Research article

The effect of in vitro simulated gastrointestinal digestive system on the biodegradation of B group vitamins in bread

Jale Çatak*, Merve Nur Gizlici

Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, 34303, Küçükçekmece, Halıhals, İstanbul, Turkey

Abstract

Today, there is a growing interest in the consumption of whole grain products and the development of bread enriched with vitamins that have functional properties. Considerable losses arise in naturally found vitamins with food processing. Therefore, it is recommended to add vitamins to bread to obtain a satisfactory level. The aim of the current research was to investigate and assess the bioaccessibilities of the vitamins B1, B2, B3, and B6 in enriched commercial whole wheat breads by an in vitro digestion model. The average bioaccessibility of vitamin B1, B2, B3, and B6 in enriched breads after digestion was 80%, 64%, 79%, and 64%, respectively. After digestion, the bioaccessibilities of vitamins were affected. Mainly, vitamins B2 and B6 had the lowest bioaccessibility than vitamins B1 and B3. In vitro bioaccessibility was 70.9–90.2%, 54.2–89.7%, 42.1–94.9%, and 44.1–92.5% for vitamins B1, B2, B3, and B6, respectively in enriched commercial whole wheat bread. Vitamin B1 was seen with predominantly higher levels among the breads. Knowing the content of these vitamins in breads after digestion is necessary for the healthy nutrition of the population and for determining daily intake.

1. Introduction

Cereals naturally contain high amounts of water-soluble vitamins [USDA, 2022]. Bread mainly consist of processed cereals. Vitamins B1, B2, B3, and B6 are the leading constituents of bread. Significant losses occur in vitamin content during the processing of cereals [Sauberlich, 1985]. Therefore, the amount of vitamins B1, B2, B3, and B6 is expected to be low in bread. So, these vitamins are usually added to commercial bread to guarantee an adequate intake of persons. In Turkey, the national staple food is bread with an average daily intake of 319 g [TMO, 2013], and it can provide the required supplements of vitamin B1, B2, B3, and B6 in enriched commercial whole wheat breads by an in vitro digestion model. The average bioaccessibility of vitamin B1, B2, B3, and B6 in enriched breads after digestion was 80%, 64%, 79%, and 64%, respectively. After digestion, the bioaccessibilities of vitamins were affected. Mainly, vitamins B2 and B6 had the lowest bioaccessibility than vitamins B1 and B3. In vitro bioaccessibility was 70.9–90.2%, 54.2–89.7%, 42.1–94.9%, and 44.1–92.5% for vitamins B1, B2, B3, and B6, respectively in enriched commercial whole wheat bread. Vitamin B1 was seen with predominantly higher levels among the breads. Knowing the content of these vitamins in breads after digestion is necessary for the healthy nutrition of the population and for determining daily intake.

Vitamin B1 (thiamine) functions in the pyruvate’s conversion to the acetyl CoA in energy metabolism as a coenzyme, and vitamin B2 (riboflavin) is essential in tricarboxylic and electron transport chains. Vitamin B3 (niacin) is important in energy metabolism, mainly oxidative phosphorylation, which is also critical for the metabolism of protein, carbohydrates, and fat. Vitamin B6 is primarily involved in protein metabolism, transamination, and deamination metabolism. Vitamin B6 is also essential in the prevention of homocysteine-associated vascular diseases [Ball, 2004]. Vitamin B1’s average requirement is approximately 0.072 mg/MJ for adult men and women, vitamin B2 is 1.3 mg/d, niacin is 1.3 mg NE/MJ, and vitamin B6 is 1.5 and 1.3 mg/d [European Food Safety Authority, 2017].

Vitamin B1 and vitamin B2 exist in their free forms such as thiamine and riboflavin or in their phosphorylated forms such as TMP (thiamin monophosphate), TPP (thiamin pyrophosphate), FAD (flavin adenine dinucleotide), and FMN (flavin mononucleotide). Vitamin B3 (niacin), can be exist in the forms of nicotinic acid and nicotinamide. The commercially available and widely used form in tissues. Vitamin B3 (niacin), can be exist in the forms of nicotinic acid and nicotinamide. The commercially available and widely used form in biologicals, nicotinamide is present as NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) [Eitenmiller et al., 2008]. TPP plays a role in the pyruvate’s conversion to acetyl CoA and as a coenzyme in the
pathway of pentose phosphate. In contrast, FMN, FAD, and NAD play a role in energy metabolism, mainly in the electron transport chain and in the TCA (tricarboxylic acid cycle). The phosphate forms of vitamin B₁ and vitamin B₂ are hydrolyzed into free forms by the alkaline phosphatase enzyme in intestinal absorption [Ball, 2006]. Vitamin B₆ found in foodstuffs in the forms of; PL (pyridoxal), PN (pyridoxine), PM (pyridoxamine), PLP (PL-5'-phosphate), PNP (PN-5'-phosphate), PM-5'-phosphate, PNG (pyridoxine-glucoside), and PN.HCI (pyridoxine hydrochloride) [Çatak and Caman, 2020; Çatak et al., 2020]. The commercially available and widely used form in foodstuffs is PN.HCl. PLP, the bioactive form, acts as a coenzyme in living organisms in more than 100 identified enzymes [Ettinemiller et al., 2008; Yaman et al., 2021].

