Heat supply for the town Velingrad (Bulgaria) and thermo mineral waters of Bulgaria and Russia

V Svalova, S Tetimova

1Sergeev Institute of Environmental Geoscience RAS, Moscow, Russia
2Medical Center, Velingrad, Bulgaria

v-svalova@mail.ru

Abstract. Russia and Bulgaria have rich resources of thermal waters. They are used for many purposes - for development of electric power, for central heating and cooling, for hot water supply, in agriculture, animal industries, fish culture, in the food, chemical and oil-extracting industries, in balneology and spas, and for the recreational purposes. Involving of these waters in economic activities can promote the decision of some social - economic and environmental problems. The problem of heat supply for town Velingrad (Bulgaria) is investigated.

1. Introduction
Complex use of thermo mineral water is important national economic task. In Russia development of the project «Resorts of Northern Caucasus» enables to approach at a new level to a problem of complex use of thermal waters when construction of mounting skiing resorts should be combined with development of balneal therapy, based on thermo mineral waters and spas. In Bulgaria alongside with widely advanced system of hydro mineral resorts it is offered to use high-temperature waters for non-polluting heat supply for resort cities. The project of heat supply for the town Velingrad, area Kamenitsa is developed and economically justified.

Thermal waters and mineral waters are classified as part of thermo mineral waters according to temperature and content in Bulgaria and Russia. Mineral waters are those that have a beneficial physiological effect on the human body through dissolved salts, gases and heat contained in them. Thermal waters are grouped in terms of temperature: hypothermal (cold), with temperatures up to 25 °C; warm, with temperatures from 25 to 37 °C; and hot, greater than 37 °C. Cold mineral water sources are scattered throughout the countries. Mineral waters with temperatures above 25 °C are considered as thermal. They constitute the majority of mineral waters in Bulgaria and Russia. Bulgaria’s and Russia’s mineral and thermal waters have been subject to exploration and exploitation since ancient times.

2. Thermal waters in Russia
Thermal waters are used for many purposes, for the development of electric power, central heating and cooling, hot water supply, in agriculture, animal industries, fish culture for the food, chemical and oil-extracting industry, in balneology and spa for the recreational purposes.

Thermal waters, especially chloride brines, contain in its structure a huge complex of metal and nonmetallic micro components. The saturation of brines micro components is in close dependence both on genetic essence of brines, and on lithological-structural and geothermal features of containing rocks. Interest to geothermal waters and brines as mineral raw material is connected to a number of
advantages of this kind of raw material in comparison with firm sources of rare elements, metals and mineral salts. Industrial underground waters are characterized by wide regional distribution and big geological and exploitation stocks. They are polycomponental raw material and simultaneously can be used in balneology and power system. Extraction of this raw material demands realization concerning small capital works and is carried out by boreholes methods, allowing to take hydro mineral raw material from the big depths. Geothermal waters and brines are characterized by the variety of mineralization, chemical compound, the contents of useful components and their quantitative ratio, and also gas structure and temperatures. The most widespread types of hydro mineral raw material are: thermal brines of intercontinental rift zones; thermal waters and brines of island arches and areas of Alpine folds; waters and brines of artesian pools; brines of modern evaporate pools of a sea or oceanic origin and continental lakes; sea waters .Profitability of industrial reception of those or other components from hydro mineral raw material is determined not only by their concentration, but also by depth of underground waters and operational chinks, filtration properties of rocks, flow rate of operational stocks etc. On economic parameters of operation the way of discharge of the fulfilled exchanges with mineralization of 274 g/l. In Western and Eastern Siberia there are large deposits of brines with mineralization higher than 200 g/l. There are many thermal types of brine in Central Asia, Kazakhstan, on Ukraine, Kamchatka, Kuriles, Sakhalin [8, 9, 12]. There are chemical elements which are possible for extraction from some salts and seaweed, but traditionally bromine also is extracted from superstrong chloride brines [1].

