OsSPL10, a SBP-Box Gene, Plays a Dual Role in Salt Tolerance and Trichome Formation in Rice (Oryza sativa L.)

Tao Lan,*†‡ Yali Zheng,* Zilong Su,* Shibo Yu,* Haibing Song,* Xiaoya Zheng,* Gege Lin,* and Weiren Wu*†‡

*Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, †Key Laboratory of Applied Genetics of Universities in Fujian Province, and ‡Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

ABSTRACT Salinity is one of the major abiotic stress factors limiting rice production. Glabrousness is a trait of agronomic importance in rice (Oryza sativa L.). We previously found a single-gene recessive mutant sst, which displayed increased salt tolerance and glabrous leaf and glume without trichomes, and identified an SBP-box gene OsSPL10 as the candidate of the SST gene. In this study, OsSPL10-knockout and OsSPL10-overexpression mutants were created to check the function of the gene. The knockout mutants exhibited enhanced salt tolerance and glabrous leaves and glumes as expected, while the overexpression mutants showed opposite phenotypes, in which both salt sensitivity and trichome density on leaf and glume were increased. These results clearly confirmed that OsSPL10 is SST, and suggested that OsSPL10 controls the initiation rather than the elongation of trichomes. In addition, expression analysis indicated that OsSPL10 was preferentially expressed in young panicle and stem, and protein OsSPL10 was localized in nucleus. Taken together, OsSPL10 negatively controls salt tolerance but positively controls trichome formation in rice.

Rice is sensitive to salt stress, which suppresses rice growth and development, causing severe yield loss. Salinity tolerance is a quantitative trait controlled by multiple genes in rice (Ren et al. 2005). Salt tolerance mechanism is complex in rice, involving many pathways. Certain apoplastic proteins are involved in the initial phase of salt stress response (Zhang et al. 2009). Some receptor-like kinases (RLKs) mediate salt sensitivity or improve salt tolerance by regulating ethylene homeostasis or H2O2 homeostasis (Li et al. 2014; Zhou et al. 2018). G-protein and small G-protein also play roles in salt-induced cellular senescence and other salt sensitivity (Urano et al. 2014; Zang et al. 2010). Calcineurin B-like protein (CBLs), CBL-interacting protein kinases (CIPKs), and calcium-dependent protein kinases (CPKs) function in salt signal transduction (Martinez-Atienza et al. 2007; Campo et al. 2014). Some cation transporters of plasma membrane, such as OsSOS1, OsHKT1;5 (SKCl), OsKAT1, OsHAK1, and OsMGT1, which are sodium, potassium and magnesium transporter (or channel), respectively, are related to salt tolerance (Martinez-Atienza et al. 2007; Ren et al. 2005; Obata et al. 2007; Chen et al. 2015; Chen et al. 2017). Many different transcription factors are involved in salinity tolerance or sensitivity, including NAC, OsbZIP23, DST, OsWRKY45-2, DREB1B, OsMYB2, SERF1 and so on (Hu et al. 2006; Xiang et al. 2008; Huang et al. 2009; Tao et al. 2011; Datta et al. 2012; Yang et al. 2012; Schmidt et al. 2013). In addition, epigenetics is also involved in salt tolerance in rice (Yuan et al. 2015; Srivastava et al. 2016; Wang et al. 2017).

