Weakly commensurable groups, with applications to differential geometry

Andrei S. Rapinchuk (UVA)

(joint work with Gopal Prasad)

Bielefeld March 2012
1 Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2 Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3 Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
[1] G. Prasad, A.S. Rapinchuk, *Weakly commensurable arithmetic groups and isospectral locally symmetric spaces*, Publ. math. IHES 109(2009), 113-184.

[2] — , —, *Local-global principles for embedding of fields with involution into simple algebras with involution*, Comment. Math. Helv. 85(2010), 583-645.

[3] — , —, *On the fields generated by the lengths of closed geodesics in locally symmetric spaces*, arXiv:1110.0141.

Survey:

[4] — , —, *Number-theoretic techniques in the theory of Lie groups and differential geometry*, 4th International Congress of Chinese Mathematicians, AMS/IP Stud. Adv. Math. 48, AMS 2010, pp. 231-250.
Outline

1 Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2 Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3 Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
Let M be a Riemannian manifold.
Let M be a Riemannian manifold.

$\mathcal{E}(M) = \text{spectrum of Laplace operator (eigenvalues with multiplicities)}$
Let M be a Riemannian manifold.

$\mathcal{E}(M) = \text{spectrum of Laplace operator (eigenvalues with multiplicities)}$

$\mathcal{L}(M) = \text{length spectrum (lengths of closed geodesics with multiplicities)}$
Let M be a Riemannian manifold.

$\mathcal{E}(M) = \text{spectrum of Laplace operator (eigenvalues with multiplicities)}$

$\mathcal{L}(M) = \text{length spectrum (lengths of closed geodesics with multipl.)}$

$L(M) = \text{weak length spectrum (lengths of closed geodesics w/o multiplicities)}$
Let M be a Riemannian manifold.

$\mathcal{E}(M) = \text{spectrum of Laplace operator (eigenvalues with multiplicities)}$

$\mathcal{L}(M) = \text{length spectrum (lengths of closed geodesics with multiplicities)}$

$L(M) = \text{weak length spectrum (lengths of closed geodesics w/o multiplicities)}$

M_1 and M_2 are \textbf{commensurable} if they have a common \textbf{finite-sheeted} cover:
Question: Are M_1 and M_2 necessarily isometric (commensurable) if
Question: Are M_1 and M_2 necessarily isometric (commensurable) if

(1) $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;
Question: Are M_1 and M_2 necessarily isometric (commensurable) if

(1) $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;

(2) $\mathcal{L}(M_1) = \mathcal{L}(M_2)$ (or $L(M_1) = L(M_2)$), i.e. M_1 and M_2 are iso-length-spectral;

Example: Let M_1 and M_2 be spheres of radii r_1 and r_2. Then $L(M_i) = \{2\pi r_i\}$, so $L(M_1) = L(M_2) \Rightarrow M_1 \& M_2$ are isometric.
Question: Are M_1 and M_2 necessarily isometric (commensurable) if

(1) $E(M_1) = E(M_2)$, i.e. M_1 and M_2 are isospectral;

(2) $L(M_1) = L(M_2)$ (or $L(M_1) = L(M_2)$), i.e. M_1 and M_2 are iso-length-spectral;

(3) $Q \cdot L(M_1) = Q \cdot L(M_2)$, i.e. M_1 and M_2 are length-commensurable
Question: Are M_1 and M_2 necessarily isometric (commensurable) if

1. $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;

 Can one hear the shape of a drum?

2. $\mathcal{L}(M_1) = \mathcal{L}(M_2)$ (or $L(M_1) = L(M_2)$), i.e. M_1 and M_2 are iso-length-spectral;

3. $Q \cdot L(M_1) = Q \cdot L(M_2)$, i.e. M_1 and M_2 are length-commensurable
Question: Are M_1 and M_2 necessarily isometric (commensurable) if

(1) $\mathcal{E}(M_1) = \mathcal{E}(M_2)$, i.e. M_1 and M_2 are isospectral;

Can one hear the shape of a drum?

(2) $\mathcal{L}(M_1) = \mathcal{L}(M_2)$ (or $L(M_1) = L(M_2)$), i.e. M_1 and M_2 are iso-length-spectral;

Example: Let M_1 and M_2 be spheres of radii r_1 and r_2. Then $L(M_i) = \{2\pi r_1\}$. So, $L(M_1) = L(M_2) \Rightarrow M_1 \& M_2$ are isometric.

(3) $Q \cdot L(M_1) = Q \cdot L(M_2)$, i.e. M_1 and M_2 are length-commensurable.
There exist isospectral (and iso-length-spectral), but not isometric locally symmetric spaces - even Riemann surfaces (Vignéras, Sunada)
There exist isospectral (and iso-length-spectral), but not isometric locally symmetric spaces - even Riemann surfaces (Vignéras, Sunada)

Vignéras’s construction relied on arithmetic of quaternions; Sunada’s construction was purely group-theoretic (and more general).
There exist isospectral (and iso-length-spectral), but not isometric, locally symmetric spaces - even Riemann surfaces (Vignéras, Sunada).

Vignéras’s construction relied on arithmetic of quaternions; Sunada’s construction was purely group-theoretic (and more general).

Both constructions produce commensurable manifolds.
There exist isospectral (and iso-length-spectral), but not isometric locally symmetric spaces - even Riemann surfaces (Vignéras, Sunada).

Vignéras’s construction relied on arithmetic of quaternions; Sunada’s construction was purely group-theoretic (and more general).

Both constructions produce commensurable manifolds.

Even though there are examples of noncommensurable isospectral manifolds (Lubotzky et al.), it appears that commensurability is the property that one may be able to establish in various situations.
Conditions (1) & (2) are not invariant under passing to a commensurable manifold, while condition (3) - length-commensurability \((\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2))\) - is.
Conditions (1) & (2) are not invariant under passing to a commensurable manifold, while condition (3) - length-commensurability \((Q \cdot L(M_1) = Q \cdot L(M_2))\) - is.

Our project: Understand consequences of length-commensurability.
Conditions (1) & (2) are not invariant under passing to a commensurable manifold, while condition (3) - length-commensurability \((Q \cdot L(M_1) = Q \cdot L(M_2))\) - is.

Our project: Understand consequences of length-commensurability.

