A Comparison of Mathematics Learning Approaches of Gifted and Non-Gifted Students *

Ahсен Седа Булу*, Авни Ядызп и Сердаль Балтач*

*Kırşehir Ahi Evran University, Vocational School of Social Sciences, Kırşehir/Turkey (ORCID: 0000-0003-2192-7799)
*Zonguldak Bülent Ecevit University, Ereğli Faculty of Education, Zonguldak/Turkey (ORCID: 0000-0002-6428-188X)
*Kırşehir Ahi Evran University, Faculty of Education, Kırşehir/Turkey (ORCID: 0000-0002-8652-4467)

Article History: Received: 30 January 2020; Accepted: 30 July 2020; Published online: 26 August 2020

Abstract: In this study, it was aimed to investigate the mathematics learning approaches of gifted students and successful students who were not diagnosed as gifted in terms of variables of giftedness, gender, grade level, parents’ profession and education level. Descriptive research model, which is one of the general survey models, was used in the study. For the 2018-2019 academic years, a total of 239 6th, 7th and 8th grade students, 84 of whom were gifted students and 155 of whom were non-gifted students, participated into the study. Data on gifted students were collected from the Science and Arts Center of a province in the Central Anatolia region, while data on non-gifted students were collected from a secondary school in the same province. Students’ mathematics learning approaches were determined by using the “Scale of Mathematics Learning Approaches”. When the findings were examined, a significant differentiation was observed in favor of gifted students in the in-depth learning approach between gifted and non-gifted students. In addition, there is a significant difference in favor of female students in in-depth and strategic learning sub-dimensions among gifted students. When the mathematics learning approaches of gifted and non-gifted students were compared according to grade level, no significant difference was found in the 8th grade level average scores.

Keywords: Approaches to learning mathematics, gifted students, non-gifted students

DOI:10.16949/turkbilmat.682111

1. Introduction

How learning takes place has always occupied our minds. In fact, this is because we have not been able to solve the entire working mechanism of brain yet. It is a learning process for the individual to perceive the stimuli in the outside world and interpret their perceptions in different ways and turn them into a unique product (Behçet, 2007; Von Glasersfeld, 1996). In this learning process, it can be said that learning approaches can take an important place when individual differences are taken into consideration. The concept of learning approaches used for the first time by Marton and Saljo (1976) was used to reveal how individuals understand a reading piece. Learning approach, which is also defined as the interaction between the student and the learning task (Ramsden, 2000), is also expressed as the tendency of the individual when learning a subject (Ekinci, 2009). Learning approach expresses the aim of the student in learning, the process the student passed while learning and how the student organizes learning (Spencer, 2003).

Since learning is a multidimensional concept, it can be thought that the methods affecting learning can be multiple and varied. Knowing one’s learning approaches helps teachers find more effective and creative ways of organizing their teaching status (Biggs, 1999; Entwistle, 2000). For this reason, it may be necessary to determine...
the learning approaches of students in environments where teaching activities are carried out in order for students to learn. For this reason, as Özgür and Tosun (2012) stated, learning approaches are an issue to be taken into consideration and researched. Learning approaches depend on the student's attitude towards the subject and the level of readiness, the teacher's attitude towards the student and the teaching methods used (Sezgin & Ellez, 2002). Learning approaches also differ according to the types such as the content of the curriculum, function, teaching methods and techniques, features of the learning environment, evaluation methods (Ekinci, 2009; Entwistle & Smith, 2002).

Learning approaches are important for an efficient and effective learning (Yıldız, 2015). For that reason, it is important to know how the student learns in order to understand what kind of student he is and to be able to guide him (Oğuz & Karakuş, 2017). Considering that learning approaches affect the academic success of the learner (Öztaşkın, 2014), it is necessary to determine the factors that leads students to researching and questioning in the process of education in other words, that force students to use the superficial or in-depth approach in the educational process (Çolak, 2006). Moreover, when the researches on mathematics education are analyzed, it is seen that the focus is on determining the factors that affect students' mathematics achievement (Pourselami, Erfani & Firoozfar, 2013; Zakaria & Nordin, 2008). It can be said that one of these factors is students' mathematics learning approaches. Because when they know their students' mathematics learning approaches, mathematics teachers will review their own teaching activities and will be able to make effective instruction by guiding students towards them (Göktepe-Yıldız & Özdemir, 2008). When we consider the learning approach as the student's way of processing information, the ways in which students deal with learning can be categorized into three groups as superficial learning approach, in-depth learning approach, and strategic learning approach (Marton & Šaljo, 1976).

In the in-depth learning approach; it is essential to understand the source of the information obtained, to know its usage areas and to establish a relationship between them (Darlington, 2011). It was emphasized that the main objectives of the students who preferred the in-depth learning approach were understanding, that the examination of the related components was realized for learning, and that this review was transformed into a harmonious whole through a process (Chan, 2003; Ramsden, 2000). Byrne, Flood and Willis (2009) also stated that individuals with in-depth learning approach will obtain high-level learning products. Curzon (2004) emphasized that with this learning approach, students can test by creating hypotheses and see the connections between the topics.

The approach in which the learning ability is stable, the belief that the information is precise and unchanging is dominant and the information is presented by the authority is called superficial learning approach (Chan, 2003). Biggs (2001) stated that students who prefer superficial learning approach use low level skills even in a learning activity that requires using high level cognitive skills. Superficial learning approach is focused on memorization, no relation is searched between concepts (Biggs, 2001; Trigwell & Prosser, 1991). Byrne, Flood and Willis (2001) stated that students with superficial learning approach have failed to memorize the necessary knowledge to pass exams, tend to focus on individual parts without establishing integrity and distinguish examples from rules.

Students with a strategic learning approach that addresses the issue of learning with the intention of being successful do not intend to search and create meaning (Reid, Duvall & Evans, 2007). Beydoğan (2007) says students who have this learning approach will try to get as high a grade as possible, they will prefer sources that will accelerate their perception by using various materials and in this way, it would be easier for them to learn. Entwistle (1995) stated that the most important feature of the strategic learning approach is that it benefits the organization both in terms of working methods and time management. Some of the studies on learning approaches are as follows:

In their study, Beşoluk and Önder (2010) concluded that prospective teachers at undergraduate level prefer superficial learning more often while master degree teachers prefer more in-depth learning approach. In Scouller’s (1998) study, where the effect of assessment methods on learning approaches was investigated, it was concluded that students preferred the superficial learning approach when preparing for multiple-choice exams, and that students preferred the in-depth learning approach more in tasks where their higher-level thinking skills were measured. Birenbaum and Feldman (1998) as well, determined that students who adopt in-depth learning approach prefer open-ended questions that are more thought-provoking. For example, in a study specific to a field Lee, Johanson and Tsai (2008) conducted a study with high school students, they examined science learning approaches and determined that students with a constructivist approach to learning, had in-depth science learning approaches. Sezgin-Selçuk, Çalışkan and Erol (2007) aimed to determine the learning approaches of prospective physics teachers and to examine these learning approaches with variables such as gender, grade level, and academic success. As a result, it was determined that the prospective physics teacher candidates preferred the in-depth learning approach more than the superficial learning approach. Özkan and Sezgin-Selçuk (2014) aimed to determine the learning approaches that high school students adopt while learning the physics lesson. In conclusion, it was determined that students preferred in-depth and superficial learning approaches
slightly above the middle level in the physics course and that learning approaches did not differ significantly according to their gender. Alemdağ (2015) also examined learning approaches according to some variables in his study with physical education teacher candidates. As a result of his research, he found significant differences in adopting the in-depth learning approach in terms of grade level. He also determined that there is a positive relationship between academic success and learning approach. Cano (2007), on the other hand, reached the conclusion that the students who showed an in-depth approach in their study with high school students had higher academic success. When the studies on primary school students are examined, for example in their studies aiming to determine the approaches of primary school students to learn science lesson; Côban and Ergin (2008) determined that the superficial and in-depth learning approaches of the students were very close to each other and did not differ significantly in terms of gender. Belge-Can and Boz (2012) examined the relationship between primary school students' preferred learning approaches with gender and age. As a result of their research, it was seen that as the ages of the students increased, their level of adoption of the in-depth learning approach decreased, whereas in all grade levels, more in-depth learning approach was adopted. In addition, it was found that female students preferred the in-depth learning approach more than male students.

Regarding the determination of mathematics learning approaches, Chiu (2012) gathered his understanding of mathematics learning in five categories as constructivist, interpretive, objectivist, protecting the rights and interests of the nation and the utilitarian in his research with 5th grade students. Matic, Matic and Katalenic (2013) determined that students of engineering faculties prefer strategic, in-depth and superficial learning approaches respectively in mathematics lessons. Darlington (2011) determined that students adopt the strategic learning approach more in their research on mathematics learning approaches with university students. İlhan, Çetin and Kuluç (2013) aimed to develop the scale of mathematics learning approaches in their studies with high school students and two factors such as deep and superficial learning approach were identified in this process. In his study, Gökştepe-Ýldız (2019) examined the effect of design-based mathematics applications on the spatial abilities and 3-dimensional geometric thinking skills of 6th grade students in determined dimensions. In addition, the researcher developed a measurement tool that measures learning approaches in mathematics lesson. As a result of the research, he determined that the students' spatial abilities differ significantly according to their mathematics learning approaches.

Although studies have increased in recent years, there are fewer studies in our country. (Belge-Can & Boz, 2012; Boşşan & Önder, 2010; Côban & Ergin, 2008; Gökştepe-Yildiz, 2019; İlhan, Çetin & Kuluç, 2013; Sezgin-Seçuk el. al., 2007). On the other hand, it is also stated that instead of examining the learning approaches in general, examining them specific to a field may provide more detailed information (Enwistle, 1997). As a result, as İlhan et al., (2013) stated, the evaluation of mathematics learning approaches by separating them from learning approaches in other fields leads to more appropriate determinations. However, when we look at the studies mentioned above on learning approaches, it is seen that the current studies are oriented towards different education levels and different courses, but studies specific to mathematics are few (Chiu, 2012; Darlington, 2011; Gökştepe-Ýldız, 2019; İlhan, Çetin & Kuluç, 2013; Matic, Matic & Katalenic, 2013). As can be seen, even though the math learning approaches have been examined, no research has been found comparing the mathematics learning approaches of students who have been diagnosed as gifted and those who have not been diagnosed as gifted.

It is stated that school programs do not meet the educational needs of students who have been diagnosed with giftedness, and that programs should have versatile and creative features. (Baykoç, 2014; Kontaş, 2010; Palancı, 2004). Students who have not been diagnosed as gifted may have more thoughts that mathematics can be incomprehensible, abstract, difficult and complex than gifted students. Because gifted students are more successful in challenging and complex tasks that require mental performance. (Stuart & Beste, 2011). The features of gifted students enable them to learn more successfully and faster than students who have not been diagnosed as gifted (Ataman, 2004; Davis & Rimm, 2004). Actually, with the determination of this kind of research, the necessary arrangements can be determined by preparing the necessary learning environments and in this way, desired successes can be achieved for both groups. Accordingly, it can be said that the comparison of these two groups can yield important results for the mathematics teaching processes of both groups. Likewise, when the studies conducted are examined, it can be seen that the students with and without a gifted diagnosis are compared through various variables. For example, Mills (1993) researched the personality and learning styles of gifted students in the field of mathematics and determined that there are personal differences between gifted students and those who are not diagnosed as gifted students. Yildiz, Baltacı, Kurak, and Güven (2012) compared the two groups in terms of using problem solving strategies and made suggestions to guide the education of gifted students by revealing that gifted students used more strategies. In their research, Altun and Yazıcı (2010) revealed that there were differences in the learning styles of both groups by using Dunn's learning styles inventory. Also, Arseven and Yeşiltaş (2016) determined that the learning styles of the two groups differed and that gifted students prefer the most “independent” and “competitive” learning styles, while students not diagnosed as gifted prefer the most “dependent” and “participant” learning styles. In this study, both groups attending secondary school will be compared in terms of math learning approaches. By determining the learning
approaches in mathematics of a part of a population that makes up a small part of the population, both the picture of the current situation in gifted students will be taken and by making comparisons with students who are not diagnosed as gifted, there will be an opportunity to make some moves in the education of gifted students and students who have not been diagnosed as gifted.

The concept of giftedness is defined as people who perform at a high level compared to their peers in intelligence, leadership capacity or special academic fields (Horn, 2002; Ravenna, 2008; Renzulli, 1999). Therefore, the presence of future leaders, scientists and artists is directly proportional to the importance attached to the education of gifted students (Sisk, 1990). Therefore, early recognition of gifted individuals and development of their skills are two important issues. (Capan, 2010). Renzulli and Reis (1985) stated that gifted children may need extensive educational opportunities that cannot be provided through normal programs. To meet this need, Science and Art Centers (BİLSEM), which was founded in our country in 1995, care about their differences, add aesthetics to scientific thoughts and behaviors, tries to ensure that students produce, solve problems and self-realize themselves (Bilsen Yönergesi, 2007). Sowell, Zeigler, Bergwell and Cartwright (1990) used the phrase "gifted in mathematics" to students who can demonstrate mathematical skills that older students can do. Holton and Gaffney (1994) stated that gifted students can think analytically, deductively or inductively while solving their math problems. It is obvious that the mathematics education given to gifted students is very important in revealing their such thinking processes. It can be said that thanks to the Science and Art Centers (BİLSEM) in our country, mathematics education of gifted students is given importance. The studies conducted with Science and Art Centers in our country were mostly based on different variables such as problem solving and metacognition (Aktepe & Aktepe, 2009; Baltaci, Yildiz & Güven, 2014; Boran & Aslaner, 2008; Yildiz, Baltaci, Kurak & Güven, 2012; Aytekin, Baltaci, & Yildiz, 2017).

In this study, because it is aimed to compare the emerging situations in the study of mathematics learning approaches of gifted and non-gifted students, the research is thought to provide useful information to all relevant stakeholders and our education system. In this study, it was aimed to investigate the mathematics learning approaches of gifted students and successful students who were not diagnosed as gifted in terms of variables of giftedness, gender, grade level, parents' profession and education level. On the other hand, the findings obtained at the end of the research will be an opportunity to compare with the results of the studies on mathematics learning approaches. For this reason, the problem of the research is determined as "How did the successful gifted students’ mathematics learning approaches differ according to some variables whether they are diagnosed as gifted or not". Because, many variables such as age, gender, past experiences, class level, and success level affect the learning approaches (Göktepe-Yildiz & Özdemir, 2018; Senemoğlu, 2011; Trigwell & Prosser, 1991). For this reason, the research problem has been examined in detail according to the following variables too.

Within this scope, the sub-problems of the research are as follows:

1. What are the math learning approaches of students with and without a diagnosis of gifted students?
2. Is there a statistical difference in mathematics learning approaches according to the diagnosis of giftedness among students?
3. Is there a statistically significant difference in mathematics learning approaches of gifted and non-gifted students according to gender?
4. Is there a statistically significant difference in mathematics learning approaches of gifted and non-gifted students according to their grade levels?
5. Is there a statistically significant difference in mathematics learning approaches of gifted and non-gifted students according to the parent's profession?
6. Is there a statistically significant difference in mathematics learning approaches of gifted and non-gifted students according to the education level of parents?

2. Method

In this chapter; information about the model of the research, participants, data collection, research process and analysis are given.

2.1. Model of Research

In this study, descriptive research model was used because it was aimed to reach general evaluations by making comparisons about mathematics learning approaches of gifted students and those students who were not diagnosed as gifted. Descriptive research aims to describe an existing situation as it is without any experimental process (Karasar, 2006). In this study, causal comparison approach was also used, since the research problem was examined separately in terms of variables such as gender, grade level, parent occupation, and education level. Cohen and Manion (1994) stated in causal comparison studies that there will be at least two groups affected by the same situation in different ways, or two groups that are affected and not affected by the assumed situation and that these groups can be analyzed in terms of some variables in order to determine the possible causes and influences of the current situation. Investigations to determine the causes of an existing /naturally
sequences of an effect are causal - plan 41.048% of the whole variance. This rate is acceptable (Scherer vd, 1988). Item factor load

2.2. Participants

A total of 239 students, 84 of whom are gifted students, 155 students who have not been diagnosed as gifted attending the 6th, 7th and 8th grades participated in the study in the 2018-2019 academic year. Data on gifted students were collected from the Science and Arts Center of a province in the Central Anatolia region, and data on students with no gifted diagnoses were collected from a secondary school in the same province. In terms of academic success, the closest school to students in BİLSEM were tried to be chosen. The reason for choosing students close to each other as academic success is to determine whether the diagnosis of giftedness among successful students will make a difference on learning approaches. While choosing a school, all public schools in the province where the research was conducted were ranked according to the average of placement in high schools and the most successful school was chosen. Thus, the criterion sampling was one of the sampling methods for the selection of the public school. Here, school success was taken as a criterion.

