A *Mycobacterium tuberculosis* surface protein recruits ubiquitin to trigger host xenophagy

Qiyao Chai1,2, Xudong Wang1,3, Lihua Qiang1,2, Yong Zhang1,2, Pupu Ge1,2, Zhe Lu1,2, Yanzhao Zhong1,2, Bingxi Li1, Jing Wang1, Lingqiang Zhang4, Dawang Zhou5, Wei Li6, Wenzhu Dong7, Yu Pang7, George Fu Gao1,2 & Cui Hua Liu1,2

Ubiquitin-mediated xenophagy, a type of selective autophagy, plays crucial roles in host defense against intracellular pathogens including *Mycobacterium tuberculosis* (Mtb). However, the exact mechanism by which host ubiquitin targets invaded microbes to trigger xenophagy remains obscure. Here we show that ubiquitin could recognize Mtb surface protein Rv1468c, a previously unidentified ubiquitin-binding protein containing a eukaryotic-like ubiquitin-associated (UBA) domain. The UBA-mediated direct binding of ubiquitin to, but not E3 ubiquitin ligases-mediated ubiquitination of, Rv1468c recruits autophagy receptor p62 to deliver mycobacteria into LC3-associated autophagosomes. Disruption of Rv1468c-ubiquitin interaction attenuates xenophagic clearance of Mtb in macrophages, and increases bacterial loads in mice with elevated inflammatory responses. Together, our findings reveal a unique mechanism of host xenophagy triggered by direct binding of ubiquitin to the pathogen surface protein, and indicate a diplomatic strategy adopted by Mtb to benefit its persistent intracellular infection through controlling intracellular bacterial loads and restricting host inflammatory responses.
ubiquitin (Ub) targeting to intracellular bacteria plays a fundamental role in selective autophagy called xenophagy, a crucial innate immune mechanism in mammalian cells against intracellular pathogens. During the infection, various types of Ub chains, such as K63 and K48 Ub chains, have been demonstrated to form Ub coat surrounding the pathogens for recognition by a range of autophagy receptors, including p62 (SQSTM1), NBR1, and NDP52, which couple the Ub-decorated substrates and LC3, an autophagosomal membrane-associated protein, to trap bacteria into autophagosomes. However, the specific substrate proteins targeted by those E3 Ub ligases for ubiquitination remain unclear. Mycobacterium tuberculosis (Mtbc) is an ancient successful intracellular pathogen for causing tuberculosis (TB). It is from previous studies showed that the colocalization of Ub with Mtbc was not completely absent in macrophages that remain unclear. Ub directly binds to mycobacterial surface, we next incubated Mtbc cells with K63 or K48-linked poly-Ub chains (Ub−7) in vitro, and then washed and lysed bacterial cells for immunoblot analysis. Intriguingly, we found that both K63 and K48 Ub chains could directly bind to Mtbc in vitro, while little Ub chains bound to Mtbc pretreated with proteasome inhibitors for degradation of bacterial surface-exposed proteins. These results indicate that the mycobacterial surface protein plays a central role in mediating direct binding of Ub to Mtbc. Consistently, confocal microscopy analysis further showed that a large proportion of Mtbc was colocalized with either K63 or K48 Ub chains after incubation in vitro, which phenomenon was largely abolished by pretreating Mtbc with proteasome inhibitors (Fig. 1c). Collectively, these experiments indicate that Ub could target to Mtbc via direct interaction with unknown mycobacterial surface proteins in an E3 ligase-independent manner.

Mtbc Rv1468c binds to polyubiquitin via a UBA domain. In our efforts to search for potential novel Ub-binding surface proteins in Mtbc, we identified a UBA domain-containing Mtbc protein Rv1468c (PE_PGRS29), which belongs to the mycobacteria-specific PE_PGRS protein family. Rather than being ubiquitinated by E3 Ub ligases, Mtbc Rv1468c was directly targeted by host Ub chains through UBA-dependent interaction, which led to the engulfment of mycobacteria into LC3-associated autophagosomes for Atg5-dependent autophagic clearance. Disruption of Rv1468c UBA domain to abolish its interaction with Ub impaired host xenophagic clearance of Mtbc in macrophages, and elevated bacterial loads in mice with enhanced inflammatory responses. Our findings reveal a previously unrecognized role of Ub as an innate immune trigger that binds to the pathogen surface protein to initiate host antimicrobial autophagy, which process is independent of the conventional xenophagy pathway initiated by E3 Ub ligase-mediated ubiquitination of substrates from pathogenic bacteria or bacteria-containing vacuoles. Our results also indicate a potentially important strategy adopted by Mtbc to benefit its persistent intracellular infection through maintaining optimized intracellular bacterial loads to avoid excessive host inflammatory responses.

