LAPAROSCOPY/ROBOTICS

ORIGINAL ARTICLE

Does size matter? The significance of prostate size on pathologic and functional outcomes in patients undergoing robotic prostatectomy

Carl A. Olsson a,*, Hugh J. Lavery b, Dov Sebrow b, Ardavan Akhavan b, Adam W. Levinson b, Jonathan S. Brajtbord b, John Carlucci b, Paul Muntner c, David B. Samadi b

a Department of Urology, Columbia University Medical Center, New York, NY, USA
b Department of Urology, The Mount Sinai Medical Center, New York, NY, USA
c Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA

Received 12 July 2011, Received in revised form 10 October 2011, Accepted 10 October 2011
Available online 16 November 2011

Abstract Background: We examined the effect of prostate weight on perioperative data, and the pathological and functional outcomes of robotic-assisted laparoscopic prostatectomy (RALP).

Patients and methods: Data were available from 716 consecutive patients before, during and after undergoing RALP at one institution. Prostate size was arbitrarily stratified by recorded prostate weight into <50, 50–80 and >80 g, corresponding to small, moderate and large glands, respectively. Perioperative data and the histopathological and functional outcomes were compared across these groups by both univariable and multivariable-adjusted analyses.

Results: Increased prostate size was associated with increased age, preoperative prostate-specific antigen levels, body mass index, operative duration, blood loss, lower biopsy and pathological Gleason scores, and lower pathological staging (P < 0.05). The incidence of extensive positive surgical margins was 14.8%, 9.7%, and 5.3% in small, moderate and large prostates, respectively.

Keywords Robotic surgery; Prostate cancer; Prostatectomy; Outcomes; Potency; Continence; Margins

Abbreviations RALP, robotic-assisted
Introduction

The effect of prostate size on outcomes after robotic-assisted laparoscopic prostatectomy remains unclear. Previous studies concluded that higher-volume prostates are associated with more favourable pathological outcomes, lower rates of positive surgical margins (PSMs) and improved long-term biochemical disease-free survival [1,2]. In open radical retropubic prostatectomy series, larger glands are associated with longer operating-room (OR) time, higher estimated blood loss (EBL) and blood transfusions, but with no difference in functional outcomes [3,4]. However, there are conflicting results in previous reports of robotic prostatectomy. Zorn et al. [5] found no difference in EBL, transfusion rate, OR time, or length of hospital stay (LOS) in patients with larger (>80 g) prostates. However, others have reported that in patients with large prostates (> 70 g), EBL, OR time, and LOS significantly increased [6].

In an effort to elucidate the association of prostate size on perioperative data, as well as pathological and functional outcomes, we evaluated the effect of prostate weight on these variables among patients undergoing robotic-assisted laparoscopic prostatectomy (RALP).

Patients and methods

An institutional review board-approved database comprising all patients undergoing RALP by one surgeon (D.B.S.) is maintained by research staff at the Mount Sinai Medical Center. Consecutive patients undergoing RALP from May 2007 until February 2009 formed the base population for the current analyses (784 men). Patients were excluded for the following missing data: body mass index (BMI, 3), preoperative PSA level (23), preoperative Gleason score (8), operative duration (5), EBL (10), prostate weight (15), and margin status (4). After these exclusions, perioperative and histopathological data were available on 716 patients. Patients were divided arbitrarily into three categories according to their prostate weight, i.e. < 50, 50–80 and > 80 g, corresponding to small, moderate and large glands, respectively.

Functional outcomes and PSA data were collected at baseline, 6 weeks, and then every 3 months for the first year after surgery, using the IPSS and sexual health inventory for men (SHIM) scores. Continence was defined as the use of either no pads or one security pad daily. Potency was defined as a SHIM score of > 16, with or without the use of phosphodiesterase-5 inhibitors, in patients who were preoperatively potent (SHIM > 16). A single postoperative PSA level of > 0.2 ng/mL was considered to indicate a biochemical recurrence.

