ON THE SLICING GENUS OF LEGENDRIAN KNOTS

HAO WU

Abstract. We apply Heegaard-Floer homology theory to establish generalized slicing Bennequin inequalities closely related to a recent result of T. Mrowka and Y. Rollin proved using Seiberg-Witten monopoles.

1. Introduction

Let ξ be an oriented 2-plane distribution on an oriented 3-manifold M. (Unless otherwise specified, all 3-manifolds in this paper are closed, connected and oriented.) ξ is said to be a contact structure on M if there is a 1-form α on M so that $\xi = \ker \alpha$, $d\alpha|_\xi > 0$ and $\alpha \wedge d\alpha > 0$. Such a 1-form is called a contact form for ξ. And (M, ξ) is called a contact 3-manifold. A knot K in a contact 3-manifold (M, ξ) is called a Legendrian knot if it's tangent to ξ. (Unless otherwise specified, all the knots in this paper are oriented.) (M, ξ) is said to be overtwisted if there is an embedded disk D in M s.t. ∂D is Legendrian, but D is transverse to ξ along ∂D. If (M, ξ) is not overtwisted, then it's called tight. For example, the standard contact structure ξ_{st} on S^3 given by the complex tangencies of the unit 3-sphere in \mathbb{C}^2 is tight. Overtwisted contact structures are kind of "soft", and are completely classified up to isotopy by the homotopy type of the underlying 2-plane distribution. (See [2].) Tight contact structures display more rigidity, and possess more interesting properties.

There are two "classical" invariants, the Thurston-Bennequin number $tb(K)$ and the rotation number $r(K)$, for a Legendrian knot K in (S^3, ξ_{st}). These are generalized to null-homologous Legendrian knots in any contact 3-manifold (c.f. [4]). Let K be a null-homologous Legendrian knot in a contact 3-manifold (M, ξ), and $\Sigma \subset M$ a Seifert surface of K. Let K' be a knot obtained by pushing K slightly in the direction of a vector field that is transverse to ξ along K. Then the Thurston-Bennequin number $tb(K, \Sigma)$ is defined to be the intersection number $\#(K' \cap \Sigma)$. Let u be the positive unit tangent vector field of K. Then the rotation number $r(K, \Sigma)$ is defined to be the pairing $\langle c_1(\xi, u), [\Sigma] \rangle$, where $[\Sigma] \in H_2(M, K)$ is the relative homology class represented by Σ. If we reverse the orientation of K, then $tb(K, \Sigma)$ is unchanged, and $r(K, \Sigma)$ changes sign. Note that $tb(K, \Sigma)$ and $r(K, \Sigma)$ depend on Σ only through the relative homology class $[\Sigma]$. If M is a homology sphere, then $H_2(M, K) = \mathbb{Z}$, and tb, r are independent of Σ. In this case, we suppress Σ from the notation.

In [1], D. Bennequin proved the following Bennequin inequality:

For any Legendrian knot K in (S^3, ξ_{st}),

\begin{equation}
 tb(K) + |r(K)| \leq 2g(K) - 1,
\end{equation}

where $g(K)$ is the genus of K.

1
In [4], Y. Eliashberg generalized (1) to any tight contact 3-manifold, and get:

For any null-homologous Legendrian knot K in a tight contact 3-manifold, and any Seifert surface Σ of K,

$$tb(K, \Sigma) + |r(K, \Sigma)| \leq -\chi(\Sigma).$$

In [16], L. Rudolph strengthened (1) to the slicing Bennequin inequality:

For any Legendrian knot K in (S^3, ξ_{st}),

$$tb(K) + |r(K)| \leq 2g_s(K) - 1,$$

where $g_s(K)$ is the slicing genus of K.

