HIGHER K-THEORY VIA UNIVERSAL INVARIANTS

GONÇALO TABUADA

Abstract. Using the formalism of Grothendieck’s derivators, we construct ‘the universal localizing invariant’ of dg categories. By this, we mean a morphism U_l from the pointed derivator $\mathbf{HO}(\mathbf{dgcat})$ associated with the Morita homotopy theory of dg categories to a triangulated strong derivator $\mathcal{M}^\text{loc}_{dg}$ such that U_l commutes with filtered homotopy colimits, preserves the point, sends each exact sequence of dg categories to a triangle and is universal for these properties.

Similarly, we construct the ‘universal additive invariant’ of dg categories, i.e. the universal morphism of derivators U_a from $\mathbf{HO}(\mathbf{dgcat})$ to a strong triangulated derivator $\mathcal{M}^\text{add}_{dg}$ which satisfies the first two properties but the third one only for split exact sequences. We prove that Waldhausen’s K-theory becomes co-representable in the target of the universal additive invariant. This is the first conceptual characterization of Quillen-Waldhausen’s K-theory since its definition in the early 70’s. As an application we obtain for free the higher Chern characters from K-theory to cyclic homology.

Contents

1. Introduction 2
2. Acknowledgments 5
3. Preliminaries 5
4. Derived Kan extensions 11
5. Localization: model categories versus derivators 12
6. Filtered homotopy colimits 15
7. Pointed derivators 23
8. Small weak generators 25
9. Stabilization 26
10. DG quotients 33
11. The universal localizing invariant 37
12. A Quillen model in terms of presheaves of spectra 42
13. Upper triangular DG categories 44
14. Split short exact sequences 47
15. Quasi-Additivity 48
16. The universal additive invariant 53
17. Higher Chern characters 57
18. Concluding remarks 59
References 59

Key words and phrases. Quillen-Waldhausen’s K-theory, Non-commutative algebraic geometry, Higher Chern characters, Grothendieck derivator, Quillen model structure, Bousfield localization, Simplicial presheaves, Stabilization, Drinfeld’s dg quotient, Cyclic homology, Additivity, Presheaves of spectra, Upper triangular dg category.

Supported by FCT-Portugal, scholarship SFRH/BD/14035/2003.
1. Introduction

Differential graded categories (=dg categories) enhance our understanding of triangulated categories appearing in algebra and geometry, see [19]. They are considered as non-commutative schemes by Drinfeld [9] [10] and Kontsevich [23] [24] in their program of non-commutative algebraic geometry, i.e. the study of dg categories and their homological invariants.

In this article, using the formalism of Grothendieck’s derivators, we construct ‘the universal localizing invariant’ of dg categories cf. [21]. By this, we mean a morphism U_l from the pointed derivator $HO(dgcat)$ associated with the Morita homotopy theory of dg categories, see [37] [38] [39], to a triangulated strong derivator M_{loc}^{dg} such that U_l commutes with filtered homotopy colimits, preserves the point, sends each exact sequence of dg categories to a triangle and is universal for these properties. Because of its universality property reminiscent of motives, see section 4.1 of Kontsevich’s preprint [25], we call M_{loc}^{dg} the (stable) localizing motivator of dg categories.

Similarly, we construct ‘the universal additive invariant’ of dg categories, i.e. the universal morphism of derivators U_a from $HO(dgcat)$ to a strong triangulated derivator M_{add}^{dg} which satisfies the first two properties but the third one only for split exact sequences. We call M_{add}^{dg} the additive motivator of dg categories.

We prove that Waldhausen’s K-theory spectrum appears as a spectrum of morphisms in the base category M_{add}^{dg} of the additive motivator. This shows us that Waldhausen’s K-theory is completely characterized by its additive property and ‘intuitively’ it is the universal construction with values in a stable context which satisfies additivity.

To the best of the author’s knowledge, this is the first conceptual characterization of Quillen-Waldhausen’s K-theory [34] [44] since its definition in the early 70’s. This result gives us a completely new way to think about algebraic K-theory and furnishes us for free the higher Chern characters from K-theory to cyclic homology [26].

The co-representation of K-theory as a spectrum of morphisms extends our results in [37] [38], where we co-represented K_0 using functors with values in additive categories rather than morphisms of derivators with values in strong triangulated derivators.

For example, the mixed complex construction [22], from which all variants of cyclic homology can be deduced, and the non-connective algebraic K-theory [35] are localizing invariants and factor through U_l and through U_a. The connective algebraic K-theory [14] is an example of an additive invariant which is not a localizing one. We prove that it becomes co-representable in M_{add}^{dg}, see theorem 16.10.

Our construction is similar in spirit to those of Meyer-Nest [31], Cortiñas-Thom [8] and Garkusha [12]. It splits into several general steps and also offers some insight into the relationship between the theory of derivators [14] [13] [20] [29] [3] and the classical theory of Quillen model categories [33]. Derivators allow us to state and prove precise universal properties and to dispense with many of the technical problems one faces in using model categories.

In chapter 8 we recall the notion of Grothendieck derivator and point out its connexion with that of small homotopy theory in the sense of Heller [14]. In chapter 4, we recall Cisinski’s theory of derived Kan extensions [4] and in chapter 5...
we develop his ideas on the Bousfield localization of derivators [7]. In par-
icular, we characterize the derivator associated with a left Bousfield localization of a
Quillen model category by a universal property, see theorem 5.4. This is based on
a constructive description of the local weak equivalences.

In chapter 6 starting from a Quillen model category \mathcal{M} satisfying some com-
 pactness conditions, we construct a morphism of prederivators

$$\text{HO}(\mathcal{M}) \xrightarrow{\mathcal{L}_\Sigma} \text{Hot}_{\mathcal{M}_f}$$

which commutes with filtered homotopy colimits, has a derivator as target and
is universal for these properties. In chapter 7 we study morphisms of pointed
derivators and in chapter 8 we prove a general result which guarantees that small
weak generators are preserved under left Bousfield localizations. In chapter 9 we
recall Heller’s stabilization construction [14] and we prove that this construction
takes ‘finitely generated’ unstable theories to compactly generated stable ones. We
establish the connection between Heller’s stabilization and Hovey/Schwede’s stabili-
zer [17] [36] by proving that if we start with a pointed Quillen model category
which satisfies some mild ‘generation’ hypotheses, then the two stabilization pro-
cedures yield equivalent results. This allows us to characterize Hovey/Schwede’s
construction by a universal property and in particular to give a very simple charac-
terisation of the classical category of spectra in the sense of Bousfield-Friedlander
[2]. In chapter 10 by applying the general arguments of the previous chapters to the
Morita homotopy theory of dg categories [37] [38] [39], we construct the universal
morphism of derivators

$$U_t : \text{HO}(\text{dgcat}) \longrightarrow \text{St}(L_{\Sigma_\ast} \text{Hot}_{\text{dgcat}},)$$

which commutes with filtered homotopy colimits, preserves the point and has a
strong triangulated derivator as target. For every inclusion $A \hookrightarrow B$ of a full dg
subcategory, we have an induced morphism

$$S_K : \text{cone}(U_t(A \hookrightarrow B)) \rightarrow U_t(B/A),$$

where B/A denotes Drinfeld’s dg quotient. By applying the localization techniques
of section 6 and using the fact that the derivator $\text{St}(L_{\Sigma_\ast} \text{Hot}_{\text{dgcat}},)$ admits a sta-
ble Quillen model, we invert the morphisms S_K and obtain finally the universal
localizing invariant of dg categories

$$U_t : \text{HO}(\text{dgcat}) \longrightarrow \mathcal{M}_{dg}^{loc}.$$

We establish a connection between the triangulated category $\mathcal{M}_{dg}^{loc}(e)$ and Wal-
dhausen’s K-theory by showing that Waldhausen’s S-construction corresponds to
the suspension functor in $\mathcal{M}_{dg}^{loc}(e)$. In section 12 we prove that the derivator \mathcal{M}_{dg}^{loc}
admits a stable Quillen model given by a left Bousfield localization of a category of
presheaves of spectra. In section 13 we introduce the concept of upper triangular
dg category and construct a Quillen model structure on this class of dg categories,
which satisfies strong compactness conditions. In section 14 we establish the con-
nection between upper triangular dg categories and split short exact sequences and
use the Quillen model structure of section 13 to prove an ‘approximation result’,
see proposition 14.2. In section 15 by applying the techniques of section 5 we
construct the universal morphism of derivators

$$U_u : \text{HO}(\text{dgcat}) \longrightarrow \mathcal{M}_{dg}^{unst}.$$
which commutes with filtered homotopy colimits, preserves the point and sends each split short exact sequence to a homotopy cofiber sequence. We prove that Waldhausen’s K-theory space construction appears as a fibrant object in \mathcal{M}_{dg}^{unst}. This allows us to obtain the weak equivalence of simplicial sets

$$\text{Map}(U_a(k), S^1 \wedge U_a(A)) \sim \to |N.wS_*A|$$

and the isomorphisms

$$\pi_{i+1}\text{Map}(U_a(k), S^1 \wedge U_a(A)) \sim \to K_i(A), \; \forall i \geq 0,$$

see proposition 15.12.

In section 16 we stabilize the derivator \mathcal{M}_{dg}^{unst}, using the fact that it admits a Quillen model and obtain finally the universal additive invariant of dg categories $U_a: \text{HO}(\text{dgcat}) \longrightarrow \mathcal{M}^{add}_{dg}$.

Connective algebraic K-theory is additive and so factors through U_a. We prove that for a small dg category A its connective algebraic K-theory corresponds to a fibrant resolution of $U_a(A)[1]$, see theorem 16.9. Using the fact that the Quillen model for \mathcal{M}^{add}_{dg} is enriched over spectra, we prove our main co-representability theorem.

Let A and B be small dg categories with $A \in \text{dgcat}$. Theorem 1.1 (16.10). We have the following weak equivalence of spectra

$$\text{Hom}^{Sp}(U_a(A), U_a(B)[1]) \sim \to K^c(\text{rep}_{mor}(A, B)),$$

where $K^c(\text{rep}_{mor}(A, B))$ denotes Waldhausen’s connective K-theory spectrum of $\text{rep}_{mor}(A, B)$.

In the triangulated base category $\mathcal{M}^{add}_{dg}(e)$ of the additive motivator we have:

Proposition 1.2 (17.1). We have the following isomorphisms of abelian groups

$$\text{Hom}_{\mathcal{M}^{add}_{dg}(e)}(U_a(A), U_a(B)[-n]) \sim \to K_n(\text{rep}_{mor}(A, B)), \; \forall n \geq 0.$$

Remark 1.3. Notice that if in the above theorem (resp. proposition), we consider $A = k$, we have

$$\text{Hom}^{Sp}(U_a(k), U_a(B)[1]) \sim \to K^c(B), \; \text{resp.}$$

$$\text{Hom}_{\mathcal{M}^{add}_{dg}(e)}(U_a(k), U_a(B)[-n]) \sim \to K_n(B), \; \forall n \geq 0.$$

This shows that Waldhausen’s connective K-theory spectrum (resp. groups) becomes co-representable in \mathcal{M}^{add}_{dg}, resp. in $\mathcal{M}^{add}_{dg}(e)$.

In section 17, we show that our co-representability theorem furnishes us for free the higher Chern characters from K-theory to cyclic homology.

Theorem 1.4 (17.3). The co-representability theorem furnishes us the higher Chern characters

$$\text{ch}_{n,r}: K_n(-) \longrightarrow HC_{n+2r}(-), \; n, r \geq 0.$$

In section 18 we point out some questions that deserve further investigation.
2. Acknowledgments

This article is part of my Ph.D. thesis under the supervision of Prof. B. Keller. It is a great pleasure to thank him for suggesting this problem to me and for countless useful discussions.

I have learned a lot from discussions with D.-C. Cisinski. I deeply thank him for sharing so generously his ideas on Localisation des Dérivateurs. I am also very grateful to B. Toën for important remarks and for his interest.

3. Preliminaries

In this section we recall the notion of Grothendieck derivator following [3].

Notation 3.1. We denote by CAT, resp. Cat the 2-category of categories, resp. small categories. The empty category will be written \emptyset, and the 1-point category (i.e. the category with one object and one identity morphism) will be written e. If X is a small category, X^{op} is the opposite category associated to X. If $u : X \to Y$ is a functor, and if y is an object of Y, one defines the category X/y as follows: the objects are the couples (x, f), where x is an object of X, and f is a map in Y from $u(x)$ to y; a map from (x, f) to (x', f') in X/y is a map $\xi : x \to x'$ in X such that $f'u(\xi) = f$. The composition law in X/y is induced by the composition law in X. Dually, one defines $y\backslash X$ by the formula $y\backslash X = (X^{op}/y)^{op}$. We then have the canonical functors

$$X/y \to X \quad \text{and} \quad y\backslash X \to X$$

defined by projection $(x, f) \mapsto x$. One can easily check that one gets the following pullback squares of categories

$$
\begin{array}{ccc}
X/y & \to & X \\
\downarrow^{u/y} & & \downarrow^{u} \\
Y/y & \to & Y \\
\end{array}
\quad \quad
\begin{array}{ccc}
y\backslash X & \to & X \\
\downarrow^{y\backslash u} & & \downarrow^{u} \\
y\backslash Y & \to & Y \\
\end{array}
$$

If X is any category we let $p_X : X \to e$ be the canonical projection functor. Given any object x of X we will write $x : e \to X$ for the unique functor which sends the object of e to x. The objects of X, or equivalently the functors $e \to X$, will be called the points of X.

If X and Y are two categories we denote by $\text{Fun}(X, Y)$ the category of functors from X to Y. If \mathcal{C} is a 2-category one writes \mathcal{C}^{op} for its dual 2-category: \mathcal{C}^{op} has the same objects as \mathcal{C} and, for any two objects X and Y, the category $\text{Fun}_{\mathcal{C}^{op}}(X, Y)$ of 1-arrows from X to Y in \mathcal{C}^{op} is $\text{Fun}_{\mathcal{C}}(Y, X)^{op}$.

Definition 3.2. A prederivator is a strict 2-functor from Cat^{op} to the 2-category of categories

$$\mathbb{D} : \text{Cat}^{op} \to \text{CAT}.$$

More explicitly: for any small category $X \in \text{Cat}$ one has a category $\mathbb{D}(X)$. For any functor $u : X \to Y$ in Cat one gets a functor

$$u^* = \mathbb{D}(u) : \mathbb{D}(Y) \to \mathbb{D}(X).$$
For any morphism of functors

\[
\begin{array}{c}
X \xrightarrow{\alpha} Y,
\end{array}
\]

one has a morphism of functors

\[
\begin{array}{c}
D(X) \xrightarrow{\alpha^*} D(Y).
\end{array}
\]

Of course, all these data have to verify some coherence conditions, namely:

(a) For any composable maps in \(\text{Cat} \), \(X \xrightarrow{u} Y \xrightarrow{v} Z \),
\[
(vu)^* = u^*v^* \quad \text{and} \quad 1_X^* = 1_{D(X)}.
\]

(b) For any composable 2-cells in \(\text{Cat} \)

\[
\begin{array}{c}
X \xrightarrow{\alpha} Y
\end{array}
\]

we have
\[
(\beta\alpha)^* = \alpha^*\beta^* \quad \text{and} \quad 1_u^* = 1_{u^*}.
\]

(c) For any 2-diagram in \(\text{Cat} \)

\[
\begin{array}{c}
X \xrightarrow{\alpha} Y \xleftarrow{\beta} Z,
\end{array}
\]

we have \((\beta\alpha)^* = \alpha^*\beta^*\).

Example 3.3. Let \(M \) be a small category. The prederivator \(\underline{M} \) naturally associated with \(M \) is defined as

\[
X \mapsto \underline{M}(X)
\]

where \(\underline{M}(X) = \text{Fun}(X^{op}, M) \) is the category of presheaves over \(X \) with values in \(M \).

Example 3.4. Let \(M \) be a category endowed with a class of maps called weak equivalences (for example \(M \) can be the category of bounded complexes in a given abelian category, and the weak equivalences can be the quasi-isomorphisms). For any small category \(X \), we define the weak equivalences in \(M(X) \) to be the morphisms of presheaves which are termwise weak equivalences in \(M \). We can then define \(D_M(X) \) as the localization of \(M(X) \) by the weak equivalences. It is clear that, for any functor \(u : X \to Y \), the inverse image functor

\[
\begin{array}{c}
\underline{M}(Y) \mapsto \underline{M}(X)
\end{array}
\]

\[
\begin{array}{c}
F \mapsto u^*(F) = F \circ u
\end{array}
\]

respects weak equivalences, so that it induces a well defined functor

\[
\begin{array}{c}
\underline{D}_M(X) \mapsto \underline{D}_M(X).
\end{array}
\]

The 2-functoriality of localization implies that we have a prederivator \(\underline{D}_M \).
Let X be a small category and let x be an object of X. Given an object $F \in \mathcal{D}(X)$ we will write $F_x = x^*(F)$. The object F_x will be called the fiber of F at the point x.

For a prederivator \mathbb{D}, define its opposite to be the prederivator \mathbb{D}^{op} given by the formula $\mathbb{D}^{op}(X) = \mathbb{D}(X^{op})^{op}$ for all small categories X.

Definition 3.5. Let \mathbb{D} be a prederivator. A map $u : X \to Y$ in Cat has a cohomological direct image functor (resp. a homological direct image functor) in \mathbb{D} if the inverse image functor $u^* : \mathbb{D}(Y) \to \mathbb{D}(X)$ (resp. $u_! : \mathbb{D}(X) \to \mathbb{D}(Y)$), called the cohomological direct image functor (resp. homological direct image functor) associated to u.

Notation 3.6. Let X be a small category and $p = p_X : X \to e$. If p has a cohomological direct image functor in \mathbb{D}, one defines for any object F of $\mathbb{D}(X)$ the object of global sections of F as

$$\Gamma^*(X, F) = p^*(F).$$

Dually, if p has a homological direct image in \mathbb{D} then, for any object F of $\mathbb{D}(X)$, one sets

$$\Gamma_!(X, F) = p_!(F).$$

Notation 3.7. Let \mathbb{D} be a prederivator, and let

$$\begin{array}{ccc}
X' & \xrightarrow{u'} & X \\
\downarrow u' & & \downarrow u \\
Y' & \xrightarrow{w} & Y
\end{array}$$

be a 2-diagram in Cat. By 2-functoriality one obtains the following 2-diagram

$$\begin{array}{ccc}
\mathbb{D}(X') & \xrightarrow{v^*} & \mathbb{D}(X) \\
\downarrow u'^* & & \downarrow u^* \\
\mathbb{D}(Y') & \xrightarrow{w^*} & \mathbb{D}(Y)
\end{array}$$

If we assume that the functors u and u' both have cohomological direct images in \mathbb{D} one can define the base change morphism induced by α

$$\beta : w^*u_* \to u'_*v^*$$

as follows. The counit $u^*u_* \to 1_{\mathbb{D}(X)}$ induces a morphism $v^*u^*u_* \to v^*$, and by composition with α^*u_*, a morphism $u'^*w^*u_* \to v^*$. This gives β by adjunction.

This construction will be used in the following situation: let $u : X \to Y$ be a map in Cat and let y be a point of Y. According to notation 3.1 we have a functor
$j : X/y \to X$, defined by the formula $j(x, f) = x$, where $f : u(x) \to y$ is a morphism in Y. If $p : X/y \to e$ is the canonical map one obtains the 2-diagram below, where α denotes the 2-cell defined by the formula $\alpha(x, f) = f$

$$
\begin{array}{ccc}
X/y & \xrightarrow{j} & X \\
p & \downarrow{\psi} & \downarrow{u} \\
e & \xrightarrow{\alpha} & Y
\end{array}
$$

Using notation 3.6, the associated base change morphism gives rise to a canonical morphism

$$u_* (F)_y \to \Gamma_* (X/y, F/y)$$

for any object $F \in \mathcal{D}(X)$, where $F/y = j^*(F)$. Dually one has canonical morphisms

$$\Gamma_!(y\backslash X, y\backslash F) \to u_!(F)_y$$

where $y\backslash F = k^*(F)$ and k denotes the canonical functor from $y\backslash X$ to X.

Notation 3.8. Let X and Y be two small categories. Using the 2-functoriality of \mathcal{D}, one defines a functor

$$d_{X,Y} : \mathcal{D}(X \times Y) \to \text{Fun}(X^{\text{op}}, \mathcal{D}(Y))$$

as follows. Setting $X' = X \times Y$, we have a canonical functor

$$\text{Fun}(Y, X')^{\text{op}} \to \text{Fun}(\mathcal{D}(X'), \mathcal{D}(Y))$$

which defines a functor

$$\text{Fun}(Y, X')^{\text{op}} \times \mathcal{D}(X') \to \mathcal{D}(Y)$$

and then a functor

$$\mathcal{D}(X') \to \text{Fun}(\text{Fun}(Y, X')^{\text{op}}, \mathcal{D}(Y)).$$

Using the canonical functor

$$X \to \text{Fun}(Y, X \times Y), \ x \mapsto (y \mapsto (x, y)),$$

this gives the desired functor.

In particular, for any small category X, one gets a functor

$$d_X = d_{X,e} : \mathcal{D}(X) \to \text{Fun}(X^{\text{op}}, \mathcal{D}(e)).$$

If F is an object of $\mathcal{D}(X)$, then $d_X(F)$ is the presheaf on X with values in $\mathcal{D}(e)$ defined by

$$x \mapsto F_x.$$

Definition 3.9. A derivator is a prederivator \mathcal{D} with the following properties.

Der1 (Non-triviality axiom). For any finite set I and any family $\{X_i, i \in I\}$ of small categories, the canonical functor

$$\mathcal{D}(\coprod_{i \in I} X_i) \to \coprod_{i \in I} \mathcal{D}(X_i)$$

is an equivalence of categories.
Der2 (Conservativity axiom). For any small category X, the family of functors
\[x^*: \mathbb{D}(X) \to \mathbb{D}(e) \]
\[F \mapsto x^*(F) = F_x \]
corresponding to the points x of X is conservative. In other words: if $\varphi : F \to G$ is a morphism in $\mathbb{D}(X)$, such that for any point x of X the map $\varphi_x : F_x \to G_x$ is an isomorphism in $\mathbb{D}(e)$, then φ is an isomorphism in $\mathbb{D}(X)$.

Der3 (Direct image axiom). Any functor in Cat has a cohomological direct image functor and a homological direct image functor in \mathbb{D} (see definition 3.5).

Der4 (Base change axiom). For any functor $u : X \to Y$ in Cat, any point y of Y and any object F in $\mathbb{D}(X)$, the canonical base change morphisms (see notation 3.7)
\[u_*(F)_y \to \Gamma_*(X/y, F/y) \]
\[\Gamma_!(y/X, y/F) \to u_!(F)_y \]
are isomorphisms in $\mathbb{D}(e)$.

Der5 (Essential surjectivity axiom). Let I be the category corresponding to the graph
\[0 \leftarrow 1. \]
For any small category X, the functor
\[d_{I,X} : \mathbb{D}(I \times X) \to \text{Fun}(I^\text{op}, \mathbb{D}(X)) \]
(see notation 3.8) is full and essentially surjective.

