Agora Paleobotanica

Zhangwuia: an enigmatic organ with a bennettitalean appearance and enclosed ovules

Zhong-Jian Liu¹, Ye-Mao Hou² and Xin Wang³*

1 Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
2 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China.
3 CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Nanjing 210008, China.

*Corresponding author

Email: xinwang@nigpas.ac.cn

ABSTRACT: The feature distinguishing typical angiosperms from gymnosperms is that their ovules are enclosed before pollination. Bennettitales were formerly related to angiosperms because of the flower-like organisation of the former’s reproductive organs. There is little information on how the naked ovules of Bennettitales became enclosed in angiosperms because fossil evidence for such a transition, if it exists, has not been described. Here, we report a reproductive organ, Zhangwuia gen. nov., from the Middle Jurassic of Inner Mongolia, China. Like many Bennettitales, the arrangement of the foliar parts around the female part in Zhangwuia demonstrates a resemblance to typical angiosperm flowers. It is noteworthy that the ovule is secluded from the exterior space in Zhangwuia, therefore implying the existence of angio-ovuly. Although Bennettitales have been related to angiosperms for more than a hundred years, their way of ovule-enclosing was not previously revealed. The discovery of Zhangwuia prompts a rethinking of the relationship between Bennettitales and angiosperms, as well as of the origin of angiosperms.

KEY WORDS: angiosperms, Bennettitales, China, Inner Mongolia, Middle Jurassic.

Angiosperms are unequivocally the most important plant group for human beings and current ecosystems. They are commonly characterised by their unique reproductive organs; i.e., flowers. In spite of all the effort invested in flowers, where they came from has long been a puzzle for botanists. Arber previously revealed. The discovery of Zhangwuia gen. nov., from the Middle Jurassic of Inner Mongolia, China. Like many Bennettitales, the arrangement of the foliar parts around the female part in Zhangwuia demonstrates a resemblance to typical angiosperm flowers. It is noteworthy that the ovule is secluded from the exterior space in Zhangwuia, therefore implying the existence of angio-ovuly. Although Bennettitales have been related to angiosperms for more than a hundred years, their way of ovule-enclosing was not previously revealed. The discovery of Zhangwuia prompts a rethinking of the relationship between Bennettitales and angiosperms, as well as of the origin of angiosperms.

Published online by Cambridge University Press
Figure 1 Geological information for the Jiulongshan Formation at Daohugou Village. Modified from Tan & Ren (2009): (a) geographical position of the fossil locality, Daohugou Village, Ningcheng, Inner Mongolia, China. The rectangular region is shown in detail in the inset, in which the black triangle represents Daohugou Village and the black dots represent cities in the region. (b) Geological section of the Jiulongshan Formation near Daohugou Village. Layer 3 is the major fossil-yielding layer: 1 = gneiss; 2 = tuffaceous grand conglomerate; 3 = tuffaceous conglomerate; 4 = tuffaceous siltstone; 5 = tuffaceous mudstone; 6 = tuffaceous shale; 7 = volcanic breccia; 8 = fossil locality. (c) Stratigraphic column of the Jiulongshan Formation near Daohugou Village. Layer 3 is the major fossil-yielding layer. (d) Geological map of Daohugou Village and adjacent region. Rectangle represents the fossil locality.
four genera and six species of Ginkgoales (*Yimaia*, *Ginkgoites*, *Baiera*, *Sphenobaiera*), 13 genera and 20 species of Coniferales (*Pityocladus*, *Pityospermum*, *Schizolepis*, *Austrohamia* (*Yanliaoa*), *Brachyphyllum*, *Elatocladus*, *Amentotaxus*, *Taxus*, *Nageiopsis*, *Podocarpites*, *Cephalotaxopsis*, *Pseudofrenelopsis*, *Podozamites*), two genera and two species of Caytoniales (*Caytonia*, *Sagenopteris*), three genera and three species of seeds/fruits with unknown affinities (*Conites*, *Problematospermum*, *Carpolithus*), and three genera and three species of angiosperms (*Solaranthus*, *Juraherba*, *Yuhania*) (Zheng et al. 2003; Li et al. 2004; Zhou et al. 2007; Wang et al. 2010a, b; Zheng and Wang 2010; Pott et al. 2012; Heinrichs et al. 2014; Dong et al. 2016; Han et al. 2016; Liu & Wang 2016b). As reported here, these works converge on a Middle Jurassic age for *Zhangwuia*.

