Early Optical Observations of GRB 150910A: Bright Jet Optical Afterglow and X-Ray Dipole Radiation from a Magnetar Central Engine

Lang Xie1,2, Xiang-Gao Wang1,2, WeiKang Zheng3, Alexei V. Filippenko3,4,8, Song-Mei Qin5, Long Li1,2, Tian-Ci Zheng1,2, Le Zou1,2, Da-Bin Lin1,2, Yinan Zhu6, Heechan Yuk3,7, Rui-Jing Lu1,2, and En-Wei Liang1,2

1 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, People’s Republic of China; wangxg@gxu.edu.cn, lew@gxu.edu.cn
2 GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, People’s Republic of China
3 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; weikang@berkeley.edu, afilippenko@berkeley.edu
4 Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720
5 Mathematics and Physics Section, Guangxi University of Chinese Medicine, Nanning 53001, People’s Republic of China
6 School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People’s Republic of China
7 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St. Norman, OK 73019, USA

Received 2019 November 30; revised 2020 April 11; accepted 2020 April 25; published 2020 June 8

Abstract

Gamma-ray burst (GRB) 150910A was detected by Swift/Burst Alert Telescope (BAT), and then rapidly observed by Swift/XRT, Swift/Ultraviolet-Optical Telescope, and ground-based telescopes. We report Lick Observatory spectroscopic and photometric observations of GRB 150910A, and we investigate the physical origins of both the optical and X-ray afterglows, incorporating data obtained with BAT and XRT. The light curves show that the jet-emission episode lasts \(\sim 360 \) s with a sharp pulse from BAT to XRT (Episode I). In Episode II, the optical emission has a smooth onset bump followed by a normal decay \((\alpha_{R,2} \approx -1.36)\), as predicted in the standard external shock model, while the X-ray emission exhibits a plateau \((\alpha_{X,1} \approx -0.36)\) followed by a steep decay \((\alpha_{X,2} \approx -2.12)\). The light curves show obvious chromatic behavior with an excess in the X-ray flux. Our results suggest that GRB 150910A is an unusual GRB driven by a newly born magnetar with its extremely energetic magnetic dipole (MD) wind in Episode II, which overwhelmingly dominates the observed early X-ray plateau. The radiative efficiency of the jet prompt emission is \(\eta_{\text{j}} \approx 11\% \). The MD wind emission was detected in both the BAT and XRT bands, making it the brightest among the current sample of MD winds seen by XRT. We infer the initial spin period \((P_0)\) and the surface polar cap magnetic field strength \((B_p)\) of the magnetar as \(1.02 \times 10^{15} \text{ G} \leq B_p \leq 1.80 \times 10^{15} \text{ G}\) and \(1 \text{ ms} \leq P_0 \leq 1.77 \text{ ms}\), and the radiative efficiency of the wind is \(\eta_{\text{w}} \geq 32\% \).

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Magnetars (992); Non-thermal radiation sources (1119)

1. Introduction

Gamma-ray bursts (GRBs) are the most luminous explosions in the universe. Long-duration GRBs have been proposed to originate from core collapse of massive stars (e.g., Woosley 1993; Paczyński 1998; MacFadyen & Woosley 1999; Kumar & Zhang 2015; Dai et al. 2017; Mészáros & Zhang 2015; Dai et al. 2017; Mészáros et al. 2019). The collapse produces a rapidly spinning and strongly magnetized neutron star (millisecond magnetar) or a black hole.

In the millisecond magnetar scenario as the central engine of long GRBs, the magnetar could lose its rotational energy to produce a Poynting-flux-dominated outflow and power the GRB ejecta, with \(E_{\text{rot}} = (1/2)I\Omega_0^2 \approx (2 \times 10^{52}) M_{1.4} R_{\odot}^2 P_0^{-3} \) erg, where \(I \) is the magnetar’s moment of inertia, \(\Omega_0 = 2\pi/P_0 \) is its initial angular frequency, and \(M_{1.4} = M/(1.4 M_\odot) \). During the period of jet magnetic dissipation, or shock collision, it could produce the prompt gamma-ray emission of GRBs. The residual rotational energy may generate a steady wind to produce a plateau-like phase in the early afterglow (i.e., X-ray plateau). After the characteristic spin-down timescale \(\tau \) of the magnetar, its radiation luminosity evolves as \(L \propto (1 + t/\tau)^{-\alpha} \) (e.g., Dai & Lu 1998; Zhang & Mészáros 2001; Liang et al. 2007; Troja et al. 2007; Lü & Zhang 2014; Metzger & Piro 2014; Du et al. 2016; Lasky & Glampedakis 2016; Chen et al. 2017), where \(\alpha \) is, respectively, \(-1\) and \(-2\) in the gravitational wave (GW) and magnetic dipole (MD) radiation dominated scenarios (Lü et al. 2018), and \(\alpha < -3 \) indicates that the magnetar may have collapsed to a black hole prior to spin-down.

Observed properties of GRBs and their early-time afterglows indicate the different structures for the central engine. Analyses of GRB light curves based on large samples (Nousek et al. 2006; O’Brien et al. 2006; Liang et al. 2007; Lü & Zhang 2014; Lü et al. 2015; Wang et al. 2015, 2018) show that a significant fraction of X-ray afterglow light curves share common plateau features, and some exhibit rapid decay with \(\alpha \leq 2\) (e.g., Liang et al. 2007; Troja et al. 2007; Lyons et al. 2010; Lü & Zhang 2014). Zou et al. (2019) found that the jet and MD wind radiation can be separated in a fraction of Swift GRBs, also indicating that the shallow-decaying segment observed in the early-time X-ray afterglow light curves may be dominated by the MD radiation wind of a newly born magnetar, which may serve as central engine of these GRBs.

