MIYAOKA-YAU INEQUALITY FOR COMPACT KÄHLER MANIFOLDS WITH SEMI-POSITIVE CANONICAL BUNDLE

RYOSUKE NOMURA

Abstract. In this paper, we prove the Miyaoka-Yau inequality for compact Kähler manifolds with semi-positive canonical bundle. The key point of the proof is the estimate for the L^2-norm of the scalar curvature along the Kähler-Ricci flow.

1. Introduction

Let X be a complex manifold of dimension n and K_X be the canonical bundle of X. The Miyaoka-Yau inequality is the following inequality for Chern classes of X which holds under suitable positivity condition on K_X:

$$(MY) \quad (2(n+1)c_2(X) - nc_1(X)^2) \cdot (-c_1(X))^{n-2} \geq 0.$$

In 1977, Yau [Yau77] showed (MY) under the ampleness of K_X and Miyaoka [Miy77] under the bigness of K_X and $n = 2$. After that, Y. Zhang [ZhaY09] obtained (MY) for smooth minimal projective varieties of general type and Guenancia-Taji [GT16] for minimal projective varieties. For more detailed historical account and related results, we refer to [GT16, Section 1]. We remark that all most all results for (MY) are proved under the projectivity assumption. Our motivation here is to extend it to compact Kähler manifolds. The main theorem is stated as follows:

Theorem 1.1. All compact Kähler manifolds with semi-positive canonical bundle satisfy (MY).

Here, semi-positive means that there exists a smooth Hermitian metric on K_X whose Chern curvature is semi-positive. It is natural to expect that (MY) holds even when compact Kähler manifolds with nef canonical bundle. However, in our argument, we only prove when K_X is semi-positive.

Before we outline the proof of Theorem 1.1, we fix some notations. Let X be a compact Kähler manifold of dimension n. For a Kähler form ω on X, we denote $\text{Rm}(\omega)$ the Riemann curvature tensor of ω, $\text{Ric}(\omega) \in 2\pi c_1(X)$ the Ricci curvature of ω, and $R(\omega)$ the scalar curvature of ω. The Kähler-Ricci flow starting from a Kähler form ω_0 is the smooth family $\{\omega_t\}_{t \geq 0}$ of Kähler forms satisfying

$$\begin{cases} \frac{\partial}{\partial t} \omega_t = -\text{Ric}(\omega_t) - \omega_t, \\
\omega_t|_{t=0} = \omega_0, \end{cases}$$

which we simply write ω_t.

For the proof of Theorem 1.1, we first note that since the case when K_X is nef and big (this condition is equivalent to K_X is semi-positive and big) is shown by [ZhaY09], we
only need to show (MY) if K_X is semi-positive and not big. We follow the argument in [ZhaY09]. The essential point of his proof is to reduce (MY) to the uniform boundedness of the scalar curvature along the Kähler-Ricci flow which is shown by [Zha09] when K_X is nef and big. In our setting, we need the following new scalar curvature estimate.

Theorem 1.2 (=Theorem 2.6). Let ω_0 be a Kähler form satisfying $[\omega_0] - 2\pi c_1(K_X) > 0$ and ω_t be the Kähler-Ricci flow starting from ω_0. Assume that K_X is semi-positive and not big. Then the following estimate holds:

$$\int_0^\infty dt \int_X R(\omega_t)^2 \omega_t^n < \infty.$$

For the proof, we consider the function $E(t)$ defined by

$$E(t) := \int_X \sqrt{-1} \partial f_t \wedge \bar{\partial} f_t \wedge \omega_t^{n-1},$$

where $f_t := \log(\omega_t^n/\Omega)$ and Ω is a volume form on X such that $-\text{Ric}(\Omega) \geq 0$. The function $E(t)$ is the Dirichlet norm of f_t and is also similar to the 1st derivative of the Mabuchi’s energy. The key observation is that the time derivative of $E(t)$ can be used to estimate the L^2-norm of the scalar curvature of ω_t.

We remark that Song-Tian [ST16] showed that if K_X is semi-ample, then the scalar curvature is uniformly bounded along the Kähler-Ricci flow. However, we cannot apply this result to our setting.

Acknowledgment The author would like to thank his supervisor Prof. Shigeharu Takayama for various comments. This work is supported by the Program for Leading Graduate Schools, MEXT, Japan.

2. Proof of the Theorems

We first recall the argument of [ZhaY09]. The following formula for Chern classes is well-known.

