Extreme values for two-dimensional discrete Gaussian free field

Jian Ding
Stanford University & MSRI*

Ofer Zeitouni†
University of Minnesota & Weizmann institute

June 1, 2012. Revised November 27, 2012 and March 23, 2013

Abstract

We consider in this paper the collection of near maxima of the discrete, two dimensional Gaussian free field in a box with Dirichlet boundary conditions. We provide a rough description of the geometry of the set of near maxima, estimates on the gap between the two largest maxima, and an estimate for the right tail up to a multiplicative constant on the law of the centered maximum.

1 Introduction

The discrete Gaussian free field (GFF) \(\{ \eta^N_v : v \in V_N \} \) on a 2D box \(V_N \) of side length \(N \) with Dirichlet boundary condition, is a mean zero Gaussian process which takes the value 0 on \(\partial V_N \) and satisfies the following Markov field condition for all \(v \in V_N \setminus \partial V_N \): \(\eta^N_v \) is distributed as a Gaussian variable with variance 1 and mean equal to the average over the neighbors given the GFF on \(V_N \setminus \{v\} \) (see later for more formal definitions). One facet of the GFF that has received intensive attention is the behavior of its maximum. In this paper, we prove a number of results involving the maximum and near maxima of the GFF. Our first result concerns the geometry of the set of near maxima and states that the vertices of large values are either close to or far away from each other.

Theorem 1.1. There exists an absolute constant \(c > 0 \),

\[
\lim_{r \to \infty} \lim_{N \to \infty} \mathbb{P}(\exists v, u \in V_N : r \leq |v - u| \leq N/r \text{ and } \eta^N_u, \eta^N_v \geq m_N - c \log \log r) = 0,
\]

where \(m_N = \mathbb{E} \max_{v \in V_N} \eta^N_v \).

(The asymptotic behavior of \(m_N \) is recalled in (4) below.) In addition, we show that the number of particles within distance \(\lambda \) from the maximum grows exponentially.

Theorem 1.2. For \(\lambda > 0 \), let \(A_{N,\lambda} = \{ v \in V_N : \eta^N_v \geq m_N - \lambda \} \) for \(\lambda > 0 \). Then there exist absolute constants \(c, C \) such that

\[
\lim_{\lambda \to \infty} \lim_{N \to \infty} \mathbb{P}(ce^{c\lambda} \leq |A_{N,\lambda}| \leq Ce^{C\lambda}) = 1.
\]

*Partially supported by NSF grant DMS-1313596.
†Partially supported by NSF grants DMS-0804133 and DMS-1106627, a grant from the Israel Science Foundation, and the Herman P. Taubman chair of Mathematics at the Weizmann institute.
Another important characterization of the joint behavior for the near maxima is the spacings of the ordered statistics, out of which the gap between the largest two values is of particular interest. We show that the right tail of this gap is of Gaussian type, as well as that the gap is of order 1.

Theorem 1.3. Let Γ_N be the gap between the largest and the second largest values in $\{\eta^N_v : v \in V_N\}$. Then, there exist absolute constants $c, C > 0$ such that for all $\lambda > 0$ and all $N \in \mathbb{N}$

$$ce^{-C\lambda^2} \leq \mathbb{P}(\Gamma_N \geq \lambda) \leq Ce^{-c\lambda^2}, \quad (2)$$

$$\lim_{\delta \to 0} \limsup_{N \to \infty} \mathbb{P}(\Gamma_N \leq \delta) = 0. \quad (3)$$

We do not know whether the gap estimate in (2) can be improved to a precise Gaussian tail estimate as $\lambda \to \infty$.

Finally, we compute the right tail for the maximum up to a multiplicative constant. Set $M_N = \max_v \eta^N_v$.

Theorem 1.4. There exists a constant $C > 0$ such that for all $\lambda \in [1, \sqrt{\log N})$

$$C^{-1}\lambda e^{-\sqrt{2\lambda\pi}} \leq \mathbb{P}(M_N > m_N + \lambda) \leq C\lambda e^{-\sqrt{2\pi\lambda}}.$$

Related work. In the mathematical literature, the study on the maximum of the GFF goes back at least to Bolthausen, Deuschel and Giacomin [12] who established the law of large numbers for $M_N / \log N$ by associating with the GFF an appropriate branching structure. Afterwards, the main focus has shifted to the study of fluctuations of the maximum. Using hypercontractivity estimates, Chatterjee [19] showed that the variance of the maximum is $o(\log n)$, thus demonstrating a better concentration than that guaranteed by the Borell-Sudakov-Tsirelson isoperimetric inequality, which is however still weaker than the correct $O(1)$ behavior. Later, Bolthausen, Deuschel and Zeitouni [13] proved that $(M_n - \mathbb{E}M_n)$ is tight along a deterministic subsequence $(n_k)_{k \in \mathbb{N}}$; they further showed that in order to get rid of the subsequence, it suffices to compute a precise estimate (up to additive constant) on the expectation of the maximum. An estimate in such precision was then achieved by Bramson and Zeitouni [17], by comparing the GFF with the modified branching random walk (MBRW) introduced therein. They showed that the sequence of random variables $M_N - m_N$ is tight, where

$$m_N = 2\sqrt{\frac{2}{\pi}}(\log N - \frac{3}{8} \log \log N) + O(1). \quad (4)$$

Using the “sprinkling method”, this was later improved by Ding [23], who showed that there exist absolute constants $C, c > 0$ so that for all $N \in \mathbb{N}$ and $0 \leq \lambda \leq (\log N)^{2/3}$

$$ce^{-C\lambda} \leq \mathbb{P}(M_N \geq m_N + \lambda) \leq Ce^{-c\lambda}, \text{ and } ce^{-c\lambda} \leq \mathbb{P}(M_N \leq m_N - \lambda) \leq Ce^{-c\lambda}. \quad (5)$$

Note that our Theorem 1.4 gives an improvement upon the estimates on the right tail of M_N in (5); the precise estimate for the left tail is more challenging because an analogous comparison to Lemma 2.6 for the left tail could not be achieved in an obvious way.

In contrast with the research activity concerning the maximum of the GFF, not much has been done until very recently concerning its near maxima. To our knowledge, the only results in the mathematical literature is due to Daviaud [20] who studied the geometry of the set of large values of the GFF which are within a multiplicative constant from the expected maximum, i.e. those values above ηm_N with $\eta \in (0, 1)$. He showed that the logarithm of the cardinality of the set of
such near maxima is asymptotic to $2(1 - \eta) \log N$, and described the fractal structure of these sets. Related work for the continuous GFF is contained in Hu, Miller and Peres [31].

In contrast with the GFF, much more is known concerning both the value of the maximum and the structure of near maxima for the model of branching Brownian motions. The study of the maximum of the BBM dates back to a classical paper by Kolmogorov, Petrovskii, and Piscounov [33], where they discussed the KPP equation (also known as the Fisher equation). The probabilistic interpretation of the KPP equation in terms of BBM, described in McKean [37], was further exploited by Bramson [14, 15]. It was then proved that both the left and right tails exhibit exponential decay and the precise exponents were computed. See, e.g., Bramson [15] and Harris [30] for the right tail, and see Arguin, Bovier and Kistler [8] for the left tail (the argument is due to De Lellis). In addition, Lalley and Sellke [34] obtained an integral representation for the limiting law of the centered maximum.

More recently, the structure of the point process of maxima of the BBM was described in great detail, in a series of papers by Arguin, Bovier and Kistler [8, 9, 7] and in a paper by Aidékon, Berestycki, Brunet and Shi [3]. These papers describe the limit of the process of extremes of BBM, as a certain Poisson point process with exponential density where each atom is decorated by an independent copy of an auxiliary point process.

In the physics literature, the link between the extremal process for the GFF and that for BBM is often assumed, and some aspects of it (such as tail distributions) are conjectured to hold for a general class of logarithmically correlated processes, see Carpentier and Le Doussal [18] for (non-rigorous) arguments using a renormalization-group approach and links to the freezing transition of spin-glass systems, and Fyodorv, Le Doussal, and Rosso [29] for further information on extreme distributions. On the mathematical side, numerous results and conjectures have been formulated for such models; see Duplantier, Rhodes, Sheffield, and Vargas [26] and Arguin and Zindy [10] for recent progress.

Our results in this work are a first step in the study of the process of extrema for the GFF. In particular, Theorem 1.1 is a precise analog of results in [8], while Theorems 1.2 and 1.3 provide weaker results than those of [9]. The results here play an important role in the study of convergence of the maximum of the GFF, see Bramson, Ding and Zeitouni [16].

Finally, we note that a connection between the maximum of the GFF and the cover time for the random walk has been shown in Ding, Lee and Peres [25] and Ding [22]. In particular, an upper bound on the fluctuation of the cover time for 2D lattice was shown in [24] using such a connection, improving on previous work of Dembo, Peres, Rosen and Zeitouni [21]. It is worthwhile emphasizing that the precise estimate on the expectation of the maximum of the GFF in [17] plays a crucial role in [24].

A word on proof strategy. A general approach in the study of the maximum of the GFF, which we also follow, is to compare the maxima of the GFF and of Gaussian processes of relative amenable structures; this is typically achieved using comparison theorems for Gaussian processes (see Lemmas 2.2 and 2.5). The first natural “comparable” process is the branching random walk (BRW) which admits a natural tree structure (although [12] do not use directly Gaussian comparisons, the BRW features implicitly in their approach). In [17], the modified branching random walk (see Subsection 2.1) was introduced as a finer approximation of the GFF, based on which a precise (up to additive constant) estimate on the expectation of the maximum was achieved.

Our work also uses comparisons of the GFF with the MBRW/BRW. One obstacle we have to address is the lack of effective, direct comparisons for the collection of near maxima of two
Gaussian processes. We get around this issue by comparing a certain functional of the GFF, which could be written as the maximum of a certain associated Gaussian process. Various such comparisons between the GFF and the MBRW/BRW are employed in Section 2. In particular, we use a variant of Slepian’s inequality that allows one to compare the sum of the m-largest values for two Gaussian processes. Afterwards, estimates for the aforementioned functionals of MBRW/BRW are computed in Section 3. Finally, based on the estimates of these functionals of the GFF (obtained via comparison), we deduce our main theorems in Section 4.

Along the way, another method that was used often is the so-called sprinkling method, which in our case could be seen as a two-level structure. The sprinkling method was developed by Ajtai, Komlós and Szemerédi [5] in the study of percolation, and found its applications later in that area (see, e.g., [6, 11]). Under the framework of the sprinkling method, one first tries to understand a perturbed version of the targeted random structure, building upon which one then tries to establish properties of the targeted random structure. Such a scheme will be useful if a weak property on the perturbed random structure can be strengthened significantly to the targeted structure with relatively little effort by taking advantage of the perturbation. In the context of the study of the maximum of the GFF, the sprinkling method was first successfully applied in [23]; an application to the study of cover times of random walks appears in [22].

Discussions and open problems. There are a number of natural open problems in this line of research on the GFF, of which establishing the limiting law of the maximum and the scaling limit of the extreme process are of great interest [1]. Even partial progresses toward these goals could be interesting. For instance, it would be of interest to provide more information on the joint behavior of the maxima by characterizing other important statistics. We also point out that we computed the exponent only for the right tail as in Theorem 1.4 but not for the left tail. A conceptual difficulty in computing the exponent in the left tail is that the MBRW has Gaussian type left tail (analogous to BRW) as opposed to doubly-exponential tail in (5) — the top levels in the MBRW could shift the value of the whole process to the left with a Gaussian type cost in probability, while in the GFF the Dirichlet boundary condition decouples the GFF near the boundary such that the GFF behaves almost independently close to the boundary. Therefore, it is possible that a new approximation needs to be introduced in order to study the left tail of the maximum in higher precision (merely using the sprinkling method as done in [22] seems unlikely to yield even the exponent). We note that these last comments do not apply to the so-called massive GFF, see Chatterjee [19], which is expected to behave analogously to BBM.

Three perspectives of Gaussian free field. A quick way to rigourously define the GFF is to give its probability density function. Denoting by f the p.d.f. of (η_v), we have

$$f((x_v)) = Z \prod_{u \sim v} \sum_{x_u - x_v}^2,$$ \hspace{1cm} \text{(6)}

where Z is a normalizing constant and $x_v = 0$ for $v \in \partial V_N$. (Note that each edge appears twice in (6).)

Alternatively, a slower but more informative way to define the GFF is by using the connection with random walks (in particular, Green functions). Consider a connected graph $G = (V, E)$. For $U \subset V$, the Green function $G_U(\cdot, \cdot)$ of the discrete Laplacian is given by

$$G_U(x, y) = \mathbb{E}_x(\sum_{k=0}^{n_U-1} 1\{S_k = y\}), \text{ for all } x \in V \setminus U, y \in V, \quad G_U(x, y) = 0 \text{ for } x \in U, y \in V, \hspace{1cm} \text{(7)}$$

\[1\] The convergence of the law of the recentered maximum has been recently proved [16], using results of the current paper.
where \(\tau_U \) is the hitting time of the set \(U \) for a simple random walk \((S_k)\), defined by (the notation applies throughout the paper)

\[
\tau_U = \min\{k \geq 0 : S_k \in U\}. \quad (8)
\]

The GFF \(\{\eta_v : v \in V\} \) with Dirichlet boundary on \(U \) is then defined as the mean zero Gaussian process indexed by \(V \) such that the covariance matrix is given by Green function \((G_U(x, y))_{x,y \in V}\). Clearly, \(\eta_v = 0 \) for all \(v \in U \). For the equivalence of definitions in \([6]\) and \([7]\), c.f., \([32]\).

Finally, we recall the connection between the GFF and electrical networks. We can view the 2D box \(V_N \) as an electrical network if each edge is replaced by a unit resistor and the boundary is wired together. We then associate a classic quantity to the network, the so-called effective resistance, which is denoted by \(R_{\text{eff}}(\cdot, \cdot) \). The following well-known identity relates the GFF to the electric network, see, e.g., \([32]\) Theorem 9.20.

\[
\mathbb{E}(\eta_u - \eta_v)^2 = 4R_{\text{eff}}(u, v). \quad (9)
\]

Note that the factor of 4 above is due to the non-standard normalization we are using in the 2D lattice (in general, this factor is 1 with a standard normalization).

