A simple discharging method for forbidden subposet problems

Ryan R. Martin*,†1, Abhishek Methuku‡§2, Andrew Uzzell†¶3, and Shanise Walker†¶4

1Department of Mathematics, Iowa State University, Ames, IA, USA. {rymartin,shanise1}@iastate.edu
2Department of Mathematics, Central European University, Budapest, Hungary. abhishekmethuku@gmail.com
3Department of Mathematics and Statistics, Grinnell College, Grinnell, IA, USA. uzzellan@grinnell.edu

August 07, 2018

Abstract

The poset $Y_{k,2}$ consists of $k + 2$ distinct elements $x_1, x_2, \ldots, x_k, y_1, y_2$, such that $x_1 \leq x_2 \leq \cdots \leq x_k \leq y_1, y_2$. The poset $Y'_{k,2}$ is the dual poset of $Y_{k,2}$. The sum of the k largest binomial coefficients of order n is denoted by $\Sigma(n, k)$. Let $L(\sharp)(n, \{Y_{k,2}, Y'_{k,2}\})$ be the size of the largest family $\mathcal{F} \subset 2^{[n]}$ that contains neither $Y_{k,2}$ nor $Y'_{k,2}$ as an induced subposet. Methuku and Tompkins proved that $L(\sharp)(n, \{Y_{2,2}, Y'_{2,2}\}) = \Sigma(n, 2)$ for $n \geq 3$ and they conjectured the generalization that if $k \geq 2$ is an integer and $n \geq k + 1$, then $L(\sharp)(n, \{Y_{k,2}, Y'_{k,2}\}) = \Sigma(n, k)$. On the other hand, it is known that $L(\sharp)(n, Y_{k,2})$ and $L(\sharp)(n, Y'_{k,2})$ are both strictly more than $\Sigma(n, k)$. In this paper, we introduce a simple discharging approach and prove this conjecture.

Keywords: forbidden subposets, discharging method, poset Turán theory

2010 AMS Subject Classification: 06A06

1 Introduction

The n-dimensional Boolean lattice, denoted B_n, is the partially ordered set (poset) $(2^{[n]}, \subseteq)$, where $[n] = \{1, \ldots, n\}$. For any $0 \leq i \leq n$, let $\binom{[n]}{i} := \{A \subseteq [n]: |A| = i\}$ denote the ith level of the Boolean lattice. Let P be a finite poset and \mathcal{F} be a family of subsets of $[n]$. We say that P is contained

*Research supported in part by a Simons Foundation grant (# 353292)
†Research supported in part by NSF-DMS Grants 1604458, 1604773, 1604697, and 1603823.
‡Research supported in part by the Hungarian National Research, Development and Innovation Office – NKFIH under the grant K116769.
§Research supported in part by a generous grant from the Combinatorics Foundation.
¶Research supported in part by a generous grant from the Institute for Mathematics and its Applications.
in \mathcal{F} as a weak subposet if there is an injection $\alpha : P \rightarrow \mathcal{F}$ satisfying $x_1 <_P x_2 \implies \alpha(x_1) \subset \alpha(x_2)$ for all $x_1, x_2 \in P$. \mathcal{F} is called P-free if P is not contained in \mathcal{F} as a weak subposet. We define the corresponding extremal function to be $La(n, P) := \max\{|\mathcal{F}| : \mathcal{F} \text{ is } P\text{-free}\}$. Analogously, if P, Q are two posets then, let $La(n, \{P, Q\}) := \max\{|\mathcal{F}| : \mathcal{F} \text{ is } P\text{-free and } Q\text{-free}\}$.

