Comparative Evaluation of Selective Media for the Detection of Bacillus cereus

HAJIME TERAMURA¹, ²*, MEGUMI OTSUBO¹, HITOMI SAITO¹, AOI ISHI¹, MISA SUZUKI¹, AND HIROKAZU OGIHARA¹

¹Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University. 1866, Kameino, Fujisawa, Kanagawa, 252-0880, Japan
²Yokohama Research Center, JNC Corporation. 5-1, Ookawa, Kanazawa-ku, Yokohama, Kanagawa, 236-8605, Japan

Received 28 March, 2019/ Accepted 20 June, 2019

The commercially available 3 types of selective media in Japan were compared for the detection of *Bacillus cereus*. When assessed inclusivity using 25 *B. cereus* strains, MYP agar, NGKG agar, and chromogenic X-BC agar demonstrated excellent inclusivity. For exclusivity study using 50 non-*B. cereus* strains, MYP, NGKG, and X-BC allowed to grow 11, 7, and 3 strains, respectively. Of the grown bacteria on each strains tested, only 2 strains of *B. thuringiensis* formed typical *B. cereus* colonies on all selective media tested.

The NGKG and X-BC were compared with MYP as a reference using artificially contaminated food (fried rice, plain rice, fried noodle, and potato salad), since MYP is recommended in ISO 7932: 2004. The both correlation coefficients between NGKG and MYP, and X-BC and MYP were 0.999. Therefore, we demonstrated that NGKG and X-BC can be adapted to ISO 7932: 2004 method for selected food as well as MYP.

Key words: *Bacillus cereus* / Selective medium / Detection / ISO 7932: 2004.

Bacillus cereus has a ubiquitous habitation in the environment and has many opportunities to contaminate into food or the food processing environment (Bennett et al., 2015; Schoeni and Wong, 2005). Since *B. cereus* can produce emetic toxin and diarrheal toxins in addition to many kinds of protease, it can cause not only food spoilage and quality deterioration but also food poisoning via these toxins (Crielly et al., 1994; Fangio et al., 2010; Granum and Lund, 1997; Melling and Capel, 1978; Shinagawa et al., 1985; Vilas-Bôas et al, 2007). Hence, the control of *B. cereus* is necessary for both maintenance of food quality and prevention of food poisoning.

In Japan, the Mannitol egg yolk polymyxin (MYP) agar and Kim and Goepfert agar with NaCl and Glycine (NGKG) agar have been used well as commercially available selective agar media for the detection of *B. cereus* (Bennett et al., 2015; Fricker et al., 2008; Kim and Goepfert, 1971; Mossel et al., 1967). These media contains both phenol red and egg yolk for the differentiation of *B. cereus* as per the manufacturers’ information (Table 1), however the typical reaction of *B. cereus* colonies tends to diffuse and interfere with non-*B. cereus* colonies grown on these agar plates. Hence, these media need skills and experiences for differentiation of typical *B. cereus* colonies grown on these agar plates. The NGKG and X-BC agar (X-BC; Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) has been developed as a commercially available chromogenic medium for the detection of *B. cereus*. Since this medium can detect *B. cereus* as specific blue-green colored colonies without interference with other colonies grown, this media can easily differentiate typical *B. cereus* with no skills and experiences.

In these days, Japanese standard methods for food hygiene control have been shifted to internationally validated ISO standard method to keep international cooperativeness. Even though there are several kinds of commercially available selective media in Japan,
the ISO 7932: 2004 recommends to use only MYP as selective agar medium (International Organization for Standardization, 2006). Hence, these commercially available non-MYP selective media need to be verified their compatibility with ISO 7932: 2004. The aim of this study was to compare the performance of 3 kinds of selective media in the detection and enumeration of B. cereus using ISO 7932: 2004 method.

