ACCRETION ONTO INTERMEDIATE-MASS SEED BLACK HOLES IN PRIMORDIAL GALAXIES

YUEXING LI
Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA

ABSTRACT

The origin of the supermassive black holes that power the most distant quasars observed is largely unknown. One hypothesis is that they grew rapidly from intermediate-mass seeds (∼100 M_☉) left by the first stars. However, some previous studies argued that accretion onto these black holes was too low to build up the mass due to strong suppression by radiative feedback. Here, we re-examine the accretion process of such a black hole embedded in a primordial gas cloud, by considering a wide range of physical and numerical parameters not explored before. We find that, while radiative heating and pressure indeed suppress accretion effectively, self-gravity of the gas eventually overcomes the feedback effects and boosts the accretion to the Eddington rate after one free-fall timescale of the cloud. Moreover, for a given black hole mass, there exists a critical density above which the accretion can reach Eddington limit. Furthermore, we find a universal correlation between black hole accretion rate and ambient gas density, which may serve as a realistic recipe for black hole growth in simulations.

Subject headings: accretion – black hole physics – radiative feedback – hydrodynamics – methods: numerical – quasars: high redshift

1. INTRODUCTION

A major recent development in observational cosmology has been the discovery of dozens luminous quasars at high redshifts (z > 6) when the universe was less than 7% of its current age (Fan et al. 2001, 2003; Willott et al. 2007, 2010a,b; Mortlock et al. 2011). These quasars are believed to be powered by supermassive black holes (SMBHs) of ∼10^8–9 M_☉, and the BHs appear to accrete at near Eddington rate (e.g., Fan et al. 2006; Willott et al. 2010a). Furthermore, intense star formation (Carilli et al. 2004; Walter et al. 2009), abundant CO gas and dust (Walter et al. 2003; Jiang et al. 2006, 2010; Wang et al. 2010), and super-solar metallicity (Maiolino et al. 2005) were detected in the quasar hosts, indicating a coeval formation of the SMBHs and host galaxies.

The seeds and growth of these SMBHs, however, are unsolved puzzles. It has long been proposed that they might grow from remnants of the very first stars, the so-called PopIII stars (e.g., Madau & Rees 2001; Haiman & Loeb 2001; Volonteri & Rees 2005; Li et al. 2007; Volonteri 2010). Sophisticated cosmological simulations over the past decade suggested that PopIII stars formed at early cosmic times z ∼ 20–50 in minihalos with mass ∼10^6 M_☉, and were likely massive, with mass ∼30–300 M_☉ (e.g., Abel et al. 2002; Bromm & Larson 2004; Tan & McKee 2004; Gao et al. 2007; Yoshida et al. 2008; Bromm et al. 2009) (see, however, recent work by Clark et al. 2011; Greif et al. 2011 for suggestions of a smaller mass range). Massive PopIII stars of 100–140 M_☉ or above 260 M_☉ were predicted to rapidly collapse to BHs of ∼100 M_☉ (Heger et al. 2003). The subsequent growth of these stellar-mass BHs might play an important role in the formation of luminous quasars at later times. If a 100 M_☉ BH starts to accrete at the Eddington rate at z > 20, it will attain a final mass greater than 10^9 M_☉ by z ∼ 6, implying a viable explanation for the observations of bright quasars in this epoch.

Black holes are thought to accrete through a disk shaped by the outward transfer of the angular momentum (Shakura & Sunyaev 1973; Rees 1984). However, in metal-free, primordial galaxies with virial temperature above 10^4 K, conditions may exist for the formation of a thick disk of gas at temperature of 5000 - 10000 K due to insufficient cooling (Oli & Haiman 2002; Volonteri & Rees 2005). As a result, accretion proceeds in a quasi-radial manner onto the central BH. Such spherical Bondi-Hoyle accretion model (Bondi & Hoyle 1944; Bondi 1952) has been widely employed in cosmological simulations on BH growth in the early universe (Li et al. 2007; Johnson & Bromm 2007; Di Matteo et al. 2008; Alvarez et al. 2009; Stojkic et al. 2009; Di Matteo et al. 2011). In particular, it was shown by Li et al. (2007) that 100 M_☉ BH seeds from PopIII stars in gas-rich protogalaxies residing in highly overdense regions could grow to 10^9 M_☉ within 800 million years and produce luminous quasars at z ∼ 6 as those observed (Li et al. 2008; Robertson et al. 2007; Narayanan et al. 2008), provided that they accreted at Eddington rates for much of their early time.

