The influence of technological parameters on physical and mechanical properties of surfaces

M V Mousokhranov¹, V V Kalmykov¹, E V Logutenkova¹

¹Kaluga Branch of Federal State Budgetary Educational Institution of Higher Education "Moscow State Technical University named after N.E. Bauman (National Research University)," 2, Bazhenova Street, Kaluga 248600, Russia

E-mail: marls77@ya.ru

Annotation. In this study, we examined how the parameters of external mechanical impact by microdeforming the surface influence the energy state of a solid body at the interphase boundary. We studied the dependence of the surface energy on microdeformation modes with different values of the line interval and the elastic recovery of multicomponent iron-based materials. The measurements were performed on experimental samples of C20, C45, X10Cr13. The results of the study can be used to ensure the required performance properties of products.

1. Introduction
To concur with the never-ceasing growth of technical requirements to engineering products and instrument-making, it becomes necessary to improve the existing technologies and to develop new ones. Several studies [1–8] show a stable relationship between the performance properties of products and the energy parameters of surfaces.

Examination of the features of energy parameters [9–13] of a substrate of structural materials with metallic properties helps get an insight into the change in the properties of near-surface areas. It is known that the energy state of surfaces of a solid body at the phase boundary is determined, among other things, by the structure and state of the crystal lattice [14–16]. Therefore, it is important to know how to form a certain level of energy state on a surface by means of external mechanical impact. The aim of this study was to examine the effect of the parameters of external impact by microdeforming the surface on the surface energy (SE) of multicomponent iron-based materials.

2. Materials and methods
To conduct an experimental study of the change in SE of materials when microdeforming line-by-line, impact on the surface of the samples was simulated. The materials of the experimental samples are C20, C45, and X10Cr13. The material of the tool (cutting edge) is GC1040. The blunting radius of the cutting edge of the tool $\rho = 0.02$ mm. Microdeforming was performed on a vertical milling machining centre with a MiniMill 450 CNC machine. In the process, the values of the surface energy were determined by the method described in [17]. The hardness of the material under study was determined on the Brinell scale using a hardness meter.

The influence of microdeformation modes on the surface energy at different values of elastic recovery h_y was examined with regard to:

– materials of rigid structures – the h_y value less than 1 μm;
– materials of the structures prone to elastic recovery after shaping by removing part of the surface
– $h_y \approx 2 \mu m$ and $h_y \approx 4 \mu m$.
The assessment was performed according to the methods described in [18].

3. Results and discussion
To determine the effect of the line interval (longitudinal tool feeding) on the SE change, its f_z value
was decreased and increased by 30% during microdeformation with the help of a milling tool. The
graph of SE dependence on the line interval during microdeformation after removing part of the metal
at depths $h = 500 \mu m$, $h = 300 \mu m$ and $h = 100 \mu m$ is shown in Fig. 1.

Figure 1. Dependence of surface energy on the line interval

![Figure 1](image1.png)

Analysing the graphs, we can conclude that as line interval f_z is increased during microdeformation, the SE value decreases. The lowest value of SE is accumulated during microdeformation after removing a layer of depth $h = 300 \mu m$, and the highest value of SE – after removing material to the depth of $h = 500 \mu m$.

Then, the influence of microdeformation parameters on the SE value was determined. The surface
energy resulting from the change in the value of elastic recovery after shaping ($h_y \approx 0 \mu m$, $h_y \approx 2 \mu m$
and $h_y \approx 4 \mu m$) was measured. The results of the experiments with microdeformation of the surface
after removing material to depth $h = 300 \mu m$ are shown in Fig. 2.

The analysis of the results revealed that as the depth of microdeformation h_y increases, the value of
surface energy decreases. This is due to the smoothing of the microrelief vertices of the surface
accompanied by unloading of the energy concentrator zones.

The effect of microdeformation parameters on the SE of other materials was studied in a similar
way. The material of the samples is C20. The surface energy resulting from the change in the value of
elastic recovery after shaping by cutting ($h_y \approx 0 \mu m$, $h_y \approx 2 \mu m$ and $h_y \approx 4 \mu m$) was measured. The
results of the experiments with microdeformation of the surface after removing material to depth
$h = 300 \mu m$ are shown in Fig. 3.

The analysis of the results revealed that as the depth of microdeformation h_y (due to the impact of
elastic recovery) increases, the SE value decreases.

