New Mechanism of Combination Crossover Operators in Genetic Algorithm for Solving the Traveling Salesman Problem

Pham Dinh Thanh¹, Huynh Thi Thanh Binh², and Bui Thu Lam³

¹ Tay Bac University
² Hanoi University of Science and Technology
³ Le Quy Don Technical University

Abstract. Traveling salesman problem (TSP) is a well-known in computing field. There are many researches to improve the genetic algorithm for solving TSP. In this paper, we propose two new crossover operators and new mechanism of combination crossover operators in genetic algorithm for solving TSP. We experimented on TSP instances from TSP-Lib and compared the results of proposed algorithm with genetic algorithm (GA), which used MSCX. Experimental results show that, our proposed algorithm is better than the GA using MSCX on the min, mean cost values.

Keywords: Traveling Salesman Problem, Genetic Algorithm, Modified Sequential Constructive Crossover

1 Introduction

The traveling salesman problem is an important problem in computing fields and has many applications in the daily life such as scheduling, vehicle routing, VLSI layout design, etc. The problem was first formulated in 1930 and it has been one of the most intensively studied problems in optimization techniques. Until now, researchers have obtained numerous significant results for this problem.

TSP is defined as following: Let $1, 2, \ldots, n$ is the labels of the n cities and $C = [c_{i,j}]$ be an $n \times n$ cost matrix where $c_{i,j}$ denotes the cost of traveling from city i to city j. TSP is the problem of finding the n-city closed tour having the minimum cost such that each city is visited exactly once. The total cost A of a tour is.

$$A(n) = \sum_{i=1}^{n-1} c_{i,i+1} + c_{n,1}$$

TSP is formulated as finding a permutation of n cities, which has the minimum cost. This problem is known to be NP-hard [12] but it can be applied in many real world applications [13] so a good solution would be useful.

Many algorithms have been suggested for solving TSP. GA is an approximate algorithm based on natural evolution, which applied to many different types of
the combinatorial optimization. GA can be used to find approximate solutions for TSP.

There are a lot of improvements in GA that have been developed to increase the performance in solving the TSP such as: optimizing creating initial population [3], improving mutation operator [17], creating new crossover operator [12,20,21,22,23,24,25], combining with local search [16,18].

In this paper, we introduce two new crossover operators: MSCX,Radius and RX. We propose new mechanism of combination proposed crossover operators and MSCX [25] in GA to solve TSP. This combination is expected to adapt the changing of population. We experimented on TSP instances from TSP-Lib and compared the results of proposed algorithm with GA which used MSCX. Experimental results show that, our proposed algorithm is better than the GA using MSCX on the min, mean cost values.

The rest of this paper is organized as follows. In section 2, we will present related works. Section 3 and 4 contain the description of our new crossovers and the proposed algorithm for solving TSP respectively. The details of our experiments and the computational and comparative results are given in section 5. The paper concludes with section 6 with some discussions on the future extension of this work.

2 Related work

TSP is NP-hard problems. There are two approaches for solving TSP: exact and approximate. Exact approaches are based on Dynamic Programming [14], Branch and Bound [2], Integer Linear Programming [21], etc. Exact approaches used to give the optimal solutions for TSP. However, these algorithms have exponential running time, therefore they only solved small instances. As M. Held and R. M. Karp [14] pointed out Dynamic Programming takes \(O(n^2 \cdot 2^n) \) running time, so that it only solves TSP with a small number of the vertices.

In recent years, approximation approaches for solving TSP are interested by researchers. These approaches can solve large instances and give approximate solutions near to the optimal solution (sometime optimal). Approximation approaches for solving TSP are 2-opt, 3-opt [1], simulated annealing [16], tabu search [16], nature based optimization algorithms and population based optimization algorithms: genetic algorithm [3,6,7,10,11,12,13,16,17,19,22,25, neural networks [15]; swarm optimization algorithms: ant colony optimization [7,23], bee colony optimization [18].

GA is one of computational model inspired by evolution, which has been applied to a large number of real world problems. GA can be used to get approximate solutions for TSP. High adaptability and the generalizing feature of GA help to execute the traveling salesman problem by a simple structure.

