The influence of iron-binding ligands in the corrosion of carbon steel driven by iron-reducing bacteria

Alejandra Hernandez-Santana1, Hatice Nursah Kokbudak1 and Mark A. Nanny1,2✉

Iron reducing bacteria (IRB) are thought to accelerate the corrosion of steel by removing the Fe(III)-oxide passivating layer through iron respiration. We investigated the effect of the iron-binding ligands oxalate, malonate, and succinate on the corrosion of carbon steel driven by the IRB Shewanella oneidensis. These dicarboxylates were found to accelerate the corrosion of carbon steel driven by IRB up to 2.6 times more than the abiotic experiment without dicarboxylates. Iron dissolution was enhanced by dicarboxylates, and this influenced the ability of planktonic cells to engage in iron respiration. The strong iron-binding ligands oxalate and malonate supported iron reduction by planktonic cells, whereas in the experiments with succinate or without dicarboxylate, a direct contact mechanism with the solid Fe(III)-oxide was observed. Faster microbial respiration rates were found in experiments with succinate than with oxalate or malonate, suggesting a competition for iron between the microbial cells and the strong iron-binding ligands.

INTRODUCTION

Corrosion of metallic infrastructure facilitated by microorganisms is a costly phenomenon (estimated as 0.68% of the global gross domestic product each year1,2) that affects a wide range of industries, including aviation3, water distribution4, and oil and gas5–7. There is a mounting amount of literature that suggests that carbon steel, the preferred construction material in structural components and pipes across industries8, is highly susceptible to corrosion facilitated by microorganisms9–12.

Some of the organisms frequently linked to corrosion of steel belong to the genus Shewanella13–19. However, no consensus exists on the role of Shewanella spp. on the corrosion of steel. Shewanella oneidensis MR-1 has been previously shown to accelerate the corrosion of carbon steel up to 1.3–1.8 times via the dissolution of the magnetite passivating layer16,17. However, some authors have argued that S. oneidensis MR-1 would decelerate rather than accelerate the corrosion of carbon steel by decreasing the dissolved oxygen in the system18 (through the production of Fe(II) and the ability of Shewanella species to respire oxygen) or by blocking the steel surface with a dense biofilm19. In both cases, the Fe(III) reducing metabolism of Shewanella spp. underlies the involvement of Shewanella spp. on the corrosion of carbon steel.

Iron is the fourth most abundant element in the earth’s crust and occurs in two main redox states in the environment: oxidized ferric iron (Fe(III)) and reduced ferrous iron (Fe(II)). When steel is oxidized, an iron (hydr)oxide passivating layer forms. Fe(III) is poorly soluble at neutral pH and cannot easily enter the cell’s interior, challenging the metabolic utilization of this redox-active substrate. Shewanella spp. have overcome this challenge by exhibiting Fe(III)-reductases on their outer membrane that complex and reduce the bioavailable Fe(III) by direct and indirect contact mechanisms20. Consequently, the rates of microbial iron reduction are dictated by the thermodynamics and kinetics of iron coordination and solubility.

The complexity of the corrosion chemistry further increases when considering threefold interactions between microbes, ligands, and steel surfaces. Therefore, this research aimed to determine the role of short-chain dicarboxylates on the corrosion of carbon steel driven by Shewanella oneidensis MR-1. It was hypothesized that short-chain dicarboxylates would dissolve the iron oxide passivating layer from an oxidized carbon steel surface, increasing the bioavailability of Fe(III) and facilitating the microbial iron reduction in S. oneidensis MR-1. The enhanced dissolution of the iron oxide passivating layer would ultimately render the carbon steel surface susceptible to increased corrosion.
results
Short-chain dicarboxylates solubilize Fe from oxidized steel
The effect of short-chain dicarboxylates (oxalate, malonate, and succinate) on the dissolution of the iron oxide passivating layer of carbon steel was tested by conducting abiotic microcosm experiments with oxidized carbon steel and 50 mM amendments of dicarboxylates under anoxic conditions. Figure 1 shows the concentration of total dissolved iron in abiotic microcosm experiments throughout time. The addition of 50 mM dicarboxylates resulted in the higher dissolution of iron in comparison to the control experiment without dicarboxylate.Dicarboxylates solubilized iron from the oxidized steel coupon following the trend: oxalate > malonate > succinate. This trend correlates well with the stability constant of the most stable species of the corresponding iron-ligand complex (Table 1). The zero-order iron dissolution rates with the different dicarboxylates are shown in Table 2. Up to 2.5 times faster iron dissolution rates were observed when short-chain dicarboxylates were present.

