Rise or sink: spherical intruder in density frequency dependent static granular fluid

Sparisoma Viridi
Nuclear Physics and Biophysics Research Division
Institut Teknologi Bandung, Bandung 40132, Indonesia

Seramika Ari Wahjoedi
Theoretical High Energy Physics Research Division
Institut Teknologi Bandung, Bandung 40132, Indonesia

Suparno Satira
Theoretical High Energy Physics Research Division
Institut Teknologi Bandung, Bandung 40132, Indonesia

Freddy P. Zen
Theoretical High Energy Physics Research Division
Institut Teknologi Bandung, Bandung 40132, Indonesia

July 6, 2011

Abstract

A simple model for intruder in vibrating granular bed is constructed by introducing a term that governs frequency dependent granular bed density. Varying the vibrating frequency will drive the buoyant force acting on the intruder by the granular bed. Swapped regions of rising and sinking intruder compared to other reported result have been found.

Keywords: frequency dependence, granular bed, spherical intruder.
1 Introduction

A phenomenon known as Brazil nut effect (BNE) is introduced descriptively by a work via molecular dynamics (MD) simulation for one and several intruders [1]. The density difference between intruders and granular bed plays important role in size separation of the grains [2], which determines whether a larger intruder could sink instead of rising [3]. Vibrating amplitude, for binary mixture, could drive the state of the mixture into BNE or its reverse (reverse Brazil nut effect, RBNE) [4, 5]. It is interesting to consider that granular bed acts as fluid when the vibrating amplitude and frequency are not zero, but when these parameters are zero, it should be a solid. A simple model that treats the granular bed as fluid is presented with modification to the granular fluid density, which is previously independent from vibrating amplitude and frequency [6]. This model is simpler than that is already reported [7].

2 Theory

A spherical intruder with radius R and density ρ is placed in a granular fluid with density ρ_g. As it moves upward or downward in the granular fluid it will be under influence of earth gravitational force F_G

$$F_G = -\frac{4}{3} \pi \rho g R^3,$$ \hspace{1cm} (1)

buoyant force F_B

$$F_B = \frac{4}{3} \pi \rho_g g R^3,$$ \hspace{1cm} (2)

and viscous drag force F_D

$$F_D = -6\pi \eta R \frac{dy}{dt},$$ \hspace{1cm} (3)

with upward y-direction is taken to be positive. Constants g and η represent earth gravitational acceleration and granular fluid viscosity, respectively. There are no additional complex forces, such as thermal buoyancy force, compressive force, and dynamic tensile force [7].

Granular fluid density is defined as
\[\rho_g = (\rho + \rho_0 \Gamma) \exp(-\Gamma), \]
\[(4)\]

where \(\rho_0 \) is density of one particle of granular bed and \(\Gamma \) is dimensionless acceleration

\[\Gamma = \frac{4\pi^2 f^2 A}{g}, \]
\[(5)\]

with \(A \) is vibration amplitude and \(f \) is vibration frequency, which is common used in indicating the vibration influence [4, 5, 7].

Using Newton’s second law of motion with Equation (1)-(5) will give a differential equation

\[\frac{d^2 y}{dt^2} + c_1 \frac{dy}{dt} + c_2 = 0, \]
\[(6)\]

with

\[c_1 = \frac{6\pi \eta R}{m}, \]
\[(7)\]

\[c_2 = \frac{4\pi [\rho - (\rho + \rho_0 \Gamma) \exp(-\Gamma)] R^3}{3m}. \]
\[(8)\]

Equation (6) has solution

\[y(t) = \frac{1}{c_1} \left(\frac{c_2}{c_1} - v_0 \right) \exp(-c_1 t) + \left(\frac{c_2}{c_1} \right) t + \left[y_0 + \frac{1}{c_1} \left(v_0 - \frac{c_2}{c_1} \right) \right], \]
\[(9)\]

where \(v_0 \) and \(y_0 \) are initial velocity and position, respectively. Since the intruder always has no initial condition or \(v_0 = 0 \), then Equation (9) will be reduced to

\[y(t) = \left(\frac{c_2}{c_1} \right) \exp(-c_1 t) + \left(\frac{c_2}{c_1} \right) t + \left(y_0 - \frac{c_2}{c_1} \right), \]
\[(10)\]

3 Results and discussion

Because of physical properties of intruder and granular bed Equation (7) restricts that \(c_1 > 0 \). For \(c_2 \) it can be positive or negative according to
Equation (8) since the intruder can have larger or smaller density value than density of one particle of granular bed.

From Equation (10) velocity of the intruder can be found, which is

\[v(t) = \left(\frac{c_2}{c_1} \right) [1 - \exp(-c_1 t)], \]

(11)

which tells us that there is a terminal velocity that can have positive and negative value. Positive and negative value means a BNE and a RBNE, respectively. Using Equation (7) and (8), Equation (11) can be rewritten in such form that shows the influence of density difference between intruder and one particle of granular bed, which is

\[v(t) \propto [\rho - (\rho_0 + \rho_0 \Gamma) \exp(-\Gamma)], \]

(12)

which shows that whether the intruder will rise or sink is dependent explicitly on \(\Gamma \).

