GLOBAL VISCOSITY SOLUTIONS OF GENERALIZED KÄHLER-RICCI FLOW

JEFFREY STREETS

Abstract. We apply ideas from viscosity theory to establish the existence of a unique global weak solution to the generalized Kähler-Ricci flow in the setting of commuting complex structures. Our results are restricted to the case of a smooth manifold with smooth background data. We discuss the possibility of extending these results to more singular settings, pointing out a key error in the existing literature on viscosity solutions to complex Monge-Ampere equations/Kähler-Ricci flow.

1. Introduction

Generalized Kähler geometry and generalized Calabi-Yau structures arose from research on supersymmetric sigma models [17]. They were rediscovered by Hitchin [19], growing out of investigations into natural volume functionals on differential forms. These points of view were connected in the thesis of Gualtieri [18]. These structures have recently attracted enormous interest in both the physics and mathematical communities as natural generalizations of Kähler Calabi-Yau structures, inheriting a rich physical and geometric theory. The author and Tian [24] developed a natural notion of Ricci flow in generalized Kähler geometry, and we will call this flow generalized Kähler-Ricci flow (GKRF). Explicitly it takes the form

$$
\begin{align*}
\frac{\partial}{\partial t}g &= -2\text{Re}^g + \frac{1}{2}H, \\
\frac{\partial}{\partial t}H &= \Delta_d H, \\
\frac{\partial}{\partial t}I &= L_{\theta_I} I, \\
\frac{\partial}{\partial t}J &= L_{\theta_J} J,
\end{align*}
$$

where $H_{ij} = H_{ipq} H_{j}^{pq}$, and θ_I, θ_J are the Lee forms of the corresponding Hermitian structures.

A special case of this flow arises when $[J_A, J_B] = 0$, a condition preserved by the flow [22], and moreover causes the complex structures to be fixed along the flow. As shown in [22], the GKRF reduces to a single parabolic scalar PDE in this setting. We recall that, suppressing all background geometry terms, the Kähler-Ricci flow is known to reduce locally to the parabolic complex Monge-Ampere equation. In the present setting, the local reduction is to the parabolic complex “twisted” Monge-Ampere equation. Namely, one has a splitting $\mathbb{C}^n = \mathbb{C}^k \times \mathbb{C}^l$, and we denote $z = (z_1, \ldots, z_n) = (z_+, z_-)$ where $z_+ \in \mathbb{C}^k, z_- \in \mathbb{C}^l$. Then the “twisted” equation is

$$
\frac{\partial}{\partial t} u = \log \frac{\det \sqrt{-1} \partial_+ \overline{\partial}_+ u}{\det \sqrt{-1} \partial_- \overline{\partial}_- u}.
$$

As observed in [25], this equation is formally related to the parabolic complex Monge Ampere equation via partial Legendre transformation in the z_- variables. This observation was exploited to establish a $C^{2,\alpha}$ estimate of Evans-Krylov type for this equation, overcoming the nonconvexity which prevents applying standard machinery. This estimate can be combined with further global a
priori estimates which hold in specific geometric/topological situations \cite{22,23} to establish global existence and convergence results for the GKRF.

Despite the partial results and natural estimates which have been established for this flow, a full regularity theory is lacking due to the lack of general a priori estimates on the parabolicity of the equation. Here again the nonconvexity of the equation causes difficulty as the potential function alone cannot be added to test functions to apply the maximum principle as in the traditional Monge-Ampere theory \cite{27}. For this reason it is natural to pursue alternative methods for establishing lower order estimates, and here we look to viscosity theory. Our main result establishes the existence of such solutions. In the statement below τ^* is the maximal possible smooth existence time based on cohomological obstructions (see Definition \ref{def:cohomological}).

Theorem 1.1. Let (M^{2n},g,J_A,J_B) be a generalized Kähler manifold with $[J_A,J_B] = 0$. There exists a unique maximal viscosity solution to GKRF on $[0,\tau^*)$, realized as the supremum of all subsolutions.

Remark 1.2.

1. In the work \cite{2} a general theory of viscosity solutions is developed for equations on Riemannian manifolds. They require adapting the “variable-doubling method” globally on M, which forces the use of the global distance function. The analytic details require some convexity properties for the distance function, which are only satisfied under strong curvature hypotheses such as nonnegative sectional curvature.

2. A remarkable feature of the viscosity theory for the complex Monge Ampere equation is that the traditional definition of viscosity subsolution naturally picks out elliptic subsolutions (cf. \cite{10} Proposition 1.3) For instance, the function $|z_1|^2 - |z_2|^2 - |z_3|^2$ is not a viscosity solution of $\text{det} \sqrt{-1} \partial \bar{\partial} u = 1$ on \mathbb{C}^3. This is related to the simple but important observation that the supremum of two subsolutions is again a subsolution. This presents an extra challenge due to the natural mixed plurisub/superharmonic condition needed for ellipticity of the twisted equation, which for instance is not preserved under taking supremums. These issues are overcome by making careful definitions of sub/supersolutions which naturally split up the two pieces of the ellipticity condition so that part is satisfied by subsolutions, part by supersolutions.

3. While it is satisfying to construct a global solution with some (very weak) regularity, it is of course unsatisfying because ultimately we expect the solution to be smooth, and it is unclear if the viscosity approach can eventually lead to the full regularity. Viscosity theory holds the promise to understand generalized Kähler-Ricci flow, perhaps for instance flowing through singularities. This is the approach taken in a series of works based on \cite{10,12} in efforts to better understand the complex Monge-Ampere equation/Kähler-Ricci flow in singular settings. In the course of the author’s investigations into these works a crucial error was discovered which renders those works and many subsequent works incomplete. This is explained in \cite{3} Despite these errors in the proofs it still seems likely that the statements ultimately are true, although we were unsuccessful in attempting to repair the existing approach.

