EVALUATION OF THE CONVOLUTION SUMS
\[\sum_{l+15m=n} \sigma(l)\sigma(m) \text{ AND } \sum_{3l+5m=n} \sigma(l)\sigma(m) \text{ AND AN APPLICATION} \]

B. RAMAKRISHNAN AND BRUNDABAN SAHU

Dedicated to Srinivasa Ramanujan on the occasion of his 125th birth anniversary

Abstract. We evaluate the convolution sums
\[\sum_{l,m \in \mathbb{N}, l+15m=n} \sigma(l)\sigma(m) \text{ and } \sum_{l,m \in \mathbb{N}, 3l+5m=n} \sigma(l)\sigma(m) \]
for all \(n \in \mathbb{N} \) using the theory of quasimodular forms and use these convolution sums to determine the number of representations of a positive integer \(n \) by the form
\[x_1^2 + x_2^2 + x_3^2 + x_4^2 + 5(x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2). \]
We also determine the number of representations of positive integers by the quadratic form
\[x_1^2 + x_2^2 + x_3^2 + x_4^2 + 6(x_5^2 + x_6^2 + x_7^2 + x_8^2), \]
by using the convolution sums obtained earlier by Alaca, Alaca and Williams [6, 3].

1. Introduction

Following [33, 29], for \(n, N \in \mathbb{N} \), we define \(W_N(n) \) as follows.
\[W_N(n) = \sum_{m<n/N} \sigma(m)\sigma(n-Nm), \]
where \(\sigma_r(n) \) is the sum of the \(r \)-th powers of the divisors of \(n \). We write \(\sigma_1(n) = \sigma(n) \). Also, following [1], we define \(W_{a,b}(n) \) for \(a, b \in \mathbb{N} \) by
\[W_{a,b}(n) := \sum_{l,m} \sigma(l)\sigma(m). \]
Note that \(W_{1,N}(n) = W_{N,1}(n) = W_N(n) \). These type of sums were evaluated as early as the 19th century. For example, the sum \(W_1(n) \) was evaluated by Besge, Glaisher and Ramanujan [9, 15, 28].

The convolution sums \(W_N(n) \) (for \(1 \leq N \leq 24 \) with a few exceptions) and \(W_{a,b}(n) \) for \((a, b) \in \{(2, 3), (3, 4), (3, 8), (2, 9)\} \) have been evaluated by using either elementary methods or analytic methods (which use ideas of Ramanujan) or algebraic methods (using quasimodular forms) (cf. [9, 15].

2010 Mathematics Subject Classification. Primary 11A25, 11F11; Secondary 11E20, 11E25, 11F20.

Key words and phrases. convolution sums; modular forms; quasimodular forms; number of representations by a quadratic form.
Evaluation of these convolution sums has been applied to find the number of representations of integers by certain quadratic forms (cf. [18, 11, 2, 6, 3, 4, 33, 34]). In [29], Royer used the theory of quasimodular forms, especially the structure of the space of quasimodular forms (see Eq. (6) below), to evaluate the convolution sums $W_N(n)$ for $1 \leq N \leq 14$, except for $N = 12$. For a list of evaluation of the convolution sums $W_N(n)$, we refer the reader to Table 1 in [29]. In this article, following the method of Royer, we evaluate the convolution sums $W_{15}(n)$ and $W_{3,5}(n)$ by using the theory of quasimodular forms. The evaluation of these convolution sums is then used to determine the number of representations of a positive integer by a certain quadratic form. More precisely, we use these convolution sums to determine the number of representations of integers by the quadratic form $x_1^2 + x_1x_2 + x_2^2 + x_3^2 + x_3x_4 + x_4^2 + 5(x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2)$. We also give a formula for the number of representations of integers by the quadratic forms $x_1^2 + x_2^2 + x_3^2 + x_4^2 + k(x_5^2 + x_6^2 + x_7^2 + x_8^2)$, $k = 3, 6$, by using the convolution sums $W_3(n), W_6(n), W_{12}(n), W_{24}(n), W_{23}(n)$ and $W_{3,4}(n)$ evaluated by K. S. Williams and his co-authors [11, 6, 3, 18]. The formula for $k = 3$ was obtained by Alaca-Williams [7], where the terms corresponding to the cusp forms are different from our formula. The referee has informed us that the evaluation when $k = 6$ has been carried out in a similar manner by Köklüce.

