Levodopa in *Mucuna pruriens* and its degradation

Haridas Pulikkalpura¹, Rajani Kurup², Paravanparampil Jacob Mathew¹ & Sabulal Baby²

Mucuna pruriens is the best known natural source of L-dopa, the gold standard for treatment of Parkinsonism. *M. pruriens* varieties are protein rich supplements, and are used as food and fodder worldwide. Here, we report L-dopa contents in seeds of fifty six accessions of four *M. pruriens* varieties, *M. pruriens var. pruriens*, *M. pruriens var. hirsuta*, *M. pruriens var. utilis* and *M. pruriens var. thekkadiensis*, quantified by HPTLC-densitometry. L-dopa contents varied between 0.58 to 6.42 (%, dr. wt.). High and low L-dopa yielding genotypes/chemotypes of *M. pruriens* could be multiplied for medicinal and nutritional purposes, respectively. HPTLC profiles of *M. pruriens* seeds on repeated extraction (24 h) in 1:1 formic acid-alcohol followed by development in butanol:acetic acid:water (4:1:1, v/v) showed consistent degradation of L-dopa (R_f 0.34 ± 0.02) into a second peak (R_f 0.41 ± 0.02). An average of 52.11% degradation of L-dopa was found in seeds of *M. pruriens* varieties. Since *M. pruriens* seeds and/or L-dopa are used for treatment of Parkinson’s disease and as an aphrodisiac both in modern and/or traditional systems of medicine, the finding of high level of L-dopa degradation (in pure form and in *M. pruriens* extracts) into damaging quinones and ROS is very significant.

Mucuna pruriens (L.) DC. is a climbing legume distributed across the tropics. Four varieties of the species have been documented so far from south India, of which *M. pruriens* var. *pruriens* is well distributed¹². *M. pruriens var. hirsuta* and *M. pruriens var. thekkadiensis* are restricted to the southern parts of the Indian peninsula, and *M. pruriens var. utilis* occurs only in cultivation². *M. pruriens var. pruriens* and *M. pruriens var. utilis* find importance as food, feed, cover crop and fodder and are extensively cultivated worldwide³–⁶. *M. pruriens* varieties propagate mostly through their seeds. *M. pruriens var. pruriens* is best known as the natural source of the aromatic amino acid, L-3,4-dihydroxy phenylalanine (levodopa or L-dopa) (Fig. 1). L-dopa is widely used for the clinical treatment of the neurodegenerative disorder, Parkinson’s disease (PD)⁷–¹¹. Seeds of *M. pruriens var. pruriens* have long been used in Indian traditional medicine for treatment of PD and also for its aphrodisiac property. *M. pruriens var. pruriens* is the only variety of *M. pruriens* extensively studied for its chemical and biological properties¹²–¹⁷. L-dopa, 5-methoxy-N,N-dimethyl tryptamine and 5-hydroxy tryptamine (serotonin) are the major therapeutic constituents in *M. pruriens var. pruriens*.

PD is characterized by degeneration of dopaminergic neurons in the substantia nigra, and subsequent deficiency of the neurotransmitter dopamine in the brain areas. PD affects motor activities including writing and speaking abilities. Recent studies suggested oxidative stress, mitochondrial dysfunction and impairment of the ubiquitin-proteasome system as the major factors involved in pathogenesis of PD¹⁸. Patients with PD are treated with L-dopa to improve their motor functions. Dopamine as such does not cross the blood brain barrier whereas L-dopa does, and in the central nervous system dopa decarboxylase converts it into dopamine. Thus L-dopa acts as a precursor to dopamine. So far L-dopa is considered as the gold standard for the treatment of PD and dopamine-responsive dystonia⁷–¹¹,¹⁹. Oxidative stress, caused by oxidation of L-dopa and dopamine, generating semiquinones, quinones, oxygen radicals and other reactive oxygen species (ROS), play a role in neuronal cell death in PD²⁰,²¹. Moreover, O-quinone
products of L-dopa autoxidation are cytotoxic to cellular systems22–25. L-dopa is also an antinutritional factor and its consumption causes vomiting, nausea, abdominal distention, dyskinesia etc26. This is due to the conversion of L-dopa into dopamine in the peripheral nervous system by dopa decarboxylase. Moreover, \textit{M. pruriens} var. \textit{pruriens} and L-dopa could recover spermatogenic loss which makes them the treatment of choice for infertility27,28.

Vachhani \textit{et al.}, 2011 and Sundaram and Gurumoorthi, 2012 standardized protocols for HPTLC-based quantification of L-dopa in \textit{M. pruriens} var. \textit{pruriens} seeds29,30. Modi \textit{et al.}, 2008 (5.60\%, dr. wt.), Behara \textit{et al.}, 2010 (4.83\%), Raina and Khatri, 2011 (2.23–5.36\%) and Raina \textit{et al.}, 2012 (3.29–5.44\%) quantified L-dopa contents in \textit{M. pruriens} var. \textit{pruriens} seeds by HPTLC31–34. Mennicken\textit{et al.}, 200735 and Vachhani \textit{et al.}, 201136 standardized HPTLC-based estimation of L-dopa in pharmaceutical formulations. Kshirsagar \textit{et al.}, 200837 (2.11–2.19\%), Modi \textit{et al.}, 200838 (3.80–4.30\%) and Behara \textit{et al.}, 201032 (7.48–8.44\%) quantified L-dopa contents in marketed formulations and capsules by HPTLC. Shah and Joshi, 2010 estimated L-dopa in \textit{M. pruriens} var. \textit{pruriens} seeds (7.20\%) and its formulations (4.20–5.60\%) by spectrofluorimetry37. L-dopa contents in seeds of \textit{Stizolobium pruriens} var. \textit{utilis} (\textit{M. pruriens} var. \textit{utilis}) (3.9–10.6\%)38, \textit{M. pruriens} var. \textit{utilis} (4.39–5.21\%)39 and \textit{M. pruriens} var. \textit{pruriens} (4.0–6.0\%)31 were estimated by HPLC. Soumyanath \textit{et al.}, 2012 quantified L-dopa in \textit{M. pruriens} var. \textit{pruriens} formulations (3.0–6.0\%) by HPLC31. Singh \textit{et al.}, 2010 developed HPLC-based quantification of L-dopa in \textit{M. pruriens} var. \textit{utilis}40, Jiang \textit{et al.}, 2010 carried out HPLC-MS/MS quantification of L-dopa in rat plasma30. Dethy \textit{et al.}, 1997 determined threshold L-dopa levels in plasma of patients with advanced PD by \textit{in vitro} microdialysis-HPLC42.

