SEARCHING FOR FRACTAL STRUCTURES IN THE
UNIVERSAL STEENROD ALGEBRA AT ODD PRIMES

MAURIZIO BRUNETTI AND ADRIANA CIAMPHELLA

Abstract. Unlike the \(p = 2 \) case, the universal Steenrod Algebra \(\mathbb{Q}(p) \) at odd primes does not have a fractal structure that preserves the length of monomials. Nevertheless, when \(p \) is odd we detect inside \(\mathbb{Q}(p) \) two different families of nested subalgebras each isomorphic (as length-graded algebras) to the respective starting element of the sequence.

1. Introduction

Let \(p \) be any prime. The so-called universal Steenrod algebra \(\mathbb{Q}(p) \) is an \(\mathbb{F}_p \)-algebra extensively studied by the authors (see, for instance, \([2] - [12]\)). On its first appearance, it has been described as the algebra of cohomology operations in the category of \(H_\infty \)-ring spectra (see \([16]\)). Invariant-theoretic descriptions of \(\mathbb{Q}(p) \) can be found in \([11]\) and \([15]\). When \(p \) is an odd prime, the augmentation ideal of \(\mathbb{Q}(p) \)

\[
S_p = \{ z_{\epsilon,k} \mid (\epsilon, k) \in \{0, 1\} \times \mathbb{Z} \}
\]

subject to the set of relations

\[
R_p = \{ R(\epsilon, k, n), S(\epsilon, k, n) \mid (\epsilon, k, n) \in \{0, 1\} \times \mathbb{Z} \times \mathbb{N}_0 \},
\]

where

\[
R(\epsilon, k, n) = z_{\epsilon, pk-1-n} z_{0,k} + \sum_j (-1)^j \binom{(p-1)(n-j)-1}{j} z_{\epsilon, pk-1-j} z_{0,k-n+j},
\]

and

\[
S(\epsilon, k, n) = z_{\epsilon, pk-n} z_{1,k} + \sum_j (-1)^j \binom{(p-1)(n-j)-1}{j} z_{\epsilon, pk-j} z_{1,k-n+j}
\]

\[
+ (1-\epsilon) \sum_j (-1)^j \binom{(p-1)(n-j)}{j} z_{1,pk-j} z_{0,k-n+j}.
\]

Such relations are known as generalized Adem relations.

The algebra \(\mathbb{Q}(p) \) is related to many Steenrod-like operations. For instance to those acting on the cohomology of a graded cocommutative Hopf algebra \((6, 13)\), or the Dyer-Lashof operations on the homology of infinite loop spaces \((11\) and \(17)\). Details of such connections, at least for \(p = 2 \), can be found in \([5]\). In particular, the

\[\text{2010 Mathematics Subject Classification. 13A50, 55S10.}
\]

\[\text{Key words and phrases. Universal Steenrod Algebra, Cohomology operations.} \]
ordinary Steenrod algebra \(A(p) \) is a quotient of \(Q(p) \). At odd primes, the algebra epimorphism is determined by

\[
\zeta : z_{\epsilon,k} \mapsto \begin{cases}
\beta^s P^k & \text{if } k \geq 0, \\
0 & \text{otherwise.}
\end{cases}
\]

The kernel of the map \(\zeta \) turns out to be the principal ideal generated by \(z_{0,0} - 1 \).

All monic monomials in \(Q(p) \), with the exception of \(z_0 = 1 \) have the form

\[
z_I = z_{\epsilon_1,i_1} z_{\epsilon_2,i_2} \cdots z_{\epsilon_m,i_m},
\]

where the string \(I = (\epsilon_1,i_1; \epsilon_2,i_2; \ldots; \epsilon_m,i_m) \) is the label of the monomial \(z_I \). By length of a monomial \(z_I \) of type (1.6) we just mean the integer \(m \), while the length of any \(p \in \mathbb{F}_p \subset Q(p) \) is defined to be 0. Since Relations (1.3) and (1.4) are homogeneous with respect to length, the algebra \(Q(p) \) can be regarded as a graded object.

A monomial and its label are said to be admissible if \(i_j \geq p i_{j+1} + \epsilon_{j+1} \) for any \(j = 1,\ldots,m-1 \). We also consider \(z_0 = 1 \in \mathbb{F}_p \subset Q(p) \) admissible. The set \(\mathcal{B} \) of all monic admissible monomials forms an \(\mathbb{F}_p \)-linear basis for \(Q(p) \) (see (11)).

