Six-dimensional regularization of chiral gauge theories on a lattice I

Hidenori Fukaya (Osaka Univ.)
in collaboration with
Tetsuya Onogi, Shota Yamamoto,
and Ryo Yamamura (Osaka Univ.)
arXiv: 1607.06174
(http://arxiv.org/abs/1607.06174)
1. Introduction
History of lattice chiral symmetry

1981 Nielsen-Ninomiya’s no go theorem
1992 Domain-wall fermion (Kaplan)
1997 Fixed point action (Hasenfratz)
1998 Overlap fermion (Neuberger)

1999-2001 Luescher’s proof for existence of $U(1)$ chiral gauge invariant regularization
Kikukawa-Nakayama: $SU(2)\times U(1)$ also O.K.

2015 Grabowska & Kaplan: manifestly gauge invariant construction of chiral gauge theory
What’s new in Grabowska-Kaplan, PRL 116 (2016) no.21 211602?

[Grabowska Theory Wed, Kaplan, plenary Sat]

Before GK (Neuberger, Luescher, Kikukawa, Suzuki…):

1. Break gauge sym. explicitly,
2. Find a **counter-term if anomaly free**,
3. (Mainly) studied w/ 4D overlap fermions.

Grabowska & Kaplan PRL 116 (2016) no.21 211602:

1. Keep gauge sym. explicitly,
2. If **not anomaly free**, no 4D local action,
3. 5D construction is essential.
The key is gradient flow (again).

They put

\[U_\mu(x, t) = \begin{cases}
\text{flow time t configuration} & (\mu = 1, 2, 3, 4) \\
1 & (\mu = 5)
\end{cases} \]

\[S_{DW} = \int d^4 x dt \overline{\Psi} (D_{\text{Wilson}}^{5D} - \Lambda \epsilon(t)) \Psi \]

\[\epsilon(t) = \begin{cases}
+1 & (t \geq 0) \\
-1 & (t < 0)
\end{cases} \]

Gauge d.o.f. do not flow!

Links at different t have the same 4D gauge invariance.

Figure by Kaplan
They successfully reproduced a picture: gauge anomaly = gauge current missing in extra dim, [Callan & Harvey 1985] keeping total gauge invariance in 5D. Absorbed by 5D Chern-Simons term.
Global anomaly [Witten 1982]:
Gauge anomaly $\text{SU}(2) = \text{mod } 2$ index of 5D Dirac operator w/ 5-th direction

$A_\mu(x_\mu, x_5) = (1 - x_5)A_\mu(x) + x_5 A_\mu^g(x_\mu)$

$\times 5$

- Mod 2 instanton flips the sign of partition function.

How about global anomaly?
Extra-dim. is essential for global anomaly, too.

Witten’s claim at Strings 2015:
We need “extension” of global anomaly.

Not only for “mapping torus”:
\[A_\mu(x_\mu, x_5) = (1 - x_5) A_\mu(x) + x_5 A_\mu^g(x_\mu) \]

but also for ANY D+1 manifold with D-dim. boundary Weyl fermions, if the determinant has a phase \[\exp(i\pi\eta) \neq 1 \],
then the theory has a global anomaly.

Anomaly cannot be understood within 4-dim !
We need extra dimension(s)!

We want combine them.

1. Grabowska-Kaplan’s 5D
 - 4D boundary
 - Gauge inv. gradient flow \rightarrow cannot detect global anomaly.

2. Witten’s 5D
 - 4D boundary
 - Gauge non-invariant flow \rightarrow cannot keep gauge symmetry.

But how?
Our proposal = 6D with 2 different domain-walls

W domain-wall
Linear flow

GK domain-wall
YM gradient flow

We (4dim) are here.
GK domain-wall contains Stora-Zumino anomaly descent equations

$\delta_g(\text{phase}) = \int_{x_5 < 0} d^5x \delta_g(CS)$

$\int d^5x (CS) = \int d^6x F \wedge F \wedge F$

[Stora 1983, Zumino 1983, Alvarez-Gaume & Ginsparg 1984, Sumitani 1984]
We (4dim) are here.

