A Review on Flax Seed: A Legume for Longevity

Kinjal P. Patel1*, Shivkant Patel1, Dillip Kumar Dash1, Ramachandran Balaraman1 and Rajesh A. Maheshwari1

1Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2021/v33i39A32148
Editor(s):
(1) Dr. Juan Carlos Troiano, University of Buenos Aires, Argentina.
Reviewers:
(1) Dusan Surdilovic, Gulf Medical University, UAE.
(2) Mohammad Daud Ali, Mohammed Al-Mana College for Medical Sciences, Saudi Arabia.
Complete Peer review History: https://www.sdiarticle4.com/review-history/71488

Received 20 May 2021
Accepted 26 July 2021
Published 29 July 2021

ABSTRACT

Flax seed, tiny packs of nutrients supply a wealth of health benefits. Dietary flaxseed has an amazing use in a different health conditions. Research evidences on the properties of dietary flaxseed have wide spread information. It has been found that the tiny, edible seeds of the flax plant, have gained superfood status because of its therapeutic values in preventing the diseases. From the past few years, there is growing evidences that the people have become more health conscious. Many trials have been conducted with the upgraded standards of control available in order to provide consistent information on its significance to the general community. The purpose of this review is to provide a comprehensive summary of the research that have reinforced the growth of flaxseed as a commodity with importance in the health and medicine fields. Flaxseed is emerging as a vital functional food element because of its rich contents of α-linolenic acid (ALA, omega-3 fatty acid), lignans, and fiber. Flax lignans have potential health benefits such as in reduction of cardiovascular disease, cancer, atherosclerosis, diabetes, arthritis, osteoporosis, autoimmune and neurological disorders. The role of the Flax protein in the prevention and treatment of heart disease and in supporting the immune system has been proven. The present review focuses on the evidences of the potential health benefits of flaxseed through human and animals. Its role in enhancing the longevity by alleviating the common health challenges like hypertension, cancer and diabetes.
Keywords: Flax seed; lignans; α- linolenic acid; cardiovascular disease; atherosclerosis; diabetes; cancer; arthritis.

ABBREVIATIONS

ALA: α- linolenic acid; B.C: before Christ; A.D: Anno Domini; pH: Power of hydronium; FS: Flax seed; PUFA: Poly Unsaturated Fatty Acids; EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; LA: linoleic acid; EL: enterolactone; ED: enterodiol; SECO: secoisolariciresinol; p-CA P-coumaric; FA: ferulic acid; SDG: secoisolariciresinol diglucoside; HTN: Hypertension; JNC-7: Joint National Committee 7; ACE: angiotensin-converting enzyme; CHD: Coronary Heart Disease; CAM: complementary and/or alternative medicine; LOB: Linorbitides; p-AKT: protein kinase B; p-JNK: c-Jun N-terminal kinase; p ERK extracellular signal-regulated kinase; MAPK: mitogen-activated protein kinase; CRC: colorectal cancer; BMI: Body mass index; CFA: Complete Freund's adjuvant; PGE2: Prostaglandin E2; LTB4: leukotriene B4; WC: Waist circumference; TNF: Tumor necrosis factor; IL: Inter lekin; COPD: chronic obstructive pulmonary disease; SOD: superoxide dismutase; CAT: catalase; GSH: glutathione peroxidase; MDA: Malondialdehyde; NO: Nitrous oxide.

1. INTRODUCTION

In this modern period, one of the major obstacles that current living faces is excellent health, as individuals are suffering from a variety of degenerative lifestyle disorders. Foods that can act as medicine have sparked attention as people become more sensible of the importance of diet and their desire for wellness. With rapid changes in lifestyle and a growing awareness of the negative consequences of excessive consumption, the scientists and health professionals are exploring the plant products. The focus has switched from chemical-based therapy to natural-based therapy in the management of ailments. The focus is on extracting the functional dietary components of plants and seeds that were found in ancient nature [1]. In recent years, as empirical evidence on their safety and usefulness has become increasingly available, herbal (plant) treatments have aroused the curiosity of researchers. As a result, new terminology for herbal medicines is emerging in the scientific community, such as phytotherapy, phytomedicine, phytoneering, and nutraceuticals. Flaxseed has been used in both nutrition and medicine. Flaxseeds have a wide range of nutritional properties that are encouraging health professionals and nutritionists to use them in the development of functional meals and the selection of a healthy diet [2].

Flax seed has been used from ancient civilizations and cultures. According to archaeological evidence, flax seeds have been used from the time of Nefertiti in Egypt. Flax, also known in India as "Tisi" or "Alsi," was utilised to supplement the food of the hardworking villagers. Flaxseed is an key oilseed crop for industrial, food, feed, and fibre production [3]. Almost every portion of the flaxseed plant is commercially useful, whether raw or processed. The stem produces high-quality fibre that is both strong and long-lasting. Linum usitatissimum Linn is the scientific name for flax. Katan (Linum usitatissimum Linn.) is an annual or biennial herb in the Linaceae family that grows to be approximately 2 feet tall. It likely was first grown in Egypt but has been cultivated all around the world. The flax plant can be woven into linen, its fibers are two to three times as strong as cotton! [4-7].

This blue-flowered crop is greatly adaptable. The fact that different portions of the plant have unique economic purposes demonstrates the value of L. usitatissimum as a multipurpose crop. Brown flaxseeds and golden (or yellow) flaxseeds are the two most common types (Fig. 1). Both have a comparable nutritional profile and the same quantity of short-chain-3 fatty acids. Whole flaxseed, ground flaxseed, flaxseed oil, and partially defatted flaxseed meal are the four most frequent types of flaxseed for human consumption. Flax "milk" is a brand-new product on the market. Flax milk is a great alternative to dairy milk because it is cholesterol-free and lactose-free. It's suitable for anyone with soy, gluten or nut allergies, and it is better than almond milk in the health benefits features [5]. Oil is extracted from flaxseeds to produce flaxseed oil. To extract the liquid from flaxseed, it is ground and then pressed with an oil press. Even though flaxseed oil has a high concentration of ALA, some of the other nutrients contained in ground flaxseed may not make it into the oil version after processing. Small, nutty, and crunchy seeds have recently garnered superfood notoriety, they are one of the oldest
crops, having been farmed since the dawn of civilization.

Flaxseeds are obtainable in two forms: whole or ground. Both kinds have their own set of advantages [5]. As flaxseeds can be tough to chew, grinding them before eating can help to improve its digestion. Pre-ground flaxseed have a lower shelf life than whole flaxseeds. Flaxseed is a plant-based food that is high in fibre, antioxidants, and omega-3 fatty acids. Some refer to it as "functional food," indicating that it can be consumed to improve one’s health.

Furthermore, flaxseed has been described as having a “nice nutty fragrance and aroma,” making it potentially suitable for use in a variety of meals [4]. Flaxseed has been successfully included into snack bars, muffins, bagels, bread, buns, tea biscuits, cinnamon rolls, and pasta in tests. Volume of flaxseed in the diet can affect the flavour of food. Before baking, flaxseed was incorporated into foods for human consumption at concentrations of 5–28% of total components (by weight). Intake of daily flaxseed can be as high as 40 to 50 g [6-10].

