Solutions to Knizhnik-Zamolodchikov equations with coefficients in non-bounded modules

Kenji Iohara*, Feodor Malikov†‡
Department of Mathematics, Kyoto University, Kyoto 606 Japan

Received:

Abstract

We explicitly write down integral formulas for solutions to Knizhnik-Zamolodchikov equations with coefficients in non-bounded – neither highest nor lowest weight – sl_{n+1}-modules. The formulas are closely related to WZNW model at a rational level.

1 Introduction

Let \mathfrak{g} be a finite-dimensional simple Lie algebra, $\hat{\mathfrak{g}}$ the corresponding non-twisted affine Lie algebra. Let λ be a weight of \mathfrak{g}, $M(\lambda, k)$ ($M(\lambda, k)^c$) be the Verma (contragredient Verma) module over $\hat{\mathfrak{g}}$ with the central charge k; for a \mathfrak{g}-module V be denote by $V((z))$ the module of formal Laurent series in z with coefficients in V, regarded as a $\hat{\mathfrak{g}}$-module with the central charge equal to 0.

Vertex operator is a $\hat{\mathfrak{g}}$-linear map

$$\Phi(z) : M(\lambda_1, k) \rightarrow M(\lambda_2, k)^c \otimes V((z)).$$ (1)

If highest weights $(\lambda_1, k), \cdots (\lambda_{N+1}, k)$ are generic then $M(\lambda_i, k) \approx M(\lambda_i, k)^c$, $1 \leq i \leq N+1$ and one may consider a product of vertex operators $\Phi_N(z_N) \cdots \Phi_1(z_1)$. Matrix element $\langle v_{\lambda_{N+1}}^*, \Phi_N(z_N) \cdots \Phi_1(z_1)v_{\lambda_1} \rangle$
related to vacuum vectors is called a correlation function. One of the central
results of conformal field theory (see [1]) is that a correlation function satisfies
a remarkable system of Knizhnik-Zamolodchikov equations. We prepare no-
tations in order to write down the trigonometric form of Knizhnik-Zamolodchikov
equations.

Let

$$\mathfrak{g} = \mathfrak{h} \oplus \oplus_{\alpha \in \Delta} \mathfrak{g}_\alpha$$

be a root space decomposition. Fix an invariant inner product on \mathfrak{g} and a basis
$\{h_i \in \mathfrak{h}, g_\alpha \in \mathfrak{g}_\alpha : 1 \leq i \leq n, \alpha \in \Delta\}$ of \mathfrak{g} so that $(h_i, h_j) = \delta_{i,j}$, $(g_\alpha, g_\beta) = \delta_{\alpha, -\beta}$. For each $\mu \in \mathfrak{h}^*$ denote by h_μ an element of \mathfrak{h} satisfying (and uniquely
determined) by the condition $(h_\mu, h) = \mu(h)$.

Set

$$r = \frac{1}{2} \sum_{i=1}^{n} h_i \otimes h_i + \sum_{\alpha \in \Delta} g_\alpha \otimes g_{-\alpha}.$$

Being an element of $U(\mathfrak{g}) \otimes U(\mathfrak{g})$ r naturally acts on a tensor product of 2
\mathfrak{g}–modules. There are N^2 different ways to make it act on a tensor product of
N \mathfrak{g}–modules via the following N^2 embeddings of $U(\mathfrak{g})^{\otimes 2}$ in $U(\mathfrak{g})^{\otimes N}$: each of
them is associated to a pair of numbers $1 \leq i, j \leq N$ and sends

$$U(\mathfrak{g})^{\otimes 2} \ni \omega \mapsto \omega_{ij} \in U(\mathfrak{g})^{\otimes N},$$

so that

$$r(z_i, z_j) = \frac{n_{ij}z_i + n_{ji}z_j}{z_i - z_j}. $$

For a pair $1 \leq i, j \leq N$ introduce the following function in 2 complex
variables with values in $U(\mathfrak{g})^{\otimes N}$:

$$r(z_i, z_j) = \frac{n_{ij}z_i + n_{ji}z_j}{z_i - z_j}.$$

Theorem 1.1 (Knizhnik, Zamolodchikov) The correlation function

$$\Psi(z) = \langle v_{\lambda_{N+1}}^* \Phi_N(z_N) \circ \cdots \circ \Phi_1(z_1)v_{\lambda_1} \rangle$$

satisfies the following system of differential equations

$$\begin{align*}
(k + h^\vee)z_i \frac{\partial \Psi}{\partial z_i} &= \left\{ \sum_{j \neq i} r_{ij}(z_i, z_j) - \frac{1}{2}(\lambda_1 + \lambda_{N+1} + 2\rho)^{(i)} \right\} \Psi, \\
1 \leq i \leq N,
\end{align*}$$

where h^\vee is the dual Coxeter number of \mathfrak{g} and for each $\mu \in \mathfrak{h}^*$ $\mu^{(i)}$ stands for the
operator acting on $V_1 \otimes \cdots \otimes V_N$ as h_μ applied to the i–th factor of $V_1 \otimes \cdots \otimes V_N$.
Solutions to KZ equations

To keep track of the parameters we will be referring to (2) as $KZ(\lambda_{N+1}, \lambda_1)$.

