Effects of Propofol on Intracranial Pressure and Prognosis in Patients with Severe Brain Diseases Undergoing Endotracheal Suctioning

Menghang Wu
West China Hospital

Xiaorong Yin
West China Hospital

Maojun Chen
West China Hospital

Yan Liu
West China Hospital

Xia Zhang
West China Hospital

Tingting Li
West China Hospital

Yujuan Long
West China Hospital

Xiaomei Wu
West China Hospital

Lihui Pu
West China Hospital

Maojie Zhang
West China Hospital

Zhi Hu
West China Hospital

Research article

Keywords: severe neuropathy, severe brain disease, endotracheal suctioning (ES), propofol, sedation, intracranial pressure (ICP), nursing

DOI: https://doi.org/10.21203/rs.3.rs-27564/v4
Abstract

Background

To investigate whether the administration of intravenous propofol before endotracheal suctioning (ES) in patients with severe brain disease can reduce the sputum suction response, improve prognosis, and accelerate recovery.

Methods

A total of 208 severe brain disease patients after craniocerebral surgery were enrolled in the study. The subjects were randomly assigned to the experimental group (n=104) and the control group (n=104). The experimental group was given intravenous propofol (10ml propofol with 1ml 2% lidocaine), 0.5-1 mg/kg, before ES, while the control group was subjected to ES only. Changes in vital signs, sputum suction effect, the fluctuation range of intracranial pressure (ICP) before and after ES, choking cough response, short-term complications, length of stay, and hospitalization cost were evaluated. Additionally, the Glasgow Outcome Scale (GOS) prognosis score was obtained at six months after the operation.

Results

At the baseline, the characteristics of the two groups were comparable (P>0.05). The increase of systolic blood pressure after ES was higher in the control group than in the experimental group (P < 0.05). The average peak value of ICP in the experimental group during the suctioning (15.57 ± 12.31 mmHg) was lower than in the control group (18.24 ± 8.99 mmHg; P < 0.05). The percentage of patients experiencing cough reaction during suctioning in the experimental group was lower than in the control group (P < 0.05), and the fluctuation range of ICP was increased (P < 0.0001). The effect of ES was achieved in both groups. The incidence of short-term complications in the two groups was comparable (P > 0.05). At 6 months after the surgery, the GOS scores were significantly higher in the experimental than in the control group (4-5 points, 51.54% vs. 32.64%; 1-3 points, 48.46% vs. 67.36%; P<0.05). There was no significant difference in the length of stay and hospitalization cost between the two groups.

Conclusions

Propofol sedation before ES could reduce choking cough response and intracranial hypertension response. The use of propofol was safe and improved the long-term prognosis.

The study was registered in the Chinese Clinical Trial Registry on May 16, 2015 (ChiCTR-IOR-15006441).

Background

Severe brain disease is often accompanied by disorders of consciousness, weak sputum discharge by spontaneous cough, airway obstruction, and hypoxia, which together aggravate secondary damage to brain cells [1,2,3]. To maintain airway patency and avoid airway obstruction and pulmonary infection in
patients affected by the severe brain disease, artificial airways should be established, and endotracheal suctioning (ES) should be timely repeatedly performed [1,4,5].

ES stimulates airway mucosa, triggers cough reflex, induces bronchospasm, decreases blood oxygen saturation, and increases intracranial pressure. However, severe airway stimulation may lead to adverse consequences [1], such as severe cough, increased chest pressure, a sudden rise in blood pressure, increased cerebral perfusion, increased intracranial pressure (ICP) caused by cerebral vasospasm, and increased risk of vascular rupture [6-8]. The stimulation of the airway caused by different suction modes and duration, the amount of negative pressure applied, and the depth of suction tube insertion lead to reflexive ICP changes [4-6,9-12].

Propofol, a short-term acting sedative, can reduce the cerebral blood flow, ICP, and cerebral metabolic rate of oxygen (CMRO2). The action of propofol is characterized by a fast onset time of approximately 30-60 seconds, a short half-life of 10-15 minutes, and a fast wake-up time after drug withdrawal, which facilitates the evaluation of the nervous system [13-16]. During the ES process, propofol can directly dilate the bronchial smooth muscles, inhibit the pharyngeal reflex, and reduce the airway hyperresponsiveness [13-14,16]. In addition, it exerts amnestic and anticonvulsant effects, increasing the comfort of patients [17-18]. Moderate or slow infusion (respectively, 40 mg/10s or 20-50 mg/min in generally healthy adults) has no significant effect on the vital signs of patients [13-14, 17-19].