2. HISTORY

Ayurveda is a very old and still alive tradition that is widely practised in India, Sri Lanka, and different nations and has a decent philosophical and experimental foundation. Flaxseed oil is said to help with mental and physical endurance by combating fatigue and slowing down the ageing process. Hippocrates, the father of medicine, advised flax for the alleviation of abdominal pains around 650 B.C., around the same time Theophrastus suggested flax mucilage as a cough remedy. Hildegard von Bingen, in the 15th century A.D., utilised flax meal in hot compresses to cure both exterior and internal diseases [3,11].

3. PLANT MORPHOLOGY

The plant’s root is made up of absorbent tissue that allows it to store all of the water obtained by the fine rootlets that protrude in all directions and at various depths. Flax fibres are discovered inside the plant as individually separated filaments of various lengths that vary depending on the leaf’s height on the stem of the plant. The yield of flax straw and fibres is maximum in the yellow maturity stage. Individual flax fibres are isolated in the plant, yet they are organised in bundles that are entirely and firmly enclosed by the holding tissue. Stem bends in all directions, the smooth glossy surfaces let them to effortlessly slide on one other [12,13,14].

4. BIO-CHEMICAL CONSTITUENT OF FLAX SEED

4.1 Fiber

Whole FS (flax seed) has a whole fibre content of roughly 28%. Insoluble fibres in FS include cellulose, hemicellulose, and lignins, while soluble fibres in the form of mucilage gums make up about a third of the fibre [5,15,16]. Because mucilage is found mostly in the epidermis of the seed coat, removing the seed coat removes a large portion of the soluble fibre in FS. Commercially available fibre supplements produced from FS currently include both soluble and insoluble fibres [17].

Flax is low in carbohydrates (sugars and starches), providing only 1 gram (g) per 100 g. Flaxseed polysaccharides composed of two major fractions: 3/4th of a neutral arabinoxylan and 1/4th of an acidic rhamnogalacturonan. The arabinoxylan is composed primarily of xylose, arabinose, and galactose and the L-rhamnose, D-galactose, D-galacturonic and L-fructose acid are the part of rhamnogalacturonan. Significant variations has been observed in monosaccharide composition, carbohydrate yield and quality among accessions from the different part of world collection of flaxseed [17].

4.2 Protein

Flaxseed grain and paste contain roughly 21% and 34% protein, respectively. Genetic and environmental variables can affect the protein level in flaxseed. Seeds grown in cool areas have a more oil and a low protein content. Flaxseed has two main storage proteins: a salt
soluble component with a high molecular weight (11-12S; globulin; 18.6% nitrogen) and a water soluble basic component with a low molecular weight (1.6-2S; albumin; 17.7% nitrogen). They contain all essential amino acids except lysine, making them a protein source that is incomplete [18].

4.3 Fatty Acid

The fatty acid profile of FS is PUFA > monounsaturated fatty acids > few saturated fatty acids [5]. ALA is an n3 polyunsaturated fatty acid (PUFA) and is one of two essential fatty acids required in the human diet [19]. In human, the conversion rate of ALA to long chain PUFAs like EPA and DHA is low [19]. However, this conversion may be up controlled under certain conditions [20]. ALA has a higher affinity for Δ6-desaturase than the other essential fatty acid, linoleic acid (LA), but because the Westernized diets contain much higher levels of LA than ALA, ALA is often metabolized to longer chain n3 PUFAs at much lower rates than omega-6 (n6) PUFAs are converted [14]. This indicates that an improvement in n6 to n3 ratio in the diet could increase conversion rates of ALA to DHA and EPA. FS contains relatively high levels of both essential fatty acids, ALA and LA [5].

4.4 Lignans

Polyphenolic substances found in fiber-rich plant products called lignans. In comparison to other plants, FS contains 75–100 times more lignans [21]. In defatted FS flour and whole FS, SDG concentration can range from 11.7–24.1 mg/g and 6.1–13.3 mg/g, respectively [21,22]. The abdominal micro flora in the colon converts SDG into the mammalian lignans enterolactone (EL) and enterodiol (ED) after consuming FS. The consortium END-49, which includes Clostridium saccharogumia, Eggerthella lenta, Blautia producta, and Lactonifact or longoviformis, has been identified as the bacteria strains involved in the transformation of SDG to EL or ED [23,24]. In humans, the lignans are acted upon by the gastrointestinal microflora to release EL and ED through secoisolariciresinol (SECO). P-coumaric (p-CA) and ferulic acid (FA) are the other reported phenolic compounds from FS.

Cellulose: It is a Plant cell walls’ primary structural material.

Mucilage Gums: Flax mucilage is made up of three different types of arabinoxylan, each of which forms big aggregates in solution and contributes to the gel characteristics of the product [5].

4.5 Vitamins and Minerals

Flax has an abundance vitamin E, mostly in the form of gamma tocopherol. Flax tocopherol content is affected by the cultivar, seed maturity, growing region, growth conditions, and extraction process. Flax includes a modest quantity of vitamin K in the form of phylloquinone, which is an vital component of the blood clotting mechanism. In flax seed, P, Mg, K, Na, Fe, Cu, Mn, and Zn are reported [25].

4.6 Anti-nutritional Factors

In flax seed, there are trace levels of cyanogenic glycosides and linamarin. Vitamin B6 deficiency is caused by linatin [26]. Flaxseed depressed vitamin E levels in rats only when fed at very high levels [27]. Another anti-nutrient found in flaxseed is phytic acid, which varies from 23 to 33 g per kg of flaxseed meal. Calcium, zinc, magnesium, copper, and iron are all inhibited by phytic acid. It’s a powerful chelator that forms protein and mineral-phytic acid complexes, lowering their bioavailability [28,29,30].

4.7 Storage

Due to high content of alpha linolenic acid (ALA), it is prone to oxidation. The oxidation and eventual rancidity will result in affect the flavours and a musty scent, both of which will be rejected in taste tests. So, proper storage condition is required.

Regardless of how you get your ground flaxseeds keep them in an airtight container in the refrigerator. If using glass, choose tinted glass to reduce the amount of light that the ground flaxseeds are exposed to. They may usually be stored safely for 6 to 16 weeks. If stored in an airtight container in a dark, cool, dry location, whole flaxseeds can last 6-12 months. Flaxseed oil is especially perishable and should always be purchased in opaque bottles that have been kept refrigerated [31].

5. THERAPEUTIC USES

5.1 Hypertension

One of the primary causes of global illness burden is hypertension. [32] Hypertension is the
leading cause of death worldwide. Hypertension (HTN) is well-defined as a blood pressure of 140/90 mmHg or higher, according to the Joint National Committee 7 (JNC-7) guidelines. A research for cost-effective medication for treatment of hypertension is going on [32,33]. Flaxseed and its components may prove to be an effective treatment for hypertension, either alone or in conjunction with other commercially available medications. The advantages of using flax seed and its components include their inexpensive cost and lack of adverse effects. Consumption of flaxseeds is a simple strategy to lower blood pressure. Previous clinical research suggests that patients who consumed flaxseeds on a daily basis for more than 12 weeks had their blood pressure under control. Potassium, which is found in seeds, is helpful in reducing blood pressure by reducing tension in blood vessel wall [33-35].

