Structural characterizations of phosphorylatable residues in transmembrane proteins from Arabidopsis thaliana

Bin Xue1,7 and Vladimir N Uversky1,2,3,*

*Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA; 1USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine; University of South Florida; Tampa, FL USA; 3Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia

Keywords: phosphorylation, structural flexibility, intrinsic disorder, relative surface accessibility

Phosphorylation is a common post-translational modification that plays important roles in a wide range of biochemical and cellular processes. Many enzymes and receptors can be switched “on” or “off” by conformational changes induced by phosphorylation. The phosphorylation process is mediated by a family of enzymes called kinase. Currently, more than 1,000 different kinases have been identified in Arabidopsis thaliana proteome. Kinases interact with each other and with many regulatory proteins forming phosphorylation networks. These phosphorylation networks modulate the signaling processes and control the functions of cells. Normally, kinases phosphorylate serines, threonines, and tyrosines. However, in many proteins, not all of these 3 types of amino acids can be phosphorylated. Therefore, identifying the phosphorylation sites and the possible phosphorylation events is very important in decoding the processes of regulation and the function of phosphorylation networks. In this study, we applied computational and bioinformatics tools to characterize the association between phosphorylation events and structural properties of corresponding proteins by analyzing more than 50 transmembrane proteins from Arabidopsis thaliana. In addition to the previously established conclusion that phosphorylation sites are closely associated with intrinsic disorder, we found that the phosphorylation process may also be affected by solvent accessibility of phosphorylation sites and further promoted by neighboring modification events.

Introduction

Phosphorylation is an important post-translational modification performed by kinases that catalyze the addition of phosphate groups onto the target amino acids, such as serines, threonines, and tyrosines. In prokaryotes, phosphorylation can also affect histidine, aspartate,1,2 or even arginine and lysine.3 Phosphorylation is a reversible process, and under appropriate conditions, phosphorylated residues can be dephosphorylated by phosphatases. In the process of phosphorylation, a phosphopeptide group is attached to an amino acid via a covalent bond. As a result, the local polarity, charge, and even the local structure of the target protein are changed.4 Following these local changes in the physicochemical properties and in the local structure, the interaction of a target protein with other molecules is influenced, giving rise to the controlled and reversible modulation of the specific protein function, and therefore, providing a way to control corresponding pathways. The importance of this posttranslational modification cannot be overestimated, and the reversible phosphorylation of the phosphorylated proteins was shown to play key roles in various processes of molecular signaling and regulation5-10 where the reversible phosphorylation acts frequently as a switch controlling various signaling processes.11

Phosphorylation is one of the most abundant posttranslational modifications and about 30% of proteins in eukaryotic proteomes can be phosphorylated.12-15 In Arabidopsis thaliana, the number of coding genes is ~25,000 and the number of Ser/Thr protein kinases is around 1,000.16 Assuming eukaryote-averaged level of phosphorylation, it is expected that ~7,500 A. thaliana proteins are phosphorylated by the 1,000 kinases. In other words, each kinase phosphorylates ~7-8 proteins on average. Curiously, a large scale phosphorylation mapping study revealed that among the 1,346 phosphorylatable proteins of Arabidopsis thaliana, more than 10% have “membrane” (either plasma membrane or vacuolar membrane) in annotation of their cellular localization.17 Since phosphorylation is a catalytic process that in principle should follow the classical lock-and-key model, it is a puzzle how one kinase can modify multiple often unrelated proteins.
It has long been recognized that the efficiency of phosphorylation is determined by the primary structure of the target proteins. It was found recently that the structural flexibility is also a key factor that allows one kinase to phosphorylate multiple targets.18,19 Most eukaryotic protein kinases share very similar structural fold,20,21 being often composed of a smaller N-terminal β-structure-enriched lobe and a larger C-terminal α-helix-dominated lobe.22-27 ATP is bound to a loop (P-loop) connecting 2 β-strands in the cleft formed by the N- and C-lobes. Near this ATP-binding P-loop, there is another loop called activation loop through which the kinase activity can be regulated by either being phosphorylated/dephosphorylated or interacting with other regulatory proteins. There is a third loop known as catalytic loop that contains conserved Asp and Asn residues to interact with the substrate and to make the phosphorylation happen. All these loops, being flexible, are critical for the phosphorylation process, since kinases use these flexible regions to interact with their multiple partners.

