Lifshitz theory of van der Waals pressure in dissipative media

Yi Zheng and Arvind Narayanaswamy

Department of Mechanical Engineering, Columbia University
New York, NY 10027

We derive a first–principles method of determining the van der Waals or Casimir pressure in a dissipative and dispersive planar multilayered system by calculating the Maxwell stress tensor in a fictitious layer of vacuum, that is eventually made to vanish, introduced in the structure. This is illustrated by calculating the van der Waals pressure in a thin film with dissipative properties embedded between two semi–infinite media.

van der Waals (vdW) forces, resulting from the alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces, play a significant role in the interactions between macroscopic objects at micrometer and nanometer length scales. Hamaker was the first to extend the concept of London–vdW forces between two atoms to forces between macroscopic spheres by pairwise summation of the interaction energy between atoms that constitute the spheres [1]. Lifshitz, in his seminal work [2], outlined a method based on Rytov’s theory of fluctuational electrodynamics [3] for computing the vdW forces between two semi–infinite regions separated by a vacuum gap. It required the calculation of the average value of the Maxwell stress tensor in the vacuum gap. The generalization of Lifshitz’s method to calculating vdW forces between semi–infinite regions separated by dissipative media is not straightforward because of the difficulty in defining an electromagnetic stress tensor in dissipative media [4]. The goal of this paper is to obtain the general theory of vdW pressure in arbitrary planar media with dissipative and dispersive electromagnetic properties without resorting to defining the electromagnetic stress tensor or free energy in any material but vacuum.

An approach proposed by Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP from now on) [5], shrouded in the complicated language of quantum field theory, is the most frequently used generalization of Lifshitz’s method to calculate forces between objects separated by absorbing media. Even though it has been noted that an expression for the electromagnetic stress tensor or free energy in any configuration of dissipative media cannot be expressed in terms of combinations of vdW free energy of smaller units. The vdW free energy per unit area of a planar configuration of N layers (Fig. 1a) sandwiched between two semi–infinite media, medium L to the left and medium R to the right, is represented by $U_{LR}(z_1, \cdots, z_N)$. Each layer is characterized by not only the thickness z_k but also the permittivity, ε_k, and permeability, μ_k (both relative to that of vacuum). We use the aforementioned notation for free energy for its efficiency. If one of the semi–infinite media is vacuum, the subscript V is used instead of L or R. $U_{LR}(z_1, \cdots, z_k)$ can be written as a combination of three terms: (1) the free energy of the first k layers sandwiched by semi–infinite medium L to the left and vacuum to the right of the k^{th} layer, $U_{LV}(z_1, \cdots, z_k)$, (2) the free energy of the remaining $N–k$ layers sandwiched by semi–infinite medium R to the right and vacuum to the left of the $(k+1)^{th}$ layer, $U_{VR}(z_{k+1}, \cdots, z_N)$, and (3) the work above–mentioned form is indeed correct. The methods of DLP and Barash and Ginzburg are justified on the grounds that it is possible to ascribe thermodynamic functions to electromagnetic fields in equilibrium with matter [6] [9].

The relative transparency of the Lifshitz method is obscured by the complexity of Dzyaloshinskii’s formalism or by having to define the free energy of each mode, even though the final result is a simple generalization of the Lifshitz formula. It has been generally regarded that Lifshitz’s method, in which the definition of stress tensor is above reproach, is incapable of handling dissipative media without relying on either of the two generalizations [6]. Using the fluctuation–dissipation theorem and properties of the dyadic Green’s function, we express the components of the Maxwell stress tensor in vacuum in terms of components of the dyadic Green’s function [10]. After a description of a general method to deal with multilayered media, we show, using examples of (1) a thin film bound by vacuum on both sides, (2) a thin film with vacuum on one side and a semi–infinite medium with arbitrary permittivity and permeability on the other, and (3) a thin film bound by semi–infinite media with arbitrary permittivity and permeability, that the expression for vdW pressure coincides with that of DLP.