2. Evaluation of $W_{a,b}(n)$ and some applications

2.1. Evaluation of $W_{15}(n)$ and $W_{3,5}(n)$. In this section, following Royer [29], we evaluate the convolution sums $W_{15}(n)$ and $W_{3,5}(n)$ by using the theory of quasimodular forms. As an application, we use these convolution sums together with the convolution sum $W_5(n)$ derived by Lemire and Williams [22] to obtain a formula for the number of representations of a positive integer n by the quadratic form Q given by:

$$Q : x_1^2 + x_1x_2 + x_2^2 + x_3^2 + x_3x_4 + x_4^2 + 5(x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2). \quad (3)$$

Let

$$\Delta_{4,5}(z) = [\Delta(z)\Delta(5z)]^{1/6} = \eta^4(z)\eta^4(5z) = q \prod_{n=1}^{\infty} (1 - q^n)^4(1 - q^{5n})^4$$

$$= \sum_{n \geq 1} \tau_{4,5}(n)q^n \quad (4)$$

be the normalized newform of weight 4 on $\Gamma_0(5)$ (see [29]), where $q = e^{2\pi i z}$. In the above, $\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$ is the Dedekind eta-function and the Ramanujan function $\Delta(z) = \eta^{24}(z)$ is the normalized cusp form of weight 12 on the full modular group $SL_2(\mathbb{Z})$. The following theorem was proved by Lemire and Williams [22]:
Theorem 2.1.

\[W_5(n) = \frac{5}{312} \sigma_3(n) + \frac{125}{132} \sigma_3 \left(\frac{n}{5} \right) + \frac{5 - 6n}{120} \sigma(n) + \frac{1 - 6n}{24} \sigma \left(\frac{n}{5} \right) - \frac{1}{130} \tau_{4,5}(n). \]

In order to evaluate \(W_{15}(n) \) and \(W_{3,5}(n) \), we use the structure theorem on quasimodular forms of weight \(k \) and depth \(\leq k/2 \). Let \(k \geq 2 \) and \(N \geq 1 \) be natural numbers. Let \(M_k(\Gamma_0(N)) \) denote the \(\mathbb{C} \)-vector space of modular forms of weight \(k \) on the congruence subgroup \(\Gamma_0(N) \). For details on modular forms of integral weight we refer the reader to [30, 31, 10]. We now define quasimodular forms. A complex valued holomorphic function \(f \) defined on the upper half-plane \(\mathcal{H} \) is called a quasimodular form of weight \(k \), depth \(s \) (\(s \) is a non-negative integer), if there exist holomorphic functions \(f_0, f_1, \ldots, f_s \) on \(\mathcal{H} \) such that

\[
(cz + d)^{-k} f \left(\frac{az + b}{cz + d} \right) = \sum_{i=0}^{s} f_i(z) \left(\frac{c}{cz + d} \right)^i,
\]

for all \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) \) and such that \(f_s \) is holomorphic at the cusps and not identically vanishing. It is a fact that the depth of a quasimodular form of weight \(k \) is less than or equal to \(k/2 \). For details on quasimodular forms we refer to [19, 25, 10]. The Eisenstein series \(E_2 \), which is a quasimodular form of weight 2, depth 1 on \(SL_2(\mathbb{Z}) \) is given by

\[E_2(z) = 1 - 24 \sum_{n \geq 1} \sigma(n) e^{2\pi i nz} \]

and this fundamental quasimodular form will be used in our results. The space of quasimodular forms of weight \(k \), depth \(\leq k/2 \) on \(\Gamma_0(N) \) is denoted by \(\tilde{M}_k^{\leq k/2}(\Gamma_0(N)) \). We need the following structure theorem (see [19, 25]). For an even integer \(k \) with \(k \geq 2 \), we have

\[\tilde{M}_k^{\leq k/2}(\Gamma_0(N)) = \bigoplus_{j=0}^{k/2-1} D^j M_{k-2j}(\Gamma_0(N)) \oplus C D^{k/2-1} E_2, \]

where the differential operator \(D \) is defined by \(D := \frac{1}{2\pi i} \frac{d}{dz} \). Using this one can express each quasimodular form of weight \(k \) and depth \(\leq k/2 \) as a linear combination of \(j \)-th derivatives of modular forms of weight \(k - 2j \) on \(\Gamma_0(N) \), \(0 \leq j \leq k/2 - 1 \) and the \((k/2-1) \)-th derivative of the quasimodular form \(E_2 \).

