Engineering Academics' Strategies of Teaching Mathematical Modelling in Antenna Theory and Design

Vojo George Fasinu1,*, Nadaraj Govender1, Pradeep Kumar2

1School of Education, University of KwaZulu-Natal, South Africa
2School of Engineering, University of KwaZulu-Natal, South Africa

Received July 25, 2021; Revised September 6, 2021; Accepted October 17, 2021

Abstract The poor performance of electronics engineering students in modelling their mathematical concepts when learning a practical antenna theory & design course is of concern. Despite the fact that these future engineers have been taught major aspects of prerequisite mathematics, some still find it difficult to interpret and incorporate it in an antenna theory & design course. Possible reasons that contribute to conceptual difficulties have been traced to their inability to model and blend mathematical theories, concepts with systems' applications, and also to the disjointedness and lack of explicit teaching and learning approaches implemented in some universities. In this regard, the study takes its point of departure that the modelling of mathematical theories and concepts with clear strategies still remain an important area for engineering educational research and implementation of updated pedagogy. This study critiques the current teaching strategies and competencies of mathematical modelling in an electronics engineering department. It focuses on how engineering academics teach mathematical modelling in prerequisite mathematical courses related to an antenna theory & design course. The significant result of the study is a contextual and practical pedagogical mathematical model which can be implemented in teaching and learning antenna theory & design courses.

Keywords Mathematical Modelling (MM), Antenna Theory & Design, Didactical-Realistic Model, Teaching and Learning, Mathematical Concepts

1. Introduction

Mathematical Modelling in an engineering context is the usage of mathematical concepts in a real-life context, and this could be achieved by applying mathematics in a modelling form [1]. The limited understanding of mathematical concepts and choosing appropriate mathematical modelling (MM) strategies in applying mathematical concepts to industrial applications does impact the productivity of engineering practices. One of the reasons for this is due to the mixed understanding of the meaning of MM in an engineering teaching and learning context. An observation by one of the researchers notes that when teaching or modelling mathematics together with engineering related topics, mathematics is often considered as a separate subject and not viewed as an applicable and necessary tool in engineering real problem-solving. On this
note, it is advised that when teaching mathematics in the
discipline of electronics/electrical engineering, the
strategies of teaching should be in line with the required
knowledge needed in the main electronics industry [2,3]. It
is therefore anticipated that mathematicians teaching
electronics engineering students should also
simultaneously connect and focus on the industrial
applications. Academics who are cognizant of this
connection will then ensure that their students will be
applying their taught mathematical aspects during their
practical operations in industries when they become
engineers in a seeming less manner [4]. However, the
present teaching approaches in our universities centre
mostly on the theoretical modelling of mathematical
concepts rather independently of modelling as required in
the industry. As a result of this, a chasm has been created
between the practical requirements of industry and the
theoretical approach by universities - the likely means by
which this gap could be bridged is by introducing a
relevant approach of teaching MM in the electronics
engineering courses [2]. This idea implies that when
teaching mathematics in the department of electronics
engineering, mathematicians and engineers should work
and plan jointly. It is unfortunate that they do work in
independent silos as observed by the researchers, and this
has affected students’ abilities to appropriately model their
mathematical knowledge in engineering applications [5,6].
In supporting this argument, a study shows that graduating
engineers should be able to demonstrate sound abilities to
solve engineering problems, like system design through
creative and innovative thinking, possessing abilities to
model the mathematical into scientific and technological
systems and instruments, execute abilities of analyses and
interpretation of mathematical data and during the process
of design, and maintain a sound theoretical approach when
introducing new technology [2]. A supporting view is
expressed by [7] who lamented that:

“Attention is diverted away from the physical behaviour
of the system and concentrated on the details of the
mathematics. Mathematics then becomes a goal in itself
and it is easy to forget or ignore the often quite fragile
links that were originally set up between the system and
its mathematical model. As a result, there can easily be
confusion between those results and procedures which
relate primarily to the mathematical structure of the
model and those which may be interpreted (with care) in
terms of the behaviour of the system” (p. 6).

