ASYMPTOTICS OF G-EQUIVARIANT SZEGŐ KERNELS

RUNG-TZUNG HUANG AND GUOKUAN SHAO

Abstract. Let \((X, T^{1,0}X)\) be a compact connected orientable CR manifold of dimension \(2n + 1\) with non-degenerate Levi curvature. Assume that \(X\) admits a connected compact Lie group \(G\) action. Under certain natural assumptions about the group \(G\) action, we define \(G\)-equivariant Szegő kernels and establish the associated Boutet de Monvel-Sjöstrand type theorems. When \(X\) admits also a transversal CR \(S^1\) action, we study the asymptotics of Fourier components of \(G\)-equivariant Szegő kernels with respect to the \(S^1\) action.

1. Introduction and statement of the main results

Let \((X, T^{1,0}X)\) be a CR manifold of dimension \(2n + 1\), \(n \geq 1\). Let \(\Box^{(q)}_b\) be the Kohn Laplacian acting on \((0, q)\) forms. The orthogonal projection \(S^{(q)}_b : L^2_{(0,q)}(X) \rightarrow \text{Ker} \, \Box^{(q)}_b\) onto \(\text{Ker} \, \Box^{(q)}_b\) is called the Szegő projection. The Szegő kernel is its distribution kernel \(S^{(q)}(x, y)\). The study of the Szegő projection and kernels is a classical subject in several complex variables and CR geometry. When \(X\) is the boundary of a strictly pseudoconvex domain, Boutet de Monvel-Sjöstrand [1] showed that \(S^{(0)}(x, y)\) is a complex Fourier integral operator.

The Boutet de Monvel-Sjöstrand theorem had a profound impact in many research areas, especially through [2]: several complex variables, symplectic and contact geometry, geometric quantization, Kähler geometry, semiclassical analysis, quantum chaos, etc. cf. [3, 4, 6, 15, 16, 17, 18, 23, 25]. Recently, Hsiao-Huang [10] obtained \(G\)-invariant Boutet de Monvel-Sjöstrand type theorems and Hsiao-Ma-Marinescu [11] established geometric quantization on CR manifolds by using \(G\)-invariant Szegő kernels asymptotic expansions.

In this paper, we study \(G\)-equivariant Szegő kernels with respect to all equivalent classes of irreducible unitary representations of \(G\). We establish \(G\)-equivariant Boutet de Monvel-Sjöstrand type theorems. When \(X\) admits also a transversal CR \(S^1\) action, we derive the asymptotic expansion of Fourier components of \(G\)-equivariant Szegő kernels with respect to the \(S^1\) action.

We now formulate the main results. We refer to Section 2 for some notations and terminology used here. Let \((X, T^{1,0}X)\) be a compact connected orientable CR manifold of dimension \(2n + 1\), \(n \geq 1\), where \(T^{1,0}X\) denotes the CR structure of \(X\). Fix a global non-vanishing real 1-form \(\omega_0 \in C^\infty(X, T^*X)\) such that \(\langle \omega_0, u \rangle = 0\), for every \(u \in T^{1,0}X \oplus T^{0,1}X\). The Levi form of \(X\) at

2010 Mathematics Subject Classification. Primary: 58J52, 58J28; Secondary: 57Q10.

Key words and phrases. equivariant Szegő kernel, moment map, CR manifold.

The first author was supported by Taiwan Ministry of Science and Technology projects 107-2115-M-008-007-MY2 and 109-2115-M-008-007-MY2.
Let \(HX = \{ \text{Re}\ u; u \in T^{1,0}X \} \) and let \(J : HX \to HX \) be the complex structure map given by \(J(u + ii\omega) = iu - i\omega \), for every \(u \in T^{1,0}X \). In this paper, we assume that \(X \) admits a \(d \)-dimensional connected compact Lie group action \(\xi \). For any \(\xi \in \mathfrak{g} \), we write \(\xi_X \) to denote the vector field on \(X \) induced by \(\xi \). That is, \((\xi_X u)(x) = \left. \frac{\partial}{\partial t} \left(u(\exp(t\xi) \circ x) \right) \right|_{t=0} \), for any \(u \in C^\infty(X) \). Let \(\mathfrak{g} = \text{Span} (\xi_X; \xi \in \mathfrak{g}) \). We assume throughout that

Assumption 1.2. The Lie group \(G \) action is CR and preserves \(\omega_0 \) and \(J \).

We recall that the Lie group \(G \) action preserves \(\omega_0 \) and \(J \) means that \(g^* \omega_0 = \omega_0 \) on \(X \) and \(g_* J = J g_* \) on \(HX \), for every \(g \in G \), where \(g^* \) and \(g_* \) denote the pull-back map and push-forward map of \(G \), respectively. The \(G \) action is CR means that for every \(\xi_X \in \mathfrak{g} \),

\[
[\xi_X, C^\infty(X, T^{1,0}X)] \subset C^\infty(X, T^{1,0}X).
\]

Definition 1.3. The moment map associated to the form \(\omega_0 \) is the map \(\mu : X \to \mathfrak{g}^* \) such that, for all \(x \in X \) and \(\xi \in \mathfrak{g} \), we have

\[
\langle \mu(x), \xi \rangle = \omega_0(\xi_X(x)).
\]

We assume also that

Assumption 1.4. \(0 \) is a regular value of \(\mu \) and \(G \) acts locally free near \(\mu^{-1}(0) \).

By Assumption 1.4, \(\mu^{-1}(0) \) is a \(d \)-codimensional orbifold of \(X \). Note that if \(G \) acts freely near \(\mu^{-1}(0) \) and the Levi form is positive at \(\mu^{-1}(0) \), it is known that \(\mu^{-1}(0)/G \) is a CR manifold with natural CR structure induced by \(T^{1,0}X \) of dimension \(2n - 2d + 1 \), (see [10]).

Let \(R = \{ R_1, R_2, \ldots \} \) be the collection of all irreducible unitary representations of \(G \), including only one representation from each equivalent class (see Section 2.4). Write

\[
R_k : G \to GL(\mathbb{C}^{d_k}), \quad d_k < \infty,
\]

\[
g \to (R_{k,j,i}(g))^{d_k}_{j,i=1},
\]

where \(d_k \) is the dimension of the representation \(R_k \). Denote by \(\chi_k(g) := \text{Tr} R_k(g) \) the trace of the matrix \(R_k(g) \) (the character of \(R_k \)). Let \(u \in \Omega^{0,0}(X) \). For every \(k = 1, 2, \ldots \), we define

\[
u_k(x) = d_k \int_G (g^* u)(x) \chi_k(g) d\mu(g),
\]
where $d\mu(g)$ is the probability Haar measure on G. We will show that $u = \sum_{k=0}^{\infty} u_k$. By Assumption 1.2, $u_k \in \Omega^{0,q}(X)$ if $u \in \Omega^{0,q}(X)$. Set
\[
\Omega^{0,q}(X)_k := \{u(x) \in \Omega^{0,q}(X) | u(x) = u_k(x)\}. \tag{1.4}
\]
Denote by $L^2_{(0,q)}(X)_k$ the completion of $\Omega^{0,q}(X)_k$ with respect to the inner product $(\cdot | \cdot)$.

Definition 1.5. The G-equivariant Szegő projection is the orthogonal projection
\[
S^{(q)}_k : L^2_{(0,q)}(X) \to \text{Ker} \square^{(q)}_b \cap L^2_{(0,q)}(X)_k
\]
with respect to $(\cdot | \cdot)$. Denote by $S^{(q)}_k(x,y) \in D'(X \times X, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$ the distribution kernel of $S^{(q)}_k$.

The first main result of this work is the following

Theorem 1.6. With the assumptions and notations above, suppose that $\square^{(q)}_b : \text{Dom} \square^{(q)}_b \to L^2_{(0,q)}(X)$ has closed range. If $q \notin \{n_-, n_+\}$, then $S^{(q)}_k \equiv 0$ on X.

Suppose $q \in \{n_-, n_+\}$. Let D be an open neighborhood of X with $D \cap \mu^{-1}(0) = \emptyset$. Then, $S^{(q)}_k \equiv 0$ on D.

Let $p \in \mu^{-1}(0)$ and let U be an open neighborhood of p and let $x = (x_1, \ldots, x_{2n+1})$ be local coordinates defined in U. Let $N_p = \{g \in G : g \circ p = p\} = \{g_1 = e_0, g_2, \ldots, g_r\}$. Then, there exist continuous operators $\hat{S}_{k,-}, \hat{S}_{k,+} : \Omega^{0,q}(U) \to \Omega^{0,q}(U)$ such that
\[
S^{(q)}_k \equiv \hat{S}_{k,-} + \hat{S}_{k,+} \text{ on } U, \tag{1.5}
\]
and $\hat{S}_{k,-}(x,y), \hat{S}_{k,+}(x,y)$ satisfy
\[
\hat{S}_{k,-}(x,y) \equiv \sum_{\alpha=1}^{r} \int_{0}^{\infty} e^{\Phi_{k,-}(g_0, x, y) t} a_{k,\alpha,-}(x,y,t) dt \text{ on } U,
\]
\[
\hat{S}_{k,+}(x,y) \equiv \sum_{\alpha=1}^{r} \int_{0}^{\infty} e^{\Phi_{k,+}(g_0, x, y) t} a_{k,\alpha,+}(x,y,t) dt \text{ on } U,
\]
with
\[
a_{k,\alpha,+}(x,y,t), a_{k,\alpha,-}(x,y,t) \in S^{n-d\frac{q}{2}}_{\text{cl}}(U \times U \times \mathbb{R}^+; T^{*0,q}X \boxtimes (T^{*0,q}X)^*),
\]
\[
a_{k,\alpha,-}(x,y,t) = 0 \text{ if } q \neq n_-, \quad a_{k,\alpha,+}(x,y,t) = 0 \text{ if } q \neq n_+,
\]
\[
a^{0}_{k,\alpha,-}(x,x) \neq 0, \quad \forall x \in U, \quad a^{0}_{k,\alpha,+}(x,x) \neq 0, \quad \forall x \in U,
\]
where $a^{0}_{k,\alpha,-}(x,x)$ and $a^{0}_{k,\alpha,+}(x,x)$, $x \in \mu^{-1}(0) \cap U$, are the leading terms of the asymptotic expansion of $a_{k,\alpha,-}(x,x)$ and $a_{k,\alpha,+}(x,x)$ in $S^{n-d\frac{q}{2}}_{1,0}(U \times U \times \mathbb{R}^+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$, respectively, and $\Phi_{k,-}(x,y) \in C^0(U \times U)$.

By $\Phi_{k,+}(x,y) \geq 0, \quad d_x \Phi_{k,-}(x,y) = -d_y \Phi_{k,-}(x,x) = -\omega_0(x), \quad \forall x \in U \cap \mu^{-1}(0), \tag{1.8}$

and $-\Phi_{k,+}(x,y)$ satisfies (1.8).
We refer the readers to the discussion before [2.1] and Definition [3.1] for the precise meanings of \(A \equiv B \) and the symbol space \(S^m_{÷ \mathbb{R}} \), respectively.