SU(2) example

global anomaly

$\pi_4(SU(2)) = \mathbb{Z}_2$

$\pi_5(SU(2)) = \mathbb{Z}_2$
Our 6-dim formulation has

1. Stora-Zumino anomaly ladder:
 6D $U(1)_A$ index \rightarrow gauge anomaly.

2. Global anomaly ladder (new finding):
 6D *exotic* index \rightarrow global anomaly.

3. Anomaly free condition = sign-problem free condition in 6D:
 \rightarrow If anomaly free, 6D determinant is real positive. \rightarrow Monte Carlo is O.K.!
Contents

1. Introduction
2. “Parity” and axial U(1) anomalies in 6D
3. Two domain-walls
4. Anomaly ladder through GK domain-wall
5. Anomaly ladder through W domain-wall
6. Anomaly free condition
7. Lattice regularization
8. Summary and discussion

My talk

Next talk by Ryo Yamamura
2. “Parity” and axial U(1) anomalies in 6D
Two anomalous symmetries

1. Axial $U(1)$ symmetry
\[\psi \rightarrow e^{i\alpha\gamma_7}\psi, \quad \bar{\psi} \rightarrow \bar{\psi}e^{i\alpha\gamma_7} \]

2. Parity’ symmetry
 (reflection in 5th direction)
\[P'\psi(x_1,\cdots,4,5,6) = i\gamma_5 R_5\psi(x_1,\cdots,4,5,6) \]
\[= i\gamma_5\psi(x_1,\cdots,4,-5,6) \]
\[P'^2 = -1 \]

Mass-term is not invariant
Parity anomaly

Cf. Usual parity (only in even-dim.):

\[P \psi(x_1, x_2, \ldots, 6) = \gamma_1 \psi(x_1, -x_2, \ldots, 6) \]

mass is allowed since \(P^2 = 1 \)

\(P' \) (in any dim.) has anomaly:

massless fermion action is invariant, but (zero-mode part of) fermion measure is NOT:

\[D \bar{\psi}_0 P' D P' \psi_0 = -D \bar{\psi}_0 D \psi_0. \]
Two mass terms

\[M \bar{\psi} \psi \quad : \text{U}(1)_A \text{ and } P' \text{ asymmetric.} \]

\[\mu \bar{\psi} (i \gamma_6 \gamma_7 R_5 R_6) \psi \quad : \text{odd in } P' \text{ but } \text{U}(1)_A \text{ invariant.} \]

\[\Rightarrow \text{Dirac fermion w/ periodic boundary} \]

\[\det \left(\frac{D^{6D} - M - i \mu \gamma_6 \gamma_7 R_5 R_6}{D^{6D} + M + i \mu \gamma_6 \gamma_7 R_5 R_6} \right) = (-1)^{P+I} \]

\[P : \text{U}(1)_A \text{ index } (\rightarrow \text{perturbative anomaly}) \]

\[I : \text{exotic index } (\rightarrow \text{global anomaly}) \]
3. Two domain-walls
Two domain-walls

Let’s consider a 6D Dirac fermion

\[\epsilon(x) = \frac{x}{|x|} \]

\[
\det \left(\frac{D^{6D} + M \epsilon(x_6) + i\mu \epsilon(x_5)\gamma_6\gamma_7 R_5 R_6}{D^{6D} + M + i\mu \gamma_6 \gamma_7 R_5 R_6} \right)
\]

where we assume \(M > 0, \mu > 0 \)

\[A_5 = A_6 = 0, \]

\[A_{\mu=1,\ldots,4}(x) \text{ is symmetric under } x_5 \rightarrow -x_5, x_6 \rightarrow -x_6 \]

(* later, gauge field is given by gradient & linear flows)
Fermion determinant is still real!

\[
\det \left(\frac{D^{6D} + M \epsilon(x_6) + i \mu \epsilon(x_5) \gamma_6 \gamma_7 R_5 R_6}{D^{6D} + M + i \mu \gamma_6 \gamma_7 R_5 R_6} \right) \propto (-1)^{\mathcal{P} + \mathcal{I}}
\]

Determine has \(\gamma_5 R_5\) Hermiticity. Indices become non-trivial

\[\mathcal{P} : \text{APS index through GK domain-wall} \quad \rightarrow \quad \text{Perturbative anomaly in 4D}\]

\[\mathcal{I} : \text{APS index through W domain-wall} \quad \rightarrow \quad \text{global anomaly in 4D}\]

[Atiyah-Patodi-Singer 1975]
Massless Weyl fermion appears!

