Marker Assisted Foreground Selection of Back Cross Genotypes for Leaf Rust Resistance in Wheat (*Triticum aestivum* L.)

Pooja N. Chavan and Santosh T. Muthe*

Department of Agriculture Botany, Post Graduate Institute, Mahatma Phule Agricultural University, Rahuri, MS, India

*Corresponding author: santoshmuthe07@gmail.com (ORCID ID: 0000-0001-7045-9309)

Paper No. 768 Received: 05-03-2019 Revised: 04-05-2019 Accepted: 11-05-2019

ABSTRACT

The investigation was undertaken to identify desirable wheat genotypes at BC$_1$ generation carrying leaf rust resistance alleles using molecular markers. The F$_1$ was generated from cross NI5643 (lacking *Lr34*) × NIAW34 (carrying *Lr34*). The F$_1$ was confirmed by using simple sequence repeats (SSR) marker gwm389. This F$_1$ was used for crossing with recurrent parent NI5643 (lacking *Lr34*) and BC$_1$ plants were produced. Twenty five BC$_1$ plants were screened for the presence of *Lr34*, by using SSR primers. For this purpose markers from chromosome 7D i.e. cssfr1, cssfr2, KUDS, barc352 were used to screen parental genotypes. All these markers did not show polymorphism among parental genotypes. Therefore these were not used for foreground selection. Another marker from chromosome 7D, wms130 was used to screen BC$_1$ plants for the presence of *Lr34* (foreground selection). As per the SSR profile generated by primer wms130, the plants 1, 3, 4, 6, 10, 12, 13, 14, 15, 16, 18, 22 and 25 were found positive for *Lr34*. Another 10 markers i.e. gwm389, wmc313, wmc468, gwm610, wmc707, gwm60, wmc525, barc137, wmc419 and barc62 were used for background selection. The plants with heterozygous amplification pattern were selected for developing BC$_2$ plants. BC$_1$ plants that are heterozygous or positive for *Lr34* using all the markers are 1, 3, 4, 6, 10, 12, 13, 14, 15, 16, 18, 20, 22 and 25. Based on foreground selection and background selection, a total of 15 plants were found carrying desirable alleles and were used for developing BC$_2$.

Highlights

- Present study was thus carried out with the objective to identify desirable wheat genotypes at BC$_1$ generation containing leaf rust resistance alleles using molecular markers.

Keywords: Wheat; Leaf rust; *Lr34* gene; foreground selection; background selection; SSR markers

Wheat (*Triticum aestivum* L.) is a major cereal crop in India and it is cultivated worldwide. It belongs to the tribe *Triticaceae* (= *Hordeae*) in the grass family *Poaceae* (*Gramineae*) (Briggle and Reitz 1963). It is widely cultivated as cash crop because it produces a good yield per unit area.

Wheat production is subjected to many yield limiting biotic and abiotic stresses globally. Among biotic stresses, three rust diseases of wheat have been the most devastating throughout the world including Asia (Singh *et al.* 2004). According to Singh *et al.* (2004) stripe and leaf rust could adversely affect wheat production in Asia by 46% and 63%, respectively if susceptible wheat cultivars are grown.

Leaf (or brown) rust caused by *Puccinia triticina* Erikss, is an important and most widely distributed foliar disease of wheat world over. It has a potential of causing significant yield losses in India as it occurs in all the wheat growing areas. Depending upon severity and duration of infection, yield losses can reach up to 50% (McIntosh *et al.* 1995).

Rust can be managed most effectively and economically through cultivation of resistant
varieties. Breeding resistant varieties is the most successful and economic approach to combat leaf rust. The traditional approach of transferring \(Lr \) resistance genes from wheat related species or pyramiding genes in elite breeding lines is time consuming and very laborious.

Molecular markers are used for two purposes in resistance breeding (1) to monitor the incorporation of designated resistance genes or QTLs into elite wheat genotypes. (2) To identify resistance genes in varieties and lines where the genetic background is unknown. In hexaploid wheat, simple sequence repeats (SSR) are more informative and useful than any other marker system in molecular mapping because of their high polymorphism. Molecular markers were identified for most of the resistance genes against brown leaf rust (\(Lr1, Lr3, Lr9, Lr10, Lr13, Lr14, Lr16, Lr20, Lr21, Lr22, Lr24, Lr25, Lr26, Lr28, Lr29, Lr32, Lr34, Lr35, Lr37, Lr39, Lr46, Lr47, Lr50, Lr51, Lr52, Lr57, Lr58 \) (Prins et al. 1997).

