Correa Valencia, Maritza; Aragón Chamorro, Alexander
Tele-operated laboratory for teaching logistics operations
Sistemas & Telemática, vol. 13, núm. 35, 2015, pp. 39-51
Universidad ICESI
Cali, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=411543658004
Tele-operated laboratory for teaching logistics operations

Maritza Correa Valencia, Ph.D. / mcorrea@uao.edu.co
Alexander Aragón Chamorro, MSc. / aaragon@uao.edu.co

Departamento de Operaciones y Sistemas, Universidad Autónoma de Occidente, Cali-Colombia

ABSTRACT The link between academia, government, and business to improve the development and appropriation of knowledge in certain topics, such as logistics, is being promoted in Colombia. One of the key issues of teaching logistics is to try to bring to actual work contexts, problems that can be handled by people who do not have experience. The incorporation of Information and Communications Technologies (ICT) in academic environments supports the training of professionals in different fields. The tele-operated laboratory for logistics operations called Internet2 way [TELEO-PLOGIS] is a project focused on the development and implementation of a remote laboratory where an integrated and didactic manufacturing cell, some robot manipulators, and specific pieces of software are used for the teaching of logistics operations. This laboratory includes the development of guidelines and academic workshops with two approaches: teleoperation systems for discrete events, and manufacturing cells that transform the cell nodes into elements of logistics operations. We achieved acceptable results in both remote operations and in practices that currently are in progress.

KEYWORDS augmented reality; ICT; logistics; remote laboratories; simulation; teleoperation.

Laboratorio tele-operado para la enseñanza de operaciones logísticas

RESUMEN En Colombia se está impulsando la vinculación entre la academia, el gobierno y las empresas para el mejor desarrollo y la apropiación del conocimiento en tópicos determinados, como es el caso de la logística. Uno de los problemas de la enseñanza de logística es intentar acercar los problemas reales, sacados de contextos laborales, a personas que no cuentan con experiencia. La incorporación de las Tecnologías de la Información y las Comunicaciones en ambientes académicos da soporte a la formación de profesionales de diversas áreas. El Laboratorio Tele-operado de Operaciones Logísticas vía Internet2 [TELEO-PLOGIS] está enfocado en el desarrollo y puesta en marcha de un laboratorio remoto en el cual se incorpora una celda integrada de manufactura didáctica, robots manipuladores y software específico, a la enseñanza de operaciones logísticas. Este laboratorio incluye el desarrollo de guías y talleres académicos con dos enfoques: sistemas de tele-operación de eventos discretos y la celda de manufactura, convirtiendo los nodos de la celda en elementos de operación logística. Se han logrado resultados aceptables, tanto en la operación remota, como sobre las prácticas para la enseñanza de logística que se han desarrollado.

PALABRAS CLAVE Enseñanza de logística; TIC; laboratorios remotos; tele-operación; simulación; realidad aumentada.
I. Introduction

In Colombia, several approaches have been developed to include the use of Information and Communication Technologies [ICT] in higher education. This topic is a novel proposal, since only 25% of the Colombian population has access to college.

Some private and public institutions are driving these kinds of projects. As an example we have the National Direction of Virtual Academic Services [DNSAV: Dirección Nacional de Servicios Académicos Virtuales]—known as UN Virtual. UN Virtual is a dependency of the Universidad Nacional de Colombia in charge of providing the tools and necessary support for the construction, execution, and management of academic training supported in Learning Management Systems [LMS]. It is important to note that, nowadays, UN Virtual offers academic programs for the entire college community (DNIA, 2014). The National Research and Education Networks [NREN], like the National Academic Network of Advanced Technology [RENATA: Red Nacional Académica de Tecnología Avanzada], try to enhance the development of several educative schemes through modernization, upgrad- ing, and research in ICT, defining and executing policies, plans, and programs to improve some projects of pedagogic innovation.

