Performance of an-estrus postpartum Bali cattle by additional feed of multiple nutrient molasses based on \textit{Indigofera}

R F Utamy, A Ako, A L Toleng and M Yusuf
Department of Animal Production, Faculty of Animal Science, Universitas Hasanuddin, Makassar 90245, Indonesia

Email: rennyfatmyahutamy198@gmail.com

\textbf{Abstract}. This study utilized Urea Multiplenutrient Molasses Block (UMMB) based on 40\% of \textit{Indigofera} flour to determine daily gain and performance of postpartum Bali Cattle. The parameters of the study were daily gain, chest depth, body length, and withers height. The UMMB consisting of rice bran, urea, coconut cake meal, shrimp waste meal, molasses, mineral, \textit{Indigofera} flour, salt, and cement as an adhesive. This study was divided into two paddocks where each paddock consisted of 10 head an-estrus postpartum Bali Cattle. Subsequently, each paddock was arranged by different treatment consisted of control (without any treatments) and additional feed supplement of UMMB. The mean values of each parameter were compared by T-Test. The result revealed that the additional feed supplement of UMMB had significant effect on average daily gain (0.8 kg head\(^{-1}\) day\(^{-1}\)) compared to the control treatment (0.2 kg head\(^{-1}\) day\(^{-1}\)). The treatments had significant effect on chest circumference (0.2 ± 0.05 vs 0.3 ± 0.02 cm head\(^{-1}\) day\(^{-1}\)) and body length (0.04 ± 0.01 vs 0.14 ± 0.05 cm head\(^{-1}\) day\(^{-1}\)). In contrary, neither control nor additional feed supplement had no significantly effect (P = 0.55) to shoulder height of postpartum Bali Cattle (0.13 ± 0.03 vs 0.18 ± 0.06 cm head\(^{-1}\) day\(^{-1}\)). Daily gain of an-estrus post-partum Bali cattle tended to be high by feed supplement of UMMB. Therefore, UMMB was appropriate for ruminant diet as a feed supplement.

1. Introduction
Generally, smallholder livestock farming in South Sulawesi is a semi-intensive system. The system kept the cattle in the cage with cut-and-carry system at night and herd the cattle grazed on the native pasture in the morning [1,2]. Utilization of the grazing pasture as a source of forage is conducted hereditary by farmers. Besides, grazing system is not only the cheapest source of feed, but also low labor therefore it does not interfere their main activities as farmers. However, recently, pasture productivity decreased due to the climate changes, global warming and shift of function from native pasture to settlements [3,4] resulting pasture quality decreased, nutrients, and also mineral deficiency occurred in the livestock. This deficiency negatively affects to the livestock performance. So that adequate feed management is needed to increase the livestock productivity. UMMB is one of the adequate feed management.

UMMB is feed supplement made by the National Nuclear Energy Agency (BATAN), consisting of urea, molasses, and salt. Urea is a non-protein-nitrogen source that can be used as compensation for nitrogen deficiencies in forage. This urea can increase digestibility, consumption, and nutrition through rumen fermentation. Some researchers reported that feed supplement of UMMB increased the daily gain of livestock, milk production, meat quality, and reproductive performance. It has been an alternative way to overcome deficiencies nutrient cattle during the dry season [5,6]; increased rumen ammonia...
levels of the buffalo [7] and suitable method for supplementing nutrition of grazing sheep in Ethiopia and reduce endoparasites effects [8]. Feed nutrition in mature cattle increases with increasing UMMB intake [9]. Further, [10] added that feed supplement of UMMB increased 69% of pregnancy rates compared without any feed supplements (44.66%).

The current study utilized feed supplement of UMMB based on Indigofera sp. Indigofera is easy to cultivate, tolerant of dry weather, saline, alkali, acid soils, and defoliated resistance. Indigofera sp. is a type of tree legume which had a biomass of 52 tons ha·year· [11] with high nutritional content (crude protein 27.68%; crude fiber 15.25%; digestibility of dry matter 67.50% and digestibility of organic matter 60.32% [12,13].

Therefore, the objectives were to determine daily gain and performance i.e. chest depth, body length, and withers height of Bali Cattle postpartum by providing feed supplement of UMMB based on Indigofera flour.

