Prognostic factors in patients with HBV-related hepatocellular carcinoma following hepatic resection

Narongsak Rungsakulkij*, Wikran Suragul, Somkit Mingphruedhi, Pongsatorn Tantawee, Paramin Muangkaew and Suraida Aeesoa

Abstract
Background: To analyze prognostic factors following hepatic resection in patients with HBV-related hepatocellular carcinoma.

Methods: We retrospectively analyzed 217 patients with HBV-related hepatocellular carcinoma who underwent hepatic resection at our hospital between January 2006 and December 2015. Disease-free survival and overall survival rates were analyzed using the Kaplan–Meier method and the log-rank test. The association between recurrence and survival and various clinicopathological factors, including serum alpha-fetoprotein (AFP) level, platelet count, platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, antiplatelet therapy, antiviral therapy, hepatitis C virus infection, and tumor-related characteristics, were assessed using univariate and multivariate logistic regression analysis.

Results: The 1-, 3-, and 5-year overall survival rates were 91, 84, and 79%, respectively, and the recurrence-free survival rates were 72, 51, and 44%, respectively. High post-operative AFP level (hazard ratio [HR] 1.112, 95% confidence interval [CI]: 1.02–1.21, P = 0.007), multiple tumors (HR 1.991, 95% CI: 1.11–3.56, P = 0.021), and no antiviral treatment (HR 1.823, 95% CI: 1.07–3.09, P = 0.026) were independent risk factors for recurrence. High post-operative AFP level (HR 1.222, 95% CI: 1.09–1.36, P < 0.001), multiple tumors (HR 2.715, 95% CI: 1.05–7.02, P = 0.039), and recurrence (HR 12.824, 95% CI: 1.68–97.86, P = 0.014) were independent risk factors for mortality. No other factors analyzed were associated with outcomes in this patient cohort.

Conclusions: High post-operative serum alpha-fetoprotein level and multiple tumors, but not inflammatory factors, were risk factors for poor prognosis in HBV-related hepatocellular carcinoma patients after resection.

Keywords: Alpha-fetoprotein, Hepatitis B virus, Hepatocellular carcinoma, Risk factors, Survival rate

Background
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer worldwide [1]. The Eastern Asia and sub-Saharan Africa are the highest areas in hepatitis B virus (HBV) related HCC [2]. In Thailand, HCC is most frequently caused by chronic HBV infection [3, 4]. Surgical resection is potentially curative for early-stage disease if liver functional reserve is adequate [5], but its outcome in HBV-related HCC patients is generally poor [6]. Cirrhosis, chronic hepatitis [7, 8], and chronic HBV infection are considered to be poor prognostic factors following hepatic resection in HCC patients [9].

Inflammation is a key contributor to the pathogenesis of HCC in patients with chronic HBV infection [10–12]. Many studies have investigated the utility of inflammatory factors and indices as prognostic markers for HBV-related HCC patients following hepatic resection; however, the results are controversial [13–19]. Recent reports suggest that platelets play a major role in the pathogenesis of HCC in HBV-infected patients [20, 21]. Indeed, antiplatelet therapy reduces the incidence of HCC in an HBV-infected mouse model [22]. In addition, Lee et al. reported that HBV-related HCC patients

* Correspondence: narongsak.run@mahidol.ac.th
Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Praram VI Road, Ratchathewi, Bangkok 10400, Thailand

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
receiving antiplatelet therapy showed better recurrence-free and overall survival after liver resection than untreated patients [23]. Given these observations, we investigated the prognostic value of platelet counts, antiplatelet therapy, inflammatory indices, and various tumor-related characteristics in patients with HBV-related HCC following hepatic resection.

Methods
A total of 387 consecutive patients underwent liver resection and had pathologically proven HCC at the Department of Surgery, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand between January 2006 and December 2015. Of these, we retrospectively analyzed data from the 217 patients with HBV-related HCC. The patients who had HDV co-infection were excluded from the study. All patients underwent preoperative cross-sectional dynamic imaging using either triple-phase CT or magnetic resonance imaging (MRI). Routine blood examinations included complete blood count, coagulogram, liver and kidney function tests, and preoperative serum alpha-fetoprotein (AFP) level. The serum AFP level are measured by electrochemiluminescence immunoassay method, AFP ELISA reagent Roche Elecsys®, Roche Diagnostics USA, Indiana, United State. The neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio were calculated. The prognostic nutritional index was calculated as ([albumin [g/L] + 0.005] × [total lymphocyte count /[μL]]). A preoperative indocyanine green retention test at 15 min (ICG-R15) was performed. The Makuuchi criteria are used for patient selection for curative resection in our center [24]. The extent of liver resection was based on the patient's liver functional reserve as assessed mainly by the Makuuchi criteria, including preoperative ascites volume, Child–Pugh score, ICG-R15 value, and, occasionally, volumetric CT analysis. Liver cirrhosis was defined by the macro or micro nodular surface of the liver intraoperatively.