Acknowledgements: The author would like to thank Patrick Guidotti for helpful conversations on viscosity theory.

2. Smooth Twisted Monge Ampere Flows

In this section we recall and refine the discussion in \cite{22} wherein the pluriclosed flow in the setting of generalized Kähler geometry with commuting complex structures is reduced to a fully nonlinear parabolic PDE. First we recall the fundamental aspects of the relevant differential geometry.
2.1. Tangent bundle splitting. Let \((M^{2n}, g, J_A, J_B)\) be a generalized Kähler manifold satisfying \([J_A, J_B] = 0\). Define
\[
\Pi := J_A J_B \in \text{End}(TM).
\]
It follows that \(\Pi^2 = \text{Id}\), and \(\Pi\) is \(g\)-orthogonal, hence \(\Pi\) defines a \(g\)-orthogonal decomposition into its \(\pm 1\) eigenspaces, which we denote
\[
TM = T_+ M \oplus T_- M.
\]
Moreover, on the complex manifold \((M^{2n}, J_A)\) we can similarly decompose the complexified tangent bundle \(T_C^{1,0}\). For notational simplicity we denote
\[
T_\pm^{1,0} := \ker (\Pi \pm I) : T_C^{1,0}(M, J_A) \to T_C^{1,0}(M, J_A).
\]
We use similar notation to denote the pieces of the complex cotangent bundle. Other tensor bundles inherit similar decompositions. The one of most importance to us is
\[
\Lambda^{1,1}_C(M, J_A) = \left(\Lambda^{1,0}_+ \oplus \Lambda^{1,0}_- \right) \& \left(\Lambda^{0,1}_+ \oplus \Lambda^{0,1}_- \right);
\]
\[
= \left[\Lambda^{1,0}_+ \& \Lambda^{0,1}_+ \right] \oplus \left[\Lambda^{1,0}_- \& \Lambda^{0,1}_- \right] \oplus \left[\Lambda^{1,0}_+ \& \Lambda^{0,1}_- \right] \oplus \left[\Lambda^{1,0}_- \& \Lambda^{0,1}_+ \right].
\]
Given \(\mu \in \Lambda^{1,1}_C(M, J_A)\) we will denote this decomposition as
\[
(2.1) \quad \mu := \mu^+ + \mu^\pm + \mu^\mp + \mu^-.
\]
These decompositions allow us to decompose differential operators as well. In particular we can express
\[
d = d_+ + d_-, \quad \partial = \partial_+ + \partial_-, \quad \overline{\partial} = \overline{\partial}_+ + \overline{\partial}_-.
\]
The crucial differential operator governing the local generality of generalized Kähler metrics in this setting is
\[
\Box := \sqrt{-1} (\partial_+ \overline{\partial}_+ - \partial_- \overline{\partial}_-).
\]

2.2. A characteristic class.

Definition 2.1. Let \((M^{2n}, J_A, J_B)\) be a bicomplex manifold such that \([J_A, J_B] = 0\). Let
\[
\chi(J_A, J_B) = c_1^+(T_+^{1,0}) - c_1^-(T_+^{1,0}) + c_1^-(T_-^{1,0}) - c_1^+(T_-^{1,0}).
\]
The meaning of this formula is the following: fix Hermitian metrics \(h_{\pm}\) on the holomorphic line bundles \(\det T_\pm^{1,0}\), and use these to define elements of \(c_1(T_\pm^{1,0})\), and then project according to the decomposition (2.1). In particular, given such metrics \(h_{\pm}\) we let \(\rho(h_{\pm})\) denote the associated representatives of \(c_1(T_\pm^{1,0})\), and then let
\[
\chi(h_{\pm}) = \rho^+(h_+) - \rho^-(h_-) + \rho^-(h_+) - \rho^+(h_-).
\]
This definition yields a well-defined class in a certain cohomology group, defined in [22], which we now describe.

Definition 2.2. Let \((M^{2n}, J_A, J_B)\) be a bicomplex manifold with \([J_A, J_B] = 0\). Given \(\zeta_A \in \Lambda^{1,1}_{J_A, \mathbb{R}}\), let \(\zeta_B = -\zeta_A(\Pi, \cdot) \in \Lambda^{1,1}_{J_B, \mathbb{R}}\). We say that \(\zeta_A\) is *formally generalized Kähler* if
\[
(\ref{2.2}) \quad d^c_J A \zeta_A = - d^c_J B \zeta_B, \quad dd^c_J A \zeta_A = 0.
\]
This definition captures every aspect of a generalized Kähler metric compatible with \(J_A, J_B\), except for being positive definite. As we will show in Lemma [2.8] below, such forms are locally expressed as \(\Box f\). It is therefore natural to define the following cohomology space.
Definition 2.3. Let \((M^{2n}, J_A, J_B)\) denote a bicomplex manifold such that \([J_A, J_B] = 0\). Let

\[
H_{GK}^{1,1} := \left\{ \zeta_A \in \Lambda^{1,1}_{J_A, \mathbb{R}} \mid \zeta_A \text{ satisfies } (2.2) \right\}
\]

\[
\{ \Box f \mid f \in C^\infty(M) \}.
\]

It follows from direct calculations using the transgression formula for \(c_1\) (cf. [22]) that \(\chi\) yields a well-defined class in \(H_{GK}^{1,1}\).

