Research progress of signaling pathways of the natural substances intervene dyslipidemia (Review)

NINGNING CAO1*, XIAOXUAN LI1*, WANJING ZHANG1, QINGGUO WANG1, YUJUAN LIANG1, FUJUN ZHOU2 and XUEFENG XIAO1

1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617; 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Binhai, Tianjin 300301, P.R. China

Received March 11, 2022; Accepted May 25, 2022

DOI: 10.3892/etm.2022.11421

Abstract. Dyslipidemia is an umbrella term for a range of lipid metabolic disorders in the body. This condition has been widely reported to greatly increase the risk of cardiovascular diseases, threatening human health. In recent years, advances in molecular biology have deepened understanding of the dyslipidemia-related signaling pathways and specific mechanisms underlying dyslipidemia. Signaling pathways possess the ability to transmit an extracellular signal to the inside of the cell, leading to specific biological effects. Lipid metabolism disorders and lipid levels in the blood are frequently affected by aberrant alterations in the dyslipidemia-related signaling pathways. Therefore, further investigations into these pathways are required for the prevention and treatment of dyslipidemia. The present review summarizes the characteristics of six dyslipidemia-associated signaling pathways: Peroxisome proliferator-activated receptor, adenosine monophosphate-activated protein kinase, farnesoid X receptor, forkhead box O, adipocytokine and cyclic adenosine monophosphate signaling pathways. In particular, specific focus was placed on previous experimental studies and reports on the intervention effects of natural substances (compounds from animals, plants, marine organisms and microorganisms) on dyslipidemia.

1. Introduction

Dyslipidemia is a lipid metabolism disorder in which the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) in the blood are abnormally elevated and/or those of high-density lipoprotein cholesterol (HDL-C) in the blood are abnormally reduced (1). According to the World Health Organization, the total number of deaths associated with cardiovascular diseases worldwide reached 17.9 million in 2019 (2). In particular, dyslipidemia is considered to be a major risk factor of cardiovascular diseases, including atherosclerosis, coronary artery disease and myocardial infarction, all of which pose a serious threat to human health (3). Therefore, development of novel treatment options for dyslipidemia is required.

Following advances in molecular biology, previous studies have demonstrated that multiple signaling pathways, including the peroxisome proliferator-activated receptor (PPAR), adenosine monophosphate-activated protein kinase (AMPK), farnesoid X receptor (FXR), forkhead box O (FOXO), adipocytokine and cyclic adenosine monophosphate (cAMP) signaling pathways, are closely associated with the occurrence and development of dyslipidemia (4-9). Specifically, certain drugs can target specific aspects of lipid metabolism and serve a role in lowering the levels of lipids by activating or inhibiting these signaling pathways (4-9). Therefore, it is key to study the aforementioned signaling pathways for the development of novel treatment options and for the prevention of dyslipidemia. The majority of previous studies on signaling pathways altered by natural substances that have been proposed to treat dyslipidemia are experimental (4-11). However, at present, review...
articles on natural substances (components or metabolites of animals, plants, marine organisms and microorganisms as well as endogenous active components of organisms) that can be used to treat dyslipidemia remain lacking. Therefore, the present review summarizes the mechanistic information of these six signaling pathways following treatment with the natural substances that have been reported to effectively control dyslipidemia. In addition, it provides an overview on the available experimental data to provide a basis for the treatment of dyslipidemia.

2. PPAR signaling pathway in dyslipidemia

The PPAR signaling pathway is one of the most widely studied dyslipidemia-associated signaling pathways. PPARs are ligand-activated transcription factors that consist of the following three subtypes: PPARα, PPARβ and PPARγ (12). Following endogenous ligand (e.g., lipids such as polyunsaturated fatty acid and arachidonate) binding, PPARs form heterodimers with retinoic X receptors and become activated to transcribe target genes associated with lipid metabolism (Fig. 1; generated using Adobe Illustrator CC version 23.0; Adobe Systems, Inc.) (13).

PPARα signaling pathway in dyslipidemia. PPARα can upregulate the expression of cholesterol 7 alpha-hydroxylase (CYP7A1), acyl-CoA oxidase (ACOX), carnitine palmitoyl transferase 1 (CPT1) and adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) (14-16). This in turn increases HDL synthesis, cholesterol conversion and fatty acid oxidation (14-16). CYP7A1 is a rate-limiting enzyme of bile acid synthesis that promotes the transformation of cholesterol to bile acids, thereby reducing TC levels in the blood (17). By contrast, ACOX and CPT1 are rate-limiting enzymes in the fatty acid oxidation pathway that reduces free fatty acid (FFA) and TG levels in the blood (18-20). ABCA1 is a rate-limiting factor in the process of HDL assembly that promotes the production and secretion of HDL to enhance the levels of HDL-C in the blood (21).