Let us analyze a general multilayered system, as shown in Fig. 1a, and express the vdW free energy of the system in terms of combinations of vdW free energy of smaller units. The vdW free energy per unit area of a planar configuration of N layers (Fig. 1a) sandwiched between two semi–infinite media, medium L to the left and medium R to the right, is represented by $U_{LR}(z_1, \cdots, z_N)$. Each layer is characterized by not only the thickness z_k but also the permittivity, ε_k, and permeability, μ_k (both relative to that of vacuum). We use the aforementioned notation for free energy for its efficiency. If one of the semi–infinite media is vacuum, the subscript V is used instead of L or R. $U_{LR}(z_1, \cdots, z_k)$ can be written as a combination of three terms: (1) the free energy of the first k layers sandwiched by semi–infinite medium L to the left and vacuum to the right of the k^{th} layer, $U_{LV}(z_1, \cdots, z_k)$, (2) the free energy of the remaining $N–k$ layers sandwiched by semi–infinite medium R to the right and vacuum to the left of the $(k+1)^{th}$ layer, $U_{VR}(z_{k+1}, \cdots, z_N)$, and (3) the work above–mentioned form is indeed correct. The methods of DLP and Barash and Ginzburg are justified on the grounds that it is possible to ascribe thermodynamic functions to electromagnetic fields in equilibrium with matter [6] [9].

The relative transparency of the Lifshitz method is obscured by the complexity of Dzyaloshinskii’s formalism or by having to define the free energy of each mode, even though the final result is a simple generalization of the Lifshitz formula. It has been generally regarded that Lifshitz’s method, in which the definition of stress tensor is above reproach, is incapable of handling dissipative media without relying on either of the two generalizations [6]. Using the fluctuation–dissipation theorem and properties of the dyadic Green’s function, we express the components of the Maxwell stress tensor in vacuum in terms of components of the dyadic Green’s function [10]. After a description of a general method to deal with multilayered media, we show, using examples of (1) a thin film bound by vacuum on both sides, (2) a thin film with vacuum on one side and a semi–infinite medium with arbitrary permittivity and permeability on the other, and (3) a thin film bound by semi–infinite media with arbitrary permittivity and permeability, that the expression for vdW pressure coincides with that of DLP.
done in bringing the two systems from infinite separation to a separation \(\delta \to 0 \). This statement can be written as:

\[
U_{LR}(z_1, \cdots, z_N) = U_{LV}(z_1, \cdots, z_k) + \]

\[
U_{VR}(z_{k+1}, \cdots, z_N) + \lim_{\delta \to 0} \int_\infty^\delta T_{z\bar{z}g}^{avg}(z_{\nu}) \, dz_{\nu},
\]

(1)

where \(T_{z\bar{z}g}^{avg}(z_{\nu}) \equiv T_{z\bar{z}g}^{avg}(z_1, \cdots, z_k, z_{\nu}, z_{k+1}, \cdots, z_N) \) is the vdW pressure in the vacuum region in Fig. 1 against which work needs to be done to create the \(N \) layer system from the two sub-systems. The partial derivative \(\partial U_{LR}(z_1, \cdots, z_N)/\partial z_r = p_{LR}^{(r)}(z_1, \cdots, z_N) \) gives the vdW pressure in the \(r \)th layer of the \(N \) layer system bounded by \(L \) and \(R \). For a thin film bounded by two semi-infinite regions, we drop the superscript \((r) \) and denote the pressure simply as \(p_{LR} \). By differentiating Eq. 1 with respect to \(z_r \), we obtain the following equation for \(p_{LR}^{(r)} \):

\[
\frac{\partial U_{LR}}{\partial z_r}(z_1, \cdots, z_N) = \frac{\partial U_{LV}}{\partial z_r}(z_1, \cdots, z_k) + \]

\[
\frac{\partial U_{VR}}{\partial z_r}(z_{k+1}, \cdots, z_N) + \lim_{\delta \to 0} \int_\infty^\delta \frac{\partial T_{z\bar{z}g}^{avg}}{\partial z_r}(z_{\nu}) \, dz_{\nu},
\]

