Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Brief Report

Physical distancing for care delivery in health care settings: Considerations and consequences

Vishala Parmasad PhD, Julie A. Keating PhD, Pascale Carayon PhD, Nasia Safdar MD, PhD

© 2021 Published by Elsevier Inc. on behalf of Association for Professionals in Infection Control and Epidemiology, Inc.

With few evidence-based pharmaceutical interventions approved for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), health care workers (HCWs) and patients need effective and reliable methods to mitigate viral transmission in health care settings. Physical distancing, also known as social distancing, is an effective non-pharmaceutical intervention that involves maintaining a distance in the physical space between individuals to decrease viral transmission.1 Public health agencies currently recommend a physical distance of 2 m (6 feet) to decrease SARS-CoV-2 spread.1,2 There is growing acknowledgment that SARS-CoV-2 aerosols can also spread via the airborne route in some circumstances, and in those situations, physical distancing of more than 2 m may be warranted.2 In health care settings, while physical distancing is critical to prevent SARS-CoV-2 transmission,3 it poses challenges and may produce unanticipated negative consequences. The complexity of health care institutions thus requires a systems approach. Here, we present recommendations to mitigate the negative consequences of physical distancing in health care institutions, using a human factors and systems engineering framework.

SYSTEMS ENGINEERING INITIATIVE FOR PATIENT SAFETY MODEL: PROVIDING CARE UNDER PHYSICAL DISTANCING FOR COVID-19 IN HEALTH CARE SETTINGS

Health care systems are highly intricate sociotechnical environments that function by integrating multiple individuals in the performance of tasks using varied technologies, in delimited physical environments, under specific and often challenging organizational conditions.4 One example of a human factors and systems engineering approach, the Systems Engineering Initiative for Patient Safety (SEIPS) model of health care work systems (Fig 1), comprehensively incorporates all work system elements (ie, external environment, technology/tools, tasks, organization, and person). The SEIPS model enables the identification of modifiable factors within individual work systems which can affect care processes and outcomes.5,6 The core human factors principles of the SEIPS model include its systems orientation, person-centeredness, and design-driven improvements.7 SEIPS is especially well-equipped to understand and adapt health care work systems to physical distancing requirements given its successful application to occupational health and safety and quality improvement initiatives in various care health care settings.7,6

https://doi.org/10.1016/j.ajic.2020.12.014
0196-6553/© 2021 Published by Elsevier Inc. on behalf of Association for Professionals in Infection Control and Epidemiology, Inc.
Table 1
Challenges to physical distancing between health care workers and patients in health care settings

Work system elements	Solutions to promote physical distancing	Challenges resulting from physical distancing and potential mitigation
Technology	*Increase telemedicine visits; utilize real-time phone interpreters*	Care maintenance: Negative health consequences of deferring patient care; missed severity of patient conditions; limits to patient access to HIPAA-compliant video-telehealth technologies; language barriers
Environment	*Triage with physical distancing in Emergency Department; separate patients with suspected respiratory illness into private rooms*	Space limitations, Mitigation: Construct external triage areas outside of existing hospital structures (eg, triage tents); utilize non-standard spaces (eg, out-patient consultation rooms)
Environment	*Use visual cues (eg, floor markings and spaced seats) to keep persons in common areas 2 meters (6 feet) apart*	Space limitations, Mitigation: Require limits to and monitoring of the number of persons allowed in common spaces at a time
Environment	*Externalize equipment (eg, IV pumps) outside COVID-19 patient rooms*	Care maintenance: Potential for contamination, Mitigation: increased frequency of monitoring equipment and environmental cleaning
Tasks	*Batch care, eg, cohort wards for confirmed or suspected COVID-19 patients*	Care maintenance: Lower frequency of contact with patients
Organization	*Reduce in-person physiotherapy/occupational therapy and substitute with video-telehealth sessions*	Care maintenance: Loss of vital clinical services potentially decreases long-term health outcomes for non-pandemic related conditions, loss to follow-up of patients, and fragmentation of care, Mitigation: provide remote/telehealth options (virtual telehealth, asynchronous online training videos)
Organization	*No in-person group sessions, eg, mental health support groups, and substitute with group video-telehealth sessions*	Care maintenance: Loss of vital psychological supports, Mitigation: increased patient-provider contact through email, voice-mail or health care-app check-ins
Organization	*No bedside rounds for inpatients—limit of one medical liaison for patient*	Care maintenance: Loss of multi-disciplinary integration of care facilitated by rounds, Mitigation: substitute single rounds with multiple daily updates to patient and care-team
Person	*Have available Airborne Infection Isolation Rooms (AIIRs) for patients undergoing aerosol-generating procedures and/or with pathogens spread by airborne route*	Care maintenance, Mitigation: In-room videoconference capacity to connect patients to nursing and care providers
Person	*Limit/restrict visitors*	Psychological consequences, Mitigation: increased accessibility of in-room video-technologies for virtual visits patient support
Organization	*Shut down shared and communal facilities*	Psychological consequences, Mitigation: increased accessibility of in-room video-technologies for virtual visits patient support
Tasks	*Perform procedures/tests in patient rooms*	Care maintenance: Insufficient portable equipment, Mitigation: organizational planning, account for limitations of in-room procedure/test results
Person	*Limit number of entries to patient rooms*	Psychological consequences: Providers may feel disconnection from patient when utilizing videotechnologies and virtual visits for ongoing assessment of patient status, Mitigation: Promote use of health psychology virtual visits to support mental health

(continued)
In Table 1, we use the SEIPS model is used to identify challenges of physical distancing interventions in health care settings, their potentially negative consequences, and possible mitigation approaches.

