SUPPORTING INFORMATION

One-pot SELEX: identification of specific aptamers against diverse steroid targets in one selection

Miriam Jauset-Rubio,† Mary Luz Botero,† Vasso Skouridou,*,† Gülsen Betül Aktas,† Marketa Svobodova,‡ Abdulaziz S. Bashammakh,† Mohammad S. El-Shahawi,‡ Abdulrahman O. Alyoubi,‡ and Ciara K. O’Sullivan*,†≠

†INTERFIBIO Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain

‡Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia

≠Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain

Corresponding authors
* ciara.osullivan@urv.cat, Tel.: +34977558740
* vasoula.skouridou@urv.cat, Tel.: +34977558576
Table of contents

S1. Materials and reagents..4
 Figure S1. Structures of the target steroids and their CMO derivatives used for immobilization..........4

S2. Selection ..5
 (a) Steroid immobilisation on magnetic beads ..5
 Figure S2. Quantification of steroids immobilised on magnetic beads used during the selection and characterisation of aptamer candidates. The upper panel shows the calibration curves obtained from the detection of each steroid (as BSA conjugates) using monoclonal anti-steroid antibodies. The lower panel corresponds to the quantification of the steroid-modified beads after extrapolation from the calibration curves..5

 (b) Design of the selection process ..6
 Table S1. Selection conditions. Each bead type was used according to the order shown below.6
 Figure S3. Graphical representation of the different stages of the selection process.7

S3. Evolution of the selection process ...8
 Figure S4. Evolution of the selection process by APAA. (a) Gel electrophoresis and (b) corresponding band intensity. c: control beads; P4: progesterone-beads; T: testosterone-beads; E2: estradiol-beads; nc: PCR negative control (no template). ...8

S4. High-throughput analysis of the selection process by Ion Torrent Next Generation Sequencing9
 Table S2. High-throughput sequencing of the different DNA pools. R11, R13, R15 denote the selection round whereas E2, P4, T the steroid target estradiol, progesterone and testosterone, respectively.9
 Table S3. Ranking and abundance of the most over-represented sequences from the estradiol E2-R11 and E2-R13 pools in all the pools sequenced. The first number denotes the ranking and the second one the number of copies.9
 Figure S5. Specificity of the most abundant sequences (Seq.1 – Seq.7) in the E2-R11 and E2-R13 pools evaluated by APAA. P4, T and E2 refer to progesterone, testosterone and estradiol steroids, respectively immobilized on magnetic beads. ..10
 Table S4. Sequences with preferencial abundance in the estradiol E2-R15 pool...11
 Table S5. Sequences with preferential abundance in the progesterone P4-R15 pool.................................12
 Table S6. Sequences with preferential abundance in the testosterone T-R15 pool....................................12
 Table S7. Ranking and abundance of the candidate sequences with preferential abundance in each target pool. The first number denotes the ranking and the second one the number of copies of each sequence ...13
 Figure S6. Multiple sequence alignment of the candidate sequences with preferential abundance in each target pool. The sequence families are boxed and the selected aptamers are highlighted. ..14
 Table S8. Sequences of the selected aptamers. ..15
Figure S7. Predicted structures of the selected steroid aptamers using the mfold server. Calculations were made at 25°C, 100 mM NaCl and 2 mM MgCl₂. ...16

S5. Determination of the binding affinity (K_D) of the aptamer candidates by different approaches........17

Figure S8. Binding curves used for the calculation of the binding affinity (K_D) of the candidate aptamers using (a) APAA, (b) bead-ELAA and (c) plate-ELAA. The format of each assay is also shown. ...17

S6. Competitive plate-ELAA for steroid detection..18

Figure S9. Competitive plate-ELAA for the aptamer-based detection of steroids...............................18

(a) Optimisation of conditions for the immobilisation of the steroids on maleimide-activated plates18