One of the markers associated with rust resistance gene pair \(Lr34/Yr18 \) is leaf tip necrosis (\(Ltn \)). It shows complete linkage with rust resistance gene pair \(Lr34/Yr18 \) (Singh 1992). \(Ltn \) plays major role in selecting genotypes with multipathogen resistance in wheat breeding programs. However, appearance of \(Ltn \) under field conditions is time consuming.

For rapid identification of gene \(Lr34 \), use of quick screening methods like use of molecular markers is needed.

Variety NIAW34 was developed at Agricultural Research Station Niphad. Its yield potential is 40q/ha and average yield is 38-40q/ha. It is tolerant to aphids and resistant to black and brown rust. It is good for chapati and its protein content is high. It is recommended for late sown conditions.

Variety NI5643 is also developed at Agricultural Research Station Niphad. Its yield potential is 25q/ha and average yield is 23-25q/ha. It is tolerant to aphids but susceptible to leaf rust. Though its yield potential is low, it is tolerant to aphids. For this purpose this variety was selected in present study for introgression of leaf rust resistant gene \(Lr34 \), from the variety NIAW34.

Present study was thus carried out with the objective to identify desirable wheat genotypes at \(BC_1 \) generation containing leaf rust resistance alleles using molecular markers.

MATERIALS AND METHODS

The present research work entitled “Marker assisted foreground selection of back cross genotypes for leaf rust resistance in wheat (\(Triticum aestivum \) L.)” was carried out at State Level Biotechnology Center, Mahatma Phule Krishi Vidyapeeth, Rahuri (MS) during year 2014-15. The details of materials used and methods adopted in present study are mentioned under following subheadings.

Materials

Plant material

Leaf tissues from two parental genotypes (NIAW34 and NI5643), derived \(F_1 \) and 25 \(BC_1 \) plants were collected from Agricultural Research Station, Niphad, District Nashik (MS) and used for present research work. Details of population development is given in the following flowchart.

Molecular Markers

Simple Sequence Repeats (SSR) were used in the present investigation for identification of plants with presence of \(Lr34 \) gene. Thirteen such markers were used to determine their efficiency in identifying \(Lr34 \) gene in the wheat genotypes. In addition, two gene specific markers were also used.

METHODS

DNA Isolation

Genomic DNA was isolated from two parental genotypes, \(F_1 \) and 25 \(BC_1 \) plants by following CTAB (Cetyl Tri-methyl Ammonium Bromide) extraction method with some modifications as described by Helguera et al. (2005).
RNase treatment

Isolated DNA of wheat genotypes were purified by giving RNase treatment.

DNA amplification

Amplification reaction mixture was prepared in 0.2 ml thin walled flat capped PCR tubes, containing the following components. The total volume of each reaction mixture was 20 µl containing 2 µl of 1X Taq bufferB, 1.2 µl of 1mM MgCl₂, 1.6 µl of 3.2 mM dNTP mix, 1.6 µl of 0.32 picomole/µl forward and reverse primers, 0.33 µl of 1 U taq-polymerase, 2 µl of template DNA and 9.67 µl of sterile distilled water. The DNA amplification was carried out in a Thermal Cycler (Eppendorf, Master Cycler Gradient, Germany). The temperature profiles set for PCR amplification of different primers are mentioned in Tables 2 to 7.

Agarose gel electrophoresis of amplified PCR products

PCR products were separated by Agarose gel (2%) electrophoresis. Agarose gels stained with Ethidium Bromide were used for DNA profiles visualization.

