Localization and protein-protein interactions of protein kinase CK2 suggest a chaperone-like activity is integral to its function in *M. oryzae*

Lianhu Zhang*, Dongmei Zhang*, Yunyun Chen1, Wenyu Ye2, Qingyun Lin2, Guodong Lu1, Daniel J. Ebbole1,3, Stefan Olsson1,4,§ & Zonghua Wang1,2,5§

1State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
2College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
3Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, U.S.A.
4Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
5Minjing University, Fuzhou 350018, China.

*These authors contributed equally to this work
§ These authors jointly supervised the work

Abstract

CK2 is known as a constitutively active, conserved serine/threonine kinase in eukaryotes. GFP fusions to CK2 subunits demonstrated nucleolar localization, although the catalytic subunit still localized to nucleoli in the absence of either regulatory subunit. In contrast, localization near septa, required all three subunits. The ~1300 proteins co-immunoprecipitating with the catalytic subunit were highly enriched for those known to reside at these locations. Appressoria contain a filamentous form of CK2. The interacting proteins in hyphae were enriched for intrinsically disordered proteins with characteristics previously identified as being a mechanism for regulation of protein aggregation. Examining gene expression profiles, we find a correlation of CK2 expression with genes for protein disaggregation and
autophagy. Our observations support the view that CK2 plays a key role in controlling formation of discrete regions (membraneless organelles), such as the nucleolus, through aggregation and disaggregation of some of its target proteins.

Introduction

Since its discovery (Meggio and Pinna, 2003), the constitutive serine/threonine (S/T) kinase activity of CK2 and the increasing number of proteins it has been shown to phosphorylate have puzzled scientists (Ahmad et al., 2008; Götz and Montenarh, 2016; Meggio and Pinna, 2003). Indeed CK2 has been implicated in a wide range of cellular processes (Götz and Montenarh, 2016). The CK2 holoenzyme is a heterotetrameric structure consisting of 2 catalytic α-units and 2 regulatory β-subunits (Ahmad et al., 2008). In mammals, there exist two different alpha subunits α (a1) and α' (a2) and the enzyme can contain any combination of α-subunits ($\alpha$$\alpha$1, α1α2, α2α2) combined with the β-subunits. In Saccharomyces cerevisiae, CK2 contains two different alpha- and two different β-subunits (b1 and b2) (Padmanabha et al., 1990). CK2 has been extensively studied in the budding yeast S. cerevisiae (Padmanabha et al., 1990), however, functions of CK2 involved in multicellularity might be obscured in yeast. For fungi, it has been reported that deletion of both catalytic subunits is lethal (Padmanabha et al., 1990; Wang et al., 2011) and some fungi, including M. oryzae, contain only one gene encoding CKa (Mehra et al., 2009). In comparison to yeast, filamentous fungi have different cell types that allow detailed exploration of cellular differentiation and multicellular development (Shlezinger et al., 2012) and this, in combination with haploid life-cycles, well characterized genomes, and efficient methods for targeted gene replacement, makes fungi like M. oryzae and Fusarium graminearum good model systems for molecular studies of basic eukaryote functions including cell-cell
communication (Cavinder et al., 2012; Ebbole, 2007). As plant pathogens, developmental processes needed for symbiosis can also be explored. We focused our study on *M. oryzae* one of the most important rice crop pathogens worldwide (Dean et al., 2012).

Our results show that *M. oryzae* CK2 holoenzyme (MoCK2) accumulates in the nucleolus, localizes in structures near septal pores, and assembles to form a large ring structure perpendicular to the appressorium penetration pore. The large-scale structures formed by CK2 protein kinase, combined with our finding of the interaction of CK2 with substrates associated with the location of CK2 enzyme aggregation, suggests that CK2 may control substrate stability and localization near their sites of action. Furthermore, CK2 interacts preferentially with proteins annotated as being intrinsically disordered. Taken together, this work provides further evidence supporting the view (Zetina, 2001) that one of the roles for the CK2 holoenzyme is to induce conformational changes in intrinsically disordered proteins.

RESULTS

Deletion of MoCK2 components

Using BLASTp and the protein sequences for the CK2 catalytic subunits of *S. cerevisiae*, CKa1, CKa2, CKb1 and CKb2 (Padmanabha et al., 1990), we identified one MoCKa (MGG_03696) and two MoCKb sequences (MoCKb1 = MGG_00446, MoCKb2 = MGG_05651) (Figure 1). Sequence alignments and phylogenetic analysis show that these proteins are highly conserved in different fungi (Figure 1 Supplement 1-4). Moreover, the phylogenetic analysis indicated that the two CKbs were in two separate evolutionary branches (Figure 1 Supplement 1).
We attempted targeted deletions of the three identified genes and succeeded in deleting the two \textit{CKb} genes but not the \textit{CKa} and then also saw that the conidial morphology was different in the \textit{CKb} mutants in that they had fewer conidial compartments (Figure 2).

\section*{Subcellular localization of CK2 subunits}

To assess the localization of the three CK2 subunits, we constructed N-terminal GFP fusions of all three proteins (Filhol et al., 2003) (GFP-MoCKa, GFP-MoCKb1 and GFP-MoCKb2) (Table 1). All three strains showed the same growth, morphology and pathogenicity (Figure 3) as the background strain Ku80. The CKa and CKb1&2 fusion proteins localized to nuclei and prominently to nucleoli and, interestingly, to both sides of septal pores in hyphae (Figure 4 a-e) and conidia (Figure 4 Supplement 1). We then tested if the localization to septa and nucleoli were dependent on the association with the other subunits of the holoenzyme. We had measured MoCka expression in the two \textit{MoCKb} mutants using qPCR and noted it was downregulated compared to the background strain Ku80 (Figure 5 a). Thus, we constructed strains that over-express GFP-CKa in the \textit{ΔMockb1} and \textit{ΔMockb2} deletion strains (43OE and 53OE respectively, Figure 5 b-e) but this did not result in localization to septa (Figure 4 f,g). However, nucleolar localization of GFP-MoCKa was clear even in the \textit{MoCKb1} and \textit{MoCKb2} mutant backgrounds. To test if over-expression of any one of the CKb proteins could rescue the effect of the deletion of the other CKb, we constructed GFP-CKb overexpression strains in the background strain Ku80 and both CKb mutants. These strains were GFP-CKb1 in \textit{ΔMockb2} (54OE-GFP) and GFP-CKb2 in \textit{ΔMockb1} (45OE-GFP). The overexpression of either of the two CKbs in the background strain Ku80 showed normal localization to septa and nucleolus but the overexpression in the deletion strains could not rescue normal localization (Figure
4h,i and Figure 5 Supplement 1). Furthermore, GFP-MoCKb1 appeared to localize to nuclei but not nucleoli in the MoCKb2 mutant. Similarly, GFP-MoCKb2 also appeared to localize to nuclei but not nucleoli in the MoCKb1 mutant. Conidia morphology also changed in the ΔMockb2 deletion mutants (Figure 2c), even if CKa was overexpressed as in 43OE and 53OE (Figure 5), which restored some of the conidia formation and growth rate defects (Figure 5). These conidia mainly contained 2 nuclei instead of the normal 3 found in the background strain Ku80 (Figure 2c, Figure 5 d,e).

Infection phenotypes of CKb deletions

Deletion of CK2 genes has been shown to have effects on both growth and infection in F. graminearum (Wang et al., 2011) and we also found this to be the case for M. oryzae (Figure 6 and Figure 6 Supplement 1). Conidiation was virtually absent in ΔMockb1 and ΔMockb2 deletion mutants, thus, we used mycelial plugs to test for infection (Liu et al., 2010; Talbot et al., 1996). Compared to the background strain Ku80, all mutants lacking one of the MoCK2b components had severely reduced or absent pathogenicity even if the other MoCK2 components were over-expressed (Figure 6c).