2.3. **Pluriclosed flow in commuting generalized Kähler geometry.** With this setup we describe how to reduce pluriclosed flow to a scalar PDE in the setting of commuting generalized Kähler manifolds. First we recall that it follows from ([22] Proposition 3.2, Lemma 3.4) that the pluriclosed flow in this setting reduces to

\[
\frac{\partial}{\partial t} \omega = -\chi(\omega_{\pm}).
\]

(2.3)

To capture the idea of the formal maximal existence time, we first define the analogous notion to the “Kähler cone,” which we refer to as \(\mathcal{P}\), the “positive cone;”

Definition 2.4. Let \((M^{2n}, g, J_A, J_B)\) denote a bicomplex manifold such that \([J_A, J_B] = 0\). Let

\[
\mathcal{P} := \left\{ [\zeta] \in H_{GK}^{1,1} \mid \exists \omega \in [\zeta], \omega > 0 \right\}.
\]

From the discussion above, we thus see that a solution to (2.3) induces a solution to an ODE in \(\mathcal{P}\), namely

\[
[\omega_t] = [\omega_0] - t\chi.
\]

It is clear now that there is a formal obstruction to the maximal smooth existence time of the flow in this setting.

Definition 2.5. Given \((M^{2n}, g, J_A, J_B)\) a generalized Kähler manifold with \([J_A, J_B] = 0\), let

\[
\tau^*(g) := \sup \{ t \geq 0 \mid [\omega] - t\chi \in \mathcal{P} \}.
\]

Now fix \(\tau < \tau^*\), so that by hypothesis if we fix arbitrary metrics \(\tilde{h}_{\pm}\) on \(T_{\pm}^{1,0}\), there exists \(a \in C^\infty(M)\) such that

\[
\omega_0 - \tau\chi(\tilde{h}_{\pm}) + \Box a > 0.
\]

Now set \(h_{\pm} = e^{\frac{a}{2\tau}}\tilde{h}_{\pm}\). Thus \(\omega_0 - \tau\chi(h_{\pm}) > 0\), and by convexity it follows that

\[
\omega_t := \omega_0 - t\chi(h_{\pm}) > 0
\]

is a smooth one-parameter family of generalized Kähler metrics. Furthermore, given a function \(f \in C^\infty(M)\), let

\[
\omega^f := \omega + \Box f,
\]

with \(g^f\) the associated Hermitian metric. Now suppose that \(u\) satisfies

\[
\frac{\partial}{\partial t} u = \log \frac{(\omega^u)^k \wedge (\zeta_-)^l}{(\zeta_+)^l \wedge (\omega^u)^l},
\]

(2.4)

where \(\zeta\) denotes the Kähler form of the Hermitian metric \(h\). An elementary calculation using the transgression formula for the first Chern class ([22] Lemma 3.4) yields that \(\omega_u\) solves (2.3).
2.4. Twisted Monge-Ampere flows. We now codify the discussion of the previous subsection by making some general definitions, and then use these to define our notion of viscosity sub/supersolutions.

Definition 2.6. Let \((M^{2n}, g, J_A, J_B) \) be a generalized Kähler manifold with \([J_A, J_B] = 0 \). Fix

1. \(\omega \) a continuous family of formally generalized Kähler forms.
2. \(0 \leq \mu_+(z,t) \in C^0(M, \Lambda^{k,k}_+) \), \(0 \leq \mu_-(z,t) \in C^0(M, \Lambda^{l,l}_-) \) continuous families of partial volume forms.
3. \(F : M \times [0,T) \times \mathbb{R} \) a continuous function.

A function \(u \in C^2(M \times [0,T)) \) is a solution of \((\omega, \mu_\pm, F)\)-twisted Monge Ampere flow if

1. \(u_{tt} > 0 \) for all \(t \in [0,T) \).
2. \((\omega_+ + \sqrt{1-\partial_+ \overline{\partial}_+ \phi})^k \wedge \mu_+ = e^{\phi+F(x,t)} (\omega_- - \sqrt{-1} \partial_- \overline{\partial}_- u)^l \wedge \mu_- \).

Definition 2.7. Let \((M^{2n}, g, J_A, J_B) \) be a generalized Kähler manifold with \([J_A, J_B] = 0 \). Fix data \((\omega, \mu_\pm, F) \) as in Definition 2.6. A function \(u \in \text{USC}(M \times [0,T)) \) is a viscosity subsolution of \((\omega, \mu_\pm, F)\)-twisted Monge Ampere flow if for all \(\phi \in C^\infty(M \times [0,T)) \) such that \(u - \phi \) has a local maximum at \((z,t) \in M \times (0,T) \), one has that, at \((z,t) \),

\[
(\omega_+ + \sqrt{1-\partial_+ \overline{\partial}_+ \phi})^k \wedge \mu_+ \geq e^{\phi+F(x,t)} [(\omega_- - \sqrt{-1} \partial_- \overline{\partial}_- \phi)]^l \wedge \mu_-,
\]

where for a section \(\zeta \in \Lambda^{k,1}_+ \) the notation \(\zeta^l_+ \) means \(\zeta^l_+ \) if \(\eta > 0 \) and zero otherwise.

Likewise, a function \(v \in \text{LSC}(M \times [0,T)) \) is a viscosity supersolution of \((\omega, \mu_\pm, F)\)-twisted Monge Ampere flow if for all \(\phi \in C^\infty(M \times [0,T)) \) such that \(v - \phi \) has a local minimum at \((z,t) \in M \times (0,T) \), one has that, at \((z,t) \),

\[
[(\omega_+ + \sqrt{1-\partial_+ \overline{\partial}_+ \phi})_+]^k \wedge \mu_- \leq e^{\phi+F(x,t)} (\omega_- - \sqrt{-1} \partial_- \overline{\partial}_- \phi)^l \wedge \mu_+,
\]

where for a section \(\eta \in \Lambda^{k,1}_- \) the notation \(\eta^k_+ \) means \(\eta^k_+ \) if \(\eta > 0 \) and zero otherwise.

A remarkable feature of the viscosity theory for complex Monge-Ampere equations is that it naturally selects elliptic solutions to the problem. In a sense it is forced upon the solutions through the use of the projection operators onto the positive part of the complex Hessian of the test functions, and the fact that the inequality must hold for arbitrary test functions, as explained in ([10] Proposition 1.3). In our case the notion of ellipticity is more delicate, and yet the viscosity theory still allows us to set up our definitions so as to ensure we obtain elliptic solutions to the problem. This is surprising due to the nonconvexity of the equation at hand.

