Anti-diabetic Activity of the Red Dragon Fruit Peel (*Hylocereus polyrhizus*) in Ethanol Extract against Diabetic Rats

Ruqiah Ganda Putri Panjaitan*, Novitasari

ABSTRACT

Background: The red dragon fruit peel, which is rarely used in general, contains higher antioxidant properties compared to the flesh parts and has various secondary metabolites utilised in medicines.

Objectives: This study was aimed to determine the effects of ethanol extract administration of the red dragon fruit peel (*Hylocereus polyrhizus*) against the decline of blood glucose levels in diabetes mellitus rats.

Methods: In this study, the total of 24 male white Wistar rats (*Rattus norvegicus*) were divided into 4 groups. All experimental animals were induced to diabetic conditions by the administration of streptozotocin and nicotinamide dosages at 45 mg/kg body weight and 110 mg/kg body weight, respectively. For 14 days, each group was treated accordingly. The first group or negative control (NC) was treated with the administration of CMC-Na 0.5% dose 2 ml/200 g body weight; the second group or positive control (PC) was administrated with glibenclamide dose 0.09 mg/200 g body weight; the third (E1) and fourth (E2) groups were administered with the ethanol extracts of the red dragon fruit peels at dosages of 37.44 mg/200 g body weight and 74.88 mg/200 g body weight, respectively.

Results: After the 14-day trial, the average levels of blood glucose on the negative control group (382.92 mg/dl) experienced no decline, and the blood glucose levels amongst groups were statistically different (p<0.05).

Conclusion: The anti-diabetic activity of the red dragon fruit peel in the ethanol extract dose 74.88 mg/200 g body weight is statistically equal to the glibenclamide dose 0.09 mg/200 g body weight.

Key words: Antidiabetic activity, Diabetic rats, *Hylocereus polyrhizus*.

INTRODUCTION

Diabetes mellitus is the leading cause in the developed countries and is one of the main health problems in the developing countries. Diabetes mellitus is typically a disease that requires long-term medications and outstanding costs, mainly for the purchase of synthetic drugs. In fact, the use of synthetic medicines generally has negative impacts, such as hypoglycemia, gastrointestinal disorders like nausea, flatulent; even the negative impacts of long-term use can cause kidney problems. One of the methods to overcome the damaging collisions of the use of synthetic drugs is natural-based medicines, which can be used as an alternative choice in treating diabetes mellitus, which certainly have an anti-diabetic property.

Relating to the anti-diabetic activities, some studies have showed diverse plants that are effective of decreasing blood glucose levels, such as soursop fruit flesh (*Garcinia mangostana* Linn); the red dragon fruit peel-brewed water at 800 mg/ml may reduce radicals of 83.48±1.02%, whereas its flesh is merely 27.45±5.03%. Furthermore, other studies relating to the red dragon fruit peel also mentioned that the administration of red dragon fruit peel-brewed water at 800 mg/ml may reduce blood glucose levels in rats.

In the extraction process, the solvent is one of the essential parameters in the effectiveness of isolating bioactive compounds from a plant. According to Agustiningsih et al. (2010), the use of ethanol 96% as a solvent can optimally bind phenolic and flavonoid compounds compared to water or another combination of water and ethanol 96%. Accordingly, it is stated that the extraction process with the ethanol 96% solvent will produce an extract with a better total phenolic amount and antioxidant activity in comparison to extracts generated from a water solvent only. This is because ethanol is able to absorb more many compounds dissolved in a combination...
so that the extraction process with ethanol is more effective.30 Relating to amounts and chemical substances extracted from the process, it was conducted in this study to evaluate the antidiabetic effectiveness of the red dragon fruit peel in ethanol extracts against diabetes mellitus rats induced by streptozotocin-nicotinamide (STZ-NA).

MATERIAL AND METHODS

Experimental animals

A total of 24 Wistar male white rats aged 2 months with the body weights of 154-257 g was collected from the laboratory of The Centre for Food and Nutrition Studies, University of Gadjah Mada, Yogyakarta, Indonesia. Before the trial began, all experimental animals were adapted to the treated environment for 7 days. During the acclimatisation, all were fed with standard diet of comfeed-branded AD-II (PT JAPPA) and drunk \textit{ad libitum}. The health condition was also observed by weighting the body weight. The implementation of this study was approved by the Ethics Commission of Health Research RSUD Dr. Moewardi, Solo, Indonesia with the Ethical Clearance 1.108/X/HREC/2019.