CKa localization in appressoria

Since we found large effects in infection of the deletion of the CKb components we decided to investigate localization of GFP-CKa in the appressoria of the background strain Ku80 and the two CKb deletion mutants. Normal appressoria were only formed in the background strain Ku80 and in these, CK2 localizes to nuclei (Figure 7a top row and Figure 7 Supplement 1b), to the septa between the appressorium and the
germ tube (Figure 7 Supplement 1) and also assembles a large ring structure perpendicular to the penetration pore (Figure 7 b-d, Figure 7 Supplement 1, Figure 7 Supplement 2 for ring size measurements, and movies associated with the images of Figure 7b-d, showing 3D rotations to visualize the ring and the appressorium). MoCKa nuclear localization was present but ring structures were absent in appressoria formed by the two CK2b deletion mutants (Figure 7a middle and bottom row). As can be seen in Figure 7d, the CK2 large ring structure is positioned perpendicular to the penetration pore where the F-actin-septin ring has been shown to form around the pore opening (Dagdas et al., 2012) (Figure 7d and 8 schematic drawing).

Identification of potential septal and nucleolar substrates for MoCK2 by GFP-CKa pulldown

The localization pattern suggested that CK2 may have substrates associated with septa and nucleolar function. To explore this, we performed co-immunoprecipitation to identify proteins interacting with CK2 using GFP-CKa as a "bait", and in addition to the bait, identified 1505 proteins (Supplementary File 1). We also searched the M. oryzae proteome for proteins containing the CK2 phosphorylation helix unfolding motif identified by Zetina (Zetina, 2001) using the FIMO tool at the MEMEsuite website (http://meme-suite.org/) and found 1465 proteins (Supplementary File 2) with the motif, out of a total of 12827 proteins annotated for M. oryzae.

There is the risk of false positives in the pulldown. We estimated the number of false positives and removed 155 (~10%) of the lower abundance proteins to arrive at a list of 1350 CKa interacting proteins (see Methods). We found 275 of these proteins contain at least one unfolding motif for alpha helixes. Thus, there is an overrepresentation of the motif among the pulldown proteins (Supplementary File 2).
(P-value for the null hypothesis of same frequency as in the whole proteome = 4 E-19, Fisher’s Exact test) lending support for the proposed role for this motif as a target for CK2 phosphorylation and protein unfolding. As expected, the pulldown caught both CKb proteins.

Since CK2 localizes to septa we looked for known septal proteins in the pulldown. All previously identified proteins by Dagas et al. (Dagdas et al., 2012) that are involved in appressorium pore development, were found in the pulldown as was a protein annotated as the main Woronin body protein, Hex1 (MGG_02696). Since the Woronin body in Ascomycetes is tethered to the septal rim by Lah protein (Han et al., 2014; Ng et al., 2009; Plamann, 2009) we searched for a homologue in M. oryzae and found a putative MoLah (MGG_01625) with a similar structure as in Aspergillus oryzae (Han et al., 2014) that is also present in the pulldown. In addition to the Lah, 18 other intrinsically disordered septal pore associated proteins (Spa) were described for Neurospora crassa (Lai et al., 2012). We identified putative orthologs for 15 of the 18 Spa proteins in M. oryzae (Supplementary File 3). Of these putative MoSpa proteins, six were present in the CKa pulldown, Spa3 (MGG_02701), Spa5 (MGG_13498), Spa7 (MGG_15285), Spa11 (MGG_16445), Spa14 (MGG_03714) and Spa 15 (MGG_15226). Spa3, Spa5 and Spa15 also contain the CK2 phosphorylation alpha helix unfolding motif (Supplementary File 1).

To further explore the hypothesis that CK2 could interact with and possibly phosphorylate intrinsically unfolded proteins we used the FuncatDB (http://mips.helmholtz-muenchen.de/funcatDB/) to make a functional classification of the pulldown proteins including those containing the alpha helix unfolding motif (Zetina, 2001). We found strong overrepresentation for proteins involved in rRNA processing among the pulldown proteins containing the alpha helix unfolding motif as well as for proteins that, themselves, are known to interact with other proteins, DNA, and RNA (Supplementary File 4). These classes of proteins are enriched for
intrinsically disordered proteins. Such intrinsically disordered proteins can interact
with each other to form ordered subregions that have been described as
membraneless organelles, such as nucleoli (Wright and Dyson, 2015). Since CK2
localizes to the nucleolus we were especially interested in the interaction of CK2 with
nucleolar localized proteins. We identified homologues to the well described S.
cerevisiae nucleolar proteins and found a total of 192 proteins in M. oryzae
homologous to yeast nucleolar proteins (Supplementary File 5). We found 120 (63%)
of the nucleolar proteins in the pulldown and 60 of these (50%) had the alpha helix
unfolding motif (Supplementary File 1 and 4). The nucleolar proteins were highly
overrepresented in the pulldown (P-value for the null hypothesis of same frequency
as in the whole proteome 9E-43 Fisher’s Exact test) (Supplementary File 5)
compared to the whole proteome as was also nucleolar proteins having the unfolding
motif (P-value for the null hypothesis of same frequency as in the whole proteome
2E-13 Fisher’s Exact test) (Supplementary File 5).

Interestingly the pulldown proteins without the unfolding motif were strongly
enriched (60 of 130 in the whole proteome, P-value for the null hypothesis of same
frequency as in the whole proteome 1.0E-29) for proteins that are imported into
mitochondria and involved in oxidative phosphorylation (“02.11 electron transport
and membrane-associated energy conservation” category from Funcat)
(Supplementary File 4).

There was no enrichment for specific pathogenicity related proteins (Funcat category
32.05 disease, virulence and defence) (Supplementary File 4). This is generally true
within the whole Funcat category related to stress and defence (32 CELL RESCUE,
DEFENSE AND VIRULENCE) with the exception of proteins involved in the
unfolded protein response (32.01.07 unfolded protein response) (e.g. ER quality
control), which were overrepresented. This is notable since an involvement of CK2 in
protein import into the ER has be established (Wang and Johnsson, 2005). An
association of pathogenicity related proteins with CK2 was not expected because of the *in vitro* growth conditions of the experiment.

Interestingly, five putative S/T phosphatases (MGG_03154, MGG_10195, MGG_00149, MGG_03838, MGG_06099) were in the pulldown set of proteins (Supplementary File 1). Conceivably these might de-phosphorylate CKα substrates as well as substrates of other kinases to expand the reach of CK2 in regulating the phosphoproteome. To examine the relationship between the expression of CK2 and these phosphatases, we downloaded expression data from a range of experiments with *M. oryzae* and plotted the expression of the five phosphatases found in the pulldown and an S/T phosphatase not found in the pulldown as a function of the CKα expression. We found that two of the S/T phosphatases present in the pulldown were strongly correlated with CKα expression and the others were less strongly correlated (Figure 9).

CKα expression correlates with expression of genes associated with disaggregation and autophagy

Since CK2 activity has the potential to favour protein-protein binding between intrinsically disordered proteins it consequently also has the potential to enhance protein aggregation. Some of these unfolded proteins may trigger the unfolded protein response involved in disaggregation. Hsp104 is a disaggregase that cooperates with Yjdg1 and SSa1 to refold and reactivate previously denatured and aggregated proteins (Glover and Lindquist, 1998). Alternatively, accumulated aggregates may be degraded through autophagy since these kinds of aggregates are too big for proteasome degradation (Wong and Cuervo, 2010). If this is the case, CK2 upregulation should be accompanied by higher autophagy flux or at least there should not be low expression of key autophagy genes when CK2 expression is high (Wong
and Cuervo, 2010). Atg8 is a key autophagy protein for which its turnover rate can reflect autophagy flux (Klionsky et al., 2016). To test this hypothesis, we used the expression data we downloaded for plant infection experiments with M. oryzae and also for another fungal plant pathogen, F. graminearum, that has rich transcriptomic data available (see methods), to examine expression of HSP104, YDJ1, SSA1, and ATG8 relative to CKa.

For M. oryzae, we found an approximately 60-fold increase in MoHSP104 expression associated with a doubling of MoCka transcript levels. With increasing expression of MoCka the MoHSP104 levels did not increase further. MoSSA1 expression had a similar pattern to MoHSP104 with a 16-fold increase across the initial 2-fold increase in MoCka expression. For MoYDJ1, expression increased with MoCKa expression, but not as dramatically (Fig 10). For M. oryzae, we find a log-log linear relationship between the MoCKa expression and MoAtg8 expression (Figure 10).

