Zinc Supplementation and the Prevention and Treatment of Sepsis in Young Infants: A Systematic Review and Meta-Analysis

Omar Irfana Robert E. Blackb Zohra S. Lassic Zulfiqar A. Bhuttaa,d

aCentre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada; bDepartment Global Disease Epidemiology and Control, Baltimore, MD, USA; cRobinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; dInstitute for Global Health & Development, The Aga Khan University, Karachi, Pakistan

Keywords
Zinc · Neonatal sepsis · Young infant sepsis · Treatment · Efficacy · Mortality

Abstract

\textbf{Background:} Prematurity and low birth weight are major risk factors for neonatal sepsis. Zinc supplements have been previously shown to be beneficial in pregnancy and small for gestational age birth outcomes. There is sparse information, however, on the potential benefits of zinc supplementation to prevent or treat serious infections in this age group.

\textbf{Objective:} The aim of this study was to assess the efficacy of preventive and therapeutic zinc supplementation in young infant (<4 months) sepsis.

\textbf{Methods:} MEDLINE, Cochrane CENTRAL, and other databases were searched from inception until 18 June 2021. Studies assessing preventive and therapeutic zinc supplementation in young infants in relation to incidence and outcomes of suspected sepsis were included. Meta-analyses of pooled effects were calculated for sepsis-related outcomes.

\textbf{Results:} Eleven randomized controlled trials involving 2,819 infants were included. Eight studies reported therapeutic efficacy, whereas 3 evaluated preventive benefits of zinc supplementation. Preventive studies suggest a protective effect of zinc supplementation on neonatal mortality rate (NMR) (risk ratio (RR) 0.28; 95% CI 0.12–0.67, LOW certainty), but with no effect on the incidence of sepsis, both in preterm neonates. Among young infants, therapeutic zinc was associated with significant reductions in infant mortality-rate (RR 0.61; 95% CI 0.41–0.93, LOW certainty) and treatment failure (RR 0.61; 95% CI 0.44–0.85; LOW certainty). Therapeutic zinc supplementation in neonates was associated with significant increase in serum zinc concentrations (mean difference 81.97; 95% CI 34.57–129.37; LOW certainty), but without an effect on hospital stay or NMR.

\textbf{Conclusion:} Zinc supplementation could potentially reduce mortality and treatment failure in young infants but has no noteworthy influence on hospital stay and in the prevention of sepsis. Further studies with larger sample sizes are needed to confirm the direction and magnitude of effects if any.

Introduction

Sepsis is among the leading causes of morbidity and mortality among newborns and young infants [1]. In 2017, almost half of all the worldwide cases of sepsis occurred in children, with an estimated 20 million cases and 2.9 million deaths in children under five [2]. The incidence of neonatal sepsis is estimated to be between 1 and
Preventive and Therapeutic Zinc Supplementation in Young Infant Sepsis

Higher concentrations of serum zinc have been shown to be associated with improved immunity and prognosis in neonatal sepsis [16]. We undertook a systematic review to determine the efficacy and safety of preventive and therapeutic zinc supplementation in reducing morbidity and mortality of clinical or blood culture-proven sepsis in newborns and young infants (the first 4 months after birth). There have been inconsistent conclusions on the benefits of zinc supplementation in neonates from controlled trials and systematic reviews on mortality and morbidity related to sepsis [17–21]. This review includes both neonates and young infants (<4 months of age) in evaluating the effectiveness of zinc intervention in sepsis. This review will potentially inform policymakers and practitioners in improving the outcomes of sepsis in this high-risk population group.

Methods

This systematic review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) and a PRISMA checklist has been provided as online supplementary file (see www.karger.com/doi/10.1159/000521275 for all online suppl. material) to ensure conformity to PRISMA guidelines. The protocol of the review is registered with PROSPERO CRD42021235626.

