The evening complex coordinates environmental and endogenous signals in *Arabidopsis*

Daphne Ezer1, Jae-Hoon Jung1, Hui Lan1, Surojit Biswas2, Laura Gregoire2, Mathew S. Box1, Varodom Charoensawan1,3, Sandra Cortijo1, Xuelei Lai1,2, Dorothee Stöckle1, Chloe Zubieta2, Katja E. Jaeger1 and Philip A. Wigge1*

Plants maximize their fitness by adjusting their growth and development in response to signals such as light and temperature. The circadian clock provides a mechanism for plants to anticipate events such as sunrise and adjust their transcriptional programmes. However, the underlying mechanisms by which plants coordinate environmental signals with endogenous pathways are not fully understood. Using RNA-sequencing and chromatin immunoprecipitation sequencing experiments, we show that the evening complex (EC) of the circadian clock plays a major role in directly coordinating the expression of hundreds of key regulators of photosynthesis, the circadian clock, phytohormone signalling, growth and response to the environment. We find that the ability of the EC to bind targets genome-wide depends on temperature. In addition, co-occurrence of phytochrome B (phyB) at multiple sites where the EC is bound provides a mechanism for integrating environmental information. Hence, our results show that the EC plays a central role in coordinating endogenous and environmental signals in *Arabidopsis*.

Plants are sensitive to their environment, and the distribution and phenology of plants has already altered in response to climate change.1,2. Such growth and developmental changes require the integration of multiple environmental signals, such as light and temperature, into endogenous gene expression programmes. The circadian clock plays a key role in this process by enabling plants to anticipate future events such as sunrise and darkness as well as gating responses to environmental information according to time of day.3–5. The expression levels of many circadian clock genes vary in response to changes in the environment,6 but the underlying mechanisms by which these signals are integrated are not known. The circadian clock in *Arabidopsis* contains multiple interlocking loops with transcriptional and post-translational regulation. Three circadian clock genes, *EARLY FLOWERING3, 4 (ELF3 and 4)* and the MYB transcription factor *LUX ARRHYTHMO (LUX)* together comprise the evening complex (EC)7,8, and are expressed at the end of the day. The EC coordinates elongation growth in *Arabidopsis* seedlings, as it directly represses the expression of the bHLH transcription factor *PHYTOCHROME INTERACTING FACTOR 4 (PIF4)* (refs 7–9). PIF4 is necessary for warm temperature-mediated elongation growth,10 and pif3 and pif4,5 mutants also display a reduced induction of flowering in response to warm temperature11–14. Natural variation in the activity of the EC is responsible for differences in thermal responsiveness and warmer temperatures reduce the binding of the EC to target promoters, resulting in increased *PIF4* expression15,16.

Of the core EC components, only LUX is recognisable as a transcription factor and has been shown to have direct DNA binding activity,17 suggesting that the genome-wide targeting of the EC is likely dependent on the cognate LUX Binding Sites (LBS). Indeed, it has been shown that several known targets of LUX possess LBS in their promoters where binding of LUX has been demonstrated using chromatin immunoprecipitation (ChIP)7,17,18. Although the role of the EC has been studied at specific circadian loci, the system-wide impact of the EC is not known, since its global binding pattern and regulatory effects are not yet characterized. In addition, the mechanisms by which the EC is able to provide environmental responsiveness to target loci and integrate environmental signals into the circadian clock are poorly understood. In this study, we demonstrate that the EC regulates key nodes controlling photosynthesis, the circadian clock, growth, phytohormones and temperature signals. We show that the EC directly integrates temperature information and we describe a mechanism by which the co-binding of phytochrome B (phyB) with the EC to target loci enables environmental signals to be directly integrated into the circadian clock.

Results

G-box (CACGTG) motifs are highly enriched at EC binding sites.

To understand how the EC may control plant responses to the environment, we sought to determine its binding genome-wide. Although the LBS is found at more than 10,000 sites in the *Arabidopsis* genome, typically only a subset of the theoretical transcription factor binding sites are occupied *in vivo*. It is also not known to what extent the target sites of the separate EC proteins overlap genome-wide. To resolve these questions we mapped the LUX, ELF3 and ELF4 target sites *in vivo* using ChIP coupled to sequencing (ChIP-seq) using epitope tagged versions of these genes expressed under their own promoters (see Supplementary Fig. 1 for westerns, Supplementary Fig. 2 for complementation and Supplementary Table 1 for sequencing read counts).

In the early evening (Zeitgeber Time (ZT) 10, 2 h after darkness) at 22 °C, there is a large overlap in the binding sites of LUX, ELF4 and ELF3 (Fig. 1a,b and Supplementary Fig. 3 and Supplementary Table 2). Additionally, the LUX ChIP at 22 °C has fewer significant binding sites than the other EC components, with 42 peaks being detected for LUX at 22 °C, compared to 182 for ELF3 (Fig. 1b).
The reduced number of LUX peaks may be due to ELF3/ELF4 binding independently of LUX, or it may reflect a reduced detection resulting from a lower LUX ChIP efficiency.

To distinguish between these two possibilities, we sought to perform ChIP under conditions that would maximize the stability of LUX binding to improve the ChIP efficiency. Since it has been shown that the binding of EC components (ELF3 and ELF4) to the promoters of PIF4, LUX and PRR9 decreases with warmer temperature\(^2\), we performed an additional LUX ChIP-seq experiment at constant 17 °C (also at ZT10) to determine if additional targets could be identified. These experiments considerably increased the list of detectable LBS (Fig. 1b, Supplementary Table 2). These additional LUX peaks at 17 °C overlapped even more substantially with the ELF3 and ELF4 peaks at 22 °C: for example, 92% of ELF3-MYC ChIP-seq peaks were shifted to 27 °C at ZT8 and collected at ZT9 and ZT10 (Supplementary Fig. 3a). The strength of the LUX binding

Figure 1 | There is a high degree of overlap of binding sites for ELF3, ELF4 and LUX genome-wide.

a. ELF3, ELF4 and LUX all bind to the same positions near key circadian targets, such as PRR9, GI and LUX.

b. Venn diagrams showing the degree of ChIP-seq peak overlap of ELF3, ELF4 and LUX at 22 °C and LUX at 17 °C collected from SD grown seedlings at ZT10 (2 h of darkness). Note that the LUX at 17 °C data is also shown in Supplementary Fig. 1a,b. The total number of peaks is shown in parentheses. Note that the numbers in each oval are smaller than those in parentheses, because there are a number of cases where two peaks from one ChIP-seq overlap with a single peak from another ChIP-seq, but this will only be counted as a single overlap event in the Venn diagram (see Methods for more details).

c. Plants were grown in SD conditions at 22 °C until ZT8 and then shifted to a range of temperatures. ELF3-MYC ChIP-seqs were conducted at ZT10. Binding intensity is calculated by MACS2 and for each peak the values were normalized by the average binding intensity of that peak across all temperature-shift experiments.

d. The binding intensity profiles, as calculated by deeptools, are shown here for ELF3-MYC ChIP-seqs in elf3-1 and elf3-1/lux-4 backgrounds, at 22 °C and 27 °C.

e. De novo motifs under LUX peaks at 22 °C were identified using Homer2—the first motif includes a G-box and the second motif appears similar to the LBS\(^3\), with the exception that one C is replaced by a G (AGATAGG instead of AGATACG).
signal was weaker at the higher temperature at both time points (Supplementary Fig. 3b), consistent with previous observations showing ELF3 binding to target loci decreases at 27 °C (ref. 15).

