Participação e transdisciplinaridade em Ecosaúde: a perspectiva da análise de redes sociais

Participation and transdisciplinarity in Ecohealth: a social network analysis perspective

Resumo

A Ecosaúde usa abordagens participativas e transdisciplinares com o intuito de compreender as inter-relações entre os componentes dos sistemas socioecológicos e como estas interações influenciam a saúde das populações humanas. O objetivo do artigo é usar a Análise de Redes Sociais (ARS) para entender o papel das relações de colaboração entre os diversos atores envolvidos nos processos participativos e transdisciplinares em projetos de Ecosaúde. Apresentamos um conjunto de indicadores de ARS para caracterizar a evolução e a equidade de participação e diferenciar a inter e a transdisciplinaridade. A análise foi feita com base na rede de colaboração entre os atores da Iniciativa de Liderança em Ecosaúde para as Enfermidades Transmitidas por Vetores (ETV) na América Latina e Caribe. O processo participativo ficou mais intenso ao longo do projeto, com mais sujeitos envolvidos e um número crescente de colaborações. A cooperação entre os atores das ciências sociais, ambientais e da saúde é pouco equitativa; assim, predominam as ciências da saúde. Os poucos cientistas ambientais presentes estão, porém, ativamente envolvidos em colaborações interdisciplinares. A abordagem tem aplicação ampla para estudar a participação e a transdisciplinaridade em projetos sobre saúde e meio ambiente.

Palavras-chave: Análise de Redes Sociais; Ecosaúde; Participação; Interdisciplinaridade; Transdisciplinaridade.
Abstract

Ecohealth uses participatory and transdisciplinary approaches to understand the relationships between the components of socio-ecological systems and how these interactions influence the health of human populations. The article aims to use Social Network Analysis (SNA) to understand the role of collaborative relationships between the various actors involved in participatory and transdisciplinary processes in Ecohealth projects. We present a set of SNA indicators to characterize the evolution and equity of participation and to differentiate the inter and the transdisciplinarity. The analysis was based on the collaboration network among the members of the Ecohealth Field Building Leadership Initiative for Vector-Borne Diseases (VBD) in Latin America and Caribbean. The participatory process intensified throughout the project, with more subjects involved and a growing number of collaborations. Cooperation between members from the social, environmental, and health sciences is unbalanced; thus, health scientists predominate. The few environmental scientists are, however, actively involved in interdisciplinary collaborations. The proposed approach has wide application to study participation and transdisciplinarity in projects about health and environment.

Keywords: Social Network Analysis; Ecohealth; Participation; Interdisciplinarity; Transdisciplinarity.

Introdução

As complexas interações e retroalimentações entre as atividades humanas, além das mudanças nos ecossistemas e no clima, têm sido cada vez mais destacadas como fatores determinantes dos riscos individuais e coletivos à saúde das populações (Watts et al., 2017). As abordagens ecossistêmicas em saúde humana, aqui chamadas de Ecosaúde, fazem uso de enfoques participativos e transdisciplinares no intuito de compreender as inter-relações entre os vários componentes dos sistemas socioecológicos e como essas interações influenciam a saúde das populações humanas (Lebel, 2003). Nas pesquisas ancoradas na Ecosaúde, os processos participativos visam facilitar a identificação de questões de estudo relevantes para a sociedade e promover soluções adaptadas aos contextos sociais e ambientais das populações afetadas (Charron, 2012). Novos conhecimentos são gerados por meio de uma abordagem transdisciplinar, a partir de um diálogo entre conhecimentos acadêmicos e saberes dos atores locais (Méndez; Abrahams; Riojas, 2016; Weihs; Mertens, 2013). Assim, participação e transdisciplinaridade estão ancoradas em processos colaborativos em que comunidades, homens, mulheres, grupos sociais, gestores, membros da sociedade civil e pesquisadores de várias disciplinas têm a oportunidade de dialogar, trocar informações, compartilhar recursos e cooperar uns com os outros (Charron, 2012; Gómez; Minayo, 2006; Saint-Charles et al., 2014). Estudar os processos colaborativos entre os diversos atores envolvidos oferece, então, uma oportunidade para caracterizar e avaliar a participação e a transdisciplinaridade.

