Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites

Sarah D. Diermeier¹, Attila Németh¹, Michael Rehli², Ingrid Grummt³, Gernot Längst¹*

¹ Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany, ² Department of Hematology, University Hospital Regensburg, Regensburg, Germany, ³ Molecular Biology of the Cell II, German Cancer Research Centre (DKFZ), Heidelberg, Germany

Abstract

Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free DNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes.

Introduction

An intriguing question for understanding protein-DNA recognition is how low-abundant transcription factors recognize their target sites in genomic DNA [1,2]. Empirical studies revealed that regulatory regions, such as enhancers and promoters, comprise modular units of a few hundred base pairs that harbour multiple binding sites for the same transcription factor. Such 'homotypic clustering sites' (HTCs) have been identified in 2% of the human genome, being enriched at promoters and enhancers [3]. HTCs have been shown to play a role in Drosophila development, regulating early patterning genes [4–6]. Genome-wide binding analyses in yeast have demonstrated that the occupancy of transcription factors is higher at clustered binding sites compared to single ones [7]. Studies in mammalian cells have shown that clustering of binding sites facilitate the cooperative binding of nuclear receptors to their target sites in vivo, suggesting that HTCs coordinate the recruitment of transcription initiation factors [8–10]. Alternatively, cooperative binding could arise through indirect effects, e.g. by changing the accessibility of neighbouring binding sites in chromatin [11].

To assess the functional relevance of homotypic clustering of transcription factor binding sites, we studied the 3′-terminal region of murine rRNA genes (rDNA), which contains ten binding sites (T₁–T₁₀) for the transcription termination factor TTF-I. Binding of TTF-I to the terminator elements is required to stop elongating RNA polymerase I (Pol I) and termination of pre-rRNA synthesis occurring predominantly at the first terminator T₁ [12–15]. In addition to the downstream terminators, there is a single TTF-I binding site, termed T₀, located 170 bp upstream of the transcription start site [16]. Binding of TTF-I to this site is required for efficient transcription initiation and for the recruitment of chromatin remodelling complexes that establish distinct epigenetic states of rRNA genes. The interaction of TTF-I with CSB (Cockayne Syndrome protein B), NoRC (Nucleolar Remodeling Complex), or NuRD (Nucleosome Remodeling and Deacetylation complex), respectively, has been shown to recruit histone modifying enzymes which lead to the establishment of a specific epigenetic signature that characterizes active, silent or poised rRNA genes [17–20].

TTF-I has been shown to oligomerize in vitro and to link two DNA fragments in trans [21]. These characteristics enable TTF-I bound to the upstream binding site T₀ and the downstream terminators T₁–T₁₀ to loop out of the pre-rRNA coding region [22,23]. Formation of a chromatin loop facilitates re-initiation and increases transcription initiation rates at the rRNA gene [22,24]. TTF-I is a multifunctional protein that is not only essential for transcription termination, but also directs efficient rDNA transcription, mediates replication fork arrest [25], establishes specific epigenetic features and determines the topology of rDNA. The conservation of multiple TTF-I binding sites downstream of the pre-rRNA coding region raises the question whether homotypic clustering of terminator elements is functionally relevant. Here we demonstrate that HTCs serve a chromatin-specific function.

Packaging into chromatin increases the binding affinity of TTF-I to clustered terminator elements, augments the efficiency of transcription termination, enhances transcription initiation, and changes the higher-order structure of rRNA genes. The homotypic clusters at the rRNA gene coordinate the timing of molecular events, coordinating transcription termination and initiation and...
The sequence-specific binding of proteins to regulatory regions controls gene expression. Binding sites for transcription factors are rather short and present several million times in large genomes. However, only a small number of these binding sites are functionally important. How proteins can discriminate and select their functional regions is not clear, to date. Regulatory loci like gene promoters and enhancers commonly comprise multiple binding sites for either one factor or a combination of several DNA binding proteins, allowing efficient factor recruitment. We studied the cluster of TTF-I binding sites downstream of the rRNA gene and identified that cooperative binding to the multimeric termination sites in combination with low-affinity binding of TTF-I to individual sites upstream of the gene serves multiple regulatory functions. Packaging of the clustered sites into chromatin is a prerequisite for high-affinity binding, coordinated activation of transcription and the formation of a chromatin loop between the promoter and the terminator.

In vitro transcription assays on a circular mimigene comprising the rDNA promoter fused to a single termination site (pMrSB) yielded long read-through transcripts in the absence of TTF-I. The addition of recombinant TTF-I bound with comparable affinity to all terminators assayed (data not shown). The DNA binding affinity of TTF-I was quantified by microscale thermophoresis, recording changes of nucleoprotein complex mobility in a small temperature gradient [26]. By titrating a wide range of TTF-I:DNA ratios, the binding constant of TTF-I to free Sal-box DNA was determined to be 0.5 μM (Fig. 1B), a relatively low DNA binding affinity which is one order of magnitude lower than the K_D of other transcription factors [27–29].

In vitro transcription assays on a circular mimigene comprising the rDNA promoter fused to a single termination site (pMrSB) yielded long read-through transcripts in the absence of TTF-I. The addition of recombinant TTF-I led to the synthesis of terminated transcripts whose lengths correspond to the distance from the transcription start site to the terminator T_1 (Fig. 1C). If the template contained all ten terminators (pMrT_1–T_10), both read-through transcripts and a heterogeneous population of transcripts randomly terminated at any of the TTF-I binding sites were synthesized due to sub-saturating TTF-I levels in the extract (Fig. 1D). In the presence of increasing concentrations of recombinant TTF-I the amount of transcripts stopped at terminator T_1 progressively increased (Fig. 1D, lanes 1–8 and Fig. S2). Thus, TTF-I binds to all sites with similar affinity and randomly terminates transcription until at saturating concentrations TTF-I occupies all ten terminators.