Conditions (1), (2) and (3) are related:

- For Riemann surfaces: \(E(M_1) = E(M_2) \iff L(M_1) = L(M_2)\)
- For any compact locally symmetric spaces:
 \[E(M_1) = E(M_2) \Rightarrow L(M_1) = L(M_2).\]
Conditions (1) & (2) are not invariant under passing to a commensurable manifold, while condition (3) - length-commensurability \((\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2))\) - is.

Our project: Understand consequences of length-commensurability.

Conditions (1), (2) and (3) are related:

- For Riemann surfaces: \(\mathcal{E}(M_1) = \mathcal{E}(M_2) \iff \mathcal{L}(M_1) = \mathcal{L}(M_2)\)
- For any compact locally symmetric spaces:
 \[\mathcal{E}(M_1) = \mathcal{E}(M_2) \implies \mathcal{L}(M_1) = \mathcal{L}(M_2)\].

So, results for length-commensurable locally symmetric spaces imply results for isospectral spaces.
Results of Prasad-R. and follow-up results of Garibaldi, Garibaldi-R. answer key questions for \textit{arithmetically defined} locally symmetric spaces.
Results of Prasad-R. and follow-up results of Garibaldi, Garibaldi-R. answer key questions for arithmetically defined locally symmetric spaces.

In particular:

- we know when length-commensurability \Rightarrow commensurability (answer depends on Lie type of isometry group)

- locally symmetric spaces length-commensurable to a given arithmetically defined locally symmetric space form finitely many commensurability classes.
Results of Prasad-R. and follow-up results of Garibaldi, Garibaldi-R. answer key questions for **arithmetically defined** locally symmetric spaces.

In particular:

- **we know when** length-commensurability \Rightarrow commensurability

 (answer depends on Lie type of isometry group)

- locally symmetric spaces length-commensurable to a given arithmetically defined locally symmetric space form finitely many commensurability classes.
Results of Prasad-R. and follow-up results of Garibaldi, Garibaldi-R. answer key questions for \textit{arithmetically defined} locally symmetric spaces.

In particular:

- we know \textbf{when} length-commensurability \(\Rightarrow\) commensurability (answer depends on Lie type of isometry group)

- locally symmetric spaces \textbf{length-commensurable} to a given \textit{arithmetically defined locally symmetric space} form \textit{finitely many commensurability classes}.
Outline

1 Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2 Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3 Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
Let \mathbb{H}^d be d-dimensional real hyperbolic spaces.
Let \mathbb{H}^d be d-dimensional real hyperbolic spaces.

Isometry group of \mathbb{H}^d is $\mathcal{G} = \text{PSO}(d,1)$.
Let \mathbb{H}^d be d-dimensional real hyperbolic spaces.

Isometry group of \mathbb{H}^d is $G = \text{PSO}(d,1)$.

Arithmetically defined hyperbolic d-manifold is $M = \mathbb{H}^d/\Gamma$, where Γ is an *arithmetical* subgroup of G.
Results were available only for $d = 2$ (A. Reid) and 3 (A. Reid et al.).
Results were available only for $d = 2$ (A. Reid) and 3 (A. Reid et al.).

Theorem. Let M_1 and M_2 be *arithmetically defined* hyperbolic d-manifolds.
Results were available only for $d = 2$ (A. Reid) and 3 (A. Reid et al.).

Theorem. Let M_1 and M_2 be arithmetically defined hyperbolic d-manifolds.

(1) Suppose d is even or $\equiv 3 \pmod{4}$.

If M_1 and M_2 are not commensurable then after a possible interchange of M_1 and M_2, there exists $\lambda_1 \in L(M_1)$ such that for any $\lambda_2 \in L(M_2)$, the ratio λ_1/λ_2 is transcendental.

In particular, M_1 and M_2 are not length-commensurable.
(2) For any $d \equiv 1 \pmod{4}$ there exist length-commensurable, but not commensurable, M_1 and M_2.
(2) For any $d \equiv 1 \pmod{4}$, there exist length-commensurable, but not commensurable, M_1 and M_2.

Further question: Suppose M_1 and M_2 are not length-commensurable. How different are $L(M_1)$ and $L(M_2)$?
(2) For any $d \equiv 1 \pmod{4}$ there exist length-commensurable, but not commensurable, M_1 and M_2.

Further question: Suppose M_1 and M_2 are not length-commensurable. How different are $L(M_1)$ and $L(M_2)$?

Under minor additional conditions we prove the following:

Let \mathcal{F}_i be subfield of \mathbb{R} generated by $L(M_i)$. Then $\mathcal{F}_1 \mathcal{F}_2$ has infinite transcendence degree over \mathcal{F}_1 or \mathcal{F}_2.
(2) For any $d \equiv 1 \pmod{4}$ there exist length-commensurable, but not commensurable, M_1 and M_2.

Further question: Suppose M_1 and M_2 are not length-commensurable. How different are $L(M_1)$ and $L(M_2)$?

Under minor additional conditions we prove the following:

Let \mathcal{F}_i be subfield of \mathbb{R} generated by $L(M_i)$. Then $\mathcal{F}_1 \mathcal{F}_2$ has infinite transcendence degree over \mathcal{F}_1 or \mathcal{F}_2.

So, $L(M_1)$ and $L(M_2)$ are very much different.
(2) For any \(d \equiv 1 (\text{mod} \ 4) \) there exist length-commensurable, but not commensurable, \(M_1 \) and \(M_2 \).

Further question: Suppose \(M_1 \) and \(M_2 \) are not length-commensurable. How different are \(L(M_1) \) and \(L(M_2) \)?

Under minor additional conditions we prove the following:

Let \(F_i \) be subfield of \(\mathbb{R} \) generated by \(L(M_i) \). Then \(F_1 F_2 \) has infinite transcendence degree over \(F_1 \) or \(F_2 \).

So, \(L(M_1) \) and \(L(M_2) \) are very much different.

(We have similar results for complex and quaternionic hyperbolic spaces.)
Outline

1 Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2 Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3 Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
Weak commensurability

Let G_1 and G_2 be two semi-simple groups over a field F of characteristic zero.

