Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research
Coronavirus Disease 2019—Perspective

Natural Host–Environmental Media–Human: A New Potential Pathway of COVID-19 Outbreak

Miao Li a, Yunfeng Yang a, Yun Lu a, Dayi Zhang a, Yi Liu a,∗, Xiaofeng Cui a, Lei Yang a, Ruiping Liu a, Jianguo Liu a, Guanghe Li a, Jiuhui Qu a,⇑

a School of Environment, Tsinghua University, Beijing 100084, China
b Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Article info
Article history:
Received 17 July 2020
Revised 21 July 2020
Accepted 7 August 2020
Available online 5 September 2020

Keywords:
Environmental quasi-host
Patient zero
SARS-CoV-2
Pathway
Origin of COVID-19

ABSTRACT
Identifying the first infected case (patient zero) is key in tracing the origin of a virus; however, doing so is extremely challenging. Patient zero for coronavirus disease 2019 (COVID-19) is likely to be permanently unknown. Here, we propose a new viral transmission route by focusing on the environmental media containing viruses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or RaTG3-related bat-borne coronavirus (Bat-CoV), which we term the “environmental quasi-host.” We reason that the environmental quasi-host is likely to be a key node in helping recognize the origin of SARS-CoV-2; thus, SARS-CoV-2 might be transmitted along the route of natural host–environmental media–human. Reflecting upon viral outbreaks in the history of humanity, we realize that many epidemic events are caused by direct contact between humans and environmental media containing infectious viruses. Indeed, contacts between humans and environmental quasi-hosts are greatly increasing as the space of human activity incrementally overlaps with animals’ living spaces, due to the rapid development and population growth of human society. Moreover, viruses can survive for a long time in environmental media. Therefore, we propose a new potential mechanism to trace the origin of the COVID-19 outbreak.

© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In general, identifying the first infected case (patient zero) is key in tracing the origin of a virus; however, doing so is extremely challenging. Despite extensive efforts, scientists have not yet identified patient zero for the 1918 influenza pandemic, human immunodeficiency virus (HIV), or H1N1 influenza in 2009, and patient zero for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is likely to remain unidentified as well. The challenge in identifying the origin of SARS-CoV-2 is that a great deal of interdisciplinary research is required; in particular, if patient zero was asymptomatic or had very mild symptoms, he or she may not have seen a doctor or generated a medical record. As a result, patient zero could forever remain unidentified. Therefore, what roadmap could be followed to skip over patient zero while still recognizing the origin of the virus?

Here, we propose a new virus transmission route (Fig. 1) by focusing on environmental media containing viruses such as SARS-CoV-2 or RaTG3-related bat-borne coronavirus (Bat-CoV), hereafter termed as the “environmental quasi-host.” We propose reasons why the environmental quasi-host is likely to be a key node in helping recognize the origin of SARS-CoV-2.

Viral transmission to humans occurs via natural host–human contact or environmental quasi-host–human contact, where the environmental quasi-host might be water, soil, or food contaminated by an animal host’s urine, saliva, feces, or secretions. Many researchers believe that SARS-CoV-2 may have come from the wild animal market. Nevertheless, they have focused on the natural host–human pathway [1–3], while ignoring the natural host–environmental quasi-host–human pathway.

Is it possible that SARS-CoV-2 infected patient zero through contact with an environmental quasi-host? With rapid industrialization and globalization, contacts between humans and environmental quasi-hosts are greatly increasing, as human activity spaces strongly overlap with animals’ living spaces. Moreover,
Viruses can survive for a long time in certain environmental media [4–6]. Many viral outbreaks in humans have been caused by direct human contact with environmental media containing a virus, such as virus-carrying water and soil, rather than by direct contact with a natural host [7–10].

Based on the following pieces of evidence from recent research and other viral transmission pathways, we consider that SARS-CoV-2 could have been transmitted from an environmental quasi-host.

2. SARS-CoV-2 detection in various environmental media

SARS-CoV-2 has been detected in various environmental media (Table 1 [11–22]), including wastewater, soil, floor surfaces, door handles, sinks, lockers, tables, windows, and packages, to name just a few. Between February and March of 2020, Liu and colleagues [11] at Wuhan University in China demonstrated the presence of SARS-CoV-2 RNA in the air by setting up aerosol capture devices in and around two hospitals. Ong’s group [12] detected SARS-CoV-2 on environmental surfaces in patients’ rooms and toilets. SARS-CoV-2 has also been detected in wastewater at Schiphol Airport in Tilburg, the Netherlands [13]. SARS-CoV-2 may exist in the habitats of species that are natural hosts for SARS-CoV-2. Therefore, further examination of environmental media in natural habitats for SARS-CoV-2 is needed.

3. Long-term virus survival in environmental media

Viruses can survive in environmental media for hundreds or even thousands of days and remain infectious under suitable conditions, which are often reported to be low temperatures, relatively closed conditions, less disturbed conditions, and highly heterogeneous environmental media. Mollivirus sibericum, which has been preserved in permafrost for 30,000 years, is still capable of infection after resuscitation [23]. Porcine parvovirus can survive in soil for more than 43 weeks [6], and poliovirus remains stable and active at 1 °C for 75 days [24]. In groundwater, human norovirus still has 10% activity after 1266 days [25]. In mineral water, hepatitis A virus and poliovirus only have a small reduction in infectivity for one year at 4 °C [4]. In contaminated water, norovirus can still be detected after 1343 days [5].

We have analyzed 482 scholarly papers published in the past 120 years (Table 2 [26–122]), which study the survival time of 116 different strains of viruses. From a statistical perspective, over 84% of the 116 different strains of viruses can survive for more than one week (Fig. 2 [26–122]). With the rapid development of global transportation, viruses in environmental media can be carried from one place in the world to another in days or weeks; thus, the origin of a virus could be far away from the location of its breakout. As the phylogenetic characteristics of a virus may greatly affect its survival time in environment media, the phylogenetic characteristics of viruses require further study.

Table 1

Environmental media	Collection period	Site or country	Reference
Aerosol	2020-02–2020-03	Wuhan, China	[11]
Wastewater	2019-11-27	Florianopolis, capital of Santa Catarina in southern Brazil	[14]
Wastewater	2019-12-18	Milan and Turin, Italy	[15]
Wastewater	2020-03-05–2020-04-23	Paris, France	[16]
Non-potable water	2020-04	Paris, France	[17]
Floor surfaces, door handles, sinks, lockers, tables, and windows	2020-01-24–2020-02-04	Singapore	[12]
Packages and the inner wall of a container of frozen shrimp	2020-07-03	Beijing, China	[18]
Samples from seafood, meat, and the external environment	2020-06	Beijing, China	[19]
Human feces	2020-01–2020-02-17	China	[20]
Wastewater	2020-02	Schiphol Airport in Tilburg, the Netherlands	[13]
Soil and wastewater	2020-04	Wuhan, China	[22]

Fig. 1. The SARS-CoV-2 transmission pathway.
Virus survival times in environmental media [26–122].

