Short Communication

Safe administration of etoposide phosphate after hypersensitivity reaction to intravenous etoposide

J Siderov*1, P Prasad1, R De Boer2 and J Desai2
1Pharmacy Department, Austin & Repatriation Medical Centre, Studley Road, Heidelberg, Australia 3084; 2Cancer Services, Austin & Repatriation Medical Centre, Studley Road, Heidelberg, Australia 3084

Etoposide is commonly used in a variety of malignancies. A well known but rare toxicity are hypersensitivity reactions, usually manifested by chest discomfort, dyspnoea, bronchospasm and hypotension. We report the details of a patient who developed hypersensitivity reactions to intravenous etoposide, but subsequently tolerated the administration of intravenous etoposide phosphate with no sequelae.

British Journal of Cancer (2002) 86, 12–13. DOI: 10.1038/sj/bjc/6600003 www.bjcancer.com
© 2002 The Cancer Research Campaign

Keywords: etoposide; etoposide phosphate; hypersensitivity; adverse drug reaction

CASE DESCRIPTION

A 19-year-old male with a newly diagnosed primary mediastinal non-seminomatous germ cell tumour was admitted for treatment with the standard BEP regimen. This consisted of weekly i.v. bleomycin 30 000 iu and 3-weekly cycles of i.v. etoposide 100 mg m−2 day−1 for 5 days and cisplatin 20 mg m−2 day−1 for 5 days (Williams et al, 1987). The patient had no known allergies. Following premedication with i.v. tropisetron (5 mg) and dexamethasone (8 mg) administration of etoposide was commenced (200 mg in 500 ml of sodium chloride 0.9%, over 60 min). Within minutes of commencement of the first dose of etoposide the patient complained of generalized discomfort and shortness of breath. He was found to be hypotensive (BP=95/60), tachycardic (PR=110) and had an oxygen saturation of 80% on room air. The infusion was immediately ceased. Treatment was begun with i.v. hydration, with bolus doses of hydrocortisone (100 mg) and promethazine (50 mg), Oxygen (6 l min−1) and nebulized salbutamol were also given. The patient improved rapidly with complete resolution of his symptoms, and was comfortable within 1 h. No bleomycin or cisplatin was administered.

Germin cell tumours of the mediastinum are potentially curable, and etoposide is considered to be a critical component of an effective treatment schedule. Thus, it was felt that in this case continued use of etoposide was warranted. In light of this decision, cycle 1 of chemotherapy was recommenced a few days later but with etoposide replaced by the equivalent dose of etoposide phosphate. The patient was premedicated with hydrocortisone (100 mg) and promethazine (25 mg). No reaction occurred with the administration of the etoposide phosphate and the cisplatin and bleomycin were also administered without problem. The same procedure was followed the next day (day 2) with the same specific pre-medication followed by etoposide phosphate and then cisplatin. Again, there was no evidence of a HSR. As the patient experienced drowsiness with promethazine, and in view of the fact that there had been no further evidence of a HSR, the last three doses of etoposide phosphate in cycle 1 were given without specific anti-HSR premedication, although oral dexamethasone at a dose of 4 mg twice daily was given as anti-emetic prophylaxis. There was no evidence of a HSR on any of these days. Subsequent cycles of BEP have been administered using standard anti-emetic pre-medication but with no histamine antagonists, and there have been no complications.

DISCUSSION

Hypersensitivity reactions occur as an adverse effect of cancer chemotherapy in up to 40% of patients (Weiss, 1996; O’Brien and Souberbielle, 1992). Etoposide has been reported to cause a hypersensitivity reaction in 1–3% of patients (Weiss, 1996), but one study observed hypersensitivity reactions in 33% of children treated for acute leukaemia (Kellie et al, 1991). In most patients the reactions occur within the first 5 to 10 min of infusion and complete recovery is usual once the infusion is discontinued.
However, hypersensitivity reactions have been reported up to several hours after administration (Weiss, 1996). There are no known risk factors for developing a HSR to etoposide, and in few of the reported cases do the patients have a history of drug allergy (Kasperek and Black, 1992; Bernstein and Troner, 1999; Athanassiou et al, 1988; De Souza et al, 1994; Tester et al, 1990; Hoetelman et al, 1996; Siderov and Zalcberg, 1994; Tucci and Pirtoli, 1985; Donegan, 1989; Eschalier et al, 1988; Schacter, 1996).

