Comparison of 30-day outcome following anterior cervical discectomy and fusion with or without instrumentation for cervical spondylosis: A review of 2352 elective cases

Seokchun Lim, Sameah Haider, Hesham Zakaria, Victor Chang

Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, United States.

E-mail: *Seokchun Lim - slim2@hfhs.org; Sameah Haider - shaider1@hfhs.org; Hesham Zakaria - hzakari1@hfhs.org; Victor Chang - vchang1@hfhs.org

ABSTRACT

Background: Anterior cervical discectomy and fusion (ACDF) is a commonly performed procedure to address cervical myeloradiculopathy. However, 30-day outcomes after additional plating/instrumentation are not very clear.

Methods: The authors reviewed The National Surgical Quality Improvement Program database to identify all elective ACDF cases with or without instrumentation for patients having cervical spondylosis with or without myelopathy from 2011 to 2013 using current procedural terminology and International Classification of Disease-9 codes. We identified 2352 cases and subdivided these into two cohorts based on instrumentation procedures (588 cases without instrumentation and 1764 cases with instrumentation). Baseline differences in two cohorts were adjusted by propensity score matching analysis, yielding well-matched 583 pairs.

Results: Following propensity matching, the authors observed no significant difference in 30-day complication rates (prematch, 2.4% vs. 2.4%; and postmatch, 2.4% vs. 1.7%), readmission (prematch, 4.1% vs. 3.2%; and postmatch, 3.9% vs. 3.3%), and reoperation (prematch 0.9% vs. 1.8%; and postmatch 0.9% vs. 1.5%).

Conclusion: Our results demonstrate similar 30-day outcomes in both cohorts and suggest that instrumentation can be safely implemented in the setting of ACDF.

Keywords: Anterior cervical discectomy and fusion, Cervical spondylosis, Complication, Instrumentation, National Surgical Quality Improvement Program

INTRODUCTION

Cervical spondylosis is a common degenerative condition of the spine. It often correlates clinically with radiculopathy and less commonly, myelopathy. Anterior cervical discectomy and fusion (ACDF) is commonly utilized to address cervical myeloradiculopathy, although the role of additional plating/instrumentation is less clear.[10] For single-level procedures, several studies demonstrated similar clinical outcomes and fusion rates, but better sagittal alignment with instrumentation.[6,9,17] However, there is limited evidence regarding short-term outcomes following instrumented versus noninstrumented ACDF procedures. Therefore, this study was designed to assess short-term outcomes following instrumented versus noninstrumented ACDF utilizing The American College of Surgeons National Surgical Quality Improvement Program.
Program (NSQIP) database and to investigate whether instrumentation affects short-term postoperative outcomes.

MATERIALS AND METHODS

Data acquisition

The authors reviewed the NSQIP database to identify all elective ACDF cases with or without instrumentation for patients with cervical spondylosis with or without myelopathy from 2011 to 2013. We utilized Current Procedural Terminology (CPT) and International Classification of Disease (ICD-9) codes to capture 2352 elective ACDF procedures [Table 1]. These cases were divided into two cohorts based on instrumentation (588 cases without instrumentation and 1764 cases with instrumentation).

We tracked multiple demographic and operative variables for adequate propensity score matching analysis to compare

Table 1: CPT codes used for case selection/exclusion.

| Selected procedures | i. Single level: 22551 or 63075 and 22554; ii. Multi level: 22552 or 63076 and 22585 |
| Excluded procedures* | 22600, 22614, 63001, 63015, 63020, 63035, 63040, 63045, 63048, 63250, 63265, 63270, 63275, 63280, 63285, 63285, 63290, 63320, 63328, 63325, 63328, 63330, 63332, 63335, 63338, 63340, 63345, 63348, 63350, 22326, 22328, 22210, 22216, 22220, 22226, 22548, 22590, 22595, 22556, 22558, 22586, 22830, 22850, 22852, 22855, 22861, 22864 |

CPT: Current procedural terminology; *Excluded all cases with secondary CPT codes for trans-oral approach to C1-C2, posterior approach, noncervical vertebrae, revision, deformity procedures, and emergency

Table 2: Unmatched patient demographics, comorbidities, and operative characteristics.