- Semi-simple $g_i \in G_i(F)$ ($i = 1, 2$) are weakly commensurable if there exist maximal F-tori $T_i \subset G_i$ such that $g_i \in T_i(F)$ and for some $\chi_i \in X(T_i)$ (defined over \overline{F}) we have
 $$\chi_1(g_1) = \chi_2(g_2) \neq 1.$$

- (Zariski-dense) subgroups $\Gamma_i \subset G_i(F)$ are weakly commensurable if every semi-simple $\gamma_1 \in \Gamma_1$ of infinite order is weakly commensurable to some semi-simple $\gamma_2 \in \Gamma_2$ of infinite order, and vice versa.
Weak commensurability

Let G_1 and G_2 be two semi-simple groups over a field F of characteristic zero.

- Semi-simple $g_i \in G_i(F)$ ($i = 1, 2$) are weakly commensurable if there exist maximal F-tori $T_i \subset G_i$ such that $g_i \in T_i(F)$ and for some $\chi_i \in X(T_i)$ (defined over \overline{F}) we have $\chi_1(g_1) = \chi_2(g_2) \neq 1$.

- (Zariski-dense) subgroups $\Gamma_i \subset G_i(F)$ are weakly commensurable if every semi-simple $\gamma_1 \in \Gamma_1$ of infinite order is weakly commensurable to some semi-simple $\gamma_2 \in \Gamma_2$ of infinite order, and vice versa.
Weak commensurability

Let G_1 and G_2 be two semi-simple groups over a field F of characteristic zero.

- Semi-simple $g_i \in G_i(F) \ (i = 1, 2)$ are weakly commensurable if there exist maximal F-tori $T_i \subset G_i$ such that $g_i \in T_i(F)$ and for some $\chi_i \in X(T_i)$ (defined over \overline{F}) we have
 \[\chi_1(g_1) = \chi_2(g_2) \neq 1. \]

- (Zariski-dense) subgroups $\Gamma_i \subset G_i(F)$ are weakly commensurable if every semi-simple $\gamma_1 \in \Gamma_1$ of infinite order is weakly commensurable to some semi-simple $\gamma_2 \in \Gamma_2$ of infinite order, and vice versa.
Recall: given an F-torus $T \subset \text{GL}_n$, an element $t \in T(F)$, and a character $\chi \in X(T)$, the character value

$$\chi(t) = \lambda_1^{a_1} \cdots \lambda_n^{a_n}$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of t (i.e. t is conjugate to $\text{diag}(\lambda_1, \ldots, \lambda_n)$), and $a_1, \ldots, a_n \in \mathbb{Z}$.
Recall: given an \(F \)-torus \(T \subset \text{GL}_n \), an element \(t \in T(F) \), and a character \(\chi \in X(T) \), the character value

\[
\chi(t) = \lambda_1^{a_1} \cdots \lambda_n^{a_n}
\]

where \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(t \) (i.e. \(t \) is conjugate to \(\text{diag}(\lambda_1, \ldots, \lambda_n) \)), and \(a_1, \ldots, a_n \in \mathbb{Z} \).

Pick matrix realizations \(G_i \subset \text{GL}_{n_i} \) for \(i = 1, 2 \).
Recall: given an \(F \)-torus \(T \subset \text{GL}_n \), an element \(t \in T(F) \), and a character \(\chi \in X(T) \), the character value

\[
\chi(t) = \lambda_1^{a_1} \cdots \lambda_n^{a_n}
\]

where \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(t \) (i.e. \(t \) is conjugate to \(\text{diag}(\lambda_1, \ldots, \lambda_n) \)), and \(a_1, \ldots, a_n \in \mathbb{Z} \).

Pick matrix realizations \(G_i \subset \text{GL}_{n_i} \) for \(i = 1, 2 \).

Let \(g_1 \in G_1(F) \) and \(g_2 \in G_2(F) \) be semi-simple elements with eigenvalues

\[
\lambda_1, \ldots, \lambda_{n_1} \quad \text{and} \quad \mu_1, \ldots, \mu_{n_2}.
\]
Then g_1 and g_2 are **weakly commensurable** if

$$
\chi_1(g_1) = \lambda_1^{a_1} \cdots \lambda_{n_1}^{a_{n_1}} = \mu_1^{b_1} \cdots \mu_{n_2}^{b_{n_2}} = \chi_2(g_2) \neq 1
$$

for some a_1, \ldots, a_{n_1} and $b_1, \ldots, b_{n_2} \in \mathbb{Z}$.
Example

Let

\[
A = \begin{pmatrix}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1/6 \\
\end{pmatrix}, \quad B = \begin{pmatrix}
6 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1/6 \\
\end{pmatrix} \in SL_3(\mathbb{C}).
\]
Example

Let

\[
A = \begin{pmatrix}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1/6 \\
\end{pmatrix}, \quad B = \begin{pmatrix}
6 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1/6 \\
\end{pmatrix} \in SL_3(\mathbb{C}).
\]

Then \(A\) and \(B\) are weakly commensurable because

\[
\lambda_1 \cdot \lambda_2 = 2 \cdot 3 = 6 = \mu_1.
\]
Example

Let

\[
A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1/6 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/6 \end{pmatrix} \in \text{SL}_3(\mathbb{C}).
\]

Then A and B are weakly commensurable because

\[
\lambda_1 \cdot \lambda_2 = 2 \cdot 3 = 6 = \mu_1.
\]

However, no powers A^m and B^n ($m, n \neq 0$) are conjugate.
Main question: What can one say about Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) given that they are weakly commensurable?
Main Question: What can one say about Zariski-dense subgroups \(\Gamma_i \subset G_i(F) \) \((i = 1, 2)\) given that they are weakly commensurable?

More specifically, under what conditions are \(\Gamma_1 \) and \(\Gamma_2 \) necessarily commensurable?
Weakly commensurable arithmetic groups

Main question: What can one say about Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) given that they are weakly commensurable?

More specifically, under what conditions are Γ_1 and Γ_2 necessarily commensurable?

Recall: subgroups \mathcal{H}_1 and \mathcal{H}_2 of a group G are commensurable if

$$[\mathcal{H}_i : \mathcal{H}_1 \cap \mathcal{H}_2] < \infty \quad \text{for} \quad i = 1, 2.$$
Main Question: What can one say about Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) given that they are weakly commensurable?

