Ethnobotanical Survey of Medicinal Plants Used in the Management of Diabetes in Ibadan North-East and Ibadan South-East, Oyo State, Nigeria

Temitayo Olayemi Ajayi (tayomiajayi@gmail.com)
University of Ibadan https://orcid.org/0000-0003-0100-1083

Alfred F Attah
University of Ilorin

Enitome E. Bafor
University of Benin

Goodness O. Tokede
University of Ibadan

Research

Keywords: Diabetes, Ethnobotanical survey, Medicinal plants, Quantitative ethnobotany

DOI: https://doi.org/10.21203/rs.3.rs-41424/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Diabetes mellitus, which is described to be a lifestyle disease, affects about 8.3% of the adult population of the world. Due to its alarming rate, it is one of the most common non-communicable diseases of current era. The burden of this disease is immense owing to transition in lifestyle and dietary habits, ageing of the population and urbanization in the setting of a genetically predisposed environment.

Methodology: The study was aimed at documenting the knowledge of Traditional Medical Practitioners (TMPs) in Ibadan on ethnomedicinal plants used in the management of diabetes. A semi-structured questionnaire was used to obtain data from 100 TMPs and herb sellers within the study area. Data obtained was analysed using both descriptive statistics as well as quantitative ethnobotany including Use Mention Index, Use Value index and Fidelity level.

Results: The total number of respondents from both study areas were 100, which were mainly females (94%) and most of them had no formal education. All respondents were Yoruba speaking. Results revealed 60 plants species belonging to 35 different families and 57 genera were cited by the respondents which they use in the management of diabetes. *Hunteria umbellata* is the most prominent plant species having the highest UMI reflecting it popularity and efficacy in the management of diabetes in both areas. Fabaceae (23%) has the highest number of plants species followed by Apocynaceae (17%), Annonaceae (11%), Curcurbitaceae (11%) and Liliaceae (8%). The leaves (25%) were the most commonly used plant parts for the management of diabetes followed by fruits (22%) and Bark (13%).

Conclusion: The Southwest part of Nigeria is rich with unexplored plants useful in management of Diabetes and these documented traditional uses require scientific exploration and exploitation for drug discovery in diabetes therapy. Further studies are therefore encouraged in order to isolate, chemically elucidate and characterize the hypoglycaemic bioactive component which could serve as chemical lead for the development of novel antidiabetic drugs with desirable efficacy and safety profiles.

Background

Ethno-botany has been defined as the study as well as the investigation of traditional knowledge of indigenous communities about surrounding plant diversity and how various people make use of indigenous plants found in their localities [1]. Studies have demonstrated ethno-botany to be an effective tool in understanding the social cultural and economic factors that influence decisions as regards health and illness within a community. It also aids in getting the right information on the types of diseases and health problems prevalent amongst the people of a particular locality.

Ethnobotanical survey of plants traditionally used in the management of diabetes in different parts of Nigeria have been carried out by different authors [2, 3, 4, 5, 6, 7]. These medicinal plants are used either alone as a primary therapeutic choice, or in conjunction with conventional medicines.

Since plants are rich sources of medication, information about them are obtained based on the rich experiences of innumerable healers over centuries inherited from ancestors, healer-to-healer transfer or developed through personal experience over time or apprenticeship under those versatile with this knowledge. This information is obtained using different techniques such as the use of questionnaires, interview, voice recording, etc.

In ancient times, the primitive man observed and appreciated the great diversity of plants available to him. Herbs had been used by all cultures for the treatment and management of diabetes mellitus [8;9] which was an integral part of the development of modern civilization. Hence, herbal medicines continue to play significant role in diabetic therapy as well
as alternative to conventional therapy, most especially in the developing nations where most people are resource-poor and with little or no access to modern treatment [10].

Currently available therapy for diabetes includes insulin and various oral hypoglycaemic agents such as sulfonylureas, biguanides, thiazolidinediones, glinides and α-glucosidase inhibitors [11]. These are known to produce serious adverse effects, are not easily affordable and are not readily available [12, 13] There is no effective cure for diabetes mellitus; this has resulted in the dependency on medicinal plants by majority of the populace for their primary health care needs [14, 15, 16], since they pose less side effect, are effective, readily accessible and affordable. Hence, the search for traditional or alternative medicinal plants which are safe and effective is ongoing [17]. The WHO (World Health Organization) recommended the search for medicinal plants that are effective and beneficial for the treatment of Diabetes Mellitus as well as their use in the management of diabetes mellitus. This act encourages the expansion of the frontiers of scientific evaluation of hypoglycaemic properties of diverse plant species [18]. Thus, there is the need to isolate, identify, characterize and screen these bioactive chemicals responsible for the therapeutic effects seen.

Several species of medicinal plants used for the management of Diabetes Mellitus worldwide have been evaluated. Some of the plants include: *Allium cepa*, *Allium sativum*, *Aloe vera*, *Cinnamomum cassia*, *Coccinia indica*, *Gymnema sylvestre*, *Momordica charantia*, *Catharanthus roseus*, *Ocimum sanctum*, *Panax ginseng*, *Murraya koeingii*, *Trigonella foemum-graecum*, *Pterocarpus marsupium* and *Syzygium cumini* (19–23). A survey of several medicinal plants research findings showed that polysaccharides, sterols, terpenoids, alkaloids, saponins, flavonoids, amino acids and their derivatives are the most encountered bioactive principles that exhibited glycemic control in experimental animals [20, 21, 24]

Diabetes Mellitus (DM) is a group of metabolic disorders characterized by a chronic hyperglycemic condition resulting from absolute or relative deficiency in secretion, insulin action or both. It can also be said that diabetes is due to autoimmune antibody induced destruction of insulin secreting β-cells of pancreatic islets of Langerhans or from resistance to insulin release from β-cells as well as desensitization of peripheral tissue to insulin and down regulation of insulin receptors [25–27] It is accompanied by greater or lesser impairment in the metabolism of carbohydrates, lipids and proteins. It could result in abnormal high amounts of glucagon and other counter regulatory hormones such as growth hormone, sympathomimetic amines and corticosteroids [28]

The World Health Organization projects, that diabetes will be the 7th leading cause of death by the year 2030 [29].

