Do corticosteroid injections compromise rotator cuff tendon healing after arthroscopic repair?

Laurent Baverel, MD a, Achilleas Boutsiadis, MD, PhD a, Ryan J. Reynolds, MEng b, Mo Saffarini, MEng b,*, Renaud Barthélémy, MD c, Johannes Barth, MD a

a Department of Orthopaedic Surgery, Centre Osteoarticulaire des Cèdres, Grenoble, France
b ReSurg, Nyon, Switzerland
c Department of Radiology, Clinique du Mail, Grenoble, France

ARTICLE INFO

Keywords:
Corticosteroid injection
Rotator cuff tear
Rotator cuff repair
Arthroscopic
Tendon healing
Image guidance
Sugaya classification
Constant score

Level of evidence: Level IV, Case Series, Treatment Study

Background: Rotator cuff tears are associated with capsular contraction and stiffness that should be restored before surgical repair. Corticosteroid injections (CSIs) are frequently used as conservative treatments before surgical repair. This study aimed to determine the influence of preoperative and postoperative CSIs on clinical and anatomic outcomes after rotator cuff repair.

Methods: The authors analyzed the records of 257 patients who had arthroscopic rotator cuff repair, of whom 212 were evaluated at 3.1 ± 1.0 years (median, 2.9 years; range, 1.4–7.1 years) by clinical (Constant score) and ultrasound (Sugaya classification) examinations. Univariable and multivariable regressions were performed to determine associations between outcomes and administration of preoperative and postoperative CSIs, patient characteristics, and tendon characteristics.

Results: The Constant scores improved from 56.4 ± 15.1 to 80.8 ± 12.5. Multivariable regression confirmed that postoperative scores were associated with postoperative CSIs (P < .001), preoperative scores (P < .001), gender (P < .001), and fatty infiltration (P < .005). Retears (Sugaya types IV-V) were observed in 27 shoulders (13%). Multivariable regression clarified that retear rates were associated only with postoperative CSIs (P = .007) and stage 3 fatty infiltration (P = .001). Adjusting for confounders, an additional postoperative CSI would decrease scores by 4.7 points and double retear risks.

Discussion: Preoperative CSIs had no influence on clinical scores and retear rates, whereas postoperative CSIs were associated with lower scores and more retears. Although we can infer that preoperative CSIs do not affect outcomes, we cannot determine whether postoperative CSIs compromised outcomes or were administered in patients who had already poor outcomes. Our findings may resolve controversies about the administration of preoperative CSIs.

* Corresponding author: Mo Saffarini, MEng, ReSurg, 35 ch. de la Vuarpillière, CH-1260 Nyon, Switzerland.
E-mail address: journals@resurg.eu (M. Saffarini).

Symptomatic rotator cuff tears, characterized by pain and loss of strength, are frequently associated with capsular contraction that reduces shoulder mobility.33 The consequent stiffness should be restored before surgical repair to optimize postoperative outcomes.10,24,25 Therefore, combinations of physical therapy and corticosteroid injections (CSIs) are frequently used in conservative treatments5,34 and have been shown to relieve pain and to recover passive mobility in 80% of stiff shoulders.7,20,25,40,47 within 12–16 weeks.14,27 Furthermore, some studies demonstrated that CSIs could be effective to relieve persistent pain and to reduce stiffness after rotator cuff repairs,22 although their efficacy and safety remain debatable.36

The benefits of CSIs must be balanced against their potential harms, reported in laboratory and animal studies.3,28,31,45,50,52 Whereas biopsy studies revealed that CSIs could reduce microvascularization at the rotator cuff footprint8 and decrease cell proliferation,13 other studies reported no deleterious effects.5,17,33 The controversy led to more cautious use of CSIs in the clinical setting, for example, to improve needle positioning using radiology-assisted techniques.15,24,32,37,41 The use of CSIs before or after rotator cuff repair therefore remains controversial in the absence of sizable comparative studies,31 and patients are often concerned that CSIs could compromise tendon integrity.

