Yeast-based nucleotide supplementation in mother sows modifies the intestinal barrier function and immune response of neonatal pigs

Lumin Gao, Chunyan Xie, Xiaoxiao Liang, Zhihong Li, Biao Li, Xin Wu, Yulong Yin

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China

Hunan Co-Innovation Center of Safety Animal Production, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China

Henan Zhongke Ground Food Co., Ltd, Zhengzhou 450001, China

The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang 443003, China

Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China

In the present study, we aimed to evaluate the effects of maternal yeast-based nucleotide (YN) supplementation on the intestinal immune response and barrier function in neonatal pigs, as well as the diarrhoea rate and growth performance in suckling piglets. Sixty-four late-gestation sows were assigned to the following groups: the CON (fed a basal diet) and YN groups (fed a basal diet with 4 g YN/kg diet). The experiment started on d 85 of gestation and ended on d 20 of lactation. Diarrhoea rate and average daily gain of the piglets were recorded, and samples of blood and intestines from neonatal piglets were collected before they consumed colostrum during farrowing. Compared with the CON group, maternal YN supplementation increased the weaning weight of litter and decreased the diarrhoea rate (P < 0.01). In addition, maternal YN supplementation promoted the ileal villus development in the neonates compared with that in the CON group (P < 0.01). Maternal YN supplementation also increased the ileal secretory immunoglobulin A (sIgA) level compared with that in the CON group (P < 0.05). The real-time PCR results showed that maternal dietary YN supplementation increased the jejunal and ileal expression of interleukin (IL)-17, IL-8, IL-1b, IL-10 and tumor necrosis factor (TNF)-a in the neonates compared with that in the CON group (P < 0.05). Overall, maternal nucleotide supplementation improved the villus development and innate immunity of neonatal piglets during late pregnancy. This may be associated with the decrease in diarrhoea and the increase in weaning weight of the litter of suckling piglets.

© 2021, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Maternal nutrition level is one of the factors programming nutrient partitioning and ultimately regulating the growth and development of foetal tissues and organs (Mcgovern et al., 2014). The fastest growing stage of foetal small intestine is during late pregnancy, and an impaired intestine in foetus can lead to a higher diarrhoea rate and lower growth performance after birth (Che et al., 2016). Chronic diarrhoea in the suckling stage is characterised by small intestinal dysplasia and immunodeficiency (Avila et al., 1989; Bueno et al., 1994). In the pig industry, diarrhoea in sucking piglets is a major concern as it can increase morbidity and decrease the weight gain daily (Kongsted et al., 2014). Thus, it is important to increase the growth and development of foetal intestine during late gestation.

Due to abundant nucleotides in the milk of sows, there are several studies on the importance of nucleotides in the regulation of dietary protein and nucleotide metabolism (Wyllie et al., 1994). However, there is a lack of research on the effects of nucleotides on the intestinal function and immune response of neonatal piglets. Therefore, it is necessary to investigate the effects of maternal nucleotide supplementation on the intestinal function and immune response of neonatal piglets during late pregnancy.

In the present study, we aimed to evaluate the effects of maternal yeast-based nucleotide (YN) supplementation on the intestinal immune response and barrier function in neonatal pigs, as well as the diarrhoea rate and growth performance in suckling piglets. Sixty-four late-gestation sows were assigned to the following groups: the CON (fed a basal diet) and YN groups (fed a basal diet with 4 g YN/kg diet). The experiment started on d 85 of gestation and ended on d 20 of lactation. Diarrhoea rate and average daily gain of the piglets were recorded, and samples of blood and intestines from neonatal piglets were collected before they consumed colostrum during farrowing. Compared with the CON group, maternal YN supplementation increased the weaning weight of litter and decreased the diarrhoea rate (P < 0.01). In addition, maternal YN supplementation promoted the ileal villus development in the neonates compared with that in the CON group (P < 0.01). Maternal YN supplementation also increased the ileal secretory immunoglobulin A (sIgA) level compared with that in the CON group (P < 0.05). The real-time PCR results showed that maternal dietary YN supplementation increased the jejunal and ileal expression of interleukin (IL)-17, IL-8, IL-1b, IL-10 and tumor necrosis factor (TNF)-a in the neonates compared with that in the CON group (P < 0.05). Overall, maternal nucleotide supplementation improved the villus development and innate immunity of neonatal piglets during late pregnancy. This may be associated with the decrease in diarrhoea and the increase in weaning weight of the litter of suckling piglets.

