This article can be cited before page numbers have been issued, to do this please use: F. Thoreau and V. Chudasama, RSC Chem. Biol., 2021, DOI: 10.1039/D1CB00082A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry

Fabien Thoreau,* Vijay Chudasama.**

In the last two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient’s immune system’s ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective to restore immune system functions to treat cancer (cancer immunotherapy), either through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape were also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engager & Modulator), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for the cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.

I. Introduction

The general idea of exploiting antibodies as a therapeutic tool is an old concept (19th century).1 However, the incomplete understanding of the immune system, immunogenicity issues and complexity of antibody production held back the development of immunotherapies and the concept has reborn from the ashes only recently.2 The first breakthrough was made with monoclonal antibodies: Following the discovery in 1974 and the related Nobel prizes in 1984 of the hybridoma technology by C. Milstein and G. J. F. Köhler that allows the production of a large number of monoclonal antibodies, development of recombinant and fused antibodies was made possible in the mid 80’s.3,4 This progressively led to the production of chimeric, humanized and human monoclonal antibodies, being less and less immunogenic and more and more efficient. As a consequence, monoclonal antibody FDA approvals and commercialisation took off in the early 2000s, mainly as anticancer treatments.5 The monoclonal antibodies’ success is prompted by their binding affinity for tumour antigens that confers them agonistic, antagonistic or inhibitory effects, while their Fc fragment can trigger an Fc-related immune response (Antibody-dependant cell-mediated cytotoxicity ADCC, complement-dependant cytotoxicity CDC).6,7 Despite evident beneficial therapeutic outcomes in some cases (e.g. Cetuximab, Bevacizumab, Trastuzumab),8 monoclonal antibodies didn't improve the therapeutic window enough in other cases, due to toxicity or lack of efficacy.9 To circumvent these issues, the antibody characteristics were exploited even further.2 One of the strategies adopted was the functionalisation of the antibody with one or several payloads, to generate so called antibody-drug conjugates (ADCs). ADCs take advantage of the targeting ability of monoclonal antibodies to transport a drug effector such as doxorubicin or MMAE to the tumour site, in order to improve the anti-tumour efficacy. Other payloads such as fluorophores can be used for diagnostics. The ADC field has been reviewed extensively elsewhere.10–13 On the other side, bispecific antibodies or bispecific constructs were developed and raised high expectations. Indeed, combining two different paratopes on the same full antibody, or combining two different antigen-binding fragments on a construct (through Fab, scFv, or single domain combination), allows the simultaneous targeting of two antigens or two different epitopes of a same antigen, potentially improving affinity, selectivity, synergistic effects and reducing the risk of antigen loss and on-target toxicity.14,15 Interestingly, the ADC and bispecific concepts can be merged to yield bispecific ADCs. Some examples of this recent but promising approach have already been published and reviewed elsewhere.16

A particular type of bispecific antibodies is dedicated to immune response activation (immunotherapy). They are actually divided into three sub-classes: immune cell redirectors, tumour-
targeted immunomodulators, and dual immunomodulators, that can be described as followed. (a) immunomodulators. The idea here is to recruit T cells or Natural Killer cells (NK cells) circulating in the body and redirect them against the tumour cells, to trigger the tumour destruction through immune activity. To this end, bispecific antibodies/constructs are armed with two different binding sites – one binding site has affinity for a tumour antigen (e.g. CD19, HER2...) and the other has affinity for an immune cell antigen (e.g. CD3 for a T cell, forming a Bispecific T cell Engager (BiTE), or CD16 for NK cell, forming a Bispecific Killer cell Engager (BiKE)). This cytotoxic effector cell redirector strategy represents the majority of bispecifics currently in pre-clinical and clinical trials, with encouraging results as will be discussed later. (b) Tumour-targeted immunomodulators. Their development is driven by the clinical success of inhibitory immune checkpoint inhibitors. Inhibitory immune checkpoints are proteins that are able to down-regulate immune cell activation through different mechanisms of action. For instance, the interaction between the PD-1 receptor on T cell membrane and its PD-L1 ligand at the surface of tumour cells is a down-regulating signal for the T cell. Thus, bispecifics combining a tumour binding site with an antagonistic anti-PD-1 or anti-PD-L1 binding site, could locally inhibit the down-regulation of the T cell activation and restore the immune response. Such a bispecific is a tumour-targeted inhibitory immune checkpoint inhibitor. Conversely, stimulatory immune checkpoints such as 4-1BB or OX40, of which stimulation enhances the activation of T cells, can be recruited to the tumour site by a bispecific compound comprising the corresponding ligand (4-1BBL or OX40L) and a tumour associated antigen (TAA). Such a bispecific is a tumour-targeted stimulatory immune checkpoint stimulator. (c) Dual immunomodulators. They are designed to target two immunomodulating targets among the aforementioned inhibitory and stimulatory immune checkpoints. They are thus expected to have a high impact on the immune response stimulation. However, as they are not tumour-targeted, they are more likely to induce associated adverse events such as cytokine release syndrome and are usually used in combination with other therapeutic agents (immunotherapy or chemotherapy).

Some recently published constructs fit in with two of the aforementioned classes, being both cytotoxic effector cell redirectors and tumour-targeted immunomodulators. Indeed, the TriKE (for Trispecific Killer Engager) is a bispecific format engaging CD16 and CD33 to redirect NK cells to myeloid cancer cells,17 with these two binding sites being connected by a modified human IL-15, a cytokine able to induce maintenance and activation of NK cells (and others). Similarly, M. Herrmann et al. developed a bifunctional checkpoint inhibitory T cell-engaging (CITE) antibody, a trispecific construct (αCD3 x αCD3 x αPD-L1) combining a T cell redirection to AML cells with a local PD-L1 blockade ensured by the extracellular domain of PD-1 (PD-1ex) which exhibits a low affinity for PD-L1.18,19 Another concept, named SMITE (for simultaneous multiple interaction T cell engager), consists of a combination of two immune cell engagers (two BiTEs αCD3 x αTAA and αCD28 x αTAA, or two BiTEs αCD3 x αTAA and αCD28 x αPD-L1).20

The field of bispecific immunotherapeutics is wide, promising, and keeps evolving. The arrival of TriKEs, CITEs and SMITEs marks a step ahead, pushing the boundaries of the immunotherapy field, previously limited to dual specificity. It seems this trend can be extended further with a new class of immunotherapeutics: multispecifics. Indeed, given the synergistic effects that immune cell recruitment, immune checkpoint inhibition, immunostimulation and tumour-targeting can have with each other on therapeutic efficacy, it is not surprising that attempts to combine all these aspects in one compound would be the next step to take. For this purpose, multispecific antibodies or constructs have to be designed, comprising 3 or 4 modules including but not limited to: a tumour-targeting module, an immune cell engager, an inhibitory immune checkpoint inhibitor, and a stimulatory immune checkpoint stimulator (or immunostimulator). The presence of an additional Fc region could be valuable to keep the related effector function (i.e. ADCC, CDC, longer half-life). Such multispecific antibodies/constructs could co-localise three effectors (immune cell engager, immune checkpoint inhibitor and immunostimulator) in the tumour hotspot thanks to the targeting moiety. We defined this general concept as “MuTICEM” for Multispecific Targeted Immune Cell Engager & Modulator. The use of this concept could potentially improve the temporal and localised synergy of immune effectors, as well as reduce immune-related adverse effects such as cytokine release syndrome (CRS) that can arise with non-targeted immunotherapies. Very few examples of compounds falling under the description of MuTICEM are reported so far, stemming from the novelty of the concept and the complexity of production of such compounds. After a general overview of the cancer immunotherapy landscape, from monoclonal to bispecific antibodies, this review will focus on reported compounds that could be categorised as MuTICEM, discuss their advantages and limitations as well as the role that organic chemistry and bioconjugation may play toward their production.

II Cancer immunotherapy definition

According to the Nature definition, “Cancer immunotherapy is a therapy used to treat cancer patients that involves or uses components of the immune system. Some cancer immunotherapies consist of antibodies that bind to, and inhibit the function of, proteins expressed by cancer cells”.21 Cancer immunotherapy can be further divided in two strategies: one uses immune system components such as antibodies to block a cancer cell function, while the other aims at fighting the disease by boosting or reactivating the patient immune system through immune cell recruiting or immune checkpoint modulation. For the latter, various approaches can be used – vaccines (such as approved sipuleucel-T*),22,23 monoclonal antibodies, bispecific antibodies, immune checkpoint inhibitors and immunostimulators; adoptive T-cell therapy (ACT) or T cell transfer therapy (T cells are harvested from the patient, cultivated, activated and expanded in vitro, and eventually...
genetically modified in the case of CAR T cells, before being reinfected to the patient.24,25 Oncolytic virus (virus preferentially infecting tumour cells, potentially used to directly infect and kill tumour cells, as well as triggering immune system or being used as a vector).26,27 Cancer immunotherapy, also called immuno-oncology, is experiencing a tremendous development in the clinic and is definitely one of the leading strategies of recent and future years.28 Currently, a large majority of immunotherapies use monoclonal (monospecific) or bispecific antibodies. They will be the focus of following sections.

III. Monoclonal antibodies in immunotherapy

III.1. Tumour-targeted monoclonal antibodies

Whether a monoclonal antibody applied to cancer treatment should be considered as a cancer signal blocker or immune system activator is not a trivial question as it depends on its mode of action. Indeed, antibodies play major roles in the immune system, as shown by their capacity to bind a target and trigger the Fc-mediated complement dependant cytotoxicity (CDC) and antibody-dependant-cell-cytotoxicity (ADCC). Originally, anti-tumour monoclonal antibodies were essentially selected for their binding affinity for a tumour associated antigen (TAA), in order to block the related signalling pathway and/or induce cell death or tumour growth inhibition.9 We can mention for instance the FDA approved trastuzumab (anti-HER2), rituximab (anti-CD20), or revacizumab (anti-VEGF) that were selected for their “direct effect”.29–31 Thus, exploiting the antibody’s capacity to stimulate the immune system was not the initial purpose. This is reinforced by the fact that most of the antibody-antigen interactions will result in antibody internalisation, potentially reducing the antibody’s capacity to induce an immune response, in direct accordance with the internalisation rate. However, it turned out that for such TAA-targeting monoclonal antibodies, not initially used to trigger an immune response, evidence was found that ADCC has an influence on the anti-tumour efficacy.16,27 For instance, removing the Fc fragment from an anti-EGFR antibody conserved the EGFR binding capacity when compared to the original full antibody, but resulted in significantly lower tumour inhibition \textit{in vivo}.33 It was also demonstrated that ADCC was a key mechanism in the rituximab killing activity.34 Therefore, it seems that each and every TAA-targeting monoclonal antibody has the potential to activate the immune system, even though its tumour killing activity might be only weakly related to it. This, of course, has to be investigated on a case-by-case basis. Similar conclusions could be drawn for antibody-drug or antibody-protein conjugates, made of monoclonal antibodies conjugated to toxic payloads or another protein respectively. However, depending on the conjugated moieties, direct effects on immune response can be improved. It is notably the expected effect of antibody-cytokine constructs (immunocytokines) where a cytokine such as IL-2 is fused to the antibody.35,36

III.2. Immune checkpoint inhibitor monoclonal antibodies

A range of mAbs targeting immune checkpoints are specifically purposed to directly regulate, restore or activate the immune system. Inhibitory immune checkpoints down-regulate the immune response (either by a signal inhibiting an activation pathway, or by a signal stimulating a regulatory pathway). On one hand, targeting them with an agonistic antibody can prevent the over-activation of the immune system that can cause serious harmful events such as cytokine storm.37–39 It can notably be used against a wide range of autoimmune diseases that originate from an impaired regulation of the immune system.40,41 On the other hand, targeting inhibitory immune checkpoints with an antagonistic (or blocking) antibody can have positive anti-tumour effects. Indeed, despite the immune system being able to recognize and fight tumour formation, some tumour cells are able to develop an immune resistance by expressing and/or activating the aforementioned immune checkpoints, thus inhibiting the immune response and promoting cancer development. Antibodies blocking this inhibition can restore the anti-tumour immune response. Among existing immune checkpoints, the most emblematic and first studied are the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4, or CD152) and the programmed cell death protein 1 (PD-1), both expressed on the surface of cytotoxic T cells, as well as the programmed cell death protein 1 ligand (PD-L1), which can be expressed by tumour cells. T cell-activation and related adaptive immune processes can be triggered through the T cell receptor (TCR), a protein complex found on the T cell surface that recognizes antigen fragments presented by the major histocompatibility complex (MHC) found on antigen presenting cells (APC) (Fig. 1).

The CTLA-4 protein acts as an immune checkpoint by competing with CD28, a co-stimulator of the T cell receptor (TCR), as they bind the same CD80 (also known as B7.1) and CD86 (also known as B7.2) ligands on the surface of APCs. In addition to competing...
with CD28 activation on T cells, CTLA-4 activation is believed to actively inhibit signals to the T cell.\(^{37}\) The immune checkpoint activity of PD-1 is exerted upon interaction with PD-L1, and inhibits kinases that are involved in T cell activation.\(^{37}\) Thus, employing antagonistic monoclonal antibodies able to bind the CTLA-4 protein, or one of the actors of the PD-1/PD-L1 axis has the potential to inhibit their regulatory effect on T cells and restore the anti-tumour immune response. This approach encountered a large success in clinical trials, yielding to the US FDA approval in 2011 of the anti-CTLA-4 monoclonal antibody ipilimumab (Yervoy\(^{\text{R}}\)) for the first- or second-line treatment of patients with malignant melanoma.\(^{42}\) Some results, however, suggested that effect of CTLA-4 blockade would be driven by regulatory cells (CTLA-4\(^{\text{R}}\) T\(_\text{reg}\)) depletion rather than T cell activation.\(^{43}\) In 2014, the first anti-PD-1 monoclonal antibody, pembrolizumab (Keytruda\(^{\text{R}}\)), was FDA approved for the treatment of patients with unresectable or metastatic melanoma and disease progression after receiving ipilimumab, and in patients with B\(_{\text{RAF}}\)V600 mutation melanoma.\(^{44}\) This was the first of a long series. Indeed, from September 2014 to April 2020, the 6 following antibodies targeting the PD-1/PD-L1 axis were FDA approved: anti-PD-1 pembrolizumab (Keytruda\(^{\text{R}}\)), anti-PD-1 nivolumab, anti-PD-L1 atezolizumab (Tecentriq\(^{\text{R}}\)), anti-PD-L1 durvalumab, anti-PD-L1 avelumab, anti-PD-1 cemiplimab, for use in a total of 57 anticancer applications, of which 40 are monotherapies (17 combination therapies).\(^{45,46}\) However, if approved anti-PD-1/PD-L1 antibodies are mainly used as monotherapy, the trend in clinical trials is currently shifting to their use in the context of combination therapies (76% of active trials in 2019 were testing them as combination regimen in 2019).\(^{47}\) An explanation for this trend might be their lack of cancer-targeting moiety, potentially resulting in off-target, off-cancer activation of T cells and the related toxicity through cytokine release syndrome. Apparition of resistance mechanism against anti-PD-L1/PD-1 antibodies is another argument in the favour of combination therapies. The FDA approved anti-PD-1/PD-L1 antibodies are applied to a wide range of cancers (14 in total) including melanoma, non-small cell lung carcinoma (NSCLC), renal cell carcinoma, head and neck cancer, small-cell lung carcinoma (SCLC) or classical Hodgkin lymphoma. In the meantime, EU, Japan and China accorded approvals for the 6 aforementioned as well as 4 additional monoclonal antibodies inhibiting the PD-1/PD-L1 axis: Toripalimab (anti-PD-1), Camrelizumab (anti-PD-1), Sintilimab (Tyvyt\(^{\text{R}}\), anti-PD-1), Tislelizumab (anti-PD-1), for a total of 64 approvals among which 51 were in monotherapy.\(^{45}\) Following these clinical trial successes, many new inhibitory immune checkpoints are now investigated in clinical trials: the lymphocyte activation gene-3 (LAG-3),\(^{48,49}\) T cell immunoglobulin and mucindomain containing-3 (TIM-3),\(^{50}\) T cell immunoreceptor with Ig and ITIM domains (TIGIT), V-domain Immunoglobulin suppressor of T cell activation (VISTA) (both confirmed inhibitory immune checkpoint activity and possible immune stimulatory role in some cases have been described),\(^{51}\) B7-H3 (CD276) or BTLA (CD272). However, a majority of the corresponding immune checkpoint inhibitors are evaluated in combination therapies, notably with other checkpoints inhibitors such as ipilimumab, pembrolizumab, or nivolumab for instance. This subject has been recently and thoroughly reviewed elsewhere.\(^{52}\) The search for new immune checkpoints is ongoing and new possibilities such as the tumour glyco-code are being looked at with great promise.\(^{53}\)