The purpose of this study was therefore to evaluate the influence of preoperative and postoperative CSIs on clinical scores and tendon healing after arthroscopic rotator cuff repair. The hypothesis

https://doi.org/10.1016/j.jses.2017.11.005
2468-6026/© 2017 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
was that administration of CSIs before or after surgery will be significantly associated with lower clinical scores and greater retear rates.

Materials and methods

Study design

The authors retrospectively analyzed the records of 257 patients who had arthroscopic rotator cuff repair by the senior surgeon (J.B.) between January 2007 and June 2010. The surgical technique remained unchanged during the inclusion year period as neither new equipment nor new strategies were introduced. The global clinical and radiographic outcomes of this series were recently published. The inclusion criteria were full-thickness tears repaired by double-row suture technique and complete clinical and ultrasound evaluations at a minimum follow-up of 1 year. The exclusion criteria were partial-thickness tears (n = 4), revision cases (n = 9), Hamada stage > 2 (n = 9), and concomitant surgery on the ipsilateral shoulder (n = 11). Of the 224 patients included, 8 (3.6%) did not have ultrasound evaluation at 12 or more months, 3 (1.3%) were excluded because they had subsequent surgery on another joint, and 1 (0.4%) died before the end of the follow-up period (Fig. 1). The remaining 212 patients were assigned to 1 of 4 groups according to whether they received at least 1 CSI preoperatively, postoperatively, or both (no-CSI, pre-CSI, post-CSI, or both-CSI).

Preoperative evaluation

Patients were evaluated clinically using the absolute Constant score and radiographically using computed tomography arthrography or magnetic resonance imaging (MRI) to assess muscle fatty infiltration (modified Goutallier classification. In all cases, fatty infiltration of the supraspinatus muscle was considered the reference as it was the most frequently torn rotator cuff tendon (>80%). The use of different imaging modalities may represent some bias, but recent articles indicate that equivalent assessment of fatty infiltration could be archived using either computed tomography arthrography or MRI.

Surgical technique

All operations were performed with the patient in the beach chair position, under general anesthesia and interscalene block. Intraoperative diagnosis of rotator cuff tears was confirmed after excision of the inflammatory subacromial bursa, and tear size was measured. The intraoperative torn tendon was noted as “healthy” if it appeared normal or “degenerated” if it was delaminated, thinned, or cleaved. Depending on tear size, 2-4 triple-loaded 5.5-mm bioabsorbable anchors (Bio-Corkscrew FT; Arthrex Inc., Naples, FL, USA) were used for the double-row repair. The bursa and synovitis were then cleaned in the subacromial space; the rotator cuff was reduced by tightening the lateral row, and the footprint was covered by a medial row suture.

Postoperative rehabilitation

Passive motion exercises were initiated on the first postoperative day, and the arm was supported in a 20° abduction sling during the first 6 weeks; if possible, hydrotherapy was attempted after skin healing. Active shoulder motion was allowed after 6 weeks; active passive motion was started earlier according to the preoperative tear size. Patients were not allowed to perform any strengthening or strenuous work for 6 months after the operation. Light sports and demanding activities were allowed after 6 months.

Postoperative assessment

Patients were evaluated at a minimum follow-up of 12 months. A single blinded clinician (L.B.) who did not perform the operation collected the absolute Constant score. The integrity of the repaired rotator cuff was assessed using ultrasound, which was recently adapted from the MRI classification of Sugaya et al., and regrouped as either intact (types I-III) or retorn (types IV and V). The ultrasound assessments were performed by a blinded radiologist (R.B.) using a linear transducer set at either 7-11 MHz for heavier morphotypes (deep penetration but lower spatial resolution) or 14-18 MHz for lighter morphotypes (shallow penetration but higher spatial resolution) and a Xario SSA-660A and SSA probe with precision 660 LG (Toshiba Medical Systems, Otawara, Japan). During the ultrasound assessment, the patients were seated with the

Figure 1 Flow chart of patient inclusion and enrollment with details for those who were excluded.
affected arm maintained free at the side of the trunk, and the rotator cuff repair was examined in 3 planes (axial, sagittal, and coronal).

