Light-driven C-H activation mediated by 2D transition metal dichalcogenides

Yuebing Zheng (zheng@austin.utexas.edu)
The University of Texas at Austin https://orcid.org/0000-0002-9168-9477

Jingang Li
University of California, Berkeley https://orcid.org/0000-0003-0827-9758

Di Zhang
Tohoku University

Zhongyuan Guo
Tohoku University https://orcid.org/0000-0003-2406-3877

Xi Jiang
Lawrence Berkeley National Laboratory

Jonathan Larson
Baylor University https://orcid.org/0000-0002-5389-0794

Haoyue Zhu
The Pennsylvania State University

Tianyi Zhang
Pennsylvania State University

Yuqian Gu
The University of Texas at Austin

Brian Blankenship
University of California, Berkeley

Min Chen
University of California, Berkeley

Zilong Wu
The University of Texas at Austin

Suichu Huang
Harbin Institute of Technology

Robert Kostecki
LBNL https://orcid.org/0000-0002-4014-8232

Andrew Minor
University of California, Berkeley https://orcid.org/0000-0003-3606-8309

Costas Grigoropoulos
University of California, Berkeley https://orcid.org/0000-0002-8505-4037

Deji Akinwande
Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States.
https://orcid.org/0000-0001-7133-5586

Mauricio Terrones
The Pennsylvania State University

Joan Redwing
The Pennsylvania State University
https://orcid.org/0000-0002-7906-452X

Hao Li
Tohoku University
https://orcid.org/0000-0002-7577-1366

Article

Keywords:

Posted Date: January 5th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3706587/v1

License: ☺️ ☯️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: There is NO Competing Interest.
Light-driven C-H activation mediated by 2D transition metal dichalcogenides

Jingang Li1,2, Di Zhang3, Zhongyuan Guo3, Xi Jiang4, Jonathan M. Larson5, Haoyue Zhu6, Tianyi Zhang6, Yuqian Gu7, Brian Blankenship2, Min Chen8, Zilong Wu1, Suichu Huang1, Robert Kostecki9, Andrew M. Minor8,10, Costas P. Grigoropoulos2, Deji Akinwande7, Mauricio Terrones6,11,12, Joan M. Redwing6,13, Hao Li3*, and Yuebing Zheng1*

1 Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
2 Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
3 Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
4 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5 Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
6 Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
7 Chandra Family Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
8 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
9 Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
10 National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
11 Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
12 Department of Physics and Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
13 2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA

*Email: zheng@austin.utexas.edu (Y.Z.), li.hao.b8@tohoku.ac.jp (H.L.)
C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.

Main text

The emergence of C-H bond activation has provided revolutionary opportunities in organic chemistry, materials science, and biomedical engineering. Specifically, the activation and functionalization of the ubiquitous C-H bonds enable new synthetic routes for functional molecules in a more straightforward and atom-economical way. Since C-H bonds are thermodynamically strong and kinetically inert, many catalysts have been developed for C-H activation, including transition metals (e.g., palladium, cobalt, and gold), zeolites, and metal-organic frameworks.

While intensive research efforts have been focused on C-H bonds in short-chain alkanes (e.g., methane and ethane) and aromatic compounds, C-H activation in long-chain organic molecules is rarely reported. Yet, the derivation of C-H bonds in these complex molecules has significant potential in synthesizing functional organic complexes and transforming environmental pollutants (e.g., fossil-resource-derived hydrocarbons) into more valuable chemicals.

Herein, we report the light-driven C-H activation in long-chain molecules mediated by two-dimensional (2D) transition metal dichalcogenides (TMDCs). This TMDC-mediated C-H activation in organic molecules enables optical synthesis and patterning of luminescent carbon dots on solid substrates.
As a first example, we achieve the light-driven transformation of cetyltrimethylammonium chloride (CTAC, \(\text{C}_{19}\text{H}_{42}\text{ClN}\)), a long-chain quaternary ammonium surfactant\(^{20}\), into luminescent carbon dots (CDs) on WSe\(_2\) monolayers. By coupling experiments with density functional theory (DFT) calculations, we unravel the role of Se vacancies and oxidized states of WSe\(_2\) in promoting the H adsorption. We further show that 2D TMDCs can facilitate the C-C coupling with a lowered energy barrier to catalyze C-H activation in complex organic molecules. This type of light-driven reaction mediated by 2D materials can be generalized to other long-chain organic compounds for the broader impacts on organic synthesis, chemical degradation, and photonics.

