Homogeneous Multifunction Devices Designing and Layered Implementing Based on Rotary Medium

Cheng-Fu Yang, Ming Huang, Jing-Jing Yang & Fu-Chun Mao

Multifunctional device with homogeneous anisotropic material parameters are proposed and designed based on linear transformation optics and rotary medium. Four examples including rotating concentrator, rotating amplifying device, rotating shrinking device and rotating transparent device are reported. All of them have bi-functional effects, i.e., they possess concentrating, amplifying, shrinking and transparent effects respectively while have the fields been rotated an angle of π/N simultaneously in common, where N is the sides number of polygon. All these devices have potential applications, such as energy accumulation or controlling, military camouflage, wireless communication system and radar/antenna protection. Furthermore, alternating isotropic layered structure based on effective medium theory is utilized to remove the anisotropic property of these devices. Simulation results show that the layered structure device behaves almost as perfect as the ideal one when it has sufficient divided layers. The feasibility of designing multifunctional device by natural isotropic materials instead of metamaterials with complicated artificial composite structure would dramatically reduce the fabrication difficulty and move the device a step further towards the practical application.

As a mathematical approach, Transformation Optics (TO) builds a bridge of electromagnetic field distribution and material parameters distribution, and provides a powerful and convenient way for the flexible design of metamaterial devices. The most striking device based on TO is invisible cloak, in which arbitrary objects become invisible for electromagnetic waves. The material parameters usually possess complex properties such as inhomogeneous and anisotropic, which are difficult for the fabrication and hinder the practical application in recent time. Besides invisible cloak, concentrator, transparent device, amplifying device, shrinking device and EM field rotator have also attracted widespread attention for their special functions and properties. For example, concentrator endows the capability to enhance the EM field distribution in the core region and has potential application in the harnessing of light in solar cells or similar devices, while transparent device has the capability to protect an antenna or other object inside the device without affecting their performance. Amplifying device or shrinking device can make an arbitrary shaped object virtually acts as another one with different material parameters and geometrical size, and have potential applications in military camouflage and other communication engineering fields. EM field rotator can rotate the internal propagation direction of EM waves and can be used in the antennas and wave-guiding device that provides an approach of polarization transformation. Furthermore, transformation optics has been employed to design communication devices, including beam synthesis/splitters, antennas and waveguides. However, it should be noted that most previous works simply investigated the single function of these devices and seldom considered the combining effective of them.

Recently, multifunctional devices have attained remarkable attention. The first multifunctional device was proposed by Zentgraf et al., where an optical device acts as a lens as well as a beam-shifter simultaneously was designed and experimentally verified. Later, by compositing the rotating and amplifying transformations, Zang et al. proposed a bi-functional device that can make an object been rotated and enlarged at the same time. However, due to the utilization of traditional radial based or folded geometrical transformations, the constitutive parameters of these bi-functional devices are inhomogeneous, anisotropic, and double negative, which hinder the
practical fabrication and application. By employing the TO method and complementary medium, Mei et al. reported another novel bi-functional devices that can act as reciprocal cloak as well as transparent device, even as an illusion cloak. In another ref., Mei et al. developed another homogeneous illusion device that possesses transformed and shifted scattering effect simultaneously. In a more recent reference, a homogeneous bi-functional device for rotator-concentrator was proposed based on multi-folded transformation optics, which has striking performance such as open-coating and remote control of EM filed. Though some of these striking devices have homogeneous parameters, the negative properties still a challenge for practical realization. The utilization of metamaterial may yield a path in manufacturing and applications, however, the narrow bandwidth and high loss of metamaterial stills a bottleneck. Thus, it is highly urgent to develop a multifunctional device with homogeneous isotropic and non-negative material parameters.

In this letter, based on the linear transformation optics, several novel kinds of homogeneous multi-functional devices served as rotational concentrator, rotational amplifying device, rotational shrinking device and rotational transparent device are investigated. The multi-functional performances of the proposed devices are validated by the finite element method. Furthermore, layered structures based on effective medium theory are employed to remove the anisotropic properties of these devices, thus making them possess simply homogeneous, isotropic and non-negative material parameters which dramatically reduce the difficulty in practical implementation. The feasibility of designing multifunctional device by natural isotropic materials instead of metamaterial with artificial composite structures would greatly reduce the fabrication difficulties and move the devices a step further towards practical application.

Results

Theoretical consideration. According to transformation optics, under a space transformation from the original coordinate \((x, y, z)\) to a new coordinate \([x'(x, y, z), y'(x, y, z), z'(x, y, z)]\), the permittivity and the permeability in the transformed space are given by

\[
\varepsilon' = \Lambda \varepsilon \Lambda^T / \det \Lambda, \quad \mu' = \Lambda \mu \Lambda^T / \det \Lambda
\]

where \(\varepsilon\) and \(\mu\) are the permittivity and permeability of the original space. \(\Lambda\) is the Jacobian transformation matrix with components \(\Lambda_{ij} = \partial x'_i / \partial x_j\) \((i, j \in x, y, z)\). \(\det \Lambda\) is the determinant of the matrix.