SDG (precursors of enterolignran), fibres and oil are the important constituents in flaxseed. Prasad looked explored the effects of several intravenous dosages of SDG (3, 5, 10, 15, 20, 20 mg/kg) on the arterial pressures of anaesthetized Sprague Dawley rats. He found that 10 mg/kg resulted in a 32, 36, and 33 percent reduction in systolic, diastolic, and mean arterial pressures after 4 hours; 15 mg/kg resulted in a 15, 24, and 22 percent reduction; and 20 mg/kg resulted in a 20, 33, and 29 percent reduction. Hypotension is induced by SDG through angiotensin-converting enzyme suppression. Through ACE inhibition and guanylate cyclase activity, pure SDG, which is extracted from flaxseed, significantly lowers systolic, diastolic, and mean arterial pressures in a dose-dependent manner [36,37]. The drop in BP caused by flaxseed protein hydrolysate is mediated by a decrease in oxylipins caused by the suppression of soluble epoxide hydrolase activity by -linolenic acid. Some oxylipins have been shown to cause vasoconstriction [38,39]. As a result, lowering oxylipin levels lowers blood pressure. According to the findings, flaxseed and flax oil could be utilised as an additional therapy for hypertension [40]. Pure SDG may be useful as a treatment medication for hypertension due to its great and long-lasting pharmacological effect on blood pressure. The hypotensive effects of flaxseed are attributed to -linolenic acid’s suppression of soluble epoxide hydrolase activity, activation of guanylate cyclase and inhibition of ACE by SDG. High concentration of vitamin E also reported in flaxseed, which enhances sodium excretion in the urine, which may support in the reduction of blood pressure [41]. Ineffectiveness of flaxseed and its constituents’ may be accredited to a low dose, a long interval between doses and a short time of ingestion, as well as patient status [42].

6. LIPID LOWERING EFFECT

The human diet has shifted from unrefined whole grains and green vegetables to refined grains with low fibre content and more animal items since the industrial revolution. Whole flaxseed has been demonstrated in certain research to decrease serum cholesterol levels in animals and people both. Biochemical measures in rats, mice, and rabbits showed favourable reactions, demonstrating flaxseed’s hypcholesterolemic activity, which was connected to a higher lipid content in the faeces [43-50]. Many in vivo studies have observed, the different flax seed dosages modify the lipid profiles differently. Dawley rats were fed 10%, 20%, or 30% raw or heated flaxseed in the basal diet for 30 days. In the study conclusion, flaxseed was observed to considerably lower total cholesterol and boost high density lipoprotein cholesterol in blood [51]. The high levels of ALA, lignans, and fibre in flaxseed may contribute to improved lipid profile.

As a result, increasing the amount of flaxseed in one's diet improves the blood lipid profile-improving effect of flaxseed. Both fibre and lignans bind to bile acids, amphipathic molecules generated from cholesterol in the liver, and transport them out of the body through the digestive tract. Flaxseed also includes phytosterols, which have a structure similar to cholesterol and hence inhibit cholesterol absorption in the intestines. Another mechanism of flax seed is that it interrupts cholesterol circulation in the enterohepatic system [52-54]. Increased bile acid synthesis is the main cholesterol-lowering mechanisms of flaxseed and another component, besides its oil, contributes to its hypcholesterolemic property [55,56]. Lignans are estrogen like components which also have antioxidant activity in reducing the oxidative damage in many diseases like heart disease, cancer and diabetes [57-59]. Flax seeds contain fiber, lignans and phytoestrogens, which decrease the levels of 7 alpha-hydroxylase and acyl-CoA cholesterol transferase. Incorporating 30 g of roasted flax seed in daily diet found the positive modification of lipid profile. In the Seven Countries Study, CHD (coronary heart disease) was reduced with increased consumption of ALA. At the end of 4 years’s Lyon diet clinical trial, data concluded the consumption of flax seed
condensed number of CHD patient and total deaths by 50%–70% [51].

7. CANCER

7.1 Breast Cancer

Breast cancer is a disease that affects the cells of the breasts. Breast cancer can affect both in men and women, however it is more common in women. Cancer awareness and research funding have aided in the advancement of breast cancer diagnosis and treatment. Clinical evidence suggests that flax seed has anti-tumor properties against several cancers [60,61–63], making it a CAM (complementary and/or alternative medicine) candidate for human cancer treatment. Linoorbitides (LOBs) are a class of cyclic cyclopeptide compounds found in flaxseed that have a cell-type specific and concentration dependent cytotoxic action on human breast cancer Sk-BR-3 and MCF7 cell lines, as well as melanoma A375 cells. LOBs’ anti-oxidative activity could be a key factor in their cytotoxic effects on cancer cells. After 24 hours of exposure at 400 μg/mL, cytotoxicity of LOB3, LOB2, [MetO]-LOB2, and [MetO]-LOB1 against Sk-BR-3 cells was 75 percent, 41 percent, 36 percent, and 28 percent, respectively.

Lignans have a unique phenolic structure and are found in small amounts in many foods, but in considerable quantities in flaxseed. Dietary ingestion of the flaxseed lignan, (secoisolariciresinol diglucoside (SDG)), consequences in glucosidic cleavage in the gastrointestinal tract to yield secoisolariciresinol (SECO), which is further converted to the mammalian lignans, enterodiol (ED) and enterolactone (ENL), with the help of intestinal microflora [64-67]. According to the data, ENL is the most bioactive lignan. Non steroidal phytoestrogens that have a chemical structure similar to mammalian estrogens and induce estrogen-like actions in animals include flaxseed lignans. (Fig. 2) Enterolactone and enterodiol bind to oestrogen receptors, causing cell growth to alter. A link was discovered between a higher level of EL and a lower incidence of breast cancer in postmenopausal women. Lignans operate as weak estrogen in postmenopausal women, while oestrogen antagonists in women with normal oestrogen levels [68,69]. When Flax oil was combined with trastuzumab for epidermal growth factor receptor 2 positive breast cancer, the anti-tumour effects of trastuzumab were increased, and the trastuzumab concentrations required to eradicate tumours in athymic mice were suggested to be reduced [70].

Flaxseed and its bioactive components anti-tumour actions include a suppression of the phosphorylation of p-AKT, p-ERK and p-JNK kinases, resulting in a slowing of the MAPK pathway [71], inhibition of CDK4 down regulation of multiple miRNAs, decreased expression of mRNAs for Bcl2, cell cycle proteins, ER alpha and beta and epidermal and insulin-like growth factor receptors [71,72].

