Tuberculin test conversion in patients with chronic inflammatory arthritis receiving biological therapy

Osvaldo Luis Cerda¹, María de los Angeles Correa¹, Amelia Granel², Ana Ines Marcos², Claudia Giraldo¹, Oscar Rillo², Emilce Edith Schneeberger¹, Gustavo Citera¹

Abstract

Objective: The blockade of inflammatory mediators produced by biological therapies is associated with an increased risk of opportunistic infections, as for example Mycobacterium Tuberculosis (MT). Given the endemic situation of tuberculosis (TB) in some countries and immunosuppression/anergy of patients with chronic inflammatory arthritis, we wonder whether it is necessary to monitor the MT infection after starting the biological treatment. To evaluate the frequency of the tuberculin skin test (TST) conversion and its association with an active TB infection and other disease variables.

Methods: Patients with rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and spondyloarthritis (SpA) receiving treatment with anti-TNF, tocilizumab, and/or abatacept agents were included into the study. Patients had to have a negative TST (<5 mm) at the baseline, and a second TST was performed 2-22 months after the initiation of biologic therapy. The TST conversion was considered as a variation ≥5 mm between the two TSTs performed within an interval between 2 months and 2 years.

Results: A total of 85 patients were included into the study, and 78.8% were women, with a median schooling duration of 12 years. A total of 74.1% of patients had RA, 16.5% psoriatic arthritis, and 4.7% AU and ankylosing spondylitis. Regarding treatment, 75.3% received anti-TNF therapy (31.8% etanercept, 21.2% adalimumab, 17.6% infliximab, 3.5% golimumab, and 1.2% certolizumab), 15.3% tocilizumab, and 9.4% abatacept. Eight patients (9.4%) developed a TST conversion. The shift was more frequent in men (62.5%) than in women (37.5%) (p=0.009), and in those with a prolonged disease duration (X 226±109 vs X130±105 [p=0.017]). This association remained after adjusting for other variables. All patients who developed a TST conversion received prophylactic isoniazid, and only one patient with other risk factors developed active TB.

Conclusion: The frequency of a TST conversion in patients with chronic inflammatory arthritis was low and was associated with male gender and longer disease duration.

Keywords: Rheumatoid arthritis, TST conversion, tuberculosis, biological therapy

Introduction

Chronic inflammatory arthritis is a disabling condition that requires early and appropriate treatment. The introduction of biological therapies has improved the treatment of this disease. These medications have an acceptable safety profile, although increasing the risk of opportunistic infections (1, 2). Tumor necrosis alpha (TNF-α) inhibitors (TNFi) were the first ones to be introduced and presently are used most frequently. TNF-α plays a key role in the formation and maintenance of granulomas responsible for containing intra-cellular pathogens, such as Mycobacterium Tuberculosis (MT). A fourfold increased risk of tuberculosis (TB) has been reported in patients under anti-TNF treatment (3, 4). Argentina is a country with an average TB incidence. In 2011, a total of 10,618 cases were reported to the National Program (incidence rate, 26/100,000), and 640 people died from TB during 2010 (5).

The Mantoux test or TST was developed in the XIX century and is still in use. It is the only widely available method to detect latent TB. Despite of its long history, some aspects of its interpretation are still controversial (7, 8). The cutoff value to determine infection depends on the epidemiology of the region and the patient type. In our country, the TB Argentine Consensus that took place in 2009 determined a cut-off value for the general population of ≥10 mm and ≥5 mm (9) for immunocompromized patients and high-risk contacts.
Table 1. Sociodemographic, clinical, and therapeutic characteristics