Acknowledgement. We thank two anonymous referees and the editor for useful comments on an earlier version of the manuscript. We thank Vincent Vargas for pointing out an annoying typo in an earlier version of the paper.

2 Comparisons with modified branching random walk

In this section, we compare the maxima of the Gaussian free field with those of the so-called modified branching random walk (MBRW), which was introduced in \([17]\); the advantage of dealing with the MBRW is that its covariance function, like that of the GFF but in contrast with BRW, depends on the Euclidean distance, as we explain next.

2.1 A short review on MBRW

Consider \(N = 2^n \) for some positive integer \(n \). For \(k \in [n] \), let \(\mathcal{B}_k \) be the collection of squared boxes in \(\mathbb{Z}^2 \) of side length \(2^k \) with corners in \(\mathbb{Z}^2 \), and let \(\mathcal{B}D_k \) denote the subsets of \(\mathcal{B}_k \) consisting of squares of the form \(([0, 2^k - 1] \cap \mathbb{Z})^2 \). For \(v \in \mathbb{Z}^2 \), let \(\mathcal{B}_k(v) = \{B \in \mathcal{B}_k : v \in B\} \) be the collection of boxes in \(\mathcal{B}_k \) that contains \(v \), and define \(\mathcal{B}D_k(v) \) be the (unique) box in \(\mathcal{B}D_k \) that contains \(v \). Furthermore, denote by \(\mathcal{B}^N_k \) the subset of \(\mathcal{B}_k \) consisting of boxes whose lower left corners are in \(V_N \).

Let \(\{a_{k,B}\}_{k \geq 0, B \in \mathcal{B}D_k} \) be i.i.d. standard Gaussian variables, and define the branching random walk to be

\[
\vartheta_v = \sum_{k=0}^{n} a_{k,BD_k(v)}, \quad (10)
\]

For \(k \in [n] \) and \(B \in \mathcal{B}^N_k \), let \(b_{k,B} \) be independent centered Gaussian variables with \(\text{Var}(b_{k,B}) = 2^{-2k} \), and define

\[
b_{k,B}^N = b_{k,B'}, \text{ for } B \sim_N B' \in \mathcal{B}^N_k, \quad (11)
\]

where \(B \sim_N B' \) if and only if there exist \(i, j \in \mathbb{Z} \) such that \(B = (iN, jN) + B' \) (note that for any \(B \in \mathcal{B}_k \), there exists a unique \(B' \in \mathcal{B}^N_k \) such that \(B \sim_N B' \)). In a manner compatible with definition in \([11]\), we let \(d^N(u, v) = \min_{w \sim_N u} \|u - w\| \) be the Euclidean distance between \(u \) and \(v \).
when considering V_N as a torus, for all $u,v \in V_N$. Finally, we define the MBRW $\{\xi^N_v : v \in V_N\}$ such that
\[
\xi^N_v = \sum_{k=0}^n \sum_{B \in \mathcal{B}(v)} b^N_{k,B}.
\]
(12)
The motivation of the above definition is that the MBRW approximates the GFF with high precision. That is to say, the covariance structure of the MBRW approximates that of the GFF well. This is elaborated in the next lemma which compares their covariances (see [17, Lemma 2.2] for a proof).

Lemma 2.1. There exists a constant C such that the following holds with $N = 2^n$ for all n.

\[
|\text{Cov}(\xi^N_u, \xi^N_v) - (n - \log_2(d^N(u,v)))| \leq C, \text{ for all } u,v \in V_N,
\]
\[
|\text{Cov}(\eta^N_u, \eta^N_v) - \frac{2 \log 2}{\pi} (n - (0 \vee \log_2 \|u - v\|))| \leq C, \text{ for all } u,v \in (2N,2N) + V_N.
\]

2.2 Comparison of the maximal sum over restricted pairs

In this subsection, we approximate the GFF by the MBRW based on the following comparison theorem on the expected maximum of Gaussian process (See e.g., [28] for a proof).

Lemma 2.2 (Sudakov-Fernique). Let A be an arbitrary finite index set and let $\{X_a\}_{a \in A}$ and $\{Y_a\}_{a \in A}$ be two centered Gaussian processes such that
\[
E(X_a - X_b)^2 \geq E(Y_a - Y_b)^2, \text{ for all } a,b \in A.
\]
(13)

Then $E \max_{a \in A} X_a \geq E \max_{a \in A} Y_a$.

Instead of directly comparing the expected maximum as in [17], we compare the following two functionals for GFF and MBRW respectively. For an integer r, define
\[
\eta^N_{r,r} = \max \{\eta^N_u + \eta^N_v : u,v \in V_N, r \leq \|u - v\| \leq N/r\},
\]
\[
\xi^N_{r,r} = \max \{\xi^N_u + \xi^N_v : u,v \in V_N, r \leq \|u - v\| \leq N/r\}.
\]
(14)
The main goal in this subsection is to prove the following.

Proposition 2.3. There exists a constant $\kappa \in \mathbb{N}$ such that for all r, $n \geq \kappa$ positive integers, and with $N = 2^n$,
\[
\sqrt{\frac{2 \log 2}{\pi} E \xi^N_{2^r \rightarrow N,r}} \leq E \eta^N_{r,r} \leq \sqrt{\frac{2 \log 2}{\pi} E \xi^N_{2^r \rightarrow N,r}}.
\]

In order to prove the preceding proposition, it is convenient to consider
\[
\tilde{\eta}^N_{r,r} = \max \{\eta^N_{u+2N,2N} + \eta^N_{v+2N,2N} : u,v \in V_N, r \leq \|u - v\| \leq N/r\}.
\]
(15)

We start with proving the next useful lemma.

Lemma 2.4. Using the above notation, we have
(i) $E \eta^N_{r,r} \leq E \tilde{\eta}^N_{r,r} $;
(ii) $P(\max_{v \in V_N} \eta^N_v \geq \lambda) \leq 2P(\max_{v \in V_N} \eta^N_{u+(2N,2N)} \geq \lambda)$ for all $\lambda \in \mathbb{R}$.
For the upper bound, by the preceding lemma, it suffices to prove

Proof of Proposition 2.3. Denote by $V'_N = \{ v + (2N, 2N) : v \in V_N \}$, and consider the process η^N as indexed over the set V'_N (so it is a Gaussian free field on V_N with index shifted by $(2N, 2N)$). Note that the conditional covariance matrix of $\{ \eta^N_v \}_{v \in V'_N}$ given the values of $\{ \eta^N_u \}_{u \in V_N \setminus V'_N}$ corresponds to the covariance matrix of $\{ \eta^N_v \}_{v \in V'_N}$. This implies that

$$\{ \eta^N_v : v \in V'_N \} \overset{\text{law}}{=} \{ \eta^N_v + \mathbb{E}(\eta^N_v \mid \{ \eta^N_u : u \in V_4 \setminus V'_N \}) : v \in V'_N \},$$

where on the right hand side $\{ \eta^N_v : v \in V'_N \}$ is independent of $\{ \eta^N_u : u \in V_4 \setminus V'_N \}$ and both are defined on the same probability space. Write

$$\phi_v = \mathbb{E}(\eta^N_v \mid \{ \eta^N_u : u \in V_4 \setminus V'_N \}) = \mathbb{E}(\eta^N_v \mid \{ \eta^N_u : u \in \partial V'_N \}).$$

Note that ϕ_v is a linear combination of $\{ \eta^N_u : u \in \partial V'_N \}$, and thus a mean zero Gaussian variable. By the above identity in law and the independence, we derive that

$$\mathbb{E}(\eta^N_v \mid \{ \eta^N_u : u \in \partial V'_N \}) \geq \mathbb{E}(\eta^N_v \mid \{ \eta^N_u : u \in \partial V'_N \}) = \mathbb{E}(\eta^N_v \mid \{ \eta^N_u : u \in \partial V'_N \}),$$

where (r_1, r_2) is the pair at which the sum in the definition of η^N_v is maximized (see (14) and (15)), and the second equality follows from the fact that ϕ_r and ϕ_{r_2} have mean 0. This completes the proof of Part (i). Part (ii) follows from the same argument, by noting that almost surely,

$$\max_{v \in V'_N} \eta^N_v \geq \max_{v \in V'_N} (\eta^N_v)' + \phi_r,$$

where $\tau \in V'_N$ is the maximizer for $\{ \eta^N_v : v \in V'_N \}$ and, for $v \in V_N$, $(\eta^N_v)' = \eta^N_{v+(2N,2N)} - \mathbb{E}(\eta^N_{v+(2N,2N)} \mid \{ \eta^N_u : u \in \partial V'_N \})$ is distributed like a GFF. The desired bound follows from the fact that ϕ_r given the location τ is a centered Gaussian variable independent of $(\max_{v \in V'_N} \eta^N_v)'$. \qed

Proof of Proposition 2.3: For the upper bound, by the preceding lemma, it suffices to prove that $\mathbb{E}(\eta^N_v) \leq \mathbb{E}(\xi^N_{\psi_N(v)} - \xi^N_{\psi_N(v)')})$. For this purpose, define the mapping $\psi_N : V_N \mapsto V_{2N}$ by

$$\psi_N(v) = (2^{\kappa-2}N, 2^{\kappa-2}N) + 2^{\kappa-3}v, \text{ for } v \in V_N.$$

Applying Lemma 2.1, we obtain that there exists sufficiently large κ (that depends only on the universal constant C in Lemma 2.1) such that for all $v, u, v', u' \in V_N$,

$$\mathbb{E}(\psi_N(v) + \psi_N(u)') - \mathbb{E}(\psi_N(v) + \psi_N(u)) \leq 2\log 2 \mathbb{E}(\xi^N_{\psi_N(v)} + \xi^N_{\psi_N(u)} + \xi^N_{\psi_N(v')})^2 - 2\log 2 \mathbb{E}(\xi^N_{\psi_N(v)} + \xi^N_{\psi_N(u)} + \xi^N_{\psi_N(v')} + \xi^N_{\psi_N(u)})^2.$$

In order to verify (18), note from the definition that the variance of $\xi^N_{\psi_N(v)}$ grows with κ (more levels are involved) while, for all $u, v \in V_N$, the covariance between $\xi^N_{\psi_N(v)}$ and $\xi^N_{\psi_N(u)}$ does not grow (the number of common levels remains constant, since points are taken farther away due to the definition of ψ_N). This observation allows us to select κ large so as to increase the right hand side in (18). Now, an application of Lemma 2.2 for the processes

$$\{ \eta^N_{v+(2N,2N)} + \eta^N_{u+(2N,2N)} : u, v \in V_N, r \leq \| v - u \| \leq N/r \},$$

and

$$\sqrt{2\log 2 \mathbb{E}(\xi^N_{\psi_N(v)} + \xi^N_{\psi_N(u)} : u, v \in V_N, r \leq \| v - u \| \leq N/r}$$
Lemma 2.6. There exists a universal integer \(u_s \) to modify our fields before we can apply the lemma. The lower bound follows along the same line, which we now sketch. Analogous to \([18]\), we can derive that for all \(u, v, v' \in V_{2-\kappa N} \)

\[
\mathbb{E}(\eta_{\psi_{2-\kappa N}}^N(v) - \eta_{\psi_{2-\kappa N}}^N(u) - \eta_{\psi_{2-\kappa N}}^N(v'))^2 \geq \frac{2 \log 2}{\pi} \mathbb{E}(\xi_{\psi_{2-\kappa N}}^N + \xi_{\psi_{2-\kappa N}}^N - \xi_{\psi_{2-\kappa N}}^N - \xi_{\psi_{2-\kappa N}}^N)^2.
\]

Combined with the fact that \(r \leq \sqrt{\psi_{2-\kappa N}(v) - \psi_{2-\kappa N}(u)} \leq N/r \) for all \(u, v \in V_{2-\kappa N} \) such that \(r \leq \|v - u\| \leq 2^{-\kappa} N/r \), another application of Lemma 2.2 completes the proof.

2.3 Comparison of the right tail for the maximum

In this subsection, we compare the maximum of GFF with that of MBRW in the sense of “stochastic domination”, for which we will use Slepian’s \([38]\) comparison lemma.

Lemma 2.5 (Slepian). Let \(A \) be an arbitrary finite index set and let \(\{X_a\}_{a \in A} \) and \(\{Y_a\}_{a \in A} \) be two centered Gaussian processes such that \([13]\) holds and \(\text{Var} \ X_a = \text{Var} \ Y_a \) for all \(a \in A \). Then \(\mathbb{P}(\max_{a \in A} X_a \geq \lambda) \geq \mathbb{P}(\max_{a \in A} Y_a \geq \lambda) \), for all \(\lambda \in \mathbb{R} \).

Remark. The additional assumption on the identical variance in Lemma 2.5 allows for a comparison of maxima of fields that goes beyond comparisons of expectations. On the downside, it forces us to modify our fields before we can apply the lemma.

The main result of this subsection is the following.