M. Yagiura and T. Ibaraki [16] proposed GA for three permutation problems including TSP; and GA solving TSP uses DP in its crossover operator. The experiments are executed on 15 randomized Euclidean instances (5 instances for each \(n = 100, 200, 500 \)). The proposed algorithm [16] could get better solutions
than Multi-Local, Genetic-Local and Or-opt when sufficient computational time was allowed. However, the experimental results have been pointed out that, their proposed algorithm is ineffective to compare some heuristics specially designed to the given TSP, such as Lin-Kernighan method [11].

In [5], the authors used local search and GA for solving TSP. The experiments are executed in kroA100, kroB100 and kroC100 instances. The experiments results show that the combination of two genetic operators, IVM and POS, and 2-opt have better cost for solving TSP problem. However, the algorithm took more time to converge to the global optimum than using 3-opt.

In 1997, Bernd Freisleben, Peter Merz [7] proposed Genetic Local Search for the TSP. This algorithm used idea of hill climber to develop local search in GA. The experiment shows that the best solutions are better than the one in [24] on running time and better on min cost range from 0.46% → 0.21%.

Crossover operator is one of the most important component in GA, which generates new individual(s) by combining genetic material from two parents but preserving gene from the parents. The researchers have studied many different optimal crossover operators like creating new crossover operators [22,24], modifying exist crossover operators [20,21,23,25], and hybridizing crossover operators [10].

Sehrawat, M. et al. [20] modified Order Crossover (OX). They selected the first crossover point which is the first node of the minimum edge from second chromosome. The experiment was executed on five sample data. The modifying order crossover (MOX) could get better solutions than OX on two sample data but number of the best solutions is found by MOX more than OX.

The new genetic algorithm (called FRAG_GA) was developed by Shubhra, Sanghamitra and Sankar [24]. There were two new operators: nearest fragment (NF) and modified order crossover (MOC). The NF is used for optimizing initial population. In the MOC, the authors performed two changes: length of a substring for performing order crossover is $y = \max\{2, \alpha\}$, where $n/9 \leq \alpha \leq n/7$ (n is the total number of cities) and the length of substring is predefined at any times performing crossover. The experiments are executed in Grtschels24, kroA100, d198, ts225, pcb442 and rat783 instances. The authors compared FRAG_GA with SWAPGATSP [12] and OXSIM (standard GA with order crossover and simple inversion mutation) [13]. The experiment results showed that the best result, the average result and computation time of FRAG_GA are better than one of SWAPGATSP, OXSIM.

In [22], the authors proposed an improving GA (IGA) with a new crossover operator (Swapped Inverted Crossover - SIC) and a new operation called Rearrangement. SIC creates 12 children from 2 parents then select 10 for applying multi mutation. Finally select 2 best individuals. Rearrangement Operation is applied to all individuals in population. It finds the maximum cost of two adjacent cities then swap one city with three other cities. The experiments are executed 10 times for each instances (KroA100, D198, Pcb442 and Rat783). The experiments show that, performance of IGA is better than the three compared GAs.
Kusum and Hadush [23] modified the OX. In these proposing crossovers, the positions of cut points or the length of the substrings in both parents are different. The experimented on six Euclidean instances derived from TSP-lib (eil51, eil76, kroA100, eil101, lin105 and rat195). Crossover rate is 0.9 and mutation rate is 0.01. The experimental results show that results of one modifying crossover are better than OX for six TSP instances.

In [24], the authors proposed new crossover operator, Sequential Constructive crossover (SCX). The main idea of SCX is selecting the edges having less value based on maintaining the sequence of cities in the parents. The experiments are performed in 27 TSPLIB instances. Results of experiment show that SCX is better than the ERX and GNX on quality of solutions and solution times.

In 2012, Sabry, Abdel-Moetty and Asmaa [25] proposed new crossover operator, Modified Sequential Constructive crossover (MSCX), which is an improvement of the SCX [24]. The MSCX create an offspring and description as follows:

Step 1: Start from 'First Node' of the parent 1 (i.e., current node p = parent1(1)).

Step 2: Sequentially search both of the parent chromosomes and consider the first 'legitimate node' (the node that is not yet visited) appeared after 'node p' in each parent. If no 'legitimate node' after node p is present in any of the parent, search sequentially the nodes from parent 1 and parent 2 (the first 'legitimate node' that is not yet visited from parent1 and parent2), and go to Step 3.

