Conservation of \textit{ParaHox} genes' function in patterning of the digestive tract of the marine gastropod \textit{Gibbula varia}

Leyli Samadi* and Gerhard Steiner

Abstract

\textbf{Background:} Presence of all three \textit{ParaHox} genes has been described in deuterostomes and lophotrochozoans, but to date one of these three genes, \textit{Xlox} has not been reported from any ecdysozoan taxa and both \textit{Xlox} and \textit{Gsx} are absent in nematodes. There is evidence that the \textit{ParaHox} genes were ancestrally a single chromosomal cluster. Colinear expression of the \textit{ParaHox} genes in anterior, middle, and posterior tissues of several species studied so far suggest that these genes may be responsible for axial patterning of the digestive tract. So far, there are no data on expression of these genes in molluscs.

\textbf{Results:} We isolated the complete coding sequences of the three \textit{Gibbula varia} \textit{ParaHox} genes, and then tested their expression in larval and postlarval development. In \textit{Gibbula varia}, the \textit{ParaHox} genes participate in patterning of the digestive tract and are expressed in some cells of the neuroectoderm. The expression of these genes coincides with the gradual formation of the gut in the larva. \textit{Gva-Gsx} patterns potential neural precursors of cerebral ganglia as well as of the apical sensory organ. During larval development this gene is involved in the formation of the mouth and during postlarval development it is expressed in the precursor cells involved in secretion of the radula, the odontoblasts. \textit{Gva-Xolx} and \textit{Gva-Cdx} are involved in gut patterning in the middle and posterior parts of digestive tract, respectively. Both genes are expressed in some ventral neuroectodermal cells; however the expression of \textit{Gva-Cdx} fades in later larval stages while the expression of \textit{Gva-Xolx} in these cells persists.

\textbf{Conclusions:} In \textit{Gibbula varia} the \textit{ParaHox} genes are expressed during anterior-posterior patterning of the digestive system. This colinearity is not easy to spot during early larval stages because the differentiated endothelial cells within the yolk permanently migrate to their destinations in the gut. After torsion, \textit{Gsx} patterns the mouth and foregut, \textit{Xlox} the midgut gland or digestive gland, and \textit{Cdx} the hindgut. \textit{ParaHox} genes of \textit{Gibbula} are also expressed during specification of cerebral and ventral neuroectodermal cells. Our results provide additional support for the ancestral complexity of \textit{Gsx} expression and its ancestral role in mouth patterning in protostomes, which was secondarily lost or simplified in some species.

\textbf{Background}

The three \textit{ParaHox} genes, \textit{Gsx}, \textit{Xlox}, and \textit{Cdx}, were first described as a gene cluster in the invertebrate chordate \textit{Branchiostoma floridae} (amphioxus) by the elegant work of Brooke et al. 1998 [1]. \textit{ParaHox} and \textit{Hox} genes are believed to have evolved from a single ancient proto-\textit{Hox} cluster composed of two to four genes prior to the divergence of cnidarians and bilaterians. Thus, they are considered evolutionary sister (or paralogue) clusters [1-7]. Vectorial expression of the \textit{ParaHox} genes in anterior, middle, and posterior tissues of amphioxus and its distinct similarities to vertebrate \textit{ParaHox} gene expression suggest that these genes may be responsible for axial patterning of the digestive tract [1,3].

\textbf{Expression of \textit{ParaHox} genes in deuterostomes}

\textit{ParaHox} gene expression and genomic organisation have been studied extensively in deuterostomes. In Vertebrates, \textit{Gsh1} and \textit{Gsh2} genes are restricted to the central nervous system (CNS) [8-13]. Vertebrate \textit{Xlox} is
expressed both in CNS and the developing gut [14-20].

\textit{Cdx1} to \textit{Cdx4} genes of vertebrates are involved in posterior patterning, since they are expressed in posterior parts of CNS and gut [21-24]. Within invertebrate deuterostomes, apart from amphioxus, expression of \textit{ParaHox} genes has been traced in the ascidian, \textit{Ciona intestinalis}, the echinoderm, \textit{Strongylocentrotus purpuratus}, and in a starfish, \textit{Archaster typicus} [25-29]. In invertebrate deuterostomes, \textit{Gsx} is expressed more anteriorly and only in the nervous system, while \textit{Xlox} and \textit{Cdx} are expressed within the gut primordium with \textit{Xlox} anterior to \textit{Cdx} [25-28]. In the sea star, however, the \textit{Aty-Xlox} expression is found in the archenteron as well as in ectodermal cells near the vegetal region of early and mid-gastrula stages [29]. This expression pattern is very different from those of \textit{Xlox} homologues in other deuterostomes.

Expression of \textit{ParaHox} genes in ecdysozoans

In ecdysozoans, \textit{Gsx} expression has been documented in the insects \textit{Drosophila} and \textit{Triboium} [30,31]. Insect \textit{Gsx} (called \textit{ind}) is expressed along a pair of medio-lateral neural columns and promotes neural precursor formation in the medial and intermediate columns of the CNS [30,31]. The central \textit{ParaHox} gene, \textit{Xlox}, is lost in all insect genomes sequenced to date. \textit{Caudal} has been known as a posterior patterning gene in several arthropods during segmentation [32-42]. \textit{Cdx} is also a posterior patterning gene in the nematode \textit{Caenorhabditis elegans}. Here, this gene is called \textit{pal-1} and patterns the precursor cells of alae and rays in the posterior of the worm [43]. \textit{Gsx} and \textit{Xlox} orthologs are absent in the nematode [44].

Expression of \textit{ParaHox} genes in lophotrochozoans

Within Lophotrochozoa, expression of the full complement of \textit{ParaHox} genes has been described in the polychaetes \textit{Capitella teleta}, \textit{Nereis virens}, and \textit{Platynereis dumerilii} [45-48]. In \textit{Capitella}, \textit{Gsx} is not expressed in the gut but in some neuroectoderm cells of the anterior brain [45]. This is very different from the expression of \textit{Gsx} in the nereid polychaetes, \textit{Nereis virens} and \textit{Platynereis dumerilii} [46,48]. Nereid \textit{Gsx} is first expressed in symmetrical bilateral domains in the dorso-medial episphere of the trophophore [46,48]. Later this gene is expressed during formation of the midgut and the posterior foregut in both nereids [46,48]. \textit{Xlox} is expressed throughout the midgut in the polychaete \textit{Capitella} [45]. This is also true for the \textit{Xlox} genes, named \textit{Lox3} in the leeches \textit{Helobdella triserialis} and \textit{Hirudo medicinalis} [49,50]. Expression of \textit{Xlox} is not reported in the nervous system of these annelids [45,49,50]. Nereid \textit{Xlox} is also expressed in the midgut, but in contrast to \textit{Capitella} and the leeches its expression is additionally detected in the CNS [46,48]. As in arthropods, \textit{Cdx} is a posterior patterning gene in the annelids. However in \textit{Platynereis}, \textit{Nereis}, \	extit{Tubifex}, and \textit{Capitella} there are both anterior and posterior expression domains of \textit{Cdx} [45-48,51]. \textit{Capitella Cdx} is expressed in the cerebral ganglia, \textit{Nvi-Cdx} expression is detectable in the ventral nervous system, while \textit{Pdu-Cdx} is not detected in the nervous system [45-48]. Expression of \textit{Cdx} is also detected in more posterior parts of the gut [45-48]. Moreover, \textit{Cdx} is expressed in the posterior ectodermal cells that form the pygidium epidermis of both nereids [46-48]. Additionally, \textit{Cdx} expression can be traced in mesodermal cells in \textit{Capitella}, \textit{Tubifex}, and \textit{Platynereis} [45,47,48,51].

