Approximation properties of the q-sine bases

BY LYONELL BOULTON* AND GABRIEL LORD

Department of Mathematics and Maxwell Institute for Mathematical Sciences
Heriot-Watt University, Edinburgh EH14 4AS, UK

For $q \geq \frac{12}{11}$, the eigenfunctions of the nonlinear eigenvalue problem associated with the one-dimensional q-Laplacian are known to form a Riesz basis of $L^2(0,1)$. We examine in this paper the approximation properties of this family of functions and its dual, and establish a non-orthogonal spectral method for the p-poisson boundary value problem and its corresponding parabolic time-evolution initial value problem with stochastic forcing. The principal objective of our analysis is the determination of optimal values of q for which the best approximation is achieved for a given p problem.

Keywords: p-Laplace Cauchy problem; p-Laplace evolution problem with stochastic forcing; q-sine basis; non-orthogonal spectral method

1. Introduction

The p-Laplace operator or p-Laplacian, a generalization of the ordinary Laplace operator, arises naturally in applications from physics and engineering including slow–fast diffusion related to particles (Aronsson et al. 1996), superconductivity (Barrett & Prigozhin 2000), wavelet inpainting (Zhang et al. 2007), image processing (Kuijper 2007) and game theory (Rossi in press). A typical application in the large p limit is a model for slow–fast diffusion for sandpiles (Evans et al. 1997). Recently there has been a significant amount of research activity encompassing methods of approximation for solution of nonlinear partial differential equations involving this operator (Barrett & Liu 1993a, 1994; Barrett & Prigozhin 2000). The aim of the present paper is to further contribute to this activity by considering the particular case of the one-dimensional p-Laplacian and examine in detail the approximation properties of a generalized spectral method described as follows.

Let $p > 1$. For $z \in \mathbb{R}$ let $\| z \|^{p-1} = z |z|^{p-2}$. By extension from the linear case corresponding to $p = 2$, we define the one-dimensional p-Laplacian to be the differential operator $\Delta_p u = (\| u' \|^{p-1})'$. Here $u : [0,1] \rightarrow \mathbb{R}$ is such that $\| u' \|^{p-1} \in H^1(0,1)$. The corresponding p-Poisson boundary value problem is given by

$$
\begin{align*}
\Delta_p u(x) &= g(x) \quad 0 \leq x \leq 1 \\
u(0) &= u(1) = 0
\end{align*}
$$

and

\begin{align*}
\begin{cases}
\Delta_p u(x) = g(x) \quad 0 \leq x \leq 1 \\
u(0) = u(1) = 0
\end{cases}
\end{align*}

(1.1)

*Author for correspondence (l.boulton@hw.ac.uk).
where \(g \in L^2(0, 1) \). We also consider the related evolution equation

\[
\frac{\partial u(x, t)}{\partial t} = \left[\Delta_p u(x, t) - g(x) \right] + \nu \frac{\partial W(x, t)}{\partial t}
\]

\[
u = 0 \quad 0 \leq x \leq 1
\]

and

\[
u(0, t) = u(1, t) = 0 \quad t > 0
\]

that includes a stochastic forcing term where the noise intensity \(\nu \geq 0 \) and \(W \) is a space–time Wiener process. Here

\[
W(x, t) = \sum_{n \in \mathbb{N}} \beta_n(t) \psi_n(x),
\]

where \(\beta_n \) are independent scalar Brownian motions, \(\psi_n \) are the eigenfunctions of the covariance operator \(Q \) and \(\alpha_n \) the corresponding eigenvalues (see Prévôt & Röckner 2007; Liu 2009). For the case of space–time white noise, we have \(Q = I \). In the case of a deterministic system when \(\nu = 0 \), equation (1.1) is the steady-state solution of equation (1.2).

Let \(q > 1 \). The so-called \(q \)-sine functions are defined as the eigenfunctions of the \(q \)-Laplacian eigenvalue equation (Elbert 1981; Ótani 1984; Lindqvist 1995):

\[
-\Delta_q u(x) = (q - 1)\lambda \| u(x) \|^{q-1} \quad 0 \leq x \leq 1
\]

and

\[
u = 0 \quad t = 0
\]

This family of functions and the corresponding problem (1.4) were studied over 30 years ago by Elbert (1981) and later by Ótani (1984) and Bennewitz & Saitō (2004) in connexion with the computation of optimal constants in Sobolev-type inequalities. They generalize in a natural fashion the 2-sine basis (corresponding to the linear case), and they have very similar periodicity and interlacing structures.

In Binding et al. (2006), analogues of the classical completeness and expansion theorems for the \(q \)-sine functions were established for \(q \geq 12/11 \). Specifically it was shown that they form a Riesz basis of \(L^2(0, 1) \). This leads to the following question: what are the approximation properties of this basis, as well as its dual basis, and how they relate to the approximation properties of the standard 2-sine basis?

Below we address this question by examining approximation of the solutions of equations (1.1) and (1.2) via projection methods with a \(q \)-sine and a dual \(q \)-sine basis, regarding \(q > 1 \) and \(\nu > 1 \) as free parameters. A main focus of attention is the determination of optimal values of \(q \) for which the highest order of convergence is achieved in a given \(p \)-problem. We demonstrate that standard properties of the 2-sine basis applied to the \(p = 2 \) problem (such as super-polynomial convergence when \(g(x) \) is smooth) are lost, when a \(q \)-sine basis for \(q \neq 2 \) is considered for a \(p \neq 2 \) problem. As it turns out, the property of being a basis for the \(q \)-sine functions conceals a remarkably rich structure that is far from evident given the apparent simplicity of problem (1.4).
Background material on the p-sine basis and its dual is considered in §2. There we examine a matrix representation of the Schauder transform introduced in Binding et al. (2006). This will be crucial in our subsequent analysis as it gives rise to a stable procedure for constructing numerically both bases.

In §3, we find estimates for the approximation of square integrable functions in terms of their regularity. The dual q-sine basis turns out to have very similar approximation properties as the $q = 2$ basis (lemma 3.1). On the other hand, however, it is fairly simple to construct smooth functions such that their q-sine Fourier coefficients do not decay faster than a power $-5/2$ for $q > 2$ (lemma 3.2). The latter is in stark contrast with the most elementary results in the numerical approximation of solutions of differential equations by orthogonal spectral methods.

Section 4 is devoted to the p-Poisson boundary value problem. In theorem 4.2, we find explicit uniform bounds on the distance between any two solutions of equation (1.1), given the distance between the corresponding right-hand sides. We then examine in detail the numerical computation of solutions of equation (1.1) for source terms that are subject to various different regularity constraints. As it turns out, the estimates established in theorem 4.2 appear to be sub-optimal. A more thorough investigation in this respect will be reported elsewhere. See Ebmeyer & Liu (2005) for related results in the context of finite-element approximation of the solutions of equation (1.1), including the higher dimensional case.

In the final §5, we study the numerical approximation of solutions to equation (1.2) both in the deterministic and stochastic systems. We describe our discretization strategy and solve this problem for different values of p and v. Our results provide evidence on the performance of the q-sine basis for the solution of equation (1.2), by showing the dependence on the parameter q of numerically computed L^2 residuals.

