CP-Violating Asymmetries in Charmless Non-Leptonic Decays
$B \to PP, PV, VV$ in the Factorization Approach

A. Ali
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

G. Kramer\footnote{Supported by Bundesministerium f"ur Bildung und Forschung, Bonn, under Contract 057HH92P(0) and EEC Program “Human Capital and Mobility” through Network “Physics at High Energy Colliders” under Contract CHRX-CT93-0357 (DG12COMA).} and Cai-Dian L"u\footnote{Alexander von Humboldt Foundation Research Fellow.}
II. Institut f"ur Theoretische Physik, Universit"at Hamburg, 22761 Hamburg, Germany

Abstract

We present estimates of the direct (in decay amplitudes) and indirect (mixing-induced) CP-violating asymmetries in the non-leptonic charmless two-body decay rates for $B \to PP$, $B \to PV$ and $B \to VV$ decays and their charged conjugates, where $P(V)$ is a light pseudoscalar (vector) meson. These estimates are based on a generalized factorization approach making use of next-to-leading order perturbative QCD contributions which generate the required strong phases. No soft final state interactions are included. We study the dependence of the asymmetries on a number of input parameters and show that there are at least two (possibly three) classes of decays in which the asymmetries are parametrically stable in this approach. The decay modes of particular interest are:

1. $B^0 \to \pi^+\pi^-$, $\bar{B}^0 \to K^0_S\pi^0$, $\bar{B}^0 \to K^0_S\eta'$,
2. $\bar{B}^0 \to K^0_S\eta$ and $\bar{B}^0 \to \rho^+\rho^-$. Likewise, the CP-violating asymmetry in the decays $\bar{B}^0 \to K^0_S h^0$ with $h^0 = \pi^0, K^0_S, \eta, \eta'$ is found to be parametrically stable and large. Measurements of these asymmetries will lead to a determination of the phases $\sin 2\alpha$ and $\sin 2\beta$ and we work out the relationships in these modes in the present theoretical framework. We also show the extent of the so-called “penguin pollution” in the rate asymmetry $A_{CP}(\pi^+\pi^-)$ and of the “tree shadow” in the asymmetry $A_{CP}(K^0_S\eta')$ which will effect the determination of $\sin 2\alpha$ and $\sin 2\beta$ from the respective measurements. CP-violating asymmetries in B^{\pm} decays depend on a model parameter in the penguin-amplitudes and theoretical predictions require further experimental or theoretical input. Of these, CP-violating asymmetries in $B^{\pm} \to \pi^\pm \eta'$, $B^{\pm} \to K^{*\pm} \eta$, $B^{\pm} \to K^{*\pm} \eta'$ and $B^{\pm} \to K^{*\pm} \rho^0$ are potentially interesting and are studied here.

(Submitted to Physical Review D)
1 Introduction

Recent measurements by the CLEO Collaboration \[1,2\] of a number of decays $B \to h_1h_2$, where h_1 and h_2 are light hadrons such as $h_1h_2 = \pi\pi, \pi K, \eta' K, \omega K$, have lead to renewed theoretical interest in understanding hadronic B decays \[3\].

In a recent work \[4\] we have calculated the branching fractions of two-body non-leptonic decays $B \to PP, PV, VV$, where P and V are the lowest lying light pseudoscalar and vector mesons, respectively. The theoretical framework used was based on the next-to-leading logarithmic improved effective Hamiltonian and a factorization Ansatz for the hadronic matrix elements of the four-quark operators \[5\]. We worked out the parametric dependence of the decay rates using currently available information on the weak mixing matrix elements, form factors, decay constants and quark masses. In total we considered seventy six decay channels with a large fraction of them having branching ratios of order 10^{-6} or higher which hopefully will be measured in the next round of experiments on B decays. The recently measured decay modes $B^0 \to K^+\pi^-, B^+ \to K^+\eta', B^0 \to K^0\eta', B^+ \to \pi^+K^0$ and $B^+ \to \omega K^+$ are shown to be largely in agreement with the estimates based on factorization \[4–6\]. This encourages us to further pursue this framework and calculate quantities of experimental interest in two-body non-leptonic B decays.

Besides branching fractions, other observables which will help to test the factorization approach and give information on the Cabibbo-Kobayashi-Maskawa (CKM) matrix \[7\] are CP-violating rate asymmetries in partial decay rates. In the past a large variety of ways has been proposed to observe CP violation in B decays \[8\]. One method is to study CP-violating asymmetries in the time-dependence of the neutral B meson decay rates in specific modes, which involve an interference between two weak amplitudes. Asymmetries in charged B decays require an interference between two amplitudes involving both a CKM phase and a final state strong interaction phase-difference. Such asymmetries occur also in decays of neutral B mesons in which B^0 and \bar{B}^0 do not decay into common final states or where these states are not CP-eigenstates. In these decays the weak phase difference arises from the superposition of various penguin contributions and the usual tree diagrams in case they are present. The strong-phase differences arise through the absorptive parts of perturbative penguin diagrams (hard final state interaction) \[9\] and non-perturbatively (soft final state interaction).

When a B^0 and \bar{B}^0 decay to a common final state f, $B^0-\bar{B}^0$ mixing plays a crucial role in determining the CP-violating asymmetries, requiring time-dependent measurements. For the final states which are both CP-eigenstates and involve only one weak phase in the decays, the CP-violating asymmetry is independent of the hadronic matrix elements. This occurs in the well studied $\bar{B}^0 \to J/\psi K_S$ decays making it possible to extract the value of $\sin 2\beta$ with no hadronic uncertainties. For neutral B decays into two light mesons such a direct translation of the CP-violating asymmetries in terms of CP-violating phases α, β and γ will not be possible, in general. Hence, the predicted asymmetries are subject to hadronic uncertainties. In principle, these uncertainties can be removed by resorting to a set of time-dependent and time-independent measurements as suggested in the literature \[10–13\]. In practice, this program requires a number of difficult measurements. We pursue here the other alternative, namely we estimate these uncertainties in a specific model, which can be tested experimentally in a variety of decay modes.

CP-violating asymmetries are expected in a large number of B decays; in particular the
partial rate asymmetries in all the $B \to h_1 h_2$ decay modes and their charge conjugates studied in [4] are potentially interesting for studying CP violation. We recall that CP-violating asymmetries in $B \to h_1 h_2$ decays have been studied earlier in the factorization framework [8,14–16]. With the measurement of some of the $B \to h_1 h_2$ decays [1,2], some selected modes have received renewed interest in this approach [17–19]. These papers, however, make specific assumptions about $\xi \equiv 1/N_c$ (here N_c is the number of effective colors) and certain other input parameters; in particular, the earlier ones used CKM-parameter values which are now strongly disfavored by recent unitarity fits [20,21] and/or they do not include the anomaly contributions (or not quite correctly) and the latter ones make specific assumptions about ξ, which may or may not be consistent with data on $B \to h_1 h_2$ decays. We think it is worthwhile to study again these CP-violating asymmetries by including theoretical improvements [5,6] and determine their N_c-and other parametric dependences.

Following our previous work [4] we study this on the basis of the factorization approach. We consider the same seventy six decay channels as in [4] and calculate the CP-violating asymmetries for charged and neutral B decays with the classification I to V as in [4] to distinguish those channels which can be predicted with some certainty in the factorization approach. These are the class-I and class-IV (and possibly some class-III) decays, whose decay amplitudes are N_c-stable and which do not involve delicate cancellations among components of the amplitudes. In our study here, we invoke two models to estimate the form factor dependence of the asymmetries, study their dependence on the effective coefficients of the QCD and electroweak penguin operators in term of N_c, the dependence on k^2, the virtuality of the gluon, photon or Z in the penguin amplitudes decaying into the quark-antiquark pair qq' in $b \to qq'\bar{q}'$ and, of course, the CKM parameters. The last of these is the principal interest in measuring the CP-violating asymmetries. Our goal, therefore, is to identify, by explicit calculations, those decay modes whose CP-violating asymmetries are relatively insensitive to the variations of the rest of the parameters.

In this pursuit, the sensitivity of the asymmetries on k^2 is a stumbling block. As the branching ratios are relatively insensitive to the parameter k^2, this dependence can be removed only by the measurement of at least one of the CP-violating asymmetries sensitive to it (examples of which are abundant), enabling us to predict quite a few others. A mean value of k^2 can also be estimated in specific wave function models [14] - an alternative, we do not consider here. However, quite interestingly, we show that a number of class-I and class-IV (hence N_c-stable) decays involving B^0/\bar{B}^0 mesons have CP-violating asymmetries which are also stable against variation in k^2. Hence, in this limited number of decays, the asymmetries can be reliably calculated within the factorization framework. We find that the CP-violating asymmetries in the following decays are particularly interesting and relatively stable: $B^0 \to \pi^+\pi^-$, $\bar{B}^0 \to K_S^0\pi^0$, $\bar{B}^0 \to K_S^0\eta$, $\bar{B}^0 \to K_S^0\eta'$ and $\bar{B}^0 \to \rho^+\rho^-$. Likewise, the CP-violating asymmetry in the decays $\bar{B}^0 \to K_S^0 h^0$ with $h^0 = \pi^0$, K_S^0, η, η' is large as the individual decay modes have the same intrinsic CP-parity. The k^2-dependences in the individual asymmetries in this sum, which are small to start with but not negligible, compensate each other resulting in a CP-violating asymmetry which is practically independent of k^2. Ideally, i.e., when only one decay amplitude dominates, the asymmetries in the mentioned decays measure one of the CP-violating phases α and β. In actual decays, many amplitudes are present and we estimate their contribution in the asymmetries. To quantify this more pointedly, we work out the dependence of the time-integrated
partial rate asymmetry $A_{CP}(\pi^+\pi^-)$ in the decays $B^0 \to \pi^+\pi^-$ on sin 2α and show the extent of the so-called “penguin pollution”. Likewise, we work out the dependence of $A_{CP}(K^0_S\eta')$, $A_{CP}(K^0_S\pi^0)$, $A_{CP}(K^0_S\eta)$ and $A_{CP}(K^0_S\rho^0)$ on sin 2β. We also study the effect of the tree contribution - which we call a “tree shadow” of the penguin-dominated amplitude, on $A_{CP}(K^0_S\eta')$. The CP-violating asymmetries in B^\pm decays are in general k^2-dependent. Supposing that this can be eventually fixed, as discussed above, the interesting asymmetries in $B^\pm \to h_1 h_2$ decays in our approach are: $B^\pm \to \pi^\pm \eta'$, $B^\pm \to K^{*\pm} \eta$, $B^\pm \to K^{*\pm} \eta'$ and $B^\pm \to K^{*\pm} \rho^0$. We study the asymmetries in the mentioned decays and also in $B^0 \to \rho^\pm \pi^\mp$ in detail in this paper.

The effects of soft final state interactions (SFI) may influence some (or all) of the estimates presented here for the asymmetries. By the same token, decay rates are also susceptible to non-perturbative effects \cite{22-27}, which are, however, notoriously difficult to quantify. We think that the role of SFI in $B \to h_1 h_2$ decays will be clarified already as the measurements of the branching ratios become more precise and some more decays are measured. Based on the “color transparency” argument \cite{28}, we subscribe to the point of view that the effects of SFI are subdominant in decays whose amplitudes are not (color)-suppressed. However, it should be noted that the effects of the so-called non-perturbative “charm penguins” \cite{29} are included here in the factorization approach in terms of the leading power $(1/m^2)$ corrections which contribute only to the decays $B \to h_1 h_2$ involving an η or η' \cite{3}, as explained in the next section.

This paper is organized as follows: In section 2 we review the salient features of the generalized factorization framework used in estimating the $B \to h_1 h_2$ decay rates in \cite{1}. In section 3 we give the formulae from which the various CP-violating asymmetries for the charged and neutral B decays are calculated. Section 4 contains the numerical results for the CP-violating coefficients, required for time-dependent measurements of the CP-violating asymmetries in B^0 and \bar{B}^0 decays, and time-integrated CP-violating asymmetries. The numerical results are tabulated for three specific values of the effective number of colors $N_c = 2, 3, \infty$, varying k^2 in the range $k^2 = m_b^2/2 \pm 2 \text{ GeV}^2$, and two sets of the CKM parameters. We show the CKM-parametric dependence of the CP-violating asymmetries for some representative decays belonging to the class-I, class-III and class-IV decays, which have stable asymmetries and are estimated to be measurably large in forthcoming experiments at B factories and hadron machines. Finally, in this section we study some decay modes which have measurable but k^2-dependent CP-violating asymmetries, mostly involving B^\pm decays but also a couple of B^0/\bar{B}^0 decays. Section 5 contains a summary of our results and conclusions.

2 Generalized Factorization Approach and Classification of $B \to h_1 h_2$ Decays

The calculation of the CP-violating asymmetries reported here is based on our work described in \cite{1}. There, we started from the short-distance effective weak Hamiltonian H_{eff} for $b \to s$ and $b \to d$ transitions. We write below H_{eff} for the $\Delta B = 1$ transitions with five active quark flavors by integrating out the top quark and the W^\pm bosons:

$$H_{eff} = \frac{G_F}{\sqrt{2}} \left[V_{ub}V_{uq}^* (C_1 O_1^u + C_2 O_2^u) + V_{cb}V_{cq}^* (C_1 O_1^c + C_2 O_2^c) - V_{tb}V_{tq}^* \left(\sum_{i=3}^{10} C_i O_i + C_9 O_9 \right) \right],$$

(1)
where \(q = d, s; \) \(C_i \) are the Wilson coefficients evaluated at the renormalization scale \(\mu \) and \(V_{ij} \) are the CKM matrix elements for which we shall use the Wolfenstein parameterization \[30\]. The operators \(O_i^u \) and \(O_i^d \) with \(i = 1, 2 \) are the current-current four-quark operators inducing the \(b \to uq\bar{q} \) and \(b \to cq\bar{q} \) transitions, respectively. The rest of the operators are the QCD penguin operators \((O_3, ..., O_6) \), electroweak penguin operators \((O_7, ..., O_{10}) \), and \(O_g \) represents the chromo-magnetic penguin operator. The operator basis for \(H_{eff} \) is given in \[4\] together with the coefficients \(C_1, ..., C_6 \), evaluated in NLL precision, and \(C_7, ..., C_{10} \) and \(C_g \), evaluated in LL precision. Effects of weak annihilation and W-exchange diagrams have been neglected.

Working in NLL precision, the quark level matrix elements of \(H_{eff} \) are treated at the one-loop level. They can be rewritten in terms of the tree-level matrix elements of the effective operators with new coefficients \(C_i^{eff} \) (For details see \[4\] and the references quoted therein.). The effective coefficients \(C_1^{eff}, C_2^{eff}, C_8^{eff} = C_8, \) and \(C_{10}^{eff} = C_{10} \) have no absorptive parts to the order we are working. The effective coefficient \(C_3^{eff}, C_4^{eff}, C_5^{eff}, C_6^{eff}, C_7^{eff} \) and \(C_9^{eff} \) contain contributions of penguin diagrams with insertions of tree operator \(O_{1/2} \), denoted by \(C_t \) and \(C_e \) in \[4\] and with insertions of the QCD penguin operators \(O_3, O_4 \) and \(O_6 \) (denoted by \(C_p \) in \[4\]). These penguin-like matrix elements have absorptive parts which generate the required strong phases in the quark-level matrix elements. The contributions \(C_t \) and \(C_e \) depend on the CKM matrix elements. All three functions \(C_t, C_p \) and \(C_e \) depend on quark masses, the scale \(\mu \), and \(k^2 \), and are given explicitly in eqs. \(10), (11) and (14), respectively, of ref. \[4\].

Having defined \(H_{eff} \) in terms of the four-quark operators \(O_i \) and their effective coefficients \(C_i^{eff} \) the calculation of the hadronic matrix elements of the type \(\langle h_1 h_2 | O_i | B \rangle \) proceeds with the generalized factorization assumption \[31\]. The result of this calculation for the various \(B \to PP, PV \) and \(VV \) decays are written down in detail in \[4\]. The hadronic matrix elements depend on the CKM matrix elements, which contain the weak phases, the form factors and decay constants of current matrix elements, various quark masses and other parameters. The quantities \(a_i \), given in terms of the effective short-distance coefficient \(C_i^{eff} \),

\[
a_i = C_i^{eff} + \frac{1}{N_c} C_{i+1}^{eff} (i = \text{odd}); \quad a_i = C_i^{eff} + \frac{1}{N_c} C_{i-1}^{eff} (i = \text{even}),
\]

where \(i \) runs from \(i = 1, ..., 10 \), are of central phenomenological importance. The terms in eq. \(2\) proportional to \(\xi = 1/N_c \) originate from fierzing the operators \(O_i \) to produce quark currents to match the quark content of the hadrons in the initial and final state after adopting the factorization assumption. This well-known procedure results in general in matrix elements with the right flavor quantum number but involves both color singlet-singlet and color octet-octet operators. In the naive factorization approximation, one discards the color octet-octet operators. This amounts to having \(N_c = 3 \) in \(2\). To compensate for these neglected octet-octet and other non-factorizing contributions one treats \(\xi = 1/N_c \) in eq. \(2\) as a phenomenological parameter. In theory, \(\xi \) can be obtained only by fully calculating the octet-octet and other non-factorizing contributions and can, in principle, be different for each of the ten \(a_i \).

