**Abstract**

Ascites is one of the major complications of liver cirrhosis and is associated with a poor prognosis. It is important to distinguish noncirrhotic from cirrhotic causes of ascites to guide therapy in patients with noncirrhotic ascites. Mild to moderate ascites is treated by salt restriction and diuretic therapy. The diuretic of choice is spironolactone. A combination treatment with furosemide might be necessary in patients who do not respond to spironolactone alone. Tense ascites is treated by paracentesis, followed by albumin infusion and diuretic therapy. Treatment options for refractory ascites include repeated paracentesis and transjugular intrahepatic portosystemic shunt placement in patients with a preserved liver function. Potential complications of ascites are spontaneous bacterial peritonitis (SBP) and hepatorenal syndrome (HRS). SBP is diagnosed by an ascitic neutrophil count > 250 cells/mm³ and is treated with antibiotics. Patients who survive a first episode of SBP or with a low protein concentration in the ascitic fluid require an antibiotic prophylaxis. The prognosis of untreated HRS type 1 is grave. Treatment consists of a combination of terlipressin and albumin. Hemodialysis might serve in selected patients as a bridging therapy to liver transplantation. Liver transplantation should be considered in all patients with ascites and liver cirrhosis.

© 2011 Baishideng. All rights reserved.
coagulation parameters are not available [8]. One study which included 1100 large-volume paracenteses did not show hemorrhagic complications despite platelet counts as low as 19 g/L and international normalized ratios as high as 8.7 [9]. The routine prophylactic use of fresh frozen plasma or platelets before paracentesis is therefore not recommended [9].

Asotic fluid analysis should include total protein concentration, a neutrophil count and inoculation of ascitic fluid into blood culture bottles at the bedside. Determination of ascitic protein concentration is necessary to identify patients who are at increased risk for the development of spontaneous bacterial peritonitis (SBP), since a protein concentration below 1.5 g/dL is a risk factor for the development of SBP [10]. Spontaneous bacterial peritonitis is defined as an ascitic neutrophil count of more than 0.25 g/L (see “treatment of SBP”) and inoculation of ascitic fluid in blood culture flasks at the bedside helps to detect bacteria in the ascitic fluid [11]. Additional tests are only necessary in patients in whom other causes of ascites are in the differential diagnosis [10].

In patients in whom a cause of ascites different from liver cirrhosis is suspected, the determination of the serum-ascites-albumin gradient (SAAG) is useful. The SAAG is ≥ 1.1 g/dL in ascites due to portal hypertension with an accuracy of 97% [12].

**MANAGEMENT OF UNCOMPLICATED ASCITES**

Uncomplicated ascites is defined as the absence of complications including refractory ascites, SBP, marked hyponatremia or hepatorenal syndrome (HRS) [10].

There are no defined criteria as to when treatment of ascites should be initiated. Patients with clinically apparent ascites usually do not require a specific therapy. It is recommended that patients with clinically evident and symptomatic ascites should be treated.

In patients with alcoholic liver cirrhosis, the most important measure is alcohol abstinence. In the majority of patients with alcoholic liver disease, alcohol abstinence results in an improvement of liver function and ascites [13]. Also, decompensated cirrhosis due to chronic hepatitis B infection or autoimmune hepatitis often shows a marked improvement in response to antiviral or immunosuppressive treatment, respectively [13].

Patients with uncomplicated mild or moderate ascites do not require hospitalization and can be treated as outpatients. Patients with ascites have a positive sodium balance, i.e. sodium excretion is low relative to sodium intake. Hence, the mainstay of ascites therapy is sodium restriction and diuretic therapy. Sodium intake should be restricted to 5-6 g/d (83-100 mmol/d NaCl) [14-16]. A more stringent restriction is not recommended since this diet is distasteful and may worsen the malnutrition that is often present in patients with liver cirrhosis [17]. A French study showed that a more stringent sodium restriction of 21 mmol/d led to a faster mobilization of ascites in the first 14 d, but revealed no difference after 90 d [17]. Another study found no benefit in patients treated with a strict sodium restriction of 50 mmol/d compared to patients with a moderate sodium restriction of 120 mmol/d [18].

Theoretically, upright posture aggravates sodium retention by an increase of plasma renin activity and has led to the recommendation of bed rest. However, there are no clinical studies that provide evidence that bed rest actually improves ascites [18].

Therapy of ascites that is based solely on sodium restriction is only applicable in patients with a 24 h sodium excretion of more than 80 mmol (90 mmol dietary intake - 10 mmol loss by sweat and feces) since an adequate sodium excretion is the requirement for a negative sodium balance. Patients with a 24 h sodium excretion less than 80 mmol/24 h need diuretic therapy.

Hyponatremia is a common finding in patients with ascites and liver cirrhosis, but a study including 997 patients with liver cirrhosis found severe hyponatremia (≤ 125 mmol/L) in only 6.9% of patients [19]. Another study, including 753 patients evaluated for liver transplantation, found hyponatremia of less than 130 mmol/L in 8% of patients and an increase in the risk of death as sodium decreased to between 135 and 120 mmol/L [20]. Since the total body sodium is not decreased in patients with ascites and hyponatremia (dilution hyponatremia), rapid correction of serum sodium is not indicated but has the risk of severe complications [21]. Fluid restriction is recommended in patients with severe hyponatremia (120-125 mmol/L) but, clinical studies that have evaluated the efficacy of fluid restriction, or the extent of hyponatremia when fluid restriction should be initiated, are lacking.

**MEDICAL THERAPY**

The activation of the renin-aldosterone-angiotensin-system in patients with liver cirrhosis causes hyperaldosteronism and increased reabsorption of sodium along the distal tubule [22]. Therefore, aldosterone antagonists like spironolactone or its active metabolite potassium canrenoate are considered the diuretics of choice [23]. Patients with mild to moderate ascites are treated with a monotherapy of spironolactone. The starting dose is 100-200 mg/d [23]. A monotherapy with a loop diuretic like furosemide is less effective compared to spironolactone and is not recommended [23]. If the response to 200 mg spironolactone within the first two weeks is not sufficient, furosemide with an initial dose of 20-40 mg/d is added. If necessary, the spironolactone dose is increased stepwise up to 400 mg/d and the furosemide dose is increased up to 160 mg/d [22,23,25].

The daily weight loss in patients with or without peripheral edema should not exceed 1000 g or 500 g, respectively [24]. A sufficient diuretic effect is achieved when only small amounts of ascites are left and peripheral edema has completely resolved.