Extraction

Red dragon fruits were collected from the local farmers in Bakau Besar Laut Village, Sungai Pinyuh District, Mempawah Regency, West Kalimantan, Indonesia. The 50-day ripened red dragon fruits after the flowers blossomed were harvested for 15 kg and selected for better quality ones. After that, all were cleansed with flowing water and dried. The separation of the peels and flesh was conducted, and it was obtained the total wet weight of 5.83 kg. Next, the red dragon fruit peels was mashed using a blender and extracted by the maceration method. The extraction process referred to Putra’s method (2013)34. The mashed red dragon fruit peels were then placed into a maceration vessel and soaked with 16 L of the distilled ethanol 96%. The extraction process was done 3x24 hours, and the extract solution was taken and stirred periodically for each 24 hours. The yield of red dragon fruit peels was filtered by filter papers, and the obtained filtrate was concentrated by \textit{rotary evaporator} at 40°C. The final extract was 30.01 g with a yield of 0.52%.

Manufacture of CMC-Na 0.5% solution

CMC-Na 0.5% solution was made accordingly the method of Salma et al. (2013)35, and the dosage was defined by the references of Saputri & Zahara (2016).36 A total of 0.5 g CMC-Na (Sigma-Aldrich) was suspended in 72 ml warm aquades, then was homogenously unified. CMC-Na solution was then moved to a 100 ml volumetric flask till reached the threshold and stirred up until homogenous. CMC-Na 0.5% solution dose 2 ml/200 g body weight was induced to experimental rats.

Manufacture of streptozotocin solution

Production of streptozotocin solution and dosages correspondingly referred to Ghasemi et al. (2014).37 A total of 216 mg streptozotocin (Cayman Chemical) was dissolved in 72 ml buffer citrate with pH 4.5 which was prepared beforehand injection. Then, the homogenisation was performed by using homogeniser. Streptozotocin dose used in inducing diabetes mellitus in rats was 45 mg/kg body weight.

Manufacture of nicotinamide solution

Nicotinamide solution dose 110 mg/kg body weight was produced following the method of Ghasemi et al. (2014).37 A total of 528 mg nicotinamide (Sigma-Aldrich) was suspended in 72 ml sodium chloride 0.9% (PT Widrata Bhakti). Nicotinamide dose110 mg/kg body weight was administrated to treated rats.

Manufacture of glibenclamide suspension

Production of glibenclamide suspension and dosage administration of 0.45 mg/kg body weight were correspondingly adopted from Salma et al. (2013).35 Glibenclamide dosage (PT Indofarma) for adults is 5 mg. Hence, the dosage used in rats is 5 x 0.018 = 0.09 mg/200 g body weight. A glibenclamide tablet of 27 mg was placed into mortar for grinding, then was dissolved in 15 ml of CMC-Na 0.5% solution. Glibenclamide dosage administrated to rats was 0.45 mg/kg body weight.

Rat Models with diabetes mellitus type 2

Experimental rats for diabetes mellitus type 2 were induced by using the combination of streptozotocin and nicotinamide dose 45 mg/kg body weight and 110 mg/kg body weight, respectively, in which was injected via intraperitoneal. Nicotinamide injection was given 15 mins before streptozotocin administration.37

Activity test of the red dragon fruit peel extracts

After all treated animals were adapted for 7 days, they were then randomly divided into 4 groups with each group of 6 rats. All rats were fasted for ±8-12 hours, and their blood was drawn for 0.5 ml via sinus orbitalis to measure the preliminary level of blood glucose (day 0). Also, on the same day, all rats were injected with the STZ-NA combination doses 45 mg/kg body weight and 110 mg/kg body weight via intraperitoneal. Nicotinamide injection was made 15 mins earlier than streptozotocin.37 After 72 hours (day 3), the measurement of blood glucose level with STZ-NA induction was carried out. Rats are diagnosed with diabetes mellitus type 2 if the blood glucose levels > 200 mg/dl,38 all rats used in this experimental study had blood glucose levels >200 mg/dl after STZ-NA administration. Afterwards, the extract was introduced once a day via oral for 14 days. The first group as negative control (NC) was administrated with the CMC-Na 0.5% solution dose 2 ml/200 g body weight; the second group as positive control (PC) was treated with glibenclamide dose 0.09 mg/200 g body weight; the third group was induced with the ethanol extract of red dragon fruit peel dose 37.44 mg/200 g body weight (E1), and the fourth group was injected with the ethanol extract of red dragon fruit peel dose 74.88 mg/200 g body weight (E2). The administration of ethanol extraction was initiated from day 4 to 17. On day 18, the blood was drawn back; yet, all rats were initially fasted for ±12-15 hours before the blood draw.

