Planar graphs without cycles of length from 4 to 7 are near-bipartite

Lili Hao, Weihua Yang, Shuang Zhao

Department of Mathematics, Taiyuan University of Technology,
Taiyuan Shanxi-030024, China

Abstract: A graph is near-bipartite if its vertex set can be partitioned into an independent set and a set which induces a forest. In this paper, planar graphs without cycles of length from 4 to 7 are shown to be near-bipartite.

Keywords: Near-bipartite; 3-colorable; Discharging method; Planar graph

1 Introduction

A graph G is k-degenerate if $\delta(H) \leq k$ for each subgraph H of G. A k-degenerate graph is $(k + 1)$-colorable. In 1976, Borodin [1] proposed that partitioning the vertex set of the graph into two sets whose induced graphs have better degeneracy properties. A graph G is (m, n)-partitionable if $V(G)$ can be partitioned into set V_1 and set V_2, where $G[V_1]$ is m-degenerate and $G[V_2]$ is n-degenerate. A graph G is near-bipartite if $V(G)$ can be partitioned into sets V_1 and V_2, where V_1 is independent and $G[V_2]$ is a forest. It is crystal clear that a near-bipartite graph is $(0, 1)$-partitionable. Borodin [1] conjectured that every 5-degenerate planar graph is

*Corresponding author. E-mail: ywh222@163.com; yangweihua@tyut.edu.cn
(1, 2)-partitionable and (0, 3)-partitionable which are confirmed by Thomassen [10, 11]. Clearly, a near-bipartite graph is an extension of a 3-colorable graph in terms of shading limitations.

In 2001, Borodin and Glebov [2] proved that every planar graph of girth at least 5 is near-bipartite, then Kawarabayashi and Thomassen [8] made an extension of this result. Dross, Montassier and Pinlou [7] further conjectured a stronger result that every planar graph without triangle is near-bipartite. Yang and Yuan [12] showed that a nontrivial connected graph G with $G \not\cong K_4$ and $\Delta(G) \leq 3$ is near-bipartite, and it is NP-complete to judge that a graph is near-bipartite. Cranston and Yancey [6] proved that $(1.5, -0.5)$-sparse graph without K_4 and Moser spindle is near-bipartite.

In 2020, Liu and Yu [9] showed that every planar graph without \{4, 6, 8\}-cycles is near-bipartite. Borodin, Glebov, Raspaud and et al [3] showed that planar graphs without cycles of length from 4 to 7 are 3-colorable. In this paper, we proved that planar graphs without cycles of length from 4 to 7 are near-bipartite to extend above result.

The main tool used in this paper is the discharging method which has been utilized in graph theory for more than 100 years. Borodin [4] introduced the application of discharging method in planar graph coloring, and Cranston and West [5] explained its usage in detail.

For a class G of planar graphs, configurations S, a set of planar graphs, is unavoidable if every graph G in class G has a configuration from S as a subgraph. For a given property, a reducible configuration is a configuration which cannot occur in a minimal planar graph containing no given property. Let a type of color be the given property, i.e. solving the planar coloring problem with the above method can be translated into finding an unavoidable set of reducible configurations. One way to prove the reducibility of configuration C is to show that every coloring case of the boundary of C can extend to the whole of C (see Section 2). The discharging method is one way to demonstrate that a set of configurations is unavoidable, and its common principle is as follows. Suppose otherwise that there is a graph G avoiding every configuration in S, the initial charge of x is a real number associated with each vertex (and face) in G, such that the sum of them is negative. For some x, which has a negative initial charge, the charge is redistributed in such a way that all elements have non-negative charges, leading to a contradiction (see Section 3). This method has been elaborated in [4, 5].
An **IF-coloring** of a graph G is a partition of its vertices into two sets V_1 and V_2 such that V_1, an independent set, is colored I and V_2 colored F satisfies that $G[V_2]$ is a forest. For a given graph G and some cycle C in G, an IF-coloring ϕ_C of $G[V(C)]$ **superextends** to G if there exists an IF-coloring ϕ_G of G which extends ϕ_C satisfying there is no path joining two vertices of C all of whose vertices are colored F. C is **superextendable** to G if every IF-coloring of $G[V(C)]$ superextends to G. When G is specify, we will say (G, C) is superextendable.

A vertex v is called a k-vertex (k^+-vertex or k^--vertex) if its degree $d(v) = k$ ($d(v) \geq k$ or $d(v) \leq k$). Denote the vertex set of neighbors of the vertex v by $N(v)$. And the set of vertices locating inside (outside) the cycle C is denoted by $int(C)$ ($out(C)$). A cycle C is **separating** if $int(C) \neq \emptyset$ and $out(C) \neq \emptyset$, otherwise C is **non-separating**. Let ∂f denote the boundary of the face f.

Let $\mathcal{F} = \{F_{b1}, F_{b2}, F_{b3}, F_{b4}, F_{b5}, F_{b6}, F_{b7}\}$, where graph F_{b_i} is shown in Figure 1, $i = 1, 2, \ldots, 7$.

![Graphs Fb_i](image)

Figure 1. The graphs F_{b_i} in \mathcal{F}, $i = 1, 2, \ldots, 7$.

We next prove the following theorem.

Theorem 1. Every planar graph without cycles of length from 4 to 7 is near-bipartite.
Instead of Theorem 1, we prove a stronger result.

Theorem 2. Let \(G \) be a planar graph with no cycles of length from 4 to 7 and \(H \notin \mathcal{F} \) for any subgraph \(H \) of \(G \). If \(C \) is a cycle of length at most 14 in \(G \), then \((G,C)\) is superextendable.

Proof of Theorem 1.

The proof is carried out by considering whether graph \(G \) contains subgraph \(F_{b_i} \) in \(\mathcal{F} \).