![Fig. 2. Different types of flax seed lignans and metabolism of SDG (Secoisolariciresinol diglucoside) [68]](image-url)
Clinical evidence suggests that combining metformin with flax seed lignans, ENL, improved metformin cytotoxicity in MDA-MB-231 cells in a concentration-dependent manner by inhibiting fatty acid synthase (FASN). Flax or lignan fraction were fed to mice groups for two weeks before and after the injection of melanoma cells. When compared to the control, the flax therapy (at 2.5, 5, or 10% of diet intake) reduced the number of tumours by 32, 54, and 63 percent, respectively. The SDG, provided in doses comparable to 2.5, 5, or 10% flax seed, also reduced tumour number, from 62 tumours per mouse in the control group to 38, 36, and 29 tumours per mouse in the SDG groups, respectively [70-74].

7.2 Colon Cancer

CRC (colorectal cancer) is a form of cancer that starts in the large intestine and spreads throughout the body (colon). The colon is a big intestinal section. In comparison to adults, older people are more likely to get colon cancer. Modifiable and non-modifiable risk variables are separated. Non changeable factors include ethnicity, age, and a family history of colorectal polyps, cancer, or inflammatory bowel disease. Modifiable factors include BMI (Body mass index), physical inactivity, alcohol consumption, and a diet high in red meats [75-77].

Increased dietary fibre intake, shortened transit time, and increased stool bulking have all been linked to CRC prevention. Increased ALA, as well as an improvement in the n6 to n3 ratio, improve gut health by lowering inflammatory and oxidative stress indicators, as well as inhibiting cell proliferation and promoting apoptosis. The bioactive components of FS (lignans, fibre, and ALA) have been linked to cell cycle disruption and a lower the risk of colon cancer. Various colon cancer cell lines were used to examine the cellular processes of FS lignans. Treatment of SW480 cells (human colon adenocarcinoma cells) with ED alone or in conjunction with EL resulted in a decrease in cell number, induction of S-phase cell cycle arrest, and elevated cyclin. A dose-dependent rise in the number of apoptotic cells (0–40 mg/L). In CaCo2 cells human colon adenocarcinoma cells, EL and ED at varied doses (50–150 M) were found to reduce cell growth and promote apoptosis [78,79].

8. RHEUMATOID ARTHRITIS

Rheumatoid arthritis is an autoimmune illness that causes chronic inflammation [80]. Effective novel anti-arthritic drugs are currently being researched. CFA (Complete Freund's adjuvant)-induced arthritis was significantly protected by L. usitatissimum fixed oil in a dose-dependent manner. CFA also causes a delayed hypersensitivity reaction, which is significantly reduced by flax seed. Alpha linolenic acid (ALA), a component of L. usitatissimum fixed oil, has a dual inhibitory effect on arachidonic metabolism, resulting in reduced PGE2 and LTB4 synthesis via inhibition of the cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism, as well as lower vascular permeability. Fixed oil revealed a dose-dependent protection compared to the swelling observed in the synovial cavity after turpentine oil administration. Between days 2 and 10 following formaldehyde administration, L. usitatissimum fixed oil (3 ml/kg) significantly reduced the arthritic score compared to control. On day 10, the anti-arthritic activity of L. usitatissimum fixed oil (3 ml/kg) was superior to that of the standard drug aspirin (i.e. 70% inhibition). On the 14th day, L. usitatissimum fixed oil significantly reduced paw diameter in a dose-dependent manner, with percentage protection of 21.5, 75.3, and 91.7 percent, respectively, at dose levels of 1, 2, and 3 ml/kg. Reduced vascular permeability generated by the oil could potentially help with anti-arthritic properties. The fixed oil of L. usitatissimum, which contains 57.38 percent ALA, has been proven to be beneficial in inflammatory joint treatment [81,82].

9. OBESITY

Obesity is a common and preventable disease of public health, importance in all age groups and in both developed and developing countries. The increasing prevalence of obesity places a huge burden on health care use and cost. Weight loss is linked to numerous health and financial advantages. Dietary therapy, physical activity, and lifestyle changes are all effective weight loss strategies [82].

The main findings show that following the intervention, those who consumed flaxseed products had lower body weight, BMI and WC (Waist circumference) than controls. However, subgroup analyses revealed that body composition indices were reduced with whole flaxseed consumption only, in trials lasting ≥12 weeks, and among participants with BMI ≥ 27 kg per m² [83]. SDG may also help to regulate adiponectin levels and may help to prevent or reduce obesity by increasing fat oxidation in the
skeletal muscle. Dietary fibre, particularly soluble fibre, has been demonstrated to have anti-obesity properties and to help people lose weight [84]. Dietary fibre may help to promote weight loss by delaying stomach emptying, producing feelings of fullness by absorbing significant amounts of water [85], and/or increasing the concentration of short chain fatty acids, which induce satiety through a variety of pathways [86] (Fig. 2). When flax seed is mixed with water, it also acts as a gel. This gel delays stomach emptying, which may help to reduce blood glucose levels. Furthermore, dietary fibre can increase viscosity and inhibit bile acid re-uptake, lowering micelle production and lipid uptake [87-89].

10. DIABETES

Diabetes is an ailment in which blood glucose, also recognized as blood sugar, is abnormally high. Blood glucose is the main energy source, which arises from the food you consume. Pancreas secretes the hormone, Insulin which aids glucose absorption into cells for use as energy currency. Flaxseed has recently gained a lot of attention for its potential health benefits in a variety of metabolic illnesses, such as diabetes. Insulin resistance and the pathophysiology of many metabolic disorders associated with type 2 diabetes are influenced by fat accumulation, particularly abdominal obesity and visceral fat [90,91]. According to a clinical investigation data, flaxseed enriched yoghurt can help type 2 diabetic patients for duration of 30 days, at the end of study, data concluded the reduced fasting blood glucose and glycated haemoglobin by 19.7 % and 15.6 % respectively [95]. It could be because flaxseed has a lower glycemic carbohydrate level and a higher dietary fibre content. According to findings from a diabetic female clinical trial, supplementation of flaxseed powder in 15 and 20 g/day over a period of two months reduced postprandial blood glucose levels by 7.9% and 19.1%, respectively [96].

Another study on 25 diabetic participants supplemented flaxseed powder in bread form for 90 days and observed a substantial drop in blood glucose levels supported the favourable effect of flax seed in diabetes. In humans and animals, ALA from flaxseed oil has been related to enhanced insulin sensitivity. In instance, an 8-week research in 16 obese persons found an increase in insulin sensitivity after they received a daily oral dose of ALA in supplement form [92].
11. RESPIRATORY DISEASES

Flaxseed appears to have a positive effect in mice, according to an in vivo study. When mice were given flaxseed for a long time, they were protected from bacterial colonization of the lungs by Streptococcus pneumonia and had less histopathological involvement of lung tissue. The levels of pro-inflammatory (TNF-α and IL-1) and anti-inflammatory (IL-10) cytokines are also altered by flaxseed [97]. Flex seed fatty acids and lignans have been demonstrated to have anti-inflammatory and antioxidant properties in Acute Lung Injury [98]. In vivo and in vitro studies strongly supported flaxseed’s beneficial role in asthma and allergic disease prevention.