Firstly, we derive the material distribution of the rotational concentrator/amplifying device. Different from previous polygonal cross section metamaterial devices, we divided \(N\) regions in the original space into \(2N\) triangles and then utilize linear transformation optics to obtain the constitutive parameters of the desired device. Figure 1 demonstrates the schematic diagram of a rotational concentrator/amplifying device. Two steps are employed to achieve the goal. In the first step, a polygonal shell region consists of \(2N\) triangles in the original space are transformed into another one composes of \(2N\) triangles in intermediate space, which forms the rotational characteristics of the device. Take the triangle region \(\Delta a_i a_{i+1} b_i\) and region \(\Delta a_i b_i c_i\) in the original space as example: it is transformed into triangle \(\Delta a_i a_{i+1} b_{i+1}\) and \(\Delta a_i c_i c_{i+1}\) in intermediate (rotational) space respectively.

The transformation equation of triangle \(\Delta a_i a_{i+1} b_i\) to triangle \(\Delta a_i a_{i+1} b_{i+1}\) can be expressed as:

\[
x' = e_1 x + e_2 y + e_3, \quad y' = f_1 x + f_2 y + f_3, \quad z' = z
\]

where

Figure 1. Schematic of rotating concentrator/amplifying device. (a) original space, (b) intermediate space, (c) physical space. The quadrilateral region \(a_i a_{i+1} b_i b_{i+1}\) in (a) is firstly mapped into quadrilateral region \(a_i a_{i+1} b_{i+1} b_i\) in (b), and further mapped into the quadrilateral region \(a_i a_{i+1} c_i c_{i+1}\) in (c).
Similarly, the transformation equation of triangle $\triangle aibi+1$ to triangle $\triangle a ibibi+1$ can be expressed as:

$$
\begin{align*}
\begin{bmatrix} x' \\ y' \\ z'
\end{bmatrix} &=
\begin{bmatrix} g_1 & g_2 & 0 \\ h_1 & h_2 & 0 \\ 0 & 0 & 1
\end{bmatrix}^{-1}
\begin{bmatrix} x_a \\ y_a \\ 1
\end{bmatrix}
\end{align*}
$$

where

$$
\begin{align*}
\begin{bmatrix} g_1 \\ g_2 \\ g_3
\end{bmatrix} &= B^{-1}
\begin{bmatrix} x_a \\ y_a \\ 1
\end{bmatrix}
\quad \begin{bmatrix} h_1 \\ h_2 \\ 1
\end{bmatrix}
\begin{bmatrix} x_{b_i} \\ y_{b_i} \\ 1
\end{bmatrix}
\end{align*}
$$

The Jacobian matrix of equations (2) and (3) is given by:

$$
\Lambda_1 =
\begin{bmatrix}
e_1 & e_2 & 0 \\
e'_1 & e'_2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \Lambda_2 =
\begin{bmatrix}
g_1 & g_2 & 0 \\
h_1 & h_2 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

In the second step, the polygonal shell region in intermediate space is further expanded into a bigger one in physical space, as the triangles colored in yellow and red shown in Fig. 1(c). Thus, the core region in intermediate region is then compresses into a smaller region, as the blue colored region shown in Fig. 2(c). Take the triangle $\triangle aibi+1$ in intermediate space as example, it is transformed into triangle $\triangle aicici+1$ in physical space respectively.

The transformation equation of triangle $\triangle aibi+1$ to triangle $\triangle aicici+1$ can be expressed as:

$$
\begin{align*}
x'' &= k_1 x' + k_2 y' + k_3 \\
y'' &= l_1 x' + l_2 y' + l_3 \\
z'' &= z',
\end{align*}
$$

where

$$
\begin{align*}
\begin{bmatrix} k_1 \\ k_2 \\ k_3
\end{bmatrix} &= C^{-1}
\begin{bmatrix} x_a \\ x_{a_i} \\ x_{a_i+1}
\end{bmatrix}
\quad \begin{bmatrix} l_1 \\ l_2 \\ l_3
\end{bmatrix} = C^{-1}
\begin{bmatrix} x_a \\ y_a \\ 1
\end{bmatrix}
\begin{bmatrix} x_{b_i} \\ y_{b_i} \\ 1
\end{bmatrix}
\end{align*}
$$

And the triangle $\triangle aibi+1$ to triangle $\triangle aicici+1$ can be expressed as:
\[x'' = m_1 x' + m_2 y' + m_3, \\
\[y'' = n_1 x' + n_2 y' + n_3, \\
\[z'' = z', \\
\] (6)

where
\[
\begin{bmatrix}
 m_1 & n_1 \\
 m_2 & n_2 \\
 m_3 & n_3
\end{bmatrix} = D^{-1} \begin{bmatrix}
 x_{h_1} & y_{h_1} \\
 x_{h_{i+1}} & y_{h_{i+1}}
\end{bmatrix}, \\
D = \begin{bmatrix}
 x_h & y_h & 1 \\
 x_{h_{i+1}} & y_{h_{i+1}} & 1
\end{bmatrix}.
\]

The Jacobian matrix of equations (5) and (6) is given by:
\[
\Lambda_3 = \begin{bmatrix}
 k_1 & k_2 & 0 \\
 l_1 & l_2 & 0 \\
 0 & 0 & 1
\end{bmatrix}, \\
\Lambda_4 = \begin{bmatrix}
 m_1 & m_2 & 0 \\
 n_1 & n_2 & 0 \\
 0 & 0 & 1
\end{bmatrix}.
\] (7)