Results

Ub directly binds to mycobacterial surface. Mtbc was shown to cause disruption of phagosomal membranes for cytosolic access at a very early time of infection. Using electron microscopy, we did observe that some of Mtbc were free in the cytosol of macrophages as early as 4 h post-infection (Supplementary Fig. 1a), characterized by being surrounded by none of the host membranes. Host Ub was indicated to be associated with either the membranes of Mtbc-containing phagosomes or the surface of mycobacteria accessing the cytosol for initiating antibacterial autophagy. To determine the direct binding of Ub on Mtbc surface, we used digitonin plus Triton X-100 to permeabilize both plasma membranes and phagosomal membranes, the majority of Mtbc (~80%) were detected by anti-Mtbc antibody, and ~35% were colocalized with Ub (Supplementary Fig. 1b, c). These data indicate that during Mtbc infection in macrophages, a considerable proportion of Ub directly adhered to bacterial surface. To further confirm that Ub could directly bind to mycobacterial surface, we next incubated Mtbc cells with K63 or K48-linked poly-Ub chains (Ub−7) in vitro, and then washed and lysed bacterial cells for immunoblot analysis. Intriguingly, we found that both K63 and K48 Ub chains could directly bind to Mtbc in vitro, while little Ub chains bound to Mtbc pretreated with proteasome inhibitors for degradation of bacterial surface-exposed proteins. These results indicate that the mycobacterial surface protein plays a central role in mediating direct binding of Ub to Mtbc. Consistently, confocal microscopy analysis further showed that a large proportion of Mtbc was colocalized with either K63 or K48 Ub chains after incubation in vitro, which phenomenon was largely abolished by pretreating Mtbc with proteasome inhibitors (Fig. 1c). Collectively, these experiments indicate that Ub could target to Mtbc via direct interaction with unknown mycobacterial surface proteins in an E3 ligase-independent manner.
Fig. 1 Mtb Rv1468c directly binds to poly-Ub chains in a UBA-dependent manner. a, b Immunoblot analysis of whole bacterial lysate of Mtb cells pretreated with (+) or without (−) proteinase K followed by incubation with K632–7 (a) or K482–7 (b) poly-Ub chains at 4 °C for 4 h. c Confocal microscopy analysis for colocalization of pSC301-Mtb stably expressing green fluorescent protein (GFP) with K632–7 or K482–7 Ub chains in vitro. Bacteria (green) treated with (+) or without (−) proteinase K were further incubated with poly-Ub chains as in a and b, and were then immunostained using anti-Ub antibody (red). Scale bars, 10 μm. The percent colocalizations of Ub and Mtb are shown at the bottom. A total of 100 bacterial cells were counted. Two-tailed unpaired t-test was performed. d Schematic representation of the Mtb Rv1468c constructs used. e In vitro interaction analysis of Ub and GST-tagged full-length Mtb Rv1468c or the truncated mutants as indicated in d. Purified recombinant GST-tagged Mtb Rv1468c variants were immobilized on glutathione sepharose resin. Mono-Ub (His6-tagged), K63 or K48-linked poly-Ub (Ub2–7) was added, and then the protein complexes were assayed by immunoblotting with indicated antibodies. f Immunoblot analysis of proteins immunoprecipitated (IP) with anti-Flag M2 Affinity Gel from lysates of HEK293T cells transfected with empty vector (−) or hemagglutinin (HA)-tagged Ub (+) and Flag-tagged wild-type (WT) Rv1468c or its mutants (V64G or L65G). g Confocal microscopy analysis of HeLa cells cotransfected with vectors encoding HA-tagged Ub (red) and GFP-tagged WT Rv1468c, V64G or L65G mutant (green). Nuclei (blue) were stained with the DNA-binding dye DAPI. Scale bars, 10 μm. Results are representatives from at least three independent experiments (mean ± s.e.m. of n = 5 in c). The source data used in c are provided in Source Data.
Ub targets to Rv1468c on mycobacterial cell surface. Mtb Rv1468c belongs to mycobacterial PE_PGRS family, which family proteins are predominantly surface-exposed in bacterial cell wall. Therefore, we suspected that Mtb Rv1468c was also a bacterial surface protein which might be recognized by host Ub during infection. To test this idea, we deleted Rv1468c in Mtb H37Rv (Mtb ΔRv1468c), and complemented Mtb ΔRv1468c strain with WT Rv1468c (Mtb ΔRv1468c:Rv1468c) or Rv1468c L65G (Mtb ΔRv1468c:Rv1468c L65G) (Supplementary Fig. 3a, b). We first carried out cell fractionation assay of Mtb to characterize the subcellular localization of Rv1468c, and found that both WT Rv1468c and the L65G mutant were detected mostly in the cell wall fraction (Fig. 2a). As controls, Ag85 and GroEL1 were largely present in the cell wall fraction and cytoplasmic fraction, respectively. We also deleted Rv1468c in M. bovis BCG (BCG ΔRv1468c), or overexpressed Mtb Rv1468c in M. smegmatis (Rv1468c–M. smegmatis), a nontuberculous species that does not encode Rv1468c (Supplementary Data 2) for electron microscopy analysis to further confirm that Rv1468c was indeed expressed on the mycobacterial cell surface (Fig. 2b). We then investigated if Rv1468c could mediate the direct targeting of Ub to mycobacterial surface in vitro. After incubation of each mycobacterial strain with K63 or K48-linked Ub chains (Ub2–7), we found that deletion of Rv1468c, or substitution of Rv1468c by L65G mutant in Mtb reduced the direct binding of Ub to mycobacteria (Fig. 2c, d). When Mtb cells were subjected to a short exposure to proteinase K before incubation, Rv1468c as well as the control protein Ag85, but not GroEL1, were markedly degraded, and the binding of Ub to Mtb was decreased (Fig. 2c, d). Confocal microscopy analysis also showed that deletion or L65G mutation of Rv1468c in Mtb markedly reduced the colocalizations of bacteria with K63 and K48 Ub chains in vitro (Supplementary Fig. 3c–f). These results indicate that Rv1468c UBA domain is exposed on the Mtb surface to mediate direct binding of Ub to Mtb. Consistently, when we incubated different M. smegmatis strains with K63 or K48-linked Ub chains (Ub2–7) in vitro, we found that Rv1468c–M. smegmatis was able to bind more K63 and K48 Ub chains as compared to WT M. smegmatis or M. smegmatis expressing Rv1468c L65G (Rv1468c L65G–M. smegmatis) (Supplementary Fig. 4). These results further confirmed that UBA could indeed bind to Rv1468c UBA domain, rather than nonspecifically to the mycobacterial outer membrane.

Rv1468c mRNA was upregulated in WT Mtb after infection to macrophages (Supplementary Fig. 5a), indicating that Rv1468c was likely to be involved in Mtb-host interactions. Thus, we next investigated if Rv1468c participates in host Ub targeting to mycobacterial surface in vivo. To this end, BMDMs were infected with WT Mtb or Mtb ΔRv1468c and then analyzed by electron microscope with immunogold labeling to trace host Ub and Mtb Rv1468c. Mtb cells displayed a triple layered cell envelope as compared to that of WT Mtb (Fig. 3a, b). Consistently, confocal microscopy analysis showed that Mtb ΔRv1468c and Mtb ΔRv1468c:Rv1468c L65G had a decreased colocalization with Ub as compared to WT Mtb and Mtb ΔRv1468c:Rv1468c in macrophages, which became more obvious overtime during infection (Fig. 3d, e). Furthermore, by using Ub linkage-specific antibodies, we found that deletion of Rv1468c or substitution of Rv1468c by L65G mutation in Mtb reduced ~2-fold of the colocalization of bacteria with either K63- or K48-linked Ub chains at 24 h post-infection (Supplementary Fig. 5b–e). Together, these results demonstrate that Rv1468c could mediate the direct targeting of host Ub to mycobacterial cell surface during the infection.

Autophagic clearance of mycobacteria requires Rv1468c. The Ub system could either participate in host immune defense against mycobacteria, or be exploited by mycobacteria to facilitate their intracellular survival. Thus, we next determined the exact role of Rv1468c–Ub interaction at the interface of Mtb-host interactions. Mtb ΔRv1468c and Mtb ΔRv1468c:Rv1468c L65G had an enhanced viability than WT Mtb and Mtb ΔRv1468c:Rv1468c in BMDMs (Fig. 4a), suggesting that Ub binding to Rv1468c was in favor of host immunity. Since Ub attachment to bacterial surface is a prime step for enhancing “eat-me” signals to recruit the host autophagy machinery, and Rv1468c was crucial for Ub binding to Mtb, we next investigated whether Rv1468c was involved in antimycobacterial autophagy. In macrophages that were activated by rapamycin, a widely used inhibitor of the mammalian target of rapamycin (mTOR) to induce autophagy, Mtb ΔRv1468c exhibited more distinct advantage of intracellular survival than WT strain as compared to that in control group (Fig. 4b). On the contrary, when macrophages were treated by rapamycin along with 3-methyladenine, a phosphatidylinositol 3-kinase (PI3K) inhibitor that blocked the initiation of autophagy, the enhanced intracellular viability of Mtb ΔRv1468c was largely abolished (Fig. 4b). Consistently, Mtb ΔRv1468c had a significantly lower proportion of colocalization with endogenous LC3 and the lysosomal marker LAMP1 as compared to that of WT strain in BMDMs, and these differences became more obvious when macrophages were subjected to autophagic induction by rapamycin, interferon-γ (IFNγ), or amino acid and serum starvation (Supplementary Fig. 6). However, when macrophages were treated with 3-methyladenine, the targeting of LC3 and LAMP1 to WT Mtb or Mtb ΔRv1468c was similarly suppressed (Supplementary Fig. 6). Further experiments demonstrated that substitution of Rv1468c by the L65G mutant in Mtb had same effects as deletion of Rv1468c in Mtb on reducing the colocalization of bacteria with LC3 and LAMP1 in BMDMs (Fig. 4c–f). Thus, these results indicate that Ub targeting to the UBA domain of Rv1468c is crucial for host autophagic clearance of mycobacteria.

