Haploinsufficiency of the essential gene Rps12 causes defects in erythropoiesis and hematopoietic stem cell maintenance

Virginia Folgado-Marco1†, Kristina Ames2,3†, Jacky Chuen1, Kira Gritsman2,3*, Nicholas E Baker1*

1Department of Genetics, Albert Einstein College of Medicine, Bronx, United States; 2Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, United States; 3Department of Cell Biology, Albert Einstein College of Medicine, Bronx, United States

Abstract Ribosomal protein (Rp) gene haploinsufficiency can result in Diamond-Blackfan Anemia (DBA), characterized by defective erythropoiesis and skeletal defects. Some mouse Rp mutations recapitulate DBA phenotypes, although others lack erythropoietic or skeletal defects. We generated a conditional knockout mouse to partially delete Rps12. Homozygous Rps12 deletion resulted in embryonic lethality. Mice inheriting the Rps12KO/+ genotype had growth and morphological defects, pancytopenia, and impaired erythropoiesis. A striking reduction in hematopoietic stem cells (HSCs) and progenitors in the bone marrow (BM) was associated with decreased ability to repopulate the blood system after competitive and non-competitive BM transplantation. Rps12KO/+ lost HSC quiescence, experienced ERK and MTOR activation, and increased global translation in HSC and progenitors. Post-natal heterozygous deletion of Rps12 in hematopoietic cells using Tal1-Cre-ERT also resulted in pancytopenia with decreased HSC numbers. However, post-natal Cre-ERT induction led to reduced translation in HSCs and progenitors, suggesting that this is the most direct consequence of Rps12 haploinsufficiency in hematopoietic cells. Thus, RpS12 has a strong requirement in HSC function, in addition to erythropoiesis.

Introduction In the cell, protein synthesis is one of the most energetically expensive processes, and both the specificity and overall level of translation are tightly regulated. The ribosome is the macromolecular machine tasked with translating mRNAs into proteins and, as such, plays an essential role in the physiology of the cell. Ribosomes are evolutionarily conserved ribonucleoprotein complexes composed of ribosomal RNA (rRNA) and Rp (Yonath and Franceschi, 1998; Wilson and Doudna Cate, 2012). They catalyze protein synthesis in all cell types, providing a supply line of steady-state levels of necessary cellular proteins (Wilson and Doudna Cate, 2012). The functional components of the ribosome are...
highly conserved, and in higher eukaryotes consist of a small subunit (SSU: 40 S) and a large subunit (LSU: 60 S). These ribosomal subunits contain a total of 79 ribosomal proteins in eukaryotes, including 34 ribosomal proteins that are also conserved in prokaryotes (Petibon et al., 2021). In most cell types, ribosomal protein genes are among the most highly expressed genes (Geiger et al., 2012; Ji et al., 2019). Most ribosomal proteins are essential for ribosome biogenesis and function, which makes them essential for cell growth and proliferation (de la Cruz et al., 2015).

Given the importance of ribosomes, mutations in components of the ribosome or the ribosome biogenesis pathway in humans result in a group of diseases known as ribosomopathies. Despite the essential role of the ribosome in all cell types, this group of diseases is characterized by the presence of defects in specific tissues. Heterozygous loss of function mutations in many Rp genes leads to DBA, a congenital bone marrow failure syndrome characterized by macrocytic anemia, skeletal defects, and increased cancer risk. In DBA patients, mutations have been identified in 21 out of the 79 existing Rp genes, along with the GATA1 transcription factor (Ulirsch et al., 2018). Strikingly, in approximately 30–40% of DBA patient cases a mutation has not yet been identified. The fact that only a subset of all Rp genes has been found altered in DBA patients poses the question of whether mutations in any Rp gene can result in DBA and, if not, what would be the consequences for mutations in those Rp genes.

The generation and characterization of mice with mutations in Rp genes in recent years have begun to shed light on this question. Mutations in Rp genes in both the large and the small ribosomal subunits have been found to have similar phenotypes to those of DBA patients, such as impaired erythropoiesis, skeletal defects, and increased incidence of cancer, including some Rp not yet implicated in DBA (Oliver et al., 2004; McGowan et al., 2008; Jaako et al., 2011; Terzian et al., 2011; Morgado-Palacin et al., 2015; Schneider et al., 2016). However, erythropoietic defects are not always reported for mutants in Rp genes, including some that are implicated in human DBA (Matsson et al., 2004; Watkins-Chow et al., 2013; Kazerounian et al., 2016). Skeletal defects, but not impaired erythropoiesis, have been reported in mutants of Rpl24 or Rps7 (Oliver et al., 2004; Watkins-Chow et al., 2013).

In addition, a variety of other defects are reported in particular genotypes, ranging from embryonic lethality to brain defects, pigmentation defects, and defects in other aspects of hematopoiesis (McGowan et al., 2008; Kondrashov et al., 2011; Terzian et al., 2011; Watkins-Chow et al., 2013; Morgado-Palacin et al., 2015).

The Rps12 gene, which is not yet implicated in DBA, reportedly has special functions in Drosophila that differ from those of most Rp. Heterozygous loss of 66 out of the 79 Drosophila Rp genes results in a ‘Minute’ phenotype, named for its small adult sensory bristles and also characterized by delayed development (Marygold et al., 2007). Additionally, ‘Minute’ Rp variants are eliminated by wild-type (WT) neighboring cells when they are found together in developing tissues, by a process known as cell competition (Morata and Ripoll, 1975; Claveria and Torres, 2016; Baker, 2020). Remarkably, delayed development, reduced translation, cell competition, and other aspects of the ‘Minute’ phenotype depend on the Rps12 protein, which seems to be required for haploinsufficient effects of other Rp genes, suggesting that Rps12 acts as a sensor or reporter of deficits in other Rp. Accordingly, increasing the copy number of Rps12 enhances these ‘Minute’ phenotypes caused by mutations in other Rp genes, whereas reducing the Rps12 gene copy number suppresses them (Kale et al., 2018; Boulan et al., 2019; Ji et al., 2019). Rps12 forms part of the beak region of the 40 S small ribosomal subunit (SSU), near to the mRNA entry channel (Rabli et al., 2011). Interestingly, Rps12 is one of the few Rp genes whose null mutation does not present a ‘Minute’ bristle phenotype in heterozygosis (Marygold et al., 2007; Kale et al., 2018). In mammals, it has been reported that Rps12 deletions are frequent in diffuse large B cell lymphoma samples, and that Rps12 distribution in the ribosomes is altered under hypoxic conditions in the human embryonic kidney cell line, HEK293, resulting in changes of their translatome (Derenzini et al., 2019; Brumwell et al., 2020). Human Rps12 has also emerged as a candidate regulator of Wnt secretion in cancer cells (Katanava et al., 2020). However, the phenotype of Rps12 deletion in mammals has not been determined.

Protein synthesis regulation is important in stem cells. To maintain proper homeostasis, HSCs sustain the balance between a quiescent and an actively dividing state (Cabezas-Wallscheid et al., 2017). Quiescent HSCs require low rates of protein synthesis, and even HSCs exiting quiescence still exhibit significantly lower translation rates than more differentiated progenitors. Both increases and
decreases in protein synthesis levels can impair HSC function (Signer et al., 2014; Hidalgo San Jose et al., 2020).

The AKT/MTORC1 signaling pathway is one of the best-known signaling pathways that regulate translation, in part through the expression of ribosomal proteins and translation factors (Fonseca et al., 2014). Hyperactivation of AKT signaling is deleterious for normal HSC function, and results in increased HSC cycling, with depletion of the stem cell pool (Yilmaz et al., 2006; Kharas et al., 2010; Lee et al., 2010; Magee et al., 2012). Activation of AKT by stem cell factor (SCF) and other growth factors leads to the activation of MTOR, which results in the phosphorylation of the ribosomal protein S6 kinase 1 (S6K1) and the protein initiation factor 4E binding protein1 (4EBP1) (Gentilella et al., 2015). Phosphorylation of S6 by S6K1 at Serine 235/Ser236 is associated with increased protein translation (Krieg et al., 1988; Roux and Topisirovic, 2018). Additionally, phosphorylation of 4E-BP1 by MTOR at the Thr37 and Thr46 residues primes it for dissociation of 4E-BP1 from eIF4E, also activating translation (Schalm et al., 2003). Furthermore, another important pathway regulating growth and translation, the MEK/ERK pathway, has been shown to phosphorylate S6 at Serine 235/Ser236 promoting the translation preinitiation complex in mammalian cells (Roux et al., 2007).

To further explore the specific functions of Rp genes, their potential involvement in DBA, and the regulation of translation, we determined the phenotype of Rps12 deletion in mice. We generated a conditional knock-out mouse, Rps12lox/lox, which, when crossed to embryonically expressed Ella-Cre recombinase, allowed us to generate homozygous (Rps12KO/KO) and heterozygous knock-out mice (Rps12KO/+). We report that, while homozygous loss of Rps12 is lethal early in embryogenesis, the viable heterozygous Rps12KO/+ phenotype includes reduced body size, morphological defects, and, in some cases, hydrocephalus. Similar to DBA patients, and some other previously published Rp mouse mutants, Rps12KO/+ mice present a block in erythroid maturation, lower red cell counts, and decreased spleen size. However, reduction in Rps12 also leads to a striking reduction in the number of hematopoietic stem cells in the bone marrow, as well as significantly altered progenitor populations, leading to overall reduced bone marrow cellularity and a decreased ability of Rps12KO/+ BM cells to repopulate the blood system, uncovering an impairment in HSC and progenitor function. Inducible, conditional heterozygous deletion of Rps12 in adult hematopoietic cells also led to decreased HSC and progenitor cell numbers and pancytopenia. Interestingly, global translation was decreased after acute deletion, but increased in mice heterozygous for Rps12 from fertilization. Our work has uncovered important roles for RpS12 in translation and signaling in hematopoietic cells.

