INTRODUCTION

Hirschsprung’s disease (HSCR) is a congenital gastrointestinal (GI) disease in which submucosal and intramuscular plexus ganglion cells are lacking in the intestinal wall of the distal digestive tract, which is caused by developmental disorders of the enteric nervous system during embryonic development.1 The occurrence of HSCR shows sex-related and racial disparities, with a male-to-female ratio of 4/1 and a higher incidence in Asia, including China (1/3500 vs. 1/5000).2 Hirschsprung’s disease can be divided into 3 subtypes depending on the length of the aganglionic tract, including short-segment HSCR (S-HSCR), long-segment HSCR (L-HSCR), and total colonic aganglionosis (TCA), with the rare occurrence of cumulative full-bowel megacolon.3 In addition, according to the presence or absence of other sex-related and racial disparities, with a male-to-female ratio of 4/1 and a higher incidence in Asia, including China (1/3500 vs. 1/5000).2

1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
2The First Affiliated Hospital of Jinan University, Guangzhou, China
3Guangzhou Medical University, Guangzhou, China

Correspondence
Yun Zhu, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
Email: zhuyun210@163.com

Funding information
This study was funded by grants from the National Natural Science Foundation of China (Grant No. 8177629, 81601423, and 81600400), the Science and Technology Project of Guangzhou (NO.201903010074), the China Postdoctoral Science Foundation (NO.2017T100621), and Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease (No: 2019B030301004).

Abstract
Background: Hirschsprung’s disease (HSCR) is an enteric nervous system birth defect partially caused by a genetic disorder. Single-nucleotide polymorphisms (SNPs) of the cytochrome P450 family 2 subfamily B member 6 (CYP2B6) gene are reported to be associated with HSCR.

Methods: We evaluated the association of rs2054675, rs707265, and rs1042389 with HSCR susceptibility in southern Chinese children including 1470 HSCR patients and 1473 controls using the TaqMan SNP Genotyping Assay.

Results: rs2054675 C allele and the rs707265 G allele were risk SNPs for total colonic aganglionosis (OR = 1.82, 95% CI 1.29 ~ 2.55, P_adj < 0.001 and OR = 0.68, 95% CI 0.48 ~ 0.97, P_adj = 0.034). These results suggested that CYP2B6 rs2054675 and rs707265 polymorphisms were associated with increased susceptibility to the severe HSCR subtype in southern Chinese children.

Conclusion: We suggest that CYP2B6 rs2054675 and rs707265 polymorphisms are associated with increased susceptibility to the severe HSCR subtype in southern Chinese children.

KEYWORDS
CYP2B6, cytochrome P450 family 2 subfamily B member 6, Hirschsprung’s disease, HSCR, single-nucleotide polymorphism
malformations and chromosomal abnormalities, HSCR can be divided into simple and syndrome types, and the most common comorbidity is trisomy 21.4 Moreover, there are familial and sporadic types of HSCR according to family inheritance. More than one-fifth of HSCR cases show familial aggregation, whereas most HSCR cases are sporadic.5

The pathogenesis of HSCR is complex and involves multiple genes and multiple signaling pathways. A genome-wide association study (GWAS) has identified a variety of genes associated with a high risk of HSCR in the RET and EDNRB signaling pathways, which play important roles in the migration of enteric neuron crest cells during the development of the enteric nervous system (ENS).6 RET intronic enhancer rs2435357 T allele, rs2506004 C>A were associated with a 4-fold increase in risk of HSCR. These variants can alter the binding of transcriptional factors (SOX10, ARNT5/NXF, and HOXB5) and decreased the expression of RET gene.7 Other common variants of SEMA3C, SEMA3D, NRG1, 19q12, 3p21, VAMP5, and MCC are widely reported to be independently or synergistically associated with the risk of HSCR.8,9 However, only a small proportion of HSCR cases can be explained by these known factors; for most sporadic cases, missing heritability remains to be identified. Therefore, it is believed that interaction between environmental and genetic factors plays a crucial role in the pathogenesis of HSCR,10 which remains barely explored.