Since subversion of host xenophagy could also result from impaired ability of mycobacteria to cause phagosomal damage, which might be affected by deletion or mutation of Rv1468c in Mtb. Thus, to rule out the possibility that different degrees of Ub targeting for the WT and mutant Mtb strains could be due to differences in their ability to permeabilize the phagosomal membrane to gain access to the cytosol in macrophages, we performed confocal microscopy analysis of macrophages infected different Mtb strains for 4 h followed by selective permeabilization of the plasma membranes, and found that all strains exhibited similar accessibility to anti-Mtb antibody, indicating that they had comparable accessibility to the cytosol (Supplementary Fig. 7a, b). Consistently, by using electron microscope, we observed that all Mtb strains showed similar proportions of bacteria in the cytosol and in the phagosomes at 4 h post-infection in macrophages (Supplementary Fig. 7c, d). In addition,
we also performed confocal microscopy analysis of infected macrophages to detect the colocalization of Mtb with galectin-3, an established indicator of damaged phagosomes caused by intracellular bacteria, and found that all Mtb strains had similar percentages of colocalization with galectin-3 (Supplementary Fig. 8), further confirming that Mtb-caused phagosomal disruption in macrophages was not affected by deletion or mutation of Rv1468c.

Next, we performed electron microscopy assay to further confirm the machinery of Rv1468c-dependent antimycobacterial...
autophagy. As observed in LC3 immunogold staining, a considerable number of LC3 particles directly bound to the surface of WT Mtb, but not Mtb ΔRv1468c (Fig. 5a, b), indicating that Rv1468c was required for host LC3 coating on the bacterial surface. Moreover, we also confirmed that Mtb could be targeted through macroautophagy pathway for degradation, as substantiated by the observation that ~30% bacilli were sequestered in double or multiple-membraned vesicles in macrophages at 24 h post-infection\cite{15,26,27,30} (Fig. 5c, d). The onion-like multilamellar structures that typically occurred during macroautophagy against intercellular pathogens were also frequently observed in WT Mtb-infected macrophages\cite{27,30} (Fig. 5c). By comparison, deletion of Rv1468c in Mtb markedly reduced the proportion of bacteria present in autophagosomal vesicles but increased that in host
cytosol (Fig. 5c, d), implying that Rv1468c was probably of importance for autophagic clearance of cytosolic bacilli whose surface was exposed for recognition by host Ub. Together, these data further confirmed that Rv1468c is indispensable for host clearance of mycobacteria via autophagy pathway.

p62 is involved in Ub-Rv1468c interaction-mediated xenophagy. Autophagy receptors including p62, NBR1, NDP52, and optineurin (OPTN) have been demonstrated to interact with both Ub on the protein substrates and LC3 on the phagophore during the xenophagy of intracellular pathogens. Thus, we next determined whether these autophagy receptors mediated the interconnection of Ub-bound Rv1468c with LC3 to trigger the selective autophagy of mycobacteria. In HeLa cells, DsRed2-tagged Rv1468c were colocalized with both HA-tagged Ub and GFP-tagged p62, NBR1, NDP52 or OPTN, but Rv1468c (L65G) did not (Supplementary Fig. 9a). When Flag-tagged Rv1468c was coexpressing with GFP-tagged p62, NBR1, NDP52 or OPTN in HEK293T cells, it was able to coimmunoprecipitate with each of autophagy receptors in a UBA-dependent manner (Supplementary Fig. 9b, c). Since p62 exhibits the strongest affinity to Rv1468c and plays an indispensable role in multiple selective autophagy process by cooperation with other adaptors, we further performed confocal microscopy analysis to monitor p62 in macrophages during Mtb infection. As expected, deletion of Rv1468c or substitution of Rv1468c by L65G mutation in Mtb reduced the aggregation of p62 to the bacteria in BMDMs as compared to that of WT and Mtb ΔRv1468c:Rv1468c strains (Fig. 6). Therefore, p62 participates in mediating the Rv1468c-Ub interaction-triggered xenophagy.

Deletion of p62 or Atg5 impairs Rv1468c-dependent xenophagy. Atg5 was required for cytosolic LC3 (LC3-I) converting to lipitated LC3 (LC3-II) on the phagophores that initiated the formation of autophagosomes, and subsequently LC3-II and p62 underwent degradation along with cargoes when autophagy flux was unblocked. Since Rv1468c-Ub interaction-triggered xenophagy was associated with the recruitment of p62 and LC3 to Mtb, we thus deleted p62 and Atg5 in RAW264.7 macrophages by using CRISPR/Cas9-mediated gene targeting to confirm that this antimycobacterial process was contributed by host selective autophagy, and we found that after infection for 24 h, Mtb ΔRv1468c and Mtb ΔRv1468c:Rv1468c L65G exhibited enhanced intracellular viability as compared to WT Mtb or Mtb ΔRv1468c:Rv1468c in WT RAW264.7 cells, but showed little survival advantage in p62Δ/Δ and Atg5Δ/Δ RAW264.7 cells (Supplementary Fig. 10a–c). Furthermore, deletion of p62 or Atg5 in RAW264.7 macrophages reduced the LC3 aggregation to mycobacteria as well as the colocalization of LAMP1 with all strains (Supplementary Fig. 10d–g). Encouraged by the results from Atg5Δ/Δ RAW264.7 macrophages indicating that deletion of Atg5 could impair Rv1468c-dependent autophagic clearance of Mtb, we further generated Atg5fl/fl,Lyz-Cre (Atg5ΔlyzM) mice that lacked Atg5 in myeloid cells, and obtained Atg5-deficient BMDMs derived from Atg5ΔlyzM mice to further confirm the critical role of Atg5 in Rv1468c-Ub binding-dependent autophagy. Consistently, in the control BMDMs derived from Atg5fl/fl,Lyz-Cre (Atg5ΔlyzM) mice, but not Atg5ΔlyzM BMDMs, Mtb ΔRv1468c and Mtb ΔRv1468c:Rv1468c L65G exhibited increased intracellular survival percentage, and exhibited more distinct advantage of viability when macrophages were stimulated by rapamycin (Fig. 7a). Deletion of Rv1468c or substitution of Rv1468c by L65G mutant in Mtb also reduced the colocalization of bacteria with LC3 and LAMP1 in Atg5Δ/Δ BMDMs, but not in Atg5ΔlyzM BMDMs (Fig. 7b–e). Furthermore, the colocalizations of WT Mtb and Mtb ΔRv1468c:Rv1468c, but not Mtb ΔRv1468c or Mtb ΔRv1468c:Rv1468c L65G, with Ub increased in Atg5ΔlyzM BMDMs, as compared to Atg5Δ/Δ BMDMs, which might be explained by the possibility that host autophagy flux for degradation of Ub-bound bacteria was blocked by Atg5 deficiency (Supplementary Fig. 11c, d). Taken together, these data indicate that disturbance of host autophagy pathway by deletion of p62 or Atg5 impairs Rv1468c-Ub interaction-triggered clearance of mycobacteria.