GRB 150910A is an interesting GRB with an X-ray plateau in the early-time afterglow light curves, which apparently exceeds the predictions of standard external shock models. We suggest that the phase of prompt gamma-ray emission may be
from jet radiation, and the X-ray plateau phase is mainly due to energy injection from the MD wind radiation of a millisecond magnetar in its early spin-down stage. The smooth onset feature observed in the optical afterglow light curves may be dominated by jet afterglow.

This paper reports our observations of a very bright optical afterglow of GRB 150910A and detailed modeling of the optical and X-ray afterglow light curves. Our observations and data analysis are presented in Sections 2 and 3, respectively. Analysis of the jet properties and constraints on the central engine are presented in Section 4. A discussion of the results is given in Sections 5, and 6 summarizes our conclusions. We assume a concordance cosmology of \(H_0 = 69.6 \text{ km s}^{-1} \text{ Mpc}^{-1}, \Omega_M = 0.286, \) and \(\Omega_{\Lambda} = 0.714 \) throughout the paper.

2. Observations and Data Reduction

The Burst Alert Telescope (BAT) onboard the Neil Gehrels Swift Observatory (Swift; Gehrels et al. 2004) triggered GRB 150910A at 09:04:48 (UT dates are used throughout this paper) on 2015 September 10 \((T_0)\) in image mode (Pagani et al. 2015). Typical of image-triggered GRBs (such as GRB 060218; Campana et al. 2006), its real-time light curve shows as long-lasting flickering. The XRT and the Ultraviolet-Optical Telescope (UVOT) onboard Swift began observing the X-ray and optical afterglows 145 s and 153 s, respectively, after the BAT trigger (Pagani et al. 2015).

The bright optical counterpart of GRB 150910A was detected by several ground-based telescopes, such as the 1 m telescope located at Nanshan, Xinjiang (Xu et al. 2015), the 10.4 m GTC (Pagani et al. 2015), the Russian-SAO RAS 1 m telescope (Moskvitin & Goranskij 2015), the 2.2 m MPG telescope at ESO La Silla Observatory (Schmidl et al. 2015), the Nordic Optical Telescope (Cano et al. 2015), the 1 m telescope of Tien Shan Astronomical Observatory (Mazaeva et al. 2015), and the Palomar 60 inch (P60) robotic telescope (Perley & Cenko 2015).

Our optical follow-up campaign of GRB 150910A was carried out using the 0.76 m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory, beginning at \(\sim T_0 + 1000 \text{ s} \) and ending \(\sim 1.75 \text{ hr} \) after the Swift/BAT trigger time (Zheng & Filippenko 2015). The optical counterpart was clearly detected in the \(V, R, \) and \(Clear \) (close to \(R \); see Li et al. 2003) bands. KAIT data were reduced using our image-reduction pipeline (Ganeshalingam et al. 2010; Stahl et al. 2019). Point-spread-function photometry was applied using DAOPHOT (Stetson 1987) from the Interactive Data Language (IDL) Astronomy User’s Library. The multiband data were calibrated to local Pan-STARRS1 stars, whose magnitudes were transformed into the Landolt (1992) system using the empirical prescription presented by Tonry et al. (2012, Equation (6)).

Additional photometric data were obtained with the 1 m Nickel telescope at Lick Observatory during the second night, \(\sim 0.911 \text{ days} \) after the trigger, with an exposure time of \(5 \times 600 \text{ s} \) in the \(R \) band. The optical counterpart was detected in the coadded image and was measured with the method above. The afterglow light curves of GRB 150910A are shown in Figure 1.

We also obtained a late-time deep image of the site of GRB 150910A with the Low-Resolution Imaging Spectrograph (LRIS; Oke et al. 1995) mounted on the 10 m Keck I telescope on 2015 October 10. Two 300 s images were obtained and then coadded in each of the \(V \) and \(R \) filters. Unfortunately, the optical counterpart was not detected in either band (see Figure 2). An upper limit was derived for each coadded image. All of our optical photometry is reported in Table 1.

Spectroscopic observations of the optical afterglow of GRB 150910A were performed with the Kast double spectrograph (Miller & Stone 1993) on the Shane 3 m telescope at Lick Observatory, starting \(\sim 1.1 \text{ hr} \) after the burst (Zheng et al. 2015). Exposures of 1200 and 2400 s were obtained covering the 3500–10000 Å wavelength range, with the long slit at or near the parallactic angle (Filippenko 1982) to minimize differential light losses caused by atmospheric dispersion. Spectra were reduced using standard techniques for charge-coupled device processing and spectrum extraction, specifically the KastShiv\(^\text{11}\) pipeline. Low-order polynomial fits to calibration-lamp spectra were used to determine the wavelength scale, and small adjustments derived from night-sky lines in the target frames were applied. Flux calibration and telluric-band removal were done with our own IDL routines; details are described by Silverman & Filippenko (2012) and Shivvers et al. (2019).