As a result of the above problem, some electronics
engineering academics teaching prerequisite mathematics
with mathematics concepts related to antenna theory &
design courses find it difficult to change the students’
orientation of the appropriate strategies required for
practical engineering and it’s not easy for universities to
find lecturers with dual skills in both fields. Therefore,
considering the challenges as observed from engineering
academics and coupled with the literature, an appropriate
MM approach for a university was conducted. In achieving
this, the study was guided by the research question stated as
follows:

RQ How do engineering academics teach mathematical
modelling in prerequisite mathematical courses related
to an antenna theory and design course?

For further exposure on the state of MM in the
department of engineering, the next section discusses the
views of the literature on strategies of MM and concepts
and theories as required in prerequisite mathematics.

1.1. Modelling Mathematical Strategies and
Competencies among Electronics Engineering
Academics

Mathematical Modelling (MM) is regarded as a process
of blending mathematical theory together with its
application and has been a phenomenon of significant
impact in the field of mathematics and engineering.
However, some engineering academics and students still
lack the relevant approaches to follow when modelling it in
practical ways. It therefore becomes necessary for the
department of electronics engineering to include the
method of modelling mathematical concepts explicitly into
their teaching and learning [2]. For clarity, the disjunction
is not that electronics engineering experts do not use
mathematics concepts but the process of teaching and
modelling mathematics by the mathematician is different
from that of the way electronics engineering academics and
students apply their mathematics concepts [7,8]. In view of
this, [2] suggested that a; “training process of such a
professional must take into account an appropriate
balance between mathematics, modelling activities
coupled with another discipline such as statistics or
physics with aim to develop knowledge, understanding the
experience of the theory, practice and application of the
selected mathematics” (p.197). The ability to apply a
professional judgement in mathematics and engineering in
order to balance safety and quality, as well as the ability to
manage engineering practices applying practical skills of
mathematics cannot be overemphasised [2]. Since, the aim
of engineering education is to apply mathematics concepts
in a practical way when building some engineering
equipment, therefore, incorporating a good mathematical
modelling approach into the engineering curriculum will
go a long way in increasing professional ideas in antenna
theory & design. In achieving this, [9] suggests that a good
work place practice among the electronics engineer experts
could be attained by adopting some technical skills, and
these include: formulation and analysis of mathematical
type, and innovative and creative mind when resolving
engineering problems. Also, personal characteristics such
as having a self-motivated character, possessing an
independent mind, applying their knowledge and
understanding the engineering practices as appropriate
human and psychological skills necessary when teaching
MM. Furthermore, some researchers assume that when modelling mathematics together with electronics engineering related courses, in particular, prerequisite mathematics courses, adopting these pedagogical strategies remain non-negotiable. These strategies include: creating the new mathematical model, selecting and adapting the accepted mathematical model, adopting situation-specific methods and procedures in solving mathematical problems and critiquing and analysis of the problem. These approaches will go a long way in assisting the engineers when modelling their mathematical concepts in prerequisite mathematical courses related to an antenna theory & design course [10].

Similarly, [8] and [11] suggest that engineering academics should adopt some modelling skills when teaching MM in prerequisite mathematical courses. These include the descriptive ability of the modelling process, choosing the physical systems to be described, deciding on the appropriate mathematical structure to be used, adopting the translational rule and the relationship between the equations, and interpreting the modelled result. If these skills are integrated into teaching and learning, a successful mathematical modelling style may increase the competency of the future engineers.