Case 1. Suppose \(F_{b_1} \) is a subgraph of graph \(G \), then \(G \) is divided into five parts \(G[V(C_i)] \) with the boundary \(C_i \) of the five faces of \(F_{b_1} \) (including the exterior face), then \(G[V(C_i)] = C_i \) and \((G - \text{out}(C_i), C_i) \) is superextendable according to Theorem 2, where \(i = 1, 2, \ldots, 5 \). It is evident to check that \(F_{b_1} \) has an IF-coloring \(\phi_{F_{b_1}} \). Let \(\phi_{C_i} \) be equal to \(\phi_{F_{b_1}} \) when \(\phi_{F_{b_1}} \) is restricted to \(C_i \), where \(i = 1, 2, \ldots, 5 \). And then \(G \) has an IF-coloring extended from \(F_{b_1} \). When \(F_{b_j} \subseteq G, j = 2, 3, \ldots, 7 \), the proof is same as \(F_{b_1} \), that is, if \(H \subseteq G \) with \(H \in \mathcal{F} \), then \(G \) is near-bipartite.

Case 2. For other graphs, we can classify by girth into the following two cases. If the girth of graph \(G \) is at least 8, then \(G \) is near-bipartite by the result of [2]. If the girth of \(G \) is 3, then \(G \) contains a 3-cycle \(C \) with \(G[V(C)] = C \). By Theorem 2, \(C \) is superextendable to \(G \), so \(G \) is near-bipartite.

\[\blacksquare \]

2 Reducible configurations

Let \((G, C_0)\) be a counterexample of Theorem 2 with minimum \(\sigma(G) = |V(G)| + |E(G)| \), where \(C_0 \), having a precoloring, is a cycle of length at most 14 in \(G \). Incontestably, \(C_0 \) is non-separating, otherwise, suppose that \(C_0 \) is separating, then \(\text{int}(C_0) \neq \emptyset \) and \(\text{out}(C_0) \neq \emptyset \). Therefore, \((G, C_0)\) is superextendable followed from the fact that \((G - \text{int}(C_0), C_0)\) and \((G - \text{out}(C_0), C_0)\) are superextendable, which makes a contradiction. Denote the exterior face in \(G \) by \(f_0 \) and assume \(\text{out}(C) = \emptyset \), then \(C_0 \) is the boundary of \(f_0 \). A face \(f \) is internal if \(f \neq f_0 \), and a vertex \(v \) is internal if \(v \notin V(C_0) \), otherwise \(v \) is non-internal.

Lemma 2.1. Let \(v \) be any internal vertex in \(G \), then \(d(v) \geq 3 \).
Proof. Suppose that vertex v is internal with $d(v) \leq 2$ in G. By the minimality of (G, C_0), $(G - v, C_0)$ is superextendable. If all vertices in $N(v)$ are colored F, then color v with I, otherwise, color v with F. In above cases, C_0 is superextendable to G, a contradiction.

Lemma 2.2. There is no separating cycle of length at most 14 in G.

Proof. By contradiction. Suppose that G has a separating cycle of length at most 14 denoted by C, then C is inside of C_0. Firstly, by the minimality of (G, C_0), C_0 is superextendable to $G - int(C)$, and then $G[V(C)]$ has an IF-coloring superextended from C_0. Secondly, by the minimality of (G, C_0) again, C is superextendable to $G - out(C)$. Thus, C_0 is superextendable to G, contrary to the hypothesis of Theorem 2.

Lemma 2.3. G is 2-connected.

Proof. By contradiction. First suppose G is disconnected, and G_1 is a component without $V(C_0)$ in G. By the minimality of (G, C_0), $(G - G_1, C_0)$ is superextendable. If G_1 contains a 3-cycle C_1, (G_1, C_1) is superextendable by the minimality of (G, C_0). Otherwise, the girth of G_1 is at least 8, so G_1 is near-bipartite by the result of [2]. Thus, C_0 is superextendable to G leading to a contradiction. Next suppose G is 1-connected, and let B, satisfying that $B - u$ contains no vertex on C_0, be an endblock with a cut vertex u of G. By the minimality of (G, C_0), $(G - (B - u), C_0)$ is superextendable. Then suppose that the cycle C_2 is the boundary of f, where f is the face containing u with the minimum degree in B. If $|C_2| \leq 14$, $C_2 = B[V(C)]$ since C_2 is chordless in B. And then by the minimality of (G, C_0), (B, C_2) is superextendable. If $|C_2| \geq 15$, let the neighbors of u in C_2 be u_1 and u_2, and $C_3 = uu_1u_2u$ be a 3-cycle. By the minimality of (G, C_0) again, $(B + u_1u_2, C_3)$ is superextendable. In other words, whether u colors I or F, B has the corresponding IF-coloring. Thus, (G, C_0) is superextendable, a contradiction.

Lemma 2.4. C_0 is chordless.

Proof. Assume otherwise that C_0 has a chord e. Then $G = G[V(C_0)]$, otherwise, e combined a path in C_0 yields a separating cycle of size at most 13. Hence C_0 is naturally superextendable to G, which results in a contradiction.
Let $G\cdot\{u,v\}$ be the graph obtained by identifying u and v of a graph G, where $u,v \in V(G)$.

An internal vertex v is bad if v is incident with some 3-face and $d(v) = 3$, otherwise, the internal vertex v is non-bad. An internal 4-vertex $v \in V(f)$ is poor to the face f if v is incident with two 3-faces which are both adjacent to f, or v is incident with one 3-face which is not adjacent to f. A vertex v is willing if v is non-bad with $d(v) = 3$ or poor. In a planar graph, a path $v_1v_2v_3v_4$ of the boundary of a face is a tetrad if v_1, v_2, v_3, v_4 are bad and edges v_1v_2, v_3v_4 are incident with 3-faces as Figure 2 shows.

![Figure 2. A tetrad](image)

Lemma 2.5. (1) G contains no tetrad.

(2) G contains no face incident with five consecutive bad vertices.

(3) If G contains a face incident with six consecutive vertices v_0, v_1, v_2, v_3, v_4 and v_5, where v_1, v_2, v_3 and v_4 are bad, then the edges v_0v_1, v_2v_3 and v_4v_5 are incident with 3-faces.