© 2021, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
of growth performance and intestinal health of pigs (Che et al., 2016; Waititu et al., 2017). Studies on sows have suggested that the growth performance of piglets was improved by maternal yeast culture supplementation during gestation and lactation (Kim et al., 2008; Hung 2015). Furthermore, maternal dietary uridine supplementation reduces diarrhoea incidence in piglets by regulating the intestinal mucosal barrier and cytokine profiles (Wu et al., 2020). In addition, studies on broilers and weaned piglets have suggested that exogenous nucleotides could improve growth performance, intestinal enzyme activity and villus development (Superchi et al., 2012; Daneshmand et al., 2017). On the contrary, there are indications of the protective effects of nucleotide supplementation in infant formulas against diarrhoea and immune benefits (Hess and Greenberg 2012). Dietary nucleotide supplementation can improve immune response and decrease diarrhoea rate in piglets by regulating inflammatory cytokines under unhygienic conditions or weaning stress conditions (Che et al., 2016; Waititu et al., 2017). Hence, nucleotides play an important role in intestinal development and function in animals. However, there is a paucity of studies on the effects of maternal nucleotides supplementation on intestinal immune response and barrier function in neonatal pigs. As a by-product of yeast degradation, yeast-based nucleotide (YN) is rich in nucleotides. It is hypothesised that maternal YN supplementation will enhance intestinal structure and function in neonatal piglets. Thus, the aim of the present study was to evaluate the effects of maternal dietary YN supplementation on the intestinal immune response and barrier function in neonatal piglets.

2. Materials and methods

Animal experiments were approved by the Animal Care Committee of the Institute of Subtropical Agriculture, Chinese Academy of Science, and were approved by the Animal Welfare Committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences (2015-B-A).

2.1. Animals, diets and housing

Sixty-four pregnant sows (Large White × Landrace) with similar parity (3 to 6 parities, back-fat thickness 15 to 17 mm) were divided into 2 treatments: the control (CON) and YN groups, there were 32 sows in each group. The experiment began on d 85 of gestation and ended on d 20 of lactation. During this period, sows in the CON group were fed a basal diet and in the YN group were fed a basal diet plus extra 4 g YN/kg diet. The management of breeding and housing was as recently described in detail (Xie et al., 2016; Gao et al., 2019). Experiment was carried out in Henan Guang'an Biology Technology Co. Ltd (Zhengzhou, 450001, China).

YN (Angel Yeast Co., Ltd, Hubei, China) contained crude protein (41.31%), amino acid nitrogen (1.79%), ash (7.38%) and total nucleic acid (10.37%). All nutrients in the basal diet met the nutrient recommendation of the NRC 2012 (Table 1). All sows were fed twice daily at 06:00 and 15:00 and had free access to water during the experiment period. Each sow was fed 2.5 to 3.0 kg diet from d 85 to 107 of pregnancy and approximately 1.8 kg/d on d 5 before delivery. On the day of farrowing, the sows initially received approximately 1.0 kg/d of their diets, which was then increased by approximately 0.8 kg/d on d 1 and 2 and by about 1.0 kg/d on d 3 and 4 until reaching at their maximum feed intake.

Thirty sows whose litter size was 10 to 13 were chosen both in CON and YN groups. By exchanging piglets from sows having >11 piglets, litters in each group were standardized to 11 piglets within 24 h after farrowing, and put them in sows having <11 piglets of the same group. The other 4 litters were set as a backup (2 litters in CON and YN groups, respectively), if a piglet in CON or YN group dead within a week, a piglet from standby would be added, but no more than 2 piglets per litter were added (Wu et al., 2012). Piglets were weighed on d 1 (initial weight) and 20 of lactation, in addition, the number of dead piglets during the whole lactation were also recorded to obtain the survival rate and total milk yield.

2.2. Feed intake and back-fat thickness of sows

The feed intake of sows was recorded daily during lactation (d 1 to 20). In addition, back-fat thickness was measured at P2 (6 cm from the mid line at the head of the last rib) with an ultrasonic device (Agroscan A16, France). In briefly, back-fat thickness of each sow both in the left and right sides was measured on d 85 after pregnancy, d 1 and 20 post-farrowing, and the average was calculated.