Recently, a bennettitalean plant, *Foxeoidea*, was reported with its ovules surrounded by interseminal scales, although its ovules were not fully enclosed as they are in angiosperms (Rothwell & Stockey 2010). To help bridge this gap between *Foxeoidea* and typical angiosperms, we here report a fossil reproductive organ, *Zhangwuia* gen. nov., from the Jiulongshan Formation of the Middle Jurassic (>164 Ma) of Daohugou Village, Inner Mongolia, China [119°15′E, 41°19′N]. *Zhangwuia* demonstrates a great resemblance to angiosperm flowers, including its flower-like organisation, surrounding foliar parts, and, most importantly, angio-ovuly in the female part. Interestingly, the general morphology of *Zhangwuia* demonstrates a resemblance to Bennettitales. Such a mosaic combination of characters implies that at least some Bennettitales have
the potential to reach angio-ovuly. In this way, Zhangwuia could narrow the evolutionary gap between angiosperms and gymnosperms.

1. Material and methods

The fossil material was collected by a local fossil collector, Mr Hongtao Cai, from the outcrop of the Jilulongshan Formation near Daohugou Village, Ningcheng, Liaoning, China (119.236727°E, 41.315756°N; Fig. 1), and it was donated to the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (CAS).

The general morphology and details of Zhangwuia were observed and photographed using a Nikon SMZ1500 stereomicroscope with a digital camera. More details were further observed and recorded using a Leo 1530 VP scanning electron microscope (SEM) at the Nanjing Institute of Geology and Palaeontology (NIGPAS), Nanjing, China. Micro-computed tomography (CT) observation was performed using 225kv micro-CT (developed by the Institute of High Energy Physics, CAS) at the Key Laboratory of Vertebrate Evolution and Human Origin of CAS in the Institute of Vertebrate Paleontology and Palaeoanthropology, scanning under a cone-beam energy of 130kV and a flux of 100μA with an 8.8μm slice distance. The transmission images of 1536 slices were reconstructed with a 2048×2048 matrix and 8.8μm pixel size through a 3D image processing software developed by the Institute of High Energy Physics, CAS. The images were processed using VGStudio Max2.2. The final results were saved as images or videos. All photographs were organised together for publication using Photoshop 7.0.

To make our description more neutral, we use the terms ‘female part’ and ‘female unit’, instead of ‘gynoecium’ and ‘carpel’ (which are restricted to angiosperms) to describe the morphology of Zhangwuia.

2. Results

Order Incertae sedis
Family Incertae sedis
Genus Zhangwuia gen. nov.

Generic diagnosis. Reproductive organ of radial symmetry. Outer foliar parts inflated, more or less rounded, probably

Figure 3 Detailed views of the inner foliar parts of Zhangwuia mira gen. et sp. nov. SEM: (a) an inner foliar part with a midrib (arrow) and an obtuse tip, the no. 1 arrowed part in Fig. 2a; (b) an inner foliar part with a bent tip (top) and no midrib, the no. 4 arrowed part in Fig. 2a; (c) detailed view of a bent tip of an inner foliar part, showing cellular details, from the no. 3 arrowed part in Fig. 2a; (d) cellular details on the margin of an inner foliar part, enlarged from the black rectangle in Fig. 3a; (e) detailed view of the middle portion of the inner foliar part (arrow in Fig. 3a), showing the midrib (arrow); (f) cellular details of the distal portion of the inner foliar part, enlarged from the white rectangle in Fig. 3a. Scale bars = 1 mm (a); 0.2 mm (b, c); 0.1 mm (c, d); 20 μm (f).
seven in number, radially arranged. Inner foliar parts above the outer foliar parts, radially arranged, in three cycles, approximately seven per cycle, alternate, tongue-shaped, obtuse-tipped, some with a weak midrib. Female part includes numerous spirally arranged female units. Female unit with secluded space, a blunt tip, and an ovule/seed inside.

Type species. Zhangwuia mira gen. et sp. nov.

Etymology. Zhangwu – for the senior Chinese palaeobotanist, Professor Wu Zhang (8 August 1937–27 June 2016).

Horizon. The Jiulongshan Formation, Middle Jurassic.

Age. The Callovian, Middle Jurassic (>164 Ma).

Locality. Daohugou Village, Ningcheng, Inner Mongolia, China [119°15’E, 41°19’N].