The significant part of deposits of thermal waters represents the brines containing from 35 up to 400 and more g/l of salts. They are mineral raw material on many chemical elements. Many brines which are taking place on the big depth, can become deposits of the most valuable chemical elements: cesium, boron, strontium, tantalum, magnesium, calcium, tungsten etc. Under the cheap technological circuit from natural solutions basically it is possible to take iodine, bromine, boron, chloride salts of ammonium, potassium, sodium, calcium, magnesium. Extraction of other chemical elements is complicated because of dearness of technology. A perspective method is use of ion-exchange pitches for selective extraction of the certain components from natural waters. In a basis of a method there is...
the principle of selective sorption of ions of useful elements or their complexes in solutions with special compounds. Works of some scientific institutes in Russia allow to create the processes of chemical processing of hydromineral raw material and to expand spheres of its economic application. Many laboratory and natural tests on extraction of valuable components from thermal waters confirm the necessity and an opportunity of complex use of this nonconventional raw material. It is planned to recover I, Br, KCl, CaCl, NaCl from brines in Yaroslavl area. New methods of mineral and valuable elements extraction from industrial solutions are developed on the basis of biosorbent use.

In Russia, the geothermal resources are used predominantly for heat supply of several cities and settlements on Northern Caucasus and Kamchatka with a total population of 500,000. In some regions of the country the deep heat is used for greenhouses of common area 465,000 m². Most of the hydrothermal resources are used in the Krasnodar territory, Dagestan and on Kamchatka [3, 5, 13-22]. Approximately half of the extracted resources is applied for heat supply of habitation and industrial putting, a third to heating of greenhouses, and about 13 percent for industrial processes. The thermal waters are also used at approximately 150 health resorts and 40 factories on bottling mineral water. The quantity of electrical energy developed by geothermal stations of Russia, per 1999, almost twice has increased as contrasted to former level. Nevertheless, it remains extremely minor, making some 0.01 percent of the electric power in the country. The Western Siberian plate is another promising region for direct use applications. The aquifers located down to 3 km in this region have a high hydrostatic pressure, temperatures of up to 75°C, and are capable of producing about 180 m³/s. These waters are used to heat dwellings in some small settlements and, on a small scale, assist in the recovery of oil, the extraction of iodine and bromide, and for fish farming. The region is rich in natural gas, which has limited geothermal development. The most perspective direction of usage of low temperature geothermal resources is the use of heat pumps. This way is optimal for many regions of Russia in its European part, on Ural and others. Heat pumps are at an early stage of development in Russia. An experimental facility was set up in early 1999 in the Philippovo settlement of Yaroslavl district. The source supplies 5-6 °C to eight heat pumps that heat the water to 60 °C for a 160-pupil school building. There are some buildings with supply of heated water, using heat pumps, in Moscow.

Electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands. At present three stations work in Kamchatka: Pauzhetka GeoPP (111MWe installed capacity) and two Severo-Mutnovka GeoPP (12 and 50 MWe). Moreover, another GeoPP of 100 MWe is now under preparation in the same place. Two small GeoPP are in operation in Kuril’s Kunashir Island and Iturup Island with installed capacity of 2.6 MWe and 6 MWe respectively.

Russia has considerable geothermal resources and the available capacity is far larger than the current application. This resource is far from adequately developed in the country. In the former Soviet Union, geological exploration was well supported for minerals and oil and gas. Such expansive activities did not aim to discover geothermal reservoirs even in a corollary manner; geothermal waters were not considered among energy resources. Still, the results of drilling thousands of “dry wells” (in oil industry parlance), brings a secondary benefit to geothermal research. These are the abandoned wells themselves, and the data on the subsurface geology, water-bearing horizons, temperature profiles, etc., that were collected during exploration. Not all currently operating companies are willing to disclose their well data, still, in face of the cost of maintaining shut-in wells, it is cheaper to turn them over to others for new purposes.

Development and implementation of geothermal power technology is facilitated by social, scientific, economic and environmental aspects.

Social aspects reflect public opinion and willingness to reject old, traditional power generating methods and implement new, nontraditional, environmentally friendly geothermal power technology. Nowadays the scientific and technical level of geothermal technology is very high in Russia. Unique geothermal power equipment has been developed domestically and for the first time in the world two environmentally friendly power plants were constructed in Kamchatka, In 1999 the unique pilot Verkhne-Mutnovsky GeoPP (V-MGeoPP) of 12 (3x4) MW was constructed.
It has been operating in extremely severe climatic conditions on the site located about 1000 m above sea level. A high level of environmental protection is provided due to isolating the geothermal fluid from the environment by using both air condensers and a system of full re-injection of the waste geothermal fluid back into reservoir. The major problem of protecting the GeoPP equipment from corrosion and salt depositions was solved by using a special technology of film-forming amine additives. Over the last years the V-MGeoPP has proved sustained reliability in generating reasonably priced electricity of about 1.5 cents/kWh [10]. The experience gained while constructing and operating the V-MGeoPP was used for construction of the 50 MW Mutnovsky GeoPP (MGeoPP), a completely automated power plant with a satellite-based communication and control system.

3. Thermomineral waters of Bulgaria
The geological structure of Bulgaria is a complex mosaic of plates and orogenic structures, characterized by deep faulting and lithofacial and magmatic contrasts. Three types of reservoirs are found in the country: stratified (northern Bulgaria), fractured, and mixed, where mineral water from a fractured reservoir is secondarily accumulated in a younger sediment reservoir (southern Bulgaria). The water temperature of all discovered geothermal reservoirs ranges between 25 and 100°C, while those with temperatures up to 50°C prevail. The flow rate varies from 1 to 20 L/s in about 75% of the reservoirs. The established chemical content (TDS) is in the range from 0.1 to 1.0 g/L in southern Bulgaria and 0.1 g/L (100–150) g/L in northern Bulgaria. About 70% of the discovered thermal waters are slightly mineralized (less than 1 g/L) and suitable for drinking. Direct thermal water application has an ancient tradition in Bulgaria. Current uses include balneotherapy, space heating and air-conditioning, greenhouses, thermal water supply, ground source heat pumps (GSHP), bottling of potable water and soft drinks.

There are more than 3250 mineral springs in Bulgaria with different chemical compounds and temperature (from 10°C to 100°C). Mineral waters in Bulgaria are used for medical treatment, prophylactic and consumption. The warm and hot mineral waters in Bulgaria are natural energy source for heating buildings, greenhouses, and so on. They are used in everyday living - washing, baths, etc. They are useful for agriculture - for watering crops, which can play a positive bio-stimulating role, for making nonalcoholic beverages, which make them healthier and preferred by the people. There are many spa resorts in Bulgaria.

One of the most famous is Velingrad, spa capital on the Balkan. Velingrad is the best mountain balneology resort in Bulgaria (Figure 1).
The resort of Velingrad is located between the Rhodope and Rila mountains at 700 - 800 m above sea level. Mountains, ridges, and beautiful pine forests surround the town. Its climate is moderately continental, gentle, and mountain-fresh. The atmospheric pressure is relatively low (693 mm mercury). The average air temperature is + 10 °C. The summers are not hot, while the winter is only moderately cold. There is no danger of overheating or too much cooling of the body. Over 2000 hours of sunlight in a year make cloudy and foggy days a rare occurrence. The winds are not strong at all - about 1 m/s. The resort’s biggest treasures are its prolific hot and cold mineral springs. Also located here is a unique and enormous hydromineral find with a total capacity of 7630 l/s. Velingrad’s mineral waters were known and utilized by people since antiquity. All mineral springs in Velingrad are lightly mineralized, in other words, they contain mineral substances up to 1 g/l. These are the types of waters most commonly found in Bulgaria.