(2)

One of the first two terms on the rhs of Eq. 2 is zero depending on whether \(1 \leq r \leq k \) or \(k + 1 \leq r \leq N \). Though \(T_{z\bar{z}g}^{avg}(z_{\nu}) \) diverges as \(z_\nu \to 0 \), the quantity \(\partial T_{z\bar{z}g}^{avg}/\partial z_r \) is finite as \(z_\nu \to 0 \) \(\forall 1 \leq r \leq N \), allowing us to define the partial derivative of the last term in Eq. 1 as the integral \[\int T_{z\bar{z}g}^{avg}(z_{\nu}) \, dz_{\nu} \] (see supplemental information for a justification). \(T_{z\bar{z}g}^{avg}(z_{\nu}) \) is obtained simply by determining the \(z \) component of the Maxwell stress tensor in the vacuum region. Using the procedure described above, we can write the vdW free energy of any \(N \) layer medium in terms of \(U_{V}\nu(z_1), U_{V}\nu(z_2), \cdots, \) and \(U_{V}\nu(z_N) \), and contributions from terms of the form \[\int T_{z\bar{z}g}^{avg}(z_{\nu}) \, dz_{\nu} \], all of which involve calculation of Maxwell stress tensor in vacuum alone. \(U_{V}\nu(z) \) is nothing but the vdW free energy to create a thin film of thickness \(z \) in free space.

We rely on Rytov’s theory of fluctuational electrodynamics to determine the value of \(T_{z\bar{z}g}^{avg} \). The cross-spectral correlations of the electric field components can be written as \(\langle E_p(r, \omega) E_q^*(r, \omega) \rangle = (2\omega \mu_0 \Theta/\pi) \text{Im} G_{pq}(r, r) \) (\(p, q = x, y, z \)), where \(\Theta = (\omega \mu_0/2\coth(\omega\mu_0/2k_BT)) \), and \(G_{pq} \) is the pq component of the electric dyadic Green’s function. The spectral correlation is defined such that \(\langle E_p(r, t) E_q^*(r, t) \rangle = \int_0^\infty d\omega \langle E_p(r, \omega) E_q^*(r, \omega) \rangle \). Similarly, the cross-spectral correlations of the magnetic field components are given by \(\langle H_p(r, \omega) H_q^*(r, \omega) \rangle = (2\omega \epsilon_0 \Theta/\pi) \text{Im} G_{pq}^m(r, r) \). The dyadic Green’s functions \(G^e \) and \(G^m \) are electromagnetic duals of each other and are solutions of \(\nabla \times \nabla \times G^e(r, r^*) - k^2 G^e(r, r^*) = i\delta(r - r^*) \), where \(I \) is the identity dyad. \(G^e \) and \(G^m \) are obtained by enforcing the continuity of: (1) \(\mu(r)(\hat{n} \times G^e(r, r^*)) \), (2) \(\hat{n} \times \nabla \times G^e(r, r^*) \), (3) \(\varepsilon(r)(\hat{n} \times G^m(r, r^*)) \), and (4) \(\hat{n} \times \nabla \times G^m(r, r^*) \) on either side of an interface defined by the unit normal vector \(\hat{n} \) at the point \(r \).

The \(zz \) component of the Maxwell stress tensor in vacuum can be expressed in terms of \(G^e \) and \(G^m \) as \(T_{zz} = T_{zz}^e(r, \omega) = (2\omega \Theta/\pi c^2) \text{Im} G^e(r, \omega) \) \(\text{Im} G^m(r, \omega) \), where \(G^e(r, \omega) = G^e_{zz}(r, r) - \frac{1}{2} \text{Tr} G^e(r, r) + G^e_{zz}(r, r) - \frac{1}{2} \text{Tr} G^e(r, r) \). The average value of the \(zz \) component of the Maxwell stress tensor, \(T_{zz}^{avg} \), at any instant of time at position \(r \) in a vacuum layer is given by:

\[
T_{zz}^{avg} = \int_0^\infty \frac{\hbar \omega^2}{\pi c^2} \coth \left(\frac{\hbar \omega}{2k_BT} \right) \text{Im} G^e(r, \omega) \, d\omega
\]