Dirac equation

\[(D^{6D} + M \epsilon(x_6) + i \mu \epsilon(x_5) \gamma_6 \gamma_7 R_5 R_6) \psi(x) = 0\]

has a localized solution at \(x_5 = x_6 = 0 \) as

\[\psi(x) = e^{-M|x_6|} e^{-\mu|x_5|} \phi(\bar{x}),\]

\[D^{4D} \phi(\bar{x}) = 0, \quad \bar{x} = (x_1, x_2, x_3, x_4)\]

\[\gamma_6 \phi(\bar{x}) = \phi(\bar{x}), \quad \begin{pmatrix} \bar{\gamma}_5 & 0 \\ 0 & 0 \end{pmatrix} \phi(\bar{x}) = +\phi(\bar{x})\]

* Opposite chiral mode appears if \(M < 0, \mu < 0 \)
4. Anomaly ladder through GK domain-wall
Bulk/edge decomposition

Simple example without W domain-wall

\[
\det \left(\frac{D^{6D} + M \epsilon(x_6)}{D^{6D} + M} \right) \left[\propto (-1)^3 \right] \\
= \det \left(\frac{D^{6D} + M \epsilon(x_6) + iM_2 \gamma_6 \gamma_7 R_6}{D^{6D} + M} \right) \left[\propto \exp(i\phi_{6D}) \right] \\
\times \det \left(\frac{D^{6D} + M \epsilon(x_6) + iM_2 \gamma_6 \gamma_7 R_6}{D^{6D} + M \epsilon(x_6) + iM_2 \gamma_6 \gamma_7 R_6} \right) \left[\propto \exp(i\phi_{5D}) \right]
\]

where we assume \(M \gg M_2 \gg 0 \)

Imaginary part \(\rightarrow \) \[\pi \tilde{\mathcal{J}} = \phi_{6D} + \phi_{5D}\]
Atiyah-Patodi-Singer index

6D bulk \rightarrow Axial U(1) anomaly

$$\phi_{6D} = \pi \int d^6 x \frac{1 - \epsilon(x_6)}{2} \frac{1}{6(4\pi)^3} \epsilon^{\mu_1 \cdots \mu_6} \text{tr}[F_{\mu_1 \mu_2} F_{\mu_3 \mu_4} F_{\mu_5 \mu_6}]$$

Fujikawa’s method \uparrow

$$= \pi \mathcal{P}^{6D}_{x_6 < 0} + \pi CS$$

$$CS \equiv - \int_{x_6=0} d^5 x \frac{2}{3(4\pi)^3} \epsilon^{\mu_1 \cdots \mu_5} \text{tr} \left[\frac{1}{2} A_{\mu_1} F_{\mu_2 \mu_3} F_{\mu_4 \mu_5} - \frac{i}{2} A_{\mu_1} A_{\mu_2} A_{\mu_3} F_{\mu_4 \mu_5} - \frac{1}{5} A_{\mu_1} A_{\mu_2} A_{\mu_3} A_{\mu_4} A_{\mu_5} \right]$$

2nd determinant \rightarrow 5D Dirac fermion

$$\lim_{M \to \infty} \det \left(\frac{D^{6D} + M \epsilon(x_6)}{D^{6D} + M \epsilon(x_6) + i M_2 \gamma_6 \gamma_7 R_6} \right) = \det \left(\frac{\bar{D}^{5D}}{\bar{D}^{5D} + M_2} \right) = \det \left(\frac{\bar{D}^{5D}}{\bar{D}^{5D} + M_2} \right) e^{-i\pi \eta/2}$$

$$\mathcal{J} = \mathcal{P}^{6D}_{x_6 < 0} + CS - \frac{\eta_{5D}}{2}$$

Integer $=$ non-integer + non-integer

[Atiyah-Patodi-Singer 1975]
With W domain-wall and $M \gg \mu \gg 0$

$$\det \left(\frac{D^{6D} + M \epsilon(x_6) + i \mu \epsilon(x_5) \gamma_6 \gamma_7 R_5 R_6}{D^{6D} + M + i \mu \gamma_6 \gamma_7 R_5 R_6} \right) \left[\alpha (-1)^J \right]$$

No change in 6D bulk. (U(1)A cannot feel W-DW.)

$$\propto \exp \left(i \pi \left(\mathcal{P} x_6 < 0 + CS \right) \right)$$

Weyl fermion!