Assume that \(G \) acts freely on \(\mu^{-1}(0) \) for a moment. To state the formulas for \(a_{k,-}^0(x, x) \) and \(a_{k,+}^0(x, x) \), we introduce some notations. For a given point \(x_0 \in X \), let \(\{W_j\}_{j=1}^n \) be an orthonormal frame of \((T^{1,0}X, \langle \cdot | \cdot \rangle)\) near \(x_0 \), for which the Levi form is diagonal at \(x_0 \). Put

\[
\mathcal{L}_{x_0}(W_j, \overline{W}_\ell) = \mu_j(x_0) \delta_{j\ell}, \quad j, \ell = 1, \ldots, n.
\]

We will denote by

\[
\det \mathcal{L}_{x_0} = \prod_{j=1}^n \mu_j(x_0).
\]

Let \(\{T_j\}_{j=1}^n \) denote the basis of \(T^{0,1}X \), dual to \(\{W_j\}_{j=1}^n \). We assume that \(\mu_j(x_0) < 0 \) if \(1 \leq j \leq n_\pm \) and \(\mu_j(x_0) > 0 \) if \(n_- + 1 \leq j \leq n \). Put

\[
\mathcal{N}(x_0, n_-) := \{ cT_1(x_0) \land \ldots \land T_{n_-}(x_0); \; c \in \mathbb{C} \},
\]

\[
\mathcal{N}(x_0, n_+) := \{ cT_{n_-+1}(x_0) \land \ldots \land T_n(x_0); \; c \in \mathbb{C} \}
\]

and let

\[
\tau_{x_0, n_-} = \tau_{x_0, n_-} : T^{0,q}_{x_0}X \to \mathcal{N}(x_0, n_-), \quad \tau_{x_0, n_+} = \tau_{x_0, n_+} : T^{0,q}_{x_0}X \to \mathcal{N}(x_0, n_+),
\]

be the orthogonal projections onto \(\mathcal{N}(x_0, n_-) \) and \(\mathcal{N}(x_0, n_+) \) with respect to \(\langle \cdot | \cdot \rangle \), respectively.

Fix \(x \in \mu^{-1}(0) \), consider the linear map

\[
R_x : g_x \to g_x, \quad u \to R_x u, \quad \langle R_x u | v \rangle = \langle d\omega_0(x), J u \lor v \rangle.
\]

Let \(\det R_x = \lambda_1(x) \cdots \lambda_d(x) \), where \(\lambda_j(x), \; j = 1, 2, \ldots, d \), are the eigenvalues of \(R_x \).

Fix \(x \in \mu^{-1}(0) \), put \(Y_x = \{ g \circ x; \; g \in G \} \). \(Y_x \) is a \(d \)-dimensional submanifold of \(X \). The \(G \)-invariant Hermitian metric \(\langle \cdot | \cdot \rangle \) induces a volume form \(dv_{Y_x} \) on \(Y_x \). Put

\[
V_{\text{eff}}(x) := \int_{Y_x} dv_{Y_x}.
\]

Note that the function \(V_{\text{eff}}(x) \) was already appeared in Ma-Zhang [19 (0,10)] as exactly the role in the expansion, cf. [19 (0.14)].

Theorem 1.7. With the notations used above, if \(G \) acts freely on \(\mu^{-1}(0) \), then for \(a_{k,-}^0(x, y) \) and \(a_{k,+}^0(x, y) \) in (1.7), we have

\[
a_{k,-}^0(x, x) = 2^{d-1} \frac{d^2}{V_{\text{eff}}(x)} \pi^{-n+\frac{3}{2}} |\det R_x|^{-\frac{1}{2}} |\det \mathcal{L}_x|^\tau_{x, n_-}, \quad \forall x \in \mu^{-1}(0)
\]

\[
a_{k,+}^0(x, x) = 2^{d-1} \frac{d^2}{V_{\text{eff}}(x)} \pi^{-n+\frac{3}{2}} |\det R_x|^{-\frac{1}{2}} |\det \mathcal{L}_x|^\tau_{x, n_+}, \quad \forall x \in \mu^{-1}(0).
\]

Assume that \(X \) admits an \(S^1 \) action \(e^{i\theta} : S^1 \times X \to X \). Let \(T \in \mathcal{C}^{\infty}(X, TX) \) be the global real vector field induced by the \(S^1 \) action given by \((Tu)(x) = \frac{\partial}{\partial \theta} (u(e^{i\theta} \circ x)) \mid_{\theta=0}, \; u \in \mathcal{C}^{\infty}(X) \). Let the \(S^1 \) action \(e^{i\theta} \) be CR and transversal (see Definition [4.1]). We assume throughout that
Assumption 1.8.

\[T \text{ is transversal to the space } g \text{ at every point } p \in \mu^{-1}(0), \]
\[e^{i\theta} \circ g \circ x = g \circ e^{i\theta} \circ x, \quad \forall x \in X, \quad \forall \theta \in [0, 2\pi], \quad \forall g \in G, \]
and
\[G \times S^1 \text{ acts locally freely near } \mu^{-1}(0). \]

Let \(u \in \Omega^{0,q}(X) \). Define
\[Tu := \frac{\partial}{\partial \theta} ((e^{i\theta})^* u)|_{\theta=0} \in \Omega^{0,q}(X). \]

For every \(m \in \mathbb{Z} \), let
\[\Omega^q_m(X) := \left\{ u \in \Omega^{0,q}(X); Tu = imu \right\}, \quad q = 0, 1, 2, \ldots, n, \]
\[\Omega^q_m(X)_k := \left\{ u \in \Omega^{0,q}(X)_k; Tu = imu \right\}, \quad q = 0, 1, 2, \ldots, n. \]

Denote by \(C^\infty_m(X) := \Omega^q_m(X), C^\infty_m(X)_k := \Omega^q_m(X)_k \). From the CR property of the \(S^1 \) action and \((1.13) \), we have
\[Tg^* \overline{\partial}_b = g^* T \overline{\partial}_b = \overline{\partial}_b g^* T = \overline{\partial}_b T g^* \text{ on } \Omega^{0,q}(X), \quad \forall g \in G. \]

Hence,
\[\overline{\partial}_b : \Omega^{0,q}_m(X)_k \rightarrow \Omega^{0,q+1}_m(X)_k, \quad \forall m \in \mathbb{Z}. \]

Assume that the Hermitian metric \(\langle \cdot | \cdot \rangle \) on \(CTX \) is \(G \times S^1 \) invariant. Then the \(L^2 \) inner product \(\langle \cdot | \cdot \rangle \) on \(\Omega^{0,q}(X) \) induced by \(\langle \cdot | \cdot \rangle \) is \(G \times S^1 \)-invariant. We then have
\[Tg^* \overline{\partial}_b = g^* T \overline{\partial}_b = \overline{\partial}_b g^* T = \overline{\partial}_b T g^* \text{ on } \Omega^{0,q}(X), \quad \forall g \in G, \]
\[Tg^* \square^{(q)}_b = g^* T \square^{(q)}_b = \square^{(q)}_b g^* T = \square^{(q)}_b T g^* \text{ on } \Omega^{0,q}(X), \quad \forall g \in G, \]

where \(\overline{\partial}_b \) is the \(L^2 \) adjoint of \(\overline{\partial}_b \) with respect to \(\langle \cdot | \cdot \rangle \).

Let \(L^2_{(0,q),m}(X)_k \) be the completion of \(\Omega^q_m(X)_k \) with respect to \(\langle \cdot | \cdot \rangle \). Write \(L^2_m(X)_k := L^2_{(0,0),m}(X)_k \). Put
\[H^q_{b,m}(X)_k := (\text{Ker } \square^{(q)}_b) \cap L^2_{(0,q),m}(X)_k. \]

Since \(\square^{(q)}_b - T^2 \) is elliptic, we have for every \(m \in \mathbb{Z} \), \(H^q_{b,m}(X)_k \subset \Omega^q_m(X)_k \) and \(\dim H^q_{b,m}(X)_k < \infty \).

Definition 1.9. The \(m \)-th \(G \)-equivariant Szegö projection is the orthogonal projection
\[S^{(q)}_{k,m} : L^2_{(0,q)}(X) \rightarrow (\text{Ker } \square^{(q)}_b) \cap L^2_{(0,q),m}(X)_k \]
with respect to \(\langle \cdot | \cdot \rangle \). Let \(S^{(q)}_{k,m}(x,y) \in C^\infty(X \times X, T^*\Omega^{0,q}X \otimes (T^*\Omega^{0,q}X)^*) \) be the distribution kernel of \(S^{(q)}_{k,m} \).

The second main result of this work is the following
Theorem 1.10. With the assumptions and notations used above, if \(q \notin n_\ast \), then, as \(m \to +\infty \), \(S_{k,m}^{(q)} = O(m^{-\infty}) \) on \(X \).

Suppose \(q = n_\ast \). Let \(D \) be an open neighborhood of \(X \) with \(D \cap \mu^{-1}(0) = \emptyset \). Then, as \(m \to +\infty \),

\[
S_{k,m}^{(q)} = O(m^{-\infty}) \quad \text{on} \ D.
\]

Let \(p \in \mu^{-1}(0) \) and let \(N_p = \{ g \in G : g \circ p = p \} = \{ g_1 = e_0, g_2, ..., g_r \} \). Let \(U \) be an open neighborhood of \(p \) and let \(x = (x_1, ..., x_{2n+1}) \) be local coordinates defined in \(U \). Then, as \(m \to +\infty \),

\[
S_{k,m}^{(q)}(x,y) = \sum_{\alpha=1}^{r} e^{im\Psi_k(g_{\alpha}o x,y)}b_{k,\alpha}(x,y,m),
\]

\[
b_{k,\alpha}(x,y,m) \in \mathcal{S}^{n-d}_{\text{loc}} (1; U \times U, T^{s_0q} X \boxtimes (T^{s_0q} X)^*) ,
\]

\[
b_{k,\alpha}(x,y,m) \sim \sum_{j=0}^{\infty} m^{n-d-j} b_{k,\alpha}^j (x,y) \quad \text{in} \quad \mathcal{S}^{n-d}_{\text{loc}} (1; U \times U, T^{s_0q} X \boxtimes (T^{s_0q} X)^*) ,
\]

\[
b_{k,\alpha}^j (x,y) \in C^\infty (U \times U, T^{s_0q} X \boxtimes (T^{s_0q} X)^*) , \quad j = 0, 1, 2, ..., \]

\[
\Psi_k(x,y) \in C^\infty (U \times U) , \quad d_x \Psi_k(x,y) = -d_y \Psi_k(x,y) = -\omega_0(x) , \quad \forall x \in \mu^{-1}(0), \quad \Psi_k(x,y) = 0
\]

if and only if \(x = y \in \mu^{-1}(0) \).

In particular, if \(G \times S^1 \) acts freely near \(\mu^{-1}(0) \), then

\[
b_{k}^0(x,y) = 2^{d-1} \frac{d^2}{V_{\text{eff}}(x)} \pi^{-n+\frac{d}{2}} |\det R_x|^\frac{1}{2} |\det L_x| \tau_{x,n_\ast} , \quad \forall x \in \mu^{-1}(0),
\]

where \(\tau_{x,n_\ast} \) is given by (1.10).

We provide a special case when \(G = T^d \) on an irregular Sasakian manifold, where \(T^d \) denotes the \(d \)-dimensional torus. Recall that a CR manifold \(X \) is irregular Sasakian if it admits a CR transversal \(\mathbb{R} \)-action, which does not come from any circle action. The \(\mathbb{R} \)-action can be interpreted as a CR torus action \(T^{d+1} = T^d \times S^1 \) (cf. Herrmann-Hsiao-Li [7]). Fix \((p_1, ..., p_d) \in \mathbb{Z}^d\), we define a \(T^d \)-action as follows:

\[
T^d \times X \rightarrow X
\]

\[
((e^{i\theta_1}, ..., e^{i\theta_d}), x) \mapsto (e^{i\theta_1}, ..., e^{i\theta_d}, e^{-ip_1\theta_1} \cdots e^{-ip_d\theta_d}) \circ x.
\]

The \(T^d \)-action satisfies Assumption[18] All irreducible unitary representations of \(T^d \) are \(\{ R_{p_1, ..., p_d} : (e^{i\theta_1}, ..., e^{i\theta_d}) \mapsto e^{ip_1\theta_1} \cdots e^{ip_d\theta_d} \} \). Let \(T_j \) be the induced vector fields of the \(T^d \)-action. That is,

\[
T_j u(x) := \frac{\partial}{\partial \theta_j}|_{\theta_j = 0} u((1, ..., e^{i\theta_1}, ..., 1) \circ x), \quad \text{for} \ j = 1, ..., d \text{ and } u \in C^\infty(X).
\]

Then

\[
H_{b,mp_1, ..., mp_d,m}^q(X) := \{ u \in H_b^q(X) : Tu = imu, T_j u = imp_j u, j = 1, ..., d \}.
\]

The \(m \)-th equivariant Szegö kernel is the distributional kernel of the orthogonal projection

\[
S_{mp_1, ..., mp_d,m}^q : L^2_{(0,q)} \rightarrow H_{b,mp_1, ..., mp_d,m}^q(X).
\]

Assume that \((-p_1, ..., -p_d) \in \mathbb{Z}^d\) is a regular value of the torus invariant CR moment map

\[
\mu_0 : X \rightarrow \mathbb{R}^d, \mu_0(x) := (\omega_0(x), T_1(x), ..., \omega_0(x), T_d(x)).
\]
The CR moment map of T^d-action defined in (1.20) is

$$
\mu : X \to \mathbb{R}^d, \mu(x) := (\omega_0(x), -p_1 T + T_1(x)), ..., (\omega_0(x), -p_d T + T_d(x)).
$$

(1.23)

For $x \in \mu_0^{-1}(-p_1, ..., -p_d)$, $\omega_0(-p_j T + T_j) = 0$. Then 0 is the regular value of μ. By Theorem [1.10] we deduce the following which covers Shen’s result [22] when X is strongly pseudoconvex.

