Results of land subsidence measurement using GPS method in the Jakarta groundwater basin in 2015-2019

F M Abdullah, H Andriyanto, J R Nababan, F Abdillah and R I H Sulistyawan

Groundwater Conservation Unit, Geological Agency, Ministry of Energy and Mineral Resource, Indonesia

E-mail : firmanmaliki@gmail.com, firman.abdullah@esdm.go.id

Abstract. The development of population and development activities in big cities in Indonesia, especially in the city of Jakarta and surrounding areas is very rapid. From several land subsidence studies, several factors have been identified that cause land subsidence, namely: excessive groundwater extraction, reduction due to building/infrastructure loads, subsidence due to natural consolidation of soft soil layers, and subsidence due to tectonic forces. At present the exploitation of ground water for industrial and residential needs is at a level that needs attention. Excessive pumping of groundwater will cause a decrease in the quantity of ground water, entry of seawater into the land (sea water intrusion) and land subsidence. Symptoms of the negative impact of land subsidence have been felt in several areas, especially in industrial areas located in the northern part of Jakarta. This land subsidence can be measured by GPS or satellite geodetic method, which have begun to develop in Indonesia in the past two decades. Measurements were made using the radial method at 53 GPS points in 2015 up to 100 measurement points in 2019 in Jakarta Groundwater Basin. The result of these campaign GPS surveys that is northern part of Jakarta relatively had higher subsidence rate than the southern. The largest subsidence almost reached 6.2 cm/year in Muara Baru in northern area which is southern area only suffered an average rate of 1.16 cm/year.

Key words : land subsidence, GPS survey method, Jakarta Groundwater Basin

1. Introduction

Jakarta is the capital city of Indonesia and considered to be the largest and densest population in the South East Asia. Jakarta is located at Jakarta Groundwater Basin which is consist of mainly young volcanic and sediment deposits. The Jakarta area is relatively flat in the norther part and slightly hilly in the southern part. Administratively, the Jakarta Groundwater Basin consists of DKI Jakarta itself, eastern part of Tangerang City and Regencies, Tangerang Selatan City, western part of Bekasi City and Bekasi Regencies, and northern part of Depok City and Bogor Regencies (Figure 1).
Figure 1. The location of Jakarta Groundwater Basin

Hydrogeologically, the base of aquifer system is formed by impermeable miocene sediments which also cropped at southern boundary of the basin. The basin mainly consist of quaternary alluvial volcanic fan deposit that formed from tuffaceous and conglomerate sandstone, young river deposit, swamp deposit, sand bar deposit, Banten Tuff, Serpong Formation, and Bojongmanik Formation. Fachri et all called quaternary alluvial volcanic fan deposit as Citalang Formation which is the main aquifer of Jakarta.

16
We used the term of Jakarta Groundwater Basin rather than Jakarta itself because of our main task and duty not only considering Jakarta but our main responsibility covered the whole of Jakarta Groundwater Basin. The objective of this research is to estimate the rate of land subsidence that has occurred from 2015 to 2019 by using GPS- satellite based positioning system- in the Jakarta Groundwater Basin, and therefore the results can be used as basic data or information in carrying out further planning and policy by the government or interested party.

2. Data and Methods
Land subsidence in Jakarta and its neighboring area had been reported in several scientific investigation reports. There are some scientific methods usually used for investigating or studying land subsidence phenomena such as GPS campaign survey, analysis of In Sar data, extensiometer analysis method, and so on. In this study we used GPS survey method which is relatively flexible and could cover wide area.

The method of GPS survey is re-measuring GPS points every year in the Jakarta Groundwater Basin. The GPS points that are measured annually must be the same points. After recording the GPS data from satellites for 6-8 hours, data will be processed later (post processing). The GPS surveys used dual frequency geodetic type GPS receivers, data was taken with interval 15-30 seconds, elevation mask 10-15°.