	No instrumentation n=588	Percentage	Instrumentation n=1764	Percentage	P-value
Age (years, mean±SD)	56.3±10.8		56.5±11.1		0.822
*Obese					
Gender					
Female	280	47.60	755	42.80	0.041
Male	279	47.40	859	48.70	
*Race					
White	465	79.10	1466	83.10	0.028
Black	59	10.00	166	9.40	
Others	64	10.90	132	7.50	
Diabetes	93	15.80	245	13.90	0.249
Current smoker	162	27.60	513	29.10	0.477
Dyspnea	44	7.50	117	6.60	0.479
Dependent functional status prior to surgery	11	1.90	42	2.40	0.47
Chronic obstructive pulmonary disease	35	6.00	79	4.50	0.15
Chronic heart failure <30 days	0	0.00	6	0.30	0.347
Hypertension	282	48.00	875	49.60	0.49
Acute renal failure	0	0.00	1	0.10	>0.999
On dialysis	1	0.20	7	0.40	0.688
Open wound/wound infection	3	0.50	9	0.50	>0.999
Steroid use	24	4.10	71	4.00	0.952
>10% weight loss in <6 months	0	0.00	4	0.20	0.578
Bleeding disorders	4	0.70	23	1.30	0.219
Systemic sepsis	3	0.50	4	0.20	0.376
Anemia	149	25.30	454	25.70	0.849
Myelopathy	317	53.90	891	50.50	0.153
Inpatient	474	80.60	1384	78.50	0.293
*Specialty: Neurosurgery	461	78.40	1477	83.70	0.003
Orthopedics	127	21.60	287	16.30	
*ASA >2	283	48.10	758	43.00	0.029
Wound class >2	1	0.20	5	0.30	>0.999
*>2 Level	219	37.20	1069	60.60	<0.001
Corpectomy	15	2.60	46	2.60	0.94
*Total operative time (min, mean±SD)	131.9±69.8	131.1±69.8	0.637		
*Total RVU (mean±SD)	35.3±12.7	49.6±11.6	<0.001		
*Propensity score	0.71±0.10	0.76±0.10	<0.001		

*Denotes statistical significant; P<0.05. SD: Standard deviation
30-day postoperative outcomes following instrumented versus noninstrumented ACDF procedures [Tables 2-3].

Statistical analysis

Continuous variables were compared using student t-test or Mann–Whitney U-test based on normality test. For categorical variables, we used Pearson’s Chi-square test or Fischer’s exact test. We also utilized propensity score matching analysis to adjust for baseline difference between two cohorts. This process yielded well-matched 583 pairs and they were analyzed using the McNemar exact test for categorical variables, and Wilcoxon Signed-rank test or paired t-test for continuous variables [Table 4].

For all analyses performed in this study, we used IBM SPSS Statistics version 22.0 (IBM Corp., Armonk, NY).

Table 3: Propensity-matched patient demographics, comorbidities, and operative characteristics.
No instrumentation
n=583
Age (years, mean±SD)
*Obese
Gender
Female
Male
*Race
White
Black
Others
Diabetes
Current smoker
Dyspnea
Dependent functional status prior to surgery
Chronic obstructive pulmonary disease
Chronic heart failure <30 days
Hypertension
Acute renal failure
On dialysis
Open wound/wound infection
Steroid use
>10% weight loss
Bleeding disorders
Systemic sepsis
Anemia
Myelopathy
Inpatient
*Specially: Neurosurgery
Orthopedics
*ASA >2
Wound class >2
*>2 Level
Corpectomy
*Total operative time (min, mean±SD)
*Total RVU (mean±SD)
*Propensity score

*Denotes statistical significant; P<0.05; SD: Standard deviation

Propensity score was derived using logistic regression model. 1:1 nearest neighbor and without-replacement model were used, and each matched set was within the designated limit (caliper width). This process yielded well-matched 583 pairs and they were analyzed using the McNemar exact test for categorical variables and Wilcoxon Signed-rank test or paired t-test for continuous variables.
RESULTS

Unadjusted dataset

Of the 2352 patients included in this study, 588 were in the noninstrumentation cohort and 1764 in the instrumentation cohort. Patients who had instrumentation were more likely to be obese, Caucasian, were neurosurgical cases, had lower ASA classifications, involved two or more levels, and had a higher total RVU value [Table 2]. No significant differences were appreciated between the two cohorts in postoperative outcome including 30-day complication rates, unplanned reoperation, and readmission [Table 3].