In the case of F. graminearum, we also found increased expression of all of the genes with FgCKa expression across a large range of experiments (Figure 10 Supplement 1a). Within the experiments a time course experiment was selected to examine expression of these genes during the course of infection. Once again, the relationship could be observed (Figure 10 Supplement 1b), furthermore, FgCK2a expression increased during the course of infection (Figure 10 Supplement 2), supporting the hypothesis that protein disaggregation and autophagy are increasingly needed to remove protein aggregates stimulated to form by increasing levels of CKa and its activity in the cell.

Discussion

In contrast to S. cerevisiae (Padmanabha et al., 1990) and F. graminearum (Wang et al., 2011) but consistent with N. crassa (Mehra et al., 2009) we only found one CKa
encoding gene in *M. oryzae*. In fungi where two different CKa genes are found deletion of both is lethal (Padmanabha et al., 1990; Wang et al., 2011), so it is rather expected that we were not able to obtain a ΔMocka mutant.

The analysis of the MoCKb mutants and the localization of the GFP-labelled MoCK2 proteins showed that all identified MoCK2 components are needed for normal function and also normal localization. Localization to septa requires all three subunits, presumably as the holoenzyme. Mutation of either CKb subunit blocks nucleolar localization of the other CKb subunit. Surprisingly, nucleolar localization of CKa was observed in the CKb mutants. This shows that the holoenzyme is not required for CKa localization to the nucleolus. It seems likely that CKb1 and CKb2 must interact with each other in order to interact with CKa, and that CKa is required for movement of CKb subunits into the nucleolus as the holoenzyme.

The pattern of localization to septa (Figures 4) observed is remarkably similar to that displayed by the Woronin body tethering protein AoLah from *A. oryzae* (Figure 4b in (Han et al., 2014)). Pulldown experiments demonstrate that CK2 interacts with proteins that function in septum formation and function, including the MoLah ortholog, supporting the view that localization of the GFP-fusion proteins gives a proper representation of CK2 localization. Our results thus demonstrate that the MoCK2-holoenzyme assembles as a large complex near, and is perhaps tethered to, septa, possibly through binding to MoLah. Since septal pores in fungi are gated (Shen K-F. et al., 2014), as are gap junctions and plasmodesmata in animal and plant tissue, respectively (Ariazi et al., 2017; Kragler, 2013; Neijssen et al., 2005), CK2 has a potential to play a general role in this gating.

The crystal structure suggested that CK2 can form filaments and higher-order interactions between CK2 holoenzyme tetramer units, and based on this it has been
predicted that autophosphorylation between the units could occur to down-regulate activity (Litchfield, 2003; Poole et al., 2005). Filament formation has been shown to occur in vitro (Glover, 1986; Seetoh et al., 2016; Valero et al., 1995) and in vivo (Hübner et al., 2014). Several forms of higher order interactions have been predicted, and it has been demonstrated that at least one of these has reduced kinase activity (Poole et al., 2005; Valero et al., 1995). However, in our localization experiments we cannot distinguish if the large structure is due to co-localization of the CK2 with another protein, such as the MoLah ortholog, or if CK2 is in an aggregated form near septa. Since MoLah has the characteristics of an intrinsically disordered protein (Han et al., 2014), and CK2 interacts with some proteins to promote their disordered state, we favour the view that CK2 interacts with MoLah and other proteins to form a complex near septa.

Our pulldown experiment with GFP-CKa further showed that there was a strong overrepresentation of proteins interacting with CKa that contain known phosphorylation motifs for unfolding of alpha-helixes and this is what would be expected for intrinsically disordered proteins (Uversky, 2015; Zetina, 2001). The finding of overrepresentation of this signal in the set of CK2 interacting proteins corroborates the previous suggestion that CK2 is involved in the destabilization/binding of intrinsically disordered proteins (Zetina, 2001) and is consistent with the strong accumulation of both CK2 and intrinsically disordered proteins in the nucleolus (Fig. 4a and b) (Frege and Uversky, 2015) and also at pores between cell compartments (Lai et al., 2012) (Figure 4d). In addition, and further supporting this conclusion, the six septal pore associated proteins (SPA) that we find in the CKa pulldown are homologues for intrinsically disordered proteins that are expected to form temporary gels that are used to reversibly plug septal pores and regulate traffic through septa (Lai et al., 2012). CK2 could actively be involved in the gelling/un-gelling of the regions near septa to create a membraneless organelle.
controlling the flow through septa. As a counterpart to CK2 in gelling/un-gelling, disaggregate activity involving the MoHSP104 complex, may be critical for control of this. The observation of transcriptional co-regulation between CKα and HSP104 supports this notion.

Previous studies of subcytosolic localization reveals that this enzyme is also associated with import into organelles. CK2 promotes protein import into endoplasmic reticulum (Wang & Johnsson, 2005) and into mitochondria during mitochondrial biogenesis and maintenance (Rao et al., 2011). CK2 phosphorylation has been shown to activate Tom 22 precursors to assemble a functional mitochondrial import machinery (Rao et al., 2011). Although CK2 has been implicated to be located in mitochondria in earlier studies in other organisms no proteomic study of yeast mitochondria has detected the presence of CK2 (Rao et al., 2011), hence, we do not expect MoCK2 to be present in mitochondria. Of special interest was the strong overrepresentation of mitochondrial proteins among the CKα pulldown proteins without the alpha helix phosphorylation unfolding motif (Supplementary File 4). Since these proteins need to be imported into mitochondria in an unfolded state, this may point to the existence of other CKα phosphorylation and unfolding motifs that help keep these proteins unfolded until they reach their destination inside the mitochondria.

To have such dynamic function as an unfoldor of proteins by phosphorylation, CK2 should be partnered with phosphatases as counterparts and their activity may track CK2 activity. Consistent with this possibility, we found that two of the five S/T phosphatases that are present in the pulldown are strongly co-regulated with CKα (Figure 9), further supporting the view that CKα-dependent phosphorylation/dephosphorylation plays a major role in shaping protein interactions. Together with the high expression of CK2 in cells, this suggests an important
function of CK2 as a general temporary unfolder of intrinsically disordered proteins that comprise roughly 30% of eukaryotic proteins (Vucetic et al., 2003).

As MoCK2 is present in the cytoplasm and nucleoplasm it could generally assist intrinsically disordered proteins forming larger protein complexes (Uversky, 2015). It also seems to be essential for assembling ribosomes containing large numbers of intrinsically disordered proteins (Uversky, 2015). All these functions also explain why CK2 is needed constitutively (Meggio and Pinna, 2003).

In the absence of well-functioning autophagy removing incorrectly formed larger protein aggregates, like those formed in brain cells of Alzheimer’s patients (Zare-shahabadi et al., 2015), CK2 activity facilitates protein aggregate formation and hastens the progression of Alzheimer’s disease (Rosenberger et al., 2016). Using publicly available transcriptome datasets we could show that CKα expression in *M. oryzae* and *F. graminearum* is strongly correlated to disaggregase and Atg8 expression (Figure 10), and thus autophagy, giving further support for a relationship of CK2 in facilitating the formation of protein aggregates from intrinsically unfolded proteins that are then subjected to autophagy. As autophagy is important to appressorium development (Liu and Lin, 2008; Kershaw and Talbot, 2009), it will be of interest to further examine the role of the CK2 ring structure during appressorial development and infection. The large ring may be a true filament of CK2 in a relatively inactive state that is a store for CK2 so that upon infection, it can facilitate rapid ribosome biogenesis, appressorial pore function, and other pathogenesis-specific functions.

Conclusion

We conclude that CK2 most likely has an important role in the correct assembly/disassembly of intrinsically disordered proteins as well as allowing these proteins to pass through narrow pores between cell compartments in addition to its
already suggested role in organelle biogenesis (Rao et al., 2011). Our results further point to one of the main functions of the CK2 holoenzyme as a general facilitator of protein-protein interactions important for a large range of cellular processes including a potential role for gel formation that creates membraneless organelles at septa through its likely interaction with, and modification of, intrinsically disordered proteins. Most of our evidence for these functions of CK2 is, however, indirect, and future experiments will be needed to directly demonstrate the suggested role for CK2 in relation to intrinsically disordered proteins, including the function of septa and appressoria in fungi.