It was also emphasized that the local disorder in proteins targeted to phosphorylation represents another level of utilization of conformational flexibility in this catalytic process. In fact, phosphorylation relies on the interaction between the kinase and the substrate, and the flexible residues flanking the phosphorylation site (P-site) of the substrate are often involved in the substrate-kinase recognition.22,28-30 Therefore, besides the flexibility of the kinase itself, the structural flexibility of the substrate protein, especially the residues sequentially close to the P-site(s), represents an important prerequisite for phosphorylation to occur.

One should also keep in mind that in many proteomes, the number of protein phosphatases is typically far smaller than the number of protein kinases, e.g., there are ~500 human protein kinases and only ~200 protein phosphatases.31,32 This indicates that in their function, phosphatases also rely on protein flexibility and intrinsic disorder. Therefore, structural flexibility of the kinases and the phosphatases and their substrates represent key

Table 1. Phosphorylatable residues and their predicted secondary structure

Amino acid types	Helix	Secondary structure	Sub-total	
		Strand	Coil	Sub-total
Number of all residues of each type	Thr 38.2%	10.0%	51.8%	1902
	Ser 30.8%	5.2%	64.0%	3391
	Tyr 48.6%	14.8%	36.6%	1044
Number of phosphorylatable residues in each type	Thr 2	0	15	17
	Ser 5	2	49	56
	Tyr 0	0	2	2
All amino acids	41.6%	8.3%	50.1%	37040

Figure 1. (A) Comparison of disorder score predicted by POND-FIT and POND-VLXT. All the phosphorylation sites are organized into 3 different groups: buried (black, $\text{RSA} \leq 0.25$), semi-exposed (green, $0.25 < \text{RSA} \leq 0.5$), and exposed (pink, $\text{RSA} > 0.5$). The solid diagonal line is where the disorder scores from both predictors match exactly to each other. The region between 2 dashed off-diagonal lines indicates confidence region where the disorder scores from 2 predictors are equivalent to each other. (B) Comparison of disorder score between single residue and its extended region. X-axis is the disorder score predicted by POND-VLXT. Y-axis is the averaged disorder score for a segment centered at the residue and flanked by 20 amino acids at both sides. Dark crosses (group I) are residues that are consistently predicted by both POND-VLXT and POND-FIT as shown in (A). Blue circles (group II) have larger POND-VLXT scores in (A). Red squares (group III) show residues with larger POND-FIT scores in (A).
factors defining the efficiency of the reversible phosphorylation process.

It has been shown that phosphorylation occurs normally within the intrinsically disordered protein regions (IDPRs). The term IDPR refers to a segment of a polypeptide chain that due to weak interaction with other parts of the same protein does not have stable structure under physiological conditions and exist as a dynamic conformational ensemble. The length of an IDPR may vary from several residues to hundreds and even thousands of residues. Proteins that contain ordered domains and IDPRs are named hybrid proteins. For many proteins, known as intrinsically disordered proteins (IDPs), IDPR runs over the entire protein length. Structurally, IDPs and IDPRs may exist in multiple forms, such as extended or compact disordered species that contain smaller or larger amount of flexible secondary structures. Although the structural flexibility of the substrates seems to represent an important structural factor defining the efficiency of protein phosphorylation, the peculiarities of the correlation between phosphorylation and the extent of the flexibility has not been completely understood. Besides, it is also not clear whether other structural factors might affect the phosphorylation process.