O principal objetivo deste artigo é examinar as contribuições da Análise de Redes Sociais (ARS) para compreender o papel das relações de colaboração nos processos participativos e transdisciplinares em projetos de Ecosaúde. O estudo está estruturado da seguinte forma: primeiramente, apresentamos uma breve revisão sobre a proposta conceitual e metodológica da ARS e de sua aplicação, para analisar as relações de colaboração. A seguir, apresentamos e desenvolvemos a proposta de usar a ARS para caracterizar processos participativos e transdisciplinares em projetos de Ecosaúde. Para este
fim, definimos um conjunto de medidas de ARS que podem ser usadas como indicadores. Por fim, ilustramos nossa proposta por meio de um estudo de caso em que utilizamos a ARS para caracterizar redes de colaboração entre o conjunto de atores envolvidos em um projeto de Ecosaúde.

A análise de redes sociais

A ARS é uma abordagem conceitual e metodológica que visa explicar o papel das relações e dos padrões estruturais formados por elas sobre os comportamentos individuais e coletivos (Marin; Wellman, 2010). A pedra angular das teorias de ARS é de que as posições individuais e os padrões relacionais nas redes sociais são determinantes para compreender a vida social. A ARS apoia-se em estudos empíricos que integram duas categorias de dados: (1) os dados atributivos, que correspondem às caraterísticas dos indivíduos, como sexo, idade, nível socioeconômico, disciplina acadêmica, atividade profissional etc; e (2) os dados relacionais, que permitem caracterizar os elos entre as pessoas, como contato, troca de informações, colaboração, confiança, amizade, parentesco etc. (Scott, 2012). Os dados relacionais são chave na ARS, pois são utilizados para revelar o padrão de interação entre os indivíduos.

A ARS foi amplamente utilizada em diversas áreas do conhecimento para explicar fenômenos sociais, como a geração de conhecimento em organizações, a promoção da saúde, a mobilização comunitária, o acesso ao mercado de trabalho e a difusão das inovações, entre outros (Marin; Wellman, 2010). Em âmbito individual, a ARS permite estudar como as mudanças nos conhecimentos, as atitudes e os comportamentos estão vinculadas às estruturas sociais nas quais os indivíduos estão inseridos (Aboim, 2011; Perkins; Subramanian; Christakis, 2015); no âmbito da comunidade, possibilita compreender, a partir do estudo dos padrões de interações entre os membros do grupo social, processos como a ação coletiva, a geração de consenso, a emergência de conflitos ou as dinâmicas dos sistemas de governança (Borgatti et al., 2009).

A caraterização de redes de colaboração por meio da ARS possibilitou avanços significativos de conhecimento em temas tão diversos quanto a governança ambiental (Bodin, 2017), o papel da gestão dos recursos naturais na segurança alimentar (Mertens et al., 2015), a prevenção em saúde (Triana et al., 2016), o turismo de base comunitária (Burgos; Mertens, 2017), a colaboração científica (Newman, 2001), ou, ainda, a performance de equipe acadêmicas (Li et al., 2018). A produção colaborativa de conhecimento inter ou transdisciplinar também já foi objeto de estudo da ARS, examinando as relações de coautoria em artigos científicos (Rafols; Meyer, 2010) ou a produção acadêmica em periódicos (Leydesdorff, 2007). A ARS tem sido também aplicada para compreender o papel das redes de colaboração em processos participativos e transdisciplinares em projetos de pesquisas (Haines; Godley; Hawe, 2011).

A ARS para estudar a participação e transdisciplinaridade na Ecosaúde

A Ecosaúde nasceu a partir de um diálogo entre a pesquisa clássica em saúde ambiental e a pesquisação participativa, e incorporou a participação e a transdisciplinaridade como princípios fundamentais desde as primeiras etapas de sua formulação conceitual e metodológica (Forget; Lebel, 2001; Gómez; Minayo, 2006). Examinar projetos de Ecosaúde com a lente da ARS permite colocar ênfase nos processos colaborativos da pesquisa. A partir dessa perspectiva, participação e transdisciplinaridade podem ser analisadas por meio da caraterização do envolvimento das diversas categorias de atores, em redes de colaboração que têm por objetivo a geração de conhecimentos e o desenvolvimento de ações para melhorar a saúde humana e assegurar a sustentabilidade dos ecossistemas.

