Tetrahedral Family Symmetry
and the Neutrino Mixing Matrix

Ernest Ma

Physics Department, University of California, Riverside, California 92521, USA,
and Institute for Particle Physics Phenomenology, Department of Physics,
University of Durham, Durham, DH1 3LE, UK

Abstract

In a new application of the discrete non-Abelian symmetry A_4 using the canonical
seesaw mechanism, a three-parameter form of the neutrino mass matrix is derived. It
predicts the following mixing angles for neutrino oscillations: $\theta_{13} = 0$, $\sin^2 \theta_{23} = 1/2$,
and $\sin^2 \theta_{12}$ close, but not exactly equal to $1/3$, in one natural symmetry limit.
The symmetry group of the tetrahedron is also that of the even permutation of four objects, i.e. A_4. It is a non-Abelian finite subgroup of $SO(3)$ as well as $SU(3)$. It has twelve elements and four irreducible representations: $1, 1', 1'', \text{ and } 3$. It has been shown to be useful in describing the family structure of quarks and leptons. In most previous applications, the lepton doublets (ν_i, l_i) are assigned to the 3 representation of A_4, whereas the charged-lepton singlets l_i^c are assigned to the three inequivalent one-dimensional representations $1, 1', 1''$. Here as in the two papers of Ref. [7], both (ν_i, l_i) and l_i^c are 3 instead.

Three heavy neutral fermion singlets N_i are assumed, transforming as $1, 1', 1''$ under A_4. [In the first paper of Ref. [7], they transform as 3; in the second, they are absent.] The multiplication rule $1' \times 1'' = 1$ implies that the Majorana mass matrix of N_i invariant under A_4 is given by

$$M_N = \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & B \\ 0 & B & 0 \end{pmatrix}. \quad (1)$$

The multiplication rule

$$3 \times 3 = 1 + 1' + 1'' + 3 + 3 \quad (2)$$

allows the charged-lepton mass matrix to be diagonal by having three Higgs doublets transforming as $1, 1', 1''$, resulting in a diagonal M_l with

$$\begin{pmatrix} m_e \\ m_\mu \\ m_\tau \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} h_1 v_1 \\ h_2 v_2 \\ h_3 v_3 \end{pmatrix}, \quad (3)$$

where $\omega = \exp(2\pi i/3)$ and $v_{1,2,3}$ are the vacuum expectation values of these three Higgs doublets.

As for the Dirac mass matrix linking ν_i to N_j, three other Higgs doublets are assumed, transforming as 3 under A_4. [They are distinguished from the previous three Higgs doublets]
by a discrete Z_2 symmetry. Thus

$$
\mathcal{M}_D = \begin{pmatrix}
 f_1 u_1 & f_2 u_1 & f_3 u_1 \\
 f_1 u_2 & f_2 \omega u_2 & f_3 \omega^2 u_2 \\
 f_1 u_3 & f_2 \omega^2 u_3 & f_3 \omega u_3
\end{pmatrix} = \begin{pmatrix}
 u_1 & 0 & 0 \\
 0 & u_2 & 0 \\
 0 & 0 & u_3
\end{pmatrix} \begin{pmatrix}
 1 & 1 & 1 \\
 1 & \omega & \omega^2 \\
 1 & \omega^2 & \omega
\end{pmatrix} \begin{pmatrix}
 f_1 & 0 & 0 \\
 0 & f_2 & 0 \\
 0 & 0 & f_3
\end{pmatrix}.
$$

Using the canonical seesaw mechanism \[9\], the Majorana neutrino mass matrix is then given by

$$
\mathcal{M}_\nu = \mathcal{M}_D \mathcal{M}_N^{-1} \mathcal{M}_D^T = \begin{pmatrix}
 u_1 & 0 & 0 \\
 0 & u_2 & 0 \\
 0 & 0 & u_3
\end{pmatrix} \begin{pmatrix}
 a & b & b \\
 b & a & b \\
 b & b & a
\end{pmatrix} \begin{pmatrix}
 u_1 & 0 & 0 \\
 0 & u_2 & 0 \\
 0 & 0 & u_3
\end{pmatrix},
$$

where

$$
a = f_1^2/A + 2f_2f_3/B, \quad b = f_1^2/A - f_2f_3/B,
$$

and $u_{1,2,3}$ are the vacuum expectation values of the second set of Higgs doublets which transform as $\overline{3}$ under A_4.