Despite the fact that some researchers have worked on topics related with the control of manufacturing cells, e.g. Rodríguez, Hernández, Foyo, and Loa (2011), and Duque et al. (2011), they relate their job with the control and operation of a manufacturing cell through RENATA. Consequently, there is a significant difference between these projects and the one described in this document. This is because the objective of our proposal is to develop a remote laboratory where the development of the practices involves students with an interest in discrete event control and supply chain management, assessing the features of remote connections. We propose some changes in the functional nodes of the manufacturing cell over logistics operations elements. These modifications can be simple, but they are not trivial since the practices must be in accordance with the reality of the companies and their particular logistics.

A remote laboratory is defined as a person with a computer, which remotely controls an experiment in a specific location. The rise in its utilization, especially in the education field, is linked with the increase in bandwidth available for users, together with the reduction of the connection costs, and the ease of buying computers (Calvo, Zulueta, Gangoi-
Aunque a priori se piense en lo contrario, la construcción de laboratorios remotos es una labor bastante más complicada que la implementación de laboratorios tradicionales, ya que se mantiene la problemática del diseño de experimentos y la configuración de los equipos usados en la ejecución del experimento, usual de los laboratorios tradicionales, y se adiciona la construcción de una infraestructura amigable y de fácil configuración para los usuarios que accederán a él, de manera remota, para la integración de la información que se obtiene de los diferentes medios, como puede ser con el uso de navegadores Web (Calvo et al., 2008).

Los laboratorios virtuales han evolucionado convirtiéndose en laboratorios remotos, gracias a la inclusión de mayor complejidad en las actividades de laboratorio, adicionales al desarrollo de la computación, son sistemas basados en instrumentación real de laboratorio que permiten al estudiante realizar actividades prácticas, de forma local o remota, transfiriendo la información entre el proceso y el estudiante, de manera uni o bidireccional. El alumno utiliza y controla los recursos disponibles en el laboratorio a través de estaciones de trabajo de una red local. El laboratorio virtual se diferencia del laboratorio remoto por el tipo de computación que utiliza y por el tratamiento de los materiales. En los laboratorios remotos se usan los instrumentos reales del laboratorio, tales como tarjetas de adquisición de datos, instrumentos de medición, conexiones en interfaces diversas, comunicación de datos, etc. Los laboratorios virtuales, por su parte, solamente usan procesos de computación basados en simulaciones, como pueden ser programas ejecutables en la nube, flash o applets de Java.

Los laboratorios remotos presentan mayores ventajas que los laboratorios virtuales debido a que proporcionan mayor nivel de interactividad, de tal manera que el alumno entra en contacto con equipamiento real, en lugar de hacerlo con programas simulados. Los laboratorios remotos son una innovación en el campo de la educación y habrá que prestar atención, tanto a su diseño, como al estudio de sus ventajas e inconvenientes, desde el punto de vista didáctico.

La arquitectura de un laboratorio remoto se basa en una estructura cliente-servidor que requiere un mínimo de dos aplicaciones para su funcionamiento: del lado del equipo servidor se encuentra la aplicación que da acceso al dispositivo físico, realizando continuamente la toma de datos, análogos o digitales, de las variables a controlar, mientras que del lado del cliente se tiene la aplicación (interfaz gráfica) que el usuario manipula remotamente; estos datos son enviados al equipo servidor, realimentado la señal (variable a controlar) bidireccionalmente (Calvo et al., 2008).

Los laboratorios remotos, también llamados laboratorios controlados y Web –o simplemente WebLabs-, ofrecen acceso remoto a los equipos de laboratorio reales y a los instrumentos en tiempo real. Según Rosado y Herreros (2005), y Coquard, Guillemot, Leleve, Noterman, y Ben-
Remote laboratories, also called controlled labs via web or WebLabs, provide remote access to the real laboratory equipment and instruments in real time. As Rosado and Herreros (2005) and Coquard, Guillemot, Leleve, Noterman, and Benmohamed (2008) mention, some advantages of WebLabs are the ability to take advantage of human resources and the materials of the laboratories. This is enabled by the integration of the necessary instruments for the execution of the practices in a single workstation; so, the savings in laboratory material are considerable. Therefore, the remote laboratory enhances the time availability for the students in their learning experience.

