On Nonlinear Part of Filled-Section in Splicing

Gang Liu
Department of Mathematics
UCLA
August, 2018

1 Introduction

The purpose of this paper is to define the nonlinear part of the filled section $\Psi_N = (\Psi_{N,-}, \Psi_{N,+})$ denoted by $N = (N_-, N_+)$ within the framework of the usual analysis of Banach manifolds rather than in the setting of Sc-analysis of polyfold theory in [1, 2]. The main difficulty for this is that the simple choice made in [2] for Φ_-^a using a linear operator leads to a filled-section with loss of differentiability so that the theory for filled-sections has to be formulated in Sc-analysis.

To overcome this difficulty, recall that for each fixed gluing parameter $a = (R, \theta) \in [R_0, \infty) \times S^1$, $N_a^\pm : L_{k,\delta}^p (C_-, E) \times L_{k,\delta}^p (C_+, E) \to L_{k-1,\delta}^p (C_-, E) \times L_{k-1,\delta}^p (C_+, E)$ is obtained from $\Phi_{\pm,N}^a : L_{k,\delta}^p (S_a^\pm, E) \to L_{k-1,\delta}^p (S_a^\pm, E)$ by the conjugation by the total gluing map $T^a : C_- \cup C_+ \to S^a$. Here $C_\pm \simeq (0, \pm \infty) \times S^1$, $E = \mathbb{C}^n$ and $L_{k,\delta}^p$-maps here are the L_{k}^p-maps that decay exponentially along the ends of the half cylinders C_\pm with the decay rate $0 < \delta < 1$.

Since Φ_+ is required to be the usual $\overline{\partial}_J$-operator in the Gromov-Witten theory, the nonlinear part $\Phi_{\pm,N}^a$ then is given by $\Phi_{\pm,N}^a (v_+) = J(v_+) \partial_s v_+$, where $v_+ : S_+^a \to \mathbb{C}^n$ is a $L_{k,\delta}^p$-map with the domain $S_+^a \simeq [-R, R] \times S^1$ with cylindrical coordinate (t, s). To get desired Φ_{N}^a without loss of loss of differentiability, the key observation is that the choice of $\Phi_{\pm,N}^a : L_{k,\delta}^p (S_a^\pm, E) \to L_{k-1,\delta}^p (S_a^\pm, E)$ with $S_a^\pm \simeq \mathbb{R}^1 \times S^1$ should be $\Phi_{-N}^a (v_-)^{\prime\prime} = \Phi_{+N}^a (v_-)^{\prime\prime} = J(v_+) \partial_s v_-$ with $J(v_+)$ being considered as almost complex structure along
v_-. To make sense out of this senseless identity, we note that the sub-cylinder with $t \in (-d - l, d + l)$ is where the splicing matrix T_β is not a constant. It is also the place where the loss of differentiability takes place for the choice of Φ^a_{-N} similar to the one in [2]. Since the sub-cylinder is contained in both S^a_- and S^a_+, we may define the almost complex structure $J(v_-)$ along $(-d - l, d + l) \times S^1$ to be $J(v_+)$. More generally, we need to define a new extended gluing $\hat{v}_+: \hat{S}^a_+ \to E$ with $\hat{S}^a_+ \simeq (-\infty, \infty) \times S^1 \simeq S^a_-$ (see the definition in next section). Denote the identification map by $\Gamma : S^a_- \to \hat{S}^a_+$, which will transfer the almost complex structure $J(\hat{v}_+)$ into $J(\hat{v}_+ \circ \Gamma)$ considered as an almost complex structure along v_-. Let $J(v) = J(\hat{v}_+ \circ \Gamma) \oplus J(v_+)$ be the corresponding total almost complex structure along $v = (v_-, v_+)$. Then Φ^a_N is defined to be $\Phi^a_N(v) = J(v) \partial_N v$. The idea of this construction is to enforce the commutativity of the splicing matrix T_β and the total almost complex structure $J(v)$ along v: $J(v) \circ T_\beta = T_\beta \circ J(v)$. One can see from the proof of the main theorem below that this commutativity is essentially equivalent to the requirement of no loss of differentiability for Φ_N.

Then the main theorem of this paper is the following theorem.

Theorem 1.1 Using the gluing profile $R = e^{1/r} - e^{1/r_0}$, the filled-section $\Psi_N = \{\Psi^R_N\}$ above with $r \in [0, r_0)$ (hence $R \in (R_0, \infty)$ for $R_0 = (R, \theta)$ and $\theta \in S^1$) is of class C^1. Consequently, the filled-section $\Psi = \Psi_L + \Psi_N : L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_+, E) \times D_{r_0} \to L^p_{k-1,\delta}(C_-, E) \times L^p_{k-1,\delta}(C_+, E)$ is of class C^1.

Clearly the argument in these sequence of papers can be generalized to deal with general nonlinear equations with quasi-linear principal "symbols" as well as higher order equations of similar types. Applications of this kind will be given somewhere else.

Remark 1.1 (A) For any given positive integer m, the C^m-smoothness of the filled-section Ψ can be proved by essentially the same argument but using different length and center functions $l = L_m(R) = R^{m/(m+1)} \cdot \ln^2 R$ and $d = 3l = 3L_m(R)$. For C^1-smoothness here, the function $l = L_1(R)$.

(B) One may assume that Φ_{-N} has the general form $\Phi_{-N}(v) = A(v_-) \cdot \partial_s v_-$ with $A(v_-)$ being a $\text{End}(E)$-valued section over v_- which is to be chosen. Let $J_A(v) = A(v_-) \oplus J(v_+)$. Then one can show that for generic J, the resulting Ψ_N has no loss of differentiability implies the commutativity $J_A(v) \circ T_\beta = T_\beta \circ J_A(v)$ so that upto the choices of the transfer map Γ, our definition for Ψ_{-N} is essentially the only possible choice with the desired properties.
The main theorem will be proved in Sec. 3 after recalling the basic definitions in the splicing in Sec. 2.

Like [3], we will only deal with the case for $L_{k,\delta}^p$-maps with fixed ends at their double points. Throughout this paper we will assume that (i) $p > 2$ and (ii) $k - 2/p > 1$. Unlike [3], this last condition is needed for the estimates in Sec. 3 in order to prove the main theorem above. If one insists using Hilbert space (hence $p = 2$), then the condition above becomes $k \geq 3$.

2 Basic definitions of the splicing

In this section we recall the definitions of the splicing in [3]. These definitions are tailored for defining the filled-section in the setting of Banach analysis (comparing with the definitions in [2]).

2.1 Total gluing of the nodal surface S

Let $S = C_- \cup_{d_- = d_+} C_+$ with the double point $d_- = d_+$ with (C_\pm, d_\pm) being the standard disk $(D, 0)$. Identify (C_-, d_-) with $((-\infty, 0) \times S^1, -\infty \times S^1) = (L_- \times S^1, -\infty \times S^1)$ canonically upto a rotation by considering the double point d_- as the S^1 at $-\infty$ of the half cylinder $L_- \times S^1$. Here we have denoted the negative half line $(-\infty, 0)$ by L_-. Similarly $(C_+, d_+) \simeq ((0, \infty) \times S^1, \infty \times S^1) = (L_+ \times S^1, \infty \times S^1)$.

- **Cylindrical coordinates on C_\pm**:

 By the identification $C_\pm \simeq L_\pm \times S^1$, each C_\pm has the cylindrical coordinates $(t_\pm, s_\pm) \in L_\pm \times S^1$.

 Let $a = (R, \theta) \in [0, \infty] \times S^1$ be the gluing parameter. To defined the total gluing/deformation $S^a = S^{(R, \theta)}$ with gluing parameter $R \neq \infty$, we introduce the a-dependent cylindrical coordinates $(t^{a, \pm}, s^{a, \pm})$ on C_\pm by the formula $t_\pm = t^{a, \pm} \pm R$ and $s_\pm = s^{a, \pm} \pm \theta$. In the following if there is no confusion, we will denote $t^{a, \pm}$ by t and $s^{a, \pm}$ by s for both of these a-dependent cylindrical coordinates.

 Thus the t-range for L_- is $(-\infty, R)$ and the t-range for L_+ is $(-R, \infty)$ with the intersection $L_- \cap L_+ = (-R, R)$.

- **Total gluing $S^a = (S^a_-, S^a_+)$**:

 In term of the a-dependent cylindrical coordinates (t, s), $C_- = (-\infty, R) \times S^1$ and $C_+ = (-R, \infty) \times S^1$.

