Long cycles in graphs through fragments

Zh.G. Nikoghosyan*
Institute for Informatics and Automation Problems
National Academy of Sciences
P.Sevak 1, Yerevan 0014, Armenia
E-mail: zhora@ipia.sci.am

September 3, 2008

Abstract

Four basic Dirac-type sufficient conditions for a graph G to be hamiltonian are known involving order n, minimum degree δ, connectivity κ and independence number α of G: (1) $\delta \geq n/2$ (Dirac); (2) $\kappa \geq 2$ and $\delta \geq (n+\kappa)/3$ (by the author); (3) $\kappa \geq 2$ and $\delta \geq \max\{(n+2)/3, \alpha\}$ (Nash-Williams); (4) $\kappa \geq 3$ and $\delta \geq \max\{(n+3\kappa)/4, \alpha\}$ (by the author). In this paper we prove the reverse version of (4) concerning the circumference c of G and completing the list of reverse versions of (1)-(4): (R1) if $\kappa \geq 2$, then $c \geq \min\{n, 2\delta\}$ (Dirac); (R2) if $\kappa \geq 3$, then $c \geq \min\{n, 3\delta - \kappa\}$ (by the author); (R3) if $\kappa \geq 3$ and $\delta \geq \alpha$, then $c \geq \min\{n, 3\delta - 3\}$ (Voss and Zuluaga); (R4) if $\kappa \geq 4$ and $\delta \geq \alpha$, then $c \geq \min\{n, 4\delta - 2\kappa\}$. To prove (R4), we present four more general results centered around a lower bound $c \geq 4\delta - 2\kappa$ under four alternative conditions in terms of fragments. A subset X of $V(G)$ is called a fragment of G if $N(X)$ is a minimum cut-set and $V(G) - (X \cup N(X)) \neq \emptyset$.

Keywords: Hamilton cycle, circumference, Dirac-type result, connectivity, fragment.

1 Introduction

The classic hamiltonian problem asks to check whether a given graph has a spanning cycle. Such cycles are called Hamilton cycles in honor of Sir William Rowan Hamilton, who, in 1856, described an idea for a game. The hamiltonian problem is based entirely on two genuine concepts "graph" and "Hamilton cycle". Since this problem is NP-complete, generally it is senseless to expect nontrivial results in this area within these two initial concepts and it is natural to look for conditions for the existence of a Hamilton cycle either involving quite new concepts or transforming the initial ones.

*G.G. Nicoghossian (up to 1997)
In 1952, Dirac [2] obtained the first sufficient condition for a graph to be hamiltonian based on "minimum degree δ". Actually, this successful combination of three genuine concepts "graph", "Hamilton cycle" and "minimum degree" marked the beginning of a new period in hamiltonism generating a wide class of various problems and ideas for fruitful explorations. Further, these concepts continually were transformed in a way of various limitations, generalizations, extensions and manipulations based on:

(i) structural limitations on graphs: regular and bipartite graphs, graphs with forbidden subgraphs (for example, claw-free graphs and planar graphs) and so on,

(ii) quantitative limitations (relations) on graphs: 2-connected graphs, 1-tough graphs, graphs with $\delta \geq n/2$ and so on,

(iii) generalized Hamilton cycles: long cycles, Hamilton paths and their generalizations (for example, spanning trees with minimum number of leaves), 2-factors, large cycles (for example, dominating cycles and generalized dominating cycles with complements of certain structures) and so on,

(iv) generalized minimum degree notions: degree sequences, degree sums, neighborhood unions, generalized degrees and so on.

Due to transformations (i)-(iv), the frames of a concept "hamiltonian problem" were expanded rapidly involving various related concepts and occupying the major directions in so called "hamiltonian graph theory".

As for minimum degree (Dirac-type) approach, it has been inspired by a couple of well-known results (direct and reverse versions) due to Dirac [2], determining how small the minimum degree δ of a graph G must be to guarantee the existence of a Hamilton cycle and how large is the circumference c (the length of a longest cycle) depending on δ. Although the corresponding starting bounds $n/2$ and $\min\{n, 2\delta\}$ in these theorems are best possible, since 1952 a number of other analogous best possible theorems appeared essentially lowering the bound $n/2$ and enlarging the bound 2δ due to direct incorporation of some additional graph invariants into these bounds.

At present, four basic Dirac-type hamiltonian sufficient conditions are known directly involving order n, minimum degree δ, connectivity κ and independence number α with minimum additional limitations and transformations of the initial conceptions due to Dirac [2], the author [8],[9], Nash-Williams [7] and the author [10], respectively.

Theorem A [2]. Every graph with $\delta \geq \frac{1}{2}n$ is hamiltonian.

Theorem B [9]. Every 2-connected graph with $\delta \geq \frac{1}{3}(n + \kappa)$ is hamiltonian.

Theorem C [7]. Every 2-connected graph with $\delta \geq \max\{\frac{1}{3}(n + 2), \alpha\}$ is hamiltonian.

Theorem D [10]. Every 3-connected graph with $\delta \geq \max\{\frac{1}{4}(n + 2\kappa), \alpha\}$ is hamiltonian.
A short proof of Theorem B was given in [3] due to Häggkvist.

The reverse versions of Theorems A-C concerning long cycles in graphs, are due to Dirac [2], the author [8],[9] and Voss and Zuluaga [14], respectively. In this paper we present the detailed proof of the last reverse version corresponding to Theorem D (it was announced still in 1985 with a short outline of the proof [11]) completing the list of reverse versions of Theorems A-D.

Theorem E [2]. Every 2-connected graph has a cycle of length at least \(\min\{n, 2\delta\} \).

Theorem F [9]. Every 3-connected graph has a cycle of length at least \(\min\{n, 3\delta - \kappa\} \).

Theorem G [14]. Every 3-connected graph with \(\delta \geq \alpha \) has a cycle of length at least \(\min\{n, 3\delta - 3\} \).

Theorem 1 [11]. Every 4-connected graph with \(\delta \geq \alpha \) has a cycle of length at least \(\min\{n, 4\delta - 2\kappa\} \).

To prove Theorem 1, we present four more general Dirac-type results centered around a lower bound \(c \geq 4\delta - 2\kappa \) under four alternative conditions in terms of fragments.

If \(X \subset V(G) \), then \(N(X) \) denotes the set of all vertices of \(G - X \) adjacent to vertices in \(X \). Furthermore, \(\hat{X} \) is defined as \(V(G) - (X \cup N(X)) \). Following Hamidoune [6], we define a subset \(X \) of \(V(G) \) to be a fragment of \(G \) if \(N(X) \) is a minimum cut-set and \(\hat{X} \neq \emptyset \). If \(X \) is a fragment then \(\hat{X} \) is a fragment too and \(\hat{\hat{X}} = X \). For convenience, we will use \(X^\uparrow \) and \(X^\downarrow \) to denote \(X \) and \(\hat{X} \), respectively. An endfragment is a fragment that contains no other fragments as a proper subset.

Theorem 2. Let \(G \) be a 3-connected graph with \(\delta \geq \alpha \). If \(|A^\uparrow| \leq 3\delta - \kappa - 4 \) and \(|A^\downarrow| \leq 3\delta - 3\kappa \) for an endfragment \(A^\downarrow \) of \(G \), then \(c \geq \min\{n, 4\delta - 2\kappa\} \).

Theorem 3. Let \(G \) be a 4-connected graph with \(\delta \geq \alpha \). If \(|A^\uparrow| \leq 3\delta - \kappa - 4 \), \(|A^\downarrow| \geq 3\delta - 3\kappa + 1 \) and \(|A^\downarrow| \geq |A^\downarrow| \) for an endfragment \(A^\downarrow \) of \(G \), then \(c \geq \min\{n, 4\delta - 2\kappa\} \).

Theorem 4. Let \(G \) be a 4-connected graph with \(\delta \geq \alpha \). If \(|A^\uparrow| \geq 3\delta - \kappa - 3 \) and \(|A^\downarrow| \leq 3\delta - 3\kappa \) for an endfragment \(A^\downarrow \) of \(G \), then \(c \geq \min\{n, 4\delta - 2\kappa\} \).

Theorem 5. Let \(G \) be a 4-connected graph with \(\delta \geq \alpha \). If \(|A^\uparrow| \geq 3\delta - \kappa - 3 \) and \(|A^\downarrow| \geq 3\delta - 3\kappa + 1 \) for an endfragment \(A^\downarrow \) of \(G \), then \(c \geq \min\{n, 4\delta - 2\kappa\} \).

Observe that the bounds \(n/2 \) and \(\min\{n, 2\delta\} \) in Theorems A and E were improved to \((n + \kappa)/3\) and \(\min\{n, 3\delta - \kappa\} \) (Theorems B and F), respectively, by direct incorporation of connectivity \(\kappa \) into these bounds. We conjecture that
the last two bounds are the best in a sense that they cannot be improved by an analogous way within graph invariants determinable in polynomial time.

Conjecture 1. The bounds $\frac{1}{3}(n + \kappa)$ and $3\delta - \kappa$ in Theorems B and F, respectively, can not be improved by direct incorporation of any graph invariants determinable in polynomial time.

2 Definitions and notations

By a graph we always mean a finite undirected graph G without loops or multiple edges. A good reference for any undefined terms is [1]. For H a subgraph of G we will denote the vertices of H by $V(H)$ and the edges of H by $E(H)$. For every $S \subset V(G)$ we use $G - S$ short for $(V(G) - S)$, the subgraph of G induced by $V(G) - S$. In addition, for a subgraph H of G we use $G - H$ short for $G - V(H)$. If $X \subseteq V(G)$, then $N(X)$ denotes the set of all vertices of $G - X$ adjacent to vertices in X.

Let δ denote the minimum degree of vertices of G. The connectivity κ of G is the minimum number of vertices whose removal from G results in a disconnected or trivial graph. We say that G is s-connected if $\kappa \geq s$. A set S of vertices is independent if no two elements of S are adjacent in G. The cardinality of maximum set of independent vertices is called the independence number and denoted by α.

Paths and cycles in a graph G are considered as subgraphs of G. If Q is a path or a cycle of G, then the length of Q, denoted by $|Q|$, is $|E(Q)|$. Throughout the paper the vertices and edges of a graph can be interpreted as cycles of lengths 1 and 2, respectively. A graph G is hamiltonian if it contains a Hamilton cycle (a cycle containing every vertex of G).

Let C be a cycle of G with a fixed cyclic direction. In that context, the h-th successor and the h-th predecessor of a vertex u on C are denoted by u^{+h} and u^{-h}, respectively. If $h = 1$, we abbreviate u^+ and u^- to u^+ and u^-, respectively. For a subset S of $V(C)$, we define $S^+ = \{u^+ \mid u \in S\}$ and $S^- = \{u^- \mid u \in S\}$. For two vertices u and v of C, let $u \overrightarrow{C} v$ denote the segment of C from u to v in the chosen direction on C and $u \overleftarrow{C} v$ denote the segment in the reverse direction. We also use similar notation for a path P of G. For P a path of G, denote by $F(P)$ and $L(P)$ the first and the last vertices of P, respectively.

Let Q be a cycle or a path of a graph G, $r \geq 2$ a positive integer and Z_1, Z_2, \ldots, Z_p are subsets of $V(Q)$ with $p \geq 2$. A collection (Z_1, \ldots, Z_p) is called a (Q, r)-scheme if $d_Q(x, y) \geq 2$ for each distinct $x, y \in Z_i$ (where $i \in \{1, \ldots, p\}$) and $d_Q(x, y) \geq r$ for each distinct $x \in Z_i$ and $y \in Z_j$ (where $i, j \in \{1, \ldots, p\}$ and $i \neq j$). A (Q, r)-scheme is nontrivial if (Z_1, \ldots, Z_p) has a system of distinct representatives. The definition of (Q, r)-scheme was first introduced by Nash-Williams [7] for $p = 2$.

Given four integers a, b, t, κ with $\kappa \leq t$, we will use $H(a, b, t, \kappa)$ as a limit.
example for Theorem 1 to denote the graph obtained from $tK_n + \overline{K}_t$ by taking any κ vertices in subgraph \overline{K}_t and joining each of them to all vertices of K_t.

Definition A $\{Q_1, \ldots, Q_m; Q'_1, \ldots, Q'_m; V_1, \ldots, V_m; V'\}$. Let A^i be a fragment of G with respect to a minimum cut-set S. Define Q_1, \ldots, Q_m as a collection of vertex disjoint paths in $(A^i \cup S)$ with terminal vertices in S such that $|V(Q_i)| \geq 2$ ($i = 1, \ldots, m$) and $\sum_{i=1}^m |V(Q_i)|$ is as great as possible. Abbreviate $V_i = V(Q_i)$ ($i = 1, \ldots, m$) and $V' = \bigcup_{i=1}^m V'_i$. Form a united path Q' with vertex set V' consisting of Q_1, \ldots, Q_m and some appropriate extra-edges added in.

Definition B $\{Q_1, \ldots, Q_m; Q'_0; V_1, \ldots, V_m; V'\}$. Let A^i be a fragment of G with respect to a minimum cut-set S and Q_1, \ldots, Q_m are as defined in Definition A. Denote by Q_1, \ldots, Q_n, a collection of paths (if exist) in $(A^i \cup S)$ with $\sum_{i=1}^m |V(Q_i')|$ as great as possible such that combining Q_1, \ldots, Q_m with Q_1, \ldots, Q_n, results in a simple cycle. Abbreviate $V_i = V(Q_i')$ ($i = 1, \ldots, m$) and $V' = \bigcup_{i=1}^m V'_i$. For the special case $|V| = 2$ and $G \not\in \emptyset$, say $z \in S - V'$, we will use Q^i to denote a longest path in $(A^i \cup \{F(Q^i), L(Q^i), z\})$ connecting $F(Q^i)$ and $L(Q^i)$ and passing through z.

Definition C $\{C^*; C^{**}\}$. Denote by C^* the cycle (if exist) consisting of Q_1, \ldots, Q_m and Q'_1, \ldots, Q'_m. Assume w.l.o.g. that Q_1, \ldots, Q_m is chosen such that C^* has a maximal length. Denote by C^{**} a longest cycle of G with $V(C^*) \subseteq V(C^{**})$.

3 Preliminaries

In [7], Nash-Williams proved the following result concerning (C, r)-schemes for a cycle C and a pair (Z_1, Z_2) of subsets of $V(C)$.

Lemma A [7]. Let C be a cycle and (Z_1, Z_2) be a nontrivial (C, r)-scheme. Then

$$|V(C)| \geq \min \left\{ 2(|Z_1| + |Z_2|) + 2r - 6, \frac{1}{2}r(|Z_1| + |Z_2|) \right\}.$$

Basing on proof technique used in [7], we prove two analogous results for the families (Z_1, Z_2, Z_3) and (Z_1, Z_2, Z_3, Z_4) of subsets of $V(C)$ under additional limitations $|Z_1| = 1$ and $|Z_1| = |Z_2| = 1$, respectively.

