Multiwavelength Observations of a Partial Filament Eruption on 13 June 2011

Yanjie Zhang1,2 · Qingmin Zhang1 · Jun Dai1,2 · Dong Li1 · Haisheng Ji1

Received: 8 August 2022 / Accepted: 11 October 2022 / Published online: 25 October 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
In this paper, we report the multiwavelength observations of the partial filament eruption associated with a C1.2 class flare in NOAA active region 11236 on 13 June 2011. The event occurred at the eastern limb in the field of view (FOV) of Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft and was close to the disk center in the FOV of Extreme-UltraViolet Imager (EUVI) onboard the Behind Solar Terrestrial Relations Observatory (STEREO) spacecraft. During eruption, the filament splits into two parts: the major part and the runaway part. The major part flows along closed loops and experiences bifurcation at the loop top. Some of the materials move forward and reach the remote footpoint, while the remainder returns back to the original footpoint. The runaway part flows along open-field lines, which is evidenced by a flare-related type-III radio burst. The runaway part also undergoes bifurcation. The upper branch escapes the corona and evolves into a jet-like narrow coronal mass ejection (CME) at a speed of \(\sim 324\ \text{km s}^{-1}\), while the lower branch falls back to the solar surface. A schematic cartoon is proposed to explain the event and provides a new mechanism of partial filament eruptions.

Keywords Prominences, active · Coronal mass ejections · Magnetic fields, corona

1. Introduction
Prominences are cool and dense plasmas in the solar atmosphere (Labrosse et al., 2010; Mackay et al., 2010; Parenti, 2014). The dense materials are supported by the magnetic-tension force in dips of sheared arcades or twisted flux ropes (Priest, Hood, and Anzer, 1989; Aulanier and Demoulin, 1998; Terradas et al., 2015; Gibson, 2018). Prominences are usually observed in H\(\alpha\), Ca II H, ultraviolet (UV), and extreme-ultraviolet (EUV) wavelengths.

Y.J. Zhang
zhangyj@pmo.ac.cn
Q.M. Zhang
zhangqm@pmo.ac.cn

1 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, Nanjing 210023, China
2 School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
above the solar limb (Berger et al., 2010; Zhang et al., 2012; Schmieder et al., 2014). They are also called filaments on the disk as a result of absorption of the background emissions (Engvold, 1998). High-resolution observations reveal that filaments are composed of ultra-fine dark threads (Lin et al., 2005; Lin, Martin, and Engvold, 2008). A few hours to several days are needed to accumulate sufficient materials at filament channels along polarity inversion lines (PILs) (Karpen et al., 2005; Liu, Berger, and Low, 2012; Yan et al., 2015; Li et al., 2018; Wang et al., 2019). Filaments with dextral (sinistral) chirality are predominant in the northern (southern) hemisphere (Martin, 1998; Ouyang et al., 2017).

Prominences are rich in dynamics, such as counterstreaming flows (Zhou et al., 2020), upflows in dark plumes (Berger et al., 2010; Hillier et al., 2011), rotation (Su et al., 2012b; Li et al., 2015; Huang et al., 2018), small-amplitude oscillations (Okamoto et al., 2007; Ning et al., 2009), and large-amplitude oscillations (Zhang et al., 2012; Zhang, Li, and Ning, 2017; Luna et al., 2018; Dai et al., 2021). After being disturbed, prominences may become unstable and erupt outward (Schmieder, Démoûlin, and Aulanier, 2013; McCauley et al., 2015), producing coronal jets (Sterling et al., 2015; Hong et al., 2016), solar flares (Zhang et al., 2022b), and normal/jet-like coronal mass ejections (CMEs; Nistìcò et al., 2009; Hong et al., 2011; Shen, Liu, and Su, 2012; Panesar, Sterling, and Moore, 2016; Vourlidas et al., 2017; Zhang et al., 2022a). There are basically three types of filament eruptions (Gilbert, Alexander, and Liu, 2007). The first type consists of failed or confined eruptions without CMEs (Ji et al., 2003; Török and Kliem, 2005; Alexander, Liu, and Gilbert, 2006; Liu et al., 2009). A filament rises to the maximum height and falls back to the solar surface as a result of strong compression of the overlying magnetic field. The second type consists of full eruptions associated with CMEs during which a majority of filament material escapes into the interplanetary space (Patsourakos, Vourlidas, and Stenborg, 2010; Song, Li, and Chen, 2022). The third type consists of partial eruptions during which filaments split into two parts with one part being fully erupted and the other staying behind (Gilbert et al., 2000; Gilbert, Holzer, and Burkepile, 2001; Joshi et al., 2014; Bi et al., 2015; Cheng, Kliem, and Ding, 2018). The degree to which a filament is expelled depends on where magnetic reconnection takes place.

