Evidence for an evolutionarily conserved interaction between cell wall biosynthesis and flowering in maize and sorghum
Wilfred Vermerris*1,2, Karen J Thompson1, Lauren M McIntyre1,3 and John D Axtell1

Address: 1Department of Agronomy, Purdue University, West Lafayette, IN 47907-1150, USA, 2Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-1146, USA and 3Computational Genomics Group, Purdue University, West Lafayette, IN 47907, USA
E-mail: Wilfred Vermerris* - vermerris@purdue.edu; Karen J Thompson - kjthomps@purdue.edu; Lauren M McIntyre - lmcintyre@purdue.edu
*Corresponding author

Abstract

Background: Factors that affect flowering vary among different plant species, and in the grasses in particular the exact mechanism behind this transition is not fully understood. The brown midrib (bm) mutants of maize (Zea mays L.), which have altered cell wall composition, have different flowering dynamics compared to their wild-type counterparts. This is indicative of a link between cell wall biogenesis and flowering. In order to test whether this relationship also exists in other grasses, the flowering dynamics in sorghum (Sorghum bicolor (L.) Moench) were investigated. Sorghum is evolutionarily closely related to maize, and a set of brown midrib (bmr) mutants similar to the maize bm mutants is available, making sorghum a suitable choice for study in this context.

Results: We compared the flowering time (time to half-bloom) of several different bmr sorghum lines and their wild-type counterparts. This revealed that the relationship between cell wall composition and flowering was conserved in sorghum. Specifically, the mutant bmr7 flowered significantly earlier than the corresponding wild-type control, whereas the mutants bmr2, bmr4, bmr6, bmr12, and bmr19 flowered later than their wild-type controls.

Conclusion: The change in flowering dynamics in several of the brown midrib sorghum lines provides evidence for an evolutionarily conserved mechanism that links cell wall biosynthesis to flowering dynamics. The availability of the sorghum bmr mutants expands the germplasm available to investigate this relationship in further detail.

Background

Defining which factors affect flowering is important for a better understanding of plant growth and development and offers an opportunity to study the interactions of environmental cues, chemical signals, and gene expression. This is also relevant from an agronomic perspective. A plant needs to flower in order to set seed, and in the case of many crop plants, including legumes and cereals, the seed serves as a main source of food in large parts of the world. Flowering time – defined as the time that elapses between planting and the emergence of functional reproductive structures – affects the yield. Early flowering can be beneficial to prevent loss due to frost or other adverse weather conditions towards the end of the season. Signif-
ificant reduction of flowering time could even enable the production of an additional crop per year.

Recent advances in genetics have made it possible to study the genetic control of flowering. In the model plant Arabidopsis thaliana many genes affecting flowering time or the transition from the vegetative to the reproductive phase have been identified and a number of them have been cloned (for recent reviews, see [1,2]). This has resulted in a model in which meristem identity genes activate a developmental program that enables the shoot apical meristem to produce reproductive structures. The meristem identity genes can be activated via three different pathways. One pathway involves a set of autonomous genes (which are turned on at a specific developmental stage), a second pathway involves genes that are responsive to the photoperiod, and a third pathway includes genes that respond to the phytohormone gibberellin.

Orthologs of Arabidopsis flowering genes have been identified in several other species, including pea and snapdragon [3], rice [4], maize [5], pine [6] and ryegrass [7]. In addition, transformation of one plant species with constructs resulting in the over-expression of flowering genes from another plant species resulted in effects on flowering dynamics [3,7,8]. This indicates that the function of several flowering genes is conserved between plant species. On the other hand, there is evidence that the transition to flowering is not governed by a universal set of signals. Many plant species, including maize and other grasses are much less dependent on the photoperiod and gibberellin than Arabidopsis, suggesting that different signals may be required for flower development. This is conceptualized in the "multifactorial control" hypothesis [9] in which a combination of chemicals, including phytohormones, assimilates and minerals interact with genetic components in the process of floral initiation. The recent cloning of the Indeterminate (Id1) gene from maize also illustrated incomplete understanding of the floral transition process. The Id1 gene is expressed in developing leaves prior to their transition from sink to source tissue. Its sequence shows similarity to a transcriptional regulator, and the gene product may play a role in the movement of a flowering signal in developing leaves [10,11]. The Id1 gene is different from any of the flowering genes isolated from Arabidopsis so far.