The spectrum (Figure 3) exhibits a blue continuum. We detect absorption lines from Mg II \(\lambda \lambda 2796, 2803 \) and Fe II \(\lambda \lambda 2344, 2374, 2383 \) at a common redshift of \(z = 1.3585 \), as well as additional lines further to the blue (as marked in Figure 3). We suggest this to be the redshift of the GRB.

We derived the X-ray light curve and spectrum of GRB 150910A observed with BAT. To present the optical light curve with broad temporal coverage we also include photometric data reported in the GCN Circulars (as listed in Table 1). Its XRT light curve is taken from the website of the

9 http://idlastro.gsfc.nasa.gov/
10 http://archive.stsci.edu/panstarrs/search.php
11 https://github.com/ishivvers/TheKastShiv
Swift burst analyzer (Evans et al. 2010). In order to make a joint X-ray light curve in the XRT band (0.3–10 keV) from the BAT trigger time to late epochs, the light curve of the prompt X-ray emission of a GRB is derived by extrapolating the BAT spectrum to the XRT band (O’Brien et al. 2006; Evans et al. 2007, 2009).

3. Data Analysis

Figure 1 shows our optical afterglow light curve together with the X-ray light curve in the 0.3–10 keV band derived from the XRT and BAT data. Note that GRB 150910A was triggered in image-trigger mode. A weak gamma-ray signal was detected much prior to the BAT trigger time and lasted up to ∼T0 + 800 s, as shown in the inset of Figure 1. Therefore, we illustrate the joint light curves by setting a zero time of the burst at T0=220 s.

The time-integrated spectrum collected with BAT from T0 = 220 to T0 + 800 s can be adequately fit with a single power-law function. The derived photon index is Γ1 = 1.42 ± 0.12. The fluence in the 15–150 keV band is F = (4.8 ± 0.4) × 10−6 erg cm−2. The peak photon energy (Ep) of the u0 spectrum should be above the BAT energy band. We determine the Ep value by using an empirical estimate as log Ep = (2.76 ± 0.07) − (3.61 ± 0.26)log Γ1 and obtain Ep ≈ 162 keV. We take the spectral indices of the Band function α1 = −1 and α2 = −2.3, and make the K-correction for the fluence in the 1−107 keV band (e.g., Bloom et al. 2001). We find K = 1.29. The BAT light curve peaks at ∼T0 + 83 s, and the 1 s peak photon flux measured from T + 82.89 s in the 15–150 keV band is P = 1.1 ± 0.4 ph cm−2 s−1 (Pagani et al. 2015). All of the quoted uncertainties are at the 90% confidence level. With a redshift of z = 1.36, we obtain the burst isotropic gamma-ray energy as Eiso γ = (2.39 ± 0.19) × 1052 erg and a peak luminosity of Liso γ = 1.03 × 1051 erg s−1.

The X-ray light curve with temporal coverage from T0−220 to T0 + 800 s derived from the data observed with BAT and XRT shows two distinct episodes. The first episode (Episode I) lasts from the beginning of the BAT observation (T0−220) to ∼T0 + 140 s, ending with a steep decay segment. The second episode (Episode II) is dominated by a long-lasting, steady emission component, which was simultaneously detected with both the BAT and XRT and rapidly decayed at around 10 ks after the BAT trigger. An empirical fit with a smooth broken power-law model of F = F0[(t/T0)α1 + (t/T0)α2]1/2 to the light curve of the Episode II yields αX,1 = −0.36 ± 0.03 and αX,2 = −2.12 ± 0.02, and T0 = 4.73 ks by fixing the sharpness parameter ω at 3 (e.g., Liang et al. 2007), as shown in Table 2.

Comparison of the temporal slopes between the optical and X-ray light curves of GRB 150910A throughout Episode II reveals an apparent mismatch. The optical emission has a smooth onset bump followed by a normal decay, as predicted by the standard external shock model. The X-ray emission exhibits a plateau followed by a steep decay. The light curves exhibit obvious chromatic behavior with an X-ray excess (as shown in Figure 1), which may indicate that they have different physical origins (Wang et al. 2015).

To investigate this chromatic behavior, we perform a spectral analysis of Episode II. The joint spectrum observed with BAT and XRT from T0 + 140 to T0 + T0 is extracted. We use the Xspec package to fit the spectrum with an absorbed single power law by fixing the equivalent hydrogen column density of our Milky Way in the burst direction as NHMW = 5.43 × 1020 cm−2. We obtain an NH value in the host galaxy as NHhost ≈ (1.3 ± 1.2) × 1021 cm−2 and a photon index of Γ = −1.53 ± 0.03 (as shown in Figure 4). Therefore, the X-ray and gamma-ray radiation of Episode II should be from the same