Proposition 2.1 (see [Kob87, Chapter 4]). For any Kähler form ω, the following estimate holds.

\[
(2(n + 1)c_2(X) - nc_1(X)^2) \cdot [\omega]^{n-2} \\
= \frac{1}{4\pi^2(n+1)} \int_X \left((n+1)|\text{Rm}^\omega(\omega)|^2 - (n+2)|\text{Ric}^\omega(\omega)|^2 \right) \omega^n \\
\geq \frac{1}{4\pi^2(n+1)} \int_X \left((n+1)|\text{Rm}^\omega(\omega)|^2 - (n+2) |\text{Ric}(\omega) + \omega|_\omega^2 \right) \omega^n.
\]

Here we set

$$\omega = \sqrt{-1}g_{i\bar{j}}dz^i \wedge d\bar{z}^j,$$

$$\text{Rm}(\omega)_{\bar{7}\bar{8}l} := \text{Rm}(\omega)_{\bar{7}\bar{8}l} - \frac{R(\omega)}{n(n+1)}(g_{\bar{7}\bar{8}}g_{l\bar{9}} + g_{l\bar{9}}g_{\bar{7}\bar{8}}),$$

$$\text{Ric}(\omega) := \text{Ric}(\omega) - \frac{R(\omega)}{n}\omega.$$
Thanks to this proposition, in order to prove (MY), we only need to find Kähler forms \(\{\omega_i\}_{i=1}^{\infty} \) satisfying
\[
\lim_{i \to \infty} [\omega_i] = -2\pi c_1(X) = 2\pi c_1(K_X),
\]
(2.2)

\[
\lim_{i \to \infty} \int_X |\text{Ric}(\omega_i) + \omega_i|_{\omega_i}^n \omega_i^n = 0.
\]
(2.3)

In the following argument, we will prove that the Kähler-Ricci flow \(\omega_t \) satisfies these two conditions.

We first recall the long time existence theorem for the Kähler-Ricci flow.

Theorem 2.4 ([TZ06]). For any Kähler form \(\omega_0 \), the Kähler-Ricci flow \(\omega_t \) starting from \(\omega_0 \) exists for \(t \in [0, \infty) \) if and only if the canonical bundle \(K_X \) is nef. Furthermore, in this setting, the cohomology class \(\alpha_t \) of \(\omega_t \) satisfies
\[
\alpha_t = e^{-t} [\omega_0] + (1 - e^{-t}) 2\pi c_1(K_X) \to 2\pi c_1(K_X) \text{ as } t \to \infty.
\]
In particular, the Kähler-Ricci flow \(\omega_t \) satisfies (2.2) if \(K_X \) is nef.

We now focus on (2.3). In general, it is a hard problem to estimate the Ricci curvature along the Kähler-Ricci flow. However, we can reduce (2.3) to the estimate for the scalar curvature. More precisely, we have the following proposition:

Proposition 2.5. If the canonical bundle \(K_X \) is nef, then there exists a constant \(C > 0 \) such that for any \(T > 0 \), we have the following estimate:
\[
\int_0^T dt \int_X |\text{Ric}(\omega_t) + \omega_t|_{\omega_t}^2 \omega_t^n \leq \int_0^T dt \int_X R(\omega_t)^2 \omega_t^n + C,
\]

Here \(C > 0 \) is a constant which depends only on the cohomology classes \([\omega_0]\) and \(c_1(K_X)\).

Proof. Recall that the scalar curvature and the volume form evolves as
\[
\frac{\partial}{\partial t} R(\omega_t) = \Delta_{\omega_t} R(\omega_t) + |\text{Ric}(\omega_t) + \omega_t|_{\omega_t}^2 - (R(\omega_t) + n),
\]
\[
\frac{\partial}{\partial t} \omega_t^n = -(R(\omega_t) + n)\omega_t^n,
\]
(for instance [BEG13, (3.56)]). Then, we get
\[
\int_X |\text{Ric}(\omega_t) + \omega_t|_{\omega_t}^2 \omega_t^n = \int_X \left(\frac{\partial}{\partial t} R(\omega_t) \right) \omega_t^n + \int_X (R(\omega_t) + n)\omega_t^n
\]
\[
= \left(\frac{d}{dt} \int_X R(\omega_t)\omega_t^n + \int_X R(\omega_t)(R(\omega_t) + n)\omega_t^n \right) - \frac{d}{dt} \int_X \omega_t^n
\]
\[
= \frac{d}{dt} \left(-n \left(2\pi c_1(K_X) \cdot \alpha_t^{n-1} \right) + \int_X R(\omega_t)^2 \omega_t^n - n^2 \left(2\pi c_1(K_X) \cdot \alpha_t^{n-1} \right) - \frac{d}{dt} \left(\alpha_t^n \right) \right)
\]
\[
\leq \frac{d}{dt} \left(-n \left(2\pi c_1(K_X) \cdot \alpha_t^{n-1} \right) + \int_X R(\omega_t)^2 \omega_t^n - \frac{d}{dt} \left(\alpha_t^n \right). \right.
\]
We remark that since \(K_X \) is nef and \(\alpha_t \) is Kähler, \((2\pi c_1(K_X) \cdot \alpha_t^{n-1}) \geq 0 \) holds for any \(t \geq 0 \). Therefore, by integrating with respect to \(t \), we obtain the conclusion. \(\square \)