Objectives

This review will address the following research objectives:
1. Assess the effectiveness and safety of preventive and therapeutic oral zinc supplementation versus no intervention or placebo in neonatal and young infant sepsis
2. Determine subgroups of neonates and young infants who would benefit more from zinc supplementation
3. Determine the optimal dose and duration of zinc supplementation in this population

Search and Selection Criteria

A comprehensive search of MEDLINE, Cochrane Controlled Trials Register (CENTRAL), Embase, CINAHL, SCOPUS, Web of Science, Latin American and Caribbean Health Sciences Literature (LILACS), Google Scholar, and ClinicalTrials.gov databases covering timeline from inception to 18 June 2021 was conducted. No restrictions were applied for country, ethnicity, sex, or language. Efforts were made to contact the relevant authors for the identification of unpublished and ongoing studies. References sections and annotated bibliographies of included studies were cross-referenced for additional eligible studies.
A search strategy was formulated as below:
1. zinc[mesh] or zinc.tw.
2. infant, newborn [mesh] or neonate.tw or infant.tw or infant, premature[mesh].
3. sepsis[mesh] or sepsis.tw or neonatal sepsis[mesh] or infection.tw or infections[mesh].
4. #1 AND #2 AND #3.

Eligibility Criteria
We included randomized controlled trials (RCTs). Nonrandomized and observational studies were excluded. The target population of the review was young infants (<4 months). We excluded patients older than 4 months. There was no restriction applied for birth weight, gestational ages, and underlying co-morbidities. This review focused on oral zinc supplementation in any form and dose in addition to standard care. Trials with additional micro-/macronutrient or antibiotics were considered if they were given equally in both intervention and placebo groups.

Types of Outcome Measures
Primary Outcomes
• All-cause Mortality rate (events/total)
• Hospital admission (events/total) and stay duration (hours or days)
• Intensive care unit (ICU) admission (events/total) and stay duration (hours or days)
• Treatment failure (events/total), defined as worsening or persistence of clinical features, change in the antibiotic treatment regimen, requirement of intensive care, or death
• Incidence of sepsis in prevention studies (events/total)

Secondary Outcomes
• Incidence of other diseases as reported by study authors (events/total)
• Serum zinc concentrations (mg/L)

Data Extraction (Selection and Coding) and Analysis
Studies retrieved using the search strategy were entered into Covidence Systematic Review Software (Veritas Health Innovation 2016, Melbourne, SA, Australia) for screening. All titles and abstracts were screened against the aforementioned inclusion criteria in duplicate by 2 authors. Any conflicts were settled by an independent third author. This was followed by a full-text screening. The following data were extracted from each study using standardized data abstraction form: author names, date of publication, study design, city, country, sample size, sex (male/female), patient comorbidities, birth details, zinc supplementation details, control arm details, mortality rate, serum zinc concentrations, the incidence of sepsis and other diseases as reported, treatment failure, hospital/ICU admission, and days of stay.
Table 1. Characteristics of included studies (n = 11)

