New Magnetic Symmetries in \((d + 2)\)-Dimensional QED

Temple He\(^1\) and Prahar Mitra\(^2\)

\(^1\)Center for Quantum Mathematics and Physics (QMAP), University of California, Davis, CA 95616, USA
\(^2\)School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

E-mail: tmhe@ucdavis.edu, prahar21@ias.edu

Abstract: Previous analyses of asymptotic symmetries in QED have shown that the sub-leading soft photon theorem implies a Ward identity corresponding to a charge generating divergent large gauge transformations on the asymptotic states at null infinity. In this work, we demonstrate that the subleading soft photon theorem is equivalent to a more general Ward identity. The charge corresponding to this Ward identity can be decomposed into an electric piece and a magnetic piece. The electric piece generates the Ward identity that was previously studied, but the magnetic piece is novel, and implies the existence of an additional asymptotic “magnetic” symmetry in QED.
1 Introduction

In recent years, an intricate relationship between soft theorems and asymptotic symmetries in asymptotically flat spacetimes has been discovered and extensively studied (for a detailed review of this subject, see [1]). It began with the discovery that the leading soft theorems in both four dimensional gauge and gravity theories are equivalent to Ward identities associated to charges generating asymptotic symmetries of the theory [2–7]. These results were later extended to all higher dimensions [8–11].

The relationship between asymptotic symmetries and soft theorems became more intriguing when it was observed that there is also a relationship between the subleading soft theorems
and asymptotic charges generating divergent large gauge symmetries in all dimensions \cite{12-19}. However, unlike the case involving the leading soft theorems, the subleading soft theorem is oftentimes a \textit{stronger} condition than the associated Ward identity. While the subleading soft theorem implies the Ward identity, the reverse is not necessarily true.

Traditionally, one conjectures a ‘matching condition’ that relates a specific component of a field at past null infinity $\mathcal{I}^-$ to that at future null infinity $\mathcal{I}^+$ (see Section 3.1),\footnote{These matching conditions were rigorously studied (and proved) in QED and gravity in \cite{20, 21}.} which can then be massaged into a Ward identity (in the semi-classical theory) for the $S$-matrix. For example, in gauge theories one imposes such a matching condition for the radial electric field $E_r$, and the corresponding Ward identity is equivalent to the leading soft photon theorem. Similarly, in gravitational theories the matching condition for the electric part of the Weyl tensor is equivalent to the leading soft graviton theorem. Crucially, each independent matching condition leads to an independent Ward identity or soft theorem. This does not imply a contradiction for the $d$ leading soft photon theorems (one for each polarization), which are not all independent. Rather, they satisfy a trivial identity that results in a single independent leading soft theorem \cite{10}; this is the soft theorem that is equivalent to the matching condition described above. A similar argument holds for the leading soft graviton theorem as well.

However, such an identity does not hold for the subleading soft photon theorem, thereby implying there are indeed $d$ independent subleading soft theorems. It is therefore not possible to demonstrate its equivalence with a Ward identity arising from matching the radial electric field. Rather, the matching condition for the radial electric field leads to a particular linear combination of the subleading soft theorem \cite{19}, which we shall henceforth call the subleading electric Ward identity. The origin (from the perspective of asymptotic symmetries or matching conditions) of the remaining $d-1$ independent soft theorems is, so far, unknown.

In this paper, we conjecture a matching condition for the $d$ angular components of the magnetic field (a vector matching condition), and then show that it is equivalent to the $d$ independent subleading soft photon theorems. Naturally, our ansatz that there are $d$ matching conditions instead of just one implies that the associated Ward identities must correspond to new symmetries. As it turns out, the subleading electric Ward identity corresponds precisely to one of the $d$ matching conditions. The remaining $d-1$ matching conditions then give rise to Ward identities corresponding to charges that generate magnetic large gauge transformations, and we shall call these Ward identities the subleading magnetic Ward identities. This suggests that even though there are no global magnetic charges in our theory, there exists finite large gauge symmetries that are generated by asymptotic magnetic charges.
This paper is organized as follows. In Section 2, we will summarize all the notations and conventions used throughout the paper. We will also derive the asymptotic expansion of the gauge field near $\mathcal{I}^\pm$; because much of the technology used was introduced in [10], we refer the reader there for more details. In Section 3, we will conjecture the set of $d$ matching conditions and derive the corresponding Ward identities. Next, in Section 4, we prove the equivalence between the subleading soft theorems and the Ward identities. Finally, we explain in Section 5 the interpretations of the charges that correspond to these new Ward identities.

2 Asymptotic Behavior of Gauge Field

2.1 Preliminaries

In this section, we introduce the notations employed in this paper (following the conventions of [10]) and review related previous work.

Spacetime Coordinates We work in flat null coordinates $x^\mu = (u, r, x^a)$, $a = 1, \ldots, d$, where $d \geq 2$. These are related to Cartesian coordinates by

$$X^A = \frac{r}{2} \left( 1 + x^2 + \frac{u}{r}, 2x^a, 1 - x^2 - \frac{u}{r} \right), \quad (2.1)$$

and the standard Minkowski metric in flat null coordinates takes the form

$$ds^2 = -du \, dr + r^2 \delta_{ab} dx^a \, dx^b. \quad (2.2)$$

$\mathcal{I}^\pm$ is located at $r \to \pm \infty$ while keeping $(u, x^a)$ fixed, and these surfaces have the topology $S^d \times \mathbb{R}$. The point coordinatized by $x^a$ on $\mathcal{I}^+$ is antipodal to the point with the same coordinate on $\mathcal{I}^-$. The boundaries of $\mathcal{I}^+$ and $\mathcal{I}^-$ are located at $u = \pm \infty$ and are denoted by $\mathcal{I}^+_\pm$ and $\mathcal{I}^-\pm$, respectively.

Momenta Coordinates We will focus on the scattering of massless particles, which satisfy $p^A p_A = 0$. We parameterize such momenta using flat null coordinates so that

$$p^A(\omega, x) = \omega \hat{p}^A(x), \quad \hat{p}^A(x) = \frac{1}{2} \left( 1 + x^2, 2x^a, 1 - x^2 \right). \quad (2.3)$$

Massless gauge fields transform under the vector representation of the little group $SO(d)$ and have $d$ polarizations. The $d$ polarization vectors $\varepsilon^A_a(x)$ are

$$\varepsilon^A_a(x) = \partial_a \hat{p}^A(x) = \left( x_a, \delta^A_{a}, -x_a \right). \quad (2.4)$$
One particle in- and out-states with momenta $\vec{p}$ are created from the vacuum by \textit{in} ($-$) and \textit{out} ($+$) creation and annihilation operators denoted by $O_{\alpha}^{(\pm)}(p)$ and $O_{\alpha}^{(\pm)}(p')$, where $\alpha$ labels the polarization of the particle. They are canonically normalized, i.e.

$$\left[ O_{\alpha}^{(\pm)}(p), O_{\beta}^{(\pm)}(p') \right] = \delta_{\alpha\beta} (2p_0^0) (2\pi)^{d+1} \delta^{(d+1)}(\vec{p} - \vec{p'}), \quad (2.5)$$

where $\{\cdot, \cdot\}$ indicates an anticommutator if both operators are fermionic and a commutator otherwise. Using the parameterization (2.3), this can be written as

$$\left[ O_{\alpha}^{(\pm)}(\omega, x), O_{\beta}^{(\pm)}(\omega', x') \right] = 2\omega^{-d} (2\pi)^{d+1} \delta^{(d)}(\omega - \omega') \delta^{(d)}(x - x'). \quad (2.6)$$

**Poincaré Algebra** The Poincaré algebra is generated by $P_A$ and $M_{AB}$ and takes the form

$$[P_A, P_B] = 0, \quad [P_A, M_{BC}] = -i(\eta_{AB} P_C - \eta_{AC} P_B) \quad (2.7)$$

$$[M_{AB}, M_{CD}] = i(\eta_{AC} M_{BD} + \eta_{BD} M_{AC} - \eta_{AD} M_{BC} - \eta_{BC} M_{AD}).$$

We define

$$P_\pm = -P_0 \mp P_{d+1}, \quad T_a = M_{0a} - M_{(d+1)0}, \quad D = M_{(d+1)0}, \quad K_a = M_{0a} + M_{(d+1)a}, \quad (2.8)$$

so that the nonzero commutators in the Poincaré algebra are given by

$$[M_{ab}, M_{cd}] = i(\delta_{ac} M_{bd} + \delta_{bd} M_{ac} - \delta_{bc} M_{ad} - \delta_{ad} M_{bc})$$

$$[M_{ab}, T_c] = i(\delta_{ac} T_b - \delta_{bc} T_a), \quad [M_{ab}, K_c] = i(\delta_{ac} K_b - \delta_{bc} K_a)$$

$$[T_a, D] = iT_a, \quad [K_a, D] = -iK_a, \quad [T_a, K_b] = -2i(\delta_{ab} D + M_{ab}) \quad (2.9)$$

$$[M_{ab}, P_c] = i(\delta_{ac} P_b - \delta_{bc} P_a), \quad [P_\pm, D] = \mp iP_\pm, \quad [P_a, T_b] = -i\delta_{ab} P_\pm$$

$$[P_+, T_a] = -2iP_a, \quad [P_a, K_b] = -i\delta_{ab} P_+, \quad [P_-, K_a] = -2iP_a.$$

In addition to the Poincaré transformations, we will also consider scale transformations $X^A \rightarrow \lambda X^A$, which appears as an effective symmetry in the infrared (near the asymptotic regions of spacetime). We denote the generator of scale transformations by $S$, which satisfies the commutation relations

$$[P_A, S] = iP_A, \quad [M_{AB}, S] = 0. \quad (2.10)$$

**Gauge Theory** A $U(1)$ gauge theory is described in terms of a 2-form field strength $F_{\mu\nu}$ that satisfies Maxwell’s equations, i.e.

$$\nabla^\mu F_{\mu\nu} = e^2 J_\nu, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu, \quad \nabla^\mu J_\mu = 0, \quad (2.11)$$

$$- 4 -$$
where $J_\mu$ is the matter current. The theory is invariant under the gauge transformations

$$
A_\mu \to A_\mu + \partial_\mu \varepsilon, \quad \Psi_i \to e^{iQ_i \varepsilon} \Psi_i,
$$

(2.12)

where $\varepsilon \sim \varepsilon + 2\pi$ and $Q_i \in \mathbb{Z}$ is the $U(1)$ charge of the matter field $\Psi_i$. Gauge transformations that vanish at infinity map physically equivalent solutions to each other and are therefore merely redundancies of the theory. We will use this redundancy to impose the gauge condition

$$
A_u = 0
$$

(2.13)

when carrying out the asymptotic expansion of the radiative field. Note that (2.13) is consistent with the choice of polarization in (2.4).

