Comparative systems biology between human and animal models based on next-generation sequencing methods

Yu-Qi ZHAO¹, Gong-Hua LI¹, Jing-Fei HUANG¹,²,*

1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223, China;
2. Kunming Institute of Zoology, Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming Yunnan 650223, China

Abstract: Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.

Keywords: Animal models; Comparative systems biology; Next-generation sequencing; RNA-seq; ChIP-seq

Accurately modeling the physiology and pathology of human systems research requires the establishment of a quality animal model (Alvarado & Tsonis 2006; Francia et al, 2011, 2006; Götz & Lttner 2008; Hasenfuss 1998; Lieschke & Currie, 2007). To this end, generally, how closely the model should mimic the human disease depends on the scientific question under investigation. Only in cases when the causal connections—structure function relationship or regulation of gene expression—are definitive, can the differences between human and animal models have minor effect on the analysis results (Hasenfuss, 1998). For example, although the zebrafish (Danio rerio) is phylogenetically distant from humans, its use as a complete animal model for in vivo drug discovery and development is growing rapidly (Chakraborty et al, 2009). However, if the pathophysiologial processes are studied, especially for the complex diseases, then models should mimic clinical settings as closely as possible, otherwise the expected results may not be achieved or the findings of such studies will be of limited value.

Accordingly, comparisons between human and animal models are becoming increasingly important for both clinical and fundamental applications (Alini et al, 2008; Cox et al, 2009; Fuentes et al, 2009; Huh et al, 2010; Merchenthaler & Shughrue, 2005; Nestler & Hyman, 2010; Northoff, 2009). Among the available strategies to assess this connection, comparative systems biology has begun attracting special attention (Cox et al, 2009).

In this review, we introduce the concept of comparative systems biology. Next, we focus on the applications of next-generation sequencing methods, including RNA-seq and ChIP-seq, to comparative systems biology between human and animal models.
before outlining some general directions of future developments and impacts of these types of studies.

The rise of comparative systems biology

One of the greatest twentieth century achievements in biological research is undoubtedly the sequencing of different genomes. There are now complete genome sequences for more than 1,000 organisms (excluding bacteria and archaea), with more sequences being completed (Henkelman, 2010). Once the genome of a species is available, researchers are able to begin mapping sequences against humans and find candidate disease genes and build a proper disease model. However, the ability to fundamentally understand the genotype–phenotype relationship in a distinct species is often hindered by the inherent complexity of biological systems. The difference in genotype–phenotype relationships between human and animal models may originate from three sources (Figure 1): (1) functional divergence of genes or proteins; (2) gene deletions or duplications; and (3) divergent up- or down-stream components, out of which gene deletions or duplications may play the leading role (Jaillon et al, 2004).

The difference in genotype–phenotype relationships between human and animal models may originate from three sources: (A) functional divergence of genes or proteins; (B) gene deletions or duplications; and (C) divergent up- or down-stream components, out of which gene deletions or duplications may play the leading role. In the schematic drawing, Gene A and Gene A' are orthologs while Gene A' and Gene A'' are paralogs due to gene duplication.

Over the last decade, this third mechanism has received more attention in systems biology. The Rb (Retinoblastoma) gene family is a good case, because the members in this family are functionally conserved while the involved pathways are divergent between C. elegans and humans (van den Heuvel & Dyson, 2008). Likewise, a previous study reported that over 20% of the essential genes for humans are non-essential for mice (Liao & Zhang, 2008). Consequently, traditional molecular biology techniques, while providing valuable insights into individual and/or simple genotype-phenotype relationship, are insufficient in deducing the complex phenotype-genotype relationships. Therefore, the more systematic methods at the systems biology level are necessary.

The ultimate goal of systems biology is generating successful models to comprehensively describe living organisms. Comparative systems biology, an important subfield of systems biology, has no straightforward definition. In animal model research, the term first appeared in Ogawa et al’s (2008) work, reporting a comparative study of circadian oscillatory network models of Drosophila. Here, we define comparative systems biology as “comparisons of biological systems in different states or species to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels.” The comparison can be performed either horizontally (e.g., between individuals or states) or longitudinally (between species). The latter, which is mainly focused on human and animal models, is reviewed in detail here.