Then the constitutive permittivity and permeability of the triangle \(\Delta a_i c_{i+1} \) can be obtained by:
\[
\mu'_{\text{outer}} = \mu \left(\frac{(M_i^2 + M_{i+1}^2)/(M_i N_i - M_{i+1} N_{i+1})}{(M_i N_i + M_{i+1} N_{i+1})/(M_i N_i - M_{i+1} N_{i+1})} \right), \\
\varepsilon'_{\text{outer}} = \varepsilon^* (M_i N_i - M_{i+1} N_{i+1}).
\] (8)

where \(M_i = e_1 k_i + e_2 l_i, M_{i+1} = e_1 k_{i+1} + e_2 l_{i+1}, N_i = f_1 k_i + f_2 l_i, N_{i+1} = f_1 k_{i+1} + f_2 l_{i+1} \).

And the constitutive permittivity and permeability of the triangle \(\Delta a_{c_i} c_{i+1} \) can be obtained by:
\[
\mu'_{\text{inner}} = \mu \left(\frac{(M_i^2 + M_{i+1}^2)/(M_i N_i - M_{i+1} N_{i+1})}{(M_i N_i + M_{i+1} N_{i+1})/(M_i N_i - M_{i+1} N_{i+1})} \right), \\
\varepsilon'_{\text{inner}} = \varepsilon^* (M_i N_i - M_{i+1} N_{i+1}).
\] (9)

where \(M_i = g_1 m_i + g_2 n_i, M_{i+1} = g_1 m_{i+1} + g_2 n_{i+1}, N_i = h_1 m_i + h_2 n_i, N_{i+1} = h_1 m_{i+1} + h_2 n_{i+1} \).

For the core region of the rotational device, a big square with circum-radius \(b \) is compressed into a small square with circum-radius \(c \), and the transformation equations can be expressed as:
\[
x' = \frac{b}{c} x, \\
y' = \frac{b}{c} y, \\
z'' = z'.
\] (10)

Thus, the constitutive parameters of this core region will become:
\[
\mu'_{\text{core}} = \mu, \\
\varepsilon'_{\text{core}} = (b/c)^2 \varepsilon,
\] (11)

where \(\mu \) and \(\varepsilon \) are the relative permeability and permittivity of the air, and are set to \(\mu = \varepsilon = 1 \) during the simulation. Since the core region of the device in physical space is transformed from a larger one in virtual space, an object in this region will looks like another bigger one visually.

Secondly, we present the material distribution of rotational shrinking device. Similar as the rotational amplifying device, two steps are needed to obtain the rotational shrinking device. Figure 2 displays the schematic diagram of the rotational shrinking device. The goal of the first step is to obtain the rotational performance of the device, which can be easily obtained by transform triangle \(\Delta a_1 a_i c_i \) and \(\Delta a_{c_i} c_{i+1} \) in original space into triangle \(\Delta a_1 a_{i+1} c_{i+1} \) and \(\Delta a_{c_i} c_{i+1} \) in intermediate (rotational) space, as shown in Fig. 2(a) and (b). From observing Fig. 1 and 2, it can be found that step one is almost identical. Thus, by simply replacing the vertexes’ coordinates of polygons, one can easily obtain the transformation equations and corresponding Jacobean matrices as given in Eqs (2)–(4), where
\[
\begin{bmatrix}
 x_{a_1} & y_{a_1} \\
 x_{a_{i+1}} & y_{a_{i+1}} \\
 x_{c_{i+1}} & y_{c_{i+1}}
\end{bmatrix}, \\
\begin{bmatrix}
 y_{a_1} & x_{a_1} \\
 y_{a_{i+1}} & x_{a_{i+1}} \\
 y_{c_{i+1}} & x_{c_{i+1}}
\end{bmatrix}, \\
\begin{bmatrix}
 y_{a_1} & x_{a_1} \\
 y_{a_{i+1}} & x_{a_{i+1}} \\
 y_{c_{i+1}} & x_{c_{i+1}}
\end{bmatrix}
\]

Similarly, the transformation equations and corresponding Jacobean matrix can be given as Eqs (5)–(7) for step 2, by just replacing \(b_i, b_i+1 \) with \(c_i, c_{i+1} \), i.e.
The transformation equation of triangle \(\Delta d_1 d_2 d_3 \) in Fig. 3(b) is transformed into triangle \(\Delta d_1 d_2 d_3 \), and then further mapped into the quadrilateral region \(a_1 a_2 a_3 \) in (c). Simultaneously, the quadrilateral region \(a_1 a_2 a_3 \) in (c) is mapped into the quadrilateral region \(a_1 a_2 a_3 \) in (c).

Thus, the constitutive parameters of the outer and inner triangles can be calculated by Eqs (8) and (9).

However, for the core region of step 2, the small square region with circumscribed radius of \(c \) is expanded into a bigger one with circumscribed radius of \(b \), and the transformation equations can be expressed as:

\[
\begin{align*}
x' &= \frac{c}{b}x, \\
y' &= \frac{c}{b}y, \\
z'' &= z'.
\end{align*}
\]

Thus, the constitutive parameters of the core region will become as:

\[
\begin{align*}
\mu_{\text{core}}' &= 1, \\
\varepsilon_{\text{core}}' &= (c/b)^2 \varepsilon.
\end{align*}
\]

Next, we further derive the material distribution for rotational transparent device. To obtain a rotational transparent device, two steps are also needed, as shown in Fig. 3. The first step is to obtain a rotational medium that is exactly the same as the procedure of rotational shrinking device. Thus, we omit the description of this transformation.

