Impact assessment of high soil CO$_2$ on plant growth and soil environment: a greenhouse study

Wenmei He1, Gayoung Yoo Corresp.1, Mohammad Moonis1, Youjin Kim1, Xuanlin Chen1

1 Department of Applied Environmental Science, Kyunghee University, Yongin-si, South Korea
Corresponding Author: Gayoung Yoo
Email address: gayoo@khu.ac.kr

To ensure the safety of carbon capture and storage (CCS) technology, insight into the potential impacts of CO$_2$ leakage on the ecosystem is necessary. We conducted a greenhouse experiment to investigate the effects of high soil CO$_2$ on plant growth and the soil environment. Treatments comprised 99.99% CO$_2$ injection (CG), 99.99% N$_2$ injection (NG), and no injection (BG). NG treatment was employed to differentiate the effects of O$_2$ depletion from those of CO$_2$ enrichment. Soil CO$_2$ and O$_2$ concentrations were maintained at an average of 53% and 11%, respectively, under CG treatment. We verified that high soil CO$_2$ had negative effects on root water absorption, chlorophyll, starch content and total biomass. Soil microbial acid phosphatase activity was affected by CG treatment. These negative effects were attributed to high soil CO$_2$ instead of low O$_2$ or low pH. Our results indicate that high soil CO$_2$ affected the root system, which in turn triggered further changes in aboveground plant tissues and rhizospheric soil water conditions. A conceptual diagram of CO$_2$ toxicity to plants and soil is suggested to act as a useful guideline for impact assessment of CCS technology.
IMPACT ASSESSMENT OF HIGH SOIL CO$_2$ ON PLANT GROWTH AND SOIL ENVIRONMENT: A GREENHOUSE STUDY

Wenmei He1, Gayoung Yoo1, Mohammad Moonis1, Youjin Kim1, Xuanlin Chen1

1Department of Applied Environmental Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.

*Corresponding author:
Gayoung Yoo1

1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.

E-mail address: gayoo@khu.ac.kr
ABSTRACT

To ensure the safety of carbon capture and storage (CCS) technology, insight into the potential impacts of CO₂ leakage on the ecosystem is necessary. We conducted a greenhouse experiment to investigate the effects of high soil CO₂ on plant growth and the soil environment. Treatments comprised 99.99% CO₂ injection (CG), 99.99% N₂ injection (NG), and no injection (BG). NG treatment was employed to differentiate the effects of O₂ depletion from those of CO₂ enrichment. Soil CO₂ and O₂ concentrations were maintained at an average of 53% and 11%, respectively, under CG treatment. We verified that high soil CO₂ had negative effects on root water absorption, chlorophyll, starch content and total biomass. Soil microbial acid phosphatase activity was affected by CG treatment. These negative effects were attributed to high soil CO₂ instead of low O₂ or low pH. Our results indicate that high soil CO₂ affected the root system, which in turn triggered further changes in aboveground plant tissues and rhizospheric soil water conditions. A conceptual diagram of CO₂ toxicity to plants and soil is suggested to act as a useful guideline for impact assessment of CCS technology.

INTRODUCTION

Carbon capture and storage (CCS) technology is considered an important strategy for mitigating climate change (IPCC, 2014). To ensure safe and successful CCS projects, the European Union has published guidance documents for its CCS Directive that include general CO₂ leakage scenarios (European Communities, 2011; Pearce et al., 2014). The most relevant CO₂ leakage could occur in storage reservoirs via faults, fractures or boreholes (Pearce et al., 2014; Vrålstad et al., 2018). As CO₂ would likely be transported to storage sites through long pipelines, leakage could also occur via corrosion and connection failures of shallow pipes (European Communities, 2011; Fu & Gundersen, 2012; Pearce et al., 2014). The leaked CO₂ would diffuse from deep soil layers toward the surface. As a result, soil could experience high CO₂ concentrations between 40% and 95% for a period of time (Beaubien et al., 2008; Al-Traboulsi et al., 2012; Lake et al., 2013; Paulley et al., 2013). Surrounding plants and soil microbes could be influenced by high concentration of soil CO₂ and the concomitant low pH and reduced proportions of O₂ and N₂.

Plant responses to a high-CO₂ soil environment have been widely investigated in natural analogues and at artificial CO₂ release sites (Pfanz et al., 2004; Beaubien et al., 2008; Male et al., 2010; Krüger et al., 2011; Patil, 2012; West et al., 2015). Chlorosis and discoloration were observed in natural vegetation after 4 days of CO₂ exposure at the Zero Emission Research and Technology Center in the US (Lakkaraju et al., 2010; Sharma et al., 2014). Plant physiological indicators such as chlorophyll content, photosynthesis rate, stomata conductance and transpiration rate were lower in soils with a high CO₂ concentration (Spangler et al., 2009; Wu et al., 2014). Morphological indicators such as plant height, root length, leaf number, leaf area, seed number and pod number were also reduced after the soil was exposed to high levels of CO₂.
compared with non-gassed controls. Plant biomass also decreased on CO$_2$ gassing (Al-Traboulsi et al., 2012, 2013; Wu et al., 2014).