Table 1: List of primers with their references used for confirmation of wheat leaf rust resistance gene Lr34

Sl. No.	Primer	Sequence	Chromosome	Tₘ (°C)	Reference
1	wmc313	F-GCAGCTCAATTATCTGCTGCGG R-GGGTCCCTTGCTACTCATGTCT	4A	59	Sharma et al. 2015
2	wmc468	F-AGCTGGGTGTTAAACAGAGGAT R-CATAAATGCTCCGACTCCCTTTTC	4A	57	Liu et al. 2010
3	gwm610	F-CTGGCTCTCCATGGTTTG R-AATGGCAAGGTTATGAGG	4A	61	Kumar et al. 2013
4	wmc707	F-GCTAGCTGACACCTTTTCTT R-TCAGTTTCCACTACCTTTT	4A	58	Liu et al. 2010
5	gwm60	F-TGTCCTACACGGACCACGT R-GCATGAGATGCAAGAGG	7A	61	Wei et al. 2005
6	wmc525	F-GTTTACGATGTTGCTC R-CTACGGATAATGCTTGGCT	7A	60	Kadam et al. 2012
7	barc137	F-GGCCAATCCCCACTTTCCA R-CAGGCCCCTCTACACATT	1B	60	Shi et al. 2001
8	wmc419	F-GTTTGGATAAAACCCGGAGTC R-CTACTTTCTGGTTATCAC	1B	63	Kadam et al. 2012
9	gwm389	F-ATCATGTCAGATTCCTTGAC R-TGCCATGCAATACAGAT	3B	55	Malik et al. 2013
10	barc62	F-TGTCCTAGCATACATACAC R-GCCAGACAAGAATGAGTGT	1D	59	Zhou et al. 2002
11	wms130	F-AGCTCTGTCTACGGAGAG R-CTCTCTATATATCGGCTCC	7D	58	Suenaga et al. 2003
12	KUDS	F-ACGTTCAGATCAACCTGAA R-GAATCTTGCAATCACGAG	7D	58	Lagudah et al. 2006
13	cssfr1	i) L34DINT9F ii) L34PLUSR	7D	58	Lagudah et al. 2009
14	cssfr2	i) L34DINT9F ii) L34MINUSR	7D	58	Lagudah et al. 2009
15	barc352	F-CCCTCTTCCGCTCCATCC R-CTGTTTCCGCCAAATCTCGGT	7D	60	Sehgal et al. 2012
Table 2: Temperature profile used for primer gwm389

Steps	Temperature	Time	Cycle(s)
Initial Denaturation	94°C	5 min	1
Denaturation	94°C	45 sec	
Annealing	55°C	45 sec	
Extension/Elongation	72°C	1 min	
Final extension	72°C	10 min	1
Final hold	4°C	Till retrieval	-

Table 3: Temperature profile used for primer wms130

Steps	Temperature	Time	Cycle(s)
Initial Denaturation	94°C	5 min	1
Denaturation	94°C	20 sec	
Annealing	58°C	20 sec	
Extension/Elongation	72°C	1 min	
Final extension	72°C	7 min	1
Final hold	4°C	Till retrieval	-

Table 4: Temperature profile used for primer KUDS

Steps	Temperature	Time	Cycle(s)
Initial Denaturation	94°C	4 min	1
Denaturation	94°C	30 sec	
Annealing	58°C	30 sec	
Extension/Elongation	72°C	1 min	
Final extension	72°C	5 min	1
Final hold	4°C	Till retrieval	-

Table 5: Temperature profile used for primer barc352

Name of the steps followed	Temperature	Time	Cycle(s)
Initial Denaturation	94°C	4 min	1
Denaturation	94°C	30 sec	
Annealing	60°C	30 sec	
Extension/Elongation	72°C	1 min	
Final extension	72°C	5 min	1
Final hold	4°C	Till retrieval	-

Table 6: Temperature profile used for primers cssfr1 and cssfr2

Temperature	Time	Cycle(s)
94°C	1 min	
58°C	1 min	
72°C	2 min	
94°C	30 sec	
58°C	30 sec	
72°C	30 sec	
94°C	50 sec	
58°C	5 min	
72°C		
4°C		
with UV transilluminator in Gel Documentation System (Flor chem.™ Alpha innotech, USA).

Confirmation of F1 and detection of Lr34 gene in back cross generation by using molecular markers

Simple sequence repeats (SSR) markers were used for confirmation of F1. The confirmed F1 (carrying leaf rust resistance gene Lr34) was used for crossing with NI5643 (lacking Lr34) and BC1 plants were developed. BC1 plants were screened by using molecular markers for presence of Lr34 and heterozygous plants having presence of Lr34 were recommended for developing BC2 plants.