3
Then S_1^a is defined to be the finite cylinder of length $2R$ obtained by gluing $(-1,R) \times S^1 \subset C_-$ with $(-R,1) \times S^1 \subset C_+$ along the ”common” region $(-1,1) \times S^1$ by the identity map in term of he a-dependent coordinates (t,s). Similarly, S^n_a is the infinite cylinder defined by gluing $(-\infty,1) \times S^1 \subset C_-$ with $(1,\infty) \times S^1 \subset C_+$ along $(-1,1) \times S^1$ by the identity map.

Geometrically, both S^n_a are obtained by first cutting each C_\pm along the circle at $t=0$ into two sub-cylinders, then gluing back the sub-cylinders in C_- with the corresponding ones in C_+ along the same circle with a relative rotation of angle 2θ. Set $S^\infty = S$.

Now the cylindrical coordinates (t_\pm,s_\pm) on C_\pm as well as the a-dependent cylindrical coordinates (t,s) become the corresponding ones on each S^n_a with the relation: $t_\pm = t \pm R$ and $s_\pm = s \pm \theta$.

2.2 Splicing matrix T_β

To defined T_β, we need to choose a length function depending R. For the purpose of this paper, the length function $L(R) = L_1(R) = R^{1/2} \cdot ln^2 R$.

The splicing matrix T_β used in this paper is defined by using a pair of cut-off function $\beta = (\beta_-,\beta_+)$ depending on the two parameters (l,d) that parametrize the group of affine transformations $\{t \rightarrow lt + d\}$ of \mathbb{R}^1 defined as follows.

Fix a smooth cut-off function $\alpha_- : \mathbb{R}^1 \rightarrow [0,1]$ with the property that $\alpha_-(t) = 1$ for $t < -1$, $\alpha(t) = 0$ if $t > 1$ and $\alpha' \leq 0$. Let $\alpha_+ = 1 - \alpha$. Fix $l_0 > 1$ and $d_0 > 1$. Then $\beta_\pm = \{\beta_{\pm,l,d}\} : \mathbb{R}^1 \times [l_0,\infty) \times [d_0,\infty) \rightarrow [0,1]$ defined by $\beta_\pm(t,l,d) = \alpha_\pm((t \pm d)/l)$, or $\beta_{\pm,l,d} = \rho_l \circ \tau_{\pm,d}\alpha$. Here the translation and multiplication operators are defined by $\tau_d(\xi)(t) = \xi(t + d)$ and $\rho_l(\xi)(t) = \xi(t/l)$ respectively.

The pair (l,d) will be the functions on R, $(l = L(R), d = d(R))$ with $d = 3l$ and l defined above.

Clearly β_\pm is a smooth cut-off function with the following two properties:

- P_1 : for $k \leq k_0$ the C^0-norm of the k-th derivative $\|\beta^{(k)}\|_{C^0} \leq C/l^k$, where $C = \|\alpha\|_{C^{k_0}}$;

- P_2 : under the assumption that $d \geq 3l$, the support of β'_- is contained in the interval $(d-l,d+l)$ with $\beta_- = 1$ on $(-\infty,d-l]$ and $\beta_- = 0$ on $[d+l,\infty)$; and β'_+ is contained in the interval $[-d-l,-d+l]$ with $\beta_+ = 1$ on $[-d+l,\infty)$ and $\beta_+ = 0$ on $(-\infty,-d-l]$.

The splicing matrix then is defined by
\[T_\beta = \begin{bmatrix} \beta_- & -\beta_+ \\ \beta_+ & \beta_- \end{bmatrix}. \]

Note that from \(P_2 \), on \((-d+l, d-l)\), \(\beta_- = \beta_+ = 1 \). Then for \(t \) in the three intervals \((-\infty, -d-l), (-d+l, d-l) \) and \((d+l, \infty)\), \(T_\beta(t) \) are the following constant matrices

\[M_1 = Id = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, M_2 = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \text{ and } M_3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}. \]

Note that \(\beta_\pm(t) < 1 \) implies that \(\beta_\mp(t) = 1 \) so that the determinant

\[1 \leq D = \det \begin{bmatrix} \beta_- & -\beta_+ \\ \beta_+ & \beta_- \end{bmatrix} = \beta_-^2 + \beta_+^2 \leq 2. \]

This implies that \(T^a = (\ominus_a, \ominus_a) \) defined below is invertible uniformly.

2.3 Total gluing \(T^a \) of maps and sections

Let \(C^\infty(C_\pm, E) \) be the set of \(E \)-valued \(C^\infty \) functions on \(C_\pm \), where \(E = \mathbb{C}^n \). Similarly \(C^\infty(S^a_\pm, E) \) consists of all \(E \)-valued smooth functions on \(S^a_\pm \).

Then \(T^a = (T^a_-, T^a_+) : C^\infty(C_- E) \times C^\infty(C_+ E) \to C^\infty(S^a_- E) \times C^\infty(S^a_+ E) \) is defined as follows.

In matrix notation, for each \((\xi_-, \xi_+) \in C^\infty(C_- E) \times C^\infty(C_+ E) \) considered as a column vector,

\[T^a((\xi_-, \xi_+)) = \begin{bmatrix} T^a_-(\xi_-, \xi_+) \\ T^a_+(\xi_-, \xi_+) \end{bmatrix} = (\xi_- \ominus_a \xi_+, \xi_- \ominus \ominus_a \xi_+) \]

\[= \begin{bmatrix} \beta_- & -\beta_+ \\ \beta_+ & \beta_- \end{bmatrix} \begin{bmatrix} \tau_a \xi_- \\ \tau_a \xi_+ \end{bmatrix}. \]

The inverse of the total gluing, \((T^a)^{-1} = (T^a_-, T^a_+)^{-1} : C^\infty(S^a_- E) \times C^\infty(S^a_+ E) \to C^\infty(C_- E) \times C^\infty(C_+ E) \) is defined as following: for a pair of the \(E \)-valued functions \((\eta_-, \eta_+) \in C^\infty(S^a_- E) \times C^\infty(S^a_+ E)\),

\[(T^a)^{-1}(\eta_-, \eta_+) = (\ominus_a \ominus_a)^{-1}(\eta_-, \eta_+) = \begin{bmatrix} \tau_a & 0 \\ 0 & \tau_{-a} \end{bmatrix} \cdot \frac{1}{D} \begin{bmatrix} \beta_- & \beta_+ \\ -\beta_+ & \beta_- \end{bmatrix} \begin{bmatrix} \eta_- \\ \eta_+ \end{bmatrix}. \]
Note that the map \((u_-, u_+) \in C^\infty(L_- \times S^1, E) \times C^\infty(L_+ \times S^1, E)\) satisfies the asymptotic condition that \(u_-(-\infty) = u_+(\infty)\) that is corresponding to the condition that \(T^a(u_-, u_+)(-\infty) = -T^a(u_-, u_+)(+\infty)\). In other words \(T^a\) maps these two subspaces each other isomorphically as before.

2.4 Definition of the transfer map \(\Gamma^R\)

First fix the length function \(l = L(R) = \sqrt{R(lnR)^2}\) and the center function \(d = 3l\) with \(R \geq R_0\) for a fixed \(R_0 >> 1\).

- **Extended gluing:** For the gluing parameter \(a = (R, \theta)\), extended gluing

 \[u_\ast \hat{\oplus}_a u_+ : \hat{\mathcal{S}}_+^a := \mathbb{R}^1 \times S^1 \to E \]

 is the connection matrix introduced in [3].

 Let \(\Phi^a\) be the identity map in term of the \((t, s)\)-coordinates for both \(\mathcal{S}^-_a\) and \(\hat{\mathcal{S}}^a_+\).

 In the following \(u_\ast \hat{\oplus}_a u_+\) will be denoted by \(\hat{\mathcal{S}}^a_+\) and \(u_\ast \hat{\oplus}_a u_+\) by \(u^a_+\).

 Thus in \(t\)-coordinate, for \(-d-l-1 < t < d+l+1\), \(\hat{\mathcal{S}}^a_+ = u^a_+\), for \(t > d+l+2\), \(\hat{\mathcal{S}}^a_+ = \tau_a u_+\) and for \(t < -d-l-2\), \(\hat{\mathcal{S}}^a_+ = \tau_{-a} u_-\).

 Although, \(\Gamma^a\) does not has effect on the total gluing \(T^a\), it transfers the complex structure \(J(\hat{\mathcal{S}}^a_+)\) along the map \(\hat{\mathcal{S}}^a_+ \to M\) to a complex structure \(J(\hat{\mathcal{S}}^a_+ \circ \Gamma^a)\) along \(\mathcal{S}^-_a \to M\) by composing with the map \(\Gamma^a : \mathcal{S}^-_a \to \hat{\mathcal{S}}^a_+\).