Functional foods, like high vitamin and fiber-containing whole wheat breads, should include bioactive substances, but they should also be easily digested and absorbed by the human metabolism. Thus, investigations that measure the bioaccessibility of micronutrients are crucial to reflect the true nutritional value of foodstuff. Bioaccessibility is the total amount of an ingested nutrient that is potentially available for absorption in the gastrointestinal system. Thus, bioaccessibility is utilized to estimate the bioavailability of foodstuffs [Benito and Miller, 2002]. Nowadays, it is critical to know the bioavailability of micronutrients, such as vitamins in a diet, in terms of creating healthy diets [Van den Berg et al., 2002]. But, there is not enough data on the vitamin digestibility in humans since the bioavailability investigations require clinical studies which have disadvantages due to the necessity of ethical procedures, time, and cost. Therefore, in vitro procedures are used to investigate the bioaccessibility of nutrients. In vitro methods present many benefits compared to in vivo investigations since there are cost-effective, less time required, provide better controls of test variables than animal or human research, and allow rapidly monitoring of digestion, the release of nutrients, and structural changes [Hur et al., 2011; Yaman et al., 2019; Uğur et al., 2020].

In the literature, limited studies are available on the bioaccessibilities of B vitamins in foods, but no work is available in different kinds of fortified commercial whole wheat breads. Therefore, the study’s objective is to investigate and assess the effect of in vitro gastrointestinal digestive system model on the bioaccessibilities of vitamins B₁, B₂, B₃, and B₆ in enriched commercial whole wheat breads.

2. Materials and methods

2.1. Chemicals and materials

The standards of vitamin (thiamine, riboflavin, nicotinamide, pyridoxal hydrochloride), pepsin from porcine gastric mucosa (lyophilized powder, ≥250 U/mg solid), taka diastase from Aspergillus oryzae (powder, 100 U/mg), beta-glucosidase from almonds (lyophilized powder, doxamine), PLP (PL-5'-phosphate), PNP (PN-5'-phosphate), PM-5'-phosphate, PNG (pyridoxine-glucoside), and PN.HCl (pyridoxine hydrochloride) [Çatak and Caman, 2020; Çatak et al., 2020]. The product list and the main constituents of fortified breads are shown in Table 1. For the prioritization of whole wheat bread, we considered criteria such as: the lack of nutrient data, the economic importance of bread, bread diversity, and the frequent consumption of the bread and its marketing potential. A total of 8 commercial whole wheat bread fortified with B group vitamins were included in this study. The bread samples used in this study were collected from at least eight different locations in Istanbul, Turkey. The supermarkets have been chosen among those that appeal to large populations, have multi chains, and have high sales rates.

2.4. Vitamin B₃ extraction in fortified breads

Çatak [2019] described the extraction and HPLC determination methods for vitamin B₃ were performed with minor modifications. First, a five g homogenized bread sample was put into a 100 mL Erlenmeyer flask. After the addition of the 60 mL 0.1 N HCl solution, the test sample was autoclaved at 121 °C for 30 min. Enzymatic extraction is not required for vitamin B₃. Then the bread samples were cooled and using deionized water, the volume was adjusted. At that point, the samples were filtered through a CA (cellulose acetate) filter (0.45 μm) and injected into the HPLC.

2.5. Vitamins B₁ and B₂ extraction in fortified breads

The extraction procedure and HPLC determination method about vitamins B₁ and B₂ described by Akça et al. [2019] were performed with minor adaptations. The initial step of the extraction process was the same as mentioned above until the end of autoclaving. Then, an enzymatic process was achieved for releasing the phosphorylated vitamins of thiamine (TDP, TTP, and TMP) and riboflavin (FMN and FAD). The mixture was cooled; then, the pH was adjusted to 4.5 using a sodium acetate solution (2.5 mM). The enzymatic extraction stage as follows; 10 mg acid phosphatase and 100 mg taka diastase were added and incubated in a stock solution in 0.1N HCl solution.
shaking water bath for 3 h at 37 °C. In the last stage of in vitro gastro-intestinal digestion, just acid phosphatase was utilized in breads. Following, the samples were cooled and filtered using a CA filter (0.45 μm). Lastly, for the determination of vitamin B2, the solution was injected into the HPLC.

2.6 Derivatization process of thiamine

Pre-column derivatization was done in the analysis of thiamine. Thiamine, which is the free form of vitamin B1, cannot be determined in the fluorescence detector because of its molecular configuration. Thus, thiamine is initially converted to the thiochrome, using a potassium ferricyanide solution. First, 1.5 mL K₃Fe(CN)₆ solution was prepared with 0.25 g in 25 mL NaOH solution (15%) and added to 20 mL of filtrate, which was delivered from the above solution. Then, the pH was adjusted to 7.1 ± 0.1 using ortho-phosphoric acid. Finally, the derivatized solution was filtered using a CA filter (0.45 μm) and injected into the HPLC for vitamin B1 analysis. The standard of thiamine was also derivatized using K₃Fe(CN)₆ solution and adjusted to pH 7.1 ± 0.1 with ortho-phosphoric acid.