The human CYP2B6 gene belongs to the human cytochrome P450 enzyme system (CYPs), which are involved in the metabolism of fatty acids, cholesterol, bile acids, vitamin D, retinoids, and eicosanoids.11 They play a role in some diseases occurring during embryogenesis and infantile development.12 Notably, P450 family members are environmental responders to dietary components, chemical inducers and signals (i.e., pheromones), drugs, etc.13 These three SNPs (rs707265, rs1042389, and rs2054675) which were likely to be regulatory variants and satisfied the criteria regarding the minor allele frequency, Hardy–Weinberg equilibrium (HWE) and linkage disequilibrium, were validated using a cohort (262 cases and 290 controls) from eastern Chinese population.14 Considering distinctive dietary and toxic or drug exposure between eastern and southern Chinese population, we conducted an association study in a southern Chinese population (1470 cases and 1473 controls) to evaluate the association between CYP2B6 polymorphism and susceptibility to HSCR. This study will provide a hint of environmental factors for pathogenesis of HSCR.

2 | MATERIALS AND METHODS

2.1 | Study subjects

1740 HSCR patients and 1473 controls from southern China were recruited from Guangzhou Women and Children’s Medical Center as described previously,8 and their detailed clinical information is summarized in Table 1. The diagnosis of HSCR was confirmed in all cases by pathological biopsies of intestinal tissue obtained from surgery showing a lack of submucosal and intramuscular plexus ganglion

TABLE 1	Clinical Characteristics of the Study Population		
Characteristic	Cases (n = 1470)	Controls (n = 1473)	P*
Sex (Male; Female)	1230/240	1015/458	<0.001
Age (month)	8.37 ± 20.50	18.61 ± 19.75	<0.001
S-HSCR (%)	1033 (70.3%)	N/A	–
L-HSCR (%)	294 (20.1%)	N/A	–
TCA (%)	82 (5.6%)	N/A	–
TIA (%)	3 (0.2%)	N/A	–
Unknown subtype	58 (0.7%)	N/A	–
Syndromic HSCR (%)	48 (3.3%)	N/A	–
With Constipation	162 (11.0%)	N/A	–
Presurgery Enteritis (%)	261 (17.8%)	N/A	–
Postsurgery Enteritis (%)	249 (16.9%)	N/A	–

| a. Two-tailed χ2 test of the distribution between HSCR cases and controls. |
| b. Age (month) of onset for HSCR cases: (mean ± SD), SD, Standard deviation; NA, Not available. |
| c. S-HSCR, short-segment HSCR; L-HSCR, Long-segment HSCR; TCA, Total colonic aganglionosis; TIA, Total intestine aganglionosis. |

The patients with HSCR were divided into the 3 subtypes of S-HSCR, L-HSCR, and TCA based on the length of aganglionosis in the pathological biopsy. Control samples from individuals without HSCR or neurological disease were randomly selected. The study was ethically approved by the Institutional Review Board of Guangzhou Women and Children’s Medical Center, and informed consent was obtained from the guardians of all subjects in this study (Ethical Approval Number: 201943800).

2.2 | SNP selection and genotyping

CYP2B6 rs707265, rs1042389, and rs2054675 were selected using criteria as described in our previous study.15 Briefly, the candidate SNPs that were likely to be regulatory variants and satisfied the criteria regarding the minor allele frequency, Hardy–Weinberg equilibrium (HWE) and linkage disequilibrium were selected for validation. TIANamp Blood Genomic DNA Kits and TIANquick FFPE DNA Kits (TIANGEN Biotech Co. Ltd.,) were applied to isolate genomic DNA from venous blood and paraffin samples. Subsequently, CYP2B6 SNPs were genotyped using the TaqMan SNP Genotyping Assay on an ABI-7900 real-time quantitative PCR instrument (Applied Biosystem).16 Three replicates were performed for each sample.