The linearly ordered poset on k elements, $a_1 < a_2 < \ldots < a_k$, is called a chain of length k, and is denoted by P_k. Using this notation the well-known theorem of Sperner [16] can be stated as $La(n, P_2) = \left(\binom{n}{\lfloor n/2 \rfloor}\right)$. Let us denote the sum of the k largest binomial coefficients of order n by $\Sigma(n, k)$. Erdős [6] extended Sperner’s theorem by showing that $La(n, P_k) = \Sigma(n, k - 1)$ with equality if and only if the family is union of $k - 1$ largest levels of the Boolean lattice. Notice that, since any poset P is a weak subposet of a chain of length $|P|$, Erdős’s theorem implies that $La(n, P) \leq (|P| - 1)\left(\binom{n}{\lfloor n/2 \rfloor}\right) = O\left(\binom{n}{\lfloor n/2 \rfloor}\right)$. Later many authors, including Katona and Tarján [12], Griggs and Lu [9], and Griggs, Li, and Lu [8] studied various other posets (see the recent survey by Griggs and Li [7] for an excellent survey of all the posets that have been studied). Let $h(P)$ denote the height (maximum length of a chain) of P. One of the first general results is due to Bukh who showed that if T is a finite poset whose Hasse diagram is a tree of height $h(T) \geq 2$, then $La(n, T) = (h(T) - 1 + O(1/n))\left(\binom{n}{\lfloor n/2 \rfloor}\right)$. The most notorious poset for which the asymptotic value of the extremal function is still unknown is the diamond D_2, the poset on 4 elements with the relations $a < b, c < d$ where b and c are incomparable. The best known bound is $(2.20711 + o(1))\left(\binom{n}{\lfloor n/2 \rfloor}\right)$, due to Grósz, Methuku, and Tompkins [10].

We say that P is contained in \mathcal{F} as an induced subposet if and only if there is an injection $\alpha : P \rightarrow \mathcal{F}$ satisfying $x_1 <_P x_2 \iff \alpha(x_1) \subset \alpha(x_2)$ for all $x_1, x_2 \in P$. We say that \mathcal{F} is induced-P-free if P is not contained in \mathcal{F} as an induced subposet. We define the corresponding extremal function as $La^I(n, P) := \max\{|\mathcal{F}| : \mathcal{F} \text{ is } P\text{-free}\}$. Analogously, if P, Q are two posets then let $La^I(n, \{P, Q\}) := \max\{|\mathcal{F}| : \mathcal{F} \text{ is } P\text{-free and } Q\text{-free}\}$.

Despite the considerable progress that has been made on forbidden weak subposets, little is known about forbidden induced subposets (except for P_k, where the weak and induced containment are equivalent). The first results of this type are due to Carroll and Katona [3], and due to Katona [11], showing $La^I(n, V_r) = (1 + o(1))\left(\binom{n}{\lfloor n/2 \rfloor}\right)$ where V_r is the r-fork poset ($x \leq y_i$ for all $1 \leq i \leq r$). Boehnlein and Jiang [1] generalized this by extending Bukh’s result to induced containment of tree-shaped posets, T, proving $La^I(n, T) = (h(T) - 1 + o(1))\left(\binom{n}{\lfloor n/2 \rfloor}\right)$. Only recently, Methuku and Pálvölgyi [14] showed that for every poset P, there is a constant c_P depending only on P such that $La^I(n, P) \leq c_P\left(\binom{n}{\lfloor n/2 \rfloor}\right)$.

Even fewer exact results are known for forbidden induced subposets, which is the topic of this paper. Katona and Tarján [12] proved that $La(n, \{V, \Lambda\}) = La^I(n, \{V, \Lambda\}) = 2\left(\binom{n - 1}{\lfloor n/2 \rfloor - 1}\right)$, where V and Λ are the 2-fork and its dual, the 2-brush, respectively.

Now we formally define the posets considered in this paper.

Definition 1. Let $k, r \geq 2$ be integers. The r-fork with a k-shaft poset consists of $k + r$ elements $x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_{r-1}, y_r$ with $x_1 \leq x_2 \leq \cdots \leq x_k$ and $x_k \leq y_i$ for all $1 \leq i \leq r$, and is denoted by $Y_{k,r}$. Let $Y_{k,r}'$ denote the reversed poset of $Y_{k,r}$, also called the dual poset of $Y_{k,r}$.

For simplicity, we will write Y_k and Y_k' instead of $Y_{k,2}$ and $Y_{k,2}'$ respectively.
The first result about $Y_{k,r}$ was due to Thanh [19] who showed that $\text{La}(n, Y_{k,r}) = (k + o(1)) \binom{n}{\lfloor n/2 \rfloor}$. The lower order term in his upper bound was improved by De Bonis and Katona [4]. Thanh also gave a construction showing that $\text{La}(n, Y_{k,r}) > \Sigma(n, k)$. Methuku and Tompkins [13] showed that if one forbids both Y_k and Y'_k, then an exact result can be obtained: $\text{La}(n, \{Y_k, Y'_k\}) = \Sigma(n, k)$.