Corollary 1.11. Fix $(-p_1, ..., -p_d) \in \mathbb{Z}^d$, the action of T^d on the irregular Sasakian manifold X is defined in (1.20). With the assumptions and notations used above, If $q \notin n_-$, then, as $m \to +\infty$, $S_{mp_1, ..., mp_d,m}^{(q)} = O(m^{-\infty})$ on X.

Suppose $q = n_-$. Let D be an open neighborhood of X with $D \cap \mu^{-1}(0) = \emptyset$. Then, as $m \to +\infty$,

$$
S_{mp_1, ..., mp_d,m}^{(q)} = O(m^{-\infty}) \text{ on } D.
$$

Let $p \in \mu^{-1}(0)$ and let $N_p = \{g \in G : g \circ p = p\} = \{g_1 = e_0, g_2, ..., g_r\}$. Let U be an open neighborhood of p and let $x = (x_1, ..., x_{2n+1})$ be local coordinates defined in U. Then, as $m \to +\infty$,

$$
S_{mp_1, ..., mp_d,m}^{(q)}(x, y) \equiv \sum_{\alpha=1}^{r} e^{im\Psi(g_{\alpha} ox, y)} b_{\alpha}(x, y, m),
$$

(1.24)

$$
b_{\alpha}(x, y, m) \in S_{1U \times X, (T^{*d} q X)^*}^{n-d}(1; U \times U, T^{*d} q X \boxplus (T^{*d} q X)^*),
$$

$$
b_{\alpha}(x, y, m) \sim \sum_{j=0}^{\infty} m^{n-d-j} b_{\alpha}(x, y) \text{ in } S_{1U \times X, (T^{*d} q X)^*}^{n-d}(1; U \times U, T^{*d} q X \boxplus (T^{*d} q X)^*),
$$

$$
b_{\alpha}^{(j)}(x, y) \in C^{\infty}(U \times U, T^{*d} q X \boxplus (T^{*d} q X)^*), \quad j = 0, 1, 2, ..., \Psi(x, y) \in C^{\infty}(U \times U), \quad d_x \Psi(x, x) = - d_x \Psi(x, x) = -\omega_0(x), \text{ for every } x \in \mu^{-1}(0), \Psi(x, y) = 0 \text{ if and only if } x = y \in \mu^{-1}(0).
$$

In particular, if $T^d \times S^1$ acts freely near $\mu^{-1}(0)$, then

$$
b^{(j)}(x, x) = \frac{q^{d-1}}{V_{\text{eff}}(x)} \pi^{n-1+\frac{d}{2}} |\det R_x|^{-\frac{1}{2}} |\det \mathcal{L}_x| \tau_{x, n_-}, \quad \forall x \in \mu^{-1}(0),
$$

(1.25)

where τ_{x, n_-} is given by (1.10).

2. Preliminaries

2.1. Standard notations

Let M be a C^{∞} paracompact manifold. We let TM and T^*M denote the tangent bundle of M and the cotangent bundle of M, respectively. The complexified tangent bundle of M and the complexified cotangent bundle of M will be denoted by $\mathbb{C}TM$ and $\mathbb{C}T^*M$, respectively. Write $\langle \cdot, \cdot \rangle$ to denote the pointwise duality between TM and T^*M. We extend $\langle \cdot, \cdot \rangle$ bilinearly to $\mathbb{C}TM \times \mathbb{C}T^*M$.

Let F be a C^{∞} vector bundle over M. The fiber of F at $x \in M$ will be denoted by F_x. Let E be a vector bundle over a C^{∞} paracompact manifold M_1. We write $F \boxplus E^*$ to denote the vector bundle over $M \times M_1$ with fiber over $(x, y) \in M \times M_1$ consisting of the linear maps from E_y to F_x. Let $Y \subset M$ be an open set. From now on, the spaces of distribution sections of F over Y and smooth sections of F over Y will be denoted by $D'(Y, F)$ and $C^\infty(Y, F)$, respectively.
Let $E'(Y, F)$ be the subspace of $D'(Y, F)$ whose elements have compact support in Y. Put $C^\infty_c(M, F) := C^\infty(M, F) \cap E'(M, F)$.

We recall the Schwartz kernel theorem \[8, \text{Theorems 5.2.1, 5.2.6}, \ \ [16, \text{Thorem B.2.7}]. \] Let F and E be C^∞ vector bundles over paracompact orientable C^∞ manifolds M and M_1, respectively, equipped with smooth densities of integration. If $A : C^\infty_c(M_1, E) \to D'(M, F)$ is continuous, we write $K_A(x, y)$ or $A(x, y)$ to denote the distribution kernel of A. The following two statements are equivalent

1. A is continuous: $E'(M_1, E) \to C^\infty(M, F)$,
2. $K_A \in C^\infty(M \times M_1, F \boxtimes E^*)$.

If A satisfies (1) or (2), we say that A is smoothing on $M \times M_1$. Let $A, \hat{A} : C^\infty_0(M_1, E) \to D'(M, F)$ be continuous operators. We write

$$A \equiv \hat{A} \ (\text{on } M \times M_1) \quad (2.1)$$

if $A - \hat{A}$ is a smoothing operator. If $M = M_1$, we simply write “on M”.

Let $H(x, y) \in D'(M \times M_1, F \boxtimes E^*)$. We write H to denote the unique continuous operator $C^\infty_c(M_1, E) \to D'(M, F)$ with distribution kernel $H(x, y)$. In this work, we identify H with $H(x, y)$.

2.2. Some standard notations in semi-classical analysis.

Let W_1 be an open set in \mathbb{R}^{N_1} and let W_2 be an open set in \mathbb{R}^{N_2}. Let E and F be vector bundles over W_1 and W_2, respectively. An m-dependent continuous operator $A_m : C^\infty_c(W_2, F) \to D'(W_1, E)$ is called m-negligible on $W_1 \times W_2$ if, for m large enough, A_m is smoothing and, for any $K \Subset W_1 \times W_2$, any multi-indices α, β and any $N \in \mathbb{N}$, there exists $C_{K, \alpha, \beta, N} > 0$ such that

$$|\partial_x^\alpha \partial_y^\beta A_m(x, y)| \leq C_{K, \alpha, \beta, N} m^{-N} \text{ on } K, \ \forall m \gg 1. \quad (2.2)$$

In that case we write

$$A_m(x, y) = O(m^{-\infty}) \text{ on } W_1 \times W_2,$$

or

$$A_m = O(m^{-\infty}) \text{ on } W_1 \times W_2.$$

If $A_m, B_m : C^\infty_c(W_2, F) \to D'(W_1, E)$ are m-dependent continuous operators, we write $A_m = B_m + O(m^{-\infty})$ on $W_1 \times W_2$ or $A_m(x, y) = B_m(x, y) + O(m^{-\infty})$ on $W_1 \times W_2$ if $A_m - B_m = O(m^{-\infty})$ on $W_1 \times W_2$. When $W = W_1 = W_2$, we sometime write “on W”.

Let X and M be smooth manifolds and let E and F be vector bundles over X and M, respectively. Let $A_m, B_m : C^\infty(M, F) \to C^\infty(X, E)$ be m-dependent smoothing operators. We write $A_m = B_m + O(m^{-\infty})$ on $X \times M$ if on every local coordinate patch D of X and local coordinate patch D_1 of M, $A_m = B_m + O(m^{-\infty})$ on $D \times D_1$. When $X = M$, we sometime write on X.

We recall the definition of the semi-classical symbol spaces.
Definition 2.1. Let W be an open set in \mathbb{R}^N. Let
\[
S(1; W) := \left\{ a \in C^\infty(W) \mid \forall \alpha \in \mathbb{N}_0^N : \sup_{x \in W} |\partial^\alpha a(x)| < \infty \right\},
\]
and
\[
S^0_{\text{loc}}(1; W) := \left\{ (a(\cdot, m))_{m \in \mathbb{R}} \mid \forall \alpha \in \mathbb{N}_0^N, \forall \chi \in C^\infty_0(W) : \sup_{m \in \mathbb{R}, m \geq 1} \sup_{x \in W} |\partial^\alpha (\chi a(x, m))| < \infty \right\}.
\]
For $k \in \mathbb{R}$, let
\[
S^k_{\text{loc}}(1; W) := S^k_{\text{loc}}(1; W) = \left\{ (a(\cdot, m))_{m \in \mathbb{R}} \mid (m^{-k} a(\cdot, m)) \in S^0_{\text{loc}}(1; W) \right\}.
\]
Hence $a(\cdot, m) \in S^k_{\text{loc}}(1; W)$ if for every $\alpha \in \mathbb{N}_0^N$ and $\chi \in C^\infty_0(W)$, there exists $C_\alpha > 0$ independent of m, such that $|\partial^\alpha (\chi a(\cdot, m))| \leq C_\alpha m^k$ holds on W.

Consider a sequence $a_j \in S^k_{\text{loc}}(1)$, $j \in \mathbb{N}_0$, where $k_j \searrow -\infty$, and let $a \in S^k_{\text{loc}}(1)$. We say
\[
a(\cdot, m) \sim \sum_{j=0}^\infty a_j(\cdot, m) \quad \text{in} \quad S^k_{\text{loc}}(1),
\]
if, for every $\ell \in \mathbb{N}_0$, we have $a - \sum_{j=0}^\ell a_j \in S^{k_{\text{loc}}+1}_0(1)$. For a given sequence a_j as above, we can always find such an asymptotic sum a, which is unique up to an element in $S^\infty_{\text{loc}}(1) = S^0_{\text{loc}}(1; W) := \cap_k S^k_{\text{loc}}(1)$.

Similarly, we can define $S^k_{\text{loc}}(1; Y, E)$ in the standard way, where Y is a smooth manifold and E is a vector bundle over Y.

2.3. **CR manifolds.** Let $(X, T^{1,0}X)$ be a compact, connected and orientable CR manifold of dimension $2n + 1$, $n \geq 1$, where $T^{1,0}X$ is a CR structure of X, that is, $T^{1,0}X$ is a subbundle of rank n of the complexified tangent bundle $\mathbb{C}TX$, satisfying $T^{1,0}X \cap T^01X = \{0\}$, where $T^01X = \overline{T^{1,0}X}$, and $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$, where $\mathcal{V} = C^\infty(X, T^{1,0}X)$. There is a unique subbundle HX of TX such that $\mathcal{C}HX = T^{1,0}X \oplus T^01X$, i.e. HX is the real part of $T^{1,0}X \oplus T^01X$. Let $J :HX \to HX$ be the complex structure map given by $J(u + i\mathcal{V}) = iu - i\mathcal{V}$, for every $u \in T^{1,0}X$. By complex linear extension of J to $\mathbb{C}TX$, the i-eigenspace of J is $T^{1,0}X = \{ V \in \mathcal{C}HX : JV = \sqrt{-1}V \}$. We shall also write (X, JU, J) to denote a compact CR manifold.