Although previous studies consistently reported that plants exposed to high soil CO$_2$ showed inhibited growth (Patil, Colls & Steven, 2010; Al-Traboulsi et al., 2013; Zhao et al., 2017), few clearly identified the main driving factor of these negative impacts (Pfanz et al., 2004; Pfanz & Saßmannshausen, 2008; He et al., 2016). Beaubien et al. (2008) and Stephens and Hering (2002) observed that water absorption of plants was lower, but they did not distinguish the effects of high soil CO$_2$ (~100% at 20 cm depth) from those of low O$_2$ or other trace gases such as H$_2$S and CH$_4$. Al-Traboulsi et al. (2012) and Zhang et al. (2016) explained that reduced bean and maize metabolism in CO$_2$ gassing plots might be due to reduced O$_2$ level rather than pH changes induced by high soil CO$_2$ concentration (50–70% at 15-30 cm depth). Lake et al. (2016a) sought to distinguish the effects of elevated CO$_2$ (42.3%) from those of O$_2$ depletion (11.1%) on the growth of wheat and beetroot by employing an N$_2$ gassing treatment. They suggested that high soil CO$_2$ might explain the biomass reduction of beetroots better than O$_2$ deficiency. Similar results were found in earlier studies by Chang and Loomis (1945) and Kramer (1940). In their studies, transpiration and root water absorption of wheat, maize, rice, sunflowers and tomatoes were close to normal under O$_2$-free nitrogen-bubbling treatment, while they were severely affected by 100% CO$_2$ bubbling. Chang and Loomis (1945) also compared the effects of low pH solution and high CO$_2$ exposure on root function and observed that toxic effects were more evident under high CO$_2$ conditions than under acidic solutions. They suggested that CO$_2$ toxicity is a more important factor in plant growth than O$_2$ deficiency. Previous studies have implied that high concentration of soil CO$_2$ itself might be toxic to plant growth in a variety of plant species. However, compared with the intensive studies of CO$_2$ effects on plants in hydroponic system, the assumption of CO$_2$ toxicity on plant growth under high soil CO$_2$ condition has not been sufficiently proved.

To identify the main factor in soil CO$_2$ enrichment that influences plant growth and soil, we conducted a greenhouse experiment using a specially designed pot in which soil CO$_2$ was enriched without a buildup of ambient atmospheric CO$_2$. We separated the effects of high soil CO$_2$ and those of low soil O$_2$ by employing an N$_2$ gassing treatment. The pot was large enough to grow woody plants, and the injection time covered the main growing period. The objective of this study was to investigate the effects of high soil CO$_2$ on plant physiological reactions and their interactions with the soil environment. A conceptual diagram of the effects of CO$_2$ toxicity on plant metabolism is proposed for further insight into the impacts of high soil CO$_2$.

MATERIALS & METHODS

Soil and plant preparation

Soils used for incubation included commercial potting soil (Korea Association of Seedbed...
Media, South Korea) and mineral soil procured from a construction company (Seung Hwa
Construction, South Korea). Basic soil physicochemical properties and components are
summarized in Table 1. Soil pH was measured using a 1:5 dilution method (Thomas, 1996).
Total carbon (TC) and total nitrogen (TN) contents were analyzed using combustion analysis
with a Carlo Erba NS 1500 C/N analyzer (Carlo Erba, Milan, Italy). A two-year-old crimson
glory vine (Vitis coignetiae) was selected for this experiment and bought locally (West Suwon
Agricultural Products Inc., South Korea). This plant grows well in neutral to alkaline soils and is
native to East Asian countries such as Japan and South Korea.

Experimental design

Gas treatments were applied in a greenhouse on the campus of Kyung Hee University (Yongin-
si, South Korea) for 32 days from August 20 to September 23, 2015. Mean temperature was 28
±4 °C during the day and 18 ±5 °C at night. An acrylic container including three pots (30 × 20 ×
20 cm; height × length × width) and an empty chamber (20 × 20 × 60 cm; height × length ×
width) were specially designed (Fig. 1a). At the bottom of each pot, nine drainage holes were
covered with mesh for optimal gas diffusion. An empty chamber was connected to a gas tank
through a valve. Each pot was filled with 7 kg of mineral soil up to 15 cm from the bottom, and
then another 15 cm of potting soil was added. Grape saplings were transplanted on July 15 and
adjusted to a new environment for 36 days until August 20. Soil water content in all treatments
was adjusted to 20-30% (v/v) and maintained by manual watering every 4 days. In the CG
treatment, 99.99% CO\textsubscript{2} gas was supplied at a rate of 400 mL/min. The NG treatment was set up
using 99.99% N\textsubscript{2} gas at the same injection rate to investigate the effects of O\textsubscript{2} depletion without
CO\textsubscript{2} enrichment. The BG treatment was prepared as a control with no injection. Three silicon
tubes (2 mm in diameter) with one end connected to a copper fitting covered with mesh (100 μm)
were buried in the soil at depths of 5, 10 and 20 cm to measure the CO\textsubscript{2} and O\textsubscript{2} concentrations.
Although the pot was not large enough to permit lateral heterogeneity of the gases, the tubes at
each depth in the replicated pots were located randomly to ensure measurements were
representative. Nine replicates were set up for each treatment. The greenhouse remained open
and two fans were used to prevent ambient CO\textsubscript{2} accumulation (Fig. 1b).

Soil measurements

Daily measurements of soil CO\textsubscript{2} and O\textsubscript{2} (% of total 100% by volume) at three depths (5, 10, and
20 cm) were performed using a portable gas detector (COMBI-R, Status Scientific Controls Ltd.,
Mansfield, Nottinghamshire, UK). The detection range of CO\textsubscript{2} was from 0 to 100% with an
accuracy of ±1% and that of O\textsubscript{2} was from 0 to 25% with an accuracy of ±0.1%. Soil pH and
temperature were measured directly using a pH meter (Field Scout pH 600, Spectrum
Technologies, Inc. Plainfield, Illinois, USA). Soil volumetric water content was measured using
a moisture sensor (GS1, Decagon Devices, Inc., Washington D.C., USA) at 5 cm depth. Plant
root water absorption activity (RWAA) was measured indirectly by monitoring changes in soil
water content in each pot. Soil with active root metabolism tends to lose more water when soil
water change occurs only through plant transpiration (Stephens & Hering, 2002). We assumed an equal amount of water drainage from pots and surface soil evaporation among the different treatment pots (Allen et al., 1998). Hence, we defined RWAA as the daily amount of water loss during the no watering period. A larger RWAA indicated greater root activity.