2.3. Diarrhoea rate of suckling piglets

A daily examination was carried out in all piglets, especially for fecal appearance on rectal swabs. No faeces present (the rectal swab was dry and clean), watery, liquid, creamy and firm or solid (solid bulbs on the rectal swab) were 6 categories during each evaluation (Che et al., 2016; Miao et al., 2019). A piglet was defined as diarrhoeic when those had watery or liquid consistency of faeces on a special day (Adams et al., 2019).

2.4. Litter productive performance

The number and weight of litter on d 1 after cross-fostering and d 20 were recorded; the average daily gain (ADG) and survival rate of piglets were calculated. Also, the ADG of piglets per litter during d 1 to 20 and total milk yield [(weaned litter weight - initial litter weight) × 4] were calculated (Milligan et al., 2002).

2.5. Intestinal samples of neonatal piglets

On the day of birth, one new-born male piglet (1.55 ± 0.270 kg) was randomly selected from 8 of the 32 litters per treatment as soon as they were born, and they were kept apart from sows to avoid ingestion of colostrum (Wan et al., 2018). These piglets were...

Table 1

Ingredients	Content	Nutrient levels 1	Content
Corn	64.35	ME, MJ/kg	13.40
Soybean meal	24.30	DM	86.77
Steam fish meal	3.00	CP	15.00
Soybean oil	2.50	CF	4.50
Glucose	1.00	Ash	5.50
CaHPO4 (16.5%)	1.53	Ca	0.85
Calcium bicarbonate	1.09	Total P	0.66
NACl	0.50		
L-Threonine (98.5%)	0.07		
L-Methionine (98.5%)	0.08		
L-lysine HCl (70%)	0.39		
Vitamin-mineral premix 2	1.20		

1 The vitamin-mineral premix provided the following per kilogram of diets: antioxidant 100 mg, sweetening agent 200 mg, 6,000 IU of vitamin A, 3,000 IU of vitamin D3, 20 IU of vitamin E, 1.8 mg of vitamin K2, 2.0 mg of thiamine, 6.0 mg of riboflavin, 4.0 mg of pyridoxine, 0.02 mg of vitamin B12, 26.0 mg of nician, 18.0 mg of pantothenic acid, 3.2 mg of folic acid, 0.4 mg of biotin, 20 mg of Cu as CuSO4 · 5H2O, 100 mg of Zn as ZnSO4 · H2O, 50 mg of Mn as MnSO4 · H2O, 1.2 mg of I as KI, 0.30 mg of Se as Na2SeO3. Feed carrier was zeolite powder.

2 Nutrient levels were calculated values.
anaesthetised with an intravenous injection of sodium pentobarbital (50 mg/kg BW) and bled by exsanguination (Deng et al., 2009). Middle transsections of duodenum, jejunum, ileum (2 cm for each) was collected and fixed with 10% buffer neutral formalin (pH 7.3 ± 0.2) for morphological analyses (Li et al., 2019). Approximately 2 g of duodenum, jejunum, and ileum were collected and immediately frozen in liquid nitrogen, and stored at −80 °C for RNA extraction and gene expression analysis.

2.6. Small intestinal level of secretory immunoglobulin A (sIgA) in neonatal piglets

The intestinal level of sIgA in neonatal piglets was determined using a commercial radioimmunoassay kit (HTA Co., Ltd, Beijing, China) according to the manufacturer’s instructions.

2.7. Histomorphology measurements

The formalin-fixed duodenum, jejunum and ileum were processed by using routine histological methods and mounting in paraffin blocks. Experimental methods were as recently described in detail (Wang et al., 2008; Li et al., 2019). A light microscope (Nikon, Japan) was used to examine all specimens, and villus height and crypt depth were measured by an image–analysis system (Yin et al., 2014).

2.8. Real-time PCR

Duodenum, jejunum and ileum were homogenized under liquid nitrogen, and mRNA was extracted as previously described by Xie (Xie et al., 2016). The relative mRNA expression levels of β-actin (reference gene) and related genes were determined by real-time PCR using Luminaries Color HiGreen High ROX (Thermo Scientific) on a Bio-Rad iCycler according to the manufacturer’s instructions. The primers used are shown in Table 2. Fold changes in mRNA expression levels were calculated using the 2−ΔΔCt method.