In our previous study on the structural prerequisites for the efficient methionine oxidation, it was found that the methionine oxidation sites are characterized by some unique features, such as local structural flexibility, high solvent accessibility, and peculiar local secondary structure. Therefore, we undertook this study to examine the patterns of structural features defining the efficiency of protein phosphorylation. To this end, we focused on the peculiarities of phosphorylation of transmembrane proteins from Arabidopsis thaliana. The primary reason for this choice of these proteins is in the fact that the majority of the signaling receptors that detect and respond to various environmental stimuli are membrane proteins located within the cell membrane. Therefore, the analysis of the effects of phosphorylation on structural properties of membrane proteins is extremely important for better understanding the regulating roles of phosphorylation in various signaling pathways.

Results

While the accuracy of predictions of protein secondary structure and relative accessible surface area have been validated by their developers and by our previous study, the peculiarities of protein intrinsic disorder predictions needs to be further analyzed since two quite different disorder predictors (PONDR-VLXT and PONDR-FIT) were applied in this study. PONDR-VLXT is a member of the first generation of disordered predictors. This
The predictor is extremely sensitive to the peculiarities of the local amino acid compositions, and therefore, it is a very useful tool to measure the local structure flexibility. PONDR-FIT, being a newer computational tool, is one of the more accurate disorder predictors. It is a meta-predictor that combines the outputs of 6 individual predictors and has high per-residue prediction accuracy. The comparison of PONDR-VLXT and PONDR-FIT scores for all 75 phosphorylated residues in 52 transmembrane proteins is shown in Figure 1A. This analysis revealed that: (1) sites with high PONDR-VLXT disorder scores are very likely to have high PONDR-FIT disorder scores; (2) for structured site, the PONDR-VLXT and PONDR-FIT disorder scores have larger discrepancy; (3) for exposed residues, the PONDR-VLXT disorder score is usually lower than the PONDR-FIT disorder score; (4) for semi-exposed sites, PONDR-FIT scores are often higher than PONDR-VLXT scores.

As shown by the confident region between the 2 dashed lines, the predictions of 2 predictors match each other for most of the residues. There are 54 residues within the area limited by these 2 dashed lines, which accounts for 72% of all the phosphorylated residues analyzed in this study. Out of 21 residues (28%) located outside of this area, only 11 (15%) are extreme outliers.

The above described analysis was performed for individual residues with known phosphorylation status. However, in reality, the flexibility of an amino acid is influenced by its neighboring residues. Therefore, at the next step we analyzed the disorder score of a region flanking a specific residue, and Figure 1B represents results of this analysis. Here, X-axis represents the disorder score predicted by PONDR-VLXT for a phosphorylated residue, whereas Y-axis shows the averaged order score for a segment centered at the phosphorylated residue and flanked by 20 amino acids at both sides. This analysis provides description
of the local environment of the residue/region of the interest. If a structured target site (i.e., site with the disorder score below 0.5) is flanked by disordered regions, the averaged disorder score of this region will be higher than the score of the target site. In the curve representing the per-residue disorder score distribution, this segment would be manifested as a “dip.” Residues in dips will gain additional local structural flexibility from flanking disordered regions.

Residues in such spikes are more flexible than neighboring residues located outside the spikes.

Figure 1B suggests that almost all flexible phosphorylatable residues (disorder score > 0.5) have decreased averaged disorder score for the entire region, whereas the majority of structured phosphorylatable residues have increased averaged disorder score over the entire region. Therefore, this analysis suggests that almost all phosphorylatable residues are located either in the dips or the spikes of the corresponding per-residue disorder score curves.