Example 3.10. By [5], any Quillen model category \mathcal{M} gives rise to a derivator denoted $\text{HO}(\mathcal{M})$.

We denote by $\text{Ho}(\mathcal{M})$ the homotopy category of \mathcal{M}. By definition, it equals $\text{HO}(\mathcal{M})(e)$.

Definition 3.11. A derivator \mathbb{D} is strong if for every finite free category X and every small category BY, the natural functor
\[\mathbb{D}(X \times Y) \to \text{Fun}(X^\text{op}, \mathbb{D}(Y)) \]
(see notation 3.8) is full and essentially surjective.

Notice that a strong derivator is the same thing as a small homotopy theory in the sense of Heller [14]. Notice also that by proposition 2.15 in [6], $\text{HO}(\mathcal{M})$ is a strong derivator.

Definition 3.12. A derivator \mathbb{D} is regular if in \mathbb{D}, sequential homotopy colimits commute with finite products and homotopy pullbacks.

Notation 3.13. Let X be a category. Remember that a sieve (or a crible) in X is a full subcategory U of X such that, for any object x of X, if there exists a morphism $x \to u$ with u in U then x is in U. Dually a cosieve (or a cocrible) in X is a full subcategory Z of X such that, for any morphism $z \to x$ in X, if z is in Z then so is x.

A functor $j : U \to X$ is an open immersion if it is injective on objects, fully faithful, and if $j(U)$ is a sieve in X. Dually a functor $i : Z \to X$ is a closed immersion if it is injective on objects, fully faithful, and if $i(Z)$ is a cosieve in X. One can easily show that open immersions and closed immersions are stable by composition and pullback.
Definition 3.14. A derivator \mathbb{D} is pointed if it satisfies the following property.

Der6 (Exceptional axiom). For any closed immersion $i : Z \to X$ in Cat the cohomological direct image functor

$$i_* : \mathbb{D}(Z) \to \mathbb{D}(X)$$

has a right adjoint

$$i^! : \mathbb{D}(X) \to \mathbb{D}(Z)$$

called the exceptional inverse image functor associated to i. Dually, for any open immersion $j : U \to X$ the homological direct image functor

$$j_! : \mathbb{D}(U) \to \mathbb{D}(X)$$

has a left adjoint

$$j^\flat : \mathbb{D}(X) \to \mathbb{D}(U)$$

called the coexceptional inverse image functor associated to j.

Let \square be the category given by the commutative square

$$
\begin{array}{ccc}
(0, 0) & \rightarrow & (0, 1) \\
\downarrow & & \downarrow \\
(1, 0) & \rightarrow & (1, 1).
\end{array}
$$

We are interested in two of its subcategories. The subcategory \mathcal{U} is

$$
\begin{array}{c}
(0, 1) \\
\downarrow \\
(1, 0) \rightarrow (1, 1).
\end{array}
$$

and \mathcal{V} is the subcategory

$$
\begin{array}{c}
(0, 0) \leftarrow (0, 1) \\
\downarrow \\
(1, 0).
\end{array}
$$

We thus have two inclusion functors

$$\sigma : \mathcal{U} \to \square \quad \text{and} \quad \tau : \mathcal{V} \to \square$$

(σ is an open immersion and τ a closed immersion). A global commutative square in \mathbb{D} is an object of $\mathbb{D}(\square)$. A global commutative square C in \mathbb{D} is thus locally of shape

$$
\begin{array}{ccc}
C_{0,0} & \rightarrow & C_{0,1} \\
\downarrow & & \downarrow \\
C_{1,0} & \rightarrow & C_{1,1}
\end{array}
$$

in $\mathbb{D}(\varepsilon)$.

A global commutative square C in \mathbb{D} is cartesian (or a homotopy pullback square) if, for any global commutative square B in \mathbb{D}, the canonical map

$$\text{Hom}_{\mathbb{D}(\square)}(B, C) \to \text{Hom}_{\mathbb{D}(\mathcal{U})}(\sigma^*(B), \sigma^*(C))$$
is bijective. Dually, a global commutative square B in \mathbb{D} is co-cartesian (or a homotopy pushout square) if, for any global commutative square C in \mathbb{D}, the canonical map

$$\text{Hom}_{\mathbb{D}(\square)}(B, C) \rightarrow \text{Hom}_{\mathbb{D}(\square)}(\tau^*(B), \tau^*(C))$$

is bijective.

As \square is isomorphic to its opposite \square^{op}, one can see that a global commutative square in \mathbb{D} is cartesian (resp. cocartesian) if and only if it is cocartesian (resp. cartesian) as a global commutative square in \mathbb{D}^{op}.

Definition 3.15. A derivator \mathbb{D} is triangulated or stable if it is pointed and satisfies the following axiom:

Der 7 (Stability axiom). A global commutative square in \mathbb{D} is cartesian if and only if it is cocartesian.

Theorem 3.16 ([30]). For any triangulated derivator \mathbb{D} and small category X the category $\mathbb{D}(X)$ has a canonical triangulated structure.

Let \mathbb{D} and \mathbb{D}' be derivators. We denote by $\text{Hom}(\mathbb{D}, \mathbb{D}')$ the category of all morphisms of derivators, by $\text{Hom}_{\text{ht}}(\mathbb{D}, \mathbb{D}')$ the category of morphisms of derivators which commute with homotopy colimits [4, 3.25] and by $\text{Hom}_{\text{flt}}(\mathbb{D}, \mathbb{D}')$ the category of morphisms of derivators which commute with filtered homotopy colimits, see [3, 5].

4. Derived Kan extensions

Let A be a small category and $\text{Fun}(A^{\text{op}}, S\text{set})$ the Quillen model category of simplicial pre-sheaves on A, endowed with the projective model structure, see [40]. We have at our disposal the functor

$$A \xrightarrow{h} \text{Fun}(A^{\text{op}}, S\text{set})$$

where $\text{Hom}_A(?, X)$ is considered as a constant simplicial set.

The functor h gives rise to a morphism of pre-derivators

$$A \xrightarrow{h} \text{HO}(\text{Fun}(A^{\text{op}}, S\text{set})).$$

Using the notation of [41], we denote by Hot_A the derivator $\text{HO}(\text{Fun}(A^{\text{op}}, S\text{set}))$. The following results are proven in [41].

Let \mathbb{D} be a derivator.

Theorem 4.1. The morphism h induces an equivalence of categories

$$\begin{array}{ccc}
\text{Hom}(A, \mathbb{D}) & \xrightarrow{\sim} & \text{Hom}(\text{Hot}_A, \mathbb{D}) \\
\varphi & \downarrow h^* \\
\text{Hom}_{\text{ht}}(\text{Hot}_A, \mathbb{D}).
\end{array}$$

Proof. This theorem is equivalent to corollary 3.26 in [41], since we have

$$\text{Hom}(A, \mathbb{D}) \simeq \mathbb{D}(A^{\text{op}}).$$

$\sqrt{\ }$
Lemma 4.2. We have an adjunction

\[
\begin{array}{c}
\text{Hom}(\text{Hot}_A, \mathbb{D}) \\
\uparrow \Psi \downarrow \downarrow \Psi
\end{array}
\begin{array}{c}
\text{Hom}! (\text{Hot}_A, \mathbb{D}) \\
\uparrow \downarrow \uparrow \uparrow \Psi \downarrow \uparrow \uparrow
\end{array}
\]

where

\[
\Psi(F) := \varphi(F \circ h).
\]

Proof. We construct a universal 2-morphism of functors

\[
\epsilon : \text{inc} \circ \Psi \to \text{Id}.
\]

Let \(F\) be a morphism of derivators belonging to \(\text{Hom}(\text{Hot}_A, \mathbb{D})\). Let \(L\) be a small category and \(X\) an object of \(\text{Hot}_A(L)\). Recall from [4] that we have the diagram

\[
\begin{array}{c}
\nabla \int_X \\
\downarrow \varpi \downarrow \\
L^{\text{op}} \leftarrow \leftarrow \leftarrow \leftarrow \\
\uparrow \pi \uparrow
\end{array}
\]

Now, let \(p\) be the functor \(\pi^{\text{op}}\) and \(q\) the functor \(\varpi^{\text{op}}\). By the dual of proposition 1.15 in [4], we have the following functorial isomorphism

\[
pq^*(h) \xrightarrow{\sim} X.
\]

Finally let \(\epsilon_L(X)\) be the composed morphism

\[
\epsilon_L(X) : \Psi(F)(X) = pq^*F(h) = p(F(q^*h) \to F(pq^*h) \xrightarrow{\sim} F(X)
\]

and notice, using theorem 4.1, that \(\epsilon\) induces an adjunction.

5. Localization: model categories versus derivators

Let \(\mathcal{M}\) be a left proper, cellular Quillen model category, see [15].

We start by fixing a frame on \(\mathcal{M}\), see definition 16.6.21 in [15]. Let \(D\) be a small category and \(F\) a functor from \(D\) to \(\mathcal{M}\). We denote by \(\text{hocolim}\) the object of \(\mathcal{M}\), as in definition 19.1.2 of [15]. Let \(S\) be a set of morphisms in \(\mathcal{M}\) and denote by \(L_S\mathcal{M}\) the left Bousfield localization of \(\mathcal{M}\) by \(S\).

Notice that the Quillen adjunction

\[
\begin{array}{c}
\mathcal{M} \\
\downarrow \text{Id} \downarrow \text{Id} \downarrow \text{Id}
\end{array}
\begin{array}{c}
L_S\mathcal{M},
\end{array}
\]

induces a morphism of derivators

\[
\gamma : \text{HO}(\mathcal{M}) \to \text{HO}(L_S\mathcal{M})
\]

which commutes with homotopy colimits.

Proposition 5.1. Let \(W_S\) be the smallest class of morphisms in \(\mathcal{M}\) satisfying the following properties:

a) Every element in \(S\) belongs to \(W_S\).

b) Every weak equivalence of \(\mathcal{M}\) belongs to \(W_S\).
c) If in a commutative triangle, two out of three morphisms belong to \mathcal{W}_S, then so does the third one. The class \mathcal{W}_S is stable under retractions.

d) Let D be a small category and F and G functors from D to \mathcal{M}. If η is a morphism of functors from F to G such that for every object d in D, $F(d)$ and $G(d)$ are cofibrant objects and the morphism $\eta(d)$ belongs to \mathcal{W}_S, then so does the morphism

$$hocolim F \longrightarrow hocolim G.$$

Then the class \mathcal{W}_S equals the class of S-local equivalences in \mathcal{M}, see [15].

Proof. The class of S-local equivalences satisfies properties $a), b), c)$ and $d)$: Properties $a)$ and $b)$ are satisfied by definition, propositions 3.2.3 and 3.2.4 in [15] imply property $c)$ and proposition 3.2.5 in [15] implies property $d)$.

Let us now show that conversely, each S-local equivalence is in \mathcal{W}_S. Let

$$X \overset{g}{\longrightarrow} Y$$

be an S-local equivalence in \mathcal{M}. Without loss of generality, we can suppose that X is cofibrant. Indeed, let $Q(X)$ be a cofibrant resolution of X and consider the diagram

$$
\begin{array}{ccc}
Q(X) \\
\pi \\
X \\
v \end{array} \xymatrix{ & \ar[dl]_{g \circ \pi} \ar[d]_{\sim} \\
Y \ar[ul] & }
$$

Notice that since π is a weak equivalence, g is an S-local equivalence if and only if $g \circ \pi$ is one.

By theorem 4.3.6 in [15], g is an S-local equivalence if and only if the morphism $L_S(g)$ appearing in the diagram

$$
\begin{array}{ccc}
X \\
\ar[d]_{j(X)} \\
L_S X \\
\ar[d]_{L_S(g)} \\
L_S Y \\
\ar[d]_{j(Y)} \\
Y \\
\ar[dl]^{g} \\
Y
\end{array}
$$

is a weak equivalence in \mathcal{M}. This shows that it is enough to prove that $j(X)$ and $j(Y)$ belong to \mathcal{W}_S. Apply the small object argument to the morphism

$$X \longrightarrow *$$

using the set $\Lambda(S)$, see proposition 4.2.5 in [15]. We have the factorization

$$
\begin{array}{ccc}
X \\
\ar[dl]_{j(X)} \\
L_S(X) \\
\ar[dl]_{L_S(g)} \\
* \\
\end{array}
$$

where $j(X)$ is a relative $\Lambda(S)$-cell complex.

We will now prove two stability conditions concerning the class \mathcal{W}_S:
S1) Consider the following push-out

\[
\begin{array}{c}
W_0 \\ f \downarrow \hspace{1cm} \downarrow \hspace{1cm} f_* \\
W_1 \quad \downarrow \hspace{1cm} \downarrow \\
W_2
\end{array}
\]

where \(W_0, W_1 \) and \(W_2 \) are cofibrant objects in \(\mathcal{M} \) and \(f \) is a cofibration which belongs to \(\mathcal{W}_S \). Observe that \(f_* \) corresponds to the colimit of the morphism of diagrams

\[
\begin{array}{c}
W_0 \\ f \downarrow \\
W_1 \\
W_0 \\
W_2
\end{array}
\]

S2) Consider the following diagram

\[
X : X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{\cdots}
\]

in \(\mathcal{M} \), where the objects are cofibrant and the morphisms are cofibrations which belong to the class \(\mathcal{W}_S \). Observe that the transfinite composition of \(X \) corresponds to the colimit of the morphism of diagrams

\[
\begin{array}{c}
X_0 \\
\downarrow f_0 \\
X_0 \\
\downarrow f_1 \circ f_0 \\
X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \xrightarrow{\cdots} .
\end{array}
\]

Now, since \(X \) is a Reedy cofibrant diagram on category with fibrant constants, see definition 15.10.1 in [15], theorem 19.9.1 from [15] and property \(d \) imply that the transfinite composition of \(X \) belongs to \(\mathcal{W}_S \). Notice that the above argument can be immediately generalized to a transfinite composition of a \(\lambda \)-sequence, where \(\lambda \) denotes an ordinal, see section 10.2 in [15].

Now, the construction of the morphism \(j(X) \) and the stability conditions S1) and S2) shows us that it is enough to prove that the elements of \(\Lambda(S) \) belong to \(\mathcal{W}_S \). By proposition 4.2.5 in [15], it is sufficient to show that the set

\[
\Lambda(S) = \{ \tilde{A} \otimes \Delta[n] \coprod \tilde{B} \otimes \Delta[n] \xrightarrow{\lambda(g)} \tilde{B} \otimes \Delta[n] \mid (A \xrightarrow{g} B) \in S, n \geq 0 \},
\]

of horns in \(S \) is contained in \(\mathcal{W}_S \). Recall from definition 4.2.1 in [15] that \(\tilde{g} : \tilde{A} \to \tilde{B} \) denotes a cosimplicial resolution of \(g : A \to B \) and \(\tilde{g} \) is a Reedy cofibration. We
have the diagram

\[
\begin{array}{ccc}
\tilde{A} \otimes \partial \Delta[n] & \xrightarrow{\tilde{g} \otimes 1} & \tilde{B} \otimes \partial \Delta[n] \\
\downarrow 1 \otimes i & & \downarrow 1 \otimes i \\
\hat{A} \otimes \Delta[n] & \xrightarrow{\tilde{g} \otimes 1} & \hat{B} \otimes \Delta[n].
\end{array}
\]

Observe that the morphism

\[
\tilde{A} \otimes \Delta[n] \xrightarrow{\tilde{g} \otimes 1} \tilde{B} \otimes \Delta[n]
\]

identifies with

\[
\hat{A} \otimes \Delta[n] \xrightarrow{\tilde{g} \otimes 1} \hat{B} \otimes \Delta[n],
\]

and so belongs to \(W_S \). Now, the morphism

\[
\hat{A} \otimes \partial \Delta[n] \xrightarrow{\tilde{g} \otimes 1} \hat{B} \otimes \partial \Delta[n]
\]

corresponds to the induced map of latching objects

\[
L_n \hat{A} \longrightarrow L_n \hat{B},
\]

which is a cofibration in \(\mathcal{M} \) by proposition 15.3.11 in [15].

Now by propositions 15.10.4, 16.3.12 and theorem 19.9.1 of [15], we have the following commutative diagram

\[
\begin{array}{ccc}
\text{hocolim} \hat{A} & \xrightarrow{\text{hocolim} \hat{B}} & \text{hocolim} \hat{B} \\
\downarrow \partial(\Delta[n]) & & \downarrow \partial(\Delta[n]) \\
L_n \hat{A} & \longrightarrow & L_n \hat{B},
\end{array}
\]

where the vertical arrows are weak equivalences and \(\partial(\Delta[n]) \) denotes the category of strictly increasing maps with target \([n]\). By property \((d)\) of the class \(W_S \), we conclude that \(\tilde{g} \otimes 1 \Delta[n] \) belongs to \(W_S \).

We have the following diagram

\[
\begin{array}{ccc}
\tilde{A} \otimes \Delta[n] & \xrightarrow{I} & \hat{A} \otimes \partial \Delta[n] \\
\downarrow & & \downarrow \\
\hat{A} \otimes \Delta[n] & \xrightarrow{\tilde{g} \otimes 1} & \hat{B} \otimes \Delta[n].
\end{array}
\]

Notice that the morphism \(I \) belongs to \(W_S \) by the stability condition \((S1)\) applied to the morphism

\[
\tilde{A} \otimes \partial \Delta[n] \xrightarrow{\tilde{g} \otimes 1} \tilde{B} \otimes \partial \Delta[n],
\]

which is a cofibration and belongs to \(W_S \). Since the morphism \(\tilde{g} \otimes 1 \) belongs to \(W_S \) so does \(\Lambda(g) \).

This proves the proposition. \(\checkmark \)

Let \(\mathcal{D} \) be derivator and \(S \) a class of morphisms in \(\mathcal{D}(e) \).
Definition 5.2 (Cisinski [7]). The derivator \(\mathbb{D} \) admits a left Bousfield localization by \(S \) if there exists a morphism of derivators
\[
\gamma : \mathbb{D} \to L_S \mathbb{D},
\]
which commutes with homotopy colimits, sends the elements of \(S \) to isomorphisms in \(L_S \mathbb{D}(e) \) and satisfies the universal property: for every derivator \(\mathbb{D}' \) the morphism \(\gamma \) induces an equivalence of categories
\[
\text{Hom}_{L_S \mathbb{D}}(\mathbb{D}, \mathbb{D}') \cong \text{Hom}_{S}(\mathbb{D}, \mathbb{D}'),
\]
where \(\text{Hom}_{S}(\mathbb{D}, \mathbb{D}') \) denotes the category of morphisms of derivators which commute with homotopy colimits and send the elements of \(S \) to isomorphisms in \(\mathbb{D}'(e) \).

Lemma 5.3. Suppose that \(\mathbb{D} \) is a triangulated derivator, \(S \) is stable under the loop space functor \(\Omega(e) : \mathbb{D}(e) \to \mathbb{D}(e) \), see \([3]\), and \(\mathbb{D} \) admits a left Bousfield localization \(L_S \mathbb{D} \) by \(S \).

Then \(L_S \mathbb{D} \) is also a triangulated derivator.

Proof. Recall from \([3]\) that since \(\mathbb{D} \) is a triangulated derivator, we have the following equivalence
\[
\mathbb{D} \xrightarrow{\Sigma} \Omega \xleftarrow{\Omega} \mathbb{D}
\]
Notice that both morphisms of derivators, \(\Sigma \) and \(\Omega \), commute with homotopy colimits. Since \(S \) is stable under the functor \(\Omega(e) : \mathbb{D}(e) \to \mathbb{D}(e) \) and \(\mathbb{D} \) admits a left Bousfield localization \(L_S \mathbb{D} \) by \(S \), we have an induced morphism
\[
\Omega : L_S \mathbb{D} \to L_S \mathbb{D}.
\]
Let \(s \) be an element of \(S \). We now show that the image of \(s \) by the functor \(\gamma \circ \Sigma \) is an isomorphism in \(L_S \mathbb{D}(e) \). For this consider the category \(\Gamma \); see section \([3]\) and the functors
\[
(0, 0) : e \to \Gamma \quad \text{and} \quad p : \Gamma \to e.
\]
Now recall from section 7 from \([14]\) that
\[
\Omega(e) := p \circ (0, 0)_*.
\]
This description shows us that the image of \(s \) under the functor \(\gamma \circ \Sigma \) is an isomorphism in \(L_S \mathbb{D}(e) \) because \(\gamma \) commutes with homotopy colimits. In conclusion, we have an induced adjunction
\[
L_S \mathbb{D} \xrightarrow{\gamma} \mathbb{D} \xleftarrow{\Omega} L_S \mathbb{D}
\]
which is clearly an equivalence. This proves the lemma.

\[\square\]

Theorem 5.4 (Cisinski [7]). The morphism of derivators
\[
\gamma : \text{HO}(\mathcal{M}) \xrightarrow{\text{Id}} \text{HO}(L_S \mathcal{M})
\]
is a left Bousfield localization of \(\text{HO}(\mathcal{M}) \) by the image of the set \(S \) in \(\text{Ho}(\mathcal{M}) \).
Proof. Let \(\mathbb{D} \) be a derivator.

The morphism \(\gamma \) admits a fully faithful right adjoint
\[
\sigma : \text{HO}(L_{S}\mathcal{M}) \to \text{HO}(\mathcal{M}).
\]

Therefore, the induced functor
\[
\gamma^* : \text{Hom}_{(\text{HO}(L_{S}\mathcal{M}), \mathbb{D})} \to \text{Hom}_{(\text{HO}(\mathcal{M}), \mathbb{D})},
\]

admits a left adjoint \(\sigma^* \) and \(\sigma^* \gamma^* = (\gamma \sigma)^* \) is isomorphic to the identity. Therefore \(\gamma^* \) is fully faithful. We now show that \(\gamma^* \) is essentially surjective. Let \(F \) be an object of \(\text{Hom}_{(\text{HO}(\mathcal{M}), \mathbb{D})} \). Notice that since \(\mathbb{D} \) satisfies the conservativity axiom, it is sufficient to show that the functor
\[
\gamma^* (F) : \text{Ho}(\mathcal{M}) \to \mathcal{D}(e)
\]
sends the images in \(\text{Ho}(\mathcal{M}) \) of \(S \)-local equivalences of \(\mathcal{M} \) to isomorphisms in \(\mathbb{D}(e) \).

The morphism \(F \) then becomes naturally a morphism of derivators
\[
\gamma^* (F) : \text{HO}(L_{S}\mathcal{M}) \to \mathbb{D}(e)
\]
such that \(\gamma^* (F) = F \). Now, since \(F \) commutes with homotopy colimits, the functor
\[
\mathcal{M} \to \text{Ho}(\mathcal{M}) \to \mathbb{D}(e)
\]
sends the elements of \(\mathcal{W}_{S} \) to isomorphisms. This proves the theorem since by proposition 5.1 the class \(\mathcal{W}_{S} \) equals the class of \(S \)-local equivalences in \(\mathcal{M} \).