There are two primary feedback effects of the radiation from the BH that greatly influence the accretion process (e.g., Ciotti & Ostriker 2001; Sazonov et al. 2005; Ciotti & Ostriker 2007; Johnson & Bromm 2007; Alvarez et al. 2009; Milosavljević et al. 2009a,b; Park & Ricotti 2011). The first one is the photo-ionization heating of the gas within the sonic radius (at which the gas motion becomes supersonic), which significantly increases the sound speed and reduces the accretion rate. The second one is the radiation pressure from both electron scattering and photo-ionization, which may drive an outflow and halt the accretion completely. To study these feedback processes and their effects on the accretion rate of the central BH, one must resolve the spatial scale smaller than the sonic radius, which is of the order of 10^{14} cm (∼10^{-4} pc) for a 100 M_☉ BH. This clearly poses a significant challenge for large-scale cosmological simulations.

yuexing@astro.psu.edu
Recent analytical (Milosavljević et al. 2009a) and idealized simulations (Milosavljević et al. 2009b; Park & Ricotti 2011) of accretion onto a 100 M_⊙BH in a gas sphere argued that radiation feedback strongly suppressed the accretion rate to be at most a small fraction of the Eddington limit. However, these studies have focused only on the regime where the ionization radius is much larger than the sonic radius. Furthermore, self-gravity of the gas was ignored on the assumption that the BH’s gravity dominates in the ionized zone. But even if the initial density is relatively low, as long as the radius of the gas sphere is much larger than the ionization radius, self-gravity would build up the density just outside the ionization radius to a high level after one free-fall timescale.

Here, we report new findings of accretion onto a stellar-mass BH (M_{BH} = 100 M_⊙) embedded in a primordial gas sphere from numerical simulations, which cover a wider range of numerical and physical parameters than previous studies. Our model includes not only the relevant feedback processes, but also self-gravity of the gas. We use a modified version of the public, grid-based hydrodynamics code VH-1 (Blondin & Lutkin 1993) to follow the accretion in a spherical geometry. VH-1 is based on the piece-wise parabolic method (Colella & Woodward 1984), and uses a Lagrange-Remap approach to solve the Euler equations.

The modifications we made to VH-1 include two major aspects: a logarithmic grid to ensure sufficiently high resolution near the central hole while covering a large region with a reasonable number of grid cells, and a unique treatment of radiative feedback by using a finely pre-computed two-parameter grid, the ionization parameter and gas temperature, to tabulate the cooling, heating, and radiation pressure. Our feedback algorithm is an improvement to those previously used (Ciotti & Ostriker 2001; Sazonov et al. 2005; Ciotti & Ostriker 2007) in that it calculates the cooling, heating, and radiation force more accurately. Moreover, it can handle high-density clouds accurately and efficiently. These modifications allow us to achieve an unprecedentedly high spatial resolution of 10^{11} cm (∼10^{-7} pc), and simulate clouds of a wide range of gas density in 10^2 – 10^{11} cm^{-3}. In particular, the ability to reach densities several orders of magnitude higher than the previous limit of 10^5 cm^{-3} is critical to our new results.

The paper is organized as follows. In § 2, we describe our analytical considerations and numerical methods in detail. In § 3, we first demonstrate that including self-gravity enhances the gas density just outside the ionization radius by several orders of magnitude, which leads to enhanced accretion rate. We then present various simulations with higher but fixed ambient densities without including self-gravity, and show that beyond a certain critical density, the accretion rate indeed reaches Eddington limit, and that there exists a correlation between BH accretion rate and ambient gas density. We discuss the implications of our results to large scale numerical simulations of SMBH formation, and summarize in § 4.