We fix a real non-vanishing 1 form $\omega_0 \in C(X, T^*X)$ so that $\langle \omega_0(x), u \rangle = 0$, for every $u \in H_xX$, for every $x \in X$. For each $x \in X$, we define a quadratic form on HX by
\[
\mathcal{L}_x(U, V) = \frac{1}{2} d\omega_0(JU, V), \forall U, V \in H_xX.
\]
We extend \mathcal{L} to $\mathcal{C}HX$ by complex linear extension. Then, for $U, V \in T^{1,0}x_X$,
\[
\mathcal{L}_x(U, \overline{V}) = \frac{1}{2} d\omega_0(JU, \overline{V}) = -\frac{1}{2i} d\omega_0(U, \overline{V}).
\]
The Hermitian quadratic form \mathcal{L}_x on $T^{1,0}X$ is called Levi form at x. Let $T \in C^\infty(X, TX)$ be the non-vanishing vector field determined by
\[
\omega_0(T) = -1,
\]
\[
d\omega_0(T, \cdot) = 0 \quad \text{on} \quad TX.
\]
Note that X is a contact manifold with contact form ω_0, contact plane HX and T is the Reeb vector field.

Fix a smooth Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$ so that $T^{0,1}X$ is orthogonal to $T^{0,0}X$, $\langle u | v \rangle$ is real if u, v are real tangent vectors, $\langle T | T \rangle = 1$ and T is orthogonal to $T^{1,1}X \oplus T^{0,1}X$. For $u \in \mathbb{C}TX$, we write $|u|^2 := \langle u | u \rangle$. Denote by $T^{1,0}X$ and $T^{0,1}X$ the dual bundles $T^{1,0}X$ and $T^{0,1}X$, respectively. They can be identified with subbundles of the complexified cotangent bundle $\mathbb{C}T^*X$. Define the vector bundle of $(0, q)$-forms by $T^{0,q}X := \wedge^q T^{0,1}X$. The Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$ induces, by duality, a Hermitian metric on $\mathbb{C}T^*X$ and also on the bundles of $(0, q)$ forms $T^{0,q}X, q = 0, 1, \cdots, n$. We shall also denote all these induced metrics by $\langle \cdot | \cdot \rangle$.

Note that we have the pointwise orthogonal decompositions:

$$\begin{align*}
\mathbb{C}T^*X &= T^{1,0}X \oplus T^{0,1}X \oplus \{ \lambda \omega_0 : \lambda \in \mathbb{C} \}, \\
\mathbb{C}TX &= T^{1,0}X \oplus T^{0,1}X \oplus \{ \lambda T : \lambda \in \mathbb{C} \}.
\end{align*}$$

(2.6)

For $x, y \in X$, let $d(x, y)$ denote the distance between x and y induced by the Hermitian metric $\langle \cdot | \cdot \rangle$. Let A be a subset of X. For every $x \in X$, let $d(x, A) := \inf \{ d(x, y) ; y \in A \}$.

Let D be an open set of X. Let $\Omega^{0,q}(D)$ denote the space of smooth sections of $T^{0,q}X$ over D and let $\Omega_0^{0,q}(D)$ be the subspace of $\Omega^{0,q}(D)$ whose elements have compact support in D.

2.4. **Fourier analysis on compact Lie groups.** Let $\rho : G \to GL(\mathbb{C}^d)$ be a representation of G, where d is the dimension of the representation ρ. Two representations ρ_1 and ρ_2 are equivalent if they have the same dimension and there is an invertible matrix A such that $\rho_1(g) = A \rho_2(g) A^{-1}$ for all $g \in G$. Let

$$R = \{ R_1, R_2, \ldots \}$$

be the collection of all irreducible unitary representations of G, where each R_k comes from exactly only one equivalent class. For each R_k, let $(R_{k,j,l})_{j,l=1}^{d_k}$ be its matrix, where d_k is the dimension of R_k. Let $d\mu(g)$ be the probability Haar measure on G. Let $\langle \cdot | \cdot \rangle_G$ be the natural inner product on $C^\infty(G)$ induced by $d\mu(g)$. Let $L^2(G)$ be the completion of $C^\infty(G)$ with respect to $\langle \cdot | \cdot \rangle_G$. By the orthogonality relations for compact Lie groups and the Peter-Weyl theorem [24], we have

Theorem 2.2. The set $\{ \sqrt{d_k} R_{k,j,l} ; j, l = 1, \ldots, d_k, k = 1, 2, \ldots \}$ form an orthonormal basis of $L^2(G)$.

For a function $f \in C^\infty(G)$, the Fourier component of f with respect to $\sqrt{d_k} R_{k,j,l}$ is

$$f_{k,j,l} := d_k R_{k,j,l}(g) \int_G f(h) \overline{R_{k,j,l}(h)} d\mu(h) \in C^\infty(G).$$

(2.7)

The smooth version of the Peter-Weyl theorem on compact Lie groups is the following [24]

Theorem 2.3. Let $f \in C^\infty(G)$. For every $t \in \mathbb{N}$ and every $\varepsilon > 0$, there exists a $N_0 \in \mathbb{N}$ such that for every $N \geq N_0$, we have

$$\| f - \sum_{k=1}^{N} \sum_{j,l=1}^{d_k} f_{k,j,l} \|_{C^t(G)} \leq \varepsilon.$$

(2.8)
We put
\[\chi_m(g) := \text{Tr} R_k(g) = \sum_{j=1}^{d_k} R_{k,j,j}(g). \]

Definition 2.4. The k-th Fourier component of \(u \in \Omega^{0,q}(X) \) is defined as
\[u_k(x) = d_k \int_G (g^* u)(x) \chi_k(g) d\mu(g) \in \Omega^{0,q}(X). \]

We have the following theorem about Fourier components. For the readers’ convenience, we present the proof, see also [5].

Theorem 2.5. Let \(u \in \Omega^{0,q}(X) \). Then
\[\lim_{N \to \infty} \sum_{k=1}^{N} u_k(x) = u(x), \forall x \in X, \]
(2.9)
\[\langle u_k(x) | u_t(x) \rangle = 0, \text{ if } k \neq t, \forall x \in X, \]
(2.10)
\[\sum_{k=1}^{N} \| u_k \|^2 \leq \| u \|^2, \forall N \in \mathbb{N}. \]
(2.11)

Proof. We fix \(x \in X \) and consider a smooth function \(f : g \in G \to (g^* u)(x) \). Then
\[f_{k,j,l}(g) = d_k R_{k,j,l}(g) \int_G (h^* u)(x) R_{k,j,l}(h) d\mu(h). \]
(2.12)

By Theorem 2.3, for every \(\varepsilon > 0 \), there exists a \(N_0 \in \mathbb{N} \) such that for every \(N \geq N_0 \), we have
\[\left| (g^* u)(x) - \sum_{k=1}^{N} \sum_{j,l} f_{k,j,l}(g) \right| \leq \varepsilon, \forall g \in G. \]
(2.13)

Take \(g = e_0 \), where \(e_0 \) is the identity element of \(g \), we obtain that for every \(N \geq N_0 \),
\[|u(x) - \sum_{k=1}^{N} \sum_{j,l} f_{k,j,l}(e_0) | \leq \varepsilon. \]
(2.14)

Note that by (2.12),
\[f_{k,j,l}(e_0) = d_k \delta_{j,l} \int_G (h^* u)(x) R_{k,j,l}(h) d\mu(h). \]

Then
\[\sum_{k=1}^{N} \sum_{j,l} f_{k,j,l}(e_0) = \sum_{k=1}^{N} u_k(x). \]
(2.15)

Hence (2.9) is true by (2.14) and (2.15).
By Theorem 2.2 and (2.12), we have

\[
\sum_{k=1}^{\infty} \sum_{j,l=1}^{d_k} \int_G |f_{k,j,l}(g)|^2 d\mu(g)
= \sum_{k=1}^{\infty} d_k \left(\int_G |(h^* u)(x) R_{k,j,l}(h)|^2 d\mu(h) \right)^2
= \int_G |(h^* u)(x)|^2 d\mu(h), \forall x \in X.
\] (2.16)

Since the metric on \(X \) is \(G \)-invariant, we have

\[
\langle p|q \rangle = \langle h^* p|h^* q \rangle, \forall p, q \in \Omega^{0,q}(X), \forall h \in G.
\]

Then for every \(k, t \in \mathbb{N} \),

\[
\langle u_k|u_t \rangle = \int_G \langle h^* u_k|h^* u_t \rangle d\mu(h).
\] (2.17)

For every \(h \in G \),

\[
h^* u_k = d_k \int_G (h^* g^* u)(x) \chi_k(g) d\mu(g)
= d_k \int_G ((g \circ h)^* u)(x) \chi_k(g) d\mu(g)
= d_k \int_G (g^* u)(x) \chi_k(g \circ h^{-1}) d\mu(g).
\] (2.18)

It is easy to see that

\[
\chi_k(g \circ h^{-1}) = \sum_{j=1}^{d_k} \sum_{l=1}^{d_k} R_{k,j,l}(g) R_{k,j,l}(h).
\] (2.19)

Hence

\[
h^* u_k = d_k \int_G (g^* u)(x) \left(\sum_{j=1}^{d_k} \sum_{l=1}^{d_k} R_{k,j,l}(g) R_{k,j,l}(h) \right) d\mu(g).
\] (2.20)

Similarly,

\[
h^* u_t = d_t \int_G (g^* u)(x) \left(\sum_{j=1}^{d_t} \sum_{l=1}^{d_t} R_{t,j,l}(g) R_{t,j,l}(h) \right) d\mu(g).
\] (2.21)

From Theorem 2.2, (2.20) and (2.21), we have

\[
\int_G \langle h^* u_k(x)|h^* u_t(x) \rangle d\mu(h) = 0, \forall k \neq t, \forall x \in X.
\] (2.22)

Then we deduce (2.10) from (2.17) and (2.22).

For \(k = t \), we have

\[
\int_G \langle h^* u_k(x)|h^* u_k(x) \rangle d\mu(h) = \sum_{j,l=1}^{d_k} \left| \int_G (g^* u)(x) R_{k,j,l}(g) d\mu(g) \right|^2.
\] (2.23)
With (2.16), we deduce that for every $N \in \mathbb{N}$ and every $x \in X$,
\[
\sum_{k=1}^{N} \int_{G} \langle h^* u_k(x) | h^* u_k(x) \rangle d\mu(h) \leq \int_{G} |(g^* u)(x)|^2 d\mu(g).
\] (2.24)

Then for every $N \in \mathbb{N}$,
\[
\sum_{k=1}^{N} \| u_k \|^2 = \int_{X} \left(\sum_{k=1}^{N} \int_{G} \langle h^* u_k(x) | h^* u_k(x) \rangle d\mu(h) \right) dv_X(x)
\leq \int_{X} \int_{G} |(g^* u)(x)|^2 d\mu(g) dv_X(x) = \| u \|^2.
\]

The proof is completed. \hfill \Box

We can also prove the following, see [5, Theorem 3.5].

Theorem 2.6. With the notations as above,
\[
\lim_{N \to \infty} \sum_{k=1}^{N} u_k(x) = u(x)
\] (2.25)
in C^∞-topology.

Moreover, we have (see [5]),

Proposition 2.7. Let $u \in \Omega^{0,q}(X)$, then $u \in \Omega^{0,q}_k(X)$ if and only if $u = u_k$ on X.

3. G-equivariant Szegő kernel asymptotics

In this section, we establish asymptotic expansions of the G-equivariant Szegő kernels. We first review some known results for Szegő kernels mainly based on [9] and [13].

3.1. Szegő kernel asymptotics

Fix a Hermitian metric $\langle \cdot | \cdot \rangle$ on CT_X which induces a Hermitian metric on the bundles of $(0, q)$ forms $T^{*0,q} X$, $q = 0, 1, \ldots, n$. Let $D \subset X$ be an open set. Let $\Omega^{0,q}(D)$ denote the space of smooth sections of $T^{*0,q} X$ over D.