If $u_1 = u_2 = u_3 = u$, then a residual Z_3 symmetry exists, and the eigenvalues of \mathcal{M}_ν are simply $u^2(a + 2b)$, $u^2(a - b)$, and $u^2(a - b)$. However, since the first eigenvalue corresponds to the eigenstate $(\nu_e + \nu_\mu + \nu_\tau)/\sqrt{3}$, this is not a realistic scenario. Consider now the case

$$
u_2 = \nu_3 = u \neq \nu_1.
$$

This makes \mathcal{M}_ν of the form advocated in Ref. \[10\] and results in $\theta_{13} = 0$ and $\theta_{23} = \pi/4$. Since $\theta_{13} = 0$ implies that CP is conserved in neutrino oscillations, the condition $u_2 = u_3$ should be considered “natural” in the sense that it is protected by a symmetry. Note that this alone does not imply $\theta_{23} = \pi/4$, which needs also A_4 for it to be true. \[It certainly does not come from $\nu_\mu - \nu_\tau$ exchange as often suggested, because that would imply $\mu - \tau$ exchange as well, which cannot be sustained in the complete Lagrangian of the theory as a symmetry because $m_\mu \neq m_\tau.\]

Using the condition of Eq. (7), \mathcal{M}_ν of Eq. (5) can be rewritten as

$$
\mathcal{M}_\nu = \begin{pmatrix}
 \lambda^2 a & \lambda b & \lambda b \\
 \lambda b & a & b \\
 \lambda b & b & a
\end{pmatrix}.
$$
In the basis $\nu_e, (\nu_\mu + \nu_\tau)/\sqrt{2}$, and $(-\nu_\mu + \nu_\tau)/\sqrt{2}$, this becomes

$$\mathcal{M}_\nu = \begin{pmatrix} \lambda^2 a & \sqrt{2} \lambda b & 0 \\ \sqrt{2} \lambda b & a + b & 0 \\ 0 & 0 & a - b \end{pmatrix},$$

yielding one exact eigenvalue and eigenstate:

$$m_3 = a - b, \quad \nu_3 = (-\nu_\mu + \nu_\tau)/\sqrt{2}. \quad (10)$$

In the submatrix spanning ν_e and $(\nu_\mu + \nu_\tau)/\sqrt{2}$, consider

$$\mathcal{M}_\nu \mathcal{M}_\nu^\dagger = \begin{pmatrix} |\lambda|^4 |a|^2 + 2|\lambda|^2 |b|^2 & \sqrt{2} \lambda (|b|^2 + a^* b + |\lambda|^2 a^* b) \\ \sqrt{2} \lambda^* (|b|^2 + a b^* + |\lambda|^2 a b^*) & |a + b|^2 + 2|\lambda|^2 |b|^2 \end{pmatrix}. \quad (11)$$

The limit $|m_1|^2 = |m_2|^2$ is reached if

$$|a + b|^2 - |\lambda|^4 |a|^2 = 0, \quad |b|^2 + a^* b + |\lambda|^2 a b^* = 0, \quad (12)$$

both of which are satisfied if $b = -a(1 + |\lambda|^2)$. In this limit, $\Delta m^2_{sol} = 0$ and

$$\Delta m^2_{atm} \equiv |m_3|^2 - (|m_1|^2 + |m_2|^2)/2 = 2|a|^2 (1 - |\lambda|^4)(2 + |\lambda|^2). \quad (13)$$

To obtain a nonzero Δm^2_{sol} and the value of θ_{12}, consider

$$b = -a(1 + |\lambda|^2 + \epsilon), \quad (14)$$

then

$$\Delta m^2_{sol} \equiv |m_2|^2 - |m_1|^2 = |a|^2[(\epsilon + \epsilon^*)|\lambda|^2 + |\epsilon|^2] + 8|\lambda|^2 |\epsilon|^* + \epsilon|\lambda|^2 + |\epsilon|^2]^{1/2}, \quad (15)$$

and

$$\tan^2 2\theta_{12} = \frac{8|\lambda|^2 |\epsilon|^* + \epsilon|\lambda|^2 + |\epsilon|^2]}{[(\epsilon + \epsilon^*)|\lambda|^2 + |\epsilon|^2]^2}. \quad (16)$$

There are two natural limits of the parameter λ. (A) $\lambda = 1$ corresponds to $u_1 = u_2 = u_3 = u$, which is protected by a residual Z_3 symmetry as discussed already. (B) $\lambda = 0$
corresponds to $m_{\nu_e} = 0$ and the decoupling of ν_e from ν_μ and ν_τ, which is protected by a chiral U(1) symmetry. Hence values of λ near 1 and 0 will be considered from now on.

(A) For $|\lambda| \approx 1$, ϵ is expected to be small compared to it in Eq. (14). In that case,

$$\Delta m_{sol}^2 \approx 2|a|^2|\lambda||\Re\epsilon|^2(2 + |\lambda|^2)(1 + 2|\lambda|^2) + 2|\Im\epsilon|^2(1 - |\lambda|^2)^2]^{1/2},$$

and

$$\tan^2 2\theta_{12} \approx 8 \left[\frac{1 + |\lambda|^2}{2|\lambda|} \right]^2 + \frac{|\Im\epsilon|^2}{(\Re\epsilon)^2} \left(\frac{1 - |\lambda|^2}{2|\lambda|} \right)^2. \tag{18}$$

This means that $|\tan 2\theta_{12}| > 2\sqrt{2}$, or equivalently $\sin^2 \theta_{12} > 1/3$, to be compared with the current experimental fit of $\sin^2 \theta_{12} = 0.31 \pm 0.03$.

