THE DISTANCE OF A PERMUTATION FROM A SUBGROUP OF S_n

RICHARD G.E. PINCH

For Bela Bollobas on his 60th birthday

Abstract. We show that the problem of computing the distance of a given permutation from a subgroup H of S_n is in general NP-complete, even under the restriction that H is elementary Abelian of exponent 2. The problem is shown to be polynomial-time equivalent to a problem related to finding a maximal partition of the edges of an Eulerian directed graph into cycles and this problem is in turn equivalent to the standard NP-complete problem of Boolean satisfiability.

1. Introduction

We show that the problem of computing the distance of a given permutation from a subgroup H of S_n is in general NP-complete, even under the restriction that H is elementary Abelian of exponent 2. The problem is polynomial-time equivalent to finding a maximal partition of the edges of an Eulerian directed graph into cycles and this is turn equivalent to the standard NP-complete problem 3-SAT.

2. Distance in the symmetric group

We define Cayley distance in a symmetric group as the minimum number of transpositions which are needed to change one permutation to another by post-multiplication

$$d(\rho, \pi) = \min \{ n \mid \rho \tau_1 \ldots \tau_n = \pi, \ \tau_i \text{ transpositions} \}.$$

It is well-known that Cayley distance is a metric on S_n and that it is homogeneous, that is, $d(\rho, \pi) = d(I, \rho^{-1}\pi)$. Further, the distance of a permutation π from the identity in S_n is n minus the number of cycles in π.

If H is a subgroup of S_n, then we define the distance of a permutation π from H as

$$d(H, \pi) = \min_{\eta \in H} d(\eta, \pi).$$

We refer to Critchlow [2] and Diaconis [3] for background and further material on the uses of the Cayley and other metrics on S_n.

Problem 1 (Subgroup–Distance). Instance: Symmetric group S_n, element $\pi \in S_n$, elements $\{h_1, \ldots, h_r\}$ of S_n, integer K.

Question: Is there an element $\eta \in H = \langle h_1, \ldots, h_r \rangle$ such that $d(\eta, \pi) \leq K$?

The natural measure of this problem is nr where r is the length of the list of generators. The following result shows that every subgroup of S_n has a set of generators of length at most n^2 and hence we are justified in taking n as the measure of the various problems derived from Subgroup–Distance.

Proposition 1. Every subgroup of S_n can be generated by at most n^2 elements.
Proof. Let H be a subgroup of S_n. It is clear that H is generated by the union of one Sylow subgroup for every prime p dividing the order $\#H$. The order of a Sylow p-subgroup of H is p^b where p^b divides $\#H$ and hence $n!$. It is well-known (e.g. Dickson [4], I, chap 9) that the power of p dividing $n!$ is at least $rac{n}{p-1}$, so $b \leq n$. But consideration of the composition factors shows that a p-group of order p^b can be generated by a set of at most b elements: hence any Sylow subgroup of H can be generated by at most n elements. Further, the set of prime factors of the order of H forms a subset of the set of prime factors of $n!$, that is, of the primes up to n, and there are at most n such primes. Hence H can be generated by a set of at most n^2 elements.

Although we do not need the stronger result, it can be shown that any subgroup of S_n can be generated by at most $3n - 2$ elements.

We define a subset of S_n to be involutions with disjoint support (IDS) to be set of elements of the form $\gamma_j = (x_j^{(1)} y_j^{(1)}) \cdots (x_j^{(r_j)} y_j^{(r_j)})$ where the $x_j^{(i)}$, $y_j^{(i)}$ are all distinct. The subgroup generated by an IDS is clearly elementary Abelian with exponent 2. Define the width of an IDS to be the maximum number of 2-cycles r_j in the generators γ_j. The problem $\text{IDS6–Subgroup–Distance}$ is the problem Subgroup–Distance with the list of generators restricted to be an IDS of width at most w.

Theorem 2. The problem $\text{IDS6–Subgroup–Distance}$ is NP-complete.

The Theorem will follow from combining Theorem 3 and Theorem 7. We deduce immediately that the more general problem Subgroup–Distance is also NP-complete.

By contrast, the problem of deciding whether the distance is zero, that is, testing for membership of a subgroup of S_n, has a polynomial-time solution, an algorithm first given by Sims [8] and shown to have a polynomial-time variant by Furst, Hopcroft and Luks [5]. See Babai, Luks and Seress [1] and Kantor and Luks [7] for a survey of related results.