III.3. Immunostimulator monoclonal antibodies

The other type of immunotheurpethetics directly acting on the immune system are the stimulatory immune checkpoint stimulators, also shortened as immunostimulators. As opposed to immune checkpoint inhibitors, they are agonists of receptors that stimulate the immune response.\(^{54}\)

CD28, a TCR co-receptor constitutively expressed on resting lymphocytes, is one of the investigated targets. Indeed, after engagement with its ligand (CD80 or CD86 presented by APCs), CD28 induces signalling cascades that increase proliferation, cytokine secretion, upregulate the expression of anti-apoptotic genes and increase energy metabolism that sustain and support T cell activation.\(^{55}\) Generally, as a co-stimulatory receptor, ligation of CD28 to its ligand without concomitant engagement of the TCR has no effect on T cells. This characteristic supposedly lowers the risk of a non-specific and uncontrolled immune response, which may induce toxic adverse events. The potential capacity to specifically boost activated T cells makes CD28 a promising immunostimulatory target. Monoclonal antibodies targeting CD28 were thus evaluated. However, the use of superagonist anti-CD28 antibodies (able to activate CD28 without the need for TCR stimulation) in vivo on rodent models resulted in rapid expansion of T\(_\text{reg}\) cells, which are responsible for a regulation of the immune response.\(^{56,57}\) This would have potential application against immune disease but not in the case of an anti-cancer immunotherapy. More importantly and as opposed to rodent experiments, evaluation of a CD28 agonist on humans did induce immune response stimulation, but in a far too elevated manner: a phase I clinical trial of the superagonistic anti-CD28 monoclonal antibody TGN1412 resulted in dramatic clinical toxicity on young healthy volunteers, attributed to cytokine storm, of which the first effects were observed only within 90 minutes after receiving the first injection.\(^{58}\) These first results probably mitigated the infatuation with using CD28 agonistic monoclonal antibodies. However, in these cases, agonistic CD28 activation was not TCR dependant. Maybe the discovery of a TCR-dependant agonistic anti-CD28 antibody will focus the immune response to the tumour site and alleviate some of the adverse events, but its efficacy would thus be correlated to the tumour immunogenicity and related TCR activation.

Various members of the TNF receptor (TNFR) family are co-stimulatory receptors and can be targeted with agonists for immunostimulation, such as CD137 (4-1BB),OX40, CD40, GITR or ICOS.\(^{54,59-61}\) Among these, 4-1BB and OX40 are probably the most investigated. 4-1BB is notably expressed on activated T cells (mainly CD8\(^{\text{R}}\) and CD4\(^{\text{R}}\) but also on T\(_\text{reg}\) cells), cytokine-activated NK cells, activated DCs.\(^{55,62}\) It has a single
characterized ligand, 4-1BBL (also known as CD137L), which is expressed on activated DCs, B cells and macrophages. After binding to its ligand, 4-1BB triggers a co-stimulatory signal that can function independently of CD28 to induce upregulation of the anti-apoptotic genes BCL2, BCL-XL and BFL1, favouring proliferation and survival of the T-cell. Agonistic anti-4-1BB monoclonal antibodies resulting in anti-cancer immunity induction and improvement have been reported in various tumour models and reviewed elsewhere. However, if promising pre-clinical results strengthened attention to this immunostimulator, the two clinical trials realised so far mitigated this enthusiasm, as urelumab (clinical trial NCT00309023 terminated) and utomilumab, two anti-4-1BB monoclonal antibodies, resulted in liver toxicity and weak efficiency respectively. As for other monoclonal immunotherapies, a complex balance between anti-tumour immunity and auto-immune adverse events probably exists, sustained by an incomplete understanding of the role of 4-1BB. Noteworthy, Qi et al. demonstrated that the 4-1BB co-stimulation induced by anti-4-1BB monoclonal antibodies is dependent on both their Fab-related affinity for the target and their Fc affinity for FcγR. 4-1BB/4-1BBL axis is promising but also complex. It is still a hot research topic for immunotherapy but its application is currently being explored more in combination or bispecific therapies rather than monotherapies.

OX40, another member of the TNFR family is deeply investigated and holds great promise. The OX40 receptor (CD134) is expressed on CD4+ and CD8+ T lymphocytes. OX40 expression is also upregulated on Tregs upon activation in humans. Its ligand, OX40L, is not constitutively expressed but is induced on activated APCs such as DCs, B cells and macrophages. Upon binding to its ligand, OX40 co-stimulates T-cell proliferation and survival. Interestingly, OX40 signalling can prevent Treg-mediated suppression of the anti-tumour immune response. The activation of CD4+ and CD8+ T cell combined to the Treg down-regulation makes OX40 a very interesting target to exploit for immunotherapeutic approaches. So far, autoimmune side effects induced by OX40 stimulation have not been reported. However, and not surprisingly, agonistic anti-OX40 monoclonal antibody administration shows very limited impact on the growth of poorly immunogenic tumours, favouring its use in combination immunotherapy. This corroborates the fact that despite numerous assets, OX40 is targeted in a small number of agonistic monoclonal monotherapies. According to the national cancer institute, there are only 4 active clinical trials involving agonistic anti-OX40 antibody monotherapies: one study with BMS-986178 in patients with solid cancers that are advanced or have spread, one with ABBV-368 in subjects with locally advanced or metastatic solid tumours, one with PF-04518600, and another with PF-05082566 in treating patients with relapsed or refractory acute myeloid leukemia. However, these 4 aforementioned trials also include the studied antibodies in combination therapies. Other active trials including anti-OX40 antibodies are combination therapies.

Recently another member of the TNFR family, CD40, has raised high interest for its immunostimulatory capacity through an alternative pathway compared to the aforementioned one. CD40 is notably expressed in dendritic cells (DCs) and its ligand CD40L is expressed by activated CD4+ T cells (and platelets). CD40 has a pivotal role in the adaptive immune response: upon interaction with CD40L presented by activated CD4+ cells, it induces upregulation of the MHC molecules, increases expression of costimulatory molecules such as CD86 (ligand of the CD28 co-receptor on T cells), and upregulation of other TNF ligands such as 4-1BBL, GITRL or OX40L. The CD40-induced up-regulation of all these secondary stimulatory molecules in turn enhances antigen presentation and activation of CD8+ T cells. CD40 activation on DCs has also been shown to increase the level of cytokines, including IL-12, which are important for CD8+ T cell activation. Based on all these features, CD40 is considered a central and initiating factor in the cascade of adaptive immune activation, and its activation via agonistic anti-CD40 monoclonal antibody appears highly valuable. A limitation though, is the timing for the DC activation through CD40. Indeed, the role of the dendritic cell subset in fighting or promoting tumour development is variable and complex. For instance, the plasmacytoid dendritic cells (pDC) are likely to reduce the tumour immunogenicity. Oppositely, the conventional dendritic cells (cDC) are crucial in the anti-tumour response through the recruitment and activation of CD8+ T cells, thanks to the tumour antigen-cross presentation at the DCs surface. However, CD40-activated DCs have impaired capacity to take up new antigens compared to inactivated DCs, reducing their direct capacity to induce CD8+ T cell activation. Thus, if CD40 activation through anti-CD40 antibody can boost up the immune response through the second stimulatory cascade described above, it seems that an early administration could be counteractive in a combination context, where tumour antigen-presentation to CD8+ T cells is important. A simultaneous injection or simultaneous presentation of the anti-CD40 and other effectors on a same therapeutic compound could circumvent this limitation. In line with this, administration of agonistic anti-CD40 alone triggered T cell activation and related tumour regression, but only highly immunogenic (strong antigen expression) models where responding.

To the best of our knowledge, 8 agonistic anti-CD40 monoclonal antibodies for cancer treatments were investigated or are being investigated in clinical trials (5 completed and 3 ongoing respectively): ChiLo7/4 (completed); 2141 V-11 (recruiting); HCD122 (completed); CP-870,893 (Secrilumab) (completed);
CDX-1140 (recruiting); SEA-CD40 (active, not recruiting); APX005M (completed); ADC-1013 (JNJ-64557107) (completed). They are all phase I studies, except one of the two clinical studies of HCD122 which is a phase I/II. Some of the latter were also investigated in combination therapy (with Rituximab, Nivolumab notably), while SGN-40 has been evaluated only in combination with other antibodies. Globally, minimal rates of objective tumour response (ORR) were generated by agonistic anti-CD40 monotherapy clinical trials. What is more, as other immunostimulators, adverse events are observed as soon as a few minutes to hours after infusion (cytokine release syndrome), though as moderate symptoms that can be reversed with care.

As mentioned before, the optimal use of agonistic anti-CD40 antibodies might be in association with other effectors (in combination or via a multispecific compound). In some tumour models, it has been shown to be synergistic with immune checkpoint inhibitors blocking PD-1/PD-L1 or CTLA-4 (CD40-activated DCs amplify the T cell pool able to respond to immune checkpoint inhibitors, while immune checkpoint inhibitors prevent these CD40+ DCs-produced T cells to be down-regulated by immune checkpoints).

Additionally, it has been shown in mice that CD40 activation was responsible for the activation of host macrophages, themselves inducing non-T cell-dependent anti-tumour effects. In addition, activated macrophages induce fibrosis degradation that is dependent on matrix metalloproteinases (MMPs), resulting in easier access to tumour site for adjuvant chemotherapy or immunotherapy. Hypothetically, a single but multispecific compound encompassing an anti-CD40 fragment could benefit this improved tumour penetration through repeated injections. Altogether, these elements are making agonistic anti-CD40 monoclonal antibodies a promising option for immunotherapy, even though its association to other effectors is probably the future direction to take.

III.4. The limitations of Monoclonal antibodies

Overall, it is clear that monoclonal immunotherapies have revolutionised the anti-cancer research paradigm of the last two decades, particularly antibodies aiming at blocking inhibitory immune checkpoints or activating stimulatory immune checkpoints. However, whilst first preclinical results were really exciting, it seems that the translation to the clinic was only moderately successful. This is likely to be due to: 1) adverse events such as cytokine release syndrome; 2) lack of efficacy due to low tumour accessibility or low tumour antigen expression; 3) treatment escape originating in low tumour immunogenicity and immune escape by expressing or up-regulating other immune checkpoints than the one targeted by the therapy. The adverse events are common to almost all immunomodulators (immune checkpoint inhibitors and immune checkpoint stimulators) used as single agents, due to the difficulty in balancing the critical equilibrium between sufficient immune response activation for anti-tumour effect and too strong activation resulting in generalised inflammation. It also highlights the fact that single agent immunomodulators are non-targeted and can activate immune effectors both in tumour and healthy tissues indiscriminately. The expression of the targeted receptors by a subset of cells of the opposite activity compared to the target cells can also result in counter-acting effects, such as activation of both cytotoxic T cells and Tregs. For some immunomodulatory antibodies themselves,
the balance between Fc affinity for Fc receptors and the paratope affinity for its receptor was also demonstrated to be critical.

To tackle the on-target, off-tumour toxicity, a monoclonal antibody can be converted to a probody format. This strategy confers a conditional activation to the antibody by masking its binding site with a connected substrate that will be released only in specific conditions found in the tumour microenvironment, such as low pH or high protease activity. This concept offering better selectivity and safety has been reviewed elsewhere, and proved promising since probody formats of anti-CTLA-4 activated by protease cleavage (BMS-986249, CyotomX) or reversibly activated by acidic pH (BA3071, BioAtla) have notably been to the clinic. However, in addition to systemic toxicity, low expression of targetable receptors as well as immune escape are crucial bottlenecks to be addressed, ideally in a simultaneous way. On this purpose, it is now evident that combining several effectors is advisable. It can be realised through combination therapy, or by encompassing various effectors in a single compound (e.g. a bispecific). Indeed, the presence of a tumour-targeting moiety could lower the on-effectors in a single compound (e.g. a bispecific). Indeed, the presence of a tumour-targeting moiety could lower the on-target, off-side adverse effects of an immune effector, while combining two targeting moieties could avoid escape due to tumour antigen fading or lack of expression. Combining two immune checkpoint inhibitors (αCTLA-4 and αPD-1, or αCTLA-4 and αPD-L1 for instance) would address some immune escapes, while combining an immune checkpoint inhibitor and an immunostimulator could induce synergistic effects. Additionally, synergistic effects as well as improved tumour infiltration and immunogenicity can be generated via an agonistic anti-CD40 binding module as discussed before. Globally, simultaneously exploiting various effectors could induce synergistic effects and better efficacy while reducing the concentration of the effective dose and lowering toxic effects. Considering the complexity of cancer biology, combining two different effectors might be a valuable prerequisite to reach higher objective response rates (ORRs) and total remission in clinics. In any case, this should ideally be supported by biomarker identification to find the ideal combinations to be evaluated and eventually adapted to patients.

Combination therapies and bispecific antibodies are now developed to simultaneously address multiple effectors (i.e. antibodies or antibody fragments) to various immune checkpoints, or immune cells and/or TAA. Compared to combination therapy, bispecific antibodies present a lower modularity of treatment, but they present the high advantage of being able to direct the immune effector (the displayed checkpoint modulator or the immune cell binder) to the tumour site thanks to a targeting moiety. In the following sections, we will focus on bispecific antibodies or bispecific antibody formats used in cancer immunotherapy and discuss potential future directions.