Let
\[
\overline{\partial}_b : \Omega^{0,q}(X) \to \Omega^{0,q+1}(X)
\] (3.1)
be the tangential Cauchy-Riemann operator. The natural global L^2 inner product $\langle \cdot | \cdot \rangle$ on $\Omega^{0,q}(X)$ induced by $dv(x)$ and $\langle \cdot | \cdot \rangle$ is given by
\[
\langle u | v \rangle := \int_{X} \langle u(x) | v(x) \rangle dv(x), \quad u, v \in \Omega^{0,q}(X).
\] (3.2)

We denote by $L^2_{(0,q)}(X)$ the completion of $\Omega^{0,q}(X)$ with respect to $\langle \cdot | \cdot \rangle$. Write $L^2(X) := L^2_{(0,0)}(X)$. We extend $\overline{\partial}_b$ to $L^2_{(0,r)}(X)$, $r = 0, 1, \ldots, n$, by
\[
\overline{\partial}_b : \text{Dom} \overline{\partial}_b \subset L^2_{(0,r)}(X) \to L^2_{(0,r+1)}(X),
\] (3.3)
where $\text{Dom} \overline{\partial}_b := \{ u \in L^2_{(0,r)}(X); \overline{\partial}_b u \in L^2_{(0,r+1)}(X) \}$ and, for any $u \in L^2_{(0,r)}(X)$, $\overline{\partial}_b u$ is defined in the sense of distributions. We also write

$$
\overline{\partial}_b^s : \text{Dom} \overline{\partial}_b^s \subset L^2_{(0,r+1)}(X) \to L^2_{(0,r)}(X)
$$

(3.4)

to denote the Hilbert adjoint of $\overline{\partial}_b$ in the L^2 space with respect to $(\cdot \mid \cdot)$. Let $\square^{(q)}_b$ denote the (Gaffney extension) of the Kohn Laplacian given by

$$
\text{Dom} \square^{(q)}_b = \left\{ s \in L^2_{(0,q)}(X); s \in \text{Dom} \overline{\partial}_b \cap \text{Dom} \overline{\partial}_b^s, \overline{\partial}_b s \in \text{Dom} \overline{\partial}_b, \overline{\partial}_b^s s \in \text{Dom} \overline{\partial}_b \right\},
$$

(3.5)

$$
\square^{(q)}_b s = \overline{\partial}_b \overline{\partial}_b^s s + \overline{\partial}_b \overline{\partial}_b^s s \text{ for } s \in \text{Dom} \square^{(q)}_b.
$$

By a result of Gaffney, for every $q = 0, 1, \ldots, n$, $\square^{(q)}_b$ is a positive self-adjoint operator (see [16 Proposition 3.1.2]). That is, $\square^{(q)}_b$ is self-adjoint and the spectrum of $\square^{(q)}_b$ is contained in \mathbb{R}_+, $q = 0, 1, \ldots, n$. Let

$$
S^{(q)} : L^2_{(0,q)}(X) \to \text{Ker} \square^{(q)}_b
$$

(3.6)

be the orthogonal projections with respect to the L^2 inner product $(\cdot \mid \cdot)$ and let

$$
S^{(q)}(x,y) \in D'(X \times X, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)
$$

(3.7)

denote the distribution kernel of $S^{(q)}$.

We recall Hörmander symbol spaces. Let $D \subset X$ be a local coordinate patch with local coordinates $x = (x_1, \ldots, x_{2n+1})$.

Definition 3.1. For $m \in \mathbb{R}$, $S^m_{1,0}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$ is the space of all $a(x,y,t) \in C^\infty(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$ such that, for all compact $K \subset D \times D$ and all $\alpha, \beta, \gamma \in \mathbb{N}_0$, $\gamma \in \mathbb{N}_0$, there is a constant $C_{\alpha,\beta,\gamma} > 0$ such that

$$
|\partial_x^\alpha \partial_y^\beta \partial_t^\gamma a(x,y,t)| \leq C_{\alpha,\beta,\gamma}(1 + |t|)^{m-\gamma}, \ \forall (x,y,t) \in K \times \mathbb{R}_+, \ t \geq 1.
$$

Put

$$
S^{-\infty}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*) := \bigcap_{m \in \mathbb{R}} S^m_{1,0}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*).
$$

Let $a_j \in S^m_{1,0}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$, $j = 0, 1, 2, \ldots$ with $m_j \to -\infty$, as $j \to \infty$. Then there exists $a \in S^m_{1,0}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$ unique modulo $S^{-\infty}$, such that $a - \sum_{j=0}^{k-1} a_j \in S^m_{1,0}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$ for $k = 0, 1, 2, \ldots$.

If a and a_j have the properties above, we write $a \sim \sum_{j=0}^{\infty} a_j \in S^m_{1,0}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)$. We write

$$
S(x,y,t) \in S^m_{1,0}(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*)
$$

(3.8)
if \(s(x, y, t) \in \mathcal{S}_{1,0}^n(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*) \) and
\[
s(x, y, t) \sim \sum_{j=0}^{\infty} s_j^i(x, y)t^{m-j} \text{ in } \mathcal{S}_{1,0}^n(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*),
\]
\[
s_j^i(x, y) \in C^\infty(D \times D, T^{*0,q}X \boxtimes (T^{*0,q}X)^*), \quad j \in \mathbb{N}_0.
\]

The following was proved in Theorem 4.8 in [13]

Theorem 3.2. Given \(q = 0, 1, 2, \ldots, n \). Assume that \(q \notin \{n_-, n_+\} \). Then, \(S^{(q)} = 0 \) on \(X \).

We have the following (see Theorem 1.2 in [9], Theorem 4.7 in [13] and see also [1] for \(q = 0 \))

Theorem 3.3. Let \(q = n_- \) or \(n_+ \). Suppose that \(\square_0^{(q)} \) has \(L^2 \) closed range. Then, \(S^{(q)}(x, y) \in C^\infty(X \times X \setminus \text{diag}(X \times X), T^{*0,q}X \boxtimes (T^{*0,q}X)^*) \). Let \(D \subset X \) be any local coordinate patch with local coordinates \(x = (x_1, \ldots, x_{2n+1}) \). Then, there exist continuous operators \(S_-, S_+ : \Omega^{0,q}_0(D) \to D'(D, T^{*0,q}X) \) such that
\[
S^{(q)} = S_- + S_+ \quad \text{on } D,
\]
and \(S_-(x, y), S_+(x, y) \) satisfy
\[
S_-(x, y) \equiv \int_0^\infty e^{iy \varphi_-(x, y)t} s_-(x, y, t) dt \quad \text{on } D,
\]
\[
S_+(x, y) \equiv \int_0^\infty e^{iy \varphi_+(x, y)t} s_+(x, y, t) dt \quad \text{on } D,
\]

with
\[
s_-(x, y, t), s_+(x, y, t) \in \mathcal{S}_{1,0}^n(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*),
\]
\[
s_-(x, y, t) = 0 \quad \text{if } q \neq n_-, \quad s_+(x, y, t) = 0 \quad \text{if } q \neq n_+,
\]
\[
s_-(x, y, t) \sim \sum_{j=0}^{\infty} s_j^i(x, y)t^{n-j} \text{ in } \mathcal{S}_{1,0}^n(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*),
\]
\[
s_+(x, y, t) \sim \sum_{j=0}^{\infty} s_j^i(x, y)t^{n-j} \text{ in } \mathcal{S}_{1,0}^n(D \times D \times \mathbb{R}_+, T^{*0,q}X \boxtimes (T^{*0,q}X)^*),
\]
\[
s_j^i(x, y) \in C^\infty(D \times D, T^{*0,q}X \boxtimes (T^{*0,q}X)^*), \quad j = 0, 1, 2, 3, \ldots,
\]
\[
s^0_j(x, x) \neq 0, \quad \forall x \in D, \quad s^0_j(x, x) \neq 0, \quad \forall x \in D,
\]

and the phase functions \(\varphi_-, \varphi_+ \) satisfy
\[
\varphi_+(x, y), \varphi_- \in C^\infty(D \times D), \quad \text{Im } \varphi_-(x, y) \geq 0,
\]
\[
\varphi_-(x, x) = 0, \quad \varphi_-(x, y) \neq 0 \quad \text{if } x \neq y,
\]
\[
d_x \varphi_-(x, y) \big|_{x=y} = -\omega_0(x), \quad d_y \varphi_-(x, y) \big|_{x=y} = \omega_0(x),
\]
\[
\varphi_-(x, y) = -\overline{\varphi_+(y, x)},
\]
\[
-\overline{\varphi_+(x, y)} = \varphi_-(x, y).
\]
Remark 3.4. Note that for a strictly pseudoconvex CR manifold of dimension 3, \(\square^{(0)}_b \) does not have \(L^2 \) closed range in general (see [21]). Kohn [14] proved that if \(q = n_- = n_+ \) or \(|n_- - n_+| > 1 \) then \(\square^{(q)}_b \) has \(L^2 \) closed range.

3.2. \(G \)-equivariant Szegő kernel. Since \(G \) preserves \(J \) and \(\langle \cdot, \cdot \rangle \) is \(G \)-invariant, it is straightforward to see that for all \(g \in G \)

\[
g^* \overline{\partial}_b = \overline{\partial}_b g^* \quad \text{on } \Omega^{0,q}(X),
\]

\[
g^* \overline{\partial}_b^* = \overline{\partial}_b^* g^* \quad \text{on } \Omega^{0,q}(X),
\]

\[
g^* \square^{(q)}_b = \square^{(q)}_b g^* \quad \text{on } \Omega^{0,q}(X).
\]

(3.13)

Denote by \(\overline{\partial}_{b,k} \) (resp. \(\square^{(q)}_{b,k} \)) the restriction of \(\overline{\partial}_b \) (resp. \(\square^{(q)}_b \)) on \(\Omega^{0,q}(X) \). By Definition 2.4, we have

\[
\overline{\partial}_{b,k} : \Omega^{0,q}(X) \rightarrow \Omega^{0,q+1}(X),
\]

\[
\square^{(q)}_{b,k} : \Omega^{0,q}(X) \rightarrow \Omega^{0,q}(X).
\]

(3.14)

The \(G \)-equivariant Szegő projection is the orthogonal projection

\[
S^{(q)}_k : L^2(0,q)(X) \rightarrow \text{Ker } \square^{(q)}_b \bigcap L^2(0,q,k)(X)
\]

with respect to \(\langle \cdot, \cdot \rangle \). Let \(S^{(q)}_k(x,y) \in D'(X \times X, T^{*0,q}X \boxtimes (T^{*0,q}X)^*) \) be its distribution kernel.

Lemma 3.5.

\[
S^{(q)}_k(x,y) = d_k \int_G S^{(q)}(g \circ x, y, \chi_k(g))d\mu(g).
\]

(3.15)

Proof. Let

\[
Q_k : L^2(0,q)(X) \rightarrow L^2(0,q,k)(X)
\]

\[
u \rightarrow u_k = d_k \int_G (g^* u)(x, y) \chi_k(g)d\mu(g).
\]

(3.16)

Then \(S^{(q)}_k = Q_k \circ S^{(q)} \). For \(u \in L^2(0,q)(X) \), we have

\[
S^{(q)}_k u = Q_k \circ S^{(q)} u
\]

\[
= Q_k \int_G S^{(q)}(x,y)u(y)dy
\]

\[
= d_k \int_G g^* \left(\int_G S^{(q)}(x,y)u(y)dy \right) \chi_k(g) d\mu(g)
\]

\[
= d_k \int_G \left(\int_G S^{(q)}(g \circ x, y)u(y)dy \right) \chi_k(g)d\mu(g)
\]

\[
= \int_G (d_k \int_G S^{(q)}(g \circ x, y) \chi_k(g) d\mu(g)) u(y)dy.
\]

Then the proof is completed. \(\square \)
Note that
\[S_k^{(q)}(h \circ x, y) = d_k \int_G S^{(q)}(g \circ h \circ x, y) \chi_k(g) d\mu(g) \]
\[= d_k \int_G S^{(q)}(g \circ x, y) \chi_k(g \circ h^{-1}) d\mu(g) \]
\[= d_k \int_G S^{(q)}(g \circ x, y) \sum_{j=1}^{d_k} \sum_{l=1}^{d_k} R_{k,j,l}(g) R_{k,j,l}(h) d\mu(g). \] (3.18)

So \(S_k^{(q)}(x, y) \) is not \(G \)-invariant.