Working in the laboratory through the implementation of WebLabs is not limited either by the physical space or by the available time of the personnel, since they contribute to the structuring of the experiments. This is used by the students to increase their development of skills related with observation, problem resolution, and results analysis. Their main disadvantage is the lack of direct control, since the visualization of the system is through web cameras; hence, external devices like the mice of keyboards handle the tools of the remote system. Real-time experimentation demands relatively small sampling times, in addition to which it is necessary to provide real-time operating systems. Both hardware and software have to be robust enough to reduce potential failures whilst they are being operated by the students, providing a comfortable user experience for them.

One of the topics of growing interest is the role of logistics in higher education research laboratories, one example of which is the creation of a conference focused on these studies and called Impact of Virtual, Remote and Real Logistics Labs (ImViReLL) (Uckelmann, 2012), the objective of which is to assess the impact of the research labs based on logistics. The conference tackles research, from the point of view of the logistics, in a wide variety of knowledge areas such as engineering, computer science, and research in distributed education, among others. Some of the open topics for discussion are LMS focused on research, remote virtualization environments, existing research environments, logistics in the life of the laboratories, and end-user participation.

The case of supply chains is even more critical because each sector has a particular technique to handle logistics. One of the key advantages of a WebLab is the possibility to suggest several cases, diversifying the experience in representative economic sectors. For instance, the manufacturing process optimization laboratory of São Paulo University has modern manufacturing systems, which add the use of ad-

mohamed (2008), las ventajas de un WebLab es que permite aprovechar los recursos humanos y materiales de los laboratorios tradicionales, al integrar, en un único computador, los instrumentos necesarios para la ejecución de las prácticas; el ahorro en material de laboratorio es considerable, unido a la realidad con que trabaja el alumno. De otro lado, el laboratorio remoto amplía la oferta horaria al alumno en su proceso de aprendizaje, convirtiéndose en un recurso beneficioso en su formación.

El trabajo en laboratorio por medio de la implementación de laboratorios remotos no se ve limitado por el espacio físico o el tiempo de disponibilidad del personal del centro, ya que contribuye a la estructuración de los experimentos que puede aprovecharse para incorporar el desarrollo de las habilidades de los estudiantes en cuanto a la observación detallada, la resolución de problemas y el análisis e interpretación de resultados. Su principal inconveniente es la falta de control directo, ya que el sistema se visualiza mediante cámaras Web y las herramientas del sistema remoto se manejan por medios externos, como el ratón o teclado. La experimentación en tiempo real exige periodos de muestreo relativamente pequeños y disponer de sistemas operativos de tiempo real. Tanto el hardware, como el software, han de ser suficientemente robustos para que no presenten fallas mientras el alumno los está utilizando, de manera que responda y mantenga las expectativas con que este se acerca a las prácticas.

Uno de los puntos que está despertando gran interés en los últimos tiempos es el papel de la logística en los laboratorios de investigación y educación superior; tanto así que se ha creado una conferencia centrada en estos estudios denominada Impact of Virtual, Remote and Real Logistics Labs (ImViReLL) (Uckelmann, 2012), cuyo objetivo es evaluar el impacto, basado en la logística, de los laboratorios de investigación. La conferencia, en consecuencia, se dirige a la investigación, desde el punto de vista de la logística, de una amplia gama de campos: ingeniería, ciencias de la computación, investigación en educación distribuida y colaborativa, entre otros. Algunas de las temáticas abiertas a discusión son: entornos virtuales de investigación y comunidades, entornos remotos de investigación y de virtualización, entornos reales de investigación, logística en la vida de los laboratorios y participación del usuario final.

