舌の動きが咀嚼能率に及ぼす影響

小口 寛子

明海大学大学院 歯学研究科
歯学専攻
（指導：渡部 茂 教授）

Influence of Tongue Movements on Masticatory Efficiency

Hiroko OGUCHI

Meikai University Guraduate School of Dentistry
（Mentor：Prof. Shigeru WATANABE）

歯甲第 316 号 2015 年 3 月 23 日
要 旨

本研究は、舌運動と舌骨上筋群の筋活動量の関係、ならびに舌運動の咀嚼能率に及ぼす影響を明らかにすることを目的に行った。

顎口腔機能系に異常を認めない成人6名を対象とした。

実験1：各被験者に、(1)舌の左右側方運動、(2)口蓋小窩を舌尖で触れる運動、(3)上顎左右側第二大臼歯口蓋を舌尖で触れる運動、(4)舌の突出運動、(5)舌の上方運動、(6)舌の下方運動の6種を行わせ、筋活動量を記録した。開口を伴わない舌運動[(1), (2), (3)]は開口時の安静時筋活動量と、開口を伴う運動[(4), (5), (6)]は開口安静時筋活動量との比較を行った。筋活動誘導部位は顎二腹筋前腹を主とした舌骨上筋群および咬筋とし、計測にはワイヤレス電極式筋電図計測システムを使用した。

実験2：舌運動制限装置を作製し、(A)装着した状態で、舌運動を制限させた咀嚼、(B)装着した状態で、舌運動を制限させない咀嚼、(C)舌運動制限装置を使用せずに自由咀嚼した場合の咀嚼能率および筋活動量を比較した。(B)は装置の咀嚼への影響を調べるために行った。咀嚼能率算出にはManlyらの方法を用いた。筋活動誘導部位は実験1と同様とした。

その結果、実験1において、舌の各運動時の筋活動量は全て安静時に比較し有意に増大した。

実験2において、(A)は(C)と比較して咀嚼能率および筋活動量が有意に減少した。Aと(C)の咀筋の咀嚼周期を比較した結果、Aにおいて3名の咀嚼周期が有意に延長した。また(B)と(C)を比較した結果、咀嚼能率および筋活動量に有意な差は認められなかった。(C)における咀嚼能率と舌骨上筋群筋活動量との間に有意な正の相関が認められた。

以上のことから、舌骨上筋群は舌の動きを反映していることが示された。その舌骨
上筋群活動量と自由咀嚼における咀嚼能率との間に相関が認められたことから, 舌の動きは咀嚼能率に有意な影響を与えていることが明らかとなった。

牽引用語 : 表面筋電図, 舌骨上筋群, 舌運動, 咀嚼能率, ピーナッツ
Abstract

This work was conducted to test relationship between tongue movements and electromyographic activity (EMA) of suprhyoid muscles and to clarify their influence on masticatory efficiency.

The subjects were 6 adults with a normal stomatognathic system.

Experiment 1: Each subject performed six types of tongue movement: (1) right-and-left lateral movement, (2) touching the palate with the tongue tip, (3) touching the palatal aspects of the maxillary second molars, (4) Extrusive movement, (5) Upward movement, (6) Downward movement, while EMAs were recorded with a wireless surface electrode-type system on the suprhyoid muscles including digastric muscle and masseter muscle. EMAs of tongue movements without mouth opening [(1), (2), and (3)] were compared with a resting EMA with mouth closed, and EMAs with mouth opening [(4), (5), and (6)] were compared with resting EMAs with the mouth open.

Experiment 2: Tongue movement was restricted with a device fitted into the floor of the mouth. Then masticatory efficiency and EMA were compared among the three conditions of tongue (A) restricted, (B) not restricted, and (C) free mastication without the device. Masticatory efficiency was measured using a method by Manly et al.

In Experiment 1, EMAs of all tongue movements were significantly higher than those at resting. In Experiment 2, masticatory efficiencies and EMAs in (A) were significantly lower than those in (C). The masticatory cycle of three subjects in (A) was significantly longer than those in (C). There is no significant difference in masticatory efficiency and EMA between (B) and (C). In (C), a significant positive
correlation was found between masticatory efficiency and the EMA of the suprahyoid muscles.

These results indicated that the EMA of the suprahyoid muscles reflected the tongue movements and the EMAs of the suprahyoid muscles correlated with the masticatory efficiency in free mastication. This result indicates that tongue movements are significantly influence masticatory efficiency.