Glabrous rice varieties have glabrous leaves and glumes without trichomes. In most terrestrial plants, trichomes are specialized structures, which originate from the above-ground epidermal tissues and develop into hair-like projections extending from the epidermal surfaces through growth, differentiation or cell division (Johnson 1975). As trichomes can lead to the generation of dust during harvesting and grain manipulating processes in rice production, glabrous leaves and glumes are a desirable characteristic. Only two glabrous genes have been cloned in rice so far, namely, OsWOX3B (DEP, NUDA/GL-1, GLR1) and OsPLT2 (HL6). The former is a WUSCHEL-like homeobox gene (Angeles-Shim et al. 2012; Zhang et al. 2012;
Li et al. 2012), while the latter encodes an AP2/ERF transcription factor, which physically interacts with OsWOX3B (Sun et al. 2017). SQUAMOSA Promoter-Binding Protein (SBP) and SBP-Like (SPL) proteins are putative transcription factors, which have a plant-specific SBP domain consisting of 76 amino acids in length (Cardon et al. 1997). SBP genes (SBP1 and SBP2) were first isolated from Antirrhinum majus and found to control early flower development by regulating the MADS-box gene SQUAMOSA (Klein et al. 1996). Then, SPL3 involved in floral transition was isolated from Arabidopsis thaliana (Cardon et al. 1997) and LG1 with SBP domain was found to be required for induction of ligules and auricles during maize leaf organogenesis (Moreno et al. 1997). SPL gene family is not large, with only 17 members in Arabidopsis and 19 in rice (Xie et al. 2006). SPL genes have been shown to play numerous important roles in plant growth and development, including trichome development and fertility (Unete et al. 2003; Xing et al. 2010), lateral root development (Yu et al. 2015), fruit ripening (Manning et al. 2006), plastochron length, flowering pathway and organ size (Wang et al. 2008, 2009; He et al. 2018), yield (Chuck et al. 2014; Si et al. 2016; Zhang et al. 2017), copper homeostasis (Yamasaki et al. 2009; Yan et al. 2017), and so on. Some SPL genes are related to abiotic stress tolerance. SPL1 and SPL12 confer thermostolerance at reproductive stage in Arabidopsis (Chao et al. 2017). Down-regulation of MsSPL8 leads to enhanced salt and drought tolerance in alfalfa (Gou et al. 2018).

In rice, it has been found that OsSPL genes control a large range of processes underlying plant growth and development (Wang and Zhang 2017). For example, OsSPL8 (OsLGI1) controls ligule development and inflorescence architecture (Lee et al. 2007; Ishii et al. 2013; Zhu et al. 2013). OsSPL13 (GLW7) controls grain size (Si et al. 2016). OsSPL14 (IPA1, WFP) affects tiller number and panicle branching (Jiao et al. 2010; Miura et al. 2010) and promotes immunity (Wang et al. 2018). OsSPL16 controls grain size, shape and quality (Wang et al. 2012) and plays a role in panicle cell death during ER stress (Wang et al. 2018). OsSPL18 controls grain weight and grain number in rice (Yuan et al. 2019).

We previously obtained a rice mutant sst showing salt tolerance and glabrous leaves and glumes from a restorer line R401. We found that sst was controlled by a recessive gene, which was likely to result from a deletion of one nucleotide in OsSPL10 (LOC_Os06g44860, Os06g0659100), an SBP-box gene (Wang et al. 2013; Lan et al. 2015; Song et al. 2016). In this study, we confirmed the function of OsSPL10 as the candidate of SST through gene knockout and overexpression, investigated the expression pattern of OsSPL10, and analyzed the subcellular localization of OsSPL10, aiming to lay a foundation for deep studies of the molecular mechanism of OsSPL10 function in salt tolerance and trichome development.

MATERIALS AND METHODS

Plant materials
The following plant materials were used or created in this study: indica rice cultivars R401 and Huanghuazhan (HHZ); japonica rice cultivars Nippombare and Zhonghua 11 (ZH11); the salt-tolerant and glabrous-leaf mutant sst obtained from R401 by radiation mutagenesis (Wang et al. 2013; Lan et al. 2015; Song et al. 2016); OsSPL10-knockout mutant plants from HHZ and ZH11; and OsSPL10-overexpression plants from ZH11. All rice plants were grown in plastic trays with paddy soil under a long day condition (approximately 14 h light/day) in the growth chamber (with cool-white light 300 μmol m⁻² s⁻¹).

Knockout of OsSPL10
The CRISPR/Cas9 editing system were used to knock out OsSPL10 in ZH11 and HHZ. Two target sites (5'-GTTCGGGGGGATGCAGGCG-3' and 5'-CACCCACCACATGCTAGCA-3') upstream of the SST mutation site in the first exon of OsSPL10 were selected and isolated according to the rules of low off-target score and high sgRNA score (http://cbi.hzau.edu.cn/crispr/), and then inserted into the VK005-01 binary vector containing the rice U6 promoter (Viewsolid Biotechnology Company of Beijing). The construct was introduced into ZH11 and HHZ using the stable transformation method (Hiei and Komari 2008). To examine mutations occurred in positive transgenic (T₀) plants, a 400-bp genomic DNA fragment harboring the two target sites was amplified from them by PCR using primers 5'-AGCTCCACCTTCGTTGGAAGCCA-3' and 5'-GGGACGCTGTAGCACGCTT-3' and then sequenced. Homozygous mutants obtained in
T1 generation were phenotyped for salt tolerance and trichomes on leaves and glumes.

