Formation of the Food Vacuole in *Plasmodium falciparum*: A Potential Role for the 19 kDa Fragment of Merozoite Surface Protein 1 (MSP1₁⁹)

Anton R. Dluzewski¹,³*, Irene T. Ling³*, John M. Hopkins¹,², Munira Grainger³, Gabriele Margos¹,²*, Graham H. Mitchell¹, Anthony A. Holder³, Lawrence H. Bannister²

¹ Department of Immunobiology, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s Hospital, London, United Kingdom, ² Centre for Ultrastructural Imaging, Guy’s, King’s and St. Thomas’ School of Biomedical and Life Sciences, Guy’s Hospital, London, United Kingdom, ³ Division of Parasitology, NIMR, Mill Hill, London, United Kingdom

Abstract

Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) is synthesized during schizogony as a 195-kDa precursor that is processed into four fragments on the parasite surface. Following a second proteolytic cleavage during merozoite invasion of the red blood cell, most of the protein is shed from the surface except for the C-terminal 19-kDa fragment (MSP1₁⁹), which is still attached to the merozoite via its GPI-anchor. We have examined the fate of MSP1₁⁹ during the parasite’s subsequent intracellular development using immunocytological analysis of metabolically labeled MSP1₁⁹, fluorescence imaging, and immuno-electronmicroscopy. Our data show that MSP1₁⁹ remains intact and persists to the end of the intracellular cycle. This protein is the first marker for the biogenesis of the food vacuole; it is rapidly endocytosed into small vacuoles in the ring stage, which coalesce to form the single food vacuole containing hemozoin, and persists into the discarded residual body. The food vacuole is marked by the presence of both MSP1₁⁹ and the chloroquine resistance transporter (CRT) as components of the vacuolar membrane. Newly synthesized MSP1 is excluded from the vacuole. This behavior indicates that MSP1₁⁹ does not simply follow a classical lysosome-like clearance pathway, instead, it may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase.

Citation: Dluzewski AR, Ling IT, Hopkins JM, Grainger M, Margos G, et al. (2008) Formation of the Food Vacuole in *Plasmodium falciparum*: A Potential Role for the 19 kDa Fragment of Merozoite Surface Protein 1 (MSP1₁⁹). PLoS ONE 3(8): e3085. doi:10.1371/journal.pone.0003085

Editor: Colin J. Sutherland, London School of Hygiene & Tropical Medicine, United Kingdom

Received April 28, 2008; Accepted July 18, 2008; Published August 29, 2008

Copyright: © 2008 Dluzewski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded in part by the UK Medical Research Council, The Wellcome Trust (Grant No. 069515) and the European Commission (Euromalvac QLK2-CT-1999-01293). This work is part of the activities of the BioMalPar European Network of Excellence supported by a European grant (LSHP-CT-2004-503578) from the Priority 1 “Life Sciences, Genomics and Biotechnology for Health” in the 6th Framework Programme.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anton.dluzewski@nimb.mrc.ac.uk
* Current address: Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom

Introduction

Most studies on merozoite surface protein 1 (MSP1) have focused on its role in erythrocyte invasion and therefore its potential as a vaccine candidate, based on the ability of MSP1-specific antibodies to inhibit invasion. However, it is known that a fragment of MSP1 (MSP1₁⁹) is carried into the interior of the infected-RBC on the parasite surface [3]. The latter comprises two epidermal growth factor (EGF)-like domains and is carried into small vacuoles in the ring stage, which coalesce to form the single food vacuole containing hemozoin, and persists into the discarded residual body. The food vacuole is marked by the presence of both MSP1₁⁹ and the chloroquine resistance transporter (CRT) as components of the vacuolar membrane. Newly synthesized MSP1 is excluded from the vacuole. This behavior indicates that MSP1₁⁹ does not simply follow a classical lysosome-like clearance pathway, instead, it may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase.
the detection of MSP119 by IFA in the food vacuole of late rings/ trophozoites, suggesting that this organelle is able to receive molecules endocytosed from the parasite surface. Although there is no clear morphological evidence for the existence of a classical eukaryotic endosome-lysosome system in Plasmodium, the food vacuole may act as a lysosome-like compartment as it contains proteases (see [16,17]) able to degrade hemoglobin ingested from the RBC within an acidic environment [18].

The food vacuole is a highly specialized organelle, formed by endocytosis from the parasite surface via a cytoskeletal ring, the cytotome. Through this, RBC cytosol together with the attendant membranes of the parasitophorous vacuole and parasite surface (its plasma membrane), are internalized to form one or more food vacuoles [19–24]. These receive degradative enzymes from the parasite’s secretory pathway [25] to break down the engulfed hemoglobin and release the iron-containing haem component (hematin), which is dimerized to β-haematin and crystallizes as the chemically inert malaria pigment, hemozoin [26–28].

Early after invasion, numerous small food vacuoles form within the ring stage parasite [29] replaced later by a single large food vacuole, which eventually becomes filled with hemozoin crystals. A well-studied marker for the food vacuole membrane, the chloroquine resistance transporter CRT [30,31] (see [32] for review) is predicted to be a transporter protein (a member of the drug/metabolite superfamily [33,34]), spanning the food vacuole membrane [31]. Another molecule localized to the food vacuole is the so-called merozoitic surface protein 8 (MSP8) [15,35,36] which, despite its name, is synthesized in ring stages. It is transported initially to the parasite’s plasma membrane and thence, as a processed form, to the single food vacuole of late rings/early trophozoites [15].

In the present study we have explored in detail the post-invasion fate of MSP119 using a combination of metabolic labeling, IFA and IEM techniques applied to highly synchronized parasite cultures, together with antibodies directed against well-defined regions of MSP1. We find that after endocytosis into small food vacuoles in the ring stage, MSP119 persists through the cycle as a coherent component of the food vacuole wall without further processing or addition of newly synthesised MSP1. This behavior indicates that the molecule does not simply follow a classical lysosome-like clearance pathway, but may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase.

Materials and Methods

Parasites

P. falciparum lines 3D7 [37], C10 [38] and IT04 [39] were maintained in vitro as described [40] using either 10% human serum or 0.5% (w/v) ALBE MAX® 1 in RPMI 1640 medium. Parasites were synchronized using combinations of a magnet [41], plasmagel flotation [42] and/or Percoll gradient centrifugation to purify late-stage parasites [43], and sorbitol synchronization of ring-stage parasites as described previously [44].

