Ashtanga Yoga Ethics-Based Yoga Versus General Yoga on Anthropometric Indices, Trigunas, and Quality of Life in Abdominal Obesity: A Randomized Control Trial

Abstract

Introduction: The philosophical tenets of yoga such as Ashtanga yoga (AY) and Trigunas are seldom considered while designing yoga programs for chronic diseases. This randomized control trial explored the impact of AY principle-based yoga on the anthropometric indices, personality traits, and quality of life (QoL) in abdominal obesity (AO). Materials and Methods: Sixty-two participants with AO were randomized (n = 31 in each arm) into an AY arm or general yoga (GY) arm. For 12 weeks, both the AY and the GY received the same yoga protocol; however, the AY received an additional AY-based orientation session fortnightly. Changes in waist circumference, hip circumference (HC), height, weight, body mass index (BMI), waist–hip ratio, Vedic Personality Inventory for gunas, and World Health Organization QoL-BREF were measured at baseline and at the end of 12 weeks. Results: By the end of 12 weeks, the AY arm significantly differed from the GY arm in HC (P = 0.05) and BMI scores (P = 0.03). The AY arm has shown a significant increase in the sattva guna (P < 0.001) and reduction in the rajas (P < 0.001) and tamas gunas (P = 0.03). There was a significant improvement in the physical and social QoL domain, whereas the other variables examined remained insignificant. The increase in sattva guna was negatively correlated with waist circumference (r = −0.489) and BMI (r = −0.553). Conclusion: Exposing participants to progressive AY philosophy can change the personality traits which are further associated with melioration in the determiners of AO. Future yoga programs for chronic disorders may consider including AY philosophy for substantive outcomes.

Keywords: Abdominal obesity, Ashtanga yoga, obesity, Trigunas, waist circumference, yoga

Introduction

Abdominal obesity (AO) is reckoned as one of the primary risk factors associated with increasing incidence of diabetes, cardiovascular diseases, respiratory disease, and cancer.[1,2] AO is prevalent even among the population with a normal body mass index (BMI) and leads to metabolic deterioration by catalyzing systemic inflammation, insulin resistance and hyperlipidemia, etc., which predisposes to metabolic syndrome and associated complications.[2,3] Numerous interventions such as behavioral therapy, dietary advice, physical activity, yoga, and pharmacological interventions are proposed to prevent and treat AO.[4] Irrespective of these treatment options, an appropriate solution for AO is yet to be identified owing to its multidimensional etiology. A recent study reported that the global prevalence of central obesity was 41.5%, with higher prevalence reported among older individuals, females, urban residents, and participants with higher socioeconomic status.[5]

There are overwhelming literature available reporting the impact of yoga on obesity and/or AO which are suggestive of the positive impact of yoga on anthropometric variables related to obesity.[6,7] Most of these studies reporting the beneficial effect of yoga predominantly utilized yogic techniques such as asana, pranayama, and/or meditation techniques as a therapeutic tool. However, the real essence of yoga remains not just in physical practices but also in bringing the changes at a subtler level of a person which can have an influence on the physical health. There are earlier reports insisting the need for

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Access this article online

Website: www.ijoy.org.in
DOI: 10.4103/ijoy.ijoy_63_22
Quick Response Code:
inculcating yoga ethics as described by Sage Patanjali into general yoga (GY) practice for drawing the higher benefits of yoga.\cite{10,11}

Yoga regards Trigunas (personality traits), namely sattva, rajas, and tamas, as the fundamental force that encompasses all actions and behavior in humans.\cite{12} Triguna comprehensively links psychological, physiological, spiritual, and personal virtues together which determines a person’s emotional and physical well-being.\cite{13} A recent study demonstrated that of all the gunas, sattva guna is associated with those emotional constructs that favor positivity and well-being.\cite{14} With growing evidence base suggesting the role of personality/emotional state in the etiopathogenesis of chronic diseases,\cite{15} it is inevitable for mind–body interventions like yoga to realign its delivery mode to include yoga ethics to rekindle the better personality traits.

This study hypothesized that an Ashtanga yoga (AY) ethics-based yoga program will have better impact on the anthropometric indices, Trigunas, and quality of life (QoL) of AO patients compared to GY protocol.

