Association of the PSCA rs2294008 C>T Polymorphism with Gastric Cancer Risk: Evidence from a Meta-Analysis

Qing-Hui Zhang*, Yong-Liang Yao, Tao Gu, Jin-Hua Gu, Ling Chen, Yun Liu

Abstract

Background: Multiple studies have reported associations between the PSCA rs2294008 C > T polymorphism and GC, but susceptibility has proven inconsistent. Therefore, we estimates the relationship between the rs2294008 C > T polymorphism and GC by meta-analysis. Methods: PubMed, Embase and Web of Science databases were searched and nine independent case-control studies were included in this meta-analysis. Crude ORs with 95% CIs were extracted according to the Mantel-Haenszel method and pooled to assess the strength of the association. Results: We observed that the PSCA rs2294008 C > T polymorphism was significantly correlated with GC risk when all studies were pooled into the meta-analysis. Further subgroup analysis showed the polymorphism to be linked with diffuse and noncardia GC in the allele contrast model, homozygote codominant model, dominant model, and recessive model. However, no connection was apparent for intestinal and cardia GC. In the stratified analysis by ethnicity, significant associations were observed in Asians for the recessive model. Interestingly, the relationship was particularly significant in the Chinese population. Conclusions: Our findings suggest that the PSCA rs2294008 C > T polymorphism is a risk factor for GC, especially in diffuse and noncardia GC and in Chinese.

Materials and Methods

Identification and eligibility of relevant studies

Search terms “PSCA”, “gastric cancer”, “genotype”, “polymorphism” and “variant” were employed to explore publications in PubMed, ISI Web of Knowledge and Embase databases for relevant reports (last search update February 2012). Only studies published in the English language were included. We did not define any minimum number of patients to be included for meta-analysis. When multiple studies of the same patient population were identified, we included the published report with the largest sample size.

Inclusion and exclusion criteria

The following inclusion criteria were used to select literatures for this analysis: (a) evaluation of the PSCA and histological type of GC. More recently, several studies have assessed the relationship between the polymorphism of PSCA C > T and the susceptibility to GC. Nevertheless, controversial results exist regarding the association of PSCA with the risk of GC (Sakamoto et al., 2008; Matsuo et al., 2009; Wu et al., 2009; Lu et al., 2010; Ou et al., 2010; Lochhead et al., 2011; Song et al., 2011; Zeng et al., 2011; Sala et al., 2012). Therefore, we conducted this meta-analysis to confirm these associations.
rs2294008 C>T polymorphism and GC, (b) only the case-control studies were considered, (c) sufficient published data for estimating an OR with 95% CI. Major exclusion criteria were: (1) no control population, (2) no available genotype frequency, and (3) duplicated studies.

Data extraction

For each study, the following data were collected: first author’s surname, year of publication, country of origin, ethnicity, criteria of enrolled patients, genotyping method, total numbers of cases and controls as well as numbers of cases and controls with CC, CT and TT genotypes. The strength of the association between PSCA rs2294008 C>T polymorphism and GC risk was estimated using OR, with the corresponding 95% CI. Disagreement was resolved by discussion until a consensus was reached between the two authors. We did not define any minimum number of patients for inclusion in our meta-analysis.

Statistical methods

The risk of GC associated with PSCA rs2294008 C>T was estimated for each study by OR with 95% CI. For all studies, we estimated the association under five different types of ORs, namely the allele contrast model (C vs T), the homozygote codominant model (CC vs TT), the heterozygote codominant model (CT vs TT), the dominant model (CC+CT vs TT) and the recessive model (CC vs CT+TT). HWE was tested by the Chi-square test. The Q-statistic was used to investigate the degree of heterogeneity between the trials, and a P-value 0.10 for the Q-test indicated a lack of heterogeneity among studies. We used the fixed-effects model and the random-effects model based on the Mantel–Haenszel method (Jose et al., 2008) and the DerSimonian and Laird method (Kjellsson et al., 2008), respectively, to combine values from each of the studies. A sensitivity analysis was also performed by omitting each study in turn to identify potential outliers. All of the statistical analyses were performed with Review Manage version 4.3 and STATA version 12.0 using two-sided P-values.