Proof. (1) By contradiction. Suppose that G contains a tetrad as Figure 2. Let $G^* = (G - \{v_1, v_2, v_3, v_4\}) \cdot \{x, t_{34}\}$. Markedly, the paths Q, S, S_1, S_2 mentioned below contain no edges which are absent in G^*. Suppose that all vertices of S, S_1, S_2 are colored F. Suppose that all vertices of S, S_1, S_2 are colored F.

Claim. (G^*,C_0) is superextendable.

In fact, $G^*[V(C_0)] = G[V(C_0)]$, otherwise, the identifying procedure creates a chord in C_0 or identifies two vertices of C_0. The former causes $x, t_{34}' \in V(C_0)$ or $t_{34}, x' \in V(C_0)$, where $t_{34}' \in N(t_{34}) \setminus \{v_3, v_4\}$ and $x' \in N(x) \setminus \{v_1\}$. And the latter follows that $x, t_{34} \in V(C_0)$. For above cases, there is a path of length 4 or 5, which is internally disjoint from C_0, between two vertices of C_0 denoted by P. Then a cycle in $P \cup C_0$ of length at most 14 separates t_{23} and t_{56} in G, contrary to Lemma 2.2. Accordingly, the precoloring of C_0 in G remains valid in G^*.

Clearly, G^* is a planar graph with $H \notin \mathcal{F}$ for every subgraph H of G^*. G^* contains no cycles of length from 4 to 7, otherwise, the identification procedure creates new cycles of length from
4 to 7, then there is a \((x, t_{34})\)-path \(Q\) of length from 4 to 7 in \(G\). However, \(Q \cup xv_1v_2v_3t_{34}\) is a separating cycle of length from 8 to 11, which contradicts against Lemma 2.2.

Therefore \(G^*\), containing no subgraph \(H \in \mathcal{F}\), is a planar graph without cycles of length from 4 to 7, and the claim is established by the minimality of \((G, C_0)\).

By the claim, \((G^*, C_0)\) is superextendable. Next we only need to show that \(G\) has an IF-coloring extended from any coloring of \(G^*\) that is superextended from \(C_0\), which contributes to a contradiction with hypothesis.

Case 1. Suppose \(x\) and \(t_{34}\), which are identified a new vertex in \(G^*\), are all colored \(I\). We just color \(v_1, v_3, v_4\) in \(F\) and \(v_2\) in an opposite color of \(t_{12}\).

Case 2. Assume \(x\) and \(t_{34}\) are colored \(F\). Note that there is no \((x, t_{34})\)-path \(S\) in \(G\) by the existence of an IF-coloring in \(G^*\). We color \(v_2\) in \(F\), \(v_3\) in a same color with \(y\), and \(v_1, v_4\) in an opposite color of \(t_{12}\), \(y\) separately. The only condition, \(t_{12}\) and \(y\) are colored \(F\), is invalid only when there is a \((t_{12}, t_{34})\)-path \(S_1\). In this case, recolor \(v_1\) in \(F\) and \(v_2\) in \(I\) because of the inexistence of the \((t_{12}, x)\)-path \(S_2\), otherwise, \(S_1 \cup S_2\) forms the forbidden path \(S\).

(2) By contradiction. Suppose that \(G\) contains a face with five consecutive bad vertices \(v_1, v_2, v_3, v_4, v_5\). By symmetry, if the edge \(v_2v_3\) is incident with some 3-face, then \(v_4v_5\) must be an edge on some 3-face, but \(v_2v_3v_4v_5\) is a tetrad, contrary to (1). If not, there is a tetrad \(v_1v_2v_3v_4\) in \(G\), contrary to (1) again.

(3) Suppose that \(G\) contains a face incident with six consecutive vertices \(v_0, v_1, v_2, v_3, v_4, v_5\), where \(v_1, v_2, v_3, v_4\) are bad. If the edge \(v_2v_3\) is incident with some 3-face, then the edges \(v_0v_1, v_4v_5\) must be on 3-faces conforming to the conclusion of Lemma 2.5(3). If not, the edges \(v_1v_2, v_3v_4\) must be incident with 3-faces causing a tetrad \(v_1v_2v_3v_4\), contrary to (1).

An 8-face \(f\) with \(\partial f = v_1v_2 \cdots v_8\) is an \(M\)-face if \(v_1, v_2, v_3, v_5, v_6, v_7\) are bad, \(v_4\) is not bad, \(v_8\) is a 4-vertex, and 3-faces \(t_{ij}v_iv_j\) are adjacent to \(f\), where \(t_{ij} = N(v_i) \cap N(v_j)\), \((i, j) \in \{(1, 8), (2, 3), (5, 6), (7, 8)\}\) as Figure 3(a) shows.

An 8-face \(f\) with \(\partial f = v_1v_2 \cdots v_8\) is an \(MM\)-face if \(v_1, v_2, v_3, v_4, v_6, v_7\) are bad, \(v_5, v_8\) are 4\(^+\)-vertices, and 3-faces \(t_{ij}v_i, v_j\) are adjacent to \(f\), where \(t_{ij} = N(v_i) \cap N(v_j)\), \((i, j) \in \{(1, 8), (2, 3), (4, 5), (5, 6), (7, 8)\}\) as Figure 3(b) shows.
Lemma 2.6. G contains no M-face.

Proof. By contradiction. Suppose that G contains an M-face as Figure 3(a). Let $G^* = (G - \{v_1, v_2, v_3, v_5, v_6, v_7\} + e) \cdot \{v_4, v_8\}$, where $e = t_{18}t_{78}$. Notable, the paths Q_1, Q_2, S_1, S_2 mentioned below contain no edges that are absent in G^*, and assume that the color is F in all vertices of S_1, S_2.

Claim. (G^*, C_0) is superextendable.