1 year > t

Virus survival time (t)	Viruses
> 1 year | Reovirus [26], human adenooviruses [5], viral hemorraghic septicemia virus (VHSV) [33], feline calicivirus (FCV) [36], calf rotavirus [28], poliovirus [4], hepatitis A virus (HAV) [4], tomato mosaic virus (TMV) [46], scrapie virus [52], H5N1 [56], H5N2 [60], H7N3 [60], H11N1 [65], H9N2 [66], H7N1 [71], marek’s disease virus (MDV) [74], mouse hepatitis virus (MHV) [75], norwalk virus [5], granulosis virus [84], avian paramyxovirus-1 (APMV-1) [87], grapevine fanleaf virus (GFLV) [89], tomato ring spot virus (TmRSV) [92], human coronavirus 229E (HCoV-229E) [95], nuclear polyhedrosis virus (NPV) [96], African swine fever virus (ASFV) [98], swine vesicular disease virus (SVVD) [100], baculovirus midgut gland necrosis virus (BMNV) [102], granulosis viruses (Baculoviridae) [104], infectious hematopoietic necrosis virus (IHNV) [106], Mollivirus sibericum [23]

1 year > t > 1 month

Astrovirus (AstVs) [27], pigle fry rhabdovirus (PRFV) [30], spring viremia of carp virus (SVCV) [30], infectious pancreatic necrosis virus (IPNV) [30], rotavirus [39], echovirus [42], Tulane virus (TV) [45], coxsackievirus [49], murine norovirus (MNV) [53], Ebola virus [57], H12N5 [61], H10N7 [61], H9N2 [66], H4N6 [66], H9N2 [72], transmissible gastroenteritis virus (TGEV) [75], hand foot mouth virus (MMDV) [78], koi herpesvirus (KHV) [81], snow mountain virus (SMV) [85], the minute virus of mice (MVM) [35], beet necrotic yellow vein virus (BNYVV) [90], salmonid aliphavirus (SAV) [93], feline infectious peritonitis virus (FIPV) [95], variola virus [97], rhesus rotavirus (RRV) [99], frog virus 3 (FV3) [101], porcine teschovirus (FIV) [103], white spot spot virus (WSVSV) [105], lymphocystis disease virus (LCDV) [107], neurovaccine virus [108], potato spindle tuber viroid (PSTDV) [62], prion [109], turkey reovirus (TRVs) [110], bovine parvovirus [111], bovine enterovirus [112], hepatitis E virus (HEV) [113], channel catfish virus (CCV) [114], avian reovirus [115], infectious salmon anemia virus (ISAV) [116], infectious pancreatic necrosis virus [117], parovirus [118], duck plague herpesvirus [119], porcine parvovirus (PPV) [6], west Nile virus [120], H7N7 [121], hepatitis B virus (HBV) [122]

1 month > t > 1 week

H11N6 [28], human immunodeficiency virus (HIV) [31], equine herpesvirus type-1 (EHV-1) [34], porcine reproductive and respiratory syndrome virus (PRRSV) [37], human papillomavirus-16 (HPV16) [40], hepatitis C virus (HCV) [43], porcine sapovirus (SoV) [46], infectious bursal disease virus (IBDV) [50], Japanese encephalitis virus (JEV) [54], spumavirus [58], pepino mosaic virus (PepMV) [62], human parainfluenza viruses [63], lassa virus [67], venezuelan equine encephalitis virus (VEEV) [67], sindbis virus [67], taura syndrome virus (TSV) [76], severe acute respiratory syndrome coronavirus (SARS-CoV) [79], vesicular stomatitis virus (VSV) [82], nipah virus [86], hantavirus [88], severe fever with thrombocytopenia syndrome virus (SFTSV) [91], H1N2 [94]

< 1 week

Simian virus 40 (SV40) [29], lung-eye-trachea virus (LETV) [32], herpes simplex virus (HSV) [35], feline leukemia virus (FeLV) [38], invertebrate iridescent virus 6 (IV-6) [41], ostred herpesvirus-1 (OshHV-1) [44], lapinized rinderpest virus [47], mouse rotavirus (MRV) [51], infectious bronchitis virus (IBV) [55], human poliovirus (HPVs) [59], potato virus Y (PYY) [62], sud herpesvirus-1 (SuHV-1) [64], human rhinovirus (HRV) [68], cytomegalovirus (CMV) [70], marburg virus [73], severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [77], measles virus [80], malle EAST respiratory syndrome coronavirus (MERS-CoV) [83]

Existing studies have confirmed that SARS-CoV-2 is likely to exist for a long time in septic tanks and other soil-containing solid media, as well as in the ground [22]. The Singapore National Center for Infectious Diseases and the Defense Science Organization (DSO) National Laboratories have detected the virus in the residence rooms of COVID-2019 patients; floor surfaces had the highest positive viral signal, exceeding those of toilets, door handles, sinks, lockers, tables, and windows [12]. SARS-CoV-2 was found to remain viable in aerosols throughout the experiment (3 h), with a reduction in infectious titer from 10^{3.5} to 10^{2} median tissue culture infective dose (TCID50) per liter of air [77]. Based on these findings, SARS-CoV-2 may exist and survive for a long time in habitat and activity place of wildlife, especially in places with low temperatures and low levels of light.

4. Viral outbreaks in humans caused by direct contact with environmental media rather than contact with a natural host

By analyzing the literature published in the past 120 years, we found at least 198 viral infection cases with 28 different strains of viruses that occurred through direct contact with environmental media (Table 3 [123–318]). Some of these cases were statistically derived from data in order to obtain a correlation between environmental media and viral transmission, and many were derived from investigations of environmental media that recognized the route or host of viral transmission. For example:

(1) A 44-year-old woman from Colorado, USA, suffered from Marburg disease in 2008 after returning home from a two-week tour in Uganda. This disease is caused by a virus that belongs to the same family as the Ebola virus, one of the deadliest pathogens to humans. Scientists sequenced the gene of an Egyptian fruit bat and believed that she was infected by the virus when she touched a rock covered with bat feces while visiting the python cave [8–10].

(2) The transmission route of the Ebola virus has been confirmed as the human consumption of fruit contaminated by bat feces [7].

(3) No less than five infectious disease incidents have occurred in China since 2009 due to drinking groundwater containing a virus that ended up affecting thousands of people. For example, an outbreak of gastroenteritis occurred in Hebei, China, in the winter of 2014–2015. The nucleotide sequence of the norovirus extracted from clinical and water samples had 99% homology with...
Table 3
Cases of virus infection caused by direct human contact with environmental media [123–318].