Starting from the numerical values of the ten perturbative short distance coefficients \(C_i^{eff} \) \((i = 1, ..., 10) \) we investigated in \[4\] the \(N_c \) dependence of the ten effective coefficients \(a_i \) for the four types of current-current and penguin induced decays, namely \(b \to s (\bar{b} \to \bar{s}) \) and \(b \to d (\bar{b} \to \bar{d}) \). It was found, that \(a_1, a_4, a_6, a_8 \) and \(a_9 \) are rather stable with respect to variations of \(\xi \) in the usually adopted interval \(\xi \in [0, 1/2] \) (or \(2 < N_c < \infty \)) for all four types of transitions, whereas \(a_2, a_3, a_5, a_7 \) and \(a_{10} \) depend very much on \(\xi \).
Based on this result we introduced a classification of factorized amplitudes which is an extension of the classification for tree decays in [32] relevant for B decays involving charmed hadrons. These classes I, II, III, IV and V are fully described in [4] and will be used also in this work. The classes I, II and III in the decays $B \to h_1 h_2$ are defined as in previous work [32]. They involve dominantly (or only) current-current transitions. Class IV and V involve pure penguin or penguin-dominated decays. The classification is such, that decays in classes I and IV are stable against variations of N_c, whereas decays in classes II and V depend strongly on $\xi = 1/N_c$ and decays in class III have an intermediate status, sometimes depending more, sometimes less on ξ. We concluded in [4] that decay rates in the classes I and IV decays can be predicted in the factorization approximation. The decays in class II and V have sometimes rather small weak transition matrix elements, depending on the values of the effective N_c and CKM matrix elements. This introduces delicate cancellations which makes their amplitudes rather unstable as a function of N_c. Predicting the decay rates in these classes involves a certain amount of theoretical fine-tuning, and hence we are less sure about their estimates in the factorization approach. Depending on the value of ξ, it is probable that other contributions not taken into account in the factorization approach used in [4], like annihilation, W exchange or soft final state interactions, are important. We expect that the matrix elements of the decays in class-I and class-IV (and most class-III), being dominantly of $O(1)$ as far as their N_c-dependence is concerned will be described, in the first approximation, by a universal value of the parameter ξ. We are less sure that this will be the case for class-II and class-V decays. As we show here, this ξ-sensitivity of the decay rates reflects itself also in estimates of the CP-violating rate asymmetries.

There is also an uncertainty due to the non-perturbative penguin contributions [29], as we do not know how to include their effects in the amplitudes $\langle h_1 h_2 | H_{\text{eff}} | B \rangle$ from first principles. However, these effects can be calculated as an expansion in $1/m_c^2$ in the factorization approach. The dominant diagram contributing to the power corrections is the process $b \to s(\bar{c}c \to g(k_1)g(k_2))$, which was calculated in the full theory (Standard Model) in [33]. In the operator product language which we are using, this contribution can be expressed as a new induced effective Hamiltonian [6]:

$$H_{\text{eff}}^{99} = -\frac{\alpha_s}{2\pi} a_2 \frac{G_F}{\sqrt{2}} V_{cb} V_{cs}^* \Delta i_5 \left(\frac{q^2}{m_c^2} \right) \frac{1}{k_1.k_2} O^{99},$$ (3)

where the operator O^{99} is defined as:

$$O^{99} \equiv G_\alpha^\alpha (D_\beta \tilde{G}_\alpha^{\mu})_\alpha \bar{s} \gamma^\mu (1-\gamma_5) b,$$ (4)

with $\tilde{G}_{\mu\nu,a} = 1/2 \epsilon_{\alpha\beta\rho\sigma} G_{a}^{\alpha\beta}$, and G_α^α being the QCD field strength tensor. This formula holds for on-shell gluons $q^2 = (k_1 + k_2)^2 = 2k_1.k_2$, and the sum over the color indices is understood. The function $\Delta i_5(z)$ is defined as [6]:

$$\Delta i_5(z) = -1 + \frac{1}{z} \left[\pi - 2 \arctan \left(\frac{4}{z-1} \right) \right]^2 \text{ for } 0 < z < 4.$$ (5)

The H_{eff}^{99} gives a non-local contribution but one can expand the function $\Delta i_5(z)$ in z for $z < 1$ and the leading term in this expansion can be represented as a higher dimensional local operator.
In fact, it is just the chromo-magnetic analogue of the operator considered by Voloshin to calculate the power $(1/m_c^2)$ corrections in the radiative decay $B \to X_s + \gamma$. Now comes the observation made in that in the assumption of factorization, only the states which have non-zero matrix elements $\langle M|\alpha_aG_a^{\alpha\beta}(D_{\alpha\beta}G_{\gamma\delta})\rangle|0\rangle$ contribute to the $1/m_c^2$ corrections in the decay rates for $B \to Mh$. For $M = \eta, \eta'$, this matrix element is determined by the QCD anomaly, and q^2 also gets fixed with $q^2 = m_{\eta'}^2$ which justifies the expansion. For the decays $B \to \eta(\eta')K(\star)$, the $1/m_c^2$ effects were calculated in in the decay rates. For the two-body $B \to h_1h_2$ decays, these are the only $1/m_c^2$ contributions in the factorization approach. They are included here in the estimates of the rates and the asymmetries. Note that as the function $\Delta \delta_s(m_{\eta'}^2/m_2^2)$ has no absorptive part, there is no phase generated by the anomaly contribution in $B \to \eta(\eta')K(\star)$ decays.

Concerning the actual estimates of the $B \to h_1h_2$ matrix elements in the factorization approximation, we note that they are calculated as in using two different theoretical approaches to calculate the form factors. First, we use the quark model due to Bauer, Stech and Wirbel. The second approach is based on lattice QCD and light-cone QCD sum rules. The specific values of the form factors and decay constants used by us and the references to the literature are given in . The implementation of the $\eta - \eta'$ mixing follows the prescription of .

Of particular importance for calculating the CP-violating asymmetries is the choice of the parameter k^2, which appears in the quantities C_1, C_p and C_e in the effective coefficients C_i^{FF}. Due to the factorization assumption any information on k^2 is lost when calculating two-body decays, except for the anomaly contribution as discussed earlier. In a specific model and from simple two-body kinematics the average k^2 has been estimated to lie in the range $m_b^2/4 < k^2 < m_b^2/2$. In it was found that the branching ratios (averaged over B and \bar{B} decays) are not sensitively dependent on k^2 if varied in the vicinity of $k^2 = m_b^2/2$. Based on earlier work , we do not expect the same result to hold for the asymmetries. Therefore, we calculated the CP-violating asymmetries by varying k^2 in the range $k^2 = m_b^2/2 \pm 2$ GeV2, which should cover the expected range of k^2 in phenomenological models. Quite interestingly, we find that a number of decay modes in the class-I and class-IV decays have asymmetries which are insensitive to the variation of k^2. These then provide suitable avenues to test the assumption that strong interaction phases in these decays are dominantly generated perturbatively.

3 CP-Violating Asymmetries in $B \to h_1h_2$ Decays - Formalism

For charged B^\pm decays the CP-violating rate-asymmetries in partial decay rates are defined as follows:

$$A_{CP} = \frac{\Gamma(B^+ \to f^+) - \Gamma(B^- \to f^-)}{\Gamma(B^+ \to f^+) + \Gamma(B^- \to f^-)}.$$ (6)

As these decays are all self-tagging, measurement of these CP-violating asymmetries is essentially a counting experiment in well defined final states. Their rate asymmetries require both weak and strong phase differences in interfering amplitudes. The weak phase difference arises from the superposition of amplitudes from various tree (current-current) and penguin diagrams. The strong phases, which are needed to obtain non-zero values for A_{CP} in , are generated by final state interactions. For both $b \to s$ and $b \to d$ transitions, the strong phases are generated.
in our model perturbatively by taking into account the full NLO corrections, following earlier suggestions along these lines [9].

3.1 CP-violating Asymmetries Involving \(b \to s \) Transitions

For the \(b \to s \), and the charge conjugated \(\bar{b} \to \bar{s} \), transitions, the respective decay amplitudes \(\mathcal{M} \) and \(\overline{\mathcal{M}} \), including the weak and strong phases, can be generically written as:

\[
\mathcal{M} = T \xi_u - P_t \xi_t e^{i\delta_t} - P_c \xi_c e^{i\delta_c} - P_u \xi_u e^{i\delta_u},
\]
\[
\overline{\mathcal{M}} = T \xi_u^* - P_t^* \xi_t^* e^{i\delta_t^*} - P_c^* \xi_c^* e^{i\delta_c^*} - P_u^* \xi_u^* e^{i\delta_u^*},
\]

(7)

where \(\xi_i = V_{ib} V_{is}^* \). Here we denote by \(T \) the contributions from the current-current operators proportional to the effective coefficients \(a_1 \) and/or \(a_2 \); \(P_t, P_c \) and \(P_u \) denote the contributions from penguin operators proportional to the product of the CKM matrix elements \(\xi_t, \xi_c \) and \(\xi_u \), respectively. The corresponding strong phases are denoted by \(\delta_t, \delta_c \) and \(\delta_u \), respectively. Working in the standard model, we can use the unitarity relation \(\xi_c = -\xi_u - \xi_t \) to simplify the above equation (7),

\[
\mathcal{M} = T \xi_u - P_t \xi_t e^{i\delta_t} - P_u \xi_u e^{i\delta_u},
\]
\[
\overline{\mathcal{M}} = T \xi_u^* - P_t^* \xi_t^* e^{i\delta_t^*} - P_u^* \xi_u^* e^{i\delta_u^*},
\]

(8)

where we define

\[
P_{tc} e^{i\delta_{tc}} = P_t e^{i\delta_t} - P_c e^{i\delta_c},
\]
\[
P_{uc} e^{i\delta_{uc}} = P_u e^{i\delta_u} - P_c e^{i\delta_c}.
\]

(9)

Thus, the direct CP-violating asymmetry is

\[
A_{CP} \equiv a_{CP} = \frac{A^-}{A^+},
\]

(10)

where

\[
A^- = \frac{1}{2} \left(|\overline{\mathcal{M}}|^2 - |\mathcal{M}|^2 \right)
= 2TP_{tc}|\xi_t^*| \sin \gamma \sin \delta_{tc} + 2P_{tc}P_{uc}|\xi_u^*\xi_t| \sin \gamma \sin (\delta_{uc} - \delta_{tc}),
\]

(11)

\[
A^+ = \frac{1}{2} \left(|\mathcal{M}|^2 + |\overline{\mathcal{M}}|^2 \right)
= (T^2 + P_{uc}^2)|\xi_u|^2 + P_{tc}^2|\xi_t|^2 - 2P_{tc}P_{uc}|\xi_u^*\xi_t| \cos \gamma \cos (\delta_{uc} - \delta_{tc})
- 2TP_{uc}|\xi_u|^2 \cos \delta_{uc} + 2TP_{tc}|\xi_u^*\xi_t| \cos \gamma \cos \delta_{tc}.
\]

(12)

In the case of \(b \to s \) transitions the weak phase entering in \(A^- \) is equal to \(\gamma \), as we are using the Wolfenstein approximation [30] in which \(\xi_t \) has no weak phase and the phase of \(\xi_u \) is \(\gamma \). Thus, the weak phase dependence factors out in an overall \(\sin \gamma \) in \(A^- \). Despite this, the above equations for the CP-violating asymmetry \(A_{CP} \) are quite involved due to the fact that several strong phases are present which are in general hard to calculate except in specific models such as the
ones being used here. However, there are several small parameters involved in the numerator and denominator given above. Expanding in these small parameters, much simplified forms for \(A^- \) and \(A^+ \) and hence \(A_{CP} \) can be obtained in specific decays.

First, we note that \(|\xi_u| \ll |\xi_t| \simeq |\xi_c|\), with an upper bound \(|\xi_u|/|\xi_t| \leq 0.025\). In some channels, such as \(B^+ \rightarrow K^+\pi^0, K^+\pi^0, K^+\rho^0, B^0 \rightarrow K^+\pi^-, K^+\pi^-, K^+\pi^-\), typical value of the ratio \(|P_{tc}/T|\) is of \(O(0.1)\), with both \(P_{uc}\) and \(P_{tc}\) comparable with typically \(|P_{uc}/P_{tc}| = O(0.3)\). The importance of including the contributions proportional to \(P_{uc}\) has been stressed earlier in the literature \([33]\) (see also \([36,37]\)). These estimates are based on perturbation theory but the former inequality \(|P_{tc}/T| \ll 1\) should hold generally as the top quark contribution is genuinely short-distance. The other inequality can be influenced by non-perturbative penguin contributions. However, also in this case, for the mentioned transitions, we expect that \(|P_{uc}/T| \ll 1\) should hold. Using these approximations, eq. (11, 12) become simplified:

\[
A^- \simeq 2TP_{tc}|\xi_u^*\xi_t|\sin\gamma\sin\delta_{tc},
\]

\[
A^+ \simeq P_{tc}^2|\xi_t|^2 + T^2|\xi_u|^2 + 2TP_{tc}|\xi_u^*\xi_t|\cos\gamma\cos\delta_{tc}.
\]

The CP-violating asymmetry in this case is

\[
A_{CP} \simeq \frac{2z_{12}\sin\delta_{tc}\sin\gamma}{1 + 2z_{12}\cos\delta_{tc}\cos\gamma + z_{12}^2},
\]

where \(z_{12} = |\xi_u/\xi_t| \times T/P_{tc}\), where we use the notation used in \([4]\). This relation was suggested in the context of the decay \(B \rightarrow K\pi\) by Fleischer and Mannel \([38]\). Due to the circumstance that the suppression due to \(|\xi_u/\xi_t|\) is stronger than the enhancement due to \(T/P_{tc}\), restricting the value of \(z_{12}\), the CP-violating asymmetry for these kinds of decays are \(O(10\%)\). To check the quality of the approximation made in eq. (15), we have calculated the CP-violating asymmetry using this formula for \(B^0 \rightarrow K^+\pi^-\), which yields \(A_{CP} = -7.1\%\) at \(N_c = 2\), very close to the value \(-7.7\%\) in Table 5 calculated using the full formula, with \(\rho = 0.12, \eta = 0.34\) and \(k^2 = m_t^2/2\) in both cases. The results for other values of \(N_c\) are similar. Thus, we conclude that eq. (15) holds to a good approximation in the factorization framework for the decays mentioned earlier on. However, the CP-violating asymmetries \(A_{CP}\) in the mentioned decays are found to depend on \(k^2\), making their theoretical predictions considerably uncertain. These can be seen in the various tables for \(A_{CP}\). Of course, the relation (15) given above, and others given below, can be modified through SFI - a possibility we are not entertaining here.

There are also some decays with vanishing tree contributions, such as \(B^+ \rightarrow \pi^+K^0_S, \pi^+K^*0, \rho^+K^*0\). For these decays, \(T = 0\), and \(|\xi_u| \ll |\xi_t|\), then for these decays

\[
A^- = 2P_{tc}P_{uc}|\xi_u^*\xi_t|\sin\gamma\sin(\delta_{uc} - \delta_{tc}),
\]

\[
A^+ \simeq P_{tc}^2|\xi_t|^2 - 2P_{tc}P_{uc}|\xi_u^*\xi_t|\cos\gamma\cos(\delta_{uc} - \delta_{tc})
\]

\[
\simeq P_{tc}^2|\xi_t|^2.
\]

The CP-violating asymmetry is

\[
A_{CP} \simeq 2\frac{P_{uc}}{P_{tc}}\frac{|\xi_u|}{|\xi_t|}\sin(\delta_{uc} - \delta_{tc})\sin\gamma.
\]

Without the \(T\) contribution, the suppression due to both \(P_{uc}/P_{tc}\) and \(|\xi_u/\xi_t|\) is much stronger and the CP-violating asymmetries are only around \((-1-2)\%)\). This is borne out by the numerical results obtained with the complete contributions, which can be seen in the Tables.
3.2 CP-violating Asymmetries Involving $b \to d$ Transitions

For $b \to d$ transitions, we have

$$\mathcal{M} = T\zeta_u - P_t \zeta_t e^{i\delta_t} - P_c \zeta_c e^{i\delta_c} - P_u \zeta_u e^{i\delta_u},$$
$$\overline{\mathcal{M}} = T\zeta_u^* - P_t \zeta_t^* e^{i\delta_t} - P_c \zeta_c^* e^{i\delta_c} - P_u \zeta_u^* e^{i\delta_u},$$

where $\zeta_i = V_{ib} V_{id}^*$, and again using CKM unitarity relation $\zeta_c = -\zeta_t - \zeta_u$, we have

$$\mathcal{M} = T\zeta_u - P_{tc} \zeta_t e^{i\delta_t} - P_{uc} \zeta_u e^{i\delta_u},$$
$$\overline{\mathcal{M}} = T\zeta_u^* - P_{tc} \zeta_t^* e^{i\delta_t} - P_{uc} \zeta_u^* e^{i\delta_u},$$

where $\zeta_i = V_{ib} V_{id}^*$, and again using CKM unitarity relation $\zeta_c = -\zeta_t - \zeta_u$, we have

$$\mathcal{M} = T\zeta_u - P_{tc} \zeta_t e^{i\delta_t} - P_{uc} \zeta_u e^{i\delta_u},$$
$$\overline{\mathcal{M}} = T\zeta_u^* - P_{tc} \zeta_t^* e^{i\delta_t} - P_{uc} \zeta_u^* e^{i\delta_u},$$

with $|z_1| = |\zeta_t/\zeta_u| \times TP_{tc}/T^2$. Note, the CP-violating asymmetry is approximately proportional to $\sin \alpha$ in this case. Here the suppression due to $P_{tc} T/T^2$ is accompanied with some enhancement from $|\zeta_t/\zeta_u|$ (the central value of this quantity is about 3 [29]), making the CP-violating asymmetry in this kind of decays to have a value $A_{CP} = (10-20\%)$. We have calculated the CP-violating asymmetry of $B^\pm \to \rho^\pm \omega$ using the approximate formula (23). The number we got for $N_c = 2$ is $A_{CP} = 9.2\%$, which is very close to the value $A_{CP} = 8.9\%$ in Table 11 calculated using the exact formula, with $\rho = 0.12$, $\eta = 0.34$ and $k^2 = m_2^2/2$.

