Effects of Insecticidal Ketones Present in Mint Plants on GABA$_A$ Receptor from Mammalian Neurons

Mariela Eugenia Sánchez-Borzone, Leticia Delgado Marin, Daniel Asmed García

Instituto de Investigaciones Biológicas y Tecnológicas (IBYBT), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba 5016, Argentina

Submitted: 31‑01‑2016 Revised: 08‑02‑2016 Published: 06‑01‑2017

ABSTRACT

Background: The genus Mentha, an important member of the Lamiaceae family, is represented by many species commonly known as mint. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests. Among these, the ketone monoterpenes that are most common in different Mentha species demonstrated insect toxicity, with pulegone being the most active, followed by carvone and menthone. Considering that the GABA$_A$ receptor (GABA$_A$-R) is one of the main insecticide targets on neurons, and that pulegone would modulate the insect GABA system, it may be expected that the insecticidal properties of Mentha ketones are mediated by their interaction with this receptor. Objective: In order to discern the pharmacological actions of these products when used as insecticides on mammalian organisms, we evaluated the pharmacologic activity of ketones, commonly present in Mentha plants, on native GABA$_A$-R from rats. Materials and Methods: Determination of ketones effects on allosterically enhanced benzodiazepine binding, using primary cultures of cortical neurons, which express functional receptors and MTT assay to evaluate their cell toxicity. Results: Our results seem to indicate that ketone components of Mentha, with proven repellent or insecticidal activity, were able to behave as GABA$_A$-R negative allosteric modulators in murine cells and consequently could exhibit convulsant activity in mammalians. Only pulegone at the highest assayed concentration (2 mM) showed a significant reduction in cell viability after exposure for 24 hr. Conclusion: The present results strongly suggest that the ketone components of Mentha are able to exhibit convulsant activity in mammalian organisms, but functional assays and in vivo experiments would be necessary to corroborate this proposed action.

Key words: Cell culture, GABA$_A$ receptor, insecticide, ketones, Mentha, toxicity

SUMMARY

• The pharmacological activity of insecticide ketones, commonly present in Mentha plants, was evaluated on native GABA$_A$ receptor from mammalian neurons.
• All studied compounds: pulegone, menthone and dihydrocarvone, were able to behave as negative allosteric modulators and could exhibit convulsant activity in mammalian organisms.
• Cytotoxicity assays demonstrated that only pulegone affected the cell viability.

INTRODUCTION

The genus Mentha, one of the important members of the Lamiaceae family, is represented by many species commonly identified as mint, which has been known for its medicinal and aromatherapy properties. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests.[1] Mentha’s repellent properties against agricultural pests were investigated in a series of experiments by Odeyemi et al.[2] and Kumar et al.[3] Its repellent activity was also demonstrated in mosquito control, and thus for diseases of public health concern such as malaria, yellow fever, dengue, and viral encephalitis.[4–6] Many assays have reported insect mortality caused by Mentha toxicity.[7,8] and some have evaluated its antifeedant activity.[3,9] Species of the genus Mentha have been reported to contain a range of constituents.[10] The monocyclic ketones most commonly found in Mentha species are pulegone, menthone, carvone, and, to a lesser extent, dihydrocarvone.[11,12] The GABA$_A$ receptor (GABA$_A$-R) is a major insecticide target along with the voltage-dependent sodium channel, the nicotinic receptor, and acetylcholinesterase.[13,14] Important insecticides acting at the GABA$_A$-R (e.g., lindane, α-endosulfan, dieldrin, and fipronil) recognize the picrotoxinin site, a noncompetitive antagonist site, to block GABA-induced chloride flux.[15] GABA$_A$-R in mammalian, and even in various insect species, differs a lot in their subunit combinations and sensitivities to different ligands.[16–18] The structure and nature of binding sites in housefly GABA receptors have been shown to be different from those in rat GABA receptors, and the differences may be related to the selectivity of antagonists for housefly versus rat receptor.[19]

Abbreviations used: GABA: gamma aminobutyric acid, GABA$_A$R: GABA$_A$ receptor, MTT: 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan, DMEM: Dulbecco’s modified minimum essential medium, [3H]TBOB: [3H]-t-Butylbicycloorthobenzoate