Fig. 1. General concept of light-driven C-H activation in long-chain molecules mediated by 2D materials. a, Schematic showing the light-driven transformation of CTAC on an atomic layer of WSe\(_2\) into luminescent CDs. b, Schematic showing the photochemical reaction process involving the activation of C-H bonds and the formation of C=C bonds.

A typical experimental configuration is presented in Fig. 1a. A thin layer of solid CTAC is coated on a monolayer WSe\(_2\) grown by chemical vapor deposition (CVD). The monolayer feature of WSe\(_2\) is confirmed by the strong photoluminescence (PL) peak at \(\sim 750\) nm (Fig. 2b, blue curve). Under the irradiation of a low-power continuous-wave laser (\(\sim 0.2\text{-}5\) mW), CTAC molecules undergo WSe\(_2\)-mediated C-H bond activation and the subsequent C=C bond formation (Fig. 1b). CTAC contains long
carbon chains and quaternary ammonium cations, which has been commonly used as surfactants for chemical synthesis and fabric softeners21. Here, we choose CTAC as a first example due to its clean carbon-chain structure, solid form under ambient conditions, and wide existence in nanomaterials systems. This light-driven reaction can also be applied to other organic compounds.

The laser irradiation on hybrid CTAC/WSe\textsubscript{2} thin films leads to the emergence of bright luminescence from CDs (Fig. 2a). The evidence of CDs formation and materials characterizations are presented in Fig. 3. The optically generated CDs show pronounced broadband PL emission centered at \textasciitilde 600 nm under the excitation of a 532 nm laser (Fig. 2b, red curve). Additionally, the PL peak from WSe\textsubscript{2} exhibits a clear redshift from \textasciitilde 750 nm to \textasciitilde 780 nm, resulting from the charge transfer between the CDs and WSe\textsubscript{2}22,23. Due to the negligible light absorption of CTAC and monolayer WSe\textsubscript{2} (Supplementary Fig. 1), we preclude the contribution of photothermal effects. Instead, this light-driven reaction is ascribed to the WSe\textsubscript{2}-catalyzed C-H activation, which will be discussed later.

The photochemical reaction rate for the synthesis of CDs can be tuned by two orders of magnitude by controlling the laser power (Fig. 2c and Supplementary Movie 1). Under low-power laser irradiation, the emission of synthesized CDs remains stable for more than 20 min (Supplementary Fig. 2). Besides WSe\textsubscript{2}, we also demonstrate the light-driven C-H activation and generation of CDs from CTAC on CVD-grown WS\textsubscript{2} and MoS\textsubscript{2} monolayers (Fig. 2d,e). Similar orangish PL emission from CDs can be directly visualized in optical imaging (Inset in Fig. 2d). The PL spectra of MoS\textsubscript{2}/WS\textsubscript{2} + CDs also showed similar features, including a broadband emission from CDs centered at \textasciitilde 600 nm and a redshifted peak from MoS\textsubscript{2}/WS\textsubscript{2}. In addition, under the 660 nm laser excitation, the PL spectra from the WSe\textsubscript{2}/WS\textsubscript{2} + CDs are distinct from those under the 532 nm excitation (Fig. 2f). This excitation wavelength-dependent PL emission is a characteristic feature of CDs24,25.
Fig. 2. Optical characterizations of 2D-mediated C-H activation and CD synthesis. a, Optical images showing the CTAC on the WSe$_2$ sample under a 532 nm laser irradiation at $t = 0$ s and $t = 10$ s. The laser power is 2.5 mW. The yellowish PL emission comes from the optically synthesized CDs. b, The PL spectra of WSe$_2$ and WSe$_2$ + CDs hybrids. c, Time-resolved PL intensity of CDs at 600 nm from the CTAC on WSe$_2$ sample under a 532 nm laser irradiation with different optical power. d,e, The PL spectra of (d) WS$_2$ and WS$_2$ + CDs hybrids and (e) MoS$_2$ and MoS$_2$ + CDs hybrids under the excitation of a 532 nm laser. Inset in (d): optical image showing the PL emission from the WS$_2$ + CDs sample. f, The PL spectra of WSe$_2$/WS$_2$ + CDs samples excited by a 660 nm laser.

