Tobacco Ntomt2 Revisited: Multiple O-Methylation of Quercetin is Catalyzed by a Single Gene Product

Jian-Min Zhou1, Amira Moheb2 and Ragai K Ibrahim1,*

1Plant Biochemistry Laboratory, Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
2PharmaQAM, Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8

Abstract

Tobacco NtOMT2 was previously reported as an inducible, o-diphenol O-methyltransferase (OMT) that exhibits similar preferences towards quercetin and caffeic acid as substrates. In this report, we further examine the substrate specificity of NtOMT2 based on enzyme assays, kinetic data and phylogenetic analysis. We demonstrate that NtOMT2 is a flavonol OMT that catalyzes multiple O-methylation of the flavonol quercetin giving rise to its mono-, di- and trimethyl ether derivatives. Mono-methylation of quercetin on the 3-, 3′-/4′- and 7-hydroxyl groups occurs in a random fashion according to the physio-chemical properties of their hydroxyl groups, together with their similar binding energies in the NtOMT2 binding pocket. Homology modeling of NtOMT2 with the Medicago sativa COMT as a template indicates that the H-bonding network between the functional hydroxyl groups and the neighboring residues allowed NtOMT2 to establish a number of energetically similar binding arrangements with slightly different binding modes; thus resulting in a random multiple methylation. NtOMT2 functions as a proximity and orientation agent in using the general base catalysis for multiple methylation of quercetin. This is the first report to indicate that quercetin multiple methylation is catalyzed by a single gene product.

Keywords: Nicotiana tabacum L.; Quercetin; O-Methylation; NtOMT2

Abbreviations: AdoMet: S-adenosyl-L-methionine; 5-HFA: 5-hydroxyferulic Acid; OMT: O-methyltransferase; ORF: Open Reading Frame; Q: Quercetin

Introduction

Flavonoid compounds constitute one of the largest groups of natural products that originate from the shikimate and polyketide pathways. They exhibit a wide range of functions and play important roles in the biochemistry, physiology, and ecology of plants. In addition, they are considered as an important part of the human diet and act as active principles for many medicinal plants.

Flavonoids are classified according to the oxidation level of the C-ring, and further enzymatic modifications such as methylation, glucosylation, sulfonation and (iso) prenylation that contribute to their diversity and biological activity. In plants, O-methylation of flavonoids is catalyzed by a family of S-adenosyl-L-methionine (AdoMet)-dependent O-methyltransferases (OMTs) [1]. Generally, O-methylation reduces the reactivity of hydroxyl groups, modifies their solubility and increases their anti-microbial and anti-cancer properties [2,3]. So far, more than 100 plant OMTs have been characterized or annotated in GenBank, of which the caffeic acid OMTs (COMTs) are most abundant [4].

The flavonol quercetin (3,5,7,3′,4′-pentahydroxyflavone; Figure 1) may be considered one of Nature’s gifts to mankind, for its potential benefits to human health. It is of ubiquitous occurrence in plants and a common component of foods, especially fruits, vegetables and beverages such as tea, coffee, wine, beer and vinegar [5]. In addition, it is one of the most potent antioxidants derived from plant sources [6], and has been credited for its anti-cancer [7,8], anti-inflammatory [9], and anti-allergic [6,10] activities. Quercetin can be methylated to various methyl ether derivatives by plant OMTs, and several of these products were reported to occur naturally in the wild tobacco, Nicotiana attenuata [11]. Several flavonol- or quercetin-specific OMTs have been reported so far, based on enzyme assays of purified protein extracts, or the molecular cloning of their genes [12-18].

In tobacco (Nicotiana tabacum L. var. Samsun), three plant OMTs (NtOMT1, 2 and 3) have been reported [19]. NtOMT1 was mainly expressed in healthy tobacco leaves and shown to be involved in lignin biosynthesis; whereas NtOMT2 and its isofrom, NtOMT3 were preferentially induced during the hypersensitive reaction to tobacco mosaic virus (TMV). However, NtOMT2 exhibited similar substrate preferences towards quercetin and caffeic acid [19]. The NtOMT2 gene was later cloned and characterized at the molecular level, and both NtOMT2 and NtOMT3 were considered to represent a new class of enzymes specific for the O-methylation of flavonols [16,19].