We next analysed ELF3 binding to its targets in plants grown at 22 °C until ZT8 (dusk) and then shifted to a range of temperatures from 8 to 32 °C and measured at ZT10. There is a strong decline in ELF3 binding strength with increasing temperature across this range (Fig. 1c), consistent with previous observations that binding of ELF3 and ELF4 is temperature dependent. LUX has been shown to provide DNA binding specificity for the EC at a number of loci, and we observe a large global reduction in ELF3 occupancy in the lux-4 background, confirming the importance of LUX in recruiting ELF3 to target loci (Fig. 1d). Interestingly, ELF3 binding is still highly responsive to temperature in lux-4, consistent with a role for ELF3 in responding to temperature (Fig. 1d).

Finally, we wished to determine whether LUX and ELF3 binding were consistent across multiple time points. Two additional LUX ChIP-seq experiments were conducted at 22 °C immediately before darkness (ZT8) and 4 h after darkness (ZT12), to complement the previous ChIP-seq data at ZT10 (Supplementary Fig. 3c). In addition, a time course ChIP-seq experiment was conducted for ELF3 with samples collected every 4 h for a 24 h cycle at 22 °C (Supplementary Fig. 3d). These results suggest that LUX binding at ZT8 and ZT10, the two time points with greatest LUX expression, are very similar; however, there is a reduction in binding at ZT12 (Supplementary Fig. 3c). Similarly, ELF3 binding near EC targets is high at dusk and in the early night (ZT8 to ZT16), with a reduction in binding during the day (Supplementary Fig. 3d). This pattern of binding intensity is consistent with the expression patterns for LUX and ELF3, suggesting that their binding strength correlates with transcript and protein levels.

These results indicate that in vivo LUX mostly binds in complex with other EC components in the early evening. However, we also observed strong LUX binding to many of the same binding sites in an elf3-1 background, indicating that LUX binding in vivo can occur genome-wide independently of ELF3 (Supplementary Fig. 4). This is in agreement with in vitro studies showing the ability of LUX to bind targets is independent of ELF3 and ELF4 (Silva et al. under submission).

De novo motif analysis revealed two enriched elements under LBS at 22 °C at ZT10. Firstly, as expected, many peaks contain either perfect LBS sequences or a motif with strong similarity to it, motif 2 (Fig. 1e). Interestingly, G-boxes are even more enriched, being found in 76% of LBS at 22 °C, ZT10 (Fig. 1e, Supplementary Table 4), including in the promoters of many different circadian clock genes, such as CCA1, GI and PRR7 and 9. This suggests that one or more G-box binding transcription factors may play a significant role in EC regulation and function. De novo motif analysis was also conducted for the other datasets, and is available in Supplementary Table 4 and Supplementary Fig. 5—in all cases the G-box was the most enriched motif. We observe that the G-boxes lie near the centre of the EC peaks, and the data obtained by DNA affinity purification sequencing indicates multiple bZIP and bHLH transcription factors (TFs) as candidates for co-binding with the EC (Supplementary Fig. 6).

The EC is a node regulating photosynthesis, light, hormone, circadian and temperature signalling. Since the EC has been proposed to act as a transcriptional regulator, we sought to identify the functional targets of the EC: genes that are both bound by EC components and also show a transcriptional response in EC mutant backgrounds. As the EC regulates transcription in a diurnal fashion, we performed a gene expression time-course experiment, sampling every 4 h over a 24 h short day cycle (Supplementary Table 5). Because the EC has been shown to integrate temperature information, we performed this analysis at both 22 °C and 27 °C.

This enabled us to identify a set of genes present within 3,000 bp of an EC binding peak that also show differential expression in at least one time point in either the elf3-1 or lux-4 backgrounds compared to Col-0 (Table 1, Supplementary Table 6). This set of functional target genes for each EC component shows even more overlap with each other than do the original ChIP-seq peaks themselves, indicating the validity of this approach (Fig. 2a). Each gene referred to in the rest of the text as a potential ‘EC target’ has perturbed expression in at least one time point in elf3-1 or lux-4 and has at least two EC components binding within 3,000 bp as determined by ChIP-seq.

Next, we searched for enrichment of the cis-elements already identified (Fig. 2b, Supplementary Table 4) in ChIP-seq peaks in the vicinity of the functional targets. Interestingly, we observed an increase in the frequency of sequences corresponding to the true LBS, which are now more enriched than the related motif 2, suggesting that the true LBS is more important for a functional EC binding event compared to motif 2 (Fig. 2b). Additionally, we see that the occurrence of perfect G-boxes is increased in the subset of binding sites near EC functional targets. Together, these results suggest that functional EC binding is enriched for the co-occurrence of both LBS and G-box motifs; see Supplementary Fig. 6 and Supplementary Table 3. Furthermore, we wished to determine whether G-boxes were truly enriched under the EC peaks or whether they were simply enriched in the promoters of EC gene targets. We could find very few instances of G-boxes flanking our EC peaks (Supplementary Table 3), which suggests that these G-boxes are in fact enriched under the EC peaks. Such a combinatorial requirement is likely to contribute to the specificity of EC action genome-wide.

The EC is established as a regulator of circadian responses, particularly growth, and we observe the described binding of EC components to the promoters of PRR9, LUX, PIF4 and PIFS (refs 7, 17, 18) (Table 1, Supplementary Figs 7 and 8). Additionally, there is extensive interaction between the EC and other clock master regulators, including GI, CCA1 and PRR7, highlighting the high degree of cross-talk within the loops of the circadian clock. The EC appears to target a number of genes related to environment-dependent signalling and growth. In fact, most enriched gene ontology (GO) terms amongst the EC targets are for genes involved in photosynthesis (Supplementary Table 7, Supplementary Fig. 8), including many photosystem light harvesting proteins and chlorophyll A/B binding proteins. In addition to altering the expression of nuclear encoded chloroplast genes, the EC also binds to the promoter of GUN5, which is necessary for retrograde signalling from the chloroplast to the nucleus. Large-scale shutdown of photosynthesis genes upon the onset of darkness (as in Supplementary Fig. 8) is presumably adaptive. Since the EC is not active in late night, these genes can then be reactivated before dawn in anticipation of light and photosynthesis. In addition to the described targets PIF4 and PIFS, the EC binds the promoters of other light signalling genes such as EARLY LIGHT INDUCIBLE PROTEIN and EARLY PHYTOCHROME RESPONSIVE1.