Table 1. Descriptive statistics on the number of students participating in the research

Grade level	6th	7th	8th	Total	
Gifted students					
Gender	Female	23	15	9	47
	Male	15	9	13	37
Total		38	24	22	84
f (%)		45.24	28.57	26.19	100
Non-Gifted students					
Gender	Female	46	24	16	86
	Male	22	32	15	69
Total		68	56	31	155
f (%)		43.87	36.13	20	100

As seen in the demographic characteristics of the students in Table 1 regarding gender, grade level and giftedness, 133 female (55.6%) and 106 (44.4%) male students participated in the study. 47 (55.9%) of the students who are diagnosed as gifted are girls and 37 (44.1%) are boys. The distribution of these students by grade level is as; 38 (45.24%) students in the 6th grade, 24 (28.57%) students in the 7th grade and 22 (26.19%) students in the 8th grade. It is understood that 55.4% of the students who are not diagnosed with gifted are girls and 44.6% are boys. Considering the distribution by grade level, There are 68 (43.87%) students from the 6th grade, 56 (36.13%) from the 7th grade and 31 (20%) students from the 8th grade.

2.3. Data Collection Tools

There are two remarkable studies (Göktepe-Yıldız, 2019; İlhan et al., 2013) that are aimed at determining learning approaches specifically for mathematics lesson. The scale developed by İlhan et al., (2013) has a two-factor structure in the form of a superficial and in-depth learning approach. Therefore, the scale of Göktepe-Yıldız (2019), which is suitable for middle school students, is used to measure all three factors in the form of a superficial, in-depth and strategic learning approach.

The Mathematics Learning Approach Scale developed by Göktepe-Yıldız (2019) consists of 33 items and three sub-dimensions as in-depth learning, superficial learning and strategic learning. The scores derived from the sub-dimensions of the scale are interpreted independently.

The high scores obtained from the sub-dimensions indicate that students tend to prefer that dimension in mathematics lesson more; low scores show that students tend to prefer that dimension in mathematics lessons less. For example, a student's "in-depth learning approach" is high while "strategic learning approach" may be low.

The scale is a 5-point Likert type scale as "I strongly disagree = 1" and "I strongly agree = 5". The three sub-factors explain 41.048% of the whole variance. This rate is acceptable (Scherer vd, 1988). Item factor load values vary between .323 and .713 (Göktepe-Yıldız & Özdemir, 2018). When starting the analysis of this study, the skewness - kurtosis values of whether the data show a normal distribution were examined to decide which statistical tests to do first. Distortion (-.886) and kurtosis (1.414) of the whole test; skew (-.959) and kurtosis (.293) for in-depth subdimension; distortion (-1.085) and kurtosis (.847); for the strategic sub-dimension; superficial subscale, is as the form of skewness (.199) and kurtosis (.512).

Göktepe-Yıldız (2019) determined the Cronbach Alpha internal consistency coefficient of the whole scale as .78. Then, the internal consistency coefficient for the in-depth learning approach sub-dimension was .83. .83 for the strategic learning approach, and .78 for the superficial learning approach. In this study, these coefficients
were recalculated and the Cronbach Alpha reliability coefficient of the whole scale was found as .88. In the sub-dimensions, this number was found to be .89 for the in-depth learning approach and .90 for the strategic learning approach and .77 for the superficial learning approach. It can be said that this scale is sufficiently reliable since scales with a reliability coefficient of .70 and above are considered reliable (Fraenkel, Wallend & Hyun, 2012).

2.4. Data Analysis

The researchers went to the chosen middle school located in BİLSEM and the city center and explained the research to the institution administrators and the scale forms were applied to the students with the support of the institution administrators. Scale forms taken from students are systematically numbered and kept for analysis. The data of the research were analyzed by using SPSS 23.00 package program.

Firstly, whether the dependent variable is normally distributed at the level of the independent variable is examined while beginning the analysis to determine the statistical analysis to be performed to find out the differentiation status of mathematics learning approaches according to various variables (Kolmogrow-Smirnow H test). Giftedness diagnosis (K-S84=.075, p>.05; K-S155=.102, p>.05), gender (K-S133=.098, p>.05; K-S106=.111, p>.05), grade (K-S106=.106, p>.05; K-S80=.140, p>.05; K-S53=.065, p>.05), mother's profession (K-S73=.062, p>.05; K-S29=.186, p>.05; K-S137=.114, p>.05) father's profession (K-S111=.059, p>.05; K-S110=.150, p>.05; K-S18=.115, p>.05), mother’s education level (K-S139=.136, p>.05; K-S76=.084, p>.05; K-S24=.128, p>.05), father's education level (K-S120=.120, p>.05; K-S91=.072, p>.05; K-S28=.087, p>.05) variables are in accordance with the test values, independent samples t-test for groups with normal distribution and for non-normal groups under the Mann-Whitney U test was utilized. Analysis of the data was evaluated at p <0.05 significance level.

3. Results

In this section, mathematics learning approaches of students who are not diagnosed with gifted students and gifted students are reported for the overall scale according to the gifted students' grade levels, gender, parents' education level and parents' profession.

3.1. Results Related to the First Sub-Problem

Descriptive statistics of students' mathematics learning approaches are given in Table 2.

Table 2. Descriptive statistics of students' mathematics learning approaches

Type of students	Learning approaches	Min.	Max.	\bar{X}	SD
Gifted students	In-Depth	21	55	44.50	8.96
	Strategic	19	55	43.72	8.77
	Superficial	18	55	33.30	8.38
Non-Gifted students	In-Depth	13	55	40.47	10.38
	Strategic	11	55	42.44	10.35
	Superficial	13	55	31.54	9.13

Descriptive statistics about mathematics learning approaches of students with and without a diagnosis of giftedness are given in Table 2 below:

Since there are 11 items in each sub-dimension of the scale used, the minimum score that can be obtained for the sub-dimensions is 11 and the maximum score is 55. Accordingly, the middle score value was calculated as 33. In the findings related to which learning approach students prefer, the average scores for gifted individuals are listed as in-depth learning approach, strategic learning approach and superficial learning approach respectively. The in-depth and strategic learning approach score averages of the students in this group are above average. The superficial learning approach score average is approximately medium score. In line with these findings, it can be said that gifted students prefer in-depth and strategic learning approaches above the middle level and the superficial learning approach at the intermediate level. On the other hand, the average score of students with no gifted diagnoses from high to low respectively is as strategic learning approach, in-depth learning approach and superficial learning approach. As seen in Table 2, students who have not been diagnosed with gifted skills preferred the strategic and in-depth learning approach above the middle score, whereas they preferred the superficial learning approach just below the medium score.

3.2. Results Related to the Second Sub-Problem

In order to examine whether there is a statistically significant difference between the mathematics learning approaches of the 84 gifted students who were diagnosed and 155 gifted students who participated in the study, the normality test was performed and because it showed a normal distribution t-test was utilized and shown in Table 3.
A Comparison of Mathematics Learning Approaches of Gifted and Non-Gifted Students

Table 3. Independent samples t-test results regarding mathematics learning approaches according to the diagnosis of giftedness

Learning approaches	Students diagnosis	\(\bar{X} \)	SD	df	t	p
In-Depth Learning	Gifted	4.04	.94			
	Non- Gifted	3.67	.81	237	-2.99	.003*
Strategic Learning	Gifted	3.97	.79			
	Non- Gifted	3.85	.94	237	-0.962	.337
Superficial Learning	Gifted	3.02	.83			
	Non- Gifted	2.86	.76	237	-1.46	.143

*p<.05

As a result of the analysis conducted to determine whether students’ mathematics learning approaches differ according to the diagnosis of giftedness, a meaningful differentiation was observed in favor of gifted students in the in-depth learning approach between gifted and typical students (t = -2.99, p <.05). In other words, gifted students prefer learning more in-depth approach than other students while learning mathematics. There was no significant difference between the mean scores in strategic learning (t = -0.96, p>.05) and superficial learning approaches (t = -1.46, p>.05).

3.3. Results Related to the Third Sub-Problem

Independent samples t-test was performed according to the normality test result to determine the difference in mathematics learning approaches of the students who were diagnosed and gifted according to gender, and the results are presented in Table 4.

Table 4. t-test results of mathematics learning approaches by gender

Student diagnosis	Learning approaches	Gender	\(\bar{X} \)	SD	df	t	p
Gifted students	In-Depth Learning	Female	4.23	.704	82	2.40	.018*
		Male	3.81	.891			
	Strategic Learning	Female	4.20	.713	82	3.16	.002*
		Male	3.68	.809			
	Superficial Learning	Female	3.03	.762	82	.01	.991
		Male	3.02	.773			
Non-Gifted students	In-Depth Learning	Female	3.77	.907	153	1.357	.177
		Male	3.56	.982			
	Strategic Learning	Female	4.00	.877	153	2.127	.035*
		Male	3.68	.993			
	Superficial Learning	Female	2.77	.783	153	-1.539	.126
		Male	2.98	.877			

*p<.05

As a requirement of the scale used, analysis was made for each 3 sub-dimensions. When the results in Table 4 are analyzed, there is a significant difference between gifted students according to gender variable in their sub-dimensions (t = 2.40, p <.05) and strategic learning (t = 3.16, p <.05). This difference is in favor of female students. In other words; gifted female students prefer more in-depth and strategic learning approaches than male students. In the superficial learning approach, there is no significant difference by gender. (t =.01, p >.05).

Considering the analysis results of students who have not been diagnosed as gifted students, the mean scores of girls’ in-depth and strategic learning approaches are higher than boys, and they are lower in superficial learning approaches. As a result of the analysis conducted to investigate whether this difference in scores was statistically significant among students, it was determined that the scores of female students were significantly higher than the boys only in the strategic learning approach (t = 2.12, p< .05). The difference in scores between girls and boys does not show a significant difference in in-depth and superficial learning.

3.4. Results Related to the Fourth Sub-Problem

According to the grade levels, normality test was performed for the analysis of whether mathematics learning approaches of students who were diagnosed and not diagnosed had changed and since it shows normal distribution, independent samples are analyzed with t test and presented in Table 5.
Table 5. Independent samples t-test results regarding mathematics learning approaches of students with / without giftedness according to grade levels

Grade level	Learning approaches	Student diagnosis	\bar{X}	SD	df	t	p
6	In-Depth	Gifted	4.18	.752	104	-1.936	.056
		Non-Gifted	3.84	.915			
	Strategic	Gifted	4.09	.799			
		Non-Gifted	4.08	.873	104	-.036	.972
	Superficial	Gifted	2.94	.726			
		Non-Gifted	2.59	.785	104	-2.218	.029*
7	In-Depth	Gifted	4.16	.583	78	-3.186	.000*
		Non-Gifted	3.45	1.01			
	Strategic	Gifted	4.02	.781	78	-1.842	.069
		Non-Gifted	3.59	1.02			
	Superficial	Gifted	3.25	.820	78	379	.706
		Non-Gifted	3.32	.768			
8	In-Depth	Gifted	3.67	1.02	51	.167	.868
		Non-Gifted	3.71	.800			
	Strategic	Gifted	3.71	.785	51	.524	.602
		Non-Gifted	3.83	.822			
	Superficial	Gifted	2.92	.741	51	-1.534	.131
		Non-Gifted	3.29	.705			

*p<.05

In distribution of students according to grade level, there are 38 gifted and 68 normal students in the 6th grade, 24 superior and 56 normal students in the 7th grade, 22 superior and 31 normal students in the 8th grade. When the t-test results of independent samples conducted to compare the math learning approaches of students who were diagnosed with giftedness and not according to grade level were examined, no significant difference was found in mean scores at the 8th grade level. However, it is seen a significant difference in 7th grade in-depth learning in favor of gifted students ($t = -3.18$, $p < .05$) and in 6th grade superficial learning approach in favor of gifted students ($t = -2.21$, $p < .05$).

3.5. Results Related to the Fifth Sub-Problem

The mathematics learning approaches between the two groups were analyzed according to the parents' profession and the results are presented in table below. Table 6 and Table 7 compared the mathematics learning approaches of the students according to the profession of the mothers, Table 8 and Table 9 compared the mathematics learning approaches of the students who were diagnosed with /without giftedness according to the profession of the fathers. With the normal distribution of the groups, how the students' mathematical learning approaches changed according to the mother's profession were analyzed with independent samples t-test results regarding mathematics learning approaches of students diagnosed with / without talent according to mother's profession.

Table 6. t-test results regarding mathematics learning approaches of students diagnosed with / without talent according to mother’s profession

Learning approaches	Student diagnosis	\bar{X}	SD	df	t	p	
Public	In-Depth	Gifted	4.16	.730	71	-3.073	.003*
	Non-Gifted	3.62	.749				
	Strategic	Gifted	3.99	.869	71	-.705	.483
	Non-Gifted	3.86	.651				
	Superficial	Gifted	3.08	.772	71	1.575	.120
	Non-Gifted	2.77	.881				
Not Work	In-Depth	Gifted	3.91	.919	135	-1.086	.280
	Non-Gifted	3.70	.980				
	Strategic	Gifted	3.93	.732	135	-.401	.640
	Non-Gifted	3.86	1.010				
	Superficial	Gifted	2.93	.747	135	.060	.952
	Non-Gifted	2.94	.811				

*p<.05
Among the gifted students’ mothers, the number of public employees is 43 (51.20%) and the number of those who do not work is 34 (40.47%). The number of the mothers of the students who have not been diagnosed with giftedness employed in public sector is 30 (19.35%), and 103 (66.46%) of the unemployed. Looking at the learning approaches of the students according to the mother’s professions in Table 6, the in-depth learning approach of the children whose mothers work in public differs statistically in favor of gifted students \((t = -3.07, p < .05) \). In other words, gifted individuals whose mother works in public prefer in-depth learning approaches more than normal students. In the strategic and superficial learning approaches, no significant difference was found among the students.

As a result of the analysis made for the students who are in the category of unemployed mothers, it is seen that there is no significant difference in any learning approach among these students. On the other hand, the averages of gifted students are higher than the other student group in their in-depth and strategic learning approach.

Learning approaches of the students whose mother’s profession is “Private Sector” were determined by Mann-Whitney U test. Because 7 (8.33%) mothers of gifted parents and 22 (14.19%) mothers of parents of other groups are in this category and the data are not distributed normally. In this context, the relevant results are as in Table 7.

Table 7. Mann-Whitney U test results regarding mathematics learning approaches of students diagnosed with / without giftedness whose mothers are “Private Sector” employees

Learning approaches	Student diagnosis	Rank average	Rank total	M-Whitney U	Z	p
In-Depth	Gifted	17.36	121.50	60.500	-.843	.399
	Non-Gifted	14.25	313.50			
Strategic	Gifted	15.93	111.50	70.500	-.332	.740
	Non-Gifted	14.70	323.50			
Superficial	Gifted	18.64	130.50	51.500	-1.302	.193
	Non-Gifted	13.84	304.50			

Table 7 presents data on mathematics learning approaches of students whose mothers are private sector employees. It has been observed that there is no statistical difference between the groups according to the mother’s working status in the private sector in gifted and normal students’ mathematics learning approaches.

Data on the father’s profession are as follows:

Table 8. T-test results regarding math learning approaches of students diagnosed with / without giftedness according to father’s profession

Learning approaches	Student diagnosis	\(\bar{X} \)	SD	df	t	p
In-Depth	Gifted	4.04	.837	109	-2.82	.006*
	Non-Gifted	3.59	.838			
Public	Strategic	4.01	.773	109	-1.307	.194
	Gifted	3.80	.895			
	Non-Gifted	2.92	.710			
	Gifted	2.67	.778			
	Non-Gifted	2.67	.778			
In-Depth	Gifted	4.03	.828	108	-1.484	.141
	Non-Gifted	3.71	1.037			
Private sector	Strategic	3.96	.827	108	-.418	.677
	Gifted	3.87	1.017			
	Non-Gifted	3.87	1.017			
	Gifted	3.10	.785	108	-.641	.573
	Non-Gifted	2.99	.864			

*p < .05

While the number of fathers of gifted students working in the public sector is 51 (60.71%), the number of those working in the private sector is 30 (35.72%). The situation is as 60 (38.71%) fathers working in the public sector and 80 (51.61%) in the private sector among students with no gifted diagnosis. fathers of students who have not been diagnosed with giftedness is as 60 (38.71%) working in the public sector and 80 (51.61%) in the private sector. Looking at the learning approaches of the students according to the father’s professions in Table 8, the in-depth learning approach of the children whose fathers work in the public sector differs statistically in favor of gifted students \((t = -2.82, p < .05) \).