In USA, diabetes is now the leading cause of end stage renal disease (ESRD). Other complications such as cardiovascular disease including coronary heart disease (CHD), cerebrovascular disease (CVD) or stroke and peripheral vascular disease (PVD) are the common causes of morbidity and mortality among people with diabetes [30–34].

In Africa, 19.8 million dwellers suffered from diabetes in 2013 and this is expected to rise to 41.5 million by 2035 [35]. Reports have it that the disease is on the increasing trend with more than 80% cases of death coming from low and middle income countries.

In Nigeria, one third of all the cases of diabetes are known to occur in rural communities, while the rest are in the urban centres. Nigeria has the highest burden in Africa, followed by South Africa with 2.6 million cases, Ethiopia 1.9 million, and Tanzania 1.7 million in 2013. Another study, found that about 4.7 million Nigerians aged between 20 and 79 years had type 2 diabetes [36].

The emotional and social impact of Diabetes Mellitus and demand therapy may result in significant psychosocial dysfunction in patients and their families. Poorly controlled diabetes would aggravate the risk of diabetes
complications, particularly cardiovascular diseases. The clinical coups and prognosis for diabetic patients are influenced predominantly by the duration of the disease and degree of metabolic control exercised (37).

According to WHO, it was estimated that 3% of the world’s population have diabetes and the prevalence is expected to double by the year 2025 to 6.3% [38, 39].

The rise in prevalence rate is as a result of aging of the population, rapid urbanization, westernization and their associated lifestyle changes, nutritional status, high family aggregation, increase in life expectancy at birth, physical inactivity and obesity and possibly a genetic predisposition [40–42]. The prevalence of diabetes mellitus in Nigeria increased from 2.2% in 1997 to 5.0% in 2013 [43]. The incidence of type 2 Diabetes Mellitus varies substantially from one geographical region to the other as a result of environmental and lifestyle risk factors [44].

Materials And Methods

Study area

The study was carried out in Bode and Oje markets in Ibadan, Oyo state, Nigeria; which are located in Ibadan South-East and Ibadan North-East respectively (Figure 1). Ibadan falls within latitude 7.40N and longitude 3.91E [45,46]. The city ranges in elevation from 160 m in the valley area, to 275 m above sea level on the major north-south ridge which crosses the central part of the city. The city covers a total area of 3,080 square kilometres (1,190 sq mi) in geographical size, the largest in Nigeria [47]. The Yoruba people are the main inhabitant of this popular city, as well as various communities from other parts of the country. There are eleven (11) Local Governments in Ibadan Metropolitan area consisting of five urban local governments in the city [48] and six semi-urban local governments in the fewer cities.

The city of Ibadan is naturally drained by four rivers with many tributaries: Ona River in the North and West; Ogbere River towards the East; Ogunpa River flowing through the city and Kudeti River in the Central part of the metropolis. Ogunpa River, a third-order stream with a channel length of 12.76 km and a catchment area of 54.92 km. Lake Eleyele is located at the northwestern part of the city, while the Osun River and the Asejire Lake bounds the city to the east [49,50].

Data collection

The ethnobotanical survey was conducted between June and October, 2018 to document the knowledge of respondents on medicinal plants and the parts used in the management of diabetes in Ibadan North-east and South-east, Oyo state, Nigeria. The data collection was based on oral interview with the aid of a semi-structured questionnaire. Ethical approval was obtained from the community leaders before the study and informed consent was also obtained orally from each of the respondent, before interview was made. Since most of the respondents were not educated, oral interview was adopted to obtain the relevant ethno-botanical data. The criteria proposed by Willcox for the conduct of a good ethnobotanical survey were observed [51].

The targeted population for this study comprises mainly Traditional Health practitioner, herb sellers, and few individuals with claims of medicinal plant knowledge. The interviews were done in their native language (Yoruba language) for clarity; while the information gathered was sorted, the data collected included the local names of plants and parts of the plants used. Plant specimens indicated in the recipe were photographed, collected, identified and authenticated using their local names by a botanist. Voucher specimens were prepared for all plants and deposited at the herbarium unit of the Department of Pharmacognosy, University of Ibadan, Nigeria.

Ethical Issues
In Nigeria, there are no existing regulations guiding the collection of data from informants on the use of plants in Traditional Medicine. However, all informants interviewed in this study gave oral informed consent following the description of the purpose of the research to them. In other words, informants showed voluntary willingness to participate in the study and they were allowed to discontinue the interviews at any time.

Ethnobotanical analysis

Data obtained were analyzed using both descriptive and quantitative statistics such as pie chart, tables, frequency of citation (FC), use mention index and expressed as a percentage based on taxonomic diversity, habitat and parts of the plant used to manage Diabetes. The frequency of citation, FC [52] was used to quantify indigenous antidiabetic plant species with the highest citation relative to other plant species cited. The FC is the value obtained from the number of times a particular species was mentioned (N^{unit}) divided by the total number of times that all species were mentioned (T^{total}) multiplied by 100.

Mathematically, FC = (N^{unit})/(T^{total}) *100; where “N^{unit}” represents the number of times a particular species was mentioned and “T^{total}” is the total number of times that all species were mentioned.

The questionnaire data were also analyzed using the ‘use-mention-index’ (UMI) which has been defined as the number of mentions for one plant (UM) for diabetes treatment, divided by the total number of informants interviewed for antidiabetes phytomedicine (nu) [6]. This was applied to compare the survey data for all documented antidiabetic plants.

UMI = UM/nu; where “UM” represents the number of mentions for one plant while “nu” is the total number of informants.

Results And Discussion

A total of 100 respondents within the age range of 21-40, 41-60 and > 60 years, both women and men, who use medicinal plants to manage diabetes, were interviewed. These Traditional Medicines were used for self-medication and/or to treat patients who willingly consult the healers. The informants were made up of herb sellers (68%), Traditional Medical Practitioners (30%) and the other category (2%) who practice or reside in the study area. There were more women (90%) than men (10%). A good number of the informants were youngsters whose age fall within 21-40 (35%) while those of middle-aged groups of 41–60 having the highest occurrence of 50%. Only 15% of the informants were above 60 years. Most of the informants have little or no basic level of education with those having at least primary education making up 32%, secondary education 7% and tertiary education forming only 1%. Informants without a formal education make up 60% of total informants who participated in the interview. In addition, the work experience of the informants’ ranges from 5 years and above with few of them born into the trade while others have gone through apprenticeship training in medicinal plant trade.