Gibson and Fan (2006) performed a three-dimensional (3D) magnetohydrodynamics (MHD) numerical simulation of the partial eruption of a flux rope. After separating from the lower, surviving rope by multiple magnetic reconnections at current sheets, the upper rope escapes to drive a CME. Tripathi et al. (2009) investigated six CMEs with partially erupting prominences, which could well be explained by the partially expelled flux-rope model (Gibson and Fan, 2006, 2008). Liu, Alexander, and Gilbert (2007) noticed the writhing motion and magnetic reconnection of a twisted, kink-unstable filament, which led to the partial filament eruption. The upper part above the reconnection point escaped to form a CME, while the lower part fell back. For the first time, Liu et al. (2012) put forward a scenario of a double-decker filament, in which an upper flux rope is on top of a lower flux rope or a sheared arcade before eruption (see their Figure 12). The magnetic system can be in equilibrium for a few hours or even days until the top flux rope erupts out and the low-lying branch remains stable (Cheng et al., 2014; Kliem et al., 2014; Awasthi, Liu, and Wang, 2019; Zheng et al., 2019; Chen et al., 2021; Pan et al., 2021; Wei et al., 2021). Transfer of magnetic flux by internal reconnection plays a significant role for the upper branch to lose equilibrium and erupt smoothly (Liu et al., 2012). Interestingly, Chen et al. (2018) discovered a filament that split into three branches. The high-lying branch containing a flux rope erupted and produced a two-ribbon flare. The low-lying two branches remained stable. In addition, confined partial eruption of a double-decker filament has been reported, i.e., the upper branch experiences a failed eruption instead of a full eruption (Zheng et al., 2019; Chen et al., 2021).
Recently, high-resolution observations have given us a more detailed understanding of partial eruptions (Liu, Chen, and Wang, 2018; Poisson et al., 2020; Dai et al., 2022). Monga et al. (2021) investigated a filament with bifurcated substructures, and the authors found that the splitting of the filament was induced by the reconnection of the magnetic fields that enveloped the filament with surrounding loops, which confirmed the previous similar results (Li et al., 2016; Xue et al., 2016). Joshi et al. (2022) proposed a two-reconnection process where one takes place below the filament, while another one occurs between the filament-carrying flux rope and the large-scale closed loops, which ultimately prevent the eruption.

Current observation shows that some filament eruptions are involved in the so-called “two-step” process (Byrne et al., 2014; Gosain et al., 2016; Chandra et al., 2017b). In these events, the filament exhibits a slow-rise phase and after reaching a certain height, it would gradually stop and remain stable for an hour (Byrne et al., 2014) or up to a day (Gosain et al., 2016), until a full eruption develops, for which either kink instability or the torus instability is proposed to be the likeliest reason. This usually results in two peaks in EUV and X-ray light curves, suggesting two periods of magnetic reconnection that take place to change the topology of the system first and then facilitate the subsequent flux-rope eruption (Woods et al., 2011; Su et al., 2012a). However, the exact physical connection between these two stages is still unclear.

Zhang et al. (2015) studied a partial filament eruption in NOAA active region (AR) 11283 on 8 September 2011. The S-shaped filament was supported by a sheared arcade under a fan-spine dome related to a magnetic null point. During eruption, the filament split into two parts. The major part reached a maximum height and returned to the solar surface in a bumpy way, which was associated with an M6.7 flare. The runaway part of the filament separated from the major part and escaped from the corona along open-field lines, leading to a weak and narrow CME. The presence of the open field is also verified by a flare-related type-III radio burst. Narrow CMEs usually originate from blowout coronal jets extending to the field of view (FOV) of white-light (WL) coronagraphs (Wang et al., 1998; Shen et al., 2012; Chandra et al., 2017a; Joshi et al., 2018; Duan et al., 2022).

