Evaluation of baseline pathophysiological changes in patients with emergency abdominal pathology

Abstract. Background. Acute surgical pathology is associated with high rates of postoperative complications and mortality. The aim is to determine baseline pathophysiological changes in patients with acute abdominal pathology and their dependence on the grade of surgical risk. Materials and methods. We examined 200 patients with urgent laparotomy. We have divided the patients into two groups (according to the surgical risk score — P-POSSUM), namely moderate (n = 100) and high (n = 100) surgical risk. We measured routine clinical laboratory characteristics, central hemodynamic state and fluid compartments of the body by the noninvasive bioelectric integral evaluation of the body structure with the Diamant monitor complex. Results. We found significant decrease of extracellular volume due to reduction of plasma volume (83 % of the norm (p < 0.05) in the 1st group, 86 % of the norm (p < 0.05) in the 2nd group); and dehydration was not defined. All patients had adaptive hemodynamic response. The 1st group was found to have decline in stroke volume by 10 % (p < 0.05) due to hypovolemia. We fixed a decrease of stroke volume index by 122 % of the norm (p < 0.05), which was compensated with moderate tachycardia and formed relative hyperdynamia (cardiac output was 107 % of the norm (p < 0.05)) for the 1st group. As a result, tissue perfusion complied with the standard rate. The relative hypodynamia was determined in the 2nd group (cardiac output was 84.6 % of the norm (p < 0.05)) despite tachycardia (heart rate was 45 % over the norm (p < 0.05)) and vasospasm (systemic vascular resistance was 184 % of the norm (p < 0.05)) while tissue perfusion decreased (peripheral perfusion index accounted for 81.3 % of the norm (p < 0.05)). Conclusions. Acute surgery pathology under II rate of dehydration forms the moderate volume depletion/hypovolemia, causes redistribution of extracellular fluid volume. Hypovolemia also deals with loss of plasma volume and causes development of hemodynamic disorder and water redistribution between body sectors. Severity of pathophysiological abnormality depends on the patient’s surgical risk degree. Compensatory raise of heart rate forms relative hyperdynamia and preserves tissue perfusion in patient of moderate surgical risk. Pathognomic development of tachycardia and vasospasm forms relative hypodynamic and tissue perfusion decrease, which is relevant for patient of high surgical risk. Keywords: emergency abdominal pathology; surgical risk; fluid compartments; central hemodynamics; hypovolemia
The purpose is to specify baseline pathophysiological changes in patients with acute abdominal pathology and their dependence on the grade of surgical risk and hypovolemia.

Methods and methods

We examined 200 patients with acute abdominal pathology and obtained the informed consents within local Ethics Committee approval. A prospective, observational study was performed in the period from January 2016 to December 2018. All patients undergoing emergency laparotomy (emergency laparotomy is an immediate lifesaving operation, which involves exploration of the abdomen usually within 2 hours), have potentially life-threatening conditions that require prompt intervention. Acute cases of emergency laparotomy were: acute intestinal obstruction (n = 65), perforated gastric and duodenal ulcer (n = 51), strangulated hernia (n = 84). We examined 106 (53 %) men and 94 (47 %) women of mean age 61.1 ± 11.5 (45 : 75) years.

Inclusion criteria: the patient’s age is more than 45 years and less than 75 years; emergency laparotomy, predicted intraoperative blood loss less than 500 ml; ASA III E, diabetes mellitus at the stage of compensation, moderate dehydration (according to II grade by P. Shelestyuk [9]); surgical risk of patient ≥ 10 % (according to the surgical risk score P-POSSUM [8]).

Exclusion criteria: the patient’s age is less than 45 years and more than 75 years; gastrointestinal bleeding; ASA I–II–IV, diabetes mellitus at the stage of decompensation; pregnancy and lactation; allergic reactions to any component of drug therapy; mild/severe dehydration (according to I or III grades by P. Shelestyuk); surgical risk of patient ≤ 10 % (according to the score P-POSSUM); patient’s refusal to participate in the study.