Zhangwuia mira gen. et sp. nov. (Figs 2–5)

Specific diagnosis. (In addition to that of the genus) Organ at least 12 mm in diameter. Outer foliar parts 4.3 mm long and 3.4 mm wide. Inner foliar parts approximately 4 mm long and 1.8 mm wide. Female part approximately 6 mm in diameter, conically formed, tapering distally, and bearing spirally arranged female units (Figs 2a, d, 3a, b, d–f). Some of the inner foliar parts may have weak midribs (Figs 2d, 3a, e) or tips bent adaxially (Figs 2a, d, 3b, c). The cells are approximately 45–50 μm long and 7–13 μm wide in the lateral regions of the inner foliar parts, and approximately 30–80 μm long and 19–24 μm wide in the midrib region of the inner foliar parts (Fig. 3d–f). The female part is approximately 6 mm in diameter, conically formed, tapering distally, and bearing spirally arranged female units (Figs 2a–c, 4d, 5e; supplementary videos V1–V2). The centre of the female part was replaced with sediment during the fossilisation (Fig. 2a, b). The peripheral tissue of the female part is broken, exposing the details of the female units (Figs 2e, 5a–c). The female unit is up to 1.9 mm long and 1.7 mm wide, and fused with neighbouring units basally (Figs 2c, e, 5e). The surface of the female units is integral, with epidermal cells 50–80 μm long and 1.7–2.4 μm wide (Figs 2c, 5d, e). There is a secluded locule, separated from the exterior space by a 0.2-mm-thick wall, inside each female unit (Fig. 5a, d). An ovule isolated from the locule wall is seen inside the female unit (Fig. 5d).

Specimen number. PB21675.

Etymology. mira for mirus, meaning ‘wonderful’ in Latin.

Depository. The Nanjing Institute of Geology and Palaeontology, Nanjing, China.

3. Discussion

‘Carpel’ is a frequently used term in angiosperm morphology. There are at least two usages of this term. First, carpel sensu lato designates any structure that encloses the ovules; namely, the basic unit of angiosperm gynoecium. Second, a carpel sensu stricto designates a foliar part enclosing ovules/seeds.
The carpel sensu stricto is hinged with the assumption that a carpel is derived from a megasporophyll, bearing ovules along its margins (Arber & Parkin 1907). This assumption has constituted the foundation for angiosperm systematics for more than a hundred years. However, a ‘sporophyll’ is purely an imaginary part that has never been seen in any fossil or extant plant (Wilson 1937; Melville 1963; Miao et al. 2017) because all ovules are borne on branches rather than on leaves (Herr 1995) and the only leaf-like ‘megasporophyll’ seen in Cycas is a result of mechanical pressure from the adjacent ovulate parts during the development (Wang & Luo 2013). Deciphering how the angiospermous carpel can be derived from the bennettitalean female part has been difficult for botanists. Until this question is answered satisfactorily, it is impossible to securely establish any of the hypotheses concerning the relationship between angiosperms and Bennettitales, as well as the systematics of angiosperm. Therefore, bridging the gap between angiosperms and Bennettitales using fossil evidence is of crucial importance for plant systematics.

The resemblance between Zhangwuia and Bennettitales is conspicuous. Bennettitales are a fossil group that have been well-documented by various authors in the past century (Wieland 1906; Seward 1919; Rothwell & Stockey 2002; Stockey & Rothwell 2003; Crane & Herendeen 2009; Rothwell & Stockey 2010). The inner foliar parts surrounding the female part in Zhangwuia are comparable to the foliar parts surrounding the female part in Bennettitales (Watson & Sincock 1992). The receptacle of some Bennettitales is also conical in form and may become filled with sediment (Watson & Sincock 1992), which is very similar to Zhangwuia. The arrangement of the female units around the receptacle in Zhangwuia appears like that of the seeds and interseminal scales arranged around a receptacle in Bennettitales (e.g., Cycadoidea, Williamoniella, Williamsonia, and Buttercarpus (Watson & Sincock 1992; Rothwell & Stockey 2002; Stockey & Rothwell 2003; Crane & Herendeen 2009; Rothwell et al. 2009)). If this comparison is valid, there seems to be some phylogenetic relationship between Zhangwuia and Bennettitales. The bennettitalean female part would be identical to Zhangwuia if its ovules were completely covered by the adjacent interseminal scales (Fig. 6c, d). Such ovule-enclosure is almost achieved in another fossil taxon, Foxeoidea (Rothwell & Stockey 2010). The Middle Jurassic age and the morphology of Zhangwuia favour placing Zhangwuia in the Bennettitales.