Until now, observation of such partial eruptions is still scarce, which is probably due to the accompanying CME being too weak to be detected (O’Kane et al., 2021). In this paper, we carry out a detailed investigation of a similar event associated with a C1.2 class flare in NOAA AR 11236 (N17 E91) on 13 June 2011. We describe the data analysis in Section 2. The results are presented in Section 3. A schematic cartoon is proposed to illustrate the partial eruption in Section 4. Finally, a brief summary is given in Section 5.

2. Data Analysis

The left and middle panels of Figure 1 show images of the Behind Solar Terrestrial Relations Observatory (STEREO; Kaiser et al., 2008) spacecraft and the Atmospheric Imaging Assembly (AIA; Lemen et al., 2012) onboard the Solar Dynamics Observatory (SDO; Pesnell, Thompson, and Chamberlin, 2012) spacecraft on 13 June 2011, respectively, where the AR 11236 is labeled. The prominence eruption and C1.2 flare occurred at the eastern limb in the field of FOV of SDO/AIA, which takes full-disk EUV images out to 1.3 \(R_\odot \) with a cadence of 12 s and a spatial resolution of 1.2″. The AIA level_1 data were calibrated using the standard Solar Software (SSW) program aia_prep.pro. The eruption was also observed by the ground-based telescope of Big Bear Solar Observatory (BBSO) in the \(H\alpha \) line center (6562.8 Å) with a cadence of 60 s and a spatial resolution of 2.08″. The
corresponding narrow CME was observed by the Large Angle Spectroscopic Coronagraph (LASCO; Brueckner et al., 1995) onboard SOHO spacecraft and recorded by the CDAW CME catalog. The LASCO-C2 coronagraph has a FOV of $2 – 6 \, R_\odot$.

Figure 1(c) shows the positions of the Earth, Ahead (A), and Behind (B) STEREO spacecraft on 13 June 2011. The separation angle of STEREO-B with the Earth was $\sim 92^\circ$. Therefore, the filament in AR 11236 was close to the central meridian in the FOV of Extreme-UltraViolet Imager (EUVI; Wuelser et al., 2004) of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI; Howard et al., 2008) onboard STEREO-B. AIA and EUVI provided an edge-on and a head-on view of the filament eruption, respectively. EUVI takes full-disk images out to $1.7 \, R_\odot$ with a spatial resolution of 3.2 $^\prime\prime$ in 171, 195, 284, and 304 Å. The 195- and 304-Å images have time cadences of 2.5 minutes. Soft X-ray (SXR) light curves of the C1.2 class flare in 0.5 – 4 Å and 1 – 8 Å were recorded by the Geostationary Operational Environmental Satellite (GOES) spacecraft. Hard X-ray (HXR) light curves at 5 – 12 and 12 – 27 keV were observed by the Gamma-ray Burst Monitor (GBM; Meegan et al., 2009) onboard the Fermi spacecraft. A type-III radio burst related to the flare was observed by the S/WAVES instrument (Bougeret et al., 2008) onboard STEREO-B.

3. Results

In Figure 2, the top two rows show the evolution of the prominence observed by AIA in 304 Å (base-difference images) and BBSO in the Hα line center (see also online animation Fig2.mp4). The prominence starts to erupt from AR 11236 at $\sim 00:50$ UT. During eruption, most of the materials, i.e., the major part, rises and flows along closed loops, reaching the opposite (northwest) footpoint (panels (a3–a6)). A minority of materials, i.e., the runaway part, flows out of the corona northeastward along a curved trajectory (S0). That is to say, the filament is divided into the major part and a runaway part. In Hα wavelength, the eruption of the major part is evident as well, while the runaway part is undistinguishable.