Materials and Methods

Study setting and ethical considerations

This study was conducted at Sant Hirdaram Medical College of Naturopathy and Yogic Sciences for Women, Bhopal, India, during November 2021 through February 2022. The study protocol was approved by the Institutional Ethical Committee of the college via F.No: 12/SHMCNYS-IEC/P41/2020-2021, and written consent was obtained from all the study participants before enrollment. The study was registered as a clinical trial in the Clinical Trials Registry of India (CTRI/2021/11/038054).

Study participants

The participants were the residents of Sant Hirdaram Nagar who were invited to participate in this trial on an outpatient basis by open invitations through social media, flyers, and billboards. Both males and females aged between 25 and 45 years with AO (waist circumference exceeding 80 cm in females and 90 cm in males) whose physical activity category was either inactive or moderately active as per the International Physical Activity Questionnaire Short Form\cite{16} were included in this study. The exclusion criteria for the trial were as follows: (i) any participant who has a history of yoga practice within the past 6 months; (ii) physical or medical history that limits the participant from doing yoga; (iii) those participants who are regular practitioners of gym and aerobics; (iv) under psychiatric medications; (v) involvement in any dietary programs for obesity; (vi) secondary obesity due to hormonal imbalance; (vii) participants with any co-morbidities such as cardiovascular disease, type 2 diabetes mellitus, or hypertension; and (viii) pregnant and lactating mothers.

The sample size was calculated using Cohen’s formula for an effect size of 0.79 derived from the mean and SD values of a previous study on AO and yoga\cite{17} which reported a significant change in the waist circumference after 12 weeks of yoga practice. Using G*Power software, for a level of significance (α) 0.05 and power (1−β) of 0.90, the total sample size required was calculated as $n = 56$. However, considering a dropout of 10%, the final sample size required for the study was $n = 62$.

Study design

This was an open-label parallel randomized control trial with two arms, AY arm and GY arm, with 31 participants in each group ($n = 62$). The participants were randomized using computer-based randomization software (www. www.randomizer.org) at a ratio of 1:1. The trial profile is depicted in Figure 1.

Interventions

Both the AY arm and GY arm received yoga interventions that included prayer (AUM chanting), asanas (postures), and pranayamas (breathing practices) for 45 min daily for 5 days a week for a period of 3 months. The detailed yoga protocol is tabulated in Supplementary Tables 1 and 2. In addition to the GY protocol which was common for both the arms, the AY arm received special orientation sessions on AY teachings which included yama (abstinences), niyama (observances), asana (yoga postures), pranayama (breath control), pratyahara (withdrawal of the senses), dharana (concentration), dhyana (meditation), and samadhi (absorption).\cite{18} This session was designed for 1 h repeated fortnightly for 3 months discussing the progressive approach of AY principles and its relevance in health and disease. The AY arm participants were counseled to try and adopt these principles in their day-to-day life.

Outcome measures

All the outcome measures were collected at the baseline, i.e., before the initiation of interventions and at the end 3 months after the interventions.

Anthropometric measurements

The primary outcome measure was a change in the waist circumference of the study participants. Besides this, other anthropometric measures such as hip circumference (HC), height, weight, BMI, and waist–hip ratio were also measured in both the groups.

Vedic Personality Inventory

A Hindi version of VPI was used to assess the “gunas” of the study participants, which are the spiritual personality traits classified in yoga namely sattva (happiness), rajas (passion), and tamas (dullness). VPI has demonstrated adequate reliability and validity which has a Cronbach’s α ranging from 0.69 to 0.91.\cite{19} The VPI consists of
56 questions which are subdivided into 15 items for the sattva guna, 19 for rajas guna, and 22 for tamas guna.

World Health Organization Quality of Life-BREF

The World Health Organization QoL-BREF (WHOQOL-BREF) Hindi version was used to assess the change in QoL before and after the yoga interventions. The WHOQOL-BREF quantifies the subjective QoL in four domains, namely physical, psychological, social, and environmental health.\[20\]

In addition, we utilized a weekly food recall questionnaire specifically validated for North Indian populations\[21\] to assess the food and fluid intake of the study participants. The participants were asked to indicate the quantity of food items consumed with predetermined types of utensils (i.e., a bowl, cup, glass, and spoon). The investigators recorded the data and nutrient calculations for the standard recipes were used for calculating the total calorie intake. The dietary intake was assessed at the baseline and at the end of 3 months.