Table 2

Item	GenBank accession No.	Nucleotide sequence of primers (5′-3′)	Size, bp
IL-6	NM_214399.1	F: TAAGGGAAATCTGCGAGCCCG	149
IL-1β	XM_021085847.1	R: TCTACTCGTCTCTGACCTGC	
IL-8	NM_213867.1	F: GCTGATGCTGCTCCCTTCTG	196
IL-17	NM_001005729.1	R: TCTGTTGGAAGGCGGGGATGT	115
IL-10	NM_214041.1	F: AGGGAGGTGACCTTCTCCTG	137
TNF-α	NM_214022.1	R: CACAGGGAGAATGATATGAGA	217
IFN-γ	NM_213948.1	F: TGGTAGTCAGTGGGAAAGTCA	185
IL-12	NM_214013.1	R: GCCAAGGGCGCCACAGTCTC	108
ZO-1	XM_021098896.1	F: GCCAAGGGCGCCACAGTCTC	215
Occludin	NC_010458.4	R: TGGAGATGTGTCCTCCCAGAT	169
Claudin-1	NC_010455.5	F: GTAGGTGCTGCGTGGTCAT	247
Beta-actin	NC_010445.4	R: ATGGGGGAAATGATATGAGA	147

IL = interleukin; TNF-α = tumor necrosis factor-α; IFN-γ = interferon γ; ZO-1 = zonula occludens 1.
3.4. Small intestinal morphology of neonatal piglets

The intestinal morphology of neonatal piglets is presented in Fig. 3. Our results showed that the average villus height of the ileum significantly increased in neonatal piglets from sows supplemented with YN ($P < 0.05$) compared to the CON group. Furthermore, the villus height-to-crypt depth (V:C) ratio of the ileum in neonatal piglets from sows supplemented with YN significantly increased compared to the CON group ($P < 0.01$).

3.5. Small intestinal sIgA level in neonatal piglets

The small intestinal sIgA level in neonatal piglets is shown in Fig. 4. The ileal sIgA level in neonatal piglets significantly increased in the YN group compared with that in the CON group ($P < 0.05$).

Table 3
Effects of maternal supplementation with yeast-based nucleotide (YN) on average daily feed intake and back-fat thickness per sow.1

Item	Dietary treatment	SEM	P-value
	CON group	YN group	
Daily feed intake, kg/d			
On the farrowing day	1.06	1.00	0.05 0.638
Lactation d 1	1.80	1.81	0.13 0.956
Lactation d 2 to 4	3.62	3.65	0.37 0.979
Lactation d 5 to 20	3.94	5.95	0.24 0.965
Sow back-fat thickness, mm			
Initial d 85	16.30	16.66	0.54 0.755
Lactation d 1	16.64	17.53	0.51 0.402
Lactation d 20	14.00	15.24	0.50 0.232
Back-fat loss (d 1 to 20)	-2.64	-2.28	0.47 0.718

1 Data are presented as means and SEM, $n = 30$.
2 CON group, control diet; YN group, control diet supplemented with 4 g YN/kg.

Fig. 1. Effects of maternal supplementation with yeast-based nucleotide (YN) at late pregnancy and lactation on growth performance in suckling piglets. Values are presented as means ± SEM, $n = 30$. a, b Means without a common letter indicate a significant difference ($P < 0.05$, t-test), and A, B means without a common letter indicate a highly significant difference ($P < 0.01$, t-test). CON group, control diet; YN group, control diet with 4 g YN/kg. ADG = average daily gain. Survival rate (%) = (The number of survival piglets/Total piglet) × 100; Total milk yield = [(Weaned litter weight - Initial litter weight) ÷ 4].
addition, the jejunal sIgA level exhibited an increasing trend in the YN group ($P = 0.097$).

3.6. Gene expression of small intestinal tight junction (TJ) proteins in neonatal piglets

The gene expression of small intestinal TJ proteins in neonatal piglets is shown in Fig. 5. The results showed that, compared with those in the piglets from the CON group, the jejunal and ileal expression of zonula occludens 1 (ZO-1) and duodenal and jejunal expression of claudin-1 in neonates from sows supplemented with YN were significantly reduced ($P < 0.05$). In addition, the ileal expression of occludin exhibited a decreasing tendency in the YN group compared with that in the CON group ($P = 0.092$).

