ON A DRIFT-DIFFUSION SYSTEM FOR SEMICONDUCTOR DEVICES

RAFAEL GRANERO-BELINCHÓN

Abstract. In this note we study a fractional Poisson-Nernst-Planck equation modeling a semiconductor device. We prove several decay estimates for the Lebesgue and Sobolev norms in one, two and three dimensions. We also provide the first term of the asymptotic expansion as $t \to \infty$.

1. Introduction

We consider the drift-diffusion system given below:

$$\begin{cases}
\partial_t u + (-\Delta)\frac{\alpha}{2} u + \nabla \cdot (u \nabla \psi) = 0, & \text{for } (x,t) \in \mathbb{R}^d \times \mathbb{R}^+ \\
\partial_t v + (-\Delta)\frac{\beta}{2} v - \nabla \cdot (v \nabla \psi) = 0, & \text{for } (x,t) \in \mathbb{R}^d \times \mathbb{R}^+ \\
\Delta \psi = u - v, & \text{for } (x,t) \in \mathbb{R}^d \times \mathbb{R}^+ \\
u(x,0) = u_0, v(x,0) = v_0, x \in \mathbb{R}^d
\end{cases}\tag{1}$$

where u, v, and ψ are functions of space and time, the dimension $d \in \mathbb{Z}^+$ with $d \leq 3$, $0 < \alpha, \beta < 2$, and, if we denote the Fourier transform of the function ϕ by $\hat{\phi}$, then the fractional Laplacian is defined by

$$(-\Delta)^{\frac{\alpha}{2}} \phi = |\xi|^{\alpha} \hat{\phi}.$$

The unknown functions $u(x,t)$ and $v(x,t)$ represent the density of electrons and positive holes in the semiconductor, respectively. Finally, the function ψ models the electromagnetic potential due to charges in a semiconductor. The fractional Laplacians are related to random trajectories, generalizing the concept of Brownian motion, which may contain jump discontinuities (the, so-called, α-stable Lévy processes). As an electron in a semiconductor may jump from a dopant into another, a nonlocal diffusion akin to the fractional Laplacian arises naturally.

1.1. Prior results on (1). Mock [29] first considered the drift-diffusion system (1) with $\alpha = \beta = 2$ on a bounded domain with the Neumann boundary condition (see also He, Gamba, Lee & Ren [20] and Liu & Wang [28]). A similar equation has been studied by Rodríguez & Ryzhik in a very different context [31]. Fang & Ito [19] proved the existence of a global weak solution in this bounded domain (see also the work by Bothe, Fischer, Pierre, & Rolland [9] and Hineman, & Ryham [21]). The asymptotic behaviour of the solution in the case $\alpha = \beta = 2$ was studied by Jungel [22] and Biler & Dolbeault [3]. Kurokiba & Ogawa [26] and Kurokiba, Nagai & Ogawa [25] proved the existence and uniqueness of strong solutions to the Cauchy problem. Kawashima & Kobayashi [24] derived the optimal decay estimate by applying a weighted energy method and found an asymptotic result as
In presence of an incompressible, viscous fluid, system (1) was studied by Schmuck [32], by Zhao, Deng & Cui [41, 42, 17], by Bothe, Fischer, & Saal [10]. Very recently, Kinderlehrer, Monsaingeon, & Xu provided a new approach to system (1) using that system (1) is a gradient flow driven by a $L \log L$–type free energy [23]. Each of these studies restricted their conclusions to $\alpha = \beta = 2$. The case of nonlinear diffusion has been considered by Zinsl [43].

When $v_0 \equiv 0$ (so the equation for v is dropped), the fractional case $0 < \alpha \leq 2$ of (1) has been studied by several authors. Yamamoto [34] obtained the asymptotic behavior in the local case $\alpha = 2$. Yamamoto [35] proceeded similarly, but derived the asymptotic expansion of the solution with the fractional Laplacian in the subcritical regime $1 < \alpha < 2$. Yamamoto, Kato & Sugiyama, [36] showed the well-posedness and real analytic of the critical case corresponding to $\alpha = 1$. Sugiyama, Yamamoto & Kato [33] studied local and global existence and uniqueness of the system with the fractional Laplacian, focusing primarily on the supercritical and critical cases $0 < \alpha < 1$ and $\alpha = 1$, respectively. Yamamoto & Sugiyama [37, 38] then derived lower bounds on the decay rates of a solution to the drift-diffusion system with the fractional Laplacian $0 < \alpha \leq 1$ and obtained the asymptotic behavior of the solution as $t \to \infty$. Similar systems arising in different contexts have been studied also by Li, Rodrigo & Zhang [27], Escudero [18], Bourneveas & Calvez [11], Biler & Karch [4], Biler & Wu [8], Biler, Karch & Woyczyński [5] Biler & Woyczyński [7, 6], Zhao [40, 39], Ascasibar, Granero-Belinchón & Moreno [1] and Burczak & Granero-Belinchón [13, 14].

The fractional case $1 < \alpha = \beta < 2$ of (1) with general v_0 has been studied by Ogawa & Yamamoto [30]. In particular, these authors proved the global existence and the asymptotic behavior of solutions. To the best of our knowledge, this is the only result concerning (1). Thus, by studying (1), this paper generalizes the current results in [30] in two different aspects:

1. It allows for diffusions with different strengths for u and v i.e. α is not necessarily equal to β. The cases $\alpha \neq \beta$ and $\alpha = \beta$ present several differences at the level of the H^2 Sobolev norm and some closeness hypothesis needs to be imposed (see Theorem 3).
2. It allows for diffusions in the whole range $0 < \alpha, \beta < 2$. In particular, our work covers the supercritical and critical range $0 < \alpha, \beta \leq 1$.

1.2. Preliminaries.

1.2.1. Singular integral operators. We write $\Lambda^\alpha = (-\Delta)^{\frac{\alpha}{2}}$, i.e.

\[\hat{\Lambda}^\alpha u(\xi) = |\xi|^\alpha \hat{u}(\xi) \]

where $\hat{\cdot}$ denotes the usual Fourier transform. As a singular integral operator, the operator Λ^α possesses the kernel

\[\Lambda^\alpha u(x) = c_{\alpha,d} \text{P.V.} \int_{\mathbb{R}^d} \frac{u(x) - u(x - \eta)d\eta}{|\eta|^{d+\alpha}}, \]

with

\[c_{\alpha,d} = \frac{4^\alpha \Gamma(d/2 + \alpha)}{\pi^{d/2} |\Gamma(-\alpha)|} > 0, \]
where
\[
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt
\]
is the \(\Gamma\) function.

1.2.2. Functional spaces. We write \(L^p(\mathbb{R}^d)\) for the usual Lebesgue spaces
\[
L^p(\mathbb{R}^d) = \left\{ u \text{ measurable s.t. } \int_{\mathbb{R}^d} |u(x)|^p dx < \infty \right\},
\]
with norm
\[
\|u\|_{L^p} = \int_{\mathbb{R}^d} |u(x)|^p dx.
\]
We write \(H^s(\mathbb{R}^d)\) for the usual \(L^2\)-based Sobolev spaces:
\[
H^s(\mathbb{R}^d) = \left\{ u \in L^2(\mathbb{R}^d) \text{ s.t. } (1 + |\xi|^s)\hat{u} \in L^2(\mathbb{R}^d) \right\},
\]
with the norm
\[
\|u\|_{H^s} = \|u\|_{L^2} + \|\Lambda^s u\|_{L^2}.
\]

1.3. Plan of the paper. This note is organized as follows: in section 2 we state our results. In section 3 we prove the decay in the \(L^p\) spaces. In sections 4, 5 and 6, we prove the decay of the Sobolev norms. Then, in section 7, we provide the first term in the asymptotic expansion. Finally, in Appendix A-C we provide certain inequalities and estimates for fractional Laplacian that are used in the paper and may be interesting by themselves.

2. Main results

Our first result concerns the global existence and decay of the solutions to (1):

Theorem 1. Let \(0 < \alpha, \beta < 2\), \(d \in \mathbb{Z}^+\) with \(d \leq 3\), be fixed constants and
\[
u_0(x), v_0(x) \in L^1(\mathbb{R}^d) \cap H^4(\mathbb{R}^d)
\]
be the initial data. Then there exists \((u(x,t), v(x,t))\) a global smooth solution to (1) satisfying
\[
u \in L^\infty(0,T; L^1(\mathbb{R}^d) \cap H^4(\mathbb{R}^d)) \cap L^2(0,T; H^{4+\alpha/2}(\mathbb{R}^d)),
\]
\[
u \in L^\infty(0,T; L^1(\mathbb{R}^d) \cap H^4(\mathbb{R}^d)) \cap L^2(0,T; H^{4+\beta/2}(\mathbb{R}^d)),
\]
for every \(0 < T < \infty\). Furthermore, the functionals
\[
\mathcal{F}_p[u(t), v(t)] := \|u(t)\|^p_{L^p} + \|v(t)\|^p_{L^p}, \quad 1 \leq p < \infty,
\]
\[
\mathcal{F}_\infty[u(t), v(t)] := \|u(t)\|_{L^\infty} + \|v(t)\|_{L^\infty},
\]
verify
\[
\mathcal{F}_p[u(t), v(t)] \leq \mathcal{F}_p[u_0, v_0], \quad 1 \leq p \leq \infty,
\]
and there exist constants \(K\) and \(C_\infty\) such that
\[
\mathcal{F}_\infty[u,v] \leq \frac{\mathcal{F}_\infty[u_0, v_0]}{(1 + Kt)^{d/\max\{\alpha, \beta\}}},
\]
\[
\mathcal{F}_p[u, v] \leq \left(\|u_0\|_{L^1} + \|v_0\|_{L^1}\right) \frac{C_\infty^{p-1}}{(1 + t)^{\max\{\alpha, \beta\}(p-1)}},
\]
\begin{align*}
\|u(t)\|_{L^p} & \leq \frac{\|u_0\|_{L^p} C_\infty^{1-\frac{1}{p}}}{(1+t)^{\max\{\alpha,\beta\}(1-\frac{1}{p})}}, \\
\|v(t)\|_{L^p} & \leq \frac{\|v_0\|_{L^p} C_\infty^{1-\frac{1}{p}}}{(1+t)^{\max\{\alpha,\beta\}(1-\frac{1}{p})}}.
\end{align*}