(3)

\(G^e \) and \(G^m \) are analytic in the upper half plane (UHP) by virtue of being response functions. Since \(G(r, \omega) \) is a linear combination of different components of \(G^e \) and \(G^m \), it is also analytic in the UHP. We can therefore use Lifshitz’s technique to replace the integral over \(\omega \) along the real positive frequency axis by a summation over Matsubara frequencies on the imaginary frequency axis in the UHP as:

\[
T_{zz}^{avg} = -\frac{2k_BT}{c^2} \sum_{n=0}^{\infty} \xi_n^2 G(r, \omega) = k_BT \sum_{n=0}^{\infty} K_n \]

(4)

where, \(\xi_n = 2\pi nk_BT/\hbar, \)

\(K_n = -2\xi_n^2 G(r, \omega) / c^2, \)

\(k_0 = -\lim_{\xi \to 0} 2\xi^2 G(r, \omega) / c^2, \)

and \(n = 0, 1, 2, \cdots \). The prime (‘) next to \(\sum \) indicates that the \(n = 0 \) term is given weight 0.5. \(G(r, \omega) \) can be written in terms of the reflection

![FIG. 1: (a) A multilayer system with \(N \) layers between two semi-infinite regions \(L \) and \(R \). (b) Method of splitting \(N \) layer multilayer system into components. The \(z \) axis is perpendicular to the interfaces.](image-url)
coefficients of plane waves that comprise G^e and G^m [12]. We now apply this method to calculating the vdW pressure in a thin film (indicated by m) bounded by two semi–infinite objects, L and R. To do so, we introduce a vacuum layer, shown in Fig. 2, in which the Maxwell stress tensor will be determined.

We start with the assertion that the vdW pressure in any infinite or semi–infinite planar medium is zero. We will show using the following three examples that the proposed method is in agreement with the predictions of DLP theory for the case of a thin film between two semi–infinite objects. K_n, from which T_{zz}^{avg} can be calculated using Eq. 4 for the configuration shown in Fig. 2 is given by:

$$K_n = \frac{1}{\pi} \int_0^\infty \sum_{p=e,h} R_{eL}^{(p)} R_{eR}^{(p)} e^{-2k_{zv}z_m} k_{zv} k_{v} d\rho_k$$ (5)

where $p = e, h$ refer to the transverse electric and transverse magnetic polarizations respectively, and

$$R_{eL}^{(p)} = \frac{R_{eL}^{(p)} + R_{eR}^{(p)} e^{-2k_{zv}z_m}}{1 + R_{eL}^{(p)} R_{eR}^{(p)} e^{-2k_{zv}z_m}}$$ (6a)

$$R_{eR}^{(e)} = \frac{k_{zv} \mu_L - k_{zL} \mu_e}{k_{zv} \mu_L + k_{zL} \mu_e} R_{eL}^{(h)}$$ (6b)

and similarly for reflection coefficients at other interfaces and wavevectors in other layers. All permittivities and permeabilities are evaluated at $\delta = 0, 1, 2, \cdots$. For reflection coefficients, the subscript v will be used to denote an interface with vacuum. Since it is $\frac{\partial}{\partial z_m} \int_0^\infty T_{zz}^{avg}(z_m, z_v) d z_v$ that will eventually be used in calculating vdW pressure, we give below the expression for $\int_0^\infty \frac{\partial K_n}{\partial z_m} d z_v$

$$\int_0^\infty \frac{\partial K_n}{\partial z_m} d z_v = \frac{1}{\pi} \int_0^\infty \sum_{p=e,h} \left(R_{eL}^{(p)} R_{eR}^{(p)} (1 - R_{eL}^{(p)} e^{-2k_{zv}z_m}) R_{eR}^{(p)} R_{eR}^{(p)} e^{-2k_{zv}z_m} (1 + R_{eL}^{(p)} R_{eR}^{(p)} e^{-2k_{zv}z_m}) k_{zv} k_{v} d\rho_k\right)$$ (7)