Let W be an oriented 4-manifold with connected boundary $\partial W = M$, and ξ a contact structure on M. Assume that K is a Legendrian knot in (M, ξ), and Σ is an embedded surface in W bounded by K. In [9], T. Mrowka and Y. Rollin extended the definitions of tb and r to this situation. The following is their construction. Let v be a vector field on M transverse to ξ. Extend v to a vector field on W, and denote by $\{\varphi_t\}$ the flow of this extended vector field. For a small $\varepsilon > 0$, let $K' = \varphi_\varepsilon(K)$ and $\Sigma' = \varphi_\varepsilon(\Sigma)$. Then the intersection number $\#(\Sigma \cap \Sigma')$ is well defined. The Thurston-Bennequin number is defined to be $tb(K, \Sigma) = \#(\Sigma \cap \Sigma')$. Note that $tb(K, \Sigma)$ depends only through the relative homology class $[\Sigma] \in H_2(W, K)$, and, when $\Sigma \subset M$, this definition coincide with the previous definition of tb. Assume $s \in Spin^C(W)$, and there is an isomorphism $h : s|_M \rightarrow t_\xi$, where t_ξ is the canonical $Spin^C$-structure on M associated to ξ. Choose a complex structure on ξ. Then $det(t_\xi)$ is canonically isomorphic to ξ, and h induces an isomorphism $det(h) : det(s)|_M \rightarrow \xi$. Let u be the positive unit tangent vector field of K. The rotation number is defined to be $r(K, \Sigma, s, h) = \langle c_1(det(s), det(h)^{-1}(u)), [\Sigma] \rangle$. Note that $r(K, \Sigma, s, h)$ depends on Σ only through the relative homology class $[\Sigma] \in H_2(W, K)$, depends on the pair (s, h) only through the isomorphism type of it in $Spin^C(W, \xi)$, and, again, when $\Sigma \subset M$, r is independent of (s, h) and coincide with the previous definition of the rotation number. As before, under the reversal of the orientation of K, tb is unchanged, and r changes sign. In the special case that there is a symplectic form ω on W such that (W, ω) is a weak symplectic filling of (M, ξ), i.e., $\omega|_\xi > 0$, this symplectic form ω determines a canonical $Spin^C$-structure s_ω on W and a canonical isomorphism $h_\omega : s_\omega|_M \rightarrow t_\xi$. Write $r(K, \Sigma, \omega) = r(K, \Sigma, s_\omega, h_\omega)$.

In [9], T. Mrowka and Y. Rollin prove the following generalized slicing Bennequin inequality using Seiberg-Witten monopole invariants.

Theorem 1.1 (9, Theorem A). Let W be an oriented 4-manifold with connected boundary $\partial W = M$, and ξ a contact structure on M. Let K be a Legendrian knot in (M, ξ), and Σ an embedded surface in W bounded by K. Assume there is an element $(s, h) \in Spin^C(W, \xi)$, such that $SW(s, h) \neq 0$. Then

$$tb(K, \Sigma) + |r(K, \Sigma, s, h)| \leq -\chi(\Sigma).$$

Specially, when (W, ω) is a weak symplectic filling of (M, ξ) (c.f. [8], Theorem 1.1), we have

$$tb(K, \Sigma) + |r(K, \Sigma, \omega)| \leq -\chi(\Sigma).$$
There are two approaches in the study of 3-dimensional gauge theory: the Seiberg-Witten-Floer approach by counting solutions to the Seiberg-Witten equation; and the Heegaard-Floer approach by counting holomorphic curves. Though the techniques used in these two approaches are quite different, it is conjectured that these give equivalent theories as their 4-dimensional counterparts do. In this paper, we use Heegaard-Floer homology to prove the following generalizations of the slicing Bennequin inequality, which further demonstrates the similarity between the two theories.

Theorem 1.2. Let W be an oriented 4-manifold with connected boundary $\partial W = M$, ξ a contact structure on M, and K a Legendrian knot in (M, ξ).

(a) If there is a Spin^C-structure s on W with $F_{W \setminus B, s|W \setminus B}(c^+(\xi)) \neq 0$, where B is an embedded 4-ball in the interior of W, then there is an isomorphism $h : s|_M \to t_\xi$ such that, for any embedded surface Σ in W bounded by K,

$$tb(K, \Sigma) + |r(K, \Sigma, s, h)| \leq -\chi(\Sigma).$$

(b) If (W, ω) is a weak symplectic filling of (M, ξ), then, for any embedded surface Σ in W bounded by K,

$$tb(K, \Sigma) + |r(K, \Sigma, \omega)| \leq -\chi(\Sigma).$$

2. **Heegaard-Floer Homology**

In this section, we review aspects of the Heegaard-Floer theory necessary for the proof of Theorem 1.2.