Figure S10. Steroid detection of steroid immobilised on microtitre plates using a biotin-modified aptamer. The amino-thiols (a) cysteamine and (b) 11-amino-1-undecanethiol were used for the immobilisation of the CMO-steroid derivative (100 or 1000 µM) on maleimide-activated plate..19

(b) Duration of the incubation steps ..19

Figure S11. Optimisation of the duration of the incubation steps for optimal detection of steroids with a competitive plate-ELAA using a biotin-aptamer. The times on the graphs refer to pre-incubation time – incubation time. The optimisation was performed for estradiol detection using the biotin-E28 aptamer..20

Table S9. Effect of pre-incubation and incubation time on the sensitivity of estradiol detection with the competitive plate-ELAA using the biotin-E28 aptamer. ND: not determined...20

(c) Assay temperature ...21

Figure S12. Effect of the temperature on the performance of the competitive plate-ELAA for estradiol detection using the biotin-E28 aptamer. ..21

(d) Biotin-aptamers concentration ...21

Figure S13. Optimisation of aptamer concentration used for the competitive plate-ELAA assays for steroid detection. Aptamer E28 is shown as an example for estradiol detection using (A) a wide range of aptamer concentrations and (B) selected aptamer concentrations for which the signal difference between the two incubations was greatest........22

Table S10. Concentrations of the aptamers used for the competitive plate-ELAA for steroid detection........22

S7. Evaluation of previously reported steroid-binding aptamers with the plate-ELAA......................23

Figure S14. Binding curves of previously reported aptamers with their cognate steroid target: (a) Kim estradiol aptamer; (b) Alsager estradiol aptamer; (c) P4G13 progesterone aptamer; (d) T5 testosterone aptamer.23

S8. References ...24
S1. Materials and reagents

17β-Estradiol (estradiol), estradiol-6-one 6-(O-carboxymethyl)oxime (estradiol-CMO), progesterone, progesterone-3-(O-carboxymethyl)oxime (progesterone-CMO), testosterone, testosterone-3-(O-carboxymethyl)oxime (testosterone-CMO), 11-amino-1-undecanethiol hydrochloride (MUAM), cysteamine, TMB liquid substrate system for ELISA, rabbit anti-mouse-HRP conjugate and maleimide-activated microplate strip wells were supplied by Sigma (Spain). The Dynabeads M-270 Amine (2.8 µm diameter) magnetic beads, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), sulfo-NHS-acetate, DreamTaq DNA polymerase and lambda exonuclease were from Fisher Scientific (Spain) whereas the SiMAG-Amine (1 µm diameter) magnetic beads from Chemicell (Germany). The murine monoclonal antibodies to estradiol (clone 9F9), progesterone (clone 9F44) and testosterone (clone 5E801) were obtained from USBiological Life Sciences (provided by VWR, Spain) and the DNA purification kits (Oligo Clean & Concentrator kit and DNA Clean & Concentrator kit) from Zymo Research (supplied by Ecogen, Spain). Streptavidin-polyHRP80 was purchased from SDT-Reagents (supplied by Bionova, Spain). The random 86 nt-long library (5’-TAGGGAAGAGAACATATGAT-N_{40}-TTGACTATGACCATGACCTTTGA-3’) was from TriLink Biotechnologies (USA) and all other oligonucleotides were synthesized by Biomers.net (Germany).

![Figure S1. Structures of the target steroids and their CMO derivatives used for immobilization.](image-url)
S2. Selection

(a) Steroid immobilisation on magnetic beads

Each of the CMO-steroid (estradiol, progesterone and testosterone) derivatives were separately immobilised on amine-functionalized magnetic beads as previously described,¹ using sulfo-NHS acetate to block any unreacted amine groups. Approximately 700-800 pmol of each CMO-steroid was used for the immobilization on 3 mg of amine-magnetic beads. The selection was performed using Dynabeads M-270 Amine beads whereas SiMAG-Amine magnetic beads were used for the characterization of the aptamer candidates by APAA. The immobilisation level of each steroid on the corresponding beads was estimated by a semi-quantitative competitive ELISA assay using monoclonal antibodies against each steroid¹ as shown in Figure S2. Sulfo-NHS acetate-blocked beads were also prepared (control-beads) for performing the negative selection and also for control experiments.