The light-driven, 2D TMDC-mediated synthesis of CDs is confirmed by multiple characterization techniques. The Raman spectrum shows a D band at ~1380 cm$^{-1}$ and a G band at ~1600 cm$^{-1}$ (Fig. 3a), which are signatures of CDs.26 The scanning electron microscope (SEM) images also reveal the existence of CD nanoparticles at the laser-irradiated areas (Fig. 3b,c). The as-synthesized CDs have a size distribution of 5-15 nm, as shown in the transmission electron microscope (TEM) images (Fig. 3e,f). The selected-area electron diffraction pattern exhibits bright diffraction spots and amorphous rings (Inset in Fig. 3f), indicating a semi-crystalline structure of CDs. The chemical composition of CDs is further examined by a near-field nanoscale Fourier transform infrared spectroscopy (nano-FTIR). Compared to
the pristine CTAC film, the nano-FTIR spectrum of CDs presents a prominent absorption band at ~ 1660 cm\(^{-1}\) (Fig. 3d), which is assigned to the vibrations of C=\(\text{C}\) bonds in CDs\(^{27}\).

![Image](image_url)

Fig. 3. Materials characterizations of optically synthesized CDs. **a**, Raman spectra of WSe\(_2\) and WSe\(_2\) + CDs hybrids. **b,c**, SEM images of the synthesized CDs. **d**, Near-field nano-FTIR spectra of the CDs and pristine CTAC films. **e,f**, High-resolution TEM images of the synthesized CDs. Inset in (**f**) shows the selected area electron diffraction (SAED) pattern of the CDs.

Next, we discuss the underlying mechanisms of the light-driven C-H bond activation medicated by 2D materials. C-H activation requires a sufficiently negative hydrogen adsorption free energy\(^{28}\), however, pristine 2D TMDCs usually cannot meet this prerequisite since they are known to be facile hydrogen evolution materials\(^{29}\). To identify the potential active sites in our study that drive the C-H bond activation, we first measured the X-ray photoelectron spectroscopy spectra of the monolayer WSe\(_2\). The results indicate the existence of prevalent Se vacancies and O adsorption on the CVD-grown WSe\(_2\) surfaces (Supplementary Fig. 3\(^{30,31}\)). To analyze the role of Se vacancies and O substitution on WSe\(_2\), we calculated
the projected density of states (PDOS) of local W-sites using DFT calculations (Fig. 4a and Supplementary Fig. 4). With the increasing number of Se vacancies, there is an obvious shift of the peak toward the Fermi level (Fig. 4b). The calculated average energies of the \(d\)-electrons (i.e., the \(d\)-band center) of the sites with Se vacancies are also closer to the Fermi level compared to a pristine \(\text{WSe}_2\). According to the \(d\)-band center theory, a surface site with a \(d\)-band center closer to the Fermi level corresponds to a significantly stronger H adsorption capacity, which facilitates the C-H bond activation due to the stronger driving force to “pull” a H down to the surface. Similar conclusions can be found on a \(\text{WSe}_2\) surface with oxygen substitution at Se sites (Fig. 4c). Meanwhile, the existence of adsorbed oxygen and the subsequently formed hydroxyl can act as the promoters to expedite C-H activation due to a facile O/HO-promoted mechanism.