The mineral waters of Velingrad spring deep and are crystal-clear, pure, warm and hot. They are divided between the three quarters (parts) of the town, where there are springs and boreholes – Chepino, Ludjene and Kamenitsa (Figure 2).
In Chepino before 1957, there were nine tapped and three untapped springs with temperature between 43 and 48 °C and a summational capacity of 3180 l/s. After scientific drillings, the capacity rose to 3615 l/s. The water is characterized as hypothermal, lightly mineralized hydro-carbonated-sulfated with sodium, fluoride, silica, and rhodium. In Ludjene, the springs have been characterized into three basic groups: the westernmost group by Veliova bania is made up of 18 springs; at the men and women’s baths, there are 11 springs, and by the Topilata - seven springs. The mineral water is characterized as hypothermal, lightly mineralized hydro-carbonated-sulfated, with sodium, fluoride and silica. In Kamenitsa, 8 springs spout out and the most important springs are at Siarna bania and Vlasa. The water is characterized as hypothermal, lightly mineralized sulfate-hydro-carbonated, with sodium, fluoride and silica. The physical and chemical characteristics of the mineral waters in Velingrad are outlined in Table 1 [7].
The analysis of the physical and chemical indexes of the three groups of mineral waters points to a rise in the temperature, mineralization and the content of the separate mineral substances, while there is a lowering of the gas components towards Chepino - Ludjene - Kamenitsa. The quantity of substance of the indexes is of great importance for the healing processes. Especially important is the presence of rhodium in healing concentration, as is found only in the mineral water in Chepino (over 5 nCi/1). All three groups of waters are siliceous, containing within them remedy effective concentrations of the meta-siliceous acid. It is most potent in the water in Kamenitsa, which is helpful for the external balneology treatment [24].

4. Heat supply in Velingrad

Thermal waters in Kamenitsa are used for the heat supply of 2 schools, but does not produce enough heat. A new project for heat supply is suggested and it includes 6 buildings – Historical Museum (2 buildings), library, school and 2 kindergartens (Figures 3, 4). The principal scheme for the heat supply in Kamenitsa is in Figure 5. The project is at the stage of looking for investments.

Table 1. Characteristics of mineral waters in Velingrad

Physical and Chemical Indexes	Chepino	Ludjene	Kamenitsa
Capacity (C 1/s)	62	65	30
Temperature (ToC)	48	60	90
Mineralization (M mg/1)	187	317	551
pH	9.2	8.2	8.3
Hardness (Ho)	0.3	0.3	0.7
Rhodium (nCi/1)	10	3	1.7
Meta siliceous acid	48	63	91
Hydro carbonate	68	85	122
Sulfate	26	71	171
Fluoride	4.2	5.5	6.3
Chloride	4	6	10
Sodium	43	84	144
Calcium	2	2	4
Magnesium	0.3	Traces	0.4
Figure 3. School with geothermal heat supply (Photo by Svalova)

Figure 4. System of heat supply of the school (Photo by Svalova)
Figure 5. Principal scheme for heat supply in Kamenitsa

The project has passed the stage of economic development and is at the stage of seeking investments.

5. Conclusions
Depending on the structure and properties of thermal waters it is possible to allocate two basic directions of use of geothermal resources: heat power and mineral-raw materials. The heat power direction is the basic for fresh and low mineralized waters when valuable components in industrial concentration practically are absent, and the general mineralization does not interfere with normal operation of system. When high potential waters are characterized by the raised mineralization and propensity to scaling, the recycling of mineral components should be considered as the passing process promoting the effective heat supply. The mineral-raw direction is the basic for geothermal waters, containing valuable components in industrial quantities. Thus the substantiation of industrial concentration is caused by a level of technologies. For such waters the heat is a passing product which use can raise efficiency of process of reception of basic production and even to save fuel.

Designing such systems the process of allocation of valuable components should be dominant at. Calculations show, that complex use of thermal waters in a mineral-raw direction economically is more effective, than in heat power. The choice of a direction of complex use of thermal waters should be defined not only by their structure and properties, but also by the level of development of complex technological processes of extraction and processing of hydromineral raw material and by technology of heat power processes. But for all that the presence of consumers and needs for thermal water play the main role.

It is offered to use high-temperature waters for non-polluting heat supply for resort cities. The project of heat supply for the town Velingrad, area Kamenitsa is developed and economically justified.
Acknowledgment

Work is fulfilled with support of RFFI grant 18-55-18004 Heat flow and geothermal activity of Bulgaria.

References

[1] Antipov M A, Bondarenko S S, Strepetov V P and Kasparov S M 1998 Mineral raw materials. Bromine and iodine, Reference book Geoinformmark M 30 pp
[2] Bondarenko S S 1999 Mineral raw materials. Industrial waters, Reference book Geoinformmark M 45 pp
[3] Gadzhiev A G, Kurbanov M K and Suetnov V V 1980 The problems of geothermal energy in Dagestan, Nedra, Moscow
[4] Kogan B I and Nazvanova V A 1974 Industrial use of natural continental mineral waters abroad. Rare elements. Raw materials and economics. Ed. 10. Rare elements in natural mineral waters. Moscow p 4-117
[5] Kononov V I, Polyak B G and Kozlow B M 2000 Geothermal development in Russia: Country update report 1995-1999. Proceedings the World Geothermal Congress 2000 Vol 1 p 201 – 206
[6] Kremenetsky A A, Linde T P, Yushko N A, Shaderman 1999 Mineral raw materials. Lithium, Reference book Geoinformmark M. 49 pp
[7] Krusteva-Iordanova D 2006 Velingrad’s mineral waters. IVRAI, Sofia
[8] Kurbanov M K 2001 Geothermal and hydro mineral resources of Eastern Caucasuses and Pre-Caucuses, Nauka, Moscow, 260 pp
[9] Kurbanov M K, Sardarov S S, Dejnega G I et al (editors) 1985 Resources of thermal waters of Dagestan and optimization of schemes of their complex developing. Collection of articles, Ed. 4. Institute of geothermic problems, Dagestan branch of the USSR Academy of Sciences, Makhachkala, 156 pp
[10] Nikolski A I and Parshin B Ye 2003 Verkhne-Mutnovsky geothermal power plant – the first environmentally friendly power plant, Energoprogress, Science Technology Newspaper, Moscow
[11] Pachev A 2008 Velingrad. Balneological-climate brilliant spa in Europe. Sofia, MPB OOD, 114 p
[12] Shcherbakov A V 1985 Geochemical features of thermal waters as mineral resources for chemical industry, Geothermal investigations in Middle Asia and Kazakhstan. Nauka, Moscow, p.57-67
[13] Svalova V B 1998 The History of Geothermal Resources Use in the Former USSR. Proceedings, GRC Annual Meeting, San Diego, California, USA
[14] Svalova V B 2000 The history of geothermal resources use in Russia and the former USSR. Proceedings, World Geothermal Congress 2000, Japan
[15] Svalova V B 2002 Geothermal energy use in Russia and environmental parks. Proceedings, 2002 Beijing International Geothermal Symposium
[16] Svalova V B 2002 Geothermal Energy Use in Russia and Sustainable Development. Proceedings, International Geothermal Workshop, New Zealand
[17] Svalova V B 2005 Geothermal energy use in Russia and environmental problems, Proceedings, World Geothermal Congress in Turkey
[18] Svalova V B 2006 Geothermal energy use in Russia: progress and future, Proceedings, First
East African rift geothermal conference. Geothermal energy: an indigenous, environmentally benign and renewable energy resource, Addis Ababa, Ethiopia

[19] Svalova V B 2006 Geothermal resources and thermal waters of Russia: complex use, Proceedings, Geothermal Resources Council 2006 Annual Meeting “Geothermal Resources Securing Our Energy Future”, San Diego, California

[20] Svalova V B 2006 Mineral resources of geothermal waters and brines, Proceedings, International conference ”Mineral extraction from geothermal brines”, Tucson, Arizona, USA

[21] Svalova V B 2007 Complex Use of Geothermal Resources. CD Proceedings, European Geothermal Congress 2007, Germany No 233

[22] Svalova V B 2008 Problems and prospects of geothermal resources utilization. Bulletin ”Use and protection of natural resources in Russia“ No 5 pp 3-10 (in Russian)

[23] Svalova V B 2010 Mineral extraction from brines an geothermal resources complex use in Russia. Proceedings. WGC2010, Bali, Indonesia

[24] Svalova V, Tetimova S 2015 Thermomineral Waters Complex Use and Heat Supply for the Town Velingrad (Bulgaria). Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April Tomarov G V, Bubon S V and Martynova M V 2003 Investment and environmental civeness of geothermal power projects in Kamchatka., Energoprogress, ScienceTechnology Newspaper, Moscow