Figure 2. Keck LRIS images of GRB 150910A in the V (left) and I (right) bands taken on 2015 October 10. The optical counterpart was not detected; its position is marked with a green circle.
$T-T_d$ (mid, s)	Exp (s)	Mag	a	Filter	Telescope, GCN Circ., References
228	73	19.90	0.01	W	UVOT,18270, (1)
229	72	19.93	0.01	W	UVOT,18270, (1)
602	9.5	17.09	0.01	W	UVOT,18270, (1)
775	9.5	16.67	0.01	W	UVOT,18270, (1)
941	73	16.30	0.01	W	UVOT,18270, (1)
578	9.5	17.56	0.01	b	UVOT,18270, (1)
751	9.5	16.87	0.01	b	UVOT,18270, (1)
1815	10	16.81	0.12	V	KAIT
1915	10	16.82	0.13	V	KAIT
2014	10	16.96	0.14	V	KAIT
2112	10	16.83	0.12	V	KAIT
2212	10	17.08	0.16	V	KAIT
2312	10	17.01	0.15	V	KAIT
2412	10	17.36	0.17	V	KAIT
2510	10	17.05	0.17	V	KAIT
2614	10	17.06	0.18	V	KAIT
2714	10	17.15	0.17	V	KAIT
2814	10	17.07	0.12	V	KAIT
2914	10	17.66	0.14	V	KAIT
3013	10	17.52	0.20	V	KAIT
3113	10	17.38	0.22	V	KAIT
2.583,936	2 × 300	>24.30	...	V	Keck
1849	10	15.74	0.08	I	KAIT
1947	10	15.78	0.08	I	KAIT
2045	10	15.85	0.08	I	KAIT
2145	10	15.99	0.09	I	KAIT
2245	10	16.04	0.09	I	KAIT
2345	10	16.10	0.12	I	KAIT
2445	10	16.10	0.09	I	KAIT
2549	10	16.19	0.12	I	KAIT
2648	10	16.27	0.08	I	KAIT
2748	10	16.28	0.10	I	KAIT
2848	10	16.60	0.13	I	KAIT
2946	10	16.51	0.11	I	KAIT
3046	10	16.38	0.09	I	KAIT
3144	10	16.54	0.11	I	KAIT
3209	10	16.67	0.16	I	KAIT
3276	10	16.82	0.13	I	KAIT
3342	10	16.76	0.11	I	KAIT
3409	10	16.95	0.14	I	KAIT
3476	10	16.89	0.12	I	KAIT
3541	10	16.74	0.13	I	KAIT
3608	10	16.86	0.14	I	KAIT
3674	10	16.93	0.13	I	KAIT
3739	10	16.78	0.13	I	KAIT
3806	10	17.01	0.14	I	KAIT
3873	10	16.97	0.13	I	KAIT
3940	10	16.97	0.19	I	KAIT
4007	10	16.99	0.17	I	KAIT
4080	10	17.09	0.11	I	KAIT
4146	10	17.17	0.15	I	KAIT
4213	10	17.15	0.11	I	KAIT
4280	10	17.20	0.14	I	KAIT
4516	10	16.99	0.16	I	KAIT
4583	10	17.16	0.19	I	KAIT
4650	10	17.11	0.15	I	KAIT
4717	10	17.29	0.17	I	KAIT
4783	10	17.21	0.16	I	KAIT
4850	10	17.25	0.15	I	KAIT
4915	10	17.16	0.11	I	KAIT
4982	10	17.31	0.16	I	KAIT
5048	10	17.62	0.21	I	KAIT
5115	10	17.35	0.24	I	KAIT
5182	10	17.62	0.18	I	KAIT
5249	10	17.14	0.26	I	KAIT
5316	10	17.34	0.19	I	KAIT
5382	10	17.16	0.14	I	KAIT
5845	10	17.30	0.21	I	KAIT
5912	10	17.48	0.16	I	KAIT
5979	10	17.31	0.16	I	KAIT
6046	10	17.52	0.20	I	KAIT
6112	10	17.48	0.22	I	KAIT
6177	10	17.47	0.24	I	KAIT
6244	10	17.78	0.30	I	KAIT

The Astrophysical Journal, 896:4 (9pp), 2020 June 10

Table 1
Optical Afterglow Photometry Log of GRB 150910A

(Continued)
Table 1 (Continued)

$t - T_0$ (mid, s)	Exp (s)	Maga	σ^a	Filter	Telescope, GCN Circ., References
6144	10	17.93	0.09	Clear	KAIT, RAS,18275, (6)
6211	10	18.03	0.07	Clear	KAIT
6278	10	18.11	0.11	Clear	KAIT
12,104	270	18.40	0.10	R	MITSuME,18267, (2)
17,676	300	19.40	0.20	R	Nanshan,18269, (3)
18,504	300	19.55	0.20	R	Nanshan,18269, (3)
19,116	300	19.30	0.20	R	Nanshan,18269, (3)
36,985	1650	20.18	0.05	R	TSHAO,18281, (4)
39,492	150	20.09	0.23	R	T100,18314, (5)
39,726	900	20.20	0.05	R	SAO
39,816	150	20.18	0.25	R	T100,18314, (5)
44,905	2760	20.46	0.07	R	Mt-Ter-kol,18306, (7)
45,131	990	20.25	0.14	R	Chuguev,18287, (8)
48,412	900	20.57	0.05	R	SAO
56,660	900	20.78	0.05	R	SAO
57,959	780	20.90	0.07	R	Mt-Ter-kol,18320, (9)
78,752	5 × 600	21.17	0.09	R	Nickel
104,998	2400	21.80	0.20	R	MITSuME,18288, (10)
118,903	600	21.69	0.12	R	CrAO,18556, (11)
119,882	2400	21.87	0.10	R	TSHAO,18319, (12)
123,068	600	21.82	0.10	R	CrAO,18556, (9)
192,376	1620	22.30	0.40	R	TSHAO,18319, (12)
121,150	600	22.48	0.15	B	CrAO,18556, (9)
124,727	960	22.09	0.10	B	CrAO,18556, (9)

Notes. To complete our analysis, we adopt additional photometric data published in the GCN Circulars listed below.

a Not corrected for Galactic foreground reddening. The reference time T_0 is the Swift BAT burst trigger time. "$T - T_0$" is the middle time (s) for each observation. "Exposure" is the exposure time (s) for each observation. "σ" means the uncertainty in the magnitude.