Lemma 1. Let C be a cycle and (Z_1, Z_2, Z_3) be a nontrivial (C, r)-scheme with $|Z_1| = 1$. Then

$$|V(C)| \geq \min \left\{ 2 \sum_{i=1}^3 |Z_i| + 3r - 12, \frac{1}{2}r \left(\sum_{i=1}^3 |Z_i| - 1 \right) \right\}.$$
Lemma 2. Let C be a cycle and (Z_1, Z_2, Z_3, Z_4) be a nontrivial (C, r)-scheme with $|Z_1| = |Z_2| = 1$. Then

$$|V(C)| \geq \min \left\{ 2 \sum_{i=1}^{4} |Z_i| + 4r - 18, \frac{1}{2} r \left(\sum_{i=1}^{4} |Z_i| - 2 \right) \right\}.$$

In this paper a number of path-versions of Lemmas 1, 2 and 3 will be used for the path Q and the families (Z_1, Z_2), (Z_1, Z_2, Z_3), (Z_1, Z_2, Z_3, Z_4) of subsets of $V(Q)$ under additional limitations $|Z_1| = 1$, $|Z_1| = |Z_2| = 1$ and $|Z_1| = |Z_2| = |Z_3| = 1$ in some of them.

Lemma 3. Let Q be a path and (Z_1, Z_2) be a nontrivial (Q, r)-scheme. Then

$$|V(Q)| \geq \min \left\{ 2(|Z_1| + |Z_2|) + r - 5, \frac{1}{2} r (|Z_1| + |Z_2| - 2) + 1 \right\}.$$

Lemma 4. Let Q be a path and (Z_1, Z_2) be a nontrivial (Q, r)-scheme with $|Z_1| = 1$ and $|Z_2| \geq 2$. Then $|V(Q)| \geq 2|Z_2| + r - 3$.

Lemma 5. Let Q be a path and (Z_1, Z_2, Z_3) be a nontrivial (Q, r)-scheme with $|Z_1| = 1$. Then

$$|V(Q)| \geq \min \left\{ 2 \sum_{i=1}^{3} |Z_i| + 2r - 11, \frac{1}{2} r \left(\sum_{i=1}^{3} |Z_i| - 3 \right) + 1 \right\}.$$

Lemma 6. Let Q be a path and (Z_1, Z_2, Z_3) be a nontrivial (Q, r)-scheme with $|Z_1| = |Z_2| = 1$ and $|Z_3| \geq 3$. Then $|V(Q)| \geq 2|Z_3| + 2r - 5$.

Lemma 7. Let Q be a path and (Z_1, Z_2, Z_3, Z_4) be a nontrivial (Q, r)-scheme with $|Z_1| = |Z_2| = 1$. Then

$$|V(Q)| \geq \min \left\{ 2 \sum_{i=1}^{4} |Z_i| + 3r - 17, \frac{1}{2} r \left(\sum_{i=1}^{4} |Z_i| - 4 \right) + 1 \right\}.$$

Lemma 8. Let Q be a path and (Z_1, Z_2, Z_3, Z_4) be a nontrivial (Q, r)-scheme with $|Z_1| = |Z_2| = |Z_3| = 1$ and $|Z_4| \geq 4$. Then $|V(Q)| \geq 2|Z_4| + 3r - 7$.

Using Woodall’s proof technique [15] known as ”hopping”, we obtain the next result concerning cycles through specified edges.

Lemma 9. Let G be a graph, A^1 be a fragment of G with respect to a minimum cut-set S and the connectivity k is even. Let L be a set of $k/2$ independent (vertex disjoint) edges in (S) and let $v_1v_2v_3v_4$ be a path in G with $v_1, v_4 \in A^1$ and $v_2, v_3 \in S$. If a subgraph $(S \cup A^1) - \{v_2, v_3, v_4\}$ contains a cycle C that uses all the edges in $L - \{v_2v_3\}$, then $(S \cup A^1)$ contains a cycle that uses all the edges in L.

Using Woodall’s proof technique [15] known as ”hopping”, we obtain the next result concerning cycles through specified edges.
In [12, Theorem 1], Veldman proved the following.

Lemma B [12]. If G is a graph with $\delta > 3\kappa/2 - 1$, then no endfragment of G contains a vertex v with $\kappa(G - v) = \kappa - 1$.

We shall use Lemmas 9 and B to prove the following useful lemma.

Lemma 10. Let G be a 2-connected graph, A^\uparrow be an endfragment of G with respect to a minimum cut-set S and let L be a set of independent edges in $\langle S \rangle$. If $\delta > 3\kappa/2 - 1$, then $\langle A^\uparrow \cup V(L) \rangle$ contains a cycle that uses all the edges in L.

For the special case $\alpha \leq \delta \leq 3\kappa/2 - 1$ the main lower bound $c \geq \min \{n, 4\delta - 2\kappa\}$ will be proved by an easy way.

Lemma 11. Every 3-connected graph with $\alpha \leq \delta \leq 3\kappa/2 - 1$ has a cycle of length at least $\min \{n, 4\delta - 2\kappa\}$.

We need also the following result from [13].

Lemma C [13]. Let G be a hamiltonian graph with $\{v_1, ..., v_r\} \subseteq V(G)$ and $d(v_i) \geq r$ ($i = 1, ..., r$). Then any two vertices of $V(G)$ are connected by a path of length at least r.

Let V^\uparrow and V^\downarrow are as defined in Definitions A and B. Using above lemmas, we shall prove the following four basic lemmas that are crucial for the proofs of Theorems 2-5.

Lemma 12. Let G be a 3-connected graph with $\delta \geq \alpha$. If $|A^\uparrow| \leq 3\delta - \kappa - 4$ for a fragment A^\uparrow of G, then $A^\uparrow \subseteq V^\uparrow$.

Lemma 13. Let G be a 4-connected graph with $\delta \geq \alpha$. If $|A^\uparrow| \geq 3\delta - \kappa - 3$ for a fragment A^\uparrow of G, then either $A^\uparrow \subseteq V^\uparrow$ or $|V^\uparrow| \geq 3\delta - 5$.

Lemma 14. Let G be a 3-connected graph with $\delta > 3\kappa/2 - 1$. If $|A^\downarrow| \leq 3\delta - 3\kappa$ for an endfragment A^\downarrow of G, then $\langle A^\downarrow - V^\downarrow \rangle$ is edgeless.

Lemma 15. Let G be a 3-connected graph with $\delta > 3\kappa/2 - 1$ and $|A^\downarrow| \geq 3\delta - 3\kappa + 1$ for an endfragment A^\downarrow of G with respect to a minimum cut-set S. If $f = 2$ and $S \subseteq V^\downarrow$, then either $\langle A^\downarrow - V^\downarrow \rangle$ is edgeless or $|V^\downarrow| \geq 2\delta - 2\kappa + 3$, where $f = |V^\downarrow \cap S|$. If $f = 2$ and $S \not\subseteq V^\downarrow$, then either $\langle A^\downarrow - V(Q^\downarrow_1) \rangle$ is edgeless or $|V^\downarrow| \geq 3\delta - 3\kappa + 1$. If $f \geq 3$, then either $\langle A^\downarrow - V^\downarrow \rangle$ is edgeless or $|V^\downarrow| \geq 3\delta - 3\kappa + f - 1$.
4 Proofs of lemmas

Proof of Lemma 1. Put $Z = \bigcup_{i=1}^{3} Z_i$. For each $\xi \in Z$, let $f(\xi)$ be the smallest positive integer h such that $\xi + h \in Z$ and let $g(\xi) = |\{i| \xi \in Z_i\}|$. Clearly

$$|C| = \sum_{\xi \in Z} f(\xi), \quad \sum_{i=1}^{3} |Z_i| = \sum_{\xi \in Z} g(\xi). \quad (1)$$

Since (Z_1, Z_2, Z_3) is a nontrivial (C, r)-scheme, we have $f(\xi) \geq r$ for each $\xi \in Z$ when $g(\xi) \geq 2$ and $f(\xi) \geq 2$ when $g(\xi) = 1$. Let (ξ_1, ξ_2, ξ_3) be a system of distinct representatives of Z_1, Z_2, Z_3. Since $|Z_1| = 1$, we have $g(\xi) \leq 2$ for each $\xi \in Z - \{\xi_1\}$. In particular, $g(\xi_i) \leq 2$ ($i = 2, 3$). Assume first that $r \leq 4$. Clearly $\xi_1 \notin Z_1$ and hence $f(\xi_1) \geq r \geq r(g(\xi_1) - 1)/2$. Further, for each $\xi \in Z - \{\xi_1\}$, either $g(\xi) = 2$ implying that $f(\xi) \geq r = rg(\xi))/2$ or $g(\xi) = 1$ implying that $f(\xi) \geq 2 \geq rg(\xi)/2$. By summing and using (1), we get

$$|C| \geq \sum_{\xi \in Z} f(\xi) \geq \left(\sum_{i=1}^{3} |Z_i|\right)r/2 - r/2$$

and the result follows. Now assume that $r \geq 5$.

Case 1. $f(\xi) \geq r$ for each $\xi \in Z$.

By (1), $|C| \geq r|Z| \geq r(|Z_1| + |Z_2| + |Z_3| - 1)/2$ and the result follows.

Case 2. $f(\xi) \leq r - 1$ for some $\xi \in Z$.

Since $g(\xi_2) \leq 2$ and $g(\xi_3) \leq 2$, we can distinguish three subcases.

Case 2.1. $g(\xi_2) = g(\xi_3) = 1$.

Let τ_i be the smallest positive integer such that $\xi_i^{+(r_i+1)} \in Z - Z_i$ and $g(\xi_i^{+(r_i)}) = 1$ ($i = 2, 3$). Then

$$f(\xi_i^{+(r_i+1)}) \geq r \geq 2g(\xi_i^{+(r_i)}) + r - 2 \quad (i = 2, 3),$$

$$f(\xi_1) \geq r \geq 2g(\xi_1) + r - 6.$$

For each $\xi \in Z - \{\xi_2^{r_2}, \xi_3^{r_3}, \xi_1\}$, either $g(\xi) = 2$ implying $f(\xi) \geq r \geq 5 > 2g(\xi)$ or $g(\xi) = 1$ and again implying $f(\xi) \geq 2 = 2g(\xi)$. By (1), $|C| \geq 2 \sum_{i=1}^{3} |Z_i| + 3r - 10$ and the result follows.

Case 2.2. Either $g(\xi_2) = 1$, $g(\xi_3) = 2$ or $g(\xi_2) = 2$, $g(\xi_3) = 1$.

By symmetry, we can assume that $g(\xi_2) = 1$ and $g(\xi_3) = 2$. If $g(\xi) = 1$ for some $\xi \in Z_3$, then (ξ_1, ξ_2, ξ) is a system of distinct representatives for (Z_1, Z_2, Z_3) and we can argue as in Case 2.1. Let $g(\xi) \geq 2$ for all $\xi \in Z_3$ and let τ_2 be the smallest positive integer such that $\xi_2^{+(\tau_2+1)} \in Z - Z_2$ and $g(\xi_2^{+(\tau_2)}) = 1$. Then
\[f(\xi_1) \geq r \geq 2g(\xi_1) + r - 6, \]
\[f(\xi_2^+)^2 \geq r \geq 2g(\xi_2^+) + r - 2, \quad f(\xi_3) \geq 2g(\xi_3) + r - 4. \]

For each \(\xi \in Z - \{\xi_1, \xi_2^+, \xi_3\} \), either \(g(\xi) = 2 \) which implies \(f(\xi) \geq r \geq 5 > 2g(\xi) \) or \(g(\xi) = 1 \) again implying \(f(\xi) \geq 2 = 2g(\xi) \). By (1), \(|C| \geq 2 \sum_{i=1}^{3} |Z_i| + 3r - 12 \) and the result follows.

Case 2.3. \(g(\xi_2) = g(\xi_3) = 2 \).

If \(g(\xi) = 1 \) for some \(\xi \in Z_2 \cup Z_3 \), say \(\xi \in Z_2 - Z_3 \), then \((\xi_1, \xi, \xi_3)\) is a system of distinct representatives and we can argue as in Case 2.2. Otherwise \(f(\xi) \geq r \) for all \(\xi \in Z \) and we can argue as in Case 1. \(\triangle \)

Proof of Lemma 2. Let \(Z = \bigcup_{i=1}^{4} Z_i \). For each \(\xi \in Z \), let \(f(\xi) \) be the smallest positive integer \(h \) such that \(\xi^+ h \in Z \) and let \(g(\xi) = |\{i|\xi \in Z_i\}|. \) Then

\[|C| = \sum_{\xi \in Z} f(\xi), \quad \sum_{i=1}^{4} |Z_i| \sum_{\xi \in Z} g(\xi). \tag{2} \]

Let \((\xi_1, \xi_2, \xi_3, \xi_4)\) be a system of distinct representatives of \(Z_1, Z_2, Z_3, Z_4 \). Since \(|Z_1| = |Z_2| = 1\), we have \(g(\xi) \leq 3 \) for each \(\xi \in Z \). In particular, \(g(\xi_3) \leq 2 \) and \(g(\xi_4) \leq 2 \). Assume first that \(r \leq 4 \). Clearly \(\xi_1^+ \notin Z_i \) \((i = 1, 2)\) and hence,

\[f(\xi_i) \geq r \geq r(g(\xi_i) - 1)/2 \quad (i = 1, 2). \]

For each \(\xi \in Z - \{\xi_1, \xi_2\} \), either \(g(\xi) = 2 \) implying \(f(\xi) \geq r = rg(\xi)/2 \) or \(g(\xi) = 1 \) again implying \(f(\xi) \geq 2 \geq rg(\xi)/2 \).

By (2), \(|C| \geq r(\sum_{i=1}^{4} |Z_i|)/2 - r \) and we are done. Now assume that \(r \geq 5 \).

Case 1. \(f(\xi) \geq r \) for each \(\xi \in Z \).

By (2), \(|C| \geq r|\xi| \geq r(\sum_{i=1}^{4} |Z_i| - 2)/2 \) and the result follows.

Case 2. \(f(\xi) \leq r - 1 \) for some \(\xi \in Z \).

Case 2.1. Either \(g(\xi_1) = 1 \) or \(g(\xi_2) = 1 \).

Assume w.l.o.g. that \(g(\xi_1) = 1 \). Let \(p \) be the smallest positive integer such that \(\xi_1^+ p \in Z \). Consider two new cycles \(C_1 \) and \(C_2 \), obtained from \(C \) by identifying \(\xi_1 \) and \(\xi_1^+ p \). Since \(f(\xi_1) \geq r \), we have \(|C_1| \geq r \) and \(|C_2| \leq |C| - r + 1 \). Clearly \((Z_2, Z_3, Z_4)\) is a nontrivial \((C_2, r)\)-scheme with \(|Z_2| = 1 \). Since \(\sum_{i=1}^{4} |Z_i| - 1 = \sum_{i=2}^{4} |Z_i| \) and \(|C| \geq |C_2| + r - 1 \), we can obtain the desired result by Lemma 1.

Case 2.2. \(g(\xi_1) \geq 2 \) and \(g(\xi_2) \geq 2 \).

Clearly \(f(\xi_i) \geq r \geq 2g(\xi_i) + r - 6 \quad (i = 1, 2) \). If \(g(\xi) \geq 2 \) for each \(\xi \in Z_3 \cup Z_4 \), then \(f(\xi) \geq r \) for each \(\xi \in Z \) and we can argue as in Case 1. Let \(g(\xi) = 1 \) for some \(\xi \in Z_3 \cup Z_4 \). Assume w.l.o.g. that \(g(\xi_3) = 1 \).