Methods

Fungal strains, culture, and transformation

The *M. oryzae* Ku80 mutant (kindly provided by Professor Jin-Rong Xu Department of Botany and Plant Pathology Purdue University, U.S.A.) of the wild type Guy11 strain was used as background strain since it lacks non-homologous end joining which facilitates gene targeting (Villalba et al., 2008). Ku80 and its derivative strains (Table 1) were all stored on dry sterile filter paper and cultured on complete medium (CM: 0.6% yeast extract, 0.6% casein hydrolysate, 1% sucrose, 1.5% agar) or starch yeast medium (SYM: 0.2% yeast extract, 1% starch, 0.3% sucrose, 1.5% agar) at 25°C. For conidia production, cultures were grown on rice bran medium (1.5% rice bran, 1.5% agar) with constant light at 25°C. Needed genome and proteome FASTA files was downloaded from an FTP-server at the Broad Institute (ftp://ftp.broadinstitute.org/pub/annotation/fungi/magnaporthe/genomes/magnaporthe_oryzae_70-15_8/). Fungal transformants were selected for the appropriate markers inserted by the plasmid vectors. The selective medium contained either 600 µg/ml of hygromycin B or 600 µg/ml of G418 or 50 µg/ml chlorimuron ethyl.
MoCKb gene replacement and complementation

Gene replacement mutants of *MoCKb1* encoding protein MoCKb1 were generated by homologous recombination. Briefly, a fragment about 0.9 Kb just upstream of *Mockb1* ORF was amplified with the primers 446AF and 446AR (Table 2), so was the 0.7Kb fragment just downstream of *Mockb1* ORF amplified with the primers 446BF and 446BR (Table 2). Both fragments were linked with the hygromycin phosphotransferase (*hph*) gene amplified from pCX62 (containing the fragment of TrpC promoter and hygromycin phosphotransferase (*hph*) gene, HPH resistance). Then the fusion fragments were transformed into protoplasts of the background strain Ku80. The positive transformant Δ*Mockb1* was picked from a selective agar medium supplemented with 600 µg/ml of hygromycin B and verified by Southern blot.

For complementation of the mutant, fragments of the native promoter and gene coding region were amplified using the primers 446comF and 446comR listed Table 2. This fragment was inserted into the pCB1532 to construct the complementation vector using the XbaI and KpnI. Then this vector was transformed into the protoplasts of the Δ*Mockb1* mutant. The positive complementation transformant MoCKb1C was picked up from the selective agar medium supplemented with 50µg/ml chlorimuron ethyl.

As for the Δ*MoCKb1* deletion mutant, we constructed a knockout vector to delete the *MoCKb2* from the background strain Ku80. All the primers are listed in the Table 2. The 1.0Kb fragment upstream of *MoCKb2* ORF was amplified with the primers 5651AF and 5651AR, inserted into the plasmid pCX62 using the KpnI and EcoRI to get the pCX-5A vector. The 1.0Kb fragment downstream of *Mockb2* ORF was amplified with the primers 5651BR and 5651BR, inserted into the vector pCX-5A using BamHI and XbaI to construct the knockout vector pCX-5D. Then this vector
was transformed into the protoplasts of Ku80. The positive transformants were
picked up from the selective medium supplemented with the 600 µg/ml hygromycin
B. For complementation of the mutant, fragments of the native promoter and gene
coding region were amplified using the primers 5651comF and 5651comR listed in
the Table 2. This fragment was inserted into pCB1532 to construct the
complementation vector using the XbaI and XmaI. Then this vector was transformed
into protoplasts of the ΔMockb2 mutant. The positive complementation transformant
MoCKb2C was picked up from the selective agar medium supplemented with 50
µg/ml chlorimuron ethyl.

The construction of localization vectors

In order to detect the localization of MoCK2, we constructed localization vectors.
The vector pCB-3696OE containing the RP27 strong promoter was used to detect the
localization of GFP-MoCKa. The vector pCB-446OE expressed under RP27 strong
promoter was used to detect the localization of GFP-MoCKb1. The vector pCB-
5651OE expressed by RP27 strong promoter was used to detect the localization of
GFP-MoCKb2.

Analysis of conidial morphology, conidial germination and appressoria formation

Conidia were prepared from cultures grown on 4% rice bran medium. Rice bran
medium was prepared by boiling 40g rice bran (can be bought for example through
Alibaba.com) in 1L DD-water for 30 minutes. After cooling pH was adjusted from to
6.5 using NaOH and 20 g agar (MDL No MFCD00081288) was added before
sterilization by autoclaving (121 °C for 20 minutes). Conidia morphology was
observed using confocal microscopy (Nikon A1+). The Conidial germination and
appressoria formation were incubated on hydrophobic microscope cover glass
(Beckerman and Ebbole, 1996) (Fisherbrand) under 25°C in the dark. Conidial
germination and appressoria formation were examined at 24 h post-incubation (Beckerman and Ebbole, 1996; Ding et al., 2010).

Pathogenicity assay

Plant infection assays were performed on rice leaves. The rice cultivar used for infection assays was CO39. In short, mycelial plugs were put on detached intact leaves or leaves wounded by a syringe stabbing. These leaves were incubated in the dark for 24h and transferred into constant light and incubated for 5 days to assess pathogenicity (Talbot et al., 1996). For infections using conidial suspensions (1 × 10⁵ conidia/ml in sterile water with 0.02% Tween 20) were sprayed on the rice leaves of 2-week-old seedlings.

RNA extraction and real-time PCR analysis

RNA was extracted with the RNAiso Plus kit (TaKaRa). First strand cDNA was synthesized with the PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa). For quantitative real-time PCR, *MoCKa*, *MoCKb1*, and *MoCKb2* were amplified with the primers listed in Table 2. β-tubulin (XP_368640) was amplified as an endogenous control. Real-time PCR was performed with the TaKaRa SYBR Premix Ex Taq (Perfect Real Time) (Takara). The relative expression levels were calculated using the 2^-ΔΔCt method (Livak and Schmittgen, 2001).

Pulldown and identification of CKa interacting proteins

Total protein samples were extracted from vegetative mycelia of strain GFP-MoCKa and incubated with anti-GFP beads (Chromotek, Hauppauge, NY, USA) 90 minutes at 4°C with gentle shaking. After a series of washing steps, proteins bound to anti-GFP beads were eluted following the manufacturer’s instruction. The eluted proteins were sent to BGI Tech (Shenzhen, Guangdong province, China) and analysed by mass spectrometry for analysis of sequence hits against the *M. oryzae* proteome. The
transformant expressing GFP protein only was used as the negative control and the
Ku80 was used as Blank control. Data from three biological replicates were analyzed
against the background of proteins that were bound non-specifically to the anti-GFP
beads in GFP transformant and in WT to get the final gene list of genes that was
pulldown with CKa (Supplementary File1).

Estimation of non-specific binding of proteins in the pulldown

We developed two methods to estimate the number of non-specific binding proteins
found in the CKa pulldown. The first approach is a chemistry-based reasoning and
assumes that the degree of unspecific association to the protein per protein surface
area is the same for GFP specific hits and for the CK2 holoenzyme pulled down.
Using this technique, we estimate that 44-132 proteins are false positive in the CKa
pulldown (all proteins pulled down by GFP-Beads or the Beads already removed
from the list) (Supplementary File 1). The Second approach is statistical where we
assume that binding of the true interacting proteins to CKa are log-normally
distributed related to the abundance of each protein in the pulldown, since the median
is low and close to zero and negative amounts are impossible. Using the deviation
from the theoretical distribution, with higher than expected amounts of a specific
protein, for the less abundant proteins we estimate that 46-81 proteins found in the
CKa pulldown (with controls subtracted) were false positive. The higher number was
used to set a conservative threshold for which proteins should be included in the
analysis (See Supplementary File 1 for details of both methods).