Using a cycle decomposition method, they also showed the following exact result for induced posets.

Theorem 2 (Methuku–Tompkins [13]). If $n \geq 3$, then $\text{La}^*(n, \{Y_2, Y'_2\}) = \Sigma(n, 2)$.

Theorem 2 strengthens the result of De Bonis, Katona, and Swanepoel [5] stating that $\text{La}(n, B) = \Sigma(n, 2)$ where B is the butterfly poset which consists of 4 elements a, b, c, d with $a, b \leq c, d$. Indeed if a family does not contain the butterfly as a subposet, then it contains neither Y_2 nor Y'_2 as an induced subposet. However, a family might contain neither an induced Y_2 nor an induced Y'_2 while still containing a butterfly.

In Section 3, we establish the following generalization of Theorem 2 by proving a conjecture from [13].

Theorem 3. If $k \geq 2$ is an integer and $n \geq k + 1$, then $\text{La}^*(n, \{Y_k, Y'_k\}) = \Sigma(n, k)$.

Note that forbidding only one of Y_k and Y'_k is not enough to obtain an exact result. Indeed, again by Thanh’s construction [19] we have $\text{La}^*(n, Y_k) > \Sigma(n, k)$ and $\text{La}^*(n, Y'_k) > \Sigma(n, k)$.

We further obtain the following LYM-type inequality if we assume \emptyset and $[n]$ are not in our family.

Theorem 4. Let $k \geq 2$ be an integer and $n \geq k + 1$. If $\mathcal{F} \subset 2^{[n]}$ contains neither Y_k nor Y'_k as an induced subposet and $\emptyset, [n] \notin \mathcal{F}$, then

$$\sum_{F \in \mathcal{F}} \left(\frac{n}{|F|} \right)^{-1} \leq k.$$

In particular, $|\mathcal{F}| \leq \Sigma(n, k)$.

2 Preliminaries

The following terminology will be used to prove Theorems 2 and 4. Let \mathcal{F} be a family of subsets of $[n]$ which is induced Y_k-free and induced Y'_k-free. For sets $U, V \subseteq [n]$, let the interval $[U, V]$ denote the Boolean lattice induced by the collection of all sets that contain U and are contained in V. A chain C where $C = \{A_0, \ldots, A_n\}$ and $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = [n]$ is called a full chain or a maximal chain.

A spine S is a chain $A_1 \subset A_2 \subset \cdots \subset A_\ell$ such that $|A_{i+1} \setminus A_i| = 1$ for $1 \leq i \leq \ell - 1$ where there are exactly $k - 1$ members of \mathcal{F} in $\{A_1, \ldots, A_\ell\}$ and where $A_1, A_\ell \in \mathcal{F}$. Note that a spine may contain elements not from \mathcal{F}.

Let \mathcal{C} be the set of all full chains and let \mathcal{S} be the set of all spines. We say that a full chain $C \in \mathcal{C}$ is associated with a spine $S \in \mathcal{S}$ or that C contains S as a spine if either
1. C has exactly $k - 1$ members of \mathcal{F}, which we name F_1, \ldots, F_{k-1}. In this case, C is associated with the spine that is a subchain of C from F_1 to F_{k-1}; or

2. C has exactly $k + x$ elements of \mathcal{F} (where $x \geq 1$), which we name F_1, \ldots, F_{k+x}. In this case, C is associated with x spines, namely S_{F_i} for $2 \leq i \leq x + 1$, where S_{F_i} is the spine that is a subchain of C from F_i to F_{i+k-2}. (Notice that a chain C with at least $k + 1$ elements of \mathcal{F} is not associated with the spines that correspond to the first $k - 1$ elements of $\mathcal{F} \cap C$ and to the last $k - 1$ elements of $\mathcal{F} \cap C$.)

Let spine(C) denote the set of all spines that C contains. More precisely,

$$\text{spine}(C) := \{ S : C \text{ contains } S \text{ as a spine} \}.$$

2.1 Overview of the discharging method

In order to prove Theorem 4, we use discharging arguments and Lemma 6 below. We then prove Theorem 3 by using Theorem 4 and induction on k.

Before proving Lemma 6, we need the following straightforward counting lemma, the proof of which we provide for completeness.