Example 1: Vacuum–Thin Film–Vacuum – To find the vdW pressure in a thin film of material of thickness z_m, we consider a four layer configuration, as shown in Fig. 2, with L being replaced with material m, and R being vacuum. If the vdW energy for creating a film of thickness z_m is $U_{VV}(z_m)$, the following equation can be written for conservation of energy for moving the thin film from $z_v = \infty$ to $z_o = \delta \to 0$:

$$U_{VV}(z_m) + \lim_{\delta \to 0} \int_0^\delta T_{zz}^{avg} d z_v = U_o,$$ (8)

where, U_o is an arbitrary constant that is the energy per unit area of a semi–infinite medium M adjacent to a semi–infinite region of vacuum. Differentiation Eq. 8 with respect to z_m gives the following equation for vdW pressure:

$$p_{VV}(z_m) + \int_0^\infty \frac{\partial T_{zz}^{avg}}{\partial z_m} d z_v = 0$$ (9)

Using Eq. 4, Eq. 7 and Eq. 9 the vdW pressure in a thin film of medium m bounded by vacuum is given by (see supplemental information for further details):

$$p_{VV}(z_m) = \frac{k_B T}{\pi} \sum_{n=0}^\infty \left(\int_0^\delta \sum_{p=e,h} R_{eL}^{(p)} e^{-2k_{zv}z_m} \right)$$ (10)

$$\times k_{zv} k_{v} d\rho_k$$

where each integral is evaluated at the Matsubara frequency $\xi_n = 2\pi n k_B T / h$.

Example 2: Material–Thin Film–Vacuum – To find $p_{LV}(z_m)$, we consider a four layer configuration, as shown in Fig. 2 with R being vacuum. Equation 11 can be modified for the four layer system to give the following equation for $U_{LV}(z_m)$:

$$U_{LV}(z_m) = U_{VV}(z_m) + \lim_{\delta \to 0} \int_0^\delta T_{zz}^{avg} d z_v,$$ (11)

Differentiating Eq. 11 with respect to z_m, we obtain the following equation for $p_{LV}(z_m)$ in terms of $p_{VV}(z_m)$,
which has been calculated earlier, and \(T_{zz}^{\text{avg}} \):

\[
p_{LV}(z_m) = p_{VV}(z_m) + \int_0^\infty \frac{\partial T_{zz}^{\text{avg}}}{\partial z_m} \, dz_v \tag{12}
\]

Using the expressions for \(p_{VV} \) (Eq. 10) and Eq. 7 we obtain the following equation for \(p_{LV}(z_m) \) (see supplemental information for further details):

\[
p_{LV}(z_m) = \frac{k_BT}{\pi} \times \sum_{n=0}^\infty \sum_{p=e,h} \sum_{p=e,h} \frac{R_{mL}^{(p)} R_{mR}^{(p)} e^{-2k vm z_m}}{1 - R_{mL}^{(p)} R_{mR}^{(p)} e^{-2k vm z_m}} k_z m k_p dk_p \tag{13}
\]

We can obtain the vdW pressure \(p_{VR}(z_m) \) by replacing \(L \) with \(R \) in Eq. 13.

