Thromboses and Hemostasis Disorders Associated with COVID-19: The Possible Causal Role of Cross-Reactivity and Immunological Imprinting

Darja Kanduc

1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy

Glob Med Genet 2021;8:162–170.

Address for correspondence Darja Kanduc, PhD, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari 70125, Italy (e-mail: d.kanduc@gmail.com).

Abstract

By examining the issue of the thromboses and hemostasis disorders associated with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) through the lens of cross-reactivity, it was found that 60 pentapeptides are shared by SARS-CoV-2 spike glycoprotein (gp) and human proteins—when altered, mutated, deficient or, however, improperly functioning—cause vascular diseases, thromboembolic complications, venous thrombosis, thrombocytopenia, coagulopathies, and bleeding, inter alia. The peptide commonality has a relevant immunological potential as almost all of the shared sequences are present in experimentally validated SARS-CoV-2 spike gp-derived epitopes, thus supporting the possibility of cross-reactions between the viral gp and the thromboses-related human proteins. Moreover, many of the shared peptide sequences are also present in pathogens to which individuals have previously been exposed following natural infection or vaccinal routes, and of which the immune system has stored imprint. Such an immunological memory might rapidly trigger anamnestic secondary cross-reactive responses of extreme affinity and avidity, in this way explaining the thromboembolic adverse events that can associate with SARS-CoV-2 infection or active immunization.

Keywords

► COVID-19
► SARS-CoV-2 spike gp
► cross-reactivity
► immunological imprinting
► thromboses-related proteins
► thromboses
► vascular diseases
► bleeding

Introduction

Clinical studies have shown that severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can lead to an increased incidence of disorders such as thrombosis, venous thrombosis, and pulmonary embolism.1–3 A main conclusion of these studies is that, although it cannot be proven that the hypercoagulable state is a direct causative effect of SARS-CoV-2 infection, nonetheless it is apparent that patients with SARS-CoV-2 could have a predilection to the occurrence of thromboembolic events.1 However, currently there are no hypotheses or data that might suggest a molecular mechanism that relates to such SARS-CoV-2-related thromboembolic events. Searching for possible mechanisms, the present study analyzes the SARS-CoV-2 spike glycoprotein (gp) for peptide sharing, that is, molecular mimicry, with human proteins, alterations of which may cause thromboses and hemostasis diseases. The underlying scientific rationale is that peptides common to a pathogen and the human host may lead to autoimmune pathologies through cross-reactivity phenomena following pathogen infection.4–6 The results indicate that several linear
sequences shared between the SARS-CoV-2 spike gp and human proteins related to thromboembolic events can possibly generate pathogenic autoantibodies via cross-reactivity and immunologic imprinting phenomena, in this way leading to thromboses and hemostasis disorders.

Materials and Methods

Peptide sharing between spike gp (NCBI, GenBank Protein Accession, ID: QHD43416.1) from SARS-CoV-2 and human proteins related to thromboses and hemostasis disorders was analyzed as previously detailed. In brief, pentapeptides were used as sequence probes since a peptide grouping formed by five amino acid (aa) residues defines a minimal immune determinant that can (1) induce highly specific antibodies, and (2) determine antigen–antibody specific interaction. Human proteins linked to thromboses and hemostasis disorders were retrieved from UniProtKB database (www.uniprot.org). Methodologically the spike gp primary sequence was dissected into pentapeptides offset by one residue (i.e., MFVFL, FVFLV, VFLVL, FLVLL, and so forth) and the resulting viral pentapeptides were analyzed for occurrences within the human proteins related to thromboses and hemostasis disorders. Then, the shared peptides were also controlled for occurrences in the pathogens *Bordetella pertussis*, *Corynebacterium diphtheriae*, *Clostridium tetani*, *Haemophilus influenzae*, and *Neisseria meningitidis*.

The immunological potential of the peptides shared between SARS-CoV-2 spike gp and thrombosis-related proteins was analyzed by searching the Immune Epitope Database (IEDB [www.iedb.org/]) for immunoreactive SARS-CoV-2 spike gp-derived epitopes hosting the shared pentapeptides.