3. Switching circuits

Let $G = (V, E)$ be a directed graph with vertex set V and edge set E. (We allow loops and multiple edges.) For each vertex v define $e_+(v)$ to be the set of edges out of v and $e_-(v)$ the set of edges into v. The in-valency $\partial_-(v) = \#e_-(v)$ and the out-valency $\partial_+(v) = \#e_+(v)$. We define a switching circuit to be a directed graph G for which $\partial_+(v) = \partial_-(v) = \partial(v)$, say, and for which there is a labelling $l_\pm(v)$ of each set $e_\pm(v)$ with the integers from 1 to $\partial(v)$. (The labels at each end of an edge are not related.) A routing ρ for a switching circuit is a choice of permutation $\rho(v) \in S_{\partial(v)}$ for each vertex v. Clearly there is a correspondence between routings for a switching circuit G and decompositions of the edge set of G into directed cycles. We define a polarisation T for a switching circuit G to be an equivalence relation on the set of vertices such that equivalent vertices have the same valency, and call (G, T) a polarised switching circuit. We say that a routing ρ respects the polarisation T if the permutations $\rho(x)$ and $\rho(y)$ are equal whenever x and y are equivalent vertices under T. We shall sometimes refer to a switching circuit without a polarisation, or with a polarisation for which all the classes are trivial, as unpolarised.

Problem 2 (Polarised–Switching–Circuit–Maximal–Routing). INSTANCE: Polarised switching circuit (G, T), positive integer K.

QUESTION: Is there a routing which respects T and has at least K cycles in the associated edge-set decomposition?
We define the width of a polarisation to be the maximum number of vertices in an equivalence class of T. The problem **Widthw–Valencyv–Maximal–Routing** is the problem **Polarised–Switching–Circuit–Maximal–Routing** with the width of T constrained to be at most w and the in- and out-valency of each vertex in V constrained to be at most v.

Theorem 3. Problem **Width6–Valency2–Maximal–Routing** is NP-complete.

4. **Proof of Theorem 3**

We shall show that the problem 3-SAT, [LO2] of Garey and Johnson [6], which is known to be NP-complete, can be reduced to the problem **Width6–Valency2–Maximal–Routing**.

We define a polarised switching circuit (G, T) to be Boolean (or binary) if every vertex has in- and out-valency 1 or 2. To each class C of the polarisation T we associate a Boolean variable $a(C)$. There is then a 1-1 correspondence between routings ρ which respect T and assignments of truth values to the variables $a(C), C \in T$ by specifying that $a(C)$ is 0 (false) if and only if the permutation $\rho(v)$ is the identity in S_2 for every v in C, and 1 (true) if and only if $\rho(v) = (1\ 2)$.

We denote a vertex in a polarisation class associated with the Boolean variable a as in Figure 1. Our convention for drawing the diagrams will be to assume the edges round each vertex labelled so that 1 is denoted by either “straight through” or “turn right”.

![Figure 1](image1.png)

Figure 1. A vertex in a switching circuit associated with the Boolean variable a, and the routings with $a = 1$ and $a = 0$ respectively.

We associate a vertex with the negated variable \(\overline{a} \) by exchanging the input labels 1 and 2.

Our proof will proceed by finding polarised switching circuits for which the number of maximal cycles in a routing is a Boolean function of the variables.

For a single Boolean variable a define $I(a)$ to be the switching circuit in Figure 2.

![Figure 2](image2.png)

Figure 2. The switching circuit $I(a)$.

For a pair of Boolean variables \((a, b)\) define the polarised switching circuit \(E(a, b)\) as in Figure 3.

Figure 3. The switching circuit \(E(a, b)\).

Further define the polarised switching circuit \(F(a, b)\) as in Figure 4.

Figure 4. The switching circuit \(F(a, b)\).

Define \(G(a, b)\) to be the disjoint union of \(F(a, b)\) and \(E(\bar{a}, b)\).

Proposition 4.