Lemma 5. Let $n \geq 2$. If $\mathcal{G} \subset \\{ \{1\}, \{1, 2\}, \{1, 2, 3\}, \ldots, \{1, 2, 3, \ldots, n-1\} \}$, then the number of full chains in $2^{|n|}$ containing no member of \mathcal{G} is at least the number of full chains that contain at least one member of \mathcal{G}.

Proof. Let the set of chains that contain at least one member of \mathcal{G} be X and the set of chains that contain no member of \mathcal{G} be Y. To show that $|X| \leq |Y|$ we will construct an injection from X to Y. Consider any chain $C \in X$. Let C be $\varnothing \subset \{ x_1 \} \subset \{ x_1, x_2 \} \subset \{ x_1, x_2, x_3 \} \subset \ldots \subset \{ x_1, x_2, x_3, \ldots, x_n \}$. For simplicity, we will say the permutation corresponding to C is $x_1x_2x_3\cdots x_n$.

If $\{x_1, x_2, \ldots, x_j\}$ is the last set from \mathcal{G} in C and $x_i = 1$, then $x_1x_2\cdots x_j$ is a permutation of $\{1, 2, \ldots, j\}$. Hence, $x_{j+1} \geq j + 1$ and $1 \leq i \leq j$. Let us consider the chain C' corresponding to the permutation

$$x_1x_2\cdots x_{i-1}x_{j+1}x_i+1x_{i+2}\cdots x_{j}x_ix_{j+2}\cdots x_n,$$

obtained by swapping x_{j+1} with x_i in the permutation corresponding to C. If C' contains the set $\{1, 2, \ldots, j+1\}$, then it must be the case that $x_{j+1} = j + 1$. Thus, C contains the set $\{1, 2, \ldots, j + 1\}$, which contradicts the maximality of j. Therefore, under this map, the full chain C' does not contain any member of \mathcal{G}. If we map $C \in X$ to $C' \in Y$ in this way, the map is an injection, as desired. \qed

For the discharging step, we start by placing a weight on a spine depending on the chains that contain it. More precisely, if $S \in \mathcal{S}$ is a spine and $C \in C$ is a full chain, then we define a weight
function \(w(S, C) \) as follows.

\[
 w(S, C) = \begin{cases}
 1, & \text{if } S \in \text{spine}(C) \text{ and } C \text{ contains at least } k + 1 \text{ members of } \mathcal{F}, \\
 -1, & \text{if } S \in \text{spine}(C) \text{ and } C \text{ contains exactly } k - 1 \text{ members of } \mathcal{F}, \\
 0, & \text{otherwise.}
 \end{cases}
\]

Note that if \(\mathcal{F} = \Sigma(n, k) \), then \(\sum_{S \in \text{spine}(C)} w(S, C) = 0. \)

Lemma 6. Let \(k \geq 2 \) be an integer and \(n \geq k + 1 \). Let \(\mathcal{F} \) be a family in \(\mathcal{B}_n \) with no induced \(Y_k \) and no induced \(Y'_k \) such that \(\emptyset, [n] \notin \mathcal{F} \). Let \(\mathcal{S} \) denote the set of spines of \(\mathcal{F} \) and let \(\mathcal{C} \) denote the set of full chains in \(\mathcal{B}_n \). For any \(S \in \mathcal{S} \),

\[
\sum_{C \in \mathcal{C}} w(S, C) \leq 0.
\]

Proof. Let a spine \(S \) be the chain \(A_1 \subset A_2 \subset \cdots \subset A_\ell \) where \(|A_{i+1} \setminus A_i| = 1 \) for \(1 \leq i \leq \ell - 1 \). (Recall that, by definition of a spine, there are exactly \(k - 1 \) members of \(\mathcal{F} \) in \(\{A_1, \ldots, A_\ell\} \) and that \(A_1, A_\ell \in \mathcal{F} \).) If all the chains \(C \in \mathcal{C} \) that contain \(S \) as a spine have at most \(k \) members of \(\mathcal{F} \) then since \(w(S, C) \in \{0, -1\} \) for each of these chains, our lemma follows trivially. Therefore, we may assume that there is a chain \(C \in \mathcal{C} \) that contains \(S \) as a spine and has at least \(k + 1 \) members of \(\mathcal{F} \); such a chain \(C \) must have sets \(P, Q \in \mathcal{F} \) with \(P \subset A_1 \) and \(A_\ell \subset Q \).