Little is known of \textit{ParaHox} genes in other Lophotrochozoa than annelids [52-55]. The only available data are on the \textit{Cdx} gene expression during the early development of the marine limpet, \textit{Patella vulgata} [53]. \textit{Pvu-Cdx} is expressed at the onset of gastrulation in the ectodermal cells at the posterior edge of the blastopore and in the paired mesentoblasts [53]. During trochophore larval stage, \textit{PvuCdx} is expressed in the posterior neurectoderm of the larva, as well as in part of the mesoderm [53]. Within Mollusca, a full complement of \textit{ParaHox} genes has been shown for the chiton \textit{Nuttallochiton mirandus} and the scallop \textit{Pecten maximus} [54,55]. However the information is limited to partial homeobox sequences, whereas expression patterns of \textit{Gsx} and \textit{Xlox} or chromosomal organisation of \textit{ParaHox} genes have not been reported yet in any mollusc species.

Ancestral role of \textit{ParaHox} genes

Holland (2001) elaborated the hypothesis of the ancestral role of \textit{ParaHox} genes proposed by the original work of Brooke et al. 1998 [1,3]. Holland’s hypothesis proposes that the three \textit{ParaHox} genes originated from the Proto \textit{Hox} gene cluster and pattern anterior, middle and posterior gut regions in a colinear manner in basal animals [3]. According to this hypothesis, a link of \textit{Gsx} and anterior gut development existed in basal animals. However, \textit{Gsx} is not expressed in the anterior gut of deuterostomes. This is explained by the loss of the primary mouth and formation of a secondary mouth in deuterostomes [3].

Aim

Gastropoda is undoubtedly the most successful taxon of the Mollusca, embracing more than 80% of all mollusc species [56]. The vetigastropod \textit{Gibbula varia} L. is a shallow subtidal top shell snail with encapsulated development. The lecithotrophic larval development is completed within the eggs. The juveniles leave the gelatinous egg masses only after metamorphosis. In order to elucidate the function of the \textit{ParaHox} genes in molluscs and to gain broader insights into the evolution of the \textit{ParaHox} genes in the Lophotrochozoa, we describe the sequences as well as expression patterns for all three \textit{ParaHox} orthologues by whole mount in situ hybridiza-
tion from embryonic through juvenile stages in the top shell *Gibbula varia*. This is the first report of expression patterns of the full *ParaHox* complement in a mollusc.

Results

Gibbula varia life history

Gibbula varia is a dioecious species. The eggs fertilized via copulation are laid in gelatinous egg masses (additional file 1, Figure S1A, S1B, S1C). Development of the embryos and larvae takes place inside the egg capsule and takes about four days. The main stages of *G. varia* development are presented in Table 1. Epibolic gastrulation occurs by the micromeres rapidly spreading downwards and enclosing the macromeres. The blastopore, being wide at first, gradually becomes constricted at 10 to 12 hours post fertilization (hpf), when the trochoblasts start to become ciliated. At 16 hpf, the prototroch is clearly visible as a circular ciliary band, separating the trophophore larva’s episphere from the hyposphere (additional file 1, Figure S1D). There is no sign of apical cilia (apical tuft) at any stage in the development of the trophophore, although the pretrochal cells were observed to be smaller than those of the posttrochal region (additional file 1, Figure S1D). By this stage the blastopore gradually moves to a position just below the prototroch, forming the stomodeum. Simultaneously, the shell-gland invagination appears as a thin patch of cells gradually spreading over the dorsal region of the larva (additional file 1, Figure S1D). At 18 hpf, the late trophophore larva comprises a prototroch, the shell field surrounded by the mantle edge, and a pedal rudiment (additional file 1, Figure S1E). The late trophophore (24 hpf) turns into an encapsulated pretorsional veliger larva by differentiation of the prototroch to a distinct velum (additional file 1, Figure S1F). The mantle fold and mantle cavity become visible mid-ventrally on the posterior surface of the pedal rudiment (additional file 1, Figure S1E, S1G). At 36 hpf, the pretorsional veliger has a velum, an apical organ marked by apical cilia (apical tuft), a mouth opening, and a pedal rudiment with the operculum anlage (additional file 1, Figure S1H). The first 90° of torsion take place between 36-48 hpf, presumably by contraction of the larval retractor (shell) muscle. This results in a 90° displacement of the mantle cavity to the right side, and, when viewed from the front, the foot and velum are rotated anti-clockwise in relation to the protoconch. The remaining part of torsion is completed within one day while the velum gradually becomes reduced in size and splits ventrally (additional file 1, Figure S1I). At 60 hpf, the operculum appears in the posttorsional veliger larva (additional file 1, Figure S1I). The radula and cephalic eyes appear about three days after fertilization. As the eyes form, the cephalic tentacles begin to appear as outgrowths of the prevelar surface. The juvenile hatches on the fourth day of development (about 96 hpf) and after that mineralization of the shell begins. The animals become sexually mature after 11-12 months.

Development of gut in *G. varia*

The development of the digestive tract starts with the development of the stomodeum (future mouth opening) in the trophophore (additional file 1, Figure S1E). The mouth opens during the pretorsional veliger stage (additional file 1, Figure S1H, S1I) whereas the anus opens in the late posttorsional stage at the site of a few ciliated cells (anal markers). The development of the digestive tract is very similar to that described in *G. cineraria* and *Haliotis tuberculata* [57,58]. The digestive gland begins

Table 1: Timing of developmental stages of *Gibbula varia* (at 22°C); different stages of larval development and metamorphosis of *G. varia* inside the gelatinous egg capsules before hatching.