It is generally recommended to apply furosemide orally, since intravenous administration bears the risk of azotemia [27,28]. A combination therapy of spironolactone and
Furosemide shortens the response time to diuretic therapy and minimizes adverse effects such as hyperkalemia. Angeli and co-workers compared the sequential therapy with potassium canrenoate and furosemide with the initial combination therapy of these two drugs. Patients receiving the sequential therapy were treated with an initial dose of 200 mg potassium canrenoate that was increased to 400 mg/d. Non-responders to the initial therapy were treated with 400 mg/d of potassium canrenoate and furosemide at an initial dose of 50 mg/d that was increased to 150 mg/d. Patients receiving the combination therapy were treated with an initial dose of 200 mg/d potassium canrenoate and 50 mg of furosemide that was increased to 400 mg/d and 150 mg/d, respectively. A sufficient treatment response was achieved in both treatment groups. However, there were more adverse effects of diuretic treatment (e.g. hyperkalemia) in the patients receiving the sequential therapy. In contrast to this study, another study found no difference comparing sequential and combination therapy. Possible explanations for these conflicting results are the different patient populations included in the studies. Angeli et al included patients with recidivant ascites and reduction in the glomerular filtration rate whereas in the study of Santos et al, the majority of patients had newly diagnosed ascites.

An established scheme for an initial combination therapy is 100 mg spironolactone and 40 mg furosemide per day given in the morning. If this dosage is not sufficient, a stepwise increase keeping the spironolactone/furosemide ratio (e.g. 200 mg spironolactone/80 mg furosemide) is possible. The combination of spironolactone and furosemide lowers the risk of a spironolactone-induced hyperkalemia.

The combination of sodium restriction, spironolactone and furosemide achieves a sufficient therapy of ascites in patients with liver cirrhosis in 90% of cases. Figure 1 shows an algorithm for the diuretic treatment of patients with uncomplicated ascites.

Several studies have evaluated the newer loop-diuretic torasemide in patients with liver cirrhosis and ascites. Torasemide was shown to be at least as effective and safe as furosemide and is considered an alternative in the treatment of ascites.

Amiloride is an alternative to spironolactone in patients with painful gynecomastia. Amiloride is given in a dose of 10-40 mg/d but is less effective than potassium canrenoate.

Complications of diuretic therapy include hepatic encephalopathy, renal failure, gynecomastia, electrolyte disturbances such as hyponatremia, hypo- or hyperkalemia, as well as muscle cramps. To minimize these complications, it is generally advised to reduce the dosage of diuretic drugs after the mobilization of ascites. Complications of diuretic therapy are most frequent in the first weeks after initiation of therapy.

A common complication of diuretic therapy is hyponatremia. The level of hyponatremia at which diuretic treatment should be stopped is a subject of discussion. It
is generally agreed that diuretics should be paused when the serum sodium is less than 120-125 mmol/L [4].

**THERAPY OF REFRACTORY ASCITES**

Refractory ascites is defined as ascites that does not respond to sodium restriction and high-dose diuretic treatment (400 mg/d spironolactone and 160 mg/d furosemide) or that reoccurs rapidly after therapeutic paracentesis [5]. About 10% of patients with cirrhosis and ascites are considered to have refractory ascites [6]. The median survival of patients with ascites refractory to medical treatment is approximately six months [33-38].

Possible treatment options for refractory ascites include large volume paracentesis (LVP), transjugular intrahepatic portosystemic shunt (TIPS) and liver transplantation.

**Large volume paracentesis**

Large volume paracentesis is the treatment of choice for patients with tense ascites. It is considered a safe procedure [40] and complication rates are not higher than in diagnostic paracentesis [6]. The risk of bleeding is generally low and a relationship between the degree of coagulopathy and the risk of bleeding is not evident [41]. Hence, there are no data that support the prophylactic administration of pooled platelets and/or fresh frozen plasma prior to paracentesis. Nevertheless, in patients with severe coagulopathy, paracentesis should be performed with caution. Paracentesis is performed under sterile conditions. If ultrasound is available, it should be used to localize the best puncture site to minimize the risk of bowel perforation.

The most important complication following LVP is paracentesis-induced circulatory dysfunction (PICD) [41-43]. This is caused by a depletion of the effective central blood volume leading to a further stimulation of vasoconstrictor systems. Post-paracentesis circulatory dysfunction is characterized by a deterioration of renal function that can ultimately culminate in hepatorenal syndrome in up to 20% of patients [42]. A rapid re-accumulation of ascites [44], hyponatraemia, as well as an increase in portal pressure [45], are additional consequences. PICD is associated with an increase in mortality [4].

Paracentesis of not more than 5 L can safely be conducted without post-paracentesis colloid infusions and the risk of PICD [46]. If a paracentesis of more than 5 L is performed, the administration of albumin is advisable [47]. However, it has to be kept in mind that albumin is costly, and that studies that are large enough to demonstrate decreased survival in patients who are given no plasma expander compared to patients given albumin are lacking [41]. There are no studies that have evaluated the appropriate dose of albumin after paracentesis. In the available studies, 5 to 10 g of albumin per litre of removed ascites have been given [4,42,43]. Hence, a dose of 6-8 g albumin per litre of removed ascites seems appropriate [6]. Dextran-70 and polygeline as alternative plasma expanders have been compared to albumin for the prevention of PICD after LVP but have been shown to be less effective [41]. However, a benefit in survival in favor of albumin over dextran-70, polygeline and saline was not shown in three trials [41,49,50]. Albumin should be administered slowly after the completion of paracentesis to reduce the risk of a volume overload.

Large volume paracentesis per se does not positively influence renal sodium and water retention. To prevent the re-accumulation of ascites after LVP, sodium restriction and diuretic treatment are necessary [51].

**TIPS**

TIPS provides a side-to-side porto-caval shunt. It is usually placed under local anesthesia by transhepatic puncture of the (usually) right main branch of the portal vein using an approach from a hepatic vein. After the connection between the hepatic and portal vein is established, the tract is dilated and a stent is placed [52].

Contraindications for TIPS in the therapy of recurrent ascites include advanced liver disease (bilirubin > 5 mg/dL), episodic or persistent hepatic encephalopathy, cardiac or respiratory failure and hepatocellular carcinoma [53-57].

TIPS insertion causes an increase in right atrial and pulmonary artery pressure as well as an increase in cardiac output, a reduction of systemic vascular resistance, a reduction of effective arterial blood volume and, most importantly, a reduction of portal pressure [42,48,67]. Whereas the effect on renal function (increased sodium excretion and increased glomerular filtration rate) persists, the increase in cardiac output tends to return to pre-TIPS levels [39,43,67].

Compared to repeated LVP, TIPS is more effective in the therapy of ascites [35,36,39], but the effect on mortality is less clear. Whereas two studies showed no difference in mortality comparing paracentesis and TIPS [33,57], another two studies revealed decreased mortality in patients receiving TIPS [35,50]. A meta-analysis based on individual patient data from four randomized trials showed that TIPS in patients with refractory ascites improved transplant-free survival [56].

