Ecomorphological comparison of *Alouatta*, *Callicebus*, and *Cebus* species inhabiting the Amazonian and Atlantic Forests

Comparação ecomorfológica das espécies de *Alouatta*, *Callicebus* e *Cebus* habitando as florestas Amazônica e Atlântica

Single Volume

SÃO PAULO
2022
A diversidade morfológica é resultado de um processo complexo que envolve interações filogenéticas e ecológicas, sendo a importância relativa de cada um desses fatores dinâmica e variável ao longo do processo evolutivo. Identificando padrões de diversificação morfológica e compreendendo suas causas e efeitos são passos fundamentais para estudos de especiação, evolução e macroecologia. Nesse cenário, utilizei três gêneros de primatas neotropicais pertencentes a três radiações evolutivas diferentes, *Alouatta* (Atelidae), *Cebus* (Cebidae) e *Callicebus* (Pitheciidae), como modelo para explorar a evolução morfológica desse grupo de mamíferos. O objetivo principal foi revelar os padrões da diversidade morfológica presente nesses gêneros de primatas amplamente distribuídos no continente americano, e relacioná-los através de uma abordagem integrada, com fatores ecológicos e filogenéticos. Para tanto, avaliei o material desses três gêneros mantido no Museu de Zoologia da Universidade de São Paulo, São Paulo, Brasil. No total, digitalizei 758 crânios de adultos de *Alouatta* (284), *Callicebus* (188) e *Cebus* (286) em vistas dorsal, frontal e lateral. Obtive as informações filogenéticas de bases de dados online e solicitando diretamente aos autores das revisões sistemáticas mais recentes. Eu extraí 19 variáveis bioclimáticas para cada localidade utilizando o pacote Raster no R. Gerei os dados morfogeométricos digitalizando pontos de referência cranianos em três vistas diferentes, dorsal (12), frontal (12) e lateral (17). Finalmente, para calcular a correlação entre variáveis climáticas e geográficas, realizei Análise de Mínimos Quadrados Parciais de Dois Blocos Separados (PLS) em tamanho e forma. Meus resultados principais em relação ao tamanho apontaram que: (1) as espécies amazônicas de *Alouatta* e *Cebus* são maiores que seus coespecíficos da Mata Atlântica, o contrário de *Callicebus*; (2) há um sinal filogenético significativo no tamanho craniano de *Callicebus*; (3) *Callicebus* é o gênero menos sexualmente dimórfico entre os três gêneros; (4) o efeito alométrico em *Callicebus*, porcentagem do tamanho explicando a forma, é insignificante; (5) diferentemente de *Alouatta* e *Cebus*, o PLS apresentou correlação significativa entre tamanho e clima e geografia apenas no caso de *Callicebus*. Em relação à forma, os resultados mais relevantes foram: (1) a alometria influenciou significativamente a forma em *Alouatta* e *Cebus*, não em *Callicebus*; (2) Embora o coeficiente RV tenha apresentado uma correlação total menor entre os blocos do PLS em *Callicebus* do que em
Alouatta e Cebus, sua correlação ainda é significativa. Diante desses resultados, posso assegurar que, embora sejam sintópicos na maioria de suas distribuições, o clima e a geografia influenciaram diretamente, mas de forma diferente, esses três gêneros. Na maioria dos casos, Alouatta e Cebus responderam de forma semelhante à influência de variáveis abióticas o que pode sugerir um processo semelhante de diversificação, levando adiante os processos de expansão e contração da Amazônia e da Mata Atlântica para colonizar novas ecorregiões, contrastando com Callicebus para qual uma série de eventos vicariantes têm sido propostos como principal caminho de diversificação.

Palavras-chave: “Callicebus”.”Amazônia”. “Cebus”.”Floresta Atlântica”.”Alouatta”.”Ecomorfologia”.]
ABSTRACT

Morphological diversity is the result of a complex process that involves phylogenetic and ecological interactions, being the relative importance of each one of these factors dynamic and variable throughout the evolutionary process. Identifying patterns of morphological diversification and understanding its causes and effects are fundamental steps for studies of speciation, evolution and macroecology. In this scenario, I used three neotropical primate genera belonging to different evolutive radiations, Alouatta (Atelidae), Cebus (Cebidae), and Callicebus (Pitheciidae), as a model to explore the morphological evolution of this group of mammals. The main objective of this work was to reveal the patterns of morphological diversification present in these genera of primates widely distributed in the American continent, and to relate them through an integrated approach, with ecological and phylogenetic factors. For this purpose, I evaluated the material of these three genera held at the Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil. In total, I digitized 758 adult skulls of Alouatta (284), Callicebus (188), and Cebus (286) in dorsal, frontal, and lateral views. I obtained the phylogenetic information from online databases and by requesting directly to the authors of the most recent systematic reviews. I extracted 19 bioclimatic variables for each locality using the Raster package in R. I generated the morpho-geometric data by digitizing cranial landmarks in three different views, dorsal (12), frontal (12), and lateral (17). Finally, to calculate the correlation among climatic and geographical variables I performed a Two Separate Blocks Partial Least Square (PLS) Analysis on size and shape. My main results regarding size pointed out that: (1) Amazonian species of Alouatta and Cebus are bigger than their conspecifics from the Atlantic Forest, the opposite case of Callicebus; (2) there is a significant phylogenetic signal on cranial size of Callicebus; (3) Callicebus is the least sexually dimorphic genus among the three genera; (4) the allometric effect in Callicebus, percentage of size explaining shape, is negligible; (5) differently from Alouatta and Cebus, the PLS showed a significant correlation between size and climatic and geographical only in the case of Callicebus. In regards of shape, the most relevant results were: (1) allometry influenced significantly shape in Alouatta and Cebus, not in Callicebus; (2) Although the RV coefficient showed a lower total correlation between blocks of the PLS in Callicebus than in Alouatta and Cebus, its correlation is still
significant. In view of these results, I can assure that, although being syntopic in most of their distributions, climatic and geographical have influenced directly but differently these three genera. In most cases, Alouatta and Cebus have responded similarly to the influence of abiotic variables what might suggest a similar process of diversification, taking advance of the processes of expansion and contraction of the Amazonia and the Atlantic Forest to colonize new ecoregions, contrastingly to Callicebus for which a series of vicariant events have been proposed as mainly path of diversification.

Keywords: "Callicebus"."Amazônica"."Cebus"."Floresta Atlântica"."Alouatta"."Ecomorfologia".
1. INTRODUCTION

Morphological diversity is the result of a complex process involving both phylogenetic and ecological interactions (Alberch, 1982; Thorpe, 1987; Schlichting and Smith, 2002). Ecological factors include abiotic, as climate, and biotic variables, such as diet. Phylogenetic determinants, on the other hand, are related to ancestry, that is, species that share the same common ancestor tend to be more similar when compared to distant lineages (Felsenstein, 1985). The relative importance of each of these factors in the final phenotypic expression is dynamic and variable throughout the evolutionary process (Mayr, 1956; Thorpe, 1987; Dunson and Travis, 1991; Benton, 2009).