Figure 1: Structure of quercetin.
of OMt genes associated with TMV infection, or treatment with the porteinaceous elicitor, megaspermin [20].

Multiple O-methylation of quercetin was first reported more than three decades ago by enzyme extracts of Calamondin orange peel and tobacco cell cultures, and methylation at the 3-position was later shown to be the first step in the enzymatic process [12,21,22]. This phenomenon was attributed, at the time, to the presence of several OMT species in the partially purified protein preparations. Furthermore, multiple glucosylation of quercetin has also been reported by the recombinant proteins of Arabidopsis thaliana [23] and Medicago truncatula [24], although such phenomenon has not been further investigated.

In this paper, we further characterize NtOMT2 enzyme activity, and examine the multiple methylation of quercetin. We report here that the multiple methylation of quercetin is catalyzed by a single gene product, and occurs in a random fashion according to the physico-chemical properties of its hydroxyl groups, together with their similar binding energies in the NtOMT2 binding pocket.

Materials and Methods

Chemicals

Quercetin was purchased from Sigma-Aldrich Canada Ltd (Oakville, Ontario). S-Adenosyl-L-[3H] methionine (80 Ci/nmol) was obtained from American Radio labeled Chemicals (St. Louis, MO). Most of the methylated derivatives used in this study were from our laboratory collection, or as generous gift from Professor Eckhard Wollenweber, Darmstadt, Germany. Unless otherwise specified, all other chemicals were of analytical grade.

Expression and purification of NtOMT2 in E. coli

After sequence confirmation, the ORF of NtOMT2 cDNA was amplified and subcloned into the expression vector pET200/D-TOPO (Invitrogen) for in vitro protein expression. The primers used for PCR were: NtOMT2 F: 5’-CACCATGGAATCCTCAACCAAAAGCC; NtOMT2 R: 5’-CTACTTGGCAATTTCCAT. PCR was conducted following the method described earlier [24]. The sequence and orientation of NtOMT2 ORF in the expression vector were confirmed before chemically transformed into E. coli BL21 (DE3) cells (EMD, Darmstadt, Germany) for protein expression and purification as described before [24].

Enzyme assay and identification of reaction products

The standard enzyme assays were performed as previously described [24] using 50 µM of quercetin, its methylated derivatives or selected phenolic substrates, 50 µM AdoMet containing 25 nCi of the 3H-label, and 0.1 to 2.0 µg of the affinity-purified recombinant protein. To study the influence of pH on NtOMT2, Bis-Tris buffer (pH 6.5), Tris-Cl buffer (pH 7.5) and Bicine buffer (pH 8.5) were used in the enzyme assays.

Characterization of the enzyme reaction products was carried out using TLC, HPLC and LC-MS, as well as comparisons with reference compounds. TLC and HPLC were performed as described earlier [25], except that the solvents used for HPLC were acetonitrile and 10 mM H3PO4. HPLC was performed in a linear gradient of MeOH-0.1% HCOOH in H2O (40:60, v/v) for 30 min with a flow rate of 0.35 ml/min on an Agilent SB-C18 column (2.1×30 mm; particle size, 3.5 µm), and a column temperature of 25°C. The system was optimized for UV detection at 254 nm and 340 nm as previously described [26]. Reference compounds were used to compare the corresponding retention times and mass spectral profiles of the methylated quercetin derivatives.

Kinetic analyses were performed using 10 µg of the affinity-purified NtOMT2 proteins with a saturating concentration (100 µM) of AdoMet, containing 25 nCi of radioactivity, and varied concentrations (5 µM to 80 µM) of the substrates. The assays were performed in triplicates and were repeated twice. Lineweaver-Burk plots [27] were applied for the determination of K_m and V_max values.