Name of stage and approximate time of development (hpf)	Brief description of main features
Early Trophophore Larva (12 hpf)	The pretrochal cells are smaller than the posttrochal cells; prototroch starts to form by ciliation of trochoblasts; shell gland starts to evaginate; foot rudiment and stomodaem are not completely formed.
Late Trophophore Larva (18-24 hpf)	The larva comprises a prototroch, shell field surrounded by mantle edge, a pedal rudiment, and stomodaem.
Pretorsional veliger larva (36-48 hpf)	The mantle and mantle cavity form. The larva has a velum, apical organ marked by apical cilia, mouth opening, and pedal rudiment with anlage of operculum.
Post-torsional veliger larva (60 hpf)	The mantle lies over the back of the head and the velum gradually splits ventrally, the operculum appears.
Metamorphic (competence) stage (72 hpf)	Eye rudiments and cephalic tentacles begin to form in the prevelar area. The anlage of the radula becomes visible.
Encapsulated juvenile	Vellum is completely lost; eyes and cerebral tentacles are formed.
Hatchling (96 hpf)	The encapsulated juvenile hatches and shell mineralization begins.
to differentiate on the left side of the veliger just before torsion sets in [57,58]. The gut develops from differentiated endodermal cells initially scattered within the yolk in the pretorsional veliger. They later migrate to the yolk boundaries to form the definitive midgut in the posttorsional veliger [57,58]. Later, the hindgut develops from actively dividing cells of the digestive gland migrating to their final positions in the intestine [57,58]. The competent larva’s digestive system comprises a mouth opening and a bipartite oesophagus (the anterior part immediately behind the buccal cavity is not effected by torsion, the mid oesophagus includes a portion affected by the torsion), a stomach with the digestive gland, the hindgut leading to the anus that opens into the mantle cavity over the back of the head (additional file 1, Figure S2A and S2B). The radula anlage is a ventral differentiation of the foregut where mesenchym cells aggregate. The radula teeth become visible in the competent larva at the distal end of the radula sheath (additional file 1, Figure S2A and S2B).

ParaHox gene sequences

The entire coding sequences for all three *G. varia Para-Hox* genes were isolated by a combination of 3’ and 5’ rapid amplification of cDNA ends (RACE, see Methods). 3’ and 5’ RACE together yielded a complete cDNA of 885 bp with the complete open reading frame (ORF) of 519 bp (172 amino acids) for *Gva-Gsx*, a complete cDNA of 1739 bp with complete ORF of 1002 bp (333 amino acids) for *Gva-Xlox*, and a complete cDNA of 1466 bp with complete ORF of 976 bp (325 amino acids) for *Gva-Cdx*. Alignments of each *G. varia ParaHox* amino acid sequence to orthologs of other species are shown in additional file 2, Figure S3, S4, and S5. Beside the homeobox which is the main region of conservation between *Para-Hox* genes, further conserved domains are the N-terminal domain in *Gsx*, and the hexapeptide motifs just upstream of the homeodomains in both *Xlox* and *Cdx* (Additional file 2, Figure S3, S4, and S5). The classification of the *G. varia ParaHox* genes into their orthology groups is apparent from phylogenetic analyses (Figure 1). The species names and accession number of the genes used in phylogenetic analysis are provided in additional file 2. Although the phylogenetic analysis clearly assigns the *Gibbula paraHox* genes to the *Gsx, Xlox* and *Cdx* classes with high support values, the internal grouping remains unclear.

ParaHox gene expression in the trochophore larva

We did not detect *Gva-ParaHox* transcripts by whole-mount in situ hybridization (WMISH) in developmental stages before the trochophore stage. A scanning electron micrograph (SEM) of a late trochophore larva (18–24 hpf) is shown in Figure 2A.

The expression pattern of *Gva-Gsx* is rather dynamic. The first signs of transcripts of *Gva-Gsx* are already detected at 12 hpf in early trochophore larvae, when a pair of intensive, bilateral expression domains appears in the dorso-medial episphere (Figure 2B). When viewed from the anterior, each pair of expression domains appears to be composed of 4-5 *Gva-Gsx*-positive cells, presumably in the area of future cerebral ganglia (Figure 2C). This pattern of expression continues in 18 hpf trochophores (Figure 2D and 2E). Here, the pattern of expression becomes considerably more complex. In addition to the paired expression domains in the dorso-medial episphere, *Gva-Gsx* transcripts can now be detected in a pair of cells at the tip of the developing apical sensory organ (Figure 2D and 2E). These two *Gva-Gsx*-positive cells at the tip of the apical organ do not bear any cilia or apical tuft in the trochophore stage of *G. varia* (Figure 2F). The expression of *Gva-Gsx* in the apical sensory organ is restricted to two groups consisting of three sensory cells (Figure 2G). Beside the expression in prospective neural or sensory tissues, *Gva-Gsx* transcripts are also detected around the stomodeum where they appear for the first time in trochophore 18 hpf in two intensely stained bilateral semicircular clusters located anteriorly at the sides of the mouth and a less intensely stained semicircular domain at the posterior part of the mouth (Figure 2D and 2H). Figures 2H and 2I show the trochophore stomodeaum and *Gva-Gsx* expression around it at 18 hpf. About 24 hpf, *Gva-Gsx* is expressed in a complete circle around the stomodeum (Figure 2J) and in three episphere domains: a pair of adjacent cells at the tip of the apical sensory organ, and two pairs of cell groups dorsolaterally marking presumptive sites of future cephalic neuroectodermal differentiation (Figure 2K).

Gva-Xlox transcription begins later than *Gva-Gsx* expression. No expression is detectable until 24 hpf when *Gva-Xlox* transcripts appear in a group of cells located ventrally in the hyposphere and in a pair of symmetrical expression domains in the medio-ventral episphere of the trochophore larva (Figure 2L and 2M). These symmetrical expression areas are located ventrally of the more intensely stained *Gva-Gsx* expression domains in the pre trochal area. *Gva-Xlox* is also expressed in the hyposphere in 8-9 cells forming a semicircle around the anal marker (Figures 2N and 2O). These weakly stained *Gva-Xlox*-positive cells are probably part of ventral neuroectoderm.