Remark 1. In the case where the smooth initial data is \(u_0(x), v_0(x) \in L^p(\mathbb{R}^d), 1 < p < \infty,
\) following the proof of Theorem 1, we have the pointwise estimates
\[
\Lambda^\alpha u(x_t) \geq c(d, \alpha, p) \frac{u(x_t)^{1+\alpha p/d}}{\|u(t)\|_{L^p}^{\alpha p/d}} \geq c(d, \alpha, p) \frac{u(x_t)^{1+\alpha p/d}}{\mathcal{F}_p(u_0, v_0)^{\alpha p/d}} \geq c(d, \alpha, p),
\]
\[
\Lambda^\beta v(y_t) \geq c(d, \beta, p) \frac{v(y_t)^{1+\beta p/d}}{\|v(t)\|_{L^p}^{\beta p/d}} \geq c(d, \beta, p) \frac{v(y_t)^{1+\beta p/d}}{\mathcal{F}_p(u_0, v_0)^{\beta p/d}}.
\]
where \(x_t\) and \(y_t\) are such that
\[
\|u(t)\|_{L^\infty} = u(x_t, t), \quad \|v(t)\|_{L^\infty} = v(y_t, t).
\]
Thus, instead of (11), we have that
\[
(4) \quad \frac{d}{dt} \mathcal{F}_\infty[u, v] \leq -c(d, \alpha, p) \frac{u(x_t)^{1+\alpha p/d}}{\mathcal{F}_p(u_0, v_0)^{\alpha p/d}} - c(d, \beta, p) \frac{v(y_t)^{1+\beta p/d}}{\mathcal{F}_p(u_0, v_0)^{\beta p/d}}.
\]

Our second result studies the behavior of Sobolev spaces \(H^s\) for \(0 < s \leq 1.\)

Theorem 2. Let \(0 < \alpha, \beta < 2, d \in \mathbb{Z}^+\) with \(d \leq 3,\) be fixed constants and \(u_0(x), v_0(x) \in L^1 \cap H^4\) be the initial data. Then, there exists a constant \(C\) such that the solution \((u(x, t), v(x, t))\) to (1) verifies
\[
\|u(t)\|_{\dot{H}^s} + \|v(t)\|_{\dot{H}^s} \leq \frac{C}{(1+t)^{\max\{\alpha, \beta\} \cdot \frac{1}{2}}} \forall t \geq 0, 0 \leq s \leq 1.
\]

Our third result regards the higher Sobolev norm \(H^s, 1 \leq s \leq 2\) and imposes restrictions on \(\alpha\) and \(\beta:\)

Theorem 3. Let \(0 < \alpha, \beta < 2, d \in \mathbb{Z}^+, d \leq 3,\) be fixed constants such that
\[
\frac{2d}{4 + 3 \min\{\alpha, \beta\}} < 1,
\]
\[
\min\{\alpha, \beta\} \frac{d}{\max\{\alpha, \beta\}} \left(2 + \frac{2d}{4 + 3 \max\{\alpha, \beta\} - 2d}\right) > 1,
\]
\[
\Gamma = \frac{d}{4 + 3 \min\{\alpha, \beta\}} - d \left(2 + \frac{4|\alpha - \beta|}{4 + 3 \min\{\alpha, \beta\}}\right) \leq 2,
\]
and
\[
u_0(x), v_0(x) \in L^1 \cap H^4
\]
be the initial data. Furthermore, when \(\Gamma < 2,\) we assume that
\[
\frac{4 + 3 \max\{\alpha, \beta\}}{4 + 3 \min\{\alpha, \beta\}} < 1 + \frac{d}{4 + 3 \max\{\alpha, \beta\} - d},
\]
and
\[
\min\{\alpha, \beta\} \frac{d}{\max\{\alpha, \beta\}} \geq 1.
\]

Then, there exists a constant \(C \) such that the solution \((u(x,t), v(x,t))\) to (1) verifies
\[
\|u(t)\|_{H^s} + \|v(t)\|_{H^s} \leq \frac{C}{(1 + t)^\frac{d}{\max\{\alpha, \beta\}}}, \forall \ t \geq 0, \ 0 \leq s \leq 2.
\]

Notice that this result imposes restrictions on the difference \(\alpha - \beta \). This result suggests that a big disparity in the strengths of the diffusive operators may lead to obstructions in higher Sobolev norms.

Our next theorem concerns the case of arbitrarily large Sobolev norms:

Theorem 4. Let \(0 < \alpha, \beta < 2, d \in \mathbb{Z}^+ \) with \(d \leq 3 \), be fixed constants and \(u_0(x), v_0(x) \in L^1 \cap H^s, s \geq 2, s \in \mathbb{R} \) be the initial data. Assume that \(\alpha, \beta \) and \(d \) satisfy the same hypothesis as in Theorem 3. Then, there exists a constant \(C \) such that the solution \((u(x,t), v(x,t))\) to (1) verifies
\[
\|u(t)\|_{H^r} + \|v(t)\|_{H^r} \leq \frac{C}{(1 + t)^\frac{d}{\max\{\alpha, \beta\}}}, \forall \ t \geq 0, \ 0 \leq r \leq s.
\]

Finally, we provide the first order asymptotic estimate

Proposition 1. Let \(0 < \alpha, \beta < 2, d \in \mathbb{Z}^+ \) with \(d \leq 3 \), be fixed constants and \(u_0(x), v_0(x) \in L^1 \cap H^s, s \geq 2, s \in \mathbb{R} \) be the initial data. Then, there exists a constant \(C \) such that the solution \((u(x,t), v(x,t))\) to (1) verifies
\[
\|u(t) - e^{-t\Lambda^\alpha}u_0\|_{L^2} \leq \frac{C}{(1 + t)^\frac{d}{\max\{\alpha, \beta\}}},
\]
\[
\|v(t) - e^{-t\Lambda^\beta}v_0\|_{L^2} \leq \frac{C}{(1 + t)^\frac{d}{\max\{\alpha, \beta\}}},
\]

3. Proof of Theorem 1: Global existence and \(L^p \) decay estimates

Step 1: Local existence The local existence and uniqueness follows from standard methods (see for instance [1]).

Step 2: Boundedness in \(L^p \) First notice that, given \(u_0(x) \geq 0 \) and \(v_0(x) \geq 0 \), we have that \(u(t) \geq 0 \) and \(v(x,t) \geq 0 \ \forall t \geq 0 \) (this can be shown with a contradiction argument and the use of pointwise methods [12]). Thus, we have
\[
\frac{d}{dt} F_1[u, v] = 0.
\]

Furthermore, we have the stronger equalities
\[
\|u(t)\|_{L^1} = \|u_0\|_{L^1}, \ \|v(t)\|_{L^1} = \|v_0\|_{L^1}.
\]
Consider now the case $1 < p < \infty$. Then
\[
\frac{d}{dt} F_p[u, v] = \frac{d}{dt} \|u(t)\|_{L^p}^p + \frac{d}{dt} \|v(t)\|_{L^p}^p
\]
\[
= \int_{\mathbb{R}^d} pu(y, t)^{p-1} \partial_t u(y, t) dy + \int_{\mathbb{R}^d} pv(y, t)^{p-1} \partial_t v(y, t) dy
\]
\[
= \int_{\mathbb{R}^d} pu(y, t)^{p-1}[- \Lambda^\alpha u(y, t) - \nabla \cdot (u(y, t) \nabla \psi)] dy
\]
\[
+ \int_{\mathbb{R}^d} pv(y, t)^{p-1}[- \Lambda^\beta v(y, t) + \nabla \cdot (v(y, t) \nabla \psi)] dy
\]

The transport terms are
\[
T_1 = - \int_{\mathbb{R}^d} pu^{p-1} \nabla \cdot (u \nabla \psi) = \int_{\mathbb{R}^d} p(p-1)u^{p-1} \nabla u \cdot \nabla \psi = - \int_{\mathbb{R}^d} (p-1)u^p \Delta \psi,
\]
\[
T_2 = \int_{\mathbb{R}^d} pv^{p-1} \nabla \cdot (v \nabla \psi) = - \int_{\mathbb{R}^d} p(p-1)v^{p-1} \nabla v \cdot \nabla \psi = \int_{\mathbb{R}^d} (p-1)v^p \Delta \psi.
\]

Symmetrizing the diffusive terms, we get
\[
D_1 = - \int_{\mathbb{R}^d} u(y, t)^{p-1} \Lambda^\alpha u(y, t) dy
\]
\[
= -p \int_{\mathbb{R}^d} u(y, t)^{p-1} \int_{\mathbb{R}^d} \frac{u(y, t) - u(\eta, t)}{|y - \eta|^{d+\alpha}} d\eta dy
\]
\[
= -p \int_{\mathbb{R}^d} u(\eta, t)^{p-1} \int_{\mathbb{R}^d} \frac{u(\eta, t) - u(y, t)}{|\eta - y|^{d+\alpha}} d\eta dy
\]
\[
= p \int_{\mathbb{R}^d} u(\eta, t)^{p-1} \int_{\mathbb{R}^d} \frac{u(y, t) - u(\eta, t)}{|\eta - y|^{d+\alpha}} d\eta dy
\]
\[
= -\frac{p}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} (u(y, t)^{p-1} - u(\eta, t)^{p-1}) \frac{u(y, t) - u(\eta, t)}{|y - \eta|^{d+\alpha}} d\eta dy
\]
\[
\leq 0
\]

Following a similar procedure,
\[
D_2 = - \int_{\mathbb{R}^d} v(y, t)^{p-1} \Lambda^\beta v(y, t) dy
\]
\[
= -\frac{p}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} (v(y, t)^{p-1} - v(\eta, t)^{p-1}) \frac{v(y, t) - v(\eta, t)}{|y - \eta|^{d+\beta}} d\eta dy
\]
\[
\leq 0.
\]

Thus,
\[
\frac{d}{dt} F_p[u, v] \leq T_1 + T_2 = -(p-1) \int_{\mathbb{R}^d} (u^p - v^p)(u - v) dx \leq 0,
\]
and we conclude
\[
F_p[u, v] \leq F_p[u_0, v_0].
\]

Step 3: Boundedness in L^∞ Due to the smoothness of $u(x, t)$ and $v(x, t)$ in space and time we have that
\[
M_u(t) := \|u(t)\|_{L^\infty} = u(x_t, t), \quad M_v(t) := \|v(t)\|_{L^\infty} = v(y_t, t)
\]
are Lipschitz. Thus, using Rademacher Theorem $M_u(t)$ and $M_v(t)$ are differentiable almost everywhere and (see [1, 16])
\[
\frac{d}{dt} M_u(t) = \partial_t u(x_t)
\]
\[
\frac{d}{dt} M_v(t) = \partial_t v(y_t).
\]

Now we show the $F_{\infty}[u, v] = \|u(t)\|_{L^\infty} + \|v(t)\|_{L^\infty}$ is a Lyapunov functional:
\[
\frac{d}{dt} F_{\infty}[u, v] = M_u(t) + M_v(t)
\]
\[
= \partial_t u(x_t) + \partial_t v(y_t)
\]
\[
= -\Lambda^\alpha u(x_t) - \Lambda^\beta v(y_t) - u(x_t)\Delta\psi(x_t) + v(y_t)\Delta\psi(y_t)
\]
\[
= -\Lambda^\alpha u(x_t) - \Lambda^\beta v(y_t) - u(x_t)[u(x_t) - v(x_t)] + v(y_t)[u(y_t) - v(y_t)]
\]
\[
\leq -\Lambda^\alpha u(x_t) - \Lambda^\beta v(y_t) - u(x_t)^2 + 2u(x_t)v(y_t) - v(y_t)^2.
\]