2. Materials and methods

2.1. Site and material research
The study was conducted at the Maiwa Breeding Center (MBC), Pattondong Salu Village, Maiwa District, Enrekang Regency from June to September 2019. Chemical analysis (proximate and fibre analysis) of UMMB were conducted at the Laboratory of Chemical Feed Laboratory, Faculty of Animal Science, Hasanuddin University, Makassar.

The composition of the feed supplement of UMMB consisting of rice bran, urea, coconut cake meal, shrimp waste meal, molasses, mineral, Indigofera flour, salt, and cement as an adhesive. The composition of UMMB feed supplement is presented in table 1.

2.2. Research Implementation
All feedstuffs were weighed according to the formulations and mixed thoroughly using a hand mixer. Put them into a round shape mold and then pressed by a press equipment. Furthermore, the UMMB was sun-dried about 3 days, then applied to the post-partum Bali cattle. The first treatment as a control was without feed supplement of UMMB, while the second treatment with feed supplement of UMMB at 500 gr head·day·. In all the treatments, 10 heads of post-partum Bali cattle were to determine daily gain and performance of chest circumference, body length, and shoulder height. The treatment was provided the grazing cattle in the separately pasture area of 1 Ha each without any additional feed concentrate along 120 days.

2.3. Parameters study
The observed parameters in this study as below;
1. Daily gain (kg head·day·) = [Ending weight – Starting weight]/Experimental Period
2. Body performance of the cattle:
 a. Chest circumference; measured circularly on a round chest thoroughly the back shoulder of scapula by a measuring tape (cm);
 b. Body length; measured from the scapula to the pelvis by a measuring tape (cm); and
 c. Shoulder height; looked for a level place on solid ground for where the cattle standing up. Put the measuring stick on the back of front leg and then slide down to the shoulders.

2.4. Statistical analysis
The means in daily gain and performance of chest circumference, body length, and shoulder height were analysed by T-Test.
3. Results and Discussion
The results of the composition of UMMB feed supplement is presented in Table 1.

Table 1. Chemical and fibre components of the Urea Multiplesubnutrient Molasses Block*

Proximate Components (%)	
Crude protein	27.25
Crude Fibre	4.34
Ash	17.53
Nitrogen Free Extract	42.51

Fibre Components (%)	
NDF	18.61
ADF	24.69

*Chemical Feed Laboratory, University of Hasanuddin, 2019.

Table 1 presented that 27.25% crude protein (CP) content of the UMMB. Even the CP was higher than CP of feed complete which consisting of elephant grass, rice bran, corn meal, and coconut cake: 13.4% [14], the CP content is high enough for the ruminant. Also, the CP content meets the minimum fed standards (SNI 3146-2: 2017). If CP content lower than 7%, the micro-organism in the rumen cannot break down the feed efficiently, resulting in the decrease of animal body weight [15]. Some researches resulted that feed supplement of UMMB affect daily gain [16] contributed 6.5 % Energy Metabolism and 14 % CP intake per day of dairy cow [17].

As one of the highest feedstuffs with 40% Indigofera used in the formulation refers to the study of [18] which states that Indigofera sp could be used at the level of 30 to 45% dry matter for growing kids of goat. This percentage might influence the CP content of the UMMB. Indigofera as a source of forage legume has nutritional value of crude fat (6.15%); CP (24.17%); ash (6.41%); NDF (54.24%); and ADF (44.69%) [19]. Besides, feeding of Indigofera increased the body weight of Ongole [20] and goats [18].

Mean data of Neutral detergent fibre (NDF) of feed supplement UMMB high enough for ruminant needs according to the Indonesian National Standard [21] that the maximum standard NDF is 35% (table 1). In addition, [22] stated that in models for predicting the dry matter (DM) intake of lactating cows fed high energy diets ranging in NDF from 25 to 42% of DM.

Performance of cattle is closely related to the measurement of body dimensions for weight gain. Results of measurements of daily gain and performance of postpartum Bali Cattle is presented in table 2.

Table 2. Measurement of daily gain and performance of postpartum bali cattle.