Results

Rps12 haploinsufficiency results in a pleiotropic phenotype, including delayed growth and increased mortality

To test the role of the Rps12 protein in a mammal, we used CRISPR gene editing to generate a mouse line with LoxP sites flanking exons 2 and 3 of the endogenous Rps12 locus (Rps12lox/lox) (Figure 1—figure supplement 1). Excision of these two exons generates an allele that cannot produce functional Rps12 protein, since exon 2 contains the ATG translation initiation codon. We chose not to eliminate the entire Rps12 locus, to avoid deleting the small nucleolar RNA genes Snord100 and Snora33, which are located in introns 4 and 5, respectively (Figure 1—figure supplement 1). We crossed Rps12lox/lox mice to a line that expresses the Cre recombinase embryonically (EIIa-Cre) to obtain Rps12 heterozygous knock-out (KO) mice (Rps12KO/+). We observed that, unlike heterozygous null flies, which don’t have any observable phenotype (Marygold et al., 2007; Kale et al., 2018), Rps12KO/+ mice have reduced growth rates post-partum in comparison to their wild-type littermates (Figure 1B and C). Additional phenotypes include kinked tails, mild hyperpigmentation of the footpads, and an increased incidence of hydrocephalus (Figure 1D, E and F). Except for hydrocephalus, these phenotypes have also been found in some other Rp mutant mouse models (Oliver et al., 2004; McGowan et al., 2008; Terzian et al., 2011). Furthermore, Rps12KO/+ mice have increased mortality, especially in early post-natal stages, most of which is associated with hydrocephalus or the inability to gain weight (Figure 1G).

To investigate if the KO allele of Rps12 is lethal in the homozygous state, and whether Rps12KO/+ animals have reduced growth during embryonic development, we crossed heterozygous Rps12KO/+ male and female mice and analyzed the resulting embryos at stage E13.5 (we could not assess frequencies in pups at birth because Rps12KO/+ females invariably died during labor). There were no
Rps12KO specimens among the embryos obtained (Figure 1H), which led us to conclude that this genotype must be lethal prior to stage E13.5. Furthermore, Rps12KO embryos were smaller in size compared to their wildtype counterparts (Figure 1I and J). Therefore, these results indicate that Rps12 is an essential gene, whose homozygous loss leads to early embryonic lethality, and heterozygous loss causes reduced growth starting in embryogenesis, in addition to other defects recognized post-partum.
Heterozygous loss of \(\text{Rps12} \) results in erythropoiesis defects that worsen with age

We sought to understand if, similar to other \(\text{Rp} \) mutant mouse models, \(\text{Rps12} \) heterozygous mutants have anemia or defective erythropoiesis. Analysis of peripheral blood counts showed that ‘young’
(6–8 weeks old) Rps12KO/+ mice had a lower number of white blood cells (WBC), red blood cells (RBC), and platelets, a condition known as pancytopenia (Figure 2A). We also observed a high mean corpuscular volume (MCV), which is reminiscent of the macrocytic anemia seen in DBA patients.

To analyze erythropoiesis in Rps12KO/+ mice, we used flow cytometry with the lineage markers Ter119 and CD71 on bone marrow and spleen cells (Figure 2B). These populations represent different maturation stages of the red blood cell production process, which we refer to as RI (CD71⁺, Ter119⁺, proerythroblasts), RII (CD71⁺Ter119⁺, basophilic erythroblasts), RIII (CD71⁺Ter119⁺, late basophilic and polychromatophilic erythroblasts), and RIV (CD71⁺Ter119⁺, orthochromatic erythroblasts) (Socolovsky et al., 2001). Bone marrow samples from young Rps12KO/+ mice showed a defective transition between the RII and RIII stage cells, while the erythropoiesis in spleen populations was unchanged (Figure 2C and D). This impairment in erythropoiesis worsened with age, as samples from ‘older’ (6- to 7-month-old) Rps12KO/+ mice had a higher accumulation of RII and RIII stage cells, while RIV population numbers were decreased in both spleen and bone marrow samples at this age (Figure 2E and F). To assess erythropoietic progenitor function, we performed colony-forming unit (CFU) assays in methylcellulose media optimized for the differentiation of erythroid progenitors. Consistent with the observed impairment of erythropoiesis, Rps12KO/+ bone marrow cells generated fewer BFU-E colonies, indicating reduced erythroid progenitors (Figure 2G). Altogether, these results show that Rps12 is required for erythroid differentiation, and demonstrate a role for Rps12 in erythropoiesis, similar to what has been observed in mouse models of DBA genes like Rpl11, Rps19, and Rps14 (Jaako et al., 2011; Morgado-Palacin et al., 2015; Schneider et al., 2016).

Rps12KO/+ mice have a striking reduction in hematopoietic progenitor populations, resulting in chronic pancytopenia

We were intrigued by the fact that Rps12KO/+ mice have pancytopenia (Figure 2A), since this is not a common feature of DBA patients. Due to the general decrease of peripheral blood cell numbers in Rps12KO/+ mice, we hypothesized that hematopoietic stem and progenitor cells (HSPCs) might be affected. Using flow cytometry analysis, we assessed the stem cell and progenitor populations in the bone marrow using previously defined markers (Pietras et al., 2015; Figure 3A). Indeed, compared to the controls, Rps12KO/+ revealed a striking reduction in the numbers of long-term HSCs (LT-HSCs: Flk2⁻ CD48⁻ CD150⁺ Lineage-Sca1⁻ c-kit⁻ (LSK)) and short-term HSCs (ST-HSCs: Flk2⁻ CD48⁻ CD150⁻ LSK) (Figure 3B). In addition, in Rps12KO/+ bone marrow, the numbers of all hematopoietic progenitor populations were significantly reduced (Figure 3C; Figure 3—figure supplement 1C). Accordingly, compared to the WT littermates, young (6- to 8-weeks-old) Rps12KO/+ mice had lower bone marrow cellularity, without obvious changes in the bone marrow architecture or dysplasia, and decreased spleen weights (Figure 3D and E, Figure 3—figure supplement 1A, B). Additionally, older (6- to 7-month-old) Rps12KO/+ mice also had lower HSC numbers and frequency (Figure 3F, Figure 3—figure supplement 1C and D). Interestingly, we observed a partial recovery of some of the HSC populations with age, such as multi-potent progenitors (MPP) 2 and 3, and the granulocyte-macrophage progenitors (GMP), as well as normalized overall BM cellularity, but not of spleen size (Figure 3G, H and I, Figure 3—figure supplement 1D). This, however, did not lead to improved blood counts (Figure 3J), indicating that HSPC function was not significantly improved with age.

To correlate these phenotypes with the expression levels of Rps12, rather than of the small RNAs Snord100 and Snora33, we performed RT-PCR and Western-blot analysis of cKit-enriched bone marrow cells. As expected, RT-PCR results showed a highly significant decrease in the Rps12 mRNA levels in Rps12KO/+ cells (Figure 3—figure supplement 2A) but no difference in the levels of Snord100 and Snora33 (Figure 3—figure supplement 2B). Western-blot analysis also showed a strong trend toward decreased Rps12 protein levels in cKit⁺ bone marrow cells (Figure 3—figure supplement 2C). We observed no changes to the ratio of the 28 S and 18 S rRNAs (Figure 3—figure supplement 2D), suggesting that steady-state SSU numbers were not depleted overall.

Lastly, since Rps12 deletion resulted in decreased HSC and progenitor numbers, we assessed the self-renewal capacity of Rps12KO/+ bone marrow cells. Plating assays in complete methylcellulose media showed a decreased clonogenic activity of Rps12KO/+ bone marrow cells, as evidenced by the lower number of total colonies observed in the first round of plating (Figure 3K). Additionally, Rps12KO/+ cells have reduced serial replating capacity, suggesting decreased self-renewal capacity (Figure 3K). Together, these results suggest that Rps12 plays an essential role in HSC function.
Figure 3. Reduced hematopoietic stem cells (HSCs) and other hematopoietic progenitor numbers in Rps12^{KO/+} mice. (A) Representative gating strategy used to identify bone marrow populations of LSKs: long-term HSC (LT-HSC), short-term HSC (ST-HSC), multi-potent progenitors (MPP2, MPP3, MPP4), and myeloid progenitors (MPROG): common myeloid progenitor (CMP), granulocyte-monocyte progenitor (GMP), megakaryocyte-erythrocyte (MEP), and common lymphoid progenitor (CLP). (B) Total LT-HSCs and ST-HSCs per femur of young mice (6- to 8-weeks-old littermates, +/- n=4, and KO/+ n=3). (C) Total number of cells per femur of indicated hematopoietic progenitor populations in young mice (6- to 8-weeks-old littermates, +/- n=4, and KO/+ n=3). (D) Bone marrow cellularity is represented as cells per femur ×10⁶ from young mice (6- to 7-weeks-old littermates, +/- n=10, and KO/+ n=10). (E) Spleen weights of young (6- to 7-weeks-old, +/- n=10, and KO/+ n=10) mice. (F) Total HSCs per femur of older mice (6- to 7-month-old, +/- n=3, and KO/+ n=4). (G) Total number of cells per femur of indicated hematopoietic progenitor populations in older mice (6- to 7-month-old, +/- n=3, and KO/+ n=4). (H) Bone marrow cellularity is represented as cells per femur ×10⁶ from older mice (older: 6- to 7-months-old, +/- n=3, and KO/+ n=9). (I) Spleen weights of older (6- to 7-months-old, +/- n=8, and KO/+ n=14) mice. (J) Quantification of peripheral blood counts from older mice (6- to 7 months old, +/- n=8, and KO/+ n=11). (K) Total number of colonies per plate (1 × 10⁴ bone marrow (BM) cells from 6- to 7-month-old mice plated in round 1 and 1 × 10⁴ cells plated from the previous plate on each re-plating round) on each round of re-plating in complete methylcellulose media (+/- n=5 and KO/+ n=5, 2 replicates per biological sample). Statistical analysis: quantifications represent mean +/- SEM, shown as the error bars, unpaired t-tests were performed to establish significance among populations between genotypes *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. HSCs and progenitor population distributions.

