Conditioning of Random Feature Matrices: Double Descent and Generalization Error

Zhijun Chen and Hayden Schaeffer
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.
(zhijunc@andrew.cmu.edu, schaeffer@cmu.edu)

2021

Abstract

We provide (high probability) bounds on the condition number of random feature matrices. In particular, we show that if the complexity ratio N/m where N is the number of neurons and m is the number of data samples scales like $\log^{-1}(N)$ or $\log(m)$, then the random feature matrix is well-conditioned. This result holds without the need of regularization and relies on establishing various concentration bounds between dependent components of the random feature matrix. Additionally, we derive bounds on the restricted isometry constant of the random feature matrix. We prove that the risk associated with regression problems using a random feature matrix exhibits the double descent phenomenon and that this is an effect of the double descent behavior of the condition number. The risk bounds include the underparameterized setting using the least squares problem and the overparameterized setting where using either the minimum norm interpolation problem or a sparse regression problem. For the least squares or sparse regression cases, we show that the risk decreases as m and N increase, even in the presence of bounded or random noise. The risk bound matches the optimal scaling in the literature and the constants in our results are explicit and independent of the dimension of the data.

1 Introduction

Random feature methods are essentially two-layer shallow networks whose single hidden layer is randomized and not trained \[2, 4\]. They can be used for various learning tasks, including regression, interpolation, kernel-based classification, etc. Studying their behavior not only results in a deeper understanding of kernel machines but could also yield insights into more complex models, such as very wide or deep neural networks.

Consider $\mathbf{x} \in \mathbb{R}^d$ to be the input vector and $\mathbf{W} = [\omega_{i,j}] \in \mathbb{R}^{d \times N}$ to be a random weight matrix, where each column of the matrix \mathbf{W} is sampled from some prescribed probability density $\rho(\omega)$. Then the random feature map is defined by $\phi(\mathbf{W}^T \mathbf{X}) \in \mathbb{C}^N$ where $\phi : \mathbb{R} \to \mathbb{C}$ is some Lipschitz activation function applied element-wise to the input. The resulting two-layer network with N neurons is defined by $\mathbf{y} = \mathbf{C}^T \phi(\mathbf{W}^T \mathbf{X}) \in \mathbb{C}^{d_{out}}$ where the final layer $\mathbf{C} \in \mathbb{C}^{N \times d_{out}}$ needs to be trained for a given problem. The analysis of these models with respect to the dimensionality, stability, testing error, etc. often depends on the extreme singular values (or the condition number)
of the matrix $A := \phi(X^TW) \in \mathbb{C}^{m \times N}$, where $X = [x_1, \ldots, x_m] \in \mathbb{R}^{d \times m}$ is a collection of m random samples of the input variable. In particular, for regression or interpolation, knowledge of the condition number of A can yield control over the error as well as reveal the landscape of the testing error as a function of the model complexity ratio $\frac{N}{m}$.

The testing error (or risk) of random feature models have been of recent interest [1, 3, 5–7, 9]; in particular, with a goal of quantifying the number of features needed to obtain a given learning rate. In [3], it was shown that the random feature model yields a test error of $O(N^{-\frac{2}{3}} + m^{-\frac{1}{2}})$ when trained on Lipschitz loss functions. Thus if $m \asymp N$ then the generalization error is $O(N^{-\frac{2}{3}})$ for large N. In [11], a comparison between the test error using kernel ridge regression with both the full kernel matrix and a column subsampled kernel matrix (related to Nyström’s method) suggests that the number of columns (and rows) should be roughly the square root of the number of original samples in order to obtain their learning rate. The squared loss case was consider in [1, 5], providing risk bounds when the random feature model is trained via ridge regression. In [5], it was shown that for f in an RKHS, using $N = O(\sqrt{m \log m})$ is sufficient to achieve a test error of $O(m^{-\frac{1}{2}})$ with a random feature method. The results in [3, 11] use similar technical assumptions on the kernel and the second moment operator, e.g. a certain spectral decay rate on second moment operator, see also [41]. In [9], an investigation of the kernel ridge regression and the random feature ridge regression problems in terms of the $N, m,$ and d was given. The main result suggests that an ‘optimal’ choice for the complexity ratio $\frac{N}{m}$ depends on an algebraic scaling in $N, m,$ and d.

In the overparameterized setting, minimum norm regression problems are often used, either by minimizing the ℓ^2 or ℓ^1 norm with a data fitting constraint. The ℓ^1 problem can be used to obtain a low complexity random feature model in the highly overparameterized setting and was proposed and studied in [7] (see also [29] for a related algorithmic approach). By solving the ℓ^1 basis pursuit denoising problem with a random feature matrix, test error bounds where obtain as a function of the sparsity, $N, m,$ and d. It is worth noting that in the dense case, i.e. when the sparsity equals N and $m \asymp N^2$ up to log terms, the test error scales like $N^{-1} + m^{-\frac{1}{2}}$ up to log terms, thus the method achieves the upper bounds provided by other methods but utilizes a different computational approach.

The min-norm interpolation problem (or the ridgeless limit as $\lambda \to 0^+$) has received recent attention for random feature methods [9, 12–17, 19]. In [14, 16], the test error for general ridge and ridgeless regression problems is shown to be controlled by the condition number, or the related notion of effective rank, of the random design matrix. It was shown in [9] that the min-norm interpolators are optimal among all kernel methods in the overparameterized regime.

In some settings, overparameterized random feature models can produce lower test error even though they have large complexity. However, choosing N and m only using the risk bounds could lead to an insufficient picture of the parameter landscape for random feature models or neural network. In modern learning, the graph of the test error as a function of the model’s complexity (i.e. relative number of neurons) has two valleys. The first is when the number of parameters are relatively small, this is the underparameterized regime where the model has small complexity and small risk. As the complexity reaches the interpolation threshold ($N = m$), the risk tends to peak
and then begins to decay again as the number of parameters continues to increase well into the overparameterized regime. This is referred to as the double descent phenomenon \cite{belkin2018double, bartlett2019benign, wainwright2019information, yuan2020data} and has had several recent results, specifically, in the characterization of the test error as a function of the complexity ratio \cite{belkin2020double, zhang2020generalization, bartlett2020benign, wainwright2019information, yuan2020data, belkin2019rethinking, belkin2020two}. A direct analysis of the double descent curves for random feature regression \cite{belkin2018double, kawaguchi2017generalization} showed that in the overparameterized regime, taking $N/m = O(1)$ can lead to suboptimal results which can be corrected if $N/m \to \infty$. To achieve near optimal test errors, they suggest setting $N \approx m^{1+\delta}$ for small $\delta > 0$.

1.1 Some Related Work

Some of the earlier results in the literature on random matrix theory for some related problems focused on random kernel matrices in the form $K_{ij} = \phi(x_i^T x_j)$, specifically, characterizing the spectrum of square matrices depending on one random variable x \cite{edelman1989eigenvalues, chen2015eigenvalues}. In \cite{vershinin2011random, vershinin2012eigenvalues, edelman1989eigenvalues, vershinin2012lower}, the asymptotic behavior of asymmetric rectangular random matrices $A = \phi(X^T W)$ were studied, in particular, to quantify the limiting distribution on the spectrum of the Gram matrix AA^*. In \cite{vershinin2014asymptotics} the asymptotic behavior of the resolvent operator of the Gram matrix was studied, where W is random but X is deterministic. Using concentration arguments, \cite{vershinin2014asymptotics, vershinin2016random} analyzed the spectrum of the Gram matrix of random feature maps in the high-dimensional setting where N grows like m. Precise asymptotics for the random feature ridge regression model in the large m, N, and d limit and a characterize of the test error as function of the dimensional parameters were given in \cite{vershinin2015random}. They also showed the existence of a phase transition with respect to N/m at the interpolation threshold. In \cite{vershinin2016phase}, the authors studied the multiple-descent curve for the scaling $d = m^\alpha$ where $\alpha \in (0, 1)$. They observed non-monotonic behavior in the test error as a function of the sample size m. The results in \cite{vershinin2016phase} rely on the restricted lower isometry of the kernels, showing that (with high probability) the empirical kernel matrix has a certain number of nonzero eigenvalues with a lower bound.

1.2 Our Contributions

In this work, we provide (high probability) bounds on the conditioning of the random feature matrix $A = \phi(X^T W)$ for N neurons, m samples, and with dimension d. In particular, when the N/m scales like $\log(m)$ (overparametrized) or $\log^{-1}(N)$ (underparameterized), the singular values of A concentrate around 1 and thus with high probability the condition number of the random feature matrix is small. In addition, the guarantees break down in the interpolation region where we prove that the system is ill-conditioned. When $N = m$, as the number of features (or equivalently the number of samples) increases the conditioning at the interpolation regime worsens. This transition between the conditioning states coincides with the phase transition in the double descent curves (the risk) for random feature regression. As an additional application of our results, we show that the condition number can be used to obtain state-of-the-art test error bounds for a particular class of target functions. We highlight some comparisons with other works below.

- Our theoretical results are related to other random matrix results, such as \cite{vershinin2011random, vershinin2012eigenvalues, vershinin2014asymptotics, vershinin2015random, vershinin2016random}; however, we quantify the behavior of the random feature matrix for both finite and large N and m and provide both sample and feature complexity bounds. Our results give a simple scaling between N and m that yields random feature matrices which are nearly isometries.
• We connect the conditioning of the random matrix to the double descent curves and provide another characterization of the underparameterized and overparameterized regions, compared to \cite{9, 19}. Specifically, our results show that the complexity ratio \(N/m\) need only be logarithmically far from the interpolation threshold to have small risk, rather than algebraically far. Our results support similar conclusions to \cite{9, 19}.

• The proofs give explicit values for the constants used in our bounds and thus our results hold up to additive terms, for example, compared to the results of \cite{5} which are based on overall rates. Our bounds improve for high-dimensional data, since the constants are independent of the dimension \(d\).

• The analysis in \cite{7} established the structure of the random feature matrix using a coherence estimate (for sparse regression in the overparameterize regime). A coherence bound leads to a non-optimal quadratic scaling (up to log terms) between \(m\) and \(N\) (or the sparsity \(s\)). Our results directly estimate the restricted isometry constant thus yielding a linear scaling (up to log terms) between \(m\) and \(N\) (or \(s\)). This difference allows for a more precise characterization of the underparameterized and overparameterized regimes, i.e. it shows that the complexity ratio only needs to scale by log factors rather than polynomials. Our results also match the transition point \(N = m\) seen in \cite{9, 19, 32} and the linear scaling considered in \cite{24}.

• We establish risk bounds for random feature regression without the need for assumptions on the spectrum of the second moment operator or kernel \cite{5, 11}. We also improve the bounds in the sparse setting \cite{7}. Similar results hold for other conditioning based methods, such as greedy solvers. Our risk bounds include the effects of noise on the measurements, with the assumption that the noise is bounded (or bounded with high probability, e.g. normally distributed).

1.3 Notation

Let \(\mathbb{R}\) be the set of all real number and \(\mathbb{C}\) be the set of all complex number where \(i = \sqrt{-1}\) denotes the imaginary unit. Define the set \([N]\) to be all natural numbers smaller than \(N\), i.e. \(\{1, 2, \ldots, N\}\). Throughout the paper, we denote vectors or matrices with bold letters, and denote the identity matrix of size \(n \times n\) by \(I_n\). For two vectors \(X, y \in \mathbb{C}^d\), the inner product is denoted by \(\langle X, y \rangle = \sum_{j=1}^{d} x_j \overline{y}_j\) where \(X = [x_1, \ldots, x_d]^T\) and \(y = [y_1, \ldots, y_d]^T\). For a vector \(X \in \mathbb{C}^d\), we denote by \(\|X\|_p\) the \(p\)-norm of \(X\) and for a matrix \(A \in \mathbb{C}^{m \times N}\) the (induced) \(p\)-norm is written as \(\|A\|_p\). For a matrix \(A \in \mathbb{C}^{m \times N}\), its transpose is denoted as \(A^T\) and its conjugate transpose is denoted as \(A^*\). Lastly, let \(\mathcal{N}(\mu, \Sigma)\) be the normal distribution with mean vector \(\mu \in \mathbb{R}^d\) and covariance matrix \(\Sigma \in \mathbb{R}^{d \times d}\). If \(A \in \mathbb{C}^{m \times N}\) is full rank, then the pseudo-inverse is \(A^\dagger = A^*(AA^*)^{-1}\) if \(m \leq N\) or \(A^\dagger = (A^*A)^{-1}A^*\) if \(m \geq N\). The condition number with respect to the 2-norm of a matrix \(A\) is defined by \(\kappa(A) := \|A\|_2 \|A^\dagger\|_2\). Denote the \(k\)-th eigenvalue of the matrix \(M\) by \(\lambda_k(M)\).

2 Empirical Behavior

The double descent phenomena appears in both the condition number for random matrices and the risk associated with the corresponding regression problem. In Figure 2.1 we examine the behavior
Figure 2.1: **Double Descent of the Condition Number and Risk.** The condition number and risk curves are plotted as a function of the complexity ratio $\frac{N}{m}$. The curves are rescaled for visualization purposes. Each of the graphs display the double descent phenomena corresponding to the same complexity regions. In each plot, the global minima of the risk is obtained in the overparameterized regime $\frac{N}{m} > 1$ where the linear system remains well-conditioned as N grows.

of the risk and the condition number of the Gram matrix as a function of the complexity $\frac{N}{m}$, where N is the column size, i.e. the number of features, and m is the row size, i.e. the number of samples. Let d be the dimension of each sample. We set $d = 3$ and $m = 100$, and vary the number of features $N \in [500]$. The weights of the random feature matrix are sampled from $\mathcal{N}(0, 0.1)$ and the 100 training points are sampled from $\mathcal{N}(0, 1)$. The target function for the ℓ^2 regression problem is linear $f(x) = b^T x$ where the components of $b \in \mathbb{R}^d$ are randomly sampled from the uniform distribution $U[0, 1]^d$, which differs from the randomness used in the weights. The outputs on the training samples have either zero noise or additive gaussian noise with 10% SNR (as indicated on the graphs). The training is done using the pseudo-inverse, i.e. the least squares problem or the min-norm interpolator depending on the complexity ratio. The empirical risk is measured on 1000 testing samples from $\mathcal{N}(0, 1)$. For each N, the risk and condition numbers are averaged over 10 random trials. Each curve in Figure 2.1 is rescaled so that the values are within the same range, noting that the minimum value of the condition number is 1 before rescaling. In each case, the double descent of the condition number and the empirical risk coincides with the same complexity regimes. Specifically, both peak at the interpolation threshold $\frac{N}{m} = 1$ with large values obtained within a certain width of this threshold, which was also observed for this problem in [28]. It is worth noting that in these three experiments, using Fourier features [2, 4] with and without noise or using ReLU features, the global minima of the risk is obtained in the overparameterized regime, i.e. when $\frac{N}{m} > 1$.