Through two different approaches, in [8] and [10] it has been shown that \(Q(2) \) has a fractal structure given by a sequence of nested subalgebras \(Q_s \), each isomorphic to \(Q \). The interest in searching for fractal structures inside algebras of (co-)homology operations initially arose in [13], where such structures were used as a tool to establish the nilpotence height of some elements in \(A(p) \). Results in the same vein are in [13].

Recently, in [7] the authors proved that no length-preserving strict monomorphisms turn out to exist in \(Q(p) \) when \(p \) is odd. Hence no descending chain of isomorphic subalgebras starting with \(Q(p) \) exists for \(p > 2 \). Results in [7] did not exclude the existence of fractal structures for proper subalgebras of \(Q(p) \). As a matter of fact, the subalgebras \(Q^0 \) and \(Q^1 \) generated by the \(z_{0,h} \)'s and the \(z_{1,k} \)'s respectively (together with 1) turn out to have self-similar shapes, as stated in our Theorem 1.1.

Theorem 1.1. Let \(p \) be any odd prime. For any \(\epsilon \in \{0,1\} \) there is a chain of nested subalgebras of \(Q(p) \)

\[
Q_0^\epsilon \supset Q_1^\epsilon \supset Q_2^\epsilon \supset \cdots \supset Q_s^\epsilon \supset Q_{s+1}^\epsilon \supset \cdots
\]

each isomorphic to \(Q_0^\epsilon = Q^\epsilon \) as length-graded algebras.

Theorem 1.1 relies on the existence of two suitable algebra monomorphisms

\[
\phi : Q^0 \longrightarrow Q^0 \quad \text{and} \quad \psi : Q^1 \longrightarrow Q^1.
\]

Indeed, we just set \(Q^\epsilon = \phi^s(Q^0) \) and \(Q_s^\epsilon = \phi^s(Q^1) \), the restrictions \(\phi |_{Q^\epsilon} \) and \(\psi |_{Q_s^\epsilon} \) being the desired isomorphism between \(Q_s^\epsilon \) and \(Q_{s+1}^\epsilon \) (\(\epsilon \in \{0,1\} \)).

For sake of completeness we point out that the algebra \(Q(p) \) can also be filtered by the internal degree of its elements, defined on monomials as follows:

\[
|z_I| = \sum h(2i_h(p-1) + \epsilon_{i_h}), \quad \text{if } I = (\epsilon_1,i_1; \epsilon_2,i_2; \ldots; \epsilon_m,i_m)
\]

\[
0 \quad \text{if } I = \emptyset.
\]

In spite of its geometric importance, the internal degree will not play any role here.
2. A FIRST DESCENDING CHAIN OF SUBALGEBRAS

We first need to establish some congruential identities. Let \(\mathbb{N}_0 \) denote the set of all non-negative integers. Fixed any prime \(p \), we write
\[
(2.1) \quad \sum_{i \geq 0} \gamma_i(m) p^i \quad (0 \leq \gamma_i(m) < p)
\]
to denote the \(p \)-adic expansion of a fixed \(m \in \mathbb{N}_0 \). The following well-known Lemma is a standard device to compute mod \(p \) binomial coefficients.

Lemma 2.1 (Lucas’ Theorem). For any \((a, b) \in \mathbb{N}_0 \times \mathbb{N}_0 \), the following congruential identity holds.
\[
(2.2) \quad \binom{a}{b} \equiv \prod_{i \geq 0} \binom{\gamma_i(a)}{\gamma_i(b)} \pmod{p}.
\]

Proof. See [13, p. 260] or [19, I 2.6]. Equation (2.2) follows the usual conventions: \(\binom{0}{0} = 1 \), and \(\binom{i}{0} = 0 \) if \(0 \leq l < r \).

Congruence (2.2) immediately yields
\[
(2.3) \quad \binom{p^r a}{p^r b} \equiv \frac{a}{b} \pmod{p} \quad \text{for every } r \geq 0,
\]
since, in both cases, we find on the right side of (2.2) the same products of binomial coefficients, apart from \(r \) extra factors all equal to \(\binom{0}{0} = 1 \).

Corollary 2.2. For any \((\ell, t, h) \in \mathbb{N}_0 \times \mathbb{N}_0 \times \{1, \ldots, p\} \), the following congruential identity holds.
\[
(2.4) \quad \binom{p^t \ell - h}{pt} \equiv \binom{\ell - 1}{t} \pmod{p}.
\]

Proof. Since \(p^t \ell - h = (p - h) + p(\ell - 1) \), we have \(\gamma_0(p^t \ell - h) = p - h \). Note also that \(\gamma_0(pt) = 0 \). According to Lemma 2.1, we get
\[
(2.5) \quad \binom{p^t \ell - h}{pt} \equiv \binom{p - h}{0} \frac{\rho(\ell - 1)}{pt} \pmod{p}.
\]
We now use Congruence 2.3 for \(r = 1 \), and the fact that \(\binom{k}{0} = 1 \) for all \(k \in \mathbb{N}_0 \).