It is common knowledge that engineering students still find it difficult to formulate the mathematical problems from the real world through the process of MM [12], and in improving their MM approaches, their competencies will be enhanced in the workplace. The poor MM pedagogy that still exists may be largely due to the academics’ limited knowledge on the process of mathematization when modelling mathematical concepts. Many electronics engineering graduates still claim that most of their mathematical knowledge gained in their universities was not directly relevant in their work place practice [7,13]. In seeking a solution to this problem, [14] sees competency as an important process which helps students in structuring real world problems early at university and working with the intention of suggesting possible solutions to the engineering problem. In view of this, the following approaches and skills of MM concepts remain important. These are: formulating skills, problem solving skills which help in manipulation, interpretation skill, analysis, and validating skills. Therefore, when integrating mathematical concepts into the learning of engineering related courses, these pedagogic MM models remain important to implement and evaluate for their effectiveness. The steps for MM include the physical description of the system, mathematical description of the system (solution model) and synthesising description of a system (system design) [7]. All these steps were further supported by [15] who proposes that during the modelling of mathematical concepts, a critical consideration of some modelling skills, such as, observational skill, modelling methods, mathematical knowledge structure and general knowledge structure among many others remain important. Following the above stated strategies and competencies, it is important to state that all engineering academics teaching prerequisite mathematical courses must possess these in order to move from being ordinary mathematical analysts to modellers - a professional attribute expected from practising engineers.

2. Theoretical Perspectives of the Study

The review of the existing theoretical frameworks guiding the teaching of mathematical modelling in engineering related courses confirms the existence of theories and models proposed for teaching and learning [3], [16], [17]. On this note, the didactical mathematical model was judged as being appropriate for interpreting the strategies adopted by the academics at the beginning of teaching the engineering students about the process of mathematical modelling in prerequisite mathematical concepts [14]. This model (didactical model), is a comprehensive representation of the mathematical modelling in a theoretical and empirical insight [16], [17], [18]. It is a model that helps the academics when moving from a transitional phase of modelling using different mathematical modelling styles as suggested below i) understanding the task, ii) simplifying or structuring the task, iii) mathematizing of the mathematical model, iv) working mathematically in resolving the given mathematical problem, v) interpreting of the result of the mathematical model, vi) validating of the final outcome of the mathematical result in a realistic way [18]. While another model reported by Gallegos, Blomhøj and others [16,20] and [1,21] explained some aspects of mathematical modelling for a physical system, which could be regarded as a realistic model, and it addresses the modelling of some mathematical concepts in a real-life situation. Therefore, MM in a realistic context was further described by Gallegos [16] as a model having three major domains; namely, the pseudo-concrete (imaginative representation of mathematical problems), physical modelling (practical modelling of mathematics in design) and mathematical domains (mathematical usage in real-life stage). All these deal with the integration of appropriate mathematical concepts in engineering context. But it is unfortunate to report that some engineering academics have shifted their focus from the modelling of mathematical concepts, as used by professional engineers, to giving more exclusive attention to the analytical part of mathematics which goes against the aim of the engineering profession [7]. It is on this note that Gómez-Tornero and others [22] suggested that during the teaching of an antenna theory & design course at theoretical stage, mathematical concepts should be adopted as a tool to link the student’s theoretical knowledge to the practical reality of the design. Accordingly, it is essential to use a realistic mathematical model for a real-life situation. In support of this, Blomhøj...
and others further stressed that engineering designers should possess adequate experience on realistic projects that make the use of mathematical modelling as a key tool [1,16]. Therefore, to illuminate this point, the proposed realistic model will go a long way in explaining the strategies of modelling mathematics among engineering academics. All these stages were used to validate this study by comparing the modelling approaches of teaching MM in prerequisite mathematics courses and (4.2) Summary on the strategies adopted by prerequisite mathematics academics.

4.1. Strategies of Modelling Mathematical Concepts in Prerequisite Mathematics Courses

Four strategies of teaching were discussed by the four academics and are summarised as follows, with snippets of evidence from the survey questionnaires and interviews.