For the decays with a vanishing tree contribution, such as $B^+ \to K^+ K_{S}^0$, $K^+ K^{*0}$, $K^{*+} K^{*0}$, we have $T = 0$. Thus,

$$A^- = -2TP_{tc} |\zeta_u| \sin \alpha \sin \delta_{tc},$$
$$A^+ \approx T^2 |\zeta_u|^2 - 2TP_{uc} |\zeta_u|^2 \cos \delta_{uc} + 2TP_{tc} |\zeta_u^* \zeta_t| \cos \alpha \cos \delta_{tc},$$

with $T^2 \equiv T^2 - 2TP_{uc} \cos \delta_{uc}$. The CP-violating asymmetry is now approximately given by

$$A_{CP} \approx \frac{-2z_1 \sin \delta_{tc} \sin \alpha}{1 + 2z_1 \cos \delta_{tc} \cos \alpha},$$

with $z_1 = |\zeta_t/\zeta_u| \times TP_{tc}/T^2$. Note, the CP-violating asymmetry is approximately proportional to $\sin \alpha$ in this case. Here the suppression due to $P_{tc} T/T^2$ is accompanied with some enhancement from $|\zeta_t/\zeta_u|$ (the central value of this quantity is about 3 [29]), making the CP-violating asymmetry in this kind of decays to have a value $A_{CP} = (10-20\%)$. We have calculated the CP-violating asymmetry of $B^\pm \to \rho^\pm \omega$ using the approximate formula (23). The number we got for $N_c = 2$ is $A_{CP} = 9.2\%$, which is very close to the value $A_{CP} = 8.9\%$ in Table 11 calculated using the exact formula, with $\rho = 0.12$, $\eta = 0.34$ and $k^2 = m_2^2/2$.

For the decays with a vanishing tree contribution, such as $B^+ \to K^+ K_{S}^0$, $K^+ K^{*0}$, $K^{*+} K^{*0}$, we have $T = 0$. Thus,

$$A^- = -2TP_{tc} |\zeta_u|^2 \sin \alpha \sin \delta_{uc} - \delta_{tc},$$
$$A^+ = P_{tc}^2 |\zeta_t|^2 + P_{uc}^2 |\zeta_u|^2 - 2TP_{tc} P_{uc} |\zeta_u^* \zeta_t| \cos \alpha \cos (\delta_{uc} - \delta_{tc}).$$

The CP-violating asymmetry is approximately proportional to $\sin \alpha$ again,

$$A_{CP} = \frac{-2z_3 \sin (\delta_{uc} - \delta_{tc}) \sin \alpha}{1 - 2z_3 \cos (\delta_{uc} - \delta_{tc}) \cos \alpha + z_3^2},$$

with $z_3 = |\zeta_u/\zeta_t| \times P_{uc}/P_{tc}$. As the suppressions from $|\zeta_u/\zeta_t|$ and $|P_{uc}/P_{tc}|$ are not very big, the CP-violating asymmetry can again be of order (10-20\%). However, being direct CP-violating asymmetries, the mentioned asymmetries in the specific $B^\pm \to (h_1 h_2)^\pm$ modes depend on k^2 and are uncertain.
3.3 CP-violating Asymmetries in Neutral B^0 Decays

For the neutral B^0(\bar{B}^0) decays, there is an additional complication due to $B^0 - \bar{B}^0$ mixing. These CP-asymmetries may require time-dependent measurements, as discussed in the literature [8], [40–42]. Defining the time-dependent asymmetries as

$$A_{CP}(t) = \frac{\Gamma(B^0(t) \to f) - \Gamma(\bar{B}^0(t) \to \bar{f})}{\Gamma(B^0(t) \to f) + \Gamma(\bar{B}^0(t) \to \bar{f})},$$

(30)

there are four cases that one encounters for neutral B^0(\bar{B}^0) decays:

- case (i): $B^0 \to f$, $\bar{B}^0 \to \bar{f}$, where f or \bar{f} is not a common final state of B^0 and \bar{B}^0, for example $B^0 \to K^+\pi^-$.
- case (ii): $B^0 \to (f = \bar{f}) \leftarrow \bar{B}^0$ with $f^{CP} = \pm f$, involving final states which are CP eigenstates, i.e., decays such as $\bar{B}^0(B^0) \to \pi^+\pi^-$, etc.

- case (iii): $B^0 \to (f = \bar{f}) \leftarrow \bar{B}^0$ with f, involving final states which are not CP eigenstates. They include decays such as $B^0 \to (VV)^0$, as the VV states are not CP-eigenstates.

- case (iv): $B^0 \to (f\&\bar{f}) \leftarrow \bar{B}^0$ with $f^{CP} \neq f$, i.e., both f and \bar{f} are common final states of B^0 and \bar{B}^0, but they are not CP eigenstates. Decays $B^0 \to \rho^+\pi^-$, $\rho^-\pi^+$ and $B^0 \to K^{*0}K_S^0$, $\bar{K}^{*0}\bar{K}_S^0$ are two examples of interest for us.

Here case (i) is very similar to the charged B^\pm decays. For case (ii), and (iii), $A_{CP}(t)$ would involve $B^0 - \bar{B}^0$ mixing. Assuming $|\Delta\Gamma| \ll |\Delta m|$ and $|\Delta\Gamma/\Gamma| \ll 1$, which hold in the standard model for the mass and width differences Δm and $\Delta\Gamma$ in the neutral B-sector, one can express $A_{CP}(t)$ in a simplified form:

$$A_{CP}(t) \simeq a_{\epsilon'} \cos(\Delta mt) + a_{\epsilon+\epsilon'} \sin(\Delta mt).$$

(31)

The quantities $a_{\epsilon'}$ and $a_{\epsilon+\epsilon'}$, for which we follow the definitions given in [12], depend on the hadronic matrix elements which we have calculated in our model.

$$a_{\epsilon'} = \frac{1 - |\lambda_{CP}|^2}{1 + |\lambda_{CP}|^2},$$

(32)

$$a_{\epsilon+\epsilon'} = \frac{-2Im(\lambda_{CP})}{1 + |\lambda_{CP}|^2},$$

(33)

where

$$\lambda_{CP} = \frac{V_{tb}V_{td}^* \langle f|H_{eff}|\bar{B}^0 \rangle}{V_{tb}V_{ts}^* \langle f|H_{eff}|B^0 \rangle}.$$

(34)

For case (i) decays, the coefficient $a_{\epsilon'}$ determines $A_{CP}(t)$, and since no mixing is involved for these decays, the CP-violating asymmetry is independent of time. We shall call these, together with the CP-asymmetries in charged B^\pm decays, CP-class (i) decays. For case (ii) and (iii), one has to separate the $\sin(\Delta mt)$ and $\cos(\Delta mt)$ terms to get the CP-violating asymmetry $A_{CP}(t)$. The time-integrated asymmetries are:

$$A_{CP} = \frac{1}{1 + x^2} a_{\epsilon'} + \frac{x}{1 + x^2} a_{\epsilon+\epsilon'},$$

(35)

11
with $x = \Delta m / \Gamma \simeq 0.73$ for the $B^0 - \bar{B}^0$ case [39].

Case (iv) also involves mixing but requires additional formulae. Here one studies the four time-dependent decay widths for $B^0(t) \to f$, $\bar{B}^0(t) \to \bar{f}$, $B^0(t) \to \bar{f}$ and $\bar{B}^0(t) \to f$ [41][11][12]. These time-dependent widths can be expressed by four basic matrix elements

$$g = \langle f | H_{eff} | B^0 \rangle, \quad h = \langle f | H_{eff} | \bar{B}^0 \rangle,$$
$$\bar{g} = \langle \bar{f} | H_{eff} | B^0 \rangle, \quad \bar{h} = \langle \bar{f} | H_{eff} | \bar{B}^0 \rangle,$$

which determine the decay matrix elements of $B^0 \to f & \bar{f}$ and of $\bar{B}^0 \to \bar{f} & f$ at $t = 0$. For example, when $f = \rho^+ \pi^+$ the matrix element h is given in appendix B of [4] in eq. (99) and \bar{g} for the decay $\bar{B}^0 \to \rho^+ \pi^-$ is written down in eq. (100) in appendix B of [4]. The matrix elements \bar{h} and g are obtained from h and \bar{g} by changing the signs of the weak phases contained in the products of the CKM matrix elements. We also need to know the CP-violating parameter coming from the $B^0 - \bar{B}^0$ mixing. Defining:

$$B_1 = p|B^0\rangle + q|\bar{B}^0\rangle,$$
$$B_2 = p|B^0\rangle - q|\bar{B}^0\rangle,$$

with $|p|^2 + |q|^2 = 1$ and $q/p = \sqrt{H_{21}/H_{12}}$, with $H_{ij} = M_{ij} - i/2 \Gamma_{ij}$ representing the $|\Delta B| = 2$ and $\Delta Q = 0$ Hamiltonian [8]. For the decays of B^0 and \bar{B}^0, we use, as before,

$$\frac{q}{p} = \frac{V_{td}^\ast V_{td}}{V_{td} V_{td}^\ast} = e^{-2i\beta}.$$

So, $|q/p| = 1$, and this ratio has only a phase given by -2β. Then, the four time-dependent widths are given by the following formulae (we follow the notation of [12]):

$$\Gamma(B^0(t) \to f) = e^{-\Gamma t} \frac{1}{2} \left(|g|^2 + |h|^2 \right) \left\{ 1 + a_\epsilon \cos \Delta mt + a_{\epsilon + \epsilon'} \sin \Delta mt \right\},$$
$$\Gamma(\bar{B}^0(t) \to \bar{f}) = e^{-\Gamma t} \frac{1}{2} \left(|\bar{g}|^2 + |\bar{h}|^2 \right) \left\{ 1 - a_\epsilon \cos \Delta mt - a_{\epsilon + \epsilon'} \sin \Delta mt \right\},$$
$$\Gamma(B^0(t) \to \bar{f}) = e^{-\Gamma t} \frac{1}{2} \left(|\bar{g}|^2 + |\bar{h}|^2 \right) \left\{ 1 + a_\epsilon \cos \Delta mt + a_{\epsilon + \epsilon'} \sin \Delta mt \right\},$$
$$\Gamma(\bar{B}^0(t) \to f) = e^{-\Gamma t} \frac{1}{2} \left(|g|^2 + |h|^2 \right) \left\{ 1 - a_\epsilon \cos \Delta mt - a_{\epsilon + \epsilon'} \sin \Delta mt \right\},$$

where

$$a_\epsilon = \frac{|g|^2 - |h|^2}{|g|^2 + |h|^2}, \quad a_{\epsilon + \epsilon'} = \frac{-2 Im \left(\frac{g}{g} \frac{h}{h} \right)}{1 + |g|^2 + |h|^2},$$

$$a_{\epsilon - \epsilon'} = \frac{|\bar{g}|^2 - |\bar{h}|^2}{|\bar{g}|^2 + |\bar{h}|^2}, \quad a_{\epsilon - \epsilon'} = \frac{-2 Im \left(\frac{\bar{g}}{\bar{g}} \frac{\bar{h}}{\bar{h}} \right)}{1 + |\bar{g}|^2 + |\bar{h}|^2}.$$

By measuring the time-dependent spectrum of the decay rates of B^0 and \bar{B}^0, one can find the coefficients of the two functions $\cos \Delta mt$ and $\sin \Delta mt$ and extract the quantities a_ϵ, $a_{\epsilon + \epsilon'}$, $|g|^2 + |h|^2$, a_ϵ, $a_{\epsilon + \epsilon'}$ and $|\bar{g}|^2 + |\bar{h}|^2$ as well as Δm and Γ, which, however, are already well measured [39]. The signature of CP violation is $\Gamma(B^0(t) \to f) \neq \Gamma(\bar{B}^0(t) \to \bar{f})$ and $\Gamma(\bar{B}^0(t) \to f) \neq \Gamma(B^0(t) \to \bar{f})$ which means, that $a_\epsilon \neq -a\epsilon$ and/or $a_{\epsilon + \epsilon'} \neq -a_{\epsilon + \epsilon'}$. In the two examples, $f = \rho^+ \pi^-$ and $f = K^0 K^0$, the amplitudes g and h contain contributions of several terms similar to what we have written down above for the charged B decays. They have weak and strong phases with the consequence that $|g| \neq |\bar{g}|$ and $|h| \neq |\bar{h}|$.

12
Table 1: CP-violating asymmetry parameters a' and $a_{e^{+e^-}}$ (in percent) for the decays $\bar{B}^0 \rightarrow h_1 h_2$ using $\rho = 0.12$, $\eta = 0.34$ and $N_c = 2, 3, \infty$, for $k^2 = m_{\pi}^2/2 \pm 2$ GeV2.

Channel	a'	$a_{e^{+e^-}}$
$\bar{B}^0 \rightarrow \pi^+\pi^-$	$6.9^{+1.6}_{-3.5}$	$37.3^{+1.6}_{-3.6}$
$\bar{B}^0 \rightarrow \pi^+\pi^0$	$1.0^{+0.7}_{-0.6}$	$8.9^{+0.7}_{-0.6}$
$\bar{B}^0 \rightarrow \eta'\eta'$	$26.0^{+5.6}_{-11.6}$	$17.0^{+5.6}_{-11.6}$
$\bar{B}^0 \rightarrow \eta\eta'$	$19.3^{+3.0}_{-0.8}$	$19.3^{+3.0}_{-0.8}$
$\bar{B}^0 \rightarrow \pi^0\eta$	$17.2^{+1.2}_{-2.4}$	$17.2^{+1.2}_{-2.4}$
$\bar{B}^0 \rightarrow K^0\eta$	$0.4^{+0.6}_{-1.3}$	$0.4^{+0.6}_{-1.3}$
$\bar{B}^0 \rightarrow K^0\eta'$	$-2.4^{+0.6}_{-0.2}$	$-2.4^{+0.6}_{-0.2}$
$\bar{B}^0 \rightarrow K^0\eta^0$	$1.1^{+0.9}_{-0.1}$	$1.1^{+0.9}_{-0.1}$
$\bar{B}^0 \rightarrow K^0\eta$	$12.5^{+2.9}_{-5.5}$	$12.5^{+2.9}_{-5.5}$
$\bar{B}^0 \rightarrow \rho^0\eta$	$-6.4^{+4.6}_{-9.8}$	$-6.4^{+4.6}_{-9.8}$
$\bar{B}^0 \rightarrow \omega\pi^0$	$26.2^{+2.6}_{-1.8}$	$26.2^{+2.6}_{-1.8}$
$\bar{B}^0 \rightarrow \rho^0\eta'$	$-19.8^{+3.2}_{-26.7}$	$-19.8^{+3.2}_{-26.7}$
$\bar{B}^0 \rightarrow \rho^0\eta^0$	$-52.7^{+6.6}_{-26.3}$	$-52.7^{+6.6}_{-26.3}$
$\bar{B}^0 \rightarrow \omega\eta$	$16.3^{+3.3}_{-6.8}$	$16.3^{+3.3}_{-6.8}$
$\bar{B}^0 \rightarrow \omega\eta'$	$17.7^{+1.0}_{-8.5}$	$17.7^{+1.0}_{-8.5}$
$\bar{B}^0 \rightarrow \phi\pi^0$	$16.2^{+3.4}_{-6.2}$	$16.2^{+3.4}_{-6.2}$
$\bar{B}^0 \rightarrow \phi\eta^0$	$16.2^{+3.4}_{-6.2}$	$16.2^{+3.4}_{-6.2}$
$\bar{B}^0 \rightarrow \phi\eta$	$16.2^{+3.4}_{-6.2}$	$16.2^{+3.4}_{-6.2}$
$\bar{B}^0 \rightarrow \rho^0K^0$	$2.1^{+0.5}_{-0.4}$	$2.1^{+0.5}_{-0.4}$
$\bar{B}^0 \rightarrow \omega K^0$	$-1.7^{+0.7}_{-0.9}$	$-1.7^{+0.7}_{-0.9}$
$\bar{B}^0 \rightarrow \rho^+\rho^-$	$4.1^{+1.0}_{-2.2}$	$4.1^{+1.0}_{-2.2}$
$\bar{B}^0 \rightarrow \rho^0\rho^0$	$-8.0^{+3.9}_{-8.5}$	$-8.0^{+3.9}_{-8.5}$
$\bar{B}^0 \rightarrow \omega\omega$	$20.8^{+3.6}_{-6.9}$	$20.8^{+3.6}_{-6.9}$
$\bar{B}^0 \rightarrow K^{*0}\bar{K}^{*0}$	$15.2^{+3.3}_{-6.1}$	$15.2^{+3.3}_{-6.1}$
$\bar{B}^0 \rightarrow \rho^0\omega$	$8.2^{+0.7}_{-1.2}$	$8.2^{+0.7}_{-1.2}$
$\bar{B}^0 \rightarrow \rho^0\phi$	$16.2^{+3.4}_{-6.2}$	$16.2^{+3.4}_{-6.2}$
$\bar{B}^0 \rightarrow \omega\phi$	$16.2^{+3.4}_{-6.2}$	$16.2^{+3.4}_{-6.2}$
Table 2: CP-violating asymmetry parameters a_ϵ and $a_{\epsilon+\epsilon'}$ (in percent) for the decays $\bar{B}^0 \to h_1 h_2$ using $\rho = 0.23$, $\eta = 0.42$ and $N_c = 2, 3, \infty$, for $k^2 = m_b^2/2$.