Study name	Study setting, city, country	Participants	Interventions	Outcomes
Therapeutic zinc supplementation studies				
Banupriya et al.	NICU of a hospital, Pondicherry, India	150 neonates <28 days, gestational age of babies ≥32 weeks, on significant enteral feeds with diagnosis of sepsis	Zinc sulfate dry syrup formulation was administered orally to the babies in zinc group in a dose of 3 mg/kg twice a day for 10 days. Antibiotics and supportive care were given to the neonates in both groups	Expired patients; zinc 5/75 and control 13/75; serum zinc: zinc 870.6±230.7 and control 795.31±207.5, hospital stay: zinc 15 (10–45) and control 15 (11–46), MoDQ was 81.8±18.24 and 83.24±16.64 (p = 0.67) in “no zinc” and “zinc” group, respectively. MeDQ was (84.9±11.01 vs. 89.4±13.9; p < 0.05) in “no zinc” and “zinc” group, respectively
Banupriya et al.	NICU of a hospital, Pondicherry, India	134 neonates <28 days, gestational age of babies ≥32 weeks, on significant enteral feeds with diagnosis of sepsis	Zinc sulfate dry syrup formulation was administered orally to the babies in zinc group in a dose of 3 mg/kg twice a day for 10 days. Antibiotics and supportive care were given to the neonates in both groups	There were 5 deaths in the zinc group compared to 11 in the control group, p = 0.12. The mean duration of hospital stay was observed to be similar in both the groups, 15 (10–32) versus 15 (11–34), p = 0.7. Zinc group (n = 67), Serum zinc (mg/L) before 784.13±167.90 after 861.67±241.5 (p = 0.013), Serum calprotectin (ng/mL) before 200.87±87.12 after 149.43±77.32 (p = 0.001), Serum IL-6 (pg/mL) before 68.27±16.80 after 51.8±20.5 (p < 0.05), Serum TNF-a (pg/mL) before 71.26±26.8 after 56.11±29.6 (p = 0.001), Control group (n = 67), Serum zinc (mg/L) before 767.9±160.9 after 777.86±163.2 (p = 0.59), Serum calprotectin (ng/mL) before 209.25±88.16 after 168.9±92.2 (p = 0.01), Serum IL-6 (pg/mL) before 62.34±15.69 after 55.8±17.13 (p = 0.04), Serum TNF-a (pg/mL) before 68.6±20.7 after 63.2±21.09 (p = 0.10)
Bhatnagar et al.	NICU of 3 hospitals, New Delhi, India	700 infants aged 7–120 days in emergency departments for clinical symptoms or signs of possible serious bacterial infection	Study physician gave every infant half a dispersible tablet of zinc (5 mg of elemental zinc) or placebo dissolved in 2.5 mL expressed breast milk or distilled water orally every 12 h until recovery in addition to standard antibiotic treatment	Significantly fewer treatment failures occurred in the zinc group (34) than in the placebo group (55); relative risk reduction 40% (95% CI 10–60, p = 0.0113); absolute risk reduction 6.8% (95% CI 1.5–12.0, p = 0.0111). Ten infants receiving zinc died compared with 17 given placebo (relative risk 0.57, 95% CI 0.27–1.23, p = 0.15)
El Frargyet al.	NICU of Tanta University Hospital, Tanta, Egypt	200 neonates diagnosed with high probable sepsis according to criteria employed for defining the sepsis score	Zinc was administered as 3 mg/kg twice a day zinc sulfate monohydrate orally for 15 days along with antibiotics according to a standard protocol. Placebo only received antibiotics and supportive care	Mortality rate 10/100 in zinc group and 18/100 in placebo group
Study name	Study setting, city, country	Participants	Interventions	Outcomes
---------------------	--	---	---	--
Elfarargy et al. [32]	NICU of Tanta University Hospital, Tanta, Egypt	180 preterm neonates suffering from neonatal sepsis based on Tollner’s sepsis score	Intervention group received Zn as 0.7 mL of Zn origin/kg/d orally through oro/nasogastric tube divided into 2 doses (every 12 h) which is equal to 1.4 mg elemental Zn/kg/d orally for a period of 10 days. Control group received antibiotics according to standard protocol (ampicillin and gentamycin) and placebo (distilled water)	Mortality rate 2/90 in zinc group and 5/90 in placebo group; Treatment failure 12/90 in zinc group and 20/90 in placebo group
Mehta et al. [27]	Pediatric wards of Institute of Health Sciences (BPKIHS), Dharan, Nepal	614 neonates with probable neonatal sepsis	Zinc at 1 mg/kg/day dissolved in expressed breast milk (formulation: zinc sulfate dispersible tablets of 10 mg) either orally or via a nasogastric tube in neonates kept NPO. Placebo group received the placebo, in addition to antibiotic therapy and supportive care	Mortality: zinc 30/307, control 24/307, use of 2/3 line antibiotics; zinc 41/307, control 37/307, hospital stay (hours); zinc 142.85 (69.41), control 147.99 (73.13)
Newton et al. [18]	NICU of a hospital, Pondicherry, India	88 neonates <28 days, gestational age of babies ≥32 weeks, on significant enteral feeds with diagnosis of sepsis	A zinc sulfate dry syrup formulation was administered orally to the babies in zinc group in a dose of 3 mg/kg twice a day for 10 days. Antibiotics and supportive care were given to the neonates in both groups	After 10 days of treatment, the mean serum zinc level between the 2 groups was zinc 737.09±219.97 versus control 801.26±405.56 (p = 0.20). Hospital stay (zinc 15 vs. control 15; p = 0.69) and mortality rate (zinc 4.5% vs. control 13.6%; p = 0.27). At 1 month of age, more number of control group neonates had abnormal neurological findings as compared to the zinc group [(p = 0.02); RR [95% CI] = 0.28 [0.11–0.73)]. 4/42 versus 14/38
Ali et al. [29]	Outpatient ward at the Department of Paediatrics, Sylhet M A G Osmani Medical College, Sylhet, Bangladesh	Neonates 3–28 days old with weight between 2.5 and 4 kg. Neonates presenting with any one or more of the following criteria plus positive blood culture report and/or CRP > 10 µ/L: (1) not feeding well, (2) convulsions, (3) fast breathing (>60 breaths/min), (4) severe chest in-drawing, (5) low body temperature (less than 35.5°C or 95.9°F), (6) fever (more than 37.5°C or 99.5°F), (7) movement only when stimulated or no movement at all and neonates with other problems	Neonates were divided into 2 groups: group A and group B. Zinc or placebo was prepared in identical packet. Each packet contained 5 mg dispersible zinc sulfate or placebo, given for 7 days. Both groups were given antibiotics and supportive care	Clinical recovery (n [%]) zinc 61 (93.8) versus control 59 (92.1), treatment failure (n [%]) zinc 4 (6.2) versus control 5 (7.8)