Variable	n=85
Male sex n (%)	18 (21.2)
Disease:	
Rheumatoid arthritis n (%)	63 (74.1)
Psoriatic arthritis n (%)	14 (16.5)
Juvenile idiopathic arthritis n (%)	4 (4.7)
Ankylosing spondylitis n (%)	4 (4.7)
Poverty n (%)	7 (8.2)
Overcrowding n (%)	11 (12.9)
Occupation	
Housewife n (%)	26 (30.6)
Professional n (%)	13 (15.3)
Retired n (%)	11 (12.9)
Administrative n (%)	10 (11)
Trader n (%)	8 (9.4)
Construction worker n (%)	3 (3.5)
Health professional n (%)	2 (2.4)
Student n (%)	1 (1.2)
Unemployed n (%)	10 (11.8)
Risk factor (in 14 patients)	14 (16.5)
Type 2 diabetes n (%)	9 (10.6)
Alcoholism n (%)	1 (1.2)
History of TBC with complete treatment n (%)	5 (5.9)
Contact with TB n (%)	2 (2.4)
Concomitant DMARD treatment	
Methotrexate n (%)	72 (84.7)
Leflunomide n (%)	18 (21.2)
Hydroxychloroquine n (%)	6 (7.1)
Sulfasalazine n (%)	1 (1.2)
Biologic treatment	
Etanercept n (%)	27 (31.8)
Adalimumab n (%)	18 (21.2)
Infliximab n (%)	15 (17.6)
Certolizumab n (%)	1 (1.2)
Golimumab n (%)	3 (3.5)
Abatacept n (%)	8 (9.4)
Tocilizumab n (%)	13 (15.3)
Steroid therapy n (%)	42 (49.4)
Prednisone >10 mg/day n (%)	16 (18.8)

TST evaluates delayed hypersensitivity (mediated by T lymphocytes) to MT proteins. The reaction occurs in case of the exposure to bacterial proteins, the BCG vaccination, or Mycobacteria infection. A negative test means that there is no hypersensitivity, and it is commonly interpreted as the absence of previous contact. However, two situations may occur:

People may lose responsiveness in time. This may be seen in elderly patients, injected or vaccinated after the age of 15 and who had no posterior infection (10).

The absence of reaction was described in patients with autoimmune diseases with compromised Th1 response (11).

The purpose of our study was to evaluate the frequency of a TST conversion in patients with autoimmune arthropathies receiving biological therapy. Furthermore, we aimed to investigate the association between the TST shift and an active MT infection and to explore other variables that could affect the TST conversion.

Methods

A multicenter, observational study including patients with chronic inflammatory arthritis was performed. Three rheumatologic centers participated, two from the Autonomous City of Buenos Aires (Instituto de Rehabilitación Psicosfísica and Hospital de Agudos General Enrique Tornú) and one from La Plata City (Hospital San Martín de La Plata). Outpatients with rheumatoid arthritis (RA) according to the ACR 1987 (12) and ACR/EULAR 2010 (13) criteria; juvenile idiopathic arthritis (JIA) according to the JIA criteria (14); spondyloarthritides (SpA) by the ASAS axial criteria (15) or peripheral SpA criteria (16); and psoriatic arthritis (PsA) according to the CASPAR criteria (17) were included into the study. Patients receiving biological therapy with TNF inhibitors (TNFi) (etanercept, adalimumab, infliximab, certolizumab, golimumab), interleukin 6 (IL-6) inhibitor (tocilizumab), or inhibitor of the T-lymphocyte CTLA4 co stimulatory signal (abatacept) were included. All the patients had to have a previous negative TST test (≤5 mm) prior to the beginning of the first biological treatment. Subsequently, a second TST test was performed in all patients within a time interval between 2 and 22 months from the first one, and without there being any change in the biological agent. This time interval was established to avoid the “booster” phenomenon and the loss of the antigenic stimuli (6-8). The TST test consisted of injecting 0.1 mL of TST (equivalent to 2 tuberculin units), followed by a 48-72-hour papule measurement by trained blind readers. Positivity was defined as a variation in the diameter of the papule greater than 5 mm compared to the first TST test (9).