Most L-dopa quantification studies in \textit{M. pruriens} var. \textit{pruriens} seeds and formulations by chromatographic techniques (HPTLC, HPLC) are on limited number of samples and involved prolonged, multistep extraction procedures in acidic media. Screening of more \textit{M. pruriens} varieties/accessions could lead to the discovery of high (elite) and low L-dopa yielding accessions suitable for medicinal and nutritional purposes, respectively. Secondly, in our preliminary HPTLC profiling of \textit{M. pruriens} var. \textit{pruriens} extracts and L-dopa standard, we repeatedly detected labile L-dopa-based degradation signals. Most similar HPTLC/HPLC studies never recorded this degradation signal of L-dopa31,33,34,36,38–42. Here we report (i) L-dopa contents in seeds of thirty accessions of the four \textit{M. pruriens} varieties viz., \textit{M. pruriens} var. \textit{pruriens} (21), \textit{M. pruriens} var. \textit{hirsuta} (3), \textit{M. pruriens} var. \textit{utilis} (5) and \textit{M. pruriens} var. \textit{thekkadiensis} (1), collected from various locations in Kerala in south India, (ii) L-dopa contents in second generation seeds of twenty-six accessions of \textit{M. pruriens} var. \textit{pruriens} and \textit{M. pruriens} var. \textit{utilis} (5) grown in an Experimental Plot (EP) under identical ecological conditions, (iii) degradation patterns of L-dopa in \textit{M. pruriens} seed extracts, (iv) quantification of L-dopa degraded products in seeds (30 wild, 26 EP grown accessions) of four \textit{M. pruriens} varieties and (v) characterization of L-dopa degraded moieties by HPTLC, DART-MS and LC/EI-MS.

\textbf{Results}

\textbf{L-dopa contents in \textit{M. pruriens} varieties.} L-dopa contents in wild \textit{M. pruriens} var. \textit{pruriens} accessions varied from 0.89 to 6.42\% (dr. wt.) (Table 1). Percentage contents of second degradation peak (SDP) ranged from 0.1 to 3.85\% (dr. wt., based on L-dopa calibration) (Table 1). In second generation \textit{M. pruriens} var. \textit{pruriens} seeds grown in the EP, L-dopa contents varied from 0.58 to 4.32\%, and % SDP varied from zero (non-detectable) to 3.34\%. L-dopa contents in wild accessions of \textit{M. pruriens} var. \textit{hirsuta} ranged from 1.01 to 4.27\%, and % SDP ranged from 0.01 to 1.40\%. L-dopa contents in seeds of \textit{M. pruriens} var. \textit{utilis} wild accessions varied from 0.58 to 4.32\%, and SDP contents varied from 0.12 to 3.82\%. In EP grown accessions of \textit{M. pruriens} var. \textit{utilis}, L-dopa contents ranged from 1.33 to 3.97\%, and SDP contents were zero to 0.77\%. \textit{M. pruriens} var. \textit{thekkadiensis} wild accession showed 4.34\% of L-dopa with SDP 0.01\% (Table 1). Fruiting was not observed in \textit{M. pruriens} var. \textit{hirsuta} and \textit{M. pruriens} var. \textit{thekkadiensis} in the Field Gene Bank (FGB). This is the first report of L-dopa quantification in \textit{M. pruriens} var. \textit{hirsuta} and \textit{M. pruriens} var. \textit{thekkadiensis}. This is also the first quantitative determination of degradation products of L-dopa in \textit{M. pruriens} seeds.