i) Strategy one- Real-life Situational Step. This strategy reports that when teaching prerequisite mathematical concepts, the engineering academics teaching these courses always identify the nature of the mathematical problem to be used before applying those mathematical concepts to real-world situations. This was gathered from the view of the participants teaching the prerequisite mathematics courses when asked to explain how they model their mathematics concepts into their teaching. Gathering from the views of the participant, academic AC3 suggested that; “In order for the students to understand better it is good to first bring the problem into their understanding. Like if you want to model or use mathematics for scheduling or production, you first talk about what is happening in the industry first. You will just bring the process... because they want to work in industries, some of them are already there because their fathers are engineers and they are introducing them to those things already or they might have gone to work as volunteer workers in one industry or the other. Therefore, it is good to first bring to them what is happening, that will arouse their interest that is number one. Two, it opens their mind to what you want to do in mathematics. Then you will now bring mathematics in, by now saying that in order to get our solutions. But, first, you must arouse their interest by talking about what is happening in the industries and then linking up with the mathematics. You must first start with the real-world problem or the situation of the real-world problem then come back to the mathematical problem again after you have gotten your solution. You can now say the solution you got X1, X2, X3……. it is only in mathematics that we know it as X1, X2 and X3 but in the real world it is called machine 1, machine 2 and machine 3. Then linking up the two together and going back to the mathematics in the real world helps a lot for them to understand modelling very
well” (AC3, interview). In addition to this, he wrote in his questionnaire that: I first teach the needed mathematical principles and then apply these principles to engineering problems. For example, Fourier series and Fourier transform have application to heat equation and Laplace equation which are engineering problems (AC3, questionnaire). From the views of the participant above, one could identify that when teaching prerequisite mathematical courses in engineering context, the academics teaching these courses adopts some mathematical modelling strategies. For academic AC3, these are: First he teaches the principles behind the concept of mathematical concepts, after which he then applies those principles with real life problems. He then identifies the needed mathematical concepts in an industrial context. These steps corroborate with [9] who reaffirms that when teaching mathematical modelling in prerequisite mathematics courses, academics should be able to teach the students abilities to analyse the essential mathematical formulas, apply those formulae and link them with their engineering practice. If they follow this strategy then it will assist the students to greatly improve their mathematics modelling competency as expected in their engineering courses.

ii) Strategy two – Teach maths first then applications. The strategy identifies that when teaching prerequisite mathematical courses among engineering students, a traditional style of teaching mathematics should come first before applying the mathematics principles to real world engineering problems. In view of this, AC1 commented that: “I teach with maths first, then application to real life” (AC1, questionnaire). While another AC3 commented that: “I first teach the needed mathematical principles, and then apply these principles to engineering problems. For example, Fourier series and Fourier transform have an application to heat equation and Laplace equation which are engineering problems” (AC3, interview). Similarly, AC4 reported that: “In mathematics modules, I think they [prerequisite mathematics academics] teach in general base. For example, if I talked about Laplace transformation, they will teach Laplace transform but when I have lectures with the engineering students, I will apply these concepts and then we teach the same mathematical concepts again with the application of the concepts and how they can apply that problem to a particular system to have the electrical details. Like Laplace transform, we use the value in communication system at each block, so we teach in application base” (AC4, interview). In addition to this, the view of the participants reports that the traditional style of teaching mathematics concepts was adopted by some academics in particular, during the teaching of prerequisite mathematical courses. Therefore, AC1 suggested that the teaching and the application of the mathematics concepts have been found to be efficient tools when modelling mathematical concepts in teaching prerequisite mathematical concepts and this is commonly done using the traditional teaching style in mathematics related courses. On the other hand, AC3 suggests that mathematical concepts are being taught while using the principle of real-life application contexts. From the second line of his view, one could argue that Fourier series is being applied when resolving some engineering issues, particularly when resolving engineering problems related to heat. This corroborates with [8], who suggest that some mathematical concepts that are relevant to electronics engineering students are being taught using some traditional teaching styles presented by the academics. The view of AC4 shows that the strategies adopted by the prerequisite mathematics academics when teaching the mathematical concepts were common to the mathematics academics, and this could be regarded as a general based mathematical teaching which does not give adequate room for a concrete and practical modelling approach to teaching and as expected by the engineering department. This goes in line with the view of [8] who reports that mathematics academics do not apply mathematical concepts in an engineering context but they just use calculations and teach the concept without any or little application.