We recently reported changes in flowering dynamics in some of the brown midrib mutants of maize (Zea mays L.) [12]. Compared to wild-type maize, near-isogenic lines carrying the brown midrib1 and brown midrib2 mutations flowered at a different time from their wild-type counterparts.

The maize brown midrib mutants have a reduction in lignin content and an altered lignin subunit composition [13]. Lignin is a complex hydrophobic polymer made of substituted p-hydroxy-cinnamyl alcohol units that differ in their extent of hydroxylation and methoxylation (for recent reviews see [14,15]). Lignin is important for the transport of water and plant rigidity and it serves as a defense mechanism against pests and pathogens. In maize the relationship between cell wall composition and flowering time appeared independent of lignin content, but instead seemed to depend on lignin subunit composition [12].

Life history theory and experiments have repeatedly demonstrated trade-offs between current survival and future reproduction in both animals and plants [16,17]. According to this theory there is an overall energy budget for an organism, with a finite amount available to divide between these two evolutionarily important processes. Such a trade-off may well be at the basis of the genetic correlation between flowering time and cell wall biosynthesis observed in maize. If this is indeed the case, a similar relationship might exist in other species. Sorghum (Sorghum bicolor (L.) Moench) is a good species for explorations of this nature. Maize and sorghum diverged approximately 15–20 million years ago and are considered closely related [18]. This is reflected by the degree of synteny between maize and sorghum [19] and the high degree of DNA sequence homology of coding regions between the two species [20]. In addition, brown midrib mutants exist in sorghum [21], making a study on the relationship between cell wall composition of sorghum and flowering directly comparable to the maize study. Despite these similarities the morphology of the sorghum floral structure is very different. Unlike maize, which is monococious (separate male and female flowers), the panicle of sorghum is hermaphroditic. The sorghum florets contain two spikelets, one of which contains both the anthers and the ovary, whereas the other is often sterile.

The sorghum brown midrib (bmr) mutants, generated via chemical mutagenesis with di-ethyl sulfate (DES), are similar to the bm mutants of maize in that they have brown vascular tissue in the leaves and stem. The content and composition of the cell wall polymer lignin is also altered in the sorghum bmr mutants [21]. The bmr6 mutation was shown to result in an accumulation of coniferaldehyde [22] and sinapaldehyde [23] and seems to be most similar to the maize bm1 mutant [24]. The bmr12 and bmr18 mutants are allelic [25]. These mutants have lignin with lower amounts of syringyl residues. Instead, the lignin contains more 5-hydroxyguaiacyl residues and therefore resembles the lignin composition of the bm3 mutant of maize [26,27]. Little is known about the lignin composition of the other bmr mutants.
than the N7 line.

bmr mutants flower later than their wild-type counterparts. In all other cases the difference in flowering time was statistically significant ($P < 0.0001$). Differences between genotypes were consistent in direction across replicates, although the estimate of the distance between genotypes varied to some extent. In the cases of $bmr3$-$N3$, $bmr7$-$N7$ and $bmr12$-$N12$ residuals showed departures from the normality assumptions. Linear regression was then conducted on the data from location A using the model $Y_{ijk} = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2j} + \epsilon_{ijk}$, where X_1 is the replicate ($i = 1, 2$), X_2 is the genotype ($j = bmr$, normal), and Y_{ijk} is the time to half-bloom for individual k in replicate i for genotype j. Based on the linear regression, the flowering times of the mutants $bmr3$ and $bmr18$ do not differ significantly from those of their wild-type counterparts. In all other cases the difference in flowering time was statistically significant ($P < 0.0001$). Differences between genotypes were consistent in direction across replicates, although the estimate of the distance between genotypes varied to some extent. In the cases of $bmr3$-$N3$, $bmr7$-$N7$ and $bmr12$-$N12$ residuals showed departures from the normality assumptions. Linear regression was then conducted on the data from location A using the model $Y_{ijk} = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2j} + \epsilon_{ijk}$. This log-transformation did not change the conclusions or improve residual behavior.

The data were also analyzed using a survival analysis. Compared to linear regression, survival analysis does not require the data to be normally distributed, and early data on plants that do not survive until the end of the experiment due to diseases or other damage can be included in the analysis [12]. Furthermore, survival analysis allows the comparison of modeled flowering dynamics, as opposed to a comparison of just the mean flowering times.