Over the past decade, comparative systems biology has attracted widespread interest, especially for its utility in comparisons between human and animal models of complex diseases. Miller et al (2010) used a systems biology approach to find a number of divergent network modules relevant to Alzheimer disease between humans and mice. In a previous work, we compared humans and four common animal models of cardiovascular disease through comparative transcriptome and pathway analysis, revealing that a few pathways have functionally diverged (Zhao et al, 2012). A recent review highlighted that the emerging technologies in comparative systems biology between human and animal models offers a platform to systematically explore not only the molecular mechanism of a particular disease, thus leading to the identification of disease modules and pathways, but also the molecular relationships among distinct (patho)phenotypes (Barabasi et al, 2011).

The majority of recent comparative systems biology studies on obtain their data through traditional high throughput technologies, such as microarray and ChIP-chip. Despite the experimental and statistical rigor as well as substantial insights gained through these methods, there has been a fundamental shift from these first-
Comparative systems biology between human and animal models based on next-generation sequencing methods

Over the last five years, we have observed the applications of next-generation sequencing methods in the field of comparative systems biology. We believe that these methods will be crucial in understanding differences between species, offering a number of potential advantages.

RNA-seq in transcriptome studies

Previous studies demonstrated that changes in gene expression underlie many of the phenotypic differences between species. Comparative transcriptome analysis potentially provides information on functional conservation for candidate human disease genes within animal models.

Initial transcriptomics studies largely relied on hybridization-based microarray technologies, which have yielded valuable insights into the functional divergence between human and model animals. However, microarray technology has several limitations: over-reliance upon existing knowledge about genome sequences; high background levels owing to cross-hybridization; and a limited dynamic range of detection owing to both background and saturation of signals. Recent advances in DNA sequencing technology have enabled sequencing of cDNA derived from cellular RNA by massively parallel sequencing strategies, a process termed RNA-seq.

Figure 2 shows the key procedures performed during RNA-seq analysis of comparative transcriptomes between human and animal models. The computational challenges in this process have been reviewed in detail by Garber et al. (2011), and we will focus on the potential advantages of RNA-seq in comparative systems biology, including (a) comparisons between human and non-model animals, and (b) actual biological systems induced by the states of gene expression.

Though a variety of organisms have been genomically sequenced, the majority of these are used as model organisms. Since microarray relies on the genome information, this technique has serious limitations in both quantifying and comparing gene expression profiles from non-model animals. RNA-seq, meanwhile, can be applied to reconstruct the complete and high-resolution transcriptomes across all species. To build the transcriptome, several methods based on RNA-seq have been developed, usually falling into two main classes: the ‘genome-guided’ (Guttman et al, 2010; Trapnell et al, 2010) and genome-independent classes (De novo assembly) (Biro et al, 2009; Schnitzler, 2012). The first methods rely on a reference genome to initially map all the RNA-seq reads to the genome and then assemble overlapping reads into transcripts. Unfortunately, the genome-guided method is not always effective, both because despite a large drop in the cost of next-generation sequencing, the study of a complete genome is still costly and difficult, especially for non-model organisms, and because the particular model being studied may be sufficiently different from its reference...
Chromatin immunoprecipitation (ChIP) followed by genomic tiling microarray hybridization (ChIP-chip) has become the most widely used approach for genome-wide identification and characterization of in vivo protein-DNA interactions during the past decade (Ho et al, 2011). Specifically, when applied to the study of animal models of human disease, CHIP-chip approaches led to many important discoveries in relation to transcriptional regulation (Chen et al, 2008), epigenetic regulation through histone modification (Heintzman et al, 2007), and evolution of protein-DNA interactions (Kim et al, 2007).

Like the microarray technique, CHIP-chip also has some limitations arising from the innate characteristics of microarray hybridization. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) makes it possible to obtain the accurate information about the genome-wide profiling of DNA-protein interaction. Compared to the CHIP-chip, ChIP-seq has a higher resolution, fewer artifacts, a larger coverage and a more extensive dynamic range (Blow et al, 2010; Johnson et al, 2007; Mardis 2007; Schmid & Bucher, 2007; Visel et al, 2009). Subsequently, we will introduce the practical applications of ChIP-seq in comparison between human and animals, including (1) identifying the regulatory sequences, and (2) tracing the evolution of epigenetic regulation.

The human genome project, while obtaining the complete genomic sequences, leaves open the question of how to identify the regulatory sequences that control the spatial and temporal expression of genes unanswered (Birney et al, 2007; McGaughey et al, 2008). Through applying the ChIP-seq techniques with the enhancer-associated protein p300 from mouse embryonic heart tissue, Blow et al (2010) made an attempt to identify candidate heart enhancers on genomic scale, revealing that most of the candidate heart enhancers were less deeply conserved in vertebrate evolution when compared to the enhancers that are active in other tissues. Such methods could also be applied to identification of other transcriptional factors (TFs), and therefore are helpful in the reconstruction of the transcriptional regulation network in human and animal models. Thankfully, the decreasing cost of ChIP-seq has extended the comparative systems biology investigation to some TFs. For example, Schmidt et al (2010) used ChIP-seq to determine experimentally the genome-wide occupancy of two TFs, i.e., CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates, revealing large interspecies differences in transcriptional regulation and providing insight into the evolution of regulatory networks.