2. The q-sine basis and its dual

The q-Laplacian eigenvalue problem (1.4), although nonlinear, has a fairly simple structure. The eigenvalues are found to be $\lambda = (n \pi_q)^q$, where $\pi_q = 2\pi/q \sin(\pi/q)$. The first eigenfunction $f_1(x)$ associated with the first eigenvalue $(\pi_q)^q$ is strictly increasing in $[0, 1/2]$, decreasing in $[1/2, 1]$ and it is even with respect to $x = 1/2$. It can be extended to an odd function (with respect to $x = 0$) in the interval $[-1, 1]$ and then to a 2-periodic C^1 function of \mathbb{R}. If $q > 2$, then $f''_1(x)$ is singular at $x = 1/2$. The eigenfunctions $f_n(x)$ associated with the eigenvalues $(n \pi_q)^q$ satisfy $f_n(x) = f_1(nx)$ for all $n \geq 2$.

In figure 1, we have plotted the first three eigenfunctions (i) and their corresponding derivatives (ii) for (a) $q = 1.4$ and (b) $q = 10$. They typify the case $q < 2$ (a) and $q > 2$ (b), respectively. For large q, the basis functions f_n approach zig-zag functions, which are the eigenfunctions of the ∞-Laplace eigenvalue problem.

Below we always assume that the family $\{f_n\}_{n \in \mathbb{N}}$ is normalized by the condition $f'_n(0) = n \pi_q$ and leave implicit the dependence of f_n on q. In the special case $q = 2$, we write $e_n(x) = \sqrt{2} \sin(n \pi x)$, so that $\{e_n\}_{n \in \mathbb{N}}$ is an orthonormal basis.
The Pythagorean identity generalizes to the q-sine functions Elbert (1981) as

$$|f_1(x)|^q + \pi_q^{-q}|f_1'(x)|^q = 1.$$ \hfill (2.1)

Integrating this differential expression for small enough x leads to the following explicit representation for the inverse function

$$f_1^{-1}(y) = \pi_q^q \int_0^y \frac{dx}{(1-x^q)^{1/q}} \quad 0 \leq y \leq 1.$$ \hfill (2.2)

As we will see below, this representation plays a crucial role in the numerical estimation of $f_n(x)$.

Let the Schauder transform, T_q, be the linear extension of the mapping $e_n \mapsto f_n$. Then $T_q : L^2(0, 1) \to L^2(0, 1)$ is an invertible bounded operator for all $q \geq 12/11$ (Binding et al. 2006; theorem 1). Thus $\{f_n\}_{n \in \mathbb{N}}$ is a Riesz basis of $L^2(0, 1)$ for such a range of the parameter q. Further evidence presented in Binding et al. (2006) suggests that in fact this is also the case for all $q > 1$, but at present this has not been proved rigorously. Unless otherwise specified, we will assume from now on that $q \geq 12/11$.

The property of a Riesz basis ensures that every $g \in L^2(0, 1)$ is represented by a unique series expansion $g = \sum_{n=1}^{\infty} a_n f_n$, which is convergent in norm. The q-sine Fourier coefficients, $a_n \in \mathbb{R}$, are given explicitly by $a_n = \langle g, f_n^* \rangle$, where $\{f_n^*\}_{n \in \mathbb{N}}$ is the basis dual to $\{f_n\}_{n \in \mathbb{N}}$. Since $\delta_{jk} = \langle f_j, f_k^* \rangle = \langle T_q e_j, f_k^* \rangle = \langle e_j, T_q^* f_k^* \rangle$ for all $j, k \in \mathbb{N}$, then $f_n^* = (T_q^{-1})^* e_n$. It turns out that $f_n^* \neq f_n$ for $q \neq 2$.

The following matrix representation of T_q is fundamental to our analysis. Let

$$\tau_q(j) = \hat{f}_1(j) = \sqrt{2} \int_0^1 f_1(x) \sin(j \pi x) \, dx$$

The following matrices $\tau_q(j)$ play a crucial role in our analysis. They are

Figure 1. Approximation of the q-sine functions f_j for $j = 1, 2, 3$ (i) along with their derivatives (ii) for (a) $q = 1.4$ and (b) $q = 10$. (i) Light grey line, f_1; dark grey line, f_2; black line f_3. (ii) Light grey line, f_1'; dark grey line, f_2'; black line f_3'.
be the jth 2-sine Fourier coefficient of $f_1(x)$. Then the kth 2-sine Fourier coefficient of $f_n(x)$ is given by

$$
\hat{f}_n(k) = \sqrt{2} \int_0^1 f_1(nx) \sin(k\pi x) \, dx
$$

$$
= 2 \sum_{m \text{ odd}} \hat{f}_1(m) \int_0^1 \sin(m\pi nx) \sin(k\pi x) \, dx
$$

$$
= \begin{cases}
\tau_q(m) & \text{if } mn = k \text{ for some } m \text{ odd} \\
0 & \text{otherwise.}
\end{cases}
$$

(2.3)

Hence $T_q e_n = \sum_{m=1}^\infty \tau_q(m) e_{mn}$ and, therefore, T_q has a lower triangular matrix representation in the orthonormal basis $\{e_n\}_{n \in \mathbb{N}}$ (figure 2a).

Remark 2.1. The basis of eigenvectors of the ∞-Laplace eigenvalue problem are zig-zag functions (Binding et al. 2006; §5). In this case, we can write $\tau_\infty(j)$ explicitly. As it turns out,

$$
\lim_{q \to \infty} \tau_q(j) = (-1)^j \frac{8}{j^2 \pi^2} = \tau_\infty(j).
$$

Let $s > 0$. Below we denote by $H^s_{\text{per}}[0,1]$, the Sobolev space of 1-periodic functions $g \in L^2(0,1)$ such that $\sum_{j=1}^\infty (1 + j^2)^s |\hat{g}(j)|^2 < \infty$.

Lemma 2.2. Let f_1 be the first q-sine function as defined above. If $1 < q < 2$, then $f_1 \in H^2_{\text{per}}[0,1]$. If $q > 2$, then $f_1 \in \bigcup_{s<3/2} H^s_{\text{per}}[0,1] \setminus H^3_{\text{per}}[0,1]$. If $q > 4$, then $f_1 \not\in H^2_{\text{per}}[0,1]$.

Figure 2. (a) We plot the distribution of the non-zero entries of a 1000×1000 truncation of T_q. The insert corresponds to a 20×20 truncation. The matrix entries are constant along each of the ‘quasi-diagonals’ seen in the picture. (b) We plot s against q where s is the numerically estimated H^s regularity of the basis function $f_1(x)$. Note that at $q = 2$, the regularity is infinite.
Approximation by the q-sine bases

Proof. A straightforward argument involving integration by parts yields

$$\tau_q(j) = -\frac{2\sqrt{2}}{j^2\pi^2} \int_0^{1/2} f''_1(x) \sin(j\pi x) \, dx.$$

Then

$$|\tau_q(j)| \leq \frac{2\sqrt{2}}{j^2\pi^2} \int_0^{1/2} |f''_1(x)| \, dx = -\frac{2\sqrt{2}}{j^2\pi^2} \int_0^{1/2} f''_1(x) \, dx$$

$$= -\frac{2\sqrt{2}}{j^2\pi^2} [f'_1(x)]^{1/2} = \frac{2\sqrt{2}\pi q}{j^2\pi^2}.$$ \hspace{1cm} (2.4)