2.1. **Heegaard-Floer homology.** In [14], P. Ozsváth and Z. Szabó defined the Heegaard-Floer homology groups of 3-manifolds. Given a connected oriented closed 3-manifold M and a Spin^C-structure t on M, there are four Heegaard-Floer homology groups associated to M: $HF^\infty(M, t)$, $HF^-(M, t)$, $HF^+(M, t)$, and $HF(M, t)$. The first three are $\mathbb{Z}[U]$-modules, and the last one is a \mathbb{Z}-module. In this paper, we will mostly use $HF^+(M, t)$. Moreover, given a $\mathbb{Z}[H^1(M)]$-module \mathcal{M}, there is the notion of \mathcal{M}-twisted Heegaard-Floer homology $HF^+(M, t; \mathcal{M})$, which is a $\mathbb{Z}[U] \otimes \mathbb{Z}[H^1(M)]$-module (c.f. [15]).

If \mathcal{M}_1 and \mathcal{M}_2 are two $\mathbb{Z}[H^1(M)]$-modules, and $\theta : \mathcal{M}_1 \to \mathcal{M}_2$ is a homomorphism, then θ naturally induces a homomorphism

$$\Theta : HF^+(M, t; \mathcal{M}_1) \to HF^+(M, t; \mathcal{M}_2).$$

If we consider \mathbb{Z} as a $\mathbb{Z}[H^1(M)]$-module, then $HF^+(M, t; \mathbb{Z})$ is the (untwisted) Heegaard-Floer homology $HF^+(M, t)$ defined with the appropriate coherent orientation system, and the $2^{b_1(M)}$ choices of $\mathbb{Z}[H^1(M)]$-module structures on \mathbb{Z} correspond to the $2^{b_1(M)}$ coherent orientation systems on the moduli spaces (c.f. [14] [15]).

In [13], P. Ozsváth and Z. Szabó introduced the Heegaard-Floer homology twisted by a 2-form. More precisely, consider the polynomial ring

$$\mathbb{Z}[\mathbb{R}] = \{ \sum_{i=1}^k c_i T^{s_i} \mid k \in \mathbb{Z}_{\geq 0}, c_i \in \mathbb{Z}, s_i \in \mathbb{R} \}. $$
Let $[\omega] \in H^2(M; \mathbb{R})$. The action $e^{[\nu]} \cdot T^s = T^{s + f_1 \nu \wedge \omega}$, where $[\nu] \in H^1(M)$, gives $\mathbb{Z}[\mathbb{R}]$ a $\mathbb{Z}[H^1(M)]$-module structure. Denote the module by $\mathbb{Z}[\mathbb{R}][\omega]$. Then the Heegaard-Floer homology of M twisted by $[\omega]$ is defined to be

$$HF^+(M, t; [\omega]) = HF^+(M, t; \mathbb{Z}[\mathbb{R}][\omega]).$$

In [15], P. Ozsváth and Z. Szabó deduced the following adjunction inequality:

Theorem 2.1 ([15], Theorem 7.1). Let Σ be a close oriented surface embedded in a 3-manifold M with $g(\Sigma) \leq 1$, t a SpinC-structure on M, and \mathcal{M} a $\mathbb{Z}[H^1(M)]$-module. If $HF^+(M, t; \mathcal{M}) \neq 0$, then

$$\langle c_1(t), [\Sigma] \rangle \leq -\chi(\Sigma).$$

Note that, although the adjunction inequality is only prove for untwisted Heegaard-Floer homology in [15], the proof there readily adapts to the twisted case.

2.2. Homomorphisms induced by cobordisms.

Let W be a cobordism from a 3-manifold M_1 to another 3-manifold M_2, and s a SpinC-structure on W. Then W and s induce a homomorphism

$$F^+_{W,s} : HF^+(M_1, s|_{M_1}) \to HF^+(M_2, s|_{M_2}).$$

Let \mathcal{M} be a $\mathbb{Z}[H^1(M_1)]$-module, and $\delta : H^1(\partial W) \to H^2(W, \partial W)$ the connecting map in the long exact sequence of the pair $(W, \partial W)$. Define

$$\mathcal{M}(W) = \mathcal{M} \otimes_{\mathbb{Z}[H^1(M_1)]} \mathbb{Z}[\delta H^1(\partial W)],$$

where the action of $\mathbb{Z}[H^1(M_1)]$ on $\mathbb{Z}[\delta H^1(\partial W)]$ is induced by $e^{[\nu]} \mapsto e^{\delta([\nu])}$. Then W and s also induce a homomorphism

$$F^+_{W,s} : HF^+(M_1, s|_{M_1}; \mathcal{M}) \to HF^+(M_2, s|_{M_2}; \mathcal{M}(W)).$$