Case 2.2.1. \(g(\xi_4) = 1 \).
Let \(\tau_i \) be the smallest positive integer such that \(\xi_i^{+(\tau_i+1)} \in Z - Z_i \) and \(g(\xi_i^{+(\tau_i)}) = 1 \) \((i = 3, 4)\). Then

\[
f(\xi_i^{+(\tau_i)}) \geq r \geq 2g(\xi_i^{+(\tau_i)}) + r - 2 \quad (i = 3, 4).
\]

For each \(\xi \in Z - \{\xi_3^*, \xi_4^*, \xi_1, \xi_2\} \), either \(g(\xi) = 2 \) implying \(f(\xi) \geq r \geq 5 > 2g(\xi) \) or \(g(\xi) = 1 \) again implying \(f(\xi) \geq 2 = 2g(\xi) \). By (2), \(|C| \geq 2 \sum_{i=1}^4 |Z_i| + 4r - 16 \) and the result follows.

Case 2.2.2. \(g(\xi_i) = 2 \).

Let \(\tau_i \) be the smallest positive integer such that \(\xi_i^{+(\tau_i+1)} \in Z - Z_i \) and \(g(\xi_i^{+(\tau_i)}) = 1 \). Then \(f(\xi_i^{+(\tau_i)}) \geq r \geq 2g(\xi_i^{+(\tau_i)}) + r - 2 \). If \(g(\xi) = 1 \) for some \(\xi \in Z_4 \), then we can argue as in Case 2.2.1. Otherwise \(g(\xi) = 2 \) and \(f(\xi) \geq r \geq 2g(\xi) + r - 4 \) for each \(\xi \in Z_4 - \{\xi_1, \xi_2\} \). By (2), \(|C| \geq 2 \sum_{i=1}^4 |Z_i| + 3r - 18 \) and the result follows. \(\Delta \)

Proofs of Lemmas 3-8. To prove Lemma 3, form a cycle \(C \) consisting of \(Q \) and an arbitrary path of length \(r \) having only \(F(Q) \) and \(L(Q) \) in common with \(Q \). Since \((Z_1, Z_2)\) is a nontrivial \((C,r)\)-scheme, the desired result follows from Lemma A immediately. Lemmas 5 and 7 can be proved by a similar way using Lemmas 3 and 2, respectively. The proofs of Lemmas 4, 6 and 8 are straightforward. \(\Delta \)

Proof of Lemma 9. We use a variant of an important proof technique known as "hopping" [15]. For the case \(v_1 \notin V(C) \), we can argue exactly as in [15, proof of Theorem 2]. Let \(v_1 \in V(C) \). Put \(G^* = G - \{v_2, v_3\} \) and \(L' = L - \{v_2v_3\} \). If \(X \subseteq V(C) \), we consider all maximal segments of \(C - L' \) connecting two vertices of \(X \). Following [4], the union of the vertex sets of these segments is denoted \(Cl(X) \), the endvertices of the segments constitute \(Fr(X) \) and finally \(Int(X) = Cl(X) - Fr(X) \). The sequence \(A_{-1} \subseteq A_0 \subseteq A_1 \subseteq \ldots \) of subsets of \(V(C) \) is defined as follows: \(A_{-1} = \emptyset \) and \(A_0 \) is the set of vertices \(z \) of \(C \) such that \(G^* \) has a path from \(v_4 \) to \(z \) having only \(z \) in common with \(C \). For each \(p \geq 1 \), \(A_p \) is the union of \(A_{p-1} \) and the set of vertices \(z \) such that \(G^* \) contains a path \(P \) from \(Int(A_{p-1}) \) to \(z \) having only its ends in common with \(C \). Let \(A = \bigcup_{i=0}^\infty A_i \) and \(B = \{v_1\} \). Consider the following statement:

\(X(P) \): There exists a path \(R_p \) in \(G^* - \{v_4\} \) starting at \(v_p \) in \(A_p \) and terminating at \(v_1 \) such that conditions (a) – (c) below are satisfied.

(a) \(R_p \) contains all the edges of \(L' \) and all the vertices of \(Int(A_{p-1}) \).

(b) If \(Q \) is a segment of \(R_p \) from \(u \) to \(v \) say, having precisely \(u \) and \(v \) in common with \(C \), then one of \(u \) and \(v \) is outside \(A_p \) and the other is outside \(\{v_1\} \).

(c) If \(y \in Int(X) \cap R_p \), where \(X = A_{p'}, p' \leq p - 1 \) and \(M \) denotes the segment of \(C - L' \) which starts and terminates at \(Fr(X) \) and contains \(y \), then \(R_p \) contains \(M \).

Prove that \(X(P) \) holds for some \(p \). For suppose this is not the case. Then
Proof of Lemma 10. The proof is by induction on \(\kappa \). For \(\kappa = 2 \) the result follows easily. Let \(\kappa \geq 3 \). Suppose first that \(S - V(L) \neq \emptyset \) and choose any \(u \in S - V(L) \). Clearly \(A^1 \) is an endfragment for \(G - u \) too with respect to \(S - u \) and \(\delta(G - u) \geq \delta - 1 > 3\kappa(G - u)/2 - 1 \). By the induction hypothesis, \(G - u \) (as well as \(G \)) contains the desired cycle. Now let \(S - V(L) = \emptyset \), i.e. \(|L| = \kappa/2 \), and choose any \(vw \in L \). It follows from \(\delta > 3\kappa/2 - 1 \) that \(|A^1| \geq 2 \). Further, it is not hard to see that there exist two edges \(vv' \) and \(uw' \) such that \(v', w' \in A^1 \) and \(v' \neq w' \). Put \(G^* = G - \{v, w, w'\} \) and \(S' = S - \{v, w\} \). By Lemma B, \(\kappa(G - w') = \kappa \), i.e. \(\kappa(G^*) = \kappa - 2 \). Also, \(\delta(G^*) \geq \delta - 3 > 3\kappa(G^*)/2 - 1 \). If \(A^1 - \{w'\} \) is an endfragment of \(G^* \) (with respect to \(S' \)), then by the induction hypothesis, \((S' \cup A^1) - \{w'\} \) contains a cycle that uses all the edges in \(L - \{vw\} \) and the result follows from Lemma 9 immediately. Otherwise choose an endfragment \(A_0^1 \subset A^1 - \{w'\} \) in \(G^* \) with respect to a minimum cut-set \(S'' \) of order \(\kappa - 2 \). Let \(P_1, \ldots, P_{\kappa - 2} \) be the vertex disjoint paths connecting \(S' \) and \(S'' \), where \(|V(P_i)| = 1 \) if and only if \(F(P_i) = L(P_i) \in S' \cap S'' \) \((i = 1, \ldots, \kappa - 2) \). By the induction hypothesis, \((A_0^1 \cup S'') \) contains a cycle that uses all the independent edges in \((S'') \) chosen beforehand. Then using \(P_1, \ldots, P_{\kappa - 2} \), we can form a cycle in \((S' \cup A^1 - \{w'\}) \) that uses all the edges in \(L - \{vw\} \) and the result follows from Lemma 9. \(\Delta \)

Proof of Lemma 11. By Theorem G, \(c \geq \min\{n, 3\delta - 3\} \). If \(c = n \), then we are done. So, assume that \(c \geq 3\delta - 3 \). If \(\kappa \geq 4 \), then \(c \geq 3\delta - 3 \geq 4\delta - 3\kappa/2 - 2 \geq 4\delta - 2\kappa \). Finally, if \(\kappa = 3 \), then from \(\delta \leq 3\kappa/2 - 1 \) we get \(\delta = 3 \) implying that \(c \geq 3\delta - 3 = 4\delta - 2\kappa \). \(\Delta \)

Proof of Lemma 12. Let \(S,Q_i^1,V_i^1 \) \((i = 1, \ldots, m) \), \(Q^1 \) and \(V^1 \) are as defined in Definition A. Assume w.l.o.g. that

\[
F(Q_i^1) = u_i, \quad L(Q_i^1) = v_i \quad (i = 1, \ldots, m),
\]

\[
Q^1 = u_1Q_1^1v_1u_2Q_2^1v_2u_3\ldots v_{m-1}u_mQ_m^1v_m,
\]

where \(u_1u_2, v_2u_3, \ldots, v_{m-1}u_m \) are extra edges in \(G \). Assume the converse, that is, \(A^1 \not\subseteq V^1 \). Let \(P = y_1y_2\ldots y_p \) be a longest path in \((A^1 - V^1) \). Set \(Z_1 = N(y_1) \cap V^1 \) and \(Z_2 = N(y_p) \cap V^1 \). Clearly \(p + |V^1| \leq |A^1| + |S| \leq 3\delta - 4 \) and hence

\[
|V^1| \leq 3\delta - p - 4. \tag{3}
\]
Case 1. Every path between $V(P)$ and $S - V^1$, intersects V^1.

Case 1.1. $p = 1$.

In this case, $N(y_1) \subseteq V^1$. Set $M = \{u_1, \ldots, u_m\} \cup \{v_1, \ldots, v_m\}$ and $M^* = M \cap N(y_1)$. Since Q_1^1, \ldots, Q_m^1 is extreme, $|M^*| \leq 2$. Moreover, $|M^*| = 2$ if and only if $M^* = \{u_i, v_i\}$ for some $i \in \{1, \ldots, m\}$. If $|M^*| \leq 1$, then by standard arguments either $N(y_1)^+ \cup \{y_1\}$ or $N(y_1)^- \cup \{y_1\}$ is an independent set of order at least $\delta + 1$, contradicting $\delta \geq \alpha$. So, $|M^*| = 2$. Assume w.l.o.g. that $M^* = \{u_1, v_1\}$, that is, y_1 is adjacent to both u_1 and v_1. Put $B = N(y_1) - v_1$. Since $y_1v_1 \notin E(G)$ ($i = 2, \ldots, m$), we have $|B^+| \geq \delta - 1$. If $B^+ \cap S = \emptyset$, then among standard arguments we can show that $B \cup \{y_1, w\}$ for each $w \in A^1$ is an independent set of order at least $\delta + 1$, contrary to $\delta \geq \alpha$. Hence, we can choose any $z \in B^+ \cap S$. If $z \in V_1^1$, then the collection of paths obtained from Q_1^1, \ldots, Q_m^1 by deleting Q_1^1 and adding $u_1 Q_1^1$ z $y_1v_1 Q_1^1 z$, contradicts the definition of Q_1^1, \ldots, Q_m^1. Therefore, $z \notin V_1^1$. Assume w.l.o.g. that $z \in V_2^1$. If $z \neq v_2$, then we get a new collection of paths obtained from Q_1^1, \ldots, Q_m^1 by deleting Q_1^1 and Q_2^1, and adding $u_1 Q_1^1 v_1 y_1 z Q_2^1 v_2$ and $z Q_2^1 v_2$, contrary to Q_1^1, \ldots, Q_m^1. So, let $z = v_2$ implying that $v_2 \in N(y_1)$. Taking the reverse direction on Q_2^1, we can state in addition that $u_2^* \in N(y_1)$. By standard arguments, $B^+ \cup \{y_1\}$ is an independent set of vertices of order at least δ. Now we claim that u_2 has no neighbors in $B^+ \cup \{y_1\}$. Assume, to the contrary, that is, $u_2w \in E(G)$ for some $w \in B^+ \cup \{y_1\}$. If $w = y_1$, then deleting Q_1^1 and Q_2^1 from Q_1^1, \ldots, Q_m^1 and adding $u_1 Q_1^1 v_1 y_1 u_2 Q_2^1 v_2$ we obtain a new collection of paths, contrary to Q_1^1, \ldots, Q_m^1. Next, if $w \in V_1^1$, then deleting Q_1^1 and Q_2^1 and adding $u_1 Q_1^1 w^- y_1 u_2 Q_2^1 v_2$ and $u_2 w Q_1^1 v_1$ we obtain a new collection, contrary to Q_1^1, \ldots, Q_m^1. Further, if $w \in V_2^1$, then deleting Q_1^1 and Q_2^1 and adding $u_1 Q_1^1 v_1 y_1 w^- Q_2^1 v_2 w Q_2^1 v_2$ we obtain a collection, contrary to Q_1^1, \ldots, Q_m^1. Finally, if $w \in V_1^1$ for some $i \geq 3$, say $i = 3$, then deleting Q_3^1 and Q_3^1 and adding $u_2w Q_1^1 v_3$ and $u_3 Q_3^1 w^- y_1 u_2 Q_2^1 v_2$, we obtain a collection, contrary to Q_1^1, \ldots, Q_m^1. So, $B^+ \cup \{y_1, u_2\}$ is an independent set of order at least $\delta + 1$, contrary to $\delta \geq \alpha$.

Case 1.2. $p \geq 2$.

If $p = 2$, then $|Z_1| \geq \delta - 1$, $|Z_2| \geq \delta - 1$ and (Z_1, Z_2) is a nontrivial $(Q_1^1, 3)$-scheme. By Lemma 3, $|V^1| \geq \min\{4\delta - 6, 3\delta - 5\} = 3\delta - 5$, contradicting (3). So, we can assume that $p \geq 3$. Let w_1, w_2, \ldots, w_s be the elements of $(N(y_p) \cap V(P))^+$. In a consecutive order, where $w_s = y_p$. Put $P_0 = w_1 P_1 w_2$, and $p_0 = |P_0|$. For each $w_i \in V(P)$ ($i \in \{1, \ldots, s\}$) there is a path $y_i P_0 w_1 P_1 w_2 \ldots P_s w_i$ in $(\langle V(P) \rangle$) of length p connecting y_1 and w_i. Hence, we can assume w.l.o.g. that P is chosen such that for each $i \in \{1, \ldots, s\}$,

$$|Z_1| \geq |N(w_i) \cap V^1|, \quad N(w_i) \cap V(P) \subseteq V(P_0).$$

In particular, $|Z_1| \geq |Z_2|$. Clearly $p_0 \geq 2$. If $p_0 = 2$, then $|Z_1| \geq |Z_2| \geq \delta - 1,$ and we can argue as in case $p = 2$. Let $p_0 \geq 3$. Since G is 3-connected, there
are vertex disjoint paths R_1, R_2, R_3 connecting P_0 and V^\uparrow. Let $F(R_i) \in V(P_0)$ and $L(R_i) \in V^\uparrow$ ($i = 1, 2, 3$).

Case 1.2.1. $|Z_1| \leq 3$.

By (4), $|N(w_i) \cap V^\uparrow| \leq |Z_1| \leq 3$ and therefore, $|N(w_i) \cap V(P_0)| \geq \delta - 3$ ($i = 1, \ldots, s$). In particular, for $i = s$, we have $s = |N(y_p) \cap V(P_0)| \geq \delta - 3$, implying that $p \geq \delta - 2$. By (3), $|V^\uparrow| \leq 3\delta - p - 4 = 2\delta - 2$. Furthermore, by Lemma C, in $(V(P_0))$ any two vertices are joined by a path of length at least $\delta - 3$. Due to R_1, R_2, R_3, we have $|V^\uparrow| \geq 2\delta - 1$, a contradiction.

Case 1.2.2. $|Z_1| \geq 4$.