DISCUSSION

The rapidly evolving literature on the current COVID-19 pandemic has highlighted that the traditional 6-foot physical distancing recommendation should be interpreted in the context of emerging data on the physics of respiratory emissions. The 6-foot distance does not account for the effect on viral particle spread of environmental conditions such as ventilation, airflow patterns or types of activity, or patient specifics (eg, viral load of emitter, duration of exposure, individual susceptibility). Nonetheless, keeping a minimum of 6-feet distance is an important strategy among the suite of NPI solutions for preventing SARS-CoV-2 transmission.

Physical distancing falls within 2 tiers of the traditional NIOSH/CDC occupational hierarchy of controls, preventing exposure by eliminating the hazard in some circumstances, and improving administrative controls in others. The SEIPS model provides a framework for integrating physical distancing recommendations in the health care work-system, in Table 1. The model also allows us to identify the range of stakeholders and actors involved in implementing effective physical distancing: health care administrative leadership, clinicians, physical plant, infectious disease teams, and cleaning and environmental control staff. The challenges related to integrating physical distancing recommendations are outlined below.

First is the challenge posed by space limitations. This can be mitigated to some degree by the construction of alternative spaces (eg, external tents for ED triage), the reassigning of existing spaces to meet needs (eg, offices for call-rooms), and the cohorting of confirmed COVID-19 patients in shared rooms if necessary.

The second challenge is the efficient and continued provision of care. For example, one human factors and systems engineering measure to reduce pandemic exposure involves decreasing the total number of persons frequenting health care settings by postponing nonurgent patient appointments, reducing the numbers of on-site HCW, and restricting visitors. Potential negative consequences of these interventions may impact HCW and patients in all care settings. Outpatients whose care has been deferred may experience deterioration in their medical conditions, while inpatients may experience less attentive and integrated care. The remaining on-site HCW might also be negatively affected by decreases in supportive care, eg, nursing, leading to lowered efficiency.

A third challenge relates to the psychological consequences of physical distancing on patients and HCW. Physical isolation can have severe mental health consequences on already ill patients, due to fewer interactions with HCW and visitors in a pandemic. Measures to increase the feasibility of physical distancing in health care settings can also decrease the psychological supports for the remaining HCW, leading to increased stress and burnout.

Many of these challenges can be alleviated by using technology to our advantage within SEIPS work system components (Table 1). Ultimately, all measures and strategies should be evaluated within the context of individual work systems to determine their feasibility. In the context of an evolving pandemic, there is likely to be no “one size fits all” suite of solutions to the challenges of effectively mitigating viral transmission in health care settings. The holistic systems approach of the SEIPS framework is useful to describe the interactions between work system components that are important for integrating physical distancing interventions, maintaining health care delivery, and anticipating potential unwelcome consequences.

CONCLUSION

The COVID–19 pandemic has disrupted health care delivery in an unprecedented manner, the effects of which will be long lasting. Physical distancing will remain an important intervention to mitigate spread of SARS-CoV-2 and potentially other new and emerging respiratory viruses in health care settings for the foreseeable future. A human factors and systems engineering approach, such as through SEIPS, may be helpful to health care institutions in rapidly assessing and deploying physical distancing measures while mitigating its unwelcome effects in health care settings during the COVID–19 pandemic. Future research should
examine the impact of physical distancing interventions designed using a human factors and systems engineering approach on patients and HCW outcomes.

References

1. Markel H, Lipman HB, Navarro JA, et al. Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic. JAMA. 2007;298:644–654.
2. Jones NR, Qureshi ZU, Temple RJ, Larwood JPJ, Greenhalgh T, Bourouiba L. Two metres or one: what is the evidence for physical distancing in COVID-19? BMJ. 2020;370:m3223.
3. Arora VM, Chivu M, Schram A, Meltzer D. Implementing physical distancing in the hospital: a key strategy to prevent nosocomial transmission of COVID-19. J Hosp Med. 2020;15:290–291.
4. Carayon P, Alyousef B, Xie A. Human Factors and Ergonomics in Health Care. 2012:1574–1595.
5. Carayon P, Schoofs Hundt A, Karsh BT, et al. Work system design for patient safety: the SEIPS model. Qual Saf Health Care. 2006;15(suppl 1):i50.
6. Carayon P, Wetterneck TB, Rivera-Rodriguez AJ, et al. Human factors systems approach to healthcare quality and patient safety. Appl Ergon. 2014;45:14–25.
7. Holden RJ, Carayon P, Gurses AP, et al. SEIPS 2.0: A human factors framework for studying and improving the work of healthcare professionals and patients. Ergonomics. 2013;56:1669–1686.
8. Brown J, Gregson FKA, Shrimpton A, et al. A quantitative evaluation of aerosol generation during tracheal intubation and extubation. Anesthesia. 2021;76:174–181.

Coming Soon in AJIC

Enhancement of bactericidal effect of Chlorhexidine using Choline augmentation as a natural additive
Impact of methods and duration of surgical hand scrub on bacterial count: A randomized controlled trial
Readmission after Hospitalization with Staphylococcus aureus Bacteremia in Children