In Figure 2.2, the probability density function associated with the singular values of the normalized random feature matrix in the underparameterized and overparameterized regimes are plotted using different complexity scales $\frac{N}{m}$. The curves in Figure 2.2 are normalized to have their maxima equal to 1 and are estimated using a smooth density approximation over 10 trials. In both plots, the red curves indicate the interpolation threshold $\frac{N}{m} = 1$ and are the transition boundaries between the two regimes (i.e. between the two plots). The weights and data are sampled from $\mathcal{N}(0, 1)$. In this experiment we set $d = 50$ and $m = 3d = 150$, and vary the number of features N based on the logarithmic scalings indicated on the graphs. In Figure 2.2, the corresponding linear system is well-conditioned when the support of the probability density is bounded away from the endpoints of
Figure 2.2: Probability Density Functions for the Singular Values: The (normalized) smooth estimations of the probability density functions associated with the singular values of the normalized random feature matrix in the underparameterized (left) and overparameterized (right) regimes are plotted. The red curves indicate the interpolation case $N/m = 1$ and are the transition boundaries between the two plots.

The interval. Empirically, this is the case (with high probability) for the log and log-cubed scaling.

The choice of scalings in the plots are to provide empirical support for the theoretical results in Section 3, specifically, that a logarithmic scaling is sufficient to obtain a bound on the extreme singular values. In addition, there is an observable symmetry between the (estimated) probability density functions in the underparameterized and overparameterized regimes using the same scaling (with m and N switched). The symmetry is not exact, partly due to rounding in order to obtain integer values for N, but the plots in Figure 2.2 show that the overparameterized and underparameterized systems are well-conditioned when using the same functional scaling.

3 Condition Number of Random Feature Maps and Insights

In this section, we discuss the bounds on the extreme singular values of the random feature matrix $A = \phi(X^T W)$ where the elements of the matrices W and X are randomly drawn from normal distributions.

3.1 Main Result

Before discussing the results, we state the main assumption that is used throughout the paper. Specifically, the data and weights are normally distributed and the random feature matrix is built using Fourier features. This assumption is not necessary for the conclusions in this work; however, they simplify expressions for the constants and the parameter scalings.

Assumption 1. The data samples $\{x_j\}_{j \in [m]}$ are drawn from $\mathcal{N}(0, \gamma^2 I_d)$ and the set of random feature weights $\{\omega_k\}_{k \in [N]}$ are drawn from $\mathcal{N}(0, \sigma^2 I_d)$. The random feature matrix $A \in \mathbb{C}^{m \times N}$ is defined component-wise by $a_{j,k} = \phi(x_j, \omega_k)$, where $\phi(X, \omega) = \exp(i \langle x, \omega \rangle)$.

Theorem 3.1 (Conditioning in Three Regimes). Let the data $\{x_j\}_{j \in [m]}$, weights $\{\omega_k\}_{k \in [N]}$, and random feature matrix $A \in \mathbb{C}^{m \times N}$ satisfy Assumption 1.

6
(a) (Underparameterized Regime $m > N$) If the following conditions hold

\[
m \geq C \eta^{-2} N \log \left(\frac{2N}{\delta} \right)\]

(3.1)

\[
\sqrt{\delta} \eta (4 \gamma^2 \sigma^2 + 1)^{\frac{d}{4}} \geq N\]

(3.2)

for some $\eta, \delta > 0$, then with probability at least $1 - 2\delta$ we have

\[
\left| \lambda_k \left(\frac{1}{m} A^* A \right) - 1 \right| \leq 3\eta,
\]

for all $k \in [N]$.

(b) (Overparameterized Regime $m < N$) If the following conditions hold

\[
N \geq C \eta^{-2} m \log \left(\frac{2m}{\delta} \right)\]

\[
\sqrt{\delta} \eta (4 \gamma^2 \sigma^2 + 1)^{\frac{d}{4}} \geq m
\]

for some $\eta, \delta > 0$, then with probability at least $1 - 2\delta$ we have

\[
\left| \lambda_k \left(\frac{1}{N} A A^* \right) - 1 \right| \leq 3\eta,
\]

for all $k \in [m]$.

(c) (Interpolation Threshold) If $m = N \geq 2$, then the eigenvalues satisfy

\[
\mathbb{E} \lambda_{\min} \left(\frac{1}{N} A^* A \right) \leq \left(1 - \frac{1}{N} \right)^{\frac{1}{2}} \frac{1}{(4 \gamma^2 \sigma^2 + 1)^{d/4}} + \frac{1}{N},
\]

\[
\mathbb{E} \lambda_{\max} \left(\frac{1}{N} A^* A \right) \geq 2 - \frac{1}{N},
\]

where the expectation is with respect to $\{x_j\}_{j \in [m]}$ and $\{\omega_k\}_{k \in [N]}$.

The universal constant $C > 0$ is no greater than 4 if $\min\{m, N\} > 25$.

The proof of Theorem 3.1 is given in Section 5.

Theorem 3.1 provides a characterization of the behavior of the condition number of the random feature matrix as a function of complexity $\frac{N}{m}$, with respect to any dimension d. If the parameter η is chosen to satisfy $\eta < \frac{1}{3}$, then the eigenvalues of the normalized Gram matrices are strictly between 0 and 2. Moreover, in the extreme cases, when $m \gg N$ or $m \ll N$, then η can be small and the eigenvalues of the normalized Gram matrices will concentrate near 1. If the random feature matrix is square and we assume that the complexity bound $m = N \leq (4 \gamma^2 \sigma^2 + 1)^{d/4}$ holds, then by applying Markov’s inequality the minimum eigenvalue of the matrix $\frac{1}{N} A^* A$ satisfies

\[
\mathbb{P} \left(\lambda_{\min} \left(\frac{1}{N} A^* A \right) \geq N^{-\frac{1}{2}} \right) \leq 2N^{-\frac{1}{2}}.
\]
On the other hand, the largest eigenvalue of $\frac{1}{N} A^* A$ must be larger than 1. Therefore, at the interpolation threshold, the Gram matrix becomes ill-conditioned. Altogether, Theorem 3.1 shows that the conditioning of the random feature matrix exhibits the double descent phenomena.

One interesting consequence of Theorem 3.1 is that the random feature matrix does not need regularization to be well-conditioned. This was also observed in [25] for random matrices A, where $a_{i,j}$ are drawn randomly from some probability distribution and for kernel matrices $A = K(X^T X)$, i.e. symmetric systems.

Remark 3.2. The symmetry in the conditions for the overparameterized and underparameterized regimes is inherited from the assumption that the weights and samples use the same distribution (with different variances). The results can be extended to uniform or sub-gaussian random sampling for x or ω and other feature maps, which will lead to similar overall conditions but break this type of symmetry.

Remark 3.3. In several of the theoretical results, the smaller of the dimensional parameter (N, m, or sparsity s) must be less than $\sqrt{\delta \eta (4 \gamma^2 \sigma^2 + 1)^{d/4}}$. If we set the parameters to $\delta = 0.01$, $\eta = \frac{1}{4}$, and $\gamma, \sigma = 2$, then for $d \geq 44$ the complexity limitation is on the exascale. If one wants the inner product $\langle x, \omega \rangle$ to be order 1, then after rescaling we get $\left(\frac{4 \gamma^2 \sigma^2}{d} + 1\right)^{d/4}$, which is like $\exp(\gamma^2 \sigma^2)$ for large d. Thus in the rescaled case in high-dimensions, if $\gamma \sigma = \sqrt{46}$, then the complexity limitation is on the exascale. On the other hand, for small $\gamma \sigma$ the complexity bounds can place a severe limitation on the smaller of the dimensional parameters.

4 Generalization Error using the Condition Number

With the control on the condition number, we can provide bounds on the generalization error (or risk) associated with regression problems using random feature matrices in both the underparameterized and overparameterized settings. We show that the double descent phenomena on the risk is a consequence of the double descent phenomena on the condition number.

4.1 Set-up and Notation

The analysis for the generalization error will follow the set-up from [2–4, 7]. For a probability density ρ (associated with the random weights ω) in \mathbb{R}^d and an activation function $\phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$, a function $f : \mathbb{R}^d \to \mathbb{C}$ has finite ρ-norm with respect to ϕ if it belongs to the class $\mathcal{F}(\phi, \rho)$:

$$\mathcal{F}(\phi, \rho) := \left\{ f(x) = \int_{\mathbb{R}^d} \alpha(\omega) \phi(x; \omega) d\omega : \| f \|_\rho := \sup_{\omega} \left| \frac{\alpha(\omega)}{\rho(\omega)} \right| < \infty \right\}.$$

The regression problem is to find an approximation of a target function $f \in \mathcal{F}(\phi, \rho)$, that is, given a set of random weights $\{\omega_k\}_{k \in [N]}$, we train

$$f^\#(x) = \sum_{k=1}^N c_k^\# \phi(x, \omega_k).$$

(4.1)

using (x_j, y_j) where $y_j = f(x_j) + e_j$ and e_j is the measurement noise, for $j \in [m]$. Let $A \in \mathbb{C}^{m \times N}$ be the matrix with $a_{j,k} = \phi(x_j, \omega_k)$ for $j \in [m]$ and $k \in [N]$, the training problem is equivalent to finding $c \in \mathbb{C}^N$ such that $A c \approx y$ where $y = [y_1, \ldots, y_m]^T \in \mathbb{C}^m$.

8
Assumption 2. The noise on outputs, \(\{ e_j \}_{j \in [m]} \), is bounded by some constant \(E \), i.e. \(\| e_j \|_\infty \leq E \).

Assumption 2 can be extended to random noise. For example, if \(e_j \sim \mathcal{N}(0, \nu^2 I_d) \) and \(m \geq 2 \log (\frac{1}{\delta}) \) then with probability at least \(1 - \delta \) the noise is bounded by \(|e_j| \leq 2\nu \) for all \(j \in [m] \). This does not change our technical arguments except for an additional \(\delta \) term in the probability bounds.

4.2 Underparameterized Regime, Least Squares Problem

In the underparameterized (overdetermined) regime where we have more data samples than features, the coefficient \(c^\sharp \) are trained via the least squares problem

\[
c^\sharp = \arg\min_{c \in \mathbb{R}^N} \| Ac - y \|_2,
\]

where \(c^\sharp = [c_1^\sharp, \ldots, c_N^\sharp]^T \) and the (trained) approximation is given by

\[
f^\sharp(x) = \sum_{k=1}^N c_k^\sharp \phi(x, \omega_k).
\]

Using the condition number of \(A \), we can control the risk

\[
R(f^\sharp) := \| f - f^\sharp \|_2^2 (d\mu) = \int_{\mathbb{R}^d} |f(x) - f^\sharp(x)|^2 d\mu(x)
\]

with high probability.

Theorem 4.1 (Least Squares Risk Bound \(m > N \)). Let the data \(\{ x_j \}_{j \in [m]} \), weights \(\{ \omega_k \}_{k \in [N]} \), and random feature matrix \(A \in \mathbb{C}^{m \times N} \) satisfy Assumption 1 and let the noise satisfy Assumption 2. If for some \(\eta, \delta > 0 \) the following conditions hold

\[
m \geq C\eta^{-2}N \log \left(\frac{2N}{\delta} \right)
\sqrt{\delta}\eta \left(4\gamma^2 \sigma^2 + 1 \right)^{\frac{3}{4}} \geq N
\]

where \(C > 0 \) is a universal constant independent of the dimension \(d \), then with probability at least \(1 - 8\delta \) the following risk bound holds:

\[
R(f^\sharp) \leq 16 K(\eta) \left(1 + Nm^{-\frac{1}{2}} \log^\frac{1}{2} \left(\frac{1}{\delta} \right) \right) (\epsilon^2 \| f \|^2_\rho + E^2),
\]

where \(K(\eta) := \frac{1+3\eta}{1-3\eta} \) and

\[
\epsilon = \frac{2}{\sqrt{N}} \left(1 + 4\gamma \sigma d \sqrt{\frac{12}{d} \log \left(\frac{m}{\delta} \right)} + \sqrt{\frac{1}{2} \log \left(\frac{1}{\delta} \right)} \right).
\]

The proof of Theorem 4.1 is given in Section 6. Note that \(K(\eta) \) is an upper bound for the condition number of the matrix \(\frac{1}{m} A^* A \) using Theorem 3.1.
4.3 Overparameterized Regime, Min-Norm Interpolator

In the overparameterized (underdetermined) regime, we have more features than data, and thus popular models for training the coefficient vector \(c \) rely on minimizing \(\|c\|_p \) under the constraint that \(Ac - y \) is zero or small. First, we consider training \(c \) using the min-norm interpolation problem:

\[
\begin{align*}
c^\# &= \arg\min_{Ac = y} \|c\|_2 \\
\end{align*}
\]

The solution is given by \(c^\# = A^\dagger y \) where the psuedoinverse is \(A^\dagger = A^* (AA^*)^{-1} \), noting that the inverse of the Gram matrix exists with high probability under the conditions of Theorem 3.1. This is also referred to as the ridgeless case, since \(c^\# = A^\dagger y \) can be viewed as the ridgeless limit of the coefficients, \(c^\#_\lambda \), which are obtained by the ridge regression problem

\[
\begin{align*}
c^\#_\lambda &= \arg\min_{c \in \mathbb{R}^N} \frac{1}{m} \|Ac - y\|_2^2 + \lambda \|c\|_2^2 \\
\end{align*}
\]

i.e. the vector obtained when \(\lambda \to 0^+ \). With \(f^\# \) defined as (4.3), then we have the following result analogous to Theorem 4.1.

Theorem 4.2 (Min-Norm Risk Bound \(m < N \)). Let the data \(\{x_j\}_{j \in [m]}, \) weights \(\{\omega_k\}_{k \in [N]} \), and random feature matrix \(A \in \mathbb{C}^{m \times N} \) satisfy Assumption 4 and let the noise satisfy Assumption 2. If for some \(\eta, \delta > 0 \) the following conditions hold

\[
N \geq C \eta^{-2} m \log \left(\frac{2m}{\delta} \right) \\
\sqrt{\delta} \eta \left(4 \gamma^2 \sigma^2 + 1 \right)^{\frac{d}{4}} \geq m
\]

where \(C > 0 \) is a universal constant independent of the dimension \(d \), then there exists a constant \(\tilde{C} > 0 \) such that the following risk bound holds:

\[
R(f^\#) \leq \tilde{C} \log^2 \left(\frac{1}{\delta} \right) \left(m^{-\frac{d}{2}} + K(\eta) m^{\frac{d}{2}} \epsilon^2 \right) \|f\|_p^2 + \tilde{C} m^{\frac{d}{2}} K(\eta) \log^{\frac{1}{2}} \left(\frac{1}{\delta} \right) E^2,
\]

with probability at least \(1 - 8\delta \), where \(K(\eta) := \frac{1+3\eta}{1-3\eta} \) and

\[
\epsilon = \frac{2}{\sqrt{N}} \left(1 + 4 \gamma \sigma d \sqrt{1 + \frac{12}{d} \log \left(\frac{m}{\delta} \right)} + \sqrt{\frac{1}{2} \log \left(\frac{1}{\delta} \right)} \right).
\]

The proof of Theorem 4.2 is given in Section 6. In this case, \(K(\eta) \) is an upper bound for the condition number of the matrix \(\frac{1}{N} AA^* \) using Theorem 3.1.