Figure 1 shows the room parameter of \(\frac{d}{d_0} \) against \(\frac{m}{m_0} \) where the regions for BNE and RBNE are swapped as reported in [8], but the dependence of crossover line to \(\Gamma \) is similar to what is found by other [5]. As \(\Gamma \) increases, the gradient of transition line in room \(\frac{d}{d_0} \) against \(\frac{m}{m_0} \) also increases. For \(\Gamma \) about 8 in the range used in Figure 1 gives no RBNE states (not shown).

Rise time for the intruder can be found by setting initial and final value of \(y \) in the Equation (11). In this case \(y(0) = y_0 \) and \(y(\tau) = y_f \) will be used to obtain the rise time \(\tau \).

\[
y_f = \left(\frac{c_2}{c_1} \right) \exp(-c_1 \tau) + \left(\frac{c_2}{c_1} \right) \tau + \left(y_0 - \frac{c_2}{c_1} \right) \\
\Rightarrow y_f - y_0 + \frac{c_2}{c_1} = \left(\frac{c_2}{c_1} \right) \exp(-c_1 \tau) + \left(\frac{c_2}{c_1} \right) \tau \\
\Rightarrow 1 + \left(\frac{c_1^2}{c_2} \right) (y_f - y_0) = c_1 \tau + \exp(-c_1 \tau). \]

(13)

Considered that there is \(\tau_0 \) where \(\tau >> \tau_0 \) will reduce Equation (13) into

\[\tau \approx \frac{1}{c_1} + \left(\frac{c_1}{c_2} \right) (y_f - y_0), \]

(14)

which can be written in
\[
\tau_+ \approx \frac{1}{c_1} + \frac{c_3}{[\rho - (\rho + \rho_0 \Gamma) \exp (-\Gamma)]},
\] (15)

with
\[
c_3 = \frac{3mc_1(y_f - y_0)}{4\pi R^3}.
\] (16)

And for \(\tau << \tau_0\) will reduce Equation (13) into
\[
\tau_- \approx -\frac{1}{c_1} \ln \left\{ 1 + \frac{c_1 c_3}{[\rho - (\rho + \rho_0 \Gamma) \exp (-\Gamma)]} \right\}.
\] (17)

Figure 2 shows unexplained results that there are negative rise time for both calculations using Equation (15) and (17). There are two things to do, solve Equation (13) directly without approximation or redefine Equation (4) for the granular bed density.

4 Conclusion

A model treating granular bed as static fluid has already done. Room parameters for BNE and RBNE shows swapped regions as reported by other. Rise time also has negative values. Further investigation is needed.

Acknowledgements

Authors would like to thank to Alumni Association Research Grant in year 2010 for financial support to this work.

References

[1] Anthony Rosato, Katherine J. Strandburg, Friedrich Prinz, and Robert H. Swendsen. Why the brazil nuts are on top: size segregation of particulate matter by shaking. Physical Review Letters, 58(10):1038–1040, 1987.

[2] Matthias E. Möbius, Benjamin E. Lauderdale, Sidney R. Nagel, and Heinrich M. Jaeger. Size separation of granular particles. Nature, 414(6861):270, 2001.
[3] Troy Shinbrot and Fernando J. Muzzio. Reverse buoyancy in shaken granular beds. *Physical Review Letters*, 81(20):4365–4368, 1998.

[4] A. P. J. Breu, H.-M. Ensner, C. A. Kruelle, and I. Rehberg. Reversing brazil-nut effect: Competition between percolation and condensation. *Physical Review Letters*, 90(1):014302, 2003.

[5] Massimo Pica Ciamarra, Maria Domenica Da Vizia, and Annalisa Fierro. Granular species segregation under vertical tapping: Effect of size, density, friction, and shaking amplitude. *Physical Review Letters*, 90(1):014302, 2003.

[6] Sparisoma Virid, Nuning Nuraini, Mohammad Samy, Ayu Fitriyanti, Ika Kusuma Adriani, Nurwenda Amini, and Ganjar Santoso. Rise time of spherical intruder in granular fluid. *e-print*, arXiv:1105.2987v1, 2011.

[7] Meheboob Alam, L. Trujillo, and H. J. Herrmann. Hydrodynamic theory for reverse brazil nut segregation and the non-monotonic ascension dynamics. *Journal of Statistical Physics*, 124(2-4):587–623, 2006.

[8] Daniel C. Hong and Paul V. Quinn. Reverse brazil nut problems: Competition between percolation and condensation. *Physical Review Letters*, 86(15):3423–3426, 2001.
Figure 1: Room parameter of d/d_0 against m/m_0 for Γ: (a) 0.5, (b) 1, (c) 2, and (d) 4. BNE and RBNE are indicated by \circ and \square, respectively.
Figure 2: Rise time for τ_- (○) and τ_+ (□).