2.7 Vitamin B₆ extraction in fortified breads

Kall [2003] extraction technique for vitamin B₆ was implemented with minor modifications. First, after homogenizing the breads, 5 g of the sample was taken into a 500 mL Erlenmeyer flask. Afterward, 60 mL of 0.1 N HCl solution was added, then this mixture was autoclaved at 121 °C for 30 min. Then, the enzymatic process was achieved to release the phosphorylated and glycoside forms of vitamin B₆ (PN). After cooling using a sodium acetate solution (2.5 mM), the samples' pH was adjusted to 4.5. Next, the enzymes of 100 mg taka-diastase, 10 mg acid phosphatase, and 10 mg beta-glucosidase were added to the samples. Then, the samples were incubated in a shaking water bath for 18 h at 37 °C. The column temperature was maintained at 25 °C. The flow rate was 0.8 mL/min (excitation wavelength: 290 nm, emission wavelength: 395 nm, flow rate: 0.8 mL/min).

2.8 HPLC analysis

The Shimadzu Nexera-I LC-2040C 3D pump by a Shimadzu RF-20A fluorescence detector (Shimadzu, Kyoto, Japan) was performed to separate vitamins.

2.9 Vitamin B₁

The mobile phase was prepared in a 75% buffer solution (0.033M KH₂PO₄) and 25% methanol. Using ortho-phosphoric acid, the pH was adjusted to 7.1 ± 0.1 and with a 0.22 μm CA, filtered under vacuum. Vitamin B₁ separation, which converted to thiochrome form, was accomplished using an Eclipse X08-C18 column (4.6 × 150 mm, 5 μm) (Agilent Technologies, USA). The temperature of the column was set at 25 °C and the flow rate was 1 mL/min. The excitation wavelength of the fluorescence detector was 366 nm, and the emission wavelength was 445 nm.

2.10 Vitamin B₂

The mobile phase was prepared with 250 mL of methanol and 750 mL of distilled water. Utilizing an Eclipse X08-C18 column (4.6 × 150 mm, 5 μm) (Agilent Technologies, USA) the separation of riboflavin, the free form of vitamin B₂, was accomplished. The excitation wavelength of the fluorescence detector was 445 nm, and the emission wavelength was 525 nm. The temperature of the column was set at 25 °C and the flow rate was 1 mL/min.

2.11 Vitamin B₃

For the detection of the vitamers of niacin (nicotinic acid and nicotinamide), post-column derivatization is required. Çatak [2019], described the determination technique for niacin was performed with minor modifications. For post-column derivatization of nicotinamide, a photochemical derivatization system was performed via a Teflon tube (length: 20 m; diameter: 0.5 mm) on a UV-A lamp (60 cm). Using an aluminum foil, the entire system was clothed. Following, the set system was connected between the fluorescence detector and the HPLC column. The mobile phase was composed daily as: 9.5 g KH₂PO₄ was dissolved in 500 mL distilled water. Then, 2 mL of CaSO₄.5H₂O solution (0.12 g dissolved in 100 mL deionized water) and 7.5 mL of H₂O₂ solution (31%) were added, and the volume was finished using deionized water. Finally, employing a 0.22 μm CA filter, the mobile phase was filtered under a vacuum. The Eclipse X08-C18 column (4.6 × 150 mm, 5 μm) (Agilent Technologies, USA), was utilized to separate nicotinamide. The column temperature was set at 25 °C (excitation wavelength: 322 nm, emission wavelength: 380 nm, flow rate: 1 mL/min).

2.12 Vitamin B₆

The PN vitamer of vitamin B₆ was determined by the HPLC device according to the methodology defined in Çatak2020], together with minor modifications. The mobile phase freshly prepared daily, which contains 95% buffer solution (11 g KH₂PO₄, 0.5 g 1-heptane sulfonic acid) and 5% acetonitrile. Next, using ortho-phosphoric acid, the pH was adjusted to 2.4, and using a 0.20 μm CA filter, the solution filtered under a vacuum. Using an Eclipse X08-C18 column (4.6 × 150 mm, 5 μm) (Agilent Technologies, USA), the PL vitamer of vitamin B₆ were separated. The column temperature was maintained at 25 °C. The flow rate was 0.8 mL/min (excitation wavelength: 290 nm, emission wavelength: 395 nm, flow rate: 0.8 mL/min).

2.13 Bioaccessibilities of vitamins B₁, B₂, B₃, and B₆

Using an in vitro human digestion model, the bioaccessibilities of vitamins B₁, B₂, B₃, and B₆ in enriched commercial whole wheat breads were investigated. This in vitro system involved the mouth, stomach, and small intestine. In vitro investigation was performed through the method represented by Ügur et al. [2020] with minor modifications.

2.14 Digestion enzymes and solutions employed in the human digestion model

The solutions employed in the human digestion model were prepared as shown in Figure 1 (saliva solution, gastric, duodenal, and bile juices). The organic and inorganic components were prepared with 500 mL of deionized water for each digestive enzyme. Then, each enzyme was mixed in that solution. The pH was adjusted to the suitable value for each solution with 1M HCl or 0.2M NaOH (given in Figure 1).

2.15 In vitro digestion

In the mouth stage, five g of homogenized bread was taken into a 50 mL falcon tube and mixed by 5 mL of saliva with a vortex for 20 s. This mixture was incubated in a shaking water bath for 5 min at 37 °C. After this step, in the gastric stage, 12 mL of gastric juice was added to the test sample delivered from the mouth step, and this mixture was incubated for 2 h at 37 °C once again in a shaking water bath. Then, 10 mL of duodenal juice and 5 mL of bile juice were added to the test sample delivered from the gastric step. The solution's pH was at 8.0 ± 0.2 that adjusted using NaOH if required. The obtained mixture was incubated in a shaking water bath for 2 h at 37 °C. The final proportion of bread to the digestive solution was 5 g in 32 mL.
The pH of the solution was adjusted to 4.5 after the digestion process was finished using trichloroacetic acid. By deionized water, the finishing volume was diluted to 50 mL. Next, centrifuged at 8000 rpm for 10 min. The resulting solution was used in vitamins B₁, B₂, B₃, and B₆ detection. The calculations of the bioaccessibilities were performed by dividing the concentrations of the vitamins in the digesta by the total vitamin concentrations in the original nondigested samples and expressed as a percentage (%).

