Low Temperature SLID Bonding Approach in Fine Pitch Chip-stacking Structure with 30 μm-pitch Interconnections

Chao-Jung Chen*, Yu-Min Lin***, Tzu-Hsuan Ni*, Tao-Chih Chang*, Han-Tang Hung**, Chin-Hao Tsai**, C. Robert Kao**, and Chang-Chun Lee***

*Electronics and Optoelectronics System Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31057, Taiwan, R.O.C
**Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
***Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.

(Received May 13, 2020; accepted August 25, 2020, published September 25, 2020)

Abstract
In this study, a 160°C low-temperature bonding method was developed for fine pitch chip-stacking application by Solid-Liquid Inter-diffusion (SLID) bonding technology. The chip-to-wafer test was conducted by using Cu/Sn-Ag and Cu/Ni/In as the micro pillar bump structure for top chip and bottom wafer, respectively. Indium, with a low melting point of 157°C, was chosen to realize the SLID bonding mechanism in this study. A thin indium layer with a thickness of 1 μm was plated on nickel to induce low temperature bonding with tin. These 30 μm-pitch interconnects bonded at low temperature were well-bonded and exhibited excellent electrical continuity through 3,264 I/Os. Furthermore, the bonded samples were tested under reliability assessments to verify the thermal stability.

Keywords: Chip to Wafer Bonding, Indium, Indium-tin, 3D Integration, Reliability

1. Introduction
As the rapid development in hetero-integration, organic substrates have been widely used in 2.5D and 3D packages to achieve the high speed transmission. Therefore, in order to reduce the warpage effect and enhance the reliability performance of micro joints, minimizing the CTE mismatch as well as the residual stress between packages and organic substrates are crucial.[1] Thus, low-temperature bonding technologies have been widely studied to meet this growing demand.

Among many low-temperature bonding techniques, Solid-liquid interdiffusion (SLID) bonding is a potential bonding method because the joint materials can be bonded at low temperature and applied in a high temperature environment.[2] Indium has been considered as bonding materials used for hybrid pixel detector systems due to its low melting point, high ductility, good mechanical and electrical properties in a broad temperature range.[3]

In this work, a low-cost bonding process by electroplating indium with the thickness of 1 μm is introduced to achieve SLID bonding at 160°C, focusing on its electrical properties and reliability investigations. The daisy chain resistance of the bonded structures remained stable after reliability tests, showing an excellent potential in heterogeneous integration with low thermal budget.

2. Experimental Procedure
To realize SLID bonding, In/Sn system and Cu were chosen as low-temperature melting metal and high-melting-point component. The specifications of the chip-to-wafer test vehicle were listed in Table 1. and the process flow was shown in Fig. 1. The surface treatment process by Ar plasma mixed with 5% H2 was used to remove the surface oxide before bonding. The plasma treatment was carried out for 100 seconds at 350 W. The thermal compression bonding test was carried out by Toray FC-

Table 1 Specifications of the test vehicle.
Dimension (mm)
5.1 × 5.1
Bottom wafer
200 × 200
Thickness (μm)
600
725
Bump diameter (μm)
18
18
Bump pitch (μm)
30
30
Bump height (μm)
Cu/Sn-2.5Ag (5/8)
Cu/Ni/In (5/2/1)

Copyright © The Japan Institute of Electronics Packaging
Transactions of The Japan Institute of Electronics Packaging Vol. 13, 2020

3000WS bonder with an alignment accuracy of ± 2 μm. After chip-to-wafer test, scanning electron microscope (SEM), focused ion beam (FIB), and electron probe micro analysis (EPMA) were used to examine the microstructure and identify the chemical composition of the intermetallic compounds. Daisy chain circuits with 3,264 I/Os were designed to measure the electrical continuity of 30 μm-pitch interconnections after bonding process and reliability test. Afterward, temperature cycling test (TCT) based on the JESD22-A104B standard was performed under the temperature range of −55 to 150°C. High temperature storage test (HTS) was tested under 150°C for different time periods based on the JESD22-A103 standard. The failure criterion in TCT and HTS was considered as the variation of daisy chain resistance over 15%.

3. Results and Discussion

A well-bonded interface of the chip-on-wafer sample at 160°C for 1 minute was evaluated by SEM, FIB and EPMA, as shown in Fig. 2 and Fig. 3. In addition, according to the EPMA result, indium was apparently diffused to top die and consumed quickly to formed (Cu,Ni)_{6}(Sn,In)_{5} IMCs, transforming the joints into full intermetallic joints. The presence of (Cu,Ni)_{6}(Sn,In)_{5} IMCs with a high melting point of 500°C allowed applications at higher processing temperature.

As shown in Fig. 2, some kirkendall voids were formed at the Cu/solder interfaces after bonding process. The electrical measurement was conducted to verify whether the kirkendall voids would affect the reliability of micro joints. The daisy chain resistance of TCT samples was checked at different time intervals of 0, 250, 500, 750 and 1,000 cycles; while that of HTS samples was checked at different time intervals of 0, 100, 250, 500, 1,000 hours. As shown in Fig. 4 and Fig. 5, the variation of daisy chain resistance after temperature cycling test (TCT).
resistance was 4.27% and 4.16% without any electrical failure after temperature cycling test (TCT) 1,000 cycles and high temperature storage test (HTS) 1,000 hours, respectively. The result showed that the joints remained very good electrical property after TCT and HTS test. The electrical result was also consistent with the cross-sectional view in Fig. 6, showing a well-bonded interface without cracks after TCT 1,000 cycles. Therefore, the presence of kirkendall voids would not affect the reliability of micro joints.