Lemma 2.6. There exists a universal integer \(\kappa > 0 \) such that for all \(N \) and \(\lambda \in \mathbb{R} \)

\[
\frac{1}{2} \mathbb{P}(\max_{v \in V_{2-\kappa N}} \sqrt{\frac{2 \log 2}{\pi} \xi_{\psi_{2-\kappa N}}^N} \geq \lambda) \leq \mathbb{P}(\max_{v \in V_N} \eta_{4N}^V \geq \lambda) \leq 4 \mathbb{P}(\max_{v \in V_{2-\kappa N}} \sqrt{\frac{2 \log 2}{\pi} \xi_{\psi_{2-\kappa N}}^N} \geq \lambda).
\]

Proof. We first prove the upper bound in the comparison. In light of Part (ii) of Lemma 2.4, it suffices to consider the maximum of GFF in a smaller central box (of half size), with the convenience that the variance is almost uniform therein. Indeed, by Lemma 2.1 we see that for a universal constant \(C > 0 \)

\[
|\text{Var} \ \eta_{4N}^V - \text{Var} \ \eta_{4N}^V| \leq C, \text{ for all } u, v \in (2N, 2N) + V_N. \quad (19)
\]

Let \(\psi_N \) be defined as in \([17]\). It is clear that for \(\kappa \) sufficiently large (independent of \(N \)), we have \(\text{Var} \ \eta_{4N}^{(2N,2N)} \leq \frac{2 \log 2}{\pi} \text{Var} \ \xi_{\psi_{2N}}^{2N} \) for all \(v \in V_N \). Therefore, we can choose a collection of positive numbers \(\{a_v\}_{v \in V_N} \) such that

\[
\text{Var}(\eta_{4N}^{(2N,2N)} + a_v X) = \frac{2 \log 2}{\pi} \text{Var} \ \xi_{\psi_{2N}}^{2N}, \quad (20)
\]

where \(X \) is an independent standard Gaussian variable. Furthermore, due to \([19]\) and the fact that the MBRW has precisely uniform variance over all vertices, we have for a universal constant \(C > 0 \)

\[
|a_u - a_v| \leq C, \text{ for all } u, v \in V_N.
\]

This implies that

\[
\mathbb{E}((\eta_{4N}^{(2N,2N)} + a_u X) - (\eta_{4N}^{(2N,2N)} + a_v X))^2 \leq \mathbb{E}((\eta_{4N}^{(2N,2N)} - \eta_{4N}^{(2N,2N)})^2 + C^2), \text{ for all } u, v \in V_N.
\]
Combined with the fact that $\mathbb{E}(\xi_{\psi N(u)}^{2N} - \xi_{\psi N(v)}^{2N})^2$ grows (linearly) with κ and Lemma 2.1 it follows that for κ sufficiently large (independent of N) and for all $u, v \in V_N$

$$
\mathbb{E}((\eta_{\psi N+2(2N,2N)}^N + a_v X) - (\eta_{\psi N+2(2N,2N)}^N + a_u X))^2 \leq \frac{2\log 2\pi}{\pi} \mathbb{E}(\xi_{\psi N(u)}^{2N} - \xi_{\psi N(v)}^{2N})^2.
$$

(21)

Combined with (20), an application of Lemma 2.5 yields that

$$
\mathbb{P}(\max_{v \in V_N} \eta_{\psi N+2(2N,2N)}^N + a_v X \geq \lambda) \leq \mathbb{P}(\sqrt{\frac{2\log 2\pi}{\pi} \max_{v \in V_N} \xi_{\psi N(v)}^{2N}} \geq \lambda), \text{ for all } \lambda \in \mathbb{R}.
$$

(22)

It is clear that

$$
\mathbb{P}(\max_{v \in V_N} \eta_{\psi N+2(2N,2N)}^N + a_v X \geq \lambda) \geq \mathbb{P}(\max_{v \in V_N} \eta_{\psi N+2(2N,2N)}^N \geq \lambda, X \geq 0) = \frac{1}{2} \mathbb{P}(\max_{v \in V_N} \eta_{\psi N+2(2N,2N)}^N \geq \lambda).
$$

Combined with (22), the desired upper bound follows.

We now turn to the proof of the lower bound, which shares the same spirit with the proof of the upper bound. Recall the definition of $\psi_{2^{-\kappa}N}$ as in (17). Using Lemma 2.1 again, we obtain that

$$
|\text{Var } \eta_{\psi_{2^{-\kappa}N}^N(v)} - \text{Var } \eta_{\psi_{2^{-\kappa}N}^N(u)}| \leq C, \text{ for all } u, v \in V_{2^{-\kappa}N}.
$$

It is also clear from Lemma 2.1 that $\text{Var } \eta_{\psi_{2^{-\kappa}N}^N} \geq \frac{2\log 2\pi}{\pi} \text{Var } \xi_{\psi N}^{2^{-\kappa}N}$, for κ sufficiently large (independent of N) and for all $v \in V_{2^{-\kappa}N}$. Continue to denote by X an independent standard Gaussian variable. We can then choose a collection of positive numbers $\{a'_v: v \in V_{2^{-\kappa}N}\}$ satisfying $|a'_v - a'_u| \leq C$ such that

$$
\text{Var } \eta_{\psi_{2^{-\kappa}N}^N(v)} = \frac{2\log 2\pi}{\pi} \text{Var } (\xi_{\psi N}^{2^{-\kappa}N} + a'_v X), \text{ for all } v \in V_{2^{-\kappa}N}.
$$

Analogous to the derivation of (21), we get that for κ sufficiently large (independent of N),

$$
\mathbb{E}((\eta_{\psi_{2^{-\kappa}N}^N(v)} - \eta_{\psi_{2^{-\kappa}N}^N(u)})^2 \geq \frac{2\log 2\pi}{\pi} \mathbb{E}((\xi_{\psi N}^{2^{-\kappa}N} + a'_v X) - (\xi_{\psi N}^{2^{-\kappa}N} + a'_u X))^2, \text{ for all } u, v \in V_{2^{-\kappa}N}.
$$

Another application of Lemma 2.5 yields that for all $\lambda \in \mathbb{R}$

$$
\mathbb{P}(\max_{v \in V_{2^{-\kappa}N}} \eta_{\psi_{2^{-\kappa}N}^N(v)} \geq \lambda) \geq \mathbb{P}(\sqrt{\frac{2\log 2\pi}{\pi} \max_{v \in V_{2^{-\kappa}N}} \xi_{\psi N}^{2^{-\kappa}N}} \geq \lambda, X \geq 0) = \frac{1}{2} \mathbb{P}(\sqrt{\frac{2\log 2\pi}{\pi} \max_{v \in V_{2^{-\kappa}N}} \xi_{\psi N}^{2^{-\kappa}N}} \geq \lambda).
$$

Combined with the fact that $\psi_{2^{-\kappa}N}(v) \in V_N$ for all $v \in V_{2^{-\kappa}N}$, this completes the proof.

2.4 Comparison of the maxima of sums of particles

We conclude this section with a comparison between the Gaussian free field and branching random walk, which will be used in the proof of Theorem 1.2.

We need the following variant of Slepian’s inequality.
Lemma 2.7. Let \(X = (X_i : i \in [n]) \) and \(Y = (Y_1, \ldots, Y_n) \) be two mean-zero Gaussian processes such that \(\mathbb{E}X_i^2 = \mathbb{E}Y_i^2 \) and \(\mathbb{E}X_iX_j \leq \mathbb{E}Y_iY_j \) for all \(i, j \in [n] \). Fix \(1 \leq m \leq n \), and define \(S_m(x) = \max\{\sum_{i \in A} x_i : A \subseteq [n], |A| = m\} \) for \(x \in \mathbb{R}^n \). Then \(\mathbb{E}S_m(X) \geq \mathbb{E}S_m(Y) \).

Proof. For \(\beta > 0 \), define \(F_\beta : \mathbb{R}^n \mapsto \mathbb{R} \) by
\[
F_\beta(x) = \beta^{-1} \log \sum_{A \in \Omega_m} e^{\beta x_A},
\]
where we denote by \(\Omega_m = \{A \subseteq [n] : |A| = m\} \) and \(x_A = \sum_{i \in A} x_i \). We prove below that
\[
\partial^2 F_\beta / \partial x_i \partial x_j \leq 0, \quad i \neq j.
\]

Then, by [36, Theorem 3.11], one has that
\[
EF_\beta(X) \geq EF_\beta(Y).
\]

Taking \(\beta \to \infty \) yields the lemma.

It remains to prove (23). For \(k \in [n] \) and \(I \subseteq [n] \), we set \(\Omega^I_k = \{B \subseteq [n] \setminus I : |B| = k\} \). Then, for \(i \neq j \),
\[
\partial^2 F_\beta / \partial x_i \partial x_j = \frac{\beta e^{\beta(x_i + x_j)}}{\sum_{A \in \Omega_m} e^{\beta x_A}} - \frac{\beta e^{\beta(x_i + x_j)}}{\sum_{B \in \Omega^i_{m-1}} e^{\beta x_B}} \frac{\sum_{B' \in \Omega^j_{m-1}} e^{\beta x_{B'}}}{(\sum_{A \in \Omega_m} e^{\beta x_A})^2}.
\]

The inequality (23) follows from the following combinatorial claim. \(\square \)

Claim 2.8. For all \(i, j, m \in [n] \) and \(\beta > 0 \), we have
\[
\sum_{A \in \Omega_m} e^{\beta x_A} \sum_{B \in \Omega^i_{m-1}} e^{\beta x_B} \leq \sum_{B \in \Omega^i_{m-1}} e^{\beta x_B} \sum_{B' \in \Omega^j_{m-1}} e^{\beta x_{B'}}.
\]

Proof. Fix a sequence \((a_1, \ldots, a_n) \) such that \(a_\ell \in \{0,1,2\} \) for all \(\ell \notin \{i,j\}, a_i, a_j \in \{0,1\} \) and \(\sum_\ell a_\ell = 2m - 2 \). We count the multiplicity of the term \(e^{\sum_\ell \beta a_\ell x_\ell} \) in the left (denoted by \(L \)) and right hand sides (denoted by \(R \)), respectively. Let \(k = |\{\ell \in [n] \setminus \{i,j\} : a_\ell = 1\}|. \) It is straightforward to verify that
\[
L = \begin{cases}
\binom{k}{k/2+1}, & \text{if } a_i + a_j = 0, \\
\binom{k-1}{k/2-1}, & \text{if } a_i + a_j = 1, \quad \text{and} \\
\binom{k-2}{k/2-1}, & \text{if } a_i + a_j = 2;
\end{cases}
\]
\[
R = \begin{cases}
\binom{k}{k/2}, & \text{if } a_i + a_j = 0, \\
\binom{k-1}{(k-1)/2}, & \text{if } a_i + a_j = 1, \\
\binom{k-2}{(k-2)/2}, & \text{if } a_i + a_j = 2.
\end{cases}
\]

Therefore, we always have \(L \leq R \), completing the proof of the claim. \(\square \)

We now demonstrate a comparison for the maxima of sums of values between the GFF and the BRW.

Lemma 2.9. For \(N = 2^n \) with \(n \in \mathbb{N} \), let \(\eta_v : v \in V_N \) be the Gaussian free field and \(\vartheta_v : v \in V_N \) the branching random walk as defined in (10). For \(\ell \in \mathbb{N} \), define
\[
S_{\ell,N} = \max\{\sum_{v \in A} \eta_v : |A| = \ell, A \subset V_N\}, \quad \text{and} \quad R_{\ell,N} = \sqrt{\frac{2\log 2}{\pi}} \max\{\sum_{v \in A} \vartheta_v : |A| = \ell, A \subset V_N\}.
\]

Then, there exists absolute constant \(\kappa \in \mathbb{N} \) such that \(\mathbb{E}S_{\ell,N} \leq \mathbb{E}R_{\ell,N^{2^\kappa}} \).
Proof. Consider $\vartheta_v^* = \vartheta_v + \kappa X_v$ where X_v are i.i.d. standard Gaussian variables, and define $\mathcal{R}_{\ell,N}^* = \sqrt{2 \log 2/\pi} \max\{\sum_{v \in A} \vartheta_v^* : |A| = \ell, A \subset V_N\}$. Clearly, $\mathbb{E}\mathcal{R}_{\ell,N}^* \leq \mathbb{E}R_{\ell,N2\ell}^*$. Let X be another independent standard Gaussian variable and choose a non-negative sequence $\{a_v : v \in (2N,2N) + V_N\}$ such that
\[
\text{Var}(\eta_v^4N + a_vX) = \text{Var} \vartheta_v^*, \text{ for all } v \in (2N,2N) + V_N.
\]
By Lemma 2.1, we see that $|a_u - a_v| \leq C$ for an absolute constant $C > 0$. Further define
\[
S_{\ell,N}^* = \max\{\sum_{v \in A+(2N,2N)} \eta_v^{4N} + a_vX : |A| = \ell, A \subset V_N\}.
\]
Using similar arguments as in the proof of Lemma 2.1, we deduce that $\mathbb{E}S_{\ell,N} \leq \mathbb{E}S_{\ell,N}^*$. Therefore, it remains to prove $\mathbb{E}S_{\ell,N}^* \leq \mathbb{E}R_{\ell,N\ell}^*$. To this end, note that we can select $\kappa = 4C$ such that for all $u,v \in V_N$
\[
\mathbb{E}(\vartheta_v^* \vartheta_u^*) \leq \mathbb{E}((\eta_v^{4N} + a_v+(2N,2N))X)(\eta_u^{4N} + a_u+(2N,2N))X).
\]
Combined with (24) and Lemma 2.7 it completes the proof.

\section{Maxima of the modified branching random walk}

This section is devoted to the study of the maxima of MBRW, from which we will deduce properties for the maxima of GFF.

\subsection{The maximal sum over pairs}

The following lemma is the key to controlling the maximum over pairs. Set $\tilde{m}_N = \sqrt{\pi/2 \log 2 \cdot m_N}$.

\begin{lemma}
There exist constants $c_1, c_2 > 0$ so that
\[
2\tilde{m}_N - c_2 \log \log r \leq \mathbb{E}S_{N,r}^* \leq 2\tilde{m}_N - c_1 \log \log r.
\]
\end{lemma}

We consider first a branching random walk $\{X_i^n : i = 1, \ldots, 4^n\}$, with four descendants per particle and standard normal increments. Note that $\{\vartheta_v : v \in V_N\}$ as defined in [10] is a BRW with four descendants per particle and n generations. We use different notation in this subsection that allows us to ignore the geometrical embedding of the BRW into the two-dimensional lattice. Let T_n be the maximum of the BRW after n generations. Let $c^* = 2\sqrt{\log 2}$, $\bar{c} = (3/2)/c^*$ and $t_n = c^*n - \bar{c}\log n$. We need the following estimates on the right tail of the maximum of a BRW. For the lower bound, we refer e.g. to [2] and to [39] (2.5.11),(2.5.13)]. One can obtain the upper bound by adapting, with some effort, Bramson’s argument in [15]; this is done in detail in [16] Lemma 3.7, 3.8]. Alternatively, one can refer to [3, Prop. 4.1] for most of the content of Lemma 3.2.

\begin{lemma}
The expectation ET_n satisfies
\[
ET_n = c^*n - \bar{c}\log n + O(1).
\]
Further, there exist constants $c,C > 0$ so that, for $y \in [0,\sqrt{m}]$,
\[
ec^{-c^*y} \leq P(T_n \geq t_n + y) \leq C(1 + y)e^{-c^*y},
\]
with the upper bound holding for any $y \geq 0$.
\end{lemma}
We remark that [3, Prop. 4.1] implies (in a much more general setting than that considered here) a lower bound in (26) that matches the upper bound (up to a multiplicative constant); we will not directly use this. Further, (26) implies that with \(T'_n \) an independent copy of \(T_n \), there exists a constant \(C \) such that

\[
P(T_n + T'_n \geq 2t_n + 2y) \leq \sum_{j \in \mathbb{Z}} P(T_n \in t_n + [j, j + 1))P(T'_n \geq t_n + 2y - (j + 1))
\]

\[
\leq 2P(T_n \geq t_n + 2y) + \sum_{j=0}^{[2(y-1)]} P(T_n \geq t_n + j)P(T'_n \geq t_n + 2y - (j + 1))
\]

\[
\leq C(1 + y)^3 e^{-2c^*y} \leq C(1 + y)^4 e^{-2c^*y}
\]

(27)

for any \(y \geq 0 \) and any positive integer \(n \).