For the inclusivity study, 3 kinds of media were assessed using 25 B. cereus strains. The exclusivity of these media was assessed using 50 strains (25 gram-positive and 25 gram-negative bacteria). In both inclusivity and exclusivity study, each strain tested was cultured twice in tryptic soy broth (Becton Dickinson, Sparks, MD, USA) at 35°C for 18 h and was then subjected to 10-fold serial dilution in buffered peptone water (BPW; Merck KGaA, Darmstadt, Germany). One hundred microliters of each suspension were inoculated onto each of the three plates of MYP, NGKG, and X-BC, and spread using sterilized glass rod to confirm repeatability of each medium. After MYP, NGKG, X-BC, and TSA were incubated at 30 ± 2°C for 24 ± 2h, 32 ± 2°C for 24 ± 2h, 35 ± 2°C for 24 ± 2h, 32 ± 2°C for 24 ± 2h, and 35 ± 2°C for 24 ± 2h, respectively, the colonies on each medium were observed and counted. The numbers obtained from each medium were converted into log CFU/ml, and the mean log CFU/ml and standard deviation (SD) were then calculated for each strain tested. A one-way analysis of variance (ANOVA) was performed to determine differences among 3 selective media compared using Microsoft Excel 2013 at the significance level of P = 0.05.

In the inclusivity study, all of 25 B. cereus strains grew and formed pink colored colonies with egg yolk reaction on both MYP and NGKG as shown in Figure 1. And all B. cereus strains tested grew and formed blue-green colored colonies on X-BC (Figure 1). As shown in Table 2, the numbers (mean log CFU/ml ± SD) of B. cereus obtained from MYP, NGKG and X-BC were 7.24 ± 0.32, 7.26 ± 0.32, and 7.22 ± 0.31, respectively. These numbers were equivalent with that obtained from non-selective TSA (7.26 ± 0.31). The ranges of recovered B. cereus numbers (mean log CFU/ml) from MYP, NGKG and X-BC were 6.81 to 7.77, 6.67 to 7.71, and 6.66 to 7.73, respectively. There is no statistically significant difference (p > 0.05) in recovered B. cereus numbers among MYP, NGKG and X-BC.

The results of exclusivity study are shown in Table 3. Of the 50 strains tested, 11, 7, 3 strains were allowed to grow on MYP, NGKG and X-BC. A total of B. thuringiensis tested grew and formed typical B. cereus colonies on all 3 media. All the other grown bacteria formed atypical B. cereus colonies and were easily differentiated from typical B. cereus colonies. The numbers (mean log CFU/ml ± SD) of all non-B. cereus bacteria grew on MYP, NGKG and X-BC were equivalent with that obtained from non-selective TSA.

Since the ISO 7932: 2004 recommends to use only MYP for the detection of B. cereus, NGKG and X-BC needed to be compared with MYP using artificially contaminated food matrix according to ISO 7932: 2004. In this method comparison study, fried rice, plain rice, fried noodle and potato salad, in which there is no B. cereus, were used as artificially contaminated

Ingredient	Formulation (g/L)
Peptone	MYP 10.0 NGKG 1.0 X-BC 10.0
Meat peptone	MYP 1.0 NGKG 15.0 X-BC 10.0
Meat extract	MYP 1.0 NGKG 0.5 X-BC 1.0
Yeast extract	MYP 0.5 NGKG 0.5 X-BC 0.5
Sodium chloride	MYP 10.0 NGKG 4.0 X-BC 5.0
D-mannitol	MYP 10.0 NGKG 0.0 X-BC 0.0
Glycine	MYP 3.0 NGKG 0.0 X-BC 3.0
Polymyxin B	MYP 100k units NGKG 50k units X-BC 100k units
Phenol red	MYP 0.025 NGKG 0.025 X-BC 0.025
Egg yolk (100% conversion)	MYP 25mL NGKG 20mL X-BC 20mL
Selective agent	MYP 0.01 NGKG 0.01 X-BC 0.01
Chromogenic substrate	MYP 0.15 NGKG 0.15 X-BC 0.15
Agar	MYP 15.0 NGKG 18.0 X-BC 15.0

pH: MYP 7.2 ± 0.2, NGKG 6.8 ± 0.2, X-BC 7.0 ± 0.2

Formulation of each selective medium was referred from manufacturer information.