6. FILTERED HOMOTOPY COLIMITS

Let \(\mathcal{M} \) be a cellular Quillen model category, with \(I \) the set of generating cofibrations. Suppose that the domains and codomains of the elements of \(I \) are cofibrant, \(\aleph_0 \)-compact, \(\aleph_0 \)-small and homotopically finitely presented, see definition 2.1.1 in \([11]\).

Example 6.1. Consider the quasi-equivalent, resp. quasi-equiconic, resp. Morita, Quillen model structure on \(\text{dgcat} \) constructed in \([37, 38, 39]\).

Recall that a dg functor \(F : \mathcal{C} \to \mathcal{E} \) is a quasi-equivalence, resp. quasi-equiconic, resp. a Morita dg functor, if it satisfies one of the following conditions C1) or C2):

C1) The dg category \(\mathcal{C} \) is empty and all the objects of \(\mathcal{E} \) are contractible.

C2) For every object \(c_1, c_2 \in \mathcal{C} \), the morphism of complexes from \(\text{Hom}_{\mathcal{C}}(c_1, c_2) \) to \(\text{Hom}_{\mathcal{C}}(F(c_1), F(c_2)) \) is a quasi-isomorphism and the functor \(H^0(F) \), resp. \(H^0(\text{pre-tr}(F)) \), resp. \(H^0(\text{pre-tr}(F))^p \), is essentially surjective.

Observe that the domains and codomains of the set \(I \) of generating cofibrations in \(\text{dgcat} \) satisfy the conditions above for all the Quillen model structures.

The following proposition is a simplification of proposition 2.2 in \([11]\).

Proposition 6.2. Let \(\mathcal{M} \) be a Quillen model category which satisfies the conditions above. Then

1) A filtered colimit of trivial fibrations is a trivial fibration.
2) For any filtered diagram \(X_i \) in \(\mathcal{M} \), the natural morphism
\[
\text{hocolim}_{i \in I} X_i \to \text{colim}_{i \in I} X_i
\]
is an isomorphism in \(\text{Ho}(\mathcal{M}) \).
3) Any object \(X \) in \(\mathcal{M} \) is equivalent to a filtered colimit of strict finite \(I \)-cell objects.
4) An object X in \mathcal{M} is homotopically finitely presented if and only if it is equivalent to a retract of a strict finite I-cell object.

Proof. The proof of 1), 2) and 3) is exactly the same as that of proposition 2 in [11]. The proof of 4) is also the same once we observe that the domains and codomains of the elements of the set I are already homotopically finitely presented by hypothesis.

In everything that follows, we fix:
- A co-simplicial resolution functor $(\Gamma(-) : \mathcal{M} \rightarrow \mathcal{M}^\Delta, i)$ in the model category \mathcal{M}, see definition 16.1.8 in [15]. This means that for every object X in \mathcal{M}, $\Gamma(X)$ is cofibrant in the Reedy model structure on \mathcal{M}^Δ and

 $i(X) : \Gamma(X) \simto c^*(X)$

is a weak equivalence on \mathcal{M}^Δ, where $c^*(X)$ denotes the constant co-simplicial object associated with X.
- A fibrant resolution functor $((-)_f : \mathcal{M} \rightarrow \mathcal{M}, \epsilon)$ in the model category \mathcal{M}, see [15].

Definition 6.3. Let \mathcal{M}_f be the smallest full subcategory of \mathcal{M} such that
- \mathcal{M}_f contains (a representative of the isomorphism class of) each strictly finite I-cell object of \mathcal{M} and
- the category \mathcal{M}_f is stable under the functors $(-)_f$ and $\Gamma(-)^n$, $n \geq 0$.

Remark 6.4. Notice that \mathcal{M}_f is a small category and that every object in \mathcal{M}_f is weakly equivalent to a strict finite I-cell.

We have the inclusion $\mathcal{M}_f \subseteq \mathcal{M}$.

Definition 6.5. Let S be the set of pre-images of the weak equivalences in \mathcal{M} under the functor i.

Lemma 6.6. The induced functor

$\mathcal{M}_f[S^{-1}] \xrightarrow{\text{Ho}(I)} \text{Ho}(\mathcal{M})$

is fully faithful, where $\mathcal{M}_f[S^{-1}]$ denotes the localization of \mathcal{M} by the set S.

Proof. Let X, Y be objects of \mathcal{M}_f. Notice that $(Y)_f$ is a fibrant resolution of Y in \mathcal{M} which belongs to \mathcal{M}_f and

$\Gamma(X)^0 \coprod \Gamma(X)^0 \xrightarrow{d^0} \Gamma(X)^0$

is a cylinder object for $\Gamma(X)^0$, see proposition 16.1.6 from [15]. Since \mathcal{M}_f is also stable under the functors $\Gamma(-)^n$, $n \geq 0$, this cylinder object also belongs to \mathcal{M}_f. This implies that if in the construction of the homotopy category $\text{Ho}(\mathcal{M})$, as in
theorem 8.35 of [15], we restrict ourselves to \mathcal{M}_f we recover $\mathcal{M}_f[S^{-1}]$ as a full subcategory of $\text{Ho}(\mathcal{M})$. This implies the lemma.

We denote by $\text{Fun}(\mathcal{M}_f^{op}, S\text{et})$ the Quillen model category of simplicial pre-sheaves on \mathcal{M}_f endowed with the projective model structure, see section [4]. Let Σ be the image in $\text{Fun}(\mathcal{M}_f^{op}, S\text{et})$ by the functor h, see section [4] of the set S in \mathcal{M}_f. Since the category $\text{Fun}(\mathcal{M}_f^{op}, S\text{et})$ is cellular and left proper, its left Bousfield localization by the set Σ exists, see [15]. We denote it by $L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et})$. We have a composed functor that we still denote by h

$$h : \mathcal{M} \to \text{Fun}(\mathcal{M}_f^{op}, S\text{et}) \xrightarrow{\text{Id}} L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et}).$$

Now, consider the functor

$$h : \mathcal{M} \to \text{Fun}(\mathcal{M}_f^{op}, S\text{et}) \xrightarrow{\text{Id}} L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et}).$$

We also have a composed functor that we still denote by h

$$h : \mathcal{M} \to \text{Fun}(\mathcal{M}_f^{op}, S\text{et}) \xrightarrow{\text{Id}} L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et}).$$

Now, observe that the natural equivalence

$$i(-) : \Gamma(-) \to c^*(-),$$

induces, for every object X in \mathcal{M}_f, a morphism $\Psi(X)$ in $L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et})$

$$\Psi(X) : h(X) = \text{Hom}(c^*(-), X) \to \text{Hom}(\Gamma(-), X) = : (h \circ i)(X),$$

which is functorial in X.

Lemma 6.7. The functor h preserves weak equivalences between fibrant objects.

Proof. Let X be a fibrant object in \mathcal{M}. We have an equivalence

$$\text{Hom}(\Gamma(Y), X) \xrightarrow{\sim} \text{Map}_\mathcal{M}(Y, X),$$

see [15]. This implies the lemma. \hfill \checkmark

Remark 6.8. The previous lemma implies that the functor h admits a right derived functor

$$\mathbb{R}h : \text{Ho}(\mathcal{M}) \to \text{Ho}(L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et})).$$

Since the functor

$$h : \mathcal{M}_f \to L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et}),$$

sends, by definition, the elements of S to weak equivalences, we have an induced morphism

$$\text{Ho}(h) : \mathcal{M}_f[S^{-1}] \to \text{Ho}(L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et})).$$

Remark 6.9. Notice that lemma 4.2.2 from [10] implies that for every X in \mathcal{M}_f, the morphism $\Psi(X)$

$$\Psi(X) : \text{Ho}(h)(X) \to (\mathbb{R}h \circ \text{Ho}(I))(X)$$

is an isomorphism in $\text{Ho}(L_\Sigma \text{Fun}(\mathcal{M}_f^{op}, S\text{et})).$
This shows that the functors
\[\text{Ho}(h), \mathbb{R}_h \circ \text{Ho}(I) : \mathcal{M}_f[S^{-1}] \to \text{Ho}(\mathbb{L}_\Sigma \text{Fun}(\mathcal{M}_f^{op}, Sset)) \]
are canonically isomorphic and so we have the following diagram

\[
\begin{array}{ccc}
\mathcal{M}_f[S^{-1}] & \xrightarrow{\text{Ho}(I)} & \text{Ho}(\mathcal{M}) \\
\text{Ho}(h) \downarrow & & \text{Ho}(\mathbb{L}_\Sigma \text{Fun}(\mathcal{M}_f^{op}, Sset)) \\
& \mathbb{R}_h \downarrow & \\
& \text{Ho}(\mathcal{M}) & \\
\end{array}
\]

which is commutative up to isomorphism.

Lemma 6.10. The functor \(\mathbb{R}_h \) commutes with filtered homotopy colimits.

Proof. Let \(\{Y_i\}_{i \in I} \) be a filtered diagram in \(\mathcal{M} \). We can suppose, without loss of generality, that \(Y_i \) is fibrant in \(\mathcal{M} \). By proposition 6.2, the natural morphism
\[
\text{hocolim}_{i \in I} Y_i \longrightarrow \text{colim}_{i \in I} Y_i
\]
is an isomorphism in \(\text{Ho}(\mathcal{M}) \) and \(\text{colim}_{i \in I} Y_i \) is also fibrant. Since the functor
\[
\text{Ho}(\text{Fun}(\mathcal{M}_f^{op}, Sset)) \xrightarrow{\text{Id}} \text{Ho}(\mathbb{L}_\Sigma \text{Fun}(\mathcal{M}_f^{op}, Sset))
\]
commutes with homotopy colimits and in \(\text{Ho}(\text{Fun}(\mathcal{M}_f^{op}, Sset)) \) they are calculated objectwise, it is sufficient to show that the morphism
\[
\text{hocolim}_{i \in I} \mathbb{R}_h(Y_i)(X) \longrightarrow \mathbb{R}_h(\text{colim}_{i \in I} Y_i)(X)
\]
is an isomorphism in \(\text{Ho}(Sset) \), for every object \(X \) in \(\mathcal{M}_f \). Now, since every object \(X \) in \(\mathcal{M}_f \) is homotopically finitely presented, see proposition 6.2, we have the following equivalences:
\[
\begin{align*}
\mathbb{R}_h(\text{colim}_{i \in I} Y_i)(X) &= \text{Hom}(\Gamma(X), \text{colim}_{i \in I} Y_i) \\
&\simeq \text{Map}(\Gamma(X), \text{colim}_{i \in I} Y_i) \\
&\simeq \text{colim}_{i \in I} \text{Map}(X, Y_i) \\
&\simeq \text{hocolim}_{i \in I} \mathbb{R}_h(Y_i)(X)
\end{align*}
\]
This proves the lemma. \(\square \)

We now denote by \(\mathbb{L}_\Sigma \text{Hot}_{\mathcal{M}_f} \) the derivator associated with \(\mathbb{L}_\Sigma \text{Fun}(\mathcal{M}_f^{op}, Sset) \) and by \(\mathcal{M}_f[S^{-1}] \) the pre-derivator \(\mathcal{M}_f \) localized at the set \(S \), see examples 3.3 and 3.4.

Observe that the morphism of functors
\[
\Psi : h \longrightarrow h \circ I
\]
induces a 2-morphism of derivators
\[
\overline{\Psi} : \text{Ho}(h) \longrightarrow \mathbb{R}_h \circ \text{Ho}(I)
\]

Lemma 6.11. The 2-morphism \(\overline{\Psi} \) is an isomorphism.

Proof. For the terminal category \(e \), the 2-morphism \(\overline{\Psi} \) coincides with the morphism of functors of remark 6.9. Since this one is an isomorphism, so is \(\overline{\Psi} \) by conservativity. This proves the lemma. \(\square \)
As before, we have the following diagram

\[
\begin{array}{c}
\mathcal{M}_f[S^{-1}] \xrightarrow{\text{Ho}(\mathcal{I})} \text{HO}(\mathcal{M}), \\
\downarrow \quad \downarrow \\
L\Sigma \text{Hot}_{\mathcal{M}_f}
\end{array}
\]

which is commutative up to isomorphism in the 2-category of pre-derivators. Notice that by lemma 6.10, \(\text{R}_h\) commutes with filtered homotopy colimits.

Recall from section 9.5 in [11] that the co-simplicial resolution functor \(\Gamma(-)\) that we have fixed in the beginning of this section allows us to construct a Quillen adjunction:

\[
\begin{array}{c}
\mathcal{M} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{Fun}(\mathcal{M}_f^{op}, S_{\text{set}})
\end{array}
\]

Since the functor \(\text{Re}\) sends the elements of \(\Sigma\) to weak equivalences in \(\mathcal{M}\), we have the following Quillen adjunction

\[
\begin{array}{c}
\mathcal{M} \\
\downarrow \quad \downarrow \\
L\Sigma \text{Fun}(\mathcal{M}_f^{op}, S_{\text{set}})
\end{array}
\]

and a natural weak equivalence

\[\eta : \text{Re} \circ h \sim I,\]

see [11].
This implies that we have the following diagram

\[\begin{array}{ccc}
\mathcal{M}_f[S^{-1}] & \xrightarrow{\text{Ho}(I)} & \text{Ho}(\mathcal{M}) \\
\text{Ho}(h) & \downarrow & \\
\text{Ho}(\Lambda^p_{\mathcal{M}_f}(S, \text{set})) & \leftarrow & \\
\end{array} \]

which is commutative up to isomorphism.

We now claim that \(\text{L} \text{Re} \circ \text{R} \text{h} \) is naturally isomorphic to the identity. Indeed, by proposition 6.2, each object of \(\mathcal{M} \) is isomorphic in \(\text{Ho}(\mathcal{M}) \), to a filtered colimit of strict finite \(I \)-cell objects. Since \(\text{R} \text{h} \) and \(\text{L} \text{Re} \) commute with filtered homotopy colimits and \(\text{L} \text{Re} \circ \text{Ho}(h) \simeq \text{Id} \), we conclude that \(\text{L} \text{Re} \circ \text{R} \text{h} \) is naturally isomorphic to the identity. This implies that the morphism \(\text{R} \text{h} \) is fully faithful.

Now, observe that the natural weak equivalence \(\eta \) induces a 2-isomorphism and so we obtain the following diagram

\[\begin{array}{ccc}
\mathcal{M}_f[S^{-1}] & \xrightarrow{\text{Ho}(I)} & \text{Ho}(\mathcal{M}) \\
\text{Ho}(h) & \downarrow & \\
\text{L} \text{Σ} \text{Hot}_{\mathcal{M}_f} & \leftarrow & \\
\end{array} \]

which is commutative up to isomorphism in the 2-category of pre-derivators. Notice that \(\text{L} \text{Re} \circ \text{R} \text{h} \) is naturally isomorphic to the identity (by conservativity) and so the morphism of derivators \(\text{R} \text{h} \) is fully faithful.

Let \(\mathbb{D} \) be a derivator.

Theorem 6.13. The morphism of derivators

\[\text{HO}(\mathcal{M}) \rightarrow \text{L} \text{Σ} \text{Hot}_{\mathcal{M}_f}, \]

induces an equivalence of categories

\[\text{Hom}(\text{L} \text{Σ} \text{Hot}_{\mathcal{M}_f}, \mathbb{D}) \xrightarrow{\text{R} \text{h}^*} \text{Hom}_{\text{flt}}(\text{HO}(\mathcal{M}), \mathbb{D}), \]

where \(\text{Hom}_{\text{flt}}(\text{HO}(\mathcal{M}), \mathbb{D}) \) denotes the category of morphisms of derivators which commute with filtered homotopy colimits.

Proof. We have the following adjunction

\[\begin{array}{ccc}
\text{Hom}(\text{HO}(\mathcal{M}), \mathbb{D}) & \xrightarrow{\text{R} \text{h}^*} & \text{Hom}(\text{L} \text{Σ} \text{Hot}_{\mathcal{M}_f}, \mathbb{D}) \\
\text{L} \text{Re} & \downarrow & \\
\text{Hom}(\text{L} \text{Σ} \text{Hot}_{\mathcal{M}_f}, \mathbb{D}), & \leftarrow & \\
\end{array} \]

with \(\text{R} \text{h}^* \) a fully faithful functor.

Now notice that the adjunction of lemma 6.2 induces naturally an adjunction

\[\begin{array}{ccc}
\text{Hom}(\text{L} \text{Σ} \text{Hot}_{\mathcal{M}_f}, \mathbb{D}) & \xrightarrow{\Psi} & \text{Hom}(\text{L} \text{Σ} \text{Hot}_{\mathcal{M}_f}, \mathbb{D}). \\
\end{array} \]
This implies that the composed functor
\[\mathbb{R}h^* : \text{Hom}(L\Sigma \text{Hot}_{M_f}, D) \to \text{Hom}_{\text{flt}}(\text{HO}(M), D) \]
is fully faithful.

We now show that this functor is essentially surjective.

Let \(F \) be an object of \(\text{Hom}_{\text{flt}}(\text{HO}(M), D) \). Consider the morphism
\[LRe^*(F) := F \circ LRe. \]
Notice that this morphism does not necessarily commute with homotopy colimits.

Now, by the above adjunction, we have a universal 2-morphism
\[\varphi : \Psi(LRe^*(F)) \to LRe^*(F). \]
Consider the 2-morphism
\[\mathbb{R}h^* : \mathbb{R}h^*((\Psi \circ LRe^*)(F)) \to (\mathbb{R}h^* \circ LRe^*)(F) \simeq F. \]
Now, we will show that this 2-morphism is a 2-isomorphism. By conservativity, it is sufficient to show this for the case of the terminal category \(e \). For this, observe that \(\mathbb{R}h^* \circ \Psi \circ LRe \circ h^* \circ \text{Ho}(I) \) identifies with the terminal object in \(\text{Ho}(L\Sigma_{\text{Fun}}(M_{op}, Sset)) \), because
\[h(\emptyset) = \text{Ho}(h)(\emptyset) \simeq \mathbb{R}h \circ \text{Ho}(I)(\emptyset) \simeq \mathbb{R}h^*(\ast). \]
We denote by
\[L_{\Sigma, p}\text{Fun}(M_{op}^{op}, Sset), \]
the left Bousfield localization of \(L_{\Sigma, p}\text{Fun}(M_{op}^{op}, Sset) \) at the morphism \(P \).

Now suppose that \(\text{Ho}(M) \) is pointed, i.e. that the morphism
\[\emptyset \to *, \]
in \(M \), where \(\emptyset \) denotes the initial object and \(* \) the terminal one, is a weak equivalence. Consider the morphism
\[P : \overline{\emptyset} \to h(\emptyset), \]
where \(\overline{\emptyset} \) denotes the initial object in \(L_{\Sigma, p}\text{Fun}(M_{op}^{op}, Sset) \).

Observe that, since \(\mathbb{R}h \) admits a left adjoint, \(h(\emptyset) \) identifies with the terminal object in
\[\text{Ho}(L_{\Sigma, p}\text{Fun}(M_{op}^{op}, Sset)), \]
because
\[h(\emptyset) = \text{Ho}(h)(\emptyset) \simeq \mathbb{R}h \circ \text{Ho}(I)(\emptyset) \simeq \mathbb{R}h^*(\ast). \]
We denote by
\[L_{\Sigma, p, \text{Fun}}(M_{op}^{op}, Sset), \]
is now a pointed one.

We have the following morphisms of derivators

$$
\begin{array}{c}
\Ho(\mathcal{M}) \\
\downarrow_{LRe} \\
L_\Sigma Hot_{\mathcal{M}_f} \\
\downarrow_{\phi} \\
L_\Sigma, p Hot_{\mathcal{M}_f}.
\end{array}
$$

By construction, we have a pointed morphism of derivators

$$
\Ho(\mathcal{M}) \xrightarrow{\phi \circ Rh} L_\Sigma, p Hot_{\mathcal{M}_f},
$$

which commutes with filtered homotopy colimits and preserves the point.

Let \mathbb{D} be a pointed homotopy colimits and preserves the point.

Proposition 7.1. The morphism of derivators $\Phi \circ Rh$ induces an equivalence of categories

$$
\Hom(\Lambda_\Sigma, p Hot_{\mathcal{M}_f}, \mathbb{D}) \xrightarrow{(\Phi \circ Rh)^*} \Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D}),
$$

where $\Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D})$ denotes the category of morphisms of derivators which commute with filtered homotopy colimits and preserve the point.

Proof. By theorem 5.4, we have an equivalence of categories

$$
\Hom(\Lambda_\Sigma, p Hot_{\mathcal{M}_f}, \mathbb{D}) \xrightarrow{\phi^*} \Hom_{flt}(\Ho(\mathcal{M}), \mathbb{D}).
$$

By theorem 6.13 we have an equivalence of categories

$$
\Hom_{flt}(\Ho(\mathcal{M}), \mathbb{D}) \xrightarrow{R_h^*} \Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D}).
$$

We now show that under this last equivalence, the category $\Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D})$ identifies with $\Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D})$. Let F be an object of $\Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D})$. Since F commutes with homotopy colimits, it preserves the initial object. This implies that $F \circ R_h$ belongs to $\Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D})$.

Let now G be an object of $\Hom_{flt,p}(\Ho(\mathcal{M}), \mathbb{D})$. Consider, as in the proof of theorem 6.13 the morphism

$$
\Psi(LRe^*(G)) : L_\Sigma Hot_{\mathcal{M}_f} \longrightarrow \mathbb{D}.
$$

Since $\Psi(LRe^*(G))$ commutes with homotopy colimits, by construction, it sends \emptyset to the point of \mathbb{D}. Observe also that $h(\emptyset)$ is also sent to the point of \mathbb{D} because

$$
\Psi(LRe^*(G))(h(\emptyset)) \simeq G(\emptyset).
$$

This proves the proposition.
8. Small weak generators

Let \mathcal{N} be a pointed, left proper, compactly generated Quillen model category as in definition 2.1 of [11]. Observe that in particular this implies that \mathcal{N} is finitely generated, as in section 7.4 in [16]. We denote by \mathcal{G} the set of cofibers of the generating cofibrations I in \mathcal{N}. By corollary 7.4.4 in [16], the set \mathcal{G} is a set of small weak generators for $\text{Ho}(\mathcal{N})$, see definitions 7.2.1 and 7.2.2 in [16]. Let S be a set of morphisms in \mathcal{N} between objects which are homotopically finitely presented, see [41], and L_SN the left Bousfield localization of \mathcal{N} by S. We have an adjunction

$$
\begin{array}{ccc}
\text{Ho}(\mathcal{N}) & \cong & \text{Ho}(L_SN) \\
\text{Id} & \downarrow & \text{Id} \\
\text{Ho}(S \text{set}) & \cong & \text{Ho}(S \text{set})
\end{array}
$$

Lemma 8.1. The image of the set \mathcal{G} under the functor $L\text{Id}$ is a set of small weak generators in $\text{Ho}(L_SN)$.