The bottom two rows of Figure 2 show the evolution of the filament observed by EUVI-B in 304 and 195 Å. The eruption of the filament generates a flare at the western footpoint (panels (c2 and d2)). The major part flows along closed loops and terminates at the eastern

\[1\text{http://cdaw.gsfc.nasa.gov/CME_list.}\]
Figure 2 From top to bottom: EUV images of the prominence/filament eruption during 00:49 – 01:32 UT observed by AIA 304 Å (base-difference images), BBSO Hα line center, EUVI-B 304 Å, and EUVI-B 171 Å, respectively. Four artificial slices are selected to investigate the kinematics of filament: S0 and S1 in panel (a4), S2 and S3 in panel (c3). The white arrows point to the filament and C1.2 class flare. Arrows in panel (e4) and (c5) are combined to highlight the escaping part of the filament that was too diffuse to be observed in static images but visible in the animation attached to the figure, which is available in the Electronic Supplementary Material (Fig2.mp4). The plus symbols in panels (a2) and (a3) track the leading edge of the erupting filament, which is plotted in Figure 4.

footpoint (panel (c3)), while the runaway part propagates along S2 and shows absorption compared with the background (panel (c4)). Hence, the two parts are clearly demonstrated in EUVI-B as well.

To investigate the kinematics of the two parts, we select four artificial slices in Figure 2: S0 and S1 in panel (a4), and S2 and S3 in panel (c3). S1 and S3 are along closed-field lines. All the slices are 10″ in width. Time–distance diagrams of S1 in AIA 193, 211, 171, and 304 Å are displayed in Figures 3(a2–d2). The time–distance diagram of S3 in EUVI-B 304 Å is displayed in Figure 3(e2). The major part rises rapidly along S1 to the loop top at speeds of 178 ± 11 km s$^{-1}$. Afterwards, part of the material moves forward along the same loops at speeds of 109 ± 7 km s$^{-1}$ and stops at the opposite footpoint around 01:15 UT. However, the residual plasma returns back to the original footpoint continuously at speeds of 110 ± 6 km s$^{-1}$, suggesting that the major part undergoes bifurcation at the loop top.

S0 and S2 are along open-field lines. Time–distance diagrams of S0 in AIA 193, 211, 171, and 304 Å are displayed in Figures 3(a1–d1). The time–distance diagram of S2 in EUVI-B 304 Å is displayed in Figure 3(e1). The filament eruption commenced at ∼ 00:50 UT, while the runaway part began to escape the corona at ∼ 01:09 UT with an apparent speed of 191 ± 5 km s$^{-1}$ (panel (d1)). The runaway part is most evident in 304 Å and slightly visible in 171 Å. In 193 and 211 Å, the runaway part is almost absent, indicating that this part is not
heated to higher temperatures. In addition, some of the plasmas fall back to the solar surface at $\sim 01:30$ UT (panels (d1 and e1)).

As soon as the runaway part enters the FOV of LASCO-C2, it produces a faint jet-like CME with a central position angle of 45° and an angular width of 23°, respectively. Figures 4(a–e) show five running-difference images of LASCO-C2 during 01:36–02:24 UT, in which the leading edges of CME are encircled by magenta ellipses and their heliocentric distances are labeled. We also track the heliocentric distances of the leading edge of

Figure 3 (a1)–(d1) Time-slice diagrams of S0 in AIA 193, 211, 171, and 304 Å. (e1) Time-slice diagram of S2 in EUVI-B 304 Å. The arrows point to the runaway part and the falling part. The velocities of the runaway part and the falling part are labeled, whose units is km s$^{-1}$. (a2)–(d2) Time-slice diagrams of S1 in AIA 193, 211, 171, and 304 Å. (e2) Time-slice diagram of S3 in EUVI-B 304 Å. The apparent velocities of the major part are labeled.
Figure 4 (a)–(e) Running-difference images of the jet-like CME observed by LASCO-C2 during 01:36–02:24 UT. The leading fronts are encircled with magenta ellipses and their heliocentric distances are labeled. (f) Height–time plot of the filament/CME leading edges with blue/magenta cross symbols. The results of a linear fit is overplotted with a dashed line and the linear speed (324 km s\(^{-1}\)) is labeled.

the erupting prominence in AIA 304 Å during 00:52 UT \(\sim\) 01:12 UT, as depicted in Figures 2(a2) and (a3). Figure 4(f) shows the height–time plot of these figures with a linear speed of 324 km s\(^{-1}\) (dashed line). The consistency between the two kinds of figures indicates that the jet-like CME does originate from the erupting filament. While the speed recorded in the CDAW CME catalog is 427 km s\(^{-1}\). The reason for the difference between the two values is that the CME underwent an accelerated process, as illustrated in the CDAW CME catalog, and only the initial process with the visible leading edge is linearly fitted by us. It should be emphasized that the runaway part of the filament along the trajectory of S2 become too faint to be detected as a CME in the FOV of the STEREO-COR1 coronagraph.