The definition of this homomorphism depends on some auxiliary choices. So it’s only define up to right action by units of $\mathbb{Z}[H^1(M_1)]$ and left action by units of $\mathbb{Z}[H^1(M_2)]$. Alternatively, we consider it as an equivalence class of homomorphisms from $HF^+(M_1, s|_{M_1}; \mathcal{M})$ to $HF^+(M_2, s|_{M_2}; \mathcal{M}(W))$, and denote this equivalence class by $[F^+_{W,s}]$.

Specially, for an $[\omega] \in H^2(W; \mathbb{R})$, let $\mathcal{M} = \mathbb{Z}[\mathbb{R}][\omega|_{M_1}]$. There is a natural homomorphism $\theta : \mathcal{M}(W) \to \mathbb{Z}[\mathbb{R}][\omega|_{M_2}]$ induced by $T^s \otimes e^{\delta([\nu])} \mapsto T^{s + f_1 \nu \wedge \omega}$, where $[\nu] \in H^1(M_2)$. This map induces a homomorphism Θ between the Heegaard-Floer homologies of M_2 twisted by these two $\mathbb{Z}[H^1(M_2)]$-modules. Composing it with $F^+_{W,s}$, we get a homomorphism

$$F^+_{W,s}[\omega] = \Theta \circ F^+_{W,s} : HF^+(M_1, s|_{M_1}; [\omega|_{M_1}]) \to HF^+(M_2, s|_{M_2}; [\omega|_{M_2}]).$$

Again, $F^+_{W,s}[\omega]$ is only defined up to multiplication by $\pm T^s$, and is consider as an equivalent class $[F^+_{W,s}[\omega]]$ (c.f. [13]).

The homomorphisms defined here satisfy the following composition laws:
Theorem 2.2 ([10], Theorems 3.4, 3.9). Let \(W_1 \) be a cobordism from a 3-manifold \(M_1 \) to another 3-manifold \(M_2 \), and \(W_1 \) a cobordism from \(M_2 \) to a third 3-manifold \(M_3 \). Then \(W = W_1 \cup_{M_2} W_2 \) is a cobordism from \(M_1 \) to \(M_3 \). We have:

(a) For any \(\text{Spin}^C \)-structures \(s_i \in \text{Spin}^C(W_i) \), \(i = 1, 2 \),

\[
F_{W_2, s_2}^+ \circ F_{W_1, s_1}^+ = \sum_{\{s \in \text{Spin}^C(W) \mid s|_{W_i} \cong s_i\}} \pm F_{W, s}^+.
\]

(b) Let \(s \in \text{Spin}^C(W) \), and \(s_i = s|_{W_i} \). For any \(\mathbb{Z}[H^1(M)] \)-module \(\mathfrak{M} \), there are representatives \(F_{W_1, s_1}^+ \in \mathfrak{F}_{W_1, s_1}^+ \) and \(F_{W_2, s_2}^+ \in \mathfrak{F}_{W_2, s_2}^+ \) such that

\[
[F_{W, s}] = [\Pi \circ F_{W_1, s_1}^+ \circ F_{W_2, s_2}^+],
\]

where \(\Pi \) is induced by the natural homomorphism from \(\mathfrak{M}(W_1)(W_2) \) to \(\mathfrak{M}(W) \).

Combine Theorem 2.2 and the blow-up formula ([10], Theorem 3.7), we have the following theorem.

Theorem 2.3 ([10], Theorems 3.4, 3.7). Let \(W \) be a cobordism from a 3-manifold \(M_1 \) to another 3-manifold \(M_2 \), and \(s \) a \(\text{Spin}^C \)-structure on \(W \). Blow up an interior point of \(W \). We get a new cobordism \(\hat{W} \) from \(M_1 \) to \(M_2 \). Let \(\hat{s} \) be the lift of \(s \) to \(\hat{W} \) with \(\langle c_1(\hat{s}), [E] \rangle = -1 \), where \(E \) is the exceptional sphere. Then \(F_{W, s}^+ = F_{\hat{W}, \hat{s}}^+ \).

