Selective boryl-anion migration in a vinyl sp²-sp³ diborane induced by soft borane Lewis acids

Valerio Fasano, Jessica Cid, Richard J. Procter, Emily Ross, and Michael J. Ingleson

Abstract: A novel intramolecular 1,2-boryl anion migration from boron to carbon has been achieved by selective activation of the π-system in [(vinyl)B₂Pip₃] using “soft” Br₂ electrophilic (Br₂ = BPh₃ or 9-Aryl-BBN). The soft character is key to ensure 1,2-migration proceeds instead of oxygen coordination / B-O activation. The Br₂ induced-1,2-boryl anion migration represents a triple borylation of a vinyl Grignard reagent using only B₂Pip₃ and Br₂ and forms differentially protected 1,1,2-triborylated alkanes. Notably, by increasing the steric bulk on the beta position of the vinyl Grignard reagent used to activate B₂Pip₃, 1,2-boryl-anion migration can be suppressed in favor of intermolecular {BPin} transfer to BPh₃, which represents a simple way to access unsymmetrical sp³-sp³ diboranes.

The coordination of Lewis bases (LB) to diborane(4) compounds, such as B₂Pip₂ (1), generates an sp³-sp³ diborane in which the boron–boron bond is polarized. ¹ This imparts nucleophilic character to the sp³ boron, thereby enabling the mild generation of a functional equivalent of (BPin)⁻.² This has become a powerful transition metal free methodology to borylate organic substrates and generate desirable organoborane esters. Alkoxides or N-heterocyclic carbenes (NHCs) are the typical LBs employed in the activation of ¹,³ with the use of carbanions (R⁻) having much less precedence,⁴⁻⁹ despite R⁻ being able to generate a more nucleophilic (BPin)⁻ moiety due to their greater basicity relative to alkoxides and NHCs. Among the limited examples in this area, recent work has shown that complex A synthesised from 1 and nBu-MgL (L = β-diketiminato) transfers a boryl anion to form borylated unsymmetrical sp³-sp³ diboranes (Scheme 1, 1a).⁻¹² Indeed, transfer of a boryl nucleophile to an external electrophile is the dominant reactivity pathway reported for B₂Pip₂ activated by simple diboranes. ¹³ It is important to extend the chemistry of [(R)B₂Pip₃] to allow new routes to highly functionalized organoboranes to be discovered, as these will be desirable particularly if accessed using readily accessible starting materials (e.g. RMgX / B₂Pip₂).

Prior to this work, 1,2-boryl-anion migration from boron to carbon in [(R)B₂Pip₃] species had been limited to using functionalized “R⁻” equivalents. For example, coordination of a carbanion containing a Br or OCB group (or a diazokane), to 1 led to loss of [OCb]⁻, [Br⁻] (or N₂) and formation of 1,1-diborylalkanes (Scheme 1, 1b).⁻¹¹⁻¹² We hypothesised that an alternative route to induce intramolecular 1,2-boryl-anion migration would be the activation of an unsaturated R group (e.g. -CH=CH₂) in [(R)B₂Pip₃] by a borane Lewis acid. This is attractive as it avoids prefunctionalization of the carbanion activator. This approach is conceptually related to the Zweifel reaction,¹⁵ but the use of borane Lewis acids and [BPin]⁻ as the migrating group will lead to differentially functionalised 1,1,2-triborylated alkanes in one step. Related 1,1-diborylated alkanes have emerged as highly versatile reagents used in selective C-C bond formation by the Suzuki-Miyaura coupling reaction or via deprotonation / deborylation of the diborylated carbon.¹⁶⁻²²

The selective (for intramolecular 1,2-boryl-migration) activation of [(vinyl)B₂Pip₂] (complex B, Scheme 1 bottom), requires judicious choice of the borane, Br₃, as a range of outcomes are feasible including: (i) vinyl anion transfer from B to Br₃; (ii) binding of Br₃ to an oxygen in B and subsequent C-O or B-O cleavage; (iii) [BPin]⁻ anion transfer from B to Br₃; (iv) Br₃ activation of the vinyl π-system and intramolecular [BPin]⁻ transfer. While (i) and (ii) are undesirable, pathway (iii) would be an attractive route to unsymmetrical diboranes using commercial Grignard reagents as activators. Equally notable and our primary focus - intramolecular 1,2-boryl-migration (pathway iv) - would be a new and simple route to 1,1,2-triborylated alkanes.