Choose $w \in \{w_1, \ldots, w_s\}$ as to maximize $|N(w_i) \cap V^\uparrow|$, $i = 1, \ldots, s$. Set $Z_3 = N(w) \cap V^\uparrow$. By (4), $|Z_1| \geq |Z_3| \geq |Z_2|$. If $|Z_3| \leq 3$, then we can argue as in Case 1.2.1. So, we can assume that $|Z_3| \geq 4$. Clearly $|N(w_i) \cap V(P_0)| \geq \delta - |Z_3|$ for each $i \in \{1, \ldots, s\}$. In particular, $s = |N(w_i) \cap V(P_0)| \geq \delta - |Z_3|$ implying that $p \geq \delta - |Z_3| + 1$. By Lemma C, in $(V(P_0))$ any two vertices are joined by a path of length at least $\delta - |Z_3|$.

Case 1.2.1. $\delta - |Z_3| \geq 1$.

Assume w.l.o.g. that $w \notin V(R_1 \cup R_2)$. If $R_1 \cup R_2$ does not intersect $y_1Pw_1^-$, then $(Z_1, \{L(R_1)\}, Z_3)$ is a nontrivial $(Q^\uparrow, \delta - |Z_3| + 2)$-scheme. Otherwise, let t be the smallest integer such that $y_t \in V(R_1 \cup R_2)$. Assume w.l.o.g. that $y_t \in V(R_2)$. Then due to $y_tP \cap R_2F(R_2)$, we again can state that $(Z_1, \{L(R_1)\}, Z_3)$ is a nontrivial $(Q^\uparrow, \delta - |Z_3| + 2)$-scheme. By Lemma 3,

$$|V^\uparrow| \geq 2\delta + |Z_3| - 4 + \min\{|Z_3| - 1, (\delta - |Z_3| - 1)(|Z_3| - 3)\} \geq 2\delta + |Z_3| - 4.$$

On the other hand, using (3) and the fact that $p \geq \delta - |Z_3| + 1$, we get $|V^\uparrow| \geq 2\delta + |Z_3| - 5$, a contradiction.

Case 1.2.2. $\delta - |Z_3| \leq 0$.

In this case, $|Z_1| \geq |Z_3| \geq \delta$ and (Z_1, Z_3) is a nontrivial $(Q^\uparrow, p + 1)$-scheme. By Lemma 3, $|V^\uparrow| \geq 3\delta - p - 3$, contradicting (3).

Case 2. There is a path between $V(P)$ and $S - V^\uparrow$ avoiding V^\uparrow.

Since $Q^\uparrow_1, \ldots, Q^\uparrow_m$ is extreme, all the paths connecting $V(P)$ and $S - V^\uparrow$ and not intersecting V^\uparrow, end in a unique vertex $z \in S - V^\uparrow$.

Case 2.1. $p = 1$.

In this case, $y_1z \in E(G)$ and $N(y_1) - z \subseteq V^\uparrow$. Put $B = (N(y_1) - z)^+ \cup \{y_1\}$. By standard arguments, B is an independent set of order at least δ. Now we claim that u_1 has no neighbors in B. Assume, to the contrary, that is, $u_1w \in E(G)$ for some $w \in B$. First, if $w = y_1$, then deleting Q^\uparrow_1 from $Q^\uparrow_1, \ldots, Q^\uparrow_m$ and adding $zy_1u_1Q^\uparrow_1v_1$ we obtain a new collection of paths, contrary to $Q^\uparrow_1, \ldots, Q^\uparrow_m$. Next, if $w \in V^\uparrow_1$, then deleting Q^\uparrow_1 and adding $v_1Q^\uparrow_1wu_1Q^\uparrow_1w^\uparrow y_1z$
we obtain another collection of paths, contrary to Q_1^1, \ldots, Q_m^1. Finally, if $w \in V_i^1$ for some $i \geq 2$, say $i = 2$, then deleting Q_1^1 and Q_2^1 and adding $u_2 \overrightarrow{Q_2} w u_1 \overrightarrow{Q_1} v_1$ and $u_2 \overrightarrow{Q_2} y_1 z \overrightarrow{Q_1} w$ we again obtain a collection, contrary to Q_1^1, \ldots, Q_m^1. So, $B \cup \{u_1\}$ is an independent set of order at least $\delta + 1$, contrary to $\delta \geq \alpha$.

Case 2.2. $p \geq 2$.

Divide Q^1 into three consecutive segments $I_1 = \xi_1 Q^1 \xi_2$, $I_2 = \xi_2 Q^1 \xi_3$ and $I_3 = \xi_3 Q^1 \xi_4$ such that I_2 contains $Z_1 \cup Z_2$ and is as small as possible. Denote by R_1 (R_2, respectively) a longest path joining ξ_2 (ξ_3, respectively) to z and passing through $A^1 \setminus V^1$. Since Q_1^1, \ldots, Q_m^1 is extreme, $|I_1| \geq |R_1|$ and $|I_2| \geq |R_2|$.

Further, we can first estimate $|I_2|$ by Lemma 3 as in Case 1.2, and observing that $|Q^1| = |I_1| + |I_2| + |I_3| \geq |I_2| + |R_1| + |R_2|$, we can argue exactly as in Case 1.2. Lemma 5 can be applied by a similar way with respect to $\cup_{i=1}^3 Z_i$.

Proof of Lemma 13. Let $S, Q^1, V^1 (i = 1, \ldots, m)$, Q^1 and V^1 are as defined in Definition A. In addition, let $P = y_1 y_2 \ldots y_p, p_0, Z_1, Z_2, Z_3$ are as defined in Lemma 12.

Case 1. Every path between $V(P)$ and $S - V^1$, intersects V^1.

If $p = 0$, then $A^1 \subseteq V^1$ and we are done. If $p = 1$, then $\alpha \geq \delta + 1$ (see the proof of Lemma 12, Case 1.1) contradicting the hypothesis. Further, if $p = 2$, then (Z_1, Z_2) is a nontrivial $(Q^1, 3)$-scheme with $|Z_1| \geq \delta - 1$, $|Z_2| \geq \delta - 1$ and, by Lemma 3, $|V^1| \geq 3\delta - 5$. Now let $p = 3$. If $y_1 y_3 \notin E$ then $|Z_1| \geq \delta - 1$, $|Z_2| \geq \delta - 1$ and as above, $|V^1| \geq 3\delta - 5$. Let $y_1 y_3 \in E$. This means that $|Z_1| \geq \delta - 2$, $|Z_2| \geq \delta - 2$ and (Z_1, Z_2) is a nontrivial $(Q^1, 4)$-scheme. By Lemma 3, $|V^1| \geq 4\delta - 11$. For $\delta \geq 6$ the inequality $|V^1| \geq 3\delta - 5$ holds immediately. Let $4 \leq \delta \leq 5$. Since $\kappa \geq 4$, there are four paths connecting P and Q^1 and three of them are pairwise disjoint. Then it is easy to see that $|V^1| \geq 10 \geq 3\delta - 5$. So, we can assume that $p \geq 4$. Suppose first that $|V(P_0)| \leq 3$ whence $|Z_1| \geq |Z_2| \geq \delta - 2$. Clearly (Z_1, Z_2) is a nontrivial $(Q^1, 5)$-scheme and by Lemma 3, $|V^1| \geq \min\{4\delta - 8, 5\delta - 14\}$. If $\delta \geq 5$ then $|V^1| \geq 3\delta - 5$ holds immediately. Otherwise, using 4-connectedness of G, it is easy to see that $|V^1| \geq 7 \geq 3\delta - 5$. So, assume that $|V(P_0)| \geq 4$. Then P and Q^1 are connected by at least four pairwise disjoint paths R_1, R_2, R_3, R_4. If $|Z_1| \leq 3$, then as in Lemma 12 (Case 1.2.1), in $(V(P_0))$ each two vertices are connected by a path of length at least $\delta - 3$ and due to R_1, R_2, R_3, R_4, $|V^1| \geq 3(\delta - 1) + 1 > 3\delta - 5$. Let $|Z_1| \geq 4$. By similar arguments, $|Z_3| \geq 4$. Clearly $|N(w_i) \cap V(P_0)| \geq \delta - |Z_3|$ $(i = 1, \ldots, s)$ and by Lemma C, in $(V(P_0))$ any two vertices are joined by a path of length at least $\delta - |Z_3|$. If $\delta - |Z_3| \geq 1$, then we can assume w.l.o.g. (see the proof of Lemma 12, Case 1.2.2.1) that $(\{L(R_1)\}, \{L(R_2)\}, Z_1, Z_3)$ is a nontrivial $(Q^1, \delta - |Z_3| + 2)$-scheme and by Lemma 7,

$$|V^1| \geq 3\delta - 5 + \min\{|Z_3| - 4, (\delta - |Z_3| - 1)(|Z_3| - 4)\} \geq 3\delta - 5.$$

Otherwise $|Z_1| \geq |Z_3| \geq \delta$ and (Z_1, Z_3) is a nontrivial $(Q^1, p + 1)$-scheme.
By Lemma 3,

\[|V^1| \geq 3\delta - 5 + \min\{\delta + p + 1, (\delta - 1)(p - 2) + 3\} \geq 3\delta - 5. \]

Case 2. There is a path between \(V(P) \) and \(S - V^1 \) avoiding \(V^1 \).

We can argue exactly as in proof of Lemma 12 (Case 2).

Proof of Lemma 14. Let \(S, Q_1^1, ..., Q_m^1 \) and \(V_1^1, ..., V_m^1, V^1 \) are as defined in Definition B. The existence of \(Q_1^1, ..., Q_m^1 \) follows from Lemma 10. Put \(|V^1 \cap S| = f \). Clearly \(f \geq 2m \). We can assume that \(\delta - \kappa \geq 2 \) since otherwise \(|A^1| \leq 3 \) (by the hypothesis) and it is not hard to see that \((A^1 - V^1) \) is edgeless. Let \(P = w_1w_2...w_p \) be a longest path in \((A^1 - V^1) \). By the hypothesis, \(p + |V^1| - f \leq |A^1| \leq 3\delta - 3\kappa \) implying that

\[|V^1| \leq 3\delta - 3\kappa - p + f. \] \hspace{1cm} (5)

Put

\[Z_1 = N(y_1) \cap V^1, \quad Z_2 = N(y_p) \cap V^1, \]
\[Z_{1,i} = Z_1 \cap V_i^1, \quad Z_{2,i} = Z_2 \cap V_i^1 \quad (i = 1, ..., m). \]

Clearly \(Z_1 = \cup_{i=1}^m Z_{1,i} \) and \(Z_2 = \cup_{i=1}^m Z_{2,i} \). If \(p \leq 1 \), then \((A^1 - V^1) \) is edgeless and we are done. Let \(p \geq 2 \).

Case 1. \(p = 2 \).

In this case, \(|Z_i| \geq \delta - \kappa + f - 1 \) \((i = 1, 2)\). We claim that

\[|V_i^1| \geq \frac{3}{2}(|Z_{1,i}| + |Z_{2,i}|) - 2 \quad (i = 1, ..., m). \] \hspace{1cm} (6)

Indeed, if \((Z_{1,i}, Z_{2,i})\) is a nontrivial \((Q_i^1, 3)\)-scheme, then (6) holds by Lemma 3, immediately. Otherwise it can be checked easily. By summing,

\[|V^1| = \sum_{i=1}^m |V_i^1| \geq \frac{3}{2}(|Z_1| + |Z_2|) - 2m \geq 3\delta - 3\kappa - p + f + 1, \]
contradicting (5).

Case 2. \(p \geq 3 \).

Let \(w_1, w_2, ..., w_s \) be the elements of \((N(y_p) \cap V(P))^+\) occurring on \(\overrightarrow{P} \) in a consecutive order. Put \(P_0 = w_1 \overrightarrow{P} w_s \) and \(p_0 = |V(P_0)| \). As in proof of Lemma 12 (see (4)), we can assume w.l.o.g. that for each \(i \in \{1, ..., s\} \),

\[|Z_i| \geq |N(w_i) \cap V^1|, \quad N(w_i) \cap V(P) \subseteq V(P_0). \] \hspace{1cm} (7)

Choose \(w \in \{w_1, ..., w_s\} \) as to maximize \(|N(w_i) \cap V^1|, \ i = 1, ..., s \). Set

\[Z_3 = N(w) \cap V^1, \quad Z_{3,i} = Z_3 \cap V_i^1 \quad (i = 1, ..., m). \]
Clearly \(|Z_1| \geq |Z_2| \geq \delta - \kappa + f - p_0 + 1\) and \(|Z_3| \geq |Z_2| \geq \delta - \kappa + f - p_0 + 1\).

We claim that

\[|V_i^1| \geq 2(|Z_{i,1}| + |Z_{2,i}|) - 3 \quad (i = 1, \ldots, m). \tag{8} \]

Indeed, if \((Z_{1,i}, Z_{2,i})\) is a nontrivial \((Q_1^1, p + 1)\)-scheme, then (8) holds by Lemma 3 and the fact that \(p \geq 3\). Otherwise, it can be checked easily. Analogously,

\[|V_i^1| \geq 2(|Z_{i,1}| + |Z_{3,i}|) - 3 \quad (i = 1, \ldots, m). \tag{9} \]

Case 2.1. \(p_0 \leq m + 1\).

Using (8) and summing, we get

\[|V^1| = \sum_{i=1}^m |V_i^1| \geq 2(|Z_1| + |Z_2|) - 3m \geq 4(\delta - \kappa + f + p_0 + 1) - 3m \]

\[= (3 \delta - 3 \kappa - p + f + 1) + (\delta - \kappa) + (p - p_0) + 3(m - p_0 + 1) + 3(f - 2m). \]

Recalling that \(\delta - \kappa \geq 2\), \(p \geq p_0\), \(m - p_0 + 1 \geq 0\) and \(f \geq 2m\), we get

\[|V^1| \geq 3 \delta - 3 \kappa - p + f + 1, \]

contradicting (5).

Case 2.2. \(p_0 \geq m + 2\).

Assume first that \(\delta - \kappa + f - |Z_3| \leq 1\). Then \(|Z_1| \geq |Z_3| \geq \delta - \kappa + f - 1\).

Using (8) and summing, we get

\[|V^1| = \sum_{i=1}^m |V_i^1| \geq 4(\delta - \kappa + f - 1) - 3m \]

\[\geq (3 \delta - 3 \kappa - p + f + 1) - (\delta - \kappa - 2) + 3(f - m - 1) \geq 3 \delta - 3 \kappa - p + f + 1, \]

contradicting (5). Now assume that \(\delta - \kappa + f - |Z_3| \geq 2\). Clearly \(|N(w_i) \cap V(P_0)| \geq \delta - \kappa + f - |Z_3| (i = 1, \ldots, s)\). In particular, for \(i = s\), we have \(s \geq \delta - \kappa + f - |Z_3|\). By Lemma C, in \(\langle V(P_0) \rangle\) any two vertices are joined by a path of length at least \(\delta - \kappa + f - |Z_3|\). Observing that \(p \geq s + 1 \geq \delta - \kappa + f - |Z_3| + 1\) and combining it with (5), we get

\[|V^1| \leq 2 \delta - 2 \kappa + |Z_3| - 1. \tag{10} \]

Case 2.2.1. \(p_0 \leq f\).

Since \(\kappa \geq f \geq p_0\), there are vertex disjoint paths \(R_1, \ldots, R_{p_0}\) connecting \(V(P_0)\) and \(V^1\). Let \(F(R_i) \in V(P_0)\) and \(L(R_i) \in V^1 (i = 1, \ldots, p_0)\). Since \(p_0 \geq m + 2\), we can assume w.l.o.g. that either \(L(R_i) \in V^1_1 (i = 1, 2)\) and \(L(R_i) \in V^1_2 (i = 3, 4)\) or \(L(R_i) \in V^1_1 (i = 1, 2, 3)\).