Thus, using (3), we have that
\[
-\Lambda^\alpha u(x_t) = - \int_{\mathbb{R}^d} \frac{u(x_t) - u(x_t - \eta)}{\eta^{d+\alpha}} d\eta \leq 0,
\]
\[
-\Lambda^\beta v(y_t) = - \int_{\mathbb{R}^d} \frac{v(y_t) - v(y_t - \eta)}{\eta^{d+\beta}} d\eta \leq 0,
\]

and
\[
(10) \quad \frac{d}{dt} F_{\infty}[u, v] \leq -\Lambda^\alpha u(x_t) - \Lambda^\beta v(y_t) - (u(x_t) - v(y_t))^2 \leq 0.
\]

So
\[
F_{\infty}[u, v] \leq F_{\infty}[u_0, v_0] .
\]

Step 4: Decay in L^∞ Furthermore, we have the following lower bounds (see Lemma 1 and [2])
\[
\Lambda^\alpha u(x_t) \geq \frac{c_{\alpha, d} u(x_t) \|u_0\|_{L^1}}{u(x_t)} \geq \frac{c(d, \alpha) u(x_t)^{1+\alpha/d}}{\|u_0\|_{L^1}^{\alpha/d}}
\]
\[
\Lambda^\beta v(y_t) \geq \frac{c_{\beta, d} v(y_t) \|v_0\|_{L^1}}{v(y_t)} \geq \frac{c(d, \beta) v(y_t)^{1+\beta/d}}{\|v_0\|_{L^1}^{\beta/d}}.
\]

Thus, (10) can be sharpened and we get
\[
(11) \quad \frac{d}{dt} F_{\infty}[u, v] \leq -c(d, \alpha) \frac{u(x_t)^{1+\alpha/d}}{\|u_0\|_{L^1}^{\alpha/d}} - c(d, \beta) \frac{v(y_t)^{1+\beta/d}}{\|v_0\|_{L^1}^{\beta/d}}.
\]

Fix $\gamma > 0$. Then
\[
(u(x_t) + v(y_t))^{1+\gamma} \leq 2^{1+\gamma} \max\{u(x_t), v(y_t)\}^{1+\gamma}
\]
\[
\leq 2^{1+\gamma} \left(\max\{u(x_t), v(y_t)\}^{1+\gamma} + \min\{u(x_t), v(y_t)\}^{1-\gamma+(\alpha+\beta)/d} \right).
\]
We define γ as
\[
\gamma := \begin{cases}
\alpha/d & \text{if } \max\{u(x_t), v(y_t)\} = u(x_t) \\
\beta/d & \text{if } \max\{u(x_t), v(y_t)\} = v(y_t)
\end{cases}
\]

With this definition of γ, we have
\[
(u(x_t) + v(y_t))^{1+\gamma} \leq 2^{1+\gamma} \max\{u(x_t), v(y_t)\}^{1+\gamma} \leq 2^{1+\max\{\alpha, \beta\}/d} (u(x_t)^{1+\alpha/d} + v(y_t)^{1+\beta/d})
\]

Let us denote
\[
C_{\min}(\alpha, \beta, d, u_0, v_0) := \min \left\{ \frac{c(d, \alpha)}{\|u_0\|^{\alpha/d}_{L^1}}, \frac{c(d, \beta)}{\|v_0\|^{\beta/d}_{L^1}} \right\}
\]

then
\[
C_{\min} \frac{2^{1+\max\{\alpha, \beta\}/d}}{(u(x_t) + v(y_t))^{1+\gamma}} \leq c(d, \alpha) \frac{u(x_t)^{1+\alpha/d}}{\|u_0\|^{\alpha/d}_{L^1}} + c(d, \beta) \frac{v(y_t)^{1+\beta/d}}{\|v_0\|^{\beta/d}_{L^1}}.
\]

We obtain the inequality
\[
\frac{d}{dt} F_{\infty}[u, v] \leq -C_{\min} \frac{2^{1+\max\{\alpha, \beta\}/d}}{(u(x_t) + v(y_t))^{1+\gamma}} F_{\infty}[u, v]^{1+\gamma},
\]
where γ is given by (12). We obtain the following rate of decay,
\[
F_{\infty}[u, v] \leq \frac{F_{\infty}[u_0, v_0]}{(1 + K t)^{1/\gamma}} \leq \frac{F_{\infty}[u_0, v_0]}{(1 + K t)^{d/\max\{\alpha, \beta\}}},
\]

where
\[
K = \min \left\{ \left(\frac{F_{\infty}[u_0, v_0]}{\|u_0\|^{\alpha/d}_{L^1}}\right)^{\alpha/d}, \left(\frac{F_{\infty}[u_0, v_0]}{\|v_0\|^{\beta/d}_{L^1}}\right)^{\alpha/d} \right\} \frac{\min\{\alpha, \beta\}}{d} \frac{C_{\min}}{2^{1+\max\{\alpha, \beta\}/d}}.
\]

As a consequence, we have
\[
\|u(t)\|_{L^\infty} + \|v(t)\|_{L^\infty} \leq \frac{C_{\infty}}{(1 + t)^{\max\{\alpha, \beta\}}}.
\]

Step 5: Decay in L^p Using interpolation and the conservation of mass, we obtain
\[
\|u(t)\|_{L^p} \leq \|u_0\|^{|p-1|}{1+p} \frac{C_{\infty}^{1-\frac{1}{p}}}{(1 + t)^{\max\{\alpha, \beta\}(1-\frac{1}{p})}},
\]
\[
\|v(t)\|_{L^p} \leq \|v_0\|^{|p-1|}{1+p} \frac{C_{\infty}^{1-\frac{1}{p}}}{(1 + t)^{\max\{\alpha, \beta\}(1-\frac{1}{p})}},
\]
\[
F_{p}[u, v] \leq (\|u_0\|_{L^1} + \|v_0\|_{L^1}) \frac{C_{\infty}^{p-1}}{(1 + t)^{\max\{\alpha, \beta\}(p-1)}}.
\]

Step 6: Global existence The global existence follows from the decay of $\|u\|_{L^\infty} + \|v\|_{L^\infty}$, energy estimates and a standard continuation argument (see [1]).
4. Proofs of Theorem 2: Decay estimates in Sobolev spaces H^s, $0 < s < 1$

Step 1: Boundedness in H^1 ($d = 1$)

First we deal with the one-dimensional case. We compute

\[\frac{1}{2} \frac{d}{dt} \| u \|^2_{H^1} = -\| u \|^2_{H^{1+\alpha/2}} - \int_R \partial_x u \partial_x^2 (u \partial_x \psi) \]

\[\leq -\| u \|^2_{H^{1+\alpha/2}} - \int_R \partial_x u (\partial_x^2 u \partial_x \psi + u \partial_x (u - v) + 2 \partial_x u (u - v)), \]

and

\[\frac{1}{2} \frac{d}{dt} \| v \|^2_{H^1} = -\| v \|^2_{H^{1+\beta/2}} + \int_R \partial_x v \partial_x^2 (v \partial_x \psi) \]

\[\leq -\| v \|^2_{H^{1+\beta/2}} + \int_R \partial_x v (\partial_x^2 v \partial_x \psi + v \partial_x (u - v) + 2 \partial_x v (u - v)). \]

Adding them together and using Hölder inequality, we have

\[\frac{d}{dt} \left(\| u \|^2_{H^1} + \| v \|^2_{H^1} \right) = -2 \| u \|^2_{H^{1+\alpha/2}} - 2 \| v \|^2_{H^{1+\beta/2}} \]

\[+ C(\| \partial_x u \|^2_{L^2} + \| \partial_x v \|^2_{L^2})(\| u \|_{L^\infty} + \| v \|_{L^\infty}). \]

Using the interpolation inequality (14)

\[\| \Lambda^r f \|^2_{L^s} \leq \| f \|^2_{L^s} + \| f \|^2_{H^{r+s}}, \forall r, s \geq 0, \]

we conclude that, for $t \geq T^*$ and $T^* < \infty$ large enough (see Theorem 1),

\[\frac{d}{dt} \left(\| u \|^2_{H^1} + \| v \|^2_{H^1} \right) = -\| u \|^2_{H^{1+\alpha/2}} - \| v \|^2_{H^{1+\beta/2}} \]

\[+ C(\| u \|^2_{L^2} + \| v \|^2_{L^2})(\| u \|_{L^\infty} + \| v \|_{L^\infty}). \]

Recalling that

\[1 < \frac{2}{\max\{\alpha, \beta\}} \]

and using Theorem 1 to obtain that

\[(\| u \|^2_{L^2} + \| v \|^2_{L^2})(\| u \|_{L^\infty} + \| v \|_{L^\infty}) \leq \frac{C}{(1 + t)^{\frac{2}{\max\{\alpha, \beta\}}}}, \]

so

\[\int_{T^*}^{t} (\| u \|^2_{L^2} + \| v \|^2_{L^2})(\| u \|_{L^\infty} + \| v \|_{L^\infty}) ds \leq C, \]

we have that

\[\| u(t) \|^2_{H^1} + \| v(t) \|^2_{H^1} + \int_{T^*}^{t} \| u \|^2_{H^{1+\alpha/2}} + \| v \|^2_{H^{1+\beta/2}} ds \leq C, \forall t \geq T^*. \]

Standard energy estimates on the finite interval $[0, T^*]$ leads to

\[\| u(t) \|^2_{H^1} + \| v(t) \|^2_{H^1} \leq C, \forall t \geq 0. \]