Previous work

1a) Intermolecular [BPin]⁻ transfer with a (β-diketiminato)Mg complex

1b) Intraoatomic [BPin]⁻ transfer with preinstilled leaving group

This work: Selective intraoatomic (BPin)⁻ transfer

Scheme 1. Top, previous work on intermolecular / intramolecular (BPin)⁻ transfer in carboration activated B₂Pip₂. Bottom, selective boryl-anion migration in vinyl sp²-sp³ diboranes induced by soft borane Lewis acids.

Herein, we report that intramolecular 1,2-boryl-migration in sp³-sp³ diboranes does not require preinstilled leaving groups in the carboration. Instead the formation of [(vinyl)B₂Pip₂] followed by selective activation of the π system by certain boranes forms differentially functionalised (at boron) 1,1,2-triborylated alkanes. The use of β-methyl vinyl Grignard reagent changes the reaction outcome to intermolecular (BPin)⁻ transfer to Br₃, generating an unsymmetrical diborane from simple starting materials.
We started our investigation by probing the accessibility of the simplest vinyl adduct of 1, \([\text{[CH}_2=\text{CH}]_2\text{BPin}_2]^{-}\) \([2]\). This could be generated as the major product by the addition of 1 equiv. of commercial vinyl magnesium bromide to 1 in THF at \(-78^\circ\text{C}\) (Scheme 2, left). The successful formation of \([2]\) was indicated by \(^{11}\text{B}\) NMR spectroscopy where two new resonances could be observed: one at 37.3 ppm (three coordinate boron) and the other at 4.8 ppm (four coordinate boron), analogous with that reported for \([\text{[PH}_2\text{BPin}_2]^{-}\) \((39.2\text{ and }4.0\text{ ppm, respectively).}^6\) Since \(\text{B(C}_6\text{F}_5)_3\) can activate alkenes and alkynes even in the presence of certain oxo-functionalities, the ability of \(\text{B(C}_6\text{F}_5)_3\) to trigger the 1,2-boryl-migration was explored.\(^{22}\) Adding 1 equiv. of \(\text{B(C}_6\text{F}_5)_3\) to \([2]\) \((\text{at }-78^\circ\text{C})\) led after 2 hours to a single new \(^{11}\text{B}\) resonance at -3.2 ppm, consistent with \([\text{RO-B(C}_6\text{F}_5)_3]^{-}\) species (in contrast [alkyl-B\(\text{C}_6\text{F}_5)_3\]) anions have a \(^{11}\text{B}\) resonance ca. -15 ppm). The \(^{19}\text{F}\) NMR spectrum confirmed \([\text{RO-B(C}_6\text{F}_5)_3]^{-}\) formation, with ESI-MS analysis supporting the formation of \([\text{RO-B(C}_6\text{F}_5)_3]^{-}\) species derived from ring opening of one BPin moiety in \([2]\). With two additional \(^{11}\text{B}\) resonances observed at 48.0 and 29.2 ppm, we tentatively assign the product as derived from \(\text{B(C}_6\text{F}_5)_3\) activation of pinacol bound to the four coordinate boron (Scheme 2, top). This is consistent with reports on BPin moieties in anionic borates undergoing B-O cleavage on addition of electrophiles.\(^{24}\)