In addition to the enrichment in photosynthesis and light response genes, the EC may regulate a number of genes implicated in heat response such as DNAJ11 and CXP1 (see Supplementary Fig. 8), which protect against oxidative damage caused by heat stress and the cold response (CBF1,2,3 and DREB2 class genes). Previously it has been shown that the promoter of LUX is bound by the master regulator of the cold response, CBF1 (ref. 25), suggesting that the EC and CBFs form a self-regulating loop. Finally, a major role of the EC is to gate growth, and this has been connected to the regulation of PIF4 and 5, master regulators of the elongation response. Additionally, we observe extensive binding of...
Table 1 | Evening complex gene targets.

Name	TAIR ID	Function	Reference
Photosynthesis and chloroplast function			
LHCA1	AT3G54890	A component of the light harvesting complex associated with photosystem I.	
PIF3	AT3G59060	A Myc-related bHLH transcription factor, which physically associated with APR1/TOC1 and is a member of PIF3 TF family. Involved in shade avoidance. Functions as negative regulator of phyB.	
CAB1,2,3	ATIG29930	Member of Chlorophyll a/b-binding protein family.	Mitra et al., 198944
	ATIG29920		
	ATIG29910		
GUN5	AT5G13630	Encodes magnesium chelatase involved in plastid-to-nucleus signal transduction.	Beligni, 200855
CRB	ATIG09340	Encodes CHLOROPLAST RNA BINDING (CRB), a putative RNA-binding protein. CRB is important for the proper functioning of the chloroplast. Mutations in CRB also affect the circadian system, altering the expression of both oscillator and output genes.	
Circadian clock			
GI	ATIG22770	Regulates several developmental processes, including photoperiod-mediated flowering, phyB signalling, circadian clock, carbohydrate metabolism and cold stress response.	Park et al., 199956
PRR7,9	AT5G02810	PRR7 and PRR9 are partially redundant essential components of a temperature-sensitive circadian system.	Salome and McClung, 200557
CCA1	AT2G46830	CCA1 and LHY function synergistically in regulating circadian rhythms of Arabidopsis.	Salome et al., 201058
LUX	AT3G46640	Encodes a myb family transcription factor with a single Myb DNA-binding domain (type SHAQKYF) that is unique to plants and is essential for circadian rhythms, specifically for transcriptional regulation within the circadian clock. LUX is required for normal rhythmic expression of multiple clock outputs in both constant light and darkness. It is coregulated with TOC1 and seems to be repressed by CCA1 and LHY by direct binding of these proteins to the evening element in the LUX promoter.	Nusinow et al., 2017
AMY3	ATIG69830	Encodes a plastid-localized a-amylase. Expression is reduced in the sex4 mutant. Loss of function mutations show normal diurnal pattern of starch accumulation/degradation. Expression follows circadian rhythms.	Seung et al., 201359
CDF1	AT5G62430	Dof-type zinc-finger domain-containing protein, similar to H-protein promoter binding factor-2a Gt:3386546 from Arabidopsis thaliana. Represses expression of CONSTANS (CO), a circadian regulator of flowering time. Interacts with LKP2 and FK1. Expression oscillates under constant light conditions.	Seaton et al., 201560
	AT5G62600	Dof-type zinc-finger domain-containing protein, identical to H-protein promoter binding factor-2a Gt:3386546 from A. thaliana. Interacts with LKP2 and FK1, but its overexpression does not change flowering time under short- or long-day conditions.	Seaton et al., 201560
Temperature response			
CBF1,2,3	AT4G25490	Induces COR (cold-regulated) gene expression increasing plant freezing tolerance.	Jaglo-Ottosen et al., 199961
	AT4G25470		
	AT4G25480		
DREBA2	AT2G40350	A member of the DREB subfamily A-2 of ERF/AP2 transcription factor family.	Riechmann et al., 200062
	AT2G40340	DREB2A AND DREB2B are involved in response to drought.	
DNAJ	AT4G36040	Chaperone DnaJ-domain superfamily protein; functions in: heat shock protein binding.	Chen et al., 201063
Growth	AT2G40310	Involved in shade avoidance response. Protein abundance is negatively regulated by phyB.	Koini et al., 200910
PIF4	AT2G43010	A quantitative trait locus involved in the control of seed dormancy.	Kendal et al., 201144
DOG1	AT5G45830	Required for appropriate regulation of flowering time.	Wang et al., 200965
BNQ1,2	ATIG39680		
BBX24,22	ATIGG6040	BBX24 colocalizes with COP1 and plays a role in light signalling.	Crocco et al., 201556
	ATIG78600	Light-regulated zinc-finger protein 1 (LZF1).	Gangappa et al., 201367
Phytohormone and light signalling			
AtCKX6	ATIG75450	Encodes a protein whose sequence is similar to cytokinin oxidase/dehydrogenase, which catalyses the degradation of cytokinins.	Bartrina et al., 201168
CRF4	AT4G27950	Encodes a member of the ERF (ethylene response factor) subfamily B-5 of ERF/AP2 transcription factor family.	Zwick et al., 201569
CRF5	AT2G46310	CRF5 encodes one of the six cytokinin response factors. It is transcriptionally upregulated in response to cytokinins. CRF proteins rapidly relocate to the nucleus in response to cytokinin. Analysis of loss-of-function mutants revealed that the CRFs function redundantly to regulate the development of embryos, cotyledons and leaves.	Cutcliffe et al., 201770
ARR6	AT5G62920	Encodes a Type-A response regulator that is responsive to cytokinin treatment. Its C-terminal domain is very short in comparison to other Arabidopsis ARRs (17 total). ARR6 protein is stabilized by cytokinin.	Zwick et al., 201671
ARR7	ATIG19050	Encodes a member of the Arabidopsis response regulator (ARR) family, most closely related to ARR15. A two-component response regulator protein containing a phosphate accepting domain in the receiver domain but lacking a DNA binding domain in the output.	Wilson et al., 201672
RVE1	AT5G77300	Myb-like transcription factor that regulates hypocotyl growth by regulating free auxin levels in a time-of-day specific manner.	Rawat et al., 200973
CYP707A2	AT2G29090	Encodes a protein with ABA 8'-hydroxylase activity, involved in ABA catabolism. Member of the CYP707A gene family. This gene predominantly accumulates in dry seeds and is upregulated immediately following imbibition.	Dong et al., 201474
ELIP1,2	AT3G22840	Encodes a light-inducible protein.	Rizza, 201175
RVE7	ATIG18330	Early phytochrome-responsive gene.	Li et al., 201176
the EC to a number of targets involved in controlling phytohormone signalling—such as the bHLH growth regulators BANQUO1 and 2 that function downstream of the brassinosteroid responsive transcription factor BZR1 (refs 26 and 27) and the Myb-like transcription factor REVEILLE1, which controls free auxin levels28. Recently, it has been shown that plants deficient in cytokinins are hypersensitive to circadian stress29. Interestingly, we see extensive connections between the EC and cytokinin signalling, since the EC represses the genes ARR6, ARR7, CYTOKINE OXIDASES, CRF4 and CRF5.

