Cardiac Energetics in Patients With Aortic Stenosis and Preserved Versus Reduced Ejection Fraction

BACKGROUND: Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition.

METHODS: We recruited 102 participants to 5 groups: moderate aortic stenosis (ModAS) (n=13), SevAS, left ventricular (LV) ejection fraction ≥55% (SevAS-preserved ejection fraction, n=37), SevAS, LV ejection fraction <55% (SevAS-reduced ejection fraction, n=15), healthy volunteers with nonhypertrophied hearts with normal systolic function (normal healthy volunteer, n=30), and patients with nonhypertrophied, non–pressure-loaded hearts with normal systolic function undergoing cardiac surgery and donating LV biopsy (non–pressure-loaded heart biopsy, n=7). All underwent cardiac magnetic resonance imaging and 31P magnetic resonance spectroscopy for myocardial energetics. LV biopsies (AS and non–pressure-loaded heart biopsy) were analyzed for CK total activity, CK isoforms, citrate synthase activity, and total creatine. Mitochondria-sarcomere diffusion distances were calculated by using serial block-face scanning electron microscopy.

RESULTS: In the absence of failure, CK flux was lower in the presence of AS (by 32%, P=0.04), driven primarily by reduction in phosphocreatine/ATP (by 17%, P<0.001), with CK \(k_f \) unchanged (P=0.46). Although lowest in the SevAS-reduced ejection fraction group, CK flux was not different from the SevAS-preserved ejection fraction group (P>0.99). Accompanying the fall in CK flux, total CK and citrate synthase activities and the absolute activities of mitochondrial-type CK and CK-MM isoforms were also lower (P<0.02, all analyses). Median mitochondria-sarcomere diffusion distances correlated well with CK total activity (r=0.86, P=0.003).

CONCLUSIONS: Total CK capacity is reduced in SevAS, with median values lowest in those with systolic failure, consistent with reduced energy supply reserve. Despite this, in vivo magnetic resonance spectroscopy measures of resting CK flux suggest that ATP delivery is reduced earlier, at the moderate AS stage, where LV function remains preserved. These findings show that significant energetic impairment is already established in moderate AS and suggest that a fall in CK flux is not by itself a necessary cause of transition to systolic failure. However, because ATP demands increase with AS severity, this could increase susceptibility to systolic failure. As such, targeting CK capacity and flux may be a therapeutic strategy to prevent and treat systolic failure in AS.
n patients with severe aortic stenosis (SevAS), reductions in left ventricular ejection fraction (LVEF) increase mortality irrespective of symptoms. Although most patients present with preserved systolic function, ~30% of asymptomatic patients have borderline LVEF (50%–59%), and 15% of those undergoing surgical aortic valve replacement have reduced LVEF (LVEF <50%). At present, identifying all individuals who develop an otherwise unexplained decline in LVEF in the face of pressure overload is not possible, and why some but not all patients with SevAS develop otherwise unexplained reduced LVEF is unclear.

Given the direct coupling of ATP metabolism and contractile function, metabolic reserve could represent an early and specific marker of vulnerability to failure in some patients. Targeting CK capacity and flux may be a therapeutic strategy to prevent/treat systolic failure in AS.

In the presence of SevAS, reduced CK flux is unlikely to be sufficient alone to cause systolic failure, but may predispose to the transition to systolic failure in some patients. Reduced CK activity is associated with CK isoform redistribution and cytoarchitectural reorganization with a reduction in mitochondrial-sarcomere (ATP) diffusion distance.

What Are the Clinical Implications?

• In the presence of SevAS, reduced CK flux is unlikely to be sufficient alone to cause systolic failure, but may predispose to the transition to systolic failure in some patients.
• Targeting CK capacity and flux may be a therapeutic strategy to prevent/treat systolic failure in AS.

Clinical Perspective

What Is New?

• Total creatine kinase (CK) activity is reduced in severe aortic stenosis (SevAS) with preserved systolic function and is lowest in AS with systolic failure.
• At rest, CK flux is not different between AS with preserved systolic function and AS with systolic failure, and is reduced in moderate AS.
• Reduced CK activity is associated with CK isoform redistribution and cytoarchitectural reorganization with a reduction in mitochondrial-sarcomere (ATP) diffusion distance.

METHODS

The data, analytic methods, and study materials will not be made available to other researchers for purposes of reproducing the results or replicating the procedure, because ethical approval to store tissue expires in April 2020 and insufficient tissue remains to replicate results in all patients. All work was approved prospectively by regional (South Central Oxford C, 16/SC/0323) and local ethics and governance committees. All participants were recruited from clinical activity at the Oxford University Hospitals National Health Service Foundation Trust or by poster advertisement. All participants gave formal written consent before all study procedures. Research was performed in accordance with institutional procedures and the principles of the Declaration of Helsinki.

Inclusion Criteria

Participants were included if they were 18 to 85 years of age and were willing to take part in research. Patients with SevAS were scheduled for aortic valve replacement with either reduced (defined as LVEF <55%) or preserved (defined as LVEF ≥55%) systolic function. Systolic function was determined by cardiac magnetic resonance. Patients with nonhypertrophied, non–pressure-loaded hearts with normal systolic function undergoing cardiac surgery willing to have biopsies taken were also recruited.

Exclusion Criteria

Participants were excluded if they had known previous myocardial infarction, flow-limiting coronary artery disease, more than mild bystander valve disease, significant renal
impairment, pregnancy, or any other contraindication to magnetic resonance imaging scanning. All patients listed for surgery had flow-limiting coronary atheroma excluded by invasive angiography and prior myocardial infarction excluded by late gadolinium enhancement imaging.

On the basis of these criteria, 102 participants were recruited to 5 groups: (1) SevAS, LVEF \geq 55% (SevAS with preserved ejection fraction [SevAS-pEF], n=37); (2) SevAS, LVEF <55% (SevAS with reduced ejection fraction [SevAS-rEF], n=15); (3) moderate AS, LVEF >55% ([ModAS], n=13); (4) patients with nonhypertrophied, non-pressure-loaded hearts with normal systolic function undergoing surgery (non–pressure-loaded heart biopsy [NHBx], n=7); and (5) volunteers with non–pressure-loaded hearts with normal systolic function not undergoing cardiac surgery (normal healthy volunteer [NHv], n=30).

Myocardial Biopsies
Twenty-six patients with SevAS-pEF, 10 with SevAS-rEF, and 7 with NHBx donated intraoperative biopsies sufficiently large to measure creatine and CK total activity. Indications for surgery in biopsied patients with a normal heart were mitral stenosis (n=4), ascending aortic aneurysm (n=1), and benign left atrial mass (n=1). One NHBx sample was not analyzable because of a technical error in the fixing process, leaving 6 for the biopsy analysis in this group.

Cardiac Magnetic Resonance

All cardiac magnetic resonance was performed on a 3T magnetic resonance imaging scanner (Tim Trio; Siemens) and, unless stated, was analyzed using cvi42 (Circle Cardiovascular Imaging Inc).

Cardiac 31P Magnetic Resonance Spectroscopy

All magnetic resonance spectroscopy was performed before cardiac magnetic resonance imaging.