In order to make notation less cumbersome, we set
\[
(2.6) \quad A(k, j) = \binom{(p - 1)(k - j) - 1}{j}.
\]

Corollary 2.3. Let \((n, j)\) a couple of positive integers. Whenever \(j \not\equiv 0 \pmod{p} \), the binomial coefficient \(A(pn, j) \) is divisible by \(p \).

Proof. If a fixed positive integer \(j \) is not divisible by \(p \), then there exists a unique couple \((l, h) \in \mathbb{N} \times \{1, \ldots, p - 1\}\) such that \(j = pl - h \). Hence, setting
\[
T = (p - 1)(n - l) + h - 1,
\]
we get
\[
(2.7) \quad A(pn, j) = \binom{(p - h - 1) + pT}{(p - h) + p(l - 1)} \equiv \binom{p - h - 1}{p - h} \frac{T}{\ell - 1} \pmod{p}
\]
by Lemma 2.1 and Equation 2.3. Since \(p - h - 1 < p - h \), the first factor on the right side of Equation (2.7) is zero, so the result follows. \(\square\)
Lemma 2.4. Let \((s,n,j)\) a triple of positive integers. Whenever \(j \not\equiv 0 \pmod{p^s}\), the binomial coefficient \(A(p^s n,j)\) is divisible by \(p\).

Proof. We proceed by induction on \(s\). The \(s = 1\) case is essentially Corollary 2.3. Suppose now \(s > 1\). The hypothesis on \(j\) is equivalent to the existence of a suitable \((b,i) \in \mathbb{N} \times \{1, \ldots, p^s - 1\}\) such that \(j = p^s b - i\). Likewise, we can write \(i = pl - r\), for a certain \((l,r) \in \{1, \ldots, p^{s-2}\} \times \{0, \ldots, p-1\}\).

We now distinguish two cases. If \(r = 0\), the binomial coefficient \(A(p^s n,j)\) has the form \(\binom{n-l}{p^s p^l r}\) where

\[
\ell = (p-1)(p^{s-1}n - p^{s-1}b) + h, \quad h = 1, \quad \text{and} \quad t = p^{s-1}b - l.
\]

By Corollary 2.2 we get

\[
A(p^s n,j) \equiv A(p^{s-1} n, p^{s-1} b - l) \pmod{p},
\]

and the latter is divisible by \(p\) by the inductive hypothesis.

Assume now \(1 \leq r \leq p-1\). In this case,

\[
A(p^s n,j) = \binom{r-1 + pT'}{r + p(p^{s-1} b - l)}
\]

where \(T' = (p-1)(p^{s-1} n - p^{s-1} b + l) - r\). Therefore, by Lemma 2.4 we get

\[
A(p^s n,j) \equiv \binom{r-1}{r} \cdot \binom{T'}{p^{s-1} b - l} \pmod{p}.
\]

The right side of Equation 2.9 vanishes, since \(r-1 < r\), and the proof is over. \(\square\)

Lemmas and Corollaries proved so far will be helpful to reduce, in some particular cases, the number of potentially non-zero binomial coefficients in (1.3) and in (1.4). For instance, for any \((h,n) \in \mathbb{Z} \times \mathbb{N}_0\), relations of type \(R(\epsilon, p^s h - \alpha_s, p^s n)\), where

\[
\alpha_s = \frac{p^s - 1}{p-1} \quad (s \geq 1),
\]

only involve generators in the set

\[
T_{(\epsilon,s)} = \{z_{\epsilon, p^s m - \alpha_s} | m \in \mathbb{Z}\}
\]

as stated in the following Proposition.

Proposition 2.5. Let \((\epsilon, k, n, s)\) a fixed 4-tuple in \(\{0,1\} \times \mathbb{Z} \times \mathbb{N}_0 \times \mathbb{N}\). The polynomial \(R(\epsilon, p^s k - \alpha_s, p^s n)\) in (1.3) is actually equal to

\[
z_{\epsilon, p^s (pk-1-n) - \alpha_s} \cdot z_{0, p^s k - \alpha_s} \cdot \sum_j (-1)^j A(n,j) z_{\epsilon, p^s (pk-1-j) - \alpha_s} \cdot z_{0, p^s (k-n+j) - \alpha_s}.
\]