The deep theory of KZ equations has been developed by several authors (see e.g. [2, 3, 4, 5]) in the case when V_i are highest weight modules. It has also been realized that this theory is relevant to physics applications in the case when (λ_i, k) is either integral or generic. Indeed, if conflicting with the above assumptions, some of $M(\lambda_i, k)$ are reducible then the product $\Phi_N(z_N) \circ \cdots \circ \Phi_1(z_1)$ does not exist unless each of the operators $\Phi_i(z_i)$ can be pushed down to a map

$$\Phi_i(z_i) : L(\lambda_i, k) \to L(\lambda_{i+1}, k) \otimes V_i((z_i)),$$

where $L(\lambda, k)$ stands for an irreducible highest weight module with the highest weight (λ, k). In the case when (λ, k) is an admissible weight (for example, dominant integral weight) the last condition reduces to the singular vector decoupling condition: matrix elements of $\Phi_i(z_i)$ related to singular vectors of $M(\lambda_i)$ vanish. It is known that if each (λ_i, k) is dominant integral then everything goes through nicely, in particular, the Schechtman-Varchenko integral solutions to (2) come from products of vertex operators (3). However if the central charge is not integral it has been realized (see also [8, 9]) that the singular vector decoupling condition implies that V_i is neither highest nor lowest weight module. Though some results for such models were obtained in [8, 9], where in particular the connection to quantum hamiltonian reduction was revealed, not much is known about KZ equations in this case.

In [11] a new method of constructing solutions to (2) was proposed which seems to be relevant to the problem. Let G be a complex Lie group related to g, $F = G/B$ be a flag manifold and $F^0 \subset F$ be the big cell. There is a family of embeddings of g into the algebra of order 1 differential operators on F^0

$$\pi_\mu : g \to Diff^1(F^0), \ \mu \in \mathfrak{h}^*.$$

This makes the space of analytic functions on F^0 into a huge g–module. Different g–closed subspaces give realization of different g–modules. For example, contragredient Verma modules are realized in the space of polynomials on F^0, μ being the highest weight and a constant function being a highest weight vector; this observation has been extensively used recently with regards to Wakimoto modules [12, 13, 14]. The spaces of multi-valued functions give modules with quite different properties, the simplest example being that of \mathfrak{sl}_2: in this case the big cell is \mathbb{C}, contragredient Verma modules are realized in $\mathbb{C}[x]$; the space $x^\nu \mathbb{C}[x, x^{-1}], \ \nu \in \mathbb{C}$ is also closed under the action of \mathfrak{sl}_2 and the embedding $\pi_\mu, \ \mu \in \mathbb{C}$ makes it into generically irreducible \mathfrak{sl}_2–module. This module is transparently neither highest nor lowest weight one.

Regarding V in (2) as a g–module realized in functions on the big cell one identifies elements of $V((z))$ with functions of 2 groups of variables: x and z, where x stands for a (vector) coordinate on the big cell and z is a coordinate on \mathbb{C}. Likewise, the correlation function

$$\Psi(z) = \langle v_\lambda^{\ast_{N+1}}, \Phi_N(z_N) \circ \cdots \circ \Phi_1(z_1) v_{\lambda_1} \rangle$$
is identified with a function of \(x^{(1)}, \ldots, x^{(N)}; z_1, \ldots, z_N\) where \(x^{(i)}\) is a coordinate on the \(i\)-th copy of the big cell, \(z_i \in \mathbb{C}\), \(1 \leq i \leq N\). One of the advantages of this functional realization is that the embedding \(\pi_\lambda : \mathfrak{g} \to Diff_1(F^0)\) lifts to the mapping of the group \(G\): for \(g \in \mathfrak{g}\) the exponent \(\exp(-tg)\) is a well-defined operator.