More specifically, under what conditions are Γ_1 and Γ_2 necessarily commensurable?

Recall: subgroups \mathcal{H}_1 and \mathcal{H}_2 of a group G are commensurable if

$$[\mathcal{H}_i : \mathcal{H}_1 \cap \mathcal{H}_2] < \infty \text{ for } i = 1, 2.$$

Γ_1 and Γ_2 are commensurable up to an F-isomorphism between G_1 and G_2 if there exists an F-isomorphism $\sigma : G_1 \to G_2$ such that $\sigma(\Gamma_1)$ and Γ_2 are commensurable in usual sense.
Algebraic Perspective

General framework: Characterization of linear groups in terms of spectra of its elements.
Algebraic Perspective

General Framework: Characterization of linear groups in terms of spectra of its elements.

Complex Representations of Finite Groups:

Let Γ be a finite group,

$$\rho_i: \Gamma \to GL_{n_i}(\mathbb{C}) \quad (i = 1, 2)$$

be representations. Then

$$\rho_1 \simeq \rho_2 \iff \chi_{\rho_1}(g) = \chi_{\rho_2}(g) \quad \forall g \in \Gamma,$$

where $\chi_{\rho_i}(g) = \text{tr} \rho_i(g) = \sum \lambda_j$ (\(\lambda_1, \ldots, \lambda_{n_i}\) eigenvalues of \(\rho_i(g)\)).
Algebraic perspective

- **Data** afforded by **weak commensurability** is more **convoluted** than **data** afforded by character of a group representation: when computing

 \[\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n} \]

 one can use **arbitrary** integer weights \(a_1, \ldots, a_n\). **So**, weak commensurability appears to be more **difficult** to analyze.

- **Example.** Let \(\Gamma \subset SL_n(\mathbb{C})\) be a neat Zariski-dense subgroup. For \(d > 0\), let

 \[\Gamma^{(d)} = \langle \gamma^d \mid \gamma \in \Gamma \rangle. \]

 Then any \(\Gamma^{(d)} \subset \Delta \subset \Gamma\) is **weakly commensurable** to \(\Gamma\).
Weakly commensurable arithmetic groups

Algebraic perspective

- Data afforded by weak commensurability is more convoluted than data afforded by character of a group representation: when computing

\[\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n} \]

one can use arbitrary integer weights \(a_1, \ldots, a_n \). So, weak commensurability appears to be more difficult to analyze.

- Example. Let \(\Gamma \subset SL_n(\mathbb{C}) \) be a neat Zariski-dense subgroup. For \(d > 0 \), let

\[\Gamma^{(d)} = \langle \gamma^d \mid \gamma \in \Gamma \rangle. \]

Then any \(\Gamma^{(d)} \subset \Delta \subset \Gamma \) is weakly commensurable to \(\Gamma \).
Data afforded by weak commensurability is more convoluted than data afforded by character of a group representation: when computing
\[\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n} \]
one can use arbitrary integer weights \(a_1, \ldots, a_n\). So, weak commensurability appears to be more difficult to analyze.

Example. Let \(\Gamma \subset SL_n(\mathbb{C}) \) be a neat Zariski-dense subgroup. For \(d > 0 \), let
\[\Gamma^{(d)} = \langle \gamma^d \mid \gamma \in \Gamma \rangle. \]
Then any \(\Gamma^{(d)} \subset \Delta \subset \Gamma \) is weakly commensurable to \(\Gamma \). So, one needs to limit attention to some special subgroups in order to generate meaningful results.
Weakly commensurable arithmetic groups

Definition of weak commensurability

Geometric perspective

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric spaces.

- Let $G = SL_2$. Corresponding symmetric space:

 \[SO_2(\mathbb{R}) \backslash SL_2(\mathbb{R}) = \mathbb{H} \]
 (upper half-plane)

- Any (compact) Riemann surface of genus > 1 is of the form

 \[M = \mathbb{H}/\Gamma \]

 where $\Gamma \subset SL_2(\mathbb{R})$ is a discrete subgroup (with torsion-free image in $PSL_2(\mathbb{R})$).
Weakly commensurable arithmetic groups

Definition of weak commensurability

Geometric perspective

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric spaces.

We will demonstrate this for Riemann surfaces - for now.

- Let \(G = SL_2 \). Corresponding symmetric space:
 \[SO_2(\mathbb{R}) \backslash SL_2(\mathbb{R}) = \mathbb{H} \]
 (upper half-plane)

- Any (compact) Riemann surface of genus > 1 is of the form
 \[M = \mathbb{H} / \Gamma \]
 where \(\Gamma \subset SL_2(\mathbb{R}) \) is a discrete subgroup (with torsion-free image in \(PSL_2(\mathbb{R}) \)).
Weakly commensurable arithmetic groups

Definition of weak commensurability

Geometric perspective

- Weak commensurability (of fundamental groups) **adequately** reflects length-commensurability of locally symmetric spaces.

We will demonstrate this for **Riemann surfaces** - for now.

- Let $G = SL_2$. Corresponding **symmetric space**:

 $$SO_2(\mathbb{R}) \backslash SL_2(\mathbb{R}) = \mathbb{H} \quad \text{(upper half-plane)}$$

- Any (compact) Riemann surface of genus > 1 is of the form

 $$M = \mathbb{H}/\Gamma$$

 where $\Gamma \subset SL_2(\mathbb{R})$ is a **discrete subgroup** (with torsion-free image in $PSL_2(\mathbb{R})$).
Geometric perspective

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric spaces.

We will demonstrate this for **Riemann surfaces** - for now.

- Let $G = SL_2$. Corresponding symmetric space:
 $$SO_2(\mathbb{R}) \backslash SL_2(\mathbb{R}) = \mathbb{H} \quad \text{(upper half-plane)}$$

- Any (compact) Riemann surface of genus > 1 is of the form
 $$M = \mathbb{H}/\Gamma$$

 where $\Gamma \subset SL_2(\mathbb{R})$ is a **discrete subgroup** (with torsion-free image in $PSL_2(\mathbb{R})$).
Geometric perspective

- Any **closed geodesic** \(c \) in \(M \) corresponds to a **semi-simple** \(\gamma \in \Gamma \), i.e. \(c = c_\gamma \).