iii) Strategy three – Select components then choose maths models. Some academics argue that the selection of components always goes before mathematical thinking when teaching mathematical modelling in prerequisite mathematical courses. This was found from the view of the academic AC1 who argued that, “Yes, always model some mathematics concepts during component selection and mathematical thinking” (AC1, interview). Similarly, academic AC3 also responded that: “Yes (Often) adopts mathematical thinking approach (AC3, interview). Following the views of these participants, it could be said that mathematical modelling is perceived as a process of blending mathematical concepts together in an industrial manner with component use and applications and is a strategy that could be classified as ongoing and integrated. Therefore, the acquisition of important and sequential steps in the process and approach should be encouraged in order for an expected better performance in engineering related problem-solving. Also, researchers support the view that when teaching antenna theory & design related courses, the modelling of mathematics concepts by the academics teaching prerequisite courses remains unavoidable and this has been an essential tool that aids the students understanding in engineering related courses and supporting lecturers to plan for teaching [11].

iv) Strategy four – Appropriate selection of maths concepts. This strategy reports that recognizing the appropriate mathematical concepts required at each stage of modelling mathematical concepts, when teaching some prerequisite mathematical courses remain important. The
strategy goes a long way in helping the scientists to update their understanding, and assist the students in improving their level of knowledge which is associated with the zone of proximal development of Vygotsky as suggested by Fani and others [26,27].

The view of the academic AC1 confirms that critical thinking skills in problem solving must be explicitly taught. Academic AC 1 suggests that, “during the teaching of engineering mathematics, mathematical applications and critical mathematical thinking are necessary skills to be developed” (AC1, interview). He further stressed that “it [the use of a particular strategy] depends on the problem we are working on, when we are working on a particular problem in industry then you need to know what kind of the mathematics you need to apply for this problem. Of course, an expert like a PhD holder or a lecturer knows immediately the type of mathematics to adopt. But a student might not know this, he must read a related problem to what he wants to do and then he will be able to seek out what type of mathematics that is needed. You come to know the needed mathematics by searching out the related problems to what you are doing so that you will be able to know the actual mathematics background that must be researched on in order to solve the practical problem you are doing” (AC1, interview). While academic (AC2) on her part reported that “critical mathematical thinking must be part of the process of learning and mathematical modelling all the time” (AC2, questionnaire). Similarly, AC3 responded that he does model critical thinking. For example, he states that “during engineering mathematics teaching, mathematics application and critical mathematical thinking” (AC3, interview). It seems from academic practice and views that mathematical modelling could be regarded as an efficient and useful tool that assists and directs academics during their planning, teaching, application and mathematical thinking. Reference [11] reaffirms that it is necessary skills to be developed.

From the data and analysis of the study, a model for teaching MM for antenna theory & design engineering, if not transformed may produce mathematicians in the department of engineering, which goes against the aim and goal of engineering departments.

The table below gives the strategies adopted by mathematicians teaching MM courses for antenna theory & design engineering.

Teaching Strategy	Example
i) Real-life Situational Step	Comparing math variables (X1, X2, X3) with machines variables (Y1, Y2, Y3)
ii) Teach maths first and then applications.	Teaching the calculus of number, differentiation and Fourier series, geometry and their application to real-life
iii) Select component and then choose maths models.	Identifying the appropriate math concepts to be used at a time
iv) Appropriate selection of maths concepts	Previous math knowledge acquired and applying them into a system design