Overexpression of OsSPL10

Total RNA was extracted from the young panicles (<5 cm) of Nipponbare and converted into cDNA by reverse transcription. RNA extraction was performed using TRIzol reagent (Invitrogen, USA). PrimeScriptTM RT reagent Kit (Takara, Japan) was used to synthesize the first strand of cDNA with OligoT primer. The 1.2-kb coding sequence of OsSPL10 was amplified from the cDNA by PCR using primers 5’-ATGATGAGCGGTAGGATGAA-3’ and 5’-CTACATGAAGTCGACCTCGA-3’, and then inserted into the pCXUN vector containing the maize ubiquitin promoter. The construct was introduced into ZH11 using the stable transformation method (Hiei and Komari 2008). The positive transgenic plants overexpressing OsSPL10 were phenotyped for salt tolerance and trichomes on leaves and glumes.

Measurement of salt tolerance

Rice seeds were sown on paddy soil in plastic trays (36x28x4.5 cm3) after pregermination and allowed to grow at 26°C under a photoperiod of 14 h light/10 h dark in a growth chamber. Salt stress treatment began from late two-leaf stage. During the treatment, 200 mL of either NaCl solution (150 mM) or fresh water was added into each tray every day. The treatment procedure for the OsSPL10-knockout seedlings was: 7 d NaCl/3 dwater/7 d NaCl/3 dwater, while that for the OsSPL10-overexpression seedlings was: 7 d NaCl/3 d water/4 d NaCl. The survival rate of seedlings was investigated at the end of the treatment.

Measurement of leaf trichome density

The penultimate leaves of individual plants were collected at tillering stage or heading stage. The adaxial surface of the middle part of each leaf was observed with scanning electron microscopy (SEM). The number of trichomes within a field of vision was counted, and three fields of vision were investigated on each leaf.

Quantitative RT-PCR of OsSPL10

Total RNA was extracted from seedlings as well as flag leaf blades, flag leaf sheaths, mature (second) leaf blades, mature leaf sheaths, stems, pre-emergence inflorescences and young panicles at the booting stage. RNA extraction and cDNA synthesis were conducted...
using the same methods as described above. The qRT-PCR was performed using SYBR Premix Ex Taq™ (Tli RNaseH Plus) (Takara, Japan) on a Prism 7500 96 Real-time PCR System (ABI, USA). The primers for OsSPL10 were 5′-ACAACGACAACAGCCACAACAA-3′ and 5′-ACACGAACACATGGTAGGATCGA-3′. The actin mRNA level was used as internal reference, for which the primers were 5′-AGTGCGACGTGGATATTAGG-3′ and 5′-TGGCTTAGCATTCTTGTTG-3′. Three independent biological replicates were analyzed by qRT-PCR in triplicate. The changes in gene expression were calculated using the 2−ΔΔCt method.

Subcellular localization of OsSPL10

GFP cDNA was fused to the C-terminus of OsSPL10 cDNA (without terminator) in the pMDC202 vector through BP and LR recombination (Lambda integrase/excisionase; Elpis-Biotech), resulting in the 35S::OsSPL10-GFP plasmid. The fusion construct as well as the control (empty pMDC202 vector; 35S::GFP) were infiltrated into tobacco (Nicotiana benthamiana) leaves using a needleless syringe.

For agroinfiltration, agrobacteria were grown overnight in Luria–Bertani containing the appropriate antibiotics. The agrobacteria were collected by centrifugation and then re-suspended in 10 mM MgCl2 containing 100 mM acetosyringone. After incubated for a minimum of 2 h at room temperature, the culture was diluted to an OD600 of 0.2. Tobacco plants were agroinfiltrated with appropriate agrobacterial cultures, and the agroinfiltrated plants were maintained under normal growth conditions for 12 to 72 h. The DAPI (4′, 6-diamidino-2-phenylindole) was used to confirm nucleus. The tobacco cell layers were examined with a confocal laser scanning microscope. (TCS SP8, Leica, Germany). Data availability All data generated or analyzed during this study are included in this published article.