To investigate the hypolipidemic mechanisms mediated by Danhe granules (Danhe is a mixture prepared based on a prescription in clinical settings consisting of Salvia miltiorrhiza Bunge, Reynoutria japonica Houtt, Crataegus pinnatifida Bunge, Citrus x aurantium L., Coix lacryma-jobi var. ma-yaen (Rom.Caill.) Stapf and Nelumbo nucifera Gaertn), Chen et al (22) administered 3.30 g/kg Danhe to hyperlipidemic hamsters by oral gavage for 8 weeks. The results of this study demonstrated that Danhe administration significantly increased the expression levels of liver PPARα, CYP7A1 and ABCA1, decreased serum TC levels by 32.41% and enhanced serum HDL-C levels by 40.96% in hyperlipidemic hamsters (22). These results suggest that Danhe exerted hypolipidemic effects by activating the PPARα signaling pathway. To evaluate the effects of K-877 (a novel selective PPARα agonist) on lipid metabolism, LDL receptor-knockout mice were fed with a high-fat diet (HFD) supplemented with 0.001% K-877 for 1 week. K-877 administration was found to increase the expression of PPARα, ACOX, CPT1 and ABCA1 in the liver and increased the plasma levels of HDL-C in the plasma whilst decreasing the levels of TG in the plasma. Therefore, K-877 improved lipid metabolism by activating the PPARα signaling pathway (23).

PPARβ signaling pathway in dyslipidemia. Following activation, PPARβ upregulates the expression of ABCA1 and CPT1 to increase HDL synthesis and fatty acid oxidation (24,25). To unravel the cholesterol-lowering mechanism of ombuine-3-O-β-D-glucopyranoside (ombuine), HepG2 cells were supplemented with oleic acid. Treatment with 10 μmol/l ombuine was found to significantly increase the expression of PPARβ and ABCA1 whilst reducing intracellular cholesterol concentrations in HepG2 cells. This suggests that ombuine exerts a cholesterol-lowering role by activating the PPARβ signaling pathway (24). In another previous study, Jiang et al previously (26) investigated the effects of Li-Gan-Shi-Liu-Ba-Wei-San (LGSLSBWS; a type of Mongolian medicine comprising eight types of Chinese herbal medicine, namely, pomegranate, cinnamon, cardamom, piper longum, safflower, amomum tsao-ko, dried ginger and nutmeg) on lipid metabolism in rats with non-alcoholic fatty liver disease (NAFLD). Following the administration of LGSLSBWS (1.5 g/kg/day) for 4 weeks, the expression of PPARβ and the levels of fatty acid oxidation were markedly increased, whilst TG and FFA levels in the serum were decreased. Although CPT1 levels were not detected, the serum FFA and TG levels were decreased, suggesting that LGSLSBWS may increase fatty acid oxidation through the PPARβ signaling pathway.

PPARγ signaling pathway in dyslipidemia. Following activation, PPARγ upregulates the transcription of liver X receptor α (LXRα) and ABCA1 to increase HDL synthesis (27). Li et al (28) applied a rat model of hyperlipidemia to explore the effects of Agaricus blazei Murill acidic polysaccharide (WABM-A) on the regulation of blood lipid levels. WABM-A (640 mg/kg/day) treatment for 8 weeks significantly upregulated the liver expression levels of PPARγ, LXRα and ABCA1, reduced the serum levels of TC and increased the serum levels of HDL-C in rats with hyperlipidemia (28). These results suggest that the lipid-lowering mechanisms underlying WABM-A may be associated with activation of the PPARγ signaling pathway.

3. AMPK signaling pathway in dyslipidemia

The AMPK signaling pathway is one of the most important homeostatic signaling pathways in the body and has been implicated in various metabolic diseases, including dyslipidemia and diabetes (29). Specifically, AMPK is a serine/threonine protein kinase that is widely expressed in the liver, heart and other metabolic organs, including skeletal muscle, kidney and adipose tissue (30). AMPK is typically activated by two methods. When the AMP/ATP ratio is increased, which indicates that the intracellular energy levels are low, liver kinase B1 translocates from the nucleus into the cytosol to activate AMPK by phosphorylation at Thr172 (31). Alternatively, AMPK can be activated by adiponectin (APN), which binds to its receptor to activate phospholipase C to convert phosphatidilylinositol 4,5-bisphosphate (PIP2) into inositol triphosphate (IP3) (32). IP3 then binds with the IP3 receptor on the endoplasmic reticulum membrane to promote Ca2+ release (32). Ca2+ then activates calmodulin-dependent protein kinase kinase, which in turn activates AMPK also by phosphorylation at the Thr172 residue (33). AMPK regulates
lipid metabolism mainly through three mechanistic pathways (Fig. 2; generated using Adobe Illustrator CC version 23.0; Adobe Systems, Inc.). In the first mode of activation, AMPK can downregulate the expression of lipogenic enzymes acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS) by inhibiting the expression of sterol regulatory binding protein-1c (SREBP-1c) (34). Since ACC and FAS are key enzymes in the fatty acid anabolic pathway, lowering their expression levels would reduce fatty acid synthesis (34). In addition, fatty acids are the main component within the molecular structure of TG (20). Therefore, reducing the levels of fatty acids would in turn reduce the levels of TG in the blood (20). In the second mode of mechanism, AMPK serves to inactivate ACC by phosphorylation, reducing the synthesis of the CPT1 inhibitor malonyl-CoA (35). This increases the activity of CPT1, which facilitates fatty acid oxidation to reduce fatty acid and TG content in the blood (36). In the third pathway, AMPK can inactivate 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) by phosphorylation, which is the rate-limiting enzyme in the cholesterol synthesis pathway (37). Inactivation of HMGCR reduces the production of cholesterol, which in turn leads to lower blood TC levels. Therefore, activation of the AMPK signaling pathway can inhibit fatty acid synthesis, promote fatty acid oxidation and suppress cholesterol synthesis, which finally serves to reduce blood TG and TC levels.