A strikingly different result was obtained on rDNA templates assembled into chromatin with an extract from Drosophila embryos [30] (Figure S1B). Consistent with Pol I transcription on chromatin requiring binding of TTF-I to the promoter-proximal terminator T_0 and ATP-dependent chromatin remodelling [31,32], transcription was repressed in the absence of TTF-I (Fig. 1D, lane 9). The addition of TTF-I relieved transcriptional repression, yielding only a single RNA species of 686 nt. On chromatin templates, already lowest TTF-I concentrations terminated transcription specifically at T_1 (Fig. 1D, lanes 10–16 and Fig. S2). The result suggests that transcription in chromatin is only initiated when the termination sites are set, meaning that the TTF-I binding site at the promoter is only bound after sequestering TTF-I at the terminator. The qualitative difference between transcription on free DNA and chromatin templates indicates that on chromatin templates TTF-I either binds preferentially to T_1 or the overall binding affinity of TTF-I to all terminator sites is increased in chromatin.

Clustered termination sites facilitate cooperative binding of TTF-I to chromatin

Next, we performed electrophoretic mobility shift assays (EMSAs) and DNase I footprinting experiments to compare TTF-I binding to free DNA and chromatin. Consistent with the transcription data on free DNA, EMSAs on terminator DNA fragments containing more than one TTF-I binding sites yielded heterogeneous nucleoprotein complexes, reflecting binding to each binding site with similar affinity (Fig. 2A). On chromatin templates, DNase I footprinting experiments demonstrate that TTF-I simultaneously bound to all terminator binding sites (Fig. 2B). Together with the transcription results on chromatin templates, this suggests that homotypic clustering of target sites increases the binding affinity of TTF-I to chromatin.

To compare the binding affinity of TTF-I to free DNA and reconstituted chromatin, we performed DNase I footprinting assays, monitoring DNase I cleavage sites by primer extension which allows simultaneous analysis of TTF-I occupancy at the promoter and terminator(s) (Fig. 2C). TTF-I binding can be observed by the disappearance of a DNase I sensitive site that is apparent within the TTF-I binding sites of free DNA and reconstituted chromatin (Fig. 2B and C). In agreement with the binding studies and the in vitro transcription experiments, TTF-I binds on free DNA to the promoter-proximal terminator T_0 and the downstream terminators with similar affinity (Fig. 2C, compare lanes 2–4 and lanes 9–11). On chromatin templates, TTF-I binding to the upstream site T_0 is comparable to its binding to free DNA (Fig. 2C, upper panel). However, on chromatin templates TTF-I binds with higher affinity to the clustered sites, fully occupying all terminator sites at low protein concentrations (Fig. 2C, lower panel). Significantly, TTF-I occupied the binding sites at the terminators prior to the promoter-proximal site (compare lanes 5–7 and 12–14), showing a specific role of chromatin and binding site clustering for increasing the binding affinity of TTF-I. The sequential binding of TTF-I, first to the terminators and then to the gene promoter in chromatin was also confirmed using a different method. Affinity purification of either TTF-I bound free DNA or chromatin revealed binding of TTF-I to the gene terminators reconstituted into chromatin already at concentrations one order of magnitude lower than with the gene promoter (Fig. S3). Like in the footprinting assay, this effect was not detectable using free DNA, where both TTF-I binding regions
were occupied with similar affinity. Apparently, the clustered arrangement of binding sites increases the affinity of TTF-I, thus promoting the association of TTF-I with the downstream terminators T_{1-10} prior to the upstream site T_0, a process that appears to be essential for both TTF-I dependent transcription activation and transcription termination.

Figure 1. Chromatin-specific termination at the homotypic cluster of TTF-I. (A) Overview of the murine rRNA gene and the location of the TTF-I binding sites. A homotypic cluster of TTF-I sites is located in the terminator region. The distances between TTF-I binding sites, their orientation and the gene promoter are indicated. A comparison of the TTF-I binding sites T_0 and the termination sites T_1 to T_{10} is depicted. (B) Increasing amounts of TTF-I$Δ$N348 were incubated with 50 nM of either a fluorescently labelled 30-mer oligonucleotide containing a Sal-box motif (T_2) or a control oligonucleotide of the same length. Protein-DNA interactions are quantified by microscale thermophoresis. Curve fitting with a Hill coefficient of 1 resulted in a K_D of 500 nM\pm120 nM for the T_2 sequence. (C) Transcription reaction using the circular rDNA minigene plasmid pMr-SB containing a single termination site, a partially purified nuclear extract lacking most of the nuclear TTF-I (DEAE280), performed in the presence or absence of recombinant TTF-I. The positions of the long read-through and the terminated transcripts are indicated. (D) Transcription on free DNA and chromatin, using the pMrWT-T DNA containing the promoter with the TTF-I binding site T_0 and the full terminator with the 10 termination sites. DNA (lanes 1–8) and chromatin (lanes 9–16) were incubated with increasing concentrations of TTF-I as indicated and the DEAE280 extract. The position of the long, non-terminated read-through transcript (RT) and the terminated transcripts are indicated.

doi:10.1371/journal.pgen.1003786.g001
Clustered terminators act as a transcriptional enhancer \textit{in vivo}. To study the functional relevance of clustered sites \textit{in vivo}, we transfected CHO cells with reporter plasmids containing the murine Pol I promoter, an internal ribosomal entry site (IRES), Firefly luciferase cDNA and either no terminator (pTD) or one (pT1), two (pT2) or ten (pT10) termination sites. As shown in Figure 3A, the presence of one or two terminators (pT1 and pT2) enhanced transcription of the luciferase reporter 8- to 12-fold compared to the terminator-deficient vector. The presence of ten termination sites (pT10) decreased luciferase activity, presumably due to squelching of endogenous TTF-I. In support of this view,

