WEAK FORM OF EQUIDISTRIBUTION THEOREM
FOR HARMONIC MEASURES OF FOLIATIONS
BY HYPERBOLIC SURFACES

SHIGENORI MATSUMOTO

(Communicated by Kevin Whyte)

Abstract. We show that the equidistribution theorem of C. Bonatti and
X. Gómez-Mont for a special kind of foliations by hyperbolic surfaces does
not hold in general, and we seek a weaker form valid for general foliations by
hyperbolic surfaces.

1. Introduction

Let M be a smooth closed manifold, and let \mathcal{F} be a smooth foliation by hyperbolic
surfaces, i.e. a 2-dimensional foliation equipped with a smooth leafwise metric g_P
of constant curvature -1. Let v_P be the leafwise Poincaré volume form, and for a
point $z \in M$ and $\rho > 0$, let $B_\rho(z)$ be the leafwise ρ-disk centered at z. When $B_\rho(z)$
is an embedded disk in M, let $\beta_\rho(z)$ be the probability measure of M supported on
$B_\rho(z)$ defined by
$$
\beta_\rho(z) = \frac{1}{\int_{B_\rho(z)} v_P} v_P|_{B_\rho(z)}.
$$
When $B_\rho(z)$ is not embedded, define $\beta_\rho(z)$ using the universal cover of the leaf.

In [BGM], Christian Bonatti and Xavier Gómez-Mont have shown the following theorem.

Theorem 1.1. Let Σ be a closed oriented hyperbolic surface, and let $\Phi: \pi_1(\Sigma) \to
\text{PSL}(2, \mathbb{C})$ be a nonelementary representation. Endow leaves of the associated fo-
liated \mathbb{P}^1 bundle (N, \mathcal{G}) with a hyperbolic metric lifted from Σ. Then there exists
a probability measure μ on N such that for any sequences $z_n \in N$ and $\rho_n \to \infty$,
$\beta_{\rho_n}(z_n)$ converges weakly to μ.

The measure μ turns out to be the unique harmonic measure of the foliation \mathcal{G}
in the sense of [G]. See Section 4 for more detail. Thus one may ask the following
question.

Question 1.2. For (M, \mathcal{F}) as above, if $\beta_{\rho_n}(z_n)$ converges weakly to a measure μ
as $\rho_n \to \infty$, is it true that μ is a harmonic measure of \mathcal{F}?

In Section 2, we shall answer this question in the negative, and in Section 3, we
propose a measure $\mu_{\rho, \rho'}(z)$ modified for the positive answer. In Section 4, we raise

Received by the editors January 12, 2015.
2010 Mathematics Subject Classification. Primary 53C12; Secondary 57R30.
Key words and phrases. Foliations, harmonic measures, equidistribution.
The author was partially supported by Grant-in-Aid for Scientific Research (C) No. 25400096.
a further question and give a new example of foliations for which the conclusion of
the theorem of Bonatti and Gómez-Mont holds.

2. A COUNTEREXAMPLE

Let $Solv_3$ be the 3-dimensional unimodular solvable nonnilpotent Lie group. The
multiplication of $Solv_3 = \{(x, q, t)\}$ is given by

$$(x, q, t)(x', q', t') = (e^t x' + x, e^{-t} q' + q, t + t').$$

It has a semidirect product structure:

$$1 \to \mathbb{R}^2 \to Solv_3 \to \mathbb{R} \to 1.$$

Any lattice Γ of $Solv_3$ is a semidirect product

$$1 \to \mathbb{Z}^2 \to \Gamma \to \mathbb{Z} \to 1$$

such that $\Gamma \cap \mathbb{R}^2 = \mathbb{Z}^2$. The multiplication is given by

$$(n, m, \ell)(n', m', \ell') = ((n', m')A^\ell + (n, m), \ell + \ell')$$

for some hyperbolic matrix $A \in SL(2, \mathbb{Z})$. The quotient manifold $M = \Gamma \setminus Solv_3$ is
a T^2 bundle over S^1 with monodromy A:

$$T^2 = \mathbb{Z}^2 \setminus \mathbb{R}^2 \to M = \Gamma \setminus Solv_3 \to S^1 = \mathbb{Z} \setminus \mathbb{R}.$$