Enhanced Fe dissolution does not trigger faster respiration
It was hypothesized that the high concentrations of total dissolved iron driven by the presence of dicarboxylates would facilitate the microbial iron reduction by Shewanella oneidensis MR-1. Figure 2 shows a timecourse of dissolved iron speciation in microcosm experiments under both biotic and abiotic conditions. In the abiotic experiments, the total dissolved iron is predominantly (>90%) in the form of Fe(III), but in biotic experiments, the dissolved Fe(II) concentration increases throughout time due to microbial iron reduction by S. oneidensis MR-1. Experiments amended with 50 mM oxalate or malonate showed a shorter lag phase for the microbial reduction of Fe(III) (Fig. 2a, b) when compared to the experiments with 50 mM succinate (Fig. 2c) or the control experiment without any dicarboxylate (Fig. 2d). In the biotic experiments with oxalate and malonate, the dissolved Fe(II) concentration increases linearly throughout time after a lag phase of 4 h at a rate of 0.86 μmol h⁻¹ and 1.40 μmol h⁻¹, respectively. These rates are lower than the total iron dissolution rates in the abiotic experiments with oxalate (2.20 μmol h⁻¹) and malonate (2.05 μmol h⁻¹; Fig. 1). In the biotic experiments with succinate and without any ligand, the dissolved Fe(II) concentration increases after a lag phase of 15 h at a rate of 1.85 μmol h⁻¹ and 1.78 μmol h⁻¹, respectively. These rates are higher than the total iron dissolution rates in the abiotic experiments with succinate (1.73 μmol h⁻¹) and without any dicarboxylate (0.90 μmol h⁻¹; Fig. 1).

The iron speciation follows a similar trend in experiments with oxalate or malonate, and this is distinct from the trends exhibited in experiments with succinate and without any dicarboxylate. In experiments with oxalate and malonate, the total dissolved iron concentration is the same irrespective of the presence of bacteria (Fig. 2a, b), whereas, in the experiments with succinate, the total dissolved iron concentration after 15 h in abiotic experiments is higher than in the biotic experiments (Fig. 2c). When no dicarboxylate is present, the total dissolved iron concentration after 15 h is slightly higher in biotic experiments than in abiotic ones (Fig. 2d).

Dicarboxylates distinctly change the surface of carbon steel
The surface of the oxidized carbon steel coupon from biotic experiments was examined under the scanning electron microscope (SEM) after 26 h of experimentation. Figure 3 shows the micrographs. The surface of the coupons from experiments with oxalate and malonate (Fig. 3a, b) looks smoother than the surface of the coupons from experiments with succinate and without ligand (Fig. 3c, d). Flakes of iron oxide, as determined by SEM-EDS (Fig. 3e, f), are readily visible on the surface of the coupon treated with succinate and the coupon from the control experiment (without any dicarboxylate). Higher density of sessile cells is observed on the surface of coupons with succinate (Fig. 3c; 1.91 × 10⁶ cells/cm²) and without ligand (Fig. 3d; 1.56 × 10⁶ cells/cm²) than on coupons from experiments with oxalate (Fig. 3a; 7.69 × 10⁵ cells/cm²) and succinate (Fig. 3b; 7.51 × 10⁵ cells/cm²). A crystalline precipitate was evidenced on the surface of the carbon steel coupon from the experiment with oxalate. This precipitate was identified as likely ferrous oxalate (Humboldtine) by X-ray diffraction (Fig. 4).