 Then \(\Phi^a_\circ (\hat{\mathcal{S}}^a_+) = \partial_t \hat{\mathcal{S}}^a_+ + J(v_-) \partial_s \hat{\mathcal{S}}^a_+\) is defined to be the usual \(\bar{\partial}_J\)-operator. The new \(\Phi^a_\circ\) is still a \(\bar{\partial}_J\)-operator but with the above almost complex structure on \(\mathcal{S}^-_a\). The connection matrix introduced in [3].

 We note that in order to makes sense for the definition of \(\Phi^a_\circ\), we need to know that \(\hat{\mathcal{S}}^a_+\) is determined by \(v^a\). Indeed, given \(v^a\), there is an unique pair \((u_-, u_+) = (T^a)^{-1}(v^a, v^a_+)\) such that \(T^a(u_-, u_+) = (v^a, v^a_+).\) Then we can construct the extended gluing \(\hat{\mathcal{S}}^a_+ =: u_\ast \hat{\oplus}_a u_+\) as above.

 Let \(\Phi^a = (\Phi^a_-, \Phi^a_+)\). Then \(\Psi^a =: (T^a)^{-1} \circ \Phi^a \circ T^a\).
3 The nonlinear part N of Ψ

Since the splicing matrix T_β is s-independent and the translation operator τ_θ appeared in the total gluing map T^a commutes with both ∂_t and ∂_s, τ_θ does not affect analysis here in any essential way. In the most part of the rest of this section we will only give the details for the results using T^R and state the corresponding ones using T^a.

We now derive the formula for the nonlinear part Ψ^R_N.

The nonlinear part N^R:

The nonlinear part of Ψ^R denoted by $N^R : C^\infty(C_-, E) \times C^\infty(C_+, E) \to C^\infty(C_-, E) \times C^\infty(C_+, E)$, is defined as follows.

For $(u_-, u_+) \in C^\infty(C_-, E) \times C^\infty(C_+, E)$ with $T^R(u_-, u_+) = (v_-, v_+)$, $N^R(u_-, u_+) = (T^R)^{-1}(J(v_+ \circ \Gamma^R)\partial_s v_-, J(v_+)\partial_s v_+)$. In matrix notation $N^R((u_-, u_+)) =$

$$\begin{bmatrix}
\tau^R & 0 \\
0 & \tau_{-R}
\end{bmatrix} \cdot \frac{1}{D} \begin{bmatrix}
\beta_- & \beta_+ \\
-\beta_+ & \beta_-
\end{bmatrix} \begin{bmatrix}
J(v^R_+ \circ \Gamma^R) & 0 \\
0 & J(v^R_+)
\end{bmatrix} \begin{bmatrix}
\beta_- & \beta_+ \\
-\beta_+ & \beta_-
\end{bmatrix} \frac{\partial_s}{\tau_{-R}u_-} \begin{bmatrix}
\tau_{-R}u_- \\
\tau_{-R}u_+
\end{bmatrix}.$$

Here $v^R_+ = \beta_+\tau_{-R}u_- + \beta_-\tau_{-R}u_+$.

We note that starting from the last term of the last identity, the result of each matrix multiplication can be interpreted as a pair of function defined on the common domain \mathbb{R}^1 in t-coordinate even they have different domains. This follows from the way that the total gluing map T^R and its inverse are defined. It can also be seen from our next computation of $N^R((u_-, u_+))$ by restricting the pair of functions to three type of subintervals in t-variable.

- The N^R over the interval $(-d-l, d+l)$:

 On the t-interval $(-d-l, d+l)$ where the non-trivial part of β is lying on $\hat{v}^R_+ = v^R_+$ and in t-coordinate Γ^R is the identity map so that $J(\hat{v}^R_+ \circ \Gamma^R) = J(v^+)$). Then all the terms of the following identity are well-defined functions on $(-d-l, d+l) \times S^1$ in (t, s) coordinate, and we have that on $(-d-l, d+l) \times S^1$
\[
\frac{1}{D} \cdot \begin{bmatrix}
\beta_- & \beta_+ \\
-\beta_+ & \beta_-
\end{bmatrix} \begin{bmatrix}
J(\hat{v}_+^R \circ \Gamma^R) & 0 \\
0 & J(v_+^R)
\end{bmatrix} \begin{bmatrix}
\beta_- & -\beta_+ \\
\beta_+ & \beta_-
\end{bmatrix} \begin{bmatrix}
\partial_s \tau_R u_- \\
\partial_s \tau_R u_+
\end{bmatrix}
\]

\[
= \frac{1}{D} \cdot \begin{bmatrix}
\beta_- & \beta_+ \\
-\beta_+ & \beta_-
\end{bmatrix} \begin{bmatrix}
J(v_+^R) & 0 \\
0 & J(v_+^R)
\end{bmatrix} \begin{bmatrix}
\beta_- & -\beta_+ \\
\beta_+ & \beta_-
\end{bmatrix} \begin{bmatrix}
\partial_s \tau_R u_- \\
\partial_s \tau_R u_+
\end{bmatrix}.
\]

Thus

\[
N^R((u_-, u_+) = \begin{bmatrix}
\tau_R & 0 \\
0 & \tau_R
\end{bmatrix} \begin{bmatrix}
J(v_+^R)\partial_s \tau_R u_- & J(v_+^R)\partial_s \tau_R u_+
\end{bmatrix} = \begin{bmatrix}
\tau_R J(v_+^R)\partial_s u_- & \tau_R J(v_+^R)\partial_s u_+
\end{bmatrix}.
\]

\[
N^R((u_-, u_+) = (\tau_R J(v_+^R)\partial_s u_-, \tau_R J(v_+^R)\partial_s u_+).
\]

*The N^R away from the interval $(−d − l + 1, d + l − 1)$:

We already know from last subsection that away from $(−d − l, d + l)$, T_β is given by $M_1 = id$ and M_3. We may assume that this is true away from the interval $(−d − l + 1, d + l − 1)$. Hence for $t > d + l − 1, D = 1$ and

\[
\frac{1}{D} \cdot \begin{bmatrix}
\beta_- & \beta_+ \\
-\beta_+ & \beta_-
\end{bmatrix} \begin{bmatrix}
J(\hat{v}_+^R \circ \Gamma^R) & 0 \\
0 & J(v_+^R)
\end{bmatrix} \begin{bmatrix}
\beta_- & -\beta_+ \\
\beta_+ & \beta_-
\end{bmatrix} \begin{bmatrix}
\partial_s \tau_R u_- \\
\partial_s \tau_R u_+
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix} \begin{bmatrix}
J(\hat{v}_+^R \circ \Gamma^R) & 0 \\
0 & J(v_+^R)
\end{bmatrix} \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
\partial_s \tau_R u_- \\
\partial_s \tau_R u_+
\end{bmatrix}.
\]

8
\[
\begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
J(\dot{v}_+^R \circ \Gamma^R) & 0 \\
0 & J(v_+^R)
\end{bmatrix}
\begin{bmatrix}
-\partial_s \tau_R u_+ \\
\partial_s \tau_R u_-
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
-J(\dot{v}_+^R \circ \Gamma^R)\partial_s \tau_R u_+ \\
J(v_+^R)\partial_s \tau_R u_-
\end{bmatrix}
= \begin{bmatrix}
J(v_+^R)\partial_s \tau_R u_- \\
J(\dot{v}_+^R \circ \Gamma^R)\partial_s \tau_R u_+
\end{bmatrix}
\].

Note that in above computation, each step makes sense even the pair of functions are not defined on the same domain.

Hence for \(t > d + l - 1 \), \(N^R(u_-, u_+) = (\tau_R J(v_+^R)\partial_s u_-, \tau_- R J(\dot{v}_+^R \circ \Gamma^R)\partial_s u_+) \).

For \(t < -d - l + 1 \), both matrices become the identity matrix with \(D = 1 \) so that

\[
\frac{1}{D} \cdot \begin{bmatrix}
\beta_- & \beta_+ \\
-\beta_+ & \beta_-
\end{bmatrix}
\begin{bmatrix}
J(\dot{v}_+^R \circ \Gamma^R) & 0 \\
0 & J(v_+^R)
\end{bmatrix}
\begin{bmatrix}
\partial_s \tau_R u_- \\
\partial_s \tau_R u_+
\end{bmatrix}
\]

\[
= \begin{bmatrix}
J(\dot{v}_+^R \circ \Gamma^R) & 0 \\
0 & J(v_+^R)
\end{bmatrix}
\begin{bmatrix}
\partial_s \tau_R u_- \\
\partial_s \tau_R u_+
\end{bmatrix}
= \begin{bmatrix}
J(\dot{v}_+^R \circ \Gamma^R)\partial_s \tau_R u_- \\
J(v_+^R)\partial_s \tau_R u_+
\end{bmatrix}
\].