Step 3: Suppose the 'Node α' and the 'Node β' are found in 1st and 2nd parent respectively, then for selecting the next node go to Step 4.

Step 4: If $C_{pα} < C_{pβ}$, then select 'Node α', otherwise, 'Node β' as the next node and concatenate it to the partially constructed offspring chromosome. If the offspring is a complete chromosome, then stop, otherwise, rename the present node as 'Node p' and go to Step 2.

Although a lot of crossovers were developed for solving TSP, but each operator has its property, so, in this paper, we propose two new crossover operators and mechanism of combination them with MSCX crossover [25]. This scheme is expected to adapt the changing and convergence of population and improve the effectiveness in terms of cost of tour. The proposed algorithm will be presented in the next section.

3 Proposed crossover operators

This section introduces two new crossover operators: MSCX_Radius, RX, which are developed for improving the best solutions and increase the diversity of the population.

3.1 MSCX_Radius Crossover

MSCX_Radius modify the step two of MSCX [25]. In MSCX_Radius, if no 'legitimate node' after current node, find sequentially r nodes, which are not visited...
from the parents. Then select the node having the smallest distance to current node. \(r \) is parameter of **MSCX_Radius**.

3.2 RX Crossover

This crossover operator is described as following:

Step 1: Randomly select \(pr\% \) cities from the first parent to the offspring.

Step 2: Copy the remaining unused cities into the offspring in the order they appear in the second parent.

Step 3: Create the second offspring in an analogous manner, with the parent roles reverse.

Figure 1 show an example of **RX** crossover operator.

![Illustration of the RX crossover operator](image.png)

Fig. 1. Illustration of the RX crossover operator, \(pr\% = 20\% \)

4 Proposed mechanism of combination two new crossovers and MSCX

This section proposes new mechanism of combination two propose crossover operators **MSCX_Radius** and **RX** with **MSCX**. We then use apply this mechanism in an improving genetic algorithm (**CXGA**) for solving **TSP**.

The workflow of **CXGA** is described in Fig. 2.

The workflow of **HRX** module is shown in Fig. 3.

In the first part, \(prx\% \) of individuals will be chosen for **RX** crossover and the rest for **MSCX_Radius**.

Sketch of the **HRX** module is presented as below:

Procedure: HRX (\(P, prx, pr, r \))

Input: The population \(P \)

- \(r \): parameter of **MSCX_Radius**
- \(prx \): percent of individuals from first part use **RX**
- \(pr \): percent of number of cities is gotten random in **RX**

Output: The optimization population \(P' \)
Fig. 2. Structure of improved genetic algorithm

Fig. 3. Structure of HRX module in CXGA
Begin
Split P into two parts: P1 and P2;
i ← 0; F Pi ← P2; S Pi ← P1; numInRX ← (prx * |P1|)/100;
ng ← number of generations perform HRX module;
While i < ng do
 For j := 1 to numInRX/2 do
 Select random individuals from SP i;
 Do RX(pr)crossover, mutation;
 Add offsprings to SP i+1;
 End for
 For j :=1 to |P1| - numInRX do
 Select random individuals from SP i;
 Do MSCX_Radius(r) crossover, mutation;
 Add offspring to SP i+1;
 End for
 For j := 1 to |P2| do
 Select random individuals from FP i;
 Do MSCX crossover, mutation;
 Add offspring to FP i+1;
 End for
 i ← i + 1;
End while
Merge FP i, SP i into P';
Return P';
End;

5 Computational results

5.1 Problem instances

The results are reported for the symmetric TSP by extracting benchmark instances from the TSP-Lib \[9\]. The instances chosen for our experiments are eil51.tsp, Pr76.tsp, Rat99.tsp, KroA100, Lin105.tsp, Bier127.tsp, Ts225.tsp, Gil262.tsp, A280.tsp, Lin318.tsp, Pr439.tsp and Rat575.tsp. The number of vertices: 51, 76, 99, 100, 105, 127, 225, 262, 280, 318, 439, 575. Their weights are Euclidean distance in 2-D.

5.2 System setting

In the experiment, the system was run 10 times for each problem instance. All the programs were run on a machine with Intel Pentium Duo E2180 2.0GHz, 1GB RAM, and were installed by C# language.