FIG. 1. The typical appearance of B. cereus on various selective media. B. cereus ATCC 11778 formed pink colored colonies with egg yolk reaction on MYP (A) and NGKG (B), and blue-green colored colonies on X-BC (C) after 24h of incubation at 30, 32, 35°C, respectively.
COMPARISON OF SELECTIVE MEDIA FOR B. CEREUS

TABLE 2. Growth of Bacillus cereus on various selective media

Strains of Bacillus cereus	MYP	NGKG	X-BC	TSA
B. cereus ATCC 10876	7.10 ± 0.01	7.14 ± 0.02	7.10 ± 0.10	7.07 ± 0.04
B. cereus ATCC 11778	6.95 ± 0.08	6.95 ± 0.04	6.80 ± 0.16	6.94 ± 0.06
B. cereus ATCC 13061	6.81 ± 0.06	6.67 ± 0.09	6.66 ± 0.10	6.75 ± 0.04
B. cereus ATCC 14579	7.63 ± 0.02	7.63 ± 0.07	7.55 ± 0.06	7.63 ± 0.05
B. cereus ATCC 33019	7.43 ± 0.23	7.46 ± 0.21	7.55 ± 0.20	7.34 ± 0.04
B. cereus NFH A-102	7.02 ± 0.06	7.08 ± 0.03	6.97 ± 0.02	7.08 ± 0.04
B. cereus NFH A-104	7.06 ± 0.13	7.09 ± 0.10	6.91 ± 0.05	7.17 ± 0.09
B. cereus NFH A-105	7.23 ± 0.03	7.32 ± 0.08	7.25 ± 0.10	7.31 ± 0.09
B. cereus NFH A-107	7.34 ± 0.08	7.40 ± 0.11	7.33 ± 0.04	7.52 ± 0.15
B. cereus NFH A-113	6.99 ± 0.01	6.96 ± 0.03	7.00 ± 0.05	6.99 ± 0.03
B. cereus NFH A-114	6.89 ± 0.13	6.89 ± 0.10	6.90 ± 0.07	6.78 ± 0.10
B. cereus NFH A-116	7.11 ± 0.05	7.16 ± 0.06	7.11 ± 0.06	7.19 ± 0.10
B. cereus NFH A-118	7.66 ± 0.04	7.71 ± 0.02	7.53 ± 0.07	7.64 ± 0.05
B. cereus NFH A-119	7.13 ± 0.08	7.23 ± 0.07	7.24 ± 0.12	7.22 ± 0.05
B. cereus NFH A-121	7.18 ± 0.04	7.31 ± 0.04	7.25 ± 0.03	7.30 ± 0.09
B. cereus NFH A-123	7.24 ± 0.01	7.22 ± 0.05	7.23 ± 0.06	7.21 ± 0.04
B. cereus NFH A-125	6.92 ± 0.07	7.00 ± 0.12	6.84 ± 0.04	7.00 ± 0.13
B. cereus NFH A-126	7.77 ± 0.04	7.71 ± 0.03	7.73 ± 0.09	7.72 ± 0.04
B. cereus NFH A-128	7.22 ± 0.04	7.36 ± 0.08	7.33 ± 0.02	7.27 ± 0.06
B. cereus NFH B-101	7.14 ± 0.04	7.11 ± 0.06	7.23 ± 0.08	7.16 ± 0.10
B. cereus NFH B-102	6.95 ± 0.14	7.05 ± 0.18	7.02 ± 0.14	7.11 ± 0.10
B. cereus NFH B-106	7.04 ± 0.02	7.04 ± 0.06	7.05 ± 0.04	7.11 ± 0.10
B. cereus NFH B-108	7.13 ± 0.12	7.13 ± 0.05	7.10 ± 0.10	7.06 ± 0.08
B. cereus NFH B-118	7.72 ± 0.10	7.71 ± 0.05	7.61 ± 0.01	7.64 ± 0.04
B. cereus NFH B-119	7.13 ± 0.08	7.23 ± 0.07	7.24 ± 0.12	7.22 ± 0.05
Overall	7.24 ± 0.32	7.26 ± 0.32	7.22 ± 0.31	7.26 ± 0.31

p value (ANOVA)

- vs. MYP: 0.64
- vs. NGKG: 0.64
- vs. X-BC: 0.68

food matrix, respectively, since these food matrices have high frequency for B. cereus food poisoning (Bennett et al., 2015; Shinagawa, 1990). For method comparison study, spores of three strains of B. cereus (ATCC13061, ATCC 10876, NFH A-128) were used for making artificially contaminated food matrix. Spore solution was made according to following procedure. After B. cereus was cultured at 30°C for 10 days, spore of B. cereus was collected into sterilized distilled water. Subsequently, collected spore was washed 3 times.
TABLE 3. Exclusivity of non-\(B. \text{cereus}\) bacteria tested on various selective media a

