Effect of Heat inactivation and bulk lysis on Real-Time Reverse Transcription PCR Detection of the SARS-COV-2: An Experimental Study

Dereje Damesa Leta (letadereje2@gmail.com)
Ethiopian Public Health Institute

Gadisa Jebessa Gutema
Ethiopian Public Health Institute

Gebremedhin Hagos Gebremichael
Ethiopian Public Health Institute

Regasa Diriba
Addis Ababa University College of Health Sciences

Gutema Bulti
Ethiopian Public Health Institute

Tolewak Sura
Ethiopian Public Health Institute

Desta Ayana
Ethiopian Public Health Institute

Dawit Chala
Ethiopian Public Health Institute

Boki Lenjiso
Ethiopian Public Health Institute

Jaleta Bulti
Ethiopian Public Health Institute

Saro Abdella
Ethiopian Public Health Institute

Habteyes Tola Hailu
Ethiopian Public Health Institute

Research Article

Keywords: Heat inactivation, SARS-COV-2, RT-PCR, Ct value

Posted Date: June 24th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1711116/v1
Abstract

Objective: This study aimed to investigate the effect of heat inactivation and chemical bulklysis on SARS-CoV-2 detection.

Results About 6.2% (5/80) of samples were changed to negative results in heat inactivation at 60°C and about 8.7% (7/80) of samples were changed to negative in heat inactivation at 100°C. The Ct values of heat-inactivated samples (at 60°C, at 100°C, and bulk lysis) were significantly different from the temperature at 56°C. The effect of heat on Ct value should be considered when interpreting diagnostic PCR results from clinical samples which could have an initial low virus concentration. The efficacy of heat-inactivation varies greatly depending on temperature and duration. Local validation of heat-inactivation and its effects is therefore essential for molecular testing.

Background

Coronavirus disease 2019 (COVID-19) is a newly emerged human infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (1). SARS-CoV-2 single-stranded Ribonucleic acid (ssRNA). Based on the rapid rate of increase in humans, the World Health Organization (WHO) classified the COVID-19 outbreak as a pandemic by the end of 2019 [1, 2, 3]. Since it reached a critical point in March 2020, WHO declared that the world needs speedy and quick solutions to diagnose and tackle the further spread of COVID-19 [4, 5]. Nucleocapsid region and the open reading frame (ORF)-1 of SARS-CoV-2 are the most ideal amplification target [6, 7].

The CDC rRT-PCR panel for detection of SARS-CoV-2 demonstrated high sensitivity and specificity for detecting RNA with no observed false-positive reaction [8]. These assays have proven to be valuable for rapid laboratory diagnosis and control of COVID-19 [9, 10]. Laboratory viral nucleic acid (NA) testing using RT-PCR assays is currently the “gold standard” for the diagnosis of COVID-19 [1, 4, 11, 12].

Buffer-based NA extraction methods to obtain high-quality NA has not been developed primarily for the inactivation of infectious samples [13, 14]). Automated NA extraction is often performed outside of the biosafety cabinet. To avoid aerosol formation, a pre-inactivation step under appropriate biosafety conditions is an absolute requirement [13–16].

Accordingly, the extraction of viral RNA requires the first step of lysis or heat inactivation of the virus at different temperatures for different minutes [7, 17]. In our laboratory at the Ethiopian Public Health Institute (EPHI), we usually do heat inactivation for 30 minutes at 56°C. The impact of a higher temperature on SARS-COV-2 detection has not been thoroughly examined [17, 18]. Still, there is a lack of understanding of the molecular-level changes that are taking place in the virus due to the different heat and chemical conditions [19, 20].

The systematic study of the heat inactivation efficiency of rRT-PCR is still under investigation and remains to be studied and confirmed.
The effect of heating at different temperatures and for different time periods prior to testing is remains unclear. Thus, this study aims to evaluate the effect of heat inactivation at different temperatures and times and to determine the effect of chemical inactivation by bulk lysis on SARS-CoV-2 detection.

Materials And Methods

Study area and design

The laboratory-based experimental study design was conducted at EPHI National HIV Reference laboratory from August to November 2020. The laboratory has a well-established quality system and is ISO 15189; 2012 accredited for HIV Viral load testing and early infant diagnosis.