Key words: surface electromyography, suprahyoid muscles, tongue movements, masticatory efficiency, peanuts
総 括

咀嚼とは口腔に摂取した食物を嚥下可能な食塊に形成することと定義できる。Shiere と Manly は食塊嚥下のタイミングを Swallowing threshold と名づけ、河村はこれを嚥下閾と訳している。ヒトの同一食物に対する嚥下閾には個人差があるものの、同一人では規則性がみられ、きわめて変動が少ないことが明らかにされている。食物咀嚼中に行われる食塊形成には、咀嚼回数と食物の粉砕の他に、食塊の滑らかさを調整する水分量が関与し、歯や唾液の存在がこの嚥下閾に重要な働きを演じていると考えられる。

一方、食塊形成における舌の役割については、咀嚼効率に大きく関与していると考えられるものの根拠となるデータを提供した報告は少ない。中島は、下顎両側小臼歯部舌側に舌運動を制限するための突起物をつけた床装置を装着して咀嚼させた場合、粉砕率が低下したことを報告している。超音波診断装置によって咀嚼中の舌運動能力について評価した研究では、舌運動の動態を定量的に分析することは困難であり、咀嚼中の舌運動と咀嚼能率との関係の詳細な点は明らかにされていない。福島は、篩分法による食塊の粉砕程度と左右咬筋、顎舌骨筋の筋活動量との関係について調べた結果、ヒト自由咀嚼において両者は強く相関すると報告している。そして咀嚼中の顎舌骨筋の活動量の上昇については、顎舌骨筋は主に顎の開口運動に関与していることから、閉口筋の活動と連動した上昇の他に、舌の動きを間接的に反映している可能性を示唆した。その後、この舌運動と舌骨上筋群との関係について佐々木らは、舌の左右、前方、開口、および唾液嚥下の基本動作を 9 チャンネル電極による舌骨上筋群の筋活動電位で評価した結果、舌骨上筋群の活動電位は舌の運動を高い精度で反映していることを報告している。さらに最近では、舌尖の左右、上下、突出および唾液嚥下の基本動作を 22 チャンネル電極で評価し、平均 95%以上の識別精度であることを報告した。
本研究では、舌運動の咀嚼に及ぼす影響を明らかにするために、これまでに行われてきた研究結果を踏まえ、咀嚼中の舌骨上筋群の筋活動量を顎の開口運動を除外して評価し、その値と咀嚼能率との関係について検討することを目的とした。
材料と方法

本研究は、明海大学歯学部倫理委員会の承認（承認番号 A1216）を得て実施した。

実験 1. 舌運動と舌骨上筋群筋活動量の関係

1. 被験者

被験者は、顎口腔機能系に異常を認めない健全歯列者6名（男性3名、女性3名、26〜35歳、平均年齢30.3±2.8歳）とした。全被験者にはあらかじめ本研究の内容を説明し、書面にて同意を得たうえで実施した。

2. 実験方法

室内で被験者の上体をほぼ垂直にし、頭部を固定せずフランクフルト平面が床と平行になるように椅子に座らせた。

被験者に顎二腹筋前腹を主とした両側舌骨上筋群（下顎下線で、正中線と下顎下線の中間、オトガイ点から下線1/4後方の部位）に左右対称となるよう皮膚上に表面電極（直径30×24mm）（Kendall™ H124SG, COVIDIEN, Neustadt an der Donau, Germany）を貼付し（Fig 1a）、菅原の方法に従い電極中心間距離は20mmとし、記録周波数帯域は16Hz〜500Hzに設定した。

筋活動量計測は、ワイヤレス電極式筋電図計測システム（FREEEMG-RT, BTS, MI, Italy）4チャンネル（各筋2チャンネルずつ）を用い、サンプリング周波数1kHzでA/D変換後パーソナルコンピュータに取り込み、筋電図解析ソフト（EMG Analyzer, Version 1.7.17.0, BTS, MI, Italy）で解析した。電極は測定が終了するまで貼りかえずに実施した。

舌運動は下記6種の運動について、各々筋活動量を測定し、[(1), (2), (3)]（Fig 2）は閉口時の安静時筋活動量と、[(4), (5), (6)]（Fig 3）は開口時（各々の運動
が行える程度の開口時）の安静時筋活動量との比較を行った。各被験者 3 回ずつ測定を行い、運動時の筋電図から最も安定していると考えられる中間の 10 秒（5〜15 秒）を選択し、その平均値を被験者の値として分析した。

（1）舌の左右側方運動
（2）口蓋小窩を舌尖で触れる運動
（3）上顎左右側第二大臼歯口蓋側を舌尖で触れる運動
（4）舌の突出運動
（5）舌の上方運動（鼻下点）
（6）舌の下方運動（オトガイ部上の皮膚）