El caso de cadenas de suministro es más crítico aún, ya que cada sector tiene una forma particular de manejar la logística; la ventaja de un laboratorio remoto es que existe la posibilidad de plantear diferentes casos, diversificando la experiencia en sectores económicos representativos; por ejemplo, el Laboratorio de Optimización de Procesos de Manufactura de la Universidad de San Pablo en Brasil cuenta con sistemas modernos de fabricación que incorporan el uso de funciones avanzadas de red para el control y la supervisión de las máquinas, característica importante de la gestión de la cadena de suministro. Con el concepto de sistemas de la cadena de suministro, la fabricación
se puede distribuir en varios sitios diferentes. En estos casos, el desarrollo de productos y las funciones de control de fabricación, pueden ser distribuidos a través de los usuarios de los sistemas. Este esquema abre la posibilidad de compartir, entre los usuarios del sistema, el uso de instalaciones fijas de fabricación con tecnología básica.

Para el diseño y la puesta en marcha de un laboratorio remoto para operaciones logísticas en red, soportado por una plataforma de comunicaciones que permita teleoperar y supervisar una celda de manufactura flexible didáctica, ubicada en los laboratorios de la Universidad Autónoma de Occidente [UAO], en Cali, Colombia, a través de Internet2, se desarrolló un proyecto de investigación cuyos resultados parciales se resumen en este artículo. La metodología utilizada se detalla en la sección 2; los resultados y su discusión se exponen en la sección 3; las conclusiones y trabajos futuros, se presentan en la sección 4.

II. Método

La metodología empleada para la ejecución del proyecto tuvo un alcance de naturaleza explorativa, descriptiva y correlacional, por cuanto era necesario ampliar el conocimiento buscando información actualizada sobre laboratorios remotos y los aspectos técnicos relacionados, su aplicación enfocada en temas logísticos, desde el punto de vista académico y, consiguientemente, las estrategias pedagógicas apropiadas para su incorporación en los cursos de pre y post grado seleccionados, con la aplicación de TIC.

En la primera fase del proyecto se destinó tiempo y recursos para la puesta a punto de los componentes del laboratorio: celda de manufactura, robot cartesiano y robot Scara (la Figura 1 presenta una fotografía del laboratorio). La actualización incluyó componentes como los motores y controladores del robot Scara ER-14 y la adecuación de la cinta transportadora Festo, la etapa de control de los componentes principales de la cinta transportadora y del robot cartesiano Bosch se desarrolló en el software Lab-Viera®. Posteriormente se procedió a realizar pruebas de teleoperación de forma bidireccional entre los equipos de los laboratorios de la UAO y el Instituto Tecnológico y de Estudios Superiores de Monterrey [ITESM] en México, por medio de la Red Nacional Académica de Tecnología Avanzada [Renata], en Colombia y la Corporación Universitaria para el Desarrollo de Internet [CUDI], en México, ambas vinculadas a la Red de Coop. Oper. Latino Americana de Redes Avanzadas [CLARA].

En la segunda fase, una vez establecidos los requerimientos técnicos acordes con las características y posibilidades de los equipos dispuestos en ambas instituciones académicas, se procedió a diseñar el proceso productivo que se representaría en la celda de manufactura de la UAO; se realizó una simulación en el software ProModel© que sirve para ilustrar el proceso que se desea ejecutar con el laboratorio. Este material se utilizará como material didáctico para los cursos de logística, simulación y gestión de operaciones, en pregrado, y de simulación y avanzada, y control y supervisión de la cinta transportadora y del robot Scara, como material didáctico para los cursos de logística, simula-
Internet [CUDI: Corporación Universitaria para el Desarrollo de Internet] in Mexico, both linked to the Latin American Network of Cooperation in Advanced Networks [CLARA: Red de Cooperación Latino Americana de Redes Avanzadas].

In the second phase, as soon as the technical requirements based on the features of the equipment present in both academic institutions were established, we designed the production process to represent in the UAO manufacturing cell. We ran a simulation in the ProModel® software, which allows an illustration of the processes executed in the lab. The results of this research can be used as didactic material for the courses in logistics, applied logistics operations management, simulation and logistics information models, and applied logistics operation management. Furthermore, these results contribute to acquaint the support and development engineers with the desired use to the components of the remote laboratories.

III. Developed Practices

Currently, we have two simulated practices in the test phase in the tele-operated laboratory.