Antibodies

A number of antibodies against different regions of MSP1 were used: monoclonal antibody (mAb) 1E1 [8] specific for MSP119; rabbit polyclonal antibodies raised against either affinity purified MSP1 [Welcome type] [45] or recombinant GST-MSP119 [46]; and a pool of rabbit polyclonal antibodies raised against recombinant protein epitopes spanning parts of MSP1 that are N-terminal of MSP119 (i.e. not reacting with MSP119) [47]. These latter recombinant proteins correspond to the following positions in the protein sequence (Acc. # X02919): pME3, residues 1046–1448; pME17, 1046–1204; pME18, 1232–1372; pME19, 1221–1250; and pME22 1046–1490. The first residue of MSP119 is position 1526. Rabbit antibodies raised against peptides of CRT [31] were obtained from MR4 (courtesy of Drs. R. Cooper and T.E. Wellems) and as a kind gift from Prof. Leann Tilley (La Trobe University, Bundoora). For controls, normal rabbit and mouse antisera were used for western blots, IFA and IEM, plus a wide range of antibodies raised against other *P. falciparum* antigens, for IEM.

Radiolabeling and immunoprecipitation

Mature stage parasites (3D7) were metabolically labeled with ProMix (35S Met/Cys; GE Healthcare, Little Chalfont, UK) essentially as described previously [45]. Synchronized parasites were labeled for 1.5 hours at 45 hours post invasion. After removal of the label, a portion of the parasites was harvested and stored at −70°C. The remainder was allowed to re-invade fresh erythrocytes for 2 hours and then any residual schizonts were removed. The parasites were divided into 8 equal portions. One was harvested immediately (time 0) and the remaining parasites returned to culture for harvesting at 6-hour intervals until 42 hours post-invasion. Giemsa-stained smears were made at each time-point as well as thin smears for IFA as described below.

For immunoprecipitation analysis, parasite extracts were made using buffer containing Nonidet P40 as described previously [45,49]. Polyclonal anti-MSP1 (affinity purified) serum was used to precipitate proteins, which were then solubilized under reducing conditions and analysed by SDS-PAGE on 5–12.5% gradient gels. The gels were stained with Coomassie blue, treated with Amplify (GE Healthcare) for 30 minutes, dried at −70°C and exposed to X-ray film (Kodak, Rochester, NY) at −70°C for a suitable period.

Fluorescence imaging

Thin blood films were made on microscope slides at intervals from time 0 (when newly invaded erythrocytes had been synchronized and returned to culture), air-dried, frozen without fixation and stored desiccated at −20°C until required. The time-course slides were assayed as follows: samples were thawed and dried quickly, fixed in fresh 1% formaldehyde in PBS for 30 minutes, rinsed in phosphate buffered saline (PBS), permeabilized with 0.1% Triton X-100/PBS for 10 minutes, rinsed in PBS and blocked overnight at 4°C in 3% BSA/PBS. Cells were probed consecutively with primary antibodies in 3% BSA/PBS, and with Alexa Fluor 488 (green) or Alexa Fluor 594 (red)-conjugated affinity purified goat anti-mouse IgG or anti-rabbit IgG secondary antibody (Molecular Probes) as appropriate at 37°C for 30 minutes each, followed by three washes in PBS. Dual labeling experiments were performed on thin films and probed successively with different primary antibodies derived from different species (mouse and rabbit). This was followed by staining with appropriate secondary antibody (anti-IgG) conjugated to Alexa Fluor 488 or Alexa Fluor 594. Control incubations were carried out in the absence of primary or secondary antibodies in addition to a range of antibody controls described above. Under no condition was a false fluorescence signal from the hemozoin observed. Finally, the films were stained with 0.5 μg ml−1 4′,6-diamidino-2-phenylindole (DAPI) in PBS to identify the nuclei. The films were subsequently mounted in glycerol/PBS solution containing anti-dole (DAPI) in PBS to identify the nuclei. The films were subsequently mounted in glycerol/PBS solution containing anti-dole (DAPI) in PBS to identify the nuclei.
To pre-label MSP119 with antibody (i.e. prior to invasion) synchronous mature parasites were cultured and allowed to invade in the presence of mAb 1E1: mature schizonts were purified using a combination of gel flotation and Percoll purification. Fresh erythrocytes were added to give a parasitemia of 5% (at 17% hematocrit) and samples were split into two fractions; one-half was placed in normal medium; the other in medium containing 500 μg ml⁻¹ mAb 1E1. Following further culture with gentle shaking for 1 hour, remaining schizonts were removed using a Percoll cushion followed by sorbitol treatment of the pellet. A sample was taken (t = 0) and smeared for Giemsa staining and for IFA, then the remaining parasites were cultured and smears were prepared every 3 hours over a 48-hour time period. The overall window for invasion was 2 hours.

Electron microscopy
Schizonts (P. falciparum clones 3D7 and C10, and line IT04) were prepared for IEM as described in [45]. Briefly, schizonts were enriched on Percoll, then either fixed immediately or incubated in the presence of fresh erythrocytes for up to 2 hours to allow the study of early ring stages. Cells were fixed in 0.1% v/v glutaraldehyde and 2% w/v paraformaldehyde made up in RPMI 1640 medium for 20 minutes at 4°C. Samples were dehydrated by the progressive low temperature method, embedded in LR White resin (Agar Scientific UK), and polymerized at room temperature by UV light. For immuno-staining, MSP1-specific rabbit polyclonal antibodies were used, followed by protein-A conjugated to 10 nm gold, a kind gift from Dr. Pauline Bennett, King’s College London. For controls, parallel sets of sections were incubated with pre-immune sera for the primary antibody step, or with antibodies raised against a wide range of merozoite rhorpy, micronemal and dense granule proteins. Immuno-stained sections were contrasted with 2% aqueous uranyl acetate. For morphology, cells were fixed in 2.5% v/v glutaraldehyde in 0.08 M sodium cacodylate buffer (pH 7.2), and processed as described in [49]. Epoxy resin sections were stained with uranyl acetate and lead citrate then examined in a Hitachi 7600 electron microscope. Serial sectioning was also carried out on ring-stage material, using a Reichert Ultracut E ultramicrotome. Section ribbons were collected on pioloform-support films covering slotted grids, then stained and viewed as above.