To investigate the effects of the *Herba houttuyniae* aqueous extract (HAE) on hyperlipidemia, Cao et al (38) randomly divided male C57BL/6J mice into three groups: Control, model and HAE. The mice in the HAE group were treated with HAE from day 1 to 9. On day 10, all mice except for those in the control group were intraperitoneally injected with 0.5 g/kg poloxamer 407 to induce acute hyperlipidemia, whereas mice in the control group were injected with saline. The results of the study demonstrated that treatment with 200 mg/kg/day HAE significantly decreased the expression levels of SREBP-1c, ACC and FAS in the liver whilst reducing the serum TG content (38). This suggests that HAE exerts protective effects against hyperlipidemia by upregulating the AMPK signaling pathway. In another
study, to explore the pharmacological activity of arcti­genin (a phenylpropanoid dibenzyl butyrolactone lignan isolated from *Arctium lappa* Linné using a crystallization method) on lipid metabolism, Song et al (39) established a hyperlipidemic rat model by feeding them on an HFD for 8 weeks. Following 4 weeks of arctigenin administration (100 mg/kg/day), the serum levels of TG were significantly reduced compared with those in the model group (39). By contrast, the phosphorylation levels of AMPK and ACC, in addition to the expression of CPT1, were significantly increased compared with those in the model group (39). The results of this study suggest that arctigenin may exert a therapeutic effect on lipid metabolism through activation of the AMPK signaling pathway. In addition, Lee et al (40) previously investigated the cholesterolemic effects of unripe *R. coreanus* (5-uRCK) and ellagic acid on a high cholesterol diet-induced hypercholesterolemia rat model. The results demonstrated that 5-uRCK at 150 mg/kg and ellagic acid at 4 mg/kg significantly increased AMPK and HMGCR phosphorylation whilst markedly reducing the serum levels of TC and LDL-C (40). These results suggest that 5-uRCK and ellagic acid can inhibit the activity of HMGCR through activation of the AMPK signaling pathway, which lowered cholesterol levels.

4. FXR signaling pathway in dyslipidemia

The FXR signaling pathway is the principal signaling pathway in cholesterol conversion and serves a key role in maintaining lipid homeostasis. It can regulate cholesterol metabolism through two main mechanisms (Fig. 3; generated using Adobe Illustrator CC version 23.0; Adobe Systems, Inc.). The first mechanism involves the FXR-small heterodimer partner (SHP) pathway in the liver, which is activated by bile acids (41). FXR activation induces the expression of SHP by binding to the FXR response element (FXRE) within the promoter region of the SHP gene (43). Subsequently, SHP binds to and inactivates liver receptor homolog-1 (LRH-1), which is a transcription factor required for the transcription of the CYP7A1 gene (43). Therefore, LRH-1 inactivation in response to activated FXR results in the inhibition of CYP7A1 transcription (43). CYP7A1 is a

![Figure 2. AMPK signaling pathway in dyslipidemia. AMPK regulates lipid metabolism by inhibiting the expression of FAS, decreasing the activity of HMGCR and ACC, and increasing the activity of CPT1. Arrows represent stimulatory modifications. T-shaped arrows represent inhibitory modifications. The picture was generated using Adobe Illustrator CC version 23.0 (Adobe Systems, Inc.).](image-url)
rate-limiting enzyme of bile acid synthesis that promotes the transformation of cholesterol into bile acids (17). Reductions in CYP7A1 transcription reduce the conversion of cholesterol and increases the TC content in the blood. The second mechanism is through the FXR/fibroblast growth factor 15 (FGF15) pathway in the small intestine, following activation by bile acids (44). FXR promotes the expression and secretion of FGF15 by combining with the FXRE in the promoter region of the FGF15 gene (45). Subsequently, FGF15 enters the liver through the portal circulation and binds to FGFR4 on the surface of hepatocytes (45). JNK is then activated following the complex formation between FGF15 and FGFR4 (45). Activated JNK then inhibits the expression of CYP7A1 to increase the TC content in the blood (45). Therefore, activation of the FXR/SHP pathway in the liver and the FXR/FGF15 pathway in the small intestine combine to reduce the expression of CYP7A1, which suppresses the conversion of cholesterol to increase the content of TC in the blood.

To clarify the mechanism underlying the cholesterolemic activity of the bitter gourd fruit (BGF), Matsui et al (46) measured the changes in the expression of CYP7A1 and LRH-1 in the liver and ileal tissue of rats fed on a high-cholesterol diet following BGF intake. BGF administration not only increased hepatic LRH-1 and CYP7A1 expression but also significantly decreased hepatic SHP expression, serum TC and LDL-C levels (P<0.05). These data suggest that BGF exerted hypocholesterolemic activity by facilitating the conversion of cholesterol to bile acids, which was induced by CYP7A1 upregulation and concomitant downregulation of the FXR signaling pathway in the liver. Huang et al (47) also previously established a mouse model with high cholesterol induced by HFD to investigate the underlying cholesterol handling mechanism after theabrownin treatment. The results of this study demonstrated that treatment with 225 mg/kg/day theabrownin for 8 weeks significantly reduced ileal FXR and FGF15 expression whilst increasing the expression levels of hepatic CYP7A1 (47). In addition, theabrownin decreased serum TC levels in mice with high cholesterol (47). These results suggest that the cholesterol-lowering effect of theabrownin depended on the inhibition of the intestinal FXR signaling pathway in the ileum.

