Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Viral agents responsible for febrile respiratory illnesses among military recruits training in tropical Singapore

Shirley Gek-Kheng Seah, Elizabeth Ai-Sim Lim, Seng Kok-Yong, Jasper Chin-Wen Liaw, Vernon Lee, Peter Kammerer, David Metzgar, Kevin L. Russell, Boon-Huan Tan

Detection and Diagnostics Laboratory, DSO National Laboratories, Singapore
Biodefence Center, Headquarters for Medical Corps, Singapore Armed Forces, Singapore
Department of Respiratory Disease Research, Naval Health Research Center, San Diego, CA, United States

ABSTRACT

Background: Military personnel are highly susceptible to febrile respiratory illnesses (FRI), likely due to crowding, stress and other risk factors present in the military environment.

Objective: Our objective was to investigate the viral etiological agents responsible for FRI among military recruits training in a tropical climate in Singapore.

Study design: From March 2006 through April 2007, a total of 1354 oropharyngeal (throat) swabs were collected from military recruits who reported sick with an oral temperature of ≥38°C and a cough and/or sore throat. Real-time polymerase chain reaction (PCR) was used to assay for the presence of influenza A and B viruses and adenoviruses (H-AdV), and conventional PCR used for the remaining respiratory viruses in all specimens.

Results: Influenza A virus was the dominant infection with a laboratory-confirmed incidence of 24% (326/1354) and a predominance of the H3N2 subtype. The temporal pattern for influenza A virus infection coincided with the national pattern in the civilian community. Detection rates of 12% (159/1354) and 2.7% (5/1354) were obtained for influenza B virus and other respiratory viruses, respectively.

Conclusions: The laboratory findings identified influenza A virus as the primary causative viral agent for FRI in the Singapore military, in strong contrast to findings from temperate countries and countries where recruits are often vaccinated for influenza. Our results suggest that influenza vaccination should be considered as a requirement to reduce the incidence of influenza infections. This is the first report describing respiratory infections in a tropical military setting, in a developed country in Asia.

1. Background

Febrile respiratory illness (FRI) patterns in military populations are different than those observed in general civilian populations. This increased vulnerability has been ascribed to high population density, extreme physical and psychological challenges during training and wartime operations. High rates of FRI were consistently observed throughout the history of the US military. Although influenza outbreaks and infections have been documented, human adenovirus (H-AdV) has consistently been the predominant cause of FRI with US military. In Asia, influenza outbreaks have been reported with Taiwan military, and H-AdV infections with South Korea military, but none reported in the tropics. Other surveys in Asia were conducted by US military personnel stationed on active duty in Asian countries. These reports suggest that acute respiratory infections can occur in military populations indigenous to Asia, but these are either mostly not surveyed, or remained unreported. Clearly, the spread of these diseases can continue to compromise mission capability and security.

2. Objectives

The objective of our study was to determine the viral FRI burden, especially by influenza viruses and H-AdV, in the military in Singapore, a tropical Asian city-state. The virological data gathered from this study will inform policy makers of the disease impact and can guide the implementation of public health interventions to reduce the disease burden.
PCR machine. The amplicons for HMPV were genotyped by DNA sequencing using the BigDye Terminator cycle sequencing (Applied Biosystem, Foster City, CA, USA). The laboratory-confirmed incidence of H-AdV infections remained low throughout the study period, at 0.4% (5/1364). This is in contrast with the cluster of infections reported nationally at the beginning of 2006 and 2007. Two peaks were observed, in June 2006 where the proportion of influenza detected rose above 80%, and January-February 2007. We speculate that this could represent a small outbreak among the recruits within the same training group, or sharing the same sleeping dormitories.

4.2. Demographical and clinical details

The symptoms most frequently reported by participants testing positive for influenza viruses or H-AdV are shown in Table 2. Other than high fever (which was a requirement for inclusion), the most common symptoms were cough, sore throat, headache, body ache and running nose. Participants with influenza A virus infections were more likely to have cough when compared with participants with influenza B virus or H-AdV ($P < 0.05$). From our results, the clinical impact of FRI can be estimated, with at least 2708 training (work) days lost among the 1354 patients recruited for the study.