Figure 1 and Figure 2 show the flowering dynamics of the plants in the two replicates in location A, obtained using survival analysis. A parametric log-logistic model [12] gave the best fit across genotypes. Based on these figures it is apparent that most bmr mutants flower later than their wild-type counterparts, with the exception of $bmr7$, which flowers earlier than N7, and $bmr18$, which flowers at the same time as N18. There is very good agreement between the two replicates. Differences between $bmr2$ and N2, $bmr4$ and N4, $bmr6$ and N6, $bmr7$ and N7, $bmr12$ and N12, $bmr19$ and N19 were statistically significant ($P < 0.001$). As with the linear regression, there was no statistically significant difference between $bmr3$ and N3, and between $bmr18$ and N18.

The slopes of the lines represent the rate at which flowering progresses. A steep slope (such as in $bmr3$-$N3$) is indicative of a more rapid progress in flowering than in cases where the slope is more gradual (such as in $bmr2$-$N2$).

Note that for each combination of mutant and wild type the lines are parallel, which suggests that the bmr mutations affect the time to flowering, but not the rate of flowering.

In both the two-dwarf ($bmr2$, 4, 6, 7) and the three-dwarf lines ($bmr12$, 19) the difference in flowering time is apparent, which indicates that the effect is not limited to a spe-
specific genetic background. It is also interesting to note that the allelic mutants \(\textit{bmr12} \) and \(\textit{bmr18} \) behave differently, even though they are both in the three-dwarf background. This could be the result of variation in the penetrance of the mutation.

Plant height and development

Given the significant differences in the flowering time between most \(\textit{bmr} \) lines and their wild-type counterparts, the question arises what the origin of these differences is. One possibility is that the \(\textit{bmr} \) lines develop at a slower or faster growth rate and reach the point at which they transition from the vegetative to the reproductive state at a different time. Differences in growth rate may be apparent all the time or only during select stages such as germination or the formation of floral structures, and they may or may not result in a difference in height at maturity. Alternatively, the \(\textit{bmr} \) lines may develop at a normal rate, but delay the time at which they flower at the level of the flower itself. In that case the flower may be present, but may start blooming earlier or later than the wild-type flowers. It is possible that different mutations result in different developmental effects.

Location	Rep	Genotype	n	Mean	SD	Median
A	1	\(\textit{bmr2} \)	22	99.1	4.51	99
		\(\textit{N2} \)	56	88.5	2.70	88
	2	\(\textit{bmr2} \)	38	98.1	3.37	98
		\(\textit{N2} \)	66	92.0	5.42	90
	1	\(\textit{bmr3} \)	56	86.6	1.42	87
		\(\textit{N3} \)	86	86.5	1.09	87
	2	\(\textit{bmr3} \)	59	87.4	1.82	87
		\(\textit{N3} \)	85	86.2	1.17	86
	1	\(\textit{bmr4} \)	48	92.9	2.95	94
		\(\textit{N4} \)	65	87.0	1.87	87
	2	\(\textit{bmr4} \)	41	91.1	4.17	89
		\(\textit{N4} \)	44	87.9	2.01	87
	1	\(\textit{bmr6} \)	60	94.0	4.72	94
		\(\textit{N6} \)	54	88.9	2.15	88
	2	\(\textit{bmr6} \)	56	93.5	4.16	94
		\(\textit{N6} \)	53	91.6	2.54	92
	1	\(\textit{bmr7} \)	48	94.6	3.62	95
		\(\textit{N7} \)	51	97.8	4.14	97
	2	\(\textit{bmr7} \)	45	93.3	3.12	94
		\(\textit{N7} \)	41	99.3	3.68	99
	1	\(\textit{bmr12} \)	49	98.9	4.34	99
		\(\textit{N12} \)	65	93.5	4.55	94
	2	\(\textit{bmr12} \)	56	101.6	2.29	103
		\(\textit{N12} \)	55	93.9	3.88	94
	1	\(\textit{bmr18} \)	44	95.9	2.34	96
		\(\textit{N18} \)	57	95.0	4.11	97
	2	\(\textit{bmr18} \)	27	97.2	3.31	97
		\(\textit{N18} \)	49	98.6	4.29	99
	1	\(\textit{bmr19} \)	32	93.0	3.46	94
		\(\textit{N19} \)	75	87.6	1.42	87
	2	\(\textit{bmr19} \)	42	95.6	4.9	95
		\(\textit{N19} \)	52	87.6	1.87	87
B		\(\textit{bmr6} \)	44	92.6	2.78	92
		\(\textit{N6} \)	49	90.4	3.92	90
		\(\textit{bmr12} \)	17	95.7	3.08	96
		\(\textit{N12} \)	17	88.8	3.15	88
		\(\textit{bmr18} \)	29	92.9	2.93	93
		\(\textit{N18} \)	22	94.5	2.11	94
In a first attempt to examine these different possibilities the height at half-bloom was measured for each individual plant in location B. Table 2 displays the height at half-bloom of the lines bmr6, bmr12 and bmr18 and their wild-type counterparts. A comparison of the height at half-bloom reveals no significant variation between bmr12 and N12 and between bmr18 and N18, but the bmr6 plants are somewhat shorter than the N6 plants ($P = 0.0017$). There is a slight height difference between the bmr12 and bmr18 plants and their respective normal counterparts, but it is not statistically significant at the $\alpha = 0.05$ level. It may be worth examining a larger number of plants to explore this possible variation in height. The height data indicate that there may be an effect from the bmr mutations on plant growth, but it is likely that this effect is not universal, but rather dependent on the specific mutation.