5. FOXO signaling pathway in dyslipidemia

The FOXO signaling pathway is important in maintaining the balance of blood lipids in the body and regulates the processes of lipoprotein (chylomicron and very low-density lipoprotein) synthesis and hydrolysis (48,49). FOXO1 is a key member of the FOXO family, the activity of which is negatively regulated by insulin (INS) (50). After the INS receptor is activated, it activates the INS receptor substrate (IRS) to activate PI3K, which in turn converts PIP2 into phosphatidylinositol 3,4,5-triphosphate (PIP3) (51). Subsequently, PIP3 binds to phosphoinositide-dependent kinase 1 (PDK1), which contains a PH domain in the cell, to promote the phosphorylation and activation of AKT (52). Activated AKT phosphorylates FOXO1 in the nucleus to induce export into the cytoplasm (53,54). MTP is an essential factor in the assembly and secretion of very low-density lipoprotein (VLDL) by taking part in their rate-limiting steps (55). VLDL is converted to LDL under the influence of lipoprotein lipase
Dioscorea nipponica isolated from the rhizome of investigatethe effects of dioscin (a natural steroidal saponin.

streptozotocin was previously used by Xu et al.
type 2 diabetes mellitus rat model induced by HFD and beneficial effects of DHA on lipid homeostasis (54). A
TG and TC levels in the plasma (54). These findings suggest 2% DHA-supplemented diets decreased the expression levels
The results of the study demonstrated that feeding with the 2% DHA-supplemented diets decreased the expression levels of FOXO1, ApoC-III and MTP in the liver, which decreased TG and TC levels in the plasma (54). These findings suggest that the reduced FOXO1 expression may contribute to the beneficial effects of DHA on lipid homeostasis (54). A type 2 diabetes mellitus rat model induced by HFD and streptozotocin was previously used by Xu et al (57) to investigate the effects of dioscin (a natural steroid saponin isolated from the rhizome of Dioscorea nipponica Makino, Dioscorea opposita Thunb and Dioscorea zingiberensis Wright (Dioscoreaceae) by chromatography) on glycolipid metabolism. Administration of 60 mg/kg/day dioscin was found to significantly elevate the expression of P3K, AKT and FOXO1 phosphorylation, whilst serum TC, TG and LDL-C levels were markedly reduced (57). Although the expression levels of MTP and ApoC-III were not measured, the serum TC, TG and LDL-C levels in this rat model were decreased (57). Therefore, these regulatory effects of dioscin on lipid metabolism may have been due to the regulation of the FOXO signaling pathway. However, the specific mechanism remains to be verified.

6. Adipocytokine signaling pathway in dyslipidemia

Adipocytokines, such as APN, leptin (LEP) and resistin, are biologically active polypeptides that are produced and secreted by adipocytes (58). They serve key and complex roles in the maintenance of energy homeostasis, glucose and lipid metabolism (58). In particular, APN and LEP are closely associated with lipid metabolism in the body (59). APN regulates lipid metabolism by activating the AMPK signaling pathway as previously described (32,33). LEP serves a key role in the process of lipid metabolism through a continuous process (Fig. 5; generated using Adobe Illustrator CC version 23.0; Adobe Systems, Inc.). LEP can bind to its receptor (LEPR) to activate Janus kinase 2 (JAK2), which in turn phosphorylates three tyrosine residues on LEPR (Y985, Y1077 and Y1138) (60). Y1138 then recruits and activates the STAT3 by phosphorylation (60). Subsequently, activated STAT3 binds to another STAT3 to form a homodimer and is transported into the nucleus, where they bind to DNA (61). This STAT3 homodimer complex promotes the expression of CPT1 (62), the rate-limiting enzyme in fatty acid oxidation. This promotes fatty acid oxidation into CO$_2$ and H$_2$O, which in turn reduces FFA and TG levels in the blood (19). In addition, this STAT3 homodimer can also inhibit the expression of SREBP-1c and its target gene FAS (63). FAS is a key enzyme in the fatty acid synthesis pathway (34). Reduced FAS expression leads to the reduction of fatty acid synthesis, which decreases TG levels in the blood (34). Therefore, activation of the adipocytokine signaling pathway can promote fatty acid oxidation whilst inhibiting fatty acid synthesis to reduce blood TG levels.

To investigate the effects of Dendrobium mixture (a mixture prepared based on a prescription in clinical settings, comprising dendrobium, astragalus, schisandra, pueraria, salvia, rehmannia and earthworms) on glucose and lipid metabolism in diabetic rats, Lin et al (64) established a diabetic rat model induced by high-glucose, HFD and the intraperitoneal injection of streptozotocin. Dendrobium mixture treatment for 15 weeks was demonstrated to significantly increase the protein expression of LEPR, CPT1 and STAT3 phosphorylation in the liver, increased the mRNA expression of LEPR and CPT1 and decreased the plasma TG content (64). These results indicate that the dendrobium mixture may regulate lipid metabolism in diabetic rats by activating the adipokine signaling pathway. In another study, to explore the mechanism underlying the effects of carbenoxolone in the regulation of lipid metabolism, Chen et al (65) fed mice on an HFD for 8 weeks and administered carbenoxolone (15 mg/kg) every day by oral gavage for 12 weeks. Treatment with carbenoxolone was observed to increase the activation of JAK2 and STAT3 whilst decreasing the expression of SREBP-1c and FAS, which in turn decreased the concentrations of TG in the serum (65). These results suggest that carbenoxolone may regulate lipid metabolism by improving the activity of the adipocytokine signaling pathway.