RESULTS

Knockout of OsSPL10 enhances salt tolerance but inhibits trichome development

In the experiment of CRISP/Cas9 editing of OsSPL10, 28 and 20 positive transgenic (T0) plants were obtained from ZH11 and HHZ.
respectively. Among the T₀ plants, 25 (89.3%) from ZH11 and 15 (75%) from HHZ had mutations at either or both of the target sites, with 7 from ZH11 and 3 from HHZ being homozygous with the mutant allele. Protein sequence analysis predicted that all of the mutations resulted in a premature stop codon. Therefore, the mutants obtained were all OsSPL10-knockout mutants (denoted as ZH11-KO and HHZ-KO, respectively). We chose two mutants, one from ZH11 and HHZ each, named ZH11-KO-2 and HHZ-KO-4, respectively (Figure 1), to investigate the effects of OsSPL10 mutation on salt tolerance and trichome development.

Both ZH11-KO-2 and HHZ-KO-4 showed significantly higher tolerance to salt stress than their corresponding wild types in the experiment. While all of the ZH11 and HHZ seedlings died (survival rate = 0%) at the end of salt treatment, the ZH11-KO-2 and HHZ-KO-4 seedlings still all kept alive (survival rate = 100%), similar to the case of sst vs. R401 (Figure 2A, B and 3A, B). Meanwhile, both ZH11-KO-2 and HHZ-KO-4 displayed glabrous leaves and glumes without or with very few trichomes as expected (Figure 2C-E and 3C-E). SEM observation showed that the trichome density on leaf surface (number of trichomes per vision) at heading stage was ~43 in ZH11 (Figure 2F and H) and ~88 in HHZ (Figure 3F and H), respectively, whereas the density was only ~2 in ZH11-KO-2 (Figure 2G and H) and nearly 0 in HHZ-KO-4 (Figure 3G and H), respectively. These results indicated that loss of OsSPL10 function can result in higher salt tolerance as well as glabrous leaves and glumes, confirming that OsSPL10 is SST. In addition, the ZH11-KO-2, HHZ-KO-4 and sst seedlings all appeared to be a little taller than those of their corresponding wild types (Figure 2A and 3A), suggesting that loss of OsSPL10 function has an effect of promoting plant growth.

Overexpression of OsSPL10 reduces salt tolerance but promotes trichome development

A total of 22 positive transgenic (T₀) plants overexpressing OsSPL10 were acquired, among which plant ZH11-OE-12 showed the highest level of OsSPL10 expression, followed by plant ZH11-OE-19. We examined the phenotypes of the stably-inherited homozygous progeny lines of ZH11-OE-12 and ZH11-OE-19. Contrary to the OsSPL10-knocked-out seedlings, the OsSPL10-overexpressed seedlings were a little shorter (Figure 4A) but more sensitive to salt stress than the wild-type seedlings (Figure 4B). At the end of salt treatment there were still ~44% ZH11 seedlings alive, while the ZH11-OE-12 seedlings all died and only ~9% ZH11-OE-19 seedlings survived (Figure 4C). Since OsSPL10 expression was stronger in ZH11-OE-12 than in ZH11-OE-19, the result suggested that higher OsSPL10 expression level would lead to higher sensitivity to salt. In addition, SEM observation at tillering stage indicated that the OsSPL10-overexpressed plants had higher density of macrohairs on leaf (Figure 4E) than wild type (Figure 4D), and the
density also appeared to be positively proportional to the level of OsSPL10 expression (Figure 4F). These results indicated that OsSPL10 overexpression had exactly the opposite effect to that of OsSPL10 knockout, and the effect increased with the increase of OsSPL10 expression. This validated the function of OsSPL10 known from its loss-of-function mutants, further confirming that OsSPL10 is SST.

OsSPL10 is preferentially expressed in young panicle and stem
To examine the potential tissue specificity of OsSPL10, we used qRT-PCR to analyze the expression pattern of OsSPL10 at the booting stage. We found that OsSPL10 was preferentially expressed in early young panicles (< 5 cm) and stem, while its expression levels in late young panicles (pre-emergence inflorescence, 5-10 cm), leaf blades and leaf sheaths were generally low or very weak (Figure 5). These results suggested that OsSPL10 is probably involved in the early development of inflorescence, or in the phase transition from vegetative growth to reproductive development.