Pathological specimens were reviewed by a pathologist to confirm the diagnosis of HCC. Patients with combined cholangiocarcinoma and other malignancies were excluded from this study. Microvascular invasion was defined as the presence of tumor cells in the microvasculature. Clinical and pathologic staging was performed according to the American Joint Committee on Cancer staging manual 7th edition [25].

Patients were followed up in outpatient clinics every 3 or 4 months after surgery and routinely underwent imaging studies (ultrasonography, CT, MRI) and blood examinations. Post-operative serum AFP levels were measured within 90 days after hepatic resection. Recurrent disease was defined as the presence of new tumors found by imaging (CT or MRI) during the follow-up period.

Statistical analyses
Patient characteristics with continuous variables were compared by Student’s t-test, and categorical variables were compared with χ² or Fisher’s exact test. A P value of < 0.05 was considered statistically significant. The potential risk factors were analyzed by univariate and multivariate methods using a Cox regression model. Independent risk factors were expressed as hazard ratios (HR) with 95% confidence intervals (CI). Survival analysis was performed using the Kaplan–Meier method and evaluated by the log-rank test. The cut-off value for post-hepatectomy serum AFP level was determined by receiver operating characteristic (ROC) curve analysis with most significance in predicting tumor recurrence after hepatectomy.

Results
Patient characteristics and perioperative status
Of the 387 consecutive patients who underwent curative resection for HCC from January 2006 to December 2015, 217 (56.0%) had HBV-related HCC and were evaluated here. The clinicopathological characteristics of this cohort are summarized in Table 1.

Risk factors associated with disease recurrence
A comparison between patients with and without disease recurrence is shown in Table 2. The recurrence rate following resection was 47.9% (104/217). Compared with the non-recurrence group, the recurrence group had a higher post-operative AFP level (2.8 vs 3.8 ng/mL, \(P = 0.045 \)), was more likely to have multiple tumors (32 vs 16 patients, \(P = 0.004 \)), and was less likely to have received preoperative neoadjuvant treatment (48/92 vs 26/72 patients, \(P = 0.04 \)). Univariate analysis (Table 3) identified the following factors as significantly associated with disease recurrence: post-operative AFP level (HR 1.112, 95% CI: 1.02–2.28, \(P = 0.045 \)), multiple tumors (HR 1.881, 95% CI: 1.23–2.86, \(P = 0.003 \)), microvascular invasion (HR 1.645, 95% CI: 1.02–2.63, \(P = 0.037 \)), stage II or higher (HR 1.533, 95% CI: 1.04–2.31, \(P = 0.031 \)), and no antiviral treatment (HR 1.519, 95% CI: 1.01–2.28, \(P = 0.045 \)). In multivariate analysis (Table 3), post-operative AFP (HR 1.112, 95% CI: 1.02–2.12, \(P = 0.007 \)), multiple tumors (HR 1.991, 95% CI: 1.11–3.56, \(P = 0.021 \)), and no antiviral treatment (HR 1.823, 95% CI: 1.07–3.09, \(P = 0.026 \)) remained independent risk factors for recurrence.

Risk factors associated with mortality
Table 4 shows the comparison of survivors and non-survivors. The survival rate of HBV-related HCC
patients following hepatectomy was 82.5% (179/217). Compared with the survivor group, non-survivors had significantly higher pre- and post-operative AFP levels (115 vs 14.2 ng/mL, \(P = 0.018 \) and 13.11 vs 2.8 ng/mL, \(P < 0.001 \), respectively) and were more likely to have multiple tumors than a solitary tumor (14/48 vs 23/166 patients, \(P = 0.013 \)). Patients undergoing anatomical resection also had a higher mortality rate than those undergoing other operations (22/88 vs 16/129, \(P = 0.017 \)). As shown in Table 5, univariate analysis identified the following factors as significantly associated with survival: post-operative AFP level (HR 1.218, 95% CI: 1.10–1.35, \(P < 0.001 \)), tumor size \(\geq 5 \) cm (HR 1.679, 95% CI: 1.01–2.77, \(P = 0.044 \)), multiple tumors (HR 2.300 95% CI: 1.18–4.47, \(P = 0.014 \)), anatomical resection (HR 2.443, 95% CI: 1.28–4.65, \(P = 0.007 \)), no antiviral treatment (HR 0.482, 95% CI: 0.25–0.92, \(P = 0.027 \)), and recurrence (HR 2.940, 95% CI: 1.40–6.05, \(P = 0.003 \)). In multivariate analysis, post-operative AFP (HR 1.222, 95% CI: 1.09–1.36, \(P < 0.001 \)), multiple tumors (HR 2.715, 95% CI: 1.05–7.02, \(P = 0.039 \)), and recurrence (HR 12.824, 95% CI: 1.68–97.86, \(P = 0.014 \)) were independent risk factors for death (Table 5).