Virus	The relevant environmental media	Site, region, or country	Date	Reference
Hepatitis E virus	Water	Kanpur, India	1991	[123]
	Water	Hyderabad, India	2005	[124]
	Water	Shimla, India	2015–2016	[125]
	Water	Am Timan, Chad	2016-09–2017	[126]
	Water	Hyderabad, India	2005-03–2005-08	[127]
Norovirus (Norwalk virus, a small round structured virus)	Water	Zhejiang, China	2003	[128]
	Water	Guatemala	2006	[129]
	Water	Western Norway	2002-07–2003-07	[140]
	Water	Western Finland	2014-07–2015	[141]
	Drinking water	Northern Italy	2009-06–2010-06	[142]
	Drinking water	Iceland	2004	[143]
	Drinking water	Wisconsin, USA	2007-06–2008	[144]
	Drinking water	Switzerland	2008	[145]
	Drinking water	The Netherlands	2001-11–2001-12	[136]
	Drinking water	China	2010-10-31–2011-12	[146]
	Drinking water	Maine, USA	2018	[147]
	Drinking water	Colorado, USA	2019	[148]
	Drinking water	A hospital and an attached long-term care facility (LTFC), Japan	2007	[149]
	Drinking water	Taiwan, China	2015-02–2015-03	[150]
	Drinking water	A cruise ship sailing along the Yangtze River, China	2014-04–2015-05	[151]
	Sandwich	Hamilton County, Ohio, USA	1997	[152]
	Drinking water	Wuhan, China	2017-04-28–2017-05-08	[153]
	Drinking water	Northwest University of China, China	2014-06–2014-11	[154]
	Drinking water	Salzburg, Austria	2005-05–2005-06	[155]
	Drinking water	Jiaxing, China	2014-02–2014-06	[156]
	Drinking water	South Africa	2017-01–2017-02	[157]
	Drinking water	Catalonia, Spain	2016-04-11–2016-04-25	[158]
	Drinking water	Shanghai, China	2012-12–2012-13	[159]
	Drinking water	Netherlands	2002-06–2002-06	[160]
	Drinking water	Northeast Greece	2006-06–2009	[161]
	Drinking water	Xanthi, Northern Greece	2005	[162]
	Drinking water	Jeju Island, Republic of Korea	2004-05–2015-05	[163]
	Drinking water	Quebec, Canada	2011-01–2011-02	[164]
	Drinking water	Nagasaki, Japan	2003-01-2003-11	[165]
	Swimming pool water	Southeast England	2016-01–2016-02	[166]
	Swimming pool water	Vermont, USA	2004-02–2012-02	[167]
	Swimming pool water	Galveston County, Texas, USA	2013	[168]
	Swimming pool water	Puerto Rico	2009	[169]
	Swimming pool water	Southern Sweden	2017-01–2018-02	[170]
	Swimming pool water	Lianyungang, China	2017	[171]
	Swimming pool water	Taiwan, China	2015	[172]
	Swimming pool water	Zhejiang, China	2011	[173]
	Swimming pool water	Beijing, China	2017-12–2017-12	[174]
	Swimming pool water	Wuhan, China	2014-12-11–2015-04	[175]
	Swimming pool water	Hebei, China	2014-12–2015-05	[174]
	Swimming pool water	Shanghai, China	2013-12–2014-12	[176]
	Swimming pool water	Beijing, China	2018-09-04–2019-05	[177]
	Swimming pool water	Seven-day holiday cruise from Florida, USA to the Caribbean	2002-11–2003-05	[178]
	Environmental surface	France	2003-01–2004	[179]
	Environmental surface	A 240-bed veterans LTCF, USA	2003-01–2003-02	[180]
Water	Well water	Sweden	2011-03–2012-11	[181]
Well water	Well water	Santo Stefano Quisquina, Sicily, Italy	2007-11–2007-12	[182]
Well water	Well water	Delaware, USA	1987-09-19–1987-09-27	[183]

(continued on next page)
Virus	The relevant environmental media	Site, region, or country	Date	Reference
Food	Hamburg, Germany	2005-08	[185]	
Tap water	Hemiksem, Belgium	2010-12	[186]	
Environmental surface	An international cruise ship	2008	[187]	
Public toilet environment	Cruise ships	2005–2008	[188]	
Water, environmental surface	A cruise ship, Europe	Summer of 2006	[189]	
Dirty computer equipment (i.e., keyboard and mouse)	District of Columbia, USA	2007-02-08	[190]	
Environmental surface	Shanghai, China	2014-12-7–2014-12-18	[191]	
Food	A football game in the University of Florida, USA	1998-09	[192]	
Food	West Virginia, USA	2006-01	[193]	
Water	Shenzhen, China	2009-09-17–2009-10-03	[194]	
Food	Stockholm County, Sweden	2007-11	[195]	
Tap water	Taranto Bay, Southern Italy	2000-07	[196]	
Swimming pool water	Ohio, USA	1977-06	[197]	
Tap water	Heinävesi, Finland	1998-03	[198]	
Food	New York, USA	2000-02	[199]	
Drinking water	Northern Georgia, USA	1980-08	[200]	
Food	A hotel in Virginia, USA	2000-11	[201]	
Food	Virginia, USA	1999-05–1999-06	[202]	
Environment	Southern Finland	1999-12–2000-02	[203]	
Well water	Arizona, USA	1989-04-17–1989-05-01	[204]	
Water	Pennsylvania, USA	1978-07	[205]	
Aerosol	A primary school and nursery	2001-06	[206]	
Water	A ski resort in Sweden	2002-02–2002-03	[207]	
Food	Southern Sweden	2000-05-02–2000-05-03	[208]	
Food	Fort Bliss, El Paso, Texas USA	1998-08-27–1998-09-01	[209]	
Aerosol	A large hotel, Canada	1998-12	[210]	
Water vapor	Ontinyent (Valencia), Spain	1992-01	[211]	
Recreational water	The Netherlands	2012-08	[212]	
Drinking water	Finland	1994-04	[213]	
Food (made from drinking water)	South Dakota, USA	1986-08-30–1986-08-31	[214]	
Water	North Georgia, USA	1982-01	[215]	
Water, food	Two Caribbean cruise ships	1986-04-26–1986-05-01	[216]	
Lake water	Markham County, Michigan	1979-07-13–1979-07-16	[217]	
Food (exposure to non-drinking water)	The US Air Force Academy, USA	2002-09	[218]	
Fomite	Sydney, Australia	1996-01–1996-05	[219]	
Environment	North West England	1999-01–1996-05	[220]	
Food	Metropolitan Concert Hall, UK	1995-01–1995-05	[221]	
Food	Toyota City, Japan	1989-03	[222]	
Food	A Massachusetts university, USA	1994-12	[223]	
Air	Los Angeles, USA	1988-12–1989-01	[224]	
Well water	A restaurant in the Yukon territory in Canada	1995	[225]	
Groundwater	La Neuveville, Switzerland	1998	[226]	
Tap water	A re-education ward	1999-01	[227]	
Food made from contaminated water	South Wales and Bristol, UK	1994-08	[228]	
Air	A British registered cruise ship	1988-01-13	[229]	
River water	Southern New South Wales, Australia	Christmas holiday period of 1989	[230]	
Raw oysters	Southwest Scotland	Christmas holiday period of 1993	[231]	
Aerosol	An elderly care unit, UK	1992-11	[232]	
Environment	A hospital for the mentally infirm, UK	1994-05	[233]	
Food	A large hotel, UK	1985-11	[234]	
Hepatitis A virus	Drinking water	Mead County, Kentucky, USA	1982-11	[235]
Well water	A trailer park in Bartow County, Georgia, USA	1982	[236]	
Lake water	Waterway Lake, USA	1969-09	[237]	
Water	Albania	2002-11–2003-01	[238]	
Bread	A village in South Cambridgeshire, England	The late spring and summer of 1989	[239]	