Proof. By definition (see (1.3)), \(R(\epsilon, p^s k - \alpha_s, p^s n)\) is equal to

\[
z_{\epsilon, p^s (pk-\alpha_s) - 1 - p^s n} \cdot z_{0, p^s k - \alpha_s} \cdot \sum_l (-1)^l A(p^s n, l) z_{\epsilon, p^s (pk-\alpha_s) - 1 - l} \cdot z_{0, p^s k - \alpha_s} \cdot \cdot p^s n + l}.
\]

According to Lemma 2.4, the only possible non-zero coefficients in the sum above occur when \(l \equiv 0 \pmod{p^s}\). Thus, we set \(l = p^s j\) and write \(R(\epsilon, p^s k - \alpha_s, p^s n)\) as

\[
z_{\epsilon, p^s (pk-\alpha_s) - 1 - p^s n} \cdot z_{0, p^s k - \alpha_s} \cdot \sum_j (-1)^{p^s j} A(p^s n, p^s j) z_{\epsilon, p^s (pk-\alpha_s) - 1 - p^s j} \cdot z_{0, p^s k - \alpha_s} \cdot \cdot p^s n + p^s j}.
\]

In such polynomial we can replace \(z_{\epsilon, p^s (pk-\alpha_s) - 1 - p^s n}\) and \(z_{\epsilon, p^s (pk-\alpha_s) - 1 - p^s j}\) by

\[
z_{\epsilon, p^s (pk-1-n) - \alpha_s} \quad \text{and} \quad z_{\epsilon, p^s (pk-1-j) - \alpha_s}.
\]
respectively, since \(p\alpha_s + 1 = p^s + \alpha_s \). Finally, applying Equation (2.3) as many times as necessary, and recalling that we are supposing \(p \) odd, we get
\[
(2.11) \quad (-1)^{p^s \cdot j} A(p^s n, p^s j) \equiv (-1)^j A(n, j) \pmod{p}.
\]

As a consequence of Proposition 2.6, the admissible expression of any non-admissible monomial with label \((\epsilon, p^s h_1 - \alpha_s; 0, p^s h_2 - \alpha_s; \ldots; 0, p^s h_m - \alpha_s)\) involves only generators in \(T_{(s, \alpha)} \).

That’s the reason why, for any non-negative integer \(s \), there is a well-defined \(\mathbb{F}_p \)-algebra \(Q_0^s \) generated by the set \(\{1\} \cup T_{(0, s)} \) and subject to relations
\[
R(0, p^s h - \alpha_s, p^s n) = 0 \quad \forall n \in \mathbb{N}_0.
\]

Thus \(Q_0^0 \) and \(Q_0^1 \) are the subalgebras of \(Q(p) \) generated by the sets
\[
\{1\} \cup \{z_{0, h} \mid h \in \mathbb{Z}\} \quad \text{and} \quad \{1\} \cup \{z_{0, ph-1} \mid h \in \mathbb{Z}\}
\]
respectively. The former has been simply denoted by \(Q^0 \) in Section 1. The arithmetic identity
\[
(2.12) \quad p^{s+1} h - \alpha_{s+1} = p^s (ph - 1) - \alpha_s,
\]
implies that \(Q_s^0 \subset Q_{s+1}^0 \).

Lemma 2.6. A monomial of type
\[
(2.13) \quad z_I = z_{c, p^s h_1 - \alpha_s} z_{0, p^s h_2 - \alpha_s} \cdots z_{0, p^s h_m - \alpha_s}
\]
is admissible if and only if \(h_i \geq ph_i + 1 \) for any \(i = 1, \ldots, m - 1 \).

Proof. Admissibility for a monomial of type (2.13) is tantamount to the condition
\[
p^s h_i - \alpha_s \geq p(p^s h_{i+1} - \alpha_s) \quad \forall i \in \{1, \ldots, m - 1\}.
\]
Inequalities above are equivalent to
\[
h_i \geq ph_{i+1} - \frac{p^s - 1}{p^s} \quad \forall i \in \{1, \ldots, m - 1\},
\]
and the ceiling of the real number on the right side is precisely \(ph_{i+1} \). \hfill \Box

Proposition 2.7. An \(\mathbb{F}_p \)-linear basis for \(Q_s^0 \) is given by the set \(B_{Q_s^0} \) of its monic admissible monomials.