Hence $\tau_q(j) = O(j^{-2})$ as $j \to \infty$ and $f_1 \in \bigcup_{s<3/2} H^s_{\text{per}}[0,1]$. From equation (2.1) it follows that $f''_1(x) = h(f_1(x))$ for $h(y) = -\pi^2 y^{q-1}(1 - y^q)^{2-q/q}$. Let $1 < q < 2$. Then

$$\int_0^{1/2} |f''_1(x)|^2 \, dx \leq \frac{1}{2} \max_{y \in [0,1]} |h(y)|^2 \leq \frac{\pi q^4}{2},$$

so $f_1 \in H^2_{\text{per}}[0,1]$. Let $q > 2$. Since $\lim_{x \to 1/2} f''_1(x) = \mp \infty$, then $f_1 \not\in H^3_{\text{per}}[0,1]$. Moreover, $f_1(x) \geq 2x$ for $0 \leq x \leq \frac{1}{2}$. Then

$$\int_0^{1/2} |f''_1(x)|^2 \, dx \geq \int_0^{1/2} (2x)^{2(q-1)}(1 - (2x)^q)^{2(2-q)/q} \, dx.$$

If $q > 4$, the integral on the right-hand side diverges and so $f_1 \not\in H^2_{\text{per}}[0,1]$. \hfill \square

Evidently the H^s regularity for $f_1(x)$ found in lemma 2.2 is not optimal. Figure 2b shows a numerical estimation of the precise value of $s(q)$, such that $f_1 \in H^r_{\text{per}}[0,1]$ for $r < s(q)$ and $f_1 \not\in H^r_{\text{per}}[0,1]$ for $r > s(q)$. The data for this graph were obtained by computing the decay rate of $\tau_q(j)$ for a large truncation of T_q. A thorough investigation closely related to this lemma in the higher dimensional context can be found in Barrett & Liu (1993b), Ebmeyer et al. (2005) and references therein.

In the large q, we have a limit of $s = 3/2$ and this is confirmed by remark 2.1. At $q = 2$, we simply have $f_1 = \sin(\pi x)$ and so f_1 is in $H^s_{\text{per}}[0,1]$ for all s. According to lemma 2.2, the curve should remain below $s = 3$ as $q \to 2^+$. For $q > 3$, the graph suggests $f_1 \not\in H^2_{\text{per}}[0,1]$. However, if $q < 3$ it suggests $s(q) > 2$. As $q \to 1$, the regularity drops and the limit seems to approach $s = 2$. There is an interesting ‘peak’ of regularity around $q = 1.6$, which we cannot presently explain.

The 2-sine Fourier coefficients of $f_n^q(x)$ are given by the n-th columns of $(T_q^{-1})^s$. This operator has an upper triangular representation in the 2-sine basis. Then $f_n^q(x)$ are trigonometric polynomials of order n. In fact, $f_n^q(x) = \tau_q(1)^{-1} \sin(2\pi x)$ are parallel for all $q > 1$. Unlike the q-sine functions, not all dual q-sine functions have the same periodicity structure.

We now describe a stable numerical procedure for computing these two bases. The q-sine functions can be approximated by first estimating f_1 using equation (2.2). Numerical integration yields f_1^{-1} on $[0, 1/2]$. Although the integral,

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2b}
\caption{Numerical estimation of the precise value of $s(q)$, such that $f_1 \in H^r_{\text{per}}[0,1]$ for $r < s(q)$ and $f_1 \not\in H^r_{\text{per}}[0,1]$ for $r > s(q)$.}
\end{figure}

\textit{Proc. R. Soc. A} (2011)
L. Boulton and G. Lord

is singular at \(y = 1 \), the value \(f_1^{-1}(1) = 1/2 \) is known, so we do not need to consider quadrature points too close to this singularity. In our numerical procedure, we chose a fine uniform grid and apply a cumulative Simpson’s rule. This gives an approximation \(\tilde{f}_1 \) of \(f_1 \) for \(x \in [0, 0.5] \) with a controlled tolerance and by symmetry we obtain \(\tilde{f}_1 \) for \(x \in [0, 1] \). Note that \(\tilde{f}_1 \) is given on a non-uniform grid. The Pythagorean identity (2.1) immediately yields the derivative \(f_1' \) and hence we can use it to approximate the former with a \(\tilde{f}_1' \), defined also on the non-uniform grid.

Once we have constructed \(\tilde{f}_1 \) and \(\tilde{f}_1' \), we use periodicity and symmetry to find corresponding approximations of \(f_n \) and \(f_n' \) for \(n > 1 \). This involves considering scaled copies \(\tilde{f}_1 \) and \(\tilde{f}_1' \), to form \(\tilde{f}_n \) and \(\tilde{f}_n' \). Here, the number of non-uniform grid points on \([0, 1]\) grows with each \(n = 2^k N \).

To obtain \(f_n \) and \(f_n' \) on a uniform grid \(x_j = jh \) for \(j = 0 : J \), rather than the non-uniform grid that arises from the numerical integration, we have considered numerical interpolation by piecewise cubic polynomials. This gives \(\{f_n^h\}_{n=1}^N \) and \(\{(f_n')^h\}_{n=1}^N \) defined at \(x = x_j \). The former is the approximated basis and the latter the corresponding derivatives that we use for further computation.

Figure 1 was generated with an implementation of the numerical scheme just described on a uniform grid with \(J = 4000 \) points \((h = 2.5 \times 10^{-4})\). The integral (2.2) was approximated with \(2 \times 10^5 \) points.

The dual basis is found from an \(N \times N \) truncation, \(T_q^N \), of the Schauder transform. In practice, we first compute \(\tau_q(j) \) and assemble \(T_q^N \). Then, we define approximations \((f_n^*)^h \) for \(n = 1 : N \), as the trigonometric polynomials whose \(k \)th 2-sine Fourier coefficients are the \((n, k) \) entry of the matrix \((T_q^N)^{-1} \).

Remark 2.3. In our numerical approximation of the set of basis functions, we are careful to fully resolve oscillations on the basis function \(f_N \), taking at least 20 mesh points per wavelength and for most computations 100 per wavelength. For \(N \leq 50 \), we use \(h = (100N)^{-1} \) and so resolve each oscillation in the basis function with 100 spatial points. For \(N > 50 \), we use \(h = (20N)^{-1} \) and so resolve with 20 points. We also examined convergence of orthogonality of the basis and dual in the spatial discretization and noted \(O(h^2) \) for \(q \approx 10 \) through to \(O(h^4) \) for \(q \approx 1.4 \).

3. Approximation of source terms

Any given \(g \in L^2(0, 1) \) can be approximated by either

\[
g(x) \approx g_N^*(x) = \sum_{j=1}^N (g, f_j) f_j^*(x) \quad \text{or} \quad g(x) \approx g_N(x) = \sum_{j=1}^N (g, f_j^*) f_j(x)
\]

for large \(N \). These two expansions converge as \(N \to \infty \) in the norm of \(L^2(0, 1) \) and also pointwise for almost all \(x \in [0, 1] \). Unlike in the linear case corresponding to \(q = 2 \), the rates of decrease of \(\|g - g_N^*\| \) and \(\|g - g_N\| \) can be very different when \(q \neq 2 \).

Since the dual basis \(\{f_n^*\}_{n \in \mathbb{N}} \) comprises trigonometric polynomials, on the one hand, we can formulate the following natural statement.