Proof. The previous adjunction is equivalent to

$$
\begin{array}{ccc}
\text{Ho}(\mathcal{N}) & \cong & \text{Ho}(L_SN) \\
(-)_f & \downarrow & (-)_f \\
\text{Ho}(\mathcal{N})_S & \cong & \text{Ho}(\mathcal{N})_S
\end{array}
$$

where $\text{Ho}(\mathcal{N})_S$ denotes the full subcategory of $\text{Ho}(\mathcal{N})$ formed by the S-local objects of \mathcal{N} and $(-)_f$ denotes a fibrant resolution functor in L_SN, see [15]. Clearly, this implies that the image of the set \mathcal{G} under the functor $(-)_f$ is a set of weak generators in $\text{Ho}(L_SN)$.

We now show that the S-local objects in \mathcal{N} are stable under filtered homotopy colimits. Let $\{X_i \}_{i \in I}$ be a filtered diagram of S-local objects. By proposition 6.2, we have an isomorphism

$$
\text{hocolim}_{i \in I} X_i \cong \text{colim}_{i \in I} X_i
$$

in $\text{Ho}(\mathcal{N})$. We now show that $\text{colim}_{i \in I} X_i$ is an S-local object. Let $g : A \to B$ be an element of S. We have at our disposal the following commutative diagram

$$
\begin{array}{ccc}
\text{Map}(B, \text{colim}_{i \in I} X_i) & \cong & \text{Map}(A, \text{colim}_{i \in I} X_i) \\
\text{colim}_{i \in I} \text{Map}(B, X_i) & \cong & \text{colim}_{i \in I} \text{Map}(A, X_i).
\end{array}
$$

Now observe that since A and B are homotopically finitely presented objects, the vertical arrows in the diagram are isomorphisms in $\text{Ho}(S \text{set})$. Since each object X_i is S-local, the morphism g_i^* is an isomorphism in $\text{Ho}(S \text{set})$ and so is $\text{colim}_{i \in I} g_i^*$. This implies that $\text{colim}_{i \in I} X_i$ is an S-local object. This shows that the inclusion

$$
\text{Ho}(\mathcal{N})_S \hookrightarrow \text{Ho}(\mathcal{N}),
$$

is a set of small weak generators.
commutes with filtered homotopy colimits and so the image of the set \(\mathcal{G} \) under the functor \((-)_f\) consists of small objects in \(\text{Ho}(L_S^\mathcal{V}) \).

This proves the lemma.

Recall from the previous chapter that we have constructed a pointed derivator \(L_{\Sigma,P} \text{Hot}_{\mathcal{M}_f} \). We will now construct a strictly pointed Quillen model category whose associated derivator is equivalent to \(L_{\Sigma,P} \text{Hot}_{\mathcal{M}_f} \). Consider the pointed Quillen model category

\[
\star \downarrow \text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set}),
\]

where \(\star \) denotes the forgetful functor.

We denote by \(L_{\Sigma,P} \text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set}) \) the left Bousfield localization of \(\text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set}) \) by the image of the set \(\Sigma \cup \{P\} \) under the functor \((-)_\star \). We denote by \(L_{\Sigma,P} \text{Hot}_{\mathcal{M}_f}^\bullet \) the derivator associated with \(L_{\Sigma,P} \text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set}) \).

Remark 8.2. Since the derivators associated with \(L_{\Sigma,P} \text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set}) \) and \(L_{\Sigma,P} \text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set})^\bullet \) are characterized by the same universal property we have a canonical equivalence of pointed derivators

\[
L_{\Sigma,P} \text{Hot}_{\mathcal{M}_f} \xrightarrow{\sim} L_{\Sigma,P} \text{Hot}_{\mathcal{M}_f}^\bullet.
\]

Notice also that the category \(\text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set}) \) endowed with the projective model structure is pointed, left proper, compactly generated and that the domains and codomains of the elements of the set \((\Sigma \cup \{P\})_\star \) are homotopically finitely presented objects. Therefore by lemma \textit{S3} the set

\[
\mathcal{G} = \{ F^{X}_{\Delta[n]_+ / \partial \Delta[n]_+} | X \in \mathcal{M}_f, n \geq 0 \},
\]

of cofibers of the generating cofibrations in \(\text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set}) \) is a set of small weak generators in \(\text{Ho}(L_{\Sigma,P} \text{Fun}(\mathcal{M}_{\text{op}}^op, S\text{set})^\bullet) \).

9. Stabilization

Let \(\mathcal{D} \) be a regular pointed strong derivator.

In \textit{[14]}, Heller constructs a universal morphism to a triangulated strong derivator

\[
\mathcal{D} \xrightarrow{\text{stab}} \text{St}(\mathcal{D}),
\]

which commutes with homotopy colimits.

This construction is done in two steps. First consider the following ordered set

\[
\mathcal{V} := \{(i,j) | |i - j| \leq 1 \} \subset \mathbb{Z} \times \mathbb{Z}
\]

naturally as a small category. We denote by

\[
\mathcal{V} := \{(i,j) | |i - j| = 1 \} \subset \mathcal{V},
\]

the full subcategory of ‘points on the boundary’.
Now, let $\text{Spec} (D)$ be the full subderivator of D_V, see definition 3.4 in [3], formed by the objects X in $D_V(L)$, whose image under the functor

$$D_V(L) = D(V \times L) \to \text{Fun}(V^{op}, D(L))$$

is of the form

$$\star \to X(1, 1) \to \cdots \star \to X(0, 0) \to \star \to \cdots X(-1, -1) \to \star$$

see section 8 in [14]. We have an evaluation functor $ev_{(0,0)} : \text{Spec}(D) \to D$, which admits a left adjoint $L[0,0]$.

Finally, let $\text{St}(D)$ be the full reflexive subderivator of $\text{Spec}(D)$ consisting of the Ω-spectra, as defined in [14].

We have the following adjunctions

$$
\begin{array}{ccc}
D & \xrightarrow{L[0,0]} & \text{Spec}(D) \\
\downarrow{\text{stab}} & & \downarrow{\text{ev}_{(0,0)}} \\
\text{St}(D) & \xleftarrow{\text{loc}} & \text{St}(D)
\end{array}
$$

in the 2-category of derivators.

Let T be a triangulated strong derivator. The following theorem is proved in [14].

Theorem 9.1. The morphism stab induces an equivalence of categories

$$\text{Hom}(\text{St}(D), T) \xrightarrow{\text{stab}^*} \text{Hom}(D, T).$$

Lemma 9.2. Let \mathcal{G} be a set of objects in $D(e)$ which satisfies the following conditions:

A1) If, for each g in \mathcal{G}, we have

$$\text{Hom}_{D(e)}(g, X) = \{\star\},$$

then X is isomorphic to \star, where \star denotes the terminal and initial object in $D(e)$.

A2) For every set K and each g in \mathcal{G} the canonical map

$$\colim_{S \subseteq K} \text{Hom}_{D(e)}(g, \prod_{\alpha \in S} X_{\alpha}) \xrightarrow{\sim} \text{Hom}_{D(e)}(g, \prod_{\alpha \in S} X_{\alpha})$$

is bijective.

Then the set

$$\{\Sigma^n \text{stab}(g) \mid g \in \mathcal{G}, n \in \mathbb{Z}\}$$
of objects in $\text{St}(\mathbb{D})(e)$, where Σ denotes the suspension functor in $\text{St}(\mathbb{D})(e)$, satisfies conditions \(A_1\) and \(A_2\).

Proof. Let X be an object of $\text{St}(\mathbb{D})(e)$. Suppose that for each $g \in G$ and $n \in \mathbb{Z}$, we have

$$\text{Hom}_{\text{St}(\mathbb{D})(e)}(\Sigma^n \text{stab}(g), X) = \{\ast\}.$$

Then by the following isomorphisms

$$\text{Hom}_{\text{St}(\mathbb{D})(e)}(\Sigma^n \text{stab}(g), X) \cong \text{Hom}_{\text{St}(\mathbb{D})(e)}(\text{stab}(g), \Omega^n X) \cong \text{Hom}_{\mathbb{D}(e)}(g, \text{ev}_{(0,0)} \Omega^n X),$$

we conclude that, for all $n \in \mathbb{Z}$, we have $\text{ev}_{(n,n)} X = \ast$.

By the conservativity axiom, X is isomorphic to \ast in $\text{St}(\mathbb{D})(e)$. This shows condition A_1. Now observe that condition A_2 follows from the following isomorphisms

$$\text{Hom}_{\text{St}(\mathbb{D})(e)}(\Sigma^n \text{stab}(g), \bigoplus_{\alpha \in K} X_\alpha) \cong \text{Hom}_{\text{St}(\mathbb{D})(e)}(\text{stab}(g), \bigoplus_{\alpha \in K} \Omega^n X_\alpha) \cong \text{Hom}_{\mathbb{D}(e)}(g, \bigoplus_{\alpha \in K} \text{ev}_{(0,0)} \Omega^n X_\alpha),$$

where $\text{ev}_{(n,n)} X_\alpha = \ast$.

Lemma 9.3. Let \mathbb{T} be a triangulated derivator and G a set of objects in $\mathbb{T}(e)$ which satisfies conditions A_1 and A_2 of lemma 9.2.

Then for every small category L and every point $x : e \to L$ in L, the set

$$\{x_t(g) \mid g \in G, x : e \to L\}$$

satisfies conditions A_1 and A_2 in the category $\mathbb{T}(L)$.

Proof. Suppose that

$$\text{Hom}_{\mathbb{T}(L)}(x_t(g), M) = \{\ast\},$$

for every $g \in G$ and every point x in L. Then by adjunction $x^* M$ is isomorphic to \ast in $\mathbb{T}(e)$ and so by the conservativity axiom, M is isomorphic to \ast in $\mathbb{T}(L)$. This
shows condition A1). Condition A2) follows from the following isomorphisms
\[\text{Hom}_{\Gamma(L)}(x(t), \bigoplus_{\alpha \in K} M_{\alpha}) \simeq \text{Hom}_{\Gamma(e)}(g, x^* \bigoplus_{\alpha \in K} M_{\alpha}) \]
\[\simeq \text{Hom}_{\Gamma(e)}(g, \bigoplus_{\alpha \in K} x^* M_{\alpha}) \]
\[\simeq \bigoplus_{\alpha \in K} \text{Hom}_{\Gamma(e)}(g, x^* M_{\alpha}) \]
\[\simeq \bigoplus_{\alpha \in K} \text{Hom}_{\Gamma(L)}(x(t), M_{\alpha}). \]

\[\checkmark \]

Remark 9.4. Notice that if \(\mathcal{D} \) is a regular pointed strong derivator and we have at our disposal of a set \(G \) of objects in \(\mathcal{D}(e) \) which satisfies conditions A1) and A2), then lemma 8.1 and lemma 9.3 imply that \(\text{St}(\mathcal{D})(L) \) is a compactly generated triangulated category, for every small category \(L \).

Relation with Hovey/Schwede’s stabilization. We will now relate Heller’s construction with the construction of spectra as it is done by Hovey in [17] and Schwede in [36].

Let \(\mathcal{M} \) be a pointed, simplicial, left proper, cellular, almost finitely generated Quillen model category, see definition 4.1 in [17], where sequential colimits commute with finite products and homotopy pullbacks. This implies in particular that the associated derivator \(\text{HO}(\mathcal{M}) \) will be regular.

Example 9.5. Consider the category \(L_{\Sigma, p} \text{Fun}((\mathcal{M}^e)^{op}, Sset_\bullet) \) defined in section 8. Notice that the category of pointed simplicial pre-sheaves \(\text{Fun}(\mathcal{M}^e)^{op}, Sset_\bullet) \) is pointed, simplicial, left proper, cellular and even finitely generated, see definition 4.1 in [17]. Since limits and colimits in \(\text{Fun}(\mathcal{M}^e)^{op}, Sset_\bullet) \) are calculated objectwise, we conclude that sequential colimits commute with finite products. Now, by theorem 4.1.1 in [15], the category \(L_{\Sigma, p} \text{Fun}(\mathcal{M}^e)^{op}, Sset_\bullet) \) is also pointed, simplicial, left proper and cellular.

Now observe that the domains and codomains of each morphism in \(\Lambda((\Sigma \cup \{P\})^e, \Sigma) \), are finitely presented, since the forgetful functor
\[\text{Fun}(\mathcal{M}^e)^{op}, Sset_\bullet) \to \text{Fun}(\mathcal{M}^{op}, Sset) \]
commutes with filtered colimits and homotopy pullbacks. Now, by proposition 4.2.4 in [15], we conclude that a morphism \(A \xrightarrow{f} B \) in \(L_{\Sigma, p} \text{Fun}(\mathcal{M}^e)^{op}, Sset_\bullet) \), with \(B \) a local object, is a local fibration if and only if it has the right lifting property with respect to the set
\[J \cup \Lambda((\Sigma \cup \{P\})^e), \]
where \(J \) denotes the set of generating acyclic cofibrations in \(\text{Fun}(\mathcal{M}^e)^{op}, Sset_\bullet) \). This shows that \(L_{\Sigma, p} \text{Fun}(\mathcal{M}^e)^{op}, Sset_\bullet) \) is almost finitely generated.

Recall from section 1.2 in [36] that since \(\mathcal{M} \) is a pointed, simplicial model category, we have a Quillen adjunction
\[\Sigma(-) \quad \Omega(-) \]
\[\mathcal{M} \quad \mathcal{M}, \]
where $\Sigma(X)$ denotes the suspension of an object X, i.e. the pushout of the diagram

\[
\begin{array}{c}
X \otimes \partial \Delta^1 \\
\downarrow^* \\
X \otimes \Delta^1
\end{array}
\]

Recall also that in [17] and [36] the authors construct a stable Quillen model category $\mathcal{S}p^N(\mathcal{M})$ of spectra associated with \mathcal{M} and with the left Quillen functor $\Sigma(-)$. We have the following Quillen adjunction, see [17],

\[
\begin{array}{cccc}
\mathcal{M} & & \rightarrow & & \mathcal{S}p^N(\mathcal{M}) \\
\Sigma^\infty & \downarrow^{e_{\mathrm{VO}}} & & \uparrow^{\mathcal{S}p^N(\mathcal{M})} \\
& & & \\
\mathcal{S}p^N(\mathcal{M}) & & \rightarrow & & \mathcal{H}O(\mathcal{S}p^N(\mathcal{M}))
\end{array}
\]

and thus a morphism to a strong triangulated derivator

\[
\mathcal{H}O(\mathcal{M}) \xrightarrow{\Sigma^\infty} \mathcal{H}O(\mathcal{S}p^N(\mathcal{M}))
\]

which commutes with homotopy colimits.

By theorem [9.1] we have at our disposal a diagram

\[
\begin{array}{ccc}
\mathcal{H}O(\mathcal{M}) & & \rightarrow \\
\downarrow^{\text{stab}} & & \downarrow^{\Sigma^\infty} \\
\text{St}(\mathcal{H}O(\mathcal{M})) & & \rightarrow \\
& & \mathcal{H}O(\mathcal{S}p^N(\mathcal{M}))
\end{array}
\]

which is commutative up to isomorphism in the 2-category of derivators.

Now suppose also that we have a set \mathcal{G} of small weak generators in $\text{Ho}(\mathcal{M})$, as in definitions 7.2.1 and 7.2.2 in [17]. Suppose also that each object of \mathcal{G} considered in \mathcal{M} is cofibrant, finitely presented, homotopy finitely presented and has a finitely presented cylinder object.

Example 9.6. Observe that the category $\text{Fun}(\mathcal{M}_f^{op}, \text{Sset}_\bullet)$ is pointed and finitely generated. By corollary 7.4.4 in [16], the set

\[
\mathcal{G} = \{ F^X_{\Delta[n],+} / \partial \Delta[n],+ \mid X \in \mathcal{M}_f, n \geq 0 \}
\]

is a set of small weak generators in $\text{Ho}(\text{Fun}(\mathcal{M}_f^{op}, \text{Sset}_\bullet))$. Since the domains and codomains of the set

\[
(\Sigma \cup \{ P \})_+
\]

are homotopically finitely presented objects, lemma [8.1] implies that \mathcal{G} is a set of small weak generators in $\text{Ho}(L_{\Sigma,P} \text{Fun}(\mathcal{M}_f^{op}, \text{Sset}_\bullet))$. Clearly the elements of \mathcal{G} are cofibrant, finitely presented and have a finitely presented cylinder object. They are also homotopically finitely presented.

Under the hypotheses above on the category \mathcal{M}, we have the following comparison theorem

Theorem 9.7. The induced morphism of triangulated derivators

\[
\varphi : \text{St}(\mathcal{H}O(\mathcal{M})) \rightarrow \mathcal{H}O(\mathcal{S}p^N(\mathcal{M}))
\]

is an equivalence.
The proof of theorem 9.7 will consist in verifying the conditions of the following general proposition.

Proposition 9.8. Let $F : T_1 \to T_2$ be a morphism of strong triangulated derivators. Suppose that the triangulated categories $T_1(e)$ and $T_2(e)$ are compactly generated and that there is a set $G \subset T_1(e)$ of compact generators, which is stable under suspensions and satisfies the following conditions:

a) $F(e)$ induces bijections
$$\text{Hom}_{T_1(e)}(g_1, g_2) \to \text{Hom}_{T_2(e)}(Fg_1, Fg_2), \forall g_1, g_2 \in G$$

and

b) the set of objects $\{Fg \mid g \in G\}$ is a set of compact generators in $T_2(e)$.

Then the morphism F is an equivalence of derivators.

Proof. Conditions a) and b) imply that $F(e)$ is an equivalence of triangulated categories, see [32].

Now, let L be a small category. We show that conditions a) and b) are also verified by $F(L), T_1(L)$ and $T_2(L)$. By lemma 9.3 the sets
$$\{x_!(g) \mid g \in G, x : e \to L\} \quad \text{and} \quad \{x_!(Fg) \mid g \in G, x : e \to L\}$$

consist of compact generators for $T_1(L)$, resp. $T_2(L)$, which are stable under suspensions. Since F commutes with homotopy colimits $F(x_!(g)) = x_!(Fg)$ and so the following isomorphisms
$$\text{Hom}_{T_1(L)}(x_!(g_1), x_!(g_2)) \simeq \text{Hom}_{T_1(e)}(g_1, x^*x_!(g_2)) \simeq \text{Hom}_{T_2(e)}(F(g_1), F(x^*x_!(g_2))) \simeq \text{Hom}_{T_2(L)}(x_!F(g_1), x_!F(g_2))$$

imply the proposition. √

Let us now prove theorem 9.7.

Proof. Let us first prove condition b) of proposition 9.8. Since the set G of small generators in $\text{Ho}(\mathcal{M})$ satisfies the conditions of lemma 9.2, we have a set
$$\{\Sigma^n \text{stab}(g) \mid g \in G, n \in \mathbb{Z}\}$$

of compact generators in $\text{St}(\text{Ho}(\mathcal{M}))(e)$, which is stable under suspensions. We now show that the set
$$\{\Sigma^n \Omega \Sigma^\infty(g) \mid g \in G, n \in \mathbb{Z}\}$$

is a set of compact generators in $\text{Ho}(\text{Sp}^N(\mathcal{M}))$. These objects are compact because the functor $\text{Re}v_0$ in the adjunction

$$\begin{array}{ccc}
\text{Ho}(\mathcal{M}) & \overset{\Omega \Sigma^\infty}{\longrightarrow} & \text{Re}v_0 \\
\downarrow & & \downarrow \\
\text{Ho}(\text{Sp}^N(\mathcal{M})) & \overset{\text{Re}v_0}{\longrightarrow} & \text{Ho}(\mathcal{M})
\end{array}$$

commutes with filtered homotopy colimits. We now show that they form a set of generators. Let Y be an object in $\text{Ho}(\text{Sp}^N(\mathcal{M}))$, that we can suppose, without loss of generality, to be an Ω-spectrum, see [17]. Suppose that
$$\text{Hom}(\Sigma^n \Omega \Sigma^\infty(g_i), Y) \simeq \text{colim}_m \text{Hom}(g_i, \Omega^n Y_{m+p}) = \{\ast\}, \ n \geq 0.$$
Since Y is an Ω-spectrum, we have

$$Y_p = \ast, \forall p \geq 0.$$

This implies that Y is isomorphic to \ast in $\text{Ho}(\text{Sp}^N(M))$.

We now show condition a). Let g_1 and g_2 be objects in \mathcal{G}. Observe that we have the following isomorphisms, see [14]

$$\text{Hom}_{S\text{t}(\text{HO}(M))}(\text{stab}(g_1), \text{stab}(g_2)) \cong \text{Hom}_{\text{HO}(M)}(g_1, (ev_{(0,0)} \circ \text{loc} \circ L[0,0])(g_2)) \cong \text{Hom}_{\text{HO}(M)}(g_1, \text{ev}_{(0,0)}(\text{hocolim}(L[0,0](g_2) \rightarrow \Omega \sigma L[0,0](g_2) \rightarrow \ldots))) \cong \text{colim}_j \text{Hom}_{\text{HO}(M)}(g_1, \Omega^j \Sigma^j(g_2)).$$

Now, by corollary 4.13 in [17], we have

$$\text{Hom}_{\text{Ho}(\text{Sp}^N(M))}(\mathbb{L}^j \Sigma^\infty(g_1), \mathbb{L}^j \Sigma^\infty(g_2)) \cong \text{colim}_m \text{Hom}_{\text{Ho}(M)}(g_1, \Omega^m(\Sigma^m(g_2)))_f,$$

where $(\Sigma^\infty(g_2))_f$ denotes a levelwise fibrant resolution of $\Sigma^\infty(g_2)$ in the category $\text{Sp}^N(M)$.

Now, notice that since g_2 is cofibrant, so is $\Sigma^m(g_2)$ and so we have the following isomorphism

$$\Omega^m(\Sigma^m(g_2))_f \xrightarrow{\sim} (\mathbb{R}\Omega)^m \circ (\mathbb{L}\Sigma)^m(g_2)$$

in $\text{Ho}(\text{Sp}^N(M))$. This implies that for $j \geq 0$, we have an isomorphism

$$\Omega^j \Sigma^j(g_2) \xrightarrow{\sim} \Omega^j(\Sigma^j(g_2))_f$$

in $\text{Ho}(\text{Sp}^N(M))$ and so

$$\text{Hom}_{\text{St}(\text{HO}(M))}(\text{stab}(g_1), \text{stab}(g_2)) = \text{Hom}_{\text{Ho}(\text{Sp}^N(M))}(\mathbb{L}^j \Sigma^\infty(g_1), \mathbb{L}^j \Sigma^\infty(g_2))_f.$$

Let now p be an integer. Notice that

$$\text{Hom}_{\text{St}(\text{HO}(M))}(\text{stab}(g_1), \Sigma^p \text{stab}(g_2)) = \text{colim}_j \text{Hom}_{\text{Ho}(M)}(g_1, \Omega^j \Sigma^j + (g_2)).$$

and that

$$\text{Hom}_{\text{Ho}(\text{Sp}^N(M))}(\mathbb{L}^j \Sigma^\infty(g_1), \Sigma^p \mathbb{L}^j \Sigma^\infty(g_2)) = \text{colim}_m \text{Hom}_{\text{Ho}(M)}(g_1, \Omega^m(\Sigma^m + (g_2)))_f.$$

This proves condition a) and so the theorem is proven. \hfill \checkmark

\textbf{Remark 9.9.} If we consider for \mathcal{M} the category $L_{\Sigma^p \text{Fun}}(M_{\text{fg}}^p, \text{Sset}_\bullet)$, we have equivalences of derivators

$$\varphi : \text{St}(L_{\Sigma^p \text{Hot}_{M_{\text{fg}}}}) \xrightarrow{\sim} \text{HO}(\text{Sp}^N(L_{\Sigma^p \text{Fun}}(M_{\text{fg}}^p, \text{Sset}_\bullet)), \text{St}(L_{\Sigma^p \text{Hot}_{M_{\text{fg}}}}).$$

Let \mathcal{D} be a strong triangulated derivator.