Hence for \(t < -d - l + 1 \), \(N^R(u_-, u_+) = (\tau_R J(\dot{v}_+^R \circ \Gamma^R)\partial_s u_-, \tau_- R J(v_+^R)\partial_s u_+) \).

In summary, we have proved

Lemma 3.1 In \((t, s)\)-coordinate, \(N^R(u_-, u_+) = (\tau_R J(\dot{v}_+^R \circ \Gamma^R)\partial_s u_-, \tau_- R J(v_+^R)\partial_s u_+) \) for \(t < -d - l + 1 \), \(N^R(u_-, u_+) = (\tau_R J(v_+^R)\partial_s u_-, \tau_- R J(\dot{v}_+^R \circ \Gamma^R)\partial_s u_+) \) for \(-d - l < t < d + l \) and \(N^R(u_-, u_+) = (\tau_R J(v_+^R)\partial_s u_-, \tau_- R J(\dot{v}_+^R \circ \Gamma^R)\partial_s u_+) \) for \(t > d + l - 1 \).

Since on the overlap regions, \(\Gamma^R \) is the identity map, we have the following

Corollary 3.1 On the overlap regions, \(N^R \) is defined by the same formula. There is no loss of differentiability in \(N^R \).

We note that in the above lemma the two components \(N^R_{\pm}(u_-, u_+) \) already expressed their own natural coordinates \(t_\pm \) coming from \(u_\pm \), but we still use the \(t \)-coordinate to divide the domains. It is more convenient to the division of the domains for \(N^R(u_-, u_+) = (N^-_R(u_-, u_+), N^+_R(u_-, u_+)) \) in the natural coordinates \(t_\pm \). By abusing the notations, in next lemma coordinates \(t_\pm \) are still denoted by \(t \).
Note that for \(d + l - 1 < t < R \), in \(t_- = t - R \)-coordinate with \(t_\) = \(-R + d + l - 1 < t_\) < 0, which corresponds to the right half the region the usual gluing \(u_- \oplus_R u_+ \) coming from \(u_- \). For such a \(t \), \(v_+^R = \beta_+ \tau_R u_- + \beta_- \tau_R u_+ = \tau_R u_- \) so that the term \(\tau_R J(v_+^R) = J(\tau_R \circ \tau_R u_-) = J(u_-) \). Similarly for \(t < -d - l - 2 \), it is in \(t_- < -R - d - l - 2 \), the term \(\hat{v}_+^R \circ \Gamma^R = \tau_R u_- \) again so that \(\tau_R J(\hat{v}_+^R \circ \Gamma^R) = (\tau_R \circ \tau_R u_-) = J(u_-) \).

Then we have

Lemma 3.2

\[
N_-^R(u_-, u_+) = \begin{cases}
\tau_R J(\hat{v}_+^R \circ \Gamma^R) \partial_s u_- , & \text{if } t < -R - d - l - 2, \\
\tau_R J(v_+^R) \partial_s u_- & \text{if } -R - d - l - 3 < t < -R + d + l + 1 \\
\tau_R J(v_+^R) \partial_s u_- & \text{if } -R + d + l < t < 0
\end{cases}
\]

\[
= \begin{cases}
\tau_R J(\hat{v}_+^R \circ \Gamma^R) \partial_s u_- , & \text{if } t < -R - d - l - 2, \\
\tau_R J(v_+^R) \partial_s u_- & \text{if } -R - d - l - 3 < t < -R + d + l + 1, \\
\tau_R J(v_+^R) \partial_s u_- & \text{if } -R + d + l < t < 0
\end{cases}
\]

Similarly,

\[
N_+^R(u_-, u_+) = \begin{cases}
\tau_- R J(\hat{v}_+^R \circ \Gamma^R) \partial_s u_+ , & \text{if } t > R + d + l + 2, \\
\tau_- R J(v_+^R) \partial_s u_+ & \text{if } R - d - l - 1 < t < R + d + l + 3 \\
\tau_- R J(v_+^R) \partial_s u_+ & \text{if } 0 < t < R - d - l
\end{cases}
\]

\[
= \begin{cases}
\tau_- R J(\hat{v}_+^R \circ \Gamma^R) \partial_s u_+ , & \text{if } t > R + d + l + 2, \\
\tau_- R J(v_+^R) \partial_s u_+ & \text{if } R + d + l - 1 < t < R + d + l + 3, \\
\tau_- R J(v_+^R) \partial_s u_+ & \text{if } R - d - l - 1 < t < R + d + l \\
\tau_- R J(v_+^R) \partial_s u_+ & \text{if } 0 < t < R - d - l
\end{cases}
\]

\[
= \begin{cases}
\tau_- R J(\hat{v}_+^R \circ \Gamma^R) \partial_s u_+ , & \text{if } t > R + d + l + 2, \\
\tau_- R J(v_+^R) \partial_s u_+ & \text{if } R - d - l - 3 < t < R + d + l + 3, \\
\tau_- R J(v_+^R) \partial_s u_+ & \text{if } 0 < t < R - d - l - 2
\end{cases}
\]
In the last identity, we rearrange the division of the domain so that away from \([R - d - l - 3, R + d + l + 3]\) of length \(2(d + l + 3)\), \(N_+^R(u_-, u_+)\) is just \(N_+^\infty(u_-, u_+) = J(u_+)\partial_s u_+\) so that the error term \(E^R(u_-, u_+) =: N_+^R(u_-, u_+) - N_+^\infty(u_-, u_+) = \{\tau_R J(\hat{v}_+^R \circ \Gamma_R) - J(u_+)\} \partial_s u_+ = \{J(\hat{v}_+^R \circ \Gamma_R \circ \tau_R) - J(u_+)\}\partial_s u_+\) is localized on \([R - d - l - 3, R + d + l + 3]\) \(\times S^1\).

The formulas for \(N_+^{R_0}(u_-, u_+)\) can be obtained similarly by simply replacing \(R\) by \(R_0\) in above formulas.

Theorem 3.1 \(N = \{N^R\} : L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times [R_0, \infty] \to L^p_{k-1,\delta}(C_-, E) \times L^p_{k-1,\delta}(C_-, E)\) is continuous.

Proof:

From above formula, the continuity of \(N\) for \(R \neq \infty\) is clear. To see the continuity of \(N\) at \(R = \infty\), we only need to consider \(N_+\). Then it follows from the estimate proved below in this section that for \(t \in [R - d - l - 3, R + d + l + 3]\), the term

\[
\| J(\hat{v}_+^R \circ \Gamma_R \circ \tau_R) - J(u_+) \|_{C^k-1} \leq C(\beta, \gamma) \cdot \| J \|_{C^{k-1}} \cdot e^{-\delta R/2} \cdot \| u \|_{k,p,\delta}(1 + e^{-\delta R/2} \cdot \| u \|_{k,p,\delta})
\]

so that

\[
\| N_+^R(u_-, u_+) - N_+^\infty(u_-, u_+) \|_{k-1,p,\delta} = \| \{J(\hat{v}_+^R \circ \Gamma_R \circ \tau_R) - J(u_+)\} \partial_s u_+ \|_{k-1,p,\delta}
\]

\[
\leq \| \{J(\hat{v}_+^R \circ \Gamma_R \circ \tau_R) - J(u_+)\} \|_{C^{k-1}} \| \partial_s u_+ \|_{k-1,p,\delta}
\]

\[
\leq C \cdot e^{-\delta R/2} \cdot \| u \|_{k,p,\delta}^2(1 + e^{-\delta R/2} \cdot \| u \|_{k,p,\delta}).
\]

This together with the fact that \(N^\infty\) is continuous implies that \(N\) is continuous. Indeed

\[
\| N_+^R(u_1) - N_+^\infty(u_2) \|_{k-1,p,\delta} \leq \| N_+^R(u_1) - N_+^\infty(u_1) \|_{k-1,p,\delta} + \| N_+^\infty(u_1) - N_+^\infty(u_2) \|_{k-1,p,\delta}
\]

\[
\leq C \cdot e^{-\delta R/2} \cdot \| u_1 \|_{k,p,\delta}^2(1 + e^{-\delta R/2} \cdot \| u_1 \|_{k,p,\delta}) + \| N_+^\infty(u_1) - N_+^\infty(u_2) \|_{k-1,p,\delta},
\]

which is less than

\[
\epsilon + \| N_+^\infty(u_1) - N_+^\infty(u_2) \|_{k-1,p,\delta}
\]

with any given \(\epsilon > 0\) and any fixed \(u_1\) by taking \(R\) sufficiently large. The conclusion then follows from the continuity of \(N^\infty\). \(\square\)
Theorem 3.2 \[N = \{N^R\} : L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times (R_0, \infty) \rightarrow L^p_{k-1,\delta}(C_-, E) \times L^p_{k-1,\delta}(C_-, E) \text{ is of class } C^1. \]

Theorem 3.3 The derivative \[DN = \{DN^R\} : L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times (R_0, \infty) \rightarrow L(L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times \mathbb{R}^1, L^p_{k-1,\delta}(C_-, E) \times L^p_{k-1,\delta}(C_-, E)) \] can be extended continuously over \(r = 0 \) (hence \(R = \infty \)).