Destacamos dois aspectos relevantes da participação que podem ser estudados por meio da caraterização das redes colaborativas: a evolução e a equidade de participação. Estudar a evolução da participação ao longo do processo de pesquisa justifica-se a partir do reconhecimento de que as diversas categorias de atores têm um papel diferenciado em cada uma das fases da investigação; da identificação do problema até a formulação dos objetivos; a coleta e análise dos dados; a interpretação dos resultados; e a implementação de soluções (Mertens et al., 2005). Por exemplo, quando
as comunidades participam desde o início do projeto, com um enfoque que facilita uma prática colaborativa que supera a participação meramente instrumental (Arnstein, 2019), são aumentadas as chances de serem desenvolvidos estudos que levam em consideração as prioridades e interesses das populações afetadas pelos problemas de saúde (Charron, 2012). A participação dos atores da sociedade civil organizada e do setor público em todo o ciclo da pesquisa também favorece o aproveitamento dos conhecimentos gerados.

A abordagem participativa da Ecosaúde enfrenta, porém, desafios que incluem: superar interesses divergentes entre os atores, reconhecer que o processo de pesquisa será, em geral, mais demorado do que em uma pesquisa não participativa e desenvolver colaborações entre atores que pertencem a diversos níveis jurisdicionais (Charron, 2012). Além disso, o nível de envolvimento dos atores nos processos participativos pode variar amplamente durante as diversas fases da pesquisa, de uma abordagem consultiva em que os atores são meros fornecedores de informação até uma prática colaborativa onde comunidades, gestores e pesquisadores cooperam na investigação e compartilham o poder de decisão (Mertens et al., 2005). Assim, torna-se claro que a participação é um processo dinâmico que evolui durante o processo de pesquisa. A ARS oferece ferramentas que possibilitam analisar a evolução da participação das diferentes categorias de atores nos momentos-chave da pesquisa e ajudar a diferenciar os diversos níveis de participação.

A equidade de participação entre as diversas categorias de atores no processo de pesquisa é também um aspecto-chave das abordagens em Ecosaúde (Lebel, 2003). Um risco recorrente dos projetos de pesquisa que buscam melhorar as condições de vida das populações é que as ações de desenvolvimento favoreçam preferencialmente certos grupos sociais (Forget; Lebel, 2001). Assim, por mais que obtenham resultados positivos globalmente para a comunidade, os projetos podem contribuir para aumentar as desigualdades entre quem ficou envolvido ativamente e quem ficou afastado do processo participativo, que, se aplicados isoladamente, sem promover mudanças estruturais, podem também aumentar as desigualdades (Dakubo, 2010). Por exemplo, empoderar as mulheres em atividades agrícolas, sem, em paralelo, abordar as relações de gênero, pode resultar em sobrecarga de trabalho, com as mulheres somando as atividades no campo a suas atividades no lar ou na saúde da família (Saint-Charles et al., 2012). Assim, projetos que buscam uma participação inclusiva e equilibrada entre homens, mulheres e os diversos grupos sociais tem maior probabilidade de obter uma distribuição mais equitativa dos benefícios da pesquisa entre os participantes do projeto (Brisbois et al., 2017; Mertens et al., 2005). Além disso, uma participação equitativa entre pesquisadores, membros da comunidade e gestores aumenta a probabilidade de que os resultados da pesquisa gerem conhecimentos que respondem às preocupações e prioridades dos diversos atores e possam ser aproveitados para formulação de políticas públicas (Burgos; Mertens, 2017). Como veremos, a ARS oferece grande potencial para compreender como se distribuem as relações de colaboração entre os grupos sociais e analisar a equidade de participação no processo de pesquisa.

A transdisciplinaridade envolve o processo criativo com objetivo de alcançar um conhecimento integrador, a partir de uma perspectiva sistêmica sobre certa questão com relevância social (Pohl, 2011). Dois níveis, então, podem ser diferenciados: o primeiro, também frequentemente chamado de interdisciplinaridade, está baseado em práticas de pesquisa que buscam integrar dados, métodos, ferramentas, conceitos e teorias de distintas disciplinas, no intuito de estudar e compreender uma problemática complexa que não pode ser apreendida de forma satisfatória a partir de perspectivas puramente disciplinares (Wagner et al., 2011). O segundo nível de transdisciplinaridade se desloca para além do paradigma disciplinar, e é caracterizado pela integração entre os conhecimentos científicos e outros saber, habitualmente definidos como popular, comunitário, local ou indígena (Kötter; Balsiger, 1999; Méndez; Abrahams; Riojas, 2016; Wagner et al., 2011). Nesse caso, a geração de conhecimentos está ancorada em um processo colaborativo envolvendo cientistas de diversas disciplinas, mas também atores não acadêmicos,
como membros da sociedade civil, setores políticos e comunidades. Essa integração entre formas de saberes pode levar à construção de uma visão compartilhada do mundo e de soluções consensuais para os problemas identificados (Méndez; Abrahams; Riojas, 2016). No intuito de diferenciar os dois níveis de transdisciplinaridade no presente trabalho, chamaremos o primeiro de interdisciplinaridade e o segundo de transdisciplinaridade.