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Multiple termination sites enable cooperative binding of TTF-I to chromatin. (A) Electrophoretic mobility shift assays (EMSA) were performed with a single TTF-I binding site (T\textsubscript{1}, lanes 1–4), two binding sites (T\textsubscript{1–2}, lanes 5–9) and an array of five binding sites (T\textsubscript{1–5}, lanes 10–14) and increasing concentrations of TTF-I as indicated. Nucleoprotein complexes are resolved on native polyacrylamide gels and detected by autoradiography. The positions of the free DNA molecules and the TTF-I-DNA complexes (triangles) are indicated. (B) Monitoring TTF-I binding to the chromatinized terminator by DNase I footprinting. The pMr-T plasmid containing the full terminator was reconstituted into chromatin with \textit{Drosophila} embryo extract. Chromatin was incubated with increasing concentrations of TTF-I as indicated and partially digested with DNase I. Footprints were analysed by a primer extension reaction using a radioactively labelled oligonucleotide and resolving the DNA on 6% sequencing gels. The marker was generated by partial digestion of the plasmid with the restriction enzyme \textit{Sal} and analysed by the same primer extension reaction. The \textit{Sal} sites (T\textsubscript{1} to T\textsubscript{10}) represent the TTF-I binding sites and the triangles indicate sites of DNase I protection. (C) Comparative footprinting of TTF-I binding to the promoter and terminator of free DNA and chromatin. Identical amounts of pMW\textsubscript{WT}-T were used as free DNA (lanes 1 to 4 and 8 to 11) or chromatin (lanes 5 to 7 and 12 to 14) and incubated with increasing amounts of TTF-I as indicated. DNA was partially digested with DNase I and the purified DNA was analysed by primer extension reactions, either using a radiolabelled oligonucleotide binding close to the promoter (lanes 1 to 7) or binding close to T\textsubscript{1} in the terminator region (lanes 8 to 14). DNA was separated on 8% sequencing gels, dried and analysed after autoradiography. The TTF-I binding sites T\textsubscript{1}, T\textsubscript{2} and T\textsubscript{0} and the protected DNase I cutting sites (triangles) are indicated.

doi:10.1371/journal.pgen.1003786.g002
\end{figure}
transient overexpression of TTF-I (pTTFAN348) revealed a linear correlation between the number of terminators and reporter gene activity, showing further transcriptional enhancement by the pT10 construct (Fig. 3B and Fig. S4B). Additional controls revealed that the stimulatory effect depends on the TTF-I binding sites at the chromatin [31]. Therefore, pTTFAN470 cannot activate transcription in a chromatin context [31] and transfection of this construct did not further activate transcription of the pT10 construct (Fig. 3C and Fig. S4B). The control shows that chromatin-specific activities of TTF-I are required for efficient transcriptional activation. Notably, there was no luciferase expression using reporters with TTF-I binding site(s) in the reverse orientation (pT1R, pT10R), supporting the importance of the topological arrangement of the HTCIs for efficient Pol I transcription.

To examine whether the number of terminators affects gene activity and/or the spatial organization of rDNA in a genomic context, we generated stable cell lines that harbour a single copy of mouse rRNA minigenes, either containing only T1 (CHO-pT1) or multiple T1 (CHO-pT10) rDNA sites, comparable to 3C assays [34]. Obviously, TBP was found to be associated with the promoter of CHO-pT1 and CHO-pT10 as part of the initiation complex, while no binding was observed in the transcribed region (Fig. 4B, TBP panel). Strikingly, TBP was also enriched at the terminator of CHO-pT10 but not CHO-pT1 cells, suggesting that clustered HTC-directed transcription is in close proximity with the gene promoter. Consistent with multiple terminators facilitating initiation of transcription, TBP and Pol I occupancy was about 4-fold higher in CHO-pT10 compared to CHO-pT1 (Fig. 4B, TBP panel). To exclude the possibility that clustered TTF-I binding sites on their own recruit TBP to the 3'-end of rRNA genes, we examined TBP occupancy on a reporter plasmid in which the ten terminators were fused to a Pol II promoter. TBP was enriched at the Pol II promoter but close to background at the terminator (Fig. 4C), emphasizing the importance of HTC-directed transcription at both elements, the promoter and the terminators, to form chromatin loops.

Integrative analysis of histone marks reveals similarity to classical enhancer elements

Homo- and heterotypic clusters of transcription factor binding sites were shown to mark potential regulatory regions with enhancer function [35–39] characterized by eukaryotic histone marks like H3K27ac, which is involved in long-range chromatin interactions [40]. As the repetitive rDNA is left out of standard ChIP-Seq analyses, we artificially added a single mouse rDNA repeat to the current mouse genome version mm9 and mapped ChIP-Seq data of H3K27ac, H3K27me3, H3K4me1, H3K4me2, and H3K4me3 to this expanded reference genome (Fig. 3A). We observed enrichment of H3K27ac and H3K4me2 in the terminator and promoter region of murine rDNA, enforcing our previous results and confirming that the homotypic cluster of TTF-I binding sites represents an active enhancer element. In contrast, H3K27me3, commonly associated to repressed genes, is depleted at the terminator compared to the rDNA gene body. Therefore, the mouse rDNA terminator exhibits a histone modification profile typical for enhancer elements involved in Pol II transcription.