Proof. In [11] it is explained the procedure to express any monomial in \(Q(p) \) as a sum of admissible monomials. As Proposition 2.6 shows, the generalized Adem relations required to complete such procedure starting from a monomial in \(Q_0^s \) only involve generators actually available in the set at hands. \hfill \Box

So far, we have established the existence of the following descending chain of algebra inclusions:
\[
Q_0^0 = Q_0^1 \supset Q_1^0 \supset Q_2^0 \supset \cdots \supset Q_s^0 \supset Q_{s+1}^0 \supset \cdots,
\]

On the free \(\mathbb{F}_p \)-algebra \(\mathbb{F}_p \{1\} \cup T_{(0, 0)} \) we now define a monomorphism \(\Phi \) acting on the generators as follows
\[
(2.14) \quad \Phi(1) = 1 \quad \text{and} \quad \Phi(z_{0, k}) = z_{0, pk-1}.
\]
We set \(\Phi^0 = 1_{\mathbb{F}_p (g_s)} \) and \(\Phi^s = \Phi \circ \Phi^{s-1} \) for \(s \geq 1 \).
Proposition 2.8. For each \(s \geq 0 \),
\[
\Phi^s(z_{0,i_1} \cdots z_{0,i_m}) = z_{0,p^s \alpha_1 \cdots \alpha_s} z_{0,p^s \alpha_m \cdots \alpha_s},
\]
and
\[
\Phi^s(R(0,k,n)) = R(0,p^s k - \alpha s, p^s n).
\]

Proof. Equations (2.15) and (2.16) are trivially true for \(s = 0 \). For \(s \geq 1 \) use an inductive argument taking into account (2.12) and Proposition 2.5. □

Proposition 2.9. Let \(\pi : F_p \langle \{1\} \cup T(0,0) \rangle \to Q^0 \) be the quotient map. There exists an algebra monomorphism \(\phi \) such that the diagram

\[
\begin{array}{ccc}
F_p \langle \{1\} \cup T(0,0) \rangle & \xrightarrow{\Phi} & F_p \langle \{1\} \cup T(0,0) \rangle \\
\pi & \downarrow & \pi \\
Q^0 & \xrightarrow{\phi} & Q^0
\end{array}
\]

commutes.

Proof. By Equation (2.16), it follows in particular that
\[
\Phi(R(0,k,n)) = R(0,pk - 1, pn).
\]

Therefore there exists a well-defined algebra map
\[
\phi : z_{0,i_1} z_{0,i_2} \cdots z_{0,i_m} \in Q^0 \mapsto z_{0,p_{i_1-1}} z_{0,p_{i_2-1}} \cdots z_{0,p_{i_m-1}} \in Q^0.
\]

Such map is injective since the set \(B_{Q^0} \) – an \(F_p \)-linear basis for \(Q^0 \) according to Proposition 2.7 – is mapped onto admissibles by Lemma 2.6. □

Corollary 2.10. The algebra \(Q_s^0 \) is isomorphic to its subalgebra \(Q_{s+1}^0 \).

Proof. By Propositions 2.8 and 2.9 we can argue that \(\phi^s(Q^0) = Q_s^0 \). Hence the map
\[
\phi|_{Q_s^0} : \text{Im } \phi^s \to \text{Im } \phi^{s+1}
\]
gives the desired isomorphism. □

Corollary 2.10 proves Theorem 1.1 for \(\epsilon = 0 \).

3. A SECOND DESCENDING CHAIN OF SUBALGEBRAS

The aim of this Section is to provide a proof for the \(\epsilon = 1 \) case of Theorem 1.1. We choose to follow as close as possible the line of attack put forward in Section 2.

Proposition 3.1. Let \((k,n,s)\) a fixed triple in \(\mathbb{Z} \times \mathbb{N}_0 \times \mathbb{N} \). In (1.4) the polynomial
\[
S(1,p^s k, p^s n)
\]

is actually equal to
\[
z_1 p^s (pk - n) z_1 p^s + \sum_j (-1)^{j+1} A(n,j) z_1 p^s (pk - j) z_1 p^s (k-n+j).
\]

Proof. By definition (see (1.4),
\[
S(1,p^s k, p^s n) = z_1 p^s (pk - n) z_1 p^s + \sum_l (-1)^{l+1} A(p^s n, l) z_1 p^{s+1} k - l z_1 p^s (k-l) p^s n + l.
\]
According to Lemma 2.4, the only possible non-zero coefficients in the sum above are those with \(l \equiv 0 \mod p^s \). Setting \(l = p^s j \), the polynomial (3.1) becomes
\[
z_{1,p^s+1} z_{1,p^s j} + \sum_j (-1)^{p^s j+1} A(p^s n, p^s j) z_{1,p^s+1} z_{1,p^s j} z_{1,p^s n+1}.
\]
The result now follows from Equation (2.11).