Results and Discussion

Peptide Sharing between SARS-CoV-2 Spike Glycoprotein and Thromboses-Related Human Proteins

Table 1 shows that 60 minimal immune determinants are shared between SARS-CoV-2 spike gp and 44 human proteins that—when altered, mutated, deficient or, however, improperly functioning—may cause diseases that include blood diseases.

Shared peptides	Human proteins and associated functions/pathologies	References
MTKTS, NLLLQ	ADTRP (androgen-dependent TPPI-regulating protein)	11
	Regulates the anticoagulant activity of the tissue factor pathway inhibitor, dysfunctions of which lead to vascular diseases	
TQLPP, PRTFL	ALG12: Dol-P-Man: Man(7)GlcNAc(2)-PP-Dol α-1,6-mannosyltransferase	12
	Psychomotor retardation, hypotonia, coagulation disorders, and immunodeficiency	
SAICK	ALG8: Dolichyl pyrophosphate Glc1Man9GlcNAc2 α-1,3-glucosyltransferase	13
	Pathologies: see ALG12 above	
AEIRA	ANXA6 (annexin A6)	14
	Anticoagulant protein from human placenta	
QLIRA, IRASA	AP3B1 (AP-3 complex subunit β-1)	15
	Associates with Hermansky–Pudlak syndrome. Bleeding diathesis resulting in bruising, epistaxis, gingival bleeding, postpartum hemorrhage, bleeding	
LIGAE	APLP2 (amyloid-like protein 2)	16
	The soluble form may have inhibitory properties toward coagulation factors and regulates cerebral thrombosis	
VLLPL	B3AT (band 3 anion transport protein)	17
	Involved in venous thrombosis of unknown origin	
FGGVVS	B4GTT1 (β-1,4-galactosyltransferase 1)	18
	Defects in the nervous system development, psychomotor retardation, dysmorphic features, hypotonia, coagulation disorders	
KGYHL	C4BPB (C4b-binding protein β chain)	19,20
	Controls complement activation; binds as a cofactor to C3b/C4b inactivator; possibly involved in the susceptibility to venous thrombosis	
LTCLP	CBS (cystathionine β-synthase)	21
	CBS-deficient patients are prone to vascular thrombosis	
NSVAY	CO1A1 (collagen α-1(I) chain)	22,23
	Connective tissue disorders characterized by fragile, bruisable skin	
PGQTG, NGLTG	CO1A2 (collagen α-2(I) chain)	22,23
	Pathology: see CO1A1 above	
TQSLL, GTGVL	COG1 (conserved oligomeric Golgi's complex subunit 1)	24
	Psychomotor retardation, hypotonia, coagulation disorders, and immunodeficiency	

(Continued)
Table 1 (Continued)