Let \(W\) be the Weyl group of \(\hat{\mathfrak{g}}\), \(w = r_{m_1}r_{m_2} \cdots r_{m_l} \in W\) be a decomposition (not necessarily reduced), where \(r_m\) denotes the reflection at the corresponding simple root. Set,

\[
\beta_j = \frac{2(r_{m_{i+2}} \cdots r_{m_{i+1}}, \lambda_1, \alpha_{m_{i+1}})}{(\alpha_{m_{i+1}}, \alpha_{m_{i+1}})} + 1, \quad 1 \leq j \leq l.
\]

Given

\[
\Psi_{\text{old}}(z) = \langle v_{\lambda_{N+1}}, \Phi_N(z_N) \circ \cdots \circ \Phi_1(z_1)v_{\lambda_1} \rangle,
\]

set

\[
\Psi_{\text{new}} = \prod_{j=1}^l \Gamma(-\beta_j)^{-1} \int \{ \exp(-t_1 F_{m_1}) \cdots \exp(-t_l F_{m_l}) \Psi_{\text{old}} \} \prod_{j=1}^l t_j^{-\beta_j-1} dt_1 \cdots dt_l,
\]

where the integration is carried out over an arbitrary cycle of the highest homology group related to the multi-valued integrand. In (4) it is set that \(E_i, F_i, H_i, 0 \leq i \leq rk \mathfrak{g}\) are canonical Cartan generators of \(\hat{\mathfrak{g}}\) and \(E_i, F_i, H_i, 1 \leq i \leq rk \mathfrak{g}\) are the ones coming from the inclusion \(\mathfrak{g} \subset \hat{\mathfrak{g}}\).

Theorem 1.2 \([11]\) \(\Psi_{\text{new}}\) is a solution to \(KZ(\lambda_{N+1}, w \cdot \lambda_1)\).

Theorem 1.2 works as follows: given a solution to \(KZ\) it generates new ones labelled by elements of the affine Weyl group. In our notations the simplest solution to \(KZ(\lambda_{N+1}, \lambda_1)\) is given by

\[
^\circ \Psi_{\text{old}} = \prod_{i,j} (z_i - z_j)^{2(\mu_i, \mu_j)/(k+h^\vee)}(z_i z_j)^{-(\mu_i, \mu_j)/(k+h^\vee)} \times \prod_{i} z_i^{(\lambda_i + \lambda_{N+1} + 2p, \mu_i)/2(k+h^\vee)},
\]

where \(\mu_i\) is a highest weight of \(V_i, 1 \leq i \leq N\). In particular, \(^\circ \Psi_{\text{old}}\) is independent of \(x\)'s. The purpose of this paper is to explicitly write down the integral

\[
\Psi_{\text{new}} = ^\circ \Psi_{\text{old}} \times \prod_{j=1}^l \Gamma(-\beta_j)^{-1} \int \{ \exp(-t_1 F_{m_1}) \cdots \exp(-t_l F_{m_l}) \} t_j^{-\beta_j-1} dt_1 \cdots dt_l,
\]

for \(\mathfrak{g} = sl_{n+1}\), generalizing the calculation carried out in \([11]\) for \(sl_2\).
Remark. The integral representation of Ψ_{new} in Theorem 1.2 is nothing but the conventional definition of $F_{m_1}^{\beta_1} \cdots F_{m_l}^{\beta_l} \cdot \Psi_{old}$. The latter comes from looking at the “matrix element”

$$\langle \phi_{N+1}^* \Phi_N(z_N) \circ \cdots \circ \Phi_1(z_1) F_{m_1}^{\beta_1} \cdots F_{m_l}^{\beta_l}, \Psi_{old} \rangle.$$

Though the expression $F_{m_1}^{\beta_1} \cdots F_{m_l}^{\beta_l} \cdot \Psi_{old}$ is not understood as an element of $M(\lambda_1, k)$, the powers are chosen in such a way that it formally satisfies the singular vector conditions [11, 15], which makes the statement of Theorem 1.2 almost obvious.

One can similarly consider an expression

$$\langle E_{m_1}^{\beta_1'} \cdots E_{m_l}^{\beta_l'} v_{\lambda_1}^* \Phi_N(z_N) \circ \cdots \circ \Phi_1(z_1) v_{\lambda_1}, \Psi_{old} \rangle,$$

for appropriate $\beta_1', \cdots, \beta_l'$ and write down another solution in the form close to (4) but with F’s replaced with E’s or combine both methods or, finally, apply them to other solutions obtained in [4, 8, 9].

As to relation of our solution (4) to correlation functions, we have been able to verify in simplest cases that (4) indeed gives a matrix element of a product of vertex operators and hope that (4) will prove useful for investigation of other rational level models.

Acknowledgements. Our thanks are due to M.Jimbo for his interest in the work. Results of the work were announced when F.M. visited the National Laboratory for High Energy Physics in Tsukuba. F.M. is obliged to H.Awata and Y.Yamada for their hearty hospitality and interesting discussions.