5. Discussions

This is the first comprehensive study that provides data on the viral burden in a military population in Asia with a tropical setting. Throughout the current one-year study, the laboratory findings identified influenza A and B viruses in 36% (485/1354) of the FRI cases, with H3N2 as the predominant annual subtype in Singapore. Two peaks were observed, in June 2006 where the proportion of influenza detected rose above 80%, and January–February 2007 (Fig. 1). This bimodal pattern and the predominant H3N2 subtype concurred with reports at the national level from the Singapore Ministry of Health. On the other hand, the sporadic pattern for influenza B virus incidence is in contrast with the cluster of infections reported nationally at the beginning of 2006 and 2007. The laboratory-confirmed data suggests that the outbreaks in the military were related to the national outbreaks due to the interactions by the military personnel and the community. In addition, the influenza A cases in our study had significantly more symptoms of cough than other FRI cases (Table 2). The participants in Camp X were new recruits who were exposed to military activities for the first time, and we expected them to demonstrate increased vulnerability to respiratory infections. In the US military, it was reported that new recruits were 29 times more likely to be hospitalized for respiratory infections than other military personnel. The laboratory-confirmed incidence of H-AdV infections remained low throughout the study period, at 0.4% (5/1364). This is in contrast to more than 50% reported in South Korean and the US military recruits. No respiratory syncytial virus (RSV) was detected in Singapore cohort. Instead 9 cases of HMPV (Table 1) were detected and majority were of the A2 genotype, reported to be associated with an increased severity in respiratory infections.

Table 1

Table 1: Number of clinical specimens that tested PCR positive for respiratory viruses in Camp X.
Viral agents tested
Number of specimens collected
Adenovirus
Influenza A virus
Influenza B virus
Influenza C virus
Parainfluenza type 1
Parainfluenza type 2
Parainfluenza type 3
Parainfluenza type 4
Rhinovirus
Coronavirus, OC43
Coronavirus, 229E
Respiratory syncytial virus
Human metapneumovirus
Total number tested positive

^a The number of clinical specimens that tested PCR positives refer to the specimens that tested positive for each viral agent relative to the total number of specimens collected for the study. The percentage is represented within brackets.
The data from the current study further suggests that in the event an outbreak happens in the Singapore military, the attack rate is likely to be high because vaccination is not mandatory for the Singapore military. In contrast, influenza outbreaks in US trainees are rare because they are vaccinated against circulating influenza strains.6–8 Vaccine effectiveness against influenza A virus was reported to be at 92% for the US military, and 38.1% and 41.6% in asymptomatic and symptomatic Israeli soldiers respectively.31,32 These reports support reductions of influenza-associated illness in young adults by the use of influenza vaccination. In conclusion, this prospective surveillance study demonstrated that influenza viruses are the most common identifiable viral agents causing FRI in the Singapore military. Compulsory vaccination to reduce influenza infections should be considered upon enlistment of personnel for the Singapore military.

Table 2
Demographic and clinical characteristics of participants.

Characteristic	Influenza A virus N^a = 326	Influenza B virus N^a = 215	Adenovirus N^a = 39	P-value^b
Age				
Range	16.8–43.4 years	16.8–43.4 years	19.0–21.4 years	0.635
Median	20.2 years	19.8 years	20 years	
Gender				
Male				
Symptoms duration^c				
Range	1–16 days	1–7 days	1–2 days	0.11
Median	2 days	2 days	1 day	
Highest temperature				
Range	36.5–40.3 °C	37–40.2 °C	38.2–38.7 °C	0.2
Median	38.6 °C	38.6 °C	38.6 °C	0.93
Current temperature				
Range	35.4–40.2 °C	37–40 °C	37.9–38.6 °C	
Median	38.5 °C	38.5 °C	38.4 °C	
Sore throat				
Range	235/326 (72.1)	116/159 (73.0)	5/5 (100.0)	0.38
Median	161/159 (62.6)	137/159 (86.2)	1/5 (20)	
Cough				
Range	305/326 (93.6)	137/159 (86.2)	2/5 (40)	dx < 0.05
Median	193/159 (97.5)	137/159 (86.2)	1/5 (20)	0.93
Shortness of breath				
Range	80/326 (24.5)	41/159 (25.8)	1/5 (20)	
Median	41/159 (25.8)	1/5 (20)	0.31	
Congestion				
Range	216/326 (66.3)	94/159 (59.1)	3/5 (60)	0.30
Median	159/159 (99.4)	3/5 (60)	0.83	
Headache				
Range	233/326 (71.5)	115/159 (72.3)	3/5 (60)	0.30
Median	115/159 (72.3)	3/5 (60)	0.83	
Pink eyes				
Range	19/326 (5.8)	13/159 (8.2)	1/5 (20)	0.31
Median	13/159 (8.2)	1/5 (20)	0.92	
Body ache				
Range	158/326 (48.5)	78/159 (49.1)	2/5 (40)	0.83
Median	78/159 (49.1)	2/5 (40)	0.24	
Nausea				
Range	83/326 (25.5)	44/159 (27.7)	1/5 (20)	0.28
Median	44/159 (27.7)	1/5 (20)	0.85	
Asthma				
Range	75/326 (23.0)	26/159 (16.4)	1/5 (20)	0.92
Median	26/159 (16.4)	1/5 (20)	0.83	
Vaccinated for influenza viruses				
Range	5/326 (1.5)	6/159 (3.8)	0/5 (0)	0.28
Median	6/159 (3.8)	0/5 (0)	0.85	
Smoking				
Range	75/326 (23)	33/159 (20.8)	1/5 (20)	
Median	33/159 (20.8)	1/5 (20)	0.85	

^a N represents number of respondents who answered all the questions in the case form, and whose specimens tested PCR positive.