Now, by theorem 9.1 and proposition 7.1, we have the following proposition

\textbf{Proposition 9.10.} We have an equivalence of categories

$$\text{Hom}_{\text{Ho}(\text{dgcat}, \mathcal{D})} \xrightarrow{(\text{stab} \Phi \circ \mathcal{D})^*} \text{Hom}_{\text{Ho}(\text{dgcat}, \mathcal{D})}.$$

Since the category Sset_\bullet satisfies all the conditions of theorem 9.7, we have the following characterization of the classical category of spectra, after Bousfield-Friedlander [2], by a universal property.
Proposition 9.11. We have an equivalence of categories
\[\text{Hom}(\text{HOSp}^N(Sset_\bullet), \mathbb{D}) \cong \mathbb{D}(e). \]

Proof. By theorems 9.7 and 4.1, we have the following equivalences
\[\text{Hom}(\text{HOSp}^N(Sset_\bullet), \mathbb{D}) \cong \text{Hom}(\text{HOSet}_\bullet, \mathbb{D}) \cong \text{Hom}(\text{Hot}_\bullet, \mathbb{D}) \cong \mathbb{D}(e). \]
This proves the proposition.

Remark 9.12. An analogous characterization of the category of spectra, but in the context of stable \(\infty \)-categories is proved in [27, 17.6].

10. DG QUOTIENTS

Recall from [37] [38] that we have at our disposal a Morita Quillen model structure on the category of small dg categories \(\text{dgcat} \), see example 6.1. As shown in [37] [38] the homotopy category \(\text{Ho}(\text{dgcat}) \) is pointed. In the following, we will be considering this Quillen model structure. We denote by \(I \) its set of generating cofibrations.

Notation 10.1. We denote by \(E \) the set of inclusions of full dg subcategories
\[G \hookrightarrow H, \]
where \(H \) is a strict finite \(I \)-cell.

Recall that we have a morphism of derivators
\[U_t := \text{stab} \circ \Phi \circ \mathbb{R} \text{h} : \text{HO}(\text{dgcat}) \to \text{St}(L_{\Sigma, p} \text{Hot}_{\text{dgcat}}) \]
which commutes with filtered homotopy colimits and preserves the point.

Let us now make some general arguments.

Let \(\mathbb{D} \) be a pointed derivator. We denote by \(M \) the category associated to the graph
\[0 \leftarrow 1. \]
Consider the functor \(t = 1 : e \to M \). Since the functor \(t \) is an open immersion, see notation 3.8 and the derivator \(\mathbb{D} \) is pointed, the functor
\[t_t : \mathbb{D}(e) \to \mathbb{D}(M) \]
has a left adjoint
\[t^\flat : \mathbb{D}(M) \to \mathbb{D}(e), \]
see [3]. We denote it by
\[\text{cone} : \mathbb{D}(M) \to \mathbb{D}(e). \]
Let \(F : \mathbb{D} \to \mathbb{D} \) be a morphism of pointed derivators. Notice that we have a natural transformation of functors
\[S : \text{cone} \circ F(M) \to F(e) \circ \text{cone}. \]
Proposition 10.2. Let $\mathcal{A} \xrightarrow{R} \mathcal{B}$ be an inclusion of a full dg subcategory and Γ_R

\[
\xymatrix{
\mathcal{A} \ar[r]^-{R} \ar[d] & \mathcal{B} \ar[d] \\
0 &
}
\]

the associated object in $\text{HO}(\text{dgcat})(\Gamma)$, where 0 denotes the terminal object in $\text{Ho}(\text{dgcat})$. Then there exists a filtered category J and an object D_R in $\text{HO}(\text{dgcat})(\Gamma \times J)$, such that

\[
p_n(D_R) \sim \Gamma_R,
\]

where $p : \Gamma \times J \to \Gamma$ denotes the projection functor. Moreover, for every point $j : e \to J$ in J the object $(1 \times j)^*$ in $\text{HO}(\text{dgcat})(\Gamma)$ is of the form

\[
0 \leftarrow Y_j \xrightarrow{L_j} X_j,
\]

where $Y_j \xrightarrow{L_j} X_j$, belongs to the set \mathcal{E}.

Proof. Apply the small object argument to the morphism

\[
\emptyset \longrightarrow \mathcal{B}
\]

using the set of generating cofibrations I and obtain the factorization

\[
\xymatrix{
\emptyset \ar[rr]^-i \ar[rruu] & & \mathcal{B} \ar[dl]^-p \ar[dd]^-r \ar[lluu]^-{\sim} \\
& Q(\mathcal{B}) &
}
\]

where i is an I-cell. Now consider the following fiber product

\[
p^{-1}(\mathcal{A}) \xrightarrow{\sim} Q(\mathcal{B})
\]

\[
\xymatrix{
p^{-1}(\mathcal{A}) \ar[rr]^-r \ar[rruu] & & Q(\mathcal{B}) \ar[dl]^-p \\
\mathcal{A} \ar[rr]^-j & & \mathcal{B}.}
\]

Notice that $p^{-1}(\mathcal{A})$ is a full dg subcategory of $Q(\mathcal{B})$.

Now, by proposition 6.2 we have an isomorphism

\[
\text{colim}_{j \in J} X_j \sim Q(\mathcal{B}),
\]

where J is the filtered category of inclusions of strict finite sub-I-cells X_j into $Q(\mathcal{B})$.

For each $j \in J$, consider the fiber product

\[
\xymatrix{
Y_j \ar[r]^-c \ar[d]^-r & X_j \\
p^{-1}(\mathcal{A}) \ar[r] & Q(\mathcal{B}).}
\]

In this way, we obtain a morphism of diagrams

\[
\{Y_j\}_{j \in J} \hookrightarrow \{X_j\}_{j \in J},
\]

such that for each j in J, the inclusion

\[
Y_j \hookrightarrow X_j
\]
belongs to the set \(\mathcal{E} \) and \(J \) is filtered.

Consider now the diagram \(D_I \)

\[
\{ 0 \leftarrow Y_j \leftarrow X_j \}_{j \in J}
\]

in the category \(\text{Fun}(\Gamma \times J, \text{dgcat}) \). Now, notice that we have the isomorphism

\[
\text{colim}_{j \in J} \{ 0 \leftarrow Y_j \leftarrow X_j \} \sim \{ 0 \leftarrow p^{-1}(A) \leftarrow Q(B) \}
\]

in \(\text{Fun}(\Gamma, \text{dgcat}) \) and the weak equivalence

\[
\begin{array}{ccc}
0 & \leftarrow & p^{-1}(A) \\
\downarrow & & \downarrow \\
A & \leftarrow & Q(B)
\end{array}
\]

in \(\text{Fun}(\Gamma, \text{dgcat}) \), when endowed with the projective model structure, see [15]. Since \(\text{Fun}(\Gamma, \text{dgcat}) \) is clearly also compactly generated, we have the isomorphism

\[
\text{hocolim}_{j \in J} \{ 0 \leftarrow Y_j \leftarrow X_j \} \sim \text{colim}_{j \in J} \{ 0 \leftarrow Y_j \leftarrow X_j \}.
\]

Finally, notice that \(D_R \) is an object of \(\text{HO}(\text{dgcat})(\Gamma \times J) \) and that \(p_i(D_R) \), where \(p : \Gamma \times J \to J \) denotes the projection functor, identifies with \(\text{hocolim}_{j \in J} \{ 0 \leftarrow Y_j \leftarrow X_j \} \).

This proves the proposition. \(\square \)

Notation 10.3. We denote by \(\mathcal{E}_{st} \) the set of morphisms \(S_L \), where \(L \) belongs to the set \(\mathcal{E} \).

Let \(\mathcal{D} \) be a strong triangulated derivator.

Theorem 10.4. If

\[
G : \text{St}(L_{\Sigma, p}\text{Hot}_{\text{dgcat}}) \to \mathcal{D}
\]

is a morphism of triangulated derivators commuting with arbitrary homotopy colimits and such that \(G(e)(S_L) \) is invertible for each \(L \) in \(\mathcal{E} \), then \(G(e)(S_K) \) is invertible for each inclusion \(K : \mathcal{A} \hookrightarrow \mathcal{B} \) of a full dg subcategory.

Proof. Let \(\mathcal{A} \hookrightarrow \mathcal{B} \) be an inclusion of a full dg subcategory. Consider the morphism

\[
\varphi_K := \varphi(\Gamma_K) : (i_! \circ U_T)(\Gamma_K) \to (U_T \circ i_!)(\Gamma_K)
\]

in \(\text{St}(L_{\Sigma, p}\text{Hot}_{\text{dgcat}})(\square) \).

Let \(D_K \) be the object of \(\text{HO}(\text{dgcat})(\Gamma \times J) \) constructed in proposition 10.2. In particular \(p_i(D_K) \simto \Gamma_K \), where \(p' : \Gamma \times J \to \Gamma \) denotes the projection functor.

The inclusion \(i : \Gamma \hookrightarrow \square \), induces a commutative square

\[
\begin{array}{ccc}
\text{HO}(\text{dgcat})(\square \times J) & \xrightarrow{U_T(\square \times J)} & \text{St}(L_{\Sigma, p}\text{Hot}_{\text{dgcat}})(\square \times J) \\
\downarrow{(i \times 1)^*} & & \downarrow{(i \times 1)^*} \\
\text{HO}(\text{dgcat})(\Gamma \times J) & \xrightarrow{U_T(\Gamma \times J)} & \text{St}(L_{\Sigma, p}\text{Hot}_{\text{dgcat}})(\Gamma \times J)
\end{array}
\]

and a morphism

\[
\Psi : ((i \times 1)_! \circ U_T(\Gamma \times J))(D_K) \to (U_T(\square \times J) \circ (i \times 1)_!)(D_K).
\]
We will now show that
\[p!\Psi \sim \varphi_K, \]
where \(p : \square \times J \to \square \), denotes the projection functor.

The fact that we have the following commutative square
\[
\begin{array}{ccc}
\square & \xrightarrow{p} & \square \times J \\
\downarrow & & \downarrow_{i \times 1} \\
\Gamma & \xrightarrow{p'} & \Gamma \times J
\end{array}
\]
and that the morphism of derivators \(\mathcal{U}_T \) commutes with filtered homotopy colimits
implies the following equivalences
\[
p!\Psi = p! \circ (i \times 1)! \circ \mathcal{U}_T(\Gamma \times j)(D_K) \to \mathcal{U}_T(\square \times J) \circ (i \times 1)! (D_K)
\]
\[
\simeq i_! \circ p_! \circ \mathcal{U}_T(\Gamma \times j)(D_K) \to \mathcal{U}_T(\square \times J) \circ p_! (D_K)
\]
\[
\simeq (i_! \circ \mathcal{U}_T(\Gamma)) (\Gamma_K) \to (\mathcal{U}_T(\square) \circ i_!) (\Gamma_K)
\]
\[
= \varphi_j
\]
This shows that
\[p!(\Psi) \sim \varphi_K. \]

We now show that \(\Psi \) is an isomorphism. For this, by conservativity, it is enough to show that for every object \(j : e \to J \) in \(J \), the morphism
\[
(1 \times j)^*(\Psi),
\]
is an isomorphism in \(\text{St}(\mathcal{E}, \mathcal{P}_{\text{Hot} \text{dgcat}},) (\square) \). Recall from proposition \([\text{10}].2\) that \((1 \times j)^*(D_K) \) identifies with
\[
\{ 0 \leftarrow Y_j \xrightarrow{L_j} X_j \},
\]
where \(L_j \) belongs to \(\mathcal{E} \). We now show that \((1 \times j)^*(\Psi) \) identifies with \(\varphi_{L_j} \), which by hypotheses, is an isomorphism.

Now, the following commutative diagram
\[
\begin{array}{ccc}
\square & \xrightarrow{1 \times J} & \square \times J \\
\downarrow & & \downarrow_{i \times 1} \\
\Gamma & \xrightarrow{1 \times J} & \Gamma \times J
\end{array}
\]
and the dual of proposition \([\text{2}.8\) in \([\text{4}\) imply that we have the following equivalences
\[
(1 \times j)^*\Psi = ((1 \times j)^* \circ (i \times 1)! \circ \mathcal{U}_T(\Gamma \times j))(D_K) \to ((1 \times j)^* \circ \mathcal{U}_T(\square \times J) \circ (i \times 1)!)(D_K)
\]
\[
\simeq (i_! \circ (1 \times j)^* \circ \mathcal{U}_T(\Gamma \times j))(D_K) \to (\mathcal{U}_T(\square \times J) \circ (1 \times j)^* \circ (i \times 1)!)(D_K)
\]
\[
\simeq (i_! \circ \mathcal{U}_T(\Gamma))(\Gamma_K) \to (\mathcal{U}_T(\square) \circ i_! \circ (1 \times j)^*)(D_K)
\]
\[
\simeq i_! \circ \mathcal{U}_T(\Gamma)(\Gamma_{L_j}) \to \mathcal{U}_T(\square) \circ i_! (\Gamma_{L_j})
\]
\[
= \varphi_{L_j}
\]
Since by hypotheses \(\varphi_{L_j} \) is an isomorphism and the morphism \(G \) commutes with homotopy colimits the theorem is proven.
11. The universal localizing invariant

Recall from theorem 9.7 and remark 9.9 that if we consider for the category \(\mathcal{M} \) the category \(L_{\Sigma,P} \text{Fun}(\text{dgcat}^{op}, \text{Sset}_\bullet) \), see example 9.6, we have an equivalence of triangulated derivators

\[
\varphi : \text{St}(L_{\Sigma,P} \text{Hot}_{\text{dgcat}}) \sim \text{HO}(\text{Sp}^N(L_{\Sigma,P} \text{Fun}(\text{dgcat}^{op}, \text{Sset}_\bullet))).
\]

Now, stabilize the set \(\mathcal{E}_{st} \) defined in the previous section under the functor loop space and choose for each element of this stabilized set a representative in the category \(\text{Sp}^N(L_{\Sigma,P} \text{Fun}(\text{dgcat}^{op}, \text{Sset}_\bullet)) \). We denote the set of these representatives by \(\tilde{\mathcal{E}}_{st} \). Since \(\text{Sp}^N(L_{\Sigma,P} \text{Fun}(\text{dgcat}^{op}, \text{Sset}_\bullet)) \) is a left proper, cellular Quillen model category, see \([17]\), its left Bousfield localization by \(\tilde{\mathcal{E}}_{st} \) exists. We denote it by \(L_{\tilde{\mathcal{E}}_{st}} \text{Sp}^N(L_{\Sigma,P} \text{Fun}(\text{dgcat}^{op}, \text{Sset}_\bullet)). \) By lemma \([5.3]\) it is a stable Quillen model category.

Remark 11.1. Since the localization morphism

\[
\gamma : \text{St}(L_{\Sigma,P} \text{Hot}_{\text{dgcat}}) \xrightarrow{\text{LId}} \text{HO}(L_{\tilde{\mathcal{E}}_{st}} \text{Sp}^N(L_{\Sigma,P} \text{Fun}(\text{dgcat}^{op}, \text{Sset}_\bullet)))
\]

commutes with homotopy colimits and inverts the set of morphisms \(\mathcal{E}_{st} \), theorem \([10.4]\) allows us to conclude that it inverts all morphisms \(S_K \) for each inclusion \(A \hookrightarrow B \) of a full dg subcategory.

Definition 11.2.

- The Localizing Motivator of dg categories \(\mathcal{M}_{\text{loc}}^{dg} \) is the triangulated derivator associated with the stable Quillen model category

\[
L_{\mathcal{E}_{st}} \text{Sp}^N(L_{\Sigma,P} \text{Fun}(\text{dgcat}^{op}, \text{Sset}_\bullet)).
\]

- The Universal localizing invariant of dg categories is the canonical morphism of derivators

\[
\mathcal{U}_l : \text{HO}(\text{dgcat}) \rightarrow \mathcal{M}_{\text{loc}}^{dg}.
\]

We sum up the construction of \(\mathcal{M}_{\text{loc}}^{dg} \) in the following diagram

\[
\begin{array}{ccc}
d\text{cat}^{[S^{-1}]} & \xrightarrow{\text{HO}(h)} & \text{HO}(\text{dgcat}) \\
\text{Ho}(h) & \downarrow & \downarrow \text{LRe} \\
L_{\Sigma} \text{Hot}_{\text{dgcat}} & \xrightarrow{\varphi} & \text{HO}(\text{dgcat}) \\
\downarrow & & \downarrow \text{RRe} \\
L_{\Sigma,P} \text{Hot}_{\text{dgcat}} & \xrightarrow{\phi} & \text{St}(L_{\Sigma,P} \text{Hot}_{\text{dgcat}}) \\
\downarrow & & \downarrow \text{St} \text{Ho}_{\text{dgcat}} \\
\mathcal{M}_{\text{loc}}^{dg} & \xrightarrow{\mathcal{U}_l} & \mathcal{M}_{\text{loc}}^{dg}
\end{array}
\]

Observe that the morphism of derivators \(\mathcal{U}_l \) is pointed, commutes with filtered homotopy colimits and satisfies the following condition:
Dr) For every inclusion \(\mathcal{A} \xhookrightarrow{K} \mathcal{B} \) of a full dg subcategory the canonical morphism

\[S_K : \text{cone}(\mathcal{U}(\mathcal{A} \xhookrightarrow{K} \mathcal{B})) \to \mathcal{U}(\mathcal{B}/\mathcal{A}) \]

is invertible in \(\mathcal{M}_{dg}^{qic}(e) \).

We now give a conceptual characterization of condition Dr). Let us now denote by \(J \) be the category associated with the graph \(0 \leftarrow 1 \).

Lemma 11.3. The isomorphism classes in \(\text{HO}(\text{dgcat})(I) \) associated with the inclusions \(\mathcal{A} \xhookrightarrow{K} \mathcal{B} \) of full dg subcategories coincide with the classe of homotopy monomorphims in \(\text{dgcat} \), see section 2 in [42].

Proof. Recall from section 2 in [42] that in a model category \(\mathcal{M} \) a morphism \(X \xrightarrow{f} Y \) is a homotopy monomorphism if for every object \(Z \) in \(\mathcal{M} \), the induced morphism of simplicial sets

\[\text{Map}(Z, X) \xrightarrow{f^*} \text{Map}(Z, Y) \]

induces an injection on \(\pi_0 \) and isomorphisms on all \(\pi_i \) for \(i > 0 \) (for all base points).

Now, by lemma 2.4 of [42] a dg functor \(\mathcal{A} \xrightarrow{F} \mathcal{B} \) is an homotopy monomorphism on the quasi-equivalent Quillen model category in \(\text{dgcat} \) if and only if it is quasi-fully faithful, i.e. for any two objects \(X \) and \(Y \) in \(\mathcal{A} \) the morphism of complexes \(\text{Hom}_\mathcal{A}(X, Y) \to \text{Hom}_\mathcal{B}(FX, FY) \) is a quasi-isomorphism.

Recall that by corollary 5.10 of [38] the mapping space functor \(\text{Map}(\mathcal{A}, \mathcal{B}) \) in the Morita Quillen model category identifies with the mapping space \(\text{Map}(\mathcal{A}, B_f) \) in the quasi-equivalent Quillen model category, where \(B_f \) denotes a Morita fibrant resolution of \(\mathcal{B} \). This implies that a dg functor \(\mathcal{A} \xrightarrow{F} \mathcal{B} \) is a homotopy monomorphism if and only if \(A_f \xrightarrow{F_f} B_f \) is a quasi-fully faithful dg functor.

Now, notice that an inclusion \(\mathcal{A} \xhookrightarrow{} \mathcal{B} \) of a full dg subcategory is a homotopy monomorphism. Conversely, let \(\mathcal{A} \xrightarrow{F} \mathcal{B} \) be a homotopy monomorphism. Consider the diagram

\[
\begin{array}{ccc}
\mathcal{A}_f & \xrightarrow{F_f} & B_f \\
\uparrow \pi & & \uparrow \sim \\
\mathcal{A} & \xrightarrow{F} & B,
\end{array}
\]

where \(\mathcal{A}_f \) denotes the full dg subcategory of \(B_f \) whose objects are those in the image by the dg functor \(F_f \). Since \(F_f \) is a quasi-fully faithful dg functor, the dg functor \(\pi \) is a quasi-equivalence. This proves the lemma.

Remark 11.4. Lemma 11.3 shows that condition Dr) is equivalent to

Dr') For every homotopy monomorphism \(\mathcal{A} \xrightarrow{F} \mathcal{B} \) in \(\text{HO}(\text{dgcat})(I) \) the canonical morphism

\[\text{cone}(\mathcal{U}(\mathcal{A} \xrightarrow{F} \mathcal{B})) \to \mathcal{U}(\text{cone}(F)) \]

is invertible in \(\mathcal{M}_{dg}^{qic}(e) \).
Let \mathbb{D} be a strong triangulated derivator.

Theorem 11.5. The morphism U_{tl} induces an equivalence of categories

$$\text{Hom}(\mathcal{M}^\text{loc}_{dg}, \mathbb{D}) \xrightarrow{\text{U}_{tl}} \text{Hom}_{\text{fit}, Dr, p}(\text{HO}(\text{dgcat}), \mathbb{D}),$$

where $\text{Hom}_{\text{fit}, Dr, p}(\text{HO}(\text{dgcat}), \mathbb{D})$ denotes the category of morphisms of derivators which commute with filtered homotopy colimits, satisfy condition Dr) and preserve the point.