We need the following newforms of weights 2 and 4 on \(\Gamma_0(15) \) in order to use the structure of the space \(\tilde{M}_4^{\leq 2}(\Gamma_0(15)) \) to prove our theorem. These newforms are either eta-products or eta-quotients or linear combinations of
Theorem 2.2. Let \(\Delta_{2,15}(z) \) be a cusp form of weight 2 on \(\Gamma_0(15) \). We now show that these cusp forms are newforms in the respective spaces of cusp forms. A theorem of J. Sturm [32] states that the Fourier coefficients of newforms are given in order to determine the modularity of an eta-quotient (with weight, level and character). Using these conditions, it follows that the functions \(\Delta_{4,15;1}(z) \) and \(\Delta_{4,15;2}(z) \) are newforms.

The following are the main theorems of this section.

Theorem 2.2. Let \(n \in \mathbb{N} \), then

\[
W_{15}(n) = \frac{1}{624} \sigma_3(n) + \frac{3}{208} \sigma_3 \left(\frac{n}{3} \right) + \frac{25}{624} \sigma_3 \left(\frac{n}{5} \right) + \frac{75}{208} \sigma_3 \left(\frac{n}{15} \right) + \frac{5 - 2n}{120} \sigma(n) + \frac{1 - 6n}{24} \sigma \left(\frac{n}{15} \right) - \frac{1}{455} \tau_{4,15}(n) - \frac{9}{455} \tau_{4,5} \left(\frac{n}{3} \right) - \frac{1}{84} \tau_{4,15;1}(n) - \frac{1}{80} \tau_{4,15;2}(n),
\]

\[
W_{3,5}(n) = \frac{1}{624} \sigma_3(n) + \frac{3}{208} \sigma_3 \left(\frac{n}{3} \right) + \frac{25}{624} \sigma_3 \left(\frac{n}{5} \right) + \frac{75}{208} \sigma_3 \left(\frac{n}{15} \right) + \frac{5 - 6n}{120} \sigma \left(\frac{n}{3} \right) + \frac{1 - 2n}{24} \sigma \left(\frac{n}{5} \right) - \frac{1}{455} \tau_{4,15}(n) - \frac{9}{455} \tau_{4,5} \left(\frac{n}{3} \right) - \frac{1}{84} \tau_{4,15;1}(n) + \frac{1}{80} \tau_{4,15;2}(n).
\]

Proof. Let \(E_k \) denote the normalized Eisenstein series of weight \(k \) on \(SL_2(\mathbb{Z}) \) (see [30] for details). When \(k = 4 \), the Eisenstein series \(E_4 \) has the following Fourier expansion.

\[
E_4(z) = 1 + 240 \sum_{n \geq 1} \sigma_3(n) q^n.
\]
Using the structure of $\tilde{M}_{2}^{\leq 2}(15)$ from (10), we get

$$\tilde{M}_{4}^{\leq 2}(\Gamma_{0}(15)) = M_{4}(\Gamma_{0}(15)) \oplus DM_{2}(\Gamma_{0}(15)) \oplus CD E_{2}. \quad (10)$$

Using the dimension formula (see for example [26][31]), it follows that the vector space $M_{4}(\Gamma_{0}(15))$ has dimension 8 (a basis of this vector space contains 4 non-cusp forms and 4 cusp forms) and the vector space $M_{2}(\Gamma_{0}(15))$ has dimension 4 (a basis of this space contains 3 non-cusp forms and 1 cusp form). Now, it is easy to see that the set

$$\{E_{4}(z), E_{4}(3z), E_{4}(5z), E_{4}(15z), \Delta_{4,5}(z), \Delta_{4,5}(3z), \Delta_{4,15;1}(z), \Delta_{4,15;2}(z)\}$$

forms a basis of the space $M_{4}(\Gamma_{0}(15))$ and the set

$$\{\Phi_{1,15}(z), \Phi_{5,15}(z), \Phi_{1,3}(z), \Delta_{2,15}(z)\}$$

forms a basis of the space $M_{2}(\Gamma_{0}(15))$, where

$$\Phi_{a,b}(z) := \frac{1}{b-a}(bE_{2}(bz) - aE_{2}(az)). \quad (11)$$

Consider the quasimodular form $E_{2}(z)E_{2}(15z)$ which belongs to $\tilde{M}_{4}^{\leq 2}(\Gamma_{0}(15))$. Therefore, using (10) and the bases mentioned above, we have