2.3. The contact invariant. In [12], P. Ozsváth and Z. Szabó defined the Ozsváth-Szabó invariants for contact 3-manifolds. For each contact 3-manifold \((M, \xi) \), it is an element \(c(\xi) \) of the quotient \(\widehat{HF}(-M, t_\xi)/\{\pm 1\} \), where \(t_\xi \) is the \(\text{Spin}^C \)-structure associated to \(\xi \). Let \(\iota : \widehat{HF}(-M) \to HF^+(M) \) be the natural map (c.f. [14]). We set \(c^+(\xi) = \iota(c(\xi)) \in HF^+(M, t_\xi)/\{\pm 1\} \). This version of the Ozsváth-Szabó contact invariants is easier to use for our purpose. Given a \(\mathbb{Z}[H^1(M)] \)-module \(\mathfrak{M} \), one can similarly define the twisted Ozsváth-Szabó contact invariant \(c^+(\xi; \mathfrak{M}) \in HF^+(M, t_\xi; \mathfrak{M})/\mathbb{Z}[H^1(M)]^\times \), where \(\mathbb{Z}[H^1(M)]^\times \) is the set of units of \(\mathbb{Z}[H^1(M)] \).

Specially, if \([\omega] \in H^2(M; \mathbb{R}) \), then we have the \([\omega] \)-twisted invariant \(c^+(\xi; [\omega]) \in HF^+(M, t_\xi; [\omega])/\{\pm T_s \mid s \in \mathbb{R} \} \) (c.f. [13]). These contact invariants vanish when \(\xi \) is overtwisted. Following properties of the Ozsváth-Szabó contact invariants are needed for the proof of Theorem 2.2.

Proposition 2.4 ([5], Proposition 3.3). Suppose that \((M', \xi') \) is obtained from \((M, \xi) \) by Legendrian surgery on a Legendrian link. Then we have \(F_{W, s_0}^+(c^+(\xi')) = c^+(\xi) \), where \(W \) is the cobordism induced by the surgery and \(s_0 \) is the canonical \(\text{Spin}^C \)-structure associated to the symplectic structure on \(W \). Moreover, \(F_{W, s}^+(c^+(\xi')) = 0 \) for any \(\text{Spin}^C \)-structure \(s \) on \(W \) with \(s \not\cong s_0 \).

Theorem 2.5 ([13], Theorem 4.2). Let \((M, \xi) \) be a contact 3-manifold with a weak symplectic filling \((W, \omega) \). Let \(B \) be an embedded 4-ball in the interior of \(W \). Consider \(W \setminus B \) as a cobordism from \(-M \) to \(-\partial B \). Then \(\sum_{W \setminus B, s_\omega} \langle c^+(\xi; [\omega|_{M}]) \rangle \neq 0 \), where \(s_\omega \) is the \(\text{Spin}^C \)-structure on \(W \) associated to \(\omega \).
In this section, we adapt T. Mrowka and Y. Rollin’s idea into the Heegaard-Floer setting, and prove Theorem 1.2.

Lemma 3.1 ([9]). Let W be an oriented 4-manifold with connected boundary $\partial W = M$, ξ a contact structure on M, and s a Spinc-structure on W with an isomorphism $h: s|_M \to t_\xi$. Assume K is a Legendrian knot in (M, ξ), and $\Sigma \subset W$ is an embedded surface bounded by K. Then there are a Legendrian knot K' in (M, ξ) and an embedded surface $\Sigma' \subset W$ bounded by K', such that $tb(K', \Sigma') \geq 1$, $\chi(\Sigma') \leq -1$, and $tb(K', \Sigma') + |r(K', \Sigma', s, h)| + \chi(\Sigma') = tb(K, \Sigma) + |r(K, \Sigma, s, h)| + \chi(\Sigma)$.

Proof. Let p be a point on K. There is a neighborhood U of p so that $(U, \xi|_U) \cong (\mathbb{R}^3, \xi_0)$, where ξ_0 is the standard contact structure on \mathbb{R}^3 defined by $dz - ydx$. By the following Legendrian Reidemeister move, we create a pair of cusps on the front projection of $K \cap U$ (c.f. [5]).