5.3 Experimental setup

This paper implemented two sets of experiments. In the first, we run GA using MSCX_Radius (named GA1), GA using RX (named GA2) and compare with
GA using MSCX \cite{25} (named GA3). In the second, we compare the performance of CXGA with GA3.

When execute the HRX module, the population is split into two part. The first one includes the best solutions which uses a combination of MSCX_Radius and RX crossover; the second includes the rest solutions of population, which uses MSCX crossover.

The parameters for experiments are:
- Population size: $p_s = 100$
- Number of evaluation: 1000000
- Mutation rate: $p_m = 1/\text{number of city (chromo length)}$
- Crossover rate: $p_c = 0.9$

5.4 Experimental results

The experiments were implemented in order to compare GA1, GA2, CXGA with GA3 in term of the min, mean, standard deviation values and running times.

For comparing effects of two new crossover operations: MSCX_Radius and RX. We tested GA1, GA2 with different values of r, pr parameters. The best results obtain by GA1, GA2 are compared with the ones obtain by GA3.

![Fig. 4. The mean cost on TSP instances of GA1 when r = 2, 3 and 5](image)

Figure 4 summarizes the mean cost of GA1 when $r = 2$, 3 and 5 respectively. With $r = 2$, the results found by GA1 are the best.

The Fig. 5 illustrates the mean cost of GA2 when $pr\% = 10\%, 30\%$ and 50% respectively. The diagrams show that, the mean cost of GA2 when $pr\% = 10\%$ are better than ones when $pr\% = 30\%, 50\%$.

Experiment results on Fig. 4, Fig. 5 show that $r = 2$ and $pr\% = 10\%$ are the best parameters for GA1 and GA2 and they will be selected for comparison with GA3.
Fig. 5. The mean cost on TSP instances of GA2 when pr% = 10%, 30% and 50%

HRX module was implemented in differences parameters to find the best parameter. The size of the first part is 90%, pc = 15%, r = 5, pr = 30%, pn = 5%, prx = 40%.

In order to select the best value of pc in HRX module, we analyzed the correlative of the best solution obtaining from CXGA with different values of pc parameter (pc% = 5%, 10%, 15%, 20%, 30% and 50%).

Fig. 6. The relationship between the pc values, mean cost found by 10 running times of CXGA on Eil51, Rat99 instance

The Fig. 6 shows the dependence between the pc values, mean cost values found on 10 running times of CXGA. According to the experiments in the Fig. 6 pc% = 15% is quite reasonable in our algorithm.

In MSCX_Radius crossover, the bigger the r parameter is, the more increasing the running times is. In addition, according to the results in the Table 1 the results of CXGA when r = 5 are better than the ones when r = 2, 3, 7 and 10.
in most instances on mean and min values (values in bold). So, we chose 5 in all experiments for r value.

Table 2 summarizes the results found by GA3, CXGA and the best results of GA1, GA2 for 12 TSP instances of size from 51 to 575.

Mean, min cost value found by GA1 are worse than GA3 on 8/12 and 7/12 instances. Standard deviation values found by GA1 worse than GA3 on 3 instances. The running time of GA1 are lower than GA3 on 3/12 instances. The running time of GA2 are faster than GA3 on all instances. Min, mean and standard deviation values found by GA2 are greater than GA3 about three times on all instances.

The mean cost values found by CXGA algorithm are better than the ones found by GA3 from 0.2% to 2.4%. The min cost found by CXGA are better than the one found by GA3 from 0.1% to 2.8%. The running time of CXGA are faster than the ones found by GA3 on 11/12 instances. The standard deviation values found by CXGA are better than GA3 on 7/12 instances (values in bold).

6 Conclusion

In this paper, we propose two new crossover operators, called RX and MSCX_Radius, and new mechanism of combination in GA to adapt the convergence of the population for solving TSP. We experimented on 12 Euclidean instances derived from TSP-lib with the number of vertices from 51 to 575. Experiment results show that, the proposed combination crossover operators in GA is effective for TSP.

In the future, we are planning to apply propose mechanism of combination to another optimization problem.

