The role of myostatin in diabetic bone disease
Evangelia Kalaitzoglou1, Callie Knuckles and John Fowlkes
1University of Kentucky Center for Clinical and Translational Science

OBJECTIVES/SPECIFIC AIMS: Our primary objective is to determine the mechanism of action of myostatin on osteoblasts by measuring markers of osteoblast differentiation. With these experiments we will evaluate the effects of myostatin on an osteoblastic cell line (MC3T3 cells) and primary murine osteoblasts during baseline and hyperglycemic conditions and assess whether these effects are altered in the presence of a hyperglycemic environment. METHODS/STUDY POPULATION: Primary osteoblasts from calvaria of WT mice will be isolated and cultured per previously published protocol. MC3T3 cells (murine pre-osteoblast cell line) and primary osteoblasts will be plated in 6-well plates until they reach confluency. They will subsequently be stimulated with or without myostatin at various concentrations under control and hyperglycemic conditions. Additional experiments will assess myostatin stimulation during cell differentiation/maturation in the presence of osteogenic induction medium. Subsequently, cells will be lysed and processed for gene analysis with qPCR. Genes of interest (e.g., myostatin, RUNX2, osteocalcin etc.) will be assessed. Additionally, cells will be collected and processed for protein quantification with western blot to assess myostatin-related pathways, such as Smad2/3 and MAPK signaling.

RESULTS/ANTICIPATED RESULTS: We have demonstrated that the receptor for myostatin (Activin receptor 2b, AcvR2b) is present in MC3T3 cells and we have evidence of Smad2 phosphorylation in MC3T3 cells as a result of myostatin stimulation, confirming that myostatin can exert intracellular signaling events in bone cells (Fig 1). We anticipate to observe negative effects of myostatin on differentiation of primary osteoblasts and MC3T3 cells. Specifically, we anticipate suppression of Runt-related transcription factor 2 (RUNX-2), a transcription factor known as the "master regulator" of osteogenic gene expression and programming, as a result of
signaling downstream of Smad 2/3. Additionally we anticipate downregulation of osterix and osteocalcin, two essential genes for osteoblast differentiation and activity. We anticipate that hyperglycemia will potentiate the negative effects of myostatin on osteoblastogenesis. DISCUSSION/SIGNIFICANCE OF IMPACT: We have demonstrated that myostatin can directly act on osteoblastic cells. As myostatin is a negative regulator or bone mass, its direct effects on bone cells can be detrimental to the bone health of patients with elevated myostatin levels and/or activity. There is evidence suggesting that myostatin is elevated in Type 1 diabetes, and its effects might be potentiated in a hyperglycemic environments. Future experiments will be evaluating the role of myostatin on a diabetic animal model and in humans. Our experiments provide an additional mechanism by which muscle-bone interactions could be contributing to the development of diabetic bone disease.

Tissue Engineered Nigrostriatal Pathway as a Test-Bed for Evaluating Axonal Pathophysiology in Parkinson’s disease