Overall survival and recurrence-free survival analysis

The Kaplan–Meier analysis curves for recurrence-free survival (RFS) and overall survival (OS) of all patients are shown in Fig. 1. The overall 1-, 3-, and 5-year overall survival rates were 91, 84, and 79%, respectively, and the RFS rates were 72, 51, and 44%, respectively. As
Characteristic	Non-Recurrence (n = 113)	Recurrence (n = 104)	P value
Gender, n (%) (total cohort n = 217)			
male	49 (43.36)	51 (49.04)	0.402
female	64 (56.64)	53 (50.96)	
Age (years), mean ± sd	56.46 (10.60)	55.76 (8.86)	0.604
HCV, n (%)			
no	111 (98.23)	99 (95.19)	0.264
yes	2 (1.77)	5 (4.81)	
Platelets × 10^3, median (range), n = 384	198.5 (57, 465)	179.5 (76, 568)	0.068
AFP-pre (ng/mL), median (range), n = 325	15.2 (0.89, 60,500)	17.03 (1.1, 82,392)	0.572
AFP-post (ng/mL), median (range), n = 226	2.8 (0.83, 5271)	3.8 (0.9, 19,629)	0.045
Tumor size (cm), median (range), n = 386			
< 5	63 (55.75)	57 (55.34)	0.951
≥ 5	50 (44.25)	46 (44.66)	
Number of tumors, n (%), n = 382			
solitary	94 (85.45)	72 (69.23)	0.004
multiple	16 (14.55)	32 (30.77)	
Microvascular invasion, n (%), n = 382			
no	89 (80.91)	81 (77.88)	0.584
yes	21 (19.09)	23 (22.12)	
Stage, n (%)			
I	77 (68.14)	61 (58.65)	0.147
II or higher	36 (31.86)	43 (41.35)	
Resection margin, n (%), n = 325			
free margin	89 (94.68)	87 (95.60)	0.999
positive margin	5 (5.32)	4 (4.40)	
Operation type, n (%)			
non-anatomical	69 (61.06)	60 (57.69)	0.614
anatomical	44 (38.94)	44 (42.31)	
Preoperative neoadjuvant, n (%), n = 289			
no	44 (48.89)	48 (64.86)	0.040
yes	46 (51.11)	26 (35.14)	
Platelet-to-lymphocyte ratio, median (range), n = 365	106.6 (46.3, 432.8)	91.2 (30.9, 290.7)	0.128
Prognostic nutritional index, median (range), n = 370	89.12 (0.34, 265.26)	91.9 (0.41, 245.02)	0.764
Neutrophil-to-lymphocyte ratio, median (range), n = 361	1.78 (0.67, 8.11)	1.76 (0.33, 10.62)	0.770
Antiviral treatment			
no	30 (26.55)	35 (33.65)	0.254
yes	83 (73.45)	69 (66.35)	
Antiviral drug			
Adefovir	4 (3.54)	3 (2.88)	0.999
Lamivudine	66 (58.41)	59 (56.73)	0.254
Tenofovir	28 (25.66)	15 (14.42)	0.021
Entecavir	10 (8.85)	10 (9.62)	0.846
expected, OS was significantly poorer for patients with recurrent compared with non-recurrent disease (Fig. 2). In addition, patients with multiple tumors had poorer OS and RFS than patients with solitary tumors (Fig. 3).

In addition, post-operative AFP was the risk factor of recurrence. Comparison of the patients between high and low post-operative AFP groups. As the first step, the cut-off value for post-AFP was determined by receiver operating characteristic (ROC) curve analysis as shown in Fig. 4. The area under ROC curve was 0.604. The post-operative AFP value 3.5 ng/mL was considered as the optimal cut-off value because of its highest index;

Table 2 Clinicopathological features of patients in the non-recurrence and recurrence groups (Continued)
Characteristic
Antiplatelet treatment (ASA + Clopidogrel)
no
yes

AFP alpha-fetoprotein, ASA aspirin, HCV hepatitis C virus, sd standard deviation
NOTE. Italic font indicates statistical significance

Table 3 Univariate and multivariate analysis of factors associated with recurrence
Univariate
Gender (male)
female
Age (years)
HCV (no)
yes
Platelets × 103 (mm3)
AFP-pre (ng/mL)
AFP-post (ng/mL)
Tumor size (< 5 cm)
≥ 5 cm
Number of tumors (solitary)
multiple
Microvascular invasion (no)
yes
Stage (I)
II or higher
Resection margin (free margin)
positive margin
Operation type (anatomical)
non-anatomical
Preoperative neoadjuvant (no)
yes
Platelet-to-lymphocyte ratio
Prognostic nutritional index
Neutrophil-to-lymphocyte ratio
Antiviral treatment
no
Antiplatelet treatment (ASA + Clopidogrel)
no

AFP alpha-fetoprotein, ASA aspirin, CI confidence interval, HR hazard ratio, HCV hepatitis C virus
NOTE. Italic font indicates statistical significance
Table 4 Comparison of clinicopathological features of survivors and non-survivors