$$E_{2}(z)E_{2}(15z) = \frac{1}{260}E_{4}(z) + \frac{9}{260}E_{4}(3z) + \frac{5}{52}E_{4}(5z) + \frac{45}{52}E_{4}(15z)$$

$$- \frac{576}{455}\Delta_{4,5}(z) - \frac{5184}{455}\Delta_{4,5}(3z) - \frac{48}{7}\Delta_{4,15;1}(z)$$

$$- \frac{36}{5}\Delta_{4,15;2}(z) + \frac{28}{5}D\Phi_{1,15}(z) + \frac{4}{5}DE_{2}(z).$$

Similarly, considering $E_{2}(3z)E_{2}(5z)$, which is a quasimodular form of weight 4, depth 2 and level 15, we get

$$E_{2}(3z)E_{2}(5z) = \frac{1}{260}E_{4}(z) + \frac{9}{260}E_{4}(3z) + \frac{5}{52}E_{4}(5z) + \frac{45}{52}E_{4}(15z)$$

$$- \frac{576}{455}\Delta_{4,5}(z) - \frac{5184}{455}\Delta_{4,5}(3z) - \frac{48}{7}\Delta_{4,15;1}(z) + \frac{36}{5}\Delta_{4,15;2}(z)$$

$$+ \frac{28}{5}D\Phi_{1,15}(z) - 4D\Phi_{5,15}(z) + \frac{4}{5}D\Phi_{1,3}(z) + \frac{4}{5}DE_{2}(z).$$

By comparing the n-th Fourier coefficients, we get the required convolution sums. \qed

2.2. Application to the number of representations. In this section we apply the convolution sums $W_{15}(n)$ and $W_{3,5}(n)$ to derive the following theorem. Our method of proof is similar to that used by Alaca-Alaca-Williams (see for example [6][1][2]).

Theorem 2.3. The number of representations of a positive integer n by the quadratic form $x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}+x_{3}^{2}+x_{3}x_{4}+x_{4}^{2}+5(x_{5}^{2}+x_{5}x_{6}+x_{6}^{2}+x_{7}^{2}+x_{7}x_{8}+x_{8}^{2})$
is equal to

\[
\frac{12}{13} \sigma_3(n) + \frac{108}{13} \sigma_3 \left(\frac{n}{3} \right) + \frac{300}{13} \sigma_3 \left(\frac{n}{5} \right) + \frac{2700}{13} \sigma_3 \left(\frac{n}{15} \right) + \frac{72}{91} r_{4,5}(n)
\]
\[
+ \frac{648}{91} r_{4,5} \left(\frac{n}{3} \right) + \frac{72}{7} r_{4,15,1}(n).
\]

Proof. Let \(N_0 = \mathbb{N} \cup \{0\}. \) For \(l \in N_0, \) let

\[
r(l) = \# \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{Z}^4 \mid x_1^2 + x_1 x_2 + x_2^2 + x_3 x_4 + x_4^2 = l \right\}
\]

so that \(r(0) = 1. \) For \(l \in \mathbb{N}, \) we know that (see [18])

\[
r(l) = 12 \sum_{d|l, \ 3 \nmid d} d = 12 \sigma(l) - 36 \sigma \left(\frac{l}{3} \right).
\]

Let \(N(n) \) be the number of representations of the given quadratic form \(Q \) defined by (3). Then \(N(n) \) is given by