Preventive zinc supplementation studies

| Habib et al. [31] | Rural district of Hala and Matari located about 200 km north-east of Karachi, Pakistan | Healthy newborns aged between 0 and 14 days were enrolled into the study. Infants beyond this age or preterm infants (<37 weeks gestation or <2 kg birth weight) or having any major congenital abnormalities were excluded | Subjects were as signed to either receive 10 mg of zinc or placebo supplementation daily for 18 weeks. Both groups received OPV doses at birth, at 6 weeks, 10 weeks and 14 weeks | Both zinc and placebo groups reported no cases of bacterial sepsis and mortality |
Pooled effect estimates were calculated for mean difference (MD) with 95% CIs for continuous variables and risk ratio (RR) with 95% CIs for dichotomous variables using Review Manager version 5.4.1, adopting a random-effects model. An I^2 of greater than 50% represents significant heterogeneity. A p value of less than 0.05 in 2-tailed tests indicates statistical significance.

Analysis of Subgroups or Subsets

We performed subgroup analyses where there were at least 3 studies for each subgroup identified, in accordance with Cochrane Collaboration recommendations. Neonatal studies were classified into preventive and therapeutic intervention studies. Further subgroup analyses were conducted for Zinc dosage and duration in young infants.

Risk of Bias (Quality) Assessment

Two review authors independently and in duplicate assessed the risk of bias of included studies using the Cochrane Collaboration Risk of Bias tool [22]. The risk of bias was either rated “high,” “low,” or “unclear.”

GRADE Analysis

We constructed GRADE Evidence profiles summarizing the certainty of evidence according to the outcomes as per the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria [23]. It covers consideration of the within-study risk of bias, directness of evidence, heterogeneity, the precision of effect estimates, and the risk of publication bias. We rated the certainty of the evidence for each key outcome as “high,” “moderate,” “low,” or “very low.”

Results

Study Selection

The search exercise yielded a total of 913 records from the mentioned databases. After removal of duplicates and the initial title and abstract screening, 10 studies underwent full-text screening. After full-text screening and inclusion of one article from other resources, 11 RCTs [18, 19, 24–32] were finally included in the review. No study was excluded from the full-text review. The search identified 3 ongoing trials [33–35]. The PRISMA flow diagram for study selection is as shown in Figure 1. The included studies were published between 2012 and 2020. Five studies were conducted in India, 2 in Egypt, and one each in Nepal, Pakistan, Bangladesh, and Italy. The study settings included pediatric inpatient wards [25, 27, 29, 30], neonatal ICUs [18, 19, 24, 26, 28, 32], and the community [31]. The characteristics of included studies are as shown in Table 1. The minimum sample size reported was 72 children [30] and the maximum population size was 700 children [25]. Eight [18, 19, 24–27, 29, 32] of the included studies reported the therapeutic effect of zinc supplementation, whereas only 3 studies [28, 30,
[31] evaluated the preventive efficacy of the zinc supplement. We report below the preventive and therapeutic effects of zinc supplementation in neonates and young infants, respectively.