References

1. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Operations Research, vol. 21, pp. 498-516 (1973)
2. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing Natural Computing. Series 1st edition. Springer (2003)
3. Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. European Journal of Operational research, vol. 174, pp. 38-53 (2006)
4. Paquete, L., Stützle, T.: A Two-Phase Local Search for the Biobjective Traveling Salesman Problem. In: Second Int. Conf. (EMO 2003), pp. 479-493. Springer (2003)
5. Nourohoda Alemi Neissi, Masoud Mazloom: GLS Optimization Algorithm for Solving Travelling Salesman Problem. In: Second Int. Conf. on Computer and Electrical Engineering, vol. 1, pp. 291-294. IEEE Press (2009)
6. Bernd, F., Peter, M.: New Genetic Local Search Operators Traveling Salesman Problem. In: The 4th Int. Conf. On Parallel Problem Solving from Nature, pp. 890-899. Springer (1996)
7. Bernd Freisleben, Peter Merz: New Genetic Local Search for the TSP: New Results. In: Int. Conf. on Evolutionary Computation, pp. 159-164. IEEE Press (1997)
8. Freisleben, B., Merz, P.: A Genetic Local Search Algorithm for Solving Symmet-
ric and Asymmetric Traveling Salesman Problems. In: Int. Conf. on Evolutionary
Computation, pp. 616-621. IEEE Press (1996)
9. TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
10. Renders, J.M., Bersini, H.: Hybridizing genetic algorithms with hill-climbing meth-
ods for global optimization: two possible ways. In: IEEE World Congress on Com-
putational Intelligence, vol. 1, pp. 312-317. IEEE Press (1994)
11. Wan-rong Jih, Hsu, J.Y.-J.: Dynamic vehicle routing using hybrid genetic algo-
rithms. In: Int. Conf. on Robotics & Automation, vol. 1, pp. 453-458. IEEE Press
(1999)
12. Ray, S.S., Bandyopadhyay, S., Pal, S.K.: New operators of genetic algorithms for
traveling salesman problem, ICPR-04, vol. 2, pp. 497-500. Cambridge, UK, (2004)
13. Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., Díaz-Uriarte, S.: Genetic algorithms
for the traveling salesman problem: A review of representations and operators. In:
Artificial Intelligence, vol. 13, pp. 129-170. Kluwer Academic Publishers (1999)
14. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
In: Journal of the Society for Industrial and Applied Mathematics, vol. 10, pp.
196-210 (1962)
15. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd Edition. Prentice-
Hall (1999)
16. Yagiura, M., Ibaraki, T.: The Use of Dynamic Programming in Genetic Algorithms
for Permutation Problems. In: European Journal of Operational Research, vol. 92,
pp. 387-401 (1996)
17. Murat, A., Novruz A.: Development a new mutation operator to solve the Travel-
eling Salesman Problem by aid of Genetic Algorithms. In: Expert Systems with
Applications. vol. 38, pp. 1313-1320. ScienceDirect (2011)
18. Olaf, M., Bernd, B., Jakob, B., Heike, T., Markus, W., Frank, N.: Local Search
and the Traveling Salesman Problem: A Feature-Based Characterization of Problem
Hardness. Lecture Notes in Computer Science, pp. 115-129, Springer (2012)
19. Sourav, S., Anwesha, D., Satrughna, S.: Solution of traveling salesman problem on
scx based selection with performance analysis using Genetic Algorithm. In: Interna-
tional Journal of Engineering Science and Technology (IJEST), vol. 3, pp. 6622-6629
(2011)
20. Sehrawat, M., Singh, S.: Modified Order Crossover (OX) Operator. International
Journal on Computer Science & Engineering, vol. 3, pp. 2019-2014 (2011)
21. Shubhra, S.R., Sanghamitra, B., Sankar K.P.: New Genetic Operators for Solving
TSP: Application to Microarray Gene Ordering. PReMI, vol. 3776, pp. 617–622,
Springer (2005)
22. Sallabi, O.M., El-Haddad, Y.: An Improved Genetic Algorithm to Solve the Travel-
eling Salesman Problem. Proceedings of World Academy of Science: Engineering &
Technology, vol. 52, pp. 530–533 (2009)
23. Kusum, D., Hadush, M.: New Variations of Order Crossover for Travelling Sales-
man Problem. In: Int. Journal of Combinatorial Optimization Problems and Informa-
tics, vol. 2, pp. 2–13 (2011)
24. Zakir, H.A.: Genetic Algorithm for the Traveling Salesman Problem using Sequential
Constructive Crossover Operator. In: Int. Journal of Biometric and Bioinformatics,
vol. 3, pp. 96–106 (2010)
25. Dr. Sabry M. Abdel-Moetty, Asmaa O. Heakil: Enhanced Traveling Salesman Prob-
lem Solving using Genetic Algorithm Technique with modified Sequential Construct-
ive Crossover Operator. In: Int. Journal of Computer Science and Network Security.
vol. 12, pp. 134–139 (2012)
Table 1. The results of CXGA found by 10 running times on Eil51, Pr76, Rat99, KroA100, Lin105, Bier127, Ts225, Gil262, A280 when r = 2,3,5,7,10