Excised prostate specimens were sectioned in four quadrants and mounted in a standard fashion. The volume of cancer was estimated based on the percentage of slides containing tumour (the positive-block ratio). Tumour at the inked resection margin was considered a PSM, which was dichotomized into ‘focal’ or ‘extensive’ if the length of the PSM was < or > 3 mm, respectively [7].

Demographic, pre and peri-operative, and pathological characteristics of patients undergoing RALP were calculated using means for continuous variables and proportions for categorical variables. These characteristics were calculated for each prostate weight category of patients separately. The statistical significance of differences, comparing the three prostate weight groups, was calculated using t-tests for continuous variables and chi-square tests for categorical variables. Additionally, the prevalence of extensive surgical margins (> 3 mm) was calculated by prostate weight category, overall and by pathological staging. The statistical significance of linear trends across prostate weight categories was tested by linear and logistic regression models for continuous and dichotomous variables, respectively. The multivariable-adjusted odds ratios of patient characteristics associated with prostate weight were determined using a multinomial logistic regression model with the small prostate weight group as the reference category. The odds ratios of extensive PSMs associated with patient characteristics and prostate weight were calculated using logistic regression models adjusted for all patient characteristics simultaneously. Significance was defined as \(P < 0.05 \), and all tests were two-sided.

Results

Among the 716 patients undergoing RALP, 400 (56%) had a prostate weight of < 50 g, 259 (36%) of 50–80 g, and 57

![Figure 1](image-url) Distribution of prostate weight among 716 patients undergoing RALP (prostate weight distribution extends to a maximum of 200 g).
(8%) had glands of >80 g (Fig. 1). The mean (range) prostate weight was 50.1 (22–200) g. All clinical and pathological variables examined except LOS were associated with prostate weight (Table 1). Specifically, greater age, longer OR time and a higher EBL were significantly associated with larger prostates. Pathological stage was lower in patients with larger prostates, and there were significantly higher proportions of patients with lower biopsy and histopathological Gleason sums in those with larger prostates.

Prostate weight was inversely associated with higher-stage disease and extensive PSMs (Fig. 2). Overall, extensive PSMs decreased at higher prostate weights, i.e. 14.8%, 9.7% and 5.3% extensive PSMs in small, moderate, and large prostates, respectively ($P < 0.05$).

Prostate size had no effect on functional outcomes. At 12 months of follow-up, 92% of patients were continent (Fig. 3); continence was not associated with prostate size ($P = 0.77$). The overall rate of potency at 12 months was 78% (Fig. 4); this rate was also not associated with prostate size ($P = 0.069$).

On multivariable analysis of moderate (50–80 g) and large (>80 g) vs small (<50 g) prostates, age, EBL, pT2 staging, and PSA level were all independently associated with larger prostates (Table 2). Patients with moderate or large prostates were less likely to have Gleason scores of ≥ 7 than those with smaller glands. BMI and OR time were also associated with size, but only in prostates of >80 g. Neither LOS nor extensive PSMs were associated with prostate size when controlling for other variables.

Multivariable analysis of characteristics possibly associated with PSMs only identified pathological stage and Gleason score as independent predictors of extensive PSMs (Table 3).

Table 1 Characteristics of 716 patients undergoing robotic prostatectomy overall and by prostate weight categories.