Step 2: Boundedness in H^1 ($d = 2$, $d = 3$)
Assume now that $d = 2$ or $d = 3$. Testing the equation for u against $\Lambda^2 u$, we have
\[
\frac{1}{2} \frac{d}{dt} \|u\|^2_{H^1} = -\|u\|^2_{H^{1+\alpha/2}} - \int_{\mathbb{R}^d} \Lambda u \Lambda(\nabla u \cdot \nabla \psi) dx - \int_{\mathbb{R}^d} \Lambda^2 uu(u - v) dx
\]
\[
= -\|u\|^2_{H^{1+\alpha/2}} - \int_{\mathbb{R}^d} \Lambda u [\Lambda, \nabla \psi] \cdot \nabla u dx - \int_{\mathbb{R}^d} \Lambda u \nabla \psi \cdot \nabla \Lambda u dx
\]
\[
- \int_{\mathbb{R}^d} \Lambda u \Lambda(u(u - v)) dx
\]
\[
= -\|u\|^2_{H^{1+\alpha/2}} - \int_{\mathbb{R}^d} \Lambda u [\Lambda, \nabla \psi] \cdot \nabla u dx + \frac{1}{2} \int_{\mathbb{R}^d} |\Lambda u|^2 (u - v) dx
\]
\[
- \int_{\mathbb{R}^d} \Lambda u \Lambda(u(u - v)) dx.
\]
In the same way
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2_{H^1} = -\|v\|^2_{H^{1+\beta/2}} + \int_{\mathbb{R}^d} \Lambda v \Lambda(\nabla v \cdot \nabla \psi) dx + \int_{\mathbb{R}^d} \Lambda^2 vv(u - v) dx
\]
\[
= -\|v\|^2_{H^{1+\beta/2}} + \int_{\mathbb{R}^d} \Lambda v [\Lambda, \nabla \psi] \cdot \nabla v dx + \int_{\mathbb{R}^d} \Lambda v \nabla \psi \cdot \nabla \Lambda v dx
\]
\[
+ \int_{\mathbb{R}^d} \Lambda v \Lambda(v(u - v)) dx
\]
\[
= -\|v\|^2_{H^{1+\beta/2}} + \int_{\mathbb{R}^d} \Lambda v [\Lambda, \nabla \psi] \cdot \nabla v dx - \frac{1}{2} \int_{\mathbb{R}^d} |\Lambda v|^2 (u - v) dx
\]
\[
+ \int_{\mathbb{R}^d} \Lambda v \Lambda(v(u - v)) dx.
\]
Recalling the Sobolev embedding
\[
(15) \quad \|f\|_{L^\frac{d}{d-\alpha}} \leq C\|\Lambda^{d/2} f\|_{L^2},
\]
and Theorem 1 (using $d \geq 2$, $\max\{\alpha, \beta\} < 2$), we have a time $T^* < \infty$ such that, for $t \geq T^*$,
\[
\left| \int_{\mathbb{R}^d} |\Lambda u|^2 (u - v) dx \right| \leq \|\Lambda u\|^2_{L^{\frac{d}{d-\alpha}}} \|u - v\|_{L^{d/\alpha}}
\]
\[
\leq C\|u\|^2_{H^{1+\frac{\alpha}{2}}} \|u - v\|_{L^{d/\alpha}}
\]
\[
\leq \frac{1}{8} \|u\|^2_{H^{1+\frac{\alpha}{2}}},
\]
\[
(16) \quad \left| \int_{\mathbb{R}^d} |\Lambda v|^2 (u - v) dx \right| \leq \|\Lambda v\|^2_{L^{\frac{d}{d-\beta}}} \|u - v\|_{L^{d/\beta}}
\]
\[
\leq C\|v\|^2_{H^{1+\frac{\beta}{2}}} \|u - v\|_{L^{d/\beta}}
\]
\[
\leq \frac{1}{8} \|v\|^2_{H^{1+\frac{\beta}{2}}},
\]
\[
(17) \quad \|\Lambda^s (fg)\|_{L^p} \leq C(\|\Lambda^s f\|_{L^{p_1}} \|g\|_{L^{p_2}} + \|\Lambda^s g\|_{L^{p_3}} \|f\|_{L^{p_4}}),
\]
with
\[
\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3} + \frac{1}{p_4},
\]
we have

\begin{align}
\left| \int_{\mathbb{R}^d} \Lambda u \Lambda (u - v) \, dx \right| & \leq C \|\Lambda u\|_{L^{\frac{2d}{d+\alpha}}(\mathbb{R}^d)} \|u - v\|_{L^{\frac{2d}{d+\alpha}}} + \|u\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda(u - v)\|_{L^2} \\
& \leq C \|u\|_{H^{1+\alpha/2}}(\mathbb{R}^d) \|u - v\|_{L^{\frac{2d}{d+\alpha}}} + \|u\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda(u - v)\|_{L^2},
\end{align}

(18)

\begin{align}
\left| \int_{\mathbb{R}^d} \Lambda v \Lambda (u - v) \, dx \right| & \leq C \|\Lambda v\|_{L^{\frac{2d}{d+\alpha}}(\mathbb{R}^d)} \|u - v\|_{L^{\frac{2d}{d+\alpha}}} + \|v\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda(u - v)\|_{L^2} \\
& \leq C \|v\|_{H^{1+\beta/2}}(\mathbb{R}^d) \|u - v\|_{L^{\frac{2d}{d+\alpha}}} + \|v\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda(u - v)\|_{L^2}.
\end{align}

\begin{align}
\text{Recalling the inequalities}
\end{align}

(20)

\begin{align}
\|\partial_x \partial_y f\|_{L^p} \leq C \|\Delta f\|_{L^p}, \quad \forall 1 < p < \infty,
\end{align}

(21)

\begin{align}
\|\partial_x f\|_{L^p} \leq C \|\Lambda f\|_{L^p}, \quad \forall 1 < p < \infty,
\end{align}

and Lemma 3, we have

\begin{align}
\|\Lambda \nabla \psi \nabla u\|_{L^{\frac{2d}{d+\alpha}}} \leq C \|\Delta \psi\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda u\|_{L^2},
\end{align}

(22)

\begin{align}
\|\Lambda \nabla \psi \nabla v\|_{L^{\frac{2d}{d+\alpha}}} \leq C \|\Delta \psi\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda v\|_{L^2}.
\end{align}

(23)

Thus, due to (22) and (23), we have that

\begin{align}
\left| \int_{\mathbb{R}^d} \Lambda u [\Lambda \nabla \psi] \cdot \nabla u \, dx \right| & \leq C \|\Lambda u\|_{L^{\frac{2d}{d+\alpha}}} \|u - v\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda u\|_{L^2} \\
& \leq C \|u\|_{H^{1+\alpha/2}} \|u - v\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda u\|_{L^2},
\end{align}

(24)

\begin{align}
\left| \int_{\mathbb{R}^d} \Lambda u [\Lambda \nabla \psi] \cdot \nabla v \, dx \right| & \leq C \|\Lambda v\|_{L^{\frac{2d}{d+\alpha}}} \|u - v\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda v\|_{L^2} \\
& \leq C \|v\|_{H^{1+\beta/2}} \|u - v\|_{L^{\frac{2d}{d+\alpha}}} \|\Lambda v\|_{L^2}.
\end{align}

(25)

Collecting the terms (16), (17), (18), (19), (24) and (25) and using Young’s inequality, we have that

\begin{align}
\frac{d}{dt} \left(\|u\|_{H^{1}}^2 + \|v\|_{H^{1}}^2 \right) & \leq -\|u\|_{H^{1+\alpha/2}}^2 - \|v\|_{H^{1+\beta/2}}^2 + C \left(\|\Lambda u\|_{L^2}^2 \|u - v\|_{L^{\frac{2d}{d+\alpha}}}^2 \\
& \quad + \|u\|_{L^{\frac{2d}{d+\alpha}}}^2 \|\Lambda(u - v)\|_{L^2}^2 + \|\Lambda v\|_{L^2}^2 \|u - v\|_{L^{\frac{2d}{d+\alpha}}}^2 \\
& \quad + \|v\|_{L^{\frac{2d}{d+\alpha}}}^2 \|\Lambda(u - v)\|_{L^2}^2 \right).
\end{align}

(26)

Using the interpolation inequality (14), we conclude that, for \(t \geq T^* \text{ and } T^* < \infty \text{ large enough (Theorem 1)},

\begin{align}
\frac{d}{dt} \left(\|u\|_{H^{1}}^2 + \|v\|_{H^{1}}^2 \right) & \leq C \left(\|u\|_{L^2}^2 \|u - v\|_{L^{\frac{2d}{d+\alpha}}}^2 + \|u\|_{L^{\frac{2d}{d+\alpha}}}^2 \|u - v\|_{L^2}^2 + \|v\|_{L^2}^2 \|u - v\|_{L^{\frac{2d}{d+\alpha}}}^2 \\
& \quad + \|v\|_{L^{\frac{2d}{d+\alpha}}}^2 \|u - v\|_{L^2}^2 \right) - \frac{1}{2} \left(\|u\|_{H^{1+\alpha/2}}^2 + \|v\|_{H^{1+\beta/2}}^2 \right).
\end{align}

(27)
Another application of Theorem 1 leads to

\[
\frac{d}{dt} (\|u\|_{\dot{H}^1}^2 + \|v\|_{\dot{H}^1}^2) + \frac{1}{2} \left(\|u\|_{\dot{H}^{1+\alpha/2}}^2 + \|v\|_{\dot{H}^{1+\beta/2}}^2 \right) \\
\leq C \left(\|v\|_{L^2}^2 + \|u\|_{L^2}^2 \right) \left(\|v\|_{L^2}^{2d} + \|u\|_{L^2}^{2d} + \frac{\|u\|_{L^2}^{2d}}{\max\{\alpha,\beta\}} + \frac{\|v\|_{L^2}^{2d}}{\max\{\alpha,\beta\}} \right) \\
\leq C \left(\frac{1}{(1 + t)^{\frac{d}{\max\{\alpha,\beta\}}}} + \frac{1}{(1 + t)^{\frac{2d(1 - \frac{1}{2^d})}{\max\{\alpha,\beta\}}}} \right) \\
\leq C \left(\frac{1}{(1 + t)^{\frac{2d - \max\{\alpha,\beta\}}{\max\{\alpha,\beta\}}}} + \frac{1}{(1 + t)^{\frac{2d(1 - \frac{1}{2^d})}{\max\{\alpha,\beta\}}}} \right)
\]

Using Theorem 1 with \(\max\{\alpha, \beta\} < 2 \) we obtain the inequality

\[(26)\quad 1 < \frac{2}{\max\{\alpha, \beta\}} \leq \frac{d}{\max\{\alpha, \beta\}},\]

thus, we have that

\[(27)\quad 2 < \frac{3d}{\max\{\alpha, \beta\}} - 1.\]

Integrating in time, we obtain

\[
\|u(t)\|_{\dot{H}^1}^2 + \|v(t)\|_{\dot{H}^1}^2 + \frac{1}{2} \int_{\tau}^{t} \|u\|_{\dot{H}^{1+\alpha/2}}^2 + \|v\|_{\dot{H}^{1+\beta/2}}^2 ds \leq C, \forall t \geq T^*,
\]

Taking then the maximum of the norms on the finite interval \([0, T^*]\), we obtain

\[(28)\quad \|u(t)\|_{\dot{H}^1}^2 + \|v(t)\|_{\dot{H}^1}^2 \leq C, \forall t \geq 0,\]

Step 3: Decay in \(H^s\)

Sobolev interpolation

\[(29)\quad \|f\|_{\dot{H}^s} \leq C \|f\|_{L^2}^{\frac{r-s}{2}} \|f\|_{\dot{H}^r}^s,\]

(with \(r = 1 \)) gives us the following decay in the intermediate spaces \(\dot{H}^s\) for every \(0 \leq s < 1\)

\[(30)\quad \|u(t)\|_{\dot{H}^s} + \|v(t)\|_{\dot{H}^s} \leq \frac{C}{(1 + t)^{\frac{d}{\max\{\alpha, \beta\}}}} \frac{1 - \frac{s}{2}}{2}, \forall t \geq 0,\]
5. Proof of Theorem 3: Decay estimates in Sobolev spaces H^s, $0 \leq s < 2$

