Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws

I. Gómez-Buenoa,\,*, S. Boscarinob, M.J. Castroa, C. Parésa, G. Russob

aDepartamento de Análisis Matemático, Estadística e I.O. y Matemática Aplicada. Facultad de Ciencias, Campus de Teatinos. Universidad de Málaga, 29071 Málaga, Spain
bDipartimento di Matematica ed Informatica. Viale Andrea Doria, 6, 95125. University of Catania. Catania, Italy.

Abstract
The aim of this work is to design implicit and semi-implicit high-order well-balanced finite-volume numerical methods for 1D systems of balance laws. The strategy introduced by two of the authors in [28] for explicit schemes based on the application of a well-balanced reconstruction operator has been applied. The well-balanced property is preserved when quadrature formulas are used to approximate the averages and the integral of the source term in the cells. Concerning the time evolution, this technique is combined with a time discretization method of type RK-IMEX or RK-implicit (see [78, 14]). The methodology will be applied to several systems of balance laws.

Keywords:
Systems of balance laws, well-balanced methods, finite-volume methods, high-order methods, reconstruction operators, implicit methods, semi-implicit methods, shallow water equations

1. Introduction
Numerous physical systems are described by evolutionary partial differential equations which have the structure of hyperbolic systems of balance laws of the form

\[u_t + f(u)_x = S(u)H_x, \]

(1)
where

- \(u(x,t)\) takes values on an open convex set \(\Omega \subset \mathbb{R}^N\);
- \(f : \Omega \rightarrow \mathbb{R}^N\) is the physical flux function;
- the source term is written in the form \(S(u)H_x\), where \(S : \Omega \rightarrow \mathbb{R}^N\) and \(H : \mathbb{R} \rightarrow \mathbb{R}\) is a known function (possibly the identity function \(H(x) = x\)).

The system (1) has nontrivial stationary solutions that satisfy the ODE system:

\[
f(u)_x = S(u)H_x,
\]

or

\[
J(u)u_x = S(u)H_x,
\]

where \(J(u)\) is the Jacobian of the flux function. A numerical method is said to be well-balanced if it preserves (in some sense) all or a representative set of steady solutions of (1). The development of numerical schemes satisfying the well-balanced property is a big issue in the simulation of small perturbations of stationary solutions in many geophysical problems, such as the tsunami waves in the Ocean. Many authors have already dealt with the design of well-balanced methods: see, for example, [3, 17, 22, 31, 30, 89, 33, 41, 40, 52, 51, 53, 69, 56, 55, 71, 72, 76, 77, 80, 81, 82, 86, 87, 66, 92, 65, 63, 35, 67, 37, 26, 43, 57, 64] and their references. In earlier papers, some of the authors introduced a general procedure to build explicit high-order well-balanced numerical methods whose key was the design of high-order well-balanced reconstruction operators (see [28, 48, 49, 50]). The aim of this work is to extend this general methodology to design implicit and semi-implicit numerical schemes with the well-balanced property by means of well-balanced reconstructions operators. To our knowledge, no general framework to design this type of schemes has been developed so far. In the case of low-order schemes, some works can be found for finite-volume, finite-difference, finite-element and discontinuous Galerkin methods which only work for particular steady states (mainly zero velocity steady states): see, for instance, [32, 44, 93, 29, 90, 9, 70]. See [25] for well-balanced methods for all the one-dimensional steady states for the shallow-water system. Concerning high-order schemes, finite-difference, discontinuous Galerkin methods and combination of finite-volume/finite-element and
finite-volume/finite-difference methods that are well-balanced for particular stationary solutions (mainly zero velocity steady states) are presented, for example, in [19, 59, 88, 42, 47].

In the context of semi-implicit numerical schemes, RK-IMEX setting represents a powerful tool for the time discretization of system of the form (1) if such it contains both stiff and non stiff terms. Typical examples are hyperbolic systems with stiff hyperbolic or parabolic relaxation characterized by a relaxation parameter ε, [78, 14, 15, 11, 10].

In the hyperbolic to hyperbolic relaxation (HHR) a natural treatment consists in adopting RK-IMEX schemes, in which the relaxation term is treated by an implicit scheme, while the hyperbolic part is treated explicitly [78, 14]. On the other hand, in hyperbolic systems with parabolic relaxation (HPR), standard RK-IMEX schemes developed for HHR systems are not appropriate, because the characteristic speeds of the hyperbolic term diverge as the relaxation parameter vanishes. Slightly modified IMEX schemes become consistent discretization of the limit diffusive relaxed system, but suffer from the parabolic CFL restriction. In [15, 11, 10] this drawback has been overcome by a penalization method, so that the limit scheme becomes an implicit scheme for the limit diffusive relaxed system.

Furthermore, in [12] a unified RK-IMEX approach has been introduced for systems which may admit both hyperbolic and parabolic relaxation (for example with space dependent relaxation parameter). Thus, this latter approach applies to both HHR and HPR. All these approaches are capable to capture the correct asymptotic limit of the system when $\varepsilon \to 0$, i.e., the schemes are asymptotic preserving (AP) independently of the scaling used.

The organization of the article is as follows: in Section 2 we present an overview to build both exactly well-balanced and well-balanced reconstruction operators and its application to design explicit high-order numerical schemes satisfying this property. Section 3 is devoted to obtain well-balanced implicit methods. We introduce a general procedure to design well-balanced reconstruction operators adapted to implicit methods and a general result is stated showing that well-balanced reconstruction operators lead to well-balanced methods. Section 4 is focused on how the time discretization is performed, including the particular case of implicit first- and second-order well-balanced schemes. Section 4 ends with the semi-implicit case. In Section 5, numerous numerical tests are performed to check well-balanced property of the implicit and semi-implicit numerical methods. Even though the introduced strategy can be used to design arbitrary high-order well-balanced
methods, only first- and second-order methods have been implemented. We consider numerical tests for scalar and systems of balance laws: the transport equation, the Burgers equation with a non-linear source term and the shallow water model with and without Manning friction. Eventually, some conclusions are drawn in Section 6 and possible forthcoming works are also discussed.

2. Preliminaries

As discussed earlier, in previous works, two of the authors introduced a general procedure to design explicit methods satisfying these properties based on the use of reconstructions operators. This general strategy involves nonlinear problems to be solve at every computational cell and time step consisting in finding a stationary solution of (1) with given average in the cell. If the expression of the stationary solutions if available, exactly well-balanced methods can be designed. If it is not the case, one can obtain methods that are well-balanced.

2.1. Exactly well-balanced methods

Remember that, given the set \(\{ \bar{u}_i \} \) of cell-averages of a function \(u \)

\[
\bar{u}_i = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x) \, dx,
\]
or their approximations using a quadrature formula

\[
\bar{u}_i = \sum_{m=1}^{M} \alpha_m u(x_i^m),
\]

where \(x_i^m \) and \(\alpha_m \) are, respectively, the nodes and the weights of the quadrature formula, a reconstruction operator provides approximations of \(u \) at the cells

\[
u(x) \approx P_i(x; \{ \bar{u}_j \}_{j \in S_i}), \quad x \in [x_{i-1/2}, x_{i+1/2}],
\]

where \(x_{i \pm 1/2} \) represent the inter-cells. Here for simplicity we assume that space discretization is uniform, so that the weights do not depend on \(i \), and \(x_i^m = x_{i-1/2} + c_m \Delta x, \quad m = 1, \ldots, M, \) where \(c_m \) denotes the nodes of the quadrature formula in the interval \([0, 1]\). These approximations are obtained by interpolation or approximation techniques from the cell values at the
cells belonging to the stencil of the ith cell: \mathcal{S}_i represents the set of their indexes. MUSCL, ENO, or CWENO are examples of high-order reconstruction operators. It will be assumed from now on that all the cell-averages are approximated using a fixed quadrature formula.

The design of explicit high-order well-balanced numerical methods discussed in [28] is based on the use of reconstruction operators that are well-balanced according to the following definition:

Definition 1. Given a stationary solution u^e of (1), a reconstruction operator $P_i(x)$ is said to be exactly well-balanced for u^e if

$$P_i(x; \{\overline{u}_j^e\}_{j \in \mathcal{S}_i}) = u^e(x), \quad \forall x \in [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \forall i.$$

where \overline{u}_j^e represent the exact cell-averages or the approximate cell-averages obtained by a quadrature formula from the stationary solution u^e.

Since, in general, a standard reconstruction operator is not expected to be well-balanced, the following strategy introduced in [24] is used to obtain a well-balanced operator P_i from a standard one Q_i:

Algorithm 1. Given a family of cell values $\{\overline{u}_i\}$, at every cell $I_i = [x_{i-1/2}, x_{i+1/2}]$:

1. Find, if it is possible, a stationary solution $u_i^e(x)$ of (1) defined in the stencil of cell I_i such that:

$$\sum_{m=1}^{M} \alpha_m u_i^e(x_i^m) = \overline{u}_i.$$

2. Apply the reconstruction operator to the cell values $\{v_j\}_{j \in \mathcal{S}_i}$ given by

$$v_j = \overline{u}_j - \sum_{m=1}^{M} \alpha_m u_i^e(x_j^m)$$

to obtain

$$Q_i(x) = Q_i(x; \{v_j^a\}_{j \in \mathcal{S}_i}).$$

3. Define

$$P_i(x) = u_i^e(x) + Q_i(x).$$
It can be easily proved that the reconstruction operator P_i is exactly well-balanced provided that Q_i is exact for the zero function. Notice that, at every cell, a nonlinear problem has to be solved in the first step consisting in finding a stationary solution in the stencil of the cell with prescribed average in the cell. Therefore, the expression of the stationary solutions either in explicit or implicit form is required.

Once the exactly well-balanced reconstruction operator has been built, the semi-discrete numerical methods writes as follows:

\[
\frac{du_i}{dt} = -\frac{1}{\Delta x} \left(F_{i+1/2}(t) - F_{i-1/2}(t) \right) + \frac{1}{\Delta x} \left(f \left(u_{i+1/2}^{e,t}(x_{i+1/2}) \right) - f \left(u_{i-1/2}^{e,t}(x_{i-1/2}) \right) \right) \\
+ \sum_{m=1}^{M} \alpha_m \left(S(P_t^i(x_i^m)) - S(u_{i}^{e,t}(x_i^m)) \right) H(x_i^m), \forall i,
\]

where

- P_t^i is the well-balanced reconstruction obtained from the cell values \(\{u_i(t)\}\);
- $u_{i}^{e,t}$ is the stationary solution found at the first step of the reconstruction procedure at the ith cell;
- $F_{i+1/2}(t) = \mathbb{F}(u_{i+1/2}^{t,-}, u_{i+1/2}^{t,+})$, where \mathbb{F} is any consistent numerical flux and
 \[u_{i+1/2}^{t,-} = P_t^i(x_{i+1/2}), \quad u_{i+1/2}^{t,+} = P_t^{i+1}(x_{i+1/2}). \]

Notice that in order to use a lighter notation we write $u_i(t)$ in place of $\bar{u}_i(t)$ to denote a semidiscrete approximation of cell average of the solution,

\[\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x, t) \, dx. \]

This numerical method is well-balanced in the sense that, given any stationary solution u^e, the set of cell values \(\{\bar{u}_i^e\}\) is an equilibrium of the ODE system (3): see [28].