2.3 | Correlation analysis of genotype and gene expression

The associations between 3 SNPs (rs2054675, rs707265, and rs1042389) and CYP2B6 gene expression in colon tissues, or the
expression quantitative trait locus (eQTL) effect, were evaluated through the GTEx Portal database (https://www.gtexportal.org/home/). We used “Single-Tissue eQTLs” and “Single-Tissue sQTLs”, and only chose colon tissues to show eQTLs or sQTLs results of CYP2B6 rs707265, rs1042389, and rs2054675. These results were drawn using “eQTL violin plot” provided by GTEx Portal database, which showed the median, quartiles, and outliers as well as eQTL P-value.

2.4 | Statistical analysis

The statistical analysis of all data in this study was performed by using SAS (version 9.4; SAS Institute). The differences in age or sex between the HSCR and control groups were compared using a two-tailed chi-square test. The Hardy–Weinberg equilibrium test was performed in the control group to assess genotyping quality, and \(p > 0.05 \) was considered to indicate a satisfactory goodness-of-fit. Multiple logistic regression analysis was applied to assess the association of CYP2B6 polymorphisms with the risk of HSCR as well as HSCR subtypes (S-HSCR, L-HSCR, and TCA). \(P_{\text{crude}} \) and \(P_{\text{adj}} \) indicate the association significance without or with adjusting the effects of age and sex. Odds ratios (ORs) were compared between the HSCR and control groups.

3 | RESULTS

3.1 | eQTL analysis

To investigate the functional potential of the SNPs, we used the Genotypic Tissue Expression (GTEx) dataset to evaluate the associations of rs2054675, rs707265, and rs1042389 with CYP2B6 expression.\(^{17}\) We found that rs2054675 and rs707265 were significant splicing quantitative trait loci (eQTLs) \((p = 1.3e^{-6}) \) and expression quantitative trait loci (eQTLs) \((p = 3.2e^{-8}) \) of the CYP2B6 gene in colon tissues, but rs1042389 was not significant (Figure 1). The results verified regulatory potential of rs2054675 and rs707265.

3.2 | Association of CYP2B6 SNPs with HSCR susceptibility

Subsequently, the genotype frequencies of rs2054675, rs707265, and rs1042389 and their associations with HSCR were calculated and are summarized in Table 2. The genotypes of the 3 SNPs in the control group were in HWE \((p > 0.05) \). To better illustrate the pattern of the effects of rs2054675, rs707265, and rs1042389 on CYP2B6, an association test was applied by logistic regression under four different genetic models (allelic genetic, genotypic, dominant, and recessive models). The results showed that the three SNPs did not present a significant association with HSCR in general. Association of rs1042389 under the dominant model was close to significance \((P_{\text{adj}} = 0.060, \text{OR} = 1.14, 95\% \text{CI of 0.98 ~ 1.32}) \) (Table 2).

3.3 | Stratification analysis of CYP2B6 SNPs with HSCR subtypes

Considering the effects of HSCR subtypes in the population, a stratification analysis of the three SNPs with HSCR subtypes was performed. There were 3 common subtypes of HSCR with increasing severity: S-HSCR, L-HSCR, and TCA. We analyzed the associations of rs2054675, rs707265, and rs1042389 and the three HSCR subtypes. The results indicated that TCA was significantly associated with rs2054675 \((P_{\text{adj}} < 0.001, \text{OR} = 1.82, 95\% \text{CI of 1.29 ~ 2.55}) \) and rs707265 \((P_{\text{adj}} = 0.034, \text{OR} = 0.68, 95\% \text{CI of 0.48 ~ 0.97}) \), although there was no significant association between rs1042389 and any subtype (Table 3).

4 | DISCUSSION

The human cytochrome P450 enzyme system (CYP) has been reported to mediate some diseases of neonatal development. Type 3 mutations of CYP7B1 result in congenital bile acid defects, whereas

![Figure 1](https://www.gtexportal.org/home/) Associations of rs2054675, rs707265 and rs1042389 genotypes with CYP2B6 mRNA splicing or expression in colon tissues based on data from the GTEx portal database (https://www.gtexportal.org/home/). The boxplot represents the CYP2B6 intro-excision ratio or mRNA expression according to the rs2054675, rs707265 and rs1042389 genotypes.
TABLE 2