Prostate weight, grams	Overall (n = 716)	≤50 (n = 400)	50–80 (n = 259)	>80 (n = 57)	
p-trend					
Age, years	59.1 (6.9)	57.4 (7.1)	60.7 (5.9)	63.4 (5.8)	<0.001
Body mass index (kg/m²)	27.5 (3.6)	27.4 (3.5)	27.5 (3.5)	28.6 (3.8)	0.051
Estimated blood loss (mL)	51.4 (10.3–256.5)	45.6 (9.5–218.8)	58.9 (12.0–286.5)	75.2 (14.8–382.5)	<0.001
Time in operating room (min)	124.7 (28.4)	121.4 (28.6)	126.0 (26.0)	140.1 (32.7)	<0.001
Hospital stay of 1 day (%)	74.2	75	74.5	66.7	0.258

Pathologic stage

T2 (%)	83.8	79.5	86.9	94.7	<0.001
T3 (%)	16.2	20	12.7	5.3	<0.001
PSA (ng/mL)	6.0 (4.4)	5.5 (3.2)	6.4 (5.4)	7.8 (5.2)	<0.001

Gleason score, biopsy

6 (%)	61.3	56	66.8	73.7	0.001
7 (%)	31.6	37	25.9	19.3	
8–10 (%)	7	7	7.3	5.3	

Gleason score, pathologic

6 (%)	32.3	22.5	43.6	49.1	<0.001
7 (%)	61.5	72	48.7	45.6	
8–10 (%)	6.2	5.3	7.7	5.3	

Extensive positive margins (%) 12.2 14.8 9.7 5.3 <0.001

Numbers in table are mean (standard deviation) or percentage except for estimated blood loss which is presented as geometric mean (95% confidence interval).

Discussion

The relationship between prostate size and perioperative data, as well as functional and histopathological variables, is a subject of debate. Previous studies have examined this relationship, specifically evaluating the effect of prostate size on surgical margin status, histopathological findings, and functional outcomes. Most studies have shown improved histopathological cancer features in larger prostates, including decreased rates of PSMs [1,2]. For example, Link et al. [6] and Msezane et al. [8] both found larger prostate weights to be associated with more favourable pathological staging, similar to the present findings. However, unlike the present study, both reported improved PSM rates with increasing prostate size in multivariable-adjusted analysis.
The evidence for less aggressive pathological outcomes and even decreased PSM rates in large prostates has also been reported in open and laparoscopic prostatectomy cohorts [1,4–9,12], although a study by Levinson et al. [13] found no such association. Another negative study by Singh et al. [14] failed to detect a difference in the rate of PSM, but that study pooled all prostates >50 g together, whereas most other reports set the threshold for large prostates at 70–80 g. Histopathologically, men with larger prostates were found to have significantly lower pathological stage and Gleason...
scores. Patients with smaller prostates had higher rates of PSMs, although this association was lost in a multivariable analysis, probably reflecting the effect of the higher pathological stage seen in patients with smaller prostates.

Thus, recent reports are somewhat divided on the relationship between prostate size and pathological stage, Gleason score and margin status. Differences in statistical methods, surgical technique, definitions of PSMs, stratification of prostate size, and baseline patient characteristics are probably responsible for the discrepancies. Differences among these studies and ours might also be secondary to surgeon-specific approaches towards large prostates. The high volume of RALP procedures performed at our institution, coupled with the use of a non-traditional approach to robotic extirpation of large prostate tissues described elsewhere [15], might have positively affected our results. Our study is one of only a few examining this issue using multivariable analysis, which is important given the discrepancy noted between our univariable and multivariable results for PSMs.

The data suggest that surgical difficulty might be higher but functional outcomes are unaffected in RALP performed in men with large prostates [3,5]. To better evaluate this problem, we analysed prostate weight among patients who underwent RALP by one surgeon. The postoperative continence rate of 92% and potency rate of 78% among all study participants, regardless of prostate size, are similar to those from other large cohorts with more men having larger prostates, is also relevant given the need for neoadjuvant androgen deprivation, higher radiation dose treatment, and higher subsequent risk for acute urinary toxicity among men with large prostates who choose to undergo brachytherapy or intensity-modulated radiotherapy [22].

Our study has several limitations, including problems of generalisation and selection bias arising from a single-surgeon cohort. There were relatively few patients with prostates of >80 g (57). The overall number of patients in our study, while greater than those analysed in some other studies, is also relatively small. To attain consensus on the nature of prostate weight and RALP outcomes, our results should be confirmed in larger cohorts with more men having larger prostates.