From the data and analysis of the study, a model for teaching MM for antenna theory & design was constructed and also ideas drawn from various models were integrated as well. The diagram below displays a practical model for MM, followed by a brief explanation of each construct that was drawn from the current approach in teaching MM in antenna theory & design engineering course (see Figure 1).
Real-life Situational Step is the first step in teaching prerequisite mathematical concepts that are related to an antenna theory and design course. This section begins with posting of a real-life question which requires a sound mathematical understanding before any progressive step could be made. More so, in teaching the prerequisite maths, the academics teaching the course further adopted a mathematization step which allows the proper selection of the appropriate mathematical concepts which include equations, graphs, theories and other mathematical tools in bringing out the best solution to the mathematical problem [19]. Furthermore, the interpretation and validation of the real result step follow the process of mathematization - this gives room for proper interpretation of the calculated mathematical problem in an accurate manner in order to meet up with the expectation of a real-life situation. This is a difficult stage of teaching mathematical modelling, due to the high demand of cognitive thinking and mathematical manipulation required for different levels of problem solving [3,16]. In addition to this, another important step is the mathematical analysis, which relates to the practical aspect of MM as related prerequisite mathematics essential to an antenna theory is selected for the design and helps the engineering academics in analysing the different variables that are involved in the teaching and learning process. This step is done using a realistic teaching approach as found common in engineering design [3,16]. In addition to this, the simulation steps help the academics to validate the mathematical variable using different mathematical programs and software, and this is done for the purpose of accuracy and efficiency, and some of these used are excel spreadsheet, MATLAB and vector network analyser among many others [3], [20], [21]. Lastly, the prototype step helps in teaching the actual mathematical tools adopted in explaining the actual mathematical problem in a real-life situation. All these steps eventually generate a didactical-realistic model with minor modifications and use the available data from the study in generating a practical pedagogic mathematical model for teaching antenna theory & design (PPMM). This model caters to mathematical modelling among engineering academics teaching the prerequisite mathematical concepts that are related to antenna theory & design courses. This is due to the integration of the traditional teaching style and the realistic teaching approach.

5. Conclusions

The results of the study on the engineering academics’ strategies of teaching mathematical modelling in prerequisite mathematics courses related to antenna theory and design course indicate that the engineering academics adopt some major strategies when teaching mathematical modelling. The summary of the strategies adopted as stated by the academic includes; bringing in the theoretical mathematics problems and linking them up with the industrial requirements, a comparison and analysis of mathematical variables used in industrial
machines, linking mathematics variables together with industry ideas, and a description of the mathematical variables adopted during in calculations. In addition to these, it was also confirmed that the formulation of relevant equations from the variables in order to explain the mathematical modelling from some numerical values, modelling mathematics knowledge in real life situations, bringing the problem into the understanding of the students background knowledge and describing the mathematical situations in a real life industrial manner were significant steps. In addition, strategies of application of whole concepts of theoretical mathematics using a didactical-practical teaching method and teaching simultaneously with applications of engineering principles can be adopted when modelling prerequisite mathematical courses. All these strategies are helpful to electronics engineering academics teaching prerequisite mathematical courses related to antenna theory & design courses.

REFERENCES

[1] Blomhoj M. “Different perspectives in research on the teaching and learning mathematical modelling,” Mathematical Applications and Modelling in the Teaching and Learning of Mathematics, Proceedings from Topic Study Group 21 at the 11th International Congress on Mathematical education in Monterrey, Mexico, July 6-13, 2009, pp. 1-17.

[2] Palmer M. A., Amat S., Busquier P. Romero, J. Tejada. "Mathematics for engineering and engineering for mathematics," in Educational Interfaces between Mathematics and Industry, Springer, 2013, pp. 185-198.

[3] Soliman H. Y. "Methodology of Teaching and Learning Antenna Theory at Port Said University," in 2019 IEEE Global Engineering Education Conference (EDUCON), 2019, pp. 453-457.

[4] Houston K., Galbraith P., G. Kaiser. ICTMA: “The International Community of Teachers of Mathematical Modelling and Applications—The first twenty-five year,” in The first century of the International Commission on Mathematical Instruction (1908–2008), 2007.

[5] Kaiser G., B. Schwarz. "Mathematical modelling as bridge between school and university," ZDM, vol. 38, pp. 196-208, 2006.

[6] Jacobs C. "Transgressing disciplinary boundaries: constructing alternate academic identities through collaboration with ‘the other,’” African Journal of Research in Mathematics, Science and Technology Education, vol. 14, pp. 110-120, 2010.

[7] Bissell C., C. Dillon. "Telling tales: models, stories and meanings," For the Learning of Mathematics, vol. 20, pp. 3-11, 2000.

[8] Redish E. F., E. Kuo. "Language of physics, language of math: Disciplinary culture and dynamic epistemology," Science & Education, vol. 24, pp. 561-590, 2005.