4.4 Overparameterized Regime, Sparse Regression

Next, we consider the sparse regression setting, where we minimize the \(\ell^1 \) norm of the coefficients. The goal is to obtain a subset of the features which maintain an accurate approximation to the
target function without needing to use the entire feature space, i.e. to obtain low complexity random feature models (see [7]). This is implicitly connected to methods for pruning overparameterized networks and the lottery ticket hypothesis [35]. Specifically, it is conjectured that there are smaller subnetworks of overparameterized randomly trained networks which are accurate representation of the target function with lower complexity. Our results also provide an additional motivation based on the structure of the transform of f, i.e. the decay of $\alpha(\omega)$.

We consider the ℓ^1 basis pursuit denoising problem [8]

$$ c^\sharp = \arg\min_{\|Ac - y\|_2 \leq \xi \sqrt{m}} \|c\|_1, \quad (4.7) $$

where ξ is a parameter related to the noise level (taking into account model inaccuracy as well). The constraint in (4.7) is inexact compared to the interpolation condition used in (4.5), since one cannot guarantee the existence of exact sparse solutions of $Ac = y$ in the presence of approximation error and measurement noise.

In this setting, we modify the approximation f^\sharp to incorporate a pruning step as done in [7]. Suppose that c^\sharp is a solution of (4.7), we define f^\sharp by

$$ f^\sharp(x) = \sum_{k \in S^\sharp} c^\sharp_k \phi(x, \omega_k), \quad (4.8) $$

where S^\sharp is the index set of the s-largest absolute entries of c^\sharp. This guarantees that the approximation only depends on at most $s < N$ random features. For any vector c, we denote by $\vartheta_{s,p}(c)$ the ℓ^p-error of the best s-term approximation to c, i.e.,

$$ \vartheta_{s,p}(c) := \inf\{\|c - \tilde{c}\|_p : \tilde{c} \text{ is } s \text{ sparse}\}. $$

This is a measure of the compressibility of a vector c with respect to the ℓ^p norm and will appear in the risk bounds as a source of error from the sparsification.

To measure the conditioning of the system with respect to sparse recovery, we define the restricted isometry constant of a matrix $A \in \mathbb{C}^{m \times N}$ using the notation from [8]. For an integer $s \leq N$, the s-th restricted isometry property (RIP) constant of A, denoted by $\delta_s = \delta_s(A)$, is the smallest $\delta \geq 0$ such that

$$ (1 - \delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta)\|x\|_2^2 $$

holds for all s-sparse x. We have the following estimate of the s-RIP constant of the random feature matrix A.

Theorem 4.3 (Estimate on Restricted Isometry Constants). Let the data $\{x_j\}_{j \in [m]}$, weights $\{\omega_k\}_{k \in [N]}$, and random feature matrix $A \in \mathbb{C}^{m \times N}$ satisfy Assumption [1]. For $\eta_1, \eta_2, \delta \in (0, 1)$ and some integer $s \geq 1$, if

$$ m \geq C_1 \eta_1^{-2} s \log(\delta^{-1}) $$

$$ \frac{m}{\log(3m)} \geq C_2 \eta_2^{-2} s \log^2(s) \log \left(\frac{N}{9 \log(2m) + 3}\right) $$

$$ \sqrt{\delta} \eta_1 (4\gamma^2 \sigma^2 + 1) \delta \geq N. $$
where C_1 and C_2 are universal positive constants, then with probability at least $1 - 2\delta$, the s-RIP constant $\delta_s\left(\frac{1}{\sqrt{m}}A\right)$ is bounded by $f(\eta_1, \eta_2)$, where

$$f(\eta_1, \eta_2) := 3\eta_1 + \eta_2^2 + \sqrt{2}\eta_2$$

With the above theorem, we can derive the following result.

Theorem 4.4 (Sparse Regression Risk Bounds). Let the data $\{x_j\}_{j\in[m]}$, weights $\{\omega_k\}_{k\in[N]}$, and random feature matrix $A \in \mathbb{C}^{m \times N}$ satisfy Assumption 1 and let the noise satisfy Assumption 2. Let c^\star be obtained from (4.7) with $\xi = \sqrt{2(\epsilon^2\|f\|_\rho + E^2)}$. If the following conditions hold

$$\frac{m}{\log(3m)} \geq Cs \log^2(2s) \log \left(\frac{N}{9\log(2m)} + 3 \right)$$

$$\frac{\sqrt{\delta}}{10} \left(4\gamma^2\sigma^2 + 1 \right)^{\frac{d}{2}} \geq N$$

$$\delta \geq N^{-log^2(2s)log(3m)}$$

then with probability at least $1 - 8\delta$ the following risk bound holds:

$$R(f^\sharp) \leq C' \left(1 + Nm^{-\frac{1}{2}} \log^\frac{1}{2}\left(\frac{1}{\delta} \right) \right) \left(\epsilon^2\|f\|_\rho^2 + E^2 \right) + C'' \left(1 + Nm^{-\frac{1}{2}}s^{-1}\log^\frac{1}{2}\left(\frac{1}{\delta} \right) \right) \vartheta_{s,1}(c^\star)^2,$$

where f^\sharp is defined as (4.8), c^\star is the vector whose components are defined by $c_k^\star = \frac{1}{N} \frac{\alpha(\omega_k)}{\rho(\omega_k)}$, for $k \in [N]$ and

$$\epsilon = \frac{2}{\sqrt{N}} \left(1 + 4\gamma\sigma d \sqrt{1 + \sqrt{\frac{12}{d} \log\left(\frac{m}{\delta} \right)}} + \sqrt{\frac{1}{2} \log\left(\frac{1}{\delta} \right)} \right).$$

The constants $C, C', C'' > 0$ are universal constants independent of the dimension d.

The proofs are given in Section 6. Note that in the worst case setting:

$$\vartheta_{s,1}(c^\star) \leq \left(1 - \frac{s}{N} \right) \|f\|_\rho.$$

Remark 4.5. The sparsity parameter s in Theorem 4.4 can be defined by the user since it is obtained by the pruning step used in (4.8). When $s = N$, $\vartheta_{N,1}(c^\star) = 0$ and thus Theorem 4.2 and Theorem 4.4 generally agree in terms of the risk’s dependency on $\epsilon^2\|f\|_\rho^2$ and E^2. On the other hand, if $\alpha(\omega)$ decays much faster than $\rho(\omega)$ or has small support within the support set of $\rho(\omega)$, then the vector c^\star will be compressible and the sparse regression problem would be better. Lastly, the result in Theorem 4.4 is more robust to noise than in the ℓ^2 setting.
5 Conditioning in Three Regimes

In this section, we prove Theorem 3.1. The proofs for Theorem 3.1 Part (a) and (b) depend on the matrix Bernstein inequality A.2, and Part (c) follows from a more direct estimate on the expectation of the eigenvalues of the Gram matrix.

Proof of Theorem 3.1. To prove Part (a), we bound each of the following three terms

\[|\lambda_k \left(\frac{1}{m} A^* A \right) - 1 | \leq \left\| \frac{1}{m} A^* A - I_N \right\|_2 \]

\[\leq \frac{1}{m} \left\| \sum_{\ell=1}^m (X_{\ell} X_{\ell}^* - E_x X_{\ell} X_{\ell}^*) \right\|_2 + \frac{1}{m} \left\| \sum_{\ell=1}^m (E_x X_{\ell} X_{\ell}^* - E_{x,\omega} X_{\ell} X_{\ell}^*) \right\|_2 + \|L\|_2, \]

(5.1)

by \(\eta > 0 \), where \(L := E_{x,\omega}(X_{\ell} X_{\ell}^*) - I_N \).

First, \(L \) is a symmetric matrix with \(L_{j,j} = 0 \) and

\[L_{j,k} = E_{x,\omega}[\exp(i \langle x_{\ell}, \omega_k - \omega_j \rangle)] = (2\gamma^2\sigma^2 + 1)^{-\frac{d}{2}}, \]

for \(j, k \in [N], j \neq k \). Let \(z \) be a unit vector, then by Hölder’s inequality

\[|\langle Lz, z \rangle| = \left| \sum_{j,k=1 \atop j \neq k}^N \left(\frac{1}{2\gamma^2\sigma^2 + 1} \right)^{\frac{d}{2}} z_j \overline{z_k} \right| \leq \left(\frac{1}{2\gamma^2\sigma^2 + 1} \right)^{\frac{d}{2}} \|z\|_1^2 \]

\[\leq N \left(\frac{1}{2\gamma^2\sigma^2 + 1} \right)^{\frac{d}{2}} \]

\[\leq N \left(\frac{1}{4\gamma^2\sigma^2 + 1} \right)^{\frac{d}{2}} \]

\[\leq \sqrt{\delta \eta}, \]

where assumption (3.2) was used in the last inequality. Therefore, the third term in (5.1) is bounded by \(\|L\|_2 \leq \sqrt{\delta \eta} \leq \eta \).

Next, define the random variable \(Z \) by

\[Z(\omega_1, \ldots, \omega_N) := \|E_x(X_{\ell} X_{\ell}^*) - E_{x,\omega}(X_{\ell} X_{\ell}^*)\|_2. \]

Since \(E_x(X_{\ell} X_{\ell}^*) \) depends only on \(\{\omega_k\}_{k \in [N]} \), the random variable \(Z \) is independent of \(\{x_j\}_{j \in [m]} \). Note that \(Z \) is the norm of a dependent random matrix, and thus we cannot guarantee an exponential concentration rate and instead we apply Markov’s inequality. The second moment of \(Z \) is
bounded by
\[
\mathbb{E}_\omega(Z(\omega_1, \ldots, \omega_N)^2) = \mathbb{E}_\omega\|\mathbb{E}_x(X_\ell X_\ell^*) - \mathbb{E}_{x, \omega}(X_\ell X_\ell^*)\|_2^2 \\
\leq \mathbb{E}_\omega\|\mathbb{E}_x(X_\ell X_\ell^*) - \mathbb{E}_{x, \omega}(X_\ell X_\ell^*)\|_F^2 \\
= \sum_{j,k=1}^{N} \mathbb{E}_\omega \left| \exp\left(-\frac{\gamma^2}{2} \|\omega_k - \omega_j\|_2^2\right) - \left(\frac{1}{2\gamma^2\sigma^2 + 1}\right)^{\frac{d}{2}}\right|^2 \\
= \sum_{j,k=1}^{N} \left(\mathbb{E}_\omega \exp\left(-\gamma^2\|\omega_k - \omega_j\|_2^2\right) - \left(\frac{1}{2\gamma^2\sigma^2 + 1}\right)^d \right) \\
\leq N^2 \left(\frac{1}{4\gamma^2\sigma^2 + 1}\right)^{\frac{d}{2}}.
\]

By Markov’s inequality and the complexity assumption (3.2),
\[
\mathbb{P}_\omega(Z(\omega) \geq \eta) \leq \mathbb{P}_\omega\left(Z(\omega) \geq \frac{N}{\sqrt{\delta}} \left(\frac{1}{4\gamma^2\sigma^2 + 1}\right)^{\frac{d}{2}}\right) \\
\leq \frac{\delta(4\gamma^2\sigma^2 + 1)^{\frac{d}{2}}}{N^2} \mathbb{E}_\omega(Z(\omega)^2) \\
\leq \delta. \tag{5.2}
\]

This implies that with probability at least 1 − δ with respect to the draw of \(\{\omega_k\}_{k \in [N]}\), we have
\[\|\mathbb{E}_x(X_\ell X_\ell^*) - \mathbb{E}_{x, \omega}(X_\ell X_\ell^*)\|_2 \leq \eta.\]

Next, we condition the remaining term in (5.1) on the draw of \(\{\omega_k\}_{k \in [N]}\) where we have shown that \(\|\mathbb{E}_x(X_\ell X_\ell^*) - \mathbb{E}_{x, \omega}(X_\ell X_\ell^*)\|_2 \leq \eta\). Specifically, define the random matrices \(\{Y_\ell\}_{\ell \in [m]}\) by
\[Y_\ell = X_\ell X_\ell^* - \mathbb{E}_x(X_\ell X_\ell^*),\]
where each \(Y_\ell\) depends only on \(\{x_\ell\}_{\ell \in [m]}\), conditioned on the given draw of \(\{\omega_k\}_{k \in [N]}\). The matrix \(Y_\ell\) satisfies \((Y_\ell)_{j,j} = 0\) and \((Y_\ell)_{j,k} = \exp(i(x_\ell, \omega_k - \omega_j)) - \exp(-\gamma^2\|\omega_k - \omega_j\|_2^2/2)\) for \(j, k \in [N], j \neq k\). The norms are bounded by
\[\|Y_\ell\|_2 \leq \max_{j \in [N]} \sum_{k=1}^{N} \left| e^{i(x_\ell, \omega_k - \omega_j)} - e^{-\frac{\gamma^2}{2} \|\omega_k - \omega_j\|_2^2}\right| \leq 2N \quad \ell \in [m],\]
using Gershgorin’s theorem. By the previous results, we have
\[
\|\mathbb{E}_x X_\ell X_\ell^*\|_2 \leq \|\mathbb{E}_x X_\ell X_\ell^* - \mathbb{E}_{x, \omega} X_\ell X_\ell^*\|_2 + \|\mathbb{E}_{x, \omega} X_\ell X_\ell^*\|_2 \\
\leq \eta + \|I_N + L\|_2 \\
\leq 2\eta + 1.
\]
and thus
\[
\left\| \sum_{\ell=1}^{m} \mathbb{E}_x(Y_{\ell}^2) \right\|^2_2 \leq \sum_{\ell=1}^{m} \left\| \mathbb{E}_x(Y_{\ell}^2) \right\|^2_2
\]
\[
\leq \sum_{\ell=1}^{m} \left\| N \mathbb{E}_x(X_{\ell}X_{\ell}^*) - (\mathbb{E}_xX_{\ell}X_{\ell}^*)^2 \right\|_2
\]
\[
\leq \sum_{\ell=1}^{m} \left(N \left\| \mathbb{E}_x(X_{\ell}X_{\ell}^*) \right\|_2 + \left\| \mathbb{E}_x(X_{\ell}X_{\ell}^*) \right\|_2^2 \right)
\]
\[
\leq m[N(1 + 2\eta) + (1 + 2\eta)^2].
\]
noting that $X_{\ell}^*X_{\ell} = N$. Applying Theorem A.2 (by setting the parameters in the theorem’s statement to $\sigma^2 = m \left(\frac{2}{3}N + \frac{25}{9} \right)$ and $K = 2N$ and assuming that $\eta \leq \frac{1}{3}$) yields
\[
\mathbb{P}_x \left(\frac{1}{m} \left\| \sum_{\ell=1}^{m} (X_{\ell}X_{\ell}^* - \mathbb{E}_xX_{\ell}X_{\ell}^*) \right\|_2 \geq \eta \right) = \mathbb{P}_x \left(\left\| \sum_{\ell=1}^{m} Y_{\ell} \right\|_2 \geq m\eta \right)
\]
\[
\leq 2N \exp \left(-\frac{m\eta^2}{10N + \frac{50}{9} + \frac{4N\eta}{3}} \right). \quad (5.3)
\]
If $m \geq 4N\eta^{-2} \log \left(\frac{2N}{\eta} \right)$ (assuming $N > 25$), then with probability at least $1 - \delta$ with respect to the draw of $\{x_j\}_{j \in [m]}$, we have $m^{-1} \left\| \sum_{\ell=1}^{m} X_{\ell}X_{\ell}^* - \mathbb{E}_xX_{\ell}X_{\ell}^* \right\|_2 \leq \eta$.

