Non-linearity analysis for cosmological inflation model with minimal and non-minimal coupling of scalar field from Horndeski theory

Getbogi Hikmawan1, Agus Suroso1,2, and Freddy P Zen1,2
1 Theoretical Physics Laboratory, THEPI Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
2 Indonesia Center of Theoretical and Mathematical Physics (ICTMP), Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
E-mail: getbogi@fi.itb.ac.id

Abstract. In this work, we analyze the non-linearity aspect of perturbations generated in early times for cosmological inflation model with minimal and non-minimal couplings of scalar field from Horndeski theory. We study the spectral index of the perturbations and tensor-to-scalar ratio and can be seen as the evidence for inflation for some responsible coupling constant. We get the sign of non-linearity from the spectral index and tensor-to-scalar ratio for this model, and this result can be analyzed further to find non-Gaussianity.

1. Introduction
Horizon, flatness, and monopole problem are several basic problems in cosmology and inflationary universe is a proposed solution for these problems at the same time \[1,2\]. The searching for cosmological inflation model still becomes one of the big open topics in cosmology. Considering the vacillation of temperature observation data of the Cosmic Microwave Background \[3,4\], there are many models that have been developed to explain this phenomenon \[5,6,7,8,9\], including a model where the curvature tensor is coupled with scalar field \[10,11,12\] gives possibility for an inflationary universe scenario to be right, in spite we do not yet know the origin of the scalar field (“inflaton”). The Cosmological model that couple scalar field with curvature tensor is derived generally by Horndeski \[13\], whereas all models with gravity-coupled scalar fields comprised in \[14,15,16,17,18,19\]. The Horndeski Lagrangian,

\[L = \sum_{i=2}^{5} L_i, \] (1)
where,
\[L_2 = K(\phi, X), \]
\[L_3 = -G_3(\phi, X)\Box \phi, \]
\[L_4 = G_4(\phi, X)R - 2G_{4X}(\phi, X)[(\Box \phi)^2 - \phi^{ij\nu} \phi_{ij\nu}], \]
\[L_5 = G_5(\phi, X)G_{\mu\nu} \phi^{ij\nu} + \frac{1}{3} G_{5X}(\phi, X)[(\Box \phi)^3 - 3(\Box \phi)(\phi_{ij\nu} \phi^{ij\nu})]
+ 2(\phi_{ij\nu} \phi^{ij\nu} \phi_{ij\nu}), \]

with \(X = \partial_{\mu} \phi \partial^{\mu} \phi \) while the four coefficient functions \((K(\phi, X), G_i(\phi, X))\) can be chosen particularly for a specific model.

In this work, we consider the coefficient functions as,
\[K = \omega(\phi)X; \quad G_3 = 0; \quad G_4 = \frac{M^2_{pl}}{2} - \frac{1}{2} \zeta \phi^2; \quad G_5 = \xi \phi, \]

where \(M^2_{pl} = \frac{1}{8\pi G} \) and in this work we take \(M^2_{pl} \approx 1 \). There are two coupling constants, \(\zeta \) and \(\xi \), each for the scalar field coupling and the derivative of scalar field coupling. The background solution of this particular model has been studied in [20], where from the De Sitter expansion and the vanishing scalar field approach, the specific range of coupling constant is obtained, \(0 < \zeta \leq 0.021 \sim 10^{-2} \). The aim of this work is for obtaining the non-linearity aspect of perturbations generated in early time of this model by deriving the exact power spectrum and show that there exists a little deviation from the invariance scale of the spectral index. From the little deviation obtained we can continue to analyze the non-Gaussianity of the model.

This paper is organized as follows, in Section 2, we derive the solution of the second order Lagrangian equation for both scalar perturbation and tensor perturbation, and consider early regime. In Section 3, we do analysis of non-linearity of the model, where we derive the spectral index of both scalar perturbation and tensor perturbation for two cases, \(\zeta = 10^{-1} \) and \(\zeta = 10^{-2} \) based on the background solution analysis [20]. The last section is for conclusion.

2. Second Order Lagrangian Equation

In this work, we consider the flat homogenous and isotropic (FLRW) metric to be our background framework,
\[ds^2 = -dt^2 + a^2 \delta_{ij} dx^i dx^j, \]
with \(a \) is a scale factor. From model [6] we can get the second order Lagrangian density for scalar perturbation \(\Theta \),
\[L^{(s)}_2 = a^3 Q_s [(\dot{\Theta})^2 - \frac{c_s^2}{a^2} (\partial \Theta)^2]; \]
\[Q_s = \frac{2L_S(9\mathcal{W}^2 + 8L_S\mathcal{W})}{\mathcal{W}^2}; \]
\[c_s^2 = \frac{2}{Q_s}(\dot{\mathcal{M}} + H\mathcal{M} - \mathcal{E}). \]
where,

\[
L_S = \frac{1}{2} [1 - \zeta \phi^2 - \xi \dot{\phi}^2] \tag{11}
\]