A frequent complication after TIPS insertion is hepatic encephalopathy, which occurs in 30%-50% of patients [35,70], but seems to be less frequent in carefully selected patients with preserved liver function. Other complications are shunt thrombosis and shunt stenosis [57]. Shunt thrombosis and shunt stenosis were shown to be less frequent in polytetrafluoroethylene (e-PTFE) coated stents compared to non-coated stents in one study [52]. A retrospective multicenter study showed that the use of e-PTFE covered stents is associated with a higher 2-year survival compared to non-covered stents [70].

Figure 2 shows an algorithm for the treatment of refractory ascites.

**HEPATORENAL SYNDROME**

The occurrence of renal failure in patients with advanced liver disease in the absence of an identifiable cause of renal failure is defined as hepatorenal syndrome [5]. Therefore, it is essential to rule out other possible causes of renal fail-
March 14, 2011 | Volume 17 | Issue 10 |

Biecker E. Ascites in liver cirrhosis

ure before the diagnosis of hepatorenal syndrome (HRS) is made. In 1994, the International Ascites Club defined criteria for the diagnosis of hepatorenal syndrome[5] that were modified in 2007[79]. The modified criteria include: (1) cirrhotic liver disease with ascites; (2) a serum creatinine > 1.5 mg/dL; (3) no improvement of serum creatinine (decrease to ≤ 1.5 mg/dL) after at least 2 d with diuretic withdrawal and volume expansion with albumin (1 g/kg body weight/d up to 100 g/d); (4) absence of shock; (5) no current or recent treatment with nephrotoxic drugs; and (6) absence of parenchymal kidney disease[74]. According to the progression of renal failure, two types of HRS are defined: type 1 is rapidly progressive with a doubling of the initial serum creatinine to > 2.5 mg/dL or a 50% reduction of the initial 24-h creatinine clearance to < 20 mL/min in less than 2 wk. Patients with HRS type 2 do not have a rapidly progressive course[74].

HRS type 1 often develops in temporal relationship with a precipitating factor like infection (e.g. spontaneous bacterial peritonitis[75-78] or severe alcoholic hepatitis in patients with advanced cirrhosis. The prognosis of all patients with HRS is poor with a median survival of approximately three months[79,80]. The prognosis of patients with untreated HRS type 1 is even worse, with a median survival of only one month[81].

Treatment should be initiated immediately after the diagnosis is made to prevent further deterioration of renal function. Several treatment options of HRS are available: drug therapy, hemodialysis, TIPS and liver transplantation.

Drug therapy of HRS consists of the application of vasopressors in combination with albumin.

One randomized, controlled study compared the effect of noradrenaline as a continuous intravenous infusion in combination with albumin vs terlipressin and albumin in 40 patients with HRS type 1[82]. The study did not reveal a significant difference in short-term survival between the two groups. Two studies demonstrated that treatment with octreotide alone is not successful[83,84] but that a combination with the vasopressor midodrine is required. Two other studies investigated the effect of octreotide and midodrine in combination with albumin[85,86]. One small study compared octreotide 200 μg subcutaneously three times a day, midodrine up to 12.5 mg/d orally and albumin 10-20 g/d with dopamine plus albumin[87]. The results in the octreotide/midodrine group were superior to those in the dopamine group. A larger, retrospective study compared a combination treatment with octreotide/midodrine and albumin with a treatment with albumin only[88]. The mortality rate of the patients treated with the combination of octreotide, midodrine and albumin was lower than the mortality rate of the patients treated with albumin alone (43% vs 71%, respectively). More data are available with regard to the vasoconstrictor terlipressin in the treatment of HRS type 1. Treatment with terlipressin is started with an initial dose of 1 mg 4-6 times a day and is given in combination with albumin (1 g/kg body weight on day 1, followed by 40 g/d)[89]. If a reduction of serum creatinine of at least 25% is not achieved after three days of therapy, the dose is increased to a maximum of 2 mg 4-6 times a day. The treatment is continued until a reduction of serum creatinine below 1.5 mg/dL is achieved. The median response time is around two weeks[90]. Patients with a better liver function and an early increase in arterial pressure after initiation of treatment have a higher probability of treatment response[90]. Treatment with terlipressin is successful in 40%-50% of patients[90,91]. Cardiovascular or ischemic complications are the most important adverse effects of terlipressin treatment[90,91]. A meta-analysis of randomized trials comparing terlipressin and other vasoactive drugs showed an improved short-term survival for the patients treated with terlipressin[90].

Two small studies evaluated the effect of terlipressin in patients with HRS type 2[91,92]. Both studies showed an improvement of renal function with terlipressin treatment[91,92].

TIPS has been shown to improve renal function in HRS type 1 patients in two studies[93,94]. However, the results of these studies might be biased since only patients with a maintained liver function underwent TIPS insertion. In addition, TIPS insertion is beneficial in patients with HRS type 2[93].

Few data are available on the role of hemodialysis in patients with HRS type 1[95,96]. Hemodialysis seems to be effective, but studies comparing hemodialysis with medical treatment or TIPS are lacking. Hence, hemodialysis remains a therapy option in selected patients with electrolyte

---

**Figure 2** Treatment algorithm for the treatment of patients with refractory ascites. TIPS: Transjugular intrahepatic portosystemic shunt.
disturbances, severe acidosis or volume overload and as a bridging therapy in patients awaiting liver transplantation.

The treatment option of choice for patients with HRS type 1 and HRS type 2 is liver transplantation\[96\]. However, the survival rate of 65% is low compared to other cirrhotic patients who have undergone liver transplantation. In addition, the mortality rate on the waiting list for liver transplantation of patients with HRS is higher than for patients with cirrhosis without HRS. Combined liver-kidney transplantation is usually not necessary. Only patients who have been on hemodialysis for more than 12 wk might be considered for combined liver-kidney transplantation as renal function might irreversibly deteriorate in patients with HRS and long-term hemodialysis\[76,100].

### SPONTANEOUS BACTERIAL PERITONITIS

Spontaneous bacterial peritonitis (SBP) is a bacterial infection of the peritoneal cavity in patients with cirrhosis and ascites\[99-101\]. All patients with cirrhosis and ascites are at risk of developing SBP. Symptoms are often unspecific and include signs of peritonitis, clinical and laboratory signs of inflammation, deterioration of liver function, gastrointestinal bleeding and hepatic encephalopathy\[102-104\]. The prevalence in hospitalized patients is approximately 10% and higher than in outpatients (1.5%-3.5%)\[102,103\].