The oxo-based reactivity of \(\text{B(C}_6\text{F}_5)_3\) with \([2]\) was attributed to the high electrophilicity and oxophilicity of this borane, therefore softer boron electrophiles were explored. In particular BPh\(_3\), since this borane reacts with complex A to generate \([\text{PinB-BPh}_3]^-\) with no competitive reactivity at the oxo-sites reported (Scheme 1, 1a).\(^{10}\) Adding 1 equiv. of BPh\(_3\) in THF to the in-situ generated \([2][\text{THF}]_2\text{MgBr}]^{-}\) \((\text{at }-78^\circ\text{C})\), resulted in the formation of the desired product \([3]\) formed from intramolecular \([\text{BPin}]^{-}\) transfer (Scheme 2, bottom). \([3]\) has diagnostic resonances in the \(^{11}\text{B}\) NMR spectrum (34.7 ppm for the C-BPin moieties, and -9.5 ppm for \([\text{C-BPh}_3]^{-}\)) and in the \(^1\text{H}\) NMR spectrum (broad signal at 0.55 ppm for the \(\text{CH}(\text{BPin})_2\)) with the formulation further confirmed by accurate mass spectrometry. Performing the reaction at \(-78^\circ\text{C}\) for 2 h and then room temperature for 18 h resulted in complete consumption of \([2]\), yielding \([3]\) in 71% (in-situ conversion) as the major product. Repeating the reaction on larger scale allowed for the isolation of \([3][\text{THF}]_2\text{MgBr}]^{-}\) as a white solid by solvent removal and washing with \(\text{Et}_2\text{O}\) (70% isolated yield). Single crystals of \([3][\text{THF}]_2\text{MgBr}]^{-}\) were obtained by layering pentane onto a THF solution (Figure 1). In the solid state structure the cation is chelated by the two pinacolato moieties of \([3]\) via oxygen coordination to magnesium. This results in a modest elongation of the B-O bonds involving oxygen coordinated to Mg (compare e and f Fig. 1). Other distances and angles in \([3][\text{THF}]_2\text{MgBr}]^{-}\) are within the expected values, with C-BPin bond distances shorter than the C-BPh\(_3\) distance (c, d vs. a, b). The oxo-based reactivity of B(C\(_6\)F\(_5\)) with \([2]\) to BPh\(_3\) followed by diboration of the vinyl group in \([\text{[CH}_2=\text{CH}]_2\text{BPin}_2]^{-}\) with B\(_2\text{Pin}_2\) (or base activated B\(_2\text{pin}_2\)) since this would yield a 1,2 arrangement of the BPin groups and not \(\pi\) coordination become significantly stronger on the NMR timescale due to chelation to Mg. Cation metathesis can be achieved using \([\text{Me}_6\text{N}]^+\text{Cl}^-\) to form the air-stable product \([3][\text{Me}_6\text{N}]\) in which the pinacol methyl groups now exhibit a single resonance in the \(^1\text{H}\) NMR spectrum at 298 K (in THF). It is noteworthy that the one-pot triborylation of a vinyl Grignard reagent has not been reported to the best of our knowledge.