Bode and Oje communities, the study areas are dominated by aborigines of the old Ibadan city, which at Nigeria’s independence in 1960 was the largest city in Sub-Saharan Africa with an estimated population of 3.5 million [53]. The study areas are among the oldest known markets reputed to have
existed over 100 years and they are centrally situated in the heart of the metropolitan city, Ibadan, Oyo state, Nigeria. They have played significant roles in provision of alternative medicine for rural dwellers within the region and they are well patronized. The surrounding forests with their rich plant biodiversity has encouraged and strengthen their dependence on plants for their primary healthcare needs including the herbal treatment of diabetes. Some of the antidiabetic medicinal plants mentioned by the informants included *Allium sativum*, *Carica papaya*, *Abras precatorius* which have been reported by other authors in ethnobotanical surveys conducted in South-western and South-eastern parts of the country as commonly used to treat diabetes (Abo et al., 2008; Gbolade, 2009). Also, it has been reported in a survey conducted in South-western region that the following *Allium ascolanicum*, *Alstonia boonei*, *Annona senegalensis*, *Citrullus colocynthis*, *Ocimum gratissimum*, *Curculigo pilosa*, *Garcinia kola*, *Gladiolus psittacinus*, *Nauclea latiflora* among others, are used in treating diabetes [5]. Another survey conducted identified the following medicinal plants has having antidiabetic properties which are *Carica papaya*, *Musa paradisiaca*, *Allium sativum*, *Allium cepa* while *Tetrapleura tetraptera*, *Nauclea latifolia*, *Vernonia amygdalina*, *Hibiscus sabdariffa*, *Allium sativum*, exhibit antihypertensive properties [54]. This indicated conformity of the information provided by respondent in this study with what has been reported elsewhere for the treatment of diabetes.

Educational level of informant interviewed in this study was predominantly low suggesting that the improved or advanced methods of Traditional Medical Practices are still lacking. Education has been used as one of the many social and economic indicators to ascertain the state of development and the level of advancement of the informants in traditional medicine. It inspired higher ethnical behavior; refine taste, refine the method of plants preparation and dosage regimen, cultural awareness, patriotic devotion and social responsibility [55]. There is therefore an urgent need for the sensitization of these healers in order to improve their practices and to ensure patient’s health is safeguarded.

During the survey, the informants were interviewed in their native dialect for ease of communication and to ensure clarity in obtaining appropriate information; in addition, local names of the medicinal plants used in the management of diabetes were provided and subsequently authenticated. The use of local names is in agreement with what was reported by Singh that plants are generally recognized by their local names in every part of the world [56]. Although local names are not recommended directly for scientific accounts of plants as they lack uniformity and consistency [56], yet they may certainly be considered as a useful tool for obtaining useful information on plants, discovering new useful medicinal plants as well as new uses of known plants [57]. Local names provide means of reference by local people in a particular area.
Diversity of plants used for diabetes treatment

In Table 1, the description of documented ethnomedicinal have been presented. A total of 60 medicinal plants belonging to 57 genera, from 35 families have been documented for use in the traditional management of diabetes. The most cited family is Fabaceae ranked highest (23%) with 8 plant species, followed by Apocynaceae (17%) with 6 plant Species, Annonaceae (11%) with 4 plant species, Cucurbitaceae (11%) with 4 plant species and Liliaceae (8%) with 3 plant species. *Hunteria umbellata*, was the most cited plant species with the highest frequency (F - 56), use mention index (UMI - 0.56) and frequency of citation (FC – 23.53) reflecting its popularity and perhaps efficacy in the management of diabetes (Table 2). *Euphorbia lateriflora, Floscopa Africana, Gongronema latifolium, Allium ascalonicum, Adenopus breviflorus*, had the least frequency (F - 1), use mention index (UMI - 0.01) and frequency of citation (FC – 0.04) suggesting their least popularity of use by the informants for the traditional treatment of diabetes. The plant habits include trees having the highest frequency of 50%, followed by shrub (26%), climbers and herbs make up 11% (Table 1). Informants equally reported specific organs of plants frequently used part for the management of diabetes. Of these, 25% were leaves, followed by fruits (22%), Bark (13%), Root (13%), Leaves/root (8%), Bulb (5%), Stem (4%), Seeds (3%), Stem (3%), Whole Plant (3%), Leaves/Stem bark (2%) (Figure 2). Leaves appear to be the plant part most commonly used plant organ during the management of diabetes in the traditional medicine of Bode and Oje communities of Oyo state, Nigeria. In addition, informants confirmed that different organs of the plants were sometimes combined to treat diabetes.