The learning approaches of the students whose father’s profession is in the “Not Working” category were also determined by the Mann-Whitney U test. 3 (3.57%) fathers from gifted parents and 15 fathers (9.68) from groups
are in this category and the data are not normally distributed. In this context, the relevant results are as in Table 9.

Table 9. Mann-Whitney U test results regarding math learning approaches of students diagnosed with/without giftedness in “Not Working” category

Learning Approaches	Students diagnosis	Rank average	Rank total	M-Whitney U	Z	p
In-Depth	Gifted	12.00	36.00	15.000	-0.892	0.373
	Non-Gifted	9.00	135.00	15.500	-0.832	0.405
Strategic	Gifted	7.17	21.50	15.500	-0.832	0.405
	Non-Gifted	9.97	149.50			
Superficial	Gifted	15.00	45.00	6.000	-1.958	0.050
	Non-Gifted	8.40	126.00			

As stated in Table 9, there is no significant difference in mathematics learning approaches of students whose father is unemployed.

It can be seen from the 4 analyzes above made according to parents' professions between the two groups that there is a significant difference in favor of gifted among the gifted and normal children whose mothers and fathers work in public sector.

3.6. Results Related to the Sixth Sub-Problem

Considering the distribution of education levels of mothers of gifted students, 24 people (28.57%) are high school graduates and lower, 40 (47.62%) are university graduates. Education levels of mothers of students with no gifted diagnoses are 115 (74.19%) high school and lower, 36 of them are (23.22%) university graduates.

In Table 10 and Table 11, the educational status of the mothers from the parents of the students in the two groups were compared.

Table 10. Independent samples t-test results regarding mathematics learning approaches of students diagnosed with/without giftedness according to the educational level of the mother

Education level	Learning approaches	Student diagnosis	\(\bar{X} \)	SD	df	t	p
High school	In-Depth	Gifted	3.87	.858	137	-1.876	0.066
graduates and		Non-Gifted	3.69	.958			
lower	Strategic	Gifted	3.81	.859	137	0.277	0.782
		Non-Gifted	3.87	.956			
University	In-Depth	Gifted	4.03	.876	74	-1.630	0.107
		Non-Gifted	3.70	.870			
	Strategic	Gifted	4.01	.764	74	-0.668	0.506
		Non-Gifted	3.88	.896			
	Superficial	Gifted	2.78	.744	74	-2.897	0.005
		Non-Gifted	2.31	.639			

*p<.05

When Table 10 is analyzed, according to the education level of the mothers, the results regarding the mathematics learning approaches of the two groups there is no significant difference observed between the two groups whose mother is in a high school graduate and lower education level. Considering the math learning approach of students whose mothers are university graduates, the scores of gifted students are significantly higher in the superficial learning approach compared to normal students (t = -2.89, p<.05). Although the mean scores in the in-depth and strategic learning approaches are higher in favor of gifted students, this score difference does not create any statistically significant difference.

The learning approaches of the students whose mother’s education level is “Post-graduate” are determined by Mann-Whitney U test since the data is not distributed normally and presented in Table 11. This category includes 20 (23.81%) mothers whose kids are gifted students and 4 (2.59%) of the other group.
Table 11. Mother’s educational status Mann-Whitney U test results regarding mathematics learning approaches of students diagnosed with/without giftedness in the “Post-graduate” category

Learning approaches	Student diagnosis	Rank average	Rank total	M-Whitney U	Z	p
In-Depth	Gifted	13.88	277.50	12,500	-2.14	.032*
	Non-Gifted	5.63	22.50			
Strategic	Gifted	13.58	271.50	18,500	-1.669	.095
	Non-Gifted	7.13	28.50			
Superficial	Gifted	11.68	233.50	23,500	-1.281	.200
	Non-Gifted	16.63	66.50			

*p<.05

As seen in Table 11, comparing the children of mothers at “Post-graduate” level, the in-depth learning approach preference of gifted students is statistically different in favor of gifted to normal students (z = -2.14, p<.05).

Data on the educational status of fathers are presented below. Considering the distribution of education levels of fathers of gifted students, 18 people (21.44%) are high school and lower graduates, while 46 (54.76%) are university graduates. Education levels of fathers of students with no gifted diagnosis were 102 people (65.80%) high school and lower graduates, 45 people (29.03%) university graduates. Independent samples t-test was applied in the analysis of data whose father’s education level was high school graduate and lower and university level, as the group data showed normal distribution (Table 12).

Table 12. Independent samples t-test results regarding mathematics learning approaches of students diagnosed with/without giftedness according to father's educational status

Education level	Learning approaches	Student diagnosis	X	SD	df	t	p
High school	In-Depth	Gifted	3.94	.766	118	-1.172	.243
graduates and		Non-Gifted	3.65	1.012			
lower	Strategic	Gifted	4.08	.572	118	-1.042	.135
		Non-Gifted	3.81	1.016			
University	Superficial	Gifted	3.12	.801	118	-.502	.617
		Non-Gifted	3.01	.871			

*p<.05

In Table 12, the results of the analysis of the father’s educational status regarding the students’ preferences regarding mathematics learning approaches show that there is no significant difference between the mathematics learning approaches of the students in the two groups in high school graduate and lower graduates fathers' children. In the children of university graduate fathers, the scores in the depth and strategic learning approaches between the two groups did not differ significantly. On the other hand, the scores of gifted students were found to be significantly higher in the superficial learning approach compared to normal students (t = -2.18, p < .05).

The learning approaches of the students whose father’s education level is “Post-graduate” were determined by Mann-Whitney U test since the group data did not show normal distribution and then presented in Table 13. In this category, there are 20 (23.80%) fathers of gifted students and 8 (5.17%) from the other group.

Table 13. Father’s educational status Mann-Whitney U test results regarding mathematics learning approaches of students diagnosed with/without giftedness in the “Post-graduate” category

Learning approaches	Student diagnosis	Rank average	Rank total	M-Whitney U	Z	p
In-Depth	Gifted	15.65	313.00	57,000	-1.174	.240
	Non-Gifted	11.63	93.00			
Strategic	Gifted	13.75	275.00	65,000	-.766	.444
	Non-Gifted	16.38	131.00			
Superficial	Gifted	16.15	323.00	47,000	-1.680	.093
	Non-Gifted	10.38	83.00			

*p<.05
When the results of mathematics learning approaches of two groups of students according to father's education level are examined in Table 13, there is no significant difference in mathematics learning approaches of students whose father is at the graduate level.

4. Discussion and Conclusion

In this study, it has been tried to compare the mathematics learning approaches of students who are diagnosed as gifted and students not diagnosed as gifted. When the results are analyzed, it is determined that gifted students prefer in-depth and strategic learning approaches above the middle level and the superficial learning approach at the intermediate level. In parallel with this result, Renzulli, Rizza and Smith (2002) stated that gifted students have an in-depth learning approach. While students with no diagnosis of giftedness prefer the strategic and in-depth learning approach above the middle level, it is concluded that they prefer the superficial learning approach below the average score. The area in which students who adopt the in-depth learning approach with the increase in the level of success is frequently mentioned in the literature. For example, Bernardo (2003) stated that the frailty in success is related to superficial learning, but high success is related to in-depth and strategic learning approaches. The emergence of an in-depth and strategic learning approach above medium level in both students diagnosed as gifted and not diagnosed as gifted may have resulted from the high academic achievement of the participants. As Davis and Rimm (2004) stated, in order for the in-depth and strategic learning approach to be preferred more, positive environments where students can actively participate in learning processes, emphasize mathematical discussions and proofs through their own knowledge, explore through exploration mathematical concepts and representations, where they can switch these concepts should be created. Therefore, components such as teachers, books, tools in learning environments should be organized accordingly.

In student-centered learning environments instead of teacher-centered learning environments, it is also stated that students with superficial learning approach can change these approaches in the direction of learning in depth (Wilson & Fowler, 2005). In order for students to prefer the in-depth learning approach more in mathematics lessons a student-centered problem-based learning environment (Gordon & Debus, 2002; Sezgin-Selçuk, 2010), an inventive based teaching (Ünal & Ergin, 2006) and an environment with computer-aided materials (Tinker, 1997) need to be created. Therefore, in a classroom where students with a superficial or strategic learning approach are abundant, the teacher can direct their students to in-depth learning with different activities according to the teaching method they choose (Gökşipe-Yıldız & Özdemir, 2018). As Biggs and Tang (2007) stated, by creating a better learning environment, more effective answers can be obtained from students, and teaching by presenting inquiry-based problems rather than teaching the information can encourage students to utilize in-depth learning approach. Similarly, Even, Karsenty and Friedlander (2009) also stated that the teacher, who has a very important role in mathematics and has a key role in creating opportunities for bright students to realize their own potential, will have various responsibilities in all these processes. In this study, as mentioned above, due to the fact that there are successful students in both groups, the in-depth learning approach may be overexposed. Therefore, the following suggestion can be given to the teacher, who is the lead responsible for organizing the learning environment, in order to have a positive change in the learning approach. Both students diagnosed with/without giftedness should be allowed to ask questions to their teachers, and great responsibilities fall towards the teachers to let them access information and encourage to thinking.

One of the remarkable results here is that the in-depth learning scores of gifted students are higher than the strategic learning scores; it is the result that students who are not diagnosed with giftedness have higher strategic learning scores than in-depth learning scores. The school chosen within the scope of the research was chosen from the school with the closest students to gifted students as an academic achievement. The preparations and exam successes of the students in this selected school are closely monitored by the school principal and school teachers, and a school atmosphere with an effort to improve the exam performance is provided. Therefore, it may be a consequence of this environment that students studying here prefer to do strategic learning more than in-depth learning, which expresses their tendency to learn with exam success and grade anxiety.

There was a significant difference in favor of gifted students in the in-depth learning approach between gifted and normal students. However, no significant difference was found between the mean scores in strategic learning and superficial learning approaches. Similarly, Watkins (2001), Bernardo (2003) and Beyaztaş and Senemoğlu (2015) concluded that there is a positive relationship between academic achievement and in-depth learning so successful students use the in-depth learning approach more. In addition, Beyaztaş (2014) reached the conclusion that the scores of successful students who are in the first hundred in the 4th grade of Science High School are high. As stated by Offir, Lev and Bezalel (2008), students who learn in depth associate the new information they have learned with their previous knowledge and make inferences from the information they have learned. Likewise, as Darlington (2011) puts it, it is important to understand where the knowledge is obtained considering the in-depth learning approach in mathematics subjects, knowing the usage areas of the subject, and establishing a relationship between them. It is stated in the literature that gifted individuals have the features such as easy and quick learning, loving to learn information in depth and details, showing high concentration and transferring
what they have learned to other areas, wondering and analyzing cause and effect relationships, using their time and effort economically (Çitil & Ataman, 2018). Considering these features, it is an expected result that gifted individuals do in-depth and strategic learning from time to time. Because, also in in-depth learning, the individual understands where the knowledge comes from, knows the usage areas, establishes the relationship between them, understands the subject, creates a harmonious whole from the related components, cares about the nature of the information and cares about cause and effect relationships (Byrne, Flood & Willis, 2001; Darlington, 2011; Ramsden, 2000).

There is a meaningful difference in favor of female students in terms of in-depth and strategic learning sub-dimensions among gifted students. In other words, female students prefer more in-depth and strategic learning approaches than male students. No significant difference in the superficial learning approach by gender was found. In-depth and strategic learning approach is higher in girls with no gifted diagnoses than in boys, and lower in superficial learning approach. As a result of the analysis conducted to investigate whether these scores are statistically significant, it was determined that the scores differ significantly in the strategic learning approach. In line with the results of this research, Smith and Miller (2005) also concluded that male students showed a more superficial learning tendency compared to girls. Many reasons such as excessive self-confidence, fondness in game, computer games and activities, being more relax than girls, and perhaps even spending more time outside in this process may have been effective in the emergence of such a result in students with no gifted diagnosis. On the other hand, when we look at the studies conducted, the results of the study reversed, in other words, that the results for boys to prefer the deeper approach (Severiens & ten Dam, 1997; Watkins, 1996) or that the female students preferred the deeper approach as is also seen in this study (Biggs, 2001). On the other hand, there are studies in which there is no significant difference between gender learning approaches as well (Öner, 2008; Richardson, 1993; Watkins & Mboya, 1997; Tural-Dinçer & Akdeniz, 2008).

Comparing the mathematics learning approaches of the students who were diagnosed with giftedness and not diagnosed as gifted according to the grade level, there was no significant difference in the mean scores at the 8th grade level. However, it was observed that there was a significant difference in favor of gifted students in the in-depth learning approach in the 7th grade, and in superficial learning approach it was in favor of gifted students in the 6th grade. In the 6th grades, although the in-depth learning approach average scores are in favor of gifted students, this difference is not statistically significant. In their study Göktepe-Yıldız and Özdemir (2018), concluded that, as the grade level increases in students who are not diagnosed with giftedness, the tendency of the students to prefer the in-depth learning approach decreases and there is no difference in the students' preferring the superficial learning approach. The situation in this study may have been due to the ability of gifted students to ask more questions in their lessons and their will to reach the information themselves. On the other hand, in some studies with university students, this has been the opposite. (Ozan, Köse & Gündoğdu, 2012; Senemoğlu, 2011). Another remarkable result here is a difference in favor of gifted students in superficial learning in 6th grades. In the superficial learning approach, it is expected that gifted individuals will not perform superficial learning considering the fact that the information is memorized without the concern of seeking meaning and the information consists of torn pieces in the mind. Although the mean scores are below the medium level in both groups, this difference is thought to be due to constraints of the study group and may be specific to this group. In this study, the in-depth approach mean scores of gifted students decreased as the grade level increased, while the scores of normal students were ranked as 6th, 8th, 7th grade from high to low. Göktepe-Yıldız and Özdemir (2018) stated that, as the grade level increases, the learning environments in schools are expected to make more of the features of the in-depth learning approach work. Again, Göktepe-Yıldız and Özdemir (2018) stated that the decrease in the preference of learning in-depth may be related to the general exam held at the end of the 8th grade.

Beyaztaş and Senemoğlu (2015) came to the conclusion that approximately 40% of successful students' families have an impact on their children's adoption of in-depth learning approach due to changes such as setting goals, motivating, organizing and following their work. For this reason, in the research, some examinations were made for parents too as below. In the study, in comparison with the parents' professions between the two groups, there is a significant difference in favor of the gifted among the gifted and normal children whose parents work in the public sector in the in-depth learning approach. Another result is that, When the students' mathematics learning approaches according to the education level of the parents are examined, while no significant differentiation is observed between the two group of students whose mother graduated from high school and lower education levels, a significant differentiation was determined in favor of gifted students in the superficial learning approach between the students whose mother was university graduate. Comparing the children of mothers at post-graduate level, choosing the in-depth learning approach of gifted students has been statistically different in favor of gifted than the normal students. In the case of father education level, it is seen that there is a significant difference in favor of gifted students between the children of university graduates in two groups. It may be due to the mothers of post-graduate education level differentiate the preference of in-depth learning in their children, because as the mother's education level increases, she creates an appropriate learning-teaching environment that will indirectly enable her children to learn, thus motivating her children to learn. For this
reason, in order to make the students become more in-depth learners, the efforts to improve the school-family cooperation can be improved so that the parents can take their own responsibility and parents can actively participate in the learning process.