The diagnosis of SBP is based on a positive ascitic fluid bacterial culture and an elevated ascitic fluid neutrophil count in patients without an evident source of infection\[108\]. Ascitic bacterial culture is negative in more than 50% of patients with suspected SBP and an elevated neutrophil count\[99,100,101\]. If bacteria are found in the culture, the most common bacteria include E. coli as well as streptococcus species and enterococci\[99,101,106\].

A neutrophil count of more than 250 cells/mm\(^3\) (0.25 \(\times\) 10\(^7\)/L) is considered diagnostic of SBP\[107\]. An ascitic neutrophil count \(\geq\) 250 cells/mm\(^3\) but with negative cultures is termed as culture-negative neutrocytic ascites. Several studies were undertaken to investigate the use of reagent strips (“dipstick testing”) designed for the use in urine in the diagnosis of SBP. However, a review of studies comparing different types of reagent strips with cytobacteriological methods revealed a high rate of false negative results for the reagent strips\[108\].

Patients with an ascitic fluid neutrophil count \(\geq\) 250 cells/mm\(^3\) and clinical signs of SBP should receive antimicrobial treatment. Also, cirrhotic patients with ascites and signs or symptoms of infection or unexplained clinical deterioration should receive treatment regardless of a neutrophil count below 250 cells/mm\(^3\), since it is known that bactericides (positive ascitic fluid culture with a neutrophil count below 250 cells/mm\(^3\)) might precede the neutrophil response\[109\].

Treatment should be initiated with a broad-spectrum antibiotic as long as results of bacterial culture are not available. The treatment of choice is a third-generation cephalosporin. Most data are available for cefotaxime. Cefotaxime covers 95% of the causative bacteria including the most common isolates E. coli, Klebsiella pneumoniae and pneumococci\[104\]. In addition, it reaches high concentrations in the ascitic fluid\[100,111\]. In most patients, 5 d of treatment is as effective as 10 d of treatment\[112\]. Ceftriaxone was also shown to be effective in the treatment of SBP and is an alternative to cefotaxime\[113\]. Amoxicillin/clavulanic acid, given as a sequential intravenous/oral therapy was shown to be as effective as cefotaxime in a small study\[114\]. Intravenous ciprofloxacin is similarly effective with respect to survival and SBP resolution rate as treatment with cefotaxime, but costs are higher\[115\]. In uncomplicated SBP, oral ofloxacin was shown to be as effective as cefotaxime\[116\]. Since patients who have received quinolone prophylaxis against SBP may have developed a quinolone resistant flora, quinolones should not be used in these patients\[96\].

Failure of the initial antibiotic treatment should be considered in patients in whom the initial neutrophil count does not decrease below 25% of the pre-treatment value after two days of treatment\[117\]. Treatment failure might be due to bacteria resistant to the initial treatment or secondary peritonitis. Under these circumstances, treatment has to be modified according to susceptibility testing (if available) or on an empiric basis.

The addition of intravenous albumin to cefotaxime in the treatment of SBP has been shown to be effective in two studies\[108,110\]. One controlled randomized trial compared patients with SBP receiving cefotaxime alone with patients with cefotaxime plus albumin 1.5 g/kg body weight at diagnosis, followed by 1 g/kg albumin on day 3. The study revealed a decrease in mortality from 29% in the cefotaxime group to 10% in the cefotaxime/albumin group\[76\]. The study by Sigal et al.\[114\] found that combination treatment with albumin is particularly effective in patients with an impaired liver and kidney function (bilirubin > 4 mg/dL and creatinine > 1 mg/dL, respectively) but that combination treatment with albumin is not necessary in patients who do not fulfill these criteria.

In patients who promptly respond to antibiotic treatment, a follow-up paracentesis and ascitic fluid analysis is not necessary\[8\]. In patients who do not respond to treatment or show a delayed response, a follow-up ascitic fluid analysis is mandatory for further evaluation\[109\]. Several subgroups of patients at high risk for the development of SBP have been identified in the past. Risk factors for SBP are ascitic fluid protein concentration < 1.0 g/dL, variceal hemorrhage and a prior episode of SBP\[96\]. Several randomized controlled trials have shown a benefit of prophylactic antibiotic treatment in these patients\[120-123\].

Variceal bleeding is a major risk factor for the development of SBP, especially in patients with advanced cirrhosis and severe bleeding\[120,125,126\]. Antibiotic prophylaxis in patients with variceal hemorrhage has been shown to not only decrease the rate of SBP\[8,101,106\], but also decrease the risk for rebleeding\[119\] and hospital mortality\[128\].

Norfloxacin (400 mg twice daily) for 7 d has been widely used for selective intestinal decontamination in cirrhotic patients with variceal bleeding\[8,101,124\]. In patients with gastrointestinal bleeding and advanced cirrhosis,
intravenous ceftriaxone (1 g/d for 7 d) has been shown to be superior to norfloxacin[21].

Low ascitic fluid protein concentration (< 1.0 g/dL) is a risk factor for the development of SBP[22,13-138] and prophylactic antibiotic treatment is advisable in these patients. Most data are available for prophylaxis of SBP using norfloxacin[23,139-143]. One randomized trial in which patients with low ascitic fluid protein concentration (< 1.0 g/dL) or a bilirubin > 2.5 mg/dL were treated with continuous norfloxacin or inpatient-only norfloxacin showed that the incidence of SBP was lower in the continuous treatment group at the expense of more resistant flora when they did develop infection[143]. These findings were substantiated by another randomized trial comparing daily norfloxacin (400 mg for twelve months) with placebo in patients with low ascitic fluid protein concentration (< 1.5 g/dL) and an impaired liver or kidney function[139]. The patients in the verum group had a lower incidence of SBP and hepatorenal syndrome as well as a survival advantage (after three months but not after one year) compared to the patients receiving placebo[139].

Another randomized, double blind, placebo-controlled trial compared ciprofloxacin 500 mg/d for twelve months with placebo in patients with ascitic fluid protein concentration less than 1.5 g/dL and impaired liver function (Child-Pugh score 8.3 ± 1.3 and 8.5 ± 1.5, in the placebo and ciprofloxacin group, respectively)[142]. The study revealed a trend towards a lower incidence of SBP in the ciprofloxacin group but the result was not significant. Nevertheless, the 1-year survival was higher in the patients in the ciprofloxacin group[142]. This might be attributed to the fact that the probability of remaining free of bacterial infections was higher in the ciprofloxacin group[142]. The overall recurrence rate of SBP in patients surviving the first episode of SBP is approximately 70% in the first year[143] and survival rates are 30%-50% and 25%-30% in the first and second year after SBP, respectively. Norfloxacin is effective in the secondary prophylaxis of SBP. One randomized, double blind, placebo-controlled multicenter study revealed that prophylactic treatment with 400 mg/d norfloxacin reduced the recurrence rate of SBP from 68% to 20%[122]. Another trial compared norfloxacin 400 mg/d with rufloxacin 400 mg/wk and did not find a significant difference in the SBP recurrence rate between the two treatment groups[141]. The effects of trimethoprim-sulfamethoxazole, ciprofloxacin and norfloxacin were assessed in three more studies[124,125,144]. All three studies revealed a reduced occurrence of SBP in the patients receiving prophylactic treatment. However, the significance of the studies in the setting of secondary prophylaxis is limited since the studies included patients with and without prior episodes of SBP. There are no trials available that have studied for how long secondary prophylaxis should be given.