4. Conclusions

In this work, a chip-to-wafer SLID bonding method by a thin indium layer has been proposed for low temperature bonding technology. Some important results are summarized in the following.

1. The bonding process was completed at 160°C for 1 min, realizing a low temperature and time-saving method for 3D integration application.

2. The electrical measurement results showed stable daisy chain resistance through 3,264 I/Os after TCT and HTS. The result proves the In/Sn-Cu bonded interconnections can withstand large temperature variation and survive in a high temperature environment for a long term.

Acknowledgment

The authors would like to acknowledge the financial support of MOEA, Taiwan, R.O.C.

References

[1] K. Murayama, M. Aizawa, K. Hara, M. Sunohara, K. Miyairi, K. Mori, J. Charbonnier, M. Assous, J.-P. Bally, G. Simon, and M. Higashi, “Warpage control of silicon interposer for 2.5D Package Application,” 2013 IEEE Electronic Components & Technology Conference, pp. 879–884, 2013.

[2] M. Zhao, L. Zhang, Z. Q. Liu, M. Y. Xiong, L. Sun, N. Jiang, and K. K. Xu, “Microstructures and properties of SnAgCu lead-free solders bearing CuZnAl particles,” J. Mater. Sci. Mater. Electron, Vol. 30, pp. 15054–15063, 2019.

[3] Y. Tian, C. Liu, D. A. Hutt, et al., “Electrodeposition of indium for bump bonding,” in Proc. 58th Electronic Components & Technology Conference, Florida, USA, 2008, pp. 2096–2100.
Chao-Jung Chen received the bachelor’s and master’s degrees in material science engineering from National Tsing Hua University in 2015 and 2017, respectively. She is currently a Research and Development engineer with the Heterogeneous Integration Technology and Intelligent System Division for Electronics and Optoelectronic System Research Laboratories, Industrial Technology Research Institute. Her current research interests include low temperature bonding technology, molding process for 3-D IC packaging and advanced packaging.

Yu-Min Lin received the M.S. degree in mechanical engineering from National Central University, Taiwan, in 2004. Since 2004, he has been serving with the Electronics and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu, where he is currently a Deputy Project Manager with the Heterogeneous Integration Technology and Intelligent System Division. His research interests focus on interconnection technology, 3-D IC packaging, embedded process, heterogeneous integration, and advanced packaging.

Tzu-Hsuan Ni received the bachelor’s degree in materials science and engineering from National United University, Miaoli, Taiwan. Since 2018, she has been an Associate Engineer of Intelligent Power Module & System Department for the Electronics and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu. Her current research interests include 3D IC packaging, fan-out wafer-level package technologies, and power module package technologies.

Tao-Chih Chang received the B.S. and M.S. degrees from the Department of Materials Science and Engineering, I-Shou University, Kaohsiung, Taiwan, in 1998 and 2000, respectively, and the Ph.D. degree from National Cheng Kung University, Tainan, Taiwan, in 2004. He is a Deputy R&D Director in the Intelligent System Division for Electronics and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan. His current research interests include lead-free solders, chip in systems packaging, and 3-D stacked integrated circuit technologies.

Han-Tang Hung is a Ph.D. candidate in Department of Materials Science and Engineering at National Taiwan University under the supervision of professor C. Robert Kao. His research topics are 3D-IC packaging and interfacial reaction. His current research interests include the development of micro-fluidic electroless bonding process and using indium as low-temperature solder materials.

Chin-Hao Tsai is a Ph.D. candidate in Department of Materials Science and Engineering in National Taiwan University under the supervision of professor C. Robert Kao. His research topics are electronic packaging, interfacial reaction, and high temperature bonding materials. His current research interests include the bonding materials used in packaging of power IC modules and powder metallurgy.

C. Robert Kao
Professor C. Robert Kao received his Ph.D. in Materials Science from University of Wisconsin - Madison in 1994. He currently is a distinguished professor of Materials Science & Engineering at National Taiwan University. His main research interests include electronic, optical, and MEMS packaging. He has authored over 140 technical papers, five of which are classified as Highly Cited Papers by Essential Science Indicators, and holds 5 ROC patents and 3 US patents. He is a Principal Editor for Journal of Materials Research and Editor for Journal of Materials Science – Materials in Electronics.

Chang-Chun Lee has published more than 280 journal/conference papers in the area of computational solid mechanics, mechanical designs/integrations of 3D-IC system, back-end-of-line (BEOL) physical reliability investigation of nano-micro devices, strained silicon engineering, and advanced electronic packaging/MEMS technologies. Currently, he serves as an associate editor of IEEE Transactions on Components, Packaging and Manufacturing Technology and an associate editor of Microelectronic Reliability. His recent research focuses on the robust designs of electronic packaging reliability, SiC/SiGe/GeSn strained techniques in the advanced MOSFETs/FinFETs, phenomenon analysis of stress-migration/electro-migration in IC devices, as well as the interfacial fracture investigation of thin films.