Discussion

The results from this study indicate that changes in cell wall biosynthesis affect flowering dynamics in sorghum. Most of the bmr mutants we investigated flowered later than their wild-type counterparts, but the bmr7 mutant flowered earlier. In the case of N18 and bmr18 and N3 and bmr3 there is no significant difference. Differences across replications were consistent in direction, but varied somewhat in the estimate of difference between the wild type and bmr mutant. These changes in flowering time are similar to what was observed for the maize bmr mutants [12]. If the correlation between flowering dynamics and cell wall biosynthesis were spurious, mutations affecting cell wall composition in evolutionarily related species with different flower morphology would not show association with flowering dynamics. Therefore, the verification of this association in sorghum, when it has been demonstrated in maize, provides evidence for an evolutionarily conserved mechanism that links cell wall biogenesis with flowering time. This opens the possibility that a similar mechanism is present in other plant species, including the model plant Arabidopsis.

Taken together, the maize and sorghum data agree well with the model of trade-offs between current survival and future reproduction. The fact that the change in flowering time is not in one direction suggests that the different mutations have different effects on the energy balance. Additional experiments are necessary to obtain further details on the relationship between cell wall composition and flowering time. In the case of bmr6 we have evidence that not only flowering time, but also height is affected as a result of the mutation. It may be interesting to explore variation in height in other mutant/wild-type combinations. Furthermore, determining during what developmental stage the difference between a particular bmr mutant and its wild-type counterpart becomes apparent may reveal whether or not there is a direct effect on the floral transition. It will be necessary to complete allelism tests before a relationship between the (bio)chemical effect of the various bmr mutations and the flowering time can be defined with confidence.

One hypothesis that can be tested is the involvement of phenylpropanoid intermediates as signaling molecules in plant development. Mutations in lignin biosynthesis may affect the effective concentration of such molecules, which could include dehydrodiconiferyl alcohol glucosides (DCGs). DCGs are lignan-glucosides with cytokinin-like activity [28,29]. An alternative hypothesis is that as a result of the bmr mutations the physico-chemical characteristics of the vasculature have been altered in such a way...
that it affects the transport of signaling compounds. Colasanti and Sundaresan [11] proposed a role for the vasculature in the control of transport of signaling molecules between leaves and the shoot-apical meristem. Indeed, a recent study on the nitrogen content of phloem and xylem exudates during the transition to flowering in Arabidopsis and Sinapis alba showed changes in the transport of amino acids through the vasculature [30].

The present study also confirms the role that the maize brown midrib genes play in flowering dynamics. The maize bm mutants were isolated more than fifty years ago and the wild-type progenitors of the original mutants are no longer available. Therefore, studies with the maize bm mutants need to be done with near-isogenic lines. While comparisons between a wild type and a mutant that has been subjected to six or seven backcrosses are generally considered acceptable, there is still a small risk of linkage drag, creating the possibility that genes linked to the brown midrib genes are affecting the development. In the case of sorghum, however, the bm mutants can be compared to a line derived from a wild-type sibling, which minimizes the source of genetic variation. Given that the sorghum bm mutants show different flowering dynamics, we can attribute the variation in flowering dynamics in maize more confidently to the bm mutations.

Now that it has been shown that the bm mutants affect flowering time, the experimental population that can be used to determine the underlying effect has become significantly larger. Furthermore, the incorporation specific bm mutations in sorghum breeding programs may be of use for the manipulation of flowering time.