Samples (200g) of potting and mineral soils were removed from each pot at the end of the injection period and stored at 4ºC before analysis. Enzyme analysis was conducted within one week of sampling. Five enzyme activities were determined by fluorometric assays using methylumbelliferone linked substrates, including acid phosphatase (AP), cellobiohydrolase (BC), 1,4-β-glucosidase (BGC), xylosidase (BX) and 1,4-β-N-acetyl glucosaminidase (NAG), which are enzymes that mediate key functions during microbial degradation of soil litter (Chung et al., 2011). AP cleaves phosphoester bonds; BC and BGC decompose cellulose; BX breaks down hemicellulose and NAG degrades chitin (Saiya-Cork, Sinsabaugh & Zak, 2002). The TC and TN contents of air-dried soils were analyzed with a Carlo Erba NS 1500 C/N analyzer (Carlo Erba, Milan, Italy). The hot water extractable carbon (HWC) of the potting and mineral soils, which is a proxy for the amount of labile carbon, was determined following the method described in Nelissen et al. (2012).

Plant measurements

Photographs were produced every week to record visible changes in plants, and chlorophyll a content was measured to monitor physiological changes. To measure chlorophyll a, leaves were sampled twice a week from August 20 to September 3 and once a week from September 4 to September 23. The leaves were homogenized by grinding with a mortar and pestle and chlorophyll a was extracted using 90% acetone overnight at 4 ºC in the dark. A UV/Vis spectrophotometer (Optizen POP, Mecasys Co., Ltd, Daejeon, Korea) was used to measure chlorophyll a concentration (Arnon, 1949).

When the CO₂ injection period was completed, the plant was carefully dug out and separated into roots and shoots (leaves and stems). Root samples were washed with water and dried at 60 ºC for 3 days to obtain dry weights. The fresh weight of the shoots was recorded, and a subsample of fresh shoots was dried to determine water content. To monitor movement and distribution of nutrients, TC, TN and total phosphorus (TP) contents of the plants were measured. The TC and TN contents of the roots and leaves were subjected to combustion analysis with a Carlo Erba NS 1500 C/N analyzer. TP content of leaves was measured using a modified molybdenum blue technique (Murphy & Riley, 1962). The starch content of plant roots was measured using a starch assay kit (K-TSTA, Megazyme International Ireland Co. Ltd., Wicklow, Ireland) as a stress indicator that decreases when plants are under stress (Lake et al., 2012).

Statistical analysis

Analysis of variance was performed using the MIXED procedure in SAS 9.1 (SAS Institute Inc., Cary, NC, USA) and included concentrations of soil CO₂ and O₂, pH, chlorophyll a content, and
RWAA, while an additional GLM procedure was used to analyze plant parameters (biomass, starch, TC, TN, TP and water content) and soil parameters (TC, TN, HWC contents and enzyme activities). Least square means were used to test for significant differences among treatments at a 5% probability level.

RESULTS

Soil gases and pH

Soil CO₂ concentrations were significantly higher in the CG treatment than in the NG and BG treatments (Fig. 2, Tables 2 and 3). Due to gas exchange with the atmosphere, we observed a CO₂ gradient at depths in the CG treatment (Fig. 2a and Table 2). The gas concentrations from locations of nine replicates had small deviations at each depth (Fig. 2), indicating that lateral heterogeneity of gases could be ignored in our small pots. Constant CO₂ concentrations were maintained throughout the injection period indicating that our incubation system was sufficiently stable to investigate the effects of high soil CO₂ on plant growth. In the BG and NG treatments, soil CO₂ concentrations were lower than 1%, which is below the detection threshold (Table 2). These concentrations were comparable with those of field studies that reported < 1% CO₂ in the non-injection plots (0.7-0.9%) measured by high-accuracy gas analyzers (GA5000 and Vaisala 221 GMT probe) (Sharma et al., 2014; Lake et al., 2016a). Soil O₂ concentrations in the BG treatment were similar at all depths and the same as that at the ambient condition (Table 2). In the NG and CG treatments, soil N₂ and CO₂ injections significantly reduced O₂ concentrations, which were maintained at 7.4-14.3% throughout the injection period (Figs. 2b-c and Table 2). Soil CO₂ and O₂ concentrations were negatively correlated in the CG treatment (Fig. 2d). Soil pH was slightly increased at the end of the injection period compared with the initial pH (Tables 1 and 2), and the CG treatment significantly reduced soil pH compared with pH in the BG and NG treatments (Table 2).

Plant parameters during injection

Temporal changes in leaf color and vitality varied by treatment (Fig. 3). In the BG treatment, plant leaves remained healthy and green until the end of the experiment (Fig. 3a). In the NG treatment, plant leaves appeared healthy until September 8 (Fig. 3b); after that, a few leaves at the bottom of the plant turned yellow. In the CG treatment, plant leaves appeared healthy until September 8 and then turned yellow and red. At the end of experiment, the leaves in the CG treatments appeared very dry and showed low vitality (Fig. 3c).

In all treatments, chlorophyll a content increased quickly until August 25 and decreased slowly thereafter, following the seasonal night temperature drop in all the treatments (Table 3 and Fig. 4a). Treatment effects varied by date and became apparent after the one-week injection. On
August 28, September 8, and September 16, the chlorophyll \(a \) content of leaves in the CG treatment was significantly lower than that in the BG treatment. However, chlorophyll \(a \) in the NG was not significantly lower than in the BG on any date of measurement.