2 Integral formulas for solutions of $KZ(\lambda_{N+1}, \lambda_1)$

2.1 Main result

Here we are going to write down the integral (3) in the case of $g = sl_{n+1}$, $\hat{g} = sl_{\infty+1}$. In this case there are $3(n+1)$ Cartan generators $E_i, F_i, H_i, 0 \leq i \leq n$, where $E_i, F_i, H_i, 1 \leq i \leq n$ are the ones coming from the inclusion $g \subset \hat{g}$. Explicitly the generators are described as follows. If $e_{ij} = (a_{ij})$ is an $(n+1)$ matrix then $E_i = e_{ii+1}, F_i = e_{i+1i}, H_i = e_{ii} - e_{i+1i+1}, 1 \leq i \leq n$ and $E_0 = e_{n+11} \otimes z, F_0 = e_{1n+1} \otimes z^{-1}$ (see [16] for details). The g–weight μ is considered as a vector (μ_1, \ldots, μ_n), $\mu_i = \mu(H_i)$. The embedding

$$\pi_\mu : sl_{n+1} \rightarrow Diff^1(F^0), \mu = (\mu_1, \ldots, \mu_n)$$

is calculated in [12] (see also [13]). To recall this result we choose coordinates of the big cell F^0 to be $\{x_{ij} : 1 \leq i < j \leq n\}$ identifying as usual the big cell
Solutions to KZ equations

with the subgroup of matrices

\[
\begin{pmatrix}
1 & x_{11} & \cdots & \cdots & x_{1n} \\
1 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 1 & 1
\end{pmatrix}
\]

For \(1 \leq i \leq n\) set

\[\partial x_{ij} := \frac{\partial}{\partial x_{ij}}.\]

Then \(\pi_\mu\) acts on Cartan generators by

\[E_i \mapsto -\partial x_{ii} - \sum_{j=i+1}^n x_{i+1,j} \partial x_{ij},\]

\[F_i \mapsto x_{ii} \left(\sum_{j=1}^i x_{ji} \partial x_{ji} - \sum_{j=1}^{i-1} x_{ji-1} \partial x_{ji-1} \right) - \sum_{j=i+1}^n x_{ij} \partial x_{i+1,j} + \sum_{j=1}^{i-1} x_{ji} \partial x_{ji-1} + \mu_i x_{ii}.\]

Here \(x_{ij} = 0\) unless \(1 \leq i \leq j \leq n\).

The matrix \(e_{1n+1}\) may be written as

\[e_{1n+1} := [\cdots [E_1, E_2], \cdots], E_n].\]

Using the above formulas one proves the following

Lemma 2.1

\[\pi_\mu(e_{1n+1}) = -\partial x_{1n}.\]

From now on till the end of this section we omit writing \(\pi_\mu\) identifying Lie algebra elements with their images under \(\pi_\mu\).

The action of the Lie algebra \(\hat{g}\) on a function on \(F^0 \times \mathbb{C}^*\) is determined by the evaluation map \(g \otimes z^k \mapsto z^k g\). In particular

\[F_0 = e_{1n+1} \otimes z^{-1} \mapsto -z^{-1} \partial x_{1n}.\]

The result of exponentiation of these formulas is given by

Lemma 2.2
(i) If $\mu = 0$ then

1) $\exp(-tF_0) : x_{kl} \mapsto \begin{cases} z^{-1}t + x_{1n} & \text{for } l = i \\ x_{kl} & \text{otherwise} \end{cases}$

2) $\exp(-tF_i) : x_{kl} \mapsto \begin{cases} -(x_{ki} - x_{k-1}x_{ii})t + x_{ki-1} & \text{for } l = i - 1 \\ x_{il} + x_{i+1l} & \text{for } k = i + 1 \\ x_{kl} & \text{otherwise} \end{cases}$

(ii) Generically

$$\exp(-tF_i)\cdot\psi(x) = (1 + x_{ii}t)^{\mu_i}\psi(x'), \ 1 \leq i \leq n$$

where x' is given by the substitution of the item (i) while action of F_0 is independent of μ.

Proof

If $\mu = 0$ then all F’s are vector fields. The problem of evaluating an exponent of a vector field is, actually, a problem of the theory of ordinary differential equations: the exponent of a vector field is an element of a 1-parametric family of diffeomorphisms generated by the vector field and, therefore, is given by a general solution to the corresponding system of o.d.e.’s. In our case the system and the solution are (resp.)