REFERENCES
1. Ginés P, Quintero E, Arroyo V, Terés J, Bruguera M, Rimola A, Caballeria J, Rodés J, Rozman C. Compensated cirrhosis: natural history and prognostic factors. Hepatology 1987; 7: 122-128
2. Planas R, Montoliu S, Ballesté B, Rivera M, Miquel M, Masiou H, Galeras JA, Giménez MD, Santos J, Cirera I, Morillas RM, Coll S, Solà R. Natural history of patients hospitalized for management of cirrhotic ascites. Clin Gastroenterol Hepatol 2006; 4: 1385-1394
3. Arroyo V, Ginés P, Gerbes AL, Dudley FJ, Gentilini P, Laffi G, Reynolds TB, Ring-Larsen H, Schölmerich J. Definition and diagnostic criteria of refractory ascites and hepato renal syndrome in cirrhosis. International Ascites Club. Hepatology 1996; 23: 164-176
4. Runyon BA. Paracentesis of ascitic fluid. A safe procedure. Arch Intern Med 1986; 146: 2259-2261
5. Webster ST, Brown KL, Lucey MR, Nostrant TT. Hemorrhagic complications of large volume abdominal paracentesis. Am J Gastroenterol 1996; 91: 366-368
6. Runyon BA. Management of adult patients with ascites due to cirrhosis: an update. Hepatology 2009; 49: 2087-2107
7. Grabau CM, Crago SF, Hoff JK, Simon JA, Melton CA, Ott BJ, Kamath PS. Performance standards for therapeutic abdominal paracentesis. Hepatology 2004; 40: 484-488
8. Rimola A, García-Tsao G, Navasa M, Piddock LJ, Planas R, Bernard B, Inadomi JM. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. International Ascites Club. J Hepatol 2000; 32: 142-153
9. Runyon BA, Hoels JC, Morgan TR. Ascitic fluid analysis in malignancy-related ascites. Hepatology 1988; 8: 1104-1109
10. Moore KP, Wong F, Ginés P, Bernardi M, Ochs A, Salerno F, Angeli P, Porayko M, Moreau R, García-Tsao G, Jimenez W, Planas R, Arroyo V. The management of ascites in cirrhosis: report on the consensus conference of the International Ascites Club. Hepatology 2003; 38: 258-266
11. Runyon BA, Montano AA, Akriavidis EA, Antillon MR, Irving MA, McHutchison JG. The serum-ascites albumin gradient is superior to the exudate-transudate concept in the differential diagnosis of ascites. Ann Intern Med 1992; 117: 215-220
12. Veldt BJ, Laine F, Guillygomarç’h A, Lauvin L, Boudjema K, Messner M, Brissot P, Deugnier Y, Moirand R. Indication of liver transplantation in severe alcoholic liver cirrhosis: quantitative evaluation and optimal timing. J Hepatol 2002; 36: 93-98
13. Yao FY, Bass NM. Lamivudine treatment in patients with severely decompensated cirrhosis due to replicating hepatitis B infection. J Hepatol 2000; 33: 301-307
14. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206-1252
15. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Rulope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A, Zanchetti A, van Zwieten P, Waeber G, Reynolds TB, Ring-Larsen H, Schölmerich J. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 2006; 43: 484-488
16. Soulsby CT, Madden AM, Morgan MY. The effect of di etary sodium restriction on energy and protein intake in pa-
Biecker E. Ascites in liver cirrhosis
tients with cirrhosis. *Hepatology* 1997; 26 Suppl: 382A: 1013.

17. **Gauthier A**, Levy VG, Quinton A, Michel H, Rueff B, Descos L, Durbec JP, Fermanian J, Lancrenon S. Salt or no salt in the treatment of cirrhotic ascites: a randomized study. *Gut* 1986; 27: 705-709

18. **Bernardi M**, Laffi G, Salvagnini M, Azzena G, Bonato S, Marra F, Trevisani F, Gasbarini G, Naccarato R, Gentilini P. Efficacy and safety of the stepped care medical treatment of ascites in liver cirrhosis: a randomized controlled clinical trial comparing two diets with different sodium content. *Liver* 1993; 13: 156-162

19. **Angeli P**, Wong F, Watson H, Ginès P. Hyponatremia in cirrhosis: Results of a patient population survey. *Hepatology* 2006; 44: 1535-1542

20. **Biggins SW**, Kim WR, Terrault NA, Saab S, Balan V, Schiano T, Benson J, Therneau T, Kremers W, Wiesner R, Kamath P, Klintmalm G. Evidence-based incorporation of serum sodium concentration into MELD. *Gastroenterology* 2006; 130: 1652-1660

21. **Sterns RH**. Severe symptomatic hyponatremia: treatment and outcome. A study of 64 cases. Ann Intern Med 1987; 107: 656-664

22. **Bernardi M**, Servadei D, Trevisani F, Rusticali AG, Gasbarrii G. Importance of plasma aldosterone concentration on the natriuretic effect of spironolactone in patients with liver cirrhosis and ascites. *Digestion* 1985; 31: 189-193

23. **Pérez-Ayuso RM**, Arroyo V, Planas R, Gaya J, Bory F, Rimola A, Rivera F, Rodes J. Randomized comparative study of efficacy of furosemide versus spironolactone in nonazotaemic cirrhosis with ascites. Relationship between the diuretic response and the activity of the renin-aldosterone system. *Gastroenterology* 1983; 84: 961-968

24. **Fogel MR**, Sawhney VK, Neal EA, Miller RG, Knauer CM, Gregory PB. Diuresis in the ascitic patient: a randomized controlled trial of three regimens. *J Clin Gastroenterol* 1981; 3 Suppl 1: 73-80

25. **Gatta A**, Angeli P, Caregaro L, Menon F, Sacerdoti D, Merkel C. A pathophysiological interpretation of unresponsiveness to spironolactone in patients with liver cirrhosis and ascites. *Hepatology* 1991; 14: 231-236

26. **Pockros PJ**, Reynolds TB. Rapid diuresis in patients with ascites from chronic liver disease: the importance of peripheral edema. *Gastroenterology* 1986; 90: 1827-1833