SNP	Chr BP Gene	A1/A2 Model	Patient Geno	Control Geno	OR (CI 0.95)	P_crude	P_adj
rs2054675	19	C/T ALLELIC	670/2160	697/225	0.99 (0.88–1.12)	0.871	0.975
rs707265	19	C/T ALLELIC	131/62/681	165/64/673	0.92 (0.82–1.03)	0.145	0.161
rs1042389	19	C/T ALLELIC	165/66/595	163/64/657	1.04 (0.83–1.31)	0.734	0.885

Abbreviations: A1/A2, Minor allele/major allele; BP, Base pair where the SNP is located; CHR, Chromosome; CYP2B6, Cytochrome P450 2B6; Freq, Risk allele frequency of the SNP in cases or controls. CYP2B6 ALLELIC, GENO, DOM, and REC, association tests following allelic genetic models. The calculation of odds ratio (OR) is also based on the risk allele of each SNP. Gene. refgene, The gene where the SNP located; P_adj, P value adjusted by sex; P_crude, Association test by logistic regression; SNP, Single-nucleotide polymorphism.
TABLE 3 Association results for three independent SNPs related to different subclinical features classified by aganglionosis length, including short-length (S-HSCR), long-length (L-HSCR) and TCA

CHR	SNP	BP	A1/A2	Aganglionic status	Patient	Control	OR (CI 0.95)	P_crude	P_adj
19	rs2054675	40989850	C/T	S-HCSR	464/1534	697/2225	0.97 (0.85 – 1.12)	0.610	0.701
				L-HCSR	130/436		0.95 (0.77 – 1.18)	0.652	0.671
				TCA	57/101		1.82 (1.29 – 2.55)	<0.001	<0.001
19	rs707265	41018182	A/G	S-HCSR	614/1388	944/1960	0.91 (0.80 – 1.03)	0.182	0.147
				L-HCSR	180/388		0.96 (0.79 – 1.16)	0.713	0.665
				TCA	42/128		0.68 (0.48 – 0.97)	0.039	0.034
19	rs1042389	41018248	C/T	S-HCSR	708/1304	966/1954	1.09 (0.97 – 1.24)	0.133	0.162
				L-HCSR	201/365		1.12 (0.92 – 1.35)	0.261	0.265
				TCA	50/112		0.90 (0.64 – 1.27)	0.562	0.550

Abbreviations: A1/A2, Risk allele and protective allele for the disease; BP, Base pair where the SNP is located; CHR, Chromosome; CYP2B6, Cytochrome P450 2B6; Freq, Risk allele frequency of the SNP in cases or controls. The calculation of the odds ratio (OR) is also based on the risk allele of each SNP; Func.refgene, Functional role of the SNP in the gene; Gene.refgene, Gene where the SNP is located; P_adj, P value adjusted by sex; P_crude, Association test by logistic regression; SNP, Single-nucleotide polymorphism.

recruited in this cohort, toxic or drug exposure should be considered in the association analysis. Further investigation of the role of CYP2B6 in HSCR will facilitate the elucidation of the mechanism whereby environmental factors (including diet and drugs) affect birth defects in TCA, which will contribute to the prevention of HSCR.

5 | CONCLUSION

In conclusion, we suggest that CYP2B6 rs2054675C and rs707265 G alleles are associated with increased susceptibility to the severe HSCR subtype in southern Chinese children. These results indicated different toxic factors from the environment affecting HSCR between eastern and southern Chinese population, which provides a hint of environmental factors for pathogenesis of HSCR. Further study should recruit more TCA patients and include toxic or drug exposure in the association analysis to elucidate environmental factors affecting HSCR.

ACKNOWLEDGMENTS

We acknowledge the Genotype-Tissue Expression (GTEx) Project as the source of eQTL figures.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

AUTHORS’ CONTRIBUTIONS

Yun Zhu designed the experiment. Yanqing Liu, Chaoting Lan, Bingxiao Li, Ning Wang, Xiaoyu Zuo, Lihua Huang, and Yuxin Wu collected samples and conducted the study. Yanqing Liu and Yun Zhu analyzed the data. Yanqing Liu and Chaoting Lan wrote the paper. All the authors read and approved the manuscript.