Data analysis

All the data were analyzed using Jeffreys’s Amazing Statistics Program version 0.16. Shapiro–Wilk test was used to test the normality of the data. Normally distributed variables were analyzed using independent *t*-test for between-group analysis and paired *t*-test for within-group analysis. Similarly, nonnormally distributed variables were analyzed using Mann–Whitney *U*-test for between-group analysis and Wilcoxon signed-rank test for within-group analysis. In addition, analysis of covariance was conducted to correct for the baseline difference between the groups across the outcome variables studied.\[22\] Partial eta squared (η^2_p) values were computed to reflect the amount of variance attributed to intervention across the outcome variables. Pearson’s and Spearman’s correlation tests were used to analyze the correlation between the variables.

Results

All the 62 participants completed the study, and none of them reported any adverse events during the trial. The
detailed baseline characteristics of the participants are tabulated in Table 1. Although the study intended to have both males and females, all the participants enrolled were only females. On an average, the AY arm participants consumed 1427.43 K/Cal per week whereas the consumption in the GY group was 1324 K/Cal per week.

Changes in anthropometric measurements

Compared to the baseline, both the AY and GY arms have shown a significant reduction in all the anthropometric measures such as weight, waist circumference, HC, and BMI except waist–hip ratio. The AY arm has a shown significant reduction in the waist circumference ($P = 0.03$) and BMI ($P = 0.01$) compared to the GY arm [Table 2]. However, it was found that after correcting for baseline differences, except HC ($P = 0.05$) and BMI scores, the other anthropometric measurements were not significant, indicating that the effect of intervention (AY) is significant on HC and BMI but not on other anthropometric variables. The postintervention differences after correcting the baseline differences are outlined in Table 3.

Changes in the personality traits

The personality traits measured by VPI have shown a significant increase in the satvik personality trait scores among the participants and a significant reduction in the rajas and tamasik trait scores among the AY arm. These changes were not significant in the GY arm [Table 2]. The results are depicted in Figure 2. Compared to the GY arm, the changes of personality traits in the AY arm were statistically significant even after correcting for the baseline differences between the groups [Table 3].

Changes in quality of life scores

The QoL measured by the WHO-QoL-BREF has shown a significant improvement in both the arms. There was no significant difference between the changes in QoL domains when compared between the AY and GY arms except for the social QoL domain [Table 2]. However, after correcting for the baseline differences, a significant improvement in QoL was observed in physical and social domains of the AY arm compared to the GY arm [Table 3].

Correlation between satva guna, waist circumference, and body mass index

Besides this, a Spearman’s correlation has shown a moderate negative correlation between satva guna and waist circumference ($P = -0.489$, $P < 0.001$). Similarly, a Pearson’s correlation has shown a strong negative correlation between satva guna and BMI ($r = -0.553$, $P < 0.001$). The correlations are depicted in Figure 3.

Discussion

This is the first trial to explore if ethics-based (AY principles) yoga practice is superior compared to GY (focused on asana, pranayama, and meditation).

Table 1: Baseline characteristics of study participants

Variables	AY arm (n=31) (%)	GY (n=31) (%)
Age (years)	38.069±5.91	36.931±6.245
Height (cm)	157.241±5.396	154.69±6.804
Education		
<10th grade	32.2	12.9
Up to 12th grade	19.3	22.5
Graduation	32.2	22.5
Postgraduation	6.4	35.4
Socioeconomic status		
Lower class (≤70,069)	6.4	3.2
Lower-middleclass (70,137-273,039)	45.1	58
Upper-middleclass (2,773,167-845,955)	35.4	32.2
Upper class (≥846,023)	3.2	-

AY=Ashtanga yoga, GY=General yoga, INR=International normalized ratio
in modulating the anthropometric indices, personality traits, and quality of life among participants with AO. The results indicate a significant decrease in the HC and BMI following 12-week Ashtanga principle-based yoga intervention. Further, there exists a positive change in the personality traits (gunas) among the AY arm participants compared to the GY arm. Similarly, the AY arm has shown a marked increase in the social and physical quality of life compared to the controls.

There was a significant reduction in the waist circumference among the AY arm compared to the GY arm after intervention; however, after correcting for the baseline differences, this remained insignificant. Nevertheless, a correlation analysis suggests an inverse relationship between sattvik guna, waist circumference, and BMI. This suggests a role of guna in assuaging the determinants of AO. Studies in psychology also link personality traits to be closely associated with incidence of chronic diseases including obesity. Therefore, mind–body interventions like yoga targeting obesity should not be merely focusing on weight loss rather it should also utilize the progressive philosophical approach of yoga that can influence the personality traits.

