The correspondence section is a public forum and, as such, is not peer-reviewed. EHP is not responsible for the accuracy, currency, or reliability of personal opinion expressed herein; it is the sole responsibility of the authors. EHP neither endorses nor disputes their published commentary.

Hormesis: A Brief Reply to an Advocate
doi:10.1289/ehp.0901681

In his commentary in Environmental Health Perspectives, Calabrese (2009) offered a number of responses to my critique of hormesis methodology (Mushak 2009). Here I will provide a counterpoint to that effort.

• Calabrese (2009) falsely asserted that I erred in calculations associated with entry and evaluatory criteria for hormesis frequency, specifically by choosing the wrong denominator for examining the proportion of entry candidates eventually found to be hormetic using the most conventional form of statistical significance. The choice of a denominator for these calculations depends on the question asked. My key question was, What proportions of 668 dose–response entry candidates from 20,285 original articles, using the three criteria identified by Calabrese and Baldwin (2001), partition into each of three hormesis categories? A total of 245 of the 668 candidate dose–responses (37%) had hormetic character, but only 74 of those (30%) were derived using the typical statistical significance test, yielding 11% overall.

• Calabrese (2009) mischaracterized my statements about the reliability of the two unvalidated selection criteria (Mushak 2009). My comments addressed applying criteria to screening large databases of publications for a putative new phenomenon. I was not concerned about routine uses of statistical forms for empirical data (e.g., analyses using 95% confidence intervals on independent means).

• Calabrese (2009) misunderstood my concerns about the two tallies of dosing points (1,089 and 1,791 points) from two of his previous studies (Calabrese and Baldwin 2001, 2003b). The still unanswered question is how the 871 (80% of 1,089) control-equivalent and threshold response–compatible dosing points reported by Calabrese and Baldwin (2001) are mathematically incorporated into a high prevalence of hormetic dosing points (to a 2.5:1 ratio) they reported later (Calabrese and Baldwin 2003b). I was not concerned about simple counts.

• Calabrese misinterpreted my concern about clustered distributions in entry candidates in the 20,285 articles. I was not referring to publications in which the same information is recapitulated in multiple articles, but whether serial publications that described a given experimental approach but tested different substances were included in the articles database. The clustering pattern, although important, remains unexplained.

• Calabrese stated that the use of entry and evaluation criteria had been validated for both sensitivity and specificity. The question here is whether entry and evaluation criteria that established the original sets of hormetic, false-positive, and false-negative values were validly derived.

• Calabrese (2009) misunderstood and misapplied my rationale for including single sub-NOAEL (no observed adverse effect level) dosing points in the original data base. He stated that virtually all of the dosing points within the selected 664 dose responses had been identified previously (Calabrese and Baldwin 2003b). However, in my commentary (Mushak 2009), I clearly conveyed that this step itself had an inherent positive bias and that it is not surprising that hormetic responses out-numbered negative ones. Calabrese was incorrect that including single sub-NOAEL points from the 20,285 articles adds negative bias; rather, such inclusion offsets and corrects an inherent positive bias.

• Calabrese challenged my discussion of the National Cancer Institute (NCI) yeast data set, arguing that the Crump analysis noted in my commentary (Crump 2007) was not peer-reviewed [of course, neither was the rebuttal letter by Calabrese et al. (2007) peer-reviewed]. Calabrese missed the point: Which of two plausible alternatives better addresses the truth of hormesis being present in the NCI data set? Calabrese (2009) noted that Crump’s approach introduced 8-fold more variability into the control group statistics, accounting for lack of hormetic evidence. Thereby, he conceded that alleged hormesis in the NCI yeast data lies within the range of determinable control (i.e., nonhormetic) responses.

• Calabrese (2009) challenged my critique of an earlier article on the National Toxicology Program dose-ranging program (Calabrese and Baldwin 2003a). He asserted that all levels of evidence should combine to support the cumulative 31% hormesis frequency. I disagree that poor evidence is just as good as strong evidence; only their “moderate to high” and “high” evidence should have been used in their analysis, yielding a combined 2.3% frequency and not the claimed 31%. The data of Calabrese and Baldwin (2003a) provided little meaningful support for 31% hormetic frequency.

• Calabrese (2009) objected to my discussing the language issues for hormesis; he argued that (hormesis) revisions are part of the nature of science and new phenomenology, and ignored my point that current hormesis definitions are either those of interpretive convenience or represent divergence rather than convergence (the usual path). One definition in my commentary (Mushak 2009) explained hormesis as an overcompensation for homeostatic preservation; the only discernible basis is as an explanation for U() shaped or inverted U() shaped curves. Another definition explained hormesis as three divergent phenomena.

• Calabrese (2009) took strong exception to my view that public agencies have been slow to address and accommodate hormesis within policy formulations. Regulatory agencies dealing with xenobiotics and human or ecologic health—the key issue—have not adopted hormesis.

I thank B. Mushak for editing assistance.

The author has served as a consultant, advisor, and expert witness over the last 3 years. None of these activities concerned hormesis.

Paul Mushak
PB Associates
Durham, North Carolina
E-mail: pandbmushak@cs.com

REFERENCES

Calabrese EJ. 2009. Hormesis: a conversation with a critic. Environ Health Perspect 117:1339–1343.

Calabrese EJ, Baldwin LA. 2001. The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci 62:330–338.

Calabrese EJ, Baldwin LA. 2003a. Hormesis at the National Toxicology Program (NTP): evidence of hormetic dose responses in NTP dose-range studies. Nonlinearity Biol Toxicol Med 1:455–467.

Calabrese EJ, Baldwin LA. 2003b. The hormetic dose–response model is more common than the threshold model in toxicology. Toxicol Sci 71:296–320.

Calabrese EJ, Staudenmayer JW, Stanek EJ III, Hoffmann GR. 2007. Hormesis and high throughput studies: Crump’s analysis lacks credibility [Letter]. Toxicol Sci 96:602–603.

Crump KS. 2007. Limitations in the National Cancer Institute antitumor drug screening database for evaluating hormesis [Letter]. Toxicol Sci 96:599–601.

Mushak P. 2009. Ad hoc and fast forward: the science of hormesis growth and development. Environ Health Perspect 117:1333–1338.

Hormesis: Calabrese Responds
doi:10.1289/ehp.0901681R

In his letter, Mushak revisits his criticism (Mushak 2009) of previously reported hormesis frequency estimates (Calabrese and Baldwin 2001, 2003; Calabrese et al. 2006, 2008). In my commentary (Calabrese 2009), I addressed and/or rebutted in considerable detail his arguments (Mushak 2009), and no new data require me to revise that...
response. Here I address the key areas raised by Mushak’s letter, two of which relate to the frequency of hormesis, and the third considers the acceptance of hormesis by the scientific and regulatory communities.

First, a central point of Mushak’s commentary (Mushak 2009) and his letter is his assertion that the reported hormesis frequency of 37% (Calabrese and Baldwin 2001) is incorrect and should be 11%. Unfortunately, Mushak used the wrong denominator in his commentary, and he perpetuates this error in his letter. Briefly, we (Calabrese and Baldwin 2001) estimated the frequency of hormesis using a priori entry and evaluative criteria; some 668 dose responses satisfied the entry criteria. There were three independent evaluative criteria (i.e., hypothesis testing, nonoverlapping 95% confidence intervals, and alternative quantitative criteria). Of the 668 dose responses, 213 (31.8%) involved hypothesis testing. Of this total, 74 (74/213; 34.7%) satisfied the evaluative criteria for hormesis, a percentage similar to the other two evaluative approaches. When totaled, the three approaches yielded the 37% estimate. Mushak’s error is that he used the 74 dose responses that satisfied the evaluative criteria for hypothesis testing not only against the 213 dose responses that had hypothesis testing (which would have been a correct approach) but against all 668 dose responses, even though the remaining 455 dose responses that satisfied the entry criteria lacked hypothesis testing. None of these 455 dose responses could have been evaluated by the statistical criteria. Nonetheless, Mushak combined all the dose responses that satisfied the entry criteria and derived a hormesis frequency based on only dose responses with statistical significance. In so doing, he mistakenly reduced the 37% frequency to 11%. His method is the equivalent of using a raw score for the math component of the Graduate Record Examination (GRE) as the only source of correct answers, and then using all the questions on the math, verbal, and analytic components of the exam as the denominator, even though the student did not take these other components of the test. Such a calculation would give a useless GRE score. His method of hormesis calculation is clearly wrong since he obtained the incorrect lower frequency.

Second, in his letter Mushak continues to cite a letter by Crump (2007) for which there is no support in the literature; also, Crump’s letter is based on an assumption about methods that was refuted by the National Cancer Institute investigators who actually did the original work (Calabrese et al. 2007). Mushak apparently does not grasp that Crump’s exercise inappropriately introduced 8-fold more variability into the data analysis. In his letter, Mushak incorrectly and inexplicably claimed that Crump’s analysis resulted in my conceding that the hormetic responses that we reported were not different from control responses.

Third, Mushak’s inflexibility concerning hormesis is reflected in his comments that minimize the impact of hormesis and its growing applications. Despite the significant biomedical impact of hormesis, Mushak fails to acknowledge the reality that hormetic effects are the basis for how most anxiolytic (Calabrese 2008a), antidepressant (Calabrese 2008b), memory (Calabrese 2008c; Zaladz and Diamond 2009), Alzheimers disease (Calabrese 2008c; Congdon et al. 2009), and numerous other classes of drugs work (Kastin and Pan 2008; Mattson 2008; Sonneborn 2008; Thong and Maibach 2008), with all such drugs having to pass the regulatory oversight of the Food and Drug Administration for efficacy and safety. On the environmental side, Mushak—in both his letter and his commentary (Mushak 2009)—did not acknowledge that the largest ever rodent cancer bioassay (24,000 mice) that was designed to determine the nature of the dose response in the low-dose zone for carcinogens revealed hormetic responses for acetyl aminofluorene-induced bladder cancer and that this was affirmed by the 14-member Society of Toxicology expert panel convened to assess these findings (Society of Toxicology ED1 Task Force 1981). In both his letter and his commentary (Mushak 2009), he also failed to acknowledge that hormesis has had a meteoric rise in recognition and journal citations within the scientific community, with 15 citations per year in the 1980s to > 2,400 in 2009 alone.

On these grounds and those presented in my commentary (Calabrese 2009), I conclude that Mushak’s arguments are without merit.

This effort was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, U.S. Air Force, under grant FA9550-07-0248. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. government.

The author’s host institution, the University of Massachusetts, has received annual financial contributions from ExxonMobil to support low-dose research activities; these contributions were not used to support activities related to this manuscript. The author directs the BELLE project and two annual conferences and obtains funding for these activities from a variety of sources. These funds are processed by the host university. These contributions were also not used to support activities related to this manuscript. During the last 3 years he has also received support for travel and honoraria for seminars on hormesis delivered at Lilly and Sanofi-Aventis and several universities.

Edward J. Calabrese
Environmental Health Sciences Division
School of Public Health and Health Sciences
University of Massachusetts
Amherst, Massachusetts
E-mail: edwardc@schoolph.umass.edu

REFERENCES

Calabrese EJ. 2008a. An assessment of anxiolytic drug screening tests: hormetic dose responses predominated. Crit Rev Toxicol 38:449–542.
Calabrese EJ. 2008b. Modulation of the epileptic seizure threshold: implications of biphasic dose responses. Crit Rev Toxicol 38:543–556.
Calabrese EJ. 2008c. Alzheimer’s disease drugs: an application of the hormetic dose-response model. Crit Rev Toxicol 38:419–452.
Calabrese EJ. 2009. Hormesis: a conversation with a critic. Environ Health Perspect 117:1339–1343.
Calabrese EJ, Baldwin LA. 2001. The frequency of U-shaped dose response in the toxicological literature. Toxicol Sci 62:330–338.
Calabrese EJ, Baldwin LA. 2003. The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci 70:296–300.
Calabrese EJ, Stanek EJ, Nascarella M, Hofmann G. 2008. Hormesis predicts low-dose responses better than threshold models. Inter J Toxicol 27:369–378.
Calabrese EJ, Staudenmayer JW, Stanek EJ III, Hofmann G. 2006. Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database. Toxicol Sci 94:388–389.
Calabrese EJ, Staudenmayer JW, Stanek EJ III, Hofmann G. 2007. Hormesis and high throughput studies: Crump’s analysis lacks credibility. Toxicol Sci 98:602–603.
Congdon EE, Figueroa YH, Wang L, Toneva G, Chang E, Kuret J, et al. 2009. Inhibition of tau polymerization with a cyanine dye in two distinct model systems. J Biol Chem 284:20830–20839.
Crump KS. 2007. Limitations in the National Cancer Institute antitumor drug screening database for evaluating hormesis [Letter]. Toxicol Sci 98:599–601.
Kastin AJ, Pan W. 2008. Peptides and hormesis. Crit Rev Toxicol 38:629–631.
Mattson MP. 2008. Awareness of hormesis will enhance future research in basic and applied neuroscience. Crit Rev Toxicol 38:633–639.
Mushak P. 2009. Ad hoc and fast forward: the science of hormesis growth and development. Environ Health Perspect 117:1332–1338.
Society of Toxicology ED1 Task Force. 1981. Re-examination of the ED1 study. Overview. Fundam Appl Toxicol 1:28–63.
Sonneborn JS. 2008. Hormetic triggers for intervention in aging, disease and trauma. Amer J Pharmacol Toxicol 3:4–13.
Thong HY, Maibach HI. 2008. Hormesis [biological effects of low level exposure (BELLE)] and dermatology. Dose Response 6:1–15.
Zaladz PR, Diamond DM. 2009. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning. Dose Response 7:132–148.

Lead in Drinking Water as a Public Health Challenge
doi:10.1289/ehp.1001979

In drinking water supplies the intake of the toxic heavy metal lead is commonly due to metal corrosion in the peripheral water distribution system, especially the user’s plumbing or lead service lines. Recently, the problem again received attention in the United States when testing data of drinking water