Proposition 3.1 implies that relations of type \(S(1,p^s h, p^s n) \) only involve generators of type \(z_{1,p^s m} \), therefore the admissible expression of any non-admissible monomial with label \((1,p^s h_1; 1,p^s h_2; \ldots; 1,p^s h_m) \) only involves generators in the set
\[
\mathcal{T}_{(1,s)} = \{ z_{1,p^s m} \mid m \in \mathbb{Z} \}.
\]
So it makes sense to define \(\mathcal{Q}_s^1 \) as the \(\mathbb{F}_p \)-algebra generated by the set \(\{ 1 \} \cup \mathcal{T}_{(1,s)} \) and subject to relations
\[
S(1,p^s h, p^s n) = 0 \quad \forall n \in \mathbb{N}_0.
\]
Each \(\mathcal{Q}_s^1 \) is actually a subalgebra of \(\mathcal{Q}(p) \). We have inclusions \(\mathcal{Q}_s^1 \supset \mathcal{Q}_{s+1}^1 \). In Section 1, the algebra \(\mathcal{Q}_0^1 \) has been simply denoted by \(\mathcal{Q}^1 \).

Lemma 3.2. A monomial of type
\[
z_{1,p^s h_1} z_{1,p^s h_2} \cdots z_{1,p^s h_m}
\]
in \(\mathcal{Q}_s^1 \subset \mathcal{Q}(p) \) is admissible if and only if \(h_i \geq ph_{i+1} + 1 \quad \forall i \in \{1, \ldots, m-1\} \).

Proof. By definition, the monomial (3.3) is admissible if and only if
\[
p^s h_i \geq p(p^s h_{i+1}) + 1 \quad \forall i \in \{1, \ldots, m-1\}.
\]
Inequalities above are equivalent to
\[
h_i \geq ph_{i+1} + \frac{1}{p^s} \quad \forall i \in \{1, \ldots, m-1\},
\]
and the ceiling of the real number on the right side is precisely \(ph_{i+1} + 1 \).

Proposition 3.3. An \(\mathbb{F}_p \)-linear basis for \(\mathcal{Q}_s^1 \) is given by the set \(\mathcal{B}_{\mathcal{Q}_s^1} \) of its monic admissible monomials.

Proof. Follows verbatim the proof of Proposition 2.7, just replacing “Proposition 2.5” by “Proposition 3.1” and \(\mathcal{Q}_0^1 \) by \(\mathcal{Q}_s^1 \).
Proposition 3.4. Let \(\pi' : \mathbb{F}_p \{ \{1\} \cup T'_{(1,0)} \} \to Q^1 \) be the quotient map. There exists an algebra monomorphism \(\psi \) such that the diagram

\[
\begin{array}{ccc}
\mathbb{F}_p \{ \{1\} \cup T'_{(1,0)} \} & \xrightarrow{\psi} & \mathbb{F}_p \{ \{1\} \cup T'_{(1,0)} \} \\
\pi' \downarrow & & \downarrow \pi \\
Q^1 & \xrightarrow{\psi} & Q^1
\end{array}
\]

(3.5)

commutes.

Proof. Since \(\Psi^*(z_{1,t_1} \cdots z_{1,t_m}) = z_{1,p^s \alpha_1} \cdots z_{1,p^s \alpha_m} \), by Proposition 3.1 we argue that

\(\Psi^*(S(1,k,n)) = S(1,p^s k, p^s n) \).

Therefore there exists a well-defined algebra map

\(\psi : z_{1,1} \cdots z_{1,n} \in Q^1 \mapsto z_{1,pi_1} \cdots z_{1,pi_n} \in Q^1. \)

Such map is injective since the set \(B_{Q^1} \) – an \(\mathbb{F}_p \)-linear basis for \(Q^1 \) according to Proposition 3.3 – is mapped onto admissibles by Lemma 3.2.

\[\square\]

Corollary 3.5. The algebra \(Q^1_s \) is isomorphic to its subalgebra \(Q^1_{s+1} \).

Proof. By Equation (3.6) and Proposition 3.4 we can argue that \(\psi^*(Q^1) = Q^1_s \).

Thus, the desired isomorphism is given by

\(\psi|_{Q^1} : \text{Im} \psi^* \mapsto \text{Im} \psi^{s+1}. \)

\[\square\]

4. Further Substructures

For each \(s \in \mathbb{N}_0 \), we define \(V_s \) to be the \(\mathbb{F}_p \)-vector subspace of \(Q(p) \) generated by the set of monomials

\(U_s = \{ z_{1,p^s \alpha_1} \cdots z_{1,p^s \alpha_m} | m \geq 2, (h_1, \ldots, h_m) \in \mathbb{Z}^m \}. \)

Equation 2.12 implies that \(V_s \supset V_{s+1} \). None of the \(V_s \)'s is a subalgebra of \(Q(p) \), nevertheless, by Proposition 2.5 and the nature of relations (1.3) it follows that \(V_s \) can be endowed with a right \(Q^0_s \)-module structure just by considering multiplication in \(Q(p) \). By using once again Lemma 2.6 and the argument along the proof of Proposition 2.7, we get

Proposition 4.1. An \(\mathbb{F}_p \)-linear basis for \(V_s \) is given by the set \(B_{V_s} \) of its monic admissible monomials.