DATA AVAILABILITY STATEMENT

All of the data used to support the findings of this study are available from the corresponding author upon request.

ORCID

Yanqing Liu https://orcid.org/0000-0003-0357-2429

REFERENCES

1. Russell MB, Russell CA, Niebuhr E. An epidemiological study of Hirschsprung’s disease and additional anomalies. Acta Paediatr. 1994;83(1):68-71.
2. McKeowen SJ, Stamp L, Hao MM, Young HM. Hirschsprung disease: a developmental disorder of the enteric nervous system. Wiley Interdiscip Rev Dev Biol. 2013;2(1):113-129.
3. Chatterjee S, Kapoor A, Akiyama JA, et al. Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease. Cell. 2016;167(2):355-368.
4. Moore SW, Johnson AG. Hirschprung’s disease: genetic and functional associations of Down’s and Waardenburg syndromes. Semin Pediatr Surg. 1998;7(3):156-161.
5. Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res. 2013;162(1):1-15.
6. Sergi CM, Caluseriu O, McColl H, Eisenstat DD. Hirschsprung’s disease: clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatr Res. 2017;81(1-2):177-191.
7. Heuckeroth RO. Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol. 2018;15(3):152-167.
8. Zhang Y, He Q, Zhang R, Zhang H, Zhong W, Xia H. Large-scale replication study identified multiple independent SNPs in RET synergistically associated with Hirschsprung disease in Southern Chinese population. Aging (Albany NY). 2017;9(9):1996-2009.
9. Zhao J, Xie X, Yao Y, et al. Association of VAMP5 and MCC genetic polymorphisms with increased risk of Hirschsprung disease susceptibility in Southern Chinese children. Aging (Albany NY). 2018;10(4):689-700.
10. Lof Granstrom A, Svenningsson A, Hagel E, Oddberg J, Nordenskjold A, Wester T. Maternal risk factors and perinatal characteristics for Hirschsprung disease. Pediatrics. 2016;138(1):e20154608.
11. Huang H, Al-Shabrawey M, Wang MH. Cyclooxygenase- and cytochrome P450-derived eicosanoids in stroke. Prostaglandins Other Lipid Mediat. 2016;122:45-53.

12. Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191-1212.

13. Nebert DW, Wikvall K, Miller WL. Human cytochromes. Philos Trans R Soc Lond B Biol Sci. 2013;368(1612):20120431.

14. Xu C, Chen P, Xie H, et al. Associations between CYP2B6 rs707265, rs1042389, rs2054675, and Hirschsprung disease in a Chinese population. Dig Dis Sci. 2015;60(5):1232-1235.

15. Xie X, He Q, Huang L, et al. Associations of SLC6A20 genetic polymorphisms with Hirschsprung's disease in a Southern Chinese population. Biocybern Biomed Eng. 2019;39(8):BSR20182290.

16. Zheng Y, Lu T, Xie X, He Q, Lu L, Zhong W. miR-618 rs2682818 C>A polymorphism decreases Hirschsprung disease risk in Chinese children. Biosci Rep. 2020;40(5):BSR20193989.

17. Consortium GT. Human genomics. the genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648-660.

18. Tsousidou MK, Ouahchi K, Warner TT, et al. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet. 2008;82(2):510-515.

19. Schlingmann KP, Cassar W, Konrad M. Juvenile onset IIH and the involvement of CYP2B6 detoxification gene in the predisposition of CYP2B6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance. Front Genet. 2014;5:167.

20. Powers V, Ward J, Gompels M. CYP2B6 G516T genotyping in a UK cohort of HIV-positive patients: polymorphism frequency and influence on efavirenz discontinuation. HIV Med. 2009;10(8):520-523.

21. Swart M, Dandara C. Genetic variation in the 3'-UTR single nucleotide polymorphisms among black South African HIV/AIDS patients. Front Genet. 2015;6:356.

22. Swart M, Dandara C. Genetic variation in the 3'-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance. Front Genet. 2014;5:167.

23. Moore SW, Zaalhi M. Clinical and genetic differences in total colonic aganglionosis in Hirschsprung’s disease. J Pediatr Surg. 2009;44(10):1899-1903.