Strains tested b	MYP	Mean log CFU/ml ± SD (colony color) c	NGKG	X-BC	TSA
Gram-positive bacteria					
\(Aerococcus viridans\) ATCC 10400	ND c	ND	ND	ND	9.43 ± 0.02
\(Bacillus circulans\) ATCC 4516	7.75 ± 0.10 (w)	ND	ND	ND	7.90 ± 0.06
\(B. \text{licheniformis}\) ATCC 12759	8.06 ± 0.09 (w)	ND	ND	ND	8.03 ± 0.03
\(B. \text{megaterium}\) ATCC 9885	ND	ND	ND	ND	7.30 ± 0.03
\(B. \text{pumilus}\) ATCC 14884	7.91 ± 0.13 (w)	7.80 ± 0.11 (w)	ND	7.98 ± 0.08	
\(B. \text{subtilis}\) ATCC 11774	7.54 ± 0.01 (w)	ND	ND	ND	7.56 ± 0.08
Strains tested					
\(H. \text{teramura et al.}\)					
\(C. muytjensii\) ATCC 51329	ND	ND	ND	9.05 ± 0.05	
\(C. sakazakii\)	ND	ND	ND	9.00 ± 0.10	
\(Klebsiella \text{aerogenes}\) JCM 15521	ND	ND	ND	8.93 ± 0.06	
\(L. \text{casei}\) ATCC 334	ND	ND	ND	9.42 ± 0.02	
\(L. \text{fermentum}\) IFO 14513	8.55 ± 0.06 (cl)	w (cl)	ND	8.56 ± 0.10	
\(L. \text{plantarum}\) ATCC 8014	w (cl)	ND	ND	ND	8.17 ± 0.02
\(L. \text{sakei}\) ATCC 15521	ND	ND	ND	9.03 ± 0.02	
\(L. \text{lactis}\) subsp. \(lactis\) NBRC 12007	w (cl)	ND	ND	ND	9.58 ± 0.06
\(L. \text{thermophilus}\) ATCC 19258	ND	ND	ND	9.70 ± 0.06	
\(S. \text{epidermidis}\) ATCC 12228	ND	8.43 ± 0.03 (w)	ND	8.36 ± 0.04	
\(S. \text{hominis}\) subsp. \(hominis\) JCM 2419	8.85 ± 0.06 (cr)	w (cr)	ND	9.10 ± 0.10	
\(Streptococcus\) warneri JCM 2415	8.80 ± 0.12 (w)	ND	ND	8.82 ± 0.10	
Gram-negative bacteria					
\(Aeromonas salmonicida\) ATCC 7965	ND	9.20 ± 0.03 (w)	ND	9.25 ± 0.05	
\(Citrobacter \text{koseri}\) JCM 1658	ND	ND	ND	8.08 ± 0.06	
\(C. \text{freundii}\) ATCC 8090	ND	ND	ND	9.41 ± 0.05	
\(Cronobacter \text{dublinensis}\) subsp. \(dublinensis\) JCM 16467	ND	ND	ND	8.87 ± 0.08	
\(C. \text{mutans}\) ATCC 51329	ND	ND	ND	9.05 ± 0.05	
\(C. \text{sakazakii}\) ATCC 29544	ND	ND	ND	9.00 ± 0.10	
\(Klebsiella \text{aerogenes}\) JCM 1235	ND	ND	ND	9.20 ± 0.10	
\(Enterobacter\) cloacae subsp. \text{cloacae}\) IFO 13535	9.08 ± 0.02 (w)	9.03 ± 0.06 (w)	ND	9.25 ± 0.04	
\(Escherichia \text{coli}\) ATCC25922	ND	ND	ND	8.09 ± 0.05	
\(Klebsiella \text{oxytoca}\) JCM1665	ND	ND	ND	9.25 ± 0.06	
\(K. \text{pneumoniae}\) subsp. \(pneumoniae\) ATCC 35657	ND	ND	ND	9.18 ± 0.03	
\(Klebsiella \text{ascorbata}\) JCM 1681	ND	ND	ND	9.05 ± 0.07	
\(Leclercia \text{adcarboxylate}\) JCM 1667	ND	ND	ND	8.98 ± 0.06	
\(Morganella \text{morganii}\) subsp. \text{morganii}\) NBRC 3168	ND	ND	ND	9.19 ± 0.10	
\(Pantoea \text{agglomerans}\) JCM 1236	ND	ND	ND	9.08 ± 0.04	
\(Pluralibacter\) gergoviae ATCC 33028	ND	ND	ND	9.01 ± 0.06	
\(Proteus \text{hauseri}\) ATCC 13315	ND	ND	ND	8.69 ± 0.12	
\(Providencia\) rettgeri ATCC 9250	ND	ND	ND	8.99 ± 0.18	
\(Pseudomonas\) aeruginosa ATCC 10145	ND	ND	ND	8.69 ± 0.12	
\(Raoultella\) ornitholytica NBRC 105727	ND	ND	ND	8.16 ± 0.04	
\(R. \text{planticola}\) NBRC 14939	ND	ND	ND	9.22 ± 0.04	
\(Salmonella\) enterica serovar Enteritidis IFO 3313	ND	ND	ND	8.81 ± 0.03	
\(S. \text{enterica}\) serovar Typhimurium ATCC 7823	ND	ND	ND	8.79 ± 0.02	
\(Serratia\) marcescens ATCC 13880	ND	ND	ND	8.94 ± 0.06	
\(Yersinia\) enterocolitica subsp. \text{enterocolitica}\) ATCC 9610	ND	ND	ND	8.10 ± 0.09	