Identifying patterns of morphological diversification and understanding causes and effects are fundamental steps for studies of speciation, evolution and macroecology (Mayr, 1956; Gould and Johnston, 1972; Gaston and Blackburn, 1996; Orme et al., 2006). The understanding of the ecological processes that shape the morphological variation is one of the growing aspects of evolutionary ecology, called ecomorphology (Bock, 1994). Ecological morphology or ecomorphology provides one method of investigating the relationship between the phenotype of an organism and its environment (Van der Klaauw, 1948). One important approach of the ecomorphology is to make ecological inferences about species from their phenotypes (often morphology) and use these in further studies related to guild structure (Lewis, 1997; Werdelin and Lewis, 2001; Van Valkenburgh, 1985, 1988).

Geometric morphometrics has emerged as an effective tool capable of exploring, analyzing, and testing differences in the shape of organisms in a taxonomic, evolutionary and ecomorphological approach (Adams et al., 2013; Lawing and Polly, 2009). The main advantage of this technique over traditional morphometry is that the size effect is dissociated from shape (Zelditch et al., 2012). Geometric morphometrics is particularly well suited for capturing subtle variations that might be missed using linear methods. Furthermore, isometric size difference, which is a confounding factor for ecomorphological studies (Klein et al., 2010), is removed in a geometric morphometric analysis.

In vertebrates, the skull and mandible are often used as models to represent the
morphological diversity of organisms (Figueirido et al., 2009; Mehta, 2009; Esteban-Trivigno, 2011; Bubadué et al., 2015). Both are considered morphologically complex structures, originated from different ontogenetic processes and responsible for harboring and participating in the main systems related to the perception of the environment, such as vision, smell, and hearing (Jiang et al. 2002; Schoch 2006), but also to feeding habits (Herrel et al., 2008; Vincent et al., 2009; Klaczko et al., 2016). Therefore, ecological factors are expected to exert a strong influence on the morphological diversification of the skull and mandible. In addition, through the shape of the teeth it is possible to abstract the diet of the animals, being of great applicability in paleoecology (Fiorillo et al., 2001; Larson and Currie, 2013).

Studies of morphological evolution among Neotropical primates exploring the environmental and phylogenetic effects are scarce. There are, nonetheless, some important contributions to the understanding of the evolutionary components that had molded the phenotypic variety of these primates. Marroig and Cheverud (2004, 2005, 2010) demonstrated that there was an important cranial allometric component, i.e., influence of size on shape, in the 16 genera and 110 species of Platyrrhini. Makedonska et al. (2012), using 3D morpho-geometrical data, investigated the skull shape modularity in *Cebus* and found a higher degree of modularity in *C. apella* than in the other studied capuchin species, *C. libidinosus*, *C. nigritus*, *C. olivaceus*, and *C. albifrons*. These results might be explained by the dietary habits of *C. apella* which is a hard-object feeder which would influence in the ecolomorphological variation of the skull of capuchin monkeys. More recently, Meloro et al. (2014a), Cáceres et al. (2014), and Meloro et al. (2014b) also investigated the ecogeographical variation of the genera *Cebus* and *Alouatta* from the Amazonian and Atlantic Forests. Analyzing the ventral view of the skull of both taxa, these authors found that there is a significant correlation of latitude, climate, and size influencing the skull shape.

Both *Alouatta* and *Cebus* have been matter of research in recent years mainly due to their wide distributions across America, which extends for almost all the ecoregions of this continent. However, there is another genus of Neotropical primate that present an extensive range of distribution as well, *Callicebus*. The distribution in space and time of these three genera, presenting in some cases isolated populations, make of them
interesting primate models for addressing questions regarding their biogeography, speciation, and morphological and molecular evolution, among others.

Species of the genus *Alouatta*, commonly known as howler monkeys in English, monos aulladores in Spanish, and bugios and guaribas in Portuguese are the most widely distributed across the Americas. They range from southern Mexico to northern Argentina (Fig. 3.1) and can be found in numerous forest types across the region (Neville et al. 1988; Glander and Pinto 2013). They are among the largest of the platyrrhines (Hill 1962; Peres 1994) along with the muriquis (*Brachyteles*), the spider monkeys (*Ateles*), and woolly monkeys (*Lagothrix*).

The distribution of howler monkeys extends from Southern Veracruz State in Mexico, through Central and South America to northern Argentina (Figure 1). *Alouatta* inhabits the widest range of environments of any Neotropical primate species (Crockett and Eisenberg, 1987), and can be found from sea level to 3200 m, although different species vary in habitat preferences (Crockett, 1998). For example, *Alouatta palliata* and *A. seniculus* occur in habitats ranging from closed-canopy wet evergreen forest to highly seasonal deciduous woodlands and riverine forests, whereas *A. belzebul* is basically a forest species (Crockett, 1998). Most of the species also occur in fragments of forest beside cattle ranches or in agricultural areas (see Crockett, 1998).
The taxonomy of *Alouatta* has been highly variable, mainly because of the scarcity of comprehensive taxonomic revisions of the genus. Most of the current knowledge regarding the diversity of *Alouatta* is based in some taxonomic reviews or accounts and only one taxonomic revision *sensu stricto*. In this context, the number of species has varied greatly from five species proposed by Cabrera (1958) to 12 (including three tentative species) listed by Cortés-Ortiz and Mittermeier (2015). Gregorin (2006), in the most comprehensive taxonomic revision of the Brazilian populations of *Alouatta*, recognized 11 monotypic species: *A. caraya*, *A. belzebul*, *A. discolor*, *A. ululata*, *A. fusca*, *A. clamitans*, *A. juara*, *A. macconnelli*, *A. nigerrima*, and *A. puruensis* (Figure 2). One of the most important points to be highlighted in Gregorin’s (2006) revision is the information regarding the phenotypical variation and the distribution of each species, aspects deficiently assessed before.
The number of *Alouatta* taxa at subspecific level is currently also a matter of discussion. In this case, the main shortcoming with the recognized subspecies relies in the lack of clear diagnoses and geographic boundaries between these taxa. For instance, the taxon *ululata* has been treated as a synonym of *A. belzebul* by some authors (Lönnberg, 1941; Groves, 2001), a subspecies of *Alouatta belzebul* (Cabrera, 1958; Hill, 1962; Rylands et al., 1995), or even as a full distinct species by others (Gregorin, 2006; Glander and Pinto, 2013; Cortés-Ortiz and Mittermeier, 2015). Viana et al. (2015) conducted a molecular analysis to elucidate the phylogenetic relationships among the taxa *belzebul* and *ululata*. These authors found no clear separation between these two taxa; nonetheless, and as pointed out by them, this result might be an artifact of the poor sampling of *ululata* (only one specimen). As a result, Viana et al. (2015) decline of taking any taxonomic decision regarding the validity of *belzebul* and *ululata*.

The phylogenetic relationships of *Alouatta* have been poorly investigated and Cortés-Ortiz et al. (2003) were the first to investigate the phylogenetic relationships of *Alouatta*, suggesting that the Central and South American howler monkey species were reciprocally monophyletic groups which diverged at 6.8 Ma. Cortés-Ortiz et al. (2003) found eight monophyletic mtDNA haplotypes congruent with six named South American
species (*A. seniculus*, *A. sara*, *A. macconnelli*, *A. caraya*, *A. belzebul*, and *A. guariba*) and two Mesoamerican (*A. pigra* and *A. palliata*). However, this study included few specimens coming from some scarce localities from Central and South America. In view of the current evidence, Cortés-Ortiz et al. (2015) stated that we are far from “resolve” the taxonomy of *Alouatta*, but what becomes urgent is an integrative taxonomic revision that generates a congruent well-supported hypothesis of the true diversity of howler monkeys. Doyle et al. (2021), based on fossil calibrations, estimated a divergence among Mesoamerican and South American howler monkeys of 13.2 MYA.