Step 1: Boundedness in H^2 Testing against $(-\Delta)^2 u$, we have

$$\frac{1}{2} \frac{d}{dt} \|u\|^2_{H^2} = -\|u\|^2_{H^{2+\alpha/2}} - \int_{\mathbb{R}^d} \Delta u \Delta (\nabla u \cdot \nabla \psi) \, dx - \int_{\mathbb{R}^d} \Delta u \Delta (u(v)) \, dx$$

$$= -\|u\|^2_{H^{2+\alpha/2}} - \int_{\mathbb{R}^d} \Delta u \Delta (\nabla u \cdot \nabla \psi) \, dx - \int_{\mathbb{R}^d} \Delta u \Delta (u(v)) \, dx$$

$$= -\|u\|^2_{H^{2+\alpha/2}} - \int_{\mathbb{R}^d} \Delta u \Delta (\nabla u \cdot \nabla \psi) \, dx - \int_{\mathbb{R}^d} \Delta u \Delta (u(v)) \, dx$$

$$= -\|u\|^2_{H^{2+\alpha/2}} - \int_{\mathbb{R}^d} \Delta u \Delta (\nabla u \cdot \nabla \psi) \, dx - \int_{\mathbb{R}^d} \Delta u \Delta (u(v)) \, dx$$

In the same way

$$\frac{1}{2} \frac{d}{dt} \|v\|^2_{H^2} = -\|v\|^2_{H^{2+\beta/2}} + \int_{\mathbb{R}^d} \Delta v \Delta (\nabla v \cdot \nabla \psi) \, dx + \int_{\mathbb{R}^d} \Delta v \Delta (v(v)) \, dx$$

$$\leq -\|v\|^2_{H^{2+\beta/2}} + \int_{\mathbb{R}^d} \Delta v \Delta (\nabla v \cdot \nabla \psi) \, dx + \int_{\mathbb{R}^d} \Delta v \Delta (v(v)) \, dx$$

We collect this estimates and use Hölder inequality to obtain

$$\frac{1}{2} \frac{d}{dt} \left(\|u\|^2_{H^2} + \|v\|^2_{H^2} \right) \leq -\|u\|^2_{H^{2+\alpha/2}} + \|\Delta u\|_{L^{\frac{d+\alpha}{d-\alpha}}} \|\Delta \nabla \psi \cdot \nabla u\|_{L^{\frac{d}{d+\alpha}}}$$

$$+ 2 \|\Delta u\|_{L^{\frac{d+\alpha}{d-\alpha}}} \|\nabla u\|_{L^{\frac{d}{d+\alpha}}} \|\nabla (u(v))\|_{L^{\frac{d}{d+\alpha}}}$$

$$+ 2 \|\Delta v\|_{L^{\frac{d+\beta}{d-\beta}}} \|\nabla v\|_{L^{\frac{d}{d+\beta}}} \|\nabla (v(v))\|_{L^{\frac{d}{d+\beta}}}$$

Due the Sobolev embedding (15), we have that, for $t \geq T^*$ and $T^* < \infty$ large enough, the previous inequality simplifies to
\[
\frac{d}{dt} \left(\|u\|_{H^2}^2 + \|v\|_{H^2}^2 \right) \leq -2\|u\|_{H^{2+\alpha/2}}^2 + C\|u\|_{H^{2+\alpha/2}} \|\Delta, \nabla \psi \| \cdot \nabla u \|_{L^{\frac{4+3\alpha}{4\alpha}}} \\
+ C\|u\|_{H^{2+\alpha/2}} \|\nabla u\|_{L^{\frac{4+3\alpha}{4\alpha}}} \|\nabla (u-v)\|_{L^{\frac{4+3\alpha}{4\alpha}}} \\
+ C\|v\|_{H^{2+\beta/2}} \|\nabla v\|_{L^{\frac{4+3\beta}{4\beta}}} \|\nabla (u-v)\|_{L^{\frac{4+3\beta}{4\beta}}} \\
- 2\|v\|_{H^{2+\beta/2}}^2 + C\|v\|_{H^{2+\beta/2}} \|\Delta, \nabla \psi \| \cdot \nabla v \|_{L^{\frac{4+3\beta}{4\beta}}} ,
\]

Lemma 3 together with (20) and (21) give us the following estimates

\[
\|\Delta, \nabla \psi \| \nabla \| \|L^{\frac{4+3\alpha}{4\alpha}} \leq C \left(\|u - v\|_{L^{\frac{4+3\alpha}{4\alpha}}} \|\Delta u\|_{L^2} + \|\nabla (u-v)\|_{L^{\frac{4+3\alpha}{4\alpha}}} \|\nabla u\|_{L^{\frac{4+3\alpha}{4\alpha}}} \right),
\]

\[
\|\Delta, \nabla \psi \| \nabla \| \|L^{\frac{4+3\beta}{4\beta}} \leq C \left(\|u - v\|_{L^{\frac{4+3\beta}{4\beta}}} \|\Delta v\|_{L^2} + \|\nabla (u-v)\|_{L^{\frac{4+3\beta}{4\beta}}} \|\nabla v\|_{L^{\frac{4+3\beta}{4\beta}}} \right).
\]

Consequently, due to the interpolation inequality (14) with \(r = 2 \), we can further simplify and get

\[
\frac{d}{dt} \left(\|u\|_{H^2}^2 + \|v\|_{H^2}^2 \right) \leq -\|u\|_{H^{2+\alpha/2}}^2 - \|v\|_{H^{2+\beta/2}}^2 \\
+ C\|u\|_{H^{2+\alpha/2}} \|\nabla u\|_{L^{\frac{4+3\alpha}{4\alpha}}} \|\nabla (u-v)\|_{L^{\frac{4+3\alpha}{4\alpha}}} \\
+ C\|u\|_{H^{2+\alpha/2}} \|\nabla u\|_{L^{\frac{4+3\alpha}{4\alpha}}} \|\nabla (u-v)\|_{L^{\frac{4+3\alpha}{4\alpha}}} \\
+ C\|v\|_{H^{2+\beta/2}} \|\nabla v\|_{L^{\frac{4+3\beta}{4\beta}}} \|\nabla (u-v)\|_{L^{\frac{4+3\beta}{4\beta}}}.
\]

Using the Sobolev embedding

\[
\|\nabla f\|_{L^{\frac{4+3\alpha}{4\alpha}}} \leq C\|f\|_{H^{1+\frac{d}{4+3\alpha}}} \leq C\|\Lambda^{1-\frac{d}{4+3\alpha}} f\|_{H^{\frac{d}{4}}},
\]

and the interpolation inequality (29) we have that

\[
I_1 = \|u\|_{H^{2+\alpha/2}} \|\nabla u\|_{L^{\frac{4+3\alpha}{4\alpha}}} \|\nabla (u-v)\|_{L^{\frac{4+3\alpha}{4\alpha}}} \\
\leq C\|u\|_{H^{2+\alpha/2}} \|\Lambda^{1-\frac{d}{4+3\alpha}} u\|_{H^{\frac{d}{4}}} \left(\|\Lambda^{1-\frac{d}{4+3\alpha}} u\|_{H^{\frac{d}{4}}} + \|\Lambda^{1-\frac{d}{4+3\alpha}} v\|_{H^{\frac{d}{4}}} \right) \\
\leq C\|u\|_{H^{2+\alpha/2}} \left(\|\Lambda^{1-\frac{d}{4+3\alpha}} u\|_{H^{\frac{d}{4}}} + \|\Lambda^{1-\frac{d}{4+3\alpha}} v\|_{H^{\frac{d}{4}}} \right) \\
\leq C\|u\|_{H^{2+\alpha/2}} \left(\|\Lambda^{1-\frac{d}{4+3\alpha}} u\|_{H^{\frac{d}{4}}} + \|\Lambda^{1-\frac{d}{4+3\alpha}} v\|_{H^{\frac{d}{4}}} \right) \\
\leq C\|u\|_{H^{2+\alpha/2}} \left(\|\Lambda^{1-\frac{d}{4+3\alpha}} u\|_{H^{\frac{d}{4}}} + \|\Lambda^{1-\frac{d}{4+3\alpha}} v\|_{H^{\frac{d}{4}}} \right),
\]

and

\[
I_2 = \|v\|_{H^{2+\beta/2}} \|\nabla v\|_{L^{\frac{4+3\beta}{4\beta}}} \|\nabla (u-v)\|_{L^{\frac{4+3\beta}{4\beta}}} \\
\leq C\|v\|_{H^{2+\beta/2}} \left(\|\Lambda^{1-\frac{d}{4+3\beta}} v\|_{H^{\frac{d}{4}}} + \|\Lambda^{1-\frac{d}{4+3\beta}} u\|_{H^{\frac{d}{4}}} \right) \\
\leq C\|v\|_{H^{2+\beta/2}} \left(\|\Lambda^{1-\frac{d}{4+3\beta}} v\|_{H^{\frac{d}{4}}} + \|\Lambda^{1-\frac{d}{4+3\beta}} u\|_{H^{\frac{d}{4}}} \right),
\]

We write

\[
I_1 + I_2 = J_1 + J_2 + J_3 + J_4,
\]
where

\[
J_1 = C\|u\|_{H^{2+\alpha/2}}^{1+\frac{2d}{4+3\beta}} \|u\|_{H^{1-\frac{\alpha}{2}}}^{2-\frac{2d}{4+3\beta}} \\
J_2 = C\|v\|_{H^{2+\beta/2}}^{1+\frac{2d}{4+3\alpha}} \|v\|_{H^{1-\frac{\beta}{2}}}^{2-\frac{2d}{4+3\alpha}} \\
J_3 = C\|u\|_{H^{2+\alpha/2}}^{1+\frac{d}{4+3\alpha}} \|u\|_{H^{1-\frac{\alpha}{2}}}^{\frac{d}{4+3\alpha}} \|v\|_{H^{2+\beta/2}}^{\frac{d}{4+3\beta}} \|v\|_{H^{1-\frac{\beta}{2}}}^{1-\frac{d}{4+3\beta}} \\
J_4 = C\|v\|_{H^{2+\beta/2}}^{1+\frac{d}{4+3\beta}} \|v\|_{H^{1-\frac{\beta}{2}}}^{\frac{d}{4+3\beta}} \|u\|_{H^{2+\alpha/2}}^{1-\frac{d}{4+3\alpha}} \|u\|_{H^{1-\frac{\alpha}{2}}}^{\frac{d}{4+3\alpha}}
\]