In Figure 1B, we further considered 3 groups of residues based on the result of their disorder status evaluated by PONDR-VLXT and PONDR-FIT (see Fig. 1A). Here, group I includes residues with the disorder status consistently evaluated by both PONDR-VLXT and PONDR-FIT (i.e., residues located within the area separated by two dashed lines in Fig. 1A); group II contained residues that had larger PONDR-VLXT scores (i.e., residues located below the bottom dashed line in Fig. 1A), and group III corresponds to residues with larger PONDR-FIT scores (i.e., residues located above the upper dashed line in Fig. 1A). Since group I represents residues whose disordered status is consistently predicted by both predictors, the subsequent analysis was focused on residues from groups II and III. The PONDR-VLXT scores
for residues in group II are larger than their PONDR-FIT scores. Since PONDR-VLXT is more sensitive to the peculiarities of local amino acid compositions, and since PONDR-FIT is more accurate in the general evaluation of disorder status, the higher PONDR-VLXT score for these residues is an indication that the residues are locally flexible. Curiously, half of these residues are located in “dips” and another half is contained in “spikes” of the corresponding per-residue disorder score curves. Residues in the group III that were characterized by higher PONDR-FIT scores also systematically had higher averaged scores of their extended segments. This means that these residues are predominantly located in “dips,” and their flanking regions are more flexible. This is also the reason of why PONDR-FIT scores for them are higher than the corresponding PONDR-VLXT scores.

Figure 2A represents the predicted disorder score and predicted relative surface area (RSA) for all phosphorylatable amino acids categorized by their secondary structures and clearly shows that only a small fraction of phosphorylatable residues are located within α-helices or β-strands, whereas the greatest majority of these residues can be found within the regions with irregular structure (coils). The peculiarities of numerical distributions are further illustrated by Table 1, where positioning of all Thr, Ser, and Tyr residues in secondary structure elements of analyzed proteins are compared with localization of phosphorylatable residues. Here, 2276 (35.9%), 521 (8.2%), and 3540 (55.9%) of all the Thr, Ser, and Tyr residues are found in α-helical, β-strand, and coil conformations, respectively. The fractions of phosphorylatable residues within the three different secondary structure elements changed to 7 (9.3%), 2 (2.7%), and 66 (88.0%). By using the Student t-test and assuming the null hypothesis that these 2 distributions are the same, the p-value of this test is 0.067, which does not indicate that the peculiarities of secondary structures have significant influence on the phosphorylation. The total numbers of Thr, Ser, and Tyr in the data set are 1902, 3391, and 1044, respectively. The numbers of phosphorylatable Thr, Ser, and Tyr are 17, 56, and 2, accordingly. Again, applying the Student t-test on the null hypothesis that 2 sets of data have same distribution, the p-value is calculated as 0.045 suggesting that phosphorylation has variable preference for the different types of phosphorylatable amino acid, in the order from Ser, to Thr, to Tyr.

Figure 2B shows the correlation between fraction of amino acids with specific values of relative surface area and structural flexibility as indicated by the disordered score for all phosphorylatable amino acids. In this analysis, the RSA was divided into three ranges: < 25%, between 25% and 50%, and > 50%. The correlation coefficients for these 3 groups of residues with their disordered score are 0.02, 0.71, and 0.84, respectively. This demonstrates that when phosphorylatable residues are more exposed, their exposure probability is more positively correlated with their disorder score. This is also an indication that highly flexible residues are more often associated with larger surface exposure. Actually in Figure 1B, the blue circles can be further split into 2 groups since despite the similarity of the overall disorder scores averaged on extended regions the PONDR-VLXT scores of individual phosphorylatable residues clearly form 2 groups. This suggests that some residues in this group are located within “spikes,” whereas other residues are found in “dips” of the corresponding disorder profiles. In both of the cases, the residues can gain additional flexibility from the neighboring regions.

In the real process of phosphorylation, phosphorylatable residue has to be accessible to the catalytic domain of the kinase to form a covalent bond with phosphate. Therefore, it is intuitive to expect that the phosphorylatable residue has to be exposed and flexible. As shown in Figure 2A, in line with our previous study on methionine oxidation, residues with RSA above 0.25

![Figure 5](image-url)
The region flanking the phosphorylatable Tyr31 is actually enriched in charged and polar residues. In PONDR-FIT plot, the entire region before the kinase domain is expected to be highly flexible, as shown in Figure 3C. Besides, this region consistently has larger RSA. Therefore, the phosphorylation of all the group II residues is still under the control of the local structural flexibility and surface exposure.