In wild \textit{M. pruriens} var. \textit{pruriens}, \textit{M. pruriens} var. \textit{hirsuta} and \textit{M. pruriens} var. \textit{utilis} seeds, L-dopa contents did not show any positive correlation with altitudes of their collection locations (Acc. No. 3912, 1 m, L-dopa/SDP 1.63%/1.15%; Acc. No. 4503, 10 m, L-dopa/SDP 1.78%/3.85%; Acc. No. 4091, 802 m,
Acc. No.	Collection location, district	Altitude (m)	Longitude	Latitude	Wild L-dopa (% , dr. wt.)	Wild, SDP (% , dr. wt.)*	EP, L-dopa (% , dr. wt.)	EP, SDP (% , dr. wt.)*
Mucuna pruriens var. pruriens								
3656	Wandoor, Malappuram	65	E 76° 13.662'	N 11° 11.621'	3.42 ± 0.06	1.21 ± 0.00	2.17 ± 0.0014	0.30 ± 0.00
3666	Erimayur, Palakkad	90	E 76° 34.015'	N 10° 39.409'	2.64 ± 0.00	1.27 ± 0.00	1.54 ± 0.0069	2.88 ± 0.00
3822	Achenkovil, Kollam	111	E 77° 7.267'	N 09° 05.549'	3.37 ± 0.00	1.11 ± 0.00	0.84 ± 0.0087	2.93 ± 0.0243
3911	Payannur, Kannur	63	E 75° 5.844'	N 12° 18.416'	3.49 ± 0.00	0.34 ± 0.00	1.44 ± 0.00	3.27 ± 0.00
3912	Kappad, Kozhikode	1	E 75° 42.833'	N 11° 23.599'	1.63 ± 0.00	1.15 ± 0.00	1.04 ± 0.00	3.34 ± 0.00
4072	Mathur, Palakkad	125	E 76° 33.646'	N 10° 44.656'	3.51 ± 0.00	2.05 ± 0.00	0.58 ± 0.00	1.77 ± 0.0134
4077	Panathur, Kasaragod	123	E 75° 22.719'	N 12° 29.267'	2.34 ± 0.00	0.41 ± 0.00	2.54 ± 0.00	0.67 ± 0.00
4088	Malampuzha, Palakkad	135	E 76° 43.374'	N 10° 49.401'	3.03 ± 0.0014	0.15 ± 0.00	3.30 ± 0.0071	0.36 ± 0.00
4090	Elavenchery, Palakkad	93	E 76° 39.091'	N 10° 35.758'	0.97 ± 0.00	2.75 ± 0.00	2.93 ± 0.00	0.45 ± 0.00
4091	Pulpally, Wayanad	802	E 76° 09.662'	N 11° 47.655'	1.66 ± 0.00	2.96 ± 0.00	2.12 ± 0.0027	0.00 ± 0.00
4098	Pala, Kottayam	240	E 76° 38.660'	N 09° 44.285'	2.60 ± 0.00	0.79 ± 0.00	4.32 ± 0.0497	0.00 ± 0.00
4100	Muthalama, Palakkad	143	E 76° 45.530'	N 10° 36.595'	0.95 ± 0.00	3.19 ± 0.00	2.83 ± 0.0035	0.65 ± 0.00
4101	Madavoor, Kozhikode	60	E 75° 44.110'	N 11° 21.523'	3.03 ± 0.00	0.58 ± 0.00	1.22 ± 0.00	3.16 ± 0.00
4283	Govindapuram, Palakkad	157	E 07° 49.002'	N 10° 36.866'	6.42 ± 0.0034	0.00 ± 0.00	1.21 ± 0.0024	2.16 ± 0.0320
4290	Changanassery, Kottayam	90	E 07° 32.247'	N 09° 26.386'	2.61 ± 0.00	0.49 ± 0.00	3.99 ± 0.00	0.11 ± 0.00
4292	Mala, Thrissur	46	E 07° 16.015'	N 10° 14.592'	2.86 ± 0.00	0.49 ± 0.00	3.32 ± 0.00	0.45 ± 0.00
4448	Thamarassery, Kozhikode	14	E 07° 55.801'	N 11° 23.099'	3.01 ± 0.00	1.60 ± 0.00	1.14 ± 0.00	2.73 ± 0.00
4449	Umalloor, Malappuram	56	E 07° 04.949'	N 11° 01.920'	2.27 ± 0.00	0.71 ± 0.00	2.89 ± 0.00	0.58 ± 0.00
4450	Koothattukulam, Ernakulam	52	E 07° 35.763'	N 09° 52.641'	0.89 ± 0.00	2.45 ± 0.00	1.04 ± 0.00	2.93 ± 0.00
4498	Karyavattom, Thrissur	15	E 07° 52.386'	N 08° 33.038'	6.11 ± 0.00	0.10 ± 0.00	3.05 ± 0.0065	0.64 ± 0.0059
4503	Alappuzha, Alappuzha	10	E 07° 19.185'	N 09° 29.106'	1.78 ± 0.00	3.85 ± 0.00	2.50 ± 0.00	1.15 ± 0.00

Table 1. Quantification of L-dopa and its degradation in seeds of fifty-six accessions of *Mucuna pruriens* varieties by HPTLC-densitometry. SDP - Second Degradation Peak; *SDP % calculated based on L-dopa standard curve; EP - Experimental Plot; †Fruiting absent in FGB grown accessions. Each percentage value is an average of six values.

L-dopa/SDP 1.66%/2.96%) (Table 1). *M. pruriens* var. *pruriens* and *M. pruriens* var. *utilis* seeds grown in EP under identical conditions did not show any correlation in L-dopa contents with their parent (wild) accessions (Table 1). Highest L-dopa contents were detected in seeds of wild accessions of *M. pruriens* var. *pruriens* (Acc. No. 4283, 6.42%; Acc. No. 4498, 6.11%), *M. pruriens* var. *thekkadiensis* (Acc. No. 4147, 4.34%) and *M. pruriens* var. *hirsuta* (Acc. No. 3820, 4.27%). Lowest L-dopa percentages were found in EP grown *M. pruriens* var. *pruriens* seeds (Acc. No. 4072, 0.58%; Acc. No. 3822, 0.84%) (Table 1). Again, highest L-dopa yielding *M. pruriens* seeds (Acc. No. 4283, 6.42%; Acc. No. 4498, 6.11%; Acc. No. 4147, 4.34%; Acc. No. 3820, 4.27%) showed lowest degradation levels (Acc. No. 4283, 0.00%; Acc. No. 4498, 0.10%; Acc. No. 4147, 0.01%; 3820, 0.01%). Similarly, lowest L-dopa contents (Acc. No. 4072, 0.58%; Acc. No. 3822, 0.84%; Acc. No. 4100, 0.95%; Acc. No. 4090, 0.97%) were seen in seeds with high levels of degradation (Acc. No. 4072, 1.77%; Acc. No. 3822, 2.93%; Acc. No. 4100, 3.19%; Acc. No. 4090, 2.75%) (Table 1).
Total SDP (72.15%) in wild (30) and EP grown (26) *M. pruriens* accessions was 52.11% of total L-dopa content (138.45%) (Table 1). These data showed that the degradation levels of L-dopa in *M. pruriens* seeds in extraction media (1:1 formic acid-alcohol, 24 h) are highly significant. Standard L-dopa also showed similar degradation into a second signal on HPTLC profile (L-dopa R_f 0.34 ± 0.02; SDP R_f 0.41 ± 0.02). Previous studies rarely mentioned the detection of L-dopa degradation signals on chromatographic profiles of *M. pruriens* seeds and formulations.