^b For each viral agent, a positive characteristic was scored and this is expressed relative to the number of respondents. The percentage is represented within brackets.

Data analysis was performed using the open-source statistical software R (http://www.r-project.org/) and univariate analysis with the Pearson’s Chi-squared test to examine categorical measurements of illness characteristics, physical examination findings and laboratory results.

^c Refers to the number of days reported sick before recruitment.

^d Influenza A virus versus influenza B virus.

^e Influenza A virus versus adenovirus.

^f NS represents not significant.
Conflict of interest

None.

Funding

This research is funded by Ministry of Defence, Singapore.

Acknowledgements

We thank all personnel at the medical centres for their assistance in facilitating the specimen collections, and other logistic matter. This study was approved by the Joint Medical Committee for Research, Singapore Armed Forces, and supported by the Ministry of Defence, Singapore. The views expressed herein are those of the authors and do not represent the official position of the US Department of Defense or Department of the Navy.

References

1. Russell K. Respiratory infections in military recruits. In: Lenhart MK, editor. Recruit medicine. Washington, DC: The Office of the Surgeon General; 2006. p. 227–53. Available at: http://www.bordeninstitute.army.mil/published_volumes/recruit_medicine/RM-ch13.pdf [accessed 17.09.06].

2. Pazzaglia G, Pasternak M. Recent trends of pneumonia morbidity in US Naval personnel. Mil Med 1983; 148:647–51.

3. Gray GC, Callahan JD, Hawksworth AW, Fisher CA, Gaydos JC. Respiratory diseases among U.S. military personnel: countering emerging threats. Emerg Infect Dis 1999; 5:379–85.

4. Gray GC, Blankenship TL, Gackstetter G. History of respiratory illness at the U.S. Naval Academy. Mil Med 2001; 166:581–6.

5. Kak V. Infections in confined spaces: cruise ships, military barracks, and college dormitories. Infect Dis Clin North Am 2007; 21:773–84, ix–x.

6. Earhart KC, Beadle C, Miller LK, Pruss MW, Gray GC, Ledbetter EK, et al. Outbreak of meningococcal disease after an influenza B epidemic at a Hellenic air force recruit training center. Clin Infect Dis 2001; 33:e48–50.

7. Makras P, Alexiou-Daniel S, Antoniadis A, Hatzigeorgiou D. Outbreak of a new human adenovirus type 4 (Ad4) genotype: identification of a novel inverted terminal repeated (ITR) sequence from majority of Ad4 isolates from US military recruits. J Clin Virol 2006; 35:381–7.

8. Kajon AE, Moseley JM, Metzgar D, Huang HS, Wadleigh A, Ryan MAK, et al. Molecular epidemiology of adenovirus type 4 infections in US military recruits in the postvaccination era (1997–2003). J Infect Dis 2007; 196:67–75.

9. Metzgar D, Osuna M, Kajon AE, Hawksworth AW, Irvine M, Russell KL.Abrupt emergence of diverse species B adenoviruses at US military recruit training centers. J Infect Dis 2007; 196:1465–73.

10. Liu PY, Wang LC, Lin YH, Tsai CA, Shi YZ. Outbreak of influenza A and B among military recruits: evidence from viral culture and polymerase chain reaction. J Microbiol Immunol Infect 2009; 42:114–21.

11. Jeon K, Kang CI, Yoon CH, Lee DJ, Kim CH, Chung YS, et al. High isolation rate of adenovirus serotype 7 from South Korean military recruits with mild acute respiratory disease. Eur J Clin Microbiol Infect Dis 2007; 26:481–3.

12. Smith TJ, Olson LC, Kandel GE, Snitbhan R, Hong Kong influenza in US military airmen in Thailand. Am J Trop Med Hyg 1970; 5:866–71.

13. Sanford JP. Acute respiratory disease in the United States Army in the Republic of Vietnam, 1965–1970. Yale J Biol Med 1975; 3:179–84.

14. Vincente D, Montes M, Cilla G, Perez-Yarza EG, Perez-Trallero E. Differences in clinical severity between genotype A and genotype B human metapneumovirus infection in children. Clin Infect Dis 2006; 42:e111–3.

15. Strickler JK, Hawksworth AW, Myers C, Irvine M, Ryan MAK, Russell KL. Influenza vaccine effectiveness among US military basic trainees, 2005–06 season. Emerg Infect Dis 2007; 13:617–9.

16. Grotto I, Mandel Y, Green MS, Varsano N, Gdalevich M, Ashkenazi I, et al. Influenza efficacy in young healthy adults. Clin Infect Dis 1998; 4:913–7.