Finding *M. oryzae* proteins containing the helix unfolding motif

The MEME motif LSDDDXE/SLEEEXD (Zetina, 2001) was used to search through
the proteome of *M. oryzae* using the FIMO tool at the MEMEsuite website
(http://meme-suite.org/). Results were then downloaded and handled in MS Excel to
produce a list of proteins with at least one motif hit (Supplementary File 2)
Analysis of CKa expression in relation to disaggregate related protein, Atg8 and Ser/Thr phosphatase expression

For *M. oryzae*, transcriptome experiment data was downloaded as sra/fastq files from Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/and mapped onto the genome found at http://fungi.ensembl.org/Magnaporthe_oryzae/Info/Index. The procedure was the following: Gene Expression Omnibus (Barrett et al., 2012) was queried for SRA files originating from *M. oryzae* and the files downloaded. The conversion from SRA to Fastq was done using the SRA toolkit (http://ncbi.github.io/sra-tools). The resulting samples were subjected to quality control using FASTQC (Andrews, 2010). Quantification of RNA was performed using Kallisto with default settings (Bray 2016), the data was then normalized using the VST algorithm implemented in DESeq2 (Love et al., 2014).

For *F. graminearum* transcriptomic data (FusariumPLEX) was directly downloaded for mainly *in planta* experiments from the PlexDB database (http://www.plexdb.org/modules/PD_general/download.php?species=Fusarium). For each fungus an expression matrix with the different experiments as columns and gene id using the FGSG codes according to BROAD (ftp.broadinstitute.org/distribution/annotation/fungi/fusarium/genomes/fusarium_graminearum_ph-1) as rows were prepared. From the resulting matrixes (Supplementary Files 6 and 7) we used the data needed to plot expression of Atg8 vs CKa for the two fungi. In *M. oryzae* data are expressed as log2 of RPKM values. Similarly, for *F. graminearum*, data were log2 of reported relative expression. Gene expression data used were from MoCKa, MoHSP104, FgHSP109, MoYDJ1, FgYDJ1, MoSSA1 and Fg SSA1 homologues identified in this study as well as from MoAtg8 (MGG_01062) (Veneault-Fourrey, 2006), FgCKa (FGSG_00677) (Wang et al., 2011) and FgAtg8 (FGSG_10740) (Josefsen et al., 2012). Data from the *M. oryzae* expression matrix
was also used for plotting MoCKa expression versus the expression of annotated serine/threonine phosphatases found in the CKa pulldown.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

Ahmad, K.A., Wang, G., Unger, G., Slaton, J., and Ahmed, K. (2008). Protein kinase CK2 – A key suppressor of apoptosis. Adv. Enzyme Regul. 48, 179–187.

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Ariazi, J., Benowitz, A., De Biasi, V., Den Boer, M.L., Cherqui, S., Cui, H., Douillet, N., Eugenin, E.A., Favre, D., Goodman, S., et al. (2017). Tunneling Nanotubes and Gap Junctions–Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions. Front. Mol. Neurosci. 10.

Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., et al. (2012). NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995.

Beckerman, J.L., and Ebbole, D.J. (1996). MPG1, a Gene Encoding a Fungal Hydrophobin of Magnaporthe grisea, Is Involved in Surface Recognition. MPMI 9, 450–456.

Cavinder, B., Sikhakolli, U., Fellows, K.M., and Trail, F. (2012). Sexual Development and Ascospore Discharge in Fusarium graminearum. J. Vis. Exp.

Dagdas, Y.F., Yoshino, K., Dagdas, G., Ryder, L.S., Bielska, E., Steinberg, G., and Talbot, N.J. (2012). Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336, 1590–1594.

Dean, R., Van Kan, J.A.L., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., et al. (2012). The Top 10 fungal pathogens in molecular plant pathology: Top 10 fungal pathogens. Mol. Plant Pathol. 13, 414–430.

Ding, S.-L., Liu, W., Iliuk, A., Ribot, C., Vallet, J., Tao, A., Wang, Y., Lebrun, M.-H., and Xu, J.-R. (2010). The Tig1 Histone Deacetylase Complex Regulates Infectious Growth in the Rice Blast Fungus Magnaporthe oryzae. PLANT CELL ONLINE 22, 2495–2508.
Ebbole, D.J. (2007). Magnaporthe as a Model for Understanding Host-Pathogen Interactions. Annu. Rev. Phytopathol. 45, 437–456.

Filhol, O., Nueda, A., Martel, V., Gerber-Scokaert, D., Benitez, M.J., Souchier, C., Saoudi, Y., and Cochet, C. (2003). Live-Cell Fluorescence Imaging Reveals the Dynamics of Protein Kinase CK2 Individual Subunits. Mol. Cell. Biol. 23, 975–987.

Frege, T., and Uversky, V.N. (2015). Intrinsically disordered proteins in the nucleus of human cells. Biochem. Biophys. Rep. 1, 33–51.

Glover, C.V. (1986). A Filamentous Form of Drosophila Casein Kinase II. J. Biol. Chem. 261, 14349–14354.

Glover, J.R., and Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: A Novel Chaperone System that Rescues Previously Aggregated Proteins. Cell 94, 73–82.

Götz, C., and Montenarh, M. (2016). Protein kinase CK2 in development and differentiation (Review). Biomed. Rep.

Han, P., Jin, F.J., Maruyama, J., and Kitamoto, K. (2014). A Large Nonconserved Region of the Tethering Protein Leashin Is Involved in Regulating the Position, Movement, and Function of Woronin Bodies in Aspergillus oryzae. Eukaryot. Cell 13, 866–877.

Hübner, G.M., Larsen, J.N., Guerra, B., Niefind, K., Vrecl, M., and Issinger, O.-G. (2014). Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET2. Mol. Cell. Biochem. 397, 285–293.

Josefsen, L., Droce, A., Sondergaard, T.E., Sørensen, J.L., Bormann, J., Schäfer, W., Giese, H., and Olsson, S. (2012). Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. 8, 13.

Kershaw, M.J., and Talbot, N.J. (2009). Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc. Natl. Acad. Sci. 106, 15967–15972.

Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222.

Kragler, F. (2013). Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants. Cell Tissue Res. 352, 49–58.

Lai, J., Koh, C.H., Tjota, M., Pieuchot, L., Raman, V., Chandrababu, K.B., Yang, D., Wong, L., and Jedd, G. (2012). Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity. Proc. Natl. Acad. Sci. 109, 15781–15786.

Litchfield, D.W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1–15.
Liu, X., and Lin, F. (2008). Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae. J. Zhejiang Univ. Sci. B 9, 793–796.

Liu, W., Xie, S., Zhao, X., Chen, X., Zheng, W., Lu, G., Xu, J.-R., and Wang, Z. (2010). A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol. Plant. Microbe Interact. 23, 366–375.

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15.

Meggio, F., and Pinna, L.A. (2003). One thousand-and one substrates of protein kinase CK2. FASEB J. 17, 349–368.

Mehra, A., Shi, M., Baker, C.L., Colot, H.V., Loros, J.J., and Dunlap, J.C. (2009). A Role for Casein Kinase 2 in the Mechanism Underlying Circadian Temperature Compensation. Cell 137, 749–760.

Neijssen, J., Herberts, C., Drijfhout, J.W., Reits, E., Janssen, L., and Neefjes, J. (2005). Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434, 83–88.

Ng, S.K., Liu, F., Lai, J., Low, W., and Jedd, G. (2009). A Tether for Woronin Body Inheritance Is Associated with Evolutionary Variation in Organelle Positioning. PLoS Genet. 5, e1000521.

Padmanabha, R., Chen-Wu, J.L.-P., Arnot, D.E., and Glover, C.V.C. (1990). Isolation, sequencing, and disruption of the yeast CKA2 gene casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 4089–4099.

Plamann, M. (2009). Cytoplasmic Streaming in Neurospora: Disperse the Plug To Increase the Flow? PLoS Genet. 5, e1000526.

Poole, A., Poore, T., Bandhakavi, S., McCann, R.O., Hanna, D.E., and Glover, C.V. (2005). A global view of CK2 function and regulation. Mol. Cell. Biochem. 274, 163–170.

Rao, S., Gerbeth, C., Harbauer, A., Mikropoulou, D., Meisinger, C., and Schmidt, O. (2011). Signaling at the gate: Phosphorylation of the mitochondrial protein import machinery. Cell Cycle 10, 2083–2090.

Rosenberger, A.F.N., Morrema, T.H.J., Gerritsen, W.H., van Haastert, E.S., Snhkhchyan, H., Hilhorst, R., Rozemuller, A.J.M., Scheltens, P., van der Vies, S.M., and Hoozemans, J.J.M. (2016). Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J. Neuroinflammation 13.