6
2.2. Well-balanced methods

When the expression of the stationary solutions in explicit or implicit form is not available, reconstruction operators that are just well-balanced but not exactly well-balanced can be designed following the idea developed in [48, 49, 50]: consider a numerical solver of the ODE system (2) that provides approximations of a stationary solution \(u^e \) at the inter-cells and the quadrature points

\[
 u^e_{i+1/2} \approx u^e(x_{i+1/2}), \quad u^e_{i,m} \approx u^e(x^m_i), \quad m = 1, \ldots, M, \quad \forall i.
\]

Well-balanced reconstruction operators are then defined as follows:

Definition 2. Given a stationary solution \(u^e \) of (1), a reconstruction operator \(P_i(x) \) is said to be well-balanced for \(u^e \) if, for every \(i \):

\[
 P_i(x_{i\pm1/2}; \{u^e_j\}_j \in \mathcal{S}_i) = u^e_{i\pm1/2},
\]

\[
 P_i(x^m_i; \{u^e_j\}_j \in \mathcal{S}_i) = u^e_{i,m}, \quad m = 1, \ldots, M,
\]

where here the cell-averages \(\{\bar{u}^e_i\} \) are given by

\[
 \bar{u}^e_i = \sum_{m=1}^M \alpha_m u^e_{i,m}.
\]

Algorithm 1 is modified as follows to obtain well-balanced reconstruction operators:

Algorithm 2. Given a family of cell values \(\{\bar{u}^e_i\} \), at every cell \(I_i = [x_{i-1/2}, x_{i+1/2}] \):

1. Find, if it is possible, a stationary solution \(u^e_i(x) \) of (1) defined in the stencil of cell \(I_i \) such that:

\[
 \sum_{m=1}^M \alpha_m u^e_{i;i,m} = \bar{u}^e_i,
\]

where

\[
 u^e_{i;i,m} \approx u^e(x^m_i), \quad m = 1, \ldots, M,
\]

are the approximations provided by the selected numerical solver for (2).
2. Apply the reconstruction operator to the cell values \(\{v_j\}_{j \in S_i} \) given by

\[
v_j = \bar{u}_j - \sum_{m=1}^{M} \alpha_m u_{i;j,m}^e
\]

to obtain

\[
Q_i(x) = Q_i(x; \{v_j^n\}_{j \in S_i}),
\]

where

\[
u_{i;j,m}^e \approx u_{i}^e(x_j^m), \quad m = 1, \ldots, M, \quad j \in S_i.
\]

3. Define

\[
\begin{align*}
 u_{i-1/2}^+ &= u_{i-1/2}^e + Q_i(x_{i-1/2}), \\
 u_{i+1/2}^- &= u_{i+1/2}^e + Q_i(x_{i+1/2}), \\
 P_i(x_i^m) &= u_{i;i,m}^e + Q_i(x_i^m), \quad m = 1, \ldots, M,
\end{align*}
\]

where

\[
u_{i;i+1/2}^e \approx u_{i}^e(x_{i+1/2}).
\]

Observe that, in order to implement (3) it is enough to compute the reconstructions at the inter-cells and at the quadrature points.

The first step of the reconstruction procedure consists now of applying a numerical solver to the ODE system (2) to find a solution with prescribed average at a cell. Two different strategies have been developed to solve these problems:

- A control-based approach (see [48, 49]). The nonlinear problems to be solved in the reconstruction procedure are interpreted as control problems, in which the control is the value of the solution at the left extreme point of the stencil. The gradient of the functional is computed on the basis of the adjoint problem. Different gradient-type methods and the Newton’s method are applied to solve the control problems.

- A technique based on RK collocation methods (see [50]). RK collocation methods are used to solve (2) with prescribed average in each cell \(I_i \) and to extend the found stationary solution to the cells belonging to stencil \(S_i \).
Once the well-balanced reconstruction operator has been built, the semi-discrete numerical method writes as follows:

\[
\frac{du_i}{dt} = -\frac{1}{\Delta x} (F_{i+1/2}(t) - F_{i-1/2}(t)) + \frac{1}{\Delta x} \left(f\left(u_{i,i+1/2}^e(t)\right) - f\left(u_{i,i-1/2}^e(t)\right) \right)
\]

\[
+ \sum_{m=1}^{M} \alpha_m \left(S(P_t^l(x_i^m)) - S(u_{i,i,m}^e) \right) H(x_i^m), \forall i,
\]

where now \(u_{i,i\pm1/2}^e, u_{i,i,m}^e\) are the approximations at the inter-cells \(x_{i\pm1/2}\) and the quadrature points \(x_i^m\) of the stationary solution \(u_i^e\) found at the first step of the reconstruction procedure at the \(i\)th cell.

This numerical method is well-balanced in the sense that, given any stationary solution \(u^e\), the set of cell values \(\{u_i^e\}\) given by

\[
u_i^e = \sum_{m=1}^{M} \alpha_m u_{i,m}^e
\]
is an equilibrium of the ODE system (4): see [50].

Observe that (3) is the particular case of (4) corresponding to the exact ODE solver for system (2), i.e.

\[
u_{i,i\pm1/2}^e = u_{i,i+1/2}^e(x_{i+1/2})
\]

\[
u_{i,i,m}^e = u_{i,i+1}^e(x_{m}^m), \quad m = 1, \ldots, M.
\]

Therefore, only the expression of the method (4) will be considered without loss of generality.

2.3. Explicit methods

Explicit high-order well-balanced numerical methods are then obtained by applying an ODE solver (usually a TVD RK method) to the ODE systems (3) or (4).

3. Implicit methods

Although in principle implicit high-order well-balanced methods can be obtained by applying implicit ODE solvers to (3) or (4), in practice the well-balanced reconstruction of the unknown solution \(u_{n+1}\) would lead to complex
nonlinear systems that may be costly to solve. To avoid this we look for a solution of the ODE system in $[t^n, t^{n+1}]$ of the form $u_i(t) = u_i^n + u_i^f(t)$, and adopt besides the standard reconstruction operator Q, a new reconstruction \tilde{Q}, which will act on the perturbation u_i^f as described below. Once the approximations at time t^n, $\{u_i^n\}$, have been computed, in order to update them we proceed as follows:

- First, the well-balanced reconstruction procedure is applied to $\{u_i^n\}$ to obtain:
 \[P_i^n(x) = u_i^{e,n}(x) + Q_i(x; \{v_j^n\}_{j \in S_i}), \]
 where $u_i^{e,n}(x)$ is the stationary solution found at the first step of the reconstruction procedure at the ith cell.

- Next we consider the following ODE system in the time interval $[t^n, t^{n+1}]$:
 \[\frac{du_i^f}{dt} = -\frac{1}{\Delta x} \left(F_{i+1/2}(t) - F_{i-1/2}(t) \right) + \frac{1}{\Delta x} \left(f\left(u_i^{e,n}_{i;i+1/2} \right) - f\left(u_i^{e,n}_{i;i-1/2} \right) \right) \]
 \[+ \sum_{m=1}^{M} \alpha_m \left(S(P_i^t(x_i^m)) - S(u_i^{e,n}_{i;i,m}) \right) H_x(x_i^m), \forall i, \]
 with initial condition
 \[u_i^f(t^n) = 0, \forall i. \]

Here
 \[P_i^t(x) = P_i^n(x) + \tilde{Q}_i(x; \{u_j^f\}_{j \in \tilde{S}_i}), \]
and
 \[F_{i+1/2}(t) = F(u_i^{l,-}_{i+1/2}, u_i^{l,+}_{i+1/2}), \]
where
 \[u_i^{l,-}_{i+1/2} = P_i^t(x_{i+1/2}), \quad u_i^{l,+}_{i+1/2} = P_i^t(x_{i+1/2}). \]

- Define:
 \[u_i^{n+1} = u_i^n + u_i^f(t^{n+1}). \]

Observe that, although
 \[u_i(t) = u_i^n + u_i^f(t), \quad t \in [t^n, t^{n+1}] \]
formally solves (4), the reconstruction P^t_i is not the same as the one in the previous section: while there one had

$$P^t_i(x) = u^{e,t}_i(x) + Q_i(x; \{v_j\}_{j \in \tilde{S}_i}),$$

now,

$$P^t_i(x) = u^{e,n}_i(x) + Q_i(x; \{v^n_j\}_{j \in S_i}) + \tilde{Q}_i(x; \{u^f_j(t)\}_{j \in \tilde{S}_i}).$$

The main differences are the following:

- to compute P^t_i the stationary solution $u^{e,n}_i$ is used instead of $u^{e,t}_i$;
- the reconstruction operator \tilde{Q}_i will be in practice easier and cheaper to compute than Q_i: in particular, the smoothness indicators obtained to compute Q_i at time t^n may be used to compute \tilde{Q}_i. We shall require that \tilde{Q}_i maintains null states and its order of accuracy is p.

The description of the fully discrete schemes will be completed in the next section, by specifying how to solve the ODE system (5-9).

Some properties of the numerical schemes do not depend on the detail of the particular scheme that is adopted for the numerical solution of system (5-9), therefore we shall discuss them in this section.

3.1. Well-balanced property

Here we state two results concerning the well-balanced properties of the schemes described at the beginning of the section.

Theorem 1. Given a stationary solution u^e of (1), let us suppose that, at every cell, at every time step, P^n_i is a well-balanced reconstruction operator. Then, the numerical method (9) is well-balanced for u^e, in the sense that, if the initial condition is given by

$$u^0_i = \sum_{m=1}^M \alpha_m u^e_{i,m},$$

then

$$u^n_i = u^0_i$$

for every n and every i.
The proof is straightforward: it is enough to check that at every cell, at every time step, \(u_f^t(t) \equiv 0 \) is the solution of the Cauchy problem (5). As a corollary we have:

Theorem 2. Given a stationary solution \(u^e \) of (1), let us suppose that, at every cell, at every time step, \(P^n_i \) is an exactly well-balanced reconstruction operator. Then, the numerical method (9) is exactly well-balanced for \(u^e \), in the sense that, if the initial condition is given by

\[
u^e_0 = \sum_{m=1}^{M} \alpha_m u^e(x^m_i),\]

then

\[
u^e_n = \nu^e_0 \]

for every \(n \) and every \(i \).

4. Time discretization

This section is devoted to time discretization. If system (5-9) is not stiff, i.e. if accuracy and stability restrictions on the time step \(\Delta t \) are of the same order of magnitude, then one can adopt explicit schemes. This is often the case for hyperbolic systems of balance laws if one is interested in resolving all the waves of the system, i.e. if all the signals transported by the various waves are not negligible, and if the time scales associated to the right hand side are not too small. In such cases one can adopt explicit schemes such as explicit Runge-Kutta of multistep methods. In particular, strongly stability preserving schemes are generally adopted for the numerical solution of hyperbolic systems of balance laws, since they prevent formation of spurious oscillations due to time discretization (see [54]). The literature on well-balanced schemes based on explicit schemes is too vast to mention it here. We just recall the following review papers [28, 85, 6, 46, 56, 55, 71, 52, 51, 53, 45, 7, 8, 41, 40, 87, 81, 3, 17, 27, 18, 69, 60, 72, 68, 38, 89, 21, 36, 23, 24, 76, 77, 86, 5, 65, 92, 91, 79, 75, 20, 33, 58, 84, 1, 83]. For this reason in this paper we do not consider WB schemes based on explicit time discretization methods. The choice of the method adopted for time discretization depends on the problem we want to solve. We shall consider three different situations:

1. only a source term or part of it is stiff while the hyperbolic term is non stiff;
2. the source or part of it and some part of the hyperbolic term is stiff;
3. both the hyperbolic term and the source are stiff and require implicit solver.

Conceptually, the simplest case is the third one, which requires an implicit treatment of both source and the hyperbolic term, so this is the case we start with. In such case one could adopt an implicit scheme for the treatment of (5). Most commonly used implicit Runge-Kutta schemes are the so called diagonally implicit schemes (DIRK), and in particular singly diagonally implicit which are described by the following Butcher tableau

\[
\begin{array}{c|cccc}
\gamma & \gamma & 0 & 0 & \ldots & 0 \\
0 & a_{2,1} & \gamma & 0 & \ldots & 0 \\
0 & a_{3,1} & a_{3,2} & \gamma & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & a_{s-1,1} & a_{s-1,2} & a_{s,3} & \ldots & \gamma \\
0 & a_{s-1,1} & a_{s-1,2} & a_{s,3} & \ldots & \gamma \\
\end{array}
\]

\[(10)\]

will be applied to solve the Cauchy problems satisfied by the time fluctuations \(u_i^f(t)\):

\[
u_i^{f,k} = \Delta t \sum_{l=1}^{k-1} a_{k,l} L_i^l + \Delta t \gamma L_i^k, \quad k = 1, \ldots, s,
\]

\[
u_i^{f,n+1} = u_i^{f,s},
\]

where

\[
L_i^k = -\frac{1}{\Delta x} \left(F_{i+1/2}^k - F_{i-1/2}^k \right) + \frac{1}{\Delta x} \left(f(u_{i;i+1/2}^e) - f(u_{i;i-1/2}^e) \right)
+ \sum_{m=1}^{M} \alpha_m \left(S(P_i^k(x_i^m)) - S(u_{i;i;i,m}^e) \right) H_x(x_i^m), \quad k = 1, \ldots, s
\]

\[(11)\]

with obvious notation, that can be written as well in the form:

\[
u_i^{f,k} = \sum_{l=1}^{k-1} \gamma_{k,l} u_i^{f,l} + \gamma \Delta t L_i^k, \quad k = 1, \ldots, s,
\]

\[
u_i^{f,n+1} = u_i^{f,s},
\]

13
for some coefficients $\gamma_{k,l}$. The choice of the particular DIRK scheme depends on the problem. If the systems we want to solve are very stiff, then it is advisable to adopt an L-stable scheme, which is the type of schemes we shall use in this paper.