Rv1468c-dependent clearance of mycobacteria requires Atg5. To further explore the role of Atg5 in Rv1468c-Ub interaction-triggered host immune defense against mycobacteria, we challenged Atg5Δ/Δ and Atg5ΔlyzM mice with WT and various mutant Mtb H37Rv strains. Notably, deletion of Rv1468c or substitution of Rv1468c with L65G mutant in Mtb increased bacterial loads in the lungs of the control mice, but not the Atg5-deficient mice, at 2 and 3 weeks post-infection (Fig. 8a). Histopathological assay of lungs also showed that Atg5Δ/Δ mice, but not Atg5ΔlyzM mice, infected with Mtb ΔRv1468c or Mtb ΔRv1468c:Rv1468c L65G had larger lesions with increased total cellular and neutrophil infiltration, as well as more abundance of acid-fast bacilli in lung sections than those infected with WT Mtb and Mtb ΔRv1468c:Rv1468c at 3 weeks post-infection (Fig. 8b, c). Moreover, by 3 weeks post-infection, Atg5Δ/Δ mice infected with Mtb ΔRv1468c or Mtb ΔRv1468c:Rv1468c L65G exhibited increased cellular infiltration in livers as compared to WT Mtb and Mtb ΔRv1468c:Rv1468c; while Atg5ΔlyzM mice infected with each of Mtb strains had a similar histopathological change in the livers (Fig. 8d). Consistently, quantitative PCR analysis further detected increased mRNA levels of pro-inflammatory cytokines including Tnf, Il1b...
Fig. 4 Deletion of Rv1468c promotes intracellular survival of Mtb and reduces colocalizations of Mtb with LC3 and LAMP1. a, b Survival of Mtb in BMDMs. Cells were infected with the indicated Mtb strains at MOI = 1 for 0–48 h (a), or 24 h after being treated with 50 μM rapamycin (Rapa), 50 μM Rapa along with 10 mM 3-methyladenine (3-MA), or equal volume of DMSO (Control) for 4 h (b). P > 0.05, not significant (ns); *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 (two-way ANOVA). c, d Confocal microscopy analysis for colocalizations of Mtb with LC3 or LAMP1. BMDMs were infected with each of the indicated bacterial strains at MOI = 5 for 24 h and were then immunostained using anti-LC3 (c) or anti-LAMP1 (d) antibody (red). Bacteria (green) were pre-stained with Alexa Fluor 488 succinimidyl ester before infection. Scale bars, 5 μm. e, f Percent colocalization of the indicated Mtb strains with LC3 (e) or LAMP1 (f) in macrophages infected as in c and d. A total of 100 bacterial cells were counted. ****P < 0.0001 (one-way ANOVA). Results are representatives from at least three independent experiments (mean ± s.e.m. of n = 5 in a, b; n = 4 in e, f). The source data used in a, b, e, f are provided in Source Data.
and Il6 in the lungs of Atg5fl/fl mice infected with Mtb ΔRv1468c or Mtb ΔRv1468c:Rv1468c L65G, as compared to that infected with WT Mtb or Mtb ΔRv1468c:Rv1468c at 3 weeks post-infection (Supplementary Fig. 12). The enhanced immuno-pathology in Atg5fl/fl mice caused by disruption of Rv1468c in Mtb was probably due to increased bacterial loads that triggered stronger host inflammatory responses at 3 weeks post-infection. While the deletion of Atg5 in myeloid cells impaired the host autophagic functionality, leading to increased susceptibility to mycobacterial infection with excessive inflammatory responses in Atg5lyzM mice infected with all Mtb strains, which results were consistent with data from previous studies. Together, these
Data indicate that Atg5 is required for Ub-Rv1468c interaction-mediated host immune clearance of mycobacteria. Collectively, this study reveals a novel host xenophagy mechanism that initiated by direct binding of Ub to mycobacterial surface protein Rv1468c (Supplementary Fig. 13).

Discussion

Autophagy has been well-documented for its role as a host immune defense against intracellular pathogens including Mtb. Disruption of host xenophagy pathway by deletion of core autophagy genes such as Atg5 and Atg7, E3 ligases genes Park2 and Smurf1, autophagy receptor genes p62 and NDP52, or other selective autophagy-associated genes such as cyclic GMP-AMP synthase (cGAS), Sting, Tbk1, and IRGM, could facilitate mycobacterial survival in macrophages and in mice. In this study, we found that various autophagy receptors including p62, NBR1, NDP52, and OPTN were all able to interact with Rv1468c, a UBA domain-containing Mtb surface protein. Interestingly, deletion of p62 in macrophages effectively blocked Rv1468c-Ub interaction-mediated autophagy of Mtb, which finding is consistent with the previous notion that those autophagy receptors likely perform non-redundant functions and probably cooperate to mediate autophagy during

![Image](https://via.placeholder.com/150)

Fig. 5 Deletion of Rv1468c in Mtb reduces autophagy targeting to mycobacteria. a) Electron microscopy analysis for LC3 targeting on the surface of Mtb in BMDMs. BMDMs were infected with WT Mtb or Mtb ΔRv1468c for 24 h and were then immunolabelled for LC3 with 10 nm gold (black arrows). Staining controls for anti-LC3 were done without primary antibody. Asterisks represent the mycobacterial cells. Arrowheads mark the bacterial wall. Scale bars, 200 nm. b) Quantification of LC3 immunogolds on mycobacterial surface in BMDMs treated as in a. A total of 20 bacterial cells were monitored for counting the numbers of LC3 particles. Two-tailed unpaired t-test was performed. c) Electron microscopy analysis of Mtb subcellular localizations within BMDMs. BMDMs were infected with WT Mtb or Mtb ΔRv1468c as in a and were then processed for electron microscopy. Onion-like structure was observed in WT Mtb-infected BMDMs. White arrows indicate the membranes of autophagosomal vacuoles. The black arrow indicates the phagosomal membrane. Arrowheads indicate bacterial walls. Asterisks represent the mycobacterial cells. d) Quantification of Mtb subcellular localizations within BMDMs treated as in c. A total of 100 bacterial cells were counted. P > 0.05, not significant (ns); ****P < 0.0001 (one-way ANOVA). Results are representatives from at least three independent experiments (mean ± s.e.m. of n = 20 in b and n = 4 in d). The source data used in b and d are provided in Source Data.

![Image](https://via.placeholder.com/150)

Fig. 6 Rv1468c is required for host p62 targeting to Mtb in macrophages. a) Confocal microscopy analysis for colocalization of Mtb with p62 in BMDMs. BMDMs were infected with the indicated Mtb strains at MOI = 5 for 24 h and were then immunostained using anti-p62 antibody (red). Bacteria (green) were prestained with Alexa Fluor 488 succinimidyl ester before infection. Arrows indicate the colocalization of bacteria with p62. Inserts (enlarged views) show representative mycobacteria colocalized with p62. Scale bars, 20 µm. b) Percent colocalization of Mtb with Ub in BMDMs treated as in a for 0–24 h. A total of 100 bacterial cells were counted. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 (two-way ANOVA). Results are representatives from three independent experiments (mean ± s.e.m. of n = 4 in b). The source data used in b are provided in Source Data.
mycobacterial infection. We also found that deletion of Atg5 in macrophages almost completely subverted the Rv1468c-triggered autophagic clearance of mycobacteria, and mice lacking Atg5 in myeloid cells also failed to exert Rv1468c-elicted host immune defense against mycobacteria. These findings are consistent with previous observations supporting an essential role of Atg5 in protecting host against mycobacterial infection via its autophagy-related functions. There was also a study showing that Atg5 could modulate neutrophil-mediated pathologic inflammation to control Mtb infection. In the meantime, it was shown that host deficient in other autophagy-related genes (such as Atg3, Atg5, Atg7, Atg14, Atg16l1, and Beclin 1) generally results in hyperinflammatory syndromes during the infection. Thus, there exist complicated mutual effects between autophagy and inflammation during host-pathogen interactions.