Denote by $G = \{q = 0\}$ the subgroup of $Solv_3$, isomorphic to the 2-dimensional
solvable nonabelian Lie group, and let \tilde{F} be the orbit foliation of the right G-action.
Notice that the leaf passing through (x_0, q_0, t_0) is just $L_{q_0} = \{q = q_0\}$. The left
action of the lattice Γ commutes with the right G-action, and therefore \tilde{F} descends
to a foliation \mathcal{F} on M. Now

$$g = e^{-2t}dx^2 + e^{2t}dq^2 + dt^2$$

is a left invariant metric on $Solv_3$. The restriction of g to each leaf L_q of \tilde{F} is
written as

$$g_P = e^{-2t}dx^2 + dt^2.$$

If we change the variable by $y = e^t$, then we get

$$g_P = (dx^2 + dy^2)/y^2,$$

the Poincaré metric on the half plane \mathbb{H}. That is, we have an identification

$$Solv_3 \ni (x, q, t) \leftrightarrow (x + e^t i, q) \in \mathbb{H} \times \mathbb{R},$$

where the right G-action leaves each leaf $L_q = \mathbb{H} \times \{q\}$ invariant. The action of the
one-parameter subgroup $\{Y^t = (0, 0, t)\}$ of G on each leaf $L_q \cong \mathbb{H}$ is given by

$$Y^t(x + yi) = x + e^t yi,$$

and the one-parameter subgroup $\{S^s = (s, 0, 0)\}$ is given by

$$S^s(x + yi) = ys + x + yi.$$

They satisfy

$$Y^t \circ S^s = S^{se^{-t}} \circ Y^t.$$

See Figure 1. On the other hand, the left $Solv_3$-action (in particular Γ-action)
leaves the product structure invariant, and the action on the first factor \mathbb{H} is given by

$$(x, q, t) \cdot z = e^t z + x.$$
It is not only g_P-isometric but also leaves the point ∞ on $\partial \mathbb{H}$ invariant. That is, each leaf of the foliation \mathcal{F} of the quotient manifold M admits a pointed hyperbolic structure.

The flow $\{S^s\}$ leaves the coordinate y, whence the old coordinate t, invariant. Thus it leaves fibers of the fibration $T^2 \to M \to S^1$ invariant and is a linear flow on it parallel to an eigenvector of the matrix A.

Now $m = dx \wedge dq \wedge dt$ is a biinvariant Haar measure of Solv_3. By a criterion in [G], m is a harmonic measure of \mathcal{F}, since the function y is a harmonic function on \mathbb{H}. Moreover by a general theorem of Bertrand Deroin and Victor Kleptsyn [DK], it is the unique harmonic measure. The rest of this section is devoted to the proof of the following theorem.

Theorem 2.1. There exist $z_n \in M$ such that $\beta_n(z_n)$ converges to $\mu \neq m$.

We consider an infinite cyclic covering \hat{M} of M and the lift $\hat{\mathcal{F}}$ of the foliation \mathcal{F}. Precisely,

$$\hat{M} = \mathbb{Z}^2 \setminus \text{Solv}_3 = T^2 \times \mathbb{R},$$

where \mathbb{Z}^2 is the normal subgroup of the lattice Γ. Let us denote by $\mathcal{P}(\hat{M})$ the space of the Radon probability measures of \hat{M}, endowed with the pointwise convergence topology on the space $C_0(\hat{M})$ of continuous functions on \hat{M} with compact support.