The GPS receiver used in these surveys was Trimble R7 (2015-2017) and Trimble R9 (2018-2019) and the processing software was Trimble Business Centre v 2.5 (2015-2017) and v 4.0. (2018-2019). The GPS data processed with the nearest reference station to the GPS points. Those reference stations which will be used as benchmark of measurement are managed by Geospatial Information Agency. Every baselines must be resolved to get the best results. Satellites with large standard deviations or have too many cycle slips when data was recorded must be edited or eliminated.

The results are ellipsoid heights in those points. More experience in processing data will generate better results. These results will be compared every year, and therefore can describe the ellipsoid heights differences from time to time at the same points. Every year we got ellipsoidal heights in all GPS points, then we got height differences on these points. Average results are the average changes per year in the year 2015 to 2019. The positive results indicated the ground surface level are up, and the negative results indicated ground surface level are down or subside. The location of the initial GPS points in 2015 can be seen in figure 2.
Figure 2. The initial GPS Points in 2015

GPS survey campaign first started in 2015 with 53 GPS points. In 2019 we measured up to 100 GPS points. The selected results will be showed in Table 1, which are only contain the results of GPS measurement (ellipsoid height) in northern area of Jakarta Groundwater Basin and Table 2 which had the results in southern basin1-12,14-15,17-20. The positive average changes mean the ground surface was up whereas negative average changes mean the land surface was subsided. There are no GPS survey conducted in 2017. We only selected the results with relative good accuracy.
Table 1. Ellipsoid height results in northern area

GPS points	2015	2016	2017	2018	2019	Average changes (cm/year)
12B, Cikokol	36.161	36.157	36.168	36.102	36.117	-1.467
15B, Joglo	32.969	32.914	32.902	32.877		-3.067
17B, Duri Kosambi	25.046	25.054	25.024	24.898	24.807	-5.975
19B, Tongkol	19.389	19.371	19.327	19.273	19.249	-3.500
21B, Muara Baru	19.130	19.031	19.043	18.944	18.883	-6.175
23B, Latumenten	20.839	20.834	20.846	20.794	20.762	-1.925
24B, Gambir	23.422	23.364	23.409	23.372	23.399	-0.575
26B, Dadap	21.333	21.262	21.233	21.156	21.092	-6.025
28B, Kamal Muara	20.507	20.426	20.443			-1.600
30B, Kali Deres	21.473	21.432	21.362			-2.775
31B, PIK	19.231	19.094	19.063			-4.200
35B, Muara Angke	18.756	18.724	18.638			-2.950
27C, Kayu Manis	28.898	28.884	28.877	28.915		0.567
28C, Kлемент	29.116	29.185	28.977	28.986		-4.333
29C, Medan Satria	27.424	27.427	27.340	27.299	27.304	-3.000
31C, Babelan	22.080	22.071	22.067	21.977	21.940	-3.500
32C, Bumi Bhakti	21.539	21.537	-	21.525	21.525	-0.267
33C, Penggilingan	30.166	30.135	30.261	30.171	30.189	0.575
35C, Kemayoran	20.578	20.555	20.468	20.561		-0.567
36C, Tj. Priok	20.271	20.263	20.266	20.240	20.235	-0.900
38C, Cakung	26.932	26.939	27.030	26.972		1.333
40C, Marunda	22.142	22.070	21.978	22.032	22.033	-3.633
41C, Tarumajaya	21.455	21.349	21.332	21.320	21.284	-5.700
44C, Pulomas 2	21.973	21.903	21.844			-4.300

Table 2. Ellipsoid height results in southern area

GPS points	2015	2016	2017	2018	2019	Average changes (cm/year)
01A, Fatmawati	56.316	36.168	36.102	56.266		-1.150
04A, Alam Sutera	43.494	43.477	43.423	43.499		0.125
08A, Cinere	70.961	70.963	70.931			-1.000
09A, Cinangka	95.088	95.082	95.100	95.094		-0.150
10A, Pamulang	74.515	74.457	74.458	74.444		-1.775
11A, Rempoa	59.773	59.744	59.652	59.712		-1.525
42D, Cibubur	83.599	83.559	83.445	83.437		-4.050
44D, Halim	37.204	37.210	37.158	37.161		-1.075
45D, Jati Sumpurna	90.317		90.287	90.247		-1.750
46D, Pondok Melati	59.895	59.877	59.888	59.887		-0.200
50D, Margonda	104.155		104.102	104.064		-3.033
51D, Kebagusan	54.286		54.309	54.294		0.200
53D, Pondok Cina	85.743	85.735	85.752			0.300
3. Conclusion and Discussions