4.1. First-order schemes

The backward Euler method is used to discretize in time. The system for the time fluctuations writes thus as follows:

$$u^{f,n+1}_i = -\frac{\Delta t}{\Delta x} \left(F^n_{i+1/2} - F^n_{i-1/2} \right) + \frac{1}{\Delta x} \left(f\left(u^{e,n}_{i+1/2} \right) - f\left(u^{e,n}_{i-1/2} \right) \right) + \Delta t \left(S(P^n_{i+1}(x_i)) - S(u^{e,n}_{i;i}) \right) H(x_i),$$

(12)

where the midpoint rule has been used to approximate the integrals. The reconstruction operators Q_i and \tilde{Q}_i are the trivial piecewise constant ones so that:

$$P^n_i(x) = u^{e,n}_i(x), \quad P^{n+1}_i = u^{e,n}_i(x) + u^{f,n+1}_i,$$

and therefore the reconstructed states are defined as follows:

$$\begin{cases}
 u^{n+1,-}_{i+1/2} = u^{e,n}_{i+1/2} + u^{f,n+1}_{i} = u^{n,-}_{i+1/2} + u^{f,n+1}_{i}, \\
 u^{n+1,+}_{i+1/2} = u^{e,n}_{i+1/2} + u^{f,n+1}_{i+1} = u^{n,+}_{i+1/2} + u^{f,n+1}_{i+1}.
\end{cases}$$

Once System (12) has been solved, the cell-averages are updated as follows

$$u^{n+1}_i = u^n_i + u^{f,n+1}_i.$$

Notice that, except for the case of a linear problem, the system to be solved to compute the time fluctuations $u^{f,n+1}_i$, (12), is nonlinear: a numerical method such as a fixed-point algorithm or the Newton’s method will be applied to solve them.

4.2. Second-order schemes

The second-order implicit Runge-Kutta method whose Butcher tableau is

$$\begin{array}{c|cc}
\gamma & \gamma & 0 \\
1 & 1 - \gamma & \gamma \\
1 - \gamma & \gamma,
\end{array}$$

(13)
where $\gamma = 1 - \frac{1}{\sqrt{2}}$, will be used now for the time discretization. Since the scheme is stiffly accurate, i.e. $a_{s,i} = b_{i,i} = 1, \ldots, s$, then the numerical solution coincides with the last stage value. Then, the fully discrete numerical method is as follows:

\begin{align}
 u_{i}^{f,1} &= \Delta t \gamma L_{i}^{1}, \\
 u_{i}^{f,2} &= \Delta t (1 - \gamma) L_{i}^{1} + \Delta t \gamma L_{i}^{2}, \\
 u_{i}^{f,n+1} &= u_{i}^{f,2},
\end{align}

where

\begin{align}
 L_{k}^{i} = -\frac{1}{\Delta x} \left(F_{i+1/2}^{k} - F_{i-1/2}^{k} \right) + \frac{1}{\Delta x} \left(f_{i+1/2}^{e,n} - f_{i-1/2}^{e,n} \right) \\
 &\quad + \left(S(P_{k}^{i}(x_{i})) - S(u_{i;i}^{e,n}) \right) H_{x}(x_{i}), \quad k = 1, 2.
\end{align}

Again, the midpoint rule is applied to approximate the integrals and $u_{i}^{e,n}(x)$ is the stationary solution such that $u_{i}^{e,n}(x_{i}) \approx u_{i;i}^{e,n} = u_{i}^{n}$.

Since

$$L_{i}^{1} = \frac{u_{i}^{f,1}}{\Delta t \gamma},$$

(14) can be equivalently written as

\begin{align}
 u_{i}^{f,1} &= \Delta t \gamma L_{i}^{1}, \\
 u_{i}^{f,n+1} &= \frac{(1 - \gamma)}{\gamma} u_{i}^{f,1} + \Delta t \gamma L_{i}^{n+1},
\end{align}

where the superindex 2 has been replaced by $n + 1$, since $u_{i}^{f,n+1} = u_{i}^{f,2}$.

The well-balanced reconstruction operator $P_{i}^{n}(x)$ is computed on the basis of a MUSCL-type reconstruction operator using three-point stencils

$$S_{i} = \{i - 1, i, i + 1\}$$

as follows:

Algorithm 3. Given the approximations $\{u_{i}^{n}\}$ at time t^{n}:

1. Find, if possible, a stationary solution $u_{i}^{e,n}(x)$ such that

$$u_{i;i}^{e,n} = u_{i}^{n},$$

where

$$u_{i;i}^{e,n} \approx u_{i}^{e}(x_{i}).$$
2. Apply the second-order reconstruction operator Q_i to $\{v^n_j\}_{j \in S_i}$, given by

$$v^n_j = u^n_j - u^{e,n}_{i,j}, \quad j \in S_i,$$

where

$$u^{e,n}_{i,j} \approx u^e_i(x_j), \quad j \in S_i,$$

to obtain

$$Q^n_i(x) = Q^n_i(x; \{v^n_j\}_{j \in S_i}) = \Delta_i v^n(x - x_i).$$

Here, $\Delta_i v^n$ is a slope limiter, such as the minmod limiter,

$$\Delta_i v^n = \minmod \left(\frac{v^n_{i+1} - v^n_i}{\Delta x}, \frac{v^n_i - v^n_{i-1}}{\Delta x} \right),$$

where

$$\minmod(a, b) = \begin{cases} \min(a, b) & \text{if } a > 0, b > 0, \\ \max(a, b) & \text{if } a < 0, b < 0, \\ 0 & \text{otherwise}, \end{cases}$$

or the avg limiter:

$$\Delta_i v^n = \avg \left(\frac{v^n_{i+1} - v^n_i}{\Delta x}, \frac{v^n_i - v^n_{i-1}}{\Delta x} \right),$$

where

$$\avg(a, b) = \begin{cases} \frac{|a| + |b|}{|a| + |b|} & \text{if } |a| + |b| > 0, \\ 0 & \text{otherwise}. \end{cases}$$

3. Define

$$\begin{align*}
 u^{n,+}_{i-1/2} &= u^{e,n}_{i-1/2} + Q^n_i(x_{i-1/2}) = u^{e,n}_{i;i-1/2} - \frac{1}{2} \Delta_i v^n, \\
 u^{n,-}_{i+1/2} &= u^{e,n}_{i+1/2} + Q^n_i(x_{i+1/2}) = u^{e,n}_{i;i+1/2} + \frac{1}{2} \Delta_i v^n, \\
 P^n_i(x_i) &= u^{e,n}_{i;i} + Q^n_i(x_i) = u^{e,n}_{i;i},
\end{align*}$$

where

$$u^{e,n}_{i;i \pm 1/2} \approx u^e_i(x_{i \pm 1/2}).$$

Finally, two different choices for \tilde{Q}^k_i are considered: the trivial piecewise constant reconstruction and a piecewise linear one that uses the slope limiters of P^n_i.

4.2.1. Piecewise constant reconstruction

In this case, \(\tilde{S}_i = \{i\} \) and the reconstruction operator is given by

\[
\tilde{Q}_i^k(x) = u_i^f,k.
\]

With this definition one has:

\[
\begin{align*}
\frac{u_{i+1/2}^k - u_{i+1/2}^n}{\Delta t} &= \frac{u_{i+1/2}^n - u_{i+1/2}^f}{\Delta t} + \tilde{Q}_i^k(x_{i-1/2}) = u_i^f,k, \\
\frac{u_{i-1/2}^{k+} - u_{i-1/2}^n}{\Delta t} &= \frac{u_{i-1/2}^n - u_{i-1/2}^f}{\Delta t} + \tilde{Q}_i^k(x_{i+1/2}) = u_i^f,k, \\
P_i^k(x_i) &= P_i^n(x_i) + \tilde{Q}_i^k(x_i) = u_i^n + u_i^f,k.
\end{align*}
\]

Theorem 3. Let us suppose that \(\tilde{Q}_i \) is the piecewise constant reconstruction operator. Then

\[
P_i^t(x) = P_i^n(x) + \tilde{Q}_i
\]

is a second-order reconstruction operator.

Proof. Given a function \(u(x,t) \), we consider the reconstruction operator

\[
P_i^t(x) = P_i^n(x) + \bar{u}_i(t) - \bar{u}_i^n,
\]

where \(\bar{u}_i(t) \) and \(\bar{u}_i^n \) represent the cell-averages of \(u \) at the \(i \)-th cell at times \(t \) and \(t^n \), respectively, and \(P_i^n \) is a second-order well-balanced reconstruction operator applied to \(\{\bar{u}_i^n\} \).

Let us see that \(P_i^t \) is a second-order reconstruction operator: given \(x \in I_i \) and assuming that \(\Delta t = O(\Delta x) \) we have

\[
\begin{align*}
P_i^t(x) &= P_i^n(x) + \bar{u}_i(t) - \bar{u}_i^n \\
&= u(x,t^n) + u(x_i,t) - u(x_i,t^n) + O(\Delta x^2) \\
&= u(x,t^n) + u(x,t^n) + \partial_x u(x,t^n)(x_i - x) + \partial_t u(x,t^n)(t - t^n) \\
&- u(x,t^n) - \partial_x u(x,t^n)(x_i - x) + O(\Delta x^2) \\
&= u(x,t^n) + \partial_t u(x,t^n)(t - t^n) + O(\Delta x^2) \\
&= u(x,t) + O(\Delta x^2).
\end{align*}
\]

Then, \(P_i^t \) is second-order accurate. \(\square \)
4.2.2. Piecewise linear reconstruction operator

In this case, \(\tilde{S}_i = S_i = \{i - 1, i, i + 1\} \) and the reconstruction operator is given by

\[
\tilde{Q}_i^k(x) = u_i^f, k + \Delta u_i^f, k(x - x_i),
\]

where

\[
\Delta u_i^f, k = \varphi_i^{n, L} \frac{(u_i^{f, k} - u_{i-1}^{f, k})}{\Delta x} + \varphi_i^{n, R} \frac{(u_i^{f, k} - u_{i+1}^{f, k})}{\Delta x}.
\]

Here, \(\varphi_i^{n, L} \) and \(\varphi_i^{n, R} \) are two slope limiters computed using the approximations \(u_i^n \) at time \(t^n \). For instance, if the avg limiter is chosen, one has:

\[
\varphi_i^{n, L} = \frac{|d_R|}{|d_L| + |d_R|}, \quad \varphi_i^{n, R} = \frac{|d_L|}{|d_L| + |d_R|},
\]

where

\[
d_L = u_i^n - u_{i-1}^n, \quad d_R = u_{i+1}^n - u_i^n.
\]

In this case we have: With this definition one has:

\[
u_{i+1/2}^{k,-} = u_{i+1/2}^{n,-} + \tilde{Q}_i^k(x_{i-1/2}), \\
u_{i-1/2}^{k,+} = u_{i-1/2}^{n,+} + \tilde{Q}_i^k(x_{i+1/2}), \\
P_i^k(x_i) = P_i^n(x_i) + \tilde{Q}_i^k(x_i) = u_i^{e,n} + u_i^f, k,
\]

where

\[
\tilde{Q}_i^k(x_{i-1/2}) = u_i^{f, k} - \frac{1}{2} \varphi_i^{n, L} \left(u_i^{f, k} - u_{i-1}^{f, k} \right) - \frac{1}{2} \varphi_i^{n, R} \left(u_{i+1}^{f, k} - u_i^{f, k} \right),
\]

\[
\tilde{Q}_i^k(x_{i+1/2}) = u_i^{f, k} + \frac{1}{2} \varphi_i^{n, L} \left(u_i^{f, k} - u_{i-1}^{f, k} \right) + \frac{1}{2} \varphi_i^{n, R} \left(u_{i+1}^{f, k} - u_i^{f, k} \right).
\]

4.3. Semi-implicit methods

If not all terms of the equation are stiff, then it is not necessary to use a fully implicit scheme for the whole system.