Altogether, (5.1) is bounded by
\[
\frac{1}{m} \left\| \sum_{\ell=1}^{m} (X_{\ell}X_{\ell}^* - \mathbb{E}_xX_{\ell}X_{\ell}^*) \right\|_2 + \frac{1}{m} \left\| \sum_{\ell=1}^{m} (\mathbb{E}_xX_{\ell}X_{\ell}^* - \mathbb{E}_xX_{\ell}X_{\ell}^*) \right\|_2 + \left\| L \right\|_2 \leq 3\eta
\]
with probability at least $(1 - \delta)^2 \geq 1 - 2\delta$ if the conditions in the previous steps are satisfied.

For Part (b), note that the samples $\{x_j\}_{j \in [m]}$ and the weights $\{\omega_k\}_{k \in [N]}$ take real values and their distributions are symmetric about 0. Therefore, the feature matrix $A = [a_{j,k}]$ where $a_{j,k} := \exp(i\langle x_j, \omega_k \rangle)$ and its conjugate transpose $A^* = [\overline{a}_{k,j}]$ where $\overline{a}_{k,j} = \exp(-i\langle \omega_k, x_j \rangle)$ have the same distribution. Arguing similarly as in the proof of Part (a) proves Part (b) as well. Essentially, one can consider the system where the meaning of ω and x are switched.

For Part (c), consider the case when $m = N$. The matrix $\frac{1}{N} A^* A$ can be written as the following rank-1 decomposition
\[
\frac{1}{N} A^* A = \frac{1}{N} \sum_{\ell=1}^{N} X_{\ell}X_{\ell}^*,
\]
where X_{ℓ} is the ℓ-th column of A^*. Since the Gram matrix, $\frac{1}{N} A^* A$, is Hermitian we can use the Rayleigh quotient to bound the maximum eigenvalue from below by
\[
\lambda_{\text{max}} \left(\frac{1}{N} A^* A \right) \geq \frac{1}{N} \langle A^* A v, v \rangle \quad \text{for all } v \in \mathbb{C}^N \text{ with } \|v\|_2 = 1.
\]
Thus setting \(v = \frac{1}{\sqrt{N}} X_1 \) yields

\[
\lambda_{\text{max}} \left(\frac{1}{N} A^* A \right) \geq \frac{1}{N^2} \sum_{\ell=1}^N X_1^* X_1 \sum_{\ell=2}^N X_1^* X_1^* X_1^* X_1
\]

\[
= \frac{1}{N^2} \left(N^2 + \sum_{\ell=2}^N X_1^* X_1^* X_1^* X_1 \right)
\]

\[
= 1 + \frac{1}{N^2} \sum_{\ell=2}^N \sum_{j,k=1}^N \exp(i \langle x_1 - x_1^\ell, \omega - \omega_k \rangle)
\]

\[
= 1 + \frac{(N - 1)N}{N^2} + \frac{1}{N^2} \sum_{\ell=2}^N \sum_{j,k=1}^N \exp(i \langle x_1 - x_1^\ell, \omega - \omega_k \rangle).
\]

Taking the expectation on both sides yields

\[
\mathbb{E} \lambda_{\text{max}} \left(\frac{1}{N} A^* A \right) \geq 2 - \frac{1}{N} + \frac{(N - 1)^2}{N} \left(\frac{1}{\sqrt{4\gamma^2 \sigma^2 + 1}} \right)^d \geq 2 - \frac{1}{N},
\]

where we used the characteristic function of the normal distribution.

Similarly, for the smallest eigenvalue, we have

\[
\lambda_{\text{min}} \left(\frac{1}{N} A^* A \right) \leq \frac{1}{N} \langle A^* A v, v \rangle \quad \text{for all } v \in \mathbb{C}^N \text{ with } \|v\|_2 = 1.
\]

Since \(\{X_\ell\}_{\ell \in [N]} \) are vectors in \(\mathbb{C}^N \), we can find a unit vector \(u = [u_1, \ldots, u_N]^T \in \mathbb{C}^N \) such that \(u \) is orthogonal to \(\text{span} \left(\{X_\ell\}_{\ell \in [N-1]} \right) \) and thus

\[
\lambda_{\text{min}} \left(\frac{1}{N} A^* A \right) \leq \frac{1}{N} \langle A^* A u, u \rangle \leq \frac{1}{N} u^* X_N X_N^* u
\]

\[
= \frac{1}{N} \sum_{j,k=1}^N u_j u_k \exp(i \langle x_N, \omega_k - \omega_j \rangle).
\]

The vector \(u \) depends linearly on \(\{X_\ell\}_{\ell \in [N-1]} \), thus the components \(u_j \) for \(j \in [N] \) are random variables depending on \(\{x_j\}_{j \in [N-1]} \) and weights \(\{\omega_k\}_{\ell \in [N]} \) but are independent of \(x_N \). By taking the expectation on both sides and applying Fubini’s theorem, we bound the expectation on the
minimum eigenvalue by
\[\mathbb{E}\lambda_{\min}\left(\frac{1}{N}A^*A \right) \leq \frac{1}{N} + \frac{1}{N} \mathbb{E} \sum_{j \neq k} u_j u_k \exp(i \langle x_N, \omega_k - \omega_j \rangle) \]
\[= \frac{1}{N} + \frac{1}{N} \mathbb{E}_{\omega_1, \ldots, \omega_N, x_1, \ldots, x_{N-1}} \sum_{j \neq k} u_j u_k \mathbb{E}_{x_N} \left[\exp(i \langle x_N, \omega_k - \omega_j \rangle) \right] \]
\[= \frac{1}{N} + \frac{1}{N} \mathbb{E}_{\omega_1, \ldots, \omega_N, x_1, \ldots, x_{N-1}} \sum_{j \neq k} u_j u_k \exp \left(-\frac{\gamma^2}{2} \| \omega_k - \omega_j \|^2 \right) \]
\[\leq \frac{1}{N} + \frac{1}{N} \mathbb{E}_{\omega_1, \ldots, \omega_N} \sqrt{\sum_{j \neq k} \exp \left(-\gamma^2 \| \omega_k - \omega_j \|^2 \right)} \]
\[\leq \frac{1}{N} + \frac{1}{N} \mathbb{E}_{\omega_1, \ldots, \omega_N} \exp \left(-\gamma^2 \| \omega_k - \omega_j \|^2 \right) \]
\[\leq \frac{1}{N} + \left(1 - \frac{1}{N} \right)^{\frac{3}{4}} \left(\frac{1}{4\gamma^2\sigma^2 + 1} \right)^{\frac{d}{4}}, \]
where in the fourth line we use the Cauchy-Schwarz inequality to bound
\[\sum_{j \neq k} u_j u_k \exp \left(-\frac{\gamma^2}{2} \| \omega_k - \omega_j \|^2 \right) \leq \sqrt{\sum_{j \neq k} |u_j|^2 |u_k|^2} \sqrt{\sum_{j \neq k} \exp \left(-\gamma^2 \| \omega_k - \omega_j \|^2 \right)} \]
\[\leq \sqrt{\|u\|^4} \sqrt{\sum_{j \neq k} \exp \left(-\gamma^2 \| \omega_k - \omega_j \|^2 \right)} \]
\[\leq \sqrt{\sum_{j \neq k} \exp \left(-\gamma^2 \| \omega_k - \omega_j \|^2 \right)} , \]
and in the fifth line we use the Jensen’s inequality. This completes the proof. \(\square \)

6 Proofs of Generalization Theorems from Section 4

The proofs of Theorem 4.1, 4.2 and 4.4 follow a similar structure in which we show that each trained vector \(c^\# \) is close to the best \(\phi \) approximation \(c^\star \) from [2, 3]. To related the coefficient vectors to the risk, we utilize the conditioning result, Theorem 3.1, over a finite set of samples to approximate the risk by a new discrete system, as done in Theorem 1 from [7]. Since the proofs of Theorem 4.1 and 4.2 are similar, we present them together.

Proof of Theorem 4.1 and 4.2. We will work directly with the \(L^2 \) norm, which can be decomposed into two parts
\[\| f - f^\# \|_{L^2(d\mu)} \leq \| f - f^\star \|_{L^2(d\mu)} + \| f^\star - f^\# \|_{L^2(d\mu)} \]
by triangle inequality. The approximation \(f^\# \) is defined in (4.3) and the best \(\phi \) based approximation \(f^\star \) is defined by
\[f^\star(X) = \sum_{k=1}^{N} c_k^\star \phi(x, \omega_k) = \frac{1}{N} \sum_{k=1}^{N} \frac{\alpha(\omega_k)}{\rho(\omega_k)} \phi(x, \omega_k) \]
(6.1)
with \(c_k^* = N^{-1} \frac{\alpha(\omega_k)}{\rho(\omega_k)} \) for all \(k \in [N] \). If the condition on \(N \) in Lemma A.7 is satisfied, then with probability at least \(1 - \delta \)

\[
\|f - f^*\|_{L^2(d\mu)} \leq \epsilon \|f\|_p.
\]

To bound \(\|f^* - f^\sharp\|_{L^2(d\mu)} \), we use McDiarmid’s inequality and argue similarly as in Lemma 2 from [7]. Let \(\{z_j\}_{j \in [m]} \) be i.i.d. random variables sampled from the distribution \(\mu \) and independent from the \(\{x_j\}_{j \in [m]} \) and \(\{\omega_k\}_{k \in [N]} \). Thus \(\{z_j\}_{j \in [m]} \) is also independent of \(c^\sharp \) and \(c^* \). We define the random variable

\[
v(z_1, \ldots, z_m) := \|f^* - f^\sharp\|_{L^2(d\mu)}^2 - \frac{1}{m} \sum_{j=1}^{m} |f^*(z_j) - f^\sharp(z_j)|^2.
\]

Note that for any \(j \in [m] \),

\[
E_z \left[|f^*(z_j) - f^\sharp(z_j)|^2 \right] = E_{z_1, \ldots, z_m} \left[|f^*(z_j) - f^\sharp(z_j)|^2 \right] = \|f^* - f^\sharp\|_{L^2(d\mu)}^2,
\]

thus \(E_z[v] = 0 \). Perturbing the \(k \)-th component of \(v \) yields

\[
|v(z_1, \ldots, z_k, \ldots, z_m) - v(z_1, \ldots, \hat{z}_k, \ldots, z_m)| \leq \frac{1}{m} \left| f^*(z_k) - f^\sharp(z_k) \right|^2 - \left| f^*(\hat{z}_k) - f^\sharp(\hat{z}_k) \right|^2.
\]

By Cauchy-Schwarz inequality, for any \(z \) we have

\[
|f^*(z) - f^\sharp(z)|^2 = \left| \sum_{k=1}^{N} (c_k^* - c_k^\sharp) \phi(z, \omega_k) \right|^2 \leq N \|c^* - c^\sharp\|_2^2,
\]

which holds since \(|\phi(z, \omega)| = 1 \). Thus the difference is bounded by

\[
|v(z_1, \ldots, z_k, \ldots, z_m) - v(z_1, \ldots, \hat{z}_k, \ldots, z_m)| \leq \frac{2N}{m} \|c^* - c^\sharp\|_2^2 =: \Delta.
\] (6.2)

Next, we apply McDiarmid’s inequality \(\mathbb{P}_z(v - E_z[v] \geq t) \leq \exp(-\frac{2t^2}{m \Delta^2}) \), by setting

\[
t = \Delta \sqrt{\frac{m}{2} \log \left(\frac{1}{\delta} \right)}
\]

which implies that

\[
\|f^* - f^\sharp\|_{L^2(d\mu)}^2 \leq \frac{1}{m} \sum_{j=1}^{m} |f^*(z_j) - f^\sharp(z_j)|^2 + \frac{2N}{m} \log \left(\frac{1}{\delta} \right) \|c^* - c^\sharp\|_2^2,
\]

\[
= \frac{1}{m} \|\tilde{A}(c^* - c^\sharp)\|_2^2 + N \sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \|c^* - c^\sharp\|_2^2.
\]

with probability at least \(1 - \delta \) with respect to draw of \(\{z_j\}_{j \in [m]} \), and \(\tilde{A} \in \mathbb{C}^{m \times N} \) is the random feature matrix with \(\tilde{a}_{j,k} = \exp(i \langle z_j, \omega_k \rangle) \).
In the underparameterized regime $m > N$, we apply Part (a) of Theorem 3.1 to \tilde{A} and we obtain

$$
\|f^* - f^\sharp\|_{L^2(\nu)}^2 \leq \frac{1}{m} \|\tilde{A}(c^* - c^\sharp)\|_2^2 + N\sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \|c^* - c^\sharp\|_2^2
$$

so that

$$
\|f^* - f^\sharp\|_{L^2(\nu)}^2 = \left\| \frac{1}{\sqrt{m}} \tilde{A}(c^* - c^\sharp) \right\|_2^2 + N\sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \|c^* - c^\sharp\|_2^2
$$

$$
\leq (1 + 3\eta) \|c^* - c^\sharp\|_2^2 + N\sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \|c^* - c^\sharp\|_2^2
$$

$$
\leq \left(1 + 3\eta + N\sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \right) \|c^* - c^\sharp\|_2^2
$$

with probability at least $1 - 3\delta$.

To estimate $\|c^\sharp - c^*\|_2$, we utilize the pseudo-inverse A^\dagger and define the residual $h = Ac^* - y$, so that

$$
\|c^\sharp - c^*\|_2 = \|A^\dagger y - c^*\|_2 = \|A^\dagger(Ac^* - h) - c^*\|_2
$$

$$
\leq \|(A^\dagger A - I)c^*\|_2 + \|A^\dagger\|_2 \|h\|_2.
$$

Using Hölder’s inequality and Assumption 2 on $\|e\|_2$, the residual is bounded by

$$
\|h\|_2 = \sqrt{\sum_{j=1}^{m} (f^*(x_j) - f(x_j) - e_j)^2} \leq \sqrt{\sum_{j=1}^{m} (f^*(x_j) - f(x_j))^2 + \|e\|_2}
$$

$$
\leq \sqrt{m} \sup_{\|x\|_2 \leq R} \|f^*(x) - f(x)| + \sqrt{mE}
$$

$$
\leq \sqrt{m}(\epsilon \|f\|_\rho + E)
$$

(6.3)

with probability $1 - 2\delta$ if conditions in Lemma A.3 and Lemma A.6 are satisfied. Therefore, the bound becomes

$$
\|c^\sharp - c^*\|_2 \leq \|(A^\dagger A - I)c^*\|_2 + \sqrt{m} \|A^\dagger\|_2 (\epsilon \|f\|_\rho + E).
$$

Note that when $m > N$, the first term is $\|(A^\dagger A - I)c^*\|_2 = 0$ since $A^\dagger A = (A^* A)^{-1} A^* A = I$.