Shared peptides	Human proteins and associated functions/pathologies\(^{a,b}\)	References
STNLV, GAISS	COG2 (conserved oligomeric Golgi’s complex subunit 2)	25
	Pathology: as for COG1	
PINLV	COG5 (conserved oligomeric Golgi’s complex subunit 5)	26
	Pathology: as for COG1	
LPFQQ, PFQQ, IGKIQ	ENTP1 (ectonucleoside triphosphate diphosphohydrolase 1)	27,28
	Implicated in the prevention of platelet aggregation	
YTSAL	EPHB2 (ephrin type-B receptor 2)	29
	Regulation of platelet activation and blood coagulation	
VLNDI	F13A (coagulation factor XIII A chain)	30
	Relates to hematologic disorders characterized by bleeding tendency	
DPLQP	FAS (coagulation factor V)	31–34
	Central regulator of hemostasis. Parahemophilia, i.e., poor clotting; pregnancy loss, ischemic stroke, thrombophilia	
PPLLIT, FVTQR	FA8 (coagulation factor VIII)	35
	Hemophilia	
NSYEC	FA9 (coagulation factor IX)	35
	Hemophilia	
SSANN	FIBA (fibrinogen \(\alpha\) chain)	36–38
	Bleeding, amyloidosis, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash; thromboembolic complications	
CAGAA	GATA4 (transcription factor GATA-4)	39–41
	Regulates factor X, a vitamin K-dependent serine protease that functions in blood coagulation. Can predispose to dilated cardiomyopathy, and to premature death	
NDPFVL	GP1BA (platelet glycoprotein lb \(\alpha\) chain)	42
	Epistaxis; hemorrhage; menorrhagia; purpura; congenital bleeding diathesis; large platelets; thrombocytopenia; long bleeding time	
ALLAG	GPIX (platelet glycoprotein IX)	42
	Epistaxis; hemorrhage; menorrhagia; purpura; congenital bleeding diathesis; large platelets; thrombocytopenia; long bleeding time	
KLIAN	HABP2 (hyaluronan-binding protein 2)	43
	Serine protease involved in coagulation fibrinolysis and inflammatory pathways	
TQLPP	HPS4 (Hermansky–Pudlak syndrome 4 protein)	44
	Epistaxis; reduced visual acuity; horizontal nystagmus; iris transillumination; restrictive lung disease; bruising; bleeding tendency; menorrhagia; absence of platelet dense bodies; lack of secondary aggregation response of platelets	
HTSPD	HPS5 (Hermansky–Pudlak syndrome 5 protein)	45
	As HPS4 above	
FNATR, DRLIT	HS3SS (heparan sulfate glucosamine 3-O-sulfotransferase 5)	46
	Catalyzes a crucial step in the biosynthesis of the anticoagulant heparan sulfate	
SASFS	ITA2 (integrin \(\alpha\)-2)	47,48
	Associates with increased ischemic stroke risk; thrombophilia	
VRDLP	ITB3 (integrin \(\beta\)-3)	49
	Thrombasthenia, characterized by mucocutaneous bleeding	
FGTTL, YDPLQ, GDISG	JAK2 (tyrosine-protein kinase JAK2)	50,51
	Thrombophilia, thrombocytosis	
VNLIT, GDSSS, VTYVP	MMRN1 (multimerin-1)	52
	Deficiency in multimerin-1 associates with bleeding disorder	
LLPLV	PLF4 (Platelet factor 4)	53
	Involved in thrombosis	
TFGAGG	PLMN (plasminogen) may be associated with susceptibility to thrombosis	54
TVEKG, TGTGV	PROS: vitamin K-dependent protein S	55,56
	Anticoagulant plasma protein. Helps to prevent coagulation and stimulates fibrinolysis. Deficiency leads to impaired blood coagulation and a tendency to venous thrombosis	
coagulation disorders, bruising, bleeding, hemorrhages, retinal vessel occlusion, cerebral thrombosis, venous thrombosis, ischemic stroke, and thrombophilia, inter alia.

Immunological Potential of the Viral versus Human Peptide Sharing

The data shown in Table 1 are quantitatively impressive and become strikingly preeminent from a pathological perspective when analyzed for their immunological potential. Indeed, exploration of the IEDB reveals that nearly all the shared pentapeptides described in Table 1 are also dissemnated among SARS-CoV-2 spike gp-derived epitopes that have been experimentally validated as immunoreactive and are cataloged at the IEDB database (http://www.iedb.org).

That is, Table 2 concretely supports the possibility that autoimmune cross-reactions may be triggered by SARS-CoV-2 infection/active immunization and hit human proteins related to thrombophilic/thromboembolic disorders and coagulopathies, inter alia. Clinically, the vasty of the potential immunological cross-reactivity that emerges from Table 2 indicates that mild-to-moderate and severe forms of thrombosis and coagulopathy may unavoidably accompany SARS-CoV-2 infection/active immunization.

Autoimmunity Potential and the Immunological Memory

As already highlighted also in other infection models, one has to consider that immunologic memory can powerfully enhance and amplify the autoimmune cross-reactivity potential because of interpathogen peptide sharing. Indeed, as a rule, the immune system recalls preexisting memory responses toward past infections rather than inducing ex novo responses toward the recent ones since hallmarking of the immune system is the memory for the immune determinants it has previously encountered.

Here, comparative sequence analyses show that 31 out of the 60 minimal immune determinants common to SARS-CoV-2 spike gp and human proteins related to thromboses are also widespread in pathogens, such as B. pertussis, C. diphtheriae, C. tetani, H. influenzae, and N. meningitidis, that are in pathogens with which, in general, an individual has already come into contact during his life due to infections or by vaccination (Table 3).