\[
N(n) = \sum_{l, m \in N_0, \ l + 5m = n} \left(\sum_{(x_1, x_2, x_3, x_4) \in \mathbb{Z}^4} 1 \right) \left(\sum_{(x_5, x_6, x_7, x_8) \in \mathbb{Z}^4} 1 \right)
\]
\[
= r(0) r \left(\frac{n}{3} \right) + r(n) r(0) + \sum_{l, m \in \mathbb{N}, \ l + 5m = n} r(l) r(m)
\]
\[
= 12 \sigma \left(\frac{n}{5} \right) - 36 \sigma \left(\frac{n}{15} \right) + 12 \sigma(n) - 36 \sigma \left(\frac{n}{3} \right)
\]
\[
+ \sum_{l, m \in \mathbb{N}, \ l + 5m = n} \left(12 \sigma(l) - 36 \sigma \left(\frac{l}{3} \right) \right) \left(12 \sigma(m) - 36 \sigma \left(\frac{m}{3} \right) \right)
\]
\[
= 12 \sigma \left(\frac{n}{5} \right) - 36 \sigma \left(\frac{n}{15} \right) + 12 \sigma(n) - 36 \sigma \left(\frac{n}{3} \right) + 144 \sum_{l, m \in \mathbb{N}, \ l + 5m = n} \sigma(l) \sigma(m)
\]
\[
- 432 \sum_{l, m \in \mathbb{N}, \ l + 5m = n} \sigma(l) \sigma \left(\frac{m}{3} \right) - 432 \sum_{l, m \in \mathbb{N}, \ l + 5m = n} \sigma \left(\frac{l}{3} \right) \sigma(m)
\]
\[
+ 1296 \sum_{l, m \in \mathbb{N}, \ l + 5m = n} \sigma \left(\frac{l}{3} \right) \sigma \left(\frac{m}{3} \right)
\]
\[
= 12 \sigma \left(\frac{n}{5} \right) - 36 \sigma \left(\frac{n}{15} \right) + 12 \sigma(n) - 36 \sigma \left(\frac{n}{3} \right)
\]
\[
+ 144 W_5(n) - 432 W_{15}(n) - 432 W_{3,5}(n) + 1296 W_5 \left(\frac{n}{3} \right).
\]

Substituting the convolution sums using Theorem 2.1 and Theorem 2.2, we get the required formula for \(N(n). \)
2.3. More applications. Let \(Q_k \) be the quadratic form \(x_1^2 + x_2^2 + x_3^2 + x_4^2 + k(x_5^2 + x_6^2 + x_7^2 + x_8^2) \) and \(N_k(n) \) be the number of representations of integers \(n \geq 1 \) by \(Q_k \). In this section we use the convolution sums derived in \([6, 3] \) to derive a formula for \(N_k(n) \). We note that for \(k = 2, 3, 4 \) similar formulas were obtained earlier by Williams \([34] \), Alaca-Williams \([7] \) and Alaca-Alaca-Williams \([4] \) respectively. As mentioned in the introduction, we learnt from the referee that the evaluation of \(N_6(n) \) has also been derived recently by Köklıce. To find \(N_6(n) \) using our method, we need the convolution sums \(W_6(n), W_{2,3} \) and \(W_{24}(n) \) which were derived by Alaca-Alaca-Williams and they are given in the following theorem.

Theorem 2.4. (cf. \([6, 3] \))

\[
W_6(n) = \frac{1}{120} \sigma_3(n) + \frac{1}{30} \sigma_3 \left(\frac{n}{2} \right) + \frac{3}{40} \sigma_3 \left(\frac{n}{3} \right) + \frac{3}{10} \sigma_3 \left(\frac{n}{6} \right) + \frac{1-n}{24} \sigma(n) + \frac{1-6n}{24} \sigma \left(\frac{n}{6} \right) - \frac{1}{120} c_6(n),
\]

\[
W_{2,3}(n) = \frac{1}{120} \sigma_3(n) + \frac{1}{30} \sigma_3 \left(\frac{n}{2} \right) + \frac{3}{40} \sigma_3 \left(\frac{n}{3} \right) + \frac{3}{10} \sigma_3 \left(\frac{n}{6} \right) + \frac{1-2n}{24} \sigma \left(\frac{n}{2} \right) + \frac{1-3n}{24} \sigma \left(\frac{n}{3} \right) - \frac{1}{120} c_6(n),
\]

\[
W_{24}(n) = \frac{1}{1920} \sigma_3(n) + \frac{1}{640} \sigma_3 \left(\frac{n}{2} \right) + \frac{3}{640} \sigma_3 \left(\frac{n}{3} \right) + \frac{1}{160} \sigma_3 \left(\frac{n}{4} \right) + \frac{9}{640} \sigma_3 \left(\frac{n}{6} \right) + \frac{1}{30} \sigma_3 \left(\frac{n}{8} \right) + \frac{9}{160} \sigma_3 \left(\frac{n}{12} \right) + \frac{3}{10} \sigma_3 \left(\frac{n}{24} \right) + \frac{4-n}{96} \sigma(n) + \frac{1-6n}{24} \sigma \left(\frac{n}{24} \right) - \frac{61}{1920} c_{1,24}(n),
\]

where \(c_6(n) \) and \(c_{1,24}(n) \) are the \(n \)-th Fourier coefficients of weight 4 normalized newforms which are given in \([6, \text{p. } 492] \) and \([3, \text{p. } 94] \) respectively.