CSIs

The CSIs consisted of 5 mg of injectable betamethasone suspension in prefilled syringes (PHI, Ain El Aouda, Morocco) and 10 mL of lidocaine (Xylocaine 0.5%). All injections were administered into the subacromial bursa, with the patients in the supine position, after local superficial skin anesthesia using 5-cm 21-gauge needles.

Preoperatively, patients with predominant subacromial inflammation without stiffness received CSIs under ultrasound guidance, directly through a lateral approach, just below the midlateral aspect of the acromion. Patients with predominant stiffness received CSI under fluoroscopic guidance with contrast liquid (Ultravist 300 mg), by a posterior approach, through the acromioclavicular joint.55

Postoperatively, patients with persistent pain and subacromial bursitis, confirmed on serial ultrasound images, received CSI under ultrasound guidance, directly through a lateral approach, just below the midlateral aspect of the acromion.

Statistical analysis

The normality of distributions was tested using the Shapiro-Wilk test. Continuous variables were compared using nonparametric Spearman correlations or Mann-Whitney U tests with Bonferroni correction. Categorical variables were compared using χ2 tests. Univariable and multivariable linear (postoperative Constant score) and logistic (retears, Sugaya IV-V) regressions were performed to test associations between outcomes and 10 variables: preoperative CSI, tendon delamination, and fatty infiltration of the supraspinatus. With our sample size of 212, our analysis was deemed to have sufficient power, with postoperative CSI on clinical scores and retear rates after shoulder arthroplasty, 1 had suture anchor removal, and 24 were asymptomatic or managed with medication. The retear rate was lowest for patients who had preoperative CSIs (4 of 68 [6%]) compared with patients who received no CSI (5 of 35 [14%]), postoperative CSIs (6 of 31 [19%]), or both preoperative and postoperative CSIs (12 of 78 [15%]) (P = .16). Univariable regression revealed that retear rate was significantly associated with age (P < .001), preoperative Constant score (P = .012), tendon retraction (P < .001), tendon delamination (P = .005), and fatty infiltration of stage 2 (P < .011) or stage 3 (P < .001) (Table IV). Multivariable regression clarified that the retear rate was directly associated only with postoperative CSIs (P = .007), and stage 3 fatty infiltration (P = .001). Adjusting for confounding variables, an additional preoperative CSI was not associated with an increased retear rate, whereas an additional postoperative CSI was associated with a 2-fold increase in retear rate.

Discussion

The goal of this study was to determine the influence of preoperative and postoperative CSIs on clinical scores and retear rates after

Table I

Preoperative epidemiologic data and characteristics of rotator cuff tears

Patients demographics	Entire cohort (N = 212)	No-CSI (n = 35)	Pre-CSI (n = 68)	Post-CSI (n = 31)	Both-CSI (n = 78)	P values*
Age (y)	55.6 ± 9.8 (16.0-83.0)	52.3 ± 13.0	58.8 ± 7.0	52.7 ± 8.0	55.4 ± 10.1	.003
Women	47%	40%	40%	32%	62%	.009
Follow-up (y)	3.1 ± 1.0 (1.4-7.1)	3.2 ± 0.9	3.1 ± 1.1	3.3 ± 1.2	3.0 ± 0.9	.274
Radiographic assessment						
Fatty infiltration of the supraspinatus						.545
Stage 0-1	96 (45%)	19 (54%)	27 (40%)	15 (48%)	35 (45%)	
Stage 2	106 (50%)	13 (37%)	39 (57%)	15 (48%)	40 (51%)	
Stage 3	9 (4%)	3 (9%)	2 (3%)	1 (3%)	3 (4%)	

CSI, corticosteroid injection.
* Kruskal-Wallis tests were used to compare between-group differences unless otherwise noted.
† χ2 test.
arthroscopic rotator cuff repair. The results confirmed that preoperative CSIs had little or no influence on clinical scores and retear rates, whereas postoperative CSIs were significantly associated with lower Constant scores and higher retear rates. The results also revealed postoperative Constant scores and retear rates to be most influenced by preoperative fatty infiltration.