Characteristic	Alive (n = 179)	Dead (n = 38)	P value
Gender, n (%)			
male	76 (42.46)	24 (63.16)	0.020
female	103 (57.54)	14 (36.84)	
Age (years), mean ± sd	56.03 (9.44)	56.60 (11.39)	0.742
HCV, n (%)			
no	172 (96.09)	38 (100)	0.609
yes	7 (3.91)	0	
Platelets ×103 (mm³), median (range)	192 (57, 568)	185 (91, 332)	0.485
AFP-pre (ng/mL), median (range), n = 185	14.2 (0.89, 82,392)	115 (1.85, 60,500)	0.018
AFP-post (ng/mL), median (range), n = 125	2.8 (0.83, 5271)	13.11 (1.19, 19,629)	0.003
Tumor size (cm), median (range), n = 216			
< 5	103 (57.54)	17 (45.95)	0.196
≥ 5	76 (42.46)	20 (54.05)	
Number of tumors, n (%)			
solitary	143 (80.79)	23 (62.16)	0.013
multiple	34 (19.21)	14 (37.84)	
Microvascular invasion, n (%)			
no	141 (79.66)	29 (78.38)	0.861
yes	36 (20.34)	8 (21.62)	
Stage, n (%)			
I	110 (61.45)	28 (73.68)	0.155
II or higher	69 (38.55)	10 (26.32)	
Resection margin, n (%), n = 185			
free margin	144 (96.00)	32 (91.43)	0.375
positive margin	6 (4.00)	3 (8.57)	
Operation type, n (%)			
non-anatomical	113 (63.13)	16 (42.11)	0.017
anatomical	66 (36.87)	22 (57.89)	
Preoperative neoadjuvant, n (%), n = 164			
no	71 (53.79)	21 (65.63)	0.226
yes	61 (46.21)	11 (34.38)	
Platelet-to-lymphocyte ratio, median (range)	101.6 (30.9, 432.8)	107.1 (51.0, 258.9)	0.339
Prognostic nutritional index, mean ± sd, n = 206	97.35 (41.10)	84.21 (33.78)	0.082
Neutrophil-to-lymphocyte ratio, median (range)	1.73 (0.33, 10.62)	2 (0.73, 4.41)	0.298
Antiviral treatment			
no	49 (27.37)	16 (42.11)	0.072
yes	130 (72.63)	22 (57.89)	
Antiplatelet treatment (ASA + Clopidogrel)			
no	163 (91.06)	36 (94.74)	0.746
yes	16 (8.94)	2 (5.26)	
Recurrence n (%)			
no	103 (57.54)	10 (26.32)	0.000
yes	76 (42.46)	28 (73.68)	

AFP alpha-fetoprotein, ASA aspirin, HCV hepatitis C virus, microvascular invasion, sd standard deviation
NOTE. Italic font indicates statistical significance
the sensitivity and specificity were 56.9 and 58.3%, respectively. The Kaplan-Meier analysis curves for RFS and OS of patients with post-operative AFP level > 3.5 ng/mL had poorer overall and recurrence free survival when compared with post-operative AFP level ≤ 3.5 ng/mL(Fig. 5).

Table 5 Univariate and multivariate analysis of factors associated with overall survival

	Univariate				Multivariate		
	HR (95% CI)	P value	HR (95% CI)	P value			
Gender (male)							
female	0.552 (0.28–1.07)	0.080					
Age (years)	1.002 (0.96–1.04)	0.890					
HCV (no)							
yes	–						
Platelets × 103 (mm³)	0.999 (0.99–1.01)	0.829					
AFP-pre (ng/mL)	1.011 (0.99–1.03)	0.300					
AFP-post (ng/mL)	1.218 (1.10–1.35)	0.000	1.206 (1.08–1.34)	0.000			
Tumor size (< 5 cm)	1.052 (0.99–1.12)	0.091					
≥ 5 cm.	1.679 (1.01–2.77)	0.044					
Number of tumors (solitary)							
multiple	2.300 (1.18–4.47)	0.014	2.715 (1.05–7.02)	0.039			
Microvascular invasion (no)							
yes	1.598 (0.72–3.54)	0.249					
Stage (I)							
II or higher	0.737 (0.35–1.53)	0.415					
Resection margin (free margin)							
positive margin	2.140 (0.65–7.05)	0.211					
Operation type (anatomical)							
non-anatomical	0.409 (0.21–0.78)	0.007					
Preoperative neoadjuvant (no)							
yes	0.958 (0.45–2.01)	0.910					
Platelet-to-lymphocyte ratio	1.003 (0.99–1.01)	0.195					
Prognostic nutritional index	0.991 (0.98–1.00)	0.065					
Neutrophil-to-lymphocyte ratio	1.070 (0.82–1.39)	0.621					
Antiviral treatment							
no	0.482 (0.25–0.92)	0.027					
Antiplatelet treatment (ASA + Clopidogrel)							
no	1.542 (0.37–6.41)	0.551					
Recurrence (no)							
yes	2.940 (1.42–6.05)	0.003	12.824 (1.68–97.86)	0.014			