7. cAMP signaling pathway in dyslipidemia

The cAMP signaling pathway is one of the most extensively studied signaling pathways and regulates lipid metabolism by regulating lipolysis in the adipose tissue (66). cAMP is a second messenger that can transmit vital information inside the cells by activating downstream effector molecules (67). Intracellular cAMP concentrations are modulated by adenylyl cyclases (AC) and phosphodiesterases (PDEs) (68). Growth hormones and other ligands, including adrenaline and glucagon, first interact with G-protein coupled receptors on the cell membrane to activate the G-proteins. This G-protein then binds to guanosine triphosphate (GTP) before binding to AC to activate it, which then catalyzes the biosynthesis of cAMP from ATP (69). PDEs hydrolyzes cAMP into AMP to switch off the signal (70). Under physiological conditions, cAMP synthesis by AC and degradation by PDEs is maintained in a balance. Excessive caloric intake leads to the decreased expression of PDEs, increasing cAMP production in adipose tissues (71). After cAMP binds to the regulatory subunits of protein kinase A (PKA), the catalytic subunits of PKA then dissociate and activate hormone-sensitive lipase (HSL) through phosphorylation at the Ser563, Ser659 and Ser660 residues (Fig. 6; generated using Adobe Illustrator CC version 23.0; Adobe Systems, Inc.). LEP can bind to its receptor (LEPR) to activate Janus kinase 2 (JAK2), which in turn phosphorylates three tyrosine residues on LEPR (Y985, Y1077 and Y1138) (60). Y1138 then recruits and activates the STAT3 by phosphorylation (60). Subsequently, activated STAT3 binds to another STAT3 to form a homodimer and is transported into the nucleus, where they bind to DNA (61). This STAT3 homodimer complex promotes the expression of CPT1 (62), the rate-limiting enzyme in fatty acid oxidation. This promotes fatty acid oxidation into CO$_2$ and H$_2$O, which in turn reduces FFA and TG levels in the blood (19). In addition, this STAT3 homodimer can also inhibit the expression of SREBP-1c and its target gene FAS (63). FAS is a key enzyme in the fatty acid synthesis pathway (34). Reduced FAS expression leads to the reduction of fatty acid synthesis, which decreases TG levels in the blood (34). Therefore, activation of the adipocytokine signaling pathway can promote fatty acid oxidation whilst inhibiting fatty acid synthesis to reduce blood TG levels.

To investigate the effects of Dendrobium mixture (a mixture prepared based on a prescription in clinical settings, comprising dendrobium, astragalus, schisandra, pueraria, salvia, rehmannia and earthworms) on glucose and lipid metabolism in diabetic rats, Lin et al (64) established a diabetic rat model induced by high-glucose, HFD and the intraperitoneal injection of streptozotocin. Dendrobium mixture treatment for 15 weeks was demonstrated to significantly increase the protein expression of LEPR, CPT1 and STAT3 phosphorylation in the liver, increased the mRNA expression of LEPR and CPT1 and decreased the plasma TG content (64). These results indicate that the dendrobium mixture may regulate lipid metabolism in diabetic rats by activating the adipokine signaling pathway. In another study, to explore the mechanism underlying the effects of carbenoxolone in the regulation of lipid metabolism, Chen et al (65) fed mice on an HFD for 8 weeks and administered carbenoxolone (15 mg/kg) every day by oral gavage for 12 weeks. Treatment with carbenoxolone was observed to increase the activation of JAK2 and STAT3 whilst decreasing the expression of SREBP-1c and FAS, which in turn decreased the concentrations of TG in the serum (65). These results suggest that carbenoxolone may regulate lipid metabolism by improving the activity of the adipocytokine signaling pathway.
Illustrator CC version 23.0; Adobe Systems, Inc.). HSL is a critical rate-limiting enzyme of adipose degradation and is responsible for the breakdown of TG and cholesteryl esters into glycerin, fatty acid and cholesterol in the adipose tissue, which are then released into the blood (72). Therefore, inhibition of the cAMP signaling pathway can decrease the phosphorylation of HSL to reduce the content of blood TC and TG.

To investigate the effects of ginsenoside Rg5 (the ginsenosides isolated from steamed ginseng by chromatography and crystallization) on the regulation of lipolysis, mice were fed on an HFD for 10 days along with the simultaneous administration of ginsenoside Rg5 (50 mg/kg) by oral gavage every day. Compared with those in the HFD mice, ginsenoside Rg5 treatment markedly increased the expression of PDE3B whilst cAMP accumulation and PKA 62 KDa substrate phosphorylation were reduced in the adipose tissue (73). In line with reduced cAMP accumulation and PKA substrate phosphorylation, oral gavage administration of ginsenoside Rg5 also decreased the phosphorylation of HSL in the adipose tissue, which reduced the levels of FFA, glycerol and TG in the blood (73). These findings suggest that ginsenoside Rg5 can inhibit lipolysis by inhibiting the cAMP signaling pathway (73). In addition, in another study, to investigate the effects of astragaloside IV (a saponin and main active component isolated from the medicinal plant *Astragalus membranaceus* by chromatography) on adipose lipolysis, mice were fed on an HFD for 2 weeks combined with the simultaneous oral gavage administration of astragaloside IV (50 or 100 mg/kg) daily (74). Compared with those in the HFD mice, astragaloside IV treatment significantly increased PDE3B expression and prevented cAMP accumulation (74). Consistent with the reduced cAMP accumulation, oral gavage administration of astragaloside IV also suppressed PKA substrate and HSL phosphorylation. Downstream, the levels of serum FFA and glycerol were also reduced, whilst the content of TC and TG in the serum were not affected (74). This may have been due to the short administration time of 2 weeks (74). These results suggest that astragaloside IV can inhibit lipolysis by downregulating the cAMP signaling pathway (74).