Every leaf of $\hat{\mathcal{F}}$ is pointedly isometric to \mathbb{H}. Choose one leaf and identify it with \mathbb{H}. For $\rho > 0$, let $z_\rho = e^{\rho i} \in \mathbb{H} \subset \hat{M}$. Notice that the hyperbolic distance of z_ρ to the horocycle $\{y = 1\}$ is ρ. We shall show that the probability measure $\beta_\rho(z_\rho) \in \mathcal{P}(\hat{M})$ converges to a measure $\hat{\mu} \in \mathcal{P}(\hat{M})$ as $\rho \to \infty$. The boundary $\partial B_\rho(z_\rho)$ of the disk $B_\rho(z_\rho)$ is tangent to $\{y = 1\}$ and satisfies the equation:

$$x^2 + (y - \frac{R + 1}{2})^2 = \frac{1}{4}(R - 1)^2,$$

where $R = e^{2\rho}$.

See Figure 2. Putting $y = e^t$, we get

$$x = \pm \sqrt{R(e^t - 1)} + e^t - e^{2t}.$$
Now since $v_P = y^{-2}dx \wedge dy = e^{-t}dx \wedge dt$, the area $A(R, t, \Delta t)$ of the set $B_\rho(z_\rho) \cap (T^2 \times [t, t + \Delta t])$ is given by

$$A(R, t, \Delta t) = 2 \int_t^{t+\Delta t} \sqrt{R(e^{-t} - e^{-2t}) + e^{-t} - 1} \, dt.$$

On the other hand, the area $A(R)$ of $B_\rho(z_\rho)$ is given by

$$A(R) = \pi(e^\rho + e^{-\rho} - 2) = \pi(R^{1/2} + R^{-1/2} - 2).$$

Now we have

$$\beta_\rho(z_\rho)(T^2 \times [t, t + \Delta t]) = \frac{A(R, t, \Delta t)}{A(R)} = \frac{2}{\pi} \int_t^{t+\Delta t} \frac{\sqrt{R(e^{-t} - e^{-2t}) + e^{-t} - 1}}{R^{1/2} + R^{-1/2} - 2} \, dt.$$

Therefore the limit measure $\hat{\mu}$ as $\rho \to \infty$ should satisfy

$$\hat{\mu}(T^2 \times [t, t + \Delta t]) = \frac{2}{\pi} \int_t^{t+\Delta t} \sqrt{e^{-t} - e^{-2t}} \, dt.$$

On the other hand, the portion of the measure $\beta_\rho(z_\rho)$ supported on $T^2 \times [t, t + \Delta t]$ $(t > 0)$ becomes more and more invariant by the flow S^s as $\rho \to \infty$, while S^s is a linear flow of irrational slope on $T^2 \times \{t\}$ and $dx \wedge dq$ is the unique measure invariant by S^s. Therefore one concludes that

$$\beta_\rho(z_\rho) \to \hat{\mu} = \hat{\Phi} \, dx \wedge dq \wedge dt \text{ as } \rho \to \infty,$$

where

$$\hat{\Phi}(t) = \begin{cases} \frac{2}{\pi} \sqrt{e^{-t} - e^{-2t}} & \text{if } t \geq 0, \\ 0 & \text{if } t \leq 0. \end{cases}$$

The actual proof needs the evaluation on a function from $C_0(\hat{M})$, which is routine and omitted. But $\beta_\rho(z_\rho) \to \hat{\mu}$ does not guarantee that $\hat{\mu}$ is a probability measure, since the constant 1 does not belong to $C_0(\hat{M})$ and some part of $\beta_\rho(z_\rho)$ may escape to ∞. This, however, is assured by the following concrete computation:

$$\int_0^\infty \sqrt{e^{-t} - e^{-2t}} \, dt = \pi/2.$$

Also this implies a stronger fact that $\beta_\rho(z_\rho) \to \hat{\mu}$ pointwise on any bounded continuous function. The function $\hat{\Phi}$ takes the maximum value at $t = \log 2$. See Figure 3. Returning to the compact manifold M, the previous observation shows that the limit measure μ of $\beta_\rho(z_\rho)$ is the projected image of $\hat{\mu}$ and is written as $\mu = (\Phi \circ \rho) \, m$, where
where \(p : M \to S^1 \) is the bundle projection and \(\Phi \) is a continuous function on \(S^1 \) given by
\[
\Phi(t) = \sum_{k \in \mathbb{Z}} \hat{\Phi}(t + k).
\]
But \(\Phi \) is not a constant function since \(\Phi(0) < \Phi(\log 2) \), showing that \(\mu \neq m \), as is required.