2. METHODOLOGY

2.1. Analytical Considerations

In the analytical work of Milosavljević et al. (2009a) and numerical simulations of Milosavljević et al. (2009b) and Park & Ricotti (2011), there is an implicit assumption that the ionization radius, r_{ion}, is much larger than the sonic radius, r_s. As we will show later, the conclusion that the accretion rate is significantly suppressed by radiative feedback processes is in fact critically dependent on this assumption, more accurately, the assumption that r_{ion} ≫ r_B, where r_B is the standard Bondi accretion radius ignoring radiative feedback processes:

\[r_B = 5 \times 10^{15} \frac{M_2}{T_{0.4}} \, \text{cm}, \]

(1)

where M_2 is the BH mass in unit of 100 M_⊙, and T_{0.4} is the ambient gas temperature at infinity in unit of 10^4 K.

According to Milosavljević et al. (2009a), the ionization radius r_{ion} takes the form:

\[r_{ion} = 4.7 \times 10^{18} \frac{f_{ion}^{1/3}}{M_2^{1/3}} \frac{T_{HI}}{H_II} \frac{1}{10^7} \, \text{cm}, \]

(2)

where f_{ion} is the average fraction of energy of an absorbed photon that goes to photo-ionization, and is 1/3 for a power-law spectrum with an index of 1.5, as we will assume in the present work; l is the BH luminosity relative to the Eddington luminosity for Thomson scattering; and n_5 is the ambient gas density in unit of 10^5 cm^{-3}.

By taking other numerical factors to be of order unity, we have r_{ion} < r_B if n_5 M_2 > 2 l^{1/2} \times 10^4. For a BH with M_2 = 1, and at near Eddington limit, this means n > 2 \times 10^5 cm^{-3}. This density is much higher than those considered in the simulations of Milosavljević et al. (2009b) and Park & Ricotti (2011). It is therefore not surprising that they found strongly suppressed accretion rates. However, one can naively imagine that there should be qualitative differences in the properties of the accretion flow when the r_{ion} = r_B boundary is crossed. The reason is that r_{ion} primarily determines the region where photon-heating and photo-ionization are important processes, while r_B determines the region where the BH’s gravitational field starts to significantly modify the gas flow. When r_{ion} < r_B, the radiation feedback is not important at radius larger than r_B except for Thomson scattering. The gas flow can therefore achieve significant inward velocity of the order of local sound speed at r_B.

On the other hand, at locations immediately inside r_{ion}, radiation feedback may slow down the inward velocity significantly, creating a strong shocked region between r_{ion} and r_B. It is this region that may help to maintain the accretion rate of the flow at near Eddington limit.

One critical question is therefore what kind of gas density can one expect to find near the accreting BHs. In this paper, we suggest that densities as high as, or higher than 10^9 cm^{-3} might be quite common. One reason is that the near isothermal collapse of the gas outside of r_{ion} under self-gravity can naturally enhance the ambient density to high values. The self-gravity of gas was ignored in the numerical simulations of Milosavljević et al. (2009b) and Park & Ricotti (2011), on the ground that the BH’s gravity dominates at r < r_{ion}. However, even if we start at a relatively low density initially, as long as the radius of the gas sphere is much larger than r_{ion}, the densities just outside r_{ion} may reach very high levels shortly after one free-fall time scale. In this work
we explore this possibility and the resulting accretion rates with one-dimensional hydrodynamic simulations in spherical geometry.

2.2. Numerical Methods

As discussed above, there are two major feedback processes that affect the BH accretion, namely the photo-ionization heating and the radiation pressure. To study these processes and their effects on the BH accretion, one must resolve the spatial scale smaller than the sonic radius, which is of the order of 10^{14} cm for a 100 M\(_{\odot}\) BH. Moreover, in order to investigate the dependence of BH accretion on gas properties, a variety of gas density must be considered.

In order to achieve a sufficiently high spatial resolution, and simulate a wide range of gas density efficiently, we use a modified version of the one-dimensional hydrodynamics code VH-1 by Blondin & Lufkin (1993), which is publicly available\(^1\). VH-1 is based on the piece-wise parabolic method (Colella & Woodward 1984), and uses a Lagrange-Remap approach to solve the Euler equations:

\[
\begin{align*}
\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) &= 0 \\
\partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) + \nabla P &= \rho \mathbf{a} \\
\partial_t (\rho E) + \nabla \cdot (\rho E \mathbf{u} + P \mathbf{u}) &= \rho \mathbf{u} \cdot \mathbf{a} + H - C,
\end{align*}
\]

where the primary variables are the mass density \(\rho\), gas pressure \(P\), and fluid velocity \(\mathbf{u}\). In our implementation, the acceleration field \(\mathbf{a}\) includes both gravity and radiative pressure forces, and \(H\) and \(C\) are heating and cooling source terms arising from radiative feedback.