In flat null coordinates, Maxwell’s equations take the form

$$
e^2 J_u = \partial_u \left( 2\partial_u A_r - \frac{1}{r^2} \partial^a A_a \right)
$$

$$
e^2 J_r = -\frac{2}{r^2} \partial_r \left( r^d \partial_u A_r \right) - \frac{1}{r^2} \partial_r \partial^a A_a + \frac{1}{r^2} \partial^2 A_r,
$$

$$
e^2 J_a = -2\partial_u \partial_r A_a + 2\partial_u \partial_a A_r - \frac{2}{r^{d-2}} \partial_u \partial_r \left( r^{d-2} A_a \right) - \frac{1}{r^2} \partial_a \partial^b A_b + \frac{1}{r^2} \partial^2 A_a,
$$

(2.14)

where $\partial^2 \equiv \partial^a \partial_a$. The gauge field can be split into two pieces $A_\mu = A_\mu^{(R)} + A_\mu^{(C)}$. The radiative field $A_\mu^{(R)}$ satisfies the sourceless Maxwell’s equations, whereas the Coulombic field $A_\mu^{(C)}$ is the inhomogeneous solution to Maxwell’s equations and is uniquely fixed by a choice of Green’s function.\footnote{We remark that in dimensions $d > 2$, the Coulombic field falls off more quickly in powers of $1/r$ than the radiative field.}

We are interested in the asymptotic $in$ ($-$) and $out$ ($+$) solutions, which are respectively obtained by choosing the retarded and advanced Green’s functions. The corresponding radiative and Coulombic fields are then denoted by $A_\mu^{(R\pm)}$ and $A_\mu^{(C\pm)}$.

### 2.2 Radiative Field

In this subsection, we study the radiative gauge field near $\mathcal{I}^\pm$ by expanding it in powers of $1/r$. Because we adopt the same strategy and techniques introduced in [10], we refer the reader there for additional details and explanations.

The radiative gauge field satisfies the sourceless Maxwell’s equations and hence admits the mode expansion

$$
A_\mu^{(R\pm)}(X) = e \int \frac{d^{d+1}q}{(2\pi)^{d+1}} \frac{1}{2^d q^0} \left( \varepsilon_A^a(q)O_a^{(\pm)}(q)e^{iq \cdot X} + \varepsilon_A^a(q)^*O_a^{(\pm)*}(q)e^{-iq \cdot X} \right),
$$

(2.15)
where \( q^0 = |\vec{q}| \) and \( \varepsilon^a \) is the polarization vector defined in (2.4). Switching to the flat null coordinate parametrization of momenta defined in (2.3), we obtain

\[
A^{(R \pm)}_r(u, r, x) = \frac{e}{2(2\pi)^{d+1}} r \int_0^\infty d\omega \omega^{d-2} \int d^d y \left( i\partial^a \mathcal{O}_a^{(\pm)}(\omega, x) e^{-\frac{1}{2} \omega^2 r^2} + \text{c.c.} \right)
\]

(2.16)

To perform the large \(|r|\) expansion, we assume that the creation and annihilation operators admit the Fourier expansion

\[
\mathcal{O}_a^{(\pm)}(\omega, x) = \int \frac{d^d k}{(2\pi)^d} \mathcal{O}_a^{(\pm)}(\omega, k) e^{i k \cdot x},
\]

(2.17)

and that the Fourier coefficients in turn admit a soft expansion, i.e. they could be written as

\[
\mathcal{O}_a^{(\pm)}(\omega, x) = \sum_{n=0}^{\infty} \omega^{-n} \mathcal{O}_a^{(\pm, n)}(x).
\]

(2.18)

Substituting (2.17) and (2.18) into (2.16), and performing the integral over \( \omega \), we obtain

\[
A^{(R \pm)}_r(u, r, x) = - \frac{e}{(2\pi)^{\frac{d}{2}+1}} \sum_{n=0}^{\infty} \int \frac{d^d k}{(2\pi)^d} \left[ \frac{e^{i k \cdot x}}{(ir)^{\frac{d}{2}+\nu_n}} k^a \mathcal{O}_a^{(\pm, n)}(k) \frac{1}{z^{\nu_n-1}} K_{\nu_n-1}(kz) + \text{c.c.} \right]
\]

(2.19)

where \( K_{\nu} \) is the modified Bessel function of the second kind, \( k \equiv |\vec{k}| \), \( z \equiv \frac{\sqrt{nu}}{\sqrt{ir}} \), and \( \nu_n = \frac{d}{2} - 1 + n \). Because large \(|r|\) corresponds to small \( z \), we can expand the Bessel function about \( z = 0 \). This asymptotic expansion for the Bessel function is qualitatively different depending on whether \( \nu_n \) is an integer (\( d \) even) or a half-integer (\( d \) odd), so we will consider these cases separately.

The full large \(|r|\) expansion of the radiative gauge field components in all dimensions is presented in Appendix A for completeness, though for our purposes we only need the large \(|r|\) expansion to evaluate \((1 - u \partial_u) F_{ra}^{(R \pm, d)} \mid_{r=\pm} \) (see Section 3.1), where we have adopted the notation \( f^{(\pm, n)} \) to denote the coefficient of \(|r|^{-n} \) near \( r = \pm \infty \) after expanding the field \( f \) in large powers of \( 1/|r| \). Thus, we only need to focus on the terms in the expansion that are

\footnote{In the soft expansion given, we are ignoring potential \( \log \omega \) terms.}
\[ O(1/r^d) \text{ and } O(u^0); \text{ the } O(u) \text{ terms are projected out by } 1 - u \partial_u, \text{ and } O(1/u) \text{ terms vanish at } x^\pm. \text{ In even dimensions, these terms are} \]
\[ A_r^{(\pm)} = \cdots + \frac{1}{r^d} \left[ \frac{ie}{2(4\pi)^{d/2} \Gamma(\frac{d}{2})} \left( -\partial^2 \frac{d}{2} - 1 \right) \partial^a \mathcal{O}_a^{(\pm, 1)}(x) \right] + \cdots, \quad (2.20) \]

where we have simplified the expression by assuming
\[ \mathcal{O}_a^{(\pm, 0)}(x) = \mathcal{O}_a^{(\pm, 0)\dagger}(x), \quad \mathcal{O}_a^{(\pm, 1)}(x) = -\mathcal{O}_a^{(\pm, 1)\dagger}(x). \quad (2.21) \]

These assumptions are required to cancel logarithmic divergences in the asymptotic expansion in order to render the charge finite, and are discussed in greater detail in [10, 19]. In odd dimensions, the relevant terms are
\[ A_r^{(\pm)} = \cdots + \frac{1}{r^{d-1}} \left[ \frac{ie \Gamma(d-1)}{4\pi^{d+1}(-1)^{(d-1)/2}} \int d^d y \frac{\partial^a \mathcal{O}_a^{(\pm, 1)}(y)}{[x-y]^2^{d-1}} \right] + \cdots, \quad (2.22) \]

It follows from (2.20) that in even dimensions,
\[ (1 - u \partial_u) F_{ra}^{(R\pm, d)} \big|_{x^\pm} = \mp \frac{ie}{d(4\pi)^{d/2} \Gamma(\frac{d}{2})} \left( -\partial^2 \frac{d}{2} - 1 \right) \left( d \partial_a \partial^b - (d-1) \delta_a^b \partial^2 \right) \mathcal{O}_b^{(\pm, 1)}(x), \quad (2.23) \]

whereas it follows from (2.22) that in odd dimensions,
\[ (1 - u \partial_u) F_{ra}^{(R\pm, d)} \big|_{x^\pm} = \mp \frac{ie \Gamma(d-1)}{4\pi^{d+1}(-1)^{(d-1)/2}} \left( d \partial_a \partial^b - (d-1) \delta_a^b \partial^2 \right) \int d^d y \frac{\mathcal{O}_b^{(\pm, 1)}(y)}{[x-y]^2^{d-1}}. \quad (2.24) \]

### 2.3 Coulombic Field

Following the approach taken in [10], we know that the Coulombic gauge field \( A^{(C)}_\mu \) has a large \(|r|\) expansion given by
\[ A_r^{(C\pm)} = \sum_{n=0}^{\infty} \frac{A_r^{(C\pm, d-1+n)}}{|r|^{d-1+n}}, \quad A_a^{(C\pm)} = \sum_{n=0}^{\infty} \frac{A_a^{(C\pm, d-2+n)}}{|r|^{d-2+n}}. \quad (2.25) \]
The conserved current that couples to the gauge field also admits a similar expansion:

\[ J_u = \sum_{n=0}^{\infty} \frac{J_u^{(C\pm,d+n)}}{|r|^{d+n}}, \quad J_a = \sum_{n=0}^{\infty} \frac{J_a^{(C\pm,d+n)}}{|r|^{d+n}}, \quad J_r = \sum_{n=0}^{\infty} \frac{J_r^{(C\pm,d+2+n)}}{|r|^{d+2+n}}. \quad (2.26) \]