For \(x \in \mathbb{Z} \), let

\[
\Xi_n(x) = \#\{1 \leq i \leq 4^n : X_i^x \in [t_n - x - 1, t_n - x]\}
\]

be the number of particles in the BRW at distance roughly \(x \) behind the leader. The following is essentially folklore, we include a proof since we have not been able to find an appropriate reference.

Proposition 3.3. For some universal constant \(C \), and all \(x \in \mathbb{Z} \),

\[
\mathbb{E}\Xi_n(x) \leq Cn e^{c^*x^2 - x^2/2n}.
\]

(28)

Further, for any \(u > -x \) so that \(0 < x + u \leq \sqrt{n/2} \),

\[
P(\Xi_n(x) \geq e^{c^*(x+u)}) \leq C e^{-c^*u + C \log_4(x+u)}.
\]

(29)

Note that the interest in (29) is only in situations in which \(x + u \) is at most at logarithmic scale (in \(n \)).

Proof. The estimate (28) is a simple union bound: with \(G \) a zero mean Gaussian with variance \(n \) we have

\[
\mathbb{E}\Xi_n(x) = 4^n P(G \in [t_n - x - 1, t_n - x]).
\]

Using standard estimates for the Gaussian distribution and the value of \(t_n \), the estimate (28) follows.

We write the proof of (29) in case \(x \geq 0 \), the general case is similar. We use Lemma 3.2. Fix \(\delta > 0 \), \(r = 2(x + u)^2 \) and \(y = u - \tilde{c}\log r \). Note that \(\tilde{c}\log r + y + x < \sqrt{r} \). With \(K \) an arbitrary positive integer,

\[
P(T_{n+r} \geq t_{n+r} + y) \geq P(\Xi_n(x) \geq K) \left[1 - (P(T_r \leq t_r + \tilde{c}\log r + y + x - \tilde{c}\log(1 + r/n)))^K \right]
\]

\[
\geq P(\Xi_n(x) \geq K) \left[1 - \left(1 - C e^{-c^*(y+x+\tilde{c}\log r)} \right)^K \right],
\]

(30)

where in the last inequality we used the lower bound in (26). Taking \(K = e^{c^*(x+u)} \) we have that \(e^{-c^*(y+x+\tilde{c}\log r)} K = 1 \) and therefore

\[
P(T_{n+r} \geq t_{n+r} + y) \geq cP(\Xi_n(x) \geq K).
\]

Using the upper bound in (26) we get that

\[
P(\Xi_n(x) \geq K) \leq C e^{-c^*y}(1 + y).
\]

This yields (29). \(\square \)
In what follows, we write $i \sim_s j$ if the particles X^n_i and X^n_j had a common ancestor at generation $n - s$. In the next corollary, the precise value of the constants appearing in the exponent is of no particular significance (nor have we tried to optimize over those).

Corollary 3.4. There exists a constant $C > 0$ such that, for any $s \leq n/2$ positive integer, and any z positive,

$$
\mathbb{P}(\exists i_1 \sim_s i_2 : X^n_{i_1} + X^n_{i_2} \geq 2t_n - \bar{c}\log s + z) \leq C[e^{-0.9c^*z} + e^{-0.45c^*z-0.7\log s}].
$$

Similarly,

$$
\mathbb{P}(\exists i_1 \sim_{n-s} i_2 : X^n_{i_1} + X^n_{i_2} \geq 2t_n - \bar{c}\log s + z) \leq C[e^{-0.9c^*z} + e^{-0.45c^*z-0.7\log s}].
$$

In particular, there exists an r_0 such that for all $r > r_0$ and all n large,

$$
\mathbb{E} \max_{i_1 \sim_s i_2, s \in [r, n-r]} (X^n_{i_1} + X^n_{i_2}) \leq 2t_n - (\bar{c}/4)\log r.
$$

Proof. We first provide the proof of (31); the claim (32) follows similarly and (33) will then be an easy consequence.

The argument (given the estimates in Proposition 3.3) is straightforward and routine, even if tedious; it requires controlling the number of particles, at generation $n - s$, that are near $t_{n-s} - x$, that is $\Xi_{n-s}(x)$, and dividing to cases according to x and the different possible values of $\Xi_{n-s}(x)$.

In what follows we set $u^* = u^*(x, z) = \max(|x|, z)$ and $j^* = j^*(x, z) = [u^*]$. We also define $Z^{(1)}_z = Z_\sim \cap \{x : |x| \leq (z + \bar{c}\log s)/2\}$, $Z^{(2)}_z = Z_\sim \cap \{x : |x| > (z + \bar{c}\log s)/2\}$ and $Z_n = \{x \in Z : 0 \leq x + u^* \leq \sqrt{n/4}\}$. (For negative x one has to exercise some care, this is the reason for the definition of $Z^{(1)}_z$ and $Z^{(2)}_z$.)

The starting point of the proof of (31) is the following estimate, obtained by decomposing over the location of particles at generation $n-s$.

$$
\mathbb{P}(\exists i_1 \sim_s i_2 : X^n_{i_1} + X^n_{i_2} \geq 2t_n - \bar{c}\log s + z)
\leq \sum_{x \in Z} \mathbb{P}(\Xi_{n-s}(x) \geq e^{c^*(x+u^*)}) +
\sum_{x \in Z} \sum_{j=0}^{j^*(x,z)} \mathbb{P}(\Xi_{n-s}(x) \geq e^{c^*(x+j)})e^{c^*(x+j+1)} \mathbb{P}(T_s + T'_s \geq 2t_s + z + 2x + \bar{c}\log s) +
\sum_{x \in Z^{(1)}_z \cap Z_n} \sum_{j=|x|}^{j^*(x,z)} \mathbb{P}(\Xi_{n-s}(x) \geq e^{c^*(x+j)})e^{c^*(x+j+1)} \mathbb{P}(T_s + T'_s \geq 2t_s + z + 2x + \bar{c}\log s) +
\sum_{x \in Z^{(1)}_z \cap Z^*_n} \mathbb{E}(\Xi_{n-s}(x)) \mathbb{P}(T_s + T'_s \geq 2t_s + z + 2x + \bar{c}\log s) +
\sum_{x \in Z^{(1)}_z \cap Z^*_n} \mathbb{E}(\Xi_{n-s}(x)) \mathbb{P}(T_s + T'_s \geq 2t_s + z + 2x + \bar{c}\log s) +
\sum_{x \in Z^{(2)}_z \cap Z^*_n} \mathbb{E}(\Xi_{n-s}(x)) \mathbb{P}(T_s + T'_s \geq 2t_s + z + 2x + \bar{c}\log s) +
\sum_{x \in Z^{(2)}_z \cap Z^*_n} \mathbb{P}(\Xi_{n-s}(x) \geq 1) =: \sum_{x \in Z} A_1(x) + \sum_{x \in Z^{(1)}_z \cap Z_n} A_2(x) + \sum_{x \in Z^{(1)}_z \cap Z^*_n} A_3(x) + \sum_{x \in Z^{(1)}_z \cap Z^*_n} A_4(x) + \sum_{x \in Z^{(2)}_z \cap Z^*_n} A_5(x) + \sum_{x \in Z^{(2)}_z \cap Z^*_n} A_6(x)
= A_1 + A_2 + A_3 + A_4 + A_5 + A_6,
$$

(34)
where T'_i is an independent copy of T_s. The contribution to A_1 from $x \in \mathbb{Z}_n$ can be estimated using (29) and one finds

$$
\sum_{x \in \mathbb{Z}_n} A_1(x) \leq C \sum_{|x| \leq z} e^{-c^* z + C \log x} + 2C \sum_{x = z}^{\infty} e^{-c^* x + C \log x} \leq C e^{C \log x} e^{-c^* z}.
$$

(35)

A similar computation using (29) and (27) yields

$$
\sum_{x \in \mathbb{Z}_+ \cap \mathbb{Z}_n} A_2(x) \leq C \sum_{x \in \mathbb{Z}_+ \cap \mathbb{Z}_n} e^{-c^* j + C \log j} e^{c^* (x+j+1) e^{-c^* (z+2x+\bar{c} \log s)}} (z + |x| + \bar{c} \log s)^4
\leq C (1 + \log s)^4 e^{C \log + z e^{-c^* z}}.
$$

(36)

To control A_3, we repeat the last computation and obtain

$$
\sum_{x \in \mathbb{Z}_+ \cap \mathbb{Z}_n} A_3(x) \leq C \sum_{x \in \mathbb{Z}_+ \cap \mathbb{Z}_n} e^{-c^* j + C \log j} e^{c^* (x+j+1) e^{-c^* (z+2x+\bar{c} \log s)}} (z + |x| + \bar{c} \log s)^4
\leq C (1 + \log s)^4 e^{C \log + z e^{-c^* z/2-c^* \bar{c} \log s/2}}.
$$

(37)

To control A_6 over \mathbb{Z}_n, we repeat the estimate as in controlling A_1 and obtain

$$
\sum_{x \in \mathbb{Z}_+ \cap \mathbb{Z}_n} A_6(x) \leq C (1 + \log s + z) e^{-c^* z/2+c^* \bar{c} \log s/2}.
$$

(38)

The estimate for $x \notin \mathbb{Z}_n$ is easier, using this time (28). Indeed, in such a situation either $|x|$ or z are at least of order \sqrt{n}. One has

$$
\sum_{x \notin \mathbb{Z}_n} A_1(x) \leq C \sum_{x \notin \mathbb{Z}_n} E \Xi_{n-s} (x) \cdot e^{-c^* x u^*} \leq \sum_{x \notin \mathbb{Z}_n} C n e^{-c^* u^* - x^2 / n} \leq e^{-0.9 c^* z - 2 \log n}.
$$

(The constant 0.9 does not play a particular role in the last inequality, all that is needed is that it is smaller than 1 and close to 1 and that $e^{-0.1 e^* u^*} < 1/n^3$ for all n large and $x \notin \mathbb{Z}_n$.) Since $\log s < \log n$ we get

$$
\sum_{x \notin \mathbb{Z}_n} A_1(x) \leq C s^{-2} e^{-0.9 c^* z}.
$$

(39)

Similarly,

$$
\sum_{x \in \mathbb{Z}_+ \cap \mathbb{Z}_n} A_5(x) \leq C \sum_{x \in \mathbb{Z}_+ \cap \mathbb{Z}_n} (1 + z + x + \bar{c} \log s)^4 n e^{-c^* (x+z) - 2n - c^* \bar{c} \log s} \leq e^{-0.9 c^* z}.
$$

(40)

As mentioned earlier, for negative $x \in \mathbb{Z}_n$ one has to exercise some care, this was the reason for the definition of $\mathbb{Z}_{(1)}$ and $\mathbb{Z}_{(2)}$. One has, using (27),

$$
\sum_{x \in \mathbb{Z}_{(1)} + \mathbb{Z}_{(1)}} A_4(x) \leq C \sum_{x \in \mathbb{Z}_{(1)} + \mathbb{Z}_{(1)}} n (1 + z + |x| + \bar{c} \log s)^4 e^{-c^* (x+z+\bar{c} \log s)}
\leq C e^{-0.45 c^* z - 0.99 c^* \bar{c} \log s} \leq e^{-0.45 c^* z - 0.7 \log s},
$$

(41)
where we have used that $c^*\bar{c} = 3/2$, and again the choice of 0.99 as the constant multiplying $c^*\bar{c}$ is of no real importance except that it is close enough to 1. Finally, just using (28), we get similarly

$$
\sum_{x \in \mathbb{Z}^2 \cap \mathbb{R}_k} A_0(x) \leq \sum_{x \in \mathbb{Z}^2 \cap \mathbb{R}_k} C n e^{c^* x - x^2/2n} \leq e^{-0.45c^* x - 0.7 \log n}.
$$

(42)

Summing (35)-(42) yields (31). As mentioned before, the proof of (32) is similar. Because $c^*\bar{c} = 3/2$ and $0.9 \cdot 3/2 > 1$ we also have then that

$$
P(\exists s \in \{r, \ldots, n/2\}, \exists i_1, i_2 : X_{i_1}^n + X_{i_2}^n \geq 2t_n - (\bar{c}/4) \log r + z)
\leq \sum_{s=r}^{n/2} C[e^{-0.9c^*(z+\bar{c}\log(s/r^{1/4}))} + e^{-0.45c^*(z+\bar{c}\log(s/r^{0.25})) - 0.7 \log n}] \leq Ce^{-0.45c^*z}.
$$

A similar estimates holds for the range $s \in \{n/2, \ldots, n-r\}$. Summing those over z yields (32).

We omit further details.

We can now provide the

Proof of Lemma 3.1. We begin with the upper bound. The argument is similar to what was done in the proofs in Section 2 and therefore we will not provide all details.

Let S^N_v be a BRW of depth n and set $R^N_v = (1 - \varepsilon_N)S^N_v + G_v$ where G_v is a collection of i.i.d. zero mean Gaussians of variance σ^2 to be defined (independent of N) and $\varepsilon_N = O(1/n)$. Choosing σ and ε_N appropriately one can ensure that $E((R^N_v)^2) = E((\xi^N_v)^2)$ and that $E((R^N_v - R^N_{v'})^2) \geq E((\xi^N_v - \xi^N_{v'})^2)$. Applying Lemma 2.7 and Corollary 3.4 we deduce the upper bound in Lemma 3.1.