実験 2. 舌骨上筋群筋活動量と咀嚼能率との関係

1. 被験者

被験者は、実験 1 と同様の条件で、健常成人 6 名（男性 1 名、女性 5 名、25〜35 歳、平均年齢 30.3 ± 3.1 歳）とした。

2. 舌運動制限装置の作製

舌運動制限時の筋活動および咀嚼能率を測定するために、舌運動制限装置を作製した。口腔底に舌を置いた状態で、舌を含め下顎をアルジェーテ印象材（歯科用アルギン酸塩印象材、サンエス石膏、姫路、兵庫）で上顎用トレーを使用して印象採得（ハヤシ印象トレー、林歯科商店、東京）し、石膏模型を作製した。模型上で、舌運動を制限するためにレジン（歯科用即時重合レジン、ニッシン、東京）で前歯部から第一大臼歯遠心まで模型上の舌を被覆（厚さ約 1.5 mm）した。そして、下顎左右大歯間に唇側線（直径 0.7 mm、O 型）（歯科用コバルトクロム合金線、デンツプライ三金、東京）を取り付け維持させた。作製に当たっては舌小帯・咬合に影響を及ぼさないこと、舌の力や咀嚼によって装置が外れないことを考慮した（Fig 4）。
咀嚼実験は各被験者に、下記3種の条件で咀嚼運動を5回ずつ行わせた。

(A) 舌運動制限：装置装着あり（舌尖をレジン床の下に挿入する）(Fig 5a),
(B) 舌運動非制限：装置装着あり（舌をレジン床の上に乗せる）(Fig 5b),
(C) 舌運動非制限：装置装着なし

なお、(B)の実験は、装置の影響を調べるために実施した。

3. 舌運動機能および咀嚼能率の評価方法

実験1と同様に、顎二腹筋前腹を主とした両側舌骨上筋群と、咀嚼の開始および終了の判定ならびに咀嚼周期の評価を行うために、咬筋の筋活動量を測定した。咬筋は触診により、筋の走行に沿って前縁中央部に表面電極を貼付した（Fig 1b）。筋電計、ならびに測定条件は実験1と同様とした。実験に用いる被験食品は、ピーナッツ3.0 g（1粒のピーナッツを半分に割り、幼芽・幼根を取り除いたものを8個）（素煎りピーナッツ、フクヤ商店、八街、千葉）を使用した。

被験食品20回自由咀嚼中の筋活動量および咀嚼能率を算出した。筋活動量測定は実験1に準じ、咀嚼能率の評価はManlyらの方法を用いた。すなわち被験者食品として15.0 g のピーナッツを用い、3.0 g ずつ5群に分け、1群（3.0 g）ずつ、リズムを規定せず自由に20回咀嚼させた。その後、10メッシュ篩（分析用フルイ、池本理化工業、東京）上残留粒子を定温乾燥器（FS-620、アドバンテック東洋、東京）内で100℃、3時間乾燥後、分析用電子天びん（HR-60、研精工業、下妻、茨城）で計量し、咀嚼能率を算定した。

なお、本実験での自由咀嚼とは、左右側、前臼歯部の指示を与えずに被験者の通常の咀嚼様式を意味する21）。ピーナッツ咀嚼時には唾下の禁止と口唇閉鎖を指示した。

上記測定を各被験者5回ずつ行い、その平均値を被験者の値として分析した。なお、咀嚼開始・終了は咬筋の筋活動開始・終了時とした（Fig 6）。筋活動量はEMG波形を全波整流し絶対値化した後、20回咀嚼区間の積分計算を行った。
咀嚼能率の算出法は下記に準じた。

\[
I_E = \int_{t_1}^{t_2} |A_E| \cdot dt
\]

但し, \(I_E: \text{IEMG} \quad A_E: \text{EMG 振幅} \quad t: \text{時間}

4. 咀嚼周期 \(^{22}\) (Fig 7) の測定

咀嚼実験中の咬筋の筋活動電位から, 筋放電持続時間および筋放電間隔を測定し, 舌運動制限時の咀嚼周期を自由咀嚼時と比較した。

5. 実験 1，2 の統計処理

統計処理は，舌運動の各条件における舌骨上筋群および咬筋の筋活動量について，実験 2 の舌運動制限時および自由咀嚼時の咀嚼周期の 2 群間比較には Wilcoxon 検定を行った。実験 1 における閉口および開口安静時の筋活動量と各舌運動時の筋活動量の比較については，一元配置分散分析を行い，その後 Dunnett 検定を用いた多重比較法により群間比較を行った。実験 2 の舌運動制限時，舌運動非制限時および自由咀嚼時の咀嚼能率および筋活動量の比較については，一元配置分散分析を行い，その後 Tukey の HSD 検定による群間比較を行った。また，実験 2 における自由咀嚼時の咀嚼能率と筋活動量の相関は Pearson の相関係数を用いた。