Figure supplement 1. Heterozygous loss of Rps12 in the hematopoietic cells.

Figure supplement 1—source data 1. Frequency of hematopoietic progenitors.

Figure 3 continued on next page
Heterozygous loss of Rps12 impairs the ability of HSCs to reconstitute peripheral blood

We assessed the self-renewal and differentiation properties of Rps12KO/+ bone marrow cells (CD45.2+) in vivo by transplanting bone marrow into lethally irradiated B6.SJL mice (CD45.1+) (Figure 4A). Interestingly, compared to the Rps12fl ox/fl ox or Rps12 flox/+ controls, Rps12 KO/+ bone marrow recipients had decreased survival, with 5 out of 20 transplanted mice dying within the first 8 weeks in the Rps12 KO/+ group vs 0 out of 20 dying in the control group (Figure 4B). Whereas 100% of the control recipients were able to reconstitute the bone marrow in the long term (up to 20 weeks), only 55% of the Rps12KO/+ recipients did so (Figure 4C). Furthermore, longitudinal analysis of donor chimerism in the peripheral blood revealed that compared to the controls, surviving Rps12 KO/+ transplant recipients had significantly decreased donor chimerism (%CD45.2+) in the B and T cell lineages, and a trend toward decreased chimerism in the myeloid lineage (Figure 4D–G). Together, this data suggests that bone marrow cells that lack RpS12 are deficient in hematopoietic repopulating capacity after lethal irradiation.

To assess Rps12KO/+ bone marrow cell repopulation capacity under more stringent conditions, we performed competitive transplantation of control (Rps12 flox/+) or Rps12 KO/+ bone marrow (CD45.2+) mixed with competitor WT bone marrow from B6.SJL mice (CD45.1+) in a 1:1 ratio into lethally irradiated B6.SJL (CD45.1-) recipient mice. Post-transplantation we monitored donor chimerism in the peripheral blood over time and analyzed the bone marrow chimerism at 20 weeks post-transplantation (Figure 4H). Compared to the controls, Rps12 KO/+ transplant recipients showed a striking decrease in the percentage of donor-derived bone marrow cells and of HSCs (Figure 4I and J), accompanied by a significant and persistent reduction in peripheral blood total donor chimerism in both myeloid and lymphoid lineages (Figure 4K–N). Together, these data suggest that Rps12 haploinsufficiency leads to perturbed HSC self-renewal, resulting in ineffective hematopoiesis.

The embryonic hematopoietic system is largely unaffected in Rps12KO/+ animals

The striking reduction of hematopoietic progenitor numbers in Rps12 KO/+ adult bone marrow prompted us to investigate if this phenotype could be a consequence of defective HSC production in the fetal liver during embryogenesis. We analyzed fetal liver hematopoietic populations of E13.5 Rps12 KO/+ and Rps12 KO/+ embryos because it has been shown that HSC numbers increase, and differentiation begins, between days 12 and 16 of embryogenesis in this organ (Sugiyama et al., 2011). First, we looked at the gross morphology and cellularity of the liver, neither of which were significantly different between the genotypes (Figure 5A and B). Next, we assessed different stages of erythropoiesis using Ter119 and CD71 markers as previously described in fetal liver (Magee and Signer, 2021). Most of the cells in population V were lost during staining, and, therefore, we did not include them in our analysis. Compared to the control embryos, Rps12 KO/+ embryos showed no apparent impairment in erythropoiesis in the fetal liver (Figure 5C and D). Finally, we analyzed the distribution of HSPCs in E13.5 embryos. Overall, we did not observe any significant changes in the frequencies of LT-HSCs (CD48⁻CD150⁻ LSK), ST-HSCs (CD48⁻CD150⁻ LSK), MEP (CD48⁻ LSK), CMP, GMP, or MEP populations (Figure 5E–H). These results show that partial loss of Rps12 does not affect embryonic hematopoiesis by E13.5. Therefore, the later HSPC deficiency is not a consequence of a defect in the embryonic specification.

Rps12 KO/+ HSCs and some hematopoietic progenitors show higher translation, cycling, and apoptosis

There are several important factors that maintain the HSC pool, including quiescence, low translation levels, and cell survival. We, therefore, analyzed the distribution of HSPCs among the cell cycle stages defined by the DNA content (Hoechst) and the levels of Ki67 (Figure 6A). We observed a
Figure 4. Heterozygous loss of Rps12 impairs hematopoietic stem cells (HSCs) ability to reconstitute peripheral blood. (A) Non-competitive bone marrow (BM) transplant strategy testing the long-term reconstituting activity of Rps12KO/+ HSCs. 10⁶ bone marrow cells from Rps12KO/+ or Rps12flox/flox samples (CD45.2+) were transplanted into lethally irradiated B6.SJL (CD45.1+) mice, peripheral blood chimerism was determined every 4 weeks. (B) Kaplan-Meier survival curves of mice transplanted with BM cells from Rps12KO/+ and control Rps12flox/+ or Rps12flox/flox mice (control n=20 and KO/+ n=20 transplanted mice, the combination of two independent non-competitive transplants with 1 donor per genotype transplanted into 10 host mice).
mixed with 5×10^5 competitor bone marrow cells from B6.SJL (CD45.1+) mice were injected into lethally irradiated B6.SJL (CD45.1+) mice. Chimerism

Source data 1.

Bone marrow transplants.

The online version of this article includes the following source data for figure 4:

Significance among populations between genotypes *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure 4 continued

Donor-derived peripheral blood chimerism of competitively transplanted

K–N

chimerism and (H) HSCs donor-derived (CD45.2+) chimerism in the recipient bone marrow (I in peripheral blood was determined every 4 weeks and bone marrow chimerism was analyzed at 20 weeks after transplant. (J) Total bone marrow competitive transplants were performed twice, using different controls: $Rps12^{flox/+}$ or $Rps12^{flox/+}$ donor bone marrow ($CD45.2^+$) mixed with 5×10^5 competitor bone marrow cells from B6.SJL (CD45.1+) mice were injected into lethally irradiated B6.SJL (CD45.1+) mice. Chimerism in peripheral blood was determined every 4 weeks and bone marrow chimerism was analyzed at 20 weeks after transplant. (I) Total bone marrow chimerism and (J) HSCs donor-derived ($CD45.2^+$) chimerism in the recipient bone marrow ($fox^+/n=10$ and KO/+ $n=10$ competitive-transplanted mice). (K–N) Donor-derived peripheral blood chimerism of competitively transplanted $Rps12^{KO/+}$ or $Rps12^{KO/+}$ bone marrow cells as described in (H). Non-competitive transplants were performed twice, using different controls: $Rps12^{flox/+}$ or $Rps12^{flox/+}$. The competitive transplant was performed once, using $Rps12^{flox/+}$ mice as a control group. Statistical analysis: data represent mean +/− SEM, shown as the error bars, unpaired t-tests were performed to assess significance among populations between genotypes *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

The online version of this article includes the following source data for figure 4:

Source data 1. Bone marrow transplants.

lower proportion of $Rps12^{KO/+}$ HSCs in the G0 stage of the cell cycle, and a significantly increased proportion in the active cycling phases G1 and S/G2/M (Figure 6B). Similar results were observed in MPP2/3 (LSK, Flk2^+, CD48^+), MPP4, and myeloid (MPROG) and common lymphoid progenitors (CLP) (Figure 6B). These results show that compared to the control, $Rps12^{KO/+}$ HSCs are significantly less quiescent, with a higher proportion of HSCs and progenitors actively cycling.

Cell cycle activation generally requires translation, but previous studies have reported a generalized decrease in global translation in some Rps mutants, including in HSPC, despite a decrease in HSC quiescence (Oliver et al., 2004; Signer et al., 2014; Schneider et al., 2016). To assess the global translation levels of each HSPC population in $Rps12$ heterozygous mice using flow cytometry, we performed an ex vivo assay on freshly isolated HSCs and progenitors using the puromycin analog o-propargyl puromycin (OPP) as previously described (Signer et al., 2014). Unexpectedly, compared to the $Rps12^{+/+}$ controls, $Rps12^{KO/+}$ HSCs and multipotent progenitor cell populations all showed increased levels of global translation (Figure 6C and D). The difference was especially remarkable in HSCs. Interestingly, compared to the controls, $Rps12^{KO/+}$ myeloid progenitors did not exhibit differences in OPP intensity, and among different myeloid progenitor populations, only the megakaryocyte-erythrocyte progenitors (MEPs) had a significant increase in OPP incorporation (Figure 6E). Thus, these data suggest that a decrease in RPS12 leads to an abnormal increase in global protein translation in immature bone marrow populations, including HSCs.

Cell death can deplete the HSC pool and can result from chronic HSC activation. We asked whether this reduction of HSCs in $Rps12^{KO/+}$ animals is due to an increase in apoptosis. Interestingly, compared to controls, $Rps12^{KO/+}$ animals have an increased number of apoptotic cells in bone marrow cytospins (Figure 6F). To quantify the level of apoptosis in the immunophenotypic populations in the bone marrow, we used the flow cytometry markers PI and Annexin V together with population-specific cell surface markers (Figure 6G). Our flow cytometry analysis confirmed a significant increase in apoptosis in Lineage-Sca1^-c-Kit^+ (LSK) cells, a population that contains HSCs and MPPs, but not in more mature myeloid progenitors (Figure 6H and I).