We now turn to the proof of the lower bound. The first step is the following proposition. In what follows, $\xi_{N,r}^c$ is defined as $\xi_{N,r}$, except that the maximum is taken only over pairs of vertices at distance at least $N/4$ from the boundary, and the top two levels of the MBRW are not added.

Proposition 3.5. There exist constants $C_1, C_2 > 0$ such that for all N large and all r,

$$
P(\tilde{\xi}_{N,r}^c \geq 2\bar{m}_N - C_1 \log \log r) \geq C_2.
$$

(43)

We postpone the proof of Proposition 3.5 and show how to deduce the lower bound in Lemma 3.1 from it. Fix $C = 2^c > 1$ integer and consider the MBRW $\xi^{N,C}_v$ in the box $V_{C,N}$ with levels up to $n = \log_2(N/4)$ (that is, the last $c + 2$ levels are not taken), and define $\xi_{N,C,r}^c$ in a natural way. By independence of the field in sub-boxes of side $N/4$ that are at distance at least $N/2$ of each other, we get that

$$
P(\xi_{N,C,r}^c \geq 2\bar{m}_N - C_1 \log \log r) \geq 1 - (1 - C_2^2)^{C^2/2}.
$$

Adding the missing $c+2$ levels we then obtain, by standard estimates for the Gaussian distribution,

$$
P(\xi_{N,r}^c \geq 2\bar{m}_N - C_1 \log \log r - y) \geq 1 - (1 - C_2^2)^{C^2/2} - C_3e^{-Cy^2/c}.
$$

Renaming N, we rewrite the last estimate as

$$
P(\xi_{N,r}^c \geq 2\bar{m}_N - C_1 \log \log r - y - C_5c) \geq 1 - (1 - C_2^2)^{C^2/2} - C_3e^{-Cy^2/c}.
$$

Choosing $y = C_5c$ and summing over c we obtain that $E\xi_{N,r}^c \geq 2\bar{m}_N - C_6 \log \log r$, as claimed.
Proof of Proposition 3.5. We consider V_N as being centered. There are two steps.

Step 1. We consider the MBRW from level $n - \log r - 1$ to level 1. That is, with r fixed define

$$\xi^N_v = \sum_{k=0}^{n-\log_2 r - 1} \sum_{B \in B_k(v)} b^N_{k,B}, \quad \text{and} \quad A_{n,r} = V_{N/r} \cap \left(\frac{N}{r} \right)^2. \quad (44)$$

For each $x \in A_{n,r}$, let $V_{N,r}(x)$ denote the Z^2 box centered at x with side $N/2r$. We call $y \in A_{n,r}$ a right neighbor of $x \in A_{n,r}$ if $x_2 = y_2$ and $y_1 > x_1$ satisfies $y_1 = x_1 + N/r$, and we write $y = x_R$.

Finally, we set, for $x \in A_{n,r}$,

$$\xi^*_{N,r,x} = \max_{v \in V_{N,r}(x)} \xi^N_v.$$

Note that, by construction, the collection $\{\xi^*_{N,r,x}\}_{x \in A_{n,r}}$ is i.i.d.

A straightforward adaptation of [17] shows that

$$\mathbb{P}(\xi^*_{N,r,x} \geq \hat{m}_{N/r} - c) \geq g(c), \quad (45)$$

where $g(c) \rightarrow c \rightarrow \infty 1$ is independent of N, r. Let $\zeta^*_{x,N}$ be the (unique) element of $V_{N,r}(x)$ such that $\xi^*_{N,r,x} = \zeta^*_{x,N}$. Let

$$M_{N,r,c} = \{ x \in A_{n,r} : \xi^*_{N,r,x} \geq \hat{m}_{N/r} - c, \xi^*_{N,r,x_R} \geq \hat{m}_{N/r} - c \}.$$

By independence, we get from (45) that there exists a constant c, independent of N, r, so that

$$\mathbb{P}(|M_{N,r,c}| \geq r^2/4) \geq \frac{1}{2}. \quad (46)$$

Step 2. For $x \in M_{N,r,c}$, set $\xi^*_{N,r,x} = \xi^*_{N,r,x} + \xi^*_{N,r,x_R}$; note that for such x, one has $\xi^*_{N,r,x} \geq 2\hat{m}_{N/r} - 2c$.

Define, for $v \in V_N$,

$$Y^N_v = \sum_{k=n-\log_2 r}^{n} \sum_{B \in B_k(v)} b^N_{k,B}, \quad (47)$$

and for $x \in A_{n,r}$, set

$$Z^N_x = Y^N_{\xi^*_{x,N}} + Y^N_{\xi^*_{x_R,N}}.$$

Conditioned on the sigma algebra $\mathcal{F}_{N,r}$ generated by the collection of variables $\{\zeta^*_{x,n}\}$, the collection $\{Z^N_x\}_x$ is a zero mean Gaussian field, with (conditional) covariance satisfying

$$|\tilde{\mathbb{E}}(Z^N_x Z^N_y) - 4(\log_2 r - \log_2(|x - y|/(N/r)))| \leq C,$$

for some constant C independent of N, r; here, $\tilde{\mathbb{E}}$ denotes expectation conditioned on $\mathcal{F}_{N,r}$.

It is then straightforward, using the argument in the proof of Proposition 5.2 in [17], to verify that $Z^N_x = \max_{x \in M_{N,r,c}} Z^N_x$ is comparable to twice the maximum of MBRW run for $\log_2 r$ generations, i.e. that on the event $|M_{N,r,c}| \geq r^2/4$ there exist positive constants c_1, c_2 independent of r, N (but dependent on c) such that

$$\mathbb{P}(Z^N_x \geq 2\hat{m}_r - c_1) \geq c_2.$$

We now combine the two steps. Let $x^*_{N,r,c}$ be the (unique) random element of $M_{N,r,c}$ such that $Z^N_x = Z^N_{x^*_{N,r,c}}$. Then, on the event $|M_{N,r,c}| \geq r^2/4$, we have

$$\tilde{\xi}^N_{N,r} \geq Z^N_{x^*_{N,r,c}} + 2\hat{m}_{N/r} - 2c.$$
Therefore, with probability at least \(g(c) \cdot c_2 \), we get that
\[
\bar{\xi}_{N,v}^* \geq 2(\bar{m}_r + \bar{m}_{N/r}) - c_4 \geq 2\bar{m}_N - c_3 \log \log r,
\]
completing the proof of the proposition.

Combined with Proposition 2.3 and Lemma 3.1, we immediately obtain the following consequence.

Corollary 3.6. There exist absolute constants \(c_1, c_2, C > 0 \) so that
\[
2m_N - c_2 \log \log r - C \leq \mathbb{E}\xi_{N,v}^* \leq 2m_N - c_1 \log \log r + C.
\]

3.2 The right tail for the maximum

In this subsection, we compute the right tail for the maximum of the MBRW.

Lemma 3.7. There exists a constant \(C > 0 \) such that for all \(y \in [1, \sqrt{n}] \) and \(n \) large enough,
\[
C^{-1} ye^{-2\sqrt{\log 2}y} \leq \mathbb{P}(\max_v \xi_v^N > \bar{m}_N + y) \leq Cy e^{-2\sqrt{\log 2}y}.
\]

Combined with Lemma 2.6, the preceding lemma directly yields Theorem 1.4.

Proof of Lemma 3.7. The upper bound is an immediate comparison argument. Consider the MBRW \(\xi_v^N \), and consider the associated BRW \(\bar{\xi}_v^N \). As noted in [17, Prop. 3.2], \(\mathbb{E}(\xi_v^N)^2 = \mathbb{E}(\bar{\xi}_v^N)^2 \) and there exists a constant \(C \) such that for \(v \neq v' \),
\[
\mathbb{E}\xi_v^N \xi_v^N + C \geq \mathbb{E}\bar{\xi}_v^N \bar{\xi}_v^N.
\]
Set \(G, G_v \) be iid Gaussian variables of zero mean and variance \(C \), independent of the fields \(\{\xi, \bar{\xi}\} \). Set \(\mu_v^N = \bar{\xi}_v^N + G \) and \(\bar{\mu}_v^N = \xi_v^N + G_v \). Clearly, it is still the case that \(\mathbb{E}(\mu_v^N)^2 = \mathbb{E}(\bar{\mu}_v^N)^2 \), while now,
\[
\mathbb{E}\mu_v^N \xi_v^N \geq \mathbb{E}\bar{\mu}_v^N \bar{\xi}_v^N, \text{ for } v \neq v'.
\]
We conclude from Slepian’s lemma that
\[
\mathbb{P}(\max_v \bar{\mu}_v^N \geq t) \geq \mathbb{P}(\max_v \mu_v^N \geq t) \geq \frac{1}{2} \mathbb{P}(\max_v \xi_v^N \geq t).
\]
(The last inequality because \(\mathbb{P}(G \geq 0) = 1/2 \).) On the other hand, \(\max_v \mu_v^N \) is trivially stochastically dominated by \(\max_v \xi_v^N \). Combining these with the upper bound in (26) yields the upper bound in the lemma.

The main work goes to the proof of the lower bound. Recall that \(N = 2^n \). Set \(a_n = 2\sqrt{\log 2}n - \frac{3}{4\sqrt{\log 2}} \log n \). To simplify notation, we drop the superscript and denote by \(\{\xi_v : v \in V\} \) a MBRW of \(n \) levels. For \(0 \leq t \leq n \), let \(\xi_v(t) \) be the sum of the Gaussians variables in the first \(t \)-levels for \(\xi_v \) (i.e., summing over the Gaussian variables associated to boxes of side length \(2^n, 2^{n-1}, \ldots, 2^{n-t} \)). Define
\[
A_v(y) = \{\xi_v \in [a_n + y - 1, a_n + y], \xi_v(t) \leq \frac{a_n}{n} + y \forall t \in [n]\}, \text{ and } Z(y) = \sum_{v \in V} 1_{A_v(y)}.
\]
Therefore, writing \(\bar{\xi}_v(t) = \xi_v(t) - \frac{a_n}{n} \), we can compute
\[
\mathbb{P}(A_v(y)) = \mathbb{P}(\bar{\xi}_v(n) \in [y - 1, y], \bar{\xi}_v(t) \leq y \text{ for all } t \in [n]).
\]

17
Let \(Q \) be a probability measure under which \(\bar{\xi}_v \) is a Gaussian random walk. Then we have
\[
\frac{dP}{dQ} = e^{-\frac{a_n}{n} \xi(n) - \frac{a_n^2}{2n^2} n}.
\] (48)

Altogether, we obtain that
\[
P(A_v(y)) = E_Q(\frac{dP}{dQ} 1_{A_v(y)}) = e^{-\frac{a_n^2}{2n^2} n} E_Q(A_v(y))
\times n^{3/2} e^{-2\log \sqrt{2} y} = 4^{-n} e^{-2\log \sqrt{2} y},
\]
where the notation \(\asymp \) means that the ratio of the left and right hand sides is bounded above and below by absolute positive constants. Note that we have applied the Ballot theorem (see, e.g., [1 Theorem 1]) to estimate \(Q(A_v(y)) \). This implies that
\[
E Z(y) \asymp e^{-2\log \sqrt{2} y}.
\] (49)

Next we turn to computing the second moment of \(Z(y) \). To this end, consider \(v \) and \(w \) such that \(v \) and \(w \) splits in level \(t_s = n - s \) (denoted by \(v \sim_s w \)). That is to say, the boxes of side length \(2^s \) associated to \(v \) are disjoint from those associated to \(w \). Write \(\bar{\xi}_v(t) = \xi_v(t) - \frac{a_n}{n} t, \bar{\xi}_w(t) = \xi_w(t) - \frac{a_n}{n} t \). We compute (writing \(\alpha_n = a_n/n \))
\[
P(A_v(y) \cap A_w(y))
= P(\bar{\xi}_v(t) \leq y, \bar{\xi}_w(t) \leq y \text{ for all } t \in [n], \bar{\xi}_v(n), \bar{\xi}_w(n) \in [y-1, y])
\leq \sum_{z \leq y} P(\bar{\xi}_v(t) \leq y, \bar{\xi}_w(t) \leq y \text{ for all } t \in [n], \bar{\xi}_v(n), \bar{\xi}_w(n) \in [y-1, y], \bar{\xi}_v(t_s) \in [z-1, z])
\leq \sum_{z \leq y} P(\bar{\xi}_v(t) \leq y, \text{ for all } t \in [t_s], \bar{\xi}_v(t_s) \in [z-1, z]) \Gamma_{y,z,s}^2,
\] (50)

where
\[
\Gamma_{y,z,s} = \sup_{\bar{\xi}_v(t_s) \in [z-1, z]} P(\bar{\xi}_v(t) \leq y \text{ for all } t_s < t \leq n, \bar{\xi}_v(n) \in [y-1, y] | \bar{\xi}_v(t_s)).
\]

Note that in (50), we have an inequality as opposed to an equality which would hold for BRW. For \(v \sim_s w \), the processes \(\{\xi_v(t) : t \in [t_s]\} \) and \(\{\xi_w(t) : t \in [t_s]\} \) are not precisely the same and therefore
\[
\{\bar{\xi}_v(t) \leq y, \text{ for all } t \in [t_s], \bar{\xi}_v(t_s) \in [z-1, z]\} \neq \{\bar{\xi}_w(t) \leq y, \text{ for all } t \in [t_s], \bar{\xi}_w(t_s) \in [z-1, z]\}.
\]

This explains the inequality in (50). By the Ballot theorem,
\[
\Gamma_{y,z,s} \leq P(\xi_v(r) \leq y - z \text{ for all } r \in [s], \xi_v(s) \in [y-1-z, y-z]) \leq \left(\frac{y - z + 1}{s^{3/2}} \right)^2,
\] (51)

where the notation \(\lesssim \) means that the left hand side is bounded by the right hand side up to an absolute constant. Recalling (48) and applying a slight variation of the Ballot theorem (see, e.g., [39 Corollary 2]), we obtain that
\[
P(\bar{\xi}_v(t) \leq y, \text{ for all } t \in [t_s], \bar{\xi}_v(t_s) \in [z-1, z]) \lesssim e^{-\frac{a_n^2}{2n} (n-s)} e^{-\frac{a_n^2}{2n^2} s} e^{-\alpha_n z} e^{-2\alpha_n (y-z)} \frac{y(y-z+1)}{(n-s)^{3/2}}.
\]
Plugging the preceding inequality and (51) into (50), we get that
\[\mathbb{P}(A_{v}(y) \cap A_{w}(y)) \lesssim (y + 1) \sum_{z \leq y} e^{-\frac{\alpha_n^2}{2} n} e^{-\frac{\alpha_n^2}{2} s} e^{-\alpha_n y} e^{-\alpha(y - z)} \frac{(y - z + 1)^3}{s^3(n - s)^{3/2}} \lesssim \frac{y 4^{-n n^{3/2}} 4^{-s n^{3 s/2n}} e^{-\alpha_n y}}{s^3(n - s)^{3/2}}, \]
where the summation is over all \(z \) such that \(y - z \) is a non-negative integer. Summing over \(v \sim_{s} w \) and also over \(s \), we obtain from a straightforward computation that
\[\mathbb{E}(Z(y))^2 = \sum_{s=1}^{n} \sum_{v \sim_{s} w} \mathbb{P}(A_{v}(y) \cap A_{w}(y)) \lesssim y e^{-\alpha_n y} \sum_{s=1}^{n} \frac{n^{3/2} n^{3 s/2n}}{s^3(n - s)^{3/2}} \lesssim y e^{-\alpha_n y} \sum_{s=1}^{n} \frac{n^{3 s/2n}}{s^3(1 - s/n)^{3/2}}. \]
Recalling (49) and that \(\alpha_n = \alpha_n/n \), we complete the proof on the lower bound. \(\square \)

4 Maxima of the Gaussian free field

This section is devoted to the study of the maxima of the GFF, for which we will harvest results from previous sections.