統計ソフトはカレイダグラフ (Version 4.1.0, Windows 7, ヒューリンクス, 東京) を使用した。

実験 1 における筋電図記録では，筋電図記録装置の筋電図解析ソフトを用い，10
秒間の舌運動時に生じる舌骨上筋群の積分値（積分筋電図 Integrated EMG : 以下，IEMG）を舌骨上筋群筋活動量として求めた。

また，実験 2 における筋電図記録では，実験 1 と同様のソフトを用い，20 回咀嚼時に生じる舌骨上筋群および咬筋の咀嚼筋活動の IEMG をそれぞれ舌骨上筋群筋活動量，咬筋筋活動量として求めた。そして，咀嚼周期については，20 回咀嚼運動の全ストロークから咀嚼が安定したと思われる中間の 5 ストローク（8～12 ストローク）を選び，その各々の平均値，標準偏差を算出し検討した。
実験 1

I 舌運動と舌骨上筋群筋活動量との関係

全被験者の閉口安静時と各舌運動時 [(1)，(2)，(3)] の舌骨上筋群筋活動量の平均値を比較した結果を Fig 8 に示す。閉口安静位は 27.46 ± 7.73 µV·s，左右側方運動時は 108.55 ± 37.09 µV·s，口蓋小窩への運動時は 54.28 ± 8.03 µV·s，上顎左右第二大臼歯への運動時は 74.12 ± 37.43 µV·s であった。

舌の各運動時の筋活動量は，安静時に比較して有意に [(2) は p<0.05，(1)，(3) は p<0.001] 増大した。

全被験者の閉口安静位と各舌運動時 [(4)，(5)，(6)] の舌骨上筋群筋活動量の平均値を比較した結果を Fig 9 に示す。閉口安静位は 66.59 ± 80.19 µV·s，突出運動時は 176.33 ± 67.54 µV·s，鼻下点への運動時は 211.14 ± 130.64 µV·s，オトガイ部への運動時は 245.83 ± 166.55 µV·s であった。

舌の各運動時の筋活動量は，安静時に比較して (4)，(5)，(6) 全てにおいて有意に (p<0.001) 増大した。

実験 2

I 咀嚼能率と筋活動量

3 種類の実験について各被験者の咀嚼能率の平均値を Fig 10 に示す。その結果，各被験者とも舌運動制限時と自由咀嚼時との間に有意差が認められた (p<0.001)。

各被験者の舌骨上筋群筋活動量の結果を Fig 11 に示した。同様に，舌運動制限時と自由咀嚼時との間に有意差が認められた (sub 3，4，5 は p<0.01，sub 1，2，6 は p<0.001)。舌運動非制限時と自由咀嚼時の 2 群間に有意差は認められなかった。
全被験者の咀嚼能率と舌骨上筋群筋活動量の平均値の結果を Table 1 に示す。咀嚼能率は、舌運動制限時 11.21 ± 10.90%、舌運動非制限時 87.15 ± 10.07%、自由咀嚼時 99.74 ± 9.94% であり、舌運動制限時と自由咀嚼時の 2 群間に有意差（p < 0.001）が認められた。舌運動非制限時と自由咀嚼時の 2 群間に有意差は認められなかった。

舌骨上筋群の筋活動量は、舌運動制限時 214.05 ± 84.72 μV・s、舌運動非制限時 443.00 ± 170.00 μV・s、自由咀嚼時 431.04 ± 150.43 μV・s であり、舌運動制限時と自由咀嚼時の 2 群間に有意差（p < 0.001）が認められた（Table 1）。舌運動非制限時と自由咀嚼時の 2 群間に有意差は認められなかった。

全被験者の咀嚼周期の平均値を Fig 12 に示す。舌運動制限時 0.88 ± 0.24 秒、自由咀嚼時 0.76 ± 0.14 秒であった。舌運動制限時は自由咀嚼時に比べ、咀嚼周期が有意に（p < 0.001）延長した。

各被験者における咀嚼周期について、自由咀嚼時を 100% としたときの舌運動制限時の割合を Fig 13 に示す。咀嚼周期は、舌運動制限時と自由咀嚼時を比較した結果、舌運動制限時において被験者 4、5（p < 0.001）、被験者 6（p < 0.05）の 3 名に有意な延長が認められた。