Indeed, $G^*|V(C_0)| = G|V(C_0)|$, otherwise, the identification creates a chord in C_0 or identifies two vertices of C_0, or the edge e is a new chord of C_0. The first case causes $v_4, v_8' \in V(C_0)$ or $v_8, v_4' \in V(C_0)$, where $v_4' \in N(v_4) \setminus \{v_3, v_5\}$ and $v_8' \in \{t_{18}, t_{78}\}$. And in second case, it is established that $v_4, v_8 \in V(C_0)$. For both cases, there exists a path P_1 of length 4 or 5, which is internally disjoint from C_0, between two vertices of C_0. And since $|C_0| \leq 14$, there exists a cycle contained in $P_1 \cup C_0$ of length at most 14 that separates t_{23} and t_{56}, contrary to Lemma 2.2. Third, if the adding edge e is a new chord of C_0 in G^*, then $t_{18}, t_{78} \in V(C_0)$. There is a (t_{18}, t_{78})-path P_2 of length at least 6 contained in C_0 since the graph G without cycles of length from 4 to 7. Therefore, $(C_0 - P_2) \cup t_{18}v_8t_{78}$ causes a separating cycle of length at most 10, contrary to Lemma 2.2 again. So the precoloring of C_0 in G remains valid in G^*.

 Apparently, G^* is a planar graph without subgraph $H \in \mathcal{F}$. Furthermore, G^* contains no
cycles of length from 4 to 7, otherwise, the identification or the edge-adding procedure creates new cycles of length from 4 to 7 in G^*. If the former happens, there exists a (v_4, v_8)-path Q_1 of length at most 7, so that $Q_1 \cup v_8v_1v_2v_3v_4$ leads to a separating cycle of length at most 11 in G, contrary to Lemma 2.2. If the latter holds, there is a (t_{18}, t_{78})-path Q_2 of length from 3 to 6 in G. Therefore, $Q_2 \cup t_{18}v_1v_2v_3v_4v_5v_6v_7t_{78}$ has combined a separating cycle of size from 11 to 14 in G, contrary to Lemma 2.2 again.

Consequently, G^*, which contains no subgraph belonging to \mathcal{F}, is a planar graph without cycles of length from 4 to 7, then by the minimality of (G, C_0), the claim is established.

Next we show that G has an IF-coloring extended from the coloring of G^*. Then by the claim, (G, C_0) is superextendable, a contradiction with hypothesis.

Case 1. Suppose that v_4 and v_8, which are identified a new vertex in G^*, are colored I. Afterwards, we naturally color v_1, v_3, v_5, v_7 with F and v_2, v_6 with a color different from t_{23}, t_{56} singly.

Case 2. Assume that v_4 and v_8 are colored F, then one of t_{18} and t_{78} is colored I, and the other is colored F for a 3-cycle $v_8t_{18}t_{78}v_8$ in G^*. Without loss of generality, suppose that t_{18} and t_{78} are colored I and F respectively. We can then color v_1, v_6 with F, v_7 with I and v_5 with a different color from t_{56}. If t_{23} is colored I, then color v_2, v_3 with F. Otherwise, as (v_4, t_{23})-path S_1 and (v_8, t_{23})-path S_2 cannot coexist, one of coloring v_2 with I, v_3 with F and the opposing coloring situation is proper.

Lemma 2.7. G contains no MM-face.

Proof. Suppose otherwise that G contains an MM-face as Figure 3(b). Let $G^* = (G - \{v_1, v_2, v_3, v_4, v_6, v_7\} + \{e_1, e_2\}) \cdot \{v_5, v_8\}$, where $e_1 = t_{18}t_{45}$ and $e_2 = t_{78}t_{56}$. And let u be the vertex after identifying v_5 and v_8. It is noticeable that the paths S_1, S_2, T mentioned below contain no edges which are absent in G^* and suppose all vertices of them are colored F.

As in the claims of pervious two lemmas, (G^*, C_0) is superextendable. Next, we only need to show G has an IF-coloring extended from the coloring of G^*, a contradiction.

Case 1. Assume that v_5 and v_8 are colored I. Then, we could color v_1, v_4, v_6, v_7 with F. Furthermore, since (t_{18}, t_{23})-path S_1 and (t_{23}, t_{45})-path S_2 cannot coexist, one of coloring v_2
with F, v_3 with I and the opposing coloring situation is proper.

Case 2. Assume that v_5 and v_8 are colored F. As $t_{18}ut_{45} \cup e_1$ is a 3-cycle in G^*, one of t_{18} and t_{45} is colored I, and the other is F. The same situation occurs in t_{56} and t_{78}. By symmetry, suppose that t_{18} is colored I and t_{45} is colored F, then (t_{45}, t_{56})-path T cannot exist. So we then color v_1 and v_3 in F, v_4 in I, v_2 in a different color from t_{23}, and v_6, v_7 in the same color with t_{78}, t_{56} separately. ■

3 Discharging procedure

The rest of proof to Theorem 2 will describe a discharging procedure, following the principles mentioned in section 1, to show an incompatible result. In this paper, we adjust the size of some initial charges such that the sum of the charges of all elements is zero, then redistribute the charges (via discharging rules) so as to the sum of the new charges of all elements is positive, which leads to a contradiction to complete the proof of Theorem 2. The specific initial charge distribution is as follows. Set the initial charge of every vertex $v \in V(G)$ with $ch(v) = d(v) - 4$, any face $f \in F(G) \setminus f_0$ with $ch(f) = d(f) - 4$, and f_0 with $ch(f_0) = d(f_0) + 4$. By Euler’s Formula $|V(G)| - |E(G)| + |F(G)| = 2$, we have $\sum_{x \in V(G) \cup F(G)} ch(x) = 0$.

Let $v \in V(C_0)$ be a 3-vertex, and f_1, f_2 be its incident faces except f_0. The vertex v is **content** if f_1 is a 3-face and f_2 is an 8^+-face.

An 8-face f with $\partial f = v_1v_2 \cdots v_8$ is an **Fa_1-face** if v_1, v_3 are content, v_2 is a 2-vertex, v_4, v_5, v_6, v_8 are bad, v_7 is willing, and 3-faces $t_{ij}v_i v_j$ are all adjacent to f, where $t_{ij} = N(v_i) \cap N(v_j)$, $(i, j) \in \{(1,8), (3,4), (5,6)\}$ and $t_{34}, t_{18} \in V(C_0)$ as Figure 4(a) shows.