Case 2.2.1.1. \(L(R_i) \in V^1_1 (i = 1, 2)\) and \(L(R_i) \in V^1_2 (i = 3, 4)\).

Assume w.l.o.g. that \(R_1 \cup R_3\) does not intersect \(y_1 \overline{F} w_1^-\) (see the proof of Lemma 12, Case 1.2.2.1.1). Because of the symmetry, we can distinguish the
following six subcases.

Case 2.2.1.1. $|Z_{11}| \leq 2, |Z_{12}| \leq 2, |Z_{31}| \leq 2, |Z_{32}| \leq 2$.

Due to R_1, R_2 and R_3, R_4 we have $|V_i^1| \geq \delta - \kappa + f - |Z_3| + 3 \ (i = 1, 2)$. Using (9) for each $i \in \{3, ..., m\}$ and summing, we get

$$|V^1| = |V_1^1| + |V_2^1| + \sum_{i=3}^{m} |V_i^1| \geq 2(\delta - \kappa + f - |Z_3| + 3) + 2(|Z_1| - |Z_{11}| - |Z_{12}| + |Z_3| - |Z_{31}| - |Z_{32}|) - 3(m - 2) = (2\delta - 2\kappa + |Z_1|) + (|Z_1| - |Z_{11}| - |Z_{12}|) + (2f - 3m) + 12 - (|Z_{11}| + |Z_{12}| + 2|Z_{31}| + 2|Z_{32}|) > 2\delta - 2\kappa + |Z_3|,$$

contradicting (10).

Case 2.2.1.1.2. $|Z_{11}| \geq 3, |Z_{12}| \leq 2, |Z_{31}| \leq 2, |Z_{32}| \leq 2$.

Clearly either $\{L(R_1), Z_{11}\}$ or $\{L(R_2), Z_{11}\}$ is a nontrivial $(Q_1, \delta - \kappa + f - |Z_3| + 2)$-scheme. By Lemma 4, $|V_1^1| \geq (\delta - \kappa + f - |Z_3| + 2) + 2|Z_{11}| - 3$. Due to R_1 and R_2 we have $|V_2^1| \geq \delta - \kappa + f - |Z_3| + 3$. Using also (9) for each $i \in \{3, ..., m\}$ and summing, we get

$$|V^1| \geq 2(\delta - \kappa + f - |Z_3| + 2) + 2|Z_{11}| - 2 + \sum_{i=3}^{m} (2(|Z_{1i}| + |Z_{3i}|) - 3) = (2\delta - 2\kappa + |Z_1|) + (|Z_1| - |Z_{11}| - |Z_{12}|) + 2f - 3m + (|Z_{11}| + 8) - (|Z_{12}| + 2|Z_{31}| + 2|Z_{32}|) > 2\delta - 2\kappa + |Z_3|,$$

contradicting (10).

Case 2.2.1.1.3. $|Z_{11}| \geq 3, |Z_{12}| \geq 3, |Z_{31}| \leq 2, |Z_{32}| \leq 2$.

Clearly either $\{L(R_1), Z_{11}\}$ or $\{L(R_2), Z_{11}\}$ is a nontrivial $(Q_1, \delta - \kappa + f - |Z_3| + 2)$-scheme. By the same reason, either $\{L(R_3), Z_{12}\}$ or $\{L(R_4), Z_{12}\}$ is a nontrivial $(Q_2, \delta - \kappa + f - |Z_3| + 2)$-scheme too. By Lemma 4,

$$|V_i^1| \geq (\delta - \kappa + f - |Z_3| + 2) + 2|Z_{1i}| - 3 \quad (i = 1, 2).$$

Using (9) for each $i \in \{3, ..., m\}$ and summing,

$$|V^1| \geq |V_1^1| + |V_2^1| + \sum_{i=3}^{m} |V_i^1| \geq 2(\delta - \kappa + f - |Z_3| + 2) + 2(|Z_{11}| + |Z_{12}|) - 6 + 2(|Z_1| - |Z_{11}| - |Z_{12}| + |Z_3| - |Z_{31}| - |Z_{32}|) - 3(m - 2) = (2\delta - 2\kappa + |Z_1|) + 2f - 3m + (|Z_1| + 4) - 2(|Z_{31}| + |Z_{32}|) \geq 2\delta - 2\kappa + |Z_3|,$$
contradicting (10).

Case 2.2.1.4. \(|Z_{11}| \geq 3, |Z_{12}| \leq 2, |Z_{31}| \geq 3, |Z_{32}| \leq 2\).

Since \((Z_{11}, Z_{31})\) is a nontrivial \((Q_1^*, \delta - \kappa + f - |Z_3| + 2)\)-scheme, we can apply Lemma 3,

\[
|V_1^i| \geq 2(|Z_{11}| + |Z_{31}|) + (\delta - \kappa + f - |Z_3|) - 5 + \\
\min\{4, \frac{1}{2}(\delta - \kappa + f - |Z_3| - 2)(|Z_{11}| + |Z_{31}| - 6)\}
\]

\[
\geq (\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 5.
\]

Due to \(R_3\) and \(R_4\), we have \(|V_2^i| \geq \delta - \kappa + f - |Z_3| + 3\). Using (9) for each \(i \in \{3, ..., m\}\) and summing, we get

\[
|V^i| \geq 2(\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 2 \\
+ 2(|Z_1| - |Z_{11}| - |Z_{12}| + |Z_3| - |Z_{31}| - |Z_{32}|) - 3(m - 2)
\]

\[
= (2\delta - 2\kappa + |Z_1|) + 2f - 3m + (|Z_1| + 4) - 2(|Z_{12}| + |Z_{32}|) \geq 2\delta - 2\kappa + |Z_3|,
\]

contradicting (10).

Case 2.2.1.5. \(|Z_{11}| \geq 3, |Z_{12}| \geq 3, |Z_{31}| \geq 3, |Z_{32}| \leq 2\).

As in Case 2.2.1.4, \(|V_1^i| \geq (\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 5\). By Lemma 4, \(|V_2^i| \geq (\delta - \kappa + f - |Z_3| + 2) + 2|Z_{12}| - 3\). Using (9) for each \(i \in \{3, ..., m\}\) and summing, we get

\[
|V^i| \geq 2(\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) + 2|Z_{12}| - 6 \\
+ 2(|Z_1| - |Z_{11}| - |Z_{12}| + |Z_3| - |Z_{31}| - |Z_{32}|) - 3(m - 2)
\]

\[
\geq (2\delta - 2\kappa + |Z_1|) + 2f - 3m + |Z_1| - |Z_{32}| > 2\delta - 2\kappa + |Z_3|,
\]

contradicting (10).

Case 2.2.1.6. \(|Z_{11}| \geq 3, |Z_{12}| \geq 3, |Z_{31}| \geq 3, |Z_{32}| \geq 3\).

As in Case 2.2.1.4,

\[
|V_1^i| + |V_2^i| \geq 2(\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) + 2(|Z_{12}| + |Z_{32}|) - 10.
\]

Using (9) for each \(i \in \{3, ..., m\}\) and summing, we get

\[
|V^i| \geq 2(\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}| + |Z_{12}| + |Z_{32}|) - 10
\]
+2(|Z_1| - |Z_{11}| - |Z_{12}| + |Z_3| - |Z_{31}| - |Z_{32}|) - 3(m - 2)

= (2\delta - 2\kappa + |Z_{11}|) + 2f - 3m + |Z_1| - 4 \geq 2\delta - 2\kappa + |Z_3|,

ccontrary to (10).

Case 2.2.1.2. $L(R_i) \in V_i^1$ ($i = 1, 2, 3$).

Assume w.l.o.g. that $R_1 \cup R_2$ does not intersect $y_1 \overrightarrow{P} w_1$ (see the proof of Lemma 12, Case 1.2.2.1).

Case 2.2.1.2.1. $|Z_{11}| \leq 3$, $|Z_{31}| \leq 3$.

Due to R_1, R_2, R_3 we have $|V_1^1| \geq 2(\delta - \kappa + f - |Z_3| + 2) + 1$. Using (9) for each $i \in \{2, \ldots, m\}$ and summing, we get

$$|V_1^1| \geq |V_1^1| + \sum_{i=2}^m |V_i^1|$$

$$
\geq 2(\delta - \kappa + f - |Z_3| + 2) + 1 + 2(|Z_1| - |Z_{11}| + |Z_3| - |Z_{31}|) - 3(m - 1)
$$

$$
= (2\delta - 2\kappa + |Z_{11}|) + (|Z_1| - |Z_{11}|) + (2f - 3m)
$$

$$
+ 8 - (|Z_{11}| + 2|Z_{31}|) \geq 2\delta - 2\kappa + |Z_3|,
$$

which contradicts (10).

Case 2.2.1.2.2. $|Z_{11}| \leq 3$, $|Z_{31}| \geq 4$.

Since $|Z_{31}| \geq 4$, we can suppose w.l.o.g. that $F(R_3) = w$. Then clearly $\{(L(R_1)), \{L(R_2)\}, Z_{31}\}$ is a nontrivial $(Q_{11}, \delta - \kappa + f - |Z_3| + 2)$-scheme and by Lemma 6, $|V_1^1| \geq 2(\delta - \kappa + f - |Z_3| + 2) + 2|Z_{31}| - 5$. Using (9) for each $i \in \{2, \ldots, m\}$ and summing, we get

$$|V_1^1| \geq 2(\delta - \kappa + f - |Z_3| + 2) + 2|Z_{31}| - 5 + 2(|Z_1| - |Z_{11}| + |Z_3| - |Z_{31}|) - 3(m - 1)
$$

$$
= (2\delta - 2\kappa + |Z_{11}|) + (|Z_1| - |Z_{11}|) + 2f - 3m + 2 - |Z_{11}| \geq 2\delta - 2\kappa + |Z_3|,
$$

contradicting (10).

Case 2.2.1.2.3. $|Z_{11}| \geq 4$, $|Z_{31}| \geq 4$.

For some R_1, R_2, R_3, say R_1, we have $F(R_1) \notin \{y_1, w\}$. Then clearly $\{(L(R_1)), Z_{11}, Z_{31}\}$ is a nontrivial $(L_{11}, \delta - \kappa + f - |Z_3| + 2)$-scheme. By Lemma 5,

$$|V_1^1| \geq \min\{2(\delta - \kappa + f - |Z_3| + 2) + 2(|Z_{11}| + |Z_{31}| + 1) - 11,
$$

$$
(\delta - \kappa + f - |Z_3| + 2)(|Z_{11}| + |Z_{31}| - 2)/2 + 1\}$$

19
\[= 2(\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 7 \]
\[+ \min\{2, (\delta - \kappa + f - |Z_3| - 2)(|Z_{11}| + |Z_{31}| - 6)/2\} \]
\[\geq 2(\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 7. \]

Further, applying (9) for each \(i \in \{2, \ldots, m\} \) and summing, we get
\[|V^1| \geq 2(\delta - \kappa + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 7 \]
\[+ 2(|Z_1| - |Z_{11}| + |Z_3| - |Z_{31}|) - 3(m-1) \]
\[= (2\delta - 2\kappa + |Z_1|) + |Z_1| - 4 + 2f - 3m \geq 2\delta - 2\kappa + |Z_3|, \]
contradicting (10).

Case 2.2.2. \(p_0 \geq f + 1 \).

Let \(S = \{v_1, \ldots, v_\kappa\} \) and \(V^1 \cap S = \{v_1, \ldots, v_\kappa\} \). Consider a new graph \(G' = G - \{v_{f+1}, v_{f+2}, \ldots, v_\kappa\} \). Add new vertices \(a_1, a_2 \) in \(G' \) and join \(a_1 \) to all vertices of \(V^1 \), and join \(a_2 \) to all vertices of \(V(P_0) \). Set \(G'' = \langle V(G') \cup \{a_1, a_2\} \rangle \).

Clearly \(G'' \) is \(f \)-connected. Let \(V_0 \) be a minimum cut-set in \(G'' \) that separates \(a_1 \) and \(a_2 \). Since \(a_1 \) and \(a_2 \) are connected in \(G'' - \{v_2, \ldots, v_f\} \), we have \(V_0 \neq \{v_1, \ldots, v_f\} \). Observing also that \(A^1 \) is an endfragment for \(G' \), we can suppose that \(|V_0| \geq f + 1 \) and therefore there exist \(f + 1 \) internally disjoint paths in \(G'' \) joining \(a_1 \) and \(a_2 \). This means that in \(G' \) (as well as in \(G \)) there exist vertex disjoint paths \(R_1, R_2, \ldots, R_{f+1} \) connecting \(V^1 \) and \(V(P_0) \). Then using the fact that \(f + 1 \geq m + 2 \), we can argue exactly as in Case 2.2.1. \(\Delta \)

Proof of Lemma 15. Let \(Q^1_1, \ldots, Q^1_m \) and \(V^1_1, \ldots, V^1_m \). \(V^1 \) be as defined in Definition B. The existence of \(Q^1_1, \ldots, Q^1_m \) follows from Lemma 10. Further, let \(P = y_1 \ldots y_p, Z_1, Z_2 \) and \(Z_{1,i}, Z_{2,i} \ (i = 1, \ldots, m) \) be as defined in Lemma 14.

Case 1. \(f \geq 3 \).

Suppose first that \(\delta - \kappa \leq 1 \). Combining it with \(\delta > 3\kappa/2 - 1 \), we get \(\kappa = 3, \delta = 4, f = 3 \) and \(m = 1 \). Then it is easy to show that \(|V^1| \geq 5 = 3\delta - 3\kappa + f - 1 \) and we are done. Now let \(\delta - \kappa \geq 2 \). If \(p \leq 1 \), then clearly \(< A^1 - V^1 \) is edgeless and we are done. Further, if \(p = 2 \), then \(|V^1| \geq 3\delta - 3\kappa + f - 1 \) (see the proof of Lemma 14, Case 1). Let \(p \geq 3 \).

Case 1.1. \(p = 3 \).

In this case, \(P = y_1 y_2 y_3 \). If \(y_1 y_3 \notin E(G) \), then we can argue as in case \(p = 2 \). Let \(y_1 y_3 \in E(G) \) implying that \(|Z_i| \geq \delta - \kappa + f - 2 \ (i = 1, 2) \). Applying (8) (see the proof of Lemma 14) and summing, we get
\[|V^1| \geq \sum_{i=1}^m |V^1_i| \geq 2(|Z_1| + |Z_2|) - 3m \geq 4(\delta - \kappa + f - 2) - 3m \]
= (3\delta - 3\kappa + f - 1) + (3f - 3m - 5) + \delta - \kappa - 2.

If \(f = 3 \), then \(m = 1 \) and \(3f - 3m - 5 \geq 1 \). If \(f \geq 4 \), then \(3f - 3m - 5 \geq f + m - 5 \geq 0 \). In both cases the desired result follows immediately.

Case 1.2. \(p \geq 4 \).