3.7. Gene expression of small intestinal cytokine in neonatal piglets

The gene expression of cytokines in the small intestine of neonatal piglets is shown in Fig. 6. Maternal YN supplementation increased the jejunal expression of interleukin (IL)-17, IL-6, IL-8, IL-1β, IL-10, IL-12, IFN-γ, and tumor necrosis factor (TNF)-α ($P < 0.05$) compared with the CON group. Furthermore, the ileal expression of IL-17, IL-8, IL-1β, IL-10, and TNF-α was significantly up-regulated in the neonates from sows that received the YN diet ($P < 0.05$) compared with the CON group.

4. Discussion

Maternal YN supplementation during late pregnancy and lactation increased the average weaning individual weight and weaning number in piglets. There are only a few studies on nucleotides by using sow as a model, although, there are many studies using weaned piglet as a model. On one hand, Kim et al. (2008) and Hung (2015) reported that nucleotide supplementation to sows resulted in some differences in the growth performance of offspring between the experimental and control groups (Kim et al., 2008; Hung 2015). On the other hand, another study has suggested that the supplementation of NuPro (a source of yeast-derived proteins, with no uridine 5'-monophosphate, UMP) in the diet of lactating sows had no beneficial effects on the growth performances of piglets (Plante et al., 2011). Uridine 5'-monophosphate is the most abundant nucleotide in sow milk, and the level of UMP is approximately 555.6 μmol/100 mL in colostrum and 104 μmol/100 mL in milk on d 28 (Mateo et al., 2004). These results showed that UMP may play an important role in the growth performance of piglets, and may account for different results between the 2 studies. On the contrary, experiments on weaned piglets have shown that dietary nucleotide improved their growth performance (Superchi et al., 2012). In addition, a study on broiler chickens suggested that pyrimidine nucleosides increased the ADG in broilers (Daneshmand et al., 2017). Thus, pyrimidine nucleosides, especially UMP, may have a growth-promoting effect. The results of the present study demonstrated that maternal YN supplementation may contribute to the better growth performance of suckling piglets.
Further, the increased milk yield with maternal YN supplementation may be a reason for the better growth performance.

In the present study, maternal YN supplementation during late pregnancy and lactation significantly decreased the diarrhoea rate. As physiological factors, intestinal development, milk nutrients, stress factors, and feeding management could cause diarrhoea in piglets; thus, it is important to reduce diarrhoea in piglets by improving intestinal development. The results demonstrated dietary supplementation of uridine to sows could reduce the incidence of diarrhoea in suckling piglets (Wu et al., 2020). A study on infants showed that nucleotide supplementation in infant formulas has anti-diarrhoeal effect and immune benefits (Hess and Greenberg 2012). A study on weaned piglets has shown that nucleotides have a beneficial effect on the development of small intestine and intestinal repair after diarrhoea (Mashiko et al., 2009). Furthermore, dietary nucleotides promote small intestinal repair and decrease diarrhoea in weaned rats (Bueno et al., 1994). Thus, nucleotides have a positive effect on diarrhoea in mammals. The lower diarrhoea rate is partially associated with the observed increase in growth performance in piglets.