IV. Bispecific antibodies in immunotherapy

If monospecific antibodies were the hot topic in the beginning of the 21st century, multispecific antibodies (MsAbs), also referred to as polyspecifics (PsAbs), have taken over as the new hot topic. MsAbs are proteins able to simultaneously engage two or more different epitopes. Among multispecifics, the bispecific (BsAb) subset, encompassing various paratopes, is by far the most represented. The BsAb denomination is actually used either for bispecific antibody formats lacking an Fc fragment (BiTEs, DART, F(ab')2, etc.), or full bispecific antibodies bearing an Fc fragment (IgG-like bispecifics), resulting in bifunctional and trifunctional bispecifics respectively. Noteworthy, depending on the antibody format, a BsAb can be monovalent for both epitopes, bivalent for both, or monovalent for one and bivalent for the other. By containing two different paratopes, bispecifics offers various assets such as: 1) to simultaneously block or activate two different pathways in pathogenesis, through TAA targeting (even though this can also be done through combination therapy); 2) redirect immune cells such as T cells (“BiTEs”) and NK cells (“TriKES”) to tumour cells and trigger or improve immune-related tumour killing; 3) potentially increase selectivity and/or avidity by interacting with two different cell surface antigens (or two different epitopes of the same antigen); 4) potentially improve synergistic effects thanks to an improved spatial and temporal colocation of effectors when compared to combination therapy of monospecific antibodies; 5) reduce costs in terms of development and production when compared to the production of CAR-T cells that share with BiTEs the aim to redirect T cells to the tumour (the CAR-T cells subject has been widely reviewed elsewhere); and 6) be used for various other applications such as holding effector proteins together, promoting the crossing of biological barriers or fast cell internalisation and subsequent trafficking to lysosome (one arm acts as a shuttle to allow the other arm to cross into the cell or the biological compartment where it’s target is located). The numerous assets of bispecifics are currently making them a leading approach in the field of immunotherapy, as demonstrated by their booming number in clinical trials listed for use in oncology, from 57 BsAbs (for 99 clinical trials) in 2018 to 75 BsAbs (135 active, recruiting, or completed clinical trials) in April 2020.

IV.1. BsAb production & formats

Bispecifics have been used to target two different epitopes on the same cell, typically two tumour associated antigens (dual tumour-targeted bspecifics). However, following the clinical success of immunotherapies and in order to overcome their established limitations, it appeared to be of great interest to design bspecifics combining an immune specificity (for an immune cell, or an immunomodulatory checkpoint) with a tumour specificity or a second immune specificity.

As a consequence, the research on bspecific production intensified, as reflected by more than a hundred different bspecific formats described so far. This variety can be explained by the search for the ideal format combining good
production yields and reproducibility, high stability, solubility, optimal serum half-life, efficient tissue penetration, etc. All these aspects can be summarised as the “developability”. Another contributor to the variability is also the need to adapt the platform to the target by varying the size, the geometry, the targeting modules of the bispecific. On top of that, the highly competitive atmosphere in the field and the search for intellectual property also contributes to the frenetic development of new formats. The wide landscape of bispecific formats has been thoroughly reviewed by others.15,104,105 Briefly, three methods can be used to produce bispecifics. Originally, and as soon as 1961, BsAb fragments were chemically produced in a mixture after reduction and re-oxidizing of two (Fab')\textsubscript{2} species.106 Later, full BsAbs were generated by chemically conjugating two different and isolated monoclonal antibodies. They were also produced by a quadroma cell line - issued from the fusion of two hybridoma cell lines - able to generate a range of proteins combining the heavy and light chains of the two different antibodies originally produced by the two fused hybridoma cells.107 But the first attempts of chemical conjugation suffered from poor yields and difficulties in purification,108 while the quadroma technology generated many “mismatched species”, randomly combining wrong heavy and light chains (16 different combinations, yielding 10 different molecules), thus generating non-functional proteins that had to be separated from the desired bispecific antibody. The hybridoma method generates “IgG-like bispecifics”, as the constructs present a structure similar to the IgG protein, with two Fabs and one Fc. Later on, genetic engineering enabled the modification of the heavy chains with the “knobs-into-holes” technology (KIH) to favour heterodimerization – mutations in the CH3 domains to replace a small amino acid with a larger one in a heavy chain, creating the “knob”, and to replace a large residue with a smaller one on the other heavy chain, to create a “hole” into which the knob will insert.109 Used in complementarity to the KIH technology, the CrossMab method, that relies on the crossover of the antibody domains (VH with VL, CH1 with CL, or both) within one of the two Fab-arms of an IgG-like bispecific allowed to satisfyingly tackle the issue of Fab scrambling.110 Recently, Brinkmann et al. described high-throughput technology for BsAb production, the Format Chain Exchange (FORCE). Similar to the knobs-into-wholes approach, it uses individual monospecific knob or whole half-antibodies paired with a complementary Fc-dummy chain containing mutations that lead to limited interface repulsions. Upon disulfide reduction, spontaneous chain-exchange is triggered to generate a dummy-dummy paired chains and the desired knob-and-whole antibodies, driven by optimal interface complementarity. The BsAb can then be obtained in a one-step purification, and this method offers a wide flexibility in terms of bi- and multi-specific antibody formats.111 Genetic engineering also enabled the production of recombinant proteins where only fragments of antibody were fused together to generate the so called “antibody formats”. The multitude of existing antibody formats are the result of the fusion of a variety of native or engineered fragments among Fc, Fab and one or more variable fragments, generally linked together by peptide linkers. The more represented of these antibody formats are probably the bispecific F(ab')\textsubscript{2} which is the fusion of two distinct Fab fragments; smaller molecules such as tandem scFv, diabody and DART, which all connect two scFvs in different manners (one scFv is a fusion protein encompassing the variable domains of the heavy and light chains connected together); but even smaller molecules are produced by the fusion of only two single variable domains (tandem dAb).104,112 On the other hand, bigger structures are obtained when antibody fragments are fused to a full antibody, to generate the so called “appended IgG-like” or “modified IgG-like” formats. A direct comparison of all formats’ efficiencies would be valuable but probably an impossible task as every format and every antibody clone would have to be tested and conclusions may vary depending on targeted receptors and their cross-combination in a bispecific context.113

IV.2. BsAb design

In this crowd of bispecific formats, a major distinction that can be made is based on the presence of an Fc fragment (IgG-like and appended IgG-like bispecifics) or lack thereof. Another distinction can be made between active Fc (native or engineered) and engineered inactive Fc fragments. At a first glance, the presence of the Fc fragment allows longer serum half-life due to FcRn-mediated recycling, and can induce the Fc related ADCC (antibody-dependent cell-mediated cytotoxicity), CDC (complement dependent cytotoxicity) and ADCP (antibody-dependent cellular phagocytosis) effector functions. Conversely, the lack of Fc leads to a smaller size and impaired aforementioned recycling, resulting in higher tissue penetration but shorter half-life. It also reduces the risk of immunogenicity (undesired and detrimental immune response, generally being a major cause of adverse events). The choice to include the Fc fragment in the design of the BsAb can be driven by these properties, depending on the final aim. However, the fact is that underlying layers of complexity are involved. For instance, the presence of an Fc effector function has certain advantages when targeting a solid tumour, as the ADCC and CDC have been shown to be valuable to observe some tumour-killing effects, and was even mandatory for monospecific antibodies rituximab and trastuzumab.114 In the meantime, solid tumours are prone to being poorly infiltrated and adding an Fc fragment could be counter-active regarding the size of the resulting compound and its tumour infiltration. On the other hand, when engaging immune cells to the tumour site, the presence of the Fc is likely to be detrimental as its effector function could induce the depletion of the immune cells intended to be recruited. The same reflection can be undertaken when targeting an immune checkpoint such as PD-1 or 4-1BB, which are present at the surface of T cells. Conversely, when the immune checkpoint is present at the surface of the tumour cell, as it is the case for PD-L1, then a αPD-L1 × αTAA BsAb would possibly benefit from possessing an Fc fragment to improve the tumour killing. The balance between positive and negative impacts of the Fc fragment is delicate. Engineering the Fc fragment is a solution to combine assets of both sides – Fc can be inactivated...
Furthermore, the complexity arises not only from the presence of, but also the affinity of the Fc. Interestingly, it has been shown in several studies that the mode of action of some immune checkpoint inhibitors or immunostimulators might not only be through the blocking of inhibitory signals or the promotion of activation signals on effector T cells, but also (if not mainly) due to depletion of infiltrated Treg cells,118,119 with the Fc fragment playing a crucial role here. Indeed, Treg cells are T cells that infiltrate the tumour to regulate the immune response. Tregs have been shown to express higher levels of Fc\(\gamma\)Rs by Treg cells and the capacity of the antibody’s Fc to bind these receptors.119 Thus, antibodies targeting these receptors are likely to interact with both T cell subsets, but more importantly with Tregs. Bulliard et al. have shown that tumour regression potential of the agonistic anti-OX40 antibody (which presents an Fc) was highly correlated with tumour-infiltrated Treg depletion, itself directly correlated to the expression of activating Fc\(\gamma\)Rs by Tregs and the capacity of the antibody’s Fc to bind these receptors.118 Despite effector T cells (CD4+ FOXP3-) being also depleted, the elevated depletion of tumour infiltrated Treg cells (CD4+ FOXP3+) resulted in highly improved CD8+/Treg ratio, believed to be the main factor for the anti-tumour activity triggered by agonistic anti-OX40 antibody. Similarly, Arce Vargas et al. evaluated various isoforms of anti-CTLA-4 antibodies, using human IgG variants on mice expressing human Fc\(\gamma\)Rs (hFc\(\gamma\)Rs), and demonstrated that anti-tumour activity was directly correlated with Treg depletion with an emphasis on the Fc affinity for Fc\(\gamma\)Rs.118 Antibodies bearing an IgG engineered to present higher binding affinity for activatory Fc\(\gamma\)RIIA (CD16a) or to present no binding to hFc\(\gamma\)Rs respectively presented enhanced and poor anti-tumour activities. Their preclinical data strengthen the unifying hypothesis according to which human IgG anti-CTLA-4 mAbs’ anticancer activity originates in promoting a preferential depletion of tumour-infiltrating Tregs and thus improves the intra-tumoral effector T cell/Treg ratio. However, this Treg depletion is linked to the presence of Tregs themselves, along with innate effector cells expressing Fc\(\gamma\)Rs (such as NK cells, macrophages), which are involved in the ADCC process. As a consequence, this Fc-related anti-tumour activity is likely to be restricted to immunogenic, inflamed and infiltrated tumours. It is the hypothesis developed by Arce Vargas et al. to explain the mitigated clinical results of anti-CTLA-4 monotherapies so far, and it was proposed that a prior combination therapy to promote immune infiltration would benefit anti-CTLA-4 therapies.

Qi et al. also demonstrated an influence of the Fc fragment for agonistic anti-4-1BB antibody, but it was dependent on the Fab affinity for the 4-B11 receptor. Strongly agonistic antibodies could activate 4-1BB in the absence of Fc\(\gamma\)Rs while the Fc\(\gamma\)Rs were mandatory for activation by weak agonists. They also demonstrated that strong agonists were linked to liver toxicity. Considering that Fc\(\gamma\)R interactions could induce detrimental ADCC related depletion of 4-1BB+ T cells, they engineered antibodies to balance the agonistic activity and the strength of Fc\(\gamma\)R interactions, generating a weakly agonistic, low activating-to-inhibitory (A/I) Fc\(\gamma\)R-binding ratio, humanized 4-1BB mAb-AG presenting strong anti-tumour activity without liver toxicity.19 This study, along with others,120–122 is another example of the complex impact of the Fc fragment on the anti-tumour activity of agonistic monospecific and bispecific antibodies and that engineering the Fc can potentiate their activity, though requiring deep studies and fine tuning.

Unsurprisingly, the chosen Fab fragments also have a major influence on the function of the bispecific antibody. Several studies report that dual targeting alone is not sufficient to enhance target selectivity and that the affinity of individual antigen-binding arms matter. Counter-intuitively, using Fabs with lower affinity for their target in the context of a bispecific construction can be advantageous for better selectivity, efficacy and lower secondary effects. Notably, this observation holds true in cases where the targeted antigens are also expressed by healthy tissues. Indeed, Mazor et al. demonstrated that generating a bispecific antibody with lower affinity Fabs (when compared to the parental monovalent antibody) reduces the binding to cells expressing none or only one of the target antigens, but this loss of individual affinity is counter-balanced by the valency of the construct when binding cells expressing both antigens. Thus, lower affinity of the individual binding arms increases the difference in avidity (over-all binding ability of the construct) to the target population over the singly expressing populations, improving the selectivity of the BsAb for dually-expressing cells.123,124 This principle has been used for EGFR × C-Met bispecifics, where reduction in EGFR affinity of the individual αEGFR arm lead to a decrease in toxicity related to basal EGFR expression in the skin.125 Affinity attenuation of individual arms did improve selectivity of the BsAb for tumour cells that overexpress both antigens and resulted in potent anti-tumour efficacy. In another study, Piccione et al. used a BsAb (αCD20 × αCD46) to induce phagocytosis of B lymphoma cells. Considering the basal expression of CD46 by normal cells (possibly creating an “antigen sink”), they opted for a reduced affinity for CD46, prioritizing the targeting of tumour cells via their CD20 expression. This led to selective binding of the BsAb to tumour cells and effective subsequent phagocytosis.126 Interestingly, Slaga et al. generated a bispecific T cell engager presenting two appended copies of a same low-affinity HER2 binding site. The low affinity of individual bindind sites allowed to spare HER2 low-expressing cells while the avidity generated
by the bivalent presentation of the low affinity HER2 binders improved the selectivity for target HER2-overexpressing tumor cells, in accordance with their higher receptor density. This bivalent low-affinity binder model could be applied to different targets to improve selectivity for a particular receptor high-expressing cells and reduce on-target off-tumour adverse effects due to the targeting of receptor low-expressing normal cells.

IV.3. BsAbs classification based on their targets.

The BsAb landscape is wide as numerous combinations of two targets can be made. However, for the purpose of this review, we tried to classify them to provide a more structured overview. A first distinction can be made between BsAbs that target only cancer cells (by targeting two cancer antigens or two epitopes of the same cancer antigen), or BsAbs targeting a cancer cell and an immune cell. They can be described as “dual tumour-specific BsAb” and “immunospecific BsAb”. Secondly, among immunospecific BsAbs, we can distinguish: 1) those targeting immune cells for their recruitment to the tumour site, called “immune cell engagers”; and 2) those targeting stimulatory immune checkpoints or inhibitory immune checkpoints, described as “immunomodulatory BsAbs”. At a third level, the immune cell engagers group includes classical immune cell engagers (αTAA × αCD3 BsAb directly administered) but also BATs (bivalent antibody armed activated T cells) where the immune cell engager is first armed on T cells ex vivo before administrating them to the patient. (TCR)-derived immune cell engagers are also a different format as they do not use CD3 to recruit T cells. Concerning the immunomodulatory BsAbs, a distinction can be made between BsAB targeting either one immunomodulatory checkpoint plus a tumour antigen, or two immunomodulatory checkpoints, generating “tumor-targeted immunomodulatory BsAb” or “dual immunomodulatory bispecific” respectively. To finish, all the BsAbs can be used in combination with chemotherapy, monoclonal antibodies or bispecific antibodies. A more detailed description and examples of these different types of BsAbs are provided in sections below (IV.3.b to IV.3.d.), after a listing of all BsAbs currently investigated in clinical trials for cancer treatment and their classification according to the above mentioned descriptors (section IV.3.a.).