The total energy per unit mass \(E\) is the sum of the kinetic energy and the internal energy \(e\):

\[E = \frac{1}{2} \mathbf{u}^2 + e,\]

and the internal energy is related to the pressure through the equation of state for an ideal gas for a given adiabatic index \(\gamma\):

\[P = \rho e(\gamma - 1).\]

The modifications we made to VH-1 include two main aspects. The first one is the straightforward change of a uniform radial grid in spherical geometry to a logarithmic one. This is to ensure sufficiently high resolution near the central BH while covering a large spherical region with a reasonable number of grid cells. The second one involves a detailed treatment of radiative feedback. Specifically, we added the heating and cooling terms in the energy conservation equation, and the radiative pressure forces in the momentum and energy conservation equations.

The radiative feedback is modeled by formulating the cooling, heating, and radiation pressure with two parameters: the ionization parameter \(\xi\) and gas temperature \(T\). We assume that the photo-ionized region around the BH can be fully described by \(\xi\) and \(T\). The ionization parameter \(\xi\) is defined as:

\[\xi = \frac{L(r)}{n(r)r^2},\]

where \(L(r)\) is the local luminosity, and \(n(r)\) is the hydrogen number density at radius \(r\). The BH luminosity \(L(0)\) is assumed to have a power law spectrum, \(L_\nu \sim \nu^{-3/2}\), and the attenuation of the luminosity is described by

\[\frac{dL(r)}{dr} = -4\pi r^2 \rho c a_{abs},\]

where \(a_{abs}\) is the radiative acceleration due to photo-absorption, and \(c\) is the speed of light. In solving Equation 7, we make another simplifying assumption that the spectral shape of \(L(r)\) is the same as the original \(L(0)\), so that the heating, cooling, and radiation acceleration at any radius can be obtained from pre-computed tables of the \(\xi\)-\(T\) grid,

\[H = n^2 \dot{H}(\xi, T)\]

\[C = n^2 \dot{C}(\xi, T)\]

\[a_{abs} = n a_{abs}(\xi, T)\]

\[a_{line} = n a_{line}(\xi, T),\]

where the scaling on the local hydrogen density is explicitly factored out, and \(a_{line}\) is the radiation acceleration mainly due to resonant Ly\(\alpha\) line scattering.

We compute these two dimensional tables using the photo-ionization code CLOUDY version 08.00 (Ferland et al. 1998), assuming a primordial elemental abundance, and a power-law input spectrum with index \(-1.5\) in the energy range of 13.6 eV to 100 keV. In the hydrodynamics update of the momentum and energy conservation equations, the heating, cooling, and radiation forces are then interpolated from these tables, in conjunction with the solution of Equation 7.

In addition to photo-absorption and resonant line scattering, Thomson scattering also contributes to the radiative pressure force, which is treated separately as \(a_{cont} = -a^2(r)L(0)/L_{edd}(r)\), where \(a^2(r)\) and \(L_{edd}\) are the gravitational acceleration and Eddington luminosity of the BH, respectively. We note that the unattenuated BH luminosity, \(L(0)\), is used in calculating \(a_{cont}\), as the absorbed luminosity is assumed to be re-emitted at energies below the ionization threshold, which also contributes to Thomson scattering.

Our feedback method is an improvement to those previously used (e.g., Ciotti & Ostriker 2001; Sazonov et al. 2005; Ciotti & Ostriker 2007) in that it computes the heating, cooling, and radiation pressure forces more accurately, and applies to a temperature range of \(1 \leq T \leq 10^8\) K, much larger than the previous range \(10^4 \leq T \leq 3 \times 10^7\) K. As demonstrated in the main page, our simulations produce similar results as those by Milosavljević et al. (2009b) and Park & Ricotti (2011) using more sophisticated treatments on the same problems. Moreover, this method allows us to simulate high-density clouds accurately and efficiently, which is critical in our investigation.