However, in step 2, two sub stages are employed. In sub stage 1, a bigger polygonal shell region (as the green and orange colored regions shown in Fig. 3(b)) compresses into a smaller one (as the yellow and red colored regions shown in Fig. 3(c)). Next, we further derive the material distribution for rotational transparent device. To obtain a rotational transparent device, two steps are also needed, as shown in Fig. 3. The first step is to obtain a rotational medium that is exactly the same as the procedure of rotational shrinking device. Thus, we omit the description of this transformation.

In sub stage 2, a smaller polygonal shell which is bordered between \(d < r < c \) (as the gray colored region shown in Fig. 3(b)) is expanded to a big one that is bordered between \(d < r < b \) (as the dark blue and dark green colored regions shown in Fig. 3(c)). Thus, the constitutive parameters of the core region will become as:

\[
\begin{align*}
\mu_{\text{core}}' &= 1, \\
\varepsilon_{\text{core}}' &= (c/b)^2 \varepsilon.
\end{align*}
\]

The transformation equation of triangle \(\Delta d_1 d_2 d_3 \) to triangle \(\Delta d_1 d_2 d_3 \) can be expressed as:

\[
\begin{align*}
x'' &= \alpha_1 x' + \alpha_2 y' + \alpha_3, \\
y'' &= \beta_1 x' + \beta_2 y' + \beta_3, \\
z'' &= z'.
\end{align*}
\]

where

\[
\begin{bmatrix}
\alpha_1 & \beta_1 \\
\alpha_2 & \beta_2 \\
\alpha_3 & \beta_3
\end{bmatrix}
= E^{-1}
\begin{bmatrix}
x_d & y_d \\
x_h & y_h \\
x_{b_1} & y_{b_1}
\end{bmatrix},
\]

\[
E =
\begin{bmatrix}
x_d & y_d & 1 \\
x_h & y_h & 1 \\
x_{b_1} & y_{b_1} & 1
\end{bmatrix}.
\]

Then the constitutive parameters of triangle \(\Delta d_1 d_2 d_3 \) can be obtained as
\[
\mu_{i \text{-inner}}^{\prime} = \frac{\mu_{0} (\omega_{2}^{2} + \omega_{1}^{2}) / (\omega_{1} p_{1} + \omega_{2} p_{1}) r_{1}^{2}}{(\omega_{1} p_{1} + \omega_{2} p_{1}) / (\omega_{1} p_{2} + \omega_{2} p_{2})} = \mu_{0} (\omega_{2}^{2} + \omega_{1}^{2}) / (\omega_{1} p_{1} + \omega_{2} p_{1}) r_{1}^{2}
\]

\[
\varepsilon_{i \text{-inner}}^{\prime} = \frac{\varepsilon_{0} (\omega_{2}^{2} + \omega_{1}^{2}) / (\omega_{1} p_{1} + \omega_{2} p_{1}) r_{1}^{2}}{(\omega_{1} p_{1} + \omega_{2} p_{1}) / (\omega_{1} p_{2} + \omega_{2} p_{2})} = \varepsilon_{0} (\omega_{2}^{2} + \omega_{1}^{2}) / (\omega_{1} p_{1} + \omega_{2} p_{1}) r_{1}^{2}
\]

The transformation equation of triangle \(\Delta d_{i+1}d_{i+1}e_{i+1}\) to triangle \(\Delta d_{i+1}b_{i+1}\) can be expressed as:

\[
x'' = q_{1}x' + q_{2}y' + q_{3}, \quad y'' = r_{1}x' + r_{2}y', \quad z'' = z'.
\]

where

\[
[q_{1}, q_{2}, q_{3}] = F^{-1}[x_{d_{i+1}}, y_{d_{i+1}}] = F[x_{d_{i+1}}, y_{d_{i+1}}, 1].
\]

Then, the constitutive permittivity and permeability of the triangle \(\Delta d_{i+1}b_{i+1}\) can be obtained by:

\[
\mu_{i \text{-inner}}^{\prime} = \mu_{0} (\omega_{2}^{2} + \omega_{1}^{2}) / (\omega_{1} p_{1} + \omega_{2} p_{1}) r_{1}^{2}
\]

\[
\varepsilon_{i \text{-inner}}^{\prime} = \varepsilon_{0} (\omega_{2}^{2} + \omega_{1}^{2}) / (\omega_{1} p_{1} + \omega_{2} p_{1}) r_{1}^{2}
\]

For the regular \(n\)-sided polygonal multi-functional devices, polygon A, B, C and D share the same center at origin \((0, 0)\). Thus, the general expression of the \(i\)th vertex of polygon A, B, C and D can be defined as

\[
x_{ai} = a \cos \left((i - 1) \frac{2 \pi}{N} \right), \quad y_{ai} = a \sin \left((i - 1) \frac{2 \pi}{N} \right),
\]

\[
x_{bi} = b \cos \left((i - 1) \frac{2 \pi}{N} \right), \quad y_{bi} = b \sin \left((i - 1) \frac{2 \pi}{N} \right),
\]

\[
x_{ci} = c \cos \left((i - 1) \frac{2 \pi}{N} \right), \quad y_{ci} = c \sin \left((i - 1) \frac{2 \pi}{N} \right),
\]

\[
x_{di} = d \cos \left((i - 1) \frac{2 \pi}{N} \right), \quad y_{di} = d \sin \left((i - 1) \frac{2 \pi}{N} \right),
\]

where \(1 \leq i \leq N\), and \(a, b, c, d\) are the circum-radius of the \(i\)th vertex of polygon A, B, C and D respectively.