Even further, the Perron process, which involves taking supremums of subsolutions, naturally preserves the plurisubharmonicity of subsolutions in the \(z_+ \) directions, but would not preserve the plurisuperharmonicity in the \(z_- \) directions if we attempted to impose this by hand. Only a fortiori, having constructed a sub/supersolution at the end of the Perron process, do we ensure that our final solution is parabolic. We clarify this in the rest of the subsection. The first step is to exhibit a local version of the \(\partial \overline{\partial} \)-lemma adapted to this setting. This result is stated in [17] without proof, which is however elementary.

Lemma 2.8. Let \(\omega = \omega_+ + \omega_- \) be formally generalized Kähler on \(U \subset \mathbb{C}^k \times \mathbb{C}^l \). There exists \(f \in C^\infty(U) \) such that \(\omega = \Box f \).

Proof. First observe that since \(d_+ \omega_+ = 0 \), on each \(w \equiv \text{const complex } k\)-plane we can apply the \(\partial \overline{\partial} \)-lemma to obtain a function \(\psi_+(z) \) such that \(\sqrt{-1} \partial_+ \overline{\partial}_+ \psi_+ = \omega_+ \) on that plane. Since \(\omega_+ \) is smooth, we can moreover choose these on each slice so that the resulting function \(\psi_+(z, w) \) is smooth, and satisfies \(\sqrt{-1} \partial_+ \overline{\partial}_+ \psi_+ = \omega_+ \) on \(U \). Arguing similarly we obtain a function \(\psi_- \) such
that $\sqrt{-1}\partial_+\bar{\partial}_-\psi_\omega = \psi_\omega$ everywhere on U. We note now that the fact that ω is pluriclosed implies that

$$0 = \sqrt{-1}\partial_+\bar{\partial}_+\omega_- + \sqrt{-1}\partial_-\bar{\partial}_-\omega_+ = -\partial_+\bar{\partial}_+\partial_-\bar{\partial}_-(\psi_+ + \psi_-).$$

We next claim that any element in the kernel of the operator $\partial_+\bar{\partial}_+\partial_-\bar{\partial}_-$, in particular $\psi_+ + \psi_-$, can be expressed as

$$(2.5) \quad \psi_+ + \psi_- = \lambda_1(z,\bar{z},w) + \bar{\lambda}_1(z,\bar{z},\bar{w}) + \lambda_2(w,\bar{w},z) + \bar{\lambda}_2(w,\bar{w},\bar{z}).$$

To see this we first note that if $\phi := \psi_+ + \psi_-$ satisfies $\partial_+\bar{\partial}_+\partial_-\bar{\partial}_-\phi = 0$, then $\partial_-\bar{\partial}_-\phi$ can be expressed as the real part of a $\partial_+\bar{\partial}_+$-holomorphic function, so $(\partial_+\partial_-\phi)_{\omega,\bar{\omega}} = \mu_1^2(w,\bar{w},z) + \bar{\mu}_1^2(w,\bar{w},\bar{z})$, where the indices on the μ refer to the fact that each component of the $\partial_-\bar{\partial}_-$-Hessian can be expressed this way. It follows that $\Delta_\phi := \sqrt{-1}\phi_{\omega,\bar{\omega}}$ is the real part of a $\partial_+\bar{\partial}_+$-holomorphic function. Applying the Green’s function on each z-slice it follows that ϕ can be expressed as the real part of a $\partial_+\bar{\partial}_+$-holomorphic function, up to the addition of an arbitrary $\partial_-\bar{\partial}_-$-holomorphic function. Thus (2.5) follows.

We claim that $f = \psi_+ - \lambda_2 - \bar{\lambda}_2$ is the required potential function. In particular, since $\sqrt{-1}\partial_+\bar{\partial}_+(\lambda_2 + \bar{\lambda}_2) = 0$ it follows that $\sqrt{-1}\partial_+\bar{\partial}_-f = \omega_+$. Also, we compute using (2.5),

$$\begin{align*}
-\sqrt{-1}\partial_-\bar{\partial}_-f &= \sqrt{-1}\partial_-\bar{\partial}_-(\psi_- + \lambda_1 + \bar{\lambda}_1) \\
&= \sqrt{-1}\partial_-\bar{\partial}_-\psi_- \\
&= \omega_-.
\end{align*}$$

The lemma follows.

Lemma 2.9. Let (M^{2n},g,J_A,J_B) be a generalized Kähler manifold with $[J_A,J_B] = 0$. Suppose ω_t, $t \in [0,T]$ is a one-parameter family of smooth generalized Kähler metrics on M. There exists a locally finite open cover $U = \{U_\beta\}$ of M such that

1. Each U_β is the domain of a bicomplex coordinate chart.
2. For each β there is a smooth function $f_\beta : U_\beta \times [0,T] \to \mathbb{R}$ such that $\omega = \Box f$.

Proof. The existence of local bicomplex coordinates around each point follows from (11) Theorem 4, and then the existence of a locally finite cover follows from standard arguments. At any time t we can construct a local potential f by Lemma 2.8, and it is clear by the proof of that Lemma that f can be chosen to depend smoothly on ω, and so the lemma follows.