Figure 5 Details of female part of Zhangwuia mira gen. et sp. nov. SEM. (a) Tip (top arrow) of female unit and the margin (lower arrows) of its locule. Inset shows the outline of the locule wall. (b) Details of the female unit shown in Fig. 2c. Note the outline of the female unit (black line) and margin (white line) of the locule. (c) Surface (white line) of the female unit and margin (arrows) of the locule, enlarged from Fig. 5b. (d) An ovule (o) partially covered by other tissue, and a locule wall (between two upper arrows). Note the gap between the ovule and locule wall (between two lower arrows). Refer to the inset. (e) Tips (arrows) of two spirally arranged female units with integral surface. Refer to Fig. 2c. (f) Epidermal cellular details on the tip of a female unit. Scale bars = 0.2 mm (a, d); 0.1 mm (b, c, f); 0.5 mm (e).
It is worth emphasising that *Zhangwuia* demonstrates certain features unexpected for any Bennettitales; namely, the ovules in all Bennettitales (including the problematic *Foxeoidea* of Rothwell & Stockey 2010) are consistently, more or less, exposed to the exterior, while the ovules of *Zhangwuia* are inside the female units. An angiosperm flower is typically characterised by a perianth around a gynoecium and/or an androecium (Eames 1961). Similar organisation has been seen in both angiosperms and Bennettitales (Martens 1971; Watson & Sincock 1992; Biswas & Johri 1997). A female cone in Bennettitales has a heterogeneous surface comprising micropyle apices and polygonal interseminal scale heads (Watson & Sincock 1992; Crane & Herendeen 2009; Rothwell et al. 2009), while the surface of the female part of *Zhangwuia* is homogeneous, smooth, and integral (Figs 2c, 5e, f) with no trace of a micropylar tube. Furthermore, the locule within the female unit and the ovules inside the locule of *Zhangwuia* (Fig. 5d) are never seen in other Bennettitales (Rothwell et al. 2009; Table 1), in which the ovules have exerted micropyles and are tightly surrounded by the interseminal scales. Therefore, if *Zhangwuia* were put into Bennettitales, it would appear that at least some Bennettitales have achieved angio-ovuly through the connation of interseminal scales.

It is noteworthy that *Zhangwuia* bears a resemblance to angiosperm flowers. The arrangement of the female units in *Zhangwuia* may be compared to female flowers in the inflorescence of Araceae because they both have female units that are crowded on the surface of an axis (Barabé et al. 2003, 2004). Because of the breakage, the internal details of the female units of *Zhangwuia* are observable. As seen in Figs 2e, 5a–d, there are several locules exposed on the broken surface in the female part. These locules are isolated from the exterior space by a wall (Fig. 5a–e), suggesting that a female unit of *Zhangwuia* has a secluded internal space characteristic of angiosperms. The structure inside the female unit appears to be an ovule (Fig. 5d) as its large size is beyond the scope of microspores, implying the occurrence of angio-ovuly in *Zhangwuia*. Ovules enclosed before pollination are a feature guaranteeing an angiospermous affinity for the plant in question (Tomlinson & Takaso 2002; Wang 2010). Therefore, *Zhangwuia* may have a feature that was formerly only restricted to angiosperms. Such a mosaic combination of characters spanning angiosperms and Bennettitales makes *Zhangwuia* especially interesting in plant evolution. The enclosure of the ovule as seen in *Zhangwuia* is not a singular case. For example, *Foxeoidea*, an unusual element of Bennettitales, has been anatomically documented in the Cretaceous (Rothwell & Stockey 2010). According to Rothwell & Stockey (2010), ovules with micropylar tubes in *Foxeoidea* are almost completely enclosed by the adjacent interseminal scales that are histologically fused to