Correspondence: Dr. Daniel Asmed García, Instituto de Investigaciones Biológicas y Tecnológicas (IBYBT), CONICET-Universidad Nacional de Córdoba, Cátedra de Química Biológica, FCEFYN, Av. Vélez Sarsfield 1611, Córdoba 5016, Argentina. E-mail: dagarcia@efn.uncor.edu

DOI: 10.4103/0973-1296.197838
We described very recently the effects of carvone isomers on the mammalian GABA__R, demonstrating their inhibitory activity on this receptor. In this work, we evaluated the pharmacologic activity of the other monoterpene ketones commonly present in Mentha (pulegone, menthone, and dihydrocarvone; see structures in Figure 1) on native GABA__R from rats by determining their effects on allosterically enhanced benzodiazepine binding using primary cultures of cortical neurons, which express functional receptors,[20,21] in order to discern the pharmacologic activity of these products on mammalian organisms when used as insecticides. We also investigated the possible neurotoxic effects of Mentha components in the same cell culture system at concentrations relevant to their neuroactive ranges.

MATERIAL AND METHODS

Materials

(R)-(+)-Pulegone (purity 99%) (IUPAC name: (5R)-5-methyl-2-propan-2-ylidenecyclohexan-1-one), (–)-menthone (purity 99%) (IUPAC name: (2S,5R)-5-methyl-2-propan-2-ylcyclohexan-1-one), (+)-dihydrocarvone (mixture of isomers: ~77% n-(+)-dihydrocarvone and ~20% iso-(+)-dihydrocarvone) (IUPAC name: 2-methyl-5-prop-1-en-2-ylcyclohexan-1-one), γ-aminobutyric acid (GABA), picrotoxin, 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyIormazam (MTT), Dulbecco’s modified minimum essential medium (DMEM), trypsin, soybean trypsin inhibitor, DNase, amino acids, and poly-l-lysine were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). Fetal calf serum was obtained as insecticides. We also investigated the possible neurotoxic effects of Mentha components in the same cell culture system at concentrations relevant to their neuroactive ranges.

Cell cultures

Primary cultures of cortical neurons were prepared from the cerebral cortices of 17-day-old rat fetuses, as previously described.[20] The cell suspension (1.6 × 10^6 cells/ml) was seeded in 24× or 96× multiwell plates, according to the experiment, precoated with poly-l-lysine and finally incubated for 6–7 days in a humidified 5% CO_2/95% air atmosphere at 37°C. Twenty millimolar cytosine arabinoside was added after 48 h in culture to prevent glial proliferation.

[3H]Flunitrazepam binding

The benzodiazepine binding to intact cultured cortical neurons was determined as previously described,[20] using nearly 2.0 nM [3H] flunitrazepam. Seven hundred fifty micromolar of ketones and variable concentrations of GABA, between 0 and 200 μM, were added to the incubation media for 30 min of incubation at 25 °C. Nonspecific binding was determined in the presence of 20 μM diazepam.

Cell viability

After 6–7 days in vitro, the cells were exposed to different concentrations of each compound for 30 min or 24 h. Ketones were added after solubilization in 0.2 ml of culture medium previously extracted from each well. Cell viability was determined by measuring the reduction of MTT to a colored formazan salt by mitochondrial reducing activity, as described previously.[20]

Data analysis

Data shown represent the mean ± standard error of mean (SEM). Sigmoid curves were fitted to concentration response data and statistical analyses were performed using GraphPad Prism (GraphPad Software Inc., San Diego, CA, USA). The two-tailed Student’s t-test and one-way ANOVA were used to compare data. A P value less than 0.05 was considered to be statistically significant.