3.3. \(G \)-equivariant Szegő kernels near \(\mu^{-1}(0) \)

In this subsection, we will study \(G \)-equivariant Szegő kernel near \(\mu^{-1}(0) \). Let \(e_0 \in G \) be the identity element. Let \(v = (v_1, \ldots, v_d) \) be the local coordinates of \(G \) defined in a neighborhood \(V \) of \(e_0 \) with \(v(e_0) = (0, \ldots, 0) \). From now on, we will identify the element \(e \in V \) with \(v(e) \). We recall the following on group actions in local coordinates, see [10] Theorem 3.6.

Theorem 3.6. Let \(p \in \mu^{-1}(0) \). There exist local coordinates \(v = (v_1, \ldots, v_d) \) of \(G \) defined in a neighborhood \(V \) of \(e_0 \) with \(v(e_0) = (0, \ldots, 0) \), local coordinates \(x = (x_1, \ldots, x_{2n+1}) \) of \(X \) defined in a neighborhood \(U = U_1 \times U_2 \) of \(p \) with \(0 \leftrightarrow p \), where \(U_1 \subset \mathbb{R}^d \) is an open set of 0 in \(\mathbb{R}^d \), \(U_2 \subset \mathbb{R}^{2n+1-d} \) is an open set of 0 in \(\mathbb{R}^{2n+1-d} \) and a smooth function \(\gamma = (\gamma_1, \ldots, \gamma_d) \in C^\infty(U_2, U_1) \) with \(\gamma(0) = 0 \in \mathbb{R}^d \) such that
\[
(v_1, \ldots, v_d) \circ (\gamma(x_{d+1}, \ldots, x_{2n+1}), x_{d+1}, \ldots, x_{2n+1})
\]
\[= (v_1 + \gamma_1(x_{d+1}, \ldots, x_{2n+1}), \ldots, v_d + \gamma_d(x_{d+1}, \ldots, x_{2n+1}), x_{d+1}, \ldots, x_{2n+1}), \]
\[
\forall(v_1, \ldots, v_d) \in V, \exists(x_{d+1}, \ldots, x_{2n+1}) \in U_2,
\]
\[
g = \text{span} \left\{ \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_d} \right\},
\]
\[
\mu^{-1}(0) \cap U = \{x_{d+1} = \cdots = x_{2d} = 0\}, \] (3.20)

On \(\mu^{-1}(0) \cap U \), we have \(J(\frac{\partial}{\partial x_j}) = \frac{\partial}{\partial x_{d+j}} + a_j(x) \frac{\partial}{\partial x_{2n+1}}, \) \(j = 1, 2, \ldots, d, \)

where \(a_j(x) \) is a smooth function on \(\mu^{-1}(0) \cap U \), independent of \(x_1, \ldots, x_{2d}, x_{2n+1} \) and \(a_j(0) = 0, j = 1, \ldots, d, \)
\[
T_{p}^{1,0}X = \text{span} \{Z_1, \ldots, Z_n\},
\]
\[
Z_j = \frac{1}{2} \left(\frac{\partial}{\partial x_j} - i \frac{\partial}{\partial x_{d+j}} \right)(p), \quad j = 1, \ldots, d,
\]
\[
Z_j = \frac{1}{2} \left(\frac{\partial}{\partial x_{2j-1}} - i \frac{\partial}{\partial x_{2j}} \right)(p), \quad j = d + 1, \ldots, n,
\]
\[
\langle Z_j | Z_l \rangle = \delta_{j,l}, \quad j, l = 1, 2, \ldots, n,
\]
\[
\mathcal{L}_p(Z_j, Z_l) = \mu_j \delta_{j,l}, \quad j, l = 1, 2, \ldots, n
\] (3.21)
and

\[\omega_0(x) = (1 + O(|x|))dx_{2n+1} + \sum_{j=1}^{d} 4\mu_j x_{d+j} dx_j \]

\[+ \sum_{j=d+1}^{n} 2\mu_j x_{2j} dx_{2j-1} - \sum_{j=d+1}^{n} 2\mu_j x_{2j-1} dx_{2j} + \sum_{j=d+1}^{2n} b_j x_{2n+1} dx_j + O(|x|^2), \]

where \(b_{d+1} \in \mathbb{R}, \ldots, b_{2n} \in \mathbb{R} \).

The following describes the phase function in Theorem 3.3, see [10, Theorem 3.7].

Theorem 3.7. Let \(p \in \mu^{-1}(0) \) and take local coordinates \(x = (x_1, \ldots, x_{2n+1}) \) of \(X \) defined in an open set \(U \) of \(p \) with \(0 \leftrightarrow p \) such that (3.20), (3.21) and (3.22) hold. Let \(\varphi_-(x, y) \in C^\infty(U \times U) \) be as in Theorem 3.3. Then,

\[\varphi_-(x, y) = -x_{2n+1} + y_{2n+1} - 2 \sum_{j=1}^{d} \mu_j x_j x_{d+j} + 2 \sum_{j=1}^{d} \mu_j y_j y_{d+j} + i \sum_{j=1}^{n} |\mu_j| |z_j - w_j|^2 \]

\[+ \sum_{j=1}^{d} i\mu_j (\overline{x}_j w_j - \overline{z}_j \overline{w}_j) + \sum_{j=1}^{d} \left(-\frac{i}{2} b_{d+j} \right) (-z_j x_{2n+1} + w_j y_{2n+1}) \]

\[+ \sum_{j=d+1}^{n} \left(-\frac{i}{2} b_{d+j} \right) (-\overline{x}_j \overline{w}_j + \overline{z}_j \overline{w}_j) + \sum_{j=d+1}^{n} \left(\frac{1}{2} b_{2j-1} + i b_{2j} \right) (-z_j x_{2n+1} + w_j y_{2n+1}) \]

\[+ \sum_{j=d+1}^{n} \left(\frac{1}{2} b_{2j-1} - i b_{2j} \right) (-\overline{z}_j \overline{x}_j + \overline{z}_j \overline{x}_j) + (x_{2n+1} - y_{2n+1}) f(x, y) + O(|(x, y)|^3), \]

where \(z_j = x_j + ix_{d+j}, j = 1, \ldots, d; \ z_j = x_{2j-1} + ix_{2j}, j = 2d + 1, \ldots, 2n, \mu_j, j = 1, \ldots, n; \) and \(b_{d+1} \in \mathbb{R}, \ldots, b_{2n} \in \mathbb{R} \) are as in (3.22) and \(f \) is smooth and satisfies \(f(0,0) = 0, f(x,y) = f(y,x) \).

We now study \(S^q_k(x, y) \). From Theorem 3.2 and Lemma 3.5 we get

Theorem 3.8. Assume that \(q \notin \{n_-, n_+\} \). Then, \(S^q_k(x, y) \equiv 0 \) on \(X \).

Assume that \(q = n_- \) and \(\square^q_b \) has \(L^2 \) closed range. Fix \(p \in \mu^{-1}(0) \) and let \(v = (v_1, \ldots, v_d) \) and \(x = (x_1, \ldots, x_{2n+1}) \) be the local coordinates of \(G \) and \(X \) as in Theorem 3.6. Assume that \(d\mu = m(v) dv = m(v_1, \ldots, v_d) dv_1 \cdots dv_d \) on \(V \), where \(V \) is an open neighborhood of \(\epsilon_0 \in G \) as in Theorem 3.6. From Lemma 3.5, we have

\[S^q_k(x, y) = d_k \int_G \chi(g) \overline{\chi_k(g) S^q_k(g \circ x, y) d\mu(g) + d_k \int_G (1 - \chi(g)) \overline{\chi_k(g) S^q_k(g \circ x, y) d\mu(g)}, \]

where \(\chi \in C_0^\infty(V), \chi = 1 \) near \(\epsilon_0 \).

Assume first \(G \) is globally free on \(\mu^{-1}(0) \), if \(U \) and \(V \) are small, there is a constant \(c > 0 \) such that

\[d(g \circ x, y) \geq c, \ \forall x, y \in U, g \in \text{Supp}(1 - \chi), \]

\[\text{(3.25)} \]
where U is an open set of $p \in \mu^{-1}(0)$ as in Theorem 3.6. From now on, we take U and V small enough so that (3.25) holds. By Theorem 3.3, $S^{(q)}(x, y)$ is smoothing away from diagonal. From this observation and (3.25), we have

$$S_k^{(q)}(x, y) \equiv d_k \int_G \chi(g)\chi_k(g)S^{(q)}(g \circ x, y)d\mu(g) \equiv 0 \text{ on } U \text{ and hence }$$

$$(3.26)$$

From Theorem 3.3 and (3.26), we have

$$S_k^{(q)}(x, y) \equiv \hat{S}_{k,-}(x, y) + \hat{S}_{k,+}(x, y) \text{ on } U,$$

$$(3.27)$$

More precisely,

$$\hat{S}_{k,-}(x, y) = d_k \int_G \chi(g)\chi_k(g)S_-(g \circ x, y)d\mu(g),$$

$$\hat{S}_{k,+}(x, y) = d_k \int_G \chi(g)\chi_k(g)S_+(g \circ x, y)d\mu(g).$$

By using stationary phase formula of Melin-Sj¨ ostrand [20], it follows from the arguments in [10, Section 3.3] that

$$\hat{S}_{k,-}(x, y) \equiv d_k \int_0^\infty \int_V e^{i\phi_{k,-}(x,y)t} \chi(v)\chi_k(v)s_-(v \circ x, y, t)m(v)dvdt. \quad (3.28)$$

where $a_{k,-}(x, y, t) \sim \sum_{j=0}^{\infty} t^{n-\frac{d}{2}-j} a_{j, k,-}(x, y)$ in $S^{n-\frac{d}{2}}(U \times U \times R_+ \times T^{s0,q}X \otimes (T^{s0,q}X)^*)$, $a_{j, k,-}(x, y) \in C^\infty(U \times U, T^{s0,q}X \otimes (T^{s0,q}X)^*)$, $j = 0, 1, \ldots ,$

In this work, G acts locally free on $\mu^{-1}(0)$ under Assumption [14]. Let $N_p = \{g \in G : g \circ p = p\} = \{g_1 = e_0, g_2, \ldots , g_r\}$. Similarly to (3.25), we can choose U and V to be small such that the subsets $\{g_j V\}_{\alpha = 1}^{r}$ are mutually disjoint and there is a constant $c > 0$ satisfying

$$d(h \circ x, y) \geq c, \quad \forall x, y \in U, h \in \operatorname{Supp}(1 - \sum_{\alpha = 1}^{r} \chi(g_\alpha^{-1})). \quad (3.30)$$