Patients with a history of active or latent TB, or patients who had two TST tests performed outside the established interval time, and patients with acute or chronic infections that could interfere with the result were excluded from the study. All patients provided written consent to participate in the study. Sociodemographic data (age, sex, type of residency and education) were collected. Certain pathological conditions associated with an increased risk of contracting TB were especially collected, including the following:

Overcrowding, which according to the WHO means three or more people per bedroom.

Low weight, which according to the WHO means protein caloric deficiency that results in a body mass index (BMI) <18.5.

Alcoholism, which according to the WHO means daily alcohol intake greater than 20-40 grams in women and 40-60 grams in men (18).

Poverty, which according to the National Institute of Statistics and Census in Argentina (19) means monthly income less than $1500 (Argentinean pesos) for a family with three children (August, 2013), and this date coincided with our study.

Variables related to the disease such as its duration, comorbidities, and treatments received were investigated by direct interview with the patient and from medical records. High steroid use was considered as prednisone or equivalent ≥10 mg/day or three or more injectable corticosteroids in 1 year. The type and dose of disease-modifying anti-rheumatic drug (DMARD) and biologic treatment were noted.

Disease activity was assessed using RAPID 3 (20) and DAS28 (21) for RA and PsA, while BASDAI (22) was used for patients with axial SpA (axSpA). Functional capacity was evaluated by means of HAQ (23) and BASFI (14).
Table 2. Characteristics of the eight patients with TST conversion

Patient	Type of DMARD Used	Concomitant Steroid Use	Time of TST Isoniazid Treatment	TB History	DBT	Overcrowding	Poverty	Occupation	Sex	Disease
1	PsA	No	Normal	Yes	No	No	No	Professional	M	PsA
2	RA	No	Normal	Yes	No	No	No	Housewife	F	RA
3	RA	No	Normal	Yes	No	No	No	Unemployed	F	RA
4	PsA	Yes	etanercept	Yes	No	No	No	Trader	M	PsA
5	RA	Yes	etanercept	Yes	No	No	No	Trader	M	RA
6	RA	No	tocilizumab	Yes	Yes	Yes	Yes	Construction worker	M	RA
7	RA	No	Normal	Yes	Yes	Yes	Yes	Trader	M	RA
8	PsA	No	Normal	Yes	Yes	Yes	Yes	Trader	M	PsA

DBT: diabetes, TB: tuberculosis, DMARD: disease-modifying anti-rheumatic drug, RA: rheumatoid arthritis, PsA: psoriatic arthritis, SD: standard deviation, Steroid use: prednisone >10 mg/day

Statistical analysis

Descriptive statistics were performed to calculate the means, standard deviations, medians, interquartile ranges (IQR), frequencies, and percentages. Continuous data were analyzed using the T-test or Mann-Whitney U test, and categorical data were analyzed with Chi² and Fisher’s exact test. A multiple logistic regression analysis was performed using the presence of a TST conversion as the dependent variable to detect variables associated with the conversion. A p-value less than 0.05 was considered to be statistically significant.

Results

Eighty-five patients were included into the study, 63 (74.1%) with RA, 14 (16.5%) with PsA, 4 (4.7%) with JIA, and 4 (4.7%) with axSpA. Sixty-seven patients were female (78.8%). Most patients lived in urban areas (98.8%), and only one patient lived in a rural zone. Patients had a median age of 52 years (IQR 46-60), median disease duration of 11.5 years (IQR 4.8-16), and a median schooling length of 12 years (IQR 7-14). Eleven patients lived under overcrowding conditions (12.9%), and seven below the poverty line. Seventeen patients (16.5%) had TB risk factors, some of them more than one associated factor (17 factors in 14 patients): 9 (10.6%) had type 2 diabetes, 1 (1.2%) alcoholism, 2 (2.4%) had contact with TB patients, and 5 (5.9%) presented a TB history with complete treatment. Seventy-eight patients (91.8%) received concomitant biologic therapy with classic DMARDs, and 42 (49.4%) received steroids of whom 16 were under high doses (≥10 mg/day) (Table 1).