Nucleotides are considered conditionally essential nutrients, as their endogenous synthesis might be insufficient to maintain a normal demand under certain circumstances, such as the rapid growth piglets or breastfed infants (Mateo et al., 2004; Bustamante et al., 1994). On the contrary, the salvage pathway utilising exogenous nucleotides is particularly important in small intestinal epithelial cells because of the limited capacity for the de novo synthesis of nucleotides (Sanderson and He 1994; Deng et al., 2017). Several studies on weaned pigs have showed that dietary nucleosides can increase intestinal villus height and V:C ratio (Daneshmand et al., 2017; Waititu et al., 2017), as the growth and development of intestinal epithelial cells can be enhanced by dietary nucleosides; furthermore, mucosal protein and DNA, and small intestinal villi are improved by nucleosides (Lauly et al., 1990). To the best of our knowledge, this is the first study on the effects of maternal supplementation of nucleotides during late pregnancy on small intestinal development in neonatal piglets. Therefore, it was
Fig. 5. Effects of maternal yeast-based nucleotide (YN) supplementation on relative mRNA expression of tight junction proteins in the small intestine of neonatal piglets. Values are presented as means ± SEM, n = 8. a, b Means without a common letter indicate a significant difference (P < 0.05, t-test), and A, B means without a common letter indicate a highly significant difference (P < 0.01, t-test). CON group, control diet; YN group, control diet with 4 g YN/kg. ZO-1 = zonula occludens 1.
speculated that nucleotides could regulate homeostasis between intestinal epithelium renewal and apoptosis in neonates, because nucleotides play important roles in the proliferation, maturation and apoptosis of intestinal enterocytes (Sato et al., 1999; Li et al., 2019). Thus, small intestinal villi and V:C ratio of neonatal piglets significantly improved in the YN group compared with that in the CON group. Diarrhoea is always due to intestinal dysfunction, and the decrease of V:C ratio associated with intestinal dysfunction has been reported (Hu et al., 2013). These results implied that maternal nucleotide supplementation may be beneficial to the development of the gut structure, which was partially associated with the observed decrease in diarrhoea rate in pigs (McCracken et al., 1999). Overall, prenatal intestinal permeability of piglets is very important for the absorption of large molecules and nutrients. Furthermore, our previous studies demonstrated that nucleotides, maternal nutrition might affect intestinal closure in foetuses via the placenta (Mehrazar et al., 1993), and the absorption of maternal IgG ceases in neonates when the intestinal permeability decreases (Telemo et al., 1987). As a major determinant of epithelial barrier function, TJ act as a selective permeability barrier between epithelium and endothelium (Schneeberger and Lynch 1984). Tight junctions play an important role in the small intestines via passive and active transport of nutrients during pregnancy and lactation in animals (McGovern et al., 2014). Studies have showed that the strengthening of TJ has a negative effect in the paracellular transport of nutrients (Madara, 1986; Fihn et al., 2000), and the size of TJ could be regulated by small intestinal TJ proteins, including ZO-1, occludin and claudins (Ikari et al., 2004; Hou, 2005; Angelow et al., 2007). Therefore, prenatal intestinal permeability of piglets is very important for the absorption of large molecules and nutrients.

Fig. 6. Effects of maternal yeast-based nucleotide (YN) supplementation at late pregnancy on relative mRNA expression of cytokine in the intestinal epithelial cells of neonatal piglets. (A) Duodenum. (B) Jejunum. (C) Ileum. Values are presented as means ± SEM. a, b Means without a common letter indicate a significant difference (P < 0.05, t-test), and ^, # means without a common letter indicate a highly significant difference (P < 0.01, t-test). CON group, control diet; YN group, control diet with 4 g YN/kg. IL = interleukin; TNF-α = tumor necrosis factor-α; IFN-γ = interferon γ.
such as UMP and uridine, increased the relative expression of ZO-1 or occludin-1 in the small intestine of weaned piglets (Li et al., 2019; Xie et al., 2019; Wu et al., 2020). In the present study, maternal YN supplementation decreased the relative expression of claudin-1 in the duodenum and jejunum, and ZO-1 in the jejunum and ileum in neonates. The results suggested that maternal YN supplementation during late pregnancy increased foetal or neonatal intestinal permeability to a certain extent, indicating a promoting effect of YN on the absorption of macromolecular substances and nutrients (Sureda et al., 2017).

T lymphocytes are the most abundant intestinal epithelial cells and participate in the regulation of the immune response (Xiao et al., 2013). Further, nucleotides are continuously required by pigs, especially in systems that present a high rate of cell turnover, such as the immune system. Nucleotides in infant formulas have immune benefits (Hess and Greenberg 2012) and can improve the IgA activity in the small intestine (Daneshmand et al., 2017). Studies on weaned piglets have suggested that dietary nucleotides increased the sIgA activity in neonatal piglets, indicating the level of intestinal permeability to a certain extent, indicating a promoting effect of YN on the intestinal permeability to small intestinal repair after diarrhoea. Histological and ultrastructural changes. Gut 1994;35(7):926–33. https://doi.org/10.1136/gut.35.7.926.

Acknowledgement

This work was supported by the Science and Technology Projects of Hunan Province (2019RS020, 2019RS03021), the earmarked fund for China Agricultural Research System (CARS–35) and the Agricultural innovation project of Hunan Province (2019TD01).