We examined all patients according to the protocol of the Ministry of Health of Ukraine No 297 (02.04.2010) [9]. Concomitant pathology was identified as: excessive body weight (obesity I–II stage) (n = 12), ischemic heart disease (n = 112), arterial hypertension (n = 89), atrial fibrillation (n = 52), chronic obstructive bronchitis in remission (n = 34), diffuse diabetes mellitus type II in remission (n = 22). All patients who were divided in two groups according to the surgical risk score P-POSSUM were treated in ICU before having surgery. Portsmouth Physiological and Operative Severity Score for the enUmeration of mortality and Morbidity (P-POSSUM) is risk-adjusted score that predicts a patient outcome. P-POSSUM score calculation is based on usage of 12 physiological and 6 operative variables of a patient, which are graded as 1, 2, 4 or 8 relying on their magnitude then summed to form a physiological score and operative severity score. The physiological score and operative severity score predict the risk of mortality and morbidity [8, 10].

The first group (n = 100) included patients of moderate surgical risk (1–5 %), the patients of high surgical risk (> 5 %) were in the second group (n = 100). The baseline characteristics of the patients by sex, age, concomitant and acute surgical pathology in the 1st group were 63 (63 %) men and 37 (37 %) women of mean age 49 [Me 45 : 60] years with excessive body weight (obesity I–II stage) (n = 9), ischemic heart disease (n = 32), arterial hypertension (n = 24), atrial fibrillation (n = 12), chronic obstructive bronchitis in remission (n = 24), diffuse diabetes mellitus type II in remission (n = 8). Surgical diagnoses were: acute intestinal obstruction (n = 15), perforated gastric and duodenal ulcer (n = 41), and strangulated hernia (n = 44).

The 2nd group (n = 100) involved 51 (51 %) men and 49 (49 %) women of mean age 71 [Me 60 : 75], excessive body weight (obesity I–II stage) (n = 3), ischemic heart disease (n = 80), arterial hypertension (n = 65), atrial fibrillation (n = 40), chronic obstructive bronchitis in remission (n = 10), and diffuse diabetes mellitus type II in remission (n = 14). Surgical diagnoses were: acute intestinal obstruction (n = 50), perforated gastric and duodenal ulcer (n = 10), strangulated hernia (n = 40).

We evaluated the clinical parameters of systemic hemodynamics: blood pressure, mean arterial pressure (MAP), heart rate (HR), central venous pressure, and routine clinical laboratory tests (general blood and urine analysis, coagulogram, biochemical blood test, acid-base status, plasma blood electrolytes, and lactate). We measured plasma, urine osmolality and mean cell volume by calculation method [11]. The central and peripheral hemodynamic parameters were determined by the method of integral rheography with the apparatus Diamant: cardiac index (CI), stroke volume (SV), stroke volume index (SVI), systemic vascular resistance (SVR). Such indicators of the body fluid compartments as the extracellular fluid volume (ECF), intracellular fluid volume (ICF), the total volume of fluid, the plasma volume (PV), total volume of blood (TVB) were measured by the method of noninvasive bioelectric integral evaluation of the body structure with the Diamant monitor complex. We evaluated tissue perfusion by peripheral perfusion index (PI) with the apparatus +Biomed [12].

Scoring scales ASA and P-POSSUM were used for stratification of surgical risk.

Statistical analysis of the results was carried out with MS Excel 2007, Statistica 6 software package. The data are given in the form M ± m. Statistically significant values were p < 0.05.