Let \(P_0, p_0, w, Z_3 \) and \(Z_{3,i} \) \((i = 1, \ldots, m)\) are as defined in Lemma 14 (Case 2). Clearly \(|Z_1| \geq |Z_2| \geq \delta - \kappa + f - p_0 + 1 \) and \(|Z_1| \geq |Z_3| \geq \delta - \kappa + f - p_0 + 1 \). By the definition of \(Q^1_1, \ldots, Q^1_m \), we have \(|V^1_i| \geq 3 \) \((i = 1, \ldots, m)\). We claim that

\[
|V^1_i| \geq 2(|Z_{1,i}| + |Z_{2,i}|) - 2 \quad (i = 1, \ldots, m). \tag{11}
\]

Indeed, if \((Z_{1,i}, Z_{3,i})\) is not a nontrivial \((Q^1_i, p + 1)\)-scheme, then (11) can be checked easily. Otherwise, by Lemma 3,

\[
|V^1_i| \geq \min\{2(|Z_{1,i}| + |Z_{2,i}|) + p - 4, \frac{1}{2}(p + 1)(|Z_{1,i}| + |Z_{2,i}| - 2) + 1\}
= 2(|Z_{1,i}| + |Z_{2,i}|) - 2 + \min\{p - 2, \frac{1}{2}(p - 3)(|Z_{1,i}| + |Z_{2,i}| - 4) + p - 4\}.
\]

If \(|Z_{1,i}| + |Z_{2,i}| \geq 4\), then (11) holds immediately. If \(|Z_{1,i}| + |Z_{2,i}| = 3\), then (11) follows from \(|V^1_i| \geq 2(|Z_{1,i}| + |Z_{2,i}|) - 5/2\). Finally, if \(|Z_{1,i}| + |Z_{2,i}| \leq 2\), then (11) follows from \(|V^1_i| \geq 3\). By a similar way,

\[
|V^1_i| \geq 2(|Z_{1,i}| + |Z_{3,i}|) - 2 \quad (i = 1, \ldots, m). \tag{12}
\]

If \(p_0 \leq m + 1 \), then using (11) and summing, we get

\[
|V^1| = \sum_{i=1}^{m} |V^1_i| \geq 2(|Z_1| + |Z_2|) - 2m \geq 4(\delta - \kappa + f - p_0 + 1) - 2m
= (3\delta - 3\kappa + f - 1) + \delta - \kappa + 3f - 4p_0 - 2m + 5
\geq (3\delta - 3\kappa + f - 1) + 4(m - p_0 + 1) + (\delta - \kappa + 1) > 3\delta - 3\kappa + f - 1.
\]

Now let \(p_0 \geq m + 2 \). If \(\delta - \kappa + f - |Z_3| \leq 1 \), then \(|Z_1| \geq |Z_3| \geq \delta - \kappa + f - 1\) and by (11),

\[
|V^1| = \sum_{i=1}^{m} |V^1_i| \geq 2(|Z_1| + |Z_2|) - 2m \geq 4(\delta - \kappa + f - 1) - 2m
= (3\delta - 3\kappa + f - 1) + (\delta - \kappa - 2) + 3f - 2m - 2 > 3\delta - 3\kappa + f - 1.
\]

Let \(\delta - \kappa + f - |Z_3| \geq 2 \). By the choice of \(w \),

\[
|N(w_i) \cap V(P_0)| \geq \delta - \kappa + f - |Z_3| \quad (i = 1, \ldots, s).
\]
In particular, for \(i = s \), we have \(s \geq \delta - \kappa + f - |Z_3| \). By Lemma C, in \(\langle V(P_0) \rangle \) any two vertices are joined by a path of length at least \(\delta - \kappa + f - |Z_3| \).

Case 1.2.1. \(p_0 \leq f \).

Let \(G' = G - (S - V^1) \). Since \(G' \) is \(p_0 \)-connected, there exist vertex disjoint paths \(R_1, R_2, \ldots, R_{p_0} \) connecting \(V(P_0) \) and \(V^1 \). Let \(F(R_i) \in V(P_0) \) and \(L(R_i) \in V^1 \) (\(i = 1, \ldots, p_0 \)). Since \(p_0 \geq m + 2 \), we can assume w.l.o.g. that either \(L(R_i) \in V^1_i \) (\(i = 1, 2 \)) and \(L(R_i) \in V^2_i \) (\(i = 3, 4 \)) or \(L(R_i) \in V^1_i \) (\(i = 1, 2, 3 \)).

Case 1.2.1.1. \(L(R_i) \in V^1_i \) (\(i = 1, 2 \)) and \(L(R_i) \in V^2_i \) (\(i = 3, 4 \)).

Assume w.l.o.g. that \(R_1 \cup R_2 \) does not intersect \(w_1 P_0 w_s \) (see the proof of Lemma 12, Case 1.2.2.1).

Case 1.2.1.1.1. \(|Z_{11}| \leq 2, |Z_{12}| \leq 2, |Z_{31}| \leq 2, |Z_{32}| \leq 2 \).

Due to \(R_1, R_2 \) and \(R_3, R_4 \), we have \(|V^1_i| \geq \delta - \kappa + f - |Z_3| + 3 \) (\(i = 1, 2 \)). Using (12) for each \(i \in \{3, \ldots, m\} \) and summing, we get

\[
|V^1| = |V^1_1| + |V^2_1| + \sum_{i=3}^{m} |V^1_i|
\geq 2(\delta - \kappa + f - |Z_3| + 3) + 2(|Z_1| - |Z_{11}| - |Z_{12}| + |Z_3| - |Z_{31}| - |Z_{32}|) - 2(m - 2)
\geq (3\delta - 3\kappa + f - 1) + (|Z_1| - |Z_{11}| - |Z_{12}|) + (|Z_3| - \delta + \kappa - f + p_0 - 1) + (|Z_1| - |Z_3|) + (2f - 2m - p_0) + 12 - |Z_{11}| - |Z_{12}| - 2|Z_{31}| - 2|Z_{32}|.
\]

Since \(|Z_3| \geq \delta - \kappa + f - p_0 + 1 \) and \(2f - 2m - p_0 \geq f - p_0 \geq 0 \), we have \(|V^1| \geq 3\delta - 3\kappa + f - 1 \).

Case 1.2.1.1.2. Either \(|Z_{11}| \geq 3 \) or \(|Z_{12}| \geq 3 \) or \(|Z_{31}| \geq 3 \) or \(|Z_{32}| \geq 3 \).

In this case we can argue exactly as in proof of lemma 14 (Cases 2.2.1.1.2-2.2.1.1.6).

Case 1.2.1.2. \(L(R_i) \in V^1_i \) (\(i = 1, 2, 3 \)).

Assume w.l.o.g. that \(R_1 \cup R_2 \) does not intersect \(y_1 P w_1 \) (see the proof of Lemma 12, Case 1.2.2.1).

Case 1.2.1.2.1. \(|Z_{11}| \leq 3, |Z_{31}| \leq 3 \).

Due to \(R_1, R_2, R_3 \), we have \(|V^1_i| \geq 2(\delta - \kappa + f - |Z_3| + 2) + 1 \). Using (12) for each \(i \in \{2, \ldots, m\} \) and summing, we get

\[
|V^1| = |V^1_1| + \sum_{i=2}^{m} |V^1_i|
\geq 2(\delta - \kappa + f - |Z_3| + 2) + 1 + 2(|Z_1| - |Z_{11}| + |Z_3| - |Z_{31}|) - 2(m - 1)
\]

22
\[= (3\delta - 3\kappa + f - 1) + (|Z_3| - \delta + \kappa - f + p_0 - 1)\]
\[+ (|Z_1| - |Z_3|) + (|Z_1| - |Z_{11}|) + 9 - |Z_{11}| - 2|Z_{31}| + 2f - 2m - p_0\]
\[\geq (3\delta - 3\kappa + f - 1) + 2f - 2m - p_0.\]

Since \(2f - 2m - p_0 \geq f - p_0 \geq 0\), we have \(|V^i| \geq 3\delta - 3\kappa + f - 1.\)

Case 1.2.1.2.2. Either \(|Z_{11}| \geq 4\) or \(|Z_{31}| \geq 4.\)

In this case we can argue exactly as in proof of Lemma 14 (Cases 2.2.1.2.2-2.2.1.2.3).

Case 1.2.2. \(p_0 \geq f + 1.\)

As in proof of Lemma 14 (Case 2.2.2), there are \(f + 1\) vertex disjoint paths \(R_1, R_2, ..., R_{f+1}\) connecting \(V^i\) and \(V(P_0)\). Let \(F(R_i) \in V(P_0)\) and \(L(R_i) \in V^i (i = 1, ..., f + 1).\) Since \(f \geq 3\) and \(f + 1 \geq 2m + 1\), we can assume w.l.o.g. that either \(L(R_i) \in V^i_1 (i = 1, 2, 3, 4)\) or \(L(R_i) \in V^i_1 (i = 1, 2, 3)\) and \(L(R_i) \in V^i_2 (i = 4, 5).\)

Case 1.2.2.1. \(L(R_i) \in V^i_1 (i = 1, 2, 3, 4).\)

Assume w.l.o.g. that \(R_1 \cup R_2\) dose not intersect \(y_1 \overline{P} w_1^{-}\) (see the proof of Lemma 12, Case 1.2.2.1).

Case 1.2.2.1.1. \(\delta - \kappa + f - |Z_3| \leq 1.\)

Clearly \(|Z_1| \geq |Z_3| \geq \delta - \kappa + f - 1.\) Using (12) and summing,
\[|V^i| = \sum_{i=1}^m |V^i_1| \geq 2(|Z_1| + |Z_3|) - 2m \geq 4(\delta - \kappa + f - 1) - 2m\]
\[= (3\delta - 3\kappa + f - 1) + \delta - \kappa + 3f - 2m - 3 \geq 3\delta - 3\kappa + f - 1.\]

Case 1.2.2.1.2. \(\delta - \kappa + f - |Z_3| \geq 2.\)

By the choice of \(w,\) \(|\{w_i \cap V(P_0)\}| \geq \delta - \kappa + f - |Z_3| (i = 1, ..., s).\) In particular, when \(i = s,\) we have \(s \geq \delta - \kappa + f - |Z_3|).\) By Lemma C, in \(\langle V(P_0)\rangle\) any two vertices are joined by a path of length at least \(\delta - \kappa + f - |Z_3|).\) If \(|Z_3| \leq 3,\) then due to \(R_1, R_2, R_3, R_4,\)
\[|V^i| \geq |V^i_1| \geq 3(\delta - \kappa + f - |Z_3| + 2) + 1\]
\[= (3\delta - 3\kappa + f - 1) + 2f + 8 - 3|Z_3|.\]

If \(|Z_3| \leq 3,\) then clearly we are done. Otherwise, we have \(|Z_1| \geq |Z_3| \geq 4.\)

Case 1.2.2.1.2.1. \(|Z_{11}| \leq 3, \ |Z_{31}| \leq 3.\)

As in previous case, \(|V^i_1| \geq 3(\delta - \kappa + f - |Z_3| + 2) + 1.\) Using (12) for each \(i \in \{2, ..., m\},\) we get
|V^1| ≥ 3(δ - κ + f - |Z_3| + 2) + 1 + 2(|Z_1| - |Z_{11}| + |Z_3| - |Z_{31}|) - 2(m - 1)
= (3δ - 3κ + f - 1) + 2|Z_1| - |Z_3| + 2f - 2m + 10 - 2|Z_{11}| - 2|Z_{31}| > 3δ - 3κ + f - 1.

Case 1.2.2.1.2.2. |Z_{11}| ≥ 4, |Z_{31}| ≤ 3.
We can assume w.l.o.g. that (Q_1, δ - κ + f - |Z_3| + 2)-scheme. By Lemma 8,

|V^1_i| ≥ 3(δ - κ + f - |Z_3| + 2) + 2|Z_{11}| - 7.

Using (11) for each i ∈ {2, ..., m} and summing, we get

|V^1| ≥ 3(δ - κ + f - |Z_3| + 2) + 2|Z_{11}| - 7 + 2(|Z_1| - |Z_{11}| + |Z_3| - |Z_{31}|) - 2(m - 1)
= (3δ - 3κ + f - 1) + (|Z_1| - |Z_3|) + |Z_1| + 2f - 3m + 2 - 2|Z_{31}| > 3δ - 3κ + f - 1.

Case 1.2.2.2. |Z_{11}| ≥ 4, |Z_{31}| ≥ 4.
We can assume w.l.o.g. that (Q_1, δ - κ + f - |Z_3| + 2)-scheme. By Lemma 7,

|V^1_i| ≥ 3(δ - κ + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 9
+ min\{2, \frac{1}{2}(δ - κ + f - |Z_3| - 2)(|Z_{11}| + |Z_{31}| - 8)\}
≥ 3(δ - κ + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 9.

Using (12) for each i ∈ {2, ..., m} and summing, we get

|V^1| ≥ 3(δ - κ + f - |Z_3|) + 2(|Z_{11}| + |Z_{31}|) - 9
+ 2(|Z_1| - |Z_{11}|) + |Z_3| - |Z_{31}|) - 2(m - 1)
= (3δ - 3κ + f - 1) + 2|Z_1| - |Z_3| + 2f - 2m - 6 ≥ 3δ - 3κ + f - 1.

Case 1.2.2.2. L(R_i) ∈ V^1_i (i = 1, 2, 3) and L(R_i) ∈ V^1_i (i = 4, 5)
In this case we can argue as in Case 1.2.2.1.

Case 2. f = 2 and S ∉ V^1.
Suppose first that δ - κ ≤ 1. Since δ > 3κ/2 - 1, we have |A^1| ≥ δ - κ + 1 ≥ 2.
Then it is easy to show that |V^1| ≥ 4 ≥ 3δ - 3κ + 1 and we are done. So, we can assume that δ - κ ≥ 2. Let S = {v_1, ..., v_κ} and F(Q^1_i) = v_1, L(Q^1_i) = v_2. Assume w.l.o.g. that v_3 ∈ S - V^1. Clearly v_3 ∉ V^1. Consider the graph G' = G - {v_4, v_5, ..., v_κ}. If there are two paths in (A^1 ∪ {v_1, v_2, v_3}) joining v_3 to Q^1_i and having only v_3 in common, then the existence of Q^1_0 follows easily.
Otherwise there is a cut-set in \(A \cup \{v_1, v_2, v_3\} \) consisting of a single vertex \(z \) that separates \(v_3 \) and \(V(Q_1) - z \). Then \(\{v_1, v_2, z\} \) is an another cut-set of \(G' \), contradicting the definition of \(A \). So, the existence of \(Q_0 \) is proved. By the definition of \(Q_1 \), we have \(|Q_1| \leq |Q_1|\). The notation \(P = y_1...y_p \), \(Z_1 \), \(Z_2 \) defined for \(Q^i_1 \), we will use here for \(Q_0^i \). Let \(M_1 = v_1Q_{0}^{-1}v_3 \) and \(M_2 = v_3Q_{0}^{-1}v_2 \). In addition, put \(Z_{1,i} = Z_1 \cap V(M_i) \) and \(Z_{2,i} = Z_2 \cap V(M_i) \) \((i = 1, 2)\). If \(p \leq 1 \), then \(\langle A - V(Q_1) \rangle \) is edgeless. Let \(p \geq 2 \). If \(v_3 \in Z_1 \cup Z_2 \), then we can argue as in Case 1. Let \(v_3 \notin Z_1 \cup Z_2 \). Denote by \(M_1' \) and \(M_2' \) the minimal subsegments in \(M_1 \) and \(M_2 \), respectively, such that \(Z_{1,1} \cup Z_{2,1} \subseteq V(M_1') \) and \(Z_{1,2} \cup Z_{2,2} \subseteq V(M_2') \).