References

Adams S, Che D, Hailong J, Zhao B, Rui H, Danquah K, et al. Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence, growth performance, immunity, and microbial composition in piglets. J Sci Food Agric 2019;99(7):3616–27. https://doi.org/10.1002/jsfa.9582.

Angelow S, Schneebberger EE, Yu ASL. Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2. J Membr Biol 2007;215(2–3):167–59. https://doi.org/10.1007/s00232-006-1772-7.

Avila CG, Harding R, Rees S, Robinson PM. Small intestinal development in growth-retarded fetal sheep. J Pediatr Gastroenterol Nutr 1989;8(4):507–15. https://doi.org/10.1097/00015767-198905000-00015.

Bueno J, Torres M, Almendros A, Carmona R, Nunez MC, Rios A, et al. Effect of dietary nucleotides on small intestinal repair after diarrhoea. Histological and ultrastructural changes. Gut 1994;35(7):926–33. https://doi.org/10.1136/gut.35.7.926.

Bustamante SA, Ninza S, Joan C, Colombo G, Miller MJ. Dietary nucleotides: effects on the gastrointestinal system in swine. J Nutr 1994;124(1 Suppl):1495. https://doi.org/10.1093/jn/124.suppl_1.1495.

Che L, Hu L, Liu Y, Yan C, Peng X, Xu Q, et al. Dietary nucleotides supplementation improves the intestinal development and immune function of neonates with intra-uterine growth restriction in a pig model. PloS One 2016;11(6):e0157314. https://doi.org/10.1371/journal.pone.0157314.

Chen DC, Nommensen-Rivers L, Dewey KG. Stress during labor and delivery and early lactation performance. Am J Clin Nutr 1998;68(2):335–44. https://doi.org/10.1093/ajcn/68.2.335.

Daneshmand A, Kermanshahi H, Danesh Mesgaran M, King AJ, Ibrahim SA. Effects of pyrimidine nucleotides on growth performance, gut morphology, digestive enzymes, serum biochemical indices and immune response in broiler chickens. Livest Sci 2017;204:1–6. https://doi.org/10.1016/j.livsci.2017.08.005.

Deng D, Yao K, Chu W, Li T, Huang R, Yin Y, et al. Impaired translation initiation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 2005;16(7):544–52. https://doi.org/10.1016/j.jnutbio.2005.08.014.

Deng Y, Wang YZ, Cordillo R, An Y, Zhang C, Liang Q, et al. An adipo-biliary-uridine enzyme that regulates energy homeostasis. Science 2017;355(6330):eaaf5375. https://doi.org/10.1126/science.aaf5375.

Fihn BM, Sjovest A, Jodal M. Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of gluten transport. Gastroenterology 2000;119(4):1029–36. https://doi.org/10.1053/gast.2000.38148.

Gao L, Lin X, Xie C, Zhang T, Wu X, Yin Y. The time of calcium feeding affects the weaning weight of piglets to a certain extent. These results indicated that maternal YN supplementation during late pregnancy may be beneficial in resisting stress and pathogens, and may be crucial for the growth and mitigating diarrhoea in suckling piglets.

5. Conclusion

Maternal YN supplementation during late pregnancy improved the development of small intestinal villus, and gene expression of pro-inflammatory and anti-inflammatory cytokines, and secretory IgA in neonatal piglets, and these may prevent diarrhoea and increase the weaning weight of piglets to a certain extent. These results indicated that nucleotides are beneficial in improving the reproductive performance of sows.

Author contributions

L. Gao: formal analysis; data curation; writing—original draft preparation; C. Xie: investigation; writing-reviewing and editing; X. Liang: investigation and resources; Z. Li: resources; B. Li: resources; X. Wu: methodology, data curation; project administration; funding acquisition; X. Yin: conceptualization; supervision; funding acquisition.

Conflict of interest

We declare that we have no financial or personal relationships with other people or organizations that might inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.
Hu CH, Xiao K, Luan ZS, Song J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J Anim Sci 2013;91(3):1094–101. https://doi.org/10.2527/jas.2012-5796.

Hun L. The effect of dietary nucleotides in sow and nursery piglet diets on reproduction, growth, and immune response. Gradworks; 2015. Dissertations & Theses. https://uknowledge.uky.edu/animalsci_etds/48.