The author is grateful to Hiroki Kodama for showing him this simple proof.

3. Weak form of equidistribution

Let \(\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \} \) be the disk model of the Poincaré plane. For \(0 < R < 1 \), denote \(\mathbb{D}(R) = \{ |z| < R \} \) and let \(\rho \) be the Poincaré distance from 0 to the circle \(\partial \mathbb{D}(R) \), i.e.
\[
\rho = \frac{1}{2} \log \frac{1 + R}{1 - R}.
\]
For \(R < R' < 1 \), let \(\rho' \) be the Poincaré distance between \(\partial \mathbb{D}(R) \) and \(\partial \mathbb{D}(R') \). Define a function \(\psi_{\rho, \rho'} : \mathbb{D} \to [0, \infty) \) by
\[
\psi_{\rho, \rho'}(z) = \begin{cases}
1 & \text{if } |z| \leq R, \\
\frac{R'-|z|}{R'-R} & \text{if } R \leq |z| \leq R', \\
0 & \text{if } R' \leq |z| < 1.
\end{cases}
\]
The function \(\psi_{\rho, \rho'} \) is determined by \(\rho \) and \(\rho' \). See Figure 4. Define a probability measure \(\mu_{\rho, \rho'} \) on \(\mathbb{D} \) by
\[
\mu_{\rho, \rho'} = \frac{1}{\int_{\mathbb{D}} \psi_{\rho, \rho'} v_{\rho'}} \psi_{\rho, \rho'} v_{\rho'},
\]
where \(v_{\rho} \) denotes the Poincaré volume form.
Let \((M, \mathcal{F})\) be as in Section 1. For any \(x \in M\), let \(L_x\) be the leaf through \(x\) with the universal cover \(\tilde{L}_x\) identified with \(\mathbb{D}\). Define a map \(j_x : \mathbb{D} \to M\) as the composite

\[j_x : \mathbb{D} \cong \tilde{L}_x \to L_x \subset M \]

such that \(j_x(0) = x\). Define \(\mu_{\rho, \rho'}(x) \in \mathcal{P}(M)\) by \(\mu_{\rho, \rho'}(x) = (j_x)_* \mu_{\rho, \rho'}\). The main result of this section is the following.

Theorem 3.1. If \(\mu_{\rho_n, \rho'_n}(x_n)\) converges for some sequences \(x_n \in M, \rho_n \to \infty\) and \(\rho'_n \to \infty\), then the limit is a harmonic measure for \(\mathcal{F}\).

To show this, we approximate \(\psi_{\rho, \rho'}\) by another function \(\varphi_{\rho, \rho'}\) which is a combination of harmonic functions. Let \(A = 1/\log R'/R\). Define a function \(\varphi_{\rho, \rho'} : \mathbb{D} \to [0, \infty)\) by

\[
\varphi_{\rho, \rho'}(z) = \begin{cases}
1 & \text{if } |z| \leq R, \\
A \log \frac{R'}{|z|} & \text{if } R \leq |z| \leq R', \\
0 & \text{if } R' \leq |z| < 1.
\end{cases}
\]

Define a probability measure \(\nu_{\rho, \rho'}\) on \(\mathbb{D}\) by

\[
\nu_{\rho, \rho'} = \frac{1}{\int_{\mathbb{D}} \varphi_{\rho, \rho'} v_P} \varphi_{\rho, \rho'} v_P,
\]

and define \(\nu_{\rho, \rho'}(x) = (j_x)_* \nu_{\rho, \rho'} \in \mathcal{P}(M)\) just as before. Theorem 3.1 reduces to the following two propositions. Denote by \(\| \cdot \|\) the norm of \(\mathcal{P}(M) \subset \mathcal{C}(M)'\) dual to the sup norm \(\| \cdot \|_\infty\) of the Banach space \(\mathcal{C}(M)\) of the continuous functions of \(M\).