Proposition 4.2. The map between sets

\[
z_{1,i_1} z_{0,i_2} \cdots z_{0,i_m} \in U_o \quad \mapsto \quad z_{1,pi_1} z_{0,pi_2} \cdots z_{0,pi_m} \in U_o
\]

can be extended to a well-defined injective \(\mathbb{F}_p \)-linear map \(\lambda : \text{Im} \to \text{Im} \).

Moreover

\[
\lambda^s(V_0) = V_s \subset V_0.
\]

Proof. As in the proof of Proposition 2.7, Equation 2.12 and Proposition 2.5 show that the polynomial \(R(c,k,n) \in \mathbb{F}_p(S_p) \) in mapped onto \(R(c,p^s k - \alpha_s, p^s n) \) through the \(s \)-th power of the \(\mathbb{F}_p \)-linear map

\[
\lambda : z_{e_1,i_1} z_{e_2,i_2} \cdots z_{e_m,i_m} \in \mathbb{F}_p(S_p) \mapsto z_{e_1,pi_1} z_{e_2,pi_2} \cdots z_{e_m,pi_m} \in \mathbb{F}_p(S_p).
\]
Hence there are two maps $\tilde{\Lambda}$ and λ such that the diagram

$$
\begin{array}{ccc}
\mathbb{F}_p(S_p) & \xrightarrow{\Lambda} & \mathbb{F}_p(S_p) \\
\uparrow & & \uparrow \\
\mathbb{F}_p(U_0) & \xrightarrow{\tilde{\Lambda}} & \mathbb{F}_p(U_0) \\
\downarrow \pi'' & & \downarrow \pi'' \\
V_0 & \xrightarrow{\lambda} & V_0
\end{array}
$$

(4.3)

commutes, where $\pi'' : \mathbb{F}_p(U_0) \to V_0$ is the quotient map. Finally, taking into account Equation 2.12, one checks that

$$
\lambda^s(\tilde{z}_1, i_1, \tilde{z}_0, i_2, \ldots, \tilde{z}_0, i_m) = z_1, p^s, i_1 - \alpha, z_0, p^s, i_2 - \alpha, \ldots, z_0, p^s, i_m - \alpha.
$$

Since Equation (4.4) implies (4.1), the proof is over. \(\square\)

We now introduce a category \mathcal{K} whose objects are couples (M, R), with R being any ring, and M any right R-module. A morphism between two objects (M, R) and (N, S) is given by a couple (f, ω) where $f : M \to N$ is group homomorphism and $\omega : R \to S$ is a ring homomorphism, furthermore

$$
f(mr) = f(m) \omega(r) \quad \forall (m, r) \in (M, R).
$$

The category \mathcal{K} is partially ordered by “inclusions”. More precisely we say that $(M, R) \subseteq (M', R')$ if M is a subgroup of M' and R is a subring of R'.

Theorem 4.3. The objects in \mathcal{K} of the descending chain

$$(V_0, Q_0^0) \triangleright (V_1, Q_1^0) \triangleright \cdots \triangleright (V_s, Q_s^0) \triangleright (V_{s+1}, Q_{s+1}^0) \triangleright \cdots
$$

are all isomorphic.

Proof. By Proposition 1.2 it follows that $\lambda|_{V_s} : V_s \to V_{s+1}$ is an isomorphism between \mathbb{F}_p-vector spaces. Thus, recalling Corollary 2.10 the desired isomorphism in \mathcal{K} is given by

$$(\lambda|_{V_s}, \phi|_{Q_s^0}) : (V_s, Q_s^0) \to (V_{s+1}, Q_{s+1}^0).
$$

5. A final remark

Theorem 1.1 in \cite{7} says that no strict algebra monomorphism in $\mathbb{Q}(p)$ exists when p is odd. Hence there is no chance to find algebra endomorphisms over $\mathbb{Q}(p)$ extending the maps ϕ and ψ defined in Sections 2 and 3 respectively. Just to give an idea about the obstructions you come up with, consider the \mathbb{F}_p-linear map

$$
\Theta : \mathbb{F}_p(S_p) \to \mathbb{F}_p(S_p)
$$

defined on monomials as follows

$$
\Theta(z_{e_1, i_1} z_{e_m, i_m}) = z_{e_1, p i_1} \cdots z_{e_m, p i_m}.
$$

Neither the map Θ nor the map Λ introduced in Section 4 stabilizes the entire set (1.2). Indeed, take for instance