Measurement of blood glucose levels

A 0.5 ml blood sample was collected from sinus orbitalis using microhematocrit, then was inserted into eppendorf tube. The obtained blood sample was centrifuged at 4000 rpm for 15 mins. After that, the separated blood serum was taken out of 10 µl by microliter pipette and inserted into test tube. As a comparator, the standard test tube was added with 10 µl glucose standard FS (DiaSys). On the test tube with blood serum, it was added 1000 µl glucose reagent (Glucose GOD FS DiaSys) and homogenised by vortex. After homogenisation, the sample absorbance test was performed by using spectrophotometer UV at 500 nm. The results presented on the monitor were recorded on an observation sheet in mg/dl.

Data analysis

Overall, the data was statistically analysed using SPSS 24 for Windows. The data of average levels of blood glucose was then analysed using one-way analysis of variance, then was continued with the Duncan test at a confidence rate of 5%.

RESULTS AND DISCUSSION

The measurement of blood glucose levels was done three times; the initial blood glucose levels or before STZ-NA induction, the 72 hours...
blood glucose levels after STZ-NA induction, and overall blood glucose levels after the 14-day treatments. In the measurement of the initial blood glucose levels, all rats had normal rates; after STZ-NA injection, all blood glucose levels in rats increased; after the treatments for 14 days, the positive and extract-treated groups experience declines (Table 1).

Diabetes mellitus is a metabolic disorder with a sign of high glucose levels in blood, as a result of pancreatic impairment due to inactivity of producing insulin at optimal levels or our body is not able to use insulin effectively. The decline in the pancreas function as an insulin producer causes disruptions in the metabolism of carbohydrates, lipids, and proteins which can lead to hyperglycaemia condition. Therefore, one of the methods that can be done to diagnose diabetes mellitus is by measuring blood glucose levels.

Based on Table 1, it was seen, on day 0 (before STZ-NA induction), the blood glucose levels in the experimental rats were normal (70.39-73.78 mg/dl). Following with Wollenhoff & Lloyd (2013), it was stated that the blood glucose levels in fasting rats are approximately 50-135 mg/dl. Furthermore, this study reported that on day 3 (72 hours after STZ-NA induction), the blood glucose levels in the treated rats were above 200 mg/dl, ranging from 379.80-416.07 mg/dl, which indicated that all rats were diabetes mellitus. In accordance with Anwer (2014) & Nurrahman(2016), it was demonstrated that blood glucose levels would be >200 mg/dl after 72 hours STZ-NA administration, and it can be claimed that rats were in diabetes mellitus type 2 already.

Streptozotocin is a compound which works by forming highly reactive free radical exposure so that can cause damages to cell membranes, proteins, and DNAs, including disruptions in insulin production in pancreatic β-cells. Streptozotocin (STZ, 2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranosone) can enter cytoplasm of pancreatic β-cells through glucose transporter 2 (GLUT 2) which exists on plasma membranes. Glucose group on streptozotocin structure which activates toxic effects on streptozotocin is more selective against pancreatic β-cells, and this can easily make streptozotocin enter pancreatic β-cells because they are more active seizing glucose compared to other cells. After entering, streptozotocin will trigger DNA alkylation. Methyl nitroso urea from streptozotocin structure is responsible for toxicity activity owned by streptozotocin over the formation of methyl carbonium ions (CH⁺), which is extremely reactive producing methylation and DNA fragmentation. The incoming streptozotocin is then metabolised by cells and becomes a donor for the formation of nitric oxide (NO) which contributes to cell damages within the increased activity and the release of free radicals. This emerges the binding of reactive oxygen in mitochondria, inhibition of Krebs cycle, and degeneration of oxygen consumption in mitochondria, cutback of ATP production and nucleotides in pancreatic β-cells, and eventually inhibition of secretion and insulin synthesis so that blood glucose levels cannot enter into cells appropriately and result in hyperglycaemia which lead to diabetes mellitus type 2.