Modes of preparation and administration

The mode of preparation preferred were decoction, juice extract, cold maceration, drying and pulverization into powder. Informants use different solvents to adequately extract the active portion from documented plants including water, carbonated drinks, local gin (ethanol), lime and aqueous extract from fermented maize. There was generally no standardized volume of administration but the herbal recipes were administered using glass cups or tumblers with approximately 150 mLs three times daily. Plant parts commonly used by informants include the leaves, fruits, bark and roots which are preferably used when fresh (Figure 2). The most reported mode of administration of documented herbal preparation is oral while the methods of preparation include decoction, infusion, soaking, drying and pulverization into fine powder.
S/N	Botanical name	Family	Vernacular name (Yoruba)	Common name	Plant part used	Habit	
1	Abrus precatorius Linn.	Fabaceae	Oju-ologbo	Rosary pea, Crab’s eye	Leaves, root	Herb	
2	Acacia nilotica (Linn.) Wild ex. Del.	Fabaceae	Booni, banni	Gum Arabic tree	Leaves	Tree	
3	Adenopus breviflorus	Cucurbitaceae	Tagiri	Pseudo colocynth	Fruit	Creeper	
4	Allium ascalonicum	Liliaceae	Alubosa elewe	Shallot, leafed onion (spring onion)	Bulb	Herb	
5	Allium sativum	Liliaceae	Alubosa aayu	Garlic	Bulb	Herb	
6	Aloe vera (L.) Burm.f.	Asphodelaceae (Liliaceae)	Aloe	Aloe vera	Whole plant	Herb	
7	Alstonia boonei De.Wild	Apocynaceae	Awun	Stool wood	Bark	Tree	
8	Annona senegalensis Pers.	Annonaceae	Epo	Wild custard apple	Leaves, stem bark	Shrub	
9	Anthocleista djalonensis A. Chew.	Loganiaceae	Sapo	Cabbage tree	Bark	Tree	
10	Aristolochia ringens Vahl	Aristolochiaceae	Akogun	Dutchman’s pipe	Root, bark	Creeper	
No.	Plant Name	Family	Common Name	Part Used	Type		
-----	---------------------	-----------------	-------------	-----------	----------		
11	Bombax buenopozense	Bombacaceae	Ponpola	Leaves	Tree		
12	Bucholzia coriacea	Capparaceae	Wonderful kola	Fruits	Shrub		
13	Calliandra haematocephala	Fabaceae	Tude	Leaf, Root	Shrub		
14	Carica papaya	Cariacaceae	Ibepe	Pawpaw	Tree		
15	Cassia fistula	Fabaceae	Aidan-toro	Golden shower	Leaves	Tree	
16	Citrullus colocynthis	Cucurbitaceae	Baara	Water melon	Fruit	Creeper	
17	Citrus aurantifolia	Rutaceae	Osan wewe	Lime	Tree		
	(Christm.) Swingle.			Fruits, juice			
18	Clausena anisate	Rutaceae	Atari-obuko	Clausena	Roots, bark	Tree	
			(egboaghasa)				
19	Cocos nucifera	Arecaceae	Agbon	Coconut	Tree		
				Coconut water			
20	Cucumeropsis mannii	Cucurbitaceae	Odidiltoo/ Egusi-	Fruits, seeds	Climber		
	Naudin		itoo	White-seed melon			
21	Curculigo pilosa	Hypoxidaceae	Epakun	Golden eye grass	Fruits, root	Tree	
	(Schum & Thonn) Engl.						
22	Euphorbia lateriflora	Euphorbiaceae	Enu opiri	Little cactus	Stem	Shrub	
	Schum. & Thonn.						
23	Ficus exasperata	Moraceae	Ipin	Sound paper leaf	Leaves	Tree	
	Vahl.						
24	Floscopa	Commelinaceae	Igba opolo	Lizard’s tail	Leaves	Herb	
#	Common Name	Genus	Family	Scientific Name	Shelf Life	Part	Type
----	-------------	-------	--------	-----------------	------------	------	-------
25	Bitter Kola	*Garcinia kola*	Guttiferae	(hypericaceae)	Orogbo	Fruit	Tree
26	Dragon’s Head Lily	*Gladiolus dalenii*	Iridaceae		Baka	Bulb	Shrub
27	Madunmaro Bush Buck	*Gongronema latifolium*	Asclepiadaceae		Madunmaro (arokeke)	Leaves	Shrub
28	West Indian Cotton Leaves	*Gossypium barbadense*	Malvaceae		Owu akese	Leaves	Tree
29	Bush Rosette	*Hibiscus sabdariffa*	Malvaceae		Isapa funfun	Fruit	Herb
30	Aarin Fruit, Seeds	*Hunteria umbellata* (K. Schum) Haller. F.	Apocynaceae		Abeere	Fruit seeds	Tree
31	Bushmints Leaves	*Hyptis pectinata* (L.) Poit.	Lamiaceae		Jobgo	Leaves	Shrub
32	Bush Mango/African Mango Seeds	*Irvinga gabonensis* (Aubry-Lecomte ex O’Rorke) Baill.	Irvingiaceae		Epon (epo)	Seeds	Tree
33	African Mahogany Bark	*Khaya ivorensis* A. Chev.	Meliaceae		Oganwo	Bark	Tree
34	African Sausage Tree Fruits	*Kigelia Africana* (lam.) Benth.	Bignoniaceae		Pandoro/Amuyan	Fruits	Tree
35	Bell Bean Tree Bark	*Markhamia tomentosa* (Benth.) H. Schum.	Bignoniaceae		Oruru	Bark	Tree
No.	Scientific Name	Family	Common Name	Parts Used	Plant Type		
-----	-------------------------	----------------	----------------------	---------------------	------------		
36	*Mondia whitei* (Hook.f.)	Apocynaceae	Isigun	Root, root bark	Creeper		
37	*Morinda lucida* Benth	Rubiaceae	Oruwo	Brimstone tree	Tree		
38	*Moringa oleifera* Lam.	Moringaceae	Ewe igbale	Moringa, miracle tree	Tree		
39	*Mormodica charantia* Descourt.	Cucurbitaceae	Ejinrin	Africa cucumber	Creeper		
40	*Musa paradisiaca*	Musaceae	*Ogede agbaagba* (dudu)	Plantain	Tree		
41	*Nauclea latifolia*	Rubiaceae	Egbesin	Nauclea	Tree		
42	*Ocimum gratissimum*	Lamiaceae	Efinrin	Sweet basil	Herb		
43	*Olax subscorpiodea* Oliv.	Olacaceae	Ifon	Ifon	Tree		
44	*Oxytenanthera abyssinica* (A.Rich.) Munro	Poaceae	Paran pupa, funfun	Savannah Bamboo	Herb		
45	*Parkia biglobosa* Jacq	Fabaceae	Igba	African Locust Bean	Tree		
46	*Parquetina nigrescens* (Afzel) Bullock.	Periploaceae	Ogbo	African parquetina	Creeper		
47	*Picralima nitida*	Apocynaceae	Erin	Picralima	Tree		
48	*Psidium guajava*	Myrtaceae	Guava	Guava	Tree		
49	*Rauwolfia vomitoria* Afzel.	Apocynaceae	Asofeyeje	African rauwolfia	Shrub		
No.	Scientific Name	Family	Local Name 1	Part(s)	Type		
-----	------------------------	-------------	-------------------------	--------------------	----------		
50	Securidaca longepedunculata	Polygalaceae	Ipeta	Violet tree	Tree		
51	Senna alata	Fabaceae	Asunwon oyinbo	Candle bush	Leaf		
52	Senna podocarpa	Fabaceae	Asunwon ibile	Candle bush	Leaves		
53	Sphenocentrum jollyanum Pierre	Menispermaceae	Akerejupon	Sphenocentrum	Leaves, root, Seed		
54	Strophanthus hispidus D.C	Apocynaceae	Sagbere, sagere	Arrow poison plant	Root		
55	Tetrapleura tetraetera	Fabaceae	Arindan, aidan	Aidan tree	Roots		
56	Uvaria afzelii Sc. Elliot	Annonaceae	Gbogbonise	Monkey finger	Leaves, root		
57	Uvaria chamae P. Beauv	Annonaceae	Eruju	Finger root	Root		
58	Vernonia amygdalina	Asteraceae	Ewuro	Bitter leaf	Leaf		
59	Xylopia aethiopica	Annonaceae	Eeu-lamo (Erualamo)	African pepper	Fruit		
60	Zea mays	Poaceae	Omi dun (omi ogi)	Maize	Juice		