RESULTS AND DISCUSSION

The long term goal of this investigation is to introgress leaf rust resistance gene Lr34 from a donor genotype NIAW34 to a recipient genotype NI5643 through marker assisted selection. The specific objective of present investigation was to identify desirable wheat genotypes at BC1 generation containing leaf rust resistance alleles using molecular markers. Results thus obtained are presented under following headings.

Development of F1

F1 was developed by crossing NI5643 (lacking Lr34) and NIAW34 (carrying Lr34). Only one F1 plant survived.

Molecular Marker analysis

In this study Simple Sequence Repeat (SSR) markers were used to identify desirable wheat genotypes at BC1 generation containing leaf rust resistance alleles.

Confirmation of F1

The F1 plant obtained from cross NI5643 (lacking Lr34) × NIAW34 (carrying Lr34) was confirmed by using (SSR) marker gwm389. The F1 showed heterozygous amplification pattern (Plate 1).

Development of BC1 plants

The confirmed F1 was crossed with the recurrent parent NI5643 and BC1 plants were produced. Total 25 seeds were developed. These seeds were sown and 25 BC1 plants were raised (Plate 2).

Screening of BC1 plants

25 BC1 plants were screened for presence of Lr34
gene by using SSR markers. Screening was done by foreground and background selection.

Foreground selection

In foreground selection markers from chromosome 7D were used (as Lr34 is present on 7D) to screen the parental genotypes. The markers cssfr1, cssfr2, KUDS and barc352 are tightly linked to Lr34. Therefore these were used to check polymorphism in parental genotypes. All these markers showed no polymorphism among parental genotypes. Therefore these markers were not used for foreground selection of desirable BC1 plants. However another marker wms130 was found polymorphic and was used to confirm the heterozygotes (Table 8).

As per the SSR profile generated by primer wms130 the susceptible parent (NI5643) amplified alleles of size 110, 130 and 170bp and resistant parent (NIAW34) amplified alleles of size 110, 135 and 175bp. The plants 1, 3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 18, 22, and 25 were found positive for Lr34. Out of 25 BC1 plants 13 were found positive for Lr34 (Plate 3).

Background selection

Another 10 markers were used for background selection. The plants with heterozygous amplification pattern were selected. For some of the markers single bands were observed, therefore these markers (gwm610 and wmc419) were not considered for selection. The details of product size and banding patterns observed are given in Plates 4.

Table 8: Details of products size (bp) using SSR markers observed in BC1 plants during foreground selection

Sl. No.	wms130
P1	110/130/170
P2	110/135/175
1	110/135/175
2	110/130/170

Plate 3: Screening of BC1 by wms130

Plate 4: Screening of BC1 by gwm389 and wmc313
Marker gwm389 amplified two alleles of 120bp and 140bp. Out of 25 BC₁ plants screened by primer gwm389, plants 1, 3, 6, 7, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23 and 25 were found heterozygous amplifying both the alleles. Marker wmc313 amplified two alleles of 180bp and 220bp. Out of 25 BC₁ plants screened by primer wmc313, plants 1, 2, 5, 7, 8, 9, 11, 12, 13, 16, 20, 21, 23 and 24 were found heterozygous amplifying both the alleles (Plate 4, Table 9).

Lane M- Marker 100 bp Ladder	Genotypes
Lane No.	Genotypes
P₁	NI5643
P₂	NIAW34
1-25	BC₁ plants

Plate 5: Screening of BC₁ wmc468 and wmc707

Marker wmc468 amplified two alleles of 140bp and 160bp. Out of 25 BC₁ plants screened by primer wmc468, plants 3, 4, 6, 7, 9, 15, 16, 18, 19, 20, 21 and 23 were found heterozygous amplifying both the alleles. Marker wmc707 amplified two alleles of 180bp and 200bp. Out of 25 BC₁ plants screened by primer wmc707, plants 3, 6, 7, 9, 10, 15, 16, 18, 19, 20, 21 and 23 were found heterozygous amplifying both the alleles (Plate 5, Table 9).