Propensity score-matched dataset

Propensity score matching yielded 583 well-matched cases. After matching, there was no significant baseline difference

Condition	Unmatched (n=588)	Instrumentation (n=1764)	P-value	Propensity score-matched (n=583)	Instrumentation (n=583)	P-value
Any ≥1	14 (2.4%)	43 (2.4%)	0.938	14 (2.4%)	10 (1.7%)	0.409
Surgical complication	6 (1.0%)	6 (0.3%)	0.085	6 (1.0%)	2 (0.3%)	0.156
Superficial SSI	2 (0.3%)	3 (0.2%)	0.604	2 (0.3%)	1 (0.2%)	>0.999
Deep SSI	2 (0.3%)	0 (0.0%)	0.062	2 (0.3%)	0 (0.0%)	0.500
Organ/space SSI	2 (0.3%)	2 (0.1%)	0.262	2 (0.3%)	0 (0.0%)	0.500
Wound dehiscence	0 (0.0%)	1 (0.1%)	>0.999	0 (0.0%)	1 (0.2%)	>0.999
Graft/prosthesis failure	0 (0.0%)	0 (0.0%)	N/A	0 (0.0%)	0 (0.0%)	N/A
Medical complication	8 (1.4%)	38 (2.2%)	0.229	8 (1.4%)	8 (1.4%)	>0.999
Pneumonia	2 (0.3%)	9 (0.5%)	0.741	2 (0.3%)	2 (0.3%)	>0.999
Unplanned Intubation	1 (0.2%)	6 (0.3%)	0.688	1 (0.2%)	0 (0.0%)	>0.999
PE	1 (0.2%)	5 (0.3%)	>0.999	1 (0.2%)	0 (0.0%)	>0.999
Ventilator >48 h	1 (0.2%)	3 (0.2%)	>0.999	1 (0.2%)	0 (0.0%)	>0.999
Renal insufficiency	0 (0.0%)	0 (0.0%)	N/A	0 (0.0%)	0 (0.0%)	N/A
Acute renal failure	0 (0.0%)	0 (0.0%)	N/A	0 (0.0%)	0 (0.0%)	N/A
UTI	2 (0.3%)	7 (0.4%)	>0.999	2 (0.3%)	0 (0.0%)	0.500
CVA/Stroke	0 (0.0%)	6 (0.3%)	0.347	0 (0.0%)	3 (0.5%)	0.249
Coma >24 h	0 (0.0%)	0 (0.0%)	N/A	0 (0.0%)	0 (0.0%)	N/A
Peripheral nerve injury	0 (0.0%)	0 (0.0%)	N/A	0 (0.0%)	0 (0.0%)	N/A
Cardiac arrest	0 (0.0%)	2 (0.1%)	>0.999	0 (0.0%)	0 (0.0%)	N/A
Myocardial infarction	1 (0.2%)	4 (0.2%)	>0.999	1 (0.2%)	0 (0.0%)	N/A
DVT	1 (0.2%)	6 (0.3%)	0.688	1 (0.2%)	2 (0.3%)	>0.999
Sepsis/septic shock	1 (0.2%)	9 (0.5%)	0.467	1 (0.2%)	1 (0.2%)	>0.999
Any readmission	24 (4.1%)	56 (3.2%)	0.293	23 (3.9%)	19 (3.3%)	0.638
Unplanned reoperation	5 (0.9%)	32 (1.8%)	0.104	5 (0.9%)	9 (1.5%)	0.282

*Denotes statistical significance, P<0.05. SSI: Surgical site infection, PE: Pulmonary embolism, UTI: Urinary tract infection, CVA: Cerebrovascular accident, DVT: Deep venous thrombosis, N/A: Not available

Surgical Neurology International • 2019 • 10(246) • 4
other than total operative duration and total RVU. The mean difference propensity scores between the two cohorts before and after matching were 0.05 and <0.001, respectively [Table 4]. There was also no significant difference in 30-day complication rates, unplanned reoperation, and readmission rate [Table 4].

DISCUSSION

The authors relied on a prospectively maintained, national surgical database to assess how instrumentation may influence short-term postoperative outcome following single- and multi-level, elective ACDF for cervical spondylisis. This study sought to eliminate the baseline differences by utilizing a propensity score matching algorithm, which adjusted patient demographic comorbidities, and major operative variables such as corpectomy or multi-level procedures. We further minimized procedural bias by selecting elective cases and tracking both individual CPT and ICD-9 codes.

Here, we demonstrated that patients in both noninstrumentation and instrumentation cohorts had comparable adverse outcome rates 30-day complication rates (prematch, 2.4% vs. 2.4%; and postmatch, 2.4% vs. 1.7%), readmission (prematch, 4.1% vs. 3.2%; and postmatch, 3.9% vs. 3.3%), and reoperation (prematch 0.9% vs. 1.8%; and postmatch 0.9% vs. 1.5%).