[9] Alpers B. "Studies on the mathematical expertise of mechanical engineers," Journal of Mathematical Modelling and Application, vol. 1, no. 3, pp. 2-17, 2011.

[10] Alpers B. A., Demlova M., Fant C. H., Gustafsson T., Lawson D., L. Mustoe, Olsen-Lehtonen B., Robinson C., D. Velichova. "A framework for mathematics curricula in engineering education: a report of the mathematics working group," Loughborough University, 2013.

[11] Redish E. F., K. A. Smith. "Looking beyond content: Skill development for engineers," Journal of Engineering Education, vol. 97, pp. 295-307, 2008.

[12] Chan E. C. M., Ng D. K. E, Widjaja W., C. Seto. "Assessment of primary 5 students’ mathematical modelling competencies" Journal on Science and Mathematics Education, vol. 35, no. 2, pp. 146–178, 2012.

[13] Fasinu V. G. "Undergraduate Electronics Engineering Students’ Strategies of Integrating their Mathematical Ideas into their Learning of Physical Electronics," Master’s Thesis, University of KwaZulu-Natal, South Africa, 2018.

[14] Maaß K. "What are modelling competencies?" ZDM, vol. 38, no. 2, 113-142, 2006.

[15] Tuminaro J. "A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics," Doctoral dissertation, University of Maryland, USA, 2004.

[16] Gallegos R R. "Differential equations as a tool for mathematical modelling in physics and mathematics courses—A study of high school textbooks and the modelling processes of senior high students," Mathematical Applications and Modelling in the Teaching and Learning of Mathematics, Proceedings from Topic Study Group 21 at the 11th International Congress on Mathematical education in Monterrey, Mexico, July 6-13, 2009, pp. 19-34.

[17] Ferri R. B. “Theoretical and empirical differentiations of phases in the modelling process,” ZDM, 38(2), 86-95, 2006.

[18] Xiao X., Xu, H., S. Xu. “Using IBM SPSS modeler to improve undergraduate mathematical modelling competence. Computer Applications in Engineering Education,” 23(4), 603-609, 2015.

[19] Van den Heuvel-Panhuizen M., P. Drijvers. "Realistic mathematics education," Encyclopedia of Mathematics Education, 525, 2014.

[20] Balanis C. A. "Antenna theory: Analysis and Design," Wiley & Sons, 2016.

[21] Honchell J, Miller A. “Antenna Design, Simulation, Fabrication and Test Tailored for Engineering Technology Students,” in Proceedings of the American Society for Engineering Education Annual Conference & Exposition, June 24, 2001, pp. 1-6.

[22] Gómez-Tornero J. L., Cañete-Rebenaque, D., Quesada-Pereira, F. D., A. Álvarez-Melcón. “Interactive Lab to Learn Radio Astronomy, Microwave & Antenna Engineering at the Technical University of Cartagena (Spain),” International Journal in Online Engineering, 7(1), 10-18, 2011.

[23] Baxter P., S. Jack. “Qualitative case study methodology:
Study design and implementation for novice researchers," The Qualitative Report, vol. 13, pp. 544-559, 2008.

[24] Cohen L., Manion L., K. Morrison. "Research Methods in Education," Routledge, 2017.

[25] Stake R. R. "Qualitative case studies," in Denzin N.K., Y. S. Lincoln (Eds.), The Sage handbook of Qualitative Research, Sage, 2005, pp. 443–466.

[26] Fani T., F. Ghaemi. “Implications of Vygotsky's zone of proximal development (ZPD) in teacher education: ZPTD and self-scaffolding,” Procedia-Social and Behavioral Sciences, Jan 1, 2011, pp. 1549-1554.

[27] Veresov N. “Zone of proximal development (ZPD): the hidden dimension. development, in Östern, A. & Heila-Ylikallio, R. (Eds.). Sprak som kultur – brytningar i tid och rum. – Language as culture – tensions in time and space,” Vasa, Vol. 1, pp. 13-30, 2004.