Technology-supported learning environments can be created that will enable students to prefer in-depth learning approaches in mathematics lessons where students are more in center. Again, teachers can plan their lessons by asking problems that will make students think, so that students' learning approaches can be differentiated. In addition, the learning approaches of both groups can be examined in more depth and the underlying causes can be revealed. On the other hand, by encouraging teachers to make collaborative lessons, the richness of the prepared materials that play an active role in learning environments, the variety of asking questions, and the correct pedagogical approaches to their students can be improved. And this situation causes their students to adopt a deeper and more strategic learning style in their learning approach.
Üstün Yetenekli Öğrenciler ile Üstün Yetenekli Tanısı Konulan Öğrencilerin Matematik Öğrenme Yaklaşımlarının Karşılaştırılması

1. Giriş

Öğrenmenin nasıl gereçkleştiğini her zaman kafamızı meşgul etmiştir. Aslında bu durum beyin'in çalışma mekanizması tam olarak çözümemiş olmasından kaynaklanmaktadır. Bireyin dış dünyadaki uyanıları algılaması ve algılarından farklı şekillerde yorumlayıp kendine özgü bir ürune dönüştürmesi bir öğrenme sürecidir (Beydoğan, 2007; Von Glasersfeld, 1996). Bu öğrenme sürecinde, bireylerin bireysel farklılıkları dikkate alınmadığında öğrenme yaklaşımlarının önemli bir yer tutabileceği söylenebilir. Martin ve Saljo (1976) tarafından ilk kez kullanılan öğrenme yaklaşımları kavramı, bireylerin bir okuma parçası nasıl anlaşıldıklarını ortaya çıkardılarsa kullanılmıştır. Öğrenci ile öğrenme görevi arasındaki etkileşim olarak da tanımlanmıştır (Ramsden, 2001) öğrenme yaklaşımı, bireyin bir konuyu öğrenirken gösterdiği gösterdikleri eğilimi olarak da ifade edilmektedir (Ekinci, 2009). Öğrenme yaklaşımı öğrencilerin öğrenmedeki amaçını, öğrenmenin geçtiği süreç ve öğrenmeyi nasıl organize ettiği ifade edilmiştir (Spencer, 2003).

Öğrenmenin çok boyutlu bir kavram olması nedeniyle öğrenmenin etkileşen yönleri çok fazla ve çeşitli olabileceğini düşünülebilir. Bireyin öğrenme yaklaşımlarının bilinmesi, öğrenmenin etkisi durumları düzenlerken daha etkili ve yararlı yollar bulmasına yardımcı olur (Biggs, 1999; Entwistle, 2000). Bu nedenle öğrencilerin öğrenmenin gereçklestirilmesi için öğrenim faaliyetlerinin gereçklestirildiği ortamlarda öğrencilerin öğrenme yaklaşımlarının belirlenmesi gerekbilir. Bu sebeple dolaylı Özügür ve Tosun (2012)'ın da belirttiği gibi öğrenme yaklaşımları, dikkate alınması ve araştırılması gereken bir konudur. Öğrenme yaklaşımları öğrencilerin öğrenen konuyla yönelik tutumuna ve hızıt bulunduğu düzeyine, öğrenmenin öğrenciye karşı tutumuna ve kullandığı öğrenme yöntemlerine bağlıdır (Sezgin ve Eliez, 2002). Ayrca öğrenme yaklaşımları; öğrenim programının içeriği, işlevi, öğretim yöntem ve tekniği, öğrenme ortamının özellikleri, değerlendirme yöntemleri gibi türlerde göre de farklılık göstermektedir (Ekinci, 2009; Entwistle ve Smith, 2002).

Verimli ve etkili bir öğrenmenin gereçklesmesinde öğrenme yaklaşımları önemlidir (Yıldız, 2015). Bu yüzden öğrenenin davranışını şekillendirici bir bilme, onun nasıl bir öğrenci olduğunu anlayabilmek ve ona rehberlik edebilmek açısından önemlidir (Oğuz ve Karakuş, 2017). Aynı zamanda öğrenme yaklaşımlarının öğrenmenin akademik başarısı etkilediği dikkate alınmalıdır (Öztaş, 2014) eğitim-öğrenme sürecinde araştır, sorgulayan başka bir ifadeyle öğrencileri yüzeyelde ya da derin yaklaşımlı kullanmayı spin faktörlerin belirlenmesi gerektirir (Colak, 2006). Zaten matematik eğitimi üzerine yapılan araştırmalarla bakıldığında, öğrencilerin matematik başarılarda etkili olan faktörlerin belirlenmesi üzerine yoğunlaştırıldığı görülmektedir (Pourselami, Erfani ve Firoozfar, 2013; Zakaria ve Nordin, 2008). Bu faktörlerden birisinin de öğrencilerin matematik öğrenme yaklaşımlarının olduğu söyleyebilir. Çünkü öğrencilerin matematik öğrenme yaklaşımlarını bilen matematik öğretmenleri, kendi öğrenim faaliyetlerini gözden geçirmeckler ve öğrencileri doğru yönlendirmeler yaparak etkili bir öğretim gereçklesmeyi iç içe gösterebilirler (Göktepe-Yıldız ve Özdemir, 2008).

Öğrenme yaklaşımları öğrencinin bilgiyi işleme biçimini olarak ele alınmış ve öğrencilerin öğrenmenin etkisi ele alış biçimleri, yüzeyel öğrenme yaklaşımları, derinlemesine öğrenme yaklaşımları ve stratejik öğrenme yaklaşımları olarak üç grupa toplanabilir (Martin ve Saljo, 1976). Derinlemesine öğrenme yaklaşımlarında; elde edilen bilginin kaynağı olması, kullanım alanını belirleme, aralarında iliski kurmak esastır (Darlington, 2001). Derinlemesine öğrenme yaklaşımlarının tercih eden öğrencilerin esas amaçlarının anlama olduğu, ilgili bileşenlerin incelmesinin öğrenme için gereçklestirildiği ve bu incelmenin uyumlu bir bütüne dönüştürülebilir yapılandırıldığı bir süreçten geçtiği vurgulanmıştır (Chan, 2003; Ramsden, 2000). Byrne, Flood ve Willis (2009) da derinlemesine öğrenme yaklaşımlarına sahip olan bireylerin öğrenme yaklaşımları, kendilerini öğretim faaliyetlerini gönderge konu ve öğrencilerin öğrendikleri konuyle ilgili olanaktarın test etmeceklere göre de farklılık göstermektedir (Ekinci, 2009; Entwistle ve Smith, 2002).

Öğrenme yaklaşımları öğrencinin bilgiyi işleme biçimini olarak ele alınmış ve öğrencilerin öğrenmenin etkisi ele alış biçimleri, yüzeyel öğrenme yaklaşımları, derinlemesine öğrenme yaklaşımları ve stratejik öğrenme yaklaşımları olarak üç grupa toplanabilir (Martin ve Saljo, 1976). Derinlemesine öğrenme yaklaşımlarında; elde edilen bilginin kaynağı olması, kullanım alanını belirleme, aralarında iliski kurmak esastır (Darlington, 2001). Derinlemesine öğrenme yaklaşımlarının tercih eden öğrencilerin esas amaçlarının anlama olduğu, ilgili bileşenlerin incelmesinin öğrenme için gereçklestirildiği ve bu incelmenin uyumlu bir bütüne dönüştürülebilir yapılandırıldığı bir süreçten geçtiği vurgulanmıştır (Chan, 2003; Ramsden, 2000). Byrne, Flood ve Willis (2009) da derinlemesine öğrenme yaklaşımlarına sahip olan bireylerin öğrenme yaklaşımları, kendilerini öğretim faaliyetlerini gönderge konu ve öğrencilerin öğrendikleri konuyle ilgili olanaktarın test etmeceklere göre de farklılık göstermektedir (Ekinci, 2009; Entwistle ve Smith, 2002).

Öğrenme yaklaşımlarının birinci olarak bilgiyi işleme biçimi olarak ele alınmıştır ve öğrencilerin öğrenmenin etkisi ele alınarak öğrenme yaklaşımları kavramı, bireylerin öğrenmenin geçtiği süreç ve öğrenmeyi nasıl organize ettiği ifade edilmektedir (Spencer, 2003).
yaklaşmaya sahip olan öğrencilerin olabildiğince yüksek notlar almaya çalış本报记者, çeşitli materyaller kullanılarak algılamalarını hizlandıracak kaynakları tercih edecelerini bu şekilde de öğrencilerinin kolya stratégieını ifade etmiştir. Entwistle (1995) stratejik öğrenme yaklaşıımının en önemli özelliğinin hem çalışma yöntemleri hem de zaman yönetimi açısından organizasyona yarar sağladığı belirtmiştir.

Öğrenme yaklaşımları üzerine yapılan çalışmalardan bazıları şu şekildeki. Beşoluk ve Önder (2010) yapmış olduğu çalışmada lisans düzeyindeki öğretmen adaylarının da çok yüzeysel öğrenme, yüksek lisans düzeyindeki öğretmen adaylarının ise daha çok derinlemesine öğrenme yaklaşıımını tercih ettikleri sonucuna ulaşmışlardır. Değerlendirme yöntemlerinin öğrenme yaklaşımları üzerinde etkisinin araştırıldığı Scouller (1998)'in çalışmalarında öğrencilerin çoktan seçmeli sınavlara hazırlıklarırken yüzeysel öğrenme yaklaşıımını daha fazla tercih ettiği, üst düzey düşüncelerin becerilerinin ölçüldüğü görüyor ise öğrencilerin derinlemesine öğrenme yaklaşıımını daha fazla tercih ettikleri sonucuna ulaşmıştır. Yine Birenbaum ve Feldman (1998) derinlemesine öğrenme yaklaşıımını benimsenmeyi öğrencilerin düşümüne sevk edici açısından solı soruları daha fazla tercih ettikleri belirlemiştir. Bir alana özgü olarak örneğin Lee, Johanson ve Tsai (2008) lise öğrencileri ile yapmış olduğu çalışmada, fırı ön öğrenim yaklaşımlarını incelemeleri ve yapılandırmacı öğrenme anlayışlarına sahip öğrencilerin derinlemesine öğrenme yaklaşımlarına sahip oldukları belirlemiştir. Sezgin-Selçuk, Çalışkan ve Erol (2007), fizik öğretmen adaylarının öğrenme yaklaşımlarının belirlenmesi ve bu öğrenme yaklaşımlarının öğrencilerin cinsiyet, sınıf düzeyi, akademik başarılar gibi değişkenlerle ilişkisini incelemiştir. Sonuçta fizik öğretmen adaylarının derinlemesine öğrenme yaklaşıımı, yüzeysel öğrenme yaklaşıımına göre daha fazla tercih ettikleri belirlemiştir. Özkan ve Sezgin-Selçuk (2014) ise öğrencilerin fizik dersini öğrenmekte benimsediği öğrenme yaklaşımlarını belirlemeye çalışmışlardır. Ayrıca fizik dersinde öğrencilerin derinlemesine ve yüzeysel öğrenme yaklaşımlarını orta düzeyin biraz üzerinde tercih ettikleri ve öğrenme yaklaşımlarının cinsiyetlerine göre anımları farklılaştığı belirlemiştir. Alemdağ (2015) da beden eğitimi öğretmen adayları ile yapmış olduğu çalışmasında bazı değişkenlere göre öğrenme yaklaşımlarını incelemiştir. Araştırma sonucunda öğrencilerin öğrencinin derinlemesine öğrenme yaklaşıımının benimsenmesinde sınıf düzeyi açısından anımlı farklılıklar bulmuştur. Ayrıca akademik başarı ile öğrenme yaklaşıımı arasında pozitif bir ilişki olduğu belirlemiştir. Cano (2007) ise lise öğrencilere yapılmış olduğu çalışmasında derinlemesine öğrenme yaklaşımlarını.Inforga'tılı öğrencilere öğrenme yaklaşımlarını cinsiyet, sınıf düzeyi, akademik başarılar gibi değişkenlerle ilişkisini incelemiştir. İlköğretim öğrencileri öğrenme yaklaşımlarını cinsiyete bakılanında ise öğrenin Çoban ve Ergin (2008) ilköğretim öğrencilerinin çok dersini öğrenmekte benimsediği öğrenme yaklaşımlarını belirlemeye amaçlamışlardır. Katalenic (2013) matematik öğretmen adaylarının derinlemesine ve yüzeysel öğrenme yaklaşımlarını puan ortalamalarının birbirine çok yakın olduğu ve cinsiyet açısından anımlı olarak farklılaştığı saptanmıştır. Belge-Can ve Boz (2012) ilköğretim öğrencilerinin dersini öğrenmekte tercih ettikleri öğrenme yaklaşımlarını cinsiyet ve yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir. Araştırma sonucunda ise öğrencilerin öğrencinin tercih edilmiş öğrenme yaklaşımları cinsiyetle yaş ile ilişkisi incelemişlerdir.
öğrencilerle, üstün yetenekli tanesi konulmuş öğrencilerin matematik öğrenme yaklaşımlarının karşılaştırılması şeklindeki bir araştırma rastlanmamıştır.

Okul programlarının üstün yetenekli tanesi konulmuş öğrencilerin eğitimsel ihtiyaçlarını karşılamadığını, programların çok yoğun ve yaratici özellikler taşıması gerektiği ifade edilmektedir (Baykoç, 2014; Kontaş, 2010; Palancı, 2011). Üstün yetenekli tanesi konulmuş öğrencilerin üstün yetenekli öğrencilere göre daha başarılı ve daha hızlı öğrenmelerini sağlamaktadır (Ataman, 2004; Davis ve Rimm, 2004). Aşılarda da bu tarafların tespitleri ile öğrenme ortamları hazırlarken gerekli düzenlemeler yapılarak dikkat edilmesi gereken hususlar belirlenebilir ve bu şekilde her iki grup için istenilen başarılı sağlanabilir. Bu doğrultuda bu iki grubun karşılaştırılmasını her iki grubun matematik öğrenme süreci için önemlidir. Örneğin Mills (1993) yaptığı çalışmasında matematik alanında üstün yetenekli öğrencilerin kişilik ve öğrenme stillerini araştırır ve üstün yetenekli tanesi konulmuş öğrenciler arasında kişisel farklılıklar olduğunu belirlemiştir. Yıldız, Baltaci, Kurak ve Güven (2012) bu iki grubun problem çözme stratejilerini kullanımyla yüz yüzlü öğrenme ortamları hazırlanırken gerekli düzenlemeleri ile üstün yetenekli tanesi konulmuş öğrencilerin öğrenme eğitimine alınışaçığı neden olarak anlaşılmaz, soyut, zarar ve karmaşık olabileceğini yönünde düşünçülerleri daha fazla olabilir. Cünkü üstün yetenekli öğrencilerin eğitimize alınışaçığı zor ve karmaşık olan yani zıhlı performans gerektiren uğraşlarda daha başarılıdır (Stuart ve Beste, 2011). Üstün yetenekli öğrencilerin ahşap oldukları özellikler, bu öğrencilerin üstün yetenekli tanesi konulmuş öğrencileri için daha başarılı ve daha hızlı öğrenmelerini sağlamaktadır (Ataman, 2004; Davis ve Rimm, 2004). Aşılarda da bu tarafların tespitleri ile öğrenme ortamları hazırlarken gerekli düzenlemeler yapılarak dikkat edilmesi gereken hususlar belirlenebilir ve bu şekilde her iki grup için istenilen başarılı sağlanabilir. Bu doğrultuda bu iki grubun karşılaştırılmasını her iki grubun matematik öğrenme süreci için önemlidir. Örneğin Mills (1993) yaptığı çalışmasında matematik alanında üstün yetenekli öğrencilerin kişilik ve öğrenme stillerini araştırır ve üstün yetenekli tanesi konulmuş öğrenciler arasında kişisel farklılıklar olduğunu belirlemiştir. Yıldız, Baltaci, Kurak ve Güven (2012) bu iki grubun problem çözme stratejilerini kullanımyla yüz yüzlü öğrenme ortamları hazırlanırken gerekli düzenlemeleri ile üstün yetenekli tanesi konulmuş öğrencilerin öğrenme eğitimine alınışaçığı neden olarak anlaşılmaz, soyut, zarar ve karmaşık olabileceğini yönünde düşünçülerleri daha fazla olabilir. Cünkü üstün yetenekli öğrencilerin eğitimize alınışaçığı zor ve karmaşık olan yani zıhlı performans gerektiren uğraşlarda daha başarılıdır (Stuart ve Beste, 2011). Üstün yetenekli tanesi konulmuş öğrencilerin öğrenme yaklaşımlarının incelenmesi ve ortaya çıkan durumların karşılaştırılması amaçlanmıştır. Bu doğrultuda araştırma sonunda elde edilen bulgular, matematik öğrenme yaklaşımlarına yönelik çalışmaların sonuçları ile karşılaştırılması için fırsat oluşturulacaktır. Bu nedenle araştırma problemi “Üstün yetenekli tanesi konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımları bizi ever yardımı anlamanın nasıl faydaları göstermektedir?” olarak belirlenmiştir. Cünkü öğrenme yaklaşımlarının öğrenmenin yaş, cinsiyeti, geçmiş yaşantılar, sınıf düzeyi, başarı düzeyi gibi birçok değişken etkilemektedir (Gökşete-Yıldız & Özdemir, 2018; Senemoğlu, 2011; Trigwell ve Prosser, 1991). Bu nedenle araştırma problemi aşağıdaki değişkenlere göre de ayrıntılı incelenmiştir.
Bu amaç kapsamında araştırmanın alt problemleri ise aşağıdaki gibidir;

1. Üstün yetenekli öğrenci tanısı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımları nasıldır?
2. Öğrenciler arasında üstün yetenek tanısı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımlarında istatistiksel bir farklı var mıdır?
3. Cinsiyete göre üstün yetenek tanısı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımlarında istatistiksel olarak anlamlı farklılık bulunmaktadır mı?
4. Sınıf düzeylerine göre üstün yetenek tanısı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımlarında istatistiksel olarak anlamlı farklılık bulunmaktadır mı?
5. Velinin cinsiyetine göre üstün yetenek tanısı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımlarında istatistiksel olarak anlamlı farklılık bulunmaktadır mı?
6. Velinin öğrenim durumuna göre üstün yetenek tanısı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımlarında istatistiksel olarak anlamlı farklılık bulunmaktadır mı?