Prostate size might be a therapeutic issue to be considered by the patient with prostate cancer. Men with the most severe preoperative LUTS have been shown to experience the greatest improvement in their symptoms after radical prostatectomy. This finding is presumably due to the association between prostate size and severity of LUTS, and the beneficial effects of removing a large, obstructive gland. When combined with the increased likelihood of having lower grade cancer on pathological examination, the choice to undergo radical prostatectomy could become a more appealing treatment option for men with large prostates. This is especially relevant given the need for neoadjuvant androgen deprivation, higher radiation dose treatment, and higher subsequent risk for acute urinary toxicity among men with large prostates who choose to undergo brachytherapy or intensity-modulated radiotherapy [22].

Our study has several limitations, including problems of generalisation and selection bias arising from a single-surgeon cohort. There were relatively few patients with prostates of >80 g (57). The overall number of patients in our study, while greater than those analysed in some other studies, is also relatively small. To attain consensus on the nature of prostate weight and RALP outcomes, our results should be confirmed in larger cohorts with more men having larger prostates.

In conclusion, Larger prostates are associated with increased BMI, greater age, higher preoperative PSA levels, lesser OR time, higher EBL, and lower Gleason scores and pathological staging in patients undergoing RALP. While the incidence of extensive PSMs was higher in patients with smaller prostates, we found this to be an artefact of the differences in pathological stage. Neither continence nor potency at 12 months was associated with prostate size. RALP remains a good option for patients with large prostates.

Table 3 Multivariable analysis of an extensive positive margin associated with patient characteristics.

Factor	Odds ratios (95% CI) of extensive margins
Age, 5 years	1.10 (0.91–1.32)
Body mass index, 5 kg/m²	0.84 (0.58–1.19)
Estimated blood loss, 20 ml	1.02 (0.93–1.11)
Time in operating room, 30 min	0.99 (0.76–1.29)
Hospital stay of 1 day	1.12 (0.63–2.00)
PT2 pathology stage	0.19 (0.11–0.33)
PSA, 5 units	1.22 (0.98–1.52)
Gleason score, post-operative	
7 versus 6	2.43 (1.09–5.46)
8 or 9 versus 6	3.94 (1.35–11.5)
Pathology weight, grams	
50–80	0.67 (0.37–1.20)
>80	0.47 (0.12–1.74)

Multivariable adjusted model includes all variables simultaneously.

* p < 0.05.
Conflict of interest

This article contains no references to any commercial organization, pharmaceutical firm or medical device manufacturer. As such, none of the authors have any conflict of interest.

