(P, Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class

Arzu AKGÜL*
Department of Mathematics, Faculty of Arts and Science, Kocaeli University, Kocaeli, Turkey

Received: 23.01.2019 • Accepted/Published Online: 10.07.2019 • Final Version: 28.09.2019

Abstract: Recently, Lucas polynomials and other special polynomials gained importance in the field of geometric function theory. In this study, by connecting these polynomials, subordination, and the Al-Oboudi differential operator, we introduce a new class of bi-univalent functions and obtain coefficient estimates and Fejete–Szegö inequalities for this new class.

Key words: (P, Q)-Lucas polynomials, coefficient bounds, bi-univalent functions

1. Introduction
Let \(A \) denote the class of functions of the form

\[
u(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}\]

which are analytic in the open unit disk \(U = \{ z : |z| < 1 \} \), and let \(S = \{ u \in A : u \text{ is univalent in } U \} \).

The Koebe one-quarter theorem [3] states that the range of every function \(u \in S \) contains the disc of radius \(\{ w : |w| < \frac{1}{4} \} \). Thus, every such function \(u \in S \) has an inverse \(u^{-1} \), which satisfies

\[
u^{-1}(u(z)) = z \quad (z \in U)
\]

and

\[
u \left(u^{-1}(w) \right) = w \left(|w| < r_0(u) , \ r_0(u) \geq \frac{1}{4} \right),
\]

where

\[
u^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2 a_3 + a_4) w^4 + \cdots. \tag{2}\]

If both \(u \) and \(u^{-1} \) are univalent in \(U \), then a function \(u \in A \) is said to be bi-univalent in \(U \). We say that \(u \) is in the class \(\Sigma \) for such functions.

For analytic functions \(u \) and \(v \), \(u \) is said to be subordinate to \(v \), denoted

\[
u(z) \prec v(z), \tag{3}\]

*Correspondence: akgul@kocaeli.edu.tr
2010 AMS Mathematics Subject Classification: 30C45

This work is licensed under a Creative Commons Attribution 4.0 International License.
if there is an analytic function \(w \) such that \(w(0) = 0 \), \(|w(z)| < 1 \), and \(u(z) = v(w(z)) \).

For a function \(u(z) \in A \), Al-Oboudi [1] defined the following differential operator, named the Al-Oboudi differential operator:

\[
D_0^\delta u(z) = u(z),
\]

\[
D_1^\delta u(z) = (1 - \delta)u(z) + \delta u'(z) = D_\delta u(z), \delta \geq 0,
\]

\[
D_n^\delta u(z) = D_\delta (D_{\delta}^{n-1} u(z)), \quad n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\},
\]

If \(u \) is given by (1), then from (4) and (5) we see that

\[
D_n^\delta u(z) = z + \sum_{k=2}^{n} [1 + (k - 1) \delta]^n a_k z^k,
\]

with \(D_n^0 u(0) = 0 \). When \(\delta = 1 \), we get Salagean’s differential operator [9].

Definition 1 [6] Let \(P(x) \) and \(Q(x) \) be polynomials with real coefficients. The \((P, Q) \)-Lucas polynomials \(L_{P, Q, n}(x) \) are defined by the recurrence relation

\[
L_{P, Q, n}(x) = P(x)L_{P, Q, n-1}(x) + Q(x)L_{P, Q, n-2}(x) \quad (n \geq 2),
\]

from which the first few Lucas polynomials can be found as follows:

\[
L_{P, Q, 0}(x) = 2,
\]

\[
L_{P, Q, 1}(x) = P(x),
\]

\[
L_{P, Q, 2}(x) = P^2(x) + 2Q(x),
\]

\[
L_{P, Q, 3}(x) = P^3(x) + 3P(x)Q(x).
\]

Definition 2 [6] Let \(G_{\{L_n(x)\}}(z) \) be the generating function of the \((P, Q) \)-Lucas polynomial sequence \(L_{P, Q, n}(x) \). Then

\[
G_{\{L_n(x)\}}(z) = \sum_{n=0}^{\infty} L_{P, Q, n}(x) z^n = \frac{2 - P(x)z}{1 - P(x)z - Q(x)z^2}.
\]

2. The class \(Q^{\Sigma, \delta}(\zeta, n; x) \) and the Fekete–Szegö inequality

We begin this section by defining the class \(Q^{\Sigma, \delta}(\zeta, n; x) \) and by finding the estimates on the coefficients \(|a_2| \) and \(|a_3| \) for functions in this class.