$$
R(0, 0, 0) = z_0_{-1} z_{0,0} \quad \text{and} \quad S(1, 0, 0) = z_{1,0} z_{1,0}.
$$
The polynomial
\[(5.1) \Theta(R(0,0,0)) = z_{0,-p}z_{0,0}\]
does not belong to the set \(\mathcal{R}_p\). In fact, the only polynomial in \(\mathcal{R}_p\) containing \((5.1)\) as a summand is
\[R(0,0,p-1) = z_{0,-1-(p-1)}z_{0,0} + z_{0,0}z_{0,-p+1}.\]
Similarly, the polynomial
\[\Lambda(S(1,0,0)) = z_{1,-1}z_{1,-1}\]
does not belong to the set \(\mathcal{R}_p\), since it consists of a single admissible monomial, whereas each element in \(\mathcal{R}_p\) always contains a non-admissible monomial among its summands.

References

[1] S. Araki, T. Kudo, Topology of \(H_n\)-spaces and \(H\)-squaring operations, Mem. Fac. Sci. Kyusyu Univ. Ser. A 10 (1956), 85–120.
[2] M. Brunetti, A. Ciampella, L. A. Lomonaco, The Cohomology of the Universal Steenrod algebra, Manuscripta Math., 118 (2005), 271–282.
[3] M. Brunetti, A. Ciampella, L. A. Lomonaco, An Embedding for the \(E_2\)-term of the Adams Spectral Sequence at Odd Primes, Acta Mathematica Sinica, English Series 22 (2006), no. 6, 1657–1666.
[4] M. Brunetti, A. Ciampella, A Priddy-type koszulness criterion for non-locally finite algebras, Colloquium Mathematicum 109 (2007), no. 2, 179–192.
[5] M. Brunetti, A. Ciampella, L. A. Lomonaco, Homology and cohomology operations in terms of differential operators, Bull. London Math. Soc. 42 (2010), no. 1, 53–63.
[6] M. Brunetti, A. Ciampella, L. A. Lomonaco, An Example in the Singer Category of Algebras with Coproducts at Odd Primes, Vietnam J. Math. 44 (2016), no. 3, 463–476.
[7] M. Brunetti, A. Ciampella, L. A. Lomonaco, Length-preserving monomorphisms for some algebras of operations, Bol. Soc. Mat. Mex. 23 (2017), no. 1, 487–500.
[8] M. Brunetti, A. Ciampella, The Fractal Structure of the Universal Steenrod Algebra: an invariant-theoretic description, Applied Mathematical Sciences, Vol. 8 no. 133 (2014), 6681–6687.
[9] M. Brunetti, L. A. Lomonaco, Chasing non-diagonal cycles in a certain system of algebras of operations, Ricerche Mat. 63 (2014), no. 1, suppl., S57–S68.
[10] A. Ciampella, On a fractal structure of the universal Steenrod algebra, Rend. Accad. Sci. Fis. Mat. Napoli, vol. 81, (4) (2014), 203–207.
[11] A. Ciampella, L. A. Lomonaco, The Universal Steenrod Algebra at Odd Primes, Communications in Algebra 32 (2004), no. 7, 2589–2607.
[12] A. Ciampella, L. A. Lomonaco, Homological computations in the universal Steenrod algebra, Fund. Math. 183 (2004), no. 3, 245–252.
[13] I. Karaca, Nilpotence relations in the mod \(p\) Steenrod algebra, J. Pure Appl. Algebra 171 (2002), no. 2–3, 257–264.
[14] A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962).
[15] Lomonaco L. A., Dickson invariants and the universal Steenrod algebra. Topology, Proc. 4th Meet., Sorrento/Italy 1988, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 24 (1990), 429–443.
[16] J. P. May, A General Approach to Steenrod Operations, Lecture Notes in Mathematics. 168, Berlin: Springer, 153–231 (1970).
[17] J. P. May, Homology operations on infinite loop spaces, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pp. 171–185. Amer. Math. Soc., Providence, R.I. (1971).
[18] K. G. Monks, Nilpotence in the Steenrod algebra, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 401–416 (Papers in honor of José Adem).
[19] N. E. Steenrod, *Cohomology Operations*, lectures written and revised by D. B. A. Epstein, Ann. of Math. Studies 50, Princeton Univ. Press, Princeton, NJ (1962).

Dipartimento di Matematica e applicazioni,
Università di Napoli “Federico II”,
Piazzale Tecchio 80 I-80125 Napoli, Italy.

E-mail: mbrunett@unina.it, ciampell@unina.it