Let us suppose, for example, that the problem writes as follows:

\[
u_t + f^1(u)_x + f^2(u)_x = S^1(u)H_x + S^2(u),
\]

where \(H \) is a known function, with \(f^1 \) and \(S^1 \) non stiff, and \(f^2 \) and \(S^2 \) stiff. Then the problem can be more efficiently treated by adopting IMEX methods, in which the non stiff terms are treated explicitly, while the stiff
terms are treated implicitly. We select numerical fluxes $F^i(u_l, u_r)$, $i = 1, 2$ consistent with f^i, $i = 1, 2$ and an IMEX method with Butcher tableaux:

$$
\begin{array}{c|cccccccc}
0 & 0 & 0 & 0 & \cdots & 0 & \gamma & \gamma & 0 & \cdots & 0 \\
\tilde{c}_2 & \tilde{a}_{2,1} & 0 & 0 & \cdots & 0 & c_2 & a_{2,1} & \gamma & 0 & \cdots & 0 \\
\tilde{c}_3 & \tilde{a}_{3,1} & \tilde{a}_{3,2} & 0 & \cdots & 0 & c_3 & a_{3,1} & a_{3,2} & \gamma & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\tilde{c}_s & \tilde{a}_{s,1} & \tilde{a}_{s,2} & \tilde{a}_{s,3} & \cdots & 0 & 1 & a_{s,1} & a_{s,2} & a_{s,3} & \cdots & \gamma \\
\hline
b_1 & b_2 & b_3 & \cdots & b_s & a_{s,1} & a_{s,2} & a_{s,3} & \cdots & \gamma
\end{array}
$$

(26)

The numerical method writes then as follows:

$$
\begin{align*}
\begin{array}{l}
u_i^{f,k} = \Delta t \sum_{l=1}^{k-1} \tilde{a}_{k,l} L_i^{1,l} + \Delta t \sum_{l=1}^{k-1} a_{k,l} L_i^{2,l} + \Delta t \gamma L_i^{2,k}, \quad k = 1, \ldots, s, \\
u_i^{f,n+1} = \Delta t \sum_{l=1}^{s} b_l L_i^{1,l} + \Delta t \sum_{l=1}^{s-1} a_{s,l} L_i^{2,l} + \Delta t \gamma L_i^{2,s},
\end{array}
\end{align*}
$$

where

$$
L_i^{1,k} = -\frac{1}{\Delta x} \left(F_{i+1/2}^{1,k} - F_{i-1/2}^{1,k} \right) + \frac{1}{\Delta x} \left(f^1(u_{i+1/2}^{e,n}) - f^1(u_{i-1/2}^{e,n}) \right) + \sum_{m=1}^{M} \alpha_m \left(S^1(P_k^m(x_i^m)) - S^1(u_{i,m}^{e,n}) \right) H_k(x_i^m);
$$

$$
L_i^{2,k} = -\frac{1}{\Delta x} \left(F_{i+1/2}^{2,k} - F_{i-1/2}^{2,k} \right) + \frac{1}{\Delta x} \left(f^2(u_{i+1/2}^{e,n}) - f^2(u_{i-1/2}^{e,n}) \right) + \sum_{m=1}^{M} \alpha_m \left(S^2(P_k^m(x_i^m)) - S^2(u_{i,m}^{e,n}) \right);
$$

(27)

for $k = 1, \ldots, s$. For instance, if the second order IMEX method with tableaux

$$
\begin{array}{c|cccc}
0 & 0 & 0 & \gamma & \gamma \\
\frac{1}{2\gamma} & \frac{1}{2\gamma} & 0 & 1 & 1 - \gamma & \gamma \\
\frac{1}{1 - \gamma} & \gamma & \frac{1}{1 - \gamma} & \gamma
\end{array}
$$

(28)

with $\gamma = (2 - \sqrt{2})/2$ is selected, the numerical method writes as follows:

$$
\begin{align*}
u_i^{f,1} &= \Delta t \gamma L_i^{2,1}, \\
u_i^{f,2} &= \Delta t \frac{L_i^{1,1} + \Delta t(1 - \gamma)L_i^{2,1} + \Delta t \gamma L_i^{2,2}}, \\
u_i^{f,n+1} &= \Delta t \left((1 - \gamma)L_i^{1,1} + \gamma L_i^{1,2} + (1 - \gamma)L_i^{2,1} + \gamma L_i^{2,2} \right),
\end{align*}
$$

19
or, equivalently,

\[
\begin{align*}
 u_i^{f,1} &= \Delta t \gamma L_i^{2,1}, \\
 u_i^{f,2} &= \frac{\Delta t}{2 \gamma} L_i^{1,1} + \frac{1-\gamma}{\gamma} u_i^{f,1} + \Delta t \gamma L_i^{2,2}, \\
 u_i^{f,n+1} &= u_i^{f,2} + \Delta t \left(1 - \frac{1}{2 \gamma}\right) L_i^{1,1} + \gamma \Delta t L_i^{1,2}.
\end{align*}
\]

5. Numerical tests

The following acronyms will be used in this section to denote the different methods considered:

- **EXWBM\(_p\)**: explicit well-balanced numerical method of order \(p\) where the well-balanced reconstruction operator is based on RK collocation methods.

- **IEWBM\(_p\)**: implicit exactly well-balanced numerical method of order \(p\).

- **IWBM\(_p\)**: implicit well-balanced numerical method of order \(p\) where the well-balanced reconstruction operator is based on RK collocation methods.

- **SIEWBM\(_p\)**: semi-implicit exactly well-balanced numerical method of order \(p\).

- **SIWBM\(_p\)**: semi-implicit well-balanced numerical method of order \(p\) where the well-balanced reconstruction operator is based on RK collocation methods.

Although in principle the methodology introduced here can be used to design high-order well-balanced implicit or semi-implicit numerical methods, we have only implemented so far first- and second-order methods. The midpoint rule is considered to approximate the integrals and 1-stage RK collocation methods are applied to obtain the discrete stationary solutions and to solve the local nonlinear problems in the first step of the well-balanced reconstruction procedure.
5.1. Transport equation

Let us consider the linear transport equation
\[u_t + cu_x = \alpha u, \quad (29) \]
where \(c, \alpha \in \mathbb{R} \). The stationary solutions of (29) are the 1-parameter family:
\[u^e(x) = Ce^{\frac{\alpha}{c}x}, \quad C \in \mathbb{R}. \]
Therefore, given a family of cell averages \(\{u^n_i\} \), and considering that cell-averages and pointwise values of a smooth function at cell center agree to second-order in \(\Delta x \), the stationary solution \(u^{e,n}_i(x) \) such that \(u^{e,n}_i(x_i) = u^n_i \) is
\[u^{e,n}_i(x) = u^n_i e^{\frac{\alpha}{c}(x-x_i)}. \]
Exactly well-balanced methods will be considered. The Rusanov numerical flux
\[\mathbb{F}(u, v) = \frac{c}{2}(u + v) - \frac{k}{2}(v - u), \]
is considered, with \(k = |c| \).

5.1.1. First-order method

In the case of the first-order scheme, one has
\[
F^{n+1}_{i+1/2} = \frac{c}{2} \left(u^{e,n}_i(x_{i+1/2}) + u^{f,n+1}_i + u^{e,n}_{i+1}(x_{i+1/2}) + u^{f,n+1}_{i+1} \right) \\
- \frac{k}{2} \left(u^{e,n}_{i+1}(x_{i+1/2}) + u^{f,n+1}_{i+1} - u^{e,n}_i(x_{i+1/2}) - u^{f,n+1}_i \right),
\]
which leads to the following expression of (12):
\[
u^{f,n+1}_i = -\frac{\Delta t}{\Delta x} \left(\frac{c}{2} \left(u^{f,n+1}_i - u^{f,n-1}_i \right) - \frac{k}{2} \left(u^{f,n+1}_i - 2u^{f,n+1}_i + u^{f,n-1}_i \right) \right) \\
- \frac{\Delta t}{\Delta x} \left(\mathbb{F} \left(u^{e,n}_i(x_{i+1/2}), u^{e,n}_{i+1}(x_{i+1/2}) \right) - \mathbb{F} \left(u^{e,n}_{i-1}(x_{i-1/2}), u^{e,n}_{i-1}(x_{i-1/2}) \right) \right) \\
+ \frac{\Delta t}{\Delta x} \left(f \left(u^{e,n}_i(x_{i+1/2}) \right) - f \left(u^{e,n}_i(x_{i-1/2}) \right) \right) + \alpha \Delta t \left(u^{e,n}_i(x_i) + u^{f,n+1}_i - u^{e,n}_i(x_i) \right).
\]
Since
\[\mathbb{F} \left(u^{e,n}_i(x_{i+1/2}), u^{e,n}_{i+1}(x_{i+1/2}) \right) = \mathbb{F} \left(u^{n-}_i(x_{i+1/2}), u^{n+}_i(x_{i+1/2}) \right) = F^n_{i+1/2}, \]
the linear system for the time fluctuations for the first-order case is:

\[u_i^{f,n+1} + \frac{\Delta t}{\Delta x} \left(\frac{c}{2} \left(u_{i+1}^{f,n+1} - u_{i-1}^{f,n+1} \right) - \frac{k}{2} \left(u_{i+1}^{f,n+1} - 2u_i^{f,n+1} + u_{i-1}^{f,n+1} \right) \right) - \alpha \Delta t u_i^{f,n+1} = \]

\[-\frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) + \frac{\Delta t}{\Delta x} \left(f \left(u_i^{e,n}(x_{i+1/2}) \right) - f \left(u_i^{e,n}(x_{i-1/2}) \right) \right). \]

If boundary conditions are neglected, a linear system has to be solved whose matrix is tridiagonal with coefficients

\[d_0 = 1 + \lambda k - \alpha \Delta t, \quad d_{-1} = -\frac{\lambda}{2}(c + k), \quad d_1 = -\frac{\lambda}{2}(-c + k), \]

in the main, the lower, and the upper diagonals respectively, where

\[\lambda = \frac{\Delta t}{\Delta x}. \]

5.1.2. Second-order methods

The system of equations for \(u_i^{f,1} \) is as follows:

\[u_i^{f,1} = -\gamma \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^1 - F_{i-1/2}^1 \right) + \frac{\gamma \Delta t}{\Delta x} \left(f \left(u_i^{e,n}(x_{i+1/2}) \right) - f \left(u_i^{e,n}(x_{i-1/2}) \right) \right) + \gamma \Delta t \left(u_i^{e,n}(x_i) + u_i^{f,1} - u_i^{e,n}(x_i) \right). \]

If the piecewise constant reconstruction \(\tilde{Q}_i^k \) described in Subsection 4.2.1 is selected, the expressions of the numerical flux is as follows:

\[F_{i+1/2}^1 = \frac{c}{2} \left(u_i^{n,-} + u_i^{f,k} + u_i^{n,+} + u_{i+1/2}^{f,k} \right) - \frac{k}{2} \left(u_i^{n,+} + u_i^{f,k} - u_i^{n,-} - u_{i+1/2}^{f,k} \right), \]

and the expression of the numerical method is as follows:

\[u_i^{f,1} + \gamma \frac{\Delta t}{\Delta x} \frac{c}{2} \left(u_{i+1}^{f,1} - u_{i-1}^{f,1} \right) - \gamma \frac{\Delta t}{2 \Delta x} \left(u_{i+1}^{f,1} - 2u_i^{f,1} + u_{i-1}^{f,1} \right) = \]

\[-\gamma \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) + \gamma \frac{\Delta t}{\Delta x} \left(f \left(u_i^{e,n}(x_{i+1/2}) \right) - f \left(u_i^{e,n}(x_{i-1/2}) \right) \right). \]

\[u_i^{f,n+1} + \gamma \frac{\Delta t}{\Delta x} \frac{c}{2} \left(u_{i+1}^{f,n+1} - u_{i-1}^{f,n+1} \right) - \gamma \frac{\Delta t}{2 \Delta x} \left(u_{i+1}^{f,n+1} - 2u_i^{f,n+1} + u_{i-1}^{f,n+1} \right) = \]

\[-\gamma \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) + \gamma \frac{\Delta t}{\Delta x} \left(f \left(u_i^{e,n}(x_{i+1/2}) \right) - f \left(u_i^{e,n}(x_{i-1/2}) \right) \right) + \frac{1 - \gamma}{\gamma} u_i^{f,1}. \]
5.1.3. Test 1: stationary solution

If, again, boundary conditions are neglected, two linear systems have to be solved with the same tridiagonal matrix whose coefficients are now

\[d_0 = 1 + \gamma \lambda k - \gamma \alpha \Delta t, \quad d_{-1} = -\frac{\gamma \lambda}{2}(c + k), \quad d_1 = -\frac{\gamma \lambda}{2}(-c + k). \]

