Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO$_3$F and RbAlCO$_3$F$_2$

Lei Kang1,3, Zheshuai Lin1, Jingui Qin2 & Chuangtian Chen1

1Beijing Center for Crystal R&D, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China, 2Department of Chemistry, Wuhan University, Wuhan 430072, PR China, 3Graduate School of the Chinese Academy of Sciences, Beijing 100049, PR China.

With the rapid developments of the all-solid-state deep-ultraviolet (deep-UV) lasers, the good nonlinear optical (NLO) crystal applied in this spectral region is currently lacking. Here, we design two novel NLO carbonates KBeCO$_3$F and RbAlCO$_3$F$_2$ from the first-principles theory implemented in the molecular engineering expert system especially for NLO crystals. Both structurally stable crystals possess very large energy band gaps and optical anisotropy, so they would become the very promising deep-UV NLO crystals alternative to KBBF. Recent experimental results on MnCO$_3$F (M = K, Rb, Cs; N = Ca, Sr, Ba) not only confirm our calculations, but also suggest that the synthesis of the KBeCO$_3$F and RbAlCO$_3$F$_2$ crystals is feasible.

Deep-ultraviolet (deep-UV, $\lambda < 200$ nm) nonlinear optical (NLO) crystals, as a key component of all-solid-state deep-UV lasers, have played important roles in many advanced scientific and technical areas$^{1-3}$. Numerous attempts have been performed on the explorations of new deep-UV NLO materials with good performances$^{4-8}$, and the dominant research field has been focused on the borates$^{9-11}$. In particular, Potassium beryllium fluoroborate (KBe$_2$BO$_3$F$_2$, KBBF) exhibits excellent NLO performance in the deep-UV region; till now KBBF is the sole NLO crystal that can practically generate the deep-UV lasers by direct SHG process1. However, the applications of KBBF are heavily hindered by the layering tendency in the single crystal growth processes12. Therefore, it is urgently demanded the emergence of new types deep-UV NLO materials.

To be a good deep-UV NLO material, the following four criterions are commonly considered13,14: (i) a wide UV transparency range down to the deep-UV region, corresponding to the large energy band gap and high damage threshold; (ii) a relatively large efficient second harmonic generation (SHG) coefficient ($d_{ij} \approx 0.39$ pm/V, d_{36} of KH$_2$PO$_4$); (iii) a relative large birefringence ($\Delta n \approx 0.08$) to achieve the phase matching condition in the deep-UV region; and (iv) good chemical stability and mechanical properties. According to the anionic group theory15,16, the planar [BO$_3$]$^{3-}$ microscropic anionic groups have the dominant contribution to the macroscopic optical anisotropies in crystal, as in the KBBF case. Analogously, [CO$_3$]$^{2-}$ and [NO$_3$]$^{-}$ anionic groups are expected to be the good NLO micro-structural units as well since they have the similar planar triangle structure with the π-conjugated molecular orbitals which can produce the large birefringence and second-order susceptibility. The nitrates, however, are not considered as the NLO candidates for their hydrolysis. Thus, it is greatly desirable to explore the deep-UV NLO materials in carbonates.

The rapid developments of scientific computational resources make it possible to predict the new advanced materials directly from the first-principles theory$^{17-19}$, although search for the best candidate for a special property is still a major task20. In this work, aiming at the additional NLO candidates in the deep-UV region, we design two structurally stable carbonates KBeCO$_3$F and RbAlCO$_3$F$_2$. The energy band gaps and the linear and nonlinear optical properties of both crystals are determined by ab initio calculations with high precision, which clearly demonstrate their promising applications as good optoelectronic functional materials in the deep-UV region.