The administration of CSIs is believed to relieve persistent pain and to reduce stiffness before or after rotator cuff repair. With regard to postoperative Constant scores, our multivariable regression revealed preoperative CSIs to be a confounding variable but confirmed significant associations with postoperative CSIs as well as with lower preoperative Constant score, female gender, and fatty infiltration. Although we can infer that preoperative CSIs do not affect Constant scores, we cannot determine whether postoperative CSIs compromised scores or whether postoperative CSIs were administered in patients with poorer scores. The cause-and-effect relationship between postoperative CSIs and Constant scores cannot be determined from this study and warrants further investigation. It seems likely, however, that postoperative CSIs were not effective at resolving symptoms in patients with postoperative pain or impaired function.

The overall retear rate observed in this series (13%) compares favorably with rates reported by Park et al (25%) and Gwak et al (27%). The literature reports higher retear rates in delaminated rotator cuff repairs compared to partial-thickness tears.

Table II
Evaluation of preoperative and postoperative Constant score among the CSI groups

	Entire cohort	No-CXI	Pre-CXI	Post-CXI	Both-CXI	P value*	
Preoperative Constant score	N = 212	n = 35	n = 68	n = 31	n = 78		
Total	56.4 ± 15.1 (8.0-91.0)	58.4 ± 12.6 (16.5%)	55.6 ± 15.0 (32.1%)	54.7 ± 17.5 (14.6%)	56.8 ± 15.3 (36.8%)	.863	
Pain	3.7 ± 2.7 (0.0-14.0)	4.0 ± 2.7	3.4 ± 2.4	4.5 ± 2.9	3.4 ± 2.8	.215	
Function	6.4 ± 4.6 (0.0-18.0)	6.9 ± 4.0	6.4 ± 5.0	6.0 ± 4.0	6.4 ± 4.7	.715	
ROM	36.0 ± 7.5 (6.0-40.0)	36.8 ± 6.9	36.4 ± 6.8	33.9 ± 9.9	36.1 ± 7.2	.643	
Strength	10.3 ± 7.1 (0.0-25.0)	10.7 ± 6.6	9.5 ± 7.2	10.4 ± 7.6	10.9 ± 7.0	.543	
Postoperative Constant score	Total	80.8 ± 12.5 (42.0-100.0)	87.0 ± 10.3	84.1 ± 9.8	79.9 ± 13.4	75.4 ± 13.0	<.001†
Pain	12.4 ± 3.2 (3.0-15.0)	13.5 ± 2.7	13.4 ± 2.4	11.8 ± 3.5	11.3 ± 3.4	<.001†	
Function	17.0 ± 3.3 (7.0-20.0)	18.3 ± 2.5	18.1 ± 2.5	16.5 ± 3.4	15.6 ± 3.7	<.001†	
ROM	38.3 ± 3.5 (22.0-40.0)	39.5 ± 1.4	39.0 ± 2.4	38.1 ± 3.2	37.1 ± 4.5	.001†	
Strength	13.2 ± 5.5 (4.0-25.0)	15.7 ± 5.8	13.7 ± 5.5	13.6 ± 5.8	11.4 ± 4.7	.002†	

† Significant difference relative to no-CXI (P < .05).