The following new estimate gives the desired bound for the scalar curvature.
Theorem 2.6. Assume that the canonical bundle K_X is semi-positive and not big. Let ω_0 be a Kähler form on X satisfying $[\omega_0] - 2\pi c_1(K_X) > 0$ and ω_t be the Kähler-Ricci flow starting from ω_0. Let Ω be a smooth volume form on X such that $-\text{Ric}(\Omega) \geq 0$. We set f_t and $E(t)$ by

$$f_t := \log \frac{\omega_t^n}{\Omega}, \quad E(t) := \int_X \sqrt{-1} \partial f_t \wedge \bar{\partial} f_t \wedge \omega_t^{n-1}.$$

Then the following estimate holds:

$$\int_0^\infty dt \int_X R(\omega_t)^2 \omega_t^n \leq \frac{n}{2} E(0) + C,$$

where $C > 0$ is a constant depends only on ω_0 and $c_1(K_X)$.

Proof. We first note that f_t satisfies

$$\frac{\partial}{\partial t} f_t = \text{tr}_{\omega_t} \left(\frac{\partial}{\partial t} \omega_t \right) = -(R(\omega_t) + n), \quad \sqrt{-1} \bar{\partial} f_t = -\text{Ric}(\omega_t) + \text{Ric}(\Omega).$$

Then, we get the following:

$$\begin{align*}
\frac{d}{dt} E(t) &= -2 \int_X \partial_t f_t \sqrt{-1} \bar{\partial} f_t \wedge \omega_t^{n-1} \\
&\quad - \int_X f_t \sqrt{-1} \bar{\partial} f_t \wedge (n-1) \omega_t^{n-2} \wedge \frac{\partial}{\partial t} \omega_t \\
&= -2 \int_X -(R(\omega_t) + n)(-\text{Ric}(\omega_t) + \text{Ric}(\Omega)) \wedge \omega_t^{n-1} \\
&\quad + (n-1) \int_X \sqrt{-1} \partial f_t \wedge \bar{\partial} f_t \wedge \omega_t^{n-2} \wedge (-\text{Ric}(\omega_t) - \omega_t) \\
&\quad (2.7) = \frac{-2}{n} \int_X R(\omega_t)^2 \omega_t^n - 2 \int_X R(\omega_t)(-\text{Ric}(\Omega)) \wedge \omega_t^{n-1} \\
&\quad + (n-1) \int_X \sqrt{-1} \partial f_t \wedge \bar{\partial} f_t \wedge \omega_t^{n-2} \wedge (-\text{Ric}(\omega_t) - \omega_t).
\end{align*}$$

The second term of (2.7) is estimated as follows: Let $C > 0$ be a constant satisfying $R(\omega_t) \geq -C$ for $t \in [0, \infty)$ which always exists by a maximum principle argument and only depends on ω_0 (see [BEG13, Theorem 3.2.2]). Since the volume form Ω satisfies $-\text{Ric}(\Omega) \geq 0$, the second term is estimated as

$$\begin{align*}
\int_X R(\omega_t)(-\text{Ric}(\Omega)) \wedge \omega_t^{n-1} &= \int_X (R(\omega_t) + C)(-\text{Ric}(\Omega)) \wedge \omega_t^{n-1} - C \int_X (-\text{Ric}(\Omega)) \wedge \omega_t^{n-1} \\
&= \int_X (R(\omega_t) + C)(-\text{Ric}(\Omega)) \wedge \omega_t^{n-1} - C(2\pi c_1(K_X) \cdot \alpha_t^{n-1}) \\
&\geq -C(2\pi c_1(K_X) \cdot \alpha_t^{n-1}) \\
&\geq -C' e^{-(n-\nu)t},
\end{align*}$$

where ν is the numerical dimension of K_X, i.e. $\nu := \max\{k = 0, \ldots, n \mid (c_1(K_X)^k \cdot [\omega_0]^{n-k}) \neq 0\}$. Since K_X is not big, we have $\nu < n$.