References. (1) McCauley & Pagani (2015), (2) Kuroda et al. (2015a), (3) Xu et al. (2015), (4) Mazaeva et al. (2015), (5) Sonbas et al. (2015), (6) Moskvitin & Goranskij (2015), (7) Andreev et al. (2015), (8) Krugly et al. (2015), (9) Volnova et al. (2015a), (10) Kuroda et al. (2015b), (11) Rumyantsev et al. (2015), (12) Volnova et al. (2015b).

Figure 3. Optical spectrum of GRB 150910A obtained with the 3 m Shane telescope at Lick Observatory.

Episode II are consistent with the prediction of a newly born magnetar (e.g., Zhang & Meszaros 2001). Therefore, we propose that GRB 150910A is typical of GRBs driven by a newly born magnetar. The prompt gamma-rays and X-rays observed in Episode I would be from the jet radiation, and the late-time gamma-rays and X-rays observed in Episode II would be dominated by the MD wind of a newly born magnetar via an internal energy dissipation process. The early-time optical bump might be attributed to the afterglow of the jet when it propagates into the circumburst medium.

4. Properties of the Jet and Central Engine

If the prompt gamma-ray emission and optical afterglow are produced from the jet, as suggested above, we can fit the optical afterglow data with the standard external shock model (Sari et al. 1999; Fan & Piran 2006). We adopt the Markov Chain Monte Carlo technique to evaluate the likelihoods of the model parameters. For details of model and fitting strategy, please refer to Fan & Xu (2006) and Zhong et al. (2016). We fit only the optical data. The observed X-ray data place an upper limit to the X-ray afterglow.

The fitting results for GRB 150910A are illustrated in Figure 1. Our best fit yields the following model parameters: the initial Lorentz factor of the jet $\Gamma_0 = 200\pm 34$, the internal energy partitions of the electrons $\epsilon_e = (6.0\pm 0.2) \times 10^{-2}$ and of the magnetic field $\epsilon_B = (1.8\pm 0.1) \times 10^{-4}$, the circumburst medium density $n = 2.57\pm 0.5$ cm$^{-3}$, the isotropic kinetic jet energy $E_{K,\text{iso}} = (2.0\pm 0.1) \times 10^{53}$ erg, and the power-law index of emitting electrons $p = 2.79\pm 0.07$. The efficiency of the GRB jet is $\eta = E_{\gamma,\text{iso}}/(E_{K,\text{iso}} + E_{\gamma,\text{iso}}) = 11\%$, being similar to typical GRBs (e.g., Zhang et al. 2006). In Episode II, the photon index of the optical emission ($\Gamma = (p + 1)/2 = 1.9$) is quite different from that of the X-ray emission ($\Gamma \approx 1.56$ and 1.65). Figure 5 shows that extrapolation of the afterglow model from optical to X-rays undershoots the observed X-ray flux, consistent with the X-ray flux excess in Figure 1.

The injected kinetic luminosity to the MD wind from the spin-down of a magnetar evolves as $L_k \propto (1 + t/\tau)^{-\alpha}$, where τ is the characteristic spin-down timescale of the magnetar (e.g., Zhang & Meszaros 2001). The α value depends on the spin-down energy lost via the MD wind or the GW radiation.
the evolution of the injected kinetic luminosity from the spin-down of a newly born magnetar in the case that the spin-down energy lost is dominated by electromagnetic emission—that is, $L_k \propto (1 + t/\tau)^{-2}$. We estimate the initial spin period (P_0) and the surface polar cap magnetic field strength (B_p) of the magnetar in GRB 150910A (e.g., Zhang & Mészáros 2001),

$$B_{p,15} = 2.05(I_{45} R_6^{-3} (L_{b,49}/\eta_e)^{-1/2} \tau_5^{-1}) G,$$

$$P_{0,-3} = 1.42(I_{45}^{1/2} (L_{b,49}/\eta_e)^{-1/2} \tau_5^{-1/2}) s,$$

where R and I are, respectively, the neutron star radius and moment of inertia, η_e is the radiative efficiency of the MD wind, and the convention $Q = 10^4 Q_e$ is adopted in cgs units. One can infer the relations $B_p - P_0$ and $B_p - P_0^2$,

$$B_{p,15} = 1.44 I_{45}^{1/2} R_6^{-3} \tau_5^{-1/2} P_{0,-3} G,$$

$$B_{p,15} = 1.02 R_6^{-3} (L_{b,49}/\eta_e)^{1/2} P_{0,-3}^2 G.$$

Our above analysis yields $\tau = t_p/(1 + z) = 2007 s$ and $L_b = 3.19 \times 10^{48}$ erg s$^{-1}$. By taking $I_{45} = 1$, $R_6 = 1$, and a lower limit of P_0 for a neutron star as $P_{0,-3} \gtrsim 1$ (e.g., Lattimer & Prakash 2004), we have $B_{p,15} \gtrsim 1.02$ and $\eta_e \geq 32\%$ (point A in Figure 6). Since $\eta_e \leq 1$, we also have $B_{p,15} \lesssim 1.80$ and $P_{0,-3} \lesssim 1.77$ (point B in Figure 6). Thus, we obtain tight constraints on B_p and P_0 as $1.02 \lesssim B_{p,15} \lesssim 1.80$ and $1 \lesssim P_{0,-3} \lesssim 1.77$ (the range between points A and B in Figure 6).