Discussion

Clustering of transcription factor binding sites, comprising either multiple binding sites for the same factor (homotypic clustering) or different DNA binding motifs (heterotypic clustering), is an important regulatory feature of eukaryotic gene expression, about 62% of transcription factor genes and 66% of developmentally regulated genes comprising clustered binding sites in vertebrates [3]. Therefore, this feature has been widely used for computational prediction. In Drosophila, predicted HTCs are present in more than 70% of regulatory regions and have been suggested to function as developmental enhancers [6,41]. Clustered binding sites are suggested to exert a positive effect on transcription by either of the following mechanisms. They could increase the local concentration of transcription factors or facilitate multiple interactions with components of the transcription machinery. Alternatively, they could provide functional redundancy [37,42], allowing cooperative binding of the factors through interactions among the multiple binding sites or indirectly through multiple interactions with the transcriptional machinery [10,43–46]. Here, we have uncovered a novel chromatin-based mechanism underlying HTC-directed transcriptional activation. We show that packaging into chromatin converts multiple low-affinity
Multiple termination sites enhance transcription in vivo. (A) Reporter plasmids containing the rDNA promoter, Firefly luciferase and either no (pTΔ), one (pT1), two (pT2), ten (pT10) termination sites and T1 and T10 in reverse orientation (pT1R, pT10R) were co-transfected with a Renilla luciferase encoding plasmid (pRL-TK) into CHO cells. As a control, empty pBluescript vector was co-transfected. Transcriptional activities were analysed using a dual luciferase reporter assay. The ratio of Firefly/Renilla relative light units (RLU) of three independent experiments is given. Error bars indicate standard deviations. The functional elements and the sizes of the reporter plasmids are depicted. (B) Reporter plasmids were co-transfected with a GFP-TTF-I ΔN348 expression vector and analysed as described in (A). (C) Reporter plasmids were co-transfected with a GFP-TTF-I ΔN470 expression vector and analysed as described in (A). (D) RNA FISH and DAPI staining. α-B23 reporter RNA. Scale bar: 20 μm. (E) RT-qPCR. Relative transcript level.
TTFAN470 expression vector and analysed as described in (A). (D) RNA FISH using CHO cell lines with stably integrated rDNA minigenes. CHO-pT10 cells containing an rDNA minigene with a full terminator, were stained with DAPI (in blue in the middle panel), with α-B23 antibody staining the nucleoli (left panel; shown in red in the middle panel), and integrated reporter gene transcripts were visualized by FISH (right panel; shown in green in the middle panel). Bar: 5 μm. (E) Transcription levels of genomically inserted pT1 and pT10 constructs were assayed using RT-qPCR. Comparative quantitation was performed and RNA levels of the Firefly luciferase sequence were normalized to β-actin expression. Relative transcript levels of three independent experiments are given in relation to non-transfected CHO Flp-In cells (control), error bars denote standard deviations.

doi:10.1371/journal.pgen.1003786.g003

Materials and Methods

Protein expression and microscale thermophoresis

Histidine-tagged full-length TTF-I and the deletion mutants TTFAN210 and TTFAN348 were purified on a heparin column (Bio-Rad), followed by purification with Ni-NTA agarose according to the manufacturer’s instructions (Qiagen). For microscale thermophoresis experiments, 50 nM of fluorescently labelled DNA oligonucleotides were incubated with 5 nM–2.4 μM of protein for 10 min at 30°C in 80 mM Tris-HCl (pH 7.6), 80 mM KCl, 0.2 mM EDTA, 5 mM MgCl2, 10% glycerol and 0.05% IGEPA/L CA-630. Affinity measurements were carried out in a Monolith NT.015T (NanoTemper Technologies) as described [26].

MNaSe footprinting and transcription

300 ng of chromatin reconstituted with Drosophila extract was digested with 1.5 U of MNase (Sigma) for 40 s in 10 mM Tris-HCl (pH 7.6), 80 mM KCl, 1.5 mM MgCl2, 10% glycerol, 0.5 mM ATP, and 200 ng/μl BSA. Reactions were then stopped by the addition of 0.2 volumes of 4% SDS, 100 mM EDTA, 1 μg of glycogen, 10 μg of proteinase K. Purified DNA was analysed by a single round of PCR (denaturation, 5 min at 95°C; annealing, 2 min at 56°C; extension, 1 min at 72°C) using radioactively labelled oligonucleotides that hybridize to the rDNA promoter or terminator. Primer extension fragments were resolved on 8% sequencing gels and visualized by autoradiography.

Transcription experiments were performed on pMrWT-T, a template comprising the murine rDNA promoter (from −170 to +135 with regard to the transcription start site) fused to a 3.5 kb 5’-terminal rDNA fragment (BanHI/EcoRV Fragment) harbouring all ten terminators. (T1–T10). The promoter and the terminator elements are separated by 668 bp. Transcription reactions were performed as described [53].

Cell culture

CHO and CHO Flp-In cells (Invitrogen) were grown in DMEM (GIBCO) supplemented with 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin. For transient transfections, 200,000 cells were transfected with 1 μg of plasmid DNA. Prior to transfection of the CHO Flp-In cells, 100 μg/ml zeocin (Invitrogen) was added to the medium and for transfection 0.25, 0.5 or 1.0 μg of the rDNA reporter construct and the flipase encoding plasmid pOG14 (Invitrogen) in a ratio of 1:9 were used. During the selection process, 500 μg/ml of hygromycin (PAA) was added to the medium; afterwards the stable cell lines were passaged with 250 μg/ml of hygromycin.

Constructs and reporter gene assays

Transiently transfected rDNA minigenes [22] contain mouse rDNA (BK000964) sequences from position −1932 to +181, an IRES, the firefly luciferase gene, and rDNA terminator regions from position +13169 to +15278 (T10 constructs) in a pGL3-Basic
vector (Promega). Plasmids for genomic integration contain in addition the enhancer/promoter regions from position -2148 to +181 cloned into a pcDNA5-FRT vector (Invitrogen).