Gva-Cdx transcripts are first detected in the early trochophore larva (12 hpf). It is expressed at 12 and 18 hpf in two domains in the ventral vegetal plate: one in an area of presumptive posterior neuroectoderm, the other in a bilateral pair of cells in the interior of the larva (Figure 2P...
Figure 1 Phylogenetic reconstruction of ParaHox genes. The tree is from Bayesian likelihood analysis using MrBayes: half compatibility consensus from five million replicates, burn-in of 5,000 replicates. The tree is built with the amino-acid sequences of the homeodomain and the flanking region. Support values of branches are posterior probabilities of Bayesian likelihood. Hox1 sequences of several bilaterians are used as outgroup (black). Groupings of the ParaHox genes are strongly supported. Gsx/Gsh sequences are shown in red, Xlox sequences in blue, and Cad/Cdx in green. Yellow rectangles highlight ParaHox sequences of *G. varia*: Amphioxus: *Branchiostoma floridae*, Branchiopode: *Artemia franciscana*, Frog: *Xenopus tropicalis*, Fruit fly: *Drosophila melanogaster*, Human: *Homo sapiens*, Hydrozoa: *Podocoryne carnea*, Leech: *Hirudo medicinalis*, Limpet: *Patella vulgata*, Mouse: *Mus musculus*, Mosquito: *Anopheles gambiae*, Nematode: *Caenorhabditis elegans*, Polychaete 1: *Platynereis dumerilii*, Polychaete 2: *Capitella teleta*, Sea Anemone: *Nematostella vectensis*, Sea Urchin: *Strongylocentrotus purpuratus*, Top Shell: *Gibbula varia*.
Figure 2 Expression of Gva-ParaHox during trochophore larval stage. (A) SEM of a late trochophore larva (18-24 hpf). (B-C) Gva-Gsx expression is first detected in early trochophore larva (12 hpf) in a pair of dorso-medial domains of episphere (red arrow heads). (D-K) In late trochophore larva (18-24 hpf) Gva-Gsx is expressed in the dorso-medial episphere (red arrow heads), in the apical sensory organ (grey arrow heads), and around the stomodeum (yellow arrow heads). (F) is higher magnification of Gva-Gsx expression in the apical sensory organ (the area marked by the black rectangle in E) and (H) is the higher magnification of Gva-Gsx expression around the stomodeum. (L-O) Gva-Xlox transcripts are detected in a pair of cell clusters in the ventral episphere (red arrow heads) and as a semicircle around the anal marker (black arrow heads). (O) and (S) are false colour images of the in situ hybridization stain, superimposed on fluorescent micrographs stained for nuclei. am anal marker, ao apical organ, f foot rudiment, n proctonephridium, pt prototroch, s stomodeum, sf shell field.
and 2Q). Using *Patella vulgata* as a reference, the latter expression of *Pvu-Cdx* probably marks the left and right primary mesentoblasts (green arrows in Figure 2P and 2Q). *Gva-Cdx*-positive neuroectodermal cells are first observed as a patch of cells expressing this gene in varying intensities (Figure 2P). Gradually they migrate to the boundary of the expression area (Figure 2Q) so that they from a circle of *Gva-Cdx*-expressing cells around the anal marker at 24 hpf (Figure 2R and 2S). The expression of *Gva-Cdx* around the anal marker at 24 hpf partly overlaps with the expression of *Gva-Xlox* in the ventral area at this stage, which is visible as a semicircle located ventrally around the anal marker (Figure 2N and 2R).

ParaHox gene expression in the pretorsional veliger larva

The transcripts of all three *Gva-ParaHox* genes are detected almost simultaneously in the visceral mass area of the pretorsional veliger larva prior to torsion (36-48 hpf), on the left side of the larva where the digestive gland is forming (Figure 3). At this stage, the velum forms a complete circle and a pair of apical tufts is observed in the velar area (Figures 3A, B, and 3C). In addition to the apical tufts, there are "sensory cups" in the velar area. These are ciliated pockets embedded within the apical ganglion (Figure 3B). The expression of *Gva-Gsx* observed in the area of the mouth opening and of the apical organ of the late trochophore larva (Figure 2) and 2K) is retained in the pretorsional veliger (Figure 3D). *Gva-Gsx* transcripts are also detected in the ventral part of the forming digestive gland in the left side of the visceral mass (Figure 3D and 3E). *Gva-Gsx*-positive signals are further detected in the area of the mouth opening (Figure 3E) and in five cells in the area of the apical organ (Figure 3D), the two apical tuft cells (Figure 3F), and the sensory cup cells (compare Figures 3B and 3D). Similar to *Gva-Gsx*, *Gva-Xlox* is expressed in the left side of the pretorsional veliger in the forming digestive gland (Figure 3G). The expression area of *Gva-Xlox* is located in the ventral part of the digestive gland, more dorsally but partly overlapping *Gva-Gsx* expression (Figure 3G and 3H). The expression pattern of *Gva-Xlox* detected on the ventral side of the episphere of the late trochophore larva (Figure 2L and 2M red arrow heads) is lost in the pretorsional veliger stage (Figure 3G and 3I). Additionally, five ectodermally derived *Gva-Xlox*-positive cells appear on the right side of the larva prior to torsion (Figure 3I). Similar to the trochophore stage (Figure 2M and 2O), these ectodermal cells form an incomplete circle and are presumably linked to the ventral nervous system (Figure 3J). *Gva-Cad* is expressed weakly in the whole area of the nascent digestive gland of the pretorsional veliger larva (Figure 3K). The intensity of expression is stronger in a few cells in the dorsal area of the visceral mass in the left side of the larva (Figure 3K and 3L).

Expression of ParaHox genes in veliger and competent larvae

After torsion (60 hpf), the velum reduces in size with a ventral split, and the mantle expands over the back of the head (Figure 4A). As the digestive tract continues to develop in the posttorsional veliger larva, expression patterns of *Gva-ParaHox* become more elaborated. At this stage, *Gva-Gsx* expression in the ventral part of the digestive gland and in the area of the mouth opening persists (Figure 4B and 4C). Sections reveal *Gva-Gsx*-positive cells at the ventral border of the area of yolk-filled cells (Figure 4D). *Gva-Gsx* transcripts are further apparent as paired domains beneath the apical organ where the formation of the cerebral ganglia commences (Figures 4C and 4D). At about three days post fertilization, expression of *Gva-Gsx* fades in the digestive gland. Instead, the gene is now expressed in the foregut around the area of the radula anlage (Figure 4E and 4F). At metamorphosis, when the apical sensory organ starts to dissociate, *Gva-Gsx* continues to be expressed in the area of the cerebral ganglia (Figure 4F). *Gva-Xlox* expression persists on the left side of the visceral mass from the pretorsional to the posttorsional stages (Figure 4G and 4H). Sections through the left side of the larva reveal that these *Gva-Xlox*-positive cells are part of the developing digestive gland (Figure 4I). Six or seven ectodermally-derived *Gva-Xlox*-positive cells are located in the ventral part of the visceral mass (Figure 4G, H, and 4I). *Gva-Cdx* is mainly expressed in the newly formed hindgut and rectum, and weakly in the digestive gland (Figures 4K and 4L).