In Figure 5, the top panel shows the SXR light curve of the associated C1.2 flare in 1–8 Å (blue line). The flux starts to increase at \(\sim\) 00:50 UT and reaches the first peak at \(\sim\) 00:55:30 UT, which is followed by a second peak at \(\sim\) 00:58:15 UT and a long decay phase until \(\sim\) 01:15 UT. Hence, the lifetime of the flare is \(\sim\) 25 minutes. The light curve in AIA 131 Å, integrated over the box in Figure 1(b), is plotted with a purple line, which is characterized by the same two peaks as in 1–8 Å. The consistency between the light curves in SXR and EUV suggests that both of the peaks are from the same flare with two episodes of energy release, rather than two separate flares. The 131-Å channel light curve, which indicates a significant high-temperature plasma contribution (\(T \approx 10\) MK), tracks the GOES 1–8 Å flux best of all the AIA passbands (Fletcher et al., 2013; Tian et al., 2015). HXR light curves of the flare at 5–12 keV (green line) and 12–27 keV (magenta line) are depicted in Figure 5(b). Two major peaks can also be identified in these energy bands. The two peaks (00:52:10 UT and 00:58:10 UT) at 12–27 keV are denoted by two vertical dashed lines. Since the flare ribbons or kernels were blocked by the eastern limb, HXR emissions at higher-energy bands (> 27 keV) originating from the footpoint sources were negligible.
Figure 5 (a) SXR 1–8 Å light curve (blue line) and EUV 131 Å light curve (purple line) of the C1.2 flare. The vertical dashed lines denote the two peaks at 00:55:30 UT and 00:58:15 UT. (b) HXR light curves of the flare at 5–12 keV (green line) and 12–27 keV (magenta line). The vertical dashed lines denote the two peaks (00:52:10 UT and 00:58:10 UT) at 12–27 keV.

(Liu et al., 2006). Meanwhile, the flare was radio quiet at frequencies of ≥ 1 GHz recorded by the Nobeyama Radio Polarimeters.2

A flare-related type-III radio burst was detected by S/WAVES onboard STEREO-B, as shown in Figure 6. The frequency drifted rapidly from ∼10 MHz to ∼1 MHz during 00:56 – 01:14 UT, which is well consistent with the second peak in HXR. Considering that type-III radio bursts are created by plasma emissions of flare-accelerated nonthermal electron beams propagating outward along an open field, the type-III radio burst around 00:58 UT confirms the existence of an open magnetic field. Combining Figure 4 and Figure 6, it is concluded that the open field provides a tunnel not only for jet-like CME, but also for nonthermal electrons (Krucker et al., 2011; Masson, Antiochos, and DeVore, 2013; Zhang et al., 2015; Wyper, DeVore, and Antiochos, 2018).

4. Plausible Physical Explanation of the Partial Eruption

As mentioned in Section 1, partial filament eruptions are frequently observed. However, an open magnetic field is not involved in previous models (Gilbert et al., 2000; Gilbert, Holzer, and Burkepile, 2001; Gibson and Fan, 2006; Liu et al., 2012). Moreover, internal magnetic reconnection plays an important role in the vertical splitting of a filament into two parts or branches (e.g., Liu, Alexander, and Gilbert, 2007; Chen et al., 2018; Cheng, Kliem, and Ding, 2018). However, the current event on 13 June 2011 and the event on 8 September 2011 (Zhang et al., 2015) are different from these models. On the one hand, an open field

2http://solar.nro.nao.ac.jp/norp/html/daily/.
is present and serves as a tunnel for the runaway part of the filament to escape the corona and evolves into a narrow CME. Type-III radio bursts are produced when flare-accelerated nonthermal electrons propagate along open-field lines. On the other hand, the splitting of a filament is not caused by internal reconnection.