- It has **length**

 \[\ell(c_\gamma) = \left(\frac{1}{n_\gamma}\right) \cdot \log t_\gamma \]

 where \(t_\gamma \) is **eigenvalue** of \(\pm \gamma \) which is \(> 1 \),

 \(n_\gamma \) is an integer \(\geq 1 \).
Geometric perspective

- Any **closed geodesic** c in M corresponds to a **semi-simple** $\gamma \in \Gamma$, i.e. $c = c_\gamma$.

- It has **length**

$$\ell(c_\gamma) = (1/n_\gamma) \cdot \log t_\gamma$$

where t_γ is **eigenvalue** of $\pm \gamma$ which is > 1,

n_γ is an integer ≥ 1.

Note: $\pm \gamma$ is conjugate to $(t_\gamma 0 0 t_\gamma^{-1})$.

Andrei Rapinchuk (UVA)
Geometric perspective

• Any closed geodesic c in M corresponds to a semi-simple $\gamma \in \Gamma$, i.e. $c = c_\gamma$.

• It has length

$$\ell(c_\gamma) = (1/n_\gamma) \cdot \log t_\gamma$$

where t_γ is eigenvalue of $\pm \gamma$ which is > 1, n_γ is an integer ≥ 1.

Note: $\pm \gamma$ is conjugate to $(t_\gamma 0 0 t_\gamma^{-1} \gamma)$.
Geometric perspective

- Any **closed geodesic** \(c \) in \(M \) corresponds to a **semi-simple** \(\gamma \in \Gamma \), i.e. \(c = c_\gamma \).

- It has **length**

\[
\ell(c_\gamma) = \frac{1}{n_\gamma} \cdot \log t_\gamma
\]

where \(t_\gamma \) is **eigenvalue** of \(\pm \gamma \) which is \(> 1 \),

\(n_\gamma \) is an integer \(\geq 1 \).

NOTE: \(\pm \gamma \) is conjugate to \(\left(\begin{array}{cc} t_\gamma & 0 \\ 0 & t_\gamma^{-1} \end{array} \right) \).
If $M_i = \mathbb{H}/\Gamma_i$ ($i = 1, 2$) are length-commensurable then:

- for any nontrivial semi-simple $\gamma_1 \in \Gamma_1$ there exists a nontrivial semi-simple $\gamma_2 \in \Gamma_2$ such that

$$n_1 \cdot \log t_{\gamma_1} = n_2 \cdot \log t_{\gamma_2}$$

for some integers $n_1, n_2 \geq 1$, and vice versa.
Geometric perspective

If $M_i = \mathbb{H}/\Gamma_i$ ($i = 1, 2$) are length-commensurable then:

- for any nontrivial semi-simple $\gamma_1 \in \Gamma_1$ there exists a nontrivial semi-simple $\gamma_2 \in \Gamma_2$ such that

\[n_1 \cdot \log t_{\gamma_1} = n_2 \cdot \log t_{\gamma_2} \]

for some integers $n_1, n_2 \geq 1$, and vice versa.

So,

\[t_{\gamma_1}^{n_1} = t_{\gamma_2}^{n_2} \]
This means that

\[\chi_1(\gamma_1) = \chi_2(\gamma_2) \neq 1 \]

where \(\chi_i \) is the character of the maximal \(\mathbb{R} \)-torus \(T_i \subset \text{SL}_2 \) corresponding to \(\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mapsto t^{n_i} \).
Geometric perspective

This means that

$$\chi_1(\gamma_1) = \chi_2(\gamma_2) \neq 1$$

where χ_i is the character of the maximal \mathbb{R}-torus $T_i \subset \text{SL}_2$ corresponding to $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mapsto t^{n_i}$.

It follows that

Γ_1 and Γ_2 are weakly commensurable.
1. Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2. Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3. Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
Philosophy: An arithmetic group is a group that “looks like” $SL_n(\mathbb{Z})$.
Philosophy: An arithmetic group is a group that "looks like" $SL_n(\mathbb{Z})$.

More precisely: Let $G \subset GL_n$ be an algebraic \mathbb{Q}-group. Set

$$G(\mathbb{Z}) = G \cap GL_n(\mathbb{Z}).$$

Subgroups of $G(F)$, where F/\mathbb{Q}, commensurable with $G(\mathbb{Z})$ are called arithmetic.
Philosophy: An arithmetic group is a group that “looks like” $SL_n(\mathbb{Z})$.

More precisely: Let $G \subset GL_n$ be an algebraic \mathbb{Q}-group. Set

$$G(\mathbb{Z}) = G \cap GL_n(\mathbb{Z}).$$

Subgroups of $G(F)$, where F/\mathbb{Q}, commensurable with $G(\mathbb{Z})$ are called arithmetic.

More generally: For a number field K and a set S of places of K, containing all archimedean ones, $\mathcal{O}(S)$ denotes ring of S-integers.

E.g.: If $K = \mathbb{Q}$ and $S = \{\infty, 2\}$ then $\mathcal{O}(S) = \mathbb{Z}[1/2]$.
Philosophy: An arithmetic group is a group that “looks like” SL_n(\mathbb{Z}).

More precisely: Let $G \subset \text{GL}_n$ be an algebraic \mathbb{Q}-group. Set $G(\mathbb{Z}) = G \cap \text{GL}_n(\mathbb{Z})$.

Subgroups of $G(F)$, where F/\mathbb{Q}, commensurable with $G(\mathbb{Z})$ are called arithmetic.

More generally: For a number field K and a set S of places of K, containing all archimedean ones, $\mathcal{O}(S)$ denotes ring of S-integers.

Given an algebraic K-group $G \subset \text{GL}_n$, set $G(\mathcal{O}(S)) = G \cap \text{GL}_n(\mathcal{O}(S))$; subgroups of $G(F)$ (F/K) commensurable with $G(\mathcal{O}(S))$ are (K,S)-arithmetic.
What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?

E.g.: What is an arithmetic subgroup of $G(R)$ where $G = \text{SO}_3(f)$ and $f = x^2 + e \cdot y^2 - \pi \cdot z^2$?

We define arithmetic subgroups of $G(F)$ in terms of forms of G over subfields of F that are number fields.