Ikarı A, Hırıra S, Şirmaoğlu N, Harada H, Sakai H, Hayashi S, Suzuki Y, et al. Association of paracellicin-1 with zo-1 augments the resorption of dovial cations in renal epithelial cells. J Biol Chem 2004;279(32):34826–32. https://doi.org/10.1074/jbc.M403513200.

Julissa C, Fang Y, C SC, Wei T, KS, Gunn W, et al. Tumor necrosis factor regulates expression of in the domestic pig and its relation to pre-weaning survival, weight gain, gestation; the impact on lamb performance. In: ADSA-ASAS-CSAS Joint Annual Meeting; 2017;23(2):7531–40. https://doi.org/10.3748/jwq.v23i42.7531.

Kongsted H, Stege H, Toft N, Nielsen JP. The effect of New Neonatal Porcine Diarrhoea Syndrome (NPPDS) on average daily gain and mortality in 4 Danish pig herds. BMC Vet Res 2014;10(1):90. https://doi.org/10.1186/1746-6148-10-90.

Kruse R, Essängevall B, Fossum C, Jensenwaar M. Blood concentrations of the cytokines IL-1 beta, IL-6, IL-10, TNF-alpha and IFNgamma during experimentally induced swine dysentery. Acta Vet Scand 2008;50(1):32. https://doi.org/10.1186/1751-0147-50-32.

Li G, Xie C, Wang Q, Wan D, Zhang Y, Wu X, et al. Uridine/UMP metabolism and their function in the gut in segregated early weaned piglets. Food Funct 2019;10(7):4081–9. https://doi.org/10.1039/c9tf00369f.

Madara J. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol 1986;102(6):2125–36. https://doi.org/10.1083/jcb.102.6.2125.

Mashiko T, Nagafuchi S, Kanbe M, Obara Y, Hagawa Y, Takahashi T, et al. Effects of dietary arginine 5’-monophosphate on immune responses in newborn calves. J Anim Sci 2009;87(3):1042–7. https://doi.org/10.2527/jas.2008-1925.

Mateo CD, Peters DN, Stein HH. Nucleotides in sow colostrum and milk at different stages of lactation. J Anim Sci 2004;82(5):1339. https://doi.org/10.2527/2004-006.

Miao J, Brandhem MF, Newton MB, Cook D, Yoon I. Effects of yeast culture supplementation to gestation and lactation diets on growth of nursing piglets. AJAS (Asian-Australasian J Anim Sci) 2008;21(7):1011–4. https://doi.org/10.5713/ajas.2008.70434.

Mccracken BA, Spurlock ME, Roos MA, Zuckermann FA, Gaskins HR. Weaning of piglets results in hypogammaglobulinemia in newborn pigs. J Nutr 1994;124(1 Suppl):131–5. https://doi.org/10.1093/jn/124.suppl_1.1315.

Mcgovern F, Campion F, Sweeney T, Fair S, Boland TM. Altering Ewe nutrition in late gestation; the impact on lamb performance. In: ADSA-ASAS-CSAS Joint Annual Meeting; 2017;16(9):2029. https://doi.org/10.1007/s00726-013-1643-5.

Mccracken BA, Spurlock ME, Roos MA, Zuckermann FA, Gaskins HR. Prenatal development of gastrointestinal function in the pig and the effects of fetal esophageal obstruction. Pediatr Res 2002;52(3):416–25. https://doi.org/10.1205/0005450-200209000-00019.

Sato N, Nakano T, Kawakami H, Idota T. In vitro and in vivo effects of exogenous nucleotides on the proliferation and maturation of intestinal epithelial cells. J Nutr Sci Vitaminol 1999;45(1):107–18. https://doi.org/10.1077/jnv.45.107.

Schneeberger EE, Lynch RD. Tight junctions. Their structure, composition, and function. Circ Res 1984;55(6):723–33. https://doi.org/10.1161/ 01.RES.55.6.723.

Sangild PT, Schmidt M, Elnif J, Bjørndal BR, Buddington RK. Prenatal supplementation to gestation and lactation diets on growth of nursing piglets. AJAS (Asian-Australasian J Anim Sci) 2008;21(7):1011–4. https://doi.org/10.5713/ajas.2008.70434.