Risk of Bias (Quality) Assessment

Eight out of 11 studies were assessed to be of good quality with a low risk of bias across most of the domains as summarized in online supplementary Figure 1. Mathur and Agarwal [30] reported a high risk of bias in blinding of participants, personnel, and outcome assessment. One study [26] had an unclear risk of bias for sequence generation, allocation concealment, and blinding. Elfarargy et al. [32] adopted a high-risk randomization method for the study trial.

Preventive Efficacy of Zinc Supplementation on Neonatal and Infant Sepsis

Three studies reported the preventive efficacy of zinc supplementation in preterm neonates [28, 30, 31]. GRADE assessment of primary outcomes is as shown in online supplementary Table 1. Two trials from LMICs, given in mixed inpatient and intensive care settings, reported zinc supplementation to observe significantly lower mortality (RR 0.28; 95% CI 0.12–0.67; 2 studies; 265 participants; heterogeneity: $\chi^2 p$ value 0.86; I^2 0%; LOW certainty on GRADE), but a comparable incidence rate of bacterial sepsis (RR 1.07, 95% CI 0.52–2.19; 2 studies; 193 participants; heterogeneity: $\chi^2 p$ value 0.28; I^2 15%; LOW certainty on GRADE) in preterm neonates, as shown in Figure 2. Both the trials administered zinc supplementation from the 7th day of life until discharge or 3 months corrected age. Habib et al. [31] reported no occurrence of mortality or cases of bacterial sepsis in their 18 weeks follow-up period in a community study assessing the effect of daily zinc supplement in term infants on oral polio vaccine response.

![Fig. 2. a, b Effect of preventive zinc supplementation in preterm neonates on mortality and incidence of bacterial sepsis.](image-url)

Therapeutic Efficacy of Zinc Supplementation in Neonatal and Young Infant Sepsis

A total of 8 trials [18, 19, 24–27, 29, 32] reported the therapeutic effect of zinc supplementation on proven sepsis in infants up to 4 months of age, all in LMICs. Six studies were conducted in infants admitted to intensive care with sepsis whereas 2 studies recruited infants from inpatient facilities. Bhatnagar et al. [25], reported the protective effect of zinc supplementation compared to placebo with lower need to change antibiotic regimen or ICU admission. Compared with the control group, zinc supplementation was associated with a significant decrease in all-cause mortality rate (RR 0.61; 95% CI 0.41–0.93; 7 studies; 2,021 participants; heterogeneity: $\chi^2 p$ value 0.95; I^2 0%; LOW certainty on GRADE) as shown in Figure 3. Mortality rate was further subgrouped according to zinc...
dosage; dose of 1 mg/kg/twice a day (RR 0.92, 95% CI 0.34–2.48, 2 studies; 794 participants; heterogeneity: $\chi^2 p = 0.19, I^2 = 43$%; LOW certainty on GRADE), dose of 3 mg/kg/twice a day (RR 0.46, 95% CI 0.29–0.75; 4 studies; 572 participants; heterogeneity: $\chi^2 p = 0.91, I^2 = 0$%; LOW certainty on GRADE), and dose of 5 mg/kg/twice a day (RR 0.57, 95% CI 0.27–1.23; one study; 655 participants; MODERATE certainty on GRADE). On further disaggregation of studies, only 6 studies reported the effect of duration of zinc treatment on mortality rate in young infants as shown in Figure 4; 10 days of treatment (RR 0.40, 95% CI 0.22–0.73; 5 studies; 601 participants; heterogeneity: $\chi^2 p = 0.17, I^2 = 0$%; LOW certainty on GRADE) and 15 days of treatment (RR 0.56, 95% CI 0.27–1.14; one study; 228 participants; LOW certainty on GRADE). Zinc supplementation was associated with a significantly lower treatment failure rate; (RR 0.61, 95% CI 0.44–0.85; 3 studies; 964 participants; heterogeneity: $\chi^2 p = 0.19, I^2 = 0$%; MODERATE certainty on GRADE), and insignificant mean hospital stay (MD −4.51 h; 95%
CI −15.08 and 6.05; 3 studies; 836 participants; heterogeneity: χ^2 p value 0.95; I^2 0%; HIGH certainty on GRADE).

