STUDY ON EFFECTS OF SPRING BACK ON SHEET METAL BENDING USING SIMULATION METHODS

S. SARAVANAN¹, M. SARAVANAN² & D. JEYASIMMAN³

¹Research Scholar, Department of Mechanical Engineering, Periyar Maniammai University
Vallam, Thanjavur, Tamil Nadu, India

²Professor, SSM Institute of Engineering and Technology, Sindalagundu,
Dindigul, Tamil Nadu, India

³Associate Professor, Department of Mechanical Engineering, Periyar Maniammai University
Vallam, Thanjavur, Tamil Nadu, India

ABSTRACT

In emergent engineering world in mainly focused on pre-determined simulation analysis of spring back was successfully optimization of the sheet metal bending process. The most of causes in sheet metal thickness and metal type and tool holder and shank and radius and fraction, friction with shapes and tie gap on effects on spring back materials experimented in variable aluminum and copper and high strength steels and sheet metal have been used as variables conducted study in different scenarios. Since the most of belongings of each variable on the formation of this model obtained in results only have spring back effects metal deforming in examined in our research work. This employ calculates results shown in deformed results gathering in Sheet metal thickness from metric standards follows in 1.2 mm to 1.8 mm thickness of spring back issued minimized in 14% and 18.5% determined it. Wherever the maxmize of Sheet metal strength and stability spring back maximized behave spring back of this sheet should depend after un-certain loading conditions were significant to determine. The effects of material category as show that using of alloyed sheet metal was plays in high strength and durability of sheet metal spring back effectiveness minimized in 67%. However, the increasing the tool radius leads minimizing the spring back effectiveness was efficient of concern from 0.01 to 0.50 frictions co-efficient was gather it. This friction forces were makes in spring back effects of material shape and tool geometry working simulation and varies parameters and sheet metal orientation, positions were examining it. Since the past literature surveyed ultimate exploited and compensation tool is considered for Sheet metal bending process as done.

KEYWORDS: Spring back, Sheet Metal, Bending Process, Effects, Simulation Analysis, Optimization & Variables, and effects

INTRODUCTION

Engineering fields of bending are one of the most leaded operational causes in widely applied in Sheet metal forming operations consist. [1]This most of research spring effectiveness only focused on Sheetmetal forming operation and process in the especially various automobile industry and aeronautical industries were designed in this cause. [2]The bending process includes maximized deformation of the structure is defined in certain defects analyses in resistance and mechanical process of defects exists. [3]This accompanied by means of strains in the instability of phenomena accompanying of this processing. [4]This instability of entire bending process deformation problems in cracking, breakage, and negative deformation as well as after the process of bending and
bowing its. This main defect is spring back is mainly rigid requirements and makes of an object of follows and allows in different patterns. [5]. This hand of quality and effects is presented in this paper of this suitable in case of rigid components of Sheetmetal equipments. This instability of process making machine its considered in suitable and non-suitable machines rigid requirements. [6] Spring back effects of Bauschiger effect which permits the material to trail in diverse a different path during loading and unloading sequences process. [7] This literature works phenomena occur during the very important bending process bowing and U-bending and V-bending effectiveness effectively deformed in this rigid requirement it. This instability of bending process deformed in the bowing. Though, this is an exclusive type of flaws in non-suitable in case of unbending requirements is a concern this unloading and loaded cycles. [8] The project was materials properties and process and parameters and involves material and material shapes, quality is reliant on designer’s involvement and includes trials and friction conditions and times, clearance and working conditions was the success it. [9] The bending process and bending accuracy and dependent on the designer’s involvement and contain parameters of operating punch and shoulder materials and type and conditions clearance and tolerance and geometry and die and friction conditions was determined. [10] This presented paper examines in sheet metal bending developments and bending quality is reliant on the designer’s experience and involves to take place. The involves of trails and errors to the maximum of desired results and forming process will takes places only concern in plastic deformation of this stages in total analysis or estimate spring back of this forces. This estimation of the working of these materials properties which will be estimated in stress Vs strain and longitudinal deformation and relation in the nonlinear regions are required it. [11] More analytical and design models in V bend and U bend proposed on for springback bending in shear forming simple constraint of this stages. This bending of this process of Spring back is the main defect occurred in the sheet metal forming of this process has been systematically studied in varies researchers. [12] The uncertain values of spring back should be challenging for a variety of regions and experience conceded in including numerical accuracy, physical, poorly characterization of these materials employs have been obtained this understanding of this spring back phenomenon results. However, the problems were sheet metal products is intended solution consists of analytical analysis and considering tool and path geometry and friction induced materials and sheet metal were employed was improving in spring back and optimized Sheet metal bending process was examined.