$Rps12^{KO/+}$ HSPCs have overactivated MEK/ERK and AKT/MTOR signaling pathways

Because $Rps12^{KO/+}$ mutants have increased translation, we assessed the activity of the AKT/MTOR pathway, since it is known to regulate translation. Since the AKT/MTOR pathway is activated by stem cell factor (SCF), we determined the level of the AKT/MTOR pathway activation in the presence and absence of SCF, by assessing the phosphorylation levels of phospho-AKT (Ser 473) and the MTOR downstream effectors phospho-S6 (Ser235/236) and phospho-4E-BP1 (Thr37/46). Our results show that, in the more immature LSK population, which includes HSCs and MPPs, the levels of p-AKT, p-S6, and p-4E-BP1 were significantly elevated in $Rps12^{KO/+}$ animals compared to wild-type littermates, not only upon SCF stimulation, but even at the non-stimulated baseline (Figure 7A–C). Interestingly, this was not the case for the more mature myeloid progenitor cells, where the levels of p-AKT, p-S6, and p-4E-BP1 are comparable to the controls in both non-stimulated and SCF-stimulated conditions, and these cells also exhibited more normal translation rates (Figure 7D–F). Since phosphorylation
of S6 and 4EBP1 leads to increased translation, this data corroborates the increase in translation observed in the Rps12KO/+ LSK population (Figure 6D). Interestingly, more mature MPROG do not have increased translation (Figure 6E) and do not have increased activation of the AKT/MTOR pathway (Figure 7D–F). Together, these data suggest that activation of translation and the increase in AKT/MTOR signaling in Rps12KO/+ mutant cells are specific to HSCs and MPPs.

Additionally, compared to wild-type controls, Rps12KO/+ mutant animals also have increased phospho-ERK1 (Thr202/Tyr204) in the LSK and MPROG populations under SCF-stimulated and non-stimulated conditions (Figure 7G and H). Another regulator of translation is the eukaryotic initiation factor 2α (eIF2α), which is required for CAP-dependent translation initiation. Cells respond to several stress conditions by phosphorylating eIF2α, reducing global translation, and upregulating stress-response genes (Wek et al., 2006; Sigurdsson and Miharada, 2018). In skeletal muscle stem cells, eIF2α phosphorylation promotes quiescence and stem cell maintenance (Zismanov et al., 2016) Interestingly, compared to the control cells, Rps12KO/+ cKit+ bone marrow progenitor cells show decreased levels of p-eIF2α (Figure 7I), which also correlates with increased translation.
Heterozygous post-natal loss of Rps12 in the bone marrow impairs translation in HSCs and progenitors and leads to pancytopenia

To better understand the effects of Rps12 deletion in HSCs, we generated a conditional knock-out model Rps12floox/+; Tal1-Cre-ERT, in which Rps12 is excised specifically in hematopoietic cells upon tamoxifen (TAM) treatment. We induced Rps12 deletion by tamoxifen injection in young adult mice.
Figure 7. Decreased Rps12 levels lead to the excessive activation of the AKT/MTOR and ERK signaling pathways. (A–H) Representative phospho-flow cytometry histograms and quantification of the normalized geometric mean fluorescent intensity of pAKT (Ser 473) (A, D), pS6 (Ser235/236) (B, E), p4EBP1 (Thr37/46) (C, F), and pERK1(Thr202/Tyr204) (D, H) signal in the LSK (A, B, C, G) and MPROG (D, E, F, H) bone marrow cell populations. Baseline signal was determined in the none treated (NT) serum-starved cells, stimulation was done with the stem cell factor (SCF) ex vivo for 5 min. Immunophenotypic populations were defined as follows: LSK: Lin−cKit+Sca1+, MPROG: Lin−cKit+Sca1−. (I) Representative images of western blot analysis and quantification of phospho-eIF2α normalized to the total eIF2α protein in cKit- enriched BM samples (6- to 8-weeks-old littermates, +/+ n=4, and KO/+ n=4) (A–H) 7-weeks-old littermates, +/+ n=6, and KO/+ n=6 biological samples were used. Statistical analysis: quantifications represent mean +/- SEM, shown as the error bars, one-way ANOVA Tukey’s multiple comparison tests were performed to establish significance among samples between genotypes.

The online version of this article includes the following source data for figure 7:
Source data 1. Blots of cKit+ bone marrow cells.
Source data 2. pAKT, pS6, and pERK1 levels in hematopoietic progenitors.
and assessed changes in the peripheral blood and bone marrow at 7-, 12- and 14-weeks post TAM injection (Figure 8A). Rps12 deletion by tamoxifen injection in young adult mice is present at 2- and 7-weeks post excision, as demonstrated by the presence of DNA fragment of 300 bp compared to the full WT length of 900 bp (Figure 8—figure supplement 1A). At 7 weeks post Rps12 excision, there were no significant changes in peripheral blood counts (Figure 8—figure supplement 1B), in bone marrow cell counts, or by the absolute number of progenitor and stem cell populations in the bone marrow (Figure 8—figure supplement 1C). Additionally, there was no difference in translation levels in bone marrow HSPCs, measured using the OPP incorporation assay (Figure 8—figure supplement 1D). At 12 weeks post Rps12 deletion, there were no changes in peripheral blood counts, total bone marrow cellularity, or in stem and progenitor cell populations in the bone marrow (Figure 8B and C). At that time point, however, OPP incorporation was significantly decreased in hematopoietic stem and progenitor cells, indicating decreased translation (Figure 8D). We did not observe any significant differences in the cell cycle profile of HSPCs at this time point (Figure 8—figure supplement 1E). At 14 weeks post Rps12 deletion, we began to observe mild pancytopenia (Figure 8E), a significant decrease in bone marrow cellularity, a decrease in HSC numbers, and a trend toward decreased progenitor populations (Figure 8F). We did not observe any significant differences in OPP incorporation in HSPCs at this time point (Figure 8—figure supplement 1F). These data suggest that the effect of Rps12 loss upon excision in adult hematopoietic cells is decreased translation, then decreases in HSCs maintenance and quiescence, resulting in decreased BM cellularity and pancytopenia.

Discussion

We generated an Rps12 knock-out mouse and describe the homozygous and heterozygous mutant phenotypes. Homozygous loss of Rps12 was lethal during early embryogenesis. Heterozygous mice were viable with visible phenotypes and blood cell defects. Although the Rps12 locus is unusual in Drosophila, in not exhibiting any haploinsufficient phenotype, and in playing a special role during cell competition, Rps12 heterozygous mutant mice resembled mice mutants for other Rp genes in reduced body size, skeletal defects, and anemia. We also found that Rps12 is required for erythroid differentiation. Some of the mice also exhibited hydrocephalus. Because aspects of the Rps12 mutant phenotype resemble those of mice mutant for other Rp genes, including defective erythropoiesis, Rps12 may also be a candidate gene for DBA (see below). Other Rps12 functions that have been suggested in mammalian cells and cancers could now be explored using this conditional knock-out model with tissue-specific Cre-drivers (Derenzini et al., 2019; Brumwell et al., 2020; Katanaev et al., 2020).

Most strikingly, we report that Rps12 is also crucial for normal hematopoietic stem cell maintenance, with defective engraftment and long-term repopulation of Rps12KO/+ bone marrow in transplantation experiments. This seems specific to adult HSCs, as no hematopoietic defect was observed in the fetal livers of Rps12KO/+ embryos. Although we have not determined whether the transition from the fetal liver to the bone marrow occurs normally, a defect then would only be expected to delay bone marrow engraftment, and does not seem sufficient to explain the chronically defective HSC function and striking loss of HSC quiescence observed in Rps12KO/+ adult mice. The loss of bone marrow HSC quiescence was associated with chronic activation of Akt/MTOR and Erk, increased translation, and HSC apoptosis. Chronic activation of the AKT/MTOR pathway has been shown to result in increased HSC cycling, apoptosis, and decreased self-renewal (Chen et al., 2008; Kharas et al., 2010), which could explain the HSPC exhaustion phenotype and increased HSPC apoptosis in Rps12KO/+ mice.

The increase in HSPC-specific global translation upon heterozygous embryonic deletion of Rps12 is the opposite of what has been reported in Rpl24Bwt/+ and Rps14c/+ (Signer et al., 2014; Schneider et al., 2016), although there are other Rp genotypes where HSC cycling is increased (Terzian et al., 2011; Schneider et al., 2016). However, it is consistent with the increased translation that has been reported in mice with deletion of Pten in HSCs, which leads to activation of the AKT/MTOR pathway (Signer et al., 2014). Such an increase would in fact be expected as a result of the striking activation of the AKT/MTOR and ERK pathways. Rps12KO c-Kit+ hematopoietic progenitors also have lower phosphorylated eIF2α, which would also predict higher translation levels. Importantly, however, detailed studies of Rps12 deletion from ribosomes in yeast clearly demonstrate a strong reduction in translation (Martín-Villanueva et al., 2020).

Inducible, conditional post-natal deletion of Rps12 in hematopoietic cells revealed a sequence of events over time (summarized in Figure 8G). Loss of Rps12 in adult hematopoietic cells led to
Figure 8. Heterozygous loss of Rps12 in the hematopoietic cells impairs translation in the hematopoietic stem and progenitor cells and leads to pancytopenia. (A) Schematic representation of the time-course analysis testing the effect of the heterozygous loss of Rps12 activity in hematopoietic stem cells (HSCs). (B–D) Analysis of Rps12lox/+; Tal1-Cre-ERT (Rps12lox/lox) and Rps12lox/lox (CNTRL) at 12 weeks post tamoxifen treatment (TAM). (B) Peripheral blood cell analysis, (C) quantification of bone marrow cellularity and absolute cell count of bone marrow populations per femur, (D) representative flow histograms, and quantification of the median OPP intensity in bone marrow populations. (E) Peripheral blood cell analysis at 14 weeks and (F) quantification of bone marrow cellularity and absolute cell count of bone marrow populations per femur. (G) Schematic summary of the phenotypic analysis of mouse models. Immunophenotypic populations were defined as follows: MPROG: Lin−cKit+Sca1−, LSK: Lin−cKit+Sca1+; MPP3,2: Lin−cKit+Sca1+Flk2−CD48+, HSCs: Lin−cKit+Sca1+Flk2−CD48−. Statistical analysis: quantifications represent mean +/- SEM, shown as the error bars. Significance was determined using the Welch’s t-test *p≤0.05, **p≤0.01. At each time point n (Rps12lox/lox)=5 and n (CNTRL)=5. Schematics created with BioRender.
decreased translation in HSPCs, and then a decreasing HSC pool over time, with decreased BM cellularity and pancytopenia, but no significant effects on HSC quiescence. Thus, it appears that initially Rps12 is required to maintain translation levels in the adult hematopoietic system. The more complicated phenotype of the full-body Rps12KO/+ mouse may reflect an earlier developmental effect on the BM, and a potential effect on the BM microenvironment. Furthermore, this phenotype could reflect compensatory changes due to loss of HSC maintenance, reflected in the observed increases in MTOR signaling, translation, and HSC cycling.