Definition 3 The function \(u \) is said to be in the class \(Q^{\Sigma, \delta}(\zeta, n; x) \) if the following conditions are satisfied:

\[
(1 - \zeta) \frac{D_n^\delta u(z)}{z} + \zeta \left(D_n^\delta u(z) \right)' \prec G_{\{L_{P, Q, n}(x)\}}(z) - 1
\]

and
where the function \(D^\alpha \) is the Al-Oboudi differential operator and \(v = u^{-1} \) is given by (2).

Theorem 4 Let \(u \) given by (1) be in the class \(Q^{E,\delta}(\zeta, n; x) \). Then,

\[
|a_2| \leq \frac{|P(x)|}{\sqrt{|P(x)|}} \sqrt{\left\{(1 + 2\delta)^n (1 + 2\zeta) - (1 + \delta)^{2n} (1 + \zeta)^2 \right\} P^2(x) - 2(1 + \delta)^{2n} (1 + \zeta)^2 Q(x)} \tag{12}
\]

and

\[
|a_3| \leq \frac{P^2(x)}{(1 + \delta)^{2n} (1 + 2\zeta)} + \frac{|P(x)|}{(1 + 2\delta)^n (1 + 2\zeta)}. \tag{13}
\]

Proof Let \(u \in Q^{E,\delta}(\zeta, n; x) \). Then, from Definition 2, for some analytic functions \(\Omega, \Lambda \) such that \(\Omega(0) = \Lambda(0) = 0 \) and \(|\Omega(z)| < 1, |\Lambda(w)| < 1 \) for all \(z, w \in U \), we can write

\[
(1 - \zeta) \frac{D_\delta^\alpha u(z)}{z} + \zeta (D_\delta^\alpha u(z))' = G_{(L_D, Q, n)(x)}(\Omega(z)) - 1 \tag{14}
\]

and

\[
(1 - \zeta) \frac{D_\delta^\alpha v(w)}{w} + \zeta (D_\delta^\alpha v(w))' = G_{(L_D, Q, n)(x)}(\Lambda(w)) - 1, \tag{15}
\]

or equivalently

\[
(1 - \zeta) \frac{D_\delta^\alpha u(z)}{z} + \zeta (D_\delta^\alpha u(z))' = -1 + L_{D, Q, 0}(x) + L_{D, Q, 1}(x)\Omega(z) + L_{D, Q, 2}(x)\Omega^2(z) + \cdots \tag{16}
\]

and

\[
(1 - \zeta) \frac{D_\delta^\alpha v(w)}{w} + \zeta (D_\delta^\alpha v(w))' = -1 + L_{D, Q, 0}(x) + L_{D, Q, 1}(x)\Lambda(w) + L_{D, Q, 2}(x)\Lambda^2(w) + \cdots \tag{17}
\]

From equalities (16) and (17), we obtain that

\[
(1 - \zeta) \frac{D_\delta^\alpha u(z)}{z} + \zeta (D_\delta^\alpha u(z))' = 1 + L_{D, Q, 1}(x)l_1 z + \left[L_{D, Q, 1}(x)l_2 + L_{D, Q, 2}(x)l_1^2 \right] z^2 + \cdots \tag{18}
\]

and

\[
(1 - \zeta) \frac{D_\delta^\alpha v(w)}{w} + \zeta (D_\delta^\alpha v(w))' = 1 + L_{D, Q, 1}(x)r_1 w + \left[L_{D, Q, 1}(x)r_2 + L_{D, Q, 2}(x)r_1^2 \right] w^2 + \cdots \tag{19}
\]

It is already known that if for \(z, w \in U \),

\[
\Omega(z) = \sum_{i=1}^{n} l_iz^i < 1
\]

and

\[
\Lambda(w) = \sum_{i=1}^{n} r_iw^i < 1,
\]
then

$$\Omega(z) = |l_i| < 1$$

and

$$\Lambda(w) = |r_i| < 1$$

where $i \in \mathbb{N}$.

Thus, comparing the corresponding coefficients in (18) and (19), we get

\begin{align*}
(1 + \zeta)(1 + \delta)^n a_2 &= L_{P, Q, 1}(x) l_1, \quad (20) \\
(1 + 2\zeta)(1 + 2\delta)^n a_3 &= L_{P, Q, 1}(x) l_2 + L_{P, Q, 2}(x) l_1^2, \quad (21) \\
-(1 + \zeta)(1 + \delta)^n a_2 &= L_{P, Q, 1}(x) r_1, \quad (22) \\
(1 + 2\zeta)(1 + 2\delta)^n (2a_2^2 - a_3) &= L_{P, Q, 1}(x) r_2 + L_{P, Q, 2}(x) r_1^2, \quad (23)
\end{align*}

From (20) and (22),

$$l_1 = -r_1, \quad (24)$$

\begin{align*}
2(1 + \zeta)^2 (1 + \delta)^{2n} a_2^2 &= L_{P, Q, 1}^2(x) (l_1^2 + r_1^2). \quad (25)
\end{align*}