Case 2.1. \(p = 2 \).
Clearly \(|Z_i| \geq \delta - \kappa + 2 \) \((i = 1, 2)\). Applying (6) to \(M_1' \) and \(M_2' \), we get

\[
|V| = |V_1'| \geq |V(Q_1)| \geq |V(M_1)| + |V(M_2)| + 1
\]

\[
\geq 3(|Z_1| + |Z_2|)/2 - 3 \geq 3(\delta - \kappa + 2) - 3 > 3\delta - 3\kappa + 1.
\]

Case 2.2. \(p = 3 \).
Clearly \(|Z_i| \geq \delta - \kappa + 1 \) \((i = 1, 2)\). Applying (8) to \(M_1' \) and \(M_2' \), we get

\[
|V| \geq |V(Q_1)| \geq |V(M_1')| + |V(M_2')| + 1
\]

\[
\geq 2(|Z_1| + |Z_2|) - 5 \geq 4(\delta - \kappa + 1) - 5 \geq 3\delta - 3\kappa + 1.
\]

Case 2.3. \(p \geq 4 \).
Let \(P_0, P_1, w, Z_3 \) are as defined in Lemma 14 (Case 2). If \(p_0 \leq 3 \), then \(|Z_1| \geq |Z_2| \geq \delta - \kappa + 1 \) and we can argue as in Case 2.2. Let \(p_0 \geq 4 \). Further, if \(\delta - \kappa + 3 - |Z_3| \leq 1 \), then \(|Z_1| \geq |Z_3| \geq \delta - \kappa + 2 \) and we can argue as in Case 2.1. Let \(\delta - \kappa + 3 - |Z_3| \geq 2 \). Since \(p_0 \geq 4 \), there are vertex disjoint paths \(R_1, R_2, R_3, R_4 \) in \(G' \) connecting \(P_0 \) and \(Q_0^i \) \((i = 2)\), otherwise, there exist a cut-set of \(G' \) of order 3 contradicting the definition of \(A \). Let \(F(R_i) \in V(P) \) and \(L(R_i) \in V(Q_0) \) \((i = 1, 2, 3, 4)\). Clearly, \(|N(w_i) \cap V(P_0)| \geq \delta - \kappa + 3 - |Z_3| \) for each \(i \in \{1, ..., s\} \). In particular, for \(i = s \), we have \(s \geq \delta - \kappa + 3 - |Z_3| \). By Lemma C, in \((V(P_0))\) any two vertices are joined by a path of length at least \(\delta - \kappa + 3 - |Z_3| \). Assume w.l.o.g. that \(R_1 \cup R_2 \) does not intersect \(y_1Pw_1^{-1} \) \((see the proof of Lemma 12, Case 1.2.2.1)\) and does not contain \(w \). Let \(I_1, ..., I_t \) be the minimal segments of \(Q_0 \) connecting two vertices of \(Z_1 \cup Z_3 \cup Z_4 \cup Z_5 \), where \(Z_4 = \{L(R_1)\} \) and \(Z_5 = \{L(R_2)\} \). Assume w.l.o.g. that \(v_3 \) belongs to \(I_1 \). Put \(I_1 = v'\overline{Q_1}v'' \). If \(v_3 = v' \) or \(v_3 = v'' \), then we can argue as in Case 1. Let \(v_3 \neq v' \) and \(v_3 \neq v'' \). Choose a longest path \(Q_0 \) joining \(v' \) and \(v'' \) and passing through \(V(R_i) \cup \bigcup_{i=1}^{t} V(R_i) \). Clearly, \(|Q_0| \geq \delta - \kappa + 5 - |Z_3| \) if \(v', v'' \) belong to different \(Z_1, Z_3, Z_4, Z_5 \) and \(|Q_0| \geq 2 \), otherwise. Since \(Q_1 \) is extreme with ends \(v_1, v_2 \) and intermediate vertex \(v_3 \), we have \(|I_i| \geq \delta - \kappa + 5 - |Z_3| \) if the ends of \(I_i \) belong to different \(Z_1, Z_3, Z_4, Z_5 \) and \(|I_i| \geq 2 \) for each \(i \in \{2, ..., t\} \), otherwise.
Form a new path Q_{10} from Q_{1}^1 by replacing I_1 with Q_0. Clearly (Z_1, Z_3, Z_4, Z_5) is a nontrivial $(Q_{10}, \delta - \kappa + 5 - |Z_3|)$-scheme and we can argue as in Case 1.2.2.1.

Case 3. $f = 2$ and $S \subseteq V^\dagger$.

Let P_0, p_0, w and Z_3 are as defined in Lemma 14 (Case 2). If $p_0 \leq 2$, then $|Z_1| \geq |Z_2| \geq \delta - \kappa + 1$ and we can argue as in proof of Lemma 14 (Case 1). Let $p_0 \geq 3$. Since $\kappa \geq 3$, there are vertex disjoint paths R_1, R_2, R_3 connecting V^\dagger and $V(P_0)$ (see the proof of Lemma 14, Case 2.2.2). Let $F(R_i) \in V(P_0)$ and $L(R_i) \in V^\dagger$ $(i = 1, 2, 3)$. If $\delta - \kappa - |Z_3| + 2 \leq 1$, then $|Z_1| \geq |Z_3| \geq \delta - \kappa + 1$ and again we can argue as in the case $p_0 \leq 2$. Let $\delta - \kappa - |Z_3| + 2 \geq 2$. By the choice of w, $|N(w_i^-) \cap V(P_0)| \geq \delta - \kappa + f - |Z_3|$ $(i = 1, \ldots, s)$. In particular, for $i = s$, $s \geq \delta - \kappa - |Z_3| + 2$. By Lemma C, in $(V(P_0))$ any two vertices are joined by a path of length at least $\delta - \kappa - |Z_3| + 2$. If $|Z_1| \leq 2$, then $|Z_3| \leq 2$. Since $\{L(R_1)\}$, $\{L(R_2)\}$, $\{L(R_3)\}$ is a nontrivial $(Q^1_1, \delta - \kappa - |Z_3| + 4)$-scheme, we have $|V^\dagger| \geq 2(\delta - \kappa - |Z_3| + 4) + 1 \geq 2(\delta - \kappa + 2) + 1 \geq 2\delta - 2\kappa + f + 1$. Let $|Z_1| \geq 3$. Analogously, $|Z_2| \geq 3$. Assume w.l.o.g. that $F(R_1) = w$. In addition, we can assume w.l.o.g. that $R_2 \cup R_3$ does not intersect $y_1 \overline{Pw\overline{w}}$ (see the proof of Lemma 12, Case 1.2.2.1). So, $(Z_1, Z_3, \{L(R_1)\})$ is a nontrivial $(Q^1_1, \delta - \kappa - |Z_3| + 4)$-scheme and by Lemma 5,

\[
|V^\dagger| \geq \min\{2(|Z_1| + |Z_3| + 1) + 2(\delta - \kappa - |Z_3| + 4) - 11, \\
\frac{1}{2}(\delta - \kappa - |Z_3| + 4)(|Z_1| + |Z_3| - 2) + 1\}
\]

\[
\geq \min\{2(|Z_3| + 1) + 2(\delta - \kappa) - 2|Z_3| - 3, (\delta - \kappa - |Z_3| + 4)(|Z_3| - 1) + 1\}
\]

\[
\geq 2\delta - 2\kappa + 2|Z_3| - 3 + \min\{2, (\delta - \kappa - |Z_3|)(|Z_3| - 3)\} \geq 2\delta - 2\kappa + f + 1.
\]

Lemma 15 is proved.Δ

5 Proofs of theorems

Proof of Theorem 2. If $\delta \leq 3\kappa/2 - 1$, then we are done by Lemma 11. Let $\delta > 3\kappa/2 - 1$. We will use the notation defined in Definitions A and B. In addition, let A^\dagger is defined with respect to a minimum cut-set $S = \{v_1, \ldots, v_\kappa\}$. The existence of $Q^1_1, \ldots, Q^\dagger_\kappa$ and C^*, C^{**} follows from Lemma 10. By Lemmas 12 and 14, $A^\dagger \subseteq V^\dagger$ and $(A^\dagger - V^\dagger)$ is edgeless. Since $Q^1_1, \ldots, Q^\dagger_\kappa$ is extreme, $\langle S - V(C^*) \rangle$ is edgeless too. Recalling the definition of C^{**}, we can state that $A^\dagger \subseteq V(C^{**})$ and in addition, $A^\dagger - V(C^{**})$ and $S - V(C^{**})$ both are edgeless.

Case 1. $A^\dagger - V(C^{**}) = \emptyset$.

If $S - V(C^{**}) = \emptyset$, then C^{**} is a Hamilton Cycle. Let $S - V(C^{**}) \neq \emptyset$ and choose any $w \in S - V(C^{**})$. Clearly $N(w) \subseteq V(C^{**})$. If $N(w)^+ \cup \{w\}$ is independent, then $\alpha \geq \delta + 1$, contradicting the hypothesis. Otherwise we can form
(by standard arguments) a cycle with vertex set $V(C^*) \cup \{w\}$, contradicting the definition of C^*.

Case 2. $A^\uparrow - V(C^*) \neq \emptyset$.

Let $z \in A^\uparrow - V(C^*)$. If $N(z) \subseteq V(C^*)$, then we can argue as in Case 1. Otherwise $N(z) = D_1 \cup D_2$, where $D_1 \subseteq V(C^*)$ and $D_2 \subseteq S - V(C^*)$. If $|A^\uparrow| \leq \kappa$, then $n \leq |A^\uparrow| + |A^\uparrow| + \kappa \leq 3\delta - \kappa$ and by Theorem B, G is hamiltonian.

Let $|A^\uparrow| \geq \kappa + 1$. If $N(v_i) \cap A^\uparrow = \emptyset$ for some $i \in \{1, \ldots, \kappa\}$, then $S - v_i$ is a cut-set of order $\kappa - 1$, a contradiction. Therefore,

$$N(v_i) \cap A^\uparrow \neq \emptyset \quad (i = 1, \ldots, \kappa).$$

Put $N_i = N(v_i) \cap A^\uparrow$ ($i = 1, \ldots, \kappa$). If $|\cup_{i \in J} N_i| < |J| \leq \kappa$ for a subset $J \subseteq \{1, \ldots, \kappa\}$, then $(\cup_{i \in J} N_i) \cup \{v \in S | i \notin J\}$ is a cut-set of G with at most $\kappa - 1$ vertices, a contradiction. So, we can assume that $|\cup_{i \in J} N_i| \geq |J|$ for each $J \subseteq \{1, \ldots, \kappa\}$. By Hall’s [5] Theorem, the collection N_1, \ldots, N_κ has a system of distinct representatives. Set $D_2 = \{v_{i_1}, v_{i_2}, \ldots, v_{i_\kappa}\}$ and let $w_{i_1}, \ldots, w_{i_\kappa}$ is a system of distinct representatives of $N_{i_1}, \ldots, N_{i_\kappa}$. Put $D_3 = \{w_{i_1}, \ldots, w_{i_\kappa}\}$. Since $A^\uparrow \subseteq V(C^*)$, we have $D_3 \subseteq V(C^*)$ and it is easy to see that $(D_2 \cup D_3)^+ \cup \{z\}$ is an independent set of order at least $\delta + 1$, a contradiction.

Proof of Theorem 3. If $\delta \leq 3\kappa/2 - 1$, then we are done by Lemma 11. Let $\delta > 3\kappa/2 - 1$. By Lemma 12, $A^\uparrow \subseteq V^\uparrow$. The existence of Q_1^1, \ldots, Q_m^1 and C^*, C^* (see Definition B) follows from Lemma 10. Let A^\uparrow is defined with respect to a minimum cut-set $S = \{v_1, \ldots, v_\kappa\}$. Put $f = |V^\uparrow \cap S|$. By Theorem G, $c \geq \min\{n, 3\delta - 3\}$. If $c \geq n$, then we are done. Let $c \geq 3\delta - 3$. Further, if $3\delta - 3 \geq 4\delta - 2\kappa$, i.e. $\delta \leq 2\kappa - 3$, then $c \geq 3\delta - 3 \geq 4\delta - 2\kappa$. Let $\delta \geq 2\kappa - 2$ which implies $|A^\uparrow| \geq 3\delta - 3\kappa + 1 \geq 2\delta - \kappa - 1$. Recalling also that $|A^\uparrow| \geq |A^\uparrow|$, we obtain

$$|A^\uparrow| \geq 3\delta - 3\kappa + 1 \geq 2\delta - \kappa - 1.$$

If $A^\uparrow \subseteq V^\uparrow$, then by (14), $c \geq |A^\uparrow| + |A^\uparrow| + 2 \geq 4\delta - 2\kappa$. Let

$$A^\uparrow \not\subseteq V^\uparrow.$$

Case 1. $f \geq 3$.

By Lemma 15, either $(A^\uparrow - V^\uparrow)$ is edgeless or $|V^\uparrow| \geq 3\delta - 3\kappa + f - 1$. If $(A^\uparrow - V^\uparrow)$ is edgeless, then we can argue as in proof of Theorem 2. Let $|V^\uparrow| \geq 3\delta - 3\kappa + f - 1$. By (14),

$$c \geq |A^\uparrow| + |V^\uparrow| \geq (2\delta - \kappa - 1) + (3\delta - 3\kappa + f - 1)$$

$$= (4\delta - 2\kappa) + (\delta - 2\kappa + 2) + f - 4 \geq 4\delta - 2\kappa + f - 4.$$

If $f \geq 4$, then we are done. Let $f = 3$. Then $c \geq |A^\uparrow| + |V^\uparrow \cap S| - 2 + |V^\uparrow|$ and the desired result can be obtained by a similar calculation as above, if either
$|A^1| \geq 2\delta - \kappa$ or $|V^1 \cap S| \geq 3$. So, we can assume that $|A^1| = |A^1| = 2\delta - \kappa - 1$ and $|V^1 \cap S| = 2$. Let $V^1 \cap S = \{v_1, v_2\}$ and $V^1 \cap S = \{v_1, v_2, v_3\}$. Consider the graph $G' = G - \{v_4, ..., v_\kappa\}$. By (15), there exists a connected component H of $G' - Q_1^1$ intersecting A^1. Put $M = N(V(H))$ and let $x_1, ..., x_q$ be the elements of $M \cap V^1$ occurring on \overline{Q}_1^1 in a consecutive order. Since G' is 3-connected, we have $q \geq 3$. Further, $|x_i \overline{Q}_1^1 x_{i+1}| \geq 2$ ($i = 1, ..., q - 1$), since Q_1^1 is extreme. Put

$$M^* = \{x \in M \cap V^1 | x^- \notin S \text{ or } x^+ \notin S\}.$$

If $M^* = \emptyset$, then it is easy to check that $|V^1 \cap S| \geq 4$, contradicting the fact that $f = 3$. Let $M^* \neq \emptyset$ and choose any $u \in M^*$. Assume w.l.o.g. that $u^+ \notin S$. Choose $w \in V(H)$ such that $uw \in E(G)$. Then by deleting uw^+ from Q_1^1 and adding uw, we obtain a pair of vertex disjoint paths $v_1 \overline{Q}_1^1 w$ and $v_2 \overline{Q}_1^1 u^+$ both having one end in S and the other in A^1. These two paths can be extended from w and u^+ (using only vertices of A^1) to a pair of maximal vertex disjoint paths $R_1 = v_1 R_1 w_1$ and $R_2 = v_2 R_2 w_2$. Add an extra edge $v_1 v_2$ to G and consider the path $L = w_1 R_1 v_1 R_2 w_2$ in G^*. Label $L = \xi_1 \xi_2 ... \xi_h$ according to the direction on L and put

$$d_1 = |N(\xi_1) \cap V(L)|, \quad d_2 = |N(\xi_2) \cap V(L)|.$$

If ξ_1 and ξ_h have a common neighbor v_i in $\{v_4, ..., v_\kappa\}$, then $v_1 R_1 \xi_1 v_i \xi_h R_2 v_2$ is a path contradicting the choice of Q_1^1. Otherwise, $d_1 + d_2 \geq 2\delta - \kappa + 3$. Since $|V(L)| \leq |A^1| + 3 = 2\delta - \kappa + 2$, i.e. $d_1 + d_2 \geq |V(L)| + 1$, it can be shown by standard arguments that $\xi_1 \xi_{i+1} \in E(G)$ and $\xi_h \xi_1 \in E(G)$ for some distinct $i = i_1, i_2$. Assume w.l.o.g. that $\xi_i, \xi_{i+1} \neq v_1 v_2$ and $\xi_i \in \xi_1 L v_1$. Then $v_1 L \xi_{i+1} \xi_1 L \xi_i \xi_h L v_2$ is a path longer than Q_1^1 contradicting the definition of Q_1^1.

