Consensus Virtual Screening Identified [1,2,4]Triazolo[1,5-b] isoquinolines As MELK Inhibitor Chemotypes

Anita Rácz, Roberta Palkó, Dorottya Csányi, Zsuzsanna Riedl, Dávid Bajusz,* and György M. Keserű
Table of contents

Table S1. Screening scores and single-point inhibition results of the selected virtual hits........3
Figure S1. Core chemotypes of the 64 virtual hits ...4
Figure S2. Dendrogram of the MELK structures ...4
Figure S3. ROC curves of the shape and pharmacophore screening steps5
Table S2. Purities and lab codes of the compounds ...5
Table S3. ChEMBL IDs of the active compounds of the retrospective training set6
HRMS spectra ...7
1H NMR spectra ...28
13C NMR spectra ...49
Table S1. Screening scores and single-point inhibition results of the selected virtual hits at 10μM concentration. Members of the [1,2,4]triazolo[1,5-b]isoquinoline series are highlighted in bold. Other compounds are color-coded to match the respective core chemotypes in Figure S1 with at least two occurrences in this list (the rest of the compounds are singletons). Inhibition values above 40% (compounds promoted to \(IC_{50}\) determination) are highlighted in green. Score values above the respective thresholds (promoting the compounds as virtual hits) are highlighted in green.

ID	Inh. %	Docking score (geom. mean)	Phase score	Shape similarity score	ID	Inh. %	Docking score (geom. mean)	Phase score	Shape similarity score
52	3	5.992	1.891	0.601	1384	-3	6.315	1.663	0.57
97	21	6.483	1.629	0.65	1418	8	5.699	1.959	0.766
229	10	6.683	1.883	0.574	1442	9	6.467	1.869	0.537
235	3	6.625	1.881	0.569	1458	22	6.624	2.029	0.682
244	8	7.052	1.91	0.552	1462	45	5.521	1.877	0.608
246	45	6.785	1.467	0.563	1480	20	6.98	1.401	0.676
248	13	6.978	1.948	0.573	1492	5	6.486	1.48	0.579
304	13	6.607	1.871	0.468	1496	9	7.037	1.894	0.468
342	-2	6.534	1.903	0.496	1514	1	5.754	1.868	0.642
496	4	6.055	1.96	0.766	1569	35	6.665	1.932	0.533
542	32	7.003	1.452	0.632	1696	3	6.211	1.941	0.489
572	12	6.65	1.623	0.567	1711	15	6.3	1.87	0.467
581	19	6.178	1.793	0.691	1731	17	6.727	1.87	0.511
595	25	7.086	1.858	0.866	1746	-4	6.147	1.87	0.44
638	15	7.357	1.858	0.701	1795	13	5.837	1.923	0.698
639	5	6.39	1.871	0.555	1805	12	5.281	1.911	0.577
657	-1	6.399	1.863	0.585	1828	13	5.745	1.912	0.603
669	16	6.132	1.891	0.658	1830	6	5.428	1.907	0.586
741	21	6.997	1.934	0.563	1855	51	7.039	1.442	0.647
742	7	5.566	1.885	0.595	1883	9	6.682	1.723	0.675
760	17	6.117	1.871	0.595	1939	56	7.185	1.865	0.735
761	5	6.861	1.951	0.578	2125	16	7.032	1.942	0.689
763	8	6.759	1.951	0.569	2126	51	6.91	1.892	0.695
779	54	7.071	1.842	0.689	2127	48	6.924	1.904	0.695
939	9	6.299	1.858	0.684	2128	39	6.988	1.923	0.695
980	14	6.042	1.948	0.579	2130	20	7.354	1.937	0.695
983	5	6.196	1.901	0.481	2131	45	7.312	1.892	0.695
1007	17	4.621	1.858	0.663	2136	35	6.916	1.872	0.694
1078	19	4.561	1.899	0.611	2137	18	6.939	1.955	0.694
1099	20	5.967	1.898	0.623	2142	46	7.029	1.897	0.73
1250	5	6.555	1.979	0.506	2145	15	6.933	1.92	0.654
1304	12	5.833	1.889	0.568	2147	33	6.968	1.912	0.654
Figure S1. Core chemotypes (Murcko scaffolds) of the 64 virtual hits with at least two occurrences in the hit-list (the rest of the virtual hits are singletons). Box colors match the color codes in Table S1.

Figure S2. Dendrogram of the MELK structures (23) resulting from the hierarchical clustering of their binding site residues (Euclidean distance, complete linkage).
Figure S3. ROC curves of the shape (A) and pharmacophore screening steps (B). The 4-point pharmacophore model selected for screening is shown as an inset of panel B, overlaid on a reference ligand (it features, from left to right, an H-bond donor, two aromatic rings and a hydrophobic group).

Table S2. Purities and lab codes of the compounds. Purities were determined with analytical HPLC/MS measurements on a Shimadzu LC-20AD liquid chromatograph pump system with a Shimadzu SPD-M20A photodiode array detector. A Shimadzu LCMS-2020 system was used for MS detection. Purities are reported as the percentage peak area of the compounds by UV detection at 254 nm.