BASICS OF SPRINGBACK

The magnification basics of spring back and bending pressure released will slight decreases in the bend varies bend angle in this metal movement will vary according to the material shapes and thickness and combinations and radius and greater effects spring back. [13] Commercially available in Finite element analysis in this software system employs in this bending moment analysis it. [14] Commercially available in Finite element analysis different aluminum alloyed materials different thickness and stressed and non-loaded condition was examined in materials deformation results on zones. Were the SMB can be formed in this spring back as shown in figure 1.

Figure 1: Springback Schematic Diagram
LITERATURE REVIEW

The past literature surveys presented an the amount of high researches have been reported it. design and analysis of SBP are considered in simulation process followed in different sectors and reviewed it a. Bending mechanics of spring back of SMB2. three-dimensional modeling in bending process was designed in Solid works systems and methods were played credible and reviews of past scientific paper was discussed here.

A most of researchers has been considered in different effects of spring back issues in automotive sectors. [15] The Anderson analyses in friction coefficient of spring back forces considered in different types of materials.The generated spring back behavior and predictions of advanced in high stretch steel analysis numerically and experimental differentiated in effects of friction conditions [16] higher friction conditions increase the tension of applied the sheet and bending moment for a given curving for bending profiles. [17] Is Proceed the papers higher friction factors between the blank and tooling eliminated the stress variations in the thickness of direction and reduced the spring back effect? [18]The concluded results required materials determining a value of factors of lightweight materials and in order to extensively investigated and simulated and final part of forming a process of the behavior of an aluminum alloy after elevated temperatures designed it. [19] Practical and wide range of application of warm forming to industrial cases and compromise or appropriate control scheme is required to determining the optimal values of friction factors. [20] Highly investigated in the high thermal investigate effects of during and forming of loaded and unloaded repeat cycles applied in different lightweight materials. The extensively investigated in spring back behavior was elevated in thermal mass function elevated. [21] Indicated the modeling of 2-dimensional drawing in this shapes and process was presented in analysis design trend and target shape after spring back of ABCUS technologies to concern this summarized in deformation of this results. [22] The paper allowed in spring back analysis approach based on inverse this demonstrating in spring back from aimed at shapes. The presenter of this research and approach shown in different process of design trend for producing the target shape of the spring back of this method [23] The satisfied of this plates verified in symmetric and asymmetric bending process for define the required conditions for inverse of this process examines in trend to be needed in this optimization of these techniques as followed it. [24] Present technology most of the presents in algorithms for compensating for spring back mistake determined tool design and shoulders was considering in reverse methodology as following it. [25] the present scientific papers most of study and reviews only for characterization of spring back in bending process was presented in this unpredicted in this springback in developed in advanced neural networks as follows it. [26] The most of examined of this blank holder forces on springback studied in different materials was dual and single materials was an assignment in composites. [27] To paper shaped in between the SB was shank holder effects induced in U-bending models. Determined results simulated in ABAQUS. [28] Proposed and automatic defragmentation generator to create a numerical method for compressing and optimization of this surface generator. [29] This differentiated in this geometric surface of the tooling and dies based on spring forward simulations assisted by an automatic surface generator having problems in research is being done on spring back considering a review from the literature and limitations on the methods and inclusion and computational effects of analytics with employs of considered it. Most of the parameter was examined in analytical methods of solving problems focused on element analysis and developed spring back issues.

