FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

D Agarwal1,2, S Pineda1, K Michailidou3, J Herranz1,4, G Pita5, L T Moreno5, M R Alonso6, J Dennis3, Q Wang3, M K Bolla3, K B Meyer4, P Menéndez-Rodríguez2, D Hardisson6, M Mendiola7, A González-Neira3, A Lindblom8, S Margolin10, A Swerdlow12,13, A Ashworth14, N Orr4, M Jones12, K Matsuo15, Hito16, Iwata17, N Kondō17, kConFab Investigators18, Australian Ovarian Cancer Study Group18,19, M Hartman20, M Hui21, W Y Lim21, P T-C Lau22, E Sawyer23, I Tomlinson24,25, M Kerin26, N Miller26, D Kang27,28, J-Y Choi28, S K Park28, D-Y Nah29, J L Hopper30, D F Schmidt30, E Makalic30, M C Soutey31, S T-Yo32,33, C H Yip33, K Sivanandan32, W-Y Tay34, Hu Brauch35,36, T Brüning37, U Hamann38, The GENICA Network35,36,37,38,39,40,41, A M Dunning42, M Shah42, I L Andrulis43,44, J A Knight43,45, G Glendon46, S Tchatchou43, M K Schmidt47, A Broeks47, E H Rosenberg47, J van’t Veer47, P A Fasching48,49, S P Renner48, A B Ekić50, M W Beckmann48, C-Y Shen51,52, C-N Hsiung51, J-C Yu53, M-F Hou54,55, W Blot56, Q Cai56, A H Wu57, C-C Tseng57, D Van Den Berg57, D O Stram57, A Cox58, I W Brock58, M W R Reed58, K Muir59,60, A Lopatahanon60, S Stewart-Brown60, P Sriwianarangsan61, W Zheng62, S Deming-Halverson62, M J Shrubsole62, J Long62, X-O Shu62, W Lu63, Y-T Gao64, B Zhang64, P Radice65, P Peterlongo66, S Manoukian67, F Mariette66,68, S Sangrajrang69, J McKay70, F J Couch71, A E Toland72, TNBCC73, D Yannoukakos74, O Fletcher75, N Johnson76, dos Santos Silva76, J Peto76, F Marmer77,78, B Burwinkel77,79, P Guénée80,81, T Truong80,81, M Sanchez80,81, C Mlot82,83, S E Bojesen84,85, B G Nordestgaard84,85, H Flyer86, H Brenner87,88, A K Dieffenbach89,90, J Kataja91,92, V-M Kosma90,91,92, J M Hartikainen90,91,92, D Lambrchts95, B T Yesilga95, G Floris95, K Leunen95, J Chang-Claude97, A Rudolph97, P Seibold97, D Flesch-Janssen98,99, H Brenner100, W Blot100, Q Cai101, G Severi100,101, L Baglietto100,101, C A Haiman100, B E Henderson100, F Schumacher100, L Le Marchand100, J Simard100, M Dumont100, M S Goldberg104,105, F Labrèche106, R Winquist107, K Pykäälä107, A Jukkola-Vuorrinen108, M Grip109, P Devilee110, R A E M Tollenaar111, C Seynaeve112, M García-Closas13,13,114, S J Chanock115, J Lissowska115, J D Figueroa116, K Czene116, M Eriksson116, K Humphreys116, H Darabi116, M J Hoorn2,11, M Krieger112, M J Collie117, M Tihanus-Linthorst118, J L Nygård119, A Jakubowska120, J Lubinski120, K Jaworska-Bieniek120, K Durda120, H Nevanlinna121, T A Muren121, A Kottkamp122, C Blomqvist123, N Bogdanova124,125, T Dörk124, P Halle126, G Chenexiv-Trench19, D F Easton3,42, P D P Pharoah3,42, J I Arias-Perez126, P Zamora127, J Benitez1,5, R L Milne1,30,101

Author affiliations can be found at the end of this article

Background: Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified \textit{FGFR2} as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in \textit{FGFR1}, \textit{FGFR3}, \textit{FGFR4} and \textit{FGFRL1} in the Breast Cancer Association Consortium.

Methods: Data were combined from 49 studies, including 53,835 cases and 50,156 controls, of which 89,050 (46,450 cases and 42,600 controls) were of European ancestry, 12,893 (6,269 cases and 6,624 controls) of Asian and 2,048 (1,116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease subtype, were assessed using unconditional logistic regression.

Results: Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in \textit{FGFR3}; the estimated per-allele odds ratio was 1.05 (95% confidence interval = 1.02–1.09, \(P = 0.0020\)), which is substantially lower than that observed for SNPs in \textit{FGFR2}.

Conclusion: Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for \textit{FGFR2}.

*Correspondence: RL Milne; E-mail: roger.milne@cancervic.org.au

Received 4 September 2013; revised 8 November 2013; accepted 15 November 2013

© 2014 Cancer Research UK. All rights reserved 0007 – 0920/14
Breast cancer is a complex disease, with multiple genetic and environmental factors involved in its etiology. Rare mutations in the DNA repair genes *BRCA1* and *BRCA2* confer a high lifetime risk of breast cancer (Antoniou et al, 2003) and are routinely screened for in women with a strong family history of the disease. Studies focused on other DNA repair genes have led to the discovery that rare coding variants in *CHEK2*, *ATM*, *BRIP1* and *PALB2* (Swift et al, 1987; Meijers-Heijboer et al, 2002; Seal et al, 2006; Rahman et al, 2007) are associated with moderately increased breast cancer risk. However, few, if any, candidate-gene- or pathway-based association studies have identified convincing associations with breast cancer risk for common genetic variants (The Breast Cancer Association Consortium, 2006). In contrast, empirical genome-wide association studies (GWAS) have proven to be a successful approach to identify common variants associated with small increases in risk, with more than 70 identified in this way to date (Easton et al, 2007; Hunter et al, 2007; Stacey et al, 2007, 2008; Ahmed et al, 2009; Thomas et al, 2009; Zheng et al, 2009; Antoniou et al, 2010; Turnbull et al, 2010; Cai et al, 2011; Fletcher et al, 2011; Haiman et al, 2011; Ghousaini et al, 2012; Siddiq et al, 2012; Bojesen et al, 2013; Garcia-Closas et al, 2013; Michailidou et al, 2013). For the great majority of these associations, the causal variant(s), and even the causal gene, are unknown; thus, the identification of novel candidate-genetic susceptibility pathways through this approach is not straightforward.

An intrinsic variant in the *FGFR2* gene was one of the first single-nucleotide polymorphisms (SNPs) identified by GWAS as tagging a breast cancer susceptibility locus (Easton et al, 2007; Hunter et al, 2007). It is now well-established that the minor allele of this SNP is associated with increased risk of breast cancer, particularly estrogen receptor (ER)-positive disease (Garcia-Closas et al, 2008). Fine-mapping of the region has suggested that at least one causal variant is located in intron 2 of *FGFR2* (Easton et al, 2007; Udler et al, 2009), and functional studies have proposed that rs2981578 affects *FGFR2* expression (Meyer et al, 2008; Udler et al, 2009; Huijts et al, 2011). These findings strongly suggest that *FGFR2* is a breast cancer susceptibility gene.