An 8-face f with $\partial f = v_1v_2 \cdots v_8$ is an **Fa_2-face** if v_1, v_3 are content, v_2 is a 2-vertex, v_4, v_5, v_7, v_8 are bad, v_6 is willing and 3-faces $t_{ij}v_i v_j$ are adjacent to f, where $t_{ij} = N(v_i) \cap N(v_j)$, $(i, j) \in \{(1,8), (3,4), (5,6), (6,7)\}$ and $t_{34}, t_{18} \in V(C_0)$ as Figure 4(b) shows.

Let FA_i denote the subgraph $G[V(f) \cup N(V(f))]$ of G, where f is an Fa_i-face, $i = 1, 2$. We call FA_1 or FA_2 **FA-structure**. The vertex $v \in V(f)$ is **special** to the face f if v is content and f is an Fa_1-face or Fa_2-face.
Figure 4. FA-structures

The discharging procedure meets the following discharging rules:

R1. Each 3-face receives $\frac{1}{3}$ from each incident vertex.

R2. Each internal 8^+-face f sends to each incident vertex v:

- **R2.1.** $\frac{2}{3}$ if $d(v) = 2$ or v is bad;
- **R2.2.** $\frac{1}{3}$ if v is willing or content but not special.

R3. Each internal 8^+-face f receives $\frac{1}{3}$ from each incident vertex v if:

- **R3.1.** v is an internal 5^+-vertex incident with two 3-faces adjacent to f;
- **R3.2.** v is a non-internal 4^+-vertex.

R4. The exterior face f_0 sends to each incident vertex v:

- **R4.1.** $\frac{4}{3}$ if $d(v) = 2$ or v is special;
- **R4.2.** 1 if v is not special with $d(v) \geq 3$.

R5. Each internal face sends the surplus charge to f_0.

Let $ch^*(x)$ and $ch_1(x)$ be the charge of $x \in V(G) \cup F(G)$ after the discharging procedure (i.e. final charge) and after the discharging procedure except R5, respectively.

Lemma 3.1. $ch^*(v) \geq 0$ when $v \in V(G)$.
Proof. The case is divided by considering whether \(v \) is internal.

Case 1. Suppose that \(v \in V(C_0) \).

If \(d(v) = 2 \), then its incident internal face \(f \) has \(d(f) \geq 8 \), otherwise, \((G, C_0)\) is superextendable as \(G = G[V(C_0)] \). By R4.1 and R2.1, \(v \) gets \(\frac{4}{3} \) from \(f_0 \) and \(\frac{2}{3} \) from \(f \), and hence \(ch^*(v) = 2 - 4 + \frac{2}{3} + \frac{4}{3} = 0 \).

If \(d(v) = 3 \), \(v \) is incident to \(f_0 \) and two internal faces \(f_1 \) and \(f_2 \). First, suppose that \(v \) is content, let \(f_1 \) be a 3-face. By R1, R2 and R4, if \(v \) is special to \(f_2 \), \(v \) sends \(\frac{1}{3} \) to \(f_1 \) and gets \(\frac{4}{3} \) from \(f_0 \), or sends \(\frac{1}{3} \) to \(f_1 \) and gets \(\frac{1}{3} \) from \(f_2 \) and 1 from \(f_0 \) otherwise. Next, considering that both \(f_1 \) and \(f_2 \) are 8\(^+\)-faces, then \(v \) only gets 1 from \(f_0 \). Hence, \(ch^*(v) \geq 3 - 4 + \min \{-\frac{1}{3} + \frac{4}{3}, -\frac{1}{3} + \frac{1}{3} + 1, 1\} = 0 \).

If \(d(v) \geq 4 \), then \(v \) gets 1 from \(f_0 \) by R4.2 and sends \(\frac{1}{3} \) to each of the \(d(v) - 1 \) incident internal faces by R1 and R3.2. Consequently, \(ch^*(v) = d(v) - 4 + 1 - \frac{1}{3} \times (d(v) - 1) = \frac{2}{3}(d(v) - 4) \geq 0 \).

Case 2. Suppose that \(v \notin V(C_0) \), then \(d(v) \geq 3 \) by Lemma 2.1. Denote that \(n_3(v) \) is the number of 3-faces incident with \(v \).

If \(d(v) = 3 \), \(0 \leq n_3(v) \leq 1 \) since there is no 4-cycles in \(G \). If \(n_3(v) = 0 \), then \(v \) is willing and gets \(\frac{1}{3} \) from each of the three incident 8\(^+\)-faces by R2.2. If \(n_3(v) = 1 \), then \(v \) is bad. By R1 and R2.1, \(v \) is incident to one 3-face getting \(\frac{1}{3} \) from \(v \) and two 8\(^+\)-faces sending \(\frac{2}{3} \) to \(v \), that implies \(ch^*(v) \geq 3 - 4 + \min \{\frac{1}{3} \times 3, -\frac{1}{3} + \frac{2}{3} \times 2\} = 0 \).

If \(d(v) = 4 \), distinctly, \(0 \leq n_3(v) \leq 2 \). Let the faces incident with \(v \) be named \(f_1, f_2, f_3, f_4 \) in order. If \(n_3(v) = 0 \), there is no charge exchange between \(v \) and \(f_i \), \(i = 1, 2, 3, 4 \). If \(n_3(v) = 1 \), let \(f_1 \) be a 3-face, then \(v \) is poor to \(f_3 \). So, \(v \) sends \(\frac{1}{3} \) to \(f_1 \) by R1 and gets \(\frac{1}{3} \) from \(f_3 \) by R2.2. If \(n_3(v) = 2 \), let \(f_1, f_3 \) be 3-faces, then \(v \) is poor to \(f_2 \) and \(f_4 \). Therefore, \(v \) sends \(\frac{1}{3} \) to \(f_1, f_3 \) by R1 and gets \(\frac{1}{3} \) from \(f_2, f_4 \) by R2.2. Hence, \(ch^*(v) \geq 4 - 4 + \min \{0, -\frac{1}{3} + \frac{1}{3}, -\frac{1}{3} \times 2 + \frac{1}{3} \times 2\} = 0 \).