Proof. By theorem 5.4 we have the following equivalence of categories

$$\text{Hom}(\mathcal{M}^\text{loc}_{dg} \mathbb{D}) \xrightarrow{\gamma} \text{Hom}_{\mathcal{E}_{st}}(\text{St}(L_{\Sigma, p}(\text{Fun}(\text{dgcat}^{op}, Sset^*)), \mathbb{D}).$$

We now show that we have the following equivalence of categories

$$\text{Hom}_{\mathcal{E}_{st}}(\text{St}(L_{\Sigma, p}(\text{Fun}(\text{dgcat}^{op}, Sset^*)), \mathbb{D}) \xrightarrow{\sim} \text{Hom}_{\mathcal{E}_{st}}(\text{St}(L_{\Sigma, p}(\text{Fun}(\text{dgcat}^{op}, Sset^*)), \mathbb{D}).$$

Let G be an element of $\text{Hom}_{\mathcal{E}_{st}}(\text{St}(L_{\Sigma, p}(\text{Fun}(\text{dgcat}^{op}, Sset^*)), \mathbb{D})$ and s an element of \mathcal{E}_{st}. We show that the image of s under the functor $G(e)\circ\Omega(e)$ is an isomorphism in $\mathbb{D}(e)$. Recall from the proof of lemma 5.3 that the functor $G(e)$ commutes with $\Sigma(e)$. Since the suspension and loop space functors in $\mathbb{D}(e)$ are inverse of each other we conclude that the image of s under the functor $G(e)\circ\Omega(e)$ is an isomorphism in $\mathbb{D}(e)$. Now, simply observe that the category on the right hand side of the above equivalence identifies with $\text{Hom}_{\text{fit}, Dr, p}(\text{HO}(\text{dgcat}), \mathbb{D})$ under the equivalence

$$\text{Hom}(\text{St}(L_{\Sigma, p}(\text{Hot}_{dgcat})), \mathbb{D}) \xrightarrow{\text{stabfD}} \text{Hom}_{\text{fit}, p}(\text{HO}(\text{dgcat}), \mathbb{D}),$$

of proposition 9.10.

This proves the theorem.

Notation 11.6. We call an object of the right hand side category of theorem 11.5 a *localizing invariant* of dg categories.

We now present some examples.

Hochschild and cyclic homology. Let \mathcal{A} be a small k-flat k-category. The *Hochschild chain complex* of \mathcal{A} is the complex concentrated in homological degrees $p \geq 0$ whose pth component is the sum of the

$$\mathcal{A}(X_p, X_0) \otimes \mathcal{A}(X_p, X_{p-1}) \otimes \cdots \otimes \mathcal{A}(X_0, X_1),$$

where X_0, \ldots, X_p range through the objects of \mathcal{A}, endowed with the differential

$$d(f_p \otimes \cdots \otimes f_0) = f_{p-1} \otimes \cdots \otimes f_0 + \sum_{i=1}^{p} (-1)^i f_p \otimes \cdots \otimes f_i f_{i-1} \otimes \cdots \otimes f_0.$$

Via the cyclic permutations

$$t_p(f_p \otimes \cdots \otimes f_0) = (-1)^p f_0 \otimes f_{p-1} \otimes \cdots \otimes f_1$$

this complex becomes a precyclic chain complex and thus gives rise to a mixed complex $C(\mathcal{A})$, i.e. a dg module over the dg algebra $\Lambda = k[B]/(B^2)$, where B is of degree -1 and $dB = 0$. All variants of cyclic homology only depend on $C(\mathcal{A})$ considered in $D(\Lambda)$. For example, the cyclic homology of \mathcal{A} is the homology of the complex $C(\mathcal{A}) \otimes_{\Lambda} k$, cf. [18].

If \mathcal{A} is a k-flat differential graded category, its mixed complex is the sum-total complex of the bicomplex obtained as the natural re-interpretation of the above
complex. If \(\mathcal{A} \) is an arbitrary dg \(k \)-category, its Hochschild chain complex is defined as the one of a \(k \)-flat (e.g. a cofibrant) resolution of \(\mathcal{A} \). The following theorem is proved in [22].

Theorem 11.7. The map \(\mathcal{A} \mapsto C(\mathcal{A}) \) yields a morphism of derivators

\[
\text{HO}(\mathcal{dgcat}) \to \text{HO}(\Lambda - \text{Mod})
\]

which commutes with filtered homotopy colimits, preserves the point and satisfies condition Dr).

Remark 11.8. By theorem [11.5] the morphism of derivators \(C \) factors through \(\mathcal{U}_1 \) and so gives rise to a morphism of derivators

\[
C : \mathcal{M}^{\text{loc}}_{dg} \to \text{HO}(\Lambda - \text{Mod})
\]

Non-connective \(K \)-theory. Let \(\mathcal{A} \) be a small dg category. Its non-connective \(K \)-theory spectrum \(K(\mathcal{A}) \) is defined by applying Schlichting’s construction [35] to the Frobenius pair associated with the category of cofibrant perfect \(\mathcal{A} \)-modules (to the empty dg category we associate 0). Recall that the conflations in the Frobenius category of cofibrant perfect \(\mathcal{A} \)-modules are the short exact sequences which split in the category of graded \(\mathcal{A} \)-modules.

Theorem 11.9. The map \(\mathcal{A} \mapsto K(\mathcal{A}) \) yields a morphism of derivators

\[
\text{HO}(\mathcal{dgcat}) \to \text{HO}(\text{Spt})
\]

to the derivator associated with the category of spectra, which commutes with filtered homotopy colimits, preserves the point and satisfies condition Dr).

Proof. Proposition 11.15 in [35], which is an adaption of theorem 1.9.8 in [43], implies that we have a well defined morphism of derivators

\[
\text{HO}(\mathcal{dgcat}) \to \text{HO}(\text{Spt})
\]

Lemma 6.3 in [35] implies that this morphism commutes with filtered homotopy colimits and theorem 11.10 in [35] implies that condition Dr) is satisfied.

Remark 11.10. By theorem [11.5] the morphism of derivators \(K \) factors through \(\mathcal{U}_1 \) and so gives rise to a morphism of derivators

\[
K : \mathcal{M}^{\text{loc}}_{dg} \to \text{HO}(\text{Spt})
\]

We now establish a connection between Waldhausen’s \(S \)-construction, see [44] and the suspension functor in the triangulated category \(\mathcal{M}^{\text{loc}}_{dg}(e) \). Let \(\mathcal{A} \) be a Morita fibrant dg category, see [37], [38]. Notice that \(Z^0(\mathcal{A}) \) carries a natural exact category structure obtained by pulling back the garded-split structure on \(C_{dg}(\mathcal{A}) \) along the Yoneda functor

\[
h : Z^0(\mathcal{A}) \to C_{dg}(\mathcal{A})
\]

\[
A \mapsto \text{Hom}^\bullet(?, A)
\]

Notation 11.11. Remark that the simplicial category \(S_{s} \mathcal{A} \), obtained by applying Waldhausen’s \(S \)-construction to \(Z^0(\mathcal{A}) \), admits a natural enrichissement over the complexes. We denote by \(S_{s} \mathcal{A} \) this simplicial Morita fibrant dg category obtained.

Recall that \(\Delta \) denotes the simplicial category and \(p : \Delta \to e \) the projection functor.
Proposition 11.12. There is a canonical isomorphism in $\mathcal{M}^{loc}(e)$

$$pU_! (S \cdot A) \xrightarrow{\sim} U_! (A)[1].$$

Proof. As in [3.3], we consider the sequence in $\text{Ho}(\text{dgcat} (\Delta))$

$$0 \to A \to PS \cdot A \to S \cdot A \to 0,$$

where A denotes the constant simplicial dg category with value A and $PS \cdot A$ the path object of $S \cdot A$. For each point $n : e \to \Delta$, the nth component of the above sequence is the following short exact sequence in $\text{Ho}(\text{dgcat} (\Delta))$

$$0 \to A \to PS_n, A \to S_n, A \to 0,$$

where I maps $A \in A$ to the constant sequence $0 \to A \to A \to \cdots \to A$ and Q maps a sequence $0 \to A \to A \to \cdots \to A$ to $A / A \to \cdots \to A / A$.

Since the morphism of derivators $U_!$ satisfies condition Dr), the conservativity axiom implies that we obtain a triangle

$$pU_! (A \cdot) \to pU_! (PS \cdot) \to pU_! (S \cdot) \to pU_! (A \cdot)[1]$$

in $\mathcal{M}^{loc}_dg (\Delta)$. By applying the functor $p_!$, we obtain the following triangle

$$pU_! (A \cdot) \to pU_! (PS \cdot A) \to pU_! (S \cdot A) \to pU_! (A \cdot)[1]$$

in $\mathcal{M}^{loc}_dg (e)$. We now show that we have natural isomorphisms

$$pU_! (A \cdot) \xrightarrow{\sim} U_! (A)$$

and

$$pU_! (PS \cdot A) \xrightarrow{\sim} 0,$$

in $\mathcal{M}^{loc}_dg (e)$, where 0 denotes the zero object in the triangulated category $\mathcal{M}^{loc}_dg (e)$. This clearly implies the proposition. Since the morphisms of derivators Φ, stab and γ commute with homotopy colimits it is enough to show that we have isomorphisms

$$p_! \mathbb{R} \mathcal{H} (A \cdot) \xrightarrow{\sim} \mathbb{R} \mathcal{H} (A)$$

and

$$p_! \mathbb{R} \mathcal{H} (PS \cdot A) \xrightarrow{\sim} 0$$

in $\text{Hot}_{\text{dgcat}} (e)$, where \star denotes the terminal object in $\text{Hot}_{\text{dgcat}} (e)$. Notice that since A and PS_n, A, $n \geq 0$ are Morita fibrant dg categories, we have natural isomorphisms

$$\mathcal{H} (A \cdot) \xrightarrow{\sim} \mathbb{R} \mathcal{H} (A \cdot)$$

and

$$\mathcal{H} (PS \cdot A) \xrightarrow{\sim} \mathbb{R} \mathcal{H} (PS \cdot A)$$

in $\text{Hot}_{\text{dgcat}} (\Delta)$.

Now, since homotopy colimits in $\text{Fun}(\text{dgcat}^{op} \cdot Sset)$ are calculated objectwise and since $\mathcal{H} (A \cdot)$ is a constant simplicial object in $\text{Fun}(\text{dgcat}^{op} \cdot Sset)$, corollary 18.7.7 in [15] implies that we have an isomorphism

$$p_! \mathbb{R} \mathcal{H} (A \cdot) \xrightarrow{\sim} \mathbb{R} \mathcal{H} (A)$$
in $\mathcal{M}^{\text{loc}}_{dg}(e)$.

Notice also that since $PS_{\bullet}A$ is a contractible simplicial object, see [28], so is $\mathcal{h}(PS_{\bullet}A)$. Since homotopy colimits in $\text{Fun}(\text{dgcat}^p_f, \text{Set})$ are calculated objectwise, we have an isomorphism

$$p_!\mathcal{h}(PS_{\bullet}A) \overset{\sim}{\to} *$$

in $\text{Hot}_{\text{dgcat}}(e)$.

This proves the proposition.

\[\sqrt{\text{12.}}\]

A Quillen model in terms of presheaves of spectra

In this section, we construct another Quillen model category whose associated derivator is the localizing motivator of dg categories $\mathcal{M}^{\text{loc}}_{dg}$.

Consider the Quillen adjunction

\[
\begin{align*}
\text{Fun}(\text{dgcat}^p_f, \text{Set}_*) & \xrightarrow{\Sigma^\infty} \text{Sp}^N(\text{Fun}(\text{dgcat}^p_f, \text{Set}_*)) \\
\text{Sp}^N(\text{Fun}(\text{dgcat}^p_f, \text{Set}_*)) & \xleftarrow{ev_0}
\end{align*}
\]

Recall from section 8 that we have a set of morphisms $(\Sigma \cup \{P\})_+$ in the category $\text{Fun}(\text{dgcat}^p_f, \text{Set}_*)$. Now stabilize the image of this set by the derived functor $L\Sigma^\infty$, under the functor loop space in $\text{Ho}(\text{Sp}^N(\text{Fun}(\text{dgcat}^p_f, \text{Set}_*))$. For each one of the morphisms thus obtained, choose a representative in the model category $\text{Sp}^N(\text{Fun}(\text{dgcat}^p_f, \text{Set}_*))$.

Notation 12.1. Let us denote this set by G and by $L_G\text{Sp}^N(\text{Fun}(\text{dgcat}^p_f, \text{Set}_*))$ the associated left Bousfield localization.

Proposition 12.2. We have an equivalence of triangulated strong derivators

$$\text{HO}(\text{Sp}^N(L_{\Sigma+}G \text{Fun}(\mathcal{M}^{op}_{dg}, \text{Set}_*))) \overset{\sim}{\to} \text{HO}(L_G\text{Sp}^N(\text{Fun}(\mathcal{M}^{op}_{dg}, \text{Set}_*))).$$

Proof. Observe that theorems 5.4 and 9.7 imply that both derivators have the same universal property. This proves the proposition.

Remark 12.3. Notice that the stable Quillen model category

$$\text{Sp}^N(\text{Fun}(\mathcal{M}^{op}_{f}, \text{Set}_*))$$

identifies with

$$\text{Fun}(\mathcal{M}^{op}_{f}, \text{Sp}^N(\text{Set}_*))$$

endowed with the projective model structure.

The above considerations imply the following proposition.

Proposition 12.4. We have an equivalence of derivators

$$\text{HO}(L_{G, f}E \text{Fun}(\text{dgcat}^p_f, \text{Sp}^N(\text{Set}_*))) \overset{\sim}{\to} \mathcal{M}^{\text{loc}}_{dg}.$$
13. Upper triangular DG categories

In this section we study upper triangular dg categories using the formalism of Quillen’s homotopical algebra. In the next section, we will relate this important class of dg categories with split short exact sequences in $\text{Ho}(\text{dgcat})$.

Definition 13.1. An upper triangular dg category \mathcal{B} is given by an upper triangular matrix

$$\mathcal{B} := \begin{pmatrix} A & X \\ 0 & C \end{pmatrix},$$

where A and C are small dg categories and X is a A-C-bimodule.

A morphism $F : \mathcal{B} \to \mathcal{B}'$ of upper triangular dg categories is given by a triple $F = (F_A : A \to A', F_C : C \to C', F_X : X \to X')$, where F_A is a dg functor from A to A', resp. from C to C', and F_X is a morphism of A-C-bimodules from X to X' (we consider X' endowed with the action induced by F_A and F_C). The composition is the natural one.

Notation 13.2. We denote by dgcat^{tr} the category of upper triangular dg categories.

Let $B \in \text{dgcat}^{\text{tr}}$.

Definition 13.3. Let $|B| = \left(\begin{array}{c} \text{colim}_{j \in J} A_j \\ 0 \end{array} \right)$ be the totalization of B, i.e. the small dg category whose set of objects is the disjoint union of the set of objects of A and C and whose morphisms are given by

$$\text{Hom}_{|B|}(x, x') := \begin{cases} \text{Hom}_A(x, x') & \text{if } x, x' \in A \\ \text{Hom}_C(x, x') & \text{if } x, x' \in C \\ X(x, x') & \text{if } x \in A, x' \in C \\ 0 & \text{if } x \in C, x' \in A \end{cases}.$$

We have the following adjunction

$$\text{dgcat}^{\text{tr}} \downarrow \downarrow \text{dgcat},$$

where $I(B') := \left(\begin{array}{c} B' \\ 0 \end{array} \begin{pmatrix} \text{Hom}_{B'}(-, -) \\ \text{colim}_{j \in J} C_j \end{pmatrix} \right)$.

Lemma 13.4. The category dgcat^{tr} is complete and cocomplete.

Proof. Let $\{B_j\}_{j \in J}$ be a diagram in dgcat^{tr}. Observe that the upper triangular dg category

$$\left(\begin{array}{c} \text{colim}_{j \in J} A_j \\ 0 \end{array} \begin{pmatrix} \text{colim}_{j \in J} |B_j|(-, -) \\ \text{colim}_{j \in J} C_j \end{pmatrix} \right),$$

where $\text{colim}_{j \in J} |B_j|(-, -)$ is the $\text{colim}_{j \in J} A_j$-$\text{colim}_{j \in J} C_j$-bimodule naturally associated with the dg category $\text{colim}_{j \in J} B_j$, corresponds to $\text{colim}_{j \in J} B_j$. Observe also that the upper triangular dg category

$$\left(\begin{array}{c} \text{lim}_{j \in J} A_j \\ 0 \end{array} \begin{pmatrix} \text{lim}_{j \in J} X_j \\ \text{lim}_{j \in J} C_j \end{pmatrix} \right),$$
corresponds to \(\lim_{j \in J} B_j \). This proves the lemma.

Notation 13.5. Let \(p_1(B) := A \) and \(p_2(B) := C \).

We have at our disposal the following adjunction

\[
\begin{array}{ccc}
dgcat^{tr} & \overset{E}{\leftarrow} & \text{dgcat} \\
p_1 \times p_2 & & \\
dgcat \times dgcat,
\end{array}
\]

where

\[
E(B', B'') := \left(\begin{array}{c} B' \\ 0 \\ B'' \end{array} \right).
\]

Recall from \([37],[38],[39]\) that \(\text{dgcat} \) admits a structure of cofibrantly generated Quillen model category whose weak equivalences are the Morita dg functors. This structure clearly induces a componentwise model structure on \(\text{dgcat} \times \text{dgcat} \) which is also cofibrantly generated.

Proposition 13.6. The category \(\text{dgcat}^{tr} \) admits a structure of cofibrantly generated Quillen model category whose weak equivalences, resp. fibration, are the morphisms \(F : B \to B' \) such that \((p_1 \times p_2)(F)\) are quasi-equivalences, resp. fibrations, in \(\text{dgcat} \times \text{dgcat} \).

Proof. We show that the previous adjunction \((E, p_1 \times p_2)\) verifies conditions (1) and (2) of theorem 11.3.2 from \([15]\).

1. Since the functor \(E \) is also a right adjoint to \(p_1 \times p_2 \), the functor \(p_1 \times p_2 \) commutes with colimits and so condition (1) is verified.

2. Let \(J \), resp. \(J \times J \), be the set of generating trivial cofibrations in \(\text{dgcat} \), resp. in \(\text{dgcat} \times \text{dgcat} \). Since the functor \(p_1 \times p_2 \) commutes with filtered colimits it is enough to prove the following: let \(G : B' \to B'' \) be an element of the set \(E(J \times J) \), \(B \) an object in \(\text{dgcat}^{tr} \) and \(B' \to B \) a morphism in \(\text{dgcat}^{tr} \). Consider the following push-out in \(\text{dgcat}^{tr} \):

\[
\begin{array}{ccc}
B' & \overset{G}{\rightarrow} & B \\
\downarrow & & \downarrow \\
B'' & \overset{G}{\rightarrow} & B''
\end{array}
\]

We now prove that \((p_1 \times p_2)(G)\) is a weak-equivalence in \(\text{dgcat} \times \text{dgcat} \). Observe that the image of the previous push-out under the functors \(p_1 \) and \(p_2 \) correspond to the following two push-outs in \(\text{dgcat} \):

\[
\begin{array}{ccc}
A' & \overset{G_{A'}}{\rightarrow} & A \\
\downarrow & & \downarrow \\
A'' & \overset{G_{A'}}{\rightarrow} & A''
\end{array}
\]

\[
\begin{array}{ccc}
C' & \overset{G_{C'}}{\rightarrow} & C \\
\downarrow & & \downarrow \\
C'' & \overset{G_{C'}}{\rightarrow} & C''
\end{array}
\]

Since \(G_{A'} \) and \(G_{C'} \) belong to \(J \) the morphism

\[
(p_1 \times p_2)(G) = (G_{A'}, G_{C'})
\]
is a weak-equivalence in $\text{dgcat} \times \text{dgcat}$. This proves condition (2).

The proposition is then proven.

Let $B, B' \in \text{dgcat}^{\text{tr}}$.

Definition 13.7. A morphism $F : B \rightarrow B'$ is a total Morita dg functor if F_A and F_C are Morita dg functors, see 37 38 39, and F_X is a quasi-isomorphism of A-C-bimodules.

Remark 13.8. Notice that if F is a total Morita dg functor then $|F|$ is a Morita dg functor in dgcat^{tr} but the converse is not true.

Theorem 13.9. The category dgcat^{tr} admits a structure of cofibrantly generated Quillen model category whose weak equivalences W are the total Morita dg functors and whose fibrations are the morphisms $F : B \rightarrow B'$ such that F_A and F_C are Morita fibrations, see 37 38, and F_X is a componentwise surjective morphism of bimodules.

Proof. The proof is based on enlarging the set $E(I \times I)$, resp. $E(J \times J)$, of generating cofibrations, resp. generating trivial cofibrations, of the Quillen model structure of proposition 13.6.

Let \tilde{I} be the set of morphisms in dgcat^{tr}

$$
\begin{pmatrix} k & S^{n-1} \\ 0 & k \end{pmatrix} \hookrightarrow \begin{pmatrix} k & D^n \\ 0 & k \end{pmatrix}, n \in \mathbb{Z},
$$

where S^{n-1} is the complex $k|n-1]$ and D^n the mapping cone on the identity of S^{n-1}. The k-k-bimodule S^{n-1} is sent to D^n by the identity on k in degree $n - 1$.

Consider also the set \tilde{J} of morphisms in dgcat^{tr}

$$
\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \hookrightarrow \begin{pmatrix} k & D^n \\ 0 & k \end{pmatrix}, n \in \mathbb{Z}.
$$

Observe that a morphism $F : B \rightarrow B'$ in dgcat^{tr} has the right lifting property (=R.L.P.) with respect to the set \tilde{J}, resp. \tilde{I}, if and only if F_X is a componentwise surjective morphism, resp. surjective quasi-isomorphism, of A-C-bimodules.

Define $I := E(I \times I) \cup \tilde{I}$ as the set of generating cofibrations in dgcat^{tr} and $J := E(J \times J) \cup \tilde{J}$ as the set of generating trivial cofibrations. We now prove that conditions (1)-(6) of theorem 2.1.19 from 15 are satisfied. This is clearly the case for conditions (1)-(3).

(4) We now prove that J-cell $\subset W$, see 15. Since by proposition 13.6 we have $E(J \times J)$-cell $\subset W'$, where W' denotes the weak equivalences of proposition 13.6 it is enough to prove that pushouts with respect to any morphism in \tilde{J} belong to W. Let n be an integer and B an object in dgcat^{tr}.

Consider the following push-out in dgcat^{tr}:

\[
\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \rightarrow \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \rightarrow \\
\begin{pmatrix} k & D^n \\ 0 & k \end{pmatrix} \leftarrow \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \rightarrow \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}.
\]
Notice that the morphism \(T \) corresponds to specifying an object \(A \) in \(A \) and an object \(C \) in \(C \). The upper triangular dg category \(B' \) is then obtained from \(B \) by gluing a new morphism of degree \(n \) from \(A \) to \(C \). Observe that \(R_A \) and \(R_C \) are the identity dg functors and that \(R_X \) is a quasi-isomorphism of bimodules. This shows that \(R \) belongs to \(W \) and so condition (4) is proved.

We now show that \(R.L.P.(I) = R.L.P.(J) \cap W \). The proof of proposition 13.6 implies that \(R.L.P.(E(I \times I)) = R.L.P.(E(J \times J)) \cap W' \). Let \(F : B \to B' \) be a morphism in \(R.L.P.(I) \). Clearly \(F \) belongs to \(R.L.P.(J) \) and \(F_X \) is a quasi-isomorphism of bimodules. This shows that \(R.L.P.(I) \subset R.L.P.(J) \cap W \). Let now \(F : B \to B' \) be a morphism in \(R.L.P.(J) \cap W \). Clearly \(F \) belongs to \(R.L.P.(I) \) and so \(R.L.P.(J) \cap W \subset R.L.P.(I) \). This proves conditions (5) and (6).