Results

Study characteristics

We obtained 14 studies about the association between PSCA rs2294008 polymorphism. Following the above...
Table 3. Results of Meta-analysis for PSCA rs2294008 Polymorphisms and GC Risk

Study Variables	Allele contrast model	Homozygote codominant model	Heterozygote codominant model	Dominant model	Recessive model	
	OR (95% CI)	Ph	OR (95% CI)	Ph	OR (95% CI)	Ph
Intestinal	0.87 (0.74-1.01)	0.70 (0.50-0.97)	0.97 (0.83-1.13)	0	0.87 (0.73-1.03)	0.70 (0.55-0.89)
Diffuse	0.91 (0.73-1.14)	0.82 (0.51-1.32)	0.96 (0.76-1.21)	0.001	0.94 (0.56-1.60)	0.008
Location	0.73 (0.59-0.91)	0.50 (0.29-0.89)	0.81 (0.62-1.06)	0.012	0.68 (0.53-0.88)	0.008
Cardia	0.96 (0.81-1.14)	0.136	1.01 (0.78-1.31)	0.576	1.02 (0.80-1.30)	0.012
Noncardia	0.76 (0.69-0.84)	0.344	0.62 (0.50-0.87)	0.127	0.76 (0.55-1.06)	0.012
Ethnicity	0.88 (0.74-1.05)	0.71 (0.47-1.06)	1.01 (0.88-1.31)	0.041	0.93 (0.76-1.13)	0.041
Asian	0.94 (0.70-1.27)	0.83 (0.68-1.01)	0.94 (0.77-1.13)	0.566	0.79 (0.71-0.87)	0.348
Chinese	0.88 (0.74-1.05)	0.71 (0.47-1.06)	1.01 (0.88-1.31)	0.041	0.93 (0.76-1.13)	0.041

Ph P-value of overall effect test

Figure 1. Forest Plot for the Association Between PSCA rs2294008 C>T and Gastric Cancer Risks in all Studies (for the homozygote codominant model and the recessive model). The study is shown by the point estimate of the OR (the size of the square is proportional to the weight of each study) and 95% CI for OR; pooled OR and 95% CI have been appropriately derived from the random effects model.

Figure 2. Forest Plot for the Association Between PSCA rs2294008 C>T and Diffuse Gastric Cancer Risks (for the allele contrast model, the homozygote codominant model, the dominant model and the recessive model). The study is shown by the point estimate of the OR (the size of the square is proportional to the weight of each study) and 95% CI for OR; pooled OR and 95% CI have been appropriately derived from the fixed effects model associated with diffuse (the allele contrast model: OR = 0.73; 95% CI = 0.59–0.91, P = 0.07 for heterogeneity; the homozygote codominant model: OR = 0.50; 95% CI = 0.29–0.89, P = 0.51 for heterogeneity; the dominant model: OR = 0.68; 95% CI = 0.53–0.88, P = 0.07 for heterogeneity; the recessive model: OR = 0.65; 95% CI = 0.44–0.95, P = 0.224 for heterogeneity, Figure 2) and noncardia gastric cancer (the allele contrast model: OR = 0.76; 95% CI = 0.69–0.84, P = 0.34 for heterogeneity; the homozygote codominant model: OR = 0.62; 95% CI = 0.50–0.77, P = 0.22 for heterogeneity; the dominant model: OR = 0.68; 95% CI = 0.57–0.84, P = 0.13 for heterogeneity; the recessive model: OR = 0.70; 95% CI = 0.62–0.80, P = 0.50 for heterogeneity, Figure 3). In the stratified analysis by ethnicity, significant associations were observed in Asian (the recessive model: OR = 0.67; 95% CI = 0.51–0.89, P = 0.14 for heterogeneity, Figure 4) and Chinese population (the recessive model: OR = 0.79; 95% CI = 0.66–0.97, P = 0.01 for heterogeneity, Figure 5).
Publication bias

We performed Begg’s funnel plot and Egger’s test to assess the publication bias of literatures. The results did not show any evidence of publication bias in all the comparisons. Also, the results of Egger’s test still did not suggest any evidence of publication bias (P = 0.679 for T vs G; P = 0.134 for GT vs GG; P = 0.104 for TC vs TT, respectively).