Phylogenetic analysis

To study the phylogenetic relationship among NtOMT2 and other plant OMTs, a number of closely related plant OMT amino acid sequences were aligned with NtOMT2 using Clustal W [28]. Phylogenetic analysis was conducted using MEGA3 [29]. The neighbor-joining method was employed to generate the tree, and bootstrap analysis (100 replicates) was applied to evaluate the reliability of the tree.

Homology Modeling and Molecular Docking

Homology modeling of NtOMT2 was carried out using MsCOMT [30] as a template, as previously described [31]. Docking calculations were carried out using Docking Server (http://www.dockingserver.com). The MMFF94 force field [32] was used for a preliminary energy minimization of the ligand molecule (quercetin) using Docking Server. PM3 semi empirical method was used in a second step to optimize the geometry of ligand molecule. PM3 semi empirical charges calculated by MOPAC2009 [33] were added to the ligand atoms. Non-polar hydrogen atoms were merged, and rotatable bonds were defined. Docking calculations were carried out on protein model. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of AutoDock tools [34]. Affinity (grid) maps of 20x20x20 Å grid points and 0.375 Å spacing were generated using the Auto grid program [34]. Auto Dock parameter set- and distance-dependent dielectric functions were used in the calculation of the van der Waals and the electrostatic terms, respectively. Docking simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis & Wets local search method [35]. Initial position, orientation, and torsions of the ligand molecules were set randomly. Each docking experiment was derived from 100 different runs that were set to terminate after a maximum of 250000 energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied. Finally, molecular visualization and analysis were made using PyMOL 0.99 [36].

Site-directed mutagenesis

The mutants were prepared using Quick Change site-directed mutagenesis kit (Stratagene, CA), as described before [31]. The wild type NtOMT2 cDNA in vector PET200/D-TOPO was used as a template for PCR. Primers used for generating mutants are shown in Table 1.

Results

NtOMT2 is a novel flavonol OMT

Three plant OMTs have been reported to occur in tobacco [19].
NiOMT1 is involved in lignin biosynthesis; whereas NiOMT2 and its isofrom, NiOMT3 are induced by tobacco mosaic virus, indicating that they may have different functions. NiOMT2 cDNA contains an ORF of 1098 bp that encodes a 365 amino acid polypeptide with a calculated molecular mass of 40.5 kDa and a theoretical isoelectric point of 5.27. Sequence analysis at the amino acid level showed that NiOMT1 and NiOMT2 share 53% identity, and exhibit similar relative enzyme activities towards quercetin and caffeic acid [19].

In order to compare NiOMT2 with NiOMT1 and other plant OMTs, we generated an amino acid sequence-based neighbor-joining tree. In this tree (Figure 2), NiOMT2 appeared more phylogenetically distant from NiOMT1 and other COMTs, especially MsCOMT and PtCOMT which utilize both caffeic acid and 5-HFA as substrates, and are involved in lignin biosynthesis. This suggests that NiOMT2 belongs to a different group of OMTs. It is also different from the wheat (Triticum aestivum) TaOMT2, a recently characterized flavone-specific OMT involved in isoflavone MsIOMT.

To re-examine the substrate preference of NiOMT2, we expressed its recombinant protein with a His-tag in vitro and affinity-purified it to near homogeneity (Figure 3). It was then assayed against a number of potential methyl acceptors, including caffeic acid, 5-HFA and a few flavonoid compounds, based on our phylogenetic analysis and previous reports. The results (Table 2) show that NiOMT2 had the highest preference for quercetin as substrate, although it also utilized caffeic acid, luteolin (a flavone), myricetin (a flavonol) and 5HFA, albeit to a much lesser extent. It is interesting to note that, compared with quercetin, myricetin was a very poor methyl acceptor, possible because of the steric hindrance caused by an extra hydroxyl group on the B-ring.

To determine the best substrate for NiOMT2, kinetic analysis was performed using quercetin and caffeic acid as substrates. The results indicated that quercetin was the preferred substrate for NiOMT2 based on its Kcat/Km values (Table 2). The fact that 5HFA, a good lignin precursor, was the least effective methyl acceptor indicates that NiOMT2 is not involved in lignin biosynthesis. Taken together, these results are in an agreement with our phylogenetic analysis and its physiological role in the tobacco plant [19].