This proves the theorem.

Remark 13.10. Notice that the Quillen model structure of theorem 13.9 is cellular, see [15] and that the domains and codomains of \(I \) (the set of generating cofibrations) are cofibrant, \(\aleph_0 \)-compact, \(\aleph_0 \)-small and homotopically finitely presented, see definition 2.1.1. from [11]. This implies that we are in the conditions of proposition 6.2 and so any object \(B \) in \(\text{dgcat}^{tr} \) is weakly equivalent to a filtered colimit of strict finite \(I \)-cell objects.

Proposition 13.11. If \(B \) be a strict finite \(I \)-cell object in \(\text{dgcat}^{tr} \), then \(p_1(B) \), \(p_2(B) \) and \(|B| \) are strict finite \(I \)-cell objects in \(\text{dgcat} \).

Proof. We consider the following inductive argument:

- notice that the initial object in \(\text{dgcat}^{tr} \) is
 \[
 (\emptyset, \emptyset)
 \]
 and it is sent to \(\emptyset \) (the initial object in \(\text{dgcat} \)) by the functors \(p_1 \), \(p_2 \) and \(|−| \).

- suppose that \(B \) is an upper triangular dg category such that \(p_1(B) \), \(p_2(B) \) and \(|B| \) are strict finite \(I \)-cell objects in \(\text{dgcat}^{tr} \). Let \(G : B' \to B'' \) be an element of the set \(I \) in \(\text{dgcat}^{tr} \), see the proof of theorem 13.9 and \(B' \to B \) a morphism. Consider the following push-out in \(\text{dgcat}^{tr} \):

\[
\begin{array}{ccc}
B' & \to & B \\
\downarrow & & \downarrow \\
B'' & \to & \text{PO}.
\end{array}
\]

We now prove that \(p_1(\text{PO}) \), \(p_2(\text{PO}) \) and \(|\text{PO}| \) are strict finite \(I \)-cell objects in \(\text{dgcat} \). We consider the following two cases:

1) \(G \) belongs to \(E(I \times I) \): observe that \(p_1(\text{PO}) \), \(p_2(\text{PO}) \) and \(|\text{PO}| \) correspond exactly to the following push-outs in \(\text{dgcat}^{tr} \):

\[
\begin{array}{ccc}
A' & \to & A \\
\downarrow & & \downarrow \\
A'' & \to & p_1(\text{PO})
\end{array}
\]

\[
\begin{array}{ccc}
C' & \to & C \\
\downarrow & & \downarrow \\
C'' & \to & p_2(\text{PO})
\end{array}
\]

\[
\begin{array}{ccc}
A' \coprod C' & \to & |B| \\
\downarrow & & \downarrow \\
A'' \coprod C'' & \to & |\text{PO}|.
\end{array}
\]
Since $G_{A'}$ and $G_{C'}$ belong to I this case is proved.

2) G belongs to \tilde{I}: observe that $p_1(PO)$ identifies with A, $p_2(PO)$ identifies with C and $|PO|$ corresponds to the following push-out in dgcat:

\[
\begin{array}{c}
\begin{array}{ccc}
C(n) & \rightarrow & |B| \\
\downarrow & & \downarrow \\
S(n) & \rightarrow & |PO|,
\end{array}
\end{array}
\]

where $S(n)$ is a generating cofibration in dgcat, see section 2 in [39]. This proves this case.

The proposition is proven.

\[\sqrt{14}.\]

14. Split short exact sequences

In this section, we establish the connexion between split short exact sequences of dg categories and upper triangular dg categories.

Definition 14.1. A split short exact sequence of dg categories is a short exact sequence of dg categories, see [19], which is Morita equivalent to one of the form

\[
\begin{array}{c}
\begin{array}{ccc}
0 & \rightarrow & A \\
& \stackrel{R}{\rightarrow} & B \\
& \stackrel{P}{\rightarrow} & C \\
& \rightarrow & 0,
\end{array}
\end{array}
\]

where we have $P \circ i_A = 0$, R is a dg functor right adjoint to i_A, i_C is a dg functor right adjoint to P and we have $P \circ i_C = \text{Id}_C$ and $R \circ i_A = \text{Id}_A$ via the adjunction morphisms.

To a split short exact sequence, we can naturally associate the upper triangular dg category

\[
E := \left(A \begin{array}{c} R \\ \text{Hom}_B(i_C(-), i_A(-)) \end{array} C \right).
\]

Conversely to an upper triangular dg category E such that C admits a zero object (for instance if C is Morita fibrant), we can associate a split short exact sequence

\[
\begin{array}{c}
\begin{array}{ccc}
0 & \rightarrow & A \\
& \stackrel{R}{\rightarrow} & B \\
& \stackrel{P}{\rightarrow} & C \\
& \rightarrow & 0,
\end{array}
\end{array}
\]

where P and R are the projection dg functors. Moreover, this construction is functorial in E and sends total Morita equivalences to Morita equivalent split short exact sequences. Notice also that by lemma [14.4] this functor preserves colimits.

Proposition 14.2. Every split short exact sequence of dg categories is weakly equivalent to a filtered homotopy colimit of split short exact sequences whose components are strict finite I-cell objects in dgcat.

Proof. Let

\[
\begin{array}{c}
\begin{array}{ccc}
0 & \rightarrow & A \\
& \stackrel{R}{\rightarrow} & B \\
& \stackrel{P}{\rightarrow} & C \\
& \rightarrow & 0,
\end{array}
\end{array}
\]

be a split short exact sequence of dg categories. We can suppose that A, B and C are Morita fibrant dg categories, see [37], [38]. Consider the upper triangular dg category

\[
E := \left(A \begin{array}{c} \text{Hom}_B(i_C(-), i_A(-)) \end{array} C \right).
\]
Now by remark 13.10, B is equivalent to a filtered colimit of strict finite I-cell objects in dgcat^{tr}. Consider the image of this diagram by the functor, described above, which sends an upper triangular dg category to a split short exact sequence. By proposition 13.11, the components of each split short exact sequence of this diagram are strict finite I-cell objects in dgcat. Since the category dgcat satisfies the conditions of proposition 6.2, filtered homotopy colimits are equivalent to filtered colimits and so the proposition is proven.

15. QUASI-ADDITIVITY

Recall from section 11 that we have at our disposal the Quillen model category $L_{\Sigma, P} \text{Fun}(\text{dgcat}^{op}, \text{Sset})$ which is homotopically pointed, i.e. the morphism $\emptyset \to \ast$, from the initial object \emptyset to the terminal one \ast, is a weak equivalence. We now consider a strictly pointed Quillen model.

Proposition 15.1. We have a Quillen equivalence

$$
\begin{array}{ccc}
\ast & \downarrow & L_{\Sigma, P} \text{Fun}(\mathcal{M}^{op}, \text{Sset}) \\
\uparrow & & \uparrow \quad \quad \uparrow \quad \quad \uparrow \\
\downarrow & & \downarrow \\
U & & L_{\Sigma, P} \text{Fun}(\mathcal{M}^{op}, \text{Sset})
\end{array}
$$

where U denotes the forgetful functor.

This follows from the fact that the category $L_{\Sigma, P} \text{Fun}(\text{dgcat}^{op}, \text{Sset})$ is homotopically pointed and from the following general argument.

Proposition 15.2. Let \mathcal{M} be a homotopically pointed Quillen model category. We have a Quillen equivalence.

$$
\begin{array}{ccc}
\ast & \downarrow & \mathcal{M} \\
\uparrow & & \uparrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\mathcal{M} & & \mathcal{M}
\end{array}
$$

where U denotes the forgetful functor.

Proof. Clearly the functor U preserves cofibrations, fibrations and weak equivalences, by construction. Let now $N \in \mathcal{M}$ and $M \in \ast \downarrow \mathcal{M}$. Consider the following commutative diagram in \mathcal{M}

$$
\begin{array}{ccc}
N \simeq \emptyset \coprod N & \xrightarrow{f} & U(M) \\
\downarrow \sim & & \downarrow \\
\ast \coprod N & \xrightarrow{f^2} & U(M)
\end{array}
$$

where f^2 is the morphism which corresponds to f, considered as a morphism in \mathcal{M}, under the adjunction and $i: \emptyset \sim \ast$. Since the morphism $i \coprod 1$ corresponds to the homotopy colimit of i and 1, which are both weak equivalences, proposition 5.1 implies that $i \coprod 1$ is a weak equivalence. Now, by the ‘2 out of 3’ property, the morphism f is a weak equivalence if and only if f^2 is one. This proves the proposition. √
Notation 15.3. Let \mathcal{A} and \mathcal{B} be small dg categories. We denote by $\text{rep}_{\text{mor}}(\mathcal{A}, \mathcal{B})$ the full dg subcategory of $\mathcal{C}_{dg}(\mathcal{A}^{op} \otimes \mathcal{B})$, where \mathcal{A}_c denotes a cofibrant resolution of \mathcal{A}, whose objects are the bimodules X such that $X(?, A)$ is a compact object in $\mathcal{D}(\mathcal{B})$ for all $A \in \mathcal{A}_c$ and which are cofibrant as bimodules. We denote by $w_\mathcal{A}$ the category of homotopy equivalences of \mathcal{A} and by $N.w_\mathcal{A}$ its nerve.

Now, consider the morphism

$$
\text{Ho}(\text{dgcat}) \to \text{Ho}(\cdot \downarrow L_\Sigma, P \text{Fun}(\mathcal{M}^{op}_f, \text{Sset}))
$$

$$
\mathcal{A} \mapsto \begin{cases}
\text{Hom}_\text{dgcat}(\Gamma(?), A_f) + \\
\simeq \text{Map}_\text{dgcat}(?, A) + \\
\simeq N.\text{wrep}_{\text{mor}}(?, A) +
\end{cases}
$$

which by sections 6, 7 and proposition 15.1 corresponds to the component $(\Phi \circ \mathbb{R}h)(e)$ of the morphism of derivators

$$
\Phi \circ \mathbb{R}h : \text{Ho}(\text{dgcat}) \to L_\Sigma, P \text{Hot}_{\text{dgcat}_f},
$$

see proposition 15.1. Observe that the simplicial presheaf $N.\text{wrep}_{\text{mor}}(?, \mathcal{A})$ is already canonically pointed.

Proposition 15.4. The canonical morphism

$$
\Psi : N.\text{wrep}_{\text{mor}}(?, \mathcal{A}) + \to N.\text{wrep}_{\text{mor}}(?, \mathcal{A})
$$

is a weak equivalence in $\cdot \downarrow L_\Sigma, P \text{Fun}(\mathcal{M}^{op}_f, \text{Sset})$.

Proof. Observe that $N.\text{wrep}_{\text{mor}}(?, \mathcal{A})$ is a fibrant object in $\cdot \downarrow L_\Sigma, P \text{Fun}(\mathcal{M}^{op}_f, \text{Sset})$ and that the canonical morphism Ψ corresponds to the co-unit of the adjunction of proposition 15.1. Since this adjunction is a Quillen equivalence, the proposition is proved.

√

Recall now from remark 8.2 that we have a canonical equivalence of pointed derivators

$$
L_\Sigma, P \text{Hot}_{\text{dgcat}_f} \sim L_\Sigma, P \text{Hot}_{\text{dgcat}_f}^{\bullet},
$$

where $L_\Sigma, P \text{Hot}_{\text{dgcat}_f}^{\bullet}$ is the derivator associated with the Quillen model category $L_\Sigma, P \text{Fun}(\text{dgcat}^{op}_f, \text{Sset}^{\bullet})$. From now on, we will consider this Quillen model. We have the following morphism of derivators

$$
\Phi \circ \mathbb{R}h : \text{Ho}(\text{dgcat}) \to L_\Sigma, P \text{Hot}_{\text{dgcat}_f}^{\bullet},
$$

which commutes with filtered homotopy colimits and preserves the point.

Notation 15.5. - We denote by \mathcal{E}^s the set of retractions of dg categories

$$
\mathcal{G} \xrightarrow{R} \mathcal{H},
$$

where \mathcal{G} and \mathcal{H} are strict finite I-cell objects in dgcat, $i_\mathcal{G}$ is a fully faithful dg functor, R is a right adjoint to $i_\mathcal{G}$ and $R \circ i_\mathcal{G} = \text{Id}_\mathcal{G}$.

- We denote by \mathcal{E}^s_{un} the set of morphisms S_L in $L_\Sigma, P \text{Hot}_{\text{dgcat}_f}^{\bullet}(e)$, see section 10 where L belongs to the set \mathcal{E}^s.

Now choose for each element of the set \mathcal{E}^s_{un} a representative in the category $L_\Sigma, P \text{Fun}(\text{dgcat}^{op}_f, \text{Sset}^{\bullet})$. We denote this set of representatives by \mathcal{E}^s_{un}. Since $L_\Sigma, P \text{Fun}(\text{dgcat}^{op}_f, \text{Sset}^{\bullet})$ is a left proper, cellular Quillen model category, see 13, its left Bousfield localization by \mathcal{E}^s_{un} exists. We denote it by $L_{\mathcal{E}^s_{un}} L_\Sigma, P \text{Fun}(\text{dgcat}^{op}_f, \text{Sset}^{\bullet})$.
and by \(L_{\Sigma} p \text{Hot}_{\text{dgcat}} \) the associated derivator. We have the following morphism of derivators
\[
\Psi : L_{\Sigma} p \text{FunHot}_{\text{dgcat}} \to L_{\Sigma} p \text{FunHot}_{\text{dgcat}}.
\]

Remark 15.6. Notice that by construction the domains and codomains of the set \(\tilde{E}_{\Sigma} \) are homotopically finitely presented objects. Therefore by lemma \([8.1]\) the set
\[
G = \{ \text{F} X / \partial [n] \mid X \in \mathcal{M}_f, n \geq 0 \},
\]
of cofibers of the generating cofibrations in \(\text{Fun}(\mathcal{M}_f, \text{Sset}_\bullet) \) is a set of small weak generators in \(\text{Ho}(L_{\Sigma} p \text{Fun}(\mathcal{M}_f, \text{Sset}_\bullet)) \).

Notice also that proposition \([14.2]\) implies that variants of proposition \([10.2]\) and theorem \([10.4]\) are also verified: simply consider the set \(E \) instead of \(\mathcal{E} \) and a retraction of dg categories instead of an inclusion of a full dg subcategory. The proofs are exactly the same.

Definition 15.7.

- The **Unstable Motivator of dg categories** \(\mathcal{M}_{\text{unst}} \) is the derivator associated with the Quillen model category \(L_{\mathcal{E}_{\Sigma}} \text{Fun}(\text{dgcat}^{\text{op}}, \text{Sset}_\bullet) \).

- The **Universal unstable invariant of dg categories** is the canonical morphism of derivators \(U_u : \text{Ho}(\text{dgcat}) \to \mathcal{M}_{\text{unst}} \).

Let \(\mathcal{M} \) be a left proper cellular model category, \(S \) a set of maps in \(\mathcal{M} \) and \(L_S \mathcal{M} \) the left Bousfield localization of \(\mathcal{M} \) with respect to \(S \), see \([15]\). Recall from \([15, 4.1.1.]\) that an object \(X \) in \(L_S \mathcal{M} \) is fibrant if \(X \) is fibrant in \(\mathcal{M} \) and for every element \(f : A \to B \) of \(S \) the induced map of homotopy function complexes \(f^* : \text{Map}(B, X) \to \text{Map}(A, X) \) is a weak equivalence.

Proposition 15.8. An object \(F \in L_{\mathcal{E}_{\Sigma}} \text{Fun}(\text{dgcat}^{\text{op}}, \text{Sset}_\bullet) \) is fibrant if and only if it satisfies the following conditions

1) \(F(\mathcal{B}) \in \text{Sset}_\bullet \) is fibrant, for all \(\mathcal{B} \in \text{dgcat}_f \).
2) \(F(\emptyset) \in \text{Sset}_\bullet \) is contractible.
3) For every Morita equivalence \(\mathcal{B} \sim \mathcal{B}' \) in \(\text{dgcat}_f \) the morphism \(F(\mathcal{B}') \sim F(\mathcal{B}) \) is a weak equivalence in \(\text{Sset}_\bullet \).
4) Every split short exact sequence
\[
\begin{array}{c}
0 \to \mathcal{B}' \xrightarrow{R} \mathcal{B} \xrightarrow{p} \mathcal{B}'' \to 0
\end{array}
\]
in \(\text{dgcat}_f \) induces a homotopy fiber sequence
\[
F(\mathcal{B}'') \to F(\mathcal{B}) \to F(\mathcal{B}')
\]
in \(\text{Sset} \).

Proof. Clearly condition 1) corresponds to the fact that \(F \) is fibrant in \(\text{Fun}(\text{dgcat}^{\text{op}}, \text{Sset}_\bullet) \).

Now observe that \(\text{Fun}(\text{dgcat}^{\text{op}}, \text{Sset}_\bullet) \) is a simplicial Quillen model category with the simplicial action given by
\[
\text{Sset} \times \text{Fun}(\text{dgcat}^{\text{op}}, \text{Sset}_\bullet) \to \text{Fun}(\text{dgcat}^{\text{op}}, \text{Sset}_\bullet)
\]
\[
(K, F) \mapsto K \wedge F,
\]
where $K_+ \wedge F$ denotes the componentwise smash product. This simplicial structure and the construction of the localized Quillen model category $L_{\Sigma_n} L_{\Sigma_n} pFun(dgc cat^op_f, Sset_\bullet)$, see section 8, allow us to recover conditions 2) and 3). Condition 4) follows from the construction of the set \mathcal{E}^s_{un} and from the fact that the functor

$Map(?, F) : Fun(dgc cat^op_f, Sset_\bullet)^{op} \rightarrow Sset$

transforms homotopy cofiber sequences into homotopy fiber sequences.

This proves the proposition.

Let \mathcal{A} be a Morita fibrant dg category. Recall from notation 11.11 that $S_\bullet \mathcal{A}$ denotes the simplicial Morita fibrant dg category obtained by applying Waldhausen’s S_\bullet-construction to the exact category $Z^0(\mathcal{A})$ and remembering the enrichment in complexes.

Notation 15.9. We denote by $K(\mathcal{A}) \in Fun(dgc cat^op_f, Sset_\bullet)$ the simplicial presheaf

$$B \mapsto |N.w S_\bullet rep_{mor}(B, \mathcal{A})|,$$

where $| - |$ denotes the fibrant realization functor of bisimplicial sets.

Proposition 15.10. The simplicial presheaf $K(\mathcal{A})$ is fibrant in $L_{\Sigma_n} L_{\Sigma_n} pFun(dgc cat^op_f, Sset_\bullet)$.

Proof. Observe that $K(\mathcal{A})$ satisfies conditions (1)-(3) of proposition 15.8. We now prove that Waldhausen’s fibration theorem [44, 1.6.4] implies condition (4). Apply the contravariant functor $\text{rep}_{mor}(?, \mathcal{A})$ to the split short exact sequence

$$0 \longrightarrow B' \xrightarrow{R} B \xrightarrow{ig'} B \xrightarrow{p} B'' \longrightarrow 0$$

and obtain a split short exact sequence

$$0 \rightleftarrows \text{rep}_{mor}(B'', \mathcal{A}) \xrightarrow{\cong} \text{rep}_{mor}(B, \mathcal{A}) \xrightarrow{\cong} \text{rep}_{mor}(B', \mathcal{A}) \longrightarrow 0.$$

Now consider the Waldhausen category $\text{urep}_{mor}(\mathcal{B}, \mathcal{A}) := Z^0(\text{rep}_{mor}(\mathcal{B}, \mathcal{A}))$, where the weak equivalences are the morphisms f such that $\text{cone}(f)$ is contractible. Consider also the Waldhausen category $\text{urep}_{mor}(\mathcal{B}, \mathcal{A})$, which has the same cofibrations as $\text{urep}_{mor}(\mathcal{B}, \mathcal{A})$ but the weak equivalences are the morphisms f such that $\text{cone}(f)$ belongs to $\text{rep}_{mor}(B'', \mathcal{A})$. Observe that we have the inclusion $\text{urep}_{mor}(\mathcal{B}, \mathcal{A}) \subset \text{urep}_{mor}(\mathcal{B}, \mathcal{A})$ and an equivalence $\text{rep}_{mor}(\mathcal{B}, \mathcal{A}) \cong Z^0(\text{rep}_{mor}(\mathcal{B}, \mathcal{A}))$, see section 1.6 from [44]. The conditions of theorem 1.6.4 from [44] are satisfied and so we have a homotopy fiber sequence

$$|N.w S_\bullet \text{rep}_{mor}(B'', \mathcal{A})| \rightarrow |N.w S_\bullet \text{rep}_{mor}(B, \mathcal{A})| \rightarrow |N.w S_\bullet \text{rep}_{mor}(B', \mathcal{A})|$$

in $Sset$. This proves the proposition.

Let $p : \Delta \rightarrow e$ be the projection functor.

Proposition 15.11. The objects

$$S^1 \wedge N.w \text{urep}_{mor}(?, \mathcal{A}) \quad \text{and} \quad |N.w S_\bullet \text{rep}_{mor}(?, \mathcal{A})| = K(\mathcal{A})$$

are canonically isomorphic in $Ho(L_{\Sigma_n} L_{\Sigma_n} pFun(dgc cat^op_f, Sset_\bullet))$.