Sample size determination and sampling method

Eighty Nasopharyngeal/Oropharyngeal swab samples were selected and taken out from −80°C storage. Positive samples with known threshold cycle (CT) value were selected by simple random sampling technique, from 9,520 positive samples within one month, from 28.4% prevalence of Covid-19 in Ethiopia as of August 20/2020. About 2380 samples were done in one week, then dividing this sample by 80 is 30, which was the interval number by which samples were selected. The first sample was selected by the lottery method.

Specimen collection and testing

All samples were tested with 2 controls (1 positive, 1 negative) when testing by reference method (Abbott Real-Time SARS-COV-2(EUA)). Figure 1 Depicts the overall experimental procedure followed.

Figure 1: Process of specimen testing

Experiment

Tests were performed using the Abbott Real-time SARS-CoV-2 assay, a rRT-PCR test for the qualitative detection of SARS-CoV-2 in the samples. A dual target assay for RNA-dependent RNA polymerase (RdRp) and N-genes detection of NAs from SARS-CoV-2 was analyzed. Results were reported as positive if the Ct value was <32, and defined as negative if the Ct value was 32 or more, based upon the manufacturer [1].

The effects of heat treatment at different temperatures and durations and chemical inactivation on the SARS-CoV-2 rRT-PCR Ct-value were evaluated. The samples were inactivated at different temperatures in a water bath for different minutes (at 56°C for 30min, at 60°C for 30min, and at 100°C for 10min) and by chemical bulklysis. WHO recommends heat inactivation at 56°C for 30min and Abbott real-time RT-PCR as the golden method for SARS-COV-2 [22–24].

After viral heat inactivation, NA extraction was done from a 0.6 ml sample volume on the Abbott m2000SP instrument by using the Abbott mSample Preparation System. On the other hand, Chemical
inactivation was performed to see the effect of bulk lysis on the SARS-CoV-2 rRT-PCR. For chemical
inactivation, bulk lysis was tested with the appropriate composition of sample and lysis proportion. Each
sample was incubated with the bulk lysis buffer at room temperature for 30 min; then, the sample was
extracted.

After the extraction was completed, the samples of heat and chemical treated group was detected by
Abbott m2000rt (12). The viral RNA was extracted from 500 µL of each sample, and the final elute was
200 µL by using elution buffer [1, 22]. The SARS-CoV-2 and IC-specific probes were each labeled with a
different fluorophore (FAM™ (Carboxyfluorescein), ROX™, (Carboxy-X-rhodamine), and VIC® P (Proprietary
dye) for target and IC detection [1].

Data Quality Assurance

All laboratory procedures were performed as per the documented standard operating procedures as
manufacturing recommendations.

Data Analysis

Data was analyzed and described by mean and standard deviation (mean ± SD). Normality was assessed
for the three temperature scenarios and bulk lysis, and they were violated normality. However, after we
transformed by natural logarithm all of them were normally distributed. Repeated measurement analysis
of variance was used to assess the mean difference between temperatures and bulk lysis. To identify the
place of significant difference post hoc analysis with modified Bonferroni correction was used.

Results

Reverse transcriptase real-time polymerase chain reaction
results of heat-inactivated samples at different
temperatures and durations

The effect of heat treatment at different temperatures and durations on the SARS-CoV-2 rRT-PCR Ct-value
was evaluated. All heat-inactivated samples at 56°C for 30min were tested positive. The Ct values of
RdRp were 4.37–31.03 CN (cyclic number) at 56°C for 30min, 3.68–30.64 CN at 60°C for 30min, 3.37–
28.74 CN at 100°C for 10min. Chemical bulklysis inactivated samples were from 3.62–27.74 CN except
for those with weak positive samples [Table 1] which were turned to negative results, as compared to the
heat-inactivated samples at 56°C (56°C is WHO recommended Standard temperature for heat inactivation
of SARS-COV-2). Heat inactivation methods resulted in the reduction of positive SARS-CoV-2 samples to
undetectable levels, especially in weak positive samples. About 6.2% (5/80) of samples were changed to
negative results in heat inactivation at 60°C and 8.7% (7/80) of samples were changed to negative in
heat inactivation at 100°C. The heat inactivation at 100°C for 10 mins for those with high Ct value (weak
positive samples) was changed to a negative. A comparison of heat inactivation of weakly positive samples at 56°C with (at 60°C, 100°C, and chemical bulk lysis) was summarized. [Table 1]