The fact that Rps12KO/+ mice exhibit fully-penetrant pancytopenia with a severe bone marrow failure phenotype, in addition to the erythropoiesis defect, raises the possibility that Rps12 might not have been found mutated in DBA patients due to a more severe human phenotype of Rps12 mutation that is not classified as DBA. Perhaps only a hypomorphic Rps12 genotype would be associated with DBA. While caution is required extrapolating from mouse phenotypes to humans, our study nevertheless raises the possibility that Rps12 could in fact be a candidate gene not only for DBA, but for a broader group of bone marrow failure disorders. One reason that genetic alterations in Rps12 have not yet been reported in DBA or other bone marrow failure disorders could be that Rps12 is not included in the most common targeted next-generation sequencing (NGS) panels used in the diagnosis of these disorders, some of which report molecular diagnostic rates of only 44–59% (Ghemlas et al., 2015; Muramatsu et al., 2017; Gálvez et al., 2021). We suggest that Rps12 should be included in expanded NGS panels for bone marrow failure disorders or should be sequenced in patients in whom there are no molecular findings in the standard NGS panels.

Methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Genetic reagent (Mus musculus)	C57BL/6 J	The Jackson Laboratory	RRID:IMSR_JAX:000664	
Genetic reagent (Mus musculus)	Ella-Cre (FVB/N-Tg(Ella-cre)CS379Lmgd/J)	The Jackson Laboratory	RRID:IMSR_JAX:003724	
Genetic reagent (Mus musculus)	B6.SJL-Ptprca/BoyAllTac (CD45.1)	The Jackson Laboratory	RRID:IMSR_JAX:002014	
Genetic reagent (Mus musculus)	RpS12flox/flox	This study	Rps12em1Nbakr MGI:6388411	Generated for this study
Genetic reagent (Mus musculus)	Scl-Cre-ER	This study	RRID:IMSR_JAX:037466	Generated for this study
Genetic reagent (Mus musculus)	RpS12flox/+; Scl- Cre- ER	This study		
Antibody	Rat monoclonal CD16/CD32 BD biosciences	Cat # 553142	Clone: 2.4G2 (1 µl per 10^7 cells)	
Antibody	APC-Cy7 Rat anti-mouse monoclonal Gr1 BD biosciences	Cat # 557661	Clone: RB6-8C5 (1 µl per 10^7 cells)	
Antibody	PE rat anti-mouse monoclonal Mac1 BioLegend	Cat # 101208	Clone: M1/70 (1 µl per 10^7 cells)	
Antibody	Alexa Fluor 700 Rat anti-Mouse monoclonal B220 BD biosciences	Cat # 557957	Clone: RA3-6B2 (1 µl per 10^7 cells)	
Antibody	APC Rat Anti-Mouse monoclonal Thy1.2 BD biosciences	Cat # 553007	Clone: S3-2.1 (1 µl per 10^7 cells)	

Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Antibody	FITC Mouse Anti-Mouse monoclonal CD45.1	BD biosciences	Cat # 553775	Clone: A20 (1 µl per 10^7 cells)
Antibody	PE/Dazzle 594 mouse anti-mouse monoclonal CD49.2	BioLegend	Cat # 109845	Clone: 104 (1 µl per 10^7 cells)
Antibody	CD3e hamster monoclonal, Biotin,	eBioscience	Cat # 13003182	Clone: 145–2 C11 (1 µl per 10^7 cells)
Antibody	CD4 rat Monoclonal, Biotin,	eBioscience	Cat #13004182	Clone: GK1.5 (1 µl per 10^7 cells)
Antibody	CD8a rat Monoclonal, Biotin,	eBioscience	Cat # 13008182	Clone: 53–6.7 (1 µl per 10^7 cells)
Antibody	Gr1 rat Monoclonal, Biotin,	eBioscience	Cat # 13593182	Clone: RB68C5 (1 µl per 10^7 cells)
Antibody	B220 rat Monoclonal, Biotin,	eBioscience	Cat # 13045282	Clone: RA3-6B2 (1 µl per 10^7 cells)
Antibody	CD19 mouse Monoclonal, Biotin,	eBioscience	Cat # 13019182	Clone: MB 19–1 (1 µl per 10^7 cells)
Antibody	Gr1 rat Monoclonal, Biotin,	eBioscience	Cat # 13045282	Clone: RA3-6B2 (1 µl per 10^7 cells)
Antibody	CD3e hamster monoclonal, Biotin,	eBioscience	Cat # 13019182	Clone: MB 19–1 (1 µl per 10^7 cells)
Antibody	Ter119 rat Monoclonal, Biotin,	eBioscience	Cat # 13592182	Clone: TER119 (1 µl per 10^7 cells)
Antibody	PE/Cyanine PE anti-mouse monoclonal Sca-1	BioLegend	Cat #108114	Clone: D7 (1 µl per 10^7 cells)
Antibody	APC Rat Anti-Mouse monoclonal cKit	BD Biosciences	Cat #553356	Clone: 2B8 (1 µl per 10^7 cells)
Antibody	PE Rat Anti-Mouse monoclonal FCRg	Thermo Fisher	Cat # 12-0161-82	Clone: 93 (1 µl per 10^7 cells)
Antibody	eFluor 450 Rat Anti-Mouse monoclonal CD34	Thermo Fisher	Cat #48-0341-80	Clone: RAM34 (1 µl per 10^7 cells)
Antibody	Brilliant Violet 421 Rat anti-Mouse monoclonal CD150	BD Biosciences	Cat #562811	Clone: G38-480 (1 µl per 10^7 cells)
Antibody	Alexa Fluor 700 hamster anti-mouse monoclonal CD48	BioLegend	Cat #103426	Clone: HM48-1 (1 µl per 10^7 cells)
Antibody	PE/Cyanine5 Rat anti-mouse monoclonal Fik-2	BioLegend	Cat #135312	Clone: A2F10 (1 µl per 10^7 cells)
Antibody	Brilliant Violet 605 mouse anti-mouse monoclonal CD45.2	BioLegend	Cat #109841	Clone: 104 (1 µl per 10^7 cells)
Antibody	PerCP/Cyanine5.5 rat anti-mouse monoclonal IL-7Rα	BioLegend	Cat #135021	Clone: A7R34 (1 µl per 10^7 cells)
Other	Streptavidin-APC-Cy7	BD Biosciences	Cat # 554063	second-step reagent for cells stained with biotinylated primary antibodies
Antibody	PE anti-mouse monoclonal Fik-2	BioLegend	Cat # 135306	Clone: A2F10 (1 µl per 10^7 cells)
Commercial assay, kit	FITC Annexin V	BD Biosciences	Cat # 560931	Apoptosis detection: Phosphatidylserine probe
Commercial assay, kit	Propidium Iodide	BD Biosciences	Cat # 556463	Apoptosis detection: Staining Solution
Antibody	pS6 (Ser235/236) Alexa 488 rabbit monoclonal	Cell Signaling	Cat # 4803	Clone: DS7.2.2E ICFC (1:50)
Antibody	pERK1 (T202/Y204) Alexa 488 mouse monoclonal	Cell Signaling	Cat # 4374	Clone: E10 ICFC (1:20)
Antibody	pAkt (Ser473) AF647 rabbit monoclonal	Cell Signaling	Cat # 2337	Clone: 19K1H2 ICFC (1:20)

Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Antibody	p4E-BP1 (Thr37/46) rabbit monoclonal AF647	Cell Signaling	Cat # 5123	Clone: 236B4 ICFC (1:20)
Antibody	FITC Mouse monoclonal Anti-4E-BP1	BD Biosciences	Cat # 556026 RRID: AB_396302	Clone: BS6 (1 µl per 10^7 cells)
other	Hoechst 33342 Solution	BD Biosciences	Cat # 561908	See legend to Figure 6
Commercial assay, kit	Click-iT Plus OPP Alexa Fluor 488	Thermo Fisher	Cat # C10456	Protein Synthesis Assay Kit
Antibody	APC rat anti-mouse monoclonal TER-119	BioLegend	Cat # 116211	Clone: TER119 (1 µl per 10^7 cells)
Antibody	PE rat anti-Mouse monoclonal CD71	BD biosciences	Cat # 561937	Clone: C2 (1 µl per 10^7 cells)
Sequence-based reagent	gRNA 1	This study	PCR primer	CGCAGTAGACACG CTATCGCGGG
Sequence-based reagent	gRNA 2	This study	PCR primer	GTGGTTGCTGT GTGGATCGGG
Sequence-based reagent	F1	This study	PCR primer	GCACATGCAC ACAGAAGT
Sequence-based reagent	R1	This study	PCR primer	CGGACTATCTA TCCCCACGA
Sequence-based reagent	F2	This study	PCR primer	GTACAGCTATC TGCCAGGAA
Sequence-based reagent	R2	This study	PCR primer	CGAGGTGACGGGTATCG
Sequence-based reagent	F3	This study	PCR primer	CGATACGGTGCACCTCG
Sequence-based reagent	R3	This study	PCR primer	GTGCTAGCAAC AGAAGGTC
Sequence-based reagent	F4	This study	PCR primer	GTCTCAATCTGTGCGGGTGT
Commercial assay, kit	Cytofix/Cytoperm	BD biosciences	Cat # BDB554714	Fixation/Permeabilization Solution Kit
Commercial assay, kit	DNeasy kit	Qiagen	Cat #69504	DNA extraction kit
Chemical compound, drug	mSCF	Peprotech	Cat # 250-03	Cytokine
Other	MethoCult GF M3434	Stem Cell Technologies	Cat # 03434	Methylcellulose media
Other	MethoCult M3334	Stem Cell Technologies	Cat # 03334	Methylcellulose media
Other	CD117 MicroBeads, mouse	Miltenyi Biotec	Cat #130-091-224	See ‘Western blot analysis’ in methods section
Other	L5 Column	Miltenyi Biotec	Cat # 130-042-401	Separation column
Antibody	RpS12, rabbit polyclonal	Proteintech	Cat # 16490-1-AP	1:1000
Antibody	β-Actin (13E5) Rabbit monoclonal mAb	Cell Signaling	Cat # 4970	1:1000
Antibody	elf2a (D7D3) Rabbit monoclonal mAb	Cell Signaling	Cat # 5324	1:1000
Antibody	phospho-elf2a (Ser52) rabbit polyclonal	Thermo Scientific	Cat # BS-4842R	1:1000
Commercial assay, kit	mRNA First-Strand Synthesis Kit	Takara Bio	Cat # 638313	
Commercial assay, kit	mirVana miRNA Isolation Kit	Thermo Fisher	Cat # AM1560	
Mice
All animals were housed at the Animal Housing and Studies Facility at Albert Einstein College of Medicine (AECOM) under pathogen-free conditions and experiments were performed following protocols approved by the Institutional Animal Care and Use Committee (IACUC) (Protocol #20181206). C57BL/6 J and Ella-Cre (FVB/N-Tg(Ella-Cre)CS79Lmgd/J) mice were obtained from Jackson. B6.SJL-Ptprca/BoyAiTac (CD45.1) mice from Taconic were used for transplantation experiments. To generate Rps12KO/+ mice, we crossed Rps12flox/flox to Ella-Cre mice and used primers flanking the floxed region to identify progeny where recombination had occurred. Unless indicated, these mice were kept as heterozygous by crossing them with C57BL/6 J, and the presence of the Ella-Cre transgene was crossed out. In each case, the genotypes were confirmed by PCR using genomic DNA extracted from tails using a DNeasy kit from Qiagen (#69504). Peripheral blood samples were collected via facial vein bleeding under isoflurane anesthesia, and blood counts were obtained using the Genesis analyzer (Oxford Science). To generate growth curves, 5-day-old pups were genotyped and numbered by cutting toes. Pups’ weight was measured daily from day 5–21 of age.

Generation of Rps12flox knock-in mice
A pair of guide-RNAs (gRNAs) targeting intron 1 and intron 3 of the Rps12 gene, respectively were designed by an online tool (http://crispr.mit.edu/) and generated by in vitro transcription. Cas9 mRNA was purchased from SBI. An Rps12 conditional knockout homology-directed repair (HDR) plasmid containing 2 kb homologous arms at each side and exons 2 and 3 flanked by loxP sites (Figure 1—figure supplement 1) was generated by SLiCE cloning. Super ovulated female C57BL/6 J mice (3–4 weeks old) were mated to C57BL/6 J males, and fertilized embryos were collected from oviducts. The gRNAs, Cas9 mRNA and conditional knockout HDR plasmid were microinjected into the cytoplasm of fertilized eggs. The injected zygotes were transferred into pseudo-pregnant CD1 females and the resulting pups were genotyped. Out of 20 pups, two mice were identified as Rps12flox/+ (Rps12flox+/+ MGI:6388411). The corresponding DNA sequences can be found in the Key Resources Table.

Generation of the Rps12KO knock-out mutation
Rps12flox/flox mice were mated to Ella-Cre mice for excision during embryogenesis, the F1 generation carrying the potential Rps12 excision bred with C57BL/6 J mice, and the F2 generation genotyped to identify Rps12KO/+ mice lacking Ella-Cre.

Generation of Rps12flox/+; Tal1-Cre-ERT mice
Rps12flox/flox mice were mated to the Tal1-ERT-Cre mice and F1 generation of Rps12flox/+; Tal1-Cre-ERT mice. 6–8 weeks old animals were treated with three doses of tamoxifen (3 x 4 mg/mouse) to achieve the Rps12 excision.

Preparation of single-cell suspensions
Bone marrow single-cell suspension was prepared from freshly harvested femurs, tibiae, ilia, and vertebrae by gentle crushing of the bones in phosphate-buffered saline containing 2% fetal bovine serum (PBS/2% FBS) followed by filtration through a 40 µm strainer. Spleen cells were obtained from freshly harvested spleens. Single-cell suspension was prepared by dissociating spleens using the flat end of a plunger against 40 µm strainers and washed with PBS/2% FBS. Fetal liver single cell suspension was prepared from freshly harvested E13.5 fetal livers by passing through a 200 µl pipet tip and filtered through a 40 µm strainer in PBS/2% FBS. Cells were subjected to RBC lysis (Qiagen) according to the manufacturer’s protocol and used for the further steps described below. To calculate the absolute number of cells per femur one femur per mouse was flushed, RBC lysed and cells counted to obtain the total number of cells per femur.
Flow cytometry on live cells

Bone marrow

Single-cell bone marrow suspensions were stained with a cocktail of biotin-conjugated lineage antibodies for 30 min at 4 °C, washed with PBS/2% FBS, stained with fluorochrome-conjugated antibody cocktails for 30 min at 4 °C, washed with PBS/2% FBS, resuspended in PBS/2% FBS, filtered through a 40 µm strainer, and subjected to Flow analysis. For the antibody panels, refer to Supplementary file 1.

Peripheral blood

samples were subjected to RBC lysis, blocked with CD16/CD32 10 min at 4 °C followed by staining with fluorochrome-conjugated antibodies, washed with PBS/2% FBS, resuspended in PBS/2% FBS, filtered through a 40 µm strainer and subjected to Flow analysis. For the antibody panels, refer to Supplementary file 1.

Erythropoiesis analysis

Obtained single cell suspension of spleen cells (without RBC lysis) was blocked with CD16/CD32 for 10 min at 4 °C and stained with fluorochrome-conjugated antibodies for 30 min at 4 °C (Supplementary file 1). E13.5 fetal livers single cell suspension was blocked with CD16/CD32 10 min at 4 °C and stained with erythropoiesis or progenitor panels as described above. All blocking and staining steps were performed in PBS/2% FBS.

Apoptosis analysis

Single-cell suspension samples were stained with the lineage-cocktail and fluorochrome-conjugated antibody cocktails as described above. After completion of surface antibody staining, samples were incubated with FITC-conjugated Annexin V (BD-560931) and Propidium Iodide (BD-556463) following the manufacturer’s instructions.

All flow cytometry was performed with BD FACS LSRII or Cytek Aurora and data analysis was done with FlowJo Software (v9, v10).

Flow cytometry on fixed cells

Cell cycle

Fresh single-cell suspension of the RBC lysed bone marrow cells was stained with lineage antibodies followed by staining with fluorochrome-conjugated antibodies against surface markers, as described above. Immediately after staining cells were fixed and permeabilized using Cytofix/Cytoperm Fixation/Permeabilization Solution Kit (BD biosciences, BDB554714) according to the manufacturer’s instructions. Following fixation, cells were incubated overnight at 4 °C with FITC-conjugated Ki67 antibody in Perm/Wash buffer. DNA was stained with 25 µl/ml Hoechst in Perm/Wash buffer before flow cytometry analysis. Flow cytometry was performed with BD FACS LSRII or Cytek Aurora and data analysis was done with FlowJo Software (v9, v10).

Global translation in vitro

protocol was based on a previously described assay (Signer et al., 2014). Single-cell bone marrow RBC lysed cell suspension was obtained as described. Cells were resuspended in DMEM (Corning 10–013-CV) media supplemented with 50 µM β-mercaptoethanol (Sigma) and 20 µM OPP (Thermo Scientific C10456). Cells were incubated for 45 min at 37 °C and then washed with Ca²⁺ and Mg²⁺ free PBS. The samples were stained with biotin-labeled antibodies, followed by staining with fluorochrome-conjugated antibody cocktails, fixed and permeabilized using Cytofix/Cytoperm as described above. After permeabilization with Perm/Wash buffer, cells were resuspended in Click-iT Plus Reaction Cocktail (Thermo Scientific C10456) containing azide conjugated to Alexa Fluor 488 for 30 min at room temperature, washed once with Click-iT Reaction Rinse Buffer and resuspended in Perm/Wash buffer. Flow cytometry was performed with Cytek Aurora and data analysis was done with FlowJo Software (v9, v10).

Phospho-flow cytometry

Bone marrow cells were starved for 1 hr in IMDM 2% FBS at 37 °C, stained with lineage antibodies, followed by staining with fluorochrome-conjugated antibodies against surface markers, as described
above. Post-staining cells were stimulated with 100 ng/ml mSCF (Peprotech #250–03) in 2% PBS-FBS for 5 min at 37 °C. Stained and stimulated cells were fixed and permeabilized with Cytofix/Cytop- perm as described above and stained with phospho-S6 (Ser235/236) - Alexa 488 (Cell Signaling Tech- nology, 4803 S) (1:100) and phospho-AKT (Ser473) - Alexa647 (Cell Signaling Technology, 2337 S), phospho-4E-BP1 (Thr37/46) - Alexa Fluor647 -(Cell Signaling Technology, 5123 S) of pERK1(T202/ Y204) - Alexa 488 (Cell Signaling 4374) at 1:20 dilutions. Cells were washed with Perm/Wash buffer to remove residual and unbound antibodies, and resuspended in fresh Perm/Wash buffer, followed by flow cytometry analysis on the Cytek Aurora. Analysis of all flow cytometry data was performed using FlowJo software (v9, v10).