Parameters	Treatments	Sig.	
	Control	UMMB	
Daily gain (kg head⁻¹ day⁻¹)	0.2 ± 0.07	0.8 ± 0.14	P = 0.02
Chest circumference (cm head⁻¹ day⁻¹)	0.2 ± 0.05	0.3 ± 0.02	P = 0.41
Body length (cm head⁻¹ day⁻¹)	0.04 ± 0.01	0.14 ± 0.05	P = 0.18
Shoulder height (cm head⁻¹ day⁻¹)	0.13 ± 0.03	0.18 ± 0.06	P = 0.55

Feed supplement of UMMB had significant effect (P = 0.02) on daily gain of postpartum Bali Cattle and was higher (0.8 ± 0.14 vs 0.2 ± 0.07 kg head⁻¹ day⁻¹) compared to the control. [23] stated that UMMB increases livestock productivity thoroughly increased protein synthesis by microbes in the rumen, increased feed digestibility, and increased feed intake which would provide a better balance between the
supply of amino acids and energy, and also for livestock growing. [24] reported that feed supplement of UMMB optimally improve the efficiency of nutrition. Rumen microorganisms required crude fibre to support their activities. Increase of rumen microorganisms with the increasing of livestock productivity. Feed supplement of UMMB increases the daily DM intake and the digestibility coefficient in buffalo calves [25]. [26] added that the livestock performance was influenced by several factors i.e. breed, age of the cattle, gender, feed intake, the temperature, and climate of the environment around the cattle.

UMMB had significant effect (P = 0.41) on chest circumference of postpartum Bali Cattle and was higher (0.3 ± 0.02 vs 0.2 ± 0.05 cm head⁻¹ day⁻¹) compared to the control, even though the differentiation was very slightly. Generally, chest circumference is positively correlated with livestock daily gain [27].

The body length of postpartum Bali Cattle was higher (0.14 ± 0.05 vs 0.04 ± 0.01 cm head⁻¹ day⁻¹) and significantly (P = 0.18) effect in the treatments which feeding of UMMB compared to the controls. In contrary, shoulder height of postpartum Bali Cattle had no significantly effect (P = 0.55) neither the control nor feeding of the UMMB (0.18 ± 0.06 vs 0.13 ± 0.03 cm head⁻¹ day⁻¹). Ideally, chest circumference, body length, and shoulder height could be used as indicators in the measurement of livestock body weight [28].

4. Conclusion
CP content and NDF were high enough for ruminant diet. Daily gain of an-tresse post-partum Bali cattle tended to be high by feed supplement of UMMB. Therefore, UMMB was appropriate for ruminant diet as a feed supplement.

Acknowledgments
The authors would like to express their gratitude to Hasanuddin University that fully funded the study through Institution of Research and Community Service of Hasanuddin University; Faculty of Animal Science, Hasanuddin University through Maiwa Breeding Center (MBC) which facilizing and providing place for this study; and Head of The Livestock Farmer of Taman Teratai, Mr. Zainuddin Dg. Reppa for providing us to produced UMMB.