Discussion

Chronic HBV infection is a major risk factor for the development of HCC, especially in Southeast Asia [26]. The pathogenesis of HBV-induced HCC is complex and involves both direct and indirect mechanisms. The immune response against HBV-infected hepatocytes triggers inflammation and leads to sustained necrosis [12]. Recent work has suggested a role for platelets in the outcomes correlation stratified by antiviral treatment in solitary and multiple tumor

The Kaplan-Meier analysis curves for RFS of patients who had solitary and multiple tumor with or without antiviral treatment (Fig. 6). The RFS in the solitary and multiple tumor groups were not significantly difference with antiviral compared with non-antiviral treatment.
promoting liver infiltration of cytotoxic T lymphocytes and non-virus-specific inflammatory cells in the pathogenesis of HCC in a HBV transgenic mouse model [20, 27]. In addition, biomarkers such as AFP and inflammatory mediators have been reported to affect the prognosis of HBV-related HCC patients [15, 18, 19, 28–32], although the results are controversial.

In our study, we found that post-operative serum AFP levels and the presence of multiple tumors are predictors of poor prognosis for HBV-related HCC following hepatic resection. AFP is a large glycoprotein produced by the yolk sac and fetal liver. AFP is present in large quantities during gestation and is generally repressed in healthy adults; however, it is re-expressed in a variety of tumors [33, 34]. Several studies have reported correlations between AFP levels and the prognosis of HBV-related HCC patients after curative resection, but most of them measured only preoperative AFP levels and the prognostic impact of AFP levels following hepatic resection was unclear [15, 35–40]. In other studies, post-operative AFP levels were shown to correlate with the prognosis of HCC patients, but the populations in those studies were heterogenous and included both HBV-positive and -negative patients [41–47]. Here, we show for the first time that the post-operative serum AFP level is an independent prognostic factor for survival in HBV-related HCC patients following curative resection. Our results are consistent with a study by Shen et al., who reported that \(a \leq 50\% \)
difference between pre- and post-operative serum AFP was predictive of poor disease-free and overall survival after hepatectomy in HCC patients, 89.3% of whom had HBV-related HCC [41]. Allard et al. reported that a post-resection AFP level of > 15 ng/mL was a poor predictor of outcome for cirrhotic HCC patients with preoperative AFP levels of > 15 ng/ml [43]. Similarly, Zhang et al. reported that high serum AFP and alpha-fetoprotein-L3 (AFP-L3) levels before and after hepatectomy predicted poor survival [46].

Several potential mechanisms could account for the association between high post-operative serum AFP levels and survival outcome in HBV-related HCC patients. First, although AFP is not present at elevated levels in early-stage HCC and is thus a poor diagnostic biomarker [29, 48, 49], high serum AFP levels may reflect an increasing disease burden due to extrahepatic metastasis, advanced stage, large tumor size, and/or portal vein thrombosis [50]. Ogden et al. and Sung et al. reported that the HBV viral protein HBx dysregulates p53-mediated AFP expression through direct binding to p53, and high HBV integration into the host genome correlated with high serum AFP levels [51, 52]. Moreover, Silva et al. reported that baseline serum AFP levels were higher in HCC patients with more advanced disease and could predict their overall survival, regardless of treatment. Therefore, the patients with high post-operative serum AFP levels in our study may have
had occult intra- or extrahepatic metastasis [48]. In addition, high serum AFP may be a marker of liver inflammation in patients with chronic liver disorders [10, 12, 50]. Sitia et al. reported that inflammation was a key event in HCC carcinogenesis in HBV transgenic mice and was promoted by lymphocyte infiltration and platelet aggregation [21]. Therefore, ongoing inflammation in patients with high serum AFP could facilitate hepatic carcinogenesis.

In this study, we also found that the presence of multiple HCC tumors is a predictor of recurrence after initial hepatic resection. This is consistent with previous studies showing that multiple tumors is one of the most significant risk factors of early tumor recurrence and poor outcome in HBV-related HCC patients [53–55]. Intrahepatic recurrence is also associated with survival of HCC patients [56]. In agreement with these observations, our multivariate analysis identified tumor recurrence as an independent predictor of poorer overall survival. Park et al. reported that multiple tumors resulting from intrahepatic metastasis was a strong predictor of early multinodular intrahepatic recurrence in HCC patients following hepatic resection [54]. Hao et al. reported that the presence of multiple tumors was significantly associated with intrahepatic metastasis recurrence in HBV-related HCC patients, whereas liver cirrhosis and hepatic inflammation activity were associated with multi-centric recurrence [57]. These authors concluded that intrahepatic and multi-centric metastasis recurrence were mainly caused by tumor-related factors and patient-related factors, respectively [57]. Our results showing that patients with solitary and multiple tumors...
had significantly different recurrence-free and overall survival rates are consistent with this study. We hypothesize that our patients with multiple tumors may have had intrahepatic metastasis and multi-focal occult tumors.

