Effects of the equilibrium model on impurity transport in tokamaks

A. Skyman, L. Fazendeiro, D. Tegnered, H. Nordman, J. Anderson and P. Strand

Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
E-mail: andreas.skyman@chalmers.se and luisfa@chalmers.se

Received 4 June 2013, revised 8 November 2013
Accepted for publication 14 November 2013
Published 17 December 2013

Abstract
Gyrokinetic simulations of ion temperature gradient mode and trapped electron mode driven impurity transport in a realistic tokamak geometry are presented and compared with results using simplified geometries. The gyrokinetic results, obtained with the GENE code in both linear and non-linear modes are compared with data and analysis for a dedicated impurity injection discharge at JET. The impact of several factors on heat and particle transport is discussed, lending special focus to tokamak geometry and rotational shear. To this end, results using \(s-\alpha \) and concentric circular equilibria are compared with results with magnetic geometry from a JET experiment. To further approach experimental conditions, non-linear gyrokinetic simulations are performed with collisions and a carbon background included.

The impurity peaking factors, computed by finding local density gradients corresponding to zero particle flux, are discussed. The impurity peaking factors are seen to be reduced by a factor of \(\sim 2 \) in realistic geometry compared with the simplified geometries, due to a reduction of the convective pinch. It is also seen that collisions reduce the peaking factor for low-\(Z \) impurities, while increasing it for high charge numbers, which is attributed to a shift in the transport spectra towards higher wavenumbers with the addition of collisions. With the addition of roto-diffusion, an overall reduction of the peaking factors is observed, but this decrease is not sufficient to explain the flat carbon profiles seen at JET.

Keywords: fusion, plasmas, gyrokinetics, turbulence, magnetic geometry, tokamaks, impurities

1. Introduction
Impurity transport is a matter of crucial relevance for tokamak fusion plasmas [1–32] due to the contribution of impurities to radiation losses and plasma fuel dilution. Impurities can originate either from the sputtering of wall and divertor materials or from deliberate impurity injection in order to reduce power load. The impurities in a tokamak thus cover a large range in charge number \(Z \), making it necessary to study the scaling of impurity transport with \(Z \). This is even more relevant after the installation of the new ITER-like wall at JET [33], with its beryllium wall and tungsten divertor. In addition, a typical plasma discharge already has such a low particle density that even a modest amount of impurities can significantly dilute the plasma, thereby reducing the power output. Since most impurity sources are located at the edge of the tokamak, the resulting impurity profile in the core of a given discharge will depend on the balance between diffusive and advective processes.

It is well known empirically that shaping of the plasma has a beneficial effect on energy confinement, the Troyon limit and the Greenwald density limit. For example, elongation (\(\kappa \)) is one of the factors considered in empirical scaling laws (e.g. [34]) of the energy confinement time. Only in recent years, however, has the impact of the geometric configuration on micro-turbulence been rigorously ascertained, e.g. from simulations of the gyrokinetic equations [35–39].

It has been observed that the heat flux scales with elongation at fixed average temperature gradients, and that shaping effects enhance residual zonal flows, thus increasing the non-linear (NL) critical temperature gradient [36]. Elongation has been seen to be the dominant effect on micro-turbulence on ion temperature gradient (ITG) and trapped electron (TE) drift-wave instabilities, compared with, e.g., triangularity, up–down asymmetry and Dimits shift [38]. However, in spite of these results, the effects of the equilibrium model on impurity transport have not been studied in any detail.

Previous work in this area includes [21–23], in which the impurity transport in a dedicated impurity injection experiment at JET was studied using the \(s-\alpha \) geometry. It was shown that the profile steepness parameter of the injected impurities was qualitatively reproduced by the simulations. On the other hand, a discrepancy was found for the background carbon profile which was too steep at mid-radius compared with the experimental profile.

In this study, an experimental equilibrium is used and compared with results using simpler \(s-\alpha \) and circular
equilibria [37]. Since the impurity profile is a result of a balance between diffusion and advection, where the main advective term is the inward curvature pinch, a strong dependence on the equilibrium model may be expected. In addition, a more realistic physics description, including the effects of rotational shear on the instabilities and impurity transport (roto-diffusion), is investigated using gyrokinetic simulations. Realistic NL gyrokinetic simulations are performed taking into account collisionality, and the presence of a 2%C background, consistent with the conditions applied for an impurity injection experiment at JET.