FGFR2 is a fibroblast growth factor (FGF) receptor gene; the amino-acid sequence of the protein it encodes is highly conserved across all FGF receptors. The other FGF receptor genes and other genes acting downstream of them in the FGF pathway may also be implicated in the development of breast cancer, although associations with disease risk have not been assessed comprehensively by a study with adequate sample size to detect odds ratios (ORs) of the magnitude observed for SNPs in *FGFR2*.

We hypothesised that common variants in other genes in the FGF pathway, and in the other FGF receptor genes in particular, might also confer increased breast cancer risk. The primary aim of our investigation was to comprehensively assess associations between breast cancer risk and common variation in the FGF receptor genes *FGFR1*, *FGFR3*, *FGFR4* and *FGFRL1* by genotyping selected tag-SNPs in the Breast Cancer Association Consortium (BCAC). A secondary objective was to assess common variants in other genes in the FGF pathway based on a two-stage design.

MATERIALS AND METHODS

Participants. Study participants were women from 49 studies participating in BCAC: 38 from populations of predominantly European ancestry, 9 of Asian women and 2 of African–American women (Table 1 and Supplementary Table 1). The majority were population-based or hospital-based case–control studies, but some studies selected subjects based on age or oversampled for cases with a family history or bilateral disease. Cases and controls from the CNIO-BCS were also studied in a previous assessment of selected genes in the FGF pathway. All study participants gave informed consent and each study was approved by the corresponding local ethics committee.

Gene and SNP selection. Ingenuity Pathways Analysis and selected publications (Eswarakumar et al, 2005; Presta et al, 2005; Chen & Forough, 2006; Schwertfeger, 2009) were used to identify genes reported to be involved downstream of the FGF genes in the FGF pathway, particularly those related to angiogenesis. A total of 39 genes, including the FGF receptors *FGFR1* (located at 8p11.22), *FGFR2* (10q26.13), *FGFR3* (4p16.3), *FGFR4* (5q35.2) and *FGFRL1* (4p16.3), was selected for tagging. Single-nucleotide polymorphisms with minor allele frequency (MAF) >5% in the coding and non-coding regions, and within 5 kb upstream and 5 kb downstream of each gene, were identified using HapMap CEU genotype data and dbSNP 128 as reference. The minimum number of tag-SNPs were then selected among all identified SNP using Haploviear (Barrett et al, 2005) based on the following criteria: $r^2 > 0.8$ and Illumina assay score > 0.60. A total of 384 SNPs tagging 39 genes was genotyped in the CNIO-BCS, 324 of which were successfully genotyped (Supplementary Table 2). The 31 SNPs tagging genes *FGFR1*, *FGFR3*, *FGFR4* and *FGFRL1* were all genotyped in BCAC, along with a further 26 of the 324 tag-SNPs. The latter group comprised SNPs selected based on evidence of association with breast cancer under a log-additive model in the Stage 1 CNIO-BCS. Single-nucleotide polymorphisms in *FGFR2* were not considered, as all were included as part of a separate fine-mapping study (Meyer et al, submitted). Results from Stage 1 are summarised in Supplementary Table 2.

Genotyping. Genotyping of the 57 SNPs in the BCAC samples was conducted using a custom Illumina Infinium array (iCOGS) in four centers, as part of a multi-consortia collaboration (the Collaborative Oncological Gene–Environment Study, COGS) as described previously (Michailidou et al, 2013). Genotypes were called using Illumina’s proprietary GenCall algorithm.

For the genotyping of the 384 SNPs in the Stage 1 CNIO-BCS, genomic DNA was isolated from peripheral blood lymphocytes using automatic DNA extraction (MagNA Pure, Roche Diagnostics, Indianapolis, IN, USA) according to the manufacturer’s recommended protocols. This DNA was quantified using PicoGreen (Invitrogen, Life Technologies, Grand Island, NY, USA) and for each sample a final quantity of 250 ng was extracted and used for GoldenGate genotyping with VeraCode Technology (Illumina Inc., San Diego, CA, USA). Samples were arranged on 25 96-well plates containing one negative control and at least one study sample in duplicate. Three Centre d’Etude du Polymorphisme Humain (CEPH) trios were used as internal intra- and inter-plate duplicates and to check for Mendelian segregation errors. DNA was extracted, quantified, plated and genotyped at the Spanish National Genotyping Centre (CeGen), Madrid, Spain. All genotypes were determined for each SNP and each plate using manual clustering. Single-nucleotide polymorphisms with call rate <90% were excluded, as were samples with no-calls for more than 20% of included SNPs.

Statistical methods. For each SNP, we estimated ORs and 95% confidence intervals (CIs) using unconditional logistic regression. For the analysis of BCAC data, we considered per-allele and co-dominant models using common-allele homozygotes as reference and including study and ethnicity-specific principal components as covariates, as previously described (Michailidou et al, 2013). Departure from the Hardy–Weinberg equilibrium (HWE) was tested for in controls from individual studies using the *genhwi* module in STATA 11.2 (College Station, TX, USA). A study-stratified χ^2 test (1df) was applied across studies (Haldane, 1954; Robertson & Hill, 1984). Between-study heterogeneity in ORs was
assessed for each of the three broad racial groups using the metan command in STATA to meta-analyse study-specific per-allele log-OR estimates and generate P statistics; values greater than 50% were considered notable (Higgins & Thompson, 2002). Odds ratios specific to disease subtypes defined by ER, PR and HER2 status (positive and negative) were estimated separately for each ethnic subgroup using polytomous logistic regression with control status as the reference outcome. Differences in ORs by disease subtypes were assessed using a likelihood ratio test (LRT). All statistical tests were two-sided.

The effective number of independent SNPs (\(V_{eff}\)) was estimated using the method described by Li & Ji (2005). This method was applied via the web-interface matSpDlite (http://gump.qimr.edu.au/general/daleN/matSpDlite/), based on the observed correlations between SNPs (Nyholt, 2004). \(V_{eff}\) was then used to calculate a Bonferroni-corrected significance threshold ($\alpha^*\$). Power calculations were carried out using Quanto v1.2.4 (http://hydra.usc.edu/gxe/).

Single-nucleotide polymorphism imputation. The genotypes of untyped SNPs were imputed based on data from the March 2012 release of the 1000 genomes project using IMPUTE v2.2. These were converted to allele doses using the impute2mach function in the GenABEL library in R (Aulchenko et al, 2007) and analysed under a per-allele model. Imputed SNPs with an estimated MAF <5% were excluded, as were SNPs with an imputation $r^2 < 80%$.

RESULTS

All SNPs in the present analysis had overall call rates >95%. Very strong evidence of departure from HWE was observed for rs34869253 for one study (pKarma, \(P = 3.3 \times 10^{-21}\)), which was excluded from the subsequent analyses of that SNP. After quality control, there were data available for 53835 cases and 50156 controls from BCAC, including 89050 European women (46450 cases and 42600 controls), 12893 Asian (6269 cases and 6624 controls) and 2048 African–American women (1116 cases and 932 controls) (Table 1).