An overall decreasing pattern in RWAA was observed in all the treatments (Table 3 and Fig. 4b). This could be due to seasonal temperature drop, which leads to slower plant metabolism. Treatment effects became apparent from August 24, when RWAA in the CG treatment was significantly lower than in the BG and NG treatments. This effect continued until the end of the experiment. RWAA was not significantly different between the NG and BG treatments. The effects of high soil CO\(_2\) on RWAA were observed 4 days earlier than those on chlorophyll \(a \) content.

Plant parameters after harvest

After injection, shoot and root biomass were reduced by 19.2% and 59.2%, respectively, in the CG treatment compared with the BG treatment (Table 4). Shoot and root biomass, however, were not changed in the NG compared to the BG. Water content of the shoots (leaves and stems) and starch content of the roots were also significantly lower in the CG treatment, but they were not significantly different between BG and NG treatments. TC content in leaves and roots was similar between BG and CG treatments. TN content was higher in leaves and roots in the CG treatment compared with the BG and NG treatments. The TP content of leaves was lower in the NG and CG treatments than in the BG treatment (Table 4).

Soil parameters after experiments had finished

Soil TC and TN contents did not vary among treatments, while HWC contents in mineral soil were lower in CG than in the BG (Table 5). On the other hand, enzyme activities in potting soil were different among treatments. The activity of AP was lower in the CG and NG than in the BG, while activities of NAG and BX were higher in the NG than in the BG and CG (Table 5). In mineral soils, enzyme activities were too low to be detected.

DISCUSSION

The results clearly indicated that injected gases migrated upwards through all the gassed pots. A clear depth gradient of soil CO\(_2\) was observed in these pots, while lateral heterogeneity in CO\(_2\) was negligible (Fig. 2). High soil CO\(_2\) concentration lowered soil O\(_2\) and pH, consistent with the previous results. The negative relationship between soil CO\(_2\) and O\(_2\) concentrations in the CG could be due to O\(_2\) displacement by injected CO\(_2\) (Patil, 2012; Lake et al., 2016a). The steeper slope in the linear negative relationship between CO\(_2\) and O\(_2\) at 5 cm depth than those at 10 cm
and 20 cm (Fig. 2d) implied that, in the shallow surface layer, diffused CO$_2$ gas was mixed with atmospheric air (Fig. 2a). These vertical gradients in soil CO$_2$ concentration were also observed in other greenhouse and field studies (Krüger et al., 2011; Wu et al., 2014; West et al., 2015; Kim et al., 2018). In addition, our range of CO$_2$ concentrations of 41.3-65.3% at 5-20 cm depths (Table 2) was comparable to the levels in previous studies (Beaubien et al., 2008; Al-Traboulsi et al., 2012; Lake et al., 2013, 2016a), and this the possible level of CO$_2$ concentration at which CO$_2$ from the CCS site would leak and be transported via faults or failure.

The reductions in chlorophyll a content, RWAA and total biomass seen with CG treatment and not in the NG treatment indicate that plants were influenced by high soil CO$_2$ but not by low O$_2$ concentration. Although CO$_2$-induced reduction in soil pH in the CG treatment could affect plants, we put little emphasis on the effect of lowered pH. In this experiment, soil pH in the CG treatment (7.0) was lower than in BG and NG (pH=7.4 on average) (Table 2), but the difference was only 0.4, which is within the optimal range for grape growth. The possible reason for such a slight change in soil pH despite CO$_2$ gassing, which could lead to formation of weak acid (H_2CO_3) and release of H$^+$ (Wei, Maroto-Valer & Steven, 2011; Moonis et al., 2017; Zhao et al., 2017), could be the high buffering capacity of the potting soil and plants’ indirect effects. Our results were consistent with those of Lake et al. (2013), who reported that beetroots were not significantly affected by N$_2$ gas treatment at O$_2$ concentration of 8.7%. Even in an O$_2$-free hydroponic solution, Boru et al. (2003) and Chang and Loomis (1945) did not observe inhibited root growth or function, implying that plants could be resistant to low O$_2$ condition (Geigenberger, 2003). Nikolopoulou et al. (2012) reported clear results that grass (Cynodon dactylon) root length and biomass were greatly reduced (> 50%) under treatment with 40% CO$_2$ combined with 20% O$_2$, and a similar reduction was observed under treatment with 40% CO$_2$ combined with 10% or 2.5% O$_2$. We therefore suggest that high soil CO$_2$ concentration has negative effects on overall plant metabolism.

We observed the effects of high soil CO$_2$ concentration on plants with regard to root function. The reduction in RWAA in the CG treatment was apparent on August 24, 4 days after the start of injection (Fig. 4b). On August 28th, lower chlorophyll a content was first observed in the CG treatment (Fig. 4a). Leaf color change became apparent as late as September 8 (Fig. 3c). The series of changes in the CG treatment imply that high soil CO$_2$ concentration affected the root system first, which triggered other aboveground changes in the plant. Color changes in the leaves are related to changes in nutrient transport (Chang & Loomis, 1945; Cook, Ward & Wicks, 1983; Boru et al., 2003; Geigenberger, 2003). In our study, the TN content of the roots was higher in the CG than in the BG treatment, while there were similar TN and lower TP contents in the CG plant leaves compared with the BG leaves (Table 4). These results indicated that nitrogen transport from the roots to the leaves was inhibited by high soil CO$_2$ concentration.