Substituting these expressions into Maxwell’s equations (2.14), we derive various constraint equations order-by-order in large \(|r|\). In particular, we have

\[ \partial_u A_r^{(C\pm,d-1)} = 0, \quad \partial_a A_a^{(C\pm,d-2)} = 0, \quad (d-2)\partial^a A_a^{(C\pm,d-2)} + \partial^2 A_r^{(C\pm,d-1)} = 0. \quad (2.27) \]

These equations in turn imply

\[ 2\partial^2 A_r^{(C\pm,d)} = e^2 J_u^{(\pm,d)}, \quad \pm 2d\partial_u A_a^{(C\pm,d-1)} = e^2 J_a^{(\pm,d)} - 2\partial_u \partial_a A_a^{(C\pm,d)} \quad (\delta_a^b \partial^2 - \partial_a \partial^b) A_b^{(C\pm,d-2)}. \quad (2.28) \]

The coefficient of \(|r|^{-d}\) in the expansion of \(F_{ra}^{(C\pm)}\) is

\[ F_{ra}^{(C\pm,d)} = \mp (d-1) A_a^{(C\pm,d-1)} - \partial_a A_r^{(C\pm,d)}. \quad (2.29) \]

Acting on both sides with \(\partial_u^2\) and using (2.27), (2.28), we find

\[ \partial_u^2 F_{ra}^{(C\pm,d)} = -\frac{e^2}{2d} \left[ (d-1)\partial_u J_a^{(\pm,d)} + \partial_a J_u^{(\pm,d)} \right]. \quad (2.30) \]

## 3 Ward Identity

### 3.1 Matching Condition

In [19], it was shown that the Ward identity corresponding to the insertion of \(\partial^a \mathcal{O}_a^{(\pm,1)}\) is associated with the antipodal matching condition\(^4\)

\[ (1 - u\partial_u) F_{ur}^{(+,d+1)} \bigg|_{\mathcal{I}^+} = (1 - u\partial_u) F_{ur}^{(-,d+1)} \bigg|_{\mathcal{I}^-}. \quad (3.1) \]

However, we now want to derive a set of \(d\) independent Ward identities involving the insertion of \(\mathcal{O}_a^{(\pm,1)}\), which will ultimately be equivalent to the \(d\) subleading soft photon theorems (one for each polarization of the soft photon). To motivate the appropriate matching condition, we begin by noting that Maxwell’s equations imply

\[ 2F_{ur}^{(\pm,d+1)} = \pm e^2 J_r^{(\pm,d+2)} \pm \partial^a F_{ra}^{(\pm,d)}. \quad (3.2) \]

\(^4\)Coordinate \(x^a\) on \(\mathcal{I}^+\) and \(\mathcal{I}^-\) correspond to antipodal points on the celestial sphere.
It follows that (3.1) is equivalent to matching $\partial^a F_{ra}^{(\pm,d)}$ across spatial infinity, as the current vanishes on the boundaries of null infinity. Since this matching condition gives rise to a Ward identity corresponding to inserting $\partial^a \mathcal{O}_a^{(\pm,1)}$, it is natural to conjecture that in order to obtain $d$ independent Ward identities corresponding to inserting $\mathcal{O}_a^{(\pm,1)}$, we require the matching condition

$$\left. (1 - u\partial_u) F_{ra}^{(\pm,d)} \right|_{\mathcal{I}^\pm} = - \left. (1 - u\partial_u) F_{ra}^{(-,d)} \right|_{\mathcal{I}^+}. \quad (3.3)$$

If we define the charge\footnote{To verify that this is indeed the charge whose Ward identity implies the subleading soft photon theorem, it must generate appropriate divergent large gauge transformations on the in- and out-states. This is verified in the next subsection.}

$$Q_{Y}^{\pm} \equiv \pm \frac{2}{e^2} \int_{\mathcal{I}^\pm} d^d x Y^a(x)(1 - u\partial_u) F_{ra}^{(\pm,d)}, \quad (3.4)$$

where $Y^a(x)$ is a vector field on the transverse space $\mathbb{R}^d$, the matching condition (3.3) immediately implies

$$Q_{Y}^{+} = Q_{Y}, \quad (3.5)$$

so that the charge is classically conserved.

### 3.2 Soft and Hard Charges

In the semiclassical picture, (3.5) implies the following Ward identity for the charge $Q_{Y}$:

$$\langle \text{out} | \left( Q_{Y}^{+} - Q_{Y}^{-} \right) | \text{in} \rangle = 0. \quad (3.6)$$

Analogous to our decomposition of the gauge field $A_\mu$ into a radiative field $A_\mu^{(R)}$ and a Coulombic field $A_\mu^{(C)}$, we may decompose the charge into a soft piece and a hard piece, i.e.

$$Q_{Y}^{\pm} = Q_{Y}^{\pm S} + Q_{Y}^{\pm H}, \quad (3.7)$$

where

$$Q_{Y}^{\pm S} \equiv \pm \frac{2}{e^2} \int_{\mathcal{I}^\pm} d^d x Y^a(x)(1 - u\partial_u) F_{ra}^{(R,\pm,d)}$$

$$Q_{Y}^{\pm H} \equiv \pm \frac{2}{e^2} \int_{\mathcal{I}^\pm} d^d x Y^a(x)(1 - u\partial_u) F_{ra}^{(C,\pm,d)}. \quad (3.8)$$
Thus, the Ward identity becomes
\[ \langle \text{out} \mid (Q_Y^+ - Q_Y^-) \mid \text{in} \rangle = -\langle \text{out} \mid (Q_Y^+ - Q_Y^-) \mid \text{in} \rangle . \] (3.9)

The form of the soft charge depends on the spacetime dimension. Using \((2.23)\), the soft charge in even dimensions is
\[ Q_Y^{\pm S} = \frac{i}{\epsilon(4\pi)^{\frac{d}{2}} \Gamma \left( \frac{d}{2} + 1 \right)} \int d^d y \, Y^a(y)(-\partial^2)^{d-1} \left( d\partial_a \delta^b - (d-1)\delta^b_\partial \partial^2 \right) O_b^{(\pm 1)}(y), \] (3.10)
and using \((2.24)\), the soft charge in odd dimensions is
\[ Q_Y^{\pm S} = \frac{i\Gamma(d-1)}{2d\epsilon\pi^{d+1}(-1)^{d+1}} \int d^d x \, Y^a(x) \int d^d y \frac{(d\partial_a \delta^b - (d-1)\delta^b_\partial \partial^2) O_b^{(\pm 1)}(y)}{[(x-y)^2]^{d-1}}. \] (3.11)

The form of the hard charge, on the other hand, is independent of dimension, and using \((2.30)\) is given by
\[ Q_Y^{\pm H} = \frac{1}{d} \int_{\mathcal{S}_\pm} du \, d^d x \, Y^a(x) \left[ (d-1)J_a^{(\pm d)} - u\partial_a J_a^{(\pm d)} \right], \] (3.12)
where we have assumed that there are no stable massive particles in the system so that the contribution to \(Q_Y\) from \(\mathcal{S}_\pm\) vanishes. We will demonstrate in Section 3.2.1 below that\(^6\)
\[ \langle \omega_i, x_i \mid Q_Y^{\pm H} \rangle = \frac{2i(d-1)Q_i}{\omega_i d} \left[ Y^a(x_i)\partial_{x_i} - \frac{1}{d-1} \partial_a Y^a(x_i)\omega_i \partial_{\omega_i} + i\partial^a Y^b(x_i)S_{i ab} \right] \langle \omega_i, x_i \rangle \]
\[ Q_Y^{\pm H} \mid \omega_i, x_i \rangle = -\frac{2i(d-1)Q_i}{\omega_i d} \left[ Y^a(x_i)\partial_{x_i} - \frac{1}{d-1} \partial_a Y^a(x_i)\omega_i \partial_{\omega_i} + i\partial^a Y^b(x_i)S_{i ab} \right] \langle \omega_i, x_i \rangle . \] (3.13)

In an \(S\)-matrix element, the hard charge acts on multi-particle states as a tensor product of one-particle states. Thus, we can rewrite (3.9) as
\[ \langle \text{out} \mid (Q_Y^+ - Q_Y^-) \mid \text{in} \rangle \]
\[ = -\sum_{i=1}^n \frac{2i(d-1)Q_i}{\omega_i d} \left( Y^a(x_i)\partial_{x_i} - \frac{1}{d-1} \partial_a Y^a(x_i)\omega_i \partial_{\omega_i} + i\partial^a Y^b(x_i)S_{i ab} \right) \langle \text{out} \mid \text{in} \rangle \] (3.14)

3.2.1 Action of Hard Charges

In this sub-subsection, we will prove (3.13). For notational simplicity, we do not distinguish between in- and out-states and drop the superscripts \((\pm)\) on all operators. We will also drop the subscripts on the annihilation operators and simply denote them as \(O(\omega, x)\).