Figure S2. Quantification of steroids immobilised on magnetic beads used during the selection and characterization of aptamer candidates. The upper panel shows the calibration curves obtained from the detection of each steroid (as BSA conjugates) using monoclonal anti-steroid antibodies. The lower panel corresponds to the quantification of the steroid-modified beads after extrapolation from the calibration curves.
(b) Design of the selection process

The simultaneous selection of steroid-binding aptamers with different specificities was completed after 15 rounds. The specific conditions are shown in Table S1 and a detailed schematic representation of the different stages in Figure S3. The duration of the incubation step of the ssDNA with each bead type (30 min) as well as the washing steps (3 x 200 µl of selection buffer) between steps were maintained constant during the entire selection.

Table S1. Selection conditions. Each bead type was used according to the order shown below.

Selection round	ssDNA input (pmol)	Magnetic beads (15 mg/ml)			
		Negative	Progesterone	Testosterone	Estradiol
R1	300	-	-	-	3 µl
R2	4	2 µl	-	-	2 µl
R3-R10	5 - 10	2 µl	2 µl	-	2 µl
R11 – R15	20	2 µl	2 µl	2 µl	2 µl
Figure S3. Graphical representation of the different stages of the selection process.
S3. Evolution of the selection process

To evaluate the progress of the selection process, equal amounts of ssDNA from different rounds (in binding buffer) was separately incubated with the four types of steroid-magnetic beads (control/negative, progesterone, testosterone and estradiol) for 30 min at 22°C under tilt rotation. After thorough washing, the re-suspended beads were used for amplification and determination of relative binding according to the APAA assay. The results are shown in Figure S4.

Figure S4. Evolution of the selection process by APAA. (a) Gel electrophoresis and (b) corresponding band intensity. c: control beads; P4: progesterone-beads; T: testosterone-beads; E2: estradiol-beads; nc: PCR negative control (no template).
S4. High-throughput analysis of the selection process by Ion Torrent Next Generation Sequencing

Five different DNA pools were sequenced: rounds 11, 13 and 15 for estradiol (E2), and round 15 for progesterone (P4) and testosterone (T) binding sequences. The general statistics of the analysis performed using the Galaxy server and the FASTQC tool are shown in Table S2.

Table S2. High-throughput sequencing of the different DNA pools. R11, R13, R15 denote the selection round whereas E2, P4, T the steroid target estradiol, progesterone and testosterone, respectively.

Selection round	E2-R11	E2-R13	E2-R15	P4-R15	T-R15
Total sequences	268	97,867	97,650	108,169	116,286
Sequence length	34 – 164	25 – 169	25 – 228	25 – 252	25 – 199
Sequences 80-100 bp	254	70,772	82,815	85,356	90,782
Unique 80-100 bp sequences %	127	9,832	11,264	11,947	13,168
Top100 %	50.0	13.9	13.6	14.0	14.5
Top10 %	227	50,144	58,336	59,456	62,487
%	89.4	70.9	70.4	69.7	68.8

Initially, the most over-represented sequences (most copy numbers based on 100 % sequence identity) found in the estradiol pools from the sequencing of rounds 11 and round 13 were evaluated. These were designated as Seq.1 – Seq.7. Their ranking and number of copies in all the pools sequenced are shown in Table S3.

Table S3. Ranking and abundance of the most over-represented sequences from the estradiol E2-R11 and E2-R13 pools in all the pools sequenced. The first number denotes the ranking and the second one the number of copies.

