The rate of period change in DAV stars

Yan-Hui Chen¹,²,³, Cai-Yun Ding¹,²,³, Wei-Wei Na³,⁴ and Hong Shu¹,²,³

¹ Institute of Astrophysics, Chuxiong Normal University, Chuxiong 675000, China; yhc1987@cxtc.edu.cn
² School of Physics and Electronical Science, Chuxiong Normal University, Chuxiong 675000, China
³ Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China
⁴ School of Physics and Electronic Engineering, Yuxi Normal University, Yuxi 653100, China

Received 2017 January 23; accepted 2017 March 18

Abstract Grids of DAV star models are evolved by WDEC, taking the element diffusion effect into account. The grid parameters are hydrogen mass \(\log(M_H/M_\ast) \), helium mass \(\log(M_{He}/M_\ast) \), stellar mass \(M_\ast \) and effective temperature \(T_{\text{eff}} \) for DAV stars. The core compositions are from white dwarf models evolved by MESA. Therefore, DAV star models evolved by WDEC have historically viable core compositions. Based on those DAV star models, we studied the rate of period change \(\dot{P}(k) \) for different values of H, He, \(M_\ast \) and \(T_{\text{eff}} \). The results are consistent with previous work. Two DAV stars G117–B15A and R548 have been observed for around 40 years. The rates of period change of two large-amplitude modes were obtained through the \(O-C \) method. We conducted an asteroseismological study on the two DAV stars and then obtained a best-fitting model for each star. Based on the two best-fitting models, the mode identifications \((l, k)\) of the observed modes for G117–B15A and R548 are consistent with previous work. Both the observed modes and the observed \(\dot{P} \)s can be fitted by calculated ones. The results indicate that our method of evolving DAV star models is feasible.

Key words: stars: oscillations (including pulsations) — stars: individual (G117-B15A and R548) — white dwarfs

1 INTRODUCTION

White dwarfs are the last observable stage of evolution for most low and medium mass stars. They comprise around 98% of the end state of all stars (Winget & Kepler 2008). Thermonuclear reactions have basically stopped inside a white dwarf. The central core temperature gradually decreases with the residual heat continually radiating from the surface. White dwarfs become darker and darker until we can no longer observe them. Field white dwarfs with a rich helium atmosphere are characterized as DO type (strong HeII lines) or DB type (strong HeI lines) white dwarfs, while those with a rich hydrogen atmosphere are characterized as DA type (only Balmer lines) white dwarfs (McCook & Sion 1999). Around 80% (Bischoff-Kim & Metcalfe 2011) of the population of field white dwarfs are DA type white dwarfs which have a layered structure due to element diffusion.

In the Hertzsprung-Russell diagram, there are DOV (around 170 000–75 000 K), DBV (around 29 000–22 000 K) and DAV (around 12 270–10 800 K) instability strips (Winget & Kepler 2008). At least 148 DAV stars have been observed (Castanheira et al. 2010). Details about the DAV instability strip are closely related to stellar gravitational acceleration (Gianninas et al. 2005, 2011). The instability strip is significantly wider for DAV stars with large gravitational accelerations. When DA type white dwarfs pass through the DAV instability strip, they will pulsate and change to DAV stars. These DAV stars cool down slowly and therefore the cooling rate is very small. Cooling and contraction produced by evolution can affect the pulsation periods. Therefore, it is very important to study the changing rate of pulsation periods, which can reflect the evolution of a star.

The cooling of a white dwarf is a very long process. The rate of period change is very small and not
easy to detect. Using Taylor's theorem in mathematics, astronomers have found a way to measure a minute rate of change, named \(O - C \). The \(O - C \) method means the observed minus calculated values, which treats the time of maximal light as a function of its cycle number. The \(O - C \) method has been used to calculate the rate of period change in pre-white dwarf stars PG 0122+200 (Fu et al. 2002) and PG 1159–035 (Costa & Kepler 2008), DBV star EC 20058–5234 (Dalesio et al. 2013), and DAV stars G117–B15A (Kepler et al. 2000, 2005b; Kepler 2012) and R548 (Mukadam et al. 2013). The rate of period change can be used to measure the evolutionary rate of white dwarf stars (Kepler et al. 2005a).

Bradley & Winget (1991) discussed in detail the rate of period change in DBV and DAV stars with pure carbon cores. Studying the rate of period change in DAV stars with carbon/oxygen cores, Bradley et al. (1992) reported that the rates of period change for trapped modes were about half of the values for nontrapped modes. Bradley (1996) reported that the rate of period change was very sensitive to changes in the stellar mass and core compositions. An asteroseismological study including the rate of period change was conducted by Bradley (1998) for G117–B15A and R548, and by Bradley (2001) for L19-2 and GD165. Bischoff-Kim et al. (2008a) performed an asteroseismological study focusing on DAV stars G117–B15A and R548. They (Bischoff-Kim et al. 2008b) calculated the rate of period change for the best-fitting model of G117–B15A and tried to limit the axion mass. Giammichele et al. (2016) completed an asteroseismological study on R548 based on the optimization package genetic evolLUtion Code for asteroseismologY (LUCY). Based on new atmospheric modeling for DA white dwarfs, Giammichele et al. (2015) provided updated estimates of the time-averaged atmospheric properties of R548. The parameters of their best asteroseismological model are consistent with those of their best spectroscopic model, as shown in table 8 of Giammichele et al. (2016). The calculated rate of period change for the 213 s mode is consistent with the observed value obtained through \(O - C \).

For model calculations, \((k, l, m)\) are used to characterize an eigen-mode. The three indices are the radial order, the spherical harmonic degree and the azimuthal number, respectively. For DAV stars, the eigen-modes are non-radial \(g \)-mode pulsations. The rate of period change for pulsation periods with the same \(l \) value (usually \(l = 1 \) or 2) and the same \(m \) value (\(m = 0 \)) can be calculated by

\[
\dot{P}(k) = \frac{P_2(k) - P_1(k)}{\text{Age}_2 - \text{Age}_1}. \tag{1}
\]

In Equation (1), \(P_2(k) \) is the pulsation period of a DAV star with stellar age \(\text{Age}_2 \) and \(P_1(k) \) is the pulsation period of the DAV star with stellar age \(\text{Age}_1 \). Precisely, \(P_2(k) \) and \(P_1(k) \) are the period of the same mode (same \(k \)) at two different epochs. \(\dot{P}(k) \) can represent the corresponding rate of period (\(k \) change.

\textsc{MESA} is a stellar evolution code reported by Paxton et al. (2011, 2013). A main-sequence (MS) star can be evolved into a white dwarf (WD) by \textsc{MESA}. The core compositions of a white dwarf result from thermal nuclear burning. However, DAV stars evolved by \textsc{MESA} usually have rich He/H envelopes. It is not convenient for \textsc{MESA} to evolve grids of DAV star models. \textsc{WDEC} is a quasi-static code to calculate the cooling process of white dwarf stars (Montgomery et al. 1999). Before the evolution, \textsc{WDEC} allows users to enter the hydrogen layer mass fraction (\(\log(M_{\text{H}}/M_*) \)), the helium layer mass fraction (\(\log(M_{\text{He}}/M_*) \)), the total stellar mass (\(M_* \)) and the effective temperature (\(T_{\text{eff}} \)) for the output white dwarfs. Namely, \textsc{WDEC} is suitable for evolving grids of white dwarf models. However, the core compositions are usually artificial, such as fully carbon (C), fully oxygen (O) or homogeneous C/O core compositions. Adding the core compositions of white dwarfs evolved by \textsc{MESA} into \textsc{WDEC}, grids of white dwarf models can be evolved by \textsc{WDEC}. Those white dwarf models have historically visible core composition profiles. The element diffusion scheme of Thoul et al. (1994) was included into \textsc{WDEC} by Su et al. (2014). This method has been used many times recently to evolve DAV stars (Chen & Li 2014b,a; Su et al. 2014; Chen 2016b) and DBV stars (Chen 2016a).

In this paper, we study the rate of period change in DAV stars based on the DAV star models evolved in the method. Based on observations spanning about 40 years, the rates of period change for two large-amplitude modes are obtained through the \(O - C \) method (Kepler 2012; Mukadam et al. 2013). We try to check the DAV star models by conducting an asteroseismological study on the two DAV stars and comparing the calculated rates of period change to the observed values.

In Section 2, we briefly introduce the input physics and model calculations and discuss the \(\dot{P}(k) \) values with various differences in stellar ages. We examine the rate of period change for DAV stars in Section 3, taking different values of H, He, \(M_* \) and \(T_{\text{eff}} \) into account. In Section 4, we conduct an asteroseismological study of DAV stars G117–B15A and R548, and then calculate the rates of period change for the two best-fitting models. The theoretical values of \(\dot{P}(k) \) can be compared with the observed
values obtained through the \(O - C\) method. Finally, we provide a discussion and conclusions in Section 5.

2 INPUT PHYSICS AND MODEL CALCULATIONS

We downloaded and installed the 6208 version of MESA. In the module `make_co_wd`, the initial MS stellar masses were entered, as shown in the first column of Table 1. The other input was the default values. The initial metal abundance was 0.02 and the mixing length parameter was 2.0. When the logarithm of stellar luminosity divided by solar luminosity was less than \(-2.0\), those MS stars evolved to be WD stars. The corresponding WD masses are shown in the second column of Table 1. Those WDs usually have rich He/H envelopes. The core structure parameters, including mass, radius, luminosity, pressure, temperature, entropy and C profile, are extracted and added into \texttt{WDEC}. \texttt{WDEC} was first developed by Martin Schwarzschild and subsequently modified by Kutter & Savedoff (1969), Lamb & van Horn (1975) and Wood (1990). With opacities of Itoh et al. (1983, 1984), Lamb & van Horn (1975) and Kutter & Savedoff (1969), the equation of state is from Lamb (1974) and Saumon et al. (1995). In our calculations, standard mixing length theory is used and the mixing length parameter is adopted as \(\alpha = 0.6\) for DAV stars. The core boundary of WDs evolved by MESA is defined around the peak of the C abundance. The O abundance equals one unit minus the C abundance. The corresponding core masses are shown in the third column of Table 1. With historically viable core compositions, grids of WDs can be evolved by \texttt{WDEC}. The composition profiles are results of diffusion, not the previous approximations of diffusion equilibrium H/He and He/C transitions (Su et al. 2014). The corresponding WD masses evolved by \texttt{WDEC} are shown in the fourth column of Table 1. The WD masses in the fourth column are around the values in the third column. It is an approximation in order to evolve more dense WD masses by \texttt{WDEC}. With a modified pulsation code of Li (1992b,a), full equations of linear and adiabatic oscillation are solved and the eigen-frequencies can be found one by one through scanning. Then, Equation (1) can be used to calculate the rate of period change.

In order to calculate \(\dot{P}(k)\), two models with different ages should be selected. We choose typical DAV stars with \(\log(M_\text{H}/M_\odot) = -4.0, \log(M_\text{He}/M_\odot) = -2.0, M_\odot = 0.600 M_\odot\) and \(T_\text{eff}\) around \(12,000\) K. Four groups of DAV stars with different stellar ages are chosen, as shown in Figure 1. The abscissa is pulsation period \(P(k)\) which is from \(0\) s to \(1500\) s. The ordinate is \(\dot{P}(k)\).

| Table 1 Masses of MS stars, WD stars, corresponding cores evolved by MESA and masses of corresponding WD stars evolved by \texttt{WDEC}. |
MS \([M_\odot]\)	WD (MESA) \([M_\odot]\)	\(M_{\text{core}(\text{MESA})} [M_\odot]\)	WD (\texttt{WDEC}) \([M_\odot]\)
3.00	0.579	0.550	0.550-0.560
3.20	0.599	0.575	0.565-0.585
3.40	0.627	0.600	0.590-0.610
3.50	0.652	0.625	0.615-0.635
3.60	0.675	0.650	0.640-0.660
3.70	0.694	0.675	0.665-0.685
3.80	0.714	0.770	0.690-0.710
3.92	0.738	0.725	0.715-0.735
4.00	0.763	0.750	0.740-0.750

\(\Delta T_{\text{eff}} = 100\) K, \(\Delta T_{\text{eff}} = 200\) K, \(\Delta T_{\text{eff}} = 400\) K and \(\Delta T_{\text{eff}} = 500\) K.

Fig. 1 The rate of period change for models with different effective temperatures. The rate of period change is calculated by the difference of two eigen-periods (same \(k\) values) divided by the difference of corresponding model ages. The parameters of the models are \(\log(M_\text{H}/M_\odot) = -4.0, \log(M_\text{He}/M_\odot) = -2.0, M_\odot = 0.600 M_\odot\) and \(T_\text{eff}\) around \(12,000\) K.

The pluses, boxes, crosses and circles respectively correspond to DAV star models of \(T_{\text{eff}} = 12,050\) K and \(11,950\) K, \(12,100\) K and \(11,900\) K, \(12,200\) K and \(11,800\) K, and \(12,300\) K and \(11,700\) K, respectively. Then, the values of \(\dot{P}(k)\) can be calculated according to Equation (1). The radial order \(k\) is from \(1\) to \(31\) in the period range for those models.

In Figure 1, we can see that the values of \(\dot{P}(k)\) are basically equal for \(\Delta T_{\text{eff}} = 100, 200, 400\) and \(600\) K. We choose models of \(\Delta T_{\text{eff}} = 400\) K to calculate the theoretical values of \(\dot{P}(k)\) in this paper.

Some groups of DAV star models are evolved in order to study the rate of period change in DAV stars. For example, in order to study the effect of different values of H, we evolve DAV star models of \(\log(M_\text{H}/M_\odot)\) from \(-10.0\) to \(-4.0\) with steps of \(1.0, \log(M_\text{He}/M_\odot) = -2.0,\)
\(M_\ast = 0.600 \, M_\odot \), and \(T_{\text{eff}} = 12 \, 200 \, \text{K} \) and \(11 \, 800 \, \text{K} \). In order to do the asteroseismological study on DAV star G117–B15A and R548, grids of DA V star models are evolved. The grid parameters are \(\log(M_{\text{He}}/M_\ast) \) from \(-10.0 \) to \(-4.0 \) with steps of 1.0, \(\log(M_{\text{He}}/M_\ast) \) from \(-4.0 \) to \(-2.0 \) with steps of 0.5, \(M_\ast \) from 0.550 \(M_\odot \) to 0.750 \(M_\odot \) with steps of 0.010 \(M_\odot \), and \(T_{\text{eff}} \) from 12,800 K to 10,800 K with steps of 100 K. After pre-selecting a pre-best-fitting model, the grids of DA V star models will be made dense around the pre-best-fitting parameters. Then, a best-fitting model will be selected. Finally, the calculated \(\dot{P}(k) \) of the best-fitting model can be compared with the corresponding observed \(\dot{P} \) through the \(O - C \) method.

3 THE RATE OF PERIOD CHANGE IN DAV STARS

With the evolved DAV star models, we studied the rate of period change in DAV stars. Equation (1) is used on two DAV star models with differences in \(T_{\text{eff}} \) of 400 K. The pulsation code starts to calculate eigen-modes from \(k = 1 \). The lower \(k \) \(\ell \)-modes of each model will be calculated. We studied the effect of different values of H, He, kinetic energy distribution (KED), \(M_\ast \) and \(T_{\text{eff}} \) on the rate of period change. This may be helpful for qualitative analysis of the rate of period change in some observed stars.

3.1 The Effect of Different Values of H Atmosphere Mass and He Layer Mass

First of all, we studied the effect of different values of H atmosphere mass and He layer mass on the rate of period change in DAV stars.

In Figure 2, we show a diagram of \(\dot{P}(k) \) versus \(P(k) \) with different values of H atmosphere mass. With \(T_{\text{eff}} = 12 \, 200 \, \text{K} \) and \(11 \, 800 \, \text{K} \), \(\log(M_{\text{He}}/M_\ast) \) is fixed to be \(-2.0 \). \(M_\ast \) is fixed to be 0.600 \(M_\odot \) and \(\log(M_{\text{He}}/M_\ast) \) is from \(-10.0 \) to \(-4.0 \) with steps of 1.0. In the period range from 0 s to 1500 s, the radial order \(k \) is from 1 to 31 for the model of \(\log(M_{\text{He}}/M_\ast) = -4.0 \) and from 1 to 23 for the model of \(\log(M_{\text{He}}/M_\ast) = -10.0 \). The pulsation period is from 113.16 s (\(k = 1 \)) to 1467.93 s (\(k = 31 \)) for the model of \(\log(M_{\text{He}}/M_\ast) = -4 \) and \(T_{\text{eff}} = 12 \, 200 \, \text{K} \). For models of \(\log(M_{\text{He}}/M_\ast) = -4 \) and \(T_{\text{eff}} = 12 \, 200 \, \text{K} \) and \(11 \, 800 \, \text{K} \), the differences in corresponding pulsation periods are from 0.92 s to 20.53 s and the difference of ages is \(0.30 \times 10^8 \) years. The rate of period change is from 0.97 to 21.70 in the unit of \(10^{-11} \) s s\(^{-1} \), marked as boxes in Figure 2. The values of \(\dot{P}(k) \) are all positive. This is because the cooling process dominates for cool white dwarfs, which will increase the degree of degeneracy and increase the pulsation period (Winget et al. 1983; Kepler et al. 2000; Winget & Kepler 2008). Overall, the rates of period change for different H atmosphere mass models basically overlap each other. We notice that the rate of period change is distributed in a strip from the lower left corner to the upper right corner. Basically, the longer the pulsation period is, the larger the rate of change for a period of a mode is. This is because the asymptotic period spacing is increasing with the white dwarf cooling down. The asymptotic period spacing (Tassoul 1980) can be calculated by

\[
\Delta \dot{P}(l) = \frac{2\pi^2}{\sqrt{l(l+1)}} \int_0^R \frac{R'(N_0)}{N_0} dr.
\]

(2)

In Equation (2), \(R \) is stellar radius and \(N \) is Brunt-Väisälä frequency. Therefore, we basically have equations of

\[
P(k) = P(k_0) + (k - k_0) \times \Delta P,
\]

and

\[
\dot{P}(k) = \dot{P}(k_0) + (k - k_0) \times \Delta \dot{P}.
\]

(3)

We assume \(k_0 \) is so high that the value of \(P(k_0) \) satisfies the asymptotic period spacing law. Therefore, periods with high \(k \) values will increase with both the cooling process of a DAV star and the increasing process of the asymptotic period spacing. The long-period modes should have a relatively large rate of period change.

In addition, some values of \(\dot{P}(k) \) are located around the strip. For example, values represented by inverted triangles are relatively large around 1000 s and relatively small around 1250 s. This effect is associated with the mode trapping effect, which will be discussed in the next subsection.

These results are consistent with those of Bradley & Winget (1991). They found that the rate of period change for the model of \(\log(M_{\text{He}}/M_\ast) = -4.0 \) was about half of that for the model of \(\log(M_{\text{He}}/M_\ast) = -10.0 \). The conclusion is based on the abscissa being radial order \(k \). However, the abscissa in Figure 2 is the pulsation period.

In Figure 3, we show the rate of period change for the radial order \(k \). We can see that the values of \(\dot{P}(k) \) for the model of \(\log(M_{\text{He}}/M_\ast) = -4.0 \) are obviously smaller than those for the model of \(\log(M_{\text{He}}/M_\ast) = -10.0 \). The frequency of an eigen-mode can be obtained from observations but the radial order \(k \) cannot be obtained. Therefore, diagrams of \(\dot{P}(k) \) versus \(P(k) \) are displayed in Figure 2.
Fig. 3 The effect of different H atmosphere masses on the rate of period change. The abscissa is the radial order \(k \). The squares and triangles are values for \(\log(M_\text{H}/M_*) \).

In Figure 4, we show a diagram of \(\dot{P}(k) \) versus \(P(k) \) with different values of He layer mass. For the models, \(\log(M_\text{H}/M_*) = -6.0 \), \(\log(M_\text{He}/M_*) \) is from \(-4.0\) to \(-2.0\) with steps of \(0.5\), \(M_* = 0.600 M_\odot \), and \(T_{\text{eff}} = 12\,200 \text{K} \) and 11\,800 K. The radial order \(k \) is from 1 to 27 for the model of \(\log(M_\text{He}/M_*) = -2.0 \) and from 1 to 25 for the model of \(\log(M_\text{He}/M_*) = -4.0 \). The values of \(\dot{P}(k) \) are not sensitive to different He layer masses, which are consistent with the results of Bradley & Winget (1991). They are distributed in a strip from the lower left corner to the upper right corner in Figure 4. There is also dispersion in some \(\dot{P}(k) \) values around the strip.

3.2 The Effect of Kinetic Energy Distribution

Both different H models and different He models are found to have \(\dot{P}(k) \)'s located around a strip. In this subsection, we try to discuss the rate of period change for each mode by analyzing its KED.

In Figure 5, we show the core composition profiles and the Brunt-Väisälä frequency of a DAV star model. The model parameters are \(\log(M_\text{H}/M_*) = -4.0 \), \(\log(M_\text{He}/M_*) = -2.0 \), \(M_* = 0.600 M_\odot \) and \(T_{\text{eff}} = 11\,800 \text{K} \). The C profile is from a 0.627 \(M_\odot \) white dwarf (0.600 \(M_\odot \) core) evolved by MESA from a 3.40 \(M_\odot \) MS star, as shown in Table 1. The white dwarfs evolved by MESA usually have rich He/H envelopes.

In the core, the O profile equals 1 minus the C profile. The H/He composition gradient zone and He/C/O composition gradient zone result from element diffusion. The composition transition zone can make a spike in the Brunt-Väisälä frequency. The spikes in the upper panel in Figure 5 lead to a mode trapping effect (Winget et al. 1981; Brassard et al. 1992). In addition, there is a thin convection zone on the surface in the upper panel.

In Figure 6, we show the rate of period change and corresponding KEDs of each mode. The model parameters are the same as in Figure 5. In order to calculate the rate of period change, models of \(T_{\text{eff}} = 11\,800 \text{K} \) and 12\,200 K are evolved. The pulsation periods and corresponding KEDs are calculated for the model of \(T_{\text{eff}} = 11\,800 \text{K} \). The radial order \(k \) is from 1 to 31. The KEDs
can be calculated by,

\[
\frac{\text{KED}(\text{C/O}) / \text{KED}(\text{He}) / \text{KED}(\text{H})}{4\pi \int_0^{R_{\text{He/C/O}}} (|\xi_r|^2 + l(l+1)|\xi_h|^2) \rho_0 r^2 dr} = \frac{4\pi \int_{R_{\text{He}}}^{R_{\text{H}}} (|\xi_r|^2 + l(l+1)|\xi_h|^2) \rho_0 r^2 dr}{4\pi \int_{R_{\text{He/C/O}}}^{R_{\text{He}}} (|\xi_r|^2 + l(l+1)|\xi_h|^2) \rho_0 r^2 dr}
\]

(4)

In Equation (4), \(\rho_0\) is the local density. KED(C/O), KED(He) and KED(H) respectively represent the value of kinetic energy for a given mode distributed in the C/O core, He layer and H atmosphere. \(R_{\text{He/C/O}}\), \(R_{\text{He}}\) and \(R\) are the locations of He/C/O interface, H/He interface and stellar radius, respectively.

For the model in Figures 5 and 6, \(R_{\text{He/C/O}}\) is the location of \(\log(1 - M_r/M_*) = -2.0\) and \(R_{\text{H/He}}\) is the location of \(\log(1 - M_r/M_*) = -4.0\). As shown, for instance, in Christensen-Dalsgaard (2008), \(\xi_r(r)\) is the radial displacement and \(\xi_h(r)\) is the horizontal displacement. In the upper panel in Figure 6, total kinetic energy is set to be 1. KED(C/O) is represented by open dots and KED(H) is represented by crosses. Therefore, KED(He) equals 1 minus KED(C/O) and KED(H).

The radial order \(k\) is from 1 to 31 for the model, which can be inspected separately in Figure 6. For the modes with \(k = 1, 3, 7, 9\) and 13, KED(He) is obviously larger than 50\%. It means that those modes are trapped or partly trapped in the H atmosphere. They have minimal rates of period change in the lower panel. For the model of \(k = 2\), both KED(C/O) and KED(H) are very small. Therefore, KED(He) is relatively large which means that the mode is trapped or partly trapped in the He layer. In the upper panel, \(\dot{P}(k)\) is maximal. For the modes of \(k = 5, 10\) and 20, KED(C/O) is obviously larger than 50\%. They are trapped or partly trapped in the C/O core and correspond to the maximal rates of period change in the lower panel. Namely, modes trapped or partly trapped in the C/O core or He layer have maximal \(\dot{P}(k)\)s. Modes trapped or partly trapped in the H atmosphere have min-

Fig. 5 The core composition profiles and the Brunt-Väisälä frequency for the model of \(\log(M_{\text{He}}/M_*) = -4.0\), \(\log(M_{\text{H}}/M_*) = -2.0\), \(M_*=0.600 M_\odot\) and \(T_{\text{eff}}=11\ 800\ K\).

Fig. 6 Diagram of the rate of period change vs. pulsation periods and corresponding KEDs. The model in the upper panel is the same as in Fig. 5. The value \(k\) is from 1 to 31. In the lower panel, two models of \(T_{\text{eff}}=12\ 200\ K\) and 11\ 800\ K\ are used to calculate values of \(\dot{P}(k)\).
of period change by the mode trapping effect. H atmosphere mass and He layer mass will affect the rate half the values for nontrapped modes. Different values of trapped or partly trapped in the H atmosphere) are about that the rates of period change for trapped modes (modes

Fig. 8 The effect of different stellar masses on the rate of period change. The parameters of the models are \(\log(M_\text{H}/M_\star) = -4.0 \), \(\log(M\text{He}/M_\star) = -2.0 \). \(M_\star \) from 0.550 \(M_\odot \) to 0.750 \(M_\odot \) with steps of 0.050 \(M_\odot \), and \(T_{\text{eff}} = 12 \, 200 \, \text{K} \) and 11 800 K.

In Equation (5), \(G \) is the gravitational constant, \(M \) is stellar mass and \(g_r \) is stellar local gravitation. The modes of \(k = 2, 3 \) and 5 are shown in the lower panel in Figure 7. The upper panel is an enlargement of the lower one. The values of \(k \) can be identified from the intersection points between \(y_1 \) and zero lines. The abscissa on the upper boundary is \(\log(1 - M_r/M_\star) \). The modes of \(k = 2, 3 \) and 5 have their largest \(y_1 \) amplitude in the He layer, H atmosphere and C/O core, respectively. The top abscissa in Figure 7 shows the regions clearly.

3.3 The Effect of Different Values of Total Stellar Mass and Effective Temperature

From the above discussion, we understand that the mode trapping effect will affect the rate of period change up
down. In this subsection, we will discuss the effect of different values of \(M_\star \) and \(T_{\text{eff}} \) on the rate of period change.

In Figure 8, we show a diagram of \(\dot{P}(k) \) versus \(P(k) \) with different \(M_\star \) values. The model parameters are

\[
\log(M_\text{H}/M_\star) = -4.0, \\
\log(M\text{He}/M_\star) = -2.0.
\]

\(M_\star \) from 0.550 \(M_\odot \) to 0.750 \(M_\odot \) with steps of 0.050 \(M_\odot \), and \(T_{\text{eff}} = 12 \, 200 \, \text{K} \) and 11 800 K. We can see that the larger the total stellar mass of a DAV star, the smaller the rate of period change of its modes, especially for long-period modes. On one hand, a white dwarf with large stellar mass undergoes a long process of cooling down and therefore has a small cooling rate. A small cooling rate leads to a small rate of period change. On the other hand, a white dwarf with large stellar mass has a large gravitational acceleration and a small asymptotic period spacing according to Equation (2). The radial order \(k \) is from 1 to 29 for the model of \(M_\star = 0.550 M_\odot \) and from 1 to 38 for the model of \(M_\star = 0.750 M_\odot \) in the period range of 0–1500 s. Therefore, the asymptotic period spacing is small for the model of \(M_\star = 0.750 M_\odot \). Both the long process of cooling down and the small value of asymptotic period spacing lead to obviously small rate of period change for long-period modes of large stellar mass DAV stars.

In Figure 9, we show a diagram of \(\dot{P}(k) \) versus \(P(k) \) with different \(T_{\text{eff}} \) values. The effective temperature is from 12 500 K to 10 500 K with steps of 500 K. The rate of period change with \(T_{\text{eff}} = 12 \, 500 \, \text{K} \) is calculated from two models of \(T_{\text{eff}} = 12 \, 700 \, \text{K} \) and 12 300 K, namely

\[
\dot{P}(k)[10^{-15} \, \text{s}^{-1}] \\
P(k)[\text{s}]-15
\]
The observed modes from Table 5 of Romero et al. (2012) and calculated modes from corresponding best-fitting models. The value of \(P_{\text{obs}} \) minus \(P_{\text{cal}} \) and the parameter \(\chi \) are also displayed. For R548, a new mode of 217.83 s was identified by Giannichele et al. (2015).

Star	\(P_{\text{obs}}(l) \) [s]	\(P_{\text{cal}}(l,k) \) [s]	\(P_{\text{cal}} - P_{\text{obs}} \) [s]	\(\chi \) [s]
G117–B15A	215.20(1)	213.86(1,1)	1.34	1.32
	270.46(1)	270.92(1,2)	-0.46	
	304.05(1)	305.85(1,3)	-1.80	
R548	187.28(1 or 2)	190.42(2,3)	-3.14	2.12
	212.95(1)	214.41(1,1)	-1.46	
	274.51(1)	272.48(1,2)	2.03	
	318.07(1 or 2)	317.97(1,3)	0.10	
	333.64(1 or 2)	331.13(1,4)	2.51	
R548	217.83(2)	218.82(2,4)	-0.99	1.97

In Equation (6), \(P_{\text{cal}} \) is the calculated modes, \(P_{\text{obs}} \) is the observed modes and \(n_{\text{obs}} \) is the number of observed modes. The model with minimal \(\chi \) is selected as the pre-best-fitting one. Then, the grids of DAV star models will be made dense around the pre-best-fitting parameters. Next, a best-fitting model will be selected according to Equation (6). We will calculate the rate of period change of modes from the best-fitting model and compare them with the corresponding observed rate of period change obtained through the \(O - C \) method.

4.1 Asteroseismological Study on DAV Stars

G117–B15A and R548

The observed modes of G117–B15A and R548 are from Table 5 of Romero et al. (2012). They are listed in Table 2, marked as \(P_{\text{obs}}(l) \), in this paper. We assume them to be \(m = 0 \) modes. The modes we calculated are all \(m = 0 \) modes. G117–B15A was identified as a DAV star by Richer & Ulrych (1974). The variability of G117–B15A was confirmed by McGraw & Robinson (1976) with three modes. Kepler et al. (1982) identified six modes, including the three modes, for G117–B15A. The three other modes can be explained by nonlinear pulsation effects (Brassard et al. 1993). The cancelation effect of neighboring parts leads to high \(l \) modes that are not easy to observe. Therefore, the three modes are basically assumed to be \(l = 1 \) modes. This assumption is consistent with previous work (Robinson et al. 1995; Bradley 1998; Benvenuto et al. 2002). Bradley (1998) and Benvenuto et al. (2002) fitted them by consecutive \(l = 1 \) modes with
the 215 s mode being either a $k = 1$ or a $k = 2$ mode. We also assume them to be $l = 1$ modes. R548 was identified as a harmonically variable white dwarf by Lasker & Hessner (1970, 1971). Stover et al. (1980) identified the double modes of 213 s and 274 s. Kepler et al. (1995) detected three other small-amplitude modes near 187, 320 and 333 s. We assume the two doublets to be $l = 1$ modes and the three singlets to be $l = 1$ or 2 modes, as shown in Table 2.

Fitting the observed modes in the second column of Table 2, a pre-best-fitting model is selected for each star. The pre-best-fitting model fitting G117–B15A is model1 in Table 3 and the pre-best-fitting model fitting R548 is model7 in Table 3. Then, the grid models are made dense. For G117–B15A, $\log(M_H/M_\odot)$ is from -7.0 to -9.0 with steps of 0.5, $\log(M_{He}/M_\odot)$ is from -2.0 to -4.0 with steps of 0.5, M_* is from 0.640 M_\odot to 0.680 M_\odot with steps of 0.005 M_\odot, and T_{eff} is from 11 600 K to 12 200 K with steps of 50 K. For R548, $\log(M_H/M_\odot)$ is from -7.0 to -9.0 with steps of 0.5, $\log(M_{He}/M_\odot)$ is from -2.0 to -4.0 with steps of 0.5, M_* is from 0.630 M_\odot to 0.670 M_\odot with steps of 0.005 M_\odot, and T_{eff} is from 12 300 K to 12 800 K with steps of 50 K. Fitting G117–B15A and R548, the parameters of ten models with the smallest χ^2 are shown in Table 3. The values of χ are only slightly different. We do not suggest that model1 must have a clear advantage over model2. In mathematical fitting, the value of χ for model1 is slightly smaller than that for other models. Therefore, model1 is marked as the best-fitting model.

Fitting G117–B15A, the ten models with the smallest χ^2 have parameters of $\log(M_H/M_\odot) = -8.0$, $\log(M_{He}/M_\odot) = -3.0$, $M_\odot = 0.655 - 0.665 M_\odot$, $T_{\text{eff}} = 11 700 - 12 000 K$ and $\log g = 8.1825 - 8.1941$. Fitting R548, the ten models with the smallest χ^2 have parameters of $\log(M_H/M_\odot) = -8.0$, $\log(M_{He}/M_\odot) = -3.5$, $M_\odot = 0.645 - 0.650 M_\odot$, $T_{\text{eff}} = 12 450 - 12 800 K$ and $\log g = 8.1712 - 8.1800$. According to the new work of Gianninas et al. (2011) on the DAV instability strip, model10 with $T_{\text{eff}} = 12 800 K$ and $\log g = 8.1712$ is within the DAV instability strip.

The color residual diagrams of fittings for G117–B15A and R548 are shown in Figures 11 and 12 respectively. The abscissa is the stellar mass M_* and the ordinate is the effective temperature T_{eff}. The parameter χ is represented by color.

The values of H and He are the same as the models in Table 3. The calculated periods for the two best-fitting models are shown in Table 2. For G117–B15A, the three observed modes are fitted by $l = 1$ modes. The radial order k is 1, 2 and 3 respectively. The absolute value of P_{obs} minus P_{cal} is less than 2.00 s and χ is 1.32 s. For R548, the maximal absolute value of P_{obs} minus P_{cal} is 3.14 s and the parameter χ is 2.12 s. In addition, a possible single mode of 217.83 s with S/N = 3.9 is identified by Giammichele et al. (2015) for R548. The mode of 213 s is assumed to be an $l = 1$ mode. The new mode seems to be an $l = 2$ mode. We assume $m = 0$ for the mode. The corresponding best-fitting model just has a mode of 218.82 s ($l = 2$, $k = 4$). The absolute value of P_{obs} minus P_{cal} is 0.99 s for the new mode, which is relatively small. Calculating the six modes for R548 together, the best-fitting model has the value of $\chi = 1.97 s$. The six modes are fitted by four $l = 1$ modes and two $l = 2$ modes, as shown in Table 2.

4.2 Comparing the Stellar Parameters to Previous Spectroscopic Results and Asteroseismological Results

In Table 4, we show the previous spectroscopic results. Studying the optical spectra and ultraviolet spectra of DAV stars, Bergeron et al. (1995) suggested that the best value of the mixing length parameter is $\alpha ML2/\alpha = 0.6$. In our model evolutions by WDEC, the mixing length pa-
Table 3 The Parameters of Ten Fitting Models with Smallest χ^2 Fitting G117–B15A and R548

ID(G117–B15A)	log(M_H/M_\odot)	log(M_{He}/M_\odot)	T_{eff} [K]	M_\odot	log g	χ
model1	–8.0	–3.0	11 900	0.660	8.1912	1.32
model2	–8.0	–3.0	11 950	0.660	8.1911	1.33
model3	–8.0	–3.0	11 750	0.665	8.1940	1.44
model4	–8.0	–3.0	11 850	0.660	8.1913	1.48
model5	–8.0	–3.0	12 000	0.660	8.1910	1.50
model6	–8.0	–3.0	11 800	0.665	8.1939	1.51
model7	–8.0	–3.0	11 700	0.665	8.1941	1.56
model8	–8.0	–3.0	12 000	0.655	8.1913	1.72
model9	–8.0	–3.0	11 800	0.665	8.1914	1.75
model10	–8.0	–3.0	11 800	0.660	8.1914	1.75

ID(R548)	log(M_H/M_\odot)	log(M_{He}/M_\odot)	T_{eff} [K]	M_\odot	log g	χ
model1	–8.0	–3.5	12 650	0.645	8.1714	2.12
model2	–8.0	–3.5	12 600	0.645	8.1715	2.16
model3	–8.0	–3.5	12 700	0.645	8.1713	2.19
model4	–8.0	–3.5	12 550	0.645	8.1716	2.29
model5	–8.0	–3.5	12 750	0.645	8.1712	2.35
model6	–8.0	–3.5	12 500	0.645	8.1717	2.50
model7	–8.0	–3.5	12 500	0.650	8.1799	2.51
model8	–8.0	–3.5	12 550	0.650	8.1798	2.54
model9	–8.0	–3.5	12 450	0.650	8.1800	2.57
model10	–8.0	–3.5	12 800	0.645	8.1712	2.58

Table 4 The previous spectroscopic results of Bergeron et al. (1995) (B1995 for short), Gianninas et al. (2011) (G2011 for short), Koester & Holberg (2001) (K2001 for short) and Giammichele et al. (2015) (G2015 for short).

Reference	T_{eff} [K]	log g
G117–B15A		
B1995	11 620 ± 200	7.97 ± 0.05
G2011	11 990 ± 200	7.97 ± 0.05
K2001	12 010 ± 193	8.14 ± 0.05

Reference	T_{eff} [K]	log g
R548		
B1995	12 480 ± 190	8.05 ± 0.05
G2011	12 004 ± 190	7.94 ± 0.17
K2001	12 204 ± 190	8.01 ± 0.048

For G117–B15A, the values of $T_{\text{eff}} = 11 700 - 12 000$ K in Table 3 are consistent with those of B1995 and K2001, but slightly smaller than those of G2011 in Table 4. The values of log $g = 8.1825 - 8.1941$ in Table 3 are basically consistent with those of G2011 but slightly larger than those of B1995 and K2001 in Table 4. For R548, the values of $T_{\text{eff}} = 12 450 - 12 800$ K in Table 3 are consistent with those of G2011 but slightly larger than those of B1995, K2001 and G2015 in Table 4. The values of log $g = 8.1712 - 8.1800$ in Table 3 are slightly larger than those of B1995, G2011, K2001 and G2015 in Table 4. Overall, the gravitational accelerations are slightly larger for our models. The gravitational acceleration is calculated by GM/R^2. It may be associated with the stellar radius, which will be studied in future work.

In Table 5, we show the asteroseismological results of Castanheira & Kepler (2008, 2009), Bischoff-Kim et al. (2008a), Romero et al. (2012) and Giammichele et al. (2016). Castanheira & Kepler (2008, 2009) evolved...
 grids of DAV star models by WDEC with homogeneous C/O core compositions and performed an asteroseismological study on over 80 DAV stars, including G117–B15A and R548. They obtained four ‘best-fitting’ models fitting G117–B15A, and two ‘best-fitting’ models fitting R548. Bischoff-Kim et al. (2008a) evolved grids of DAV star models by WDEC based on chemical composition profiles of a fiducial model and models with a sharper C/He transition zone, as shown in figure 2 of Bischoff-Kim et al. (2008a). They conducted an asteroseismological study on G117–B15A and R548. Their best-fitting models with ‘thick’ H and thin H for G117–B15A, and thin H for R548 are displayed in Table 5. Romero et al. (2012) made fully evolutionary DA white dwarf models characterized by detailed chemical profiles by the LPCODE evolutionary code. Based on those DAV star models, they performed an asteroseismological study on 44 bright DAV stars, including G117–B15A and R548. In addition, Giammichele et al. (2016) did an asteroseismological study on GD165 and R548 based on parameterized static models. Their best-fitting model is shown in Table 5. According to those best-fitting models in Table 5, the values of corresponding \(\chi \) are calculated. All the values are smaller than 4.00 s. We notice that the best-fitting models depend on the stellar evolution code, such as the input core composition profiles.

For G117–B15A, the three modes are fitted by the best-fitting model (modell in Table 3) with \(k = 1, 2, 3 \) mode (\(l = 1 \)) respectively. They are fitted by the model of Romero et al. (2012) with \(k = 2, 3, 4 \) mode (\(l = 1 \)) respectively. That is why we obtain a thin H mass model and they have a relatively thick H mass model. The discussion about thin H mass or thick H mass had been reported in detail by Bradley (1998) and Benvenuto et al. (2002). Bischoff-Kim et al. (2008a) obtained a group of relatively ‘thick’ H mass models (\(k = 1, 2, 3 \)) and a group of thin H mass models (\(k = 2, 3, 4 \)). The three observed modes are fitted by Castanheira & Kepler (2008) with \(k = 1, 2, 3 \) modes for thin H models, except for one with a large mass (\(M_* = 0.850 M_\odot \)), and with \(k = 2, 3, 4 \) modes (\(l = 1 \)) for thick H models. For the model of \(M_* = 0.850 M_\odot \), the three modes are fitted by \(k = 1, 2, 4 \) modes, as shown in the sixth column in Table 5.

For R548, the five modes are fitted by four \(l = 1 \) modes and one \(l = 2 \) mode for the best-fitting model (modell1 in Table 3), as shown in Table 2. The mode of 187 s is fitted by an \(l = 2 \) and \(k = 3 \) mode. The other modes are fitted by \(l = 1 \) and \(k = 1, 2, 3, 4 \) modes respectively. The best-fitting model fitting R548 is similar to the best-fitting model fitting G117–B15A. The two best-fitting models are thin H models with \(\log(M_{H}/M_*) = -8.0 \), as shown in Table 3. Castanheira & Kepler (2009) and Romero et al. (2012) obtained relatively thick H mass models fitting R548. For the first model of Castanheira & Kepler (2009), the modes of 187 s and 333 s are fitted by \(l = 2 \) and \(k = 3, 9 \) modes. The other three modes are fitted by \(l = 1 \) and \(k = 1, 2, 3 \)

Reference	\(\log(M_{H}/M_*) \)	\(\log(M_{He}/M_*) \)	\(T_{\text{eff}} \) [K]	\(M_* \) [M_\odot]	\(\chi \) [s]	
G117–B15A	\(l = 1 \)					
C2008	-7.0	-2.0	12000	0.615	1.23	2.85
	-5.0	-2.5	11500	0.750	2.3,4	3.84
	-7.5	-3.0	12600	0.710	1.23	2.94
	-8.5	-3.5	11500	0.850	1.24	0.74
B2008a	\((-8.0) \)–\(-7.4 \)	-2.4	11400–12200	0.650–0.680	2.3,4	
R2012	\((-6.2) \)–\(-5.7 \)	-2.4	11800–12600	0.600–0.640	1.23	
This paper	-8.0	-3.0	11900	0.660	1.23	1.32
R548	\(l = 1 \) or 2					
C2009	-4.5	-2.0	12100	0.635	2.64	
	-5.5	-2.5	11000	0.790	3.91	
B2008a	\((-7.2) \)–\(-7.7 \)	-2.4	11700–12600	0.600–0.650		
R2012	-6.0	-2.4	11627±390	0.609±0.012	3.42	
G2016	\(-7.45 \pm 0.12 \)	-2.92±0.10	12281±125	0.65±0.02	0.59	
This paper	-8.0	-3.5	12650	0.645	2.12(1.97)	
modes. For the second model of Castanheira & Kepler (2009), the mode of 187 s is fitted by an \(l = 2 \) and \(k = 3 \) mode while the other four modes are fitted by \(l = 1 \) and \(k = 2, 3, 4, 5 \) modes. For the best-fitting model of Romero et al. (2012), the modes of 318 s and 333 s are fitted by \(l = 2 \), \(k = 8, 9 \) modes. The other three modes are fitted by \(l = 1 \) and \(k = 1, 2, 3 \) modes. For the models of Bischoff-Kim et al. (2008a), the modes of 187 s and 334 s are fitted by \(l = 2 \) and \(k = 4, 8 \) modes. The other three modes are fitted by \(l = 1 \) and \(k = 1, 2, 4 \) modes. The mode identifications of our best-fitting model are not consistent with their results.

Giammichele et al. (2016) did an asteroseismological study on R548 based on parameterized static models from the optimization package LUCY (Charpinet et al. 2015). They obtained a best-fitting model with thin H mass. Their best-fitting model parameters are

\[
\log(M_H/M_\odot) = -7.45 \pm 0.12, \\
\log(M_{He}/M_\odot) = -2.92 \pm 0.10, \\
M_\odot = 0.65 \pm 0.02 M_\odot, \\
T_{\text{eff}} = 12281 \pm 125 K \text{ and } \log g = 8.108 \pm 0.025.
\]

Their asteroseismological study on R548 is basically consistent with their spectroscopic work with \(T_{\text{eff}} = 12204 \pm 190 K \) and \(\log g = 8.012 \pm 0.048 \). For their best-fitting model, the modes of 187 s and 217 s are fitted by \(l = 2 \) and \(k = 3, 4 \) modes. The other four modes are fitted by \(l = 1 \) and \(k = 1, 2, 3, 4 \) modes. The mode identifications of our best-fitting model are the same with those of the best-fitting model of Giammichele et al. (2016). In addition, the values of H, He, \(T_{\text{eff}} \) and \(M_\odot \) for our best-fitting model are consistent with or close to those of the best-fitting model of Giammichele et al. (2016), as shown in Table 5.

4.3 Comparing the Rates of Period Change to the Observed Values Obtained Through the \(O - C \) Method

Based on the observations of G117–B15A from 1974 to 2010, Kepler (2012) reported the rate of period change for 215 s as \((4.89 \pm 0.53) \times 10^{-15} \text{ s s}^{-1} \). The proper motion correction is \((-0.7 \pm 0.2) \times 10^{-15} \text{ s s}^{-1} \). Namely, the value of \(\dot{P}_{\text{obs}} \) is \((4.19 \pm 0.73) \times 10^{-15} \text{ s s}^{-1} \) for the 215 s mode of G117–B15A, as shown in Table 6. For our best-fitting model, the mode of 213.86 s (\(l = 1, k = 1 \)) is used to fit the 215 s mode. We calculate the rate of period change for the mode of \(l = 1 \) and \(k = 1 \). The value of \(\dot{P}_{\text{cal}} \) is just \(4.19 \times 10^{-15} \text{ s s}^{-1} \), which is exactly consistent with the observed value. For the mode of 213.86 s (\(l = 1, k = 1 \)), 96.44% of the kinetic energy is distributed in the He layer.

The DAV star R548 has been observed from 1970 November to 2012 January. Using 41 years of time-series photometry, Mukadam et al. (2013) calculated the rate of period change for the 213 s mode. Taking the correction of proper motion into account, Mukadam et al. (2013) obtained \(\dot{P}_{\text{obs}} = (3.3 \pm 1.1) \times 10^{-15} \text{ s s}^{-1} \) for the 213 s mode. For our best-fitting model, the mode of 214.41 s (\(l = 1, k = 1 \)) is used to fit the 213 s mode of R548. We calculate the rate of period change for the mode of \(l = 1 \) and \(k = 1 \). The value of \(\dot{P}_{\text{cal}} \) is \(4.21 \times 10^{-15} \text{ s s}^{-1} \), which is consistent with the observed value. Fitting the mode of 213 s, 95.61% of the kinetic energy is distributed in the He layer for the mode of 214.41 s (\(l = 1, k = 1 \)). Giammichele et al. (2016) obtained the calculated value of \((2.87–2.91) \times 10^{-15} \text{ s s}^{-1} \) for the corresponding mode. It is consistent with the observed value. If the value of \(\dot{P}_{\text{cal}} \) is smaller than the value of \(\dot{P}_{\text{obs}} \), the results can be used to constrain the axion mass (Bischoff-Kim et al. 2008b; Córnsico et al. 2012a,b, 2016; Mukadam et al. 2013). However, the two modes of our best-fitting models fitting the 215 s mode of G117–B15A and the 213 s mode of R548 are trapped or partly trapped in the He layer. They have relatively large rates of period change. The values are consistent with observed values.

5 DISCUSSION AND CONCLUSIONS

In this paper, we introduce a method of evolving DAV stars. Groups of MS stars are evolved to WD stars by a module named ‘makezco-wd’ from MESA (version 6208). The core compositions are taken out and added into WDEC. With historically viable core compositions, grids of DAV star models are evolved by WDEC, taking the element diffusion into account (Thoul et al. 1994; Su

Star	\(P_{\text{obs}} \) [s]	\(P_{\text{obs}} \) \([10^{-15}\text{ s s}^{-1}]\)	\(P_{\text{cal}}(l,k) \) [s]	\(P_{\text{cal}} \) \([10^{-15}\text{ s s}^{-1}]\)
G117–B15A	215.20	4.19±0.73	213.86(1,1)	4.19
	270.46	270.92(1,2)	2.40	
	304.05	305.85(1,3)	3.96	
R548	187.28	190.42(2,3)	2.25	
	212.95	3.3±1.1	214.41(1,1)	4.21
	217.83	218.82(2,4)	3.75	
	274.51	272.48(1,2)	2.15	
	318.07	317.97(1,3)	5.39	
	333.64	331.13(1,4)	4.02	
et al. 2014). Those DAV star models are used to study the rate of period change in DAV stars. Then, we do an asteroseismological study on DAV stars G117–B15A and R548 based on the grids of DAV star models. Finally, we compare the calculated rates of period change with the observed values through the $O - C$ method.

Studying the rate of period change in DAV stars, we try to discuss the effect of different values of H atmosphere mass, He layer mass, stellar mass M_* and effective temperature T_{eff}. Different thicknesses of H atmosphere and He layer will affect the rate of period change by the mode trapping effect. Modes trapped or partly trapped in the C/O core or He layer have a relatively large rate of period change, but modes trapped or partly trapped in the H atmosphere have a relatively small rate of period change. This is due to the fast cooling process of the C/O core and He layer. The cooling process dominates the rate of period change in DAV stars. The results are consistent with previous work (Bradley & Winget 1991; Bradley et al. 1992). The rate of period change is sensitive to the stellar mass and the effective temperature. A large M_* DAV star has a long process of cooling down and then a small rate of period change (Bradley & Winget 1991; Bradley 1996). A high T_{eff} DAV star has a fast time for cooling down and then a large rate of period change. The effect of different values of M_* and T_{eff} is obvious for long-period modes.

Based on the observed modes of G117–B15A and R548 from Romero et al. (2012), we evolve grids of DAV star models and conduct an asteroseismological study on the two DAV stars. A best-fitting model is selected for each star by selecting a minimal value of χ. The two DAV stars have short-period modes observed, as shown in Table 2, and therefore they should have hot effective temperatures (Clemens 1993; Mukadam et al. 2006). The corresponding two best-fitting models are really hot DAV star models, with $T_{\text{eff}} = 11\,900\, \text{K}$ for G117–B15A and $T_{\text{eff}} = 12\,650\, \text{K}$ for R548. For the fitting results, the maximal absolute value of observed mode minus calculated mode is 3.14 s. The value of χ is respectively 1.32 s fitting G117–B15A and 2.12 s fitting R548. In addition, the new observed mode of 217.83 s (Giammichele et al. 2015) for R548 can also be fitted by a mode of 218.82 s ($l = 2, k = 4$) for the best-fitting model.

The DAV stars G117–B15A and R548 are observationally similar. The best-fitting model fitting R548 is similar to the best-fitting model fitting G117–B15A. The calculated rate of period change for the mode of 213 s for R548 is also similar to that for the mode of 215 s for G117–B15A. Based on the two best-fitting models, the mode identifications (l, k) of the observed modes for G117–B15A and R548 are consistent with previous work for G117–B15A (thin H model of Bradley 1998; Benvenuto et al. 2002; Castanheira & Kepler 2008; Bischoff-Kim et al. 2008a) and R548 (Giammichele et al. 2016). In addition, fitting G117–B15A, the calculated rate of period change is exactly consistent with the corresponding observed one through $O - C$. Fitting R548, the calculated rate of period change is consistent with the corresponding observed one. Basically, both the observed modes and observed rates of period change obtained through the $O - C$ method can be fitted. The results greatly increase our confidence in the asteroseismological study on DAV stars. The results indicate that the method of evolving DAV stars (MESA(core)+WDEC(diffusion)) is feasible.

Acknowledgements The work is supported by the National Natural Science Foundation of China (Grant Nos. 11563001 and 11663001), the Yunnan Applied Basic Research Project (2015FD044 and 2015FD045), the Open Research Program of the Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences (OP 201502 and OP 201507), and the Research Fund of Chuxiong Normal University (XJGG1501 and 14XJGG03). We are very grateful to Y. Li, T. Wu, X. H. Chen and J. Su for their kind discussion and suggestions.

References

Benvenuto, O. G., Córzano, A. H., Althaus, L. G., & Serenelli, A. M. 2002, MNras, 332, 399
Bergeron, P., Wesemael, F., Lamontagne, R., et al. 1995, ApJ, 449, 258
Bischoff-Kim, A., & Metcalfe, T. S. 2011, MNRAS, 414, 404
Bischoff-Kim, A., Montgomery, M. H., & Winget, D. E. 2008a, ApJ, 675, 1505
Bischoff-Kim, A., Montgomery, M. H., & Winget, D. E. 2008b, ApJ, 675, 1512
Bradley, M. A. 1998, ApJS, 116, 307
Bradley, M. A. 2001, ApJ, 552, 326
Brassard, P., Fontaine, G., Wesemael, F., & Hansen, C. J. 1996, ApJ, 468, 350
Brassard, P., Fontaine, G., Wesemael, F., & Talon, A. 1993, in NATO Advanced Science Institutes (ASI) Series C, 403, ed. M. A. Barstow, 485