Crucially, almost all of the proposed target genes show elevated levels of expression in elf3-1 and lux-4 in the early evening, but not the day, which is consistent with the EC’s role as an early evening repressor (Fig. 2d, Supplementary Figs 8–10, see “Scatterplots Stats” in Supplementary Table 3 for P value calculations). To further understand the temporal dynamics of these EC targets, the ELF4 targets were clustered based on the log-fold change of expression in elf3-1 (Fig. 2d) (ELF4 targets were chosen as these have the largest degree of overlap with ELF3 and LUX, making them by this measure the best predictor of EC presence). Three clusters emerged—the largest cluster (shown in blue, which included PIF5 and many members of the photoharvesting system) had increased expression in the early evening. A second cluster (shown in purple)—which included all of the key circadian targets as well as PIF4—had increased expression in elf3-1 in the early morning, as well as at night. The last cluster had no clear pattern of expression in elf3-1, and may include genes that are ‘false-positive’ candidates. However, this third cluster (grey) contains only nine genes, suggesting that we have successfully identified a high-quality list of global EC gene targets.

About 40 of the direct targets of the EC are transcription factors, suggesting that the EC is a major node regulating large-scale transcriptional responses in the cell. For LUX at 17 °C, the GO term “transcription, DNA-regulated” is enriched (PANTHER, P value 4.98E-09). Consistent with this, in elf3-1 and lux-4 we observed large-scale perturbation to the transcriptome extending beyond the evening period when the EC is most active. Many of these genes misregulated in elf3-1 and lux-4 are not bound by the EC, indicating that they are instead indirect targets (Supplementary Fig. 11).

ELF3 and LUX are both required for EC repression of circadian targets. Because of the critical role the EC plays in controlling the circadian clock, we decided to further investigate the expression pattern of the cluster composed mainly of circadian genes from

Figure 2 | The EC regulates a wide set of target genes controlling major biological processes in the plant, particularly the circadian clock, photosynthesis, temperature signalling, growth and phytohormone signalling. Target genes were identified for each EC component as being within 3,000 bp of a ChIP-seq peak and being differentially expressed in at least one time point in either elf3-1 or lux-4. a, Degree of overlap between these gene targets. b, Among peaks that were within 3,000 bp of predicted gene targets, the proportion containing the motifs displayed in Fig. 1c: G-boxes (motif #1 in the de novo analysis), LBS35 and motif #2. c, Gene expression values were normalized to TPM. The log-fold change in gene expression—that is, ln(TPM mutant/TPM Col-0) at 22 °C for elf3-1 and lux-4 are compared to one another, when the EC complex is present, and in the day, when the EC complex is absent. All genes that are among the top 5% most differentially expressed genes in at least one time point in either elf3-1 or lux-4 are shown in grey. Predicted target genes for ELF3, ELF4 or LUX at 22 °C are highlighted. d, Hierarchical clustering was conducted on the log-fold change (also the natural log) in expression in elf3-1 versus Col-0 at 22 °C (blue text) and 27 °C (red text)—each row represents a gene, with all PIFs, light harvesting genes and circadian clock genes labelled by common name, and each column represents an RNA-sequencing sample. The bar above the clustering plot demonstrated the day/night cycle—the seedlings were grown in SD conditions. The clusters are designated by the purple, grey and blue sidebars.
Figure 3 | The EC directly regulates many genes that are rhythmically expressed. a. The log-fold change in expression (natural log) is shown for elf3-1 versus Col-0 (i), elf3-1 versus lux-4 (ii) and lux-4 versus Col-0 (iii), specifically for the cluster containing circadian clock genes—indicated by purple in Fig. 2d. b. The expression (TPM) for these genes is shown in Col-0. Note that the legend is the same as in a. c. Six different models were fit to predict the slope of the change of expression of circadian target genes based on the expression of ELF3, ELF4 or LUX (with or without dependence on a complete EC)—see Supplementary Fig. 9 for further explanation. More specifically, in the +EC models, we assume that the ‘expression’ of ELF3 is effectively zero in the absence of LUX (lux-4) and the ‘expression’ of LUX is effectively zero in the absence of ELF3 (elf3-1). For each of these models, we calculated the Pearson’s correlation between the expression of each EC component and the slope of the log-fold change in expression in the genes shown in a (i). The results of the best model (using ELF4 expression, dependent on complete EC) are also graphed (ii).

Fig. 2d. Firstly, we wished to determine whether these genes could be regulated by only the entire EC or whether LUX was capable of regulating these genes in the absence of ELF3. Figure 3a demonstrates that these genes have increased expression at night in both the elf3-1 and lux-4 backgrounds compared to Col-0, but that these genes have almost identical patterns of expression in elf3-1 and lux-4. This suggests that both LUX and ELF3 are required to regulate the circadian targets of the EC. Strikingly, even though the circadian targets have very distinctive gene expression patterns in Col-0 (Fig. 3b), they all have highly similar log-fold changes of expression in elf3-1 and lux-4 (Fig. 3a), suggesting that the EC provides the same degree of repression to all of its circadian targets. This indicates that the EC may act by a single mechanism, and that this repression is achieved independently of the other factors influencing expression of the target genes.

The genes encoding EC components show diurnal patterns of expression (Supplementary Fig. 12). We therefore investigated whether the expression of EC components is sufficient to account for the degree of EC target repression. As gene expression networks often assume that the concentration of a transcription factor influences the rate of change of gene expression of its downstream targets, we generated a set of linear models to predict the slopes of Fig. 3ai,iii based on the log-fold change in concentration of ELF3, ELF4 or LUX (with or without dependence on a complete EC). If all three EC components are required for EC function, the ‘effective concentrations’ of LUX in elf3-1 and of ELF3 in lux-4 should then both be zero—models that incorporate this assumption are labelled as +EC in Fig. 3ci. In all cases, models that incorporate this assumption perform better than ones that do not, further suggesting that both ELF3 and LUX must be present for the EC to serve as a repressor. The ELF4 and LUX + EC models were remarkably accurate—the Pearson’s R values were less than –0.8 (Fig. 3ci). Therefore, the amount of repression of EC circadian targets can be accurately predicted using only information about either LUX or ELF4 expression levels—an example of the correlation of the ELF4 + EC model is shown in Fig. 3ci. This suggests a quantitative model in...
which the concentration of the EC determines the rate of repression of the circadian targets—a mechanism that could explain the expression of circadian targets at night. It is notable that the expression pattern of ELF3 is very broad, with a much-reduced amplitude compared to that of ELF4 and LUX, which show a very sharp peak of expression at ZT8 (Supplementary Fig. 12). Because ELF4 and LUX have very similar patterns of expression, we cannot determine which is more important for circadian regulation using the modelling framework in Fig. 3. Finally, it is important to note that while this model is sufficient to explain our observations, the model may not be predictive.