Lane M- Marker 100 bp Ladder	Genotypes
Lane No.	Genotypes
P₁	NI5643
P₂	NIAW34
1-25	BC₁ plants

Plate 6: Screening of BC₁ by gwm60 and wmc525

Marker gwm60 amplified three alleles of 180bp, 200bp and 220bp. Out of 25 BC₁ plants screened by primer gwm60, the plants 1, 2, 4, 9, 12, 14, 15, 17, 18 and 21 were found heterozygous amplifying all the three alleles. Marker wmc525 amplified two alleles of 210bp and 240bp. Out of 25 BC₁ plants screened by primer wmc525, plants 1, 2, 4, 5, 6, 7, 8, 9, 11, 14, 15, 17, 18, 20, 23 and 25 were found heterozygous amplifying both the alleles (Plate 6, Table 9).

Lane M- Marker 100 bp Ladder	Genotypes
Lane No.	Genotypes
P₁	NI5643
P₂	NIAW34
1-25	BC₁ plants

Plate 7: Screening of BC₁ by barc137 and barc62

Marker barc137 amplified two alleles of 250bp and 270bp. Out of 25 BC₁ plants screened by primer barc137, plants 1, 2, 3, 4, 12, 14, 15, 17, 20, 22, 23 and 25 were found heterozygous amplifying both the alleles. Marker barc62 amplified two alleles of 130bp and 140bp. Out of 25 BC₁ plants screened by primer barc62, plants 1, 2, 3, 8, 9, 12, 13, 15, 16, 17, 18, 20, 21, 22 and 23 were found heterozygous amplifying both the alleles (Plate 7, Table 9).

BC₁ plants that are heterozygous or positive for Lr34 with all the markers used are- 1, 3, 4, 6, 10, 12, 13, 14, 15, 16, 18, 20, 22, 23 and 25. Based on foreground and background selection, a total of 15 plants were found carrying desirable alleles and were used for developing BC₂.

DISCUSSION

The results obtained in this research work have been described and explained in previous chapter. The discussion based on the results of experiment is mentioned in this chapter.

Confirmation of F₁ and production of BC₁ plants

The F₁ generated from cross NI5643 (lacking Lr34)
× NIAW34 (carrying Lr34) was confirmed by using simple sequence repeats (SSR) marker gwm389. The F₁ showed heterozygous amplification pattern. This F₁ was used for crossing with the recurrent parent NI5643 (lacking Lr34) and BC₁ plants were produced.

Table 9: Details of products size (bp) using SSR markers observed in BC₁ plants during background selection

Sl. No.	gwm389	wmc313	wmc468	wmc707	gwm60	wmc525	barc137	barc62
P1	140	180	160	200	220	240	250	140
P2	120	220	140	180	180/220	210	270	130
1	120/140	180/220	140	180	180/200/220	210/240	250/270	130/140
2	140	180/220	140	180	180/200/220	210/240	250/270	130
3	120/140	220	140/160	180/200	220	240	250/270	130/140
4	140	180	140/160	200	180/200/220	210/240	250/270	130
5	140	180/220	160	200	220	210/240	250	130
6	120/140	180	140/160	180/200	180/220	210/240	250	130
7	120/140	180/220	140/160	180/200	210/240	250	140	
8	140	180/220	140	180	210/240	250	270	130
9	140	180/220	140/160	180/200	210/240	250	270	130
10	120/140	220	140	180/200	180/220	210/240	250/270	130
11	120/140	180	140	180	180/220	210/240	250/270	130
12	120/140	180	140	180	180/220	210/240	250/270	130
13	120/140	180	140	180	210	250/270	130/140	
14	120/140	180	140	180	180/220	210/240	250/270	130
15	120	180	140/160	180/200	180/200/220	210/240	250/270	130/140
16	120/140	180	140	180	180/220	210/240	250/270	130
17	120/140	180	140	180	180/220	210/240	250/270	130
18	120/140	180	140	180	180/220	210/240	250/270	130
19	120	180	140/160	180/200	180/200/220	210/240	250/270	130
20	120/140	180	140	180	180/220	210/240	250/270	130
21	120	180	140	180	180/220	210/240	250/270	130
22	120	180	140	180	180/220	210/240	250/270	130/140
23	120/140	180	140	180	180/220	210/240	250/270	130/140
24	120	180	140	180	180/220	210/240	250/270	130
25	120/140	180	140	180	180/220	210/240	250/270	140