Proposition 3.2. We have \(\|\mu_{\rho_n, \rho'_n}(x_n) - \nu_{\rho_n, \rho'_n}(x_n)\| \to 0\) as \(\rho_n, \rho'_n \to \infty\).

Proposition 3.3. If \(\nu_{\rho_n, \rho'_n}(x_n)\) converges for some sequences \(x_n \in M\) and \(\rho_n, \rho'_n \to \infty\), then the limit is a harmonic measure for \(\mathcal{F}\).

We shall first show Proposition 3.3. For a \(C^2\) function \(f : M \to \mathbb{R}\), we denote by \(\Delta_P f\) the leafwise Laplacian with respect to the leafwise Poincaré metric. What we have to prove is that

\[
\int_M \Delta_P f \nu_{\rho_n, \rho'_n}(x_n) \to 0 \quad \text{as} \quad n \to \infty.
\]

Since \(j_{x_n}\) is a local isometry onto the leaf, we have \(\Delta_P f \circ j_{x_n} = \Delta_P (f \circ j_{x_n})\). Rewriting \(f \circ j_{x_n}\) as \(f\), this follows from the following proposition about \(\mathbb{D}\).

Proposition 3.4. For any nonzero bounded \(C^2\) function \(f : \mathbb{D} \to \mathbb{R}\), we have

\[
\frac{\int_{\mathbb{D}} \varphi_{\rho, \rho'} \Delta_P f v_P \cdot \|f\|_\infty^{-1}}{\int_{\mathbb{D}} \varphi_{\rho, \rho'} v_P} \to 0
\]

as \(\rho, \rho' \to 0\) uniformly on \(f\).

Estimate of the numerator. First notice that \(\Delta_P f v_P = \Delta_E f v_E\) where \(E\) stands for Euclidian. (Both are equal to \(dJ^* df\), where \(J\) is the almost complex structure.) We need the following Green-Riesz formula. See [D], Chap. I, p.30.

Theorem 3.5. Let \(\Omega\) be a smoothly bounded compact domain in \(\mathbb{R}^n\), and let \(\vec{n}_E\) be the outward unit normal vector at \(\partial \Omega\). Denote by \(\sigma_E\) the Euclidian area measure on \(\partial \Omega\). Then for any \(C^2\) function \(\varphi\) and \(f\) defined on \(\mathbb{R}^n\), we have

\[
\int_{\Omega} (\varphi \Delta_E f - f \Delta_E \varphi) v_E = \int_{\partial \Omega} (\varphi \frac{\partial f}{\partial \vec{n}_E} - f \frac{\partial \varphi}{\partial \vec{n}_E}) \sigma_E.
\]
Let us apply this formula to $\varphi_{\rho,\rho'}$, f in Proposition 3.4 and the domains $D(R)$, $D(R') \setminus D(R)$. Remark that
\[\Delta_E \log \frac{R'}{|z|} = 0 \quad \text{and} \quad \frac{\partial}{\partial n_E} (\log \frac{R'}{|z|}) = - \frac{1}{|z|}. \]
Computation shows that
\[\int_D \varphi_{\rho,\rho'} \Delta_P f \cdot v_P = A \left(\frac{1}{R'} \int_{\partial D(R')} f \sigma_E - \frac{1}{R} \int_{\partial D(R)} f \sigma_E \right). \]
This implies that
\[|\int_D \varphi_{\rho,\rho'} \Delta_P f \cdot v_P| \|f\|_\infty^{-1} \leq 4\pi A. \]
Estimate of the denominator. We use the following notation.

Notation 3.6. For $0 < R < R' < 1$ and positive valued functions $F(R, R')$ and $G(R, R')$, we write $F \sim G$ if $F/G \to 1$ as $R \to 1$.