Elisia Clark1, Laura Strzyyna, Wisberty Gordián-Vélez and Kacy Cullen1

1University of Pennsylvania School of Medicine

OBJECTIVES/SPECIFIC AIMS: Selective loss of long-projecting neural circuitry is a common feature of many neurodegenerative diseases, such as the vulnerable nigrostriatal pathway in Parkinson’s disease (PD). Current in vitro approaches for studying disease development generally do not mimic complex anatomical features of the afflicted substrates such as long axonal pathways between stereotypical neural populations. Such exquisite features are not only crucial for neural systems function but may also contribute to the preferential vulnerability and pathophysiological progression of these structures in neurodegenerative disease. We have previously developed micro-tissue engineered neural networks to recapitulate the anatomy of long-projecting cortical axonal tracts encased in a tubular hydrogel.1 Recently, we have extended this work to include the first tissue-engineered nigrostriatal pathway that was anatomically-inspired to replicate the structure and function of the native pathway.2 Notably, this tissue-engineered brain pathway possesses three-dimensional (3D) structure, multicellular composition, and architecture of long axonal tracts between distinct neuronal populations. Therefore, in the current study we apply this system as a biofidelic test-bed for evaluating axonal pathway development, maturation, and pathophysiology. METHODS/STUDY POPULATION: Dopaminergic neurons from the ventral mesencephalon and medium spiny neurons (MSNs) from the striatum were separately isolated from rat embryos. Tissue-engineered nigrostriatal pathways were formed by initially seeding dopaminergic neuron aggregates at one end of hollow hydrogel micro-columns with a central extracellular matrix, collectively spanning up to several centimeters in length. Several days later, tissue-engineered MSN aggregate was seeded on the other end and was allowed to integrate. Immunocytochemistry (ICC) and confocal microscopy were used to assess health, cytoarchitecture, synaptic integration, and mitochondrial dynamics with stains that label cell nuclei (Hoechst) and mitochondria (Mitotracker Red) and antibodies that recognize axons (anti-β-tubulinIII), neurons/dendrites (anti-MAP2), dopaminergic axons (anti-tyrosine hydroxylase; TH), and MSNs (anti-DARPP-32). RESULTS/ANTICIPATED RESULTS: Seeding tubular micro-columns with dopaminergic neuronal aggregates resulted in unidirectional axonal extension, ultimately spanning >5mm by 14 days in vitro. For constructs also seeded with Tissue-engineered, ICC confirmed the presence of the appropriate neuronal sub-types in the two aggregate populations, specifically TH+ dopaminergic neurons and DARPP-32+ MSNs. Moreover, confocal microscopy revealed extensive axonal-dendritic integration and synapse formation involving the dopaminergic axons and MSN somata/dendrites. Collectively, these constructs mimicked the general cytoarchitecture of the in vivo nigrostriatal pathway: a discrete population of dopaminergic neurons with long-projecting 3D axonal tracts that were synthaptically integrated with a population of MSNs. Mitochondria structure along axonal tracts was also observed using MitoTracker staining, revealing dynamic intraaxonal mitochondrial motility in this system. Ongoing studies are evaluating real-time mitochondrial dynamics and axonal physiology in this tissue-engineered nigrostriatal pathway in vitro, under both baseline conditions as well as following the addition of exogenous α-Synuclein fibrils to model synucleinopathy in PD. DISCUSSION/SIGNIFICANCE OF IMPACT: This tissue-engineered nigrostriatal pathway provides an anatomically-inspired platform with neuronal-axonal architecture that structurally and functionally emulates the nigrostriatal pathway in vivo. We are applying this paradigm as a powerful in vitro test-bed for understanding mitochondrial activity and interaxonal energetics pathways under homeostatic as well as PD pathological conditions. Successful demonstration will serve as proof-of-concept that this technique can be used to study mitochondria pathology in personalized constructs built using cells derived from PD patients in order to evaluate pharmacological therapies targeted at improving mitochondrial resiliency and fitness so as to delay and/or prevent dopaminergic axonal/neuronal degeneration in tailored to specific PD patients.

Tumor suppressors p53 and ARF control oncogenic potential of triple-negative breast cancer cells by regulating RNA editing enzyme ADAR1

Che-Pei Kung1, Emily Bross2, Emily Bramel2, Eric Freeman2, Thwisha Sabloak2, Catherine Kuzmickii2, Mike Benjamin1, Leonard Maggi2 and Jason Weber2

1Washington University in St. Louis, Institute Of Clinical and Translational Sciences and 2Washington University in St. Louis

OBJECTIVES/SPECIFIC AIMS: Triple-negative breast cancer (TNBC) accounts for one-fifth of the breast cancer patient population. The heterogeneous nature of TNBC and lack of options for targeted therapy make its treatment a constant challenge. The co-deficiency of tumor suppressors p53 and ARF is a significant genetic signature enriched in TNBC, but it is not yet clear how TNBC is regulated by this genetic alteration. METHODS/STUDY POPULATION: To answer this question, we established p53/ARF-defective murine embryonic fibroblast (MEF) to study the molecular and phenotypic consequences in vitro. Moreover, transgenic mice were generated to investigate the effect of p53/ARF deficiency on mammary tumor development in vivo. RESULTS/ANTICIPATED RESULTS: Increased transformation capability was observed in p53/ARF-defective cells, and formation of aggressive mammary tumors was also seen in p53/-ARF/- mice. RNA-editing enzyme ADAR1 was identified as a potential mediator for the elevated oncogenic potential. Interestingly, we found that the overexpression of ADAR1 is also prevalent in human TNBC cell lines and patient specimen.