Results

In order to search for the suitable deep-UV carbonates, we employed the anionic group theory combined with first-principles calculations which are implemented in the molecular engineering expert system especially for NLO crystals originated from our group9,15. After numerous efforts, we have theoretically discovered two carbonates, KBeCO$_3$F and RbAlCO$_3$F$_2$, according to the following materials design considerations: (i) the candidates...
are the fluoride carbonates since they can possess the larger energy band gaps compared with other carbonates \(^2\); (ii) the A-site cations are the metal cations without unclosed \(d\) or \(f\) electrons because the \(d\)- or \(f\)-electronic transitions have negative influences to the energy band gap. Especially the alkaline cations and the lightweight metal cations in the Group IIA and IIIA in the Periodic Table are taking into account; (iii) all \([\text{CO}_3]^{2-}\) anionic groups are parallel (flat-lying) with respect to the overall structural layering. This structural feature has strong optical anisotropic responses to the incident light and exhibit large optical birefringence; and (iv) the orientation of all \([\text{CO}_3]^{2-}\) groups is parallel to each other. This arrangement is favorable to the additive superposition of the microscopic second susceptibilities in the anionic groups, so produce large macroscopic SHG effects in crystal.

The structures of KBeCO\(_3\)F and RbAlCO\(_3\)F\(_2\) are plotted in Fig. 1 (their crystallographic data see Table S1 in the Supplementary Information). In KBeCO\(_3\)F, the \([\text{BeO}_2\text{F}_2]\) tetrahedra are connected with the \([\text{CO}_3]\) triangles by sharing their edges, forming the zero-dimensional \([\text{BeCO}_3\text{F}_2]\) microscopic structures isolated by the K\(^+\) cations. In RbAlCO\(_3\)F\(_2\), the \([\text{AlO}_3\text{F}_2]\) trigonal bipyramids and \([\text{CO}_3]\) triangles are alternately arranged in a trigonal pattern and connected via common O corners, generating a two-dimensional infinite \([\text{AlCO}_3\text{F}_2]\) layer parallel to the \(a-b\) plane. The Rb\(^+\) cations are located between these layers to balance charge and also hold the layers together through the coordination with O and F anions. Both structures clearly exhibit the parallel flat-lying arrangement of the \([\text{CO}_3]^{2-}\) groups in crystals, so they are expected to have large SHG coefficients and birefringences. More importantly, the structural stabilities of both crystals are carefully verified by the first-principles methods\(^1\). Figure 2 displays the phonon spectra and the total energy as a function of volume per atom in KBeCO\(_3\)F and RbAlCO\(_3\)F\(_2\). In the phonon spectra (Figure 2(a)) none of the imaginary phonon modes is observed, and in the curves of the total energy as a function of volume per atom (Figure 2(b)) there has a single minimum in the wide range of volume modification. Both evidences clearly demonstrate that the titled crystals are kinetically stable.

The calculated linear and nonlinear optical properties for KBeCO\(_3\)F and RbAlCO\(_3\)F\(_2\) are listed in Table 1, and the experimental results for KBBF are also shown as a comparison. It is clear that both KBeCO\(_3\)F and RbAlCO\(_3\)F\(_2\) possess very large energy band gaps, 7.61 eV (~164 nm) and 8.21 eV (~152 nm), respectively. Meanwhile, the birefringences and SHG coefficients in both KBeCO\(_3\)F and RbAlCO\(_3\)F\(_2\) crystals are larger than those in KBBF. The large birefringences (\(\Delta n = 0.1297\) in KBeCO\(_3\)F and \(\Delta n = 0.0998\) in RbAlCO\(_3\)F\(_2\)) guarantee the achievement of the SHG phase-matching condition in both crystals down to their UV absorption edge, thus their shortest phase-matching wavelengths very approach (or even exceed) the corresponding wavelength in KBBF (~161 nm)\(^2\). It should be emphasized that RbAlCO\(_3\)F\(_2\) is optically uniaxial, which would be beneficial to its practical applications. The excellent optical properties in KBeCO\(_3\)F and RbAlCO\(_3\)F\(_2\) demonstrate that both crystals are comparable to KBBF for the deep-UV SHG capabilities. Upon being obtained, these crystals would have wide applications.
Table 1 | Comparison of the linear and nonlinear optical properties in KBeCO₃F, RbAlCO₃F₂ and KBBF. \(E_g \) is the energy band gap, \(n \) is the refractive index at the wavelength \(\sim 400 \) nm, \(\Delta n \) is the birefringence, \(\lambda_{PM} \) is the shortest phase-matching wavelength, and \(d_{ij} \) is the SHG coefficient. For a uniaxial crystal, \(n_x = n_y = n_o \) and \(n_z = n_e \).