4.1 Physical locations for large values in Gaussian free field

This subsection is devoted to the proof of Theorem 1.1. We first briefly explain the strategy for the proof. Suppose that there exists a number \(\varepsilon > 0 \) such that the limiting probability in (11) is larger than \(\varepsilon \) along a subsequence \(\{r_k\} \). Then, we can take \(N' \propto N/\varepsilon \) such that the same limiting probability with \(N \) replaced by \(N' \) will approach almost 1. This would then (roughly) imply that the expected value of \(\eta_{N',r_k}^0 \) will exceed \(2m_N - \delta \log \log r_k - O(1) \) (where \(\delta > 0 \) is a small number), contradicting with Corollary 3.6 as \(k \to \infty \). The details of the proof are carried out in what follows.

We start with the following preliminary lemma.

Lemma 4.1. For \(N' > 8N \), consider a discrete ball \(B \) of radius \(8N \) in a box \(V_{N'} \) of side length \(N' \). Let \(B^* \subset B \) be a box of side length \(N \) such that the centers of \(B \) and \(B^* \) coincide. Let \(\{\eta_v : v \in V_{N'}\} \) be a GFF on \(V_{N'}^c \) with Dirichlet boundary condition and let
\[\psi_v = \mathbb{E}(\eta_v \mid \{\eta_u : u \in \partial B\}). \]

Then for \(v \in B^* \), we have \(\text{Var} \psi_v = O(\log(N'/N)) \).

Proof. We need the following lemma, which implies that the harmonic measure on \(\partial B \) with respect to any \(v \in B^* \) is comparable to the uniform distribution.

Lemma 4.2. ([27] Lemma 6.3.7) Let \(C_n \subset \mathbb{Z}^2 \) be a discrete ball of radius \(n \) centered at the origin. There exist absolute constants \(c, C > 0 \) such that for all \(x \in C_{n/4} \) and \(y \in \partial C_n \)
\[c/n \leq \mathbb{P}_x(\tau_{\partial C_n} = y) \leq C/n. \]

19
The Gauss-Markov property of the GFF allows one to write the conditional expectation for GFF at a vertex given values on the boundary as a harmonic mean for the values over the boundary (see e.g. [27, Theorem 1.2.2]). Combined with the preceding lemma, this implies that for $v \in B^* \subset B$, we have

$$\psi_v = \sum_{w \in \partial B} a_{v,w} \eta_w, \quad \text{where } c/N \leq a_{v,w} \leq C/N. \quad (52)$$

Therefore, we have

$$\text{Var } \psi_v = \Theta(1/N^2) \sum_{u,w \in \partial B} G_{\partial V'_n}(u, w). \quad (53)$$

In order to estimate the sum of Green functions, we use the next lemma.

Lemma 4.3. [35, Prop. 6.4.1] For $\ell < n$ and $x \in C_n \setminus C_\ell$, we have

$$\mathbb{P}_x(\tau_{\partial C'_n} < \tau_{\partial C'_\ell}) = \frac{\log |x| - \log \ell + O(1/\ell)}{\log n - \log \ell}.$$

By the preceding lemma, we have

$$\mathbb{P}_u(\tau_{\partial V'_n} < \tau_{\partial B}') \geq O(1/(N \log(N'/N))) \quad \text{for all } u \in \partial B,'$$

where $\tau_{\partial B}' = \min\{t \geq 1 : S_t \in \partial B\}$. Thus, $\sum_{w \in \partial B} G_{\partial V'_n}(u, w) = O(N \log(N'/N))$. Therefore,

$$\text{Var}(\psi_v) = O(\log(N'/N)), \quad \text{for all } v \in B^*.$$

The following lemma, using the sprinkling idea, is the key to the proof of Theorem 1.1. In the lemma, for $\varepsilon, \delta > 0$ we set $C(\delta, \varepsilon) = 2\log \delta / \log(1 - \varepsilon)$.

Lemma 4.4. There exist a a constant $C > 0$ such that, if

$$\mathbb{P}(\exists u, v \in V_N : r \leq |v - u| \leq N/r \text{ and } \eta_u, \eta_v \geq m_N - \lambda) \geq \varepsilon \quad (54)$$

for some $\varepsilon, \lambda > 0$ and $N, r \in \mathbb{N},$ then for any $\delta > 0,$ setting N' to be the smallest power of 2 larger than or equal to $C(\delta, \varepsilon)N$ and $\gamma = C(\sqrt{\log C(\delta, \varepsilon)} / \delta),$ the following holds

$$\mathbb{P}(\eta_{N',r}^\delta \geq 2m_N - 2\lambda - \gamma) \geq 1 - \delta.$$

Proof. Let $N' = N2^{k+3}$ with $k = \lfloor \log_2 C(\delta, \varepsilon) - 3 \rfloor.$ $B_1, \ldots, B_{2^k} \subset V_{N'}$ be disjoint discrete balls of radius $8N,$ and for $i \in [2^k]$ let $B_i^* \subset B_i$ be a box of side length N such that these two centers (of the ball and the box) coincide. Let $\{\eta_v^i : v \in V_{N'}\}$ be a GFF on $V_{N'}$ with Dirichlet boundary condition, and for $i \in [2^k]$ let $\{\eta_v^{(i)} : v \in B_i\}$ be i.i.d. GFFs on B_i with Dirichlet boundary condition. We first claim that for all $i \in [2^k]$

$$\mathbb{P}(\exists u, v \in B_i^* : r \leq |v - u| \leq N/r \text{ and } \eta_u^{(i)} + \eta_v^{(i)} \geq 2m_N - 2\lambda) \geq \varepsilon/2. \quad (55)$$

In order to prove the preceding inequality, we consider the decomposition of $\{\eta_v^{(i)} : v \in B_i^*\}$ (by conditioning on the values at ∂B_i^* analogous to [16]) as

$$\eta_v^{(i)} = \eta_v^{(i),*} + \phi_v$$

for all $v \in B_i^*.$

20
where \(\{ \eta_v^{(i),*} : v \in B_i^* \} \) is a GFF on \(B_i^* \) with Dirichlet boundary condition and is independent of the centered Gaussian process \(\{ \phi_v : v \in B_i^* \} \). Note that \(\phi_v \) here denotes the conditional expectation of \(\eta_v^i \) given the values on \(\partial B_i^* \). Let \(\tau_1(i), \tau_2(i) \in B_i^* \) be the locations of maximizers of

\[
\max\{ \eta_v^{(i),*} + \eta_u^{(i),*} : u, v \in B_i^*, r \leq |v - u| \leq N/r \}.
\]

By Assumption \(\ref{assumption:2} \), we have

\[
\mathbb{P}(\eta_{\tau_1(i)} + \eta_{\tau_2(i)} \geq 2m_N - 2\lambda) \geq \varepsilon.
\]

Since \(\phi_{\tau_1(i)} + \phi_{\tau_2(i)} \) is a centered Gaussian variable that is independent of \(\eta_{\tau_1(i)} + \eta_{\tau_2(i)} \), we can deduce \(\ref{assumption:3} \) as required.

Let us now consider the decomposition for \(\{ \eta_v' : v \in V_N \} \). We can write

\[
\eta_v' = \eta_v^{(i)} + \psi_v \text{ for } v \in B_i^* \text{ and } i \in [2^k],
\]

where \(\{ \psi_v : v \in B_i^* \} \) is a Gaussian process independent of \(\{ \eta_v^{(i)} : i \in [2^k], v \in B_i \} \), and furthermore

\[
\psi_v = \mathbb{E}(\eta_v' | \{ \eta_u : u \in \partial B_i \}), \text{ for } v \in B_i^*.
\]

By Lemma \(\ref{lemma:4.1} \) we obtain that \(\text{Var} \psi_v = O(k) \) for all \(v \in B_i^* \) and \(i \in [2^k] \).

Next, let \(i \in [2^k] \) be the location of the maximizer of

\[
\max\{ \eta_{\tau_1(i)}^{(i)} + \eta_{\tau_2(i)}^{(i)} : i \in [2^k] \}.
\]

By the independence of \(\{ \eta_v^{(i)} \} \) for \(i \in [2^k] \), we deduce that

\[
\mathbb{P}(\eta_{\tau_1(i)} + \eta_{\tau_2(i)} \geq 2m_N - 2\lambda) \geq 1 - \frac{1}{(1 - \varepsilon/2)^{2^k}}.
\]

Conditioning on the location of \(i \) and \(\tau_1(i), \tau_2(i) \), we see that \(\text{Var}(\psi_{\tau_1(i)} + \psi_{\tau_2(i)}) = O(k) \). Therefore,

\[
\mathbb{P}(\eta_{\tau_1(i)}' + \eta_{\tau_2(i)}' \geq 2m_N - 2\lambda - \gamma) \geq (1 - \frac{1}{(1 - \varepsilon/2)^{2^k}})(1 - \frac{O(k)}{\gamma^2}),
\]

where we simply used Markov’s inequality to bound the probability \(\mathbb{P}(\psi_{\tau_1(i)} + \psi_{\tau_2(i)} \geq -\lambda) \). With our choice of \(k, \gamma \), this completes the proof.

We next bound the lower tail on \(\eta_N^r \) from above. To this end, we first show that the maximal sum over pairs for the GFF has fluctuation at most \(O(\log \log r) \).

Lemma 4.5. For any \(r \leq N \), let \(\eta_N^r \) be defined as in \(\ref{assumption:4} \). Then the sequence of random variables \(\{ \eta_N^r \} \) is tight along \(N \in \mathbb{N} \) and \(r \in \{0, \ldots, N\} \).

Proof. To simplify notation, we consider the sequence \(N = 2^m \) in the proof (the tightness of the full sequence will follow from the same proof with slight modification by considering \(n(N) = \max\{k \in \mathbb{N} : 2^k \leq N\} \)). To this end, we first claim that

\[
\mathbb{E}\eta_{2N,r}^r \geq \mathbb{E}\max\{Z_1, Z_2\}, \tag{56}
\]

[56]
where $Z_1, Z_2 \sim \eta_{2,r}^N$ and Z_1 is independent of Z_2. The proof of (56) follows from the similar argument as in the proof of Lemma 2.4 as we sketch briefly in what follows. Consider $V_N, V'_N \subset V_{2N}$ where V_N and V'_N are two disjoint boxes of side length N. Using a similar decomposition as in (16), we can write $\eta_{2N}^N = \eta_v^N + \phi_v$ for $v \in V_N$ and $\eta_{v'}^N = \eta_v^N + \phi_v$ for $v \in V'_N$, where η_N^N and η_v^N are two independent copies of GFF in a 2D box of side length N. This yields (56). Now using the equality $a \lor b = \frac{a+b+|a-b|}{2}$, we deduce that

$$\mathbb{E}[Z_1 - Z_2] \leq 2(\mathbb{E}n_{2N,r}^\circ - \mathbb{E}Z_1) \leq 2C \log \log r,$$

where the last inequality follows from Corollary 3.6. This completes the proof of the lemma.

Based on the preceding lemma, we prove a stronger result which will also imply that the number of point whose values in the GFF exceed $m_N - \lambda$ grows at least exponentially in λ. We will follow the proof for the upper bound on the lower tail of the maximum of GFF in [23, Sec. 2.4]. For $N, r \in \mathbb{N}$, define

$$\Xi_{N,r} = \{(u,v) \in V_N \times V_N : r \leq |u-v| \leq N/r\}.$$

Lemma 4.6. There exists absolute constants $C, c > 0$ such that for all $N \in \mathbb{N}$ and $r, \lambda \geq C$

$$\mathbb{P}(\exists A \subset \Xi_{N,r} \text{ with } |A| \geq \log r : \forall (u,v) \in A : u_h + \eta_v \geq 2m_N - 2\lambda \log \log r) \geq 1 - Ce^{-e^{C\lambda \log \log r}}.$$

Proof. The proof idea is similar to [23], and thus we will be brief in what follows. Denote by $R = N(\log r)^{-\lambda/10}$ and $\ell = N(\log r)^{-\lambda/100}$. Assume that the left bottom corner of V_N is the origin $o = (0,0)$. Define $o_i = (i\ell, 2R)$ for $1 \leq i \leq M = [N/2\ell] = (\log r)^{\lambda/100}/2$. Let C_i be a discrete ball of radius r centered at o_i and let $B_i \subset C_i$ be a box of side length $R/8$ centered at o_i. We next regroup the M boxes into m blocks. Let $m = (\log r)^{\lambda/200}$, and let $\mathcal{C}_j = \{C_i : (j-1)m < i < jm\}$ and $B_j = \{B_i : (j-1)m < i < jm\}$ for $j = 1, \ldots, M/m$.