There are some controversies regarding the divergence time between the *Alouatta* species inhabiting the Amazon and the Atlantic Forest, as Cortes-Ortiz et al. (2003) estimated a divergence of 5.1 MYA, whereas Springer et al. (2012) a split around 3.2 MYA and, more recently, Doyle et al. (2021) stated that the split among howler monkeys from the Amazon and those from Atlantic Forest would happened much earlier, around 10.7 MYA. Regardless the *guariba*/clamitans taxonomic debate, the *Alouatta* populations from Southeastern Brazil seem to be more related with the Amazonian species rather than with those populations from the Cerrado either based on morphological (Gregorin, 2006), cytogenetics (Oliveira et al., 2012) or molecular evidence (Cortés-Ortiz et al., 2003; Villalobos et al., 2004; Doyle et al., 2021). Another interesting fact regarding *Alouatta’s* phylogenetic relationships is the position of *A. caraya* which, although inhabits biomes as Pantanal, parts of the Cerrado and Caatinga, it seems to be more closely related to Amazonian howler monkeys (see Cortés-Ortiz et al., 2003; Villalobos et al., 2004; Doyle et al., 2021). According to Cortés-Ortiz et al. (2003) and Perelman et al. (2011) the split between *A. caraya* and its Amazonian congeneric species occurred approximately at 4 Ma which would coincide with the split of *Alouatta seniculus* in the Amazon.

The capuchin monkeys (genus *Cebus*) are medium-sized monkeys (2–4 kg) with semi-prehensile tails (Freese & Oppenheimer, 1981). The genus was traditionally, and sometimes informally, classified in two groups: the untufted or gracile capuchin monkeys and the tufted or robust capuchin monkeys (Hershkovitz, 1949, Hill 1960). Untufted capuchins are found in lowland, premontane, and montane forests of Central and northern South America, from sea level to over 2000 m (Hershkovitz, 1949; Aquino &
Encarnación, 1994; Hernández-Camacho & Cooper, 1976; Boublí et al., 2012) (Figure 3a). Tufted species of capuchin monkeys, on the other hand, are restricted to South America, inhabiting the Amazon Basin, across Brazil, Paraguay, and northeastern Argentina (Silva-Júnior, 2001; Lynch Alfaro et al., 2012a; Rylands et al., 2013) (Figure 3b).

Figure 3. Distribution of capuchin monkeys (genus *Cebus*); a) Untufted and b) Tufted species (taken from Lynch Alfaro et al., 2013).

The capuchin monkeys have suffered various taxonomic changes in recent years both at the specific and generic level. Silva Jr. (2001) recognized two different groups within *Cebus*, proposing that such distinction could be formalized at the subgeneric level, *Cebus* and *Sapajus* (Figure 4). Later, Lynch-Alfaro et al. (2012b) proposed that the genus *Cebus* should be divided into genera *Sapajus* for robust capuchins and *Cebus* for the graceful forms, based on the divergence time between these two lineages. Ruiz-García et al. (2012, 2016b) based on molecular studies of COII indicated that, although the morphological differences between *Cebus* and *Sapajus* are notorious, the molecular and karyotypic differences are relatively small, recommending the use of the genus *Cebus* for all capuchin monkeys. Subsequently, Gutiérrez and Marinho-Filho (2017) proposed that *Sapajus* and *Cebus* should be treated as subgenera, arguing that the use of the generic level in this case would be unnecessary and impractical, generating confusion and a visible taxonomic inflation; besides that, both groups remain as a monophyletic group;
this is the arrangement that I am following at the present contribution.

![Figure 4. Male adult Cebus (Cebus) albifrons aequatorialis (left, taken from Hurtado et al. (2016)) and Cebus (Sapajus) apella macrocephalus (right, taken from John C. Mittermeier, available at https://www.flickr.com/photos/40167965@N05/3746966509/in/photolist-6H7bAR).](image)

Species of the genus *Callicebus*, commonly known as titi monkeys in English, monos tocones in Spanish, and zogue-zogues and sauás in Portuguese, are small to medium-sized primates. Species of the genus inhabit the tropical forests of the Amazon and Orinoco basins, the Brazilian Atlantic Forest, the Chaco, and the dry forests of Paraguay and Bolivia (Hershkovitz, 1988; Hershkovitz, 1990; van Roosmalen et al., 2002; Byrne et al., 2016; Byrne et al., 2018) (Figure 5).
The taxonomy of *Callicebus* has varied deeply in the last two decades, at both specific and generic levels. Over this time, the number of species has increased from 13 to up to 35 species (Hershkovitz, 1990; Byrne et al. 2016, 2021). Although this profound variation on the number of species is in part due the description of new taxa of genus *Callicebus* (van Roosmalen et al., 2002; Gualda-Barros et al., 2013; Dalponte et al., 2014; Boubli et al., 2019; Gusmão et al., 2019), the main cause for this disproportionate increase is the result of the abandonment of the subspecific level in the taxonomy of *Callicebus* by van Roosmalen et al. (2002). These authors claimed that the concept of subspecies would be of “minimal value” when describing the diversity of Neotropical primates, but did not provide any further conceptual discussion regarding this species/subspecies matter.

At the generic level, *Callicebus* has also suffered profound changes. Hershkovitz (1963, 1988, 1990) considered all the species of titi monkeys within the genus *Callicebus*, which was followed by posterior authors (Kobayashi, 1995; Kobayashi and Langguth, 1999;
Groves, 2001; van Roosmalen et al., 2002). Groves (2001) pointed out that the differences between the species of the torquatus group would deserve subgeneric recognition as proposed by Goodman et al. (1998). Groves (2005) formally proposed the subgenus Torquatus for the species of the torquatus group (as proposed by the aforementioned authors) and for the remaining species of titi monkeys to be allocated in the subgenus Callicebus. Finally, Byrne et al. (2016), in the first molecular appraisal of titi monkeys, proposed a new classification of these primates splitting Callicebus in three genera, Cheracebus, Plecturocebus, and Callicebus (Figure 6). Nonetheless, Byrne et al.’s (2016) proposal has been criticized because its taxonomic unpracticality besides of creating an unnecessary inflation at generic level and for not improving nothing that the subgeneric level would resolve (Marinho Filho & Gutierrez, 2017; Serrano-Villavicencio, 2017).

Figure 6. Individuals of Callicebus (Callicebus) personatus [left, photo by Leonardo Merçon]; Callicebus (Cheracebus) torquatus [middle, photo by Marc Faucher]; and Callicebus (Plecturocebus) caligatus dubius [right, photo by Fabio Schunck]).

All these advances in terms of biogeography and systematics have increased our understanding in Neotropical primates’ evolution and speciation. Nonetheless, there are several common shortcomings in all the above-mentioned contributions as the lack of
species in their analyses and, most importantly, the geographical coverage of the samples. This last shortcoming is understandable because the wide distribution of these genera but, unfortunately, some regions are extremely relevant in terms of biogeography as the Andes and the cloudy forests for instance, a poorly represented region in Neotropical primates’ phylogenetic studies [see Pacheco et al. (2020) for discussion regarding the taxonomy of *Callicebus oenanthe*]. Regardless these limitations, this new data have also provided new tools to link morphological aspects with phylogenetic and evolutionary information.