Crystal	\(E_g \) (eV)	\(n_x \)	\(n_y \)	\(n_z \)	\(\Delta n \)	\(\lambda_{PM} \) (nm)	\(d_{ij} \) (pm/V)
KBeCO₃F	7.61	1.5458	1.5149	1.4161	0.1297	164	\(d_{21} = 0.94; d_{22} = 0.70; d_{11} = 0.26; d_{12} = 0.15 \)
RbAlCO₃F₂	8.21	1.4982	1.4982	1.4035	0.0998	152	\(d_{16} = -0.69 \)
KBBF	8.26	1.4915	1.4915	1.4035	0.0880	161	\(d_{11} = 0.47 \)

Ref. 12.

Figure 3 | (a) (left) Partial density of states (PDOS) projected on the constituent atoms in MNCO₃F, exemplified by the KSrCO₃F crystal, (right) the PDOS zoomed-in to show the non-bonding states on oxygen atoms. (b) PDOS projected on the constituent atoms in KBeCO₃F (left) and RbAlCO₃F₂ (right). The blue and red curves represent the \(s \) and \(p \) orbitals, respectively, and the shadow areas represent the region occupied by non-bonding states on oxygen atoms.
as the optoelectronic functional materials in the deep-UV spectral region.

Discussion

To verify the reliability of our *ab initio* calculations on the optical properties in carbonates, we also applied our calculated methods on a family of recently synthesized NLO fluoride carbonates, MnCoF3 (M = K, Rb, Cs; N = Ca, Sr, Ba). The preliminary optical measurements revealed that these compounds possess wide energy band gap (UV absorption edge < 200 nm) and qualitatively exhibit good capabilities for the UV harmonic generation. However, due to the very small size of the samples the obtained experimental data are not enough to determine their application prospects in the deep-UV region. Our calculated energy band gaps and SHG coefficients match the available experimental results very well (see Table S2 and S3 in the Supplementary Information), which strongly prove the validity and high precision of the first-principles studies on the UV NLO carbonate crystals. Since the MnCoF3 series possess strong NLO effect and large birefringence, we predict that they are suitable to be good NLO crystals and excellent birefringent materials in the UV region. Nevertheless, these carbonates cannot be applied in the deep-UV region due to their relatively small energy band gaps ($E_g \sim 6.3$ eV).

The detailed electronic structure analysis show that the small energy gaps in MnCoF3 are mainly due to the O 2p non-bonding states exclusively occupied at the valence band maximum, which have negligible small overlap with other electronic states and directly determine the energy band gap (see Figure S1 in the Supplementary Information). The energy spanning of these non-bonding states is as large as about 2.5 eV, and their complete elimination can significantly increase the energy band gap of crystals to more than 8.3 eV (UV absorption edge < 150 nm). Compared MnCoF3 with our proposed crystals, the substitution of Ca, Sr or Ba atoms with the lightweight metal cations in the Group IIA or IIIA, Be or Al, can effectively remove the non-bonding orbitals in carbonates, analogous to the borate cases such as beryllium in KBF4 or aluminum in BaABO,F (BABB)26–29. Indeed, Figure 3 clearly shows that the energy spanning of the non-bonding regions in KBeCO3F and RbAlCO3F2 reduces about 1.1 eV and 2.5 eV, respectively, compared with that in MnCoF3, exemplified by KSrCoF3. Therefore, the UV absorption edge of both KBeCO3F and RbAlCO3F2 are significantly blue-shifted. In addition, the similarity of the micro-structural features in the MnCoF3 series and our proposed crystals suggests that it is feasible to synthesize KBeCO3F and RbAlCO3F2 in experiments.