The objective of the present study was to explore whether the administration of propofol before the ES procedure in severe brain disease patients would help to maintain the respiratory and circulatory stability, reduce the increase of ICP, and suppress the high-pressure response caused by the intense stimulation.

Methods

Severe brain disease is often accompanied by disorders of consciousness, weak sputum discharge by spontaneous cough, airway obstruction, and hypoxia, which together aggravate secondary damage to brain cells [1,2,3]. To maintain airway patency and avoid airway obstruction and pulmonary infection in patients affected by the severe brain disease, artificial airways should be established, and endotracheal suctioning (ES) should be timely repeatedly performed [1,4,5].

ES stimulates airway mucosa, triggers cough reflex, induces bronchospasm, decreases blood oxygen saturation, and increases intracranial pressure. However, severe airway stimulation may lead to adverse consequences [1], such as severe cough, increased chest pressure, a sudden rise in blood pressure, increased cerebral perfusion, increased intracranial pressure (ICP) caused by cerebral vasospasm, and increased risk of vascular rupture [6-8]. The stimulation of the airway caused by different suction modes and duration, the amount of negative pressure applied, and the depth of suction tube insertion lead to reflexive ICP changes [4-6,9-12].

Propofol, a short-term acting sedative, can reduce the cerebral blood flow, ICP, and cerebral metabolic rate of oxygen (CMRO2). The action of propofol is characterized by a fast onset time of approximately 30-60 seconds, a short half-life of 10-15 minutes, and a fast wake-up time after drug withdrawal, which
facilitates the evaluation of the nervous system [13-16]. During the ES process, propofol can directly
dilate the bronchial smooth muscles, inhibit the pharyngeal reflex, and reduce the airway
hyperresponsiveness [13-14,16]. In addition, it exerts amnestic and anticonvulsant effects, increasing the
comfort of patients [17-18]. Moderate or slow infusion (respectively, 40 mg/10s or 20-50 mg/min in
generally healthy adults) has no significant effect on the vital signs of patients [13-14, 17-19].</p>
<p>The objective of the present study was to explore whether the administration of propofol before the
ES procedure in severe brain disease patients would help to maintain the respiratory and circulatory
stability, reduce the increase of ICP, and suppress the high-pressure response caused by the intense
stimulation.</p>

Results

2.1 Comparison of baseline conditions between the two groups

A total of 206 patients were included (2 patients in the control group withdrew from the study). The
average age of the 104 patients in the experimental group was 52.45±15.05 years, and the average age
of the 102 patients in the control group was 52.68±14.06 years. There was no significant difference in the
age, gender, condition (pupil size, consciousness, tracheal situation), disease classification, surgical
method, and GOS between the two groups (all P > 0.05) (Table 1).

2.2 Effect of propofol on vital signs

Before the administration of propofol and ES, the vital signs were comparable between the two groups (P
> 0.05). After ES, the systolic pressure in the control group was higher than in the experimental group (P <
0.05), while the values of HR, P, SpO2, and diastolic pressure were similar in both groups (all P > 0.05
(Table 2).

2.3 Effect of propofol on ICP

Before and after the ES, the differences in ICP between the two groups were not significant (P > 0.05). The
average peak value of ICP during ES in the experimental group (15.57 ± 12.31 mmHg) was lower than in
the control group (18.24 ± 8.99 mmHg, P < 0.05) (Table 3).

2.4 Effect of propofol on choking cough response and ICP fluctuation

The beneficial effect of ES was observed in both groups of patients (P>0.05) (Table 4). However, the
proportion of patients suffering from pain in the experimental group was lower than in the control group
(grade 3: 27.39% vs. 36.72%; grade 4: 0.12% vs. 2.15%). The grade of choking cough reaction was directly
related to the fluctuation range of ICP (P<0.0001) (Table 4).

2.5 Effect of propofol of complications and prognosis

2.5.1 Comparison of the incidence of complications between the two groups
The number of the complications in the two groups is listed in Table 5. There were no significant differences in the number of cases of cerebral hemorrhage, brain hernia, and pulmonary infection (all $P > 0.05$).