Corollary 3.2 The derivative \[DN = \{DN^{r_0}\} : L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times D_{r_0} \rightarrow L(L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times \mathbb{R}^2, L^p_{k-1,\delta}(C_-, E) \times L^p_{k-1,\delta}(C_-, E)) \text{ is of class } C^1. \]

To prove the theorems, we use the formula above for \(N^R(u_-, u_+) = (N_-(u_-, u_+), N^R_+(u_-, u_+)) \). Since the two parts \(N^R \) are in the same natural, we only need to deal with \(N^R_+(u_-, u_+) \).

Let \(N = \{N^R, R \in [0, \infty]\} : L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_+, E) \times [R_0, \infty) \rightarrow L^p_{k-1,\delta}(C_-, E) \times L^p_{k-1,\delta}(C_+, E). \)

Denote \(L^p_{k,\delta}(C_\pm, E) \) by \(W_\pm \) and \(W = W_- \times W_+ \).

In these notation, \(N_+ : W \times [0, \infty) \rightarrow L^p_{k-1,\delta}(C_+, E) \).

\(\bullet \) Partial derivative \(D_W N_+ \):

Consider the case \(R \neq \infty \) first.

By the last formula above, \(D_W N_+ : W \times [0, \infty) \rightarrow L(L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times \mathbb{R}^1, L^p_{k-1,\delta}(C_+, E)) \) along \((u_-, u_+)-\)direction is given by the following formula:

\[
(D_W N_+)_{u_-, u_+}(\xi_-, \xi_+) = \left\{ \begin{array}{ll}
\partial_J v^R \circ \Gamma^R \circ \tau_-(\xi) \partial_s u_+ + \tau_- R J(\hat{v}^R \circ \Gamma^R) \partial_s \xi_+ \\
if R - d - l - 3 < t < R + d + l + 3,

\partial_J u_+(\xi_+) \partial_s u_+ + J(u_+) \partial_s \xi_+ \\
if t \notin [R - d - l - 3, R + d + l + 3]
\end{array} \right.
\]

Thus away from \([R - d - l - 3, R + d + l + 3] \times S^1 \), \((D_W N_+)_{u_-, u_+}(\xi_-, \xi_+) = \partial_J u_+(\xi_+) \partial_s u_+ + J(u_+) \partial_s \xi_+; \)

Let \(\rho : [0, \infty) \rightarrow [0, 1] \) be a smooth cut-off function such that

\[
\rho(t) = \left\{ \begin{array}{ll}
1 & \text{if } t \in [R - d - l - 3, R + d + l + 3],

0 & \text{if } t \notin [R - d - l - 2, R + d + l + 2]
\end{array} \right.
\]

12
Then $D_W N_+ = D_W N_+^\infty + \rho D_W E_+^R$ with $E_+^R =: N_+^R - N_+^\infty$, so that $\rho D_W E_+^R$ becomes a map $\rho D_W E_+ : W \times [0, \infty) \to L(L^p_{k, \delta}(C_-, E) \times L^p_{k, \delta}(C_-, E) \times R^1, L^p_{k-1, \delta}(C_+, E))$.

Since $D_W N_+^\infty$ is continuous proved, for instance, by Floer, we only need to consider $\rho D_W E_+^R$.

Now we derive a more explicit formula for $D_W E$. To this end, note that for $R - d - l - 3 < t < R + d + l + 3$,

$$ (D_W E_+)_{u-, u+, R}(\xi_-, \xi_+) $$

$$ = \{ \partial J_{\hat{u}^R} \circ \Gamma^R \circ \tau^{-1} \circ R D_W(\hat{v}^R \circ \Gamma^R \circ \tau^{-1})(\xi) - \partial J_{u_+}(\xi_+) \} \partial_s u_+ + \{ J(\hat{v}^R \circ \Gamma^R \circ \tau^{-1}) - J(u_+) \} \partial_s \xi_+. $$

Recall that $\hat{v}^R = u_{-} \hat{R} u_{+} = \gamma_-, d \gamma_+ d u_{-} \circ R u_{+} + (1 - \gamma_-) \tau^{-1} u_{-} + (1 - \gamma_+ d) \tau^{-1} u_{-} = \gamma_-, d \gamma_+ d (\hat{\beta}_- \tau^{-1} R u_{-} + \hat{\beta}_- \tau^{-1} R u_{+}) + (1 - \gamma_-) \tau^{-1} R u_{-} + (1 - \gamma_+ d) \tau^{-1} R u_{+} = (\gamma_+ \beta_+ + (1 - \gamma_-)) u_{-} \circ \tau^{-1} R + (\gamma_- \beta_- + (1 - \gamma_+)) u_{+} \circ \tau^{-1} R$.

In the last identity above we have denoted $\gamma_\pm, \pm d$ by γ_\pm.

Hence

$$ \hat{v}^R_{+} \circ \Gamma^R \circ \tau^{-1} = \hat{v}^R_{+} \circ \tau^{-1} $$

$$ = \{ (\gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau^{-1} R \} u_{-} \circ \tau^{-1} R + \{ (\gamma_- \beta_- + (1 - \gamma_+)) \circ \tau^{-1} R \} u_{+}. $$

Lemma 3.3

$$ D_W(\hat{v}^R_{+} \circ \Gamma^R \circ \tau^{-1})(\xi) $$

$$ = \{ (\gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau^{-1} R \} \xi_{-} \circ \tau^{-1} R + \{ (\gamma_- \beta_- + (1 - \gamma_+)) \circ \tau^{-1} R \} \xi_{+}. $$

$$ D_R(\hat{v}^R_{+} \circ \Gamma^R \circ \tau^{-1}) = -2 \{ (\gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau^{-1} R \} \partial_t u_{-} \circ \tau^{-1} R $$

$$ + \partial_R \{ (\gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau^{-1} R \} u_{-} \circ \tau^{-1} R \partial_t u_{+} \circ \tau^{-1} R + \partial_R \{ (\gamma_- \beta_- + (1 - \gamma_+)) \circ \tau^{-1} R \} u_{+} \circ \tau^{-1} R. $$

Lemma 3.4 The function $F_1 : W \times [0, \infty) \to L(L^p_{k, \delta}(C_-, E) \times L^p_{k, \delta}(C_-, E) \times R^1, L^p_{k-1, \delta}(C_+, E))$ defined by

$$ F_1(\xi, R) = \rho D_W(\hat{v}^R_{+} \circ \Gamma^R \circ \tau^{-1})(\xi) $$

$$ = \rho \cdot \{ (\gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau^{-1} R \} \xi_{-} \circ \tau^{-1} R + \{ (\gamma_- \beta_- + (1 - \gamma_+)) \circ \tau^{-1} R \} \xi_{+} $$

is continuous.
The proof of the lemma follows from a few facts below that will be used repeatedly:

(A) $F_+: W \times [0, \infty) \to L(L^p_{k,\delta}(C_+, E), L^p_{k-1,\delta}(C_+, E))$ defined by $F(u, R)(\xi) = \tau_R\xi$ is continuous. There is a corresponding function F_-.

(B) Any smooth function f_\pm such as $f_\pm = \beta_\pm' : C_\pm \to \mathbb{R}^1$ gives rise a C^∞-map $F_\pm : \mathbb{R}^1 \to C^m(C_\pm, \mathbb{R}^1)$ defined by $F_\pm(R) = f \circ \tau_R$ for any m. In particular, we may assume that $m >> k$.

(C) Any smooth section such as $J : B \subset M \to \text{End}(E)$ with B being a small ball in M gives rise a C^∞-map $F_{J,\pm} : L^p_{k,\delta}(C_\pm, B) \to L^p_{k,\delta}(C_\pm, \text{End}(E))$ again defined by the composition $u_\pm \to J \circ u_\pm$.