Using the typical experimental values

$$\Delta m_{atm}^2 = 2.5 \times 10^{-3} \text{ eV}^2, \quad \Delta m_{sol}^2 = 8.0 \times 10^{-5} \text{ eV}^2, \tag{19}$$

and assuming ϵ to be real, its value and those of $\sin^2 \theta_{12}$ and $|\lambda^2 a|$ are given in Table 1.

It shows that $\sin^2 \theta_{12}$ is very near 1/3 and cannot be distinguished in practice from being exactly 1/3 [11], as in some models. The last column corresponds to the expected value of the effective neutrino mass measured in neutrinoless double beta decay.

Table 1: Values of $\sin^2 \theta_{12}$, ϵ, and $|\lambda^2 a|$ as functions of $|\lambda|$.

| $|\lambda|$ | $\sin^2 \theta_{12}$ | ϵ | $|\lambda^2 a|$ |
|-----------|------------------|----------|----------------|
| 0.7 | 0.342 | 0.027 | 0.013 eV |
| 0.8 | 0.337 | 0.020 | 0.018 eV |
| 0.9 | 0.334 | 0.011 | 0.029 eV |
| 1.0 | 0.333 | – | – |
| 1.1 | 0.334 | 0.014 | 0.035 eV |
| 1.2 | 0.336 | 0.032 | 0.026 eV |
| 1.3 | 0.338 | 0.055 | 0.023 eV |
| 1.4 | 0.341 | 0.082 | 0.021 eV |
(B) For $|\lambda| \simeq 0$, consider $|\epsilon|$ also to be of order $|\lambda|$, then

\[
\Delta m_{atm}^2 \simeq 4|a|^2, \quad (20)
\]

\[
\Delta m_{sol}^2 \simeq |a|^2|\epsilon|\sqrt{|\epsilon|^2 + 8|\lambda|^2}, \quad (21)
\]

\[
\tan^2 2\theta_{12} \simeq 8|\lambda|^2/|\epsilon|^2. \quad (22)
\]

In this case, $|a| = 0.025$ eV, and $\sin^2 \theta_{13} < 1/3$ can be obtained for $|\lambda| < |\epsilon|$. Suppose it is fixed at 0.31, then $|\lambda| = 0.19$, $|\epsilon| = 0.22$, and $|\lambda^2 a| = 9.0 \times 10^{-4}$ eV.

In conclusion, it has been shown in this paper that a new application of the non-Abelian discrete symmetry A_4 in the context of the canonical seesaw mechanism is successful in obtaining a realistic neutrino mixing matrix with $\theta_{13} = 0$, $\theta_{23} = \pi/4$, and a prediction of $\sin^2 \theta_{12}$ very near $1/3$ in a particular symmetry limit. As Eq. (13) shows, the normal (inverted) hierarchy of neutrino masses is obtained for $|\lambda|$ less (greater) than 1. Typical values of the effective neutrino mass measured in neutrinoless double beta decay are given in Table 1.

I thank Steve King for useful discussions. This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.

References

[1] E. Ma and G. Rajasekaran, Phys. Rev. D64, 113012 (2001); E. Ma, Mod. Phys. Lett. A17, 289 (2002); ibid. A17, 627 (2002).

[2] K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. B552, 207 (2003); E. Ma, Mod. Phys. Lett. A17, 2361 (2002); M. Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle, and A. Villanova del Moral, Phys. Rev. D69, 093006 (2004).

[3] E. Ma, hep-ph/0208077, hep-ph/0208097, hep-ph/0307016, hep-ph/0311215.
[4] E. Ma, Phys. Rev. D70, 031901(R) (2004); New J. Phys. 6, 104 (2004); hep-ph/0409075.

[5] E. Ma, Mod. Phys. Lett. A20, 1953 (2005).

[6] G. Altarelli and F. Feruglio, hep-ph/0504165; E. Ma, Phys. Rev. D72, 037301 (2005).

[7] S.-L. Chen, M. Frigerio, and E. Ma, hep-ph/0504181; M. Hirsch, A. Villanova del Moral, J. W. F. Valle, and E. Ma, hep-ph/0507148.

[8] K. S. Babu and X.-G. He, hep-ph/0507217.

[9] M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, Amsterdam, 1979), p. 315; T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto (KEK Report No. 79-18, Tsukuba, Japan, 1979), p. 95; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

[10] E. Ma, Phys. Rev. D66, 117301 (2002).

[11] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B530, 167 (2002).