D.E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Phys. Rev. A 82 (2010) 042332.
[22] N. Metwally and A. Sagheer, Quantum Information Processing (2014) 771.
[23] A. Sagheer and H. Hamdoun, Quantum Information and Computation 14 (2014) 255.
[24] E. Rieffel and W. Polak, Quantum computing: A Gentle Introduction, Scientific and Engineering Computation, MIT Press (2014).
[25] D. Walls and G. Milburn, Quantum Optics, Springer, NY (1994).
[26] P. Alsing, I.F. Schulle, R. Mann, and T. Tessier, Phys. Rev. A 74 (2006) 032326.
[27] E.M. Martinez, D. Hosler, and M. Montero, Phys. Rev. A 86 (2012) 062307.
[28] D.E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Phys. Rev. A 82 (2010) 042332.