Overall, these modifications allow us to achieve an unprecedentedly high spatial resolution of \(10^{11}\) cm (\(10^{-7}\) pc), and model a large range of gas density \(10^5 - 10^8\) cm\(^{-3}\). In particular, the ability to reach densities several orders of magnitude higher than the limit of \(10^2\) cm\(^{-3}\) in previous work by Milosavljević et al. (2009b) and Park & Ricotti (2011) is the key to our new findings.
In this study, we model the radial accretion onto a central BH embedded in a gas sphere. We assume a BH mass $M_{BH} = 100 M_\odot$, a radiative efficiency of 0.1, and that the gas clouds are assumed to be metal-free and uniform with an ambient density n_0, and an initial temperature $T = 10^4$ K. Outflow and inflow boundary conditions are used in the inner and outer boundaries, respectively. The inner and outer boundaries of the sphere are chosen in such a way that both sonic radius and ionization radius are located well within the simulation region in order to sufficiently resolve the accretion flow.

A total of 13 simulations with different initial hydrogen densities were performed in the present work. The most important parameters and properties of these models are listed in Table 1. In this table, column 1 lists the name of the simulations. Columns 2-5 give the numerical parameters: the ambient density of the gas cloud, the inner and outer radius of the simulated sphere, and number of grid points, respectively. Columns 6-9 give the properties of the accretion process: the minimum and average accretion rates, the oscillation period of the accretion process, and the ionization radius where the ionization fraction is 0.5. These simulations, the self-gravity is deliberately turned off to avoid the density enhancement due to the collapse outside of r_{ion}. Such controlled simulations are not only more computationally tractable than simply allowing the gas to collapse infinitely under self-gravity, they also better illustrate the main dependence of the accretion process on the ambient density.

2.3. Initial Conditions and Parameters of Simulations

In this study, we model the radial accretion onto a central BH embedded in a gas sphere. We assume a BH mass $M_{BH} = 100 M_\odot$, a radiative efficiency of 0.1, and that the gas clouds are assumed to be metal-free and uniform with an ambient density n_0, and an initial temperature $T = 10^4$ K. Outflow and inflow boundary conditions are used in the inner and outer boundaries, respectively. The inner and outer boundaries of the sphere are chosen in such a way that both sonic radius and ionization radius are located well within the simulation region in order to sufficiently resolve the accretion flow.

A total of 13 simulations with different initial hydrogen densities were performed in the present work. The most important parameters and properties of these models are listed in Table 1. In this table, column 1 lists the name of the simulations. Columns 2-5 give the numerical parameters: the ambient density of the gas cloud, the inner and outer radius of the simulated sphere, and number of grid points, respectively. Columns 6-9 give the properties of the accretion process: the minimum and average accretion rates, the oscillation period of the accretion process, and the ionization radius where the ionization fraction is 0.5, respectively.

Run A used the same initial conditions as in other previous work by Milosavljevich et al. (2009) and Park & Ricotti (2011). It produced similar results of many aspects of the accretion process, including the general intermittent pattern, accretion rates, and oscillation period. This confirms the previous findings that radiative feedback strongly suppresses BH accretion. In Run B, self-gravity of the gas was included. We find that self-gravity greatly modifies the accretion flow. It helps to maintain a large inflow rate and increase density buildup outside of the ionization radius r_{ion}, which leads to the shrink of r_{ion}. When the density reaches a critical threshold, the radiative feedback becomes less effective, so the accretion rate can reach Eddington limit. Runs C – M covered a wide range of gas density of 10^{-11} cm$^{-3}$ in order to explore the dependence of accretion on gas density. In these simulations, the self-gravity is deliberately turned off to avoid the density enhancement due to the collapse outside of r_{ion}. Such controlled simulations are not only more computationally tractable than simply allowing the gas to collapse infinitely under self-gravity, they also better illustrate the main dependence of the accretion process on the ambient density.