(continued on next page)
Virus	The relevant environmental media	Site, region, or country	Date	Reference
Groundwater	USA	1971–2017	[240]	
Food	The Netherlands	2017	[241]	
Food	Italy	1996	[242]	
Shellfish	Shanghai, China	1988	[243]	
Well water	Guangxi, China	2012-05	[244]	
Food	Southern Italy	2002	[245]	
Groundwater	Thailand	2000	[246]	
Water	Rudraprayag District of Uttarakhand State, India	2013-05	[247]	
Water	Georgetown, Texas, USA	1980-06	[248]	
Frozen berries	Northern Italy	2013	[249]	
Clams	Valencia, Spain	1999	[250]	
Water	Orleans Island in the St. Lawrence River, Canada	Summer of 1995	[251]	
Swimming pool water	USA	1989	[252]	
Spa pool	Victoria, USA	1997	[253]	
Water	Republic of Korea	2015-04	[254]	
Water	Arapiles 62 camp located in Castellciutat, near Seo de Urgel, Spain	1987-09	[255]	
Drinking water	A medical college student's hostel, New Delhi, India	2014-01	[256]	
Orange juice	Europe	2004	[257]	
Frozen strawberries	Nordic countries	2012-10–2013-06-27	[258]	
Frozen mixed berries	Northern Italy	2013-01–2013-05	[259]	
Semi-dried tomato	The Netherlands	2010	[260]	
Pomegranate	USA	2013-05	[261]	
Hepatitis C virus	Water	Medea, Algeria	1980–1981	[262]
	Wastewater	Sewage treatment plant, Algeria	1991	[263]
Parvovirus	Drinking water	USA	1971–1978	[264]
Measles virus	Air	The Minneapolis–St. Paul metropolitan area, USA	1991-07	[265]
Poliovirus	Milk	West coast of USA	1943-09	[266]
	Lake water	Oakland County, Michigan, USA	1993-06-11–1993-06-13	[267]
	Droplet	Middlesex Hospital, London, UK	Late summer of 1952	[268]
H5N1	Chicken manure	Indonesia	2005-06–2008-06	[269]
Rotavirus	Tap water	Isere region, France	1994	[270]
	Well water	India	2009-04–2009-05	[271]
	Water	Eagle-Vail, Colorado, USA	1981-03	[272]
	Aerosol	A primary school		[273]
Adenovirus	Swimming pool water	Oklahoma, USA	1982-07	[274]
	Environment	The marine corps recruit training command, San Diego, USA	2004	[275]
	Air	Wuhan, China	2014	[276]
	Swimming pool water	Georgia, USA	1977	[277]
	Swimming pool water	Beijing, China	2013	[278]
	Swimming facilities	Taiwan, China	2011-09	[279]
Hantavirus	Animal feces	North Dakota, USA	2016	[280]
	Deer mouse excreta	California, USA	2017	[281]
	Animal secretions	North Wales	2013	[282]
	Rat	Illinois and Wisconsin, USA	2017	[283]
SARS-CoV-2	Saliva	Hong Kong, China	2020	[284]
MERS-CoV	Camel	The United Arab Emirates	2019	[285]
	Droplet	Saudi Arabia	2013-03–2013-04	[286]
Severe fever with	Cat	Japan		[287]
thrombocytopenia syndrome virus				
Herpes simplex virus	Saliva	England	2019	[288]
SARS-CoV-1	Rat	Yunnan, China	2015	[289]
	Aerosol	Canada	2003	[290]
	Aerosol	Hong Kong, China	2003	[291]
	Air	Canada	2003	[292]
	Air	Hong Kong, China	2003	[293]
West Nile virus	Mosquito-controlled pool	California	2007	[294]
H3N2	Pig	Ohio, USA	2012	[295]
	Air, droplets	Alaska, USA	1977	[296]
H1N1	Droplet	Sichuan, China	2009	[297]
H7N7	Poultry, human	The Netherlands	2003-02	[298]

(continued on next page)
the strain of Beijing/CHN/2015, which confirmed that the outbreak was waterborne. This is an excellent example of finding the route of virus transmission by investigating environmental media [154,176,194,244,319].

(4) Airborne transmission is an important mode of virus transmission, and at least six different cases of viruses infecting humans through airborne transmission have been reported. Alsved and colleagues took air samples from the surrounding environment of patients with norovirus infection and analyzed the norovirus RNA in the samples by reverse transcription polymerase chain reaction (RT-PCR). They detected norovirus RNA in some air samples, suggesting that air pollution from vomiting is an important route of virus transmission directly from animals. However, it remains unclear which animal could be the main intermediate host of SARS-CoV-2, although positive viral RNA signals were detected in seafood markets and on the chopping boards of salmon. In 1983, Lidgerding and Hetrick [337] first reported the replication of a coronavirus in a fish cell line. Furthermore, Sano et al. [338] successfully isolated a coronavirus from common carp (Cyprinus carpio) in 1988, which induced hepatic, renal, and intestinal necrosis in experimentally infected fish. Miyazaki et al. [339] found a corona-like virus in color carp (Cyprinus carpio) in 2000, which caused dermal lesion and necrosis in internal organs. Based on the aforementioned pieces of evidence, we propose that an environmental quasi-host can infect a human, and that there are two transmission routes of SARS-CoV-2:

(1) Natural hosts (animals with the virus)–environmental quasi-host (animal feces/water, soil and food contaminated by animals’ urine, saliva, feces, and secretions)–patient zero (infected or virus-carrying human who came into contact with the environment while traveling or working in the wild)–back to home or human habitations–outbreak of COVID-19.

(2) Natural host (animals with the virus)–environmental quasi-host (fruit, food, or meat contaminated by animals’ urine, saliva,
feces, and secretions)—transported to different regions or countries—patient zero (infected or virus-carrying human who came into contact with or ate the environmental quasi-host)—outbreak of COVID-19.

To summarize, it is imperative to investigate environmental quasi-hosts in order to source track the origin of SARS-CoV-2 through our two suggested transmission routes. Given the need to trace the virus around the world to prevent further pandemics, global collaboration is required not only to identify the origin of the virus, but also to fundamentally protect the existence and development of species. Doing so will proactively conserve and restore habitats for species, and serve as a key strategy for preempting the next pandemic.

Acknowledgements

We acknowledge the fund by Chinese Academy of Engineering (2020-ZD-15) for financial support of this work.