Figure 4. Clustered termination sites enhance transcription and are required for chromatin looping. (A) Overview to the stably integrated rDNA minigenes and the locations of the PCR amplicons. (B) Chromatin-immunoprecipitation (ChIP) assays on stably integrated rDNA reporter genes using the indicated antibodies. Occupancies were measured by qPCR, calculated as percentage of input chromatin and background signals as determined from control IPs with unspecific antibodies (a-HA or a-IgG) were subtracted. At least three independent biological replicates were performed. Error bars indicate the standard error of the mean. For statistical analysis, a two-sided, homoscedastic student’s t-test was performed, stars denote significances. * p < 0.05, ** p < 0.01, *** p < 0.001. (C) ChIP experiment using an rDNA reporter in which the Pol I spacer promoter, core promoter and enhancer regions of a pT10 reporter construct were replaced by a Pol II promoter containing a canonical TBP binding site. The experiment was performed as described in (B).

doi:10.1371/journal.pgen.1003786.g004

Cells were transfected with Pol I driven firefly luciferase reporter constructs and a Pol II renilla luciferase control plasmid, pRL-TK (Promega). TTF-I co-transfections were
performed with the expression vectors TTFΔN348-EGFP or TTF-IΔN470-EGFP in a TTF-I:reporter ratio of 10:1. Protein expression was monitored by Western Blot analysis. Reporter gene measurements were performed using the Dual Luciferase Reporter Assay System (Promega) according to the manufacturer’s instructions using a single-tube luminometer (Stratec Biomedical Systems).

Isolation of RNA and genomic DNA
RNA isolation was performed with the NucleoSpin RNA II kit (Macherey-Nagel). Purified RNA (500 ng) was used for cDNA preparation with the iScript Select kit (Biorad).
To determine the number of integration sites, genomic DNA was isolated by cells lysis (1% SDS, 50 mM Tris-HCl (pH 8.0), 20 mM EDTA and 250 mg of RNase A), the addition of proteinase K and incubation at 37°C o.n. The supernatant was precipitated with ethanol and ammonium acetate.

qPCR
Quantitative real-time PCR was performed in a Rotor-Gene cycler (Qiagen) using a HotStar master mix containing SYBR green (Qiagen). Primer sequences and annealing temperatures are listed in the in Table S2. Fold inductions were calculated using the comparative quantitation software (Qiagen). Post-PCR melting curves and agarose gels of PCR products (Fig. S3F) were used to assess the quality of primer pairs.

Chromatin immunoprecipitation
Cells were transfected with 10 μg of DNA and cross-linked with 1% formaldehyde for 10 min (∝-Pol I and ∝-UBF ChIPs) or 10 mM DMA for 30 min +1% formaldehyde for 10 min (∝-TBP) at RT. The reactions were quenched with 125 mM glycine. Cells were washed twice in ice-cold PBS and the cell pellets were lysed in SDS lysis buffer (1% SDS, 50 mM Tris-HCl pH 8.0, 20 mM EDTA, protease inhibitors). Chromatin was sheared in a Biorupter sonicator (Diagenode) to fragments of 400–1000 bp in length. The samples were diluted in IP dilution buffer (20 mM Tris-HCl, 2 mM EDTA, 1% Triton X-100, 150 mM NaCl, pH 8.0, protease inhibitors). Pa53 antibody for Pol I detection and the pre-serum were obtained from the Grummt lab [54]. Antibodies targeting RPA194 (sc-28714), UBF (sc-9131), TBP (sc-273) and normal rabbit IgG (sc-2027) were purchased from Santa Cruz. Antibodies (5 μg) and chromatin were incubated on a rotating wheel at 4°C o.n. Pre-blocked Protein-G sepharose (500 μg/ml sonicated salmon sperm DNA and 100 μg/ml BSA in IP dilution buffer) was added to isolate the immune-complexes and incubated for 2 h at 4°C. Beads were washed twice with IP dilution buffer, once with high salt buffer (20 mM Tris-HCl, 2 mM EDTA, 1% Triton X-100, 150 mM NaCl, pH 8.0), LiCl buffer (0.25 M LiCl, 1% NP40, 1% Deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 8.0) and twice with TE buffer (10 mM Tris-HCl, 1 mM EDTA pH 8.0). Elution was performed using 250 μl of 1% SDS, 0.1 M NaHCO₃. RNase A was added to a

Figure 5. Distribution of histone modifications at the murine rDNA. (A) Enrichment of histone modifications at the rDNA locus in 3T3-L1 cells. The whole rDNA repeat is plotted from position +1 (the TSS) to position 45,309. The terminator track indicates TTF-I binding sites by black vertical lines. The black box highlights the clustered terminator elements at the 3' end of the gene. ChIP-seq tracks of histone modifications display relative enrichments compared to input. (B) Model depicting the order of binding events at the rRNA gene. The promoter is coloured in blue, a right-headed arrow marks the TSS and the clustered termination sites are depicted in red. doi:10.1371/journal.pgen.1003786.g005
concentration of 100 μg/ml and incubated for 2.5 h at 37°C. Following the Proteinase K digestion (100 μg/ml, 2.5 h at 37°C), reverse crosslinking was carried out at 64°C o.n. DNA was isolated by phenol/chloroform/isoamylalcohol extraction and precipitated with ethanol and sodium acetate.

FISH experiments

Fluorescence in situ hybridizations on metaphase chromosome spreads and on interphase nuclei combined with nucleolar immunostaining were performed as described [55]. For RNA FISH, cells grown on coverslips were fixed at room temperature with 3.7% formaldehyde/5% acetic acid/0.5% (w/v) NaCl, washed twice with 1x PBS, once in 50 mM NH4Cl/1x PBS pH 7.4, and once in 1x PBS. Coverslips were then transferred to 70% ethanol and incubated o.n. at 4°C. Before hybridization, coverslips were rehydrated in 2x SSC/50% formamide for 15 min at RT. Hybridization mixes were added for o.n. incubation at 37°C. Post-hybridization washes were carried out as follows: 2x×25 min at 37°C in 50% formamide/2x SSC and 2x×5 min in 2x SSC at RT. The subsequent immunostaining, DNA staining and mounting was performed as in interphase DNA FISH experiments. Nick-translated, biotin-labeled pcDNA5-FRT-rRNA reporter served as hybridization probe in all experiments.