The third term of (2.7) is less than or equal to zero since $[-\text{Ric}(\omega_t) - \omega_t] = -e^{-t}([\omega_0] - 2\pi c_1(K_X)) < 0$.

Therefore, we obtain
\[
\frac{d}{dt} E(t) \leq -\frac{2}{n} \int_X R(\omega_t) \omega_t^n + C' e^{-(n-\nu)t}.
\]
By integrating \(t \) from 0 to \(\infty \), we get the conclusion since \(E(t) \geq 0 \).
\[\square\]

Proof of Theorem 1.1. We assume that \(K_X \) is semi-positive and not big. Let \(\omega_t \) be the Kähler-Ricci flow as in Theorem 2.6. We now prove that \(\omega_t \) satisfies (2.2), (2.3). Proposition 2.4 and the semi-positivity of \(K_X \) imply (2.2). By Proposition 2.5 and Theorem 2.6 we have
\[
\int_0^\infty dt \int_X |\text{Ric}(\omega_t) + \omega_t|_{\omega_t}^2 \omega_t^n < \infty.
\]
Then, we can find a sequence \(\{t_i\}_{i=1}^\infty \subset \mathbb{R} \) such that \(t_i \to \infty \) as \(i \to \infty \) and \(\{\omega_{t_i}\}_{i=1}^\infty \) satisfies (2.3). Therefore, by Proposition 2.1, we obtain (MY).
\[\square\]

References

[BEG13] S. Boucksom, P. Eyssidieux, and V. Guedj (eds.), *An introduction to the Kähler-Ricci flow*, Lecture Notes in Mathematics, vol. 2086, Springer, Cham, 2013, [DOI: 10.1007/978-3-319-00819-6](https://doi.org/10.1007/978-3-319-00819-6), MR: 3202578.

[GT16] H. Guenancia and B. Taji, *Orbifold Stability and Miyaoka-Yau Inequality for minimal pairs*, arXiv:1611.05981 [math.AG].

[Kob87] S. Kobayashi, *Differential geometry of complex vector bundles*, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987, [DOI: 10.1515/9781400858682](https://doi.org/10.1515/9781400858682), MR: 909698.

[Miy77] Y. Miyaoka, *On the Chern numbers of surfaces of general type*, Invent. Math. **42** (1977), 225–237, https://doi.org/10.1007/BF01389789, MR: 0460343.

[ST16] J. Song and G. Tian, *Bounding scalar curvature for global solutions of the Kähler-Ricci flow*, Amer. J. Math. **138** (2016), no. 3, 683–695, [DOI: 10.1353/ajm.2016.0025](https://doi.org/10.1353/ajm.2016.0025).

[TZ06] G. Tian and Z. Zhang, *On the Kähler-Ricci flow on projective manifolds of general type*, Chinese Ann. Math. Ser. B **27** (2006), no. 2, 179–192, [DOI: 10.1007/s11401-005-0533-x](https://doi.org/10.1007/s11401-005-0533-x), MR: 2243679.

[Yau77] S.-T. Yau, *Calabi’s conjecture and some new results in algebraic geometry*, Proc. Nat. Acad. Sci. U.S.A. **74** (1977), no. 5, 1798–1799, [MR: 0451180](https://doi.org/10.1073/pnas.74.5.1798).

[Zha09] Z. Zhang, *Scalar curvature bound for Kähler-Ricci flows over minimal manifolds of general type*, Int. Math. Res. Not. IMRN (2009), no. 20, 3901–3912, [DOI: 10.1093/imrn/rmp073](https://doi.org/10.1093/imrn/rmp073), MR: 2541732.

[ZhaY09] Y. Zhang, *Miyaoka-Yau inequality for minimal projective manifolds of general type*, Proc. Amer. Math. Soc. **137** (2009), no. 8, 2749–2754, [DOI: 10.1090/S0002-9939-09-09883-4](https://doi.org/10.1090/S0002-9939-09-09883-4), MR: 2497488.

Graduate School of Mathematical Sciences, The University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan.
E-mail address: nomu@ms.u-tokyo.ac.jp