Sequence ID	E2-R11	E2-R13	E2-R15	P4-R15	T-R15
Seq.1	3-17	2-9380	2-3979	1-8176	2-9261
Seq.2	1-35	1-7845	16-519	7-2606	6-2063
Seq.3	4-16	5-4206	8-1862	3-5240	3-6781
Seq.4	2-22	4-3963	9-1105	2-7151	4-5605
Seq.5	7-3	7-3117	54-113	23-473	24-449
Seq.6	5-13	3-2838	19-370	10-1538	7-1468
Seq.7	6-4	6-587	139-45	45-272	43-193
The specificity of these sequences was evaluated by APAA. Equal concentration of each sequence (in binding buffer) was separately incubated with the four types of steroid-magnetic beads (control/negative, progesterone, testosterone and estradiol) used during the selection for 30 min at 22°C under tilt rotation. After thorough washing, the resuspended beads were amplified and the relative binding of each sequence to each steroid was evaluated using APAA. The results are shown in Figure S5.

Figure S5. Specificity of the most abundant sequences (Seq.1 – Seq.7) in the E2-R11 and E2-R13 pools evaluated by APAA. P4, T and E2 refer to progesterone, testosterone and estradiol steroids, respectively immobilized on magnetic beads.

In order to select highly specific sequences for each target, sequences with preferential abundance in only one of the target pools were identified. To achieve this, identical sequences in each dataset from the last selection round (E2-R15, P4-R15 and T-R15) were collapsed into single sequences. Then, the top 100 sequences from each dataset with most copies were combined and collapsed again. Sequences with only one copy, corresponding to sequences with presence in only one of the target pools, were chosen for further analysis. These selected sequences were named E1-E30, P1-P18 and T1-T7 and their sequences are shown in Tables S4–S6, respectively. Then, the number of copies of each of these sequences within the first megabyte of the raw data from the last selection round for each target (E2-R15, P4-R15 and T-R15) was manually counted. The objective was to find sequences with preferential abundance in the desired target pool compared to the other two non-target pools. The ranking and number of copies of the selected sequences can be found in Table S7. Multiple sequence alignment using the external tool Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) was then performed to identify sequence families and facilitate the selection of aptamer candidates for characterization. This clustering into sequence families is shown in Figure S6 whereas the sequences of the final selected aptamer can be found in Table S8 and their predicted structures in Figure S7.
ID	Sequence (5' to 3')
E1	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E2	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E3	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E4	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E5	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E6	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E7	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E8	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E9	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E10	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E11	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E12	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E13	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E14	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E15	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E16	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E17	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E18	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E19	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E20	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E21	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E22	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E23	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E24	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E25	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E26	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E27	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E28	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E29	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
E30	TAGGGAAAGGAGAGCGGAGTACATGTAAGCGGAGGCTGAGCTCCGAGGAGCTGAGCTCAGGAGTGCAGCAGCAGGAGT
ID	Sequence (5' to 3')
----	-------------------
P1	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P2	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P3	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P4	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P5	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P6	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P7	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P8	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P9	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P10	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P11	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P12	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P13	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P14	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P15	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P16	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P17	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
P18	TACGAGAAGAAAGGACATATGACATATCTCTGCGAAGCTATGTCATGCCAACATTCATCAGGTCTGTTCTCAGGCTCTGACTAGTACATGACCACTTGAGG
Table S7. Ranking and abundance of the candidate sequences with preferential abundance in each target pool. The first number denotes the ranking and the second one the number of copies of each sequence.