References
[1] Prasetya A 2011 Manajemen Pemeliharaan Sapi Potong pada Peternakan Rakyat di Sekitar Kebun Percobaan Rambatan BPTP Sumatera Barat (Bogor: Fakultas Peternakan, Institut Pertanian Bogor)
[2] Sari D D K, Busono W and Nugroho H 2016 Cattle production performance in semi-intensive and extensive farming system from jembrana district, Bali, Indonesia Research in Zoology 6 17-20
[3] Muhairi, Despal and Khalil 2017 Pemenuhan kebutuhan nutrien sapi potong bibit yang digembalakan di Padang Mengatas Buletin Makanan Ternak 104 9-20
[4] Kumari S, Singh T P and Prasad S 2019 Climate smart agriculture and climate change Int. J. Curr. Microbiol. App. Sci. 8 1112-37
[5] De D and Singh G P 2003 Effect of cold process monensin enriched ummb on performance of crossbred calves fed a wheat straw based diet Anim. Feed Sci. Technol. 103 51-61
[6] Mengistu G and Hassen W 2017 Review on: supplementary feeding of urea molasses multi-nutrient blocks to ruminant animals for improving productivity International Journal of Anim. Husbandry and Vet. Sci. 2 43-49
[7] Hendratno C, Nolan J V and Leng RA 1991 The importance of urea-molasses multinutrient blocks for ruminant production in Indonesia Isotope and related techniques in animal production and health
[8] Anindo D, Toe F, Tembely S, Mukasa-Mugerwa E, Lahlou-Kassi A and Sovani S 1998 Effect of molasses-urea-block (MUB) on dry matter intake, growth, reproductive performance and control of gastrointestinal nematode infection of grazing Menz ram lambs Small Ruminant Research 27 63-71
[9] Toppo S, Verma A K, Dass R S and Mehra U R 1999 Nutrient utilization and rumen fermentation
pattern in crossbred cattle fed different planes of nutrition supplemented with urea molasses mineral block Animal Feed Science and Technology 64 101-112
[10] Toleng A L, Abustam E, Rahardja D P and Yusuf M 2002 Laporan hasil pelaksanaan program iptekda batan bidang peternakan di Sulawesi Selatan dan Sulawesi Tenggara pp 493-501
[11] Sirait J, Simanihuruk K and Hutasoit R 2009 The potency of Indigofera sp. as goat feed: production, nutritive value and palatability Proc. Int. Seminar on Forage Based Feed Resources (Taipei: Food and Fertilizer Technology Centre (FFTC) ASPAC, Livestock Research Centre-COA, ROC and IRIAP) pp 4-7
[12] Akbarillah T D, Kususiyah and Hidayat 2010 Pengaruh penggunaan daun Indigofera segar sebagai suplemen pakan terhadap produksi dan warna yolk itik J Sains Peternakan Indonesia 5 27-33
[13] Abdullah L 2010 Herbage production and quality of shrub Indigofera treated by different concentration of foliar fertilizer Media Peternakan 32 169-175
[14] Ako A, Baba S, Fatma, Jamila and Rusdy M 2016 Effect of complete feed silage made from agricultural waste on milk yield and quality of dairy cows OnLine Journal of Biological Sciences 16 159-64
[15] Werner W S and Horne P M 2001 Developing Forage Technologies with Smallholder Farmer Report (Australia: ACIAR and CIAT)
[16] Alam M G S, Ul-Azam S and Khan J 2006 Supplementation with urea and molasses and body weight, milk yield and onset of ovarian cyclicity in cows Journal of Reproductive Development 52 529-35
[17] Tekeba E, Wurzinger M, Baldinger L and Zollitsch W J 2013 Effects of dietary supplementation with urea molasses multi-nutrient block on performance of mid lactating local Ethiopian and crossbred dairy cows Livestock Research for Rural Development 25 1-10
[18] Tarigan A, Abdullah L, Ginting S P and Permama I G 2010 Produksi dan komposisi nutrisi serta keceraman in vitro Indigofera sp pada interval dan q tinggi pemotongan berbeda JITV 15 188-195
[19] Hassen A, Rethman N F G, Van Niekerk W A and Tjelele T J 2007 Influence of season/year and species on chemical composition and in vitro digestibility of five Indigofera accession J Animal Feed Science and Technology 136 312–22
[20] Suherman A, Mahmud Y, Hikmana E, Hemaman I, Ambarsari W, Yuhani H and Salim R 2018 Performa sapi peranakan ongole betina yang diberi ransum berbasis jerami padi fermentasi yang mengandung Indigofera zollingeriana Sains Peternakan 16 40–44
[21] Badan Standar Nasional (BSN) 2017 Standar Nasional Indonesia (SNI) No. 3148-2 2017 Pakan konsentrat – Bagian 2 : Sapi potong (Jakarta: BSN)
[22] Roseler D K, Fox D G, Chase L E, Pell A N and Stone W C 1997 Development and evaluation of equations for the prediction of feed intake for lactating Holstein dairy cows J. Dairy Sci. 80 878–893
[23] Hatmono H and Indriyadi H 1997 Urea Molase Blok Pakan Suplemen untuk Ternak Ruminansia (Ungaran: PT. Trubus Agriwidya)
[24] Mahesh M S and Mohini M 2014 Crop Residues for Sustainable Livestock Production Adv. Dairy Res. 23 1-2
[25] Tiwari SP, Singh U B and Mehra R 1990 Urea molasses mineral blocks as a feed supplement: Effect on growth and nutrient utilization in buffalo calves Animal Feed Science and Technology 29 333-41
[26] Guerrero A, Velandia Valero M, Campo M M and Sanudo C 2013 Some factors that affect ruminant meat quality: from the farm to the fork. Review Acta Scientiarum Animal Sciences 35 335-47
[27] Harmini and Firmansyah M A 2016 Tampilan sapi Bali yang diberi hijauan dan penambahan suplemen (silase dan mineral) di pulau Malan, Katingan Sains Peternakan 14 42-49
[28] Kadarsh S 2003 Peranan ukuran tubuh terhadap badan sapi Bali di Provinsi Bengkulu J. penelitian UNIB 9 45-48