We examined a number of inflammatory markers, including neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and prognostic nutritional index, in our patient cohort and found that none of them predicted survival. Antiplatelet therapy also was not a prognostic indicator, although 16 of the 18 patients who received this therapy survived. The small sample population may explain why this finding was not statistically significant. The benefit of antiplatelet therapy in HBV-related HCC patients has been investigated in two large retrospective studies [23, 58]. In a study of Taiwanese patients, Lee et al. found that antiplatelet therapy, including aspirin or clopidogrel, was associated with better recurrence-free survival and overall survival following hepatic resection. However, antiplatelet use significantly increased the risk of upper gastrointestinal bleeding in that study. Lee et al. found that antiplatelet therapy reduced the risk of HCC in South Korean patients whose chronic HBV infection had been effectively suppressed. However, clopidogrel alone with aspirin was found to increase the risk of bleeding [58]. Large-scale prospective studies are clearly needed to unequivocally establish the benefits and risk of complications from antiplatelet therapy.

This study has several limitations. First, it was retrospective in nature. Second, AFP levels in patients with HBV infection could be affected by non-malignancy-related factors such as liver cirrhosis, acute hepatitis, and chronic liver disease [50]. In this study, we included HBV-infected patients with and without cirrhosis and there are seven patients enrolled in the study who were co-infected with HBV and HCV. The etiology of HCC among those patients may not due to the chronic HBV infection. Third, there are a number of studies indicating that biomarkers such as protein induced by vitamin K absence-II [32], des-gamma carboxy prothrombin [39], and AFP-L3 [59] may be more accurate prognostic biomarkers than AFP level. However, these tumor markers are not currently measured at our hospital. Fourth, some patients especially in the early period of the study were not treated with anti-viral drugs. Fifth, the patients who neoadjuvant therapy were performed, the AFP level and inflammatory marker levels could be affected. Sixth, the number of death population could be slightly lower than actual due to there are some patients who had recurrence disease have loss to follow-up. Seventh, lamivudine is an anti-HBV drug of modest antiviral effect with low barrier of drug resistance and is no longer suggested by American Association for the Study of Liver Diseases and European Association of the Study of the Liver as a first-line antiviral option [60, 61]. The proportion of patients with lamivudine treatment in this study was relatively high, which may lead to underestimation of the protective effect of antiviral treatment on HBV related HCC recurrence.

Conclusions
Post-operative serum alpha-fetoprotein level and multiple tumors, but not inflammatory indices, platelet counts, or antiplatelet therapy, were found to be risk factors of poor prognosis for HBV-related HCC patients following hepatectomy. Prospective studies will be required to clarify the role of platelets in the disease and the benefits of antiplatelet therapy in this patient group. Our results indicate that patients with multiple tumors and high post-operative serum alpha-fetoprotein level should be monitored carefully following hepatic resection.

Abbreviations
AFP: Alpha-fetoprotein; AFP-L3: Alpha-fetoprotein L3; CI: Confidence intervals; CT: Computed tomography; HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; HR: Hazard ratio; ICG-R15: Indocyanine green retention at 15 min; MRI: Magnetic resonance imaging

Acknowledgements
We thank Mr. Napaphat Poprom for reviewing the biostatistical analysis. We thank Edanz Group (https://www.edanzediting.com/ac) for editing a draft of this manuscript.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
RN designed the study, collected and interpreted the data, and wrote the paper; SW collected and analyzed the data; TP collected and analyzed the data; MP collected the data; and AS analyzed the data. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The study was reviewed and approved by the Ramathibodi Hospital Institutional Review Board Committee on Human Rights Related to Research Involving Human Subjects (protocol number ID 01–61-65).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 April 2018 Accepted: 31 May 2018 Published online: 08 June 2018

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
2. Petruzziello A. Epidemiology of hepatitis B virus (HBV) and hepatitis C virus (HCV) related hepatocellular carcinoma. Open Virol J. 2018;12:26–32.
3. Chitapanarux T, Phomphuktul K. Risk factors for the development of hepatocellular carcinoma in Thailand. J Clin Transl Hepatol. 2015;3(3):182–8.
4. Rungsakulkij N, Keeratibharat N, Suragul W, Tangtavee P, Muangkaew P, Mingphruedhi S, Aeesoa S. Early recurrence risk factors for hepatocellular
25. Compton CC, Byrd DR, Garcia-Aguilar J, Kurtzman SH, Olawaiye A, Liver carcinoma after hepatic resection: experience at a Thai tertiary care center. J Med Assoc Thail. 2018;101(1):63–9.

24. Miyagawa S, Makuuchi M, Kawasaki S, Kakazu T. Criteria for safe hepatic resection in Asia: a systematic review and meta-analysis. J Gastrointest Surg. 2015;19(7):1271–80.

23. Lee PC, Yeh CM, Hu YW, Chen CC, Liu CJ, Su CW, Huo TI, Huang YH, Chao WMK. AJCC Cancer staging atlas: a companion to the seventh editions of the AJCC Cancer staging manual. New York: Springer; 2006.