Figure 6 Diagrams showing the structure of *Zhangwuia mira* gen. et sp. nov. and its comparison with Bennettitales. (a) Vertical profile of the fossil organ, showing outer foliar parts (of), inner foliar parts (if), female units (fu) with internal space, and the receptacle. Note that the female units are missing in the distal portion. (b) Top view of the reconstructed organ, showing outer foliar parts (of), inner foliar parts (if) in three cycles, and female units around the receptacle. Note the presences of midribs and bent tips in some inner foliar parts. (c) Idealised longitudinal section of the female part in Bennettitales. The ovules (grey) have exerted micropylar tubes and are bracketed by interseminal scales (black). Both ovules and interseminal scales are attached to the receptacle. (d) Idealised longitudinal section of the female part in *Zhangwuia*. The ovules (grey) are separated from the exterior space by the surrounding tissues (black).
each other and form a continuous layer around the ovules. The ovule-enclosing in *Foxeoidea* is quite different from the imagined longitudinal folding of a ‘megasporophyll’ bearing ovules along its margins, as suggested by Arber & Parkin (1907) and their proponents (Crane 1985; Dilcher 2010). It should be noted that 1) the ovules in *Foxeoidea* are not completely enclosed, so *Foxeoidea* falls well within the scope of Bennettitidae; and 2) it is still unclear which parts enclose the ovules in *Foxeoidea*. According to Rothwell & Stockey (2010), the ovules with micropylar tubes in *Foxeoidea* are surrounded by the adjacent interseminal scales. However, as the researchers admitted, histologically the ‘micropylar tube’ is indistinguishable from those of the adjacent interseminal scales because the outer surface of the ‘micropylar tube’ is never seen, despite its good anatomical preservation (Rothwell & Stockey 2010, fig. 4.3b, c). This observation makes an alternative interpretation more likely: namely, that their ‘micropylar tube’ is non-existent, and that the ovule-enclosure is completed by the adjacent interseminal scales. If this is the case, then the ovule-enclosing parts of *Foxeoidea* will be very similar to *Zhangwuia* in nature. The near-complete enclosure in *Foxeoidea* can be taken as a precursor to the complete ovule-enclosure of *Zhangwuia*. In both cases, the ovule-enclosure is completed by the same structure – the former interseminal scales. The anachronism created by Jurassic *Zhangwuia* and Cretaceous *Foxeoidea* does not constitute a serious problem for this interpretation, as *Zhangwuia* and *Foxeoidea* may belong to two different parallel lineages. Parallel to *Zhangwuia* and *Foxeoidea*, a possible Gnetales-related taxon with typical ephedroid morphology, *Pseudoeuphoria* (Liu & Wang 2016a), bears a solid style (a feature of angiosperms) instead of a micropylar tube as expected in *Ephedra*. According to molecular studies (Skinner et al. 2004), the placenta and ovarian wall correspond to an axillary branch and a leaf in gymnosperms, respectively. *Foxeoidea*, *Zhangwuia*, and *Pseudoeuphoria* seem to suggest that there may be a novel evolutionary path for angio-ovuly (Wang et al. 2015): angio-ovuly may be reached by different plant groups in their own ways independently, as suggested by others previously (Krassilov 1977; Wu et al. 2002). The possibility of deriving conduplicate carpels from the assumed ‘megasporophylls’ which bear ovules along their margins, as suggested by Arber & Parkin (1907) and their proponents, is reduced to nil since the superficially leaf-like morphology of megasporophyll in *Cycas* has been experimentally proven to be an artefact due to mechanical pressure (Wang & Luo 2013). Given all the evidence, angio-ovuly seems to have been reached independently.

4. Conclusion

Zhangwuia is a reproductive organ showing a mosaic combination of Bennettitalean and angiospermous features. While its lack of exserted micropylar tube makes it atypical in Bennettitidales, its ovule enclosed inside the female unit makes *Zhangwuia* closer to angiosperms. Despite its enigmatic phylogenetic position, *Zhangwuia* appears to narrow the gap between Bennettitidales and angiosperms in an unexpected way.

5. Acknowledgements

We thank Ms Chunzhao Wang for her help with SEM observation. This research is supported by the National Natural Science Foundation of China (41688103, 91514302, 91114201, 41572046), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant no XDB26000000) awarded to X. W.; and State Forestry Administration of China (no. 2005-122), the Science and Technology Project of Guangdong (no. 2011B060400011), and the Special Funds for Environmental Projects of Shenzhen (no. 2013-02) awarded to Z. J. L. This is a contribution to UNESCO IGCP632.

6. Supplementary material

Supplementary material is available online at https://doi.org/10.1017/S1755691018000257

7. References

Arber, E. A. N. & Parkin, J. 1907. On the origin of angiosperms. *Journal of the Linnean Society of London, Botany* **38**, 29–80.

Barabè, D., Lacroix, C. & Gibernau, M. 2003. Development of the flower and infructescence of *Arum italicum* (Araceae). *Canadian Journal of Botany* **81**, 622–32.

Barabè, D., Lacroix, C., Bruene, A., Archambault, A. & Gibernau, M. 2004. Floral development and phylogenetic position of *Schismatoglottis* (Araceae). *International Journal of Plant Sciences* **165**, 173–89.

Biswas, C. & Johri, B. M. 1997. *The Gymnosperms*, 494. Berlin: Springer-Verlag.