Proc. R. Soc. A (2011)
Lemma 3.1. Let \(g \in L^2(0, 1) \). For all \(N \in \mathbb{N} \),

\[
\| g - g_N^* \| \leq \frac{\| T_q^{-1} \| \pi_q}{2\sqrt{2}} \left\| g - \sum_{n=1}^{N} \hat{g}(n) e_n \right\|.
\]

Proof. By definition, \(g - g_N^* = \sum_{n=N+1}^{\infty} (T_q^* g, e_n) (T_q^*)^{-1} e_n \). Since the matrix associated with \(T_q^* \) is an upper triangular (see §2),

\[
\langle T_q^* g, e_n \rangle = \sum_{k=n}^{\infty} [T_q^*]_{nk} \hat{g}(k) = \sum_{k=1}^{\infty} \tau_q(k) \hat{g}(nk).
\]

According to equation (2.4), we have \(\sum_{k=1}^{\infty} |\tau_q(k)| \leq \pi_q/2\sqrt{2} \). Hence

\[
|\langle T_q^* g, e_n \rangle|^2 = \left| \sum_{k=1}^{\infty} \tau_q(k) \hat{g}(nk) \right|^2 = \left| \sum_{k=1}^{\infty} \tau_q(k) \hat{g}(nk) \right|^2
\]

\[
\leq \left(\sum_{k=1}^{\infty} |\tau_q(k)| \right)^2 \left(\sum_{k=1}^{\infty} |\tau_q(k)||\hat{g}(nk)|^2 \right) \leq \frac{\pi_q}{2\sqrt{2}} \sum_{k=1}^{\infty} |\tau_q(k)||\hat{g}(nk)|^2.
\]

Thus,

\[
\| g - g_N^* \|^2 \leq \| T_q^{-1} \|^2 \sum_{n=N+1}^{\infty} |\langle T_q^* g, e_n \rangle|^2 \leq \| T_q^{-1} \|^2 \frac{\pi_q}{2\sqrt{2}} \sum_{n=N+1}^{\infty} \sum_{k=1}^{\infty} |\tau_q(k)||\hat{g}(nk)|^2
\]

\[
= \| T_q^{-1} \|^2 \frac{\pi_q}{2\sqrt{2}} \sum_{k=1}^{\infty} \sum_{n=N+1}^{\infty} |\tau_q(k)| |\hat{g}(nk)|^2 = \| T_q^{-1} \|^2 \frac{\pi_q}{2\sqrt{2}} \sum_{k=1}^{\infty} |\tau_q(k)|
\]

\[
\times \sum_{n=N+1}^{\infty} |\hat{g}(nk)|^2 \leq \| T_q^{-1} \|^2 \frac{\pi_q}{2\sqrt{2}} \sum_{k=1}^{\infty} |\tau_q(k)| \sum_{n=N+1}^{\infty} |\hat{g}(n)|^2
\]

\[
= \| T_q^{-1} \|^2 \frac{\pi_q^2}{8} \sum_{n=N+1}^{\infty} |\hat{g}(n)|^2.
\]

Therefore, the \(q \)-sine dual expansion of any \(g \in C^\infty \) converges super-polynomially fast. On the other hand, however, it is not difficult to construct examples of smooth functions \(g \) with a subsequence of \(q \)-sine Fourier coefficients decaying slowly.

Lemma 3.2. Let \(g(x) = e_1(x) \). If \(j \) is prime, then \(\langle g, f_j^* \rangle = \tau_q(j) \tau_q(1)^{-1} \).

Proof. Since \(T_q \) has an (infinite) lower triangular matrix representation in the orthonormal basis \(\{ e_n \}_{n \in \mathbb{N}} \), we can find the entries of the corresponding matrix representation of \(T_q^{-1} \) by pivoting and forward substitution (Gaussian elimination). It is readily seen that \(T_q^{-1} \) is necessarily the lower triangular and its diagonal should be constant and equal to \(\tau_q(1)^{-1} \).

Proc. R. Soc. A (2011)
Assume that \(j \) is prime. According to equation (2.3), the only non-zero entries in the \(j \)th row of \(T_q \) are \(\tau_q(j) \) in the first position and \(\tau_q(1) \) in the \(j \)th position. Therefore, the only non-zero entries in the \(j \)th row of \((T_q)^{-1} \) are \(-\tau_q(j)/\tau_q(1)\) in the first position and \(\tau_q(1)^{-1} \) in the \(j \)th position. As the Fourier sine coefficients of \(f_j^* \) are obtained from the \(j \)th column of \((T_q^*)^{-1} \), the desired conclusion follows. ■

By virtue of lemma 2.2, the prime \(q \)-sine Fourier coefficients of \(\sin(\pi x) \) for \(q > 2 \) cannot decrease faster than \(j^{-5/2} \) in the large \(j \) limit. Observe that this is in stark contrast with the most elementary results in the numerical approximation of solutions of differential equations by orthogonal spectral methods.

Remark 3.3. The finite set of basis functions \(f_n \) and dual \(f_n^* \) for \(n = 1 : N \) generate corresponding \(N \)-dimensional subspaces \(V_N \) and \(V_N^* \) of \(L^2(0,1) \). Instead of computing directly with these non-orthogonal bases, one can apply the Gram–Schmidt algorithm in order to obtain orthonormal bases of these subspaces. This has a numerical advantage of not needing to store both the basis and dual. We also considered this approach, however, we found little advantage in terms of accuracy.

Let us now consider various numerical tests on the approximation of regular functions by \(\{f_n\}_{n \in \mathbb{N}} \) and \(\{f_n^*\}_{n \in \mathbb{N}} \). Once the bases have been obtained on uniform mesh, we can examine their approximation properties numerically by looking at the decay of suitable residual for benchmark sources \(g \in L^2(0,1) \).

Figure 3 shows the typical outcomes of an experiment to determine the dependence in \(q \) of the \(L^2(0,1) \) residual. We have fixed here \(N = 40 \), varied \(q = 1 : 100 \), and computed residuals in the approximation of the following four functions:

\[
\begin{align*}
g_a(x) &= f_1(x) + (2.5)f_{10}(x) \quad \text{for } q = 10, \\
g_b(x) &= \begin{cases}
1 & x \in \left[\frac{1}{4}, \frac{3}{4}\right] \\
0 & \text{otherwise}
\end{cases}, \\
g_c(x) &= \begin{cases}
\left(\frac{7}{3}\right)x & x \in \left[0, \frac{3}{7}\right] \\
-\left(\frac{21}{4}\right)x + \frac{13}{4} & x \in \left[\frac{3}{7}, \frac{7}{14}\right] \\
\left(\frac{21}{4}\right)x - 2 & x \in \left[\frac{7}{14}, \frac{4}{7}\right] \\
-x + \frac{11}{7} & x \in \left[\frac{4}{7}, 1\right]
\end{cases}, \\
g_d(x) &= (q - 1)(k\pi_q)^q|f_1|^{(q-2)} \quad \text{for } q = 3
\end{align*}
\]

in figure 3a–d, respectively. In the figure, we include both the basis and its dual, as well analogous calculations with the orthogonalized bases of \(V_{40} \) and \(V_{40}^* \).
Approximation by the q-sine bases

Figure 3. We vary a q-sine basis and dual basis and examine how the residual changes using \(N = 40 \) modes for (a) \(g \) a combination of two 10-sine basis elements, (b) a piece-wise constant function \(q_{\text{opt}} \approx 4.25 \), (c) a piece-wise linear continuous \(q_{\text{opt}} = 2.9 \) and (d) a differentiable with discontinuous derivative function \(q_{\text{opt}} = 2.55 \). See (3.1). (a–d) Grey line, \(f \); black line, \(f^* \); grey plus symbols, \(f \) after GS; black plus symbols, \(f^* \) after GS.

In figure 3a, we see an optimal \(q_{\text{opt}} = 10 \) as expected, in figure 3b–d, we increase the regularity of \(g \) and see \(q_{\text{opt}} \) decreases with values of 4.25, 2.9, 2.55 for figure 3b–d, respectively.