The paper is organized as follows. Section 2 describes the gyrokinetic simulations performed, and the fundamental concepts of impurity transport. Section 2.2 describes the particular JET discharge considered. In section 3, results are presented, along with a discussion on the scaling of the impurity peaking factor with impurity charge Z for the various models considered. A conclusion then follows in section 4.

2. Background

2.1. The gyrokinetic model

The gyrokinetic simulations in this study were performed using the gyrokinetic turbulence code GENE1 [40, 41] where a flux-tube domain was considered. This is a Eulerian-type code (i.e. employing a fixed grid in phase space), which allows for arbitrarily long simulation times. Both quasi-linear (QL) and NL simulations including kinetic ions and electrons, and at least one impurity species were performed. All impurities were treated as fully kinetic species with low concentrations. For studying the effects of collisions, we considered the GENE implementation of the Landau–Boltzmann-type collision operator [41].

For the simulation domain, all three geometries used a flux tube with periodic boundary conditions in the perpendicular plane. The NL simulations were performed using a 96 × 96 × 32 grid in the normal, bi-normal and parallel spatial directions, respectively; in the perpendicular and parallel momentum directions, a 12 × 48 grid was used. For linear and QL computations, a typical resolution was 12 × 32 grid points in the normal and parallel directions, with 12 × 64 grid points in momentum space. To validate the choice of resolutions, convergence tests for mode structure and spectra were performed.

The NL simulations were typically run up to $t = 600a/c_s$ for the experimental geometry scenario, where a represents the minor radius and $c_s = \sqrt{T_e/m_e}$. For the ‘full scenario’, in which a 2%C background and collisions were both present, the simulation time was instead $t \approx 450a/c_s$. This shorter time span is due to the much more computationally intensive nature of the second scenario, by a factor of $\sim 2–3$. The increased numerical cost was mainly due to collisions, though in part also due to the addition of the 2%C background.

2.2. Experimental profiles and parameters

The physical parameters used in the simulations are presented in table 1 and were chosen so as to be consistent with the experimental values taken from the JET database for discharge #67330. This was previously analysed in [21], where the $s-\alpha$ geometry model was used. The discharge was part of an impurity-dedicated set of discharges with low MHD activity [32]. In these, extrinsic impurities (Ne, Ar and Ni) were injected via laser ablation and gas injection. Diffusivity D_2 and convective velocity V_{z} were determined by matching spectroscopic data with results obtained from predictive transport codes (see [21] and in particular figure 4).

T_1/T_e	1.02
β	1.28×10^{-3}
s	0.75
q	2.20
$\varepsilon = r/R$	0.17
α	0.126
κ	1.37
δ	0.044
$\kappa_0\rho_i$	0.2–0.6
$n_e, n_i + Z n_Z$	1.0×10^{19} m$^{-3}$
n_Z (trace)	$10^{-5} \times 10^{19}$ m$^{-3}$
Z	2–74
R/L_{n_e}	2.7
R/L_{T_e}, R/L_{T_Z}	5.6
R/L_{ν_e}	5.6
V_{z}	0.28 × 10$^{-3}$
$\gamma c_{T_e} B$	0.06
T_{e}	1.55 k eV
B	3.04 T

2.3. Magnetic equilibrium

The gyrokinetic simulations were performed in three different geometries: $s-\alpha$, concentric circular [37] and an MHD
For trace impurities, equation (4) can be uniquely written \[21\] as a linear function of $n_{Z,v}$ offset by a convective velocity or ‘pinch’ V_Z:

$$\Gamma_Z = -D_Z \nabla n_Z + n_Z V_Z \Leftrightarrow \frac{R \Gamma_Z}{n_Z} = D_Z \frac{R}{L_{n_Z}} + RV_Z, \quad (1)$$

where D_Z is the impurity diffusion coefficient, and V_Z is the impurity convective velocity, which includes roto-diffusion in the gyrokinetic treatment. Both D_Z and V_Z are independent of ∇n_Z, and the gradient of zero impurity flux is referred to as the impurity peaking factor (PF). Inserting $R/L_{n_Z} = PF$ into the linearized equation (1), it can be seen that the peaking factor quantifies the balance between convective and diffusive impurity transport:

$${PF} = -\frac{R V_Z}{D_Z}. \quad (2)$$

Specifically, the sign of the peaking factor is determined by the sign of the pinch, meaning that $PF > 0$ is indicative of a net inward impurity pinch, giving a peaked impurity profile. Conversely, if $PF < 0$ the net impurity pinch is outward, leading to a hollow impurity profile (also called flux reversal).