If we consider now the piecewise linear reconstruction described in Subsection 4.2.2, the implementation of the numerical method (14) leads to solve the following linear systems with pentadiagonal matrices:

\[
\begin{align*}
\left[1 - \gamma \alpha \Delta t + \frac{\gamma \Delta t c}{\Delta x} \left(\varphi_i^{n,L} - \varphi_i^{n,R} + \frac{1}{2} \left(\varphi_{i+1}^{n,L} - \varphi_{i-1}^{n,R} \right) \right) + \frac{\gamma \Delta t k}{\Delta x} \left(2 - \frac{1}{2} \left(\varphi_{i+1}^{n,L} + \varphi_{i-1}^{n,R} \right) \right) \right] \\
+ u_{i+1}^{f,1} \left[\frac{\gamma \Delta t c}{\Delta x} \left(1 + \varphi_i^{n,R} + \frac{1}{2} \left(\varphi_{i+1}^{n,R} - \varphi_{i+1}^{n,L} \right) \right) - \frac{\gamma \Delta t k}{\Delta x} \left(1 + \frac{1}{2} \left(\varphi_{i+1}^{n,R} - \varphi_{i+1}^{n,L} \right) \right) \right] \\
+ u_{i-1}^{f,1} \left[\frac{\gamma \Delta t c}{\Delta x} \left(-1 - \varphi_i^{n,L} + \frac{1}{2} \left(\varphi_{i-1}^{n,R} - \varphi_{i-1}^{n,L} \right) \right) + \frac{\gamma \Delta t k}{\Delta x} \left(-1 + \frac{1}{2} \left(\varphi_{i-1}^{n,R} - \varphi_{i-1}^{n,L} \right) \right) \right] \\
+ u_{i+2}^{f,1} \left[\frac{\gamma \Delta t c}{\Delta x} \varphi_{i+1}^{n,R} - c \right] + u_{i-2}^{f,1} \frac{\gamma \Delta t k + c}{4} \\
= -\frac{\gamma \Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) + \frac{\gamma \Delta t}{\Delta x} \left(f \left(u_i^{e,n}(x_{i+1/2}) \right) - f \left(u_i^{e,n}(x_{i-1/2}) \right) \right).
\end{align*}
\]

\[
\begin{align*}
\left[1 - \gamma \alpha \Delta t + \frac{\gamma \Delta t c}{\Delta x} \left(\varphi_i^{n,L} - \varphi_i^{n,R} + \frac{1}{2} \left(\varphi_{i+1}^{n,L} - \varphi_{i-1}^{n,R} \right) \right) + \frac{\gamma \Delta t k}{\Delta x} \left(2 - \frac{1}{2} \left(\varphi_{i+1}^{n,L} + \varphi_{i-1}^{n,R} \right) \right) \right] \\
+ u_{i+1}^{f,n+1} \left[\frac{\gamma \Delta t c}{\Delta x} \left(1 + \varphi_i^{n,R} + \frac{1}{2} \left(\varphi_{i+1}^{n,R} - \varphi_{i+1}^{n,L} \right) \right) - \frac{\gamma \Delta t k}{\Delta x} \left(1 + \frac{1}{2} \left(\varphi_{i+1}^{n,R} - \varphi_{i+1}^{n,L} \right) \right) \right] \\
+ u_{i-1}^{f,n+1} \left[\frac{\gamma \Delta t c}{\Delta x} \left(-1 - \varphi_i^{n,L} + \frac{1}{2} \left(\varphi_{i-1}^{n,R} - \varphi_{i-1}^{n,L} \right) \right) + \frac{\gamma \Delta t k}{\Delta x} \left(-1 + \frac{1}{2} \left(\varphi_{i-1}^{n,R} - \varphi_{i-1}^{n,L} \right) \right) \right] \\
+ u_{i+2}^{f,n+1} \left[\frac{\gamma \Delta t c}{\Delta x} \varphi_{i+1}^{n,R} - c \right] + u_{i-2}^{f,n+1} \frac{\gamma \Delta t k + c}{4} \\
= -\frac{\gamma \Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) + \frac{\gamma \Delta t}{\Delta x} \left(f \left(u_i^{e,n}(x_{i+1/2}) \right) - f \left(u_i^{e,n}(x_{i-1/2}) \right) \right) + \frac{1 - \gamma}{\gamma} u_i^{f,1}.
\end{align*}
\]

5.1.3. Test 1: stationary solution

Let us consider the space interval [0, 2] and the time interval [0, 1], \(\alpha = 1 \) and \(c = 1 \). The CFL parameter is set to 2. In order to check the well-balanced property, we consider the stationary solution of (29)

\[u_0(x) = e^x \]

as initial condition. \(L^1 \)-errors between the initial and final cell-averages have been computed for IEWBMp, \(p = 1, 2 \), using a 200-cell mesh (see Table 1).
Table 1: Transport equation: Test 1. L^1-errors at $t = 1$ for IEWBM1 and IEWBM2 with piecewise constant (PWCR) or piecewise linear (PWL) reconstruction \tilde{Q}_i.

Cells	IEWBM1 Error	IEWBM2 PWCR Error	IEWBM2 PWLR Error
25	7.27e-02	3.65e-1	1.99e-1
50	6.37e-02	2.72e-01	1.09e-01
100	3.83e-02	1.57e-01	3.81e-02
200	2.17e-02	5.40e-02	9.39e-03
400	1.57e-02	1.45e-02	2.19e-03
800	6.62e-03	3.70e-03	5.21e-04
1600	3.43e-03	9.24e-04	1.23e-04

Table 2: Transport equation: Test 2. Differences in L^1-norm between the reference and the numerical solutions and convergence rates at $t = 1$ for IEWBM1 and IEWBM2 with piecewise constant (PWCR) or piecewise linear (PWL) reconstruction \tilde{Q}_i with CFL=2.

We have also compared the numerical solutions when different values of the CFL number are chosen (see Figures 1-2).

We consider now an initial condition that represents a perturbation of the stationary solution of the previous test case:

$$u_0(x) = e^x + \frac{1}{2}e^{-100(x-0.3)^2}.$$

A reference solution has been obtained using IEWBM2 with piecewise linear reconstruction \tilde{Q}_i in a 6400-cell mesh. Table 2 shows the errors in L^1-norm with respect to the reference solution for EWBM1 and EWBM2 for both the piecewise constant and linear reconstructions. Notice that the errors decrease with the number of cells at the expected rate.
that the method is stable for CFL values lower than $1 + \sqrt{2}$. Moreover, the numerical solutions obtained with the piecewise constant reconstruction \tilde{Q}_i presents more oscillations.

Furthermore, due to the well-balanced property of the methods, they are able to recover the stationary solution once the perturbation has left the domain. This is shown in Table 3, where L^1-errors between the stationary solution and the numerical solutions at time $t = 5$ have been computed for IEWBMi, $i = 1, 2$, using a 400-cell mesh and CFL$= 2$.

IEWBM1	IEWBM2
PWCR	PWLR
4.15e-13	4.10e-13 4.09e-13

Table 3: Transport equation: Test 2. Differences in L^1-norm between the stationary and the numerical solution at $t = 5$ for IEWBM1 and IEWBM2 with piecewise constant (PWCR) or piecewise linear (PWL) reconstruction \tilde{Q}_i.

5.2. Burgers equation

Let us consider now the Burgers equation with a nonlinear source term

$$u_t + \left(\frac{1}{2} u^2 \right)_x = \alpha u^2,$$ \hspace{1cm} \text{(30)}
where $\alpha \in \mathbb{R}$. Again, the stationary solutions can be easily obtained:

$$u^e(x) = Ce^{\alpha x}$$

Then, given a family of cell values $\{u^n_i\}$, the stationary solution $u^{e,n}_i(x)$ sought in the first step of the reconstruction procedure is

$$u^{e,n}_i(x) = u^n_i e^{\alpha(x-x_i)}.$$

Exactly well-balanced methods are considered again.

Due to the non-linearity of the flux and the source term, nonlinear systems have to be solved now to find the time fluctuations. A numerical method for nonlinear systems of algebraic equations is required. In particular, in this problem the Newton’s method is considered. For the first-order methods, only one iteration of the Newton’s method is performed. The Rusanov numerical flux

$$\mathbb{F}(u, v) = \frac{c}{2}(f(u) + f(v)) - \frac{k}{2}(v - u),$$
is considered again, where \(k \) is the viscosity constant.

5.2.1. Test 1: stationary solution

We consider the space interval \([0, 2]\), the time interval \([0, 1]\), \(\alpha = 1 \), and \(\text{CFL}=2 \). As initial condition, we consider the stationary solution

\[u_0(x) = e^x. \]

\(L^1 \) errors between the initial and final cell-averages have been computed for IEWBM\(p \), \(p = 1, 2 \), using a 200-cell mesh (see Table 4).

IEWBM1	IEWBM2
PWCR	PWLR
1.54e-13	1.32e-13
	1.56e-13

Table 4: Burgers equation: Test 1. \(L^1 \)-errors between the stationary and the numerical solution at \(t = 1 \) for IEWBM1 and IEWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \(\tilde{Q}_i \).

5.2.2. Test 2: perturbation of a stationary solution

We consider now the initial condition:

\[u_0(x) = e^x + 0.4e^{-25(x-0.4)^2}. \]

A reference solution has been computed using again IEWBM2 with piecewise linear reconstruction \(\tilde{Q}_i \) with a 3200-cell mesh. The numerical solutions obtained using different values of the CFL number are shown in Figures 3-4. Notice that, unlike the linear case, no oscillations appear for second-order methods for large CFL values. Moreover, similar results are obtained with the piecewise constant and linear reconstructions \(\tilde{Q}_i \).

Table 5 shows the \(L^1 \)-differences between the underlying stationary solution and the numerical solutions obtained with IEWBM\(p \), \(p = 1, 2 \) at time \(t = 10 \) (once the perturbation has left the computational domain) using a 400-cell mesh and \(\text{CFL}= 2 \). Again, the stationary solution is recovered to machine precision.
Figure 3: Burgers equation: Test 2. Differences between e^x and the numerical solutions obtained with IEWBM1 using different CFL values at $t = 0.3$.

CFL	IEWBM1	IEWBM2
1	1.54e-13	1.32e-13
2	1.56e-13	1.56e-13
5		
10		
20		
50		
100		

Table 5: Burgers equation: Test 2. Differences in L^1-norm between the stationary and the numerical solution at $t = 10$ for IEWBM1 and IEWBM2 with piecewise constant (PWCR) or piecewise linear (PWL) reconstruction \tilde{Q}_i.

5.2.3. Test 3: order test

We consider now the initial condition:

$$u_0(x) = 0.1e^x + 0.5e^{-25(x-1.0)^2}.$$

A reference solution has been computed with IEWBM2 and the piecewise linear reconstruction using a 6400-cell mesh. Table 6 shows the errors in L^1-norm with respect to the reference solution for EWBM1 and EWBM2 for both the piecewise constant and linear reconstructions: as it can be checked, the errors decrease with the number of cells at the expected convergence rate.

5.3. Shallow water equations

Let us consider now the 1d shallow water system with Manning friction

$$U_t + f(U)_x = S_1(U)H_x + S_2(U),$$
Figure 4: Burgers equation: Test 2. Differences between \(e^x \) and the numerical solutions obtained with IEWBM2 using different CFL values at \(t = 0.3 \). Top: PWCR. Bottom: PWLR.

where

\[
U = \begin{pmatrix} \frac{\partial h}{\partial x} \\ q \end{pmatrix}, \quad f(U) = \begin{pmatrix} \frac{q^2}{h} + \frac{q}{2h^2} \\ 0 \end{pmatrix}, \quad S_1(U) = \begin{pmatrix} 0 \\ gh \end{pmatrix}, \quad S_2(U) = \begin{pmatrix} 0 \\ -\frac{kq|q|}{h^{\mu}} \end{pmatrix}.
\]

The variable \(x \) makes reference to the axis of the channel and \(t \) is the time; \(q(x, t) \) and \(h(x, t) \) are the discharge and the thickness, respectively; \(g \) is the gravity; \(H(x) \) is the depth function measured from a fixed reference level; \(k \) is the Manning friction coefficient and \(\mu \) is set to \(\frac{7}{3} \).

In order to make the numerical experiments more realistic, we adopt dimensional units, in which time is measured in seconds, and space is measured in meters.

The eigenvalues of the system are

\[
\lambda^\pm = u \pm c,
\]
Table 6: Burgers equation: Test 3. Differences in L^1-norm between the reference and the numerical solutions at $t = 0.5$ for IEWBM1 and IEWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \tilde{Q}_i.