1):

$$\dot{x}_{kl} = \delta_{l1}\delta_{kn}z^{-1} \implies x_{1n} = z^{-1}t + x_{1n};$$

2):

$$\begin{align*}
\dot{x}_{ii} &= x_{ii}^2 \\
\dot{x}_{ji} &= x_{ii}x_{ji} \\
\dot{x}_{ji-1} &= x_{ji} - x_{ji-1}x_{ii} \\
\dot{x}_{i+1j} &= -x_{ij} x_{ij} = 0 & \text{for } j \geq i + 1
\end{align*}$$

which completes proof of the item (i). As to the item (ii), one shows that any order 1 differential operator is conjugated to a vector field by the multiplication by a function it annihilates. This implies (ii) since $F_i \cdot (x_{ii}^{-\mu_i}) = 0$. Q.E.D.

Now by using all this one can calculate the integrand of (5). But to formulate the result it is convenient to give some more notations.

Set

$$T = (t_{ij}) := \begin{pmatrix} x_{11} & \cdots & \cdots & x_{1n} \\
1 & \ddots & \vdots & \\
\vdots & \ddots & \ddots & \\
0 & \cdots & 1 & x_{nn} \end{pmatrix}.$$
for $1 \leq i_k \leq i_{k-1} \leq \cdots \leq i_1 \leq j$, $j + k \leq n + 1$,

$$I^j_{i_1, i_2, \ldots, i_k} := \{ j + 1 - i_1, j + 2 - i_2, \ldots, j + k - i_k \}$$

$$J^j_k := \{ j, j + 1, \ldots, j + k - 1 \}$$

$$T^j_{i_1, i_2, \ldots, i_k} := (i_{j})_{i \in I^j_{i_1, i_2, \ldots, i_k}, j \in J^j_k}$$

$$Q^j_{i_1, i_2, \ldots, i_k} := \left\{ \begin{array}{ll}
\det(T^j_{i_1, i_2, \ldots, i_k}) & \text{for } k > 0 \\
1 & \text{for } k = 0
\end{array} \right.$$

Introduce a collection of functions on the big cell along with an ordering on it.

Definition We write $Q^j Q^i \xrightarrow{F} Q'$

$$\Leftrightarrow \exp(-tF_l)Q^j_{i_1, i_2, \ldots, i_k} = \left\{ \begin{array}{ll}
\frac{1}{1 + x_{i_l} t} \left\{ Q' t + Q^j_{i_1, i_2, \ldots, i_k} \right\} & \text{for } l = j \\
Q' t + Q^j_{i_1, i_2, \ldots, i_k} & \text{for } l \neq j
\end{array} \right.$$

In the definition it is assumed that $\mu = 0$.

Lemma 2.3

1) $Q^j_{i_1, i_2, \ldots, i_k} \xrightarrow{F_{j+r-1-i_r}} Q^j_{i_1, i_2, \ldots, i_r+1, \ldots, i_k}$ for $1 \leq r \leq k$

2) $Q^j_{i_1, i_2, \ldots, i_k} \xrightarrow{F_{j+k}} Q^j_{i_1, i_2, \ldots, i_k, 1}$ for $k \geq 0$

3) $Q^j_{i_1, i_2, \ldots, i_{n+1-j}} \xrightarrow{F_{n-j}} (-1)^{n-j} Q^j_{i_2-1, \ldots, i_{k'}, -1} z^{-1}$ where $k' - 1 := \sharp \{ r : r > 2, i_r > 1 \}$

Otherwise, $Q \xrightarrow{F_i} 0$

The proof of this lemma is a standard calculation of linear algebra using Lemma 2.2, in particular we use Laplace expansion of a certain determinant to prove 2).

The above definition suggests to introduce the following $n + 1$-colored graph Γ. The set of vertices of Γ is the set of all $Q \neq 0$ such that

$$1 \xrightarrow{F_{j_1}} Q_1 \xrightarrow{F_{j_2}} Q_2 \rightarrow \cdots \rightarrow Q_{r-1} \xrightarrow{F_{j_r}} Q$$

for some j_1, \ldots, j_r. It follows from Lemma 2.3 that each vertex is of the form $(-1)^{(n-j)r} Q^j_{i_1, i_2, \ldots, i_k} z^{-r}$. Define a function on the set of vertices by

$$l((-1)^{(n-j)r} Q^j_{i_1, i_2, \ldots, i_k} z^{-r}) = (n + 1)r + \sum_{p=1}^{k} i_p.$$
Solutions to KZ equations

Two vertices P, Q are connected by an edge of the color i if and only if

$$P \xrightarrow{E_i} Q.$$

With any vertex $Q \in \Gamma$ associate a set $\mathcal{P}(Q)$ of all oriented paths connecting 1 and Q.