(D) The paring

$L^p_{k}(C_\pm, E) \times L(L^p_{k,\delta}(C_\pm, E), L^p_{k,\delta}(C_\pm, E)) \to L^p_{k,\delta}(C_\pm, E)$ is bounded bilinear and hence smooth as long as the space $L^p_{k}(C_\pm, E)$ forms Banach algebra.

(E) For $m >> k$, $L(L^p_{k,\delta}(C_\pm, E), L^p_{k,\delta}(C_\pm, E))$ is a $C^m(C_\pm, \mathbb{R}^1)$-module and the multiplication map

$C^m(C_\pm, \mathbb{R}^1) \times L(L^p_{k,\delta}(C_\pm, E), L^p_{k,\delta}(C_\pm, E)) \to L(L^p_{k,\delta}(C_\pm, E), L^p_{k,\delta}(C_\pm, E))$

is bounded bilinear and hence smooth.

The proofs for (B), (C) and (E) are straightforward and (D) is stated in the first chapter of Lang’s book \[4\] for general Banach spaces.

The property (A) is well-known and was proved for instance in \[3\]. In fact, what is needed here is a modified version of (A) in Lemma 4.4 of \[3\]. Given this modified version of (A), the proof of the lemma is almost identical to the corresponding statement in \[3\]. We leave the straightforward verification to the readers.

Corollary 3.3 For $R \neq \infty$, $D_W N$ is continuous.

To prove that $D_W N$ can be extended continuously over $R = \infty$, we only need to show this for $\rho D_W E_+ : W \times [0, \infty) \to L(L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_-, E) \times \mathbb{R}^1, L^p_{k-1,\delta}(C_+, E))$, which follows from the estimates below.

Recall that we only consider the space $L^p_{k,\delta}(C_\pm, E)$ of L^p_k-maps that δ-exponentially decay so that the estimates are only applicable to the case with fixed ends. In particular, the values $u_{\pm}(d_{\pm})$ of each map at the double point is fixed and set to be $0 \in E$.

14
Then we have for $t \in [R-d-l-3, R+d+l+3]$,
\[
\hat{v}_+^R \circ \Gamma^R \circ \tau_-(t, s) = \hat{v}_+^R \circ \tau_R(t, s)
\]
\[
= \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)u_-(t-2R, s) + \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)u_+(t, s)
\]
\[
= \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)u_-(t, s) + \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)u_+(t, s)
\]
with $t_\tau \in [-R-d-l-3, -R+d+l+3]$.

Similarly
\[
D_W(\hat{v}_+^R \circ \Gamma^R \circ \tau_R)(\xi)(t, s)
\]
\[
= \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)\xi_-(t-2R, s) + \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)\xi_+(t, s)
\]
\[
= \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)\xi_-(t, s) + \{(\gamma-\gamma_+\beta_+ + (1-\gamma_+)) \circ \tau_R\}(t, s)\xi_+(t, s)
\]
with $t_\tau \in [-R-d-l-3, -R+d+l+3]$.

Lemma 3.5 For $t \in [R-d-l-3, R+d+l+3]$,

(1)
\[
\|\xi_+\|_{C^{k-1}} \leq C \cdot e^{-\delta(R-d-l-3)} \|\xi_+\|_{k,p,\delta},
\]
with $C = C_k$ independent of R.

(II)
\[
\|\hat{v}_+^R \circ \Gamma^R \circ \tau_R\|_{C^{k-1}} \leq C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot \|u\|_{k,p,\delta}.
\]

(III)
\[
\|D_W(\hat{v}_+^R \circ \Gamma^R \circ \tau_R)(\xi)\|_{C^{k-1}} \leq C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot \|\xi\|_{k,p,\delta}.
\]

(IV)
\[
\|J(\hat{v}_+^R \circ \Gamma^R \circ \tau_R) - J(u_+)\|_{C^{k-1}}
\]
\[
\leq C(\beta, \gamma) \cdot \|J\|_{C^{k-1}} \cdot e^{-\delta R/2} \cdot \|u\|_{k,p,\delta}(1 + e^{-\delta R/2} \cdot \|u\|_{k,p,\delta}).
\]

Proof:

(I) For $t \in [R-d-l-3, R+d+l+3]$, applying Sobolev embedding to each sub-cylinder of length 1 inside $[R-d-l-3, R+d+l+3]$, there is a constant $C = C_k$ independent of R such that
\[
\|\xi_+\|_{C^{k-1}} \leq C\|\xi_+\|_{[R-d-l-3,R+d+l+3]} \|_{k,p} \leq e^{-\delta(R-d-l-3)} \|\xi_+\|_{k,p,\delta}.
\]

(II) For $t \in [R-d-l-3, R+d+l+3]$,
\[
\|\hat{v}_+^R \circ \Gamma^R \circ \tau_R\|_{C^{k-1}} \leq C\{1 + \|\beta\|_{C^{k-1}} + \|\gamma\|_{C^{k-1}}\}^3 \cdot \|u_\tau\|_{[-R-d-l-3,-R+d+l+3]} \|_{C^{k-1}}
\]
\[
+ \|u_+\|_{R-d-l-3,R+d+l+3} \|C^{k-1}\)
\leq C(\|\beta\|_{C^{k-1}}, \|\gamma\|_{C^{k-1}}) \cdot e^{-\delta(R-d-l-3)} \cdot (\|u_-\|_{k,p,\delta} + \|u_+\|_{k,p,\delta})
\leq C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot (\|u_-\|_{k,p,\delta} + \|u_+\|_{k,p,\delta}) = C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot \|u\|_{k,p,\delta}.
\]

Here and below, we use \(C(\beta, \gamma)\) to denote the polynomial function \(C(\|\beta\|_{C^{k-1}}, \|\gamma\|_{C^{k-1}})\) of positive integer coefficients in \(\|\beta\|_{C^{k-1}}\) and \(\|\gamma\|_{C^{k-1}}\), which is \(C(\{\|\beta\|_{C^{k-1}} + \|\gamma\|_{C^{k-1}}\})^3\) in this case.

(III) Similarly, for \(t \in [R-d-l-3, R+d+l+3]\), the term
\[
\|D_w(\hat{\nu}_+^R \circ \Gamma^R \circ \tau_{-R})(\xi)\|_{C^{k-1}} \leq C\{1+\|\beta\|_{C^{k-1}} + \|\gamma\|_{C^{k-1}}\}^3 \|\xi_-\|_{[-R-d-l-3,-R+d+l+3]} \|C^{k-1}\)
+ \|\xi_+\|_{[R-d-l-3,R+d+l+3]} \|C^{k-1}\)
\leq C' \|\beta\|_{C^{k-1}} \cdot e^{-\delta(R-d-l-3)} \cdot (\|\xi_-\|_{k,p,\delta} + \|\xi_+\|_{k,p,\delta})
\leq C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot (\|\xi_-\|_{k,p,\delta} + \|\xi_+\|_{k,p,\delta}) = C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot \|\xi\|_{k,p,\delta}.
\]

(IV) For \(t \in [R-d-l-3, R+d+l+3]\), the term
\[
\|J(\hat{\nu}_+^R \circ \Gamma^R \circ \tau_{-R}) - J(u_+)\|_{C^{k-1}}
\leq \|[J(\hat{\nu}_+^R \circ \Gamma^R \circ \tau_{-R}) - J(u_+)]\|_{C^{k-1}} \|\xi_-\|_{[-R-d-l-3,-R+d+l+3]} \|C^{k-1}\)
+ \|\nabla (J(\hat{\nu}_+^R \circ \Gamma^R \circ \tau_{-R}))\|_{C^{k-1}} \|\nabla (J((u_+))\|_{C^{k-1}} \|\xi_-\|_{k,p,\delta} + \|\xi_+\|_{k,p,\delta})
\leq C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot (\|\xi_-\|_{k,p,\delta} + \|\xi_+\|_{k,p,\delta}) = C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot \|\xi\|_{k,p,\delta}.
\]

\[
\|D(\hat{\nu}_+^R \circ \Gamma^R \circ \tau_{-R}) - D(u_+)^{\#}\|_{C^{k-2}}
\leq C(\beta, \gamma) \cdot e^{-\delta R/2} \cdot \|\xi\|_{k,p,\delta}.
\]

Therefore we have
Proposition 3.1

\[\|\cdot (D_W E_+)^{u_-, u_+, R}\|_0 \sim e^{-\delta R/2} C(\beta, \gamma) \cdot \|\cdot \|_{C^{k-1}} \cdot \|J\|_{C^k} \cdot \|u\|_{k,p,\delta} \cdot (1 + \|u\|_{k,p,\delta}). \]