CO$_2$ injection also induced changes in soil HWC content and microbial enzyme activities. Reduced HWC in mineral soil of the CG treatment could be related to the high soil CO$_2$ concentration (Table 5). Moonis et al. (2017) reported that soil CO$_2$ injection increased
exchangeable Al$^{3+}$ of mineral soil, which would be strong bound with dissolved C molecules. The resulting Al$^{3+}$-C complexes could be absorbed on the soil surface, producing reduced water-extractable C. Reduced soil microbial enzyme activity of AP in the CG and NG (Table 5), which is involved in cleaving phosphoester bonds, could be related to the decreased TP contents of the leaves in those treatments (Table 4). The increased enzyme activities of NAG and BX in the NG treatment (Table 5), which are involved in decomposition of hemicellulose and chitin, respectively, might be related to lower soil O$_2$ concentration. In a low O$_2$ environment, the activity of N$_2$-fixation organisms could be enhanced, resulting in increased soil-available N. This change could be beneficial to microbial decomposition processes that are usually limited by the low N content of residues in soil (Rice & Paul, 1972; Halsall & Gibson, 1985; Chen et al., 2011).

A mechanism for CO$_2$ toxicity to plant root tissue was suggested by earlier studies (Chang & Loomis, 1945; Bown, 1985). High soil CO$_2$ concentrations could dramatically change the pH level of root tissues, which could undermine membrane function and osmoregulation of root cells. Damaged root cells would not absorb water sufficiently, and plant stomata would close to prevent water loss (Davies, Kudoyarova & Hartung, 2005). Similarly, Lake et al. (2016b) suggested a signaling mechanism from the root to the leaf: when plant roots suffer CO$_2$ stress, they produce hormones such as abscisic acid and send this signal to the leaves to close stomata. As a compensatory mechanism, the plant hydrolyzes starch in the roots and stems into soluble sugars and changes the osmotic potential to increase water absorption (Yang et al., 2001; Mohammadkhani & Heidari, 2008; Naser et al., 2010). In our study, the reduced starch content of roots in the CG treatment (Table 4) could be associated with this compensation response to high soil CO$_2$ stress (Nikolopoulou et al., 2012). Based on our observations and extensive literature review, we propose a conceptual diagram of plant response to high soil CO$_2$ concentration (Fig. 5). The effects of high soil CO$_2$ on plants start from the root cells where intercellular pH is reduced, leading to activation of signaling to the leaf to close the stomata. Due to stomata closure, water and nutrients are not transported from the soil to the leaves, resulting in low photosynthesis. Although plants try to compensate for lower photosynthates by solubilizing starch, they eventually consume stored resources, lose vitally and die.

CONCLUSION

Plants can be a useful tool for assessing the potential risk of CO$_2$ leakage from CCS sites. We verified that high soil CO$_2$ (41.3-65.0%) had negative effects on overall plant metabolism. These negative effects were attributed to high soil CO$_2$ concentration and not to low soil O$_2$ concentration or to reduced soil pH. Negative effects on root water absorption were observed after CO$_2$ injection, and the effects extended to aboveground plant tissues, leading to decreased chlorophyll content and chlorosis.
Results from our study suggest two sensitive indicators for CO$_2$ leakage in ecosystem. The first indicator is chlorophyll content which showed a reduction 8 days after CO$_2$ injection. Another sensitive indicator was RWAA, which showed reduction 4 days earlier than chlorophyll content. However, as RWAA is difficult to measure in the field, soil water content could be used as an indirect parameter for detecting CO$_2$ leak. The inherent heterogeneity of soil water content in space and time could be overcome by establishing long-term baseline data in a given site. Suggested indicators could be utilized to develop a guideline for environmental management of CCS and the surrounding environment. Further research should focus on the responses of different plant species to high soil CO$_2$ and the interactions between plants and soil.

ACKNOWLEDGEMENTS

We would like to acknowledge Konkuk University for its supports of analysis of enzyme activities in this study. We would also like to thank all participants for their full cooperation during the experimental period.

REFERENCES

Al-Traboulsi M., Sjögersten S., Colls J., Steven M., Black C. 2012. Potential impact of CO$_2$ leakage from carbon capture and storage systems on field bean (Vicia faba). *Physiologia plantarum* 146:261–71. DOI: 10.1111/j.1399-3054.2012.01620.x.

Al-Traboulsi M., Sjögersten S., Colls J., Steven M., Black C. 2013. Potential impact of CO$_2$ leakage from Carbon Capture and Storage (CCS) systems on growth and yield in maize. *Plant and Soil* 365:267–281. DOI: 10.1007/s11104-012-1390-5.

Allen RG., Pereira LS., Raes D., Smith M. 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. In: *FAO Irrigation and drainage paper 56*. Rome: FAO, 300.

Arnon DI. 1949. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. *Plant physiology* 24:1–15. DOI: 10.1104/pp.24.1.1.

Beaubien SE., Ciotoli G., Coombs P., Dictor MC., Krüger M., Lombardi S., Pearce JM., West JM. 2008. The impact of a naturally occurring CO$_2$ gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy). *International Journal of Greenhouse Gas Control* 2:373–387. DOI: 10.1016/j.ijggc.2008.03.005.

Boru G., Vantoai T., Alves J., Hua D., Knee M. 2003. Responses of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. *Annals of Botany* 91:447–453. DOI: 10.1093/aob/mcg040.

Bown AW. 1985. CO$_2$ and intracellular pH. *Plant, Cell and Environment* 8:459–465. DOI: 10.1111/j.1365-3040.1985.tb01681.x.
Chang HT., Loomis WE. 1945. Effect of carbon dioxide on absorption of water and nutrients by roots. *Plant physiology* 20:221–32.