2.16. Method validation and quantification

Method validation of vitamin B₁, vitamin B₂, nicotinic acid, nicotinamide, and PN analysis was verified using AOAC guidelines (AOAC, 2002). In Table 2, the method validation parameters are given. Linearity was found from 0.05 to 0.2 µg/mL for vitamin B₁ and vitamin B₂, from 1 to 10 µg/mL for nicotinic acid and nicotinamide, and between 0.01 and 0.5 µg/mL for PN using 5 levels of calibration in triplicate. Limit of detection (LOD) and limit of quantification (LOQ) were found as 3 and 10, respectively, according to the signal-to-noise (S/N) ratio. The study’s quantification was performed by measuring the peak area, which was plotted against the concentration. Precision of vitamins was assessed for repeatability and reproducibility by analyzing bread ten times on the same day and three times on the other three days. In addition, 0.1 µg/mL of vitamin B₁ and vitamin B₂, 2 µg/mL of nicotinic acid and nicotinamide, and 0.1 µg/mL of PN were spiked to the bread to verify the recovery of the methodology. All analyses were performed in triplicate (n = 3).

The assessment of the accuracy and the performance of the analytical technique was performed by examining the Standard Reference Material (SRM 1849a), certified reference material, which was supplied from the National Institute of Standards & Technology (Gaithersburg, MD, USA) and was proceeded similarly to the unknown samples. At the same time, we also have partaken in a proficiency test controlled by FAPAS (Food Analysis Performance Assessment Scheme, UK, 2018). The quality procedures of the method were based on ISO/IEC 17025 requirements.

2.17. Statistical analysis

Each bread was analyzed at least three times in each separate experiment, and the mean value was used. Significant differences within groups were statistically determined by one-way analysis of variance (ANOVA; p < 0.05, Tukey’s test). The results were expressed as mean ± standard deviation.

3. Results and Discussion

In Figure 2, the chromatogram of vitamin B₁ in whole wheat bread is depicted. As can be seen from HPLC chromatogram, vitamins were well separated by the HPLC technique, one of the most preferred and precise analytical techniques for determining vitamins in foods.

In this research, the bioaccessibility of B vitamins in 8 kinds of fortified commercial whole wheat bread samples was studied. Fortified breads selected for the study were whole wheat bread, buckwheat rye bread, whole wheat bread with chia seeds, whole wheat bran bread, traditional bread, rye bread, light bread, and multigrain bread. In the samples, all breads are fortified with vitamin B₁. However, only one sample (whole wheat bread) is not fortified with vitamins B₂ and B₆, and the other seven bread samples are fortified with vitamins B₂ and B₆. Besides, only half of the samples are fortified with vitamin B₃.

The concentrations of vitamins B₁, B₂, B₃, and B₆ in enriched bread samples before and after in vitro digestion and the bioaccessibilities (%) of these vitamins after in vitro digestion are given in Tables 3 and 4, respectively.

3.1. Method validation and quantification

In Table 2, The method validation result values of the vitamin B₁, vitamin B₂, nicotinic acid, nicotinamide, and PN are summarized. As seen from the table, the calculated LOQ was 0.018, 0.017, 0.020, 0.029, and 0.004 µg/mL for vitamin B₁, vitamin B₂, nicotinic acid, nicotinamide, and PN, respectively. The reproducibility limits (%) of vitamin B₁, vitamin B₂, nicotinic acid, nicotinamide, and PN were 2.3, 1.5, 2.6, 3.2, and 4.8.

Analytical parameters	Vitamin B₁	Vitamin B₂	Nicotinic acid	Nicotinamide	PN
Linear range (µg/mL)	0.05–0.2	0.05–0.2	1–10	1–10	0.01–0.5
Correlation coefficient (r²)	0.998	0.998	0.999	0.998	0.998
LOD (µg/mL)	0.005	0.004	0.006	0.010	0.011
LOQ (µg/mL)	0.018	0.017	0.020	0.029	0.004
Repeatability limit (%)	2.0	1.2	2.3	2.9	2.8
Reproducibility limit (%)	2.3	1.5	2.6	3.2	4.8
Recovery (%)	96.80–99.30	97.30–101.20	98.60–100.30	97.80–102.50	93.20–96.80

PN, pyridoxine; LOD, limit of detection; LOQ, limit of quantification.
respectively, and these results show good reproducibility for each vitamin. Recovery rates for vitamin B1, vitamin B2, nicotinic acid, nicotinamide, and PN ranged from 96.80% to 99.30%, 97.20%–101.20%, 98.60%–100.30%, 97.80%–102.50%, and from 93.20% to 96.80%, respectively.

Using quality control material for the accuracy of the analysis is always suggested. In the current work, the FAPAS test outcomes for vitamins B1, B2, B3, and B6 were determined in an appropriate range (−2 ≤ Z score ≤ +2).