1. The number of cycles in a routing for \(I(a)\) is 2 if \(a = 1\) and otherwise 1.
2. The number of cycles in a routing for \(E(a, b)\) is 2 if \(a = b\) and otherwise 1.
3. The number of cycles in a routing for \(F(a, b)\) is 2 if \(a \neq b\), 3 if \(a = b = 1\) and 1 if \(a = b = 0\).
4. The number of cycles in a routing for \(G(a, b)\) is 2 if \(a = b = 0\) and 4 otherwise.

Proof. In each case we simply enumerate the cases.

For a triple of Boolean variables \((a, b, c)\) define the polarised switching circuit \(A(a, b, c)\) as in Figure 5.

Proposition 5. The number of cycles in a routing for \(A(a, b, c)\) is 1 if \(a = b = c = 0\) and 3 otherwise.

Proof. Again, in each case we simply enumerate the cases.

Theorem 6. There is a polynomial-time parsimonious transformation from the problem 3-SAT to the problem Width6–Valency2–Maximal–Routing.

Proof. Suppose we have an instance of 3-SAT: that is, a Boolean formula \(\Phi\) of length \(l\) in variables \(x_i\) which is a conjunct of \(k\) clauses each of which is a disjunct of at most three variables (possibly negated). We transform \(\Phi\) into a formula \(\Phi'\) in variables \(y_i^j\) by replacing the \(j^{\text{th}}\) occurrence of variable \(x_i\) by the variable \(y_i^j\) and...
conjoining clauses \((y_i^{(1)} \equiv y_i^{(2)}) \land \ldots \land (y_i^{(r_i-1)} \equiv y_i^{(r_i)}) \) where the variable \(x_i \) occurs \(r_i \) times in \(\Phi \). Clearly \(\Phi \) and \(\Phi' \) represent the same Boolean function and have the same number of satisfying assignments. Every variable in \(\Phi' \) occurs at most three times, and at most once in a disjunct deriving from a clause in \(\Phi \). Let \(n \) be the total number of variables in \(\Phi' \); certainly \(n \leq l \).

We form a polarised switching circuit \(\Psi \) from \(\Phi' \) as follows. Take a circuit \(B(x, y, z) \) for every clause in \(\Phi' \) of the form \((x \lor y \lor z) \); take a circuit \(G(x, y) \) for every clause in \(\Phi' \) of the form \((x \lor y) \); take a circuit \(I(x) \) for every clause in \(\Phi' \) of the form \((x \equiv y) \). Let the number of circuits of types \(B, G, I \) and \(E \) taken to form \(\Psi \) be \(b, g, i, \) and \(e \) respectively. Put \(M = 3b + 4g + 2i + 2e \). The resulting polarised switching circuit has \(n \) classes, and each class in the polarisation is involved in at most one circuit of the form \(B, G \) or \(I \): hence each class contains at most \(4 + 1 + 1 = 6 \) vertices and the number of vertices in \(\Psi \) is thus at most \(6n \). Furthermore, a routing for \(\Psi \) has \(M \) cycles if and only if the corresponding assignment of Boolean values gives \(\Phi' \), and hence \(\Phi \), the value \(1 \); otherwise a routing has less than \(M \) cycles.

Since the problem \textbf{3-SAT} is known to be NP-complete, we immediately deduce that the problem \textbf{Width16–Valency2–Maximal–Routing} is NP-complete as well. This proves Theorem 3.

5. Switching circuits and IDS

In this section we obtain a polynomial-time equivalence between the problems \textbf{Width}--\textbf{Valency}--\textbf{Maximal–Routing} and \textbf{IDS}--\textbf{Subgroup–Distance}.

\textbf{Theorem 7.} There is a polynomial-time parsimonious equivalence between problems \textbf{Width}--\textbf{Valency}--\textbf{Maximal–Routing} and \textbf{IDS}--\textbf{Subgroup–Distance}.