Using Theorem 3.1, the operator norm of the pseudo-inverse is bounded by

$$
\|A^\dagger\|_2 = \frac{1}{\sqrt{\lambda_{\min}(A^* A)}} = \frac{1}{\sqrt{m}} \frac{1}{\sqrt{\lambda_{\min}(m^{-1} A^* A)}} \leq \frac{1}{\sqrt{m}} \frac{1}{\sqrt{1 - 3\eta}}
$$

with probability at least $1 - 2\delta$ and thus

$$
\|f^\sharp - f^\sharp\|_{L^2(\nu)} \leq \|f - f^\star\|_{L^2(\nu)} + \|f^\star - f^\sharp\|_{L^2(\nu)}^2
$$

$$
\leq \epsilon \|f\|_\rho + \|f^\star - f^\sharp\|_{L^2(\nu)}^2
$$

$$
\leq \epsilon \|f\|_\rho + \left(1 + 3\eta + N\sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \right) \|c^* - c^\sharp\|_2
$$

$$
\leq 2\sqrt{K(\eta)} \left(1 + N^{\frac{1}{2}} m^{-\frac{1}{4}} \log^\frac{1}{2} \left(\frac{1}{\delta} \right) \right) \epsilon \|f\|_\rho + E
$$
with probability at least $1 - 8\delta$.

In the overparameterized regime $m < N$, we apply Part (b) of Theorem 3.1 to \tilde{A} and the error of $\|f - f^*\|_{L^2(d\mu)}$ is bounded by

$$
\|f^* - f^\sharp\|_{L^2(d\mu)}^2 \leq \frac{1}{m} \|\tilde{A}(c^* - c^\sharp)\|_2^2 + N \sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \|c^* - c^\sharp\|_2^2 \\
= \frac{N}{m} \left(1 + \delta_N \left(\frac{1}{\sqrt{N}} \tilde{A}\right)\right) \|c^* - c^\sharp\|_2^2 + N \sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \|c^* - c^\sharp\|_2^2 \\
\leq \frac{N}{m} \left(1 + \delta_N \left(\frac{1}{\sqrt{N}} \tilde{A}\right)\right) \|c^* - c^\sharp\|_2^2 + N \sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)} \|c^* - c^\sharp\|_2^2
$$

with probability at least $1 - 3\delta$. For $\|c^* - c^\sharp\|_2$, we still have

$$
\|c^* - c^\sharp\|_2 \leq \|(A^\dagger A - I) c^*\|_2 + \|A^\dagger\|_2 \|h\|_2.
$$

Note that when $m < N$, $I - A^\dagger A$ is the projection onto the null space of A and thus its operator norm is bounded by 1 and

$$
\|c^\sharp - c^*\|_2 \leq \|c^*\|_2 + \|A^\dagger\|_2 \|h\|_2 \leq \|c^*\|_2 + \frac{1}{\sqrt{N}} \frac{1}{\sqrt{\lambda_{\min}(N^{-1}AA^\dagger)}} \|h\|_2
$$

$$
\leq \frac{1}{\sqrt{N}} \|f\|_\rho + \frac{\sqrt{m}}{\sqrt{N}} \frac{1}{\sqrt{1 - 3\eta}} (\epsilon \|f\|_\rho + E)
$$

with probability at least $1 - 4\delta$, noting that $|c^*_k| = N^{-1} \left| \frac{\alpha(\omega_k)}{\rho(\omega_k)} \right| \leq N^{-1} \|f\|_\rho$. In this regime, the L^2 generalization error is bounded by

$$
\|f - f^\sharp\|_{L^2(d\mu)} \leq \|f - f^*\|_{L^2(d\mu)} + \|f^* - f^\sharp\|_{L^2(d\mu)} \\
\leq \epsilon \|f\|_\rho + \|f^* - f^\sharp\|_{L^2(d\mu)} \\
\leq \epsilon \|f\|_\rho + \left(\frac{m}{m} (1 + 3\eta) + N \sqrt{\frac{2}{m} \log \left(\frac{1}{\delta} \right)}\right)^\frac{1}{2} \|c^* - c^\sharp\|_2 \\
\leq \epsilon \|f\|_\rho + \left(\frac{m^{1/2}}{m} \sqrt{1 + 3\eta} + m^{-1/2} \left(2 \log \left(\frac{1}{\delta} \right)\right)^{1/2}\right) \left(\|f\|_\rho + m^{3/2} \frac{1}{\sqrt{1 - 3\eta}} (\epsilon \|f\|_\rho + E)\right) \\
\leq \epsilon \|f\|_\rho + 2m^{-1/4} \log^{1/4} \left(\frac{1}{\delta} \right) \|f\|_\rho + 2m^{3/4} \sqrt{K(\eta)} \log^{1/4} \left(\frac{1}{\delta} \right) (\epsilon \|f\|_\rho + E) \\
\leq \epsilon \|f\|_\rho + 2m^{3/4} \sqrt{K(\eta)} \log^{1/4} \left(\frac{1}{\delta} \right) (\epsilon \|f\|_\rho + E)
$$
Proof of Theorem 4.4. Following the proof of Theorem 4.1 and 4.2, we have the analogous estimate

$$\|f^* - f^\sharp\|_{L^2(d\mu)}^2 \leq \frac{1}{m} \sum_{j=1}^{m} |f^*(z_j) - f^\sharp(z_j)|^2 + \left(N \sqrt{\frac{2}{m} \log \left(\frac{1}{\delta}\right)} \right) \|c^* - c^\sharp|_{S^\sharp}\|_2^2$$

with probability at least $1 - 8\delta$. We apply Theorem 4.3 with s replaced by $2s$ and if the conditions of Theorem 4.3 are satisfied (for example, by setting the parameters to $\eta_1 = 0.1$ and $\eta_2 = 0.2$), then

$$\delta_{2s} \left(\frac{1}{\sqrt{m}} A\right) \leq \frac{4}{\sqrt{41}}$$

and

$$\delta_{2s} \left(\frac{1}{\sqrt{m}} \tilde{A}\right) \leq \frac{4}{\sqrt{41}}$$

with probability at least $1 - 2\delta$. Following the proof of Lemma 2 in [7], the first term is bounded by

$$m^{-\frac{1}{2}} \sqrt{\sum_{j=1}^{m} |f^*(z_j) - f^\sharp(z_j)|^2} \leq 2 \|c^* - c^\sharp|_{S^\sharp}\|_2 + 2 \vartheta_{s,2}(c^*) + \vartheta_{s,1}(c^*).$$

Then by the robust and stable recovery results, Lemma A.4, we have

$$\|c^* - c^\sharp|_{S^\sharp}\|_2 \leq C' \vartheta_{s,1}(c^*) \frac{\sqrt{s}}{\sqrt{\epsilon}} + C \xi + 4 \vartheta_{s,2}(c^*).$$

Combining these two results and Lemma A.7 yields (after possibly multiple redefinitions of the constants)

$$\|f - f^\sharp\|_{L^2(d\mu)}$$

which concludes the proof.

7 Discussion

We analyze the double descent phenomenon [18] for random feature regression by relating it to the condition number of asymmetric rectangular random matrices and deriving (high probability) bounds on the extreme singular values. The technical arguments rely on random matrix theory, specifically, deriving a concentration bound on eigenvalues of the Gram matrix (or the restricted isometry constants) for the various complexity setting. The bounds improve on previous results in
the literature and give a refined picture of the test error landscape as function of the complexity.

In the interpolation regime, we directly derive a lower bound on the condition number, showing that the linear system becomes ill-conditioned when $N = m$. We provide risk bounds which are controlled by the conditioning of the random feature matrix, thereby relating the generalization error with the conditioning of the system. The risk bounds include the least squares, min-norm interpolation, and sparse regression problems. While our analysis focused on Fourier features with normally distributed weights and samples in order to provide neater bounds, the proofs could be extended to other features and probability distributions. For example, if we change the feature map, the constants in our results would need to include the L_∞ norm of the new activation function. Additionally, using other probability distributions (e.g., uniform or subgaussian), would lead to changes in the constants and slight changes in the scalings. When W and X are sampled from different distributions, the symmetry between the underparameterized and overparameterized results breakdown but the main conclusions should still hold (i.e., constants may change, but the overall scaling should remain valid).

The connections between random feature models and fully trained neural networks are rich, and precisely translation our results in this setting is left as a future discussion. For deep networks, weight initialization and normalization can help to avoid the issue of vanishing gradients. That is, if the Jacobian of the hidden layers are close to being an isometry then the network is stable in the dynamical sense [10, 30, 31, 36]. Based on our results, since the spectrum of random feature maps concentrate near 1, one could show that randomization helps to provide dynamic stability within each layer of a deep neural network.

A consequence of the theory presented in this work is that the random feature matrix does not need regularization to be well-conditioned and thus the risk bounds can decrease to zero without adding a penalty to the training problem. However, it may be the case that regularization improves generalization in the presence of noise and outliers. We leave a more detailed analysis of unconstrained regularized methods (for example, the ridge regression problem) with noisy data for future work.

Acknowledgement

This work was supported in part by AFOSR MURI FA9550-21-1-0084 and NSF DMS-1752116. The authors would also like to thank Rachel Ward for the helpful discussions.

References

[1] Li, Z., Ton, J.-F., Oglic, D., and Sejdinovic, D. Towards a unified analysis of random Fourier features. In *International Conference on Machine Learning* (2019), PMLR, pp. 3905–3914.

[2] Rahimi, A., and Recht, B. Uniform approximation of functions with random bases. *2008 46th Annual Allerton Conference on Communication, Control, and Computing* (2008), IEEE, pp. 555–561.
[3] Rahimi, A., and Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. *Advances in neural information processing systems 21* (2008), 1313–1320.

[4] Rahimi, A. and Recht, B. Random features for large-scale kernel machines. In *NIPS* (2007), NIPS, pp. 1–10.

[5] Rudi, Alessandro and Rosasco, Lorenzo Generalization Properties of Learning with Random Features *Proceedings of the 31st International Conference on Neural Information Processing Systems* (2017), 3215–3225.

[6] E, Weinan and Ma, Chao and Wojtowytsch, Stephan and Wu, Lei Towards a mathematical understanding of neural network-based machine learning: what we know and what we don’t *arXiv preprint arXiv:2009.10713* (2020).

[7] Hashemi, Abolfazl and Schaeffer, Hayden and Shi, Robert and Topcu, Ufuk and Tran, Giang and Ward, Rachel Generalization Bounds for Sparse Random Feature Expansions *arXiv preprint arXiv:2103.03191* (2021).

[8] Foucart, Simon and Rauhut, Holger A mathematical introduction to compressive sensing *Springer* (2013).

[9] Mei, Song and Misiakiewicz, Theodor and Montanari, Andrea Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration. *arXiv preprint arXiv:2103.03191* (2021).

[10] Sun, Y., Zhang, L., and Schaeffer, H. Neupde: Neural network based ordinary and partial differential equations for modeling time-dependent data. *PMLR Mathematical and Scientific Machine Learning* (2020), 352–372.

[11] Li, Zhu and Ton, Jean-Francois and Oglic, Dino and Sejdinovic, Dino Less is More: Nyström Computational Regularization. *NIPS* (2015), 1657–1665.

[12] Belkin, Mikhail and Hsu, Daniel and Ma, Siyuan and Mandal, Soumik Reconciling modern machine-learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences* (2019), 15849–15854.

[13] Belkin, Mikhail and Rakhlin, Alexander and Tsybakov, Alexandre B Does data interpolation contradict statistical optimality? *The 22nd International Conference on Artificial Intelligence and Statistics* (2019), 1611–1619.

[14] Bartlett, Peter L and Long, Philip M and Lugosi, Gábor and Tsigler, Alexander Benign overfitting in linear regression. *Proceedings of the National Academy of Sciences* (2020), 30063–30070.

[15] Hastie, Trevor and Montanari, Andrea and Rosset, Saharon and Tibshirani, Ryan J Surprises in high-dimensional ridgeless least squares interpolation. *arXiv preprint arXiv:1903.08560* (2019).
[16] Hastie, Trevor and Montanari, Andrea and Rosset, Saharon and Tibshirani, Ryan J Benign overfitting in ridge regression. *arXiv preprint arXiv:2009.14286* (2020).

[17] Liang, Tengyuan and Rakhlin, Alexander Just interpolate: Kernel “ridgeles” regression can generalize. *The Annals of Statistics* (2020), 1329–1347.

[18] Belkin, Mikhail and Hsu, Daniel and Xu, Ji Two models of double descent for weak features. *SIAM Journal on Mathematics of Data Science* (2020), 1167–1180.

[19] Mei, Song and Montanari, Andrea The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve. *Communications on Pure and Applied Mathematics* (2019).

[20] Belkin, Mikhail and Ma, Siyuan and Mandal, Soumik To understand deep learning we need to understand kernel learning. *International Conference on Machine Learning* (2012), 541–549.

[21] El Karoui, Noureddine The spectrum of kernel random matrices. *The Annals of Statistics* (2010), 1–50.

[22] Cheng, Xiuyuan and Singer, Amit The spectrum of random inner-product kernel matrices. *Random Matrices: Theory and Applications* (2010), 1350010.

[23] Fan, Zhou and Montanari, Andrea The spectral norm of random inner-product kernel matrices. *Probability Theory and Related Fields* (2019), 27–85.

[24] Pennington, Jeffrey and Worah, Pratik Nonlinear random matrix theory for deep learning. *Journal of Statistical Mechanics: Theory and Experiment* (2019), 124005.

[25] Poggio, Tomaso and Kur, Gil and Banburski, Andrzej Double descent in the condition number. *arXiv preprint arXiv:1912.06190* (2019).

[26] Liang, Tengyuan and Rakhlin, Alexander and Zhai, Xiyu On the multiple descent of minimum-norm interpolants and restricted lower isometry of kernels. *Conference on Learning Theory, PMLR* (2020), 2683–2711.

[27] Louart, Cosme and Liao, Zhenyu and Couillet, Romain A random matrix approach to neural networks. *The Annals of Applied Probability* (2018), 1190–1248.

[28] Ma, Chao and Wu, Lei and E, Weinan The slow deterioration of the generalization error of the random feature model. *Mathematical and Scientific Machine Learning, PMLR* (2020), 373–389.

[29] Yen, Ian En-Hsu and Lin, Ting-Wei and Lin, Shou-De and Ravikumar, Pradeep K and Dhillon, Inderjit S Sparse random feature algorithm as coordinate descent in Hilbert space. *Advances in Neural Information Processing Systems* (2014), 2456–2464.