Hence, Table 3 indicates the possibility that a preexisting immune response to previously encountered pathogens (in the present case: B. pertussis, C. tetani, C. diphtheriae, H. influenzae, and/or N. meningitidis) might be magnified and intensified following SARS-CoV-2 infection/active immunization. That is, immunological imprinting can start a chain of events according to which followings can be measured:

- Following exposure to SARS-CoV-2, the primary response to the virus can turn into a secondary response to previously encountered pathogens of which the immune system has stored an immunological memory.
- The anamnestic secondary and, by definition, extremely powerful response against immune determinants previously encountered implies not only that a low or no immune response will fail to be evoked against the pathogen lastly encountered, that is, SARS-CoV-2, but also entails that the anamnestic secondary reaction against the early sensitizing pathogens—in the case in point, B. pertussis, C. tetani, C. diphtheriae, and/or N. meningitidis—will fail...
Table 2 Distribution of peptides shared between SARS-CoV-2 spike gp and human proteins related to thromboses and hemostasis disorders among 94 experimentally validated SARS-CoV-2 spike gp-derived epitopes

IDa	Epitopeb	IDa	Epitopeb
1069137	aqYTSALLAGtitsg	1309555	qcVNLTrTQlPPaytnsft
1069290	ctksfTVEKGIyqt	1309558	qfnSAIGKIQdSlssatal
1071585	nIVRDLPqgfsalep	1309564	qtraqcLIGAEhvnNSYECd
1071723	patvcgpkSTNLVnknc	1309573	rLFKSNlkpfrdstoney
1072807	skhtPILVRLDPqg	1309595	tnfivstvteilpsMTKTS
1072965	svteitelsMTKTS	1309598	tvYDPLQPeldskeelddky
1073281	tesnnkflPFQQQFrldia	1309599	Tyypaqknfittapacdhg
1073938	vqiDLRITgrIqlqslq	1309600	tvytqQLIRAeIRASAnla
1074201	ylyrlFRRSNlkpe	1309602	vqcpkSTNLVnkncvnfnf
1074838	AEIRASAnlaatk	1309603	vnkncvnfnNGTGTGVlt
1074925	hVYYPaqeknf	1309604	VLDNDsrldkveaeqjd
1074969	lgaenSVAYesnn	1309621	yskhtPILVRLDPqgfsal
1074974	ILALHRSyl	1310254	aeNSVAYsnnsaiap
1075005	nqKLIAnqf	1310281	aphpgvflhVYYPa
1075031	rLFKSNlk	1310303	caqkfnLTVLPPLL
1075039	rqiPCQGTGkiadnykl	1310336	dskTQLLSvnnatn
1075066	sVLNDIsrl	1310392	FGTLdskTQSLLiv
1075079	tPILVRLd	1310401	fkiyskhtPILNvrd
1075085	tvYDPLQPeldsfk	1310415	fnqLTVLPPLLdtem
1075094	vLPLDtemiaqyqt	1310434	GAISVLDNDsrlrd
1075125	ysvlynSASFStfk	1310444	givntvYDPLQPel
1075131	yyvgylqPRTFLI	1310487	igiintrfqTLLALh
1087680	PINLVRDLPqgfsalepl	1310506	irqiwFGTTdskstkq
1125063	gLTVLPPLL	1310513	itrqTQLLSvHRSyl
1309117	ggynynylyrLFRRSnn	1310592	ILALHRsytpgdss
1309118	gpkkSTNLVnkncvn	1310611	JPLLDTemiaqyts
1309123	khtPILVRLDLPqgf	1310633	lyenqKLIAnqfsna
1309140	tdemiaqYTASSLAG	1310787	SASFStfkcyvgyspt
1309147	ylyqPRTFLI	1310828	svlynsASFStfcky
1309148	AEIRASAnlaatkmsecvlg	1310852	tlvkqlssnGAISS
1309442	ayyvgylqPRTFLKyneng	1310865	trfqTQLLSvH Rylt
1309450	dpIsetkctlkftVEKGtGy	1310899	VLLPVSSQCVNLTt
1309451	dsfkeeldkyfknHTSPDvdr	1310909	VNLTrTQLLPPaytn
1309461	ehvnNSYECdipagiacas	1310927	vtqnvlyenqKLIAN
1309464	esnkflLPFQQqfrgriadt	1310947	wTFGAALQipfam
1309469	fkkHTSPDvIGDISHGinas	1310979	yyyvqlqPRTFLKyn
1309470	fknidgyfkiyskhtPILNv	1311657	ccSGCScckffedclosedpvlkvgvl
1309475	gccSGSCcckffeddedsepv	1311813	rLFKSNlkp
1309492	ilpltcsffGvGSvitpgtn	1313244	nSASFStfk
1309506	kvggynylyrLFRRSnlkp	1313285	PINLVRDLPqgfsal
1309515	lhysltpGDSSSwtagaag	1313286	PINLVRDLPeqlwal
1309516	litgrlqsiqtytvqQLIARA	1314023	ynylyrLFRRSnlkp
because those early sensitizing pathogens are no more present in the organism.