22. Stanaway JD, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, Abu-Raddad LJ, Atsidi R, Bhaih N, Cowie B, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the global burden of disease study 2013. Lancet. 2016;388(10049):1081–8.

21. Sitga G, Iannacone M, Guidotti LG. Anti-platelet therapy in the prevention of hepatitis B virus-associated hepatocellular carcinoma. J Hepatol. 2013;59(5):1135–8.

20. Pang Q, Zhou L, Qu K, Cui RX, Jin H, Liu HC. Validation of inflammation-based prognostic models in patients with hepatitis B-associated hepatocellular carcinoma: a retrospective observational study. Eur J Gastroenterol Hepatol. 2018;30(s1):96–70.

19. You DD, Kim DG, Seo CH, Choi HY, Yoo YK, Park YG. Prognostic factors for curative resection hepatocellular carcinoma and the surgeon’s role. Ann Surg Treat Res. 2017;93(5):252–9.

18. Zuo Q, Yuan B, Qiao GL, Yan JJ, Li Y, Duan R, Yan YQ. Prognostic factors for survival after hepatic resection of early hepatocellular carcinoma in HBV-related cirrhotic patients. Clin Res Hepatol Gastroenterol. 2016;40(4):418–27.

17. Ghannini E, Marenco S, Borgonovo G, Savarino V, Farinisi F, Del Poggio P, Rapaccioli GL, Anna Di Nocco M, Benvegnu L, Zoli M, et al. Alpha-fetoprotein has no prognostic role in small hepatocellular carcinoma identified during surveillance in compensated cirrhosis. Hepatology. 2012;56(4):1371–9.

16. Wang Q, Blank S, Fiel MI, Kadri H, Luan W, Warren L, Zhu A, Deelder PA, Ruggeri ZM, Chisari FV, Iannacone M, et al. Antiplatelet therapy prevents lymphocyte-induced liver damage. Nat Med. 2005;11(11):1167–73.

15. Kim JM, Kwon CH, Joh JW, Park JB, Lee JH, Kim SJ, Paik SW, Park CK, Yoo BC. Differences between hepatocellular carcinoma and hepatitis B virus infection in patients with and without cirrhosis. Ann Surg Oncol. 2014;21(2):458–65.

14. Yang SL, Liu LP, Yen YF, Yang XR, Fan JN, Chen GG, Lai PB. Distinguished prognosis after hepatectomy of HBV-related hepatocellular carcinoma with or without cirrhosis: a long-term follow-up analysis. J Gastroenterol. 2016;51(7):722–32.

13. Wu SJ, Lin YX, Ye H, Li FY, Xiong XZ, Cheng NS. Lymphocyte to monocyte ratio and prognostic nutritional index predict survival outcomes of hepatocellular carcinoma after curative resection. Eur J Gastroenterol Hepatol. 2012;24(7):849–56.

12. Gillespie JR, Uversky VN. Structure and function of alpha-fetoprotein: a biophysical overview. Biochim Biophys Acta. 2000;1480(1–2):41–56.

11. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Wayeood). 2001;226(6):537–48.

10. Kim JM, Kwon CH, Joh JW, Park JB, Lee JH, Kim SJ, Paik SW, Park CK, Yoo BC. Differences between hepatocellular carcinoma and hepatitis B virus infection in patients with and without cirrhosis. Ann Surg Oncol. 2014;21(2):458–65.

9. Kang SH, Kim DY, Jeon SM, Ahn SH, Park JY, Kim SJ, Kim JK, Lee KS, Chon CY, Han KH. Clinical characteristics and prognosis of hepatocellular carcinoma with different sets of serum AFP and PIM2A II levels. Eur J Gastroenterol Hepatol. 2012;24(7):849–56.

8. Choi WM, Lee JH, Ahn H, Cho K, Cho YY, Lee M, Yoo JJ, Cho Y, Lee DH, Lee YB, et al. Forns index predicts recurrence and death in patients with hepatitis B-related hepatocellular carcinoma after curative resection. Liver Int. 2015;35(8):1992–2000.

7. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

6. Liu W, Zhou JG, Sun Y, Zhang L, Xing BC. Hepatic resection improved the long-term survival of patients with BCLC stage B hepatocellular carcinoma in Asia: a systematic review and meta-analysis. J Gastrointest Surg. 2015;19(7):1271–80.

5. Brok J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology. 2016;150(4):835–53.

4. Liu W, Zhou JG, Sun Y, Zhang L, Ying BC. Hepatic resection improved the long-term survival of patients with BCLC stage B hepatocellular carcinoma in Asia: a systematic review and meta-analysis. J Gastrointest Surg. 2015;19(7):1271–80.

3. Sitga G, Iannacone M, Guidotti LG. Anti-platelet therapy in the prevention of hepatitis B virus-associated hepatocellular carcinoma. J Hepatol. 2013;59(5):1135–8.