Post-larval ParaHox gene expression

Serial section in situ hybridizations were used to trace the expression pattern of all three *Gva-ParaHox* in the hatching (about four days after fertilization). No positive signals for *Gva-Xlox* and *Gva-Cad* transcripts are detected at this stage. *Gva-Gsx* is the only *ParaHox* gene that is expressed in the most posterior part of the radula sac during postlarval development (Figure 5). The juvenile hatching has a complete radula with the radula sheath, buccal musculature, and radula bolsters (also called odontoblastic cartilages, Figure 5A). The posterior end of the radula sac forms the odontoblastic cushion which consists of a single-layered epithelium arranged in a semicircle and protruding into the sac’s lumen. The epithelial cells are produced by two separated dorsolateral mitotic centres at the end of the sac (Figure 5B). Mitotic activity is scattered over the posterior area of odontoblastic cushions where the cells are small and undifferentiated. Towards the anterior of the cushions, the cells gradually elongate and form the tall odontoblastic epithelial cells (Figure 5B). *Gva-Gsx* transcripts are mainly detected in the paired odontoblastic cushions at the base of the radula (Figure 5C; the weak signal observed in the pedal area seems to be unspecific). *Gva-Gsx* is expressed
both in undifferentiated cells located at the back of the cushions and in odontoblastic epithelial cells. No transcripts were detected in the cells separating the two halves of the odontoblastic cushion (Figure 5D and 5E). The intensity of expression of Gva-Gsx diminishes gradually from posterior to anterior, i.e. from the undifferentiated cells to fully differentiated epithelial odontoblasts (Figure 5E).

Discussion

Is ParaHox gene expression colinear during patterning of gut?
It has been proposed that the origin of the three germ layered animals, the Bilateria, is associated with the innovation of several gene clusters of the ANTP family, with the Hox-cluster genes participating mainly in patterning of the neuroectoderm, the NK-cluster genes in formation of...
the mesodermal layers, and ParaHox in colinear regionalisation of the endoderm [1,3]. Of the animals studied to date, the chromosomal linkage of ParaHox genes has been shown only in amphioxus, mouse, and human [1,3]. The ParaHox genes are not linked in teleost fishes, the ascidian or the sea urchin [27,28,59]. The only description of the expression patterns of all three ParaHox genes for lophotrochozoans in relation to their genomic organisation is for the polychaete P. dumerilii [48]. Here, Gsx and Xlox are clustered and Cdx is separated, without clear evidence of colinear expression.

We were unable to detect clear colinear expression of ParaHox genes in Gibbula prior to torsion. If present, it is obscured by the permanent migration of cells from the digestive gland to their final positions in the gut, and by torsion processes. After torsion, however, a spatially

Figure 4 Expression of Gva-ParaHox in the posttorsional larval stage. (A) SEM of pretorsional veliger larva. (B-D) Gva-Gsx is expressed in the area of the mouth opening (yellow arrow heads), apical ganglion (grey arrow heads), and ventral part of the digestive gland (blue arrow heads). (E-F) Gva-Gsx expression is detected in the buccal cavity in the forming radula anlage at onset of competence (yellow arrow heads). The gene is also expressed in the forming cerebral ganglia (red arrow heads). (G-J) Gva-Xlox is expressed in the digestive gland (blue arrow heads) and 6-7 cells of the ventral neuroectoderm (black arrow heads). The area marked by black rectangles in (G) and (H) is shown in higher magnification in (I). A section through the digestive gland is shown in (J). Note that the section is not medial since the digestive gland is located on the left side of the larva. (K-L) Gva-Cdx is expressed in the hindgut (blue asterisk) and weaker in the digestive gland (blue arrow heads). ag apical ganglion, at apical tuft, cg cerebral ganglion, e eye, f foot, m mantle edge, mc mantle cavity, mo mouth, o operculum, pv prevelar area, sc sensory cups, v velum, y yolk.
colinear expression of ParaHox genes is obvious in the digestive system, with Gva-Gsx patterning the mouth opening and radula anlage, Gva-Xlox expressed in the midgut, and Gva-Cdx in the hindgut (Figure 4 and 6). Therefore, our results support Holland’s hypothesis that ParaHox genes are involved in gut regionalization along the anterior-posterior body axis in protostomes [3].

There also seems to be a temporal colinearity in expression of ParaHox genes in the gradual formation of the digestive system. In the trochophore larva, development of the digestive system begins with the formation of the stomodeum involving Gva-Gsx expression only (Figure 6). Gva-Xlox and Gva-Cdx are expressed at later stages in the more posterior parts of the gut. When the patterning of the gut is completed in the hatchling, expressions of Gva-Xlox and Gva-Cdx cease while Gva-Gsx continues to be involved in the patterning of the radula (Figure 6). During postlarval development, Gva-Gsx is expressed in the paired odontoblastic cushions of Gibbula (Figure 5). The gradient of Gva-Gsx expression from posterior to anterior in the odontoblastic cushions suggests that this gene is associated with mitotic features of these cells and their ability to divide and replace the odontoblasts, rather than direct involvement in secretion of radula teeth.

Expression of ParaHox genes in cephalic neural and neurosensory cells
Gastropod larvae are well provisioned with multicellular sensory structures, but only the apical sensory organ is typically present in both plankton-feeding and non-plankton-feeding veligers [60]. This suggests that information detected by the apical sensory organ is important during the entire larval stage, regardless of the length of larval life or capacity for feeding. Moreover, the apical sensory organ disappears at metamorphosis in species...
where this has been studied [61]. Therefore the apical sensory organ has functions restricted to the larval stage. During larval development in *Gibbula*, Gva-Gsx exhibits a complex pattern of expression in potential cephalic neural cells and in the apical organ. This pattern shows distinct similarity to *Pdu-Gsx* expression in the trochophore stage in which *Pdu-Gsx* expression is detectable in flask-shaped sensory-neurosecretory cells in the medial forebrain [48]. Prior to torsion, the Gva-Gsx pattern is spotted in the paired apical tufts and several neurosecretory cells or sensory cups of the apical organ (Figure 3 and 6). This gene also appears to be involved in the formation of parts of the cerebral ganglia from the apical sensory organ in competent larvae. This compares well to the polychaetes *Capitella*, *Nereis*, and *Platynereis*, where Gsx is expressed in the cerebral ganglia [45,46,48]. Our results may lend further support to the theory of complex ancestral expression of Gsx that was secondarily simplified in several lineages. In addition to Gva-Gsx expression in the dorsal episphere of the trochophore, Gva-Xlox is detected in a pair of expression domains located more ventrally. It is possible that these cells contribute to neural cells of future cerebral ganglia. However this pattern of expression is transient and is lost in later developmental stages.

Possible expression of ParaHox genes in the trunk neuroectoderm

Expression of ParaHox genes in ventral or dorsal neuroectoderm has been demonstrated in several species. Within Lophotrochozoa *Capl-Cdx* is expressed in posterior neuroectodermal cells in the polychaete *Capitella*. In *Platynereis*, *Pdu-Gsx* is expressed in a central part of the larval ventral neuroectoderm in which somatic serotonergic neurons are identified [45,48]. *Nereis* is the only species studied so far in which all three ParaHox genes are known to be involved in patterning of the trunk neuroectoderm [46]. In *Gibbula*, Gva-Xlox and Gva-Cdx are expressed around the anal marker in the trophophore larvae. It has been shown that these cells express SoxB in the prospective neuroectoderm of the trunk in *Patella* [62]. Therefore, it is likely that these cells express Gva-Xlox and Gva-Cdx contribute to the trunk neuroectoderm. Temporary expression of Gva-Cdx in ventral neuroectoderm earlier during development, and expression of Gva-Xlox in overlapping regions at a later stage (Figure 6), may suggest that Gva-Cdx contributes to patterning of ventral neuroectoderm upstream of Gva-Xlox.