We can consider rational quadratic forms R-equivalent to f: $f_1 = x^2 + y^2 - 3z^2$ or $f_2 = x^2 + 2y^2 - 7z^2$.
What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?

E.g.: What is an arithmetic subgroup of $G(\mathbb{R})$ where

$$G = \text{SO}_3(f) \quad \text{and} \quad f = x^2 + e \cdot y^2 - \pi \cdot z^2?$$
What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?

E.g.: What is an arithmetic subgroup of \(G(\mathbb{R}) \) where

\[
G = \text{SO}_3(f) \quad \text{and} \quad f = x^2 + e \cdot y^2 - \pi \cdot z^2 ?
\]

We define arithmetic subgroups of \(G(F) \) in terms of forms of \(G \) over subfields of \(F \) that are number fields.
What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?

E.g.: What is an arithmetic subgroup of $G(\mathbb{R})$ where

$$G = \text{SO}_3(f) \quad \text{and} \quad f = x^2 + e \cdot y^2 - \pi \cdot z^2?$$

We define arithmetic subgroups of $G(F)$ in terms of forms of G over subfields of F that are number fields.

We can consider rational quadratic forms \mathbb{R}-equivalent to f:

$$f_1 = x^2 + y^2 - 3z^2 \quad \text{or} \quad f_2 = x^2 + 2y^2 - 7z^2.$$
Then $SO_3(f_i) \simeq SO_3(f)$ over \mathbb{R}, and

$$\Gamma_i := SO_3(f_i) \cap GL_3(\mathbb{Z})$$

are arithmetic subgroups of $G(\mathbb{R})$ for $i = 1, 2$.
Then \(SO_3(f_i) \simeq SO_3(f) \) over \(\mathbb{R} \), and

\[
\Gamma_i := SO_3(f_i) \cap GL_3(\mathbb{Z})
\]

are \textbf{arithmetic subgroups} of \(G(\mathbb{R}) \) for \(i = 1, 2 \).

One can also consider \(K = \mathbb{Q}(\sqrt{2}) \subset \mathbb{R} \) and \(f_3 = x^2 + y^2 - \sqrt{2}z^2 \). Then

\[
\Gamma_3 = SO_3(f_3) \cap GL_3(\mathbb{Z}[\sqrt{2}])
\]

is an \textbf{arithmetic subgroup} of \(G(\mathbb{R}) \) over \(K \).
Then $\text{SO}_3(f_i) \simeq \text{SO}_3(f)$ over \mathbb{R}, and

$$\Gamma_i := \text{SO}_3(f_i) \cap \text{GL}_3(\mathbb{Z})$$

are arithmetic subgroups of $G(\mathbb{R})$ for $i = 1, 2$.

One can also consider $K = \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $f_3 = x^2 + y^2 - \sqrt{2}z^2$. Then

$$\Gamma_3 = \text{SO}_3(f_3) \cap \text{GL}_3(\mathbb{Z}[\sqrt{2}])$$

is an arithmetic subgroup of $G(\mathbb{R})$ over K.

One can further replace integers by S-integers, etc.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi: G \to \overline{G}$ be isogeny onto adjoint group.

1. a number field K with a fixed embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi: G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a number field K with a fixed embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \cong \overline{G}$ over F.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi: G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a **number field** K with a **fixed** embedding $K \hookrightarrow F$;
2. a **finite set** $S \subset V^K$ containing V^K;
3. an F/K-form G of \overline{G}, i.e. $FG \simeq \overline{G}$ over F.

Andrei Rapinchuk (UVA)
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi: G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a **number field** K with a **fixed** embedding $K \hookrightarrow F$;
2. a **finite set** $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.
Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi: G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a number field K with a fixed embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_∞;
3. an F/K-form G of \overline{G}, i.e. $F G \simeq \overline{G}$ over F.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F = 0$, and $\pi: G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a number field K with a fixed embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \cong \overline{G}$ over F.

Then subgroups $\Gamma \subset G(F)$ such that $\pi(\Gamma)$ is commensurable with $\mathcal{G}(\mathcal{O}_K(S))$ are called (\mathcal{G}, K, S)-arithmetic.
Convention: S does not contain nonarchimedean v such that G is K_v-anisotropic.
Convention: S does not contain nonarchimedean v such that G is K_v-anisotropic.

We do NOT fix an F-isomorphism $F G \simeq \overline{G}$ in n° 3; by varying it we obtain a class of groups invariant under F-automorphisms.
Convention: S does not contain nonarchimedean v such that G is K_v-anisotropic.

We do NOT fix an F-isomorphism $F \mathcal{G} \simeq \overline{G}$ in n° 3; by varying it we obtain a class of groups invariant under F-automorphisms.

Proposition. Let G_1 and G_2 be connected absolutely almost simple algebraic groups defined over a field F, (char F = 0), and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic group $(i = 1, 2)$.

Then Γ_1 and Γ_2 are commensurable up to an F-isomorphism between \overline{G}_1 and \overline{G}_2 if and only if

- $K_1 = K_2 =: K$;
- $S_1 = S_2$;
- G_1 and G_2 are K-isomorphic.
In above example, Γ_1, Γ_2 and Γ_3 are \textit{pairwise noncommensurable}.
In above example, \(\Gamma_1, \Gamma_2 \) and \(\Gamma_3 \) are *pairwise noncommensurable*.

Recall: \(f_1 = x^2 + y^2 - 3z^2, \; f_2 = x^2 + 2y^2 - 7z^2, \; f_3 = x^2 + y^2 - \sqrt{2}z^2 \).

\(\bullet \) \(\Gamma_1 \) and \(\Gamma_2 \) are **NOT** commensurable b/c the corresponding \(\mathbb{Q} \)-forms \(G_1 = \text{SO}_3(f_1) \) and \(G_2 = \text{SO}_3(f_2) \) are **NOT** isomorphic over \(\mathbb{Q} \).
In above example, \(\Gamma_1, \Gamma_2 \) and \(\Gamma_3 \) are *pairwise noncommensurable*.