We surveyed throughout Inorganic Crystal Structure Database (ICSD)30, and found that only 14 fluoride carbonates whose energy band gaps may be large enough to transmit the UV radiation have been discovered and synthesized in experiments (see Table S4 in the Supplementary Information), in which seven are noncentrosymmetric and satisfy the SHG requirement. The very few report on UV NLO carbonates actually implies that the studies on this type of optoelectronic functional materials have been long-termly neglected and the broad developing space is available. We believe that our work would have great implications on the search and design of new NLO crystals in the deep-UV spectral region with the great help of advanced synthesis and single-crystal growth approaches.

Methods

First-principles computational methods and geometry optimizations. The first-principles calculations are performed by the plane-wave pseudopotential method31 implemented in the CASTEP package32 based on the density functional theory (DFT)33. The ion-electron interactions are modeled by the optimized norm-conserving pseudopotentials for all elements34. The kinetic energy cutoffs of 900 eV and Monkhorst-Pack k-point mesh35 with the spanning of less than 0.03 Å in the Brillouin zone are chosen. The supercell volume and the atomic positions for KBeCO3F and RbAlCO3F2 are fully optimized using the quasi-Newton method. The convergence thresholds between optimization cycles for energy change, maximum force, maximum stress, and maximum displacement are set as 10^{-5} eV/atom, 0.03 eV/Å, 0.05 GPa, and 0.01 Å, respectively. The above computational set ups are sufficiently accurate for present purposes.

Calculated methods for structural stability. To verify the structural stability, phonon spectra calculations on KBeCO3F and RbAlCO3F2 are performed. The positive eigenvalues for all phonon modes is the most important evidence for the structural stability in crystal. The structural stability can also be demonstrated by the total energy as a function of volume per atom. If there has only a single minimum in the wide range of volume modification, the studied geometrical structure would be stable. The studied methods on structural stability were also adopted by Yao36 and Sheng37.

Calculated methods for optical properties. When determining the linear optical properties the imaginary part of the dielectric function ϵ_2 is calculated38, and then its real part is determined by Kramers-Kronig transform, from which the refractive indices (and the birefringence) are obtained. Moreover, the second-order susceptibility $\chi^{(2)}$, i.e., the SHG coefficient d_{ij} is calculated by the following formula developed by our group40:

$$\chi^{(2)}(\text{VE}) = \chi^{(2)}(\text{VE}) + \chi^{(2)}(\text{VH}) + \chi^{(2)}(\text{two bands}),$$

where $\chi^{(2)}(\text{VE})$, $\chi^{(2)}(\text{VH})$ and $\chi^{(2)}(\text{two bands})$ denote the contributions from virtual-electron processes, virtual-hole processes and two-band processes, respectively. The formulae for calculating $\chi^{(2)}(\text{VE})$, $\chi^{(2)}(\text{VH})$ and $\chi^{(2)}(\text{two bands})$ are given as follows:

$$\chi^{(2)}(\text{VE}) = \frac{\alpha^2}{2\hbar^2} \sum_{\alpha, \beta} \frac{\hbar}{C_2} \frac{1}{\alpha \beta} \text{Im} \epsilon_{\alpha \beta} \frac{\epsilon_{\alpha \beta}}{\epsilon_{\alpha \beta}^2}$$

$$\chi^{(2)}(\text{VH}) = \frac{\alpha^2}{2\hbar^2} \sum_{\alpha, \beta} \frac{\hbar}{C_2} \frac{1}{\alpha \beta} \text{Im} \epsilon_{\alpha \beta} \frac{\epsilon_{\alpha \beta}}{\epsilon_{\alpha \beta}^2}$$

$$\chi^{(2)}(\text{two bands}) = \frac{\alpha^2}{2\hbar^2} \sum_{\alpha, \beta} \frac{\hbar}{C_2} \frac{1}{\alpha \beta} \text{Im} \epsilon_{\alpha \beta} \frac{\epsilon_{\alpha \beta}}{\epsilon_{\alpha \beta}^2}$$

Here, α, β and γ are Cartesian components, α and ν denote valence bands, and γ and δ denote conduction bands. $\epsilon_{\alpha \beta}$ denotes full permutation and explicitly shows the Kleinman symmetry of the SHG coefficients. The band energy difference and momentum matrix elements are denoted as $h_{\alpha \beta} \delta_{ij}$, respectively, and they are all implicitly k dependent.