OsSPL10 is localized in nucleus
Some SPL genes playing important roles in growth and development have been found to function as transcription factors (Wang et al. 2009; Jiao et al. 2010). Therefore, we predicted that OsSPL10 protein might be also a transcription factor, which should be sorted to nucleus. Transient expression of 35S::OsSPL10-GFP in the epidermal cells of Nicotiana benthamiana (tobacco) leaves clearly showed that the GFP signal of SST-GFP fusion protein was observed only in nucleus (Figure 6A-D). By contrast, the GFP signal due to transformation of 35S::GFP was observed everywhere in the cell without specificity (Figure 6E-H). These results supported our prediction that SST is localized in the nucleus, suggesting that SST possibly functions as a transcription factor.

DISCUSSION
In this study, we confirmed through gene knockout and gene overexpression that OsSPL10 is SST, which plays a negative role in salt tolerance but a positive role in trichome formation and has a small negative effect on seedling growth as well in rice. In addition, the result of subcellular localization supported the prediction that OsSPL10 probably functions as a transcription factor like other OsSPL proteins.

There are 19 OsSPL genes in rice, including one pseudogene. Among them, 11 genes (not including OsSPL10) are the targets of miR156 (Xie et al. 2006). OsSPL10 is the first OsSPL gene confirmed to control salt tolerance in rice. However, there could be other OsSPL genes related to salt tolerance. It has been found that the abundance of miR156 increases in rice plants when subjected to salt stress, and the transgenic rice seedlings overexpressing miR156 show higher salt tolerance (Cui et al. 2014). This implies that there might be some OsSPL genes targeted by miR156 negatively controlling salt tolerance in rice. If this is true, there will be two different pathways of OsSPL-mediated salt tolerance regulation in rice. One is miR156-dependent, the other is miR156-independent (e.g., mediated by OsSPL10). But no matter in what pathways, the OsSPL genes involved all function as a negative regulator.

To date, two genes controlling trichome development have been reported in rice, namely, OsWOX3B (DEP, NUDA/GL-1, GLR1) and OsPLT2 (HL6) (Angeles-Shim et al. 2012; Zhang et al. 2012; Li et al. 2012; Sun et al. 2017). OsWOX3B belongs to the WOX3 family of plant-specific homeobox transcription factors (Angeles-Shim et al. 2012),
while OsPLT2 is an AP2/ERF transcription factor. OsPLT2 regulates trichome elongation, which is dependent on functional OsWOX3B that acts as a key regulator in trichome initiation (Sun et al. 2017). In this study, we found that knockout of OsSPL10 exhibited glabrous leaves and glumes, while overexpression of OsSPL10 increased the density of trichomes on leaves. In Arabidopsis, SPLs have also been found to be involved in the development and distribution of trichomes (Unte et al. 2003; Yu et al. 2010). The effect of OsSPL10 on trichome development found in this study is more similar to that of OsWOX3B than that of OsPLT2. Therefore, we speculate that OsSPL10 is likely to control trichome initiation. As an SBP-box gene with its protein being localized in nucleus (Figure 6), OsSPL10 probably function as transcription factor in trichome initiation. Further research is needed to clarify how OsSPL10 regulates trichome development and what relationship exists among OsWOX3B, OsPLT2, and OsSPL10 in rice.

CONCLUSION
OsSPL10 plays a dual role in salt tolerance and trichome formation in rice. It negatively controls salt tolerance but positively controls trichome initiation. The results of this study will help further research and better understanding of the mechanisms of salt tolerance and trichome formation in rice.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science Foundation of China (Grant number: 31671668), Science and Technology Innovation Special Fund of FAFU (Grant number: CXZX2017239), National Key R&D Program of China (Grant number: 2017YFD0100103) and the International Sci-Tech Cooperation and Exchange Program of FAFU (Grant number: KXGH17014).

LITERATURE CITED
Angeles-Shim, R. B., K. Asano, T. Takashi, J. Shim, T. Kuroha et al., 2010 Conservation of the salt overly sensitive pathway in rice. Plant Sci. 205: 269–276. https://doi.org/10.1016/j.plantsci.2010.03.010

Cardon, G. H., S. Höhmann, K. Nettesheim, H. Saedler, and P. Huijser, 1996 A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 250: 7–16.