A Figura 1 representa uma rede colaborativa que ilustra como a ARS permite diferenciar as relações envolvidas em processos de geração de conhecimento disciplinar, interdisciplinar e transdisciplinar. Relações disciplinares são aquelas identificadas entre os pesquisadores de uma mesma disciplina ou entre indivíduos de um mesmo grupo de geração de conhecimento, como os gestores ou as comunidades e outros atores da sociedade civil. A abordagem permite também caracterizar as relações interdisciplinares entre atores acadêmicos de disciplinas diferentes; e as relações transdisciplinares, entre atores acadêmicos e membros de outros grupos de geração de conhecimento.

Figura 1 – Representação de uma rede colaborativa ilustrando processos de geração de conhecimento disciplinar, interdisciplinar e transdisciplinar

Indicadores de ARS para caracterizar participação e transdisciplinaridade

O Quadro 1 apresenta oito medidas da ARS que podem ser utilizadas como indicadores para caracterizar padrões de colaboração entre atores. Para cada indicador, apresentamos a definição da medida e a sua aplicação para examinar a participação e a transdisciplinaridade no âmbito de projetos de Ecosaúde.

O tamanho da rede (indicador 1) pode ser medido no decurso da pesquisa, para acompanhar a evolução do número de indivíduos envolvidos no processo participativo. Os atores também podem ser caracterizados por meio de atributos que definem categorias relevantes para a compreensão do processo participativo, como a área de atuação (academia, comunidade, sociedade civil, setor político etc.), o grupo social na comunidade (gênero, atividade profissional, afiliação religiosa, associativismo etc.) ou o nível de organização administrativa ou jurisdicional (municipal, estadual, nacional, internacional). Assim, o indicador 2 – a diversidade de grupos de atores – permite verificar se as diversas...
O número médio de relações por indivíduo (indicador 3) pode ser usado para acompanhar a intensidade do processo colaborativo entre os membros do grupo. O número de componentes, ou seja, o número de subgrupos desconectados e de indivíduos isolados (indicador 4), permite caracterizar a fragmentação da rede de colaboração. O tamanho relativo dos grupos de atores (indicador 5) possibilita avaliar o equilíbrio entre a presença das diversas categorias presentes no projeto. A distribuição do número de relações dos indivíduos (indicador 6) permite caracterizar a equidade na distribuição das relações de colaboração entre os membros da rede, verificando se todos os participantes têm mais ou menos o mesmo número de colaborações ou se, pelo contrário, alguns indivíduos centralizam a grande maioria das relações de colaboração. O número médio de relações entre os indivíduos do mesmo grupo (indicador 7) e o número médio de relações entre indivíduos de grupos diferentes (indicador 8) permitem caracterizar a equidade de participação em nível dos grupos de atores. Um equilíbrio entre o número médio de relações dentro dos grupos e entre eles indica um processo horizontal de participação. Um desequilíbrio na distribuição das relações de colaboração indica um processo participativo não equitativo, em que alguns grupos estão envolvidos de forma dominante e podem controlar a ação colaborativa, enquanto outros estão à margem ou isolados. Os indicadores 7 e 8 podem também ser utilizados para diferenciar os processos de geração de conhecimento disciplinar, interdisciplinar e transdisciplinar. O indicador 7 permite quantificar as relações entre os pesquisadores de uma mesma disciplina ou entre indivíduos de um mesmo grupo de geração de conhecimento, como tomadores de decisão ou comunidade. O indicador 8 quantifica as relações interdisciplinares entre atores acadêmicos de diferentes disciplinas, e as relações transdisciplinares entre atores acadêmicos e membros de outros grupos de geração de conhecimento.