Table 2: Quantitative analysis of antidiabetic plants used in Bode and Oje communities of Ibadan city, Nigeria
S/N	Botanical name	Mode of preparation	Frequency	Use mention index (UMI)	Frequency of Citation (FC)
1	*Abrus precatorius* Linn.	Infusion	1	0.01	0.42
		Decoction			
2	*Acacia nilotica* (Linn.) Wild ex. Del.	Powder	2	0.02	0.84
3	*Adenopus breviflorus*	Powder	1	0.01	0.42
		Infusion			
4	*Allium ascalonicum*	Powder	1	0.01	0.42
5	*Allium sativum*	Powder	1	0.01	0.42
6	*Aloe vera* (L.) Burm.f.	Maceration	1	0.01	0.42
7	*Alstonia boonei* De.Wild	Decoction	1	0.01	0.42
		Infusion			
8	*Annona senegalensis* Pers.	Infusion	1	0.01	0.42
9	*Anthocleista djalonensis* A. Chew.	Decoction	4	0.04	1.68
		Infusion			
		Maceration			
10	*Aristolochia ringens* Vahl	Powder	22	0.22	9.24
		Decoction			
		Maceration			
		Infusion			
	Plant Name	Preparation	Concentration	Activity	Reference
---	--	-------------	---------------	----------	-----------
11	*Bombax buonopozense* P. Beauv	Decoction	1	0.01	0.42
12	*Buchholzia coriacea* Engl.	Maceration	1	0.01	0.42
13	*Calliandra haematocephala* Linn.	Decoction	4	0.04	1.68
14	*Carica papaya*	Maceration	1	0.01	0.42
15	*Cassia fistula* Linn.	Decoction	1	0.01	0.42
16	*Citrullus colocynthis*	Decoction	10	0.10	4.20
		Infusion			
17	*Citrus aurantifolia* (Christm.) Swingle.	Juice extract	9	0.09	3.78
18	*Clausena anisate*	Decoction	1	0.01	0.42
19	*Cocos nucifera*	Juice extract	33	0.33	13.87
20	*Cucumeropsis mannii* Naudin	Juice extract	1	0.01	0.42
21	*Curculigo pilosa* (Schum& Thonn) Engl.	Powder	8	0.08	3.36
		Decoction			
22	*Euphorbia lateriflora* Schum. & Thonn.	Maceration	1	0.01	0.42
23	*Ficus exasperate* Vahl.	Juice extract	3	0.03	1.26
24	*Floscopa Africana* (P. Beauv.)	Juice extract	1	0.01	0.42
25	*Garcinia kola* Heckel	Powder	2	0.02	0.84
26	*Gladiolus dalenii* Van. Geel.	Powder	8	0.08	3.36
No.	Species	Preparation Method	Concentration		
-----	--	--------------------	---------------		
27	Gongronema latifolium Benth et Hook.	Decoction	1	0.01	0.42
28	Gossypium barbadense	Juice extract	1	0.01	0.42
29	Hibiscus sabdariffa	Powder	1	0.01	0.42
30	Hunteria umbellata (K. Schum) Haller. F.	Powder	56	0.56	23.53
		Decoction			
		Maceration			
31	Hyptis pectinata (L.) Poit.	Juice extract	1	0.01	0.42
32	Irvinga gabonensis (Aubry-Lecomte ex O’Rorke) Baill.	Powder	1	0.01	0.42
33	Khaya ivorensis A. Chev.	Decoction	1	0.01	0.42
34	Kigelia Africana (lam.) Benth.	Powder	1	0.01	0.42
35	Markhamia tomentosa (Benth.) H. Schum.	Decoction	1	0.01	0.42
36	Mondia whitei (Hook.f.)	Decoction	1	0.01	0.42
		Maceration			
37	Morinda lucida Benth	Juice extract	3	0.03	1.26
38	Moringa oleífera Lam.	Juice extract	2	0.02	0.84
		Infusion			
		Decoction			
39	Mormodica charantia Descourt.	Juice extract	5	0.05	2.10
40	Musa paradisiaca	Powder	1	0.01	0.42
41	Nauclea latifolia	Decoction	1	0.01	0.42
---	----------------	-----------	---	---	---
42	Ocimum gratissimum	Juice extract	2	0.02	0.84
43	Olax subscorpiodea Oliv.	Decoction	3	0.03	1.26
44	Oxytenanthera abyssinica (A.Rich.) Munro	Juice extract	1	0.01	0.42
		Infusion			
45	Parkia biglobosa Jacq	Powder	1	0.01	0.42
46	Parquetina nigrescens (Afzel) Bullock.	Juice extraction	1	0.01	0.42
		Infusion			
47	Picralima nitida	Powder	1	0.01	0.42
48	Psidium guajava	Infusion	1	0.01	0.42
49	Rauwolfia vomitoria Afzel. (pulverization)	Powder	2	0.02	0.84
		Infusion			
50	Securidaca longipedunculata	Decoction	1	0.01	0.42
		Infusion			
51	Senna alata	Decoction	2	0.02	0.84
52	Senna podocarpa Guil. &Perr.	Decoction	2	0.02	0.84
		Maceration			
53	Sphenocentrum jollyanum Pierre	Powder	4	0.04	1.68
54	Strophanthus hispidus D.C	Decoction	2	0.02	0.84
		Maceration			
55	Tetrapleura tetraptera (Schun&Thonn) Taub.	Decoction	1	0.01	0.42
56	Uvaria afzelii Sc. Elliot	Decoction	4	0.04	1.68
	Plant Name	Extract Type	Value	Reference	
---	--------------------------------	--------------	---------	-----------	
57	Uvaria chamae P. Beauv	Decoction	1	0.01	0.42
58	Vernonia amygdalina	Juice extract	10	0.1	4.20
		Maceration			
		Decoction			
59	Xylopia aethiopica (Dunal) A.	Maceration	1	0.01	0.42
	Rich				
60	Zea mays	Juice extract	1	0.01	0.42

Literature analysis of all the 60 antidiabetic medicinal plants reported in this study revealed that large number of these plants have been reported in other climes to have significant antidiabetic activity during various laboratory experiments among which are plants like *Parkia biglobosa*, *Vernonia amygdalina* [58-61], *Moringa oleifera* [62], *Allium cepa* and *Allium sativum* [63-65], *Picralima nitida*, *Ocimum gratissimum* [66-68], Aloe vera, *Anthocleista djalonensis* [69] and *Carica papaya* [70-72].