Channel	$N_c = 2$	$N_c = 3$	$N_c = \infty$	a_ϵ	$a_{\epsilon+\epsilon'}$	
$\bar{B}^0 \to \pi^+\pi^-$	4.9	4.9	5.0	29.3	29.1	28.7
$\bar{B}^0 \to \pi^0\pi^0$	-0.7	20.3	8.8	-72.2	-70.7	68.2
$\bar{B}^0 \to \eta'\eta'$	19.3	42.3	-14.0	50.8	88.3	-66.3
$\bar{B}^0 \to \eta\eta$	18.6	28.8	-11.8	75.4	78.7	-82.2
$\bar{B}^0 \to \pi^0\eta$	17.2	21.0	-9.7	90.2	66.7	-92.3
$\bar{B}^0 \to \rho^0\eta$	38.9	31.2	13.0	74.2	41.1	-28.4
$\bar{B}^0 \to \pi^0\pi^0$	22.8	19.2	10.5	57.9	30.5	-22.3
$\bar{B}^0 \to K_\Sigma^0\pi^0$	0.4	-1.5	-4.9	90.7	85.7	75.1
$\bar{B}^0 \to K_\Sigma^0\eta'$	-3.0	-2.2	-1.1	81.8	83.8	86.6
$\bar{B}^0 \to K_\Sigma^0\eta$	1.3	-1.2	-5.6	92.7	86.3	70.9
$\bar{B}^0 \to K^0\bar{K}^0$	17.5	17.3	16.9	22.2	22.0	21.7
$\bar{B}^0 \to \rho^0\pi^0$	-3.6	1.9	4.8	-26.1	-97.0	30.7
$\bar{B}^0 \to \omega\pi^0$	28.7	30.4	0.7	94.5	65.6	40.1
$\bar{B}^0 \to \rho^0\rho^0$	-19.3	18.3	26.3	-92.3	-22.5	85.2
$\bar{B}^0 \to \rho^0\eta'$	-39.0	-69.2	27.6	32.1	-53.6	27.2
$\bar{B}^0 \to \omega\pi^0$	12.4	24.7	1.3	60.6	96.0	11.1
$\bar{B}^0 \to \omega\eta'$	12.7	32.6	1.3	37.3	45.7	31.1
$\bar{B}^0 \to \phi\pi^0$	22.7	1.4	14.8	26.7	2.3	19.6
$\bar{B}^0 \to \phi\eta$	22.7	1.4	14.8	26.7	2.3	19.6
$\bar{B}^0 \to \phi\eta'$	22.7	1.4	14.8	26.7	2.3	19.6
$\bar{B}^0 \to \rho^0K_\Sigma^0$	2.9	1.1	-2.0	26.3	75.1	98.7
$\bar{B}^0 \to \rho^0K_\Sigma^0$	-2.1	-2.2	-3.4	84.3	84.3	84.6
$\bar{B}^0 \to \omegaK_\Sigma^0$	-7.0	-33.3	-4.9	67.1	26.8	71.7
$B^0 \to \rho^+\rho^-$	2.9	2.9	3.0	16.4	16.2	15.9
$B^0 \to \rho^0\rho^0$	-7.1	2.6	9.7	-82.5	-56.8	74.2
$B^0 \to \omega\omega$	17.8	25.3	3.3	84.8	91.7	21.5
$B^0 \to K^{*0}\bar{K}^{*0}$	21.3	20.3	18.8	25.4	24.6	23.3
$B^0 \to \rho^0\omega$	11.6	6.3	11.8	-30.4	32.1	-3.0
$B^0 \to \rho^0\phi$	22.7	1.4	14.8	26.7	2.3	19.6
$B^0 \to \omega\phi$	22.7	1.4	14.8	26.7	2.3	19.6
Table 3: CP-violating asymmetry parameters $a_{e'}$, $a_{e''}$, $a_{e'+e'}$, $a_{e'+e''}$ defined in eq. (40) for the decays $\bar{B}^0 \to \rho^- \pi^+$, $\bar{B}^0 \to \rho^+ \pi^-$, and $\bar{B}^0 \to \bar{K}^*0K_S^0$, $\bar{B}^0 \to K^0\bar{K}_S^0$, (in percent), using $\rho = 0.12$, $\eta = 0.34$ and $k^2 = m_b^2/2 \pm 2$ GeV2.

Channel	N_c	$a_{e'}$	$a_{e''}$	$a_{e'+e'}$	$a_{e'+e''}$	
$\bar{B}^0 \to \rho^- \pi^+$, $\rho^+ \pi^-$	$N_c = 2$	$N_c = 3$	$N_c = \infty$	$N_c = 2$	$N_c = 3$	$N_c = \infty$
	$N_c = 2$	$N_c = 3$	$N_c = \infty$	$N_c = 2$	$N_c = 3$	$N_c = \infty$

Table 4: CP-violating asymmetry parameters $a_{e'}$, $a_{e''}$, $a_{e'+e'}$, $a_{e'+e''}$ defined in eq. (40) for the decays $\bar{B}^0 \to \rho^- \pi^+$, $\bar{B}^0 \to \rho^+ \pi^-$, and $\bar{B}^0 \to \bar{K}^*0K_S^0$, $\bar{B}^0 \to K^0\bar{K}_S^0$, (in percent), using $\rho = 0.23$, $\eta = 0.42$ and $k^2 = m_b^2/2$.

Channel	N_c	$a_{e'}$	$a_{e''}$	$a_{e'+e'}$	$a_{e'+e''}$	
$\bar{B}^0 \to \rho^- \pi^+$, $\rho^+ \pi^-$	$N_c = 2$	$N_c = 3$	$N_c = \infty$	$N_c = 2$	$N_c = 3$	$N_c = \infty$
	$N_c = 2$	$N_c = 3$	$N_c = \infty$	$N_c = 2$	$N_c = 3$	$N_c = \infty$

4 Numerical Results for CP-Violating Coefficients and A_{CP}

Given the amplitudes M and \overline{M}, one can calculate the CP-violating asymmetry A_{CP} for all the $B \to PP$, $B \to PV$ and $B \to VV$ decay modes and their charged conjugates whose branching ratios were calculated by us recently in the factorization approach [4]. The asymmetries depend on several variables, such as the CKM parameters, N_c, the virtuality k^2 discussed earlier, and the scale μ. The scale dependence of A_{CP} is important in only a few decays and we shall estimate it by varying μ between $\mu = m_b/2$ and $\mu = m_b$ at the end of this section for these decays and fix the scale at $\mu = m_b/2$. The dependence on the rest of the parameters is worked out explicitly. We show the results for $N_c = 2, 3, \infty$, for two representative choices of the CKM parameters in the tables:

- Central values emerging from the CKM unitarity fits of the existing data, yielding: $\rho = 0.12, \eta = 0.34$ [20].
- For values of ρ and η which correspond to their central values $\pm 1\sigma$, yielding $\rho = 0.23$ and
Table 5: CP-violating asymmetries A_{CP} in $\bar{B} \to PP$ decays (in percent) using $\rho = 0.12$, $\eta = 0.34$ and $N_c = 2, 3, \infty$, for $k^2 = m_{B}^2/2 \pm 2$ GeV2.

Channel	Class	CP-Class	$N_c = 2$	$N_c = 3$	$N_c = \infty$
$\bar{B}^0 \to \pi^+\pi^-$	I (ii)	$21.3^{+0.3}_{-1.2}$	$21.2^{+0.3}_{-1.2}$	$21.0^{+0.3}_{-1.3}$	
$\bar{B}^0 \to \pi^0\pi^0$	II (ii)	$-42.0^{+0.2}_{-1.6}$	$-15.1^{+3.1}_{-5.3}$	$45.5^{+0.8}_{-4.3}$	
$\bar{B}^0 \to \eta'\eta'$	II (ii)	$46.9^{+1.4}_{-1.5}$	$62.0^{+1.4}_{-2.3}$	$-52.0^{+2.6}_{-8.0}$	
$\bar{B}^0 \to \eta\eta'$	II (ii)	$57.1^{+1.6}_{-4.1}$	$45.1^{+0.2}_{-0.7}$	$-54.6^{+3.1}_{-8.3}$	
$\bar{B}^0 \to \eta$	II (i)	$59.0^{+1.6}_{-3.2}$	$34.6^{+0.8}_{-1.8}$	$-53.9^{+3.5}_{-8.0}$	
$B^\pm \to \pi^\pm\pi^0$	III (i)	$0.1^{+0.0}_{-0.1}$	$0.0^{+0.0}_{-0.0}$	$0.0^{+0.0}_{-0.0}$	
$B^\pm \to \pi^\pm\eta'$	III (i)	$12.0^{+2.6}_{-5.9}$	$14.5^{+3.2}_{-6.7}$	$-21.3^{+4.2}_{-8.1}$	
$B^\pm \to \pi^\pm\eta$	III (i)	$11.8^{+2.4}_{-5.3}$	$14.0^{+5.9}_{-5.9}$	$19.3^{+3.3}_{-6.3}$	
$\bar{B}^0 \to \pi^0\eta'$	V (ii)	$48.6^{+0.7}_{-1.4}$	$29.2^{+3.5}_{-6.0}$	$-3.6^{+6.7}_{-11.9}$	
$\bar{B}^0 \to \pi^0\eta$	V (ii)	$31.7^{+1.4}_{-2.3}$	$19.4^{+2.8}_{-4.5}$	$-2.6^{+4.8}_{-8.4}$	
$B^\pm \to K^\pm\pi^0$	IV (i)	$-7.1^{+2.1}_{-3.2}$	$-6.3^{+1.8}_{-3.2}$	$-4.9^{+1.3}_{-2.3}$	
$\bar{B}^0 \to K^\pm\pi^+$	IV (i)	$-7.7^{+2.3}_{-4.0}$	$-7.9^{+2.3}_{-4.2}$	$-8.2^{+2.4}_{-4.4}$	
$\bar{B}^0 \to K^0_S\pi^0$	IV (ii)	$36.0^{+0.5}_{-1.0}$	$32.0^{+0.1}_{-0.2}$	$25.1^{+0.7}_{-1.1}$	
$B^\pm \to K^\pm\eta'$	IV (i)	$-4.9^{+2.2}_{-1.6}$	$-4.1^{+1.6}_{-1.8}$	$-3.0^{+1.0}_{-1.8}$	
$\bar{B}^0 \to K^0_S\eta'$	IV (i)	$29.2^{+0.2}_{-0.4}$	$30.7^{+0.1}_{-0.2}$	$32.8^{+0.1}_{-0.3}$	
$B^\pm \to K^\pm\eta$	IV (i)	$8.5^{+3.4}_{-6.3}$	$6.2^{+2.6}_{-4.8}$	$2.8^{+1.4}_{-2.6}$	
$\bar{B}^0 \to K^0_S\eta$	IV (ii)	$37.8^{+0.7}_{-1.3}$	$32.5^{+0.1}_{-0.3}$	$22.9^{+0.9}_{-1.5}$	
$B^\pm \to \pi^0 K^0_S$	IV (i)	$-1.4^{+0.1}_{-0.0}$	$-1.4^{+0.1}_{-0.0}$	$-1.4^{+0.1}_{-0.0}$	
$B^\pm \to K^0 K^0_S$	IV (i)	$12.5^{+2.9}_{-5.5}$	$12.3^{+5.5}_{-5.5}$	$12.0^{+2.8}_{-5.5}$	
$\bar{B}^0 \to K^0 K^0$	IV (ii)	$15.6^{+3.0}_{-5.6}$	$15.5^{+3.1}_{-5.4}$	$15.1^{+2.9}_{-5.5}$	

$\eta = 0.42$. \[20\]

For each decay mode and given a value of N_c, the errors shown on the numbers in the tables reflect the uncertainties due to the variation of k^2 in the range $k^2 = (m_{B}^2/2 \pm 2) \text{ GeV}^2$. For some selected CP-asymmetries, we show in figures, however, the dependence on the CKM parameters for a wider range of ρ and η which are allowed by the present 95% C.L. unitarity fits \[20\].

The results are presented taking into account the following considerations. For decays belonging to the CP class-(i), the CP-asymmetry is time-independent. Hence for this class, $A_{CP} = a_{\epsilon'}$. For the CP class-(ii) and CP class-(iii) decays, the measurement of A_{CP} will be done in terms of the coefficients $a_{\epsilon'}$ and $a_{\epsilon+\epsilon'}$, which are the measures of direct and indirect (or mixing-induced) CP-violation, respectively. In view of this, we give in Tables \[1\] and \[2\] these coefficients for the thirty decay modes of the B^0 and \bar{B}^0 mesons, which belong to these classes, for the two sets of CKM parameters given above. For the four decays belonging to the CP class-(iv) decays, one would measure by time-dependent decay rates the quantities $a_{\epsilon'}$, $a_{\epsilon+\epsilon'}$, a_{ϵ} and $a_{\epsilon+\epsilon'}$. They are given in Tables \[3\] and \[4\] for the two sets of CKM parameters,
Table 6: CP-violating asymmetries A_{CP} in $\overline{B} \rightarrow PP$ decays (in percent) using $\rho = 0.23$, $\eta = 0.42$ and $N_c = 2, 3, \infty$ for $k^2 = m_b^2/2$.

Channel	Class	CP-Class	$N_c = 2$	$N_c = 3$	$N_c = \infty$
$\overline{B}^0 \rightarrow \pi^+\pi^-$	I	(ii)	17.2	17.1	16.9
$\overline{B}^0 \rightarrow \pi^0\pi^0$	II	(ii)	-34.8	-20.4	38.2
$\overline{B}^0 \rightarrow \eta'\eta'$	II	(ii)	36.8	69.7	-40.7
$\overline{B}^0 \rightarrow \eta \eta'$	II	(ii)	48.0	56.3	-46.8
$B^\pm \rightarrow \pi^{\pm}\pi^0$	III	(i)	0.0	0.0	0.0
$B^\pm \rightarrow \pi^{\pm}\eta'$	III	(i)	8.5	10.5	16.7
$B^\pm \rightarrow \pi^{\pm}\eta$	III	(i)	8.7	10.6	16.2
$\overline{B}^0 \rightarrow \pi^0\eta'$	V	(ii)	60.7	39.9	-5.0
$\overline{B}^0 \rightarrow \pi^0\eta$	V	(ii)	42.5	27.1	-3.7
$B^\pm \rightarrow K^{\pm}\pi^0$	IV	(i)	-9.8	-8.6	-6.5
$\overline{B}^0 \rightarrow K^{\pm}\pi^+$	IV	(i)	-10.5	-10.8	-11.2
$\overline{B}^0 \rightarrow K_S^0\pi^0$	IV	(i)	43.4	39.8	32.5
$B^\pm \rightarrow K^{\pm}\eta'$	IV	(i)	-6.3	-5.3	-3.8
$\overline{B}^0 \rightarrow K_S^0\eta'$	IV	(i)	36.9	38.4	40.5
$B^\pm \rightarrow K^{\pm}\eta$	IV	(i)	8.4	6.4	3.1
$\overline{B}^0 \rightarrow K_S^0\eta$	IV	(ii)	45.0	40.2	30.0
$B^\pm \rightarrow \pi^{\pm}K_S^0$	IV	(i)	-1.8	-1.7	-1.7
$B^\pm \rightarrow K^{\pm}K_S^0$	IV	(i)	17.5	17.3	16.9
$\overline{B}^0 \rightarrow K^0\bar{K}^0$	IV	(ii)	22.1	21.8	21.4

respectively. Having worked out these quantities, we then give the numerical values of the CP-violating asymmetries for all the seventy six decays $B \rightarrow PP$, $B \rightarrow PV$ ($b \rightarrow d$ transition), $B \rightarrow PV$ ($b \rightarrow s$ transition) and $B \rightarrow VV$ in Tables 5 - 12.

4.1 Parametric Dependence of CP-violating Parameters and A_{CP}

We now discuss the CP-asymmetries given in Tables 1 - 12 and their parametric dependence.

- **Form factor dependence of A_{CP}**: The CP-violating asymmetries depend very weakly on the form factors. We have calculated the CP-violating asymmetries for the form factors based on both the BSW [32] and the hybrid Lattice-QCD/QCD-SR models. The form factor values used are given in [33]. However, the dependence of A_{CP} on the form factors is weak. Hence, we show results only for the former case.
Table 7: CP-violating asymmetries \(A_{CP} \) in \(\overline{B} \to PV \) decays (\(b \to d \) transition) (in percent) using \(\rho = 0.12, \eta = 0.34 \) and \(N_c = 2, 3, \infty \) for \(k^2 = m_b^2/2 \pm 2 \) GeV\(^2\).