Table III
Regression analysis of postoperative Constant score

Variable	Univariable	Multivariable				
	Regression	95% CI	P value	Regression coefficient	95% CI	P value
Preoperative CSI	-1.4	-2.4 to -0.4	.005	-0.8	-1.7 to 0.1	.082
Post-operative CSI	-5.3	-7.2 to -3.3	<.001	-4.7	-6.5 to -3.0	<.001
Age (y)	-0.1	-0.2 to 0.1	.553	0.1	0.1 to 0.3	.384
Follow-up (y)	-0.2	-1.8 to 1.5	.830	0.2	0.2 to 0.3	.002
Preoperative Constant score	0.2	0.1 to 0.3	<.001	0.2	0.1 to 0.3	.002
Male vs. female	7.6	4.4 to 10.8	<.001	5.6	2.6 to 8.6	<.001
Tobacco	-0.4	-4.7 to 3.9	.858	-2.5	-6.3 to 1.3	.191
Tendon retraction	-2.2	-6.1 to 1.6	.256	-1.4	-5.4 to 2.5	.480
Tendon delamination	-0.9	-4.9 to 2.6	.621	1.4	-2.3 to 5.1	.446
Fatty infiltration of the supraspinatus, stages 0-1 vs.						
Stage 2	-6.4	-9.7 to -3.0	<.001	-6.5	-9.7 to -3.3	<.001
Stage 3	-12.2	-20.4 to -3.9	.004	-7.9	-21.4 to -0.6	<.001

* Odds ratio of needing transfusion for an increase of the independent variable by 1 unit.
† Odds ratio of needing transfusion for the specified binary category.

CSI, corticosteroid injection; ROM, range of motion.

L. Baverel et al. / JSES Open Access 2 (2018) 54–59
cuff repairs23,36; however, our study revealed that tendon delamination was a confounding factor. Our multivariable regression for retear rate also revealed age, preoperative Constant score, and tendon retraction to be confounding factors but confirmed significant associations with postoperative CSIs and fatty infiltration. Once more, we can infer that preoperative CSIs do not increase retears; however, we cannot determine whether postoperative CSIs increased retears or whether postoperative CSIs were administered in patients who already had retears. In agreement with previous studies, we found that fatty infiltration significantly compromised repair integrity,23,30 particularly at stage 3.

In patients with painful shoulders with rotator cuff tears, CSIs are a mainstream initial treatment, combined with rest, physical therapy, and nonsteroidal anti-inflammatory medication.20 CSIs could prevent the need for surgical intervention, alleviating pain and facilitating rehabilitation, and could also prepare shoulders preoperatively, decreasing inflammation in the subacromial bursa. The first complication of shoulder CSIs is related to inaccurate needle position,15,43,44,48 which is improved with use of image guidance.24,26,41,56 In this study, the absence of adverse events could be attributed to the reliable injection technique performed by the same experienced radiologist. Therefore, perhaps some reasons for the poorer outcomes with postoperative CSIs are detailed in previous studies indicating that CSIs can cause adverse effects, such as specific cell toxicity,13,39 alteration of the collagen composition and extracellular matrix,25 and decreasing microvascularization of the rotator cuff footprint.6 Conversely, Bhatia et al6 studied the natural progression of rotator cuff tear in patients who underwent CSI for conservative treatment of impingement syndrome and found no difference in tear progression between patients who received fewer or more than 3 injections, suggesting that CSIs may not be a causative factor of rotator cuff tear.

This study has several limitations. These include the wide variability of follow-up, which could alter clinical and ultrasound evaluations; the inclusion of patients with various tear patterns, which may influence the prognosis of repair integrity; and the small subgroup sizes, which limit the statistical power. Moreover, our study design is insufficient to determine cause-and-effect relationships between CSI administration and Constant score or retear rate. Also, the statistical analyses considered tendon-to-bone healing as a binary outcome and did not account for tendon quality in greater detail. The strengths of the study are its overall sample size, the homogeneity of the surgical technique, and the collection of clinical scores by a single blinded clinician.