In Figure 7, we draw a schematic cartoon to explain the event. Before eruption, the filament is supported by a magnetic sheared arcade (panel (a)). After being disturbed, such as flux emergence (Chen and Shibata, 2000) or shearing motion (Zhang et al., 2015) at the photosphere, the filament starts to rise. As soon as the filament encounters and collides with the overlying closed field of opposite magnetic polarity, magnetic reconnection takes place and a flare is produced (panel (b)), which corresponds to the first peak in Figure 5. Magnetic reconnection between an ascending filament and high-lying coronal loops has been reported before (Li et al., 2016; Xue et al., 2016; Srivastava, Mishra, and Jelínek, 2021). The nonthermal electrons propagate downward to the chromosphere, where HXR emissions are generated (Brown, 1971). Since nonthermal electrons are restricted to the closed loops at this stage, a type-III radio burst is absent. The major part of the filament flows along the reconnected closed loop, while the remaining filament continues to rise (panel (c)). At the loop top, the major part undergoes bifurcation (panel (d)). Some of the plasmas continue to move forward and reach the remote footpoint (N2), while the residual plasmas fall back to the starting footpoint (P1) (see Figures 3(a2–e2)). Once the remaining filament collides with open-field lines, magnetic reconnection takes place (panel (d)), which corresponds to the second peak in Figure 5. A type-III radio burst is created as the nonthermal electrons escape the corona along open-field lines (Figure 6). Meanwhile, the runaway part of the filament propagates along open-field lines (panel (e)). The interchange reconnection is similar...
Figure 7 A schematic cartoon to illustrate the partial eruption on 13 June 2011. The filament (red clouds) is supported by a magnetic sheared arcade (blue lines). Successive magnetic reconnections take place between the ascending filament and the closed and open-field lines, producing the major part and the runaway part, respectively. Both of these undergo bifurcation. The short blue arrows indicate the directions of mass flows. The two-stage reconnections correspond to the two peaks in the light curves of the related flare.

to jet models where newly emerging flux reconnects with a previously existing open field (Shibata et al., 1992; Moreno-Insertis, Galsgaard, and Ugarte-Urra, 2008; Archontis and Hood, 2013). Interestingly, the runaway part also undergoes bifurcation (panel (f)). Those propagating upward form a jet-like CME (Figure 4), while those flowing downward (falling part) return to the solar surface (Figures 3(a1–e1)). In brief, the splitting of the filament into a major part and a runaway part is not realized by internal reconnection, but by two-step reconnections with the closed field and open field, respectively. Both of the parts experience bifurcation during their evolution, showing a more complex behavior than before. It is noted that although the filaments are supported by sheared arcades in this event and the previous event on 8 September 2011, the two-step magnetic reconnections could also take place sequentially between a filament-carrying flux rope and the overlying closed and open fields. In this circumstance, rotation is expected in the major part and runaway part (Zhang and Ji, 2014; Li et al., 2015; Xue et al., 2016). In addition, there are not necessarily two separate peaks in SXR light curves of the related flare if the two-step reconnections are fast enough.

This model has important implications. First, it shows a new picture and represents a new category of partial eruptions, which is completely different from previous models. Traditionally, the upper part or branch erupts to create a CME, while the lower part or branch remains behind. In our model, the filament at higher latitudes reconnect with closed loops and develop into the major part, which fails to escape. Subsequently, the filament at lower latitudes reconnect with open-field lines and develop into a CME successfully. In a sense, the first-step reconnection removes the constraint from the overlying closed field, which facilitates the eruption of lower-lying filament materials. Secondly, a jet-like narrow CME observed by WL coronagraphs and a “failed” eruption observed on the solar disk may stem from the same partial eruption. Therefore, stereoscopic observations are required to produce a full view of filament eruptions, combining the capabilities of SDO/AIA, SOHO/LASCO, STEREO, Metis (Antonucci et al., 2020) on board Solar Orbiter (Müller et al., 2020), and the Wide-Field Imager for Solar Probe Plus (WISPR; Vourlidas et al., 2016) on board the Parker Solar Probe (PSP; Fox et al., 2016) in the future.
5. Summary

In this paper, we report the multiwavelength observations of the partial filament eruption associated with a C1.2 class flare in AR 11236 on 13 June 2011. The event occurs at the eastern limb in the FOV of SDO/AIA and is close to the disk center in the FOV of EUVI-B. The main results are summarized as follows.

i) During eruption, the filament splits into two parts: the major part and the runaway part. The major part flows along closed loops and experiences bifurcation at the loop top. Some of the materials move forward and reach the opposite footpoint, while others return back to the original footpoint.

ii) The runaway part flows along open-field lines, which is suggested by a flare-related type-III radio burst. The upper branch escapes the corona and evolves into a jet-like narrow CME at a speed of \(\sim 324 \text{ km s}^{-1} \), while the lower branch falls back to the solar surface.