2.5.2 Comparison of GOS scores between two groups

Six months after the procedure, 51.54% of the patients in the experimental group and 32.64% in the control group had the GOS score of 4 or 5, while 48.46% in the experimental group and 67.36% in the control group had the GOS score of 1-3. The cases of 4-5 and 1-3 points in the experimental group were both significantly less than the control group (both $P < 0.05$) (Table 6).

2.6 Effect of propofol on hospital length of stay and cost There was no statistically significant difference between the two groups in total hospital expenses and the length of in-hospital stay (both $P > 0.05$).

Discussion

The results of the present investigation documented that propofol reduces the irritation associated with sputum suction, fluctuation of ICP, cough response, and short-term complications, and improves the GOS score. These findings indicate that propofol should be used before ES to relieve the stress response of the patients undergoing the procedure.

3.1 Propofol sedation before ES helps to stabilize intracranial pressure

ES is an effective method for keeping the artificial airway unobstructed in patients with severe neurologic diseases, and is, therefore, the most common procedure in the neurological ICU. However, ES can increase ICP by stimulating the airway mucosa, triggering cough reflex, elevating chest pressure, increasing blood flow into the brain, and decreasing venous return. The variations in the stimulation of the airway caused by the differences in suction methods, suction duration, negative pressure applied, and suction tube insertion depth, are reflected in ICP changes [4-6,9-12]. Previous studies had demonstrated that ES was an important factor affecting ICP [6-8]. The results of the current work showed that the average peak value of ICP in the experimental group was 15.57 ± 12.31 mmHg, while that in the control group was 18.24 ± 8.99 mmHg. This finding indicates that propofol sedation before ES can effectively reduce the mean peak of ICP. This beneficial action of propofol depends on its ability to activate the GABA receptor chloride complex and decrease the stress response of the body caused by ES. Moreover, propofol can reduce cerebral blood flow, ICP, and CMRO2 [13-16].

3.2 Propofol sedation ensures ES effect

Patients undergoing major neurosurgery procedures often experience consciousness disorders and reduced ability of the respiratory tract to perform self-cleaning. It is necessary to conduct timely suction of the sputum and clear respiratory secretion to avoid the obstruction of the artificial airway and pulmonary infection [1,4,5]. The sputum suction tube repeatedly stimulates the respiratory mucosa, resulting in varying degrees of choking and coughing in patients. In severe cases, it causes a decrease in
blood oxygen saturation and an increase in ICP, producing discomfort [4-8]. Propofol is a short-term anesthesia drug, which is rapidly distributed in the entire organism within 40 seconds after intravenous injection. Intravenous injection of propofol before ES produces a sedative effect, inducing patients to enter the sleep state quickly. In addition, propofol can directly dilate bronchial smooth muscles, inhibit the throat reflex, and reduce the airway hyperresponsiveness during sputum suction. These properties of propofol suppress the stress response activated by ES and reduce the discomfort of patients [13,14,18].

3.3 Propofol sedation before ES helps to improve the prognosis of patients undergoing major neurosurgery

In the present investigation, the concept of enhanced recovery after surgery (ERAS) were applied [16-18] to determine that an appropriate dose of sedatives was given before the ES according to the weight of the patients. The results showed that propofol did not cause the adverse reactions and complications. The evaluation of the GOS prognosis score sixth months after the operation revealed a high proportion of patients with 4-5 points on the GOS scale in the experimental group. These results indicated that the prognosis of patients treated with propofol was better. The collected data showed that propofol sedation before ES helped to improve the prognosis of patients undergoing major neurosurgery procedures by reducing the incidence of choking cough and spikes in ICP.

Some limitations of this study should be acknowledged. Firstly, only the patients admitted to the neurological ICU of the West China Hospital of Sichuan University were included. The subjects were mostly patients with cerebrovascular disease and severe brain injury. Secondly, we did not compare all the adverse effects of propofol including desaturation, recovery agitation, oversedation, agitation and so on [28], we only administered lidocaine to decrease the injection pain and evaluated the vital signs changes. Clinical multi-center trials involving a more extensive range of diseases, larger sample sizes and more comprehensive adverse effects of propofol are needed to support the conclusions.

Conclusions

Sedation with a proper amount of propofol before ES could reduce the cough response caused by intense stimulation, reduce the patient's painful experience, suppress the increase in ICP, and improve long-term prognosis. The administration of propofol was safe and does not affect the vital signs.