If two sets \(A, B \in \mathcal{F} \) are unrelated to each other and \(A, B \subset A_1 \) then we have an induced copy of \(Y'_k \) consisting of \(A, B \), the \(k - 1 \) members of \(\mathcal{F} \) in \(S \), and \(Q \). Therefore, \(\mathcal{F} \cap [\emptyset, A_1] \) induces a chain \(\mathcal{G}_1 \). By symmetry, \(\mathcal{F} \cap [A_\ell, [n]] \) induces a chain \(\mathcal{G}_2 \) as well. Since by assumption \(\emptyset, [n] \notin \mathcal{F} \), the chains \(\mathcal{G}_1 \setminus \{A_1\} \) and \(\mathcal{G}_2 \setminus \{A_\ell\} \) may be extended to chains that satisfy the hypotheses of Lemma 5 for \(\emptyset, A_1 \) and \([A_\ell, [n]] \).

Therefore, the number \(a_0 \) of full chains in \([\emptyset, A_1] \) containing no member of \(\mathcal{G}_1 \setminus \{A_1\} \) is at least the number \(a_1 \) of full chains in \([\emptyset, A_1] \) that contain a member of \(\mathcal{G}_1 \setminus \{A_1\} \). Similarly, the number \(b_0 \) of full chains in \([A_\ell, [n]] \) containing no member of \(\mathcal{G}_2 \setminus \{A_\ell\} \) is at least the number \(b_1 \) of full chains in \([A_\ell, [n]] \) that contain a member of \(\mathcal{G}_2 \setminus \{A_\ell\} \). Now notice that the number of chains \(C \in \mathcal{C} \) associated with spine \(S \) that have exactly \(k - 1 \) members of \(\mathcal{F} \) is \(a_1 \cdot b_0 \) and the number of chains \(C \in \mathcal{C} \) associated with spine \(S \) that have at least \(k + 1 \) members of \(\mathcal{F} \) is \(a_1 \cdot b_1 \). Therefore, since \(a_1 \leq a_0 \) and \(b_1 \leq b_0 \),

\[
\sum_{C \in \mathcal{C}} w(S, C) = a_1 \cdot b_1 - a_0 \cdot b_0 \leq 0. \tag*{\Box}
\]

3 Proofs of Theorem 3 and Theorem 4

First we use a folklore lemma that establishes an inequality very similar to the LYM inequality. A proof of this lemma occurs in [18] as part of a proof of Erdős’ theorem. Recall that \(\Sigma(n, k) \) denotes the sum of the sizes of the largest \(k \) levels in the Boolean lattice \(2^{[n]} \).
Lemma 7 (See [18, Lemma 1]). If \(\mathcal{F} \subseteq 2^n \) satisfies
\[
\sum_{F \in \mathcal{F}} \left(\frac{n}{|F|} \right)^{-1} \leq k,
\]
then \(|\mathcal{F}| \leq \Sigma(n, k) \).

Proof of Theorem 4. Observe that by Lemma 6,
\[
\sum_{S \in \mathcal{S}} \sum_{C \in \mathcal{C}} w(S, C) \leq 0.
\]
Now notice that
\[
\sum_{S \in \mathcal{S}} \sum_{C \in \mathcal{C}} w(S, C) = \sum_{C \in \mathcal{C}} \sum_{S \in \mathcal{S}} w(S, C)
\]
and that for any \(C \in \mathcal{C} \), we have
\[
\sum_{S \in \mathcal{S}} w(S, C) = |\mathcal{F} \cap C| - k.
\]
Therefore, the right-hand side of (3) becomes
\[
\sum_{C \in \mathcal{C}} (|\mathcal{F} \cap C| - k) = \sum_{F \in \mathcal{F}} |F|! \cdot (n - |F|)! - k \cdot n!.
\]
So by (2) and (4), we have
\[
\sum_{F \in \mathcal{F}} |F|! \cdot (n - |F|)! - k \cdot n! \leq 0.
\]
After rearranging, we obtain \(\sum_{F \in \mathcal{F}} \left(\frac{n}{|F|} \right)^{-1} \leq k \). Lemma 7 gives that \(|\mathcal{F}| \leq \Sigma(n, k) \), proving Theorem 4.