Phosphocreatine/ATP

Participants were positioned prone over a 3-element dual-tuned 1H/31P surface coil at magnet isocenter. An 11-minute non-gated 3-dimensional acquisition-weighted ultrashort echo time chemical shift imaging sequence was run as previously described. Phosphocreatine/ATP

Figure 1. A schematic of adenine nucleotide transfer pathways in the heart.

This figure shows simple diffusion of ATP, ADP, and inorganic phosphate (P$_i$), and CK-facilitated transport operating in the ATP-generating direction (rate constant k_f) and PCr-generating direction (rate constant k_r). In oxidative muscle under normoxic conditions, cytosolic CK isoforms (CK-MM, -MB, -BB) typically work in the ATP-generating direction, whereas mitochondrial CK works in the PCr-generating direction. Forward CK flux is defined by k_r[PCr], where k_r is the pseudo-first-order unidirectional rate constant in the ATP-generating direction measured using saturation transfer 31P magnetic resonance spectroscopy. This should be distinguished from CK total activity (V$_{max}$), which represents maximal velocity in the presence of saturating amounts of substrate and requires destructive freeze-extraction chemicals. ANT indicates adenine nucleotide transfer; CK, creatine kinase; PCr, phosphocreatine; and VDAC, voltage-dependent anion channel;
phosphocreatine (PCr). The PCr/ATP ratio reported is the blood- and saturation-corrected PCr/average ATP ratio, averaged over the 2 most basal septal voxels. Spectral analysis was performed using OXSA, an open-source MATLAB implementation of the Advanced Method for Accurate, Robust and Efficient Spectral fitting (AMARES) algorithm.22

Creatine Kinase k\textsubscript{f}

CK \(k_f \) was estimated using triple TR saturation transfer adapted for use with a transmit/receive 10-cm loop radiofrequency coil (PulseTelq Ltd) as previously described.23,24 In brief, participants were scanned supine; \(^1\)H localizers confirmed coil position; then a 1-dimensional phase-encoded chemical shift imaging matrix (16 slices, 160 mm) was used to acquire 4 sets of \(^{31}\)P spectra. These were a fully relaxed acquisition (TR 15 s, 2 averages, 9 minutes), 2 acquisitions with selective \(\gamma \)ATP saturation (TR 1.5 then 9.5 s, 18 then 8 averages, 11 then 21 minutes), and 1 with control saturation mirrored around PCr (TR 15 s, 2 averages, 9 minutes) (Figure 2A). Spectral analysis was performed using custom software as previously described.24 The pseudo-first-order unidirectional rate constant (\(k_f \)) of CK in the ATP-generating (forward) direction was calculated according to the following:

\[
 k_f^{CK} = \frac{1}{T} \left(\frac{M_{PCr}^{Ctrl}}{M_{PCr}^{Ctrl}} - 1 \right)
\]

Forward CK flux was calculated by [PCr]×\(k_f \), where [PCr] is estimated by multiplying PCr/ATP by literature values for [ATP] (5.7 or 5.2 μmol/g wet weight, the lower value applied to those patients with reduced LVEF).16 We multiplied all \(k_f \) values by a previously validated factor of 1.333 to adjust for supine scanning.24

Echocardiography

Measurements of the aortic valve were made using standard clinical echocardiography 2-dimensional and Doppler examination of the aortic valve and LV outflow tract (Philips Epiq system). AS was graded on echocardiography according to international guidelines.25

Left Ventricular Biopsies

Surgical myocardial biopsies were obtained from LV endocardium 10 to 20 minutes after starting cardiopulmonary bypass and immediately divided into 2 parts. One part was frozen in liquid nitrogen within 20 seconds of excision and stored at ~80°C until analysis; the other was immediately immersed in chemical fixative and further dissected for electron microscopy.

Enzyme Activities, CK Isozyme Distribution, and Total Creatine Content

Frozen, powdered samples were analyzed according to established protocols for CK total activity (averaged over 3 runs, normalized to Lowry protein [mg/mL], presented as IU/mg protein), CK isoforms (expression relative to total CK), citrate synthase (CS) activity (averaged over 2 runs, IU/mg protein), and total creatine concentration (nmol/mg protein), as previously described.26 (Further details in Methods in the Data Supplement.)

Mitochondria-Sarcomere ATP/ADP Diffusion Distance

Samples for serial block-face scanning electron microscopy were fixed and stained with heavy metals for enhanced contrast as previously described,27 then dehydrated in a

Figure 2. Validation of noninvasive assessment of CK activity.

A. Representative spectra constituting the triple repetition time saturation transfer method for estimating CK \(k_f \) in a cardiac voxel of interest. **B.** Absolute CK activity measured from left ventricular biopsy correlated with CK capacity estimated by total creatine×\(k_f \) (adjusted for supine scanning). Dante (Delays Alternating with Nutation for Tailored Excitation) is the pulse sequence used for selective saturation of \(\gamma \)ATP or the control position methods to assess, and in vivo CK capacity, which has been estimated as CK total activity×[total creatine]. CK indicates creatine kinase; 2,3-DPG, 2,3-diphosphoglycerate; PCr, phosphocreatine; and TR, repetition time.
progressive ethanol series, infiltrated with Durcupan epoxy resin, and polymerized at 60°C for 72 hours. Samples were mounted in a Zeiss Merlin Compact Field Emission Gun-Scanning Electron Microscope with Variable Pressure and a Gatan 3View System and underwent serial block-face sectioning (serial block-face scanning electron microscopy) (typical acquisition parameters: magnification 6100×, voltage 3 kV, dwell time 6 ms, pressure 0.3 torr, field of view 40 μm [4000 pixels] square, in-plane [x–y] resolution 10 nm, slice thickness 100 nm). Samples were analyzed in Microscopy Image Browser version 2.0.1 for MATLAB. After applying Perona-Malik anisotropic diffusion filters and grayscale thresholding, manual segmentation was performed over every other slice, to define mitochondria and sarcomeres in a total of 31 slices per data set. For each pixel-labeled sarcomere, an algorithm computed the diffusion distance, defined as the minimum 3-dimensional distance to the nearest pixel-labeled mitochondrion. As such, the diffusion distance was recorded from the mitochondrial edge. Diffusion distance distributions resembled log-normal distributions and were summarized by median distance (see Methods in the Data Supplement).

STATISTICAL ANALYSIS

Data were reported as means (with SDs) for continuous variables passing Shapiro-Wilk testing for normality and medians (with interquartile range) if not. Box plots depict medians, interquartile range, and whiskers, with whiskers extending to the maximum value of the data within 1.5 times the interquartile range over the third quartile, and the minimum value within 1.5 times the interquartile range below the first quartile.