Materials and Methods

Approximately 2,000 seeds were planted in a randomized complete block design at the Agronomy Research Center in West Lafayette, IN (location A) in the Spring of 2000 in the following manner: two replicates of approximately 60 plants each for the following entries N2, bm2, N3, bm3, N4, bm4, N6, bm6, N7, bm7, N12, bm12, N18, bm18, N19, and bm19. The bm mutations were introduced via chemical mutagenesis with diethyl sulfate-ethylsulfonate (DES) [21]. Briefly, an M3 population, obtained from selfing M1 and M2 plants (M1 refers to plants grown from the mutagenized seeds) was screened for bm mutants. The bm mutants were identified among segregating head rows. The corresponding wild-type N-lines were derived from wild-type siblings in the same head row. Both the N and bm plants were advanced to the M5 generation via selfing, to result in near-isogenic lines. The genetic similarity between these lines is far greater than can be achieved through recurrent backcrossing, because there is essentially no linkage drag.

The mutants bm2, bm3, bm4, bm6 and bm7 were derived from the three-dwarf parent line 954114. The mutants bm12, bm18, and bm19 were derived from the two-dwarf parent line 954104, and tend to be taller than the mutants derived from line 954114. Note that the different numbers of the bm mutants do not necessarily designate separate loci. Preliminary allelism tests indicated there are at least three different bm loci [25]. The bm mutants that were part of this study did not show any major abnormalities in their growth and development.

In addition, two 4 x 4 Latin squares with 24 plants per entry were planted at the Throckmorton Agricultural Center near West Lafayette, IN (location B) in the Spring of 2000. The first Latin square contained the entries N6, bm6, N12 and bm12; the second Latin square contained N6, bm6, N18 and bm18. Flowering time was defined as the time to half-bloom (extrusion of mature anthers having progressed halfway down the head) and was recorded as days after planting (DAP) for each individual plant by daily survey in both locations. The height at half-bloom (in cm) of each plant in location B was measured.

Genotype	n	mean	SD	median	P-value
N6	49	114	9.6	114	0.0017
bm6	44	108	7.4	108	0.914
N12	17	139	24.5	127	0.914
bm12	17	139	19.3	143	0.914
N18	22	117	7.8	117	0.914
bm18	29	114	6.5	116	0.914

Table 2: Comparison of mean, standard deviation and median height (in cm) of bm mutants and their corresponding wild-type controls in location B. The P-values were calculated based on linear regression and were based on sample size n.
All data analyses were performed using the statistical software package SAS (SAS Institute, Cary, NC). Height comparisons between genotypes were made based on linear regression. Basic statistics on the flowering time including the mean, median and standard deviation for each genotype were calculated. In some cases data were skewed, as is common in time-to-event data. Differences in flowering time between genotypes were assessed with two different statistical modeling techniques: linear regression and survival analysis. A log-transformation was performed before the linear regression when the data were not normally distributed.

Survival analysis covers a broad class of models that deal with the analysis of time-dependent data. In brief, analysis of survival data involves two interrelated functions: the hazard function \(h(t) \), which gives survival until time \(t \), gives the instantaneous potential of an individual to undergo the event of interest, and the survival function \(S(t) \) which gives the probability of survival longer than time \(t \). The hazard and survival functions vary depending on the specific model. Models can be parametric or non-parametric. Non-parametric survival models assume no baseline hazard. This can result in a loss of precision and in some cases a loss of power. In contrast, the parametric models specify a baseline survival function, which can have serious consequences if mis-specified. For a more detailed description of survival analysis, see [31,32]. Survival models can also be implemented in SAS [33]. The application of survival analysis to developmental traits was discussed by Vermerris and McIntyre [12].

Acknowledgements

The authors would like to thank Terry Lemming for excellent care of the plants, Dr. Nick Carpita for his support, and Dr. Marta Wayne for helpful suggestions. This is paper number 16697 in the Purdue Agricultural Experiment Station Series.