Table IV
Regression analysis of retear rate (Sugaya)

Variable	Univariable OR (95% CI)	P value	Multivariable OR (95% CI)	P value
Continuous*				
Preoperative CSI	0.93 (0.68-1.18)	.646	0.85 (0.58-1.18)	.367
Postoperative CSI	1.47 (0.93-2.29)	.089	2.19 (1.23-3.92)	.007
Age (y)	1.09 (1.03-1.14)	.001	1.06 (0.99-1.13)	.091
Follow-up (y)	0.97 (0.64-1.43)	.873	0.85 (0.49-1.39)	.520
Preoperative Constant score	0.97 (0.94-0.99)	.012	0.98 (0.95-1.01)	.235
Categorical†				
Male vs. female	1.11 (0.49-2.54)	.802	1.10 (0.39-3.15)	.851
Tobacco	1.22 (0.42-3.10)	.685	2.10 (0.62-6.84)	.219
Tendon retraction	3.26 (1.41-7.53)	.005	1.68 (0.51-5.36)	.388
Tendon delamination	4.95 (2.11-12.60)	.001	2.20 (0.69-7.19)	.184
Fatty infiltration of the supraspinatus, stages 0-1 vs.				
Stage 2	4.34 (1.54-15.54)	.011	3.14 (0.94-12.80)	.080
Stage 3	46.00 (9.10-298.86)	<.001	28.52 (4.15-245.30)	.001

OR, odds ratio; CI, confidence interval; CSI, corticosteroid injection.
* Odds ratio of needing transfusion for an increase of the independent variable by 1 unit.
† Odds ratio of needing transfusion for the specified binary category.

Conclusion
This study demonstrated that CSIs before arthroscopic rotator cuff repair did not significantly influence tendon healing. Our findings could help resolve common controversies regarding potential deleterious effects of preoperative CSIs. These observations may be valid only when CSIs are administered by experienced radiologists using image guidance. Concerns persist, however, about lower Constant scores and higher retear rates with postoperative CSIs as for preoperative fatty infiltration.

Disclaimer
The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

References
1. Ando A, Sugaya H, Hagiwara Y, Takahashi N, Watanabe T, Kanazawa K, et al. Identification of prognostic factors for the nonoperative treatment of stiff shoulder. Int Orthop 2013;37:859-64. http://dx.doi.org/10.1007/s00264-013-1859-8
2. Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 2015;68:627-36. http://dx.doi.org/10.1016/j.jclinepi.2014.12.014
3. Barth J, Fotiadis E, Barthelemy R, Genna S, Saffarini M. Ultrasonic evaluation of the repair integrity can predict functional outcomes after arthroscopic double-row rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 2015;23:176-85. http://dx.doi.org/10.1007/s00167-015-3505-z
4. Baumbach SF, Lobo CM, Badyine I, Mutschler W, Kanz KG. Prepatellar and olecranon bursitis: literature review and development of a treatment algorithm. Arch Orthop Trauma Surg 2014;134:359-70. http://dx.doi.org/10.1007/s00402-013-1882-7
5. Baumgarten KM, Helsper E. Does chondrolysis occur after corticosteroid-analgesic injections? An analysis of patients treated for adhesive capsulitis of the shoulder. J Shoulder Elbow Surg 2016;25:890-7. http://dx.doi.org/10.1016/j.jse.2015.04.012
6. Bhatia M, Singh B, Nicolaou N, Ravikumar KJ. Correlation between rotator cuff tears and repeated subacromial steroid injections: a case-controlled study. Ann R Coll Surg Engl 2009;91:414-6. http://dx.doi.org/10.1308/003588409X428261
7. Blair R, Rokito AS, Cuomo F, Jarolem K, Zuckerman JD. Efficacy of injections of corticosteroids for subacromial impingement syndrome. J Bone Joint Surg Am 1996;78:1685-9
8. Bonneville N, Bayle X, Faruch M, Wargny M, Gomez-Brouchet A, Mansat P. Does microvascularization of the footprint play a role in rotator cuff healing of the shoulder? J Shoulder Elbow Surg 2015;24:1257-62. http://dx.doi.org/10.1016/j.jse.2015.04.012
Carette S, Moffet H, Tardif J, Bessette L, Morin F, Frémont P, et al. Intraarticular corticosteroids, supervised physiotherapy, or a combination of the two in the treatment of adhesive capsulitis of the shoulder: a placebo-controlled trial. Arthritis Rheum 2003;48:829-38. http://dx.doi.org/10.1002/art.10954