Adding (21) and (23), we get

$$2(1 + 2\zeta)(1 + 2\delta)^n a_3^2 = L_{P, Q, 1}(x) (l_2 + r_2) + L_{P, Q, 2}(x) (l_1^2 + r_1^2). \quad (26)$$

By using (25) in (26), we have

$$2 \left[L_{P, Q, 1}^2(x)(1 + 2\zeta)(1 + 2\delta)^n - L_{P, Q, 2}(x)(1 + \zeta)^2(1 + \delta)^{2n} \right] a_2^2 = L_{P, Q, 1}^3(x) (l_2 + r_2), \quad (27)$$

which gives

$$|a_2| \leq \frac{|P(x)| \sqrt{|P(x)|}}{\sqrt{\left| \left((1 + 2\delta)^n (1 + 2\zeta) - (1 + \delta)^{2n} (1 + \zeta)^2 \right) \frac{P^2(x)}{2} - 2(1 + \delta)^{2n} (1 + \zeta)^2 Q(x) \right|}}.$$
2.1. Corollaries

For the special choices of parameters \(\delta, \zeta \), and \(n \) in Theorem 4, we obtain the following:

Corollary 5 Let \(u \in Q^{\Sigma,1}(\zeta, n; x) = Q^\Sigma(\zeta, n; x) \). Then,

\[
|a_2| \leq \frac{|P(x)| \sqrt{|P(x)|}}{\sqrt{\left\{ 3^n (1 + 2\zeta) - 2^{2n} (1 + \zeta)^2 \right\} P^2(x) - 2^{2n+1} (1 + \zeta)^2 Q(x)}} \tag{29}
\]

and

\[
|a_3| \leq \frac{P^2(x)}{2^{2n} (1 + \zeta)^2} + \frac{|P(x)|}{3^n (1 + 2\zeta)}. \tag{30}
\]

Corollary 6 Let \(u \in Q^{\Sigma,\delta}(\zeta, 0; x) = Q^{\Sigma,\delta}(\zeta; x) \). Then,

\[
|a_2| \leq \frac{|P(x)| \sqrt{|P(x)|}}{\sqrt{\zeta^2 P^2(x) + 2 (1 + \zeta)^2 Q(x)}} \tag{31}
\]

and

\[
|a_3| \leq \frac{P^2(x)}{(1 + \zeta)^2} + \frac{|P(x)|}{(1 + 2\zeta)}. \tag{32}
\]

Corollary 7 Let \(u \in Q^{\Sigma,\delta}(1, 0; x) = Q^{\Sigma,\delta}(x) \). Then,

\[
|a_2| \leq \frac{|P(x)| \sqrt{|P(x)|}}{\sqrt{|P^2(x) + 4Q(x)|}} \tag{33}
\]

\[
|a_3| \leq \frac{P^2(x)}{4} + \frac{|P(x)|}{3}. \tag{34}
\]

The next theorem gives us the Fekete–Szegö inequality:

Theorem 8 Let \(u \) given by (1) be in the class \(Q^{\Sigma,\delta}(\zeta, n; x) \). Then,

\[
|a_3 - \lambda a_2^2| \leq \begin{cases}
\frac{|P(x)|}{(1 + 2\zeta)(1 + 2\delta)^n}, & 0 \leq |t(\lambda; x)| < \frac{3}{2(1 + 2\zeta)(1 + 2\delta)^n}, \\
2 |P(x)| |t(\lambda; x)|, & |t(\lambda; x)| \geq \frac{3}{2(1 + 2\zeta)(1 + 2\delta)^n},
\end{cases} \tag{35}
\]

where

\[
t(\lambda; x) = \frac{(1 - \lambda) L_{P,Q,1}(x)}{2 \left[L_{P,Q,1}(x)(1 + 2\zeta)(1 + 2\delta)^n - L_{P,Q,3}(x)(1 + \zeta)^2 (1 + \delta)^{2n} \right]}.
\]

Proof From equations (27) and (28), we get

2174
By using equalities in (9), we complete the proof.

Corollary 9 Let $u \in Q^{\Sigma_1}(\zeta, n; x) = Q^{\Sigma}(\zeta, n; x)$ and $\lambda \in R$. Then,

$$|a_3 - \lambda a_2^2| \leq \left\{ \begin{array}{ll} \frac{|P(x)|}{2|P(x)||t(\lambda; x)|} & , \quad 0 \leq |t(\lambda; x)| < \frac{1}{2(1+2\zeta)n^2}, \\ \frac{1}{2(1+2\zeta)n^2} & , \quad |t(\lambda; x)| \geq \frac{1}{2(1+2\zeta)}, \end{array} \right.$$ \hspace{1cm} (36)

where

$$t(\lambda; x) = \frac{(1 - \lambda) L^2_{P,Q_1}(x)}{2 L^2_{P,Q_1}(x)(1 + 2\zeta)(1 + 2\delta)} - L_{P,Q_1}(x)(l_2 - r_2).$$