Case 2. $f = 2$ and $S \subseteq V^1$.

By Lemma 15, either $\langle A^1 - V^1 \rangle$ is edgeless or $|V^1| \geq 2\delta - 2\kappa + 3$. In the first case we can argue as in proof of Theorem 2. In the second case,

$$c \geq |A^1| + |S| + |V^1| - f \geq (2\delta - \kappa - 1) + \kappa + (2\delta - 2\kappa + 3) - 2 = 4\delta - 2\kappa.$$

Case 3. $f = 2$ and $S \not\subseteq V^1$.

By Lemma 15, either $\langle A^1 - V(Q_0^1) \rangle$ is edgeless or $|V^1| \geq 3\delta - 3\kappa + 1$.

Case 3.1. $\langle A^1 - V(Q_0^1) \rangle$ is edgeless.

By the definition of C_0^*, we have $A^1 \subseteq V(C_0^*)$. Besides, $A^1 - V(C_0^*)$ and $S - V(C_0^*)$ both are independent in G. If $A^1 - V(C_0^*) \neq \emptyset$, then we can argue as in proof of Theorem 2 (Case 2). Otherwise

$$c \geq |A^1| + |A^1| + 3 \geq 2(2\delta - \kappa - 1) + 3 > 4\delta - 2\kappa.$$
Case 3.2. \(|V^1| \geq 3\delta - 3\kappa + 1\).

Let \(R_1 = v_1 \overrightarrow{R_1} v_2, R_2 = v_2 \overrightarrow{R_2} v_3, L = \xi_1 \ldots \xi_4\) and \(d_1, d_2\) be as defined in Case 1 with respect to \(Q_1\). Put \(|V^1 \cap S| = f\). Using (14), we get

\[
c \geq |A^1| + |V^1| + f' - 2 \geq 2\delta - \kappa - 1 + 3\delta - 3\kappa + 1 + f' - 2
\]

\[
= (4\delta - 2\kappa) + \delta - 2\kappa + 2 + f' - 4 \geq 4\delta - 2\kappa + f' - 4.
\]

(16)

If \(f' \geq 4\), then we are done. Let \(f' \leq 3\). Similar to (16), we can state that

\[
\text{if } |A^1| \geq 2\delta - \kappa, \text{ then } c \geq 4\delta - 2\kappa + f' - 3,
\]

(17)

\[
\text{if } |A^1| \geq 2\delta - \kappa + 1, \text{ then } c \geq 4\delta - 2\kappa
\]

(18)

Case 3.2.1. \(f' = 3\).

If \(|A^1| \geq 2\delta - \kappa\), then by (17) we are done. Let \(|A^1| = 2\delta - \kappa - 1\), implying also \(|A^1| = 2\delta - \kappa - 1\). If \(\xi_1\) and \(\xi_4\) have a common neighbor \(v_i\) in \(\{v_4, \ldots, v_\kappa\}\), then \(v_1 \overrightarrow{R_1} v_4 \overrightarrow{R_2} v_3\) is a path contradicting the choice of \(Q_1\). Otherwise we have \(d_1 + d_2 \geq 2\delta - \kappa + 1\). In addition, \(|V(L)| \leq |A^1| + 2 = 2\delta - \kappa + 1\). If \(|V(L)| < 2\delta - \kappa + 1\), then as in Case 1, \(d_1 + d_2 \geq |V(L)| + 1\) and we can form a path longer than \(Q_1\), connecting \(v_1, v_2\) and passing through \(A^1\), contrary to the definition of \(Q_1\). Hence, \(|V(L)| = 2\delta - \kappa + 1\). This means that \(v_3\) is adjacent to both \(\xi_1\) and \(\xi_4\). Besides, each \(v_i\) \((i \in \{4, \ldots, \kappa\})\) is adjacent either to \(\xi_1\) or \(\xi_4\). Assume w.l.o.g. that \(v_4 \overrightarrow{R_2} v_3\) and \(v_2 \overrightarrow{R_1} v_1\). Since \(|A^1| = |A^1|\), we can state that \(A^1\) and \(A^i\) are both endfragments. Then taking \(\{Y_1, Y_2\}\) instead of \(\{Q_1, \ldots, Q_m\}\) and \(A^1\) instead of \(A^1\), we can argue as in case \(f' \geq 4\).

Case 3.2.2. \(f' = 2\).

If \(|A^1| \geq 2\delta - \kappa + 1\), then we are done by (18). Let \(|A^1| \leq 2\delta - \kappa\) implying also \(|A^1| \leq 2\delta - \kappa + 2\). Further, we have \(d_1 + d_2 \geq 2\delta - \kappa + 2\).

Case 3.2.2.1. \(|A^1| = 2\delta - \kappa - 1\).

In this case, \(|A^1| = 2\delta - \kappa - 1\). Clearly \(|V(L)| \leq |A^1| + 2 = 2\delta - \kappa + 1\) implying that \(d_1 + d_2 \geq |V(L)| + 1\). Then we can form (as above) a path contradicting the definition of \(Q_1\).

Case 3.2.2.2. \(|A^1| = 2\delta - \kappa\).

In this case, \(2\delta - \kappa - 1 \leq |A^1| \leq 2\delta - \kappa\). If \(|A^1| = 2\delta - \kappa - 1\), then \(|V(L)| \leq |A^1| + 2 = 2\delta - \kappa + 1\) and hence \(d_1 + d_2 \geq |V(L)| + 1\). Then again we can form a path contradicting the choice of \(Q_1\). Now let \(|A^1| = 2\delta - \kappa\). It follows that \(A^1\) and \(A^i\) are both endfragments. On the other hand, \(|V(L)| \leq |A^1| + 2 = 2\delta - \kappa + 2\).
implying that \(d_1 + d_2 \geq |V(L)| \). Thus we can argue as in Case 3.2.1. \(\Delta \)

Proof of Theorem 4. If \(\delta \leq 3k/2 - 1 \), then we are done by Lemma 11. Let \(\delta > 3k/2 - 1 \). By Lemma 14, \(\langle A^1 - V^1 \rangle \) is edgeless.

Case 1. \(A^1 \subseteq V^1 \).
If \(A^1 \subseteq V^1 \), then

\[
c \geq |A^1| + |A^1| + 2 \geq (3\delta - \kappa - 3) + (\delta - \kappa + 1) + 2 = 4\delta - 2\kappa.
\]

Let \(A^1 \not\subseteq V^1 \). By Lemma 13, \(|V^1| \geq 3\delta - 5 \) and hence

\[
c \geq |V^1| + |A^1| \geq 3\delta - 5 + \delta - \kappa + 1 \geq 4\delta - 2\kappa.
\]

Case 2. \(A^1 \not\subseteq V^1 \).
By the definition of \(C^{**} \), \(\langle A^1 - V(C^{**}) \rangle \) is edgeless and hence \(N(z) \subseteq V(C^{**}) \subseteq S \) for each \(z \in A^1 - V(C^{**}) \). If \(N(z) \subseteq V(C^{**}) \), then by standard arguments, \(\alpha \geq \delta + 1 \), a contradiction. Let \(N(z) = D_1 \cup D_2 \), where \(D_1 \subseteq V(C^{**}) \) and \(D_2 \subseteq S - V(C^{**}) \). Set \(D_2 = \{ v_i_1, ..., v_i_t \} \) and \(N_i = N(v_i) \cap A^1 (i = i_1, ..., i_t) \). As in proof of Theorem 2, the collection \(N_i \) has a system of distinct representatives \(w_i_1, ..., w_i_t \). Put \(D_3 = \{ w_i_1, ..., w_i_t \} \). Let \(D_4 = D_1 \cup D_5 \), where \(D_4 \subseteq V(C^{**}) \) and \(D_3 = D_3 - D_4 \). By the definition of \(Q^1 \) and \(Q^1_m \), it is easy to see that \((D_1 \cup D_4) \cup D_3 \cup \{ z \} \) is an independent set with at least \(\delta + 1 \) vertices, contradicting \(\delta \geq \alpha \). \(\Delta \)

Proof of Theorem 5. If \(\delta \leq 3k/2 - 1 \), then we are done by Lemma 11. Let \(\delta > 3k/2 - 1 \). The existence of \(Q^1 \) and \(C^*, C^{**} \) follows from Lemma 10. As in proof of theorem 3, \(\delta - 2\kappa + 2 \geq 0 \), implying in particular that \(\delta - \kappa \geq 2 \). By Lemma 13, either \(A^1 \subseteq V^1 \) or \(|V^1| \geq 3\delta - 5 \).

Case 1. \(A^1 \subseteq V^1 \).
If \(A^1 \subseteq V^1 \), then

\[
c \geq |A^1| + |V^1| + 2 \geq (3\delta - \kappa - 3) + (3\delta - 3\kappa + 1) + 2 = 4\delta - 2\kappa.
\]

If \(|V^1| \geq 3\delta - 5 \), then

\[
c \geq |V^1| + |A^1| \geq 3\delta - 5 + 3\delta - 3\kappa + 1 \geq 4\delta - 2\kappa.
\]

Case 2. \(A^1 \not\subseteq V^1 \).
If either \(\langle A^1 - V^1 \rangle \) or \(\langle A^1 - V(Q^1) \rangle \) is edgeless, then we can argue as in proof of Theorem 4. Otherwise, by Lemma 15, either \(f = 2 \) and \(|V^1| \geq 2\delta - 2\kappa + 3 \) or \(f \geq 3 \) and \(|V^1| \geq 3\delta - 3\kappa + f - 1 \geq 2\delta - 2\kappa + 3 \), where \(f = |V^1 \cap S| \). If \(A^1 \subseteq V^1 \), then
\[c \geq |A^\uparrow| + |V^\downarrow| \geq 3\delta - \kappa - 3 + 2\delta - 2\kappa + 3 \geq 4\delta - 2\kappa. \]

Let \(A^\uparrow \not\subseteq V^\uparrow \). By Lemma 13, \(|V^\uparrow| \geq 3\delta - 5 \). If \(f = 2 \), then
\[c \geq |V^\uparrow| + |V^\downarrow| - 2 \geq (3\delta - 5) + (2\delta - 2\kappa + 3) - 2 \]
\[= (4\delta - 2\kappa) + \delta - 4 \geq 4\delta - 2\kappa. \]

If \(f \geq 3 \), then
\[c \geq |V^\uparrow| + |V^\downarrow| - f \geq (3\delta - 5) + 3\delta - 3\kappa + f - 1 - f \]
\[= (4\delta - 2\kappa) + (\delta - 2\kappa + 2) + (\delta + \kappa - 8) \geq 4\delta - 2\kappa. \]

\[\Delta \]

Proof of Theorem 1. If \(\delta \leq 3\kappa/2 - 1 \), then we are done by Lemma 11. Let \(\delta > 3\kappa/2 - 1 \). Let \(A^\uparrow \) be an endfragment of \(G \) with \(|A^\uparrow| \geq |A^\downarrow| \). Then the desired result follows from Theorems 2-5. \(\Delta \)

Remark. The limit examples below show that Theorem 1 is best possible in all respects. The limit example 4\(K_2 + K_3 \) shows that 4-connectedness can not be replaced by 3-connectedness. Further, the limit example \(H(1, 1, 5, 4) \) shows that the condition \(\delta \geq \alpha \) cannot be replaced by \(\delta \geq \alpha - 1 \). Finally, the limit example 5\(K_2 + K_3 \) shows that the bound 4\(\delta - 2\kappa \) cannot be replaced by 4\(\delta - 2\kappa + 1 \).

6 Acknowledgments

The author wishes to thank V.V. Mkrtchyan for his careful reading and his corrections for the manuscript.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications. Macmillan, London and Elsevier, New York (1976).

[2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2(1952) 69-81.

[3] R. Häggkvist, G.G. Nicoghossian (now - Zh.G. Nikoghosyan), A remark on hamiltonian cycles, J. Combin. Theory, Ser. B 30 (1981) 118-120.

[4] R. Häggkvist, C. Thomassen, Circuits through specified edges, Discrete Math. v.41 (1982) 29-34.

[5] Ph. Hall, On representatives of subsets, J. Lond. Math. Soc. 10 (1935) 26-30.

[6] Y.O. Hamidone, On critically h-connected graphs, Discrete Math. 32 (1980) 257-262.
[7] C.St.J.A. Nash-Williams, Edge-disjoint hamiltonian cycles in graphs with vertices of large valency, in: L. Mirsky (Ed), Studies in Pure Mathematics, Academic Press, San Diego, London (1971) 157-183.

[8] Zh.G. Nikoghosyan, On maximal cycle of a graph, DAN Arm.SSR v.LXXII 2 (1981) 82-87 (in Russian).

[9] Zh.G. Nikoghosyan, On maximal cycle of a graph, Studia Sci. Math. Hungar. 17 (1982) 251-282 (in Russian).

[10] Zh.G. Nikoghosyan, A sufficient condition for a graph to be hamiltonian, Matematicheskie voprosy kibernetiki I vichislitelnoy tekhniki v. XIV (1985) 34-54 (in Russian).

[11] Zh.G. Nikoghosyan, On maximal cycles in graphs, DAN Arm.SSR v.LXXXI 4 (1985) 166-170 (in Russian).

[12] H.J. Veldman, Non-κ-critical vertices in graphs, Discrete Math. v.44 1 (1983) 105-110.

[13] H.-J. Voss, Bridges of longest circuits and of longest paths in graphs, Beiträge zur graphen theorie and deren Anwendungen, Vorgetr. auf dem int. Kolloq., Oberhof DDR (1977) 275-286.

[14] H.-J. Voss, C. Zuluaga, Maximale gerade und ungerade Kreise in Graphen I, Wiss. Z. Tech. Hochschule Ilmenau, 23 (1977) 57-70.

[15] D.R. Woodall, Circuits containing specified edges, J. Combin. Theory, B22 3 (1977) 274-278.