\[
\mathcal{W} = 2 [H - \zeta (H \phi^2 + \phi \dot{\phi}) - \frac{3 \xi H \dot{\phi}^2}{2}] \tag{12}
\]

\[
w = 3 [-9 H^2 + 9 \zeta (H^2 \phi^2 + 2 H \dot{\phi}) + 27 \xi H^2 \dot{\phi}^2] \tag{13}
\]

\[
\mathcal{M} = \frac{4 \zeta^2 \dot{\phi}^4 + 4 \zeta \xi \phi^2 \dot{\phi}^2 + \xi^2 \dot{\phi}^4 + 16 L_S - 4}{8 [H(2 L_S - \xi \phi^2) - \xi \dot{\phi}^2]}, \tag{14}
\]

\[
\mathcal{E} = \frac{1}{2} [1 - \zeta \phi^2 + \xi \dot{\phi}^2] \tag{15}
\]

with dot represents a derivative with respect to \(t \) and \(H = \frac{\dot{a}}{a} \) is defined as the Hubble parameter.

Using Euler-Lagrange equation, the equation of motion for scalar perturbation for each Fourier mode is obtained,

\[
\ddot{\theta} + (3 H + \frac{\dot{Q}_s}{Q_s}) \dot{\theta} + c_s^2 k^2 a^2 \theta = 0. \tag{16}
\]

The solution to equation \(\text{(16)} \) is given by \([21, 22, 23]\),

\[
\theta(\tau, k) = \frac{i H e^{-ic_k \tau}}{2(c_s k)^{3/2} \sqrt{Q_s}} (1 + ic_s k \tau). \tag{17}
\]

In \(\tau \to 0 \) limit, it follows that,

\[
\theta(0, k) = \frac{-i H}{2(c_s k_1)^{3/2} \sqrt{Q_s}}. \tag{18}
\]

For tensor perturbation \((\gamma_{ij})\), the second order Lagrangian equation have form as,

\[
\mathcal{L}_2^{(h)} = \frac{a^3}{4} Q_t [\gamma_{ij}^2 - \frac{c_t^2}{a^2} (\partial_k \gamma_{ij})^2]; \tag{19}
\]

\[
Q_t = \frac{1}{2} [1 - \zeta \phi^2 - \xi \dot{\phi}^2]; \tag{20}
\]

\[
c_t^2 = \frac{1 - \zeta \phi^2 + \xi \dot{\phi}^2}{1 - \zeta \phi^2 - \xi \dot{\phi}^2}. \tag{21}
\]

Following same procedure as scalar perturbation, the solution for tensor perturbation,

\[
\gamma(t, k) = \frac{i H e^{-ic_k \tau}}{2(c_t k)^{3/2} \sqrt{Q_t}} (1 + ic_t k \tau), \tag{22}
\]

which is for \(\tau \to 0 \) limit,

\[
\gamma(0, k) = \frac{-i H}{2(c_t k_1)^{3/2} \sqrt{Q_t}}. \tag{23}
\]

3. Non-linearity Aspect of The Perturbations

We can compute the power spectrum of the field perturbation as a two-point function,

\[
\langle R_{k_1} R_{k_2} \rangle = (2\pi)^3 \delta(k_1 + k_2) P_R(k_1), \tag{24}
\]
with $R = \theta$ for scalar perturbation, and $R = \gamma$ for tensor perturbation. We define the dimensionless power spectrum $\Delta^2_R = \frac{k^3}{2\pi^2} P_R(k)$. Using the solution of the second order Lagrangian equation from previous section, equation (18), we can get the expression of the power spectrum.

For scalar perturbation,

$$\langle \theta_1 \theta_2 \rangle = \langle \{ -i\frac{H}{2(c_s k_1)^{3/2} \sqrt{Q_s}} \} \{ i\frac{H}{2(c_s k_2)^{3/2} \sqrt{Q_s}} \} \rangle$$

$$= (2\pi)^3 \delta(k_1 + k_2) \left\{ \frac{H^2}{4(c_s k)^3 Q_s} \right\}$$

$$= \frac{2\pi^2}{k^3} (2\pi)^3 \delta(k_1 + k_2) \left\{ \frac{H^2}{8\pi^2 c_s^2 Q_s} \right\},$$

so we get the dimensionless power spectrum for scalar perturbation of this model,

$$\Delta^2_\theta = \frac{H^2}{8\pi^2 c_s^2 Q_s}.$$ \hspace{1cm} (26)

Therefore we can get the spectral index of scalar perturbation,

$$n_s - 1 = \frac{2\dot{H}}{H^2} - \frac{1}{H} \frac{\dot{Q}_s}{Q_s} - \frac{3}{H} \frac{\dot{c}_s}{c_s}.$$ \hspace{1cm} (27)

Analogously for tensor perturbation, we get the dimensionless power spectrum of this model using (23),

$$\langle \gamma_1 \gamma_2 \rangle = \langle \{ -i\frac{H}{2(c_t k_1)^{3/2} \sqrt{Q_t}} \} \{ i\frac{H}{2(c_t k_2)^{3/2} \sqrt{Q_t}} \} \rangle$$

$$= (2\pi)^3 \delta(k_1 + k_2) \left\{ \frac{H^2}{4(c_t k)^3 Q_t} \right\}$$

$$= \frac{2\pi^2}{k^3} (2\pi)^3 \delta(k_1 + k_2) \left\{ \frac{H^2}{8\pi^2 c_t^2 Q_t} \right\},$$