Results from the analysis of the 31 tag-SNPs in FGFR genes for white Europeans are summarised in Table 2. No strong evidence of association was observed, although one SNP (rs743682) in FGFR3 (MAF = 0.09) was marginally significant after correction for multiple testing based on a \(V_{eff}\) of 23 (per-allele \(P = 1.05\), 95% CI = 1.02–1.09, \(P = 0.020\), $\alpha^* = 0.0022$). All SNPs with an associated P-value <0.05 were intronic, with the exception of rs1966265, which is a missense variant in FGFR4. However, PolyPhen (http://genetics.bwh.harvard.edu/pph2/) predicts this amino acid change to be benign, with a score of 0.000. On the basis of the ENCODE data, no SNP with an associated P-value <0.05 was located in a region involved or predicted to be involved in epigenetic regulation, nor at, or within 2 kb of, a CpG island. For European women, we did not observe any evidence of between-study heterogeneity for any SNPs (\(I^2 \leq 19\%\); \(P \geq 0.15\)) and little evidence of differential associations by disease subtypes defined by ER (\(P \geq 0.036\), PR (\(P \geq 0.084\)) or HER2 status (\(P \geq 0.019\)).

We similarly observed little evidence of association with overall breast cancer risk in Asian and African–American women (Supplementary Tables 3 and 4, respectively). Nevertheless, a consistent result was observed for Europeans and Asians for rs1966265 in FGFR4. The estimated OR per risk (G) allele was 1.03 (95% CI = 1.01–1.05; \(P = 0.0060\)) for European women and 1.08 (95% CI = 1.03–1.14; \(P = 0.0036\)) for Asian women. There was no evidence of heterogeneity by race for any of the 31 SNPs in FGFR receptors (\(F = 18\%\); \(P = 0.14\)).

The SNPs genotyped were estimated to capture a variable proportion of the common variation in the four genes considered, as described in the 1000 genomes project; at $r^2 \geq 0.80$, this coverage was 75% for FGFR1, 77% for FGFR3, 66% for FGFR4 and 17% for FGFR1. This coverage was dramatically improved with the inclusion of imputed common SNPs (with imputation $r^2 \geq 0.80$) to 95%, 93%, 97% and 84% for FGFR1, FGFR3, FGFR4 and FGFR1, respectively. No stronger evidence of association was observed for any imputed SNPs (Supplementary Tables 5–8).

Finally, we observed little evidence of association for any of the 26 SNPs in other genes in the FGF pathway, selected based on results from Stage 1 (Supplementary Table 9). The results were consistent across the three ethnic groups considered and for disease subtypes defined by ER, PR and HER2 expression.

It is noteworthy that strong association signals were observed in the Stage 1 Spanish study for selected tag-SNPs rs10736303 (MAF = 0.49, per-allele OR = 1.37, 95% CI = 1.21–1.55, \(P = 2.8 \times 10^{-7}\)), and rs2981582 (MAF = 0.40; per-allele OR = 1.35, 95% CI = 1.19–1.53, \(P = 8.3 \times 10^{-7}\)), both in FGFR2.

DISCUSSION

In this multicentre case–control study, we comprehensively assessed common variation in the FGF receptor genes FGFR1, FGFR3, FGFR4 and FGFR1 in 53835 cases and 50156 controls and found little evidence of association with risk of breast cancer. This is the largest study we know of assessing a family of genes via a candidate approach based on the findings from GWAS.

A non-trivial issue in analyses of this kind is the establishment of a statistical significance threshold that adequately controls the proportion of false-positive findings. As permutation-testing was not feasible due to the sample size and number of dummy variables required to adjust for study, we dealt with the issue of non-independence of multiple tests by estimating that the 31 tag-SNPs represented an effective number of 23 independent variables, and applying a Bonferroni correction accordingly. The association of one SNP (rs743682) in FGFR3 for European women was found to be statistically significant on this basis. However, the P-value threshold applied is somewhat questionable in the context of the total of more than 70 000 SNPs nominated for genotyping by BCAC and the total 210 000 genotyped on the iCOGS array. Thus, the current result is far from genome-wide statistical significance and certainly requires independent replication. In any case, the per-allele ORs for FGFR3 rs743682 (1.05, 95% CI = 1.02–1.10) and FGFR4 rs1966265 (1.03, 95% CI = 1.01–1.05) appear to be substantially lower than that for rs2981582 in FGFR2 (1.26, 95% CI = 1.23–1.30) (Easton et al, 2007).

We estimated that for common SNPs (MAF >0.05) associated with overall breast cancer risk in European women, we had greater than 99% power to detect at genome-wide statistical significance (\(P < 5 \times 10^{-8}\)) a per-allele OR as low as 1.23 (the lower 95% confidence limit for the OR for FGFR2 rs2981582). For a per-allele OR as low as 1.05 and for SNPs with MAF of 0.10, 0.20 and 0.30, the estimated power was 1%, 10% and 24%, respectively. That is, our study provides strong evidence that common variation in FGFR1, FGFR3, FGFR4 and FGFR1 are not associated with breast cancer risk to the degree observed for SNPs in FGFR2, although associations of smaller magnitude may exist.

The hypothesis underlying our study was based on the identification of a functional SNP in intron 2 of FGFR2 associated with breast cancer susceptibility (Easton et al, 2007; Meyer et al, 2008; Udler et al, 2009; Huijts et al, 2011). A recent study has subsequently identified three independent risk signals within FGFR2, and uncovered likely causal variants and functional mechanisms behind them (Meyer et al, 2013). Although an association between these SNPs and expression of FGFR2 has not been established, these results provide strong
evidence that FGFR2 is the target gene, and it therefore seems plausible that other FGF receptors or genes acting in the FGF pathway might also be implicated in breast cancer risk. However, we find little evidence that this is the case for the receptors, at least not to the extent observed for common variants in FGFR2.