Using hypothesis (5), so that

\[
\frac{2d}{4 + 3 \min\{\alpha, \beta\}} < 1,
\]
we can apply Young’s inequality with

\[
p = 2 - \frac{4d}{4 + 3\alpha + 2d}, \quad q = 2 + \frac{4d}{4 + 3\alpha - 2d}
\]
and, recalling Theorem 2, we obtain that

\[
J_1 \leq \frac{1}{4} \|u\|_{H^{2+\alpha/2}}^2 + C \|u\|_{H^{1-\frac{\alpha}{2}}}^{(2 - \frac{2d}{4 + 3\alpha})q} \\
\leq \frac{1}{4} \|u\|_{H^{2+\alpha/2}}^2 + \frac{C}{(1 + t)^{\theta_1}},
\]
where

\[
(33) \quad \theta_1 = \frac{d}{\max\{\alpha, \beta\}} \frac{\alpha}{8} \left(2 - \frac{2d}{4 + 3\alpha}\right) q = \frac{d}{\max\{\alpha, \beta\}} \frac{\alpha + 6\alpha - 2d}{4 + 3\alpha - 2d}.
\]

We need to have \(\theta > 1 \). Then, in the case where \(\beta = \max\{\alpha, \beta\} \) and \(\alpha \ll 1 \), the previous exponent may be arbitrarily small. However, in the case where (6) holds, we have that

\[
\theta_1 \geq \min\{\alpha, \beta\} \frac{d}{\max\{\alpha, \beta\}} \frac{2d}{4 + 3 \max\{\alpha, \beta\} - 2d} > 1.
\]

Applying Young’s inequality now with

\[
p = 2 - \frac{4d}{4 + 3\beta + 2d}, \quad q = 2 + \frac{4d}{4 + 3\beta - 2d}
\]
we have that

\[
J_2 \leq \frac{1}{4} \|v\|_{H^{2+\beta/2}}^2 + C \|v\|_{H^{1-\frac{\beta}{2}}}^{(2 - \frac{2d}{4 + 3\beta})q} \\
\leq \frac{1}{4} \|v\|_{H^{2+\beta/2}}^2 + \frac{C}{(1 + t)^{\theta_2}},
\]
where

\[
(34) \quad \theta_2 = \frac{d}{\max\{\alpha, \beta\}} \frac{\beta}{8} \left(2 - \frac{2d}{4 + 3\beta}\right) q = \frac{d}{\max\{\alpha, \beta\}} \frac{\beta + 6\beta - 2d}{4 + 3\beta - 2d}.
\]

Thus, using hypothesis (6), we have that

\[
\theta_2 > 1.
\]
Using again Young’s inequality with
\[p = 2 - \frac{2d}{4 + 3\alpha + d}, \quad q = 2 + \frac{2d}{4 + 3\alpha - d} \]

\[J_3 \leq \frac{1}{4} \|u\|_{H^{2+\alpha/2}}^2 + C \|u\|_{H^{1-\frac{d}{4}}}^{(1-\frac{d}{4+3\alpha})q} \|v\|_{H^{2+\beta/2}}^{\lambda} \|v\|_{H^{1-\frac{d}{4}}}^{(1-\frac{d}{4+3\alpha+2\beta})q}. \]

Due to hypothesis (7) the exponent is
\[\lambda = \frac{d}{4 + \alpha + 2\beta}q \]
\[= \frac{d}{4 + 3\alpha - d} \left(2 + \frac{4(\alpha - \beta)}{4 + \alpha + 2\beta} \right) \]
\[\leq \frac{d}{4 + 3\min\{\alpha, \beta\} - d} \left(2 + \frac{4|\alpha - \beta|}{4 + 3\min\{\alpha, \beta\}} \right) \]
\[\leq 2. \]

Assume that \(\lambda < 2 \) (if \(\Gamma = 2 \), we can finish with \(J_3 \) straightforwardly by waiting for a large enough time and applying Theorem 2), thus, we can apply Young’s inequality again
\[P = \frac{2}{\lambda}, \quad Q = \frac{2}{2 - \lambda} \]

and obtain
\[J_3 \leq \frac{1}{4} \|u\|_{H^{2+\alpha/2}}^2 + \frac{1}{4} \|v\|_{H^{2+\beta/2}}^2 + C \|u\|_{H^{1-\frac{d}{4}}} \|v\|_{H^{1-\frac{d}{4}}} \|v\|_{H^{2+\beta/2}}^{(1-\frac{d}{4+3\alpha+2\beta})q} \]
\[\leq \frac{1}{4} \|u\|_{H^{2+\alpha/2}}^2 + \frac{1}{4} \|v\|_{H^{2+\beta/2}}^2 + \frac{C}{(1+t)^{\theta_3}}. \]

Notice that the condition
\[\left(1 - \frac{d}{4 + 3\alpha} \right) Q > 2 \]
is implied by the stricter condition
\[\left(1 - \frac{d}{4 + 3\alpha} \right) Q > 1, \]
or, equivalently,
\[\frac{2}{4 + 3\alpha} < \frac{q}{4 + \alpha + 2\beta} = \frac{2 + \frac{2d}{4 + 3\alpha - d}}{4 + \frac{4d + 2\beta}{4 + \alpha + 2\beta}}. \]

A further computation shows that this latter condition is implied by hypothesis (8)
\[\frac{4 + \alpha + 2\beta}{4 + 3\alpha} \leq \frac{4 + 3\max\{\alpha, \beta\}}{4 + 3\min\{\alpha, \beta\}} < 1 + \frac{d}{4 + 3\max\{\alpha, \beta\} - d}. \]

Then, using Theorem 2, the integrability condition \(\theta_3 > 1 \) is implied by
\[\frac{d}{\max\{\alpha, \beta\}} \geq 1, \]
and hypothesis (9).
The term J_4 is akin to J_3 and can be handled similarly. Then, we obtain

$$\frac{d}{dt} \left(\|u\|_{H^2}^2 + \|v\|_{H^2}^2\right) \leq \frac{C}{(1 + t)^\Theta}, \quad \forall t \geq T^*, \quad \Theta > 1.$$

and $\Theta > 1$. Thus,

$$\|u(t)\|_{H^2}^2 + \|v(t)\|_{H^2}^2 \leq C, \quad \forall t \geq 0.$$

Step 2: Decay in H^s Using (29), we have

$$\|u(t)\|_{H^s} + \|v(t)\|_{H^s} \leq \frac{C}{(1 + t)^{\max\{d, \beta\}/4}}, \quad \forall t \geq 0,$$

6. **Proof of Theorem 4: Decay estimates in Sobolev spaces H^s, $s > 2$**

Let us fix $\delta = 2 - d/2$. Testing against $\Lambda^{s+2} u$ we have the following estimate

$$\frac{1}{2} \frac{d}{dt} \|u\|_{H^{s+2}}^2 = -\|u\|_{H^{s+2}}^2 - \int_{\mathbb{R}^d} \Lambda^s u \Lambda^s \nabla \cdot (u \nabla \psi) dx$$

$$= -\|u\|_{H^{s+2}}^2 - \int_{\mathbb{R}^d} \Lambda^s u \Lambda^s \nabla \psi u dx - \int_{\mathbb{R}^d} \Lambda^s u \Lambda^s \nabla \psi \cdot \nabla \psi dx$$

$$= -\|u\|_{H^{s+2}}^2 - \int_{\mathbb{R}^d} \Lambda^s u \Lambda^s \nabla \psi u dx + \frac{1}{2} \int_{\mathbb{R}^d} |\Lambda^s u|^2 (u - v) dx.$$

Similarly

$$\frac{1}{2} \frac{d}{dt} \|v\|_{H^{s+2}}^2 = -\|v\|_{H^{s+2}}^2 + \int_{\mathbb{R}^d} \Lambda^s v \Lambda^s \nabla \cdot (v \nabla \psi) dx$$

$$= -\|v\|_{H^{s+2}}^2 + \int_{\mathbb{R}^d} \Lambda^s v \Lambda^s \nabla \psi v dx + \int_{\mathbb{R}^d} \Lambda^s v \Lambda^s \nabla v \cdot \nabla \psi dx$$

$$= -\|v\|_{H^{s+2}}^2 + \int_{\mathbb{R}^d} \Lambda^s v \Lambda^s \nabla \psi v dx - \frac{1}{2} \int_{\mathbb{R}^d} |\Lambda^s v|^2 (u - v) dx.$$

Using Lemma 2, we have that

$$\|\Lambda^s \nabla \nabla \psi f\|_{L^2} \leq C \left(\|\Lambda^s f\|_{L^2} \|\Lambda \nabla \psi\|_{L^1} + \|\Lambda^{s+1} \nabla \psi\|_{L^2} \|\hat{f}\|_{L^1}\right)$$

$$\leq C \left(\|\Lambda^s f\|_{L^2} \|\Delta \psi\|_{L^1} + \|\Lambda^s \Delta \psi\|_{L^2} \|\hat{f}\|_{L^1}\right)$$

$$\leq C \left(\|\Lambda^s f\|_{L^2} \left(\|\hat{u}\|_{L^1} + \|\hat{v}\|_{L^1}\right) + \left(\|\Lambda^s u\|_{L^2} + \|\Lambda^s v\|_{L^2}\right) \|\hat{f}\|_{L^1}\right).$$

That means that

$$\frac{d}{dt} \left(\|u\|_{H^{s+2}}^2 + \|v\|_{H^{s+2}}^2\right) \leq -2\|u\|_{H^{s+2}}^2 - 2\|v\|_{H^{s+2}}^2$$

$$+ C \left(\|u\|_{H^s} \left(\|\hat{u}\|_{L^1} + \|\hat{v}\|_{L^1}\right) + \left(\|u\|_{H^s} + \|u\|_{H^s} \|v\|_{H^s}\right) \|\hat{u}\|_{L^1} + \left(\|u\|_{H^s} \|v\|_{H^s} + \|v\|_{H^s}^2\right) \|\hat{v}\|_{L^1}\right),$$
where we have used the inequality
\[\|f\|_{L^\infty} \leq \|\hat{f}\|_{L^1}. \]

We obtain that
\[
\frac{1}{2} \left(\frac{d}{dt} \|u\|_{H^s}^2 + \frac{d}{dt} \|v\|_{H^s}^2 \right) \leq -\|u\|_{H^{s+\alpha/2}}^2 - \|v\|_{H^{s+\beta/2}}^2
+ C \left(\|v\|_{H^s}^2 + \|u\|_{H^s}^2 \right) \left(\|\hat{u}\|_{L^1} + \|\hat{v}\|_{L^1} \right).
\]

Using Lemma 4 (inequality (41)) and Theorem 3, we have that
\[
\|\hat{u}\|_{L^1(R^d)} + \|\hat{v}\|_{L^1(R^d)} \leq C(1 + t)^{-\frac{d}{2}} \max \{\alpha, \beta\}^{\frac{d/2}{2}} \left(\|u\|_{H^2(R^d)} + \|v\|_{H^2(R^d)} \right)
\leq C(1 + t)^{-\frac{d}{2}} \max \{\alpha, \beta\}^{\frac{d/2}{2}}.
\]

Thus, waiting for a large enough time \(T^*\) and using (14) and
\[
\int_{T^*}^{t} \|u\|_{L^2}^2 + \|v\|_{L^2}^2 = C < \infty,
\]
we conclude
\[\|u\|_{H^s}^2 + \|v\|_{H^s}^2 \leq C, \forall t \geq T^*. \]

Considering the \textit{a priori} estimates in the finite interval \([0, T^*]\) we conclude
\[
(37) \quad \|u\|_{H^s}^2 + \|v\|_{H^s}^2 \leq C, \forall t \geq 0.
\]

Now the decay follows from interpolation (29).