Table 1. Stability constants of ferric iron-ligand (Fe-L) complexes.

Ligand	Most stable species	Logβ_{ab}
Oxalate	FeL₃⁺⁺ (a=1; b=3)	18.6⁺⁺
Malonate	FeL₃⁺⁺ (a=1; b=3)	16.6⁺⁺
Succinate	FeL⁻ (a=1; b=2)	13.3⁺⁺
Lactate	FeL (a=1; b=1)	6.4

Table 2. Zero-order Fe dissolution rates in experiments with oxidized carbon steel and dicarboxylates.

Dicarboxylate	Fe dissolution rate (mol h⁻¹ m⁻²)	95% CI	R²
50 mM oxalate	0.0128 ±0.0022	0.9785	
50 mM malonate	0.0119	±0.0017	0.9840
50 mM succinate	0.0100	±0.0019	0.9726
No ligand	0.0052 ±0.0014	0.9518	

C/ confidence intervals (CI) at 95%, R² Linear coefficients of determination.
DISCUSSION

Short-chain dicarboxylic acids are effective iron-binding ligands that play a key role in mobilizing iron in the environment by dissolving ferric iron from naturally occurring iron oxy-hydroxides. At neutral pH, the short-chain dicarboxylic acids oxalic, malonic acid, and succinic, occur at the deprotonated state, which forms strong soluble complexes with Fe(III) (Table 1). Because the low solubility of Fe(III) at circumneutral pH imposes significant challenges to the microbial iron respiratory metabolism, it was hypothesized that the addition of dicarboxylates would result in the dissolution of the iron oxide passivating layer of carbon steel, facilitating the microbial Fe(III) reduction to Fe(II) and rendering the steel surface susceptible to enhanced corrosion.

Figure 1 shows that the addition of short-chain dicarboxylates results in higher dissolution of iron from oxidized steel when compared to the control experiment without any dicarboxylate (Fig. 1). The iron dissolution rates of the abiotic experiments amended with the 50 mM short-chain dicarboxylates (Table 2) follow the trend: oxalate > malonate > succinate > no dicarboxylate. The strong correlation (Pearson correlation coefficient, r = 0.997) of the ligand-promoted dissolution rates with the stability constant of the most stable species of the corresponding iron-ligand complex (Table 1) suggests that the formation of a thermodynamically stable product drives, at least in part, the ligand-promoted dissolution of Fe(III) from the iron oxide passivating layer of carbon steel.

Mechanistically, the ligand-promoted dissolution of iron oxides is proposed to start with an adsorption step of the dicarboxylate to the iron oxide surface, followed by the formation of a coordination complex with the iron atom on the surface that breaks the Fe-O bonds of the crystal lattice, facilitating the detachment of the iron-ligand complex and resulting in the solubilization of iron. Furrer and Stumm proposed that the detachment step is the rate-determining step of the mechanism and that five-membered chelate rings are the most readily detachable groups, followed by six- and seven-membered rings.

This explains the higher dissolution rate of iron by oxalate (five-membered chelate ring), followed by malonate (six-membered chelate ring), and succinate (seven-membered chelate ring).

In the abiotic experiments, the total dissolved iron was predominantly in the redox state Fe(III) (Fig. 2). Although it is likely that the oxide layer on the carbon steel is comprised of mixed-valence iron oxides, the stability constants of the Fe(II)-dicarboxylate complexes are at least 10 orders of magnitude lower than those of the Fe(III)-dicarboxylate complexes, explaining why the Fe(III) is preferentially dissolved over Fe(II). Despite the reports of many organic acids being capable of reducing Fe(III) to Fe(II), no significant iron reduction to Fe(II) was observed in our abiotic experiments. This is in agreement with the need for such reductions to be activated by the presence of oxygen or light.