Unlike the well-known mechanisms of partial filament eruption (Gibson and Fan, 2006; Liu et al., 2012), this prominence in our paper became separated during the outward ejection, rather than just at the beginning of the eruption. In our proposed model, the key point is the reconnection of the magnetic structure of a prominence with the surrounding open magnetic fields, which leads to the escape of plasma. While the reconnection with overlying closed magnetic fields (the falling back of the major part) as well as the gravity (the bifurcation of the runaway part) prevents the rest from escaping, which is different from the interchange jet models (Shibata et al., 1992). However, there exist other ways to cause a partial eruption in this scenario, such as the asymmetry of the background magnetic fields with respect to the position of the filament as proposed by Liu et al. (2009), Zhang et al. (2015). Therefore, in the future, partial filament eruptions accompanied by jet-like CME should be given more attention to support this model.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11207-022-02072-8.

Acknowledgments The authors are grateful to the colleagues in Purple Mountain Observatory for their constructive suggestions and comments. SDO is a mission of NASA’s Living With a Star Program. AIA and HMI data are courtesy of the NASA/SDO science teams. STEREO/SECCHI data are provided by a consortium of US, UK, Germany, Belgium, and France. This work is supported by the National Key R&D Program of China 2021 YFA1600500 (2021YFA1600502) and NSFC grants (No. 11790302, 11790300, 11973092).

Author contributions Yanjie Zhang and Qingmin Zhang wrote the manuscript and all figures. All author participated in the discussion and reviewed the manuscript.

Declarations

Competing interests The authors declare no competing interests.
Dai, J., Zhang, Q., Zhang, Y., Xu, Z., Su, Y., Ji, H.: 2021, Oscillations and mass draining that lead to a sympathetic eruption of a quiescent filament. *Astrophys. J.* **923**, 74. DOI. ADS.

Dai, J., Li, Z., Wang, Y., Xu, Z., Zhang, Y., Li, L., Zhang, Q., Su, Y., Ji, H.: 2022, A partial filament eruption in three steps induced by external magnetic reconnection. *Astrophys. J.* **929**, 85. DOI. ADS.

Duan, Y., Shen, Y., Zhou, X., Tang, Z., Zhou, C., Tan, S.: 2022, Homologous accelerated electron beams, a quasi-periodic fast-propagating wave, and a coronal mass ejection observed in one fan-spine jet. *Astrophys. J.* Lett. **926**, L39. DOI. ADS.

Engvold, O.: 1998, Observations of filament structure and dynamics (review). In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astronomical Society of the Pacific Conference Series **150**, 23. ADS.

Fletcher, L., Hannah, I.G., Hudson, H.S., Innes, D.E.: 2013, Flare ribbon energetics in the early phase of an SDO flare. *Astrophys. J.* **771**, 104. DOI. ADS.

Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The solar probe plus mission: humanity’s first visit to our star. *Space Sci. Rev.* **204**, 7. DOI. ADS.

Gibson, S.E.: 2018, Solar prominences: theory and models. Fleshing out the magnetic skeleton. *Living Rev. Solar Phys.* **15**, 7. DOI. ADS.

Gibson, S.E., Fan, Y.: 2006, The partial expulsion of a magnetic flux rope. *Astrophys. J. Lett.* **637**, L65. DOI. ADS.

Gibson, S.E., Fan, Y.: 2008, Partially ejected flux ropes: implications for interplanetary coronal mass ejections. *J. Geophys. Res.* **113**, A09103. DOI. ADS.