Proof:

\[
\|\cdot (D_W E_+)^{u_-, u_+, R}\|_0 = \sup_{\|\xi\|_{k,p,\delta} \leq 1} \|\cdot (D_W E_+)^{u_-, u_+, R} (\xi^-, \xi^+)\|_{k-1,p,\delta}
= \sup_{\|\xi\|_{k,p,\delta} \leq 1} \|\cdot D J_{\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}} D_W (\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}) (\xi) - DJ_{u_+} (\xi^+)\| \cdot \partial_s u_+
+ \{J(\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}) - J(u_+)\}\cdot \partial_s \xi_+ \|_{k-1,p,\delta}
\leq \|\cdot \|_{C^{k-1}} \cdot \{\|\cdot \|_{C^k} \cdot \{\|\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}\|_{C^{k-1}} + \|u_+\|_{C^{k-1}}\}\cdot \sup_{\|\xi\|_{k,p,\delta} \leq 1} \{\|D_W (\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}) (\xi)\|_{C^{k-1}} + \|\xi\|_{R-d-l-3, R+d+l+3}\|_{C^{k-1}}\}\cdot \|\partial_s u_+\|_{k-1,p,\delta}
+ \{J(\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}) - J(u_+)\}|_{C^{k-1}} \cdot \sup_{\|\xi\|_{k,p,\delta} \leq 1} \|\partial_s \xi_+\|_{k-1,p,\delta}\]
\]

(by the estimates in the previous lemma for \(D_W (\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}) (\xi)\|_{C^{k-1}}
and \|\xi\|_{R-d-l-3, R+d+l+3}\|_{C^{k-1}})

\[
\leq \|\cdot \|_{C^{k-1}} \cdot \{\|\cdot \|_{C^k} \cdot \{\|\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}\|_{C^{k-1}} + \|u_+\|_{C^{k-1}}\}\cdot \sup_{\|\xi\|_{k,p,\delta} \leq 1} \{(1 + C(\beta, \gamma)) e^{-\delta R^2/2} \|\xi\|_{k,p,\delta}\}\cdot \|\partial_s u_+\|_{k-1,p,\delta} + \|J(\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}) - J(u_+)\|_{C^{k-1}}\}
\]

(by the estimate in the previous lemma for \(J(\hat{\nu}_+^R \circ \Gamma_R \circ \tau_{-R}) - J(u_+)\|_{C^{k-1}}\))

\[
\sim \|\cdot \|_{C^{k-1}} \cdot \{\|\cdot \|_{C^k} \cdot \{u_+^2\|_{k,p,\delta} \cdot (1 + C(\beta, \gamma)) \cdot e^{-\delta R^2/2}
+ C(\beta, \gamma) \cdot \{\|\cdot \|_{C^k} \cdot e^{-\delta R^2/2} \cdot \|u_+\|_{k,p,\delta} (1 + \|u_+\|_{k,p,\delta})\}\}\}
\sim e^{-\delta R^2/2} C(\beta, \gamma) \cdot \|\cdot \|_{C^{k-1}} \cdot \|J\|_{C^k} \cdot \|u_+\|_{k,p,\delta} \cdot (1 + \|u_+\|_{k,p,\delta}).
\]

Next consider \(D_{R_0} N_+: L^p_{k,\delta}(C^+, E) \times [R_0, \infty) \rightarrow L^p_{k-1,\delta}(C^+, E)\).
Recall that

\[
N_+(R_0, u_-, u_+) = \begin{cases} J(u_+) \partial_s u_+, & \text{if } t > R + d + l + 2, \\
\tau_{-R_0} J(\hat{\nu}_+^R \circ \Gamma_R) \partial_s u_+, & \text{if } R + d - l - 3 < t < R + d + l + 3, \\
J(u_+) \partial_s u_+, & \text{if } 0 < t < R + d - l - 2.
\end{cases}
\]

Hence we have
Lemma 3.6 For \(R \neq \infty \),
\[
D_R N_+(R, u_-, u_+) =
\begin{cases}
D_{\hat{v}_+^R \circ \Gamma^R \circ \tau_R}(D_R \{ \hat{v}_+^R \circ \Gamma^R \circ \tau_R \}) \partial_s u_+, & \text{if } t \in [R - d - l - 3, R + d + l + 3], \\
0, & \text{if } t \not\in [R - d - l - 2, R + d + l + 2]
\end{cases}
\]
and \(D_R N_+(R, u_-, u_+) = \)
\[
D_{\hat{v}_+^R \circ \Gamma^R \circ \tau_R \circ \tau_R}(D_R \{ \hat{v}_+^R \circ \Gamma^R \circ \tau_R \}) \partial_s u_+, & \text{if } t \in [R - d - l - 3, R + d + l + 3], \\
0, & \text{if } t \not\in [R - d - l - 2, R + d + l + 2]
\]
Recall here
\[
\hat{v}_+^R \circ \Gamma^R \circ \tau_R = \hat{v}_+^R \circ \tau_R
\]
\[
= \{(\gamma_- - \gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau_R\}u_- \circ \tau_2R + \{(\gamma_- - \gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau_R\}u_+,
\]
and
\[
D_R(\hat{v}_+^R \circ \Gamma^R \circ \tau_R) = -2\{(\gamma_- - \gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau_R\} \partial_t u_- \circ \tau_2R
\]
\[
- \{(a_- \gamma_- \gamma_+ + a_+ \gamma_- \gamma_+ \beta_+ - a_- \gamma_+) \circ \tau_R\} u_- \circ \tau_2R
\]
\[
- \{(a_- \gamma_- \gamma_+ + a_+ \gamma_- \gamma_+ \beta_+ - a_+ \gamma_+) \circ \tau_R\} u_+.
\]
Similarly but simpler
\[
D_R(\hat{v}_+^R \circ \Gamma^R \circ \tau_R) = -2\{(\gamma_- - \gamma_+ \beta_+ + (1 - \gamma_-)) \circ \tau_R\} \partial_s u_- \circ \tau_2R_{\theta}.
\]
Here \(a_\pm = \partial_{\theta}(l(R) + d(R)). \) Recall that we may assume that \(l(R) + d(R) = R^{1/2} \cdot \ln^2 R \) for \(R \in [R_0, \infty) \) and \(R_0 >> 0. \)
Then \(|a_\pm| \sim R^{-1/2} \cdot \{\ln^2 R - 2 \ln R\} \sim R^{-1/2} \cdot \ln^2 R. \)
From this formula, using the fact that \(F : L^p_{k,\delta}(C_+, E) \times [R_0, \infty) \rightarrow L^p_{k-1,\delta}(C_+, E) \) given by \(F(u, R) = Du \circ \tau_R \) is continuous together with the general properties labeled as (B), (C) and (D) before, it is clear that the next lemma is true.

Lemma 3.7 For \(R \neq \infty \), \(D_R N_+ \) is continuous

Proposition 3.2 Assume further that \(k - 2/p > 2 \) so that \(\| \nabla u \|_{C^0} \leq C \| u \|_{k,p}. \)
Then \(D_R N_+ (D_r N_+) \) extends over \(R = \infty \) (\(r = 0 \)) continuously with respect to the gluing profile \(R = e^{1/r}. \) So does \(D_R N_+. \) Consequently, \(N : L^p_{k,\delta}(C_-, E) \times L^p_{k,\delta}(C_+, E) \times D_{r_0} \rightarrow L^p_{k-1,\delta}(C_-, E) \times L^p_{k-1,\delta}(C_+, E) \) is of class \(C^1. \)
Proof:
This follows from the following two estimates, in which the effect of $|a_\pm|$ will be ignored since $|a_\pm| \sim R^{-1/3} \ll 1$.
We state each as a lemma.

Lemma 3.8 For $t \in [R - d - l - 3, R + d + l + 3]$,

$$
\|DJ_{\hat{v}_R^{R \circ \Gamma_R \circ \tau_R \circ \tau_R}}(DR\{\hat{v}_R^R \circ \Gamma_R \circ \tau_R\})\partial_s u_+\|_{k-1,p,\delta} \qquad \leq \|DJ\|_{C^{k-1}} \cdot c(\beta, \gamma) \cdot \|u\|_{k,p,\delta} \cdot (I + II).
$$

Here $I \sim e^{-\delta R/2} \cdot \|u_+\|_{k,p,\delta} \cdot \|u_-\|_{k,p,\delta}$ and $II \sim e^{-\delta R/2} \|u_+\|_{k,p,\delta}^2$.