If \(d(v) = 5 \), \(0 \leq n_3(v) \leq 2 \). Then \(v \) loses the most charge in case when \(n_3(v) = 2 \), \(v \) sends \(\frac{1}{3} \) to each of its incident two 3-faces \(f_1, f_2 \) and one 8\(^+\)-face adjacent with both \(f_1 \) and \(f_2 \) by R1 and R3.1. Thus, \(ch^*(v) \geq 5 - 4 - \frac{1}{3} \times 2 - \frac{1}{3} = 0 \).

If \(d(v) \geq 6 \), the case where \(v \) gives the most charge is \(\frac{1}{3} \) to all its incident faces by R1 and R3.1. Thereby \(ch^*(v) \geq d(v) - 4 + \frac{1}{3} \times d(v) = \frac{2}{3}(d(v) - 6) \geq 0 \).
Proof. It is obvious that we only need to show Lemma 3.2.

Case 1. If \(d(f) = 3 \), then \(f \) gets \(\frac{1}{3} \) from each incident vertex by R1, which represents \(ch_1(f) = 3 - 4 + \frac{1}{3} \times 3 = 0. \)

Case 2. Suppose that \(f \) is an 8\(^+\)-face having some 2-vertices, in that way, \(f \) contains two common 3\(^+\)-vertices \(u, v \) with \(f_0 \). Let \(n_2(f) \) denote the number of 2-vertices in \(f \). Observe that \(1 \leq n_2(f) \leq d(f) - 3 \), and a content vertex cannot be special when \(d(f) = 8 \) and \(n_2(f) \geq 2 \) or \(d(f) \geq 9 \). Notably, \(f \) receives \(\frac{1}{3} \) from \(w \in V(C_0) \) if \(d(w) \geq 4 \). By R2, \(f \) gives the most charge to its incident vertices in cases where \(\frac{2}{3} \) is given to each of the \(d(f) - 2 \) vertices which are 2-vertices or bad, and \(\frac{1}{3} \) to two content but not special vertices. Therefore, \(ch_1(f) \geq d(f) - 4 - \frac{2}{3} \times (d(f) - 2) - \frac{1}{3} \times 2 = \frac{1}{3}(d(f) - 10) \). Let \(\partial f = v_1 \cdots v_{n_2(f)} u u_1 \cdots u_{d(f) - n_2(f) - 2} \), \(d(u) = 3 \) with \(N(u) = \{ u_1, v_{n_2(f)}, b \} \) and \(d(v) = 3 \) with \(N(v) = \{ v_1, u_{d(f) - n_2(f) - 2}, a \} \), where \(v_i \) is a 2-vertex, \(u_j \) is internal, \(a, b \in V(C_0) \), \(1 \leq i \leq n_2(f) \) and \(1 \leq j \leq d(f) - n_2(f) - 2 \). If \(u \) (or \(v \)) is content, let \(f_u \) (or \(f_v \)) be its incident 3-face with \(\partial f_u = uu_1b \) (or \(\partial f_v = vu_{d(f) - n_2(f) - 2}a \)).

Subcase 2.1. When \(d(f) \geq 10 \), \(ch_1(f) = 0 \) and \(ch_1(f) = 0 \) only if \(d(f) = 10 \) and \(f \) is incident with eight 2-vertices or bad vertices and two content vertices \(u, v \).

If \(n_2(f) = 1, 2, 3 \), \(ch_1(f) > 0 \) since there is at least one non-bad vertex by Lemma 2.5(2).

If \(n_2(f) = 4 \) and \(G \) satisfies the condition of \(ch_1(f) = 0 \), then \(u_2u_3 \) is an edge of a 3-face \(f_1 \). If \(V(f_1) \cap V(C_0) = \emptyset \), there exists a cycle contained in \(au_4u_3u_2u_1b \cup C_0 \) of length at most 12, contrary to Lemma 2.2. If \(V(f_1) \cap V(C_0) = t_{23} \), there is a separating cycle in \(au_4u_3t_{23} \cup C_0 \) or \(bu_1u_2t_{23} \cup C_0 \) of length from 4 to 7, contrary to the restrictions of Theorem 2.

If \(n_2(f) = 5, 7 \), \(ch_1(f) > 0 \) since a non-bad vertex exists in \(f \).

If \(n_2(f) = 6 \), \(V(G) = V(C_0) \cup \{ u_1, u_2 \} \), otherwise there is a separating cycle contained in \(au_2u_1b \cup C_0 \) of length 8, contrary to Lemma 2.2. Considering that \(G \) has no \(\{ 4, 5, 6, 7 \} \)-cycles, \(G \cong F_{l_b} \in \mathcal{F} \), a contradiction.

Subcase 2.2. When \(d(f) = 9 \), \(ch_1(f) < 0 \) only if \(f \) has seven 2-vertices or bad vertices and two content vertices \(u, v \).
If $n_2(f) = 1, 2$, $ch_1(f) \geq 0$ since there is at least one non-bad vertex in f by Lemma 2.5(2).

If $n_2(f) = 3$ and G satisfies the condition of $ch_1(f) < 0$, then edge u_2u_3 is on a 3-face f_1. As mentioned in Subcase 2.1, there is a contradiction whether $V(f_1) \cap V(C_0)$ is empty or not.

If $n_2(f) = 4, 6$, $ch_1(f) \geq 0$ as there exists a non-bad vertex in f.

If $n_2(f) = 5$, as in Subcase 2.1, $G \cong Fb_2$ or $Fb_4 \in F$, which makes a contradiction.

Subcase 2.3. If $d(f) = 8$, then $ch_1(f) < 0$ only if f satisfies one of the following two conditions by R2.

Con 1 is that f has six 2-vertices or bad vertices receiving $\frac{2}{3}$ from f, one content but not special vertex u receiving $\frac{1}{3}$ from f, and in this case v must be a 3-vertex. Con 2 is that f contains five 2-vertices or bad vertices, two content but not special vertices u, v and one willing vertex.