In eukaryotic cells, Ub signaling could be decoded by various Ub receptors that contain different UbDs for hydrophobic interaction with Ub, which contributes to the multifaceted regulatory roles of the Ub system in diverse biological processes including pathogen-host interactions. In this study, we found that Mtb surface protein Rv1468c harbors a eukaryotic-type UBA domain, a typical UBD in eukaryotic cells that have not been previously identified in bacterial pathogens. The UBA domain of Rv1468c could be targeted by host Ub independent of E3 Ub ligases, thus mediating the aggregation of Ub to the bacteria for eliciting antibacterial autophagy. Based on our data from in vitro binding assays, Mtb Rv1468c is able to bind to free-floating poly-Ub chains, which Ub chains in eukaryotic cells are emerging as key factors at the interface of the host-pathogen interactions. Nevertheless, since both free-floating and substrate-attached poly-Ub chains exist within host cells, we do not exclude the possibility that a portion of Rv1468c may also interact with certain substrate-attached poly-Ub chains during Mtb infection in macrophages. Previous studies have demonstrated that E3 ligases Parkin and Smurf1 specifically mediate K63 and K48 ubiquitination of Mtb-associated structures, respectively. While in this study, we found that Rv1468c could interact with all seven types of homotypic Ub chains. Moreover, given the fact that no lysine site is present in Rv1468c for conventional ubiquitination by the E3 ligases, together with our finding that it could bind to the Ub chains in absence of the E3 ligases in vitro, our data indicate that Rv1468c is not likely to be as a substrate of Parkin or Smurf1, but rather an ubiquitination-independent Ub-binding target on mycobacterial surface. In macrophages, the E3 ligases-dependent ubiquitination of Mtb-containing phagosomes could occur as early as 4 h post-infection. As the infection continues, increasing number of Mtb starts to damage the phagosomes and escape into the cytosol, where the host Ub might target the unsheltered mycobacteria by direct binding to Rv1468c on their surface. Therefore, we propose that both Rv1468c UBA-mediated direct binding of Ub to the mycobacterial surface and E3 ligase-mediated ubiquitination of Mtb-associated structures are involved in Ub-mediated antimycobacterial autophagy during the infection.

Initially, it seems counterintuitive that Mtb would retain such a conserved UBA domain-containing protein like Rv1468c that functions to mark bacteria for host clearance and thus avoiding excessive host inflammation. In fact, the long-term intimate interplays between Mtb and the host are quite nuanced, rather than irreconcilably in conflict until one is defeated. In about 90% of the infected individuals, Mtb could persist in the host by establishing a latent state instead of causing host severe inflammatory responses and tissue damage, as many severe and acute infection-causing pathogens normally do. Consistently, current evidence indicates that Mtb strains with relatively attenuated virulence may be better tolerated by patients for long-term, which may ultimately lead to an extended duration of illness and increased Mtb transmission potential. Furthermore, another study suggests that lower induction of pro-inflammatory cytokines in infected individuals might be a contributing factor to the evolutionary success of modern Beijing strains of Mtb, as compared to the ancient strains. Thus, Rv1468c UBA domain-triggered autophagy could be a viable evolutionary strategy adopted by Mtb to maintain long-term intracellular survival through self-controlling its intracellular bacterial loads to avoid excessive host inflammatory immune responses, which might favor prolonged infection and greater transmission. Interestingly, proteomic profiling of Mtb revealed that Rv1468c is expressed both at the early and chronic stages of infection, and the expression of Rv1468c could be regulated by IS6110 in Mtb, further suggesting that the expression and retention of this protein might somehow exert certain beneficial advantages to the pathogen. Probably, Rv1468c-triggered autophagy might help preserve indolent growth of Mtb in vacular compartments, since the establishment of a sheltered niche within vacuoles mimicking normal cellular compartments could effectively elude host immune surveillance and pathogen clearance. This notion could be supported by a variety of studies demonstrating that the ability to create and maintain a specialized vacuolar organelle that supports bacterial replication is an important survival strategy for many intracellular pathogens such as Mtb, Legionella pneumophila and Brucella abortus. On the other side, the timely removal of cytosolic bacteria via Rv1468c-triggered autophagy could probably minimize the cytosolic exposure of microbial patterns and balance the intracellular bacterial burden to avoid host excessive inflammatory responses. Nevertheless, the overall effect of the Rv1468c-triggered autophagy on the ultimate fate of intracellular Mtb may depend upon multiple factors, including whether the xenophagy flux, the complete process of xenophagy in which pathogens contained within autophagosomes are digested by lysosomes, is compromised or not in Mtb-infected macrophages. Thus, the identification of a eukaryotic-type domain such as UBA in a Mtb surface protein for host immune recognition strengthened the notion that the intimate host-pathogen interactions drive their
Fig. 8 Atg5 is required for Rv1468c-triggered host immune clearance of Mtb in Mice.

a Bacterial titers in homogenates of lungs from Atg5^{fl/fl} (Atg5^{fl/fl}) or Atg5^{fl/fl-LyzM} (Atg5LyzM) mice intratracheally infected with 1.0 × 10^5 CFU of the indicated Mtb strains for 0–3 weeks. *P* < 0.05, not significant (ns); **P** < 0.01; ***P*** < 0.001 (mean ± s.e.m. of n = 5 mice per group; two-way ANOVA).

b Histopathology of lung sections. Scale bars, 100 μm.

c Acid-fast staining of lung sections. Scale bars, 10 μm. Arrows indicate foci of cellular infiltration. Scale bars, 100 μm. In **c** and **d**, the bottom panels show enlarged views of boxed areas. For **b–d**, Atg5^{fl/fl} or Atg5LyzM mice infected with the indicated Mtb strains as in **a** for 3 weeks. Results are representatives from three independent experiments. The source data used in **a** are provided in Source Data.
dynamic coevolution and antagonism, which regulate the diverse outcomes of pathogen persistence and host resistance. Mb encodes five ESA1 T6 secretion complexes (ESX-1 to ESX-5) known as type VII secretion systems. ESX-1 is the most studied secretion system that has been shown to be involved in various host-pathogen interactions. Notably, Rv1468c belongs to mycobacterial PE_PGRS family, which family proteins has demonstrated to be secreted by ESX-5, another secretion system of importance for Mb pathogenicity without fully understanding of the molecular mechanisms. Intriguingly, blocking PE_PGRS secretion in Mtb or M. marinum, a natural pathogen of ectotherms with close genetic relative of the Mycobacterium tuberculosis complex (MTBC), also leads to increased bacterial loads and inflammation in the host (8), suggesting that the ESX-5 system and its substrates of PE_PGRS proteins, may play important roles in triggering host immune defense and modulating mycobacterial virulence for persistent intracellular survival. PE_PGRS family proteins are mostly restricted to MTBC and are predominately expressed on the mycobacterial cell surface for direct interactions with the host. It is indicated that PE_PGRS proteins play a major role as a major source of mycobacterial antigens, and the large majority of human T cell epitopes are confined to the relatively conserved domains of the PE_PGRS proteins, rather than the highly variable PGRS domains of the PE_PGRS proteins, which is consistent with our finding that the Ub-targeting UBA domain, which is located in the PE domain of Rv1468c, is relatively conserved. The sequence conservation of the Ub-targeting and xenophagy-triggering UBA domain in Rv1468c, together with evidence indicating that autophagic induction could enhance the efficacy of TB vaccines by promoting mycobacterial antigen presentation, suggest that Rv1468c may serve as a potentially ideal molecular target for developing novel anti-TB therapies, especially when combined with xeno flux-modulating agents. Nonetheless, as noted earlier, there is a possibility that Rv1468c might be manipulated by the pathogen under certain circumstances to its own advantage, thus caution need be taken and both benefits and potential unfavorable effects should be considered while choosing to target Rv1468c for TB treatment.