Cells	IEWBM1	IEWBM2				
	Error	Order	Error	Order	Error	Order
25	1.67e-02	-	1.81e-03	-	1.81e-03	-
50	7.42e-02	1.17	4.76e-04	1.93	4.76e-04	1.93
100	4.79e-03	0.63	1.06e-04	2.16	1.06e-04	2.16
200	2.74e-02	0.81	2.99e-05	1.83	2.99e-05	1.83
400	1.48e-03	0.89	8.00e-06	1.90	8.00e-03	1.90
800	7.69e-04	0.95	2.02e-06	1.99	2.02e-06	1.99
1600	3.93e-04	0.97	4.85e-07	2.00	4.85e-07	2.06

with $c = \sqrt{gh}$. The flow regime is characterized by the Froude number:

$$Fr(U) = \frac{|u|}{c}.$$ \hspace{1cm} (31)

The flow is subcritical if $Fr < 1$, critical if $Fr = 1$ or supercritical if $Fr > 1$.

The stationary solutions satisfy the ODE system

$$\begin{cases}
(-u^2 + gh) h_x = gh H_x - \frac{kq|q|}{h^3}, \\
q_x = 0.
\end{cases}$$ \hspace{1cm} (32)

Since the explicit expression of the stationary solutions is not available, well-balanced methods will be designed in which RK-collocation methods are used to approximate them. Different schemes are considered:

- Fully implicit schemes, where the flux and the source term are treated implicitly.
- Semi-implicit schemes for problems without friction, in which the advection term $\left(\frac{q^2}{h}\right)$ is treated explicitly and the equation of h, the pressure term $\left(\frac{1}{2}gh^2\right)$ and the source term are treated implicitly.
• Semi-implicit schemes for problems with friction, in which only the source term \(-\frac{kq|q|}{h^n}\) is treated implicitly.

While the implementation of the two first types of methods above lead to solve coupled nonlinear algebraic systems at every stage of the RK solvers, in the case of the third types, local nonlinear equations have to be solved at every cell. Fixed-point iterations are considered in all cases.

5.3.1. Test 1: stationary solution

Let us first check the well-balanced property of the methods for the model without friction \((k = 0)\). We consider \(x \in [0, 3], t \in [0, 1]\) and CFL = 2.0. As initial condition, we consider the subcritical stationary solution which solves the Cauchy problem:

\[
\begin{cases}
q_x = 0, \\
(-u^2 + gh)h_x = ghH_x, \\
h(0) = 2.0 + H(0), q(0) = 3.5,
\end{cases}
\]

where the depth function is given by

\[
H(x) = \begin{cases}
-0.25(1 + \cos(5\pi(x + 0.5))) & \text{if } 1.3 \leq x \leq 1.7, \\
0 & \text{otherwise},
\end{cases}
\]

(33)

(see Figure 5). Table 7 shows the \(L^1\) errors between the initial and final cell-averages for IWBM\(_p\), SIWBM\(_p\), \(p = 1, 2\), using a 200-cell mesh.

5.3.2. Test 2: order test

We now simulate a perturbation of a non-stationary smooth solution for the model without friction \((k = 0)\). In particular, we consider \(x \in [-5, 5], t \in [0, 2]\) CFL = 2.0, and the depth function:

\[
H(x) = 1.0 - 0.5e^{-x^2}.
\]

(34)

The initial condition is given by:

\[
q_0(x) = 0, \quad h_0(x) = 0.1e^{-5.0x^2},
\]

(see Figure 6). A 200-cell mesh is considered and a reference solution with a 1600-cell mesh using IWBM2 with the piecewise linear reconstruction has
been obtained. The different implicit and semi-implicit methods have been compared (see Figure 7). As expected, the numerical solutions obtained with first-order schemes are more diffusive than those given by second-order methods. Moreover, semi-implicit methods give better results than fully implicit schemes in the first-order case. Concerning the second-order schemes, the piecewise constant and linear reconstructions give similar results. No spurious oscillations appear for CFL= 2.

Figure 6: Shallow water equations without friction: Test 2. Initial condition.
Tables 7-9-10-11 show the order for the implicit and semi-implicit methods. The expected convergence rates have been obtained for both variables h and q.

As expected, second-order schemes which make use of piecewise linear reconstruction for \tilde{Q} are systematically more accurate than the ones based on piecewise constant reconstruction, even if the order of accuracy is the same. It is interesting to observe that semi-implicit schemes are more accurate than fully implicit schemes and even of explicit schemes. This makes semi-implicit schemes the most cost-effective since they are more accurate and less expensive than fully implicit schemes, and they allow larger CFL numbers and are even more accurate than explicit schemes. Fully implicit schemes are more dissipative than semi-implicit schemes, which explains the higher accurate for the same grid and CFL number. Furthermore, for low Froude number flow, they are also less dissipative than explicit schemes. The reason is that explicit schemes have to use a larger numerical viscosity than semi-implicit ones in the Rusanov numerical flux function. This effect is well known and discussed in the detail in the literature for numerical methods for all Mach-number flows (see for example [39] for the analysis of the phenomenon, [16, 2, 4] for second order accurate finite volume schemes to treat all Mach number flows in compressible Euler equations, [13] for high order

Table 7: Shallow water equations without friction: Test 1. Differences in L^1-norm between the stationary and the numerical solution at $t = 1$ for IWBM1, SIWBM1, IWBM2 and SIWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \tilde{Q}_i for a 200-cell mesh.

	IWBM1	IWBM2
	PWCR	PWLR
h	5.33e-15	3.55e-15
q	4.88e-15	7.55e-15

	SIWBM1	SIWBM2
	PWCR	PWLR
h	2.00e-15	5.11e-15
q	7.11e-15	8.00e-15
h	5.55e-15	8.44e-15
schemes, and [73] for applications in astrophysics).

5.3.3. Test 3: shock waves

We consider again the model without friction \((k = 0)\) with a discontinuous initial condition that generates two shock waves traveling in opposite directions. We consider the space interval \([-5, 5]\) and the time interval \([0, 0.5]\) and CFL=2. The depth function is again given by (34). As initial condition, we consider the functions:

\[
q_0(x) = 0, \quad h_0(x) = \begin{cases}
H(x) & \text{if } |x| \geq 1; \\
H(x) + 0.1 & \text{if } |x| < 1;
\end{cases}
\]

(see Figure 8).

A reference solution with a 1600-cell mesh using the SIWBM2 with piecewise linear reconstruction for \(\widetilde{Q}_i\) has been obtained. Figures 9-10 show the numerical solutions obtained with the different methods at times \(t = 0.2, 0.5\).

Observe that when using a piecewise constant reconstruction \(\widetilde{Q}_i(x)\), the numerical solution is less accurate and more oscillatory.
5.3.4. Test 4: convergence to a steady state

The goal now is to compare the ability of explicit and implicit schemes to reach a stationary solution as time increases. We consider again the model without friction \((k = 0)\). Only the first-order methods EXWBM1 and IWBM1 are considered here.

The space interval is \([0, 3]\) and the depth function is given again by (33). The initial condition is \(h(x, 0) = 2.0\) and \(q(x, 0) = 0.0\). The boundary conditions are the following

\[q(0, t) = 1.0, \quad h(3, t) = 2.0. \]

A 100-cell mesh is considered. The numerical solution is run until a stationary
Table 10: Shallow water equations without friction: Test 2. Differences in L^1-norm with respect to the reference solution and convergence rates for h at $t = 0.5$ for SIWBM1 and SIWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \tilde{Q}_i for the thickness h.

Cells	SIWBM1	SIWBM2	PWCR	PWLR
	Error	Order	Error	Order
25	4.82e-01	-	1.41e-01	-
50	3.70e-01	0.38	5.34e-02	1.40
100	2.24e-01	0.72	1.72e-02	1.63
200	1.39e-01	0.68	4.55e-03	1.92
400	7.38e-02	0.92	1.16e-03	1.97

Table 11: Shallow water equations without friction: Test 2. Differences in L^1-norm with respect to the reference solution and convergence rates for h at $t = 0.5$ for IWBM1 and IWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \tilde{Q}_i for the discharge q.

Cells	IWBM1	IWBM2	PWCR	PWLR
	Error	Order	Error	Order
25	1.74	-	6.10e-01	-
50	1.47	0.24	2.23e-01	1.45
100	9.83e-01	0.74	6.88e-02	1.69
200	5.83e-01	0.60	1.84e-02	1.91
400	3.01e-01	0.95	4.69e-02	1.97

state is reached: the numerical method is stopped if

$$\max_i \frac{|U_{i+1}^n - U_i^n|}{\Delta t} < \varepsilon,$$

(35)

where ε is a fixed threshold. In this test, we take $\varepsilon = 1e-12$. Figure 11 shows the stationary solution and Table 12 shows, for every numerical method, the time in seconds needed to reach a steady state, the difference in L^1-norm between the reached steady state and the subcritical stationary solution that
solves the problem

\[
\begin{aligned}
q_x &= 0, \\
(-u^2 + gh)h_x &= gh H_x, \\
h(3) &= 2.0, \quad q(0) = 1.0,
\end{aligned}
\]

(36)

the CPU times, the total number of iterations in time associated to the time step \(\Delta t \) and the total number of iterations of the fixed-point algorithm applied to solve the nonlinear problems are in the case of fully implicit schemes. As expected, the implicit methods converge faster to the stationary solution. Notice that if the problem is just to capture the global stationary solution, then first order schemes may be perfectly adequate. However the interplay between time accuracy and the final stationary solution (in case the latter depends on the initial conditions as well and not only on the boundary conditions) is not obvious and it will be explored in future work.

Notice that, for CFL=50, in spite of the fact that the total number of iterations of the fixed-point algorithm is bigger than in the case of CFL=20, less computational effort is required since the total number of well-balanced reconstructions is smaller.

5.3.5. Test 5: stationary solution for the model with friction

Let us check the well-balanced property of the methods for the model with friction. In this test, the Manning friction is \(k = 0.01 \) and the space
interval is $[0, 1]$. The depth function is given by

$$H(x) = 1 - \frac{1}{2} \left(\frac{e^{\cos(4\pi x)} - e^{-1}}{e - e^{-1}} \right). \quad (37)$$

We consider a supercritical stationary solution: the solution of (32) with initial conditions $q(0) = 3$ and $h(0) = 0.3$ (see Figure 12), obtained numerically by solving system (32) using the mid-point rule (see [50]). We consider a 100-cell mesh and the final time is $t = 1$. Notice that, at variance with the low Froude number stationary solutions, in the supercritical case the profile of the free surface is almost parallel to the bottom profile, so that $h(x)$ is almost constant. Table 13 shows the L^1-errors between the initial and the approximated cell-averages at time $t = 1$ given by SIWBM1, IWBM1,
Figure 10: Shallow water equations without friction: Test 3. Numerical solutions for IWBM_p, SIWBM_p, \(p = 1, 2 \) with CFL = 2 at \(t = 0.5 \). Top: \(\eta \). Bottom: \(q \).

SIWBM2 and IWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \(\tilde{Q}_i \).

5.3.6. Test 6: perturbation of a stationary solution for the model with friction

In this test, the Manning friction is again \(k = 0.01 \). The depth function is given by (37). We consider a perturbation of the supercritical stationary solution: the initial condition \(U_0(x) = [h_0(x), q_0(x)]^T \) given by

\[
h_0(x) = \begin{cases}
 h^*(x) + 0.05, & \text{if } x \in \left[\frac{2}{7}, \frac{3}{7} \right] \cup \left[\frac{4}{7}, \frac{5}{7} \right], \\
 h^*(x), & \text{otherwise},
\end{cases}
\]
Figure 11: Shallow water equations without friction: Test 4. Stationary solution.

\[q_0(x) = \begin{cases} \begin{align*} q^*(x) + 0.5, & \text{if } x \in \left[\frac{2}{7}; \frac{3}{7} \right] \cup \left[\frac{4}{7}; \frac{5}{7} \right], \\ q^*(x), & \text{otherwise}, \end{align*} \end{cases} \]

where \(U^*(x) = [h^*(x), q^*(x)]^T \) is the stationary solution considered in Test 5 (see Figure 13). We consider a 100-cell mesh and the numerical simulation is run until \(t = 2 \). A reference solution computed with a 800-cell mesh using SIWBM2 with piecewise constant reconstruction \(\tilde{Q}_i \) has been considered. Figures 14-15 show the evolution of the perturbation at times \(t = 0.01 \) and \(t = 0.05 \) for SIWBM1 and SIWBM2 with piecewise contant (PWCR) or piecewise linear (PWLR) reconstruction \(\tilde{Q}_i \) and Table 14 shows the differences in \(L^1 \)-norm between the stationary and the numerical solutions at \(t = 2 \). As expected, the stationary solution is recovered with machine precision.