5. Discussion

Our analysis shows that the optical observations of GRB 150910A are well explained with the external shock model. The early-time optical bump is then attributed to the deceleration of the jet by the ambient medium. Such a feature may also be interpreted with the line-of-sight effect for a uniform jet with a sharp edge (Panaitescu & Vestrand 2008; Guidorzi et al. 2009; Margutti et al. 2010). In this scenario, the optical light curve may peak at a time when the jet Lorentz factor satisfies $\Gamma = 1/(\theta_v - \theta_j)$, where θ_v and θ_j are the viewing angle and the jet opening angle, respectively. By analyzing a sample of optical light curves with an onset bump feature, Liang et al. (2010) argued that such a feature would result from the jet deceleration and that Γ_0 of the jet should be robustly estimated with the peak time of the optical bump. We examine whether GRB 150910A follows the same empirical
Figure 6. Initial spin period P_0 vs. surface polar cap magnetic field strength B_p distributions, which are constrained by the radiation efficiency of the magnetic dipole wind. The black and red dashed lines correspond to efficiencies of 32\% and 100\%, respectively. The vertical black dotted line is the lower limit of the spin period of a neutron star (Lattimer & Prakash 2004). The labels “A” and “B” indicate the lower and upper limits of (P_0, B_p) with (1 ms, 1.02 \times 10^{15} \) G and (1.77 ms, 1.80 \times 10^{15} \) G, respectively. The range between A to B is the available parameter space for GRB 150910A.

Figure 7. GRB 150910A (marked with a red star) shares the same empirical relation $L_{p,\text{iiso}}-E_{p,z}-\Gamma_0$ with typical GRBs (black circles; data from Liang et al. 2015). The solid and dashed lines are the least-squares fit and its 95\% confidence levels, respectively. $L_{p,\text{iiso}}$ is the peak of the isotropic luminosity, and $L_{n,\text{s}}$ is derived from three-parameter correlations $L_{p,\text{iiso}}-E_{p,z}-\Gamma_0$ by Liang et al. (2015).

E_{peak} vs. B_p relation determined for typical GRBs (Liang et al. 2015), where $E_{p,z}$ is the peak energy in the cosmological rest frame. Figure 7 illustrates this consistency, likely suggesting that the derived Γ_0 is the initial Lorentz factor of the fireball and the onset bump may be due to the deceleration of the fireball, as in typical long GRBs.

The X-ray plateau of GRB 150910A was simultaneously observed in the BAT and XRT bands. We calculate the energy of the MD wind as $L_{\text{wind}}=L_{\text{wind}} \times \tau \approx 6.40 \times 10^{51} \text{ erg}$, where L_{wind} is the observed wind luminosity in the BAT+XRT band. Figure 8 shows GRB 150910A in the $E_{\text{wind}}-E_{\text{jet}}$ plane in comparison with a sample of GRBs whose early XRT light curves are dominated by MD radiation (Zou et al. 2019). One can observe that the MD wind of GRB 150910A is the most energetic one among these GRBs. However, it still follows the P_0-E_{jet} relation reported by Zou et al. (2019).

Such a jet-wind coexisting system may explain the observed diverse temporal features in the optical and X-ray afterglow light curves. Comprehensive analysis of both the optical and X-ray afterglow light curves reveals that the light-curve diversity may be due to the competition among radiation components (e.g., Li et al. 2012; Liang et al. 2013). The optical afterglows and the single power-law decaying X-ray afterglows may be dominated by the jet afterglows, and the X-ray emission in the shallow-decaying segment of the canonical XRT light curves may be dominated by MD radiation (e.g., Zou et al. 2019). GRB 150910A is unusual with its extremely energetic wind, which overwhelmingly dominates the observed early X-ray plateau. The MD radiation decays as roughly $L_k \propto t^{-2}$ after the characteristic spin-down timescale τ, and τ is typically thousands of seconds. In addition, the X-ray afterglow usually decays as roughly $L_0 \propto t^{-1.7}$ prior to the jet break. The observed jet-break time is usually at several days (e.g., Liang et al. 2008). Therefore, the observed X-ray emission at late epoch (several hours after the GRB trigger) may be dominated by the jet afterglow, where they will have the same decay slopes in both X-ray and optical light curves. Wang et al. (2015) found that a large fraction of optical and X-ray afterglows can still be explained with the external shock model. For GRB 150910A, the temporal slopes of the X-ray and optical light curves fall at the same rate until after 10^5 s (as shown in Figure 1).

6. Conclusions

We report our optical spectroscopic and photometric observations of the optical afterglow of GRB 150910A, and we investigate the physical origins of both the optical and X-ray afterglows, incorporating data obtained with the Swift BAT and XRT. We show that the gamma-ray and X-ray emission of this GRB can be separated into the jet-emission episode (Episode I) and the magnetar MD wind radiation episode (Episode II). The jet-emission episode is observed with BAT more than 200 s prior to its trigger.