When $n_2(f) = 1$, discuss the existence of Con 1 and Con 2 correspondingly. Con 1 cannot be satisfied as Lemma 2.5(2). Consider Con 2, f contains at least one non-bad vertex causing an Fa_1-face or Fa_2-face, so content vertices u, v are special to f, and Con 2 cannot exist.

Assume that $n_2(f) = 2$. In Con 1, if there is one content but not special vertex u and four bad vertices u_1, u_2, u_3, u_4 in f, then v must be content since vu_4 is on some 3-face by Lemma 2.5(3). Hence, f sends $\frac{2}{3}$ to two 2-vertices and four bad vertices by R2.1, and $\frac{1}{3}$ to u, v by R2.2. Subsequently, $ch_1(f) = 8 - 4 - \frac{2}{3} \times 6 - \frac{1}{3} \times 2 = -\frac{2}{3}$, but there is a separating cycle in $au_4u_3u_2u_1b \cup C_0$ of length at most 14, contrary to Lemma 2.2. Con 2 also cannot exist since a separating cycle with length at most 14 is shown as in Con 1, and u_2 or u_3 cannot be willing.

Assume that $n_2(f) = 3$. Both the establishment of Con 1 and Con 2 yields a separating cycle in $vu_3u_2u_1u \cup C_0$ of length at most 14, contrary to Lemma 2.2.

Assume that $n_2(f) = 4$. As G contains no cycles of length from 4 to 7, Con 1 is established only when f has two bad vertices u_1, u_2, and suppose f has one content vertex u, then uu_1, vu_2 is in a 3-faces and v must be content. Now, G contains no internal vertex besides u and v, otherwise there is a separating cycle in $au_2u_1b \cup C_0$ of length at most 10. Therefore, $G \cong Fb_1, Fb_2$ or Fb_3 that brings about a contradiction to the conditions of Theorem 2. Con 2 is not established since u_1 or u_2 cannot be willing when both v and u satisfy the condition.

Assume that $n_2(f) = 5$. Con 1 needs one bad vertex and one content vertex u, then
$V(G) = V(C_0) \cup \{u_1\}$, otherwise, part of $vu_4b \cup C_0$ is a separating cycle of length 8 or 9. Then $G \cong Fb_5$ or $Fb_6 \in \mathcal{F}$, contrary to conditions for Theorem 2. Con 2 holds only if both u and v are content and u_1 is poor, then as in Con 1, $G \cong Fb_7$, contrary to Theorem 2 again.

Case 3. Suppose that f is an 8^+-face that shares some 3^+-vertices with f_0 but no 2-vertex. Let $n_{3^+}(f)$ denote the number of non-internal vertices in f and $\partial f = v_1v_2 \cdots v_{d(f)}$. Obviously $1 \leq n_{3^+}(f) \leq 2$.

Subcase 3.1. If $n_{3^+}(f) = 1$, then assume $v_1 \in V(C_0)$ and $v_i \notin V(C_0)$, $2 \leq i \leq d(f)$. Due to Lemma 2.5(2), f gets $\frac{1}{3}$ from v_1 as $d(v_1) \geq 4$ and at most sends $\frac{2}{3}$ to bad vertices with cardinality $d(f) - 2$, and $\frac{1}{3}$ to one willing vertex by R2 and R3.2. Hence, $ch_1(f) \geq d(f) - 4 + \frac{1}{3} - \frac{2}{3} \times (d(f) - 2) - \frac{1}{3} \times 1 = \frac{1}{3}(d(f) - 8) \geq 0$.

Subcase 3.2. If $n_{3^+}(f) = 2$, let $v_1, v_2 \in V(C_0)$ and $v_i \notin V(C_0)$, $3 \leq i \leq d(f)$. Owing to Lemma 2.5(2), f gives at most $\frac{2}{3}$ to each of $d(f) - 3$ bad vertices, $\frac{1}{3}$ to one willing vertex and $\frac{1}{3}$ to each of v_1, v_2 when they are content by R2. Notably, a content vertex is not special in this case. Therefore, $ch_1(f) \geq d(f) - 4 - \frac{2}{3} \times (d(f) - 3) - \frac{1}{3} \times 1 - \frac{1}{3} \times 2 = \frac{1}{3}(d(f) - 9)$, and $ch_1(f) < 0$ only if f is an 8-face with five bad vertices, one willing vertex and two content vertices v_1, v_2. The grouping of bad vertices can be divided into the following two types, group 1 is 1-4 and group 2 is 2-3. In group 1, suppose that all internal vertices are bad except for v_4 that is willing. By Lemma 2.5(3), v_1v_8, v_6v_7, v_4v_5 are incident with 3-faces, at this time v_4 violates its requirements of group 1. In group 2, assume that v_3, v_4, v_6, v_7, v_8 are bad and v_5 is willing, then v_4v_5, v_6v_7 are incident with 3-faces, but v_5 cannot be willing to result in the inactivity of group 2.

Case 4. Suppose that $d(f) \geq 8$ and f shares no vertex with f_0. By Lemma 2.5(2), there are at least two non-adjacent non-bad vertices in f, thus by R2 f gives to at most $d(f) - 2$ incident bad vertices $\frac{2}{3}$ and at least two other incident vertices $\frac{1}{3}$ when they are willing. Accordingly, it follows that $ch_1(f) \geq d(f) - 4 - \frac{2}{3} \times (d(f) - 2) - \frac{1}{3} \times 2 = \frac{1}{3}(d(f) - 10)$. Let $\partial f = v_1v_2 \cdots v_{d(f)}$.

Subcase 4.1. If $d(f) \geq 9$, $ch_1(f) < 0$ only if f exactly has seven bad vertices and two willing vertices, then all bad vertices have to be grouped by 3-4. Suppose that v_4, v_9 are willing, while others are bad. Since Lemma 2.5(3), the edges v_4v_5, v_6v_7, v_8v_9 are incident with 3-faces. Afterwards, v_4, v_9 must be 4-vertices otherwise they are bad, but one of them cannot be poor, which occasions $ch_1(f) \geq 0$.