Quadro 1 — Indicadores de participação e transdisciplinaridade nas redes de colaboração em projeto de Ecosaúde

Indicador	Definição da medida de acordo com a ARS	Interpretação e aplicação em projetos de Ecosaúde
1 Tamanho da rede	Número de indivíduos na população de estudo.	Este indicador permite medir o crescimento do grupo de indivíduos envolvidos no processo participativo de colaboração.
2 Diversidade de grupos de atores	Número de grupos de indivíduos. Os grupos são definidos de acordo com atributos compartilhados entre os seus membros. Os atributos usados para determinar os grupos precisam ser definidos de acordo com o referencial teórico pertinente e os objetivos específicos do estudo. Por exemplo, se o foco do estudo for a colaboração transdisciplinar, os grupos de atores serão definidos de acordo com suas disciplinas acadêmicas e com as outras formas de saber mobilizados na geração de conhecimentos.	A diversidade de grupos de atores é associada positivamente com a participação e a transdisciplinaridade. Quanto maior a diversidade de grupos de atores envolvidos na rede de colaboração, maior a representatividade dos diversos interesses e prioridades no processo participativo; e as disciplinas e os saberes envolvidos no processo transdisciplinar.
3 Número médio de relações por indivíduo	Número total de relações na rede, dividido pelo número total de indivíduos.	Um número médio de relações por indivíduo alto indica um processo colaborativo mais intenso. É um indicador do fortalecimento do processo colaborativo.
4 Número de componentes e de isolados	Número de componentes, ou seja, de grupos de indivíduos conectados direta ou indiretamente por meio de outros indivíduos. Se a rede possui diversos componentes, é considerada fragmentada. O componente tem um tamanho mínimo de dois indivíduos. Indivíduos isolados são aqueles que não possuem nenhuma relação.	Associada negativamente com a participação colaborativa e a transdisciplinaridade. Para terem condições de participar no processo colaborativo coletivo, os diversos grupos de atores devem estar conectados. Uma rede fragmentada e/ou com muito indivíduos isolados representa uma colaboração fragilizada.

continua...
Indicador	Definição da medida de acordo com a ARS	Interpretação e aplicação em projetos de Ecosaúde
5 Tamanho relativo dos grupos de atores	Número de indivíduos em diferentes grupos (definidos de acordo com determinados atributos), dividido pelo número total de indivíduos na rede.	Uma distribuição homogênea dos tamanhos dos grupos indica equidade de participação no processo colaborativo. Uma distribuição heterogênea indica que um ou alguns poucos grupos podem estar controlando o processo de colaboração. Por exemplo, espera-se que um equilíbrio entre os tamanhos dos grupos de atores de diversas disciplinas e formas de saber seja favorável para o processo colaborativo transdisciplinar.
Estudo de caso: o projeto EcoSaúdeETV

Para ilustrar a aplicação da ARS ao estudo das colaborações entre os atores envolvidos em projetos de Ecosãude, escolhemos o projeto Iniciativa de Liderança em Ecosãude para as Enfermidades Transmitidas por Vetores na América Latina e no Caríbex, ou projeto EcoSaúdeETV. Essa iniciativa, desenvolvida entre os anos de 2010 e 2015, teve por objetivo formar uma aliança estratégica entre atores e instituições da América Latina e do Caribe, no intuito de desenvolver a abordagem Ecosãude para prevenção e controle das enfermidades transmitidas por vetores. O projeto orientou suas propostas a partir da gestão integrada dos ecossistemas e desenvolveu atividades em torno de quatro eixos de ação: formação, capacitação, pesquisa e participação social.

No âmbito do projeto, foi realizado um estudo longitudinal com o objetivo de caracterizar a evolução das relações de colaboração entre os participantes do projeto EcoSaúdeETV e de compreender como os padrões colaborativos observados podiam contribuir para explicar as barreiras e oportunidades que o projeto encontrou para alcançar seus objetivos. Os dados atributivos e relacionais foram coletados por meio de questionários enviados por correio eletrônico ao conjunto de participantes do projeto nos anos de 2011, 2012, 2013 e 2014. Os questionários incluíram perguntas sobre: (1) as características individuais dos participantes, como sexo, idade, idioma usado no ambiente de trabalho, formação acadêmica, setor e nível de atuação profissional, entre outros; (2) as relações de colaboração que estabeleceram durante o desenvolvimento das atividades do projeto.

A colaboração entre os membros da iniciativa foi definida como: o desenvolvimento conjunto de atividades profissionais e/ou laborais, como a colaboração em projetos de pesquisa; atividades de intervenção e promoção da saúde; organização de eventos ou de cursos; coorientação de estudantes; ou coautoria de publicações acadêmicas. Nas análises, foram consideradas somente as relações de colaboração recíprocas, ou seja, quando ambos os participantes indicaram que colaboram entre si.