Lemma 2.4 All $\gamma \in \mathcal{P}((-1)^{(n-j)r}Q^j_{i_1, i_2, \ldots i_k} z^{-r})$ are of the same length $l((-1)^{(n-j)r}Q^j_{i_1, i_2, \ldots i_k} z^{-r})$.

Proof

Lemma 2.3 shows that if there is an edge going from P to Q then $l(Q) = l(P) + 1$. The lemma now follows from the obvious remark that $l(1) = 0$.

Q.E.D

We are in a position to write down the integral (5). Recall that W is the Weyl group of \hat{g} and $w = r_{m_1} r_{m_2} \cdots r_{m_l} \in W$ is a decomposition (not necessarily reduced), where r_m denotes the reflection at the corresponding simple root (α_m). m can be viewed as a map from $I_1 (= \{1, 2, \ldots, l\})$ to $I_2 (= \{0, 1, \ldots, n\})$. Therefore, $m^{-1}(j), j \in I_2$, is a subset of I_1. Set,

$$\beta_j = \frac{2(r_{m_{i+2-j}} r_{m_i} \cdot \lambda_1, \alpha_{m_{i+1-j}})}{(\alpha_{m_{i+1-j}}, \alpha_{m_{i+1-j}})} + 1, 1 \leq j \leq l$$

and

$$K_w(t_1, t_2, \cdots, t_l) = \prod_{j=1}^{l} \Gamma(-\beta_j)^{-1} \times \{ \exp(-t_l F_{m_1}) \cdots \exp(-t_1 F_{m_1}) \prod_{j=1}^{l} t_j^{-\beta_j-1} \},$$

where 1 is viewed as an element of $V_1 \otimes \cdots \otimes V_N$ equal to the unit function on the product of N copies of the flag manifold. With any path

$$\gamma : 1 \xrightarrow{F_{i_1}} Q_1 \xrightarrow{F_{i_2}} Q_2 \longrightarrow \cdots \longrightarrow Q_{r-1} \xrightarrow{F_{i_{r-1}}} Q, r = l(Q)$$

associate a polynomial in t's:

$$f_{\gamma}(t) = \sum_{p_1 < \cdots < p_{r}, p_i \in m^{-1}(j_i)} t_{p_1} t_{p_2} \cdots t_{p_r}.$$

(This is the only point where the decomposition $w = r_{m_1} r_{m_2} \cdots r_{m_l}$ enters the calculation.) Denote by Γ^j the subgraph of Γ consisting of all vertices connected with Q^j_1 by an oriented path. It is equivalently defined as a subgraph generated by all vertices $(-1)^{(n-j)r}Q^j_{i_1, i_2, \ldots i_k} z^{-r}$ with the fixed superscript j. Set

$$P^j_w(x, z; t_1, t_2, \cdots, t_l) = \sum_{\gamma \in \mathcal{P}(Q)} Q \sum_{\gamma \in \mathcal{P}(Q)} f_{\gamma}(t).$$

(6)
Theorem 2.5

\[K_w(t_1, t_2, \cdots, t_l) = \prod_{j=1}^{l} \Gamma(-\beta_j)^{-1} \prod_{p=1}^{N} \prod_{j=1}^{n} \{ P_{wp}(x(p), z_p, t_1, t_2, \cdots, t_l) \}^{\mu(p)} \prod_{j=1}^{l} t_j^{-\beta_j - 1}, \]

(7)

where \(\mu^{(p)} = (\mu_1^{(p)}, \ldots, \mu_n^{(p)}) \), \(1 \leq p \leq N \), is a highest weight of \(V_p \) and \(x^{(p)}, 1 \leq p \leq N \), is a coordinate in the \(p \)-th copy of the flag manifold.

This theorem can be proved by induction on \(l \) using Lemma 2.3 and Lemma 2.4.

Let \(M \) be the local system of continuous branches of \(K_w(t_1, \cdots, t_l) \) over the Domain of \(K_w(t_1, \cdots, t_l) \) (say \(D \)). Then finally we obtain

Theorem 2.6

For any \(\sigma \in H_l(M, D) \), the integral

\[\Psi_\sigma \int_{(t_1, t_2, \cdots, t_l)} K_w(t_1, t_2, \cdots, t_l) dt_1 dt_2 \cdots dt_l \]

satisfies the system \(KZ(\lambda_{N+1}, w, \lambda_1) \)