3.2. Vitamin B1, B2, B3, and B6 concentration in fortified breads

The contents of vitamins B1, B2, B3, and B6 in enriched bread samples were measured. As seen in Table 3, the concentration of analysed vitamin B1 varied between 0.622 and 3.324 mg/100 g at initial, and from 0.502 to 2.698 mg/100 g after digestion in breads. The highest vitamin B1 was determined in buckwheat rye bread, while the lowest was in whole wheat bran bread both at initial and after digestion. Although the amounts of vitamin B1 decreased in all bread samples after digestion, the significant decrease was observed in six samples (p < 0.05). In two fortified breads, there was no significant difference compared to the initial value. In the American Food Composition Database [USDA, 2022], in some enriched breads, the total vitamin B1 amount ranges from 0 to 1 mg/100 g. Our results of measured vitamin B1 are congruent with the findings determined by the USDA by 5 out of 8 fortified breads. The obtained values of total vitamin B1 were compared with the values available in the published literature of the Turkish Food Composition Database (TURCOMP) [TURCOMP, 2022]. In TURCOMP, only the data of 3 types of breads (whole wheat bread, bread with bran, and rye bread) are available, and these breads were consistent with the samples of our study, but these breads are not fortified. Naturally available vitamin B1 in these breads reported with the lower total amounts. According to the TURCOMP, the total naturally available vitamin B1 level of breads (not fortified) include: whole wheat bread (0.148 mg/100 g), bread with bran (0.204 mg/100 g) and rye bread (0.152 mg/100 g). In our study, the amount of total vitamin B1 in fortified whole wheat bread, whole wheat bran bread, and rye bread were remarkably higher than the values in TURCOMP. The fortified whole wheat bran bread and rye bread samples contained 6–8 times more vitamin B1 than the not-fortified-breads compared to the data in TURCOMP. Also, there is no maximum allowable daily limit available about added vitamin B2 in the Turkish Food Codex.

In the samples, only half of the samples were fortified with vitamin B2, and all fortified breads had higher amounts of vitamin B2. The levels of measured vitamin B2 ranged from 1.025 to 9.122 mg/100 g in the initial, and from 0.971 to 7.657 mg/100 g after digestion in breads (Table 3). The highest vitamin B2 was found in buckwheat rye bread with 9.122 mg/100 g while the lowest vitamin B2 was in traditional bread (not-fortified sample) with 1.025 mg/100 g in the initial. After digestion again, the highest vitamin B2 was in buckwheat rye bread (7.657 mg/100 g), and the lowest was in traditional bread (0.971 mg/100 g). Although the amounts of vitamin B2 decreased in all fortified bread samples after digestion, the significant decrease was observed in 5 samples (p < 0.05). In three breads, there was no significant difference compared to the initial value. However, the samples of not-fortified breads (whole wheat bran bread, traditional bread, light bread, and multigrain bread) contained 0.971–1.457 mg/100 g vitamin B2 after digestion. Vitamin B3 was determined predominantly higher levels among the samples. Cereals are known as good sources of niacin in the literature. Çatak [2019], reported total vitamin B3 content in wheat (bread) and rye as 5.483 and 4.168 mg/100 g. Turkish Food Codex has been reported the maximum tolerable daily limit about added vitamin B3 in foodstuffs is 250 mg/day for 4–10 years, and 500 mg/day for 11 years and older. In all breads, the content

Figure 2. HPLC chromatogram of vitamin B1 in whole wheat bread.
of vitamin B₃ is below the maximum allowable daily limit and is appropriate for the Turkish Food Codex [TFC, 2022].

The levels of measured vitamin B₆ varied from 0.065 to 2.47 mg/100 g in the initial, and from 0.06 to 1.725 mg/100 g after digestion in breads (Table 4). The level of vitamin B₆ was found in buckwheat rye bread the highest with 2.47 mg/100 g while the lowest quantity was in rye bread with 0.065 mg/100 g at initial. After digestion, again, the same samples had both higher and lower amounts. Among the samples, only the whole wheat bread is not fortified with vitamin B₆. Although the amounts of vitamin B₆ decreased in all samples after digestion, the significant decrease was observed in four samples (p < 0.05). There was no significant difference in the other four samples compared to the initial value. The obtained vitamin B₆ values were compared with the values obtainable from the declared publications of TURCOMP [TURCOMP, 2022], which are not-fortified-breads. Naturally available vitamin B₆ in whole wheat bread, bread with bran, and rye bread reported with the lower total amounts. According to the TURCOMP, the total naturally available vitamin B₆ level of breads (not fortified) include: whole wheat bread (0.061 mg/100 g), bread with bran (0.061 mg/100 g) and rye bread (0.036 mg/100 g). In our study, the concentration of vitamin B₆ in whole wheat bread, whole wheat bran bread, and rye bread was higher than the reported amounts in the Turkish Food Composition Database. The two fortified breads contained about two times more vitamin B₆ than the not-fortified-breads compared to the data in TURCOMP. Turkish Food Codex has been reported the maximum tolerable daily limit for added vitamin B₆ in foodstuffs is 5 mg/day for 4–10 years, and 10 mg/day for 11 years and older [TFC, 2022]. In all breads, the content of vitamin B₆ is below the maximum daily limit and is appropriate for the Turkish Food Codex.