For trace impurities, equation (1) is linear in R/L_{n_Z}, and the peaking factor is found by calculating the impurity particle flux (Γ_Z) for a range of R/L_{n_Z} and solving equation (1) for ∇n_Z. For non-trace species, D_Z and V_Z depend on R/L_{n_Z}, and the peaking factor has to be found by explicitly seeking the gradient yielding zero particle flux.

Much of the observed difference between the TE and ITG mode dominated cases can be understood from the convective velocity V_Z in equation (1). To the lowest order in Z^{-1}, the pinch contains two terms that depend on Z \[16\]:

- thermal diffusion (thermopinch):
 - $V_{VTZ} \sim \frac{R}{L_{VTZ} \omega_T}$, inward for TE mode ($V_{VTZ} < 0$), outward for ITG mode ($V_{VTZ} > 0$),

- parallel impurity compression:
 - $V_{1Z} \sim \frac{\kappa}{Z} k_1^2 \sim \frac{\omega_T}{\Omega_p} \approx \frac{1}{Z}$,
 - outward for TE mode ($V_{1Z} > 0$), inward for ITG mode ($V_{1Z} < 0$).

This definition is closely related to the Péclet number \[42, 43\].
Here \(1/k_\lambda \) represents the wavelength of the parallel structure of the turbulence. Due to the ballooning character of the modes considered, this is proportional to the safety factor \(q \). In addition, the convective velocity contains the curvature pinch, which to lowest order is independent of the impurity charge [21].

The \(Z \) dependence in the parallel impurity compression is expected to be weak, since the mass number is approximately \(A_Z \approx 2Z \) for an impurity species with charge \(Z \), and for the high \(q \) considered, this term is expected to be small compared with the other pinch contributions. The thermodiffusive contribution, however, can dominate the transport for low-\(Z \) impurities (such as the helium ash). For lower charge numbers, the second-order correction to the thermal pinch can become important:

\[
V_T \sim \left(\frac{\omega_n T_e}{T_e Z} - \frac{7}{4} \left(\frac{T_e}{T_e Z} \right)^2 \right) \frac{R}{L_T},
\]

where the second-order term is inward, independent of the mode direction, and finite Larmor radius effects are neglected [16, 21, 44, 45].

The direction of the contributions to the pinch is governed mainly by the considered mode’s direction of rotation, which in the considered cases has a different sign for TE and ITG modes [45]. Expanding the convective velocity in (1) into thermal diffusion and ‘pure convection’,

\[
\Gamma_Z = -D_Z \nabla n_Z + n_Z \left(D_T Z \nabla T_Z + V_{p,Z} \right),
\]

their relative contributions to the total peaking factor can be uniquely determined for trace impurities, using the method described in, e.g., [46]. Here \(V_{p,Z} \) includes the parallel compression and curvature pinches. In the presence of sheared toroidal rotation (\(\omega_\phi \)), these terms are joined by a roto-diffusive term, which is proportional to \(d\omega_\phi/dr \).

3. Results and discussion

3.1. Background turbulence and transport

3.1.1. Linear eigenvalue spectra. Using GENE, the linear eigenvalues in the studied geometries were calculated at mid-radii of JET L-mode discharge #67330 for a range of different wave numbers. The resulting spectra are compared in figure 3. The results in figure 3(a) show an overall destabilization and shift towards higher \(k_\theta \rho_s \) when moving from \(s-\alpha \) to more realistic geometries, consistent with the results reported in [37, 47]. For triangularity of the same order as the experimental value (\(\delta = 0.044 \)), the effect on the eigenvalues of \(\delta \) was found to be minute, and it is therefore surmised that the elongation is the main factor behind the observed results.