Since our microcosm experiments were carried under anoxic and dark conditions, the ligand-facilitated photochemical iron reduction was not activated.

In the biotic experiments, the concentration of dissolved Fe(II) increased after a lag phase as the result of microbial iron reduction.
by *S. oneidensis* MR-1. The shorter lag phase in experiments amended with 50 mM oxalate or 50 mM malonate (Fig. 2) seems to be driven by the increased availability of Fe(III) in solution, which would support microbial iron reduction by planktonic cells. Conversely, in the experiments amended with 50 mM succinate or not amended with any dicarboxylate, the dissolved Fe(III) concentration is hypothesized to be too low to support microbial iron reduction by planktonic cells in the first 15 h of experimentation. Most likely, the microbial iron reduction in the latter cases is initiated once the cells reach the surface of the iron oxide layer and establish a biofilm. This is in agreement with the higher cell density observed on the surface of the steel coupons coming from the experiments with 50 mM succinate (1.91×10^6 cells/cm2) or without dicarboxylate (1.56×10^6 cells/cm2) in comparison to the coupons from the experiments with 50 mM oxalate (7.69×10^5 cells/cm2) or malonate (7.51×10^5 cells/cm2) as well as with the low availability of the iron oxide layer on the coupons exposed to the strong iron-binding ligands oxalate and malonate (Fig. 3). Because these were resting cell experiments that were originally ammended with the same number of cells, the observed difference in cell density on the steel surface represents a difference in the microbial distribution between planktonic and surface-attached states.

![Fig. 3 SEM micrographs of the surface of oxidized carbon steel coupons after 26 h of experimentation with *S. oneidensis* MR-1 and dicarboxylates.](image)

![Fig. 4 X-ray diffractogram of the surface of the coupon from the biotic experiment with oxalate. X-ray diffractogram of the surface of the coupon is indicated by the red top line. The X-ray diffractograms of humboldtite (Fe$_2$C$_2$O$_4$·2H$_2$O) (black middle line) and C1018 steel (yellow bottom line) are provided for reference.](image)

![Fig. 5 Total (dissolved and solid phase) iron at the end of experiments with oxidized carbon steel and 50 mM dicarboxylates. Experiments were carried out under anoxic and dark conditions, at circumneutral pH, and 30 °C.](image)
The distinct mechanisms for microbial iron reduction when different dicarboxylates are present are also evidenced by the differences in iron reduction rates and how they compare to the ligand-promoted iron dissolution rates. In the case of the experiments with oxalate and malonate, the ligand-promoted iron dissolution rates are faster than the microbial iron reduction rates, suggesting that the microbial iron reduction is not limited by the availability of Fe(III) in solution. Furthermore, the difference in iron reduction rates in experiments with oxalate (0.86 μmol h$^{-1}$) in comparison to the experiments with malonate (1.40 μmol h$^{-1}$) suggests a distinct nature of the substrate being reduced (Fe(III)-oxalate$^{3-}$ vs Fe(III)-malonate$^{2-}$). In the experiments with 50 mM succinate or without any dicarboxylate, once the microbial iron reduction starts, the reduction rates are not only faster than the corresponding iron dissolution rates, but they are similar (~1.80 μmol h$^{-1}$) for the two treatments despite the big difference in the dissolution rates (1.73 vs 0.90 μmol h$^{-1}$). This suggests that a similar iron reduction mechanism is used by cells exposed to succinate and the treatment without dicarboxylate, and that this mechanism is independent of the ligand-promoted iron dissolution dynamics. The iron reduction rate for the experiments with succinate and without dicarboxylate is half of the reported reduction rate of Fe(III) (hydr)oxide by *S. oneidensis* MR-1 through a direct contact mechanism20. However, the same authors reported a 46% reduction in the iron reduction rate when chloramphenicol was present due to the impeded synthesis of new proteins. Since our experiments had chloramphenicol, the iron reduction rates observed in our experiments without any dicarboxylate and with succinate support the proposed biofilm-mediated reduction process for experiments with weak iron-binding ligands.