RESULTS AND DISCUSSION

Effects of Mentha ketones on the benzodiazepine binding enhanced by GABA

To evaluate the activity of Mentha ketones on native GABA__R from mammals, their effects were observed on [3H]flunitrazepam binding stimulated by the agonist GABA in primary cultures of rat cortical neurons. The results demonstrated that GABA was able to enhance radioligand binding in a dose-dependent manner as expected, showing an EC_{50} value of 4.4 μM [Figure 2 and Table 1]. This result is consistent with that reported previously.[20,21] All Mentha ketones studied in the present work were able to right shift the concentration–response curve of the effect of GABA on [3H]flunitrazepam binding. At the beginning of each curve, pulegone and dihydrocarvone showed a negative effect in the absence of GABA (control samples), while menthone induced an increase; later, all ketones slowly enhanced the binding as the GABA concentration increased. Fitting the data to sigmoid curves revealed a rise in the EC_{50} value for the GABA-induced increase in [3H] flunitrazepam binding to 123.7, 64.8, and 66.7 μM in the presence of pulegone, menthone, and dihydrocarvone, respectively. At the same time, the maximum response induced by GABA 200 μM (174% with respect to basal) was significantly reduced by all ketones [Figure 2 and Table 1] (P < 0.05, one-way ANOVA). Taking into account these effects, we can clearly consider all Mentha compounds as negative allosteric modulators, at least on mammalian neurons. It should be noted that the allosteric behavior of the receptor was tested by determining the improvement of [3H]flunitrazepam binding exerted by GABA and its reduction by a noncompetitive GABA antagonist.

Pulegone is used as a flavoring agent, in perfumery and aromatherapy,[1] and an enantiomeric form ((R)-(++)-pulegone) was described as a psychoactive compound with the profile of an analgesic drug.[24] Tong and Coats[25] suggested that pulegone and other monoterpenoids act as positive allosteric modulators of the GABA__R in insects. However, this result supported by the 36Cl uptake enhancement did not correlate very well with the increase found in [3H]TBOB binding in the same work, since a reducing effect should be expected according to their suggested function as GABA allosteric agonist. The inhibitory effect of pulegone on GABA-stimulated [3H]flunitrazepam binding described in the present work clearly indicates its activity as a negative allosteric modulator in murine cortical neurons. In another report, Bessette[26] described opposite effects of pulegone on [3H]TBOB binding in house...
Concentration–response curves for the \[
3^5\text{Hf}2
\] binding to GABA \(_A\)-R would be necessary to identify the exact binding site(s) of the ketones. Thus, the present results strongly suggest that the ketone components of Mentha are able to exhibit convulsant activity in mammalian organisms, but functional assays and \textit{in vivo} experiments would be necessary to corroborate this proposed action.

Acknowledgement

This work was partially financed with grants from SECyT-Universidad Nacional de Córdoba, FONCYT (Argentina) and CONICET (Argentina). MSB and DAG are career investigators of CONICET, and LDM holds a fellowship from the same institution.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Kumar P, Mishra S, Malik A, Satya S. Insecticidal properties of Mentha species: a review. Ind Crops Prod 2011;34:892-17.

2. Odere YO, Masika P, Afelayan AJ. Insecticidal activities of essential oil from the leaves of Mentha longifolia L. subsp. capensis against Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae). Afr Entomol 2008;16:220-5.

3. Kumar A, Shukla R, Singh P, Singh AK, Dubey NK. Use of essential oil from Mentha arvensis L. to control storage moulds and insects in stored chickpea. J Sci Food Agric 2009;89:2643-9.
MARIELA EUGENIA SÁNCHEZ-BORZONE, et al.: Effects of insecticidal ketones on GABA\(_A\) receptor