\textbf{Proof.} Suppose we have an instance of \textbf{IDS}--\textbf{Subgroup–Distance}, that is, an element \(\pi \) of \(S_n \) together with an IDS on a set of \(t \) generators \(\{\gamma_j\} \) with \(\gamma_j = (x_j^{(1)} y_j^{(1)}) \ldots (x_j^{(r_j)} y_j^{(r_j)}) \). Let \(x_j^{(i)}, y_j^{(i)} \) all distinct and all the \(r_j \leq w \). We construct a polarised switching circuit on a graph, vertex set \(V = \{P(1), \ldots, P(n)\} \cup \{Q(1,1), \ldots, Q(t, r_t)\} \). Each vertex \(P(k) \) will be of in-valence and out-valence 1; each vertex \(Q(j, i) \) will be of in-valence and out-valence 2. For each \(j \) up to \(t \) and \(i \) up to \(r_j \) we take edges from \(P(x_j^i) \) and from \(P(y_j) \) to \(Q(j, i) \) labelled 1 and 2 respectively, and edges from \(Q(j, i) \) to \(P(\pi(x_j^i)) \) and to \(P(\pi(y_j^i)) \) again labelled 1 and 2 respectively. We define a polarisation \(T \) on \(V \) by taking \(t \) classes \(C_j = \{Q(j, i) \mid i = 1, \ldots, r_j\} \); clearly the width of \(T \) is at most \(w \).
Conversely, suppose we have an instance of \textbf{Width}_w–\textbf{Valency}_2–\textbf{Maximal–Routing}, that is, a directed graph \((V, E)\) with every vertex \(v\) having in- and out-valency two, a labelling \(l_\pm(v) : e_\pm(v) \to \{1, 2\}\) of edges into and out of each vertex \(v\), and an equivalence relation \(T\) on \(V\) with \(t\) classes each of size at most \(w\). Put \(n = \#E\). We define a permutation \(\pi\) of \(E\) as follows. For an edge \(e\) into a vertex \(v\), let \(\pi(e)\) be the edge \(f\) out of \(v\) which has label \(l_+(v)(f)\) equal to \(l_-(v)(e)\). We further define an IDS by writing down a set of generators \(\{\gamma_j\}\) as follows. For each class of vertices \(C_j = \{v_{ji}^j | i = 1, \ldots, r_j\}\) in the polarisation \(T\), let \(\gamma_j\) be the product of transpositions of the form \((f_{ji}^j g_{ji}^j)\) where \(f_{ji}^j\) and \(g_{ji}^j\) are the edges out of vertex \(v_{ji}^j\). Since each class in \(T\) has at most \(w\) elements, each generator \(\gamma_j\) is composed of at most \(w\) transpositions.

In each case there is a correspondence between routings \(\rho\) of the switching circuit which respect the polarisation \(T\) and permutations of the form \(\pi \eta\) where \(\eta\) runs over the elements of the subgroup \(H\) of \(S_n\) generated by the \(\gamma_j\): in this correspondence the number of cycles in the routing \(\rho\) is equal to the number of cycles in the permutation \(\pi \eta\). Hence \(\pi\) is within distance \(d\) of the group generated by the \(\gamma_j\) if and only if there is a routing \(\rho\) with at least \(n - d\) cycles.

\[\square\]

References

[1] L. Babai, E.M. Luks, and Seress Á., \textit{Fast management of permutation groups}, Proc. 29th annual symposium on foundation of computer science (1988), 272–282.
[2] D.E. Critchlow, \textit{Metric methods for analysing partially ranked data}, Lecture notes in statistics, vol. 34, Springer Verlag, Berlin, 1985.
[3] P. Diaconis, \textit{Group representations in probability and statistics}, IMS lecture notes, vol. 11, Institute of Mathematical Statistics, Hayward CA, 1988.
[4] Leonard E. Dickson, \textit{History of the theory of numbers}, Chelsea, New York, 1971, original publication Carnegie Institute, Washington, 1919–23.
[5] M.L. Furst, J. Hopcroft, and E.M. Luks, \textit{Polynomial time algorithms for permutation groups}, Proc. 21st IEEE FOCS, 1980, pp. 36–41.
[6] M.R. Garey and G.S. Johnson, \textit{Computers and intractability: a guide to the theory of np-completeness}, W.H. Freeman, San Francisco, CA, 1979.
[7] W.M. Kantor and E.M. Luks, \textit{Computing in quotient groups}, Proceedings 22nd annual ACM symposium on theory of computing, ACM Press, 1990, pp. 524–534.
[8] C.C. Sims, \textit{Computational methods in the study of permutation groups}, Computational problems in abstract algebra (Oxford) (J. Leech, ed.), Pergamon Press, 1970, pp. 169–184.

2 Eldon Road, Cheltenham, Glos GL52 6TU, U.K.
E-mail address: rgep@chalcedon.demon.co.uk