自由咀嚼時の舌骨上筋群筋活動量と咀嚼能率との関係を調べた結果、両者には有意（p < 0.05）な正の相関が認められた（Fig 14）。
考 察

1. 舌運動と舌骨上筋群との関係について

舌は舌骨につながる舌骨筋によって支持されている。舌骨筋は顎二腹筋、茎突舌骨筋、顎舌骨筋、オトガイ舌骨筋の舌骨上筋群と胸骨舌骨筋、胸骨甲狀筋、甲狀舌骨筋、肩甲舌骨筋の舌骨下筋群で構成されている。舌は、舌筋（内舌筋、外舌筋）により構成されており、内舌筋は舌形態を変化させ、外舌筋は舌位を変化させる働きを担っている。舌の運動は、舌骨上筋群の働きも関与して行われていることが知られている。開口運動については、舌骨上筋群は大開口時には関与するが、咀嚼などの小開口運動時にはほとんど関与していないとの報告もある。佐々木らは重度障害者の意思伝達に舌の随意運動を応用する目的で、舌運動時に活動する舌骨上筋群筋活動を多チャンネル表面電極で観測した結果、舌運動を間接的に推定できたことを報告している。それによると、舌骨上筋群の筋活動パターンから、91.5%の識別率で舌の随意運動が推定できることを、またその誤認識の原因となる開口、嚥下から生じる筋活動量を95.5%の識別率で動作判別できるとし、舌の随意運動、開口、嚥下のすべての動作に関する舌骨上筋群の筋活動量から、舌の随意運動のみを正確に識別できる可能性を示唆した。

本研究実験では、舌運動の評価法として舌運動と舌骨上筋群の筋活動量の関係について改めて検討を行った。閉口時の舌運動は開口時の安静位筋活動量と、開口時の舌運動はあらかじめその運動のできる位置まで開口し、維持させたときの筋活動量を測定して比較を行った結果、いずれも平均値には有意な差が認められた。このことから、舌運動の可否を舌骨上筋群筋活動量から間接的に評価できる方法の1つとして有用であると考えられた。

今回実験を行った閉口時の舌運動は、咀嚼時の運動に近いと思われる。舌は咀嚼中複雑な運動をして嚥下に適した食塊形成を助けるが、中島は舌は咀嚼をし
ながら食塊中の比較的大きな粒子を選択して咬合面に送っていると述べているように、咀嚼における舌運動は、食物を咬合面へ運び粉砕機能を補助する役割も担う。今回測定した閉口安静位の活動電位に比較して最も差のみられた舌運動は舌の左右側方運動時の筋活動であり、本結果はそれらの運動に対して舌骨上筋群の筋活動量が敏感に反応していることを示している。

2. 咀嚼能率の測定法について

咀嚼能率を測定する方法としては、本実験に用いたピーナッツ咀嚼による篩分法以外にグミゼリー咀嚼法があるが、グミゼリー咀嚼法は片側咀嚼となりやすいことが考えられたため、本研究では咀嚼時に舌が広範囲に動く前者による方法を用いた。

ピーナッツ咀嚼法においては、橋本によれば、被験食品の粉砕性は含水量に影響され、水を使用する篩分法では、食品中の水溶性成分の含有量が少ないほど測定値は正確となると報告している。この点についてピーナッツ咀嚼法では、ピーナッツの乾燥重量を調べる必要があるため、沖山らの方法により予備実験を行った。予備実験においては、ピーナッツ咀嚼開始から篩分けを行うまでの時間に5分を要したことから、ピーナッツを5分間水中に浸漬させ、その後100℃で3時間乾燥し重量を測定した結果、乾燥全重量は元の重量（3.0 g）の98％の値を示した。

以上の点から、ピーナッツの吸水による形状変化が篩通過に及ぼす影響は無視できる範囲と考えられた。

本研究においては同一条件でかつ被験者個人での比較を行っているため、舌の働きの増減から咀嚼能率の高低を見出すことが可能と思われる。

3. 咀嚼能率と咀嚼周期について

本研究実験2では、実験1および予備実験の結果を踏まえ、咀嚼中の舌骨上筋群の筋活動量と咀嚼能率を測定し、咀嚼中の舌の動きを間接的に評価した。測定にあたっ
ては、顎の閉閉時の運動に関与する筋活動量を把握するために、舌運動制限装置を装着させた状態で咀嚼実験を行った。その結果、舌運動制限時の舌骨上筋群筋活動量は通常の自由咀嚼時と比較して平均約50%、咬筋筋活動量は平均約59%に低下した。このことは舌を装置内に固定して運動を制限して咀嚼させた場合、開口に関与した舌骨上筋群筋活動量が約50%であったことを示している。当然のことながら、このような状態では咀嚼能率も約11%と、自由咀嚼時に比較して著しく低下した。