Remark. Theorem 2.6 gives solutions as an integral over a certain cycle depending on parameters \((x, z)\). These cycles belong to a homology group of a complement to a collection of hypersurfaces \(K_w(t_1, t_2, \cdots, t_l) = 0 \) with coefficients in a local system defined over this complement. Note that generically \((l > 2) \), and much unlike the case of Schechtman-Varchenko integral formulas, \(K_w(t_1, t_2, \cdots, t_l) = 0 \) is a union of hypersurfaces not isomorphic to hyperplanes and, therefore, investigation of the integral cannot be carried out by usual methods. We have already encountered with the same phenomenon in a different but related framework. As we argued in the Introduction, our integral formulas are intimately related to \(\hat{\mathfrak{g}} \) or \(\mathfrak{g} \)-modules extended by complex powers of a Lie algebra generators. Rigorous treatment of such modules requires consideration of a Lie algebra action on sections of a local system defined over a complement to – highly non-linear – set of “shifted” Schubert cells on a flag manifold; for details see [11].

Note also that if \(l = 1, 2 \) then \(K_w(t_1, t_2, \cdots, t_l) = 0 \) is isomorphic to a union of affine hyperplanes and the number of cycles can be calculated using results of [3].

2.2 Some examples

Theorem 2.5 produces rather an algorithm to write down the kernel of the integral \((7)\) than a completely explicit formula for it: \((7)\) relies on \((6)\), while the latter is a linear combination of explicitly given polynomials \(Q^j_{i_1, i_2, \ldots, i_k} z^{-r} \) with coefficients in the form \(\sum_{p, p_1} t_{p_1} \cdots t_{p_r} \) determined by the combinatorial data. We have been able to “resolve” the combinatorial part of the formula in the cases
Solutions to KZ equations

$g = \mathfrak{sl}_2, \mathfrak{sl}_3$. Although the \mathfrak{sl}_2--case was treated in [15], we discuss here both in a unified way for completeness.

The \mathfrak{sl}_2--case. In this case the flag manifold is \mathbb{CP}^1, the big cell is $\mathcal{C} \subset \mathbb{CP}^1$. Fix a coordinate x on \mathcal{C}. Then the matrix T (via which the polynomials Q_{i_1,\ldots,i_k} are defined) is given by $T = (x)$. The set of all Q_{i_1,\ldots,i_k} consists of 2 elements: $Q^1 = 1, Q^1_1 = x$. The vertices of the graph Γ are all of the form: $A^\alpha_{ij}(x,z) = z^{-i}x^\epsilon, \epsilon = 0, 1, i = 0, 1, 2, 3, \ldots$ Further, Γ coincides with Γ^1 and is given by

$$
1 \xrightarrow{F_1} x \xrightarrow{F_0} z^{-1} \xrightarrow{F_1} z^{-1}x \xrightarrow{F_0} z^{-2} \xrightarrow{F_1} z^{-2}x, \ldots
$$

Observe that the Weyl group of $\hat{\mathfrak{sl}}_2$ is a free group generated by 2 reflections r_0, r_1 and, therefore, each element is uniquely expanded as either

$$r_0r_1 \cdots$$

or

$$r_1r_0 \cdots$$

the second one being relevant to our calculation. Setting

$$w = \underbrace{r_1r_0 \cdots r_{\epsilon}}_{l},$$

one obtains

$$P_w(x, z; t_1, \ldots, t_l) = P^1_w(x, z; t_1, \ldots, t_l) = \sum_{\epsilon=0}^{l-\epsilon} \sum_{i=0}^{z^{-i}x^\epsilon} \sigma_{i+\epsilon}(t_1, \ldots, t_l),$$

$$\sigma_j(t_1, \ldots, t_l) = \sum_{0 \leq i_1 < i_2 < \cdots < i_j < l/2} t_{2i_1+1}t_{2i_2+1} \cdots t_{2i_j+1},$$

completing the \mathfrak{sl}_2--case.

The \mathfrak{sl}_3--case. The big cell is \mathbb{C}^3 with coordinates x_{11}, x_{12}, x_{22}. The matrix $\tilde{\Gamma}$ is given by $\tilde{T} = \begin{pmatrix} x_{11} & x_{12} \\ 1 & x_{22} \end{pmatrix}$. The set of all Q_{i_1,\ldots,i_k} consists of 5 elements:

$$Q^1 = 1, Q^j = x_{jj} (j = 1, 2) Q^{11} = x_{11}x_{22} - x_{12}, Q^2 = x_{12}$$