Lemma 3.7. (1) If $F_1 \sim G_1$ and $F_2 \sim G_2$, then $F_1 + F_2 \sim G_1 + G_2$.

(2) If $F \sim G$, then we have
\[\int_R^{R'} F(r, R') \, dr \sim \int_R^{R'} G(r, R') \, dr. \]

(3) We have $\log(R'/R) \sim R' - R$.

Now since
\[v_P = \frac{4dx \wedge dy}{(1 - |z|^2)^2} = \frac{4dr \wedge d\theta}{(1 - r^2)^2} \]
in the polar coordinates, we have
\[\frac{1}{8\pi} \int_D \varphi_{\rho,\rho'} v_P = \frac{1}{0^R} \frac{r \, dr}{(1 - r^2)^2} + A \frac{\int_R^{R'} \log R' - r}{r} \frac{r \, dr}{(1 - r^2)^2}, \]
where
\[\text{the first term} = \frac{R^2}{2(1-R)(1+R)} \sim \frac{1}{4(1-R)} = \frac{A \log(R'/R)}{4(1-R)} \sim \frac{A(R' - R)}{4(1-R)}, \]
and by Lemma 3.7 (2)
\[\text{the second term} \sim A \int_R^{R'} \frac{(R' - r) \, dr}{4(1-r)^2} = - \frac{A (R' - R)}{4(1-R)} + A \frac{1}{4} \log \frac{1-R}{1-R'}, \]
Since both terms are positive, we get from Lemma 3.7 (1),
\[\frac{1}{8\pi} \int_D \varphi_{\rho,\rho'} v_P \sim \frac{A}{4} \log \frac{1-R}{1-R'} \sim \frac{A \rho'}{2}, \]
where the last \sim holds when ρ' is bounded from below and follows from the formula
\[\rho' = \frac{1}{2} \left(\log \frac{1 + R'}{1 - R'} - \log \frac{1 + R}{1 - R} \right). \]

It follows from the two estimates that
\[\lim_{R \to 1} \frac{1}{\rho'} \frac{1}{\int_D \varphi_{\rho,\rho'} v_P} \leq \lim_{R \to 1} \frac{1}{\rho'} = 0, \]
and the convergence is uniform on f. This shows Propositions 3.3 and 3.6.
Finally Proposition 3.2 follows from the estimate
\[\int_D \psi_{\rho,\rho'} v_P \sim \int_D \varphi_{\rho,\rho'} v_P, \]
since \(\psi_{\rho,\rho'} \geq \varphi_{\rho,\rho'} \). We have already shown that
\[\int_D \varphi_{\rho,\rho'} v_P \sim 4 \pi A \rho'. \]
Analogous (and easier) computation using \(A(R' - R) \sim 1 \) show that
\[\int_D \psi_{\rho,\rho'} v_P \sim 4 \pi A \rho'. \]

4. Further Question and Example

It seems that the counterexample in Section 2 is rather special. There might be more foliations which satisfy the conclusion of the theorem of Bonatti and Gómez-Mont. To consider this problem, let us recall their proof, which consists of two steps. In the first step, they consider general \((M, F, g_P)\) as in the beginning of Section 1. Let \(p : \hat{M} \to M \) be the unit tangent bundle of the foliation \(F \). The space \(\hat{M} \) admits a leafwise geodesic flow \(\{g_t\} \) and the leafwise stable horocycle flow \(\{h_s\} \), which satisfy
\[g_t \circ h_s \circ g^{-t} = h^{s^{-t}}. \]
Therefore the two flows form a locally free action of the Lie group \(B \), the 2-dimensional nonabelian Lie group. Given a leafwise submersed \(\rho \)-disk \(B_{\rho}(z) \) of \(F \) (see Section 1), they considered the lift \(\sigma : B_{\rho}(z) \setminus \{z\} \to \hat{M} \) by the radial unit vector fields, and showed that the limit \(\lim_{\rho_n \to \infty} \sigma_{\rho_n}^* \beta_{\rho_n}(z_n) \) is \(h^s \)-invariant, if it exists. This part is true for any \((M, F, g_P)\).