Chao, L. M., Y. Q. Liu, D. Y. Chen, X. Y. Xue, Y. B. Mao et al., 2017 Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Mol. Plant 10: 735–748. https://doi.org/10.1093/mp/snx074

Chen, G., Q. D. Hu, L. Luo, T. Y. Yang, S. Zhang et al., 2015 Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over high and low potassium concentration ranges. Plant Cell Environ. 38: 2747–2765. https://doi.org/10.1111/pce.12585

Chen, Z. C., N. Yamaji, T. Horie, J. Che, J. Li et al., 2017 A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol. 174: 1837–1849. https://doi.org/10.1104/pp.17.00532

Chung, G. S., P. J. Brown, R. Meeley, and S. Hakea, 2014 Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc. Natl. Acad. Sci. USA 111: 18775–18780. https://doi.org/10.1073/pnas.1407401112

Cui, L. G., J. X. Shan, M. Shi, J. P. Gao, and H. X. Lin, 2014 The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 80: 1108–1117. https://doi.org/10.1111/pj.12712

Datta, K., N. Baisakh, M. Ganguly, S. Krishnan, K. Yamaguchi Shinozaki et al., 2012 Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol. J. 10: 579–586. https://doi.org/10.1111/j.1467-7652.2012.00688.x

Gou, J. Q., S. Debnath, L. Sun, A. Flanagan, Y. H. Tang et al., 2018 From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 16: 951–962. https://doi.org/10.1111/pbi.12841

He, J., M. L. Xu, M. R. Willmann, K. McCormick, T. Q. Hu et al., 2018 Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genet. 14: e1007337. https://doi.org/10.1371/journal.pgen.1007337

Hiei, Y., and T. Komari, 2008 Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3: 824–834. https://doi.org/10.1038/nprot.2008.46

Hu, H. H., M. Q. Dai, J. L. Yao, B. Z. Xiao, X. H. Li et al., 2006 Overexpression of a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 103: 12987–12992. https://doi.org/10.1073/pnas.0604882103

Huang, X. Y., D. Y. Chao, J. P. Gao, M. Z. Zhu, M. Shi et al., 2009 A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev. 23: 1805–1817. https://doi.org/10.1101/gad.1812409

Ishi, T., K. Numaguchi, K. Miura, K. Yoshida, P. T. Thanh et al., 2013 OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 45: 462–465. https://doi.org/10.1038/ng.2567

Jiao, Y., Y. Wang, D. Xue, J. Wang, M. Yan et al., 2010 Regulation of OsSPL14 by OsMiR156 defines ideal plant architecture in rice. Nat. Genet. 42: 541–544. https://doi.org/10.1038/ng.591

Johnson, H. B., 1975 Plant pubescence: an ecological perspective. Bot. Rev. 41: 233–258. https://doi.org/10.1007/BF02868038

Klein, J., H. Saedler, and P. Huijser, 1996 A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOXA. Mol. Gen. Genet. 250: 7–16.

Lan, T., S. J. Zhang, T. T. Liu, B. Wang, H. Z. Guan et al., 2015 Fine mapping and candidate identification of SST; a gene controlling seederling salt tolerance in rice (Oryza sativa L.). Euphytica 205: 269–274. https://doi.org/10.1007/s10681-015-1453-9

Lee, J., J. P. Park, S. L. Kim, J. Yim, and G. An, 2007 Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and lamina joint. Plant Mol. Biol. 65: 487–499. https://doi.org/10.1007/s11103-007-9196-1

Li, C. H., G. Wang, J. L. Zhao, L. Q. Zhang, L. F. Ai et al., 2014 The receptor-like kinase SLT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26: 2538–2553. https://doi.org/10.1105/tpc.114.125187

Li, J. J., Y. D. Yuan, Z. F. Lu, L. S. Yang, R. C. Gao et al., 2012 Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice. (N. Y.) 5: 32. https://doi.org/10.1111/j.1365-313X.1997.12020367.x

Manning, K., M. Tör, M. Poole, Y. G. Hong, A. J. Thompson et al., 2006 A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38: 948–952. https://doi.org/10.1038/ng1841

Martinez-Atienza, J., X. Jiang, B. Garcia-deblas, I. Mendoza, J. K. Zhu et al., 2007 Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143: 1001–1012. https://doi.org/10.1104/pp.106.092635