Table 1. Cycle threshold values for RdRp measured from swab samples following heat treatments at different temperatures and chemical bulk lysis

S. N	Ct values results			
	T1	T2	T3	Bulk lysis
1	31.03 CN	Negative	Negative	Negative
2	30.11 CN	Negative	Negative	Negative
3	28.57 CN	Negative	Negative	Negative
4	27.13 CN	28.37 CN	Negative	27.74 CN
5	26.22 CN	30.64 CN	Negative	26.62 CN
6	29.65 CN	Negative	Negative	28.89 CN
7	30.54 CN	Negative	Negative	28.99 CN
%	6.2%	8.7%	3.7%	

T1=Temperature at 56°C, T2=Temperature at 60°C, T3=Temperature at 100°C, CN=Cyclic number, Ct=Cyclic threshold

The Ct values of heat-inactivated samples (at 60°C, 100°C) and bulk lysis were significantly different from the temperature at 56°C (as compared to 56°C) ($p = 0.01, p = 0.001$) and $p = 0.02$ respectively. The place of significant difference was identified by using post hoc analysis with modified Bonferroni correction. [Table 2]
Table 2
Mean difference of group with their confidence interval and p-value following heat inactivation at different temperatures and durations EPHI, Ethiopia.

Group	Groups	MD (95%CI)	P-value
T1	T1 vs T2	0.10(0.02–0.18)	0.01
	T1 vs T3	0.15(0.10–0.24)	0.001
	T1 vs Bulk lysis	0.13(0.02–0.24)	0.02
T2	T2 vs T1	-0.1(-0.20–-0.02)	0.01
	T2 vs T3	0.05(-0.01–0.11)	0.16
	T2 vs Bulk lysis	0.03(-0.01–0.13)	0.999
T3	T3 vs T1	-0.15(-0.24–-0.1)	0.001
	T3 vs T2	-0.05(-0.11–0.01)	0.16
	T3 vs Bulk lysis	-0.02(-0.12–0.10)	0.999
Bulk lysis	T1	-0.13(-0.24–-0.20)	0.02
	T2	-0.03(-0.13–0.10)	0.999
	T3	0.02(-0.10–0.12)	0.999

MD = Mean in difference, CI = Confidence interval, T1 = Temperature at 56°C, T2 = Temperature at 60°C, T3 = Temperature at 100°C.

Heat Inactivation By Chemical Bulk Lysis

All samples were incubated with chemical bulk lysis buffer, (as it was compared with AVL buffer, AVL serves as the standard for the comparison of the diverse chemical inactivation methods). The decline in the viral RNA quantity was observed in some of the samples treated with chemical bulklysis, especially for those with high Ct values. It was shown that 3.7% (3/80) of analyzed samples were turned to negative. There were significant differences between the Ct values of bulklysis and heat inactivation at 56°C for the RdRp genes (Repeated measure ANOVA; $P = 0.02$). Following the comparison of bulk lysis to all other forms of inactivation used in this study, only heat-inactivated at 56°C was significantly different from bulklysis inactivation.

Figure 2: Mean average cyclic threshold comparison between the three temperatures and bulklysis

Discussion
SARS-CoV-2 disease has as of late risen and quickly spreading in people causing a critical danger to universal wellbeing and the economy. Respiratory specimens have been used to diagnose SARS-CoV-2 infection by Abbott rRT-PCR, and are regarded as the main detection method. Following the rapid global spread of SARS-CoV-2 and the need for universal testing, more and more individuals are exposed to non-inactivated virus samples. The WHO and United States CDC have released laboratory guidelines to mitigate the risk of exposure during diagnostic and research procedures [25–27]. The proceeded require for COVID-19 testing worldwide requires the utilization of straightforward and viable inactivation techniques.

