Supplementary Information:

Article Title: Impact of Phospholipase C β1 in Glioblastoma: a study on the main mechanisms of tumor aggressiveness

Journal Name: Cellular and Molecular Life Sciences (CMLS)

Authors: Stefano Ratti, Maria Vittoria Marvi, Sara Mongiorgi, Eric Owusu Obeng, Isabella Rusciano, Giulia Ramazzotti, Luca Morandi, Sofia Asioli, Matteo Zoli, Diego Mazzatenta, Pann-Ghill Suh, Lucia Manzoli, Lucio Cocco.

Corresponding author:

Lucio Cocco: lucio.cocco@unibo.it

Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna 40126, Italy.
Supplementary Tables:

MGMT	IDH1	EGFR	IDH2	H3F3A	TERT	Date of Birth	Age at diagnosis	Gender
Patient 1	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:29%)	01/01/23	68 F
Patient 2	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	01/01/23	68 M
Patient 3	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:31%)	25/01/23	66 M
Patient 4	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:28%)	25/01/23	69 M
Patient 5	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	25/01/23	66 M
Patient 6	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	25/01/23	66 M
Patient 7	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	25/01/23	66 M
Patient 8	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:49%)	25/01/23	66 M
Patient 9	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:49%)	25/01/23	66 M
Patient 10	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 11	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 12	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 13	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 14	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 15	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 16	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 17	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 18	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 19	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 20	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 21	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 22	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 23	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 24	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 25	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 26	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 27	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 28	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 29	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 30	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 31	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 32	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 33	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 34	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 35	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 36	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 37	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 38	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 39	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 40	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 41	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 42	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 43	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 44	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 45	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 46	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 47	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 48	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 49	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M
Patient 50	UMT	WT	WT	WT	WT	g.1,295,113 G>A (VAF:35%)	07/01/23	72 M

Supplementary Table 1: Data and Molecular characterization of samples from 50 Glioblastoma patients

Among the 50 glioblastoma samples, only six were detected mutant for isocitrate dehydrogenase 1 (IDH1), p.R132H and none for isocitrate dehydrogenase 2 (IDH2) and histone H3-3A. These IDH1-mutated samples will be classified as Adult-type diffuse astrocytoma, IDH mutant, grade 4 considering the recent tumor classification update(1). The Telomerase Reverse Transcriptase (TERT) promoter was found to be mutated in 32 cases (29 for g.1,295,113 G>A and 3 for g.1,295,135 G>A). O-6-Methylguanine-DNA Methyltransferase (MGMT) was detected hypermethylated in 23 cases.
Supplementary Figures:

Supplementary Fig. 1: Quantitative analysis of PLCβ1 protein expression

Panels **a**, **b** and **c**: Quantitative analysis of PLCβ1 protein expression in U87-MG (**a**), U-251 MG (**b**) and HA (**c**). PLCβ1-silenced cells (shPLCβ1) were compared to wild type (WT) and mock-transduced (shCTRL) cells. WT cells were used as reference samples. Columns show the mean ± SD of three independent experiments with *p < 0.05, **p < 0.01 and ***p < 0.001.
Supplementary Fig. 2: Quantitative analysis of Mesenchymal markers and MMPs protein expression

Panels a, b and c: Quantitative analysis of Slug and N-Cadherin protein expression in U87-MG (a), U-251 MG (b) and HA (c). PLCβ1-silenced cells (shPLCβ1) were compared to wild type (WT) and mock-transduced (shCTRL) cells. WT cells were used as reference samples. Columns show the mean ± SD of three independent experiments with *p < 0.05, **p < 0.01 and ***p < 0.001.

Panels d and e: Quantitative analysis of MMP-2 and MMP-9 protein expression in U87-MG (d) and HA (e). PLCβ1-silenced cells (shPLCβ1) were compared to wild type (WT) and mock-transduced (shCTRL) cells. WT cells were used as reference samples. Columns show the mean ± SD of three independent experiments with *p < 0.05, **p < 0.01 and ***p < 0.001.
Supplementary Fig. 3: Quantitative analysis of the protein expression of the molecules belonging to the main survival pathways

Panels a, b and c: Quantitative analysis of the protein expression of the molecules belonging to the main survival pathways in U87-MG (a), U-251 MG (b) and HA (c). PLCβ1-silenced cells (shPLCβ1) were compared to wild type (WT) and mock-transduced (shCTRL) cells. WT cells were used as reference samples. Columns show the mean ± SD of three independent experiments with *p < 0.05, **p < 0.01 and ***p < 0.001.
Supplementary Fig. 4: Consequences of PLCβ1 modulation on PLCγ1 expression

Panels a, c and e: Western blot analysis of PLCγ1 expression after PLCβ1 silencing on U87-MG (a), U-251 MG (c) and HA primary astrocytes (e). PLCβ1-silenced cells (shPLCβ1) were compared to wild type (WT) and mock-transduced (shCTRL) samples. Densitometric analysis was performed with total protein normalization through the iBright analysis software. Panels b, d and f: PLCγ1 mRNA expression in U87-MG (b), U-251 MG (d) and HA primary astrocytes (f). PLCβ1-silenced cells (shPLCβ1) were compared to wild type (WT) and mock-transduced (shCTRL) samples. GAPDH was used as housekeeping gene and all the analysis derived from three independent experiments.