Regarding the mechanism of formation, the arrangement of boranes in \([3]\) excludes the possibility of vinyl transfer from \([2]\) to BPh\(_3\) followed by diboration of the vinyl group \([\text{[CH}_2=\text{CH}]_2\text{BPin}_2]^{-}\) with B\(_2\text{Pin}_2\) (or base activated B\(_2\text{pin}_2\)) since this would yield a 1,2 arrangement of the BPin groups and not \(\pi\) coordination.\(^{12}\) To gain further insight into the reaction mechanism and the disparity between BPh\(_3\) and B\(_6\text{C}_6\text{F}_{5}\)\(_3\), DFT calculations were performed at the M06-2X/6-311G(d,p) level. Based on the structure of \([3][\text{THF}]_2\text{MgBr}]^{-}\), the cation \([\text{[THF]}_2\text{MgBr}]^-\) was included initially. The formation of the neutral adduct \(2'\) from \(1\) and the vinyl Grignard reagent is energetically favoured (\(\Delta G_{298K} = -9.8\text{ Kcal mol}^{-1}\)) despite the adverse entropic contribution (Scheme 3). Adduct \(2'\) showed a slightly elongated B-B bond relative to that of \(1\) \((1.73\text{ and }1.70\text{ Å, respectively), as reported for other sp^2-sp^3 diboranes.}^{1,2}\) Addition of BPh\(_3\) to \(2'\) to yield the product \([3][\text{THF}]_2\text{MgBr}]^{-}\) is energetically downhill (\(\Delta G_{298K} = -42.0\text{ Kcal mol}^{-1}\)) to gain insight into the disparate borane reactivity (B-O activation vs \(\pi\) activation), the change in energy upon \(\pi\) coordination to the oxygen of \(2'\) was probed. For BPh\(_3\) this process is energetically uphill (\(\Delta G_{298K} = 5.2\text{ Kcal mol}^{-1}\)), in agreement with the reduced electrophilicity and oxophilicity of this borane relative to B\(_6\text{C}_6\text{F}_{5}\)\(_3\). Replacing BPh\(_3\) with B\(_6\text{C}_6\text{F}_{5}\)\(_3\) (Scheme 3, bottom). O-coordination become significantly exergonic (\(\Delta G_{298K} = -8.8\text{ Kcal mol}^{-1}\)) consistent with the observation of B-O cleavage on mixing \([2]\) and B\(_6\text{C}_6\text{F}_{5}\)\(_3\). Thus, the correct tuning of the oxophilicity / electrophilicity of the borane employed is a key aspect to selectively trigger 1,2-boryl-migration. This is further emphasised by replacing B\(_6\text{C}_6\text{F}_{5}\)\(_3\) with
the harder Lewis acid BF$_3$, with O-coordination now becoming much more exergonic (ΔG$_{298K}$ = -26.4 Kcal mol$^{-1}$ relative to Z and BF$_3$). Attempts to crystallise [2][(THF)$_2$MgBr] were unsuccessful in our hands, thus due to the unknown exact nature of the magnesium species coordinated to [2] and to facilitate more detailed computational studies, additional DFT calculations were performed in absence of the counterion. It should be noted that the calculated HOMO and HOMO-1 of [2] are analogous to that of Z indicating that while Mg coordination will effect energies to some extent it does not drastically effect the electronic distribution. The HOMO of [2] has polarised σ-B character (consistent with the observed (BPin) nucleophilic character), as well as some σ C=C(vinyl) and lone pair oxygen character (Figure 2, left). The π C=C orbital instead contributes to the HOMO-1, with the vinyl system almost completely aligned with the B-B bond (B-B-C=C = 12.10°).

With an understanding of the reaction mechanism in hand, other soft boron based Lewis acids were tested. The addition of 1 equiv. of 9-Ph-BBN to [2] (at -78°C), gave the desired product [4], with diagnostic peaks observed in the 11B NMR spectrum (34.0 ppm for the -BPin moieties, and -15.3 ppm for [R(Ph)BBN]) and in the 1H NMR spectrum (upfield broad signal at 0.24 ppm for the CH(BPin)$_n$), with mass spectrometry confirming the formulation for the anion [4] (Scheme 5, top). [4][(THF)$_2$MgBr] was isolated in 52% yield (2 molecules of THF coordinated to [MgBr]$^+$ by 1H NMR spectroscopy). It is interesting to note that in this case the tetra-coordinated boron centre in [4] has restricted rotation causing desymmetrization of the bicyclo moiety. Notably, [4][(THF)$_2$MgBr] could be selectively deborylated by the addition of 1.1 equiv. of HNTf$_2$, which yielded 9-Ph-BBN and (Pin)$_2$:CHMe as the major products, indicating cleavage of the C-(Ph)BBN bond dominates. In contrast, (Pin)$_2$:CHMe was formed in low amounts from the addition of HNTf$_2$ to the [2], with formation of ethene and 1 dominating (Scheme 5, bottom).

This highlights the importance of using a soft Lewis acid to selectively trigger the 1,2-boryl-migration over other potential pathways. To further support that the reactivity difference between B(C$_6$F$_3$)$_3$ and BPin (or 9-Ph-BBN) is not due to steric factors (as B(C$_6$F$_3$)$_3$ is significantly bulkier than BPin), 9-mesityl-BBN and 9-o-tolyl-BBN were evaluated. While the former gave no reaction with [2] (presumably due to the large steric bulk around boron), the addition of o-tolyl-BBN to [2] in THF led to the intramolecular 1,2-boryl anion migration product [5] albeit

Scheme 3. Free energy profile for formation of Z and O-coordination of the latter to the borane (the zero energy reference is set as Z + BR$_3$ in each case).**

Scheme 4. Free energy reaction profile for BPin$_3$ induced 1,2-boryl-migration.