References

[1] Liu JJ, Brooks JD, Ferrari M, Nolley R, Presti Jr JC. Small prostate size and high grade disease-biology or artifact? J Urol 2011;185:2108–11.
[2] Freedland SJ, Isaacs WB, Platz EA, Terris MK, Aronson WJ, Amling CL, et al. Prostate size and risk of high-grade, advanced prostate cancer and biochemical progression after radical prostatectomy: a search database study. J Clin Oncol 2005;23:7546–54.
[3] Pettus JA, Masterson T, Sokol A, Cronin AM, Savage C, Sandhu JS, et al. Prostate size is associated with surgical difficulty but not functional outcome at 1 year after radical prostatectomy. J Urol 2009;182:949–55.
[4] Hsu EI, Hong EK, Lepor H. Influence of body weight and prostate volume on intraoperative, perioperative, and postoperative outcomes after radical retropubic prostatectomy. Urology 2003;61:601–6.
[5] Zorn KC, Orvieto MA, Mikhail AA, Gofrit ON, Lin S, Schaeffer AJ, et al. Effect of prostate weight on operative and postoperative outcomes of robotic-assisted laparoscopic prostatectomy. Urology 2007;69:300–5.
[6] Link BA, Nelson R, Josephson DY, Yoshida JS, Crocitto LE, Kawachi MH, et al. The impact of prostate gland weight in robot assisted laparoscopic radical prostatectomy. J Urol 2008;180:928–32.
[7] Shikanov S, Song J, Royce C, Al-Ahmadie H, Zorn K, Steinberg G, et al. Length of positive surgical margin after radical prostatectomy as a predictor of biochemical recurrence. J Urol 2009;182:139–44.
[8] Msezane LP, Gofrit ON, Lin S, Shalhav AL, Zagaja GP, Zorn KC. Prostate weight: an independent predictor for positive surgical margins during robotic-assisted laparoscopic radical prostatectomy. Can J Urol 2007;14:3697–701.
[9] Chang CM, Moon D, Gianduzio TR, Eden CG. The impact of prostate size in laparoscopic radical prostatectomy. Eur Urol 2005;48:285–90.
[10] D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Tomaszewski JE, Wein A. A prostate gland volume of more than 75 cm³ predicts for a favorable outcome after radical prostatectomy for localized prostate cancer. Urology 1998;52:631–6.
[11] Foley CL, Bott SR, Thomas K, Parkinson MC, Kirby RS. A large prostate at radical retropubic prostatectomy does not adversely affect cancer control, continence or potency rates. BJU Int 2003;92:370–4.
[12] Frota R, Turna B, Santos BM, Lin YC, Gill IS, Aron M. The effect of prostate weight on the outcomes of laparoscopic radical prostatectomy. BJU Int 2008;101:589–93.
[13] Levinson AW, Ward NT, Sulman A, Mettee LZ, Link RE, Su LM, et al. The impact of prostate size on perioperative outcomes in a large laparoscopic radical prostatectomy series. J Endourol 2009;23:147–52.
[14] Singh A, Fagin R, Shah G, Shekarriz B. Impact of prostate size and body mass index on perioperative morbidity after laparoscopic radical prostatectomy. J Urol 2005;173:524–52.
[15] Rehman J, Chughtai B, Guru K, Shabsigh R, Samadi DB. Management of an enlarged median lobe with ureteral orifices at the margin of bladder neck during robotic-assisted laparoscopic prostatectomy. Can J Urol 2009;16:4490–4.
[16] Zorn KC, Gofrit ON, Orvieto MA, Mikhail AA, Zagaja GP, Shalhav AL. Robotic-assisted laparoscopic prostatectomy functional and pathologic outcomes with interfascial nerve preservation. Eur Urol 2007;51:755–62.
[17] Patel VR, Thaly R, Shah K. Robotic radical prostatectomy outcomes of 500 cases. BJU Int 2007;99:1109–12.
[18] Badani KK, Kaul S, Menon M. Evolution of robotic radical prostatectomy: assessment after 2766 procedures. Cancer 2007;110:1951–8.
[19] Murphy DG, Kerger M, Crowe H, Peters JS, Costello AJ. Operative details and oncological and functional outcome of robotic-assisted laparoscopic radical prostatectomy: 400 cases with a minimum of 12 months follow-up. Eur Urol 2009;55:1358–66.
[20] Menon M, Shrivastava A, Kaul S, Badani KK, Fumo M, Bhandari M, et al. Vattikuti Institute prostatectomy. Contemporary technique and analysis of results. Eur Urol 2007;51:648–57.
[21] Kojima M, Troncoso P, Babaian RJ. Influence of noncancerous prostatic tissue volume on prostate-specific antigen. Urology 1998;51:293–9.
[22] Keyes M, Miller S, Moravan V, Pickles T, McKenzie M, Pai H, et al. Predictive factors for acute and late urinary toxicity after permanent prostate brachytherapy: long-term outcome in 712 consecutive patients. Int J Radiat Oncol Biol Phys 2009;73:1023–32.