The relationships between CK total activity and other invasive and noninvasive candidate predictor variables were explored by using linear regression models. In addition, invasive and noninvasive measures between the SevAS-pEF, SevAS-rEF, and NHv and NHBx groups were compared. Continuous variables were compared with parametric tests if the Shapiro-Wilk test and Levene test of between-group homogeneity of variance were passed. The Welch correction was used for unequal sample sizes or if the assumption of homogeneity of variance were violated. The Kruskal-Wallis test and medians were compared by using linear regression models. In addition, invasive and noninvasive candidate predictor variables between the SevAS-pEF, SevAS-rEF, and NHv and NHBx groups were compared. Continuous variables were compared with parametric tests if the Shapiro-Wilk test and Levene test of between-group homogeneity of variance were passed. The Welch correction was used for unequal sample sizes or if the assumption of homogeneity of variance was violated. If normality assumptions were not met, nonparametric tests were used (Kruskal-Wallis for differences between >2 independent groups, Jonckheere-Terpstra for ordering of medians across >2 groups). P ≤ 0.05 was used as a threshold of significance. P values were adjusted on post hoc pairwise t tests or Wilcoxon rank-sum tests with the Benjamini-Hochberg method to control the false discovery rate. Pairwise comparisons were 2-sided unless otherwise stated. Categorical variables were compared by χ² or, if expected cell counts were <5, by the Fisher exact test. Analyses were performed using R version 3.4.2 (R Foundation for Statistical Computing).

RESULTS

Participants

Participant anthropometric and clinical data are shown in Table 1. In the comparison of the NHv, NHBx, ModAS, SevAS-pEF, and SevAS-rEF groups, the proportion of men did not significantly differ, but the median age, body mass index, systolic blood pressure, 6-minute walk distance, history of hypertension, prevalence of left bundle-branch block or ECG LV strain pattern, and the proportion using cardiac medications did.

Aortic Valve Assessment

Transthoracic Doppler and 2-dimensional echocardiography measurements of the aortic valve in both SevAS-pEF (V_max 4.4±0.55 m/s, peak gradient 81±20 mm Hg, mean gradient 46±14 mm Hg, aortic valve area calculated by continuity equation 0.83±0.33 cm²) and SevAS-rEF groups (V_max 4.1±0.72 m/s, peak gradient 67±26 mm Hg, mean gradient 39±16 mm Hg, aortic valve area calculated by continuity equation 0.62±0.21 cm²) confirmed the presence of SevAS. ModAS was confirmed in the ModAS group (V_max 3.3±0.10 m/s, peak gradient 44±8 mm Hg, mean gradient 24±5 mm Hg, aortic valve area calculated by continuity equation 1.2±0.2 cm²).

LV Characteristics

As expected, because of the recruitment criteria, LVEF was normal in the SevAS-pEF (66±5%), NHv and NHBx groups (61±4%), and ModAS group (65±6%), but significantly lower in the SevAS-rEF group (40±9%, P<0.001; Figure 3A). In comparison with the non–pressure-loaded heart groups, mean indexed LV end-diastolic volume (mL/m²) was lower in the SevAS-pEF group (by 12%, P=0.03) and larger in the SevAS-rEF groups (by 36%, P<0.001; Figure 3B). Mean LV mass indexed to body surface area (g/m²) was also increased in all SevAS groups in comparison with the non–pressure-loaded groups (Figure 3C). LV mass correlated with New York Heart Association class for those undergoing surgery (LV mass index, r=0.29, P=0.04).

CK Flux Validation

To validate the triple TR saturation transfer measurement of CK activity, noninvasive estimates were correlated against ex vivo total CK activity from 32 patients who had undergone both 31P triple TR saturation transfer measurements and intraoperative LV biopsy. When ex vivo CK activity was correlated with triple TR saturation transfer measured in vivo CK kᵣ (r=0.45, P=0.01), CK flux (r=0.37, P=0.04), and CK kᵣ [total creatine copy] (r=0.65, P=5x10⁻⁵; Figure 2B), there was good correlation between the 2 methods.
Myocardial Energetics in the Pressure-Loaded LV

To assess whether pressure loading was associated with altered myocardial energetics, all data from participants with AS and normal systolic function (ModAS and SevAS-pEF) were compared with all non–pressure-loaded hearts (NHv and NHBx groups). This showed that pressure loading (peak 71±23 mm Hg) was associated with a 17% lower PCr/ATP (P<0.001), no difference in CK <i>k_f</i> (P=0.46), and a 32% lower CK flux (P=0.04). Reduced CK flux was driven predominantly by reduced PCr pool size (by 17%, P<0.001).

Myocardial Energetics and the Transition to Failure

To assess whether the altered energetics were associated with transition to failure, ModAS, SevAS-pEF, and SevAS-rEF were compared with the non–pressure-loaded groups.

Myocardial PCr/ATP ratios in all AS groups, including SevAS-rEF, were lower than that recorded in the nonhypertrophied heart (by 16%–21%; Figure 3D). Although PCr/ATP was lower in SevAS-rEF than in the non–pressure-loaded heart, it was not different from SevAS-pEF (P>0.99). PCr/ATP was also reduced in ModAS (by 21%,

Table 1. Participants’ Demographics and Medical and Drug History

Demographics	NHv (n=30)	NHBx (n=7)	ModAS (n=13)	SevAS-pEF (n=28)	SevAS-rEF (n=13)	P Value
Age, y	38 (29–54)	73 (65–75)	79 (69–80)	72 (69–78)	75 (65–81)	<0.001
Body mass index, kg/m²	25 (23–28)	22 (21–29)	27 (24–32)	28 (25–30)	29 (26–31)	0.002
Male, n (%)	16 (53)	1 (14)	7 (54)	16 (57)	8 (62)	0.55*
Systolic blood pressure, mm Hg	124 (17)	117 (23)	142 (25)	145 (19)	129 (12)	0.004
Diastolic blood pressure, mm Hg	69 (12)	67 (12)	71 (16)	73 (10)	74 (8)	0.05
Mean arterial pressure, mm Hg	88 (11)	84 (14)	95 (18)	97 (11)	92 (7)	0.008
Heart rate, bpm	60 (53–65)	70 (69–90)	64 (53–89)	65 (58–71)	67 (62–71)	0.04
Symptomatic and functional status, n (%)						
1	N/A	2 (29)	N/A	9 (32)	2 (15)	
2	N/A	3 (43)	N/A	12 (43)	6 (46)	
3	N/A	2 (29)	N/A	7 (25)	5 (38)	
6-min walk distance, m	606 (63)	400 (391, 490)	455 (145)	429 (118)	321 (152)	<0.001
Medical history, n (%)						
Diabetes mellitus	0 (0)	2 (29)	1 (8)	3 (11)	1 (8)	0.05*
Hypertension	1 (3)	2 (29)	6 (46)	17 (61)	5 (38)	<0.001*
Venous thromboembolism	1 (3)	0 (0)	0 (0)	2 (7)	1 (8)	0.81*
Transient ischemic attack/stroke	0 (0)	1 (14)	2 (15)	4 (14)	1 (8)	0.11*
Current smoker	0 (0)	0 (0)	1 (8)	3 (11)	0 (0)	0.30*
Prior smoker	10 (33)	2 (29)	2 (15)	14 (50)	3 (23)	0.23*
Atrial fibrillation	1 (3)	3 (43)	3 (23)	4 (14)	2 (15)	0.03*
Left bundle-branch block	1 (3)	0 (0)	0 (0)	1 (4)	4 (31)	0.03*
T-wave inversion or left ventricular strain	0 (0)	0 (0)	2 (17)	10 (36)	8 (62)	<0.001*
Drug history, n (%)						
β-Blocker	1 (3)	4 (57)	5 (38)	9 (32)	6 (46)	0.01*
Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker	2 (7)	2 (33)	7 (46)	13 (46)	7 (54)	0.001*
Mineralocorticoid receptor antagonist	0 (0)	0 (0)	0 (0)	0 (0)	5 (38)	<0.001*
Loop diuretic	0 (0)	1 (14)	1 (8)	7 (25)	4 (31)	0.01*
Antiplatelet	0 (0)	0 (0)	4 (31)	13 (46)	3 (23)	<0.001*
Oral anticoagulant	1 (3)	4 (57)	2 (15)	14 (14)	2 (15)	0.01*