- As a final result, the anamnestic, high affinity, high avidity, and extremely powerful secondary immune response triggered by the lastly encountered pathogen (SARS-CoV-2) and addressed toward past infections may find an outlet by hitting available human targets, that is, in the case in object, the human proteins related to thromboses and hemostasis diseases (►Table 1).

Conclusion

The last decades witnessed the emerging of infectious diseases and, consequently, intensive application of immunization procedures. Concomitantly, concerns about possible adverse events have increased. A recent crucial example is the immunization campaign with the dengue vaccine that highlighted the risk of enhanced disease after vaccination.74

Today, the clinical context associated with SARS-CoV-2 infection/active immunization is no different. Actually, understanding whether undesired collateral events, such as the thrombotic manifestations and bleeding disorders discussed in this study, may causally associate with the viral infection/active immunization is a fundamental step for fighting the current pandemic. In this context, the present study:

- Analyzed the hypothesis that infectious agents can induce cross-reactive autoantibodies capable of hitting and altering human proteins that regulate hemostasis and coagulation.
- Showed that numerous peptides endowed with an immunologic potential are common to SARS-CoV-2 spike gp and human proteins, when mutated, altered, deficient or improperly functioning, are associated with thromboses and hemostasis diseases (►Tables 1 and 2).
- Documented that the peptide commonality extends to pathogens that usually have been already encountered by an individual during his life (►Table 3).

Scientifically, the data indicate that peptide sharing–associated cross-reactivity and, in conjunction, immunological imprint might help explain some of the thromboembolic events that rapidly, massively, and violently may arise following SARS-CoV-2 infection/active immunization.

Clinically, the present data warrant testing of patients’ sera for autoantibodies against the peptide targets described in ►Tables 1–2 and 3, and reiterate the suggestion advanced already in 200075 that immunotherapies should take advantage of the principle of peptide uniqueness, that is, of peptides present in the antigen of interest and absent in the human proteome.71,76–81

Funding
None.