L-dopa degradation. Freshly dissolved L-dopa standard (in 1:1 formic acid-alcohol) on HPTLC showed only one signal at R_f 0.34 ± 0.02 (Fig. 2a). But, L-dopa standard (decomposed) showed two signals, one at R_f 0.34 ± 0.02 (L-dopa) and a SDP at R_f 0.41 ± 0.02 (Fig. 2b). *M. pruriens* seed extracts (wild, EP grown) showed two significant signals (R_f 0.30–0.40, 0.40–0.46) at varying ratios (Fig. 2c,d). Fresh (24 h extracted in 1:1 formic acid-alcohol) *M. pruriens* var. *pruriens* seed extract, decomposed (24 h extracted, dissolved in 1:1 formic acid-alcohol for seven days) *M. pruriens* var. *pruriens* seed extract and decomposed L-dopa standard showed degradation patterns on HPTLC, DART-MS and LC/EI-MS.

Figure 2. HPTLC profiles of (a) L-dopa standard (in 1:1 formic acid-alcohol, fresh), (b) degraded L-dopa standard (1:1 formic acid-alcohol, 24 h), (c) seed extract of *Mucuna pruriens* var. *pruriens*, accession number 4503 (five step extraction, 1:1 formic acid-alcohol, 24 h) and (d) seed extract of *M. pruriens* var. *utilis*, accession number 4504 (five step extraction, 1:1 formic acid-alcohol, 24 h); X-axes - R_f, Y-axes - AU.
M. pruriens extract (24 h extracted) showed M₁+ signals at 198.09 (Fig. S1). Fresh M. pruriens var. pruriens extract (24 h extracted) showed M₁+ signals at 123.06 (medium), 154.10 (medium, dopamine), 162.07 (medium), 198.09 (only major, L-dopa), 199.09 (minor) and 224.11 (minor) (Fig. S2). Decomposed M. pruriens var. pruriens extract (24 h extracted, dissolved in 1:1 formic acid-alcohol for seven days) showed M₁+ signals at 129.08 (medium), 176.08 (major), 190.10 (major), 191.11 (minor), 192.13 (minor), 193.13 (minor, dopachrome or 5,6-dihydroxyindole-2-carboxylic acid), 195.17 (minor, dopaquinone, leucodopachrome), 204.11 (major), 218.13 (medium), 244.12 (medium) and 245.13 (minor) (Fig. S3).

Briefly, fresh M. pruriens var. pruriens extract (24 h extracted) showed only major signals of L-dopa and dopamine. Decomposed M. pruriens var. pruriens extract did not show L-dopa and dopamine, instead showed a group of degradation signals at the M₁+ 190.10, 191.11, 192.13, 193.13 and 195.17. These DART-MS signals correspond to dopachrome, leucodopachrome, dopaquinone, other quinones and ROS (Fig. S3). Decomposed standard L-dopa and decomposed (24 h extracted, dissolved in 1:1 formic acid-alcohol for seven days) M. pruriens var. pruriens seed extract also showed degradation patterns in LC/EI-MS (Fig. S4-S7).

The degradation patterns of L-dopa in M. pruriens var. pruriens seed extracts and standard L-dopa in solvent media of 1:1 formic acid-alcohol (acidic), 20 mM Tris buffer (pH 7.2, neutral) and water at various time periods (1 h after initiation of extraction, 1, 7, 30 days after initiation of extraction) were tested through HPTLC profiling. Time dependent degradation was observed in M. pruriens var. pruriens extracts and in standard L-dopa at these pH values (Fig. S8-S19). The degradation rates of L-dopa in M. pruriens var. pruriens extracts and standard L-dopa were relatively low at 4°C.

Discussion

Our study led to the discovery of elite genotypes/chemotypes in 56 accessions of four M. pruriens varieties in wild and EP conditions. L-dopa contents in seeds of M. pruriens var. pruriens (42), M. pruriens var. utilis (10), M. pruriens var. hirsuta (3) and M. pruriens var. thekkadiensis (1) accessions varied between 0.58 to 6.42 (% dr. wt). M. pruriens var. pruriens elite accessions are 4283 (6.42%, wild) and 4498 (6.11%, wild) (Table 1). Other elite accessions are M. pruriens var. thekkadiensis (4147, wild, 4.34%) and M. pruriens var. hirsuta (3820, wild, 4.27%) (Table 1). Among the EP grown accessions, M. pruriens var. pruriens (4098) showed highest L-dopa content of 4.32% (Table 1). These elite accessions could be selected as candidates for multiplication and use in pharmaceutical applications. Since L-dopa is an antinutritional factor, seeds of M. pruriens var. pruriens (4072, EP grown, 0.58%; 3822, EP grown, 0.84%; 4450, wild, 0.89%; 4100, wild, 0.95%; 4090, wild, 0.97%) and M. pruriens var. utilis (4456, wild, 0.65%; 4504, wild, 0.97%; 4456, wild, 0.98%) accessions, which showed less than 1% L-dopa, can be multiplied and utilized as protein-rich diets.

We consistently found degradation patterns of L-dopa in M. pruriens seeds in the acidic medium of 1:1 formic acid-alcohol. On HPTLC profiling, seed extracts of all four M. pruriens varieties (collected from various wild locations and EP grown) showed L-dopa at Rf 0.34 ± 0.02 and a consistent second degradation peak at Rf 0.41 ± 0.02. This degraded peak was indentified as a labile mix of dopamine, dopachrome, leucodopachrome, dopaquinone and other ROS by HPTLC, DART-MS and LC/EI-MS. On an average, the degradation of L-dopa in a 24 h extraction protocol was a high 52.11%, which is significant enough to cause adverse effects in biological systems.