Declarations

Ethics approval and consent to participate: All patients signed written informed consent. This study has been approved by the Clinical Trial and Biomedical Ethics Committee of the West China Hospital of Sichuan University (approval number 2014 (238)).

Consent for publication: Written informed consent for publication was obtained from all participants.
Availability of data and material: The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Competing interests: There are no competing interests.

Funding: Supported by grants 20YYJC2903, 2020YJ0283 and 2015SZ0132 from the Science and Technology Department of the Sichuan Province. These grants supported the design of the study, collection, analysis, and interpretation of the data, and writing the manuscript.

Authors' contributions MHW contributed to the conception and design of the study, manuscript writing, and final approval of the manuscript. XRY, MJC, and YL contributed to the conception and design of the study. XZ, TTL, YJL, XMW, YJL, LHP, MJZ, and ZH contributed to the analysis of the results and writing of the manuscript. LY contributed to the design of the study, with emphasis on the statistical and sample size analyses, and was responsible for a critical revision of the manuscript and final approval of the study. All authors have read and approved the final manuscript.

Acknowledgments: None.

Abbreviations

ES, endotracheal suctioning; ICP, intracranial pressure; GOS, Glasgow Outcome Scale

References

1. Neurosurgery Branch of Chinese Medical Association, China neurosurgery critical management cooperation group, expert consensus on airway management of Chinese neurosurgery critical patients. Chinese Medical Journal, 2016, 96 (21): 1639-1642.

2. Carsten M Pedersen, Mette Rosendahl-Nielsen, Jeanette Hjermind, Ingrid Egerod. Endotracheal suctioning of the adult intubated patient–what is the evidence? Intensive Crit Care Nurs, 2009, 25(1): 21-30.

3. Xue Pengyang, Gao Jian, Zhou Wenhua. Research progress of sputum suction in artificial airway of patients with mechanical ventilation. Nursing Research, 2019, 33 (14): 2446-2448.

4. Neurosurgery Branch of Chinese Medical Association. Experts Consensus on Neurosurgery Critical Management. Chinese Medical Journal, 2013, 93 (23): 1765-1779.

5. Kolb G, Brfker M. State of the art in aspiration assessment and the idea of anew non invasive predictive test for the risk of aspiration in stroke. J Nutri Heal Agi, 2009, 13(5): 429-433.

6. Argent AC. Endotracheal Lidocaine Installation, Endotracheal Suction, and Pressure in Patients With Traumatic Brain Injury-Assessing the Impact. Pediatr Crit Care Med, 2019, 20(4): 387-388.

7. Shalendra Singh, Rajendra Singh Chouhan, Ashish Bindra, Nayani Radhakrishna. Comparison of effect of dexmedetomidine and lidocaine on intracranial and systemic hemodynamic response to
chest physiotherapy and tracheal suctioning in patients with severe traumatic brain injury. J Anesth, 2018, 32(4): 518-523.

8. Giancarlo Galbiai, Cattaneo Paola. Effects of Open and Closed Endotracheal Suctioning on Intracranial Pressure and Cerebral Perfusion Pressure in Adult Patients With Severe Brain Injury: A Literature Review. Journal of Neuroscience Nursing, 2015, 47(4): 239-246.

9. Débora Oliveira Favretto, Renata Cristina de Campos Pereira Silveira, Silvia Rita Marin da Silva Canini, Livia Maria Garbin, Fernanda Titareli Merízio Martins, Maria Célia Barcellos Dalri. Endotracheal suction in intubated critically ill adult patients undergoing mechanical ventilation – a systematic review. Rev Lat Am Enfermagem, 2012, 20(5): 997-1007.

10. Hou-Chuan Lai, Shu-I Pao, Yuan-Shiou Huang, Shun-Ming Chan, Bo-Feng Lin, Zhi-Fu Wu. The Relationship Between Postoperative Pneumonia and Endotracheal Suctioning Under General Anesthesia in Ophthalmic Surgery: A Retrospective Study. Asian J Anesthesiol, 2018, 56(1): 33-38.

11. Jessica A Schults, Debbie A Long, Marion L Mitchell, Marie Cooke, Kristen Gibbons, Kylie Pearson, Andreas Schibler. Adverse events and practice variability associated with paediatric endotracheal suction: An observational study. Aust Crit Care, 2019.