[30] Zhang, Linan and Schaeffer, Hayden Forward stability of ResNet and its variants. *Journal of Mathematical Imaging and Visions* (2020), 328–351.
[31] Ba, Jimmy and Erdogdu, Murat and Suzuki, Taiji and Wu, Denny and Zhang, Tianzong Generalization of two-layer neural networks: An asymptotic viewpoint. International conference on learning representations (2019).

[32] Liao, Zhenyu and Couillet, Romain and Mahoney, Michael W A random matrix analysis of random Fourier features: beyond the gaussian kernel, a precise phase transition, and the corresponding double descent. arXiv preprint arXiv:2006.05013 (2020), 1190–1248.

[33] Liao, Zhenyu and Couillet, Romain On the spectrum of random features maps of high dimensional data. International Conference on Machine Learning (2018), 3063–3071.

[34] Pennington, Jeffrey and Schoenholz, Samuel S and Ganguli, Surya Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. Proceedings of the 31st International Conference on Neural Information Processing Systems (2017), 4788–4798.

[35] Frankle, Jonathan and Carbin, Michael The lottery ticket hypothesis: Finding sparse, trainable neural networks arXiv preprint arXiv:1803.03635 (2018).

[36] Haber, Eldad and Ruthotto, Lars Stable architectures for deep neural networks. Inverse problems (2017), 014004.

[37] Benigni, Lucas and Péché, Sandrine Eigenvalue distribution of nonlinear models of random matrices. arXiv preprint arXiv:1904.03090 (2019).

[38] Pastur, Leonid On random matrices arising in deep neural networks. gaussian case. arXiv preprint arXiv:2001.06188 (2020).

[39] Advani, Madhu S and Saxe, Andrew M and Sompolinsky, Haim High-dimensional dynamics of generalization error in neural networks. Neural Networks (2020), 428–446.

[40] Kan, Kelvin and Nagy, James G and Ruthotto, Lars Avoiding The Double Descent Phenomenon of Random Feature Models Using Hybrid Regularization. arXiv preprint arXiv:2012.06667 (2020).

[41] Bach, Francis On the equivalence between kernel quadrature rules and random feature expansions. The Journal of Machine Learning Research (2017), 714–751.
Appendices

A Key Lemmata

The following lemma is used in the proof of Theorem 4.3. This is an improvement over Lemma 12.36 in [8], where the constants, the scales in the logarithm factors, and \(\tilde{C}_1 \) are smaller.

Lemma A.1. Let \(X_1, \ldots, X_m \) be vectors in \(\mathbb{C}^N \) with \(\|X_\ell\|_\infty \leq K \) for some \(K > 0 \) and all \(\ell \in [m] \). Then, for \(s \leq m \),

\[
\mathbb{E} \left\| \sum_{\ell=1}^{m} \epsilon_\ell X_\ell X_\ell^* \right\| \leq \tilde{C}_1 K \sqrt{s} \log(s) \sqrt{\log(3m) \log \left(\frac{N}{9 \log(2m)} \right)} \sqrt{\sum_{\ell=1}^{m} \|X_\ell X_\ell^*\|} \tag{A.1}
\]

where \(\epsilon_\ell \) for \(\ell \in [m] \) are independent Rademacher random variables and \(\tilde{C}_1 > 0 \) is a universal constant.

The remaining lemmata are used throughout this work.

Lemma A.2 (Corollary 8.15 from [8]). Let \(\{X_\ell\}_{\ell \in [m]} \) be a set of \(\mathbb{C}^{N \times N} \) independent mean-zero self-adjoint random matrices, assume that \(\|X_\ell\|_2 \leq K \) almost surely for all \(\ell \in [m] \), and define

\[
\sigma^2 := \left\| \sum_{\ell=1}^{m} \mathbb{E}(X_\ell^2) \right\|.
\]

Then, for all \(t > 0 \),

\[
\mathbb{P} \left(\left\| \sum_{\ell=1}^{m} X_\ell \right\|_2 \geq t \right) \leq 2 N \exp \left(-\frac{t^2}{2\sigma^2 + 2Kt} \right). \tag{A.2}
\]

Lemma A.3 (Theorem 8.42 and Remark 8.43(c) from [8]). Let \(\mathcal{F} \) be a countable set of functions \(f : \mathbb{C}^N \to \mathbb{R} \). Let \(X_\ell \) for \(\ell \in [m] \) be independent random vector in \(\mathbb{C}^N \) such that \(\mathbb{E} f(X_\ell) = 0 \) and \(f(X_\ell) \leq K \) a.s. for all \(\ell \in [m] \) and for all \(f \in \mathcal{F} \) for some constant \(K > 0 \) and let

\[
Z = \sup_{f \in \mathcal{F}} \left| \sum_{\ell=1}^{m} f(X_\ell) \right|.
\]

Let \(\sigma^2_\ell \) be nonzero such that \(\mathbb{E}[(f(X_\ell))^2] \leq \sigma^2_\ell \) for all \(f \in \mathcal{F} \) and \(\ell \in [m] \). Then, for all \(t > 0 \),

\[
\mathbb{P} (Z \geq EZ + t) \leq \exp \left(\frac{-t^2 / 2}{\sum_{\ell=1}^{m} \sigma^2_\ell + 2K E Z + tK/3} \right). \tag{A.3}
\]

Lemma A.4 (Theorem 9.24 in [7]). Suppose that the 2s-RIP constant of the matrix \(A \in \mathbb{C}^{m \times N} \) satisfies

\[
\delta_{2s}(A) \leq \frac{4}{\sqrt{41}}
\]
then, for any vector $c^* \in \mathbb{C}^N$ satisfying $y = Ac^* + e$ with $e \leq \xi \sqrt{m}$, a minimizer c^\sharp of the BP problem (4.7) approximates the vector c^* with the error bounds
\[
\|c^* - c^\sharp\|_1 \leq C'\kappa_s,1(c^*) + C\sqrt{s}\xi
\]
\[
\|c^* - c^\sharp\|_2 \leq \frac{C'\kappa_s,1(c^*)}{\sqrt{s}} + C\xi.
\]
where $C, C' > 0$ are some constants. If we let S^\sharp be the index set of the s largest (in magnitude) entries of c^\sharp, then we have
\[
\|c^* - c^\sharp|_{S^\sharp}\|_2 \leq \frac{C'\kappa_s,1(c^*)}{\sqrt{s}} + C\xi + 4\vartheta_{s,2}(c^*).
\]

Lemma A.5 (Lemma 8 in [7]). Suppose that x_j for $j \in [m]$ are sampled from the normal distribution $N(0, \gamma^2 I_d)$. Let $B_d(R)$ be the ℓ^2-ball centered at 0 with radius $R > 0$. Then for $\delta \in (0, 1)$, the probability of $x_j \in B_d(R)$ for all $j \in [m]$ is at least $1 - \delta$ provided that
\[
R \geq \gamma \sqrt{d + 12d \log \left(\frac{m}{\delta}\right)}.
\]

Lemma A.6 (Lemma 9 in [7]). Fix confidence parameter $\delta > 0$ and accuracy parameter $\epsilon > 0$. Suppose $f \in F(\phi, \rho)$ where $\phi(x, \omega) = \exp(i\langle x, \omega \rangle)$ and ρ is a probability distribution with finite second moment used for sampling the random weights ω. Consider a set $X \subset \mathbb{R}^d$ with diameter $R = \sup_{x \in X} \|x\|$. If the following holds
\[
N \geq \frac{4}{\epsilon^2} \left(1 + 4R \sqrt{\mathbb{E}\|\omega\|_2^2} + \sqrt{\frac{1}{2} \log \left(\frac{1}{\delta}\right)}\right)^2,
\]
then with probability at least $1 - \delta$ with respect to the draw of ω_k for $k \in [N]$, the following holds
\[
\sup_{x \in X} |f(x) - f^\star(x)| \leq \epsilon \|f\|_\rho,
\]
where
\[
f^\star(x) = \sum_{k=1}^N c_k^\star \exp(i\langle x, \omega_k \rangle), \quad \text{with} \quad c_k^\star := \frac{\alpha(\omega_k)}{N\rho(\omega_k)}.
\]

Lemma A.7 (Lemma 1 in [7]). Fix the confidence parameter $\delta > 0$ and accuracy parameter $\epsilon > 0$. Suppose $f \in F(\phi, \rho)$ where $\phi(x, \omega) = \exp(i\langle x, \omega \rangle)$ and ρ is a probability distribution with finite second moment used for sampling the random weights ω. Suppose
\[
N \geq \frac{1}{\epsilon^2} \left(1 + \sqrt{2 \log \left(\frac{1}{\delta}\right)}\right)^2,
\]
then with probability at least $1 - \delta$ with respect to the draw of ω_j for $j \in [N]$, the following holds
\[
\|f - f^\star\|_{L^2(d\mu)} \leq \epsilon \|f\|_\rho,
\]
where f^\star is defined as in (A.4).
B Proof of Lemma [A.1]

The proof of Lemma [A.1] relies on a discrete version of Dudley’s inequality. First, we introduce some notation. A stochastic process is a collection \(\{X_t\}_{t \in T} \) of random variables indexed by some set \(T \). The process \(\{X_t\}_{t \in T} \) is called centered if \(\mathbb{E}X_t = 0 \) for all \(t \in T \). The pseudometric \(d \) associated to \(\{X_t\}_{t \in T} \) is defined as

\[
d(s, t) = \sqrt{\mathbb{E}|X_s - X_t|^2}, \quad s, t \in T.
\]

A centered process is called subgaussian if

\[
\mathbb{E}\exp(\theta(X_s - X_t)) \leq \exp(\theta^2d(s, t)^2/2), \quad s, t \in T,
\]

for some \(\theta > 0 \). For a set \(T \), the covering number \(N(T, d, \delta) \) is the smallest integer \(N \) such that there exists a set \(A \subset T \) with cardinality \(N \) and \(\min_{s \in F} d(t, s) \leq \delta \) for all \(t \in T \).

Lemma B.1 (Discrete Dudley’s inequality). Let \(\{X_t\}_{t \in T} \) be a centered subgaussian process with \(T \) being a bounded set containing 0 and \(X_0 \equiv 0 \). Let \(\Delta(T) = \sup_{t \in T} \sqrt{\mathbb{E}|X_t|^2} \) and \(\delta_j = L^{-j}\Delta(T) \) for \(j \in \mathbb{N} \), where \(L > 1 \). Then for any integer \(\alpha \geq 3 \)

\[
\mathbb{E}\sup_{t \in T} X_t \leq \sqrt{2} \left(\sum_{j=\alpha}^{\infty} \sqrt{\log(N(T, d, \delta_j))}\delta_{j-1} \right. \\
+ \sum_{j=2}^{\alpha-1} \sqrt{\log(N(B, d, \delta_j))}\delta_{j-1} + \frac{L}{L-1} \sqrt{\log(N(B, d, \delta_1))}\Delta(T) \right) \tag{B.1}
\]

\[
\mathbb{E}\sup_{t \in T} |X_t| \leq \sqrt{2} \left(\sum_{j=\alpha}^{\infty} \sqrt{\log(2N(T, d, \delta_j))}\delta_{j-1} \right. \\
+ \sum_{j=2}^{\alpha-1} \sqrt{\log(2N(B, d, \delta_j))}\delta_{j-1} + \frac{L}{L-1} \sqrt{\log(2N(B, d, \delta_1))}\Delta(T) \right). \tag{B.2}
\]

Here \(B \) is any set containing \(T \).

Remark B.2. The covering number is affected by the geometry of the set. It is possible that \(N(B, d, \delta) < N(T, d, \delta) \) for \(T \subset B \). In the standard version of this lemma, the value of \(L \) is typically set to be 2. However, other values lead to better constants in the final complexity bounds. Thus, we leave this as a free parameter in the lemma.

Proof. Let \(T_j \) be the \(\delta_j \)-net of \(T \) with \(\text{card}(T_j) = N(T, d, \delta_j) \), and let \(B_j \) be the \(\delta_j \)-net of \(B \) with \(\text{card}(B_j) = N(B, d, \delta_j) \). Define the mapping \(\pi_j : T \rightarrow T_j \) and the mapping \(\phi_j : B \rightarrow B_j \) so that

\[
d(t, \pi_j(t)) \leq \delta_j \quad \text{for all } t \in T \\
d(t, \phi_j(t)) \leq \delta_j \quad \text{for all } t \in B.
\]

For any \(n \in \mathbb{N} \) note that

\[
\max_{t \in T_n} X_t \leq \max_{t \in T_n} (X_t - X_{\pi_n-1}(t)) + \max_{t \in T_n} X_{\pi_n-1}(t) \leq \max_{t \in T_n} (X_t - X_{\pi_n-1}(t)) + \max_{t \in T_n} X_t,
\]

28
since $X_t = (X_t - X_{\pi_{n-1}(t)}) + X_{\pi_{n-1}(t)}$ for any t and n. By Proposition 7.29 in [8] we have

$$
\mathbb{E} \max_{t \in T_n} X_t \leq \sqrt{2 \log(n(T, d, \delta_n))} \delta_{n-1} + \mathbb{E} \max_{t \in T_n} X_t.
$$

Thus for $n > \alpha$, by induction we obtain

$$
\mathbb{E} \max_{t \in T_n} X_t \leq \sum_{j=\alpha+1}^{n} \sqrt{2 \log(n(T, d, \delta_j))} \delta_{j-1} + \mathbb{E} \max_{t \in T_n} X_t.
$$

(B.3)

If we view t as a point in the set B, then the same argument gives

$$
\mathbb{E} \max_{t \in T_n} X_t \leq \mathbb{E} \max_{t \in T_n} (X_t - X_{\phi_{\alpha-1}(t)}) + \mathbb{E} \max_{t \in T_n} X_{\phi_{\alpha-1}(t)}
$$

$$
\leq \sqrt{2 \log(n(T, d, \delta_\alpha))} \delta_{\alpha-1} + \mathbb{E} \max_{t \in T_n} X_{\phi_{\alpha-1}(t)},
$$

and

$$
\mathbb{E} \max_{t \in T_n} X_{\phi_{\alpha-1}(t)} \leq \mathbb{E} \max_{t \in T_n} (X_{\phi_{\alpha-1}(t)} - X_{\phi_{\alpha-2}(t)}) + \mathbb{E} \max_{t \in T_n} X_{\phi_{\alpha-2}(t)}
$$

$$
\leq \mathbb{E} \max_{t \in B_{\alpha-1}} (X_t - X_{\phi_{\alpha-2}(t)}) + \mathbb{E} \max_{t \in T_n} X_{\phi_{\alpha-2}(t)}
$$

$$
\leq \sqrt{2 \log(n(B, d, \delta_{\alpha-1}))} \delta_{\alpha-2} + \mathbb{E} \max_{t \in T_n} X_{\phi_{\alpha-2}(t)}.
$$