The mechanism underlying hypersensitivity reactions to epipodophyllotoxins have not been fully elucidated. Typically, type I HSR occur, although type II reactions have also been reported (Weiss, 1996; O’Brien and Souberbielle, 1992; Kasperek and Black, 1992). Bernstein and Troner (1999) have attributed etoposide HSRs to the concentration of the drug and the rate of infusion. However, other authors have reported HRSs in patients receiving a wide range of etoposide concentrations, weakening this hypothesis (Kasperek and Black, 1992; Bernstein and Troner, 1999; Athanassiou et al, 1988; De Souza et al, 1994; Tester et al, 1990; Hoetelman et al, 1996; Siderov and Zalcberg, 1994; Tucci and Pirtoli, 1985; Donegan, 1989; Eschalier et al, 1988; Schacter, 1996). Another suggested hypothesis is that the vehicle used to dissolve the etoposide (benzyl alcohol and polysorbate (tween 80) is responsible for the HSR (Weiss, 1996). In animal models, polysorbate has been shown to induce histamine release and cause hypersensitivity reactions (Eschalier et al, 1988). The fact that there have been no reports of hypersensitivity reactions caused by oral etoposide, a formulation containing citric acid, glycerin and polyethylene glycol, but no polysorbate 80, provides additional support for this hypothesis (Weiss, 1996). Etoposide phosphate, a water soluble prodrug of etoposide, was designed to obviate problems that can be successfully weaned. This case supports the hypothesis from reoccurring (Bernstein and Troner, 1999).

Hypersensitivity reactions to etoposide are uncommon, but can be life threatening. The subsequent management of patients experiencing a HSR to etoposide is usually the omission of etoposide from the chemotherapy regimen (Athanassiou et al, 1988; De Souza et al, 1994; Tucci and Pirtoli, 1985; Donegan, 1989). However, since etoposide is considered a critical component of therapy, its omission in a young patient with a potentially curable malignancy was thought inappropriate. Therefore, in similar situations where subsequent doses of etoposide are deemed necessary, replacement with etoposide phosphate is a reasonable and viable alternative.

REFERENCES
Athanassiou AE, Bafaloukos D, Pectasides D, Dimitriadis M (1988) Acute vaso-motor response – a reaction to etoposide. J Clin Oncol 6: 602 – 603 (letter)
Bernstein BJ, Troner MB (1999) Successful rechallenge with etoposide phosphate after an acute hypersensitivity reaction to etoposide. Pharmacotherapy 19: 989 – 991
De Souza P, Friedlander M, Wilde C, Kristen F, Ryan M (1994) Hypersensitivity reactions to etoposide. Ann J Clin Oncol 17: 387 – 389
Donegan S (1989) An unusual reaction to etoposide. Drug Intell Clin Pharm 23: 177: (letter)
Eschalier A, Lavarenne J, Burtin C, Renoux M, Chapsy E, Rodrigue M (1988) Study of histamine release induced by acute administration of anti-tumour agents in dogs. Cancer Chemother Pharmacol 21: 246 – 250
Hoetelman RMW, Schornagel JH, Bokkeel Huinink WW, Beijnen JH (1996) Hypersensitivity reactions to etoposide. Ann Pharmacother 30: 367 – 371
Kasperek C, Black CD (1992) Two cases of suspected immunologic-based hypersensitivity reactions to etoposide therapy. Ann Pharmacother 26: 1227 – 1230
Kellie SJ, Crist WM, Pui CH, Crone ME, Fairclough DL, Rodman JH, Rivera GH (1991) Hypersensitivity reactions to epipodophyllotoxins in children with acute lymphoblastic leukaemia. Cancer 67: 1070 – 1075
Kasperek C, Black CD (1992) Two cases of suspected immunologic-based hypersensitivity reactions to etoposide therapy. Ann Pharmacother 26: 1227 – 1230
O’Brien MER, Souberbielle BE (1992) Allergic reactions to cytotoxic drugs – an update. Annals Oncol 3: 605 – 610
Schacter L (1996) Etoposide phosphate: What, why, where and how? Semin Oncol 23 (Suppl 13): 1 – 7
Siderov J, Zalcberg J (1994) Safe administration of oral etoposide after hypersensitivity reaction with intravenous etoposide. Anti-Cancer Drugs 5: 602 – 603
Tester WJ, Cohn JB, Fleekop PD, Rabinowitz MS, Lieberman JS (1990) Successful rechallenge to etoposide after an acute vasmotor response. J Clin Oncol 8: 1600 – 1601 (letter)
Tucci E, Pirtoli L (1985) Etoposide-induced hypersensitivity reactions. Chemotherapia 4: 460 – 462
Weiss RB (1996) Hypersensitivity reactions. In The chemotherapy source book Perry MC (ed) 2nd edn, pp 613 – 634 Baltimore: Williams & Wilkins Williams S, Birch R, Einhorn L, Irwin L, Greco FA, Loehrer PJ (1987) Treatment of disseminated germ cell tumours with cisplatin, bleomycin and either vinblastine or etoposide. N Engl J Med 316: 1435 – 1440

© 2002 The Cancer Research Campaign British Journal of Cancer (2002) 86(1), 12 – 13