15
Subcase 4.2. Let $d(f) = 8$, $ch_1(f) < 0$ only if f satisfies one of the following two conditions. Con 1 is that f contains six bad vertices and at least one willing vertex. Con 2 is that f contains five bad vertices and three willing vertices.

Con 1. In f, all bad vertices can be divided into two groups, group 1 is 2-4 and group 2 is 3-3. In group 1, suppose that all vertices on f except v_1, v_4 are bad, then edges v_4v_5, v_6v_7, v_1v_8 are on 3-faces as Lemma 2.5(3). If the edge v_2v_3 is incident with some 3-face, then neither v_1 nor v_4 is willing. Otherwise, the edges v_1v_2, v_3v_4 are on 3-faces taking an MM-face, which makes a contradiction with Lemma 2.7. In group 2, suppose that all vertices on f except v_1, v_5 are bad. By symmetry, assume v_2v_3 is an edge in some 3-face, then v_4v_5, v_5v_6, v_7v_8 must be on 3-faces accounting for an M-face, contrary to Lemma 2.6.

Con 2. If the three willing vertices are not adjacent to each other, the bad vertices in f can be grouped into two types, that is, group 1 is 1-1-3 and group 2 is 1-2-2. Otherwise, the bad vertices in f can also be divided into two groups, that is, group 3 is 1-4 and group 4 is 2-3. Do the analysis as in Con 1 and Subcase 3.2, the four grouping cases all contradict the conditions of Con 2.

In conclusion, $ch^*(f) \geq 0$ when $f \in F(G) \setminus f_0$. ■

Lemma 3.3. $ch^*(f_0) > 0$.

Proof. Incontrovertibly, $ch^*(f_0) \geq ch_1(f_0)$. Let $n_{Fa}(G)$ denote the number of FA-structures in G, then $0 \leq n_{Fa}(G) \leq 3$ is much in evidence.

Case 1. Suppose that $n_{Fa}(G) > 0$, the case where f_0 gives the most charge is that when $n_{Fa}(G) = 1$ and all the other vertices on C_0, except for this FA-structure, have degree 2. By R4, f_0 sends $\frac{4}{3}$ to $d(f_0) - 2$ 2-vertices and special vertices, and 1 to other two vertices on C_0, which implies $ch_1(f_0) \geq d(f_0) + 4 - \frac{4}{3} \times (d(f_0) - 2) - 1 \times 2 = \frac{1}{3}(14 - d(f_0)) \geq 0$. Besides, $ch_1(f_0) = 0$ only if f_0 meets the above requirements along with $d(f_0) = 14$. But G has one 10^+-face f_1 containing nine 2-vertices with $ch_1(f_1) > 0$ as Lemma 3.2. By R5, $ch^*(f_0) = ch_1(f_0) + ch_1(f_1) > 0$.

Case 2. If $n_{Fa}(G) = 0$, then f_0 sends $\frac{4}{3}$ only to 2-vertex by R4. Since $G \not\cong G[V(C_0)]$ and G is 2-connected, C_0 has at least two 3^+-vertices. Thus f_0 gives at most $\frac{4}{3}$ to each of the $d(f_0) - 2$ 2-vertices and 1 to two 3^+-vertices, and then $ch_1(f_0) \geq d(f_0) + 4 - \frac{4}{3} \times (d(f_0) - 2) - 1 \times 2 = \frac{1}{3}(14 - d(f_0))$. $ch_1(f_0) = 0$ only when $d(f_0) = 14$ and C_0 accurately contains twelve 2-vertices and
two 3^+-vertices. But there is at least one $10^+\text{-face} f_2$ possessing 2-vertices in G, and $ch_1(f_2) > 0$ in terms of Lemma 3.2. By R5, we have $ch^*(f_0) \geq ch_1(f_0) + ch_1(f_2) > 0$.

According to the above analysis, $ch^*(f_0) > 0$.

References

[1] Borodin O V. On decomposition of graphs into degenerate subgraphs. Diskretny analys, Novosibirsk, 1976, 28: 3-12.

[2] Borodin O V, Glebov A N. On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph. Diskretnyi Analiz i Issledovanie Operatsii, 2001, 8(4): 34-53.

[3] Borodin O V, Glebov A N, Raspaud A, et al. Planar graphs without cycles of length from 4 to 7 are 3-colorable. Journal of Combinatorial Theory, Series B, 2005, 93(2): 303-311.

[4] Borodin O V. Colorings of plane graphs: A survey. Discrete Mathematics, 2013, 313(4): 517-539.

[5] Cranston D W, West D B. An introduction to the discharging method via graph coloring. Discrete Mathematics, 2017, 340(4): 766-793.

[6] Cranston D W, Yancey M P. Sparse Graphs Are Near-Bipartite. SIAM Journal on Discrete Mathematics, 2020, 34(3):1725-1768.

[7] Dross F, Montassier M, Pinlou A. Partitioning a triangle-free planar graph into a forest and a forest of bounded degree. European Journal of Combinatorics, 2017, 66: 81-94.

[8] Kawarabayashi K, Thomassen C. Decomposing a planar graph of girth 5 into an independent set and a forest. Journal of Combinatorial Theory, Series B, 2009, 99(4): 674-684.

[9] Liu R, Yu G. Planar graphs without short even cycles are near-bipartite. Discrete Applied Mathematics, 2020, 284: 626-630.

[10] Thomassen C. Decomposing a Planar Graph into Degenerate Graphs. Journal of Combinatorial Theory, 1995, 65(2):305-314.
[11] Thomassen C. Decomposing a Planar Graph into an Independent Set and a 3-Degenerate Graph. Journal of Combinatorial Theory, Series B, 2001, 83(2):262-271.

[12] Yang A, Yuan J. Partition the vertices of a graph into one independent set and one acyclic set. Discrete mathematics, 2006, 306(12): 1207-1216.