27. **Daskalopoulos G**, Laffi G, Morgan T, Pinzani M, Harley H, Reynolds T, Zipser RD. Immediate effects of furosemide on renal hemodynamics in chronic liver disease with ascites. *Gastroenterology* 1987; 92: 1859-1863

28. **Sawhney VK**, Gregory PB, Sweezy SE, Blaschke TF. Furosemide disposition in cirrhotic patients. *Gastroenterology* 1981; 81: 1012-1016

29. **Stanley MM**, Ochi S, Lee KK, Nemchauksy BA, Greenlee HB, Allen JJ, Allen MJ, Baum RA, Gadacz TR, Camara DS. Peritoneovenous shunting as compared with medical treatment in patients with alcoholic cirrhosis and massive ascites. Veterans Administration Cooperative Study on Treatment of Alcoholic Cirrhosis with Ascites. *N Engl J Med* 1989; 321: 1632-1638

30. **Angeli P**, Fasolato S, Mazza E, Okolicsanyi L, Maresio G, Velo E, Gallotto A, Salinas F, D’Aquino M, Sticca A, Gatta A. Combined versus sequential diuretic treatment of ascites in non-azotaemic patients with cirrhosis: results of an open randomised clinical trial. *Gut* 2010; 59: 98-104

31. **Santos J**, Planas R, Pardo A, Durán R, Cabré E, Morillas RM, Granada ML, Jiménez JA, Quintero E, Gassull MA. Spironolactone alone or in combination with furosemide in the treatment of moderate ascites in nonazotaemic cirrhosis. A randomized comparative study of efficacy and safety. *J Hepatol* 2003; 39: 187-192

32. **Runyon BA**. Care of patients with ascites. *N Engl J Med* 1994; 330: 337-342

33. **Abecasis R**, Guevara M, Miguel C, Cobas S, Terg R. Long-term efficacy of torsemide compared with frusemide in cirrhotic patients with ascites. *Scand J Gastroenterol* 2001; 36: 309-313

34. **Fiaccadori F**, Pedretti G, Pasetti G, Pizzaferrì P, Elia G. Torsemide versus furosemide in cirrhosis: a long-term, double-blind, randomized clinical study. *Clin Invest* 1993; 71: 579-584

35. **Gerbes AL**, Bertheau-Reitha U, Falkner C, Jüngst D, Paumgartner G. Advantages of the new loop diuretic torsemide over furosemide in patients with cirrhosis and ascites. A randomized, double blind cross-over trial. *J Hepatol* 1993; 17: 353-358

36. **Angeli P**, Dalla Pria M, De Bei E, Albino G, Caregaro L, Merkel C, Ceolotto G, Gatta A. Randomized clinical study of the efficacy of amiloride and potassium canrenoate in nonazotaemic cirrhotic patients with ascites. *Hepatology* 1994; 19: 72-79

37. **Guardiola J**, Ballellas C, Xiol X, Fernandez Esparragh G, Giñès F, Ventura P, Vazquez S. External validation of a prognostic model for predicting survival of cirrhotic patients with refractory ascites. *Am J Gastroenterol* 2002; 97: 2574-2578

38. **Moreau R**, Delgue P, Pessione F, Hillaire S, Durand F, Lecure D, Valla DC. Clinical characteristics and outcome of patients with cirrhosis and refractory ascites. *Liver Int* 2004; 24: 457-464

39. **Matsumura K**, Nakase E, Hiyama T, Takeo K, Shimizu K, Yamasaki K, Kohno K. Determination of cardiac ejection fraction and left ventricular volume: contrast-enhanced ultrafast cine MR imaging vs IV digital subtraction ventriculography. *AJR Am J Roentgenol* 1993; 160: 979-985

40. **Pache I**, Bilodeau M. Severe haemorrhage following abdominal paracentesis for ascites in patients with liver disease. *Aliment Pharmacol Ther* 2005; 21: 525-529

41. **Ginés A**, Fernández-Esparragh G, Mencosillo A, Vila C, Domènech E, Abecasis R, Angeli P, Ruiz-Del-Arbol L, Planas R, Solà R, Ginès P, Terg R, Inglaa L, Vaqué P, Salerno F, Vargas V, Clemente G, Quer JC, Jiménez W, Arroyo V, Rodes J. Randomized trial comparing albumin, dextran 70, and polygeline in cirrhotic patients with ascites treated by paracentesis. *Gastroenterology* 1992; 102: 1493-1502

42. **Ginés P**, Tító L, Arroyo V, Planas R, Panés J, Viver J, Torres M, Humbert P, Rimola A, Llach J. Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis. *Gastroenterology* 1988; 94: 1493-1502

43. **Pozzi M**, Oscutali G, Boari G, Serboli P, Colombo P, Lambrugh C, De Ceglia S, Roffii L, Piperno A, Cusa EN. Time course of circulatory and humoral effects of rapid total paracentesis in cirrhotic patients with tense, refractory ascites. *Gastroenterology* 1994; 106: 709-719

44. **Sola R**, Vila MC, Andreu M, Oliver MI, Coll S, Gana J, Ledesma S, Ginès P, Jiménez W, Arroyo V. Total paracentesis with dextran 40 vs diuretics in the treatment of ascites in cirrhosis: a randomized controlled study. *J Hepatol* 1994; 20: 282-288

45. **Ruiz-del-Arbol L**, Mencosillo A, Jiménez W, García-Plaza A, Arroyo V, Rodes J. Paracentesis-induced circulatory dysfunction: mechanism and effect on hepatic hemodynamics in cirrhosis. *Gastroenterology* 1997; 113: 579-586

46. **Peltekian KM**, Wong F, Liu PP, Logan AG, Sherman M, Blendis LM. Cardiovascular, renal, and neurohumoral responses to single large-volume paracentesis in patients with cirrhosis and diuretic-resistant ascites. *Am J Gastroenterol* 1997; 92: 394-399
Garcia-Pagan JC, Bosch J, Arroyo V, Rodés J. Transjugular intrahepatic portosystemic shunt in hepatorenal syndrome: effects on renal function and vasoactive systems. Hepatology 1998; 28: 416-422

Huonker M, Schumacher YO, Ochs A, Sorichter S, Keul J, Rösse M. Cardiac function and haemodynamics in alcoholic cirrhosis and effects of the transjugular intrahepatic portosystemic shunt. Gut 1999; 44: 743-748

Lotterer E, Wengert A, Fleig WE. Transjugular intrahepatic portosystemic shunt: short-term and long-term effects on hepatic and systemic hemodynamics in patients with cirrhosis. Hepatology 1999; 29: 632-639

Merli M, Valeriano V, Funaro S, Attili AF, Masini A, Efrati C, De CS, Riggio O. Modifications of cardiac function in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt (TIPS). Am J Gastroenterol 2002; 97: 142-148