3. RESULTS

3.1. Enhanced Accretion by Self-gravity of Gas

The BH accretion rate is dictated by the interplay between inflow driven by gravity and external pressure and outflow driven by radiation pressure. Without gas self-gravity, the accretion exhibits a pattern of periodic oscillations, as demonstrated in Figure 1 (top panel) for an ambient density of 10^7 cm$^{-3}$. The intermittency is due to alternating expulsion and fallback of the gas flow with an average period of approximately 200 years. The maximum rates occasionally exceed the Eddington limit ($M_{Edd} \sim 2 \times 10^{-6} M_\odot$ yr$^{-1}$), but the mean remains roughly constant at about 25% of the Eddington rate over a very long timescale. These results are in good agreement with previous ones from 2-dimensional simulations of Bondi-like (e.g., Krumholz et al. 2005; Ciotti & Ostriker 2007), or rotating accretion (e.g., Proga et al. 2008) on different scales.
However, when self-gravity of the gas is included, the BH accretion rate pattern changes dramatically, as shown in Figure 1 (bottom panel). It is clear that the minimum accretion rate within one oscillation cycle gradually increases. In about one free-fall timescale of the gas sphere (∼1.35 × 10^4 years), the mean accretion rate reaches a constant at ∼1.72 × 10^{-6} M⊙yr⁻¹, or about 86% of the Eddington rate.

The reason for such a significant enhancement is that the BH accretion rate critically depends on the ambient gas density, n_H = 10^7, 10^8, 10^9, and 10^10 cm⁻³, respectively. Note the accretion curves of the last four densities are shifted vertically for easy comparison, and the red line represents the mean accretion rate, M_{avg}, of each simulation with the actual value (in unit of 10^{-6} M⊙yr⁻¹) given next to it. The horizontal axis is the scaled time, where the scale factor for different density increases, and scales as n^0.46, as illustrated in Figure 2 (top panel). When the density reaches ∼10^8 cm⁻³, the oscillation is significantly damped after an initial time period, and the ionization radius r_{ion} drops to below r_B, as shown in Figure 2 (bottom panel). The radiation feedback becomes less effective. As a result, the mean asymptotic accretion rate increases density buildup outside of r_{ion}, which leads to the shrinking of r_{ion} to within r_B. In the regime where r_{ion} < r_B, the accretion rate can approach to Eddington limit when the density at r_B reaches a critical value.

3.2. Dependence of Accretion on Ambient Gas Density

An important question is then what the critical density would be. Figure 2 shows the time evolution of accretion rate at several different densities. As the density increases, the accretion rate becomes constant and approaches to the Eddington limit.

The oscillation period also decreases as density increases, and scales as n^0.46, as illustrated in Figure 3 (top panel). When the density reaches ∼10^8 cm⁻³, the oscillation is significantly damped after an initial time period, and the ionization radius r_{ion} drops to below r_B, as shown in Figure 3 (bottom panel). The radiation feedback becomes less effective. As a result, the mean asymptotic accretion rate increases density buildup outside of r_{ion}, which leads to the shrinking of r_{ion} to within r_B. In the regime where r_{ion} < r_B, the accretion rate can approach to Eddington limit when the density at r_B reaches a critical value.

3.2. Dependence of Accretion on Ambient Gas Density

An important question is then what the critical density would be. Figure 2 shows the time evolution of accretion rate at several different densities. As the density increases, the accretion rate becomes constant and approaches to the Eddington limit.

The oscillation period also decreases as density increases, and scales as n^0.46, as illustrated in Figure 3 (top panel). When the density reaches ∼10^8 cm⁻³, the oscillation is significantly damped after an initial time period, and the ionization radius r_{ion} drops to below r_B, as shown in Figure 3 (bottom panel). The radiation feedback becomes less effective. As a result, the mean asymptotic accretion rate increases density buildup outside of r_{ion}, which leads to the shrinking of r_{ion} to within r_B. In the regime where r_{ion} < r_B, the accretion rate can approach to Eddington limit when the density at r_B reaches a critical value.
the BH mass and the critical density, n_{crit} and gas density, with a simple scaling relation between correlation is universal over a wide range of BH mass to depend only on n. The accretion process without self-gravity can be shown to understand, as the hydrodynamic equations governing the radiative feedback plays a negligible role, and the accretion becomes Bondi-like. Under such conditions, the radiative feedback becomes less effective, and the accretion reaches the Eddington limit. However, because both ionization and heating timescales become much less than the dynamical timescale of the gas. This relationship would imply an accretion rate that the density is sufficiently high so that the local gas temperature is close to the thermal equilibrium determined by the heating and cooling functions. That means, for a given BH mass, there exists a critical density, above which the accretion rate can reach the Eddington limit.