The EC controls the night-time warm temperature transcriptome. The EC has been shown to control warm temperature-mediated induction of PIF4 and LUX (ref. 15), and here we determined that the EC may also directly regulate key temperature response genes like CBFs. We therefore sought to see if the EC might play a global role in the warm temperature response. Comparing the transcriptomes of either elf3-1 or lux-4 with the warm temperature transcriptome reveals a significant positive correlation during the night (Fig. 4a,b, Supplementary Fig. 14, see “Scatterplot Stats” in Supplementary Table 3 for P value calculations). Interestingly, this correlation is stronger earlier in the night for those genes that are directly bound by the EC, while the correlation is strongest at the end of the night for all genes (Supplementary Fig. 14). This suggests that the EC conveys temperature information to its direct targets at night, and that this signal cascades to a wider set of genes by dawn (Fig. 4c,d, Supplementary Figs 14,15).

The EC associates with phytochromes on target gene promoters. To understand how the EC might integrate temperature information, we investigated other proteins that have been demonstrated to interact with the EC 30. Of these, phytochromes have recently been shown to function as thermosensors 31,32, binding to target promoters in a temperature dependent manner. We therefore investigated whether the peaks bound by EC proteins are also bound by phytochromes. There is significant overlap between temperature responsive loci that are bound by two or more members of the EC and phyB (Fig. 5a, see “Fig. 5a” sheet in Supplementary Table 3 for P value calculations, Supplementary Table 8 for raw values and Supplementary Fig. 16 for specific examples). This suggests a mechanism whereby phytochromes may transmit light and temperature information directly to the evening expressed component of the clock. Consistent with a direct role for phytochromes in controlling EC function, EC target genes have increased expression in phyABCDE

Figure 4 | The EC affects temperature response genome-wide. a, b, The log-fold change in expression caused by an elevated temperature (Col-0, 27 °C compared to 22 °C) is highly correlated with the log-fold change of expression in elf3-1 (a), or lux-4 (b) in 22 °C at ZT0 (immediately before lights are turned on) compared to Col-0 at 22 °C. c, d, Similar graphs are shown for ZT20, showing that EC targets show a warm temperature transcriptional pattern more clearly earlier in the night.
Figure 5 | EC target genes are temperature responsive. a, The binding sites of ELF3 overlap with those of ELF4, LUX and phyB (a red light and temperature sensor, data from ref. 31). Each column in this figure represents an ELF3 peak that is within 3,000 bp of a predicted target gene of ELF3—if the ELF3 peak overlaps with another ChIP-seq peak by at least one base pair, it is coloured red. b, The gene expression of the same set of genes used in Fig. 3a were compared, in a phyABCDE background and at different time points and temperatures. We compare the log-fold change of expression of phyABCDE (compared to Ler) in the early night (i) and day (ii), and also compare the log-fold change expression in phyABCDE versus Ler at 22 °C (iii) and lux-4 versus Col-0 at 22 °C (iv) to the log-fold change in expression caused by a change in temperature—Ler (iii) and Col-0 (iv) at 27 °C versus 22 °C. Note that Jung et al., 2016 did not conduct an RNA-sequencing on Ler at ZT12 at 27 °C, so the closest data point (ZT16) was used instead for iii–iv.

Furthermore, EC targets have similar expression in phyABCDE, elf3-1 and lux-4 at 22 °C compared to wild type, as they do when the temperature is raised to 27 °C. Phytochromes not only colocalize with the EC, but they can also change the expression pattern of EC targets in a similar way as a change in temperature (Fig. 5iii,iv and Supplementary Fig. 14). A key question is whether the EC and phytochromes both relay temperature information, or whether a single component is sufficient. Since phyB is only detectable at a subset of the EC bound sites, and ELF4 targets do not completely lose their night-time temperature-dependent expression changes in either lux-4 or phyABCDE (Supplementary Fig. 14), this suggests that both the EC
and phytochromes contribute to the temperature transcriptome. A candidate for the transmission of this temperature signal in the EC is ELF3, since even in the absence of LUX, ELF3 binding responds to temperature (Fig. 1d).

To understand the consequences and nature of the interactions between the EC and phytochromes with temperature, we analysed hypocotyl elongation, a phenotypic parameter that is very responsive to temperature. elf3-1 phyBDE quadruple mutants display greater hypocotyl elongation than either elf3-1 or phyBDE seedlings, consistent with previous studies showing that phyB and elf3 exhibit additive effects (Fig. 6a,b). The difference between the elf3-1 and elf3-1 phyBDE decreased at higher temperatures, which is expected since higher temperatures reduce the activity of both ELF3 and phytochromes. Interestingly, overexpressing PHYB is sufficient to largely abolish both the effect of elf3-1 on hypocotyl elongation and thermal responsiveness. This is consistent with the role of phytochromes as thermosensors and indicates that a sufficient level of phyB Pfr (the active state of phyB) can block growth regardless of temperature, presumably at least in part through directly inhibiting the action of PIF4 and PIF5. Taken together, these results indicate that phytochromes and the EC bind to common promoter binding sites, directly relaying temperature information to genes involved in growth and development.

Discussion

The circadian clock allows plants to anticipate changes and coordinate multiple processes, including photosynthesis, growth and temperature responses with the environment. The EC, a core component of the circadian clock, has been shown to be important in coordinating responses such as growth, but the underlying mechanism of action has not been clear. We have found that the EC achieves specificity of target binding through a combinatorial mechanism, requiring both LBS and G-box motifs to be present at functional sites. Since none of the core EC components have been described as having G-box binding activity, this suggests an additional transcription factor plays a key role in EC specificity. Interestingly, the bHLH transcription factor PIF7, which recognizes G-boxes, interacts with the EC in a phyB dependent manner. Analysis of the elf3-1 and lux-4 transcriptomes enabled us to identify the set of high confidence direct EC functional target genes. This list reveals how extensively the EC is integrated into major transcriptional programmes in the cell, particularly photosynthesis, the circadian clock, growth, phytohormones and temperature signalling (Fig. 6b). Even in the lux-4 background, we observe reduced but significant binding of ELF3 to EC targets, supporting a role for the related TF, BROTHER OF LUX ARRHYTHMO (BOA) within the EC.