Sequence ID	Estradiol (E2-R15)	Progesterone (P4-R15)	Testosterone (T-R15)
E1	46-132	235-27	130-53
E2	41-153	419-14	157-43
E3	69-90	761-7	202-31
E4	71-88	340-17	207-30
E5	43-142	434-14	139-50
E6	75-80	344-17	186-36
E7	100-60	298-20	206-31
E8	44-135	204-31	127-55
E9	22-304	181-36	110-66
E10	80-74	1519-4	583-11
E11	79-76	11213-1	501-12
E12	101-60	734-8	165-40
E13	55-109	512-11	179-37
E14	58-108	308-19	240-26
E15	94-65	1138-5	437-14
E16	74-82	1735-3	239-26
E17	40-128	336-18	169-39
E18	48-123	186-34	150-46
E19	73-85	946-6	359-17
E20	95-63	491-12	159-43
E21	50-108	342-17	131-53
E22	68-100	284-21	210-30
E23	99-60	1163-5	387-16
E24	64-102	576-10	163-42
E25	84-71	2266-3	389-16
E26	60-108	1563-4	181-37
E27	88-69	737-8	525-12
E28	90-68	792-7	1295-5
E29	38-165	1064-5	373-16
E30	56-109	239-27	189-36
P1	684-7	68-142	171-38
P2	318-18	94-91	102-76
P3	467-12	78-123	160-43
P4	461-12	98-87	164-40
P5	-	80-121	168-39
P6	421-13	96-89	7997-1
P7	281-19	72-137	112-65
P8	604-8	95-89	148-46
P9	318-17	87-102	167-39
P10	246-23	64-150	108-67
P11	430-13	65-147	113-65
P12	2663-2	99-83	248-23
P13	1254-4	71-138	138-50
P14	319-17	93-91	122-56
P15	524-10	60-161	123-56
P16	501-11	89-100	134-72
P17	365-15	76-124	115-61
P18	228-25	84-109	103-76
T1	206-28	125-66	90-84
T2	213-27	120-68	77-101
T3	256-21	112-72	89-84
T4	249-22	140-54	95-79
T5	164-34	107-76	75-103
T6	575-9	133-59	101-76
T7	208-27	124-66	84-91
Figure S6. Multiple sequence alignment of the candidate sequences with preferential abundance in each target pool. The sequence families are boxed and the selected aptamers are highlighted.
Table S8. Sequences of the selected aptamers.

Target	Aptamer	Sequence (5’ – 3’)	Length (nt)
Estradiol	E11	TAGGGAAGAGAAGGACATATGATAATCATGTCTGACC GGAGGCTGACCCGAAATGAGGAAATTCGTACCATTGACT AGTACATGACCACCTTA	
	E26	TAGGGAAGAGAAGGACATATGATCTCTGACC GGAGGCTGACCGAAGTGAGGAATTCGTACCTATTGACTAGTACAT GACCACCTTA	
	E28	TAGGGAAGAGAAGGACATATGATACATATCCGAAGGGTCCTGACC GGAGGCTGACCGAAGTGAGGAATTCGTACCTATTGACTAGTACAT GACCACCTTA	
Progesterone	P5	TAGGGAAGAGAAGGACATATGATACCTCCGAAATGATCATGAGCAGTGACC GGAGGCTGACCGAAGTGAGGAATTCGTACCTATTGACTAGTACAT GACCACCTTA	
	P6	TAGGGAAGAGAAGGACATATGATCGAGGTACTCCTTCACTACGTACGTTCCCTGACC GGAGGCTGACCGAAGTGAGGAATTCGTACCTATTGACTAGTACAT GACCACCTTA	
Testosterone	T6	TAGGGAAGAGAAGGACATATGATGCGTGAATACAGGCCGTCCGCTCCGCTTTGACTAGTACATGACCACCTTA	86
Figure S7. Predicted structures of the selected steroid aptamers using the mfold server. Calculations were made at 25°C, 100 mM NaCl and 2 mM MgCl₂.
S5. Determination of the binding affinity (K_D) of the aptamer candidates by different approaches.

The affinity of the different aptamer candidates was evaluated three different approaches: Apta-PCR Affinity Assay (APAA), bead-Enzyme Linked Aptamer Assay (bead-ELAA) and plate-Enzyme Linked Aptamer Assay (plate-ELAA). The format of each assay and the binding curves are shown in Figure S8.