Table 1. Number of cases and controls included, by study

Study	Country	Controls	Cases	ER+	ER−
White European women					
Australian Breast Cancer Family Studya (ABCFS)	Australia	551	790	456	261
Amsterdam Breast Cancer Study (ABC)	Netherlands	1429	1325	420	153
Bavarian Breast Cancer Cases and Controls (BBCC)	Germany	458	564	460	83
British Breast Cancer Study (BBCS)	UK	1397	1554	507	114
Breast Cancer In Galway Genetic Study (BIGGS)	Ireland	719	836	495	154
Breast Cancer Study of the University Clinic Heidelberg (BSUCH)	Germany	954	852	499	154
CECILE Breast Cancer Study (CECILE)	France	999	1019	797	144
Copenhagen General Population Study (CGPS)	Denmark	4086	2901	1919	357
Spanish National Cancer Centre Breast Cancer Study (CNIO-BCS)	Spain	876	902	242	88
California Teachers Study (CTS)	USA	71	68	0	17
ESTHER Breast Cancer Study (ESTHER)	Germany	502	478	304	98
Gene-Environment Interaction and Breast Cancer in Germany (GENICA)	Germany	427	465	328	119
Helsinki Breast Cancer Study (HEBCS)	Finland	1234	1664	1295	237
Hannover-Minsk Breast Cancer Study (HMBCS)	Belarus	130	690	37	0
Karolinska Breast Cancer Study (KARBAC)	Sweden	662	722	338	63
Kuopio Breast Cancer Project (KBCP)	Finland	251	445	304	97
kConFab/Australian Ovarian Cancer Study (kConFab/AOCS)	Australia	897	613	162	59
Leuven Multidisciplinary Breast Centre (LMBC)	Belgium	1388	2671	2071	379
Mammary Carcinoma Risk Factor Investigation (MARIE)	Germany	1778	1818	1349	399
Milan Breast Cancer Study Group (MBCSG)	Italy	400	488	149	42
Mayo Clinic Breast Cancer Study (MCBS)	USA	1931	1862	1486	295
Melbourne Collaborative Cohort Study (MCCS)	Australia	511	614	352	111
Multi-ethnic Cohort (MEC)	USA	741	731	415	87
Montreal Gene–Environment Breast Cancer Study (MTLGENB)	Canada	436	489	421	64
Norwegian Breast Cancer Study (NBCS)	Norway	70	22	0	22
Oulu Breast Cancer Study (OBCS)	Finland	414	507	407	100
Ontario Familial Breast Cancer Registryb (OFBCR)	Canada	511	1175	630	268
Leiden University Medical Centre Breast Cancer Study (ORIGO)	Netherlands	327	357	211	70
NCI Polish Breast Cancer Study (PBCS)	Poland	424	519	519	0
Karolinska Mammography Project for Risk Prediction of Breast Cancer (pKARMA)	Sweden	5537	5434	3672	702
Rotterdam Breast Cancer Study (RBBC)	Netherlands	699	664	368	131
Singapore and Sweden Breast Cancer Study (SASBAC)	Sweden	1378	1163	663	144
Sheffield Breast Cancer Study (SBCS)	UK	848	843	377	105
Studies of Epidemiology and Risk factors in Cancer Heredity (SEARCH)	UK	8069	9347	5160	1181
Städtisches Klinikum Karlsruhe Deutsches Krebsforschungszentrum Studie (SKKDKFZS)	Germany	29	136	0	136
IHCC-Saezecin Breast Cancer Study (SZBCS)	Poland	315	365	165	60
Triple Negative Breast Cancer Consortium Study (TNBCC)	Various	542	881	0	881
UK Breakthrough Generations Studies (UKBGS)	UK	470	476	96	22
Asian women					
Asian Cancer Project (ACP)	Thailand	636	423	92	53
Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC)	Japan	1376	694	395	139
Los Angeles County Asian-American Breast Cancer Case-Control (LAABC)	USA	990	812	528	138
Malaysian Breast Cancer Genetic Study (MYBCRA)	Malaysia	610	770	422	291
Shanghai Breast Cancer Genetic Study (SBCGS)	China	892	848	510	276
Seoul Breast Cancer Study (SEBCS)	South Korea	1129	1162	657	375
Singapore Breast Cancer Cohort (SBGCC)	Singapore	502	533	272	108
IARC-Thai Breast Cancer (TBCS)	Thailand	253	138	26	26
Taiwanese Breast Cancer Study (TWCBS)	Taiwan	236	889	460	204
African					
Southern Community Cohort Study (SCCS)	USA	680	679	0	0
Nashville Breast Health Study (NBHS)	USA	252	437	199	222
Total		50156	53835	30635	9120

Abbreviations: ER − = estrogen receptor-negative cases; ER + = estrogen receptor-positive cases.

*aAustralian site of the Breast Cancer Family Registry.

bOntario site of the Breast Cancer Family Registry.
receptor genes was tagged by the genotyped SNPs was good for FGFRI, FGFR2, and FGFR4 and poor for FGFR1, but substantial improvement was afforded by imputation. Nevertheless, it is possible that common variation not captured by the genotyped or imputed SNPs may be associated with breast cancer risk. It is also possible that these genes may be implicated in disease susceptibility via regulatory SNPs may be associated with breast cancer risk. It is also possible that the potential implication of common variation in these genes.

Table 2. Summary results for SNPs in FGF receptor genes for white European women

SNP	Alleles	MAF	Aa	aa	per-a-allele	P	ER −	ER +	P-het
FGFR1									
rs1058704	AG	0.40	0.98	0.98	0.98	0.18	0.99	0.99	0.91
rs1718241	AG	0.06	1.05	0.95	1.01	0.057	1.09	1.04	0.30
rs2288696	GA	0.21	1.02	1.07	1.01	0.023	1.05	1.03	0.35
rs2411256	GA	0.24	1.02	1.01	1.01	0.36	1.00	1.01	0.44
rs2978076	GA	0.08	0.99	1.01	1.01	0.53	0.99	1.02	0.36
rs2978083	GA	0.05	0.99	1.01	1.01	0.53	0.97	0.98	0.27
rs3758102	GA	0.26	1.01	1.02	1.01	0.35	1.01	1.01	0.95
rs3925	GA	0.23	1.01	1.00	1.01	0.51	0.99	1.01	0.39
rs4733930	GA	0.42	1.00	1.04	1.02	0.11	1.03	1.02	0.67
rs4733946	GA	0.08	1.00	1.04	1.02	0.11	1.01	1.04	0.39
rs6474354	GA	0.21	0.98	0.98	0.98	0.18	0.96	0.98	0.37
rs9966321	GA	0.39	1.01	1.00	1.00	0.95	1.00	0.99	0.54
rs6983315	GA	0.44	1.01	0.98	0.99	0.39	0.97	0.99	0.13
rs7012413	GA	0.30	1.00	0.99	1.00	0.69	1.00	1.00	0.82

FGFR3									
rs1250243	GA	0.10	1.04	1.10	1.04	0.0076	0.99	1.06	0.036
rs2234909	AG	0.14	0.99	0.97	0.99	0.29	0.99	0.98	0.77
rs3135848	AG	0.28	1.02	1.12	1.01	0.31	1.00	1.01	0.55
rs743682	GA	0.09	1.05	1.05	1.05	0.0020	1.01	1.06	0.24
rs746779	GA	0.18	0.99	0.98	0.99	0.29	1.00	0.98	0.48

FGFR4									
rs1076891	GA	0.06	1.03	0.99	1.03	0.14	1.06	1.01	0.25
rs1966265	GA	0.23	0.97	0.93	0.97	0.0060	0.98	0.97	0.54
rs2456173	GA	0.21	1.00	0.99	0.99	0.66	0.98	1.00	0.34
rs376618	GA	0.24	1.00	0.96	0.99	0.33	0.97	0.99	0.29
rs641101	GA	0.31	1.01	0.94	1.00	0.98	0.99	1.00	0.56
rs6556301	CA	0.36	0.99	0.96	0.98	0.13	0.98	0.98	0.84