Not only is the EC able to coordinate the circadian regulation of thousands of transcripts by repressing targets in the early evening, but it also transmits temperature information to these genes. Indeed, we see direct EC targets are globally upregulated in elf3-1 and lux-4, resembling a warm grown plant. This signal propagates over the course of the night, to affect the global transcriptome. Strikingly, we observe that the recently described thermosensor phyB is recruited to many EC loci. This suggests a direct mechanism whereby phyB Pfr (which also acts as a transcriptional repressor) may directly provide temperature and light information to the EC. The recruitment of phyB to large transcriptional complexes has recently been observed at the FLOWERING LOCUS T (FT) locus, suggesting this may represent a major mechanism for integrating environmental signals into gene expression. Consistent with previous observations, it appears that the interactions between elf3-1 and phytochrome mutants are additive, and it is likely that additional temperature information is also transmitted by the EC. As well as cobinding to specific promoters, it is also apparent that the EC and phytochromes have independent functions, likely explaining their additive genetic interactions. It may seem contradictory that phytochromes and the EC interact physically, yet still display an additive phenotype. However, it is likely that the EC and phytochromes do not always function in complex—there are EC bound sites without phyB binding and vice versa. An intriguing line of future investigation would be to determine whether the EC and phytochromes influence each other’s binding pattern—do these two components genetically interact by affecting each other’s binding pattern or by affecting their activity? Environmental
temperature is a variable signal, and it may be that measuring it independently over multiple time-scales and integrating this information enables more robust decision-making. The EC has been shown to be central in controlling key agricultural traits36, so understanding how this system transmits environmental information is particularly relevant during a period of climate change which threatens food security37.

Methods

Plant material and growing methods. The elf3-1 and lux-4 mutants have been previously described38. The phyBΔ mutant in Columbia (Col) background was provided by P. Cerdán39. The PHYB-ox transgenic plant, in which the PHYB-GFP gene fusion is overexpressed in the phyB-9 background, was obtained from F. Nagy40. An initial ChIP-seq experiment was conducted on 35S:ELF3-HA—the CDS of ELF3 was cloned into pFG201 containing C-terminal HA tag and transformed into the elf3-1 line, as described by Box et al.7. The ELF3::ELF3-myc transgenic plant (ELF3-MYC) was used in the remaining ChIP-seq experiments, and was constructed by amplifying a 7.8 kb genomic fragment of ELF3 including its promoter with primers 6495 (5′-CACCGCTTGTTTGATGTGTTTCTCCT-3′) and 6497 (5′-AGGCTTAGAGGAGCTATAAGCCTTA-3′). The PCR products were subcloned into pENTR vector (ThermoFisher) according to the manufacturer’s procedure. The resulting entry plasmid was recombined with LR clonase into the Gateway binary pHa212 K containing a C-terminal five copies of myc tag sequences. The binary construct was transformed into the elf3-1 mutant by the floral dipping method. The ELF3-MYC protein was isolated by kalanreolate selection and used to obtain single insertion lines rescuing the long hypocotyl phenotype of elf3-1. The complementation experiment for the ELF3-MYC line is shown in Supplementary Fig. 2. The LUXpro::LUX-GFP lux-4 (LUX-GFP) and ELF3pro::ELF4-HA elf4-2 (ELF4-HA) transgenic lines used for ChIP-seq experiments have been described previously.7. The LUX GFP elf4-1 and ELF3-MYC lux-4 were generated by crossing the LUX-GFP to the elf4-1 and the ELF3-MYC to the lux-4, respectively. Their homozygous F3 generation were used for ChIP-seq experiments. Arabidopsis seeds were sterilized and sown on 1% Murashige and Skoog (MS) agar plates at pH 5.7 without sucrose. Sterilized seeds were stratified for 3 d at 4°C in the dark and allowed to germinate for 24 h at 22 °C under cool-white fluorescent light at 170 µmol m⁻² s⁻¹. The plates were then transferred to short-day conditions (8 h light and 16 h dark) at different temperatures for assays.

ChIP-seq. Please note that the phyB ChIP-seq data used in Fig. 4 are previously published41. All ChIP-seq raw data is deposited in the NCBI Sequenced Read Archive (SRA) in PRJNA384110. The primary set of ChIP-seq experiments came from growing seedlings under short day (SD) conditions (8 h light and 16 h dark) on ½×MS-agar plates at 17 °C (standard cultivation). Then, Tophat 47 was used to map these sequences as described previously31, with the exception that the sequences were mapped to the TAIR10 genome. To analyse the sequencing reads: First, adapters were trimmed with Trimmomatic 0.32 (ref. 46). Then, TopHat4 was used to map the TAIR10 indexed genome, duplicates were removed and the read counts were normalized by genome-wide coverage. Raw counts were determined by HTseq-count44, and cufflinks was used to calculate Fragments Per Kilobase Million, which was then converted into a heatmap in Supplementary Fig. 11 uses z-scores of the TPM, rather than log-fold change. The Venn diagram for peak overlap was calculated using bedtools: “merge” was used to create a single bed file, and each bed file was intersected to this44 (see Supplementary Fig. 18). There are fewer peaks in the Venn diagram than appear in the Venn diagram for the overlap of the associated wild type and the TGI, and this is thought to be due to the ChIP-seq experiment for the ELF3-MYC line. The same pipeline was used to map these sequences as described previously44, with the exception that the sequences were mapped to the TAIR10 genome. To analyse the sequencing reads: First, adapters were trimmed with Trimmomatic 0.32 (ref. 46). Then, TopHat4 was used to map the TAIR10 indexed genome, duplicates were removed and the read counts were normalized by genome-wide coverage. Raw counts were determined by HTseq-count44, and cufflinks was used to calculate Fragments Per Kilobase Million, which was then converted into Transcripts Per Million (TPM). The RNA-seq data using the phyIABCDE and Ler backgrounds, analysed in Fig. 4, were published previously44. All RNA-seq raw data is deposited in the NCBI SRA (PRJNA384110).

Identification of predicted target genes. All scripts used to identify predicted target genes are available in: https://github.com/erez/EC. We predicted four distinct lists of prospective target genes (for LUX, ELF3 and ELF4 at 22 °C and for LUX at 27 °C) using the following criteria: (1) TAIR10 annotated genes that are within 3,000 bp of ChIP-seq peaks using bedmap and (2) that are within the top 5% most significant differentially expressed genes in at least one time point in either elf3-1 vs. Col-0 or lux-4 vs. Col-0, which was calculated using the edger (ref. 49) package, using raw read counts and the exact test.

Next, we could use this list of predicted target genes to annotate some of the ChIP-seq peaks as “high confidence peaks”. These peaks were that were within 3,000 bp of genes that were on the prospective target gene lists. This strategy helped us filter out many of these peaks, which are likely false positives. GO analysis of our lists of predicted target genes was conducted using Panther (ref. 50) and goatools (ref. 51).

Analysis and modelling of log-fold change in expression. In all figures, log-fold change in expression refers to the natural logarithm of the TPM of the designated sample, minus the natural logarithm of the TPM in the associated wild type at 22 °C at the same time point. The associated wild type for elf4-2 and lux-4 is Col-0, while the associated wild type for phyA::BCD is Ler. For instance, the log-fold change of expression in lux-4 can be expressed as: ln(TPMlux-4)−ln(TPMcol-0).