Adding more realism in the form of collisions and a 2% carbon background, in accordance with the ‘full scenario’ considered in the NL runs, both have a stabilizing effect, as can be seen in figure 3(b). The figure also shows that the stabilizing effect is larger for the addition of collisions than for the carbon background, in particular for lower values of \(k_\theta \rho_s \), where most of the transport normally occurs. In the second figure, the spectra for the ITG mode is supplemented with those of the sub-dominant TE mode, except in the full scenario, where it is completely stabilized, with \(\gamma < 0 \) for the wavenumbers considered.

The effects of sheared toroidal rotation on the ITG growth rate in the circular and experimental equilibria are shown in figure 4. Both the stabilizing perpendicular velocity shear and the stabilizing parallel shearing rate are included. For the value of \(q \) considered, the mode is destabilized with increasing \(\gamma_{K/B} \). This is because the stabilising component is proportional to \(1/q \), as a result of which the destabilizing effect dominates in the present case [48]. The shearing rate in the considered JET experiment (marked in the figure) is, however, too small to have a significant impact on the mode growth, and is left out of the NL treatment below.
3.1.2. NL transport and fluctuation levels. By comparing the transport levels for the different geometries, the difference in the turbulence can be assessed qualitatively. Time series and wavenumber spectra of heat and particle flux (Q and Γ, respectively) for the main ions were produced from NL GENE simulations. The results are presented in figure 5.

As can be seen in figures 5(a) and (b), the turbulent fluctuation level is increased when moving from $s-\alpha$ to a realistic magnetic geometry. The same trend holds true for the spectra in figures 5(c) and (d). Simulations using circular geometry [35, 37] place both the spectra and time series between the $s-\alpha$ and experimental case without collisions. This is consistent with the linear eigenvalues in figure 3, and with the results reported in [37]. With the addition of collisions and background carbon, the fluctuation levels are brought down, due to a general reduction of the turbulence, as seen in the eigenvalue spectra, figure 3(b). The particle flux (Γ) is more sensitive to collisions than the heat flux (Q), and therefore retains a higher fluctuation level, despite the lower growth rates.

In the case with full realism, including collisions and carbon background, the fluctuation levels are lowered to an intermediate level, consistent with higher dissipation from collisions. This is also consistent with the linear eigenvalues presented in figure 3, in which the growth rates for the ‘full scenario’ have an intermediate value between the circular (or $s-\alpha$) and the case where only effects of realistic geometry are considered. As can be seen in figures 5(a) and (b), the full case was simulated for a shorter time span, due to its larger computational cost, mainly due to the inclusion of collisions, but also in part due to the 2%C background; see section 2.1.

We note that the global confinement time in both L-mode and H-mode plasmas scales favourably with elongation, opposite to the trend found here for the core transport. This is likely a result of edge physics not included in this study [49].

In addition, the zonal flow activity was investigated for each case. However, no significant differences were observed between the considered cases. The NL results can thus be explained qualitatively by the linear physics.

3.2. Impurity peaking factors

Simulations of impurity transport using a JET-like experimental magnetic equilibrium are compared with simulations with $s-\alpha$ and circular geometry, using the gyrokinetic code GENE. First, the effects of sheared toroidal rotation in different geometries are investigated. The effects on the impurity peaking factors are displayed in figure 6. The peaking factors for several impurity species are shown as a function of $\gamma_{E \times B}$ in the experimental equilibrium. As observed, the peaking factors are reduced by the sheared rotation. This leads to a reversal of the impurity pinch for $\gamma_{E \times B} \gtrsim 0.23$ for all but the lightest impurities ($Z \lesssim 4$) in the experimental equilibrium. In the circular geometry, the trends are the same, but the flux reversal for tungsten ($Z = 74$) is shifted to a higher rotational sharing rate ($\gamma_{E \times B} \gtrsim 0.28$). This effect, due to roto-diffusion, has been found to be a critical ingredient to include in order to reproduce the boron profile in ASDEX U [50]. For the considered discharge, however, the shearing rate is small and hence it is neglected in the NL analysis.