Channel	Class	CP-Class	\(N_c = 2 \)	\(N_c = 3 \)	\(N_c = \infty \)
\(B^0/\overline{B}^0 \to \rho^{-}\pi^+ + \rho^+\pi^- \)	I (iv)	3.6\(^{+0.7}_{-0.4} \)	3.5\(^{+0.7}_{-0.4} \)	3.3\(^{+0.7}_{-0.4} \)	
\(B^0/\overline{B}^0 \to \rho^+\pi^- + \rho^-\pi^+ \)	I (iv)	6.0\(^{+0.7}_{-0.4} \)	5.9\(^{+0.8}_{-0.4} \)	5.9\(^{+0.8}_{-0.4} \)	
\(\overline{B}^0 \to \rho^0\pi^0 \)	II (ii)	-23.5\(^{+1.3}_{-1.2} \)	-49.4\(^{+10.3}_{-22.1} \)	22.2\(^{+0.7}_{-2.4} \)	
\(\overline{B}^0 \to \omega\pi^0 \)	II (ii)	57.5\(^{+1.4}_{-2.3} \)	39.2\(^{+1.3}_{-2.5} \)	24.3\(^{+0.1}_{-0.2} \)	
\(\overline{B}^0 \to \rho^0\eta \)	II (ii)	-59.5\(^{+7.0}_{-17.1} \)	0.9\(^{+8.1}_{-14.0} \)	64.4\(^{+2.4}_{-5.0} \)	
\(\overline{B}^0 \to \rho^0\eta' \)	II (ii)	-16.5\(^{+0.7}_{-0.5} \)	-56.7\(^{+15.5}_{-28.2} \)	40.2\(^{+1.4}_{-6.2} \)	
\(\overline{B}^0 \to \omega\eta \)	II (ii)	46.2\(^{+0.9}_{-2.9} \)	61.5\(^{+1.9}_{-3.5} \)	5.7\(^{+0.1}_{-0.3} \)	
\(\overline{B}^0 \to \omega\eta' \)	II (ii)	33.5\(^{+0.8}_{-3.1} \)	54.9\(^{+1.9}_{-6.7} \)	19.2\(^{+0.4}_{-0.4} \)	
\(B^\pm \to \rho^0\pi^\pm \)	III (i)	-3.9\(^{+2.0}_{-1.5} \)	-5.2\(^{+3.5}_{-1.6} \)	-11.0\(^{+3.8}_{-0.9} \)	
\(B^\pm \to \rho^\pm\pi^0 \)	III (i)	2.7\(^{+0.6}_{-1.5} \)	3.0\(^{+0.7}_{-1.6} \)	3.6\(^{+0.9}_{-1.9} \)	
\(B^\pm \to \omega\pi^\pm \)	III (i)	9.8\(^{+4.8}_{-1.4} \)	7.9\(^{+1.9}_{-4.0} \)	-1.8\(^{+0.6}_{-0.6} \)	
\(B^\pm \to \rho^0\eta \)	III (i)	3.9\(^{+0.9}_{-2.9} \)	4.4\(^{+1.1}_{-2.4} \)	5.7\(^{+1.4}_{-3.0} \)	
\(B^\pm \to \rho^0\eta' \)	III (i)	3.8\(^{+1.0}_{-2.9} \)	4.3\(^{+1.2}_{-2.3} \)	5.6\(^{+1.4}_{-3.2} \)	
\(\overline{B}^0 \to \bar{K}^{*0}K_S^0/K^{*0}K_S^0 \)	IV (iv)	15.9\(^{+3.4}_{-6.0} \)	15.3\(^{+3.0}_{-5.9} \)	14.3\(^{+3.2}_{-5.9} \)	
\(\overline{B}^0 \to K^{*0}K_S^0/\bar{K}^{*0}K_S^0 \)	V (iv)	-12.2\(^{+3.0}_{-5.7} \)	-10.6\(^{+2.6}_{-5.2} \)	-8.2\(^{+2.2}_{-4.3} \)	
\(B^\pm \to K^\pm\bar{K}_S^0 \)	IV (i)	15.2\(^{+3.3}_{-6.1} \)	14.5\(^{+3.2}_{-5.9} \)	13.4\(^{+3.1}_{-5.7} \)	
\(B^\pm \to K^{*\pm}K_S^0 \)	V (i)	-1.2\(^{+5.6}_{-32.8} \)	46.8\(^{+13.2}_{-3.3} \)	48.1\(^{+5.6}_{-24.8} \)	
\(B^\pm \to \phi\pi^\pm \)	V (i)	16.2\(^{+3.4}_{-3.2} \)	1.6\(^{+0.4}_{-0.7} \)	10.5\(^{+2.6}_{-5.1} \)	
\(\overline{B}^0 \to \phi\pi^0 \)	V (ii)	19.6\(^{+3.6}_{-6.5} \)	1.4\(^{+0.3}_{-0.7} \)	13.4\(^{+2.7}_{-5.0} \)	
\(\overline{B}^0 \to \phi\eta \)	V (ii)	19.6\(^{+3.6}_{-6.5} \)	1.4\(^{+0.3}_{-0.7} \)	13.4\(^{+2.7}_{-5.0} \)	

- **\(N_c \)-dependence of \(A_{CP} \):** The classification of the \(B \to h_1 h_2 \) decays using \(N_c \)-dependence of the rates that we introduced in [3] is also very useful in discussing \(A_{CP} \). We see that the CP-asymmetries in the class-I and class-IV decays have mild dependence on \(N_c \), reflecting very much the characteristics of the decay rates. As already remarked, this can be traced back to the \(N_c \)-dependence of the effective coefficients. However, in some decays classified as class-IV decays in [3], we have found that \(A_{CP} \) shows a marked \(N_c \) dependence. All these cases are on the borderline as far as the \(N_c \)-sensitivity of the decay rates is concerned due to the presence of several competing amplitudes. The decays, which were classified in [3] as class-IV decays but are now classified as class-V decays, are as follows:

\(B \to PP \) decays: \(B^0 \to \pi^0\eta^{(i)} \).

\(B \to PV \) decays involving \(b \to s \) transitions: \(B^0 \to K^{*0}\eta \). (The decay mode \(B^0 \to K^{*0}\eta' \) was already classified in [3] as a class-V decay.)
Table 8: CP-violating asymmetries A_{CP} in $B \to PV$ decays ($b \to d$ transition) (in percent) using $\rho = 0.23$, $\eta = 0.42$ and $N_c = 2, 3, \infty$ for $k^2 = m_b^2/2$.

Channel	Class	CP-Class	$N_c = 2$	$N_c = 3$	$N_c = \infty$
$B^0/\bar{B}^0 \to \rho^-\pi^+/\rho^+\pi^-$	I	(iv)	5.3	5.2	5.1
$B^0/\bar{B}^0 \to \rho^+\pi^-/\rho^-\pi^+$	I	(iv)	5.4	5.4	5.4
$\bar{B}^0 \to \rho^0\pi^0$	II	(ii)	-14.8	-44.9	17.8
$\bar{B}^0 \to \omega\pi^0$	II	(ii)	63.7	51.1	19.5
$\bar{B}^0 \to \rho^0\eta$	II	(ii)	-56.5	1.3	57.7
$\bar{B}^0 \to \rho^0\eta'$	II	(ii)	-10.2	-70.8	31.0
$\bar{B}^0 \to \omega\eta$	II	(ii)	36.9	61.8	6.1
$\bar{B}^0 \to \omega\eta'$	II	(ii)	26.1	43.0	15.7
$B^\pm \to \rho^0\pi^\pm$	III	(i)	-2.7	-3.7	-8.3
$B^\pm \to \rho^\mp\pi^0$	III	(i)	1.9	2.1	2.6
$B^\pm \to \omega\pi^\pm$	III	(i)	7.0	5.6	-1.3
$B^\pm \to \rho^\mp\eta$	III	(i)	2.7	3.1	4.0
$B^\pm \to \rho^\mp\eta'$	III	(i)	2.7	3.0	3.9
$B^0/\bar{B}^0 \to K^{*0}K_S^0/K^{*0}K_S^0$	IV	(iv)	22.3	21.4	20.1
$B^0/\bar{B}^0 \to K^{*0}K_S^0/K^{*0}K_S^0$	V	(iv)	-17.0	-14.9	-11.5
$B^\pm \to K^\pm\bar{K}^{*0}$	IV	(i)	21.3	20.3	18.8
$B^\pm \to K^{*\pm}K_S^0$	V	(i)	-1.6	54.6	62.5
$B^\pm \to \phi\pi^\pm$	V	(i)	22.7	1.4	14.8
$\bar{B}^0 \to \phi\pi^0$	V	(ii)	27.5	2.0	19.0
$\bar{B}^0 \to \phi\eta$	V	(ii)	27.5	2.0	19.0
$\bar{B}^0 \to \phi\eta'$	V	(ii)	27.5	2.0	19.0

$B \to VV$ decays: $B^0 \to K^{*0}\rho^0$.

With this, we note that the N_c-dependence of A_{CP} in the class-I and class-IV decays is at most $\pm 20\%$, as one varies N_c in the range $N_c = 2$ to $N_c = \infty$.

Concerning class-III decays, in most cases A_{CP} is found to vary typically by a factor 2 as N_c is varied, with one exception: $B^+ \to \omega\pi^+$, in which case the estimate for A_{CP} is uncertain by an order of magnitude. This is in line with the observation made on the decay rate for this process in [1]. Both CP-violating asymmetries and decay rates for the class-II and class-V decays are generally strongly N_c-dependent. We had shown this for the decay rates in [4] and for the CP-violating asymmetries this feature can be seen in the tables presented here.

- **k^2-dependence of A_{CP}:** The CP-violating asymmetries depend on the value of k^2, as discussed in the literature [15]. The value of k^2 relative to the charm threshold, i.e., $k^2 \leq (\geq) 4m_c^2$, plays a central role here. For the choice $k^2 \leq 4m_c^2$, the $c\bar{c}$ loop will
are some decays which have large sensitivity of the CP-asymmetries by varying it in the range well as the CP-violating parameters are sensitive to not generate a strong phase. We treat renormalization scale μ A B-dependence of A is not very marked, except for a few decays for which the relevant Wilson coefficients do show some scale dependence. We give a list of these decays in Table 13. This feature is not maintained. Of course, there is still some residual scale dependence

• μ-dependence of A_{CP}: It should be remarked that the CP-asymmetries depend on the renormalization scale μ. Part of this dependence is due to the fact that the strong phases are generated only by the explicit $O(\alpha_s)$ corrections. This can be seen in the numerator A^{-} given in eq. (14). In other words, NLO corrections to A_{CP}, which are of of $O(\alpha_s^2)$ remain to be calculated. Despite this, the scale-dependence of A_{CP} in $B \rightarrow h_1 h_2$ decays is not very marked, except for a few decays for which the relevant Wilson coefficients do show some scale dependence. We give a list of these decays in Table 13. This feature is quantitatively different from the scale-dependence of A_{CP} in the inclusive radiative decays $B \rightarrow X_s \gamma$ and $B \rightarrow X_{d}\gamma$ [13], for which the μ-dependence of the Wilson coefficient in the electromagnetic penguin operator introduces quite significant scale dependence in the CP-asymmetries. In contrast, the Wilson coefficients contributing to A_{CP} in the decays $B \rightarrow h_1 h_2$ are less μ-dependent. Of course, there is still some residual scale dependence

Channel	Class	CP-Class	$N_c = 2$	$N_c = 3$	$N_c = \infty$
$\bar{B}^0 \rightarrow \rho^+ K^\pm$	I (i)	-16.4^{+3.9}_{-4.7}	-16.4^{+3.9}_{-4.8}	-16.3^{+3.9}_{-4.7}	
$B^+ \rightarrow K^{*+} \eta'$	III (i)	-72.6^{+5.1}_{-35.9}	-84.3^{+8.6}_{-44.0}	-61.5^{+16.1}_{-30.5}	
$\bar{B}^0 \rightarrow K^{*+} \pi^\pm$	IV (i)	-15.5^{+5.0}_{-8.9}	-15.9^{+5.2}_{-9.2}	-16.6^{+5.4}_{-6.6}	
$\bar{B}^0 \rightarrow K^{*0} \pi^0$	V (i)	1.4^{+1.2}_{-2.2}	-1.3^{+0.1}_{-0.4}	-4.9^{+1.3}_{-2.0}	
$B^+ \rightarrow K^{*0} \pi^0$	IV (i)	-12.8^{+3.9}_{-7.3}	-12.0^{+3.7}_{-6.8}	-10.5^{+3.2}_{-5.8}	
$B^+ \rightarrow \rho^0 K^\pm$	IV (i)	-13.2^{+3.2}_{-6.8}	-12.8^{+3.2}_{-6.7}	-7.5^{+2.0}_{-3.8}	
$B^+ \rightarrow K^{*+} \eta$	IV (i)	-9.1^{+5.1}_{-3.7}	-9.3^{+5.2}_{-3.9}	-9.6^{+5.3}_{-4.6}	
$\bar{B}^0 \rightarrow K^{*0} \eta$	V (i)	-2.4^{+0.5}_{-0.9}	-1.4^{+0.1}_{-0.2}	0.6^{+0.5}_{-1.1}	
$B^+ \rightarrow K^{*0} \pi^\pm$	IV (i)	-1.7 \pm 0.1	-1.6 \pm 0.1	-1.5^{+0.1}_{-0.0}	
$\bar{B}^0 \rightarrow \rho^0 K^0$	V (ii)	10.5^{+0.7}_{-1.3}	29.5^{+0.1}_{-2.3}	45.5^{+0.5}_{-1.4}	
$B^+ \rightarrow \rho^+ K^0$	V (i)	3.0^{+0.4}_{-0.8}	4.6^{+1.1}_{-4.8}	-4.4^{+0.6}_{-0.5}	
$\bar{B}^0 \rightarrow K^0 \eta'$	V (i)	-44.0^{+11.9}_{-48.0}	-13.3^{+2.1}_{-7.3}	8.0^{+4.6}_{-7.5}	
$B^+ \rightarrow \phi K^\pm$	V (i)	-1.7 \pm 0.1	-1.8 \pm 0.1	-2.7^{+0.1}_{-0.1}	
$\bar{B}^0 \rightarrow \phi K^0$	V (ii)	31.0^{+0.1}_{-0.0}	30.9^{+0.0}_{-0.0}	30.5^{+0.0}_{-0.1}	
$\bar{B}^0 \rightarrow \omega K^0$	V (ii)	20.6^{+1.2}_{-1.9}	-6.6^{+5.2}_{-9.2}	23.6^{+0.8}_{-1.3}	
$B^+ \rightarrow \omega K^\pm$	V (i)	-13.1^{+7.4}_{-4.1}	-19.6^{+11.1}_{-4.7}	9.0^{+0.7}_{-1.3}	
Table 10: CP-violating asymmetries A_{CP} in $(\vec{B} \to PV)$ decays ($b \to s$ transition) (in percent) using $\rho = 0.23, \eta = 0.42$ and $N_c = 2, 3, \infty$ for $k^2 = m_b^2/2$.

Channel	Class	CP-Class	$N_c = 2$	$N_c = 3$	$N_c = \infty$
$\vec{B}^0 \to \rho^+ K^\mp$	I	(i)	−11.5	−11.5	−11.4
$B^\pm \to K^{*\pm} \eta'$	III	(i)	−55.2	−71.7	−75.2
$\vec{B}^0 \to K^{*\pm} \pi^\mp$	IV	(i)	−22.1	−22.6	−23.6
$\vec{B}^0 \to K^{0} \pi^0$	V	(i)	1.6	−1.6	−6.3
$B^\pm \to K^{*\pm} \pi^0$	IV	(i)	−18.2	−17.1	−14.8
$B^\pm \to \rho^0 K^\mp$	IV	(i)	−14.5	−15.9	−10.7
$B^\pm \to K^{*\pm} \eta$	IV	(i)	−13.0	−13.3	−13.5
$\vec{B}^0 \to K^{0} \eta'$	V	(i)	−3.1	−1.7	0.7
$B^\pm \to K^{0} \eta$	IV	(i)	−2.1	−2.0	−1.9
$\vec{B}^0 \to \rho^0 K^0_S$	V	(ii)	14.4	36.4	45.6
$B^\pm \to \rho^\mp K^0_S$	V	(i)	3.7	5.6	−5.3
$\vec{B}^0 \to K^{0} \eta'$	V	(i)	−47.7	−16.3	9.0
$B^\pm \to \phi K^\mp$	V	(i)	−2.1	−2.2	−3.4
$\vec{B}^0 \to \phi K^0_S$	V	(ii)	38.7	38.7	38.0
$\vec{B}^0 \to \omega K^0_S$	V	(ii)	27.3	−9.1	30.9
$B^\pm \to \omega K^0_S$	V	(i)	−18.6	−15.1	1.1

in the quark masses. For all numbers and figures shown here, we use $\mu = m_b/2$, a scale suggested by NLO corrections in the decay rates for $B \to X_s \gamma$ and $B \to X_d \gamma$ \[\text{[13]},\] for which NLO corrections are small.

4.2 Decay Modes with Stable A_{CP} in the Factorization Approach

We use the parametric dependence of A_{CP} just discussed to pick out the decay modes which are stable against the variation of N_c, k^2 and the scale μ. As only class-I and class-IV (and some class III) decays are stable against N_c, we need concentrate only on decays in these classes. With the help of the entries in Tables 5-13, showing the k^2 and μ dependence, we find that the following decay modes have measurably large asymmetries, i.e., $|A_{CP}| \geq 20\%$ (except for $A_{CP}(\rho^+ \rho^-)$ which is estimated to be more like $O(10\%)$) with large branching ratios, typically $O(10^{-5})$ (except for $B^0 \to K^0_S \eta$, which is estimated to be of $O(10^{-6})$ \[\text{[4]}\]).

- $\vec{B}^0 \to \pi^+ \pi^-, \ B^0 \to K^0_S \pi^0, \ \vec{B}^0 \to K^0_S \eta', \ B^0 \to K^0_S \eta$ and $\vec{B}^0 \to \rho^+ \rho^-.$

We discuss these cases in detail showing the CKM-parametric dependence of A_{CP} in each case. Since these decays measure, ideally, one of the phases in the unitarity triangle, we shall also plot A_{CP} as a function of the relevant phase, which is $\sin 2\alpha$ for $A_{CP}(\pi^+ \pi^-)$, and $\sin 2\beta$ for $A_{CP}(K^0_S \pi^0), A_{CP}(K^0_S \eta)$ and $A_{CP}(K^0_S \eta').$
Table 11: CP-violating asymmetries A_{CP} in $\overline{B} \to VV$ decays (in percent) using $\rho = 0.12$, $\eta = 0.34$ and $N_c = 2, 3, \infty$ for $k^2 = m_b^2/2 \pm 2$ GeV2.