2. Yöntem

Bu bölümde; araştırmanın modeli, katılımcılar, verilerin toplanması, araştırmanın süreci ve analizi hakkında bilgiler verilmiştir.

2.1. Araştırmanın Modeli

Bu araştırmda üstün yetenekli öğrenciler ile üstün yetenekli tanısı konulmuş öğrencilerin matematik öğrenme yaklaşımları hakkında karşılaştırmalar yapılarak genel değerlendirmelere ulaşmak amacıyla betimsel araştırma modeli kullanılmıştır. Betimsel araştırmalar, var olan bir durumu herhangi bir deneySEL işlem yapılmadan var olduğu çekiliye betimlemeyi amaçlamaktadır (Karasar, 2006). Yapılan bu araştırmda araştırma problemi cinsiyet, sınıf düzeyi, veli mesleği ve öğrenim durumu gibi değişkenler açısından alınmış ve mevcut durumun olası nedenlerini ve etkileyenleri belirleyebilmek için bu grupların bazı değişkenler açısından incelenebileceğini belirtmişlerdir. Var olan/dogal olarak ortaya çıkmış bir durum ya da olayın nedenlerini ve bu nedenlere etki eden değişkenleri ya da bir etkinin sonuçlarını belirlemeye yönelik araştırmalar nedensel karşılaştırma araştırmalarıdır (Büyüköztürk, Çakmak, Akgün, Karadeniz ve Demirel, 2008).

2.2. Katılımcılar

Araştırmaya 2018-2019 eğitim öğretim yılında 6., 7. ve 8. sınıf devam eden 84'ü üstün yetenekli öğrenci, 155'i üstün yetenekli tanısı konulmamış öğrencinin toplam 239 öğrenci katılmıştır. Üstün yetenekli öğrencilere ilişkin veriler İç Anadolu bölgesindeki bir ilin Bilim Sanat Merkezi'nden, üstün yetenekli tanısı konulmamış öğrencilere ilişkin veriler ise aynı ilde bulunan bir ortaokuldan toplanmıştır. Araştırmada akademik başarı açısından BİLSEM’deki öğrencileri en yüksek okul seçilmeye dikkat edilmiştir. Akademik başarı olarak öğrencilerin birbirine yakın seçilmesini nedeni, başarlı öğrenciler arasında üstün yetenek tanısı konulmuş öğrencilerin öğrenme yaklaşımları üzerinde bir farklılık oluşturup oluşturmayacağını incelerek belirlemektedir. Okul seçimi yapmak için liselere yerleştirme puan ortalamalarına göre araştırmının yapıldığı ildeki bütün devlet okulları sıralanmış ve en başarılı olan okul seçilmiştir. Böylece devlet okullarının seçilmesi amaçlı örneklemeye yöntemlerinden ölçülmektedir. Burada ölçüt olarak okul başarısını almıştır.

Tablo 1. Araştırmaya katılan öğrenci sayılarına ilişkin betimsel istatistikler

Üstün yetenekli öğrenciler	Sınıf düzeyi	6	7	8	Toplam
Cinsiyet	Kız	23	15	9	47
	Erkek	15	9	13	37
Toplam		38	24	22	84
f (%)		45,24	28,57	26,19	100

Üstün yetenekli tanısı konulmuş öğrenciler	Cinsiyet	Kız	Erkek	Toplam	f(%)
	46	24	16	86	
	22	32	15	69	
	68	56	31	155	
	43,87	36,13	20	100	

Tablo 1’deki öğrencilerin cinsiyet, sınıf düzeyi ve üstün yetenek tanısı ilişkin demografik özelliklerinde görüldüğü gibi, araştırma 133 kiz (%55,6), 106 (%44,4) erkek öğrenci katılmıştır. Üstün yetenekli tanısı konulmuş öğrencilerin 47’si (%55,9) kız, 37’si (%44,1) erkekktir. Bu öğrencilerin sınıf düzeyine göre dağılımları...
ise; 6. sınıfta 38 (%45,24) öğrenci, 7. sınıfta 24 (%28,57) öğrenci ve 8. sınıfta ise 22 (%26,19) öğrenci şeklinde dır. Üstün yetenekli tanımı konulmuş öğrencilerin %55,4’ü kız, %44,6’sını ise erkek olduğu anlaşılmaktadır. Smir düzeyine göre dağılımları bakıldığında; 6. sınıftan 68 (%43,87), 7. sınıftan 56 (%36,13) ve 8. sınıfta ise 31 (%20) öğrenci bulunmaktadır.

2.3. Veri Toplama Araçları

Matematik dersine özel olarak öğrencinin öğrenme yaklaşımlarını belirlemeye yönelik iki çalışma (Göktepe-Yıldız, 2019; Ilhan ve ark., 2013) göre çarpmaktadır. Bu çalışmaların İlah ve arkadakları (2013)’in geliştirikleri olan, “ders boyunca dağılmış” ve “dersler arasında dağılmış” şeklinde iki faktörlü bir yapıya sahiptir. Bu nedenle araştırılarda Göktepe-Yıldız (2019)’ın ortaokul öğrencisine uygulanmı yüksek seviyeli, derinlemesine ve stratejik öğrenme yaklaşımları şeklinde üç faktörü de öğrenmeye yarayan öğecidedi kullanılmıştı.

Göktepe-Yıldız (2019)’ın geliştirdiği Matematik Öğrenme Yaklaşımları Ölçeği; 33 maddeden ve derinlemesine öğrenme, yüzeyel öğrenme, stratejik öğrenme olarak olmak üzere üç alt boylanlı oluşturulmuştur. Öğcünün alt boyları INTERVAL üstüne öğrencinin matematik dersinde o boytu tercih etme eğilimlerinin yüksek olduğunu; düşük puanlar ise öğrencinin matematik dersinde o boytu tercih etme eğilimlerinin düşük olduğunu göstermektedir. Örneğin bir öğrencinin, “derinlemesine öğrenme yaklaşıımı” yüksek olup, “stratejik öğrenme yaklaşıımı” düşük olabilir.

Öğcül “Kesinlikle katılmıyorum=1” ile “Kesinlikle Katılıyorum=5” şeklinde 5’li likert tipinde bir ölçektir. Üç alt faktörü tüm varyansın %41.048’ini açıklamaktadır. Bu oran kabul edilebilir düzeydedir (Scherer vd., 1988).

2.4. Verilerin Analizi

Araştırmacılar, belirlenen BİLSEM ve il merkezinde yer alan ortaokula giderek kurum yöneticilerine araştırma amacıyla ihaleler ve kurum yöneticilerine de desteği ile ölçek formları öğrencilere uygulanmıştır. Öğrencilerden gelen ölçek formları sistematik olarak numaralandırılmış ve arkadaştırıcılar, belirlenen BİLSEM ve il merkezinde yer alan ortaokula giderek kurum yöneticilerine verilen belirtilere göre değerlendirilmiştir.

Ölçek “Kesinlikle katılmıyorum=1” ile “Kesinlikle Katılıyorum=5” şeklinde 5’li likert tipinde bir ölçektir. Üç alt faktörü tüm varyansın %41.048’ini açıklamaktadır. Bu oran kabul edilebilir düzeydedir (Scherer vd., 1988).

Çalışmanın analizleri başlarken; matematik öğrenme yaklaşımlarının çeşitli değişkenlere göre farklılaşması; üstün yetenekli öğrenciler ile üstü yetenekli tanımı konulmuş öğrencilerin matematik öğrenme yaklaşımları; üstün yetenek tanınsı, öğrencilerin smr düzeylerinde, cinsiyetlerine, vellilerin öğrenim durumlarına ve vellilerin mesleğine göre öğcünün geneli için raporlanmıştır.
Tablo 2. Matematik öğrenme yaklaşımlarına ilişkin betimsel istatistikler

Öğrenci Türü	Öğrenme yaklaşımı	Min	Maks	\bar{X}	SS
Üstün yetenekli	Derinlemesine	21	55	44,50	8,96
öğrenciler	Stratejik	19	55	43,72	8,77
	Yüzeysel	18	55	33,30	8,38
Üstün yetenekli tanısı konulmamış öğrenciler	Derinlemesine	13	55	40,47	10,38
	Stratejik	11	55	42,44	10,35
	Yüzeysel	13	55	31,54	9,13

Tablo 2’de üstün yetenekli tanısı konulan ve konulmayan öğrencilerin matematik öğrenme yaklaşımlarına ilişkin betimsel istatistikler verilmiştir. Kullanılan ölçgenin her bir alt boyutunda 11 madde bulunduğundan, alt boyutlar için alnabilecek minimum puan 11, maksimum puan 55’dir. Buna bağlı olarak orta puan değer de 33 olarak hesaplanmıştır. Öğrencilerin hangi öğrenme yaklaşıması tercih ettiğiائن bulgulara üstün yetenekli bireyler için puan ortalamaları, üstün yetenekli öğrenme yaklaşımları, stratejik öğrenme yaklaşımı ve yüzeysel öğrenme yaklaşımları şeklinde sıralanmıştır. Bu gruptaki öğrencilerin derinlemesine ve stratejik öğrenme yaklaşımları puan ortalamaları, orta puanın üzerinde yer almaktadır. Yüzeysel öğrenme yaklaşımları ise puan ortalamaları, üstün yetenekli öğrencilerin derinlemesine ve stratejik öğrenme yaklaşımlarını tercih etmişlerdir. Diğer tarafta, üstün yetenekli ve normal öğrencilerin derinlemesine ve stratejik öğrenme yaklaşımları arasında anlamlı bir fark gözlemlenmemiştir. Üstün yetenekli öğrencilerin stratejik öğrenme yaklaşımlarını ise puan ortalamaları, üstün yetenekli öğrencilerin stratejik öğrenme yaklaşımlarını tercih etmişlerdir. Tablo 2’de görüldüğü gibi üstün yetenekli tanısı konulmuş öğrencilerin derinlemesine ve stratejik öğrenme yaklaşımlarını tercih etmişlerdir. Üstün yetenekli öğrencilerin derinlemesine ve stratejik öğrenme yaklaşımları puan ortalamaları, orta puanın üzerine yer almaktadır.

3.2. İkinci Alt Probleme İlişkin Bulgular

Araştırıma katılan 84 üstün yetenekli tanısı konulmuş, 155 üstün yetenekli tanısı konulmamış öğrencinin matematik öğrenme yaklaşımlarında istatistiksel olarak analiz edilmiş ve normallik testi sonucuna göre bağımsız örneklem t testi yapılmıştır. Öğrencilerin üstün yetenek tanısı tanısına göre matematik öğrenme yaklaşımlarına ilişkin betimsel istatistikler verilmiştir. Öğrencilerin üstün yetenek tanısı tanısına göre matematik öğrenme yaklaşımlarına ilişkin betimsel istatistikler verilmiştir. Tablo 3’tes verilmiştir.

Tablo 3. Öğrencilerin üstün yetenek tanısına göre matematik öğrenme yaklaşımlarına ilişkin bağımsız örneklem t testi sonuçları

Öğrenme yaklaşımı	Cinsiyet	\bar{X}	SS	SD	t	p
Derinlemesine	Kız	4,23	.704	82	2,40	.018*
	Erkek	3,81	.891			
Stratejik	Kız	4,20	.713	82	3,16	.002*
	Erkek	3,68	.809			
Yüzeysel	Kız	3,03	.762	82	.01	.991
	Erkek	3,02	.773			

*p<.05

3.3. Üçüncü Alt Probleme İlişkin Bulgular

Cinsiyete göre üstün yetenek tanısı tanısı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımlarını tercih ettikleri fakülteyi t testi sonucuna göre ise bağımsız örneklem t testi yapılmış ve sonuçlar Tablo 4’tes sunulmuştur.

Tablo 4. Matematik öğrenme yaklaşımlarının cinsiyete göre t testi sonuçları

Öğrenme yaklaşımı	Cinsiyet	\bar{X}	SS	SD	t	p
Derinlemesine	Kız	4,23	.704	82	2,40	.018*
	Erkek	3,81	.891			
Stratejik	Kız	4,20	.713	82	3,16	.002*
	Erkek	3,68	.809			
Yüzeysel	Kız	3,03	.762	82	.01	.991
	Erkek	3,02	.773			
Tablo 4’un devamı

Öğrenme yaklaşımı	Cinsiyet	\(\bar{X} \)	SS	SD	t	p
Üstün yetenekli tanışı konulmamış öğrenciler	Kız	3.77	.907	153	1.357	.177
	Erkek	3.56	.982			
	Kız	4.00	.877	153	2.127	.035*
	Erkek	3.68	.993			
Yüzeysel öğrenme	Kız	2.77	.783	153	-1.539	.126
	Erkek	2.98	.877			

*p<.05

Kullanılan ölçğenin gereği olarak 3 alt boyut için de analiz yapılmıştır. Tablo 4’teki sonuçlar incelendiğinde, üstün yetenekli öğrenciler arasında; derinlemesine (t = 2.40, p <.05) ve stratejik öğrenme (t = 3.16, p <.05) alt boyutlarında cinsiyet değişkenine göre anlamlı bir farklılık görülmektedir. Görülen bu fark, kız öğrenciler lehinedir. Başka bir deyişle; üstün yetenekli kız öğrenciler erkek öğrencilere göre daha fazla derinlemesine ve stratejik öğrenme yaklaşımı tercih etmektedir. Yüzeysel öğrenme yaklaşımlında ise cinsiyete göre anlamlı bir fark bulunmamaktadır (t =.01, p >.05). Üstün yetenekli tanışı konulmuş öğrencilere analiz sonuçlarına bakıldığında kız öğrencilerin, derinlemesine ve stratejik öğrenme yaklaşımları puan ortalamaları erkeklere göre daha yüksek, yüzeysel öğrenme yaklaşımlında daha düşük seviyededir. Öğrenciler arasında oluşan bu puan farkının istatistiksel olarak anlamlı olup olmadığını araştırmak için yapılan analiz sonucunda yalnızca stratejik öğrenme yaklaşımlında kız öğrencilerin puanlarının erkeklere göre anlamlı olarak daha yüksek olduğu belirlenmiştir (t = 2.12, p<.05). Derinlemesine ve yüzeysel öğrenmede ise kız ve erkek öğrenciler arasındaki puan farkı anlamlı farklılaşma göstermemektedir.

3.4. Dördüncü Alt Probleme İlişkin Bulgular

Sınıf düzeylerine göre, üstün yetenekli tanışı konulmuş ve konulmamış öğrencilerin matematik öğrenme yaklaşımlarının değişip değişmediğini analizi için normallık testi yapılmış ve neticesinde normal dağılım gösterdikten bağımsız örneklemeler t testi ile analiz edilerek Tablo 5’te sunulmuştur.