Next, the effects of the geometry on the scaling with impurity charge are investigated. In figure 7(a) the scaling of the impurity peaking factor (PF) with impurity charge (Z) is shown, for $s-\alpha$, circular and experimental geometries. NL gyrokinetic results are compared in figure 7(b) for added degrees of realism. Error bars in figure 7(b) correspond to a conservative standard error estimate of $\pm \sigma$. This was calculated from the NL flux data, where an effective sample size was gauged for the time series and used to estimate the error for the mean flux. This estimate was then propagated through to an error estimate for the peaking factor. The effects on the PF-scaling of adding collisions and 2%C background, consistent with the considered JET discharge, are shown in figure 7(c).

For moderate to high impurity charge, weaker scalings of PF with Z were consistently observed when departing from the $s-\alpha$ equilibrium, and the level at which PF saturates for high Z was reduced in the experimental geometry case. The lower PF levels compared with $s-\alpha$ geometry can be attributed to a reduction of the convective pinch not only due to effects of shaping, but also due to effects of finite inverse aspect ratio (ϵ), as discussed in section 2.2. To separate the effects of shaping from the inconsistent ϵ effects in the $s-\alpha$ model, simulations using GENE’s circular geometry [37] were performed. Since $\alpha \ll 1$ in the studied discharge, the difference between the results using circular and experimental equilibrium in figure 7(a) can be attributed to shaping effects, mainly due to elongation. Further, a large increase in PF was observed for low-Z impurities, most notably He impurities, in circular and experimental geometries. This is due to a reduction in the outward thermopinch in the more realistic equilibrium models, as discussed in section 3.3.

In figure 7(b), NL results using $s-\alpha$ geometry from [21] are compared with NL gyrokinetic simulations using the experimental equilibrium for two different sets of parameters. The first NL set of runs uses only the experimental geometry, whereas the full case also includes a carbon background and collisions, but neglects the effects of sheared toroidal rotation (full in figure 3). With the introduction of these two effects, PF is lowered for low Z and increased for high Z. As seen in the QL runs, the NL gyrokinetic results are lower...
than those predicted by the s-α model, though qualitative agreement is reached in the full scenario, particularly for high Z. When comparing QL and NL results, the former show a more dramatic scaling than the latter and the QL results tend to overestimate PF for high Z, as can be seen in figure 7(c).

In all models there is, as expected, a saturation of PF in the MHD equilibrium, without any added effects (expr. in figure 3). In all cases $k_\theta \rho_s = 0.4$ was used, since that is the approximate value for the maximum linear growth rate, as shown in figure 3. As with the eigenvalue spectra (figure 5(b)), it is clear that the addition of collisions to the model has a larger impact than the addition of the 2%C background. The addition of the carbon background slightly raises PF for low Z, but the addition of collisions lowers it considerably, as well as raises PF for high charge numbers, as seen for the NL runs. These results are consistent with previous observations of the importance of impurity–main ion collisions for core impurity transport [51, 52]. We note that, although a reduction is seen

![Figure 5. Time series and spectra of particle fluxes (Γ) and heat (Q) fluxes for NL GENE simulations for s-α and circular geometry, the experimental equilibrium, and the fully realistic case, with parameters as in table 1. Spectra show average over radial wavenumbers. The time series and spectra are normalized to the maximum of the corresponding growth rate, as can be seen in figure 7(c). As with the eigenvalue spectra (figure 3), in all cases $k_\theta \rho_s = 0.4$ was used, since that is the approximate value for the maximum linear growth rate, as shown in figure 3. As with the eigenvalue spectra (figure 5(b)), it is clear that the addition of collisions to the model has a larger impact than the addition of the 2%C background. The addition of the carbon background slightly raises PF for low Z, but the addition of collisions lowers it considerably, as well as raises PF for high charge numbers, as seen for the NL runs. These results are consistent with previous observations of the importance of impurity–main ion collisions for core impurity transport [51, 52]. We note that, although a reduction is seen

![Figure 6. Scaling of PF with $E \times B$ shearing rate for different impurity species in circular and shaped equilibrium for wavenumbers near the peak of the corresponding growth rate spectra ($k_\theta \rho_s = 0.3$ and $k_\theta \rho_s = 0.4$, respectively). The experimental shearing rate is indicated (vertical dashed line).]
in the peaking for carbon impurities in the realistic case, the flat or hollow profile seen in experiments is not reproduced. Although a further reduction is expected from roto-diffusion, NL simulations of the full scenario with sheared toroidal rotation still show an inward net transport of the background carbon.