Then on U

$$S_k^{(q)}(x, y) \equiv d_k \sum_{\alpha = 1}^{r} \int_G \chi(g_\alpha^{-1})\chi_k(g)S^{(q)}(g \circ x, y)d\mu(g) = d_k \sum_{\alpha = 1}^{r} \int_G \chi(g)\chi_k(gg_\alpha)S^{(q)}(gg_\alpha \circ x, y)d\mu(g). \quad (3.31)$$

$$\hat{S}_{k,-}(x, y) \equiv d_k \sum_{\alpha = 1}^{r} \int_0^\infty \int_V e^{i\phi_{k,\alpha}(x,y)t} \chi(v)\chi_k(vv_\alpha)\chi_{k,-}(vv_\alpha \circ x, y, t)m(v)dvdt, \quad (3.32)$$
where \(v_\alpha \) is the coordinate of \(g_\alpha \). By using stationary phase formula of Melin-Sjöstrand [20], it follows from the above argument that

\[
\hat{S}_{k,-}(x,y) \equiv \sum_{\alpha=1}^r \int e^{i\Phi_{k,-}(v_\alpha \cdot x,y)} a_{k,\alpha,-}(x,y,t)dt \quad \text{on } U, \quad (3.33)
\]

where \(a_{k,\alpha,-}(x,y,t) \sim \sum_{j=0}^\infty t^{n-j} a_{k,\alpha,-}^j(x,y) \) in \(S_{1,0}^{n-\frac{d}{2}}(U \times U \times \mathbb{R}^+, T^{0,q}X \otimes (T^{0,q}X)^*) \),

\[
a_{k,\alpha,-}^j(x,y) \in C^\infty(U \times U, T^{0,q}X \otimes (T^{0,q}X)^*), \quad j = 0, 1, \ldots,
\]

In particular, it follows from the arguments in [10, Subsection 3.3] with minor modification, if \(G \) acts freely on \(\mu^{-1}(0) \), then for \(a_{k,-}^0(x,y) \) and \(a_{k,+}^0(x,y) \) in (3.34), we have

\[
a_{k,-}^0(x,x) = 2t^{d-1} \frac{d^2}{V_{\text{eff}}(x)} \pi^{-n-\frac{d}{2}} |\det R_x|^{-\frac{1}{2}} |\det L_x| |\tau_{x,n-}|, \quad \forall x \in \mu^{-1}(0)
\]

\[
a_{k,+}^0(x,x) = 2t^{d-1} \frac{d^2}{V_{\text{eff}}(x)} \pi^{-n-\frac{d}{2}} |\det R_x|^{-\frac{1}{2}} |\det L_x| |\tau_{x,n+}|, \quad \forall x \in \mu^{-1}(0).
\]

3.4. \(G \)-equivariant Szegö kernel asymptotics away \(\mu^{-1}(0) \). The goal of this section is to prove the following

Theorem 3.9. Let \(D \) be an open neighborhood of \(X \) with \(D \cap \mu^{-1}(0) = \emptyset \). Then,

\[
S_k^{(q)} \equiv 0 \quad \text{on } D.
\]

We first need

Lemma 3.10. Let \(p \notin \mu^{-1}(0) \). Then, there are open neighborhoods \(U \) of \(p \) and \(V \) of \(e \in G \) such that for any \(\chi \in C_0^\infty(V) \), we have for every \(k \),

\[
\int_G S_k^{(q)}(x, g \circ y) \chi(g) \overline{\chi_k(g)} d\mu(g) \equiv 0 \quad \text{on } U. \quad (3.34)
\]

The proof of the above lemma follows from [10, Lemma 3.14] by adding \(\chi_k(g) \).

Lemma 3.11. Let \(p \notin \mu^{-1}(0) \) and let \(h \in G \). We can find open neighborhoods \(U \) of \(p \) and \(V \) of \(h \) such that for every \(\chi \in C_0^\infty(V) \), we have for every \(k \),

\[
\int_G S_k^{(q)}(g \circ x, y) \chi(g) \overline{\chi_k(g)} d\mu(g) \equiv 0 \quad \text{on } U.
\]

Proof. Let \(U \) and \(V \) be open sets as in Lemma 3.10. Let \(\hat{V} = hV \). Then, \(\hat{V} \) is an open set of \(G \). Let \(\hat{\chi} \in C_0^\infty(\hat{V}) \). We have

\[
\int_G S_k^{(q)}(g \circ x, y) \hat{\chi}(g) \overline{\chi_k(g)} d\mu(g) = \int_G S_k^{(q)}(h \circ g \circ x, y) \hat{\chi}(h \circ g) \overline{\chi_k(h \circ g)} d\mu(g)
\]

\[
= \int_G S_k^{(q)}(h \circ g \circ x, y) \chi(g) d\mu(g), \quad (3.35)
\]
where \(\chi(g) := \bar{\chi}(h \circ g) \chi_k(h \circ g) \in C^\infty_0(V) \). From (3.35) and Lemma 3.10 we deduce that
\[
\int_G S^{(q)}(g \circ x, y) \overline{\chi_k(g)} d\mu(g) \equiv 0 \quad \text{on } U.
\]
The lemma follows.

Proof of Theorem 3.29

Fix \(p \in D \). We need to show that \(S^{(q)} \) is smoothing near \(p \). Let \(h \in G \). By Lemma 3.11 we can find open sets \(U_h \) of \(p \) and \(V_h \) of \(h \) such that for every \(\chi \in C^\infty_0(V_h) \), we have
\[
\int_G S^{(q)}(g \circ x, y) \chi_k(g) d\mu(g) \equiv 0 \quad \text{on } U_h.
\]
Since \(G \) is compact, we can find open sets \(U_{h_j} \) and \(V_{h_j} \), \(j = 1, \ldots, N \), such that \(G = \bigcup_{j=1}^N V_{h_j} \). Let \(U = D \cap \left(\bigcap_{j=1}^N U_{h_j} \right) \) and let \(\bar{\chi}_j \in C^\infty_0(V_{h_j}) \), \(j = 1, \ldots, N \), with \(\sum_{j=1}^N \bar{\chi}_j = 1 \) on \(G \). From (3.36), we have
\[
S^{(q)}(x, y) = d_k \int G S^{(q)}(g \circ x, y) \overline{\chi_k(g)} d\mu(g)
\]
\[
= d_k \sum_{j=1}^N \int G S^{(q)}(g \circ x, y) \overline{\chi_j(g)} d\mu(g) \equiv 0 \quad \text{on } U.
\]
The theorem follows.

From Section 3.3 and Section 3.4 we get Theorem 1.6.

4. \(G \)-equivariant Szegö kernel asymptotics on CR manifolds with \(S^1 \) action

Let \(X \) admit an \(S^1 \) action \(e^{i\theta} \): \(S^1 \times X \to X \). Let \(T \in C^\infty(X, TX) \) be the global real vector field induced by the \(S^1 \) action given by \((Tu)(x) = \frac{\partial}{\partial \theta} (u(e^{i\theta} \circ x)) \big|_{\theta=0} \), \(u \in C^\infty(X) \).

Definition 4.1. The \(S^1 \) action \(e^{i\theta} \) is CR if \([T, C^\infty(X, T^{1,0}X)] \subset C^\infty(X, T^{1,0}X) \) and the \(S^1 \) action is transversal if for each \(x \in X \), \(CT(x) \oplus T^{1,0}_x X \oplus T^{0,1}_x X = CT_x X \). Moreover, the \(S^1 \) action is locally free if \(T \neq 0 \) everywhere.

Note that transversality implies local freeness. Let \((X, T^{1,0}X)\) be a compact connected CR manifold with a transversal CR \(S^1 \) action \(e^{i\theta} \) and \(T \) be the global vector field induced by the \(S^1 \) action. Let \(\omega_0 \in C^\infty(X, T^*X) \) be the global real one form determined by \(\langle \omega_0, u \rangle = 0 \), for every \(u \in T^{1,0}X \oplus T^{0,1}X \), and \(\langle \omega_0, T \rangle = -1 \). Note that \(\omega_0 \) and \(T \) satisfy (2.5). Recall that we work with Assumption 1.8

Assume that the Hermitian metric \(\langle \cdot | \cdot \rangle \) on \(CTX \) is \(G \times S^1 \) invariant. Then the \(L^2 \) inner product \(\langle \cdot | \cdot \rangle \) on \(\Omega^{0,q}(X) \) induced by \(\langle \cdot | \cdot \rangle \) is \(G \times S^1 \)-invariant. We then have
\[
Tg^* \overline{\bar{\omega}}_b = g^* T \overline{\omega}_b = \overline{\bar{\omega}}_b g^* T = \overline{\bar{\omega}}_b T g^* \quad \text{on } \Omega^{0,q}(X), \quad \forall g \in G,
\]
\[
Tg^* \Box_b^{(q)} = g^* T \Box_b^{(q)} = \Box_b^{(q)} g^* T = \Box_b^{(q)} T g^* \quad \text{on } \Omega^{0,q}(X), \quad \forall g \in G.
\]
Let \(L^2_{(0,q),m}(X) \) be the completion of \(\Omega^0_{m,q}(X) \) with respect to \((\cdot, \cdot) \). We write \(L^2_{m}(X)_k := L^2_{(0,0),m}(X)_k \). Put
\[
H^q_{b,m}(X)_k := (\text{Ker} \square^{(q)}_b) \cap L^2_{(0,q),m}(X)_k.
\]
The \(m \)-th \(G \)-equivariant Szegö projection is the orthogonal projection
\[
S^{(q)}_{k,m} : L^2_{(0,q)}(X) \to (\text{Ker} \square^{(q)}_b) \cap L^2_{(0,q),m}(X)_k
\]
with respect to \((\cdot, \cdot) \). Let \(S^{(q)}_{k,m}(x, y) \in C^\infty(X \times X, T^{*0,q}X \boxtimes (T^{*0,q}X)^*) \) be the distribution kernel of \(S^{(q)}_{k,m} \). Then
\[
S^{(q)}_{k,m}(x, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S^{(q)}_k(x, e^{i\theta} \circ y) e^{im\theta} d\theta. \quad (4.1)
\]
The goal of this section is to study the asymptotics of \(S^{(q)}_{k,m} \) as \(m \to +\infty \).

From Theorem 3.3 and by using integration by parts several times, we get

Theorem 4.2. Let \(D \subset X \) be an open set with \(D \cap \mu^{-1}(0) = \emptyset \). Then,
\[
S^{(q)}_{k,m} = O(m^{-\infty}) \quad \text{on} \quad D.
\]

We now study \(S^{(q)}_{k,m} \) near \(\mu^{-1}(0) \). We can repeat the proof of Theorem 3.6 with minor change and get

Theorem 4.3. Let \(p \in \mu^{-1}(0) \). There exist local coordinates \(v = (v_1, \ldots, v_d) \) of \(G \) defined in a neighborhood \(V \) of \(e_0 \) with \(v(e_0) = (0, \ldots, 0) \), local coordinates \(x = (x_1, \ldots, x_{2n+1}) \) of \(X \) defined in a neighborhood \(U = U_1 \times (\hat{U}_2 \times [-2\delta, 2\delta]) \) of \(p \) with \(0 \leftrightarrow p \), where \(U_1 \subset \mathbb{R}^d \) is an open set of \(0 \in \mathbb{R}^d \), \(\hat{U}_2 \subset \mathbb{R}^{2n-d} \) is an open set of \(0 \in \mathbb{R}^{2n-d} \), \(\delta > 0 \), and a smooth function \(\gamma = (\gamma_1, \ldots, \gamma_d) \in C^\infty(\hat{U}_2 \times [-2\delta, 2\delta], U_1) \) with \(\gamma(0) = 0 \in \mathbb{R}^d \) such that
\[
(v_1, \ldots, v_d) \circ (\gamma(x_{d+1}, \ldots, x_{2n+1}), x_{d+1}, \ldots, x_{2n+1}) = (v_1 + \gamma_1(x_{d+1}, \ldots, x_{2n+1}), \ldots, v_d + \gamma_d(x_{d+1}, \ldots, x_{2n+1}), x_{d+1}, \ldots, x_{2n+1}), \quad (4.2)
\]
\forall (v_1, \ldots, v_d) \in V, \quad \forall (x_{d+1}, \ldots, x_{2n+1}) \in \hat{U}_2 \times [-2\delta, 2\delta],
\]
\[
T = -\frac{\partial}{\partial x_{2n+1}},
\]
\[
\mathfrak{g} = \text{span} \left\{ \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_d} \right\}, \quad (4.3)
\]
\[
\mu^{-1}(0) \cap U = \{x_{d+1} = \cdots = x_{2d} = 0\},
\]
On \(\mu^{-1}(0) \cap U \), we have \(J(\frac{\partial}{\partial x_j}) = \frac{\partial}{\partial x_{d+j}} + a_j(x)\frac{\partial}{\partial x_{2n+1}} \), \(j = 1, 2, \ldots, d, \)
where \(a_j(x) \) is a smooth function on \(\mu^{-1}(0) \cap U \), independent of \(x_1, \ldots, x_{2d}, x_{2n} \) and \(a_j(0) = 0 \), \(j = 1, \ldots, d \),

\[
T_p^{1, 0} X = \text{span} \{Z_1, \ldots, Z_n\},
\]

\[
Z_j = \frac{1}{2}(\partial_{x_j} - i \partial_{x_{d+j}})(p), \quad j = 1, \ldots, d,
\]

\[
Z_j = \frac{1}{2}(\partial_{x_{2j-1}} - i \partial_{x_{2j}})(p), \quad j = d + 1, \ldots, n,
\]

\[
\langle Z_j, Z_k \rangle = \delta_{j, k}, \quad j, k = 1, 2, \ldots, n,
\]

\[
E_p(Z_j, Z_k) = \mu_j \delta_{j, k}, \quad j, k = 1, 2, \ldots, n
\]

and

\[
\omega_0(x) = (1 + O(|x|))dx_{2n+1} + \sum_{j=1}^d 4\mu_j x_{d+j}dx_j
\]

\[
+ \sum_{j=d+1}^n 2\mu_j x_{2j}dx_{2j-1} - \sum_{j=d+1}^n 2\mu_j x_{2j-1}dx_{2j} + O(|x|^2).
\]

From Theorem 3.8 we get

Theorem 4.4. Assume that \(q \notin \{n_-, n_+\} \). Then, \(S_{k, n}^{(q)} = O(m^{-\infty}) \) on \(X \).