The residues in group III are also similar to the group I and II residues. In fact, Figure 4A shows that all the group III residues have larger disorder score by themselves. All regions (except 1) surrounding these phosphorylatable residues have large disorder scores. The exception is Ser360 of Q9LVM0. For RSA, although the values calculated for phosphorylatable residues by themselves are all small, the averaged RSA for the regions surrounding these residues increases very fast. The only exception is still Ser360 of Q9LVM0. Therefore, vast majority of the group III residues still follow the phosphorylation mechanisms that rely on both structural flexibility and surface exposure. Ser360 of Q9LVM0 is different from other residues in this group. Therefore, the details of the disorder and RSA prediction were further analyzed as shown in Figure 4C. Q9LVM0 is a putative receptor kinase. It has about 654 residues and is composed of the N-terminally located signal peptide of 40 residues, followed by the 5 leucine-rich repeats (LRRs), ATP binding site, and finally by the kinase domain at the C-terminal half of protein. Ser360 is located at the beginning of the kinase domain, right before the ATP binding site that is assumed to be located in the region between residues 360 and 380. In terms of the sequence, we can see that the N-terminal flanking region of Ser360 is composed of leucine and charged residues (D, E, and R). This combination may force serine to be more exposed than predicted. In the disorder curve of this region, we can also see that serine is located within a ”spike” of the disorder curve. This suggests that this serine can serve as a local ”hot spot,” whose actual flexibility could be larger than that evaluated based on the predicted disorder score. Therefore, the factors determining the phosphorylation mechanism of Ser360 of Q9LVM0 can also be attributed to local structural flexibility and surface exposure.

Group IV has only 2 residues, which are Thr580 of Q9LVM0 and Thr567 of Q9FKH7. Q9LVM0 is a putative receptor kinase containing five LRRs, and Q9FKH7 is another LRR receptor-like protein kinase. These 2 sequences are highly similar to each other with the sequence identity of ~50% (see Fig. S1). The flanking regions of the phosphorylatable threonines in these two proteins are almost identical (also see Fig. S1). Therefore, the phosphorylation of these 2 residues should be determined by similar mechanisms. To investigate the factors influencing the phosphorylation, the disorder and RSA scores of Q9LVM0 are plotted in Figure 5. From the disorder profile (which is shown by blue curve in Fig. 5A), it is clear that although protein has low disorder score in the vicinity of the phosphorylatable Thr580, the entire C-terminal region is very flexible starting at residue 560 as evidenced by the extremely high fraction of residues (~80%) that

![Figure 6. Disorder and RSA prediction for Q8VYM2 (AT5G43350). The dark red horizontal bars in the middle are transmembrane motifs. Blue curve is disorder prediction by PONDR-VLXT. Gray curve is RSA prediction by NetSurfP. Pink stars are phosphorylated residues (T263, S509, and S552) labeled on both disorder and RSA prediction.](image-url)
have disorder score higher than 0.5. However, the sequence of the region directly flanking the phosphorylation site is enriched in aliphatic, aromatic, and charged residues. Therefore although this region is predicted to have lower disorder score, it can still be globally flexible.

Since this region is also predicted to be an α-helix by NetSurfP, we can imitate the spatial locations of the amino acids by using the so-called Wenxiang diagram which helps intuitively analysis on the disposition of amphipathic α-helices in heteropolar environments.\(^6,47\) (see Fig. 5B). From this diagram it is clear that the hydrophobic and charged residues are spatially localized at different sides of an α-helix. Besides, even though being predicted to be buried, the phosphorylatable Thr is located on the surface of this amphipathic α-helix. Therefore, the side-chain of Thr can be much more flexible and exposed than the neighboring backbone atoms. The same situation can also be observed for Thr567 of Q9FHK7 (see Fig. S2).