3.3. Contributions to the impurity pinch

In order to gain more insight into the results presented in the last section, the contributions to the peaking factor were calculated using the method outlined in [46].

Figure 8 shows the effect of shaping on the thermodiffusive and convective contributions to the impurity peaking factor (equation (4)). It is seen that the increase in peaking factor observed for lighter impurities is mainly due to the thermpinch, where the inward second-order contribution to the thermal pinch comes into dominance over the outward term (equation (3)). This effect becomes more pronounced for lower wavenumbers—especially in the shaped equilibrium—due to the lower mode frequency (figure 3). For higher Z, however, the peaking is determined by the balance of the inward convective pinch and the diffusion. This contribution is only weakly dependent on the impurity charge and wavenumber, and is reduced substantially in the shaped equilibrium.

In figure 9 diffusivities and pinches obtained from NL GENE are compared with data from [21]. From these results we note that, in contrast to the diffusivity (D_2), the convective velocity ($|V_2|$) is lower in the realistic equilibrium as compared with the s–α case, despite the corresponding increase in fluctuation levels (figure 5(b)). This confirms the conclusion that the main reason for the reduced peaking factors obtained in the experimental equilibrium is a reduction of the convective velocity. When comparing the collisionless shaped equilibrium with the full scenario, we note that the diffusivity is decreased, as expected from the observed decrease in fluctuation levels with the addition of collisions. For high Z, the reduction in convective velocity is similar in both cases, compared with the s–α equilibrium, leading to higher peaking factors in the full scenario.

When comparing the scalings for low ($k_0 \rho_s = 0.2$) and high ($k_0 \rho_s = 0.5$) wavenumbers in the case with shaping, it is seen that the thermal diffusion is dominated completely by the higher order terms ($\sim Z^{-2}$) in the low-wavenumber case, turning mostly from outward to inward. In the full case, the NL spectrum was seen to shift towards higher wavenumbers, compared with the case with shaping but without collisions and carbon background (figure 5). The difference between the NL gyrokinetic results in figure 7(b) is therefore consistent with the interpretation that higher order terms dominate the thermal diffusion for lower wave numbers, thereby determining the shape of the peaking factor scaling.
the experimental equilibrium was used, typically by a factor of \(\sim 2 \). Comparing the diffusivity and convective pinch velocity in the different geometries, it was found that the reduction in PF was mainly due to a reduction in the convective pinch.

By decomposing the contributions to the peaking factor into thermodiffusion and pure convection, it was seen that second-order contributions to the thermal diffusion became important for low impurity charge. Whereas the first-order term is proportional to \(\alpha \), and therefore outward for ion temperature gradient modes, the second-order contribution to the pinch is always inward, and therefore leads to higher PFs. This explains the more pronounced increase in peaking observed for low charge numbers in the shaped equilibria, where the real frequency is lower.

Collisions were seen to affect the impurity peaking factors considerably, lowering PF for light impurities, while increasing it for heavy impurities. It was seen that the addition of collisions and background carbon shifted the non-linear spectra towards higher wavenumbers, associated with higher real frequencies. Therefore, the difference between the nonlinear results in the experimental equilibrium could also be understood through the second-order term in the thermopinch, which was concluded to dominate this pinch contribution for the non-collisional case.

However, even combining the effect of collisions with the effect of geometry and rotation in the most realistic simulations, the observed peaking factor for carbon was still too large to explain the rather flat C profile observed in the experiment. One explanation for this discrepancy could lie in the sensitivity of the thermopinch to the main ion and impurity temperatures, and to their gradients. A moderate variation in

4. Conclusions

The effects of the choice of equilibrium model on impurity transport in ITG/TE mode driven turbulence were studied using gyrokinetic simulations. Results were obtained and contrasted for the experimental MHD equilibrium and the simpler \(s-\alpha \) and concentric circular geometries. These results were extended by adding degrees of realism in the physics description, such as a 2\% carbon background, collisions and sheared toroidal rotation. The gyrokinetic results, obtained with the GENE code in both quasi- and non-linear modes, were compared with results from a previous study, as well as with expectations from a dedicated impurity injection L-mode discharge at JET. It is found that the different equilibria give qualitatively similar results, but with significant quantitative differences.