Compliance with ethics guidelines

References

[1] Konda M, Doddla B, Konala VM, Naramala S, Adapa S. Potential zoonotic origins of SARS-CoV-2 and insights for preventing future pandemics through one health approach. Cureus 2020;12(6):e8932.
[2] Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, et al. Identifying SARS-CoV2-related coronaviruses in Malayan pangolins. Nature 2020;583(7815):282–5.
[3] Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly coronaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020;109:102434.
[4] Bizigaos E, Passagot J, Crance JM, Deloince R. Long-term survival of hepatitis A virus and poliovirus type 1 in mineral water. Appl Environ Microbiol 1988;54(11):2705–10.
[5] Kauppinen A, Pitkänen T, Niettinien ET. Persistent norovirus contamination of groundwater supplies in two waterborne outbreaks. Food Environ Virol 2018;10(1):39–50.
[6] Betten A, Betscham CJ. Virus survival in slurry: analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrheaa and swine influenza viruses. Vet Microbiol 2012;157(1–2):41–9.
[7] Leroy EM, Kumsulungui B, Pourrut X, Rouquet P, Hassane A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005;438(7068):575–61.
[8] Christerson JC, Fischer PR. Beware of bar caves! Marburg hemorrhagic fever in a traveler. Travel Med Advs 2010;20(4):21–3.
[9] Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, Swanepeol R, et al. Seasonal pulses of marburg virus circulation in juvenile Rousettus aegypticus bats coincide with periods of increased risk of human PLOH. 2012;18(10):e1002877.
[10] Floyak AI. The analysis of the human antibody response to filovirus infection [dissertation]. Nashville: Vanderbilt University; 2016.
[11] Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020;582(7815):557–60.
[12] Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface and environmental sampling for human norovirus. Can J Microbiol 2016;62(5):449–54.
[13] Dayaram A, Franz M, Schattschneider A, Damiani AM, Bischofberger S, Hawley LM, et al. Stability of viral hemorrhagic septicemia virus (VHSV, PFR, SVCV, IPNV). Zentralbl Veterinarmed B 1982;29(6):457–76.
[14] Fongaro G, Hermes Stoco P, Sobral Marques Souza D, Grisard EC, Magri ME, Chiesa D, et al. Persistence of norovirus in a traveler. Travel Med Advisor 2010;20(4):21–3.
[15] Rogovski P, et al. SARS-CoV-2 in human sewage in Santa Catalina, Brazil, November 2019. 2020. medRxiv 2020.06.26.2014731.
[16] Ong SW, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface and environmental sampling for human norovirus. Can J Microbiol 2016;62(5):449–54.
[17] McDaniel AE, Cochran KW, Gannon JJ, Williams GW. Rotavirus and reovirus stability in microorganism-free distributed waste and waters. Water Res 2011;45(17):1349–53.
[18] Butot S, Putallaz T, Sánchez G. Effects of sanitation, freezing and frozen storage on enteric viruses. J Food Prot 2011;74(1):311–22.
[19] Cui H. Coronavirus pandemic: 6 new Beijing cases traced to food market. [Internet]. Beijing: China Global Television Network (CGTN); 2020 Jun 13 [cited 2020 Jul 15]. Available from: https://news.cgtn.com/news/2020-04-20/Paris-finds-minusculae-traces-of-coronavirus-in-its-non-potable-water.html.
[20] CTGN. Coronavirus found on shrimp packaging from Ecuador, China suspends imports from 23 meat companies [Internet]. Beijing: China Global Television Network (CGTN); 2020 Jul 10 [cited 2020 Jul 15]. Available from: https://news.cgtn.com/news/2020-05-07/China-suspends-imports-from-Ecuador-00007Dvod4M/index.html.
[21] Cui H. Coronavirus pandemic: 6 new Beijing cases traced to food market [Internet]. Beijing: China Global Television Network (CGTN); 2020 Jul 13 [cited 2020 Jul 15]. Available from: https://news.cgtn.com/news/2020-04-20/Paris-finds-minusculae-traces-of-coronavirus-in-its-non-potable-water.html.
[22] Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323(18):1843–4.
[23] Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 2020;20(4):411–2.
[24] Zhang D, Yang Y, Huang X, Jiang J, Li M, Zhang X, et al. SARS-CoV-2 spillover into hospital outdoor environments. medRxiv 2020.05.12.20097105.
[25] Legendre M, Larigue A, Beriaux J, Jdey S, Bartoli J, Lescot M, et al. In-depth study of Mollivirus sibericum, a new 30,000-year-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA 2015;112(38):E5237–35.
[26] Hurst CJ, Gerba CP, Cech I. Effects of environmental variables and soil characteristics on virus survival in soil. Appl Environ Microbiol 1980;40(6):1067–79.
[27] Seitz SR, Leon JS, Schwab KJ, Lyon GM, Dowd M, McDaniels M, et al. Norovirus infectivity in humans and persistence in water. Appl Environ Microbiol 2011;77(7):6898–9.
[28] McDaniel AE, Cochran KW, Gannon JJ, Williams GW. Rotovirus and reovirus stability in microorganism-free distributed waste and waters. Water Res 2011;45(17):1349–53.
[29] Abad PX, Pintó RM, Villena C, Gajardo R, Bosch A. Avian coronavirus survival in drinking water. Appl Environ Microbiol 1997;63(8):3119–22.
[30] Zarkov IS. Survival of avian influenza viruses in filtered and natural surface waters of different physical and chemical parameters. Rev Med Vet 2006;157(10):471–6.
[31] Akers TG, Prato CM, Dubovi EJ. Airborne stability of simian virus 40. Appl Microbiol 1973;26(2):146–8.
[32] Ahne W. Comparative studies of the stability of 4 fish-pathogenic viruses (VHSV, PRV, SVCV, IPNV). Zentralbl Veterinarmed B 1982;29(6):457–76, German.
[33] Wu S, Van Y, Yan P, Den Y, Chen L. Study on the survival ability of HIV in the micro-environment of biological safety laboratory. Chin J Exp Clin Virol 2014;28(6):426–8.
[34] Curry SS, Brown DR, Gaskin JM, Jacobson ER, Ehhardt LM, Blahak S, et al. Persistent infectivity of a disease-associated herpesvirus in green turtles after exposure to seawater. J Wildl Dis 2000;36(4):792–7.
[35] Hawley LM, Garver KA. Stability of viral hemorrhagic septicaemia virus (VHSV) in freshwater and seawater at various temperatures. Dis Aquat Organ 2008;82(3):171–8.
[36] Dayaram A, Franz M, Schattschneider A, Damiani AM, Bischofberger S, Osterrieder N, et al. Long term stability and infectivity of herpesviruses in water. Sci Rep 2017;7(1):46559.
[37] Firquet B, Beaurjuge S, Cagnon D, Elskens P, Bombard L, Lefebvre P, et al. Persistence of Mollivirus sibericum, a new 30,000-year-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA 2015;112(38):E5237–35.
[38] Miao Li, Yunfeng Yang, Yun Lu, Dayi Zhang, Yi Liu, Xiaofeng Cui, Zhiqian Sun, et al. Long-term survival of Mollivirus sibericum, a new 30,000-year-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA 2015;112(38):E5237–35.
[39] McDaniel AE, Cochran KW, Gannon JJ, Williams GW. Rotavirus and reovirus stability in microorganism-free distributed waste and waters. Water Res 2011;45(17):1349–53.
[40] Abad PX, Pintó RM, Villena C, Gajardo R, Bosch A. Avian coronavirus survival in drinking water. Appl Environ Microbiol 1997;63(8):3119–22.
Zhang Q, Li J, Jiang X, Li C, Liu L, Liang M, et al. A primary study of the thermal survival of spumavirus, a primate retrovirus, in serum. Virus Res 2019;293:019944.

Ijaz MK, Sattar SA, Alkarmi T, Dar FK, Bhatti AR, Elhag KM. Studies on the survival and disinfection of Marek’s disease virus in water. Avian Pathol 2010;39(3):258–67.

Brown P, Gajdusek DC. Survival of scrapie virus after 3 years’ interment. Sci Total Environ 2017;574:165–75.

Jordan FT, Nasser TJ. The survival of infectious bronchitis (IB) virus in water. Avian Pathol 1973;2(2):91–101.

Paek MR, Lee YJ, Yoon H, Kang HM, Lim SM, Choi JG, et al. Survival rate of avian influenza virus in water and plants. Poult Sci 2010;89(8):1647–50.

Bibby K, Casson LW, Stachler E, Haas CN. Ebola virus persistence in the environment: state of the knowledge and research needs. Environ Sci Technol 2015;49(18):10540–50.

Letlikar MS, Lipson SM. Survival of spumavirus, a primate retrovirus, in laboratory media and water. FEMS Microbiol Lett 2002;211(2):207–11.