Fully implicit schemes have been also considered with CFL=2, recovering with machine precision the supercritical stationary solution at the final time \(t = 2s \) (see Table 15, where the errors \(L^1 \)-norm between the stationary and the numerical solutions at \(t = 2 \) for IWBM1 and IWBM2 with piecewise
CF	Times of convergence	Errors of convergence	CPU times	Iterations in time	Fixed-point iterations
0.5	177.91	2.55e-14 1.61e-13	80.90	52465	-
0.99	159.34	1.35e-13 1.29e-12	49.35	29586	-

CF	Times of convergence	Errors of convergence	CPU times	Iterations in time	Fixed-point iterations
2	129.51	1.96e-13 1.65e-12	186.96	10660	97720
10	85.84	2.17e-13 1.83e-12	38.40	1413	36265
20	64.04	1.55e-13 1.17e-12	21.57	527	22606
50	41.64	4.42e-14 1.62e-12	20.60	138	26194

Table 12: Shallow water equations without friction: Test 4. Time needed to reach a steady state, differences in L^1-norm between the reached steady state and the subcritical stationary solution which solves the problem (36), CPU times, total number of iterations in time associated to the time step Δt and total number of iterations of the fixed-point algorithm applied to solve the nonlinear problems are in the case of fully implicit schemes. contant (PWCR) or piecewise linear (PWLR) reconstruction \tilde{Q}_i are shown).
Figure 12: Shallow water equations with friction: Test 5. Initial condition: supercritical stationary solution. Free surface and bottom.

Implicit methods	IWBM1	IWBM2
h q		h q PWCR PWLR
6.11e-16 8.88e-16	9.44e-16 9.36e-15 6.66e-16 6.22e-15	

Semi-implicit methods	SIWB1	SIWB2
h q	h q PWCR PWLR	
7.21e-16 6.66e-15	9.44e-16 9.76e-15 8.33e-16 6.21e-15	

Table 13: Shallow water equations with friction: Test 5. Differences in L^1-norm between the stationary and the numerical solution at $t = 1$ for IWBM1, SIWB1, IWBM2 and SIWB2 with piecewise constant (PWCR) or piecewise linear (PWL) reconstruction \bar{Q}_i for a 100-cell mesh.
Figure 13: Shallow water equations with friction: Test 6. Initial condition: perturbation of a supercritical stationary solution. Top: η. Bottom: q.

Semi-implicit methods	SIWBM1	SIWBM2		
	h	q	PWCR	PWLR
	9.99e-16	1.15e-14	4.44e-16	1.33e-15
	6.10e-16	5.32e-15		

Table 14: Shallow water equations with friction: Test 6. Differences in L^1-norm between the stationary and the numerical solution at $t = 2$ for SIWBM1 and SIWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \tilde{Q}_i for a 100-cell mesh.
Figure 14: Shallow water equations with friction: Test 6. Numerical solutions for SIWBM\(p, p = 1, 2\) with CFL= 0.9 at \(t = 0.01\). Top: \(h\). Bottom: \(q\).

	IWBM1	IWBM2		
	\(h\)	\(q\)	\(h\)	\(q\)
\(h\)	5.00e-16	4.41e-16	1.50e-15	1.51e-14
\(q\)	8.33e-16	7.55e-15		

Table 15: Shallow water equations with friction: Test 6. Differences in \(L^1\)-norm between the stationary and the numerical solution at \(t = 2\) for IWBM1 and IWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction \(\tilde{Q}_i\) for a 100-cell mesh.
Figure 15: Shallow water equations with friction: Test 6. Numerical solutions for SIWBMp, $p = 1, 2$ with CFL= 0.9 at $t = 0.05$. Top: h. Bottom: q.
6. Conclusions and forthcoming work

Following some previous work of the authors [24, 28, 48, 49, 50], we have developed a general procedure to design high-order implicit and semi-implicit numerical schemes for any one-dimensional system of balance laws. Note that the main ingredient of these methods is a well-balanced reconstruction operator. A general result proving the well-balanced property of these numerical methods is stated. We checked the new formulation with several numerical tests, considering scalar problems such as the linear transport equation and the Burgers equation, and more complex systems such as shallow water in presence of variable bathymetry and Manning friction. Notice that, when both the flux and the source term of (1) are (equally) stiff, the system may relax to a stationary solution of the ODE system (2) in a very short time. If one is interested in efficiently capturing the stationary solution, then it is advisable to adopt an implicit (or semi-implicit) scheme which is at the same time well-balanced. This is shown in a numerical test for the shallow water model.

Future work will include applications to more general systems whose source contains a stiff relaxation and a non-stiff term, i.e. systems of the form

\[u_t + f(u)_x = \frac{1}{\epsilon}S(u) + G(u, x), \quad (38) \]

that in the limit of vanishing \(\epsilon \) relaxes to a lower dimensional system of balance laws of the form

\[v_t + f(v)_x = g(v, x), \quad (39) \]

where where \(v(x, t) = Qu(x, t) \in \mathbb{R}^n, n < N, Q \in \mathbb{R}^{n \times N}, QS(u) = 0, \) and \(f = Qf(E(v)), \) with \(u = E(v), g(u, x) = QG(E(u), x). \) In such cases the limit equation admits non-trivial stationary solutions which must be accurately approximated. Our aim will be to design numerical schemes for systems (38) which become consistent and well-balanced schemes for systems (39) as the relaxation parameter vanishes, which are said to be \textit{Asymptotic Preserving and Well-Balanced (APWB)} (see [62, 61, 34, 78]). A natural framework to define such numerical schemes is the combination of well-balanced finite-volume schemes and IMEX methods.

A second important extension concerns the application of this framework to problems in more space dimensions, with the specific goal to capture non-trivial stationary solutions of systems of balance laws, along the lines of the
pioneering work of Moretti and Abbett [74], who captured the stationary flow around a blunt body by looking for the stationary solutions of a time dependent problem.

Acknowledgements

We would like to thank M. López-Fernández for the linear stability analysis performed in Test 2 for the transport equation. This work is partially supported by projects RTI2018-096064-B-C21 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”, projects P18-RT-3163 of Junta de Andalucía and UMA18-FEDERJA-161 of Junta de Andalucía-FEDER-University of Málaga. G. Russo and S.Boscarino acknowledge partial support from the Italian Ministry of University and Research (MIUR), PRIN Project 2017 (No. 2017KKJP4X entitled “Innovative numerical methods for evolutionary partial differential equations and applications”. I. Gómez-Bueno is also supported by a Grant from “El Ministerio de Ciencia, Innovación y Universidades”, Spain (FPU2019/01541) funded by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future”.

References

[1] R. Abgrall, D. Santis, and M. Ricchiuto. High-Order Preserving Residual Distribution Schemes for Advection-Diffusion Scalar Problems on Arbitrary Grids. SIAM Journal on Scientific Computing, 36(3):A955–A983, January 2014.

[2] Koottungal Revi Arun, Sebastian Noelle, Maria Lukacova-Medvidova, and Claus-Dieter Munz. An asymptotic preserving all mach number scheme for the euler equations of gas dynamics. preprint, October, 2012.

[3] Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau, Rupert Klein, and Benoît Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing, 25(6):2050–2065, 2004.

[4] Stavros Avgerinos, Florian Bernard, Angelo Iollo, and Giovanni Russo. Linearly implicit all mach number shock capturing schemes for the euler equations. Journal of Computational Physics, 393:278–312, 2019.
[5] Jonas P. Berberich, Praveen Chandrashekar, and Christian Klingenberg. High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws. *Computers and Fluids*, 219:104858, 2021.

[6] Alfredo Bermudez and Elena Vazquez. Upwind methods for hyperbolic conservation laws with source terms. *Computers & Fluids*, 23(8):1049–1071, 1994.

[7] Christophe Berthon and Christophe Chalons. A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations. *Mathematics of Computation*, 85(299):1281–1307, 2016.

[8] Christophe Berthon and Victor Michel-Dansac. A simple fully well-balanced and entropy preserving scheme for the shallow-water equations. *Applied Mathematics Letters*, 86:284–290, 2018.

[9] Luca Bonaventura, Enrique D. Fernández-Nieto, José Garres-Díaz, and Gladys Narbona-Reina. Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization. *Journal of Computational Physics*, 364:209–234, 2018.

[10] Sebastiano Boscarino, Philippe G LeFloch, and Giovanni Russo. High-order asymptotic-preserving methods for fully nonlinear relaxation problems. *SIAM Journal on Scientific Computing*, 36(2):A377–A395, 2014.

[11] Sebastiano Boscarino, Lorenzo Pareschi, and Giovanni Russo. Implicit-explicit runge–kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. *SIAM Journal on Scientific Computing*, 35(1):A22–A51, 2013.

[12] Sebastiano Boscarino, Lorenzo Pareschi, and Giovanni Russo. A unified imex runge–kutta approach for hyperbolic systems with multiscale relaxation. *SIAM Journal on Numerical Analysis*, 55(4):2085–2109, 2017.

[13] Sebastiano Boscarino, Jingmei Qiu, Giovanni Russo, and Tao Xiong. High order semi-implicit weno schemes for all-mach full euler system of gas dynamics. *SIAM Journal on Scientific Computing*, 44(2):B368–B394, 2022.
[14] Sebastiano Boscarino and Giovanni Russo. On a class of uniformly accurate imex runge–kutta schemes and applications to hyperbolic systems with relaxation. *SIAM Journal on Scientific Computing*, 31(3):1926–1945, 2009.

[15] Sebastiano Boscarino and Giovanni Russo. Flux-explicit imex runge–kutta schemes for hyperbolic to parabolic relaxation problems. *SIAM Journal on Numerical Analysis*, 51(1):163–190, 2013.

[16] Sebastiano Boscarino, Giovanni Russo, and Leonardo Scandurra. All mach number second order semi-implicit scheme for the euler equations of gas dynamics. *Journal of Scientific Computing*, 77(2):850–884, 2018.

[17] François Bouchut. *Nonlinear stability of finite Volume Methods for hyperbolic conservation laws: And Well-Balanced schemes for sources*. Springer Science & Business Media, 2004.

[18] François Bouchut and Tomás Morales de Luna. A subsonic-well-balanced reconstruction scheme for shallow water flows. *SIAM Journal on Numerical Analysis*, 48(5):1733–1758, 2010.

[19] Saray Busto Ulloa and M. Dumbser. A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all froude numbers. *Applied Numerical Mathematics*, 175, 02 2022.

[20] Alberto Canestrelli, Michael Dumbser, Annunziato Siviglia, and Eleuterio F. Toro. Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed. *Advances in Water Resources*, 33(3):291–303, 2010.

[21] Vicent Caselles, Rosa Donat, and Gloria Haro. Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes. *Computers and Fluids*, 38(1):16–36, 2009.

[22] Manuel Castro, Tomás Chacón Rebollo, Enrique Fernández-Nieto, and C. Parés. On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems. *SIAM J. Scientific Computing*, 29:1093–1126, 01 2007.

[23] Manuel Castro, José Gallardo, and Carlos Parés. High order finite volume schemes based on reconstruction of states for solving hyperbolic
systems with nonconservative products. Applications to shallow-water systems. *Mathematics of computation*, 75(255):1103–1134, 2006.

[24] Manuel Castro, José Gallardo, Juan López-García, and Carlos Parés. Well-balanced high order extensions of godunov’s method for semilinear balance laws. *SIAM J. Numerical Analysis*, 46:1012–1039, 01 2008.

[25] Manuel J Castro, Christophe Chalons, and Tomás Morales de Luna. A fully well-balanced lagrange-projection-type scheme for the shallow-water equations. *SIAM J. Numer. Anal.*, 56(5):3071 – 3098, 2018.

[26] Manuel J Castro, T Morales de Luna, and Carlos Parés. *Well-balanced schemes and path-conservative numerical methods*, volume 18, pages 131–175. Elsevier, 2017.

[27] Manuel J. Castro, Christophe Chalons, and Tomás Morales de Luna. A fully well-balanced lagrange-projection-type scheme for the shallow-water equations. *SIAM J. Numer. Anal.*

[28] Manuel Jesús Castro and Carlos Parés. Well-balanced high-order finite volume methods for systems of balance laws. *Journal of Scientific Computing*, 82, 02 2020.

[29] Vincenzo Casulli. Semi-implicit finite difference methods for the two-dimensional shallow water equations. *Journal of Computational Physics*, 86(1):56–74, 1990.

[30] Tomás Chacón Rebollo, Antonio Delgado, and Enrique Fernández-Nieto. Asymptotically balanced schemes for non-homogeneous hyperbolic systems - application to the shallow water equations. *Comptes Rendus Mathematique*, 338:85–90, 01 2004.