12. Madhuradhar Chegondi, Tesaun Francis, Wei-Chiang Lin, Sayed Naqvi, Andre Raszynski, Balagangadhar R Totapally. Effects of Closed Endotracheal Suctioning on Systemic and Cerebral Oxygenation and Hemodynamics in Children. Pediatr Crit Care Med, 2018, 19(1): e23-e30.

13. Severe Medicine Branch of Chinese Medical Association. Chinese guidelines for analgesia and sedation in ICU for adults. Chinese Critical Emergency Medicine, 2018, 30 (6): 497-514.

14. Ren Dapeng, Chen Wenjuan, Li Wenqiang, Wu Tingting. Effects of propofol combined with dexmedetomidine on circulatory system and sedation in patients with mechanical ventilation in intensive care unit. Trauma and Critical Illness Medicine, 2018, 11 (6): 372-374.

15. Abdemalik PA, Rakocevic G. Propofol as a risk factor for ICU-Acquired weakness in septic patients with acute respiratory failure. Can J Neurol Sci, 2017, 44(3): 295-303.

16. Yongfang Zhou, Xiaodong Jin, Yan Kang, Guopeng Liang, Tingting Liu, Ni Deng. Midazolam and propofol used alone or sequentially for long-term sedation in critically ill, mechanically ventilated patients: a prospective, randomized study. Crit Care, 2014, 18(3): R122.

17. Kim S, Hahn S, Jang MJ, Choi Y, Hong H, Lee JH, Kim HS. Evaluation of the safety of using propofol for paediatric procedural sedation: A systematic review and meta-analysis. Sci Rep, 2019, 9(1): 12245.

18. Zhu Minfang, Yu Kaiyan, Pan Yan. A randomized, double-blind, controlled study of postoperative sputum aspiration sedation by fiberoptic bronchoscopy in patients undergoing thoracic surgery. Journal of Shanghai Jiaotong University (Medical Edition), 2018, 38 (11): 1343-1348.

19. Thomas M, Engelhardt T. Is low-dose propofol sedation safe in unfasted patients? Br J Anaesth, 2019, 12(19).
20. Chinese Neurosurgical Society. Consensus of Chinese neurosurgery experts on critical care management (2020). National Medical Journal of China. 2020,100(1):1443-1458.

21. Zeng Liangnan, Yang Changmei. Study on the depth of sputum suction in patients with tracheotomy in neurosurgery. Nursing research, 2017,31 (04): 438-441

22. Salvatore Maurizio Maggiore, François Lellouche, Claudia Pignataro, Emmanuelle Girou, Bernard Maitre, Jean-Christophe M Richard, François Lemaire, Christian Brun-Buisson, Laurent Brochard. Decreasing the adverse effects of endotracheal suctioning during mechanical ventilation by changing practice. Respir Care,2013,58(10):1588-1597.

23. Zhang Bin, Mao Xiaojing, Feng Jie, Analysis of factors influencing long-term prognosis of craniocerebral trauma, Journal of Clinical Neurosurgery, 2020, 17 (1): 71-76.

24. Takeuchi S, Takasato Y, Masaoka H, Nagatani K, Otani N, Wada K, Mori K. Decompressive craniectomy for arteriovenous malformation-related intracerebral hemorrhage. J Clin Neurosci,2015,22: 483

25. Shelly D Timmons, Tiffany Bee, Sharon Webb, Ramon R Diaz-Arrastia, Dale Hesdorffer. Using the abbreviated injury severity and Glasgow coma scale scores to predict 2-week mortality after traumatic brain injury. J Trauma-Injury Infect Crit Care,2011,71: 1172.

26. W S Poon, X L Zhu, S C P Ng, G K C Wong. Predicting one year clinical outcome in traumatic brain injury (TBI) at the beginning of rehabilitation. Acta Neurochir Suppl,2004,93: 207.

27. Manju Dhandapani, Sivashanmugam Dhandapani, Meena Agarwal, Ashok K Mahapatra. Pressure ulcer in patients with severe traumatic brain injury: significant factors and association with neurological outcome. J Clin Nurs,2014,23: 1114.

28. Abel Wakai, Carol Blackburn, Aileen McCabe, Emilia Reece, Ger O’Connor, John Glasheen, Paul Staunton, John Cronin, Christopher Sampson, Siobhan C McCoy, Ronan O’Sullivan, Fergal Cummins. The use of propofol for procedural sedation in emergency departments. Cochrane Database Syst Rev.2015;2015(7):CD007399.