Modeling the R-band optical light curve with the standard external shock model, we obtain jet parameters of $\Gamma_{0,5} = 200^{+44}_{-34}$, $\epsilon_e = 0.06 \pm 0.002$, $\epsilon_B = (1.8 \pm 0.1) \times 10^{-4}$, $n = 2.57 \pm 0.5 \text{ cm}^{-3}$, and $\epsilon_{K,\text{iiso}} = (2.0 \pm 0.1) \times 10^{55} \text{ erg}$. The radiative efficiency of the jet prompt emission is $\eta_{j,5} \approx 11\%$. This GRB follows the $L_{p,\text{iiso}}-E_{p,z}-\Gamma_0$ relation derived for typical GRBs that have a clear detection of an onset bump in their early-time optical afterglow light curves.

The MD wind emission was detected in both the BAT and XRT bands, making GRB 150910A the brightest among the current sample of MD winds detected by the XRT. We infer the parameters of the magnetar as $1.02 \times 10^{15} \text{ G} \leq B_p \leq 1.80 \times 10^{15} \text{ G}$ and $1 \text{ ms} \leq P_0 \leq 1.77 \text{ ms}$, and the lower limit of the radiation efficiency of the wind as $\eta_{w,5} \geq 32\%$. It also satisfies the P_0-E_{jet} relation of GRBs in which a shallow-decay segment was detected in their early-time XRT light curves.
Figure 8. Correlations of P_{90}–$E_{jet,iso}$ (left panel) and E_{wind}–$E_{jet,iso}$ (right panel); GRB 150910A is marked with a red star. The solid and dashed lines are the least-squares fit and its 95% confidence levels, respectively. The sample of Zou et al. (2019) (black point) also presented here.

We are grateful to Daniel Perley for the Lick/Kast observation and data reduction, Minkyu Kim and Timothy William Ross for help obtaining the Lick/Nickel images, and Melissa L. Graham for her assistance at Keck. Wei-Hua Lei, Zi-Gao Dai, and Bing Zhang are acknowledged for helpful discussions. This research used public data from the Swift data archive and the UK Swift Science Data Center. This work is supported by the National Natural Science Foundation of China (grants 11673006, U1938201, 11533003, 11773007, 11851304 and U1938106), the Guangxi Science Foundation (grant 2016GXNSFFA380006, 2017GXNSFA198206, 2018GXNSFGA281007, 2017AD22006, 2018GXNSFFA281010, and 2018GXNSFDA281033), the One-Hundred-Talents Program of Guangxi Colleges, and the High Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges. A.V.F. of Guangxi Colleges, and the One-Hundred-Talents Program in Guangxi Colleges. A.V.F.’s supernova/GRB group is grateful for financial assistance from the TABASGO Foundation, the Christopher R. Redlich Fund, NASA/Swift grants NNX12AD73G and 80NSSC19K0156, and the Miller Institute for Basic Research in Science (UC. Berkeley). KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the U.S. National Science Foundation, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. Research at Lick Observatory is partially supported by a generous gift from Google. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation.

ORCID iDs

Xiang-Gao Wang @ https://orcid.org/0000-0001-8411-8011
WeiKang Zheng @ https://orcid.org/0000-0002-2636-6508
Alexei V. Filippenko @ https://orcid.org/0000-0003-3460-0103
Da-Bin Lin @ https://orcid.org/0000-0003-1474-293X
Rui-Jing Lu @ https://orcid.org/0000-0003-2467-3608
En-Wei Liang @ https://orcid.org/0000-0002-7044-733X

