A generalization of Pappus chain theorem

HIROSHI OKUMURA
Takahanaidai Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract. We generalize Pappus chain theorem and give an analogue to this theorem.

Keywords. Pappus chain theorem

Mathematics Subject Classification (2010). 01A20, 51M04

1. Introduction

Let α, β and γ be circles with diameters BC, CA and AB, respectively for a point C on the segment AB. Pappus chain theorem says: if $\{\alpha = \delta_0, \delta_1, \delta_2, \cdots\}$ is a chain of circles whose members touch β and γ, the distance between the center of the circle δ_n and the line AB equals $2nr_n$, where r_n is the radius of δ_n (see Figure 1). In this article we give a simple generalization of this theorem and show that if we consider a line passing through the centers of two circles in the chain instead of AB, a similar theorem still holds.

Figure 1.

2. A generalization of Pappus chain theorem

Let $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\} = \{\alpha, \beta, \gamma\}$ and $\{P_1, P_2, P_3\} = \{A, B, C\}$, where P_3P_1 and P_1P_2 are diameters of ε_2 and ε_3, respectively. We consider the chain of circles $C = \{\cdots, \delta_{-2}, \delta_{-1}, \varepsilon_1 = \delta_0, \delta_1, \delta_2, \cdots\}$ whose members touch the circles ε_2 and ε_3. Let r_n be the radius of δ_n. Pappus chain theorem is obtained in the case $i = 0$ in the following theorem (see Figure 2).

Theorem 1. If D_i is the center of the circle $\delta_i \in C$ and $H_i(n)$ is the point of intersection of the line P_iD_i and the perpendicular to AB from D_n, the following relation holds.

\[(1) \quad |D_nH_i(n)| = 2|n - i|r_n.\]

Proof. We invert the figure in the circle with center P_1 orthogonal to δ_n. Then δ_n and P_1D_i are fixed and ε_2 and ε_3 are inverted to the tangents of δ_n perpendicular to AB. Let F be the foot of perpendicular from D_n to AB. Since $H_i(n)$ is the center of the image of δ_i, we have $|H_i(n)F| = 2ir_n$, while $|D_nF| = 2nr_n$. Hence we get (1).

\[\square\]
A generalization of Pappus chain theorem

Figure 2: \(C = C_\alpha, \ i = 1, \ n = 3 \)

3. An analogue to Pappus chain theorem

Let \(a \) and \(b \) be the radii of the circles \(\alpha \) and \(\beta \), respectively. We use a rectangular coordinate system with origin \(C \) such that \(A \) and \(B \) have coordinates \((-2b,0)\) and \((2a,0)\), respectively. If \(\epsilon_1 = \alpha \), the chain is explicitly denoted by \(C_\alpha \). The chains \(C_\beta \) and \(C_\gamma \) are defined similarly. Let \(c = a + b \) and let \((x_n, y_n)\) be the center coordinate of the circle \(\delta_n \in C \). We have \(y_n = 2nr_n \) by Pappus chain theorem, and \(x_n \) and \(r_n \) are given in Table 1 [2, 3].

Chain	\(x_n \)	\(r_n \)
\(C_\alpha \)	\(-2b + \frac{bc(b + c)}{n^2a^2 + bc}\)	\(\frac{abc}{n^2a^2 + bc}\)
\(C_\beta \)	\(2a - \frac{ca(c + a)}{n^2b^2 + ca}\)	\(\frac{abc}{n^2b^2 + ca}\)
\(C_\gamma \)	\(\frac{ab(b - a)}{n^2c^2 - ab}\)	\(\frac{abc}{n^2c^2 - ab}\)

Table 1: \(y_n = 2nr_n \)

Let \(l_{ij} \ (i \neq j) \) be the line passing through the centers of the circles \(\delta_i \) and \(\delta_j \) for \(\delta_i, \delta_j \in C \). It is expressed by the equations

\[
\begin{align*}
2(bc - a^2ij)x + a(b + c)(i + j)y - 2b(2a^2ij - c(b - c)) &= 0, \\
2(ca - b^2ij)x - b(c + a)(i + j)y + 2a(2b^2ij + c(c - a)) &= 0, \\
2(ab + c^2ij)x + c(a - b)(i + j)y - 2ab(a - b) &= 0
\end{align*}
\]

in the cases \(C = C_\alpha, \ C = C_\beta, \ C = C_\gamma \), respectively.

Let \(H_{ij}(n) \) be the point of intersection of the lines \(l_{ij} \) and \(x = x_n \) with \(y \)-coordinate \(h_{ij}(n) \). Let \(d_{ij}(n) = h_{ij}(n) - y_n \), i.e., \(d_{ij}(n) \) is the signed distance between the center of \(\delta_n \) and \(H_{ij}(n) \). The following theorem is an analogue to Pappus chain theorem (see Figure 3). It is also a generalization of [1].

Theorem 2. If \(i + j \neq 0 \), then \(d_{ij}(n) = f_{ij}(n)r_n \) holds, where

\[
f_{ij}(n) = \frac{2(n - i)(n - j)}{i + j}.
\]

Proof. We consider the chain \(C_\alpha \). By Table 1 and (2), we get

\[
h_{ij}(n) = \frac{2(n^2 + ij)abc}{(i + j)(n^2a^2 + bc)} = \frac{2(n^2 + ij)}{(i + j)}r_n.
\]
Therefore
\[d_{i,j}(n) = h_{i,j}(n) - y_n = 2 \frac{(n^2 + ij)}{(i + j)} r_n - 2nr_n = \frac{2(n-i)(n-j)}{i+j} r_n. \]

The rest of the theorem can be proved in a similar way. □

Figure 3: \(C = C_\beta, \{i, j\} = \{0, 1\}, n = 2 \)

Corollary 1. If \(i = 0 \) in Theorem 2, the following statements hold.
(i) If \(j = \pm 1 \), \(d_{i,j}(n) = \pm 2n(n \mp 1)r_n \).
(ii) If \(j = \pm 2 \), \(d_{i,j}(n) = \pm n(n \mp 2)r_n \).

Corollary 2. \(d_{i,j}(n) - d_{i,j}(-n) = -4nr_n \) for any integers \(i, j, n \) with \(i \neq \pm j \).

REFERENCES

[1] A. Altintas, H. Okumura, A note on Pappus chain and a collinear theorem, Sangaku Journal of Mathematics, 2 (2018) 11–12.
[2] G. Lucca, Some identities arising from inversion of Pappus chains in an arbelos, Forum Geom., 8 (2008) 171–174.
[3] G. Lucca, Three Pappus chains inside the arbelos: some identities, Forum Geom., 7 (2007) 107–109.