Results

According to the preset principle, the patients of both groups were assigned as moderate grade of dehydration (according to II grade by P. Shelestyuk), which is associated with intravascular volume depletion/moderate hypovolemia. Indeed, our results suggest that baseline pathophysiological changes in acute abdominal pathology are associated with hypovolemia, dehydration and central hemodynamic changes. In fact, our results revealed the redistribution of fluid between all of the fluid compartments (Table 1). There were no differences in absolute values of ECF and ICF. So, the ECF decreased consequently due to the volume of circulating
blood, namely by reducing the plasma volume (85.1 % of the norm (p < 0.05)) in the patients with moderate surgical risk. We did not identify intracellular dehydration (95.5 % of the norm (p > 0.05)), but decrease in circulating blood volume due to plasma volume reduction in the patients with high surgical risk, too. However, the absence of statistically significant difference in TVB and PV reduction in both groups did not cause the development of significant dehydration. No electrolyte abnormalities were observed in both groups of patients. Levels of sodium, potassium and chlorine were normal. Plasma osmolality coincided to reference range of 280 mmol/kg.

Baseline volume status is a statistically significant variable of systemic hemodynamic parameters due to the initial volume depletion (Table 2). Moreover, clinical sign of groups seemed different. We determined decrease of SV (87 % of the norm; p < 0.05) and SVI (58 % of the norm (p < 0.05)) in the group of high surgical risk. It is associated with tachycardia and vasospasm (SVR 184 % of the norm; p < 0.05). Wherein MAP were above normal and formed relative hyperdynamia (CI 107 % of the norm; p < 0.05). Relative hypovolemia is associated with hypovolemia and dehydration. We have determined moderate vοlumе dеplеtion/hypovolemia and its compliance to the II grade of dehydration (P. Shesthesyuk) in surgical patient with acute pathology [4–6].

The result of this investigation demonstrated over-normalization of SV (87 % of the norm; p < 0.05) and statistically nonsignificantly increased SVR (105 % of the norm; p < 0.05) in the patients with moderate surgical risk. Relative hypovolemia is associated with tachycardia and vasospasm. The result of this investigation demonstrated over-normal MAP that disguises the clinical signs of patients’ condition severity and gives impression of imaginary healthy living. However, these mechanisms did not satisfy the adequate tissue perfusion.

Discussion

It is known that acute surgical pathology is associated with hypovolemia and dehydration. We have determined moderate volume depletion/hypovolemia and its compliance to the II grade of dehydration (P. Shelestryuk) in surgical patient with acute pathology [4–6]. We have also found redistribution of fluid in all the fluid compartments almost to the same extent in both groups. To the best of our knowledge, this prospective, observational study is the largest reported to investigate the hemodynamic response. So, hypovolemia is associated with relative hyperdynamia and statistically significant tachycardia in patients of moderate surgical risk. These compensatory reactions maintained satisfactory tissue perfusion. Another hemodynamic response was established in patients of high surgical risk. Relative hypovolemia is associated with tachycardia and vasospasm. The result of this investigation demonstrated over-normal MAP that disguises the clinical signs of patients' condition severity and gives impression of imaginary healthy living. However, these mechanisms did not satisfy the adequate tissue perfusion.

Conclusions

Acute surgical pathology in patients with moderate volume depletion/hypovolemia causes redistribution of extracellular fluid volume and hemodynamic response depending on surgical risk grade.

Moderate surgical risk is associated with:

— plasma deficit;

— hyperdynamia, supported by chronotropic effect and retaining the tissue perfusion.

Table 1. Impact of acute surgical pathology on fluid distribution (L)

Parameter	Regional norm (n = 40)	Moderate surgical risk (n = 100)	High surgical risk (n = 100)
Extracellular fluid volume	14.1	11.5 ± 0.4†	11.4 ± 0.2†
Intracellular fluid volume	24.9	23.8 ± 0.8	23.7 ± 0.7
Total volume of fluid	39	35.3 ± 1.1†	35.1 ± 0.9†
Plasma volume	2.7	2.3 ± 0.1†	2.3 ± 0.1†
Total volume of blood	4.9	4.1 ± 0.4†	4.0 ± 0.2†

Note: † — p < 0.05 compared to the norm.