In order to confirm the effectiveness of the above mentioned material distributions of rotary mediums, numerical simulations are carried by finite element solve COMSOL Multiphysics under transverse electric (TE) wave irradiation with a frequency of 10 GHz.

Rotating concentrator. Firstly, the working functionality of rotating concentrator device is demonstrated in Fig. 4. The geometric parameters of the device are set as \(a = 8\ cm, b = 6\ cm,\) and \(c = 3\ cm\), where \(a, b, c\) are the circum-radius of polygon A, B and C respectively. From Fig. 4(a), it can be clearly seen that the EM field in the core region is rotated by an angle of \(\pi/4\), and is perpendicular to the incident wave direction. It is also observed that the rotational concentrator device itself is invisible since there is no scattering field outside the device. The EM field amplitude of the proposed device is equivalent to that in free space near the outer boundary of concentrator, which can be clearly seen from Fig. 4(c) where the electric field distribution is calculated at the observing line of \(y = 0\). Figure 4(d) demonstrates the total energy density distribution of the proposed rotational concentrator, where the white colored lines indicate the power flow direction. Obviously, the energy is mainly concentrated in the core region of the device, which implies the potential application of the proposed device in energy accumulation or store. Similar conclusion can be drawn from Fig. 4(f) where the total energy distribution is calculated from the observing line of \(y = 0\).

Since the constitutive parameters of the device are wholly depended on the vertexes of the polygons that are constants, they are homogeneous and anisotropic. Although homogeneous and anisotropic material makes the proposed device closer to practice, it is still difficult to fabricate. Fortunately, the anisotropic properties can be removed by utilizing alternating layered isotropic dielectrics based on effective medium theory. The corresponding rotation angle between the layer and horizontal direction can be uniquely determined by

\[
\theta_{i} = \tan^{-1} \left[2 \frac{\mu_{ij}^{\prime} / (\mu_{xx}^{\prime} - \mu_{yy}^{\prime})}{\mu_{xx}^{\prime} - \mu_{yy}^{\prime}} \right] / 2
\]

\[
\mu_{ij}^{A,B} = \mu_{ij}^{u} \pm \sqrt{\mu_{ij}^{u} (\mu_{xx}^{\prime} - \mu_{yy}^{\prime})}, \quad \varepsilon_{ij}^{A,B} = \varepsilon_{xx}
\]

where \(\mu_{ij}^{u} = [\mu_{xx}^{\prime} + \mu_{yy}^{\prime}] / 2, \quad \mu_{xx}^{\prime} = \sqrt{[\mu_{xx}^{\prime} - \mu_{yy}^{\prime}]^2 + 4 (\mu_{yy}^{\prime})^2} / 2\).

After detailed calculation, the layered material parameters of the rotational device are as follows:

For the outer triangles: \(\varepsilon_{ij}^{A} = 21.7707, \quad \varepsilon_{ij}^{B} = 0.0459, \quad \varepsilon_{xx} = 0.4\). For the inner triangles: \(\varepsilon_{ij}^{A} = 67.9264, \quad \varepsilon_{ij}^{B} = 0.0147, \quad \varepsilon_{xx} = 0.8\). The rotated angle between the layer and horizontal direction can be uniquely determined by Equation (19) for each triangle.
The distributions of electric field and total energy density of the layered rotating concentrator device are shown in Fig. 4(b) and (e), where the number of layers is chosen as \(N = 30 \), i.e., 30 layers for both medium A and medium B. It can be observed that disturbances occur in both near electric field and total energy density of the proposed layered device. However, it is small and negligible, as shown in Fig. 4(c) and (f). The main reasons for the disturbance may come from the meshing sizes of computation and/or the divided layers, and may be reduced by increasing the meshing grids or layered numbers, but it will take more computation time to converge to an optimal solution.

Rotating amplifying device. Secondly, we investigate the amplifying effect of the rotating concentrator. The core region of a concentrator is compressed from a bigger one, making it acts as an amplifying device as well as a concentrator or invisible cloak. Figure 5 demonstrates the functionality of the proposed rotating amplifying device. As an example, a small cup with the material parameter of \(\varepsilon_r = -4, \mu_r = 1 \) is put inside the core region of the proposed device, as shown in Fig. 5(a), which also displays the electric field distribution in the vicinity of the device. For computation, a bigger cup with material parameter of \(\varepsilon_r = -1, \mu_r = 1 \) is lied in free space and rotated by an angle of \(\pi/4 \) to that of the proposed device. The electric field in the vicinity of the cup is illustrated in Fig. 5(b). It is observed that the scattering fields of Fig. 5(a) and (b) are almost identical, which confirms the amplifying capability as well as rotating effect of the device. Furthermore, it also demonstrates the performance to make an object looks like another one with both different size and material parameter. It is believed that such characteristic may have potential applications in military camouflage or other communication engineering. For example, amplifying a missile or fighter equipment to deter enemy, or miniaturizing antennas while achieve high gains.