In vivo and in vitro studies firmly confirmed flaxseed’s beneficial effect in asthma and allergy disease prevention. The discovery of fatty acid bioactive metabolites produced by lipoxygenase and cyclo-oxygenase has revealed some molecular processes [99,100] Rv and PD are two newly found lipid mediators produced by the oxidation of n-3 fatty acids (EPA and DHA), and they’ve been linked to inflammatory treatment. Reduced inflammation reduces asthma symptoms and has a bronchodilator effect [101].

A randomised controlled clinical trial was conducted on 60 COPD patients. In the test group, a Pharmacopeial Unani formulation called “Lauq Katan” (Linctus of Linum usitatissimum mucilage) was given three times a day in a dose of 10 gm, and in the control group, Theophylline 200 mg was given three times a day for six weeks. The test medicine Lauq Katan was found to have a substantial effect in the management of COPD based on spirometer measures FEV1 and FEV1/FVC [102].

12. ANTI OXIDANT

Oxidative stress is caused by an imbalance between the synthesis of oxidant chemicals and the antioxidant defence mechanism. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) are important regulators of the oxidant/antioxidant equilibrium. Flaxseed is abundant in ω-3 fatty acids, and oleic acids, all of which play important roles in maintaining cell membrane integrity [103-105]. Clostridia sp, which is found in the colon, converts secoisolariciresinol diglucoside, which contains plant lignin, into enterodiol and enterolactone. Other minor lignins found in flaxseed include matairesinol, isolariciresinol, and pinoresinol.

Acids have antioxidant capabilities due to their free radical scavenging activities [106]. During lipid peroxidation, certain compounds are formed. The detection of these products in biological systems may provide useful information about the severity of free radical-induced cell damage. Malondialdehyde (MDA) and nitric oxide are the most often used indicators for this purpose (NO). Changes in antioxidant enzyme activity in biological systems can also be used to estimate the level of oxidative stress [107-109].

Cadmium is used to induce oxidative stress in rats. Cadmium was administered to rats for 30 days, and the effects on a range of organs and erythrocytes were assessed using oxidative stress markers. As a result, specific conclusions on the therapeutic and protective uses of this chemical in cadmium overdose have been reached. This is corroborated by the fact that levels of MDA and NO, both of which are oxidative stress markers, have decreased, while antioxidant enzyme activity have near to the control group levels. As a result, it existed that, flaxseed oil might be utilised as a supportive treatment in conjunction with cadmium intoxication [107].

13. OTHER PHARMACOLOGICAL EFFECTS

- Flaxseed lignans in the diet helped mice to recover after being exposed to radiation. A similar outcome was discovered in humans. While compared with control group, there were lower levels of inflammation, injury, oxidative damage, and fibrosis, as well as a higher survival rate [110].
- When platelets aggregate at the site of injury, the clotting mechanism begins. Flaxseed, like other omega-3 fatty acids, makes platelets less "sticky," preventing them from forming huge clots and interfering with the clotting process, as well as acting as a blood thinner [111].
- The astringent qualities of flaxseed raw oil in several fungicidal lotions are also suggested by data. Raw oil is said to provide moderate insect repelling effects [112].
- During pregnancy and early childhood .When flax seed consumed, due to presence of high levels of long chain polyunsaturated fatty acids ,it revealed as immunomodulatory agent [113,114].
Flaxseed constituents such as alpha linolenic acid, and the omega-3 fat found in flaxseed promotes bone health by helping to prevent excessive bone turnover [2,115].

As stated by Ayurveda, flaxseed has properties like Madhura (balances the skin pH), Picchaila (lubricous), Balya (improves elasticity of the skin), Grahi (as moisturizer), Tvagoshahrit (removes skin blemishes), Vrannahrit (wound healing) and useful in Vata (skin) disorders including dryness, undernourishment, lack of glow [2,116].

Serotonin (sleep hormone) levels in the blood is enhanced by flax seed due to its high content of omega-fatty acids and tryptophan. Magnesium works by relaxing the nervous system and muscles, as well as preventing night terrors, both of which are effective in the treatment of anxiety, stress, and depression. As a result, flax seed can be included in the daily diet of insomniacs [117].

When pregnant woman diet fed with flaxseed, benefits reported like decreased depressive symptoms and neuroprotection during experimental neonatal hypoxic-ischemic encephalopathy by lessening brain mass loss together with improvements in motor hyperactivity and spatial memory [118,119]

Flaxseed is used to treat persistent cough and asthma, according to some scientific evidence. Ayurveda is a very old and still alive tradition that is widely practised in India, Sri Lanka, and other nations with a good philosophical and experimental foundation. In 650 B.C Scientist theophrastus recommended the use of flax mucilage as a cough remedy. The omega -3 fatty acid which is seen flaxseed may beneficial for avoiding and treating hardening of the arteries. So, it may help to fight against covid 19 as an immune booster [2,120].

14. POSSIBLE SIDE EFFECTS

Raw flaxseed contains toxins, so one should limit consumption, though the toxins are killed when the seeds are roasted or cooked.

Higher doses of flaxseeds may cause side effects like diarrhoea, nausea, stomach pain, flatulence, bloating.

Most experts recommend you consume no more than 5 table spoon full of flaxseed a day. All that fiber is good for digestive system - but only if it should eat with plenty of water. Otherwise, it can backfire and make constipation worse.

Flaxseed may interfere with hormonal level during pregnancy.

Flaxseed oil may inhibit the clotting of your blood, so avoid taking it for a few weeks after the surgery [2].

15. CONCLUSION

In light of the information provided above, it is evident that flaxseeds are rich in linolenic acid and lignans. It is also an excellent source of soluble fiber, antioxidants and high-quality protein. Since its journey from being a medicine in ancient time to being superfood nowadays, it has become an increasingly popular source.

Clinical trials have shown that flaxseed’s constituents offer disease prevention and therapeutic benefits, which has led to the development of new branded healthy and functional foods using flaxseeds and oil. Researcher concluded that flaxseed lignans and omega-3 fatty acids are effective in reducing the risks associated with heart disease, cancer (breast and colon,) and other human health diseases such diabetes, obesity and rheumatoid arthritis. So, flaxseed can be used a dietary supplement in whole or ground forms. As a result, flaxseeds and flaxseed oil may be preferred ingredients in functional foods and nutraceuticals in future.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Alam S, Sarker M, Rahman M, Afrin S, Richi FT, Zhao C, Zhou JR, et al. Traditional Herbal Medicines, Bioactive Metabolites, and Plant Products Against COVID-19: Update on Clinical Trials and Mechanism of Actions. Frontiers in Pharmacology. 2021;12:1248.

2. Goyal A, Sharma V, Upadhayay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology. 2014;51(9):1633-53.

3. Alagirusamy R, Das A. Yarns: Production, processability and properties. In Fibrous and Composite Materials for Civil Engineering Applications. 2011;1:29-61.