Linearly, a destabilization and shift of the growth rate spectrum to higher wavenumbers was seen when departing from the simpler geometries, mainly due to elongation. This resulted in larger heat and particle transport, as seen in the non-linear simulations. The addition of collisions was seen to stabilize the spectrum and reduce transport.

Figure 8. Contributions to the peaking factor (PFs) from thermodiffusion (PF_{\text{TD}}) and pure convection (PF_{\text{conv}}) as a function of impurity charge (Z). Results from QL GENE for wavenumbers as in figure 7, with and without effects of shaping (\(\kappa = 1.0, \kappa = 1.27 \)).

Figure 9. Scaling of the impurity diffusivity (D_{\text{Z}}) and total pinch (RV_{\text{Z}}) with impurity charge for \(s-\alpha \) geometry and experimental geometry, with and without collisions and 2\%C background. Data from NL GENE simulations with standard errors 10–20\% (omitted for clarity).
Acknowledgments

The main simulations were performed on resources provided on the Lindgren3 high performance computer, by the Swedish National Infrastructure for Computing (SNIC) at Parallelldatorcentrum (PDC). Additional computations were carried out on resources at the Chalmers Centre for Computational Science and Engineering (C3SE)4, also provided by SNIC.

The authors would like to thank F Jenko, T Görler, F Merz, MJ Puschel, D Told, and the rest of the GENE team at IPP-Garching for their valuable support and input.