A evolução da participação

A Figura 2 ilustra a evolução da rede de colaboração entre os membros do projeto EcoSaúdeETV nos anos de 2011, 2012, 2013 e 2014.

Figura 2 — Evolução da rede de colaboração entre os membros da Iniciativa EcoSaúdeETV

Legenda: Rede de colaboração nos anos de 2011 (a), 2012 (b), 2013 (c) e 2014 (d). Os participantes estão identificados com tons de cinza de acordo com o ano no qual os participantes iniciaram seu envolvimento no projeto, ou seja, no ano de 2011 (preto), 2012 (cinza escuro), 2013 (cinza claro) ou 2014 (branca).
A Tabela 1 apresenta a evolução dos valores dos indicadores 1-4 ao longo do mesmo período. No que diz respeito à diversidade de grupo de atores (indicador 2), diversos atributos podem ser utilizados para mapear a diversidade dos participantes da pesquisa. O exemplo escolhido aqui é o setor de atuação profissional ao qual pertence o ator. O conjunto de indicadores utilizados mostra o processo colaborativo em que participam um número crescente de atores (indicador 1), no qual existe uma diversificação progressiva dos setores envolvidos (indicador 2) e aumento da intensidade de colaboração ao longo do tempo (indicador 3). O indicador 4 mostra que a rede, mesmo com um tamanho crescente, mantém a maioria dos atores conectados entre si.

Características da rede de colaboração	Ano de coleta de dados			
	2011	2012	2013	2014
Tamanho da rede (indicador 1)	16	31	84	98
Diversidade dos grupos de atores* (indicador 2)	3	4	5	5
Número médio de relações por indivíduo (indicador 3)	4,1	8,3	9,1	10,9
Número de componentes (indicador 4)	1	1	2	1
Número de isolados (indicador 4)	1	0	5	6

* A diversidade dos grupos de atores foi avaliada em relação ao setor de atuação profissional: acadêmico, público, privado, sociedade civil, comunidade.

A equidade de participação

A Figura 3a ilustra a rede de colaboração mapeada no ano de 2014, entre os atores do projeto EcoSaúdeETV identificados de acordo com sua área de atuação acadêmica: ciências da saúde, sociais e ambientais. Na Figura 3b, os atores de uma mesma área acadêmica foram agrupados, de modo a calcular o número médio de relações dentro e entre os grupos.

Figura 3a – Rede de colaboração entre os membros da Iniciativa EcoSaúdeETV no ano de 2014

Legenda: Os participantes estão identificados com cores de acordo com cada área acadêmica, sendo as ciências da saúde (preto), ciências sociais (cinza escuro) e ciências naturais (branca).
A análise dos padrões de colaboração entre os atores das três grandes áreas acadêmicas revela um processo colaborativo pouco equitativo (Figura 3 e Tabela 2). Os atores do setor de saúde são muito mais numerosos que os atores dos outros grupos (indicador 5). O processo colaborativo é dominado pelos atores das ciências da saúde e das sociais, com um envolvimento reduzido dos pesquisadores das ciências naturais (indicador 3). Esses resultados foram levados em conta para desenvolver ações de promoção da equidade de participação no âmbito do projeto EcoSaúdeETV.

Mais especificamente, foram desenvolvidas iniciativas para promover maior envolvimento de atores de ciências ambientais no projeto, de modo a equilibrar as áreas de conhecimento.

A geração de conhecimentos transdisciplinares

A rede de colaboração do ano de 2014 do projeto EcoSaúdeETV (Figura 3 e Tabela 2) pode ser usada também para ilustrar como a ARS permite caracterizar a interdisciplinaridade em projetos de Ecosuíde. Os cientistas da saúde colaboram majoritariamente entre eles por meio de relações de ligação, ou seja, colaborações disciplinares (indicador 7 e proporção de relações de ligação e conexão). O grupo de ciências sociais possui uma maioria de relações interdisciplinares, principalmente direcionadas para os cientistas da saúde. Menos de 10% das relações de colaboração do grupo de ciências ambientais são disciplinares (indicador 7 e proporção de relações de ligação e conexão). A maioria de suas relações de colaboração são interdisciplinares, distribuídas de forma parecida a dos cientistas sociais e da saúde (indicador 8 e proporção de relações de ligação e conexão). Esses resultados mostram que, apesar de estarem em número reduzidos na rede de colaboração, os cientistas ambientais estão ativamente envolvidos em colaborações interdisciplinares, com potencial de contribuir para a integração da dimensão ambiental com as questões sociais e de saúde na prevenção e controle das enfermidades transmitidas por vetores.