Interestingly, cells exposed to 50 mM oxalate did not yield the highest microbial iron reduction (highest dissolved Fe(II) concentrations) despite oxalate being the ligand that promoted the dissolution of Fe(III) to the greatest extent. It is hypothesized that the Fe(III)-oxalate complex is so strong that oxalate acts as a competitor for Fe(III) relative to the *S. oneidensis* outer membrane cytochromes responsible for binding and reducing Fe(III). A similar equilibrium competition for Fe(III) between strong Fe(III)-chelating agents and the Fe(III)-sorbing functional groups on *Shewanella putrefaciens* cell surface was reported by Haas and Dichristina26. Similarly, Taillefert et al. proposed that *S. putrefaciens* produce Fe(III)-ligands that help solubilize Fe(III) oxides, and therefore a competition equilibrium could be established with exogenous ligands that strongly bind iron37. An alternative and perhaps complementary hypothesis is that formation of the low solubility ($K_{sp} = 3.2 \times 10^{-7}$ M3)38 product ferrous oxalate occurs when oxalate is present and Fe(III) is reduced to Fe(II). This product was shown to form and adsorb to the carbon steel surface (Figs. 3a and 4), lowering the Fe(II) concentration in solution, and possibly blocking at some extent the further dissolution of Fe(III). The total dissolved iron concentration is the same irrespective of the presence of bacteria when oxalate and malonate are present. However, when succinate is present, the total dissolved iron concentration in the abiotic treatment is higher than in the biotic one. This is explained by the fast iron dissolution driven by oxalate and malonate, which could result in a quick replenishment of the dissolved Fe(III) consumed by microbial iron reduction. Since the succinate-facilitated iron dissolution rate is slower than that for oxalate and malonate and a greater biofilm coverage is evidenced on the surface of coupons exposed to succinate, it is reasonable that the replenishment of the consumed dissolved Fe(III) does not occur as readily as when oxalate or malonate are present, resulting in a lower total dissolved iron concentration in the experiments with bacteria when compared to the abiotic counterpart.

To determine the combined effect of the iron-binding dicarboxylates and *S. oneidensis* MR-1 on the corrosion of carbon steel, the total iron at the end of the microcosm experiments was quantified after removing the corrosion products from the carbon steel surface and collecting them in the acidified aqueous phase. The total iron concentration is higher in biotic experiments with ligands, showing that the ligands accelerate the microbiologically influenced corrosion up to 2.6 times compared to the experiments without dicarboxylates. The highest corrosion, as measured by the total iron concentration, was observed in the biotic experiments with malonate, followed by oxalate, and succinate. In the control experiment without dicarboxylate, *S. oneidensis* MR-1 accelerated the corrosion 1.2 times relative to the abiotic counterpart. This is in agreement with the corrosion acceleration rates reported by Schütz16. The mere presence of dicarboxylates accelerated the corrosion of carbon steel 1.3 times compared to the experiment without dicarboxylates, showing that individually, ligand-promoted dissolution or microbial iron reduction of the iron oxide passivating layer have a mild impact on the corrosion of carbon steel under dark and anoxic conditions. However, when both iron-binding ligands and microbes with iron-reducing capabilities are present together, the corrosion of carbon steel is significantly exacerbated.

In conclusion, we demonstrated that the ligand-facilitated iron dissolution dynamics impacts the microbial iron reduction and intensifies its effect on the corrosion of carbon steel under anoxic conditions. When weak iron-binding ligands such as succinate are present, the microbial iron reduction is mainly driven by cells in close contact with the steel surface, whereas when strong iron-binding ligands are present, planktonic cells appear to be the main responsible for the reduction of Fe(III). We hypothesize that the difference in cell lifestyle is driven by the sustained availability of dissolved Fe(III) when strong iron-binding ligands are present. The readily available dissolved Fe(III) could help maintain the cells metabolically active through sustained respiration, whereas when dissolved Fe(III) is not readily available or quickly replenished after microbial reduction, the cells would face energetic limitations that trigger biofilm formation. Future research will need to address this hypothesis.