Our results were compared with the Food Data Central of US Department of Agriculture. According to the USDA, the total quantity of vitamin B₁, B₂, and B₃ is 1, 0.327, and 5.769 mg/100 g, respectively, in a multi whole grain wheat bread which fortified with vitamins B₁, B₂, and B₃. In the present work, the content of vitamins B₁ and B₃ (0.812 and 3.471 mg/100 g) was found lower than the data of the USDA. In contrast, the vitamin B₂ content was higher (0.474 mg/100 g) in the multigrain bread sample, fortified with vitamin B₁ and B₂ [USDA, 2022].

Another remarkable point is that the values of buckwheat rye bread and whole wheat bread with chia seeds found with predominantly higher amounts in all studied vitamins. It is thought to be due to the content of buckwheat and chia seeds.

3.3. In vitro bioaccessibility

In Tables 3 and 4, the bioaccessible amount results for vitamins B₁, B₂, B₃, and B₆, and the percentage (%) of bioaccessibilities are given. As shown in Table 3, the bioaccessibilities of vitamin B₁ in enriched breads ranged between 70.9 and 90.2% after digestion. The amount of vitamin B₁ present in the bread samples are not totally bioaccessible. However, the lowest bioaccessibility was observed in whole wheat bread. Besides, the highest vitamin B₁ bioaccessibility was observed in multigrain bread.

According to Table 3, vitamin B₂ bioaccessibility in fortified breads ranged between 54.2 and 89.7% after digestion. The amount of vitamin B₂ present in the bread samples are not totally bioaccessible, but, the lowest bioaccessibility was observed in rye bread (54.2%). In one sample, whole wheat bread, the bioaccessibility of vitamin B₂ was surprisingly high among the samples (89.7%), not fortified with vitamin B₂.

The bioaccessibility of vitamin B₃ in fortified breads ranged between 42.1 and 94.9% after digestion (Table 3). The amount of vitamin B₃ present in the bread samples are not totally bioaccessible. However, the remarkably lowest bioaccessibility was observed in multigrain bread with 42.1%. The highest vitamin B₃ bioaccessibility was determined in traditional bread with approximately 95%. The most remarkable point here that these two bread samples (multigrain bread and traditional bread) are not-fortified with vitamin B₃.

As seen in Table 4, vitamin B₆ bioaccessibility in fortified breads ranged between 44.1 and 92.5% after digestion. The amount of vitamin B₆ present in the bread samples are not totally bioaccessible. However, the lowest bioaccessibility was detected in whole wheat bran bread with 44.1%. Also, the highest vitamin B₆ bioaccessibility was detected in rye bread.

We investigated the bioaccessible concentrations of vitamins B₁, B₂, B₃, and B₆ in enriched bread samples commonly consumed within all ages in the population. The mean bioaccessibility of vitamins B₁, B₂, B₃, and B₆ in enriched breads after digestion was 80%, 64%, 79%, and 64%, respectively. In this in vitro gastrointestinal digestion system, the bioaccessibility of B vitamins was low. Notably, the bioaccessibilities of vitamins B₁ and B₂ were lower than vitamins B₂ and B₃ after digestion. As can be seen from the findings, the highest bioaccessibility value was detected in vitamin B₃ by 42% in multigrain bread among the samples.

Kurek et al. [2017] stated the bioaccessibilities of vitamins B₁, B₂, B₃, and B₆ were 69.1–91.2%, 40.9–50.2%, 60.2–70.2%, and 27.52–34% respectively, in fortified wheat bread. The findings in our work were parallel with the study performed by Kurek et al. [2017]. In this work, the bioaccessibilities of vitamins B₁, B₂, B₃, and B₆ were 70.9–90.2%, 54.2–89.7%, 42.1–94.9%, and 44.1–92.5% respectively, in enriched breads. In particular, the bioaccessibility of vitamin B₁ was very close to our results. Consistent with the results of our study, Kurek et al. [2017] has determined the highest bioaccessibility in vitamin B₃ while the lowest bioaccessibility in vitamin B₁ and B₆.

The bioaccessibilities of naturally existing vitamin B₁ in wheat (durum) and maize bran varies between 75 and 95% [Yu and Kies, 1993; Zaupa et al., 2014]. Our findings are congruent with these mentioned values in terms of vitamin B₁ bioaccessibility in fortified breads (70.9 and 90.2%). The stability of vitamin B₁ is particularly influenced by heat
The study of Sauberlich [1985] stated that vitamin B₆, naturally found in cereal-based foods, is lost between 75 and 90% during food processing. In addition to the PN.HCl (synthetic form), breads include naturally existing PN, which is the predominant form in cereals. The PN is less affected during processing stages and more stable compared to the PN.HCl. It is supposed that the bioaccessibility of vitamin B₆ is affected by the pH environment is 37°C, it is supposed that the bioaccessibility of vitamin B₆ is affected by the pH environment is 37°C, it is supposed that the bioaccessibility of vitamin B₆ is affected by the pH. Since the temperature of the in vitro environment is 37°C, it is supposed that the bioaccessibility of vitamin B₆ is affected by the pH.

The maximum stability of vitamins B₁ and B₂ is between pH 2 and 4 [Eittenmiller et al., 2008]. Since the pH of the in vitro small intestine medium is 7, it is thought that both vitamins are affected by this pH. The study of Sauberlich [1985] stated that vitamin B₆, naturally found in cereal-based foods, is lost between 75 and 90% during food processing. In addition to the PN.HCl (synthetic form), breads include naturally existing PN, which is the predominant form in cereals. The PN is less affected during processing stages and more stable compared to the PN.HCl. It is supposed that the bioaccessibility of vitamin B₆ is affected by the pH. Since the temperature of the in vitro environment is 37°C, it is supposed that the bioaccessibility of vitamin B₆ is affected by the pH.