After correcting for the baseline difference, a significant reduction was observed in HC of the AY arm compared to the GY arm. A reduction in HC is considered protective against cardiovascular and metabolic disorders including AO. There were no differences observed between the groups in the other anthropometric measures and QoL domains except physical and social domains. The AY group

Variables studied	Within-group analysis (mean±SD)	Effect size (mean change: AY‑GY)	P‑value in between-group analysis					
	Pre AY	Post AY	Pre GY	Post GY	Mean difference (95% CI)	Partial eta squared (η²)	F	P
Weight (kg)	70.160 (69.790-70.530)	70.290 (69.920-70.660)	0.130 (−0.650-0.400)	0.004	0.226	0.63		
BMI (kg/m²)	92.610 (91.940-93.280)	93.670 (93.000-94.330)	1.060 (−2.010-0.100)	0.082	4.919	0.03		
Waist circumference	102.580 (101.880-103.270)	102.840 (102.150-103.530)	0.260 (−1.260-0.730)	0.005	0.287	0.59		
HC	28.780 (28.620-28.930)	28.300 (28.840-29.160)	0.221 (−0.450-0.01)	0.063	3.715	0.05		
WIR	0.902 (0.895-0.910)	0.906 (0.899-0.914)	0.004 (−0.015-0.007)	0.010	0.574	0.45		
VPI_Sattwa	45.780 (44.255-47.305)	39.530 (38.005-41.056)	6.249 (4.04-8.458)	0.369	32.143	0.00		
VPI_Rajas	29.030 (27.624-30.435)	33.039 (31.634-34.445)	4.010 (−6.014-2.005)	0.226	16.069	0.00		
VPI_Tamas	22.388 (21.194-23.583)	24.267 (23.072-25.462)	1.878 (−3.580-0.176)	0.082	4.891	0.03		
Physical_QoL	71.228 (67.335-75.122)	65.461 (61.568-69.355)	5.767 (0.260-11.273)	0.074	4.405	0.04		
Psychological_QoL	71.005 (67.021-74.999)	66.788 (62.803-70.772)	4.218 (−1.450-9.885)	0.039	2.224	0.14		
Social_QoL	77.155 (72.773-69.845)	69.845 (65.463-72.247)	7.309 (1.068-13.550)	0.091	5.509	0.02		
Environment_QoL	75.806 (71.213-80.399)	76.539 (71.946-81.132)	0.733 (−7.345-5.969)	0.007	0.048	0.82		

*The comparison of postintervention differences between AY and GY groups was made across the dependent variables after correcting for the baseline differences in each of the dependent variables studied. AY=Ashtanga yoga, GY=General yoga, CI=Confidence interval, VPI=Vedic Personality Inventory, QoL=Quality of life, BMI=Body mass index, HC=Hip circumference, WHR=Waist-hip ratio

Table 2: Comparison of changes between the Ashtanga yoga arm and general yoga arm after 12 weeks of interventions (before baseline adjustment)

Table 3: The postintervention differences in Ashtanga yoga and general yoga after correcting for baseline differences

Dependent variable*	Postintervention, mean (95% CI)	Mean difference (95% CI)	Partial eta squared (η²)	F	P
AY					
Weight (kg)	70.160 (69.790-70.530)	0.130 (−0.650-0.400)	0.004	0.226	0.63
BMI (kg/m²)	92.610 (91.940-93.280)	1.060 (−2.010-0.100)	0.082	4.919	0.03
Waist circumference	102.580 (101.880-103.270)	0.260 (−1.260-0.730)	0.005	0.287	0.59
HC	28.780 (28.620-28.930)	0.221 (−0.450-0.01)	0.063	3.715	0.05
WIR	0.902 (0.895-0.910)	0.004 (−0.015-0.007)	0.010	0.574	0.45
VPI_Sattwa	45.780 (44.255-47.305)	6.249 (4.04-8.458)	0.369	32.143	0.00
VPI_Rajas	29.030 (27.624-30.435)	4.010 (−6.014-2.005)	0.226	16.069	0.00
VPI_Tamas	22.388 (21.194-23.583)	1.878 (−3.580-0.176)	0.082	4.891	0.03
Physical_QoL	71.228 (67.335-75.122)	5.767 (0.260-11.273)	0.074	4.405	0.04
Psychological_QoL	71.005 (67.021-74.999)	4.218 (−1.450-9.885)	0.039	2.224	0.14
Social_QoL	77.155 (72.773-69.845)	7.309 (1.068-13.550)	0.091	5.509	0.02
Environment_QoL	75.806 (71.213-80.399)	0.733 (−7.345-5.969)	0.007	0.048	0.82