This general relation between BH accretion and ambient gas density has important implications and applications in studies of BH growth. We note that Bondi accretion has been commonly used in simulations of BH growth (e.g., Li et al. 2007; Johnson & Bromm 2007; Alvarez et al. 2009; Di Matteo et al. 2009; Springle et al. 2005; Hopkins et al. 2006; Di Matteo et al. 2008; Sijacki et al. 2009; Di Matteo et al. 2011). This simplified prescription neglects the effects of radiation feedback and overestimates the accretion rate by up to two orders of magnitude at some densities below 10^8 cm^{-3}. Our results and the fitting formula above can serve as a more realistic recipe for BH accretion, and can be implemented directly into numerical simulations.

4. SUMMARY

To summarize, we have presented a set of one-dimensional hydrodynamic simulations of the accretion of a black hole embedded in a primordial gas cloud, using the modified grid-based VH-1 code. We include not only important feedback processes from the accreting black hole, but also self-gravity of the gas. We achieved an unprecedentedly high spatial resolution of 10^{11} cm, and covered a wide range of gas density of $10^5 - 10^{11} \text{ cm}^{-3}$. These advantages allowed us to study the accretion process in regimes not explored by previous work, and unveil the following new findings:

1. The accretion behavior exhibits a periodical oscillation caused by the alternating inflow driven by gravity and external pressure and outflow driven.
by radiative feedback from the BH accretion. Self-gravity of the gas can boost the accretion rate by building up high gas density which weakens the feedback effects. Without gas self-gravity, the average accretion is about 25% of the Eddington rate, but with self-gravity, it reaches ~ 86% of the Eddington rate after one free-fall timescale of the gas sphere.

2. The accretion depends strongly on the ambient gas density. For a given black hole mass, there exists a critical density above which the accretion can reach Eddington limit. For example, for a 100 M⊙ BH, the critical density is ~ 10^3 cm^-3.

3. There exists a universal correlation between black hole accretion rate and ambient gas density: \(\dot{M}_{\text{BH}} = \dot{M}_{\text{Edd}} \left(\frac{\rho}{\rho_{\text{crit}}} \right) ^{\beta} \), where \(\rho_{\text{crit}} = 2 \times 10^8 \) cm^-3, and \(\beta \approx 0.48 \). This fitting formula may serve as a realistic recipe for BH accretion, and can be implemented directly into numerical simulations.

In the rare, high-density peaks (5 – 6 σ) of the cosmic filaments where the first most massive dark matter halos collapsed, the first stars were born and might evolve into the first stellar-mass BHs. The extremely deep gravitational potential in these regions retained an abundant gas supply, and induced vigorous interactions and mergers of protogalaxies. Strong gravitational torques removed angular momentum from the highly shocked and dense gas and transported it to fuel the central BHs, while triggered global starburst on a larger scale. Seed BHs in such a gas-rich and dynamical environment may grow rapidly and co-evally with host galaxies to become the first luminous quasars at the cosmic dawn.

5. ACKNOWLEDGMENTS

I thank Tom Abel, Tiziana Di Matteo, Mike Ercolou, Carlos Frenk, Alex Heger, Lars Hernquist, Peter Mészáros, Peng Oh, Massimo Ricotti, and Daniel Schaefer for stimulating discussions and helpful comments. Support from NSF grants AST-0965694 and AST-1009867 is gratefully acknowledged. I thank the Institute for Theory and Computation (ITC) at Harvard University where the project was started for warm hospitality, and the Research Computing and Cyberinfrastructure unit of Information Technology Services at The Pennsylvania State University for providing computational resources and services that have contributed to the research results reported in this paper. URL: http://rcc.its.psu.edu