---

6Readers who are mainly interested in the final result should feel free to skip Section 3.2.1.
Begin by defining the light-ray operators (LROs)

\[ Q(x) \equiv \int_{-\infty}^{\infty} du J_u^{(d)}(u, x), \quad \mathbb{J}_a(x) \equiv \int_{-\infty}^{\infty} du \left[ (d-1)J_a^{(d)} - u \partial_u J_a^{(d)} \right]. \quad (3.15) \]

Note that \( Q(x) \) is the LRO appearing in the leading hard charge (see [10]), and \( \mathbb{J}_a(x) \) is the LRO appearing in the subleading hard charge:

\[ Q^H_x = \int d^dx \varepsilon(x) Q(x), \quad Q^H_Y = \frac{1}{d} \int d^dx Y^a(x) \mathbb{J}_a(x). \quad (3.16) \]

Recall that massless one-particle states are created out of the vacuum by creation and annihilation operators. Since the LROs annihilate the vacuum [22], we have

\[ \langle \omega, x | Q(x') \rangle = \langle 0 | [\mathcal{O}(\omega, x), Q(x')] \rangle, \quad \langle \omega, x | \mathbb{J}_a(x') \rangle = \langle 0 | [\mathcal{O}(\omega, x), \mathbb{J}_a(x')] \rangle. \quad (3.17) \]

Our objective now is to determine the following commutators

\[ [\mathcal{O}(\omega, x), Q(x')], \quad [\mathcal{O}(\omega, x), \mathbb{J}_a(x')]. \quad (3.18) \]

We will follow the spirit of the procedure outlined in [23], where the authors determined the commutators of LROs by using only a few basic assumptions. Their argument relied on properties of unitary conformal field theories and crucially required invariance under special conformal transformations. In our case, we are interested in QFTs with an S-matrix; hence, we do not generically have access to scale or special conformal invariance. However, in theories with only massless particles, S-matrices have an effective scale symmetry in the low energy limit. We will utilize this effective scale symmetry (along with Poincaré invariance) to completely fix the commutator between the LROs in (3.15) and the annihilation operators \( \mathcal{O}(\omega, x) \), and is based on the following assumptions:

1. **Microcausality: Spacelike separated LROs commute with each other.**

To utilize this assumption, we note that \( \mathcal{O}(\omega, x) \) is itself a LRO. For instance, the scalar annihilation operator can be constructed out of a scalar field as

\[ \mathcal{O}(\omega, x) = \frac{(2\pi i)^{\frac{d}{2}}}{\omega^{d-1}} \int_{-\infty}^{\infty} du e^{\frac{2\omega u}{d}} \Phi^{(d/2)}(u, x), \quad (3.19) \]

where \( \Phi^{(d/2)}(u, x) = \lim_{r \to \infty} [r^\frac{d}{2} \Phi(u, r, x)] \). This implies that \( \mathcal{O}(\omega, x) \) is a LRO localized on the null-ray \( x \) on \( J^\pm \). This assumption then implies that the commutators (3.18) depend only on the Dirac delta function \( \delta^{(d)}(x - x') \) and its derivatives.
2. Unitarity: All operators transform in representations of the Poincaré and scaling symmetry algebra.

3. Ward Identities: The charge $\hat{Q} = \int d^d x \mathcal{Q}(x)$ generates global $U(1)$ transformations on the operators.

This implies
$$\left[ \mathcal{O}(\omega, x), \hat{Q} \right] = Q \mathcal{O}(\omega, x).$$  \hspace{1cm} (3.20)

4. Minimal Coupling: The commutator of an annihilation operator with a LRO is also an annihilation operator (or derivatives thereof) of the same particle type.

This is required in order to fix the commutators uniquely. As was shown in [24], the subleading soft theorem receives corrections from higher-derivative operators and is therefore not universal. In this paper, we will only focus on the universal part of the subleading soft theorem in minimally coupled theories.\(^7\)

Having outlined our assumptions, we now proceed to prove (3.13). Begin by labeling pertinent operators by their boost charge $J$ (eigenvalue under $D$) and twist $\tau = J - \Delta$ ($\Delta$ is the eigenvalue under the scale charge $S$), which we have for convenience listed in the table below (see Appendix B for details). We will use it to fix the commutators $[\mathcal{O}(\omega, x), \mathcal{Q}(x')]$ and $[\mathcal{O}(\omega, x), J_a(x')]$.

| Quantity | $(J, \tau)$ |
|----------|-------------|
| $\mathcal{Q}$ | $(d, d)$ |
| $J_a$ | $(d, d + 1)$ |
| $\mathcal{O}_\alpha$ | $(0, \frac{d}{2})$ |
| $\partial_a$ | $(1, 1)$ |
| $\omega$ | $(1, 0)$ |

**Table 1.** This table tabulates the boost charges and twists of various relevant operators.

$[\mathcal{O}(\omega, x), \mathcal{Q}(x')]$

The Lorentzian separation between the two operators is $(x - x')^2$. They are therefore spacelike separated as long as $x \neq x'$, which by Assumption 1 implies
$$[\mathcal{O}(\omega, x), \mathcal{Q}(x')] = \delta^{(d)}(x - x') L(\omega, x) + \partial_a \delta^{(d)}(x - x') L^a(\omega, x) + \cdots,$$  \hspace{1cm} (3.21)

\(^7\)The non-universal part of the subleading soft theorem also has an interpretation as a Ward identity [17].
where \( \cdots \) represents terms involving additional derivatives of the delta function. Integrating over the transverse directions \( x' \), we obtain

\[
[O(\omega, x), \dot{Q}] = L(\omega, x). \tag{3.22}
\]

Comparing to (3.20), it follows that \( L(\omega, x) = QO(\omega, x) \).

Next, consider \( L^a(\omega, x) \). Utilizing Table 1, we observe that the twist of the left-hand-side of (3.21) is \( \frac{d}{2} + d \), and the twist of \( \partial_A \delta^{(d)}(x - x') \) is \( d + 1 \). This implies that the twist of \( L^a \) is \( \frac{d}{2} - 1 \). On the other hand, by Assumption 4, \( L^a \) is locally constructed from \( O \) and must therefore have the general form

\[
L^a(\omega, x) = \sum_{n,q=0}^{\infty} \sum_{p=-\infty}^{\infty} c_{p,q}^{a_1 \cdots a_n} \omega^p (\omega \partial_\omega)^q \partial_{a_1} \cdots \partial_{a_n} O(\omega, x). \tag{3.23}
\]

All the operators on the right-hand-side have twist \( \frac{d}{2} + n \). Since \( n \geq 0 \), there are no operators with twist \( \frac{d}{2} - 1 \), thereby implying that \( L^a(\omega, x) = 0 \). Likewise, terms with additional derivatives of the delta function in (3.21) are excluded by the same argument, and so

\[
[O(\omega, x), Q(x')] = Q\delta^{(d)}(x - x')O(\omega, x). \tag{3.24}
\]

\[
[O(\omega, x), J_a(x')] \]

By Assumption 1, the commutator takes the form

\[
[O(\omega, x), J_a(x')] = \delta^{(d)}(x - x') K_a^{(0)}(\omega, x) + \partial^b \delta^{(d)}(x - x') K_{ab}^{(1)}(\omega, x), \tag{3.25}
\]

where we have excluded terms involving higher derivatives on the delta function using the same twist argument as above. By Assumption 4, \( K^{(0)} \) and \( K^{(1)} \) have the general form

\[
K_a^{(0)}(\omega, x) = \sum_{n,q=0}^{\infty} \sum_{p=-\infty}^{\infty} (c_{p,q}^{a_1 \cdots a_n}) (\omega \partial_\omega)^q \partial_{a_1} \cdots \partial_{a_n} O(\omega, x)
\]

\[
K_{ab}^{(1)}(\omega, x) = \sum_{n,q=0}^{\infty} \sum_{p=-\infty}^{\infty} (c_{p,q}^{a_1 \cdots a_n}) (\omega \partial_\omega)^q \partial_{a_1} \cdots \partial_{a_n} O(\omega, x). \tag{3.26}
\]

From (3.25), we can deduce that the twists of \( K^{(0)} \) and \( K^{(1)} \) are \( \frac{d}{2} + 1 \) and \( \frac{d}{2} \), respectively, and Table 1 further implies that the boost charges of \( K^{(0)} \) and \( K^{(1)} \) are 0 and \( -1 \), respectively.

\(^8\)Lorentz invariance forbids explicit factors of \( x^a \).

\(^9\)The assumption of minimal coupling implies that the Poincaré invariant constants \( c_{p,q}^{a_1 \cdots a_n} \) are dimensionless and therefore have vanishing twists.
Matching the twists and boost charges on both sides of (3.26), we find that $p = -1$ for both $K^{(0)}$ and $K^{(1)}$, while $n = 1$ for $K^{(0)}$ and $n = 0$ for $K^{(1)}$. There are no constraints on $q$, so

\[ K^{(0)}_a (\omega, x) = \frac{1}{\omega} R_{ab}(\omega \partial_\omega) \partial^b \mathcal{O}(\omega, x), \quad K^{(1)}_{ab} (\omega, x) = \frac{1}{\omega} B_{ab}(\omega \partial_\omega) \mathcal{O}(\omega, x), \] (3.27)

where

\[ R_{ab}(\omega \partial_\omega) = \sum_{q=0}^{\infty} (c^{(0)}_q)_{ab} (\omega \partial_\omega)^q, \quad B_{ab}(\omega \partial_\omega) = \sum_{q=0}^{\infty} (c^{(1)}_q)_{ab} (\omega \partial_\omega)^q. \] (3.28)

As we shall next show, $R_{ab}$ and $B_{ab}$ can be fixed by checking consistency with the Jacobi identity

\[ [[\mathcal{O}(\omega, x), \mathbb{J}_a(x')], X] = [[\mathcal{O}(\omega, x), \mathbb{J}_a(x')], X] + [[\mathcal{O}(\omega, x), X], \mathbb{J}_a(x')], \] (3.29)

where $X$ is a generator of the Poincaré algebra. In particular, choosing $X$ to be $P_-$, $P_a$, $K_a$, and $M_{ab}$ suffices to fix $R_{ab}$ and $B_{ab}$. Readers interested in detailed derivations of the commutators below should refer to Appendix B.