*Significant change (P<0.05) compared to baseline, Independent t-test, Mann-Whitney U-test. VPI=Vedic Personality Inventory, QoL=Quality of life, AY=Ashtanga yoga, GY=General yoga, SD=Standard deviation, BMI=Body mass index, HC=Hip circumference, WHR=Waist-hip ratio

Therefore, mind–body interventions like yoga targeting obesity should not be merely focusing on weight loss rather it should also utilize the progressive philosophical approach of yoga that can influence the personality traits.
had shown a significant improvement in the social domain which may be indicative of AY principles influencing the social and interpersonal relationships compared to GY. An earlier study also has reported yoga to improve the QoL and interpersonal relationship.[27] Similarly, AY has shown superior physical QoL compared to their controls. There are no controlled studies till date that compared the difference between AY principle-based yoga program and GY program. Our results indicate that AY principles may be inculcated into existing yoga programs for pronounced benefits. Barring few studies,[18,28,29] the research till date has tended its focus on mechanistic yoga that only includes postures, breathing, or meditation rather than focusing on the crux of yoga.

There is growing interest among the yoga researchers to elucidate a balance between the underlying mechanisms of yoga with their psychophysiological correlates.[30] Critical reviews discussing the functional gravity of yoga reports that, yoga should move beyond just being an intervention to be a way of intervention – a way to look inside.[31] The experimental work presented here provides one of the first investigations into how yoga can influence personality traits and its role in influencing outcomes related to AO. There was a significant increase in the percentage of \textit{sattva guna} and a reduction in the \textit{rajasik} and \textit{tamasik gunas} among the AY arm compared to the GY arm.

Literature suggests that an ideal healthy person will have dominance of \textit{sattva guna} and also proposes that diseases occur in those persons whose \textit{rajas} or \textit{tamas gunas} are dominant compared to \textit{sattva guna}.[32,33] The present study results are identical with an earlier clinical trial that explored the impact of yoga on healthy volunteers which reported yoga to improve the \textit{sattva} status and reduce \textit{rajasik} and \textit{tamasik gunas}.[34] Together, these studies provide important insights into the utilization of AY principles while designing a yoga program.

Although the current study has successfully demonstrated that exposing yoga participants to its underlying philosophies are beneficial, it has certain limitations in terms of the gender distribution, follow-up, etc. This study included only female participants as we could not get any male participant willing to participate in the study due to multiple reasons such as lack of comfort level due to increased number of female participants in the study and overlapping work schedules. This should be considered while planning future studies. Further, the investigators did not attempted for any follow-up and hence the sustainability of the change over time is unknown. Nevertheless, this study is providing compelling evidence on the importance of integrating yoga philosophy as a medium to bring forth meaningful change in the yoga participants.

Conclusion

Twelve weeks of Ashtanga principle-based yoga program has been found impactful over GY practice in improving the anthropometric indices, personality traits, and QoL. The findings of this study have a number of important implications for future practice as modulating the personality traits has been postulated to have a significant role to play in the etiopathogenesis of chronic diseases including AO.

Ethics statement

The study was approved by the Institutional Ethics Committee of Sant Hirdaram Medical College of Naturopathy and Yogic Sciences, Bhopal, India. (Approval Number: F.No: 12/ SHMCNYS-IEC/P41/2020-2021).