REFERENCES

Abel, T., Bryan, G. L., & Norman, M. L. 2002, The Formation of the First Star in the Universe, Science, 295, 93
Alvarez, M. A., Wise, J. H., & Abel, T. 2009, Accretion onto the First Stellar-Mass Black Holes, ApJ, 701, L133
Antonucci, R. 1993, Unified models for active galactic nuclei and quasars, ARA&A, 31, 473
Blondin, J. M. & Luftpkin, E. A. 1993, The piecewise-parabolic method in curvilinear coordinates, ApJS, 88, 589
Bondi, H. 1952, On spherically symmetrical accretion, MNRAS, 112, 196
Bondi, H. & Hoyle, F. 1944, On the mechanism of accretion by stars, MNRAS, 104, 275
Bromm, V. & Larson, R. B. 2004, The First Stars, ARA&A, 42, 79
Bromm, V., Yoshida, N., Hernquist, L., & McKee, C. F. 2009, The formation of the first stars and galaxies, Nature, 459, 49
Carilli, C. L., Walter, F., Bertoldi, F., Menten, K. M., Fan, X., Lewis, G. F., Strauss, M. A., Cox, P., Beelen, A., Omont, A., & Mohan, N. 2004, Radio Continuum Imaging of Far-Infrared-Luminous QSOs at z > 6, AJ, 128, 997
Ciotti, L. & Ostriker, J. P. 2001, Cooling Flows and Quasars. II. Detailed Models of Feedback-modulated Accretion Flows, ApJ, 551, 131
---, 2007, Radiative Feedback from Massive Black Holes in Elliptical Galaxies: AGN Flaring and Central Starburst Fueled by Recycled Gas, ApJ, 665, 1638
Clark, P. C., Glover, S. C. O., Smith, R. J., Greif, T. H., Klessen, R. S., & Bromm, V. 2011, The Formation and Fragmentation of Disks Around Primordial Protostars, Science, 331, 1040
Coeilla, P. & Woodward, P. R. 1984, The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations, Journal of Computational Physics, 54, 174
Di Matteo, T., Colberg, J., Springel, V., Hernquist, L., & Sijacki, D. 2008, Direct Cosmological Simulations of the Growth of Black Holes and Galaxies, ApJ, 676, 33
Di Matteo, T., Khandai, N., DeGraf, C., Feng, Y., Croft, R., Lopez, J., & Springel, V. 2011, Cold flows and the first quasars, astro-ph 1107.1253
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Energy input from quasars regulates the growth and activity of black holes and their host galaxies, Nature, 433, 604
Fan, X., Carilli, C. L., & Keating, B. 2006, Observational constraints on Cosmic Reionization, ARA&A, 44, 415
Fan, X., Narayanan, V. K., Lupton, R. H., Strauss, M. A., Knapp, G. R., Becker, R. H., White, R. L., Pentericci, L., Leggett, S. K., Haiman, Z., Gunn, J. E., Ivezic, Z., Schneider, D. P., Anderson, S. F., Brinkmann, J., Bahcall, N. A., Connolly, A. J., Csabai, I., Doi, M., Fukugita, M., Geballe, T., Grebel, E. K., Harbeck, D., Hennings, G., Lamb, D. Q., Mikhailitis, G., Munn, J. A., Nichol, R., Okamura, S., Pier, J. R., Prada, F., Richards, G. T., Szalay, A., & York, D. G. 2001, A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z > 6, AJ, 122, 2833
Fan, X., Strauss, M. A., Schneider, D. P., Becker, R. H., White, R. L., Haiman, Z., Gregg, M., Pentericci, L., Grebel, E. K., Narayanan, V. K., Loh, Y.-S., Richards, G. T., Gunn, J. E., Lupton, R. H., Knapp, G. R., Ivezic, Z., Brandt, W. N., Collinge, M., Hao, L., Harbeck, D., Prada, F., Schaye, J., Strateva, I., Zalengia, N., Anderson, S., Brinkmann, J., Bahcall, N. A., Lamb, D. Q., Okamura, S., Szalay, A., & York, D. G. 2003, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6, AJ, 125, 1649
Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra, PASP, 110, 761
Gao, L., Yoshida, N., Abel, T., Frenk, C. S., Jenkins, A., & Springel, V. 2007, The first generation of stars in the A cold dark matter cosmology, MNRAS, 378, 449
Greif, T., Springel, V., White, S., Glover, S., Clark, P., Smith, R., Klessen, R., & Bromm, V. 2011, Simulations on a Moving Mesh: The Clustered Formation of Population III Protostars, ArXiv1101.5491
Haiman, Z. & Loeb, A. 2001, What Is the Highest Plausible Redshift of Luminous Quasars?, ApJ, 552, 459
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, How Massive Single Stars End Their Life, ApJ, 591, 268
Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B., & Springel, V. 2006, A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids, ApJS, 163, 1