IV.3.a. Bispecifics in clinical trial for cancer treatment

The listing of bispecific antibodies in clinical trials for cancer treatment was made by manual research on clinicaltrials.gov (accessed on April 2020), with the key words “bispecific” and “cancer”, and including “recruiting”, “completed”, “enrolling by invitation”, “terminated studies” as well as “interventional studies” parameters. The research was carried out in April 2020. Each and every clinical trial description has been manually investigated and classified based on the criteria announced in the previous section. The results were assembled in the scheme below (Fig. 3). The bispecifics for which clinical trial has been stopped are not represented in the figure above, despite being referenced on clinicaltrials.com (accessed on April 2020).

IV.3.b. Dual tumour-specific BsAb

Dual tumour-specific BsAbs are generally targeted against solid tumours, and a restricted variety of tumour receptors are exploited. The receptors of the ErbB family are particularly represented, especially EGFR (HER1, ErbB1) and HER2 (Neu, ErbB2). For instance, HER2 has been dually targeted by biparatopic BsAbs, which contain arms with affinity for two different epitopes on the HER2 receptor, respectively. This synergy apparently resulted in higher efficacy in pre-clinical and clinical studies. HER2 targeting has also been combined to CD63 targeting (bsHER2 × CD63α), to improve the internalisation of the resulting BsAb when compared to the initial monovalent antibodies only targeting HER2 or CD63. Interestingly in this case, antibodies were then modified with a payload (duostatin-3), thus generating monospecific and bispecific ADCs. Similarly, another bispecific ADC encompassing a HER2-targeting motif was designed to present a DM1 payload and a prolatin receptor-targeting motif as the second Fab, in order to promote rapid internalization and degradation of the resulting bispecific. Obtained via the “knobs-into-holes” strategy, this αHER2 × αPRLR bispecific ADC killed breast cancer cells that co-express HER2 and PRLR receptors more efficiently when compared to a control αHER2 ADC. EGFR is another epithelial growth factor receptor widely used in anti-cancer monotherapy. Despite some promising outcomes, the targeting of EGFR can result in treatment escape through several mechanisms, among which is over-expression of the c-MET receptor. It has been found that simultaneously targeting EGFR and c-MET in a combination approach could circumvent treatment resistance. Thus, Sellman et al. generated a BsAb containing both αEGFR and α-c-MET paratopes, and also generated the corresponding bispecific ADC by grafting a toxin to the BsAb. In order to avoid agonistic activity (due to c-MET and EGFR heterodimerization) and to lower the potential toxicity due to ubiquitous basal EGFR expression in several healthy tissues, they engineered anti-EGFR and anti-c-MET binders with lower affinities. The concept of affinity-attenuated binders appeared to be successful in their case. Among the 20 dual tumour-targeting BsAbs currently in clinical trials (Fig. 3, upper left dial), including 3 bispecific ADCs, 10 are targeting one of the ErbB receptors; EGFR, HER2, or both. It is noteworthy, that dual tumour-targeting BsAbs are often employed for pre-targeting strategies for radiotherapy or PET imaging applications. In all 7 corresponding clinical trials listed, the BsAbs contain an anti-CEA binding module and a heptene, being recognized by a subsequently injected compound (generally a peptide) bearing a radioisotope ([131I], Ga68, etc., Fig. 3, upper left dial).

Dual tumour-targeting BsAbs represent a promising application of BsAbs. However, this strategy is not as relevant on its own (i.e. naked BsAb) as when it is combined to an ADC approach, where the high toxicity of the payload carried by the antibody requires a very high selectivity to reduce potential off-target effects. The current trend is largely in favour of BsAbs targeting at least one immune effector. The immune-specific BsAb subset
includes immune cell engagers, tumour-targeted immune checkpoint modulators (inhibitor or stimulator), and dual immunomodulators that are developed in the section below.

IV.3.c. Immunospecific BsAb

BsAbs targeting at least one immune effector (immune cell or checkpoint immunomodulator) can be referred to as immunospecific BsAbs. They are largely represented in the BsAbs landscape, as they account for 76% of all BsAbs currently in clinic for cancer treatment (103 immunospecific BsAbs out of 135 BsAbs in total, see Fig. 3). Among these immunospecific BsAbs in the clinic, 78% have been tested at least - but not exclusively - in a monotherapy setting, and 22% have been tested exclusively in combination therapy. The immunospecific BsAb class can itself be divided into subsets of various species depicted below (Fig. 3, upper right dial).

Immune cell engagers

Immune cell engagers are the most common application of BsAb technologies. They are designed to recruit immune cells to the tumour site by combining affinity for an immune cell receptor and a tumour associated antigen (TAA) (Fig. 4a).

Recruited immune cells can be NK cells, macrophages or T cells, with the latter being the most exploited. Every bspecific format that recruits T cells to target cells can be defined as a bispecific T cell engager. However, in a global consensus, the “BiTE” acronym (for Bispecific T cell Engager) is more attributed to fusion proteins made of two single chain variable fragments (scFv) connected by a linker, thus lacking Fc region.

Under physiological conditions, T cell cytotoxic activity is triggered when its T cell receptor (TCR) recognizes a non-self- or neo-antigen loaded onto the major histocompatibility class (MHC) molecules on the surface of another cell such as a tumour cell (Fig. 1). However, down-regulation of the MHC class I by cancer cells is a known mechanism of immune escape (amongst others). One of the advantages of T cell engagers is that they are directed against CD3, a T cell co-receptor (and invariant component of the TCR complex) involved in cytotoxic T cell (CD8+) recognition independently of the TCR-MHC interaction (Fig. 4a). Thus, they are not affected by escape mechanisms involving down-regulation of antigen expression and presentation, and they can elicit a polyclonal T-cell response. Numerous examples of T cell engagers have been reported so far, engaging T cells against tumour cells through affinity for TAAAs such as HER2 (mainly for breast cancer), EGFR (mostly for breast and lung cancer and...
B-cell precursor acute lymphoblastic leukemia. The tumour targeting is ensured through affinity for EGFR, macrophages, monocytes and neutrophils have been reported. αCD19 has been terminated. only clinical trial currently referring to the use of a αCD64 × positive results published were from the early 2000's, and the Philadelphia chromosome-negative (Ph-) relapsed or refractory cancers), CD19 (B cell malignancies), CD20 (B cell (prostate cancer), CEA (carcinoembryonic antigen positive cancers), CD19 (B cell malignancies), CD20 (B cell malignancies), CD33 (acute myeloid leukemia), or BCMA (multiple leukemia). this list is non-exhaustive. It is noteworthy that Catumaxomab (Revomab®), a αCD3 × αEpCAM BsAb was the first bispecific antibody approved for a cancer treatment (malignant ascites) in 2009. However, it was voluntarily withdrawn from the US market in 2013 and in 2017 from the EU market for commercial reasons. Blinatumomab (Blincyto®), an αCD3 × αCD19 BsAb, is the only BsAb on the market approved for cancer treatment. It has been approved by the FDA in 2014 and by the AMM in 2015 for patients with Philadelphia chromosome-negative (Ph-) relapsed or refractory B-cell precursor acute lymphoblastic leukemia.

Immune engagers also include NK cell and macrophage engagers. Indeed, some examples of BsAbs targeting the high affinity Fc receptor (FcγRI) - also called CD64 - overexpressed by macrophages, monocytes and neutrophils have been reported. The tumour targeting is ensured through affinity for EGFR, HER2, CD19 (4G7xH22) or CD33. However, the only positive results published were from the early 2000’s, and the only clinical trial currently referring to the use of a αCD64 × αCD19 has been terminated. This possibly indicates that a global and/or long-term inefficacy or toxicity may have impaired further development of this strategy. Conversely, some BsAbs engaging NK cells are still under evaluation in the clinic (NCT04101331, NCT03192202, NCT04259450) and several studies report that they are a good alternative to T cell engagers. NK cell recruiting by BsAbs is generally realised through affinity for CD16a (FcγRIIa, the A isoform of a low-affinity receptor for the IgG Fc domain, also expressed on macrophages), which has been combined with paratopes with affinity for various TAAs such as CD30, BCMA, or EGFR.

Immune cell engagers represent a leading strategy in BsAb research, and more generally for cancer immunotherapy, as evidenced by their high proportion of the current BsAbs in clinical trials. This trend has been catalysed by first the convincing clinical results and then the approval of Catumaxomab (which has been withdrawn since) and Blinatumomab. Immune cell engagers were primarily evaluated for hematologic cancer treatments but are now almost equally studied in the context of solid tumours. However, despite being considered as a breakthrough in the treatment of some cancers, immune cell engager immunotherapies can suffer from toxicity and efficacy drawbacks. Indeed, T cell activation can occur beyond the tumour site and induce a systemic inflammation response, with high levels of cytokine expression. Known as the cytokine release syndrome (CRS), this event can have heavy and even fatal adverse effects on patients. Agents treating CRS (corticosteroids) are administered to patients to manage these issues. Besides, treatment efficacy can be reduced through different escape mechanisms, mainly: 1) up-regulation of checkpoint inhibitors such as PD-1 and PD-L1, or down-regulation/blocking of co-stimulatory molecules in response to a CD3 targeted treatment, resulting in impaired T cell function (Fig. 4b); 2) antigen escape; through the selection pressure of the treatment, cells expressing the targeted TAA are killed but...
cells that don’t express the TAA are not, and thus these can keep proliferating; and/or 3) the suppression of the immune response through activation of regulatory T cell expression.155–157 To circumvent the escape mechanisms, addition of checkpoint inhibitors, immunostimulators, or activating cytokines through combined therapy (e.g. co-infusion of anti-PD-1 or anti-PD-L1, see Fig. 4c) or by including them in the same compound (multispecific constructs such as TriKE) are possible, as well as combining several TAAs (to limit antigen escape) or recruiting different types of immune cells (NK cells, macrophages). Compounds reducing the Treg influence are also an interesting option. Such combination therapies including BsAbs are discussed later in this section, while multispecific antibodies (MsAbs) are discussed in the next section.

BATS (bispecific antibody armed activated T cell)

BATS, for « Bispecific antibody Armed activated T cell » are a field of application of BsAbs that is attracting growing interest. Instead of administrating the BsAb directly to the patient, the BsAb expressing affinity for CD3 and a TAA is incubated with activated T cells ex vivo. Through αCD3/CD3 Interaction, the T cell is “armed” with the BsAb, thus confering a tumour affinity to the resulting BAT. The BAT is then administered to the patient. Various benefits are attributed to this strategy: 1) T cells are already activated when they arrive to the tumour site, thus affording a quicker and more efficient response; 2) T cells (from the patient or healthy donor) are activated and selectively directed to tumour cells; 3) T cells are cultured ex vivo and multiplied before being armed, thus offering an increased pool of available T cells after administration, particularly for patients with low T cell levels; 4) the total amount of BsAb required is lower when used with armed activated T cells (up to 200 times less) when compared with BsAb used as a single agent, potentially reducing the adverse events commonly seen with direct BsAb administration; and 5) a better pharmacokinetic profile can be obtained as clearance is reduced when the BsAb is attached to an effector cell and it can also benefit from the natural T cell capacity to extravasate and travel between endothelial barriers to easier reach the tumour.158–160 Currently, 17 clinical trials are referenced that use BATS (clinicaltrials.gov), among which 13 are using BATS as a single agent (4 are used in combination) and 15 of them are evaluated for solid tumour treatment, probably illustrating the better efficacy and tumour penetration of BATS when compared to classical BsAbs (Fig. 3, top and bottom right dials). Still, similarly to BsAbs, the secondary effects of BATS can include CRS and neurotoxicity. In addition, isolating and handling T cells is not trivial and represents a constraint inherent to this approach. Not being the focus of this review, BATS can however be considered as BsAbs used in immunotherapy. Nevertheless, we have listed them apart from the other “classical” immunospecific BsAbs that are directly administered to the patient.

(TCR)-derived immune cell engager,

The ImmTAC, a (TCR)-derived bispecific construct, is a bit different from classical BsAbs. ImmTAC molecules are soluble TCRs stabilised by a disulphide bond and fused to an anti-CD3 scFv. Thanks to its TCR portion, the ImmTAC can recognise peptides derived from intracellular tumour targets that are presented by the MHC (or HLA), where classical antibody binding site does not interact with the MHC but only recognises extracellular antigens on cell surface. Engineered to present a high antigen-affinity TCR, the ImmTAC thus gives access to the targeting of a broader range of tumour cells, including “cold” cells presenting low immunogenicity. However, their construction is challenging as soluble TCR are unstable when not embedded in a membrane and tend to aggregate in solution.161

Dual immunomodulatory bispecifics

The main pitfall of immunomodulatory antibodies, either immune checkpoint inhibitors or immunostimulators, is that they are not directed toward the tumour cells and can induce a systemic immune response resulting in adverse events. Initially they were administered in combination with tumour-targeted treatments such as monospecific antibodies or immune-cell engagers. For instance, PD-1/PD-L1 axis inhibition was shown to improve anti-tumour efficacy by reversing related immune resistance when used in combination with various types of T cell engagers, including αHER2 × αCD3,162 αCEA × αCD3,163 αCD3 × αCD3,164 αTrop-2 × αCD3 or αCEACAM5 × αCD3 BsAb.165 Numerous other examples of immunomodulatory antibodies used in combination therapy, not only with BsAb, have been reported and reviewed, notably by Patel \textit{et al.}166 Two immunomodulators can also be combined into the same BsAb, generating a dual immunomodulatory BsAb that has the potential to: 1) avoid immune escape by blocking two different inhibitory immune checkpoints (such dual immune checkpoint inhibitory BsAbs include αPD-1 × αCTLA-4, αPD-1 × αTIM-3, or αPD-1 × αLAG3 bispecifics167–169); 2) induce a strong stimulation and expansion of T cells when combining two immunomodulators (e.g. dual agonistic BsAb αCD137 × αOX40),170 and 3) induce a synergistic effect when blocking an inhibitory immune checkpoint and activating a stimulatory immune checkpoint – this type of BsAb is sometimes defined as agonist redirected checkpoint (αPD-1 × αOX40, αCTLA-4 × αOX40).171,172 This strategy can enhance T cell expansion, helping to convert “cold” tumours into “hot” ones. It is noteworthy that assets enounced in points 1) to 3) might also be attributed to combination therapy of the corresponding individual mAbs and generate similar results. However, only BsAb are able to 4) convert an inhibitory signal into a stimulating one at the tumour cell surface (αPD-L1 × αOX40).173 In addition, for any of the cited dual immunomodulatory Bsab, choosing PD-L1 - which is expressed on tumour cells - as one of the two targeted immune checkpoints can potentially improve the selectivity of the BsAb for the tumour site when compared to a monospecific antibody targeting an immune checkpoint expressed on immune cells. Similar to monoclonal immunomodulatory antibodies, the dual immunomodulatory BsAbs can suffer from their lack of tumour targeting that induces toxicity. 14 clinical trials evaluating dual immunomodulatory BsAbs as a monotherapy are referenced.
A way to exploit the immune boosting capacity while alleviating the secondary effects of immunomodulators is to include them in a BsAbs targeted to the tumour site. For instance, in a HER2+ TUBO mouse tumour model (moderately resistant to anti-HER2 monotherapy), an αPD-L1 immunomodulator was included in a αHER2 × αPD-L1 BsAb (with a mouse IgG2a Fc backbone) that reduced tumour growth and increased tumour rejection when compared to the mono-targeted anti-PD-L1, monovalent anti-HER2 monotherapies or their combination in vivo. Interestingly, in vitro results were less encouraging as the BsAb could bind to HER2 and PD-L1 and block the PD-1/PD-L1 axis but without affecting tumour cell proliferation. As expected, this enhanced anti-tumour effect of αHER2 × αPD-L1 BsAb was dependent on the presence of CD8+ T lymphocytes and IFN-γ (IFN-γ notably regulates expression of PD-1).174 PRS-343, an αHER2 × α4-1BB BsAb resulted in tumour growth inhibition and dose-dependent increase of tumour-infiltrating lymphocytes in a HER2+ SKOV3 tumour model (engrafted in combination with human peripheral blood mononuclear cells (PBMC) in humanized mouse). The authors relate that combining the targeting of the T cell co-stimulatory receptor 4-1BB to the HER2 tumour antigen enabled a more localized activation of the immune system, resulting in higher efficacy and reduced toxicity when compared to a monospecific approach.175 In another approach, a BsAb combines affinity for PD-1 and for RANKL, which is a member of the tumour necrosis factor receptor family, expressed by some tumour cells but also some immune cells. The corresponding Fab sequences were fused on an IgG1 backbone and the αRANKL/αPD-1 BsAb monotherapy resulted in anti-tumour activity in αPD-1 resistant tumours and showed equivalent or superior anti-tumour response than the combination of the parent αRANKL and αPD-1 monospecific antibodies, depending on the tumour model. Similarly to other PD-1 targeting BsAbs, the anti-tumour activity is dependent on CD8+ T cells but also host PD-1 and IFN-γ expression.176