- **$P_-$**: We note

\[ [\mathcal{O}(\omega, x), P_-] = -\omega \mathcal{O}(\omega, x), \quad [\mathbb{J}_a(x), P_-] = -2i \partial_a Q(x). \] (3.30)

(3.29) then implies

\[ [R_{ab}(\omega \partial_\omega), \omega] = 0, \quad [B_{ab}(\omega \partial_\omega), \omega] + 2iQ \delta_{ab} \omega = 0, \] (3.31)

which means

\[ R_{ab}(\omega \partial_\omega) = R'_{ab}, \quad B_{ab}(\omega \partial_\omega) = -2iQ \delta_{ab} \omega \partial_\omega + B'_{ab}, \] (3.32)

where $R'_{ab}$ and $B'_{ab}$ are operators independent of $\omega \partial_\omega$.

- **$P_a$**: We note

\[ [\mathcal{O}(\omega, x), P_a] = -\omega x_a \mathcal{O}(\omega, x), \quad [\mathbb{J}_a(x), P_b] = -2i x_b \partial_a Q(x) - 2i d \delta_{ab} Q(x). \] (3.33)

Using this, (3.29) and (3.32) imply

\[ R_{ab}(\omega \partial_\omega) = R'_{ab} = 2iQ(d-1) \delta_{ab}. \] (3.34)
\begin{itemize}
  \item \(M_{ab}\): We note
  \[
  \begin{align*}
  [\mathcal{O}(\omega, x), M_{ab}] &= -i(x_a \partial_b - x_b \partial_a)\mathcal{O}(\omega, x) + S_{ab} \mathcal{O}(\omega, x) \\
  [\mathbb{J}_a(x), M_{bc}] &= -i(x_b \partial_c - x_c \partial_b)\mathbb{J}_a(x) - i\delta_{ab}\mathbb{J}_c(x) + i\delta_{ac}\mathbb{J}_b(x).
  \end{align*}
  \tag{3.35}
  \]

  Using this, the Jacobi identity implies
  \[
  [S_{ab}, B'_{cd}] = i \left( \delta_{ac} B'_{bd} + \delta_{bd} B'_{ac} - \delta_{bc} B'_ad - \delta_{ad} B'_bc \right),
  \tag{3.36}
  \]

  which is simply the statement that \(B'_{ab}\) is an \(SO(d)\) covariant matrix.

  \item \(K_a\): We note
  \[
  \begin{align*}
  [\mathcal{O}(\omega, x), K_a] &= i \left( x^2 \partial_a - 2x_a x^b \partial_b + 2x_a \omega \partial_\omega \right) \mathcal{O}(\omega, x) + 2x_b S_{ab} \mathcal{O}(\omega, x) \\
  [\mathbb{J}_a(x), K_b] &= i \left[ x^2 \partial_b - 2x_b (x^c \partial_c + d) \right] \mathbb{J}_a(x) + 2ix_a \mathbb{J}_b(x) - 2i\delta_{ab} \mathbb{J}_c(x).
  \end{align*}
  \tag{3.37}
  \]

  (3.29) along with (3.34) and (3.36) then implies
  \[
  2Q(d - 1)S_{ab} = \delta_{ab} \delta^{cd} B'_{cd} - B'_{ba}.
  \tag{3.38}
  \]

  Symmetrizing and antisymmetrizing the indices \(ab\) on both sides yields
  \[
  B'_{(ab)} = \delta_{ab} \delta^{cd} B'_{cd}, \quad B'_{[ab]} = 2Q(d - 1)S_{ab}.
  \tag{3.39}
  \]

  Tracing (3.38) over \(ab\), we immediately find \(\delta^{ab} B'_{ab} = 0 \implies B'_{(ab)} = 0\). Hence, it follows by (3.32) that
  \[
  B_{ab}(\omega \partial_\omega) = -2iQ \delta_{ab} \omega \partial_\omega + 2Q(d - 1)S_{ab}.
  \tag{3.40}
  \]

  Having determined both \(R_{ab}\) in (3.34) and \(B_{ab}\) in (3.40), we substitute everything back into (3.25) to get
  \[
  \begin{align*}
  [\mathcal{O}(\omega, x), \mathbb{J}_a(x')] &= \frac{2iQ}{\omega} \left[ (d - 1)\delta^{(d)}(x - x') \partial_a - \partial_a \delta^{(d)}(x - x') \omega \partial_\omega \\
  &\quad - i(d - 1)\partial_a \delta^{(d)}(x - x') S_{ab} \right] \mathcal{O}(\omega, x).
  \end{align*}
  \tag{3.41}
  \]

  Substituting this into (3.17) and noting (3.16), we obtain (3.13), as promised.
\end{itemize}
4 Connection to the Subleading Soft Theorem

We begin by recalling the subleading soft photon theorem in its standard momentum coordinates. Let \( A_n(p_1, \ldots, p_n) \) be a scattering amplitude involving \( n \) particles with momenta \( p_1, \ldots, p_n \), and let \( A_{n+1}^{\text{out}}(p_\gamma, \varepsilon_a; p_1, \ldots, p_n) \) be the same amplitude with an additional outgoing photon with momentum \( p_\gamma \) and polarization \( \varepsilon_a \). In a minimally coupled theory, the soft limit \((E_\gamma \to 0)\) of the amplitude has the form

\[
A_{n+1}^{\text{out}}(p_\gamma, \varepsilon_a; p_1, \ldots, p_n) = O\left(\frac{1}{E_\gamma}\right) + S_a^{(1)} A_n(p_1, \ldots, p_n) + O\left(E_\gamma\right),
\]

where the \( \frac{1}{E_\gamma} \) pole is related to the leading soft photon theorem \([25, 26]\), and

\[
S_a^{(1)} = -ie \sum_{i=1}^n Q_i \frac{p_i A^B(p_\gamma)}{p_i \cdot p_\gamma} J_{iAB}
\]

is the subleading soft factor. Here, \( J_{iAB} \) is the angular momentum operator, which is the sum of the orbital and spin angular momenta:

\[
J_{iAB} = L_{iAB} + S_{iAB} = -ie \left( p_{iA} \frac{\partial}{\partial p_{iB}} - p_{iB} \frac{\partial}{\partial p_{iA}} \right) + S_{iAB}.
\]

To write the subleading soft factor in flat null coordinates, we parametrize \( p_{iA} \) and \( p_{\gamma A} \) via \((\omega, x^a)\) as \((\omega_i, x_i^a)\) and \((\omega, x^a)\), respectively. Using \((2.4)\), we have

\[
S_a^{(1)} = e \sum_{i=1}^n \frac{Q_i}{\omega_i} \left[ \partial^b \log [(x - x_i)^2] \left( \delta_{ab} \omega_i \partial_{\omega_i} - iS_{iab} \right) - I_{ab} (x - x_i) \partial_{x_i} b \right],
\]

where

\[
I_{ab}(x) = \frac{x^2}{2} \partial_a \partial_b \log x^2 = \delta_{ab} - \frac{2x_a x_b}{x^2}.
\]

By the LSZ reduction formula, the left-hand-side of (4.1) corresponds to the insertion of the operator \( \mathcal{O}_a^{(+1)}(x) - \mathcal{O}_a^{(-1)}(x) \) in the \( S \)-matrix.\(^{10}\) One can then rewrite the subleading soft photon theorem as

\[
\langle \text{out} | \left( \mathcal{O}_b^{(+,1)}(x) - \mathcal{O}_b^{(-,1)}(x) \right) | \text{in} \rangle = e \sum_{i=1}^n \frac{Q_i}{\omega_i} \left[ \partial^b \log [(x - x_i)^2] \left( \delta_{bc} \omega_i \partial_{\omega_i} - iS_{iec} \right) - I_{bc} (x - x_i) \partial_{x_i} c \right] \langle \text{out} | \text{in} \rangle.
\]

\(^{10}\) See Appendix C of [10] for details.
4.1 Soft Theorem \implies Ward Identity

In this subsection, we want to use the subleading soft photon theorem (4.6) to derive the Ward identity (3.14). For the even dimensional case, we act on both sides of (4.6) with the operator

$$\frac{i}{e(4\pi)^{\frac{d}{2}} \Gamma \left(\frac{d}{2} + 1\right)} \int d^d x \ Y^a(x) \left(-\partial^2\right)^{\frac{d}{2} - 1} \left(d\partial_a \partial^b - (d - 1)\delta_a^b \partial^2\right).$$

Applying (3.10) and using the fact that in even dimensions

$$\left(-\partial^2\right)^{\frac{d}{2}} \log \left[(x - x_i)^2\right] = -(4\pi)^{\frac{d}{2}} \Gamma \left(\frac{d}{2}\right) \delta^{(d)}(x - x_i),$$

we obtain

$$\langle \text{out} | \left(Q_Y^+ - Q_Y^-\right) | \text{in} \rangle = -\sum_{i=1}^n \frac{2i(d - 1)Q_i}{\omega_i d} \left(Y^a(x_i) \partial_{a_i} - \frac{1}{d - 1} \partial_a Y^a(x_i) \omega_i \partial_{\omega_i} + i\partial^a Y^b(x_i) S_{iab}\right) \langle \text{out} | \text{in} \rangle,$$

which is precisely (3.14).