Apesar de não existirem valores de referência que poderiam ser associados a um processo interdisciplinar efetivo, espera-se encontrar um equilíbrio entre relações disciplinares que garanta uma base sólida ao modo de pesquisa, além de colaborações interdisciplinares que permitam abordar os problemas complexos de forma integrada. Esses indicadores podem ser utilizados como variáveis explicativas para compreender os resultados alcançados pelos processos colaborativos em projetos de Ecosuíde, como a melhoria dos indicadores de saúde humana, a resiliência e a sustentabilidade dos ecossistemas, ou, ainda, a capacidade de adaptação das populações afetadas pelo problema de saúde.
Considerações finais

A EcoSaúde valoriza o papel das relações sociais na geração de conhecimentos inovadores e na utilização destes para melhorar as condições de saúde das populações. A ARS fornece um arcabouço teórico e propostas metodológicas para estudar as relações de colaboração entre os diversos atores envolvidos em processos de pesquisa e intervenção sobre temas complexos que vinculam aspectos sociais, ambientais e de saúde. Examinamos as contribuições da ARS para estudar a evolução e a equidade de participação, assim como a geração de conhecimentos interdisciplinares que são temas-chave para o desenvolvimento de projetos em EcoSaúde. Esperamos que as propostas conceituais e analíticas apresentadas possam suscitar aplicações em diversos contextos sociais e geográficos para melhor compreender o papel das relações sociais em projetos que visam estudar os vínculos entre as dinâmicas dos sistemas socioecológicos e a saúde humana, no intuito de promover qualidade de vida e sustentabilidade ambiental.

Referências

ABOIM, S. Redes sociais e comportamento sexual: para uma visão relacionais da sexualidade, do risco e da prevenção. Saúde e Sociedade, São Paulo, v. 20, n. 1, p. 207-224, 2011. DOI: 10.1590/S0104-12902011000100022

ARNSTEIN, S. R. A Ladder of Citizen Participation. Journal of the American Institute of Planners, Abingdon, v. 35, n. 4, p. 216-224, 1969. DOI: 10.1080/01944366908977225

BODIN, Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science, Washington, DC, v. 357, n. 6352, eaan1114, 2017. DOI: 10.1126/science.eaan1114

BORGATTI, S. P. et al. Network Analysis in the Social Sciences. Science, Washington, DC, v. 323, n. 5916, p. 892-896, 2009. DOI: 10.1126/science.1165821

BRISBOIS, B. W. et al. Ecosystem approaches to health and knowledge-to-action: towards a political ecology of applied health-environment knowledge. Journal of Political Ecology, Tucson, v. 24, n. 1, p. 692-715, 2017. DOI: 10.2458/v24i1.20961

BURGOS, A.; MERTENS, F. Participatory management of community-based tourism: A network perspective. Community Development, Abingdon, v. 48, n. 4, p. 546-565, 2017.

CHARRON, D. F. Ecosystem approaches to health for a global sustainability agenda. EcoHealth, New York, v. 9, p. 256-266, 2012.

DAKUBO, C. Y. Ecosystems and human health: a critical approach to ecohealth research and practice. New York: Springer, 2010.

FORGET, G.; LEBEL, J. An ecosystem approach to human health. International Journal of Occupational and Environmental Health, Abingdon, v. 7, n. 2 suppl., p. S3-S38, 2001.

GÓMEZ, C. M.; MINAYO, M. C. DE S. Enfoques ecossistémicos em saúde: uma estratégia transdisciplinar. InterfacEHS, São Paulo, v. 1, n. 1, p. 1-19, 2006.

HAINES, V. A.; GODLEY, J.; HAWE, P. Understanding Interdisciplinary Collaborations as Social Networks. American Journal of Community Psychology, Hoboken, v. 47, n. 1-2, p. 1-11, 2011. DOI: 10.1007/s10464-010-9374-1.

KÖTTER, R.; BALSIGER, P. W. Interdisciplinarity and Transdisciplinarity: A Constant Challenge To The Sciences. Issues in Integrative Studies, [s. l.], v. 120, n. 17, p. 87-120, 1999.
LEBEL, J. Health: An Ecosystem Approach. Ottawa: International Development Research Centre, 2003.

LEYDESDORFF, L. Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. *Journal of the American Society for Information Science and Technology*, Hoboken, v. 58, n. 9, p. 1303-1319, 2007. DOI: 10.1002/asi.20614.