The contributions of Cáceres et al. (2014), and Meloro et al. (2014a, b) provided important insights regarding the morphological evolution, based on skull shape variation of *Alouatta* and *Cebus*, two genera of the closely related families Atelidae and Cebidae, respectively (Perelman et al. 2011). These authors found the same morphological response of *Alouatta* and *Cebus* to climatic variables. In this scenario, one question arises: Is this response a common pattern in other neotropical primates widely distributed on the continent? In this context *Callicebus* (Family Pitheciidae) stands apart as an interesting group due to its phylogenetic position, a sister clade of *Atelidae + Cebidae*, and because its distribution covers almost the same ecoregions as *Alouatta* and *Cebus*.

Considering all the above mentioned, the objectives of this work were: (1) to describe the morphological patterns involve in the diversification present in all the genera examined, and to relate them through an integrated approach, considering ecological and phylogenetic factors; (2) to analyze and describe the morphological variation of each taxon, at individual and geographical levels (3) to evaluate if the three genera have responded equally to non-biological factors and hypothesize about the morphological similarities and/or differences among these three groups.
5. CONCLUSIONS

- Regarding size, there is a strong influence of phylogenetic signal in *Callicebus* which is not the case of *Alouatta* and *Cebus*.

- *Callicebus*, the least dimorphic genera analyzed here, followed the Bergmann’s Rule presenting bigger species in the Atlantic Forest than in the Amazonia.

- *Alouatta* and *Cebus*, on the other hand, seems to follow the Rensch’s rule what explains their morphological differences among sexes.

- In terms of ecomorphology, and although the three genera occupy similar ecoregions in recent times, their evolutionary histories are different creating dissimilar responses to climatic and biogeographical factors.

- The results here obtained are a starting point to continue the study of morphological evolution in other Neotropical primates because we are in an era of constant development of new useful methodologies to elucidate questions related to the evolutionary history of this group of mammals.
6. REFERENCES

Adams, D.C.; Rohlf, J.F. & Slice, D.E. 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy, 24(1):7–14. doi: 10.4404/hystrix-24.1-6283.

Adams, D.C. & Otárola-Castillo, E. 2013. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4: 393-399. doi: 10.1111/2041-210X.12035.

Alberch, P. 1982. Developmental constraints in evolutionary processes. In: Bonner, J.T., ed. Evolution and Development. New York: Springer-Verla: 313-332.

Alvarado-Serrano, D. F.; Luna, L. & Knowles, L.L. 2013. Localized versus generalist phenotypes in a broadly distributed tropical mammal: how is intraspecific variation distributed across disparate environments? – BMC Evolutionary Biology, 13(1): 160. doi: 10.1186/1471-2148-13-160.

Aquino R. & Encarnación, F. 1994. Primates of Peru/ Los Primates del Perú. Primate Report, 40: 1-130.

Belk M.C. & Houston D. 2002. Bergmann’s Rule in Ectotherms: A Test Using Freshwater Fishes. The American Naturalist, 160(6).

Benton, J. M. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science, 323: 728–732. doi: 10.1126/Science.1157719.

Bergmann C. 1848. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttingen.

Bock, W. 1994. Concepts and methods in ecomorphology. Journal of Bioscience, 19(4): 403–413. doi: 10.1007/BF02703177.

Boubli, J.P.; Rylands, A.B.; Farias, I.P.; Alfaro, M.E. & Lynch Alfaro, J. 2012. Cebus
phylogenetic relationships: a preliminary reassessment of the diversity of the untufted capuchin monkeys. American Journal of Primatology, 74: 381–393. doi: 10.1002/ajp.21998.

Boubli, J. P.; Byrne, H.; da Silva, M.; Silva-Júnior, J.; Costa Araújo, R.; Bertuol, F.; Gonçalves, J.; deMelo, F. R.; Rylands, A.B.; Mittermeier, R.A., Silva, F.E., Nash, S.D.; Canale, G.; Alencar, R.M.; Rossi, R.V.; Carneiro, J.; Sampaio, I.; Farias, I. P.; Schneider, H. & Hrbek, T. 2019. On a new species of titi monkey (Primates: Plecturocebus Byrne et al. 2016), from Alta Floresta, southern Amazon, Brazil. Molecular Phylogenetics and Evolution, 132: 117–137. doi: 10.1016/j.ympev.2018.11.012.

Brandão, M.V.; Garbino, G.S.T.; Semedo, T.B.F; Feijó, A.; Nascimento, F.O.; Fernandes-Ferreira, H.; Vieira Rossi, R.V.; Dalponte, J. & Carmignotto, A.P. 2019. Mammals of Mato Grosso, Brazil: annotated species list and historical review. Mastozoologia Neotropical, 26(2): 1-44. doi: 10.31687/saremMN.19.26.2.0.03.

Brum, F.T.; Debastiani V.J.; Loyola, R. & Duarte, L.D.S. 2014. Clade-specific impacts of human land use on primates. Natureza & Conservação, 12(2): 144-149. doi: 10.1016/j.ncon.2014.09.009.

Bubadué, J. M.; Cáceres, N.; Carvalho, R. S. & Meloro, C. 2015. Ecogeographical variation in skull shape of South American canids: Abiotic and Biotic processes?. Evolutionary Biology, 43: 145-159. doi: 10.1007/s11692-015-9362-3.

Bubadué, J. M.; Polidoro, G.L.S.; Melo, G.L.; Sponchiado, J.; Serio, C.; Melchionna, M.; Mondanaro, A.; Castiglione, S.; Meloro, C.; Raia, P.; Cáceres, N. & Carotenudo, F. 2018. Rensch’s and Bergmann’s Rules in Cis-Andean South-American Howler Monkeys (Mammalia: Alouatta). Hystrix, the Italian Journal of Mammalogy, 29(1): 122-127. doi: 10.4404/hystrix-00052-2018.

Byrne, H.; Lynch Alfaro, J.W.; Sampaio, I.; Farias, I.; Schneider, H.; Hrbek, T. & Boubli, J.P. 2018. Titi monkey biogeography: Parallel Pleistocene spread by Plecturocebus and Cheracebus into a post-Pebas Western Amazon. Zoologica Scripta, 47(5): 499–517. doi: 10.1111/zsc.12300.
Byrne, H.; Rylands, A.B; Carneiro, J.C.; Lynch-Alfaro, J.W.; Bertuol, F.; Silva, M.N.F.; Messias, M.; Groves, C.P.; Mittermeier, R.A.; Farias, I.; Hrbek, T.; Schneider, H.; Sampaio, I. & Boubli, J.P. 2016. Phylogenetic relationships of the New World titi monkeys (Callicebus): first appraisal of taxonomy based on molecular evidence. Frontiers in Zoology, 13: 10. doi: 10.1186/s12983-016-0142-4.

Cabrera, A. 1958. Catálogo de los mamíferos de América del Sur. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, 4(1): 1–308.

