SPAK and OSR1 Dependent Down-Regulation of Murine Renal Outer Medullary K⁺ Channel ROMK1

Bernat Elvira a Carlos Munoz b Jose Borras a Hong Chen a Jamshed Warsi a Sumant Singh Ajay a Ekaterina Shumilina a Florian Lang a

a Department of Physiology I, University of Tübingen, Tübingen, Germany; b Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland

Key Words
K⁺ channel • Oxidative stress-responsive kinase 1 • Renal tubule • SPS1-related proline/alanine-rich kinase • WNK

Abstract
Background/Aims: The kinases SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) participate in the regulation of the NaCl cotransporter NCC and the Na⁺,K⁺,2Cl⁻ cotransporter NKCC2. The kinases are regulated by WNK (with-no-K[Lys]) kinases. Mutations of genes encoding WNK kinases underly Gordon's syndrome, a monogenic disease leading to hypertension and hyperkalemia. WNK kinases further regulate the renal outer medullary K⁺ channel ROMK1. The present study explored, whether SPAK and/or OSR1 have similarly the potential to modify the activity of ROMK1. Methods: ROMK1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active T233E-SPAK, catalytically inactive D212A-SPAK, wild-type OSR1, constitutively active T185E-OSR1 and catalytically inactive D164A-OSR1. Channel activity was determined utilizing dual electrode voltage clamp and ROMK1 protein abundance in the cell membrane utilizing chemiluminescence of ROMK1 containing an extracellular hemagglutinin epitope (ROMK1-HA). Results: ROMK1 activity and ROMK1-HA protein abundance were significantly down-regulated by wild-type SPAK and T233E-SPAK, but not by D212A-SPAK. Similarly, ROMK1 activity and ROMK1-HA protein abundance were significantly down-regulated by wild-type OSR1 and T185E-OSR1, but not by D164A-OSR1. Conclusion: ROMK1 protein abundance and activity are down-regulated by SPAK and OSR1.

Copyright © 2014 S. Karger AG, Basel

Bernat Elvira and Carlos Munoz contributed equally and thus share first authorship
Introduction

SPAK (SPS1-related proline/alanine-rich kinase) [1-3] and the related OSR1 (oxidative stress-responsive kinase 1) [4, 5] are both kinases participating in the regulation of ion transport and thus blood pressure. Activity of those kinases is under control of WNK (without-K[Klys]) kinases [1, 6-9], which are similarly powerful regulators of renal tubular ion transport and blood pressure [10-14]. SPAK and OSR1 up-regulate the NaCl (NCC) and Na⁺,K⁺,2Cl⁻ (NKCC) cotransporters [4-7, 10, 15-23]. Mutations of genes encoding WNK kinases underly Gordon’s syndrome, a monogenic disease leading to hypertension and hyperkalaemia [8, 9, 24, 25]. WNK kinases further regulate the renal outer medullary K⁺ channel ROMK [26, 27]. They do so by interacting with intersectin [21] and influencing clathrin-mediated endocytosis [26, 28]. Whether or not ROMK1 is, in addition, regulated by SPAK and/or OSR1 has, to the best of our knowledge, never been reported.

The present study thus explored, whether SPAK and/or OSR1 may modify the activity of the renal outer medullary K⁺ channel ROMK1.

Materials and Methods

Ethical Statement

All experiments conform with the ‘European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes’ (Council of Europe No 123, Strasbourg 1985) and were conducted according to the German law for the welfare of animals and the surgical procedures on the adult *Xenopus laevis* were reviewed and approved by the respective government authority of the state Baden-Württemberg (Regierungspräsidium) prior to the start of the study (Anzeige für Organentnahme nach §6).

Constructs

Constructs encoding wild-type ROMK1 or ROMK1 containing an extracellular hemagglutinin epitope (ROMK1-HA) [29], wild-type SPAK, constitutively active T233E SPAK, catalytically inactive D212A SPAK [6, 30], wild-type OSR1, constitutively active T185E OSR1, and catalytically inactive D164A OSR1 [31], were used for generation of cRNA as described previously [32]. The constructs were a kind gift from Dario Alessi (University of Dundee).