Discussion

Analyzing the structural properties of the kinases and the phosphorylation sites of target proteins is important since the efficient phosphorylation requires a conformational match originated from the coordinated movement of both the kinase active site residues and the substrate. The structural flexibility of kinases has been well recognized. In this study, we summarized the structural properties of the region flanking phosphorylation site of the specific substrates, namely transmembrane proteins from *Arabidopsis thaliana*. The reasons the only *A. thaliana* transmembrane proteins were chosen for the analysis reported in this manuscript are: (1) *A. thaliana* is a model plant that has been studied extensively and is still attracting a lot of attention, which makes the future experimental validation much easier; (2) the phosphorylation data of this set of proteins seem to be more reliable since the data have been cross-validated by different groups as stated in the database; (3) the transmembrane proteins in *A. thaliana* play important signaling roles in detecting environmental stimuli; (4) our previous studies on transmembrane proteins indicates that transmembrane proteins have some unique features in term of protein intrinsic disorder; (5) large scale data set may contain large-scale errors that make the analysis more difficult.

Our analysis revealed that both the structural flexibility and surface exposure of local region in the close vicinity of the phosphorylation sites are critical contributors to the productive phosphorylation process. This observation is complementary to the traditionally accepted dependence of the phosphorylation efficiency on the protein primary structure. However, beyond their amino acid sequences (or primary structures), proteins are characterized by various “higher order” structural properties, such as secondary structure, accessible surface area, (structural) intrinsic disorder, and 3D structure. This study focused more on those “higher order” structural properties, than on the traditionally analyzed sequence information. The analysis clearly showed that the broader structural viewpoint provides additional rationale for the molecular mechanisms of protein phosphorylation.

Although new phenomena are discovered in this study, the limited number of reliable phosphorylatable residues in our data set limited the depth of the residue-specific analyses. As shown in Table 1, there are only 17 and 2 phosphorylatable Thr and Tyr residues in proteins we analyzed. Therefore, subsequent studies are needed for gaining more information on the structural prerequisites for phosphorylation of specific amino acids. However, it should be noted that the phosphorylated tyrosine constitutes only several percent of phosphorylatable residues across the eukaryote proteomes.\(^19,40,48,49\) By taking into consideration that only about 10% of the phosphorylated proteins in *A. thaliana* are transmembrane proteins, the actual number of phosphorylated tyrosine residues cannot be expected to be high.\(^19\)

It is easy to imagine that the actual phosphorylation event can represent a very complicated process. For example, based on an intuitive analysis of the PONDR-VLXT and RSA profiles (see Fig. 3A), Tyr31 of Q42438 seems to be a difficult phosphorylation target, since this residue is located within a region predicted to be structured. However, according to the PONDR-FIT analysis (Fig. 3C), this region is apparently more flexible than one could expect from the inspection of the PONDR-VLXT profile. Intriguingly, recent studies revealed that the close neighbor of Tyr31, the Q42438 Ser36, is a phosphorylatable residue.\(^20,51\) This observation provides a possible explanation for the Tyr31 phosphorylation mechanism. According to our analysis, Ser36 is as rigid as Tyr31, but has larger RSA. Therefore, it is very likely that Ser36, being more solvent exposed than Tyr31, can be phosphorylated first. Following this phosphorylation event, the local polarity of the region will be significantly changed. Since there are only 5 residues between Tyr31 and Ser36, the local environment of Tyr31 may also be changed simplifying the subsequent phosphorylation of this tyrosine residue.

Similar situation might exist in F4KD71 as well. In the database, Thr556 is the only phosphorylatable site in the protein. However, Tyr566 and Ser568 were also reported to be phosphorylated.\(^52\) These 3 residues are close to each other on the sequence and phosphorylation of one of them can synergistically affect accessibility of two other residues.