4. Parikh M, Maddaford TG, Austria JA, Aliani M, Netticadan T, Pierce GN. Dietary flaxseed as a strategy for improving human health. Nutrients. 2019;11(5):1171.

5. Kajla P, Sharma A, Sood DR. Flaxseed—a potential functional food source. Journal of Food Science and Technology. 2015;52(4):1857-71.

6. Rodriguez-Leyva D, Weighell W, Edel AL, LaVallee R, Dibrov E, Pinneker R, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013;62(6):1081-9.

7. Pohjanheimo TA, Hakala MA, Tahvonen RL, Salminen SJ, Kallio HP. Flaxseed in bread making: effects on sensory quality, aging, and composition of bakery products. Journal of Food Science. 2006;71(4):S343-8.

8. Zaidi Z, Do Ain Uzun Anaf Wh. Katan (Linum usitatissimum Linn.) a potent unani therapeutic agent for respiratory tract diseases. Journal of Pharmacognocy. 8(3):112-8.

9. Dodin S, Lemay A, Jacques H, Legare F, Forest JC, Masse B. The effects of flaxseed dietary supplement on lipid profile, bone mineral density, and symptoms in menopausal women: a randomized, double-blind, wheat germ placebo-controlled clinical trial. The Journal of Clinical Endocrinology & Metabolism. 2005;90(3):1390-7.

10. Preisner M, Wojtasik W, Kulma A, Żuk M, Szopa J. Flax fiber. Kirk-Othmer Encyclopedia of Chemical Technology. 2000;1-32.

11. Patwardhan B, Vaidya AD, Chorghade M. Ayurveda and natural products drug discovery. Current Science. 2004;789-99.

12. Kołowski RM, Mackiewicz-Talarczyk M, Wielgusz K, Pracyzk M, Allam AM. Bast fibres: flax. In Handbook of Natural Fibres 2020;2: 93-162.

13. Sultana C. The cultivation of fibre flax. Outlook on agriculture. 1983;3:104-10.

14. Young A. The anthropologies of illness and sickness. Annual review of anthropology. 1982;11(1):257-85.

15. Singh KK, Mridula D, Rehal J, Barnwal P. Flaxseed: a potential source of food, feed and fiber. Critical reviews in food science and nutrition. 2011;51(3):210-22.

16. Morris DH. Flax. A health and nutrition primer. Flax Council of Canada; 2007.

17. Dahl WJ, Lockert EA, Cammer AL, Whiting SJ. Effects of flax fiber on laxation and glycemic response in healthy volunteers. Journal of medicinal food. 2005;8(4):508-11.

18. Bernacchia R, Preti R, Vinci G. Chemical composition and health benefits of flaxseed. Austin J Nutri Food Sci. 2014;2(8):1045.

19. Calviello G, Serini S, Piccioni E. n-3polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Current medicinal chemistry. 2007 ;14(29):3059-64.

20. Burdge GC, Calder PC. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reproduction Nutrition Development. 2005;45(5):581-97.

21. Lauritzen L, Brambilla P, Mazzocchi A, Harsleff L, Ciappolino V, Agostoni C. DHA effects in brain development and function. Nutrients. 2016; 8(1):6.

22. Katare C, Saxena S, Agrawal S, Prasad GB, Bisen PS. Flax seed: a potential medicinal food. J Nutr Food Sci. 2012; 2(1):120-7.

23. Wang LQ, Meselhy MR, Li Y, Qin GW, Hattori M. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chemical and Pharmaceutical Bulletin. 2000;48(11): 1606-10.
24. Woting A, Clavel T, Loh G, Blaut M. Bacterial transformation of dietary lignans in genotobiotic rats. FEMS Microbiology Ecology. 2010;72(3):507-14.
25. Adolphe JL, Whiting SJ, Juurink BH, Thorpe LU, Alcorn J. Health effects with consumption of the flax lignans secoisolariciresinol diglucoside. British Journal of Nutrition. 2010;103(7):929-38.
26. Mazza G, Kay CD. Bioactivity, absorption, and metabolism of anthocyanin. Recent Advances in Polyphenols Research. 2008; 1:228-62.
27. Ratnayake WM, Behrens WA, Fischer PW, L'Abbé MR, Mongeau R, Beare-Rogers JL. Chemical and nutritional studies of flaxseed (variety Linott) in rats. J. Nutr. Biochem. 1992 ;3(5):232-40.
28. Oomah BD, Kenaschuk EO, Mazza G. Phytic acid content of flaxseed as influenced by cultivar, growing season, and location. J Agr Food Chem. 1996;44(9): 2663-6.
29. Erdman JW. Oilseed phytates: nutritional implications. J. Am. Oil Chem Soc. 1979; 56(8):736-41.
30. Akande KE, Doma UD, Agu HO, Adamu HM. Major antinutrients found in plant protein sources: their effect on nutrition. Pakistan J Nutr. 2010;9(8):827-32.
31. Motarjemi Y, Moy G, Todd E, editors. Encyclopedia of food safety. Academic Press; 2013 ;12.
32. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ; Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet. 2002; 360(9343):1347–1360
33. Prasad K. Importance of flaxseed and its components in the management of hypertension. The International journal of angiology; official publication of the International College of Angiology, Inc. 2019;28(3):153.
34. Prasad K. Antihypertensive activity of secoisolariciresinol diglucoside (SDG) isolated from flaxseed: role of guanylate cyclase. Int J Angiol. 2013;22(04):235–238
35. Prasad K. Secoisolariciresinol diglucoside (SDG) isolated from flaxseed, an alternative to AGE-inhibitors in the treatment of hypertension. Int J Angiol. 2013;22(04):235–238
37. Prasad K. Antihypertensive activity of secoisolariciresinol diglucoside (SDG) isolated from flaxseed: role of guanylate cyclase. Int J Angiol. 2004;13(01):7–14.
38. Prasad K. Secoisolariciresinol diglucoside (SDG) isolated from flaxseed, an alternative to AGE-inhibitors in the treatment of hypertension. Int J Angiol. 2013;22(04):235–238
39. Gabbs M, Leng S, Devassy JG, Moniruji aman M, Aukema HM. Advances in Our Understanding of OxylinPs Derived from Dietary PUFAs. Adv Nutr. 2015;6(05): 513–540
40. Caligiuri SP, Aukema HM, Ravandi A, Guzman R, Dibrov E, Pierce GN. Flaxseed consumption reduces blood pressure in patients with hypertension by altering circulating oxylipins via an α-linolenic acid-induced inhibition of soluble epoxide hydrolase. Hypertension. 2014;64(01): 53–59.
41. Hasani nia N, Rahimlou M, Ahmadi AR, Khalifani AM, Alizadeh M. The effect of flaxseed enriched yogurt on the glycemic status and cardiovascular risk factors in patients with type 2 diabetes mellitus: randomized, open-labeled, controlled study. Clin Nutr. Res. 2019;8(4):284.
42. Prasad K. Importance of flaxseed and its components in the management of hypertension. The International journal of angiology: official publication of the International College of Angiology, Inc. 2019;28(3):153.
43. Barakat LA, Mahmoud RH. The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. N Am J Med Sci. 2011;3(9):411
44. Kristensen M, Savorani F, Christensen S, Engelsen SB, Bügel S, Toubro S, Tetens I, Astrup A. Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutr Metab Cardiovasc Dis. 2013;23(2):136-43.
45. Kristensen M, Jensen MG, Aarestrup J, Petersen KE, Søndergaard L, Mikkelsen MS, Astrup A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutrition & metabolism. 2012;9(1):1-8.
46. Khalesi S, Jamaluddin R, Ismail A. Effect of raw and heated flaxseed (Linum usitatissimum L.) on blood lipid profiles in rats. Int. J. Appl. Sci. 2011;1(4).