Recall: \(f_1 = x^2 + y^2 - 3z^2, \ f_2 = x^2 + 2y^2 - 7z^2, \ f_3 = x^2 + y^2 - \sqrt{2}z^2. \)

• \(\Gamma_1 \) and \(\Gamma_2 \) are **NOT** commensurable b/c the corresponding \(\mathbb{Q} \)-forms \(\mathcal{G}_1 = \text{SO}_3(f_1) \) and \(\mathcal{G}_2 = \text{SO}_3(f_2) \) are **NOT** isomorphic over \(\mathbb{Q} \).

• \(\Gamma_3 \) is **NOT** commensurable to either \(\Gamma_1 \) or \(\Gamma_2 \) b/c they have **different fields of definition:**

\[
\mathbb{Q}(\sqrt{2}) \text{ for } \Gamma_3, \quad \text{and } \mathbb{Q} \text{ for } \Gamma_1 \text{ and } \Gamma_2.
\]
Outline

1. Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2. Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3. Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
Results of Prasad-R. and follow-up results Garibaldi, Garibaldi-R. provide a (virtually) complete analysis of weak commensurability for arithmetic groups.

In particular:

- we know when weak commensurability \Rightarrow commensurability (answer depends on Lie type of algebraic group)

- arithmetic groups weakly commensurable to a given one form finitely many commensurability classes.
Results of Prasad-R. and follow-up results Garibaldi, Garibaldi-R. provide a (virtually) complete analysis of weak commensurability for arithmetic groups.

In particular:

- we know when weak commensurability \Rightarrow commensurability (answer depends on Lie type of algebraic group)

- arithmetic groups weakly commensurable to a given one form finitely many commensurability classes.
Results of Prasad-R. and follow-up results Garibaldi, Garibaldi-R. provide a (virtually) **complete analysis** of weak commensurability for **arithmetic groups**.

In particular:

- we know when **weak commensurability** \Rightarrow **commensurability**

 (answer depends on Lie type of algebraic group)

- arithmetic groups **weakly commensurable** to a given one form **finitely many** commensurability classes.
Theorem 1. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.
Theorem 1. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.

If there exist finitely generated Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i=1,2$) that are weakly commensurable then

either G_1 and G_2 have the same Killing-Cartan type, or

one of them is of type B_n and the other is of type C_n ($n \geq 3$).
Theorem 1. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.

If there exist finitely generated Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) that are weakly commensurable then

either G_1 and G_2 have the same Killing-Cartan type, or one of them is of type B_n and the other is of type C_n ($n \geq 3$).

Note: groups of types B_n and C_n can indeed contain Zariski-dense weakly commensurable subgroups.
Theorem 2. Let \(\Gamma_i \subset G_i(F) \) be a Zariski-dense \((G_i, K_i, S_i)\)-arithmetic subgroup for \(i = 1, 2 \).

If \(\Gamma_1 \) and \(\Gamma_2 \) are weakly commensurable then \(K_1 = K_2 \) and \(S_1 = S_2 \).
Theorem 2. Let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic subgroup for $i = 1, 2$.

If Γ_1 and Γ_2 are weakly commensurable then $K_1 = K_2$ and $S_1 = S_2$.

The forms G_1 and G_2 may NOT be K-isomorphic in general, but we have the following.
Theorem 2. Let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic subgroup for $i = 1, 2$.

If Γ_1 and Γ_2 are weakly commensurable then $K_1 = K_2$ and $S_1 = S_2$.

Theorem 3. Let G_1 and G_2 be of the same type different from A_n, D_{2n+1} with $n > 1$, and E_6, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K, S)-arithmetic subgroup.

If Γ_1 and Γ_2 are weakly commensurable then $G_1 \simeq G_2$ over K, and hence Γ_1 and Γ_2 are commensurable (up to an F-isomorphism between \overline{G}_1 and \overline{G}_2).
Theorem 2. Let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic subgroup for $i = 1, 2$. If Γ_1 and Γ_2 are weakly commensurable then $K_1 = K_2$ and $S_1 = S_2$.

Theorem 3. Let G_1 and G_2 be of the same type different from A_n, D_{2n+1} with $n > 1$, and E_6, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K, S)-arithmetic subgroup.

If Γ_1 and Γ_2 are weakly commensurable then $G_1 \simeq G_2$ over K, and hence Γ_1 and Γ_2 are commensurable (up to an F-isomorphism between \overline{G}_1 and \overline{G}_2).

For types A_n, D_{2n+1} ($n > 1$) and E_6 we have counterexamples.
Theorem 4. Let $\Gamma_1 \subset G_1(F)$ be a Zariski-dense (K,S)-arithmetic subgroup. Then the set of Zariski-dense (K,S)-arithmetic subgroups $\Gamma_2 \subset G_2(F)$ that are weakly commensurable to Γ_1, is a union of finitely many commensurability classes.
Theorem 4. Let $\Gamma_1 \subset G_1(F)$ be a Zariski-dense (K,S)-arithmetic subgroup. Then the set of Zariski-dense (K,S)-arithmetic subgroups $\Gamma_2 \subset G_2(F)$ that are weakly commensurable to Γ_1, is a union of finitely many commensurability classes.

Theorem 5. Let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i,K,S)-arithmetic subgroup for $i = 1, 2$. If Γ_1 and Γ_2 are weakly commensurable then $\text{rk}_K G_1 = \text{rk}_K G_2$; in particular, if G_1 is K-isotropic then so is G_2.
Outline

1. Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2. Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3. Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
Notations

- G a connected absolutely (almost) simple algebraic group over \mathbb{R}; $\mathcal{G} = G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G}; $\mathfrak{K} = \mathcal{K}\backslash\mathcal{G}$ associated symmetric space, $\text{rk}\, \mathfrak{K} = \text{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of \mathcal{G}, $\mathfrak{X}_\Gamma = \mathfrak{K}/\Gamma$
- \mathfrak{X}_Γ is arithmetically defined if Γ is arithmetic (for $S = V^K_{\infty}$) as defined earlier
Notations

- G a connected absolutely (almost) simple algebraic group over \mathbb{R}; $G = G(\mathbb{R})$

- \mathcal{K} a maximal compact subgroup of G; $X = \mathcal{K}\backslash G$ associated symmetric space, $\text{rk } X = \text{rk}_{\mathbb{R}} G$

- Γ a discrete torsion-free subgroup of G, $X_{\Gamma} = X/\Gamma$

- X_{Γ} is arithmetically defined if Γ is arithmetic (for $S = V^K_\infty$) as defined earlier
Notations