IV.3.d. Bispecifics in combination

BsAbs revolutionized the immunotherapy paradigm by generating better efficacy and safety when compared to parent monotherapies or their combination in many cases for several circulating and solid cancers. However, outcomes still have to be improved as several patients suffer from cancers refractory to these new treatments, due to antigen shedding and immune escape resulting from inhibitory checkpoint up-regulation. Notably, T cell engagers can suffer from expression of inhibitory immune checkpoints in the tumour environment, while the efficacy of immune checkpoint inhibition therapies can be impaired by low levels of infiltrated T cells. Thus, therapies combining a T cell engager BsAb and an immune checkpoint inhibitor seem promising to circumvent each other's limitations (Fig. 4c).177 Four clinical trials are currently investigating the administration of a (αCD3 × αCD19/αCD20) BsAb in combination with an anti-PD-1 antibody, for the treatment of leukemia or lymphoma.178-181 The same combination (αCD3 × αCD19 + αPD-1) was evaluated by Freucht et al. in vitro and in vivo, but they also investigated the effects of the expression of other co-signalling molecules by the targeted cells (e.g. inhibitory PD-L1/PD-1, LAG3, TIM-3/galectin-9, CTLA-4/CD86-CD80, BTLA and stimulatory CD28/CD86-CD80, CD40, 4-1BB). Results illustrated the positive or negative influence of immunomodulatory checkpoints expression by targeted cells on T cell activation/inhibition and their interactions.182 More combinations were evaluated in preclinical studies, including but not limited to: a T cell engager (αCD3 × αCD33) BsAb plus an agonistic CD28 mAb,183 a T cell engager (αCD3 × αCD33) BsAb plus an immune checkpoint inhibitor αPDL-1 or αPDL-1 mAb,184 a dual agonistic (αOX40 × α4-1BB) BsAb plus an immune checkpoint inhibitor αPDL-1 or αPDL-1 mAb.185 BsAb combination therapy also includes the use of two different BsAbs (Fig. 5). This is probably the most extensive use of BsAbs so far. Claus et al. recently reported two combinations of two BsAbs, employing αFAP × 4-1BBL plus a αCEA × αCD3 in one case, or a αCD19 × 4-1BBL plus a αCD20 × αCD3 in another (αPDL-1 mediated). This resulted in fibrolast activation protein, expressed on the tumour stroma).186 Previously, the targeting of the co-stimulatory receptor 4-1BB with a monospecific mAb did not advance to phase 3 in clinical trial as its efficacy relied on Fcγ receptor-mediated hyper-clustering, which was also inducing hepatotoxicity. Thus, the authors developed two bispecific proteins: 1) having a mutated Fc that avoids their clustering through FcγR interaction; and 2) either targeting CD19 (expressed on normal and malignant B cells) and 4-1BB, or targeting the FAP and 4-1BB. Thus, the T cell co-stimulatory activity of the 4-1BBL × αFAP or 4-1BBL × αCD19 bispecics was strictly dependent on FAP or CD19-mediated clustering. The 4-1BBL × αFAP was administrated in combination with a CEA-targeted T cell engager (αCEA × αCD3) in a gastric solid tumour in vivo model. Synergistic action was expected, as the αCEA × αCD3 BsAb was shown to induce 4-1BB up-regulation in CD8+ T cells. The treatment resulted in tumour growth inhibition, where parent monotherapies or control combination (using untargeted αDP47 × 4-1BBL protein) did not. Similarly, the 4-1BBL × αCD19 bispecific was administered in combination with a B cell-targeting αCD20 × αCD3 T cell engager, in an aggressive human lymphoma in vivo model. The treatment resulted in complete tumour eradication correlated with T cell accumulation in the tumour that was not obtained with the parent monotherapies. A similar strategy was adopted as soon as 2010 by Liu et al., where a combination of a 4-1BBL × αCD20 fusion protein and a αCD3 × αCD20 diabody resulted in more potent inhibition of human B lymphoma xenograft in SCID (severe combined immunodeficient) mice when compared to parental monotherapy, suggesting that the local delivery of 4-1BBL could effectively potentiate the anti-tumour activity of the T cell engager.185
Earlier, Willems et al. described the combination of hPLAP × αCD28- and hPLAP × αCD3-targeting proteins. However, the generated constructs could be classed as trispecific molecules as they were respectively containing a peptide TAG P and an scFv specific to the P-peptide. The design of the generated Cri-BsAb (cross-interacting bispecific antibody) was made to induce a covalent interaction between the two proteins at the T cell and the tumour cell surfaces, in order to generate a more stable complex on the tumour cell as well as forcing the close localisation of CD3 and CD28 receptors on T cells, ensuring their correct activation. Authors proposed a sequential administration of the co-stimulating Cri-BsAb (αhPLAP × αCD28 × TAG P) followed by a low dose of activating Cri-BsAb (αhPLAP × αCD3 × αP) once the non-tumour-bound co-stimulating Cri-BsAb is sufficiently cleared. This is consistent with their results, showing that low concentrations of activating Cri-BsAb were needed to trigger T cell activation if a minimal amount of co-stimulating Cri-BsAb was bound to the T cell. However, despite an interesting strategy, only in vitro results were reported, and in vivo evaluation would be a necessary next step to further assay the safety and efficacy of this technique.

Recently, Correnti et al. also reported the use of a pair of BsAbs, and named this strategy SMITE (simultaneous multiple interaction T-cell engaging). Actively, five different BiTE combinations were evaluated: in the first strategy, the two BiTEs were targeting the same ROR1 or the same CD19 tumour antigen, and either CD3 or CD28 (Fig. 5a), in order to engage and co-activate T cells (αROR1 × αCD3 plus αROR1 × αCD28, or αCD19 × αCD3 plus αCD19 × αCD28). In both cases, the CD28 BiTEs were ineffective alone but augmented the cytotoxic effects of CD3 BiTEs in a dose-dependent manner. Interestingly, the T cell activation was cancer cell binding-dependent when using the combination of two ROR1-targeting BiTEs since T-cell activation by the αCD3 × αROR1 BiTE was dependent on ROR1 display on cancer cells, and αCD28 × αROR1 BiTE on its own cannot activate T cells and required preliminary T cell activation to exert co-activation. Conversely, a monoclonal αCD3 antibody (clone: OKT3) activated T cells equally in ROR1 and ROR1 tumour cells. The second SMITE strategy was reliant on a pair of BiTEs targeting different antigens on tumour cells (Fig. 5b), by combining blinatumomab (αCD3 × αCD19) with an αCD28 × αROR1 BiTE, or an αCD3 × αROR1 BiTE with an αCD28 × αCD19 BiTE. In both cases, the combination of BiTEs resulted in significant enhancement of cancer cell killing when compared to CD3 BiTE monotherapy, illustrating the possibility of targeting cancers expressing two independent antigens, possibly giving access to a more selective and less toxic treatment. In line with these results, a final SMITE strategy was evaluated, using the inhibitory immune checkpoint PD-L1 as a tumour antigen (Fig. 5c). Indeed, being expressed on tumour cells’ surface, PD-L1 can be considered as a tumour antigen. Especially in some particular cases, as PD-L1 was shown to be increased following blinatumomab treatment in some refractory cases. Targeting PD-L1 with an αCD28 × αPD-L1 BiTE both allows tumour targeting and the conversion of an inhibitory signal into a stimulatory one. Additionally, potential toxicity of αCD28 × αPD-L1 BiTE related to a wide expression of PD-L1, including in healthy tissues, is lowered by the fact that CD28 activation is dependent on previous CD3 activation. This makes it well suited for combination therapy. Similarly to other SMITEs, the BiTEs combinations (αCD28 × αPD-L1) and (αCD3 × αCD19) resulted in T cell co-activation strictly dependent on the expression of PD-L1 antigen by the tumour cell and the engagement of CD3 through the CD19/CD3 interaction.

Fig. 5 – a. Some strategies combine a BiTE (bispecific T cell engager) plus a tumour targeted immunomodulator. In this example, both BsAbs are targeting the same TAA, and an immunostimulator is used to sustain and support the T cell function through activation of the stimulatory immune checkpoint CD28 (TCR co-receptor). b. The same combination strategy as S.a. can be used but with two BsAbs targeting two different TAAs. c. The SMITE concept, for simultaneous multiple interaction T-cell engaging, is another example of a combination strategy. It relies on the use of a BiTE and a tumour-targeted immunomodulator that targets a different TAA than the BiTE as well as the PD-L1 immune checkpoint to block its inhibitory activity.
Interestingly, this SMITE not only reversed the PD-L1-mediated resistance in cells expressing PD-L1, but also increased cytotoxic effects when compared to parental cells treated with the (αCD19 × αCD3) BiTE antibody alone, probably resulting from the effective conversion of an inhibitory signal into a stimulatory one due to the (αCD28 × αPD-L1) BiTE. These results confirm the potential of a dual BsAb combination for cancer immunotherapy (Fig. 3, bottom left and right dials). However, as with the aforementioned publications, in vivo results are still necessary to fully validate this promising approach.

V. Multispecific Targeted Immune Cell Engager & Modulators (MuTICEMs)

V.1. BsAbs limitations – toward Multispecific Targeted T cell Engagers & Modulators (MuTICEMs)?

Despite their undeniable positive impact on cancer treatment, BsAb antibodies and fragments can suffer limitations, as toxic adverse events and resistance mechanisms are observed in some cases.39,69,157 Notably, Kato et al. reported that PD-1/PD-L1 inhibitor resistance is linked to multiple checkpoints overexpression, with VISTA, TIM-3 and macrophage associated marker CD68 being particularly involved, thus supporting the idea that targeting multiple pathways might be a valuable strategy.187 Of course, BsAbs field is still making progress and all options may have not been explored yet, however, other approaches are still worth investigating. Notably, personalized therapies to answer distinct and complex immune profiles among patients would probably be the ultimate goal, but this requires important technical and financial investments.

Lowering toxicity through better selectivity, circumventing resistance mechanisms with immune checkpoint blockade, and further boosting the anti-tumour efficacy with immunostimulators requires an approach with multi-effectors. Accumulating various effectors on a construct and/or at the tumour site is a way to improve treatment, and combination therapies tend to fulfill this requirement. However, when combined with a BsAb, immunomodulatory antibodies retain their potential toxicity as they are still not targeted to a tumour-specific antigen. Dual BsAb combinations (such as SMITEs) answer the need for targeting each effector to tumour cells when both BsAbs contain a tumour-antigen binding motif. However, if the same antigen is targeted by the two BsAbs, then: 1) counter-productive competition between the two BsAbs for binding to the target antigen can occur; 2) the effector/targeting module ratio is 1/1; and 3) the simultaneity of the BsAbs actions can be hard to control. When combined BsAbs target different tumour-specific antigens, the competition issue is avoided, but effector/targeting module ratio is still 1/1 and the spatio-temporal colocation remains a potential issue. Thus, combining multiple effectors (more than two) on the same construct really seems to be a valuable strategy to be evaluated and the next step to take in immunotherapeutic antibody development. Indeed, combining a tumour-targeting module (αTAA), an immune cell engaging module (e.g. αCD3) and one or two checkpoint immunomodulators (e.g. OX40L and αPD-L1) would allow a higher effector/targeting module ratio (2/1, 3/1, etc.), a spatio-temporal co-localisation of effectors and potentially exert a strong synergic effect. For ease of use, we labelled this concept as MuTICEM for Multispecific Targeted Immune Cell Engager & Modulator. Adding two tumour targeting modules or including an Fc region are possible options. As discussed earlier, the PD-L1 receptor on tumour cells may also be considered as a secondary tumour antigen if combined with another TAA that promotes tumour selectivity. Clearly, combining multiple effectors on a same construct represents a higher level of complexity for production, offers less adaptability of administration when compared to combination therapy (where one effector administration can be stopped while continuing the other one, different dosages, etc.), and including for instance affinity for both αCD3 and a co-stimulator such as OX40L or CD28 might be considered risky toward on-target, off-tumour T cell activation and related adverse events. That is why in a MuTICEM approach, the effectors’ affinity for their targets would have to be very carefully designed and evaluated, with a leading affinity for the TAA probably being the best option to get lower toxicity, and the use of two lower-affinity TAA-targeting effectors being recommended when possible. The production, evaluation, safety and efficiency of MuTICEM immunotherapies raise complex challenges and questions. But the potential efficacy, synergy, resistance-overcoming, safety and broader application they could offer deserve to be investigated. In this section, we will discuss recent MuTICEM formats that have been developed, including tri- and tetra-specific antibody formats. We will also discuss the role that organic/bioconjugation chemistries could hold in this potential breakthrough shift in the immunotherapy landscape, notably fast and adaptable production of MuTICEM formats for preliminary studies.