Chang, S.-C., Zhang, H., Renne, P. R. & Fang, Y. 2009. High-precision 40Ar/39Ar age constraints on the basal Lanqiu formation and its implications for the origin of angiosperm plants. *Earth and Planetary Science Letters* **279**, 212–21.

Chang, S.-C., Zhang, H., Hemming, S. R., Mesko, G. T. & Fang, Y. 2014. 40Ar/39Ar age constraints on the Haifanggou and Lanqi formations: when did the first flowers bloom? *Geological Society, London, Special Publications* **378**, 277–84.

Chen, W., Ji, Q., Liu, D.-Y., Zhang, Y., Song, B. & Liu, X. Y. 2004. Isotope geochronology of the fossil-bearing beds in the Daohugou area, Ningcheng, Inner Mongolia. *Geological Bulletin of China* **23**, 1165–69.

Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. *Annals Missouri Botanical Garden* **72**, 716–93.

Crane, P. R. & Herendeen, P. S. 2009. Bennettitales from the Grisethrope Bed (Middle Jurassic) at Cayton Bay, Yorkshire, UK. *American Journal of Botany* **96**, 284–95.

Croquist, A. 1988. The evolution and classification of flowering plants, 555. Bronx: New York Botanical Garden.

Table 1 Comparison among *Zhangwuia*, some problematic Bennettitales and Gnetales, as well as angiosperms.

	Cycadeoidea	Foxeoida	Pseudoephedra	Zhangwuia	Typical angiosperms
Ovule	Exposed	Almost enclosed	Nucellus enclosed	Enclosed	Enclosed
Ovule surrounded by	Interseminal scales	‘Interseminal scales’	Integument	‘Interseminal scales’	Ovarian wall
Interseminal scale tip	Petalate	Petalate?	Not applicable	Not applicable	Not applicable
Interseminal scales	Isolated	Connate	Not applicable	Not applicable	Not applicable
Micropyle	Exserted	Not exserted	Exserted	Not exserted	Not exserted
Internal space	None	None?	?	Ovarian locule?	Ovarian locule
Peripheral foliar parts	Not differentiated	None	Not differentiated	Differentiated	Differentiated or not
Female part position	Central	?	Central	Central	Central

https://doi.org/10.1017/S1755691018000257 Published online by Cambridge University Press
Dilcher, D. L. 2010. Major innovations in angiosperm evolution. In Gee, C. T. (ed.). Plants in the Mesozoic time: innovations, phylogeny, ecosystems, 97–116. Bloomington and Indianapolis: Indiana University Press.

Dong, C., Yang, X. & Zhou, Z. 2016. Fossil plants. In Huang, D. (ed.). Daohugou biota. 252–302. Shanghai: Shanghai Science and Technology.

Eames, A. J. 1961. Morphology of the angiosperms, 518. New York: McGraw-Hill Book Company, Inc.

Han, G., Liu, Z.-J., Liu, X., Mao, L., Jacques, F. M. B. & Wang, X. 2016. A new plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geologica Sinica 90, 19–29.

Heinrichs, J., Wang, X., Ignatov, M. S. & Krings, M. 2014. A Jurassic moss from Northeast China with preserved sporophytes. Review of Palaeobotany and Palynology 204, 50–55.

Herr, J. M. 1995. The origin of the ovule. American Journal of Botany 82, 547–64.

Huang, D., Selden, P. S. & Dunlop, J. A. 2009. Harvestmen (Arachnida: Opiliones) from the Middle Jurassic of China. Naturwissenschaften 96, 55–62.

Huang, D.-Y., Nel, A., Shen, Y., Selden, P. A. & Lin, Q. 2006. Discussions on the age of the Daohugou fauna – evidence from invertebrates. Progress in Natural Science 16, 308–12.

Huang, D.-Y., Zompro, O. & Waller, A. 2008a. Mantophasmatodea (Insecta: Prophloeidae) from the Middle Jurassic of China. Cretaceous Research 29, 143–45.

Huang, D.-Y. & Nel, A. 2007. A new Middle Jurassic “glyrilloblatodean” family from China (Insecta: Jurperidae fam. n.). European Journal of Entomology 104, 837–40.

Huang, D.-Y. & Nel, A. 2008. New “Glyrilloblatida” related to the genus Prophloeus Handlirsch, 1920 in the Middle Jurassic of China (Insecta: Geinitziidae). Alcheringa 32, 395–403.