Layered structure based on effective medium theory is used to remove the anisotropic property of the proposed rotating amplifying device, where the layered material parameters are identical to that of rotating concentrator. Figure 5(c) demonstrates the electric field distribution in the vicinity of the layered device, where the number of divided layers is chosen as \(N = 30 \), i.e., 30 layers for both medium A and medium B. For the outer triangles, parameters of the isotropic materials are \(\varepsilon_A = 21.7707, \varepsilon_B = 0.0459, \varepsilon_{zz} = 0.4 \), for the inner triangles: \(\varepsilon_A = 67.9264, \varepsilon_B = 0.0147, \varepsilon_{zz} = 0.8 \). Making a comparison from Fig. 5(a)–(c), it can be clearly found that the scattering patterns of them are almost identical, which confirm the effectiveness of the layered structure device as well as an ideal one that successfully rotate and amplify target object coated by the device. To make a quantitatively comparison of them, the normalized far field is calculated, as shown in Fig. 5(d), where the red colored line, green colored line and blue colored line indicate the field of Fig. 5(b), (a) and (c) respectively. It is observed that they are almost overlapped together, which further confirms the effectiveness of the proposed rotating amplifying device.

Rotating shrinking device. In the following, we demonstrate another rotating medium that makes a bigger object looks like another smaller one, and rotates an angle simultaneously. The geometric parameters of the device are set as \(a = 8 \text{ cm}, b = 6 \text{ cm}, \) and \(c = 3 \text{ cm} \), where \(a, b, c \) are the circum-radius of polygon A, B and C respectively. Figure 6(a) shows the electric field distribution in the vicinity of the ideal rotating shrinking device where a big
bowl with material parameter of $\varepsilon_r = -0.25$, $\mu_r = 1$ is enclosed by the rotating medium. For comparison, a small bowl with material parameter of $\varepsilon_r = -1$, $\mu_r = 1$ is put in free space and rotated with an angle of $\pi/4$, as shown in Fig. 6(b). Obviously, the scattering fields of Fig. 6(a) and (b) are almost identical, which confirm the effectiveness of proposed rotating medium to shrink target object and rotate an angle visually at the same time.

Next, alternating layered structure is adopted to remove the anisotropic property. The alternating isotropic material medium of the outer triangles are obtained as $\varepsilon^A = 2.17707$, $\varepsilon^B = 0.0459$, while the inner triangles are $\varepsilon^A = 67.9264$, $\varepsilon^B = 0.0147$, $\varepsilon_{zz} = 1.25$. Similarly, the rotational angle between the alternative layer and horizontal direction can be easily obtained from Equation (19).

It is clear that all isotropic mediums utilized are nonnegative, which allows the device to be fabricated by natural materials. 30 layers for both isotropic medium A and B are utilized in the simulation. Figure 6(c) demonstrates the electric field distribution in the vicinity of the alternative layered structure device. From Fig. 6(a–c), it is found that the electric field distributions around the devices are nearly identical, which verify the effectiveness of the devices to shrink target object and to rotate an angle simultaneously. Moreover, normalized far fields of the ideal device, bare rotating bowls and alternative layered device are carried out to make a quantitative comparison, as the green colored dashed line, red colored line and blue colored dashed line shown in Fig. 6(d), respectively. They agree well with each other which confirm the correctness of the designing and the effectiveness of the proposed device. The small field disturbance of the layered structure device comes from the mesh size and divided layer which can be greatly reduced by using finer mesh and more stratification, but will take more computation time to obtain an optimal solution. Such rotating shrinking device may have potential applications in military camouflage or communication engineering, such as reduce the RCS of Radar or other target object.

Rotating transparent device. Finally, we utilize rotating medium to design a transparent device which possesses rotation and transparency properties simultaneously. Regularly 5-sided polygonal cross section with circum-radius of $a = 8\,\text{cm}$, $b = 6\,\text{cm}$, $c = 5\,\text{cm}$, and $d = 4\,\text{cm}$ are employed to design the device. Figure 7(a) demonstrates the electric field distribution in the vicinity of an ideal rotating transparent device, where a bowl with material parameter of $\varepsilon_r = 2.65 + 0.01j$, $\mu_r = 1$ is coated by the rotating medium. In Fig. 7(b), a bowl with identical size and material parameter is set in the free space but rotated with an angle of $\pi/5$. By comparing the electric field distributions of Fig. 7(a) and (b), it is found that they are identical, which confirms the transparent and rotary performance of the proposed device.
Similarly, we exploit alternative isotropic material layers to remove the anisotropic property of the proposed ideal rotating transparent device. After detailed calculation, the material parameters of the isotropic medium are obtained as follows:

For the outer triangles of the outer shell:
\[
\varepsilon_A^i = 2.54275, \varepsilon_B^i = 0.0393, \varepsilon_{zz} = 1.5.
\]

For the inner triangles of the outer shell:
\[
\varepsilon_A^i = 5.0310, \varepsilon_B^i = 0.02, \varepsilon_{zz} = 1.25.
\]

For the outer triangles of the inner shell:
\[
\varepsilon_A^i = 3.4583, \varepsilon_B^i = 0.2892, \varepsilon_{zz} = 0.4167.
\]