In addition to the influence of the sequentially neighboring residues, the effects of the residues that are not sequential neighbors but are spatial neighbors are of a special interest. For example, Q9LVM0 has two phosphorylation sites: Ser360 and Thr580. Ser360 is located at the beginning of the kinase domain, whereas Thr580 is positioned at the end of the kinase domain. Although these two sites are sequentially remote, the actual spatial distance between them is not determined since structure of Q9LVM0 is not known. However, the kinase domain of Q9LVM0 is similar (with the sequence identity of ~30%) to several other proteins whose 3D structures have been resolved. In these structures, the N- and C-termini are positioned far away from each other. Therefore, it is unlikely that the phosphorylation of S360 and T580 of Q9LVM0 may influence each other.

Another example is found in an inorganic phosphate transporter Q8VVM2 as shown in Figure 6. Q8VVM2. This protein has 12 transmembrane helices. Both the N- and C-termini of Q8VVM2 are located inside the cell. This protein has 3
phosphorylation sites: Thr263, Ser509, and Ser520, all located in its cytoplasmic regions. Since Ser509 and Ser520 are not far away from each other, one might expect the existence of synergistic effect of phosphorylation of 1 residue on the phosphorylation efficiency of another. In our previous study on methionine oxidation, we proposed that neighboring methionines can be oxidized sequentially in a specific order. The same phenomenon was also described for protein carbonylation. Therefore, the question is whether the phosphorylation of these neighboring Ser509 and Ser520 residues has specific order. The importance of this question is determined by the fact that the functionality of this phosphate transporter can be controlled by various phosphorylation processes. The related question is whether phosphorylation of Thr263 might influence the phosphorylation of Ser509 and/or Ser520 and vice versa. Since these 3 residues are cytoplasmic, their actual spatial distances could be very small. If this hypothesis is correct, then they will be able to affect each other. However, similar to other cases considered above, the available experimental are rather limited. Therefore, further studies are needed to better understand the phosphorylation mechanisms of this interesting protein.

The explanation for the above 2 different scenarios of phosphorylation is actually supported by the observation that many proteins undergo sequential or hierarchical phosphorylation. The sequential phosphorylation is originally proposed to explain the phosphorylation of an unsuitable site, which can be affected by the phosphorylation of another sequentially-remote site by a different kinase. Here, in our analysis, we further elaborated the process into 2 specific cases: influence by sequentially neighboring residues and influence by spatially neighboring residues.

Materials and Methods

Data set. The information on phosphorylatable sites in transmembrane proteins of Arabidopsis thaliana were collected from PhosPhAT database. This database contains information on Arabidopsis phosphorylation sites identified by mass-spectrometry experiments performed by different research groups. Only transmembrane proteins were selected for our further analysis. After removing redundant and low-confidence records, 52 proteins and 75 phosphorylation sites were selected. None of these 52 proteins have PDB structures.

Disorder prediction. The per-residue disorder scores were evaluated by PONDR-VLXT and PONDR-FIT. PONDR-VLXT is very sensitive to the changes on local amino acid composition, and PONDR-FIT is one of the most accurate disorder predictors.

Secondary structure (SS) and accessible surface area (ASA) predictions. NetSurfP was applied to predict both secondary structures and accessible surface areas of proteins under study. For each residue in the analyzed protein, the output of secondary structure prediction from NetSurfP has three values, indicating the probabilities of formation of α-helix, β-sheet, and coil. Therefore, secondary structure type with the highest probability was assigned to the corresponding residues. The accessible surface area was predicted in 2 forms: the Relative Surface Accessibility (RSA) and Absolute Surface Accessibility (ASA). ASA is the real value, while RSA is defined as the ratio of actual ASA of a given residue in a specific 3D structure to the maximum possible ASA_{max} of the same type of amino acid calculated from a tri-peptide of this amino acid flanked by either glycine or alanine.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Supplemental Material

Supplemental material may be found here: http://www.landesbioscience.com/journals/idp/article/25713