Hypothetical ancestral ParaHox gene expression

Comparative analyses across the animal kingdom show conservation of *ParaHox* gene expression domains in distinct tissues. Comparing *Platynereis ParaHox* gene expression to that of the orthologues in deuterostomes and ecdysozoans, Hui et al. 2009 confirmed Holland’s hypothesis about the ancestral role of ParaHox genes, suggesting that the pattern of Gsx expression in the protostome-deuterostome ancestor was complex, with Gsx domains in several structures of the nervous system, and was secondarily reduced to small patches of expression in the anterior CNS in several lineages [48]. Holland’s model further suggests that Gsx was expressed in the mouth region of the last bilaterian ancestor [3]. Lack of Gsx expression in the anterior gut of deuterostomes is explained by loss of the primary mouth and evolution of a new secondary mouth [3]. If this be the case, protostomes should maintain Gsx expression in anterior gut structures. *Capitella* results do not support such a model since *Capl-Gsx* expression is limited to a restricted region of the forming brain. The expression of Nvi-Gsh, Pdu-Gsx, and Gva-Gsx described here provides further support to the ancestral mouth patterning role of Gsx [46,48].

Xlox is expressed during midgut development in annelids [45,46,48-50]. *Pdu-Xlox* and Nvi-Xlox are also expressed in the nervous system. In *Gibbula*, Gva-Xlox pattern is detected in the digestive gland and ventral neuroectoderm, and expression in potential cephalic nerve cells is transient. Therefore, our results provide additional support that the expression of Xlox may reflect an ancestral function in central regions of the gut as well as a role in the nervous system. If this hypothesis is true, however, it would once more imply secondary simplification and loss of neural Xlox expression in several lineages [45]. However, the possibility that ancestral Xlox expression was simple and has become more complicated in different lineages cannot be ruled out since Xlox is expressed in ventral neuroectoderm in *Nereis* and *Gibbula*, in addition to cerebral ganglia, but is lacking in all other protostomes studied to date [46].

Cdx shows a complex, dynamic pattern of expression in cells of the ectoderm, endoderm and possibly mesoderm, extending to extremely anterior regions in all annelids studied so far [45-48,51]. This anterior expression of Cdx was also recently described in the acoel flatworm, *Convolutriloba longifissura* [63]. CICdx is expressed in the commissures posterior to the statocyst, following the paths of nerve tracks and extending anteriorly. CICdx is also expressed in an area surrounding the eyes, forming direct connections to the brain commissures [63]. Cdx anterior expression seems to be the case in the limpet *Patella* as well, in which the gene is expressed in posterior ectoderm during gastrulation. The posterior ectodermal expression starts to fade in the trophophore, while expression extends anteriorly in the shape of an incomplete equatorial ring of ectodermal cells that corresponds to some cells of the prototroch [53]. Later in the young free swimming trophophore, Pvu-Cdx expression in the prototroch disappears. The gene is also transiently expressed in the
stomodeum [53]. Gva-Cdx expression differs from that of Prv-Cdx by being absent during gastrulation. In addition, we did not detect any sign of Gva-Cdx expression in the trophophore prototroch or stomodeum. In contrast, the detection of Cdx in mesentoblasts and in ectodermal cells situated on the posterior most part of the ventral side of the trophophore is a common feature in Gibbula and Patella. These are some of the cells that also express SoxB, a neurectodermal marker [62]. Therefore, Cdx seems to pattern the ventral neuroectoderm as well as mesentoblasts in gastropods. Anterior expression of Cdx was not observed during the larval development of Gibbula at any stage. This can be either interpreted as secondary loss of the anterior function of Cdx in Gibbula, or as a gain of function for this gene in several tissues in other species. The first possibility has been favoured since it can be explained by the separation of the gene from the cluster [48]. Nonetheless, variety in the pattern of expression of Cdx in different animals can serve as another example for the plasticity of gene expression during evolution. Whether the expression of the ParaHox genes in nervous systems is related to their function in the gut, i.e. innervation of different parts of the gut and/or to feeding behaviour, awaits future research. Gene function experiments, therefore, would be desirable to give us better understanding of how these genes are employed.

Conclusions
The expression of ParaHox genes during anterior-posterior development of the digestive system (with Gsx patterning the mouth and foregut, Xlox patterning the midgut or digestive gland, and Cdx patterning the hindgut) suggests that these genes are involved in anterior-posterior specification of the G. varia gut. Our results support Holland’s hypothesis that ParaHox genes are involved in gut regionalization and offer further support to the ancestral mouth patterning role of Gsx in protostomes. All three ParaHox genes of G. varia are involved in patterning of the nervous system. Gva-Gsx and Gva-Xlox are expressed in neural precursors of cerebral ganglia, the expression domain of these two genes does not coincide in the episphere and fades away in the case of Gva-Xlox in later larval stages. Additionally, Gva-Gsx patterns the neurosensory cells of the apical organ. Gva-Xlox and Gva-Cdx pattern the ventral neuroectoderm with Cdx possibly acting upstream of Xlox. During postlarval development, Gva-Gsx transcripts are detected in the precursor cells of odontoblasts at the base of the radula sac. This is probably a molluscan novelty related to radula evolution. Further research in other molluscan classes and use of experimental tools, e.g. RNAi, are required to improve our understanding of gene functions and enable a sound reconstruction of their ancestral role.

Methods
Snail culturing
The adults of Gibbula varia (L.) were collected in Crete, Greece and cultured in 150-200 liter aquariums in artificial sea water at 22°C (salinity 28°). Copulation was induced by lowering the salinity a few degrees by adding fresh water to the aquariums at 17°C (personal observation of Achim Meyer, The Johannes Gutenberg University of Mainz).