The antidiabetic activity of *Nauclea latiflora* and *Moringa oleifera* have been validated scientifically [73-76]. There have been experimental evidences for the hypoglycemic activity of these medicinal plants, in experimental model of diabetes [58].

Quantitative analysis of survey data showed that the Fabaceae and Apocynaceae families have the highest Frequency of citation and Use mention indices which reflects the antidiabetic medicinal value of the 14-plant species mentioned under these two high scoring plant families. Their application in the traditional medicine of the study areas may be related to their availability, accessibility, their edibility and low carbohydrate content. For instance, legumes, a sub-family of Fabaceae are largely known to be very edible, high in protein, low in carbohydrate and interestingly have a low glycemic index [77]. In Nigeria, legumes are well domesticated and are cultivated both for food and as source of effective antidiabetic medicinal plants.

Conclusion

Our study has reported for the first time the antidiabetic ethnomedicine of the Bode and Oje communities of Ibadan metropolitan city. Sixty plant species belonging to 35 families have been reported for use in the management of
diabetes in both Ibadan South-East and Ibadan North-East Local Government areas. This study showed that traditional
treatment systems and the use of medicinal plants has not disappeared from the study areas. The importance of
documentation of traditional ethnomedicinal knowledge has also been demonstrated in this work. The present study
documents several new antidiabetic ethnomedicinal species with their specific and detail method of extraction and
mode of administration. The most mentioned plant families of Fabaceae and Apocynaceae may represent important
and new bioresources for further studies particularly phytochemical and pharmacological studies for antidiabetic drug
discovery and development.

Declarations

Acknowledgements
We owe our gratitude to the people of Ibadan North East and South-East of Oyo State Nigeria who shared the valuable
information and knowledge. The authors sincerely thank Mr Adeniji of FRIN for his support to help in identifying the
plant species.

Authors’ contributions
TOA and GOT planned and performed the study and field survey, TOA and AFA wrote
the draft manuscript, and analyzed the data, and AFA revised the manuscript
and data analysis. All authors read and approved the final manuscript.

Funding:
None

Availability of data and materials
The authors already included all data in the manuscript collected during the
field surveys. The documented medicinal plant species were deposited at the herbarium unit of the Department of
Pharmacognosy, University of Ibadan, Nigeria.

Ethics approval and consent to participate;
Prior consent of the informants was taken before the field work to see to it that conducting these studies to comply with
the ethical standards of community participation in scientific research.

Consent for publication;
Not applicable.

Competing interests;
The authors declare no competing interest

References
1. Aiyeloja AA, Bello OA. Ethnobotanical potentials of common herbs in Nigeria: A case study of Enugu state.
 Educational Research and Review, 2006; 1 (1): 16-22.
2. Abo KA, Fred-Jaiyesimi AA, Jaiyesimi AEA. Ethnobotanical studies of medicinal plants used in the management of
diabetes mellitus in south western Nigeria. J Ethnopharmacol 2008; 115: 67-71.
3. Gbolade AA. Inventory of antidiabetic plants in selected districts of Lagos State, Nigeria. J.Ethnopharmacol. 2009; 121:135–139.

4. Etuk, EU, Bello SO, Isezu SA, Mohammed BJ. Medicinal plants used for the treatment of diabetes mellitus in the North Western region of Nigeria. Asian J Exp Biol Sci. 2010; 1:55-9.

5. Soladoye MO, Chukwuma EC, Owa FP. An ‘Avalanche’ of Plant Species for the Traditional Cure of Diabetes mellitus in South-Western Nigeria. J. Nat. Prod. Plant Resour. 2012; 2 (1): 60-72.

6. Attah AF, O’Brien M, Koehbach J, Sonibare MA, Moody JO, Smith TJ, Gruber CW. Uterine contractility of plants used to facilitate childbirth in Nigerian ethnomedicinal. Journal of ethnopharmacol 2012; 143(1): 377-382.

7. Attah AF, Hellinger R, Sonibare MA, Moody JO., Arrowsmith S, Wray S. Gruber CW. Ethnobotanical survey of Rinorea dentata (Violaceae) used in South-Western Nigerian ethnomedicine and detection of cyclotides. Journal of ethnopharmacol, 2016; 179:83-91.

8. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006; 27: 1-93.

9. Jung M, Park M, Lee HC, Kang Y, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem 2006; 13: 1203–1218.

10. Ajaiyeoba EO, Ogbole OO, Ogundipe OO. Ethnobotanical survey of plants used in the traditional management of viral infections in Ogun State of Nigeria. European J Sci Res 2006;13(1): 64-73

11. ADA. 2007. Diagnosis and classification of diabetes mellitus. Diabetes Care, 30: S42–S7.

12. Gandhipuran PSK, Durairaj SK, Sorimuthu PS. Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin-induced diabetic rats. J Health Sci 2006; 54:283-291

13. Yaryura-Tobias JA, Pinto A, Neziroglu F. Anorexia nervosa, diabetes mellitus, brain atrophy, and fatty liver. Int J Eat Disord 2001; 30: 350-353

14. Wills RB, Bone K, Morgan M. Herbal products: active constituents, modes of action and quality control. Nutr.Res.Rev.2000; 13: 47–77.

15. Tsay HS, Agrawal DC. Tissue Culture Technology of Chinese Medicinal Plant Resources in Taiwan and their Sustainable Utilization. Int J App Sci Eng 2005; 3:215- 223.