To verify the theoretical hypothesis, we conducted control experiments on mechanically exfoliated \(\text{WSe}_2\) flakes with fewer surface defects, and the results show that a much higher optical power is required for this reaction to occur (Supplementary Fig. 5). These theoretical analyses and experiments indicate that the Se vacancy and O substitution in \(\text{WSe}_2\) can both lead to a more facile C-H activation capacity due to either higher reactivity of a defected surface or an O-promotion effect.

For long carbon chains, the C-H activation is followed by the formation of C=C bonds. We further investigate the capability of 2D TMDCs to drive the C=C formation. We analyze the C-C coupling on material surfaces (Fig. 4d), where two carbon atoms are bonded together. We compare the calculated kinetic energy barriers of this process for \(\text{WSe}_2\) and other common catalyst surfaces for C-H activation (Supplementary Fig. 6), including gold (Au) and palladium (Pd). The energy barrier of C-C coupling on \(\text{WSe}_2\) surfaces is calculated to be 0.29 eV (Fig. 4e), which is significantly lower than Au (0.57 eV) and Pd (1.29 eV). These results indicate that while metal catalysts (e.g., Pd and Au) are suitable for C-H activation in short-chain molecules, they cannot be generalized to long carbon chains due to the high activation energy of C-C coupling to form C=C bonds. This energy barrier is further reduced to 0.23 eV on \(\text{WSe}_2\) surfaces with Se vacancies (Fig. 4e and Supplementary Fig. 7). These results demonstrate the potential of

...
2D WSe$_2$ as promising catalysts to drive the C-H activation of long-chain molecules and facilitate the subsequent C=C formation.

Fig. 4. First-principles calculations to provide insights into the light-driven C-H activation mediated by 2D materials. a, Optimized structures considered for DFT calculations. Pristine WSe$_2$ and WSe$_{2-x}$ with Se vacancies or O substitutions are considered. b,c, PDOS of the d-electrons of local W-sites (red triangles in c) at pristine WSe$_2$ and WSe$_{2-x}$ with Se vacancies (b) or O substitutions (c). The calculated d-band centers are marked with vertical lines. The Fermi levels are shifted to zero. d, The process of C-C coupling considered for DFT calculations on the WSe$_2$ surface. e, Comparison of the kinetic barriers of C-C coupling on the WSe$_2$ and other surfaces.

In summary, we discover the 2D-TMDC-mediated C-H activation in long-chain organic molecules under light illumination. Our experimental characterizations coupled with theoretical calculations reveal the role of defects and oxidized states on TMDCs in the promotion of H adsorption and C-H activation reactions. Moreover, we find that the energy barrier of C-C coupling mediated by 2D TMDCs is much
lower than the commonly used metal catalysts for C-H activation of short-chain alkanes, highlighting its promising performance of C-H activation for complex molecules.

This light-controlled site-specific C-H activation also enables optical printing of luminescent carbon dots on solid substrates and provides an approach towards data encryption and information technology41. By controlling the thickness of CTAC layer, laser power, and irradiation time, we can write CDs by laser scanning without changing the morphology of the film (Supplementary Fig. 8). Thus, the embedded patterns remain hidden under white light illumination and can be read out by fluorescence, Raman, or PL imaging (Supplementary Fig. 9). Besides CTAC, this strategy is general to other long-chain molecules, such as octyltrimethylammonium chloride and polyvinyl alcohol (Supplementary Fig. 10). We envision that the 2D-TMDC-mediated light-driven C-H activation in complex organic molecules will enable new applications in chemical synthesis, photonics, degradation of organic pollutants, and plastic recycling.

Methods

Chemicals and materials. CTAC was purchased from Chem-Impex. Other chemicals, including octyltrimethylammonium chloride and polyvinyl alcohol, were purchased from Sigma-Aldrich. All the materials were used without further purification. The CVD-grown monolayer WSe\textsubscript{2}, WS\textsubscript{2}, and MoS\textsubscript{2} were synthesized based on the methods that have been described in detail in previous reports (ref.42 for WSe\textsubscript{2}, ref.43 for WS\textsubscript{2}, and ref.44 for MoS\textsubscript{2}).