Cáceres, N.; Meloro, C.; Carotenuto, F.; Passaro, F.; Sponchiado, J.; Melo, G.L. & Raia, P. 2014. Ecogeographical variation in skull shape of capuchin monkeys. Journal of Biogeography, 41(3): 501-512. doi: 10.1111/jbi.12203.

Cardini, A. & Elton, S. 2007. Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology, 126:121–134. doi: 10.1007/s00435-007-0036-2.

Cardini, A.; Jansson, A-U. & Elton, S. 2007. A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. Journal of Biogeography, 34: 1663-1678. doi: 10.1111/j.1365-2699.2007.01731.x.

Cortés-Ortiz, L.; Rylands, A.B.; Mittermeier, R.A. 2015. The taxonomy of howler monkeys: integrating old and new knowledge from morphological and genetic studies. In: Kowalewski, M.M.; Garber, P.A.; Cortés-Ortiz, L.; Urbani, B. & Youlatos, D. (eds). Howler monkeys: adaptive radiation, systematics, and morphology. Springer, New York: 55–84. doi: 10.1007/978-1-4939-1957-4_3.

Cortés-Ortiz, L.; Bermingham, E.; Rico, C.; Rodríguez-Luna, E.; Sampaio, I, & Ruiz-García, M. 2003. Molecular systematics and biogeography of the neotropical monkey genus, Alouatta. Molecular Phylogenetics and Evolution, 26: 64–81. doi: 10.1016/S1055-7903(02)00308-1.

Crockett, C.M. & Eisenberg, J.F. 1987. Howlers: variations in group size and demography. In: Smuts, B.B.; Cheney, D.L.; Seyfarth, R.M.; Wrangham, R.W. & Struhsaker, T.T. (Eds.),
Primate Societies. University of Chicago Press, Chicago: 54–68.

Crockett, C.M. 1998. Conservation biology of the genus Alouatta. International Journal of Primatology, 19(3): 549–578. doi: 10.1023/A:1020316607284.

Dalponte, J.C.; Silva, F.E. & Silva-Júnior, J.S. 2014. New species of titi monkey, genus Callicebus Thomas, 1903 (Primates, Pitheciidae), from Southern Amazonia, Brazil. Papeis Avulsos de Zoologia, 54(32): 457–72. doi: 10.1590/0031-1049.2014.54.32.

Damuth, J.D. 1992. Taxon-free characterization of animal communities. In: Behrensmeyer, A.K.; Damuth, J.D.; DiMichele, W.A.; Potts, R.; Suess, H.-D. & Wing, S.L. (Eds.) Terrestrial Ecosystems Through Time. University of Chicago Press, Chicago: 183–203.

Doyle, E.D.; Prates, I.; Sampaio, I.; Koiffann, C.; Silva Jr., W.A.; Carnaval, A.C. & H. E.E. 2021. Molecular phylogenetic inference of the howler monkey radiation (Primates: Alouatta). Primates 62, 177–188. doi: 10.1007/s10329-020-00854-x.

Dunson, W. & Travis, J. 1991. The role of abiotic factors in community organization. The American Naturalist, 138(5): 1067–1091. doi: 10.1086/285270.

Escoufier, Y. 1973. Le traitement des variables vectorielles. Biometrics, 29: 751–760.

Esteban-Trivigno, S. 2011. Ecomorfología de xenarthros extintos: análisis de la mandíbula com métodos de morfometria geométrica. Ameghiniana, 48(3): 381–398. doi: 10.5710/AMGH.v48i3(269)

Feijó, A. & Langguth, A. 2013. Mamíferos de médio e grande porte do Nordeste do Brasil: distribuição e taxonomia, com descrição de novas espécies. Revista Nordestina de Biologia, 22(1): 3-225.

Felsenstein J. 1985. Phylogenies and the comparative method. The American Naturalist 125(1): 1–15.

Figueirido, B.; Palmqvist, P.; & J.A. Pérez-Claros. 2009. Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: an approach based on geometric morphometrics. Journal of Zoology, 277: 70–80. doi:
Fiorillo, A.R. & Gangloff, R.A. 2001. Theropod teeth from the Prince Creek Formation (Cretaceous) of northern Alaska, with speculations on Artic Dinosaur paleoecology. Journal of Vertebrate Paleontology, 20(4): 675–682. doi: 10.1671/0272-4634(2000)020[0675:TTFTPC]2.0.CO;2

Freese, C.H. & Oppenheimer, J.R. 1981. The capuchin monkeys, genus Cebus. In Nolte, J. & Ducker, C. (eds), Ecology and Behaviour of Neotropical Primates, Academia Brasileira de Ciências, Rio de Janeiro: 331-390.

Garbino, G.S.T. & Aquino, C.C. 2018. Evolutionary significance of the entepicondylar foramen of the humerus in New World monkeys (Platyrrhini). Journal of Mammalian Evolution, 25(1): 141-151. doi: 10.1007/s10914-016.

Gaston, K.J. & Blackburn, T.M. 1996. Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. Journal of Animal Ecology 65: 701–714. doi: 10.2307/5669.

Glander, K.E. & Pinto, L.P. 2013. Subfamily Alouattinae, Alouatta Lacépède, 1799. In: Mittermeier RA, Rylands AB, Wilson DE (eds) Handbook of the mammals of the world. Primates, vol 3. Lynx Edicions, Barcelona.

Gohli J. & Voje K.L. 2016. An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC evolutionary biology 16(1): 222.

Goodman, M.; Porter, C.A.; Czelusniak, J.; Page, S.L.; Schneider, H. Shoshani, J.; Gunnell, G. & Groves, C.P. 1998. Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Molecular Phylogenetics Evolution, 9(3): 585–598. doi: 10.1006/mpev.1998.0495.

Gregorin, P. 2006. Taxonomia e variação geográfica das espécies do gênero Alouatta Lacépède (Primates, Atelidae) no Brasil. Revista Brasileira de Zoologia, 23: 64–144. doi: 10.1590/S0101-81752006000100005
Groves, C.P. 2001. Primate taxonomy. Smithsonian Institution Press, Washington, DC: 350pp.

Groves, C.P. 2005. Order Primates. In: Wilson, D.E.; Reeder, D.M. (Eds.). Mammal species of the world: a taxonomic and geographic reference. Baltimore, MD: Johns Hopkins University Press, 1: 111–84.

Gould, S.J. & Johnston, R. F. 1972. Geographic variation. Annual Review of Ecology and Systematics 3: 457–498. doi: 10.1146/annurev.es.03.110172.002325.

Gualda-Barros, J.; Nascimento, F.O. & Amaral, M.K. 2012. A new species of Callicebus Thomas, 1903 (Primates, Pitheciidae) from the states of Mato Grosso and Pará, Brazil. Papeis Avulsos de Zoologia, 52(23): 261–279. doi: 10.1590/S0031-10492012002300001.

Gutiérrez, E. E. & J. Marinho-Filho, 2017. The mammalian faunas endemic to the Cerrado and the Caatinga. ZooKeys, 644: 105-157. doi: 10.3897/zookeys.644.10827.