HPTLC profiles of M. pruriens var. pruriens seed extract (4450) and L-dopa standard in acidic, neutral and water media showed time dependent degradation. L-dopa degradation rates in the acidic medium (1:1 formic acid-alcohol) were equivalent or even higher compared to Tris buffer (neutral) or water under identical extraction periods. In seven days, M. pruriens var. pruriens seed extract and L-dopa in these liquid media resulted in degradation with gradual appearance of a black deposit. In 30 days, both M. pruriens var. pruriens seed extract and L-dopa in these solvent media resulted in significant degradation and strong black deposits. The degradation rates of L-dopa in M. pruriens var. pruriens extracts and standard L-dopa were low at 4°C compared to room temperature.

Recent studies showed that L-dopa degradation products and dopamine adducts result in oxidative stress and cause selective cytotoxicity of neuronal cells inducing pathogenesis in PD. Moreover, in PD treatment, M. pruriens seeds or L-dopa are administered for very long periods. Chronic L-dopa therapy in PD results in movement disorders or dyskinesia in most patients. M. pruriens seeds and its preparations are also used for the treatment of PD in the traditional medicinal system of Ayurveda since ancient times. Certain studies claimed that M. pruriens seeds are even more effective than L-dopa in PD treatment. Some literature reports caution insufficient evidence to recommend the clinical use of M. pruriens in the treatment of PD. M. pruriens seeds are also used in tonics for male vitality and virility in Ayurveda.

Since M. pruriens seeds and/or L-dopa are used for treatment of PD and as an aphrodisiac both in modern and/or traditional systems of medicine, the finding of high level of L-dopa degradation (in its pure form and in M. pruriens extracts) into damaging quinones and ROS is very significant. Our finding of consistent degradation products suggests the need for careful review of the processing of M. pruriens seeds (drying/roasting, powdering, extraction), L-dopa and their mode(s) of administration (medium, pH, temperature). Further studies are required to confirm the adverse effects of the degradation products from the ‘cure’ (M. pruriens, L-dopa) itself in PD patients and other users.
Methods
Plant materials. Seeds of thirty accessions of M. pruriens varieties viz. M. pruriens var. pruriens (21), M. pruriens var. hirsuta (3), M. pruriens var. utilis (5) and M. pruriens var. thekkadiensis (1) were collected in January to April 2009 from various wild locations in Kerala in south India (Table 1). GPS coordinates and other pertinent field data of these M. pruriens accessions were recorded during field trips. Voucher specimens of these M. pruriens accessions were deposited at the Herbarium (TBGT) of Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI). Seeds of these thirty M. pruriens accessions collected were dried and powdered (separately).

A second set of M. pruriens seeds collected were initially planted in a FGB of the species established at JNTBGRI. First generation seeds of 21 accessions of M. pruriens var. pruriens and 5 accessions of M. pruriens var. utilis were collected from the FGB and planted in the EP in Randomized Block Design with two replications of each accession and one plant in each replication. M. pruriens var. hirsuta and M. pruriens var. thekkadiensis accessions did not produce fruits in the FGB. Therefore, these two varieties were not planted in the EP. M. pruriens var. pruriens and M. pruriens var. utilis accessions were maintained in the EP in uniform conditions. M. pruriens accessions planted in both FGB and EP were irrigated as and when required, and not supplemented with any external fertilizers. Second generation seeds of 21 accessions of M. pruriens var. pruriens and 5 accessions of M. pruriens var. utilis were collected in January to April 2011, dried and powdered (separately) (Table 1).

L-dopa extraction. M. pruriens seed powder (2 g each) was extracted with 1:1 formic acid-alcohol (20 ml, 2 h) at room temperature and the extract was filtered. Seed powder residue was then repeatedly extracted with 1:1 formic acid-alcohol (3 × 10 ml, 2 h each), and extracts were filtered. This seed residue was again extracted with 1:1 formic acid-alcohol (10 ml, overnight). Filtrates (of five extractions) were pooled, centrifuged (5000 rpm, 30 min, 10 °C) and made up to 100 ml using 1:1 formic acid-alcohol. This M. pruriens seed extract (5 ml) was concentrated on a rotary evaporator, and the extract weight was recorded. This (concentrated) M. pruriens seed extract was dissolved in 20 ml 1:1 formic acid-alcohol and used for L-dopa quantification by HPTLC-densitometry. This extraction protocol was followed for quantification of L-dopa in seeds of all (56) M. pruriens accessions (Table 1). Extraction protocol was optimized for 24 h and cold extraction was preferred (against hot extraction) due to the labile nature (degradation) of L-dopa during extraction.

Quantification of L-dopa. L-dopa content in M. pruriens seed extracts was quantified using an HPTLC (CAMAG, Switzerland) made up of Linomat V sample applicator, twin-trough plate development chamber, TLC Scanner 3 and WinCATS Software 4.03. M. pruriens seed extract (5 ml concentrated seed extract) was dissolved in 20 ml of 1:1 formic acid-alcohol (see L-dopa extraction), 4 µl of this solution was repeatedly applied to silica gel HPTLC plate (60 F254, E. Merck, Germany, 20 × 10 cm, 0.2 mm thickness) as 6 mm wide bands with Camag Linomat V sample applicator, fitted with a microsyringe, in N2 flow (application rate = 50 nL/s, space between two bands = 11.3 mm, slit dimension = 6 × 0.45 mm, scanning speed = 20 mm/s). L-dopa standard was also applied along with M. pruriens seed extracts. HPTLC plate was developed upto 80 mm in the twin-trough glass chamber pre-saturated for 30 min with mobile phase butanol:acetic acid:water (4:1:1, v/v, 24 ml). Developed plate was scanned densitometrically at 282 nm (deuterium lamp) using TLC Scanner 3 equipped with WinCATS software. L-dopa at Rf 0.34 ± 0.02 (n = 56) and a second degradation peak (SDP) at Rf 0.41 ± 0.02 (n = 56) were found in M. pruriens seed extract in butanol:acetic acid:water (4:1:1, v/v) (Fig. 2a–d). Similar quantification protocol was followed for all M. pruriens seed extracts. Freshly dissolved L-dopa did not show the second signal, but after 24 h in solvent (1:1 formic acid-alcohol) it showed a clear second signal at Rf 0.41 (Fig. 2a,b). Other signals in M. pruriens seed extracts were well resolved from these two L-dopa based signals (Fig. 2c,d). Solvent systems such as 7:3 ethanol:water, 4:1:1 butanol:acetic acid:water, 4:1:5 butanol:acetic acid:water and 4:2:1 butanol:acetic acid:water were tried for development of plates. Of these, 4:1:1 butanol:acetic acid:water gave best resolution of signals on development.