Lemma 2.10. Let (M^{2n},g,J_A,J_B) be a generalized Kähler manifold with $[J_A,J_B] = 0$. Fix data (ω,μ_\pm,F) as in Definition 2.6 and fix a cover \mathcal{U} as in Lemma 2.9. Suppose that on $U_\beta \in \mathcal{U}$ there are continuous density functions ζ_\pm satisfying

$$\begin{align*}
\mu_+ &= e^{\zeta_+}(\sqrt{-1}dz_1^+ \wedge d\bar{z}_1^+) \wedge \cdots \wedge (\sqrt{-1}dz_n^+ \wedge d\bar{z}_n^+) \\
\mu_- &= e^{\zeta_-}(\sqrt{-1}dz_1^- \wedge d\bar{z}_1^-) \wedge \cdots \wedge (\sqrt{-1}dz_n^- \wedge d\bar{z}_n^-).
\end{align*}$$

If u is a subsolution of (ω,μ_\pm,F)-twisted Monge Ampère flow, then $u_\beta := u + f_\beta$ is a subsolution of

$$\begin{align*}
(\sqrt{-1}\partial_+\bar{\partial}_+w)^k &\geq e^{u_t-f_t+F(x,t)+\zeta_+ - \zeta_-}(-\sqrt{-1}\partial_-\bar{\partial}_-w)^k_+ \\
\text{Likewise, if } v \text{ is a viscosity supersolution of } &\begin{align*}
(\sqrt{-1}\partial_+\bar{\partial}_+w)^k &\leq e^{u_t-f_t+F(x,t)+\zeta_+ - \zeta_-}(-\sqrt{-1}\partial_-\bar{\partial}_-w)^k_+.
\end{align*}
\end{align*}$$

Proof. This is an immediate consequence of unraveling the definitions.
Observe that the inequalities defining sub/supersolutions in Lemma 2.10 are expressed as inequalities of scalars in the chosen coordinates, whereas the original inequalities of Definition 2.7 are expressed in terms of sections of $\Lambda^{n,n}$. Moreover, the meaning of viscosity sub/supersolution in this context is the classic one. As the key arguments in the proofs of the comparison theorems are local in nature, it suffices to consider this localized version of the flow, which has the advantage of stripping away much notation and making things more concrete in coordinates. We will refer to this setup informally as a localized flow. Now we are ready to state our ellipticity claim.

Lemma 2.11. Local viscosity subsolutions of twisted Monge-Ampere flow as in Lemma 2.10 are plurisubharmonic in the z_+-variables, and viscosity supersolutions of twisted Monge-Ampere flow as in Lemma 2.10 are plurisuperharmonic in the z_--variables.

Proof. Let u be a local viscosity subsolution of twisted Monge-Ampere flow. Without loss of generality we assume the domain is $B_1(0) \times [0, T)$. Fix $(z_0, t_0) \in B_1(0) \times [0, T)$ such that $u(z_0) \neq -\infty$. Choose a function $\phi \in C^2(B_1(0) \times [0, T))$ such that $u - \phi$ has a local maximum at (z_0, t_0). It follows directly from the definition of subsolution that

$$
(\sqrt{-1}\partial_+ \bar{\partial}_+ \phi)^k \geq e^{\phi + F(x, t_0)}(\sqrt{-1}\partial_- \bar{\partial}_- \phi)^l \geq 0.
$$

We claim that $\sqrt{-1}\partial_+ \bar{\partial}_+ \phi \geq 0$. First note that, if we fix a $k \times k$ Hermitian positive semidefinite matrix H_+, and set

$$
\phi_{H_+}(z, t) := \phi(z, t) + H_+(z_+, - (z_0)_+)(\bar{z}_+ - (\bar{z}_0)_+).
$$

The function ϕ_{H_+} has a local maximum at (z_0, t_0) as well. Hence arguing as above we have

$$
(\sqrt{-1}\partial_+ \bar{\partial}_+ \phi_{H_+})^k = (\sqrt{-1}\partial_+ \bar{\partial}_+ \phi + H_+)^k \geq 0.
$$

Since H_+ is arbitrary, by an elementary linear algebra argument this implies $\sqrt{-1}\partial_+ \bar{\partial}_+ \phi \geq 0$. It then follows that for any positive definite matrix H_+ one has

$$
H^+_i \partial^2 \phi \geq 0.
$$

This implies that u is a viscosity subsolution of $\Delta_H \phi \geq 0$. Since H_+ is arbitrary, using results from linear elliptic PDE theory (2010) as in (114) Proposition 1.3 it follows that u is plurisubharmonic in the z_+-variables. The argument for u being plurisuperharmonic in the z_--variables is directly analogous.

\[\square\]

3. Proof of Theorem 1.1

Lemma 3.1. Let (M^{2n}, g, J_A, J_B) be a generalized Kähler manifold with $[J_A, J_B] = 0$. Fix data (ω, μ, F) as in Definition 2.6. Suppose \overline{u} is a bounded viscosity subsolution of (ω, μ, F)-twisted Monge-Ampere flow, and suppose $\overline{\pi}$ is a smooth supersolution of (ω, μ, F)-twisted Monge-Ampere flow. If $\overline{u}(x, 0) \geq \overline{u}(x, 0)$ for all $x \in M$, then $\overline{u}(x, t) \geq \overline{u}(x, t)$ for all $(x, t) \in M \times [0, T)$.

Proof. Suppose there exists $(x_0, t_0) \in M \times [0, T)$ such that $\overline{u}(x_0, t_0) < \overline{u}(x_0, t_0)$. It follows directly from the definitions that for $\delta > 0$, the function

$$
\overline{u}_\delta(x, t) := \overline{u}(x, t) + \frac{\delta}{T - t}
$$

is also a smooth supersolution. Moreover, for δ chosen sufficiently small it follows that $\overline{u}_\delta(x_0, t_0) < \overline{u}(x_0, t_0)$. Since \overline{u} is bounded and $\lim_{t \to T} u^*_\delta(x, t) = \infty$ for all $x \in M$, it follows that $\overline{u} - \overline{u}_\delta$ attains a positive maximum at some point (x_0', t_0'), $0 < t_0' < T$.