In the following we use Theorem 2.4 to derive a formula for \(N_6(n) \).

Theorem 2.5. The number of representations of a positive integer \(n \) by the quadratic form \(Q_6 \) is given by

\[
N_6(n) = \frac{2}{5} \sigma_3(n) - \frac{2}{5} \sigma_3 \left(\frac{n}{2} \right) + \frac{18}{5} \sigma_3 \left(\frac{n}{3} \right) - \frac{8}{5} \sigma_3 \left(\frac{n}{4} \right) - \frac{18}{5} \sigma_3 \left(\frac{n}{6} \right) + \frac{128}{5} \sigma_3 \left(\frac{n}{8} \right) - \frac{72}{5} \sigma_3 \left(\frac{n}{12} \right) + \frac{1152}{5} \sigma_3 \left(\frac{n}{24} \right) - \frac{8}{15} c_6(n) + \frac{32}{15} c_6 \left(\frac{n}{2} \right) - \frac{128}{15} c_6 \left(\frac{n}{4} \right) + \frac{122}{15} c_{1,24}(n).
\]

Proof. For \(l \in \mathbb{N}_0 \), let

\[
r_4(l) = \# \{ (x_1, x_2, x_3, x_4) \in \mathbb{Z}^4 | x_1^2 + x_2^2 + x_3^2 + x_4^2 = l \}
\]
so that \(r(0) = 1 \). For \(l \in \mathbb{N} \), we know the formula due to Jacobi (see [17])

\[
r_4(l) = 8 \sum_{d|l, \ 4|d} \sigma(d) - 32 \sigma \left(\frac{l}{4} \right).
\]

Then \(N_6 \) is given by

\[
N_6(n) = \sum_{l,m \in \mathbb{N}} \left(\sum_{(x_1, x_2, x_3, x_4) \in \mathbb{Z}^4} 1 \right) \left(\sum_{(x_5, x_6, x_7, x_8) \in \mathbb{Z}^4} 1 \right)
\]

\[
= r_4(0) r_4 \left(\frac{n}{6} \right) + r_4(n) r_4(0) + \sum_{l,m \in \mathbb{N}} r_4(l) r_4(m)
\]

\[
= 8 \sigma(n) - 32 \sigma \left(\frac{n}{4} \right) + 8 \sigma \left(\frac{n}{6} \right) - 32 \sigma \left(\frac{n}{24} \right)
\]

\[
+ \sum_{l,m \in \mathbb{N}} \left(8 \sigma(l) - 32 \sigma \left(\frac{l}{4} \right) \right) \left(8 \sigma(m) - 32 \sigma \left(\frac{m}{4} \right) \right)
\]

\[
= 8 \sigma(n) - 32 \sigma \left(\frac{n}{4} \right) + 8 \sigma \left(\frac{n}{6} \right) - 32 \sigma \left(\frac{n}{24} \right) + 64 \sum_{l,m \in \mathbb{N}} \sigma(l) \sigma(m)
\]

\[
- 256 \sum_{l,m \in \mathbb{N}} \sigma(l) \sigma \left(\frac{m}{4} \right) - 256 \sum_{l \in \mathbb{N}} \sigma \left(\frac{l}{4} \right) \sigma(m)
\]

\[
+ 1024 \sum_{l \in \mathbb{N}} \sigma \left(\frac{l}{4} \right) \sigma \left(\frac{m}{4} \right)
\]

\[
= 8 \sigma(n) - 32 \sigma \left(\frac{n}{4} \right) + 8 \sigma \left(\frac{n}{6} \right) - 32 \sigma \left(\frac{n}{24} \right) + 64 W_6(n)
\]

\[
+ 1024 W_6 \left(\frac{n}{4} \right) - 256 W_{24}(n) - 256 W_{2,3} \left(\frac{n}{2} \right).
\]