Corollary 10 Let $u \in mathcal{Q}^{\Sigma,\delta}(\zeta, 0; x) = Q^{\Sigma,\delta}(\zeta; x)$ and $\lambda \in R$. Then,

$$|a_3 - \lambda a_2^2| \leq \left\{ \begin{array}{ll} \frac{|P(x)|}{2|P(x)||t(\lambda; x)|} & , \quad 0 \leq |t(\lambda; x)| < \frac{1}{2(1+2\zeta)}, \\ \frac{1}{2(1+2\zeta)} & , \quad |t(\lambda; x)| \geq \frac{1}{2(1+2\zeta)} \end{array} \right.$$ \hspace{1cm} (37)

where

$$t(\lambda; x) = \frac{(1 - \lambda) L^2_{P,Q_1}(x)}{2 L^2_{P,Q_1}(x)(1 + 2\zeta) - L_{P,Q_2}(x)(1 + \zeta)^2 2^{2n}}.$$ \hspace{1cm} (38)

Corollary 11 Let $u \in Q^{\Sigma,\delta}(1, 0; x) = Q^{\Sigma,\delta}(x)$ and $\lambda \in R$. Then,

$$|a_3 - \lambda a_2^2| \leq \left\{ \begin{array}{ll} \frac{|P(x)|}{2|P(x)||t(\lambda; x)|} & , \quad 0 \leq |t(\lambda; x)| < \frac{1}{6}, \\ \frac{1}{6} & , \quad |t(\lambda; x)| \geq \frac{1}{6}, \end{array} \right.$$ \hspace{1cm} (39)

where

$$t(\lambda; x) = \frac{(1 - \lambda) L^2_{P,Q_1}(x)}{2 [3 L^2_{P,Q_1}(x) - 4 L_{P,Q_2}(x)].}$$ \hspace{1cm} (40)

Choosing $\lambda = 1$ in Theorem 8, we have the following corollaries:
Corollary 12 Let \(u \in Q^{\Sigma,1}(\zeta, n; x) = Q^{\Sigma}(\zeta, n; x) \). Then,
\[
|a_3 - a_2^2| \leq \frac{|P(x)|}{(1 + 2\zeta)^3n}.
\]
(39)

Corollary 13 Let \(u \in Q^{\Sigma,\delta}(\zeta, 0; x) = Q^{\Sigma,\delta}(\zeta; x) \). Then,
\[
|a_3 - a_2^2| \leq \frac{|P(x)|}{(1 + 2\zeta)}.
\]
(40)

Corollary 14 Let \(u \in Q^{\Sigma,\delta}(1, 0; x) = Q^{\Sigma,\delta}(x) \). Then,
\[
|a_3 - a_2^2| \leq \frac{|P(x)|}{3}
\]
(41)

References

[1] Al-Oboudi FM. On univalent functions defined by a generalized Sălăgean operator. International Journal of Mathematics and Mathematical Science 2004 (27): 1429-1436.

[2] Altınkaya Ş, Yalçın S. On the \((p, q)\)-Lucas polynomial coefficient bounds of the bi-univalent function class. Boletín de la Sociedad Matemática Mexicana 2019: 1-9.

[3] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften. New York, NY, USA: Springer, 1983.

[4] Filipponi P, Horadam AF. Derivative sequences of Fibonacci and Lucas polynomials. In: Bergum, GE, Philippou AN, Horadam AF (editors). Applications of Fibonacci Numbers, Vol. 4. Dordrecht, the Netherlands: Kluwer Academic Publishers; 1991, pp. 99-108.

[5] Filipponi P, Horadam AF. Second derivative sequences of Fibonacci and Lucas polynomials. Fibonacci Quarterly 1993; 31 (3): 194-204.

[6] Lee G, Asci M. Some properties of the \((p, q)\)-Fibonacci and \((p, q)\)-Lucas polynomials. Journal of Applied Mathematics 2012; 2012: 264842.

[7] Lewin M. On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society 1967; 18 (1): 63-68.

[8] Lupas A. A guide of Fibonacci and Lucas polynomials. Octagon Mathematics Magazine 1999; 7 (1): 2-12.

[9] Salagean GS. Subclasses of univalent functions. In: Cazacu CA, Boboc N, Jurchescu M, Suciu I (editors). Complex Analysis—Fifth Romanian-Finnish Seminar. Berlin, Heidelberg: Springer, 1983, pp. 363-372.