Chen L., Marti M de H., Moore A., Falen C. 2011. The Composting Process. *Dairy manure compost production and use in Idaho* 2:513–532. DOI: 10.1002/9780470666883.ch34.

Chung H., Son Y., Yoon TK., Kim S., Kim W. 2011. The effect of multi-walled carbon nanotubes on soil microbial activity. *Ecotoxicology and Environmental Safety* 74:569–575. DOI: 10.1016/j.ecoenv.2011.01.004.

Cook JA., Ward WR., Wicks AS. 1983. Phosphorus deficiency in California vineyards. *California agriculture*:16–18.

Davies WJ., Kudoyarova G., Hartung W. 2005. Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. *Journal of Plant Growth Regulation* 24:285–295. DOI: 10.1007/s00344-005-0103-1.

European Communities. 2011. *Implementation of directive 2009/31/EC on the geological storage of carbon dioxide Guidance document 2, characterisation of the storage complex, CO2 stream composition, monitoring and corrective measures*. Elsevier. DOI: 10.1016/j.egypro.2013.06.240.

Fu C., Gundersen T. 2012. Carbon Capture and Storage in the Power Industry: Challenges and Opportunities. *Energy Procedia* 16:1806–1812. DOI: 10.1016/j.egypro.2012.01.278.

Geigenberger P. 2003. Response of plant metabolism to too little oxygen. *Current Opinion in Plant Biology* 6:247–256. DOI: 10.1016/S1369-5266(03)00038-4.

Halsall DM., Gibson AH. 1985. Cellulose Decomposition and Associated Nitrogen Fixation by Mixed Cultures of Cellulomonas gelida and Azospirillum Species or Bacillus macerans. *Applied and Environmental Microbiology* 50:1021–1026.

He W., Moonis M., Chung H., Yoo G. 2016. Effects of high soil CO2 concentrations on seed germination and soil microbial activities. *International Journal of Greenhouse Gas Control*. DOI: 10.1016/j.ijggc.2016.07.023.

IPCC. 2014. *Intergovernmental Panel on Climate Change (2014)*. In: Pachauri RK, Meyer LA eds. Cambridge, UK.: Cambridge University Press, 1–151.

Kim HJ., Han SH., Kim S., Yun ST., Jun SC., Oh YY., Son Y. 2018. Characterizing the spatial distribution of CO2 leakage from the shallow CO2 release experiment in South Korea. *International Journal of Greenhouse Gas Control* 72:152–162. DOI: 10.1016/j.ijggc.2018.03.015.

Kramer PJ. 1940. Causes of Decreased Absorption of Water by Plants in Poorly Aerated Media. *American Journal of Botany* 27:216. DOI: 10.2307/2436882.

Krüger M., Jones D., Frerichs J., Oppermann BI., West J., Coombs P., Green K., Barlow T., Lister R., Shaw R., Strutt M., Möller I. 2011. Effects of elevated CO2 concentrations on the vegetation and microbial populations at a terrestrial CO2 vent at Laacher See, Germany. *International Journal of Greenhouse Gas Control* 5:1093–1098. DOI:
Lake J., Smith K., Steven M., Lomax B. 2013. COOLTRANS - Environmental impacts of CO₂ leakage into the soil environment. In: Proceedings of the 4th International Forum on the Transportation of CO₂ by Pipeline. Gateshead, UK.

Lake J., Steven M., Smith K., Lomax B. 2012. Environmental impact of a hypothetical catastrophic leakage of CO₂ onto the ground surface. Journal of Pipeline Engineering 11:239–248.

Lake J., Steven M., Smith K., Lomax B. 2016a. Plant responses to elevated CO₂ levels in soils: Distinct CO₂ and O₂-depletion effects. International Journal of Greenhouse Gas Control. DOI: 10.1016/j.ijggc.2016.07.042.

Lake J., Walker HJ., Cameron DD., Lomax BH. 2016b. A novel root-to-shoot stomatal response to very high CO₂ levels in the soil: Electrical, hydraulic and biochemical signalling. Physiologia Plantarum 159:433–444. DOI: 10.1111/ppl.12525.

Lakkaraju VR., Zhou X., Apple ME., Cunningham A., Dobeck LM., Gullickson K., Spangler LH. 2010. Studying the vegetation response to simulated leakage of sequestered CO₂ using spectral vegetation indices. Ecological Informatics 5:379–389. DOI: 10.1016/j.ecoinf.2010.05.002.

Male EJ., Pickles WL., Silver E a., Hoffmann GD., Lewicki J., Apple M., Repasky K., Burton E a. 2010. Using hyperspectral plant signatures for CO₂ leak detection during the 2008 ZERT CO₂ sequestration field experiment in Bozeman, Montana. Environmental Earth Sciences 60:251–261. DOI: 10.1007/s12665-009-0372-2.

Mohammadkhani N., Heidari R. 2008. Drought-induced Accumulation of Soluble Sugars and Proline in Two Maize Varieties. World Applied Sciences Journal 3:448–453.

Moonis M., He W., Kim Y., Yoo G. 2017. Effect of potential CO₂ leakage from carbon capture and storage sites on soil and leachate chemistry. KSCE Journal of Civil Engineering 21:1640–1647. DOI: 10.1007/s12205-016-1867-5.

Murphy j., Riley JP. 1962. a Single Solution Method for the Determination of Phosphate in in Natural Waters. analytica chimica acta 27:31–36. DOI: 10.1016/S0003-2670(00)88444-5.

Naser L., Kourosh V., Bahman K., Reza A. 2010. Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination. Fruits 65:97–112. DOI: 10.1051/fruits:20010005.