It is well acknowledged that the DFT calculations with the exchange-correlation (XC) functional of generalized gradient approximation (GGA) always underestimate the energy band gap of crystals. For calculating the optical coefficients, a scissors operator41 is usually introduced to shift up all the conduction bands to agree with the measured band gap, which is not “purely” *ab initio*. Recently, we have examined several XC functionals beyond GGA on the determination of energy band gaps of optical properties in UV NLO crystals. It was found that the hybrid functionals such PBE0, P3LYP and sX-LDA can predict the UV absorption edge very well, but the calculated electronic band structures and optical properties are not well reproduced compared to the scissors-corrected GGA method. Indeed our calculations show that in the MnCoF3 crystals the GGA energy band gaps are in large discrepancy to the experimental results (absolute error exceeds 2.4 eV), while the PBE0 values are in good consistency with the measurements (see Table S2 in the Supplementary Information). Therefore, in this work the difference between PBE0 and GGA energy band gaps is set as the scissors operator, which is then used to determine the optical properties by GGA. The further tests have also revealed that the $\chi^{(2)}$ values is insensitive to the modification (e.g. ~ 7.9 eV) of the scissors operator because of the very large band gap (>6 eV) in the studied carbonates. Therefore, this computational procedure ensures that our first-principles studies are self-consistent without adjusting any parameter from experiments.

1. Cyranowski, D. China’s crystal cache. *Nature* 457, 953–955 (2009).
2. Xu, Y. M. *et al.* Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped $\text{Ba}_x\text{K}_3\text{Fe}_2\text{As}_2$. *Nature Physics* 7, 198–202 (2011).
3. Mu, R. *et al.* Visualizing Chemical Reactions Confined under Graphene. *Angew. Chem. Int. Ed.*, 51, 4856–4859 (2012).
4. Wang, S. Y. *et al.* & Zhao, D. Alkaline Beryllium Borate NaBeB3O7 and $\text{ABe}_2\text{B}_3\text{O}_9$ (A = K, Rb) as UV Nonlinear Optical Crystals. *J. Am. Chem. Soc.* 132, 8779–8786 (2010).
5. Wang, S. Y. *et al.* & Na$_x$Co$_{3-x}$Be$_3$O$_{12}$; An Alkaline Beryllium Borate as a Deep UV Nonlinear Optical Crystals. *J. Am. Chem. Soc.* 133, 11458–11461 (2011).
6. Huang, H. *et al.* Na$_x$Sr$_{1-x}$Be$_2$B$_4$O$_{12}$; A Promising Deep-Ultraviolet Nonlinear Optical Material Resulting from the Cooperative Alignment of the $\text{Be}_2\text{B}_2\text{O}_7$10 Anionic Group. *Angew. Chem. Int. Ed.* 50, 9141–9144 (2011).
7. Yang, Y. *et al.* A New Lithium Rubidium Borate Lithium $\text{Li}_2\text{B}_2\text{O}_3$ with Isolated B_2O_3-Building Blocks. *Cryst. Growth Des.* 11, 3912–3916 (2011).
8. McClimen, C. D., Stritzinger, J. T. & Kolis, J. W. Two Novel Acentric Borate Fluorides: $\text{M}_2\text{B}_2\text{O}_7\text{F}_2$ (M = Sr, Ba). *Inorg. Chem.* 51, 3953–3955 (2012).
9. Becker, P. Borate materials in nonlinear optics. *Adv. Mater.* 10, 979–992 (1998).