Miura, K., M. Ikeda, A. Matsubara, X. J. Song, M. Ito et al. 2009 A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 42: 545–549. https://doi.org/10.1038/ng.592

Moreno, M. A., L. C. Harper, R. W. Krueger, S. L. Dellaporta, and M. Freeling, 1997 liguleless1 encodes a nuclear-localized protein
required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 11: 616–628. https://doi.org/10.1101/gad.11.5.616
Obata, T., H. K. Kitamoto, A. Nakamura, A. Fukuda, and Y. Tanaka, 2007 Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol. 144: 1978–1985. https://doi.org/10.1104/pp.107.110154
Ren, Z. H., J. P. Gao, L. G. Li, X. L. Cai, W. Huang et al., 2005 A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37: 1141–1146. https://doi.org/10.1038/ng1643
Schmidt, R., D. Mieulet, H. M. Hubberten, T. Obata, R. Hoefgen et al., 2013 Salt-responsive ERFI regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25: 2115–2131. https://doi.org/10.1105/tpc.113.113068
Song, H. B., B. Wang, R. J. Chen, X. Y. Zheng, S. B. Yu et al., 2016 Genetic analysis and gene mapping of the glabrous leaf and hull mutant glr3 in rice (Oryza sativa L.) (article in Chinese). Yi Chuan 38: 1012–1019.
Srivastava, A. K., C. Zhang, G. Yates, M. Bailey, A. Brown et al., 2016 SUMO is a critical regulator of salt stress responses in rice. Plant Physiol. 170: 2378–2391. https://doi.org/10.1104/pp.15.01530
Wang, J. W., B. Czech, and D. Weigel, 2009 miR156-regulated SPL translation and plastochron length and organ size in Arabidopsis. Plant Physiol. 149: 1243–1253. https://doi.org/10.1105/tpc.108.060137
Yamasaki, H., M. Hayashi, M. Fukazawa, Y. Kobayashi, and T. Shikanai, 2009 SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21: 347–361. https://doi.org/10.1105/tpc.108.060137
Yu, N., Q. W. Niu, K. H. Ng, and N. H. Chua, 2015 The role of miR156/SPL modules in Arabidopsis lateral root development. Plant J. 82: 673–685. https://doi.org/10.1111/tpj.12919
Yuan, H., P. Qin, L. Hu, S. Zhan, S. Wang et al., 2019 OsSPL18 controls grain weight and grain number in rice. J. Genet. Genomics 46: 41–51. https://doi.org/10.1016/j.jgg.2019.01.003
Zhang, L., L. H. Tian, J. F. Zhao, Y. Song, C. J. Zhang et al., 2015 Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol. 169: 576–593. https://doi.org/10.1104/pp.15.00899
Zhang, A. P., X. J. Xu, S. Neill, and W. M. Cai, 2010 Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J. Exp. Bot. 61: 777–789. https://doi.org/10.1093/jxb/erp341
Zhang, B., W. N. Xu, X. Liu, X. G. Mao, A. Li et al., 2017 Functional conservation and divergence among homologs of TaSPL20 and TaSPL21, two SBP-box genes governing yield-related traits in hexaploid wheat. Plant Physiol. 174: 1177–1191. https://doi.org/10.1104/pp.17.00113
Zhang, H. L., K. Wu, Y. F. Wang, Y. Peng, F. Y. Hu et al., 2012 A WUSCHEL-like homeobox gene, OsWOX3B responds to NUDA/SL-1 locus in rice. Rice (N. Y.) 5: 30. https://doi.org/10.1186/1993-8433-5-30
Zhao, J., H. Tian, J. F. Zhao, Y. Song, C. J. Zhang et al., 2009 Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol. 149: 916–928. https://doi.org/10.1104/pp.109.131144
Zhou, Y. B., C. Liu, D. Y. Tang, L. Yan, D. Wang et al., 2018 The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CATE, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell 30: 1100–1118. https://doi.org/10.1105/tpc.17.01000
Zhu, Z. F., L. B. Tan, Y. C. Fu, F. X. Liu, H. W. Cai et al., 2013 Genetic analysis of Os2HSL12A, a putative Os2HSL12A at the Os2HSL12A locus. Nat. Commun. 4: 2200. https://doi.org/10.1038/ncomms3200

Communicating editor: S. Pearce