Table 10: BC₁ plants heterozygous or positive for Lr34 with all the markers used

Sl. No.	gwm389	barc137	barc62	wmc313	gwm60	wmc525	wmc468	wmc707
P1	140	250	140	180	220	240	160	200
P2	120	270	130	220	200/180	210	140	180
1	140/120	250/270	140/130	180/220	220/200/180	240/210	140	180
10	140/120	270	130	220	200/180	210	140	200/180
16	140/120	270	140/130	180/220	200/180	210	160/140	200/180
20	140/120	250/270	140/130	180/220	200/180	240/210	160/140	200/180
23	140/120	250/270	140/130	180/220	200/180	240/210	160/140	200/180

Screening of BC₁ plants

Three hundred elite wheat lines were earlier screened by Pawar et al. (2013) for identification of Lr34 gene. Among them 60 lines showed presence of the Lr34 gene. The percent of confirmed plant
was 20%. In the present investigation BC\textsubscript{1} plants were screened for the presence of Lr34, using SSR markers. Out of 25 BC\textsubscript{1} plants, a total of 15 plants carrying desirable alleles were selected. The percent of confirmed plants was 60% which is more than that of Pawar et al. (2013).

Foreground selection using markers from chromosome 7D

Thirty eight wheat genotypes comprising susceptible as well as resistant to leaf rust gene Lr34 were earlier used by Muthe (2015) for validation of known markers linked with the gene Lr34 conferring resistance to leaf rust in wheat. Amplification was carried out using STS marker cssfr1, SSR markers (from chromosome 7D) wms130, barc352, gwm389, and KUDS and gene specific markers cssfr1, cssfr2, cssfr5. SSR primers wms130, barc352, gwm389 produced both the Lr34+ and Lr34- alleles by indicating presence and absence of Lr34 gene within selected genotypes.

Similarly in the present study the SSR marker wms130 was used for foreground selection of BC\textsubscript{1} plants. The susceptible parent (NI5643) amplified alleles of size 110, 130 and 170bp and resistant parent (NIAW34) amplified alleles of size 110, 135 and 175bp. Other markers i.e. cssfr1, cssfr2, KUDS, barc352 were used to check polymorphism in parental genotypes. These markers showed no polymorphism among parental genotypes. Therefore these were not used for foreground selection of desirable BC\textsubscript{1} plants. This means that utility of marker is dependent on genotypes used.

Background selection

Ten SSR markers i.e. gwm389, wmc313, wmc468, gwm610, wmc707, gwm60, wmc525, barc137, wmc419 and barc62 were used for background selection of desirable BC\textsubscript{1} plants and the heterozygous BC\textsubscript{1} plants containing Lr34 were identified. BC\textsubscript{1} plants that are heterozygous or positive for Lr34 using all the markers are - 1, 3, 4, 6, 10, 12, 13, 14, 15, 16, 18, 20, 22, 23 and 25. Based on foreground and background selection, a total of 15 plants were found carrying desirable alleles and were used for developing BC\textsubscript{2}.

CONCLUSION

The SSR primer (wms130) tightly linked to Lr34, can be used in foreground selection of desirable wheat genotypes at BC1 generation carrying leaf rust resistant gene Lr34. SSR primer cssfr1, cssfr2, KUDS, barc352 failed to produce polymorphic amplification pattern in these genotypes hence, may not be used. SSR markers gwm389, wmc313, wmc468, gwm610, wmc707, gwm60, wmc525, barc137, wmc419 and barc62 can be used for background selection of desirable wheat genotypes at BC1 generation carrying leaf rust resistance gene Lr34. Based on foreground and background selection, a total of 15 plants carrying desirable alleles were selected.

ACKNOWLEDGMENTS

Thanks to research guide Dr. P. L. Kulwal, Associate Professor of Agril. Botany, State Level Biotechnology Centre, M.P.K.V., Rahuri for his guidance throughout the research work.

REFERENCES

Briggle, L.W. and Reitz, L.P. 1963. Classification of Triticum species and of wheat varieties grown in United States. Technical bulletin No.1278.

Helgouer, M., Vanzetti, L., Soria, M., Khan, I.A., Kolmer, J. and Dubcovsky, J. 2005. PCR markers for *Triticum spelta* leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. *Crop Sci.*, 45(2): 728-734.

Kadam, S., Singh, K., Shukla, S., Goel, S., Vikrm, P., Pawar, V., Gaikwad, K., Chopra, R.K. and Singh, N. 2012. Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. *Funct. Integr. Genomics.* DOI: 10.1007/s10142-012-0276-1.