By induction, we obtain

$$
\mathbb{E} \max_{t \in T_n} X_t \leq \sqrt{2 \log(n(T, d, \delta_\alpha))} \delta_{\alpha-1} + \sum_{j=2}^{\alpha} \sqrt{2 \log(n(B, d, \delta_j))} \delta_{j-1} + \mathbb{E} \max_{t \in T_n} X_{\phi_1 \phi_2 \cdots \phi_{\alpha-1}(t)}.
$$

(B.4)

To estimate the last term, we need to bound $d(\phi_1 \phi_2 \cdots \phi_{\alpha-1}(t), 0)$. Using the triangle inequality for d

$$
d(\phi_1 \phi_2 \cdots \phi_{\alpha-1}(t), 0) \leq d(\phi_1 \phi_2 \cdots \phi_{\alpha-1}(t), \phi_2 \cdots \phi_{\alpha-1}(t))
$$

$$
+ d(\phi_2 \cdots \phi_{\alpha-1}(t), \phi_3 \cdots \phi_{\alpha-1}(t))
$$

$$
+ \cdots + d(\phi_{\alpha-1}(t), t) + d(t, 0)
$$

$$
\leq \Delta(T) \sum_{j=0}^{\alpha-1} \frac{1}{L^j} \leq \Delta(T) \frac{L}{L-1}.
$$

Consequently,

$$
\mathbb{E} \max_{t \in T_n} X_{\phi_1 \phi_2 \cdots \phi_{\alpha-1}(t)} \leq \sqrt{2 \log(n(B, d, \delta_1))} \Delta(T) \frac{L}{L-1}.
$$

(B.5)

Here we use the fact that $\text{card}(\phi_1 \phi_2 \cdots \phi_{\alpha-1}(T_n)) \leq \text{card}(B_1)$. Combining (B.3), (B.4) and (B.5) yields (for large n)

$$
\mathbb{E} \sup_{t \in T_n} X_t \leq \sqrt{2 \left(\sum_{j=\alpha}^{\infty} \sqrt{\log(n(T, d, \delta_j))} \delta_{j-1} + \sum_{j=2}^{\alpha-1} \sqrt{\log(n(B, d, \delta_j))} \delta_{j-1} + \frac{L}{L-1} \sqrt{\log(n(B, d, \delta_1))} \Delta(T) \right)}.
$$

(B.6)
Note that the right-hand side does not depend on \(n \). For any finite subset \(A \) of \(T \), we have
\[
E \sup_{t \in A} X_t \leq E \sup_{t \in A} (X_t - X_{\pi_n(t)}) + E \sup_{t \in A} X_{\pi_n(t)} \\
\leq \sqrt{2 \log(\text{card}(A))} \delta_n + E \sup_{t \in T_n} X_t.
\]
The above inequality holds for any \(n \), so we can let \(n \to \infty \) and the first term goes to 0 since \(\delta_n \to 0 \) as \(n \to \infty \). This combined with (B.6) proves (B.1).

For (B.2), the proof is the same, noting that for any finite subset \(A \) of \(T \),
\[
E \max_{t \in A} |X_t| = E \max_{t \in A} \{X_t, -X_t\}.
\]

Proof of Lemma A.1. By the definition of \(\|\cdot\|_X \),
\[
E := E \left\| \sum_{\ell=1}^m \epsilon_{\ell} X_\ell X_\ell^* \right\| = E \sup_{z \in D_{s,N}} \left| \sum_{\ell=1}^m \epsilon_{\ell} \langle X_\ell, z \rangle \right|^2. \tag{B.7}
\]
To bound the expectation of the supremum of this Rademacher process, we will apply Lemma B.1. We need to estimate the covering number \(\mathcal{N}(D_{s,N}, d, t) \) for small \(t \), and the covering number \(\mathcal{N}(B, d, t) \) for large \(t \) and some suitable set \(B \) containing \(D_{s,N} \). Here \(d \) is the pseudometric associated with the stochastic process. We also need to estimate the quantity \(\Delta(D_{s,N}) \).

For \(z_1, z_2 \in D_{s,N} \),
\[
d(z_1, z_2) = \sqrt{\sum_{\ell=1}^m \left(|\langle X_\ell, z_1 \rangle|^2 - |\langle X_\ell, z_2 \rangle|^2 \right)^2} \\
= \sqrt{\sum_{\ell=1}^m \left((z_1 - z_2)^* X_\ell X_\ell^* (z_1 + z_2) \right)^2} \\
= \sqrt{\sum_{\ell=1}^m |\langle X_\ell, z_1 - z_2 \rangle|^2 |\langle X_\ell, z_1 + z_2 \rangle|^2} \\
\leq \max_{\ell \in [m]} |\langle X_\ell, z_1 - z_2 \rangle| \sqrt{\sum_{\ell=1}^m |\langle X_\ell, z_1 + z_2 \rangle|^2}. \tag{B.8}
\]
using Hölder’s inequality in the last step. Introduce the seminorm \(\|\cdot\|_X \) on \(\mathbb{C}^N \)
\[
\|z\|_X := \max_{\ell \in [m]} |\langle X_\ell, z \rangle|
\]
and let
\[
R = \sup_{z \in D_{s,N}} \sqrt{\sum_{\ell=1}^m |\langle X_\ell, z \rangle|^2} = \sqrt{\left\| \sum_{\ell=1}^m X_\ell X_\ell^* \right\|}.
\]

30
Applying Minkowski’s inequality to (B.8) yields \(d(z_1, z_2) \leq 2R\|z_1 - z_2\|_X \) for all \(z_1, z_2 \in D_{s,N} \). Similarly, \(d(z, 0) \leq R\|z\|_X \) for \(z \in D_{s,N} \). Therefore,

\[
\Delta(D_{s,N}) = \sup_{z \in D_{s,N}} d(z, 0) \leq R \sup_{z \in D_{s,N}} \|z\|_X \leq R \sup_{z \in D_{s,N}} \max_{\ell \in [m]} \|X_\ell\|_\infty \|z\|_1 \leq RK\sqrt{s}. \tag{B.9}
\]

Now we estimate the covering number \(\mathcal{N}(D_{s,N}, \| \cdot \|_X, t) \) for small \(t \). Since \(\| \cdot \|_X \leq K\sqrt{s} \| \cdot \|_2 \), Proposition C.3 from [8] gives

\[
\mathcal{N}(D_{s,N}, \| \cdot \|_X, t) \leq \sum_{S \subseteq [N], \text{card}(S) = s} \mathcal{N}(B^s_{\| \cdot \|_2}, \| \cdot \|_2, \frac{t}{K\sqrt{s}}) \leq \left(\frac{N}{s} \right) \left(1 + \frac{2K\sqrt{s}}{t} \right)^{2s} \leq \left(\frac{eN}{s} \right)^s \left(1 + \frac{2K\sqrt{s}}{t} \right)^{2s}, \tag{B.10}
\]

where \(B^s_{\| \cdot \|_2} \) is the unit \(\ell^2 \)-ball in \(\mathbb{C}^s \), thus

\[
\log(2\mathcal{N}(D_{s,N}, \| \cdot \|_X, t)) \leq 2s \left(\log \left(\frac{eN}{s} \right) + \log \left(1 + \frac{2K\sqrt{s}}{t} \right) \right). \tag{B.11}
\]

For large \(t \), we first find a suitable set \(B \) containing \(D_{s,N} \). Define the norm \(| \cdot |_1 \) on \(\mathbb{C}^N \) as

\[
|z|_1 = \sum_{j=1}^N |\text{Re}(z_j)| + |\text{Im}(z_j)|.
\]

Then it follows from Hölder’s inequality that

\[
D_{s,N} \subset \sqrt{2s}B^N_{\| \cdot \|_1} = \{ z \in \mathbb{C}^N : |z|_1 \leq \sqrt{2s} \}.
\]

We then use Maurey’s empirical method to estimate \(\mathcal{N}(B^N_{\| \cdot \|_1}, \| \cdot \|_X, t) \). Note that the set \(B^N_{\| \cdot \|_1} \) is the convex hull of \(\pm e_j, \pm ie_j : j \in [N] \). If we enumerate these vectors as \(\{v_j\}_{j \in [4N]} \), then for any \(z \in B^N_{\| \cdot \|_1} \), there are non-negative \(\{\lambda_j\}_{j \in [4N]} \) with \(\sum_{j=1}^{4N} \lambda_j = 1 \) such that \(z = \sum_{j=1}^{4N} \lambda_j v_j \). For this \(z \), we define a random variable \(Y \) which takes value \(v_j \) with probability \(\lambda_j \) and let \(Y_1, \ldots, Y_M \) be i.i.d. copies, where \(M \) is a positive integer to be determined. Since \(EY = z \), if we let

\[
y = \frac{1}{M} \sum_{k=1}^M Y_k, \tag{B.12}
\]

by symmetrization we have

\[
E\|y - z\|_X = \frac{1}{M} E\| \sum_{k=1}^M (Y_k - EY_k) \|_X \leq \frac{2}{M} E\| \sum_{k=1}^M \epsilon_k Y_k \|_X. \tag{B.13}
\]

Here we use the fact that the seminorm \(\| \cdot \|_X \) is convex.

For any realization of \(Y_k \) for \(k \in [M] \) we set \(S_\ell = \sum_{k=1}^M \epsilon_k \langle X_\ell, Y_k \rangle \), then \(\| \sum_{k=1}^M \epsilon_k Y_k \|_X = \max_{\ell \in [m]} |S_\ell| \). Note that \(|\langle X_\ell, Y_k \rangle| \leq \|X_\ell\|_\infty \|Y_k\|_1 \leq K \), by Theorem 8.8 in [8], we have

\[
P \left(|S_\ell| \geq \sqrt{MT} \right) \leq 2 \exp \left(-\frac{t^2}{2} \right), \quad t > 0. \tag{B.14}
\]
and by the union bound
\[
P \left(\max_{\ell \in [m]} |S_{\ell}| \geq \sqrt{M}Kt \right) \leq 2m \exp \left(-\frac{t^2}{2} \right) \quad t > 0. \tag{B.15}
\]
Thus, for \(m \geq 3 \) (otherwise this would be uninteresting)
\[
E \max_{\ell \in [m]} |S_{\ell}| = \int_0^\infty P(\max_{\ell \in [m]} |S_{\ell}| \geq t) dt \\
\leq \int_0^K \sqrt{2M \log(2m)} dt + 2m \int_K^{\infty} \sqrt{2M \log(2m)} e^{-\frac{t^2}{2M^2}} dt \\
= K \sqrt{2M \log(2m)} + 2mK \sqrt{\frac{M\pi}{2}} \left(1 - \text{erf}(\sqrt{\log(2m)}) \right) \\
= \frac{5}{4} K \sqrt{2M \log(2m)}. \tag{B.16}
\]
The above argument holds for any realization of \(\{Y_k\}_{k \in [M]} \). By Fubini’s theorem, we have
\[
E\|y - z\|_X \leq \frac{2}{M} E\sum_{k=1}^M |S_k| = \frac{2}{M} E\max_{\ell \in [m]} |S_{\ell}| \leq \frac{5K}{\sqrt{2M}} \sqrt{\log(2m)}. \tag{B.17}
\]
Therefore, for this \(z \in B_1^N \), we can find a \(y \) of the form \((B.12) \) such that \(\|z - y\|_X \leq 5K \sqrt{\log(2m)}/\sqrt{2M} \). Thus for any \(t > 0 \), if
\[
M \geq \frac{25K^2}{2t^2} \log(2m),
\]
then \(\|z - y\|_X < t \), therefore, we can set
\[
M = \left\lfloor \frac{25K^2}{2t^2} \log(3m) \right\rfloor,
\]
since we only need to consider \(t \leq \sqrt{2}K/4 \). The set
\[
\mathcal{Y} = \left\{ y = \frac{1}{M} \sum_{k=1}^M Y_k : Y_k \in \{\pm e_1, \ldots, \pm e_N, \pm ie_1, \ldots, \pm ie_N\} \right\}
\]
has cardinality at most \(\left(\frac{M+4N-1}{M} \right)^M < (e(1 + 4N/M))^M \) and is a \(t \)-covering for \(B_1^N \). Note that here \(M \geq 100 \log(2m) \) since \(t \leq \sqrt{2}K/4 \). Therefore
\[
\log(2N(B_1^N, \| \cdot \|_X, t)) \leq M \log \left(3 + \frac{12N}{M} \right) \leq \frac{25K^2}{2t^2} \log(3m) \log \left(3 + \frac{N}{9 \log(2m)} \right). \tag{B.18}
\]
With the estimates \((B.9), (B.11) \) and \((B.18) \), we apply Lemma \((B.1) \). Let \(L = e \), with \(\delta_j = L^{-j} RK \sqrt{s} \).
and set $\mathcal{C} = 5 \sqrt{\log(3m) \log(3 + \frac{N}{9 \log(2m)})}/2$

$$E \leq \sqrt{2} \left(\sum_{j=\alpha}^{\infty} \sqrt{\log(2N(D_{s,N},d,\delta_j))} \delta_{j-1} + \sum_{j=2}^{\alpha-1} \sqrt{\log(2N(\sqrt{2sB_{|j|}^N},d,\delta_j))} \delta_{j-1} + \frac{L}{L-1} \sqrt{\log(2N(\sqrt{2sB_{|1|}^N},d,\delta_1))} \delta_0 \right)$$

$$\leq \sqrt{2} \left(\sum_{j=\alpha}^{\infty} \sqrt{\log(\sqrt{\frac{eN}{s}}) + \log(1 + 4L)} \frac{RK\sqrt{s}}{L-1} + \sum_{j=2}^{\alpha-1} 2\sqrt{2sRKLC} + \frac{L}{L-1} 2\sqrt{2sRKLC} \right)$$

$$\leq 2\sqrt{s} \left(\log \left(\sqrt{\frac{eN}{s}} \frac{2RK\sqrt{s}}{e^{\alpha-1}} \right) + 2 \sqrt{\log(1 + 4e^{\alpha})} RK \sqrt{s} \right) + 4\sqrt{s} RK eC (\alpha - 2) + 4e \sqrt{s} RK eC.$$

We use the inequality $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ and $\sum_{j=\alpha}^{\infty} \frac{\sqrt{\log(1 + 4e^j)}}{e^{\alpha-1}} \leq 2\frac{\sqrt{\log(1 + 4e^\alpha)}}{e^{\alpha-1}}$ in the last inequality.

Now choose α to be an integer such that $e^{\alpha-2} \leq \sqrt{s} \leq e^{\alpha-1}$, we have $\frac{1}{e^{\alpha-1}} \leq \frac{1}{\sqrt{s}}$ and $\alpha - 2 \leq \log(\sqrt{s})$.

Assume $s \geq 4$ we obtain

$$E \leq 4RK \sqrt{s} \left(\log \left(\sqrt{\frac{eN}{s}} \frac{2RK\sqrt{s}}{e^{\alpha-1}} \right) + \log(1 + 30\sqrt{s}) + \frac{47e}{8} \log(\sqrt{s}) \right) \frac{\log(3m) \log \left(3 + \frac{N}{9 \log(2m)} \right)}{\log(3m) \log \left(3 + \frac{N}{9 \log(2m)} \right)}$$

$$\leq \tilde{C}_1 K \sqrt{s} \log(s) \sqrt{\log(3m) \log \left(3 + \frac{N}{2 \log(2m)} \right)} \left\| \sum_{\ell=1}^{m} X_{\ell}X_{\ell}^* \right\|,$$

where

$$\tilde{C}_1 \leq \frac{4}{\log(4)} + \frac{6}{\sqrt{\log(9) \log(3 + 4/\log(6))}} + \frac{47e}{4} \approx 37.97,$$

which concludes the proof.