Tablo 5. Sınıf düzeylerine göre üstün yetenekli tanışı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin bağımsız örneklemler t-testi sonuçları

Sınıf düzeyi	Öğrenme yaklaşımı	\(\bar{X} \)	SS	SD	t	p	
6	Derinlemesine	Üstün	4.18	.752	104	-1.936	.056
	Normal	3.84	.915				
	Stratejik	Üstün	4.09	.799	104	.036	.972
	Normal	4.08	.873				
	Yüzeysel	Üstün	2.94	.726	104	-2.218	.029*
	Normal	2.59	.785				
7	Derinlemesine	Üstün	4.16	.583	78	-3.186	.000*
	Normal	3.45	1.01				
	Stratejik	Üstün	4.02	.781	78	-1.842	.069
	Normal	3.59	1.02				
	Yüzeysel	Üstün	3.25	.820	78	3.79	.070
	Normal	3.32	.768				
8	Derinlemesine	Üstün	3.67	1.02	51	.167	.868
	Normal	3.71	.800				
	Stratejik	Üstün	3.71	.785	51	.524	.602
	Normal	3.83	.822				
	Yüzeysel	Üstün	2.92	.741	51	-1.534	.131

*p<.05

Öğrencilerin sınıf düzeyine göre dağılımda 6. sınıfta 38 üstün yetenekli ile 68 normal öğrencii, 7. sınıfta 44 üstün ile 56 normal öğrenci, 8. sınıfta ise 22 üstün ile 31 normal öğrenci bulunmaktadır. Sınıf düzeyine göre üstün yetenekli tanışı konulmuş ve üstün yetenekli tanışı konulmamış öğrencilerin matematik öğrenme yaklaşımlarını karşılaştırılması amacıyla yapılan bağımsız örneklemeler t-testi sonuçları incelendiğinde, 8.sınıf düzeyinde puan ortalamalarında anlamlı bir farklaşıma bulunmamıştır. Fakat 7. sınıf derinlemesine öğrenmede üstün yetenekli lehine (t = -3.18, p <.05), 6. sınıf düzeyinde ise yüzeysel öğrenme yaklaşımlında üstün yetenekli lehine (t = -2.21, p <.05) anlamlı bir farklaşıma bulunduğu görülmektedir.
3.5. Beşinci Alt Probleme İlişkin Bulgular

İki grup arasındaki matematik öğrenme yaklaşımları, velilerin mesleğine göre analiz edilmiş ve sonuçlar tablolaştırılarak aşağıdaki sunulmuştur. Tablo 6 ve Tablo 7'de annelerin mesleğine göre; Tablo 8 ve Tablo 9'da babaların mesleğine göre üstün yetenekli tanısı konulmuş/konulmamış öğrencilere matematik öğrenme yaklaşımları karşılaştırılmıştır. Grupların normal dağılım göstermesiyle anne mesleğine göre öğrencilerin matematik öğrenme yaklaşımlarının nasıl olduğu bağımsız örneklem t testi ile analiz edilerek Tablo 6'da sunulmuştur.

Tablo 6. Annenin mesleğine göre üstün yetenekli tanısı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin t testi sonuçları

Öğrenme Yaklaşımı	Üstün	Normal	SS	SD	t	p
Derinlemesine	4,16	3,62	.730	.749	-3,073	.003*
Stratejik	3,99	3,86	.869	.651	-.705	.483
Yüzeysel	3,08	3,08	.772			
Çalışmıyor	2,77	3,91	.881			

*p<.05

Üstün yetenekli öğrencilerin annelerinden kamuda çalışanların sayısı 43 (%51,20), çalışmayanların sayısı ise 34 (%40,47)'tür. Üstün yetenek tanısı konulmuş öğrencilerin annelerinden kamuda çalışanların sayısı 30 (%19,35), çalışmayanların sayısı ise 103 (%66,46)'tür. Tablo 6’da öğrencilerin anne mesleklere göre öğrenme yaklaşımlarına bakıldığında, kamuda çalışan annelerin çocuklarında derinlemesine öğrenme yaklaşımı üstün yetenekli öğrenciler lehine istatistiksel olarak anlamli bir şekilde farklılaşmaktadır (t = -3,07, p<.05). Başka bir deyişle annesi kamuda çalışan üstün yetenekli bireyler normal öğrencilere göre daha fazla derinlemesine öğrenme yaklaşımasını tereci etmektedir. Stratejik ve yüzeysel öğrenme yaklaşımlarında ise öğrenciler arasında herhangi bir anlamli farklılaşma görülmemiştir. Buna karşın üstün yetenekli öğrencilerin ortalamaları derinlemesine ve stratejik öğrenme yaklaşımlarında, diğer öğrenci grubuna göre fazladır.

Anneleri çalışıyor kategorisinde olan öğrenciler için yapılan analizler sonucunda da görülüyor ki bu öğrenciler arasında hiçbir öğrenme yaklaşımlarında anlamli bir farklaşıma görülmüştür. Buna karşı üstün yetenekli öğrencilerin ortalamaları derinlemesine ve stratejik öğrenme yaklaşımlarında, diğer öğrenci grubuna göre fazladır.

Annesinin mesleği “Özel Sektör” olan öğrencilere öğrenme yaklaşımları Mann-Whitney U testi ile belirlenmiştir. Çünkü üstün yetenekli öğrenci velilerinden 7 (%8,33) anne ve diğer grubun velilerinden 22 (%14,19) anne bu kategoride olup, veriler normal dağılmıştır. Bu bağlamda ilgili sonuçlar, Tablo 7’deki şekildedir.

Tablo 7. Annesi “Özel Sektör” çalışan olan üstün yetenekli tanısı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin Mann-Whitney U testi sonuçları

Öğrenme yaklaşıma	Sıralar ortalama	Sıralar toplam	M-Whitney U	Z	p
Derinlemesine	17,36	121,50	60,500	-843	.399
Normal	14,25	313,50			
Stratejik	15,93	111,50	70,500	-332	.740
Normal	14,70	323,50			
Yüzeysel	18,64	130,50	51,500	-1,302	.193
Normal	13,84	304,50			

Tablo 7'de annesi özel sektör çalışan olan öğrencilere matematik öğrenme yaklaşımlarına ilişkin veriler sunulmuştur. Üstün yetenekli ve normal öğrencilere matematik öğrenme yaklaşımlarında annesinin özel sektörde çalışma durumuna göre gruplar arasında istatistiksel olarak herhangi bir farklılaşma olmadığını görülmüştür.
Baba mesleğine ilişkin veriler ise aşağıdaki şekildedir.

Tablo 8. Babanın mesleğine göre üstün yetenekli tanısı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin t testi sonuçları

Öğrenme Yaklaşımı	Öğrenci Tanısı	X	SS	SD	t	p
Kamu	Überlunge		.837	1.09	-2.82	.006*
	Normal	3.59				
			.838			
		4.01	.773		-1.307	.194
	Überlunge		.895			
	Normal	3.80				
			.710		-1.735	.086
		2.92	.778			
	Überlunge		.828	1.08	-1.484	.141
	Normal	3.71	1.037			
		3.96	.827		-1.418	.194
	Normal	3.87	1.017			
		3.10	.785		-1.641	.057
	Normal	2.99	.864			
Özel sektör	Überlunge		.828	1.08	-1.418	.141
	Normal	3.71	1.037		-1.641	.057
		3.96	.827		-1.418	.194
	Normal	3.87	1.017			
		3.10	.785		-1.641	.057
	Normal	2.99	.864			

*p<.05

Üstün yetenekli öğrencilerin babalarının kamuda çalışanlarının sayısı 51 (%60,71) iken özel sektörde çalışanlarının sayısı 30 (%35,72)'dur. Üstün yetenekli tanısı konulmuş öğrencilerin babalarında ise bu durum kamuda çalışan 60 (%38,71) ve özel sektörde 80 (%51,61) şeklindedir. Tablo 8'de öğrencilerin babalar mesleklere göre öğrenme yaklaşımlarını bakıldığında, kamuda çalışan baba babalarının çocuklarında derinlemesine öğrenme yaklaşımı, üstün yetenekli öğrenciler lehine istatistiksel olarak anlamlı bir şekilde farklılaşmaktadır (t = -2.82, p<.05).

Baba meslek “Çalışmıyor” kategorisinde olan öğrencilerin matematik öğrenme yaklaşımlarında herhangi anlamlı farklılaşma görülmemiştir. İki grup arasındaki farklılıklar Mann-Whitney U testi ile belirlenmiştir. Üstün yetenekli öğrenci velilerinden 3 (%3,57) baba ve diğer grubun velilerinden 15 baba (9,68) bu kategoride olup, veriler normal dağılmamıştır. Bu bağlamda ilgili sonuçlar, Tablo 9'daki şekildedir.

Tablo 9. Babası “Çalışmıyor” kategorisindeki üstün yetenekli tanısı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin Mann-Whitney U testi sonuçları

Öğrenme yaklaşımı	Öğrenci Tanısı	Sıralar ortalaması	Sıralar toplamı	M-Whitney U	Z	p
Derinlemesine	Überlunge	12,00	36,00	15,000	-.892	.373
	Normal	9,00	135,00			
Stratejik	Überlunge	7,17	21,50	15,500	-.832	.405
	Normal	9,97	149,50			
Yüzeysel	Überlunge	15,00	45,00	6,000	-1,958	.050
	Normal	8,40	126,00			

*p<.05

Tablo 9'da belirtiliği gibi babası bir işte çalışmayan öğrencilere matematik öğrenme yaklaşımları hallerinde anlamlı farklılaşmamıştır.

İki grup arasında verilene göre yapılan analizlerden görüldüğü gibi, derinlemesine öğrenme yaklaşımlarında kamuda çalışan anne ve babaların üstün ve normal çocuklar arasında öğrenciler lehine anlamlı bir farklılaşma bulunmaktadır.

3.6. Altına Alt Probleme İlişkin Bulgular

Üstün yetenekli tanısı konulmuş öğrencilere homojen düzeylerindeki dağılıma bakıldığında, 24 kişi (%28,57) lise mezunu ve altı, 40 kişi (%47,62) ise üniversite mezunudur. Üstün yetenekli tanısı konulmuş öğrencilerin annelerin öğrenim düzeyleri ise; 115 kişi (%74,19) lise ve altı mezunu, 36 kişi (%23,22) üniversite mezunu şeklindedir.

Tablo 10 ve Tablo 11’den iki grup öğrenci velileri ve annelerin öğrenim durumları karşılaştırılarak sonuçlanmıştır.
Tablo 10. Annenin öğrenim durumuna göre üstün yetenekli tanısı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin bağımsız örneklemler t-testi sonuçları

Öğrenim Durumu	Öğrenme Yaklaşımı	Üstün	Normal	SS	SD	t	p
Lise mezunu ve altı	Derinlemesine	3,87, .858	3,69, .958	137	-.876	.388	
	Normal	3,81, .859	3,87, .956	137	.277	.782	
	Stratejik	3,26, .697	3,00, .812	137	-1,426	.156	
	Normal	4,03, .876	3,70, .870	74	-1,630	.107	
	Yüzeysel	3,03, .870	3,00, .812	137	-1,426	.156	
	Normal	4,01, .764	3,70, .870	74	-1,630	.107	
	Yüzeysel	2,78, .744	2,31, .639	74	2,897	.005*	

Tablo 11. Annenin öğrenim durumu “lisansüstü” kategorisindeki üstün yetenekli tanısı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin Mann-Whitney U testi sonuçları

Öğrenci Tanısı	Stralar ortalaması	Stralar toplami	M-Whitney U	Z	p	
Öğrenme yaklaşımi						
Derinlemesine	Üstün	13,88	277,50	12,500	-2,140	.032
	Normal	5,63	22,50	25,500	1,148	.250
Stratejik	Üstün	13,58	271,50	18,500	-1,669	.095
	Normal	7,13	28,50	28,500	1,069	.284
Yüzeysel	Üstün	11,68	233,50	23,500	1,281	.200
	Normal	16,63	66,50	66,500	1,069	.284

*p<.05

Tablo 10 incelendiğinde annelerin öğrenim durumuna göre ik馥 grup öğrencinin matematik öğrenme yaklaşımlarına yönelik sonuçlar incelendiğinde, annesi lise mezunu ve altı öğrenim düzeyinde olan ik馥 grup arasında herhangi bir anlamlı farklılaşma gözlenmemiştir. Annesi üniversite mezunu olan öğrencilere matematik öğrenme yaklaşımlarına bakıldığında; yüzeysel öğrenme yaklaşımında üstün yetenekli öğrencilerin puanları normal öğrencilere göre anlamlı olarak daha yüksektir (t = -2,89, p<.05). Derinlemesine ve stratejik öğrenme yaklaşımlarında ise puan ortalamaları üstün yetenekli öğrencilere lehine daha yüksek olsa da bu puan farkı istatistiksel olarak herhangi bir anlamlı fark oluşturamamaktadır.

Annesinin öğrenim durumu “Lisansüstü” olan öğrencilerin öğrenme yaklaşımlarını veriler normal dağılmadığı için Mann-Whitney U testi ile belirlenmiş ve Tablo 11’de sunulmuştur. Bu kategoride üstün yetenekli öğrencilerin annelerinden 20 kişi (%23,81), diğer gruptan da 4 kişi (%2,59) yer almaktadır.

Tablo 11'den görüldüğü gibi lisansüstü öğrenim düzeyindeki çocukların karşılaştırıldığında ise, üstün yetenekli öğrencilerin derinlemesine öğrenme yaklaşım tercihi, normal öğrencilere göre istatistiksel olarak üstün yetenekliler lehine farklılaşmıştır (z = -2,14, p<.05).

Babaların öğrenim durumlarına yönelik veriler ise aşağıda sunulmuştur. Üstün yetenekli tanısı konulmuş öğrencilerin babalarının öğrenme düzeylerindeki dağılımına bakıldığında, 18 kişi (%21,44) lise ve altı mezunu iken 46 kişi (%54,76) üniversite mezunudur. Üstün yetenekli tanısı konulmamış öğrencilerin babalarının öğrenim düzeyleri ise 102 kişi (%65,80) lise ve altı mezunu, 45 (%29,03) üniversite mezunu şeklindedir. Baba öğrenim durumu lise mezunu ve altı ile üniversite düzeyi olan verilerin analizinde grup verileri normal dağılım gösterdiği için bağımsız örneklemler t-testi uygulanmıştır (Tablo 12).
Tablo 12. Babanın öğrenim durumuna göre üstün yetenekli tanısı konulmuş/konulmamış öğrencilerin matematik öğrenme yaklaşımlarına ilişkin örnek örnekler t-testi sonuçları

Öğrenim Durumu	Öğrenme Yaklaşımı	średni ortalaması (X)	Standart sapma (S)	Toplam (SS)	Standart sapma (SD)	t	p
Lise mezunu ve altı	Derinlemesine	Üstün	3.94	.766	118	-1,172	.243
	Normal	3.65	1,012				
	Stratejik	Üstün	4.077	.572	118	-1,042	.135
	Normal	3.81	1,016				
	Yüzeysel	Üstün	3.12	.801	118	- .502	.617
	Normal	3.01	.871				
Üniversite	Derinlemesine	Üstün	4.02	.842	89	-1,764	.081
	Normal	3.72	.792				
	Stratejik	Üstün	3.90	.841	89	-1,073	.942
	Normal	3.89	.760				
	Yüzeysel	Üstün	2.88	.643	89	-2,189	.031*
	Normal	2.58	.652				

*p<.05

Tablo 12’dede baba öğrenim durumunun öğrencilerin matematik öğrenme yaklaşımlarına ilişkin tercihlerine yönelik analiz sonuçlarında görülüyor ki, lise mezunu ve altı öğrenim düzeyindeki babaların çocuklarında iki gruptaki öğrencilerin matematik öğrenme yaklaşımları arasında anlı bir farklılaşma gözlenmemiştir. Üniversite mezunu babaların çocuklarında ise iki grup arasında derinlemesine ve stratejik öğrenme yaklaşımlarındaki puanlar arasında bir farklılaşma göstermemiştir. Buna karşın yüzeysel öğrenme yaklaşımda üstün yetenekli öğrencilerin puanları, normal öğrencilere göre anlı şekilde yüksek bulunmuştur (t = -2,18, p<.05).

Babasının öğrenim durumu “Lisansüstü” olan öğrencilerin öğrenme yaklaşımlarını grup verileri normal dağılım göstermediği için Mann-Whitney U testi ile belirlenmiş ve Tablo 13’dede sunulmuştur. Bu kategoride üstün yetenekli öğrencilerin babalarından 20 kişi (%23,80), diğer gruptan da 8 kişi (%5,17) yer almaktadır.

Tablo 13. Babanın öğrenim durumuna göre iki grup öğrenicinin matematik öğrenme yaklaşımlarına yönelik sonuçlar incelendiğinde, babası lisansüstü öğrenim düzeyinde olan öğrencilerin matematik öğrenme yaklaşımlarında anlamli bir farklılaşma gözlenmemiştir.