FGFR1									
rs34869253	AG	0.43	1.00	1.00	1.00	0.96	0.98	0.99	0.52
rs3755955	GA	0.16	1.00	1.02	1.00	0.82	1.00	1.00	0.83
rs4505759	GA	0.30	0.99	0.98	0.99	0.38	1.00	0.99	0.78
rs4647932	GA	0.06	1.04	0.98	1.03	0.14	1.06	1.02	0.31
rs6855233	GA	0.29	0.99	1.03	1.01	0.62	0.98	1.00	0.31
rs748651	AG	0.48	1.00	1.02	1.01	0.31	1.03	1.01	0.22

Abbreviations: SNP = single-nucleotide polymorphism; FGF = fibroblast growth factor; OR = odds ratio where A is the common allele, a is the rare allele and both Aa and aa are compared with AA genotypes; CI = confidence interval; MAF = minor allele frequency; P = P-value for the per-a-allele model; ER − = results (per a-allele) for risk of estrogen receptor-negative disease; ER + = results (per a-allele) for risk of estrogen receptor-positive disease; P-het = P-value for heterogeneity by disease sub-type defined by estrogen receptor status.

In conclusion, in this, possibly the largest candidate-gene association study carried out to date, we have observed little evidence of association between common variation in the FGFR1, FGFR3, FGFR4 and FGFR1 genes and risk of breast cancer. Our results suggest that common variants in these FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2.

ACKNOWLEDGEMENTS

We thank all the individuals who took part in these studies and all the researchers, study staff, clinicians and other health-care professionals involved in the study. We also thank our funders for their support.

We would like to acknowledge the contribution of the researchers, study staff, clinicians and other health-care professionals involved in the study. We also thank our funders for their support.
Angela Jones, Christ of Sohn, Andeas Schneeweiß, Niall McInerney, Gabrielle Colleran, Andrew Rowan, Oeser, Silke Landrith, Eileen Williams, Elaine Ryder-Mills, Kara Alexander Hein, Michael Schrauder, Matthias Rübner, Sonja Unsangsan (Department Director-General of Disease Control), Schoot, Emiel Rutgers, Senno Verhoef, Frans Hogervorst, the Thai Meyer and the staff of Mayo Clinic Genotyping Core Facility, Cunningham, Sharon A Windebank, Christopher A Hilker, Jeffrey Nielsen, and the staff of the Copenhagen DNA laboratory, Julie M E Krol-Warmerdam, J Molenaar, J Blom, Louise Brinton, Neonila Valois, Annie Turgeon, Lea Heguy, Phuah Sze Yee, Peter Kang, Bonanni, Monica Barile, Irene Feroce, the personnel of the Bernad Peissel, Giulietta Scuvera, Daniela Zaffaroni, Bernardo Heinz, Sabine Behrens, Ursula Eilber, Muhabbet Celik, Til Olchers, Whiteman), the LAABC data collection team, especially Annie Group (A Green, P Parsons, N Hayward, P Webb and D Helena Kemila¨inen, Heather Thorne, Eveline Niedermayr, the Victoria Ferna´ndez, Maika González-Neira, Nuria Malats, Francisco Real, Belén Herráez, Nuria Álvarez, Esther Diaz, Maria Miguel-Martín, the CTS Steering Committee (including: Leslie Bernstein, James Lacey, Sophia Wang, Huiyan Ma, Yani Lu and Jessica Clague DeHart at the Beckman Research Institute of the City of Hope; Dennis Deapan, Rich Pinder, Eunju Lee and Fred Schumacher at the University of Southern California; Pam Horn-Ross, Peggy Reynolds and David Nelson at the Cancer Prevention Institute of California; and Hannah Park at the University of California Irvine), Hartwig Ziegler, Sonja Wolf, Volker Hermann, The GENICA network (Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; (HB, Wing-Yee Lo, Christina Justenhoven), Department of Internal Medicine, Evangelische Kliniken Bonn GmbH, Johanner Krankenhaus, Bonn, Germany (Yon-Dschun Ko, Christian Baisch), Institute of Pathology, University of Bonn, Germany (Hans-Peter Fischer), Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Germany (UH), Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IKA), Germany, Ludwig Institute For Cancer Research (LIFCR), Beate Pesch, Sylvia Rabstein, Anne Lotz), Institute of Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany (Volker Harth), Tuomas Heikkinen, Irja Erkkila, Kirsimari Aaltonen, Karl von Smitten, Natalia Antonen-Eppendorf, Germany (Volker Harth), Tuomas Heikkinen, Irja Erkkila, Kirsimari Aaltonen, Karl von Smitten, Natalia Antonenko, Peter Hillemanns, Hans Christiansen, Eija Møyhøiën, Helena Kemiläinen, Heinrich Thorne, Eveline Niedermayr, the AOCs Management Group (D Bowtell, G Chenevix-Trench, A deFazio, D Gertig, A Green, P Webb, the AOC Management Group (A Green, P Parsons, N Hayward, P Webb and D Whiteman), the LAABC data collection team, especially Annie Fung and June Yashiki, Gilian Peutman, Dominiek Smeets, Thomas Van Brussel, Kathleen Corthouts, Nadia Obi, Judith Heinz, Sabine Behrens, Ursula Eilber, Mubahhet Celik, Til Olchers, Bernad Peissel, Giulietta Scuvera, Daniella Zaffaroni, Bernardo Bonanni, Monica Barile, Irene Ference, the personnel of the Cogentec Cancer Genetic Test Laboratory, The Mayo Clinic Breast Cancer Patient Registry, Martine Trachant, Marie-France Valois, Annie Turgeon, Lea Heguy, Phuah Sze Yee, Peter Kang, Kang In Nee, Shivani Mariapun, Yoon Sook-Yee, Daphne Lee, Teh Yew Ching, Nur Aishah Mohd Taib, Meeru Otsukka, Kari Mononen, Teresa Selander, Nayana Weerasooriya, OFBCR staff, E Krol-Warmerdam, J Molenaar, J Blom, Louise Brinton, Neoniela Szczesnia-Dabrowska, Beata Peplonska, Witold Zatonski, Pei Chao, Michael Stagner, Petra Bos, Jannet Blom, Ellen Crepin, Anja Nieuwlaat, Annette Heemskerk, the Erasmus MC Family Cancer Clinic, Sue Higham, Simon Cross, Helen Gramp, Dan Connelly, The Eastern Cancer Registration and Information Centre, the SEARCH and EPIC teams, Craig Luccarini, Don Conroy, Caroline Baynes, Kimberley Chua, the Ohio State University Human Genetics Sample Bank and Robert Pilarski. Data on SCCS cancer cases used in this publication were provided by the: Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry. BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/ A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ programme, and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (IU19 CA148537, IU19 CA148065 and IU19 CA148112 – the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABDFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR) nor does mention of trade names, commercial products or organizations imply endorsement by the US Government or the BCFR. The ABDFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research (Consortium). JHL is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and MCS is a NHMRC Senior Research Fellow. The OBBCF work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NK12007-3839 and NK12009-4363. The AGP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre and the National Cancer Research Network (NCRN), ES is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, United Kingdom. IT is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was supported by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR) and the Association for Research against Cancer (ARC). The CGCBS was supported by the Chief Physician Johan Boserup and Lise
Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The CNIO-BCS was supported by the Genome Spain Foundation, the Red Temáticas de Investigación Cooperativa on Cancer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. DA was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA) as well as the Department of Internal Medicine, Evangelische Kliniken Bonn GmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juelius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third-Term Comprehensive 10-Year Strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation, by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to NB) and the Friends of Hannover Medical School (to NB)—Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBPC was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation, the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow-Up Study was funded by the NHMRC (145684, 288704 and 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). GCT and PW are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 3PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute's Division of Cancer Prevention and Control Surveillance, Epidemiology and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education and Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5 out of 1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale dei Tumori, according to Italian laws (INT-Institutional strategic projects “5 x 1000”). The MCBCS was supported by the NIH grants (CA122340 and CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA16201), the Breast Cancer Research Foundation and a generous gift from the David F and Margaret T Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCa is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HIR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19 <tel:08/1/35/19 >/550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to ALBD, FUGE-NFR 181600/V11 to VNK and a Swiss Bridge Award to ALBD). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The NBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juelius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Märit and Hans Rausing Initiative against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRiSP; www.crispcenter.org), a Linneaus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DHHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the Susan G Komen Breast Cancer Foundation. KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667 and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCSS was provided by
CONFLICT OF INTEREST