Banupriya et al. [24], also reported improved Motor Development Quotient (MD 1.44, 95% CI −4.15 to 7.03) and Mental Development Quotient (MD 4.50, 95% CI 0.49–8.51) on 12-month follow-up with zinc supplementation.

Subgroup analysis on the 6 neonatal trials did not show any significant benefit on hospital stay or survival (Fig. 5). Significant improvement in serum zinc concentrations and neurological findings were observed. Neurological assessments included motor and mental development quotients, any abnormalities in posture, movements, visual or auditory orientation, and behavior.

Discussion and Conclusion

This is the first review to evaluate the effectiveness of zinc supplementation in young infants. This review includes 11 RCTs, of which ten studies were reported from the LMICs. Eight studies were conducted among infants (<4 months) admitted to intensive care, 2 studies from inpatient facilities, whereas one study was a community-based intervention trial. Our meta-analysis of 10 RCTs finds that adjunct treatment of young infant sepsis with zinc supplementation in addition to antibiotics and supportive care, significantly reduces mortality, but not in studies limited to neonatal sepsis (<1 month). Furthermore, preventive zinc supplementation reported a lower mortality rate in preterm neonates. Eight out of 11 included studies were of good quality with computer-generated randomization, concealed allocation, triple-blinding, minimal attrition, and no other biases reported. The findings of this review are to be cautiously interpreted, with the limited number of studies of small sample sizes included and most of the outcomes were rates low to moderate on GRADE certainty assessment. Due to the low number of included studies, we were unable to perform an assessment of publication bias. Ideally, the comparison of effective dose should be with different doses within the same study rather than among different studies. Furthermore, the studies reported different short durations of zinc supplementation, which makes it important to conduct studies with a long duration of intervention and follow-ups.

Ten studies were reported from the LMICs. The only study from HIC in our cohort was reported from very low birth weight neonates admitted to the NICU. Zinc deficiency and undernutrition remain a major public health concern in the LMICs [36], where a combination of poor sanitation and hygiene, overcrowding, air pollu-

Table 1

Study or subgroup	Zinc	Control	Weight, %	Risk ratio M-H, random, 95% CI	Risk ratio M-H, random, 95% CI	
2.5.2 10 days treatment regimen						
Banupriya, 2018	5	67	11	67	20.9	0.45 [0.17, 1.24]
Banupriya and Bhat, 2017	5	75	13	75	21.8	0.38 [0.14, 1.03]
Elfarargy, 2020	2	90	5	90	8.1	0.40 [0.08, 2.01]
Newton, 2016	2	44	6	44	8.8	0.33 [0.07, 1.56]
Subtotal (95% CI)	14	276	276	59.7	0.40 [0.22, 0.73]	
Heterogeneity: $\tau^2 = 0.00, \chi^2 = 0.12, df = 3 (p = 0.99); I^2 = 0\%$ Test for overall effect: $Z = 3.01 (p = 0.003)$						
2.5.3 15 days treatment regimen						
Elfarargy, 2017	10	100	18	100	40.3	0.56 [0.27, 1.14]
Subtotal (95% CI)	100	100	100	40.3	0.56 [0.27, 1.14]	
Heterogeneity: Not applicable						
Test for overall effect: $Z = 1.60 (p = 0.11)$						
Total (95% CI)	24	376	376	100.00	0.46 [0.29, 0.72]	
Heterogeneity: $\tau^2 = 0.00, \chi^2 = 0.59, df = 4 (p = 0.96); I^2 = 0\%$ Test for overall effect: $Z = 3.34 (p = 0.0008)$ Test for subgroup differences: $\chi^2 = 0.46, df = 1 (p = 0.50), I^2 = 0\%$						

Fig. 4. Effect of duration of therapeutic zinc supplementation in young infants neonates on mortality rate.
Preventive and Therapeutic Zinc Supplementation in Young Infant Sepsis

Fig. 5. a–c Effect of therapeutic zinc supplementation in neonates on mortality, serum zinc concentration and hospital stay.

