02. Beyond B Antigen Coverage: The Potential of the 4CMenB Vaccine for Cross-Protection Against Pathogenic Neisseria Infections

Yara Ruiz Garcia, MSc, PhD; Woo-Yun Sohn, MD, MD; Mariagrazia Pizza, Biological Sciences, PhD; Rafik Bekkat-Berkani, MD, MSc; GSK, Rockville, Maryland; GSK Vaccines, Siena, Toscana, Italy

Session: P-01. Adolescent Vaccines

Background. Two human pathogenic Neisseria species exist: N. meningitidis (Nm) and N. gonorrhoeae (Ng). Although causing disparate clinical syndromes, invasive meningoocccal disease (IMD) and gonorrhea, they are genetically similar and share key protein antigens. The 4CMenB vaccine, licensed against meningoocccal B disease, comprises 4 antigenic components (factor H binding protein (fHbp), variant 1.1, serogroup B Neisseria hirabin binding antigen (NHBA) peptide 2, Neisserial adhesin A (NadA) variant 3; and Porin A (PorA) P1.4), and potentially protects against non-B invasive meningoocccal and gonococcal strains. In this review, we summarize the similarities between these antigens and those in Nm serogroups A, C, W, X and Y.

Methods. Published data in humans were analyzed to conduct a narrative literature review of the potential extent of meningococcal vaccine-induced protection against non-B meningococcal strains and Ng. Techniques applied to indirectly measure this effect are based on genotype-phenotype modelling, strain coverage, bactericidal killing and direct impact on disease reduction.

Results. Data were identified from countries in America, Europe, Africa and Oceania. The genes encoding for fHbp and NHBA are also present in strains belonging to the five non-B serogroups, while NADa is present in several strains of serogroups C, W and Y, and PodA P1.4 is mainly in serogroup W. At the genome level, Ng and Nm share up to 90% homology. Most of the outer membrane vesicle antigens, like Piqmp, OmpA, BamA, NspA, MtrE, MetQ, LbpA, PorB, FetA, Opca and NHBA, are highly conserved in Ng. In addition, a synergistic effect might enhance immunogenicity against non-B serogroups as shown against serogroup B.

Conclusion. 4CMenB components are present and conserved in several Ng and Nm strains. Recent results demonstrate that 4CMenB reduces MenW disease incidence in infants and might generate cross-protection against other non-B serogroups. In addition, 4CMenB has been shown to be effective in reducing gonococcal infections in adolescents. Research on future genomic and proteomic characterizations of IMD and sporadic meningococcal disease, comprises 4 antigenic components (factor H binding protein (fHbp), variant 1.1, Neisseria hirabin binding antigen (NHBA) peptide 2; Neisserial adhesin A (NadA) variant 3; and Porin A (PorA) P1.4), and potentially protects against non-B invasive meningoocccal and gonococcal strains. In this review, we summarize the similarities between these antigens and those in Nm serogroups A, C, W, X and Y.

03. Immunogenicity and Safety of a Quadrivalent Meningococcal Conjugate Vaccine (MenACYW-TT) Administered as a Booster Dose in Adults and Adolescents Vaccinated Against Meningococcal Disease 3–6 Years Earlier

James Peterson, MD; Carmen Deseda, MD; Katie Julien, MD; Betzana Zambrano, MD; Germán Áñez, MD; Sue Jayuan, MSc; John Pan, PhD; Habiba Arroum, MD; Kucku Varghese, PhD; Emilia Jordanov, MD; Mandeep S. Dhingra, MD; Rafik Bekkat-Berkani, MD, MSc; GSK group of companies (Employee, Shareholder) Marcio Zelfo, MD; John M. Wilson, PhD; Emilia Jordanov, MD; Mandeep S. Dhingra, MD; Rafik Bekkat-Berkani, MD, MSc; GSK group of companies (Employee, Shareholder);

Session: P-01. Adolescent Vaccines

Background. Booster doses of meningococcal conjugate vaccines may induce long-term protection against invasive meningococcal disease. MenACYW-TT [MenQuadfl] is a quadrivalent meningococcal conjugate vaccine, licensed for use in ages 8 years and older in both the US and other countries in Europe and other countries. The vaccine is also licensed in ages 12 months and older in Japan. The vaccine is well-tolerated and had similar safety profiles regardless of the priming vaccine. The safety profiles were comparable regardless of the MenB vaccine co-administered with MenACYW-TT vaccine.