The authors declare no conflict of interest.

1Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; 2Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; 3Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; 4Biostatistics Unit, IMDEA Food Institute, Madrid, Spain; 5Human Genotyping-CEGEN Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; 6CRUK Cambridge Institute, University of Cambridge, Cambridge, UK; 7Hospital Monte Naranco, Oviedo, Spain; 8Department of Pathology, Hospital Universitario La Paz, IdiPAZ (Hospital La Paz Institute for Health Research) University Autonoma de Madrid, Madrid, Spain; 9Laboratory of Pathology and Oncology, Research Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain; 10Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; 11Department of Oncology—Pathology, Karolinska Institutet, Stockholm, Sweden; 12Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK; 13Division of Breast Cancer Research, The Institute of Cancer Research, London, UK; 14Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK; 15Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan; 16Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; 17Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan; 18Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; 19QIMR Berghofer Institute of Medical Research, Brisbane, Queensland, Australia; 20Saw Swee Hock School of Public Health, Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore; 21Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore; 22Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore; 23Research Oncology, Division of Cancer Studies, Kings College London Guy’s Hospital, London, UK; 24Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; 25Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; 26School of Medicine, Clinical Science Institute, National University of Ireland, Galway, UK; 27Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; 28Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; 29Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; 30Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia; 31Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia; 32Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia; 33Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia; 34Singapore Eye Research Institute, National University of Singapore, Singapore; 35Dr Margaret Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; 36University of Tübingen, Germany; 37Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Germany; 38Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; 39Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany; 40Institute of Pathology, Medical Faculty of the University of Bonn, Germany; 41Department of Internal Medicine, Evangelische Kliniken Bonn GmbH, Johanniter Krankenhaus, Bonn, Germany; 42Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK; 43Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; 44Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 45Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; 46Ontario Cancer Genetics Network, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; 47Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; 48Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; 49David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, CA, USA; 50Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.
Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, FGF receptor genes and breast cancer susceptibility

BRITISH JOURNAL OF CANCER

Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Antoniou AC, Wang X, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: a tool for whole-genome association analysis of case Series unselected for family history: a combined analysis of 22 studies.

Hakonarson H, Chenevix-Trench G, Easton DF, Couch FJ (2010) BRCAl and BRCAlA mutations detected in ovarian cancer associated with BRCA1 or BRCA2 mutations detected in carriers and is associated with hormone receptor-negative breast cancer in women.

Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, Edwards SL, Pickett HA, Shen HC, Smart CE, Halldorsson BV, Maia PL, lawrenson K, Stutz MD, Lu Y, Karevan R, Woods N, Johnston RJ, French JD, Chen X, Weissher M, Nielsen SF, Marianian MJ, Ghoussaini M, Ahmed S, Baynes C, Bolla MK, Wang Q, Dennis J, McGuffog L, Barrowdale D, Lee A, Healey S, Lush M, Tessler DC, Vincent D, Baco T, Vergote I, Lambrechts S, Despierre E, Risch HA, Gonzalez-Neira A, Rossing MA, Pita G, Doherty JA, Alvarez N, Larson MC, Fridley BL, Schoung C, Van der Auwera J, Cioc MS, Petes J, Kalli K, Kröns, Broeks A, Armasu SM, Schmidt MK, Braal LM, Winterhoff B, Nevanlinna H, Konecný GE, Lambrechts D, Røgemand G, Guenel P, Teoman A, Milne RL, Garcia JI, Cox A, Shridhar V, Burwinkel B, Marme F, Healey S, Nevins R, Healey S, Hannon C, Hovig E, Kristiansen K, Milne RL, Olson H, Johannsson O, Borg A, Pasini B, Radice P, Blows F, Driver K, Dunning A, Pharoah PP, Offit K, Pankratz VS, Martin NG, Montgomery GW, Chang-Claude J, Flesch-Janys D, Godwin AK, Yannoukakos D, Goldgar DE, Caldes T, Imyanitov EN, Blanksma P, Doherty JA, Larson MC, Fridley BL, Tstorpe-Meyer SE, PeocKs, CoOkM, OliverC, FroStD, EcclesD, EvansD G, EcclesR, IzattL, Healey S, Morrison J, Kartsonaki C, Lexníc T, Ghoussaini M, Barrowdale D, PeocK S, Cook M, Oliver C, Frost D, Eccles D, Evans DG, Eres R, Izatt L, Chu C, Douglas F, Paterson J, Stoppa-Lyonnet D, Houdayer C, Mazoyer S, Giraud S, Lasset C, Remenar E, Caron O, Har douin A, Berthet P, Hogervorst FB, Roomk MA, Jager A, van der Oudenaal M, Hoogerbrugge N, van de Luijt R, Meijers-Heijboer H, Gomez Garcia EB, Debie P, Vreeswijk MP, Lubinski J, Jakubowska A, Groswald J, Huzbarski T, Bryski T, Gorski B, Cybulski C, Sporlud AB, Holland H, Godfreg DB, Johnn E, Hopper JL, Southee M, Buys SS, Dal MB, Terry M, Schmutzler RK, Wanneschmidt B, Engell C, Meindl A, Reisler-Adams S, Arnold N, Niederlander D, Sutter C, Domchek SM, Nelson KI, Rebbeck T, Blum JL, Piedmonte M, Rodriguez GC, Wakeley K, Boggess D, Basel J, Blank SV, Friedman E, Kauflman B, Laitman Y, Milgrom R, Arnold N, Deissler H, Rhiem K, Niederacher D, Frenay M, Sinilnikova OM, Caron O, Giraud S, Mazoyer S, Bonadona V, Giraud S, Mazoya
Andrulis IL, Glendon G, Mulligan AM, Devilee P, van Asperen CJ, Tollefson RA, Seynaeve C, Figueroa JD, Garcia-Closas M, Brinton L, Lissowska J, Hoornweg MH, Hollestelle A, Oldenberg RA, van den Ouweland AM, Cox A, Reed MW, Shah M, Jakubowska A, Lubinski J, Jawska K, Durda K, Jones M, Schoemaker M, Ashworth A, Swerdlow A, Beesley J, Chen X, Muir KR, Lophatananon A, Rattanamongkol S, Chaiwerawattana A, Kang D, Young KY, Noh DY, Shen CY, Yu JC, Wu PE, Hsiung CN, Perkins A, Swan R, Velentzas L, Eccles DM, Tapper WJ, Gerty SM, Graham NJ, Ponder BA, Benesvich T-Gren, Pharoah PD, Lathrop M, Dunning AM, Rahman N, Peto J, Easton DF (2012) Genome-wide association analysis identifies three new breast cancer susceptibility loci. *Nat Genet* 44: 312–318.