This experiment gives a general insight about the q-behaviour of \(L^2 \)-residuals in the approximation of functions with different degrees of regularity by q-sine bases and their duals. For the simple functions considered, our calculations indicate the following general behaviour of the q-sine basis:

— as \(q \to 1 \) the residual deteriorates,

— there is always a single minimum corresponding to an optimal \(q = q_{\text{opt}} \),

— as \(q \to \infty \), the residual curve becomes asymptotically constant with no local maximum for \(q > 2 \).

In contrast, the approximation error is almost constant in \(q \) for the q-sine dual basis. This is indeed a consequence of lemma 3.1 and the fact that \(f^*_n \) are trigonometric polynomials. Our tests indicate that there does not seem to be a clear advantage in orthogonalizing the basis or the dual basis for errors with an order of magnitude above \(10^{-5} \).
Table 1. Rates of convergence in N for g with different degrees of regularity and selected values of q.

$g(x)$	$q = 1.8$	$q = 2$ (exact)	$q = 3$	$q = 5$	$q = 10$
$g_b(x)$	-0.4862	-0.4905 (-0.5)	-0.5005	-0.5052	-0.5069
$g_c(x)$	-1.4206	-1.4474 (-1.5)	-1.4959	-1.4842	-1.4438
$g_d(x)$	-1.9368	-1.9952 (-2)	-1.9826	-1.5934	-1.4595
$\sin(\pi x)$	-2.2778	NaN	-1.9560	-1.6237	-1.4988

In Table 1, we have estimated $a > 0$ such that $\| g - g_N \| < \beta N^{-\alpha}$, where $\beta > 0$ is independent of N. The data indicate that for $g \in H^{1}_{per}[0,1]$, $q_{opt} \approx 2$. Moreover, as q increases, we should expect a to decrease and stabilize always below 1.5 for $g(x) = \sin(\pi x)$. This is indeed suggested by lemma 2.2, Figure 2b and lemma 3.2, and it is confirmed by the last row of the table.

In Figure 4a, we have computed the residual $\| g - g_{10} \|$ (red) and $\| g - g_{20} \|$ (blue) for randomly generated $g \in H^{2}_{per}[0,1]$ constrained to $g(0) = g(1) = 0$. To construct a random function g such that the $H^{s}_{per}[0,1]$ norm is finite, we find $\hat{g}(j) = a_j \beta_j$, where $a_j = (1 + j^2)^{-s/2} |j|^{-1/2 - \delta}$ for some small $\delta > 0$ and β_j are independent identically distributed $N(0,1)$. Two realizations of functions g obtained in this way are shown in the inserts in Figure 4. Note that q_{opt} is achieved at different places but close to 2. In Figure 4b, we examine q_{opt} over 200 realizations of functions in $H^{2}_{per}[0,1]$. For any fixed realization and value of N, $q_{opt} \neq 2$ although in the limit, this optimal parameter appears to be close to 2. For $N = 100$, we also show the results of 1000 realizations. In this case, the mean value is closer to 2 although the variation is still large. In Figure 4c, we show the mean values where functions are taken in $H^{s}_{per}[0,1]$ for $s = -0.5, 0, 0.5, 1$ and 2 with 200 realizations. For $s < 2$, the variability in q_{opt} is far larger. For fixed N, $q_{opt} > 2$.

The observed outcome of this experiment strongly support the conjecture that q_{opt} typically approaches two as the regularity of g is increased.

4. Numerical solution of the p-Poisson equation

We now address the question of approximating the solutions of equation (1.1) by means of a q-sine and dual basis. In view of lemmas 3.1 and 3.2, we begin by determining uniform estimates on how sensitive this solution is under perturbations of the right-hand side. Analogous questions have certainly been considered in more general frameworks, however, here we focus on the explicit calculation of the constants involved.

A key ingredient in the estimates presented below is the fact that equation (1.1) can be integrated explicitly. Let the Volterra operator

$$ Vg(x) = \int_0^x g(t) \, dt. $$

Proc. R. Soc. A (2011)
Figure 4. (a) L^2 residual as a function of q where a q-sine basis is used to approximate two different randomly generated $g \in H^2_{\text{per}}[0,1]$ satisfying $g(0) = g(1) = 0$. Note that the optimal q_{opt} occurs at different values. (b) $g \in H^2_{\text{per}}[0,1]$ and (c) $g \in H^s_{\text{per}}[0,1]$, we depict q_{opt} as N increases. We include the mean and standard deviation over 200 realizations of random functions subject to the same constraint. For $N = 100$, we also show the results from 1000 realizations.

Note that $Vg \in AC[0,1]$ for all $g \in L^1(0,1)$. Furthermore $V : L^s(0,1) \rightarrow L^t(0,1)$ is a contraction operator for all $1 \leq s, t \leq \infty$ and its norm can be explicitly determined (Bennewitz & Saitô 2004, theorem 1.1). Let

$$h_g(\gamma) = \int_0^1 \| Vg(\tau) - \gamma \|^{\frac{1}{p-1}} \, d\tau.$$

Then $h_g(\gamma)$ is a continuous function, decreasing in γ, for all fixed $g \in L^1(0,1)$. Let

$$\min_{x \in [0,1]} Vg(x) \leq \gamma_0(g) \leq \max_{x \in [0,1]} Vg(x)$$

be the unique root such that $h_g(\gamma_0(g)) = 0$. Then

$$u(x) = \int_0^x \| Vg(\tau) - \gamma_0(g) \|^{\frac{1}{p-1}} \, d\tau = V \left(\| Vg(\tau) - \gamma_0(g) \|^{\frac{1}{p-1}} \right)(x) \quad (4.1)$$

is the unique solution of equation (1.1).
We firstly establish concrete Hölder estimates on \(h_g(\gamma) \). Without further mention in this section, we will fix \(r = 1/(p - 1) \) and denote by \(\| \cdot \|_s \) the norm of \(L^s(0, 1) \). In the case \(s = 2 \), we will continue suppressing the sub-index.

Lemma 4.1. Let \(g \in L^1(0, 1) \) and \(-\|g\|_1 \leq \gamma \leq \mu \leq \|g\|_1\). Then

\[
(\mu - \gamma)^r \leq 2^{1-r} \|g\|_1^{1-r} (h_g(\gamma) - h_g(\mu)) \quad 0 < r \leq 1
\]

\[
(\mu - \gamma)^r \leq 2^{r-1} (h_g(\gamma) - h_g(\mu)) \quad r > 1.
\]

Proof. Suppose first that \(0 < r \leq 1 \). From the graph of \(\|z\|^r \) for \(|z| \leq M \) it is readily seen that \(\|z\|^r - \|w\|^r \geq r M^{r-1} (z - w) \) for all \(-M \leq w \leq z \leq M\). Then

\[
(\mu - \gamma) = \int_0^1 [(Vg(\tau) - \gamma) - (Vg(\tau) - \mu)] d\tau
\]

\[
\leq M^{1-r} \|h_g(\gamma) - h_g(\mu)\].
\]

for \(M = 2\|g\|_1 \), and \(\gamma \) and \(\mu \) as in the hypothesis.