Cho NS, Rhe YG. Functional outcome of arthroscopic repair with concomitant manipulation in rotator cuff tears with stiff shoulder. Am J Sports Med 2006;34:1323-9. http://dx.doi.org/10.1177/0363546506289402

Constant CR, Gerber G, Emery RJ, Sebjerg JO, Gohlke F, Boileau P. A review of the Control score: modifications and guidelines for its use. J Shoulder Elbow Surg 2008;17:355-61. http://dx.doi.org/10.1016/j.jse.2007.06.022

Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res 1987;214:160-4.

Dean BJ, Franklin SL, Murphy RJ, Javaid MK, Carr AJ. Glucocorticoids induce specific ion-channel-mediated toxicity in human rotator cuff tendon: a mechanism underpinning the ultimate deleterious effect of steroid injection in tendinopathy? Br J Sports Med 2014;48:1620-6. http://dx.doi.org/10.1136/bjsports-2013-093178

Dieckls RL, Stevens M. Gentle thawing of the frozen shoulder: a prospective study. J Shoulder Elbow Surg 2004;13:499-502. http://dx.doi.org/10.1016/j.jse.2004.03.002

Eustace JA, Brophy DP, Gibney RP, Bresnihan B, Fitzgerald O. Comparison of the accuracy of steroid placement with clinical outcome in patients with shoulder symptoms. Ann Rheum Dis 1997;56:59-63.

Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging: J Shoulder Elbow Surg 1999;8:599-605.

Gajoux-Viala C, Dougas M, Gosse L. Efficacy and safety of steroid injections for shoulder and elbow tendinitis: a meta-analysis of randomised controlled trials. Ann Rheum Dis 2005;64:1843-9. http://dx.doi.org/10.1136/ard.2004.099572

Goutallier D, Postel JM, Bernageau J, Lavau L, Vossin MC. Fatty muscle degeneration in cuff ruptures, Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1986;206:78-83.

Green SB. How many subjects does it take to do a regression analysis. Multivariate Behav Res 1991;26:499-510.

Grieser MJ, Harris JD, Campbell JE, Jones GL. Adhesive capsulitis of the shoulder: a systematic review of the effectiveness of intra-articular corticosteroid injections. J Bone Joint Surg Am 2011;93:1727-33. http://dx.doi.org/10.2106/JBJS.L.01275

Gwak HC, Kim CW, Kim JH, Choo HJ, Sagony SY, Shin J. Delaminated rotator cuff tear: extension of delamination and cuff integrity after arthroscopic rotator cuff repair. J Shoulder Elbow Surg 2015;24:719-26. http://dx.doi.org/10.1016/j.jse.2014.09.027

Huberty DP, Schooffield JD, Brady PC, Vadala AP, Arrigoni P, Burkhart SS. Incidence and treatment of postoperative stiffness following arthroscopic rotator cuff repair. Arthroscopy 2009;25:880-90. http://dx.doi.org/10.1016/j.arthro.2009.01.018

Kim JH, Hong IT, Ryu KJ, Bong ST, Lee YS, Kim JH. Retear rate in the late postoperative period after arthroscopic rotator cuff repair. Am J Sports Med 2014;42:2506-13. http://dx.doi.org/10.1177/0363546514524777

Koivikko MP, Mustonen AO. Shoulder magnetic resonance arthrography: a prospective randomized study of anterior and posterior ultrasound-guided contrast injections. Acta Radiol 2008;49:912-7. http://dx.doi.org/10.1080/02841850802012333

Lee HJ, Kim KS, Lim KB, Lee KY. Effect of a single subacromial prednisolone injection in acute rotator cuff tears in a rat model. Knee Surg Sports Traumatol Arthrosc 2015;23:533-61. http://dx.doi.org/10.1007/s00167-013-2359-8

