Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions

FERNANDO G. GARDIM, Universidade de São Paulo

based on arXiv:1111.6538

with

Frédérique Grassi, Matt Luzum and Jean-Yves Ollitrault

August 17, 2012
Motivation

- The Almond Shape and Elliptic Flow
 Smooth & Realistic Initial Conditions

Mapping the hydrodynamic response

- How to map?
- The elliptic flow case;
- Generalization to higher harmonics
- Improving the predictor

Conclusion
The azimuthal distribution of outgoing particles in a hydro event can be written as

\[\frac{2\pi}{N} \frac{dN}{d\phi_p} = 1 + 2 \sum_n v_n \cos[n(\phi_p - \Psi_n)] \]

or, equivalently:

\[\{ e^{in\phi_p} \} = v_n e^{-in\Psi_n} \]

\{ \ldots \} = \text{average in one event}

The largest source of uncertainty in hydro models is the initial conditions.

Anisotropic flow \(v_n \) and the event plane \(\Psi_n \) are determined by initial conditions.

We need to understand which properties of the initial state determine \(v_n \) and \(\Psi_n \), so as to constrain models of initial conditions from data.
The almond shape and ν_2

Average Initial Conditions - the smooth case

- With smooth initial conditions, the **participant eccentricity** ε_2 is proportional to the elliptic flow ν_2,
- And the **participant plane** Φ_2 is aligned with the event plane Ψ_2.

$$\varepsilon_2 e^{i2\Phi_2} = -\frac{\left\{ r^2 e^{i2\phi} \right\}}{\left\{ r^2 \right\}}.$$

$\{\cdots\} = \text{average over initial density profile}$

- But, in real collisions there are fluctuations, event-by-event.
- In event-by-event hydrodynamics are these relations, $\nu_2 \approx k\varepsilon_2$ and $\Psi_2 \approx \Phi_2$, valid?

figures by R. Andrade
Motivation

Fluctuations: Event-by-event hydro

NeXSPheRIO
- NeXus: initial condition generator;
- SPheRIO: solves the equations of relativistic ideal hydrodynamics.

Scatter plot of v_2 versus ε_2

Distribution of $\Psi_2 - \Phi_2$

$\nu_2 \approx k \varepsilon_2$ and $\Psi_2 \approx \Phi_2$?

Reasonable, but not perfect.

See also, F.G.G. et al 1110.5658, Petersen et al 1008.0625, Qiu & Heinz 1104.0650.
Our goal

- Propose a simple quantitative measure of the correlation between (v_2, Ψ_2) and (ε_2, Φ_2);
- Generalization to higher harmonics;
- Find better scaling laws.
Previously, the correlation of the flow with the initial geometry was studied through

- Distribution of $\psi_2 - \phi_2$
- Scatter plot v_2 versus ε_2

Our Proposal: A GLOBAL ANALYSIS

$$v_2 e^{i2\psi_2} = k\varepsilon_2 e^{i2\phi_2} + \mathcal{E}$$

- k: It is the same for all events (in each centrality class).
- \mathcal{E}: event-by-event error.

The best linear fit is achieved minimizing the mean-square error

$$\langle |\mathcal{E}^2| \rangle (\langle \cdots \rangle \equiv \text{average over events})$$

- $k = \langle \varepsilon_2 v_2 \cos[2(\psi_2 - \phi_2)] \rangle / \langle \varepsilon_2^2 \rangle$
- $\langle |\mathcal{E}^2| \rangle = \langle v_2^2 \rangle - k^2 \langle \varepsilon_2^2 \rangle$
Elliptic flow as a response to the almond-shaped overlap area

The quality response is given by:

\[\text{Quality} = \frac{k \sqrt{\langle \varepsilon_2^2 \rangle}}{\sqrt{\langle v_2^2 \rangle}} \]

The closer Quality to 1, the better the response.

- Central collisions: All anisotropies due to fluctuations
 Quality 81%

- Mid-central collisions: Elliptic flow is driven by the almond shape: Quality 95%

\(\varepsilon_2 \) is a very good predictor of \(v_2 \)!
Results

Generalization to higher harmonics

- Natural estimators are:
 \[v_n e^{in\Psi_n} = k \varepsilon_n e^{in\Phi_n} + \mathcal{E} \]

- Generalizing \(\varepsilon_n \) (Petersen et al 1008.0625).
 \[\varepsilon_n e^{in\Phi_n} = -\frac{\left\{ r^n e^{in\phi} \right\}}{\left\{ r^n \right\}} \]

Teaney&Yan (1010.1876) showed \(\varepsilon_n \) come from a cumulant expansion of the initial density energy

- \(n=3 \):
 \(\varepsilon_3 \) is a very good predictor of \(v_3 \).

- \(n=4,5 \):
 Good quality for central collisions

 Then decrease and even become negative: \(\Psi_n \) and \(\Phi_n \) are anticorrelated.

 Qiu&Heinz, 1104.0650
Finding better estimators

The Almond Shape and ν_4

With smooth IC, inspired by NeXus IC in the 30 – 40% centrality bin

There is no ε_4, so where does ν_4 come from?

- ν_4 is generated by ε_2!
- Ψ_4 is in the reaction plane, as Ψ_2.

Comparing with NeXSPheRIO (30-40%), $\langle \nu_2 \rangle \approx .066$ and $\langle \nu_4 \rangle \approx .01$

F.G.G. et al 1110.5658.
Finding better estimators

\(\nu_4 \) induced by \(\varepsilon_2 \) in event-by-event

- A natural estimator is:
 \[
 \nu_4 e^{i4\psi} = k (\varepsilon_2 e^{i2\phi_2})^2 + \mathcal{E}
 \]
 (preserves rotational symmetry)

- For mid-central collisions, where \(\varepsilon_2 \) is large, the non-linear term is important!
- This estimator is not as good as previous estimators of \(\nu_2 \) and \(\nu_3 \).

How to improve the estimator?
Finding a better estimator

Combining both effects?

- Defining
 \[\nu_4 e^{i4\Psi_4} = k\varepsilon_4 e^{i4\Phi_4} + k' (\varepsilon_2 e^{i2\Phi_2})^2 + \mathcal{E} \]

- And minimizing \(\langle |\mathcal{E}|^2 \rangle \), with respect to \(k \) and \(k' \).

- Then, the mean-square error is
 \[\langle |\mathcal{E}|^2 \rangle = \langle \nu_2^2 \rangle - \langle |k\varepsilon_4 e^{i4\Phi_4} + k' (\varepsilon_2 e^{i2\Phi_2})^2|^2 \rangle \]

 This error is always smaller than with one parameter.

The combined estimator results in an excellent predictor for all centralities!

For \(\nu_5 \), it is also possible to use both, linear and non-linear, terms to obtain the best estimator: \(\varepsilon_5 \) and \(\varepsilon_2\varepsilon_3 \) preserves rotational symmetry.

Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions

FERNANDO G. GARDIM, Universidade de São Paulo
We have defined a quantitative measure of the quality of estimators of v_n from initial conditions event-by-event hydro;

v_2 can be understood as a response to the almond-shaped overlap area ε_2, even for central collisions;

The triangularity ε_3 is a very good predictor to v_3;

Non-linear terms are necessary to predict v_4 (and v_5) from initial energy density, for all centralities. (See TeaneyYan 1206.1905)

These results provide an improved understanding of the hydro response to the initial state in realistic heavy-ion collisions.