Cloning of ParaHox genes
DNA extraction was performed using the PeqGOLD Tissue DNA kit (PEQLAB Biotechnologie GmbH, Polling, Austria) according to the manufacturer’s instructions. Homeobox fragments of ParaHox genes were obtained by polymerase chain reaction (PCR) from genomic DNA using Hox degenerate primers described previously [64,65]. These primers produce PCR amplification products that are mixtures of different fragments containing homeobox. The PCR fragments were purified using peqGOLD MicroSpin Cycle-Pure Kit (PEQLAB Biotechnologie GmbH, Polling, Austria). Purified PCR products were cloned with the TOPO TA Cloning Kit (Invitrogen GmbH, Karlsruhe, Germany). In total 255 clones were sequenced and all eleven Hox genes (Samadi and Steiner, unpublished data) and the three ParaHox genes were recovered. RNA was extracted from blastula and gastrula stages, trophophore, veliger, and competent larvae, and encapsulated juveniles using RNeasy Mini Kit (QIAGEN Vertriebs GmbH, Vienna, Austria). The cDNA from each developmental stage was synthesized using SuperScript III reverse transcriptase (Invitrogen GmbH, Karlsruhe, Germany). The homeobox fragments were used to design primers for rapid amplification of cDNA ends (RACE). The RACE was performed with modifications according to Schramm et al. 2000 [66]. For further details on RACE protocol see supplementary data of [67]. The RACE products were cloned by the Topo-TA cloning kit (Invitrogen GmbH, Karlsruhe, Germany) and sequenced using a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and run on an ABI 3130xl DNA analyser automated capillary sequencer.

Orthology assignment and phylogenetic analyses
The initial orthology of the ParaHox genes was tested by searching against GenBank non-redundant protein databases using the BlastX algorithm. The genes were named Gva-Gsx, Gva-Xlox, and Gva-Cdx and deposited in GenBank under accession numbers HM136802, HM136803, HM136804, respectively. Orthology assignment of the genes was made based on phylogenetic analysis. The phy-
logenetic analyses were carried out using amino acid sequences. We compiled a ParaHox gene alignment including representatives of bilaterians. Sequences were aligned using the program ClustalX v.2.0.10. First the homeobox region was aligned, then, using the homeobox as an anchor, the flanking regions were aligned and subsequent trimming carried out manually. Bayesian inference on amino acid data using MrBayes version 3.1.1 was applied for orthology analysis, with 2 × 4 Markov chains as an anchor, the flanking regions were aligned and subaligned using the program ClustalX v.2.0.10. First the including representatives of bilaterians. Sequences were observed with a LEO 1430VP scanning electron microscopy (SEM) stubs, sputter-coated with gold, and drying, the samples were mounted on scanning electron microscopes. Cytoskeletal drying with HMDS (Hexamethyldisilazane). After drying was performed either by critical point dryer or chemical drying with OsO4 (1% in distilled water for 2 h at room temperature). Larvae were fixed in 4% paraformaldehyde (PFA) in 0.1 M PBS containing 0.1% sodium azide (Na3N), postfixed in osmium tetroxide (1% in distilled water for 2 h at room temperature), followed by three washes in distilled water, and dehydrated in a graded ethanol/acetone series. Drying was performed either by critical point dryer or chemical drying with HMDS (Hexamethyldisilazane). After drying, the samples were mounted on scanning electron microscopy (SEM) stubs, sputter-coated with gold, and observed with a LEO 1430VP scanning electron microscope.

Whole-mount in situ hybridization
The Maxiscript T7 and SP6 RNA polymerase kit (Ambion, Austin, USA) was used to synthesize the sense and anti-sense probes that were labelled by the Dig RNA labelling kit (Roche Molecular Biochemicals, Vienna, Austria). WMISH was performed with few modifications after Lespinet et al. 2002 [69]. DIG-labelled riboprobes were detected colourimetrically with NBT/BCIP substrates. The details of modifications can be found in [67]. For WMISH, embryos were mounted in 70% glycerol and the expression patterns were documented. For serial-sectioned in situ hybridization, embryos were embedded in Epoxy resin after in situ hybridization according to the standard protocols, and sectioned with a microtome at a thickness of 2 μm. Sections were stained with Eosin using standard histological protocols.

Scanning-electron microscopy
Larvae were fixed in 4% paraformaldehyde (PFA) in 0.1 M saline phosphate buffer (PBS) for 4 h at room temperature or overnight at 4°C, washed three times for 15 min in PBS containing 0.1% sodium azide (Na3N), postfixed in osmium tetroxide (1% in distilled water for 2 h at room temperature), followed by three washes in distilled water, and dehydrated in a graded ethanol/acetone series. Drying was performed either by critical point dryer or chemical drying with HMDS (Hexamethyldisilazane). After drying, the samples were mounted on scanning electron microscopy (SEM) stubs, sputter-coated with gold, and observed with a LEO 1430VP scanning electron microscope.

Additional material

Additional file 1 General aspect of development and differentiation of gut in G. varia.

Additional file 2 Species names and Gene Bank accession numbers of the genes used in phylogenetic analyses and alignments of each G. varia ParaHox amino acid sequence to their representatives from other animals.

Abbreviations
BCIP: 5-bromo-4-chloro-3-indolyl-phosphate; CNS: central nervous system; hpf: hours post fertilization; HMDS: Hexamethyldisilazane; NBT: nitro blue tetrazolium chloride; ORF: open reading frame; RACE: rapid amplification of cDNA ends; RNAI: RNA interference; SEM: scanning electron micrograph; WMISH: whole-mount in situ hybridization.

Authors’ contributions
LS established the animal cultures, sequenced the ParaHox genes, performed WMISH experiments, and wrote the first draft of the manuscript. GS is responsible for the supervision of the project, the phylogenetic analyses, and editing of the manuscript. Both authors have read and approved the final manuscript.

Acknowledgements
The authors are grateful to two anonymous reviewers for their helpful comments. LS was supported by an EC fellowship within the MOLMORPH network under the 6th Framework Programme “Marie Curie Fellowships for Early Stage Research Training (EST)” (Contract number MEST-CT-2005 - 020542). We are greatly indebted to Mariti Steiner for the considerable improvement of the English.

Page 13 of 15
http://www.biomedcentral.com/1471-213X/10/74

Reference
1. Brooke NM, Garcia-Fernández J, Holland PWh: The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 1998, 392:920-922.

2. Finnerty JR, Martindale MQ: Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria. Dev Biol 1999, 216:23.

3. Holland PW: Beyond the Hox: how widespread is homeobox gene clustering? Journal of Anatomy 2001, 199:13-24.

4. Hill A, Wagner A, Hill M: Hox and ParaHox genes from the ancozoan Parazoanthus parasitica. Molecular Phylogenetics and Evolution 2003, 28:529-535.

5. Garcia-Fernández J, Hox, ParaHox, Proto Hox: facts and guesses. Heredity 2005, 94:145-152.

6. Maclean JA, Chen MA, Wayne CM, Bruce SR, Rao M, Meistrich ML, Macleod C, Wilkinson MF: Rhox: a new homeobox gene cluster. Cell 2005, 120:369-382.

7. Chourrout D, Deluc S, Chourrout P, Edvardsen RB, Rentzsch F, Renfer E, Jensen MF, Zhu, de Jong P, Steele RE, Technau U: Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 2006, 442:684-687.