7. Proof of Proposition 1: Asymptotic profile

Step 1: Decay of the potential \(\psi\) This step is similar to the one in [38]. We have
\[\psi = \Delta^{-1}(u - v), \]
so, using Theorem 1, we have that
\[
\nabla \psi = C_d \int_{R^d} \frac{x_i - y_i}{|x - y|^d} (u(y) - v(y)) dy
= C_d \left(\int_{|y| \leq (1 + t)^r} + \int_{|y| > (1 + t)^r} \right) \frac{x_i - y_i}{|x - y|^d} (u(y) - v(y)) dy
\leq C \left(\|u\|_{L^\infty} + \|v\|_{L^\infty} \right) (1 + t)^r + \left(\|u\|_{L^1} + \|v\|_{L^1} \right) (1 + t)^{r(d-1)}
\leq C (1 + t)^{r - \frac{d}{\max \{\alpha, \beta\}}} + C(1 + t)^{-r(d-1)}.
\]

We choose \(r = \frac{1}{\max \{\alpha, \beta\}}\), thus, we obtain
\[
(38) \quad \|\nabla \psi\|_{L^\infty} \leq \frac{C}{(1 + t)^{\frac{d-1}{\max \{\alpha, \beta\}}}}.
\]
Step 2: Mild solution Using Duhamel’s principle, the mild solutions are given by

\[u(t) - e^{-t\Lambda^{\alpha}} u_0 = - \int_0^t e^{-(t-s)\Lambda^{\alpha}} \nabla \cdot (u(s)\nabla \psi(s)) \, ds \]

\[v(t) - e^{-t\Lambda^{\beta}} v_0 = \int_0^t e^{-(t-s)\Lambda^{\beta}} \nabla \cdot (v(s)\nabla \psi(s)) \, ds. \]

Step 3: Estimate on the difference Using the hypercontractive inequality

\[\| e^{-t\Lambda^{\alpha}} h \|_{L^2} \leq Ct^{-\frac{d}{2\alpha}} \| h \|_{L^1} \]

we have that

\[\| u(t) - e^{-t\Lambda^{\alpha}} u_0 \|_{L^2} = \left\| \int_0^t e^{-(t-s)\Lambda^{\alpha}} \nabla \cdot (u(s)\nabla \psi(s)) \, ds \right\|_{L^2} \leq C \int_0^{t/2} \frac{f(s)}{(t-s)^{\frac{d}{2\alpha}}} \, ds + C \int_{t/2}^t g(s) \, ds, \]

where the forcing are

\[f(s) = \| u(s)(u(s) - v(s)) \|_{L^1} \leq \frac{C}{(1 + s)^{\frac{d-1}{\max\{\alpha,\beta\}}}} \]

and

\[g(s) = \| \nabla u(s) \cdot \nabla \psi(s) \|_{L^2} + \| u(s)(u(s) - v(s)) \|_{L^2} \leq \frac{C}{(1 + s)^{\frac{d-1}{\max\{\alpha,\beta\}}} + \frac{C}{(1 + s)^{\frac{d-1}{\max\{\alpha,\beta\}}}}. \]

Thus, using

\[\int_0^{t/2} \frac{C}{(t-s)^{\frac{d}{2\alpha}}(1 + s)^{\frac{d-1}{\max\{\alpha,\beta\}}}} \, ds \leq \frac{C}{t^{\frac{d}{2\alpha}}} \int_0^{t/2} \frac{C}{(1 + s)^{\frac{d-1}{\max\{\alpha,\beta\}}}} \, ds \leq \frac{C}{t^{\frac{d}{2\alpha}}} \frac{C}{(1 + t)^{\frac{d-1}{\max\{\alpha,\beta\}}}} \]

\[\| u(t) - e^{-t\Lambda^{\alpha}} u_0 \|_{L^2} \leq \frac{C}{(1 + t)^{\frac{d-1}{\max\{\alpha,\beta\}} - 1}} + \frac{C}{(1 + t)^{\frac{d-1}{\max\{\alpha,\beta\}} - 1}} + \frac{C}{(1 + t)^{\frac{3}{4} \frac{d-1}{\max\{\alpha,\beta\}} - 1}} \]

In the same way,

\[\| v(t) - e^{-t\Lambda^{\beta}} v_0 \|_{L^2} \leq \frac{C}{(1 + t)^{\frac{d-1}{\max\{\alpha,\beta\}} - 1}} \]

Appendix A. Inequalities for the fractional Laplacian

In this appendix we recall several inequalities involving the fractional Laplacian.
Lemma 1. Let \(h \in S(\mathbb{R}^d) \) be a Schwartz function. We write \(h(x^*) := \max_x h(x) \), \(h(x_*) := \min_x h(x) \) and
\[
\|h\|_{L^p \cap L^\infty} := \max\{\|h\|_{L^p}, \|h\|_{L^\infty}\}.
\]
Then
- if \(h(x^*) > 0 \),
 \[
 \Lambda^\alpha h(x^*) \geq c(d, \alpha, p) \frac{h(x^*)^{1+\alpha p/d}}{\|h\|_{L^p}^{\alpha p/d}},
 \]
- if \(h(x_*) < 0 \),
 \[
 \Lambda^\alpha h(x_*) \leq c(d, \alpha, p) \frac{h(x_*)|h(x_*)|^{\alpha p/d}}{\|h\|_{L^p}^{\alpha p/d}}.
 \]
These bounds implies the norm
\[
\|e^{-\Lambda^\alpha t}\|_{L^p \cap L^\infty(\mathbb{R}^d) \to L^\infty(\mathbb{R}^d)} \leq \frac{C(d, \alpha, p)}{(t + 1)^{d/(\alpha p)}}.
\]

Proof. Step 1; Let’s assume that \(h \) takes both signs. Then we have
\[
h(x^*) = \max_x h(x) > 0. \quad \text{We take } r > 0 \text{ a positive number and define}
\]
\[
U_1 = \{\eta \in B(0, r) \text{ s.t. } h(x^*) - h(x^* - \eta) > h(x^*)/2\},
\]
and \(U_2 = B(0, r) - U_1 \). We have
\[
\|h\|_{L^p}^p = \int_{\mathbb{R}^d} |h(x^* - \eta)|^p d\eta \geq \int_{U_2} |h(x^* - \eta)|^p d\eta \geq \frac{|h(x^*)|^p}{2^p} |U_2|,
\]
so,
\[
(39) \quad - \left(\frac{2\|h\|_{L^p}}{|h(x^*)|} \right)^p \leq -|U_2|.
\]
\[
\Lambda^\alpha h(x^*) = \frac{c_{\alpha, p} \text{P.V.}}{\int_{\mathbb{R}^d} h(x^*) - h(x^* - \eta) |\eta|^{d+\alpha} d\eta}
\geq \frac{c_{\alpha, p} \text{P.V.}}{\int_{U_1} h(x^*) - h(x^* - \eta) |\eta|^{d+\alpha} d\eta}
\geq \frac{c_{\alpha, d} h(x^*)}{2^d r^{d+\alpha} |U_1|}
\geq c_{\alpha, d} \frac{h(x^*)}{2^d r^{d+\alpha}} \left(\omega_d r^d - |U_2| \right)
\geq c_{\alpha, d} \frac{h(x^*)}{2^d r^{d+\alpha}} \left(\omega_d r^d - \left(\frac{2\|h\|_{L^p}}{h(x^*)} \right)^p \right),
\]
where we have used
\[
|B(0, r)| - |U_2| = |U_1|.
\]
We take \(r \) such that
\[
\omega_d r^d = 2 \left(\frac{2\|h\|_{L^p}}{h(x^*)} \right)^p,
\]
thus
\[
\Lambda^\alpha h(x^*) \geq c_{\alpha,d} \frac{h(x^*) 2^p \left(\frac{\|h\|_{L^p}}{h(x^*)} \right)^p}{2 \left(\left(\frac{2\|h\|_{L^p}}{h(x^*)} \right)^{p/d} \left(\frac{2}{\omega_d} \right)^{1/d} \right)^{d+\alpha}} = c(d, \alpha, p) \frac{h(x^*)^{1+\alpha p/d}}{\|h\|_{L^p}^{\alpha p/d}}.
\]

Step 2: We have \(h(x^*) = \min_x h(x) < 0 \). As before, we take \(r > 0 \) a positive number and define
\[
U_1 = \{ \eta \in B(0, r) \text{ s.t. } h(x^*) - h(x^* - \eta) < h(x^*)/2 \},
\]
and \(U_2 = B(0, r) - U_1 \). In the same way, we obtain inequality (39). With the appropriate choice of \(r \), we get
\[
\Lambda^\alpha h(x^*) \leq c_{\alpha,d} \frac{h(x^*) \left(\omega_d^{d+\alpha} - \left(\frac{2\|h\|_{L^p}}{h(x^*)} \right)^p \right)}{\|h\|_{L^p}^{\alpha p/d}}.
\]

Step 3: Now, we have
\[
\frac{d}{dt} \|e^{-\Lambda^\alpha t} h\|_{L^\infty} \leq -c(d, \alpha, p) \frac{\|e^{-\Lambda^\alpha t} h\|_{L^\infty}^{1+\alpha p/d}}{\|h\|_{L^p}^{\alpha p/d}},
\]
and, integrating,
\[
\|e^{-\Lambda^\alpha t} h\|_{L^\infty} \leq C(d, \alpha, p) \max \{\|h\|_{L^p}, \|h\|_{L^\infty}\} \left(\frac{t+1}{d/(\alpha p)} \right).
\]

□

Appendix B. Commutator estimates

We prove now a commutator estimate akin to the one in [15]:

Lemma 2. Fix \(s \geq 0 \). Then the following estimate holds true
\[
\| [\Lambda^s \nabla, g] f \|_{L^2} \leq C \left(\|\Lambda^s f\|_{L^2} \|\Lambda^s g\|_{L^1} + \|\Lambda^{s+1} g\|_{L^2} \|\hat{f}\|_{L^1} \right).
\]

Proof. The proof is similar to the one in [15]. After taking the Fourier transform and using the inequality
\[
|\chi|^s \leq 2^{s-1} (|\chi - \xi|^s + |\xi|^s),
\]
we have
\[
\| [\Lambda^s \nabla, g] f \|_{L^2} \leq C \left(\int_{\mathbb{R}^d} |\chi - \xi|^s |\hat{f}(\chi - \xi)||\xi||\hat{g}(\xi)| d\xi \right.
\]
\[
+ \left. \int_{\mathbb{R}^d} |\hat{f}(\chi - \xi)||\xi|^{1+s}|\hat{g}(\xi)| d\xi \right).
\]
Then we conclude via Plancherel’s Theorem and Young’s inequality for convolutions. □