aMYP, NGKG, X-BC, and TSA was cultured at 30 ± 2°C for 24 ± 2h, 32 ± 2°C for 24 ± 2h, 35 ± 2°C for 24 ± 2h, and 35 ± 2°C for 24 ± 2h, respectively.
bStrains were derived from ATCC (American Type Culture Collection), IAM (Institute of Molecular and Cellular Biosciences, The University of Tokyo), IFO (Institute for Fermentation Osaka, Japan), JCM (Japan Collection of Microorganisms) and NBRC (NITE Biological Resource Center, Japan). cND: not detected.
dw: poor and very small.
eCharacteristics indicate colony appearance: w, white; pEY, pink and egg yolk reaction; bg, blue-green; cl, colorless; cr, cream.
using sterilized distilled water, and was then heated at 70°C for 40 min. The spore of each B. cereus strain was spiked into each 25 g of sample at the following levels, respectively: high (7 log CFU/g), medium (5 log CFU/g) and low (3 log CFU/g) per each food matrix, according to AOAC validation guideline and ISO 16140-2 (AOAC International, 2012; International Organization for Standardization, 2016). Sample preparation and inoculation were according to ISO 7932: 2004. In brief, after spiked food samples were preserved at 5°C for 3 days, they were homogenized with 9-fold volume of BPW at 60 sec. using homogenizer (MASTICATOR 400S, IUL, S. A., Barcelona, Spain). Each homogenized sample was subjected to 10-fold serial dilution in BPW, 100 μl of each dilution was then inoculated onto 2 plates of MYP, NGKG, and X-BC and spread using sterilized glass rod, respectively. After each medium was incubated at same condition with inclusivity/exclusivity study, respectively, typical B. cereus colonies grown were counted. Results obtained from each medium tested were converted into log CFU/g of B. cereus per each food matrix tested. The mean log CFU/g and standard deviation (SD) at each contamination level of food matrix tested were then calculated. Data analysis was conducted under the assumption that MYP, NGKG, and X-BC were reference method, candidate method 1, candidate method 2, respectively according to the validation of AOAC International Performance Tested Methods (Teramura et al., 2018). In addition, ANOVA was performed to determine differences of candidate methods against reference method using Microsoft Excel 2013 at the significance level of P = 0.05. The method comparison study was summarized in Table 4. The ranges of mean log CFU/g ± SD of MYP, NGKG, and X-BC were 3.53 to 7.73, 3.53 to 7.71, and 3.48 to 7.57, respectively. And ranges of SD of those were 0.05 to 0.25, 0.09 to 0.29, and 0.05 to 0.26, respectively. Overall mean log CFU/g ± SD of MYP, NGKG, and X-BC were 5.57 ± 1.63, 5.56 ± 1.62, and 5.52 ± 1.59, respectively. These results showed that MYP, NGKG, and X-BC had equivalent range of mean log CFU/g ± SD regardless of food matrix. These results also suggested that these 3 selective media had similar accuracy and repeatability. Further, range of mean of differences between MYP and NGKG, and MYP and X-BC were -0.45 to 0.07 and -0.44 to 0.04 and were within ± 0.5 log. In a microbiological viewpoint, a difference of ≤ 0.5 log is not considered to be practically significant (Teramura et al., 2018). Hence, NGKG and X-BC had no differences with MYP as a reference in point of accuracy.