Now we consider the maximal sum over pairs of the GFF in each B_j. For ease of notation, we fix $j = 1$ and write $B = B_1$ and $\mathcal{C} = \mathcal{C}_1$. For each $B \in \mathcal{B}$, analogous to (16), we can write

$$\eta_v = g_v^B + \phi_v \text{ for all } v \in B \subseteq C \subseteq \mathcal{C},$$

where $\{g_v^B : v \in B\}$ is the projection of the GFF on C with Dirichlet boundary condition on ∂C, and $\{g_v^B : v \in B\}$ are independent of each other and of $\{\eta_v : v \in \partial \mathcal{C}\}$, and $\phi_v = \mathbb{E}(\eta_v | \{\eta_u : u \in \partial \mathcal{C}\})$ is a convex combination of $\{\eta_u : u \in \partial \mathcal{C}\}$. For every $B \in \mathcal{B}$, define $(\chi_{1,B}, \chi_{2,B}) \in B \times B \cap \Xi_{N,r}$ such that

$$g_{1,B}^B + g_{2,B}^B = \sup_{u,v \in B \times B \cap \Xi_{N,r}} g_u^B + g_v^B.$$

Since λ is large enough, we get from Corollary 3.6 and Lemma 4.5 that

$$\mathbb{P}(g_{1,B}^B + g_{2,B}^B \geq 2m_N - \lambda \log \log r) \geq 1/4.$$

Let $W = \{(\chi_{1,B}, \chi_{2,B}) : g_{1,B}^B + g_{2,B}^B \geq 2m_N - \lambda \log \log r, B \in \mathcal{B}\}$. By independence, a standard concentration argument gives that for an absolute constant $c > 0$

$$\mathbb{P}(W \leq \frac{1}{2}m) \leq e^{-cm} \quad (57).$$

It remains to study the process $\{\phi_u + \phi_v : (u,v) \in W\}$. If $\phi_u + \phi_v \geq 0$ for $(u,v) \in W$, we have $\eta_u + \eta_v \geq 2m_N - \lambda \log \log r$. The required estimate is summarized in the following lemma.
Lemma 4.7. [23] Lemma 2.3] Let \(U \subset \cup_{B \in \mathcal{B}} B \times B \) such that \(|U \cap B \times B| \leq 1 \) for all \(B \in \mathcal{B} \). Assume that \(|U| \geq m/8 \). Then, for some absolute constants \(C, c, \lambda > 0 \),

\[
\mathbb{P}(\phi_u + \phi_v \leq 0 \text{ for all } (u, v) \in U) \leq Ce^{-c(\log r)\lambda}.
\]

Despite the fact that we are considering a sum over a pairs (instead of a single value \(\phi_v \)) in the current setting as well as slightly different choices of parameters, the proof of the preceding lemma goes exactly the same as that in [23]. The main idea is to control the correlations among \((\phi_u + \phi_v) \) for \((u, v) \in U \). Indeed, one can show that the correlation coefficient is uniformly bounded by \(O(\lambda \log \log r \sqrt{R/\ell}) \). Slepian’s comparison theorem can then be invoked to complete the proof.

Due to the similarity, we do not reproduce the proof here.

Altogether, the preceding lemma implies that

\[
\mathbb{P}(\max_{B \in \mathcal{B}} \max_{v,u \in B \times B : v \not= u} \eta_u + \eta_v \geq 2m_N - 2\lambda \log \log r) \geq 1 - Ce^{-c(\log r)\lambda}.
\]

Now, let \((\chi_{1,j}, \chi_{2,j}) \in B_j \times B_j \cap \Xi_{N,r} \) be such that

\[
\eta_{\chi_{1,j}} + \eta_{\chi_{2,j}} = \max_{B \in \mathcal{B}_j} \max_{(u,v) \in B \times B : v \not= u} \eta_u + \eta_v,
\]

and let \(A = \{(\chi_{1,j}, \chi_{2,j}) : 1 \leq j \leq M/m\} \). A union bound gives that \(\min_{(u,v) \in A} \eta_u + \eta_v \geq 2m_N - 2\lambda \log \log r \) with probability at least \(1 - Ce^{-c(\log r)\lambda} \), concluding the proof.

The following is an immediate corollary of the preceding lemma.

Corollary 4.8. There exist absolute constants \(C, c, \lambda > 0 \) such that for all \(N \in \mathbb{N} \) and \(\lambda, r \geq C \)

\[
\mathbb{P}(\eta_{N,r} \geq 2m_N - 2\lambda \log \log r) \geq 1 - Ce^{-c(\log r)\lambda}.
\]

We are now ready to give

Proof of Theorem 4.1. Suppose that the conclusion in the theorem does not hold. This implies that for a particular choice of \(c = c_1/8 \) (where \(c_1 \) is the constant in Corollary 3.6) there exists \(\varepsilon > 0 \) and a subsequence \(\{r_k\} \) with \(r_k \to k \to \infty \) such that for all \(k \)

\[
\limsup_{N \to \infty} \mathbb{P}(\exists v, u \in V_N : r_k \leq |v - u| \leq N/r_k \text{ and } \eta_u, \eta_v \geq m_N - c \log \log r_k) \geq \varepsilon.
\]

Then by Lemma 4.4, for a \(\delta > 0 \) to be specified and \(C(\varepsilon, \delta) > 0 \), we have

\[
\limsup_{N \to \infty} \mathbb{P}(\exists v, u \in V_{C(\varepsilon, \delta)} : r_k \leq |v - u| \leq C(\varepsilon, \delta) N/r_k \text{ and } \eta_u, \eta_v \geq m_N - c \log \log r_k) \geq 1 - \delta.
\]

Now we consider random variables \(W_{N,k} = 2m_N - 2c \log \log r_k - C(\varepsilon, \delta) - \eta^\delta_{C(\varepsilon, \delta) N, r_k} \). By the preceding inequality, for any \(\delta > 0 \) there exists an integer \(N_\delta \) such that \(\mathbb{P}(W_{N,k} \geq 0) \leq 2\delta \) for all \(N \geq N_\delta \) and \(k \in \mathbb{N} \). By Corollary 4.8, we see that for absolute constants \(C^*, e^* > 0 \)

\[
\mathbb{P}(W_{N,k} \geq \lambda \log \log r_k) \leq C^* e^{-c^* e^*(\lambda - 2c) \log \log r_k}, \text{ for all } N, k, \lambda \geq C^*.
\]

Therefore, for \(N \geq N_\delta \) and \(r_k \geq e^n \vee C^*, \) we obtain that

\[
\mathbb{E}W_{N,k} \leq \log \log r_k \int_0^\infty \mathbb{P}(W_{N,k} \geq \lambda \log \log r_k) d\lambda \leq \log \log r_k \int_0^\infty (2\delta) \wedge (C^* e^{-c^* e^*(\lambda - 2c) \log \log r_k}) d\lambda \\
\leq A_{c,C^*} \delta \log \log r_k + \log \log r_k \int_0^\infty (2\delta) \wedge (C^* e^{-c^* e^*(\lambda - 2c) \log \log r_k}) d\lambda \leq A_{c,C^*,e^*} \delta \log \log r_k,
\]

23
where \(A_{c,C^*} > 0 \) is a number depending on \((c,C^*)\) and \(A_{c,C^*,c^*} > 0 \) is a number that depends only on \((c,C^*,c^*)\). Recalling that \(c = c_1/8 \) and choosing \(\delta = c_1/4 A_{c,C^*,c^*} \), we then get that for \(N \geq N_\delta \) and \(r_k \geq e^\delta \),

\[
\mathbb{E} \mathcal{H}_{C(\varepsilon,\delta)N_j,r_k} \geq 2m_{N_j} - \frac{c_1}{2} \log \log r_k - C(\varepsilon,\delta) \text{ for all } k \in \mathbb{N}.
\]

(58)

This contradicts with Corollary 3.6 (sending \(k \to \infty \)), thereby completing the proof.

We conclude this subsection by providing

Proof of Theorem 1.2. The lower bound on \(A_{\lambda,N} \) follows immediately from Lemma 4.6. A straightforward deduction from Theorem 1.1 together with a packing argument yields an upper bound of merely doubly-exponential on \(A_{\lambda,N} \). In what follows, we strengthen the upper bound to exponential of \(\lambda \). Continue denoting \(S_{\ell,N} \) and \(R_{\ell,N} \) as in Lemma 2.9. Following notation as in Section 3.1, we see that

\[
R_{\ell,N} \leq \ell T_N - \frac{1}{4\varepsilon} \mathbf{1} \{|\Xi_{N,\log \ell/(2c^*)}| \leq \ell/2\} \log \ell,
\]

where \(\Xi_{N,x}^* = \bigcup_{i=t_N-T_N}^{x} \Xi_N(i) \). Applying (26) and (29), we deduce that there exists a constant \(c > 0 \) such that for sufficiently large \(\ell \)

\[
\mathbb{E} R_{\ell,N} \leq \ell \left(\sqrt{2 \log 2/\pi m_N} - c \log \ell \right).
\]

Combined with Lemma 2.9 it follows that for sufficiently large \(\ell \)

\[
\mathbb{E} S_{\ell,N} \leq \ell \left(\sqrt{2 \log 2/\pi m_N} - c \log \ell \right).
\]

(59)

At this point, the proof can be completed analogous to the deduction of (58), as we sketch below. Suppose otherwise that for any \(\alpha > 0 \) there exists a subsequence \(\{r_k\} \) such that for all \(k \) there exists a subsequence \(N_{k,i} \) with

\[
\mathbb{P}(|A_{N_{k,i},r_k}| \geq e^{\alpha r_k}) \geq \varepsilon, \text{ for all } i \in \mathbb{N},
\]

where \(\varepsilon > 0 \) is a positive constant. Then, following the same sprinkling idea in Lemma 4.4 we can show that for any \(\delta > 0 \), there exists \(C(\varepsilon,\delta) \) such that for \(N_{k,i}' = C(\delta,\varepsilon)N_{k,i} \) and \(\gamma = \gamma(\varepsilon,\delta) \), the following holds

\[
\mathbb{P}(|A_{N_{k,i}',r_k-\gamma}| \geq e^{\alpha r_k}) \geq 1 - \delta.
\]

Combined with Lemma 4.6 it follows that

\[
\mathbb{E} S_{e^{\alpha r_k},N_{k,i}'} \geq e^{\alpha r_k} \left(\sqrt{2 \log 2/\pi m_{N_{k,i}'}} - (1 + c'\delta \alpha)r_k - \gamma \right),
\]

where \(c' > 0 \) is a constant that arise from the estimate in Lemma 4.6. Now, setting \(\delta = (c/2c') \), \(\alpha = 4/c \) and sending \(r_k \to \infty \), we obtain a bound that contradicting with (59), completing the proof of Theorem 1.2.

4.2 The gap between the largest two values in Gaussian free field

In this subsection, we study the gap between the largest two values and prove Theorem 1.3.

Upper bound on the right tail. In order to show the upper bound in (2), it suffices to prove that for some absolute constants \(C, c > 0 \) and all \(\lambda > 0 \)

\[
\mathbb{P}(\lambda < \Gamma_N \leq \lambda + 1) \leq \mathbb{P}(\Gamma_N \leq 1) \cdot Ce^{-c\lambda^2}.
\]

(60)
To this end, define
\[\Omega_\lambda = \{(x_v)_{v \in V_N} : \gamma((x_v)) \in (\lambda, \lambda + 1)\} \text{ for all } \lambda \geq 0, \]
where \(\gamma((x_v)) \) is defined to be the gap between the largest two values in \(\{x_v\} \). For \((x_v)_{v \in V_N} \in \Omega_\lambda \), let \(\tau \in V_N \) be such that \(x_\tau = \max_{v \in V_N} x_v \). We construct a mapping \(\phi_\lambda : \Omega_\lambda \rightarrow \Omega_0 \) that maps \((x_v)_{v \in V_N} \in \Omega_\lambda \) to \((y_v)_{v \in V_N} \) such that
\[y_v = x_v \text{ if } v \neq \tau, \text{ and } y_\tau = x_\tau - \lambda. \]
It is clear that the mapping is 1-1 and \((y_v)_{v \in V_N} \in \Omega_0 \). Furthermore, the Jacobian of the mapping \(\phi_\lambda \) is precisely 1 on \(\Omega_\lambda \). It remains to estimate the density ratio \(f((x_v))/f((y_v)) \). Using (6), we get
\[f((x_v)) = Z e^{-\frac{1}{16} \sum_{u \sim v} (x_u - x_v)^2} = Z e^{-\frac{1}{16} \sum_{u \sim v} (y_u - y_v)^2} e^{-\frac{1}{8} \sum_{u \sim v} ((x_u - x_v)^2 - (y_u - y_v)^2)} \leq f((y_v)) e^{-\frac{1}{2} \lambda^2}. \]
It then follows that
\[\mathbb{P}(\eta_0^N \in \Omega_\lambda) \leq e^{-\lambda^2/2} \mathbb{P}(\eta_0^N \in \Omega_0), \]
completing the proof of (60).

Lower bound on the right tail. In order to prove the lower bound on the right tail for the gap, we first show that with positive probability there exists a vertex such that all its neighbors in the GFF take values close to \(m_N \) within a constant window. To this end, we consider a new Gaussian process \(\{\zeta_v : v \in V_N\} \) defined by
\[\zeta_v = \frac{1}{4} \sum_{u \sim v} \eta_v \text{ for } v \in V_N \setminus \partial V_N, \text{ and } \zeta|_{\partial V} = 0. \]
In addition, we denote by \(V_N^e \) and \(V_N^o \) the collection of even and odd vertices in \(V_N \), respectively. Note that \(V_N = V_N^e \cup V_N^o \).