Gilbert, H.R., Alexander, D., Liu, R.: 2007, Filament kinking and its implications for eruption and Re-...
Kliem, B., Török, T., Titov, V.S., Lionello, R., Linker, J.A., Liu, R., Liu, C., Wang, H.: 2014, Slow rise and partial eruption of a double-decker filament. II. A double flux rope model. Astrophys. J. 792, 107. DOI ADS.

Krucker, S., Kontar, E.P., Christie, S., Glesener, L., Lin, R.P.: 2011, Electron acceleration associated with solar jets. Astrophys. J. 742, 82. DOI ADS.

Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunär, S., Schmieder, B., Kilper, G.: 2010, Physics of solar prominences: I—spectral diagnostics and non-LTE modelling. Space Sci. Rev. 151, 243. DOI ADS.

Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheinmets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, P., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Memminger, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufi, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI ADS.

Li, X., Yang, S., Chen, H., Li, T., Zhang, J.: 2015, Trigger of a blowout jet in a solar coronal mass ejection associated with a flare. Astrophys. J. Lett. 814, L13. DOI ADS.

Li, L., Zhang, J., Peter, H., Priest, E., Chen, H., Guo, L., Chen, F., Mackay, D.: 2016, Magnetic reconnection between a solar filament and nearby coronal loops. Nat. Phys. 12, 847. DOI ADS.

Li, T., Yang, S., Zhang, Q., Hou, Y., Zhang, J.: 2018, Two episodes of magnetic reconnections during a confined circular-ribbon flare. Astrophys. J. 859, 122. DOI ADS.

Lin, Y., Martin, S.F., Engvold, O.: 2008, Filament substructures and their interrelation. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astronomical Society of the Pacific Conference Series 383, 235. ADS.

Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J.E., Berger, T.E.: 2005, Thin threads of solar filaments. Solar Phys. 226, 239. DOI ADS.

Liu, R., Alexander, D., Gilbert, H.R.: 2007, Kink-induced catastrophe in a coronal eruption. Astrophys. J. 661, 1260. DOI ADS.

Liu, W., Berger, T.E., Low, B.C.: 2012, First SDO/AIA observation of solar prominence formation following an eruption: magnetic dips and sustained condensation and drainage. Astrophys. J. Lett. 745, L21. DOI ADS.

Liu, R., Chen, J., Wang, Y.: 2018, Disintegration of an eruptive filament via interactions with quasi-separatrix layers. Sci. China Ser. G. Phys. Mech. Astron. 61, 6961. DOI ADS.

Liu, W., Liu, S., Jiang, Y.W., Petrovyan, V.: 2006, RHESSI observation of chromospheric evaporation. Astrophys. J. 649, 1124. DOI ADS.

Liu, Y., Su, J., Xu, Z., Lin, H., Shibata, K., Kurokawa, H.: 2009, New observation of failed filament eruptions: the influence of asymmetric coronal background fields on solar eruptions. Astrophys. J. Lett. 696, L70. DOI ADS.

Liu, R., Kliem, B., Török, T., Liu, C., Titov, V.S., Lionello, R., Linker, J.A., Wang, H.: 2012, Slow rise and partial eruption of a double-decker filament. I. Observations and interpretation. Astrophys. J. 756, 59. DOI ADS.

Luna, M., Karpen, J., Ballester, J.L., Muglach, K., Terradas, J., Kucera, T., Gilbert, H.: 2018, GONG catalog of solar filament oscillations near solar maximum. Astron. Astrophys. Suppl. Ser. 236, 35. DOI ADS.

Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI ADS.

Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (invited review). Solar Phys. 182, 107. DOI ADS.

Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82. DOI ADS.

McCauley, P.L., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the solar dynamics observatory: statistical properties, kinematics, and online catalog. Solar Phys. 290, 1703. DOI ADS.

Meegam, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791. DOI ADS.

Monga, A., Sharma, R., Liu, J., Cid, C., Uddin, W., Chandra, R., Erdélyi, R.: 2021, On the partial eruption of a bifurcated solar filament structure. Mon. Not. Roy. Astron. Soc. 500, 684. DOI ADS.

Moreno-Insertis, F., Galsgaard, K., Ugarte-Urra, I.: 2008, Jets in coronal holes: hinode observations and three-dimensional computer modeling. Astrophys. J. Lett. 673, L211. DOI ADS.