Channel	Class	CP-Class	$N_c = 2$	$N_c = 3$	$N_c = \infty$
$\overline{B}^0 \to \rho^+ \rho^-$	I	(iii)	10.8$^{+0.2}_{-0.7}$	10.8$^{+0.1}_{-0.8}$	10.6$^{+0.1}_{-0.8}$
$\overline{B}^0 \to \rho^0 \rho^0$	II	(iii)	$-51.4^{+1.9}_{-5.0}$	$-18.5^{+3.8}_{-7.1}$	49.9$^{+0.8}_{-2.2}$
$\overline{B}^0 \to \omega \omega$	II	(iii)	58.9$^{+1.6}_{-3.6}$	51.8$^{+0.9}_{-1.2}$	14.7$^{+0.2}_{-0.9}$
$B^\pm \to \rho^\mp \rho^0$	III (i)	0.2$^{+0.1}_{-0.0}$	0.2$^{+0.1}_{-0.0}$	0.3$^{+0.0}_{-0.1}$	
$B^\pm \to \rho^\mp \omega$	III (i)	8.9$^{+1.9}_{-4.4}$	7.7$^{+1.7}_{-3.9}$	4.0$^{+1.0}_{-2.2}$	
$\overline{B}^0 \to K^{\ast \pm} \rho^\mp$	IV (i)	$-15.5^{+5.0}_{-8.9}$	$-15.9^{+5.2}_{-9.2}$	$-16.6^{+0.6}_{-0.5}$	
$\overline{B}^0 \to \overline{K}^{\ast 0} \rho^0$	V (i)	5.1$^{+2.8}_{-4.8}$	$-0.8^{+0.5}_{-0.9}$	$-9.2^{+2.8}_{-1.8}$	
$B^\pm \to K^{\ast \pm} \rho^0$	IV (i)	$-11.8^{+3.6}_{-6.6}$	$-10.3^{+3.1}_{-5.7}$	$-7.3^{+2.1}_{-3.8}$	
$B^\pm \to \rho^\pm K^{\ast 0}$	IV (i)	$-1.7^{+0.1}_{-0.1}$	$-1.6^{+0.1}_{-0.1}$	$-1.5^{+0.1}_{-0.0}$	
$B^\pm \to K^{\ast \pm} \overline{K}^{\ast 0}$	IV (i)	15.2$^{+3.3}_{-6.1}$	14.5$^{+3.2}_{-5.9}$	13.4$^{+3.1}_{-5.7}$	
$\overline{B}^0 \to K^{\ast \pm} \overline{K}^{\ast 0}$	IV (iii)	18.6$^{+3.5}_{-6.2}$	17.8$^{+3.4}_{-6.0}$	16.6$^{+3.2}_{-5.7}$	
$\overline{B}^0 \to \rho^0 \omega$	V (iii)	$-4.8^{+6.4}_{-11.2}$	13.8$^{+0.8}_{-1.5}$	4.4$^{+3.5}_{-6.2}$	
$\overline{B}^0 \to \overline{K}^{\ast 0} \omega$	V (i)	$-3.1^{+0.7}_{-1.1}$	$-2.1^{+0.4}_{-0.3}$	$-11.7^{+3.7}_{-6.8}$	
$B^\pm \to K^{\ast \pm} \omega$	V (i)	$-9.6^{+2.9}_{-5.2}$	$-14.3^{+4.6}_{-8.2}$	7.2$^{+2.6}_{-5.1}$	
$B^\pm \to K^{\ast \mp} \phi$	V (i)	$-1.7^{+0.1}_{-0.1}$	$-1.8^{+0.1}_{-0.1}$	$-2.7^{+0.1}_{-0.1}$	
$\overline{B}^0 \to \overline{K}^{\ast 0} \phi$	V (i)	$-1.7^{+0.1}_{-0.1}$	$-1.8^{+0.1}_{-0.1}$	$-2.7^{+0.1}_{-0.1}$	
$\overline{B}^0 \to \rho^0 \phi$	V (i)	16.2$^{+3.4}_{-6.2}$	1.0$^{+0.4}_{-0.7}$	10.5$^{+2.6}_{-5.1}$	
$\overline{B}^0 \to \rho^0 \phi$	V (iii)	19.6$^{+3.6}_{-6.5}$	1.4$^{+0.3}_{-0.7}$	13.4$^{+2.7}_{-5.0}$	

- CP-violating asymmetry in $\overline{B}^0 \to \pi^+ \pi^-$

We show in Fig. 1(a) and 1(b) the CP-asymmetry parameters $a_{\nu'}$ and $a_{\nu+\nu'}$, defined in eq. (22) and (23), respectively, plotted as a function of the CKM-Wolfenstein parameter ρ with the indicated values of η. The shadowed area in this and all subsequent figures showing the ρ-dependence corresponds to the range $0 < \rho < 0.23$, which is the $\pm 1\sigma$ allowed values of this parameter from the unitarity fits [21]. The three curves in Fig. 1(a) and 1(b) represent three different values of the CKM-Wolfenstein parameter: $\eta = 0.26$ (solid curve), $\eta = 0.34$ (dashed curve) and $\eta = 0.42$ (dotted curve). The time-integrated asymmetry A_{CP} calculated with the help of eq. (35) is shown for three values of η ($\eta = 0.42, 0.34, 0.26$) with $k^2 = m_b^2/2$ in Fig. 2(a). One notes that the CKM-dependence of A_{CP} is very significant. The k^2-dependence of $A_{CP}(\pi^+ \pi^-)$ is found to be very weak as shown is Fig. 2(b), where we plot this quantity as a function of ρ for $\eta = 0.34$ by varying k^2 in the range $k^2 = m_b^2/2 \pm 2$ GeV2. Hence, there is a good case for $A_{CP}(\pi^+ \pi^-)$ yielding information on the CKM parameters.
Figure 1: CP-violating asymmetry parameters $a_{\epsilon'}$ (a) and $a_{\epsilon+\epsilon'}$ (b) for the decay $B^0 \to \pi^+ \pi^-$ as a function of the CKM parameter ρ with $k^2 = m_b^2/2$. The dotted, dashed and solid curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively.

Figure 2: CP-violating asymmetry A_{CP} in $\overline{B^0} \to \pi^+ \pi^-$ as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed and solid curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively; (b) $\eta = 0.34$. The dotted, dashed and solid lines correspond to $k^2 = m_b^2/2 + 2$ GeV2, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2$ GeV2, respectively.
Table 12: CP-violating asymmetries \(A_{CP} \) in \(B \to VV \) decays (in percent) using \(\rho = 0.23, \eta = 0.42 \) and \(N_c = 2, 3, \infty \) for \(k^2 = m_t^2/2 \).

Channel	Class	CP-Class	\(N_c = 2 \)	\(N_c = 3 \)	\(N_c = \infty \)
\(\bar{B}^0 \to \rho^+ \rho^- \)	I	(iii)	9.7	9.6	9.5
\(\bar{B}^0 \to \rho^0 \rho^0 \)	II	(iii)	-43.9	-25.3	41.6
\(\bar{B}^0 \to \omega \omega \)	II	(iii)	52.0	60.2	12.4
\(B^\pm \to \rho^\pm \rho^0 \)	III	(i)	0.2	0.2	0.2
\(B^\pm \to \rho^\pm \omega \)	III	(i)	6.3	5.4	2.8
\(\bar{B}^0 \to K^{*\pm} \rho^0 \)	IV	(i)	-22.1	-22.6	-23.6
\(\bar{B}^0 \to K^{*0} \rho^0 \)	V	(i)	5.7	-1.0	-12.3
\(B^\pm \to K^{*\pm} \rho^0 \)	IV	(i)	-16.8	-14.6	-10.1
\(B^\pm \to K^{*\pm} \bar{K}^{*0} \)	IV	(i)	-2.1	-2.0	-1.9
\(B^\pm \to K^{*0} \bar{K}^{*0} \)	IV	(i)	21.3	20.3	18.8
\(\bar{B}^0 \to K^{*0} \bar{K}^{*0} \)	IV	(iii)	26.1	25.0	23.4
\(\bar{B}^0 \to \rho^0 \omega \)	V	(iii)	-6.8	19.4	6.3
\(B^\pm \to K^{*0} \omega \)	V	(i)	-4.0	-2.6	-16.7
\(B^\pm \to K^{*\pm} \omega \)	V	(i)	-13.3	-20.4	6.6
\(B^\pm \to K^{*0} \phi \)	V	(i)	-2.1	-2.2	-3.4
\(B^\pm \to K^{*\pm} \phi \)	V	(i)	22.7	1.4	14.8
\(\bar{B}^0 \to \rho^0 \phi \)	V	(iii)	27.5	2.0	19.0
\(\bar{B}^0 \to \omega \phi \)	V	(iii)	27.5	2.0	19.0

To have a closer look at this, we plot in Fig. 3(a) and 3(b), the asymmetry \(A_{CP}(\pi^+\pi^-) \) as a function of \(\sin 2\alpha \) to study the effect of the penguin contribution (called in the jargon “penguin pollution”) and the dependence on \(|V_{ub}| \), respectively. The lower (upper) curve in Fig. 3(a) corresponds to keeping only the tree contribution in the decays \(\bar{B}^0 \to \pi^+\pi^- \) (tree + penguin). We see that in the entire \(\pm 1\sigma \) expected range of \(\sin 2\alpha \), depicted as a shadowed region, the “penguin pollution” is quite significant, changing both \(A_{CP}(\pi^+\pi^-) \) and its functional dependence on \(\sin 2\alpha \). Based on 3(b), we estimate \(-10\% \leq A_{CP}(\pi^+\pi^-) \leq +45\% \), with \(A_{CP}(\pi^+\pi^-) = 0 \) as an allowed solution, varying \(\sin 2\alpha \) in the \(\pm 1\sigma \) range: \(-0.40 \leq \sin 2\alpha \leq 0.53 \). [24]

- CP-violating asymmetry in \(\bar{B}^0 \to K^0_S \eta' \) The parameters \(a_\epsilon \) and \(a_{\epsilon+\epsilon'} \) for the decays \(\bar{B}^0 \to K^0_S \eta' \) are shown in Fig. 4(a) and 4(b), respectively, for \(\eta = 0.42, 0.34, 0.26 \) with fixed \(k^2 = m_t^2/2 \). As can be seen from these figures, the time-integrated CP-violating asymmetry \(A_{CP}(\bar{B}^0 \to K^0_S \eta') \) is completely dominated by the \(a_{\epsilon+\epsilon'} \) term. The CP-violating asymmetry \(A_{CP}(K^0_S \eta') \) is shown in Fig. 4(a) for three values of \(\eta (\eta = 0.42, 0.34, 0.26) \).
Figure 3: CP-violating asymmetry A_{CP} in $\overline{B^0} \rightarrow \pi^+\pi^-$ as a function of $\sin 2\alpha$ for $k^2 = m_b^2/2$.
(a) Effect of the "penguin pollution": the lower (upper) curve corresponds to keeping only the tree contribution (the complete amplitude, tree + penguin). Note that $|V_{ub}| = 0.003$.
(b) Dependence on $|V_{ub}|$: $|V_{ub}| = 0.002$ (solid curve), $|V_{ub}| = 0.003$ (dashed curve), $|V_{ub}| = 0.004$ (dotted curve).

Figure 4: CP-asymmetry parameters $a_{\epsilon'}$ (a) and $a_{\epsilon+\epsilon'}$ (b) for $\overline{B^0} \rightarrow K_S^0\eta'$ as a function of the CKM parameter ρ. The dotted, dashed and solid curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively.
Table 13: CP-violating asymmetries A_{CP} in $B \to h_1 h_2$ decays (in percent) using $\rho = 0.12$, $\eta = 0.34$ and $N_c = 2, 3, \infty$, $k^2 = m_h^2/2$ for $\mu = m_b/2$ and $\mu = m_b$.

Channel	$N_c = 2$	$N_c = 3$	$N_c = \infty$			
$B^0 \to \pi^0 \pi^0$	$\mu = m_b/2$	$\mu = m_b$	$\mu = m_b/2$	$\mu = m_b$		
$B^\pm \to K^\pm \eta$	8.5	12.2	6.2	9.0	2.8	4.4
$\bar{B}^0 \to \rho^0 \pi^0$	-23.5	-18.3	-49.4	-49.9	22.2	20.1
$\bar{B}^0 \to \omega \pi^0$	57.5	61.5	39.2	48.4	24.3	23.4
$\bar{B}^0 \to \rho^0 \eta$	-59.5	-61.0	0.9	-21.4	64.4	64.7
$\bar{B}^0 \to \omega \eta'$	-16.5	-10.0	-56.7	-59.3	40.2	35.8
$B^\pm \to K^{\pm} K^0_S$	-1.2	-0.9	46.8	35.0	48.1	46.8
$\bar{B}^0 \to K^{*0} \pi^0$	1.4	3.5	-1.3	-0.3	-4.9	-5.3
$\bar{B}^0 \to \omega K^0_S$	20.6	18.3	-6.6	-14.6	23.6	23.3
$\bar{B}^0 \to \rho^0 \rho^0$	-51.4	-49.5	-18.5	-33.5	49.9	50.5
$\bar{B}^0 \to K^{*0} \rho^0$	5.1	10.0	-0.8	1.3	-9.2	-11.2
$\bar{B}^0 \to \rho^0 \omega$	-4.8	-14.8	13.8	18.5	4.4	2.8

The upper curve for each value of η is obtained by neglecting the tree contribution in $\bar{B}^0 \to K^0_S \eta'$ and the lower curves represent the corresponding full (tree + penguin) contribution. Fig. 3(b) shows the k^2-dependence of $A_{CP}(K^0_S \eta')$ with the three (almost) overlapping curves corresponding to $k^2 = m_h^2/2$ and $k^2 = m_h^2/2 \pm 2$ GeV2 for fixed value, $\eta = 0.34$. As we see from this set of figures, the CKM-parametric dependence of $A_{CP}(K^0_S \eta')$ is marked and the effect of the “tree shadow” is relatively small. To illustrate this further, we plot in Figs. 3(a) and 3(b) this asymmetry as a function of sin 2β, showing the effect of the “tree-shadowing” and dependence of $A_{CP}(K^0_S \eta')$ on $|V_{td}|$, respectively. Restricting to the range 0.48 \leq sin 2β \leq 0.78, which is the $\pm 1\sigma$ range for this quantity from the unitarity fits [20], we find that $A_{CP}(K^0_S \eta')$ has a value in the range 20% $< A_{CP} < 36$%. This decay has been measured by the CLEO Collaboration with a branching ratio $B(B^0 \to K^0_S \eta') = (4.7^{+2.7}_{-2.0} \pm 0.9) \times 10^{-5}$ and is well accounted for in the factorization-based approach [11]. As the “tree shadow” is small in the decay $B^0 \to K^0_S \eta'$ and the electroweak penguin contribution is also small [11], $A_{CP}(K^0_S \eta')$ is a good measure of sin 2β. This was anticipated by London and Soni [14], who also advocated $A_{CP}(K^0_S \phi)$ as a measure of the angle β, following the earlier suggestion of the same in ref. [13]. The CP-asymmetry for this decay, like $A_{CP}(K^0_S \eta')$, is dominated by the $a_{ee'}$ term. The quantity $A_{CP}(K^0_S \phi)$ is found to be stable against variation in N_c and k^2 (see Tables 9 and 10). However, being a class-V decay, the branching ratio for $B^0 \to K^0_S \phi$ (and its charged conjugate) is very sensitively dependent on N_c, with $B(B^0 \to K^0_S \phi) = (0.2 - 9) \times 10^{-6}$.
Figure 5: CP-violating asymmetry A_{CP} in $B^0 \rightarrow K^0_0 \eta'$ decays as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed and solid curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively; In all three groups, the upper (lower) curve corresponds to neglecting the tree contributions (with the complete amplitude). (b) $\eta = 0.34$. The dotted, dashed and solid curves correspond to $k^2 = m_b^2/2 + 2 \text{ GeV}^2$, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2 \text{ GeV}^2$, respectively.

with the lower (higher) range corresponding to $N_c = \infty$ ($N_c = 2$) [4]. Moreover, the electroweak penguin effect in this decay is estimated to be rather substantial. The present upper bound on this decay is $\mathcal{B}(B^0 \rightarrow K^0_0 \phi) < 6.2 \times 10^{-5}$ [2]. Depending on N_c, the above experimental bound is between one and two orders of magnitude away from the expected rate. Despite the large and stable value of $A_{CP}(K^0_0 \phi)$, it may turn out not to be measurable in the first generation of B factory experiments.