Liang L, Goh GC, Gin KYH. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. Sci Total Environ 2017;574:165–75.

Brown P, Gajdusek DC. Survival of scrapie virus after 3 years’ interment. Sci Total Environ 2017;574:165–75.

Jordan FT, Nasser TJ. The survival of infectious bronchitis (IB) virus in water. Avian Pathol 1973;2(2):91–101.

Paek MR, Lee YJ, Yoon H, Kang HM, Kim CM, Choi JG, et al. Survival rate of high pathogenicity avian influenza viruses at different temperatures. Poult Sci 2010;89(8):1647–50.

Bibby K, Casson LW, Stachler E, Haas CN. Ebola virus persistence in the environment: state of the knowledge and research needs. Environ Sci Technol 2015;49(18):10540–50.

Letlikar MS, Lipson SM. Survival of spumavirus, a primate retrovirus, in laboratory media and water. FEMS Microbiol Lett 2002;211(2):207–11.

Liang L, Goh GC, Gin KYH. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. Sci Total Environ 2017;574:165–75.

Brown P, Gajdusek DC. Survival of scrapie virus after 3 years’ interment. Sci Total Environ 2017;574:165–75.

Jordan FT, Nasser TJ. The survival of infectious bronchitis (IB) virus in water. Avian Pathol 1973;2(2):91–101.

Paek MR, Lee YJ, Yoon H, Kang HM, Kim CM, Choi JG, et al. Survival rate of high pathogenicity avian influenza viruses at different temperatures. Poult Sci 2010;89(8):1647–50.

Bibby K, Casson LW, Stachler E, Haas CN. Ebola virus persistence in the environment: state of the knowledge and research needs. Environ Sci Technol 2015;49(18):10540–50.

Letlikar MS, Lipson SM. Survival of spumavirus, a primate retrovirus, in laboratory media and water. FEMS Microbiol Lett 2002;211(2):207–11.

Liang L, Goh GC, Gin KYH. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. Sci Total Environ 2017;574:165–75.

Brown P, Gajdusek DC. Survival of scrapie virus after 3 years’ interment. Sci Total Environ 2017;574:165–75.

Jordan FT, Nasser TJ. The survival of infectious bronchitis (IB) virus in water. Avian Pathol 1973;2(2):91–101.

Paek MR, Lee YJ, Yoon H, Kang HM, Kim CM, Choi JG, et al. Survival rate of high pathogenicity avian influenza viruses at different temperatures. Poult Sci 2010;89(8):1647–50.

Bibby K, Casson LW, Stachler E, Haas CN. Ebola virus persistence in the environment: state of the knowledge and research needs. Environ Sci Technol 2015;49(18):10540–50.

Letlikar MS, Lipson SM. Survival of spumavirus, a primate retrovirus, in laboratory media and water. FEMS Microbiol Lett 2002;211(2):207–11.

Liang L, Goh GC, Gin KYH. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. Sci Total Environ 2017;574:165–75.

Brown P, Gajdusek DC. Survival of scrapie virus after 3 years’ interment. Sci Total Environ 2017;574:165–75.

Jordan FT, Nasser TJ. The survival of infectious bronchitis (IB) virus in water. Avian Pathol 1973;2(2):91–101.

Paek MR, Lee YJ, Yoon H, Kang HM, Kim CM, Choi JG, et al. Survival rate of high pathogenicity avian influenza viruses at different temperatures. Poult Sci 2010;89(8):1647–50.

Bibby K, Casson LW, Stachler E, Haas CN. Ebola virus persistence in the environment: state of the knowledge and research needs. Environ Sci Technol 2015;49(18):10540–50.

Letlikar MS, Lipson SM. Survival of spumavirus, a primate retrovirus, in laboratory media and water. FEMS Microbiol Lett 2002;211(2):207–11.

Liang L, Goh GC, Gin KYH. Decay kinetics of microbial source tracking (MST) markers and human adenovirus under the effects of sunlight and salinity. Sci Total Environ 2017;574:165–75.

Brown P, Gajdusek DC. Survival of scrapie virus after 3 years’ interment. Sci Total Environ 2017;574:165–75.

Jordan FT, Nasser TJ. The survival of infectious bronchitis (IB) virus in water. Avian Pathol 1973;2(2):91–101.

Paek MR, Lee YJ, Yoon H, Kang HM, Kim CM, Choi JG, et al. Survival rate of high pathogenicity avian influenza viruses at different temperatures. Poult Sci 2010;89(8):1647–50.

Bibby K, Casson LW, Stachler E, Haas CN. Ebola virus persistence in the environment: state of the knowledge and research needs. Environ Sci Technol 2015;49(18):10540–50.

Letlikar MS, Lipson SM. Survival of spumavirus, a primate retrovirus, in laboratory media and water. FEMS Microbiol Lett 2002;211(2):207–11.
Leiva-Rebolli R, Labella AM, Valverde EJ, Castro D, Borrego JP. Persistence of enteric viruses in seawater. Food Environ Virol 2020;12(3):151–9.

Long PH, Oltisky PK. Effect of cysteine on the survival of vaccine virus. Proc Soc Exp Biol Med 1930;27(5):380–1.

Miles SL, Takizawa K, Gerba CP, Pepper IL. Survival of enteric viruses in water. J Water Health 2011;9(3):469–501.

Mor SK, Verma H, Shawafedin TA, Petersen RE, Zuger AF, Noll SL, et al. Survival of viral arthritis vaccines in poultry litter and drinking water. Poult Sci 2006;85(4):639–42.

Nath Sivaprasad R, Lund B. The stability of bovine enterovirus and its possible use as an indicator for the persistence of enteric viruses. Water Res 1980;14(8):1071–21.

Olszewska H, Paleczuk Z, Jarzabek Z. Survival of enterovirus type 71 in soil. Soil Biol Inf 2008;52(2):328–45.

Parashar D, Khalil P, Arkanalla VA. Survival of hepatitis A and E viruses in soil samples. Clin Microbiol Infect 2011;17(11):101–6.

Plumb JA, Wright LD, Jones VL. Survival of chicken carfivirus in chilled, frozen, and decomposing chicken carfivirus. Poultry Sci 1973;53(5):170–2.

Savage CE, Jones RC. The survival of avian reoviruses on materials associated with the poultry house environment. Avian Pathol 2003;32(4):419–25.

Tapia E, Monti G, Rozas M, Sandoval A, Gaete A, Bohle H, et al. Assessment of the in vitro survival of the infectious salmon anaemia virus (ISAV) under different water types and temperature. Bull Eur Assoc Fish Pathol 2013;33(1):3–12.

Tu RC, Spendlove RS. Good RW. Effect of temperature on survival and growth of infectious pancreatic necrosis virus. Infect Immun 1975;11(6):1409–12.

Utterahl A, Lund E, Hansen M. Mink enteritis virus. Stability of virus kept under outdoor conditions. APMS 1999;107(3):353–8.

Viral B, Burke DL, Olszewski H, Paleczuk Z, Jarzabek Z. Gastroenteritis associated with accidental contamination of drinking water by duck plague virus in water from Lake Andes National Wildlife Refuge, South Dakota. J Wildl Dis 1982;18(4):437–40.