Proof of Theorem 3. The statement of Theorem 3 is true for \(k = 2 \) (base case) due to Theorem 2.

If neither \(\emptyset \) nor \([n]\) are in \(\mathcal{F} \), then we may apply Theorem 4 directly to obtain \(|\mathcal{F}| \leq \Sigma(n, k) \).

If both \(\emptyset \) and \([n]\) are in \(\mathcal{F} \), then \(\mathcal{F} \setminus \{\emptyset, [n]\} \) is induced \(Y_k \)-free and induced \(Y_k' \)-free. Therefore, it has size at most \(\Sigma(n, k - 1) \) by the induction hypothesis. Since \(2 + \Sigma(n, k - 1) \leq \Sigma(n, k) \) for \(n \geq k + 1 \) and \(k \geq 2 \), we are done.

Now, without loss of generality, suppose that \(\emptyset \in \mathcal{F} \) and \([n]\) \(\notin \mathcal{F} \). Now consider the family \(\mathcal{F}' := \mathcal{F} \setminus \{\emptyset\} \). By Theorem 4, we have
\[
\sum_{F \in \mathcal{F}'} \left(\frac{n}{|F|} \right)^{-1} \leq k
\]
and $|\mathcal{F}'| \leq \Sigma(n, k)$, by Lemma 7

Now suppose $|\mathcal{F}'| = \Sigma(n, k)$. (Otherwise, we are done.) A consequence of the proof of Lemma 7 is that, in order for equality to hold in (1), the quantities $\binom{n}{n/2}$ (for F in \mathcal{F}') must be as large as possible—that is, the sets $F \in \mathcal{F}'$ must have size as close to $n/2$ as possible. More precisely, in order for equality to hold in (1), the list of the quantities $\binom{n}{F}$ (for F in \mathcal{F}') must be as large as possible—that is, the sets $F \in \mathcal{F}'$ must have size as close to $n/2$ as possible. More precisely, in order for equality to hold in (1), the list of the quantities $\binom{n}{F}$ for $F \in \mathcal{F}'$ in decreasing order (with multiplicities) must be the same as the list of the first $\Sigma(n, k)$ quantities $\binom{n}{S}$ for $S \subseteq 2^{[n]}$ in decreasing order (with multiplicities).

First, if k and n have different parities, then $|\mathcal{F}'| = \Sigma(n, k)$ can only occur if

$$\mathcal{F}' = \left(\binom{n}{\frac{n-k}{2}}\right) \cup \left(\binom{n}{\frac{n-k}{2}+1}\right) \cup \cdots \cup \left(\binom{n}{\frac{n-k}{2}+k-1}\right).$$

However, in that case, Y_k is an induced subposet of \mathcal{F}'. Hence, adding \emptyset produces an induced copy of Y_k in \mathcal{F}, a contradiction.

Second, if k and n have the same parity, then $|\mathcal{F}'| = \Sigma(n, k)$ can only occur if \mathcal{F}' contains

$$\left(\binom{n}{\frac{n-k}{2}+1}\right) \cup \left(\binom{n}{\frac{n-k}{2}+2}\right) \cup \cdots \cup \left(\binom{n}{\frac{n-k}{2}+k-1}\right)$$

plus $\binom{n}{\frac{n-k}{2}}$ sets from $\binom{n}{\frac{n-k}{2}}$. If \mathcal{F}' contains any set from $\binom{n}{\frac{n-k}{2}}$, then it is easy to see that Y_k is an induced subposet of \mathcal{F}' and adding \emptyset produces an induced copy of Y_k in \mathcal{F}. Otherwise, \mathcal{F}' must contain all of the sets from $\binom{n}{\frac{n-k}{2}+k}$ and $n \geq k + 2$. But in this case, Y_k is again an induced subposet of \mathcal{F}', giving an induced copy of Y_k in \mathcal{F}, again a contradiction.

Therefore, $|\mathcal{F}'| \leq \Sigma(n, k) - 1$, which implies $|\mathcal{F}| \leq \Sigma(n, k)$, as desired. □

4 Concluding Remarks

During the preparation of this article, we have learned that Tompkins and Wang recently proved Theorem 3 independently [17]. Their approach is closer to the method used in [13] and is different from the approach introduced in this article.