Results

Radiolabeling and immunoprecipitation
The persistence of MSP119 during intracellular development was examined by biosynthetically labeling MSP1 during the schizont stage and then establishing the presence of the protein in the next intracellular cycle by immunoprecipitation. From extracts of labeled schizonts, MSP1-specific antibodies precipitated the ~200-kDa full-length precursor but not MSP119 (Figure 1 lane S, indicated by the top arrow). In addition, the 33-kDa intermediate processing fragment of MSP7 that is tightly associated with MSP1 [50], was also present in this immunoprecipitate (indicated by the middle arrow, Figure 1). In contrast, the same antibodies precipitated only MSP119 from ring stages and throughout further intracellular development, at least up until 42 hours post-invasion (Figure 1, lanes 0 to 42 hours, indicated by lower arrow). Both the apparent molecular mass and intensity of the MSP119 band remained constant during maturation of the parasite until the end of the cycle, when there was some reduction in signal strength. Importantly, the integrity of MSP119 throughout the erythrocytic cycle indicates that this protein was not further modified or degraded during intracellular development. The reduction in signal at the end of this cycle is most likely attributable to the beginning of schizont rupture.

Fluorescence imaging
Indirect immunofluorescence was used to study the location and persistence of MSP119 during the parasite’s intracellular development. In particular the location of MSP119 was compared with that of CRT, a protein that is a marker for the food vacuole. In the first series of experiments MSP1 on the merozoite surface was tagged by allowing parasites to invade erythrocytes in the presence of the mAb 1E1, which binds to MSP119, and is known to be carried into the RBC with the merozoite during invasion [8]. In the presence of mAb 1E1 parasites invaded red cells and developed normally compared to untreated controls (data not shown). At various times after invasion parasites were fixed and the bound antibody detected by IFA using fluorescently labeled affinity-purified anti-mouse IgG. The fixed parasites were also
incubated with either a MSP119-specific rabbit polyclonal antibody or an antibody specific for the CRT protein, and the binding of these antibodies was detected with appropriately labeled second antibodies.

In newly invaded parasites, MSP119 was clearly visible as a bright green peripheral staining (Figure 2, time 0). As the young parasite developed within the erythrocyte the pattern of MSP119 changed quite quickly, becoming punctate, but still remaining at or near the periphery of the parasite (Figure 2; 6 to 9 hours). However, from around 18 hours, the staining became increasingly concentrated in a small number (two to four) of prominent foci. A comparison of the location of MSP119 with that of hemozoin, detected under bright field illumination and visible from the late ring stage (18 hours) onwards indicates that the protein is associated with food vacuoles, and that the small food vacuoles had increased in size but decreased in number, suggesting their fusion. The subcellular location of mAb 1E1 bound to MSP119 was identical to that of an MSP119-specific polyclonal antibody that was applied to the parasites post-fixation (Figure 2 panel A). This co-localization persisted throughout ring-stage development, showing that mAb 1E1 remained associated with MSP119 within the parasite. However during this development the intensity of the

Figure 2. Immunofluorescence microscopy showing the localization of MSP119 and CRT in parasites that had invaded in the presence of mAb 1E1; showing that MSP119 moves to the food vacuole. Schizonts were allowed to release merozoites that invaded fresh erythrocytes in the presence of mAb 1E1, then ring-stage parasites were cultured and samples harvested every 3 hours over the asexual cycle. The mAb 1E1 antibody associates with MSP119 on the surface of the merozoite, and is detected within the ring-stage parasite; it was used to follow MSP119 in smears counterstained with rabbit anti-MSP119 (panel A) and rabbit anti-CRT (panel B), which is a marker of the food vacuole. Each row of four panels show an identical field from 1% formaldehyde-fixed thin smears of *P. falciparum* ring-stage parasites; columns A1 and B1 show mAb 1E1 associated with the parasite detected with Alexa Fluor 488 conjugated anti-mouse IgG (green); columns A2 rabbit anti-MSP119, and B2 rabbit anti-CRT, detected with Alexa Fluor 594 conjugated anti-rabbit IgG (red); columns A3 and B3 are composites of columns 1 and 2 with DAPI staining of the nucleus (blue) and any green and red fluorescence overlap is displayed in yellow. In columns A4 and B4, the parasitized erythrocyte is visualized by light microscopy, showing the location of the parasite within the infected erythrocyte. Only five time points are shown: 0, 6, 9, 12 and 18 hours post-invasion. The two anti-MSP119 antibodies, in panels A1 and A2, are seen to co-localize in panel A3, showing that 1E1 is still associated with MSP119 in the young parasite. CRT is clearly detectable from 6 to 9 hours onwards post-invasion (panel B2) and appears to be closely associated with MSP119 (panel B3). Pigment granules are clearly visible by light microscopy from about 18 hours (panels A4 and B4). Similar results were obtained in a separate experiment in which mAb 1E1 was used to detect MSP119 on formaldehyde fixed parasites at the same time points (data not shown) and at 24 hours (panel C). Panels C1–C4 show 1E1, (C1, green), rabbit anti-CRT (C2, red), composites of these antibodies with DAPI staining merged (C3) and light visualization (C4), as described above. CRT was clearly detectable (C2) and largely co-localized with MSP119 (C3). Both MSP119 and CRT were associated with the pigment detected by light microscopy in panel C4 and no longer around the surface of the parasite.

doi:10.1371/journal.pone.0003085.g002
1E1 label progressively diminished, perhaps indicating a progressive degradation of the antibody as the parasite matured.

To determine if MSP1\textsubscript{19} is present in the food vacuole we examined its colocalization with CRT by IFA. We found that CRT was first detectable in rings at around 6 hours post invasion in the form of diffuse staining at the periphery of the parasite, with some punctate staining (Figure 2, panel B). From 12 hours post-invasion CRT labeling was concentrated in several small bright foci, still close to the periphery of the parasite, suggesting a cluster of small food vacuoles. From 18 hours post-invasion hemozoin pigment was also visible within these vacuoles. In these double-labeled samples, the CRT-specific fluorescence coincided closely with MSP1\textsubscript{19}-specific fluorescence. The appearance and location of CRT-specific label was unaffected by the presence of the internalized mAb 1E1. By 24 hours hemozoin crystals were clearly evident in a single food vacuole and were surrounded by both MSP1\textsubscript{19} and CRT fluorescence (Figure 2, panel C). However, close inspection showed that while there was considerable co-localization of MSP1\textsubscript{19} and CRT at this stage, coincidence was not complete.