A Korean study revealed that 28 out of 86 RA patients with biologic treatment had a TST conversion, encouraging annual monitoring of patients with a negative TST receiving biologics (25). Similar results were observed in Italy, where the conversion frequency was 13.6%, and no patients developed active TB (26). In our study, we observed a TST conversion in 9.4% of the studied population, more frequently among men and in those with longer disease duration. Only one patient developed active TB, although it is noteworthy that all patients with positive conversion received prophylaxis for latent TB with isoniazid.

There are reports of a greater frequency of energy to TST in patients with chronic arthritis. In Turkey, JIA patients had more frequently a negative TST when compared to the healthy population (24% vs 6.6%) (11). Similar data were described in Peru, where 70% of RA patients had TST anergy in contrast to 26% of the general population (7).

Some limitations to our study include the lack of Quantiferon test given its high cost. However, although some studies have shown greater sensitivity of this method compared to TST, the difference was not significant in a recent study (27). Second, all patients with a TST conversion received isoniazid, not knowing what would have happened if these patients did not receive the recommended prophylaxis. The national vaccination calendar in Argentina includes a mandatory dose of BCG vaccine to all newborns, before leaving the hospital where they were born. Since 2007, there is no longer a need for a second dose that took place at age.
The authors declared that this study has received no financial support.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