It has appeared that within the SARS-COV-2 swab test, the amount of SARS-COV-2 might be decreased at 60°C for 30min and in bulklysis, but still irresistible. As it was heating at a temperature of 100°C for 10min was able to inactivate it [12].

However, we have been trying to demonstrate that it is possible to ensure the test integrity by applying heat inactivation under several conditions. RT-PCR Ct values are defined as the number of cycles of amplification required for the accumulated fluorescence (produced by target gene amplification) and are inversely related; low Ct values indicate high viral loads and high Ct values indicate low virus NA concentration in the sample [28]. In this study, the Ct value was essentially influenced by warming at 60°C and 100°C for those with weak positive samples. This is in agreement with the studies of Pastorino, (2020) [12]. The less eminent increase in Ct value observed when the virus was heated to 100°C, can be ascribed to the shorter warming time, this can be in line with the study by Zou et al., 2020 [26]. Lower temperature heat treatment combined with chemical inactivation, short-duration high-temperature heat treatments, or chemical inactivation alone may be more suitable to protect RNA integrity and maximize PCR optimization for the discovery of SARS-COV-2 RNA from low-concentration SARS-COV-2 samples. Our results show significant variation in the effect of heat-treatment inactivation on the SARS-CoV-2 detection. This emphasizes the significance of local approval of inactivation strategies and the need for consistency in inactivation protocols.

Weak positive samples may become false negatives in SARS-CoV-2 RT-PCR detection. Our study also has shown that the heat-inactivated samples at 56°C were consistent with those in heat-inactivated ones at 60°C, 100°C, and chemical bulk lysis for low Ct value results, which agrees with the study done by Pastorino, B., 2020, Rao SN., 2020 and Pan, Y., 2020 [12, 29, 30].

Warming at 100°C for 10min would result in untrue negative, which is steady with that of warming at 92°C for 15min, the SARS-CoV-2 RNA in a test were dropped altogether as the study done by Zou et al., 2020 and Burton, J., 2021[26, 31]. In reality, considers has been proposed that the test cells should pass on and burst within the occasion of moderately high temperature and long terms, driving to the discharge high number of cell nucleases, and after that, a huge sum of RNA debasement, which may contribute to untrue negative in NA detection. We hypothesize that heating at 100°C for a long period of time lyse a huge number of cells, and leaves out RNA to RNases enzyme shown within the tests.
Although our study showed that heating at 100°C for 10min was steady with heat at 56°C, except for those tests with frail positive, strong positive samples appeared an inclination to diminish in Ct values to a few extents, this is in agreement with the study done by Wang, T., 2020 [32]. The RNA conservation may be due to the conservation chemical, which contains guanidine isothiocyanate. This proposed that the nearness of the conservation chemical can viably ensure the keenness of the viral NA, in this manner expanding the extent of recognizable NAs. However, numerous components can impact the effect of the lysis buffer, the amount of virus, nature of the network, contact time, and response temperature, concentration/composition of the lysis buffer used.

Conclusion

We found that the effect of heat-inactivation varies greatly depending on temperature and duration. The impact of chosen inactivation method on the sensitivity of subsequent SARS-CoV-2 detection should be assessed locally. The effect of heat on Ct value should be considered when interpreting diagnostic PCR results, which could have an initial low virus concentration.

Limitation

Use of the Abbott Real-time SARS-CoV-2 assay is limited to trained personnel.

Performance has only been established with the specimen types listed in the Intended Use. Other specimen types have not been used with this assay.

List Of Abbreviations

CDC
Center Disease Control and Prevention
CT
Cyclic Threshold
CN
Cyclic Number
EPHI
Ethiopian Public Health Institute
EUA
Emergency Use Authorization
IC
Internal control
ISO
International Standard for Organization
SARS-COV-2
Severe Acute Respiratory Syndrome Coronavirus 2
Declarations

Facilities available for the study

The study was conducted in the Ethiopian public health institute. We were also, using suitable data storage devices and a recent version of statistical packages that are available at EPHI for data storage and analysis.