4. Tartışma ve Sonuç

Bu çalışmada üstün yetenekli ve üstün yetenekli tanısı konulmamış öğrencilerin matematik öğrenme yaklaşımları ortaya çıkarılarak karşılaştırılmıştır. Sonuçlar incelendiğinde; üstün yetenekli öğrencilerin derinlemesine ve stratejik öğrenme yaklaşımlarını orta düzeyin üzerinde, yüzeysel öğrenme yaklaşımlını ise orta düzeyde tercih ettikleri belirlenmiştir. Bu sonucu paralel olarak Renzulli, Rizza ve Smith (2002) de üstün yetenekli öğrencilerin derinlemesine öğrenme yaklaşımına sahip olduklarını belirtmişlerdi. Üstün yetenekli tanısı konulmamış öğrenciler ise stratejik ve derinlemesine öğrenme yaklaşımlarını ortalama düzeyin üzerinde tercih ederken, yüzeysel öğrenme yaklaşımlını ise daha düşük bir puanla tercih edilmiştir. Başarı düzeyinin arttırılması derinlemesine öğrenme yaklaşımlarının benimsenmesi öğrencinin arttığı alan yanında sıkça belirtilmektedir. Örneğin Bernardo (2003), başarılı bir yaslanmış yüzeysel öğrenmeyle, lakin yüksek başarıların derinlemesine ve stratejik öğrenme yaklaşımlarıyla ilişki olduğunu belirtmişdir. Hem üstün yetenekli hem de üstün yetenekli tanısı konulmuş öğrencilerde derinlemesine ve stratejik öğrenme yaklaşımlarının orta düzeyin üzerinde eğik ması şeklindeki bir sonucun ortaya çıkması, katılmaların akademik başlarının yüksek olması nedeniyle kaynaklanmış olabilir. Derinle ve stratejik öğrenme yaklaşımlarının daha fazla tercih edilebilmesi için Davis ve Rimm (2004)'in ifade ettiği gibi öğrencilerin; öğrenme süreçlerine aktif olarak katılabilecekleri, kendi bilgileri aracılığıyla matematiksel tartışmaları ve ispatları vurgu yapabilecekleri,
keşfetme yoluyla araştırmacekleri, matematiksel kavramlar ve bu kavramlara ait temsiller arasında geçiş yapabilecekleri pozitif ortamların oluşturulması gerektiğini. O halde öğrenme ortamlarındaki öğretmen, kitap, araç gereç gibi bileşenler buna göre organize edilmelidir.

Öğretmen merkezli öğrenme ortamları yerine öğrenci merkezli öğrenme ortamlarında, yüzeysel öğrenme yaklaşımla sahip öğrencilerin, bu yaklaşımlarının derinlemesine öğrenme yönünde değişirebileceğini de belirtmektedir (Wilson ve Fowler, 2005). Öğrencilerin derinlemesine öğrenme yaklaşımlı da fazla tercih etmeleri için, matematik derslerinde öğrenci merkezli olan probleme dayalı öğrenme oranlarının xonundaki (Gordon ve Debus, 2002; Sezgin-Selçuk, 2010) bu yüzden administrations yaptığını ve (Ünal ve Ergin, 2006) ve bilgisayar destekli materyallerin kullanılğını (Tinker, 1997) oranların oluşturulması gerektiğini. Dolaysıyla yüzeysel olarak da stratejik öğrenme yaklaşımlı sahip öğrencilerin fazacla olduğu bir sınıfta öğretmen, seçtiği öğrenme yöntemine göre farklı etkinlikler ile öğrencilerini derinlemesine öğrenmeye yöneliklebilibir (Çöltepe-Yıldız ve Özdemir, 2018). Biggs ve Tang (2007)'in da ifade ettiği gibi öğrenme ortamları daha iyi oluşturarak öğrencilerden daha etkili cevaplar alınabilir ve bilgilerin açıklanarak öğrenmekten ziyade sorgulama temelli problemler sunarak öğrenme yapmak öğrencilerin derinlemesine öğrenme yaklaşımlı arasında farklılıkların sergileyebildiği belirtmiştir. Bu araçtırma, yukarıda da bahsedildiği gibi her iki grupta da başarılı öğrenciler olması nedeni ile derinlemesine öğrenme yaklaşımlı fazacla sergilenmesi olabilir. Bu nedenle öğrenme ortamlarının düzenlenmede birinci sıraya alınmamalıdır. Öğrenciye ve sınav performansını yükseltme gayreti olan bir okul atmosferi sağlanmaktadır. Dolaysıyla burada öğrenimin öğrenen öğrencilerin sınav başarısı ve not kaygısı ile öğrenme eğilimini ifade eden stratejik öğrenme, derinlemesine öğrenmeye göre daha fazla fayda tercihinde bulunması, bu ortamdı neticesi olabilir.

Burada dikkat çekici sonuçlardan biri de öğrenme yaklaşımlı puanlar arasında üstünlük yapan öğrenicilerin derinlemesine öğrenme puanlarının stratejik öğrenme puanlarından yüksek olduğu; üstünlük tanısı konulan öğrencilerin ise stratejik öğrenme puanlarının derinlemesine öğrenme puanlarından daha yüksek olduğu sonucudur. Araştırma kapsamında seçilen okul, akademik başarı olarak üstünlük yapan öğrencileri en yakın öğrencilerini okuldan seçmiştir. Seçilen bu okulda öğrencilerin dönem içindeki sınavlara başvurularla hazırlıkları hazırlıkları ve sınav performansının yüksek olduğu bir okul atmosferi sağlanmaktadır. Dolaysıyla burada öğrenimin öğrenen öğrencilerin sınav başarı ve not kaygısı ile öğrenme eğilimini ifade eden stratejik öğrenme, derinlemesine öğrenmeye göre daha fazla fayda tercihinde bulunması, bu ortamın bir neticesi olabilir.

Üstünlük yapan ve normal öğrenciler arasında derinlemesine öğrenme yaklaşımlı arasında üstünlük yapan öğrencilerin hevine anlamlı bir farklılaşma gözlenmiştir. Fakat stratejik öğrenme ve yüzeysel öğrenme yaklaşımlı arasında yüksek olduğu; üstünlük tanısı konulan öğrencilerin ise stratejik öğrenme puanlarının derinlemesine öğrenme puanlarından daha yüksek olduğu sonucudur. Araştırma kapsamında seçilen okul, akademik başarı olarak üstünlük yapan öğrencileri en yakın öğrencilerini okuldan seçmiştir. Seçilen bu okulda öğrencilerin dönem içindeki sınavlara başvurularla hazırlıkları hazırlıkları ve sınav performansının yüksek olduğu bir okul atmosferi sağlanmaktadır. Dolaysıyla burada öğrenimin öğrenen öğrencilerin sınav başarı ve not kaygısı ile öğrenme eğilimini ifade eden stratejik öğrenme, derinlemesine öğrenmeye göre daha fazla fayda tercihinde bulunması, bu ortamın bir neticesi olabilir.

Üstünlük yapan ve normal öğrenciler arasında derinlemesine öğrenme yaklaşımlı arasında üstünlük yapan öğrencilerin hevine anlamlı bir farklılaşma gözlenmiştir. Fakat stratejik öğrenme ve yüzeysel öğrenme yaklaşımlı arasında yüksek olduğu; üstünlük tanısı konulan öğrencilerin ise stratejik öğrenme puanlarının derinlemesine öğrenme puanlarından daha yüksek olduğu sonucudur. Araştırma kapsamında seçilen okul, akademik başarı olarak üstünlük yapan öğrencileri en yakın öğrencilerini okuldan seçmiştir. Seçilen bu okulda öğrencilerin dönem içindeki sınavlara başvurularla hazırlıkları hazırlıkları ve sınav performansının yüksek olduğu bir okul atmosferi sağlanmaktadır. Dolaysıyla burada öğrenimin öğrenen öğrencilerin sınav başarı ve not kaygısı ile öğrenme eğilimini ifade eden stratejik öğrenme, derinlemesine öğrenmeye göre daha fazla fayda tercihinde bulunması, bu ortamın bir neticesi olabilir.

Üstünlük yapan ve normal öğrenciler arasında derinlemesine öğrenme yaklaşımlı arasında üstünlük yapan öğrencilerin hevine anlamlı bir farklılaşma gözlenmiştir. Fakat stratejik öğrenme ve yüzeysel öğrenme yaklaşımlı arasında yüksek olduğu; üstünlük tanısı konulan öğrencilerin ise stratejik öğrenme puanlarının derinlemesine öğrenme puanlarından daha yüksek olduğu sonucudur. Araştırma kapsamında seçilen okul, akademik başarı olarak üstünlük yapan öğrencileri en yakın öğrencilerini okuldan seçmiştir. Seçilen bu okulda öğrencilerin dönem içindeki sınavlara başvurularla hazırlıkları hazırlıkları ve sınav performansının yüksek olduğu bir okul atmosferi sağlanmaktadır. Dolaysıyla burada öğrenimin öğrenen öğrencilerin sınav başarı ve not kaygısı ile öğrenme eğilimini ifade eden stratejik öğrenme, derinlemesine öğrenmeye göre daha fazla fayda tercihinde bulunması, bu ortamın bir neticesi olabilir.
öğrencilerde bu şekilde bir sonucun ortaya çıktığında aşırı özgüven, oyun, bilgisayar oyunlarına ve aktivitelerine dönüşünlik, kılzara göre daha rahatsız davranış göstermeleri ve bu süreçte belki de dışında daha fazla zaman geçirirleri gibi birçok neden oluşabilir. Diğer taraftan yapılan çalışmaları hakkında araştırmanın sonuçlarının tam tersine yani erkeklerin derinlemesine yaklaşımı daha fazla tercih etmesine yönelik sonuçların ortaya çıkığı (Severiens ve ten Dam, 1997; Watkins, 1996) ya da bu çalışmadaği gibi kız öğrencilerin derinlemesine yaklaşımı daha çok tercih ettiğini (Biggs, 2001) de görülmektedir. Diğer taraftan en yaygın olduğu öğrenci yaklaşımaları arasında anlamda bir farklılık olmadıği çalışmalar (Öner, 2008; Richardson, 1993; Watkins ve Mboya, 1997; Tural-Dinçer ve Akdeniz, 2008) da vardır.

Sınıf düzeyine göre üstün yetenekli tanımsı konulsuz ve üstün yetenekli tanımsı konumlanmış öğrencilerin matematik öğrenme yaklaşımaları karşılaştırıldığında 8.sınıf düzeyinde puan ortalamalarında anlamda bir farklılaşma bulunmamıştır. Fakat 7. sınıfta derinlemesine öğrenme yaklaşımında üstün yetenekli olan lehine bir farklılaşma olduğu görülmüştür. Sınıf yıllarda, yine derinlemesine öğrenme yaklaşımı puan ortalamalarında üstün yetenekli öğrenciler lehine olsa da bu puan farkı istatistiksel olarak anlamalı değildir. Göktepe-Yıldız ve Özdemir (2018) araştırmasında, üstün yetenekli tanımsı konumlanmış öğrencilerde sınıf düzeyi yükseldiğinde öğrencilerin derinlemesine yaklaşımı tercih etme eğilimlerinin azaldığı ve öğrencilerin yüzeysel öğrenme yaklaşımını tercih etme durumlarında ise bir farklılık olmadığı sonuçlarına ulaşmıştır. Bu çalışmanın durumunda üstü yetenekli öğrencilerin derslerinde daha fazla sorular normalerle, bilgiye kendi kendilerinin ulaşmaları nedeniyle oluşmuş olabilir. Diğer taraftan üniversite öğrencileriyle yapılan bazı çalışmalarla, bu durum tam tersine gerçekleşmiştir (Ozan, Köse ve Gündoğdu, 2012; Senemoğlu, 2011). Burada dikkat çeken bir diğer sonuc; 6. sınıflarda yüzeysel öğrenme yaklaşımı puan ortalamalarında lehine olan yetenekli öğrencilerin lehine bir farklılık bulunmuştur. Yüzeysel öğrenme yaklaşımında anlamda bir farklılaşma matematik derslerinde öğrenme yaklaşımı arasında anlamda bir farka sebep olmuştur (Ozan, Köse ve Gündoğdu, 2012; Senemoğlu, 2011). Bu cinsiyete göre sonucun ortaya çıktığı (Severiens ve ten Dam, 1997; Watkins, 1996) ya da bu çalışmadaki gibi kız öğrencilerin derinlemesine yaklaşımı daha çok tercih ettiğini (Biggs, 2001) de görülmektedir. Diğer taraftan en yaygın olduğu öğrenci yaklaşımaları arasında anlamda bir farklılık olmadıği çalışmalar (Öner, 2008; Richardson, 1993; Watkins ve Mboya, 1997; Tural-Dinçer ve Akdeniz, 2008) da vardır.

Beaytaş ve Senemoğlu (2015) başarılı öğrencilerin yaklaşık % 40’unun ailelerinin hedef koyma, motive etme, çalışmalarını organize etme ve takip etme gibi değerlerin nedeni ile çocukların derinlemesine öğrenme yaklaşımının benimsenemelerinde bir etkisinin olduğu sonucuna ulaşmışlardır. Bu nedenle araştırılmalıdır, aPEDADAGOGİS, 2016) ya da bu çalışmadaki gibi kız öğrencilerin öğretmen ortamında hazırlaması öğrencilerin yüzeysel öğrenme yaklaşımını tercih etme eğilimesinin daha çok işle koymasını beklemektedir. Diğer taraftan yapılan çalışmalar (Öner, 2008; Richardson, 1993; Watkins ve Mboya, 1997; Tural-Dinçer ve Akdeniz, 2008) da vardır. Ayrıca, derinlemesine öğrenme yaklaşımının farkındalığı ve öğrenme yaklaşımlarının karmaşıklığı. Diğer taraftan yapılan çalışmalar (Öner, 2008; Richardson, 1993; Watkins ve Mboya, 1997; Tural-Dinçer ve Akdeniz, 2008) da vardır.

Öğrencilerin matematik derslerinde derinlemesine öğrenme yaklaşımalarını tercih etmelerini sağlayacakmış öğrencilere daha çok mekezde olduğu bu örneklerin etkililiği sürecinde ne olursa olursa bu sonucun ortaya çıkmaması olabilir. Yine öğrencilerin öğrencileri derinlemeye sevk eden bu sorunun veya sorunun sonuçlarını planlayabilirler bu şekilde öğrencilerin öğrenme yaklaşımları farklılaştırılabilir. Ayrıca her bir grubun öğrenme yaklaşımlarını daha derinlemesine incelemek için motive etmesi nedeniyle olabilir. Bu yüzden öğrencilerin daha çok derinse ve stratejik öğrenme yaklaşımları yoluyla ailelerin öğrenme yaklaşımları da daha çok derinse ve stratejik öğrenme yaklaşımları yoluyla ailelerin öğrenme yaklaşımlarını benimsenmesine yol açar.
Kaynaklar / References

Aktepe, V., & Aktepe, L. (2009). Teaching method using science and technology education on students’ aspects: The example of Kırşehir CAS. Ahi Evran University Journal of Kırşehir Education Faculty (JKEF), 10(1), 69-80.

Alemdağ, C. (2015). Beden eğitimi öğretmeni adaylarının epistemolojik inançları, akademik öz-yeterlikleri ve öğrenme yaklaşımları (Yayınlanmamış Doktora Tezi), Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.

Altun, F., & Yazıcı, H. (2010). Learning styles of the gifted students in Turkey. Procedia Social and Behavioral Sciences, 9, 198-202.

Arseven, A. ve Yeşiltaş, E. (2016). Üstün yetenekli öğrencilerin ve üstün yetenekli olmayan akıranların öğrenme stillerinin karşılaştırılması. Turkish Studies, 11(2), 67-84.

Ataman, A. (2004). Üstün zekâlı ve üstün özel yetenekli çocuklar. Şirin, M. R., Kulpasızgölü A. ve Bilgili A. E. (Eds.), Üstün yetenekli çocukları seçilmiş makaleler kitabı içinde (ss. 155- 168). İstanbul: Çocuk Vakfı Yayınları.

Aytekin, C., Baltacı, S., & Yıldız, A. (2017, Mayıs). Probability explorer simulasyonlarının üstün zekâli/ yetenekli öğrencilerle olasılık öğretimdeki kullanışılığına ilişkin bilsem matematik öğretmenlerinin görüşleri. International Talented and Gifted Conference: New Approaches and Educational Practices Sempozyumu’nda sunulan bildiri. Ankara, Turkey.