Lee HJ, Lim KB, Kim SY, Lee KY, My. Effect of intra-articular injection of corticosteroids for posterospective steroid injection: a cadaveric study. J Shoulder Elbow Surg 2012;21:304-9. http://dx.doi.org/10.1016/j.jse.2011.04.011

Shin J J, Lee SY. Efficacies of corticosteroid injection at different sites of the shoulder for the treatment of adhesive capsulitis. J Shoulder Elbow Surg 2013;22:521-7. http://dx.doi.org/10.1016/j.jse.2012.06.015

Sethi PM, El Attrache N. Accuracy of intra-articular injection of the glenohumeral joint: a cadaveric study. Orthopoditcs 2006:29:149-52.

Sethi PM, Kingston S, ElAttrache N. Accuracy of anterior intra-articular injection of the glenohumeral joint. Arthroscopy 2005;21:77-80. http://dx.doi.org/10.1016/j.arthro.2004.09.009

Sherman SL, James C, Stoker AM, Cook CR, Khazai RS, Flood DL, et al. In vivo toxicity of local anesthetics and corticosteroids on chondrocyte and synoviocyte viability and metabolism. Cartilage 2015;6:106-12. http://dx.doi.org/10.1177/1745360915571100

Shin SJ, Do NH, Lee J, Jo YW. Efficacy of a subacromial corticosteroid injection for persistent pain after arthroscopic rotator cuff repair. Am J Sports Med 2016;44:2231-6. http://dx.doi.org/10.1177/0363546516684328

Shin SJ, Lee SY. Efficacies of corticosteroid injection at different sites of the shoulder for the treatment of adhesive capsulitis. J Shoulder Elbow Surg 2013;22:521-7. http://dx.doi.org/10.1016/j.jse.2012.06.015

Soi H, Bearcroft PW, Graves MJ, Black RS, Lomas DJ. Intra-articular corticosteroid injection for posterospective steroid injection: a cadaveric study. J Shoulder Elbow Surg 2008;17:3334-39. http://dx.doi.org/10.1016/j.jse.2008.02.033

Sugaya H, Maeda K, Matsuki K, Morishii J. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. J Bone Joint Surg Am 2007;89:953-60. http://dx.doi.org/10.2106/JBJS.F.00512

Templer H, Gelwih F, Lechner C, Wagner A, Mtsariashvili M, Bauer HC, et al. Effects of crystalline glucocorticoid triamcinolone acetonide on cultured human supraspinatus tendon cells. Acta Orthop 2008;89:357-62. http://dx.doi.org/10.1080/17456370802983830

Thomaese H, Boukoubza E, Morlet N, Chaperon J, Langlais F. Prediction of rotator cuff repair results by magnetic resonance imaging. Clin Orthop Relat Res 1997;344:275-83.

Tillander B, Franzen LE, Karlsson MH, Norlin R. Effect of steroid injections on the rotator cuff: an experimental study in rats. J Shoulder Elbow Surg 1998;7:271-8.

Ueda Y, Sugaya H, Takahashi N, Matsuki K, Kawai T, Tokai M, et al. Rotator cuff lesions in patients with stiff shoulders: a prospective analysis of 379 shoulders. J Shoulder Elbow Surg 2015;24:1233-7. http://dx.doi.org/10.1016/j.jse.2015.09.009

Walch G, Marechal E, Maupas J, Listard JP. Surgical treatment of rotator cuff rupture. Prognostic factors. Rev Chir Orthop Reparatrice Appar Mot 1992;78:379-88.

Wass Weber, Supraspinacular nerve block. A new approach for the management of frozen shoulder. Aesthetica 1992;62:120-4.

Zwar RB, Read JW, Noakes JB. Sonographically guided glenohumeral joint injection. AJR Am J Roentgen 2004;183:48-50. http://dx.doi.org/10.2214/ajr.183.1830048