Huang, J., Ren, D., Snitshenkov, N. D. & Shih, C. 2008b. New fossil mayflies (Insecta: Ephemeroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Insect Science 15, 193–98.

Ji, Q., Chen, W., Wang, W., Jin, X., Zhang, J. P., Liu, Y. Q., Zhang, H., Yao, P. Y., Ji, S. A., Yuan, C. X., Zhang, Y. & You, H. 2004. Mesozoic Jehol Biota of western Liaoning, China. Beijing: Geological Publishing House.

Ji, Q., Liu, Y., Chen, W., Jin, X. S., Lu, J., You, H. & Yuan, C. 2005. On the geological age of Daohugou biota. Geological Review 51, 609–12.

Krassilov, V. A. 1977. The origin of angiosperms. Botanical Review 43, 143–76.

Li, N., Liu, Y., Wang, L.-X., Zheng, S.-L. & Zhang, W. 2004. A new Weltrichia braun in north China with a special bennettitalean male reproductive organ. Acta Botanica Sinica 46, 1269–75.

Liang, J.-H., Vrsansky, P., Ren, D. & Shih, C. 2009. A new Jurassic carnivorous cockroach (Insecta, Blattaria) from the Middle Jurassic of Kaifeng, Henan, China. Zootaxa 2197, 14–73.

Lin, Q.-B., Huang, D.-Y. & Nel, A. 2008. A new genus of Chigieniae (Orthoptera: Ensifer: Prophalangopsidae) from the Middle Jurassic (Julongshan Formation) of Inner Mongolia, China. Canadian Journal of Zoology 86, 205–09.

Liu, W.-Z., Hilu, K. & Wang, Y.-L. 2014. From leaf and branch into the Daohugou beds (Middle Jurassic), Inner Mongolia, China: mechanical defence against herbivorous arthropods. Review of Palaeobotany and Palynology 169, 48–60.

Ren, D., Gao, K., Guo, Z., Ji, S., Tan, J. & Song, Z. 2002. Stratigraphic division of the Jurassic in the Daohugou area, Northeastern China. Acta Geoscienica Sinica 23, 584–91.

Ren, D., Labandeira, C. C., Santiago-Blay, J. A., Rasnitsyn, A., Shih, C., Bashkuev, A., Logan, M. A. V., Hotton, C. L. & Dilcher, D. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscis scorpionflies. Science 326, 840–47.

Seward, A. C. 1919. Fossil plants, a text-book for students of botany and geology, 4. 543. Cambridge: The Cambridge University Press.

Shen, Y.-B., Chen, P.-J. & Huang, D.-Y. 2003. Age of the fossil coniferchaeans from Daohugou of Ningcheng, Inner Mongolia. Journal of Stratigraphy 27, 311–13.

Shih, C., Liu, C. & Ren, D. 2009. The earliest fossil record of pelicedine wasps (Insecta: Hymenoptera: Proctotrupidae: Pelicerinae) from Inner Mongolia, China. Annals of the Entomological Society of America, 102, 20–38.

Skinner, D. J., Hill, T. A. & Gasser, C. S. 2004. Regulation of ovule development. Plant Cell 16, S32–45.

Stockey, R. A. & Rothwell, G. W. 2003. Anatomically preserved Williamsonia (williamsoniaceae): evidence for Bennettitalean reproduction in the Late Cretaceous of western North America. International Journal of Plant Sciences 164, 251–62.

Tan, J. & Ren, D. 2009. Mesozoic arachistematana fauna from China. African Invertebrates 48, 35–49.

Tomlinson, P. B. & Takaso, T. 2002. Seed cone structure in conifers in relation to development and pollination: a biological approach. Canadian Journal of Botany 80, 1250–73.

Wang, B., Li, J., Fang, Y. Q., Yang, D. Y. & Yao, P. Y. 2009a. Preliminary elemental analysis of fossil insects from the Middle Jurassic of Daohugou, Inner Mongolia and its taphonomic implications. Chinese Science Bulletin 54, 783–87.

Wang, B., Ponomarenko, A. G. & Zhang, H. 2009b. A new coptoclavid larva (Coleoptera: Adephaga: Dryophthoridae) from the Middle Jurassic of China, and its phylogenetic implication. Palaeontological Journal 43, 652–59.

Wang, B., Zhang, H. & Szwezow, J. 2009c. Jurassic Palaeoncidae from China and their higher systematics of Palaeoncidae (Insecta: Hemiptera: Cacidoidea). Palaeontology 52, 53–64.