For the inner triangles of the inner shell:
\[
\varepsilon_A^i = 4.4467, \varepsilon_B^i = 0.2249, \varepsilon_{zz} = 0.5.
\]

The rotational angles also can be easily calculated from Equation (19). The number of divided layer is chosen as \(N = 30 \) for all alternative isotropic medium. Figure 7(c) demonstrates the near electric field distribution around the alternative layered structure device, which is also almost identical to that of the ideal one and confirms the correctness and effectiveness of the layered approach. We further calculate the normalized far field to make a quantitative comparison of them, as shown in Fig. 7(d), where green colored dashed line, red colored line and blue colored dashed line indicate the field distribution of the ideal rotary transparent device, the bare dielectric object and the layered structure device, respectively. Apparently, they agree well with each other. It is also found that the normalized far field of the layered structure device appeals subtle disturbance. However, it is very small and negligible. The almost perfect performance of the rotating transparent device has potential application, such as antenna protection and polarization transformation.

Effect of the loss tangent. Considering metamaterials are always lossy and narrow-banded, it is necessary to investigate the effects of loss on the proposed layered structure devices. For universal and brevity, we take the layered rotating shrinking device as example and demonstrates the near/far field distributions of the layered structure device in Fig. 6(c) when the alternatively layered isotropic medium have different loss tangents. Comparing Fig. 8(a)–(d), it can be found that the near electric field distribution appealed almost identical to the ideal layered one in Fig. 6(c) when the loss tangent are 0.0001, 0.001 and 0.01. However, the electric filed distribution is distorted when the loss tangent is about 0.1. To quantitatively evaluate the performance of different loss on
Figure 7. The electric field distribution of the proposed rotary transparent device. (a) The near field distribution of a bowl coated by the ideal rotating medium. (b) The near field distribution of a bare dielectric bowl. (c) The field distribution of the layered rotary transparent device. (d) The normalized far field distribution of (a), (b) and (c). The material parameter of the dielectric bowl is $\varepsilon_r = 2.65 + 0.01j$, $\mu_r = 1$.

Figure 8. The electric field distributions of layered rotating shrink device in Fig. 6(c) when loss tangent of the layered isotropic medium is (a) 0.0001, (b) 0.001, (c) 0.01 and (d) 0.1. (e) The normalized far field.
the proposed layered multifunctional device, the corresponding normalized far-field distributions in Fig. 8(a–d) are investigated, and the results are shown in Fig. 8(e). It is clear that the scattering pattern of the proposed layered rotating shrink device are overlapped when the loss tangent is less than 0.01. In order to obtain the proposed multifunctional devices with layered structure, the loss tangent should be smaller than 0.01 in practical engineering.

Discussion

In conclusion, we propose a new approach to design multifunctional rotary medium with homogeneous and anisotropic material parameters based on linear transformation optics. Four kinds of multifunctional devices have been reported. Rotary concentrator can enhance the EM energy density in the core region of the device while having the field been rotated at the same time, which has potential application in energy accumulation or store. Rotary amplifying device can rotate and amplify arbitrary object into another bigger one that of different sizes and material parameters, while the rotary shrinking device has the contrary performance. Rotary transparent device can rotate the electric field while keeping the device itself transparent and invisible. All these multifunctional devices may have potential applications in military camouflage or wireless communication systems. Furthermore, alternating layered structure based on effective medium theory has been utilized to remove the anisotropic properties of these devices, which produce a strategy to implement these devices by natural homogeneous and isotropic materials instead of metamaterials. We hope our work are helpful for speeding up the designing, fabrication and applications of multifunctional devices.

References

1. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780 (2006).
2. Leonhardt, U. Optical conformal mapping. Science 317, 1777 (2007).
3. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387 (2010).
4. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
5. Li, J. & Pendry, J. B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).
6. Lai, Y., Chen, H., Zhang, Z. Q. & Chan, C. T. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102, 093901 (2009).
7. Zhang, B., Luo, Y., Liu, X. & Rarbastaghi, G. Macroscopic invisibility cloak for visible light. Phys. Rev. Lett. 106, 033901 (2011).
8. Yang, Y. et al. Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase. Adv. Mater. 28, 8668–8671 (2016).
9. Zheng, B. et al. Concealing arbitrary objects remotely with multi-folded transformation optics. Light-Sci. Appl. 5, e16177 (2016).
10. Raiput, A. & Srivastava, K. V. Arbitrary Shaped Reciprocal External Cloak with Nonsingular and Homogeneous Material Parameters Using Expanding Coordinate Transformation. Plasmonics 12, 771–781 (2017).