All of the plots related to log-fold change in expression were drawn in R. All of the hierarchical clustering uses default parameters from heatmap.2. Note that the heatmap in Supplementary Fig. 11 uses z-scores of the TPM, rather than log-fold change in expression.
multiple hypothesis testing is used as described in Supplementary Table 3. The test is applied using R and either a Bonferroni or Holm's correction for the Bonferroni correction for family-wise error rate. Several points are noted: (1) each model should not have more than one fitted parameter, to decrease the likelihood of over-fitting our data. Also note that for each time-course experiment there are eight collection time points (and therefore eight LUX, ELF4 or ELF3 concentrations per time course), but only seven slopes: because of this, we chose to take the average TPM value between every consecutive pair of collection points.

Hypocotyl length measurements. To examine how phytochrome and EC signalling pathways interact for the thermal regulation of hypocotyl elongation, the phyBDE and PHYB-ox were crossed with elf3-1 and the resultant homozygous F3 generations were used for hypocotyl length measurements at different temperatures, as described previously. Seedlings, which were grown for 8 d under SD conditions with light intensity of 80 μmol m⁻²s⁻¹, were photographed and analysed using ImageJ software (http://rsbweb.nih.gov/ij/).

Western blots. Seedlings were surface sterilized and grown on plates (0.5×Murashige and Skoog, 0.7% agar) for 10 d under short-day conditions (8 h light/16 h dark) in Panasonic growth chambers. Proteins were extracted and separated by SDS-PAGE and transferred to PVDF membrane using Trans-Blot Turbo Transfer System (Bio-Rad). ELF4 was detected using a mouse antibody corresponding to the N-terminus of ELF4 (1:1,000, 632380, Clontech Laboratories) and ELF3 using mouse anti-myc (1:10,000, 05-724, Millipore), and secondary goat anti-mouse conjugated to HRP (HRP) (1:10,000, 12013819001, Roche). Loading controls were obtained by staining membranes with Ponceau S solution (Sigma).

Western blot analysis was taken during ChlP preparation. (3) The ELF4-4A transgenic seedlings were grown at 22 °C and shifted to 27 °C or 27 °C and kept at 22 °C, and sampled at ZT10 and whole plant extract was ground in SDS buffer and supernatant loaded. (4) The PHYBDe:PHYB-myc phyB-9 (PHYB-MYC) transgenic seedlings were grown at 17 °C and harvested at ZT10 for second collection point seedlings were shifted on rafts to 27 °C or kept at 17 °C and harvested at ZT10. Nuclei enriched samples were prepared as for ChIP and loaded with SDS buffer. (2) The ELF3-MYC and ELF3-MYC lux-4 transgenic seedlings were grown at 22 °C, sampled and shifted at ZT2 to 27 °C or kept at 22 °C and sampled at ZT10. Aliquots for western blot analysis were taken during ChIP preparation.

Data Availability. All data is available in SRA (PRJNA384110). All code used to generate the figures is available on github (https://github.com/emer/EC).