![Figure 1. Creating cusps](image)

Near a cusp, connect sum K with a Legendrian righthand trefoil knot T_r in U with $tb(T_r) = 1$. We get a new Legendrian knot K_1 and an embedded surface Σ_1 in W bounded by K_1, s.t., $tb(K_1, \Sigma_1) = tb(K, \Sigma) + 1$, $\chi(\Sigma_1) = \chi(\Sigma) - 1$, and $|r(K_1, \Sigma_1, s, h)| = |r(K, \Sigma, s, h)|$. Repeat this process, we will find a K' and a Σ' with the properties specified in the lemma. □

![Figure 2. Connect summing with T_r](image)

Proof of Theorem 1.2 By Lemma 3.1 we only need prove the theorem for K and Σ with $tb(K, \Sigma) \geq 1$ and $\chi(\Sigma) \leq -1$. We assume these are true throughout the proof.

We prove part (a) first. Performing Legendrian surgery along K gives a symplectic cobordism (V, ω') from (M, ξ) to another contact 3-manifold (M', ξ') (c.f. [17][18]). By Proposition 2.4 $F^+_{V, s_\omega}(c^+(\xi')) = c^+(\xi)$. Let $\bar{W} = W \cup_V V$. Then, by Theorem 2.2...
we have
\[\sum_{\{ \tilde{s} \in Spin^C(\tilde{W}) \mid \tilde{s}\mid W \cong \tilde{s}, \tilde{s}\mid V \cong \tilde{s}_W \}} \pm F^+_{W, \tilde{s}}(c^+(\xi')) = F^+_{W, \tilde{s}} \circ F^+_{V, \tilde{s}_W}(c^+(\xi')) = F^+_{W, \tilde{s}}(c^+(\xi)) \neq 0. \]

Thus, there is an \(\tilde{s} \in Spin^C(\tilde{W}) \) with \(\tilde{s}\mid W \cong \tilde{s} \), and \(\tilde{s}\mid V \cong \tilde{s}_W \), such that
\[F^\pm_{\tilde{W} \setminus \tilde{B}, \tilde{s}\mid \tilde{W} \setminus \tilde{B}}(c^+(\xi')) \neq 0. \]

Let \(h_1 : \tilde{s}\mid W \to \tilde{s} \), \(h_2 : \tilde{s}\mid V \to \tilde{s}_W \) be the above isomorphisms, and \(h_3 : \tilde{s}_W \mid M \to t_\xi \) the natural projection. And define \(h : \tilde{s}|_M \to t_\xi \) by \(h = h_3 \circ h_2 \circ h^{-1}_1 \).

Capping off \(\Sigma \) by the core of the 2-handle, we get an embedded closed surface \(\hat{\Sigma} \) satisfying \(\chi(\hat{\Sigma}) = \chi(\Sigma) + 1 \leq 0 \), \([\hat{\Sigma}] \cdot [\hat{\Sigma}] = tb(K, \Sigma) - 1 \geq 0 \), and \(\langle c_1(\hat{\Sigma}), [\hat{\Sigma}] \rangle = r(K, \Sigma, s, h) \). Next, blow up \(tb(K, \Sigma) - 1 \) points on the core of the 2-handle, we get a new 4-manifold \(\hat{\tilde{W}} \) with a natural projection \(\pi : \hat{\tilde{W}} \to \tilde{W} \). Let \(\hat{s} \) be the lift of \(\tilde{s} \) to \(\hat{\tilde{W}} \) whose evaluation on each exceptional sphere is \(-1 \), and \(\hat{\Sigma} \) be the lift of \(\Sigma \) to \(\hat{\tilde{W}} \) obtained by removing the exceptional spheres from \(\pi^{-1}(\hat{\Sigma}) \). Then \(\chi(\hat{\Sigma}) = \chi(\Sigma) + 1 \), \([\hat{\Sigma}] \cdot [\hat{\Sigma}] = 0 \), and \(\langle c_1(\hat{\Sigma}), [\hat{\Sigma}] \rangle = r(K, \Sigma, s, h) + tb(K, \Sigma) - 1 \). Also, by Theorem 2.8,
\[F^\pm_{\hat{\tilde{W}} \setminus \hat{\tilde{B}}, \hat{s}\mid \hat{\tilde{W}} \setminus \hat{\tilde{B}}}(c^+(\xi')) = F^\pm_{\hat{\tilde{W}} \setminus \hat{\tilde{B}}, \hat{s}\mid \hat{\tilde{W}} \setminus \hat{\tilde{B}}}(c^+(\xi')) \neq 0, \]