Supply chain

We started with a production process consisting of the assembly of two parts, represented by Lego® pieces in four different colors. The model incorporates stock management and it allows up to 16 combinations/references. The four storage stations of the Lego® pieces (raw material) are in the work area of the Scara robot. They are also located in the outside part of the transporting band. The assembly station is located inside the band, next to the robot; this allows the arm to hold the first piece of the corresponding station, put models of information logistics and gestion of operations logistics applied, in posgrado; adicionalmente el material sirve como apoyo para dar a conocer, con mayor grado de detalle, a los ingenieros de soporte y desarrollo, el uso que se quiere dar a los componentes del laboratorio remoto.

III. Practicas desarrolladas

En el momento se tienen dos prácticas simuladas que se encuentran en fase de prueba en el laboratorio teleoperado

Cadena de suministro

Se inició con un proceso de producción consistente en el ensamblado de dos partes, representadas por fichas lego de cuatro colores diferentes. El modelo incorpora la gestión de inventarios y permite 16 combinaciones o posibles referencias. En el área de trabajo del robot Scara se encuentran las cuatro estaciones de almacenamiento de las fichas lego o materia prima, ubicadas hacia afuera de la banda transportadora; la estación de ensamblado se colocó al interior de la banda, al lado del robot, de tal manera que el brazo tome la primera ficha de la estación correspondiente, la coloque en el área de ensamblado y, seguidamente, toma la segunda y la ubica sobre la primera. Tanto la demora como el tiempo de proceso de ensamblado pueden ser programadas por el estudiante, para finalmente colocar las dos fichas ensambladas –producto terminado– sobre la cinta transportadora, de donde son dirigidas hacia la estación de almacenamiento de producto terminado administrada por el robot cartesiano (ver Figura 2).

En la estación de almacenamiento, compuesta por el robot cartesiano y una estantería, se recoge la materia prima – representada por las fichas lego de cada color – y el producto ensamblado o producto terminado. El robot está en capacidad de llevar hacia la banda las fichas lego individuales, según las necesidades; también recoge los pares ensamblados para su almacenamiento.

Los parámetros configurables del proceso son:

- las cantidades a producir de cada una de las 16 referen-
Tele-operated laboratory for teaching logistics operations. *Sistemas & Telemática, 13*(35), 39-51

The students can program both the delay and the assembly time. Finally, the model puts the two assembled pieces—the end product—on the transporting band, where they are transported into the storage station, managed by the linear robot (see Figure 2).

In the storage station, composed of the linear robot and a shelf, the system receives the raw material and the final product. The robot is capable of carrying the individual Lego® pieces towards the band, given certain necessities. It also picks up the assembled pairs for their storage.

The configurable parameters of the process are:

- The quantity of each of the 16 possible references to produce—demand;
- the minimal stock in the stations next to the assembly area—security stock;
- the speed of the transporting band;
- the size of the production and transport lots; and
- the type of process—which can be *push* (produce the total amount of each of the references) or *pull* (produce one reference at the time).

Port operations

This cell configuration represents the loading up and offloading of four container types, considering that the shelves in the warehouse represent the container ship, whilst the linear robot takes the role of the gantry crane. The Scara robot is responsible for the location of the containers offloaded from the ship into the respective storage areas—where the identification is carried out using a bar code.
scanner and an IEEE 1494 vision camera located in the manufacturing cell—and also for the dispatching of the containers in the ship (see Figure 3).

In parallel, at this point of the project development, and with the purpose of identifying the technical possibilities of the objective user accessing virtual platforms, we have decided to offer in the project website (http://teleoplogis.net/) a survey related to the use of technological resources such as computers, tablets, and smartphones. Other questions are related to topics in the field of operations management, logistics, and simulation; ending with questions to measure the experience and contribution of the practices imparted at the UAO. This study is currently in execution and it precedes the implementation of the practices in the remote lab.

This questionnaire has been presented to candidates for the Master in Integral Logistics and to undergraduate students taking the stochastic process simulation subject of Industrial Engineering. We expect to gather information from students in other subjects. In the case of the first year students, we only considered data related to the use of technological resources.