**Characterization of quercetin reaction products**

To examine the pattern of quercetin (Q) methylation products, ['H]-labeled enzyme assays were analyzed by TLC and autoradiography (Figure 4), as well as HPLC of preparative scale, non-labeled assays (Figure 5). In a 10-min incubation, the products of Q methylation were characterized on TLC as 3-MeQ, 7-MeQ, 3′-MeQ and a diMeQ and a triMeQ (presumably 3,7,3′-triMeQ), albeit with different label intensities (Figure 4). The same pattern of methylated products was also observed on HPLC, except that 3-MeQ was the major compound. These products co-migrated on TLC and HPLC with authentic samples of Q mono-, di- and trimethyl ether derivatives. A comparison of the relative intensity of the ['H]-label in 3-MeQ and tri-MeQ (Figure 4) and their amounts (Figure 5) seems to reflect their respective low and high specific activities, and suggests that Q methylation by NiOMT2 proceeds towards the formation of trimethyl derivatives utilizing mono- and dimethyl intermediates, as is evident in a 60-min, steady-state incubation (Figure 4). In fact, when 3-MeQ was used as a substrate, 3,3′,4,4′-diMeQ was identified as the product, whereas 7-MeQ gave rise to 7,3,7,4′-di-MeQ. However, no product was formed when 4′-MeQ was used as a substrate (data not shown). It should be noted that 3′-MeQ and 4′-MeQ, as well as 3,3′- and 3,4,4′-diMeQ are difficult to separate, either on TLC or HPLC, mainly because of their similar physico-chemical properties [11].

**Effect of pH on quercetin methylation**

The fact that Q methylation profiles differed with changes in pH under standard enzyme assay prompted us to investigate the...
Substrate binding and catalysis

Therefore, under physiological conditions (pH 7.5) the 3- and 3′-hydroxyls are the more preferred sites of methylation, whereas at lower or higher pHs only the 3′- and 7-hydroxyls are methylated, with the latter being much less favored.

Substrate binding and catalysis

The fact that NtOMT2 catalyzed the multiple methylation of quercetin, prompted us to further investigate this phenomenon at the structural level. NtOMT2, which exhibits 56.1% identity to the crystallized MsCOMT (PDB, 1KYZ) [30], was used in a homology modeling approach to study its structural basis for substrate binding and catalysis. After modeling, quercetin and AdoMet were docked into the substrate binding pocket (Figure 7) using Docking Server. Superimposition of the modeled NtOMT2 with that of MsCOMT revealed that most of the highly conserved residues of NtOMT2 are located in the C-terminal portion of the protein that includes the signatures of most plant Class II OMTs [38,39].

NtOMT2 transfers the methyl group of AdoMet to the hydroxyl groups of quercetin, giving rise to various methylated derivatives and AdoHcy as products. In NtOMT2, AdoMet is bound in a similar manner as in MsCOMT (Table 4). Based on docking results, several H-bonds were observed extending from the ligands and the functional groups of their neighboring residues. The H-bonding network allowed the formation of only one product, 3-MeQ, albeit in a small amount. This mutation experiment confirmed the crucial role of Cys318 in the sequential methylation of quercetin by NtOMT2, and conferred credibility to the homology model and docking procedure used.

In order to determine the critical residues involved in the phenolic substrate binding, different residues such as Leu131, Leu132 and Cys318 were chosen for site-directed mutagenesis based on comparison of the residues surrounding the binding site (Table 5), and the mutant proteins analyzed for enzyme activity. Only mutant protein C318V showed difference with NtOMT2 wild protein when assayed with Q. The HPLC (Figure 6) shows that such mutation resulted in the loss of multiple O-methylation, and the formation of only one product, 3-MeQ, albeit in a small amount. This mutation experiment confirmed the crucial role of Cys318 in the sequential methylation of quercetin by NtOMT2, and conferred credibility to the homology model and docking procedure used.

