Severe Diffuse Systemic Amyloidosis with Involvement of the Pharynx, Larynx, and Trachea: CT and MR Findings

R. Gilad, P. Milillo and P.M. Som

AJNR Am J Neuroradiol 2007, 28 (8) 1557-1558
doi: https://doi.org/10.3174/ajnr.A0604
http://www.ajnr.org/content/28/8/1557
Severe Diffuse Systemic Amyloidosis with Involvement of the Pharynx, Larynx, and Trachea: CT and MR Findings

SUMMARY: Amyloidosis is a term applied to a diverse group of disorders that share the deposition of abnormal protein in various extracellular tissues. Systemic amyloidosis may involve almost any organ system in the body including regions in the head and neck; however, pharyngeal involvement is rare, with only 12 cases having been previously reported. Ten of these cases were localized disease, and only 2 cases were systemic amyloidosis. We present the case of a patient with severe diffuse systemic amyloidosis with extensive involvement of the pharynx, larynx, trachea, lungs, eyelids, and breasts. We also review the imaging characteristics and pertinent literature.

CASE REPORT

Amyloidosis is a rare, infiltrative condition characterized by deposition of abnormal protein in various tissues. When systemic amyloidosis involves regions of the head and neck, the larynx and trachea are the most common sites. To date, there have been only 2 prior reported cases of systemic amyloidosis involving the pharynx. We present a case of severe diffuse systemic amyloidosis in the chest, head and neck, with extensive involvement of the pharynx and we review the literature.

Case Report

The patient was a 64-year-old woman with a history of myasthenia gravis for 30 years, type 1 diabetes mellitus, and amyloidosis for 4 years. In the past, the patient was found to have amyloid deposits in the eyelids and breasts. A biopsy confirmed findings consistent with the AL type (amyloid light chain) of amyloidosis. The patient presented with increased shortness of breath and hoarseness on the most recent hospital admission. There was no past medical history of renal failure or multiple myeloma. The patient was being treated for myasthenia gravis with pyridostigmine (Mestinon) and high-dose steroids and had received plasmapheresis therapy in the past. Physical examination was significant for bilateral ptoses and indurations of the eyelids, pharyngeal fullness, shortness of breath, and a decreased range of motion of the neck. Her urine was negative for Bence-Jones protein, and the results of serum protein and urine protein electrophoreses were unremarkable.

A tracheostomy was performed, and a high-resolution chest CT study showed extensive interstitial lung disease, abnormally attenuated breast tissue (Fig 1), and low T2-weighted signal intensity (Figs 2A, 2B, C, D). The large submucosal nodular deposits and plaques on the mucosal surface along its entire length. Noncontrast MR imaging of the neck was performed on a 1.5T magnet. Contrast was not administered because of a reported allergy to gadolinium. The images showed large submucosal, nodular masses in the pharynx and supraglottic larynx, and thickening of the tracheal wall with stenosis. These masses had intermediate T1-weighted signal intensity (Figs 2A) and low T2-weighted signal intensity (Figs 2B, C, D). The large submucosal supraglottic laryngeal deposits were the primary cause of her airway obstruction. These findings on imaging were consistent with systemic amyloidosis. Biopsy specimens of the tracheal wall deposits on the mucosal surface confirmed the diagnosis of AL-type amyloidosis.

Discussion

Amyloidosis is a condition characterized by infiltration and extracellular deposition of homogeneous, eosinophilic proteinaceous fibrils in a beta-pleated sheet configuration. It classically has an apple-green birefringence when stained with Congo red and viewed under polarized light. From a clinical standpoint, it may be classified as a localized or systemic disease. The localized disease involves only 1 organ, typically the larynx or brain (where it has been associated with aging and Alzheimer disease). Systemic amyloidosis involves many organ systems and is typically divided into 3 separate categories. Primary amyloidosis (AL type or amyloid light chain) is the result of spontaneous overproduction of the antibody light chain in the bone marrow plasma cell. Secondary amyloidosis (AA type or amyloid A protein) occurs as a result of an underlying condition such as multiple myeloma; chronic infections (tuberculosis or osteomyelitis); and chronic inflammatory diseases such as rheumatoid arthritis, Sjögren disease, and ankylosing spondylitis. The familial type (ATTR type, or amyloid transthyretin protein) is rare and exhibits an autosomal dominant pattern of inheritance, and the amyloid deposits are composed of the protein transthyretin, which is made in the liver. There are 12 other protein subtypes that have been identified but are far less common.1-4