Methylcellulose cultures and serial re-plating

Single-cell bone marrow suspensions (post RBC lysis) or single-cell fetal liver cell suspensions (without RBC lysis) were resuspended in RPMI media supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were manually counted on a hemocytometer using Trypan blue and plated in methylcellulose media (M3434 or M3334, Stem Cell Technologies) at a density of 5 × 10^5 live cells/ml (in M3434) or 10^4 live cells/ml (in M3334) in 35 mm cell culture plates. Samples were incubated at 37 °C in 6.5% CO_2 at constant humidity. Colonies were scored and evaluated 7–10 days after plating. To replate, cells were washed from the plates with RPMI media, counted, and re-plated in fresh M3334 methylcellulose at a density of 10^5 live cells/dish in 35 mm plates. This process was repeated until cell exhaustion in one of the experimental groups.

Bone marrow transplantation

6- to 8-weeks-old B6.SJL (CD45.1) recipient mice were lethally irradiated with a single dose of 950 Gy using a Cesium-137 gamma-ray irradiator (Mark I irradiator Model 68) at least 3 hr before transplantation. For non-competitive assays, 10^6 whole bone marrow cells from a donor control (Rps12^fl/^- or Rps12^fl/+ mouse (CD45.2) were injected into the retro-orbital venous sinus of recipient mice under isoflurane anesthesia. For competitive transplants, 10^5 whole bone marrow cells from control Rps12^fl/^- or Rps12^fl/+ donor mouse (CD45.2), and 10^5 competitor cells from a B6.SJL (CD45.1) mouse were injected into each recipient mouse. Mice were given drinking water treated with 100 mg/ml Baytril100 (Bayer) for 3 weeks after transplantation. Peripheral blood was collected every 4 weeks and animals were euthanized at the specified experimental time points.

Western blot analysis

Whole bone marrow cells were enriched for cKit + cells using CD117 MicroBeads and MACS LS Columns (Miltenyi Biotec 130-091-224 and 130-042-401) following the manufacturer’s protocol. 2 × 10^6 cKit enriched cells were resuspended in 150 µl Laemmli buffer (BioRad 1610737) supplemented with 1:10 β-mercaptoethanol, passed through a 25 G needle to break the DNA and incubated at 95 °C for 5 min. An equal amount of each sample was separated in polyacrylamide gels (BioRad 4568081), transferred to nitrocellulose membrane (Licor), and blocked (Licor 927–90001). IRDye near-infrared secondary antibodies (Licor) were used to visualize the proteins. The following primary antibodies were used: RpS12 (Proteintech; polyclonal), β-actin (Cell Signaling, 5324T), phospho-β-actin (Ser52; polyclonal).

RNA extraction, RT-qPCR, and bioanalyzer analysis

Total RNA was extracted from 2 × 10^6 cKit enriched cells (isolated using CD117 MicroBeads as previously described) with mirVana miRNA Isolation Kit (Thermo Fisher AM1560) following the manufacturer’s instructions for the isolation of total RNA. Final RNA concentration was determined using a NanoDrop Microvolume Spectrophotometer (Thermo Scientific). For RT-qPCR, cDNA synthesis was performed using 405 ng of total RNA and the Mir-X miRNA First-Strand Synthesis Kit (Takara Bio 6383313) as recommended by the manufacturer. cDNA samples were analyzed, in duplicates, using Power SYBR Green Master Mix (Applied Biosystems 4367659) in an Applied Biosystems StepOne Real-Time PCR instrument (Applied Biosystems 4376357). For mRNA analysis, GAPDH, HPRT1, and RER1 mRNA levels were used as internal controls, and for snoRNA analysis, U6, Sno202, and Sno234, small RNAs were used as internal controls.
Histology
Peripheral blood smears and cytospins from RBC lysed bone marrow samples were stained using the Hema 3 System (Fisher) following the manufacturer’s instructions. The images were acquired using a Zeiss Axiovert microscope with a digital camera.

Statistical methods
Two-tailed Student’s t-tests were performed to compare the statistical significance between the two samples. When comparing more than two groups, one-way ANOVA tests were performed with the Turkey’s multiple comparison test. For the presence/absence of phenotype, statistical significance was calculated with Fisher’s exact test. Analysis was done using GraphPad Prism v9.

Reagents
All antibodies used for flow cytometry assays, and primers used for CRISPR gene editing and PCR can be found in Supplementary file 1 and the Key Resources Table. Other reagents are mentioned in the methods section and Key Resources Table.

Acknowledgements
This work was supported by National Institutes of Health grants R01GM104213 (to NEB), R01CA196973 (to KG), R56DK130895 (to KG), R01DK130895 (to KG), an award from the Albert Einstein College of Medicine Human Genetics Program (to NEB), startup funds from the Albert Einstein College of Medicine and Albert Einstein Cancer Center (to KG), the NHLBI/NIH Ruth L Kirschstein National Research Service Award F32HL146119 (to KA), and the IRACDA/BETTR training Institutional Research and Academic Career Development Award 2K12GH102779-07A1 (to KA). For flow cytometry this work utilized the analyzers Cytek Aurora Multiparameter Flow Cytometer and BD LSR-II with the help of Dr. Jinghang Zhang, Dr. Yu Zhang, and Aodengtuya Fnu. The Cytek Aurora Multiparameter Flow Cytometer was purchased with funding from the National Institutes of Health SIG grant #1S10OD026833-01. Data in this paper are from a thesis to be submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the Biomedical Sciences, Albert Einstein College of Medicine.

Additional information

Competing interests
Kira Gritsman: has received research funding from iOnctura, SA, and ADC Therapeutics. The other authors declare that no competing interests exist.

Funding

Funder	Grant reference number	Author
National Institute of General Medical Sciences	R01GM104213	Nicholas E Baker
National Institute of Diabetes and Digestive and Kidney Diseases	R56DK130895	Kira Gritsman
National Institute of Diabetes and Digestive and Kidney Diseases	R01DK130895	Kira Gritsman
National Institutes of Health	F32HL146119	Kristina Ames
National Institutes of Health	2K12GH102779	Kristina Ames
Albert Einstein College of Medicine	Human Genetics Program	Kira Gritsman
Author contributions
Virginia Folgado-Marco, Kristina Ames, Conceptualization, Data curation, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing – original draft; Jacky Chuen, Investigation; Kira Gritsman, Conceptualization, Formal analysis, Supervision, Funding acquisition, Visualization, Project administration, Writing – review and editing; Nicholas E Baker, Conceptualization, Supervision, Funding acquisition, Project administration, Writing – review and editing

Author ORCIDs
Kristina Ames [http://orcid.org/0000-0002-6845-0898]
Kira Gritsman [http://orcid.org/0000-0002-1367-1167]
Nicholas E Baker [http://orcid.org/0000-0002-4250-3488]

Ethics
This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Institutional Animal Care and Use Committee (IACUC) protocols of the Albert Einstein College of Medicine (Protocol #20181206). All procedures were performed under isoflurane anesthesia to minimize animal suffering.

Decision letter and Author response
Decision letter [https://doi.org/10.7554/eLife.69322.sa1]
Author response [https://doi.org/10.7554/eLife.69322.sa2]

Additional files

Supplementary files
• Supplementary file 1. Antibodies used for flow cytometry panels of peripheral blood and bone marrow samples. This file contains a list of all the biotinylated and fluorochrome-conjugated antibodies used in both live and fixed cell samples used in the experiments described in this paper. The antibodies are grouped by flow cytometry panel and include clone name as well as the manufacturer and catalog number information for ease of use and reproducibility. Additional information on antibody concentration used for staining can be found in the ‘Key Resources Table.’
• Transparent reporting form

Data availability
There are no large-scale datasets associated with this paper. All data generated or analyzed during this study are included in the manuscript and supporting files.

References
Baker NE. 2020. Emerging mechanisms of cell competition. Nature Reviews. Genetics 21:683–697. DOI: [https://doi.org/10.1038/s41576-020-0262-8], PMID: 32778819
Boulan L, Andersen D, Colombani J, Boone E, Léopold P. 2019. Inter-organ growth coordination is mediated by the Xrp1-Dilp8 axis in Drosophila. Developmental Cell 49:811–818. DOI: [https://doi.org/10.1016/j.devcel.2019.03.016], PMID: 31066647
Brumwell A, Fell L, Obress L, Uniacke J. 2020. Hypoxia influences Polysome distribution of human Ribosomal protein S12 and alternative splicing of Ribosomal protein mRNAs. RNA 26:361–371. DOI: [https://doi.org/10.1261/rna.070318.119], PMID: 31911497
Cabezás-Wallscheid N, Buettner F, Sommerkamp P, Klimmek D, Lalde L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybyla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, et al. 2017. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169:807–823. DOI: https://doi.org/10.1016/j.cell.2017.04.018, PMID: 28479188

Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, Zheng P. 2008. TSC-mTOR maintains Quiescence and function of hematopoietic stem cells by repressing mitochondrial Biogenesis and reactive oxygen species. The Journal of Experimental Medicine 205:2397–2408. DOI: https://doi.org/10.1084/jem.20081297, PMID: 18809716

Clavería C, Torres M. 2016. Cell competition: mechanisms and physiological roles. Annual Review of Cell and Developmental Biology 32:411–439. DOI: https://doi.org/10.1146/annurev-cellbio-111315-125142, PMID: 27501445

de la Cruz J, Karbstein K, Woolford JL. 2015. Functions of Ribosomal proteins in assembly of Eukaryotic Ribosomes in vivo. Annual Review of Biochemistry 84:93–129. DOI: https://doi.org/10.1146/annurev-biochem-060614-033917, PMID: 25706898