In most structurally characterized MTs, the transmethylation reaction was reported to be mediated by a general acid-base catalysis using a histidine residue [30,31,40]. In the case of NtOMT2, we propose His271 (equivalent to His269 in MsCOMT), as the deprotonating residue of the substrate (Figure 7). Mutation of His271 to Val completely abolished the catalytic activity of the mutant protein (data not shown), indicating the importance of this residue in methylation. As was with other small-molecule OMTs, methyl transfer in NtOMT2 is proposed to be catalyzed by a nucleophilic attack of the resulting phenolate anion on the reactive methyl group of AdoMet. It is proposed that the methylation sequence proceeds through proximity and orientation effects [41], as phenomenon of multiple methylation in relation to the free energies of deprotonation/free energies of methylation of quercetin hydroxyl groups [37]. Therefore, NtOMT2 enzyme assays were performed in three different pHs (6.5, 7.5 and 8.5) and the reaction products analyzed by LC-MS (Table 3). At low pH 6.5 the major product of methylation was identified as 3′-MeQ, together with a trace amount of 7-MeQ. When the pH was increased to 7.5, the pattern of methylation changed to 3-MeQ>3,3′-di-MeQ>>7,3′-di-MeQ. At pH 8.5, the major product of methylation was 3′-MeQ, with a trace amount of 7,3′-di-Me derivative (Table 3). These results are in agreement with the reported O–H bond dissociation enthalpy (BDE) where 3-OH>3′-OH>7-OH [37]. Therefore, under physiological conditions (pH 7.5) the 3- and 3′-hydroxyls are the more preferred sites of methylation, whereas at lower or higher pHs only the 3′- and 7-hydroxyls are methylated, with the latter being much less favored.
well as changes in the hydrogen bonding environment created by the amino acid residues neighboring the different ligands. This would also allow the sequential methyl transfers to take place without the need for transfer of the methylated intermediate to another catalytic site.

Docking experiments indicated that there was no strong, energetically-favorable position for all NtOMT2-quercetin conformers (Table 6). This assertion is supported by the observed NtOMT2 enzyme activity with quercetin as the substrate (Figure 4 and 5). The sequence of multiple mono-methylation of quercetin is not critical. It is assumed that the methyl transfer reactions can begin at any OH group of quercetin at random, followed by further methylation to give rise to various di- and trimethyl derivatives.

**Discussions**

Multiple O-methylation of quercetin has been reported to be catalyzed by individual OMTs [12,16-18]. We have demonstrated that NtOMT2, a single gene product, can catalyze the methylation of different hydroxyl groups of quercetin. NtOMT2 is a novel flavonol OMT. It is different from other reported flavonol OMTs, such as Arabidopsis AtOMT1 which catalyzes a single methylation of quercetin.

The homology modeling approach used in this study demonstrated that the similar binding energies of the different OH groups in the NtOMT2 binding pocket (Table 6) seem to be responsible for the random fashion of mono-methylation, which is in agreement with our experimental data. Furthermore, the low level of mono-methylation and multiple methylation may be explained by a weak binding affinity of the enzyme.

| Ligand    | Adjacent Products from assay* -OH | Distance to His271(A) | Distance to AdoMet- S(A) | H-bond | vDW+Hbond+ desolvation energy |
|-----------|----------------------------------|-----------------------|--------------------------|--------|-----------------------------|
| Quercetin 3′-MeQ | 3'-OH | 2.6 | 4 | His185=1O | 178.82mN |
| 3-MeQ | 3'-OH | 4.6 | 6.6 | Asp272=4OH | 3-MeQ |
| 7-MeQ | 7-OH | 5.1 | 5.9 | Asp272=3OH | 3-MeQ |
| 3-MeQ | 3'-OH | 3.9 | 11.2 | Asp272=3OH | N/A |
| 3′-MeQ 4'-OH | 3.8 | 10.8 | Asp272=4OH | N/A |
| 7-MeQ | 3′-OH | 4.2 | 5.3 | His185=1O | N/A |
| 7′-MeQ 4'-OH | 4.6 | 6.6 | Glu331=3-OH | N/A |

*Reaction products were characterized by TLC, HPLC and LC-MS as described in the Methods section.