The function u^*_δ is smooth, and so can be used in the definition of \overline{u} being a subsolution to yield, at the point (x_0', t_0'), the inequality

$$
(\omega_+ + \sqrt{-1}\partial_+ \bar{\partial}_+ u^*_\delta)^k \wedge \mu_- \geq e^{(\overline{\pi}_\delta)(x_0', t_0')} (\omega_- - \sqrt{-1}\partial_- \bar{\partial}_- \overline{\pi}_\delta)^l \wedge \mu_+.
$$
Since \(\overline{\mu}(\cdot,t) \in \mathcal{P}_{\omega} \) for all \(t \), we can ignore the projection operator on the right hand side and apply elementary identities to obtain
\[
(\omega_+ + \sqrt{-1} \partial_+ \overline{\omega} + \overline{\omega})^k \wedge \mu_- \geq e^{\overline{\omega}(\cdot,t) + \delta/(T-t_0)}(\omega_- - \sqrt{-1} \partial_- \overline{\omega})^l \wedge \mu_+.
\]
On the other hand, since \(\overline{\mu} \) is already a subsolution and \(\overline{\mu}(\cdot,t) \in \mathcal{P}_0 \) for all \(t \) we have
\[
(\omega_+ + \sqrt{-1} \partial_+ \overline{\omega})^k \wedge \mu_- \leq e^{\overline{\mu}(x_0,t_0)}(\omega_- - \sqrt{-1} \partial_- \overline{\omega})^l \wedge \mu_+.
\]
Putting the previous two inequalities together yields
\[
e^{\delta/(T-t_0)} \leq e^{-u^* - F(x_0,t_0)} (\omega_+ + \sqrt{-1} \partial_+ \overline{\omega})^k \wedge \mu_- (\omega_- - \sqrt{-1} \partial_- \overline{\omega})^l \wedge \mu_+ \leq 1,
\]
a contradiction. \(\square \)

Proof of Theorem 1.1. We first observe the existence of smooth, bounded sub/supersolutions. In particular, since \(g^{\omega_0}, h \) are smooth metrics, one has that
\[
\sup_M \log \frac{\det g^{\omega_0}_{++} \det h_-}{\det h_+ \det g^{\omega_0}_{--}} \leq A.
\]
It follows immediately that the smooth functions
\[
\overline{\mu} := u_0 + tA, \quad \underline{\mu} := u - tA,
\]
are smooth sub/supersolutions to the problem.

Now let
\[
u = \sup \{ w \mid \underline{\mu} \leq w \leq \overline{\mu}, \ w \text{ is a subsolution to } (\omega, \mu_\pm, F) \text{ twisted MA flow} \}.
\]
We claim that \(u \) is a viscosity solution in the sense that the usc regularization \(u^* \) is a subsolution, whereas the lower semicontinuous regularization \(u_* \) is a supersolution. It is a standard argument (cf. \[6\]) to show that, as a supremum of subsolutions, \(u \) itself is a subsolution to \((\omega, \mu_\pm, F) \)-twisted Monge Ampere flow. It follows that in fact \(u^* = u \) is a subsolution. Next we show that \(u_* \) is a supersolution. If not, there exists \((z_0, t_0) \in M \times (0, T)\) and \(\phi \) a \(C^2 \) function such that \(u_* - \phi \) has a local minimum of zero at \((z_0, t_0)\) and, at that point,
\[
[(\omega_+ + \sqrt{-1} \partial_+ \phi_+)]^k \wedge \mu_- > e^{u_* + F(x,t)} (\omega_- - \sqrt{-1} \partial_- \phi_-)^l \wedge \mu_+.
\]
Choose coordinates around \(z_0 \), fix constants \(\gamma, \delta > 0 \) and consider
\[
\phi_{\gamma, \delta} = \phi + \delta - \gamma |z|^2.
\]
It follows that
\[
[(\omega_+ + \sqrt{-1} \partial_+ \phi_{\gamma, \delta})_+]^k \wedge \mu_- > e^{u_* + F(x,t)} (\omega_- - \sqrt{-1} \partial_- \phi_{\gamma, \delta})^l \wedge \mu_+
\]
on \(\mathcal{P}_r(z_0) \), for sufficiently small \(r > 0 \). If we choose \(\delta = (\gamma r^2)/8 \) then it follows that \(u_* > \phi_{\gamma, \delta} \) for \(r/2 \leq ||z|| \leq r \), whereas \(\phi_{\gamma, \delta}(z_0, t_0) > u_*(z_0, t_0) + \delta \). We now define, suppressing the identification with the given coordinate chart,
\[
\Phi(z, t) = \begin{cases}
\max \{ u_*(z, t), \phi_{\gamma, \delta}(z, t) \} & z \in B_r(z_0), \\
u_*(z, t) & \text{otherwise}.
\end{cases}
\]
As the supremum of subsolutions, \(\Phi \) is a subsolution to \((\omega, \mu_\pm, F) \)-twisted Monge Ampere flow. Now choose a sequence \((z_n, t_n) \to (z_0, t_0)\) such that \(u(z_n, t_n) \to u_*(z_0, t_0) \). For sufficiently large \(n \) it follows that \(\Phi(z_n, t_n) = \phi_{\gamma, \delta}(z_n, t_n) > u(z_n, t_n) \), contradicting the definition of \(u \). \(\square \)
4. Global comparison principle for singular equations

4.1. Localization and comparison principles. The viscosity solution constructed in Theorem 1.1 is sometimes in the literature referred to as a “Perron discontinuous viscosity solution.” The function constructed is not even known to be continuous. Typically what is required to show this is a more general comparison principle, generalizing Lemma 3.3 to the case of an arbitrary (not just smooth) supersolution. In the case of fully nonlinear second order equations on domains in \mathbb{R}^n, this is achieved by the “Jensen-Ishii maximum principle,” a delicate technique exploiting various properties of \mathbb{R}^n in an essential way.