- CP-violating asymmetry in $\overline{B}^0 \rightarrow K^0_0 \pi^0$

The decay $B^0 \rightarrow K^0_0 \pi^0$ is dominated by the penguins, with significant electroweak penguin contribution [4]. The estimated decay rate in the factorization approach is $\mathcal{B}(B^0 \rightarrow K^0_0 \pi^0) = (2.5 - 5) \times 10^{-6}$, with the present experimental bound being $\mathcal{B}(B^0 \rightarrow K^0_0 \pi^0) < 4.1 \times 10^{-5}$ [5], with these numbers to be understood as averages over the charge conjugated decays. We expect that with $10^8 BB$ events, several hundred $K^0_0 \pi^0$ decays will be measured. The CP-asymmetry $A_{CP}(K^0_0 \pi^0)$ is dominated by the $a_\epsilon + a_\epsilon'$ term (see Tables 1 and 2), which is large, stable against variation in k^2 and shows only a mild dependence on N_c. The quantities a_ϵ and a_ϵ' for this decay (together with the others in the $B \rightarrow \pi \pi, K \bar{K}$ and $B^\pm \rightarrow (K \pi)^\pm$ decays) were worked out by Kramer and Palmer in [13]. As remarked already, there are detailed differences in the underlying theoretical framework used here and in [13] and also in the values of the CKM and other input parameters, but using identical values of the various input parameters for the sake of comparison, the agreement between the two is fair. We show in Fig. 7(a), $A_{CP}(K^0_0 \pi^0)$ as a function of ρ for three values of η: $\eta = 0.42$, 0.34, 0.26 and note that this dependence is quite marked. The k^2-dependence of $A_{CP}(K^0_0 \pi^0)$ is found to be small, as shown in Fig. 7(b). Thus, we expect that $A_{CP}(K^0_0 \pi^0)$ is also a good measure of $\sin 2\beta$. This is
Figure 6: CP-violating asymmetry A_{CP} in $\bar{B}^0 \rightarrow K^0\eta'$ as a function of $\sin 2\beta$ for $k^2 = m_b^2/2$. (a) “Tree shadow”: The solid (dashed) curve correspond to the full amplitude (neglecting the tree contribution). (b) $|V_{td}|$ dependence: Dashed curve ($|V_{td}| = 0.004$), dashed-dotted curve ($|V_{td}| = 0.008$), dotted curve ($|V_{td}| = 0.012$).

Figure 7: CP-violating asymmetry A_{CP} in $\bar{B}^0 \rightarrow K_S^0\pi^0$ decays as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed-dotted and dashed curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively; (b) $\eta = 0.34$. The dotted, dashed-dotted and dashed curves correspond to $k^2 = m_b^2/2 + 2 \text{ GeV}^2$, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2 \text{ GeV}^2$, respectively.
Figure 8: CP-violating asymmetry A_{CP} in $B^0 \rightarrow K_S^0 \pi^0$ as a function of $\sin 2\beta$ for $k^2 = m_b^2/2$. The three curves correspond to the following values of the CKM matrix element $|V_{td}|$: dashed curve ($|V_{td}| = 0.004$), dashed-dotted curve ($|V_{td}| = 0.008$), dotted curve ($|V_{td}| = 0.012$).

Figure 9: CP-violating asymmetry A_{CP} in $B^0 \rightarrow K_S^0 \eta$ decays as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed-dotted and dashed curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively; (b) $\eta = 0.34$. The dotted, dashed-dotted and dashed lines correspond to $k^2 = m_b^2/2 + 2$ GeV2, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2$ GeV2, respectively.

shown in Fig. 8, with the three curves showing the additional dependence of $A_{CP}(K_S^0 \pi^0)$ on $|V_{td}|$. Restricting the value of $\sin 2\beta$ in the $\pm 1\sigma$ range shown by the shadowed region, we find $24\% \leq A_{CP}(K_S^0 \pi^0) \leq 44\%$.

• CP-violating asymmetry in $B^0 \rightarrow K_S^0 \eta$

The decay $B^0 \rightarrow K_S^0 \eta$, like the preceding decay, is dominated by the penguins with
The three curves correspond to the following values of the CKM matrix element: \(|V_{td}| = 0.004 \) (dashed curve), \(|V_{td}| = 0.008 \) (dashed-dotted curve), \(|V_{td}| = 0.012 \) (dotted curve).

Figure 10: CP-violating asymmetry \(A_{CP} \) in \(B^0 \to K_S^0 \eta \) as a function of \(\sin 2\beta \) for \(k^2 = m_b^2/2 \). The three curves correspond to the following values of the CKM matrix element \(|V_{td}| \): \(|V_{td}| = 0.004 \) (dashed curve), \(|V_{td}| = 0.008 \) (dashed-dotted curve), \(|V_{td}| = 0.012 \) (dotted curve).

significant electroweak penguin contribution \[\text{[1]}\]. The branching ratio for this mode is estimated to be about a factor 3 too small compared to \(B^0 \to K_S^0 \pi^0 \), with \(B(B^0 \to K_S^0 \eta) \approx (1 - 2) \times 10^{-6} \). The CP-violating asymmetry \(A_{CP}(K_S^0 \eta) \) is, however, found to be very similar to \(A_{CP}(K_S^0 \pi^0) \). This is shown in Fig. 10(a) where we plot \(A_{CP}(K_S^0 \eta) \) as a function of \(\rho \) for the three indicated values of \(\eta \), keeping \(k^2 = m_b^2/2 \) fixed. The \(k^2 \)-dependence of \(A_{CP}(K_S^0 \eta) \) is shown in Fig. 10(b) and is found to be moderately small in the range \(k^2 = m_b^2/2 \pm 2 \text{ GeV}^2 \). We show in Fig. 10 \(A_{CP}(K_S^0 \eta) \) as a function of \(\sin 2\beta \), with the three curves showing three different values of \(|V_{td}| \). Restricting again to the \(\pm 1\sigma \) range of \(\sin 2\beta \), we estimate: \(24\% \leq A_{CP}(K_S^0 \eta) \leq 46\% \).

- CP-violating asymmetry in \(B^0 \to K_S^0 h^0 \), with \(h^0 = \pi^0, K_S^0, \eta, \eta' \)

As the CKM-parametric dependence of the CP-violating asymmetries \(A_{CP}(K_S^0 \pi^0), A_{CP}(K_S^0 \eta), A_{CP}(K_S^0 \eta') \) are very similar, one could combine these asymmetries. We estimate \(B(B^0 \to K_S^0 h^0) \approx (2.7 - 4.6) \times 10^{-5} \), with \(A_{CP}(K_S^0 h^0) \approx (22 - 36)\% \), for \(h^0 = \pi^0, \eta \), and \(\eta' \).

As the branching ratio for the decay \(B^0 \to K_S^0 \bar{K}^0 \) is estimated to be small, typically \(B(B^0 \to K_S^0 \bar{K}^0) \approx 5 \times 10^{-7} \), the above estimates of \(B(B^0 \to K_S^0 h^0) \) and \(A_{CP}(K_S^0 h^0) \) hold also to a very good approximation if we now also include \(K_S^0 \) in \(h^0 \). The dependence of \(A_{CP}(K_S^0 h^0) \) on the CKM parameters \(\rho \) and \(\eta \) is shown in Fig. 11(a) and the \(k^2 \)-dependence in Fig. 11(b). Interestingly, the \(k^2 \)-dependence in various components which is already small gets almost canceled in the sum, yielding \(A_{CP}(K_S^0 h^0) \) which is practically independent of \(k^2 \). We show the dependence of \(A_{CP}(K_S^0 h^0) \) on \(\sin 2\beta \) in Fig. 12, with the three curves representing each a different value of \(|V_{td}| \). Thus, we predict \(A_{CP}(K_S^0 h^0) \approx (22 - 36)\% \), for \(h^0 = \pi^0, K_S^0, \eta \) and \(\eta' \) for the \(\pm 1\sigma \) range of \(\sin 2\beta \).

- CP-violating asymmetry in \(B^0 \to \rho^+ \rho^- \)
Figure 11: CP-violating asymmetry A_{CP} in $B^0 \rightarrow K^0 h^0$ decays with $h^0 = \pi^0, K^0_S, \eta, \eta'$ as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed-dotted and dashed curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively. (b) $\eta = 0.34$. The overlapping curves correspond to $k^2 = m_b^2/2 + 2 \text{ GeV}^2$, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2 \text{ GeV}^2$.

Figure 12: CP-violating asymmetry A_{CP} in $B^0 \rightarrow K^0 h^0$ decays with $h^0 = \pi^0, K^0_S, \eta, \eta'$ as a function of $\sin 2\beta$ for $k^2 = m_b^2/2$. The three curves correspond to the following values of the CKM matrix element $|V_{td}|$: dashed curve ($|V_{td}| = 0.004$), dashed-dotted curve ($|V_{td}| = 0.008$), dotted curve ($|V_{td}| = 0.012$).
Figure 13: Time-dependent branching ratio for the decays $B^0 \to \rho^-\pi^+$ (left) and $\bar{B}^0 \to \rho^+\pi^-$ (right) as a function of the decay time. The dashed, dashed-dotted and dotted curves correspond to the contributions from the exponential decay term $e^{-\Gamma t}$, $e^{-\Gamma t}\cos\Delta mt$ and $e^{-\Gamma t}\sin\Delta mt$ in eq. (39), respectively. The solid curve is the sum of the three contributions.

As another example of the decay whose A_{CP} is stable against variation in N_c and k^2, we remark that the decay mode $B^0 \to \rho^+\rho^-$ is estimated to have an asymmetry $A_{CP} \simeq 10\%$, as can be seen in Table 11 and 12. This decay mode is dominated by the tree amplitudes (like $B^0 \to \pi^+\pi^-$) and belongs to the CP class (iii) decays. Estimated branching ratio for this mode is $\mathcal{B}(B^0 \to \rho^+\rho^-) \simeq (2 - 3) \times 10^{-5}$.

4.3 The Decays $B^0 \to \rho^+\pi^-, B^0 \to \rho^-\pi^+$ and CP-Violating Asymmetries

Next, we discuss decay modes which belong to the CP class (iv) decays. There are four of them $B^0 \to \bar{K}^{*0}K^0_S$, $B^0 \to K^{*0}K^0_S$, $B^0 \to \rho^+\pi^-$ and $B^0 \to \rho^-\pi^+$. Of these the decay $B^0 \to K^{*0}K^0_S$ belongs to the Class-V decay and is estimated to have a very small branching ratio in the factorization approach $\mathcal{B}(B^0 \to K^{*0}K^0_S) \simeq O(10^{-9})$ [4]. The other $B^0 \to \bar{K}^{*0}K^0_S$ is a Class-IV decay but is expected to have also a small branching ratio, with $\mathcal{B}(B^0 \to \bar{K}^{*0}K^0_S) \simeq (2 - 3) \times 10^{-7}$. In view of this, we concentrate on the decays $B^0 \to \rho^+\pi^-$ and $B^0 \to \rho^-\pi^+$.

With $f = \rho^+\pi^-$ and $\bar{f} = \rho^-\pi^+$, the time evolution of the four branching ratios is given in eq. (40). They have each three components with characteristic time-dependences proportional to $e^{-\Gamma t}$, $e^{-\Gamma t}\cos\Delta mt$ and $e^{-\Gamma t}\sin\Delta mt$, with the relative and overall normalization explicitly stated there. The time dependence of the branching ratio $\mathcal{B}(B^0(t) \to \rho^-\pi^+)$ and of the branching ratio for the charge conjugate decay $\mathcal{B}(\bar{B}^0(t) \to \rho^+\pi^-)$ is shown in Fig. 13(a) and 13(b), respectively. The time dependence of the branching ratio $\mathcal{B}(B^0(t) \to \rho^+\pi^-)$ and of $\mathcal{B}(\bar{B}^0(t) \to \rho^-\pi^+)$ is shown in Fig. 14(a) and 14(b), respectively. The three components and the sum are depicted by the four curves.
Figure 14: Time-dependent branching ratio for the decays $B^0 \to \rho^+\pi^-$ (left) and $\bar{B}^0 \to \rho^-\pi^+$ (right) as a function of the decay time. The dashed, dashed-dotted and dotted curves correspond to the contributions from the exponential decay term $e^{-\Gamma t}$, $e^{-\Gamma t} \cos \Delta m t$ and $e^{-\Gamma t} \sin \Delta m t$ in eq. (39), respectively. The solid curve is the sum of the three contributions.

Figure 15: Time-dependent CP-violating asymmetry $A_{CP}(t; \rho^+\pi^-)$ (solid curve) and $A_{CP}(t; \rho^-\pi^+)$ (dashed curve) as a function of the decay time, with $\rho = 0.12, \eta = 0.34$ and $k^2 = m_b^2/2$.

The resulting time-dependent CP-violating asymmetry $A_{CP}(t)$ for $B^0 \to \rho^-\pi^+$ defined as

$$A_{CP}(t; \rho^-\pi^+) \equiv \frac{\Gamma(B^0(t) \to \rho^-\pi^+)}{\Gamma(B^0(t) \to \rho^-\pi^+)} - \frac{\Gamma(\bar{B}^0(t) \to \rho^+\pi^-)}{\Gamma(\bar{B}^0(t) \to \rho^+\pi^-)},$$

is shown in Fig. 15 through the solid curve. The corresponding asymmetry $A_{CP}(t; \rho^+\pi^-)$ defined in an analogous way as for $A_{CP}(t; \rho^-\pi^+)$ is given by the dashed curve in this figure.
Figure 16: CP-violating asymmetry A_{CP} in the decays $B^\pm \to K^{*\pm}\pi^0$ as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed-dotted and dashed curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively. (b) $\eta = 0.34$. The dotted, dashed-dotted and dashed curves correspond to $k^2 = m_b^2/2 + 2$ GeV2, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2$ GeV2, respectively.

We recall that the decay rate for $B^0 \to \rho^+\pi^-$ averaged over its charge conjugated decay $\bar{B}^0 \to \rho^-\pi^+$ is estimated to have a value in the range $\mathcal{B}(B^0 \to \rho^+\pi^-) \simeq (2-4) \times 10^{-5}$ [4]; the time-integrated CP-asymmetry is estimated to be $A_{CP}(\rho^+\pi^-) \simeq (4-7)\%$. Being a Class-I decay, both the branching ratio $\mathcal{B}(B^0 \to \rho^+\pi^-)$ and $A_{CP}(\rho^+\pi^-)$ are N_c-stable. In addition, $A_{CP}(\rho^+\pi^-)$ is also k^2-stable, as shown in Table 7.

The branching ratio for the decay $B^0 \to \rho^-\pi^+$, averaged over its charge conjugate decay $\bar{B}^0 \to \rho^+\pi^-$, is expected to be $\mathcal{B}(B^0 \to \rho^-\pi^+) \simeq (6-9) \times 10^{-6}$ [4], i.e., typically a factor 4 smaller than $\mathcal{B}(B^0 \to \rho^+\pi^-)$. Also, $A_{CP}(\rho^-\pi^+)$ is estimated somewhat smaller for the central value of the CKM-parameter $\rho = 0.12$, $\eta = 0.34$. For these CKM parameter, we estimate $A_{CP}(\rho^-\pi^+) \simeq (3-4)\%$. For $\rho = 0.23$, $\eta = 0.42$, $A_{CP}(\rho^-\pi^+) \simeq A_{CP}(\rho^+\pi^-) \simeq O(5\%)$ (see Table 8).

We note that our estimate of the ratio $\mathcal{B}(B^0 \to \rho^+\pi^-)/\mathcal{B}(B^0 \to \pi^+\pi^-) \simeq 2.3$ derived in [4] is in reasonable agreement with the corresponding ratio estimated in [11] but we also find $\mathcal{B}(B^0 \to \rho^-\pi^+)/\mathcal{B}(B^0 \to \rho^+\pi^-) \simeq 0.27$, which is drastically different from the estimates presented in [11].

4.4 Decay Modes with Measurable but k^2-dependent A_{CP}

In addition to the decay modes discussed above, the following decay modes have A_{CP} which are N_c- and μ- stable but show significant or strong k^2-dependence. However, we think that further theoretical work and/or measurements of A_{CP} in one or more of the following decay modes will greatly help in determining k^2 and hence in reducing the present theoretical dispersion on A_{CP}.

- $B^\pm \to \pi^{\pm}\eta'$, $\bar{B}^0 \to K^{*\pm}\pi^0$, $B^\pm \to K^{*\pm}\pi^0$, $B^\pm \to K^{*\pm}\eta$, $B^\pm \to K^{*\pm}\eta'$, $\bar{B}^0 \to K^{*\pm}\rho^0$, $B^\pm \to K^{*\pm}\rho^0$.
Figure 17: CP-violating asymmetry A_{CP} in $B^\pm \to K^{*\pm}\rho^0$ decays as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed-dotted and dashed curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively. (b) $\eta = 0.34$. The dotted, dashed-dotted and dashed curves correspond to $k^2 = m_b^2/2 + 2\text{ GeV}^2$, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2\text{ GeV}^2$, respectively.

These decays have branching ratios which are estimated to be several multiples of 10^{-6} and may have $|A_{CP}|$ at least of $O(5\%)$, but being uncertain due to the k^2-dependence may reach rather large values. The CP-violating asymmetries in these cases belong to the class (i), i.e., they are direct CP-violating asymmetries.

In Fig. 17(a) and 17(b), we show the CP-violating asymmetry $A_{CP}(K^{*\pm}\pi^0)$ as a function of ρ. The three curves in Fig. 17(a) correspond to the three choices of η, with $k^2 = m_b^2/2$, whereas the three curves in Fig. 17(b) correspond to using $k^2 = m_b^2/2 + 2\text{ GeV}^2$ (dotted curve), $k^2 = m_b^2/2$ (dashed-dotted curve), $k^2 = m_b^2/2 - 2\text{ GeV}^2$ (dashed curve) with $\eta = 0.34$. Depending on the value of k^2, $A_{CP}(K^{*\pm}\pi^0)$ could reach a value -25%. The branching ratio is estimated to lie in the range $B(B^+ \to K^{*+}\pi^0) \simeq (4 - 7) \times 10^{-6}$. The decay mode $B^+ \to K^{*+}\rho^0$ has very similar CKM and k^2-dependence, which is shown in Fig. 17(a) and (b), respectively, where we plot the CP-asymmetry $A_{CP}(K^{*+}\rho^0)$. Also, the branching ratio $B(B^+ \to K^{*+}\rho^0) \simeq (5 - 8) \times 10^{-6}$ estimated in [4] is very similar to $B^+ \to K^{*+}\pi^0$.