For the odd dimensional case, we act on both sides of (4.6) with the operator

$$\frac{i\Gamma(d - 1)}{2de\pi^{\frac{d+1}{2}}} (-1)^{\frac{d+1}{2}} \int d^d y \ Y^a(y) \int d^d x \frac{d\partial_a \partial^b - (d - 1)\delta_a^b \partial^2}{\left[(x - y)^2\right]^{d-1}}.$$

Applying (3.11) and using the fact that in odd dimensions

$$\int d^d x \ \partial^2 \log \left[(x - x_i)^2\right] = \frac{4(-1)^{\frac{d+1}{2}} \pi^{\frac{d+1}{2}}}{\Gamma(d - 1)} \delta^{(d)}(y - x_i),$$

we again obtain (3.14).

4.2 Ward Identity \implies Soft Theorem

Now, we want to prove the converse, that the Ward identity (3.14) implies the subleading soft theorem (4.6), thereby proving that the two are completely equivalent. First, recall (4.5) and choose \(Y^a(z) = \mathcal{Y}^a(z) \equiv \mathcal{I}^a_b(x - z)\zeta^b\) in (3.14) for a constant \(\zeta\), so that

$$\left[d\partial^a \partial_b - (d - 1)\delta_a^b \partial^2\right] \mathcal{Y}^b(z) = (d - 1)\zeta^a(-\partial^2) \log \left[(x - z)^2\right],$$

we have
where the derivatives are with respect to $z$. Substituting this choice of $Y^a$ into (3.10) and (3.11), and using (4.8) and (4.11), we determine in both even and odd dimensions that the soft charge takes the form

\[ Q_{Y}^{\pm} = \frac{2i}{d e} (d - 1) \zeta^a O_{a}^{(\pm, 1)}(x). \]  

Substituting this into (3.14) with $Y^a(z) = Y^a(z)$ and simplifying yields

\[ \zeta^a \langle \text{out} \mid (O_{+}^{a}(x) - O_{-}^{a}(x)) \mid \text{in} \rangle = e \sum_{i=1}^{n} \frac{Q_i}{\omega_i} \partial^a \log \left[ (x - x_i)^2 \right] \left( \delta_{ac} \omega_{\lambda} \omega_{\mu} - iS_{i ac} \right) - I_{a}^{c}(x - x_i) \partial x_{i}^{c} \langle \text{out} \mid \text{in} \rangle. \]  

Choosing $\zeta^a = \delta^a_b$ yields

\[ \langle \text{out} \mid (O_{+}^{b}(x) - O_{-}^{b}(x)) \mid \text{in} \rangle = e \sum_{i=1}^{n} \frac{Q_i}{\omega_i} \partial^a \log \left[ (x - x_i)^2 \right] \left( \delta_{bc} \omega_{\lambda} \omega_{\mu} - iS_{i bc} \right) - I_{b}^{c}(x - x_i) \partial x_{i}^{c} \langle \text{out} \mid \text{in} \rangle, \]  

which is precisely the subleading soft photon theorem given in (4.6).

5 Electric and Magnetic Large Gauge Transformations

In previous sections, we have established the equivalence between the subleading soft theorem and a Ward identity for the charge

\[ Q_{Y}^{\pm} \equiv \pm \frac{2}{e^2} \int \mathcal{A} d^d x Y^a (1 - u \partial_u) F^{(\pm, d)}_{ra}. \]  

In this section, we will show that this charge generates divergent electric and magnetic large gauge transformations. We begin by using Hodge decomposition to decompose the vector field as

\[ Y^a(x) = \partial^a \lambda(x) + \partial_b K^{ab}(x), \quad K^{ab}(x) = -K^{ba}(x). \]  

We can then write the charge as

\[ Q_{Y}^{\pm} \equiv \frac{2}{e^2} \int \mathcal{A} d^d x \lambda (1 - u \partial_u) \partial^a F^{(\pm, d)}_{ra} + \frac{4}{e^2} \int \mathcal{A} d^d x K^{ab} (1 - u \partial_u) \partial_{[a} F^{(\pm, d)}_{b]r}. \]  

\[ ^{11} \text{In proving this, we have integrated by parts in (3.11) and neglected potential boundary terms. To justify this, we can take } Y^a = \gamma^a \text{ in a region encompassing all the points } x_i \text{ in the amplitude and zero outside, in which case all boundary terms are trivially vanishing.} \]

\[ ^{12} \text{We assume } \lambda \text{ and } K^{ab} \text{ fall off sufficiently quickly in } |x| \text{ so we can integrate by parts and neglect boundary terms.} \]
Using (3.2) and the fact that the current vanishes at \( I^\pm \), we can simplify the first term as
\[
\pm \frac{2}{e^2} \int_{I^\pm} d^d x \lambda (1 - u \partial_u) \partial^a F_{ra}^{(\pm,d)} = -\frac{4}{e^2} \int_{I^\pm} d^d x \lambda (1 - u \partial_u) F_{ur}^{(\pm,d+1)}. \tag{5.4}
\]
This is precisely the charge studied in [19], where it was shown to generate divergent electric large gauge transformations.

To simplify the second term in (5.3), we use the Bianchi identity
\[
\partial_r F_{ab} + 2 \partial_{[a} F_{b]r} = 0 \implies 2 \partial_{[a} F_{b]r} = \pm (d - 1) F_{ab}, \tag{5.5}
\]
which, as we shall now show, generates divergent magnetic large gauge transformations.

In form notation, the charge that generates magnetic gauge transformations on a hypersurface \( \Sigma \) is
\[
\tilde{Q}^\Sigma_K = \frac{1}{2\pi} \int_{\partial\Sigma} \mathcal{K} \wedge F, \tag{5.7}
\]
where \( \mathcal{K} \) is a \((d-2)\)-form. This acts on the dual gauge field via
\[
\tilde{A} \rightarrow \tilde{A} + d\mathcal{K}, \tag{5.8}
\]
where \( d\tilde{A} = \ast dA \). To study this charge with \( \Sigma = I^\pm \), we note
\[
(\mathcal{K} \wedge F)_{a_1 \cdots a_d} = \frac{d(d-1)}{2} \mathcal{K}_{[a_1 \cdots a_{d-2}} F_{a_{d-1} a_d]} = \frac{1}{2} \varepsilon_{a_1 \cdots a_d} (\ast d\mathcal{K})^{ab} F_{ab}, \tag{5.9}
\]
where \( \ast_d \) is the Hodge dual on \( \mathbb{R}^d \). Substituting this into (5.7) with \( \Sigma = I^\pm \) yields
\[
\tilde{Q}^{I^\pm}_K = \pm \frac{1}{4\pi} \int_{I^\pm} d^d x \lim_{r \to \pm \infty} \left[ \frac{|r|^d (\ast_d \mathcal{K})^{ab} F_{ab}}{1 - \frac{8\pi}{r e^2} (d - 1) K^{ab}} \right]. \tag{5.10}
\]
To match the charges, we take
\[
(\ast_d \mathcal{K})^{ab} = -\frac{8\pi}{r e^2} (d - 1) K^{ab}. \tag{5.11}
\]
Recalling that the field strength near \( I^\pm \) admits the expansion
\[
F_{ab}(u,r,x) = F_{ab}^{(\pm,d-2)}(u,x) + F_{ab}^{(\pm,d-1)}(u,x) + \cdots, \tag{5.12}
\]
\[\text{In form notation, the charge that generates electric gauge transformations is } Q^\Sigma_\varepsilon = \frac{1}{e} \int_{\Sigma} \varepsilon \ast F.\]
the charge simplifies to
\[
\tilde{\mathcal{Q}}_{\mathcal{F}}^{\pm} = -\frac{2}{e^2} (d - 1) \int_{\mathcal{F}^\pm} d^d x \, K^{ab} \left( |r| F_{ab}^{(\pm, d-2)} + F_{ab}^{(\pm, d-1)} \right).
\] (5.13)

This charge is formally divergent, and it is in this sense that the symmetry generated by this charge is a divergent magnetic gauge symmetry. However, when this divergent charge is inserted into an $S$-matrix element, the divergent contribution (the terms that are $O(|r|)$, which are shown explicitly above, as well as terms that are $O(u)$, which are implicitly present in $F_{ab}^{(\pm, d-1)}$) vanishes due to the constraint equation
\[
\langle \text{out} \mid \left( \partial_a \mathcal{O}_b^{(\pm, 0)}(x) - \partial_b \mathcal{O}_a^{(\pm, 0)}(x) \right) \mid \text{in} \rangle = 0,
\] (5.14)

thereby giving rise to a finite Ward identity. Comparing (5.13) with (5.6), we see that the finite part of the charge is exactly (5.6), the second term of (5.3). This concludes our demonstration that the asymptotic symmetry dual to the subleading soft photon theorem is a divergent electric and magnetic large gauge symmetry.

**Acknowledgements**

We would like to thank Clay Cordova, Daniel Kapec, Monica Pate, Ana-Maria Raclariu and Shu-Heng Shao for useful conversations. TH is grateful to be supported by U.S. Department of Energy grant DE-SC0009999 and by funds from the University of California. PM gratefully acknowledges support from U.S. Department of Energy grant DE-SC0009988.