Seetoh, W.-G., Chan, D.S.-H., Matak-Vinković, D., and Abell, C. (2016). Mass Spectrometry Reveals Protein Kinase CK2 High-Order Oligomerization via the Circular and Linear Assembly. ACS Chem. Biol. 11, 1511–1517.
Shen K-F., Osmani A. S., Govindaraghavan M., and Osmani S. A. (2014). Mitotic regulation of fungal cell-to-cell connectivity through septal pores involves the NIMA kinase. Mol. Biol. Cell 25, 763–775.

Shlezinger, N., Goldfinger, N., and Sharon, A. (2012). Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front. Oncol. 2.

Talbot, N.J., Kershaw, M.J., Wakley, G.E., De Vries, O.M., Wessels, J.G., and Hamer, J.E. (1996). MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell Online 8, 985–999.

Uversky, V.N. (2015). The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett. 589, 2498–2506.

Valero, E., De Bonis, S., Filhol, O., Wade, R.H., Langowski, J., Chambaz, E.M., and Cochet, C. (1995). Quaternary Structure of Casein Kinase 2 - Characterization of Multiple Oligomeric States and Relation with its Catalytic Activity. J. Biol. Chem. 270, 8345–8352.

Veneault-Fourrey, C. (2006). Autophagic Fungal Cell Death Is Necessary for Infection by the Rice Blast Fungus. Science 312, 580–583.

Villalba, F., Collemare, J., Landraud, P., Lambou, K., Brozek, V., Cirer, B., Morin, D., Bruel, C., Beffa, R., and Lebrun, M.-H. (2008). Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet. Biol. 45, 68–75.

Vucetic, S., Brown, C.J., Dunker, A.K., and Obradovic, Z. (2003). Flavors of protein disorder. Proteins Struct. Funct. Bioinforma. 52, 573–584.

Wang, X., and Johnsson, N. (2005). Protein kinase CK2 phosphorylates Sec63p to stimulate the assembly of the endoplasmic reticulum protein translocation apparatus. J. Cell Sci. 118, 723–732.

Wang, C., Zhang, S., Hou, R., Zhao, Z., Zheng, Q., Xu, Q., Zheng, D., Wang, G., Liu, H., Gao, X., et al. (2011). Functional Analysis of the Kinome of the Wheat Scab Fungus Fusarium graminearum. PLoS Pathog. 7, e1002460.

Wong, E., and Cuervo, A.M. (2010). Integration of Clearance Mechanisms: The Proteasome and Autophagy. Cold Spring Harb. Perspect. Biol. 2, a006734–a006734.

Wright, P.E., and Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29.

Zare-shahabadi, A., Masliah, E., Johnson, G.V.W., and Rezaei, N. (2015). Autophagy in Alzheimer’s disease. Rev. Neurosci. 26.

Zetina, C.R. (2001). A Conserved Helix-Unfolding Motif in the Naturally Unfolded Proteins. Proteins Struct. Funct. Genet. 44, 479–483.
Acknowledgements We thank Dr. Guanghui Wang, Dr. Wenhui Zheng, Dr. Ya Li and Dr. Huawei Zheng (Fujian Agriculture and Forestry University, Fuzhou, China) for their helpful discussions. We thank Professor Jin-Rong Xu, Department of Botany and Plant Pathology Purdue University, U.S.A. for providing the Ku80 strain. We thank Dr. Bjoern Oest Hansen, Goettingen for help with mapping and constructing the used \textit{M. oryzae} transcriptome datafile from downloaded data. This work was supported by the National Natural Science Foundation of China (U1305211), National Key Research and Development Program of China (2016YFD0300700) and National Natural Science Foundation for Young Scientists of China (Grant No.31500118 and No.31301630), the 100 Talent Program of Fujian Province, and USDA NIFA Hatch project 1013944.

Authors' contributions Conceived and designed the experiments: G. L., S. O. and Z. W. Performed the experiments: L. Z., D. Z., Y. C., W. Y. and Q. L. Analysed the data: L. Z., D. Z., D. J. E., S. O. and Z. W. Wrote the paper: L. Z., D. Z., D. J. E., S. O. and Z. W.

Competing interests statement The authors declare that they have no competing financial interests.

Correspondence and request for materials should be addressed to S.O. (stefan@olssonstefan.com) or Z.W. (wangzh@fafu.edu.cn).
Figure 1. Domain structure of the identified CK2 proteins.

MoCKa sequence (341 aa) was obtained from NCBI and the 35-320 region contains the protein kinase domain (https://www.ncbi.nlm.nih.gov/nuccore/XM_003716137.1) is labelled light blue, 70-73 is the basic cluster labelled dark blue and functions as a nuclear localization signal (NLS), 170-180 and 185-192 are activation loops (A-loop) labelled red.

MoCKb1 sequence (351 aa) was obtained from NCBI and the 11-264 region contains the Casein kinase II regulatory domain (https://www.ncbi.nlm.nih.gov/protein/XP_003718622.1) labelled light blue, 61-74 is the acidic domain labelled green, 169-174 is the zinc finger domain labelled pink.

MoCKb2 sequence (273 aa) was obtained from NCBI and the 15-195 region is the Casein kinase II regulatory subunit domain (https://www.ncbi.nlm.nih.gov/protein/XP_003710544.1) labelled light blue, 141-146 is a zinc finger labelled pink, 151-155 is a karyophilic cluster labelled dark blue that functions as a NLS, 234-247 is an acidic domain labelled green. The illustration was made using the DOG 2.0 Visualization of Protein Domain Structures http://dog.biocuckoo.org/.
Figure 1 Supplement 1 (a) Phylogenetic analysis of CKa amino acid sequences from a range of organisms. A neighbor-joining tree was constructed from amino acid sequences of a range of CKa-encoding genes from diverse fungi. Tree topology was tested by 1000 bootstrap resampling of the data. Full species names and access codes for the annotated genes are given in Figure 1 Supplement 2 legend. (b) Phylogenetic analysis of CKb amino acid sequences from a range of organisms. A neighbor-joining tree was constructed from amino acid sequences of a range of CKb-encoding genes from diverse fungi. Tree topology was tested by 1000 bootstrap resampling of the data. Full species names and access codes for the annotated genes are given in Figure 1 Supplement 3 and Figure 1 Supplement 4 legends.
Figure 1 Supplement 2. Alignment of predicted amino acid sequences of CKa from different fungi. Sequence for the CKa in *M. oryzae* and other fungi were aligned using ClustalW and shaded by Boxshade 3.2. Identical amino acids are highlighted on a black background and similar amino acids on a light grey background. The *M. oryzae* amino acid sequence is aligned with the sequences of the putative homologs:

AnCKa (*Aspergillus nidulans*, EAA64615.1),
AoCKa (*Aspergillus oryzae*, KDE76853.1),
FgCKa1 (*Fusarium graminearum*, EYB33507.1),
FgCKa2 (*F. graminearum*, EYB32538.1),
ChCKa (*Colletotrichum higginsianum*, CCF36406.1),
MoCKa (*M. oryzae*, EHA49866.1),
NcCKa (*N. crassa*, EAA35748.1),
BcCKa (*Botrytis cinerea*, EMR85876.1),
UmCKa (*Ustilago maydis*, XP_011387122.1),
SSpCKa (*Schizosaccharomyces pombe*, CAA52331.1),
CaCKa1 (*Candida albicans*, KGU00855.1),
CaCKa2 (*C. albicans*, KGU14189.1),
ScCKa1 (*S. cerevisiae*, EDN61459.1),
ScCKa2 (*S. cerevisiae*, EDN63928.1).
Figure 1 Supplement 3. Alignment of predicted amino acid sequences of CKb1 from different fungi. Sequence for the CKb1 in

M. oryzae and other fungi were aligned using ClustalW and shaded by Boxshade 3.2. Identical amino acids are highlighted on a black background and similar amino acids on a light grey background. The M. oryzae amino acid sequence is aligned with the sequences of the putative homologs:

MoCKb1 (M. oryzae, XP_003718622.1),
GgCKb1 (Gaemannomyces graminis, XP_009229023.1)
CgCKb1 (Colletotrichum graminicola, XP_008099475.1),
NcCKb1 (N. crassa, XP_960447.1),
FgCKb1 (F. graminearum, XP_011320142.1),
CaCKb1 (S. cerevisiae, NP_011496.3),
SsCKb1 (S. sclerotiorum, XP_001592667.1),
BcCKb1 (B. cinerea, XP_001546938.1),
DaCKb1 (Diaporthe ampelina, KHY35702.1),
VlCKb1 (Verticillium longisporum, CRK29524.1),
AnCKb1 (A. nidulans, CBF77758.1),
ScCKb1 (S. cerevisiae, NP_011496.3),
CaCKb1 (C. albicans, KHC46950.1).
Figure 1 Supplement 4. Alignment of predicted amino acid sequences of CKb2 from different fungi. Sequence for the CKb2 in *M. oryzae* and other fungi were aligned using ClustalW and shaded by Boxshade 3.2. Identical amino acids are highlighted on a black background and similar amino acids on a light grey background. The *M. oryzae* amino acid sequence is aligned with the sequences of the putative homologs:

MoCKb2 (*M. oryzae*, XP_003710544.1),
GgCKb2 (*G. graminis*, XP_009217338.1),
FgCKb2 (*F. graminearum*, EYB21652.1),
VlCKb2 (*V. longisporum*, CRK18911.1),
CgCKb2 (*C. graminicola*, XP_008092732.1),
NcCKb2 (*N. crassa*, XP_001728406.1),
BcCKb2 (*B. cinerea*, XP_001558441.1),
AnCKb2 (*A. nidulans*, XP_001825358.2),
ScCKb2 (*S. cerevisiae*, AAT93000.1),
CaCKb2 (*C. albicans*, EEQ46313.1).
Figure 2. Knockout of the MoCKbs and the effect of this on conidia morphology and MoCKa gene expression

(a) \(\Delta MoCkb1\) mutant was verified by Southern blot analysis. The genomic DNA extracted from the strains Ku80 and the mutant \(\Delta MoCkb1\) was digested with Nde1 and tested by Southern blot. The different probes ORF and hph were amplified from the genomic DNA of the wild type Ku80 and the plasmid pCX62 respectively.

(b) \(\Delta MoCkb2\) mutant was verified by Southern blot analysis. The genomic DNA extracted from the strains Ku80 and the mutant \(\Delta MoCkb2\) was digested with Xho1 and tested by Southern blot. The probe was amplified from the genomic DNA of the background strain Ku80.

(c) The conidial morphology of the \(\Delta Mockb2\) deletion was detected. The red fluorescence show the nuclear number in the conidia. The red fluorescence was due to the nuclear protein histone linker (MGG_12797) fused with mCherry used as nuclear marker. All bars = 10 um. The percentage of conidia with different nuclear number in the conidia produced by the background strain Ku80, the \(\Delta Mockb2\) deletion mutant and in the complementation strain MoCKb2C.
Figure 3. Control that GFP-MoCKa, GFP-MoCKb1 and GFP-MoCKb2 are as pathogenic as the background Ku80. CK is untreated control.
Figure 4. Intracellular localization of the three CK2 holoenzyme components showing that all three proteins are needed for normal localization. a-e, Localization of the three MoCK2 subunits in the background strain Ku80. The background strain Ku80 was transformed through gene replacements using plasmids containing GFP-MoCKa, GFP-MoCKb1 and GFP-MoCKb2. All three GFP constructs localize preferentially to nucleoli and to septal pores between cells. b, Enlargement of the nuclear localization of GFP-MoCKa (marked with red arrow in a). d, Enlargement of the septal localization of GFP-MoCKb1 (left septa marked with white arrow in c) f and g, Localization of over expressed GFP-MoCKa in ΔMockb1 (43OE-GFP) or in ΔMockb2 (53OE-GFP) does not rescue normal localization to septal pores. h and i, (below) Neither overexpression of MoCKb1 in ΔMockb2 (54OE-GFP) nor overexpression of MoCKb2 in ΔMockb1 (45OE-GFP) rescued normal localization (GFP-MoCKb1 and GFP-MoCKb2) (above) to nucleoli or septal pores. Histone linker (MGG_12797) was fused with the mCherry and used as nuclear localization marker (NM). All bars=10mm.
Figure 4 Supplement 1.
GFP-MoCKa localization in conidia.

Magnaporthe oryzae conidia.

GFP-MoCKa localizes to nuclei (red arrows) and to septal pores (white arrows). White bar is 10 µm.
Expression of MoCKa in the MoCKb deletion mutants and the effect of this on conidia morphology. (a) MoCKa expression in the \(\Delta MoCKb1 \) and \(\Delta MoCKb2 \) deletion relative to the MoCKa expression in the control Ku80 showing that expression of the two CKb were both reduced in the deletion mutants (b) The relative expression of MoCKa in the 43OE and 53OE in relation to their respective control backgrounds \(\Delta MoCKb1 \) and \(\Delta MoCKb2 \). (c) The conidial forming ability of the 43OE and 53OE transformants compared to the background strain Ku80. (d) The percentage of conidia with different numbers of nuclei produced by the background strain Ku80 and the 43OE and 53OE strains. (e) The conidia morphology of 43OE and 53OE transformants. The red fluorescence was due to the nuclear protein histone linker (MGG_12797) fused with the mCherry. All bars = 10 um.
Figure 5 Supplement 1. The expression the different overexpressed components of the MoCK2 holoenzyme in the Ku80 background and the deletion mutant background in relation to the expression in respective background. The experiments were repeated three times with triple replications.

Expression of	Control	Test	Test/control	SE (N=9)	P=same or lower than control
MoCKa	Ku80	GFP-MoCKa	15.38	0.87	8.80E-08
MoCKb1	Ku80	GFP-MoCKb1	9.51	0.70	1.01E-06
MoCKb2	Ku80	GFP-MoCKb2	14.64	0.85	1.14E-07
MoCKb2	ΔMoCKb1	45OE	12.63	1.35	1.26E-05
MoCKb1	ΔMoCKb2	54OE	45.47	2.52	5.43E-08
Figure 6. Intact CK2 holoenzyme is needed for normal growth, infection, pathogenicity. a, Colonial morphology and b, vegetative growth of ΔMockb1 and ΔMockb2 deletion mutants and their respective complementation strains was observed on SYM agar plates incubated in the dark for 10 days at 25°C, and then photographed. c, Pathogenicity analysis of ΔMockb1 and ΔMockb2 on rice. Disease symptoms on rice leaves of 2-week-old seedlings inoculated using mycelial plugs since mutants produced no or very few conidia. Typical leaves were photographed 6 days after inoculation. The Mockb1C and Mockb2C were complementary strains. Treatments ending with a W indicate that the leaf surface was wounded before the plug was applied. The rice cultivar was CO-39. d, Colonial morphology and e, vegetative growth of ΔMockb1, ΔMockb2, and overexpressed Cka-GFP in the ΔMockb1 (43OE) and in ΔMockb2 (53OE) transformants were observed on SYM medium agar plates incubated in the dark for 10 days at 25°C, and then photographed. f, Pathogenicity analysis of overexpressed Cka-GFP in the ΔMockb1 (43OE) and in ΔMockb2 (53OE). Disease symptoms on rice leaves of 2-week-old seedlings inoculated with conidia suspension since Cka overexpressed strains produced just enough conidia to use for the assay. The concentration of conidia in the suspension was about 1×10^5/ml. Typical leaves were photographed 6 days after inoculation. The rice cultivar was CO-39. Error bars shows SE and a star indicate a P<0.05 for control is same or larger than for the mutants.
Figure 6 Supplement 1. Phenotypic effects in the respective MoCKb deletion mutants of overexpression the other MoCKb component. (a and c) Colonial morphology and vegetative growth of ΔMockb1, 45OE transformants, ΔMockb2 and 54OE transformants was observed on SYM medium agar plates grown in the dark for 10 days at 25 °C and then photographed. (b) Development of conidia on conidiophores. Light microscopic observation was performed on strains grown on the rice bran medium for 10 days. The red arrows indicate some conidia are produced by the 45OE and 54OE transformants. Bar=50um. (c) Pathogenic analysis of 54OE transformants on rice was shown above. Disease symptoms on rice leaves of 2-week-old seedlings were also inoculated by conidia suspension. The concentration of conidia suspension for inoculation was about 1x10^5/ml. (d) Pathogenic analysis of ΔMockb1 and 45OE transformants on rice. Disease symptoms on rice leaves of 3-week-old seedlings were also inoculated using mycelial plugs. The 45OE-W indicates that the rice leaves were wounded. Typical leaves were photographed 6 days after inoculation. The rice strain was CO-39.
Figure 7. Localization of the GFP-MoCKa subunit in appressoria of the background strain Ku80 and in the two MoCKb deletion strains (43OE-GFP and 53OE-GFP) (compare Fig. 1a, f, g). a, Localization of GFP-MoCKa in all three strains show localization to nuclei. b, In the background strain Ku80 that form appressoria from conidia a bright line of GFP-MoCKa can be seen across the appressorium penetration pores. c, Through 3d scanning and then rotating the 3d reconstruction image (Link to Movie 1) we found that the streak across the penetration pores is a ring of GFP-MoCKa perpendicular to the penetration pore opening not present in the deletion strains (Link to Movie 2 and 3). d, False colour lookup table 3d reconstruction image of the right ring structure in c enlarged and rotated back and seen from the same angle as in b with the penetration pore opening indicated by a red-white circle seen from the “plant” side (Link to Movie 4 and 5 for left and right ring in false colours). The false colour was used so that the week fluorescence in the cytoplasm could be used to show the whole cytoplasm volume. The image was made using the analytical image analysis freeware ImageJ (https://imagej.nih.gov/ij/index.html) and the ICA lookup table in ImageJ was used for false colouring. e, Measurements of the sizes of the GFP-MoCKa rings in seen in c. All bars=10 mm.
Magnaporthe oryzae appressoria. Image in the 3d stack (left appressorium in Fig. 3b,d) that shows the septal pore accumulation. Image deliberately "overexposed" to be able to show nuclear and septal localization.