Visualisation of histone modification data at the mouse rDNA locus

A custom build of the mm9 assembly was generated by replacing unsequenced bases at the 5'-end of chromosome 18 with a murine rDNA repeat (GenBank accession no. BK000964). We used Bowtie [56] to align published ChiP-seq data sets of 3T3L1 and MEL cells (for details see Table S1) to the custom assembly using ‘-best -k 1’ settings. Input-normalized bedGraph files were generated using the makeUCSCfile.pl script contained in the HOMER software suite (http://biowhat.ucsd.edu/homer/) using standard settings.

Supporting Information

Figure S1 Related to Figure 1. Clustering of rRNA gene termination sites is evolutionary conserved. (A) Distribution of binding sites being involved in transcription termination of mouse and human rRNA genes. The relative distance to the end of the coding region and the distances between the individual binding sites are given. Lollipops mark TTF-I binding sites. Sequence comparison of the TTF-I binding sites in mouse and human is shown below. (B) MNase digestion of reconstructed chromatin. Chromatin was reconstituted with the *Drosophila* embryo extract and digested with increasing amounts of MNase. Purified DNA was visualized by agarose gel electrophoresis and ethidium bromide staining. The regular fragment ladder is indicative of an efficiently assembled nucleosomal array (1n through 8n). (JPG)

Figure S2 Related to Figure 1. Multiple termination sites are required for efficient transcription activation. (A) In *vivo* transcription analysis was performed comparatively on free DNA (lanes 1–5) or in *vivo* assembled chromatin (lanes 6–10) on pMrSB containing a single termination site (T1), either in the absence (lanes 1 and 6) or presence of TTF-I (lanes 2–5 and 7–10). Two termination sites (T1+T2). The DNA was analysed for in *vivo* transcription on free DNA and chromatin with increasing amounts of TTF-I as described in (A). (C) In *vivo* transcription using the rRNA minigene pMrF15 harbouring the first two termination sites (T1+T2). The DNA was analysed for in *vivo* transcription on free DNA and chromatin with increasing amounts of TTF-I as described in (A).

(JPG)

Figure S3 Related to Figure 2. TTF-I binds with higher affinity to the rDNA terminator in reconstituted chromatin. (A) Overview of the experimental strategy. The plasmid pMrEnLT10 containing the gene promoter, a 5 kb long transcribed region and the full terminator region was used for TTF-I binding experiments. Specific primers for PCR amplification of the regions containing T0 (Promoter, P, 145 bp), T1 to T5 (Terminator, T, 276 bp) and a control region of the vector (control, c, 187 bp) were designed. Primers were mixed to allow simultaneous detection and quantification of the three DNA regions. The plasmid was used as free DNA or reconstituted into chromatin with the *Drosophila* embryo extract. DNA or chromatin was incubated with TTF-I for 10 min and then partially digested with MNase (50 fmoles of DNA were incubated with 2 U MNase for 20 s; 300 ng of chromatin was incubated with 50 U MNase for 30 s; the reactions were stopped by the addition of EDTA to a final concentration of 5 mM). TTF-I bound DNA fragments were retained on Ni-NTA material in a batch assay and washed twice in Ex350 buffer. The associated DNA was purified and analysed by PCR using the mixture of primers. (B) Binding of TTF-I to the promoter and the terminator on free DNA. 50 fmoles of free DNA were incubated with increasing amounts of TTF-I (60 fmol to 4 pmol, lanes 6 to 12) and DNA was partially hydrolysed with MNase. A control digestion revealing the input DNA is shown in lane 14. Purified DNA was amplified with a mixture of primers giving rise to the Promoter (P), Terminator (T) and control (c) PCR fragments. Lanes 1 to 4 show the PCR amplification of increasing amounts of the partially digested pMrEnLT10 plasmid, revealing that the individual fragments were amplified with similar efficiency over a 16-fold concentration difference. Ni-NTA purification of the DNA in the absence of TTF-I gives rise to a background of PCR fragments (lane 5) that remains in the fractions containing increasing amounts of TTF-I (lanes 6 to 12). However, with higher concentrations of TTF-I the promoter and terminator fragments accumulated with similar efficiency (250 fmoles to 4 pmoles, lanes 8 to 12) suggesting binding of TTF-I. The promoter and terminator fragments appear with similar TTF-I concentrations, suggesting similar binding affinities of TTF-I with the promoter and terminator sites on free DNA. (C) Binding of TTF-I to the promoter and the terminator in reconstituted chromatin. A control digestion of chromatin revealing the input DNA is shown in lane 15. The same experiment as shown in B) was performed with reconstituted chromatin. Lanes 1 to 4 show the PCR amplification of increasing amounts of the partially digested pMrEnLT10 plasmid reconstituted into chromatin. Incubation of chromatin with increasing concentrations of TTF-I (62, 125, 250, 500, 2000, 4000 fmol, lanes 6 to 11) revealed an amplification of the terminator fragment at lower TTF-I concentrations (starting in lane 7) than for the promoter fragment (starting in lane 10). The result suggests that TTF-I binds with higher affinity to the rDNA terminator reconstituted into chromatin and with lower affinity to the chromatinized rDNA promoter. The result confirms the *in vitro* transcription experiment (Figure 1) and the MNase footprinting data (Figure 2). (JPG)
Figure S4 Related to Figure 3. Promoter-proximal and terminator TTF-I binding sites and the transactivation domain of TTF-I are required for full transcriptional activation of rRNA minigenes in vivo. (A) Transiently transfected rRNA minigenes contain mouse rDNA (BK000964) sequences from position −217 (pT100, pΔΔ0) or −148 (pΔbT10p) to +181, an IRES, the Firefly luciferase gene, and rDNA terminator regions from position +13169 to +15278 (pΔAT10p) and pT10p in a pGL3-Basic vector (Promega). The plasmids contain a shorter non-specific insert than the constructs shown in Figure 3A. The insert size is 3 kilobases between the promoter and terminator region. CHO (left panel) or NIH3T3 cells (right panel) were transfected with Pol I driven Firefly luciferase reporter constructs and a Pol II Renilla luciferase control plasmid, pRL-TK (Promega). Reporter gene measurements were performed using the Dual Luciferase Reporter Assay System (Promega). Deletion of either the promoter-proximal or the terminator TTF-I binding sites reduces transcriptional activity, complementing the results shown in Figure 3. (B) Western Blot of transiently transfected CHO cells expressing EGFP-tagged TTF-I deletion mutants used in Figure 3B and C. Detection was performed with an α-GFP (sc-8334) and subsequently an α-TTF-I antibody (αC7). Lane 2: control transfection with a vector containing only EGFP, lanes 3–4: overexpressed EGFP-tagged TTF-I (ΔC7). Lane 5: non-transfected CHO cells. Endogenous full-length TTF-I is visible in all lanes. MW = molecular weight marker. (JPG)