Nelissen V., Rütting T., Huygens D., Staelens J., Ruysschaert G., Boeckx P. 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry 55:20–27. DOI: 10.1016/j.soilbio.2012.05.019.

Nikolopoulou AE., Nektarios PA., Aivalakos G., Volterrani M., Chronopoulos I. 2012. Effects of rootzone CO₂ and O₂ levels on seed germination and stolon growth of Cynodon dactylon. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science 62:53–61. DOI: 10.1080/09064710.2012.681058.

Patil RH. 2012. Impacts of carbon dioxide gas leaks from geological storage sites on soil ecology and above ground vegetation. In: Mahamane A ed. Diversity of Ecosystems. Rijeka, Croatia:
Patil R., Colls J., Steven M. 2010. Effects of CO$_2$ gas as leaks from geological storage sites on agro-ecosystems. *Energy* 35:4587–4591. DOI: 10.1016/j.energy.2010.01.023.

Paulley A., Metcalfe R., Egan M., Maul P., Limer L., Grimstad A., RISCS Project Team T. 2013. Hypothetical Impact Scenarios for CO$_2$ Leakage from Storage Sites. *Energy Procedia* 37:3495–3502. DOI: 10.1016/j.egypro.2013.06.240.

Pearce J., Jones D., Blackford J., Beaubien S., Foekema E., Gemeni V., Kirk K., Lions J., Metcalfe R., Moni C., Smith K., Stevens M., West J., Ziogou F. 2014. A guide for assessing the potential impacts on ecosystems of leakage from CO$_2$ storage sites. *Energy Procedia* 63:3242–3252. DOI: 10.1016/j.egypro.2014.11.351.

Pfanz H., Saßmannshausen F. 2008. Geogenic CO$_2$-Exhalations and Vegetation: Its possible use to predict volcanic eruptions. 10.

Pfanz H., Vodnik D., Wittmann C., Aschan G., Raschi A. 2004. Plants and Geothermal CO$_2$ Exhalations — Survival in and Adaptation to a High CO$_2$ Environment. In: Esser K, Lüttge U, Beyschlag W eds. *Progress in Botany*. Springer Science & Business Media, 628.

Rice WA., Paul EA. 1972. The organisms and biological processes involved in asymbiotic nitrogen fixation in waterlogged soil amended with straw. *Canadian Journal of Microbiology* 18:715–723. DOI: 10.1139/m72-114.

Saiya-Cork K., Sinsabaugh R., Zak D. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. *Soil Biology and Biochemistry* 34:1309–1315. DOI: 10.1016/S0038-0717(02)00074-3.

Spangler LH. 2014. Physiological responses of dandelion and orchard grass leaves to experimentally released upwelling soil CO$_2$. *International Journal of Greenhouse Gas Control* 24:139–148. DOI: 10.1016/j.ijggc.2014.03.006.

Spangler LH., Dobek LM., Repasky KS., Nehrir AR., Humphries SD., Barr JLJL., Keith CJ., Shaw JA., Rouse JH., Cunningham AB., Benson SM., Oldenburg CM., Lewicki JL., Wells AW., Diehl JR., Strazisar BR., Fessenden JE., Rahn T.a., Amonette JE., Barr JLJL., Pickles WL., Jacobson JD., Silver E a., Male EJ., Rauch HW., Gullickson KS., Trautz R., Kharaka Y., Birkholzer J., Wielopolski L. 2009. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO$_2$ detection techniques and transport models. *Environmental Earth Sciences* 60:227–239. DOI: 10.1007/s12665-009-0400-2.

Stephens JC., Hering JG. 2002. Comparative characterization of volcanic ash soils exposed to decade-long elevated carbon dioxide concentrations at Mammoth Mountain, California. *Chemical Geology* 186:301–313. DOI: 10.1016/S0009-2541(02)00007-4.

Thomas GW. 1996. Soil pH and Soil Acidity. In: Sparks DL, Page AL, Helmke PA, Loepert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME eds. *METHODS OF SOIL ANALYSIS: CHEMICAL METHODS*. madison, USA.: Soil Science Society of America Inc., 475–490.

Vrålstad T., Todorovic J., Wollenweber J., Abdollahi J., Karas D., Buddensiek M. 2018.
Description of leakage scenarios for consideration in the work in SP3.

Wei Y., Maroto-Valer M., Steven MD. 2011. Environmental consequences of potential leaks of CO2 in soil. Energy Procedia 4:3224–3230. DOI: 10.1016/j.egypro.2011.02.239.

West JM., Jones DG., Annunziatellis A., Barlow TS., Beaubien SE., Bond A., Breward N., Coombs P., de Angelis D., Gardner A., Gemeni V., Graziani S., Green KA., Gregory S., Gwosdz S., Hannis S., Kirk K., Koukouzas N., Krüger M., Libertini S., Lister TR., Lombardi S., Metcalfe R., Pearce JM., Smith KL., Steven MD., Thatcher K., Ziogou F. 2015. Comparison of the impacts of elevated CO2 soil gas concentrations on selected European terrestrial environments. International Journal of Greenhouse Gas Control 42:357–371. DOI: 10.1016/j.ijggc.2015.07.020.

Wu Y., Ma X., Li YE., Wan YF. 2014. The impacts of introduced CO2 flux on maize/alfalfa and soil. International Journal of Greenhouse Gas Control 23:86–97. DOI: 10.1016/j.ijggc.2014.02.009.

Yang J., Zhang J., Wang Z., Zhu Q. 2001. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of experimental botany 52:2169–79. DOI: 10.1093/jexbot/52.364.2169.