Quiroga J, Sangro B, Núñez M, Bilbao I, Longo J, García-Villareal L, Zozaya JM, Betés M, Herrero JJ, Prieto J. Transjugular intrahepatic portal-systemic shunt in the treatment of refractory ascites: effect on clinical, renal, humoral, and hemodynamic parameters. Hepatology 1995; 21: 986-994

Sanyal AJ, Freedman AM, Luketic VA, Purdum PP 3rd, Shiftman ML, DeMeo J, Cole PE, Tisnado J. The natural history of portal hypertension after transjugular intrahepatic portosystemic stents. Gastroenterology 1997; 112: 889-898

Wong F, Sniderman K, Liu P, Allidina Y, Sherman M, Blendis L. Transjugular intrahepatic portosystemic shunt: effects on hemodynamics and sodium homeostasis in cirrhosis and refractory ascites. Ann Intern Med 1995; 122: 816-822

Wong F, Sniderman K, Liu P, Blendis L. The mechanism of the initial natriuresis after transjugular intrahepatic portosystemic shunt. Gastroenterology 1997; 111: 899-907

Salerno F, Camuna C, Enea M, Rösse M, Wong F. Transjugular intrahepatic portosystemic shunt for refractory ascites: a meta-analysis of individual patient data. Gastroenterology 2007; 133: 825-834

Boyer TD, Haskal ZJ. The role of transjugular intrahepatic portosystemic shunt in the management of portal hypertension. Hepatology 2005; 41: 386-400

Riggio O, Angeloni S, Salvadori FM, De Santis A, Cerini F, Farcomeni A, Attili AF, Merli M. Incidence, natural history, and risk factors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt with polytetrafluoroethylene-covered stents. Am J Gastroenterol 2008; 103: 2738-2746

Casado M, Bosch J, García-Pagán JC, Bru C, Bañeres R, Bandi JC, Escorsell A, Rodriguez-Láz JM, Gilabert R, Feu F, Schorlemer C, Echenagusia A, Rodés J. Clinical events after transjugular intrahepatic portosystemic shunt: correlation with hemodynamic findings. Gastroenterology 1998; 114: 1296-1303

Bureau C, Garcia-Pagán JC, Otal P, Pomier-Layrargues G, Chabbert V, Cortez C, Perreault P, Péron JM, Abraldes JG, Bouchard L, Bilbao JJ, Bosch J, Rousseau H, Vinel JP. Improved clinical outcome using polytetrafluoroethylene-coated stents for TIPS: results of a randomized study. Gastroenterology 2004; 126: 469-475

Angermayr B, Cejna M, Koenig F, Karmel F, Hackl F, Gangl A, Peck-Radosavljevic M. Survival in patients undergoing transjugular intrahepatic portosystemic shunt: ePTFE-covered stentgrafts versus bare stents. Hepatology 2005; 38: 1043-1050

Salerno F, Gerbes A, Ginés P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007; 56: 1310-1318

Fasolato S, Angeli P, Dallagnese L, Maresio G, Zola E, Mazza E, Salinas F, Donà S, Fagiuoli S, Sticca A, Zanus G, Cillo U, Frasson I, Destro C, Gatta A. Renal failure and bacterial infections in patients with cirrhosis: epidemiology and clinical features. Hepatology 2007; 45: 223-229
insensitive and nonspecific tests in detecting ascitic fluid infection. *Hepatology* 1991; 13: 929-935

108 **Nguyen-Khac E**, Cadranel JF, Thevenot T, Noutsoubaum JB. Review article: the utility of reagent strips in the diagnosis of infected ascites in cirrhotic patients. *Aliment Pharmacol Ther* 2008; 28: 282-288

109 **Runyon BA.** Monomicrobial nonneutrocytic bacterascites: a variant of spontaneous bacterial peritonitis. *Hepatology* 1990; 12: 710-715

110 **Felisart J**, Rimola A, Arroyo V, Perez-Ayus RM, Quintero E, Gines P, Rodes J. Cefotaxime is more effective than is ampicillin-tobramycin in cirrhotics with severe infections. *Hepatology* 1985; 5: 457-462

111 **Rimola A**, Salmerón JM, Clemente G, Rodrigo L, Obrador A, Miranda ML, Guarner C, Planas R, Solà R, Vargas V. Two different dosages of cefotaxime in the treatment of spontaneous bacterial peritonitis in cirrhosis: results of a prospective, randomized, multicenter study. *Hepatology* 1995; 21: 674-679

112 **Runyon BA, McHutchison JC, Antillon MR, Akriviadis EA, Montano AA.** Short course versus long course antibiotic treatment of spontaneous bacterial peritonitis. A randomized controlled study of 100 patients. *Gastroenterology* 1991; 100: 1737-1742

113 **Baskol M, Cursoy S, Baskol G, Ozbakir O, Guven K, Yucosoy M.** Five days of ceftriaxone to treat culture negative neutrocytic ascites in cirrhotic patients. *Clin Gastroenterol* 2003; 37: 403-405

114 **Ricart E**, Soriano G, Novella MT, Ortiz J, Sàbat M, Kolle L, Sola-Vera J, Mihatna J, Dedju JM, Gómez C, Barrio JL, Guarner C. Amoxicillin-clavulanic acid versus cefotaxime in the therapy of bacterial infections in cirrhotic patients. *J Hepatol* 2000; 32: 596-602

115 **Terg R, Cobas S, Fassio E, Landeira G, Ríos B, Vasen W, Abecasis R, Rios H, Guevara M.** Oral ciprofloxacin after a short course of intravenous ciprofloxacin in the treatment of spontaneous bacterial peritonitis: results of a multicenter, randomized study. *J Hepatol* 2000; 33: 564-569

116 **Navasa M, Follo A, Llovet JM, Clemente G, Vargas V, Rimola A, Marco F, Guarner C, Forné M, Planas R, Bañeres R, Cases A, Jimenez De Anta MT, Arroyo V, Rodes J.** Randomized, comparative study of oral ofloxacin versus intravenous cefotaxime in spontaneous bacterial peritonitis. *Gastroenterology* 1990; 100: 1011-1017

117 **Guarner C, Soriano G.** Spontaneous bacterial peritonitis. *Semin Liver Dis* 1997; 17: 203-217

118 **Sigal SH**, Stanca CM, Fernandez J, Arroyo V, Navasa M. Restricted use of albumin for spontaneous bacterial peritonitis. *Gut* 2007; 56: 597-599

119 **Akriviadis EA, Runyon BA. Utility of an algorithm in differentiating spontaneous from secondary bacterial peritonitis. *Gastroenterology* 1990; 98: 127-133