In a second series of experiments the locations of MSP1\textsubscript{19} and CRT were examined in later stages (Figure 3). MSP1\textsubscript{19} and CRT were clearly visible surrounding the hemozoin in a late trophozoite (with a single nucleus) (Figure 3, panels A and B top row). As the parasite matured and the number of nuclei increased, the pattern of CRT staining of the food vacuole remained constant (Figure 3, panel B). At the same time, the increasing expression of newly synthesized MSP1 at the schizont surface [51] reacting with the anti-MSP1\textsubscript{19} antibodies progressively obscured the MSP1\textsubscript{19}-specific signal associated with the food vacuole (Figure 3, panel A). At the end of schizogony when the residual body containing the hemozoin pigment is released together with the merozoites, the residual body reacted with both MSP-1 and CRT-specific antibodies (Figure 3, panel C, (a) and (b)), however MSP1\textsubscript{19} could not be distinguished from newly synthesized MSP1 by these fluorescence techniques.

In agreement with the biosynthetic labeling data, MSP1\textsubscript{19} was detectable in fixed parasites in two independent experiments with rabbit polyclonal anti-MSP1\textsubscript{19} and mAb 1E1 antibodies at least until 36 and 30 hours post-invasion, respectively, after which time the presence of newly synthesized MSP1 on the parasite surface masked the labeling of internalized MSP1\textsubscript{19} (Figure 3).

Immuno-electronmicroscopy

The ultrastructure of the \textit{P. falciparum} food vacuoles at different blood cycle stages has been previously reported (see Introduction), but to help the description of our IEM findings, we will briefly describe their morphology in rings and then in later stages.

The endocytic vacuoles in rings (Figures 4A–G and 5A–F).

In early to mid-stage rings, EM showed endocytosis of erythrocyte cytoplasm into small dense vacuoles with diameters of 150–300 nm (Figure 4A, B). Some vacuoles were a little larger (350 nm) and surrounded by two membranes (Figure 4C, D), indicating that they had just been endocytosed, with the inner membrane being derived from the parasitophorous vacuole membrane with enclosing red cell cytoplasm, and the outer membrane derived from the parasite plasma membrane (see [22]). Only a single enclosing membrane was present around most dense vacuoles, denoting lysis of the inner membrane. Some vacuoles contained one or more small electron-dense masses showing the formation of crystals of hemozoin instead of the dense granular contents (Figure 4C–G), indicating that hemoglobin degradation had begun soon after invasion. In addition, some early rings contained one or more clear single membrane vacuoles (Figure 4A, C), but these did not persist in later rings. In mid- and late-stage rings, larger vacuoles containing several hemozoin crystals (Figures 4F, G, and 5F) were present, suggesting that progressive vacuolar fusion was occurring. In very late ring forms, as in trophozoites and schizonts, all hemozoin was contained in a single larger vacuole. Although single, random sections through rings did not always contain vacuoles with hemozoin, all serially sectioned sequences (see e.g. Figure 4D–F) (seven in total) and numerous partial sequences showed their presence. The small vacuoles were typically clustered together locally just beneath the plasma membrane (e.g. Figure 4B), so that random sections could easily miss passing through such an area. The characteristic cytostomal apparatus consisting of an electron-dense cytoskeletal double ring attached to the parasite's plasma membrane (Figure 4B), was present in all stages from early rings onwards.

IEM with the polyclonal anti-MSP1\textsubscript{19} antibody in early ring stages showed labeling present over the whole surface of the parasite's plasma membrane (Figure 5A, B) and occasionally within clear vacuoles within the parasite (Figure 5B). However, in most rings, labeling was confined to the small dense food vacuoles and tubular food vacuoles situated near the parasite's periphery (Figure 5C–E), and, in more mature rings, to the larger more central vacuoles (Figure 5F), none of which were unlabeled. In all ring stages, labeling was located along the inner surface of the food vacuole membrane. When antibody raised against the N-terminal end of MSP1 (i.e. excluding the MSP1\textsubscript{19} region) was used, no labeling was found on any ring structure (data not shown).

Endocytosis in later-stage parasites (Figure 6A–J).

Morphological EM of trophozoites and schizonts, in which a single vacuole is present in each parasite, showed that food vacuole size varied with post-invasion age. In trophozoites and early schizonts the vacuole was rounded or elliptical in section and larger than in rings (up to 2.2 µm across, see e.g. Figure 6A), containing widely separated hemozoin crystals, and various irregularly shaped membranous sacs (referred to here as internal membranes, Figure 6A, B). In the mid-schizont period prior to merozoite budding the vacuole was somewhat smaller and the vacuole wall was often inwardly folded (Figure 6B), sometimes to create pockets partially enclosing hemozoin crystals. At this schizont stage, one or more lipid bodies associated with the external surface of the vacuole membrane were present (Figure 6C) (see [52]). In more mature, budding schizonts, the food vacuole was markedly smaller (0.8–1.2 µm in maximum diameter), its membrane closely fitting the cluster of larger tightly packed hemozoin crystals typical of the mature schizont (Figure 6F). In these parasites the lipid bodies were no longer visible.

IEM of trophozoites and early schizonts showed strong MSP1\textsubscript{19}-specific labeling, closely associated with part of the vacuole’s lining membrane including its inward folds (Figure 6A–G) and often lying close to the hemozoin crystals (Figure 6F). In segmenting and late schizonts (Figure 6H, I) when the folds had mostly disappeared, labeling was still tightly related to the vacuole wall. It was noticeable that, except in the most mature schizonts, labeling was concentrated over a limited area of the vacuole membrane, thus some relatively large areas were devoid of immunostaining (Figure 6D–G). However, towards the end of the schizont period, label covered most or all of the inner surface of the vacuole membrane (Figure 6H, I).