Discussion

PSCA was initially identified as a prostate-specific cell-surface antigen (Argani et al., 2001). PSCA is largely expressed in normal prostate and overexpressed in a majority of prostate cancer. Meanwhile, PSCA is highly expressed in other non-prostatic malignancies, including bladder cancer, pancreatic cancer, and gastric cancer (Elsamman et al., 2006; Grubbs et al., 2006). Recently studies have reported that its expression is different in these tumor and adjacent normal tissues, but its gene polymorphisms are significant discrepancies (Elsamman et al., 2006; Feng et al., 2008). Among these variants, rs2294008 C > T and rs2976392 G > A are explicit, while these significant relationships were observed in several but not all studies, especially in gastric cancer (Ou et al., 2010). The rs2294008 was shown to be functionally associated with downregulation of PSCA and to increase the risk of gastric cancer.

The aim of our study was to demonstrate the role of PSCA rs2294008 C > T polymorphism in the relationship with gastric cancer risk using the meta-analysis. In present study, we observed significant differences among the two major types GC. The effect of the rs2294008 C > T polymorphism was greater in diffuse than in intestinal-type gastric cancer, consistent with previous reports. The genetic susceptibility factors may contribute more to diffuse-type gastric cancer development compared to intestinal-type gastric cancer (Lao-Sirieix et al., 2010), so genetic variations appear to be associated with an increased risk for diffuse-type gastric cancer.

Interestingly, we also observed that PSCA rs2294008 C > T was significantly correlated with risk for noncardia gastric cancer rather than cardia gastric cancer. As well known, H. pylori is the explicit risk factor for gastric cancer, and play an important role in the process of gastritis, intestinal metaplasia, gastric ulcers, and gastric cancer (Tan et al., 2011). Previous researches have reported that rs2294008 C > T polymorphism is a predisposing genetic variant for H. pylori positive gastric cancer. H. pylori infection was strongly associated with the risk of noncardia gastric cancer, but was inversely associated with the risk of cardia gastric cancer (Kamangar et al., 2006). Similar to these studies, our study is shown that PSCA rs2294008 C > T polymorphism is correlated with noncardia gastric cancer, but is not interrelated with cardia gastric cancer, for several genetic model, such as for allele contrast model, homozygote codominant model, dominant model and recessive model.

Simultaneously there was an evidence to indicate that PSCA rs2294008 C > T polymorphism was associated with increased risk of gastric cancer in Asian and Chinese population. The study is shown by the point estimate of the OR (the size of the square is proportional to the weight of each study) and 95% CI for OR; pooled OR and 95% CI have been appropriately derived from the random and fixed effects model, respectively.
population only for recessive genetic model.

In summary, our study shows a genetic association between PSCA rs22940008 C>T variant increases susceptibility to GC, whereas we need to be further warranted to verify these findings in large population-based prospective studies with ethnically diverse populations, as well as biologically functional studies.

Acknowledgements

We thank all members of the central laboratory of Kunshan First People’s Hospital, Affiliated to Jiangsu University. The author(s) declare that they have no competing interests.

References

Argani P, Rosty C, Reiter RE, et al (2001). Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res, 11, 4320-4.

Bahrenberg G, Brauers A, Joost HG, et al (2000). Reduced expression of PSCA, a member of the LY-6 family of cell surface antigens, in bladder, esophagus, and stomach tumors. Biochem Biophys Res Commun, 3, 783-8.

Dong LM, Potter JD, White E, et al (2008). Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA, 20, 2423-36.