Derenzini E, Agostinelli C, Rossi A, Rossi M, Scellato F, Melle F, Motta G, Fabbrì M, Diop F, Kodipad AA, Derenzini E, Karbstein K, Woolford JL. 2015. Functions of Ribosomal proteins in assembly of Eukaryotic Ribosomes in vivo. Annual Review of Biochemistry 84:93–129. DOI: https://doi.org/10.1146/annurev-biochem-060614-033917, PMID: 25706898

Folgado- Marco, Ames et al. eLife 2023;12:e69322. DOI: https://doi.org/10.7554/eLife.69322 24 of 26
Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS, Gilliland DG, Morrison SJ. 2010. mTOR activation induces tumor Suppressors that inhibit Leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7:593–605. DOI: https://doi.org/10.1016/j.stem.2010.09.015, PMID: 21040901

Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ. 2012. Temporal changes in PTEN and Mtorc2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11:415–428. DOI: https://doi.org/10.1016/j.stem.2012.05.026, PMID: 22958933

Magee JA, Signer RAJ. 2021. Developmental stage-specific changes in protein synthesis differentially sensitize hematopoietic stem cells and erythroid progenitors to impaired ribosome biogenesis. Stem Cell Reports 16:20–28. DOI: https://doi.org/10.1016/j.stemcr.2020.11.017, PMID: 3340178

Martín-Villanueva S, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Boraita J, Villalobo E, de la Cruz J. 2020. Role of the 40S beak ribosomal protein Es12 in ribosome biogenesis and function in Saccharomyces cerevisiae RNA Biology 17:1261–1276. DOI: https://doi.org/10.1080/15746286.2020.1767951, PMID: 32408794

Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH, Harrison PM, Yu Z, Kenmochi N, Kaufman TC, Leevers SJ, Cook KR. 2007. The ribosomal protein genes and minute loci of Drosophila melanogaster. Genome Biology 8:R216. DOI: https://doi.org/10.1186/gb-2007-8-10-r216, PMID: 17927810

Matsson H, Davey EJ, Drapechinskaia N, Hamaguchi I, Ooka A, Levén P, Forsberg E, Karlsson S, Dahl N. 2004. Targeted disruption of the Ribosomal protein S19 gene is lethal prior to implantation. Molecular and Cellular Biology 24:4032–4037. DOI: https://doi.org/10.1128/MCB.24.9.4032-4037.2004

McGowan KA, Li JZ, Park CY, Tabor HK, Fuchs H, de Angelis MH, Myers RM, Attardi LD, Barsh GS. 2008. Ribosomal mutations cause PS3-mediated dark skin and pleiotropic effects. Nature Genetics 40:963–970. DOI: https://doi.org/10.1038/ng.188, PMID: 18641651

Morata G, Ripoll P. 1975. Minutes: Mutants of Drosophila autonomously affecting cell division rate. Developmental Biology 42:211–221. DOI: https://doi.org/10.1016/0012-1606(75)90330-9, PMID: 1116643

Morgado-Palacin L, Varetti G, Llanos S, Gómez-López G, Martinez D, Serrano M. 2015. Partial loss of Rpl11 in adult mice Recapitulates Diamond-Blackfan anemia and promotes lymphomagenesis. Cell Reports 13:712–722. DOI: https://doi.org/10.1016/j.celrep.2015.09.038, PMID: 26489471

Muramatsu H, Okuno Y, Yoshioka K, Shiraishi Y, Doiaki S, Narita A, Sakaguchi H, Kawashima N, Wang X, Xu Y, Chiba K, Tanaka H, Hama A, Sanada M, Takahashi Y, Kanno H, Yamaguchi H, Ohga S, Manabe A, Harigae H, et al. 2017. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genetics in Medicine 19:796–802. DOI: https://doi.org/10.1038/gim.2016.197, PMID: 28102861

Oliver ER, Saunders TL, Tarlé SA, Glaser T. 2004. Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse model. Development 131:3907–3920. DOI: https://doi.org/10.1242/dev.01268, PMID: 15289434

Petibon C, Malik Ghulam M, Catala M, Abou Elela S. 2021. Regulation of Ribosomal protein genes: an ordered anarchy. Wiley Interdisciplinary Reviews. RNA 12:e1632. DOI: https://doi.org/10.1002/wrna.1632, PMID: 33038057

Pietras EM, Reynaud D, Kang Y-A, Carlin D, Calero-Nieto FJ, Leavitt AD, Stuart JM, Göttgens B, Passegué E. 2015. Functionally distinct Subsets of lineage-Biased Multipotent Progenitors control blood production in normal and Regenerative conditions. Cell Stem Cell 17:35–46. DOI: https://doi.org/10.1016/j.stem.2015.05.003, PMID: 26095048

Rabil J, Leibundgut M, Ataide SF, Haag A, Ban N. 2011. Crystal structure of the Eukaryotic 40S Ribosomal subunit in complex with initiation factor 1. Science 331:730–736. DOI: https://doi.org/10.1126/science.1198308, PMID: 21205638

Roux PP, Shahbazian D, Wu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J. 2007. RAS/ERK signaling promotes site-specific Ribosomal protein S6 Phosphorylation via RSK and stimulates cap-dependent translation. The Journal of Biological Chemistry 282:14056–14065. DOI: https://doi.org/10.1074/jbc.M700906200, PMID: 17360704

Roux PP, Topisirovic I. 2018. Signaling pathways involved in the regulation of mRNA translation. Molecular and Cellular Biology 38:e00070-18. DOI: https://doi.org/10.1128/MCB.00070-18, PMID: 29610153

Schalm SS, Fingar DC, Sabatini DM, Blenis J. 2003. TOS motif-mediated Raptor binding regulates 4E-Bp1 Multisite Phosphorylation and function. Current Biology 13:797–806. DOI: https://doi.org/10.1016/s0960-9822(03)00329-4, PMID: 12747827

Schneider RK, Schenone M, Ferreira MV, Kramann R, Joyce CE, Hartigan C, Beier F, Brümmedendorf TH, Germing U, Platzbecker U, Büscher G, Knüchel R, Chen MC, Waters CS, Chen E, Chu LP, Novina CD, Lindsley RC, Carr SA, Ebert BL. 2016. Rps14 Haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nature Medicine 22:288–297. DOI: https://doi.org/10.1038/nm.4047, PMID: 26878232

Signer RAJ, Magee JA, Salic A, Morrison SJ. 2014. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509:49–54. DOI: https://doi.org/10.1038/nature13035, PMID: 24670665

Sigurdsson V, Miharada K. 2018. Regulation of unfolded protein response in hematopoietic stem cells. International Journal of Hematology 107:627–633. DOI: https://doi.org/10.1007/s11181-018-2458-7, PMID: 29725845

Socolovsky M, Nam HS, Fleming MD, Haase VH, Brugnara C, Lodish HF. 2001. Ineffective Erythropoiesis in Stat5A−/−5B−/− mice due to decreased survival of early erythroblasts. Blood 98:3261–3273. DOI: https://doi.org/10.1182/blood.v98.12.3261, PMID: 11719363
Sugiyama D, Inoue-Yokoo T, Fraser ST, Kulkewich K, Mizuochi C, Horio Y. 2011. Embryonic regulation of the mouse hematopoietic niche. *The Scientific World Journal* **11**:1770–1780. DOI: https://doi.org/10.1100/2011/598097, PMID: 22125435

Terzian T, Dumble M, Arbab F, Thaller C, Donehower LA, Lozano G, Justice MJ, Roop DR, Box NF. 2011. Rpl27a Mutation in the Sooty foot ataxia mouse Phenocopies high PS3 mouse models. *The Journal of Pathology* **224**:540–552. DOI: https://doi.org/10.1002/path.2891, PMID: 21674502

Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS, Handsaker RE, Abdulhay NJ, Fiorini C, Genovese G, Lim ET, Cheng A, Cummings BB, Chao KR, Beggs AH, Genetti CA, Steff CA, Newburger PE, Niewiadomska E, Matsiak M, et al. 2018. The genetic landscape of Diamond-Blackfan anemia. *American Journal of Human Genetics* **103**:930–947. DOI: https://doi.org/10.1016/j.ajhg.2018.10.027, PMID: 30503522

Watkins-Chow DE, Cooke J, Pidsley R, Edwards A, Slotkin R, Leeds KE, Mullen R, Baxter LL, Campbell TG, Salzer MC, Biondini L, Gibney G, Phan Dinh Tuy F, Chelly J, Morris HD, Riegel J, Lythgoe MF, Arkell RM, Loren F, Flint J, et al. 2013. Mutation of the diamond-Blackfan anemia Gene Rps7 in mouse results in morphological and Neuroanatomical phenotypes. *PLOS Genetics* **9**:e1003094. DOI: https://doi.org/10.1371/journal.pgen.1003094, PMID: 23382688

Wek RC, Jiang HY, Anthony TG. 2006. Coping with stress: Eif2 Kinases and Translational control. *Biochemical Society Transactions* **34**:7–11. DOI: https://doi.org/10.1042/BST20060007, PMID: 16246168

Wilson DN, Doudna Cate JH. 2012. The structure and function of the Eukaryotic Ribosome. *Cold Spring Harbor Perspectives in Biology* **4**:a011536. DOI: https://doi.org/10.1101/cshperspect.a011536, PMID: 22550233

Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ. 2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. *Nature* **441**:475–482. DOI: https://doi.org/10.1038/nature04703, PMID: 16598206

Yonath A, Franceschi F. 1998. Functional universality and evolutionary diversity: insights from the structure of the Ribosome. *Structure* **6**:679–684. DOI: https://doi.org/10.1016/S0969-2126(98)00069-0, PMID: 9655833

Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, Syme A, Koromilas AE, Crist C. 2016. Phosphorylation of Eif2α is a Translational control mechanism regulating muscle stem cell Quiescence and self-renewal. *Cell Stem Cell* **18**:79–90. DOI: https://doi.org/10.1016/j.stem.2015.09.020, PMID: 26549106