*Parameters that differ significantly among NH, SevAS-pEF, and SevAS-rEF. The P value presented is for trend in medians unless marked when across-group P value is used.

Values shown are n (%). Continuous variables shown are mean (SD) or median (interquartile range). The numbers analyzed in each group (n) varied from the recruited sample size, given that some patients aborted scans because of claustrophobia; therefore, only data sets where creatine kinase flux was performed are shown. ModAS indicates moderate aortic stenosis; NH, normal heart; NHBx, non–pressure-loaded heart biopsy; NHv, normal healthy volunteer; SevAS-pEF, severe aortic stenosis with preserved ejection fraction; and SevAS-rEF, severe aortic stenosis with reduced ejection fraction.
CK Total Activity

In comparison with NHBx hearts, median total CK activity was significantly lower both in SevAS-rEF (by 43%, post hoc one-sided \(P=0.016\)) and SevAS-pEF (by 35%, post hoc one-sided \(P=0.028\)), resulting in a decreasing trend in median values (\(P=0.002\); Figure 4A, Table 2). Median values were also lower in SevAS-rEF hearts than in SevAS-pEF hearts (post hoc one-sided \(P=0.047\)).

Forty-two participants (26 SevAS-pEF, 10 SevAS-rEF, and 6 NHBx) contributed data sets eligible for correlation analysis (ie, had measured CK total activity and total creatine), and 32 (19 SevAS-pEF, 8 SevAS-rEF, and 5 NHBx) contributed data sets eligible for linear regression (ie, had measured CK total activity, total creatine, CK \(k_f\), and LV mass and volumes). CK total activity correlated strongly with citrate synthase activity (\(r=0.83, P=1\times10^{-11}\)) and well with total adenine nucleotide pool (\(r=0.50, P=2\times10^{-9}\)) (Figure I in the Data Supplement, Table I in the Data Supplement). There were good correlations with total creatine concentration (\(r=0.57, P=9\times10^{-5}\)) and noninvasively estimated CK capacity (\(r=0.65, P=5\times10^{-5}\)), and moderate correlations with \(k_f\) (\(r=0.45, P=0.01\)) and CK flux (\(r=0.38, P=0.04\) (Figure 3D). CK \(k_f\) was not statistically different between groups (\(P=0.76\); Figure 3E).

CK flux was lowest in the failing AS heart (by 27% in comparison with the combined NHv+Bx group), and, when groups were ordered NHBx > NHv > ModAS > SevAS-pEF > SevAS-rEF, this showed that median CK flux decreased as LV mass increased (\(P=0.047\); Figure 3F).

Overall this shows that AS is associated with reduced CK flux, with the reduction predominantly driven by a reduced PCr pool size, which is seen at the ModAS stage. It also shows that, although CK flux was lowest in SevAS with systolic failure, energetic depletion appears to precede systolic failure in AS.

Figure 3. Cardiac magnetic resonance parameters for the study groups.

LV ejection fraction (A), LV end-diastolic volume index (B), LV mass index (C), magnetic resonance spectroscopy–derived PCr/ATP ratio (D), CK \(k_f\) (E), and forward CK flux (F) in nonhypertrophied, non–pressure-loaded healthy volunteer hearts (NHv), in non–pressure-loaded hearts with normal LV EF undergoing LV biopsy (NHBx), and in hearts with moderate AS (Mod-AS), SevAS with preserved (SevASpEF) and reduced (SevASrEF) ejection fraction. For between-group comparison, *\(P<0.05\), **\(P<0.01\), ***\(P<0.001\); otherwise \(P>0.05\). AS indicates aortic stenosis; CK, creatine kinase; LVEDVi, indexed left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LV, left ventricular; LVMi, left ventricular mass index; and PCr, phosphocreatine.
II in the Data Supplement). There was a moderate positive correlation with LVEF ($r=0.40$, $P=0.01$) and moderate negative correlations with indexed LV end-diastolic volume ($r=0.51$, $P=0.001$), indexed LV end-systolic volume ($r=0.50$, $P=0.001$), LV mass index ($r=0.44$, $P=0.004$), and magnetic resonance imaging–derived global circumferential strain ($r=0.52$, $P=0.001$) (Figure III in the Data Supplement). Correlations with nonindexed LV volumes and mass were weaker than with indexed counterparts, and not presented. There was no correlation with PCR/ATP ratio. There were only 2 significant correlates of CK k: CK total activity ($r=0.45$, $P=0.01$) and CK/CS activity ratio ($r=0.48$, $P=0.005$).

CS Activity, Total Creatine, and CK Capacity

There was also a significant decreasing trend in median CS activity, an additional marker of oxidative capacity (NHbx > SevAS-pEF > SevAS-rEF, $P=0.001$; Figure 4B), with median CS activity being 30% lower in the SevAS-rEF than NHbx hearts ($P<0.01$), and 14% lower in SevAS-pEF than in NHbx hearts ($P=0.03$). Median values in SevAS-rEF were 19% lower than in SevAS-pEF ($P=0.02$). Comparing total creatine (Figure 4C), there were no significant between-group differences (1-way ANOVA, $P=0.6$) and no decreasing trend in median values ($P=0.2$). A decreasing trend in estimated in vivo CK capacity (CK total activity×total creatine) was also seen.