Substituting the convolution sums from Theorem 2.4 in the above gives the required formula for \(N_6(n) \). \(\square \)

Remark 2.1. The representation numbers \(N_k(n) \) for \(k = 2, 4 \) were obtained by Williams [34] and by Alaca-Alaca-Williams [4] using the convolution sums \(W_{1,8}(n) \), \(W_{1,16}(n) \) and for \(k = 3 \) it was derived by Alaca-Williams [7] as a consequence of the representation of positive integers by certain octonary quadratic forms. Note that \(N_3(n) \) can also be obtained in a similar way as done in the cases \(k = 2, 4 \). In fact,

\[
N_3(n) = 8 \sigma(n) - 32 \sigma \left(\frac{n}{4} \right) + 8 \sigma \left(\frac{n}{6} \right) - 32 \sigma \left(\frac{n}{12} \right)
\]

\[
+ 64 W_3(n) + 1024 W_3 \left(\frac{n}{4} \right) - 256 W_{12}(n) - 256 W_{3,4}(n).
\]
Using the convolution sums $W_3(n)$, $W_{3,4}(n)$ and $W_{12}(n)$ obtained in [18], we have the following formula for $N_3(n)$:

$$N_3(n) = \frac{8}{5} \sigma_3(n) - \frac{16}{5} \sigma_3\left(\frac{n}{2}\right) + \frac{72}{5} \sigma_3\left(\frac{n}{3}\right) + \frac{128}{5} \sigma_3\left(\frac{n}{4}\right) - \frac{144}{5} \sigma_3\left(\frac{n}{6}\right) + \frac{1152}{5} \sigma_3\left(\frac{n}{12}\right) + \frac{88}{15} c_{1,12}(n) + \frac{8}{15} c_{3,4}(n).$$

(13)

The difference between the formula given in [7] Theorem 1.1 (ii) and (13) is due to different cusp forms used. In [7] coefficients of the newform of weight 4 and level 6 appear while in the above formula Fourier coefficients of two cusp forms of weight 4 and level 12 appear.

Acknowledgements. We have used the open-source mathematics software SAGE (www.sagemath.org) to do our calculations. The work was done during the second author’s visit to the Harish-Chandra Research Institute (HRI), Allahabad. He wishes to thank HRI for the warm hospitality during his stay. Finally, the authors thank the referee for his/her useful suggestions.

References

[1] A. Alaca, S. Alaca and K. S. Williams, Evaluation of the convolution sums $\sum_{l+12m=n} \sigma(l)\sigma(m)$ and $\sum_{3l+4m=n} \sigma(l)\sigma(m)$, Adv. Theor. Appl. Math. 1 (2006), no. 1, 27–48.
[2] A. Alaca, S. Alaca and K. S. Williams, Evaluation of the convolution sums $\sum_{l+18m=n} \sigma(l)\sigma(m)$ and $\sum_{2l+9m=n} \sigma(l)\sigma(m)$, Int. Math. Forum 2 (2007), no. 1-4, 45–68.
[3] A. Alaca, S. Alaca and K. S. Williams, Evaluation of the convolution sums $\sum_{l+24m=n} \sigma(l)\sigma(m)$ and $\sum_{3l+8m=n} \sigma(l)\sigma(m)$, Math. J. Okayama Univ. 49 (2007), 93–111.
[4] A. Alaca, S. Alaca and K. S. Williams, The convolution sum $\sum_{m<n/16} \sigma(m)\sigma(n-16m)$, Canad. Math. Bull. 51 (2008), no. 1, 3–14.
[5] A. Alaca, S. Alaca, F. Uygul and K. S. Williams, Restricted Eisenstein series and certain convolution sums, J. Comb. Number Theory 3 (2011), 1–14.
[6] S. Alaca and K. S. Williams, Evaluation of the convolution sums $\sum_{l+6m=n} \sigma(l)\sigma(m)$ and $\sum_{2l+3m=n} \sigma(l)\sigma(m)$, J. Number Theory 124 (2007), no. 2, 491–510.
[7] S. Alaca and K. S. Williams, The number of representations of a positive integer by certain octonary quadratic forms, Funct. Approx. Comment. Math. 43 (2010), part 1, 45-54.
[8] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134–160.
[9] M. Besge, Extrait d’une lettre de M. Besge à M. Liouville, J. Math. Pures Appl. 7 (1862), 256.
[10] J. H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of modular forms, Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004. Edited by Kristian Ranestad. Universitext. Springer-Verlag, Berlin, 2008. 266 pp.
[11] R. Chapman, Representations of integers by the form $x^2 + xy + y^2 + z^2 + zt + t^2$, Int. J. Number Theory 4 (2008), no. 5, 709–714.
[12] N. Cheng and K. S. Williams, Convolution sums involving the divisor function, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 3, 561–572.
[13] N. Cheng and K. S. Williams, Evaluation of some convolution sums involving the sum of divisors functions, Yokohama Math. J. 52 (2005), no. 1, 39–57.
[14] D. Dummit, H. Kisilevsky and J. McKay, Multiplicative products of \(\eta \)-functions. Finite groups coming of age (Montreal, Que., 1982), 8998, Contemp. Math., 45, Amer. Math. Soc., Providence, RI, 1985.

