Analysis of Unsignalized Intersection Using PKJI 2014 Method (Study Case: Intersection of Jalan Sukajadi - Jalan Sukawangi-Jalan Sindang Sirna, Bandung)

Hetty Fadriani*, Iman Hidayat, N.R Adinda, Samun Haris, Andrew Ghea Mahardika and Budi Nuryono

Sekolah Tinggi Teknologi Mandala Bandung, Bandung, Indonesia

*hetty_hf@yahoo.co.id

Abstract. Unsignalized intersection between Jalan Sukajadi, Jalan Sukawangi, Jalan Sindang Sirna is a strategic intersection in Bandung as the main access to the North Bandung area (Ledeng and surrounding areas). The intersection is often congested, especially at peak hours. This research tried to find a solution by exercising two scenarios, i.e. scenario (1) eliminating the main conflict and scenario (2) applying Traffic Signal (APILL). Analysis conducted using the Indonesian Road Capacity Guidelines (PKJI 2014) to the traffic data collected in peak hours of three workdays, i.e. morning peak, noon peak, and afternoon peak at December 2018. The existing condition shows the degree of saturation (DJ) value of 1.31, delay (T) about 153.93 sec/pceu, a potency of queuing (PA) about 70.71 to 46.7%, and level of service at F. Scenario (1) gives a DJ value smaller than the existing condition, T remains, PA becomes bigger and the level of service still in F. Scenario (2) results in a DJ value below 0.85, T and PA gets smaller, and service level increased to level C. In accordance to the simulation results, it recommended to apply traffic signal (APILL) on the intersection to relieve the congestion.

1. Introduction

Intersections are the meeting of two or more arms that can cause traffic conflicts. The four-arm unsignalized intersection between Jalan Sukajadi - Jalan Sukawangi - Jalan Sindang Sirna is a strategic intersection in the city of Bandung which is access to the North Bandung area (Ledeng, Lembang, and surrounding areas). Seen from the conditions of the surrounding environment, this intersection is in a mixed zone namely commercial, educational and office areas with quite high activity. Unsignalized intersection setting cause movement at this intersection to become irregular and frequent congestion. This is indicated by a decrease in the performance of the intersection that is an increase in density/degree of saturation [1][4], increasing delays [2], queues and downs of the high opportunity level of service.

2. Approach and methodology

In general, unsignalized intersections with the regulation of road rights (priority from the left) are used in urban and rural areas for intersections between local roads with low traffic flow. PKJI 2014 guidelines distinguish between the signalized intersection and the unsignalized intersection [7][8]. Unsignalized intersections are controlled by the basic rules of Indonesian traffic which give way to vehicles from the left, while signaled intersections are controlled by traffic lights.
The parameters calculated in this study will be calculated using the PKJI 2014. The total capacity (C) for all intersection arms is multiplying the basic capacity by the adjustment factors in the field conditions [3][6]. Then the road performance will be calculated, namely the degree of saturation (DJ), Delay (T) and potency of queuing (PA) and the level of service (LOS). The implementation of this research is conveyed in a flowchart of the research stages shown in Figure 1.

![Flowchart](image)

Figure 1. Research flow chart cycle

3. Results and discussion

Intersection performance testing is done by comparing the existing conditions with the 2 scenarios offered as discussed in the section below.

3.1 Existing geometry conditions and intersection performance

Existing conditions draw the intersection traffic conditions without any intervention to the traffic that occurs. Survey results in the field, geometry data and the condition of the four intersections Jl. Sukajadi, Jl. Sukawangi, Jl. Sindang Sirna can be seen in Figure 2 below.
Figure 2. Geometrics of Jalan Sukajadi intersection, Jalan Sukawangi, Jalan Sindang Srima

Vehicle classification consists of light vehicles (KR), Medium Vehicles (KS), Motorcycles (SM) with a calculation interval of 1 (one) hour. This data is then converted into light vehicle units (pcu) according to the conversion factor of light vehicle equivalents (ekr) for each type of vehicle. Data collected in peak hours of three workdays, i.e. morning peak (06.00 to 09.00 a.m.), noon peak (11.00 a.m. to 14.00 p.m.), and afternoon peak (16.00 to 19.00 p.m.) as shown in Figure 3.

Figure 3. Traffic flows at morningpeak, noonpeak, and afternoonpeak

Table 1. Total traffic flow

Approach	Direction	Light Vehicle	Medium Vehicle	Motorcycle	Total				
		Vehicle/hr	pcu/hr	Vehicle/hr	pcu/hr	Vehicle/hr	pcu/hr		
Jl. Sukawangi	BKi	234	234	7	9	1022	511	1263	754
	BKa	1159	1159	10	13	4431	2216	5600	3388
Minor Road	Total	1716	1716	23	30	5947	2974	7686	4720
Jl. Sukajadi	BKi	61	61	1	1	97	49	159	111
	BKa	0	0	0	0	0	0	0	0
Minor Road	Total	335	335	17	22	1076	539	1428	896
Mayor Road	Total	2051	2051	40	52	7023	3513	9114	5616
Vehicle Type Composition		37%	1%					63%	
Figure 3. explains that the highest traffic flow at morning peak, afternoon peak and afternoon peak hours occurs on Monday. The amount of traffic flow in the morning at 07.00 - 07.59 a.m is 9114 vehicles/hr, during the day at 12.00 - 12.59 a.m at 6839 vehicles/hr and afternoon at 16.00 - 16.59 p.m is 7611 vehicles/hr. Table 1 explains that the total traffic flow of major and minor roads used for the analysis of 5616 pcu/hr consisted of 37% light vehicles, 1% medium vehicles and 63% motorcycle.