tion, high prevalence of low birth weight deliveries, food insecurity, and inadequate and unstable immunization predispose to increased risk of infection. It is important to formulate large-scale intervention frameworks and identify the most effective strategies to deliver low-cost interventions in LMICs for the population in need [37]. Zinc, which is a low-cost intervention with a good safety profile in the form of supplementation and fortification, is an important micronutrient to be added to existing infant and young child health and nutrition programs [9]. Furthermore, preterm neonates are more predisposed to zinc deficiency. The 2 included studies on preventive zinc supplementation in preterm neonates show an improved mortality rate. Having missed out on an important phase of transplacental nutrient transfer during the third trimester of pregnancy, preterm neonates require adequate intake of macronutrients and micronutrients for growth and rapidly developing organ systems. Preterm infants are less efficient in absorbing zinc from the GI tract [38], therefore, they may benefit from higher intake compared to full term neonates to improve growth and reducing the risk of morbidities prevalent in preterm infants.

Most published reviews have assessed the effectiveness of zinc for the prevention or treatment of common childhood diseases including pneumonia and diarrhea and those in older infants and preschool children [39, 40]. There is a paucity of evidence on the efficacy of zinc as a preventive and therapeutic agent in sepsis covering the neonatal and young infant age group. A previous review of 4 RCTs by Tang et al. [17], in neonates reported a sig-
significant reduction in neonatal mortality rate and improvement in serum zinc levels in neonatal sepsis, but no significant effect was noted on hospital stay and the number of expired patients. The review reported mortality and expired patients as separate outcomes with an overlap of effects sizes. Another recent review by Smucker et al. [41], narratively synthesized evidence from 3 RCTs, described inconclusive evidence on zinc supplementation as an effective therapy in reducing mortality in neonatal sepsis. A recently published Cochrane review of 2 trials, reports a comparable incidence risk of bacterial sepsis in neonates administered preventive zinc supplementation compared to placebo [21].

RCTs with larger sample sizes are needed in the future to provide conclusive evidence to support the recommendation of zinc as an adjunct therapy to standard care for clinically severe sepsis in young infants. The literature searched yielded a large ongoing trial, underway in India and Nepal, assessing the adjunct treatment benefit of zinc for reducing case-related mortality due to severe bacterial infection in young infants (3–60 days old) [33]. Additional RCTs are also needed to determine if zinc supplementation to pregnant women and/or young infants would prevent the incidence of sepsis and any related mortality. Further trials assessing the effects of zinc supplementation on brain development are needed as zinc deficiency can increase the risk of neurological abnormalities during infancy and adolescence [42]. Two of the included studies reported significant improvement in neurological findings in neonates with sepsis [18, 24]. Although the early period of 1 month of age is too early to detect any definitive neurological abnormality, the findings can have implications for future studies.

Therapeutic zinc supplementation during sepsis may significantly reduce mortality rate and treatment failure in young infants (<4 months) and improve serum zinc concentration in neonates. Further studies with larger sample sizes are needed to provide conclusive evidence to support the recommendation of zinc for prevention or treatment for clinically severe sepsis in young infants.

Acknowledgments

The authors have no contributions to acknowledge for this review.

Statement of Ethics

The paper is exempt from the Ethical Committee approval because this study is based exclusively on published literature.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

No funding has been received for this study.

Author Contributions

Zulfiqar A. Bhutta conceptualized the study. Robert E. Black and Omar Irfan drafted the study protocol; conducted the literature search, study screening, selection, and data extraction; and drafted the manuscript. Omar Irfan drafted the initial manuscript and reviewed and revised the manuscript. Zohra S. Lassi performed the GRADE analysis and reviewed the manuscript. Zulfiqar A. Bhutta and Robert E. Black critically reviewed the manuscript for important intellectual content and approved the final manuscript as submitted. Zulfiqar A. Bhutta is the guarantor.

Data Availability Statement

All data generated or analyzed during this study are included in this article and its online supplementary material files. Further inquiries can be directed to the corresponding author.