Kumar, S., Kumari, P., Kumar, U., Grover, M., Sigh, A.K., Singh, R. and Sengar, R.S. 2013. Molecular approaches for designing heat tolerant wheat. *J. Plant Biochem. Biotechnol.*, DOI: 10.1007/s13562-013-0229-3.

Lagudah, E.S., Krattinger, S.G., Herrera-Foessel, S., Singh, R.P., Huerta-Espino, J., Spielmeyer, W., Brown-Guedira, G., Selter, L.L. and Keller, B. 2009. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. *Theor. Appl. Genet.*, 119: 889-898.

Lagudah, E.S., McFadden, H., Singh, R.P., Huerta-Espino, J., Barina, H.S. and Spielmeyer, W. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. *Theor. Appl. Genet.*, 114: 21-30.

Liu, L., Wang, L., Yao, J., Zheng, Y. and Zhao, C. 2010. Association mapping of six agronomic traits on chromosome 4A of wheat (*Triticum aestivum* L.) *Mol. Plant Breed*, DOI: 10.5376/ mpb.2010.01.0005.

Malic, R., Tiwar, R., Arora, A., Kumar, P., Sheoran, S., Sharma, P., Singh, R., Tiwari, V. and Sharma, I. 2013. Genotypic characterization of elite Indian wheat genotypes using
Chavan and Muthe

molecular markers and their pedigree analysis Aust. J. Crop Sci., 7: 561-567.

McIntosh, R.A., Wellings, C.R. and Park, R.F. 1995. Wheat rusts: An atlas of resistance genes. CSIRO Publications, Melbourne, 208. DOI: 10.1007/978-94-011-0083-0.

Muthe, S.T. 2015. Validation of known markers linked with the gene LR34 conferring resistance against leaf rust in wheat in wheat (Triticum aestivum L.) Master’s thesis submitted to Mahatma Phule Krishi Vidyapeeth Rahuri (unpublished).

Pawar, S.L., Kumar, P., Duhan, J.S., Saharan, M.S., Bharadwaj, S.C., Tiwari, R. and Sharma, I. 2013. Characterization of adult plant leaf rust resistance gene Lr34 in Indian wheat genotypes using an STS marker. J. Wheat Res., 5(1): 15-20.

Prins, R., Marais, G.F., Pretorius, Z.A., Janse, B.J.H. and Maris, A.S. 1997. A study of modified forms of the Lr19 translocation of common wheat. Theor. Appl. Genet., 95: 424-430.

Sehgal, S.A., Tahir, R.A. and Nawaz, M. 2012. Molecular characterization of wheat genotypes using SSR markers. Int. J. Bioautomation., 16(2): 119-128 119.

Sharma, S., Ghimire, S.L., Niroula, R.K., Ojha, B.R. and Thapa, D.B. 2015. Marker assisted screening of Nepalese wheat genotypes and advanced lines for resistance to different races of wheat rust species. Agri. Biol. J. North Amer., DOI: 10.5251/abjna. 2015. 6.4.108.117.

Shi, J., Ward, R. and Wang, D. 2001. Application of a high throughput, low cost, non denaturing polyacrylamide gel system for wheat microsatellite mapping. National Fusarium Head Blight Forum Proc. Dec. 8-10 (2001).

Singh, R.P., William, H.M., Huerta-Espino, J. and Rosewarne, G. 2004. Wheat rust in Asia: Meeting the challengers with old and new technologies Proc. 4th Int. Crop Sci. Cong., Brisbane, Australia 26 Sep-1 Oct.

Singh, R.P. 1992. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci., 32: 874-878.

Suenaga, K., Singh, R.P., Huerta-Espino, J. and William, H.M. 2003. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Genet. Resistance, 93(7): 881-890.

Wei, Y.M., Hou, Y.C., Wu, W., Zhang, Z.O., Liu, D.C. and Zheng, Y.L. 2005. Microsatellite DNA polymorphism divergence in chinese wheat (Triticum aestivum L.) landraces highly resistant to fusarium head blight. J. Appl. Genet., 46(1): 3-9.

Zhou, W.C., Kolb, F.L., Bai, G.H., Shaner, G. and Domier, L.L. 2002. Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome, 45: 719–727.