Baltacı, S., Yıldız, A., & Güven, B. (2014). Knowledge types used by eighth grade gifted students while solving problems. Mathematics Education Bulletin, 28(50), 1032-1056.

Baykoç, N. (2014). Üstün; akıl, zekâ, deha, yetenek, dahiler-savantlar gelişi ve eğitimleri. Ankara: Vize Yayınçılık.

Belge-Can, H. ve Boz, Y. (2012, Haziran). Yaş ve cinsiyetin ilköğretim öğrencilerinin fen dersini öğrenme yaklaşımlarına etkisi. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi’nde sunulan bildiri. Niğde.

Bernardo, A. B. I. (2003). Approaches to learning and academic achievement of Filipino students. Journal of Genetic Psychology, 164, 101-114.

Beşoluk, Ş. ve Önder, I. (2010). Öğretmen adaylarının öğrenme yaklaşımları, öğrenme stilleri ve eleştirel düşünme eğilimlerinin incelenmesi. İlköğretim Online, 9(2), 679-693.

Beyaztaş, İ. D. (2014). Başarılı öğrencilerin öğrenme yaklaşımları ve etkili öğrenmeye ilişkin önerileri (Yayınlanmamış Doktora Tezi), Hacettepe Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.

Beyaztaş, İ. D. ve Senemoğlu, N. (2015). Başarılı öğrencilerin öğrenme yaklaşımları ve öğrenme yaklaşımlarını etkileyen faktörler. Eğitim ve Bilim, 40(179), 193-216.

Beydoğan, Ö. (2007). Derinliğe ve yüzeysel öğrenmede kavram haritaları ve şemaların işlevi. Milli Eğitim, 173, 258-270.

Biggs, J. (1999). What the student does: Teaching for enhanced learning. Higher Education Research & Development, 18(1), 57-75.

Biggs, J. (2001). Enhancing learning: a matter of style or approach? In R. J. Sternberg, & L. F. Zhang (Eds.), Perspective on thinking, learning, and cognitive styles (pp. 73-102). London: Lawrence Erlbaum Associates, Inc.

Biggs, J., & Tang, C. (2007). The society for research into higher education teaching for quality learning at university. USA: McGraw Hill.

Birenbaum, M., & Feldman, R. A. (1998). Relationships between learning patterns and attitudes towards two assessment formats. Educational Research, 40(1), 90-98.

Boron, A.L., & Aslaner, R. (2008). Problem-based learning in teaching mathematics at the science-art centers. İnönü University Journal of the Faculty of Education, 9(15), 15-32.

Büyüköztürk, Ş., Çakmak, E., Akgün, Ö., Karadeniz, Ş. ve Demirel, F. (2008). Bilimsel araştırma yöntemleri. (1. Baskı). Ankara: Pegem Akademi.

Byrne, M., Flood, B., & Willis, P. (2001). The relationship between learning approaches and learning outcomes: A study of Irish accounting students. Accounting Education, 11, 1, 27–42.

Byrne, M., Flood, B., & Willis, P. (2009). An inter-institutional exploration of the learning approaches of students studying accounting. International Journal of Teaching and Learning in Higher Education, 20(2), 155-167.

Cano, F. (2007). Approaches to learning and study orchestrations in high school students. European Journal of Psychology Education, 2, 131- 151.

Chan, K. (2003). Hong Kong teacher education students’ epistemological beliefs and approaches to learning. Research in Education, 69, 36-50.

Chiu, M. S. (2012). Identification and assessment of taiwanese children's conceptions of learning mathematics. International Journal of Science and Mathematics Education, 10, 163-191.

Cohen, L., & Manion, L. (1994). Research methods in education. London, Routledge.

Curzon, L. B. (2004). Teaching in further education an outline of principles and practise. New York: Continuum.
Çapanc, E. B. (2010). Öğretmen adaylarının üstün yetenekli öğrencilere ilişkin metaforik algıları. *The Journal of International Social Research*, 3(12), 140-154.

Çıl, M. ve Ataman, A. (2018). İlköğretim çagındaki üstün yetenekli öğrencilerin davranışsal özelliklerinin eğitim ortamlarında yansıması ve ortaya çıkabilecek sorunlar. *Gazi University Journal of Gazi Educational Faculty (GUGE)*, 38(1), 185-231.

Çoban, G. Ü., ve Ergin, Ö. (2008). İlköğretim öğrencilerinin feni öğrenme yaklaşımları. *Uludağ üniversitesi Eğitim Fakültesi Dergisi*, 21(2), 271-293.

Çolak, E. (2006). İzleme üzerine davranışı öğrencilerin öğrenme yaklaşımlarına, akademik başarılarına ve öğrenmenin kalkıximo etkisi (Yayınlanmamış doktora tezi). Yıldız Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, İstanbul.

Darlington, E. (2011). Approaches to learning of undergraduate mathematicians. In Smith, C. (Ed.) *Proceedings of the British Society for Research into Learning Mathematics* (BSRLM), (Vol.31,pp.41-46). Oxford, England.

Davis, G. A., & Rimm, S. B. (2004). *Education of the gifted and talented*. Boston, MA: Pearson Education Press.

Ekinci, N. (2009). Üniversite öğrencilerinin öğrenme yaklaşımları. * Eğitim ve Bilim*, 34(151), 74-88.

Entwistle, N. J. (1995). Frameworks for understanding as experienced in essay writing and in preparing for examinations. *Educational Psychologist*, 30(1), 47-54.

Entwistle, N. (2000, June). Promoting deep learning through teaching and assessment. Paper presented at the AAHE Assessment Conference, North Carolina.

Entwistle, N.J., & Smith, C.A. (2002). Personal understanding and target understanding: Mapping influences on the outcomes of learning. *British Journal of Educational Psychology*, 72, 321-342.

Even, R., Karsenty, R., & Friedlander, A. (2009). Mathematical creativity and giftedness in teacher professional development. In R. Leikin, A. Berman & B. Koichu (Eds.), *Creativity in Mathematics and the Education of Gifted Students* (pp. 309–324). Rotterdam, The Netherlands: Sense Publishers.

Fraenkel, J. R., Wallend, N.E. & Hyun, H. H. (2012). *How to design and evaluate research in education*. New York: McGraw Hill.

Gordon, C., & Debus, R. (2002). Developing deep learning approaches and personal teaching efficacy within a preschool teacher education context. *British Journal of Educational Psychology*, 72(4), 483-511.

Göktepe-Yıldız, S. ve Özdemir, A. Ş. (2018). Ortaokul öğrencilerinin matematik öğrenme yaklaşımlarının belirlenmesi. *İlkogretim Online*, 17(3), 1378-1401.

Göktepe-Yıldız, S. (2019). *Tasarım temelli matematik uygulamalarının farklı öğrenme yaklaşımlarına sahip öğrencilerin uzamsal yeteneklerine ve 3 boyutlu geometrik düşünce becerilerine etkisinin incelenmesi* (Yayınlanmamış Doktora Tezi). Marmara Üniversitesi, Eğitim Bilimleri Enstitüsü, İstanbul.

Holton, D., & Gaffney, M. (1994). Teaching talented students. In J. Neyland (Eds.), *Mathematics education: A handbook for teacher*, (pp. 397-409). Wellington, New Zealand: Wellington College of Education.

Horn, C. (2002). Raising expectations of children from poverty. *Gifted Education Press Quarterly*, 16 (4), 2-5.

İlhan, M., Çetin, B. ve Kılç, A. M. (2013). Matematik öğrenme yaklaşımlarını öçeğinin (MÖYO) geliştirilmesi: Geçerlik ve güvenirlik çalışması, *Bartın Üniversitesi Eğitim Fakültesi Dergisi*, 2(2), 113-145.

Karasar, N. (2006). *Bilimsel araştırma yöntemi*. Ankara: Nobel Yayın Dağıtım.

Koçan, H. (2010). Learning strategies of gifted elementary students. *Elementary Education Online*, 9(3), 1148–1158.

Lee, M., Johanson, R. E. & Tsai, C. (2008). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. *Science Education*, 92, 191-220.

Marto, F., & Saljo, R. (1976). On qualitative differences in learning -II: Outcome as a function of the learner’s conception of the task. *British Journal of Educational Psychology*, 46, 115-127.

Matic, L. J., Matic, I., & Katalenic, A. (2013). Approaches to learning mathematics in engineering study program. *Mathematics teaching for the future*, 186-195.

MEB (2007). *Milli Eğitim Bakanlığı Bilim ve Sanat Merkezleri Yönergesi*. Tebliğler Dergisi.Ansaka.

Mills, C. J. (1993). Personality, learning style and cognitive style profiles of mathematically talented students. *European Journal for High Ability*, 4, 70-85.

Offir, B., Lev, Y., & Bezaele, R. (2008). Surface and deep learning processes in distance education: Synchronous versus asynchronous systems. *Computers & Education*, 51, 1172–1183.

Oğuz, A., ve Karakus, G. (2017). Öğretmen adaylarının öğrenme yaklaşımları ile kaygşı düzeyleri arasındaki ilişkinin incelenmesi. *Journal of Human Sciences*, 14(2), 1831-1847.

Ozan, C., Köse, E. ve Gündoğdu, K. (2012). Okul öncesi ve sınıf öğretmenliği öğrencilerinin öğrenme yaklaşımlarının incelenmesi. *Eğitim Bilimleri Araştırmaları*, 2(2), 75-92.

Öner, Y. İ. (2008). Ortaöğretim öğrencilerinin öğrenme yaklaşımlarını etkileyen faktörler (İstanbul örneği) (Yayınlanmamış Yüksek Lisans Tezi). Yeditepe Üniversitesi, Sosyal Bilimler Enstitüsü, İstanbul.
Özgür, H., ve Tosun, N. (2012). Öğretmen adaylarının derin ve yüzeySEL öğrenme yaklaşımlarının çeşitli değişkenlerin aracılığıyla incelenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 12(24), 113-125.

Özkan, G., & Sezgin-Selçuk, G. (2014). Determining the approaches of high school students to learning physics. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 8(1), 101-127.

Öztaş, B. O. (2014). Sosyal bilgiler dersinde powerpoint sunum destekli öğretimin akademik başarıya ve öğrenme yaklaşımlarına etkisi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(17), 285-320.

Palancı, M. (2004, Eylül). Üstün yetenekli öğrencilerin ihtiyaçlarını karşılamaya yönelik süreçlik terapisi temelli okul rehberlik ve psikolojik danışma hizmetleri modeli. I. Türkiye Üstün Yetenekli Çocuklar Kongresi, İstanbul.

Pouraselam, A., Erfani, N., & Firoozfar, I. (2013). Mathematics anxiety, mathematics performance and gender differences among undergraduate students. International Journal of Scientific and Research Publication, 3(7), 1-6.

Ramsden, P. (2000). Learning to teaching in higher education. London: Newyork Routhlidge Falmer.

Ravenna, G. (2008). Factors influencing gifted students’ preferences for models of teaching. University of Southern California: ProQuest Dissertations Publishing, California.

Reid, W. A., Duval, E. & Evans, P. (2007). Relationship between assessment results and approaches to learning and studying in year two medical students. Medical Education, 41, 8, 754-762.

Renzulli, J.S., & Reis, S. M. (1985). The school wide enrichment model: A comprehensive plan for educational excellence. Mansfield Center, CT: Creativ Learning Press.

Renzulli, J.S. (1999). What is thing called giftedness, and how do we develop it? A twenty-five year perspective. Journal for the Education of Gifted, 23(1), 3-54.

Renzulli, J. S., Rizza, M. G., & Smith, L. H. (2002). Learning styles inventory-version III: Ameasure of student preferences for instructional techniques. Technical and administration manual. Creative Learning Press, Mansfield.

Richardson, J. T. E. (1993). Gender differences in responses to the approaches to studying inventory. Studies in Higher Education, 18, 3 –13.

Scouller, K. (1998). The influence of assessment method on students’ learning approaches: Multiple choice question examination versus assignment essay. Higher Education, 35(4), 453-472.

Senemoğlu, N. (2011). College of education students’ approaches to learning and study skills. Education and Science, 36(160), 65-80.

Severiens, S., & ten Dam, G. (1997). Gender and gender identity differences in learning styles. Educational Psychology, 17, 79–93.

Sezgin-Selçuk, G., ve Ellez, M. (2002, October). Öğretmen adaylarının öğrenme yaklaşımları. V. Ulusal Fen ve Matematik Eğitimi Kongresi’nde sunulan bildiri. Orta Doğu Teknik Üniversitesi. Ankara.

Sezgin- Selçuk, G. S., Çalışkan, S. ve Erol, M. (2007). Fizik öğretmen adaylarının öğrenme yaklaşımlarının değerlendirilmesi. Gazı University Journal of Gazı Educational Faculty (GUJGEF), 27(2), 25-41.

Sezgin-Selçuk, G. (2010). The effects of problem-based learning on pre-service teachers’ achievement, approaches and attitudes towards learning physics. International Journal of the Physical Sciences, 5(6), 711-723.

Sisk, D. A. (1990). The state of gifted education: toward a bright future. Music Educators Journal, 76 (7), 35–39.

Smith, N. S., & Miller, R. J. (2005). Learning approaches: Examination type, discipline of study, and gender. Educational Psychology, 25(1), 43-53.

Sowell, E. J., Zeigler, A. J., Bergwell, L., & Cartwright, R. M. (1990). Identification and description of mathematically gifted students: A review of empirical research. Gifted Child Quarterly, 34, 147-154.

Spencer, K. (2003, September). Approaches to learning and contemporary accounting education. Paper presented at the Changing Environment Conference, Salford.

Stuart T. ve Beste, A. (2011). Farklı olduğuumu biliyordum: Üstün yeteneklileri anlayabilme. Ankara: Kök yayncılık.

Tinker, R. (1997). Information technologies in science and mathematics education reform in math and science education: Issues for classroom. Columbus, OH: Eisenhower National Clearing House.

Trigwell, K., & Prosser, M. (1991). Improving the quality of student learning: the influence of learning context and student learning on learning outcomes. Higher Education, 22, 251-266.

Tural-Diçer, G. ve Akdeniz, A. R. (2008, August). Fizik öğretmen adaylarının mesleki algı ve kaygıları. VIII. Ulusal Fen ve Matematik Kongresi’nde sunulan bildiri. Bolu Abant İzzet Baysal Üniversitesi Eğitim Fakültesi, Bolu.

Ünal, G. ve Ergin, Ö. (2006). Buluş yoluyla fen öğretiminin öğrencilerin akademik başarılara, öğrenme yaklaşımlarına ve tutumlara etkisi. Türk Fen Eğitimi Dergisi, 3(1), 1-17.

von Glasersfeld, E. (1996). Introduction: Aspect of constructivism. In Catherine T. Fosnot, (Ed.), Constructivism: theory, perspectives and practice (pp. 3-7). New York: Teacher College.

490
Yıldız, A., Baltaci, S., Kurak, Y., & Güven, B. (2012). Examining the usage of problem-solving strategies by the eighth grade gifted and non-gifted students. *Journal of Uludag University Faculty of Education, 25*(1), 123-143.

Yıldız, Y. (2015). Müzik öğretmeni adaylarının ders çalışma yaklaşımlarının akademik beklentileri açısından incelenmesi. *Akademik Sosyal Araştırmalar Dergisi, 3*(10), 400-414.

Zakaria, E., & Nordin, N. M. (2008). The effects of mathematics anxiety on matriculation students as related to motivation and achievement. *Eurasia Journal of Mathematics, Science & Technology Education, 4*(1), 27-30.

Watkins, D. (2001). Correlates of approaches to learning: A cross-cultural metaanalysis. In R.J. Stenberg, & I. Zhang (Eds.), *Perceptives on thinking, learning and cognitive styles* (pp.165-195). London: Lawrence Erlbaum Associates, Publishers.

Watkins, D. (1996). The influence of social desirability on learning process questionnaires: A neglected possibility?. *Educational Psychology, 52*, 260–263.

Watkins, D., & Mboya, M. (1997). Assessing the learning processes of black South African students. *Journal of Psychology, 131*, 623–640.

Wilson, K., & Fowler, J. (2005). Assessing the impact of learning environments on students’ approaches to learning: Comparing conventional and action learning designs. *Assessment & Evaluation in Higher Education, 30*(1), 87-101.