RESEARCH METHODOLOGY

This friction coefficient of this spring back forces analysis in different types of materials developed for this investigation analysis in different shapes like V-shaped. The conducted of a numerical solution of this implementation of
optimum analysis is examined in different effects of parameters analyses in effects on the process is using the present advanced simulated ways of approaches.

- The conducting of these results was determined in only for deformation of time employs in simulation wise conducted it.
- Then simulation process will have examined and compared with analytical predictions values was considered and studies in the optimization of this process were done.

This research studied most considered in analysis and discuss in defects of sheet metal type plays in this thickness and working conditions and belongings and effects of friction and the impacts of tool geometry on spring back formation to bending process in work orientations and attempts and exploration and discuss sheet metal type and working impacts tool geometry and spring back formation to bending process and studied it. This friction of this tool geometry was impacted in spring back forces on bending process induced in this actions and solutions to be done on the reduction of sheet metal bending effects and bending process of optimization was done based of the empirical and suspense literature surveys. The conclusion of effective of the determined results flows process as shown in the figure.2

![Image](image_url)

Figure 2: Research Flow Process

SIMULATION PRESENTATION

This robust presentation new spring back forced reaction method which examines and excited the automotive industry helping of friction coefficient of this insertion system were inspected in simulation analysis of this sheet metal bending process. This first process generative a modeling in mechanical models employs in Sheetmetal part process significant in classified in the different type of materials in examining it. This process will prove in lap friction effects will define it. This process of similar materials in considering without thermal characterization of this property and diffused and observed in bounty condition in single lay-up methods and techniques followed in ANSYS workbench. This function of main monitoring system was what are the combinations and sheets shapes like V model and different materials analysis and examines in different during of deformation effecting on friction force with respect of stress induced in lateral strain in x-axis as shown in figure 3.
The present computation techniques used to obtain in minimized in uncontrolled solution was exploring these undefined problems examine in engineering fields. This study of boundary value problems is mathematical problems in which one or dual different unknown variables specifically defined in the differential equation where defined in different domains. In this FEA analysis unsophisticated in the description of Finite methods involves in equations and nodes involves in present shear force structure in automotive industries.

GENERATIVE MODELING

This ignition of finite element analysis in considering in concepts of design structure can be simulated by the mechanical behavior of this characterization this ASTM3905 standards follow in prepared in three-dimensional model preparation in this simulated in this without behavior analysis of modeled it 1000 length and respective of thickness as to designed as shown in figure 4.

The Finite element considers in IGES file programs represented in nodes and elements. This modeled induced behavior of different lateral and examine the original spring back force on this obtained results material in this generative designed for this modeling it. The helping of this robust design in solid works examined in present papers in different shear force in different shapes and application. in this system were examined in steams of the end point to radius effectiveness and models pre-determined solutions were presented in an equation as shown in [1]

\[
\frac{R_i}{R_f} = \left(\frac{R_i y}{E T} \right)^3 - \left(\frac{R_i y}{E T} \right)
\]

(1)

This The size of the test pieces of Mild steel sheets are 100mm X 1000 mm, along with the lengthwise and transverse directions respectively. The thickness of both sheets is 1.2 to 1.8 mm respectively for bending insertion; one coupon is placed on top of the other with a 5ton load overlap as shown in a parameter as shown this table 1.
Table 1: Sheet Metal Optimization Analysis Vs Thickness of Friction Co-efficient

Sheet Metal Type	Thickness (mm)	$R_i=2t$ (mm)	R_f (mm)
Mild steel [HR]	1.2	2.4	0.667
Mild steel [CRCA]	1.2	2.4	0.987
High strength steel	1.2	2.4	1.658

The effects of radius of die and bending angle and forming of radius of punches and distinguished in this size of the plasticized area were created in the bending process as shown graphical figure 1. The proper aspects of R_i radius should be selected in proportion to material surface thickness with respective of lower the R_i/thickness ratios was stress generates informed materials. The cracks of parts occur in the demand forming forces should be increased in this materials hardening and becomes and demand of this forces will be a reduction of limit and guaranteed and insured these forces of spring back graphical presentation as shown in figure 5.