In a similar fashion, let \(r > 1 \). Then \((z - w)^r \leq 2^{r-1} (\|z\|^r - \|w\|^r) \) for all \(-M \leq w \leq z \leq M\). Indeed, if \(0 \leq w < z \), a straightforward argument shows that

\[
\frac{\|z\|^r - \|w\|^r}{z - w} = \frac{z^r - w^r}{z - w} \geq z^{r-1} \geq (z - w)^{r-1};
\]

if \(w < z \leq 0 \),

\[
\frac{\|z\|^r - \|w\|^r}{z - w} \geq |w|^{r-1} \geq (z - w)^{r-1};
\]

and if \(w < 0 < z \),

\[
\min_{z > 0} \frac{\|z\|^r - \|w\|^r}{(z - w)^r} = \min_{z > 0} \frac{z^r - |w|^r}{(z + |w|)^r} = \frac{1}{2^{r-1}}
\]

achieved when \(w = -z \). Thus

\[
(\mu - \gamma)^r = \int_0^1 [(Vg(\tau) - \gamma) - (Vg(\tau) - \mu)] d\tau
\]

\[
\leq 2^{r-1} (h_g(\gamma) - h_g(\mu)).
\]

\[\Box\]

Theorem 4.2. Let \(u \) and \(\tilde{u} \) be solutions of equation (1.1) with corresponding sources \(g \) and \(\tilde{g} \). Let \(m = \max\{\|g\|_1, \|\tilde{g}\|_1\} \). Then

\[
\|u - \tilde{u}\| \leq 2^{1-r} (\|g - \tilde{g}\| + (4m)^{1-r} \|g - \tilde{g}\|_1^r)^{r} \quad 0 < r \leq 1
\]

and

\[
\|u - \tilde{u}\| \leq r 2^{r-1} m^{r-1} (\|g - \tilde{g}\| + 2^{2-2/r} m^{1-1/r} \|g - \tilde{g}\|_1^{1/r})^{r} \quad r > 1.
\]
Proof. Let $0 < r \leq 1$ and $s = 2/r \geq 2$. By virtue of equation (4.1)
\[
\|u - \tilde{u}\| \leq \|V(Vg - \gamma_0(\tilde{g}))\|_s - \|V\tilde{g} - \gamma_0(\tilde{g})\|_s \\
\leq \|\|Vg - \gamma_0(\tilde{g})\| - \|V\tilde{g} - \gamma_0(\tilde{g})\|\|_s.
\]
Note that $\|z\| - \|w\| \leq 2^{1-r}|z - w|^r$ for all $0 \leq |w| \leq |z|$. Thus
\[
\|\|Vg - \gamma_0(\tilde{g})\| - \|V\tilde{g} - \gamma_0(\tilde{g})\|\|^{1/r}_s \leq 2^{1/r}(\|Vg - \tilde{g}\| + |\gamma_0(\tilde{g}) - \gamma_0(\tilde{g})|)
\leq 2^{1/r}(\|g - \tilde{g}\| + |\gamma_0(\tilde{g}) - \gamma_0(\tilde{g})|).
\]
According to lemma 4.1,
\[
|\gamma_0(\tilde{g}) - \gamma_0(\tilde{g})| \leq \frac{(2m)^{1-r}}{r}|h_g(\gamma_0(\tilde{g})) - h_g(\gamma_0(\tilde{g}))|
= \frac{(2m)^{1-r}}{r}|h_g(\gamma_0(\tilde{g})) - h_g(\gamma_0(\tilde{g}))|
\leq \frac{(2m)^{1-r}}{r} \int_0^1 \|\|Vg - \gamma_0(\tilde{g})\| - \|V\tilde{g} - \gamma_0(\tilde{g})\|\| \, d\tau
\leq \frac{(4m)^{1-r}}{r} \|g - \tilde{g}\| \leq \frac{(4m)^{1-r}}{r} \|g - \tilde{g}\|_1.
\]
This ensures the first statement.

Let $r > 1$. In a similar fashion as before, we see that
\[
\|u - \tilde{u}\| \leq \|\|Vg - \gamma_0(\tilde{g})\| - \|V\tilde{g} - \gamma_0(\tilde{g})\|\| \\
\leq r^{2r-1}m^{-1}(\|Vg - \tilde{g}\| + |\gamma_0(g) - \gamma_0(\tilde{g})|)
\leq r^{2r-1}m^{-1}(\|g - \tilde{g}\| + |\gamma_0(g) - \gamma_0(\tilde{g})|).
\]
Lemma 4.1 and similar arguments as for the previous case yield
\[
|\gamma_0(\tilde{g}) - \gamma_0(\tilde{g})| \leq 2^{r-1}|h_g(\gamma_0(\tilde{g})) - h_g(\gamma_0(\tilde{g}))|
\leq 2^{2r-2}m^{-1}r\|g - \tilde{g}\|_1.
\]
This completes the proof. □

The right-hand side bound in the above theorem approaches 2 as $r \to 0$ independently of the value of $\|g - \tilde{g}\|$. In fact $\|u - \tilde{u}\| \leq \|l_r\|$ for $l_r = \|\|Vg - \gamma_0(\tilde{g})\| - \|V\tilde{g} - \gamma_0(\tilde{g})\|\|$. Since $l_r(\tau) \to 0$ for almost all $\tau \in [0, 1]$ and $|l_r(\tau)| \leq 2 + \|Vg\|_\infty + \|V\tilde{g}\|_\infty$, the Dominated Convergence Theorem yields $\|u - \tilde{u}\| \to 0$ as $r \to 0$. This is a well-known property of the ∞-Laplacian (see Rossi in press). As mentioned in §1, the approach considered in Ebmeyer & Liu (2005) in the context of finite-element approximation of the solutions of equation (1.1) may provide an insight on whether the constants found in the above theorem are optimal.
We now describe how the p-Poisson problem is discretized. The strong formulation (1.1) leads to the following weak formulation using integration by parts and the boundary conditions:
\[
\int_0^1 |u'|^{p-2} u' v' \, dx = \int_0^1 g v \, dx, \tag{4.2}
\]
for any absolutely continuous test function v. We expand both u and v using a basis $\{\phi_n\}_{n \in \mathbb{N}}$, where ϕ_n is either f_n or f_n^*. After truncation this leads to the following nonlinear system of equations for unknown coefficients $c_j = \langle u, \phi_j^* \rangle$:
\[
\sum_{k=1}^N c_k \int_0^1 \left| \sum_{\ell=1}^N c_\ell \phi_\ell' \right|^{p-2} \phi_k' \phi_j' \, dx = \langle g, \phi_j \rangle \quad j = 1 : N. \tag{4.3}
\]
The case $p = 2$ evidently reduces to the standard linear system to solve for the Poisson equation.

Numerically the right-hand side of equation (4.3) is approximated via quadrature rules. The nonlinear system may then be solved, for example, by Newton’s method. Since the Jacobian is a full matrix in this case, a banded approximation appears to provide sufficient accuracy. However, the results presented below were found using the trust-region dogleg method with a full Jacobian matrix as implemented in Matlab.

In figure 5, we have used this scheme to solve the p-Laplacian problem with $p = 5$ and examine the L^2 error taking $N = 40$. In figure 5a, we have fixed a solution $u(x) = \sin(\pi x)$ where we clearly expect and observe that $q = 2$ is the optimal basis. In figure 5b, we have fixed $u(x) = f_1(x)$ for $p = 5$ and so we observe the $q = 5$ as the optimal basis.