The administration of the combination of streptozotocin and nicotinamide can prevent from excessive hyperglycaemia and mortality in rats. Nicotinamide is an antioxidant derivate vitamin B3 (Niacin) which protects pancreatic β-cells from cytotoxic activity of streptozotocin in several mechanisms. Nicotinamide can stimulate the regeneration of pancreatic β-cells, the growth of Langerhans cells, and can block apoptosis reactions. Besides that, the nicotinamide administration before streptozotocin injection can act as an acceptor of methyl group so that can reduce the DNA methylation process in pancreatic β-cells.

After the treatments for the 14 consecutive days from day 4 to 17, it was recorded the decline of blood glucose levels in the groups of PC, E1, and E2, ranging from 106.59-140.62 mg/dl; yet, it was conversely in NC. As stated by Dewi et al. (2016), CMC-Na is neutral, then the administration of CMC-Na solution in this study was not also adequately effective in inducing anti-diabetic activity, which marked in the decrease of blood glucose levels.

Glibenclamide is one of the sulfonylureas class drugs, which is commonly used for therapies in patients with diabetes mellitus type 2. Glibenclamide is used either in a single or combination medication that can lower blood glucose levels effectively. The mechanism action of glibenclamide is to increase the release of insulin hormone in Langerhans pancreatic β-cells. Sulfonylureas work by hindering K⁺ channels from pancreatic β-cells through sulfonylurea receptors that block the channels of ATP-sensitive K⁺. This inhibition causes membrane depolarisation, and this condition will open Ca channels. While opening Ca channel, Ca²⁺ ions will enter into pancreatic β-cells, stimulate the granules containing insulin, and insulin secretion occurred via exocytosis.

The red dragon fruit peels have been reported to develop a greater amount of phenolic in comparison with their flesh. This study suggested that the ethanol extract of the red dragon fruit peel was able to reduce blood glucose levels significantly. The effectiveness is related to the secondary metabolites contained in the filtrate extraction of the red dragon fruit peels. As also stated, the red dragon fruit peel holds various secondary metabolites and antioxidant property.

Table 1: Average levels of blood glucose in rats for each treatment group on day 0, day 3, and day 18.

Trial Group	Average Levels of Blood Glucose (mg/dll)		
	Day 0	Day 3	Day 18
NC	73.78 ± 1.47	379.80 ± 30.87	383.92 ± 33.00
PC	70.73 ± 1.97	389.20 ± 17.81	106.59 ± 3.11
E1	72.29 ± 2.42	416.07 ± 20.14	140.62 ± 5.63
E2	70.39 ± 2.32	401.13 ± 20.18	109.17 ± 2.60

Information:
- **NC** = Negative Control (CMC-Na 0.5% solution dose 2 ml/200 g body weight)
- **PC** = Positive Control (glibenclamide dose 0.09 mg/200 g body weight)
- **E1** = Administration of ethanol extract of the red dragon fruit peel dose 37.44 mg/200 g body weight
- **E2** = Administration of ethanol extract of the red dragon fruit peel dose 74.88 mg/200 g body weight

* Numbers shown after ± demonstrated SD (standard deviation)
* Groups followed by the same letters are not significantly different (p>0.05)
the previous studies demonstrated that the brewed water of the red dragon fruit peel has anti-diabetic activity. The aim of ethanol extraction in this study was to ensure all the filtrates properly filtered and concentrated following the method of Agustiningsih et al. (2010), in which it was stated that the use of ethanol 96% as a solvent could bind optimally all compounds of phenolic and flavonoid in comparison with water or another solvent combination of water and ethanol 96%. Likewise, Rivai et al. (2013) revealed that the extractions with ethanol 96% produce a better total amount of phenolic and antioxidant activity compared to water solvent. Ghasemzadeh & Ghasemzadeh (2011) exposed that the compounds of phenolic and flavonoid have a linear contribution upon antioxidant activities so that the higher amounts of phenol and flavonoid in an extraction, the better antioxidant activity. Not only that, the reduction of blood glucose levels in rats due to the administration of ethanol extract of the red dragon fruit peel also does a result of the antioxidant properties belong to the red dragon fruit peels; the previous studies reported that the ethanol extraction in the red dragon fruit peel has high antioxidant, which is flavonoid. Flavonoid plays a role in donating hydrogen atoms so that it will be oxidized and bound to free radicals, making them more stable. Aside from flavonoids, the red dragon fruit peel also comprises tannin. Tannin is a phenolic compound that acts as an antioxidant. The mechanism action of tannin as an antioxidant is to catch free radicals, to hinder the glucose absorption in intestinal, to induce the regeneration of pancreatic β-cells that impacts on adipose cells to strengthen the insulin activity, and to improve glucose intake in the blood through the activity of insulin mediator resulting in the reduction of glucose levels in blood.