Acknowledgments

The authors would like to thank Dr. Prakash Babu Kodali, PhD, Assistant Professor, Department of Public Health and Community Medicine, Central University of Kerala, for his guidance and support in data analysis.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, \textit{et al.} Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003;289:76-9.
2. Ruderman NB, Schneider SH, Berchtold P. The “metabolically-obese,” normal-weight individual. Am J Clin Nutr 1981;34:1617-21.
3. Paley CA, Johnson MI. Abdominal obesity and metabolic syndrome: Exercise as medicine? BMC Sports Sci Med Rehabil 2018;10:7.
4. Kesztyüs D, Erhardt J, Schönsteiner D, Kesztyüs T. Therapeutic treatment for abdominal obesity in adults. Dtsch Arztebl Int 2018;115:487-93.
5. Wong MC, Huang J, Wang J, Chan PS, Lok V, Chen X, \textit{et al.} Global, regional and time-trend prevalence of central obesity: A systematic review and meta-analysis of 13.2 million subjects. Eur J Epidemiol 2020;35:673-83.
6. Na Nongkhai MP, Yamprasert R, Punswad C. Effects of continuous yoga on body composition in obese adolescents. Evid Based Complement Alternat Med 2021;2021:6702767.
7. Dhananjai S, Sadashiv, Tiwari S, Dutt K, Kumar R. Reducing psychological distress and obesity through Yoga practice. Int J Yoga 2013;6:66-70.
8. Anheyer D, Koch AK, Thoms MS, Dobos G, Cramer H. Yoga in women with abdominal obesity – Do lifestyle factors mediate the effect? Secondary analysis of a RCT. Complement Ther Med 2021;60:102741.
9. Cramer H, Thoms MS, Anheyer D, Lauche R, Dobos G. Yoga in women with abdominal Obesity – A randomized controlled trial. Dtsch Arztebl Int 2016;113:645-52.
10. Xu W, Kumar IR, Srinivasan TM. Effects of Yama and Niyama on body energy systems: Evidence from Electro Photonic Imaging – randomised controlled trial. Indian J Sci Technol 2021;14:610-7.

11. Srinivasan TM. Ethics in yoga. Int J Yoga 2021;14:87-8.

12. Khanna P, Singh K, Singla S, Verma V. Relationship between Triguna theory and well-being indicators. Int J Yoga Philos Psychol Parapsychol 2013;1:69.

13. Esch T, Wittmann M, Schmidt S. Meditation – Neuroscientific approaches and philosophical implications. In: Stefan Schmidt HW, editor. Studies in Neuroscience. Denmark: Springer; 2014. p. 199-209.

14. Ravindra PN, Babu P. A correlation study between Tri-Guna and emotional style: A theoretical approach toward developing a working model to integrate Tri-Guna with affective neuroscience and well-being. Int J Yoga 2021;14:213-21.

15. Sutin AR, Zonderman AB, Ferrucci L, Terracciano A. Personality traits and chronic disease: Implications for adult personality development. J Gerontol B Psychol Sci Soc Sci 2013;68:912-20.

16. Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int J Behav Nutr Phys Act 2011;8:115.

17. Telles S, Sharma SK, Kala N, Pal S, Gupta RK, Balkrishna A. Twelve weeks of yoga or nutritional advice for centrally obese adult females. Front Endocrinol (Lausanne) 2018;9:466.

18. Brems C, Colgan D, Freeman H, Freitas J, Justice L, Shea M, et al. Elements of yogic practice: Perceptions of students in healthcare programs. Int J Yoga 2016;9:121-9.

19. Singh R, Singh M, Rajesh SK, Ilavarasu JV, Pradhan B, Deshpande S. Hindi version of vedic personality inventory-reliability and construct validity. Int J Yoga Philos Psychol Parapsychol 2015;3:1.

20. Saxena S, Chandiramani K, Bhargava R. WHOQOL-Hindi: A questionnaire for assessing quality of life in health care settings in India. World Health Organization Quality of Life. Natl Med J India 1998;11:160-5.

21. Telles S, Bhardwaj AK, Gupta RK, Ankur Kumar AB. Development of a food frequency questionnaire to assess dietary intake for the residents of the Northern Region of India. Indian J Ancient Med Yoga 2016;9:139-47.

22. Bland JM, Altman DG. Best (but oft forgotten) practices: Testing for treatment effects in randomized trials by separate analyses of changes from baseline in each group is a misleading approach. Am J Clin Nutr 2015;102:991-4.

23. Sutin AR, Ferrucci L, Zonderman AB, Terracciano A. Personality and obesity across the adult life span. J Pers Soc Psychol 2011;101:579-92.

24. Buratta L, Pazzaglì C, Delvecchio E, Cenci G, Germani A, Mazzeschi C. Personality features in obesity. Front Psychol 2020;11:530425.