Proof of Theorem 4.4. It suffices to show the cases when \(q = n_- \) and \(q = n_+ \neq n_- \). Assume that \(q = n_- \). It is well-known \[13\] Theorem 1.12 that when \(X \) admits a transversal \(S^1 \) action, then \(\Box_b^{(q)} \) has \(L^2 \) closed range. Fix \(p \in \mu^{-1}(0) \). Let \(N_p = \{ g \in G : g \circ p = p \} = \{ g_1 = e_0, g_2, \ldots, g_r \} \). Let \(v = (v_1, \ldots, v_d) \) and \(x = (x_1, \ldots, x_{2n+1}) \) be the local coordinates of \(G \) and \(X \) as in Theorem 4.3 and let \(U \) and \(V \) be open sets as in Theorem 4.3. We take \(U \) small enough so that there is a constant \(c > 0 \) such that

\[
d(e^{i\theta} \circ g \circ x, y) \geq c, \quad \forall (x, y) \in U \times U, \quad \forall g \in G, \theta \in [-\pi, -\delta] \bigcup [\delta, \pi],
\]

where \(\delta > 0 \) is as in Theorem 4.3. We repeat the same procedure in \[11\] Section 4] as follows.

\[
S_{k, n}^{(q)}(x, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_k^{(q)}(x, e^{i\theta} \circ y)e^{im\theta}d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-imx_{2n+1} + imy_{2n+1}} S_k^{(q)}(\hat{x}, e^{i\theta} \circ \hat{y})e^{im\theta}d\theta
\]

\[
= I + II,
\]

\[
I = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-imx_{2n+1} + imy_{2n+1}} \chi(\theta)S_k^{(q)}(\hat{x}, e^{i\theta} \circ \hat{y})e^{im\theta}d\theta,
\]

\[
II = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-imx_{2n+1} + imy_{2n+1}} (1 - \chi(\theta))S_k^{(q)}(\hat{x}, e^{i\theta} \circ \hat{y})e^{im\theta}d\theta,
\]

where \(\hat{x} = (x_1, \ldots, x_{2n}, 0) \in U \), \(\hat{y} = (y_1, \ldots, y_{2n}, 0) \in U \), \(\chi \in C_0^\infty([-2\delta, 2\delta]) \), \(\chi = 1 \) on \([-\delta, \delta]\). It is easy to check that

\[
II = O(m^{-\infty}).
\]
For I, we have

$$I = I_0 + I_1,$$

$$I_0 = \frac{1}{2\pi} \sum_{\alpha = 1}^{r} \int_{0}^{\infty} \int_{-\pi}^{\pi} e^{-imx_{2n+1} + imy_{2n+1}} \chi(\theta) e^{i(-\theta + \hat{\Phi}_{k,+}(g_{\alpha} \circ \hat{x}, \hat{y})) t + im \theta} \, dt \, d\theta,$$

$$I_1 = \frac{1}{2\pi} \sum_{\alpha = 1}^{r} \int_{0}^{\infty} \int_{-\pi}^{\pi} e^{-imx_{2n+1} + imy_{2n+1}} \chi(\theta) e^{i(\theta - \hat{\Phi}_{k,+}(g_{\alpha} \circ \hat{x}, \hat{y})) t + im \theta} a_{k,\alpha,-}(\hat{x}, (\hat{y}, -\theta), t) \, dt \, d\theta. \tag{4.9}$$

From $\frac{\partial}{\partial \theta} \left(i(\theta + \hat{\Phi}_{k,+}(g_{\alpha} \circ \hat{x}, \hat{y})) t + im \theta \right) \neq 0$, we can integrate by parts with respect to θ several times and deduce that

$$I_1 = O(m^{-\infty}). \tag{4.10}$$

For I_0, we have

$$I_0 = \frac{1}{2\pi} \sum_{\alpha = 1}^{r} \int_{0}^{\infty} \int_{-\pi}^{\pi} e^{-imx_{2n+1} + imy_{2n+1}} \chi(\theta) e^{im(\theta t + \hat{\Phi}_{k,-}(g_{\alpha} \circ \hat{x}, \hat{y})) t + \theta} a_{k,\alpha,0}(\hat{x}, (\hat{y}, -\theta), mt) \, dt \, d\theta. \tag{4.11}$$

We apply the complex stationary phase formula of Melin-Sjöstrand \cite{20}, Theorem 2.3 to carry the $dt \, d\theta$ integration in (4.11). The calculation is similar as in the proof of Theorem 3.17 in [12]. Then

$$I_0 \equiv \sum_{\alpha = 1}^{r} e^{im\Psi_{k}(g_{\alpha} \circ \hat{x}, \hat{y}, x, y, m)} b_{k,\alpha}(x, y, m),$$

$$\Psi_{k}(x, y) = \hat{\Phi}_{k,-}(\hat{x}, \hat{y}) - x_{2n+1} + y_{2n+1},$$

$$b_{k,\alpha}(x, y, m) \in S_{\text{loc}}^{n-\frac{d}{2}}(1; U \times U, T^{*0,q} X \boxtimes (T^{*0,q} X)^*),$$

$$b_{k,\alpha}(x, y, m) \sim \sum_{j=0}^{\infty} m^{\frac{n-d}{2} - j} b^j_{k,\alpha}(x, y) \in S_{\text{loc}}^{n-\frac{d}{2}}(1; U \times U, T^{*0,q} X \boxtimes (T^{*0,q} X)^*),$$

$$b^j_{k,\alpha}(x, y) \in C^\infty(U \times U, T^{*0,q} X \boxtimes (T^{*0,q} X)^*), \quad j = 0, 1, 2, \ldots, \tag{4.12}$$

Assume that $q = n_+ \neq n_-$. If $m \to -\infty$, then the expansion for $S_{k,m}^{(q)}(x, y)$ as $m \to -\infty$ is similar to $q = n_-$ case. When $m \to +\infty$, we can repeat the method above with minor change and deduce that $S_{k,m}^{(q)}(x, y) = O(m^{-\infty})$ on X. In particular, it follows from the argument in [10] Section 4] with minor modification, if $G \times S^1$ acts freely near $\mu^{-1}(0)$, then

$$b^0_{k}(x, x) = 2^{d-1} \frac{d^2}{\text{Ve}_{\text{eff}}(x)} \pi^{-n-1+\frac{d}{2}} |\det R_x|^{-\frac{1}{2}} |\det \mathcal{L}_x|_{\tau_{x,n_-}} \chi(\text{eff}) \in \mu^{-1}(0), \quad \forall x \in \mu^{-1}(0),$$

where τ_{x,n_-} is given by (1.10). The proof is completed. \hfill \square

References

[1] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, 34–35 (1976), 123–164, MR0590106, Zbl 0344.32010.
[2] L. Boutet de Monvel and V. Guillemin, *The spectral theory of Toeplitz operators*, Ann. of Math. Stud., vol 99, Princeton Univ. Press, Princeton, NJ, 1981.

[3] D. Catlin, *The Bergman kernel and a theorem of Tian*, in *Analysis and geometry in several complex variables (Katata, 1997)*, 1–23, Trends Math., Birkhäuser, Boston, 1999, MR1699887, Zbl 0941.32002.

[4] M. Engliš, *Weighted Bergman kernels and quantization*, Comm. Math. Phys. 227 (2002), no. 2, 211–241, MR1903645, Zbl 1010.32002.

[5] K. Fritsch, H. Herrmann and C.-Y. Hsiao, *G-equivariant embedding theorems for CR manifolds of high codimension*, arXiv: 1810.09629.

[6] V. Guillemin, *Star products on compact pre-quantizable symplectic manifolds*, Lett. Math. Phys. 35 (1995), no. 1, 85–89

[7] H. Herrmann, C.-Y. Hsiao and X. Li, *Szegő kernels and equivariant embedding theorems for CR manifolds*, arXiv: 1710.04910.

[8] L. Hörmander, *The analysis of linear partial differential operators. I*, Classics in Mathematics, Springer-Verlag, Berlin, 2003.

[9] C.-Y. Hsiao, *Projections in several complex variables*, Mém. Soc. Math. France, Nouv. Sér. 123 (2010), 131 p, MR2780123, Zbl 1229.32002.

[10] C.-Y. Hsiao and R.-T. Huang, *G-invariant Szegő kernel asymptotics and CR reduction*, arXiv: 1702.05012.

[11] C.-Y. Hsiao, X. Ma and G. Marinescu, *Geometric quantization on CR manifolds*, arXiv: 1906.05627.

[12] C.-Y. Hsiao and G. Marinescu, *Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles*, Comm. Anal. Geom. 22 (2014), 1-108.

[13] C.-Y. Hsiao and G. Marinescu, *On the singularities of the Szegő projections on lower energy forms*, J. Differential Geom. 107 (2017), no. 1, 83–155.

[14] J. J. Kohn, *The range of the tangential Cauchy-Riemann operator*, Duke Math. J. 53 (1986), No. 2, 307–562.

[15] X. Ma and G. Marinescu, *The first coefficients of the asymptotic expansion of the Bergman kernel of the spinc Dirac operator*, Internat. J. Math. 17 (2006), no. 6, 737–759.

[16] X. Ma and W. Zhang, *Geometric quantization for proper moment maps: the Vergne conjecture*, Acta Math., 212, (2014), no. 1, 11–57.

[17] A. Melin and J. Sjöstrand, *Fourier integral operators with complex-valued phase functions*, Springer Lecture Notes in Math., 459, (1975), 120–223.

[18] H. Rossi, *Attaching analytic spaces to an analytic space along a pseudoconcave boundary*, Proc. Conf. Complex. Manifolds (Minneapolis), Springer–Verlag, New York, 1965, pp. 242–256.

[19] M.E. Taylor, *Fourier series on compact Lie groups*, Proc. Amer. Math. Soc. 19 (1968), no.5, 1103-1105.

[20] S. Zelditch, *Szegő kernels and a theorem of Tian*, Int. Math. Res. Not. 6 (1998), 317–331.
DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG-LI, TAoyUAN 32001, TAIWAN
Email address: rthuang@math.ncu.edu.tw

SCHOOL OF MATHEMATICS (ZHUIHAI), SUN YAT-sen UNIVERSITY, ZHUIHAI 519082, GUANGDONG, CHINA
Email address: shaogk@mail.sysu.edu.cn