Haiman CA, Chen GK, Vachon CM, Canzian F, Dunning A, Milian RK, Wang X, Ademuyiwa F, Ahmed S, Ambrosone CB, Baglietto L, Balleire R, Bandera EV, Beckmann MW, Berg CD, Bernstein L, Blomqvist CJ, Blot WJ, Brauch H, Buring JE, Carey LA, Carpenter JE, Chang-Claude J, Canzian F, Chasman DI, Clarke CL, Cox A, Cross SS, Deming SL, Diasio RB, Dimopoulos AM, Driver WR, Dunnebier T, Durcan L, Eccles D, Edlund CK, Ekiçi AB, Fasching PA, Feigelson HS, Flaherty-Jansy D, Fostira F, Forsti A, Fountzilas G, Gerty SM, Giles GG, Godwin AK, Goodfellow P, Graham N, Greco D, Hamann SE, Hankinson SE, Hartmann A, Hein R, Heinz J, Holbrook A, Hoover RN, Hu JJ, Hunter DJ, Ingels SA, Irwanto A, Ivanovich J, John EM, Johnson N, Jukka-Vuorinen A, Kaaks R, Ko YD, Kolonel LN, Konstantopoulou I, Kosma VM, Kulkarni S, Lambrechts D, Lee AM, Marchand LL, Lesnick T, Liu J, Lindstrom S, Mannervia A, Margolin S, Martin NG, Miron P, Montgomery GW, Nevanlinna H, Nickels S, Niyante S, Olswold C, Palmer J, Pathak H, Pectasides D, Perou CM, Peto J, Pharoah PD, Pooler LC, Press MF, Pykals K, Rebeck TR, Rodriguez-Gil JL, Rosenberg L, Ross E, Ruddiger T, Silva Idos S, Sawyer E, Schmidt MK, Schulz-Wendland R, Schumacher F, Severi G, Sheng X, Signorello LB, Sinn HP, Stevens KN, Southey MC, Tapper WJ, Tomlinson I, Hogervorst FB, Wautes E, Weaver J, Wilders H, Winquist R, Van Den Berg D, Wan P, Xia LY, Yannoukakos D, Zheng W, Ziegler RG, Siddiq A, Slater SL, Strand DO, Easton D, Kraft P, Henderson BE, Couch FJ (2011) A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. *Nat Genet* 43: 1210–1214.

Haldane JBS (1954) An exact test for randomness of mating. *J Genet* 48: 12–13.

Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. *Stat Med* 21: 1539–1558.

Huijts PE, van Dongen M, de Goecj MI, van Moonenbroek AJ, Blanken F, Vreeswijk MP, de Kruif FJ, Mesker WE, van Zewt EW, Tollenaar RA, Smit VT, van Asperen CJ, Devilee P (2011) Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10. *Breast Cancer Res* 13: R72.

Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yaeoger M, Hankinson SE, Wahlender S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Willett WC, Colditz GA, Ziegler RB, Tucker M, Gerhard DS, Williams RL, and the Breast Cancer Study Group. Breast cancer risk through a paracrine stimulus involving FGF10. *Breast Cancer Res* 13: R72.

Iscovici C, Chenevix-Trench G, Marks GB, Hollestelle A, van den Ouweland AM, Hamman SE, Bretz H, Schmiedeskam S, Ademuyiwa F, Ahmed S, Ambrosone CB, Baglietto L, Balleire R, Bandera EV, Beckmann MW, Berg CD, Bernstein L, Blomqvist CJ, Blot WJ, Brauch H, Buring JE, Carey LA, Carpenter JE, Chang-Claude J, Canzian F, Chasman DI, Clarke CL, Cox A, Cross SS, Deming SL, Diasio RB, Dimopoulos AM, Driver WR, Dunnebier T, Durcan L, Eccles D, Edlund CK, Ekiçi AB, Fasching PA, Feigelson HS, Flaherty-Jansy D, Fostira F, Forsti A, Fountzilas G, Gerty SM, Giles GG, Godwin AK, Goodfellow P, Graham N, Greco D, Hamann SE, Hankinson SE, Hartmann A, Hein R, Heinz J, Holbrook A, Hoover RN, Hu JJ, Hunter DJ, Ingels SA, Irwanto A, Ivanovich J, John EM, Johnson N, Jukka-Vuorinen A, Kaaks R, Ko YD, Kolonel LN, Konstantopoulou I, Kosma VM, Kulkarni S, Lambrechts D, Lee AM, Marchand LL, Lesnick T, Liu J, Lindstrom S, Mannervia A, Margolin S, Martin NG, Miron P, Montgomery GW, Nevanlinna H, Nickels S, Niyante S, Olswold C, Palmer J, Pathak H, Pectasides D, Perou CM, Peto J, Pharoah PD, Pooler LC, Press MF, Pykals K, Rebeck TR, Rodriguez-Gil JL, Rosenberg L, Ross E, Ruddiger T, Silva Idos S, Sawyer E, Schmidt MK, Schulz-Wendland R, Schumacher F, Severi G, Sheng X, Signorello LB, Sinn HP, Stevens KN, Southey MC, Tapper WJ, Tomlinson I, Hogervorst FB, Wautes E, Weaver J, Wilders H, Winquist R, Van Den Berg D, Wan P, Xia LY, Yannoukakos D, Zheng W, Ziegler RG, Siddiq A, Slater SL, Strand DO, Easton D, Kraft P, Henderson BE, Couch FJ (2011) A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. *Nat Genet* 43: 1210–1214.

Haldane JBS (1954) An exact test for randomness of mating. *J Genet* 48: 12–13.

Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. *Stat Med* 21: 1539–1558.

Huijts PE, van Dongen M, de Goecj MI, van Moonenbroek AJ, Blanken F, Vreeswijk MP, de Kruif FJ, Mesker WE, van Zewt EW, Tollenaar RA, Smit VT, van Asperen CJ, Devilee P (2011) Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10. *Breast Cancer Res* 13: R72.

Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yaeoger M, Hankinson SE, Wahlender S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Willett WC, Colditz GA, Ziegler RB, Tucker M, Gerhard DS, Williams RL, and the Breast Cancer Study Group. Breast cancer risk through a paracrine stimulus involving FGF10. *Breast Cancer Res* 13: R72.
identifies 41 new loci associated with breast cancer risk. *Nat Genet* **45**: 353–361, 361. e1–e2.

Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. *Am J Hum Genet* **74**: 765–769.

Presta M, Dell’Era P, Mitolia S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. *Cytokine Growth Factor Rev* **16**: 159–178.

Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagti T, Jayatilake H, McCullof L, Hanks S, Evans DG, Eccles D, Easton DF, Stratton MR (2007) PALB2, which encodes a BRCAl2-interacting protein, is a breast cancer susceptibility gene. *Nat Genet* **39**: 165–167.

Robertson A, Hill WG (1984) Deviations from Hardy-Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. *Genetics* **107**: 703–718.

Schwartzfeger KL (2009) Fibroblast growth factor developments in cancer and development: insights from the mammary and prostate galls. *Curr Drug Targets* **10**: 632–644.

Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagti T, Jayatilake H, Ahmed M, Spanova K, North B, McCullof L, Evans DG, Eccles D, Easton DF, Stratton MR, Rahman N (2006) Truncating mutations in the Fanconi anemia gene BRIP1 are low-penetrance breast cancer susceptibility alleles. *Nat Genet* **38**: 1239–1241.

Siddiq A, Couch FJ, Chen GK, Li, SK, Ambrosone CB, Aittomaki K, Amiano P, Apicella C, Baglietto L, Bandera EV, Beckmann MW, Berg CD, Bernstein L, Blomqvist C, Brach B, Brinton L, Bui QM, Buring JE, Buys SS, Carpenter JE, Chasman DI, Chang-Claude J, Chen C, Clavel-Chapelon F, Cox A, Cross SS, Czene K, Deming SL, Diasio RB, Driver WR, Dunning AM, Durkan L, Ekici AB, Eschfield PA, Feigelson HS, Feuer J, Figueroa JD, Fletcher O, Fleisch-Jans D, Gaudet M, Gey, SM, Rodriguez-Gil JL, Giles GG, van Gils CH, Godwin AK, Graham N, Greco D, Hall P, Hankinson SE, Hartmann A, Hein R, Heinz J, Hoover RN, Hopper JL, Hu JF, Huntsman S, Ingle SA, Irwanto A, Isaacs C, Jacobs KB, John EM, Justenhoven C, Jung, R, Kolonel LN, Komkov V, Lathrop MG, Le Marchand L, Lee AM, Lesnik T, Lichtner P, Liu J, Lund E, Makalik E, Martin NG, McClean CA, Meijers-Heijboer H, Meindl A, Miron P, Monroe KR, Montgomery GW, Muller-Myhsok B, Nichols S, Nyante SJ, Olswold C, Overvad K, Palli D, Park DJ, Palmer JR, Parkhak H, Peto J, Pharoah P, Rahman N, Rivadeneira F, Schmidt DF, Schmutzler RK, Slager S, Southey MC, Stevens KN, Sinn HP, Pres MP, Ross E, Riboli E, Rademaker AR, Schumacher FR, Severi G, Josse Santos Silva I, Stone J, Sund M, Tapper WJ, Thun MJ, Travis RC, Turnbull C, Uitterlinden AG, Waijser Q, Wang X, Wang Z, Weaver J, Ziegler RG, Zieb E, Nevanlinna H, Easton DF, Hunter DJ, Henderson BE, Chanock SJ, Garcia-Culas M, Kraft P, Haiman CA, Vachon CM (2012) A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. *Hum Mol Genet* **21**: 5373–5384.

Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudjonsson T, Gudjonsson SA, Masson G, Jakobsdottir M, Thorlacius S, Helgason A, Aben KK, Strobbe LJ, Albers-Akkers MT, Swinkels DW, Henderson BE, Kolonel LN, Le Marchand L, Millastre E, Andres R, Godino J, Garcia-Prats MD, Pol E, Tres A, Mouy M, Saemundsdottir J, Backman VM, Gudjonsson L, Kristjansson K, Berghorssen K, Costic J, Frigge ML, Geller F, Gudbjartsson D, Sigurdsson H, Jonsdottir T, Hairnkelsson J, Johannsson J, Stacey SN, Valdastri P, Grimsom HN, Jonsson T, von Haelt S, Werelius B, Johannsson OT, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. *Nat Genet* **39**: 865–869.

Stacey SN, Manolescu A, Sulem P, Thorlacius S, Gudjonsson SA, Jonsson GF, Jakobsdottir M, Berghorssen J, Gudjonsson J, Aben KK, Strobbe LJ, Swinkels DW, van Engelenburg KC, Henderson BE, Kolonel LN, Le Marchand L, Millastre E, Andres R, Saez B, Lamba J, Godino J, Pol E, Tres A, Piceli S, Rantal J, Margolin S, Jonsson T, Sigurdsson H, Jonsdottir T, Hairnkelsson J, Johannsson J, Stacey SN, Myrdal G, Grimsom HN, Johannson OT, Kong A, Stefansson K (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. *Nat Genet* **40**: 703–706.

Swift M, Reitnauer PJ, Morrell D, Chase CL (1987) Breast and other cancers in families with ataxia-telangiectasia. *N Engl J Med* **316**: 1289–1294.

The Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. *J Natl Cancer Inst* **98**: 1382–1396.

Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, Hutchinson A, Wang Z, Yu K, Chatterjee N, Garcia-Colas M, Gonzalez-Bosquet J, Prokunina-Ilsson L, Orr N, Willett WC, Coldiz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Driver R, Prentice R, Jackson R, Kooperberg C, Chlebovics R, Lissowska J, Peplonska B, Brinton LA, Sigurdardottir A, Doody M, Bhatti P, Alexander BH, Buring J, Lee IM, Vatten LJ, Hveem K, Mundle M, Hayes RB, Tucker M, Gerhard DS, Fraumeni Jr JF, Hoover RN, Chanock SJ, Hunter DJ (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 1q24.1 (RAD51L1). *Nat Genet* **41**: 579–584.

Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S, Ghoussaini M, Hines S, Healey CS, Hughes D, Warren-Perry M, Tapper W, Eccles D, Evans DG, Hooning M, Schutte M, van den Ouweland A, Houlston R, Ross G, Langford C, Pharoah PD, Stratton MR, Dunning AM, Rahman N, Easton DF (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. *Nat Genet* **42**: 504–507.

Udler MS, Meyer KB, Pooley KA, Karlin E, Struweing JP, Zhang J, Doody DR, MacArthur S, Tyer J, Pharoah PD, Ruben L, Bernstein K, Houlston BE, Le Marchand L, Ursin G, Press MF, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Kang D, You Y, Noh Y, Ahn SH, Ponden RA, Falmam CA, Malone KE, Dunning AM, Ostrander EA, Easton DF (2009) FGR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation. *Hum Mol Genet* **18**: 1692–1703.

Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, Deming SL, Haines JL, Gu K, Fair AM, Cui Q, Lu W, Shu XO (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. *Hum Mol Genet* **21**: 324–328.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License."