Tables
Clinical data	Experimental group (n = 104)	Control group (n = 102)	P
Gender			
Male	48	55	0.2649
Female	56	47	
Age	52.45 ± 15.05	52.68 ± 14.06	0.9120
Weight	60.82 ± 11.26	64.24 ± 11.31	0.0315
Pupil Diameter			
Left:	2.3204	2.3235	0.9872
Right:	2.4412	2.4412	
Light reflection			0.6264
Consciousness			
Sober	3	5	0.3273
Drowsiness	16	15	
Lethargy	28	21	
Light coma	29	30	
Coma	27	31	
Deep coma	0	0	
Trachea condition			
Endotracheal intubation	104	102	0.4976
Tracheotomy	34/104 (33.01%)	32/102 (31.37%)	0.8019
Disease classification			
Cerebrovascular diseases	74 (71.15%)	68 (66.67%)	0.3914
Intracranial tumors	22 (21.15%)	19 (18.63%)	
Severe brain injury	7 (6.73%)	14 (13.73%)	
Other	1 (0.96%)	1 (0.98%)	
Surgical method			
Decompressive osteotomy	2 (1.93%)	4 (6.86%)	0.1237
Hematoma removal + decompressive osteotomy	28 (25.96%)	42 (35.29%)	
Clinical data

Clinical indication	Experimental group (n = 104)	Control group (n = 102)
Aneurysm clipping or vascular malformation resection	49 (47.12%)	39 (38.24%)
Tumor resection	25 (25.00%)	17 (16.67%)

APACH score | 0.9679

Table 2
Comparison of vital signs between the two groups before and after ES

Before	After	HR	t	P	SpO2	Systolic pressure	Diastolic pressure	HR	t	P	SpO2	Systolic pressure	Diastolic pressure
HR	78.75	100	-0.32	0.75	134.71	72.56	14	15	100	139.24	75.85		
Diastolic pressure	72.56	71.53	-1.89	0.06	134.71	93.524	100	144.93	76.30				
Experimental group	78.7514	100	134.71	72.56	14	15	100	139.24	75.85				
Control group	77.7515	100	136.44	71.53	14	15	100	144.93	76.30				
t	-0.32	0.15	0.51	0.06	0.6809	1.43	2.68	0.008	0.62				
P	0.75	0.081	0.88	0.49	0.49037015	0.008	0.62						

Table 3
Comparison of ICP fluctuation between the two groups

Group	ICP before ES (mmHg)	ICP during ES (mmHg)	ICP after ES (mmHg)
Experimental	8.88 ± 8.57	15.57 ± 12.31	8.91 ± 8.70
Control group	8.68 ± 8.23	18.24 ± 8.99	9.00 ± 8.53
t	0.19	4.80	1.86
P	0.848	< 0.0001	0.065
Table 4
Comparison of ES effect and choking cough reaction between the two groups (case)

Group	ES effect, n (%)	Choking cough response, n (%)	ICP fluctuation range (mmHg)					
	1	2	3	1	2	3	4	
Experimental	8	625	226	82	540	235	1	6.68 ± 7.02
(0.93%) (72.76%)	(26.34%) (9.56%) (62.94%) (27.39%) (0.12%)							
Control group	1	656	228	34	507	325	19	9.56 ± 5.09
(0.11%) (74.12%)	(25.76%) (3.84%) (57.29%) (36.72%) (2.15%)							
P	0.99	< 0.01		< 0.0001				

Table 5
Comparison of complications between the two groups (% (n)/X±s)

Note: patients can have two or more complications at the same time.

Group	Cerebral hemorrhage	Brain hernia	Pulmonary infection
Experimental group	0	3	38
Control group	4	10	48
Statistical quantity	104	101	2.34
P	1.00	0.99	0.12

Table 6
Comparison of GOS scores between the two groups, n (%)

Group	1 point	2 points	3 points	4 points	5 points	P
Experimental group	8	7	32	21	29	0.037
(8.25%) (7.22%) (32.99%)	(21.65%)	(29.90%)				
Control group	17	5	42	18	13	
(17.89%) (5.26%) (44.21%)	(18.95%)	(13.68%)				