CONCLUSION

The ethanol extraction of the red dragon fruit peel may decline blood glucose levels in rats with diabetes mellitus, and the anti-diabetic activity of the red dragon fruit peel dose 74.88 mg/200 g body weight is statistically equal to glibenclamide dose 0.09 mg/200 g body weight.

REFERENCES

1. Nyarko BE, Amoah RS, Crimi A. Boosting diabetes and pre-diabetes detection in rural Ghana. F1000 Research. 2019;8:289–99. https://doi.org/10.12688/f1000research.18497.2

2. Fitriyani, Supadmi W. Evaluasi adverse drug reaction diabetis berdasarkan analisis naranjo di bingalaw ravaq inap RS PKU Muhammadiyah Yogyakarta periode Desember 2011-Januari 2012. Jurnal Ilmiah Kefarmasian. 2012;2(2):205–13. http://dx.doi.org/10.12928/pharmaciana.v2i2.670

3. Almasdy S, Dari DP, Suhatri, Darwin D, Kurniasih E. Evaluasi penggunaan obat antiabetes pada pasien diabetes melitus tipe-2 di suatu rumah sakit pemerintah Kota Padang-Sumatera Barat. Jurnal Sains Farmasi Klinis. 2015;2(1):104–10. https://dx.doi.org/10.29208/jsk.2015.2.1.58

4. Zazuli Z, Hendrayana T, Prativi B, Rahayu C. Analisis keseuaian dosis pada pasien gangguan fungsi ginjal di suatu rumah sakit pemerintah di Kota Bandung. Acta Pharmaceutica Indonesia. 2017;42(1):42–9. https://www.researchgate.net/publication/3242549342

5. Pandanwangi S, Zuniarto AA, Mubarak H. Analisa drug related problems (DRPS) pasien gagal ginjal dengan komplikasi diabetes mellitus di RSUD X. Pharma Xplore. 2018;3(1):170–83. https://dx.doi.org/10.36805/farmasi/v3i1.330

6. Ratimiba K, Valen R, Tandi J. Uji aktivitas fraksi buah naga merah terhadap penurunan glukosa darah tikus yang diinduksi streptozotocin. Farmakologika Farmasi. 2019;16(1):35–47. https://jfarm.org/index.php/farmakologika/article/view/50/39

7. Khameneh AH, Fawzi HA, Sahib HB. Phytochemical investigation and assessment of the hypoglycemic activity of some Iranian medicinal plants in alloxan-stimulated diabetic rats; A comparative study. F1000 Research 2020;9:247–57. v1. https://doi.org/10.12688/f1000research.22788.1

8. Sovia E, Ratwita W, Wijayanti D, Novianty DR. Hypoglycemic and hypolipidemic effects of Annona muricata L. leaf extract. Int J Pharm Pharm Sci 2017;9(3):170–4. http://dx.doi.org/10.22159/ijpps.2017v9i3.16402

9. Anggi V, Mapfirihi. The effect hypoglycemic of ethanol extract combination red betel leaf (Piper crocatum) and Dayak onion (Eleutherine palmifolia Merr) in streptozotocin-induced. Pharmacogn J 2019;11(6):1401–5. DOI: 10.5530/pj.2019.11.216

10. Widyawati T, Yusoff NA, Asmawi MZ, Ahmad M. Antihyperglycemic effect of methanol extract of Syzygium polyanthum (Wight.) leaf in streptozotocin-induced diabetic rats. Nutrients 2015;7;7646–80. DOI:10.3390/nu7095365

11. Sharma S, Mishra V, Srivastava N. Protective effect of Trigonella foenum-graecum and Cinnamomum zeylanicum against diabetes induced oxidative DNA damage in rats. Indian J Biochem Biophys. 2020;57:15–26. http://op.niscar.res.in/index.php/JBB/article/view/31772

12. Taher M, Tg Zakaria TMFS, Susanti D, Zakaria ZA. Hypoglycaemic activity of ethanol extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2016;16(135):1–12. http://dx.doi.org/10.1186/s12906-016-1198-9

13. Ajiw RB. White Dragon Fruit (Hylocereus undatus) potential as diabetes mellitus treatment. Jurnal Majority. 2015;4(1):69–72. https://juke.kedoteran.unila.ac.id/index.php/majority/article/view/503