In figure 6, we take $g = g_b$ from equation (3.1) that turns out to be a typical form of forcing for sandpile problems. We solve the p-Laplacian problem for (a) $p = 1.8$, (b) $p = 3$, (c) $p = 5$ and $p = 10$ with $N = 40$ and examine the L^2 error in the solution as we vary the q basis. To estimate this error, we take
Approximation by the q-sine bases

Figure 6. We now examine a piecewise constant f for different p ($N = 40$). In (a) $p = 1.8$ and $q_{\text{opt}} = 2$ (b) $p = 3$ and $q_{\text{opt}} \approx 2$ with another minimum at $q = 2.95$, in (c) $p = 5$ and $q_{\text{opt}} \approx 3.9$ and in (d) $p = 10$ and $q_{\text{opt}} \approx 5.75$.

Table 2. Optimal q_{opt} for four different p-Laplacian problems with either a $g = g_b$ from equation (3.1) or $g = 1$. We give estimates for different values of N. The change in q_{opt} as N increases occurs as the two minima interchange (figures 6 and 7).

g	$p = 1.8$	$p = 3$	$p = 5$	$p = 10$
g_b ($N = 20$)	2.05	2.95	3.9	8.0
g_b ($N = 40$)	2.05	2.0 (2.95)	3.9	5.75
g_b ($N = 60$)	2.2	3.0	4.0	5.95
g_b ($N = 80$)	2.05	2.0	3.9	5.60
$g = 1$ ($N = 20$)	2.0	2.3	3.1	6.43
$g = 1$ ($N = 40$)	2.0	2.0	3.0	4.85
$g = 1$ ($N = 60$)	2.0	2.0	3.0	4.7
$g = 1$ ($N = 80$)	2.0	2.0	2.0 (2.95)	4.7

as exact the solution with 2-sines and $2N$ modes. We observe that the optimal basis for representing the solutions is no longer the standard $q = 2$ for $p = 3, 5, 10$. For problems with moderate p (for example, $p = 3$), we see two distinct minima. For larger p problems, however, the $q = 2$ basis becomes less competitive.
L. Boulton and G. Lord

Figure 7. Comparison of \(N = 20, 40, 60, 80 \) in (a) for \(p = 5 \) and \(g \equiv 1 \) (b) for \(p = 10 \) and \(g \equiv 1 \) (also including \(N = 100 \)). In (c) we show for \(g \equiv g_b \) and \(p = 5 \), and in (d) for \(g \equiv g_b \) and \(p = 10 \). We note that for \(N \) sufficiently large \(q_{\text{opt}} = 2 \), and a more accurate solution may be found for smaller \(N \) at \(q_{\text{opt}} \neq 2 \). (a, c, d) Plus symbol with solid line, \(N = 20 \); squares with solid line, \(N = 40 \); circles with solid line, \(N = 60 \); diamonds with solid line, \(N = 80 \). (b) Plus symbol with solid line, \(N = 20 \); squares with solid line, \(N = 40 \); circles with solid line, \(N = 60 \); diamonds with solid line, \(N = 80 \); crosses with solid line, \(N = 100 \).

In table 2, we give estimates of \(q_{\text{opt}} \) for \(g = g_b \) and \(g = 1 \) for \(N = 20, 40, 60 \) and \(N = 80 \) modes. The changes in \(q_{\text{opt}} \) with \(N \) are explained by the interchange of the two minima in figure 6. For \(N = 100 \), this interchange occurs for \(p = 5 \) and \(p = 10 \) as illustrated in figure 7b.

5. The time-dependent \(p \)-Laplacian

In this final section, we consider the evolution equation (1.2) both in the deterministic \((v = 0)\) and the stochastically forced regime \((v \neq 0)\). Slow–fast diffusion is often taken in the large \(p \) limit, as a model for sandpile growth. For further details including arguments about the validity of the modelling (see, for example, Aronsson et al. 1996; Evans et al. 1997; Falcone & Finzi Vita 2006; Andreu et al. 2009; Caboussat & Glowinski 2009; Igbida 2010). Our purpose here is to consider the time-dependent problem for different values of \(p \) and examine the choice of basis in the formation of the sandpile.
Approximation by the q-sine bases

Figure 8. Solution of equation (1.2) with \(g = g_0 \), for (a) \(p = 1.8 \) using \(q = 2 \), (b) \(p = 3 \) using \(q = 2.95 \), (c) \(p = 5 \) using \(q = 3.9 \) and (d) \(p = 10 \) using \(q = 5.75 \). As time evolves the solutions approach the steady state which, for increasing \(p \), turns out to be close to a hat function.
Figure 9. Residual in time for the numerical solution of equation (1.2). We choose \(\nu = 0, N = 40 \) and take as a true solution one computed with \(N = 100 \) and \(q = 2 \). We fix \(p = 10 \) and compare basis with \(q = 1.8, q = 2, q = q_{\text{opt}} \) and \(q = 10 \). Here (a) corresponds to \(g = g_b \) (\(q_{\text{opt}} = 5.75 \)) and (b) to \(g = 1 \) (\(q_{\text{opt}} = 4.85 \)). We see that asymptotically in time \(q_{\text{opt}} \) has the smallest error. At a few points in time during the transient state, the \(q = 1.8 \) basis is more accurate than the \(q = 2 \). (a) Circles with solid line, \(q = 1.8 \); grey line, \(q = 2 \); plus symbol with solid line, \(q = 5.75 \); black line, \(q = 10 \). (b) Circles with solid line, \(q = 1.8 \); grey line, \(q = 2 \); plus symbol with solid line, \(q = 4.85 \); black line, \(q = 10 \).

We discretize the weak form of the equation and truncate to solve the time-dependent version of equation (4.3) given by

\[
\frac{d c_j}{dt} = \sum_{k=1}^{N} c_k \int_{0}^{1} \sum_{\ell=1}^{N} c_\ell \phi'_\ell \, dx - (g, \phi_j) + \nu \left(\frac{dW}{dt} , \phi_j \right), \quad j = 1 : N. \tag{5.1}
\]

This expression is then discretized in time to get a nonlinear system of equations to solve for \(c_j^n \) at each step. Below we consider an Euler’s method that reduces to

\[
\frac{c_j^{n+1} - c_j^n}{\Delta t} = \sum_{k=1}^{N} c_k^{n+1} \int_{0}^{1} \sum_{\ell=1}^{N} c_\ell^{n+1} \phi'_\ell \, dx - (g, \phi_j) \\
+ \nu \left(\sum_{m=1}^{M} \alpha_j^{1/2} c_j(x) \Delta \beta_m , \phi_j \right),
\]

where \(\Delta \beta_m \) are independent identically distributed random variables with mean zero and variance \(\Delta t \) (recall (1.3)), and we have assumed the eigenfunctions of \(Q \) are now given by \(e_n \). For the case of stochastic forcing, we take \(M \gg N \).

In figure 8, we consider \(\nu = 0 \) with \(g = g_b \) and we plot the time evolution for (a) \(p = 1.8 \) (\(q_{\text{opt}} = 2 \)), (b) \(p = 3 \) (\(q_{\text{opt}} = 2.95 \)), (c) \(p = 5 \) (\(q_{\text{opt}} = 3.9 \)) and (d) \(p = 10 \) (\(q_{\text{opt}} = 5.75 \)). In each case, the evolution found numerically quickly converges towards the steady state.