Ethical Clearance

Ethical clearance was obtained from EPHI Scientific ethical review committee. Approval and official permission was obtained from the EPHI research committee to use the leftover samples in the laboratory (EPHI-IRB-296-2020). The confidentiality of the data collected was kept to a maximum and each patient identity was coded.

Availability of data and materials

All data are fully available without restriction

Conflict of Interest

"The authors declare that they have no competing interests"

Funding

The author(s) received no specific funding for this work.

Authors’ contributions

DL has participated in the design, coordination of the study, and data collection, analysis, and interpretation. GG has contributed in, drafting, revising, or critically reviewing the article and revision and amendment of the draft manuscript. GGH has contributed in wright up, analysis and review, RD has contributed in wright up, analysis, and review, GB has contributed in data collection and analysis, TS has
contributed in data collection and analysis, DA has contributed in data collection and analysis, DC has contributed in data collection, analysis, and manuscript preparation, BL has contributed in wright up, analysis and review, JB has contributed to conceptualization and methodology, SA has contributed to conceptualization and writeup, HHT has contributed to the design, including final approval of the version to be published. All authors read and approved the final manuscript.

Acknowledgments

We are grateful in extending our thanks to Ethiopian Public Health Institute for allowing as the setup, ethically approve our research and allow as to use the leftover samples. We also extend our appreciation to Mr. Atsbeha G/eigziebxier for his unreserved contribution.

Consent to publish

Not applicable

References

1. Abbott Molecular. Abbott Real-Time SARS-COV-2. Abbott Real-Time SARS-CoV-2 Emergency Use Authorization Package 236 Insert, REF 09N77-095, 51-608445/R1. Des Plaines: Abbott Molecular Inc.; 2020.

2. Kratzel A, Todt D, V'kovski P, Steiner S, Gultom M, Thao TT, et al. Inactivation of Severe Acute Respiratory Syndrome Coronavirus-2 by WHO-Recommended Hand Rub Formulations and Alcohols. *Emergency Infection Disease*. 2020;26(7): 1592-1595. doi: 10.3201/eid2607.200915.

3. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: The disease and tools for detection. 2020; doi: 10.1021/acs.nano.0c02624.

4. Gates B. Responding to Covid-19 - A Once-in-a-Century Pandemic? N Engl J Med. 2020;323(16):2019–20.

5. World meter. Countries where Coronavirus has spread - World meter. (2020).

6. Case JB, Bailey AL, Kim AS, Chen RE, and Diamond MS. Growth, detection, quantification, and inactivation of SARS-CoV-2. *Journal of virology*. 2020; DOI: 10.1192/j.virol.2020.05.015

7. Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligences for Covid-19 (SARS-CoV-2) pandemic. Chaos Solitons Fractals 2020;139. DOI:10.1016/j.chaos.2020.110059.

8. World Health Organization. Laboratory testing strategy recommendations for COVID-19. Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. 2020: 6.

9. Ngo KA, Jones SA, Church TM. Unreliable Inactivation of Viruses by Commonly Used Lysis Buffers. Appl Biosaf. 2017;22(2):56–9.

10. World Health Organization. Risk-based classification of diagnostics for WHO prequalification of Diagnostics. 2014: 1–18.
11. D'Cruz RJ, Currier AW, Sampson VB. Laboratory Testing Methods for Novel Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Cell Dev Biology. 2020. https://doi.org/10.3389/fcell.2020.004686.

12. Pastorino B, Touret F, Gilles M, Luciani L, Lamballerie X, Charrel RN. Evaluation of chemical protocols for inactivating SARS-COV-2 infectious samples. 2020;12(6):624. https://doi.org/10.3390/v12060624.

13. Kumar M, Mazur S, Ork BL, Postnikova E, Hensley LE, Jahrling PB, et al. Inactivation and safety testing of Middle East Respiratory Syndrome Corona virus. J Virol Methods. 2015;223:13–8.

14. Seo G, Lee G, Kim MJ, Baek S, Choi M, Ku KB, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens. 2020; doi: 10.1021/acsnano.0c02823.