V.2. MuTICEMs – Trifunctional formats

Only a few examples of trifunctional MuTICEMs have been reported so far. One of them is a checkpoint inhibitory T cell engaging (CITE) antibody format.188 In order to circumvent PD-1/PD-L1-induced adaptive immune resistance of the CD33-targeting BiTE, the authors developed a trifunctional antibody format (αCD33 × αCD3 × PD-1ex) by fusing a high-affinity CD33 scFv to a CD3 scFv and the extracellular domain of PD-1 (PD-1ex). The purpose was to combine T cell redirection to CD33 on AML cells with a locally restricted immune checkpoint blockade (Fig. 6a). Interestingly, the PD-1ex holds a low-affinity for PD-L1, thus allowing the αCD33/CD33 affinity to drive the global selectivity of the CITE and reducing on-target, off-side toxicity. Especially, the hypothesis was made by authors that the CD-1ex domain is not sufficient to directly target PD-L1—expressing cells and consequently does not block PD-1/PD-L1 interactions unspecifically. Nevertheless, following CITE interaction with CD33, the proximity and the avidity effect would allow the PD-1ex/PD-L1 interaction. This αCD33-mediated and AML tumour
Fig. 6 – a. The checkpoint-inhibitory T cell engager (CITE), a bispecific antibody construct fused to the extracellular domain of PD-1 (PD-1ex), results in a trispecific compound that simultaneously targets a TAA, CD3 and PD-L1 to circumvent inhibitory immune checkpoint anergy that can be encountered when using BiTEs (αTAA × αCD3). b. A TriKE (Trispecific Killer cell Engager) is a different trispecific construct that recruits NK cells to kill tumour cell through the targeting of CD16 and TAA. These two binding motifs are connected by an IL15 protein, which induces proliferation, activation and survival of the NK cells.

cell-restricted immune checkpoint blockade would in turn potentiate local T cell activation and tumour killing while avoiding broadly distributed immune-related adverse events. For in vitro evaluation, control compounds were generated, including a single-chain trispecific body (sctb) in which the PD-1ex module was replaced by a αPD-L1 scFv (αCD3 × αCD3 × αPD-L1, high affinity control); a BITE-like compound (αCD3 × αCD3); a (αPD-1ex × αCD3) BsAb; and a (αPD-1 × αCD3) BsAb. Compounds were incubated with HD (Healthy Donor) T cells and MOLM-13 or MOLM-13:PD-L1 cells expressing high levels of CD33, or HD T cells and OCI-AML3 or OCI-AML3:PD-L1 cells which express low CD33 levels.

On each of these four cell lines and in the presence of non-stimulated HD T, at 2:1 effector to target cell ratio (E:T), the dose-dependent lysis of targeted cells obtained with CITE was similar to the sctb. Yet, for both compounds on both high and low CD33-expressing cell lines, cell expression of PD-1 was correlated with a lower EC50 (effective concentration for 50% of cell lysis). Thus, the inhibitory PD-1/PD-L1 axis was not only counteracted, but its blockade also improved the cytotoxicity, demonstrating a possible synergy resulting from the PD-1ex/PD-L1 or αPD-L1/PD-L1 involvement on CITE and sctb respectively. Surprisingly, EC50s were lower on both PD-1+/CD33low and PD-1+/CD33high cell lines when compared to the PD-1+/CD33high and PD-1+/CD33low respectively. The BiTE (αCD33 × αCD3) cytotoxicity was dependent on CD33 expression, but independent of PD-L1 expression (while PD1/PD-L1 adaptive immune resistance could have been expected). Conversely, the CITE and the sctb cytotoxicities were dependent on both CD33 and PD-L1 expressions. Interestingly, on MOLM-13 (CD33high), at 50 pM and E:T ratio of 2:1, BITE was almost two times more cytotoxic than CITE and sctb, but the latter were more cytotoxic when PD-L1 was expressed (MOLM-13:PD-L1 cell line); no rational was proposed by the authors for this result. A possible explanation might be that in absence of PD-L1 expression by the CD33high cells, the presence of the fused PD-1ex protein on the original BITE core (to form a CITE) could have steric effects that reduce the interaction of the CITE construct with the CD33 receptors when compared to the original BITE, resulting in a counteractive effect of the PD-1ex on the therapeutic efficacy in this case. For CD33low cell lines, the BITE had weak cytotoxic independently of PD-L1 expression, while both CITE and scb were inefficient in the absence of PD-L1 expression but demonstrated marked cytotoxicity when PD-L1 was expressed. This means that despite a low affinity for PD-L1, the CITE can potently target PD-L1 expressing cells. However, the fact that the (PD-1ex × αCD3) BsAb showed no toxicity on the same CD33low/PD-L1+ cell line confirms that PD-1ex alone is not strong enough to induce cytotoxicity and that CD33 expression, even at a low level, is mandatory. It ensures a selectivity for cells expressing both receptors and restricts the PD-1 blockade to a local, CD33-targeted activity. Taken together, these results indicate that a BITE might continue to be the best option to kill cancer cells with high CD33 and no PD-L1 expressions, but as soon as PD-L1 is expressed, the CITE and the sctb seem to be a better choice to kill cells with high or low CD33 expression. In vitro, the affinity for PD-L1 had an influence on bispecific formats, with (αPD-1 × αCD3) BsAb exhibiting significantly lower EC50 than (αPD-1ex × αCD3) BsAb.
αCD3) BsAb when PD-L1 was expressed, independent of CD33 expression. On the other hand, PD-L1 affinity had barely any influence on CITE (low PD-L1 affinity) and scbt (high PD-L1 affinity) cytotoxicity – EC50s are similar from one compound to the other, and from one cell line to the other when PD-L1 is expressed. This trend indicates that, if scbt’s and CITE’s affinity for PD-L1 is mandatory to target CD33^{low}/PD-L1⁺, the cytotoxicity of these compounds is probably mainly governed by affinity for CD33 rather than affinity for PD-L1, both on CD33^{high}/PD-L1⁺ and CD33^{low}/PD-L1⁻. These in vitro results question the interest to use PD-1_x rather than αPD-L1. However, the in vivo experiments (on NSG mice engrafted with MOLM-13:PD-L1 cells receiving in vitro activated human HD T cells before the treatment) confirmed the authors’ choice as the CITE induced leukemia-eradication without on-target off-leukemia events, while the scbt resulted in body weight loss when compared to other groups, possibly resulting from a scbt-mediated T cell redirection to PD-1⁻ cells and related on-target off-leukemia events. Opting for a lower affinity PD-1_x seems to be the rational choice for better safety results. All in all, the preclinical results of Herrmann et al. validate the use of CITE, a trispecific MuTICEM. Preclinical and clinical confirmation is needed, but while BiTE might be a better option to treat non-resistant CD33⁺ AML cancers, it seems that the use of a trifunctional trispecific construct possessing a low-affinity PD-L1 binding motif (PD-1_{low}) does induce local restricted checkpoint inhibition, improved T cell activation and efficient treatment of CD33^{low} and CD33^{low} AML cancer cells expressing PD-L1, with reduced systemic toxicity.

Miller et al. described another type of trispecific MuTICEM, devoted to the recruitment and activation of NK cells to CD33⁺ tumour cells. Their purpose was to modify a previous (αCD33 × αCD16) BiTE they reported by introducing an IL-15 cytokine serving as a linker to connect the anti-CD16 and anti-CD33 scFvs (Fig. 6b). They named this concept TriKE, for trispecific killer cell engager (in the context of this review, we would describe it as a trispecific bispecific construct, as only two binding antibody fragments are used). However, authors may have considered IL-15 as a binding motif for the IL-15 receptor and thus considered the TriKE as a trispecific construct. In any case, it falls under our description of MuTICEM. IL-15 was chosen for its capacity to induce development, proliferation, activation and survival of NK cells. Thus, the resulting TriKE is able to recruit NK cells to CD33-expressing tumour cells and locally improve and sustain NK cell activity, resulting in higher ADCC-related anti-tumour activity and lower toxicity. In vitro, the TriKE (αCD33 × IL15 × αCD16) demonstrated a better ability than the BiTE (αCD33 × αCD16) to kill CD33⁺ HL-60 cells in the presence of healthy donor PBMCs, while a single anti-CD16 or anti-CD33 scFv did not increase HL-60 killing when compared to untreated PBMCs control. Nevertheless, co-injection of BiTE and IL15 yielded similar results as the TriKE. Importantly, the TriKE (αCD33 × IL15 × αCD16) was ineffective in killing CD33⁺ HT-29 cells, demonstrating a specific CD33-mediated NK cell-induced killing of CD33⁺ HL-60 cells. Interestingly, the modularity of the strategy was demonstrated by replacing the αCD33 paratope by an αEpCAM paratope, generating a (αEpCAM × IL15 × αCD16) TriKE that induced potent killing of CD33 EpCAM⁺ HT-29 cells. The TriKE (αCD33 × IL15 × αCD16) was also shown to significantly increase IFNγ and TNFα expression when compared to the BiKE (αCD33 × αCD16). The higher levels of pro-inflammatory cytokines and chemokines by NK cells certainly seemed to contribute to the better anti-tumour activity. The in vivo evaluation on a murine xenograft model incorporating human NK cells and CD33⁺ tumour cells (HL-60) confirmed the in vitro results – intraperitoneal administration of 20 µg of TriKE or BiTE for 10 days resulted in similar control tumour burden, significantly better than the untreated group at day 14, while only the TriKE resulted in a significant reduced tumour burden at day 21. Noteworthy, the level of circulating human NK cells in peripheral blood was 350-fold higher for mice treated with TriKE when compared to those treated with BiKE, strongly supporting that the IL15 linker within the TriKE delivers strong proliferation, survival and activation of the NK cells and is deeply implied in improved anti-tumour activity. A limitation of the strategy could be the ambiguous role of IL15, which was notably shown to take part in the development of leukemias and solid tumours, inhibit apoptosis of tumour cells, or promote their proliferation in some cases. However, the fact that IL15 is embodied in a trifunctional bispecific construct and targeted to the CD33⁺ cells potentially restricts its action to the tumour site, reducing off-site toxicity, as evidenced by the in vivo experiments for which no body weight loss was observed in mice treated with the TriKE. Taken together, these results support the MuTICEM strategy to exert local action for better efficacy and reduced toxicity. Interestingly, this TriKE strategy was recently applied in a preclinical study to chronic lymphocytic leukemia (CLL) by replacing the CD33 targeting by a CD19 targeting module (αCD19 × IL15 × αCD16), resulting in reversion of the inflammatory dysfunction in CLL and induction of NK cells-mediated CLL killing. This further illustrates the adaptability of the TriKE concept to treat various cancer types. A patent relating to the generation and comparison of a CD16/IL-15 /CD33 TriKE and a CD16/IL-15/CLEC12A TriKE for therapy of AML was recently filed (WO2020081841).

Other NK cell engagers (NKCEs) consisting of trifunctional bispecific (αCD16 × αNKp46 × αTAA) antibody formats, with the anti-CD16 (anti-FcyRIII) actually being anFc fragment (we don’t consider Fc fragments as specific binders for the purpose of this review) were recently reported by E. Vivier et al. However, this bispecific antibody format is rather “outside of the box” and could be considered in a way as a trispecific as the Fc fragment was introduced together with an agonistic αNKp46 to target NK cells in particular and trigger their full activation and related ADCC. At least, this prompted us to classify it among the MuTICEMs for the purpose of this review, as NKp46 was described as an immune checkpoint and because specific recruiting and stimulation of NK cells to tumour cells is pursued here. Several bifunctional antibody formats harbouring a silent Fc fragment (no ADCC activity) were initially generated by authors, first varying the agonistic NKp46-targeting epitopes for...
optimisation, then varying TAA (CD19 or CD20) and binding motif formats (scFv, Fab or cross-mAb) for in vitro evaluation (NKCEs incubated with Daudi cells in presence of NK cells as effector). All the generated silent-Fc NKCEs were functional for NK-cell activation and presented strong anti-tumour activity, with the better cytotoxicity obtained for the candidate possessing a normal affinity for FcRn (other candidates had lower affinity for FcRn). In vivo, a (αNkp46 × αCD16) generated an NK-cell-dependent control of tumour progression on a human Raji B-cell lymphoma model, accompanied by significantly improved NK cell infiltration and/or proliferation in the tumour bed. Two trifunctional antibody formats were then generated, targeting CD19 or CD20 (against Daudi human B cell lymphoma cells) or EGFR (against A549 human lung carcinoma cell), and able to co-engage Nkp46 and CD16 at the surface of NK cells, either through a wild-type Fc portion or an optimized CD16/Fc receptor binding (with the S239D and I332E mutations). In vitro comparison of Fc-silent (bifunctional), Fc-competent (trifunctional) and Fc-optimized (trifunctional) NKCEs revealed that, independently from the targeted TAA, co-engagement of Nkp46 and CD16 increased both the potency of tumour cell lysis and NK cell activation, when compared to the Fc-silent NKCE. Better cytotoxicity and NK cell activation were obtained with the Fc-optimized CD16 binding. Importantly, the co-engagement of Nkp46 and CD16 with trifunctional NKCEs were more potent than a mixture of the corresponding bispecific reagents separately activating Nkp46 and CD16, illustrating the importance of a simultaneous interaction with the two receptors and validating the construct design. Additionally, cytotoxicity was TAA-dependant, and neither fratricidal NK-cell killing (NK-versus-NK toxicity) nor improved cytokine release were observed for CD20-targeted NKCE in the presence of PBMCs, as opposed to obinutuzumab (Fc-engineered anti-CD20 mAb used in clinical practice). These results were confirmed in vivo where the trispecific NKCEs (Fc-wild and Fc-optimized) significantly reduced tumour progression (but did not induce full eradication after 30 days post-injection) when compared to Fc-silent bifunctional NKCE and obinutuzumab on a solid tumour model (s.c. injection of Raji B lymphoma cells), and rescued all mice in an invasive tumour model (i.v. injection of Raji tumour cells) when obinutuzumab resulted in only 60% rescue at the same dose (50 mg of antibody per kilogram body weight). The improved in vivo tumour progression control of the trifunctional NKCEs thus validates both the targeting and activation of NK cells through simultaneous binding to Nkp46 and CD16 receptors and the use of a trifunctional construct to engage and restrict NK cell activation to the tumour site. Notably, the fact that NKCEs’ affinity for Nkp46 is 70 to 100 times greater than that of regular Fc for CD16 probably induces a valuable selectivity for Nkp46+ CD16+ NK cells toward Nkp46+ CD16+ myeloid cells, while still being able to activate Nkp46+ CD16+ NK tumour-infiltrating lymphocytes from tumour patients. Overall, the developed NKCEs represent an additional successful example of MuTICEM. Clinical results are now awaited to confirm their potential as efficient and safer anti-tumour agent.