We also carried out IEM with a mixture of polyclonal antibodies directed against the N-terminal portion of MSP1 that did not react with MSP1\textsubscript{19}. These labeled the plasma membrane of mid- to late-stage schizonts expressing newly synthesized MSP-1 on their surface, but failed to label the food vacuole or cytostomal vesicles en route to that organelle (Figure 6J). IEM controls using normal mouse or rabbit serum, or antibodies against irrelevant
proteins, were all negative. We also attempted to detect CRT by IEM, but the labeling frequency was too low to provide useful data for this study.

Discussion

MSP1\textsubscript{19} is formed by the cleavage of MSP1\textsubscript{42} by SUB2 on the surface of the merozoite at the time of erythrocyte invasion [6]. We have followed the fate of MSP1\textsubscript{19} in the subsequent intracellular development of the parasite and suggest that it plays an important but as yet undefined role in the food vacuole. Our conclusions are depicted diagrammatically in Figures 7 and 8.

The radiolabeling results show that after invasion MSP1\textsubscript{19} does not undergo further processing or degradation within the intracellular parasite and is still intact at the point of merozoite release. The metabolic labeling results also show that new MSP1\textsubscript{19} fragments are not formed by proteolytic cleavage from newly synthesized MSP1, so in schizonts all the MSP1\textsubscript{19} must have entered from the previous parasite generation, during merozoite invasion. MSP1\textsubscript{19} is known to be highly resistant to proteases,
including those present in acidic lysosomal compartments [53], probably due to its compact, highly disulphide-bonded structure [54,55]. In this context it is of interest that MSP8 which is synthesized in the ring stage and remains throughout the erythrocytic life cycle [15], has a similar double EGF-domain structure which may also protect it against proteolysis. Whether or not any other specific invasion-related merozoite proteins follow this route will be interesting to determine. The merozoite rhoptry proteins of the RhopH complex including RhopH1/Clag 9 [45] and RhopH2 [56] can be detected within the infected-RBC after invasion in association with the parasitophorous vacuole membrane, but there is no reported evidence of their endocytosis by the parasite.

Both IFA and IEM methods show that MSP119 is cleared from the ring-stage parasite’s surface by endocytosis into the vacuolar system where it remains until the schizont breaks down at the release of the next generation of merozoites. It is interesting however that in very early rings, some MSP119 also enters a few clear vacuoles lacking hemoglobin or hemozoin, suggesting an early phase of endocytosis that does not involve RBC feeding (see also [29]). Nevertheless this appears to be a relatively minor, transient fraction restricted to the earliest rings, and since later labeling is only present in the dense small food vacuoles, the clear vacuoles must presumably transfer their contents to the dense ones. Therefore essentially, MSP119 is endocytosed along with RBC cytosol into the multiple small dense vacuoles characteristic

Figure 4. Ultrastructural morphology of endocytic vacuoles in ring stages. Panels A to G show sections through established ring stages prepared for EM morphology. A and C show the two types of vacuole present in the cytoplasm, one not containing hemoglobin (clear vacuoles) and the other with hemoglobin (small food vacuoles). An obliquely sectioned cytostome and a group of small dense food vacuoles are visible in B. In C a double membrane dense food vacuole is also shown, which is typical of early endocytosis before the inner membrane breaks down (see text). In panels D–F three sections from a serial section sequence are shown, depicting stages in hemozoin formation in a mid-stage ring. In panel D a vacuole in the early stages of hemoglobin degradation is visible (arrow, bottom left) as well as smaller vacuoles containing dense masses indicating hemozoin formation. In panel F a larger vacuole containing a number of small hemozoin crystals is shown (enlarged in panel G). Abbreviations: RER–rough endoplasmic reticulum; RBC–red blood cell.

doi:10.1371/journal.pone.0003085.g004
of the ring-stage parasite, where it remains in the vacuolar system until they fuse to form the single food vacuole of later stages.

Our results indicate that in early and mid-stage rings, endocytic vesicles function as individual food vacuoles, each able to break down hemoglobin and generate hemozoin crystals (see [29,57]), and that in late rings there is a switch to a single vacuole, indicating that new molecules able to facilitate vacuolar fusion are functional at this developmental threshold. Our IFA and EM/IEM results clearly indicate that this switch is achieved by the fusion of small food vacuoles rather than the formation of a completely new large single vacuole as proposed by Elliot et al. [57]. This is demonstrated by the IFA and IEM labeling of progressively larger but fewer food vacuoles in rings, and the strong MSP119 labeling of all vacuoles containing hemozoin in rings and later stages - these findings would be unexpected if there is a major, separate endocytic event responsible for forming the single food vacuole at the end of the ring stage.

Our IFA and IEM results therefore confirm and extend the findings of Drew and colleagues [15] that, in late rings, MSP119 is associated with the food vacuole. However, the IFA evidence for colocalized foci of MSP119 and MSP8 at the parasite’s surface in ring stages reported by these authors needs to be re-interpreted in view of our IEM findings. At this much higher level of resolution, it is clear that these apparently surface concentrations correspond to small peripheral food vacuoles within the parasite.

The IEM results show that after endocytosis, MSP119 becomes closely located with the lining membrane of the small food vacuoles and retains this position in the single vacuole of later stages, indicating that this molecule, and it is likely, the portion of surface membrane to which it is GPI-anchored, become

Figure 5. The distribution of MSP119 in ring-stage parasites detected by IEM. Panels D and E show MSP119-specific labeling of the surface of early rings, and in panel E, a clear endocytic vacuole is also labeled. Panels F–H show that MSP119 has been endocytosed into the small dense food vacuoles, and is located mainly at the inner vacuolar membrane surface; in Panel G the food vacuoles have a tubular appearance. In Panel I, a late ring is labeled, showing the incorporation of MSP119 into larger vacuoles containing small hemozoin crystals (Hz), with the label again associated with the vacuole membrane. Abbreviations: Fvtu- tubular food vacuoles; Hz- hemozoin.
Figure 6. The distribution of MSP1 within late trophozoites and schizonts. Panels A–C show the appearance of the single food vacuole, prepared for EM morphology. Panel A shows a late trophozoite containing a typically dilated food vacuole, containing widely spaced hemozoin and several profiles of internal membranous structures. In panel B an early schizont stage vacuole contains some hemozoin crystals and internal membrane profiles, while the vacuole wall shows signs of inward folding (arrowheads). C shows another schizont where a lipid body has formed adjacent to the food vacuole. Panels D–G show specific immunogold labeling of early to mid-stage schizonts labeled with MSP119-specific antibodies, in all cases detecting the protein at the vacuole wall. In panel D a limited area of labeling is present along one side of the food vacuole (small arrows),
permanently incorporated into the vacuole wall membrane. There is evidence that GPI-anchored merozoite coat proteins such as MSP1 are associated with cholesterol-rich lipid microdomains (rafts) [58], which therefore could be endocytosed into the vacuolar system from the ring surface with MSP119. The persistence of this fragment may therefore also reflect an equal persistence of the associated lipid raft components in the food vacuole wall.