15. Africa CDC. Africa Joint Continental Strategy for COVID-19 outbreak.

16. WHO-COVID-19-lab-testing-2020. (Internet). sur: https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab-testing-2020.1-eng.pdf.

17. Chan KH, MalikPeiris JS, Lam SY, Poon LLM, Yuen KY, Seto WH. The effects of temperature and relative humidity on the viability of the SARS Coronavirus. Adv Virol. 2011. https://doi.org/10.1155/2011/734690.

18. Kampf G, Voss A, Scheithauer S. Inactivation of corona virus by heat. J Hosp Infect. 2020;105(2):348–9.

19. Rath SL, t Kumar K. Investigation of the Effect of Temperature on the Structure of SARS-CoV-2 Spike Protein by Molecular Dynamics Simulations. Front Mol Biosci. 2020. https://doi.org/10.3389/fmolb.2020.583523.

20. Chan KH, Sridhar S, Zhang RR, Chu H, Fung AY-F, Chan G, et al. Factors affecting stability and infectivity of SARS-CoV-2. J Hosp Infect. 2020. https://doi.org/10.1016/j.jhin.2020.07.009.

21. Paper O, Umaru FA, States U, States U, Umaru F. Scaling up testing for COVID-19 in Africa: Responding to the pandemic in ways that strengthen health systems. Afr J Lab Med. 2020;9(1):19–20.

22. Chen H, Wu R, Xing Y, Du Q, Xue Z, Xi Y, et al. Influence of Different Inactivation Methods on Severe Acute Respiratory Syndrome Corona virus 2 RNA Copy Number. J Clin Microbiol. 2020. DOI:10.1128/JCM.00958-20.

23. Hu X, An T, Situ B, Hu Y, Ou Z, Li Q, et al. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2. J Clin Lab Anal. 2020. doi:https://doi.org/10.1101/2020.03.12.20034231.

24. Lu X, Wang L, Sakthivel SK, Whitaker B, Murray J, Kamili S, et al. Real-Time Reverse Transcription PCR Panel for Detection of Severe Acute Respiratory Syndrome Corona virus 2. 2020;26 (8). doi: https://doi.org/10.1101/2020.05.19.20101469.

25. PG. S. Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Corona virus Disease 2019 (COVID-19).
26. Zou J, Zhi S, Chen M, Su X, Kang L, Li C, et al. Heat inactivation decreases the qualitative real-time RT-PCR detection rates of clinical samples with high cycle threshold values in COVID-19. Diagn Microbiol Infect Disease. 2020;98:115109–9. [Google Scholar].

27. World Health Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance. 2020.

28. United States Centers for Disease Control and Prevention. Interim laboratory biosafety guidelines for handling and processing specimens associated with coronavirus disease 2019 (COVID-19). 2020.

29. Rao SN, Manissero D, Steele VR, Pareja J. A systematic review of the clinical utility of cycle threshold values in the context of COVID-19. Infect Disease Therapy. 2020;9:573–86. [Google Scholar].

30. Pan Y, Long L, Zhang D, Yan T, Cui S, Yang P, et al. Potential false-negative nucleic acid testing results for severe scute respiratory syndrome coronavirus 2 from thermal inactivation of samples with low viral loads. J Clin Chem. 2020;66(6):794–801. doi:10.1093/clinchem/hvaa091. [Google Scholar].

31. Burton J, Love H, Richards K, Burton C, Summers S, Pitman J, et al. The effect of heat-treatments on SARS-CoV-2 viability and detection. J Virol Methods. 2021;290:114087. https://doi.org/10.1016/j.jviromet.2021.114087.

32. Wang T, Lien C, Liu S, Selvaraj P. Effective Heat Inactivation of SARS-CoV-2. medRxiv. 2020. doi:https://doi.org/10.1101/2020.04.29.20085498 [Google Scholar].

Figures
Figure 1

See image above for figure legend.
Figure 2

Mean cyclic threshold comparison between the three temperatures and bulklysis

(The standard errors bar shows mean ±SD): T1-Temperature1 = at 56°C; T2-temperature 2 = at 60°C and T3- temperature 3 = at 100°C; SD-standard deviation).