To the best of our knowledge, only a few other trispecific MuTICEMs have been described, all in patents and without related scientific publications, illustrating both the novelty of the strategy, and the competition for intellectual property in the field. Notably, patent WO2017081101 (“Trispecific Molecule Combining Specific Tumour Targeting and Local Immune Checkpoint Inhibition”, 2017) claims the design and functional characterisation of a TriKE (αCD16 × αCD47 × αCD33), engaging NK cells (via CD16) to CD33+ acute myeloid leukemia cells and simultaneously blocking CD47 (via N-terminal Ig domain of SRP-a), a “don’t eat me signal to macrophages” acting as an immune checkpoint. The MuTICEM is thus expected to generate local immune checkpoint inhibition and NK cell-related anti-tumour activity. Patent WO201812843 (“Trifunctional Molecule and Application Thereof”, 2018) refers to the development and use thereof of a trispecific antibody format (recombinant protein peptide chain) made of three domains that may simultaneously target CD19, CD3 and a T cell co-stimulating receptor such as CD28, CTLA-4, TIGIT, etc. A trispecific antibody format (αCEA × αCD3 × agonistic αCD28) is mentioned as well. The clear goal here is to generate a T cell engager promoting local T cell activation, for improved T cell-induced anti-tumour activity and reduced systemic toxicity. Other trispecific MuTICEMs were claimed in patent WO2019166650 (“Trispecific antigen binding protein”, 2019). The aim here was to combine CD3 binding, tumour antigen binding and immune checkpoint pathway blocking, such as PD-1/PD-L1 blocking. Notably, in one example, in order to prevent the immune system from attacking cells indiscriminately, the blocking of the PD-1/PD-L1 axis was realised through low-affinity binding to PD-L1, to afford a rapid dissociation from PD-L1 surface proteins. However, avidity and higher affinity generated from a simultaneous binding to both the TAA and PD-L1 can result in better selectivity for both protein-expressing tumour cells. Various trispecific formats were claimed, with the targeted immune checkpoint selected from among CD40, CD47, CD80, CD86, GAL9, PD-L1 and PD-L2; the targeted tumour cell surface protein being selected from among BCMA, CD19, CD20, CD33, CD123, CEA, LMP1, LMP2, PSMA, FAP and HER2; and with the third binding domain targeting CD3, TCRαβ, CD16, NKG2D, CD89, CD64 or CD32a for the recruitment of immune cells.

Some other examples of trispecific antibody formats have also been reported, simultaneously targeting three immune checkpoints, such as the orthogonal Fab-based (αPD-1 × α4-1BB × αCTLA-4) trispecific construct, simultaneously targeting three different antigens, or simultaneous targeting two tumour antigens and NK cells through a CD16-specific scFv. However, they are not combining tumour targeting, immune cell engagement and checkpoint immunomodulation, excluding them from the MuTICEM ensemble we defined and consequently from the focus of this review.

V.3. MuTICEMs – Tetrafunctional formats
Very few tetrafunctional MuTICEM antibody formats have been reported so far. Following their work on TriKeS cited above, J.S. Miller, D. A. Vallera et al. reported the production and in vitro evaluation of a TetraKE, a tetrafunctional trispecific construct containing an anti-EpCAM scFv (for carcinoma recognition), anti-CD133 scFv (for cancer stem cells recognition), an anti-CD16 scFv for NK cell engagement and an IL-15 protein, responsible for NK cell survival and proliferation and used as a linker between anti-EpCAM and anti-CD16 entities. The purpose of such an antibody format is to simultaneously target two different TAA's to improve selectivity for tumours expressing both receptors. Moreover, CD133 is expressed by cancer stem cells (CSC) which have been reported to induce chemotherapeutic resistance and have tumor initiating and self-renewal abilities. As such, they hold a critical role in the development and/or relapse of cancers, and their destruction is of great importance for tumor eradication. The simultaneous targeting of the two tumour receptors allows a selective recruitment of NK cells to the tumor site in order to induce the NK cell-depending killing of tumour cells through ADCC. Additionally, the presence of IL-15 on the TetraKE, and thus on the immune synapse, allows NK cells expansion and in turn was hypothesized to sustain the anti-tumour ADCC effect. The concept was evaluated and validated in vitro on various cell lines. Notably, binding competition assays on HT-29 (EpCAM+, CD133+) and Caco-2 (EpCAM+, CD133+) cell lines using EpCAM scFv, CD133 scFv or their combination confirmed the specific binding of (αCD16 × IL-15 × αEpCAM × αCD133) TetraKE, validating its dual targeting ability. On purified NK cells, the TetraKE induced a significant cell culture expansion, to a greater degree than IL-15 alone, whereas neither anti-CD16, anti-EpCAM, anti-CD133 scFvs nor a (αEpCAM × αCD16) BiKE did. This demonstrated the ability of the TetraKE to efficiently induce NK cell proliferation, which was accompanied by a significant improvement in survival of NK cells when compared to αEpCAM × αCD16 BiKE. The TetraKE ability to induce NK cell killing of cancer cells was evaluated at increasing Effector/Target (E:T) ratios on Caco-2 (CD133+, EpCAM+) and HT-29 (CD133+, EpCAM+) with NK cells freshly isolated from two donors. Convincingly, in the presence of either of the donors' NK cells, TetraKE and BiKE (αEpCAM × αCD16) resulted in significantly superior killing on both cancer cell types when compared to other controls (no treatment, IL-15 alone, αCD133 × αCD16 BiKE, and anti-CD16, anti-EpCAM, anti-CD133 scFvs), with the TetraKE having an equivalent or higher activity than the BiKE (αEpCAM × αCD16). Overall, these results prove the need for both the binding to one or both of the TAA and the CD16 to generate an immune synapse and the related ADCC tumour killing. However, a few interesting questions remain: 1) on the Caco-2 cell line (EpCAM+, CD133+), TetraKE demonstrated higher killing than the BiKE (αEpCAM × αCD16) in the presence of NK cells from Patient 1 (cytolytic activity of ~59% and ~43% respectively) but equivalent killing in the presence of NK cells from Patient 2 (cytolytic activity of ~39% and ~38% respectively). This result indicates that the additional CD33 targeting and/or activity of IL-15 of the TetraKE may not always have a direct impact on tumor cell killing when compared to the αEpCAM × αCD16 BiKE. 2) On the HT-29 cell line (EpCAM+, CD133+), the tetraKE resulted in higher killing than the αEpCAM × αCD16 BiKE in the presence of NK cells from either Patient 1 (cytolytic activity of ~58% and ~52% respectively) or Patient 2 (cytolytic activity of ~63% and ~54% respectively). Since CD33 receptors are not expressed by HT-29 cells, the increased killing related to the tetraKE could be solely attributed to the presence (and activity) of IL-15 in the construct. Thus, results on both cell lines can question the real impat of the CD33 binder: the improved tetraKE’s activity on Caco-2 cells with NK cells from Patient 1 could not be due to the presence of CD33 binder and only be due to the presence of IL-15, as it presumably is on HT-29 cell line. As a consequence, we can anticipate that evaluating a TriKE (αCD16 × IL-15 × αEpCAM) on both Caco-2 and HT-29 cell lines would have been of valuable interest to more accurately distinguish the influence of the CD33 binder and the IL-15, as well as confirming that presence of both CD33 and IL15 in the construct confer an added value; we also appreciate that there are also many more complicating factors at play. Still, it has to be noted that a αCD133 × αCD16 BiKE has been evaluated and resulted in effective cytolytic killing of Caco-2 cells in the presence of NK cells of both Patient 1 and Patient 2 (~17% and 20% respectively), though in lesser extent than the αEpCam × αCD16 BiKE and the tetraKE, proving that CD133 is an effective target. Surprisingly, despite expressing both EpCAM and CD133, the cytolytic activity of tetraKE was not superior on the Caco-2 cell line in comparison to the HT-29 cell line for both patients (tetraKE induced a cytolytic NK activity of ~59% in “caco2 Patient 1” and “39% in “caco2 patient 2”, ~58% in “HT59 Patent 1” and ~63% in “HT59 patient 2”). No explanation is provided for this observation, but a hypothesis could be that the total EpCam receptors expressed by HT-29 cells is higher than the total of EpCam plus CD133 receptors expressed by Caco-2 cells. This is only speculation however and would have to be investigated for solid conclusions to be made. INF-γ production and NK cell degranulation (related to surface expression of CD107a) were also evaluated. TetraKE demonstrated a dose-dependent and specific degranulation capacity as well as a higher INF-γ production than in controls, in several cell lines. Concerning cytokine production (GM-CSF, IL-6, IL-8, TNFa), an important parameter to evaluate potential systemic toxicity, the TetraKE demonstrated similar results to the BiTE, notably a significant augmentation of GM-CSF and TNFa when compared to no treatment. This might be a pitfall when translating to in vivo as some BiTEs, despite proven efficacy, have been limited in dose administration by their toxicity. In summary, these results indicate that TetraKE (αCD16 × IL-15 × αEpCAM × αCD133) takes advantage of the dual targeting to induce specific ADCC in vitro, providing equivalent or better results than related BITES (αCD16 × αEpCAM and αCD133 × αCD16). The presence of IL-15 results in specific NK cell proliferation, activation and survival, thus potentiating the ADCC anti-tumour effect. Combining the four effectors in the same compound allows their simultaneous action and restricts IL-15 activity to the tumour site, potentially reducing toxicity. In addition, targeting CSCs is an additional advantage, allowing attack on the cells originating and replenishing the tumour.
However, a direct comparison between a TriKE (αCD16 × IL-15 × αEpCAM) and the tetraKE (αCD16 × IL-15 × αEpCAM × αCD133) would be interesting to confirm whether the targeting of two tumour receptors instead of one can improve the killing of cells that express both receptors. *In vitro* evaluation of this promising compound is necessary, notably to ensure that moderately improved cytokine expression observed *in vitro* does not result in toxicity *in vivo*. Nonetheless, encouraging results are obtained with the TetraKE that addresses the needs of current BsAb therapies, and it illustrates that a strategic shift toward the use of MuTICEMs is a valuable option for future developments in immunotherapy research.

In addition to the above, a recent patent application (WO2019191120, 2019) describes Guidance and Navigation Control (GNC) proteins that typically fall under the description of a MuTICEM.\(^{203}\) Indeed, in several claimed embodiments, tetraspecific proteins comprise a binding domain for a T cell activating receptor, a binding domain for a tumour associated antigen, an antagonistic binding domain for an inhibitory immune checkpoint receptor, and an agonistic binding domain for a T cell co-stimulating receptor. Thus, the described proteins have the potential to recruit T cells to the cancer site and potentiate their activity by blocking inhibitory pathways and by activating stimulatory pathways. Some embodiments include the possibility to contain an Fc fragment to connect the different binding modules. Patents have to cover a maximum of applications thus several GNCs were claimed, 1) including bi- to octo-specific GNCs; 2) use against several cancers; 3) recruiting immune cells among T cell, NK cells, macrophages or dendritic cells; 4) possibly targeting a wide variety of TAs (ROR1, CD19, EGFR_III, BCMA, CD20, CD33, CD123, CD22, CD30, CEA, HER2, EGFR, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2, etc.), inhibitory immune checkpoints (PD-L1, PD-1, TIM-3, LAG-3, CTLA4, VISTA, PD-L2, CD160, LOX-1, siglec-15, CD47, etc.) and stimulatory immune checkpoints (4-1BB, CD28, OX40, GITR, CD40L, ICOS, Light, CD27, CD30, etc.). However, only tetraspecific GNCs were exemplified, all of them encompassing an anti-PD-L1 as the immune checkpoint inhibitor, an anti-CD3 as a T cell activator, an anti-4-1BB as the co-stimulator and either an anti-ROR1, anti-CD19 or anti-EGFR_III binding motif as the tumour-targeting module. Globally, *in vitro* tests of exemplified GNCs demonstrated redirected T cell activity (RTCC), specific T cell proliferation and TNF\(\alpha\) expression. Interestingly, the proximity of the binding sites with each other was shown to have an impact on the granzyme B production by PBMCs in response to treatment with EGFR_III targeting tetrab-specific GNC antibodies. For instance, the IC\(\text{5}_0\) of a granzyme production for a (α4-1BB × αPD-L1 × Fc – αTAA × αCD3) GNC was 61 pM when it is only 0.006 pM for a (αPD-L1 × αCD3 – Fc – α4-1BB × αTAA) GNC. This result indicates that not only the presence of multiple effectors but also their spatial organisation inside a MuTICEM can influence its activity, being an additional parameter to evaluate. Here again, *in vivo* evaluation is needed to make further insightful conclusions.

V.4. MuTICEMs – Whether or not to include an Fc fragment in the design

The rules previously outlined for the construction of bi and tri-functional bispecific antibodies (see part IV.2. BsAb design) are likely to be different for multispecific antibodies. For instance, for a tetrafunctional tetrabspecific antibody combining a tumour-targeting motif, an immunostimulator, an immune checkpoint inhibitor and engaging T cells (e.g. αTAA × αOX40 × αPD-1 × αCD3), adding an Fc fragment could have beneficial impact through ADCc tumour killing (via recruiting of immune cells to TAA expressing cells) and Treg depletion (through Fc interaction with OX40-expressing Tregs) but possible negative impact through effector T cell depletion (via ADCC killing of CD3\(^+\)/PD-1\(^-\) and CD3\(^+\)/PD-1\(^+\) expressing T cells). In addition, considering T-cell redirection is already pretty effective, it is not certain Fc-mediated killing would provide a large increase in cytotoxicity. On these particularly complex cases, experiments are needed, even as it is such a technically complex field.

V.5. MuTICEMs – A potential supported by organic and bioconjugation chemistry

To the best of our knowledge, no other tri- and tetrafunctional MuTICEMs were reported so far, probably illustrating the novelty and the complexity of their production. However, the aforementioned publications and patents constitute a proof of concept for the feasibility of such antibody formats. Pre-clinical and clinical *in vivo* evaluations will have to be completed in order to confirm if better and sustained anti-tumour efficacy, lower toxicity and a broader spectrum of cancer treatment can be achieved with MuTICEMs. Theoretically, combining more synergistic effectors holds the potential for better treatment. So far, the preliminary results of the publications cited above confirm this trend. However, it is important that resulting strong activation of targeted immune cells is restricted to the tumour site to avoid systemic inflammation, which is already a pitfall of some current immunotherapies.

The other bottleneck inherent to the combination of multiple effectors in a single antibody format is their complex, time-consuming and cost-effective production, as they are mainly produced through DNA and protein engineering (this was the case for all the MuTICEM compounds cited above). These issues are strengthened by the low modularity of such production techniques – for each new antibody format, the whole production design has to be modified. Considering that not only the presence but also the spatial distribution of effectors can have an influence on the anti-tumour activity; possibilities are numerous, and the production time and costs can grow depending on the proportion of possible formats that are to be tested. So far, progress in the immunotherapy landscape was generally supported by technological or scientific improvements toward the ease of production of therapeutic antibodies, as well as reduction of the time and financial costs required for it. Whilst the difficulties in the production of MuTICEMs will probably be, and might already be, an obstacle to their development, organic/bioconjugation chemistry might...
partially alleviate these obstacles, by allowing the production of MuTICEMs directly from native (or facilely engineered from native) proteins. Indeed, recent progress in the field including fast metal-free click chemistry reactions, site-selective protein functionalisation, and improved purification methods allow fast, controlled and easy-to-adapt production of modified proteins.

Starting from native proteins, the most recent procedures to chemically generate a multispecific antibody format rely on digesting parent antibodies and isolate the binding motifs of interest (Fab fragments and eventually Fc fragment) to subsequently assemble them directly with each other or on a chemical platform by using fast, orthogonal and chemo- and/or site-selective ligation reactions. Smaller units such as scFvs or small binding sites can also be produced or purchased and chemically modified in order to include them in a multispecific antibody format. But it is also possible to chemically attach two native full antibodies to each other.