GFP-MoCKa localizes to nuclei (red arrow) surrounded by the large ring structure in cross-section (blue arrows) and to the septal pore towards the germtube (white arrow). White bar is 10 µm.

Figure 7 Supplement 1.
GFP-MoCKa localization in appressoria.
MoCK2 Rings	Right	Left
Measurements from images	um	um
Outer diameter	5.3	5.5
Max thickness at penetration pore	1.4	1.2
Thickness on sides and away from pore	0.7	0.7
Thickness seen from side	0.7	0.7
Figure 8. Schematic drawing of the main localizations of the CK2 holoenzyme. It localizes to the nucleolus, to septal pores between cells and forms a large ring structure perpendicular to the F-actin ring surrounding the appressorium penetration pore. Appressorium and hyphae drawn approximately to their relative sizes.
Figure 9. Plots of 6 putative serine/threonine protein phosphatase expression (y-axis) vs MoCKa expression (x-axis) in a range of transcriptome datasets from different experiments (Note: Log2 scale on axes and grids are represented with fixed "aspect ratio“ to highlight the different slopes of the correlations). MGG_01690 is not in the pulldown while the other five are and used to illustrate that not all S/T phosphatases are well correlated with CKa. The P values for the Null hypothesis of no correlation with CKa are: MGG_00149 P=2.7E-10, MGG_03154 P=2.5E-8, MGG_06099 P=4.0E-6, MGG_10195 P=6.9E-4, MGG_03838 P=8.8E-4, MGG_01690 P=2.6E-2
Transcriptomic data was downloaded from public websites so as to be able to test the relationship under many different growth conditions in many experiments.
Figure 10 Plot of expression involved in protein quality control vs MoCKa expression in a range of transcriptomes from different experiments (Note: Log2 scale on axes and grids are represented with fixed “aspect ratio” to highlight the slope of the correlation). P value for the Null hypothesis that there is no correlation = 9.9E-10. Transcriptomic data was downloaded from public websites so as to be able to test the relationship under many different growth conditions in many experiments. Hsp104, SSa1 and Ymdj1 has in yeast been shown to cooperatively help aggregate proteins to be able to refold. The key protein with its main function in this process appear to be Hsp104 (Glover and Lindquist, 1998).
Figure 10 Supplement 1. Plot of expression involved in protein quality control vs FgCKa expression in a range of transcriptomes from different experiments (Note: Log2 scale on axes and grids are represented with fixed "aspect ratio" to highlight the slope of the correlation). a. data from all experiments. b data from a time course infection experiment (see Fig 10 supplement 2 for details on the time course of expression).

Transcriptomic data was downloaded from public websites so as to be able to test the relationship under many different growth conditions in many experiments.

Hsp104, Ssa1 and Ymdj1 has in yeast been shown to cooperatively help aggregate proteins to be able to refold. The key protein with its main function in this process appear to be Hsp104 (Glover and Lindquist, 1998).
Figure 10 Supplement 2. Plot of FgAtg8 (autophagy) expression vs FgCKa expression in a times series infection experiment with 3 replicates where numbers in the plot indicate hours post infection (hpi). (Note: Log2 scale on axes and grids are represented with fixed "aspect ratio“ to highlight the slope of the correlation). P value for the Null hypothesis that there is no correlation = 3.6E-08 . Transcriptomic data was downloaded from public websites so as to be able to test the relationship under many different growth conditions in many experiments.
Strains	Genotype description	Reference
Ku80	ku80 deletion mutant of Guy11 (Background strain in this study)	35
ΔMockb1	Mockb1 deletion mutant of Ku80	This study
ΔMockb2	Mockb2 deletion mutant of Ku80	This study
Mockb1C	ΔMockb1 transformed with the wild-type MoCKb1 protein	This study
Mockb2C	ΔMockb2 transformed with the wild-type MoCKb2 protein	This study
53OE	ΔMockb2 transformed with the over-expressed GFP-MoCKa fusion protein	This study
43OE	ΔMockb1 transformed with the over-expressed GFP-MoCKa fusion protein	This study
54OE	ΔMockb2 transformed with the over-expressed GFP-MoCKb1 fusion protein	This study
45OE	ΔMockb1 transformed with the over-expressed GFP-MoCKb2 fusion protein	This study
GFP-MoCKa	Ku80 transformed with the over-expressed GFP-MoCKa fusion protein	This study
GFP-MoCKb1	Ku80 transformed with the over-expressed GFP-MoCKb1 fusion protein	This study
GFP-MoCKb2	Ku80 transformed with the over-expressed GFP-MoCKb2 fusion protein	This study
Primer name	The sequence of primer (5’→ 3’)	
-------------	---------------------------------	
3696qRTF	CGTCAACTACCAGAAATGCG	
3696qRTR	TGACGGAGTCTTGCTCTGTG	
446qRTF	GCAGAGGTGTCGGAGGAAT	
446qRTR	CCAAGATCATCTCCAGTGCC	
5651qRTF	ACCCCTTGCTGCCGATGG	
5651qRTR	TAGACCTGGAAGGATGGTGTG	
Tub1RTF	CAACATCCAGACCGCTCTC	
Tub1RTR	ACCGACACGCTTGAAACAG	
446AF	GCCCCAACTTTCATCCTA	
446AR	TTAGACTCCACTAGCTCCAGCCAAGCTACCTCGTGCTCTT	
446BF	GAATAGAGTAGATGGCCGACCGCGGGTTCTCGTGACTAATACAG	
446BR	GCTGGGTAACATCCTATT	
5651AF	GGGGTACCCCTCTAAGTGGTCGTG	
5651AR	CCGGAATTCCTTGGATGGAATTGTGCC	
5651BF	CGCGGATCCAGCGGAGGCGTATTCATTTA	
5651BR	TAATCTAGACAGAGCCGAGCTTGCTTA	
446comF	GCTCTAGAGCGGACACATAGTTGACGG	
446comR	GGGGTACCCATGACACGCGGAGGG	
5651comF	GCTCTAGAGCAGGACACAAAGCAGACAGAG	
5651comR	CCCCCGGGGAGCGTGTCTTGAAGCACC	
3696GFPF	CGGGATCCATGACAGCAGGCAGGACGC	
3696GFPR	CGGAATTCTGTTGAAATTACAGGACGATTC	
5651GFPF	CGGGATCCATGGAAGATTTTGGCAGCG	
5651GFPR	CCCTCGAGTCAGACACCTTGCAATCATG	