The observed intersection traffic performance is capacity, degree of saturation, delays and queuing opportunities as presented in Table 2. The results obtained are the capacity of the intersections that are affected by various adjustment factors is 4290 pcu/hour or smaller than the traffic volume that occurs in crossing.

According to the PKJI 2014, with an intersection volume of 5616 pcu/hr and an intersection capacity of 4290 pcu/hr then the degree of saturation can be calculated by dividing the traffic volume by the actual capacity value so as to obtain a DJ = 5616/4290 = 1.31. Intersection delay at 153,93 sec/pcu is greater than the requirements [5]. Traffic conditions with DJ values greater than 1 indicate forced-flow conditions, low speed, greater volume than capacity, traffic often stops, causing long queues. Thus, the condition of this intersection falls into the level of service F.

Table 2. Existing intersection traffic performance

Approach width and Intersection Type	Number of Arms	Approach Width m	Mayor Road	LRP	Number of Lane	Type Intersection
	Minor Road	LAC	LB	LD	Minor	Mayor
	4	12,3	14,7	13.5	8	2
				8,6	11,7	10,15
				11,7	10,15	8
				8	2	2
				422		

2. Calculating Capacity C = C0 x FLP x FM x FUK x FHS x FBKx x FRmi

Basic Capacity

Capacity Co	Average Approach Width	Median Mayor Road	City Size	Side Friction	Turn Left	Turn Right	Ratio Minor/Total
Pcu/hr	FLR	FM	FUK	FHS	FBKx	FRmi	Pcu/hr
2900	1.42	1	1	0,93	1,09	1	1,03
4290							

3. Calculating DJ, T dan PA

Total Traffic Flow

Traffic Flow	Degree of Saturation	Intersection Traffic	Mayor Road	Minor Road	Geometry	Interception Delay	Queue Opportunity
qTOT	DJ	TLL	TLLma	TLllmi	TG	T	PA
Pcu/hr	sec/pcu	sec/pcu	sec/pcu	sec/pcu	sec/pcu	sec/pcu	sec/pcu
5616	1,31	149,93	43,48	170,01	4	153,93	70,7-146,7

3.2 Scenarios performance

To see the improvements being made, a simulation is carried out by removing the vehicle conflict from Jalan Sukajadi Bawah towards Jalan Sukajadi Atas by turning the vehicle into Jalan Sukawangi. The results obtained are presented in Table 3. The degree of saturation dropped to 1.08, the intersection delay was reduced to 23.89 sec/pcu, and the potency of queuing about 47.4 to 94.7% but the level of service was still in the F category. The second simulation uses a traffic signaling device with North approach (Jl. Sukajadi Atas), South approach (Jl. Sukajadi Bawah), East approach (Jl. Sukawangi) and Western approach (Jl. Sindang Sirna). The simulation results obtained the value of the degree of saturation down to 0.74, the intersection delay reduced to 14.46 sec/pcu, the queue length ranged from 31.86 to 53.28 meters and the level of service increased to category C with the characteristics of a stable traffic flow with restrictions speed.
Table 3. Traffic performance scenario 1

Basic Capacity Co	Capacity Correction Factor	Capacity C	Note
Pcu/hr 2900			
FLP	Median	Approach	Width
FM	Mayor Road	City Size	FUK
FHS	Friction	Turn Left	FBKi
FBKa	Turn Right	FRmi	
FRmi		Pcu/hr	5177

1. Calculating

\[\text{Capacity } C = C_0 \times \text{FLP} \times \text{FM} \times \text{FUK} \times \text{FHS} \times \text{FBKi} \times \text{FBKa} \times \text{FRmi} \]

Basic Capacity Co	Calculating	Traffic Flow
Pcu/hr 2900		
FLP	Median	Approach
FM	Mayor Road	Width
FUK	City Size	FHS
FBKi	Friction	Turn Left
FBKa	Turn Right	FRmi
FRmi		Pcu/hr 5177

2. Calculating DJ, T dan PA

Total Traffic Flow	Degree of Saturation	Traffic Performance	Target	Note
qTOT		DJ	PA	
Pcu/hr 5616	DJ	TLL	TLLma	
		sec/pcu	sec/pcu	
		TLLni	TG	
		sec/pcu	sec/pcu	
		4	23,9	
		47,4-94,7		
		DJ<0,85	Scenario 1	