where \(\hat{\tilde{B}} \subset \hat{\tilde{W}} \) is the pre-image of \(B \subset W \subset \tilde{W} \) under \(\pi \). Since \([\hat{\Sigma}] \cdot [\hat{\Sigma}] = 0 \), there is a neighborhood \(U \) of \(\hat{\Sigma} \) in \(\hat{\tilde{W}} \) diffeomorphic to \(\hat{\Sigma} \times D^2 \). Since the location of \(\hat{\tilde{B}} \) does not affect the map \(F^\pm_{\hat{\tilde{W}} \setminus \hat{\tilde{B}}, \hat{s}\mid \hat{\tilde{W}} \setminus \hat{\tilde{B}}} \), we assume that \(\hat{\tilde{B}} \) is in the interior of \(U \). Let \(W_1 = \tilde{W} \setminus U \), and \(W_2 = U \setminus \hat{\tilde{B}} \). Then, by Theorem 2.2, there are maps
\[F^\pm_{W_1, \tilde{s}\mid W_1} : HF^+(-M', t_\xi') \to HF^+(-\partial U, \tilde{s}\mid \partial U; \mathbb{Z}(W_1)), \]
\[F^\pm_{W_2, \tilde{s}\mid W_2} : HF^+(-\partial U, \tilde{s}|_{\partial U}; \mathbb{Z}(W_1)) \to HF^+(-\partial B, \tilde{s}|_{\partial B}; \mathbb{Z}(W_1)(W_2)), \]

such that \(F^\pm_{\hat{\tilde{W}} \setminus \hat{\tilde{B}}, \hat{s}\mid \hat{\tilde{W}} \setminus \hat{\tilde{B}}}(\Theta) = \theta \circ F^\pm_{W_2, \tilde{s}\mid W_2} \circ F^\pm_{W_1, \tilde{s}\mid W_1}, \) where
\[\Theta : HF^+(-\partial B, \tilde{s}|_{\partial B}; \mathbb{Z}(W_1)(W_2)) \to HF^+(-\partial B, \tilde{s}|_{\partial B}) \]
is induced by the natural projection \(\theta : \mathbb{Z}(W_1)(W_2) \to \mathbb{Z} \). Specially, this implies \(HF^+(-\partial U, \tilde{s}|_{\partial U}; \mathbb{Z}(W_1)) \neq 0 \). Note that \(\partial U \cong \hat{\Sigma} \times S^1 \). Hence, by Theorem 2.1 we have
\[\langle c_1(\tilde{\xi}), [\hat{\Sigma}] \rangle \leq -\chi(\hat{\Sigma}), \]
that is
\[tb(K, \Sigma) + r(K, \Sigma, s, h) \leq -\chi(\Sigma). \]

Reverse the orientations of \(K \) and \(\Sigma \), and repeat the whole argument. We get
\[tb(K, \Sigma) - r(K, \Sigma, s, h) \leq -\chi(\Sigma). \]

Thus,
\[tb(K, \Sigma) + |r(K, \Sigma, s, h)| \leq -\chi(\Sigma). \]

Now we use twisted Heegaard-Floer homology to prove part (b). Again, perform Legendrian surgery along \(K \). This gives a new contact 3-manifold \((M', \xi') \) with a weak
symplectic filling \((\tilde{W},\tilde{\omega})\) (c.f. [14, 15]). Define \(\tilde{\Sigma}\) and \(\tilde{W}\) as above, i.e., by capping off \(\Sigma\) with the core of the 2-handle, and then blowing up \(tb(K, \Sigma) - 1\) points on the core the of two handle. Let \(\tilde{\omega}\) be the blown-up symplectic form on \(\tilde{W}\). Then \((\tilde{W}, \tilde{\omega})\) is also a weak symplectic filling of \((M', \xi')\). Denote by \(\hat{s}\) the canonical \(Spin^c\)-structure associated to \(\tilde{\omega}\). We have \(\chi(\tilde{\Sigma}) = \chi(\Sigma) + 1, [\tilde{\Sigma}] : [\tilde{\Sigma}] = 0\), and \((c_1(\tilde{s}), [\tilde{\Sigma}]) = r(K, \Sigma, \omega) + tb(K, \Sigma) - 1\). Also, by Theorem 2.5, we have \(\mathcal{F}_{\tilde{\Sigma}}(\tilde{\omega})\) factors through \(HF^+(-\partial U, \tilde{s}|_{\partial U}; \mathbb{Z}[\mathbb{R}][\omega|_{M'}](W_1))\), where \(W_1 = \tilde{W} \setminus U\). So
\[
\mathcal{F}_{\tilde{\Sigma}}(\tilde{\omega}) = 0.
\]
and we apply Theorem 2.1 as above to prove part (b).