The IEM results additionally show that in the single vacuole of trophozoites and early schizonts, the molecules of MSP119 are clustered into one or more patches of high concentration on the vacuole wall, rather than being spread evenly around its perimeter. This suggests that MSP119 molecules and the membrane lipids with which they associate form a coherent unit integrated into the vacuole wall membrane, preserving a group identity separate from other membrane components of the wall. This behavior implies some form of lateral interaction between MSP119 molecules either directly with each other or indirectly through clustering of their linked membrane lipids. Interestingly, inspection of published IEM reports of CRT localization to the food vacuole wall [30,59] also show a patchy distribution. Additionally, double IFA labeling for MSP119 and CRT does not show a total colocalization, suggesting that they cover overlapping or different areas of the food vacuole wall.

These findings indicate that the membrane lining the food vacuole may be a mosaic of different molecular compositions, of which MSP119-attached membrane is only a part. Such an arrangement may not be too surprising, considering what must be the highly dynamic nature of this boundary, which constantly receives new membrane from the cytostomes and probably by fusion of Golgi-derived vesicles carrying proteolytic enzymes [25], yet at the same time maintaining close control over its ionic contents by active transport across its wall.

Figure 7. A diagram summarising the general fate of MSP1 and the C-terminal fragment MSP119 through the asexual cycle. In panel A, MSP1 on the surface of the invading merozoite undergoes cleavage to release the N-terminal portion (orange) and leave the C-terminal MSP119 (green) attached to the surface of the parasite: firstly as a newly internalized merozoite; and later as it transforms into a ring stage. MSP119 is then endocytosed from the ring surface into small food vacuoles as the parasite begins to feed on and metabolise hemoglobin. In B, all the MSP119 has been endocytosed and is associated with the membrane of the now single food vacuole, where it remains through the mid-schizont stage (C) and is then incorporated into the residual body at the end of schizogony (D).

doi:10.1371/journal.pone.0003085.g007

Abbreviations: FV–food vacuole; Hz–hemozoin; Int mem–internal membranous structures; RBC–red blood cell.
It may also be significant that during schizogony the vacuole shrinks in diameter. At first it appears that the lining membrane becomes folded during this process, but later it loses its folds and it is likely that its surface area is reduced by some other mechanism. It is significant that as the food vacuole becomes smaller, the proportion of the wall labeling for MSP1 increases until at the end it covers most or all of the inner surface of the food vacuole (now the residual body) (see Figure 8C–F). As shown by Jackson et al [52], during the schizont period the internal membranes of the food vacuole vanish and at the same time the lipid body appears on the vacuole’s periphery, suggesting mobilization and retrieval of lipid from the food vacuole interior. A similar process could also

Figure 8. A series of diagrams summarising in greater detail the main conclusions relating to post-invasion MSP1 endocytosis and its progression through the asexual cycle. In each panel a portion of the parasite is shown in blue, with the adjacent RBC in red, and with the parasitophorous vacuole space between the two. The fragments of MSP1 are colored as in Figure 7.

doi:10.1371/journal.pone.0003085.g008
account for the loss of membrane from the vacuole wall, although in this case it would be selective, leaving membrane associated with MSP119, as its chief component.

Besides the potential functional importance of MSP119, the results reported here throw new light on the process of endocytosis into the food vacuole at different stages of the cycle. It is plain that food vacuoles formed in rings are in a number of respects different from those of later stages. The avid uptake of MSP119 from the ring surface contrasts strongly with the absence of uptake of full length MSP1 into the schizont food vacuole, as shown by the failure of N-terminal-directed antibodies to detect vacuolar MSP1. It is likely that both GPI-anchored forms of this molecule are associated with cholesterol-rich lipid microdomains [58] and that in rings, MSP119 is carried into the vacuole by association with such specific lipids. In later stages when it would be wasteful for the parasite to allow vacuolar degradation of newly synthesized GPI-anchored surface proteins destined for the next brood of merozoites, some mechanism must exist at the mature cytostome for ensuring MSP1 is excluded from endocytosis. The molecular basis for this selective process is not at present apparent.

It is possible that the presence of MSP119 in food vacuoles is merely an aspect of the food vacuole’s ability to store undegradable biomolecules, already evident in hemizoon sequestration. However, as MSP119 is located at the inner surface of these organelles, it is likely that any function relates to that boundary. There is experimental evidence that some anti-MSP119 antibodies (though not the anti-MSP119 mAb 1E1 used here) carried into the red cell on the surface of the merozoite can interfere with intracellular development [60–62]. The basis for this interference is unknown but warrants further investigation. Moreover, the location of MSP119 along the food vacuole wall rather than in isolated clumps or vesicles within its lumen (as typical of degraded structures in secondary lysosomes of many eukaryotes: [see 53] for a review) argues that MSP119 is not merely discarded as a functionless end-product.

The protease-resistant structure of MSP119 suggests that it may serve as a protective protease-resistant protein coat on the inside of the food vacuole, guarding other membrane proteins against the powerful proteases within this organelle. As it covers only part of the wall, it is unlikely to be the only protective agent, and other molecules with similar resistance may also participate, including MSP6, which has a similar EGF domain structure. However, gene disruption experiments have shown that MSP8 is not essential for parasite progress [15,64] so additional protease-resistant proteins may be necessary to provide adequate protection.

Another possibility is that MSP119 might be involved in nucleating hemozoin crystallization, a role posited for a number of parasite molecules including HRPIII, which is either transported directly to the food vacuole or first trafficked to the red cell cytoplasm and then taken back into the food vacuole during feeding [65,66]. Current evidence indicates that neutral lipid droplets within the food vacuole are important for hemozoin formation [67] although other molecules might participate. It would be useful to know if MSP119 has the capacity to nucleate or accelerate hemozoin crystallization.