From a radiographic standpoint, MR imaging is the technique of choice to demonstrate the most specific features of amyloidosis. Typically, the amyloid deposits have intermediate T1-
Amyloidosis is a rare, infiltrative condition characterized by deposition of abnormal protein in various tissues. When systemic amyloidosis involves regions of the head and neck, the larynx and trachea are the most common sites. To date, there have been only 2 previous reported cases of systemic amyloidosis involving the pharynx. We described the case of a patient with severe systemic amyloidosis who presented with airway obstruction as a result of extensive involvement of the larynx, trachea, nasopharynx, and oropharynx. We also reported the findings on imaging. There was also a review of the literature of amyloid deposits in the pharynx.

References
1. Som PM, Curtin HD, eds. Head and Neck Imaging. 3rd ed. St. Louis: Mosby; 1996
2. Ghekiere O, Desuter G, Weynand B, et al. Hypopharyngeal amyloidoma. AJR Am J Roentgenol 2003;181:1720–21
3. Takahashi M, Matsuda H, Ito K, et al. Pediatric localized amyloidosis in me- sophraynx. Int J Pediatr Otorhinolaryngol 2002;66:181–84
4. Patel A, Pambuccian S, Maisel R. Nasopharyngeal amyloidosis. Am J Otolaryngol 2002;23:308–11
5. Hegarty JL, Rao VM. Amyloidoma of the nasopharynx: CT and MR findings. AJNR Am J Neuroradiol 1993;14:215–18
6. Penner CR, Muller S. Amyloidosis and the lung. AJR Am J Roentgenol 2006;186:421–29
7. Zhaa GL, Tsai TL, Lin C. Localized amyloid deposition in the nasopharynx and neck, mimicking nasopharyngeal carcinoma with neck metastasis. J Chin Med Assoc 2005;68:142–45
8. Panda NK, Sharma SC, Mann SB, et al. Localized amyloidosis of the nasopharynx. Ear Nose Throat J 1994;73:335–36
9. Ptkaraanta A, Malmbreg M. Localized amyloid tumor of the nasopharynx. Oto- laryngol Head Neck Surg 2000;122:309–10
10. Dominguez S, Weinberg P, Clare P, et al. Primary localized nasopharyngeal amyloidosis. A case report. Int J Pediatr Otorhinolaryngol 1996;36:661–67
11. Chadwick MA, Buckland JR, Mason P, et al. A rare case of dysphagia: hypopharyngeal amyloidosis masquerading as a post-cricoid tumour. J Laryngol Otol 2002;116:54–56
12. Lim JS, Lebowitz RA, Jacobs JB. Primary amyloidosis presenting as a nasopha- ryngeal mass. Am J Rhinol 1999;13:209–12
13. Roene C, Kronsbein H, Sletten K, et al. Amyloidosis of the breast. Virchows Arch 2002;440:527–35
14. Holmstrom GE, Nyman KG. Primary orbital amyloidosis localised to an ex- tracocular muscle. Br J Ophthalmol 1987;71:32–33
15. Murdoch DE, Sullivan TJ, Moslely I, et al. Primary localised amyloidosis of the orbit. Br J Ophthalmol 1996;80:1083–86
16. Uts JP, Swensen SJ, Gertz MA. Pulmonary amyloidosis. The Mayo Clinic experience from 1980 to 1993. Ann Intern Med 1996;124:407–13
17. Lachmann HJ, Hawkins PN. Amyloidosis and the lung. Chron Respir Dis 2006;3:203–14
18. Thompson PJ, Citron KM. Amyloid and the lower respiratory tract. Thorax 1988;38:84–87
19. Webb EM, Eckler BM, Webb WR. Using CT to diagnose nonneoplastic tracheal abnormalities: appearance of the tracheal wall. AJR Am J Roentgenol 2000;174:1315–21
20. Cordier JF, Loire R, Brune J. Amyloidosis of the lower respiratory tract. Clin- ical and pathologic features in a series of 21 patients. Chest 1988;90:827–31