このように、装置で舌の動きのほとんど全てを制限して行う咀嚼は日常想定外の実験であるが、舌の関与がない咀嚼がどのように行われるかを知る目的で咀嚼周期を測定した。

咀嚼周期は、筋電図では筋放電の開始から次の放電が開始するまでの時間を分析することで得られて、主に咀嚼のリズムを評価する。菅原は、実験的に鼻閉状態を作り咀嚼がどのように変化するかを調べた結果、鼻閉時は咀嚼周期が延長したことを報告している。本実験のように舌の働きが制限された咀嚼においては被験者6名中3名に有意な咀嚼周期の延長がみられた。他の3名も延長傾向がみられ、全体の平均値では咀嚼周期の有意な延長が認められた。これは、舌が咀嚼周期に関与しているため、自由咀嚼時と比較して咀嚼リズムが不規則となることを示していると考えられた。

この咀嚼リズムの乱れが、舌によって効率よく食塊が咬合面に運ばれず、粉砕率の低下に繋がった原因であることが推測される。

4. 舌の働きが咀嚼能率に及ぼす影響

実験2では舌運動制限装置による極端な条件下で実験を行ったが、本研究の最終課題である自由咀嚼時における舌骨上筋群の筋活動量と咀嚼能率の関係についても調べた結果、両者には正の相関が示された。舌運動を直接評価するためには直接舌に電極を貼付する以外に方法はないために、本研究課題と同様の報告は少ない。そのためこれまで個人の咀嚼能率や咀嚼時間などに対しては歯での粉砕率や咀嚼回数な
どが問題にされてきたが, 本研究によって舌の働きが重要であることが明らかとなった. 咀嚼を進行させて, 食塊を嚥下するためには適切な粉砕と水分量が必要であるが, 今回の咀嚼周期の測定から, 舌の動きはそれらを円滑に行うために重要な働きをしていていることが推測された. 食塊の水分量の変化についての実験は今回行っていないが, 楠元によれば食塊嚥下時の水分量は食物の種類によっては異なるものの, 同一食物, 同一被験者であれば変動が少なく規則性が認められることが報告されている. 本研究での自由咀嚼時の咀嚼周期においても, 同一被験者では変動が少なくほぼ一定した値が得られた.

本研究の自由咀嚼において, 咀嚼能率の値は被験者の舌骨上筋群の筋活動量と相関することが示されたが, 舌の動きが不十分な場合には食塊の十分な粉砕, 水分量が得られにくく, 咀嚼能率が低下することを示している. 舌の運動低下は舌小帯短縮症児にみられることから, 舌小帯短縮症患児では咀嚼能率の低下が推測されるが, 舌運動を制限させる同様の状態を舌運動制限装置の装着により作ることで, 咀嚼時における咀嚼能率の低下が認められたことが本研究で示された.
舌運動と舌骨上筋群の筋活動量の関係、ならびに舌運動の咀嚼能率に及ぼす影響を明らかにする研究を行った結果、以下の結論を得た。

1. 舌骨上筋群筋活動量の測定は、舌運動を間接的に評価する方法として有用であることが示された。

2. 咀嚼や舌運動を制限すると咀嚼周期が延長し、咀嚼能率が著しく低下することが示された。

3. 自由咀嚼時、舌骨上筋群筋活動と咀嚼能率の間には正の相関関係が認められた。

4. 嚥下に適した食塊の粉碎、水分量を得るために、舌は重要な働きをしていることが示唆された。
謝 辞

稿を終えるにあたり、本研究の機会を与えていただき、終始御指導、御鞭撻を賜りました明海大学歯学部形態機能成育学講座口腔小児科学分野 渡部 茂 教授に深甚なる謝意を表します。また、御教示、御校閲を賜りました同生理学分野 村本 和世教授、同解剖学分野 天野 修 教授、ならびに機能保存回復学講座歯科補綴学分野 藤澤 政紀 教授に厚く御礼申し上げます。さらに、本研究に対して多大なる御協力をいただきました口腔小児科学分野の諸先生方に感謝致します。