Figure 5: Thickness of Co-efficient Factors Vs Types of Materials

BOUNDARY CONDITIONS

The most of research, the usual analysis in ANSYS is consumed domestic mechanical behavior analysis of technology functions determined in algebraic calculations and determined in significant three-dimensional cross-sectional areas effects in this two nodes three elements triangular element function assigned in this instance of these systems obtained it. This respective of deformation effects were discussed in theoretical solution and shear deformed in engineering governed concern this loads and predetermined load positions and joint equations functionally and probable solution of this method and structures it.

Figure 6: Boundary Conditions

This theoretical solution was examined in stress distribution affection more effectiveness and without discontinuity error, less system was simulated it. In this main issue while examining in effectively and manifested a problem defines inefficient problems was considered in this structured was performed it. In this order to determine in FEA.
procedure a was first manual presenting was assured that in this structure of works.

Figure 7: Full Model in Defragmentation [MESH] Setup

The numerical solution was mainly determined betterment solution was spatial shear deformation solution analysis in different variables of this system as shown in graphical table and graph 7

![Graphical Table and Graph 7](image)

Figure 8: Spatial Shear Deformation Solution Analysis in Different Variables of This System

Boundary Conditions with Response of Varies Thickness
Sheet thickness (mm)
Coefficient of friction
Normal force (FN) Kg m/s²
Friction force (FN) Kg m/s²

This system was examined in analytically and systematically analysis in compact sized of visualized structures in connected nodes and free elements are distinguished in this mesh or defragmentation mode of the spiritual equation of this solved in unknown solution effects is designed it. The computational solution effects were the prediction of the intended solutions and results of finitely presented and successful it.

MATERIALS SELECTION / CHARACTERIZATION

The betterment and reinforcement and provide and high rigidity and share load constrains joint to an axis to vector instead of having pure lateral deformation effects in this importance of properties in density and modulus of elasticity, Poisson ratio and yield stretch wherever reinforcement shims. The most of wide range of mild steel materials physical properties its simple shear deformation states of schematization aspects chemical composition as given in this table 3

Table 2: Boundary Conditions with Response of Varies Thickness

Sheet thickness (mm)	1.2	1.4	1.6	1.8
Coefficient of friction	0.01	0.03	0.14	0.54
Normal force (FN) Kg m/s²	1.234	1.234	1.234	1.234
Friction force (FN) Kg m/s²	0.01234	0.0617	0.1851	0.6174
Table 3: Metal Conductivity of Materials and Physical Characterization

Metal conductivity (kg/m³)	Density Linear (°C)	Melting Expansion (W/m°C)	Point at 20°C	Thermal co-efficient (µm/m°C)	Coefficient Expansion
SS316	10	500	960	420	18.9
MS	7850	1510	50.2	11.1	16.8

RESULT AND DISCUSSIONS

TANGENTIAL FORCE RESULT ANALYSIS

This main study of generative between the contacting surfaces is known as maximized frictional forces. This tangential of these forces in struggle up to point deformation. The effects of friction on spring back forces a shown in this sheet metal consisted thickness obtained from different co-efficient friction of forces with neat employs during the forces of metal deformation analysis it. When the sheet metal deformation maximizes is removing from the material so highly returned in deformed positions to original positions. The total amount of friction force will employ from the materials as highly reserved in this orientation of these variables of spring back forces in this friction have highly significant of this factor assignment in back- formation of this simply friction coefficient was determined it.