Figure 8 was obtained by choosing in each case the predicted \(q = q_{\text{opt}} \) basis for the steady state. Intuitively this choice of basis should be near optimal for large \(t \). On the other hand, however, there is no reason to presume that it is so for small
Figure 10. Sample realization with \(p = 10 \) of the time-evolution problem with a time-dependent stochastic forcing \(\beta = 0.2 \). The time evolution is shown with equal steps of \(\Delta t = 0.01 \). (a–c) We show the effect of an \(H^1 \) noise in space, white in time. (d–f) We show the effect of a white noise in both space and time. (c,f) Circles with solid line, \(q = 1.8 \); grey line, \(q = 2 \); plus symbol with solid line, \(q = 4.85 \); black line, \(q = 10 \).
values of \(t \). In figure 9, we examine the spatial error at each step for four different bases with \(N = 40 \). For comparison, we have chosen \(p = 10 \) and \(q \in \{ 1.8, 2, q_{\text{opt}}, 10 \} \).

As the solution approaches the steady state, in each case, the basis \(q_{\text{opt}} \) has the smallest error as is expected (in fact a gain of almost an order of magnitude in accuracy compared with \(q = 2 \) is observed). It is remarkable however that, in the transient regime, these bases appear to be far less accurate than other choices of \(q \), such as \(q = 2 \) and \(q = 1.8 \).

Let us now consider the stochastically forced case, \(\nu > 0 \). Figure 10 shows plotted solution with time-dependent noises that are \(H^1 \) in space and white in time for \((a-c) \), and white both in space and time for \((d-f) \). The forcing corresponds to \(\nu = 0.2 \). We expect that on average, the noisy solution is simply that of the deterministic system (which has a unique stable solution). We see in figure 10a,b,d,e, the time evolution of the solution for one particular realization of the noise. This should be compared with the deterministic case in figure 8d.

In figure 10c,f, we plot the evolution of the error for fixed time step with \(q \in \{ 1, 2, q_{\text{opt}}, 10 \} \). Similar to the deterministic case, in the transient regime, the error for \(q_{\text{opt}} \) and \(q = 10 \) is far higher than that for \(q = 2 \) or \(q = 1.8 \). Where the noise effects are large (such as for the spatially correlated noise in \(H^1 \) in figure 10c), the optimal basis is no longer clear. However, where the effect is small (such as the white noise in figure 10f), we clearly see in the time-dependent evolution about the steady state that the \(q = 4.85 \) outperforms the other bases (and in particular \(q = 2 \)). For sandpile-type problems, the introduction of a spatially white noise is a natural choice. It is interesting to note the small effect on the dynamics in this realization.

At present, it is unclear whether the use of a \(q \)-sine basis with \(q \neq 2 \) provides any real computational advantage over the natural choice \(q = 2 \) for the solution of equation (1.2). There is clearly a computational overhead in obtaining the former for \(q \neq 2 \) that impacts significantly on efficiency. However, we have observed that the nonlinear problem (4.3) is solved faster in the optimal basis. This is certainly worth further investigation. For example, for \(N = 40 \), we observe approximately a 20 per cent speed up in the nonlinear solve over the standard 2-sine basis. Thus, if solving many fixed \(p \)-problems, the corresponding optimal \(q \)-sine basis may not only be more accurate but also more efficient. In our current implementation, an average approximation to the optimal \(q \)-sine basis may be precomputed for a given regularity of \(g \). Lemma 2.2 gives some preliminary indication on how to solve the problem of \textit{a priori} determining the optimal basis. Our numerical results suggest that for large \(p \) we expect an optimal basis with \(q > 2 \) for a right-hand side with a discontinuous derivative.

We kindly thank A. Vignes and B. Rynne for discussions related to this paper. The first author acknowledges support from the Université Paris Dauphine, where part of this research was carried out.

References

Andreu, F., Mazón, J. M., Rossi, J. D. & Toledo, J. 2009 The limit as \(p \to \infty \) in a nonlocal \(p \)-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles. Calc. Var. Partial Diff. Equ. \textbf{35}, 279–316. (doi:10.1007/s00526-008-0205-2)
Aronsson, G., Evans, L. C. & Wu, Y. 1996 Fast/slow diffusion and growing sandpiles. J. Differ. Equ. 131, 304–335. (doi:10.1006/jdeq.1996.0166)

Barrett, J. W. & Liu, W. B. 1993a Finite element approximation of the p-Laplacian. Math. Comp. 61, 523–537.

Barrett, J. W. & Liu, W. B. 1993b Higher order regularity for the solution of some nonlinear degenerate elliptic equations. SIAM J. Math. Anal. 24, 1522–1536. (doi:10.1137/0524086)

Barrett, J. W. & Liu, W. B. 1994 Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. Anal. 31, 413–428. (doi:10.1137/0731022)

Barrett, J. W. & Prigozhin, L. 2000 Bean’s critical-state model as the p → ∞ limit of an evolutionary p-Laplacian equation. Nonlinear Anal. 42, 977–993. (doi:10.1016/S0362-546X(99)00147-9)

Bennewitz, C. & Saito, Y. 2004 Approximation numbers of Sobolev embedding operators on an interval. J. Lond. Math. Soc. 70, 244–260. (doi:10.1112/S0024610704005459)

Binding, P., Boulton, L., Čepiška, J., Drábek, P. & Gg, P. 2006 Basis properties of eigenfunctions of the p-Laplacian. Proc. Am. Math. Soc. 134, 3487–3494. (doi:10.1090/S0002-9939-06-08001-4)

Caboussat, A. & Glowinski, R. 2009 A numerical method for a non-smooth advection-diffusion problem arising in sand mechanics. Commun. Pure Appl. Anal. 8, 161–178. (doi:10.3934/cpaa.2009.8.161)

Ebmeyer, C. & Liu, W. B. 2005 Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplace equations. Numer. Math. 100, 233–258. (doi:10.1007/s00211-005-0594-5)

Ebmeyer, C., Liu, W. B. & Steinhauer, M. 2005 Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains. J. Anal. Appl. 24, 353–237.

Elbert, Á. 1981 A half-linear second order differential equation. In Qualitative theory of differential equations, Vol. I, II (Szeged, 1979) volume 30 of Colloq. Math. Soc. János Bolyai, pp. 153–180. Amsterdam, The Netherlands: North-Holland.

Evans, L. C., Feldman, M. & Gariepy, R. F. 1997 Fast/slow diffusion and collapsing sandpiles. J. Differ. Equ. 137, 166–209. (doi:10.1006/jdeq.1997.3243)

Falcone, M. & Finzi Vita, S. 2006 A finite-difference approximation of a two-layer system for growing sandpiles. SIAM J. Sci. Comput. 28, 1120–1132. (doi:10.1137/050629410)

Igbida, N. 2010 A generalized collapsing sandpile model. Arch. Math. 94, 193–200. (doi:10.1007/s00013-009-0038-z)

Kuijper, A. 2007 Image analysis using p-Laplacian and geometrical PDEs. PAMM 7, 1011201. (doi:10.1002/pamm.200700014)

Lindqvist, P. 1995 Some remarkable sine and cosine functions. Ricerche Mat. 44, 269–290.

Liu, W. 2009 On the stochastic p-Laplace equation. J. Math. Anal. Appl. 360, 737–751. (doi:10.1016/j.jmaa.2009.07.020)

Ötani, M. 1984 A remark on certain nonlinear elliptic equations. Proc. Fac. Sci. Tokai Univ. 19, 23–28.

Prévôt, C. & Röckner, M. 2007 A concise course on stochastic partial differential equations. Berlin, Germany: Springer.

Rossi, J. In press. Tug-of-war games. Games that PDE people like to play. Proc. R. Soc. Edin. A. Zhang, H-Y., Peng, Q-C. & Wu, Y-D. 2007 Wavelet inpainting based on p-Laplace operator. Acta Autom. Sin. 33, 546–549.