Figure S8. Binding curves used for the calculation of the binding affinity (K_D) of the candidate aptamers using (a) APAA, (b) bead-ELAA and (c) plate-ELAA. The format of each assay is also shown.
S6. Competitive plate-ELAA for steroid detection

A competitive plate-ELAA assay was designed for the detection of steroids using the selected aptamers and the format is shown in Figure S9.

Figure S9. Competitive plate-ELAA for steroid detection.

(a) Optimisation of conditions for the immobilisation of the steroids on maleimide-activated plates

Different amino-thiol compounds and concentrations of the CMO-steroid derivatives were evaluated in order to optimise the immobilisation of the steroids on maleimide-activated microtitre plate wells. The objective was the optimal detection of the steroids using a biotin-modified aptamer. The compounds evaluated were cysteamine (C2 spacer arm) and 11-amino-1-undecanethiol (C11 spacer arm) which were prepared at 100 µM in PBS and they were incubated in the maleimide-activated wells overnight at 4°C. Unreacted maleimide groups were blocked with sulfo-NHS-acetate (1 mM in 1 M sodium carbonate) whereas 100 - 1000 µM of the CMO-steroid, pre-activated with EDC/NHS, was added to the plate and incubated for 1 h. Detection of the steroid was performed with the biotin-modified aptamer (0 – 100 nM) in combination with streptavidin-polyHRP (80 HRP molecules per streptavidin molecule) and the results are shown in Figure S10. The incubation was performed at 22°C under mild agitation. 11-Amino-1-undecanethiol was finally chosen for the assays in combination with 100 µM of CMO-steroid derivative.
Figure S10. Steroid detection of steroid immobilised on microtitre plates using a biotin-modified aptamer. The amino-thiols (a) cysteamine and (b) 11-amino-1-undecanethiol were used for the immobilisation of the CMO-steroid derivative (100 or 1000 µM) on maleimide-activated plate.

(b) Duration of the incubation steps

Using the optimal conditions for steroid immobilisation, the competitive plate-ELAA assay was then optimised in terms of duration of the incubation steps. Both the pre-incubation of the aptamer with the free steroid (”pre-incubation step”) and the subsequent incubation of the aptamer-steroid mixture on the plate containing immobilised steroid (”incubation step”) were simultaneously varied from 5 min to 30 min. All the incubation steps were performed at 22ºC under tilt rotation or mild agitation. The calibration curves are shown in Figure S11 and the sensitivity achieved (LODs) in Table S9.
Figure S11. Optimisation of the duration of the incubation steps for optimal detection of steroids with a competitive plate-ELAA using a biotin-aptamer. The times on the graphs refer to pre-incubation time – incubation time. The optimisation was performed for estradiol detection using the biotin-E28 aptamer.

Table S9. Effect of pre-incubation and incubation time on the sensitivity of estradiol detection with the competitive plate-ELAA using the biotin-E28 aptamer. ND: not determined.

Pre-incubation (min)	Incubation (min)	LOD (R²)			
	5	14.5 nM (0.9977)	62.4 nM (0.9920)	174.0 nM (0.9928)	565.4 nM (0.9901)
	10	198.3 nM (0.9833)	80.3 nM (0.9863)	ND	ND
	20	277.9 nM (0.9817)	ND	358.3 nM (0.9758)	ND
	30	179.2 nM (0.9887)	ND	ND	322.4 nM (0.9813)
(c) Assay temperature

The effect of the temperature, used to perform all the incubation steps, on the performance of the competitive assays for steroid detection was evaluated. The temperatures tested were 22°C and 37°C using optimised times for the pre-incubation and incubation steps (10 min each) and the results are shown in Figure S12.

![Graph showing the effect of temperature on assay performance](image)

Figure S12. Effect of the temperature on the performance of the competitive plate-ELAA for estradiol detection using the biotin-E28 aptamer.