Conclusion. MenACYW-TT used as priming vaccine was able to demonstrate persistence of immune response 3–6 years later. MenACYW-TT elicits robust booster responses in adults and adolescents primed with MenACYW-TT or MCV4-CRM

Disclosures. Betzana Zambrano, MD, Sanofi Pasteur (Employee) German Áñez, MD, Sanofi Pasteur (Other Financial or Material Support, Former employee) Sue Jayuan, MSc, Sanofi Pasteur (Independent Contractor) Judy Pan, PhD, Sanofi Pasteur (Employee) Habiba Arroum, MD, Sanofi Pasteur (Employee) Kucku Varghese, PhD, Sanofi Pasteur (Employee) Emilia Jordanov, MD, Sanofi Pasteur (Employee, Shareholder) Mandeep S. Dhingra, MD, Sanofi Pasteur (Employee, Shareholder)

04. Immunogenicity and Safety of a Quadrivalent Meningococcal Conjugate Vaccine (MenACYW-TT) Administered in Meningococcal Vaccine-Naive Participants Across a Broad Age Range (2-55 years) in Japan

Osamu Matsuoka, MD; Mugen Ujiie, MD; Hitoshi Kukuchi, MD; Danaya Chansinghakul, MD; Takahiro Inoue, MSc; Kucku Varghese, PhD; Nuchra Sirisupthimit, MSc; Tomoyuki Hashiguchi, MSc; Betzana Zambrano, MD; Takahiro Nakama, MD; Carina Frago, MD; Emilia Jordanov, MD; Polychrom Clinic, Tokyo, Japan; Center Hosp. of the Nat’l Ctr. for Global Health & Medicine, Tokyo, Japan; Meiitsu Hospital, Aichi, Aichi, Japan; Sanofi Pasteur, Bangkok, Nonthaburi, Thailand; Sanofi K.K., Tokyo, Japan

Session: P-01. Adolescent Vaccines

Background. MenACYW-TT [MenQuadfl] is a quadrivalent meningococcal conjugate vaccine, licensed for use in ages 2 years and older in USA. The vaccine is also licensed in ages 12 months and older in EU and certain other countries. We evaluated the safety and immunogenicity of MenACYW-TT compared to a licensed quadrivalent meningococcal conjugate meningococcal vaccine (MenACYW-DT [Menactra]) in Japanese children, adolescents and adults (2-55 years of age).

Methods. A phase III modified double-blind, randomized study (NCT04368429) to evaluate the immunogenicity and safety of a single dose of MenACYW-TT versus MenACYW-DT was conducted in 360 participants (ratio 1:1) between ages 2 and 55 years in Japan. Serum bactericidal assays with human complement (hSBA) were used to measure antibodies against vaccine serogroups at baseline (Day 0) and 30 days post-vaccination (D30). Safety data were collected up to 30 days post-vaccination.

Results. Non-inferiority of immune responses for all four serogroups, based on percentages of participants achieving hSBA vaccine seroresponse as primary endpoint, was demonstrated for MenACYW-TT compared to MenACYW-DT at Day 30 in comparison to baseline: 85.6% vs 65.4% for serogroup A, 96.6% vs 62.6% for serogroup C, 87.4% vs 49.2% for serogroup W, and 97.7% vs 63.5% for serogroup Y. The proportions of participants with hSBA GMTs > 1.8 following MenACYW-TT administration were higher than those after MenACYW-DT administration for serogroups C (97.9% vs 81.0%), W (99.4% vs 91.1%) and Y (100% vs 89.4%) and comparable for serogroup A (99.6% vs 92.7%). The hSBA GMTs were higher following administration of MenACYW-TT for all four serogroups. Immunogenicity results in participants 10 to 17 years of age and ≥ 18 years of age were comparable to those in the whole population (2.5 years). The safety profiles of MenACYW-TT and MenACYW-DT were comparable. There were no immediate adverse events (AEs), no AEs leading to study discontinuation, and no vaccine-related serious adverse events reported in the study.

Conclusion. MenACYW-TT vaccine was well tolerated and demonstrated a non-inferior immune response compared to that for the licensed MenACYW-DT vaccine when administered as a single dose to meningococcal vaccine-naive children, adolescents, and adults in Japan.

Disclosures. Otsami Matsuoka, MD, Sanofi Pasteur (Scientific Research Investigator, Research Grant or Support) Mugen Ujiie, MD, Sanofi Pasteur (Scientific Research Investigator, Research Grant or Support) Hitoshi Kukuchi, MD, Sanofi Pasteur (Scientific Research Investigator, Research Grant or Support) Danaya Chansinghakul, MD, Sanofi Pasteur (Employee) Takahiro Inoue, MSc, Sanofi Pasteur (Employee) Kucku Varghese, PhD, Sanofi Pasteur (Employee) Nuchra Sirisupthimit, MSc, Sanofi Pasteur (Employee) Tomoyuki Hashiguchi, MSc, Sanofi Pasteur (Employee) Betzana Zambrano, MD, Sanofi Pasteur (Employee) Takahiro Nakama, MD, Sanofi Pasteur (Employee) Carina Frago, MD, Sanofi Pasteur (Employee, Shareholder) Emilia Jordanov, MD, Sanofi Pasteur (Employee, Shareholder) Mandeep S. Dhingra, MD, Sanofi Pasteur (Employee, Shareholder)