Data analysis, validation. HPTLC-based quantification of L-dopa was validated in terms of precision, accuracy, repeatability and linearity. Specificity of the assays was tested by repeated application of standard L-dopa. Rf values (Rf 0.34 ± 0.02, n = 56) of the standard was reproducible, and was found to be same as the values observed for the peak (L-dopa) in M. pruriens seed extracts. Calibration curve was plotted between amount of standard L-dopa (fresh) versus average response (peak area) (y = 6.542x + 88.22, R2 = 0.996). Linearity of the calibration curve in the range 100-1000ng was ensured. Percentage L-dopa content(s) (Rf 0.34 ± 0.02, % ± SD, n = 6, based on dry weight) in M. pruriens extracts were calculated from peak areas using the standard curve. Percentage of second degradation peak (SDP, Rf 0.41 ± 0.02) which is a combination of labile molecules was also quantified based on L-dopa standard curve. Repeatability of sample application (instrumental precision) was assessed by applying a sample solution (M. pruriens extract, 4 µl) on a HPTLC plate developed up to 80 mm under saturation conditions with butanol:acetic acid:water (4:1:1, v/v) as the mobile phase in the twin-trough glass chamber (previously saturated with the solvent for 30 min). The spot (L-dopa) was scanned six times, % coefficient of variation was acceptable. Robustness of the method was checked by slightly altering the mobile phase composition and plate developing distance was checked. No considerable effect on the data was found.
Recovery studies were carried out (in two modes) by the addition of L-dopa to pre-analyzed *M. pruriens* extracts and they were again analyzed (see Quantification of L-dopa). In the first mode, (i) *M. pruriens* var. *pruriens* seed powder (Acc. No. 4088, 2 g) was extracted in the five-step protocol (24 h) and (ii) standard L-dopa (10 mg) was added initially to *M. pruriens* var. *pruriens* seed powder (Acc. No. 4088, 2 g) and extracted in the five-step protocol (24 h). (i), (ii) and (iii) fresh standard L-dopa (1 μg/μl), in 1:1 formic acid-alcohol were loaded (4 μl each) onto HPTLC plate, developed with butanol:acetic acid:water (4:1:1, v/v) and peak areas were measured at 282 nm (see L-dopa extraction, Quantification of L-dopa).

% recovery of L-dopa was calculated from peak areas as 49.78%. In the second mode, *M. pruriens* var. *pruriens* seed powder (Acc. No. 4502, 2 g) was extracted in the standard five-step protocol (24 h). (i) *M. pruriens* var. *pruriens* extract in 1:1 formic acid-alcohol (4 μl), (ii) *M. pruriens* var. *pruriens* extract in 1:1 formic acid-alcohol (4 μl) and fresh L-dopa dissolved in 1:1 formic acid-alcohol (1 μg/μl, 4 μl) and (iii) fresh L-dopa dissolved in 1:1 formic acid-alcohol (1 μg/μl, 4 μl) were loaded onto HPTLC plate (ii) co-spotted, developed and peak areas were measured. % L-dopa recovery was calculated as 99.30%. % residual standard deviations (RSD) were determined as 2.63 (L-dopa) and 3.58 (SDP). Limit of detection (LOD, average of 3.3 × SD of peak area/slope of calibration curve for 56 accessions, n = 6) and limit of quantification (LOQ, average of 10 × SD of peak area/slope of calibration curve for 56 accessions, n = 6) were determined for both L-dopa (LOD = 31.46 ng, LOQ = 95.32 ng) and SDP (LOD = 21.10 ng, LOQ = 63.93 ng).

L-dopa degradation. *M. pruriens* var. *pruriens* seed extract (Acc. No. 4450) prepared by the five stage extraction for 24 h (fresh *M. pruriens* var. *pruriens* seed extract) and standard L-dopa (fresh) were suspended in 1:1 formic acid-alcohol and kept at room temperature for seven days with occasional stirring. These resulted in decomposed *M. pruriens* var. *pruriens* seed extract and decomposed L-dopa standard, respectively. Fresh *M. pruriens* var. *pruriens* seed extract, freshly prepared L-dopa standard (both in 1:1 formic acid-alcohol), decomposed *M. pruriens* var. *pruriens* seed extract and decomposed L-dopa standard were applied onto silica gel plates (60 F254, E. Merck, Germany, 20 × 10 cm, 0.2 mm thickness) by HPTLC (CAMAG, Switzerland), developed in butanol:acetic acid:water (4:1:1, v/v, 24 ml) and scanned at 282 nm (TLC Scanner 3, CAMAG, Switzerland) (Fig. 2).