Figure S5 Related to Figure 4. Characterization of stable cell lines containing a single mouse rRNA gene. rRNA minigenes containing one or ten termination sites (pT1 and pT10) were genomically inserted into CHO Flp-In cells and stable single integrants were selected. This resulted in the cell lines CHO-pT1 and CHO-pT10. In all experiments, non-transfected CHO Flp-In cell lines were used as controls. Bars represent the mean of three independent stable transfections and error bars indicate standard deviations. (A) FISH detection of genomically inserted mouse rRNA minigenes on CHO Flp-In metaphase spreads. Chromosomes were stained with DAPI and are illustrated in red. Hybridization signals of reporter probes are shown in green. Arrows indicate the single genomic insertion site. The lower panel shows copy number determination of the integrated rDNA reporter plasmids. qPCR was performed on genomic DNA and comparative quantitation was performed between the luciferase gene and the copy number of two single-copy housekeeping genes, β-actin and Pabp1L. Bars represent the mean of two independent experiments, error bars denote standard deviations. (B) The number of termination sites does not influence localization of the rDNA minigenes. 5D immuno-FISH analysis of genomically inserted pT1 and pT10 in interphase nuclei. Nuclear DNA was stained with DAPI (shown in blue in the middle merged panel), nucleoli with an α-B23 antibody and indirect immunofluorescence (left panel), and shown in red in the middle merged panel, and the RNA minigenes were visualized by FISH (right panel, and shown in green in the middle merged panel). Bars depict the percentage of genomically integrated minigenes associated to the nucleolus, n denotes the absolute number of assayed alleles. Bar: 5 μm. (C) Firefly luciferase reporter gene assay on genomically integrated rRNA minigenes. Relative light units (RLU) were measured in three independent experiments, error bars indicate standard deviations. As control, non-transfected CHO Flp-In cells were assayed. (JPG)

Figure S6 Related to Figure 4. ChIP experiments in transiently transfected CHO cells. (A) Overview of rDNA minigenes and the locations of the PCR amplicons. (B) Chromatin-immunoprecipitation (ChIP) assays on transiently transfected rDNA reporter genes using the indicated antibodies. Occupancies were measured by qPCR, calculated as percentage of input chromatin and background signals as determined from control IPs with unspecific antibodies (α-IgG or α-HA Tag) were subtracted. Three independent biological replicates were performed. Error bars indicate the standard error of the mean. (C) Sonication test. Representative agarose gel of the chromatin input sonicated for 5 or 10 min (30 sec on/30 sec off, settings: “high”) after protease K digestion and reversal of crosslinking. 10 min sonication time was used for all experiments. Fragment size range: 100–600 bp. MW = molecular weight marker. (D) Representative agarose gel of qPCR amplicons, pipetted in duplicates, after 40 cycles of qPCR. MW = molecular weight marker. (E) Mouse-specific primer pairs were tested on non-transfected CHO cells to ensure species-specific amplicons. Chromatin was isolated from CHO cells, processed like an input for ChIP experiments and analysed by qPCR. DNA levels were normalised to the 5’ IGS signal of hamster rDNA (5’ IGS). The multi-copy rRNA genes show a 25-fold higher signal than the single-copy gene β-actin. None of the mouse specific primer pairs amplifies detectable products on hamster chromatin. A faint signal appears in the plasmid-specific control primer pair. Each bar represents the mean of three replicates. For every primer pair, both CHO chromatin template triplicates (left) and water control (right) are shown. (JPG)

Table S1 Summary of published NGS data used in this study. The table provides an overview of all next-generation sequencing datasets that have been used in the study. Cell types, accession numbers and respective publications are indicated for each dataset. The number of reads indicates absolute tag counts of sequencing reads mapped to the expanded reference genome. (DOC)

Table S2 List of qPCR primers used for ChIP analyses. The primer lists contains all primers used for quantitation of ChIP assays. Name, binding site, sequence and annealing temperatures are provided for each primer pair used in the study. (DOCX)

Author Contributions
Conceived and designed the experiments: AN IG GL. Performed the experiments: SDD AN MR GL. Analyzed the data: SDD AN MR GL. Contributed reagents/materials/analysis tools: IG. Wrote the paper: IG GL.
References

1. Berg OG, Hippen von PH (1987) Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. Journal of Molecular Biology 191: 723–739.

2. Berg OG, Hippen von PH, Hippen von PH (1988) Selection of DNA binding sites by regulatory proteins. Trends in Biochemical Sciences 13: 207–211.

3. Govea, Vel A, Westlund JM, Nohse SP, Pennacchio LA, et al. (2010) Homotopic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Research 20: 563–572.