Voltage clamp in Xenopus oocytes

Xenopus oocytes were prepared as previously described [33, 34]. 5 ng cRNA encoding ROMK1 and 10 ng of cRNA encoding wild-type, constitutively active or inactive kinase were injected on the second day after preparation of the oocytes [35]. The oocytes were maintained at 17°C in ND96-A solution containing (in mM): 88.5 NaCl, 2 KCl, 1 MgCl₂, 1.8 CaCl₂, 5 HEPES, tetracycline (Sigma, 0.11 mM), ciprofloxacin (Sigma, 4 μM), gentamycin (Refobacin, 0.2 mM) and theophylin (Euphylong, 0.5 mM) as well as sodium pyruvate (Sigma, 5 mM) were added to the ND96, pH was adjusted to 7.5 by addition of NaOH. The voltage clamp experiments were performed at room temperature 4 days after the first injection [36]. ROMK1 channel currents were elicited every 20 s with 3 s pulses from -160 mV to +60 mV applied from a holding potential of -80 mV. Pulses were applied at 1 kHz and recorded with a Digidata A/D-D/A converter (1322A Axon Instruments) and Clampex 9.2 software for data acquisition and analysis (Axon Instruments) [37]. The control superfusate (ND96) contained (in mM): 93.5 NaCl, 2 KCl, 1.8 CaCl₂, 1 MgCl₂ and 5 HEPES, pH was adjusted to 7.4 by addition of NaOH. The flow rate of the superfusion was approx. 20 ml/min, and a complete exchange of the bath solution was reached within about 10 s.

Detection of ROMK1-HA cell surface expression by chemiluminescence

To determine ROMK1-HA cell surface expression by chemiluminescence, the oocytes were incubated with mouse monoclonal anti-HA antibody conjugated to horseradish peroxidase (1:1000, Miltenyi Biotec Inc, CA, USA). Individual oocytes were placed in 96 well plates with 20 μl of SuperSignal ELISA Femto Maximum Sensitivity Substrate (Pierce, Rockford, IL, USA) and chemiluminescence of single oocytes was quantified in a luminometer (Walter Wallac 2 plate reader, Perkin Elmer, Juegesheim, Germany) by integrating the signal over a period of 1 s. Results display normalized arbitrary light units. Integrity of the measured oocytes was assessed by visual control after the measurement to avoid unspecific light signals from the cytosol [38].
Statistical analysis

Data are provided as means ± SEM, n represents the number of oocytes investigated. All voltage clamp experiments were repeated with at least 3 batches of oocytes; in all repetitions qualitatively similar data were obtained. Data were tested for significance using ANOVA (Tukey test or Kruskal-Wallis test) or t-test, as appropriate. Results with p < 0.05 were considered statistically significant.

Results

The present study explored whether SPAK (SPS1-related proline/alanine-rich kinase) and/or OSR1 (oxidative stress-responsive kinase 1) participate in the regulation of the renal outer medullary K⁺ channel ROMK1. To this end, cRNA encoding ROMK1 was injected into Xenopus oocytes with or without additional injection of cRNA encoding either wild-type or mutant SPAK, or encoding wild-type or mutant OSR1. The K⁺ current (I⁺) in Xenopus oocytes injected with water (dotted bar), or expressing ROMK1 without (white bar) or with (black bar) additional coexpression of wild-type SPAK. For normalization, the individual currents at -20 mV were divided by the mean current at -20 mV of oocytes expressing ROMK1 alone. C: Arithmetic means ± SEM (n = 11-20) of the current (I) as a function of the potential difference across the cell membrane (V) in Xenopus oocytes injected with water (grey triangles) or expressing ROMK1 without (white squares) or with (black squares) additional coexpression of wild-type SPAK. * (p<0.05) indicates statistically significant difference from oocytes expressing ROMK1 alone.

Further experiments explored whether the effect of wild-type SPAK on ROMK1 was mimicked by the constitutively active T233E SPAK and/or the catalytically inactive D212A SPAK. As illustrated in Fig. 2, similar to coexpression of wild-type SPAK, coexpression of T233E SPAK significantly decreased I⁺. In contrast, catalytically inactive D212A SPAK was without significant effect on I⁺ (Fig. 2).