Received 29 September 2016; accepted 12 May 2017; published 26 June 2017

References
1. Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. Phyllogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc. Natl Acad. Sci. USA 105, 17029–17033 (2008).
2. Fitter, A. H. & Fitter, R. S. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).
3. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).
4. Harmer, S. L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).
5. Huang, H. & Nisunow, D. A. Into the evening: complex interactions in the Arabidopsis circadian clock. Trends Genet. https://dx.doi.org/10.1016/j.tig.2016.08.002 (2016).
6. Greenham, K. & McClung, C. R. Integrating circadian dynamics with physiology. Natural processes in plants. Nat. Rev. Genet. 16, 598–610 (2015).
7. Nisunow, D. A. et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402 (2011).
8. Thines, B. & Harmon, F. G. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc. Natl Acad. Sci. USA 107, 3257–3262 (2010).
9. Füls, J. et al. Gibberellic driven growth in elf3 mutants requires PIF4 and PIF5. Plant Signal. Behav. 10, e927207 (2015).
10. Koini, M. A. et al. High temperature-mediated adaptations in plant architecture require the HILLH transcription factor PIF4. Curr. Biol. 19, 408–413 (2009).
11. Kumar, S. V. et al. Transcription factor PIF4 controls the thermoresponsive activation of flowering. Nature 484, 242–245 (2012).
12. Thines, B. C., Youn, Y., Duarte, M. J. & Harmon, F. G. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J. Exp. Bot. 65, 1141–1151 (2014).
13. Fernández, V., Takahashi, Y., Le Gourrierer, J.-C. & Coupland, G. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J. 86, 426–440 (2016).
14. Sureshkumar, S., Dent, C., Seleznov, A., Tasset, C. & Balasubramanian, S. Nonsense-mediated mRNA decay modulates RLK-dependent thermosensory flowering response in Arabidopsis. Nat. Plants 2, 1605 (2016).
15. Box, M. S. et al. ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25, 194–199 (2015).
16. Raschke, A. et al. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC Plant Biol. 15, 197 (2015).
17. Helfer, A. et al. LUX ARRRHYTHMO encodes a nightrepressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol. 21, 126–133 (2011).
18. Chow, B. Y., Helfer, A., Nisunow, D. A. & Kay, S. A. ELF3 recruitment to the PRR9 promoter requires other evening complex members in the Arabidopsis circadian clock. Plant Signal. Behav. 7, 170–173 (2012).
19. Yu, C.-P., Lin, J.-J. & Li, W.-H. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci. Rep. 6, 25164 (2016).
20. O’Malley, R. C. et al. Cistrome and epistrome features shape the regulatory DNA landscape. Nature Cell. 165, 1280–1292 (2016).
21. Mizuno, T. et al. Ambient temperature signal feeds into the circadian clock transcriptional circuity through the EC-night-Time repressor in Arabidopsis thaliana. Plant Cell Physiol. 55, 958–976 (2014).
22. Hou, P. Y. & Harmer, S. L. Wheels within wheels: the plant circadian system. Trends Plant Sci. 19, 240–249 (2014).
23. Mochizuki, N., Brusslan, J. A., Larkin, R., Nagatani, A. & Chory, J. Arabidopsis genomes uncoupled 5 (GUNS) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl Acad. Sci. USA 98, 2053–2058 (2001).
24. Cheng, N.-H., Liu, J.-Z., Brock, A., Nelson, R. S. & Hirschi, K. D. AtGRXe, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J. Biol. Chem. 281, 26280–26286 (2006).
25. Chow, B. Y. et al. Transcriptional regulation of LUX by CBF1 mediates cold cold to the circadian clock in Arabidopsis. Curr. Biol. 24, (2014).
26. Bai, M.-Y., Fan, M., Oh, E. & Wang, Z.-Y. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell 24, 4917–4929 (2012).
27. Ikeda, M., Fujii, S., Mitsuishi, N. & Ohme-Takagi, M. A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. Mol. Biol. Cell 19, 1064–1076 (2008).
28. Rawat, R. et al. Reveille1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl Acad. Sci. USA 106, 16883–8 (2009).
29. Nitschke, S. et al. Circadian stress regimes affect the circadian clock and cause Jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell 28, 1616–1639 (2016).
30. Huang, H. et al. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Mol. Cell. Proteomics 15, 201–217 (2016).
31. Jang, J.-H. et al. Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889 (2016).
32. Legris, M. et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354 897–900 (2016).
33. Reed, J. W. et al. Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol. 122, 1149–1160 (2000).
34. Dai, S. et al. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock. Plant Cell 23, 961–972 (2011).
35. Kaiserli, E. et al. Integration of light and photoperiodic signaling in transcriptional nuclear foci. Dev. Cell 35, 311–321 (2015).
36. Bendix, C., Marshall, C. M. & Harmon, F. G. Circadian clock genes universally control key agricultural traits. Mol. Plant 8, 1135–1152 (2015).
37. Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).
38. Strasser, B., Sanchez-Lamas, M., Yanovsky, M. J., Casal, J. J. & Cerdan, P. D. Arabidopsis thaliana life without phytochromes. Proc. Natl Acad. Sci. USA 107, 66–67 (2010).
39. Medizlhardzuky, M. et al. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25, 535–544 (2013).
40. Jaeger, K. E., Pullen, N., Lamzin, S., Morris, R. J. & Wigge, P. A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25, 820–833 (2013).
41. Langmead, B. & Salberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359 (2012).
42. Li, H. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
43. Zhang, Y. et al. Bioinformatics 25, 2078–2079 (2009).
44. Li, H. & Green, P. Bioinformatics 29, 56–63 (2013).
45. Meister, A. et al. Large-scale gene expression analysis with the PANTHER classification system. Proc. Natl Acad. Sci. USA 102, 3448–3453 (2005).
46. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
47. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
48. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a python framework to work with high-throughput sequence data. Bioinformatics 31, 166–169 (2015).
49. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
50. Li, H., Maruyama, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).
51. Angiuoli, S. V. et al. RAxML: a tool for phylogenetic analysis and post-analysis of large phylogenies. BMC Bioinformatics 11, 317 (2010).
52. Jansson, J. K. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4, 236–240 (1999).
53. Horvath, R. et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71, 699–712 (2011).
54. Mitta, A., Choi, H. K. & An, G. Structural and functional analyses of Arabidopsis thaliana chlorophyll a/b-binding protein (cab) promoters. Plant Mol. Biol. 12, 169–179 (1989).
55. Beligni, M. V. & Safro, S. P. Arabidopsis thaliana mutants reveal a role for CSP41a and CSP41b, two ribosome-associated endonucleases, in chloroplast ribosomal RNA metabolism. Plant Mol. Biol. 67, 389–401 (2008).
56. Park, D. H. et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis Gigantea gene. Science 285, 1579–82 (1999).
57. Salome, P. A. & McClung, C. R. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791–803 (2005).
58. Salome, P. A., Weigel, D. & McClung, C. R. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. PLANT CELL ONLINE 22, 3650–3661 (2010).
59. Seung, D. et al. Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase. J. Biol. Chem. 288, 33620–33 (2013).
60. Seaton, D. D. et al. Link!ed circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol. Syst. Biol. 11, 776 (2015).
61. Jaglo-Ottosen, K. R., Gilmore, S. J., Zarka, D. G., Schabenberger, O. & Thomas, M. F. Arabidopsis thaliana CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104–106 (1998).
62. Reichmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110 (2000).
63. Chen, K.-M. et al. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biol. 10, 43 (2010).
64. Kendrick, S. L. et al. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23, 2568–80 (2011).
65. Wang, H. et al. Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins. Plant Cell 21, 3781–3791 (2009).
66. Crocco, C. D. et al. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat. Commun. 6, 6202 (2015).
67. Gangappa, S. N. et al. The Arabidopsis B-BOX protein BBX25 interacts with HYS, negatively Regulating BBX2 expression to suppress seedling photomorphogenesis. Plant Cell 25, 1243–1257 (2013).
68. Bartrina, I., Otto, E., Strnad, M., Werner, T. & Schmülling, T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23, 69–80 (2011).
69. Zwack, P. J. & Rashotte, A. M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 66, 4863–4871 (2015).
70. Cutcliffe, J. W., Hellmann, E., Heyl, A. & Rashotte, A. M. CRF form protein–protein interactions with each other and with members of the cytokinin signalling pathway in Arabidopsis via the CRF domain. J. Exp. Bot. 62, 4995–5002 (2011).
71. Zwack, P. J. et al. Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiol. 172, pp. 00415.2016 (2016).
72. Wilson, M. E., Midorf, M., Berg, R. H. & Hassel, V. E. Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development 143, 3382–93 (2016).
73. Rawat, R. et al. REVVEL1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl Acad. Sci. USA 106, 16883–8 (2009).
74. Dong, T. et al. Abscisic Acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. Plant Physiol. 165, 277–289 (2014).
75. Rizza, A., Bocaccini, A., Lopez-Vidriero, I., Costantino, P. & Vittorioso, P. Inactivation of the ELIP1 and ELIP2 genes affects Arabidopsis seed germination. New Phytol. 190, 896–905 (2011).
76. Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat. Cell Biol. 13, 616–622 (2011).

Acknowledgements
We thank members of the Wigge laboratory for feedback and discussions. This work was supported by the Biotechnology and Biological Research Council (BB10004 to P.A.W.). P.A.W.’s laboratory is supported by a Fellowship from the Gatsby Foundation (GAT3273/GLB). Funding for open access charge: (Gatsby Foundation/GAT3273/GLB). We thank S. Kay for providing us with the gLUX-GFP line-4 and gELF4-HA elf4-2 transgenic plants.

Author contributions
D.E. wrote a large proportion of the manuscript, lead researcher on all analysis. Involved in experimental design, prepared Figs 1–4, 11–H1: experimental design, generated Fig. 5, created lines used in the study. H.L.: extensive bioinformatics analysis. Mapped and analysed most of the datasets for the ChIP experiments. Performed motif searching and so on. S.B.: performed the initial mapping of the first ELF3 ChIP and made insights into the RNAseq expression using clustering that were instrumental in the development of the project. L.G.: collaborating group. Performed the first analysis of EC binding and motif analysis. M.S.B.: generated the RNA-seq time course datasets. V.C.: generated the RNA-seq time course datasets. S.C.: generated the RNA-seq time course datasets. D.S.: helped perform the ChIP-seq experiments. C.Z.: PI, Collaborator, supervisor of L.G., made key structural biology and experimental design contributions. Helped write the paper. K.E.: PI. Performed all the ChIP-seq experiments the paper is based on. Writing the paper and experimental design. P.A.W.: PI. Experimental design and discussions, helped write the paper.

Additional information
Supplementary information is available for this paper.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to P.A.W.

How to cite this article: Eizer, D. et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3, 17087 (2017).