14. Song H, Zheng Z, Wu J, Lai J, Chu Q, Zheng X. White pitaya [Hylocereus undatus] juice attenuates insulin resistance and hepatic steatosis in diet-induced obese mice. PLoS One 2016;11(2):1–14. DOI:10.1371/journal.pone.0149670

15. Hadi NA, Mohamad M, Rohin MAK, Yusof MR. Effects of red pitaya fruit (Hylocereus polyrhizus) consumption on blood glucose level and lipid profile in type 2 diabetic subjects. Borneo Science. 2012;31:113–29. https://jurnal.ums.edu.my/ojournals/index.php/borneo-science/article/view/180

16. Hadi TI, Sulendri NKS, Luhtfiyah F, Aladhiana C. Pemberian buah naga [Hylocereus polyrhizus] terhadap penurunan kadar glukosa darah pasien DM di wilayah kerja puskesmas Tanjung Karang. Jurnal Gizi Prima. 2018;3(2):108–12. https://doi.org/10.32807/gp.v3i2.116

17. Rahma DE, Adriaria M. Efek pemberian seduhan kult buah naga merah [Hylocereus polyrhizus] terhadap kadar glukosa darah tikus Sprague Dawley Hiperglikemia. J Nutr Coll. 2016;5(4):475–83. https://doi.org/10.14710/jnc.v5i4.16461

18. Nursiyana R, Syed Zahir I, Mustapha Suleiman K, Aisyah MR, Kamarul Rahim K. Antioxidant study of pulps and peels of dragon fruits: A comparative study. Int Food Res J. 2010;17:367–75. https://www.researchgate.net/publication/283838727

19. Omidizadeh A, Yusof RM, Roohejinead S, Ismail A, Abu Bakar MZ, El-Din A, Bektih A. Anti-diabetic activity of red pitaya [Hylocereus polyrhizus] fruit. RSC Adv. 2014;4(108):62978–86. DOI: 10.1039/c4ra10789f

20. Guimaraes D de AB, Castro D dos SB De, Oliveira FL De, Nogueira EM, Silva MAM da, Teodoro AJ. Pitaya Extracts induce growth inhibition and proapoptotic effects on human cell lines of breast cancer via downregulation of estrogen receptor gene expression. Oxid Med Cell Longev. 2017;1–13. https://doi.org/10.1155/2017/7785073
Panjaitan RGP, et al.: Anti-diabetic Activity of the Red Dragon Fruit Peel (*Hylocereus polyrhizus*) in Ethanol Extract against Diabetic Rats

GRAPHICAL ABSTRACT

Average levels of blood glucose in rats on each treatment group on the day 0,3, and 18

Trial Group	Average Levels of Blood Glucose (mg/dl)		
	Day 0	Day 3	Day 18
NC	73.78± 1.47	379.80± 30.87	383.92± 33.00
PC	70.73± 1.97	389.20± 17.81	106.59± 3.11
E1	72.29± 2.42	416.07± 20.14	140.62± 5.63
E2	70.39± 2.32	401.13± 20.18	109.17± 2.60

Information:

NC = Negative Control (CMC-Na 0.5% solution dose 2 ml/200 g body weight)
PC = Positive Control (glibenclamide dose 0.09 mg/200 g body weight)
E1 = Administration of ethanol extract of the red dragon fruit peel dose 37.44 mg/200 g body weight
E2 = Administration of ethanol extract of the red dragon fruit peel dose 74.88 mg/200 g body weight

*Numbers shown after ± demonstrated SD (standard deviation)
*Group followed by the same letters are not significantly different (p>0.05)
ABOUT AUTHORS

Ruqiah Ganda Putri Panjaitan, graduated from the Department of Biology, FMIPA Andalas University, Padang. She got her masters and doctorates from the Department of Biology FMIPA Bogor Agricultural University. Her field of interest is the study of medicinal plant activity. Now, she is working as a lecturer in Tanjungpura University.

Novitasari, S.Pd., graduated from Department of Biology Education, Tanjungpura University in 2020. Her field of expertise is Biology Education.

Cite this article: Panjaitan RGP, Novitasari. Anti-diabetic Activity of the Red Dragon Fruit Peel (Hylocereus polyrhizus) in Ethanol Extract against Diabetic Rats. Pharmacogn J. 2021;13(5): 1079-1085.