The effect of SPAK may have been due to inactivation of channel protein or due to down-regulation of channel protein in the cell membrane. Chemiluminescence was thus employed.
to quantify the ROMK1-HA protein abundance in the cell membrane. To this end, ROMK1 was tagged with an extracellular hemagglutinin epitope (ROMK1-HA) and the protein detected with an antibody directed against this epitope. As illustrated in Fig. 3, coexpression of wild-type SPAK decreased the ROMK1 protein abundance in the cell membrane of Xenopus oocytes.

Fig. 3. SPAK decreased ROMK1-HA protein abundance within the oocyte membrane. Arithmetic means ± SEM (n= 80-110) of normalized ROMK1-HA chemiluminescence in Xenopus oocytes injected with water (dotted bar), expressing ROMK1-HA alone (white bar), or expressing ROMK1-HA together with wild-type SPAK (black bar). For normalization, the chemiluminescence was divided by the chemiluminescence of oocytes expressing ROMK1-HA alone. *** (p<0.001) indicates statistically significant difference from oocytes expressing ROMK1-HA alone.

Similar experiments were performed to elucidate the effects of OSR1 on ROMK1 channel activity and protein abundance. As illustrated in Fig. 4, I_K in ROMK1 expressing oocytes was significantly decreased following coexpression of wild-type OSR1. The effect of wild-type OSR1 was again mimicked by coexpression of constitutively active T185E OSR1 (Fig. 5). In contrast, the catalytically inactive D164A OSR1 did not significantly modify I_K.
Fig. 4. Coexpression of wild type OSR1 decreased the K+ current in ROMK-expressing Xenopus oocytes. A: Representative original tracings showing currents in Xenopus oocytes injected with water (1), expressing ROMK1 alone (2) or expressing ROMK1 with additional coexpression of wild-type OSR1 (3). B: Arithmetic means ± SEM (n = 13-21) of the normalized I_K in Xenopus oocytes injected with water (dotted bar), or expressing ROMK1 without (white bar) or with additional coexpression of wild-type OSR1 (black bar). For normalization, the individual currents at -20 mV were divided by the mean current at -20 mV of oocytes expressing ROMK1 alone. C: Arithmetic means ± SEM (n = 13-21) of the I/V relationship in Xenopus oocytes injected with water (grey triangles) or expressing ROMK1 without (white circles) or with additional coexpression of wild type OSR1 (black circles). ** (p<0.01) indicates statistically significant difference from oocytes expressing ROMK1 alone.

Fig. 5. The effect of wild type OSR1 on ROMK1 was mimicked by constitutively active T185E OSR1 but not by inactive D164A OSR1. A: Representative original tracings showing currents in Xenopus oocytes injected with water (1), expressing ROMK1 alone (2), expressing ROMK1 together with constitutively active T185E OSR1 (3) or expressing ROMK1 with catalytically inactive D164A OSR1 (4). B: Arithmetic means ± SEM (n = 10-19) of the normalized I_K in Xenopus oocytes injected with water (dotted bar), expressing ROMK1 alone (white bar), expressing ROMK1 with constitutively active T185E OSR1 (1st black bar) or expressing ROMK1 with inactive D164A OSR1 (2nd black bar). For normalization, the individual currents at -20 mV were divided by the mean current at -20 mV of oocytes expressing ROMK1 alone. * (p<0.05) indicates statistically significant difference from oocytes expressing ROMK1 alone.
Again, chemiluminescence was employed to quantify the effect of wild-type OSR1 on ROMK1-HA protein abundance in the cell membrane of Xenopus oocytes. As illustrated in Fig. 6, coexpression of OSR1 decreased the ROMK1-HA protein abundance in the cell membrane.

Discussion

The present study reveals that both, SPAK and OSR1 are powerful potential regulators of ROMK1. Coexpression of wild-type or constitutively active SPAK or OSR1 leads to significant down-regulation of ROMK1. In contrast, ROMK1 is not significantly modified by the inactive SPAK and OSR1 mutants. Thus, kinase activity is required for the effect of SPAK and OSR1 on ROMK1.

