Supporting Information

Polyacrylamide exotemplate-assisted synthesis of hierarchically porous nanostructured TiO$_2$ macrobeads for efficient photodegradation of organic dyes and microbes

Muhammad Ahmad Mudassir,†‡§ Syed Zajif Hussain,† Mishal Khan,⁷ Syeda Tasmia Asma,†‡¶ Zafar Iqbal,† Zille Huma,† Najeeb Ullah,§ Haifei Zhang,§ Tariq Mahmood Ansari,*,‡ and Irshad Hussain*,†‡

†Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan
‡Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan - 60800, Pakistan
§Department of Chemistry, University of Liverpool, Oxford Street, Liverpool - L69 3BX, U.K.
¶Institute of Industrial Biotechnology (IIB), GC University Lahore - 54000, Pakistan
₸Preston Institute of Nano Science & Technology (PINSAT), Islamabad, Pakistan
¥US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), University of Engineering & Technology (UET), Peshawar, Pakistan

*Corresponding authors’ email addresses: ihussain@lums.edu.pk; drtariq2000@gmail.com
Figure S1. (A) UV-vis diffuse reflectance spectra and (B) plot of Kubelka-Munk function \((F(R)h\nu)^{0.5}\) versus photon energy \((E_g)\) for the bandgap measurement of (a) PAM–TiO\(_2\) NC, and (b) porous NS TiO\(_2\) macrobeads.
Figure S2. SEM images (cross-sectional view) of (A–C) PAM showing greater macroporosity, (D–F) PAM–TiO$_2$ NC macrobeads showing (D,E) blocked pores and (F) TiO$_2$ particles.
Figure S3. Pore size distribution of (A) PAM, (B) PAM–TiO₂ NC and (C) porous NS TiO₂ macrobeads. (D) Particle size distribution of TiO₂ nanobuilding blocks. ImageJ software was used to measure the average pore size distribution of beads and particle size of TiO₂ nanobuilding units (NBUs).
Figure S4. Removal efficiency (mg/g) of porous NS TiO$_2$ macrobeads (A) without H$_2$O$_2$, and (B) with H$_2$O$_2$.
Figure S5. Time-wise bactericidal efficiencies (%) of 0.2 mg/mL dosage of PAM, PAM–TiO$_2$ NC and porous NS TiO$_2$ macrobeads against *S. aureus* under (A) UV light and in the (B) dark, and against *E. coli* under (C) UV light and in the (D) dark.
Figure S6. Fluorescence spectra of the irradiated (a) TA (without TiO$_2$) and TA with TiO$_2$ samples.
Figure S7. SEM image of a single NS TiO$_2$ macrobead. (B) Digital photograph of the NS TiO$_2$ macrobeads (zoomed-in view in the inset) showing their integrity in MB aqueous solution.
Table S1. A comparison for the removal of methylene blue by different TiO$_2$-based materials.

Material	Removal Efficiency	k (min$^{-1}$)	Operational Parameters	Ref.
commercial TiO$_2$ powders	48.2%	—	15 mg of Catalyst, 20 ppm MB Conc., 50 mL of MB, 70 min	1
CdSe-TiO$_2$ nanocrystals	67%	0.004	9 mg of Catalyst, 10 ppm MB Conc., 100 mL of MB, 60 min	2
TiO$_2$–polymer nanofibers	70%	—	1×10$^{-8}$ M MB Conc., 200 mL of MB, 180 min	3
TiO$_2$-based coatings	71.5%	—	2×10$^{-8}$ M MB Conc., 10 mL of MB, 180 min	4
Ag NPs loaded TiO$_2$ NTs	81.2%	—	20 mg of Catalyst, 20 ppm MB Conc., 60 mL of MB, 150 min	5
PoPD/TiO$_2$ NCs	85.9%	0.010	30 mg of Catalyst, 10 ppm MB Conc., 30 mL of MB, 180 min	6
commercial TiO$_2$ NPs	90%	0.025	150 mg of Catalyst, 150 ppm MB Conc., 300 mL of MB, 360 min	7
anatase nano-TiO$_2$	90.3%	0.035	50 mg of Catalyst, 4×10$^{-8}$ M MB Conc., 100 mL of MB, 60 min	8
TiO$_2$ hollow microspheres	92%	—	100 mg of Catalyst, 15 ppm MB Conc., 500 mL of MB, 360 min	9
TiO$_2$@rGO NCs	92%	0.018	200 mg of Catalyst, — MB Conc., 5 mL of MB, 120 min	10
Ag@Fe$_3$O$_4$@SiO$_2$@TiO$_2$	95%	51 mg/g	10 mg of Catalyst, 50 ppm MB Conc., 20 mL of MB, 240 min	11
JHP-TiO$_2$–Au microswimmer	97%	—	100 mg of Catalyst, 10 ppm MB Conc., — mL of MB, 60 min	12
chargeable TiO$_2$ NPs	97%	0.018	100 mg of Catalyst, 10 ppm MB Conc., 600 mL of MB, 180 min	13
electrospun fiber embedding TiO$_2$	97% (total)	0.045	100 mg of Catalyst, 20 μM MB Conc., — mL of MB, 330 min	14
TiO$_2$[(EPF(2/1)=TiO$_2$]	97% (total)	0.050	100 mg of Catalyst, 20 μM MB Conc., — mL of MB, 330 min	14
porous TiO$_2$ nanowires	97.98%	—	15 mg of Catalyst, 20 ppm MB Conc., 50 mL of MB, 56 min	15
aerochitin-TiO$_2$ composite	98%	0.018	10 mg of Catalyst, 10 ppm MB Conc., 10 mL of MB, 200 min	16
NS TiO$_2$ macrobeads (without H$_2$O)	86.87% (total)	0.030	5 mg of Catalyst, 25 ppm MB Conc., 10 mL of MB, 60 min	This study
NS TiO$_2$ macrobeads (with H$_2$O)	98.53% (total)	0.050	5 mg of Catalyst, 25 ppm MB Conc., 10 mL of MB, 60 min	This study