Gusmão, A. C.; Messias, M.R.; Carneiro, J.C.; Schneider, H.; de Alencar, T.B.; Calouro, A.M.; Dalponte, J.C.; Mattos, F.S.; Ferrari, S.; Buss, G.; Azevedo, R.B.; Marques, E.; Júnior, S.; Nash, S.; Rylands, A.B. & Barnett, A.A. 2019. A new species of titi monkey, Plecturocebus Byrne et al. 2016 (Primates, Pitheciidae), from southwestern Amazonia, Brazil. Primate Conservation, 33: 1–15.

Hernández-Camacho, J. & Cooper, R.W. 1976. The nonhuman primates of Colombia. In: Thorington Jr., R.W. & Heltne, P.G. (Eds.). Neotropical Primates: Field Studies and Conservation. National Academy of Sciences, 35-69.

Herrel, A.; Vincent, S.E.; Alfaro, M.E.; van Wassenbergh, S; Vanhooydonck, B. & Irschick, D.J. 2008. Morphological convergence as a consequence of extreme functional demands: examples from the feeding system of natricine snakes. Journal of Evolutionary Biology, 21: 1438–1448. doi: 10.1111/j.1420-9101.2008.01552.x

Hershkovitz, P. 1949. Mammals of northern Colombia. Preliminary report No. 4: Monkeys (Primates) with taxonomic revisions of some forms. Proceedings of the United States National Museum, 98, 323–427. doi: 10.5479/si.00963801.98-3232.323.
Hershkovitz, P. 1988. Origin, speciation, and distribution of South American titi monkeys, genus *Callicebus* (Family Cebidae, Platyrhini). Proceedings of the Academy of Natural Sciences of Philadelphia, 140(1): 240–272.

Hershkovitz, P. 1990. Titis, New World monkeys of the genus *Callicebus* (Cebidae, Platyrhini): A preliminary taxonomic review. Fieldiana, Zoology New Series, 55: 1–109. doi: 10.5962/bhl.title.2843.

Hertel, F. 1995. Ecomorphological indicators of feeding behavior in recent and fossil raptors. Auk, 112: 890–903. doi: 10.2307/4089021

Hijmans, R.J. (2015) Raster: Geographic Data Analysis and Modeling. R Package Version 2.4-15. http://CRAN.R-project.org/package=raster. Accessed Aug/20/2020

Hill, W.C.O. 1960. Primates: comparative anatomy and taxonomy. IV. Cebidae, Part A. Edinburgh University Press, Edinburgh, Scotland.

Hill, W.C.O. 1962. Primates. Comparative anatomy and taxonomy. IV. Cebidae. Part B. Edinburgh University Press, Edinburgh, Scotland.

IBGE, 1972. Carta do Brasil ao Milionésimo. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro: 46pp.

Jameson Kiesling, N.M.; Yi, S.V.; Xu, K.; Sperone, F.G. & Wildman, D. 2015. The tempo and mode of New World monkey evolution and biogeography in the context of phylogenomic analysis. Molecular Phylogenetics and Evolution, 82: 386–399. doi: 10.1016/j.ympev.2014.03.027

Jiang, X.; Iseki, S.; Maxson, R.E.; Sucov, H.M. & Morriss-Kay, G. 2002. Tissue origins and interactions in the mammalian skull vault. Developmental Biology, 241(1): 106–116. doi: 10.1006/dbio.2001.0487.

Klaczko, J.; Sherratt, E. & Setz, E.Z.F. 2016. Are Diet Preferences Associated to Skulls Shape Diversification in Xenodontine Snakes? PLoS ONE, 11(2): e0148375. doi:10.1371/journal.pone.0148375
Klein, R.G.; Franciscus, R.G. & Steele, T.E. 2010. Morphometric identification of bovid metapodials to genus and implications for taxon-free habitat reconstruction. Journal of Archaeological Science, 37: 389e401.

Klingenberg, C.P. 1996. Multivariate allometry. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, & D. E. Slice (Eds.), Advances in morphometrics. New York: Plenum Press, 23-49.

Klingenberg, C.P. 2009. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evolution and Development, 11: 405–421. doi: 10.1111/j.1525-142X.2009.00347.x

Klingenberg, C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353–357. doi: 10.1111/j.1755-0998.2010.02924.x.

Klingenberg, C.P.; Barluenga, M. & Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution, 56: 1909–1920. doi: 10.1111/j.0014-3820.2002.tb00117.x

Klingenberg, C.P.; Mebus, K. & Auffray, J-C. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evolution & Development, 5(5): 522–531. doi: 10.1046/j.1525-142X.2003.03057.x.

Kobayashi S. 1995. A phylogenetic study of titi monkeys, genus Callicebus, based on cranial measurements: I. Phyletic groups of Callicebus. Primates, 36(1): 101–20.

Kobayashi, S. & Langguth, A.L. 1999. A new species of titi monkey, Callicebus Thomas, from north-eastern Brazil (Primates, Cebidae). Revista Brasileira de Zoologia, 16(2): 531–51. doi: 10.1590/S0101-81751999000200018

Lachenbruch, P.A. 1967. An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. Biometrics, 23: 639–645.

Larson, D.W. & Currie, P.J. 2013. Multivariate Analyses of Small Theropod Dinosaur Teeth and Implications for Paleoecological Turnover through Time. PLoS ONE, 8(1): e54329.
doi:10.1371/journal.pone.0054329

Lawing, A.M.; Eronen, J.T.; Blois, J.L.; Graham, C.H. & Polly, D. 2016. Community functional trait composition at the continental scale: the effects of non-ecological processes. Ecography, 40: 651-663. doi: 10.1111/ecog.01986.

Lawing, A.M. & Polly, P.D. 2009. Geometric morphometrics: recent applications to the study of evolution and development. Journal of Zoology, 280(1): 1–7. doi: 10.1111/j.1469-7998.2009.00620.x

Lewis, M.E. 1997. Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. Journal of Human Evolution, 3: 257–288. doi: 10.1006/jhev.1996.0103.

Lima, M.G.M.; Buckner, J.C.; Silva-Júnior, J.S.; Aleixo, A.; Martins, A.B.; Boubli, J.P.; Link, A.; Farias, I.P.; da Silva, M.N.; Röhle, F.; Queiroz, H.; Chiou, K.L.; Di Fiore, A.; Alfaro, M.E. & Lynch Alfaro, J.W. 2017. Capuchin monkey biogeography: understanding Sapajus Pleistocene range expansion and the current sympatry between Cebus and Sapajus. Journal of Biogeography, 44: 810-820. doi: 10.1111/jbi.12945.

Lönnberg, E. 1941. Notes on members of the genera Alouatta and Aotus. Arkiv för Zoologi, 33(10): 1–44.

Lynch Alfaro, J.W.; Boubli, J.P.; Olson, L.E.; Di Fiore, A.; Wilson, B.; Gutierrez-Espeleta, G.A.; Chiou, K.L.; Schulte, M.; Neitzel, S.; Ross, V.; Schwochow, D.; Farias, I.; Janson, C. & Alfaro, M.E. 2012a. Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. Journal of Biogeography, 39: 272–288. doi: 10.1111/j.1365-2699.2011.02609.x.

Lynch Alfaro, J.W.; Cortés-Ortiz, L.; Di Fiore, A. & Boubli, J.P. 2015. Special issue: Comparative biogeography of Neotropical primates. Molecular Phylogenetics and Evolution, 82: 518–529. doi: 10.1016/j.ympev.2014.09.027.