In summary, our findings reveal a novel host antimicrobial xenophagy pathway triggered by direct binding of Ub to a mycobacterial surface protein, indicating a previously unrecognized role of Ub in host innate immune defense against invading pathogens. Our findings also help expand our understanding of the intricate and dynamic interactions between the host and the invading pathogens.

Methods

Bacterial strains and plasmids. E. coli DH5α and BL21 were grown in flasks using LB medium for genetic manipulations or protein overexpression. M. smegmatis and M. bovis BCG and M. tuberculosis H37Rv strains were grown in Middlebrook 7H9 broth (7H9) supplemented with 10% oleic acid-albumin-dextrose-catalase (OADC) or Middlebrook 7H10 agar (BD) supplemented with 10% OADC. The BCG and Mtb H37Rv strain with deletion of the gene encoding Rv1468c (ΔRv1468c) or create variant strain Mtb ΔRv1468c::L65G. The recombinant M. smegmatis strains overexpressing Rv1468c or its mutant Rv1468c (ΔL65G) were created by using mycobacterium shuttle vector pMV261 (provided by W.R. Jacobs, Albert Einstein College of Medicine, Yeshiva University). The recombinant M. smegmatis strains were homogenized and plated on 7H10 agar plates for CFU counting, or subjected to immunoblot analysis, anti-GAPDH (#sc-25778, Santa Cruz, 1:4000 for immunoblot and PCR analysis), anti-ubiquitin specific for K68 (#ab217934, Abcam, 1:4000 for immunofluorescence microscopy), anti-ubiquitin specific for K48 (#05–1307, Millipore, 1:4000 for immunofluorescence microscopy), anti-ubiquitin specific for K48 (#05–1307, Millipore, 1:4000 for immunofluorescence microscopy), anti-TC (1:7543, Sigma-Aldrich, 1:3000 for immunofluorescence microscopy), anti-LAMP1 (#ab24170, Abcam, 1:200 for immunofluorescence microscopy), anti-Galectin-3 (#ab2785, Abcam, 1:200 for immunofluorescence microscopy), anti-p62 (#NB1–48320, Novus Biologicals, 1:200 for immunofluorescence microscopy), anti-GAPDH (#sc-25778, Santa Cruz, 1:4000 for immunofluorescence microscopy), anti-Tubulin (#T5168, Sigma-Aldrich, 1:2000 for immunofluorescence microscopy), anti-GST (#FA-03, ZSG-BIO, 1:3000 for immunofluorescence microscopy), anti-GroEL1 (#NB24–32867, Novus Biologicals, 1:1000 for immunoblot analysis), anti-Ag85 (#ab67373, Abcam, 1:1000 for immunoblot analysis) and anti-Mtb (AbCam, 1:4000 for immunofluorescence microscopy).

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Preparation of bone marrow-derived macrophages. Bone marrow-derived macrophages (BMDMs) were cultured from the bone marrow of age- and sex-matched control mice and TLR7 deficient mice. The transfection of HEK293T or HeLa cells was carried out with the polyethylenimine method or Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.
Macrophage infection and colony-forming unit counting. RAW264.7 cells or BMDMs were seeded in 6-well plates at a density of 5.0 × 10^5 cells/well and pre-cultured for 12 h before infection. From mycobacterial strains, mycobacteria were cultured at 37 °C and centrifuged. The bacterial pellet was then thoroughly resuspended in DMEM medium with 0.05% Tween-80 by vortexing. Thereafter, cells were infected with Mtb strains at a multiplicity of infection (MOI) of 1 or 5 as indicated in the legends. The media were discarded after incubation with Mtb for 1 h. The cells were washed with PBS buffer and then suspended in 200 µl of Tris-HCl (pH 7.5) and 150 mM NaCl for cell-breaking with using Low-temperature Ultra-high Pressure Continuous Flow Cell Disruptors (INBIO) or Ultrasonic Homogenizer (Scientz Biotechnology). Glutathione Sepharose 4B (GE Healthcare) and Ni-NTA Agarose (Qiagen) were respectively used for purification of His-tagged proteins. The His-tagged proteins were then incubated with goat anti-mouse IgG or goat anti-rabbit IgG conjugated with HRP, followed by the addition of chromogenic substrates of 3,3',5,5'-tetramethylbenzidine. After color development, the plates were read at 450 nm with a microplate reader.

Cell fractionation and proteinase K sensitivity assay. Mycobacterial strains were grown in 50 ml of 7H9 medium until mid-log phase and harvested by centrifugation at 3000×g for 15 min at 4 °C. Each sample of the subcellular fraction was isolated by ultracentrifugation. The bacterial pellets were washed twice with PBS buffer and resuspended in 10 ml of PBS buffer added with 1% protease inhibitor cocktail. Cells were then sonicated with Ultrasonic Homogenizer with an operating cycle of 3 s on and 7 s off at 200 W for 15 min on ice. Fragmentized cells were centrifuged at 16,000×g for 30 min at 4 °C. The supernatants were transferred into fresh tubes and centrifuged at 27,000×g at 4 °C for 30 min in an Optima XE-100 ultracentrifuge (SW41T rotor) to precipitate cell wall. The supernatants were collected and precipitated with 10% trichloroacetic acid (TCA) and washed with 80% acetone for preparation of bacterial cytosolic proteins. For proteinase K sensitivity assay, 20 µl logarithmic phase bacterial cultures were harvested, subsequently washed and resuspended in PBS buffer. Cells were then equally divided into two aliquots, one of which was incubated with 100 µg/ml proteinase K (Merck) in a vertical rotator at 4 °C for 15 min. Protease inhibitor cocktail was added into samples to terminate the reaction followed by two washes with PBS buffer.

Protein purification. E. coli BL21 (DE3) strain was used for bacterial expression of GST-tagged and His-tagged WT or truncated Mtb Rv1468c and Ub (which was cloned into pGEX-6P-1 or PET30a vector). The bacterial strains were grown in LB medium at 37 °C until the OD600 = 0.6. Isopropyl-β-D-thiogalactopyranoside (IPTG) was subsequently added to a final concentration of 250 µM and cultures were shaking for further growing at 37 °C for 16 h. Cells were then harvested by centrifugation at 6500×g for 10 min and suspended in a buffer containing 20 mM Tris-HCl (pH 7.5) and 150 mM NaCl for cell-breaking with using Low-temperature Ultra-high Pressure Continuous Flow Cell Disruptors (INBIO) or Ultrasonic Homogenizer (Scientz Biotechnology). Glutathione Sepharose 4B (GE Healthcare) and Ni-NTA Agarose (Qiagen) were respectively used for purification of GST- and His-tagged proteins. The purified GST- and His-tagged proteins were then incubated with goat anti-mouse IgG or goat anti-rabbit IgG conjugated with HRP, followed by the addition of chromogenic substrates of 3,3',5,5'-tetramethylbenzidine. After color development, the plates were read at 450 nm with a microplate reader.