- G a **connected absolutely (almost) simple algebraic group** \overline{G}; $G = G(\mathbb{R})$
- K a **maximal compact subgroup** of G; $X = K \backslash G$ **associated symmetric space**, $\text{rk } X = \text{rk}_\mathbb{R} G$
- Γ a **discrete torsion-free subgroup** of G, $X_\Gamma = X / \Gamma$
- X_Γ is **arithmetically defined** if Γ is arithmetic (for $S = V^K_\infty$) as defined earlier
Notations

- G a connected absolutely (almost) simple algebraic group over \mathbb{R}; $\mathcal{G} = G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G}; $\mathcal{X} = \mathcal{K}\backslash\mathcal{G}$ associated symmetric space, $\text{rk} \, \mathcal{X} = \text{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of \mathcal{G}, $\mathcal{X}_\Gamma = \mathcal{X}/\Gamma$
- \mathcal{X}_Γ is arithmetically defined if Γ is arithmetic (for $S = V^K_\infty$) as defined earlier
Notations

- G a connected absolutely (almost) simple algebraic group over \mathbb{R}; $G = G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of G; $\mathfrak{x} = \mathcal{K}\backslash G$ associated symmetric space, $\text{rk} \mathfrak{x} = \text{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of G, $\mathfrak{x}_\Gamma = \mathfrak{x}/\Gamma$
- \mathfrak{x}_Γ is arithmetically defined if Γ is arithmetic (for $S = V^K_\infty$) as defined earlier

Given $G_1, G_2, \Gamma_i \subset G_i := G_i(\mathbb{R})$ etc. as above, we will denote corresponding locally symmetric spaces by \mathfrak{x}_{Γ_i}.
Fact. Assume that X_{Γ_1} and X_{Γ_2} are of finite volume. If X_{Γ_1} and X_{Γ_2} are length-commensurable then (under minor technical assumptions) Γ_1 and Γ_2 are weakly commensurable.

- in rank one case - on the result of Gel’fond and Schneider (1934): if α and β are algebraic numbers $\neq 0, 1$, then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.

- in higher rank case - on the following Conjecture (Shanuel) If $z_1, \ldots, z_n \in \mathbb{C}$ are linearly independent over \mathbb{Q}, then the transcendence degree of field generated by $z_1, \ldots, z_n; e^{z_1}, \ldots, e^{z_n}$ is $\geq n$.
Fact. Assume that \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} are of \textit{finite volume}. If \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} are \textit{length-commensurable} then (under minor technical assumptions) Γ_1 and Γ_2 are \textit{weakly commensurable}.

The proof relies:

- **in rank one case** - on the result of Gel’fond and Schneider (1934): if α and β are algebraic numbers $\neq 0, 1$, then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.

- **in higher rank case** - on the following

 Conjecture (Shanuel) If $z_1, \ldots, z_n \in \mathbb{C}$ are linearly independent over \mathbb{Q}, then the transcendence degree of field generated by $z_1, \ldots, z_n; e^{z_1}, \ldots, e^{z_n}$ is $\geq n$.
Fact. Assume that \(\mathfrak{X}_{\Gamma_1} \) and \(\mathfrak{X}_{\Gamma_2} \) are of finite volume. If \(\mathfrak{X}_{\Gamma_1} \) and \(\mathfrak{X}_{\Gamma_2} \) are length-commensurable then (under minor technical assumptions) \(\Gamma_1 \) and \(\Gamma_2 \) are weakly commensurable.

The proof relies:

- in rank one case - on the result of Gel’fond and Schneider (1934): if \(\alpha \) and \(\beta \) are algebraic numbers \(\neq 0,1 \), then \(\frac{\log \alpha}{\log \beta} \) is either rational or transcendental.

- in higher rank case - on the following Conjecture (Shanuel) If \(z_1, \ldots, z_n \in \mathbb{C} \) are linearly independent over \(\mathbb{Q} \), then the transcendence degree of field generated by \(z_1, \ldots, z_n; e^{\bar{z}_1}, \ldots, e^{\bar{z}_n} \) is \(\geq n \).
Outline

1. Geometric introduction
 - Isospectral and length-commensurable manifolds
 - Hyperbolic manifolds

2. Weakly commensurable arithmetic groups
 - Definition of weak commensurability
 - Arithmetic groups
 - Results on weak commensurability

3. Back to geometry
 - Length-commensurability vs. weak commensurability
 - Some results
Theorem 6. Let \mathfrak{X}_{Γ_1} be an arithmetically defined locally symmetric space.

- The set of arithmetically defined locally symmetric spaces \mathfrak{X}_{Γ_2} that are length-commensurable to \mathfrak{X}_{Γ_1}, is a union of finitely many commensurability classes.

- It consists of a single commensurability class if G_1 and G_2 have the same type different from A_n, D_{2n+1} with $n > 1$ and E_6.
Theorem 6. Let \mathcal{X}_{Γ_1} be an arithmetically defined locally symmetric space.

- The set of arithmetically defined locally symmetric spaces \mathcal{X}_{Γ_2} that are length-commensurable to \mathcal{X}_{Γ_1}, is a union of finitely many commensurability classes.

- It consists of a single commensurability class if G_1 and G_2 have the same type different from A_n, D_{2n+1} with $n > 1$ and E_6.

Theorem 7. Let \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} be locally symmetric spaces of finite volume, and assume that one of the spaces is arithmetically defined.

If \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} are length-commensurable then compactness of one of the spaces implies compactness of the other.
Theorem 8. Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be isospectral compact locally symmetric spaces.

If \mathfrak{X}_{Γ_1} is arithmetically defined then so is \mathfrak{X}_{Γ_2}.
Theorem 8. Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be isospectral compact locally symmetric spaces.

If \mathfrak{X}_{Γ_1} is arithmetically defined then so is \mathfrak{X}_{Γ_2}.

Theorem 9. Let \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} be isospectral compact locally symmetric spaces, and assume that at least one of the spaces is arithmetically defined.

Then $G_1 = G_2 =: G$.

Moreover, unless G is of type A_n, D_{2n+1} ($n > 1$) or E_6, spaces \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable.