C1019T Polymorphism in the Connexin 37 Gene and Myocardial Infarction Risk in Premature Coronary Artery Disease

Mehrdad Sheikhvatan, MD¹, Mohammadali Boroumand, MD¹*, Mehrdad Behmanesh, MD², Seyed Hesameddin Abbasi, MD, PhD¹, Gholamreza Davoodi, MD¹, Shayan Ziaee, MD¹, Sara Cheraghi, MD¹

¹Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran. ²Department of Human Genetics, Tarbiat Modarres University, Tehran, Iran.

Received 10 September 2016; Accepted 17 December 2016

Background: The C1019T polymorphism of the connexin-37 (GJA4) gene is a single-nucleotide polymorphisms involved in atherosclerotic plaque rupture and atherosclerosis predisposition. We examined the association between the C1019T polymorphism of the GJA4 gene and the occurrence of myocardial infarction (MI) in patients with premature coronary artery disease (CAD).

Methods: Our study recruited 1000 patients with the final diagnosis of premature CAD and classified them into 2 groups: with a history of MI (n = 461) and without it (n = 539). The polymorphism variants were determined via the PCR–RFLP, and then genotyping was conducted through the high-resolution melting method. From a total of 1000 patients, 554 patients, who had been previously followed-up with a median follow-up time of 45.74 months vis-à-vis long-term major adverse cardiac events, were enrolled in this retrospective cohort phase.

Results: The frequencies of the wild, heterozygous, and mutant genotypes of the C1019T polymorphism were 54.0%, 40.6%, and 5.4% in the MI group and 49.2%, 43.2%, and 7.6% in the non-MI group (p value = 0.187). After adjustment for the baseline covariates, no difference was found between the MI and non-MI groups apropos the frequency of the heterozygous genotype (p value = 0.625) and the mutant genotype (p value = 0.452). Regarding the level of human connexin-37, the serum level of this marker was not different between the MI and non-MI groups.

Conclusion: The C1019T polymorphism of the GJA4 gene may not be useful for predicting the occurrence of MI in patients with premature CAD. The presence of this polymorphism in such patients may also have a low value for predicting long-term CAD complications.

J Teh Univ Heart Ctr 2017;12(2):72-81

This paper should be cited as: Sheikhvatan M, Boroumand M, Behmanesh M, Abbasi SH, Davoodi G, Ziaee S, Cheraghi S. C1019T Polymorphism in the Connexin 37 Gene and Myocardial Infarction Risk in Premature Coronary Artery Disease. J Teh Univ Heart Ctr 2017;12(2):72-81.

Keywords: Genes • Connexin 37 • Myocardial infarction • Polymorphism, genetic
Introduction

Early-onset myocardial infarction (MI) is a major cause of death and disability and occurs as a life-threatening consequence of coronary artery disease (CAD) in the young population. The occurrence of MI among young individuals, especially in developed nations, is of utmost importance because of the heavy financial burden it imposes on the community. According to a recent report, although the majority of MI cases are observed in individuals > 65 years old, about 5%–10% of new MI cases occur in younger patients.\(^3\)\(^,\)\(^4\) Interestingly, the occurrence of MI in young individuals is associated with greater heritability than that in the elderly. Some genome-wide association studies have been able to identify several single-nucleotide polymorphisms (SNPs) that are reproducibly associated with the risk of new MI in the young population.\(^5\) Although familial aggregation in the occurrence of new MI in young individuals has been revealed, its pathophysiological nature and also the population-based gene polymorphisms that contribute to its occurrence have remained uncertain.\(^6\) Nevertheless, what has been clearly determined is the essential role of family history of cardiac ischemic events in the occurrence of MI in young patients with proven CAD.\(^5\)

The main fundament of MI is atherosclerotic plaque rupture, which occurs in consequence of shear forces in the artery, gradual decay, or mechanical injuries. Plaque rupture can induce activation, adhesion, and aggregation in ruptured plaques by expressing some specific platelet surface receptors and also by activating some receptors in the position of ruptured plaques. The activation of these receptors may result in thrombus formation, clot development, and finally limitation of the coronary blood flow and lead to myocardial ischemia. The activity of platelet surface receptors and the receptors on the endothelial layer is under the direction and control of various genes. In this context, the occurrence of polymorphisms in these genes may be associated with behavioral changes of the gene in the excitation or prevention of ischemic events.

One of the identified SNPs involved in atherosclerotic plaque rupture is the C1019T polymorphism of the connexin-37 (GJA4) gene.\(^6\)\(^,\)\(^7\) The GJA4 gene encodes a set of proteins called “connexins”, which play an important role in regulating and structuring intercellular channels. In other words, the passage of low-weight molecules through the intercellular channels and their movement from one cell to another is mainly regulated by the activation of this gene, and this role has also been proven in atherosclerotic plaques.\(^8\)\(^-\)\(^10\) Consequently, it has been posited that the occurrence of the C1019T polymorphism is accompanied by the instability of plaques and the occurrence of acute MI.\(^11\) However, only a few studies have so far assessed the role of this polymorphism as a trigger for early-onset MI, especially in young ages. Hence, we sought to examine the association between the C1019T polymorphism of the GJA4 gene and the occurrence of MI in Iranian patients with premature CAD.

Methods

One thousand patients, comprising 492 men and 508 women, at a mean age of 45.51 ± 5.88 years (age = 21–55 y), were prospectively enrolled into the Tehran Heart Center Cardiovascular Epigenetic Cohort Study (THC-CEC) from 2008 to 2014. THC is a major referral hospital for patients with CAD from around the country. Each participant in the present study had a confirmed diagnosis of premature CAD, defined as the occurrence of the disease before 45 years old in men and before 55 years old in women. Angiographically identified stenoses > 50% in 1 of the major coronary vessels at the time of the study were used to classify the patients as having single-vessel, double-vessel, or triple-vessel disease. According to clinical symptoms (typical chest discomfort), specific electrocardiographic (ECG) changes, and elevation of cardiac enzymes (creatine kinase-MB [CK-MB] and troponin T), the enrolled patients were classified as the MI group (n = 461) and the non-MI group (n = 539).\(^12\) All the subjects had CAD, but those with evidence of MI were classified as the MI group and those with no evidence of MI were classified as the non-MI group. The participants were prospectively interviewed as early as possible during their admission to ascertain their demographic characteristics, medical history, and medication. The results of laboratory tests and disease severity based on coronary angiography were collected by reviewing the THC Angiography Database. Approval from the Research Review Board and Ethics Committee of Tehran University of Medical Sciences was obtained before the commencement of the study, and a written informed consent to participate was signed by each participant.

The severity of CAD was determined based on the number of involved coronary arteries according to angiography reports. The left ventricular ejection fraction was measured quantitatively via echocardiography, just before angiography, using the Simpson method. With regard to cardiovascular risk factors, current smoking was defined as smoking tobacco product/products once or more times per day or having smoked in a 30-day period prior to admission. Hypercholesterolemia was defined as total cholesterol ≥ 5.0 mmol/L, high-density lipoprotein cholesterol ≤ 1.0 mmol/L in men and ≤ 1.1 mmol/L in women, or triglyceride ≥ 2.0 mmol/L. A positive family history of CAD was defined as the presence of the disease among 1st-degree relatives before the age of 55 in men and 65 years in women. Hypertension was defined as a systolic blood pressure ≥ 140 mmHg and/or a diastolic blood pressure ≥ 90 mmHg and/or receiving antihypertensive treatment. Diabetes mellitus was defined as symptoms of diabetes plus a plasma glucose concentration ≥
11.1 mmol/L or fasting plasma glucose ≥ 7.0 mmol/L or 2-hp ≥ 11.1 mmol/L.13

Genomic DNA was isolated from peripheral blood leukocytes according to a standard salting-out method.12 Briefly, buffy coats of nucleated cells obtained from anticoagulated blood were resuspended in polypropylene centrifugation tubes with a nuclei lysis buffer. The cell lysates were digested overnight at 37 °C with 10% Sodium dodecyl sulphate (SDS) and a protease K solution. After the completion of digestion, saturated NaCl was added to the tubes and the tubes were shaken vigorously. Afterward, centrifugation was performed. The precipitated protein pellet was left at the bottom of the tubes, and the supernatant containing the DNA was transferred to another tube. Absolute ethanol was then added, and the tubes were inverted several times until the DNA precipitated. The precipitated DNA strands were removed and transferred to a microcentrifuge tube. The DNA was allowed to dissolve at 37 °C before quantitative analysis. The polymorphisms were genotyped using the polymerase chain reaction–restriction fragment length polymorphism method PCR–RFLP) with a 25-μL reaction mixture containing 0.6 μL of DNA, 0.6 μM of each primer, and 12.5 μM of Taq PCR Master Mix (Qiagen, Valencia, CA) and employing primers forward 5’-CTGGACCCACCCCCTCAGAATGGCCAAAGA 3’ and reverse 5’- AGGAAGCGTGATGCCTGGTGG 3’ digested by restriction enzyme Mae III. The digested products were subsequently visualized on 3% agarose gel stained with ethidium bromide (Figure 1 and Figure 2). To final draft the determined genotypes of the SNPs in RFLP, we performed DNA sequencing in some samples of the different genotypes in the SNP and to determine the genotype patterns of the C1019T polymorphism of the GJA4 gene in all the enrolled subjects, we applied the high-resolution melting (HRM) technique using specific primers forward 5’- CAACCTGACCACAGAGGAGAG -3’ and reverse 5’-CTTAGAAGCAGCTGGCGTGG -3’ with a Rotor-Gene 6000 (Corbett Life Science) (Figure 3). The relationship between the polymorphism and the serum level of the gene product was examined via the measurement of the serum level of Human Gap junction alpha-4 protein using an ELISA kit (# CSB-EL009447HU, Wuhan Hi-tech, China).

In this phase, the predictive value of the C1019T polymorphism for CAD-related complications was assessed. Out of the initial 1000 patients, a total of 554 patients, who had been previously followed-up with a median follow-up time of 45.74 months apropos long-term major adverse cardiac events (MACE), were enrolled in this retrospective cohort phase. An assessment of the Hardy–Weinberg equilibrium in the 554 patients showed the restoration of the equilibrium (p value = 0.490). Total MACE was defined as the presence of at least 1 of the following cardiovascular outcomes: new coronary involvement (defined as a new diseased coronary vessel or expansion of the previous coronary involvement based on angiography), new MI, undergoing coronary artery bypass surgery or percutaneous coronary intervention, and brain stroke. The study end point was to determine the total MACE-free survival rate in the 2 groups of with and without MI and also to assess the value of the C1019T polymorphism in predicting total MACE in both MI and non-MI groups.

Figure 1. Electrophoresis for presenting the PCR product of the GJA4 gene
The 537-bp bands were detected by 2% agarose gel electrophoresis following the PCR amplification of the GJA4 gene sequences.

PCR, Polymerase-chain-reaction

The quantitative variables are presented as means ± standard deviations (SDs) (for the variables with a normal distribution) or median (1st and 3rd quartiles) (for the variables without a normal distribution), and the categorical variables are presented as absolute frequencies...
Figure 3. High-resolution melting genotyping of the C1019T polymorphism
The genotype patterns of the C1019T polymorphism of the GJA4 gene are shown as wild) W, (heterozygous) H, (and mutant) M in the enrolled subjects.

Figure 4. MACE-free Kaplan-Meier survival curve in the non-MI patients
MACE, Major adverse cardiac events; MI, Myocardial infarction
and percentages. The continuous variables were compared using the \(t \)-test. The Mann–Whitney \(U \)-test was used when the data did not meet the assumptions of the parametric test, especially the assumption about the normally distributed data. The categorical variables were compared using the \(\chi^2 \) test. The differences in the frequencies of the different genotypic patterns between the MI and non-MI groups were examined unadjusted and then adjusted for the baseline characteristics and the clinical data using multiple logistic regression modeling. Variables with a \(p \) value < 0.2 in the univariate analysis were included in the multivariable model. The Cox proportional hazard model was employed to analyze the association between the existence of gene polymorphism and total MACE in both MI and non-MI groups and the hazard ratio (HR) was then displayed. Postoperative survival was assessed using the Kaplan–Mayer curve. A \(p \) value ≤ 0.05 was considered statistically significant. The data were analyzed using IBM SPSS, version 21.0 (Armonk, NY: IBM Corp.).

Results

A comparison of the MI and non-MI groups with respect to their baseline variables (Table 1) showed a lower mean age (43.78 ± 5.61 y vs. 47.00 ± 5.70 y; \(p \) value = 0.004), higher frequency of male gender (66.2% vs. 34.7%; \(p \) value < 0.001), and lower mean body mass index (29.06 ± 4.71 kg/m\(^2\) vs. 30.26 ± 5.36 kg/m\(^2\); \(p \) value = 0.017) in the MI group. Regarding the cardiovascular risk profile, although no significant difference was indicated in terms of family history of CAD between the 2 groups (33.8% vs. 36.2%; \(p \) value = 0.440), the differences between the groups in the other underlying risk factors were meaningful (Table 1). The MI group also had a lower mean left ventricular ejection fraction as well as higher diseased coronary vessels.

The distribution of the genotypes was not significantly different according to the Hardy–Weinberg equilibrium between the MI group (\(\chi^2 = 0.40 \)) and the non-MI group (\(\chi^2 = 0.20 \)). The frequencies of the wild, heterozygous, and mutant genotypes of the C1019T polymorphism were 54.0%, 40.6%, and 5.4% in the MI group and 49.2%, 43.2%, and 7.6% in the non-MI group (\(p \) value = 0.187). There were also no significant differences as regards the polymorphism genotypes between the 2 study groups after adjustment for the baseline covariates, namely the demographic variables, risk factors, oral medication, and severity of coronary artery involvement (adjusted OR = 0.930; \(p \) value = 0.625 for the heterozygous genotype, and adjusted OR = 0.777; \(p \) value = 0.452 for the mutant genotype) (Table 2). Concerning the level of human \(\beta 3 \) integrin, the serum level of this marker was 31.23 ± 35.61 mg/dL in the MI group and 34.77 ± 37.96 mg/dL in the non-MI group.
Table 1. Baseline characteristics and clinical data in both MI and non-MI groups

	MI Group (n = 461)	Non-MI Group (n = 539)	P value
Gender			
Male	305 (66.2)	187 (34.7)	< 0.001
Female	156 (33.8)	352 (65.3)	
Age (y)	43.78±5.61	47.00±5.70	0.004
Body mass index (kg/m²)	29.06±4.71	30.26±5.36	0.017
Medical history			
Family history of CAD	156 (33.8)	195 (36.2)	0.440
Current smoking	195 (42.3)	102 (18.9)	< 0.001
Hyperlipidemia	310 (67.2)	415 (77.0)	0.001
Hypertension	206 (44.7)	313 (58.1)	< 0.001
Diabetes mellitus	119 (25.8)	208 (38.6)	< 0.001
Opium use	102 (22.1)	46 (8.5)	< 0.001
Oral medication			
Aspirin	437 (94.8)	467 (86.6)	< 0.001
Beta-blockers	412 (89.4)	402 (74.6)	< 0.001
Nitrate	395 (85.7)	376 (69.8)	< 0.001
Calcium blocker	51 (11.1)	92 (17.1)	0.007
Antihyperlipidemic	30 (6.5)	31 (5.8)	0.618
Antihyperglycemic	71 (15.4)	136 (25.2)	< 0.001
Digoxin	10 (2.2)	8 (1.5)	0.417
Diuretics	37 (8.0)	53 (9.8)	0.320
ACE-inhibitor	312 (67.7)	238 (44.2)	< 0.001
Number of involved coronary arteries	0.005		
One vessel	221 (47.9)	293 (54.4)	
Two vessels	107 (23.2)	136 (25.2)	
Three vessels	133 (28.9)	110 (20.4)	
Left ventricular ejection fraction (%)	46.52±10.14	55.58±7.98	< 0.001
Total cholesterol (mg/dL)	182.92±53.81	193.82±49.25	0.891
Triglyceride (mg/dL)	170.0 (132.0–228.5)	160.0 (117.5–223.0)	0.040
Low-density lipoprotein (mg/dL)	106.0 (84.0–131.5)	118.0 (91.0–149.0)	< 0.001
High-density lipoprotein (mg/dL)	38.04±10.23	42.68±11.21	0.047
Fasting blood sugar (mg/dL)	101.0 (90.0–122.0)	104.0 (93.0–149.0)	0.003
Creatinine (mg/dL)	0.9 (0.8–1.1)	0.8 (0.7–1.0)	< 0.001

The quantitative data are presented as means ± standard deviations or medians (1st and 3rd quartiles), and the categorical variables are presented as numbers (%).

The quantitative data were compared using the t-test or the Mann–Whitney U-test (if nonparametric), and the categorical variables were compared using the χ² test.

MI, Myocardial infarction; CAD, Coronary artery disease; ACE, Angiotensin-converting enzyme.
Table 2. Univariate and multivariable logistic regression analyses to determine the association between the C1019T polymorphism and the occurrence of MI adjusted for confounders

	Univariate Analysis		Multivariable Analysis	
	P value	Odds ratio (95% CI)	P value	Odds ratio (95% CI)
C1019T polymorphism				
Wild genotype	0.187	1.000	0.727	1.000
Heterozygous genotype	0.072	0.876 (0.554 – 1.114)	0.625	0.930 (0.670 – 1.292)
Mutant genotype	0.144	0.111 (0.076 – 0.223)	0.452	0.777 (0.402 – 1.501)
Male gender	< 0.001	3.324 (1.779 – 3.885)	< 0.001	2.006 (1.224 – 3.287)
Current smoking	< 0.001	1.895 (1.224 – 2.446)	< 0.001	1.558 (1.058 – 2.294)
Hyperlipidemia	0.001	0.776 (0.256 – 1.149)	0.247	0.806 (0.558 – 1.162)
Hypertension	< 0.001	1.456 (1.224 – 2.746)	< 0.001	1.086 (0.764 – 1.545)
Diabetes mellitus	< 0.001	0.568 (0.225 – 0.879)	0.267	0.804 (0.548 – 1.181)
Aspirin use	< 0.001	1.897 (1.789 – 2.453)	< 0.001	1.257 (0.637 – 2.482)
Beta-blocker use	< 0.001	4.526 (1.752 – 5.789)	< 0.001	3.050 (1.805 – 5.155)
Nitrate use	< 0.001	2.254 (1.014 – 3.145)	0.010	1.793 (1.151 – 2.793)
Calcium use	0.007	0.878 (0.779 – 0.986)	0.691	0.912 (0.579 – 1.436)
Three-vessel disease	0.005	1.789 (1.112 – 2.789)	0.050	1.476 (0.999 – 2.179)
Age	0.004	0.456 (0.224 – 0.659)	0.052	0.961 (0.923 – 1.000)
Body mass index	0.017	1.456 (1.214 – 2.478)	0.736	1.006 (0.973 – 1.040)
Left ventricular ejection fraction	< 0.001	0.789 (0.478 – 0.925)	< 0.001	0.893 (0.876 – 0.910)
Serum creatinine	< 0.001	1.789 (1.256 – 2.145)	0.126	1.385 (0.912 – 2.101)

MI, Myocardial infarction
Hosmer–Lemeshow goodness of fit: $\chi^2 = 5.819; p$ value = 0.561

Table 3. Cox proportional hazard model for assessing the relation between the patterns of the C1019T polymorphism and the occurrence of long-term total MACE adjusted for confounders in the MI group

	Univariate Analysis		Multivariable Analysis	
-------------------	--------------------	--------------------------		
	P value	Hazard ratio (95% CI)	P value	Hazard ratio (95% CI)
GJA4 (W)	0.360	1.000	0.304	1.000
GJA4 (H)	0.224	1.779 (0.113-2.145)	0.183	1.432 (0.844-2.428)
GJA4 (M)	0.812	0.877 (0.455-1.256)	0.912	0.922 (0.219-3.877)
Hypertension	0.180	0.884 (0.589-1.256)	0.300	0.730 (0.402-1.324)
Diabetes mellitus	0.037	1.655 (1.478-2.123)	0.824	0.924 (0.460-1.855)
Diuretic use	0.002	1.789 (1.256-2.786)	0.538	0.743 (0.289-1.911)
Serum low-density lipoprotein	0.167	0.789 (0.256-1.576)	0.765	1.001 (0.993-1.009)
Serum creatinine	0.116	0.879 (0.478-1.244)	0.745	0.863 (0.354-2.100)

MACE, Major adverse cardiac events; MI, Myocardial infarction

Table 4. Cox proportional hazard model for assessing the relation between the patterns of the C1019T polymorphism and the occurrence of long-term total MACE adjusted for confounders in the non-MI group

	Univariate Analysis		Multivariable Analysis	
-------------------	--------------------	--------------------------		
	P value	Hazard ratio (95% CI)	P value	Hazard ratio (95% CI)
GJA4 (W)	0.500	1.000	0.790	1.000
GJA4 (H)	0.570	1.789 (0.555-1.879)	0.692	1.120 (0.639-1.963)
GJA4 (M)	0.788	0.811 (0.455-2.998)	0.987	0.990 (0.300-3.272)
Diuretic use	0.035	0.566 (0.179-0.795)	0.021	0.412 (0.194-0.873)
Serum FBS	0.032	1.012 (1.004-1.056)	0.003	1.006 (1.002-1.010)

MACE, Major adverse cardiac events; MI, Myocardial infarction; FBS, Fasting blood sugar
The common denominator of our study population with the Finnish study is the selection of young adults and also the assessment of the risk for early MI. On the other hand, our insignificant results vis-à-vis the association between the C1019T polymorphism and the occurrence of acute MI may be related to the nature of CAD prematurity. This is, however, a crude hypothesis that requires further evaluation. Furthermore, in the present study, we specifically used a new HRM technique for final genotyping. Although this technique is a highly sensitive, simple, and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence, the sensitivity of this technique varies according to the number of samples with/without mutations and, thus, positive results require DNA sequencing for confirmation because its specificity has shown a considerable heterogeneity between different studies.22 Another limitation of this technique is that different heterozygotes may produce melting curves so similar to each other that, although they clearly vary from homozygous variants, they are not differentiated from each other.23

Table 5. Review of the literature on the association between polymorphism and the occurrence of myocardial infarction in patients with coronary artery disease

Country	Year	Number of patients	Type of MI	Association
Japan	2002	2819	MI	Yes
USA	2004	190	MI	Yes
Italy	2005	293	MI	Yes
Switzerland	2007	781	MI	Yes
Finland	2007	1440	MI	No
Iran	2013	385	MI	Yes
Russia	2013	183	MI	Yes
Iran	2014	1000	MI	No

Connexin-37 is a gap junction protein encoded by the GJA4 gene and is induced in the vascular smooth muscle during coronary arteriogenesis. It has been well demonstrated that the expression of this protein can be altered in atherosclerotic lesions in both human and animal models. In fact, because normal connexin-37 can inhibit leukocyte adhesion mediated by the release of ATP into the extracellular space, the anti-adhesive effect can be altered in those with the GJA4 gene polymorphisms predisposing to leukocyte adhesion.24 Furthermore, connexin-37 has a central role as an intrinsic negative regulator of platelet function, so that its deficiency following the GJA4 gene mutations may result in platelet aggregation and lead to thrombus growth. In sum, these mechanisms due to the GJA4 gene polymorphisms may
help predict atherosclerosis complications such as MI.25
26 However, in our observation, this role for the C1019T
polymorphism of the GJA4 gene was not demonstrated.
This result may have been due to our selecting a young CAD
population in our survey. It seems that the development
and localization of connexin proteins to the gap junctional
spots may be age-dependent as is shown in some animal
studies27 and, accordingly, their related polymorphisms may
be phenotypic by increasing age. This new point should be
examined by employing 2 young and older age subgroups of
CAD patients and comparing the GJA4 gene polymorphism
state between these groups.

As a limitation in our study, the data obtained from a
previous cohort study, which followed up 554 out of 1000
patients, were merged with our findings so as to determine
the association between the genotypes and the patients’ long-
term outcome: This might have led to selection bias. The
reason was that our study was part of a large study in THC
on both epidemiological and genetic aspects of premature
CAD and, thus, we used the follow-up findings obtained by
the parallel epidemiological study on the same population.

Conclusion

The C1019T polymorphism of the GJA4 gene may not be
useful for predicting the occurrence of MI in patients with
premature CAD. Also, the presence of this polymorphism in
this group of patients may have a low value for predicting
long-term CAD complications. Because of the probable
age-related changes in the functions of the connexin gap
junction protein, the predictive role of this polymorphism
may be observable in the old population, not in patients with
premature CAD. This topic merits further assessment in
future association studies.

Acknowledgments

This study was approved and supported by Tehran
University of Medical Sciences. The authors gratefully
thank all the clinicians and laboratory personnel for their
scientifically and technically supports.

References

1. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS,
Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, De-
sprés JP, Fullerton HJ, Howard VJ, Huffman MD, Isaaci CR, Jimé-
nnez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu
S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, 3rd, Moy
CS, Munter P, Mussolino ME, Nasir K, Neumar RW, Nichol G,
Palaniappan L, Pandek DY, Reeves MJ, Rodriguez CJ, Rosamond
W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D,
Yeh RW, Turner MB; American Heart Association Statistics Com-
mittee; Stroke Statistics Subcommittee. Heart Disease and Stroke
Statistics-2016 Update: A Report from the American Heart Asso-
ciation. Circulation 2016;133:e38-360.

2. Rissานen AM. Familial occurrence of coronary heart disease: effect
of age at diagnosis. Am J Cardiol 1979;44:60-66.

3. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight
BF, Purcell S, Musunuru K, Aridsson D, Manucci PM, Anand S,
Engert JC, Samani NJ, Schunkert H, Erdmann J, Reilly MP, Rader
DJ, Morgan T, Spertus JA, Stoll M, Girelli D, McKeown PP, Pat-
terson CC, Siscovick DS, O’Donnell CJ, Elosua R, Peltonen L,
Salomaa V, Schwartz SM, Melander O, Althüler D, Aridsson D,
Merlini R, Berzuini C, Bernardinelli L, Peyvandi F, Tubaro M,
Celli P, Ferrari M, Fettveau R, Marziliano N, Casari G, Galli M,
Ribicini F, Rossit M, Bernardi F, Zonzini P, Piazza A, Manucci PM,
Schwartz SM, Siscovick DS, Yee J, Friedlander Y, Elosua R,
Marrugat J, Lucas G, Subirana I, Sala J, Ramos K, Kathiresan
S, Meigs JB, Williams G, Nathan DM, MacRae CA, O’Donnell
CJ, Salomaa V, Havulinna AS, Peltonen L, Melander O, Berglund
G, Voight BF, Kathiresan S, Hirschhorn JAN, Asselsa R, Duga S,
Spereaco M, Musunuru K, Daly MJ, Purcell S, Voight BF, Pur-
cell S, Nemesh J, Korn JM, McCarroll SA, Schwartz SM, Yee J,
Kathiresan S, Lucas G, Subirana I, Elosua R, Surit A, Guiducci C,
Giannlly N, Mirel D, Parkin M, Burt N, Gabriel S, Samani NJ,
Thompson JR, Braund PS, Wright BJ, Balmforth AJ, Ball SG, Hall
A; Wellcome Trust Case Control Consortium, Schunkert H, Erd-
mann J, Linsel-Nitschke P, Lieb W, Ziegler A, König I, Hengsten-
berg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann
HE, Schreiber S, Schunkert H, Samani NJ, Erdmann J, Ouwehand
W, Hengstenberg C, Deloukas P, Scholz M, Cambien F, Reilly MP,
Li M, Chen Z, Wilensky R, Matthai W, Qasim A, Hakonarson HH,
Devaney J, Burnett MS, Pichard AD, Kent KM, Satler L, Lindsay
JM, Waksman R, O’Donnell CJ, Waterman DM, Walker MC,
Mooser V, Epstein SE, Rader DJ, Scheinfeld T, Berger K, Stoll M,
Huge A, Girelli D, Martineelli N, Olivieri O, Corrocher R, Morgan
T, Spertus JA, McKeown P, Patterson CC, Schunkert H, Erdmann
E, Linsel-Nitschke P, Lieb W, Ziegler A, König IR, Hengstenberg
C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE,
Schreiber S, Hölm H, Thorleifsson G, Thorsteinsson U, Stefans-
son K, Engert JC, Do R, Xie C, Anand S, Kathiresan S, Arid-
siino D, Manucci PM, Siscovick D, O’Donnell CJ, Samani NJ,
Melander O, Elosua R, Peltonen L, Salomaa V, Schwartz SM,
Althüler D. Genome-wide association of early-onset myocardial
fibrosis with single nucleotide polymorphisms and copy number
variants. Nat Genet 2009;41:334-341.

4. Cipriani V, Manucci PM, Aridsson D, Ferrario M, Corsini G,
Merlini PA, Notarangelo F, Lina D, Bernardinelli L. Familial ag-
gregation of early-onset myocardial infarction. Eur J Intern Med
2010;21:511-515.

5. Brown DW, Giles WH, Burke W, Groenland KJ, Croft JB. Famil-
ial aggregation of early-onset myocardial infarction. Community
Genet 2002;5:232-238.

6. Hirahashi A, Yamada Y, Murase Y, Suzuki Y, Kataoka H, Morim-
oto Y, Tajika T, Murohara T, Yokota M. Association of gene
polymorphism in connexin 37 as a prognostic marker for athero-
sclerotic plaque development. J Intern Med 1999;246:211-218.

7. Boerma M, Forsberg L, Van Zeijl L, Morgenstern R, De Faire U,
Lemne C, Erlande D, Thulin H, Hong Y, Cotgreave IA. A genetic
polymorphism in connexin 37 as a prognostic marker for athero-
sclerotic plaque development. J Intern Med 1999;246:211-218.

8. Incalcaterra E, Caruso M, Balistreri CR, Candore G, Lo Presti
R, Hoffmann E, Caimi G. Role of genetic polymorphisms in
coronary artery disease in low- or high-risk subjects defined by
conventional risk factors. J Am Coll Cardiol 2003;42:1429-1437.

9. Collings A, Raitakari OT, van der Meer MS, Virani SS, Widding
K, Palmai J, Viski JS, Lehtimäki TJ. The influence of smoking and
homocysteine on subclinical atherosclerosis is modified by the
connexin37 C1019T polymorphism - The Cardiovascular Risk in
Young Finns Study. Clin Chem Lab Med
C1019T Polymorphism in the Connexin 37 Gene and Myocardial Infarction Risk...

10. Han YL, Xi SY, Zhang XL, Yan CH, Yang Y, Kang J. Association of C1019T polymorphism in the connexin 37 gene and coronary artery disease in Chinese Han population. Zhonghua Yi Xue Za Zhi 2007;87:100-104.

11. Wong CW, Christen T, Pfenninger A, James RW, Kwak BR. Do allelic variants of the connexin37 1019 gene polymorphism differentially predict for coronary artery disease and myocardial infarction? Atherosclerosis 2007;191:355-361.

12. Maleki A, Shariari A, Sadeghi M, Rashidi N, Alyari F, Foroughi S, Nabatchi B, Ghanavati R. Evaluation of fibrinolytic medical therapy for patients with acute myocardial infarction. ARYA Atheroscler 2012;8:46-49.

13. Gharipour M, Khosravi A, Sadeghi M, Roohafza H, Hashemi M, Sarrafaizadegane N. Socioeconomic characteristics and controlled hypertension: evidence from Isfahan Healthy Heart Program. ARYA Atheroscler 2013;9:77-81.

14. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215.

15. Yamada Y, Iwasa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002;347:1916-1923.

16. Lanfear DE, Marsh S, Cresci S, Shannon WD, Spezus JA, McLeod HL. Genotypes associated with myocardial infarction risk are more common in African Americans than in European Americans. J Am Coll Cardiol 2004;44:165-167.

17. Listi F, Candore G, Lio D, Russo M, Colonna-Romano G, Caruso M, Hoffmann E, Caruso C. Association between C1019T polymorphism of connexin37 and acute myocardial infarction: a study in patients from Sicily. Int J Cardiol 2005;102:269-271.

18. Wong CW, Christen T, Pfenninger A, James RW, Kwak BR. Do allelic variants of the connexin37 1019 gene polymorphism differentially predict for coronary artery disease and myocardial infarction? Atherosclerosis 2007;191:355-3561.

19. Collings A, Islam MS, Juonala M, Rontu R, Kähönen M, Hutri-Kähönen N, Laitinen T, Marmiemi J, Viikari JS, Raitakari OT, Lehtimäki TJ. Associations between connexin37 gene polymorphism and markers of subclinical atherosclerosis: the Cardiovascular Risk in Young Finns study. Atherosclerosis 2007;195:379-384.

20. Seif M, Fallah S, Ghasemi A, Aghajani H, Razaghi M, Danaei N. Mutations of the connexin 37 and 40 gap-junction genes in patients with acute myocardial infarction. Clin Lab 2013;59:343-348.

21. Balatskiy AV, Andreenko EY, Samokhodskaya LM, Boltsos SA, Tkachuk VA. Endothelial NO synthase and connexin 37 gene polymorphisms as a risk factor for myocardial infarction in subjects without a history of coronary artery disease. Ter Arkh 2013;85:18-22.

22. Li BS, Wang XY, Ma FL, Jiang B, Song XX, Xu AG. Is high resolution melting analysis (HRMA) accurate for detection of human disease-associated mutations? A meta-analysis. PLoS One 2011;6:e28078.

23. Wittwer CT. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 2009;30:857-859.

24. Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 2006;12:950-954.

25. Li Z, Smyth SS. Connexin 37 counteracts clotting. Circulation 2011;124:873-875.

26. Angelillo-Scherrer A, Fontana P, Burnier L, Roth I, Sugamele R, Brisset A, Morel S, Nolli S, Sutter E, Chassot A, Capron C, Borgel D, Sailer F, Chanson M, Kwak BR. Connexin 37 limits thrombus propensity by downregulating platelet reactivity. Circulation 2011;124:930-939.

27. Yeh HI, Chang HM, Lu WW, Lee YN, Ko YS, Severs NJ, Tsai CH. Age-related alteration of gap junction distribution and connexin expression in rat aortic endothelium. J Histochem Cytochem