![Figure 4. LV biopsy obtained creatine concentration and CK and CS activities.](http://ahajournals.org)
Table 2. Baseline Energetic Measures and CK Isoform Expression

Parameters	NHv	NHBx	ModAS	SevAS-pEF	SevAS-rEF	P Value for Trend in Medians
31P magnetic resonance spectroscopy, n	30	7	13	28	13	
PCr/ATP	2.03 (0.38)†‡	1.93 (0.44)	1.57 (0.36)	1.68 (0.26)	1.71 (0.38)	0.004
Derived [PCr], μmol/g	11.5 (2.2)†‡	11.0 (2.5)	9.0 (2.0)	9.6 (1.5)	8.9 (2.0)	0.003
CK k₅, S⁻¹	0.25 (0.21–0.35)	0.32 (0.14–0.47)	0.24 (0.14–0.36)	0.23 (0.13–0.36)	0.20 (0.16–0.30)	0.29
CK flux, μmol·g⁻¹·s⁻¹	3.0 (2.3–4.0)	3.1 (1.6–5.7)	1.7 (1.0–4.4)	2.1 (1.3–2.5)	2.2 (1.8–3.3)	0.047

Invasive biopsy assessment, n

Parameters	NHv	NHBx	ModAS	SevAS-pEF	SevAS-rEF	P Value for Trend in Medians
CK total activity, IU/mg protein	5.47 (4.70–5.89)	3.54 (2.86–4.30)	3.11 (1.14–3.75)	0.002		
CS activity, IU/mg protein	0.325 (0.271–0.389)	0.280 (0.215–0.316)	0.226 (0.120–0.269)	0.001		
CK activity×total creatine, IU·nmol/mg²	353 (224–381)	224 (171–321)	155 (39–273)	0.016		
Total creatine, nmol/mg protein	66.2 (14.5)	64.5 (25.1)	55.9 (25.6)	0.20		
CK isoform expression, n	6	26	9			
MtCK, IU/mg protein	0.83 (0.71–1.08)	0.62 (0.48–0.81)	0.49 (0.15–0.61)	0.003		
CK-MM, IU/mg protein	2.87 (2.67–3.06)	2.17 (1.79–2.54)	1.56 (0.74–2.21)	0.001		
CK-MB, IU/mg protein	1.47 (1.24–1.58)	0.66 (0.48–0.81)	0.61 (0.23–0.76)	0.006		
CK-BB, IU/mg protein	0.14 (0.09–0.22)	0.14 (0.08–0.26)	0.12 (0.06–0.13)	0.48		
MtCK:CK, % total CK	16.4 (15.1–17.7)	16.8 (15.5–18.6)	15.3 (13.2–17.9)	0.31		
CK-MM:CK, % total CK	54.1 (52.0–56.7)	59.8 (54.9–62.9)	58.9 (54.6–60.7)	0.53		
CK-MB:CK, % total CK	25.8 (23.6–28.4)	18.7 (15.3–21.6)	20.0 (18.0–22.7)	0.47		
CK-BB:CK, % total CK	3.0 (2.0–3.9)	4.1 (1.8–6.3)	4.5 (3.8–5.5)	0.09		
MtCK:CS, IU/U	2.54 (0.49)	2.60 (0.68)	2.13 (0.77)	0.22		

Continuous variables shown are mean (SD) or median (interquartile range). CK indicates creatine kinase; CK-MM, CK-MB, and CK-BB, creatine kinase MM, MB, and BB isofoms; CS, citrate synthase; ModAS, moderate aortic stenosis; MtCK, mitochondrial type creatine kinase isoform; NHBx, non–pressure-loaded heart biopsy with normal systolic function; NHv, normal healthy volunteer; PCr, phosphocreatine; SevAS-pEF, severe aortic stenosis with preserved ejection fraction; and SevAS-rEF, severe aortic stenosis with reduced ejection fraction.

*Parameters that differ significantly across groups. The P value presented is for trend in medians (Jonckheere-Terpstra, order NH(v+Bx) > ModAS > SevAS-pEF > SevAS-rEF) unless marked when across-group P value is used.
†Significant versus SevAS-pEF.
‡Significant versus SevAS-rEF.
§Significant versus NHBx.
‖Significant versus ModAS.

(NHBx > SevAS-pEF > SevAS-rEF, P=0.016; Figure 4D), but post hoc pairwise tests were not significant.

Overall, this shows that in SevAS with reduced systolic function, both CK activity and CS activity (a marker of cellular oxidative capacity and mitochondrial density) were significantly reduced.

CK Isoforms

Underlying the observed falls in CK total activity, there were reducing trends in median absolute activities of mitochondrial type CK (MtCK), CK-MM, and CK-MB isoforms when groups were ordered by increasing LV mass index (NHBx > SevAS-pEF > SevAS-rEF, all P<0.01; Table 2, Figure 5A through 5D), with post hoc tests significant at each step for MtCK and CK-MM. Absolute activities of CK-MB were also reduced in both SevAS groups, but activities of CK-MB and CK-BB did not differ between the SevAS groups. There were no differences in the relative expression of any isoforms with the exception of CK-BB, whose expression was increased in SevAS-rEF in comparison with NHBx (P=0.02) (Figure 5E).
ATP/ADP Diffusion Distance

Nine patients undergoing surgery had sufficient myocardial biopsy size to undergo CK total activity analysis and serial block-face scanning electron microscopy analysis for mitochondrial-sarcomere distances. When median mitochondria-sarcomere diffusion distances were plotted against CK total activity, a strong positive correlation was observed (Figure 6, Pearson $r=0.86$, $P=0.003$) where lower CK activity correlated with shorter ATP diffusion distance. This suggests a compensatory reduction in diffusion distance with lower CK activity.

![Figure 6](http://ahajournals.org)
DISCUSSION

The transition to systolic failure in AS increases mortality and operative risk. Given the coupling of ATP usage and LV contraction, we investigated the hypothesis that reduced CK capacity/flux is associated with otherwise unexplained systolic failure in human SevAS.

We show here that, in the presence of SevAS, biopsy-measured total CK activity is reduced and that median values are lowest in those with systolic failure. We also show that there is relative CK isoform redistribution toward CK-MM and CK-BB. In addition, we show for the first time in human pressure overload that cytoarchitectural reorganization occurs when CK activity is lower, resulting in a reduction in mitochondrial to sarcomere diffusion distance. Furthermore, we show that despite a fall in CK total capacity, in vivo magnetic resonance spectroscopy measures of resting CK flux, although again reduced in AS, could not discriminate those with systolic failure, and changes were seen in ModAS. This suggests that significant energetic impairment is already established in ModAS and that reduced CK flux is not by itself necessarily associated with systolic failure, but may predispose to failure in some patients (Central Illustration, Figure 7).

CK Total Activity

CK total activity represents CK’s maximum ATP transfer capacity and buffering capacity; is an important metabolic reserve, in particular, if cardiac work is increased; and correlates closely with contractile reserve.5–7 This suggests that it would be more closely correlated with exercise performance than with resting function in the

![Figure 7. Central illustration: the effect of pressure loading on myocardial energetics.](image-url)

In comparison with the normal heart (A) energetic impairment occurs in the presence of pressure loading from aortic stenosis (AS) and is established by moderate AS (B). Although creatine kinase (CK) capacity reduces (green line) as AS severity increases (blue line) to severe (C) and is lowest in systolic failure (D), ATP delivery (CK flux, red line) at rest does not alone fall lower than that seen in moderate AS. As ATP demand increases with increasing AS severity and left ventricular hypertrophy (black dotted line), this exceeds prevailing ATP delivery. In summary, energetic impairment in the CK system is present early in AS, and although it does not appear alone to be sufficient for transition to systolic decline in AS, it may nevertheless increase susceptibility to failure as ATP turnover demands increase.
normal heart. However, if CK total activity falls below the threshold needed to sustain prevailing ATP delivery requirements, systolic dysfunction is expected to occur. Although 2 studies have shown reduced CK total activity in pressure-overloaded human LV,28,29 no distinction was previously made between hearts with or without systolic dysfunction. In this study, maximal CK activity from LV biopsy was lowest in SevAS-rEF hearts, in line with noninvasive measures and with previous animal pressure-overload studies.10,11,14