It is important to note that, in the first quarter of 2014, the number of connections to broadband internet (fixed and mobile) was 8.8 million, which represents an increase of 33.9% relative to the first quarter of 2013 (Mora, 2014). As a notable datum, 4G LTE mobile connections grew by up to 63.8% in the same period. For this reason, internet penetration, together with a broader availability of mobile devices at lower prices, guarantees a constant increase in users with the capacity to access online services. In consequence, new training strategies need to be developed to take advantage of ICT services for remote labs.

Finalizado 2014 los cuestionamientos asociados al uso de tecnología habían sido respondidos por 80 estudiantes. Entre los estudiantes de primer año se observó que el 63% posee computador de escritorio; 62%, equipo portátil; 97%, acceso a Internet; 80%, teléfono inteligente –46% sin plan de datos móviles, 22% con acceso solo a redes sociales y correo electrónico, y 32% con navegación completa– y solo 25%, tableta (22%, Android; 3%, iPAD). Entre los estudiantes de grados superiores (últimos semestres de Ingeniería Industrial) y estudiantes de postgrado (Maestría en Logística Integral), se observó que el 16% posee computador de escritorio, 42% portátil y 32% ambos equipos; en cuanto a acceso a Internet, la totalidad manifestó tener banda ancha residencial; el 84% tiene teléfono inteligente, 16% solo con plan de datos para redes sociales y correo electrónico.
By the end of 2014, 80 students answered the survey related with the use of technology. From these results, 63% of the first year students have a desktop computer; 62% have laptops; 97% have internet access; 80% have a smartphone —46% without data plan, 22% with limited internet access, and 32% with full navigation—and only 25% of these students have a tablet (22% Android®, 3% iPad®). Among the superior level students (latest semesters of industrial engineering) and postgraduate students (Master in Integral Logistics), we observed that 16% have a desktop computer, 42% have laptops, and 32% both. With regard to internet access, everyone mentioned having it; 84% of them have a smartphone, 16% with limited access and 37% with full navigation. Additionally, 47% of them have a tablet. Summarizing this data, Figure 4 presents the results about the survey respondent students who have had access to several traditional laboratory practices. From here, 16% consider that the activities offered do not serve to support the reinforcement of theoretical aspects, while 84% of them think they do serve as a support. In addition, 79% of the students believe that the laboratory practices expose them to real contexts by proposing situations or scenarios where theoretical knowledge is applied, whilst only 21% think these practices give them limited exposure. On the other hand, the acceptance of ICT is high: 95% of the survey respondents think ICT integration can increase the quality of their learning processes, while only 5% are not sure.

The results of this survey are a supply for the release of the remote laboratory and allow access for the students. Until now, we have carried out some tests in order to validate the practices and remote accessibility with some students registered in the platform.

IV. Results and discussion

In the previous sections, we described the actual state of the tele-operated laboratory for teaching logistics operations. The project has been successfully developed and has been put into operation. Two laboratory practices have been implemented, and remote access tests have been performed with satisfactory results in terms of response time and functionality, with delays of approximately four seconds. These tests have been carried out with remote connection to a local network and intercampus access to the TEC of Monterrey through the Clara network.

In the initial stage of the project, we identified issues related to technical capacity and security in the participating institutions, so it was necessary to manage the assignment of fixed IP addresses and the release of some ports for camera connection and access to the university campuses from the outside; we compared the characteristics and flexibility of the equipment used in the laboratories, which resulted in the equipment used in the laboratories.
Correa, M. & Aragón, A. (2015).

Project, where the tele-operated lab is operating flawlessly with two practices within it. We carried out remote access tests with acceptable results for response time and functionality, obtaining latency results of 4 seconds, approximately. We implemented these tests with a remote connection to a local network and with intercampus access with the ITESM through the CLARA network.