In fact, we believe that a more general result than Theorem 3 holds. Recall that $Y_{k,r}$ denotes the r-fork with a k-shaft poset and $Y'_{k,r}$ denotes its dual.

Conjecture 8. For all $k \geq 2$ and $r \geq 2$, there is an $n_0 = n_0(k, r)$ such that if $n \geq n_0$, then $\text{La}^r(n, \{Y_{k,r}, Y'_{k,r}\}) = \Sigma(n, k)$.

Theorem 3 is the case when $r = 2$; note that for all $k \geq 2$, $n_0(k, 2) = k + 1$.

The authors thank Kirk Boyer, Kaave Hosseini, Eric Sullivan and Casey Tompkins for many valuable discussions.
References

[1] E. Boehnlein and T. Jiang, Set families with a forbidden induced subposet, *Combin. Probab. Comput.*, 21 (2012), no. 4, 496–511.

[2] B. Bukh, Set families with a forbidden subposet, *Electron. J. Combin.*, 16 (2009), no. 1, Research paper 142, 11pp.

[3] T. Carroll and G. O. H. Katona, Bounds on maximal families of sets not containing three sets with $A \cup B \subseteq C$, $A \not\subseteq B$, *Order*, 25 (2008), no. 3, 229–236.

[4] A. De Bonis and G. O. H. Katona, Largest families without an r-fork, *Order*, 24 (2007), no. 3, 181–191.

[5] A. De Bonis, G. O. H. Katona, and K. J. Swanepoel, Largest family without $A \cup B \subseteq C \cap D$, *J. Combin. Theory Ser. A*, 111 (2005), no. 2, 331–336.

[6] P. Erdős, On a lemma of Littlewood and Offord, *Bull. Amer. Math. Soc.*, 51 (1945), 898–902.

[7] J. R. Griggs and W.-T. Li, Progress on poset-free families of subsets *Recent Trends in Combinatorics*, 317–338, IMA Vol. Math. Appl., 159, Springer, [Cham], 2016.

[8] J. R. Griggs, W.-T. Li, and L. Lu, Diamond-free families, *J. Combin. Theory Ser. A*, 119 (2012), no. 2, 310–322.

[9] J. R. Griggs and L. Lu, On families of subsets with a forbidden subposet, *Combin. Probab. Comput.*, 18 (2009), no. 5, 738–748.

[10] D. Grósz, A. Methuku, and C. Tompkins, An upper bound on the size of diamond-free families of sets (arXiv preprint), (2016) arXiv:1601.06332, To appear in *J. Combin. Theory Ser. A*.

[11] G. O. H. Katona, Forbidden intersection patterns in the families of subsets (introducing a method). *Horizons of Combinatorics*, 119–140, Bolyai Soc. Math. Stud., 17, Springer, Berlin, 2008.

[12] G. O. H. Katona and T. G. Tarján, Extremal problems with excluded subgraphs in the n-cube. *Graph Theory (Lagów, 1981)*, 84–93, Lecture Notes in Math., 1018, Springer, Berlin, 1983.

[13] A. Methuku and C. Tompkins, Exact forbidden subposet results using chain decompositions of the cycle, *Electron. J. Combin.*, 22 (2015), no. 4, Paper 4.29, 14pp.

[14] A. Methuku and D. Pálvölgyi, Forbidden hypermatrices imply general bounds on induced forbidden subposet problems. *Combin. Probab. Comput.*, 26 (2017), no. 4, 593–602.

[15] B. Patkós, Induced and non-induced forbidden subposet problems, *Electron. J. Combin.*, 22 (2015), no. 1, Paper 1.30, 16pp.

[16] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, *Math. Z.*, 27 (1928), no. 1, 544–548.
[17] C. Tompkins and Y. Wang, On an extremal problem involving a pair of forbidden posets (arXiv preprint), (2017) arXiv:1710.10760

[18] C. Tompkins, Extremal problems on finite sets and posets (Doctoral dissertation), (2015) https://mathematics.ceu.edu/sites/mathematics.ceu.hu/files/attachment/basicpage/27/tompkins.pdf
Retrieved 29 September 2017.

[19] H. T. Thanh, An extremal problem with excluded subposets in the Boolean lattice. *Order*, **15** (1998), no. 1, 51–57.