LI, J. et al. Network and community structure in a scientific team with high creative performance. *Physica A: Statistical Mechanics and its Applications*, Amsterdam, v. 508, p. 702-709, 2018. DOI: 10.1016/j.physa.2018.05.091

MARIN, A.; WELLMAN, B. Social network analysis: an introduction. In: CARRINGTON, P.; SCOTT, J. (Ed.) *Handbook of Social Network Analysis*. London: Sage, 2010. p. 11-25.

MÉNDEZ, F.; ABRAHAMS, N.; RIOJAS, H. Transdisciplina y la investigación en salud ambiental y ecosalud. In: BETANCOURT, O.; MERTENS, F.; PARRA, M. (Ed.) *Enfoques ecosistémicos en salud y ambiente: aportes teórico-metodológicos de una comunidad de práctica*. Quito: Abya Yala: CoPEH-LAC, 2016. p. 161-180.

MERTENS, F. et al. Network approach for analyzing and promoting equity in participatory ecohealth research. *EcoHealth*, New York, v. 2, p. 113-126, 2005.

MERTENS, F. et al. The role of strong-tie social networks in mediating food security of fish resources by a traditional riverine community in the Brazilian Amazon. *Ecology and Society*, Dedham, v. 20, n. 3, p. 18, 2015. DOI: 10.5751/ES-07483-200318

NEWMAN, M. E. J. The structure of scientific collaboration networks. *Proceedings of the National Academy of Sciences*, Washington, DC, v. 98, n. 2, p. 404-409, 2001. DOI: 10.1073/pnas.98.2.404

PERKINS, J. M.; SUBRAMANIAN, S. V.; CHRISTAKIS, N. A. Social networks and health: a systematic review of sociocentric network studies in low- and middle-income countries. *Social Science & Medicine*, Amsterdam, v. 125, p. 60-78, 2015. DOI: 10.1016/j.socscimed.2014.08.019

POHL, C. What is progress in transdisciplinary research? *Futures*, Amsterdam, v. 43, n. 6, p. 618-626, 2011. DOI: 10.1016/j.futures.2011.03.001.

RAFOLS, I.; MEYER, M. Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. *Scientometrics*, New York, v. 82, p. 263-287, 2010.

SAINT-CHARLES, J. et al. Diffusion of environmental health information: the role of sex- and gender-differentiated pathways. In: COEN, S.; BANISTER, E. *What a Difference Sex and Gender Make: A Gender, Sex and Health Research Casebook*. Vancouver: Institute of Gender and Health; Ottawa: Canadian Institutes of Health Research, 2012. p. 69-76.

SAINT-CHARLES, J. et al. Ecohealth as a field: Looking forward. *EcoHealth*, New York, v. 11, n. 3, p. 300-307, 2014. DOI: 10.1007/s10393-014-0930-2

SCOTT, J. *Social network analysis*. 3. Ed. London: Sage, 2012.

TRIANA, D. R. R. et al. The Role of Gender in Chagas Disease Prevention and Control in Honduras: An Analysis of Communication and Collaboration Networks. *EcoHealth*, New York, v. 13, n. 3, p. 535-548, 2016. Disponível em: <http://link.springer.com/10.1007/s10393-016-1141-9>. Acesso em: 20 jul. 2021.

WAGNER, C. S. et al. Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. *Journal of Informetrics*, Amsterdam, v. 5, n. 1, p. 14-26, 2011. DOI: 10.1016/j.joi.2010.06.004

WATTS, N. et al. The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. *The Lancet*, v. 391, n. 10120, p. 581-630, 2018. DOI: 10.1016/S0140-6736(17)32464-9.

WEIHS, M.; MERTENS, F. Os desafios da geração do conhecimento em saúde ambiental: Uma perspectiva ecosistêmica. *Ciência e Saúde Coletiva*, Rio de Janeiro, v. 18, n. 5, p. 1501-1510, 2013.

Contribuição dos autores

Mertens, Távora, Santandreu, Luján, Arroyo e Saint-Charles trabalharam na concepção do projeto, no desenvolvimento teórico e na interpretação dos resultados. Mertens e Távora trabalharam na coleta e análises dos dados. Mertens redigiu o artigo. Távora, Santandreu, Luján, Arroyo, Saint-Charles participaram da revisão crítica do artigo e aprovaram a versão a ser publicada.

Recebido: 20/11/2019
Reapresentado: 14/07/2021
Aprovado: 03/02/2022