1. Listing J, Strangfeld A, Kary S, Rau R, von Hinüber U, Stoyanova-Scholz M, et al. Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum 2005; 52: 3403-12. [CrossRef]
2. Wallis RS, Broder MS, Wong JY, Hanson ME, Funovits J, Aletaha D, Bykerk V, Combe B, Douard V, Eberhardt R, et al. European League of Associations for Rheumatology classification of rheumatoid arthritis. Arthritis Rheum 2009; 60: 591-607. [CrossRef]
3. Kindler V, Sappino AP, Grau GE, Piquet PF, Vassalli P. The inducing role of tumor necrosis factor in the development of bacterial granulomas during BCG infection. Cell 1989; 56: 731-40. [CrossRef]
4. Gómez-Reino JJ, Carmona L, Descalzo MA, Biobadasa Group. Risk of Tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection. Arthritis Rheum 2007; 57: 756-61. [CrossRef]
5. 1980-2009- Instituto Nacional de Enfermedades Respiratorias E. Coni. PRO.TB Doc.Tel. N° 16/09.
6. Ahmed AR, Blase DA. Delayed-type hypersensitivity skin testing. A review. Arch Dermatol 1983; 119: 934-45. [CrossRef]
7. Ponce de León D, Acevedo-Vásquez E, Sánchez-Torres A, Cuicho M, Alfaró J, Perich R, et al. Attenuated response to purified protein derivative in patients with rheumatoid arthritis: study in a population with a high prevalence of tuberculosis Ann Rheum Dis 2005; 64: 1360-1. [CrossRef]
8. Menzies D. Interpretation of repeated tuberculin tests boosting, conversion, and reversion. Am J Respir Crit Care Med 1999; 159: 15-21. [CrossRef]
9. Abbate E, Ballester D, Barrera L, Brian MC, Echazáretta A, Gaitán C, et al. Consenso Argentino de Tuberculosis. Rev Arg Med Resp 2009; 9: 61-9. [PubMed]
10. Wang L, Tunner M, Elwood RA. Meta-analysis of the effect of bacille Calmette Guerin vaccination on tuberculin test measurements. Torax 2002; 57: 804-9.
11. Kiray E, Kasacopucor Q, Bas V, Kamburoğlu A, Mease P, Mielants TST, et al. Classification criteria from a large international study. Arthritis Rheum 2005; 52: 1261-5. [CrossRef]
12. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315-24. [CrossRef]
13. Funovits J, Aletaha D, Bykerk V, Combe B, Dougdos M, Emery P, et al. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: methodological report phase I. Ann Rheum Dis 2010; 69: 1589-95. [CrossRef]
14. Petty RE, Southwood TR, Manners P, Baum J, Glass D, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second Revision, Edmonton, 2001. J Rheumatol 2004; 31: 390-2. [CrossRef]
15. Rudwaleit M, van der Heijde D, Landewé R, Akkoc N, Brandt J, Chow C, et al. The Assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis 2009; 68: 777-83. [CrossRef]
16. Rudwaleit M, van der Heijde D, Landewé R, Akkoc N, Brandt J, Chow C, et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis 2011; 70: 25-31. [CrossRef]
17. Taylor TST, Gladmam D, Hellwell P, Marchesoni A, Mease P, Mielants TST, et al. Classification criteria for psoriatic arthritis. Development of new criteria from a large international study. Arthritis Rheum 2006; 54: 2665-73. [CrossRef]
18. Anderson P, Guall A, Colon J. Alcohol TST: atencion primaria de la salud: informaciones clinicas basicas para la identificacion TST el manejo de riesgos TST problemas. Washington, D.C.: OPS, *2008.
19. Inmune costo de canasta baja Septiembre del 2013, INDEC (Instituto Nacional De Estadísticas TST Censos).
20. Maldonado Fico TST, Pérez Alamino R, Schneeberger EE, Maldonado Cocco JA, Citera G. Validación del cuestionario RAPID3 en una cohorte de pacientes con artritis reumatoide temporaña TST establecida, TST su correlación con otros índices de actividad Rev Argent Reumatol 2011; 22: 31-9.
21. Prevoo MLL, van’t Hof MA, Kuper TST, et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 1995; 38: 44-8. [CrossRef]
22. Citera G, Maldonado Cocco JA, Moroldo M, Burgos-Vargas R, Anaya J, López I, et al. Validación de la versión en español de los cuestionarios de capacidad funcional BASFI TST actividad de la enfermedad BASDAI en pacientes con Espondilitis Anquilosante en cuatro países latinoamericanos. Rev Arg Reumatol 1999; 10(Supl 1): 25.
23. Citera G, Arriola MS, Maldonado Cocco JA, Rosenffett MG, Sánchez MM, Góri MA, et al. Validation and cross cultural adaptation of an argentine spanish version of the health assessment questionnaire disability index. J Clin Rheum 2004; 10: 110-5. [CrossRef]
24. Dixon WG, Watson K, Lunt M, Hyrich L, Silman AJ, Symmons DP, et al. Rates of Serious Infection, Including Site-Specific and Bacterial Intracellular Infection, in Rheumatoid Arthritis Patients Receiving Anti-Tumor Necrosis Factor Therapy. Arthritis Rheum 2006; 54: 2368-76. [CrossRef]
25. Park JH, Seo GY, Lee JS, Kim TH, Yoo DH. Positive Conversion of Tuberculin Skin Test and Performance if Interferon Release Assay to Detect Hidden Tuberculosis Infection During Anti-Tumor Necrosis Factor Agent Trial. J Rheumatol 2009; 36: 2158-63. [CrossRef]
26. Cuomo G, D’Abrusco V, Iacono D, Pantano I. The conversion rate of tuberculosis screening tests during biological therapies in patients with rheumatoid arthritis. Clin Rheumatol 2017; 36: 457-61. [CrossRef]
27. Baričević D, Popović Grle S, Morović Vergles J, Čuković Čavka S, Jakopivc M, Redžepi G, et al. QuantiFERON-TB Gold In- Tube Test in the Diagnosis of Latent Tuberculosis Infection in Arthritis Patients Treated with Tumor Necrosis Factor Antagonists. Acta Clin Croat 2017; 56: 203-9. [CrossRef]