Example 3: Material–Thin Film–Material – The vdW free energy of the system \(L - m - R \) is obtained by adding to the free energy \(U_{VR}(z_m) \) the work done in moving this system from infinite separation to the surface of a semi–infinite region of material \(L \). Written as an equation, we get:

\[
U_{LR}(z_m) = U_{VR}(z_m) + \lim_{\delta \to 0} \int_\infty^\delta T_{zz}^{\text{avg}} \, dz_v, \tag{14}
\]

and \(p_{LR}(z_m) \) is given by (see supplemental information for further details):

\[
p_{LR}(z_m) = p_{VR}(z_m) + \int_\infty^0 \frac{\partial T_{zz}^{\text{avg}}}{\partial z_m} \, dz_v = \frac{k_BT}{\pi} \times \sum_{n=0}^\infty \sum_{p=e,h} \sum_{p=e,h} \frac{R_{mL}^{(p)} R_{mR}^{(p)} e^{-2k vm z_m}}{1 - R_{mL}^{(p)} R_{mR}^{(p)} e^{-2k vm z_m}} k_z m k_p dk_p \tag{15}
\]

It can be seen that Eq. 15 for \(p_{LR}(z_m) \) is a generalization of Eq. 10 and Eq. 13. Further simplification of Eq. 15 as shown in the supplemental information, results in the following expression for \(p_{LR} \):

\[
p_{LR}(z_m) = \frac{k_BT}{\pi c} \sum_{n=0}^\infty \int_\infty^0 \frac{1}{\xi_n^3} \int dq \, q^2 \times \sum_{p=e,h} (R_{mL}^{(p)-1} R_{mR}^{(p)-1} e^{2q \xi_n \sqrt{\xi_n} z_m / c} - 1)^{-1}, \tag{16}
\]

where \(q = k_z m / (\xi_n \sqrt{\xi_n} \sqrt{\xi_n} / c) \). Equation 16 agrees with the expression for vdW pressure in a thin film according to DLP \([3, 13]\). We stress that the method outlined here for calculating vdW pressure is valid irrespective of computation of the electromagnetic stress tensor by a summation along the imaginary frequency axis or along the real frequency axis. The extension to a multilayered medium is simply an exercise in determining the appropriate reflection and transmission coefficients \([12, 14]\).

We have provided here a transparent formalism for calculating vdW or Casimir pressure in dissipative and dispersive media that are constituents of planar multilayer structures without having to define or calculate the stress tensor in such layers. We provide evidence backing the generalization of Lifshitz theory of vdW forces without relying on quantum field theoretic techniques employed by Dzyaloshinskii, Lifshitz, and Pitaevskii. These results offer further proof of the validity of the Minkowski–like stress tensor for calculating vdW forces, at least in planar multilayered media. This formalism can be generalized to obtain the vdW free energy and pressure of systems involving finite sized objects.

The authors would like to acknowledge correspondence and discussions with Prof. Adrian Parsegian, Prof. Rudi Podgornik, and Prof. L. Pitaevskii. It was brought to our attention that Pitaevskii and Lifshitz had started to solve the problem of vdW pressure in dissipative media by the method outlined in this paper but put an end to it on the suggestion of Landau \([15]\).

* Electronic address: arvind.narayanaswamy@columbia.edu

[1] H. C. Hamaker, Physica 4, 1058 (1937).

[2] E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

[3] S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, Bedford, MA, 1959).

[4] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, 1984).

[5] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Sov. Phys. Usp. 10, 165 (1961).

[6] L. Pitaevskii, Adv. Phys. A 73, 47801 (2006).

[7] B. W. Ninham, V. A. Parsegian, and G. H. Weiss, J. Stat. Phys. 2, 323 (1970).

[8] Y. S. Barash and V. L. Ginzburg, Sov. Phys. JETP Lett. 15, 403 (1972).

[9] Y. S. Barash and V. L. Ginzburg, Sov. Phys. Usp. 18, 305 (1975).

[10] A. Narayanaswamy and G. Chen, J. Quant. Spectrosc. Radiat. Transfer 111, 1877 (2010), ISSN 0022-4073.

[11] K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, Phys. Rev. B 68, 245405 (2003).

[12] V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 2005).

[13] D. Gingell and V. Parsegian, J. Colloid Interface Sci. 44, 456 (1973), ISSN 0021-9797.

[14] W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, Piscataway, NJ, 1995).

[15] L. P. Pitaevskii, Casimir Physics, Lecture Notes in Physics (Springer, to be published).