47. Leyva DR, Zahradka P, Ramijawan B, Guzman R, Aliani M, Pierce GN. The effect of dietary flaxseed on improving symptoms of cardiovascular disease in patients with peripheral artery disease: rationale and design of the FLAX-PAD randomized controlled trial. Contemp. Clin. Trials 2011;32(5):724-30.

48. Hassan AA, Rasmy NM, Foda MI, Bahgat WK. Production of functional biscuits for lowering blood lipids. World J Dairy Food Sci. 2012;7(1):01-20.

49. Park JB, Velasquez MT. Potential effects of lignan-enriched flaxseed powder on bodyweight, visceral fat, lipid profile, and blood pressure in rats. Fitoterapia. 2012;83(5):941-6.

50. Rakel D. Integrative medicine-E-book. Elsevier health sciences; 2017:21.

51. Oomah BD, Mazza G. Flaxseed proteins—a review. Food chemistry. 1993;48(2):109-14.

52. King DE. Dietary fiber, inflammation, and cardiovascular disease. Mol Nutr Food Res 2005;49(6):594-600.

53. Li J, Kaneko T, Qin LQ, Wang J, Wang Y, Sato A. Long term effects of high dietary fiber intake on glucose tolerance and lipid metabolism in GK rats: comparison among barley, rice, and cornstarch. Metabolism. 2003;52(9):1206-10.

54. Jenkins DJ, Kendall CW, Vidgen E, Agarwal S, Rao AV, Rosenberg RS, Diamandis EP, Novokmet R, Meihling CC, Perera T, Griffin LC. 1999. Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. Am. J. Clin. Nutr. 2004;69(3):395-402.

55. Lucas EA, Mahajan SS, Soung DY, Lightfoot SA, Smith BJ, Arjmandi BH. Flaxseed but not flaxseed oil prevented the rise in serum cholesterol due to ovariectomy in the Golden Syrian hamsters. J. Med. Food. 2011;14(3):261-7.

56. Paschos GK, Magkos F, Panagiotakos DB, Volteas V, Zampelas A. Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 2007;61(10):1201-6.

57. Vanharanta M, Voutilainen S, Rissanen TH, Adlercreutz H, Salonen JT. Risk of cardiovascular disease–related and all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Archives of Internal Medicine. 2003; 163(9):1099-104.

58. Prasad K. Flaxseed: a source of hypocholesterolemic and antiatherogenic agents. Drug News & Perspectives. 2000; 13(2):99-104.

59. Prasad K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rats. J Lab Clin Med. 2001;138(1):32-9.

60. Buck K, Vrielings A, Zainedden AK, Becker S, Hüsing A, Kaaks R, Linseisen J, Flesch-Janys D, Chang-Claude J. Serum enterolactone and prognosis of postmenopausal breast cancer. Journal of Clinical Oncology. 2011;29(28):3730-8.

61. Chen J, Stavro PM, Thompson LU. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr. Cancer. 2002;43(2):187-92.

62. Eilati E, Bahr JM, Hales DB. Long term consumption of flaxseed enriched diet decreased ovarian cancer incidence and prostaglandin E2 in hens. Gynecol. Oncol. 2013;130(3):620-8.

63. Mason JK, Thompson LU. Flaxseed and its lignan and oil components: can they play a role in reducing the risk of and improving the treatment of breast cancer? Appl Physiol Nutr Metab. 2014;39(6):663-78.

64. De Silva SF, Alcorn J. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals. 2019;12(2):68.

65. Power KA, Chen JM, Saarinen NM, Thompson LU. Changes in biomarkers of estrogen receptor and growth factor signaling pathways in MCF-7 tumors after short-and long-term treatment with soy and flaxseed. The Journal of steroid biochemistry and molecular biology. 2008 Nov 1;112(1-3):13-9.

66. Calado A, Neves PM, Santos T, Ravasco P. The effect of flaxseed in breast cancer: a literature review. Frontiers in Nutrition. 2018;5:4.

67. Flower G, Fritz H, Balneaves LG, Verma S, Skidmore B, Fernandes R, et al. Flax and breast cancer: a systematic review.
Integrative Cancer Therapies. 2014;13(3):181-92.

68. Calado A, Neves PM, Santos T, Ravasco P. The effect of flaxseed in breast cancer: a literature review. Frontiers in Nutrition. 2018;5:4.

69. Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brunner N, Chan DW, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers.

70. Mason JK, Chen J, Thompson LU. Flaxseed oil–trastuzumab interaction in breast cancer. Food and Chemical Toxicology. 2010;48(8-9):2223-6.

71. Chen J, Saggar JK, Corey P, Thompson LU. Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr. 2009;139(11):2061-6.

72. Shah NR, Patel BM. Secoisolariciresinol diglucoside rich extract of L. usitatissimum prevents diabetic colon cancer through inhibition of CDK4. Biomed. Pharmacother. 2016;83:733-9.

73. Edel AL, Patenaude AF, Richard MN, Dibrov E, Austria JA, Aukema HM, et al. The effect of flaxseed dose on circulating concentrations of alpha-linolenic acid and secoisolariciresinol diglucoside derived enterolignans in young, healthy adults. Eur. J. Nutr. 2016;55(2):651-63.

74. McCann SE, Thompson LU, Nie J, Dorn J, Trevisan M, Shields PG, Ambroseon CB, Edge SB, Li HF, Kasprzak C, Freudenheim JL. Dietary lignan intakes in relation to survival among women with breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Research and Treatment. 2010;122(1):229-35.

75. Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, et al. Cancer screening in the United States, a review of current American Cancer Society guidelines and current issues in cancer screening. CA: A Cancer Journal for Clinicians. 2017;67(2):100-21.

76. DeLuca JA, Garcia-Villatoro EL, Allred CD. Flaxseed bioactive compounds and colorectal cancer prevention. Current Oncology Reports. 2018;20(8):1-8.

77. Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N. Nutriceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharmacuetica Sinica B. 2014;4(3):173-81.

78. Sun J, Bai H, Ma J, Zhang R, Xie H, Zhang Y, Guo M, Yao J. Effects of flaxseed supplementation on functional constipation and quality of life in a Chinese population: A randomized trial. Asia Pac. J. Clin. Nutr. 2020;29(1):61.

79. Wang W, Ayella A, Jiang Y, Ouyang P, Qu H. Wheat lignans: promising cancer preventive agents. Wheat Antioxidants. 2008;264-72.