Mather T, Talecka T, Tassello J, Olah J, Serebyanyk D, Kramer E, et al. West Nile virus in blood: stability, distribution, and susceptibility to PEN 10 filtration system. Trans R Soc Trop Med Hyg 2003(10):1029–32.

Liu H, Xiong C, Chen J, Chen G, Zhang J, Li Y, et al. Two genetically diverse H7N7 avian influenza viruses isolated from migratory birds in central China. Emerg Microbes Infect 2018;7(1):62.

Than T, Jo E, Toft D, Nguyen PH, Steinmann P, Steindam F, et al. High environmental stability of hepatitis B virus and inactivation requirements for chemical biocides. J Infect Dis 2019;219(7):1044–8.

Barlow M, Kukal N, Naik B, Hettiarachchi E. Hepatitis A virus survival under simulated freshwater environmental conditions. Waterbore 1994;21(5):718–23.

Sailaja B, Murhekar MV, Hutton YJ, Kuruva S, Murthy SP, Reddy KSJ, et al. Outbreak of waterborne hepatitis E in Hyderabad, India, 2005. Epidemiol Infect 2009;137(2):234–40.

Tripathy AS, Sharma P, Deshpawar AR, Babar P, Bharadwaj R, Bhatti OK. Study of a hepatitis E virus outbreak involving drinking water and sewage contamination in Shimla, India, 2015–2016. Trans R Soc Trop Med Hyg 2019;62(11):789–96.

Lenglet A, Elkhos L, Taylor D, Fessele JT, Nassariman JN, Ahamat A, et al. Does community-wide water chlorination reduce hepatitis E virus infections due to hepatitis E virus in Hydraulic, Indian. J Epidemiol Infect 2018;121(5):378–82.

Sarguna P, Rao A, Sudha Ramana KN. Outbreak of acute viral hepatitis due to hepatitis E virus in Hydraulic, Indian. J Med Microbiol 2007;25(4):378–82.

Chen YJ, Cao NX, Xie RH, Ding CX, Chen EF, Zhu HP, et al. Epidemiological investigation of an enterovirus gastroenteritis outbreak in school settings. BMC Public Health 2013;13(1):241.

Nygård K, Vold I, Halvorsen E, Bringeland E, Rettinga JA, Aarsand I. Waterborne gastroenteritis outbreak in a religious summer camp in Norway. 2002. Epidemiol Infect 2004;132(2):223–9.

Polikowska A, Räisänen S, Al-Hello H, Bojang M, Lyytikäinen O, Nuorti JP, et al. An outbreak of norovirus infections associated with recreational lake water in the coastal region of southern Finland. 2017. Euro Surveill 2019;24(10):1900370.

Scarcella C, Carasi S, Cadoria F, Macchi L, Pavan A, Salanella M, et al. An outbreak of viral gastroenteritis linked to municipal water supply, Lombardy, Italy, June 2009. Euro Surveill 2009;14(29):15–7.

ter Waarbeek HLG, Dukers-Muiziers NHTM, Vennema H, Hooime CPE. Waterborne gastroenteritis outbreak at a scouting camp caused by two norovirus genogroups: GI and GJ. J Clin Virol 2010;47(3):268–72.

Tu KC, Spendlove RS, Goede RW. Effect of temperature on survival and growth of infectious pancreatic necrosis virus. Transfusion 2003;43(8):1029–37.

Tryfinopoulou K, Kyritsi M, Mellou K, Kolokythopoulou F, Mouzouris DA, Potamitis K, et al. Norovirus waterborne outbreak in Chalkidiki, Greece. 2015: detection of GLP2, GL2 and GLP16. GIL 13 unusual strains. Epidemiol Infect 2019;147:2227.

Wang X, Yong W, Shi L, Qiao M, He M, Zhang H, et al. An outbreak of multiple norovirus strains on a cruise ship in China, 2014. J Appl Microbiol 2016;120(1):226–33.

Parashar UD, Dow L, Fankhauser RL, Humphrey CD, Miller J, Ando T, et al. An outbreak of viral gastroenteritis associated with consumption of sandwiches: implications for the control of transmission by food handlers. Epidemiol Infect 1998;121(3):615–21.

Zhou X, Kong DG, Li J, Peng W, Zhao Y, Zhou JB, et al. An outbreak of norovirus gastroenteritis associated with GI17: a norovirus-contaminated secondary water supply system in Wuhan, China. 2017. Food Environ Virol 2019;11:126–37.

Shang X, Fu X, Zhang P, Sheng M, Song J, He F, et al. An outbreak of norovirus-associated gastroenteritis outbreak associated with contaminated water in many schools in Zhejiang, China. PLoS ONE 2017;12(2):e0171307.

Sekwedi PG, Ravhuhali KG, Mosam A, Essel V, Ntsho GM, Shoniwa AM, et al. Waterborne outbreak of gastroenteritis on the KwaZulu-Natal Coast, South Africa, December 2016/January 2017. Epidemiol Infect 2018;146(14):3387–99.

Blanch C, Aucens S, Fuster N, Cuenca B, Bartolomé R, Cornejo T, et al. Norovirus in bottled water associated with gastroenteritis outbreak, Spain, 2016. Emerg Infect Dis 2017;23(9):1513–4.

Cao X, Fu Y, Zhou W, Fei Y, Zhu L, Zhang H, et al. An outbreak of acute norovirus gastroenteritis in a boarding school in Shanghai: a retrospective cohort study. BMC Public Health 2014;14(1):1092.

Fuchino H, Cihara C, Yusa K, Ohara T. Novel hepatitis E virus strain in Zhejiang Province, China. Emerg Microbes Infect 2016;5:1–10.

Zhou X, Kong DG, Li J, Peng W, Zhao Y, Zhou JB, et al. An outbreak of norovirus gastroenteritis associated with GI17: a norovirus-contaminated secondary water supply system in Wuhan, China. 2017. Food Environ Virol 2019;11:126–37.

Zhang L, Li X, Wu R, Chen H, Liu J, Wang Z, et al. A gastroenteritis outbreak associated with drinking water in a college in northwestern China. J Water Health 2018;16(4):508–15.

Moler K, Lederer I, Much P, Pichler AM, Allerberger F. Outbreak of norovirus infection associated with contaminated flood water, Salzburg, 2005. Euro Surveill 2005;10(6):E050164.3.

Srivastava AV, Sreedharan R, Venkataraman V, Reda Husam AM, Van Duyhoven YTHP. Norovirus outbreak among primary schoolchildren who had played in a recreational water fountain. J Infect Dis 2004;189(4):699–705.

Vantarakis A, Mellou K, Skala G, Kokkini P, Ziros F, Georgakopoulos T, et al. Epidemiological investigation of a gastroenteritis outbreak in school settings. BMC Public Health 2013;13(1):241.