Developed from seminal work from Sharpless and Bertozzi on click chemistry and copper-free click chemistry respectively, popular click reactions for protein assembly include strain-promoted azide-alkyne cycloaddition (SPAAC), strain-promoted alkyne-nitrone cycloaddition (SPANC), and inverse-electron-demand Diels-Alder (iEDDA) reactions involving partners such as trans-cyclooctyne/tetrazine, strained alkyne/tetrazine, or strained alkyne/fluorosydnone. However, native proteins generally have to be modified to introduce click chemistry functionalities. This can be done through protein engineering that allows the site-selective introduction of unnatural amino acids in the protein sequence, providing bio-orthogonal handles such as azide, alkyne or tetrazine to the non-native generated protein.

It is also possible to directly modify native proteins following a strategy sometimes described as “plug-and-play”, where site-selective reactions are used to introduce click chemistry handles on proteins and allow their subsequent chemo-selective assembly.

An ideal site-selective modification presents high efficiency, repeatability, and selectivity for a small number of protein sites (amino-acids or group of amino-acids), in order to ensure a very fine control of the protein modification. The field of site-selective modification of native proteins, especially antibodies, was strongly investigated in recent years and includes a wide range of strategies such as endogenous amino acid-selective modification, kinetically and template-directed lysine modification, enzymatic and chemo-enzymatic modification of either antibody glycans, or antibody amino-acid residues (with enzymes such as sortase A or transglutaminase, which allow to site-selectively connect peptide-containing substrates on the antibody, or the formylglycine generating enzyme which introduces an aldehyde group exploited in subsequent coupling reactions), multi-component reaction modification, or nucleotide binding site (NBS) modification. However, cysteine alkylation, Michael-addition, and cysteine rebridging constitute the more investigated and exploited approaches. A majority of the site-selective protein modifications and plug-and-play modifications were described for antibody-drug conjugate production. However, similar strategies can be used for protein-protein conjugation to

Fig. 7 - Scheme of process allowing multispecific antibody formats production from native proteins by employing site-selective modifications, click chemistry and bioconjugation. Protein engineering can be used, but is not necessary at any step, making the chemically generated multispecific antibody formats a fast, flexible and economic alternative to protein-engineered multispecific formats.
generate multispecific antibody formats, even though overcoming steric hindrance is an additional and important issue to take in consideration. For instance, a linker with two terminal “next generation maleimide” (NGM) moieties have been used to create a Fab-ScFv biespecific, relying on sequential rebridging of the Fab and scFv motifs, with a 52% yield even though homodimerisation is a drawback of the method. The Kaufman group described a plug-and-play approach combining NGMs and click chemistry, consisting of Fab reduction and rebridging with an NGM linker containing either an azide or a dibenzylcyclooctyne (DBCO), to generate the corresponding azide-bearing Fab and DBCO-bearing Fab that were connected through SPAAC to yield a BsAb. The same strategy was used to functionalise and connect two full IgG2, yielding a full length IgG2-IgG2 BsAb. The Chudasama and Baker groups recently reported a dually functionalised biespecific antibody format generated from two Fab fragments isolated from native antibodies and modified with either a bicyclo[6.1.0]nonyn (BCN) or a tetrazine functionality for their subsequent conjugation through inverse-electron-demand Diels-Alder. The click handles were introduced via reduction and rebridging of the disulfide bonds of each Fab with a functionalised dibromopyridazinedione. Subsequent modification with up to two different fluorophore payloads was possible through CuAAC when additional alkyne handles were introduced as well, paving the way for modification with proteins (Fab, scFv, etc.) to yield tri- or tetra-specific antibody formats. The dibromopyridazinedione used in this approach can be considered as a chemical platform because this compound can contain two different click handles, thus allowing the connection of three different proteins/payloads through the combination of one disulfide rebridging and two orthogonal click reactions. Such multifunctional chemical platforms displaying several orthogonal click handles might be a key element to generate multispecific antibody formats in a selective, controlled and versatile manner. Some tri- and tetra-functional linkers, benzene derivatives, or cyclic peptides have been reported and proven to be modular chemical platforms that can be orthogonal functionally with ligands, payloads and/or proteins. Further development introducing handles for faster click and more site-selective reactions would optimize this type of structure for use in multispecific antibody formats production, including MuTICEMs.

Considering the selectivity, speed, purity, modularity and reaction scale that bioconjugation and bioorganic chemistries offer, they could be used for fast and small-scale production of a wide variety of tri-, tetra-, or penta-specific antibody formats, quickly available for in vitro and pre-clinical in vivo evaluations (Fig. 7). The quicker results could enable faster feed-back and subsequent tuning of produced antibody formats to improve their activity, powering the wheel of a virtuous circle. Bioconjugation and bioorganic chemistry could thus be used for efficient screening of the best effector-combinations for MuTICEM formats, as it has been proposed for BsAbs, and be complementary to engineering methods, the use of which would be limited to high-scale production for clinical trials once.

IV. Conclusion

Since the beginning of the 2000s, the development of immunotherapy for cancer treatment has been a booming field of research. This was notably due to the success of immune checkpoint blockade strategies in clinical trials. However, while monoclonal antibodies generated satisfying results, some resistance and toxicity were observed and oriented the research to the development of bispecific antibodies that enable the dual binding of two targets among tumour receptor, immune checkpoint, or effector cells such as T cells or NK cells. The recruitment of immune cells turned out to be a further breakthrough in the immunotherapy landscape as it generated very positive results and notably led to the commercialisation of Blinatumomab (BlinicytoTM) for treatment of leukemia. Prompted by these two decades of progress, current research in immunotherapy mainly focuses on the development of new immune cell engager BsAbs, cancer-targeted BsAbs addressing new immune checkpoints, BsAbs targeting two immune checkpoints, or combinations thereof. While some encouraging results have been obtained, toxicity and resistance are still observed in some cases, probably partly originating from the fact that all the effectors activities (cancer cell targeting, immune cell engagement and immune checkpoint modulation) are not tumour site-restricted and simultaneous. In this review, after an overview of the immunotherapy landscape, we focused on the idea that including more than two effectors in a single antibody format to generate a MuTICEM would enable scientists to direct and restrict multiple immune checkpoint-modulations and immune cell engagement to the tumour site, possibly resulting in lower toxicity and better efficacy; notably due to simultaneous and synergistic effects. Clearly, such multispecific antibody formats are more complex structures that would require more effort to develop. However, some examples of MuTICEMs have already been published, proving the feasibility of this approach. These initial results are encouraging but more research on the topic and the assaying of more examples is needed. As they combine all the current leading strategies in cancer immunotherapy, MuTICEM compounds are (in our opinion) likely to be the next step to take in the field of cancer immunotherapy research. Their production through bio-engineering might not be the optimal strategy for development, especially because a lot of constructs would have to be generated and evaluated to define the compounds with the best effector combination, which would...
depend on the particular cancer’s characteristics. However, we believe that organic/bioconjugation chemistry could have a key role to play in this new field. Indeed, recent developments in site-selective protein modification, fast biocompatible click reactions, versatile functionalizable chemical platforms and protein purification could help to produce multispecific antibody formats in low to medium scale with modularity, speed and cost-effectiveness. We believe that the easier access to a wide variety of effector combinations in multispecific antibody formats would speed up their in vitro and in vivo screening. This in turn would facilitate the transfer to the clinical stage where bio-engineering might still be the method of choice to produce the selected multispecific antibody formats in a high-scale, unless more efforts are put into the development of their high-scale chemical production.

Author Contributions

The review was written, and the literature analysed, through contributions by both authors. Both authors have given approval to the final version of the manuscript. F.T. and V.C. contributed equally.

Conflicts of interest

There are no conflicts to declare but we do highlight that VC is a Director of Thiologics.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 838703. The authors would also like to thank Peter Szijj for useful discussions.

Notes and references

1. B. S. Graham and D. M. Ambrosino, Current Opinion in HIV and AIDS, 2015, 10, 129–134.
2. P. J. Carter and G. A. Lazar, Nat Rev Drug Discov, 2018, 17, 197–223.
3. G. Köhler and C. Milstein, Nature, 1975, 256, 495–497.
4. P. Chames, M. Van Regenmortel, E. Weiss and D. Baty, Br J Pharmacol, 2009, 157, 220–233.
5. P. A. Scolnik, Mabs, 2009, 1, 179–184.
6. A. Saxena and D. Wu, Front. Immunol., 2016, 7,580.
7. H. Liu, A. Saxena, S. S. Sidhu and D. Wu, Front. Immunol., 2017, 8,38.
8. J. M. Reichert, C. J. Rosensweig, L. B. Faden and M. C. Dewitz, Nat Biotechnol, 2005, 23, 1073–1078.
9. E. Cruz and V. Kayser, Biologics, 2019, 13, 33–51.
10. K. J. O Jr and S. A. Hurvitz, Antibody-Drug Conjugates: Fundamentals, Drug Development, and Clinical Outcomes to Target Cancer, John Wiley & Sons, 2016.
11. P. Khongorzul, C. J. Ling, F. U. Khan, A. U. Ihsan and J. Zhang, Mol Cancer Res, 2020, 18, 3–19.
12. V. Chudasama, A. Maruani and S. Caddick, Nature Chemistry, 2016, 8, 114–119.
13. H. Yao, F. Jiang, A. Lu and G. Zhang, International Journal of Molecular Sciences, 2016, 17, 194.
C.-H. Chang, Y. Wang, R. Li, D. L. Rossi, D. Liu, E. A. Rossi, T. M. Cardillo and D. M. Goldenberg, *Cancer Res*, 2017, 77, 5384–5394.

S. A. Patel and A. J. Minn, *Immunity*, 2018, 48, 417–433.

S. J. Dovedi, Y. Mazor, M. Elder, S. Hasani, B. Wang, S. Mosely, D. Jones, A. Hansen, C. Yang, Y. Wu, I. Achook, N. Durham, G. Browne, T. Murray, J. Hair, M. Morrow, G. Rainey, M. J. Kunkel, J. Gooya, D. Freeman, R. Herbst and R. Wilkinson, *Cancer Res*, 2018, 78, 2776–2776.

Hoffmann-La Roche, An Open Label, Multicenter, Dose Escalation and Expansion, Phase 1 Study to Evaluate Safety, Pharmacokinetics, and Preliminary Anti-Tumor Activity of RO7121661, a PD-1/TIM-3 Bispecific Antibody, in Patients With Advanced and/or Metastatic Solid Tumors - clinicaltrials.gov, https://clinicaltrials.gov/ct2/show/NCT03708328, (accessed May 2020).

M. Wierz, S. Pierson, L. Guyonnet, E. Viry, A. Lequeux, A. Oudin, S. P. Nicol, M. Ollert, G. Berchem, B. Janjić, C. Guérin, J. Paggetti and E. Mossay, *Blood*, 2018, 131, 1617–1621.

M. Gaspar, J. Pravin, L. Rodrigues, S. Uhlenbroich, K. L. Everett, F. Wollerton, M. Morrow, M. Tuna and N. Brewis, *Cancer Immunol. Res.*, 2020, 8, 781-793.

G. Fromm, S. de Silva, K. Johannes, A. Patel, J. C. Hornblower and T. H. Schreiber, *J. Immunother. Cancer*, 2018, 6, 149.

A. M. Kvarnhammar, N. Veitonmäki, K. Hägerbrand, A. Schoors, H. Bösmüller, L. Quintanilla-Ferd, M. Ebinger, P. Lang, R. Handgretinger and T. Feuchtinger, *Oncoarget*, 2016, 7, 76902–76919.

G. S. Laszlo, C. J. Gudgeon, K. H. Harrington and R. B. Walter, *Blood Cancer J*, 2015, 5, e340.

E. Poon, M. Gaspar, L. N. Rodrigues, J. Pravin, A. S. Lind, J. Winnewisser, A. Koers, E. McConnell, M. Tuna, M. Morrow and N. Brewis, presented in part at the Proceedings of the American Association for Cancer Research Annual Meeting 2019, Atlanta, Mar 29 - Apr 3, 2019.

R. Liu, W. Jiang, M. Yang, H. Guo, Y. Zhang, J. Wang, H. Zhu, R. Shi, D. Fan, C. Yang, Z. Zhu, Y. Xie and D. Xiong, *Immunother.*, 2020, 10, 500–509.

A. Willems, S. Schoonooghe, D. Eckehout, G. D. Jaeger, J. Grooten and N. Mertens, *Cancer Immunol Immunother.*, 2005, 54, 1059–1071.

S. Kato, R. Okamura, Y. Kamaki, S. Ikeda, M. Nikanjam, R. Eskander, A. Goodman, S. Lee, S. T. Glenn, D. Dressman, A. Papapanicolaou-Sengos, F. L. Lenzo, C. Morrison and R. Kurzrock, *OncoImmunology*, 2020, 9, 1708065.

M. Herrmann, C. Krupka, K. Deiser, B. Brauchle, A. Marcinek, O. A. Wagner, F. Rataj, R. Mocikat, K. H. Metzeler, K. Spiekermann, S. Kobold, N. C. Fenn, K.-P. Hopfner and M. Subklewe, *Blood*, 2018, 132, 2484–2494.

M. P. Retting and J. F. DiPersio, *Blood*, 2018, 132, 2425–2427.

H. Don Yun, M. Felices, D. A. Valleria, P. Hinderlie, S. Cooley, M. Arock, J. Gotlib, C. Ustun and J. S. Miller, *Blood Advances*, 2018, 2, 1580–1584.

S. S. Bay, H. Carol and M. Biro, *Hum. Vaccines Immunother.*, 2016, 12, 2790–2796.

M. Felices, B. Kodal, P. Hinderlie, M. F. Kaminski, S. Cooley, D. J. Weisdorf, D. A. Vallera, J. S. Miller and V. Bachanova, *Blood Adv.*, 2019, 3, 897–907.

J. Miller, M. Felices, D. Valleria, T. Lenvik, NK Engager Molecules and Methods of Use Thereof, WO Patent, Patent Application, WO2020081841 (A1), 2020.

L. Gauthier, A. Morel, N. Anceriz, B. Rossi, A. Blanchard-Armont, K.-P. Hopfner, M. Subklewe, N. Fenn, F. Rataj, R. Mocikat, K. H. Metzeler, K. A. O. Wagner, F. Rataj, R. Mocikat, K. H. Metzeler, K. Spiekermann, S. Kobold, N. C. Fenn, K.-P. Hopfner and M. Subklewe, *Blood*, 2018, 132, 2484–2494.

H. Don Yun, M. Felices, D. A. Valleria, P. Hinderlie, S. Cooley, M. Arock, J. Gotlib, C. Ustun and J. S. Miller, *Blood Advances*, 2018, 2, 1580–1584.

S. S. Bay, H. Carol and M. Biro, *Hum. Vaccines Immunother.*, 2016, 12, 2790–2796.

M. Felices, B. Kodal, P. Hinderlie, M. F. Kaminski, S. Cooley, D. J. Weisdorf, D. A. Valleria, J. S. Miller and V. Bachanova, *Blood Adv.*, 2019, 3, 897–907.

J. Miller, M. Felices, D. Valleria, T. Lenvik, NK Engager Molecules and Methods of Use Thereof, WO Patent, Patent Application, WO2020081841 (A1), 2020.