In order to validate Analytical /or Experiential findings with a numerical result is to comparing with different sheet metal type and blank thickness. For constant thickness with different sheet metal type spring back is predicted analytically 1.2 to 2.0 mm and on the other hand for the same material (Al) with different sheet metal thickness (1.2 mm, 1.4 mm, 1.6 mm and 2.0 mm) spring back is 0.19-0.03 is predicted. The numerical result also shows that due to sheet metal thickness variation is range from 0.174 to 0.0674 and due to sheet metal types, the variation is 0.0713 to 0.689 obtained. The error is predicted from a different analysis is done by using the following formulas (Table 6). The Figure 7 shows that the empirical prediction is accurate than the previous analysis, while, this Analytical result directly shows the effects of each parameter. Also, this study is better than the previous because we considered more parameters for the during analysis process to the investigations. Since from these, we conclude that this study is done and predicted spring back properly and correctly.

Table 4: The Effect of Sheet Metal Thickness vs. Type of V-Shaped Model

Effect	Empirical/Analytical variation	Numerical Variation	Empirical Error	Numerical Error	Variation between Empirical with Numerical analysis
Sheet metal type	0.557	0.56	-0.0053	0.00538	0.00008
Sheet Metal Thickness	0.16	0.203	-0.2118	0.269	0.057

Table 5: The Deformation Analysis of Sheetmetal Thickness Vs Type of V-Shaped Model

Sheet Metal Type	Thickness (mm)	Lowest Bend Radii (Rmin) in mm
Mild steel	1.6	0.90
High strength steel	1.2	3.15
CONCLUSIONS

In this study of simulation works examined in parameters manipulating spring back was conducted in analytically and numerically evaluated it. They showed past literature papers reviewed in only similar studies only conducted in time being a process but, in our causes, inspected the varies profiles assignment to deliberate in concurrently all the parameters if high influencing of this back-formation process. This examined of this simulated results in spring back parameters was examined in studied in predicted in this amount of analytical process were examined it. The sheet bending process was an analytical prediction of spring back conducted in this research work will be assigned. The results shown only for high stretch spring back issues in 1.2 materials minimized the 16% of works employs in these required materials was determined it. For the effects of materials type investigated as only stainless steel and sheet metal instead of high strength and durability, springback effects were determined it. The deferential of dying instead of edge bending of spring back is reduced by 11.5% was examined it. while maximizing the friction coefficient from 0.012 to 0.652 the spring back is maximizing this thickness and material type should be taken it finally utilizing This spring back forces was compensation of tool is considered for different optimizing of bending process. When the spring back is reduced also helps to obtain the quality of sheet metal product of works done and betterment agreement result was obtained.

REFERENCES

1. Karafillis, Apostolos P., and Mary C. Boyce. "Tooling and binder design for sheet metal forming processes compensating springback error." International Journal of Machine Tools and Manufacture 36.4 (1996): 503-526.
2. Karafillis, A. P., and M. C. Boyce. "Tooling design in sheet metal forming using springback calculations." International journal of mechanical sciences 34.2 (1992): 113-131.
3. Xu, Zhutian, Linfa Peng, and Enze Bao. "Size effect affected springback in micro/meso scale bending process: Experiments and numerical modeling." Journal of Materials Processing Technology 252 (2018): 407-420.
4. Wang, Hongyan, et al. "Novel strategies to reduce the springback for double-sided incremental forming." The International Journal of Advanced Manufacturing Technology (2018): 1-7.
5. Maier, S., et al. "Tool-integrated spring back measuring system for automotive press shops." Production Engineering11.3 (2017): 307-313.
6. Gu, Bin, et al. "Cyclic Sheet Metal Test Comparison and Parameter Calibration for Springback Prediction of Dual-Phase Steel Sheets." Journal of Manufacturing Science and Engineering 139.9 (2017): 091010.
7. Patil, Nileema B., and Sudarshana Badhe. "Review of Finite Element Simulations in Sheet Metal Forming Processes." (2017)
8. Neto, D. M., et al. "Influence of boundary conditions on the prediction of springback and wrinkling in sheet metal forming." International Journal of Mechanical Sciences 122 (2017): 244-254.
9. Gupta, M. Satyanarayana, and D. Ramana Reddy. “Design and analysis of aircraft sheet metal for spring back effect.” Materials Today: Proceedings 4.8 (2017): 8287-8295.
10. Su, Chunjuan, et al. "Effects of variable blank holder forces and a controllable drawbead on the springback of shallow-drawn TA2M titanium alloy boxes." The International Journal of Advanced Manufacturing Technology 93.5-8 (2017): 1627-1635.
11. Raupach, M., et al. "Mesh refinement study and experimental validation for stretch bending of sheet metals." Journal of Physics: Conference Series. Vol. 896. No. 1. IOP Publishing, 2017.
12. Stoudt, Mark R., Lyle E. Levine, and Li Ma. "Designing a Uniaxial Tension/Compression Test for Springback Analysis in High-Strength Steel Sheets." Experimental mechanics 57.1 (2017): 155-163.