Wang, B. & Zhang, H. 2009a. A remarkable new genus of Proceratopsidae (Hemiptera: Cercopoidea) from the Middle Jurassic of China. Comptes Rendus Palevol 8, 389–94.

Wang, B. & Zhang, H. 2009b. Tettigarcidaceae (Insecta: Hemiptera: Cacidoidea) from the Middle Jurassic of Inner Mongolia, China. Geobios 42, 243–53.

Wang, B. & Zhang, H. 2011. The oldest Tenebrionoidea (Coleoptera) from the Middle Jurassic of China. Journal of Paleontology 85, 266–70.

Wang, X. 2010. The dawn angiosperms. Heidelberg: Springer.

Wang, X., Kring, M. & Taylor, T. N. 2010a. A thalloid organism with possible lichen affinities from the Jurassic of northeastern China. Review of Palaeobotany and Palynology 162, 567–74.

Wang, X., Zhang, S. & Jin, J. H. 2010b. Structure and relationships of Protophytopism pernum, an enigmatic seed from the Jurassic of China. International Journal of Plant Sciences 171, 447–56.

Wang, X., Liu, Z.-J., Liu, W., Zhang, X., Guo, X., Hu, G., Zhang, S., Wang, Y. & Liao, W. 2015. Breaking the stasis of current plant systematics. Science & Technology Review 33, 97–105.
Wang, X. & Luo, B. 2013. Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas. *American Journal of Plant Sciences* **4**, 53–57.

Wang, Y. & Ren, D. 2009. New fossil palaeontinids from the middle Jurassic of Daohugou, Inner Mongolia, China (Insecta, Hemiptera). *Acta Geologica Sinica* **83**, 33–38.

Watson, J. & Sinecock, C. A. 1992. Bennettitales of the English Wealden. *Monograph of Palaeontographical Society* **145**, 1–228.

Wieland, G. R. 1906. *American fossil cycads*, **34**, 295. Washington, DC: The Wilkens Sheiry Printing Co.

Wilson, C. L. 1937. The phylogeny of the stamen. *American Journal of Botany* **24**, 686–99.

Wu, Z.-Y., Lu, A.-M., Tang, Y.-C., Chen, Z.-D. & Li, D.-Z. 2002. Synopsis of a new “polyphyletic-polychronic-polytopic” system of the angiosperms. *Acta Phytotaxonomica Sinica* **40**, 289–322.

Zhang, J. 2006. New winter crane flies (Insecta: Diptera: Trichoceridae) from the Jurassic Daohugou formation (Inner Mongolia, China) and their associated biota. *Canadian Journal of Earth Science* **43**, 9–22.

Zhang, J., D’Rozario, A., Yao, J., Wu, Z. & Wang, L. 2011. A new species of the extinct genus *Schizolepis* from the Jurassic Daohugou Flora, Inner Mongolia, China with special reference to the fossil diversity and evolutionary implications. *Acta Geologica Sinica* **85**, 471–81.

Zhang, J. F. 2002. Discovery of Daohugou Biota (pre-Jehol Biota) with a discussion on its geological age. *Journal of Stratigraphy* **26**, 173–77.

Zhang, K., Li, J., Yang, D. & Ren, D. 2009. A new species of *Archisargio* Rohdendorf, 1938 from the Middle Jurassic of Inner Mongolia of China (Diptera: Archisargidae). *Zootaxa* **1984**, 61–65.

Zhang, X., Liu, W. & Wang, X. 2017. How the ovules get enclosed in magnoliaceous carpels. *PLOS One* **12**, e0174955.

Zhang, X.-W., Ren, D., Pang, H. & Shih, C.-K. 2008. A water-skiing chresmodid from the Middle Jurassic in Daohugou, Inner Mongolia, China (Polyneoptera: Orthopterida). *Zootaxa* **1762**, 53–62.

Zheng, S. & Wang, X. 2010. An undercover angiosperm from the Jurassic in China. *Acta Geologica Sinica* **84**, 895–902.

Zheng, S.-L., Zhang, L.-J. & Gong, E.-P. 2003. A discovery of *Anomozamites* with reproductive organs. *Acta Botanica Sinica* **45**, 667–72.

Zhou, Z., Zheng, S. & Zhang, L. 2007. Morphology and age of *Yimaia* (ginkgoales) from Daohugou Village, Ningcheng, Inner Mongolia, China. *Cretaceous Research* **28**, 348–62.

MS received 18 January 2017. Accepted for publication 24 October 2017