A third possibility is that by virtue of its association with membrane lipids including those forming cholesterol-rich lipid microdomains, MSP119 is important in mechanically stabilizing the vacuole membrane especially in late schizonts when the vacuole is packed with sharp-ended hemozoin crystals. Further experiments are needed to test these possibilities.

Whatever the true function, the findings reported here point to an important but as yet undefined role for merozoite proteins in the intracellular phase of the parasite’s erythrocytic cycle, and they also emphasize our lack of understanding of the degradative pathways within the parasite. Both of these aspects of the parasite’s biology deserve attention as potential targets for the development of antimalarial strategies.

Acknowledgments

We acknowledge MR4 and Prof. Leann Tilley (La Trobe University, Bundoora) for the CRT antibodies, Dr. Mike Blackman, Division of Parasitology for rabbit anti-MSP1 serum, the Centre for Ultrastructural Imaging, Guy’s Hospital, for EM assistance, Dr. Pauline Bennett for Protein A-gold, and Ian Williams for technical support. Part of this work was presented at The MAM2004 conference, Lorrie, Australia.

Author Contributions

Conceived and designed the experiments: ARD ITL AAH LHB. Performed the experiments: ARD JMH MG GM GHM LHB. Analyzed the data: ARD ITL AAH LHB. Contributed reagents/materials/analysis tools: JMH MG GM GHM. Wrote the paper: ARD ITL AAH LHB. Obtained funding for the study: GM GHM AAH.

References

1. Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA (1990) A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med 172: 379–392.

2. Hall R, McBride J, Morgan G, Tait A, Zolot JW, et al. (1983) Antigens of the erythrocytes stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. Mol Biochem Parasitol 7: 247–265.

3. Gilson PR, O’Donnell RA, Neil T, Sanders PR, Wickham ME, et al. (2008) MSP1(19) miniproteins can serve as targets for invasion inhibitory antibodies in Plasmodium falciparum provided they contain the correct domains for cell surface trafficking. Mol Microbiol 68: 124–138.

4. Oka M, Aikawa M, Freeman RR, Walker AA, Fine E (1984) Ultrastructural localization of protective antigens of Plasmodium yoelii merozoites by the use of monoclonal antibodies and ultrathin cryoimmunocytochemistry. Am J Trop Med Hyg 33: 342–346.

5. Heidrich HG, Matzner M, Miettinen-Baumann A, Strych W (1988) Immuno-electron microscopy shows that the 80,000-dalton antigen of Plasmodium falciparum merozoites is localized in the surface coat. Z Parasitenkd 72: 681–683.

6. Harris PK, Yeoh S, Dluhyzki AR, O’Donnell RA, Withers-Martinez C, et al. (2005) Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 1: 241–251.

7. Holder AA, Blackman MJ, Burgaun PA, Chappell JA, Ling IT, et al. (1992) A malaria merozoite surface protein (MSP1)-structure, processing and function. Mem Inst Oswaldo Cruz 87 Suppl 3: 37–42.

8. Blackman MJ, Scott-Finigan TJ, Shaw S, Holder AA (1994) Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein. J Exp Med 180: 389–393.

9. Blackman MJ (2004) Proteases in host cell invasion by the malaria parasite. Cell Microbiol 6: 893–903.

10. Carruthers VB, Blackman MJ (2005) A new release on life: emerging concepts in proteolysis and parasite invasion. Mol Microbiol 55: 1617–1630.

11. Dowse T, Soldati D (2004) Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Curr Opin Microbiol 7: 388–396.

12. Howell SA, Hackett F, Jongco AM, Withers-Martinez C, Kim K, et al. (2005) Distinct mechanisms govern proteolytic shedding of a key invasion protein in apicomplexan pathogens. Mol Microbiol 57: 1342–1356.

13. O’Donnell RA, Blackman MJ (2005) The role of malaria merozoite proteases in red blood cell invasion. Curr Opin Microbiol 8: 422–427.

14. O’Donnell RA, Hackett F, Howell SA, Trenck M, Struck N, et al. (2006) Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 174: 1023–1033.

15. Drew DR, Sanders PR, Crabbe BS (2005) Plasmodium falciparum merozoite surface protein 8 is a ring-stage membrane protein that localizes to the parasitophorous vacuole of infected erythrocytes. Infect Immun 73: 3912–3922.

16. Francis SE, Sullivan DJ Jr, Goldberg DE (1997) Hemoglobin metabolism in the malaria merozoite surface protein (MSP1)-structure, processing and function. J Cell Biol 137: 342–346.

17. Francis SE, Sullivan DJ Jr, Goldberg DE (1997) Hemoglobin metabolism in the malaria parasite. Plasmodium falciparum. Annu Rev Microbiol 51: 97–123.

18. Rosenthal PJ (2004) Cysteine proteases of malaria parasites. Int J Parasitol 34: 1409–1499.
18. Saliba KJ, Allen RJ, Zusi S, Bray PG, Ward SA, et al. (2003) Acidification of the malaria parasite’s digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. J Biol Chem 278: 5605–5612.

19. Langreth SG, Jensen JB, Reese RT, Trager W (1978) Fine structure of human malaria in vitro. J Protozool 25: 443–452.

20. Lazarus MD, Schneider TG, Taraschi TF (2000) A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci 121: 1937–1949.

21. Aikawa M, Huff CG, Spinz H (1966) Comparative feeding mechanisms of avian and primate malarial parasites. Mil Med 131: Suppl: 969–983.

22. Slomianny C (1990) Three-dimensional reconstruction of the feeding process of the intraerythrocytic human malarial parasite Plasmodium falciparum. J Protozool 31: 367–372.

23. Klemba M, Beatty W, Ghuzman I, Goldberg DE (2004) Trafficking of plasmodium to the food vacuole of the malaria parasite Plasmodium falciparum. J Biol Chem 279: 47–56.

24. Pagola S, Stephens PW, Boleh DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment beta-haematin. Nature 404: 307–310.

25. Egan TJ, Combrick JM, Egan J, Hearme GR, Marques HM, et al. (2002) Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem J 365: 343–347.