While it seems natural that these ideas should extend to the case of equations on manifolds, there seem to be subtle technical issues in making the Jensen-Ishii method work. While these have been overcome assuming background curvature conditions in [2], recent efforts to overcome these obstacles in the case of the complex Monge Ampere equation appear to be incomplete. In particular, in this subsection we describe a crucial error in the paper [10]. The main results in [10] claim to get around this by explicitly localizing the proof using cutoff functions and the pure argument and as such requires a condition on the curvature for the method to succeed. The paper [10] claims to get around this by explicitly localizing the proof using cutoff functions and the pure form of the local PDE. As discussed above, the central tool required is a comparison principle for viscosity sub/supersolutions. This is Theorem 2.14 in [10], and contains a key logical gap the author was unable to repair.

The proof ([10] pages 17-19) mostly follows standard lines which I will briefly describe, calling attention to the one specific false claim, and then describing the role it plays in the proof at large. Call the sub/supersolutions w_*, w^* respectively. There is no boundary so one in general needs to show $w_* \leq w^*$. The standard method in viscosity theory is to use ‘variable doubling’ with ‘penalization’ and consider the function

$$\Phi_\alpha(x, y) = w_*(x) - w^*(y) - \frac{1}{2} \alpha |x - y|^2.$$

This is an upper semicontinuous function whose maximum occurs near the diagonal for large α. The strategy of [10] in using this method on manifolds is to modify this by further penalizing with a cutoff function.

In particular, they consider their equation on say a ball of radius 4. They produce a smooth function $\phi_3 : M \times M \to \mathbb{R}$ on page 18 which satisfies:

1. $\phi_3 \geq 0$
2. $\phi_3^{-1}(0) = \Delta \cap \{\phi_2 \leq \eta\}$
3. $\phi_3|_{M^2 \backslash B(0, 2)^2} > 3C$.

Here Δ is the diagonal and the function ϕ_2 is an arbitrary smooth function satisfying $\phi_2|_{B(0, 1)^2} < -1$ and $\phi_2|_{M^2 \backslash B(0, 2)^2} > C$ for a large constant C. Furthermore 1 $\gg \eta > 0$ is chosen so that $-\eta$ is a regular value of ϕ_2 and $\phi_2|_{\Delta}$. This is not specified in further detail in [10], but the key properties used are that the function ϕ_2 vanishes along part of the diagonal, say the part contained in $B(0, 1)^2$, and is large away from $B(0, 2)^2$. Now let

$$\Phi_\alpha(x, y) = w_*(x) - w^*(y) - \phi_3(x, y) - \frac{1}{2} \alpha |x - y|^2,$$

and choose a sequence (x_α, y_α) realizing the supremum of Φ_α as $\alpha \to \infty$, and take a limit point (\hat{x}, \hat{y}). A result from [6], utilized as ([10] Lemma 2.15), yields $\hat{x} = \hat{y}, \hat{x} \in \Delta \cap \{\phi_2 \leq -\eta\}$. In other words, the limit point is on the diagonal, and in the zero set of ϕ_3.

Next the authors apply the ‘Jensen-Ishii maximum principle’ (recorded as [10] Lemma 2.16), with the penalization function $\phi = \phi_3 + \frac{1}{2} \alpha |x - y|^2$ to obtain, for arbitrary $\epsilon > 0$, test jets
(p_*, X_*), (p^*, X^*) satisfying

\[
\begin{pmatrix}
X_* & 0 \\
0 & -X^*
\end{pmatrix} \leq A + \epsilon A^2,
\]

where \(A = D^2 \phi(x_\alpha, y_\alpha) \), i.e.

\[
A = \alpha \begin{pmatrix} I & -I \\ -I & I \end{pmatrix} + D^2 \phi_3(x_\alpha, y_\alpha)
\]

It is crucial to the rest of the proof that one has \(X^* \geq X_* \geq 0 \). In the purely local case where \(\phi_3 = 0 \) one chooses \(\epsilon \) appropriately relative to \(\alpha \) to obtain

\[
\begin{pmatrix}
X_* & 0 \\
0 & -X^*
\end{pmatrix} \leq 3\alpha \begin{pmatrix} I & -I \\ -I & I \end{pmatrix},
\]

which immediately implies the required inequality \(X^* \geq X_* \). With \(\phi_3 \) in place, it is necessary to show that its Hessian is not just small, but decaying at the rate of \(\alpha^{-2n} \). The authors correctly note that, ‘...the Taylor series (of \(\phi_3 \)) vanishes up to order \(2n \) on \(\Delta \cap \{ \phi_2 \leq -\eta \} \).’ But then it is claimed that this implies this implies

\[
D^2 \phi_3(x_\alpha, y_\alpha) = O(d(x_\alpha, y_\alpha)^{2n}) = o(\alpha^{-n}).
\]

The second equality is trivial since by construction one easily has \(d(x_\alpha, y_\alpha)^2 = o(\alpha^{-1}) \). However, the first equality is false. This would be true if one could Taylor expand around the point \((x_\alpha, x_\alpha) \), assuming \((x_\alpha, x_\alpha) \in \Delta \cap \{ \phi_2 \leq -\eta \} \), in other words, if \(\phi_3(x_\alpha, x_\alpha) = 0 \). It is clear however that construction of \(\Phi_\alpha \) and the corresponding sequence \((x_\alpha, y_\alpha) \) allows for \(\phi_3(x_\alpha, x_\alpha) > 0, \phi(y_\alpha, y_\alpha) > 0 \). While it is true that the limit point \((\hat{x}, \hat{x}) \) satisfies \(\phi_3(\hat{x}, \hat{x}) = 0 \) it does not follow that it is true along the sequence.

This oversight concerns exactly the key difficulty in applying these classic techniques on manifolds, which is how to ‘localize’. Moreover, elementary arguments seem to show that any such cutoff function chosen for the role of \(\phi_3 \) produces an ‘error term’ which cannot be overcome to conclude the crucial inequality \(X^* > 0 \). Hence the question of ‘is it possible to utilize the Jensen-Ishii maximum principle on manifolds’ remains largely open, other than the work [2].