[15] J. W. L. Glaisher, On the squares of the series in which the coefficients are the sums of the divisor of the exponents, Mess. Math. 15 (1885), 1–20.

[16] B. Gordon and D. Sinor, Multiplicative properties of \(\eta \)-products. Number theory, Madras 1987, 173200, Lecture Notes in Math., 1395, Springer, Berlin, 1989.

[17] E. Grosswald, Representation of integers as sums of squares, Springer, New York, 1985

[18] J. G. Huard, Z. M. Ou, B. K. Spearman and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, in Number Theory for the Millennium, II (Urbana, IL, 2000) (A. K. Peters, Natick, MA, 2002), 229–274.

[19] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms. In ‘The moduli space of curves (Texel Island, 1994)’, 165–172, Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995.

[20] D. B. Lahiri, On Ramanujan’s function \(\tau(n) \) and the divisor function \(\sigma_k(n) \) - I, Bull. Calcutta Math. Soc. 38 (1946), 193–206.

[21] D. B. Lahiri, On Ramanujan’s function \(\tau(n) \) and the divisor function \(\sigma_k(n) \) - II, Bull. Calcutta Math. Soc. 39 (1947), 33–52.

[22] M. Lemire and K. S. Williams, Evaluation of two convolution sums involving the sum of divisors function, Bull. Austral. Math. Soc. 73 (2006), no. 1, 107–115.

[23] LMFDB, The database of L-functions, modular forms, and related objects, http://www.lmfdb.org/

[24] P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1920), 75–113.

[25] F. Martin and E. Royer, Formes modulaires et périodes, In ‘Formes modulaires et transcendance’, 1–117, Sém. Congr., 12, Soc. Math. France, Paris, 2005.

[26] G. Martin, Dimension of the space of newforms, J. Number Theory 112 (2005), 298–331.

[27] G. Melfi, On some modular identities, in Number Theory (Eger, 1996) (de Gruyter, Berlin, 1998), pp. 371–382.

[28] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916) 159–184.

[29] E. Royer, Evaluating convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory 3 (2007), no. 2, 231–261.

[30] J.-P. Serre, A course in Arithmetic, Springer-Verlag, Berlin-New York, 1977.

[31] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Reprint of the 1971 original. Publications of the Mathematical Society of Japan, 11. Kanó Memorial Lectures, 1. Princeton University Press, Princeton, NJ, 1994.

[32] J. Sturm, On the congruence of modular forms, Number theory (New York, 19841985), 275–280, Lecture Notes in Math., 1240, Springer, Berlin, 1987.

[33] K. S. Williams, The convolution sum \(\sum_{m<n/9} \sigma(m)\sigma(n-9m) \), Int. J. Number Theory 1 (2005), no. 2, 193–205.

[34] K. S. Williams, The convolution sum \(\sum_{m<n/8} \sigma(m)\sigma(n-8m) \), Pacific J. Math. 228 (2006), no. 2, 387–396.

(B. Ramakrishnan) HARISH-CHANDRA RESEARCH INSTITUTE, CHHATNAG ROAD, JHUNSI, ALLAHABAD - 211 019, INDIA.
(Brundaban Sahu) School of Mathematical Sciences, National Institute of Science Education and Research, PO: Sainik School, Bhubaneswar, Odisha - 751 005, India.

E-mail address, B. Ramakrishnan: ramki@hri.res.in
E-mail address, Brundaban Sahu: brundaban.sahu@niser.ac.in