本研究の一部は、2014年度 宮田研究奨励金 E の援助により遂行されました。
引用文献

1) 森本俊文, 山田好秋: 咀嚼. In: 基礎歯科生理学 第 5 版. 医歯薬出版, 東京, pp357-377, 2008

2) Shiere FR and Manly RS : The effect of the changing dentition on masticatory function. J Dent Res 31, 526-534, 1952

3) 河村洋二郎: 咀嚼の生理. In: 歯科学生のための口腔生理学. 永末書店, 京都, pp158-232, 1972

4) Kawamura Y and Nobuhara M : Studies on masticatory function H. The swallowing threshold of persons with normal occlusion and malocclusion. Med J Osaka Univ 8, 241-246, 1957

5) Manly RS and Vinton P: Factors influencing denture function. J Prosthet Dent 1, 578-586, 1951

6) Vinton P and Manly RS : Masticatory efficiency during the period of adjustment to dentures. J Prosthet Dent 5, 477-480, 1955

7) 塩沢光一, 坂西秀樹, 柳沢彗二: 唾下までの咀嚼回数に及ぼす摂取食品の大きさの影響. 日咀嚼誌 1, 39-44, 1991

8) Funakoshi M and Kawamura Y : Relations between taste qualities and parotid gland secretion rate. In: Olfaction and Taste II. Hayashi T, ed, Pergamon Press, Oxford, pp281-287, 1967

9) Watanabe S and Dawes C : The effects of different foods and concentrations of citric acid on the flow rate of whole saliva in man. Archs Oral Biol 33, 1-5, 1988

10) Watanabe S and Dawes C : A comparison of effects of tasting and chewing foods on the flow rate of whole saliva in man. Archs Oral Biol 33, 761-764, 1988

11) Watanabe S, Ohnishi M, Kawano E, Imai K and Igarashi S: The effects of citric
acid and foods on flow rate of whole saliva in five-year-old children. Pediatr Dent J 3, 79-84, 1993

12) 楠元正一郎：食物咀嚼に及ぼす唾液分泌量の影響 食塊水分量と嚥下閾. 明海大歯誌 28, 40-48, 1999

13) Munro RR: Activity of the digastric muscle in swallowing and chewing. J Dent Res 53, 530-537, 1974

14) 中島昭彦: 咀嚼機能に関する二、三の生理学的要因の分析. 九州歯会誌 30, 20-36, 1976

15) 越野 唐: 舌運動機能が咀嚼機能に及ぼす影響－超音波診断装置による舌運動能力の評価と篩分法による咀嚼能力の評価－. 補綴誌 38, 799-810, 1994

16) 福島理恵: 咀嚼運動の診断基準に関する基礎的再研究－食塊の水分量、粉碎率、物理性の変化－. 小児歯誌 40, 119-131, 2002

17) 佐々木誠, 荒川峻之, 中山 淳, 山口昌樹: 舌骨上筋群の協調運動を利用した舌運動推定法. 生体医工学 50, 31-36, 2012

18) 佐々木誠, 大西康平, 中山 淳, 柴本 勇, 鎌田勝裕: 舌骨上筋群の表面筋電位を用いた舌運動の識別とその可視化法. 日本顎口腔機能学会第 53 回学術大会プログラム・事前抄録集, 18-19, 2014

19) 菅原美佳: 鼻閉時の食物咀嚼に関する研究. 小児歯誌 35, 684-698, 1997

20) Manly RS and Louise CB: Masticatory performance and efficiency. J Dent Res 29, 448-462, 1950

21) 橋本 譲: 篩分法による各種咀嚼粉砕試験用食品の比較について. 口腔病会誌 26, 648-676, 1959

22) 宇賀村吉亮: 咀嚼リズムの筋電図学的研究. 補綴誌 16, 275-292, 1973

23) 森本俊文, 山田好秋: 舌運動. In: 基礎歯科生理学 第 5 版. 医歯薬出版, 東京, pp348-352, 2008
24) Bérzin F: Electromyographic analysis of the sternohyoid muscle and anterior belly of the digastric muscle in head and tongue movements. J Oral Rehabil 22, 825-829, 1995

25) 森於菟，小川鼎三，大内弘，森富，村上宅郎： III. 頸部の筋．In : 解剖学 第 1 巻，金原出版，東京，pp299-303，2004

26) 三枝英人：舌骨上筋群の解剖．耳展 53，246-253，2010

27) 沖山誠司，吉田実，山本誠，森井まどか，野首孝祠：試験用グミゼリーの物性と咬合接触状態が咀嚼能率に及ぼす影響．補綴誌 40，710-717，1996

28) 金光悦：舌前突，開口，嚥下及び呼吸時のヒト舌筋活動と舌の反射応答について．鶴見歯学 14，429-442，1988
Table 1 Comparison of mean values of masticatory efficiency and Integrated EMG