Because of the tensor perturbation polarization, the dimensionless power spectrum is multiplied by 4 (2 for each k),

$$\Delta^2_\gamma = 4 \times \frac{H^2}{8\pi^2 c_t^2 Q_t} = \frac{H^2}{2\pi^2 c_t^2 Q_t}.$$ \hspace{1cm} (29)

Therefore we can get the spectral index of scalar perturbation,

$$n_t = \frac{2\dot{H}}{H^2} - \frac{1}{H} \frac{\dot{Q}_t}{Q_t} - \frac{3}{H} \frac{\dot{c}_t}{c_t}.$$ \hspace{1cm} (30)

To get the the indirect probe of the inflationary dynamics, we plot the evolution of time from the spectral index of both perturbations for some cases ($\zeta = 10^{-1}$ and $\zeta = 10^{-2}$) as shown in Fig. 4. We can see that for each case considered, there are little deviations from scale-invariance for $n_s = 1$ and $n_t = 0$.
4. Conclusion
We have studied and analyzed the spectral index for scalar and tensor perturbations of a specific inflation model derived from the Horndeski theory. From Fig. 1 we can show the sign of non-linearity of this model for two cases ($\zeta = 10^{-1}$ and $\zeta = 10^{-2}$) as seen from a little deviation from scale-invariance for n_s and n_t. For the next step, we will analyze the non-gaussianity of the model.

Acknowledgments
This work was supported by the "Riset Desentralisasi ITB 2018" and the "Riset Inovasi KK ITB 2018" from the Ministry of Research, Technology and Higher Education of the Republic of Indonesia.

References
[1] Starobinsky A A 1980 Phys. Lett. B 91 99
[2] Guth A H 1981 Phys. Rev. D 23 347
[3] Komatsu E et al 2009 Astrophys. J. Suppl. 180 (preprint astro-ph/0803.0547)
[4] Smoot G F et al 1992 Astrophys. J. 396
[5] Alishahiha M, Silverstein E and Tong D 2004 Phys. Rev. D 70 123505 (preprint hep-th/0404084)
[6] Arkani-Hamed N, Creminelli P, Mukohyama S and Zaldarriaga M 2004 JCAP 0404 001 (preprint hep-th/0312100)
[7] Cheung C, Creminelli P, Fitzpatrick A L, Kaplan J and Senatore L 2008 JHEP 0803 014 (preprint hep-ph/0709.0293)
[8] Kanti P, Gannouji R and Daidhich N 2015 Phys. Rev. D 92 043502 (preprint hep-th/1503.01579)
[9] Kanti P, Gannouji R and Daidhich N 2015 Phys. Rev. D 92 083524 (preprint hep-th/1506.04667)
[10] Caldwell R R, David R and Steinhardt P J 1998 Phys. Rev. Lett. 80 1582 (preprint astro-ph/9708069)
Sushkov S V 2009 Phys. Rev. D 80 103505 (preprint gr-qc/0910.0980)
[11] Zen F P, Arianto, Gunara B E, Triyanta and Purwanto A 2009 Eur. Phys. J. C 63 477 (preprint hep-th/0809.3847v3)
[12] Capozziello S, Lambiase G and Schmidt H J 2000 Annalen. Phys. 9 39 (preprint gr-qc/9906051)
Tsujikawa S 2012 Phys. Rev. D 85 083518 (preprint astro-ph/1201.5926v2)
[13] Horndeski G W 1974 Int. J. Theor. Phys. 10 363
[14] Armendariz-Picon C, Dainour T and Mukhanov V F 1999 Phys. Lett. B 458 219 (preprint hep-th/9904075)
[15] Brans C and Dicke R H 1961 Phys. Rev. 124 925
[16] Gasperini M and Veneziano G Phys. Rept. 373 1 (preprint hep-th/0207130)
[17] Sotiriou TP and Faraoni V 2010 Rev. Mod. Phys. 82 451 (preprint gr-qc/0805.1726)
[18] Amendola L 1993 Phys. Lett. B 301 175 (preprint gr-qc/9302010v1)
[19] Hikmawan G, Soda J, Suroso A and Zen F P 2016 Phys. Rev. D 93 068301 (preprint hep-th/1512.00222)
[20] Hikmawan G, Suroso A and Zen F P 2018 (to be published in J. Phys.:Conf. Ser.)
[21] DeFelice A and Tsujikawa S 2011 Phys. Rev. D 84 083504 (preprint gr-qc/1107.3917)
[22] Gao X and Steer D A 2011 JCAP 1112 019 (preprint astro-ph/1107.2642)
[23] Garriga J and Mukhanov V F 1999 Phys. Lett. B 458 219 (preprint hep-th/9904176)