[31] Tomás Chacón Rebollo, Antonio Delgado, and Enrique Fernández-Nieto. A family of stable numerical solvers for the shallow water equations with source terms. *Computer Methods in Applied Mechanics and Engineering*, 192:203–225, 01 2003.

[32] Christophe Chalons, Samuel Kokh, and Maxime Stauffert. *An All-Regime and Well-Balanced Lagrange-Projection Scheme for the Shallow
Praveen Chandrashekar and Markus Zenk. Well-balanced nodal discontinuous galerkin method for euler equations with gravity. *Journal of Scientific Computing*, 71, 11 2015.

Gui-Qiang Chen, C David Levermore, and Tai-Ping Liu. Hyperbolic conservation laws with stiff relaxation terms and entropy. *Communications on Pure and Applied Mathematics*, 47(6):787–830, 1994.

Yuanzhen Cheng and Alexander Kurganov. Moving-water equilibria preserving central-upwind schemes for the shallow water equations. *Communications in Mathematical Sciences*, 14:1643–1663, 01 2016.

Alina Chertock, Shumo Cui, Alexander Kurganov, Seyma Nur Özcan, and Eitan Tadmor. Well-balanced schemes for the euler equations with gravitation: Conservative formulation using global fluxes. *Journal of Computational Physics*, 358:36–52, 2018.

Alina Chertock, Shumo Cui, Alexander Kurganov, and Tong Wu. Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. *International Journal for Numerical Methods in Fluids*, 78, 04 2015.

Alina Chertock, Michael Dudzinski, Alexander Kurganov, and Maria Lukáčová. Well-balanced schemes for the shallow water equations with coriolis forces. *Numerische Mathematik*, 138:939–973, 2018.

Stéphane Dellacherie. Analysis of godunov type schemes applied to the compressible euler system at low mach number. *Journal of Computational Physics*, 229(4):978–1016, 2010.

Vivien Desveaux, Markus Zenk, Christophe Berthon, and Christian Klingenberg. Well-balanced schemes to capture non-explicit steady states. ripa model. *Mathematics of Computation*, 85:1, 10 2015.

Vivien Desveaux, Markus Zenk, Christophe Berthon, and Christian Klingenberg. A well-balanced scheme to capture non-explicit steady states in the euler equations with gravity. *International Journal for Numerical Methods in Fluids*, 81(2):104–127, 2016.
[42] Michael Dumbser and Vincenzo Casulli. A staggered semi-implicit spectral discontinuous galerkin scheme for the shallow water equations. *Applied Mathematics and Computation*, 219(15):8057–8077, 2013.

[43] Emmanuel Franck and Laura S Mendoza. Finite volume scheme with local high order discretization of the hydrostatic equilibrium for the euler equations with external forces. *Journal of Scientific Computing*, 69(1):314–354, 2016.

[44] Emmanuel Franck and Laurent Navoret. Semi-implicit two-speed well-balanced relaxation scheme for ripa model. In Robert Klöfkorn, Eirik Keilegavlen, Florin A. Radu, and Jürgen Fuhrmann, editors, *Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples*, pages 735–743, Cham, 2020. Springer International Publishing.

[45] Gérard Gallice. Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. *Comptes Rendus Mathematique*, 334(8):713–716, 2002.

[46] P. Garcia-Navarro and M. E. Vazquez-Cendon. On numerical treatment of the source terms in the shallow water equations. *Computers and Fluids*, 29(8):951–979, August 2000.

[47] F. X. Giraldo and M. Restelli. High-order semi-implicit time-integrators for a triangular discontinuous galerkin oceanic shallow water model. *International Journal for Numerical Methods in Fluids*, 63(9):1077–1102, 2010.

[48] Irene Gómez-Bueno, Manuel J Castro, and Carlos Parés. High-order well-balanced methods for systems of balance laws: a control-based approach. *Applied Mathematics and Computation*, 394:125820, 2021.

[49] Irene Gómez-Bueno, Manuel Jesús Castro, and Carlos Parés. Well-balanced reconstruction operator for systems of balance laws: Numerical implementation. In *Recent Advances in Numerical Methods for Hyperbolic PDE Systems*, pages 57–77. Springer, 2021.

[50] Irene Gómez-Bueno, Manuel Jesús Castro Díaz, Carlos Parés, and Giovanni Russo. Collocation methods for high-order well-balanced methods for systems of balance laws. *Mathematics*, 9(15):1799, 2021.
[51] Laurent Gosse. A well-balanced scheme using non-conservative products
designed for hyperbolic systems of conservation laws with source terms.
Mathematical Models and Methods in Applied Sciences, 11, 06 1999.

[52] Laurent Gosse. A well-balanced flux-vector splitting scheme designed
for hyperbolic systems of conservation laws with source terms* 1.
Computers & Mathematics with Applications, 39:135–159, 05 2000.

[53] Laurent Gosse. Localization effects and measure source terms in numerical
schemes for balance laws. *Math. Comput.*, 71:553–582, 01 2002.

[54] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-

preserving high-order time discretization methods. *SIAM review*,
43(1):89–112, 2001.

[55] JM Greenberg, AY Leroux, R Baraille, and A Noussair. Analysis and
approximation of conservation laws with source terms. *SIAM Journal
on Numerical Analysis, 34(5):1980–2007, 1997.*

[56] Joshua M Greenberg and Alain-Yves LeRoux. A well-balanced scheme
for the numerical processing of source terms in hyperbolic equations.
SIAM Journal on Numerical Analysis, 33(1):1–16, 1996.

[57] Luc Grosheintz-Laval and Roger Käppeli. Well-balanced finite volume
schemes for nearly steady adiabatic flows. *Journal of Computational
Physics, 423:109805, 2020.*

[58] Ernesto Guerrero Fernández, Cipriano Escalante, and Manuel J. Castro.
Well-balanced high-order discontinuous galerkin methods for systems of
balance laws. *Mathematics, 10(1), 2022.*

[59] Guanlan Huang, Yulong Xing, and Tao Xiong. High order well-balanced
asymptotic preserving finite difference weno schemes for the shallow wa-
ter equations in all froude numbers in all froude numbers. *ArXiv, abs/2108.04463, 2021.*

[60] Shi Jin. A steady-state capturing method for hyperbolic systems with
geometrical source terms. *ESAIM: Mathematical Modelling and Nu-
merical Analysis - Modélisation Mathématique et Analyse Numérique,
35(4):631–645, 2001.*

53
[61] Shi Jin. Asymptotic preserving (ap) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture notes for summer school on methods and models of kinetic theory (M6MKT), Porto Ercole (Grosseto, Italy), pages 177–216, 2010.

[62] Shi Jin and Zhouping Xin. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Communications on pure and applied mathematics, 48(3):235–276, 1995.

[63] Farah Kanbar, Rony Touma, and Christian Klingenberg. Well-balanced central schemes for the one and two-dimensional euler systems with gravity. Applied Numerical Mathematics, 156, 06 2020.

[64] Roger Käppeli and Siddhartha Mishra. A well-balanced finite volume scheme for the euler equations with gravitation-the exact preservation of hydrostatic equilibrium with arbitrary entropy stratification. Astronomy & Astrophysics, 587:A94, 2016.

[65] Christian Klingenberg, Gabriella Puppo, and Matteo Semplice. Arbitrary order finite volume well-balanced schemes for the euler equations with gravity. SIAM Journal on Scientific Computing, 41:A695–A721, 01 2019.

[66] Christian Klingenberg, Rony Touma, and Ujjwal Koley. Well-balanced unstaggered central schemes for the euler equations with gravitation. SIAM Journal on Scientific Computing, 38, 01 2016.

[67] Alexander Kurganov. Finite-volume schemes for shallow-water equations. Acta Numerica, 27:289–351, 05 2018.

[68] Alexander Kurganov and Guergana Petrova. A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System. Communications in Mathematical Sciences, 5(1):133 – 160, 2007.

[69] R. Käppeli and S. Mishra. Well-balanced schemes for the euler equations with gravitation. Journal of Computational Physics, 259:199 – 219, 2014.

[70] Haegyun Lee. Implicit discontinuous galerkin scheme for shallow water equations. Journal of Mechanical Science and Technology, 33, 07 2019.
[71] RJ LeVeque. Balancing source terms and flux gradients in high-resolution godunov methods: The quasi-steady wave-propagation algorithm. *Journal of Computational Physics*, 146(1), 1998.

[72] Maria Lukacova-Medvidova, Sebastian Noelle, and Marcus Kraft. Well-balanced finite volume evolution galerkin methods for the shallow water equations. *Journal of Computational Physics*, 221:122–147, 01 2007.

[73] Fabian Miczek, Friedrich K Röpke, and Philip VF Edelmann. New numerical solver for flows at various mach numbers. *Astronomy & Astrophysics*, 576:A50, 2015.

[74] GINO MORETTI and MICHAEL ABBETT. A time-dependent computational method for blunt body flows. *AIAA Journal*, 4(12):2136–2141, 1966.

[75] Lucas O. Müller, Carlos Parés, and Eleuterio F. Toro. Well-balanced High-order Numerical Schemes for One-dimensional Blood Flow in Vessels with Varying Mechanical Properties. *Journal of Computational Physics*, 242:53–85, June 2013.

[76] Sebastian Noelle, Normann Pankratz, Gabriella Puppo, and Jostein Natvig. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. *Journal of Computational Physics*, 213:474–499, 04 2006.

[77] Sebastian Noelle, Yulong Xing, and Chi-Wang Shu. High-order well-balanced finite volume weno schemes for shallow water equation with moving water. *Journal of Computational Physics*, 226:29–58, 09 2007.

[78] Lorenzo Pareschi and Giovanni Russo. Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. *Journal of Scientific Computing*, 25(1):129–155, 2005.

[79] Carlos Parés and Carlos Parés-Pulido. Well-balanced high-order finite difference methods for systems of balance laws. *Journal of Computational Physics*, 425:109880, 2021.

[80] Marica Pelanti, François Bouchut, and Anne Mangeney. A roe-type scheme for two-phase shallow granular flows over variable topography.
[81] Benoit Perthame and Chiara Simeoni. A kinetic scheme for the Saint-Venant system with a source term. *Calcolo*, 38:201–231, 11 2001.

[82] Benoit Perthame and Chiara Simeoni. Convergence of the upwind interface source method for hyperbolic conservation laws. In *Hyperbolic problems: theory, numerics, applications*, pages 61–78. Springer, 2003.

[83] Mario Ricchiuto. An explicit residual based approach for shallow water flows. *Journal of Computational Physics*, 280:306–344, January 2015.

[84] Mario Ricchiuto and Andreas Bollermann. Stabilized residual distribution for shallow water simulations. *Journal of Computational Physics*, 228(4):1071–1115, March 2009.

[85] P. L. Roe. Upwind differencing schemes for hyperbolic conservation laws with source terms. In Claude Carasso, Denis Serre, and Pierre-Arnaud Raviart, editors, *Nonlinear Hyperbolic Problems*, pages 41–51, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[86] Giovanni Russo and Alexander Khe. High order well balanced schemes for systems of balance laws. *Proceedings of Symposia in Applied Mathematics*, 67:919–928, 01 2009.

[87] Huazhong Tang, Tao Tang, and Kun Xu. A gas-kinetic scheme for shallow-water equations with source terms. *Zeitschrift für angewandte Mathematik und Physik*, 55:365–382, 05 2004.

[88] Maurizio Tavelli and Michael Dumbser. A high order semi-implicit discontinuous galerkin method for the two dimensional shallow water equations on staggered unstructured meshes. *Appl. Math. Comput.*, 234(C):623–644, may 2014.

[89] Deepak Varma R S and Praveen Chandrashekar. A second-order well-balanced finite volume scheme for euler equations with gravity. *Computers & Fluids*, 181, 03 2018.

[90] Stefan Vater and Rupert Klein. A semi-implicit multiscale scheme for shallow water flows at low froude number. *Communications in Applied Mathematics and Computational Science*, 13:303–336, 09 2018.
[91] Yulong Xing and Chi-Wang Shu. High-order well-balanced finite difference weno schemes for a class of hyperbolic systems with source terms. *Journal of Scientific Computing*, 27:477–494, 2006.

[92] Yulong Xing and Chi-Wang Shu. High order well-balanced finite volume weno schemes and discontinuous galerkin methods for a class of hyperbolic systems with source terms. *Journal of Computational Physics*, 214:567–598, 05 2006.

[93] Lanhao Zhao, Bowen Guo, Tongchun Li, E. J. Avital, and J. J. R. Williams. A well-balanced explicit/semi-implicit finite element scheme for shallow water equations in drying–wetting areas. *International Journal for Numerical Methods in Fluids*, 75(12):815–834, 2014.