Supplementary Material

Catechol-based macrocyclic aromatic ether-sulfones: Synthesis, characterization and ring-opening polymerization

Fabio Aricò** and Howard M. Colquhoun*

**Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Via Torino 155, 30172 Venice, Italy

*Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK

Email: fabio.arico@unive.it; h.m.colquhoun@rdg.ac.uk

Table of Contents

Chart S1: Labelled structures for 1H NMR assignments .. S2
Figure S1: 1H NMR spectrum of macrocycle 2 .. S3
Figure S2: 13C NMR spectrum of macrocycle 2 .. S3
Figure S3: MALDI-TOF mass spectrum of macrocycle 2 .. S4
Figure S4: 1H NMR spectrum of macrocycle 3 .. S5
Figure S5: 13C NMR spectrum of macrocycle 3 .. S5
Figure S6: MALDI-TOF mass spectrum of macrocycle 3 .. S6
Figure S7: 1H NMR spectrum of macrocycle 4 .. S7
Figure S8: 13C NMR spectrum of macrocycle 4 .. S7
Figure S9: MALDI-TOF mass spectrum of macrocycle 4 .. S8
Figure S10: 1H NMR spectrum of macrocycle 5 .. S9
Figure S11: 13C NMR spectrum of macrocycle 5 .. S9
Figure S12: MALDI-TOF mass spectrum of macrocycle 5 .. S10
Figure S13: 1H NMR spectrum of linear oligomer 7 .. S11
Figure S14: 13C NMR spectrum of linear oligomer 7 .. S11
Figure S15: MALDI-TOF mass spectrum of linear oligomer 7 ... S12
Figure S16: 1H NMR spectrum of macrocycle 8 .. S13
Figure S17: 13C NMR spectrum of macrocycle 8 .. S13
Figure S18: 1H-1H COSY NMR spectrum of macrocycle 8 .. S14
Figure S19: MALDI-TOF mass spectrum of macrocycle 8 ... S15
Figure S20: 1H NMR spectrum of macrocycle 9 .. S16
Figure S21: 13C NMR spectrum of macrocycle 9 .. S16
Figure S22: MALDI-TOF mass spectrum of macrocycle 9 ... S17

Computational modelling of macrocycles 8 and 9 .. S17
Chart S1: Labelled structures for 1H NMR assignments (refer to Experimental Section).
Figure S1: 1H NMR spectrum of macrocycle 2 (250 MHz, CD$_2$Cl$_2$/CH$_3$SO$_3$H 4/1 v/v).

Figure S2: 13C NMR spectrum of macrocycle 2 (62.5 MHz, CDCl$_3$/CF$_3$CO$_2$H 5/1 v/v). *Note:* the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.
Figure S3: MALDI-TOF mass spectrum of macrocycle 2. (Calc. m/z for [C_{60}H_{40}S_{4}O_{12}Na]^+ = 1104.2).
Figure S4: 1H NMR spectrum of macrocycle 3 (250 MHz, CD$_2$Cl$_2$/CH$_3$SO$_3$H 4/1 v/v).

Figure S5: 13C NMR spectrum of macrocycle 3 (62.5 MHz, CD$_2$Cl$_2$/CH$_3$SO$_3$H 4/1 v/v).
Figure S6: MALDI-TOF mass spectrum of macrocycle 3. (Calc. m/z for $[C_{90}H_{60}S_{6}O_{18}Na]^{+} = 1644.8$).
Figure S7: 1H NMR spectrum of macrocycle 4 (250 MHz, CD$_2$Cl$_2$/CH$_3$SO$_3$H 4/1 v/v).

Figure S8: 13C NMR spectrum of macrocycle 4 (62.5 MHz, CD$_2$Cl$_2$/CH$_3$SO$_3$H 4/1 v/v).
Figure S9: MALDI-TOF mass spectrum of macrocycle 4. (Calc. m/z for \([\text{C}_{120}\text{H}_{80}\text{S}_8\text{O}_{24}\text{Na}]^+ = 2185.4\).)
Figure S10: 1H NMR spectrum of macrocycle 5 (250 MHz, CD$_2$Cl$_2$/CH$_3$SO$_3$H 4/1 v/v).

Figure S11: 13C NMR spectrum of macrocycle 5 (62.5 MHz, CD$_2$Cl$_2$/CH$_3$SO$_3$H 4/1 v/v).
Figure S12: MALDI-TOF mass spectrum of macrocycle 5. (Calc. m/z for [C$_{150}$H$_{100}$S$_{10}$O$_{30}$Na]$^+$ = 2726.0).
Figure S13: 1H NMR spectrum of linear oligomer 7 (250 MHz, CDCl₃/CF₃COOH 5/1 v/v).

Figure S14: 13C NMR spectrum of linear oligomer 7 (62.5 MHz, CDCl₃/CF₃COOH 5/1 v/v). Note: the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.
Figure S15: MALDI-TOF mass spectrum of linear oligomer 7. (Calc. m/z for [\(C_{44}H_{28}S_2O_6Cl_2Na\)]$^+$ = 810.7).
Figure S16: 1H NMR spectrum of macrocycle 8 (400 MHz, CDCl$_3$/CF$_3$COOH 5/1 v/v).

Figure S17: 13C NMR spectrum of macrocycle 8 (100 MHz, CDCl$_3$/CF$_3$COOH 5/1 v/v). Note: the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.
Figure S18: 1H-1H COSY NMR spectrum of macrocycle 8 (400 MHz, CDCl$_3$/CF$_3$COOH 5/1 v/v).
Figure S19: MALDI-TOF mass spectrum of macrocycle 8 (Calc. m/z for [C$_{50}$H$_{32}$S$_2$O$_8$Na]$^+$ = 847.9).
Figure S20: 1H NMR spectrum of macrocycle 9 (400 MHz, CDCl$_3$/CF$_3$COOH 5/1 v/v).

Figure S21: 13C NMR spectrum of macrocycle 9 (100 MHz, CDCl$_3$/CF$_3$COOH 5/1 v/v). Note: the strong quartet resonances centred at 114 and 162 ppm are due to trifluoroacetic acid co-solvent.
Figure S19: MALDI-TOF mass spectrum of macrocycle 9 (Calc. m/z for $[C_{100}H_{64}S_4O_{16}Na]^+ = 1672.8$).

Computational modelling of macrocycles 8 and 9

Models of macrocycles 8 and 9 were constructed on a SGI-O2 workstation using the Cerius2 suite of programs, v. 3.5, Accelrys, San Diego. Models were minimised initially using the Dreiding-II force field (molecular mechanics with charge-equilibration), and the resulting models were then re-minimised with a modified version of this force field in which aromatic ether, ketone, and sulfone linkages were constrained to experimentally-established bond lengths and bond angles.

Atomic coordinates of the final models for 8 and 9 are available from the authors as electronic data files in pdb format. Email: fabio.arico@unive.it; or h.m.colquhoun@rdg.ac.uk

S1. Mayo, S. L.; Olafson, B. D.; Goddard III, W. A. J. Phys. Chem. 1990, 94, 8897-8909.