METHODS

Chemicals

Sodium oxalate (CAS number: 62-76-0) ACS reagent ≥99.5%, sodium malonate dibasic (CAS number: 141-95-7) ≥97.0%, sodium succinate dibasic (CAS number: 150-90-3) ≥98.0%, and ferric citrate (CAS number: 3522-50-7) were purchased from Sigma Aldrich.

Bacterial conditions

Shewanella oneidensis MR-1 was grown in a modified minimal medium (20 mM PIPES buffer pH 7.0, 28 mM NH$_4$Cl, 1.34 mM KCl, 4.35 mM NaH$_2$PO$_4$, 1.0 mM MgCl$_2$·6H$_2$O, 1.0 mM CaCl$_2$·2H$_2$O, 0.02% w/v tryptone, 1X trace minerals solution, and 1X vitamins solution) adjusted to pH 7.0 with NaOH and supplemented with 60 mM sodium lactate. The 100X trace mineral solution contained (per liter): Nitriotriacetic acid (12.80 g), FeCl$_3$·4H$_2$O (1.0 g), MnCl$_2$·4H$_2$O (0.50 g), CoCl$_2$·6H$_2$O (0.35 g), ZnCl$_2$ (0.20 g), Na$_2$MoO$_4$·2H$_2$O (0.044 g), H$_2$BO$_3$ (0.02 g), NiSO$_4$·6H$_2$O (0.10 g), CuCl$_2$·2H$_2$O (0.002 g), Na$_2$SeO$_3$ (0.006 g), and Na$_2$WO$_4$·2H$_2$O (0.008 g)39. The 1000X vitamin solution contained (per liter): biotin (0.02 g), folic acid (0.02 g), pyridoxine HCl (0.10 g), thiamine HCl (0.05 g), riboflavin (0.05 g), nicotinic acid (0.05 g), DL-pantothenic acid (0.05 g), p-amino benzoic acid (0.05 g), lipic acid (0.05 g), choline chloride (2.00 g), and Vitamin B12 (0.01 g)40. Oxygen was removed from the medium by boiling for 1 min and bubbling oxygen-free N$_2$ gas for 20 min before capping with stoppers and autoclaving at 121 °C for 15 min. After autoclaving, filter-sterilized Fe(III)-citrate was added to the medium at a final concentration of 50 mM. Cultures were incubated overnight at 30 °C and 120 rpm. A liquid inoculum from an anaerobic overnight culture was transferred (1% vol/vol) into 10 mL of fresh modified anaerobic minimal medium supplemented with 60 mM lactate and 50 mM Fe(III)-citrate and incubated at 30 °C and at 120 rpm for 8 h. These cultures were harvested by centrifugation at 1,500 RCF for 10 min under anaerobic conditions and washed and resuspended.
of the ethanolic solutions for 10 min. Coupons were allowed to dry inside an anaerobic glove box and stored under N₂ atmosphere in crimp-sealed vials until examination with the Zeiss NEON 40 EsB scanning electron microscope at a 5 kV accelerating voltage. SEM micrographs were analyzed with ImageJ and cells on the surface of the steel coupon were counted using the Cell Counter plugin.

X-ray Diffraction

Powder X-ray diffraction (XRD) analyses were performed using a Rigaku Ultima IV diffractometer. Cu-Kα radiation (40 kV, 44 mA) was used with a scintillation detector and a curved graphite monochromator. The MDI Jade 2010 software with the ICCD (International Centre for Diffraction Data) PDF4 + database was used for the data analysis.

DATA AVAILABILITY

The authors declare that all data generated or analyzed during this study are included within the paper.