8. Conclusions
It should be noted that each of the six signaling pathways aforementioned are not mutually exclusive and can
coordinate together to maintain lipid homeostasis (75-77). As such, certain drugs can simultaneously activate or inhibit multiple signaling pathways to exert lipid-lowering effects. Gong et al (78) previously used a NAFLD mouse model to study the effects of cordycepin on lipid metabolism and the primary molecular mechanisms. Compared with those in the model group, treatment with 50 mg/kg cordycepin markedly increased the protein levels of p-AMPK, CPT-1 and PPARα whilst decreasing the expression of SREBP1-c and ACC in the liver of NAFLD model mice (78). By contrast, cordycepin treatment reduced the levels of TC, TG and LDL-C in the serum of these same NAFLD model mice (78). These results suggest that cordycepin can exert a lipid-lowering role by activating two signaling pathways. Specifically, cordycepin may activate the PPARα signaling pathway to upregulate the expression of PPARα and CPT1 whilst at the same time activating the AMPK signaling pathway to down-regulate the expression of SREBP-1c and ACC. Furthermore, Cao et al (79) previously investigated the cholesterol-lowering effects and mechanism of coptis alkaloids (50, 100 and 200 mg/kg) on high lipid diet-induced hyperlipidemic rats. Compared with those in the model group, the mRNA expression levels of PPARα and CYP7A1 were increased in a dose-dependent manner, which were accompanied by the decreased levels of FXR mRNA expression, in the livers of coptis alkaloid-treated rats (79). In addition, the levels of serum TC and LDL-C were reduced in a dose-dependent manner following treatment with coptis alkaloids (79). These results suggest that the cholesterol-lowering effects of coptis alkaloid extract may be attributed to the promotion of cholesterol conversion into bile acids, mediated by the increased expression of CYP7A1 (79). This may be associated with the regulation of two signaling pathways, including the positive regulation of the PPARα signaling pathway and the negative modulation of the FXR signaling pathway.

In conclusion, the six dyslipidemia-related signaling pathways, including the PPAR, AMPK, FXR, POXO, adipocytokine and cAMP signaling pathways, have all been demonstrated to exhibit altered activity in dyslipidemia. The results found by the aforementioned experiments demonstrated that different drugs can mediate effects on dyslipidemia by targeting the six signaling pathways. However, further investigations into alternative dyslipidemia-associated signaling pathways are required. In particular, future studies should focus on the application of multiomics technologies, including transcriptomics, proteomics and metabolomics, to systematically study the dyslipidemia-associated signaling pathways. This may uncover novel signaling pathways to provide novel therapeutic targets for the treatment of dyslipidemia.

Acknowledgements
Not applicable.

Funding
The present review was supported by the National Natural Science Foundation of China (grant no. 81973557), Natural Science Fund of Tianjin City (grant no. 20JCZDJC00010), Open Research fund of State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research (grant no. 010162001) and Graduate Research Innovation Project of Tianjin University of Traditional Chinese Medicine (grant no. YJSKC-20201013).

Availability of data and materials
Not applicable.

Authors’ contributions
NC analyzed the literature data and modified the manuscript. XL and WZ wrote the manuscript. QW and YL designed the figures using Adobe Illustrator CC version 23.0 (Adobe Systems, Inc.). FZ and XX revised the manuscript. All authors have read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.
References

1. Chu SM, Shih WT, Yang YH, Chen PC and Chu YH: Use of traditional Chinese medicine in patients with hyperlipidemia: A population-based study in Taiwan. J Ethnopharmacol 168: 255‑285, 2021.

2. World Health Organization. World health statistics 2021: Monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization. Licence: CC BY‑NC-SA 3.0 IGO, 2021.

3. Navar‑Boggan AM, Peterson ED, D’Agostino RB Sr, Neely B, Sniderman AD and Pencina MJ: Hyperlipidemia in early adulthood increases long‑term risk of coronary heart disease. Circulation 131: 451‑458, 2015.

4. Deng YF, Huang XL, Su M, Yu PX, Zhang Z, Liu QH, Wang GP and Lin LY: Effects of lactobacillus fermentum CQPC05 isolated from unshiu in high‑fat diet‑induced obese mice. J Ethnopharmacol 161: 119131, 2021.

5. Chen SY, Chung KS, Lee KJ, Choi HY, Ham IH, Jung DH, Cha YY and An HJ: HVCl ameliorates hyperlipidemia and inflammation in LDLR‑/‑ mice. BMC Complement Altern Med 17: 222, 2017.

6. Deng YF, Huang XL, Su M, Yu PX, Zhang Z, Liu QH, Wang GP and Lin LY: Hypolipemic effect of SPI‑T6203, a derivative of an extract from oriental wormwood, through farnesoid X receptor antagonism. Chin J Nat Med 16: 572‑579, 2018.

7. Zhu M, Hao S, Liu T, Yang L, Zheng B, Zhang P, Zhang L and Ji G: Lingwu‑zhigan decoction improves non‑alcoholic fatty liver disease by alleviating insulin resistance and lipid metabolism related genes: A whole transectome study by RNA‑Seq. Oncotarget 8: 82638‑82638, 2017.