16. Sofowora A, Ogubodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med./Afr Netw. Ethnomed. 2013; 10:210–229.

17. Kunle OF. Standardization of herbal medicines - A review. Int. J. Biodivers. Conserv. 2012; 4(3):101-112

18. Dirks JH. The drumbeat of renal failure: symbiosis of prevention and renal replacement therapy. Blood Purif. 2004; 22: 6-8.

19. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81:81-100.

20. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity—a review of ten years of herbal medicine research (1990-2000). Int J Diabetes Metab 2006; 14:1-25.

21. Bailey CJ, Day C. Traditional plants medicine as treatment for diabetes. Diabetes Care 1989; 12:553-564.

22. Brai BIC, Odetola AA, Agomo PU. Anti-hyperglycemic activity of Cassia kleinii leaf extract in normal rats and alloxan-induced diabetic rats. Indian J Pharmacol 2007; 34:409-415.

23. Gondwe M, Okoro PK, Juta R. Effect of diabetes on kidney. Diabetes 2008; 52: 283-291.

24. Ivorra MD, Payá M, Villar A. A review of natural products and plants as potential antidiabetic drugs. J Ethnopharmacol 1989; 27: 243-275.

25. Njolstad PR, Sagen JV, Bjorkhang L, Odili S, Shehadeh N, Bakry D, Sarici, S.U, Alpay F, Molnes J, Molven A, Sovik O and Matschinsky FM. Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-
insulin signaling pathway. Diabetes, 2003; 52(11): 2854-60

26. Zanatta L, De Sousa E, Cazarolli LH, Junior AC, Pizzolatti MG, Szpoganiez B, Silva FR. Effect of crude extract and fractions from *Vitex megapotamica* leaves on hypoglycemic in alloxan-diabetes rats. J. Ethnopharmacol. 2007; 109: 151-155

27. Mahananda S, Prova B, Amalesh S. Study of Hypoglycemic activity of aqueous extract of *Leucas indica* L. Aerial parts on streptozotocin induced diabetic rats. International Journal of Pharmaceutical Sciences and Drug Research, 2021; 3(2): 50-55

28. Christesen. Catecholamines and Diabetes Mellitus Diabetologia 1979;16: 211-224

29. Trivedi NA, Mazumder B, Bhatt JD, Hemavathi KG. Effect of Shilajit on blood glucose and lipid profile in alloxan induced diabetic rats. Indian Journal of Pharmacology, 2004; 36: 373-376.

30. Looker HC, Campagna AF, Gunter EW, Pfeiffer CM, Venkat Narayan KM. Homocysteine as a risk factor for nephropathy and retinopathy in type 2 diabetes. Diabetologia, 2003; 46: 766-772

31. Bearse MA Jr, Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ. Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 3259-3265

32. Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozocin induced diabetes in rats therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes, 2004; 53: 2412-2419

33. Svensson M, Eriksson JW, Dahlquist G. Early glycemic control, age at onset, and development of microvascular complications in childhood-onset type 1 diabetes a population-based study in Northern Sweden. Diabetes Care, 2004; 27:955-962

34. Pari L, Saravanan R. Antidiabetic effect of diasulin, an herbal drug, on blood glucose plasma insulin and hepatic enzymes of glucose metabolism in hyperglycaemic rats. Diabetes, Obesity and Metabolism, 2004; 6: 286-292

35. Peer N, Kengne AP, Motala AA, Mbanya JC. Diabetes in the Africa Region: an update. Diabetes Res.Clin. Pract. 2014; 103: 197–205.

36. Adeloye D, Ige JO, Aderemi AV. Estimating the prevalence, hospitalisation and mortality from type 2 diabetes mellitus in Nigeria: a systematic review and meta-analysis BMJ Open 2016;7:e015424. doi: 10.1136

37. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Report of WHO consultation. Geneva, 1994; 66

38. Attele AS, Zhou Y, Xie J, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan C. Antidiabetic effects of Panax ginseng Berry extract and the identification of an effective component. Diabetes, 2002; 51:1851-1858

39. Andrade-Cetto A, Heinrich, M. Mexican plants with hypoglycemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 2005; 99: 325–348

40. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care, 2004; 27: 1047–1053.

41. Hu FB. Globalization of diabetes: the role of diet, lifestyle and genes. Diabetes Care 2011; 34:1249–1257.

42. Gutch M, Razi SM, Kumar S, Gupta KK. Diabetes mellitus: trends in northern India. Indian J. Endocrinol. Metab 2014; 18:731–734.

43. Akinkugbe OO. Non-Communicable Diseases in Nigeria: National Survey (Final Report) on Hypertension, Coronary Heart Disease, Diabetes Mellitus, Haemoglobinopathies, G6PD Deficiency and Anaemia. National Expert Committee on Non-Communicable Diseases. 1997 Federal Ministry of Health and Social Services, Lagos.

44. Zimmet P, Alberti K, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-787.

45. Filani FO, Akintola CO, Ikporukpo edited Ibadan Region, Rex Charles Publication, Ibadan, 1994; 99.
46. Ojo OOS, Awokola OS. “Determination of Groundwater Physicochemical Parameters of shallow Aquifers in Agbowo and Ajibode communities in Oyo State, South Western Nigeria. International Journal of Engineering and Development 2012; 3(5): 10-23.

47. Areola O ‘The Spatial Growth of Ibadan City and its impact on the rural Hinterland”. In: M.O Filani, F.O Akintola and C.O Ikorokuppo (eds) Ibadan Region, Rex Charles Publication, 1994; Ibadan

48. Famuyide OO, Adebayo O, Bolaji-Olutunji KA, Oladeji O. Marketing efficiency of Garcinia kola (Bitter kola) and Aframomum melegueta (Alligator pepper) in Ibadan metropolis, Oyo 2011.

49. Abdulkareem SB, Orimoloye IR, Elijah AA. Journal of Environment and Earth Science 2015; 5: 14.

50. Adeniran A. Assessment of Water Quality in Slum Are Ibadan. Hydrol Current Res 2018; 9: 296. doi:10.4172/2157-7587.1000296

51. Willcox ML, Bodeker G. Traditional herbal medicines for malaria. Br. Med. J. 2004;329: 1156–1159.

52. Ocvirk S, Kistler M, Khan S, Talukder SH, Hauner H. Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh–an ethnobotanical survey. Journal of ethnobiology and ethnomedicine, 2013;9(1):43

53. Olaniran F, Nwokocha EE. Institutional and humanitarian response to disasters in Ibadan City, Nigeria. African Renaissance, 2020; 17(1):181-201.