4. Ansari MA, Vasudevan P, Tandon M, Razdan RK. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Biocesour Technol 2000;72:267-71.
5. Erler F, Ulug I, Yalcinkaya B. Repellent activity of five essential oils against Culex pipiens. Fitoterapia 2006;77:491-4.
6. Trimpan AK, Pajapati V, Ahmad A, Aggarwal KK, Kharuna SPS. Piperitenone oxide as toxic, repellent, and reproduction retardant toward malarial vector Anopheles stephensi (Diptera: Anophelinae). J Med Entomol 2004;41:691-8.
7. Lamini A, Aloulou S, Benjilali B, Benrada M. Insecticidal effects of essential oils against Hessian fly, Mayetiolra destructor (Say). Field Crop Res 2001;71:9-15.
8. Aroutee H. Control of greenhouse whitefly (Trialeurodes vaporarion) by thyme and peppermint. KMITL Sci J 2005;5:511-4.
9. Koschier EH, Sedy KA, Novak J. Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci. Crop Prot 2002;21:419-25.
10. Shaq Ali M, Saleem M, Ahmad W, Parvez M, Yamdagni R. A chlorinated monoterpane ketone, acylated l-sitosterol glycosides and a flavonane glycoside from Mentha longifolia (Lamiaceae). Phytochemistry 2002;59:889-95.
11. Joshi RK. Pulegone and menthone chemotypes of Mentha spicata Linn. from Western Ghats region of North West Karnataka, India. Natl Acad Sci Lett 2013;36:349-52.
12. Chowdhury JU, Nandi NC, Uddin M, Rahman M. Chemical constituents of essential oils from two types ofSpearmint (Mentha spicata L. and M. cardaca L.) introduced in Bangladesh. Bangl J Sci Indus Res 2007;42:79-82.
13. Bloomquist JR. Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol 2003;54:145-56.
14. Casida JE, Quistad GB. Golden age of insecticide research: past, present, or future? Annu Rev Entomol 1998;43:1-16.
15. Chen L, Xue L, Giacomini KM, Casida JE. GABA receptor open-state conformation determines non-competitive antagonist binding. Toxicol Appl Pharmacol 2011;250:221-8.
16. Ozse Y, Ninia K, Matsumoto K, Ikeda I, Mochida K, Ogawa C. Actions of cyclic esters, S-esters, and amides of phenyl- and phenylthiophosphonic acids on mammalian and insect GABA-gated chloride channels. Bioorg Med Chem 1998;6:73-83.
17. Sattelle DB, Lumms SR, Wong JH, Rauh J. Pharmacology of insect GABA receptors. Biochem Pharmacol 2004;506:9-16.
18. Hall AC, Turcotte CM, Betts BA, Yeung WY, Agyerman AS, Burik LA. Modulation of human GABAA and glycine receptor currents by menthol and related monoterpenoids. Eur J Pharmacol 2004;506:9-16.
19. de Sousa DP, de Sousa Oliveira F, de Almeida RN. Evaluation of the central activity of hydroxymethylcyclohexanone. Biol Pharm Bull 2006;29:811-2.
20. Pizzolitto RP, Herrera JM, Zaio YP, Dambolena JS, Zunino MP, Gallucci MN. Bioactivities of ketones terpenes: antifungal effect on F. verticillioides and repellents to control insect fungai vector. S. zeamais. Microorganisms 2015;3:851-65.
21. Franzos G, Mineo P, Hatzimichalou E, Kral J, Scouras ZG, Maniagani-Tsipidou P. Insecticidal and genotoxic activities of mint essential oils. J Agric Food Chem 1997;45:2690-4.
22. Herrera JM, Zunino MP, Dambolena JS, Pizzolitto RP, Galan NA, Lucini E. Terpene ketones as natural insecticides against Sitophilus zeamais. Ind Crops Prod 2015;70:435-42.
23. Gordon WP, Forte AJ, McMurry RJ, Gal J, Nelson SD. Hepatotoxicity and pulmonary toxicity of pennroyal oil and its constituent terpenes in the mouse. Toxicol Appl Pharmacol 1982;65:413-24.
24. Mathiesen S, Slattert JT, Nelson SD. Contribution of mentholuric the hepatotoxicity of pulegone: assessment based on matched area under the curve and on matched time course. J Pharmacol Exp Ther 1988;244:825-9.
25. Mookhey B, Madyastha P, N. Madyastha KM. Destruction of rat liver microsomal cytochrome P450 in vitro by a monoterpane ketone, pulegone, a hepatotoxin. Indian J Chem Sect B 1991;30:138-46.
26. Madsen CB, Wortzen G, Carstensen J. Short term toxicity study in rats dosed with menthone. Toxicol Lett 1986;32:147-52.
27. Yerramsetty KM, Rachakonda VK, Neely BJ, Madhally SV, Gaseem KAM. Effect of different enhancers on the transdermal permeation of insulin analog. Int J Pharm 2010;398:83-92.
28. Sanchez-Borzone M, Delgado-Marín L, García DA. Inhibitory effects of carvone isomers on the GABA\(_A\) receptor in primary cultures of rat cortical neurons. Chirality 2014;26:368-72.