References

1. Seale AC, Blencowe H, Manu AA, Nair H, Bahl R, Qazi SA, et al. Estimates of possible severe bacterial infection in neonates insub-Saharan Africa, south Asia, and Latin America for 2012: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(8):731–41.
2. Rudd KE, Johnson SC, Agosa KM, Shackelford KA, Tsio D, Kievan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.
3. Bakhuizen SE, De Haan TR, Teune MJ, van Wassenbergh-Leembuis AG, Van Der Heyden JL, Van Der Ham DP, et al. Meta-analysis shows that infants who have suffered neonatal sepsis face an increased risk of mortality and severe complications. Acta Paediatrica. 2014;103(12):1211–8.
4. Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, Van Meurs KP, et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–26.
5. Naher BS, Mannan MA, Noor K, Shahiddullah M. Role of serum procalcitonin and C-reactive protein in the diagnosis of neonatal sepsis. Bangladesh Med Res Counc Bull. 2011;37(2):40–6.
6. Leal YA, Álvarez-Nemegyel J, Velázquez JR, Rosado-Quib D, Diego-Rodríguez N, Paza-Baeza E, et al. Risk factors and prognosis for neonatal sepsis in southeastern Mexico: analysis of a four-year historic cohort follow-up. BMC Pregnancy Childbirth. 2012;12(1):48.
Preventive and Therapeutic Zinc Supplementation in Young Infant Sepsis

National Institute for Health and Care Excellence. Neonatal infection (early onset): antibiotics for prevention and treatment. 2014. Available from: https://www.nice.org.uk/guidance/cg149/evidence/evidence-update-pdf-188168797.

Hutubessy RC, Baltussen R, Torres-Edejer T, Evans D. WHO–CHOICE: choosing interventions that are cost-effective. In: Health systems performance assessment: debates, methods and empiricism. Geneva: WHO; 2003. p. 823–35.

Roshani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: an integrative review. J Res Med Sci. 2013;18(2): 144.

Jarosz M, Olbert M, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11–24.

Wang L, Song Y. Efficacy of zinc supplementation for the treatment of diarrhea in infants in Pakistan. Fetal Neonatal Med. 2019; 32(7): 1213–8.

Banupriya N, Vishnu Bhat B, Benet BD, Sridhar MG, Parija SC. Efficacy of zinc supplementation on serum calprotectin, inflammatory cytokines and outcome in neonatal sepsis: a randomized controlled trial. J Matern Neonatal Med. 2017;30(13):1627–31.

Schuller SS, Kramer BW, Villamor E, Spittler A, Berger A, Levy O. Immunomodulation to prevent or treat neonatal sepsis: past, present, and future. Front Pediatr. 2018;6:199.

Staab E, Evers K, Askie LM. Enteral zinc supplementation for prevention of morbidity and mortality in preterm neonates. The Cochrane Database Syst Rev. 2021 Mar 12;3(3):CD012797.

Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

Guyatt G, Oxman AD, Akly EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction: GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.

Banupriya N, Bhat BV, Benet BD, Catherine C, Sridhar MG, Parija SC. Short term oral zinc supplementation among babies with neonatal sepsis for reducing mortality and improving outcome: a double-blind randomized controlled trial. Indian J Pediatr. 2018;85(1):5–9.

Bhatnagar S, Wadhwa N, Aneja S, Lodha R, Kabra SK, Natchu UCM, et al. Zinc as adjunct treatment in infants aged between 7 and 120 days with probable serious bacterial infection: a randomised, double-blind, placebo-controlled trial. Lancet. 2012;379(9831):2072–8.

El Frargy MS, Soliman NA. Zinc supplementation as an adjunct treatment in neonatal sepsis. Curr Pediatr Res J. 2017;21(1):93–8.

Mehta K, Bhutta NK, Mahdi S, Shrivastava MK, Singh RR. Oral zinc supplementation for reducing mortality in probable neonatal sepsis: a double blind randomized placebo controlled trial. Indian Pediatr. 2013;50(4):390–3.

Terrin G, Berni Canani R, Passariello A, Mesina F, Conti MG, Cacioc S, et al. Zinc supplementation reduces morbidity and mortality in very-low-birth-weight preterm neonates: a hospital-based randomized, placebo-controlled trial in an industrialized country. Am J Clin Nutr. 2013;98(6):1468–74.

Ali SM, Hoque M, Ali M, Talukder NK, Chowdhury T. Zinc as adjunct therapy in neonatal sepsis. Med Today. 2020;32(2):112–6.

Mathur NB, Agarwal DK. Zinc supplementation in preterm neonates and neurological development: a randomized controlled trial. Indian Pediatr. 2015;52(11):951–5.