In Fig. 18(a) and 18(b), we show the CP-violating asymmetry $A_{CP}(K^{*\pm}\eta')$ in the decays $B^\pm \to K^{*\pm}\eta'$. This is a Class-III decay dominated by the tree amplitude and is expected to have a branching ratio $B(B^+ \to K^{*+}\eta') \simeq 3 \times 10^{-7}$, where an average over the charge conjugated decays is implied. However, depending on the value of k^2 this decay mode may show a large CP-violating asymmetry, reaching $A_{CP}(K^{*+}\eta') \simeq -90\%$ for $\rho = 0.12$, $\eta = 0.34$ and $k^2 = m_b^2/2 + 2\text{ GeV}^2$. For $k^2 = m_b^2/2 - 2\text{ GeV}^2$, the CP-asymmetry comes down to a value $A_{CP}(K^{*+}\eta') \simeq -20\%$. All of these values are significantly higher than the ones reported in [19]. Large but k^2-sensitive values of this quantity have also been reported earlier in [13]. We also mention here the decay modes $B^\pm \to K^{*\pm}\eta$, whose branching ratio is estimated as $B(B^+ \to K^{*+}\eta) \simeq (2 - 3) \times 10^{-6}$ [3][4] and which may have CP-violating asymmetry in the range $A_{CP}(K^{*\pm}\eta) \simeq -(4 - 15\%)$ depending on the CKM parameters and k^2 (see Tables 9 and 10).
Figure 18: CP-violating asymmetry A_{CP} in $B^\pm \to K^{*\pm}\eta'$ decays as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed-dotted and dashed curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively. (b) $\eta = 0.34$. The dotted, dashed-dotted and dashed curves correspond to $k^2 = m_b^2/2 + 2\text{ GeV}^2$, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2\text{ GeV}^2$, respectively.

Figure 19: CP-violating Asymmetry A_{CP} in $\overline{B}^0 \to K^{*}\pi^\mp$ decays as a function of the CKM parameter ρ. (a) $k^2 = m_b^2/2$. The dotted, dashed-dotted and dashed curves correspond to the CKM parameter values $\eta = 0.42$, $\eta = 0.34$ and $\eta = 0.26$, respectively. (b) $\eta = 0.34$. The dotted, dashed-dotted and dashed curves correspond to $k^2 = m_b^2/2 + 2\text{ GeV}^2$, $k^2 = m_b^2/2$ and $k^2 = m_b^2/2 - 2\text{ GeV}^2$, respectively.

Finally, we mention two more decay modes $B^0 \to K^{*+}\pi^-$ and $B^0 \to K^{*+}\rho^-$ which are both Class-IV decays, with branching ratios estimated as $\mathcal{B}(B^0 \to K^{*+}\pi^-) \simeq (6 - 9) \times 10^{-6}$ and $\mathcal{B}(B^0 \to K^{*+}\rho^-) \simeq (5 - 8) \times 10^{-6}$. The CP-violating asymmetries in these decays are estimated to lie in the range $A_{CP}(K^{*\pm}\pi^\mp) = A_{CP}(K^{*\pm}\rho^\mp) \simeq -(6-30)\%$. In Fig. 19(a) and 19(b), we show $A_{CP}(K^{*\pm}\pi^\mp)$ as a function of ρ by varying η and k^2, respectively.
5 Summary and Conclusions

Using the NLO perturbative framework and a generalized factorization approach discussed in detail in [3], we have calculated the CP-violating asymmetries in partial decay rates of all the two-body non-leptonic decays $B \to h_1 h_2$, where h_1 and h_2 are the light pseudoscalar and vector mesons. Our results can be summarized as follows:

- We find that the decay classification scheme presented in [3] for the branching ratios is also very useful in discussing the CP-violating asymmetries. In line with this, Class-I and class-IV decays yield asymmetries which are stable against the variation of N_c. There are two exceptions, $A_{CP}(K^\pm \eta)$ and $A_{CP}(K^0_\eta \eta)$, which vary by a factor 3 and 1.65, respectively, for $2 \leq N_c \leq \infty$.

- Estimates of CP-violating asymmetries in Class-II and class-V decays depend rather sensitively on N_c and hence are very unreliable. There is one notable exception $A_{CP}(\phi K^0_\eta)$, which is parametrically stable and large. However being a class-V decay, the branching ratio $B(B^0 \to \phi K^0_\eta)$ is uncertain in the factorization approach by at least an order of magnitude [3].

- The CP-asymmetries in Class-III decays vary by approximately a factor 2, as one varies N_c in the range $2 \leq N_c \leq \infty$, with the exception of $A_{CP}(\omega \pi^\pm)$ and $A_{CP}(\rho^0 \pi^\pm)$ which are much more uncertain. The N_c-sensitivity of $B(B^\pm \to \omega \pi^\pm)$ was already pointed out in [3].

- The CP-violating asymmetries worked out here are in most cases relatively insensitive to the scale μ, i.e., this dependence is below $\pm 20\%$, for $m_b/2 \leq \mu \leq m_b$, except in some decays which we have listed in Table 13.

- As opposed to the branching ratios, asymmetries do not depend in the first approximation on the form factors and decay constants. However, in most cases, they depend on the parameter k^2, the virtuality of the g, γ and Z^0 decaying into $q\bar{q}$ from the penguin contributions. This has been already studied in great detail in [13], a behavior which we have also confirmed.

- Interestingly, we find that a number of $B \to h_1 h_2$ decays have CP-violating asymmetries which can be predicted within a reasonable range in the factorization approach. They include: $A_{CP}(\pi^+ \pi^-)$, $A_{CP}(K^0_\eta \eta^*)$, $A_{CP}(K^0_\eta \pi^0)$, $A_{CP}(K^0_\eta \eta)$ and $A_{CP}(\rho^+ \rho^-)$. The decay modes involved have reasonably large branching ratios and the CP-violating asymmetries are also measurably large in all these cases. Hence, their measurements can be used to put constraints on the CKM parameters ρ and η. Likewise, these decay modes are well suited to test the hypothesis that strong phases in these decays are generated dominantly by perturbative QCD. This, in our opinion, is difficult to test in class-II and class-V decays. Of particular interest is $A_{CP}(K^0_\eta \eta^*)$, which is expected to have a value $A_{CP}(K^0_\eta \eta^*) \simeq (20-36)\%$. This decay mode has already been measured by the CLEO collaboration [3] and estimates of its branching ratio in the factorization approach are in agreement with data [3].
• The CP-asymmetry $A_{CP}(K^0_S h^0)$, where $h^0 = \pi^0, K^0_S, \eta, \eta'$ is found to be remarkably stable in k^2, due to the compensation in the various channels. The resulting CP-asymmetry is found to be large, with $A_{CP}(K^0_S h^0) \approx (20-36)\%$, with the range reflecting the CKM-parametric dependence.

• We have studied the dependence of $A_{CP}(\pi^+\pi^-)$ on $\sin 2\alpha$, studying the effect of the “penguin pollution”, which we find to be significant. The effect of the “tree-shadowing” in $A_{CP}(K^0_S \eta')$ is, however, found to be small. Thus, $A_{CP}(K^0_S \eta')$, likewise $A_{CP}(K^0_S \pi^0)$, $A_{CP}(K^0_S \eta)$ and $A_{CP}(K^0_S h^0)$ are good measures of $\sin 2\beta$.

• We have studied time-dependent CP-violating asymmetries $A_{CP}(t; \rho^+\pi^-)$ and $A_{CP}(t; \rho^-\pi^+)$, working out the various characteristic components in the time evolution of the individual branching ratios. With the branching ratio averaged over the charge-conjugated modes $B(B^0 \rightarrow \rho^+\pi^-) = (2 - 4) \times 10^{-5}$ and time-integrated CP-violating asymmetry $A_{CP}(\rho^+\pi^-) = (4 - 7)\%$, for the central values $\rho = 0.12$ and $\eta = 0.34$, it is an interesting process to measure, as stressed in [41]. The branching ratio $B(B^0 \rightarrow \rho^-\pi^+)$ is estimated by us as typically a factor 4 below $B(B^0 \rightarrow \rho^+\pi^-)$ and hence $A_{CP}(\rho^-\pi^+)$ is a relatively more difficult measurement.

• There are several class-IV decays whose CP-asymmetries are small but stable against variation in N_c, k^2 and μ. They include: $A_{CP}(K^{\pm}\eta')$, $A_{CP}(\pi^\pm K^0_S)$ and $A_{CP}(\rho^{\pm}K^{*0})$. CP-asymmetries well over 5% in these decay modes can arise through SFI and/or new physics. We argue that the role of SFI can be disentangled already in decay rates and through the measurements of a number of CP-violating asymmetries which are predicted to be large. As at this stage it is hard to quantify the effects of SFI, one can not stress too strongly that a measurement of CP-violating asymmetry in any of these partial rates significantly above the estimates presented here will be a sign of new physics.

• There are quite a few other decay modes which have measurably large CP-violating asymmetries, though without constraining the parameter k^2 experimentally, or removing this dependence in an improved theoretical framework, they are at present rather uncertain. A good measurement of the CP-asymmetry in any one of these could be used to determine k^2. We list these potentially interesting asymmetries below:

$A_{CP}(K^{*\pm}\pi^\mp)$, $A_{CP}(K^{*\pm}\pi^0)$, $A_{CP}(K^{*\pm}\eta)$, $A_{CP}(K^{*\pm}\eta')$, $A_{CP}(K^{*\pm}\rho^\mp)$ and $A_{CP}(K^{*\pm}\rho^0)$.

In conclusion, by systematically studying the $B \rightarrow h_1 h_2$ decays in the factorization approach, we hope that we have found classes of decays where the factorization approach can be tested as it makes predictions within a reasonable range. If the predictions in the rates in these decays are borne out by data, then it will strengthen the notion based on color transparency that non-factorization effects in decay rates are small and QCD dynamics in $B \rightarrow h_1 h_2$ decays can be largely described in terms of perturbative QCD and factorized amplitudes. This will bring in a number of CP-violating asymmetries under quantitative control of the factorization-based theory. If these expectations did not stand the experimental tests, attempts to quantitatively study two-body non-leptonic decays would have to wait for a fundamental step in the QCD technology enabling a direct computation of the four-quark matrix elements in the decays $B \rightarrow h_1 h_2$. However, present data on $B \rightarrow h_1 h_2$ decays are rather encouraging and perhaps factorization approach is well poised to becoming a useful theoretical tool in studying non-leptonic B decays.
- at least in class-I and class-IV decays. We look forward to new experimental results where many of the predictions presented here and in [4] will be tested in terms of branching ratios and CP-violating asymmetries in partial decay rates.

Acknowledgments
We thank Christoph Greub and Jim Smith for helpful discussions. We would also like to thank Alexey Petrov for clarifying some points in his paper [19]. One of us (A.A.) would like to thank Matthias Neubert for discussions on the factorization approach, and the CERN-TH Division for hospitality where this work was completed.
References

[1] R. Godang et al. (CLEO Collaboration), Phys. Rev. Lett. 80, 3456 (1998); B.H. Behrens et al. (CLEO Collaboration), Phys. Rev. Lett. 80, 3710 (1998); J.G. Smith, preprint COLO-HEP-395 (1998); to appear in Proc. of the Seventh Int. Symp. on Heavy Flavor Physics, Santa Barbara, CA, July 7 - 11, 1997.

[2] T. Bergfeld et al. (CLEO Collaboration), preprint CLNS 97/1537, CLEO 97-32, hep-ex/9803018.

[3] For a recent experimental review on penguins in B meson decays and references to experimental and theoretical work, see K. Lingel, T. Skwarnicki and J.G. Smith, preprint COLO-HEP-395, SLAC-PUB-7796, HEPSY 98-1, hep-ex/9804015 (submitted to Ann. Rev. of Nucl. and Part. Science).

[4] A. Ali, G. Kramer and C.D. Lü, DESY 98-041, hep-ph/9804363 (submitted to Phys. Rev. D).

[5] A. Ali, C. Greub, Phys. Rev. D57, 2996 (1998).

[6] A. Ali, J. Chay, C. Greub and P. Ko, Phys. Lett. B424, 161 (1998).

[7] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[8] For reviews, see I.I. Bigi et al., in CP Violation, Editor: C. Jarlskog, Advanced series on Directions in High Energy Physics, Vol. 3, World Scientific, Singapore, New Jersey, London, Hong Kong, 1989; Y. Nir and H.R. Quinn, in B Decays, Editor: S. Stone, World Scientific, Singapore, New Jersey, London, Hong Kong, 1989; R. Fleisher, Int. J. Mod. Phys. A12, 2459 (1997).

[9] M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 43, 242 (1979); J. M. Gerard and W. S. Hou, Phys. Rev. D43, 2909 (1991); H. Simma, G. Eilam and D. Wyler, Nucl. Phys. B352, 367 (1991).

[10] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).

[11] M. Gronau, O. Hernandez, D. London and J. Rosner, Phys. Rev. D50, 4529 (1994).

[12] M. Gronau, O. Hernandez, D. London and J. Rosner, Phys. Rev. D52, 6374 (1995).

[13] N.G. Deshpande and X.-G. He, Phys. Lett. B336, 471 (1994); Phys. Rev. Lett. 74, 26 (1995); N.G. Deshpande, X.-G. He and J. Trampetic, Phys. Lett. B345, 547 (1995).

[14] H. Simma and D. Wyler, Phys. Lett. B272, 395 (1991).

[15] G. Kramer, W. F. Palmer and H. Simma, Nucl. Phys. B428, 77 (1994); Z. Phys. C66, 429 (1995); G. Kramer and W. F. Palmer, Phys. Rev. D52, 6411 (1995); G. Kramer, W.F. Palmer and Y.L. Wu, Commun. Theor. Phys. 27, 457 (1997).
[16] D. Du and L. Guo, Z. Phys. C75, 9 (1997).

[17] N.G. Deshpande, B. Dutta and S. Oh, Phys. Rev. D57, 5723 (1998).

[18] N.G. Deshpande, B. Dutta and S. Oh, preprint OITS-644, COLO-HEP-394, hep-ph/9712445.

[19] A.A. Petrov, preprint JHU-TIPAC-97016, hep-ph/9712497.

[20] A. Ali, DESY Report 97-256, hep-ph/9801270; to be published in Proc. of the First APCTP Workshop, Pacific Particle Physics Phenomenology, Seoul, South Korea.

[21] F. Parodi, P. Roudeau and A. Stocchi, preprint hep-ph/9802283.

[22] J.F. Donoghue et al., Phys. Rev. Lett. 77, 2178 (1996).

[23] D. Atwood and A. Soni, preprint AMES-HET 97-10, hep-ph/9712287.

[24] A.F. Falk et al., Phys. Rev. D57, 4290 (1998).

[25] M. Neubert, preprint CERN-TH-97-342, hep-ph/9712221.

[26] D. Delepine et al., preprint UCL-IPT-98-01, hep-ph/980361.

[27] D.-S. Du et al., preprint hep-ph/9805260.

[28] J.D. Bjorken, in New Developments in High Energy Physics, ed. E.G. Floratos and A. Verganelakis, Nucl. Phys. (Proc. Suppl.) 11, 321 (1989).

[29] M. Ciuchini, E. Franco, G. Martinelli and L. Silvestrini, Nucl. Phys. B501, 271 (1997); M. Ciuchini et al., Nucl. Phys. B512, 3 (1998).

[30] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[31] M. Neubert and B. Stech, preprint CERN-TH/97-99 [hep-ph 9705292], to appear in Heavy Flavors, Second Edition, ed. A.J. Buras and M. Lindner (World Scientific, Singapore).

[32] M. Bauer and B. Stech, Phys. Lett. B152, 380 (1985); M. Bauer, B. Stech and M. Wirbel, Z. Phys. C34, 103 (1987).

[33] H. Simma and D. Wyler, Nucl. Phys. B344, 283 (1990).

[34] M.B. Voloshin, Phys. Lett. B397, 275 (1997).

[35] A.J. Buras and R. Fleischer, Phys. Lett. B341, 379 (1995).

[36] R. Fleischer, Phys. Lett. B321, 259 (1994).

[37] R. Fleischer and T. Mannel, Phys. Lett. B397, 269 (1997).

[38] R. Fleischer and T. Mannel, Phys. Rev. D57, 2752 (1998); preprint TTP-97-22 [hep-ph/9706261].
[39] R.M. Barnett et al., Phys. Rev. D54, 1 (1996).

[40] M. Gronau, Phys. Lett. B233, 479 (1989).

[41] R. Aleksan, I. Dunietz, B. Kayser and F. Le Diberder, Nucl. Phys. B361, 141 (1991).

[42] W.F. Palmer and Y.L. Wu, Phys. Lett. B350, 245 (1995).

[43] A. Ali, H. Asatrian and C. Greub, preprint DESY 97-255, hep-ph/9803314 (to appear in Phys. Lett. B).

[44] D. London and A. Soni, Phys. Lett. B407, 61 (1997).

[45] D. London and R.D. Peccei, Phys. Lett. B223, 257 (1989). See also, Nir and Quinn in ref. [8].