Fresh *M. pruriens* var. *pruriens* seed extract (100 mg), decomposed *M. pruriens* var. *pruriens* seed extract (100 mg) and decomposed L-dopa standard (26.1 mg) were analyzed by DART-MS on an AccuTOF JMS-T100LC Mass Spectrometer having a DART (JEOL, USA). Samples were analyzed directly in front of the DART source. Dry He was used at a flow rate of 4 LPM for ionization at 350 °C. Orifice 1 was set at 28 V, spectra were collected, and the data from 6-8 scans were averaged (Fig. S1-S3). Again, decomposed L-dopa source, packed with *M. pruriens* var. *pruriens* seed extract, freshly prepared L-dopa standard (both in 1:1 formic acid-alcohol), decomposed *M. pruriens* var. *pruriens* seed extract and decomposed L-dopa standard were applied onto silica gel plates (60 F254, E. Merck, Germany, 20 × 10 cm, 0.2 mm thickness) by HPTLC (CAMAG, Switzerland), developed in butanol:acetic acid:water (4:1:1, v/v, 24 ml) and scanned at 282 nm (TLC Scanner 3, CAMAG, Switzerland) (Fig. 2).

Effect of pH on L-dopa degradation. *M. pruriens* var. *pruriens* (accession number 4450) seeds (1 g each) were separately extracted with 20 ml (each) of 1:1 formic acid-alcohol (strongly acidic), 20 mM Tris-HCl, 20 mM KCl (pH 7.2, neutral) and water at room temperature and at 4 °C. Similarly, standard L-dopa (5 mg) was extracted (dissolved) in 10 ml each of these three solvents at room temperature and at 4 °C. These *M. pruriens* var. *pruriens* seed/L-dopa extracts (3 μl each) were profiled using HPTLC-densitometry (as described in Quantification of L-dopa) at various time periods viz., 1 h after initiation of extraction, 1, 7 and 30 days after initiation of extraction (Fig. S8-S19).

References

1. Sasidharan, N. Biodiversity Documentation for Kerala. Part 6. In *Flowering Plants*, (Kerala Forest Research Institute, Puechi, 2004).
2. Haridas, P. Baby, M., Mathew, P. J. & Mathew, P. M. Cytological studies in *Mucuna pruriens* species complex occurring in peninsular India. *J. Cytol. Genet.* 14, 9–14 (2013).
3. Sidduraju, P. Vijayakumari, K. & Janardhanan, K. Chemical composition and protein quality of the little-known legume, velvet bean (*Mucuna pruriens* (L.) DC.). *J. Agric. Food Chem.* 44, 2636–2641 (1996).
4. Sidduraju, P., Becker, K. & Makkar, H. P. Studies on the nutritional composition and antinutritional factors of three different germplasm materials of an under-utilized tropical legume, *Mucuna pruriens* var. *utilis*. *J. Agric. Food Chem.* 48, 6048–6060 (2000).
5. Sidduraju, P. & Becker, K. Rapid reversed-phase high performance liquid chromatographic method for the quantification of L-Dopa (L-3,4-dihydroxyphenylalanine), non-methylated and methylated tetrahydroisoquinoline compounds from *Mucuna* beans. *Food Chem.* 72, 389–394 (2001).
6. St Laurent, L., Livesey, J., Arnason, I. T. & Bruneau, A. Variation in L-dopa concentration in accessions of *Mucuna pruriens* (L.) DC var. *utilis* (Wall. ex Wight) Baker ex Burck. and in *Mucuna brachycarpa* Rech. In: Flores, M., Eilitta, M., Myhrman, R., Carew, L. B. & Carsky, R. J., (Eds.). *Food and Feed from Paninsular India*. (Wall. ex Wight) Baker ex Burck. Tegucigalpa, Honduras: CIDICCO (2002).
7. Calne, D. B. & Sandler, M. L-Dopa and parkinsonism. *Nature* 226, 21–24 (1970).
8. Ng, K. Y., Chase, T. N., Colburn, R. W. & Kopin, I. J. L-dopa-induced release of cerebral monoamines. *Science* 170, 76–77 (1970).
9. Weiss, B. E., Munro, H. N. & Wurtman, R. J. L-Dopa: disaggregation of brain polysomes and elevation of brain tryptophan. *Science* 173, 833–835 (1971).
10. Weiss, B. E., Munro, H. N., Ordenez, L. A. & Wurtman, R. J. Dopamine: mediator of brain polysome disaggregation after L-dopa. Science 177, 613–616 (1972).

11. Abbott, A. Levodopa: the story so far. Nature 466, 56–57 (2010).

12. Ghosal, S., Singh, S. & Bhattacharya, S. K. Alkaloids of Mucuna pruriens. Chemistry and pharmacology. Planta Med. 19, 279–284 (1971).

13. Fuji, Y. Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from velvet bean (Mucuna pruriens) and hairy vetch (Vicia villosa). Biol. Sci. Space 17, 6–12 (2003).

14. Misra, L. & Wagner, H. Alkaloidal constituents of Mucuna pruriens seeds. Phytochemistry 65, 2565–2567 (2004).

15. Donati, D. et al. Antidiabetic oligosaccharides in seeds of Mucuna pruriens. Phytother. Res. 19, 1057–1060 (2005).

16. Misra, L. & Wagner, H. Lipid derivatives from Mucuna pruriens seeds. Indian J. Chem. Sect B 45B, 801–804, 2006.

17. Misra, L. & Wagner, H. Extraction of bioactive principles from Mucuna pruriens seeds. Indian J. Biochem. Biophys. 44, 56–60 (2007).

18. Liu, X., Yamada, N., Maruyama, W. & Osawa, T. Formation of dopamine adducts derived from brain polyunsaturated fatty acids. J. Biol. Chem. 283, 34887–34895 (2008).

19. Khor, S. P. & Hsu, A. The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson's disease. Curr. Clin. Pharmacol. 2, 234–243 (2007).

20. Spencer, J. P. et al. Conjugates of catecholeamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71, 2112–2112 (1998).

21. Basma, A. N., Morris, E. J., Nicklas, W. J. & Geller, H. M. L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J. Neurochem. 64, 825–832 (1995).

22. Cheng, N. et al. Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res. 743, 278–283 (1996).

23. Asanuma, M., Miyazaki, J. & Ogawa. N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox. Res. 5, 165–176 (2003).

24. De Jurell, A. et al. Oxidative metabolism of dopamine: a colour reaction from human midbrain analysed by mass spectrometry. Biochim. Biophys. Acta 1784, 1687–1693 (2008).