Table 2. Hemodynamics and tissue perfusion in patients of different surgical risk

Parameter	Regional norm (n = 40)	1st group, moderate surgical risk (n = 100)	2nd group, high surgical risk (n = 100)
Heart rate (bpm)	74	91.0 ± 2.8*†	108.0 ± 2.8*†
Stroke volume (mL/min)	80	84.0 ± 8.1*†	70.3 ± 7.9*†
Stroke volume index (mL/m²)	52	46.1 ± 3.1*†	30.5 ± 4.1*†
Cardiac index (L/min/m²)	3.9	4.2 ± 0.3*†	3.3 ± 0.1*†
Mean arterial pressure (mmHg)	80	85.0 ± 2.8*†	108.0 ± 2.0*†
Systemic vascular resistance (dynes × sec/cm²)	1279	1394.0 ± 103.4*†	2357.0 ± 340.4*†
Central venous pressure (mmHg)	4.4	0.51 ± 0.01*†	1.80 ± 0.03*†
Peripheral perfusion index	1.6	1.5 ± 0.1*†	1.30 ± 0.03*†

Notes: * — p < 0.05 between the groups; † — p < 0.05 compared to the norm.
Для високого ризику потенційної гіпокарієї, скажімо, забезпечити достатній перфузионний індекс (норма — 80 %). У всіх хворих з метою зменшення ударного объему на 105 % з норми (р < 0,05) при зниженні ударного индекса на 122 % з норми (р < 0,05) у 1-й групі, і компенсації умеренної гіпоперфузії при критичному перфузионному індексі, визначеному шляхом Р-POSSUM, була здійснена операція (р < 0,05). Це підтвердило, що відносно гіпердинамічний тип кровообігу, також здатний при зниженні ударного объему на 105 % з норми (р < 0,05) при зниженні ударного индекса на 122 % з норми (р < 0,05) у 1-й групі, і компенсації умереної гіпоперфузії при критичному перфузионному індексі, визначеному шляхом Р-POSSUM, була здійснена операція (р < 0,05).

Оцінка високого ризику потенційної гіпокарієї, скажімо, забезпечити достатній перфузионний індекс (норма — 80 %). У всіх хворих з метою зменшення ударного объему на 105 % з норми (р < 0,05) при зниженні ударного индекса на 122 % з норми (р < 0,05) у 1-й групі, і компенсації умеренної гіпоперфузії при критичному перфузионному індексі, визначеному шляхом Р-POSSUM, була здійснена операція (р < 0,05). Це підтвердиво, що відносно гіпердинамічний тип кровообігу, також здатний при зниженні ударного объему на 105 % з норми (р < 0,05) при зниженні ударного индекса на 122 % з норми (р < 0,05) у 1-й групі, і компенсації умереної гіпоперфузії при критичному перфузионному індексі, визначеному шляхом Р-POSSUM, була здійснена операція (р < 0,05). Це підтвердило, що відносно гіпердинамічний тип кровообігу, також здатний при зниженні ударного объему на 105 % з норми (р < 0,05) при зниженні ударного индекса на 122 % з норми (р < 0,05) у 1-й групі, і компенсації умереної гіпоперфузії при критичному перфузионному індексі, визначеному шляхом Р-POSSUM, була здійснена операція (р < 0,05).
Рушений залежить від ступені хірургічного ризику пацієнта. У пацієнтів середнього хірургічного ризику компенсаторне підвищення частоти серцевих скорочень приводить до формування відносно гіпердинамічного типу кровообращення та збереження тканинової перфузії. Для хворих високого хірургічного ризику патогномонічно зниження тканинової перфузії на фоні тахікардії та вазоспазму, поддерживаючих відносно гіподинамічний тип кровообращення.