Transmission electron microscopy. BMDMs infected with mycobacteria were collected by centrifugation and washed by PBS buffer for three times and fixed with 2.5% glutaraldehyde overnight at 4 °C. After post-fixation with 1% osmium tetroxide for 2 h, dehydrated in a graded series of ethanol and embedded in SPI-PON 812 resin and polymerized for 24 h at 60 °C. Ultrathin sections (~70 nm) were cut by Leica EM UC7, mounted on copper grids, and stained with uranyl acetate and lead citrate. For immunoelectron microscopy, ultrathin cryosections of mycobacterial cells or BMDMs were prepared. Briefly, the cells were fixed with 4% PFA and 0.5% glutaraldehyde in PBS at 4 °C for 2 h, and were subsequently embedded with 12% gelatin and infiltrated with 2.3 M sucrose in PBS overnight at 4 °C, and then were frozen in liquid nitrogen and cryosectioned (Tokuyasu method). Ultrathin cryosections were obtained by Leica EM FC7 microscope, which were then collected on grids with sucrose and methylcellulose. The rabbit anti- Rv1468c antibody (1:200 diluted), mouse anti-ub (1:10 diluted), or rabbit anti-LC3B (1:50 diluted) were used for detection of designated proteins on the grids containing mycobacterial cells or BMDMs infected with mycobacteria. The goat anti-rabbit-10 nm or 6-nm gold conjugates (1:200 diluted; Aurion), or the goat anti-mouse or anti-rabbit 10-nm gold conjugates (1:200 diluted; Aurion) were used for immunolabelling. The grids were incubated for 1 h with primary antibodies and subsequently with secondary antibodies at room temperature. Finally, samples were stained

Cell fractionation and proteinase K sensitivity assay. Mycobacterial strains were grown in 50 ml of 7H9 medium until mid-log phase and harvested by centrifugation at 3000×g for 15 min at 4 °C. Each sample of the subcellular fraction was isolated by ultracentrifugation. The bacterial pellets were washed twice with PBS buffer and resuspended in 10 ml of PBS buffer added with 1% protease inhibitor cocktail. Cells were then sonicated with Ultrasonic Homogenizer with an operating cycle of 3 s on and 7 s off at 200 W for 15 min on ice. Fragmentized cells were centrifuged at 16,000×g for 30 min at 4 °C. The supernatants were transferred into fresh tubes and centrifuged at 27,000×g at 4 °C for 30 min in an Optima XE-100 ultracentrifuge (SW41T rotor) to precipitate cell wall. The supernatants were collected and precipitated with 10% trichloroacetic acid (TCA) and washed with 80% acetone for preparation of bacterial cytosolic proteins. For proteinase K sensitivity assay, 20 µl logarithmic phase bacterial cultures were harvested, subsequently washed and resuspended in PBS buffer. Cells were then equally divided into two aliquots, one of which was incubated with 100 µg/ml proteinase K (Merck) in a vertical rotator at 4 °C for 15 min. Protease inhibitor cocktail was added into samples to terminate the reaction followed by two washes with PBS buffer.

In vitro MtB-Ub binding assay. A total of 8 ml logarithmic phase bacterial cultures were harvested, subsequently washed and resuspended in PBS buffer. Cells were then equally divided into two aliquots, one of which was subjected to short exposure with proteinase K as described before. After extensive wash with PBS buffer, bacteria were resuspended and incubated with 10 µg of K63-linked poly-Ub (Bimake), K48-linked poly-Ub (Bimake) or K48-linked poly-Ub (Bimake) in 500 µl of binding buffer with 0.1 µg/ml BSA. After incubation at 4 °C for 4 h, bacteria were extensively washed with PBS buffer and were precipitated by centrifugation at 3600×g at 4 °C for 5 min. For immunoblot analysis, bacteria were resuspended in an appropriate volume of 1 × SDS-PAGE loading buffer followed by boil for 10 min to obtain the samples of bacterial lysates. For immunofluorescence, bacteria were resuspended in 4% paraformaldehyde (PFA) for 15 min at RT for fixation followed by blocking in PBS containing 2% BSA for 30 min at RT, and immunostained by using anti-Ub antibody as described before to prepare the samples for detection.

In vitro precipitation assay. For the precipitation assay, 10 µg of GST and GST-protein fusions GST-Rv1468c and indicated truncated proteins were immobilized onto 20 µl of Glutathione Sepharose 4B resins in 500 µl of binding buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM DTT and 0.1% NP-40) supplemented with 1% protease inhibitor cocktail for 1 h at 4 °C. The resins were then washed three times with binding buffer and incubated with 10 µg of purified His-tagged mono-Ub, K63-linked poly-Ub (Ub−57) or K48-linked poly-Ub (Ub−57) in 500 µl binding buffer supplemented with 0.1 mg/ml BSA. After 4 h of incubation at 4 °C, beads were extensively washed and the bound protein complexes were subjected to SDS-PAGE and blotted with indicated antibodies.

Selective permeabilization with digitonin. Macrophage cells seeded on coverslips were infected with dyed Mtb strains as described before. Cells were washed three times with PBS buffer. Bacterial cells were then collected by centrifugation at 3000×g at 4 °C for 5 min, and cultures were seeded on glass slides using DAPI Staining Solution (Leagene Biotechnology). Confocal images were taken with Olympus FV1000 confocal microscope and analyzed by FV10-ASW 3.0 software.

Immunoblot analysis and immunoprecipitation. Cells were lysed in the Cell Lysis Buffer for Western and IP (Beyotime) or RIPA Lysis Buffer (Beyotime) supplemented with 1 mM phenylmethylsulfonfyl fluoride (PMSF). Proteins were separated by SDS-PAGE and transferred to polyvinylidene fluoride membranes (Millipore). The membranes were blocked with 5% skimmed milk powder in Tris-buffered saline with 0.1% Tween 20 (TBS-T) for 1 h at room temperature (RT) and subsequently incubated with primary antibodies overnight at 4 °C. The membranes were then incubated with goat anti-mouse IgG or goat anti-rabbit IgG conjugated to HRP for 1 h at RT after three washes of 10 min each with TBS-T. Finally, the membranes were developed by Immobilon Western Chemiluminescent HRP Substrate (Millipore) after three washes with TBS-T again and exposed to X-ray film. For immunoprecipitation, cells were lysed in a lysis buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 and 1% protease inhibitor cocktail (Bimake). Cell lysates were incubated with anti-Flag M2 Affinity Gel (Sigma-Aldrich) for immunoprecipitation of Flag-tagged in a vertical rotator (Scientz Biotechnology) at 4 °C for 2 h. After five washes with lysis buffer, the immunocomplexes bound in affinity beads were analyzed by SDS-PAGE and blotted with indicated antibodies.
with a 2% mercaptoethanol and 0.4% uranyl acetate solution. Images were taken by FEI Tecnai Spirit 120 kV transmission electron microscope.

Statistical analysis. Unpaired two-tailed Student’s t-tests, one-way ANOVA, or two-way ANOVA analysis followed by multiple comparisons was used for statistical analysis as indicated in the corresponding figure legends. The quantified data with statistical analysis were performed using GraphPad Prism 8.0. P < 0.05 was considered to be statistically significant.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The source data underlying Figs. 1c, 3c, e, 4a, b, e, f, 5b, d, 6b, 7a, d, e, and 8a, and Supplementary Figs. 1c, e, f, 4a, f, 5a, d, e, 6b, c, 7b, 8b, 10c, e, g, 11d, and 12 are provided in Source Data. The original data of unprocessed blot and gel images are also available in Source Data. All other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability. The open source including Jalview 2.10.2h (http://www.jalview.org/) and iTol online tool (http://itol.embl.de/) were used for Supplementary Fig. 2a and 2d according to the instruction on their corresponding websites, respectively. The source code and dataset are available on GitHub (https://github.com/LuShuYangMing/Protein-Domain-Plot), where an expected output and a brief instruction are attached.