Zhang X., Ma X., Zhao Z., Wu Y., Li Y. 2016. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2. Journal of Environmental Management 171:225–230. DOI: 10.1016/j.jenvman.2016.02.018.

Zhao X., Deng H., Wang W., Han F., Li C., Zhang H., Dai Z. 2017. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau. Scientific Reports 7:1–11. DOI: 10.1038/s41598-017-02500-x.
Figure 1

Injection box (a) and treatment layout in the greenhouse (b).

Photo credit: Wenmei He
Figure 2 (on next page)

Mean soil CO$_2$ (a) and O$_2$ (b) concentrations in CG treatment. Mean soil O$_2$ concentration in NG treatment (c). The relationship between soil CO$_2$ and O$_2$ concentrations in CG at each depth (n=256) (d).

Bars with the same letters are not significantly different at a 5% level (n=9).
Figure 3

Morphological changes of plants during the experimental period.

(a) The photographs of grape in BG (no injection) from left to right were taken on August 21, September 8 and September 22; (b) The photographs of grape in NG (N\textsubscript{2} injection) from left to right were taken on August 21, September 8 and September 22; (c) The photographs of grape in CG (CO\textsubscript{2} injection) from left to right were taken on August 21, September 8 and September 22.

Photo credit: Wenmei He
Figure 4 (on next page)

Leaf chlorophyll a content (a) and root water absorption activity (RWAA) (b).

Each date was compared and results with the same letter are not significantly different at a 5% level (n=9).
Figure 5

Conceptual model of the response to high soil CO$_2$ concentration in plant: involvement of hydraulic reaction and compensational mechanism.

Photo credit: Wenmei He
Table 1 (on next page)

Physicochemical properties of the soil.
Soil	pH	TN	TC	Composition (%)					
	(g kg\(^{-1}\) soil)	Zeolite	Perlite	Vermiculite	Coco peat	Peat moss	Other		
Potting	6.87	6.30	390.32	4.0	7.0	6.0	68.0	14.7	0.3
Mineral	6.80	0.19	3.02	Clay	Silt	Sand			
				4.0	26.0	70.0			
Table 2 (on next page)

Mean soil CO$_2$ and O$_2$ concentrations in different depths and soil pH at each treatment.
Treatments	CO₂ concentration (%)	O₂ concentration (%)	pH					
	Depth (cm)	5	10	20	5	10	20	
CG								
		41.3a	53.8a	65.3a	14.3b	11.8b	8.4b	7.4a
NG		< 1.0b	< 1.0b	< 1.0b	14.1b	10.3b	7.5b	7.5a
BG		< 1.0b	< 1.0b	< 1.0b	21.0a	20.9a	20.9a	7.0b

a, b: Different letters indicate significant differences among treatments at a 5% level (n=261).
Table 3 (on next page)

Analysis of variance examining the effects of CO$_2$ injection on soil parameters.
Source	CO₂	O₂	pH	Chlorophyll a	RWAA
Date	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Depth	< 0.0001	< 0.0001	-	-	-
Date×Depth	0.0004	< 0.0001	-	-	-
Treatment	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Date×Treatment	-	< 0.0001	< 0.0001	0.9941	0.0512
Depth×Treatment	-	< 0.0001	-	-	-
Date×Depth×Treatment	-	< 0.0001	-	-	-

Source	Potting	Mineral	Microbial enzyme activities								
	TC	TN	HWC	TC	TN	HWC	AP	BC	BGC	BX	NAG
Treatment	0.6421	0.2532	0.983	0.8781	0.0298	0.0028	0.0042	-*	0.2503	0.0174	< 0.0001
Table 4 (on next page)

Total shoot and root biomass, shoot water, root starch, TC and TN contents in leaves and roots.
	Total biomass	Shoot biomass	Root biomass	Shoot water content	Root starch	TC leaf	TN leaf	TN root	TP leaf	
BG	58.22a	34.36a	23.87a	57.37a	16.75a	435.78a	473.89a	17.94a	4.80b	5.26a
NG	56.50a	35.88a	20.62a	55.57ab	17.55a	435.82a	464.78b	15.83b	4.43b	3.80b
CG	37.48b	27.75b	9.73b	48.68b	2.25b	436.42a	482.22a	19.62a	7.89a	4.18b
P	< 0.001	0.0176	< 0.0001	0.0754	< 0.0001	0.9739	0.0019	0.0970	< 0.0001	0.0238

1 a, b: Different letters indicate significant differences among treatments at a 5% level (n=9).
Table 5 (on next page)

TC, TN and HWC contents and microbial enzyme activities in soil.
Parameters	Soils						
	BG	NG	CG				
	potting	mineral	potting	mineral	potting	mineral	
Chemical	TC	250.96a	3.38a	224.74a	3.35a	257.76a	3.22a
parameters	TN (g kg\(^{-1}\))	4.01a	0.68a	4.96a	0.48ab	5.17a	0.36b
	HWC	4.62a	0.59a	4.73a	0.57ab	4.67a	0.55b
Microbial	AP*	200.56a	-**	114.40b	-	86.98b	-
enzyme activities	BC (nmol h\(^{-1}\) g\(^{-1}\))	-	-	7.93	-	-	-
	BGC	83.75a	-	75.16a	-	50.12a	-
	BX	5.32b	-	10.20a	-	5.38b	-
	NAG	27.30b	-	75.22a	-	14.63b	-

a, b: Different letters indicate significant differences among treatments at a 5% level (n=9).

*AP, BC, BGC, BX and NAG stand for: acid phosphatase, cellobiohydrolase, 1,4-β-glucosidase, xylosidase, and 1,4-β-N-acetyl glucosaminidase, respectively.

**: No data.