The study of Sauberlich [1985] stated that vitamin B₆, naturally found in cereal-based foods, is lost between 75 and 90% during food processing. In addition to the PN.HCl (synthetic form), breads include naturally existing PN, which is the predominant form in cereals. The PN is less affected during processing stages and more stable compared to the PN.HCl. It is supposed that the bioaccessibility of vitamin B₆ is affected by the pH. Since the temperature of the in vitro environment is 37°C, it is supposed that the bioaccessibility of vitamin B₆ is affected by the pH.

The study of Sauberlich [1985] stated that vitamin B₆, naturally found in cereal-based foods, is lost between 75 and 90% during food processing. In addition to the PN.HCl (synthetic form), breads include naturally existing PN, which is the predominant form in cereals. The PN is less affected during processing stages and more stable compared to the PN.HCl. It is supposed that the bioaccessibility of vitamin B₆ is affected by the pH. Since the temperature of the in vitro environment is 37°C, it is supposed that the bioaccessibility of vitamin B₆ is affected by the pH.
Fortifying commercial whole wheat bread with the vitamin may be a satisfactory way to provide nutritional enhancement and provide extra health benefits to consumers. However, nutritionists estimate daily intake levels of vitamins with the values reported in the literature to account for the bioaccessible amounts. The daily intake calculation may be overestimated by using the literature amounts. The results of this study may be used as a guideline referring to the bioaccessible amounts.

4. Conclusions

This study revealed that vitamin B content in fortified commercial whole wheat breads is affected by in vitro digestion. Vitamins B4 and B6 have different bioavailability and bioaccessibility. Thus, knowing the content of B vitamins in breads after digestion is required for the health nutrition of the population. The results reveal that the vitamins B1, B2, and B3 have lower bioaccessibility than vitamins B4 and B6. It is believed that the temperature, pH of the gastrointestinal system, dietary fiber, bonding to polysaccharides and polyphenol, and stability considerably affect the bioaccessibility. Our results reveal that in vivo bioavailability of studied vitamins may be low.

The results of this study may be used as a source for commercial formulation of vitamin-fortified whole wheat bread because it provides a data that should be applied to reach the most nutritive bakery product; as a reference for governmental bodies to develop National Public Policies for preventing nutritional deficiencies; as a guideline for bread producers with regards to the level of B vitamins in whole wheat breads to achieve the desired digestibility.

Declarations

Author contribution statement

Jale Çaṭak: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Merve Nur Güzlici: Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data included in article/supp. material/referenced in article.

Declaration of interest's statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Akcıl, S.N., Sargon, H.S., Mızrak, O.F., Yaman, M., 2019. Determination and assessment of the bioaccessibility of vitamins B1, B2, and B3 in commercially available cereal-based baby foods. Microchem. J. 150, 104192.

AOAC. 2002. Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. Arlington. Association of Official Analytical Chemists, Arlington, USA.

Arab, M., Ostovan, A., Bagheri, A.R., Guo, X., Wang, L., Li, J., et al., 2020. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC, Trends Anal. Chem. 128, 115923.

Ball, G.F.M., 2004. Vitamin B1, B2, B3: Vitamins: Their Role in the Human Body. Blackwell Publishing Ltd, Oxford, UK, pp. 273–309.

Ball, G.F.M., 2006. Vitamins in Foods, Analysis, Bioavailability, and Stability, second ed. CRC, Press Taylor & Francis Group, Boca Raton, Fl., pp. 291–394.

Benito, P., Miller, D., 1998. Iron absorption and bioavailability: an updated review. Nutr. Res. 18 (3), 581–603.

Blandino, M., Sovrani, V., Marinaccio, F., Reyneri, A., Rolle, L., Giacosa, S., Arflorio, M., 2013. Nutritional and technological quality of bread enriched with an intrenched pearled wheat fraction. Food Chem. 141, 2549–2557.

Çatak, J., Semercioz, A.S., Yalçınkaya, B.H., Yılmaz, B., Ozilgen, M., 2018. Bioenergy Conversion. Elsevier, pp. 1131–1158.

Çatak, J. 2019. Determination of niacin profiles in some animal and plant based foods by high performance liquid chromatography: association with healthy nutrition. J. Anim. Sci. Technol. 61 (3), 138–146.

Çatak, J., Çaman, R., 2020. Pyridoxal, pyridoxine, and pyridoxine cooking loss: characterizing vitamin B6 profiles of chicken meats before and after cooking. J. Food Process. Preserv. 44 (10), e14798.

Çatak, J., Çaman, R., Ceylan, Z., 2020. Critical vitamin Assessment: pyridoxal, pyridoxine, and pyridoxine levels for three species of raw and cooked fish samples. J. Aquat. Food Prod. Technol. 29 (10), 981–989.

Çatak, J., Develi, E., Bayram, S., 2021. How does obesity affect bioenergetics in human respiratory muscles? Human Nutrition & Metabolism 26, 200136.

Çatak, J., Çaman, R., Yaman, C., Ceylan, Z., 2022a. Effect of baking and grilling on B vitamins of selected fishes and chicken parts. J. Culin. Sci. Technol. 20 (3), 1–16.