Received: 26 October 2018 Accepted: 1 April 2019
Published online: 29 April 2019

References
1. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016).
2. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).
3. Manzanillo, P. S. et al. The ubiquitin ligase Parkinson mediates resistance to intracellular pathogens. Nature 501, 512–516 (2013).
4. Franco, L. H. et al. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell host microbe 21, 59–72 (2017).
5. Ponpuak, M. et al. Delivery of cytosolic components by autophagy adaptor protein p62 endows autophagic cells with unique antimicrobial properties. Immunity 32, 329–341 (2010).
6. Heath, R. J. et al. RNF166 determines recruitment of adaptor proteins during selective autophagy. Cell host microbe 8, 2681 (2017).
7. McEwan, D. G. Host-pathogen interactions and subversion of autophagy. Essays Biochem 61, 687–697 (2017).
8. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).
9. Jagannath, C. et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15, 267–269 (2009).
10. Paz, I. et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 12, 530–544 (2010).
11. Yok, J. M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6, 231–243 (2009).
12. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).
13. Claussen, T. H. et al. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 10, 330–344 (2014).
14. Cemma, M., Kim, P. K. & Brumell, J. H. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 7, 341–345 (2014).
15. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 445, 885–889 (2006).
16. Castillo, E. F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl Acad. Sci. USA 109, E1368–E1376 (2012).
17. Bonilla, D. L. et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39, 537–547 (2013).
18. Collins, A. C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).
19. Watson, R. O. et al. The cytosolic sensor cga detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).
20. Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).
21. Kimmy, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015).
22. Saioth, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxic-induced IL-1beta production. Nature 456, 264–268 (2008).
23. Park, S. et al. Autophagy genes enhance murine gammaherpesvirus 68 reactivation from latency by preventing virus-induced systemic inflammation. Cell Host Microbe 19, 91–101 (2016).
24. Lu, Q. et al. Homostatic control of innate lung inflammation by Vici syndrome gene Eps5 and additional autophagy genes promotes inflammation pathogenesis. Cell Host Microbe 19, 102–113 (2016).
25. Banerjee, I. et al. Recognition of the RIG-1 pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

Nature Communications | (2019) 10:1973 | https://doi.org/10.1038/s41467-019-09955-8 | www.nature.com/naturecommunications
64. Weerdenburg, E. M. et al. ESX-5-dependent mycobacteria entry into macrophages: A role for the Mce3C ESX-secreted protein. *Cell Host Microbiol* 21, 202–213 (2017).

65. Ates, L. S. et al. Mutations in ppe38 block PE_PGRS secretion and attenuate virulence in Mycobacterium tuberculosis. *Infect. Immun.* 86, 1650–1669 (2016).

66. van Laarhoven, A. et al. Low induction of proinflammatory cytokines parallels evolutionary success of modern strains within the *Mycobacterium tuberculosis* Beijing genotype. * Infect. Immun.* 81, 3750–3759 (2013).

67. Kumar, Y. & Valdivia, R. H. Leading a sheltered life: intracellular pathogens evade and exploit autophagy. *Front. Cell. Infect. Microbiol.* 5, 482 (2017).

68. Miller, C. N. et al. A Brucella type IV effector targets the cog tethering complex to remodel host secretory traffic and promote intracellular replication. *Cell host microbe* 22, 317–329 e317 (2017).

69. Mitchell, G. & Isberg, R. R. Innate immunity to intracellular pathogens: balancing microbial elimination and inflammation. *Cell host microbe* 22, 166–175 (2017).

70. Deretic, V. & Levine, B. Autophagy balances inflammation in innate immunity. *Autophagy* 14, 243–251 (2018).

71. Chandra, P. & Kumar, D. Selective autophagy gets more selective: uncoupling of autophagy flux and xenophagy flux in *Mycobacterium tuberculosis*-infected macrophages. *Autophagy* 12, 608–609 (2016).

72. Groschel, M. I., Sayes, F., Simeone, R., Majlessi, L. & Brosch, R. ESX secretion systems: mycobacterial evolution to counter host immunity. *Nat. Rev. Microbiol.* 14, 677–691 (2016).

73. Abdallah, A. M. et al. PPE and PE_PGRS proteins of *Mycobacterium marinum* are transported via the type VII secretion system ESX-5. *Mol. Microbiol.* 73, 329–340 (2009).

74. Weerdenburg, E. M. et al. ESX-5-deficient *Mycobacterium marinum* is hypervirulent in adult zebrafish. *Cell Microbiol.* 14, 728–739 (2012).

75. Ates, L. S. et al. Mutations in ppeS block PE_PGRS secretion and increase virulence of *Mycobacterium tuberculosis*. *Nat. Microbiol.* 3, 181–188 (2018).

76. Copin, R. et al. Sequence diversity in the pe_pgrs genes of *Mycobacterium tuberculosis* is independent of human T cell recognition. *MBio* 5, e00960–e00913 (2014).

77. Saini, N. K. et al. Suppression of autophagy and antigen presentation by *Mycobacterium tuberculosis* PE_PGRS47. *Nat. Microbiol.* 1, 16133 (2016).

78. van Kessel, J. C. & Hatfull, G. F. Recombining in *Mycobacterium tuberculosis*. *Nat. Methods* 4, 147–152 (2007).

79. Zhang, Y., Li, J., Li, B., Wang, J. & Liu, C. H. *Mycobacterium tuberculosis* Mce3C promotes mycobacteria entry into macrophages through activation of beta2 integrin-mediated signalling pathway. *Cell Microbiol.* 20, https://doi.org/10.1111/cmi.12806 (2018).

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant 2017YFA0505900 to C.H.L.), the Major Program of National Natural Science Foundation of China (Grant 31830003 to C.H.L.), the National Natural Science Funds for Distinguished Young Scholar (Grant 81825014 to C.H.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB29020000 to C.H.L.), the National Basic Research Program of China (Grant 2014CB744400 to C.H.L.), the National Science and Technology Major Project (Grant No. 2018ZX10010004 to J.W.), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (to C.H.L. and J.W.). We thank N. Mizushima (The University of Tokyo) for *Atgs5flu/fllox* mice; W. R. Jacobs (Albert Einstein College of Medicine, Yeshiva University), H. Wang (Xiamen University, Xiamen) and F. Shao (National Institute of Biological Sciences, Beijing) for multiple plasmids; L. Sun (Center for Biological Imaging, Institute of Biophysics, Beijing) for helping with electron microscopy analysis; T. Zhao (Institute of Microbiology, Chinese Academy of Sciences, Beijing) for helping with flow cytometry; Y. Li (Fudan University Shanghai Medical College) and X. Liu (Cincinnati Children’s Hospital Medical Center, Cincinnati) for providing experimental suggestions.

Author contributions

C.H.L. conceived the project; C.H.L. and Q.C. designed the experiments and analyzed the data; Q.C., X.W., L.Q., Y.Z., P.G., Z.L., B.L., J.W., Y.Z.Z. and W.D. performed the experiments; I.Z., W.L., D.Z., Y.P., and G.F.G. contributed some critical experimental materials; Q.C. and C.H.L. wrote the manuscript, with critical input from all other authors; all authors read and approved the final version of the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-09955-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Robert Watson and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019