4.2. Outlook. We have shown that the proof of the main comparison principle of [10], Theorem 2.14, is flawed, rendering the proofs of all of the main results in that paper incomplete. One of the main claims of [10], namely Theorem C which asserts the continuity of the pluripotential-theoretic solution to some degenerate Monge Ampere equations with right hand side in \(L^p, p > 1 \), has been used in many further works, which now appear incomplete. In particular, [4] Theorem 1.3, relies on this result and so is incomplete. We note that [14] presents two proofs of a \(C^0 \) estimate for the \(J \)-flow, one of which relies on (10) Theorem C), the other of which is direct and complete. Theorem 5.4 of [3] relies on ([10] Theorem C), although it is difficult to determine how central this is to the main arguments. In [7] Proposition 1.4 the authors invoke the arguments of [10] rendering this proposition, on which much of the paper is based, incomplete. Furthermore, the authors of [10] use ([10] Theorem C) to claim continuous approximation of plurisubharmonic functions in [8] (cf. Main Theorem, Corollary, Theorem 2.3, and another invocation of the same flawed localization technique on page 8). This claim is used in a central way in the recent papers ([13] §3.2, 21 Theorem 2).

The same localization method has been employed to claim results on the Kähler-Ricci flow as well. First we note that the results of [11] are purely local in nature and do not feature this argument. However, the flawed localization result in used in the main comparison result of [12], Theorem 2.1, rendering the proofs of all of the main results in that paper incomplete. Also, in (9) page 20) the same erroneous localization technique is applied.
GLOBAL VISCOSITY SOLUTIONS OF GENERALIZED KÄHLER-RICCI FLOW

REFERENCES

[1] V. Apostolov, M. Gualtieri, Generalized Kähler manifolds, commuting complex structures, and split tangent bundles, Comm. Math. Phys. 2007, Vol. 271, Issue 2, 561-575.
[2] D. Azagra, J. Ferrera, B. Sanz, Viscosity solutions to second order partial differential equations on Riemannian manifolds, J. Diff. Eq, Vol. 245 (2008), 307-336.
[3] R. Berman, From Monge-Ampere equations to envelopes and geodesic rays in the zero temperature limit, arXiv:1307.3008.
[4] R. Berman, D. Nyström, Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons, arXiv:1401.8264.
[5] L. Chinh, Viscosity solutions to complex Hessian equations, J. Funct. Anal, 264 (2013), 1355-1379.
[6] M. G. Crandall, User’s guide to viscosity solutions of second order partial differential equations, Bull. AMS Vol 27, No. 1, 1992.
[7] E. Di Nezza, V. Guedj, Geometry and topology of the space of Kähler metrics on singular varieties, arXiv:1606.07706.
[8] P. Eyssidieux, V. Guedj, A. Zeriahi, Continuous approximation of quasipolarisubharmonic functions, Contemporary Mathematics, Vol. 644, 2015.
[9] P. Eyssidieux, V. Guedj, A. Zeriahi, Convergence of weak Kähler-Ricci flows on minimal models of positive Kodaira dimension, arXiv:1604.07001.
[10] P. Eyssidieux, V. Guedj, A. Zeriahi, Viscosity solutions to degenerate complex Monge-Ampere equations, Communications on Pure and Applied Mathematics, 64 (8), 1059-1094.
[11] P. Eyssidieux, V. Guedj, A. Zeriahi, Weak solutions to degenerate complex Monge-Ampere flows I, Math. Ann. 2015, Vol. 362, Issue 3, 931-963.
[12] P. Eyssidieux, V. Guedj, A. Zeriahi, Weak solutions to degenerate complex Monge-Ampere flows II, Advances in Mathematics, Vol. 293, 2016, 37-80.
[13] T. Darvas, Metric geometry of normal Kähler spaces, energy properness and existence of canonical metrics, arXiv:1604.07127.
[14] H. Fang, M. Lai, J. Song, B. Weinkove, The J-flow on Kähler surfaces, a boundary case, Anal. & PDE, Vol. 7 (2014), No. 1, 215-226.
[15] H. Ishii, P.L. Lions, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s, Comm. Pure Appl. Math. 42 (1989), 105-135.
[16] H. Ishii, P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq. 83, 26-78 (1990).
[17] S. Gates, C. Hull, M. Rocek, Twisted multiplets and new supersymmetric non-linear σ-models, Nuclear Physics B248 (1984) 157-186.
[18] Gualtieri, M. Generalized complex geometry, Ann. of Math. Vol. 174 (2011), 75-123.
[19] Hitchin, N. Generalized Calabi-Yau manifolds, Q.J. Math. 54, no. 3, (2003) 281-308.
[20] L. Hörmander Notions of convexity, Progress in Math., Birkhauser (1994).
[21] C. Lu, V. Nguyen, Degenerate complex Hessian equations on compact Kähler manifolds, arXiv:1402.5147.
[22] Streets, J. Pluriclosed flow on generalized Kähler manifolds with split tangent bundle, arXiv:1405.0727, to appear in Crelles Journal.
[23] J. Streets, Pluriclosed flow, Born-Infeld geometry, and rigidity results for generalized Kähler manifolds, arXiv:1502.02584, to appear Comm. PDE.
[24] J. Streets, T.; Tian, G.; Generalized Kähler geometry and the pluriclosed flow, Nuc. Phys. B, Vol. 858, Issue 2, (2012) 366-376.
[25] J. Streets, T.; Warren, M.; Evans-Krylov Estimates for a nonconvex Monge-Ampère equation arXiv:1410.2911, to appear Math. Annalen.
[26] Tian, G.; Zhang, Z. On the Kähler-Ricci flow on projective manifolds of general type Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179-192.
[27] Yau, S.T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure. Appl. Math., 31, 1978.

Rowland Hall, University of California, Irvine, Irvine, CA 92617
E-mail address: jstreets@uci.edu