When examining samples from X10Cr13, the surface energy resulting from the change in the value of
elastic recovery after shaping by removing a layer of material ($h_y \approx 0 \mu m$, $h_y \approx 2 \mu m$ and $h_y \approx 4 \mu m$)
was measured. The results of the experiments with microdeformation of the surface after cutting to
depth $h = 300 \mu m$ are shown in Fig. 4.
The analysis of the results revealed that as the depth of microdeformation h_y increases, the value of surface energy decreases.

4. Conclusions

For materials C20, C45 and steel X10Cr13, the SE measurement results revealed:

− in order to obtain the maximum level of SE, after removing a layer of material to depth $h = 300 \, \mu m$, microdeformation should be carried out;

− as line interval f_z increases during microdeformation of materials, the SE value decreases;

− as the depth of microdeformation increases, the value of surface energy decreases.

References

[1] Musokhranov M V, Kalmykov V V, Avramenko M U 2016 Technological prerequisites for improving the performance of the guide elements Fundamental research 8-1 55-58

[2] Musokhranov M V 2005 Surface energy as an indicator of the quality of the surface layer Directory. Engineering journal with the app 12 (105) 62-64

[3] Malyshev E N, Musokhranov M V, Kalmykov V V, Antanuk F I 2015 Distribution of energy technological impact in the formation of working surfaces of machine parts made of metal materials Modern problems of science and education 1-1 58.

[4] Oleshko V S, Pigovkin I S 2017 The influence of machining on the electron output of metal parts of aircraft Defense complex-scientific and technical progress of Russia 3 (135) 24-28

[5] Goncharenko V I, Oleshko V S 2017 Determining the surface energy of tools in the aviation industry Russian Engineering Research T 37 7 628-630

[6] Shvetcov A N, Skuratov D L 2017 Evolution of the residual stresses formation from fec0.15cr12ni2 steel in the part surface during the diamond smoothing Proceedings of the 3rd International Conference on Dynamics and Vibroacoustics of Machines, DVM 2016 355-362

[7] Izmailov V V, Novoselova M V, Chaplygin S.A 2017 On the experimental techniques for assessing the specific friction force and its parameters Journal of Friction and Wear T 38 5 369-376

[8] Nosenko V A, Mitrofanov A P, Butov G M Impregnation of abrasive tools with foaming agents Russian Engineering Research 2011 T 31 11 1160-1163

[9] Musokhranov M V, Kalmykov V V, Logutenkova E V, Sorokin S P 2016 Energy state of the surface layer of machine parts Modern high technology 5-2 276-279.

[10] Musokhranov M V 2005 The role of surface energy in the formation of parts in precision engineering Assembly in mechanical engineering, instrumentation 6 9-11
[11] Mousokhranov M V, Kalmykov V V, Logutenkova E V, Gerasimova N S 2016 Energy surfaces in the formation of mates in the Assembly of products Modern high technology 5-2 249-252.
[12] Mitrophanov A P, Parsheva A K 2016 The electron Work function as a parameter to assess the mechanical state of the surface the collection of Scientific-practical conference of students of VPI (branch) VSTU "youth Science: ideas, results, prospects" 63-64.
[13] Arefeva L P, Shebzukhova I G 2016 Electron work function and surface energy of body-centered and face-centered cubic modifications of 4d- and 5d-metals Physics of the Solid State T 58 7 1289-1294.
[14] Aref'eva L P, Shebzukhova I G 2018 Interfacial energy on the boundary of the metal crystal-melt Physics of the solid state Vol 60 7 1270-1276.
[15] Aref'eva L P, Shebzukhova I G 2017 Surface energy thin films of niobium and tantalum under uniaxial deformation Physical-chemical aspects of the study of clusters, nanostructures and nanomaterials 9 32-37.
[16] Shebzukhova I G, Aref'eva L P 2015 The anisotropy of the electron work function of 3d metal crystals Bulletin of the Russian Academy of Sciences. Series physical Vol 79 6 896
[17] Goncharenko V I, Oleshko V S 2017 Determination of the surface energy of the instrument in aircraft engineering STIN 2 24-27.
[18] Kalmykov V V, Barkov A V 2016 Analytical and statistical estimation of elastic deformations during milling the contour of Fundamental research 8-1 34-38