CK Flux

Reduced CK flux has been shown to limit contractile reserve and contribute to the transition to systolic failure in animal studies, but it was unknown whether this is the case in humans. In this study, we have shown that the presence of significant AS was associated with reduced CK flux. Because CK k_f, itself was not reduced, this appears to be driven primarily by a reduction in PCr pool and was observed in ModAS. As a result, it seems likely that energetic dysfunction precedes LV systolic dysfunction in pressure loading. In addition, because there was no statistical difference in resting CK flux between SevAS groups with and without systolic failure, this suggests that reduced resting CK flux is not necessary for transition to failure. However, it should be noted that even this normal resting ATP delivery rate may still be inappropriately low, because the ATP demand of the heart increases with increasing AS severity, and the failing pressure-loaded heart becomes more dilated and subject to greater wall stress per gram myocardium. Either this increased ATP turnover must be accounted for by CK-independent means, or, if not, hearts would become more susceptible to transition to failure (Figure 7).

This result is in contrast with the previous report in human hypertensive heart disease,15 where PCr/ATP was reduced in hypertensive hypertrophy irrespective of heart failure status, whereas CK k_f was reduced only in the failing group. Given the variability in CK total activity and CK k_f, observed here, it is likely that, in AS, CK flux is compromised primarily by a combination of PCr pool depletion and total enzyme activity rather than a fall in CK forward rate constant. Falls in PCr but not CK k_f were previously observed in human failing myocardium after myocardial infarction30 and in thoracic aortic constriction models in swine at the nonfailing pressure-overload stage.11,31

Overall, these data show that falls in CK flux may appear early in the process of pressure loading and certainly before transition to failure in SevAS. Although these may increase susceptibility to developing systolic failure, a second (and in this study unrecorded) insult is most likely also required.

CK Isoforms

LV failure has generally been associated with a decrease of myocardial total CK activity and a fetal shift in CK isoform expression secondary to increases in the cytosolic brain type (CK-B) isoforms and decreases of the cytosolic muscle type (CK-M) and mitochondrial (MtCK) isoforms. Congruent with this expectation, we observed stepwise falls in absolute activities of MtCK and CK-MM, a fall in CK-MB absolute activity, and a 50% increase in relative CK-BB expression. The mechanism underlying this isoform shift is unknown. We note that it is not seen in physiological hypertrophy; it is not potentiated by non–B-isoform knockout12; it is more marked subendocardially33; it is found in multiple heart failure models; and it reverses on unloading.14 Therefore, it may relate to chronic wall stress and the fetal isoform shift seen across many genes in pathological hypertrophy.

Most animal models of pressure overload before or during transition to failure found falls in MtCK and CK-M and rises in CK-B (ie, rises in CK-MB and CK-BB) in rats8,23 and dogs,12 although there are exceptions: in the baboon,5 nonfailing thoracic aortic constriction mouse,13 and thoracic aortic constriction rat.35 In line with the former group of studies, we observed a relative redistribution toward CK-MM and CK-BB. This could be construed as a compensatory adaptation, because CK-MM can functionally couple to various cytosolic ATPases. In addition, CK-BB has greater affinity for PCr and ADP (K_C of CK-BB for PCr and ADP is 20%–30% and 50%–70%, respectively, that of CK-MM36). Thus, for CK-B containing dimers, in comparison with CK-M, the ATP-producing direction is kinetically favored especially at low PCr levels.

CS Activity

This study also shows a stepwise fall in CS activity when ordered by group (NHBx > SevAS-pEF > SevAS-rEF). Although only 1 marker of oxidative capacity, this suggests that mitochondrial oxidative capacity is reduced in the failing AS heart. In contrast, CS activity was unaltered in animal models of nonfailing pressure overload.13,34 The 30% fall in median CS activity in the SevAS-rEF group has no strictly comparable human studies, but in human nonischemic cardiomyopathy both reduced37–39 and unchanged activity/expression40 have been observed, as has an increase in CS expression after LV assist device implantation.41 This suggests that reduced oxidative capacity is also an important consideration in the transition to failure in SevAS. The strong correlation between CK and CS activities observed here would support the argument that the role of CK in myocardium is also primarily associated with oxidative energy production.
ATP/ADP Diffusion Distance

This study has shown that architectural reorganization occurs in human heart in the setting of reduced CK flux. Although it has been argued that these changes are physiologically unimportant given that the median diffusion distance values measured (0.26–0.29 µm) are 1 to 2 orders of magnitude smaller than noninvasive estimates of PCR diffusion path length in skeletal muscle,42 it has been shown in CK knockout models18 that diffusion distances also shorten. In the CK knockout model, this shortening is hypothesized to facilitate CK-independent metabolite channeling, which can be extended to human AS given the findings in this study. In addition, the retarding effect of membrane barriers could magnify the effect of small changes in diffusion distance making these small changes in distances meaningful. Although this study cannot establish the physiological importance of this architectural reorganization, it highlights that it occurs in both rodent CK knockouts and human cardiac pressure loading. Thus, changes in CK activity do not appear to occur in isolation, and architectural remodeling may occur to facilitate ATP metabolism.

Limitations

These results do not establish the timing of any falls in CK and CS activity in relation to AS severity or indeed LVEF trajectory, and so it is not possible to infer causal relationships. To answer this would require within-person repeated sampling, which is infeasible given the requirement for LV biopsy. Nor can we establish the effect of baseline CK activity on LVEF trajectory, which would require longitudinal design. We did not assess the CK system under conditions of acutely increased stress, when the CK system is thought to be most important, because contractile reserve and stress testing are contraindicated in symptomatic SevAS. We also did not measure CK-independent phosphotransfer through adenylate kinase. Adenylate kinase contributes ≈10% of phosphotransfer in the normal heart and can increase its contribution in heart failure (up to 21% in dogs), albeit not sufficiently to fully compensate for large changes in the CK system.43 Our estimate of CK flux was based on literature values of [ATP] because absolute quantification was not completed.

Mitrval stenosis does not represent the truly normal heart, but was considered the best compromise source of ethically accessible, nonischemic, non–pressure-loaded, similarly aged comparator human LV.

CS activity was measured as a marker of oxidative capacity. Although CS activity is only a surrogate marker of oxidative capacity,54,45 we feel that it was the only reliable way of getting a readout of oxidative capacity given the small (20–30 mg) LV biopsy sample size.

We did not measure classical markers of pathological hypertrophy (atrial natriuretic peptide, α-actin, myosin heavy chain) or myocardial fibrosis, because scan time and biopsy sizes were already at the upper limit of acceptable tolerance. Biopsy size also precluded a polarographic assessment of oxidative capacity. It is also possible that there were patients transitioning to failure in the (mostly symptomatic) SevAS-pEF group, which could downwardly bias CK activity values. Conversely, the sickest patients with SevAS-rEF could neither be recruited nor biopsied, because they either felt too unwell to consent or were not listed for surgical aortic valve replacement. This could exert upward bias on values recorded.