Çatak, J., Develi, E., Bayram, S., 2022b. Women, men, and thermal response: an entropic account of gender differences in breathing during exercise. Int. J. Inf. Retr. Res. (IJIRR) 6 (1), 17–21.

Çeçen, A.E., Merhala, Z., 1998. Bread fortification with folic acid, vitamin B12, and vitamin B6 in Hungary. Lancet 352 (9135), 1225.

European Food Safety Authority (EFSA), 2017. Dietary reference values for nutrients summary report. EFSA Supporting Publications 14 (12), e15216.

Ettemamiller, P.R., Lin, Y.W.O., Lando, J., 2008. Vitamin B1, B2, B3, Vitamin Analysis for Food the Food and Health Food Sciences, second ed. CRC Press, New York, pp. 471–488.

FAO, 1996. Food Fortification: Technology and Quality Control. Report of an FAO technical meeting, Rome, Italy, 20-23 November 1995. FAO Food and Nutrition Paper 66.

Gregory III, J.F., Trumbo, P.R., Bailey, L.B., Toth, J.P., Baumergarger, T.G., Cerda, J.J., 1991. Bioavailability of pyridoxine-5’-β-glucoside determined in humans by stable-isotopic methods. J. Nutr. 121: 177–186.

Hir, S.J., Lim, B.O., Decker, E.A., McClements, D.J., 2011. In vitro human digestion models for food applications. J. Food Sci. 76 (1), 1–12.

Kall, M.A., 2003. Determination of total vitamin B6 in foods by isocratic HPLC: a comparison with microbiological analysis. Food Chem. 82 (2), 315–327.

Kurek, M.A., 2003. Determination of total vitamin B6 in foods by isocratic HPLC: a comparison with microbiological analysis. Food Chem. 82 (2), 315–327.

Kurek, M.A., Wyrwisz, J., Sabina, K., Wierzbicka, A., 2017. Particle size of dietary fiber preparation affects the bioaccessibility of selected vitamin B in fortified wheat bread. J. Cereal Sci. 77, 166–171.

Kurtcan, S., Cevik, Ü., Uçar, D., Sari, M., Yelderen, T., 2017. In vivo bioaccessibility and bioavailability of linoleic acid from different vegetable oils. Proc. Natl. Acad. Sci. U.S.A. 114 (43), 11599–11604.

Kurtcan, S., Develi, E., Akca, E., 2021. In vitro bioaccessibility of linoleic acid from different vegetable oils. Food Chem. 341, 128102.

Kurtcan, S., Develi, E., Akca, E., 2021. In vitro bioaccessibility of linoleic acid from different vegetable oils. Food Chem. 341, 128102.

Kurtcan, S., Develi, E., Akca, E., 2021. In vitro bioaccessibility of linoleic acid from different vegetable oils. Food Chem. 341, 128102.

Kurtcan, S., Develi, E., Akca, E., 2021. In vitro bioaccessibility of linoleic acid from different vegetable oils. Food Chem. 341, 128102.

Kurtcan, S., Develi, E., Akca, E., 2021. In vitro bioaccessibility of linoleic acid from different vegetable oils. Food Chem. 341, 128102.

Kurtcan, S., Develi, E., Akca, E., 2021. In vitro bioaccessibility of linoleic acid from different vegetable oils. Food Chem. 341, 128102.

Kurtcan, S., Develi, E., Akca, E., 2021. In vitro bioaccessibility of linoleic acid from different vegetable oils. Food Chem. 341, 128102.
Uğur, H., Çatak, J., Mizrak, O.F., Çebi, N., Yaman, M., 2020. Determination and evaluation of in vitro bioaccessibility of added vitamin C in commercially available fruit-, vegetable-, and cereal-based baby foods. Food Chem. 330, 127166.

USDA, 2022. United States Department of Agriculture. USDA FoodData Central. Available at: https://fdc.nal.usda.gov/fdc-app.html#/food-details/400722/nutrients. Accessed 9 January 2022.

Van den Berg, H., van der Gaag, M., Hendriks, H., 2002. Influence of lifestyle on vitamin bioavailability. Int. J. Vitam. Nutr. Res. 72 (1), 53–59.

Yalçınkaya, B.H., Genç, S., Çatak, J., Özilgen, M., Yılmaz, B., 2018. Mitochondrial Energy Production, pp. 95–125.

Yaman, M., Mizrak, O.F., Çatak, J., Sargon, H.S., 2019. In vitro bioaccessibility of added folic acid in commercially available baby foods formulated with milk and milk products. Food Sci. Biotechnol. 1–8.

Yaman, M., Çatak, J., Uğur, H., Gürbüz, M., Belli, I., Tanyildiz, S.N., et al., 2021. The bioaccessibility of water-soluble vitamins: a review. Trends Food Sci. Technol. 109, 552-563.

Yıldız, Cennet, Özilgen, Mustafa, 2022. Why brain functions may deteriorate with aging: a thermodynamic evaluation. Int. J. Exergy 37 (1), 87–101.

Yu, B.H., Kies, C., 1993. Niacin, thiamin, and pantothenic acid bioavailability to humans from maize bran as affected by milling and particle size. Plant Foods Hum. Nutr. 43 (1), 87–95.

Zaupa, M., Scanzina, F., Dall’Asta, M., Calani, L., Del Rio, D., Bianchi, M.A., Brighenti, F., 2014. In vitro bioaccessibility of phenolics and vitamins from durum wheat aleurone fractions. J. Agric. Food Chem. 62, 1543-1549.