Complication and reoperation rates in this study were lower than previously reported rates, which were as high as 10%–13%.[1,3,4,8,10] The discrepancy is most likely attributed to a shorter follow-up period. Notably, our results showed that additional instrumentation is not significantly associated with adverse events including infection, soft tissue injury, or neurological deficit.[7,9,14,16,17] Previous studies demonstrated similar outcomes that instrumentation-related complication rates were well below 5% including unsecure screws, plate bending, and dysphagia.[5,7,11-15]

Our matched analysis also demonstrated that average operative duration was significantly longer than the noninstrumentation cohort (131.6 ± 69.6 vs. 122.1 ± 61.4; P = 0.014). However, 9-min difference in operative duration likely does not have any meaningful clinical influence despite the statistical difference arising from narrow standard deviation. This difference likely occurred during the matching process where operative duration was purposely not accounted for.

Here, we present a short-term multicenter analysis of outcomes following elective instrumented versus noninstrumented ACDF. We found similar 30-day outcomes in both cohorts which suggest that instrumentation can be safely implemented for ACDF resulting in comparable outcomes without incurring significant morbidity or adverse events.

CONCLUSION

Our analyses demonstrate similar 30-day outcomes in both cohorts, and suggest an additional instrumentation step can be safely implemented in the setting of cervical spondylisis with little concern for postoperative complication.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Adogwa O, Elsamadicy A, Reiser E, Ziegler C, Freischlag K, Cheng J, et al. Comparison of surgical outcomes after anterior cervical discectomy and fusion: Does the intra-operative use of a microscope improve surgical outcomes. J Spine Surg 2016;2:25-30.
2. Bono CM, Ghiselli G, Gilbert TJ, Kreiner DS, Reitman C, Summers JT, et al. An evidence-based clinical guideline for the diagnosis and treatment of cervical radiculopathy from degenerative disorders. Spine J 2011;11:64-72.
3. Bose B. Anterior cervical fusion using Caspar plating: Analysis of results and review of the literature. Surg Neurol 1998;49:25-31.
4. Cauthen JC, Kinard RE, Vogler JB, Jackson DE, DePaz OB, Hunter OL, et al. Outcome analysis of noninstrumented anterior cervical discectomy and interbody fusion in 348 patients. Spine (Phil Pa 1976) 1998;23:188-92.
5. Connolly PJ, Esses SI, Kostuik JP. Anterior cervical fusion: Outcome analysis of patients fused with and without anterior cervical plates. J Spinal Disord 1996;9:202-6.
6. Grob D, Peyer JV, Dvorak J. The use of plate fixation in anterior surgery of the degenerative cervical spine: A comparative prospective clinical study. Eur Spine J 2001;10:408-13.
7. Kaiser MG, Haid RW Jr, Subach BR, Barnes B, Rodts GE Jr. Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery 2002;50:229-36.
8. Lad SP, Patil CG, Berta S, Santarelli JG, Ho C, Boakye M. National trends in spinal fusion for cervical spondylotic myelopathy. Surg Neurol 2009;71:66-9.
9. Mobbs RJ, Rao P, Chandran NK. Anterior cervical discectomy and fusion: Analysis of surgical outcome with and without plating. J Clin Neurosci 2007;14:639-42.
10. Randle MJ, Wolf A, Levi L, Rigamonti D, Mirvis S, Robinson W, et al. The use of anterior Caspar plate fixation in acute cervical spine injury. Surg Neurol 1991;36:181-9.
11. Schneeburger AG, Boos N, Schwarzenbach O, Aebi M. Anterior cervical interbody fusion with plate fixation for chronic spondylotic radiculopathy: A 2- to 8-year follow-up. J Spinal Disord 1999;12:215-20.
12. Shapiro S. Banked fibula and the locking anterior cervical plate in anterior cervical fusions following cervical discectomy. J Neurosurg 1996;84:161-5.
13. Song KJ, Taghavi CE, Lee KB, Song JH, Eun JP. The efficacy
of plate construct augmentation versus cage alone in anterior cervical fusion. Spine (Phila Pa 1976) 2009;34:2886-92.
14. Wang JC, McDonough PW, Endow K, Kanim LE, Delamarter RB. The effect of cervical plating on single-level anterior cervical discectomy and fusion. J Spinal Disord 1999;12:467-71.
15. Wang JC, McDonough PW, Endow KK, Delamarter RB. Increased fusion rates with cervical plating for two-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 2000;25:41-5.
16. Xie JC, Hurlbert RJ. Discectomy versus discectomy with fusion versus discectomy with fusion and instrumentation: A prospective randomized study. Neurosurgery 2007;61:107-16.
17. Zoëga B, Kärholm J, Lind B. One-level cervical spine fusion. A randomized study, with or without plate fixation, using radiostereometry in 27 patients. Acta Orthop Scand 1998;69:363-8.