CONCLUSION

Why some but not all patients with SevAS develop otherwise unexplained reduced systolic function is unclear. This study shows that total CK capacity is reduced in the presence of SevAS and is lowest in those with systolic failure. Despite this, in vivo measures of resting CK flux, although lower in AS, could not discriminate those with systolic failure. In addition, we show that energetic impairment is established in the earlier clinical stage of ModAS. This suggests that significant energetic impairment develops early in AS and is not a necessary correlate of systolic failure, but it could make patients more susceptible to systolic decline because ATP demands increase with progressive increases in AS severity. Overall, these results provide a better understanding of the energetic mechanisms that underlie the transition to failure in AS and should stimulate the development of new therapeutic strategies in this area, for example, improving cardiac metabolism to delay transition to failure. Whether noninvasive metabolic imaging techniques could be used to identify those at risk of transition to failure is worthy of further investigation.

ARTICLE INFORMATION

Received September 28, 2019; accepted April 16, 2020. The Data Supplement is available with this article at https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.119.043450.

Correspondence

Oliver J. Rider, DPhil, Associate Professor of Cardiovascular Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Oxford OX3 9DU, United Kingdom. Email oliver.rider@cardiov.ox.ac.uk.

Affiliations

Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine (M.A.P., J.Y.C.L., J.J.M., J.J.R., M.J.H., S.N., O.J.R.), Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences (W.T.C.), Division of Cardiovascular Medicine, Radcliffe Department of Medicine (H.A.L.), Dunn School of Pathology (E.J.), University of Oxford, United Kingdom. Department of Cardiothoracic Surgery, Oxford Heart
ACKNOWLEDGMENTS

The authors thank Professor P.A. Bottomley for his academic input on this project. Electron microscopy work was performed at the Dunn School EM Facility, and the authors thank R. Dhalawi, A. Fyfe, and A. Pielach for preparing samples for serial block-face scanning electron microscopy.

REFERENCES

1. Lancellotti P, Magne J, Dulgheru R, Clavel MA, Donal E, Vannan MA, et al. Left ventricular systolic and diastolic function in asymptomatic patients with asymptomatic aortic stenosis followed up in heart valve clinics. J Am Heart Assoc. 2018;7:1159-1167. doi: 10.1161/AHAHA.118.009259

2. Dahl JS, Eleid MF, Michelena HI, Scott CG, Suri RM, Schaff HV, et al. Relation of left ventricular systolic function to the risk of death and heart failure in patients with severe aortic stenosis. J Am Heart Assoc. 2018;7:e008771. doi: 10.1161/AHAHA.117.008771

3. Pellikka PA, Lewis BR, Oh JK. Reduced left ventricular ejection fraction in patients with asymptomatic aortic stenosis followed up in heart valve clinics. J Am Soc Echocardiogr. 2018;31:1060-1068. doi: 10.1016/j.echo.2018.07.029

4. Lygate CA, Fischer A, Sebag-Montefiore L, Wallis J, ten Hove M, Neubauer S. The relationship between left ventricular ejection fraction and mortality in asymptomatic patients with aortic stenosis: the British Society of Echocardiography's observational study of patients with asymptomatic aortic stenosis. Eur Heart J. 2019;40:3058-3068. doi: 10.1093/eurheartj/ehz242

5. Bottomley PA, Potapova VM, Minajeva M, Ventura-Clapier R. Role of creatine kinase in heart failure. Eur Heart J. 2017;39:1675-1690. doi: 10.1093/eurheartj/ehx055

6. Tian R, Nascimben L, Kaddurah-Daouk R, Ingwall JS. Depletion of energy substrate during the evolution of heart failure in cardiomyopathic hamsters. J Mol Cell Cardiol. 1996;28:755-765. doi: 10.1006/jmcc.1996.0070

7. Saks V, Daza P, Schlatter U, Vendenlin M, Terzic A, Wallimann T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol. 2006;571(pt 2):253-273. doi: 10.1113/jphysiol.2005.101444

8. Ingwall JS. The hypothyroid myocardium accumulates the MB-creatine kinase isozyme. Eur Heart J. 1984;5(suppl F):129-139. doi: 10.1093/eurheartj/5.suppl_f.129

9. Ingwall JS, Atkinson DE, Clarke K, Fetters JK. Energy correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J. 1990;11(suppl B):108-115. doi: 10.1093/eurheartj/11.suppl_b.108

10. De Souza E, Veksler V, Minajeva M, Kazisk A, Mateo P, Mayoux F, Hoerter J, Bigard X, Serrurer E, Ventura-Clapier R. Subcellular cardiac kinase alterations. Implications in heart failure. Circ Res. 1999;85:68-76. doi: 10.1161/01.res.85.1.68

11. Ye Y, Gong G, Ochiai K, Liu J, Zhang J. High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation. 2001;103:1570-1576. doi: 10.1161/01.cir.103.11.1570

12. Ye Y, Wang C, Zhang J, Cho YK, Gong G, Murakami Y, Bache RJ. Myocardial creatine kinase kinetics and isoform expression in hearts with severe LV hypertrophy. Am J Physiol Heart Circ Physiol. 2001;281:H376-H386. doi: 10.1152/ajpheart.2001.281.1.H376

13. Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG. Altered creatine kinase adenosine triphosphate kinetics in failing hyper trophyed human myocardium. Circulation. 2006;114:1151-1158. doi: 10.1161/CIRCULATIONAHA.106.613646

14. Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005;102:808-813. doi: 10.1073/pnas.0408962102

15. Bottomley PA, Panjeh GS, Lai S, Hirsch GA, Wu K, Najjar SS, Steinberg A, Gerstenblith G, Weiss RG. Metabolic rates of ATP transfer through creatine kinase (CK flux) predict clinical heart failure events and death. Sci Transl Med. 2013;5:215re3. doi: 10.1126/scitranslmed.3007328

16. Backa M, Wang A, Aberg T, Marklund C, Kautzky CA, Svedberg T, et al. The creatine kinase energy transport system in the failing mouse heart. J Mol Cell Cardiol. 2007;42:1129-1136. doi: 10.1016/j.yjmcc.2007.03.089

17. Bottomley PA, Potapova VM, Minajeva M, Ventura-Clapier R. Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res. 2001;89:153-159. doi: 10.1161/01.cir.103.11.1570

18. Power AS, Pham T, Losielle DS, Crossman DH, Ward ML, Hickey AJ. Impaired ADP channeling to mitochondria and elevated reactive oxygen species in hypertensive hearts. Am J Physiol Heart Circ Physiol. 2016;310:H1649-H1657. doi: 10.1152/ajpheart.00050.2016

19. Kawel-Boehm N, Maceia A, Valsangiacomo-Buechel ER, Vogel-Clausen J, Turkbey EB, Williams R, Plen S, Tee M, Eng J, Bluemke DA. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:79. doi: 10.1186/s12968-015-0111-7