At the initial stage of the project, we identified some issues related to the technical capacity and security in the participating institutions. Therefore, it was necessary to manage the assignment of fixed IP addresses and to free up some ports for the connection of cameras and for remote access from external networks. We compared the features and flexibility of the equipment in the laboratories, where it was found necessary to execute some updates in the working stations, engines, sensors, actuators, and controllers, seeking for greater flexibility and agility in their operation.

We also formulated a detailed description of the hardware related to the control of the Festo manufacturing cell; in addition, we defined the communication protocols used for control of the devices conforming the flexible manufacturing system. Once we had finished the set-up of the physical platform, we developed the main interconnection program of the transporting band and the Scara robot, achieving the handling of the communication and synchronization mechanisms between the work station of the transporting band and the linear robot in the warehouse. In Figure 5, we present the development of practice 1 and the program controlling the Scara robot (C segment).

Likewise, we performed synchronization tests of every work station in an effort to achieve a correct communication and programming of the flexible manufacturing system.

V. Conclusions and future work

V. Conclusiones y trabajo futuro

Se consiguió poner en funcionamiento la celda de manufactura Festo, el robot Scara y el robot Cartesiano, ubicados en el laboratorio de robótica de la UAO, de forma sincronizada, controlando su accionamiento con un programa desarrollado en Labview para la ejecución de prácticas con acceso remoto, con el cual se puede hacer seguimiento del accionamiento de los componentes por medio de cámaras web ubicadas en el laboratorio.

Se logró cambiar el concepto del tipo de prácticas a realizar en el laboratorio de robótica, con el desarrollo de ejercicios de laboratorio orientados a estudiantes de Ingeniería Industrial y afines, enfocados en gestión de operaciones y logística.

En la revisión del estado del arte de esta clase de laboratorios fue difícil encontrar prácticas diferentes al propio funcionamiento y a la programación del sistema flexible de manufactura, en los que se encuentran múltiples ejercicios...
We were able to set up and run the Festo manufacturing cell, the Scara and the linear robots —located in the robotics laboratory of the UAO— in a synchronous way by controlling their actions with a program developed in LabVIEW for the execution of remotely accessed practices. Thanks to the functionality of this program, we were able to monitor the operation of the components through webcams located in the lab.

We were able to change the concept of the type of practice to execute in the robotics laboratory with the development of laboratory exercises oriented to industrial engineering students. We approached these exercises in operations management and logistics.

There were several difficulties to review of the state of the art to find practices different from the proper operation and programming of the manufacturing flexible system. In this research, we found multiple exercises aimed at students of mechatronics, electronics, and computer science engineering; these examples are associated with the programming of PLC, robot control, etc. Thus, the focus given to this type of laboratory in this project is a novel practice.

Within the development of the project, we included the execution of simulations of manufacturing processes with configurable options, so the users in their academic exercises could get the results of the process for subsequent work related to the analysis of the presented behavior. In this development, we used PHP programming and MySQL databases, to, afterwards, link these elements with the control module in LabVIEW.

As a future work, we propose the construction of an online platform to manage the registration and massive access of users to the system. For this task, it is necessary to either do previous several security tests or define the structure of a network exclusively for the robotics lab. In that structure, the network administrator can limit the manipulation of the manufacturing flexible system controls, in order to protect the security of the equipment.

We also propose the incorporation of new practices to the remote laboratory, mainly focused on routing and warehouse management, which are already being tested in simulators.

VI. Acknowledgements

This work is financed by the research project TELEOP-LOGIS —Tele-operated Laboratory for Logistics Operations— via Internet2 under the code 12INTER-180, and by the Universidad Autónoma de Occidente, through the resolution 6635 of June 5 of 2012.
References / Referencias

Calvo, I., Zulueta, E., Gangoitl, U., López, J. (2008). Laboratorios remotos y virtuales en enseñanzas técnicas y científicas, Ikastorratza, 3. Retrieved from: http://www.ehu.eus/ikastorratza/3_alea/laboratorios.pdf

Coquard, P., Guillenot, M., Leleve, A., Noterman, D., & Benmohamed, H. (2008). AIP-Primeca RAO remote laboratories in automation. International Journal of Online Engineering, 4(1), 12-18.