Received: 22 July 2021; Accepted: 7 January 2022; Published online: 03 February 2022

REFERENCES

1. National Association of Corrosion Engineers. National Measures Of Prevention, Application, And Economics Of Corrosion Technologies Study (2016).
2. Little, B. J. et al. Microbially influenced corrosion—any progress? Corros. Sci. 170, 108641 (2020).
3. Naval Research Lab Stennis Space Center MS Oceanography. An Overview Of Microbiologically Influenced Corrosion In Aircraft (1997).
4. Zhang, G. et al. The bacterial community significantly promotes cast iron corrosion in reclaimed wastewater distribution systems. Microbene 6, 222 (2018).
5. Mori, K. Tsurumaru, H. & Harayama, S. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J. Bactiol. Bioeng. 110, 426–430 (2010).
6. Shack, T. L., Eckert, R. B. & Rodrigues, E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study. J. Biotechnol. 256, 31–45 (2017).
7. Eckert, R. B. & Skovhus, T. L. Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion. Int. Biodeterior. Biodegrad. 200, 167–176 (2012).
8. Dvirvedi, D., Lepková, K. & Becker, T. Carbon steel corrosion: a review of key factors and recent approaches to their mitigation. Corros. Sci. 161, 450–4610 (2017).
9. Schutz, M. K. et al. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity. Bioelectrochemistry 97, 61–68 (2014).
10. Javed, M. A., Neil, W. C., Stoddart, P. R. & Wade, S. A. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion. Biofouling 32, 109–122 (2016).
11. Jia, R., Yang, D., Xu, J., Xu, D. & Gu, T. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros. Sci. 127, 1–9 (2017).
12. Jia, R. et al. Effects of biogenic H₂S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corros. Sci. 130, 1–11 (2018).
13. Semple, K. M. & Westlake, D. W. S. Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can J. Microbiol. 33, 366–371 (1987).
14. Venkateswaran, K. et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 49, 705–724 (1999).
15. Miller, R. B., Lawson, K., Sadek, A., Monty, C. N. & Senko, J. M. Uniform and pitting corrosion of carbon steel by Shewanella oneidensis MR-1 under nitrate-reducing conditions. Appl. Environ. Microb. 84, e00790–18 (2018).
16. Schütz, M. K., Schlegel, M. L., Libert, M. & Bildstein, O. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions. Environ. Sci. Technol. 49, 7483–7490 (2015).
17. Ernault, L., Julien, M., Mustin, C., Bildstein, O. & Libert, M. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: implication on long-term stability of protective layers. Phys. Chem. Earth 36, 1624–1629 (2011).
18. Dubiel, M., Hsu, C. H., Chien, C. C., Mansfeld, F. & Newman, D. K. Microbial iron respiration can protect steel from corrosion. Appl. Environ. Microb. 68, 1440–1445 (2002).