Table 4. Traffic performance scenario 2

Approach Code	Traffic Flow Q	Capacity C	Degree of Saturation Dj	Gain Ratio RH	NQ1/pcu	NQ2/pcu	NQ/pcu	NQ MAX	NQ MAX pcu	Queue Length PA m	Vehicle Stopped Ratio RKH	Number of Vehicles Stopped NKH	Average Traffic Delays TLL sec/pcu	Average Geometry Delays TG sec/pcu	Average Delay T=TT+TG sec/pcu	Total Delay T x Q sec/pcu
U	0.00	0.00	0.00	0.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.88	5.88	0		
S	491	666	0.78	0.3	0.80	6.05	6.85	13.00	31.86	0.92	453.26	20.26	23.9	24.25	11889	
T	2488	3375	0.74	0.5	0.80	26.63	27.44	41.00	53.28	0.75	1813.75	10.56	9.97	14.33	35638	
B	0.00	0.00	0.00	0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.88	5.88	0		
	0.00	0.00	0.00	0.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.88	5.88	0		
	0.00	0.00	0.00	0.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.88	5.88	0		

BKJ = 528
Q-total = 3506
Total number of vehicles stopped = 2269.01
Average vehicle stopped on average period = 0.05
Average intersection delay, sec/pcu = 14.46

4. Conclusions

Existing conditions show, the degree of saturation value of 1.31 or theoretically exceed the value limit. At that time, traffic conditions are in a saturated state in which the value of the comparison of traffic volumes is greater than its capacity, forced-flow conditions, very low speed, traffic often stops, and long queues occur. The crossing delay is 153.93 sec/pcu and the potency of queuing is 70.7- 146.7%. Scenario one produces a degree of saturation of 1.08 or decreases by 17% but the level of service is at level F. Delay is 23.89 sec/pcu and a potency of queuing of 47.4 to 94.7%. In this scenario no significant improvement has been seen. The second scenario produces a degree of saturation of 0.74 or down 43.44% so that the service level rises to level C with the characteristics of a more stable traffic flow even though it is still with speed restrictions. The average intersection delay of 14.46 sec/pcu and the queue length of 31.86-53.28 meters. In accordance with the target success determined by PKJI 2014 is <0.85, then the second scenario using APILL is chosen to meet the target.

References
[1] Ramady, G. D., & Wowiling, R. G. (2017). Analisa prediksi laju kendaraan menggunakan metode linear regresi sebagai indikator tingkat kemacetan. Jurnal Online Sekolah Tinggi Teknologi Mandala, 12(2), 22-28.
[2] Fadriani, H., & Ekawati, P. (2016). ANALISA TUNDAAN PADA SIMPANG BERSINYAL
JL. SOEKARNO HATTA–IBRAHIM ADJIE BANDUNG. Jurnal Online Sekolah Tinggi Teknologi Mandala, 11(1), 45-56.

[3] Fadriani, H., & Syah, A. I. (2019). PENGARUH PEDAGANG KAKI LIMA DI BADAN JALAN TERHADAP KECEPATAN DAN KAPASITAS JALAN. Jurnal Online Sekolah Tinggi Teknologi Mandala, 14(1), 1-7.

[4] Fadriani, H. (2018). Pengaruh Gerakan Putar Balik Arah Kendaraan Terhadap Derajat Kejenuhan Ruas Jalan Arteri. Jurnal Online Sekolah Tinggi Teknologi Mandala, 13(2), 51-59.

[5] Mahardika, A. G. (2019). ANALISIS KINERJA SIMPANG TAK BERSINYAL DUA TITIK PERTEMUAN RUAS JALAN ARTERI AH NASUTION. Jurnal Online Sekolah Tinggi Teknologi Mandala, 14(1), 16-48.

[6] Mahardika, A. G., Fadriani, H., Afiyah, S., & Ramady, G. D. (2019, December). Analysis of Time Acceleration Costs in Level Building Using Critical Path Method. In Journal of Physics: Conference Series (Vol. 1424, No. 1, p. 012025). IOP Publishing.

[7] Sitanggang, L. H. S. (2014). ANALISIS KINERJA SIMPANG BERSINYAL (Studi Kasus: Jalan KH Wahid Hasyim-Jalan Gajah Mada). Jurnal Teknik Sipil USU, 3(2). D. I. Haerudin, L. M. B. Aksara, and M. Yamin, “Implementasi Wireless Distribution System (WDS) pada Hotspot (Studi Kasus: SMK Negeri 1 Kendari),” SemanTIK, vol. 3, no. 2, 2018.

[8] Bimaputra, A., Bemby, W. G. W., Kushardjoko, W., & Wicaksono, Y. W. Y. (2017). Analisis Kinerja Simpang Dan Ruas Jalan Di Kawasan Jalan Pahlawan, Kota Bandung. Jurnal Karya Teknik Sipil, 6(3), 45-55.