References

1. Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet 1992; 26:71-112; PMID:1482126; http://dx.doi.org/10.1146/annurev.ge.26.120192.000443
2. Wolanin PM, Thomason PA, Stock JB. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 2002; 3:S3013; PMID:12372152; http://dx.doi.org/10.1186/gb-2002-3-10-reviews3013
3. Besant PG, Atwood PV, Piggott MJ. Focus on phosphoarginine and phosphohistidine. Curr Protein Pept Sci 2009; 10:536-50; PMID:19751195; http://dx.doi.org/10.2174/13892030978963059
4. Ashcroft M, Kubbutat MH, Vousden KH. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 1999; 19:1751-8; PMID:10122862
5. Burnett G, Kennedy EP. The enzymatic phosphorylation of p53 by a different kinase. J Biol Chem 1954; 211:969-80; PMID:12015977
6. Bourret RB, Borkovich KA, Simon MI. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem 1991; 60:461-41; PMID:1883200; http://dx.doi.org/10.1146/annurev.bi.60.070191.002153
7. Zhang ZY. Structure, mechanism, and specificity of protein-tyrosine phosphatases. Curr Top Cell Regul 1997; 35:21-68; PMID:9192179; http://dx.doi.org/10.1016/S0070-2137(97)80000-7
8. Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biochem 1998; 67:1533-64; PMID:9646861; http://dx.doi.org/10.1146/annurev.biochem.67.1.1533
9. Fiedler D, Braberg H, Melta M, Chechik G, Cagan G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, et al. Functional organization of the S. cerevisiae phosphorylation network. Cell 2009; 136:952-63; PMID:1929370; http://dx.doi.org/10.1016/j.cell.2008.12.039
10. Huse M, Kurrian J. The conformational plasticity of protein kinases. Cell 2002; 109:275-82; PMID:1205977; http://dx.doi.org/10.1016/S0092-8674(02)00741-9
11. Cohen P. The role of protein phosphorylation in human health and disease - Delivered on June 30th 2001 at the FEBS Meeting in Lisbon. Eur J Biochem 2001; 268:5003-10; PMID:11588961; http://dx.doi.org/10.1046/j.1432-1033.2001.012473.x
12. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002; 20:301-5; PMID:11875433; http://dx.doi.org/10.1038/nbt.302-301
13. Pracek J, Devgan G, Michaud G, Zhu H, Zhu XW, Pasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, et al. Global analysis of protein phosphorylation in yeast. Nature 2005; 438:679-84; PMID:16319894; http://dx.doi.org/10.1038/nature04187
14. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408:796-815; PMID:11130711; http://dx.doi.org/10.1038/35048692

www.landesbioscience.com Intrinsically Disordered Proteins e25713-9
55. Alonso A, Botin J, Nunez M, et al. Characterization of a new family of protein kinases in Arabidopsis thaliana. Plant J 1998; 15:383-92.
56. Omura T, Sato Y, Miura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. FEBS Lett 1999; 453:127-31.
57. Todorovska E, Dvorak J, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Physiol 2000; 123:1159-68.
58. Zhang M, Li X, Zhu Y, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Mol Biol 2001; 47:293-304.
59. Dai Z, Lu X, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. FEBS Lett 2001; 507:39-43.
60. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Cell Physiol 2002; 43:391-5.
61. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. FEBS J 2003; 270:1338-45.
62. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2004; 279:26344-50.
63. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Physiol 2005; 137:1316-28.
64. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Mol Biol 2006; 61:515-33.
65. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. FEBS J 2007; 274:4804-14.
66. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2008; 283:27088-99.
67. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Physiol 2009; 151:1012-24.
68. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2010; 285:25439-49.
69. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Physiol 2011; 155:1867-77.
70. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Physiol 2012; 160:1940-50.
71. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. Plant Physiol 2013; 162:1577-90.
72. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2014; 289:23432-41.
73. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2015; 290:2126-36.
74. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2016; 291:11812-21.
75. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2017; 292:11812-21.
76. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2018; 293:11812-21.
77. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2019; 294:11812-21.
78. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2020; 295:11812-21.
79. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2021; 296:11812-21.
80. Omura T, Nishimura M, et al. Characterization of a novel protein kinase in Arabidopsis thaliana. J Biol Chem 2022; 297:11812-21.