Remark B.3. The constant in (B.16) approaches 1 as $m \to \infty$, in the sense that if a lower bound is assigned for m we can choose a particular value of the constant. For reference, the constant can be set to $8/7$ when $m \geq 12$ and is $11/10$ when $m \geq 49$. Thus in the practical regime, where m is large, the effective value is close to 1.

Remark B.4. The value of \tilde{C}_1 in this lemma can be made smaller when m and s (or N) are large. In the asymptotic sense, when the dimensional parameters are large, the value of \tilde{C}_1 limits to $4\sqrt{2e} \approx 15.38$.

33
C Proof of Theorem 4.3

For a subset $S \subseteq [N]$, let A_S denote the submatrix of A consisting of only the columns indexed by the set S. The s-th RIP constant $\delta_s(A)$ can also be characterized by the maximization problem

$$\delta_s(A) = \max_{S \subseteq [N], \text{card}(S) = s} \|A_S^* A_S - I_s\|_2.$$

To measure the sparsity, we denote $\|z\|_0$ to be the number of nonzero entries of the vector z. Let $D_{s,N}$ be the union of all unit balls of dimension s in the ambient dimension N i.e.

$$D_{s,N} := \{ z \in \mathbb{C}^N : \|z\|_2 \leq 1, \|z\|_0 \leq s \},$$

define the following seminorm on $\mathbb{C}^{N \times N}$

$$\|B\| := \sup_{z \in D_{s,N}} |\langle Bz, z \rangle|,$$

and thus the RIP constant $\delta_s(A) = \|A^* A - I_N\|_2$. [8]

Proof of Theorem 4.3. Parts of the proof follow from the general idea of the proof of Theorem 12.32 in [8]; however, many key steps differ since random feature matrices do not form orthogonal systems and since the elements of a random feature matrix are not independent.

Denote the ℓ-th column of A^* by $X_{\ell} = [\phi(x_{\ell}; \omega_1), \ldots, \phi(x_{\ell}; \omega_N)]^T \in \mathbb{C}^N$. Then $A^* A = \sum_{\ell=1}^m X_{\ell} X^*_\ell$ and the s-th RIP constant $\delta_s \left(\frac{1}{\sqrt{m}} A \right)$ is bounded by

$$\delta_s \left(\frac{1}{\sqrt{m}} A \right) = \left\| \frac{1}{m} \sum_{\ell=1}^m X_{\ell} X^*_\ell - I_N \right\|,$$

where $L \in \mathbb{C}^{N \times N}$ is a matrix with $L_{j,j} = 0$ and $L_{j,k} = (2\gamma^2 \sigma^2 + 1)^{-\frac{d}{2}}$ for $j, k \in [N], j \neq k$.

For any $z \in D_{s,N}$

$$|\langle Lz, z \rangle| = \left| \sum_{j, k \in \text{supp}(z)} \left(\frac{1}{2\gamma^2 \sigma^2 + 1} \right)^{\frac{d}{2}} z_j z_k \right| \leq \left(\frac{1}{2\gamma^2 \sigma^2 + 1} \right)^{\frac{d}{2}} \|z\|_1^2 \leq s \left(\frac{1}{2\gamma^2 \sigma^2 + 1} \right)^{\frac{d}{2}}, \quad (C.1)$$

and using the complexity assumption yields

$$\|L\| \leq s(2\gamma^2 \sigma^2 + 1)^{-\frac{d}{2}} \leq \eta_1.$$

Note that by the definition of $\|\cdot\|$, $\|B\| \leq \|B\|_2$ for any self-adjoint matrix B. From the proof of Theorem 3.1 we have $\|E_x(X_{\ell} X^*_\ell) - E_{x,\omega}(X_{\ell} X^*_\ell)\|_2 \leq \eta_1$ with probability at least $1 - \delta$ with respect to the draw of $\{\omega_{\ell}\}_{\ell \in [N]}$ if the complexity assumption holds.
For the remaining arguments, we will use that \(|\|\mathbb{E}_x (X_{\ell} X_{\ell}^*) - \mathbb{E}_{x, \omega} (X_{\ell} X_{\ell}^*)\| \leq \eta_1|\) conditioned on the given draw of \(\{\omega_k\}_{k \in [N]}\). Note that \(|\|\cdot\||\) is a convex function (since it is a seminorm) and thus symmetrization yields

\[
\mathbb{E}_x \left\| \sum_{\ell=1}^m (X_{\ell} X_{\ell}^* - \mathbb{E}_x (X_{\ell} X_{\ell}^*)) \right\| \leq 2 \mathbb{E}_{x, \ell} \left\| \sum_{\ell=1}^m \epsilon_{\ell} X_{\ell} X_{\ell}^* \right\|
\]

where we introduce the Rademacher random variables \(\epsilon_{\ell}\) for \(\ell \in [m]\) which are independent of data and weights. Applying Fubini’s theorem and Lemma \[\text{A.1}\], we obtain

\[
E := \frac{1}{m} \mathbb{E}_x \left\| \sum_{\ell=1}^m (X_{\ell} X_{\ell}^* - \mathbb{E}_x (X_{\ell} X_{\ell}^*)) \right\|
\leq \frac{2}{m} \mathbb{E}_{x, \ell} \left\| \sum_{\ell=1}^m \epsilon_{\ell} X_{\ell} X_{\ell}^* \right\|
\leq \frac{2}{m} \tilde{C}_1 \sqrt{s} \log(s) \sqrt{\log(3m) \log \left(3 + \frac{N}{9 \log(2m)}\right)} \mathbb{E}_x \left\| \sum_{\ell=1}^m X_{\ell}^* \right\|
= 2 \tilde{C}_1 \sqrt{s} \log(s) \sqrt{\log(3m) \log \left(3 + \frac{N}{9 \log(2m)}\right)} \mathbb{E}_x \left\| \frac{1}{m} \sum_{\ell=1}^m X_{\ell}^* \right\|
\leq 2 \tilde{C}_1 \sqrt{s} \log(s) \sqrt{\log(3m) \log \left(3 + \frac{N}{9 \log(2m)}\right)} \mathbb{E}_x \left\| \frac{1}{m} \sum_{\ell=1}^m (X_{\ell} X_{\ell}^* - \mathbb{E}_x (X_{\ell} X_{\ell}^*)) \right\| + 2 \eta_1.
\]

where we used Jensen’s inequality and the estimate

\[
\|\mathbb{E}_x (X_{\ell} X_{\ell}^*)\| \leq \|\mathbb{E}_x (X_{\ell} X_{\ell}^*) - \mathbb{E}_{x, \omega} (X_{\ell} X_{\ell}^*)\| + \|\mathbb{E}_{x, \omega} (X_{\ell} X_{\ell}^*) - I_N\| + \|I_N\|
= \|\mathbb{E}_x (X_{\ell} X_{\ell}^*) - \mathbb{E}_{x, \omega} (X_{\ell} X_{\ell}^*)\| + \|L\| + \|I_N\|
\leq 2 \eta_1 + 1
\]

in the last inequality. If set \(D = 2 \tilde{C}_1 \sqrt{s} \log(s) \sqrt{\log(3m) \log \left(3 + \frac{N}{9 \log(2m)}\right)}\), the above inequality becomes \(E \leq D \sqrt{E + 1 + 2 \eta}\). Rearranging the terms yields the following inequality (assuming that \(\eta_1 \leq \frac{1}{2}\))

\[
E \leq \frac{D^2}{2} + \sqrt{\frac{D^4}{4} + 2D^2} \leq D^2 + \sqrt{2} D.
\]

Next we use Bernstein’s inequality for suprema of an empirical process (Lemma \[\text{A.3}\]) to show that \(m^{-1} \|\sum_{\ell=1}^m (X_{\ell} X_{\ell}^* - \mathbb{E}_x (X_{\ell} X_{\ell}^*))\|\) is small with high probability. By the definition of the seminorm \(|\|\cdot\||\), we have

\[
\left\| \sum_{\ell=1}^m (X_{\ell} X_{\ell}^* - \mathbb{E}_x (X_{\ell} X_{\ell}^*)) \right\| = \sup_{z \in D_{x, N}} \left\| \sum_{\ell=1}^m ((X_{\ell} X_{\ell}^* - \mathbb{E}_x (X_{\ell} X_{\ell}^*)) z, z) \right\|
\leq \sup_{z \in D_{x, N}} \left\| \sum_{\ell=1}^m ((X_{\ell} X_{\ell}^* - \mathbb{E}_x (X_{\ell} X_{\ell}^*)) z, z) \right\|.\]
where $D_{s,N}^*$ is a countable dense subset of $D_{s,N}$, which exists since $D_{s,N}$ is the finite union of separable sets (unit balls in \mathbb{C}^s as a subspace of \mathbb{C}^N with its norm).

For $z \in D_{s,N}^*$, define the random variable $f_z(X_\ell) = (X_\ell X_\ell^* - \mathbb{E}_x(X_\ell X_\ell^*))z, z)$. Note that $\mathbb{E}_x f_z(X_\ell) = 0$. To apply Lemma [A.3] we must first show that $f_z(X_\ell)$ is bounded and compute its variance. The random variables $f_z(X_\ell)$ for $\ell \in [m]$ are uniformly bounded by $2s$ since

$$|f_z(X_\ell)| \leq \sum_{j,k \in S} \left| \exp(i\langle x_\ell, \omega_k - \omega_j \rangle) - \exp\left(-\frac{\gamma^2}{2} \|\omega_k - \omega_j\|_2^2 \right) \right| |z_j z_k|$$

$$\leq 2\|z\|_1^2 \leq 2s,$$

where $S = \text{supp}(z)$. The variance of $f_z(X_\ell)$ for $\ell \in [m]$ is bounded by

$$\mathbb{E}_x|f_z(X_\ell)|^2 = \mathbb{E}_x|\langle X_\ell X_\ell^* - \mathbb{E}_x(X_\ell X_\ell^*)\rangle z, z|\leq \mathbb{E}_x\|X_\ell S X_\ell^* S - \mathbb{E}_x(X_\ell X_\ell^*)z\|_2^2$$

$$= \mathbb{E}_x|z^* X_\ell S X_\ell^* S - \mathbb{E}_x(X_\ell X_\ell^*)z| - z^* \mathbb{E}_x(X_\ell X_\ell^*) \mathbb{E}_x(X_\ell X_\ell^*)z$$

$$\leq s(\mathbb{E}_x(X_\ell X_\ell^*)z, z)$$

$$\leq s\|\mathbb{E}_x(X_\ell X_\ell^*)\| \leq 2s,$$

using the fact that $\|X_\ell S\|_2^2 = s$ and the estimate $\|\mathbb{E}_x(X_\ell X_\ell^*)\| \leq 1 + 2\eta_1 \leq 2$.

If we set

$$D = 2\hat{C}_1 \sqrt{s} \log(s) \sqrt{\log\left(3 + \frac{N}{9\log(2m)}\right)} \sqrt{\log(3m)/m} \leq \eta_2$$

(C.3)

for some $\eta_2 \in (0, \frac{1}{2})$, then

$$\mathbb{P}_x\left(\left\| \sum_{\ell=1}^m (X_\ell X_\ell^* - \mathbb{E}_x(X_\ell X_\ell^*)) \right\| \geq m(\eta_2^2 + \sqrt{2}\eta_2) + mn_1 \right)$$

$$\leq \mathbb{P}_x\left(\left\| \sum_{\ell=1}^m (X_\ell X_\ell^* - \mathbb{E}_x(X_\ell X_\ell^*)) \right\| \geq \mathbb{E}_x \left\| \sum_{\ell=1}^m (X_\ell X_\ell^* - \mathbb{E}_x(X_\ell X_\ell^*)) \right\| + mn_1 \right)$$

$$\leq \mathbb{P}_x\left(\sup_{z \in D_{s,N}^*} \left\| \sum_{\ell=1}^m f_z(X_\ell) \right\| \geq \mathbb{E}_x \sup_{z \in D_{s,N}^*} \left\| \sum_{\ell=1}^m f_z(X_\ell) \right\| + mn_1 \right)$$

$$\leq \exp\left(\frac{-m\eta_1^2/2}{2s + 4s(\eta_2^2 + \sqrt{2}\eta_2) + 2sn_1/3} \right),$$

(C.4)

where the last inequality uses Lemma [A.3] with $K = 2s$, $\sum_{\ell=1}^m \sigma_\ell^2 \leq 2ms$, $\mathbb{E}_x(Z) \leq m(\eta_2^2 + \sqrt{2}\eta_2)$ and $t = m\eta_1$. Thus,

$$\mathbb{P}_x\left(\frac{1}{m} \left\| \sum_{\ell=1}^m (X_\ell X_\ell^* - \mathbb{E}_x(X_\ell X_\ell^*)) \right\| \leq \eta_2^2 + \sqrt{2}\eta_2 + \eta_1 \right) > 1 - \delta$$

(C.5)
if the following conditions hold (assuming $\eta_2^2 + \sqrt{2}\eta_2 \leq 1$ and $\eta_1 \leq \frac{1}{2}$)

$$m \geq C_1 \eta_1^{-2} s \log(\delta^{-1})$$

$$\frac{m}{\log(3m)} \geq C_2 \eta_2^{-2} s \log^2(s) \log\left(3 + \frac{N}{9 \log(2m)}\right).$$

The universal constants satisfy $C_1 \leq 13$ and $C_2 = 4 \tilde{C}_1^2$ where \tilde{C}_1 is the value from Lemma A.1.

Altogether, we have

$$\delta_s\left(\frac{1}{\sqrt{m}} A\right) = \frac{1}{m} \left\| \sum_{\ell=1}^{m} (X\ell X^\ast \ell - \mathbb{E}_{x}(X\ell X^\ast \ell) + \mathbb{E}_{x}(X\ell X^\ast \ell) - \mathbb{E}_{x,\omega}(X\ell X^\ast \ell) + \mathbb{E}_{x,\omega}(X\ell X^\ast \ell) - I_N) \right\|

\leq \frac{1}{m} \left\| \sum_{\ell=1}^{m} (X\ell X^\ast \ell - \mathbb{E}_{x}X\ell X^\ast \ell) \right\| + \frac{1}{m} \left\| \sum_{\ell=1}^{m} (\mathbb{E}_{x}(X\ell X^\ast \ell) - \mathbb{E}_{x,\omega}X\ell X^\ast \ell) \right\| + |||L|||

\leq \eta_2^2 + \sqrt{2}\eta_2 + 3\eta_1,$$

with probability at least $1 - 2\delta$ if the conditions in the theorem are satisfied, which completes the proof. \qed