* 5D/4D decomposition is (almost) the same as Grabowska & Kaplan.
Stora-Zumino anomaly ladder

To summarize what we have computed,

\[\mathcal{I} = \mathcal{P} + \mathcal{I} = \mathcal{P}_{x_6<0}^D + CS - \frac{\eta_{5D}}{2} \]

(integer)

6D U(1) anomaly → 5D parity anomaly

\[\frac{1}{2} \eta_{5D} = CS^{(x_5<0)} - \frac{\phi_{\text{anom}}}{\pi} + \text{gauge invariant phase} \]

→ 4D gauge anomaly

\[\mathcal{I} \text{ is hidden. (Next talk)} \]

[Stora 1983, Zumino 1983, Alvarez-Gaume & Ginsparg 1984, Sumitani 1984]
4D perturbative anomaly

6D Axial U(1) anomaly

5D Chern-Simons 1

5D Chern-Simons 2

GK domain-wall (YM gradient flow)

\[\delta_g(\text{phase}) = \int_{x_5 < 0} d^5 x \delta_g(CS) \]

\[\int d^5 x (CS) = \int d^6 x F \wedge F \wedge F \]

[Stora 1983, Zumino 1983, Alvarez-Gaume & Ginsparg 1984, Sumitani 1984]
Summary of part I

Our 6D determinant w/ 2-different DWs

\[
\begin{align*}
\det \left(\frac{D^{6D} + M \epsilon(x_6) + i \mu \epsilon(x_5) \gamma_6 \gamma_7 R_5 R_6}{D^{6D} + M + i \mu \gamma_6 \gamma_7 R_5 R_6} \right) [\propto (-1)^J] \\
1. \text{is real,} \quad \epsilon(x) = x/|x| \\
2. \text{has a Weyl fermion at 4D junction,} \\
3. \text{gauge anomaly originates from 6D U(1)\text{\textsubscript{A}} index} [\text{Stora-Zumino anomaly ladder}].
\end{align*}
\]

\[
\pi \mathcal{I} = \phi^{6D} + \phi^{5D} + \phi^{4D}
\]

6D U(1)\text{\textsubscript{A}} anomaly → 5D parity anomaly → 4D gauge anomaly
Next talk

1. Introduction
2. “Parity” and axial U(1) anomalies in 6D
3. Two domain-walls
4. Anomaly ladder through GK domain-wall
5. Anomaly ladder through W domain-wall
6. Anomaly free condition
7. Lattice regularization
8. Summary and discussion

My talk

Next talk by
Ryo
Yamamura
Claiming anomaly free \Leftrightarrow sign problem free.

Although I do not claim a complete proof, I believe that there is a general answer for when a theory with fermions is completely consistent and anomaly-free, meaning that the path integral on a general manifold can be defined in a way that is anomaly-free and consistent with all principles of unitarity, locality and cutting and pasting. The condition is just that

$$e^{i\pi \eta} = 1$$

for all $D + 1$-manifolds Y, not just for mapping tori. Anomaly cancellation gives the same condition just for mapping tori.
Back-up slides
Possible applications

• 4D→2D: Doubly gapped (M and μ) topological insulator can exist?
• Higgs: \rightarrow definition of standard model?
• Higher dim theory: Our world is really 6D?
What are really essential?

- **6D**: Yes. Stora-Zumino’s solution for consistent anomaly is *unique*.
- **Two domain-walls**: Yes. At least, need to distinguish U(1)$_A$ and P'
- **Gradient flow**: we don’t know. no imaginary part even without it.
- **Non-locality (R_5,R_6)**: probably no. but analysis is easier with them.
Phase of 5D determinant

\[
\det \left(\frac{\bar{D}^{5D} + \mu \epsilon(x_5)}{\bar{D}^{5D} + \mu} \right) \propto \exp(-i\pi \eta^{5D})
\]

\[\pi \eta^{5D} = \pi CS + \phi \text{gauge non invariant} + \phi \text{gauge invariant}\]

Perturbative anomaly

global anomaly (old definition)

global anomaly new def. by Witten 2015: no local 4D action to express the phase.

\[\text{Anomaly-free} \rightarrow \eta^{5D} \text{ must be zero!}\]
Why 6D?

η^{5D} can be determined only relatively (direct computation is ill-defined due to UV div.).

$\eta^{5D} = \int_0^1 du \frac{d\eta^{5D}(u)}{du}$

[Alvarez-Gaume et al. 1986]

u is our 6th coordinate! \rightarrow We need 5th direction to separate L/R chiral modes, 6th direction to determine η^{5D}
CP restoration

Complex phase of 5D determinant = CP violating lattice artifact (w/o CKM)

Our 6D construction may be automatically giving a counter-term to keep the CP symmetry at finite lattice spacing.