Assay temperature	LOD (µM)	R²
22°C	0.080	0.9863
37°C	1.079	0.9887

(d) Biotin-aptamers concentration

The concentration of each aptamer used in the final competitive plate-ELAA assays was optimised as follows: a direct assay was initially performed using varying concentrations of the biotin-aptamer for the detection of the steroid immobilised on a microtitre plate. After a 10-min incubation step at 22°C (1st incubation), the supernatant from each well containing unbound aptamer was transferred to a fresh microtitre plate with immobilised steroid and the incubation step was repeated (2nd incubation). Both plates were finally incubated with the streptavidin-polyHRP and signal was obtained after the addition of TMB substrate. The concentrations of aptamer for which the signal difference between the first and the second incubation was largest (2 – 4 distinct concentrations for each aptamer) were then used and the same 2-step assay was repeated in order to choose the final concentration of aptamer for the competitive assays. The assay was performed for all aptamers: E11, E26 and E28 for estradiol, P5 and P6 for progesterone and T6 for testosterone. As an example, Figure S13 shows the results obtained for the estradiol E28 aptamer, whereas the concentrations of all aptamers used for the final assays are shown in Table S10.
Figure S13. Optimisation of aptamer concentration used for the competitive plate-ELAA assays for steroid detection. Aptamer E28 is shown as an example for estradiol detection using (A) a wide range of aptamer concentrations and (B) selected aptamer concentrations for which the signal difference between the two incubations was greatest.

Table S10. Concentrations of the aptamers used for the competitive plate-ELAA for steroid detection.

Steroid target	Aptamer candidate	Biotin-Aptamer concentration (nM)
Estradiol	E11	3.0
	(T15)-E26	2.0
	E28	12.5
Progesterone	P5	0.5
	P6	0.8
Testosterone	T6	2.0
S7. Evaluation of previously reported steroid-binding aptamers with the plate-ELAA.

Previously reported steroid-binding aptamers were evaluated with the plate-ELAA developed in this work. The aim was to compare their binding affinity with the newly developed aptamers. The aptamers evaluated were: the estradiol-binding aptamers reported by Kim et al.3 and Alsager et al.4, the progesterone aptamer reported by Contreras Jiménez et al.5 and the testosterone T5 aptamer reported by Skouridou et al.1 The binding curves and the calculated affinity (K_D) of these aptamers for their respective target are shown in Figure S14.

![Binding curves of previously reported aptamers with their cognate steroid target](image)

Figure S14. Binding curves of previously reported aptamers with their cognate steroid target: (a) Kim estradiol aptamer; (b) Alsager estradiol aptamer; (c) P4G13 progesterone aptamer; (d) T5 testosterone aptamer.
S8. References

(1) Skouridou, V.; Jauet-Rubio, M.; Ballester, P.; Bashammakh, A. S.; El-Shahawi, M. S.; Alyoubi, A. O.; O’Sullivan, C. K. Selection and characterization of DNA aptamers against the steroid testosterone. *Microchim. Acta* **2017**, *184*, 1631–1639.

(2) Svobodova, M.; Skouridou, V.; Botero, M. L.; Jauet-Rubio, M.; Schubert, T.; Bashammakh, A. S.; El-Shahawi, M. S.; Alyoubi A. O.; O’Sullivan, C. K. The characterization and validation of 17ß-estradiol binding aptamers. *J. Steroid Biochem. Mol. Biol.* **2017**, *167*, 14–22.

(3) Kim, Y. S.; Jung, H. S.; Mastuura, T.; Lee, H. Y.; Kawai, T.; Gu, M. B. Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip. *Biosens. Bioelectron.* **2007**, *22*, 2525–2531.

(4) Alsager, O. A.; Kumar, S.; Willmott, G. R.; McNatty, K. P.; Hodgkiss, J. M. Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles. *Biosens. Bioelectron.* **2014**, *57*, 262–268.

(5) Contreras Jimenez, G.; Eissa, S.; Ng, A.; Alhadrami, H.; Zourob, M.; Siaj, M. Aptamer-based label-free impedimetric biosensor for detection of progesterone. *Anal. Chem.* **2015**, *87*, 1075–1082.