11. Chen, M. et al. Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell. J. Opt. 20, 045608 (2018).
12. Liu, Y., Xu, J., Xiao, S., Chen, X. & Li, J. Metasurface approach to external cloak and designer cavities. ACS Photonics 5, 1749–1754 (2018).
13. Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photon. Nanostruct. Fundam. Appl. 6, 87 (2008).
14. Jiang, W. X. et al. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline modeling. Appl. Phys. Lett. 92, 264101 (2008).
15. Yang, J., Huang, M., Yang, X., Xiao, Z. & Peng, J. Metamaterial electromagnetic concentrators with arbitrary geometries. Opt. Express 17, 19656–19661 (2009).
16. Li, W., Guan, J. & Wang, W. Homogeneous-matериалs-constructed electromagnetic field concentrators with adjustable concentrating ratio. J. Phys. D: Appl. Phys. 44, 125401 (2011).
17. Li, T., Huang, M., Yang, J., Mu, S. & Lan, Y. Three dimensional electromagnetic concentrators with homogeneous material parameters. Prog. Electromagn. Res. 18, 119–130 (2011).
18. Zhao, P. F., Xu, L., Cai, G. X., Liu, N. & Chen, H. Y. A feasible approach to field concentrators of arbitrary shapes. Front. Phys. 13, 134203 (2018).
19. Yu, G. X., Cui, T. J. & Jiang, W. Design of Transparent structure using metamaterial. J. Infrared. Millim. TE 30, 633–641 (2009).
20. Mei, Z. L., Niu, T. M., Bai, J. & Cui, T. J. Design of transparent cloaks with arbitrarily inner and outer boundaries. J. Appl. Phys. 107, 124908 (2010).
21. Yang, J. J., Li, T. H., Huang, M. & Cheng, M. Transparent device with homogeneous material parameters. Appl. Phys. A 104, 733–737 (2011).
22. Li, T. H. et al. Inverse design-based metamaterial transparent device and its multilayer realization. Chin. Phys. B 23, 054102 (2014).
23. Wang, S. Y. & Liu, S. B. Amplifying device created with isotropic dielectric layer. Chin. Phys. B 23, 024104 (2013).
24. Jiang, W. X., Cui, T. J., Yang, X. M., Ma, H. F. & Cheng, Q. Shrinking an arbitrary object as one desires using metamaterials. Appl. Phys. Lett. 98, 204101 (2011).
25. Li, T., Huang, M., Yang, J., Zhu, W. & Zeng, J. A novel method for designing electromagnetic shrinking device with homogeneous material parameters. IEEE Trans. Magn. 49, 5280–5286 (2013).
26. Ya-Nan, G., Shao-Bin, L., Xin, Z., Shen-Yun, W. & Chen, C. Shrinking device realized by using layered structures of homogeneous isotropic materials. Chin. Phys. B 21, 064101 (2012).
27. Chen, H. & Chan, C. T. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 90, 241105 (2007).
28. Han, T. & Wu, Z. Electromagnetic wave rotators with homogeneous, nonmagnetic, and isotropic materials. Opt. Lett. 39, 3698–3701 (2014).
29. Zang, X., Huang, P. & Zha, Y. Optical illusions induced by rotating medium. Opt. Comm. 410, 977–982 (2018).
30. Yang, R. et al. Transformation-optical Fan-beam synthesis. Sci. Rep. 6, 20530 (2016).
31. Eskandari, H., Majedi, M. S. & Attari, A. R. Design of reflectionless non-magnetic homogeneous polarization splitters with minimum anisotropy based on transformation electromagnetics. JOSA B 34, 1191–1198 (2017).
32. Zang, X. et al. Broadband unidirectional behavior of electromagnetic waves based on transformation optics. Sci. Rep. 7, 40941 (2017).
33. Zang, K., Ding, X., Wu, D., Meng, F. & Wu, Q. Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics. Appl. Phys. Lett. 108, 053508 (2016).
34. Gabrielli, L. H., Liu, D., Johnson, S. G. & Lipson M. On-chip transformation optics for multimode waveguide bends. Nat. commun. 3, 1217 (2012).
35. Zentgraf, T., Valentine, J., Tapia, N., Li, J. & Zhang, X. An optical “Janus” device for integrated photonics. Adv. Mater. 22, 2561–2564 (2010).
36. Zang, X. & Jiang, C. A rotatable and amplifying optical transformation device. Opt. Soc. Am. B 28, 1082–1087 (2011).
37. Mei, J. S., Wu, Q. & Zhang, K. Multifunctional complementary cloak with homogeneous anisotropic material parameters. J. Opt. Soc. Am. A 29, 2067–2073 (2012).
38. Mei, J., Wu, Q. & Zhang, K. Novel multifunctional optical device with only axial material parameter spatially variant. Opt. Lett. 10, 071605 (2012).
39. Mei, J. S., Wu, Q., Zhang, K., He, X. J. & Wang, Y. Homogeneous illusion device exhibiting transformed and shifted scattering effect. Opt. Comm. 368, 113–118 (2016).
40. Madni, H. A. et al. Non-contact method to achieve bi-functional device for rotator-concentrator by using homogeneous materials with multi-folded transformation optics. arXiv preprint arXiv:1805.05403 (2018).
41. Wood, B., Pendry, J. B. & Tsai, D. P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006).

Acknowledgements
This work was funded by the National Natural Science Foundation of China (Grant Nos. 61461052, 11564044, 61863035), and was supported by the Key Program of Natural Science of Yunnan Province (Grant Nos. 2013FA006, 2015FA015), the Scientific Research Foundation of Yunnan University, the Technology Innovation and Entrepreneurship Plan for Students of Yunnan University.

Author Contributions
M.H. conceived the ideas. C.F.Y. did the theoretical calculations and the numerical simulations. J.J.Y. helped with the theoretical analysis and supervised the whole project. F.C.M. helped with the theoretical analysis and made the figures. C.F.Y., M.H., and J.J.Y. wrote the manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018