25. Cameron AJ, Magliano DJ, Shaw JE, Zimmet PZ, Carstensen B, Alberti KG, et al. The influence of hip circumference on the relationship between abdominal obesity and mortality. Int J Epidemiol 2012;41:484-94.

26. Eghan BA Jr., Agymang-Yeboah F, Togbe E, Annani-Akollor ME, Donkor S, Afranie BO. Waist circumference and hip circumference as potential predictors of visceral fat estimate among type 2 diabetic patients at the Komfo Anokye Teaching Hospital (KATH), Kumasi-Ghana. Alex J Med 2019;55:49-56.

27. Rakshani A, Maharana S, Raghuram N, Nagendra HR, Venkatram P. Effects of integrated yoga on quality of life and interpersonal relationship of pregnant women. Qual Life Res 2010;19:1447-55.

28. Schmid AA, Sternke EA, Do AL, Conner NS, Starnino VR, Davis LW. The eight limbs of yoga can be maintained in a veteran friendly yoga program. Int J Yoga 2021;14:127-32.

29. Srinivasan TM. From Yama to Samyama. Int J Yoga 2016;9:95-6.

30. Srinivasan T. Is yoga an intervention? Int J Yoga 2012;5:1.

31. Bhavanani AB. Yoga is not an intervention but may be yogopathy is. Int J Yoga 2012;5:157.

32. Goyanka J. Srimadbhagavadgita Tattvavivecani. Gorakhpur: Gita Press, Govind Bhavan Karyalaya; 1999.

33. Tikhe SG, Nagendra HR, Tripathi N. Ancient science of yogic life for academic excellence in university students. Anc Sci Life 2012;31:80-3.

34. Deshpande S, Nagendra HR, Raghuram N. A randomized control trial of the effect of yoga on Gunas (personality) and Health in normal healthy volunteers. Int J Yoga 2008;1:2-10.
Supplementary Table 1: Summary of yoga interventions in Ashtanga yoga and general yoga arm

Practice	Duration
Asanas	
Tiryaktdasana (swaying palm tree pose)	3 min
Trikonasana (triangle pose)	3 min
Konasana (angle pose)	3 min
Padahastasana (hand to foot pose)	1 min
Ardha halasana (half plow pose)	3 min
Padavrttasana (cyclical leg pose)	6 min
Dwicakriasana (cycling pose) repetitive	3 min
Markatasana (monkey pose)	6 min
Bhujangasana (cobra pose)	3 min
Salabhasana (locust pose)	1 min
Chakdhasana (mill churning pose)	3 min
Sthitta konaasana (static angle pose)	3 min
Sthitta konaasana (static angle pose)	1 min
Paschimottanasana (seated forward bend pose)	1 min
Pranayamas	
Ujjayi (victorious breathing)	3 min
Anulom-vilom (alternative nostril breathing)	6 min
Brahmani (humming breath)	3 min
Meditation	
Namunusandan (A-U-M chanting)	30 min/once
	per week
Relaxation	
Guided relaxation technique	3 min

Asanas are repeated 5-10 times within the stipulated duration with holding time of 10-15 s. Apart from these, the AY arm received an Ashtanga yoga-based orientation (eight limbs of yoga) which included discussions on Yama, Niyama, Asana, Pranayama, Pratyahara, Dharana, Dhyana, and Samadhi. The investigators explained the role of each component of Ashtanga yoga in maintaining good health and live a meaningful life. AY=Ashtanga yoga

Supplementary Table 2: Overview of the points discussed in orientation program

Limbs of yoga	Superficial meaning	Points discussed
Yama	Moral disciplines	How to build self-discipline that will be beneficial to others around us and how that can help in calming/toning the mind
Niyama	Positive observances	Discussed on the duties towards one’s self and how it will help in navigate in life
Asana	Postures	How to align the participants’ postures and win over the body
Pranayama	Breathing techniques	How to achieve freedom over breath and regulate emotional breathing
Pratyahara	Withdrawal of senses	The importance of control over breath to achieve higher state of mind
Dharana	Focused concentration	How to utilize the first five limbs of yoga on building focus
Dhyana	Absorption	How to meditate on one-self and stay away from interruptions
Samadhi	Bliss	How to cultivate the habit of staying above likes, dislikes, hatred, love, and treat everything equally