**A Asymptotic Expansions**

In this appendix, we list the full large $|r|$ expansion of the radiative gauge field components $A_r$ and $A_a$ near $\mathcal{F}^\pm$. Recall that (2.19) states
\[
A_r^{(R\pm)}(u, r, x) = -\frac{e}{(2\pi)^{\frac{d}{2} + 1}} \sum_{n=0}^{\infty} \int \frac{d^d k}{(2\pi)^d} \left[ \frac{i e^{ik \cdot x}}{(i r)^{\frac{d}{2} + \nu_n}} k^a \mathcal{O}_a^{(\pm, n)}(k) \frac{k^{\nu_n - 1} K_{\nu_n - 1}(kz)}{z^{\nu_n - 1}} + \text{c.c.} \right]
\]
\[
A_a^{(R\pm)}(u, r, x) = -\frac{e}{(2\pi)^{\frac{d}{2} + 1}} \sum_{n=0}^{\infty} \int \frac{d^d k}{(2\pi)^d} \left[ \frac{i e^{ik \cdot x}}{(i r)^{\frac{d}{2} + \nu_n}} \mathcal{O}_a^{(\pm, n)}(k) \frac{k^{\nu_n} K_{\nu_n}(kz)}{z^{\nu_n}} + \text{c.c.} \right],
\] (A.1)

where $K_\nu$ is the modified Bessel function of the second kind, $k \equiv |\vec{k}|$, $z \equiv \frac{\sqrt{|r|}}{\sqrt{u}}$, $\nu_n = \frac{d}{2} - 1 + n$, and $\mathcal{O}_a^{(\pm)}$ are the Fourier coefficients of the annihilation operator $\mathcal{O}_a^{(\pm)}$ (see (2.17) and (2.18)). Because large $|r|$ is equivalent to small $z$, we can perform a large $|r|$ expansion of these
components by utilizing the known expansions about $z = 0$ for the Bessel functions and then performing an inverse Fourier transform. For further details, we refer the reader to [10], where this procedure was introduced and more carefully explained.

In even dimensions $D = d + 2 > 4$, we only need the $z = 0$ expansion of Bessel functions with nonnegative integer orders. Carrying out the procedure outlined above, we obtain

$$A_r^{(R \pm)} = \frac{e}{16\pi^{d+1}} \sum_{n=0}^{\infty} \sum_{s=0}^{\nu_n-2} \frac{(-1)^s \Gamma(n-s-1)(iu)^{s+1-\nu_n}}{2^{d+n} \Gamma(s+1)} \int dx \frac{(-\partial^2)^s \partial^2 O^{(\pm,n)}_a(x)}{(ir)^{d+1+n+s}} \sum_{\nu_n-1}^{\nu_n-1} \frac{(-1)^{\nu_n} \log \frac{x}{\nu_n} + c_{s,n-1}}{
u_n} \int dx \frac{(-\partial^2)^s \partial^2 O^{(\pm,n)}_a(x)}{(ir)^{d+1+n+s}}$$

where $c_{s,n} \equiv \gamma_E - \log 2 - \frac{1}{2}(H_s + H_{s+n})$, $\gamma_E$ the Euler-Mascheroni constant, and $H_n = \sum_{k=1}^{n} \frac{1}{k}$.

For $D = 4$, in addition to needing the $z = 0$ expansion of Bessel functions with nonnegative integer orders, we also need the $z = 0$ expansion of $K_{-1}(kz)$. $A_r^{(R \pm)}$ stays the same as (A.2) with $d = 2$, but the final expression for $A_r^{(R \pm)}$ is

$$A_r^{(R \pm)} = \frac{1}{8\pi^2} \int dx \frac{\partial^2}{(x-y)^2} \frac{O^{(\pm,0)}_a(y)}{\Gamma(n-s+1)} + \frac{1}{4\pi} \sum_{n=0}^{\infty} \frac{(-1)^s \Gamma(n-s+1)(iu)^{s+1}}{\Gamma(s+2)} \int dx \frac{(-\partial^2)^s \partial^2 O^{(\pm,0)}_a(y)}{(x-y)^2}$$

where $c_{s,n} \equiv \gamma_E - \log 2 - \frac{1}{2}(H_s + H_{s+n})$, $\gamma_E$ the Euler-Mascheroni constant, and $H_n = \sum_{k=1}^{n} \frac{1}{k}$.
Finally, in odd dimensions \( D = d + 2 > 4 \), we only need the \( z = 0 \) expansion of Bessel functions with nonnegative half-integer orders. Repeating the above procedure yields

\[
A_{\nu}^{(R \pm)} = -\frac{e}{16\pi^{d/2}} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} \frac{2n^{-2s}(-1)^{\frac{d-1}{2}+n}}{\Gamma(s+1)\Gamma(s-\nu_n+2)} \frac{(iu)^{s-\nu_n+1}}{(ir)^{\frac{d-1}{2}+1+s}} (-\partial^2)^s \partial^\nu a^{(\pm,n)}(x)
\]

\[ -\frac{e}{16\pi^{d+1}} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} \frac{\Gamma(d-2+n+s)}{2^{-n}(-1)^s\Gamma(s+1)} \frac{(iu)^s}{(ir)^{d-1+n+s}} \int d^d y \frac{\partial^\nu a^{(\pm,n)}(y)}{(x-y)^{d-2+n+s}} + c.c.
\]

\[
A_{\alpha}^{(R \pm)} = \frac{e}{8\pi^{d-1}} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} \frac{2n^{-2s}(-1)^{\frac{d-1}{2}+n}}{\Gamma(s+1)\Gamma(1+s-\nu_n)} \frac{i(iu)^{-\nu_n}}{(ir)^{\frac{d-1}{2}+1+s}} (-\partial^2)^s \partial a^{(\pm,n)}(x)
\]

\[ -\frac{e}{8\pi^{d+1}} \sum_{n=0}^{\infty} \sum_{s=0}^{\infty} \frac{\Gamma(d-1+n+s)}{2^{-n}(-1)^s\Gamma(s+1)} \frac{i(iu)^s}{(ir)^{d-2+n+s}} \int d^d y \frac{a^{(\pm,n)}(y)}{(x-y)^{d-1+n+s}} + c.c.
\]

(B.4)

\[\text{B Poincaré and Scale Transformations}\]

In this appendix, we determine the Poincaré and scale transformations of the annihilation operators and the LROs (3.15). The goal is to derive Table 1 and the commutators used when verifying the Jacobi identity (3.29). For simplicity, both subscripts labeling the annihilation operators and superscripts ± labeling the currents and LROs will be kept implicit.

We first derive the necessary commutators involving annihilation operators, which transform as

\[
[\mathcal{O}(p), P_A] = -p_A \mathcal{O}(p)
\]

\[
[\mathcal{O}(p), M_{AB}] = -i \left( p_A \partial^B - p_B \partial^A \right) \mathcal{O}(p) + S_{AB} \mathcal{O}(p)
\]

\[
[\mathcal{O}(p), S] = -i \left( p^A \partial^A + \frac{d}{2} \right) \mathcal{O}(p).
\]

(B.1)

Parametrizing the momenta in flat null coordinates, i.e.

\[
p^A(\omega, x) = \omega P^A(x), \quad \hat{p}^A(x) = \frac{1}{2} \left( 1 + x^2, 2x^a, 1 - x^2 \right),
\]

(B.2)

and recalling that we defined in (2.8)

\[
P_\pm = -P_0 \mp P_{d+1}, \quad T_a = M_{0a} - M_{(d+1)a}, \quad D = M_{(d+1)0}, \quad K_a = M_{0a} + M_{(d+1)a},
\]

we find

\[
[\mathcal{O}(\omega, x), P_-] = -\omega \mathcal{O}(\omega, x), \quad [\mathcal{O}(\omega, x), P_+] = -\omega x^a \mathcal{O}(\omega, x)
\]

\[
[\mathcal{O}(\omega, x), P_a] = -\omega x_a \mathcal{O}(\omega, x), \quad [\mathcal{O}(\omega, x), T_a] = i\partial_a \mathcal{O}(\omega, x)
\]

\[
[\mathcal{O}(\omega, x), M_{ab}] = -i(x_a \partial_b - x_b \partial_a) \mathcal{O}(\omega, x) + S_{ab} \mathcal{O}(\omega, x)
\]

\[
[\mathcal{O}(\omega, x), D] = i(x^a \partial_a - \omega \partial_\omega) \mathcal{O}(\omega, x)
\]

(B.4)

\[
[\mathcal{O}(\omega, x), K_a] = i \left( x^2 \partial_a - 2x_a x^b \partial_b + 2x_a \omega \partial_\omega \right) \mathcal{O}(\omega, x) + 2x^b S_{ab} \mathcal{O}(\omega, x)
\]

\[
[\mathcal{O}(\omega, x), S] = i \left( -\omega \partial_\omega - \frac{d}{2} \right) \mathcal{O}(\omega, x).
\]
Next, we want to determine the Poincaré and scale transformations of the LROs defined in (3.15), which we repeat here for convenience:

\[ Q(x) = \int_{-\infty}^{\infty} du \, J_u^{(d)}(u, x), \quad J_a(x) = \int_{-\infty}^{\infty} du \left[ (d-1)J_a^{(d)} - u\partial_u J_a^{(d)} \right]. \]  

(B.5)

Observing that a conserved current obeys the commutators

\[
\begin{align*}
[J_A(X), P_B] &= i\partial_B J_A(X), \\
[J_A(X), M_{BC}] &= -i (X_B \partial_C - X_C \partial_B) J_A(X) - i\eta_{AB} J_C(X) + i\eta_{AC} J_B(X) \\
[J_A(X), S] &= i \left( X^B \partial_B + d + 1 \right) J_A(X),
\end{align*}
\]