Proof:

For $t \in [R - d - l - 3, R + d + l + 3]$,

$$
\|DJ_{\hat{v}_R^{R \circ \Gamma_R \circ \tau_R \circ \tau_R}}(DR\{\hat{v}_R^R \circ \Gamma_R \circ \tau_R\})\partial_s u_+\|_{k-1,p,\delta} \leq \|DJ\|_{C^{k-1}} \cdot c(\beta, \gamma) \cdot \|u\|_{k,p,\delta} \cdot \|\partial_s u_+\|_{k-1,p,\delta} \cdot \left\{\|u_- \circ \tau_R\|_{C^0} + \|\partial_t u_- \circ \tau_R\|_{C^0}\right\} \\
+\|\partial_s u_+\|_{k-2,p,\delta} \cdot \left\{\|u_- \circ \tau_R\|_{C^{k-2}} + \|\partial_t u_- \circ \tau_R\|_{C^{k-2}}\right\} \\
+\|\partial_s u_+\|_{C^0} \cdot \left\{\|u_- \circ \tau_R\|_{k-1,p,\delta} + \|\partial_t u_- \circ \tau_R\|_{k-1,p,\delta}\right\} \\
+\|DJ\|_{C^{k-1}} \cdot c(\beta, \gamma) \cdot \|u\|_{k,p,\delta} \cdot \left\{\|\partial_s u_+\|_{k-1,p,\delta} \cdot \|u_+\|_{C^0} \\
+\|\partial_s u_+\|_{k-2,p,\delta} \cdot \|u_+\|_{C^{k-2}} + \|DJ\|_{C^{k-1}} \cdot c(\beta, \gamma) \cdot \|u\|_{k,p,\delta} \cdot (I + II).
$$

Estimate for I with $t \in [R - d - l - 3, R + d + l + 3]$:

$$
I \sim \|\partial_s u_+\|_{k-1,p,\delta} \cdot \|u_- \circ \tau_R\|_{[R-d-l-3,R+d+l+3]}\|_{C^1} \\
+\|\partial_s u_+\|_{k-2,p,\delta} \cdot \|u_- \circ \tau_R\|_{[R-d-l-3,R+d+l+3]}\|_{C^{k-1}} + \|\partial_s u_+\|_{[R-d-l-3,R+d+l+3]}\|_{C^0} \cdot \|u_- \circ \tau_R\|_{k,p,\delta} \\
\sim \|\partial_s u_+\|_{k-1,p,\delta} \cdot \|u_- \circ \tau_R\|_{[R-d-l-3,R+d+l+3]}\|_{k,p} \\
+\|\partial_s u_+\|_{k-2,p,\delta} \cdot \|u_- \circ \tau_R\|_{[R-d-l-3,R+d+l+3]}\|_{k,p} \\
+\|\partial_s u_+\|_{[R-d-l-3,R+d+l+3]}\|_{C^0} \cdot \|u_- \circ \tau_R\|_{[R-d-l-3,R+d+l+3]}\|_{k,p,\delta} \\
\leq \|u_+\|_{k,p,\delta} \cdot \|u_- \circ \tau_R\|_{[-R-d-l-3,-R+d+l+3]}\|_{k,p} \\
+\|\partial_s u_+\|_{[R-d-l-3,R+d+l+3]}\|_{C^0} \cdot e^{\delta(R+d+l+3)} \|u_- \circ \tau_R\|_{[R-d-l-3,R+d+l+3]}\|_{k,p}
$$
Lemma 3.9 from the following estimate.

Proof:

Finally we need to show that $D_{\theta}N$ extends over $R = \infty$.

Estimate for II with $t \in [R - d - l - 3, R + d + l + 3]$:

$$II \sim u_+ ||_{k,p,\delta} \cdot || u_+ ||_{C^k} \sim u_+ ||_{k,p,\delta} \cdot || u_+ ||_{[R-d-l-3, R+d+l+3]} ||_{k-1,p} \leq u_+ ||_{k,p,\delta} \cdot e^{-\delta R/2} \cdot || u_+ ||_{k,p,\delta}.$$

It follows from the estimate in above lemma that $D_{R}N$ extends over $R = \infty$.

Finally we need to show that $D_{\theta}N$ extends over $R = \infty$. This follows from the following estimate.

Lemma 3.9 For $t \in [R - d - l - 3, R + d + l + 3]$,

$$|| D_{\theta}N_{+}(R_{\theta}, u_{-}, u_{+}) ||_{k-1,p,\delta} \leq || D_{J} ||_{C^k} \cdot c(\beta, \gamma) \cdot || u ||_{k,p,\delta} \cdot III$$

with $III \sim e^{-\delta R/2} \cdot || u_+ ||_{k,p,\delta} \cdot || u_+ ||_{k,p,\delta}$.

Proof:

For $t \in [R - d - l - 3, R + d + l + 3]$, recall

$$D_{\theta}(\hat{v}_{+}^{R_{\theta}} \circ \Gamma^{R_{\theta}} \circ \tau_{-R_{\theta}}) = -2\{(\gamma_{-} - \gamma_{+} + (1 - \gamma_{-})) \circ \tau_{-R}\} \partial_{s}u_{-} \circ \tau_{-2R_{\theta}}.$$

Then $|| D_{\theta}N_{+}(R_{\theta}, u_{-}, u_{+}) ||_{k-1,p,\delta} =$

$$|| D_{J} \hat{v}_{+}^{R_{\theta}} \circ \Gamma^{R_{\theta}} \circ \tau_{-R_{\theta}} \circ \tau_{-2R_{\theta}} (D_{\theta}(\hat{v}_{+}^{R_{\theta}} \circ \Gamma^{R_{\theta}} \circ \tau_{-R_{\theta}})) \partial_{s}u_{+} ||_{k-1,p,\delta}$$

20
\[\leq \| DJ \|_{C^{k-1}} \cdot c(\beta, \gamma) \cdot \| u \|_{k,p,\delta} \{ \| \partial_s u_+ \|_{k-1,p,\delta} \cdot \| \partial_s u_- \circ \tau_{-2R_0} \|_{C^0} \]
\[+ \| \partial_s u_+ \|_{k-2,p,\delta} \cdot \| \partial_s u_- \circ \tau_{-2R_0} \|_{C^{k-2}} \]
\[+ \| \partial_s u_+ \|_{C^0} \cdot \| \partial_s u_- \circ \tau_{-2R_0} \|_{k-1,p,\delta} \}. \]
\[\sim \| DJ \|_{C^{k-1}} \cdot c(\beta, \gamma) \cdot \| u \|_{k,p,\delta} \cdot \| \partial_s u_- \circ \tau_{-2R_0} \|_{C^{k-2}} \]
\[+ \| \partial_s u_+ \|_{C^0} \cdot \| \partial_s u_- \circ \tau_{-2R_0} \|_{k-1,p,\delta} \}. \]

\[= \| DJ \|_{C^{k-1}} \cdot c(\beta, \gamma) \cdot \| u \|_{k,p,\delta} \cdot III. \]

For \(t \in [R - d - l - 3, R + d + l + 3] \),

\[III \sim \| u_+ \|_{k,p,\delta} \cdot \| \partial_s u_- \circ \tau_{-2R_0} \|_{[R - d - l - 3, R + d + l + 3]} \|_{k-1,p} \]
\[+ \| \partial_s u_+ \|_{[R - d - l - 3, R + d + l + 3]} \|_{k-1,p,\delta} \]
\[\leq \| u_+ \|_{k,p,\delta} \cdot \| \partial_s u_- \|_{[-R - d - l - 3, -R + d + l + 3]} \|_{k-1,p} \]
\[+ \| \partial_s u_+ \|_{[-R - d - l - 3, -R + d + l + 3]} \|_{k-1,p,\delta} \]
\[\leq \| u_+ \|_{k,p,\delta} \cdot e^{\delta(-R + d + l + 3)} \| \partial_s u_- \|_{k-1,p,\delta} \]
\[+ e^{\delta(-R + d + l + 3)} \| \partial_s u_+ \|_{k-1,p,\delta} \cdot e^{\delta(R + d + l + 3)} \| \partial_s u_- \|_{k-1,p,\delta} \]
\[\sim e^{-\delta R/2} \cdot \| u_- \|_{k,p,\delta} \cdot \| u_+ \|_{k,p,\delta}. \]

By the last lemma in [3], this finishes the proof of the Theorem 1.1.

References

[1] Hofer, H: A General Fredholm Theory and Applications, Preprint (2005), arXiv: math.0509366[math.SG].

[2] Hofer, Wysocki and Zehnder: Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory, Preprint (2011), arXiv:math.11072097[math.SG]; Memoirs of the American Mathematical Society 2017; 218 pp.

[3] Liu, G : On Linear part of Filled-Section in Splicing, Preprint (2018).

[4] Lang, S: Differential Manifolds, Springer-Verlag 1972.