References

Andreev, M., Mazaeva, E., Sergeev, A., et al. 2015, GCN, 18306, 1
Bloom, J. S., Frail, D. A., & Sari, R. 2001, AJ, 121, 2879
Campana, S., Mangan, V., Blustin, A. J., et al. 2006, Natur, 442, 1008
Cano, Z., Malesani, D., de Ugarte Postigo, A., et al. 2015, GCN, 18279, 1
Chen, W., Xie, W., Wei, W.-H., & et al. 2017, ApJ, 849, 119
Dai, Z. G., & Lu, T. 1998, A&A, 333, L87
Dai, Z. G., Wang, J. S., & Yu, W. X. 2017, ApJL, 838, L7
Du, S., Liu, H.-I., Zhong, S.-Q., & Liang, E.-W. 2016, MNRAS, 462, 2990
Evans, P. A., Beardmore, A. P., Page, K. L., et al. 2007, A&A, 469, 379
Evans, P. A., Beardmore, A. P., Page, K. L., et al. 2009, MNRAS, 397, 1177
Evans, P. A., Willingale, R., Osborne, J. P., et al. 2010, A&A, 519, A102
Fan, Y., & Piran, T. 2006, MNRAS, 369, 197
Fan, Y.-Z., & Xu, D. 2006, MNRAS, 373, L19
Filippenko, A. V. 1982, PASP, 94, 715
Gehrels, M., Li, W., Filipenko, A. V., et al. 2010, ApJS, 190, 418
Krimm, N., Chincarini, G., Giommi, P., et al. 2004, ApJL, 611, 1005
Guidorzi, C., Clemens, G., Kobayashi, S., et al. 2009, A&A, 499, 439
Krudy, Y., Mazaeva, E., Shevchenko, V., et al. 2015, GCN, 18287, 1
Kumar, P., & Zhang, B. 2015, PPR, 561, 1
Kuroda, D., Hanayama, H., Miyaji, T., et al. 2015a, GCN, 18288, 1
Kuroda, D., Yanagisawa, K., Shimizu, Y., et al. 2015b, GCN, 18267, 1
Landolt, A. U. 1992, AJ, 104, 340
Lasky, P. D., & Glampedakis, K. 2016, MNRAS, 458, 1660
Lattimer, J. M., & Prakash, M. 2004, Sci, 304, 536
Li, L., Liang, E.-W., Tang, Q.-W., et al. 2012, ApJ, 758, 27
Li, W., Filipenko, A. V., Chornock, R., et al. 2003, PASP, 115, 844
Liang, E.-W., Li, L., Gao, H., et al. 2013, ApJ, 774, 13
Liang, E.-W., Lin, T.-T., Liu, J., et al. 2015, ApJ, 813, 116
Liang, E.-W., Racusin, J. L., Zhang, B., Zhang, B.-B., & Burrows, D. N. 2008, ApJ, 675, 528
Liang, E.-W., Li, S.-X., Zhang, J., et al. 2010, ApJ, 725, 2209
Liang, E.-W., Zhang, B.-B., & Zhang, B. 2007, ApJ, 670, 655
Lü, H.-J., Lan, L., Zhang, B., et al. 2018, ApJ, 862, 130
Lü, H.-J., & Zhang, B. 2014, ApJL, 785, 74
Lü, H.-J., Zhang, B., Lei, W.-H., Li, Y., & Lasky, P. D. 2015, ApJ, 805, 89
Lyons, N., O’Brien, P. T., Zhang, B., et al. 2010, MNRAS, 402, 705
MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262
Margutti, R., Genet, F., Granot, J., et al. 2010, MNRAS, 402, 46
Mazaeva, E., Reva, I., Kusakin, A., Volnova, A., & Poznensky, A. 2015, GCN, 18281, 1
McCaulley, L. M., & Pagani, C. 2015, GCN, 18270, 1
Mészáros, P., Fox, D. B., Hanna, C., & Mursae, K. 2019, NatRP, 1, 585
Metzger, B. D., & Piro, A. L. 2014, MNRAS, 439, 3916
Miller, R. P. S., & Stone, R. P. 1993, Lick Observatory Technical Report 66, U.C. Santa Cruz
Moskvin, A. S., & Goranskii, P. V. 2015, GCN, 18275, 1
Nousek, J. A., Kouveliotou, C., Grupe, D., et al. 2006, ApJL, 642, 389
O’Brien, P. T., Willingale, R., Osborne, J., et al. 2006, ApJ, 647, 1213
Oke, J. B., Cohen, J. G., Carr, M., et al. 1995, PASP, 107, 375
Paczynski, B. 1998, ApJL, 494, L45
Pagani, C., Beardmore, A. P., Breeveld, A. A., et al. 2015, GCN, 18264, 1
Panaitecsu, A., & Vestrund, W. T. 2008, MNRAS, 387, 497
Perley, D. A., & Cenko, S. B. 2015, GCN, 18295, 1
Rumyantsev, V., Mazaeva, E., Volnova, A., & Pozanenko, A. 2015, GCN, 18556, 1
Sari, R., & Piran, T. 1999, A&AS, 138, 537
Sari, R., Piran, T., & Narayan, R. 1998, ApJL, 497, L17
Schmidl, S., Knust, F., & Greiner, J. 2015, GCN, 18277, 1
Shivvers, I., Filippenko, A. V., Silverman, J. M., et al. 2019, MNRAS, 482, 1545
Silverman, J. M., & Filippenko, A. V. 2012, MNRAS, 425, 1917
Sonbas, E., Basturk, O., Guver, T., et al. 2015, GCN, 18314, 1
Stahl, B. E., Zheng, W., de Jaeger, T., et al. 2019, MNRAS, 490, 3882
Stetson, P. B. 1987, PASP, 99, 191
Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99
Troja, E., Cusumano, G., O’Brien, P. T., et al. 2007, ApJ, 665, 599
Volnova, A., Reva, I., Kusakin, A., et al. 2015a, GCN, 18319, 1
Volnova, A., Sergeev, A., Andreev, M., Mazaeva, E., & Pozanenko, A. 2015b, GCN, 18320, 1
Wang, X.-G., Zhang, B., Liang, E.-W., et al. 2015, ApJS, 219, 9
Wang, X.-G., Zhang, B., Liang, E.-W., et al. 2018, ApJ, 859, 160
Woosley, S. E. 1993, ApJ, 405, 273
Xu, D., Qin, Y., Hu, Y.-D., et al. 2015, GCN, 18269, 1
Zhang, B., Fan, Y. Z., Dyks, J., et al. 2006, ApJ, 642, 354
Zhang, B., Kobayashi, S., & Mészáros, P. 2003, ApJ, 595, 950
Zhang, B., & Mészáros, P. 2001, ApJL, 552, L35
Zheng, W., Filippenko, A. V. 2015, GCN, 18265, 1
Zheng, W., Filippenko, A. V., Yuk, H., Zhu, Y., & Perley, D. A. 2015, GCN, 18273, 1
Zhong, S.-Q., Xin, L.-P., Liang, E.-W., et al. 2016, ApJ, 831, 5
Zou, L., Zhou, Z.-M., Xie, L., et al. 2019, ApJ, 877, 153