54. Ozougwu JC. Nigerian Medicinal Plants with Anti-Diabetic and Anti-Hypertensive Properties European Journal of Medicinal Plants 2017; 21(3): 1-9.

55. Sun G, Zheng B, Wang H, Li J. Traditional Chinese Medicine Educational Appropriations–An Attribution Analysis. In 3rd International Conference on Contemporary Education, Social Sciences and Humanities (ICCESSH 2018) 2018; Atlantis Press.

56. Singh H. Importance of local names of some useful plants in ethnobotanical study, Indian. J. Trad. Knowledge, 2008; 7(2): 365-370.

57. Erinos SM Aworinde DO. Ethnobotanical survey of some medicinal plants used in traditional health care in Abeokuta area of Ogun State, Nigeria African Journal of Pharmacy and Pharmacology, 2012; 6:1352-1362.

58. Akah PA, Okafor CI (1992). Blood Sugar lowering effect of Vernonia amygdalina (Del) in an experimental rabbit model. Phytother. Res. 1992; 6: 171-173.

59. Akah Peter, Njoku Obioma, Nwanguma Ada and Akunyili, Dorathy. Effects of aqueous leaf extract of Vernonia amygdalina on blood glucose and triglyceride levels on alloxan induced diabetic rats. Animal Research International. 2004; 1(2): 90-94.

60. Owen OY, Amakiri AO and Karibi-Boteye YA. Lipid-lowering effect of bitter leaf (Vernonia amygdalina) in experimental broiler finisher chickens: Academic sciences: Asian journal of pharmaceutical and Clinical Res, 2011; 4(1): 19-21.

61. Modu S, Adeboye AE, Maisaratu A, Mubi BM. Studies on the administration of Vernonia amygdalina Del. (Bitter leaf) and Glucophage on blood glucose level of alloxan induced diabetic rats. International journal of medicinal plant and alternative medicine, 2013;1(1): 13–19.

62. Edoga CO, Njoku OO, Amadi EN, Okeke JJ. Blood sugar lowering effect of Moringa oleifera lam in albino rats. Int. J. Sci. Technol. 2013; 3: 88-90.

63. Fetrow CW, Avila JR. Professional's Handbook of Complementary and Alternative Medicines Springhouse, P.A. Springhouse Corporation 1999.
64. Hattori A, Yamada N, Nishikawa T, Fukuda H, Fujino T. Anti-diabetic effects of ajoene in genetically diabetic KK-A(y) mice. J Nutr Sci Vitaminol. 2005; 51:382–384.

65. Liu CT, Wong PL, Lii CK, Hse H, Sheen LY. Antidiabetic effect of garlic oil but not diallyl disulfide in rats with streptozotocin-induced diabetes. Food Chem Toxicol. 2006; 44: 1377-1384

66. Kazeem MI, Ogunbiyi JV, Ashafa AO. (2013). In vitro Studies on the Inhibition of α-Amylese and α-Glucosidase by Leaf Extracts of *Picralima nitida* (Stapf). Tropical Journal of Pharmaceutical Research. 2013;12:(5)

67. Aguiyi, JC, Obi EI, Gang SS, Igweh AC. Hypoglycaemic activity of *Ocimum gratissimum* in rats. Fitoterapia, 2000;71: 444-446.

68. Egesie UG, Adelaiye AB, Ibu JO, Egesie OJ. Safety and hypoglycaemic properties of aqueous leaf extract of *Ocimum gratissimum* in streptozotocin induced diabetic rats. Niger J Physiol Sci 2006; 21: 31–5.

69. Olubomehin OO, Abo KA, Ajaiyeoba, EO. Alpha-amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of *Anthocleista djalonensis* extracts and fractions. J. Ethnopharmacol. 2013; 146: 811–814.

70. Olagunju JA, Ogunlana CO, Gbile ZO. The hypoglycemic activity of ethanolic extracts of unripe, mature fruits of *Carica papaya* in alloxan-induced diabetic rats. Nigerian Journal of Biochemistry and Molecular Biology 1995; 10: 21-23.

71. Vikrant A. Sharma R. A Review on Fruits Having Anti-Diabetic Potential. J Chem Pharm Res., 2011; 3(2): 204-212.

72. Ezekwe Ahamefula Sunday, Elekwa Ify, Osuocha Kelechi Uzoma. Hypoglycaemic, hypolipidemic and body weight effect of unripe pulp of *Carica papaya* using diabetic Albino rat model. Journal of Pharmacognosy and Phytochemistry, 2014; 2(6): 109-114.

73. Ezekwesili CN and Ogbunugafor HA. Blood glucose lowering activity of five Nigerian medicinal plants in alloxan induced diabetic wistar albino rats. Animal Research International, 2015; 12(2): 2150 – 2158.

74. Aka PA, Uzodinma SU, Okolo CE. Antidiabetic activity of aqueous and methanol extract and fraction of *Gongronema latifolium* (Asclepiadaceae) leaves in alloxan diabetic rats. Journal of Applied Pharmaceutical Science, 2011; 01 (09): 99 –102.

75. Ezeigbo OR, Barrah CS, Ezeigbo, IC. Phytochemical analyses and antidiabetic effect of aqueous and ethanolic extracts of *Moringa Oleifera* leaves in alloxan-induced diabetic wistar albino rats using insulin as reference drug. International Journal of Diabetes Research, 2016; 5(3): 48 – 53.

76. Ezekwesili CN. "Ant diabetic Effects of Combinations (Ratios) Of Selected Nigerian Ant diabetic Plants." IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) 2018;13(2): 01-06.

77. Ujinwal M, Sahani PA, Singh, N. Comparative Sequence and Structural Analysis of Lectin Protein in Chickpea (*Cicer arietinum* L.) and their Relationship with fabaceae Family Int J Proteom Bioinform. 2019;4(1): 001-006.

Figures
Figure 1

Map showing the areas of study; Bode, located in Ibadan South-East and Oje in Ibadan North-East

Figure 2

Percentage distribution of various plant part(s) used in preparation of anti-diabetic recipes.
Figure 3

Percentage distribution according to family of plants used in the management of diabetes