Study on vermetid worm shells in Mon coastal area of Myanmar.

Naung Naung Oo.

Abstract: Vermetid worm shell of *Thylacodes decussatus* (Gmelin, 1791) belonging to genus *Thylacodes* Guettard, 1770 under the family Vermetidae collected at Kyakkhami, Setse, Kawdut, Sitaw and Kabyarwa in Mon coastal area from January to December 2018. A total of 2561 individuals collected from rocky hard substrates, boulders, rock pool, and water-leveled benches of supra-tidal to lower sub-tidal levels. Regarding percentage species composition, September was maximum species composition, and April was minimum species composition. The range of mean was 47.67-28.67 (September-April), and standard deviation was 40.66-18.06 (November-February). Maximum and minimum species abundance were recorded in Kawdut coastal area (792 individuals) and Sitaw coastal area (207 individuals), respectively. Moreover, the habitats, zonal distribution and coiling patterns of worm shells in intertidal and shallow water environments of Mon coastal area were studied in brief.

Key words: Composition, worm shells, Vermetidae, abundance, Mon coastal area.

Introduction

The vermetids are a distinct group of sessile gastropods, which have high morphological plasticity characterized by irregular shells growth, adapted to the substratum. Coiling pattern and shells ornamentation change with the environment, such as turbidity of water and topography of the substratum. Vermetids live in intertidal or shallow subtidal habitats in tropical and temperate waters between 44°N and 44°S, not only in warm and oxygenated waters, but also under the cold upwelling conditions off northern Chile. On the coast of Mon State, can be found vermetid bio-constructions with other organisms, such as bivalve shells, barnacles and marine benthic algae from North to South coasts located between (Lat. 14° 55' N and 16° 35' N and Long. 97° 20' E and 97° 48' E). Extensive taxonomic and biological investigations were undertaken on Myanmar shallow water vermetids by Soe Thu. Based on literature records, Laborel highlights a possible impoverishment of the reef-building vermetids in the South Atlantic and Poutiers documents the habitat, biology, and fisheries of worm shells in Western Central Pacific regions. The purpose of this study is to study the occurrence of worm shells in the Mon coastal area.

Materials and methods

In this study, quantitative analysis was used by the quadrat (50 cm × 50 cm), which divided into a (10 cm × 10 cm) grid made of aluminum for light and durable. For each site, at least 5 transects of 25 m length are lined perpendicularly to the shore at the interval of 5 m for each site (Figure 1).

Sampling was conducted monthly from January to December 2018. Drift and live specimens of vermetid worm shells living in hard and rocky substrates of intertidal and shallow subtidal areas were collected from the following coastal regions (Figure 2).

Results and Discussion

The vermetid worm shells, locally called ‘Kyauk-kyoe-khway’ were conducted from 6 collection sites in central and southern Mon coastal areas. In this study, a total of 2561 individuals of worm shells were observed from different hard substrates at intertidal and shallow subtidal levels, to a depth

Corresponding author: naungnaungoomarine@gmail.com
of about 25m. This systematic account follows the identifying set out by Poutiers12 Abbott13 and WoRMS14 in detailed.

Family Vermetidae Rafinesque, 1815

Shell irregularly coiled or even disjunction, resembling a worm tube but composed of 3 layers. Aperture without a siphonal canal. Operculum horny, spiral, sometimes absent.

Genus Thylacodes Guettard, 1770

Shell long, usually irregularly coiled or even disjunction and resembling a worm tube, but composed of 3 layers, with the inner one porcelainous. Shell permanently attached to a hard substrate. First, whorls coiled around an axis at a 90° angle to that of the larval shell. Sculpture weak, longitudinal or transverse, and irregular. Aperture rounded, sharp-edged, without a siphonal canal. Operculum horny, spiral, sometimes absent. Head with short tentacles bearing eyes at their outer bases. Foot small.

Thylacodes decussatus (Gmelin, 1791)

Synonyms

Serpula decussata Gmelin, 1791; *Serpulorbis decussatus* (Gmelin, 1791).

Shell characters

Shell large, robust, tubular, irregularly coiled, often straight or only slightly curved in the adult, partly embedded in the substrate. Sculpture variable, with weak lamellar, transverse threads. Operculum well developed, as large as the aperture.

![Map showing the study sites of vermetid worm shells in Mon coastal area.](image)

Sampling area
1. Kyaikkhami (Lat. 16° 04’ N, Long. 97° 33’ E)
2. Setse (Lat. 15° 52’ N, Long. 97° 34’ E)
3. Hnitkayin (Lat. 15° 34’ N, Long. 97° 45’ E)
4. Kawdut (Lat. 15° 32’ N, Long. 97° 45’ E)
5. Sitaw (Lat. 15° 11’ N, Long. 97° 48’ E)
6. Kabyarwa (Lat. 15° 04’ N, Long. 97° 48’ E)
Table 1. Zonal distribution of vermetid worm shell in Mon coastal area.

Sampling site	From landward to seaward				
	Supra-tidal	High tide	Mid tide	Low tide	Sub-tidal
Kyaikkhami					
Setse					
Hnitkayin					
Kawdut					
Sitaw					
Kabyarwa					

Figure 3. Phylum: Mollusca Linnaeus, 1758; Class: Gastropoda Cuvier, 1795; Order: Mesogastropoda Thiele, 1929; Family: Vermetidae Rafinesque, 1815 ; Genus: Thylacodes Guettard, 1770; Species: T. decussatus (Gmelin, 1791)

Table 1. Zonal distribution of vermetid worm shell in Mon coastal area.
ranged 47.67-28.67 in September and April, and 40.66-18.06 in November and February. The noticeable range of percentage composition was (11.17%-6.72%). Maximum species abundance were recorded 792 individuals in Kawdut and followed by 464 individuals in Setse, 399 individuals in Kyaikkhami, 387 individuals in Hnittayan, 312 individuals in Kabyarwa and 207 individuals in Sitaw, respectively. During the study period, monthly species composition from maximum to minimum individuals was recorded in September, November, August, December, January, June, May, March, February, October, July and April (Figure 3).