Scanning electron microscopy

Coup….
19. Miller, R. B. et al. Use of an electrochemical split cell technique to evaluate the influence of Shewanella oneidensis activities on corrosion of carbon steel. PloS ONE 11, e0147899 (2016).
20. Lies, D. P. et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71, 4414–4426 (2005).
21. Miller, W. L., Zelazny, L. W. & Martens, D. C. Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma 37, 1–13 (1986).
22. Reichard, P. U., Kretzschmar, R. & Kraemer, S. M. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim. Cosmochim. Acta 71, 5635–5650 (2007).
23. Wang, Z., Fu, H., Zhang, L., Song, W. & Chen, J. Ligand-promoted photoreductive dissolution of goethite by atmospheric low-molecular dicarboxylic acids. J. Phys. Chem. A 121, 1647–1656 (2017).
24. Li, F., Koopal, L. & Tan, W. Roles of different types of oxalate surface complexes in dissolution process of ferrhydrite aggregates. Sci. Rep. 8, 2060 (2018).
25. Tapparo, A. et al. Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley. Chemosphere 241, 125035 (2020).
26. Brown, H. C., McDaniel, D. H. & Häfliger, O. Determination of Organic Structures by Physical Methods (eds Braude, E. A. & Nachod, F. C.) 1, 624 (Academic Press, 1955).
27. Saltykov, S. N., Makarov, G. V. & Toroptseva, E. L. A mechanism of the anodic dissolution of Armco iron and high-strength ferritic cast iron in an oxalate medium. Prot. Met. 37, 186–191 (2001).
28. Giacomelli, C., Giacomelli, F. C., Baptista, J. A. A. & Spinelli, A. The effect of oxalic acid on the corrosion of carbon steel. Anti-Corros. Methods Mater. 51, 105–111 (2004).
29. Rammelt, U., Koehler, S. & Reinhard, G. Electrochemical characterisation of the ability of dicarboxylic acid salts to the corrosion inhibition of mild steel in aqueous solutions. Corros. Sci. 53, 3515–3520 (2011).
30. Godinez-Alvarez, J. M., Mora-Mendoza, J. L., Rodriguez-Betancourt, E., Zavala-Olivares, G. & Gonzalez-Nunez, M. A. Inhibition of ferrous metal corrosion by carboxylates. NACE Corrosion. 04412 (2004).
31. Saltykov, S. N., Makarov, G. V., Toroptseva, E. L. & Filatova, Y. B. Anodic behavior of white iron phases in oxalic media. Prot. Met. 40, 62–67 (2004).
32. Deyab, M. A. & El-Rehim, S. A. Effect of succinic acid on carbon steel corrosion in produced water of crude oil. J. Taiwan Inst. Chem. Eng. 45, 1065–1072 (2014).
33. Furrer, G. & Stumm, W. The coordination chemistry of weathering: dissolution kinetics of δ-Al₂O₃ and BeO. Geochim. Cosmochim. Acta 50, 1847–1860 (1986).
34. El Mendily, Y., Abdelouas, A. & Bardeau, J. F. Insight into the mechanism of carbon steel corrosion under aerobic and anaerobic conditions. Phys. Chem. Chem. Phys. 15, 9197–9204 (2013).
35. Smith, R. M. & Martell, A. E. Critical Stability Constants. Vol. 6, p. 299–359 (Springer, 1989).
36. Haas, J. R. & Dichristina, T. J. Effects of Fe(III) chemical spectration on dissilication of Fe(III) reduction by Shewanella putrefaciens. Environ. Sci. Technol. 36, 373–380 (2002).
37. Taillefert, M. et al. Shewanella putrefaciens produces an Fe(II)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J. Inorg. Biochem. 101, 1760–1767 (2007).
38. Liu, F., Peng, C., Wilson, B. P. & Lundström, M. Oxalic acid recovery from high iron oxalate waste solution by a combination of ultrasound-assisted conversion and cooling crystallization. ACS Sustain. Chem. Eng. 7, 17372–17378 (2019).
39. Tang, Y. J., Meadows, A. L. & Keasling, J. D. A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Bio-technol. Bioeng. 96, 125–133 (2007).
40. Liang, R. & Sulfita, J. M. Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T., Timmis, K. & Nogales, B.J) p. 211–226 (Springer, 2015).
41. Stokey, L. L. Ferrozine-a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
42. Smith, R. M. & Martell, A. E. Critical Stability Constants. Vol. 6, p. 299–359 (Springer, 1989).

ACKNOWLEDGEMENTS
This study was partially supported by a grant (Award N000141010946) from the Office of Naval Research. A.H.S. was supported by the 2019–2020 American Association of University Women International Fellowship. We acknowledge the contribution with XRD analyses from the Powder XRD laboratory in the School of Geology and Geophysics at the University of Oklahoma.

AUTHOR CONTRIBUTIONS
A.H.S. led the writing of this manuscript, performed microcosm corrosion experiments, ICP-MS and SEM analysis, and contributed to the interpretation of the XRD diffractogram. This work is linked to H.N.K.’s master’s thesis. H.N.K. performed initial experiments. M.A.N contributed to the initial concept and research question, experimental design, the overall data interpretation, and the writing of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Mark A. Nanny.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022.