2. Pang Q, Zhou L, Qu K, Cui RX, Jin H, Liu HC. Validation of inflammation-based prognostic models in patients with hepatitis B-associated hepatocellular carcinoma: a retrospective observational study. Eur J Gastroenterol Hepatol. 2018;30(s1):96–70.

1. You DD, Kim DG, Seo CH, Choi HY, Yoo YK, Park YG. Prognostic factors for curative resection hepatocellular carcinoma and the surgeon’s role. Ann Surg Treat Res. 2017;93(5):252–9.
45. Nobuoka D, Kato Y, Gotohda N, Takahashi S, Nakagohri T, Konishi M, Kinoshita T, Nakatsura T. Postoperative serum alpha-fetoprotein level is a useful predictor of recurrence after hepatectomy for hepatocellular carcinoma. Oncol Rep. 2010;24(2):521–8.
46. Zhang XF, Yin ZF, Wang K, Zhang ZQ, Qian HH, Shi LH. Changes of serum alpha-fetoprotein and alpha-fetoprotein-L3 after hepatectomy for hepatocellular carcinoma: prognostic significance. Hepatobiliary Pancreat Dis Int. 2012;11(6):618–23.
47. Cai ZQ, Si SB, Chen C, Zhao Y, Ma YY, Wang L, Geng ZM. Analysis of prognostic factors for survival after hepatectomy for hepatocellular carcinoma based on a bayesian network. PLoS One. 2015;10(3):e0120805.
48. Silva JP, Gorman RA, Berger NG, Tsai S, Christians KK, Clarke CN, Mogal H, Gamblin TC. The prognostic utility of baseline alpha-fetoprotein for hepatocellular carcinoma patients. J Surg Oncol. 2017;116(7):831–40.
49. Farinati F, Marino D, De Giorgio M, Baldan A, Cantarini M, Cursaro C, Rapaccini G, Del Poggio P, Di Nolfo MA, Benvengiu L, et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: both or neither? Am J Gastroenterol. 2006;101(3):524–32.
50. Wong RJ, Ahmed A, Gish RG. Elevated alpha-fetoprotein: differential diagnosis - hepatocellular carcinoma and other disorders. Clin Liver Dis. 2015;19(2):309–23.
51. Ogden SK, Lee KC, Barton MC. Hepatitis B viral transactivator HBx alleviates p53-mediated repression of alpha-fetoprotein gene expression. J Biol Chem. 2000;275(36):27806–14.
52. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, Lee NP, Lee WH, Aiyaratne PN, Tennakoon C, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44(7):765–9.
53. Huang G, Lau WY, Zhou WP, Shen F, Pan ZY, Yuan SX, Wu MC. Prediction of hepatocellular carcinoma recurrence in patients with low hepatitis B virus DNA levels and high preoperative hepatitis B surface antigen levels. JAMA Surg. 2014;149(6):519–27.
54. Park JH, Koh KC, Choi MS, Lee JH, Yoo BC, Paik SW, Rhee JC, Joh JW. Analysis of risk factors associated with early multinodular recurrences after hepatic resection for hepatocellular carcinoma. Am J Surg. 2006;192(1):29–33.
55. Zhu WJ, Huang CY, Li C, Peng W, Wen TF, Yan LN, Li B, Wang WT, Xu MQ, Yang JY, et al. Risk factors for early recurrence of HBV-related hepatocellular carcinoma meeting Milan criteria after curative resection. Asian Pac J Cancer Prev. 2013;14(12):7101–6.
56. Hirokawa F, Hayashi M, Miyamoto Y, Asakuma M, Shimizu T, Komeda K, Inoue Y, Uchiyama K. Predictors of poor prognosis by recurrence patterns after curative hepatectomy for hepatocellular carcinoma in child-pugh classification a. Hepato-Gastroenterology. 2015;62(137):164–8.
57. Hao S, Fan P, Chen S, Tu C, Wan C. Distinct recurrence risk factors for intrahepatic metastasis and multcenter occurrence after surgery in patients with hepatocellular carcinoma. J Gastrointest Surg. 2017;21(2):312–20.
58. Lee M, Chung GE, Lee JH, Oh S, Nam JY, Chang Y, Cho H, Ahn H, Cho YY, Yoo JJ, et al. Antiplaque therapy and the risk of hepatocellular carcinoma in chronic hepatitis B patients on antiviral treatment. Hepatology. 2017;65(3):1556–69.
59. Zhang XF, Lai EC, Yang XY, Qian HH, Zhou YM, Shi LH, Shen F, Yang YF, Zhang Y, Lau WY, et al. Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein as a marker of prognosis and a monitor of recurrence of hepatocellular carcinoma after curative liver resection. Ann Surg Oncol. 2011;18(8):2218–23.
60. Terrault NA, Lok ASF, McMahon BJ, Chang KM, Hwang JP, Jonas MM, Brown RS Jr, Bzowej NH, Wong JB. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018;67(4):1560–99.
61. EASL. 2017 clinical practice guidelines on the management of hepatitis B virus infection. J Hepatol. 2017;67(2):370–98.