References

[1] Frojd M., Liljestrom M. and Nordman H. 1992 Nucl. Fusion 32 419
[2] Basu R., Jessen T., Naulin V. and Rasmussen J.J. 2003 Phys. Plasmas 10 2696
[3] Estrada-Mila C., Candy J. and Waltz R.W. 2005 Phys. Plasmas 12 022305
[4] Naulin V. 2005 Phys. Rev. E 71 015402
[5] Priego M., Garcia O.E., Naulin V. and Rasmussen J.J. 2005 Phys. Plasmas 12 062312
[6] Fülöp T. and Weiland J. 2006 Phys. Plasmas 13 112504
[7] Bourdelle C., Garbet X., Imbeaux F., Casati A., Dubuit N., Guirolet R. and Parrot J. 2007 Phys. Plasmas 14 112501
[8] Dubuit N., Garbet X., Parrot J., Guirolet R. and Courcol F. 2007 Phys. Plasmas 14 042301
[9] Camenen Y., Peeters A.G., Angioni C., Casson F.J., Hornsby W.A., Snodin A.P. and Strintzi D. 2009 Phys. Plasmas 16 012503
[10] Fülöp T., Braun S. and Pusztai I. 2010 Phys. Plasmas 17 062501
[11] Futatani S., Garbet X., Benkadda S. and Dubuit N. 2010 Phys. Rev. Lett. 104 015003
[12] Hein T. and Angioni C. 2010 Phys. Plasmas 17 012307
[13] Moradi S., Tokar M.Z. and Weiland J. 2010 Phys. Plasmas 17 012301
[14] Fülöp T. and Moradi S. 2011 Phys. Plasmas 18 030703
[15] Nordman H., Singh R., Fülöp T., Eriksson L.G., Dumont R., Anderson J., Kup W., Strand P., Tokar M. and Weiland J. 2008 Phys. Plasmas 15 042316
[16] Angioni C. and Peeters A.G. 2006 Phys. Rev. Lett. 96 095003
[17] Angioni C. et al., the ASDEX Upgrade Team and JET-EDFDA Contributors 2007 Phys. Plasmas 14 055905
[18] Nordman H., Fülöp T., Candy J., Strand P. and Weiland J. 2007 Phys. Plasmas 14 052303
[19] Angioni C., Peeters A.G., Pereverzev G.V., Bottino A., Candy J., Dux R., Fable E., Hein T. and Waltz R.E. 2009 Nucl. Fusion 49 055013
[20] Fülöp T. and Nordman H. 2009 Phys. Plasmas 16 032306
[21] Nordman H., Skyman A., Strand P., Giroud C., Jenko F., Merz F., Naulin V., Tula T. and the JET-EDFDA Contributors 2011 Plasma Phys. Control. Fusion 53 105005
[22] Skyman A., Nordman H. and Strand P. 2012 Phys. Plasmas 19 032313
[23] Skyman A., Nordman H. and Strand P. 2012 Nucl. Fusion 52 114015
[24] Mollén A., Pusztai I., Fülöp T., Kazakov Y.O. and Moradi S. 2012 Phys. Plasmas 19 052307
[25] Moradi S., Pusztai I., Mollén A. and Fülöp T. 2012 Phys. Plasmas 19 032301
[26] Kazakov Y.O., Fülöp T. and Van Eester D. 2013 Nucl. Fusion 53 053014
[27] Mollén A., Pusztai I., Fülöp T. and Moradi S. 2013 Phys. Plasmas 20 032310
[28] Dux R., Neu R., Peeters A.G., Pereverzev G., Mück A., Ryter F. and Stober J. 2003 Plasma Phys. Control Fusion 45 1815
[29] Puiatti M.E. et al and Contributors to the EFDA-JET Work Programme 2003 Plasma Phys. Control Fusion 45 2011
[30] Puiatti M.E., Valisa M., Angioni C., Garzotti L., Mattioli M., Carraro L., Coffey I. and Sozzi C. 2006 Phys. Plasmas 13 042501
[31] Giroud C. et al. and the JET-EDFDA Contributors 2007 Nucl. Fusion 47 313
[32] Giroud C. et al. 2009 Impurity characterisation in JET operational scenarios 12th Int. Workshop on H-mode Physics and Transport Barriers (Princeton, NJ, 2009) http://topscience.io/0029-5515/504
[33] Matthews G.F. et al 2009 Phys. Scr. 09 014030
[34] Doyle E.J. et al. 2007 Progress in the ITER Physics Basis: chapter 2. Plasma confinement and transport Nucl. Fusion 47 S18
[35] Xanthopolous P. and Jenko F. 2006 Phys. Plasmas 13 092301
[36] Belli E.A., Hammet G.W. and Dorland W. 2008 Phys. Plasmas 15 092303
[37] Lapillonne X., Brunner S., Dannert T., Jolliet S., Marioni A., Villard L., Görler T., Jenko F. and Merz F. 2009 Phys. Plasmas 16 032308
[38] Burckel A., Sauter O., Angioni C., Candy J., Fable E. and Lapillonne X. 2010 J. Phys.: Conf. Ser. 260 012006
[39] Told D. and Jenko F. 2010 Phys. Plasmas 17 042302
[40] Jenko F., Dorland W., Kotschenreuther M. and Rogers B.N. 2000 Phys. Plasmas 7 1904
[41] Merz F. 2008 Gyrokinetic simulation of multimode plasma turbulence PhD Thesis (monography) Westfälischen Wilhelms-Universität Münster
[42] Arter W. 1995 Rep. Prog. Phys. 58 1
[43] Bakunin O.G. 2003 Plasma Phys. Control Fusion 45 1909
[44] Nilsson J., Liljestrom M. and Weiland J. 1990 Phys. Fluids B 2 2568
[45] Weiland J. 2000 Collective Modes in Inhomogeneous Plasmas (Bristol: Institute of Physics Publishing)
[46] Casson F.J., Peeters A.G., Angioni C., Camenen Y., Hornsby W.A., Snodin A.P. and Szepesi G. 2010 Phys. Plasmas 17 102305
[47] Anderson J., Nordman H. and Weiland J. 2000 Plasma Phys. Control Fusion 42 545
[48] Barnes M., Parra F.L., Highcock E.G., Schekochihin A.A., Cowley S.C. and Roach C.M. 2011 Phys. Rev. Lett. 106 175004
[49] ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database and ITER Physics Basis Editors 1999 ITER Physics Basis: chapter 2. Plasma confinement and transport Nucl. Fusion 39 2175
[50] Angioni C., McDermott R., Fable E., Fischer R., Pütterich T., Ryter F., Tardini G. and the ASDEX Upgrade Team 2011 Nucl. Fusion 51 023006
[51] Angioni C., Peeters A.G., Jenko F. and Dannert T. 2005 Phys. Plasmas 12 112310
[52] Moradi S., Tokar M.Z., Singh R. and Weysiow B. 2009 Nucl. Fusion 49 085007

3 See www.pdc.kth.se/resources/computers/lindgren/ for details on Lindgren.
4 See www.c3se.chalmers.se.