Figure 2 showed plots of recovered B. cereus numbers (Log CFU/g) between each candidate method and reference method for all food matrix. The slopes and

Food matrix	Inoculation level	N	MYP (Reference)	NGKG (Candidate 1)	Mean diff. (Can. 1 - Ref.)	X-BC (Candidate 2)	Mean diff. (Can. 2 - Ref.)
			Mean log CFU/g ± SD	Mean log CFU/g ± SD		Mean log CFU/g ± SD	
Fried rice	High	3	7.73 ± 0.25	7.71 ± 0.22	-0.02	7.55 ± 0.25	-0.18
	Med	3	5.70 ± 0.20	5.65 ± 0.24	-0.05	5.65 ± 0.26	-0.05
	Low	3	3.82 ± 0.05	3.81 ± 0.09	-0.01	3.84 ± 0.09	0.02
Plain rice	High	3	7.72 ± 0.13	7.27 ± 0.16	-0.45	7.28 ± 0.16	-0.44
	Med	3	5.51 ± 0.08	5.48 ± 0.11	-0.03	5.42 ± 0.13	-0.09
	Low	3	3.55 ± 0.23	3.62 ± 0.14	0.07	3.59 ± 0.14	0.04
Fried noodle	High	3	7.64 ± 0.10	7.69 ± 0.15	0.05	7.57 ± 0.05	-0.07
	Med	3	5.37 ± 0.25	5.36 ± 0.22	-0.01	5.35 ± 0.24	-0.02
	Low	3	3.65 ± 0.24	3.63 ± 0.23	-0.02	3.63 ± 0.24	-0.02
Potato salad	High	3	7.47 ± 0.25	7.41 ± 0.29	-0.06	7.39 ± 0.26	-0.08
	Med	3	5.59 ± 0.15	5.59 ± 0.09	0.00	5.49 ± 0.09	-0.10
	Low	3	3.53 ± 0.16	3.53 ± 0.14	0.00	3.48 ± 0.22	-0.05
Overall		36	5.57 ± 1.63	5.56 ± 1.62	-0.01	5.52 ± 1.59	-0.05

*Method comparison study was conducted using spiked food matrix with spores of B. cereus ATCC 13061, ATCC 10876 and NFH A-128, respectively. MYP, NGKG, and X-BC was cultured at 30 ± 2°C for 24 ± 2h, 32 ± 2°C for 24 ± 2h, and 35 ± 2°C for 24 ± 2h, respectively. Spiked bacterial levels were at high (7 log CFU/g), medium (5 log CFU/g) and low (3 log CFU/g), respectively.
intercepts of linear regression line between NGKG and MYP, and X-BC and MYP were 1.01 and -0.02, and 1.02 and -0.06 as shown in Figure 2. Further, these slopes and intercepts were close to 1.00 and 0.00, respectively. The both correlation coefficient (r) between NGKG and MYP, and X-BC and MYP were 0.999. ANOVA showed that both NGKG and X-BC had no statistically significant differences (p > 0.05) with MYP.

In this study, our findings demonstrated that 3 kinds of commercially available selective media for the enumeration of \textit{B. cereus} had equivalent performance in count. However, even though NGKG had similar detection principle, NGKG showed more selective than MYP in exclusivity study. For X-BC, since it had most selective among 3 selective media and can differentiate \textit{B. cereus} from other competitive bacteria due to specific color development, it was easiest to read results in method comparison study. Moreover, it suggested that MYP and NGKG have a possibility of miscount for typical colonies, since typical egg yolk reaction of both MYP and NGKG showed tendency to spread and interfere with other grown colonies. On the other hand, X-BC did not show widespread of typical colored colonies in addition to its excellent selectivity. Hence, it seemed that X-BC has a less possibility of miscount even if there are large number of \textit{B. cereus} grown on the medium.