Lynch Alfaro, J.W.; Silva-Junior, J.S. & Rylands, A.R. 2012b. How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. American
Journal of Primatology, 74: 273–286. doi: 10.1002/ajp.22007.

Maestri R., Luza A.L., de Barros L.D., Hartz S.M., Ferrari A., de Freitas T.R.O. & Duarte L.D.S. 2016. Geographical variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of communities. Journal of Biogeography, 43: 1192 1202.

Makedonska, J.; Wright, B.W. & Strait, D.S. 2012. The Effect of Dietary Adaption on Cranial Morphological Integration in Capuchins (Order Primates, Genus Cebus). PLoS ONE, 7(10): e40398. doi:10.1371/journal.pone.0040398

Marroig, G. & Cheverud, J. 2004. Did natural selection or genetic drift produce the cranial diversification of Neotropical monkeys? The American Naturalist, 163: 417–428. doi: 10.1086/381693.

Marroig, G. & Cheverud, J. 2005. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution, 59: 1128–1142. doi: 10.1554/04-333.

Marroig, G. & Cheverud, J. 2010. Size as a line of least evolutionary resistance II: Direct selection on size or correlated response due to constraints? Evolution, 64(5): 1470–1488. doi: 10.1111/j.1558-5646.2009.00920.x.

Martínez P.A., Marti D.A., Molina W.F., & Bidau C.J. 2013. Bergmann’s rule across the equator: A case study in Cercocyon thous (Canidae). Journal of Animal Ecology, 82: 997–1008.

Martínez, J.J. & Cola, V.D. 2011. Geographic distribution and phenetic skull variation in two close species of Graomys (Rodentia, Cricetidae, Sigmodontinae). Zoologischer Anzeiger, 250: 175-194. doi: 10.1016/j.jcz.2011.03.001.

Martínez, J.J.; Millien, V.; Simone, I. & Priotto, J.W. 2014. Ecological preference between generalist and specialist rodents: spatial and environmental correlates of phenotypic variation. Biological Journal Linnean Society, 112: 180-203. doi: 10.1111/bij.12268
Mayr, E. 1956. Geographical character gradients and climatic adaptation. Evolution 10(1): 105–108. doi: 10.1111/j.1558-5646.1956.tb02836.x.

Medina A.I., Martí D.A. & Bidau C.J. 2007. Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule. Journal of Biogeography 34: 1439–1454.

Mehta, R.S. 2009. Ecomorphology of the Moray bite: relationship between dietary extremes and morphological diversity?. Physiological and Biochemical Zoology, 82(1): 90–103. doi: 10.1086/594381.

Meiri S., 2011. Bergmann’s Rule—what’s in a name? Global Ecology and Biogeography 20(1): 203–207.

Meloro, C.; Cáceres, N.; Carotenuto, F.; Passaro, F.; Sponchiado, J.; Melo, G.L. & Raia, P. 2014a. Ecogeographical variation in skull morphometry of howler monkeys (Primates: Atelidae). Zoologischer Anzeiger – A Journal of Comparative Zoology, 253(4): 345–359. doi: 10.1016/j.jcz.2013.11.002.

Meloro, C.; Cáceres, N.; Carotenuto, F.; Sponchiado, J.; Melo, G.L.; Passaro, F. & Raia, P. 2014b. In and out the Amazonia: evolutionary ecomorphology in howler and capuchin monkeys. Evolutionary Biology, 41: 38–51. doi: 10.1007/s11692-013-9244-5.

Monteiro, L.R.; Duarte, L.C. & Reis, S.F. 2003. Environmental correlates of geographical variation in skull and mandible shape of the punaré rat Trichomys apereoides (Rodentia, Echimyidae). Journal of Zoology, 261(1): 47-57. doi: 10.1017/S0952836903003893.

Neville, M.K.; Glander, K.E; Braza, F. & Rylans, A.B. 1988. The Howling Monkeys, Genus Alouatta. In: Mittermeier, R.A.; Rylands, A.B.; Coimbra-Filho, A. & Fonseca, G.A.B. (Eds). Ecology and Behavior of Neotropical Primates. Washington, World Wildlife Fund, 2: 349-453.

Oliveira, E.H.C.; Neusser, M.; Figueiredo, W.B.; Nagamachi, C.; Pieczarka, J.C.; Sbalqueiro, I.J.; Wienberg, J. & Müller, S. 2002. The phylogeny of howler monkeys (Alouatta, Platyrhini): reconstruction by multi-color cross-species chromosome painting.
Chromosome Research, 10: 669–683. doi: 10.1023/a:1021520529952.

Orme, C.D.L.; Davies, R.G.; Olson, V.A.; Thomas, G.H.; Ding, T-S.; Rasmussen, P.C.; Ridgely, R.S.; Stattersfield, A.J.; Bennett, P.M.; Blackburn, T.M. & Gaston, K.J. 2006. Global Patterns of Geographic Range Size in Birds. PLoS Biol, 4(7): e208. doi: 10.1371/journal.pbio.0040208.

Pacheco, V.; Graham-Angeles, L.; Diaz, S.; Hurtado, C.M.; Ruelas, D.; Cervantes, K. & Serrano-Villavicencio, J. 2020. Diversidad y distribución de los mamíferos del Perú I: Didelphimorphia, Paucituberculata, Sirenia, Cingulata, Pilosa, Primates, Lagomorpha, Eulipotyphla, Carnivora, Perissodactylay Artiodactyla. Revista Peruana de Biología, 27(3): 289-328. doi: 10.15381/rpb.v27i3.18356.

Paynter, Jr. R. & Traylor Jr., M. 1991. Ornithological Gazetteer of Brazil. Cambridge, Museum of Comparative Zoology, Harvard University: 708p.

Perelman, P.; Johnson, W.E.; Roos, C.; Seuánez, H.N.; Horvath, J.E.; Moreira, M.A.; Kessing, B.; Pontius, J.; Roelke, M.; Rumpler, Y.; Schneider, M.P.C.; Silva, A.; O’Brien, S.J. & Pecon-Slattery, J. 2011. A molecular phylogeny of living primates. PLoS Genetics, 7: e1001342. doi: 10.1371/journal.pgen.1001342.

Peres, C.A. 1994. Which are the largest New World monkeys? Journal of Human Evolution, 26: 245–249.

Pillar, V.D. & Duarte, L.D.S. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters, 13: 587–596. doi: 10.1111/j.1461-0248.2010.01456.x.

Pinto, O.M.O. 1945. Cinquenta anos de investigação ornitológica. Arquivos de Zoologia, São Paulo, 4: 80p.

Ricklefs, R.E. & Miles, D.B. 1994. Ecological and evolutionary inferences from morphology: an ecological perspective. In: Wainwright, P.C., Reilly, S.M. (Eds.), Ecological Morphology. University of Chicago Press, Chicago: 13–41.
Rohlf, F.J. 2006. TpsDig, 2.0. Department of Ecology and Evolution, State Univ. of New York at Stony Brook, Stony Brook, NY.

Rohlf, F.J. 2013. TpsUtil. Department of Ecology and Evolution, State University of New York, Stony Brook, NY, USA. http://life.bio.sunysb.edu/morph/

Rohlf, F.J. & Bookstein, F.L. 2003. Computing the uniform component of shape variation. Systematic Biology, 52: 66–69. doi: 10.1080/10635150390132759

Rohlf, J. & Corti, M. 2000. The use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49: 740–753. doi: 10.1080/106351500750049806.