\[\Box\]

References

[1] D. Bennequin, \textit{Entrelacements et \'equations de Pfaff}, Ast\'erisque, \textbf{107-108} (1983), 87–161.
[2] Y. Eliashberg, \textit{Classification of overtwisted contact structures on 3-manifolds}, Invent. Math. \textbf{98} (1989), no. 3, 623-637.
[3] \textit{Filling by holomorphic discs and its applications}, Geometry of low-dimensional manifolds, 2 (Durham, 1989), 45–67, London Math. Soc. Lecture Note Ser., \textbf{151}, Cambridge Univ. Press, Cambridge, 1990.
[4] Y. Eliashberg, \textit{Legendrian and transversal knots in tight contact 3–manifolds}, Topological methods in modern mathematics (Stony Brook, NY, 1991), 171–193, Publish or Perish, Houston, TX, 1993.
[5] D. Fuchs, S. Tabachnikov, \textit{Invariants of Legendrian and transverse knots in the standard contact space}, Topology \textbf{36} (1997), no. 5, 1025–1053.
[6] P. Ghiggini, \textit{Ozsváth-Szabó invariants and fillability of contact structures}, \texttt{arXiv:math.GT/0403367}
[7] R. Gompf, A. Stipsicz, \textit{4-manifolds and Kirby calculus}, American Mathematical Society, Providence, RI, 1999. xvi+558 pp. ISBN: 0-8218-0994-6.
[8] P. Kronheimer, T. Mrowka, \textit{Monopoles and contact structures}, Invent. Math. \textbf{130} (1997), no. 2, 209–255.
[9] T. Mrowka, Y. Rollin, \textit{Legendrian knots and monopoles}, \texttt{arXiv:math.DG/0410559}
[10] P. Ozsváth, Z. Szabó, \textit{Holomorphic triangles and invariants for smooth four-manifolds}, \texttt{arXiv:math.SG/0110169}
[11] P. Ozsváth, Z. Szabó, \textit{Holomorphic triangle invariants and the topology of symplectic four-manifolds}, \texttt{arXiv:math.SG/0201049}
[12] P. Ozsváth, Z. Szabó, \textit{Heegaard Floer homology and contact structures}, \texttt{arXiv:math.SG/0309326}
[13] P. Ozsváth, Z. Szabó, \textit{Holomorphic disks and genus bounds}, Geom. Topol. \textbf{8} (2004), 311–334 (electronic).
[14] P. Ozsváth, Z. Szabó, \textit{Holomorphic disks and topological invariants for closed three-manifolds}, Ann. of Math. (2) \textbf{159} (2004), no. 3, 1027–1158.
[15] P. Ozsváth, Z. Szabó, \textit{Holomorphic disks and three-manifold invariants: properties and applications}, Ann. of Math. (2) \textbf{159} (2004), no. 3, 1159–1245.
[16] L. Rudolph, \textit{The slice genus and the Thurston-Bennequin invariant of a knot}, Proc. Amer. Math. Soc. \textbf{125} (1997), no. 10, 3049–3050.
[17] A. Weinstein, \textit{Contact surgery and symplectic handlebodies}, Hokkaido Math. J. \textbf{20} (1991), no. 2, 241–251.
[18] H. Wu, \textit{Legendrian Surgeries on Stabilized Legendrian Links}, \texttt{arXiv:math.GT/0501074}
Department of mathematics and Statistics, Lederle Graduate Research Tower, 710 North Pleasant Street, University of Massachusetts, Amherst, MA 01003-9305, USA

E-mail address: wu@math.umass.edu