Optical setup. The light-driven C-H activation and laser writing of CDs were performed in a Nikon inverted microscope (Nikon TiE) equipped with a ×100 oil objective (Nikon, NA 0.5–1.3), a halogen white light source (12 V, 100 W), a bright-field or dark-field condenser (NA 1.20–1.43), and a color charge-coupled device (CCD) camera (Nikon). A 532 nm laser (Coherent, Genesis MX STM-1 W) or a 660 nm laser (Laser Quantum) was expanded with a 5× beam expander (Thorlabs, GBE05-A) and directed to the microscope.

Characterizations. The Raman spectra and mapping were measured on a Renishaw system using a 532 nm wavelength laser source. The absorption spectra and PL spectra were recorded with a spectrograph (Andor) and an EMCCD (Andor) integrated into an inverted optical microscope. The scanning electron microscopy (SEM) images
were taken with a FEI Quanta 650 SEM. TEM images and diffraction patterns were obtained with a JEOL 1400 (120kV) with Gatan Inc. One view camera and a specialized TEM holder (Laser Prismsatics). Near-field nano-FTIR measurements were performed with a commercial Neaspec system equipped with a broadband laser source. The XPS spectra were collected on a Kratos AXIS Ultra XPS spectrometer.

DFT calculations. All DFT calculations were performed using the VASP code with the valence electrons treated by expanding the Kohn-Sham wave functions in a planewave basis set. The method of generalized gradient approximation using the Revised Perdew-Burke-Ernzerhof (RPBE) functional was employed to describe the electronic exchange and correlations. The core electrons were treated by the projector augmented wave method. Van der Waals corrections were included within Grimme’s framework (DFT+D3). Convergence was defined when the forces of each atom fell below 0.05 eV per Å. The energy cutoff was set to 400 eV. A (3×3×1) \(k \) point mesh was employed to sample the Brillouin zone based on the method of Monkhorst and Pack. The kinetic barriers were calculated based on the climbing-image nudged elastic band (CI-NEB) method. To ensure sufficient spacing, we placed a vacuum spacing of at least 12 Å perpendicular to the surface.

Data availability

All data that support the findings of this study are included in the paper and/or Supplementary Materials.

Acknowledgements

Y.Z. acknowledges the financial support of the National Institute of General Medical Sciences of the National Institutes of Health (DP2GM128446) and the National Science Foundation (NSF-ECCS-2001650). H. L. acknowledges the JSPS KAKENHI (Grant No. JP23K13703), the Iwatani Naoji Foundation. J.L. acknowledges the financial support of the University Graduate Continuing Fellowship from The University of Texas at Austin. J.M.R and H.Z. acknowledge the financial support of the National Science Foundation through the Penn State 2D Crystal Consortium - Materials Innovation Platform (2DCC-MIP) under NSF cooperative agreement DMR-2039351. B.B acknowledges support from the NSF Graduate Research Fellowship (DGE 2146752). TEM imaging work was funded by the Soft Matter Electron Microscopy Program (KC11BN), supported by the Office of Science, Office of Basic Energy Science, US Department of Energy, under Contract DE-AC02-05CH11231. The authors acknowledge...
the Center for Computational Materials Science, Institute for Materials Research, Tohoku University for the use of MASAMUNE-IMR (202212-SCKXX-0204) and the Institute for Solid State Physics (ISSP) at the University of Tokyo for the use of their supercomputers.

Author contributions

J.L., Y.Z. and H.L. conceived the idea and designed the research. J.L. prepared the samples, worked on the experiments, and collected the data. H.L., D.Z. and Z.G. worked on the DFT calculations. X.J., B.B., M.C., A.M.M. and C.P.G. worked on TEM imaging. J.M.L. performed the nano-FTIR measurement. H.Z. and J.M.R. synthesized WSe$_2$. T.Z. and M.T. synthesized WS$_2$. Y.G. synthesized MoS$_2$ under the supervision of D.A.. Z.W. and S.H. assisted in sample preparation and experiments. Y.Z. supervised the project. J.L., H.L. and Y.Z. wrote the manuscript with inputs from all authors.