25. HP-200 in Parkinson's Disease Study Group. An alternative medicine treatment for Parkinson's disease: results of a multicenter clinical trial. J. Altern. Complement. Med. 1, 249–255 (1995).

26. Hornykiewicz, O. L-DOPA: from a biologically inactive amino acid to a successful therapeutic agent. Amino Acids 23, 65–70 (2002).

27. Singh, A. P., Sarkar, S., Tripathi, M. & Rajender, S. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis. PLoS ONE 8, 1–10 (2013).

28. Vachhani, U. D., Trivedi, M. N., Bajaj, A. & Shah, C. P. A HPTLC method for quantitative estimation of L-dopa from Mucuna pruriens in polyherbal aphrodisiac formulation. RJPBCS 2, 389–396 (2011).

29. Sundaram, U. & Gurumoorthi, P. Validation of HPTLC method for quantitative estimation of l-dopa from Mucuna pruriens. RJP 3, 300–304 (2012).

30. Modi, K. P., Patel, N. M. & Goyal, R. K. Estimation of L-dopa from Mucuna pruriens LINN and formulations containing M. pruriens by HPTLC method. Chem. Pharm. Bull. 56, 357–359 (2008).

31. Behera, A., Sarkar, D. G. & Si, S. C. Development and validation of an HPTLC- densitometric method for determination of levodopa and its capsule dosage form. Eurasian J. Anal. Chem. 5, 126–136 (2010).

32. Raina, A. P. & Khatri, R. Quantitative determination of levodopa in seeds of Mucuna pruriens germplasm by high performance thin layer chromatography. Indian J. Pharm. Sci. 73, 459–462 (2011).

33. Raina, A. P., Tomar, J. B. & Dutta, M. Variability in Mucuna pruriens L. germplasm for L-Dopa, an anti parkinsonian agent. Genet. Resour. Crop Ev. 59, 1207–1212 (2012).

34. Mennicken, S., Nail, M., Vega, M. & de Diego, M. Quantitative determination of L-DOPA in tablets by high performance thin layer chromatography. J. Sep. Sci. 30, 1893–1898 (2007).

35. 18. Khursagar, V. B., Deokate, U. A., Bharadka, V. B. & Khadabadi, S. S. HPTLC method development and validation for the simultaneous estimation of diosgenin and levodopa in marketed formulation. Asian J. Research Chem. 1, 36–39 (2008).

36. Shah, P. B. & Joshi, B. Spectrofluorimetric estimation of l-dopa in Mucuna pruriens and its formulations. Int. J. Pharm. Tech Res. 2, 1033–1036 (2010).

37. Yang, X., Zhang, X. & Zhou, R. Determination of l-dopa content and other significant nitrogenous compounds in the seeds of seven Mucuna and Stizolobium species in China. Pharm. Biol. 39, 312–316 (2001).

38. Soumyanathan, A., Denne, T., Peterson, A. & Shinton, L. Assessment of commercial formulations of Mucuna pruriens seeds for Levodopa (L-DOPA) content. BMC Complement. Altern. Med. 12 (Suppl. 1), 36 (2012).

39. Singh, R. M., Saini, P. K., Mathur, S. C., Singh, G. N. & Kumar, S. Application of high performance liquid chromatography to the determination and validation of levodopa in methanolic extract of Mucuna utilis. Int. J. Green Pharm. 4, 156–158 (2010).

40. Li, W. et al. Simultaneous determination of l-dopa and its prodrug (S)-4-(2-acetamido-3-ethoxy-3-oxopropyl)-1,2-phenylene diacetate in rat plasma by high-performance liquid chromatography–tandem mass spectrometry and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal. 53, 751–754 (2010).

41. Dethy, S. et al. Microdialysis–HPLC for plasma levodopa and metabolites monitoring in parkinsonian patients. Clin. Chem. 43, 740–744 (1997).

42. Zhou, Y. Z., Alany, R. G., Chuang, V. & Wen, J. Studies of the rate constant of L-dopa oxidation and decarboxylation by HPLC. Chromatographia 75, 597–606 (2012).

43. Stansley, B. J. & Yamamoto, B. K. l-dopa-induced dopamine synthesis and oxidative stress in serotonergic neurones. Neuropharmacology 67, 243–251 (2013).

44. Lloret, S. P., Rey, M. V. & Rascol, O. Ayurveda medicine for the treatment of Parkinson's Disease. Int. Integrative Med. 1, 1–6 (2013).

45. Bega, D. & Zadikoff, C. Complementary & alternative management of Parkinson’s Disease: an evidence-based review of eastern influenced practices. J. Mov. Disord. 7, 57–66 (2014).

46. Shukla, K. K. et al. Mucuna pruriens reduces stress and improves the quality of semen in infertile men. eCAM 7, 137–144 (2010).

47. Thomas, M. T. et al. Elite geno–chemotypes, with high contents of madecassoside and asiaticoside, from sixty accessions of Centella asiatica of south India and the Andaman Islands: For cultivation and utility in cosmetic and herbal drug applications. Ind. Crops Prod. 32, 545–550 (2010).

48. Renjith, R. et al. Search for camptothecin-yielding Ophiopirhiza species from southern Western Ghats in India. a HPTLC-densitometry study. Ind. Crops Prod. 43, 472–476 (2013).
Acknowledgements
We acknowledge Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India for DART-MS analysis. This work was funded by a Plan Project of the Government of Kerala, India.

Author Contributions
H.P., P.J.J. and S.B. designed experiments. H.P. and P.J.J. collected plant materials. H.P., R.K. and S.B. carried out chemical analyses; S.B. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Pulikkalpura, H. et al. Levodopa in Mucuna pruriens and its degradation. Sci. Rep. 5, 11078; doi: 10.1038/srep11078 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/