26. Egan TJ (2008) Haemozoin formation. Mol Biochem Parasitol 151: 127–136.

27. Rapantner LH, Hopkins JM, Marges G, Dluzewski AR, Mitchell GH (2004) Three-dimensional ultrastructure of the ring stage of Plasmodium falciparum. J Protozool 31: 579–580.

28. Yuan A, Timberg R, Friedman S, Gimburg H (1984) Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum. J Protozool 31: 367–372.

29. Klemba M, Beatty W, Ghuzman I, Goldberg DE (2004) Trafficking of plasmodium to the food vacuole of the malaria parasite Plasmodium falciparum. J Biol Chem 279: 47–56.

30. Pagola S, Stephens PW, Boleh DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment beta-haematin. Nature 404: 307–310.

31. Egan TJ, Combrick JM, Egan J, Hearme GR, Marques HM, et al. (2002) Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem J 365: 343–347.

32. Egan TJ (2008) Haemozoin formation. Mol Biochem Parasitol 151: 127–136.

33. Rapantner LH, Hopkins JM, Marges G, Dluzewski AR, Mitchell GH (2004) Three-dimensional ultrastructure of the ring stage of Plasmodium falciparum. J Protozool 31: 579–580.

34. Cooper RA, Ferdig MT, Su XZ, Ursos LM, Mu J, et al. (2002) Alternative splicing in Plasmodium falciparum: evidence for roles in chloroquine resistance and unique stereospecific quinine and quinine responses in Plasmodium falciparum. Mol Pharmacol 61: 35–42.

35. Fidock DA, Noura T, Talley AK, Cooper RA, Dzukum SM, et al. (2000) Mutations in the p. falciparum digestive vacuole transmembrane protein PCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861–871.

36. Bray PG, Martin RE, Talley I, Ward SA, Kirk K, et al. (2005) Defining the role of PCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol 56: 325–333.

37. Tran CV, Saier MH Jr (2004) The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily. Microbiology 150: 1–3.

38. Marino RE, Kirk K (2004) The malaria parasite’s chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol 21: 1938–1949.

39. Burns JM Jr, Belk CC, Dun D (2000) A protective glycosylphosphatidylinositol-anchored membrane protein of Plasmodium yoelii trophozoites and merozoites contains two epidermal growth factor-like domains. Infect Immun 68: 6189–6195.

40. Black CG, Wu T, Wang L, Hibbs AR, Coppell RL (2001) Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Mol Biochem Parasitol 114: 217–226.

41. Walliker D, Qwaki IA, Welles TE, McCutchan TF, Szarfman A, et al. (1987) Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236: 1661–1666.

42. Helleman E, Wilson RJ (1981) Detection of glucose-6-phosphate dehydrogenase in malarial parasites. Mol Biochem Parasitol 2: 197–204.

43. Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, et al. (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357: 454–466.

44. Tierney LH, Hopkins JM, Fowler RE, Bannister LH, Klonis N, et al. (2004) Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 101: 2463–2468.

45. Wang L, Mohandas N, Thomas A, Coppell RL (2003) Detection of detergent-resistant membranes in asynchronous blood-stage parasites of Plasmodium falciparum. Mol Biochem Parasitol 130: 149–153.

46. Waller KL, Mohle RA, Ursos LM, Horrocks P, Verderi-Pandur D, et al. (2003) Chloroquine resistance modulated in vitro by expression levels of the Plasmodium falciparum chloroquine resistance transporter. J Biol Chem 278: 33593–33601.

47. Arnot DE, Cavanagh DR, Remarque EJ, Creasey AM, Sowa MP, et al. (2008) Critical evaluation of different methods for measuring the functional activity of antibodies against malaria blood stage antigens. Am J Trop Med Hyg 78: 437–442.

48. Wordlly U, Epp C, Kauth CW, Lutz R, Lang CA, et al. (2006) Analysis of antibodies directed against merozoite surface protein 1 of the human malaria parasite Plasmodium falciparum. Infect Immun 74: 1313–1322.

49. Luzio JP, Pougon V, Lindsay MR, Mullock BM, Piper RC, et al. (2003) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20: 141–154.

50. Shi Q, Cernetich-Ott A, Lynch MM, Burns JM Jr (2006) Alternative splicing in Plasmodium falciparum: evidence for roles in chloroquine resistance and unique stereospecific quinine and quinine responses in Plasmodium falciparum. Mol Pharmacol 61: 35–42.

51. Bergmann-Leitner ES, Duncan EH, Mullen GE, Burge JR, Khan F, et al. (2006) Critical evaluation of different methods for measuring the functional activity of antibodies against malaria blood stage antigens. Am J Trop Med Hyg 78: 437–442.

52. Wordlly U, Epp C, Kauth CW, Lutz R, Long CA, et al. (2006) Analysis of antibodies directed against merozoite surface protein 1 of the human malaria parasite Plasmodium falciparum. Infect Immun 74: 1313–1322.

53. Luzio JP, Pougon V, Lindsay MR, Mullock BM, Piper RC, et al. (2003) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20: 141–154.

54. Shi Q, Cernetich-Ott A, Lynch MM, Burns JM Jr (2006) Alternative splicing in Plasmodium falciparum: evidence for roles in chloroquine resistance and unique stereospecific quinine and quinine responses in Plasmodium falciparum. Mol Pharmacol 61: 35–42.

55. Bergmann-Leitner ES, Duncan EH, Mullen GE, Burge JR, Khan F, et al. (2006) Critical evaluation of different methods for measuring the functional activity of antibodies against malaria blood stage antigens. Am J Trop Med Hyg 78: 437–442.

56. Wordlly U, Epp C, Kauth CW, Lutz R, Lang CA, et al. (2006) Analysis of antibodies directed against merozoite surface protein 1 of the human malaria parasite Plasmodium falciparum. Infect Immun 74: 1313–1322.

57. Luzio JP, Pougon V, Lindsay MR, Mullock BM, Piper RC, et al. (2003) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20: 141–154.

58. Shi Q, Cernetich-Ott A, Lynch MM, Burns JM Jr (2006) Alternative splicing in Plasmodium falciparum: evidence for roles in chloroquine resistance and unique stereospecific quinine and quinine responses in Plasmodium falciparum. Mol Pharmacol 61: 35–42.