References

1. Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W: Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 1998, 49:345-370
2. Simpson GG, Gendall AR, Dean C: When to switch to flowering. Annu Rev Cell Dev Biol 1999, 15:519-550
3. Berbel A, Navarro C, Ferrandiz C, Canas LA, Madueno F, Beltran JP: Analysis of PEA4, the pea API functional homologue, supports a model for API-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 2001, 25:441-451
4. Yano M, Katayose Y, Monna L, Fuse T, Baba T, Yamamoto K, Umeda H, Sasaki T: HD1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 2000, 12:2473-2483
5. van Nocker S, Muzykanski M, Briggs K, Amasino RM: Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Mol Biol 2000, 44:107-122
6. Mouradov A, Handorf B, Teasdale RD, Kim JT, Winter K-U, Theißen G: A DEFIGLO-like MADS-box gene from a gymnosperm: P. radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev Genet 1999, 25:245-252
7. Jensen CS, Salchert K, Nielsen KK: A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillar, P. meristem identity. J. Plant Physiol 2001, 157:1517-1528
8. Zh He, Zhu Q, Dabi T, Li DB, Weigel D, Lamb C: Transformation of rice with the Arabidopsis floral regulator LESAP causes early heading. Transgenic Res 2001, 9:223-227
9. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P: Physiological signals that induce flowering. Plant Cell 1993, 5:147-1155
10. Calosanti J, Yuan Z, Sundaresan V: The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 1998, 93:593-603
11. Purdands J, Sundaresan V: ‘Florigen’ enters the molecular age: long-distance signals that cause the plant to flower. Trends Bi- otech 2000, 25:236-240
12. Vermerris W, McIntyre LM: Time to flowering in brown midrib mutants of maize: an alternative approach to the analysis of aneuploidyigenic trait loci. Annu Rev Plant Physiol Plant Mol Biol 1998, 49:385-609
13. Kuc J, Nelson OE, Flanagan P: Degradation of abnormal lignins in the brown-midrib mutants and double mutants of maize. Phytochemistry 1968, 7:1435-1436
14. Boudet A-M: A new view of lignification. Trends Plant Sci 1998, 3:487-491
15. Whetten RW, MacKay JJ, Sederoff RR: The evolution of life histories. Oxford, Oxford University Press, 1992
16. Mauricio R: Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 1998 151:20-28
17. Bennetzen JL, Freeling M: The unified grass genome: synergy in synteny. Genome 1997, 37:301-306
18. Whitkus R, Doebely J, Lee M: Comparative genome mapping of sorgum and maize. Genetics 1992, 132:1119-1130
19. Chen M, Sanmiguel P, deOliveira AC, Woo SS, Zhang H, Wing RA, JL Bennett: Microlinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Nat Acad Sci USA 1997, 94:3431-3435
20. Porter KS, Axtell JD, Lechtenberg VL, Colemenbrander VF: Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorgum. Crop Sci 1978, 18:205-209
21. Bucholtz DL, Cantrell RP, Axtell JD, Lechtenberg VL: Lignin biochemistry of normal and brown midrib mutant sorgum. J Agric Food Chem 1980, 28:1239-1241
22. Hillman C, Mulder MM, Boon JJ, Forster B, Binder A: Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Plant 1991, 185:538-544
23. Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties E, Edwards K, Barakate A, Foxon GA: Brown-midrib maize (bmr) – a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 1998, 14:545-553
24. Bittinger TS, Cantrell RP, Axtell JD: Allelism tests of the brown midrib mutants of sorgum. J Hered 1981, 72:147-148
25. Akin DE, Hanna WW, Snook ME, Himmelsbach DS, Barron FE, WR, Windham: Normal-12 and brown midrib-12 sorgum. II. Chemical variation and digestibility. Agron J 1986, 78:832-837
26. Suzuki S, Lam TBT, Iiyama K: 5-Hydroxymucaic acid nuclei as aromatic constituents of native lignin. Phytochem 1997, 46:695-700
27. Teutonico RA, Dudley MW, Orr JD, Lynn DG, Bina AN: Activity and accumulation of cell division-promoting phentolics in tobacco tissue cultures. Plant Physiol 1991, 97:288-297
28. Orr JD, Lynn DG: Biosynthesis of dehydrodiconiferylalcohol glucosides: implications for the control of tobacco cell growth. Plant Phys 1992, 98:343-352
29. Corbesier L, Havelange A, Lejeune P, Bernier G, P Cérilleux: N content of phloem and xylem exudates during the transition to flowering in Sinapis alba and Arabidopsis thaliana. Plant Cell Environ 2001, 24:367-375
30. Kleinbaum DG: Survival analysis – a self-learning text. New York, Springer-Verlag 1997
31. Lawless JF: Statistical Models and Methods for Lifetime Data. New York, John Wiley & Sons 1982
33. Allison PD: *Survival analysis using the SAS system; a practical guide.* Cary, SAS Institute Inc. 1995