Total means the cumulative efficiency achieved under both the dark and UV light conditions; K is the reaction rate constant; MB stands for methylene blue; conc. stands for concentration; ref. stands for references; NTs, NPs, NCs and NS stand for nanotubes, nanoparticles, nanocomposites and nanostructured, respectively.

References
1. J. Huang, H. Ren, X. Liu, X. Li and J.-J. Shim, Superlattices Microstruct., 2015, 81, 16-25.
2. I. A. Mir, I. Singh, B. Birajdar and K. Rawat, Water Conserv. Sci. Eng., 2017, 2, 43-50.
3. A. Abdal-hay, A. S. Hamdy Makhlouf and K. A. Khalil, ACS Appl. Mater. Interfaces, 2015, 7, 13329-13341.
4. F. Xu, T. Wang, H. Chen, J. Bohling, A. M. Maurice, L. Wu and S. Zhou, Prog. Org. Coat., 2017, 113, 15-24.
5. P. Van Viet, B. T. Phan, D. Mott, S. Maenosono, T. T. Sang and C. M. Thi, J. Photochem. Photobiol., A., 2018, 352, 106-112.
6. C. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren and W. Wang, PloS one, 2017, 12, e0174104.
7. M. Subramaniam, P. Goh, N. Abdullah, W. Lau, B. Ng and A. Ismail, J. Nanopart. Res., 2017, 19, 220.
8. J. Zhang, B. Wu, L. Huang, P. Liu, X. Wang, Z. Lu, G. Xu, E. Zhang, H. Wang and Z. Kong, J. Alloy. Compd., 2016, 661, 441-447.
9. J. H. Pan, X. Zhang, A. J. Du, D. D. Sun and J. O. Leckie, J. Am. Chem. Soc., 2008, 130, 11256-11257.
10. M. Sohail, H. Xue, Q. Jiao, H. Li, K. Khan, S. Wang and Y. Zhao, Mater. Res. Bull., 2017, 90, 125-130.
11. J. Su, Y. Zhang, S. Xu, S. Wang, H. Ding, S. Pan, G. Wang, G. Li and H. Zhao, Nanoscale, 2014, 6, 5181-5192.
12. V. Sridhar, B. W. Park and M. Sitti, Adv. Funct. Mater., 2018, 28, 1704902.
13. F. Azeez, E. Al-Hetlani, M. Aрафа, Y. Abdelmonem, A. A. Nazeer, M. O. Amin and M. Madkour, Sci Rep., 2018, 8, 7104.
14. C.-G. Lee, H. Javed, D. Zhang, J.-H. Kim, P. Westerhoff, Q. Li and P. J. Alvarez, Environ. Sci. Technol., 2018, 52, 4285-4293.
15. Y. Tang, H. Ren and J. Huang, Front. Optoelectron., 2017, 10, 395-401.
16. R. S. Dassanayake, E. Rajakaruna and N. Abidi, J. Appl. Polym. Sci., 2018, 135, 45908.