Vermetidae has distinct and variable shell shape due to their settle substrate and environmental conditions. Shells formed irregularly coiled or even disjunction and resembling a worm tube and permanently attached to a hard substrate. Sculpture of the shell is weak, longitudinal or transverse, and irregular in shape. There are seven coiling patterns of vermetid worm shells recorded in this study. Coiling patterns of

Table 2. Species composition of vermetid worm shell in Mon coastal area.

Months	Sampling sites	Mean	SD	% composition
	Kyaikkhami			
January	28			
February	46			
March	03			
April	16			
May	18			
June	21			
July	10			
August	33			
September	57			
October	56			
November	94			
December	17			
Total	399			

![Figure 4. Monthly species composition of vermetid worm shells in Mon coastal area.](image-url)
Table 3. Coiling patterns of vermetid worm shell in Mon coastal area.

Type of coiling	Shell length (cm)
	0-5
	5-10
	10-15
Circular	
Semicircular	
Conical	
Ovate	
Spindle-shaped	
Cylindrical	
Rhomboidal-shaped	

Figure 5. Types of coiling of vermetid worm shells in Mon coastal area.

Conclusions

The vermetid worm shell *Thylacodes decussatus* (Gmelin, 1791) is one of the dominant gastropods in Mon coastal area. It has a high composition throughout the study period. Mean, and percentage species composition was moderately related between the study sites. The variation of shell structures showed distinct coiling patterns with their settlement substrate types. Zonal distribution can be predicted and measured the species dispersion of vermetid worm shells in study areas.

Acknowledgements

I am indebted to Dr. Aung Myat Kyaw Sein, Rector of Mawlamyine University, and Dr Mie Mie Sein and Dr San San Aye, Pro-Rectors of Mawlamyine University, for their encouragement and supports in preparing this work. I am very grateful to Dr San Tha Tun, Professor, and Head of the Department of Marine Science, Mawlamyine University, for his valuable suggestions and constructive criticisms on this study. I want to express my sincere thanks to colleagues of Field Observation Group, Department of Marine Science, Mawlamyine University, for their kindly help me in many ways during field trips. Many thanks go to Daw Lwin Lwin, Retired Lecturer of the Department of Marine Science, Mawlamyine University, for her assistance in preparations of the manuscript. I want to thank my beloved parents, U Win Maung and Daw Than Than Aye, for their physical, moral and financial support throughout this study.

Bibliographic references

1. Savazzi, E. Adaptations of vermetid and siliquariid gastropods. Palaeontology. 1996. 39: 157-177.
2. Schiaparelli, S. and Cattaneo-Vietti, R. Functional morphology of vermetid feeding tubes. Lethaia. 1999. 32: 41-46.
3. Scheuwimmer, A. and Nishiwaki, S. Comparative studies on three Japanese species of Serpulorbis (Prosobranchia: Vermetidae) with description of new species. Venus. 1982. 41(2): 85-101.
4. Safriel, U.N. The role of vermetid gastropods in the formation of Mediterranean and Atlantic reefs. Oecologia. 1975. 20: 85-101.
5. Keen, A.M. A proposed reclassification of the gastropod family Vermetidae. Bulletin of the British Museum (Natural History), Zoology. 1961. 7(3): 181-213.
6. Calvo, M., Templado, J. and Penchaszadeh, P.E. Reproductive biology of the gregarious Mediterranean vermetid gastropod *Dendropoma petraeum*. Journal of the Marine Biological Association of the United Kingdom. 1998. 78: 525-549.
7. Pacheco, A.S., Laudien, J., Thié, M., Yer, O.H. and Oliva, O. Hard-bottom succession of subtidal epibenthic communities colonizing hidden and exposed surfaces off northern Chile. Scientia Marina. 2010. 74(1):147-154.
8. Soe Tho. Sea shells of Ngapali. University Education Journal. 1970. 5(1): 317-368.
9. Soe Thu. Sea shells of Maungmagan. University Education Jour-
nal. 1971. 6(2): 397-432.
10. Soe Thu. Taxonomy and distribution of Burmese marine gastro-
pods. Unpublished MSc Thesis, Department of Zoology, Art and
Science University, Rangoon. 1980.
11. Laborel, J.L. Are reef-building vermetids disappearing in the
south Atlantic? Proceedings. Third International Coral Reef
Symposium. Miami - Florida: 1977. 233-237.
12. Poutiers, J. M. Gastropods. In: Carpenter, K. E. and Niem, V. H.
(Eds.), FAO Species Identification Guide for Fishery Purposes.
The Living Marine Resources of the Western Central Pacific. Vol-
ume 1. Seaweeds, Corals, Bivalves and Gastropods. Food and
Agriculture Organization, Rome: 1998. 363-649.
13. Abbott, R.T. Seashells of Southeast Asia. Graham Brash, Singa-
pore. 1991. 145 pp.
14. WoRMS. Available Source: http://www.marinespecies.org. 2019.

Received: 8 September 2019
Accepted: 2 November 2019