20. Lygate CA, Fischer A, Sebag-Montefiore L, Wallis J, ten Hove M, Neubauer S. The relationship between left ventricular ejection fraction and mortality in asymptomatic patients with aortic stenosis. Eur Heart J. 2019;40:3058-3068. doi: 10.1093/eurheartj/ehz242

21. Shuey DT, Emanuelle Y, Cochlin LE, Hudsmith LE, Holloway CJ, Neubauer S, Clarke K, Robson MD. Reproducibility of 13C cardiac magnetic resonance spectroscopy at 3 T. NMR Biomed. 2009;22:405-413. doi: 10.1002/nbm.1350

22. Purvis LAB, Clarke WT, Biasiolli L, Valković L, Robson MD, Rodgers CT. Oksa: an open-source magnetic resonance spectroscopy analysis toolbox in Matlab. PLoS One. 2017;12:e0185356. doi: 10.1371/journal.pone.0185356

23. Shuey DT, Emanuelle Y, Cochlin LE, Hudsmith LE, Holloway CJ, Neubauer S, Clarke K, Robson MD. Reproducibility of 13C cardiac magnetic resonance spectroscopy at 3 T. NMR Biomed. 2009;22:405-413. doi: 10.1002/nbm.1350

24. Purvis LAB, Clarke WT, Biasiolli L, Valković L, Robson MD, Rodgers CT. Oksa: an open-source magnetic resonance spectroscopy analysis toolbox in Matlab. PLoS One. 2017;12:e0185356. doi: 10.1371/journal.pone.0185356

25. Shuey DT, Emanuelle Y, Cochlin LE, Hudsmith LE, Holloway CJ, Neubauer S, Clarke K, Robson MD. Reproducibility of 13C cardiac magnetic resonance spectroscopy at 3 T. NMR Biomed. 2009;22:405-413. doi: 10.1002/nbm.1350

26. Whitington HJ, Ostrowski PJ, McAndrew DJ, Cao F, Shaw A, Eynk TR, Lake HA, Tyler J, Schneider JE, Neubauer S, et al. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion. Cardiovasc Res. 2018;114:858-869. doi: 10.1093/cvr/cvy054
27. Wilke SA, Antonios JK, Bushong EA, Badkoobehi A, Malek E, Hwang M, Terada M, Ellisman MH, Ghosh A. Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. *J Neurosci*. 2013;33:507–522. doi: 10.1523/JNEUROSCI.1600-12.2013

28. Sylvén C, Jansson E, Olin C. Human myocardial and skeletal muscle enzyme activities: creatine kinase and its isozyme MB as related to citrate synthase and muscle fibre types. *Clin Physiol*. 1983;3:461–468. doi: 10.1111/j.1475-097x.1983.tb00854.x

29. Ingwall JS, Kramer MF, Fifer MA, Loretta BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium. *N Engl J Med*. 1985;313:1050–1054. doi: 10.1056/NEJM198510243131704

30. Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. *Circulation*. 2009;119:1918–1924. doi: 10.1161/CIRCULATIONAHA.108.823187

31. Xiong Q, Zhang P, Swingen C, Jang A, Zhang J. Myocardial ATP hydrolysis rates in vivo: a porcine model of pressure overload-induced hypertrophy. *Am J Physiol Heart Circ Physiol*. 2015;309:H450–H458. doi: 10.1152/ajpheart.0072.2015

32. Sauge KW, Spindler M, Hopkins JC, Shen W, Ingwall JS. Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoforms from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart. *J Biol Chem*. 2000;275:19742–19746. doi: 10.1074/jbc.M001932200

33. Smith SH, Kramer MF, Reis I, Bishop SP, Ingwall JS. Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. *Circ Res*. 1990;67:1334–1344. doi: 10.1161/01.res.67.6.1334

34. Park SJ, Zhang J, Ye Y, Ormaza S, Liang P, Bank AI, Miller LW, Bache RJ. Myocardial creatine kinase expression after left ventricular assist device support. *J Am Coll Cardiol*. 2002;39:1773–1779. doi: 10.1016/s0735-1097(02)01860-0

35. Fontanet HL, Trask RV, Haas RC, Strauss AW, Abendschein DR, Billadello JJ. Regulation of expression of M, B, and mitochondrial creatine kinase mRNAs in the left ventricle after pressure overload in rats. *Circ Res*. 1991;68:1007–1012. doi: 10.1161/01.res.68.4.1007

36. Szasz G, Gruber W. Creatine kinase in serum: 4. Differences in substrate affinity among the isoenzymes. *Clin Chem*. 1978;24:245–249.

37. Sylvén C, Lin L, Jansson E, Sotonyi P, Fu LX, Waagstein F, Hjalmarsson A, Marcus C, Brönnegård M. Ventricular adenine nucleotide translocator mRNA is upregulated in dilated cardiomyopathy. *Cardiovasc Res*. 1993;27:1295–1299. doi: 10.1093/circ/res.27.7.1295

38. Kalsi KK, Smolenski RT, Pritchard RD, Kaghiani A, Seymour AM, Yacoub MH. Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy. *Eur J Clin Invest*. 1999;29:469–477. doi: 10.1046/j.1365-2362.1999.00468.x

39. Raqeebi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. *Circulation*. 2001;104:2923–2931. doi: 10.1161/01.hc.901105026

40. Nasmuchin L, Inngall JS, Paulotto P, Friedrich J, Gwathmey JK, Saks V, Persina AC, Allen PD. Creatine kinase system in failing and nonfailing human myocardium. *Circulation*. 1996;94:1894–1901. doi: 10.1161/01.cir.94.8.1894

41. Gupte AA, Hamilton DJ, Cordero-Reyes AM, Youker KA, Yin Z, Estep JD, Stevens RD, Wenner B, Ikayeva O, Loebe M, et al. Mechanical unloading promotes myocardial energy recovery in human heart failure. *Circ Cardiovasc Genet*. 2014;7:266–276. doi: 10.1161/CIRCGENETICS.113.000404

42. Gabr RE, El-Sharkawy AM, Schär M, Weiss RG, Bottomley PA. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine. *Am J Physiol Cell Physiol*. 2011;301:C234–C241. doi: 10.1152/ajpcell.00500.2010

43. Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A. Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. *Circ Res*. 1999;84:1137–1143. doi: 10.1161/01.res.84.10.1137

44. Park SY, Gifford JR, Antdbacka RH, Trinity JD, Hyngstrom JR, Garten RS, Diakos NA, Ives SJ, Della F, Larsen S, et al. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? *Am J Physiol Heart Circ Physiol*. 2014;307:H346–H352. doi: 10.1152/ajpheart.00227.2014

45. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. *J Physiol*. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185

46. Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. *PLoS Biol*. 2016;14:e1002340. doi: 10.1371/journal.pbio.1002340

47. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. *IEEE Trans Pattern Anal Mach Intell*. 1993;15:563–569.

48. Genig G, Koberl O, Kikinis R, Jolesz FA. Nonlinear anisotropic filtering of MRI data. *IEEE Trans Med Imaging*. 1992;11:221–232. doi: 10.1109/42.141646