Rohlf, F.J. & Slice, D.E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39: 40–59. doi: 10.2307/2992207.

Rosenberger, A.L. 2020. New World Monkeys: The Evolutionary Odyssey. Princeton University Press, 368p.

Rosenberger, A.L. 1992. Evolution of feeding niches in New World monkeys. American Journal of Physical Anthropology, 88: 525–562. doi: 10.1002/ajpa.1330880408.

Rosenberger, A.L.; Halenar, L. & Cooke, S.B. 2011. The making of platyrrhine semifolivores: Models for the evolution of folivory in primates. Anatomical Records, 12: 2112–2130. doi: 10.1002/ar.21510

Ruiz-García, M.; Castillo, M.I.; Lichilin-Ortiz, N. & Pinedo-Castro, M. 2012. Molecular relationships and classification of several tufted capuchin lineages (Cebus apella, Cebus xanthosternos and Cebus nigrutis, Cebidae), by means of mitochondrial cytochrome oxidase II gene sequence. Folia Primatologica, 83: 100–125. doi: 10.1159/000342832.

Ruiz-García, M.; Castillo, M.I. & Luengas-Villamil, K. 2016. Is it misleading to use Sapajus (robust capuchins) as a genus? A review of the evolution of the capuchins and suggestions on their systematics. In: Ruiz-Garcia, M. & Shostell, J.M. Phylogeny, molecular population genetics, evolutionary biology and conservation of the Neotropical primates. Nova Science Publisher Inc., New York: 209–268.
Rylands, A.B.; Mittermeier, R.A. & Rodríguez-Luna, E. 1995. A species list for the New World primates (Platyrrhini): distribution by country, endemism, and conservation status according to the Mace-Lande system. Neotropical Primates 3: 113–160.

Rylands, A.B.; Mittermeier, R.A; Bezerra, B.M.; Paim, F.P. & Queiroz, H.L. 2013. Species accounts of Cebidae. In: Mittermeier, R.A.; Rylands, A.B. & Wilson, D.E. (Eds). Handbook of the mammals of the world, 3. Primates. Lynx Edicions, Barcelona: 390-413.

Schlichting, C. D. & Smith, H. 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16: 189–211. doi: 10.1371/journal.pone.0049963.

Schoch, R.R. 2006. Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades. Evolution & Development. 8(6):524–536. doi: 10.1111/j.1525-142X.2006.00125.x.

Seiffert, E.R.; Tejedor, M.F.; Fleagle, J.G.; Novo, N.M.; Cornejo, F.M.; Bond, M.; de Vries, D. & Campbell, K.E. 2020. A parapithecid stem anthropoid of African origin in the Paleogene of South America. Science, 368: 194-197. doi: 10.1126/science.aba1135

Serrano-Villavicencio, J.E.; Vendramel, R.L. & Garbino, G.S.T. 2017. Species, Subspecies, or Color Morphs? Reconsidering the Taxonomy of Callicebus Thomas, 1903 in the Purus-Madeira Interfluviu. Primates, 58(1): 159–167. doi: 10.1007/s10329-016-0555-x.

Silva-Júnior, J.S. 2001. Especiação nos macacos-prego e caiararas, gênero Cebus Erxleben, 1777 (Primates, Cebidae). PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil: 377p.

Springer, M.S.; Meredith, R.W.; Gatesy, J.; Emerling, C.A.; Park, J.; Rabosky, D.L.; Stadler, T.; Steiner, C.; Ryder, O.A.; Janecka, J.E.; Fisher, C.A. & Murphy, W.J. 2012. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS ONE, 7: e49521. doi: 10.1371/journal.pone.0049521.

Thorpe, R.S. 1987. Geographic variation: a synthesis of cause, data, pattern and
congruence in relation to subspecies, multivariate analysis and phylogensis. Bolletino di Zoologia, 54(1): 3–11. doi: 10.1080/11250008709355549.

Vanzolini, P.E. 1992. A Supplement to the Ornithological Gazetteer of Brazil of Brazil. São Paulo. Museu de Zoologia da Universidade de São Paulo: 252p.

Van der Klaauw, C.J. 1948. Ecological studies and reviews. IV. Ecological morphology. Bibliotheca Biotheoretica, 4: 27-111.

Van Roosmalen, M.G.M.; Van Roosmalen, T. & Mittermeier, R.A. 2002. A taxonomic review of the titi monkeys, genus Callicebus Thomas, 1903, with the description of two new species, Callicebus bernhardi and Callicebus stephennashi, from Brazilian Amazonia. Neotropical Primates, 10: 1–52.

Van Valkenburgh, B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11: 406–428. doi: 10.1017/S0094837300011702.

Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14, 155–173. doi: 10.1017/S0094837300011891.

Viana, M.C.; Bonvicino, C.R.; Ferreira, J.G.; Jerusalinsky, L.; Langguth, A. & Seuánez, H. 2015. Understanding the relationship between Alouatta ululata and Alouatta belzebul (Primates: Atelidae) based on cytogenetics and molecular phylogeny. Oecologia Australis, 19: 173–182. doi: 10.4257/oeco.2015.1901.11.

Vincent, S.E.; Brandley, M.C.; Herrel, A. & Alfaro, M.E. 2009. Convergence in trophic morphology and feeding performance among piscivorous natricine snakes. Journal of Evolutionary Biology, 22: 1203–1211. doi: 10.1111/j.1420-9101.2009.01739.x.

Villalobos, F.; Valerio, A.A. & Retana, A.P. 2004. A phylogeny of howler monkeys (Cebidae: Alouatta) based on mitochondrial, chromosomal and morphological data. Revista de Biologia Tropical, 52: 665–677. doi: 10.15517/rbt.v1i2.15354.

Wainwright, P.C. & Reilly, S.M. 1994. Introduction. In: Wainwright, P.C., Reilly, S.M. (Eds.) Ecologica Morphology. University of Chicago Press, Chicago: 1–9.
Werdelin, L. & Lewis, M.E. 2001. A revision of the genus *Dinofelis* (Mammalia, Felidae). Zoological Journal of the Linnean Society, 132: 147–258. doi: 10.1111/j.1096-3642.2001.tb02465.x.

Wright, B.W. 2005. Craniodental biomechanics and dietary toughness in the genus *Cebus*. Journal of Human Evolution, 48, 473–492. doi: 10.1016/j.jhevol.2005.01.006.

Wright, B.W.; Wright, K.A.; Chalk, J.; Verderane, M.P.; Fragaszy, D.; Visalberghi, E.; Izar, P.; Ottoni, E.B.; Constantino, P. & Vinyard, C. 2009. Fallback foraging as a way of life: Using dietary toughness to compare the fallback signal among capuchins and implications for interpreting morphological variation. American Journal of Physical Anthropology, 140: 687–699. doi: 10.1002/ajpa.21116.

Zelditch, M.L.; Swiderski, D.L & Sheets, H.D. 2012. Geometric morphometrics for biologists: A primer, 2nd ed. Academic Press. San Diego, California.

Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D. & Fink, W.L. 2004. Geometric Morphometrics for biologists: a primer. London: Elsevier Academic Press: 443p.