[Fujikawa-Ishibashi-Suzuki 2002, Hasenfratz 2005]
Global anomaly classification

- SU(2) global anomaly: O.K.
- Other groups on 4-dim torus: Maybe. Index \mathbb{Z}, \mathbb{Z}_2 can be detected by P'. But higher dim: we don’t know. For example, $\pi_6(SU(2)) = \mathbb{Z}_{12}$ may require quite non-trivial treatment.
Parity anomaly on a lattice

• P' has an anomaly.
• On the lattice, we may need Ginsparg-Wilson-type relation for P' symmetry.
• The $U(1)_A$ invariant mass term in the kernel of overlap Dirac operator?
Anomaly free condition

1. Axial U(1) cancelation in 6D:

$$\sum_{L} \text{tr} T_{L}^{a} \{ T_{L}^{b}, T_{L}^{c} \} - \sum_{R} \text{tr} T_{R}^{a} \{ T_{R}^{b}, T_{R}^{c} \} = 0$$

cancels perturbative anomaly.

2. “Parity” anomaly cancelation :

fundamental rep. = even

cancels global anomaly.

⇒ Our determinant is real positive !
Together with anti-domain-wall, it becomes

\[
\det \left(\frac{\bar{D}^{5D} + \mu \epsilon(x_5) \epsilon(x_5 - L_5) R_5}{\bar{D}^{5D} + \mu} \right) = \text{Det} \left(\frac{(x-x') (\bar{D}^{5D} + \mu \epsilon(x_5) \epsilon(x_5 - L_5) R) + x_5^5}{\delta(x-x')(\bar{D}^{5D} + \mu)} \right) \times \text{Det} \left(\frac{(x-x') (\bar{D}^{5D} + \mu \epsilon(x_5) \epsilon(x_5 - L_5) R_5)}{\delta(x-x')(\bar{D}^{5D} + \mu \epsilon(x_5) \epsilon(x_5 - L_5) R_5) + \mu} \right)
\]

Another CS on 5D

\[
-\pi \int_{x_6=0} d^5x \frac{4}{3(4\pi)^3} \frac{1 - \epsilon(x_5) \epsilon(x_5 - L_5)}{2} \epsilon^{\mu_1 \ldots \mu_5} \text{tr} \left[\frac{1}{2} A_{\mu_1} F_{\mu_2 \mu_3} F_{\mu_4 \mu_5} - \frac{i}{2} A_{\mu_1} A_{\mu_2} A_{\mu_3} A_{\mu_4} A_{\mu_5} \right]
\]

\[
\frac{1}{2} \eta^{5D} = CS(x_5 < 0) + \frac{1}{2} \eta^{4D} - \frac{\phi_{\text{anom}}}{\pi} - \frac{\phi'}{\pi},
\]

\[
\det \frac{D}{D + \mu_2} \times \text{det} (R_5^{\text{bulk}})
\]

\[
D = P^5 \bar{D}^{4D} P^5 + P^5 \bar{\delta}^{4D} P^5
\]
Massless Weyl fermion appears!

Dirac equation

\[(D^{6D} + M \epsilon(x_6) + i \mu \epsilon(x_5) \gamma_6 \gamma_7 R_5 R_6) \psi(x) = 0 \]

has a localized solution at \(x_5 = x_6 = 0 \) as

\[\psi(x) = e^{-M |x_6|} e^{-\mu |x_5|} \phi(\bar{x}), \]

\[D^{4D} \phi(\bar{x}) = 0, \quad \bar{x} = (x_1, x_2, x_3, x_4) \]

\[\gamma_6 \phi(\bar{x}) = \phi(\bar{x}), \]

\[i \gamma_5 \gamma_6 \gamma_7 R_5 R_6 \phi(\bar{x}) = \phi(\bar{x}) \]

\[\begin{pmatrix} \bar{\gamma}_5 & 0 \\ 0 & 0 \end{pmatrix} \phi(\bar{x}) = +\phi(\bar{x}) \]

* Opposite chiral mode appears if \(M < 0, \mu < 0 \)
Summary of part 1 and 2: Our 6D formulation has

1. Stora-Zumino anomaly ladder:
 6D $U(1)_A$ index \rightarrow gauge anomaly

2. Global anomaly ladder:
 6D *exotic* index \rightarrow global anomaly.

3. Gradient flow in x_5 + linear interpolation in x_6 \rightarrow mirror fermions are decoupled.

4. Anomaly free condition = sign-problem free condition in 6D:
 Monte Carlo is O.K.!