8. Chen HL, Tsai TC, Tsai YC, Liao JW, Yen CC and Chen CM: Kefir peptides prevent high‑fructose corn syrup‑induced non‑alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway. Nutr Diabetes 6: e237, 2016.

9. Liu CP, Chau PC, Chang CT, An LM, Yeh JL, Chen JJ and Wu BN: KMUP‑1, a GPCR modulator, attenuates triglyceride accumulation induced MAPKs/Akt/PPARγ and PKA/PKG/ILS signaling in 3T3‑L1 preadipocytes. Molecules 23: 2433, 2018.

10. Lin LY, Huang BC, Chen KC and Peng YR: Integrated anti‑hyperlipidemic bioactivity of whole Citrus grandis [L.] osbeck fruits‑multi‑action mechanism evidenced using animal and cell models. Food Funct 11: 2978‑2996, 2020.

11. Deng N, He Z, Guo R, Zheng B, Li T and Liu RH: Highland barley whole grain (Hordeum vulgare L.) ameliorates hyperlipidemia by modulating cecal microbiota, miRNAs, and AMPK pathway in leptin receptor‑deficient db/db mice. J Agric Food Chem 68: 11735‑11746, 2020.

12. MacKnick R and Wahl W: Roles of peroxisome proliferator‑activated receptor β/δ in skeletal muscle physiology. Biochimie 136: 42‑48, 2017.

13. Capitáo A, Lopes‑Marques M, Páscoa I, Ruivo R, Mendiratta N, Fonseca E, Castro LFC and Santos MM: The echinodermata system pharmacology. Front Pharmacol 11: 528, 2020.

14. Rong Q, Han B, Li Y, Yin H, Li J and Hou Y: Berberine reduces effects of lactobacillus fermentum CQPC05 isolated from sichuan pickles in high‑fat‑diet‑induced obese mice through PPAR‑α signaling pathway. Microorganisms 7: 194, 2019.

15. Song J, Qiu H, Du P, Mou F, Nie Z, Zheng Y and Wang M: Polyphenols extracted from Shanxi‑aged vinegar exert hypolipidemic effects on OA‑induced HepG2 cells via the PPAR‑α/LXR‑α/ABC1A pathway. J Food Biochem 46: e14029, 2022.

16. Chen XF, Tian MX, Sun RX, Zhang ML, Zhou LS, Jin L, Chen LL, Zhou WJ, Duan KL, Chen YJ, et al: SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is down‑regulated in liver cancer. EMBO Rep 19: e45124, 2018.

17. Schlaepfer and Joshi M: CPT1A‑mediated lipid oxidation, mechanisms, and therapeutic potential. Endocrineins 16: 3046, 2020.
40. Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, Kim E, Choi H, Kim JS and Kim S: Unripe rubus coreanus miquel extract containing eudraclid acid regulates AMPK, SREBP-2, HMGCRC, and INSR-Sep signaling and cholesterol metabolism in vitro and in vivo. Nutrients 12: 610, 2020.

41. Gallo-Ebert C, Francisco J, Liu HY, Draper R, Modi K, Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, Kim E, Choi H, Kim JS and Kim S: Unripe rubus coreanus miquel extract containing eudraclid acid regulates AMPK, SREBP-2, HMGCRC, and INSR-Sep signaling and cholesterol metabolism in vitro and in vivo. Nutrients 12: 610, 2020.

39. Song Y, Li X, Liu Y, Hu Y and Yang R: Arctigenin improves lipid metabolism by regulating AMP-activated protein kinase and downstream signaling pathways. J Cell Biochem 120: 1376-1386, 2019.

40. Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, Kim E, Choi H, Kim JS and Kim S: Unripe rubus coreanus miquel extract containing eudraclid acid regulates AMPK, SREBP-2, HMGCRC, and INSR-Sep signaling and cholesterol metabolism in vitro and in vivo. Nutrients 12: 610, 2020.

41. Gallo-Ebert C, Francisco J, Liu HY, Draper R, Modi K, Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, Kim E, Choi H, Kim JS and Kim S: Unripe rubus coreanus miquel extract containing eudraclid acid regulates AMPK, SREBP-2, HMGCRC, and INSR-Sep signaling and cholesterol metabolism in vitro and in vivo. Nutrients 12: 610, 2020.

42. Huang C, Wang J, Hu W, Wang C, Lu X, Tong L, Wu F and Zhang W: Identification of functional farnesoid X receptors in brain neurons. FEBS Lett 590: 3233-3242, 2016.

43. Zhang T, Zhao M, Lu D, Wang S, Yu F, Guo L, Wen S and Wu B: REV-ERBB1 regulates CYP7A1 through repression of liver receptor homolog-1. Drug Metab Dispos 46: 248-258, 2018.

44. Huang M, Kong B, Zhang M, Rizzolo D, Armstrong LE, Gallo-Ebert C, Francisco J, Liu HY, Draper R, Modi K, Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, Kim E, Choi H, Kim JS and Kim S: Unripe rubus coreanus miquel extract containing eudraclid acid regulates AMPK, SREBP-2, HMGCRC, and INSR-Sep signaling and cholesterol metabolism in vitro and in vivo. Nutrients 12: 610, 2020.