On the other hand, Yuri Bakhtin and Matilde Martínez [BM] showed that the map \(p^* : \mathcal{P}(\hat{M}) \to \mathcal{P}(M) \) between the space of the probability measures gives a bijection from the subset of the \(B \)-invariant measures on \(\hat{M} \) to the subset of the harmonic measures on \(M \).

Now assume that the horocycle flow \(\{h^s\} \) is uniquely ergodic. Then the unique invariant measure \(\mu \) is also \(g^t \)-invariant by (4.1), and thus \(p_* \mu \) is a unique harmonic measure of \((M, F, g)\). In the second step, Bonatti and Goméz-Mont showed the unique ergodicity of the horocycle flow \(\{h^s\} \) for foliations in Theorem 1.1. It is plausible to expect that there are more foliations with this property. We shall raise one example.

Example 4.1. Let \(G \) be an arbitrary connected unimodular Lie group, and let \(\Gamma \subset PSL(2, \mathbb{R}) \times G \) be a cocompact lattice such that \(p_2(\Gamma) \) is dense in \(G \), where \(p_2 \) is the projection onto the second factor. Then the manifold \(M = \Gamma \setminus (\mathbb{H} \times G) \) admits a horizontal foliation \(F = \Gamma \setminus \{\mathbb{H} \times \{g\}\} \) by hyperbolic surfaces.

The unit tangent bundle \(\hat{M} \) of the above foliation \(F \) is identified with \(\Gamma \setminus (PSL(2, \mathbb{R}) \times G) \). According to Marina Ratner [R], any ergodic probability measure \(\hat{\mu} \) invariant by the leafwise stable horocycle flow is algebraic in the following sense. For any \(x \) in the support of \(\hat{\mu} \), there is a closed subgroup \(H \subset PSL(2, \mathbb{R}) \times G \) such that the closure of the horocycle orbit of \(x \) is \(x \cdot H \) and that \(\hat{\mu} = x_* m \), where \(m \) is the normalized Haar measure of \((g^{-1} \Gamma g \cap H) \setminus H \) and \(x = \Gamma g \).
On the other hand, it is shown by Fernando Alcalde Cuesta and Françoise Dal’bo [ACD] that the leafwise stable horocycle flow is minimal. Therefore $\hat{\mu}$ is the Haar measure of $\Gamma \backslash (\text{PSL}(2, \mathbb{R}) \times G)$ and is unique. In conclusion the foliation in Example 4.1 is equidistributed, i.e. satisfies the conclusion of Theorem 1.1.

References

[ACD] F. Alcalde Cuesta and F. Dal’bo, Remarks on the dynamics of the horocycle flow for homogeneous foliations by hyperbolic surfaces, Preprint arXiv:1410.7181.

[BGM] Christian Bonatti and Xavier Gómez-Mont, Sur le comportement statistique des feuilles de certains feuilletages holomorphes (French, with English and French summaries), Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp. 15–41. MR1929320 (2003f:37046)

[BM] Yuri Bakhtin and Matilde Martínez, A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces (English, with English and French summaries), Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 6, 1078–1089, DOI 10.1214/07-AIHP147. MR2469335 (2009j:37048)

[D] J.-P. Demailly, Complex Analytic and Differential Geometry, Book available on line at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.

[DK] Bertrand Deroin and Victor Kleptsyn, Random conformal dynamical systems, Geom. Funct. Anal. 17 (2007), no. 4, 1043–1105, DOI 10.1007/s00039-007-0606-y. MR2373011 (2010j:37012)

[G] Lucy Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), no. 3, 285–311, DOI 10.1016/0022-1236(83)90015-0. MR700380 (84j:58099)

[R] Marina Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607, DOI 10.2307/2944357. MR1135878 (93a:22009)

Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
E-mail address: matsumo@math.cst.nihon-u.ac.jp