The graph $\tilde{\Gamma}$ and its subgraphs $\tilde{\Gamma}^1, \tilde{\Gamma}^2$ are given by

$$\tilde{\Gamma}^1: \quad Q^1_1 \xrightarrow{F_1} Q^1_1 \xrightarrow{F_0} -z^{-1} \xrightarrow{F_1} -z^{-1}Q^1_1 \xrightarrow{F_2} -z^{-1}Q^1_1, \ldots$$

$$\tilde{\Gamma}^2: \quad Q^2_1 \xrightarrow{F_1} Q^2_2 \xrightarrow{F_0} z^{-1} \xrightarrow{F_2} z^{-1}Q^2_1 \xrightarrow{F_1} z^{-1}Q^2_1, \ldots$$
The Weyl group \(W \) of \(\hat{\mathfrak{sl}}_3 \) is realized as a group generated by reflections at a certain collection of affine lines on the plane (see [16]). These lines produce a covering of the plane by triangles, called alcoves, which \(W \) acts on effectively. Looking at this action one obtains a collection of elements of \(W \) so that a reduced decomposition of any element of \(W \) is contained in it:

Put \(c := r_0 r_1 r_2 (c \) is called a Coxeter element), then any \(w \in W \) can be written as \(w = s e r_2 r_1 r_2 \), \(u = e r_2 r_1 t = r_0 r_1 r_0 r_1 r_0 r_1 r_0 \) if \(kl \neq 0 \) and if \(kl = 0 \), then \(t \) can also be equal to \(e \).

Further one obtains

\[
P_w^j(x,z; t_1, t_2, \cdots, t_l) = \sum_{l' = 0}^{l} A^j_{l'} f^j_{l'}(t), \ j = 1, 2,
\]

where

\[
f^j_{l'}(t) = \sum_{p_1 < p_2 < \cdots < p_{l'}, p_i \in m^{-1}(ji)_3} t_{p_1} t_{p_2} \cdots t_{p_{l'}},
\]

\((k)_3 \in \{0, 1, 2\}\) signifies the residue of \(k \) modulo 3 and \(m : \{1, \ldots, l\} \to \{0, 1, 2\}\) is a function determining a reduced decomposition of \(w \),

\[
A^1_{l'} = \left\{ \begin{array}{ll}
(-z)^{-q} & \text{if } l' = 3q \\
(-z)^{-q} x_{11} & \text{if } l' = 3q + 1 \\
(-z)^{-q} (x_{11} x_{22} - x_{12}) & \text{if } l' = 3q + 2,
\end{array} \right.
\]

\[
A^2_{l'} = \left\{ \begin{array}{ll}
z^{-q} & \text{if } l' = 3q \\
z^{-q} x_{22} & \text{if } l' = 3q + 1 \\
z^{-q} x_{12} & \text{if } l' = 3q + 2.
\end{array} \right.
\]

References

[1] Knizhnik V., Zamolodchikov A., *Nucl. Phys. B* 247 (1984) 83 - 103
[2] A. Tsuchiya, Y. Kanie, *Adv. Stud. Pure Math.* 16 297-372
[3] V. Schechtman, *International Mathematics Research Notices* 3 (1992), 39-49
[4] V. Schechtman V., A. Varchenko, preprint, Max-Planck-Institut fur Mathematik MPI/89-51, 1989, *Letters in Math. Phys.* 20 1990, 279-283
[5] V. Schechtman, A. Varchenko, *Invent.Math.* 106, 139-194
[6] V. G. Kac, M. Wakimoto, *Proc. Nat’l Acad. Sci. USA* 85 (1988) 4956-4960
[7] B. Feigin, V. Schechtman, A. Varchenko, *Letters in Math.Phys.* 20 (1990), 291-297
Solutions to KZ equations

[8] Furlan P., Ganchev A.Ch., Paunov R., Petkova V.B., Phys.Letters 267 (1991) 63-70

[9] Furlan P., Ganchev A.Ch., Paunov R., Petkova V.B., preprint CERN-TH.6289/91, accepted for publication in Nucl.Phys.B

[10] Awata H., Yamada Y., KEK-TH-316 KEK Preprint 91-209, January 1992

[11] B. Feigin, F. Malikov, preprint RIMS-894 September 1992, to appear in Advances in Sov.Math.

[12] B. Feigin , E. Frenkel , Usp.Math.Nauk (=Russ.Math.Surv.) 43 (1988) 227 - 228 (in Russian)

[13] P. Bowknegt, J. McCarthy, K. Pilch, Progress of Theoretical Physics, Supplement No.102 70 (1988) 67-135

[14] H. Awata, A. Tsuchiya, Y. Yamada, Nuclear Phys. B365 (1991) 680-696

[15] Malikov F.G., Feigin B.L., Fuchs D.B., Funct.Anal.i ego Pril. (=Funct. Anal. Appl.) 20(1988) 2, 25-37 (in Russian)

[16] Kac V.G. Infinite-dimensional Lie algebras, Cambridge University Press 1990