	Masticatory efficiency (%)	Integrated EMG (μV・s)				
	Limited tongue movements	Unlimited tongue	Free chewing	Limited tongue movements	Unlimited tongue movements	Free chewing
Mean (S.D.)	11.21*¹ (10.90)	87.15 (10.07)	99.74*² (9.94)	214.05**¹ (84.72)	443.00 (170.00)	431.04**² (150.43)

Significant differences were found between *¹ and *², **¹ and **² (p<0.001).
Fig legends

Fig 1 Placement of the electrodes

Fig 1a Anterior belly of the suprahyoid muscles

Fig 1b Middle part of the masseter muscle

Fig 2 Tongue movements

1. Right-and-left lateral extrusion
2. Touching the palate with the tongue tip
3. Touching the palatal aspects of the maxillary second molars

Fig 3 Tongue movements

4. Protrusive extrusion
5. Upward extrusion (tongue tip on subnasal point)
6. Downward extrusion (tongue tip on mental region)

Fig 4 Device on the floor of oral cavity (M: Mesial, D: Distal)

A tip of the tongue enters under the arrow of the device.

Fig 5 Tongue restricting device fitted into the floor of the mouth.

Fig 5a Limited tongue movements (A tip of the tongue is beneath the device)

Fig 5b Unlimited tongue movements (A tongue is on the device)

Fig 6 Examples of raw data of EMG

The chewing initiation(I) and termination(T) was judged by the activity wave
pattern of the masseteric. (R-Dig : right digastric muscle, L-Dig : left digastric muscle, R-Mas : right masseter muscle, L-Mas : left masseter muscle)

Fig 7 Chewing cycle at the time of the masseter muscle activity. (a : Cycle time, b : Duration, c : Interval)

Fig 8 Comparison of mean values of EMA in the suprahyoid muscles in rest position of mandible and tongue movements.

Fig 9 Comparison of mean values of EMA in the suprahyoid muscles in opening rest and tongue movements.

Fig 10 Comparison of mean values of in the masticatory efficiency in limited, limited tongue movements, and free chewing in each subject.

Fig 11 Comparison of mean values of EMG activity in the suprahyoid muscles in limited, unlimited tongue movements, and free chewing in each subject.

Fig 12 Comparison of mean values of chewing cycle in limited of tongue movements and free chewing.

Fig 13 Comparison of mean values of EMG activity in the suprahyoid muscles in limited, unlimited tongue movements, and free chewing in each subject.

Fig 14 Scatter plots of masticatory efficiency and EMA in the suprahyoid
muscles during free chewing.
Fig 6
Tongue movements

Integrated EMG

- Rest position of mandible
- Right-and-left lateral extrusion
- Touching the palate with the tongue tip
- Touching the palatal aspects of the maxillary second molars

Fig 8

* $p < 0.05$
*** $p < 0.001$
Tongue movements

Fig 9

![Graph showing integrated EMG for different tongue movements.](image)

- **Opening rest**: Low EMG activity.
- **Protrusive extrusion**: Moderate EMG activity.
- **Upward extrusion**: Higher EMG activity compared to protrusive extrusion.
- **Downward extrusion**: Highest EMG activity compared to other movements.

Statistical significance:

- **Protrusive extrusion** vs. **Opening rest**: *p* < 0.001
- **Upward extrusion** vs. **Opening rest**: *p* < 0.001
- **Downward extrusion** vs. **Opening rest**: *p* < 0.001

*Note: The graph illustrates the relative integrated EMG activity (μV·s) across different tongue movements.***
Masticatory efficiency

Fig 10

***p < 0.001

Limited tongue movements
Unlimited tongue movements
Free chewing
Integrated EMG subjects

FIG 11

- Limited tongue movements
- Unlimited tongue movements
- Free chewing

*p < 0.05
**p < 0.01
***p < 0.001
Chewing cycle

Fig 12

Condition	Mean (sec.)
Limited tongue movements	0.8
Free chewing	0.4

***p < 0.001
Figure 13: Comparison of limited tongue movements and free chewing among subjects. The bar chart shows the percentage of tongue movement limitation in each subject, with subjects 4, 5, and 6 having significantly higher values than subjects 1, 2, and 3, indicated by *** (p < 0.001) and * (p < 0.05) respectively.
Fig 14

Integrated EMG vs. Masticatory efficiency

\[y = 1.9927x - 1556.4 \]

\[r = 0.89 \]

\[p < 0.05 \quad (p = 0.018) \]