Conflict of Interest
None declared.
References

1. Ng JJ, Choong AMTL. Thromboembolic events in patients with SARS-CoV-2. J Vasc Surg 2020;72(02):760–761
2. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020;18(06):1421–1424
3. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020;191:145–147
4. Lucchese G, Capone G, Kanduc D. Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins. Schizophr Bull 2014;40(02):362–375
5. Lucchese G, Kanduc D. Potential crossreactivity of human immune responses against HCMV glycoprotein B. Curr Drug Discov Technol 2016;13(01):16–24
6. Lucchese G, Kanduc D. Zika virus and autoimmunity: From microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev 2016;15(08):801–808
7. Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci 2013;14(02):111–1120
8. Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012;18(08):487–494
9. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019;47(D1):D506–D515
10. Vita R, Mahajan S, Overton JA, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 2019;47(D1):D339–D343
11. Lupu C, Zhu H, Popescu NI, Wren JD, Lupu F. Novel protein ADTRP regulates TFPI expression and function in human endothelial cells in normal conditions and in response to angthogen. Blood 2011;118(16):4463–4471
12. Thié C, Schwarz M, Peng J, et al. A new type of congenital disorders of glycosylation (CDG-II) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. J Biol Chem 2003;278(25):22498–22505
13. Schollen E, Frank CG, Keldermans L, et al. Clinical and molecular features of three patients with congenital disorders of glycosylation type Ib (CDG-ib) (ALG8 deficiency). J Med Genet 2004;41(07):550–556
14. Yoshizaki H, Mizuguchi T, Araki A, Shiratsuchi M, Shidara Y, Maki M. Structure and properties of calphobin II, an anticoagulant protein from human placenta. J Biochem 1990;107(01):43–50
15. Huizing M, Malicdan MCV, Wang JA, et al. Hermansky-Pudlak syndrome: mutation update. Hum Mutat 2020;41(03):543–580
16. Xu F, Previti ML, Nieman MT, Davis J, Schmaier AH, Van Nostrand FL. Ectonucleotidase modulation of lymphocyte function in gut and liver. Front Cell Dev Biol 2021;8:621760
17. Berrou E, Soukaseum C, Favier R, et al. A mutation of the human EPHB2 gene leads to a major platelet functional defect. Blood 2018;132(19):2067–2077
18. Ivaskievicu B, Biswas A, Bevans C, et al. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function. Haematologica 2010;95(06):956–962
19. Castoldi E, Simioni P, Kalafatis M, et al. Combinations of 4 mutations (FV R506Q, FV H1299R, FV Y1702C, PT 20210G/A) affecting the prothrombinase complex in a thrombophilic family. Blood 2000;96(04):1443–1448
20. Poursadegh Zonouzi A, Chaparzadeh N, Ghorbian S, et al. The association between thrombophilic gene mutations and recurrent pregnancy loss. J Assist Reprod Genet 2013;30(10):1353–1359
21. Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol 2004;61(11):1652–1661
22. Mumford AD, McVey JH, Morse CV, et al. Factor V I359T: a novel mutation associated with thrombosis and resistance to activated protein C. Br J Haematol 2003;123(03):496–501
23. Al-AIaf FA, Taher MM, Abduljaleel Z, et al. Molecular analysis of factor VIII and factor IX genes in hemophilia patients: identification of novel mutations and molecular dynamics studies. J Clin Med Res 2017;9(04):317–331
24. Asselta R, Platè M, Robusto M, et al. Clinical and molecular characterisation of 21 patients affected by quantitative fibrinogen deficiency. Thromb Haemost 2015;113(03):567–576
25. Benson MD, Liepnieks J, Uemichi T, Wheeler G, Correa R. Hereditary renal amyloidosis associated with a mutant fibrinogen alpha-chain. Nat Genet 1993;3(03):252–255
26. Koopman J, Haverkate F, Grimbergen J, et al. Molecular basis for congenital disorder of glycosylation type IId. J Clin Invest 2002;110(06):725–733
27. Blom AVM, Viloutreix BO, Dahlbäck B. Functions of human complement inhibitor C4b-binding protein in relation to its structure. Arch Immunol Ther Exp (Warsz) 2004;52(02):83–95
28. Buil A, Tréguouët DA, Souto JC, et al. C4BPB/C4BPA is a new susceptibility locus for venous thrombosis with unknown protein S-independent mechanism: results from genome-wide association and gene expression analyses followed by case-control studies. Blood 2010;115(23):4644–4650
29. Sikkora M, Lewandowska I, Marczak Ł, Bretes E, Jakubowski H. Cystathionine β-synthase deficiency: different changes in pro- teomes of thrombosis-resistant Bs/ mice and thrombosis-prone CBS−/− humans. Sci Rep 2020;10(01):10726
Kanduc D. Immunogenicity, immunopathogenicity, and immunotolerance in one graph. Anticancer Agents Med Chem 2015;15(10):1264–1268

Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies (Basel) 2020;9(03):33

Kanduc D. Immunobiology: on the inexistence of a negative selection process. Adv Stud Biol 2020;12:19–28

Kanduc D. Hydrophobicity and the physico-chemical basis of immunotolerance. Pathobiology 2020;87(04):268–276

Kanduc D. The role of proteomics in defining autoimmunity. Expert Rev Proteomics 2021;18(03):177–184