**Table 6:** NtOMT2 modeling data and reaction products from enzyme assays.

Figure 6: HPLC profile of the mutant protein V318 reaction product with quercetin (Q) as the substrate: 1. residual Q; 2. 3-MeQ.

Figure 7: Docking image showing the catalytic residue (His271), substrate quercetin (Q) and AdoMet. The methylated position of quercetin (3′) and the methyl group (Me) of donor AdoMet are indicated.
Finally, methylated flavones have been reported to be most effective compounds for cancer prevention [44]. Among the various quercetin methylated derivatives, 3-MeQ has been shown to have many potential benefits for human beings. In this study, we demonstrated that Cys318 is the most critical residue involved in the multiple O-methylation of quercetin. It was possible to replace this amino acid with a different residue in favour of 3-MeQ production. We are pursuing this line of research with the view to increase the yield of this valuable metabolite.

Acknowledgements

We wish to thank Professor M. Legrand, Institut de Biologie Moléculaire des Plantes, Université Louis Pasteur, Strassbourg, France for the gift of some methylated quercetin derivatives. This work was supported by a grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

1. Ibrahim RK, Muzac I (2000) Chapter Eleven The methyltransferase gene superfamily: A tree with multiple branches. Recent Advances in Phytochemistry 34: 349-384.
2. Ibrahim RK, Anzellotti D (2003) Chapter one The enzymatic basis of flavonoid biodiversity. Recent Advances in Phytochemistry 37: 1-36.
3. Zhou JM, Ibrahim RK (2010) Tricin – a potential multifunctional nutraceutical. Phytochemistry Reviews 9: 413-424.
4. Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50: 1001-1013.
5. Brown JP (1980) A review of the genetic effects of naturally occurring flavonoids, arthaquinones and related compounds. Mutat Res 75: 243-270.
6. Civello SG, Leopoldini M, Russo N, Toscano M (2010) The inactivation of lipid peroxide radical by quercetin. A theoretical insight. Phys Chem Chem Phys 12: 7662-7670.
7. Day AJ, Bao Y, Morgan MR, Williamson G (2000) Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic Biol Med 29: 1234-1243.
8. Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G (2003) Absorption of quercetin 3-glucoside and quercetin-4'-glucoside in the rat small intestine: The role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol 65: 1199-1206.
9. Middelton E, Kandaswami C (1993) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. The Flavonoids, Advances in Research Since 1986. JB Barhouse (ed). Chapman and Hall, London, pp 619–652.
10. Kramer CM, Prata RTN, Willits MG, De Luca V, Steffens JC, et al. (2003) Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 64: 1069-1076.
11. Roda AL, Oldham NJ, Svatos A, Baldwin IT (2003) Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata). Phytochemistry 62: 527-536.
12. Brunet G, Ibrahim RK (1980) O-Methylation of flavonoids by cell-free extracts of Calamondin orange. Phytochemistry 19: 741-746.
13. De Luca V, Ibrahim RK (1985) Enzymic synthesis of polymethylated flavonoids in Chrysosplenium americanum. I. Partial purification and some properties of S-adenosyl-L-methionine: flavonol-3', 6-, 7- and 4' O-methyltransferases. Arch Biochem Biophys 230: 596-605.
14. Gauthier A, Gulick PJ, Ibrahim RK (1998) cDNA cloning and characterization of a 3' 5'-O-methyltransferase for partially methylated flavonoids from Chrysosplenium americanum. Plant Mol Biol 32: 1163-1169.
15. Muzac I, Wang J, Anzellotti D, Zhang H, Ibrahim RK (2000) Functional expression of an Arabidopsis cDNA clone encoding a flavonoid 3'-O-methyltransferase and characterization of the gene product. Arch Biochem Biophys 375: 385-388.
16. Huang TS, Anzellotti D, Dedechamp F, Ibrahim RK (2004) Partial purification, kinetic analysis, and amino acid sequence information of a flavonol 3-O-methyltransferase from Serratula tinctoria. Plant Physiol 134: 1366-1376.