120 **Blaise M, Pateron D, Trinquet JC, Levacher S, Beaugrand M, Pourriot JL.** Systemic antibiotic therapy prevents bacterial infection in cirrhotic patients with gastrointestinal hemorrhage. *Hepatology* 1994; 20: 34-38

121 **Fernández J, Ruiz del Arbol L, Gómez C, Duraneda R, Ser- radilla R, Guarner C, Planas R, Arroyo V, Navasa M.** Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. *Gastroenterology* 2006; 131: 1049-1056; quiz 1285

122 **Gines P**, Rimola A, Planas R, Vargas V, Marco F, Almela M, Forner M, Miranda ML, Llach J, Salmerón JM. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. *Hepatology* 1990; 12: 716-724

123 **Runyon BA.** Low-protein-concentration ascitic fluid is predisposed to spontaneous bacterial peritonitis. *Gastroenterology* 1986; 91: 1343-1346

124 **Singh N**, Gayowski T, Yu VL, Wagener MM. Trimethoprim-sulfamethoxazole for the prevention of spontaneous bacterial peritonitis in cirrhosis: a randomized trial. *Ann Intern Med* 1995; 122: 595-596

125 **Soriano G, Guarner C, Teixidó M, Such J, Barrios J, Enriquez J, Villardell F.** Selective intestinal decontamination prevents spontaneous bacterial peritonitis. *Gastroenterology* 1991; 100: 477-481

126 **Soriano G, Guarner C, Tomás A, Villanueva C, Torres X, González D, Sainz S, Anguera A, Cussó X, Balanzó J.** Norfloxacin prevents bacterial infection in cirrhotics with gastrointestinal hemorrhage. *Gastroenterology* 1992; 103: 1267-1272

127 **Bernard B, Cadranel JF, Valla D, Escolano S, Järvi V, Opolon P.** Prognostic significance of bacterial infection in bleeding cirrhotic patients: a prospective study. *Gastroenterology* 1995; 108: 1828-1834

128 **Bernard B, Grange JD, Khac EN, Amiot X, Opolon P, Pouy- tard T.** Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding; a meta-analysis. *Hepatology* 1999; 29: 1655-1661

129 **Bleicher G, Boulanger R, Squara P, Sollet JP, Parent A.** Frequency of infections in cirrhotic patients presenting with acute gastrointestinal haemorrhage. *Br J Surg* 1986; 73: 724-726

130 **Deschênes M, Villeneuve JP.** Risk factors for the development of bacterial infections in hospitalized patients with cirrhosis. *Am J Gastroenterol* 1999; 94: 2193-2197

131 **Hou MC, Lin HC, Liu TT, Kuo BI, Lee FY, Chang FY, Lee SD.** Antibiotic prophylaxis after endoscopic therapy prevents rebleeding in acute variceal hemorrhage: a randomized trial. *Hepatology* 2004; 39: 746-753

132 **Hsieh WJ, Lin HC, Hwang SJ, Hou MC, Lee FY, Chang FY, Lee SD.** The effect of ciprofloxacin in the prevention of bacterial infection in patients with cirrhosis after upper gastrointestinal bleeding. *Am J Gastroenterol* 1998; 93: 962-966

133 **Pauwels A, Mostefa-Kara N, Debenes B, Degoutte E, Lévy VG.** Systemic antibiotic prophylaxis after gastrointestinal hemorrhage in cirrhotic patients with a high risk of infection. *Hepatology* 1996; 24: 802-806

134 **Rimola A, Bory F, Teres J, Perez-Ayus RM, Arroyo V, Rodes J.** Oral, nonabsorbable antibiotics prevent infection in cirrhics with gastrointestinal hemorrhage. *Hepatology* 1985; 5: 463-467

135 **Soares-Weisser K, Brozis M, Tur-Kaspa R, Leibovici L.** Anti- biotic prophylaxis for cirrhotic patients with gastrointestinal bleeding. *Cochrane Database Syst Rev* 2002; CD002907

136 **Andreu M, Sola R, Sitges-Serra A, Alia C, Gallen M, Vila MC, Coll S, Oliver MI.** Risk factors for spontaneous bacterial peritonitis in cirrhotic patients with ascites. *Gastroenterology* 1993; 104: 1133-1138

137 **Llach J**, Rimola A, Navasa M, Ginés P, Salmerón JM, Ginés A, Arroyo V, Rodés J. Incidence and predictive factors of first episode of spontaneous bacterial peritonitis in cirrhosis with ascites: relevance of ascitic fluid protein concentration. *Hepatology* 1992; 16: 724-727

138 **Guarner C, Sola R, Soriano G, Andreu M, Novella MT, Vila MC, Sàbat M, Coll S, Ortiz J, Gómez C, Balanzó J.** Risk of a first community-acquired spontaneous bacterial peritonitis in cirrhotics with low ascitic fluid protein levels. *Gastroenterology* 1999; 117: 414-419

139 **Fernández J**, Navasa M, Planas R, Montoliu S, Monfort D, Soriano G, Vila C, Pardo A, Quintero E, Vargas V, Sach J, Ginés P, Arroyo V. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. *Gastroenterology* 2007; 133: 818-824

140 **Grangé JD, Roulot D, Pelletier G, Fariente EA, Denis J, Ink O, Blanc P, Richardson JP, Vinel JP, Delisle F, Fischer D, Flahault...
A, Amiot X. Norfloxacin primary prophylaxis of bacterial infections in cirrhotic patients with ascites: a double-blind randomized trial. J Hepatol 1998; 29: 430-436

Novella M, Solà R, Soriano G, Andreu M, Gana J, Ortiz J, Coll S, Sàbat M, Vila MC, Guarner C, Vilardell F. Continuous versus inpatient prophylaxis of the first episode of spontaneous bacterial peritonitis with norfloxacin. Hepatology 1997; 25: 532-536

Terg R, Fassio E, Guevara M, Cartier M, Longo C, Lucero R, Landeira C, Romero G, Domínguez N, Muñoz A, Levi D, Miguez C, Abecasis R. Ciprofloxacin in primary prophylaxis of spontaneous bacterial peritonitis: a randomized, placebo-controlled study. J Hepatol 2008; 48: 774-779

Bauer TM, Follo A, Navasa M, Vila J, Planas R, Clemente G, Vargas V, Bory F, Vaquer P, Rodés J. Daily norfloxacin is more effective than weekly rufloxacin in prevention of spontaneous bacterial peritonitis recurrence. Dig Dis Sci 2002; 47: 1356-1361

Rolachon A, Cordier L, Bacq Y, Nousbaum JB, Franza A, Paris JC, Fratte S, Bohn B, Kitmacher P, Stahl JP. Ciprofloxacin and long-term prevention of spontaneous bacterial peritonitis: results of a prospective controlled trial. Hepatology 1995; 22: 1171-1174