The effects of SPAK and OSR1 on ROMK1 may contribute to the regulation of renal K+ elimination. Inhibition of ROMK1 channels in the luminal cell membrane are expected to decrease renal tubular K+ secretion and thus to foster renal K+ retention. The kinases could further regulate renal K+ excretion indirectly by stimulating the NaCl cotransporter and the Na+,K+,2Cl− cotransporter [4-7, 10, 15-23]. Enhanced NKCC2 activity fosters K+ retention by cellular uptake of luminal K+. Beyond that, the stimulation of NKCC and NCC leads to renal tubular Na+ retention, which decreases the delivery of Na+ to the principal cells of the distal nephron and thus curtails Na+ reabsorption and K+ secretion in the terminal nephron segment [39, 40]. However, preliminary observations did not reveal significant alterations of renal K+ excretion in mice expressing WNK insensitive SPAK (not shown). It must be kept in mind that SPAK and OSR may replace each other in the regulation of ROMK. Moreover, further kinases participating in the regulation of ROMK may prevent appreciable alterations of renal K+ elimination following altered function of SPAK and/or OSR1. Nevertheless, the in vivo significance of SPAK and/or OSR sensitive regulation of ROMK remains uncertain.

WNK kinases could modify renal K+ elimination in several ways, i.e. by direct regulation of ROMK1 [21, 26-28, 40], by modifying the serum & glucocorticoid inducible kinase [40], and by regulating SPAK and OSR1 [1, 6-9]. The hyperkalemia of Gordon’s syndrome [8, 9, 24, 25] may thus result from several complex ramifications of WNK dependent transport regulation rather than exclusively from direct influence on ROMK1 channel activity.

Conclusion

SPAK and OSR1 have both the potential to down-regulate ROMK1 and thus might contribute to the regulation of renal K+ elimination.
Disclosure Statement

The authors of this manuscript state that they do not have any conflict of interests and nothing to disclose.

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Ali Soleimanpour and Lejla Subasic and technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft, GRK 1302, SFB 773 B4/A1, La 315/13-3, and the Open Access Publishing Fund of Tuebingen University.

References

1 Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, Jovanovic A, O'Shaughnessy KM, Alessi DR: Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2010;2:63-75.
2 Castaneda-Bueno M, Gamba G: SPAKling insight into blood pressure regulation. EMBO Mol Med 2010;2:39-41.
3 Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, Sytwu HK, Uchida S, Sasaki S, Lin SH: SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 2010;21:1868-1877.
4 Lin SH, Yu IS, Jiang ST, Lin SW, Chu P, Chen A, Sytwu HK, Sohara E, Uchida S, Sasaki S, Yang SS: Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci USA 2011;108:17538-17543.
5 Villa F, Deak M, Alessi DR, van Aalten DM: Structure of the OSR1 kinase, a hypertension drug target. Proteins 2008;73:1082-1087.
6 Vitari AC, Deak M, Morrice NA, Alessi DR: The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 2005;391:17-24.
7 Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA, Karlsson HK, Alessi DR: Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J 2006;397:223-231.
8 Glover M, Zuber AM, O'Shaughnessy KM: Hypertension, dietary salt intake, and the role of the thiazide-sensitive sodium chloride transporter NCCl. Cardiovasc Ther 2011;29:68-76.
9 O'Reilly M, Marshall E, Speirs HJ, Brown RW: WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 2003;14:2447-2456.
10 Kahle KT, Rinhejrt J, Lifton RP: Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta 2010;1802:1150-1158.
11 Flatman PW: Cotransporters, WNKs and hypertension: an update. Curr Opin Nephrol Hypertens 2008;17:186-192.
12 Furgerson SB, Linas S: Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol 2010;21:1842-1845.
13 Uchida S: Pathophysiological roles of WNK kinases in the kidney. Pflugers Arch 2010;460:695-702.
14 Wilson FJ, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussel B, Berland Y, Unwin BJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP: Human hypertension caused by mutations in WNK kinases. Science 2001;293:1107-1112.
15 Delpire E, Gagnon KB: SPAK and OSR1, key kinases involved in the regulation of chloride transport. Acta Physiol (Oxf) 2006;187:103-113.
16 Delpire E, Gagnon KB: SPAK and OSR1: STE20 kinases involved in the regulation of ion homeostasis and volume control in mammalian cells. Biochem J 2008;409:321-331.
17 Gimenez I: Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 2006;15:517-523.
18 Richardson C, Sakamoto K, de los HP, Deak M, Campbell DG, Prescott AR, Alessi DR: Regulation of the NKCC2 ion cotransporter by SPAK/OSR1-dependent and -independent pathways. J Cell Sci 2011;124:789-800.