8. Hsieh-Li HM, Witte DP, Szucsik JC, Weinstein M, Li H, Potter SS: Gsh-2, a murine homeobox gene expressed in the developing brain. Mech Dev 1995, 50:177-186.

9. Valerius MT, Li H, Stock JL, Weinstein M, Kaur S, Singh G, Potter SS: Gsh-1: a novel murine homeobox gene expressed in the central nervous system. Dev Dyn 1995, 203:337-351.

10. Li H, Zeitler PS, Valerius MT, Small K, Potter SS: Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J 1996, 15:714-724.

11. Szucsik JC, Witte DP, Li H, Pixley SK, Small KM, Potter SS: Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev Biol 1997, 191:230-242.

12. Deschêtes K, Bourrat F, Chourrout D, Joly JS: Expression domains of the medaka (Oryzias latipes) Ol-Gsh 1 gene are reminiscent of those of clustered and orphan homeobox genes. DevGenes Evol 1998, 208:235-244.

13. Cheesman SE, Eisen JS: Gsh1 demarcates hypothalamus and intermediate spinal cord in zebrafish. Gene Expr Patterns 2004, 1:107-112.

14. Wright CV, Schneegolsberg P, De Robertis EM: XHbox B: a novel Xenopus homeo protein restricted to a narrow band of endoderm. Development 1989, 105:787-794.

15. Levine EM, Schechter N: Homeobox genes are expressed in the retina and brain of adult goldfish. Proc Natl Acad Sci USA 1993, 90:2729-2733.
16. Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor1 is required for pancreas development in mice. Nature 1994, 371:606-609.
17. Offield MT, Jotton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV: PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996, 122:983-995.
18. Milewski WM, Duguay SJ, Chan SJ, Steiner DF: Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology 1999, 139:1440-1449.
19. Perez-Villamil B, Schwartz PT, Vallejo M: Cloning and expression of the ParaHox gene in the polychaete annelid Capitella sp. I. Dev Genes Evol 2006, 216:61-88.
20. Hui JHL, Raible F, Korchagina N, Dray N, Samani S, Magdelanet G, Cubin J, Seguren B, Balavoine G, Arendt D, Ferrier DEK: Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. BMC Developmental Biology 2009, 9:43.
21. Wood CW, Shankland M: Mesoderm is required for the formation of a segmented endodermal cell layer in the leech Helobdella. Dev Biol 1997, 191:202-214.
22. Bystron J, Tollerud D, Parecek D, Gierer A, Behrens T: The expression of a ParaHox gene in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity. Dev Biol 2006, 300:63-73.
23. Wheeler SR, Carrico ML, Wilson BA, Skeath JB: The Tribolium columnar genes reveal conservation and plasticity in neural precursor patterning along the embryonic dorsal-ventral axis. Dev Biol 2005, 279:491-500.
24. Mlodzik M, Fisek A, Gehring WJ: Isolation of caudal, a Drosophila homeobox-containing gene with maternal expression, whose transcripts form a concentration gradient at the preblastoderm stage. EMBO J 1983, 2:2661-2669.
25. Schulz C, Schroeder R, Hausdorf B, Wolff C, Tautz D: A caudal homologue in the short germ band beetle Tribolium shows similarities to both, the Drosophila and the vertebrate caudal expression patterns. Dev Genes Evol 1998, 208:283-289.
26. Olesen K, Toeppe AE, Tanton L, Walker M, Pultz MA, Leaf D, Desplan C: A caudal RNA gradient controls posterior development in the wasp Nasonia. Development 2006, 133:3973-3982.
27. Xue X, Xu PX, Suzuki Y: A maternal homeobox gene, Bombyx caudal, forms both mRNA and protein concentration gradients spanning anteroposterior axis during gastrulation. Development 1994, 120:185-195.
28. Shimoni Y, Mitto T, Matsushita T, Saraishina I, Miyawaki K, Choh M, Noji S: caudal is required for gnathal and thoracic patterning and for posterior elongation in the intermediate-germband cricket Gryllus bimaculatus. Mech Dev 2005, 122:213-239.
29. Le Marechal MF, Jotton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV: PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996, 122:983-995.
30. Assouline B, Nguyen V, Mahe S, Bourrat F, Scharffmann R: Development of the pancreas in medaka. Mech Dev 2002, 117:299-303.
31. Frumkin A, Rangini Z, Ben-Yehuda A, Gruenbaum Y, Fainsod A: A chicken caudal homologue, Chox-cad, is expressed in the epiblast with posterior localization and in the early endodermal lineage. Development 1991, 112:207-219.
32. Gamet LW, Wright CV: Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homoeodomain sequence and early expression pattern. Mech Dev 1993, 43:1-81.
33. Joly JS, Maury M, Joly C, Duprey P, Boulekbache H, Condamine H: Expression of a zebrafish caudal homeobox gene correlates with the establishment of posterior cell lineages at gastrulation. Differentiation 1992, 50:75-87.
34. Reece-Hoyes JS, Keenan ID, Isaacs HW: Cloning and expression of the Cdx family from the frog Xenopus tropicalis. Mech Dev 2002, 123:134-140.
35. Hudson C, Lemarie P: Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech Dev 2001, 100:189-203.
36. Corradino M, Anelli F, Fucci L, Branno M: Ci-IPF1, the pancreatic homoeodomain transcription factor, is expressed in neural cells of the short germ band beetle Tribolium castaneum: wingless, decapentaplegic and anterior neural expression. BMC Developmental Biology 2010, 11:220:3-14.
62. Le Gouar M, Guillou A, Vervoort A: Expression of a SoxB and a Wnt2/13 gene during the development of the mollusc Patella vulgata. Dev Genes Evol 2004, 214:250-256.

63. Hejnol A, Martindale MQ: Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acel Convolvulitloba longifissura. BMC Biology 2009, 7:65.

64. Murtha MT, Leckman JF, Ruddle FH: Detection of homeobox genes in development and evolution. Proc Natl Acad Sci USA 1991, 88:10711-10715.

65. Passamaneck YJ, Halanych KM: Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev 2004, 4:275-281.

66. Schramm G, Bruchhaus I, Roeder T: A simple and reliable 5'-RACE approach. Nucleic Acids Research 2000, 28:96-99.

67. Samadi L, Steiner G: Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.). Dev Genes Evol 2009, 219:523-530.

68. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.

69. Lespinet O, Nederbragt AJ, Cassan M, Dictus WJAG, van Loon AE, Adoutte A: Characterization of two snail genes in the gastropod mollusc Patella vulgata: implications for understanding the ancestral function of the snail-related genes in Bilateria. Dev Genes Evol 2002, 212:186-195.

doi: 10.1186/1471-213X-10-74

Cite this article as: Samadi and Steiner, Conservation of ParaHox genes’ function in patterning of the digestive tract of the marine gastropod Gibbula varia BMC Developmental Biology 2010, 10:74