Elsamman E, Fukumori T, Kasai T, et al (2006). Prostate stem cell antigen predicts tumour recurrence in superficial transitional cell carcinoma of the urinary bladder. BJU Int, 6, 1202-7.

Elsamman EM, Fukumori T, Tanimoto S, et al (2006). The expression of prostate stem cell antigen in human clear cell renal cell carcinoma: a quantitative reverse transcriptasepolymerase chain reaction analysis. BJU Int, 3, 668-73.

Feng HC, Tsao SW, Nqan HY, et al (2008). Overexpression of prostate stem cell antigen is associated with gestational trophoblastic neoplasia. Histopathology, 2, 167-74.

Ferlay J, Shin HR, Bray F, et al (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 12, 2893-917.

Grubbs EG, Abdel-Wahab Z, Tyler DS, et al (2006). Utilizing quantitative polymerase chain reaction to evaluate prostate stem cell antigen as a tumor marker in pancreatic cancer. Ann Surg Oncol, 12, 1645-54.

Jose S, George PS, Mathew A (2008). Assessment of confounding and interaction using the mantel-haenszel risk estimation method. Asian Pac J Cancer Prev, 2, 323-5.

Kamangar F, Dawsey SM, Blaser MJ, et al (2006). Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J Natl Cancer Inst, 20, 1445-52.

Kjellsson MC, Zingmark PH, Jonsson EN, et al (2008). Comparison of proportional and differential odds models for mixed-effects analysis of categorical data. J Pharmacokinet Pharmacodyn, 5, 483-501.

Lao-Sirieux P, Caldas C, Fitzgerald RC (2010). Genetic predisposition to gastro-oesophageal cancer. Curr Opin Genet Dev, 3, 210-7.

Lochhead P, Frank B, Hold GL, et al (2011). Genetic variation in the prostate stem cell antigen gene and upper gastrointestinal cancer in white individuals. Gastroenterology, 2, 435-41.

Lu Y, Chen J, Ding Y, et al (2010). Genetic variation of PSCA gene is associated with the risk of both diffuse- and intestinal-type gastric cancer in a Chinese population. Int J Cancer, 9, 2183-9.

Matsuo K, Tajima K, Suzuki T, et al (2009). Association of prostate stem cell antigen gene polymorphisms with the risk of stomach cancer in Japanese. Int J Cancer, 8, 1961-4.

Ou J, Li K, Ren H, et al (2010). Association and haplotype analysis of prostate stem cell antigen with gastric cancer in Tibetans. DNA Cell Biol, 6, 319-23.

Reiter RE, Gu Z, Watabe T, et al (1998). Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A, 4, 1735-40.

Sakamoto H, Yoshimura K, Saeki N, et al (2008). Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat Genet, 6, 730-40.

Sala N, Muñoz X, Travier N, et al (2012). Prostate stem-cell antigen gene is associated with diffuse and intestinal gastric cancer in Caucasians: Results from the EPIC-EURGAST study. Int J Cancer, 10, 2417-27.

Shi Y, Hu Z, Wu C, et al (2011). A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet, 12, 1215-8.

Song HR, Kim HN, Piao JM, et al (2011). Association of a common genetic variant in prostate stem-cell antigen with gastric cancer susceptibility in a Korean population. Mol Carcinog, 11, 871-5.

Tan VP, Wong BC (2011). Helicobacter pylori and gastritis: Untangling a complex relationship 27 years on. J Gastroenterol Hepatol, Suppl 1, 42-5.

Wu C, Wang G, Yang M, et al (2009). Two genetic variants in prostate stem cell antigen and gastric cancer susceptibility in a Chinese population. Mol Carcinog, 12, 1131-8.

Zeng Z, Wu X, Chen F, et al (2011). Polymorphisms in prostate stem cell antigen gene rs2294008 increase gastric cancer risk in Chinese. Mol Carcinog, 5, 353-8.

DOI:http://dx.doi.org/10.7314/APJCP.2012.13.6.2867

Association of the PSCA rs22940008 C>T Polymorphism with GC Risk - a Meta-analysis