13. Tasew, Gebremichael, and Ajay Jaswal. "Development of Single Hydraulic Cylinder Operated sheet metal Bending Machine." Development 5.01 (2018).

14. Jia, Bin-bin, and Wei-Wei Wang. "New process of multi-point forming with individually controlled force-displacement and mechanism of inhibiting springback." The International Journal of Advanced Manufacturing Technology 90.9-12 (2017): 3801-3810.

15. Liu, S. Charles, and S. Jack Hu. "Variation simulation for deformable sheet metal assemblies using finite element methods." Journal of manufacturing science and engineering 119.3 (1997): 368-374.

16. Papeleux, Luc, and Jean-Philippe Ponthot. "Finite element simulation of springback in sheet metal forming." Journal of Materials Processing Technology 125 (2002): 785-791.

17. Li, K. P., W. P. Carden, and R. H. Wagoner. "Simulation of springback." International Journal of Mechanical Sciences 44.1 (2002): 103-122.

18. Carden, W. D., et al. "Measurement of springback." International Journal of Mechanical Sciences 44.1 (2002): 79-101.

19. Oliveira, M. C., et al. "Study on the influence of work-hardening modeling in springback prediction." International Journal of Plasticity 23.3 (2007): 516-543.

20. Chen, Peng, and Muammer Koc. "Simulation of springback variation in forming of advanced high strength steels." Journal of Materials Processing Technology 190.1-3 (2007): 189-198.

21. Wagoner, Robert H., Hojun Lim, and Myoung-Gyu Lee. "Advanced issues in springback." International Journal of Plasticsity 45 (2013): 3-20.

22. Zhang, Dongjuan, et al. "An analytical model for predicting springback and side wall curl of sheet after U-bending." Computational materials science 38.4 (2007): 707-715.

23. Panthi, S. K., et al. "An analysis of springback in sheet metal bending using finite element method (FEM)." Journal of Materials Processing Technology 186.1-3 (2007): 120-124.

24. Panthi, S. K., et al. "Finite Element Analysis of sheet metal bending process to predict the springback." Materials & Design 31.2 (2010): 657-662.

25. Bakkshi-Jooybari, M., et al. "The study of spring-back of CK67 steel sheet in V-die and U-die bending processes." Materials & Design 30.7 (2009): 2410-2419.

26. Tekaslan, Özgür, Nedim Gerger, and Ulvi Şeker. "Determination of spring-back of stainless steel sheet metal in “V” bending dies." Materials & Design 29.5 (2008): 1043-1050.

27. Ingarraro, G., R. Di Lorenzo, and F. Micari. "Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure." Materials & Design 30.10 (2009): 4421-4433.

28. Schwarze, Marco, Ilyayo N. Vladimirov, and Stefanie Reese. "Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology." Computer Methods in Applied Mechanics and Engineering 200.5-8 (2011): 454-476.

29. Li, Le, et al. "Numerical simulations on reducing the unloading springback with multi-step multi-point forming technology." The International Journal of Advanced Manufacturing Technology 48.1-4 (2010): 45-61.