4. Davidson EH (2002) A Genomic Regulatory Network for Development. Science 295: 1669–1678.

5. Schroeder MD, Pearce M, Fak J, Fan H, Unerstall U, et al. (2004) Transcriptional Control in the Segmentation Gene Network of Drosophila. PLoS Biol 2(9): e271.

6. Erives A, Levine M (2004) Coordinate enhancers share common organizational features in the Drosophila genome. Proc Natl Acad USA 101: 3851–3856.

7. Rhee HS, Pugh BF (2011) Comprehensive: Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution. Cell 147: 1408–1419.

8. Sauer F, Hansen SK, Tjian R (1995) Multiple TAFII15 direct synergistic activation of transcription. Science 270: 1783–1788.

9. Sauer F, Hansen SK, Tjian R (1995) DNA template and activator-coactivator requirements for transcriptional synergy by Drosophila bcd. Science 270: 1825–1828.

10. Hertel KJ, Lynch KW, Maitani T (1997) Common themes in the function of transcription and splicing enhancers. Current Opinion in Cell Biology 9: 350–357.

11. Vashee S, Melcher K, Melcher K, Ding WV, et al. (1998) Evidence for two nuclear factor and transcription termination. Cell 43: 837–846.

12. Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP (1985) A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 39: 505–516.

13. Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP (1985) Transcription of mouse rDNA terminus upstream the 3' end of 28S rRNA and involves interaction of factors with repeated sequences in the 3' spacer. Cell 43: 810–811.

14. La Valpe A, Simione A, Simione A, D'Esposito M, et al. (2005) Molecular analysis of the heterogeneity region of the human ribosomal spacer. Journal of Molecular Biology 349: 213–223.

15. Bartsch I, Schoneberg C, Grummt I (1987) Evolutionary changes of sequences characterized by bivalent histone modifications and altered nucleosome positions. Proceedings of the National Academy of Sciences USA 101: 8161–8166.

16. Sander EE, Grummt I (1997) Elongination from the transcription termination factor TFF-I: implications for the structural organization of ribosomal transcription units. Nucleic Acids Research 25: 1142–1147.

17. Németh A, Aghert S, Tiwari VK, Ohlsön R, Langit G (2008) Epigenetic regulation of TFF-I-mediated promoter–terminator interactions of rRNA genes. The EMBO Journal 27: 4982–4990.

18. Santero R, Li J, Grummt I (2002) The nucleolar remodeling complex Tad mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature Genetics 32: 395–399.

19. Yuan X, Feng W, Imhoff A, Grummt I, Zhou Y (2007) Activation of rDNA Polymerase I Transcription by Cockayne Syndrome Group B Protein and Histone Methyltransferase G9a. Molecular Cell 27: 585–595.

20. Xie W, Ling T, Zhou Y, Feng W, Zhu X, et al. (2012) The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proceedings of the National Academy of Sciences USA 109: 8161–8166.

21. Sauer F, Hansen SK, Tjian R (1995) Multiple TAFII15 direct synergistic activation of transcription. Science 270: 1783–1788.

22. Papenbrook DA, Makey VJ, Láňopan AP, Riquelme M, Nazina AG, et al. (2002) Extraction of Functional Binding Sites from Unique Regulatory Regions: The Drosophila Early Developmental Enhancers. Genome Research 12: 470–481.

23. Berman BP, Nibu Y, Pfeffer BD, Tomasz K, Cellulor SE, et al. (2002) Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc Natl Acad USA 99: 757–762.

24. Halton MS, Grad Y, Chuang GM, Michelon AM (2002) Computer-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model. Genome Research 12: 1019–1028.

25. Rhee HS, Pugh BF (2011) Comprehensive: Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution. Cell 147: 1408–1419.

26. Sohma MP, Piscosia L, Lavia P (1991) The housekeeping promoter from the mouse CpG island HTF9 contains multiple protein-binding elements that are functionally redundant. Nucleic Acids Research 19: 2017–2024.

27. Gilinger A, Praslowe M (1988) Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc Natl Acad USA 85: 382–386.

28. Lin YS, Carey M, Praslowe M, Green MR (1990) How different eukaryotic transcriptional activators can cooperate promiscuously. Nature 345: 539–541.

29. Anderson GM, Freytag SJ (1991) Synergistic activation of a human promoter in vivo by transcription factor Sp1. Molecular and Cellular Biology 11: 1993–1943.

30. Németh A, Aghert S, Tiwari VK, Ohlsön R, Langit G (2008) Epigenetic regulation of TFF-I-mediated promoter–terminator interactions of rRNA genes. The EMBO Journal 27: 1255–1265.

31. Denissen S, Lessard F, Mayer C, Stefanovsky V, van Driel M, et al. (2011) A model for the topological activity of rRNA genes. EMBO Reports 12: 351–357, doi:10.1002/embr.201038264.

32. Németh A, Langit G (2011) Genome organization in and around the nucleolus. Trends in Genetics 27: 149–156.

33. Gerber JK, Gisel E, Berger C, Wallich M, Müller F, et al. (1997) Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TFF-I. Cell 90: 559–567.

34. Zilliker K, Jerabek-Willemsen M, Dühr S, Braun D, Langit G, et al. (2012) Microscale thermophoresis as a sensitive method to quantify protein–nucleic acid interactions in solution. Methods Mol Biol 815: 241–252.

35. Coleman RA, Pugh BF (1995) Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA. J Biol Chem 270: 13050–13055.

36. Merialdi S, Joyce SR (2007) A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors. Science 315: 233–237.

37. Rhee HS, Pugh BF, Pugh BF (1995) Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA. J Biol Chem 270: 13050–13055.

38. Baake P, Wiesen C, Steinbeck C, Bertho F, Lin YC, et al. (2010) Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Molecular Cell 38: 576–589.