Figure 2. The calculated HOMO and HOMO-1 of [2] (isovalue = 0.04). [2] and Z showed similar geometry (particularly regarding the B-B-C bond and HOMOs, thus the former geometry is provided and not that of [2]2.**

Scheme 5. Top, reaction with 1, a vinyl Grignard reagent and 9-Ph-BBN. Bottom, synthesis of 1,1-diboryl-ethane via protodeboronation of [4] with this product formed in low yield from direct protonation of [2].
slower than when using 9-Ph-BBN. Importantly, no B-O cleavage products were observed, with the mass balance at this point being unreacted [2] and o-tolyl-BBN. Thus with bulkier, less Lewis acidic 9-aryl-BBN boranes the 1,2-boryl migration still proceeds selectively but it is slower, a fact further emphasised by adding 9-p-anisyl-BBN to [2], in which the 1,2-boryl anion migration proceeds to form [6] but significantly slower due to the reduced borane Lewis acidity (see SI).

With the aim to disfavour borane Lewis acids interacting with the vinylinic π system and thus switch selectivity from intra- to inter-molecular (BPin) transfer, we explored the effect of increasing steric hindrance at the β-vinylcarbon. In particular, using the adduct [7], which was generated in-situ by the addition of 1 equiv. of (E/Z)-1-propenylmagnesium bromide to 1 in THF at -78°C. The subsequent addition of BPin3 to [7] resulted in suppression of 1,2-boryl-migration with [8] detected only in trace amounts (Scheme 6). In this case [PinB-BPin] (40% yield) and (E/Z)-1-propenyl-BPin were observed as the major new species after 18 h at room temperature, thus confirming switching of selectivity from intra- to inter-molecular (BPin) transfer. This represents a simple route to access an unsymmetrical sp2-sp3 diborane using only commercial reagents.

![Scheme 6](image)

Scheme 6. Reaction of 1 with 1-propenyl-Grignard reagent and then BPin3. The cation is assigned as [THF-MgBr] throughout.

In summary, a novel intramolecular 1,2-boryl anion migration has been induced by the addition of soft boranes to vinyl sp2-sp3 diboranes. Competitive strong oxygen coordination has to be prevented, thus the softness of the borane is key in providing selective boryl transfer. With BPin3 and 9-Ph-BBN, intramolecular 1,2-boryl migration enables the one-pot synthesis of differentially protected 1,1,2-triborylated alkanes from simple starting materials. Furthermore, the ability to switch (BPin) transfer from intra- to inter-molecular by increasing the steric hindrance in the vinyl group allows access to unsymmetrical sp2-sp3 diboranes using commercial Grignard reagents and B3Pin2.

Acknowledgements

We acknowledge the University of Manchester, the EPSRC (EP/K039547/1)), and the Horizon 2020 Research and Innovation Program (Grant no. 769599) for support. J.C acknowledges a Marie-Curie Fellowship (703227 – DIBOR). Additional research data supporting this publication are available as supplementary information accompanying this publication.

Conflict of interest

The authors declare no conflict of interest.