Competing interests

The authors declare that they have no competing interests.

References

1. Wencel-Delord, J. & Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. *Nat. Chem.* **5**, 369-375 (2013).
2. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C-H activation of aliphatic amines to give strained nitrogen heterocycles. *Nature* **510**, 129-133 (2014).
3. Mkhalid, I. A. I. et al. C-H activation for the construction of C-B bonds. *Chem. Rev.* **110**, 890-931 (2010).
4. Roithová, J. & Schröder, D. Selective activation of alkanes by gas-phase metal ions. *Chem. Rev.* **110**, 1170-1211 (2010).
5. Fazekas, T. J. et al. Diversification of aliphatic C-H bonds in small molecules and polyolefins through radical chain transfer. *Science* **375**, 545-550 (2022).
6. Balcells, D., Clot, E. & Eisenstein, O. C-H bond activation in transition metal species from a computational perspective. *Chem. Rev.* **110**, 749-823 (2010).
7. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C-H activation: Examples and concepts. *Chem. Soc. Rev.* **45**, 2900-2936 (2016).
8. Moselage, M., Li, J. & Ackermann, L. Cobalt-catalyzed C-H activation. *ACS Catal.* **6**, 498-525 (2016).
9 Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. *Nature* **437**, 1132-1135 (2005).

10 Boorman, T. C. & Larrosa, I. Gold-mediated C-H bond functionalisation. *Chem. Soc. Rev.* **40**, 1910-1925 (2011).

11 Woertink, J. S. et al. A [Cu2O]^{2+} core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 18908-18913 (2009).

12 Groothaert, M. H. et al. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. *J. Am. Chem. Soc.* **127**, 1394-1395 (2005).

13 Xiao, D. J. et al. Oxidation of ethane to ethanol by N₂O in a metal–organic framework with coordinatively unsaturated iron(II) sites. *Nat. Chem.* **6**, 590-595 (2014).

14 Verma, P. et al. Mechanism of oxidation of ethane to ethanol at iron(IV)–oxo sites in magnesium-diluted Fe₂(dobdc). *J. Am. Chem. Soc.* **137**, 5770-5781 (2015).

15 Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C-H borylation of methane and ethane. *Science* **351**, 1421-1424 (2016).

16 Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. *Science* **361**, 668-672 (2018).

17 Aleku, G. A. et al. Enzymatic C-H activation of aromatic compounds through CO₂ fixation. *Nat. Chem. Biology* **16**, 1255-1260 (2020).

18 Pike, S. D. et al. Solid-state synthesis and characterization of σ-alkane complexes, [Rh(L₂)(η²,η²-C₇H₁₂)][BAr⁺₄](L₂ = bidentate chelating phosphine). *J. Am. Chem. Soc.* **137**, 820-833 (2015).

19 Xu, J. et al. Efficiently dedicated oxidation of long-chain crude oil in the soil by inactive SOM-Fe. *Chem. Eng. J.* **375**, 121913 (2019).

20 Lin, L. et al. Opto-thermoelectric nanotweezers. *Nat. Photonics* **12**, 195-201 (2018).

21 Kunieda, H. & Shinoda, K. Solution behavior of dialkyldimethylammonium chloride in water. Basic properties of antistatic fabric softeners. *J. Phys. Chem.* **82**, 1710-1714 (1978).

22 Ji, H. G. et al. Chemically tuned p- and n-type WSe₂ monolayers with high carrier mobility for advanced electronics. *Adv. Mater.* **31**, 1903613 (2019).

23 Roy, S. et al. Observation of charge transfer in heterostructures composed of MoSe₂ quantum dots and a monolayer of MoS₂ or WSe₂. *J. Phys. Chem. C* **121**, 1997-2004 (2017).