Epigenetic regulation is now accepted as being closely associated with human development, and subsequently many developmental disorders may be catalyzing the discovery of new platelet functions...
caused by the dysfunction of this regulation (Gottesman & Hanson, 2005). However, due to the deficient knowledge of this phenomena in other animals, build proper animal models for these studies is difficult. Nevertheless, a recent study that employed the CHIP-seq technique to investigate the epigenetic regulation of histone H3 K4 on frogs (Xenopus tropicalis), revealed a hierarchy in the spatial control of zygotic gene activation (Akkers et al, 2009). Taken together, these advances lead us to speculate that the applications of CHIP-seq in comparative systems biology will be of great help in understanding embryonic diseases.

Despite the advances that ChIP-seq offers, researchers should be cautious when performing ChIP-seq analysis because the experimental steps in ChIP-seq involve several potential sources of artefacts (Park, 2009). For example, one challenge in this technique is that the identified enriched regions are of different types for different proteins (for details, refer to (Park, 2009)). The other potential source of artefacts comes from the divergence of both protein and DNA; therefore when using this analysis, the control experiment should be designed carefully.

Perspective applications of comparative systems biology

Comparative systems biology takes advantage of the systematic information from other organisms and can be used to great effect in studying human physiology and disease. Over the coming years, we expect many exciting developments as this field evolves in several potential directions.

Dynamic networks

Biological systems exhibit complex dynamic behavior, enabling cells to react to various conditions or cell states such as cell cycle progression (Zhu et al, 2007). Although static biological systems have been well studied (Benfey & Mitchell-Olds, 2008; Gianchandani et al, 2006; Macilwain, 2011; Werner, 2007), the information gained from such studies is of limited use in moving forward due to the fact that the static interactions are often identified from cells exposed to a single condition or at a single time point, i.e., under nonnative conditions. Only recently have approaches emerged that attempt to analyze the dynamics of complex biological networks. For transcriptional regulatory interactions, Chip-seq technology is likely to become increasingly popular as it can be used to uncover contextual and temporal variation. For context-specific metabolic network, RNA-seq could provide the dynamic states of metabolic enzymes.

Biological engineering

The ability to manipulate living organisms is at the heart of a range of emerging technologies aimed at addressing critical problems in environment, energy, and health. Because of their complexity and interconnectivity, however, animal models have been less than useful for engineered manipulation. To move forward with employing animal models with greater breadth and application, we vitally need more detailed information about the effects of perturbations on biological systems (Faith et al, 2011). Next-generation sequencing technology and the concurrent development of applications for it are a fast-moving area of biomedical research that greatly advance the development of comparative systems biology.

References

Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francois KJ, Stunnenberg HG, Veenstra GJC. 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus Embryos. Dev Cell, 17(3): 425-434.

Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ. 2008. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J, 17(1): 2-19.

Alvarado AS, Tsonis PA. 2006. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet, 7(11): 873-884.

Barabasi AL, Gulbahce N, Loscalzo J. 2011. Network medicine: a network-based approach to human disease. Nat Rev Genet, 12(1): 56-68.

Kunming Institute of Zoology (CAS), China Zoological Society

Benfey PN, Mitchell-Olds T. 2008. From genotype to phenotype: Systems biology meets natural variation. Science, 320(5875): 495-497.

Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng ZP, Snyder M, Dermitzakis ET, Stamatoyannopoulos JA and others. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146): 799-816.

Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao YJ, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJM. 2009. De novo transcriptome assembly with ABBySS. Bioinformatics, 25(21): 2872-2877.

Blow MJ, McCulley DJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2010. ChIP-Seq
identification of weakly conserved heart enhancers. Nat Genet, 42(9): 806-810.

Brawand D, Soumillon M, Nesiculea A, Julien P, Csardi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher M and others. 2011. The evolution of gene expression levels in mammalian organs. Nature, 478(7369): 343-348.

Brown S, Teo A, Pauklin S, Hannan N, Cho CHH, Lim B, Vardy L, Dunn NR, Trotter M, Pedersen R and others. 2011. Activin/nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endodermal progenitors. Stem Cells, 29(8): 1176-1185.

Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ and others. 2004. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4): 499-509.

Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G. 2009. Zebrafish: A complete animal model for in vivo drug discovery and development. Curr Drug Dev, 10(2): 116-124.

Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang WW, Jiang JM and others. 2008. Evolution of gene expression levels in mammalian organs. Nature, 453(7197): 101-104.

Farmer MA, Baliki MN, Apkarian AV. 2012. A dynamic network perspective of chronic pain. Neurosci Lett, 520(2): 197-203.

Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. 2011. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer, 11(2): 135-141.

Friese MA, Montalban X, Wilcock N, Bell JJ, Martin R, Fugger L. 2006. The value of animal models for drug development in multiple sclerosis. Brain, 129(8): 1940-1952.

Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MAL. 2009. Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science, 323(5921): 1578-1582.

Götz J, Ittner LM. 2008. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci, 9(7): 532-544.

Greber B, Wu GM, Bernemann C, Joo JY, Han DW, Ko K, Tapia N, Sabour D, Sternecket J, Tesar P and others. 2010. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 6(3): 215-225.

Hasenfuss G. 1998. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res, 39(1): 60-76.

Heintzman ND, Stuart RK, Hon G, Fu YT, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu CX, Ching KA and others. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311-318.

Henkelman RM. 2010. Systems biology through mouse imaging centers: experience and new directions. Annu Rev Biomed Eng, 12(1): 143-166.

Huh Y, Ju MS, Park H, Han SJ, Bang YM, Ferris CF, Koppe GA, King JA, Kim ML, Kim DJ and others. 2010. Clavulanic acid protects neurons in pharmacological models of neurodegenerative diseases. Drug Dev Res, 71(6): 351-357.

Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Niselst-Ruawe K, Muchmore E, Varik A, Ravid R and others. 2004. Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol, 5: 279.

Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lovenokov VV, Ren B. 2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell, 128(6): 1231-1245.

Liao BY, Zhang JZ. 2006. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol Biol Evol, 23(3): 530-540.

Liao BY, Zhang JZ. 2008. Null mutations in human and mouse embryonic stem cells and in endodermal progenitors. Stem Cells, 26(9): 1940-1952.
Mardis ER. 2007. ChIP-seq: welcome to the new frontier. Nat Methods, 4(8): 613-614.

Marques AC, Vinekenbosh N, Brawand D, Kaessmann H. 2008. Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol, 9(3): 5R4.

McGaughey DM, Vinton RM, Huynh J, Al-Saif A, Beer MA, McCallion AS. 2008. Metrics of sequence constraint overlooked regulatory sequences in an exhaustive analysis at phox2b. Genome Res, 18(2): 252-260.

Merchenthaler I, Shughrue PJ. 2005. Neuroprotection by estrogen in animal models of ischemia and Parkinson's disease. Drug Develop Res, 66(2): 172-181.

Miller JA, Horvath S, Geschwind DH. 2010. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci U S A, 107(28): 12698-12703.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5(7): 621-628.

Nestler EJ, Hyman SE. 2010. Animal models of neuropsychiatric disorders. Nat Neurosci, 13(10): 1161-1169.

Northoff G. 2009. Comparison between animal models and human imaging findings in major depressive disorder-convergences and divergences. Biol Psychiat, 65(8): 18S-18S.

Ogawa Y, Arakawa K, Kaizu K, Miyoshi F, Nakayama Y, Tomita M. 2008. Comparative study of circadian oscillatory network models of Drosophila. Artif Life, 14(1): 29-48.

Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 10(10): 669-680.

Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA. 2006. Activated signal transduction kinases frequently occupy target genes. Science, 313(5786): 533-536.

Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS. 2011. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood, 118(14): E101-E111.

Schmid CD, Bucher P. 2007. ChIP-Seq data reveal nucleosome architecture of human promoters. Cell, 131(5): 831-832.

Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S and others. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science, 328(5981): 1036-1040.

Schulz MH, Zerbino DR, Vinckenbosh M, Birney E. 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics, 28(8): 1086-1092.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511-515.

van den Heuvel S, Dyson NJ. 2008. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Bio, 9(9): 713-724.

Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F and others. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231): 854-858.

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1): 57-63.

Werner E. 2007. All systems go. Nature, 446(7135): 493-494.

Yanai I, Graur D, Ophir R. 2004. Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. Omics, 8(1): 15-24.

Zhu XW, Gerstein M, Snyder M. 2007. Getting connected: analysis and principles of biological networks. Gene Dev, 21(9): 1010-1024.