45. Jung D, York JP, Wang L, Yang C, Zhang A, Francis HL, Webb P, McCullough M, Galescu CG, Lesage G and Glimcher LH: Sepsis results in an increased secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Pflugers Arch 466: 1011-1019, 2014.

46. Matsui S, Yamane Y, Takita T, Oishi Y and Kobayashi-Hattori K: The hypocholesterolemic activity of Momordica charantia fruit extractives: A practical perspective. Fertil Steril 53: 1-12, 1990.

47. Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, Zhang Y, Lei S, Wang S, Kuang J et al: Thebainbrown from Pu-erh tea attenuates hypercholesterolaemia via modulation of gut microbiota and bile acid metabolism. Nat Commun 10: 4971, 2019.

48. Altomonte J, Cong L, Harbaran S, Richter A, Xu J, Meseck M, Nickels JT Jr: Mice lacking ARV1 have reduced signs of metabolic syndrome and non-alcoholic fatty liver disease. J Biol Chem 293: 5956-5974, 2018.

49. Link W: Introduction to FOXO biology. Methods Mol Biol 1890: 197-211, 2019.

50. Bao S, Wu YL, Wang X, Han S, Cho S, Ao W and Nan JX: Agriophyllum biota and bile acid metabolism. Nat Commun 10: 4971, 2019.

51. Zhu M, Qin YC, Gao CQ, Yan HC, Li XG and Wang XQ: The role of JAK-STAT signaling of leptin. Metabolism 64: 13-23, 2015.

52. Frezza E, Martin J and Lavery R: A molecular dynamics study of adenyly cyclase: The impact of ATP and G-protein binding. PLoS One 13: e0196207, 2018.

53. Olmos-Ortiz A, Olives-Huerta A, García-Quiroz J, Zariñán T, Chavira R, Zagu-Clavellina V, Avila E, Halhali A, Durand M, Larrea F and Díaz L: Placentas associated with female neonates from pregnancies complicated by urinary tract infections have higher cAMP content and cytokines expression than males. Am J Reprod Immunol 66: e13344, 2021.

54. Link W: Introduction to FOXO biology. Methods Mol Biol 1890: 197-211, 2019.

55. Hooper AJ, Burnett JR and Watts GF: Contemporary aspects of farnesoid X receptor deficiency. Lab Invest 100: 1158-1168, 2020.

56. El Awdan SA, Abdel Rahman RF, Ibrahim HM, Hegazy RR, El Hayek MS, Hachem P, Abou-Khalil P, Mika D, Varin A, El Hayek MS, Pereira L, et al: Cardiac phosphodiesterases are differentially increased in diabetic cardiomyopathy. Life Sci 238: 118571, 2021.

57. Feng Y, Zhang J, Li Y, Liu J, Liu J, Liu B, Liu Q, Li W and Li P: Ginsenoside Rg5 inhibits succinate-associated lipolysis in adipose tissue and prevents muscle insulin resistance. Front Pharmacol 8: 43, 2017.

58. Zhao Y, Peng L, Yang LC, Xu XD, Li WJ, Luo XM and Jin X: Hypocholesterolemia of rhizoma coptidis achieves lipolytic effects through the AMP-activated protein kinase pathway. J Nutr Biochem 23: 13275-13288, 2019.

59. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lishvitz S, Song J, Yuan Y, et al: JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27: 135-150, 2018.

60. Lin X, Shi H, Cui Y, Wang X, Zhang J, Yu W and Wei M: Tandibromide mixture regulates hepatic gluconeogenesis in diabetic rats via the phosphoinositide-3-kinase/protein kinase B signaling pathway. Exp Ther Med 16: 202-212, 2018.

61. Yao Y, Yu L, Jin Z, Yan J, Wang X, Yang M and Feng H: Morin reduces inflammatory responses and alleviates lipid accumulation in hepatocytes. J Cell Physiol 234: 19785-19798, 2019.

62. El Marasy SA, Badawi M and Arbid MS: Regression of fibrosis by cilostazol in a rat model of thioacetamide-induced liver fibrosis: Up regulation of hepatic cAMP and modulation of inflammatory, oxidative stress and apoptotic biomarkers. PLoS One 14: e0216301, 2019.

63. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lei S, Wang S, Kuang J, et al: Thebainbrown from Pu-erh tea attenuates hypercholesterolaemia via modulation of gut microbiota and bile acid metabolism. Nat Commun 10: 4971, 2019.

64. Lin X, Shi H, Cui Y, Wang X, Zhang J, Yu W and Wei M: Tandibromide mixture regulates hepatic gluconeogenesis in diabetic rats via the phosphoinositide-3-kinase/protein kinase B signaling pathway. Exp Ther Med 16: 202-212, 2018.

65. Cao Y, Bei W, Hu Y, Cao L, Huang L, Wang L, Luo D, Chen Y, Gong X, Li T, Wan R and Sha L: Cordycepin attenuates high-fat diet-induced lipid accumulation and improves hepatic lipid metabolism in obese mice induced by high fat diet via regulating the JAK2/STAT3 signaling pathway. Int Immunopharmacol 74: 105498, 2019.

66. Olmos-Ortiz A, Olives-Huerta A, García-Quiroz J, Zariñán T, Chavira R, Zagu-Clavellina V, Avila E, Halhali A, Durand M, Larrea F and Díaz L: Placentas associated with female neonates from pregnancies complicated by urinary tract infections have higher cAMP content and cytokines expression than males. Am J Reprod Immunol 66: e13344, 2021.