24 Sun, Y.-P. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. *J. Am. Chem. Soc.* **128**, 7756-7757 (2006).

25 Qu, S. et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. *Angew. Chem. Int. Ed.* **51**, 12215-12218 (2012).

26 Yang, H. et al. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. *Nat. Commun.* **10**, 1789 (2019).
27 Li, Y. et al. Fast, energy-efficient synthesis of luminescent carbon quantum dots. *Green Chem.* **16**, 2566-2570 (2014).

28 Li, H. & Henkelman, G. Dehydrogenation selectivity of ethanol on close-packed transition metal surfaces: A computational study of monometallic, Pd/Au, and Rh/Au catalysts. *J. Phys. Chem. C* **121**, 27504-27510 (2017).

29 Wang, Z. et al. Insights into the hydrogen evolution reaction on 2D transition-metal dichalcogenides. *J. Phys. Chem. C* **126**, 5151-5158 (2022).

30 Shearer, M. J. et al. Removing defects in WSe$_2$ via surface oxidation and etching to improve solar conversion performance. *ACS Energy Lett.* **4**, 102-109 (2019).

31 Wang, H. et al. MoSe$_2$ and WSe$_2$ nanofilms with vertically aligned molecular layers on curved and rough surfaces. *Nano Lett.* **13**, 3426-3433 (2013).

32 Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. *Nature* **376**, 238-240 (1995).

33 Zheng, H. et al. Calculations of hydrogen associative desorption on mono- and bimetallic catalysts. *J. Phys. Chem. C* **125**, 12028-12037 (2021).

34 Evans, M. G. & Polanyi, M. Inertia and driving force of chemical reactions. *Trans. Faraday Soc.* **34**, 11-24 (1938).

35 Latimer, A. A. et al. Mechanistic insights into heterogeneous methane activation. *Phys. Chem. Chem. Phys.* **19**, 3575-3581 (2017).

36 Gong, J. & Mullins, C. B. Selective oxidation of ethanol to acetaldehyde on gold. *J. Am. Chem. Soc.* **130**, 16458-16459 (2008).

37 Evans, E. J. et al. Oxidative cross-esterification and related pathways of co-adsorbed oxygen and ethanol on Pd-Au. *ACS Catal.* **9**, 4516-4525 (2019).

38 Latimer, A. A. et al. Understanding trends in C-H bond activation in heterogeneous catalysis. *Nat. Mater.* **16**, 225-229 (2017).

39 Ponomarev, E. et al. Hole transport in exfoliated monolayer MoS$_2$. *ACS Nano* **12**, 2669-2676 (2018).

40 Du, J. et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. *Nat. Nanotechnol.* **18**, 772-779 (2023).

41 Li, J., Hill, E. H., Lin, L. & Zheng, Y. Optical nanoprinting of colloidal particles and functional structures. *ACS Nano* **13**, 3783-3795 (2019).

42 Zhang, X. et al. Diffusion-controlled epitaxy of large area coalesced WSe$_2$ monolayers on sapphire. *Nano Lett.* **18**, 1049-1056 (2018).

43 Wang, M. et al. Tunable fano resonance and plasmon-exciton coupling in single au nanotriangles on monolayer WS$_2$ at room temperature. *Adv. Mater.* **30**, e1705779 (2018).

44 Lin, L. et al. Optothermoplasmonic nanolithography for on-demand patterning of 2D materials. *Adv. Funct. Mater.* **28**, 1803990 (2018).
He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. *Nat. Commun.* **13**, 1398 (2022).

Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. *Physical Review* **140**, A1133-A1138 (1965).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865-3868 (1996).

Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953-17979 (1994).

Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **32**, 1456-1465 (2011).

Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. *Phys. Rev. B* **13**, 5188-5192 (1976).

Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *J. Chem. Phys.* **113**, 9901-9904 (2000).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMovie1.mp4
- SI2DCHactivationNov21.pdf