However, X-BC allowed \textit{B. thuringiensis} to form typical \textit{B. cereus} colonies as well as other 2 selective media in spite of containing specific chromogenic substrate for \textit{B. cereus}, since it is known well that \textit{B. thuringiensis} has same phenotypic biochemical characteristics (Vilas-Bôas et al., 2007). ISO 7932: 2004 is established as a method for enumeration of presumptive \textit{B. cereus}. Hence, it needs confirmation test to distinguish \textit{B. cereus} from closely related Bacillus strain such as \textit{B. thuringiensis}. Even though \textit{B. thuringiensis} is hard to be distinguished on microbiological media due to its phenotypic biochemical characteristics, \textit{B. thuringiensis} can be differentiated by the observation of parasporal insecticidal crystal toxin using microscopy or the amplification of specific \textit{cry} gene which is coded crystal toxin by PCR base techniques (Vilas-Bôas et al., 2007).

Our results showed the numbers of \textit{B. cereus} obtained from NGKG and X-BC had no differences with that from MYP even though incubation temperature for each medium was different. Therefore, it suggested that NGKG and X-BC had a possibility to be alternative media in ISO 7932: 2004 method.

In conclusion, we compared the performances of MYP, NGKG, and X-BC which are commercially available in Japan and demonstrated that NGKG and X-BC are equivalent to or better performance than MYP which is recommend in ISO 7932: 2004 when using the standard ISO 7932: 2004 method in fried rice, plain rice, fried noodle, and potato salad. Therefore, it is suggested that NGKG and X-BC can be adapted to the ISO 7932: 2004 method for the enumeration of \textit{B. cereus} in selected food matrix as well as MYP.

ACKNOWLEDGMENTS

We are grateful to Ms. Aya Ogura, and Ms. Aoi Fujiwara (JNC Corporation) for their technical assistance.

REFERENCES

AOAC International. (2012) AOAC INTERNATIONAL methods committee guidelines for validation of microbiological methods for food and environmental surfaces. AOAC International, Maryland.

Bennett, R. W., Tallent, S. M. and Hait J, M. (2015) \textit{Bacillus cereus} and \textit{Bacillus cereus} toxins. In Compendium of Method for the Microbiological Examination of Food 5th
edition (Salfinger, Y. ed.), pp.375-390, APHA press, Washington, D. C.

Crielly, E. M., Logan, N. A. and Anderton, A. (1994) Studies on the Bacillus flora of milk and milk products. FEMS Microbiol. Lett., 157, 223-228.

Fangio, M. F., Roura, S. I. and Fritz, R. (2010) Isolation and identification of Bacillus spp. and related genera from different starchy foods. J. Food Sci., 75, 218-229.

Fricker, M., Reissbrodt, R. and Ehling-Schulz, M. (2008) Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int. J. Food Microbiol., 68, 27-34.

Granum, P. E. and Lund, T. (1997) Bacillus cereus and its food poisoning toxins. J. Appl. Bacteriol., 77, 256-263.

International Organization for Standardization. (2016) ISO 16140-2: 2016. Microbiology of the food chain - Method validation - Part 2: Protocol for the validation of alternative (proprietary) methods against a reference method. ISO, Geneva.

International Organization for Standardization. (2006) ISO 7932: 2004. Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of presumptive Bacillus cereus. Colony-count technique at 30°C. ISO, Geneva.

Kim, H. U. and Goepfert, J. M. (1971) Enumeration and identification of Bacillus cereus in foods. Appl. Microbiol., 22, 581-587.

Melling, J. and Capel, B. J. (1978) Characteristics of Bacillus cereus emetic toxin. FEMS Microbiol. Lett., 4, 133-135.

Mossel, D. A. A., Koopman, M. J. and Jongerius, E. (1967) Enumeration of Bacillus cereus in foods. Appl. Microbiol., 15, 650-653.

Schoeni, J. L. and Wong, A. C. L. (2005) Bacillus cereus food poisoning and its toxins. J. Food Prot., 68, 636-648.

Shinagawa, K., Matsusaka, N., Konuma, H. and Kurata, H. (1985) The relation between the diarrheal and other biological activities of Bacillus cereus involved in food poisoning outbreaks. Jpn. J. Vet. Sci., 47, 557-565.

Shinagawa, K. (1990) Analytical methods for Bacillus cereus and other Bacillus species. Int. J. Food Microbiol., 10, 125-142.

Teramura, H., Betts, G., Chen, Y. Brodsky, M. and Salfinger, Y. (2018) MC-Media Pad ACplus™ for enumeration of aerobic count in a variety of foods. J. AOAC Int., 101, 769-782.

Vilas-Bôas, G. T.,Peruca, A. P. S. and Arantes, O. M. N. (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can. J. Microbiol., 53, 673-687.