It appears from the results of the GPS measurements survey the northern part is relatively have higher rate subsidence than the southern part, and then can be said that the subsidence is heterogenous in time and place. There is no land subsidence more than 10 cm/year in the period of 2015-2019 using GPS survey method. The largest subsidence almost reached 6.2 cm/year in Muara Baru in northern area which is southern area only suffered an average rate of 1.16 cm/year.

What is interesting is, there are some GPS points in the southern part of the Jakarta Groundwater Basin which have decreased up to several cm, namely the measurement points in Cibubur (42D) and Margonda (50D), but still need further research to confirm this condition. Implementing a continuously GPS network may be useful because of possibly large temporal variations in the rates of subsidence which is difficult to observed by episodic GPS measurements. However the GPS survey method is not the only way to study or investigate land subsidence phenomena. Other researchers can use extensiometer method and/or InSAR data to estimates the rate of land subsidence.

References

[1] Abdullah F 2019 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area III 2019, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2019

[2] Abdullah F M 2015 Pengukuran / Topografi Geodetik Perubahan Muka Tanah dan Amblesan Cekungan Air Tanah Jakarta Area I 2015, Balai Konservasi Air Tanah, Pusat Sumber Daya Air Tanah dan Geologi Lingkungan, Badan Geologi, 2015

[3] Abdullah F M 2015 Pengukuran / Topografi Geodetik Perubahan Muka Tanah dan Amblesan Cekungan Air Tanah Jakarta Area II 2015, Balai Konservasi Air Tanah, Pusat Sumber Daya Air Tanah dan Geologi Lingkungan, Badan Geologi, 2015

[4] Abdullah F M 2015 Pengukuran / Topografi Geodetik Perubahan Muka Tanah dan Amblesan Cekungan Air Tanah Jakarta Area III 2015, Balai Konservasi Air Tanah, Pusat Sumber Daya Air Tanah dan Geologi Lingkungan, Badan Geologi, 2015

[5] Abdullah F M 2015 Pengukuran / Topografi Geodetik Perubahan Muka Tanah dan Amblesan Cekungan Air Tanah Jakarta Area III 2015, Balai Konservasi Air Tanah, Pusat Sumber Daya Air Tanah dan Geologi Lingkungan, Badan Geologi, 2015

[6] Abdullah F M 2016 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area I 2016, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2016

[7] Abdullah F M 2016 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area II 2016, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2016

[8] Abdullah F M 2017 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area II 2017, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2017

[9] Abdullah F M 2017 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area III 2017, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2017

[10] Abdullah F M 2018 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area II 2018, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2018
[11] Abdullah F M 2018 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area III 2018, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2018
[12] Abdullah F M 2018 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area I 2019, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2019
[13] Abidin H, Andreas H., Djaja R., Darmawan D., Gamal M., Land Subsidence Characteristics of Jakarta between 1997 and 2005, as estimated using GPS Surveys, Springer Verlag, 2007
[14] Andriyanto H 2018 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area IV 2018, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2018
[15] Andriyanto H 2019 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area IV 2019, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2019
[16] Fachri M, Hutasoit L M, Djuhaeni and Ramdhan A M 2002 Stratigrafi dan Hidrostratigrafi Cekungan Air tanah Jakarta, Buletin Geologi, 34, No 3 Departemen Teknik Geologi ITB, 2002
[17] Nababan, J R S 2017 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area I 2017, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2017
[18] Nababan, J R S 2017 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area IV 2017, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2017
[19] Nababan, J R S 2018 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area I 2018, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2018
[20] Nababan, J R S 2018 Pemantauan Penurunan Tanah Cekungan Air Tanah Jakarta Area II 2019, Balai Konservasi Air Tanah, Pusat Air Tanah dan Geologi Tata Lingkungan, Badan Geologi, 2018