17. Casacce S, Schroder G, Wehinger E, Strack D, Schmidt J, et al. (2003) A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62: 127-137.
18. Schmidt A, Li C, Shi F, Jones AD, Pickersley E (2011) Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3'5' and 7'4'-myricetin O-methyltransferases. Plant Physiol 155: 1999-2009.
19. Legrand M, Fritig B, Hirth L (1978) O-Diphenol O-methyltransferases of healthy and tobacco-mosaic virus-infected, hypersensitive tobacco. Planta 144: 101-108.
20. Pellegrini L, Geoffroy P, Fritig B, Legrand M (1993) Molecular cloning and expression of a new class of ortho-diphenol-O-methyltransferases induced in tobacco (Nicotiana tabacum L.) leaves by infection or elicitor treatment. Plant Physiol 103: 509-517.
21. Macheix JI, Ibrahim RK (1984) The O-Methyltransferase System of Apple Fruit Cell Suspension Culture. Biochimie und Physiologie der Pflanzen179: 659-664.
22. Thresh K, Ibrahim RK (1985) Are spinach chloroplasts involved in flavonoid O-methylation? Z Naturforsch 40C, 331-335.
23. Lim EK, Ashford DA, Hou B, Jackson RG, Bowles DJ (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glycosides. Biotechnol Bioeng, 87: 623-631.
24. He XZ, Wang X, Dixon RA (2006) Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation. J Biol Chem 281: 34441-34447.
25. Zhou JM, Gold ND, Martin VJ, Wollenweber E, Ibrahim RK (2006) Sequential O-methylation of tricin by a single gene product in wheat. Biochim Biophys Acta 1760: 1115-1124.
26. Moheb A, Ibrahim RK, Roy R, Sarhan F (2011) Changes in wheat leaf phenolome in response to cold acclimation. Phytochemistry 72: 2294-2307.
27. Segel H (1975) Enzyme Kinetics. Wiley, New York.
28. Thompson JD, Higgins DG, Gibson TJ, (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
29. Kumar S, Tamura J, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150-163.
30. Zubieta C, Kota P, Ferrer JL, Dixon RA, Noel JP (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/3,4-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14: 1265-1277.
31. Zhou JM, Lee E, Kanapathy-Sinnaiha F, Park Y, Kornblatt JA, et al. (2010) Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling and site-directed mutagenesis. BMC Plant Biol 10: 156.
32. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry 17: 490-519.
33. Stewart JP (2009) Computer code MOPAC2009. Stewart Computational Chemistry, Colorado Springs, CO, USA.
34. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, et al. (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Computational Chem 19: 1639-1682.
35. Solis FJ, Wets RJB (1981) Minimization by Random Search Techniques. Mathematics of Operations Research 6: 19-30.
36. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.
37. Trouillas P, Marsal P, Sri D, Lazzaroni R, Duroux JL (2006) A DFT study of the structure of the 3-OH site. Food Chemistry 97: 679-688.
38. Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36: 1-10.
39. Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol Biol 37: 663-74.
40. Zhang X, Zhou L, Cheng X (2000) Crystal structure of the conserved core of
protein arginine methyltransferase PRMT3. EMBO J 19: 3509-3519.

41. Takusagawa F, Fujikawa M, Spies A, Schowen RL (1998) S-Adenosylmethionine
(AdoMet)-dependent methyltransferases. Comprehensive Biological Catalysis:
A mechanistic reference. IM Sinnott, Ed. Academic Press, London, pp. 1-30.

42. Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) Acidity of hydroxyl
groups: an overlooked influence on antiradical properties of flavonoids. J Org
Chem 74: 2699-2709.

43. Pople JA, Beveridge DL (1970) Approximate Molecular Orbital Theory.
McGraw-Hill, New York.

44. Walle T (2007) Methoxylated flavones, a superior cancer chemopreventive
flavonoid subclass? Semin Cancer Biol 17: 354-362.