Ключові слова: неотложенна абдомінальна патологія; хірургічний ризик; водні сектори; центральна гемодинаміка; гіповолемія

Заголовок

Оцінка вихідних патофізіологічних змін у пацієнтів із невідкладною абдомінальною патологією

Резюме. Актуальность. Гостра хірургічна патологія характеризується високим ризиком виникнення післяоператійних ускладнень і смертності. Мета дослідження — визначити вихідні патофізіологічні зміни у хворих із невідкладною патологією органів черевної порожнини та їх залежність від ступеня хірургічного ризику пацієнтів. Матеріали та методи. Обстежено 200 хворих, оперованих в обсязі ургентної лапаротомії. Залежно від ступеня операційного ризику, що визначався за шкалою P-POSSUM, хворі були розподілені на 2 групи — середнього (n = 100) і високого (n = 100) хірургічного ризику. Вивчали рутинні клініко-лабораторні показники, стан центральної гемодинаміки та водних секторів організму методом неінвазивної біоелектричної інтегральної оцінки складу тіла за допомогою апаратного комплексу «Діамант». Результати. У всіх пацієнтів середнього хірургічного ризику спостерігалось зменшення позаклітинного об’єму за рахунок зниження об’єму плазми (83 % від норми (р < 0,05) у 1-й групі, 86 % від норми (р < 0,05) у 2-й групі). Статистично вірогідних змін внутрішньоклітинного об’єму не відзначалось у пацієнтів двох груп. Гемодинамічна відповідь в усіх хворих була пристосована. Так, збільшення ударного об’єму на 105 % від норми (р < 0,05) при зниженні ударного індексу на 122 % від норми (р < 0,05) гіпердинамічній компенсації та хікардії (показники серцевого індексу становили 107 % від норми (р < 0,05)) у 1-й групі пацієні тів. Це дозволяло зберігати тканину перфузію (показники серцевого індексу становили 93,7 % від норми; р > 0,05). У пацієнтів 2-ї групи відзначався відносно гіподинамічний тип кровообігу (показники серцевого індексу становили 84,6 % від норми; р < 0,05) при високому напруженні серцево-судинної системи (показники ЧСС перевищували норму на 45 %; р < 0,05), загального периферичного опору судин — на 84 % (р < 0,05)) та зниження тканиної перфузії (показники серцевого індексу становили 81,3 % від норми; р < 0,05).

Висновки. Гостра хірургічна патологія, асоційована з II ступенем дегідратації, приводить до помірного виснаження судинного об’єму/гіповолемії при загальному зниженні об’єму позаклітинного простору. Гіповолемія пов’язана з утратою плазмового об’єму і викликає розвиток гемодинамічних порушень, перерозподіл рідини у водних секторах організму. Тяжкість патофізіологічних порушень залежить від ступеня хірургічного ризику пацієнта. У пацієнтів середнього хірургічного ризику компенсація також характеризується зростанням ударного об’єму, що зумовлено зниженням об’єму плазми, відповідно збільшенням серцевого індексу на 105 % від норми (р < 0,05) при зниженні ударного індексу на 122 % від норми (р < 0,05) і компенсації помірною тахікардією (показники серцевого індексу становили 107 % від норми (р < 0,05)) у 1-й групі пацієнтів. Це дозволяло зберігати тканину перфузію (показники серцевого індексу становили 93,7 % від норми; р > 0,05). У пацієнтів 2-ї групи відзначався відносно гіподинамічний тип кровообігу (показники серцевого індексу становили 84,6 % від норми; р < 0,05) при високому напруженні серцево-судинної системи (показники ЧСС перевищували норму на 45 %; р < 0,05), загального периферичного опору судин — на 84 % (р < 0,05)) і зниженні тканиної перфузії (показники серцевого індексу становили 81,3 % від норми; р < 0,05).

Ключові слова: невідкладна абдомінальна патологія; хірургічний ризик; водні сектори; центральна гемодинаміка; гіповолемія