Keywords: 1,2-migration • diboranes • Grignard reagents • borylation • boranes

[1] A. Bonet, C. Pubbil-Uldemolins, C. Bo, H. Gulyás, E. Fernández, Angew. Chem. Int. Ed 2011, 50, 7158-7161.
[2] For reviews see: (a) R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, Chem. Commun. 2015, 51, 9594-9607. (b) A. B. Cuenca, R. Shishido, H. Itou, E. Fernández, Chem. Soc. Rev. 2017, 46, 415-430. (c) E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder, Chem. Rev. 2016, 116, 9091-9161.
[3] For select reports on RO/ NHC activated diboranes: (a) K.-S. Lee, A. R. Zhugralin, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 7253-7255 (b) A. Bonet, H. Gulyas, E. Fernández. Angew. Chem. Int. Ed 2010, 49, 5130 –5134 (c) H. Wu, S. Radomik, A. H. Hoveyda, J. Am. Chem. Soc. 2012, 134, 8277 (d) C. Kleeberg, A. G. Crawford, A. S. Batsanov, P. Hodgkinson, D. C. Apperley, M. S. Cheung and Z. Lin, J. Org. Chem. 2012, 77, 785-789; (e) S. Pietsch, E. C. Neeve, D. C. Apperley, R. Bertermann, F. Mo, D. O’u, M. S. Cheung, L. Dang, J. Wang, U. Radius, Z. Lin, C. Kleeberg, T.B. Marder, Chem. Eur. J. 2015, 21, 7082-7099. (f) T. P. Blaisdell, T. C. Caya, L. Zhang, A. Sanz-Marco, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 9264-9267. (g) A. Verma, R. F. Snead, Y. Dai, C. Siebodrcker, Y. Yang, H. Yu, F. Yao, L. W. Santos, Angew. Chem. Int. Ed. 2017, 56, 5111-5115. (h) Y. Nagashima, K. Hirano, R. Takita, M. Uchiyama, J. Am. Chem. Soc. 2014, 136, 8532-8535.
[4] K. Takahashi, T. Ishiyama, N. Miyaura, Chem. Lett. 2000, 982-983.
[5] T. Hashimoto, T. Hatakeyama, M. Nakamura, J. Org. Chem. 2017, 82, 1168-1173.
[6] R. B. Bedford, P. B. Brener, E. Carlet, T. Gallagher, D. M. Murphy, D. R. Pye, Organometallics 2014, 33, 5940-5943.
[7] J. Zheng, Y. Wang, Z. Hua Li, H. Wang, Chem. Commun. 2015, 51, 5505-5508.
[8] C. Kojima, K.-H. Lee, Z. Lin, M. Yamashita, J. Am. Chem. Soc. 2016, 138, 6662-6669.
[9] A. Morinaka, K. Nagao, H. Ohmiya, M. Sawamura, Angew. Chem. Int. Ed 2015, 54, 15859-15862.
[10] (a) A.-F. Pécharman, M. S. Hill, C. L. McMullin, M. F. Mahon, Angew. Chem. Int. Ed. 2017, 56, 16363-16366. (b) A-F. Pécharman, M. S. Hill, M. F. Mahon, Dalton Trans. 2018, 47, 7300-7305. (c) A.-F. Pécharman, M. S. Hill, M. F. Mahon, Angew. Chem. Int. Ed. 2018, 10.1002/anie.201803607.
[11] T. Hata, H. Kitagawa, H. Masai, T. Kurahashi, M. Shimizu, T. Hiyama, Angew. Chem. Int. Ed 2001, 40, 790-792.
[12] G. Gao, J. Yan, K. Yang, F. Chen and Q. Song, Green Chem. 2017, 19, 3997-4001.
[13] H. Zhao, M. Tong, H. Wang and S. Xu, Organometallics 2017, 36, 3418-3422.
[14] M. Shimizu, M. Schepeler, I. Nagao, K. Shimono, T. Kurahashi and T. Hiyama, Chem. Lett. 2006, 35, 1222-1223.
[15] E. La Cascia, A. B. Cuenca, E. Fernández, Chem. Eur. J. 2016, 22, 18737-18741.
[16] A. F. Ichhorn, L. Kuehn, T. B. Marder and U. Radius, Chem. Commun. 2017, 53, 11694-11696.
[17] H. Li, X. Shangguan, Z. Zhang, S. Huang, Y. Zhang and J. Wang, Org. Lett. 2014, 16, 448-451.
[18] R. J. Armstrong, V. K. Aggarwal, Synthesis 2017, 49, 3323-3336.
[19] N. Miralles, R. J. Maza, E. Fernández, Adv. Synth. Catal. 2018, 360,1306-1327.
[20] R. Nallagonda, K. Padala, A. Masarwa, Org. Biomol. Chem. 2018, 16, 1050-1064.
[21] J. R. Coombs, L. Zhang, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 16140-16143.
[22] K. Hong, X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581-10584.
[23] J. R. Lawson, R. L. Melen, Inorg. Chem. 2017, 56, 8627-8643.
[24] R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier, H. Scott, K. V. Aggarwal, Angew. Chem. Int. Ed. 2011, 50, 3760-3763.
Selective Pi fishing: an intramolecular 1,2-boryl anion migration has been achieved by selective activation of the π-system in vinyl sp²-sp³ diborane using "soft" borane Lewis acids.