(B.6)

we have in flat null coordinates the \( J_u \) commutators

\[
\begin{align*}
[J_u, P_+] &= -2i\partial_u J_u, \\
[J_u, P_-] &= -2i \left( x^a \partial_u + \partial_r - \frac{1}{r} x^a \partial_a \right) J_u, \\
[J_u, P_a] &= -2i \left( x_a \partial_u - \frac{1}{2r} \partial_a \right) J_u, \\
[J_u, M_{ab}] &= -i(x_a \partial_b - x_b \partial_a) J_u, \\
[J_u, T_a] &= i\partial_a J_u \\
[J_u, D] &= i(x^a \partial_a + u\partial_u - r\partial_r + 1) J_u \\
[J_u, K_a] &= i \left( \left( x^2 + \frac{u}{r} \right) \partial_a - 2x_a \left( x^b \partial_b + u\partial_u - r\partial_r + 1 \right) \right) J_u + \frac{i}{r} J_a \\
[J_u, S] &= i(u\partial_u + r\partial_r + d + 1) J_u,
\end{align*}
\]

and the \( J_a \) commutators

\[
\begin{align*}
[J_a, P_-] &= -2i\partial_a J_a, \\
[J_a, P_+] &= -2i \left( x^b \partial_a + \partial_r - \frac{1}{r} x^b \partial_b + 1 \right) J_a - 4ix_a J_a \\
[J_a, P_b] &= -2i \left( x_b \partial_u - \frac{1}{2r} \partial_b \right) J_a - 2i\delta_{ab} J_a, \\
[J_a, T_b] &= i\partial_b J_a \\
[J_a, M_{bc}] &= -i(x_b \partial_c - x_c \partial_b) J_a - i\delta_{ab} J_c + i\delta_{ac} J_b \\
[J_a, D] &= i \left( x^b \partial_b + u\partial_u - r\partial_r + 1 \right) J_a \\
[J_a, K_b] &= i \left( \left( x^2 + \frac{u}{r} \right) \partial_b - 2x_b \left( x^c \partial_c + u\partial_u - r\partial_r + 1 \right) \right) J_a + 2ix_a J_b - 2i\delta_{ab} (x^c J_c + uJ_u - rJ_r) \\
[J_a, S] &= i(u\partial_u + r\partial_r + d) J_a.
\end{align*}
\]

Extracting the \( 1/|r|^d \) coefficient from \( J_u \) and \( J_r \), and then taking the limit \( r \to \pm \infty \), we obtain

\[
\begin{align*}
[J_u^{(d)}, P_-] &= -2i\partial_u J_u^{(d)}, \\
[J_u^{(d)}, P_+] &= -2i x^a \partial_u J_u^{(d)}, \\
[J_u^{(d)}, P_a] &= -2ix_a \partial_u J_u^{(d)}, \\
[J_u^{(d)}, M_{ab}] &= -i(x_a \partial_b - x_b \partial_a) J_u^{(d)} \\
[J_u^{(d)}, T_a] &= i\partial_a J_u^{(d)} \\
[J_u^{(d)}, D] &= i(x^a \partial_a + u\partial_u + d + 1) J_u^{(d)} \\
[J_u^{(d)}, K_a] &= i \left( x^2 \partial_a - 2x_a \left( x^b \partial_b + u\partial_u + d + 1 \right) \right) J_u^{(d)} \\
[J_u^{(d)}, S] &= i [u\partial_u + 1] J_u^{(d)}.
\end{align*}
\]

(B.9)
Finally, we integrate over $u$ to determine the commutators involving the LROs given in (B.5).

For $Q(x)$, we have

\begin{align}
[J_a^{(d)}, P_-] &= -2i\partial_a Q^{(d)}, \quad \{J_a^{(d)}, P_+\} = -2ix^2\partial_a Q^{(d)} - 4ix_a J_a^{(d)} \\
[J_a^{(d)}, P_b] &= -2ix_b\partial_a Q^{(d)} - 2i\delta_{ab} J_a^{(d)}, \quad \{J_a^{(d)}, T_b\} = i\partial_b J_a^{(d)} \\
[J_a^{(d)}, M_{bc}] &= -i(x_b\partial_c - x_c\partial_b)J_a^{(d)} - i\delta_{ab} J_c^{(d)} + i\delta_{ac} J_b^{(d)} \\
[J_a^{(d)}, D] &= i\left(x^b\partial_b + u\partial_a + d + 1\right) J_a^{(d)} \\
[J_a^{(d)}, K_b] &= i\left(x^2\partial_b - 2x_b(x^c\partial_c + u\partial_a + d + 1)\right) J_a^{(d)} + 2ix_a J_b^{(d)} - 2i\delta_{ab} \left(x^c J_c^{(d)} + u J_a^{(d)}\right) \\
\{J_a^{(d)}, S\} &= iu\partial_a J_a^{(d)}. \tag{B.10}
\end{align}

For $\mathbb{J}_a(x)$, we have

\begin{align}
[J_a(x), P_-] &= -2i\partial_a Q(x), \quad \{J_a(x), P_+\} = -2ix^2\partial_a Q(x) - 4idx_a Q(x) \\
[\mathbb{J}_a(x), P_b] &= -2ix_b\partial_a Q(x) - 2i\delta_{ab} Q(x), \quad \{\mathbb{J}_a(x), T_b\} = i\partial_b \mathbb{J}_a(x) \\
[J_a(x), M_{bc}] &= -i(x_b\partial_c - x_c\partial_b)\mathbb{J}_a(x) - i\delta_{ab} \mathbb{J}_c(x) + i\delta_{ac} \mathbb{J}_b(x) \\
[J_a(x), D] &= i\left(x^b\partial_b + d\right) \mathbb{J}_a(x) \\
[J_a(x), K_b] &= i\left(x^2\partial_b - 2x_b(x^c\partial_c + d)\right) \mathbb{J}_a(x) + 2ix_a \mathbb{J}_b(x) - 2i\delta_{ab} x^c \mathbb{J}_c(x) \\
[\mathbb{J}_a(x), S] &= -i\mathbb{J}_a(x). \tag{B.12}
\end{align}

References

[1] A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,”
\[\text{arXiv:1703.05448 [hep-th].}\]

[2] T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” \textit{JHEP} 05 (2015) 151, \textcolor{red}{\text{arXiv:1401.7026 [hep-th].}}

[3] T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” \textit{JHEP} 10 (2014) 112, \textcolor{red}{\text{arXiv:1407.3789 [hep-th].}}

\[\text{– 24 –}\]
[4] T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills Theory,” *JHEP* **10** (2016) 137, arXiv:1503.02663 [hep-th].

[5] M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon theorem,” *JHEP* **07** (2015) 115, arXiv:1505.05346 [hep-th].

[6] D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,” *Adv. Theor. Math. Phys.* **21** (2017) 1769–1785, arXiv:1506.02906 [hep-th].

[7] T. T. Dumitrescu, T. He, P. Mitra, and A. Strominger, “Infinite-Dimensional Fermionic Symmetry in Supersymmetric Gauge Theories,” arXiv:1511.07429 [hep-th].

[8] D. Kapec, V. Lysov, and A. Strominger, “Asymptotic Symmetries of Massless QED in Even Dimensions,” *Adv. Theor. Math. Phys.* **21** (2017) 1747–1767, arXiv:1412.2763 [hep-th].

[9] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem,” arXiv:1502.07644 [gr-qc].

[10] T. He and P. Mitra, “Asymptotic Symmetries and Weinberg’s Soft Photon Theorem in Minkowski,$d + 2$,” arXiv:1903.02608 [hep-th].

[11] M. Henneaux and C. Troessaert, “The asymptotic structure of electromagnetism in higher spacetime dimensions,” *Phys. Rev.* **D99** no. 12, (2019) 125006, arXiv:1903.04437 [hep-th].

[12] B. U. W. Schwab and A. Volovich, “Subleading Soft Theorem in Arbitrary Dimensions from Scattering Equations,” *Phys. Rev. Lett.* **113** no. 10, (2014) 101601, arXiv:1404.7749 [hep-th].

[13] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity S-matrix,” *JHEP* **08** (2014) 058, arXiv:1406.3312 [hep-th].

[14] V. Lysov, S. Pasterski, and A. Strominger, “Low’s Subleading Soft Theorem as a Symmetry of QED,” *Phys. Rev. Lett.* **113** no. 11, (2014) 111601, arXiv:1407.3814 [hep-th].

[15] M. Campiglia and A. Laddha, “Subleading soft photons and large gauge transformations,” *JHEP* **11** (2016) 012, arXiv:1605.09677 [hep-th].

[16] E. Conde and P. Mao, “Remarks on asymptotic symmetries and the subleading soft photon theorem,” *Phys. Rev.* **D95** no. 2, (2017) 021701, arXiv:1605.09731 [hep-th].

[17] A. Laddha and P. Mitra, “Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories,” *JHEP* **05** (2018) 132, arXiv:1709.03850 [hep-th].

[18] H. Hirai and S. Sugishita, “Conservation Laws from Asymptotic Symmetry and Subleading Charges in QED,” *JHEP* **07** (2018) 122, arXiv:1805.05651 [hep-th].

[19] T. He and P. Mitra, “Asymptotic Symmetries in $(d + 2)$-Dimensional Gauge Theories,” arXiv:1903.03607 [hep-th].
[20] K. Prabhu, “Conservation of asymptotic charges from past to future null infinity: Maxwell fields,” JHEP 10 (2018) 113, arXiv:1808.07863 [gr-qc].

[21] K. Prabhu, “Conservation of asymptotic charges from past to future null infinity: Supermomentum in general relativity,” JHEP 03 (2019) 148, arXiv:1902.08200 [gr-qc].

[22] P. Kravchuk and D. Simmons-Duffin, “Light-ray operators in conformal field theory,” JHEP 11 (2018) 102, arXiv:1805.00098 [hep-th].

[23] C. Cordova and S.-H. Shao, “Light-ray Operators and the BMS Algebra,” Phys. Rev. D98 no. 12, (2018) 125015, arXiv:1810.05706 [hep-th].

[24] H. Elvang, C. R. T. Jones, and S. G. Naculich, “Soft Photon and Graviton Theorems in Effective Field Theory,” Phys. Rev. Lett. 118 no. 23, (2017) 231601, arXiv:1611.07534 [hep-th].

[25] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 2005.

[26] S. Weinberg, “Infrared photons and gravitons,” Phys.Rev. 140 (1965) B516–B524.