Alamanos Y. A gastroenteritis outbreak in Xanthi, Northern Greece: management and public health consequences. J Gastrointestin Liver Dis 2006;15(1):270–30.
Gaulin C, Nguon S, Leblanc MA, Ramsay D, Roy S. Multiple outbreaks of
Podewils LJ, Zanardi Blevins L, Hagenbuch M, Itani D, Burns A, Otto C, et al.
Gastroenteritis outbreaks
Wade TJ, Augustine SAJ, Griffin SM, Sams EA, Oshima KH, Egorov AI, et al.
Kukkula M, Arstila P, Klossner ML, Maunula L, Bonsdorff CH, Jaatinen P.
Love SS, Jiang X, Barrett E, Farkas T, Kelly S. A large hotel outbreak of
Guo XH, Kan Z, Liu BW, Li LL. A foodborne acute gastroenteritis outbreak
Arness MK, Feighner BH, Canham ML, Taylor DN, Monroe SS, Cieslak TJ, et al.
Hirakata Y, Arisawa K, Nishio O, Nakagomi O. Multiprefectural spread of
Isakbaeva ET, Widdowson MA, Beard RS, Bulens SN, Mullins J, Monroe SS,
Centers for Disease Control (CDC). Community outbreak of Norwalk
Becker KM, Moe CL, Southwick KL, MacCormack JN. Transmission of Norwalk
Cui C, Pan L, Wang Y, Xue C, Zou ZL, Zhou J, et al. An outbreak of acute GII.17
Boccia D, Tozzi AE, Cotter B, Rizzo C, Russo T, Buttinelli G, et al. Waterborne
Shi C, Feng WH, Shi P, Ai J, Guan HX, Sha D, et al. An acute gastroenteritis
Valcin R, Entringer M. Multi-jurisdictional norovirus outbreak at a swimming
Texas Public Health J 2014;66(3):15,
Wade TJ, Augustine SAJ, Griffin SM, Sams EA, Oshima KH, Egorov AI, et al.
Kukkula M, Arstila P, Klossner ML, Maunula L, Bonsdorff CH, Jaatinen P.
Love SS, Jiang X, Barrett E, Farkas T, Kelly S. A large hotel outbreak of
Guo XH, Kan Z, Liu BW, Li LL. A foodborne acute gastroenteritis outbreak
Arness MK, Feighner BH, Canham ML, Taylor DN, Monroe SS, Cieslak TJ, et al.
Hirakata Y, Arisawa K, Nishio O, Nakagomi O. Multiprefectural spread of
Isakbaeva ET, Widdowson MA, Beard RS, Bulens SN, Mullins J, Monroe SS,
Schets FM, van den Berg HHJL, Vennema H, Pelgrim MTM, Collé C, Rutjes SA,
Kumar T, Shrivastava A, Kumar A, Khasnobis P, Narain JP, Laserson KF, et al.
Chalmers JW, McMillan JH. An outbreak of viral gastroenteritis associated
Belabbes EH, Bouguermouh A, Benatallah A, Illoul G. Epidemic non-A, non-B
Soule H, Gratacap-Cavallier B, Genoulaz O, Potelon JL, Francois P, Zmirou D,
Drenched A, Bert M. A gastroenteritis illness outbreak associated with
Tallis G, Gregory J. An outbreak of hepatitis A associated with a spa pool.
Xu YQ, Cui FQ, Zhuo JT, Zhang GM, Du JF, Den QY, et al. An outbreak of
Hejkal T, Keswic B, Li Y, Gacomb-Canchez Y, Dreessen G, et al. Viruses in a community water supply associated with an outbreak of gastroenteritis and infectious hepatitis. J Am Water Res Assoc 1974;7(6):318–21.
De Medici D, Alfonso V, Bruni R, Busani L, Ciccaglione AR, Di Pasquale S, et al. Hepatitis A outbreak in Italy associated with frozen berries: Darío De Medici. Eur J Public Health 2014;24(Suppl 2):cju165-041.
Bosch A, Sánchez G, Le Guyader F, Vanaclocha L, Haugareau L, Pintó RM. Human enteric viruses in coquinas clams associated with a large hepatitis A outbreak. Water Sci Technol 2001;43(12):61–5.
De Serres G, Cromeans TL, Levesque B, Brassard N, Barthe C, Dionne M, et al. Molecular confirmation of hepatitis A virus from well water: epidemiological and public health implications. J Infect Dis 1999;179(1):37–43.
MacManus PJ, Farley TF, Schellenberg MA, Kanfer MP, Monroe SA, et al. An outbreak of hepatitis A associated with swimming in a public pool. J Infect Dis 1992;165(4):613–8.
Tallis G, Gregory J. An outbreak of hepatitis A associated with a spa pool. J Infect Dis 1992(231):353–4.
Shin E, Kim JS, Oh KH, Oh SS, Kwon M, Kim S, et al. A waterborne outbreak involving hepatitis A virus genotype IA at a residential facility in the Republic of Korea in 2015. J Clin Virol 2017;94:63–6.
Bosch A, Lucena F, Riera-Ribas G, Blasi M, Jofre J. Waterborne viruses associated with hepatitis outbreak. J Am Water Works Assoc 1991;83(3):80–3.
Kumar T, Shrivastava A, Kumar A, Khasnobis P, Narain JP, Laserson KF, et al. An outbreak of viral gastroenteritis associated with an aged-care residential hostel. N S W Public Health Bull 2010;23(1):109–6.
Knegt RJ. Hepatitis A related acute liver failure by consumption of contaminated food. Water Sci Technol 2001;43(12):61–5.
Human enteric viruses in coquina clams associated with a large hepatitis A outbreak. Water Sci Technol 2001;43(12):61–5.
Bosch A, Lucena F, Riera-Ribas G, Blasi M, Jofre J. Waterborne viruses associated with hepatitis outbreak. J Am Water Works Assoc 1991;83(3):80–3.
Kumar T, Shrivastava A, Kumar A, Khasnobis P, Narain JP, Laserson KF, et al. An outbreak of viral gastroenteritis associated with an aged-care residential hostel. N S W Public Health Bull 2010;23(1):109–6.
Knegt RJ. Hepatitis A related acute liver failure by consumption of contaminated food. Water Sci Technol 2001;43(12):61–5.
Bosch A, Lucena F, Riera-Ribas G, Blasi M, Jofre J. Waterborne viruses associated with hepatitis outbreak. J Am Water Works Assoc 1991;83(3):80–3.
Kumar T, Shrivastava A, Kumar A, Khasnobis P, Narain JP, Laserson KF, et al. An outbreak of viral gastroenteritis associated with an aged-care residential hostel. N S W Public Health Bull 2010;23(1):109–6.
Knegt RJ. Hepatitis A related acute liver failure by consumption of contaminated food. Water Sci Technol 2001;43(12):61–5.
Bosch A, Lucena F, Riera-Ribas G, Blasi M, Jofre J. Waterborne viruses associated with hepatitis outbreak. J Am Water Works Assoc 1991;83(3):80–3.
Salata C, Calistri A, Parolin C, Palù G. Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog Dis 2019;77(9):ftaa006.

Woo PCY, Lau SKP, Lam CSF, Lau CYY, Tsang AKL, Lau JHN, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 2012;86(7):3995–4008.

Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 2017;13(11):e1006608.

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17(3):181–92.

World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). Geneva: World Health Organization; 2013.

Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus disease 2019–COVID-19. Clin Microbiol Rev 2020;33(4); e00028-20.

Dhama K, Pawaiya R, Chakraborty S, Tiwari R, Saminathan M, Verma A. Coronavirus infection in Equines: a review. Asian J Anim Vet Adv 2014;9(3):164–76.

Miyazaki T, Okamoto H, Kageyama T, Kobayashi T. Viremia-associated ana-ksi-byo, a new viral disease in color carp Cyprinus carpio in Japan. Dis Aquat Organ 2000;39(3):183–92.