Instances	Min	Mean										
Eil51	1430.0	1437.0	1909.8	1916.7	1134.2	1145.6	2163.5	2170.6	17061.3	17173.1	17741.3	17873.8
Pr76	430.6	439.4	110165.3	111987.0	1239.9	1261.4	2177.9	2211.9	12030.0	121845.6	14645.9	14793.3
Rat99	429.0	432.6	110651.4	111688.5	1239.1	1256.5	2175.3	2201.4	120819.0	122073.9	14593.5	14795.9
KroA100	430.6	434.1	109695.8	111918.3	1241.7	1259.3	2169.4	2206.9	120846.0	122113.4	14612.0	14822.0
Bier127	430.6	434.1	109695.8	111832.7	1235.4	1256.3	2175.3	2233.6	120846.0	122211.1	14673.7	14803.7
Lin105	430.6	434.1	109695.8	111832.7	1235.4	1256.3	2175.3	2233.6	120846.0	122211.1	14673.7	14803.7
Ts225	430.6	434.1	109695.8	111832.7	1235.4	1256.3	2175.3	2233.6	120846.0	122211.1	14673.7	14803.7
Gil262	430.6	434.1	109695.8	111832.7	1235.4	1256.3	2175.3	2233.6	120846.0	122211.1	14673.7	14803.7
A280	430.6	434.1	109695.8	111832.7	1235.4	1256.3	2175.3	2233.6	120846.0	122211.1	14673.7	14803.7

Table 2. The results found by GA1, GA2, GA3 and CXGA algorithm for TSP instances

Instances	NCity	GA1	GA2	GA USING MSCX	CXGA								
Eil51	51	431.3	435.1	2.9	1.0	925.6	1013.9	50.2	0.4	431.5	435.4	3.7	0.9
Pr76	76	110191.0	115001.6	2097.7	1.6	31459.6	340169.1	16502.1	0.5	110202.0	115356.0	986.5	1.5
Rat99	99	1244.3	1284.1	20.5	2.2	4555.6	4880.2	205.4	0.6	1249.5	1271.9	20.6	2.1
KroA100	100	21978.1	22739.4	235.8	2.2	94681.5	99235.6	3029.9	0.6	21868.2	22388.0	421.6	2.2
Lin105	105	14751.8	15103.1	440.9	2.4	66635.6	70254.7	2676.8	0.6	14690.0	14966.3	215.3	2.4
Bier127	127	112263.6	122873.1	800.8	3.2	37347.6	39573.0	14681.4	0.6	121610.5	123742.7	985.6	3.1
Ts225	225	129210.9	132025.2	499.1	8.1	977739.8	1025709.4	3864.3	0.8	128282.7	129313.1	524.1	8.1
Gil262	262	2604.3	2653.8	36.4	10.3	16309.9	17031.1	503.5	1.0	2555.2	2615.9	28.1	10.4
A280	280	2745.4	2779.0	25.2	11.8	19335.8	21027.9	710.1	1.0	2660.0	2757.2	45.8	11.7
Lin318	318	47173.3	48039.3	558.1	14.3	362670.9	374143.0	7991.4	1.1	46037.6	46927.8	704.5	14.6
Pr439	439	119593.5	123512.6	1782.9	25.4	1120733.8	1171935.4	44592.6	1.4	116681.5	120078.9	2718.7	26.4
Rat575	575	7720.2	7858.5	100.3	41.8	70666.9	72422.8	1120.9	1.9	7699.8	7782.0	76.7	44.2

NCity: Number of city; Min: Minimum cost; Mean: Mean cost; Std: Standard Deviation of minimum cost; R_Time: Running time (minutes)