19 Gagnon KB, Delpire E: On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+/K+/2Cl- cotransport activity. Am J Physiol Cell Physiol 2010;299:C614-C620.

20 Glover M, O’Shaughnessy KM: SPAK and WNK kinases: a new target for blood pressure treatment? Curr Opin Nephrol Hypertens 2011;20:16-22.

21 Huang CL, Yang SS, Lin SH: Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 2008;17:519-525.

22 Mercier-Zuber A, O’Shaughnessy KM: Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters. Curr Opin Nephrol Hypertens 2011;20:534-540.

23 Richardson C, Alessi DR: The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 2011;124:3293-3304.

24 Achard JM, Disse-Nicodeme S, Fiquet-Kempf B, Jeunemaitre X: Phenotypic and genetic heterogeneity of familial hyperkalaemic hypertension (Gordon syndrome). Clin Exp Pharmacol Physiol 2001;28:1048-1052.

25 Capasso G, Cantone A, Evangelista C, Zacchia M, Trepiccione F, Acone D, Rizzo M: Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Semin Nephrol 2005;25:419-424.

26 He G, Wang HR, Huang SK, Huang CL: Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest 2007;117:1078-1087.

27 Hoorn EJ, Nelson JH, McCormick JA, Ellison DH: The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol 2011;22:605-614.

28 Fang L, Garuti R, Kim BY, Wade JB, Wellin PA: The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney. J Clin Invest 2009;119:3278-3289.

29 Palmada M, Embark HM, Wyatt AW, Bohmer C, Lang F: Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K+ channel, ROMK1. Biochem Biophys Res Commun 2003;307:967-972.

30 Pathare G, Foller M, Michael D, Walker B, Hierlmeyer M, Mannheim JG, Pichler BJ, Lang F: Enhanced PFG23 serum concentrations and phosphaturia in gene targeted mice expressing WNK-resistant SPAK. Kidney Blood Press Res 2012;36:355-364.

31 Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voeldl J, Wagner CA, Bachmann S, Lang F: OSR1-Sensitive Renal Tubular Phosphate Reabsorption. Kidney Blood Press Res 2012;36:149-161.

32 Hosseinzadeh Z, Dong L, Bhavsar SK, Warsi J, Almilaji A, Lang F: Upregulation of peptide transporters PEP1T and PEPT2 by Janus kinase JAK2. Cell Physiol Biochem 2013;31:673-682.

33 Alesutan I, Sopjani M, Dermaku-Sopjani M, Munoz C, Voeldl J, Lang F: Upregulation of Na-coupled glucose transporter SGLT1 by Tau tubulin kinase 2. Cell Physiol Biochem 2012;30:458-465.

34 Henrion U, Zumhagen S, Steinke K, Strutz-Seebohm N, Stallmeyer B, Lang F: Overlapping cardiac phenotype associated with a familial mutation in the voltage sensor of the KCNQ1 channel. Cell Physiol Biochem 2012;29:809-818.

35 Hosseinzadeh Z, Bhavsar SK, Warsi J, Almilaji A, Lang F: Downregulation of ClC-2 by JAK2. Cell Physiol Biochem 2012;29:737-742.

36 Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shojaiefard M, Seebohm G, Foller M, Palmada M, Bohmer C, Broer S, Lang F: Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve. Cell Physiol Biochem 2012;30:1538-1546.

37 Mia S, Munoz C, Pakladok T, Siraskar G, Voeldl J, Alesutan I, Lang F: Downregulation of Kv 1.5 K channels by the AMP-activated protein kinase. Cell Physiol Biochem 2012;30:1039-1050.

38 Pakladok T, Almilaji A, Munoz C, Alesutan I, Lang F: PIKfyve sensitivity of hERG channels. Cell Physiol Biochem 2013;31:785-794.

39 Giebisch G, Wang W: Potassium transport: from clearance to channels and pumps. Kidney Int 1996;49:1624-1631.

40 Wang WH, Giebisch G: Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 2009;458:157-168.