80. Arend WP, Dayer JM. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheumatol. 1990;33(3):305-15.

81. Hinz B, Brune K. Cyclooxygenase-2—10 years later. J Pharmacol Exp Ther. 2002;300(2):367-75.

82. Kaithwas G, Majumdar DK. Therapeutic effect of Linum usitatissimum (flaxseed/linseed) fixed oil on acute and chronic arthritic models in albino rats. Inflammopharmacology. 2010;18(3):127-36.

83. Ofei F. Obesity—a preventable disease. Ghana Medical Journal. 2005;39(3):98.

84. Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev. 2001;59:129–13.

85. Kristensen M, Jensen MG. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity Appetite. 2011;56:65–70.

86. Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev. 2010;23:135–145.

87. Kristensen M, Jensen MG, Aarestrup J, Petersen KE, Søndergaard L, Mikkelsen MS, Astrup A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. J Nutr Metab. 2012;9(1):1-8.

88. Thewissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease. Physiol Behav. 2008;94:285–292.

89. Misra A, Singhal N, Khurana L. Obesity, the metabolic syndrome, and type 2 diabetes in developing countries: role of dietary fats and oils. Journal of the
90. Mohammadi-Sartang M, Mazloom Z, Raeisi-Dehkordi H, Barati-Boldaji R, Bellissismo N, Totosy de Zepetnek JO. The effect of flaxseed supplementation on body weight and body composition: a systematic review and meta-analysis of 45 randomized placebo-controlled trials. Obesity Reviews. 2017;18(9):1096-107.

91. Liu JJ, Liu S, Wong MD, Tan CS, Tavintharan S, Sum CF, Lim SC. Relationship between circulating irisin, renal function and body composition in type 2 diabetes. J. Diabetes Complicat. 2014;28(2):208-13.

92. Hasaniani N, Rahimlou M, Ahmadi AR, Khalifani AM, Alizadeh M. The effect of flaxseed enriched yogurt on the glycemic status and cardiovascular risk factors in patients with type 2 diabetes mellitus: randomized, open-labeled, controlled study. Clin. Nutr. Res. 2019;8(4):284.

93. Prasad K, Dhar A. Flaxseed and diabetes. Current Pharmaceutical Design. 2016;22(2):141-4.

94. Prasad K. Suppression of phosphoenolpyruvate carboxykinase gene expression by secoisolariciresinol diglucoside (SDG), a new antidiabetic agent. Int Angiol. 2002;11(2):107-9.

95. Kapoor S, Sachdeva R, Kochhar A. Efficacy of flaxseed supplementation on nutrient intake and other lifestyle pattern in menopausal diabetic females. Studies on Ethno-Medicine. 2011;5(3):153-60.

96. Mani UV, Mani I, Biswas M, Kumar SN. An open-label study on the effect of flax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus. J. Diet. Suppl. 2011; 8(3):257-65.

97. Saini A, Harjai K, Mohan H, Punia RP, Chhibber S. Long-term flaxseed oil supplementation diet protects BALB/c mice against Streptococcus pneumoniae infection. Med. Microbiol. Immunol. 2010; 199(1):27-34.

98. Prasad K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. Journal of Laboratory and Clinical Medicine. 2001; 138(1):32-9.

99. Kinniry P, Amrani Y, Vachani A, Solomides CC, Arguiri E, Workman A, et al. Dietary flaxseed supplementation ameliorates inflammation and oxidative tissue damage in experimental models of acute lung injury in mice. J Nutr. 2006;136(6):1545-51.

100. Miyata J, Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. ALLERGOL INT. 2015;64(1):27-34.

101. Khan AA, Alam T, Singh S, Wali M, Maaz M, Jabin A. Efficacy Evaluation Of Linium Usitatissimum (Linctus of flax mucilage) In Chronic Obstructive Pulmonary Disease Patients. Planta Medica. 2016;82(05): PB20.

102. Kumar A, Mastana SS, Lindley MR. n-3 Fatty acids and asthma. Nutrition research reviews. 2016;29(1):1-6.

103. Rubilar M, Gutiérrez C, Verdugo M, Shene C, Sineiro J. Flaxseed as a source of functional ingredients. J. Soil Sci. Plant Nutr. 2010;10(3):373-7.

104. Yang W, Fu J, Yu M, Huang Q, Wang D, Xu J, Deng Q, Yao P, Huang F, Liu L. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level. Lipids in Health and Disease. 2012;11(1):1-6.

105. Kasote DM. Flaxseed phenolics as natural antioxidants. Int. Food Res. J. 2013; 20(1):27.

106. Touré A, Xueying X. Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Comprehensive Reviews in Food Science and Food Safety. 2010;9(3):261-9.

107. Naziroğlu M. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now?. Neurochem. Res. 2011;36(3):355-66.

108. Somogyi A, Rosta K, Pusztai P, Tulassay Z, Nagy G. Antioxidant measurements. Physiological Measurement. 2007;28(4): R41.

109. Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, et al. Chemistry and biochemistry of lipid peroxidation products. Free Radical Research. 2010;44(10):1098-124.

110. Pietrofesa R, Turowski J, Tyagi S, Dukes F, Arguiri E, Busch TM, et al. Radiation mitigating properties of the lignan
component in flaxseed. BMC Cancer. 2013;13(1):1-8.

111. Bobroff LB, Lentz A, Turner RE. Food/drug and drug/nutrient interactions: what you should know about your medications. EDIS. 2009;2009(5).

112. COUNCIL OS. The wealth of India. A dictionary of Indian raw materials and industrial products. 1966;7.

113. Shek LP, Chong MF, Lim JY, Soh SE, Chong YS. Role of dietary long-chain polyunsaturated fatty acids in infant allergies and respiratory diseases. Clin. Dev. Immunol; 2012.

114. Bobroff LB, Lentz A, Turner RE. Food/drug and drug/nutrient interactions: what you should know about your medications. EDIS. 2009 Jun 30;2009(5).

115. Griel AE, Kris-Etherton PM, Hilpert KF, Zhao G, West SG, Corwin RL. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutrition Journal. 2007;6(1):1-8.

116. Misra B. Tailavarga. Bhavaprakashanighantu. Part I. 1963; 779.

117. Amin T, Thakur M. Linum usitatissimum L(Flaxseed)--A multifarious functional food. Online International Interdisciplinary Research Journal. 2014;4(1):220-38.

118. De Barros Mucci D, Fernandes FS, dos Santos Souza A, de Carvalho Sardinha FL, Soares-Mota M, et al. Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2007;97.

119. Naveen S, Siddalingaswamy M, Singsit D, Khanum F. Anti-depressive effect of polyphenols and omega-3 fatty acid from pomegranate peel and flax seed in mice exposed to chronic mild stress. Psychiatry Clin. Neurosci. 2013;67(7): 501-8.

120. Behera L, Samal Kc, Praveena J. Flaxseed: The Miracle Food to Fight against COVID-19. Agroforestry. 2020; XIX(4):67-8.