We also recall the classical Kato-Ponce commutator estimate
Lemma 4. Assume that
\[u \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d) \cap \dot{H}^{d/2+\delta}(\mathbb{R}^d). \]
Then the following inequalities hold
\begin{align*}
(40) & \quad \| \hat{u} \|_{L^1(\mathbb{R}^d)} \leq C \| u \|_{L^1(\mathbb{R}^d)} \| u \|_{\dot{H}^{d/2+\delta}(\mathbb{R}^d)}, \quad \forall \delta > 0, \\
(41) & \quad \| \hat{u} \|_{L^1(\mathbb{R}^d)} \leq C \| u \|_{L^2(\mathbb{R}^d)} \| u \|_{\dot{H}^{d/2+\delta}(\mathbb{R}^d)}, \quad \forall \delta > 0.
\end{align*}

Proof. We have
\begin{align*}
\| \hat{u} \|_{L^1(\mathbb{R}^d)} &= \int_{|\xi| < R} |\hat{u}(\xi)| d\xi + \int_{|\xi| > R} \frac{|\xi|^{d/2+\delta} |\hat{u}(\xi)|}{|\xi|} d\xi \\
&\leq \| u \|_{L^1(\mathbb{R}^d)} R^d \frac{\pi^{d/2}}{\Gamma \left(\frac{d}{2} + 1 \right)} + \| u \|_{\dot{H}^{d/2+\delta}(\mathbb{R}^d)} \sqrt{\int_{|\xi| > R} |\xi|^{-d-2\delta} d\xi} \\
&\leq \| u \|_{L^1(\mathbb{R}^d)} R^d \frac{\pi^{d/2}}{\Gamma \left(\frac{d}{2} + 1 \right)} + \| u \|_{\dot{H}^{d/2+\delta}(\mathbb{R}^d)} \sqrt{R^d C_\delta R^{-\delta}} \\
&\leq \| u \|_{L^1(\mathbb{R}^d)} R^d \frac{\pi^{d/2}}{\Gamma \left(\frac{d}{2} + 1 \right)} + \| u \|_{\dot{H}^{d/2+\delta}(\mathbb{R}^d)} C_\delta R^{-\delta}.
\end{align*}

With the choice
\[R = \left(\frac{\| u \|_{\dot{H}^{d/2+\delta}}}{\| u \|_{L^1}} \right)^{\frac{1}{\delta + d}} \]
and we conclude the inequality (40). To prove the second inequality (41), we compute
\begin{align*}
\| \hat{u} \|_{L^1(\mathbb{R}^d)} &= \int_{|\xi| < R} |\hat{u}(\xi)| d\xi + \int_{|\xi| > R} \frac{|\xi|^{d/2+\delta} |\hat{u}(\xi)|}{|\xi|} d\xi \\
&\leq \| \hat{u} \|_{L^2(\mathbb{R}^d)} R^d \frac{\pi^{d/2}}{\Gamma \left(\frac{d}{2} + 1 \right)} + \| u \|_{\dot{H}^{d/2+\delta}(\mathbb{R}^d)} C_\delta R^{-\delta}.
\end{align*}
Now, we can take
\[R = \left(\frac{\| u \|_{\dot{H}^{d/2+\delta}}}{\| u \|_{L^1}} \right)^{\frac{1}{\delta + d}} \]
Acknowledgment. The author is partially supported by the Grant MTM2014-59488-P from the former Ministerio de Economía y Competitividad (MINECO, Spain).

REFERENCES

[1] Y. Ascasibar, R. Granero-Belinchón, and J. M. Moreno. An approximate treatment of gravitational collapse. *Physica D: Nonlinear Phenomena*, 262:71 – 82, 2013.

[2] H. Bae and R. Granero-Belinchón. Global existence for some transport equations with nonlocal velocity. *Advances in Mathematics*, 269:197–219, 2015.

[3] P. Biler and J. Dolbeault. Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems. *Annales Henri Poincaré*, volume 1, pages 461–472. Springer, 2000.

[4] P. Biler and G. Karch. Blowup of solutions to generalized Keller-Segel model. *Journal of Evolution equations*, 10(2):247–262, 2010.

[5] P. Biler, G. Karch, and W. A. Woyczyński. Critical nonlinearity exponent and self-similar asymptotics for lévy conservation laws. *Annales de l’IHP Analyse non linéaire*, volume 18, pages 613–637, 2001.

[6] P. Biler and W. Woyczyński. General nonlocal diffusion–convection mean field models: Nonexistence of global solutions. *Physica A: Statistical Mechanics and its Applications*, 379(2):523–533, 2007.

[7] P. Biler and W. A. Woyczyński. Global and exploding solutions for nonlocal quadratic evolution problems. *SIAM Journal on Applied Mathematics*, 59(3):845–869, 1998.

[8] P. Biler and G. Wu. Two-dimensional chemotaxis models with fractional diffusion. *Math. Methods Appl. Sci.*, 32(1):112–126, 2009.

[9] D. Bothe, A. Fischer, M. Pierre, and G. Rolland. Global existence for diffusion–electromigration systems in space dimension three and higher. *Nonlinear Analysis: Theory, Methods & Applications*, 99:152–166, 2014.

[10] D. Bothe, A. Fischer, and J. Saal. Global well-posedness and stability of electrokinetic flows. *SIAM Journal on Mathematical Analysis*, 46(2):1263–1316, 2014.

[11] N. Bournaveas and V. Calvez. The one-dimensional Keller-Segel model with fractional diffusion. *Communications in Mathematical Physics*, 249(3):511–528, 2004.

[12] J. Burczak and R. Granero-Belinchón. Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux. *To appear in Topological Methods in Nonlinear Analysis. arXiv:1409.8102 [math.AP]*.

[13] J. Burczak and R. Granero-Belinchón. Critical Keller-Segel meets Burgers on S^1. *Submitted. arXiv:1504.00955 [math.AP]*.

[14] J. Burczak and R. Granero-Belinchón. Global solutions for a supercritical drift-diffusion equation. *Submitted. arXiv:1507.00694 [math.AP]*.

[15] D. Chae, P. Constantin, D. Córdoba, F. Gancedo, and J. Wu. Generalized surface quasi-geostrophic equations with singular velocities. *Comm. Pure Appl. Math.*, 65(8):1037–1066, 2012.

[16] A. Córdoba and D. Córdoba. A maximum principle applied to quasi-geostrophic equations. *Communications in Mathematical Physics*, 249(3):511–528, 2004.

[17] C. Escudero. The fractional Keller-Segel model. *Nonlinearity*, 19(12):2909, 2006.

[18] W. Fang and K. Ito. Global solutions of the time-dependent drift-diffusion semiconductor equations. *Journal of Differential Equations*, 123(2):523–566, 1995.

[19] Y. He, I. M. Gamba, H.-C. Lee, and K. Ren. On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells. 2013.

[20] J. L. Hineman and R. J. Ryham. Very weak solutions for Poisson-Nernst-Planck system. *Nonlinear Analysis: Theory, Methods & Applications*, 115:12–24, 2015.
[22] A. Jüngel. Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors. *Mathematical Models and Methods in Applied Sciences*, 5(04):497–518, 1995.

[23] D. Kinderlehrer, L. Monsaingeon, and X. Xu. A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations. *arXiv preprint arXiv:1501.04437*, 2015.

[24] R. Kobayashi and S. Kawashima. Decay estimates and large time behavior of solutions to the drift-diffusion system. *Funkcialaj Ekvacioj*, 51(3):371–394, 2008.

[25] M. Kurokiba, T. Nagai, and T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. *Communications on Pure and Applied Analysis*, 5(1):97, 2006.

[26] M. Kurokiba and T. Ogawa. Well-posedness for the drift-diffusion system in L^p arising from the semiconductor device simulation. *Journal of Mathematical Analysis and Applications*, 342(2):1052–1067, 2008.

[27] D. Li, J. Rodrigo, and X. Zhang. Exploding solutions for a nonlocal quadratic evolution problem. *Revista Matematica Iberoamericana*, 26(1):295–332, 2010.

[28] W. Liu and B. Wang. Poisson–Nernst–Planck systems for narrow tubular-like membrane channels. *Journal of Dynamics and Differential Equations*, 22(3):413–437, 2010.

[29] M. Mock. Asymptotic behavior of solutions of transport equations for semiconductor devices. *Journal of Mathematical Analysis and Applications*, 49(1):215–225, 1975.

[30] T. Ogawa and M. Yamamoto. Asymptotic behavior of solutions to drift-diffusion system with generalized dissipation. *Mathematical Models and Methods in Applied Sciences*, 19(06):939–967, 2009.

[31] N. Rodríguez and L. Ryzhik. Exploring the effects of social preference, economic disparity, and heterogeneous environments on segregation. 2013.

[32] M. Schmuck. Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. *Mathematical Models and Methods in Applied Sciences*, 19(06):993–1014, 2009.

[33] Y. Sugiyama, M. Yamamoto, and K. Kato. Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space. *Journal of Differential Equations*, 258(9):2983–3010, 2015.

[34] M. Yamamoto. Asymptotic expansion of solutions to the drift-diffusion equation with large initial data. *Journal of Mathematical Analysis and Applications*, 360(1):144–163, 2010.

[35] M. Yamamoto et al. Large-time behavior of solutions to the drift-diffusion equation with fractional dissipation. *Differential and Integral Equations*, 25(7/8):731–758, 2012.

[36] M. Yamamoto, K. Kato, and Y. Sugiyama. Existence and analyticity of solutions to the drift-diffusion equation with critical dissipation. *Hiroshima Mathematical Journal*, 44(3):275–313, 2014.

[37] M. Yamamoto and Y. Sugiyama. Asymptotic behavior of solutions to the drift-diffusion equation with critical dissipation. In *Annales Henri Poincaré*, pages 1–22. Springer.

[38] M. Yamamoto and Y. Sugiyama. Asymptotic expansion of solutions to the drift-diffusion equation with fractional dissipation. *arXiv preprint arXiv:1509.06119*, 2015.

[39] J. Zhao. The optimal temporal decay estimates for the fractional power dissipative equation in negative Besov spaces. *arXiv preprint arXiv:1508.04000*, 2015.

[40] J. Zhao. Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces. *arXiv preprint arXiv:1508.00117*, 2015.

[41] J. Zhao, C. Deng, and S. Cui. Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces. *Journal of Mathematical Physics*, 51(9):093101, 2010.

[42] J. Zhao, C. Deng, and S. Cui. Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces. *Differential Equations & Applications*, 3(3):427–448, 2011.

[43] J. Žinek. Exponential convergence to equilibrium in a Poisson–Nernst–Planck-type system with nonlinear diffusion. *Discrete and Continuous Dynamical Systems*, 36(5):2915–2930, 2016.

E-mail address: rgranero@math.ucdavis.edu