Dirección Nacional de Innovación Académica [DNIA] (2014). ¿Quiénes somos? Retrieved from: http://www.virtual.unal.edu.co/unvPortal/pages/PagesViewer.do?idPage=11&reqCode=viewDetails

Duque, J., Corredor, J., Perez, M., Mesa, M., Amaya, D., Camargo, F., ... & de la Rosa, F. (2011). Accesibilidad a las celdas de manufactura flexible automatizadas a través de la red nacional RENATA y la red internacional CLARA para supervisar y controlar su estado y funcionamiento. Revista e-colabora, 1(1), 22-35.

Gonzales, M., Adiego, J., Sanz, I., Bouab, N., & Mass, J. (2008). Laboratorios remotos en la web: una herramienta para la cooperación al desarrollo en el campo de la educación [paper - Encuentro de Cooperación para el Desarrollo 2.0. Gijón, Spain].

Laboratory for advanced processes and sustainability. (2011). Retrieved from: http://www.opf.sc.usp.br/

Laboratório de Otimização de Processos de Fabricação – OPF. USP São Carlos - Universidade de São Paulo, Brasil. Escola de Engenharia, NUMA - Núcleo de Manufatura Avançada.

Mora, M. [Ed.]. (2014, junio). Boletín Trimestral de las TIC. Bogotá, Colombia: Ministerio de Tecnologías de la Información y las Comunicaciones. Available at: http://colombiamallen.gov.co/602/articles-6276_archivo_pdf.pdf

Red Nacional Académica de Tecnología Avanzada [RENATA] (s.f). ¿Qué es Renata? Retrieved from: http://www.renata.edu.co/index.php/quienes-somos

Rodríguez, S., Hernández, E., Foyo, S., & Loa, L. (2011). Modelado y control de un sistema de manufactura flexible basado en sistemas de eventos discretos. TESCOALTL, 32(13). Retrieved from: http://tesco.edu.mx/gem/DOC/PDF/publicaciones/tesco/tesco_pdf_tescoatl32_5_ModeladoControlSistManufacFlex.pdf

Rosado, L. & Herreros, J.R. (2005). Nuevas aportaciones didácticas de los laboratorios virtuales y remotos en la enseñanza de la Física [III International Conference on multimedia and Information & Communication Technologies in Education (m-ICTE2005), Cáceres, Spain]. Retrieved from: http://www.uv.es/eees/archivo/286.pdf

Teleoplogis: laboratorio teleoperado de operaciones logísticas, vía Internet2. (s.f.). Retrieved from: http://teleoplogis.net/

Uckelmann, D. (2012). The role of logistics labs in research and higher education. In Communications in Computer and Information Science, 282, [The Impact of Virtual Remote and Real Logistics Labs], (pp.1-12). Berlin-Heidelberg, Germany: Springer-Verlag.

http://www.icesi.edu.co/revistas/index.php/sistemas_tematica
CURRICULUM VITAE

Alexander Aragón Chamorro Industrial Engineer. Master in Logistics. Full-time Instructor of Industrial Engineering Labs. and cathedra professor of Center for Innovative Education in Engineering at Universidad Autónoma de Occidente (Cali, Colombia) / Máster en Ingeniería Industrial; Máster en Logística; instructor de tiempo completo de los Laboratorios de Ingeniería Industrial y profesor hora cátedra del Centro de Innovación Educativa en Ingeniería de la Universidad Autónoma de Occidente.

Maritza Correa Valencia Industrial Engineer, Master in Information Technologies in Manufacturing and Doctor of Computer Sciences and Artificial intelligence. Full-time professor and researcher of the Operations and Computer Department at the Universidad Autónoma de Occidente (Cali, Colombia). Ingeniera Industrial, Máster en Tecnologías de Información en Manufactura y Doctora en Ciencias de la Computación e Inteligencia Artificial. Profesora de tiempo completo e investigadora del Departamento de Operaciones y Sistemas de la Universidad Autónoma de Occidente.