Lemma 4.9. For every \(\varepsilon > 0 \), there exists a constant \(C_\varepsilon > 0 \) such that
\[\mathbb{P}(\max_{v \in V_N^e} \zeta_v \geq m_N - C_\varepsilon) \geq 1 - \varepsilon. \]

Proof. We will apply Lemma 2.2. For \(\kappa \in \mathbb{N} \) to be specified later, define \(\tilde{\phi}_\kappa(\cdot) : V_{2-\kappa} \rightarrow V_N^e \) by
\[\tilde{\phi}_\kappa(v) = 2^\kappa v, \text{ for all } v \in V_{2-\kappa}. \]
Let \(\{\eta_u^{2-\kappa N} : v \in V_{2-\kappa N}\} \) be a GFF on \(V_{2-\kappa N} \). We claim that for large \(\kappa \) (independent of \(N \))
\[\mathbb{E}(\zeta_{\tilde{\phi}_\kappa(u)} - \zeta_{\tilde{\phi}_\kappa(v)})^2 \geq \mathbb{E}(\eta_u^{2-\kappa N} - \eta_v^{2-\kappa N})^2, \text{ for all } u, v \in V_{2-\kappa N}. \]
In order to see this, we note that by (49) and the triangle inequality
\[\text{Var}(\eta_v) = \text{Var} \eta_u + O(1) = \text{Cov}(\eta_v, \eta_u) + O(1), \text{ for all } u \sim v. \]
This then implies that
\[\mathbb{E}(\zeta_v - \zeta_u)^2 = \mathbb{E}(\eta_v - \eta_u)^2 + O(1), \text{ for all } u, v \in V_N. \]
Now again using the fact that
\[
\mathbb{E}(\eta_{\hat{\delta}_n}(u) - \eta_{\hat{\delta}_n}(v))^2 - \mathbb{E}(\eta_u^{2-n} - \eta_v^{2-n})^2
\]
grows with \(\kappa \), we could select \(\kappa \) large (though independent of \(N \)) to beat the \(O(1) \) term, and thus obtain \([62] \). At this point, an application of Lemma 2.2 and \((4) \) yields that
\[
\mathbb{E} \max_{v \in V_N^\diamond} \zeta_v = m_N + O(1). \tag{63}
\]
In addition, it is clear that \(\max_{v \in V_N^\diamond} \zeta_v \leq \max_{v \in V_N} \eta_v \). Therefore, \([5] \) implies an exponential right tail for \(\max_{v \in V_N^\diamond} \zeta_v \). Together with \([63] \), this completes the proof of the lemma. \(\square \)

For \(\varepsilon > 0 \), let \(C_\varepsilon \) be defined as in the preceding lemma, and define
\[
\bar{\Omega}_\varepsilon = \{(x_v) : \max_{v \in V_N^\diamond} \frac{1}{4} \sum_{u \sim v} x_u \geq m_N - C_\varepsilon \}.
\]
For \((x_v) \in \bar{\Omega}_\varepsilon \), let \(v^* \in V_N^\diamond \) be such that \(\frac{1}{4} \sum_{u \sim v^*} x_u = \max_{v \in V_N^\diamond} \frac{1}{4} \sum_{u \sim v} x_u \). Let \(\Omega_\varepsilon^* = \{(x_v) \in \bar{\Omega}_\varepsilon : x_{v^*} - \frac{1}{4} \sum_{u \sim v^*} x_u \in (-C_\varepsilon^*, 0)\} \). Note that \(\{\zeta_v : v \in V_N^\diamond\} \) is measurable in the \(\sigma \)-field generated by \(\{\eta_v : v \in V_N\} \). Applying Markov field property of the GFF and Lemma 4.9, we obtain that there exists \(C_\varepsilon^* \) sufficiently large (depending only on \(\varepsilon \)) such that \(\mathbb{P}(\eta_v \in \Omega_\varepsilon^*) \geq 1 - 2\varepsilon \). By \([5] \), we see that there exists a constant \(C_\varepsilon^* > 0 \) (depending only on \(\varepsilon \)) such that
\[
\mathbb{P}(\{\eta_v \in \Omega_\varepsilon^*\}) \geq 1 - 3\varepsilon, \tag{64}
\]
where \(\Omega_\varepsilon^* = \Omega_\varepsilon^* \cap \{\max_{v \in V_N^\diamond} \frac{1}{4} \sum_{u \sim v} x_u \geq \max_{v \in V_N} x_v - C_\varepsilon^*\} \). Now choose \(\varepsilon = 1/4 \). For \(\lambda \geq 0 \), define a map \(\Psi_\lambda : \Omega_{1/4}^\diamond \mapsto \mathbb{R}^{V_N} \) by \(\Psi_\lambda((x_v)) = (y_v) \) with
\[
y_v = x_v \text{ for all } v \neq v^*, \text{ and } y_{v^*} = 2 \max_u x_v + \lambda - x_{v^*}.
\]
The somewhat strange definition of \(y_{v^*} \) above (as opposed to set \(y_{v^*} = \max_v x_v + \lambda \)) is for the purpose of ensuring the mapping to be bijective. By definition, we have that
\[
\gamma(\Psi_\lambda((x_v))) = 2 \max_v x_v + \lambda - x_{v^*} - \max_v x_v \geq \lambda,
\]
for all \((x_v) \in \Omega_{1/4}^\diamond \). It is also obvious that \(\Psi_\lambda \) is a bijective mapping and that the determinant of the Jacobian is \(1 \). In addition, it is straightforward to check (by definition of \(\Omega^\diamond \)) for some absolute constants \(c^\circ, C^\circ > 0 \)
\[
f(\Psi_\lambda((x_v))) \geq c^\circ e^{-C^\circ \lambda^2} f((x_v)), \text{ for all } (x_v) \in \Omega_{1/4}^\diamond.
\]
Integrating over \(\Omega_{1/4}^\diamond \) and applying \([64] \), we complete the proof for the lower bound in \([2] \).

Lower bound on the gap. For any \(\varepsilon > 0 \), we let \(\Omega_\varepsilon^\diamond \) and \(v^* \) be defined as above such that \([64] \) holds. Denote by \(\tau \) the maximizer of \(\max_{v \in V_N} x_v \). By Theorem 1.2, there exists \(C^\diamond_\varepsilon > 0 \) such that \(\mathbb{P}(\Omega_\varepsilon^\diamond) \geq 1 - 4\varepsilon \), where
\[
\Omega_\varepsilon^\diamond = \Omega_\varepsilon^\diamond \cap \{(x_v) : |\{v : x_v \geq x_{v^*} - C^\diamond_\varepsilon - 1\}| \geq C^\diamond_\varepsilon\}.
\]
Consider $0 < \delta < 1$, and define $C_i = \{(x_v) : (i-1)\delta \leq \gamma((x_v)) < i\delta\}$ for all $i \geq 1$. We then construct a mapping $\Phi_i : \Omega^*_\epsilon \cap C_1 \to \mathbb{R}^V$ by (say Φ_i maps (x_v) to (y_v)) defining
\[
y_v = x_v \text{ if } v \not\in \{v^*, \tau\}, \text{ and } y_{v^*} = x_\tau + i\delta,
\]
and in addition $y_\tau = x_{v^*}$ if $v^* \neq \tau$. For all $(x_v) \in \Omega^*_\epsilon$ and $i = 1, \ldots, 1/\delta$, it is clear that
\[
f((x_v)) \leq C'_\epsilon f(\Phi_i((x_v))),
\]
where C'_ϵ is a constant that depends on ϵ. In addition, for all $(x_v) \in \Omega^*_\epsilon \cap C_1$ we see that $\Phi_i((x_v)) \in C_{i+1}$. Furthermore, every image has at most $C^*_\epsilon + 1$ pre-images in $\Omega^*_\epsilon \cap C_1$. In order to see this, we note that there are two cases when trying to reconstruct (x_v) from (y_v): (1) $v^* = \tau$, in which we obtain one valid instance of (x_v); (2) $v^* \neq \tau$, in which we obtain at most C^*_ϵ valid instances of (x_v). This is because by definition v^* is the maximizer of $\max_{v \in V_N} y_v$; and τ satisfies that $y_\tau = x_{v^*} \geq x_\tau - C^*_\epsilon$, and there are at most C^*_ϵ locations whose values in y is no less than $x_\tau - C^*_\epsilon$. Once we locate v^* and τ, the sequence (x_v) is uniquely determined by (y_v). Altogether, we obtain
\[
P((\eta_v) \in \Omega^*_\epsilon \cap C_1) \leq C'_\epsilon(C^*_\epsilon + 1)P((\eta_v) \in C_{i+1})
\]
for all $1 \leq i \leq 1/\delta$. Since C_i’s are disjoint, we obtain that
\[
P((\eta_v) \in \Omega^*_\epsilon \cap C_1) \leq 2C'_\epsilon(C^*_\epsilon + 1)\delta.
\]
Now, sending $\delta \to 0$ and then $\epsilon \to 0$ completes the proof of (3).

References

[1] L. Addario-Berry and B. Reed. Ballot theorems for random walks with finite variance. Preprint, available at http://arxiv.org/abs/0802.2491.

[2] L. Addario-Berry and B. Reed. Minima in branching random walks. Ann. Probab., 37(3):1044–1079, 2009.

[3] E. Aidekon. Convergence in law of the minimum of a branching random walk. Ann. Probab., to appear.

[4] E. Aïdékon, J. Berestycki, E. Brunet, and Z. Shi. The branching Brownian motion seen from its tip. Probab. Theory Related Fields, to appear.

[5] M. Ajtai, J. Komlós, and E. Szemerédi. Largest random component of a k-cube. Combinatorica, 2(1):1–7, 1982.

[6] N. Alon, I. Benjamini, and A. Stacey. Percolation on finite graphs and isoperimetric inequalities. Ann. Probab., 32(3A):1727–1745, 2004.

[7] L.-P. Arguin, A. Bovier, and N. Kistler. The extremal process of branching Brownian motion. Probab. Theory Related Fields, to appear.

[8] L.-P. Arguin, A. Bovier, and N. Kistler. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math., 64:1647–1676, 2011.

[9] L.-P. Arguin, A. Bovier, and N. Kistler. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Prob., 22:1693–1711, 2012.

[10] L.-P. Arguin and O. Zindy. Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field. Preprint, available at http://arxiv.org/abs/1203.4216.
[11] I. Benjamini, A. Nachmias, and Y. Peres. Is the critical percolation probability local? *Probab. Theory Related Fields*, 149:261–269, 2011.

[12] E. Bolthausen, J.-D. Deuschel, and G. Giacomin. Entropic repulsion and the maximum of the two-dimensional harmonic crystal. *Ann. Probab.*, 29(4):1670–1692, 2001.

[13] E. Bolthausen, J.-D. Deuschel, and O. Zeitouni. Recursions and tightness for the maximum of the discrete, two dimensional gaussian free field. *Elect. Comm. in Probab.*, 16:114–119, 2011.

[14] M. Bramson. Maximal displacement of branching Brownian motion. *Comm. Pure Appl. Math.*, 31(5):531–581, 1978.

[15] M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. *Mem. Amer. Math. Soc.*, 44(285):iv+190, 1983.

[16] M. Bramson, J. Ding, and O. Zeitouni. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Preprint, available at http://arxiv.org/abs/1301.6669.

[17] M. Bramson and O. Zeitouni. Tightness of the recentered maximum of the two-dimensional discrete gaussian free field. *Comm. Pure Appl. Math.*, 65:1–20, 2011.

[18] D. Carpentier and P. Le Doussal. Glass transition of a particle in a random potential, front selection in nonlinear rg and entropic phenomena in liouville and sinh-gordon models. *Phys. rev. E.*, 63:026110, 2001.

[19] S. Chatterjee. Chaos, concentration, and multiple valleys. Preprint, arXiv 0810.4221.

[20] O. Daviaud. Extremes of the discrete two-dimensional Gaussian free field. *Ann. Probab.*, 34(3):962–986, 2006.

[21] A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni. Cover times for Brownian motion and random walks in two dimensions. *Ann. of Math. (2)*, 160(2):433–464, 2004.

[22] J. Ding. Asymptotics of cover times via gaussian free fields: bounded-degree graphs and general trees. *Ann. Probab.*, to appear.

[23] J. Ding. Exponential and double exponential tails for maximum of two-dimensional discrete Gaussian free field. *Probab. Theory Related Fields*, to appear.

[24] J. Ding. On cover times for 2D lattices. *Electron. J. Probab.*, 17:45, 18, 2012.

[25] J. Ding, J. R. Lee, and Y. Peres. Cover times, blanket times, and majorizing measures. *Ann. of Math. (2)*, 175(3):1409–1471, 2012.

[26] B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas. Critical gaussian multiplicative chaos: convergence of the derivative martingale. Preprint, available at http://arxiv.org/abs/1206.1671.

[27] E. B. Dynkin. Markov processes and random fields. *Bull. Amer. Math. Soc. (N.S.)*, 3(3):975–999, 1980.

[28] X. Fernique. Regularité des trajectoires des fonctions aléatoires gaussiennes. In *École d'Été de Probabilité de Saint-Flour, IV-1974*, pages 1–96. Lecture Notes in Math., Vol. 480. Springer, Berlin, 1975.

[29] Y. V. Fyodorov, P. Le Doussal, and A. Rosso. Statistical mechanics of logarithmic ren: duality, freezing and extreme value statistics for 1/f noise generated by Gaussian free fields. *J. Stat. mech.*, page P10005, 2009.

[30] S. C. Harris. Travelling-waves for the FKPP equation via probabilistic arguments. *Proc. Roy. Soc. Edinburgh Sect. A.*, 129(3):503–517, 1999.

[31] X. Hu, J. Miller, and Y. Peres. Thick points of the Gaussian free field. *Ann. Probab.*, 38:896–926, 2010.

[32] S. Janson. *Gaussian Hilbert spaces*, volume 129 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 1997.
[33] A. Kolmogorov, I. Petrovsky, and N. Piscounov. Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. *Moscou Universitet Bull. Math.*, 1:1–26, 1937.

[34] S. P. Lalley and T. Sellke. A conditional limit theorem for the frontier of a branching Brownian motion. *Ann. Probab.*, 15(3):1052–1061, 1987.

[35] G. F. Lawler and V. Limic. *Random walk: a modern introduction*, volume 123 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2010.

[36] M. Ledoux and M. Talagrand. *Probability in Banach spaces: isoperimetry and processes*. Springer-Verlag, Berlin, 1991.

[37] H. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. *Comm. Pure Appl. Math.*, 28:323–331, 1975.

[38] D. Slepian. The one-sided barrier problem for Gaussian noise. *Bell System Tech. J.*, 41:463–501, 1962.

[39] O. Zeitouni. Branching random walks and gaussian fields. In preparation.