#	ID	Purity (%)	#	ID	Purity (%)
1	779	98.6	12	2135	95.4
2	1939	98.4	13	2136	99.3
3	2125	98.3	14	2137	65.1
4	2126	87.6	15	2138	99.1
5	2127	99.5	16	2139	98.7
6	2128	98.5	17	2140	97.6
7	2130	99.0	18	2141	97.5
8	2131	99.3	19	2142	99.1
9	2132	99.6	20	2145	99.1
10	2133	92.2	21	2147	81.2
11	2134	93.0			
CHEMBL ID					
-----------	-----------	-----------	-----------	-----------	
CHEMBL3674298	CHEMBL3674348	CHEMBL3684195	CHEMBL3688361		
CHEMBL3674302	CHEMBL3679179	CHEMBL3684219	CHEMBL3688369		
CHEMBL3679182	CHEMBL3684227	CHEMBL3692801			
CHEMBL3679224	CHEMBL3684246	CHEMBL3692813			
CHEMBL3679226	CHEMBL3684252	CHEMBL3692837			
CHEMBL3679238	CHEMBL3684257	CHEMBL3822876			
CHEMBL3679269	CHEMBL3684285	CHEMBL3823597			
CHEMBL3679341	CHEMBL3684286	CHEMBL3823975			
CHEMBL3684156	CHEMBL3688345	CHEMBL4083922			
CHEMBL3684159	CHEMBL3688359	CHEMBL4088246			
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
------------	-----------------	-------------	-------------	-----	
C17 H14 N3	260.1187	-0.5725	-2.2012	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
---------	----------------	-------------	-------------	-----	
C19 H18 N3	288.15	-0.2727	-0.9465	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
---	---	---	---	---	
C17H13N3Cl	294.0798	-0.7002	-2.3812	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
---------------	-----------------	-------------	-------------	-----	
C₁₈ H₁₆ N₃ O	290.1293	-0.7373	-2.5413	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
----------	----------------	-------------	-------------	------	
C18 H16 N3 O	290.1293	-0.3373	-1.1626	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
-----------	-----------------	-------------	-------------	-----	
C18 H14 N3 O2	304.1086	-0.1018	-0.3349	13.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
--------------	-----------------	-------------	-------------	-----	
C18 H13 N3 F3	328.1061	-0.5572	-1.6985	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
-----------	-----------------	-------------	-------------	-----	
C18 H13 N3 F3	328.1061	-0.5572	-1.6985	12.5	
Formula	**Calculated mass**	**Error / mDa**	**Error / ppm**	**DBE**	
---	---	---	---	---	
C16 H13 N4	261.114	-0.4215	-1.6144	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
--------------	----------------	-------------	-------------	-----	
C16 H12 N4 Cl	295.075	-0.5492	-1.8613	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
-----------------	-----------------	-------------	-------------	-----	
C16 H13 N4	261.114	-0.1215	-0.4655	12.5	
C16 H12 N4 Na	283.0959	0.0337	0.1193	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
---------	----------------	-------------	-------------	-----	
C16 H13 N4	261.114	-0.3215	-1.2314	12.5	
Formula	Calculated mass	Error / mDa	Error / ppm	DBE	
------------	----------------	-------------	-------------	-----	
C17 H12 N3 Cl2	328.0408	0.072	0.2196	12.5	
Formula

Formula	Calculated mass	Error / mDa	Error / ppm	DBE
C17 H12 N3 Cl2	328.0408	0.072	0.2196	12.5
Formula	Calculated mass	Error / mDa	Error / ppm	DBE
------------	-----------------	-------------	-------------	-----
C18 H15 N3 CI	308.0954	-0.3503	-1.1371	12.5
Formula	Calculated mass	Error / mDa	Error / ppm	DBE
------------	-----------------	-------------	-------------	-----
C18 H15 N3 Cl	308.0954	-0.1503	-0.488	12.5
Formula	Calculated mass	Error / mDa	Error / ppm	DBE
---	---	---	---	---
C18 H15 N3 Cl	308.0954	0.2496	0.8102	12.5
Formula	Calculated mass	Error / mDa	Error / ppm	DBE
-----------	-----------------	--------------	-------------	-----
C19 H18 N3 O	304.1449	-0.3873	-1.2736	12.5
Formula	Calculated mass	Error / mDa	Error / ppm	DBE
-------------	-----------------	--------------	-------------	-----
C19 H18 N3 O	304.1449	0.6126	2.0142	12.5
Formula	Calculated mass	Error / mDa	Error / ppm	DBE
--------------	-----------------	-------------	-------------	-----
C16 H11 N3 Cl	280.0641	-0.1501	-0.5362	12.5
Formula	Calculated mass	Error / mDa	Error / ppm	DBE
---------	----------------	-------------	-------------	-----
C17 H14 N3	260.1187	-0.2725	-1.0479	12.5
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