Proof. As in [28, 3.3], we consider the sequence in \(\text{HO}(\text{dgcat})(\Delta) \)

\[
\begin{array}{cccccc}
0 & \rightarrow & A_{\bullet} & \xrightarrow{I} & PS_{\bullet}A & \xrightarrow{Q} \rightarrow & S_{\bullet}A & \rightarrow & 0,
\end{array}
\]

where \(A_{\bullet} \) denotes the constant simplicial dg category with value \(A \) and \(PS_{\bullet}A \) the path object of \(S_{\bullet}A \). By applying the morphism of derivators \(U_{a} \) to this sequence, we obtain the canonical morphism

\[
S_{I} : \text{cone}(U_{a}(A_{\bullet} \rightarrow PS_{\bullet}A)) \rightarrow U_{a}(S_{\bullet}A)
\]

in \(M^{\text{nst}}_{\text{dg}}(\Delta) \). We now prove that for each point \(n : e \rightarrow \Delta \), the \(n \)th component of \(S_{I} \) is an isomorphism in \(L_{\Sigma_{n}}^{-}{L_{\Sigma_{n}}^{p}\text{Fun}}(\text{dgcat}^{op}_{f},S_{set_{\bullet}}) \). For each point \(n : e \rightarrow \Delta \), we have a split short exact sequence in \(\text{Ho}(\text{dgcat}) \):

\[
\begin{array}{cccccc}
0 & \rightarrow & A_{\bullet} & \xrightarrow{I_{n}} & PS_{n}A & \xrightarrow{Q_{n}} \rightarrow & S_{n}A & \rightarrow & 0,
\end{array}
\]

where \(I_{n} \) maps \(A \in A \) to the constant sequence

\[
0 \rightarrow A \xrightarrow{I_{n}} A \xrightarrow{I_{n}} \cdots \xrightarrow{I_{n}} A,
\]

\(Q \) maps a sequence

\[
0 \rightarrow A_{0} \rightarrow A_{1} \rightarrow \cdots \rightarrow A_{n}
\]

to

\[
A_{1}/A_{0} \rightarrow \cdots \rightarrow A_{n}/A_{0},
\]

\(S_{n} \) maps a sequence

\[
0 \rightarrow A_{0} \rightarrow A_{1} \rightarrow \cdots \rightarrow A_{n-1}
\]

to

\[
0 \rightarrow 0 \rightarrow A_{0} \rightarrow \cdots \rightarrow A_{n-1}
\]

and \(R_{n} \) maps a sequence

\[
0 \rightarrow A_{0} \rightarrow A_{1} \rightarrow \cdots \rightarrow A_{n-1}
\]
to \(A_{0} \). Now, by construction of \(L_{\Sigma_{n}}^{-}{L_{\Sigma_{n}}^{p}\text{Fun}}(\text{dgcat}^{op}_{f},S_{set_{\bullet}}) \) the canonical morphisms

\[
S_{I_{n}} : \text{cone}(U_{a}(A \xrightarrow{I_{n}} PS_{n}A)) \rightarrow U_{a}(S_{n}A), \quad n \in \mathbb{N}
\]

are isomorphisms in \(M^{\text{nst}}_{\text{dg}}(e) \). Since homotopy colimits in \(L_{\Sigma_{n}}^{-}{L_{\Sigma_{n}}^{p}\text{Fun}}(\text{dgcat}^{op}_{f},S_{set_{\bullet}}) \)
are calculated objectwise the \(n \)th component of \(S_{I} \) identifies with \(S_{I_{n}} \) and so by the conservativity axiom \(S_{I} \) is an isomorphism in \(M_{\text{dg}}^{\text{nst}}(\Delta) \). This implies that we obtain the homotopy cocartesian square

\[
\begin{array}{ccc}
pU_{a}(A_{\bullet}) & \xrightarrow{p} & pU_{a}(PS_{\bullet}A) \\
\downarrow & & \downarrow \\
\ast & \rightarrow & pU_{a}(S_{\bullet}A)).
\end{array}
\]

As in the proof of proposition[11,12] we show that \(pU_{a}(A_{\bullet}) \) identifies with \(N.\text{wrep}_{\text{mor}}(?,A) = U_{a}(A) \) and that \(pU_{a}(PS_{\bullet}A) \) is contractible. Since we have the equivalence

\[
pU_{a}(S_{\bullet}A) = pU_{a}(N.\text{wrep}_{\text{mor}}(?,S_{\bullet}A)) \xrightarrow{\sim} |N.\text{wrep}_{\text{mor}}(?,A)|
\]

and \(N.\text{wrep}_{\text{mor}}(?,A) \) is cofibrant in \(L_{\Sigma_{n}}^{-}{L_{\Sigma_{n}}^{p}\text{Fun}}(\text{dgcat}^{op}_{f},S_{set_{\bullet}}) \) the proposition is proven.
Proposition 15.12. We have the following weak equivalence of simplicial sets
\[\text{Map}(\mathcal{U}_n(k), S^1 \land \mathcal{U}_n(A)) \sim \left| \mathcal{N}_wS\mathcal{A}_f \right| \]
in \(\mathcal{L}_{\Sigma_n^+} \mathcal{L}_{\Sigma_n^+} \mathcal{P} \mathcal{F} \mathcal{n}(\mathcal{d}g\mathcal{c}a\mathcal{t}_{op}, S\mathcal{e}t\mathcal{\bullet}) \). In particular, we have the following isomorphisms
\[\pi_{i+1} \text{Map}(\mathcal{U}_n(k), S^1 \land \mathcal{U}_n(A)) \sim K_i(A), \quad \forall i \geq 0. \]

Proof. This follows from propositions 15.10, 15.11 and from the following weak equivalences
\[\text{Map}(\mathcal{U}_n(k), S^1 \land \mathcal{U}_n(A)) \simeq \text{Map}(\mathcal{R}_h(k), K(A)) \]
\[\simeq (K(A))(k) \]
\[\simeq \left| \mathcal{N}_wS\mathcal{A}_f \right|. \]

16. THE UNIVERSAL ADDITIVE INVARIANT

Consider the Quillen model category \(\mathcal{L}_{\Sigma_n^+} \mathcal{P} \mathcal{F} \mathcal{n}(\mathcal{d}g\mathcal{c}a\mathcal{t}_{op}, S\mathcal{e}t\mathcal{\bullet}) \) constructed in the previous section. The definition of the set \(\mathcal{E}_{\Sigma_n^+} \) and the same arguments as those of example 9.5 and example 9.6 allows us to conclude that \(\mathcal{L}_{\Sigma_n^+} \mathcal{P} \mathcal{F} \mathcal{n}(\mathcal{d}g\mathcal{c}a\mathcal{t}_{op}, S\mathcal{e}t\mathcal{\bullet}) \) satisfies the conditions of theorem 9.7. In particular we have an equivalence of triangulated derivators
\[\text{St}(\mathcal{M}_d^{\text{unst}}) \sim \text{HO}(\mathcal{S}p^{N}(\mathcal{L}_{\Sigma_n^+} \mathcal{P} \mathcal{F} \mathcal{n}(\mathcal{d}g\mathcal{c}a\mathcal{t}_{op}, S\mathcal{e}t\mathcal{\bullet}))). \]

Definition 16.1.
- The Additive motivator of dg categories \(M_{dg}^{\text{add}} \) is the triangulated derivator associated with the stable Quillen model category
\[\mathcal{S}p^{N}(\mathcal{L}_{\Sigma_n^+} \mathcal{P} \mathcal{F} \mathcal{n}(\mathcal{d}g\mathcal{c}a\mathcal{t}_{op}, S\mathcal{e}t\mathcal{\bullet}))). \]

- The Universal additive invariant of dg categories is the canonical morphism of derivators
\[\mathcal{U}_n : \text{HO}(\mathcal{d}g\mathcal{c}a\mathcal{t}) \to M_{dg}^{\text{add}}. \]

Remark 16.2. Observe that remark 15.6 and remark 9.4 imply that \(M_{dg}^{\text{add}} \) is a compactly generated triangulated derivator.

We sum up the construction of \(M_{dg}^{\text{add}} \) in the following diagram
Observe that the morphism of derivators U_a is pointed, commutes with filtered homotopy colimits and satisfies the following condition:

A) For every split short exact sequence

$\begin{array}{cccccc}
0 & \longrightarrow & A & \overset{R}{\longrightarrow} & B & \overset{i_C}{\longrightarrow} C & \longrightarrow 0
\end{array}$

in $\text{Ho}(\text{dgcat})$, we have a split triangle

$\begin{array}{cccccc}
U_a(A) & \overset{R}{\longrightarrow} & U_a(B) & \overset{i_C}{\longrightarrow} & U_a(C) & \longrightarrow U_a(A)[1]
\end{array}$

in $\mathcal{M}_{dg}^{\text{add}}(e)$. (This implies that the dg functors i_A and i_C induce an isomorphism

$U_a(A) \oplus U_a(C) \xrightarrow{\sim} U_a(B)$

in $\mathcal{M}_{dg}^{\text{add}}(e)$).

Remark 16.3. Since the dg category B in the above split short exact sequence is Morita equivalent to the dg category $E(A, B, C)$, see section 1.1 from [44], condition A) is equivalent to the additivity property stated by Waldhausen in [44] 1.3.2.

Let \mathcal{D} be a strong triangulated derivator.

Theorem 16.4. The morphism U_a induces an equivalence of categories

$\text{Hom}(\mathcal{M}_{dg}^{\text{add}}, \mathcal{D}) \xrightarrow{U_a^*} \text{Hom}(\text{Ho}(\text{dgcat}), \mathcal{D})$,

where $\text{Hom}(\text{fit}, A), p(\text{Ho}(\text{dgcat}), \mathcal{D})$ denotes the category of morphisms of derivators which commute with filtered homotopy colimits, satisfy condition A) and preserve the point.

Proof. By theorem [51] we have an equivalence of categories

$\text{Hom}(\mathcal{M}_{dg}^{\text{add}}, \mathcal{D}) \xrightarrow{\sim} \text{Hom}(\mathcal{M}_{dg}^{\text{unst}}, \mathcal{D})$.

By theorem [54] we have an equivalence of categories

$\text{Hom}(\mathcal{M}_{dg}^{\text{unst}}, \mathcal{D}) \xrightarrow{\sim} \text{Hom}(\mathcal{L}_{\Sigma, \rho} \text{Hot}_{\text{dgcat}}, \mathcal{D})$.
Now, we observe that since D is a strong triangulated derivator, the category $\text{Hom}_{\mathcal{E}_{\text{un}}}(L_\Sigma, \rho \text{Hot}_{\text{dgcat}}, D)$ identifies $\text{Hom}_{\mathcal{F}(\text{fit}, A), A}(\text{HO}(\text{dgcat}), \mathbb{D})$. This proves the theorem.

Notation 16.5. We call an object of the right hand side category of theorem 16.4 an **additive invariant** of dg categories.

Example 16.6.
- The Hochschild and cyclic homology and the non-connective K-theory defined in section 11 are examples of additive invariants.
- Another example is given by the classical Waldhausen’s connective K-theory spectrum

$$K^c : \text{HO}(\text{dgcat}) \to \text{HO}(\text{Spt}),$$

see [44].

Remark 16.7. By theorem 16.4 the morphism of derivators K^c factors through \mathcal{U}_a and so gives rise to a morphism of derivators

$$K^c : \mathcal{M}_{\text{dg}}^{\text{add}} \to \text{HO}(\text{Spt}).$$

We now will prove that this morphism of derivators is co-representable in $\mathcal{M}_{\text{dg}}^{\text{add}}$.

Let \mathcal{A} be a small dg category.

Notation 16.8. We denote by $K(\mathcal{A})^c \in \text{Sp}^N(L_{\mathcal{E}_{\text{un}}} L_\Sigma, \rho \text{Fun}(\text{dgcat}^{\text{op}}, \text{Sset}^\bullet))$ the spectrum such that

$$K(\mathcal{A})^c_n := |N.wS^{n+1}_{(n+1)} \text{rep}_\text{mor}(?, \mathcal{A})|, \; n \geq 0,$$

endowed with the natural structure morphisms

$$\beta_n : S^1 \wedge |N.wS^{n+1}_{(n+1)} \text{rep}_\text{mor}(?, \mathcal{A})| \sim \rightarrow |N.wS^{n+2}_{(n+2)} \text{rep}_\text{mor}(?, \mathcal{A})|, \; n \geq 0,$$

see [44].

Notice that $\mathcal{U}_a(\mathcal{A})$ identifies in $\text{Ho}(\mathcal{M}_{\text{dg}}^{\text{add}})$ with the suspension spectrum given by

$$(\Sigma^\infty |N.w\text{rep}_\text{mor}(?, \mathcal{A})|)_n := S^n \wedge |N.w\text{rep}_\text{mor}(?, \mathcal{A})|.$$
in $\Fun(dpct^o, Sset_\bullet)$. Now observe that for every integer n, $K^c(\mathcal{A})_n$ satisfies conditions (1)-(3) of proposition 15.10. Condition (4) follows from Waldhausen’s fibration theorem, as in the proof of proposition 15.11 applied to the S-construction. This shows that $K(\mathcal{A})^c$ is an Ω-spectrum.

We now prove that η is a (componentwise) weak equivalence in $\Sp^n\left(L_{\Sigma_n^{-}} L_{\Sigma_n^p} \Fun(dpct^o, Sset_\bullet)\right)$. For this, we prove first that the structural morphisms

$$\beta_n : S^1 \wedge N.wS^{(n+1)}_{\bullet} \rep_{\mor}(?, A) \xrightarrow{\sim} [N.wS^{(n+2)}_{\bullet} \rep_{\mor}(?, A)], n \geq 0,$$

see notation 16.8, are weak equivalences in $L_{\Sigma_n^{-}} L_{\Sigma_n^p} \Fun(dpct^o, Sset_\bullet)$. By considering the same argument as in the proof of proposition 15.11 using $S^{(n+1)}_{\bullet} A$ instead of A, we obtain the following homotopy cocartesian square

$$
\begin{array}{ccc}
K(\mathcal{A})^c_n & \xrightarrow{p_1(U_n(PS^{(n+2)}_{\bullet}, A))} & K(\mathcal{A})^c_{n+1} \\
\downarrow & & \downarrow \\
\ast & \to & K(\mathcal{A})^c_{n+1}
\end{array}
$$

in $L_{\Sigma_n^{-}} L_{\Sigma_n^p} \Fun(dpct^o, Sset_\bullet)$ with $p_1(U_n(PS^{(n+2)}_{\bullet}, A))$ contractible. Since $K(\mathcal{A})^c_{n+1}$ is fibrant, proposition 1.5.3 in [44], implies that the previous square is also homotopy cartesian and so the canonical morphism

$$\beta^c_n : K^c(\mathcal{A})_n \to \Omega K^c(\mathcal{A})^c_{n+1}$$

is a weak equivalence in $L_{\Sigma_n^{-}} L_{\Sigma_n^p} \Fun(dpct^o, Sset_\bullet)$. We now show that the structure morphism β_n, which corresponds to β^c_n by adjunction, see [44], is also a weak equivalence. The derived adjunction $(S^1 \wedge -, \mathbb{R} \Omega(-))$ induces the following commutative diagram

$$
\begin{array}{ccc}
S^1 \wedge K(\mathcal{A})^c_n & \xrightarrow{S^1 \wedge \beta^c_n} & K(\mathcal{A})^c_{n+1} \\
\downarrow & & \downarrow \\
S^1 \wedge \Omega K(\mathcal{A})^c_{n+1}
\end{array}
$$

in $\Ho(L_{\Sigma_n^{-}} L_{\Sigma_n^p} \Fun(dpct^o, Sset_\bullet))$ where the vertical arrow is an isomorphism since the previous square is homotopy bicartesian. This shows that the induced morphism

$$S^1 \wedge K(\mathcal{A})^c_n \to K(\mathcal{A})^c_{n+1}$$

is an isomorphism in $\Ho(L_{\Sigma_n^{-}} L_{\Sigma_n^p} \Fun(dpct^o, Sset_\bullet))$ and so β_n is a weak equivalence.

Now to prove that η is a componentwise weak equivalence, we proceed by induction : observe that the zero component of the morphism η is the identity. Now suppose that the n-component of η is a weak equivalence. The $n+1$-component of η is the composition of β_{n+1}, which is a weak equivalence, with the suspension of the n-component of η, which by proposition 5.11 is also a weak equivalence.

This proves the theorem.

Let \mathcal{A} and \mathcal{B} be small dg categories with $\mathcal{A} \in dpct_f$. We denote by $\Hom^o(\mathcal{A}, \mathcal{B})$ the spectrum of morphisms in $\Sp^n(L_{\Sigma_n^{-}} L_{\Sigma_n^p} \Fun(dpct^o_f, Sset_\bullet))$.

Theorem 16.10. We have the following weak equivalence of spectra
\[\text{Hom}^{\Sigma^n}(\mathcal{U}_a(\mathcal{A}), \mathcal{U}_a(\mathcal{B})[1]) \sim K^c(\text{rep}_\text{mor}(\mathcal{A}, \mathcal{B})) , \]
where \(K^c(\text{rep}_\text{mor}(\mathcal{A}, \mathcal{B})) \) denotes Waldhausen’s connective \(K \)-theory spectrum of \(\text{rep}_\text{mor}(\mathcal{A}, \mathcal{B}) \).

In particular, we have the following weak equivalence of simplicial sets
\[\text{Map}(\mathcal{U}_a(\mathcal{A}), \mathcal{U}_a(\mathcal{B})[1]) \sim |N.\text{w}S_\bullet\text{rep}_\text{mor}(\mathcal{A}, \mathcal{B})| \]
and so the isomorphisms
\[\pi_\text{dim}[\text{Map}(\mathcal{U}_a(\mathcal{A}), \mathcal{U}_a(\mathcal{B})[1])] \sim K_i(\text{rep}_\text{mor}(\mathcal{A}, \mathcal{B})), \forall i \geq 0. \]

Proof. Notice that \(\mathcal{U}_a(\mathcal{A}) \) identifies with the suspension spectrum
\[\Sigma^\infty|N.\text{w}S_\bullet\text{rep}_\text{mor}(? , \mathcal{A})| \]
which is cofibrant in \(S^N(\Sigma_{\infty}^{\infty} L_{\mathcal{F}, \mathcal{G}} \mathcal{F}, \mathcal{G}; \mathcal{A}) \). By Theorem 16.9 we have the following equivalences
\[\text{Hom}^{\Sigma^n}(\mathcal{U}_a(\mathcal{A}), \mathcal{U}_a(\mathcal{B})[1]) \sim \text{Hom}^{\Sigma^n}(\mathcal{U}_a(\mathcal{A}), K^c(\mathcal{B})) \\
\sim K^c(\mathcal{B})(\mathcal{A}) \\
\sim K^c(\text{rep}_\text{mor}(\mathcal{A}, \mathcal{B})). \]

This proves the theorem.

\(\square \)

Remark 16.11. Notice that if in the above theorem, we consider \(\mathcal{A} = k \), we have
\[\text{Hom}^{\Sigma^n}(\mathcal{U}_a(k), \mathcal{U}_a(\mathcal{B})[1]) \sim K^c(\mathcal{B}). \]

This shows that Waldhausen’s connective \(K \)-theory spectrum becomes co-representable in \(\mathcal{M}^{\text{add}} \). To the best of the author’s knowledge, this is the first conceptual characterization of Quillen-Waldhausen \(K \)-theory \[34] \[44] since its definition in the early 70’s. This result gives us a completely new way to think about algebraic \(K \)-theory.

17. Higher Chern characters

In this chapter we apply our main co-representability theorem \[16.10\] in the construction of the higher Chern characters \[20\].

Let \(\mathcal{A} \) and \(\mathcal{B} \) be small dg categories with \(\mathcal{A} \in \text{dgcat}_f \).

Proposition 17.1. We have the following isomorphisms of abelian groups
\[\text{Hom}(\mathcal{M}^{\text{add}}(e)(\mathcal{U}_a(\mathcal{A}), \mathcal{U}_a(\mathcal{B})[-n]) \sim K_n(\text{rep}_\text{mor}(\mathcal{A}, \mathcal{B})), \forall n \geq 0. \]

Proof. In first place, notice that the abelian group
\[\text{Hom}(\mathcal{M}^{\text{add}}(e)(\mathcal{U}_a(\mathcal{A}), \mathcal{U}_a(\mathcal{B})[-n]) \]
identifies with
\[\pi_0\text{Map}(\mathcal{U}_a(\mathcal{A}), \mathcal{U}_a(\mathcal{B})[-n]), \]
where \(\text{Map} \) denotes the mapping space in \(S^N(\Sigma_{\infty}^{\infty} L_{\mathcal{F}, \mathcal{G}} \mathcal{F}, \mathcal{G}; \mathcal{A}) \). By theorem \[16.9\] the morphism
\[\eta : U_a(\mathcal{B})[1] \rightarrow K(\mathcal{B})^c \]
is a fibrant resolution of \(U_a(\mathcal{B})[1] \). This implies that in \(\mathcal{M}^{\text{add}}(e), U_a(\mathcal{B})[-n] \) identifies with the spectrum \(\Omega^{n+1}(K^c(\mathcal{B})) \). Since \(U_a(\mathcal{A}) \) is cofibrant and
\[\Omega^{n+1}(K^c(\mathcal{B}))[0] = \Omega^{n+1}|N.\text{w}S_\bullet\text{rep}_\text{mor}(?, \mathcal{B})| \]
we conclude that
\[\pi_0 \text{Map}(U_a(A), U_a(B)[-n]) \simeq \pi_0 \Omega^{n+1}|N.wS_\bullet \text{rep}_{\text{mor}}(A, B)|. \]

Finally notice that
\[\pi_0 \Omega^{n+1}|N.wS_\bullet \text{rep}_{\text{mor}}(A, B)| \simeq \pi_{n+1}|N.wS_\bullet \text{rep}_{\text{mor}}(A, B)| \simeq K_n(\text{rep}_{\text{mor}}(A, B)). \]

This proves the proposition.

Remark 17.2. Notice that if in the above proposition, we consider \(A = k \), we have the isomorphisms
\[\text{Hom}_{\mathcal{M}_{d_4^g}(e)}(U_a(k), U_a(B)[-n]) \sim K_n(B), \forall n \geq 0. \]

This shows that the algebraic \(K \)-theory groups \(K_n(-) \), \(n \geq 0 \) are co-representable in the triangulated category \(\mathcal{M}_{d_4^g}(e) \).

Now let
\[K_n(-) : \text{Ho}(\text{dgcat}) \rightarrow \text{Mod-}\mathbb{Z}, \ n \geq 0 \]
be the \(n \)th \(K \)-theory group functor, see theorem 11.7 and
\[HC_j(-) : \text{Ho}(\text{dgcat}) \rightarrow \text{Mod-}\mathbb{Z}, \ j \geq 0 \]
the \(j \)th cyclic homology group functor, see theorem 11.9.

Theorem 17.3. The co-representability theorem 16.10 furnishes us the higher Chern characters
\[ch_{n,r} : K_n(-) \rightarrow HC_{n+2r}(-), \ n, r \geq 0. \]

Proof. By theorem 11.9 the morphism of derivators
\[C : \text{Ho}(\text{dgcat}) \rightarrow \text{Ho}(\Lambda-\text{Mod}) \]
is an additive invariant and so descends to \(\mathcal{M}_{d_4^g}(e) \) and induces a functor (still denoted by \(C \))
\[C : \mathcal{M}_{d_4^g}(e) \rightarrow \mathcal{D}(\Lambda). \]

By 13, the cyclic homology functor \(HC_j(-), \ j \geq 0 \) is obtained by composing \(C \) with the functor
\[H^{-j}(k \otimes_A -) : \mathcal{D}(\Lambda) \rightarrow \text{Mod-}\mathbb{Z}, \ j \geq 0 \]
Now, by proposition 17.1 and remark 17.2 the functor
\[K_n(-) : \mathcal{M}_{d_4^g}(e) \rightarrow \text{Mod-}\mathbb{Z} \]
is co-represented by \(U_a(k)[n] \). This implies, by the Yoneda lemma, that
\[\text{Nat}(K_n(-), HC_j(-)) \simeq HC_j(U_a(k)[n]). \]

Since we have the following isomorphisms
\[HC_j(U_a(k)[n]) \simeq H^{-j}(k \otimes_A C(U_a(k)[n])) \]
\[\simeq H^{-j}(k \otimes_A C(k)[n]) \]
\[\simeq H^{-j+n}(k \otimes_A C(k)) \]
\[\simeq HC_{j-n}(k). \]

and since
\[HC_*(k) \simeq k[u], \ |u| = 2 \]
we conclude that
\[HC_j(U_a(k)[n]) = \begin{cases}
k & \text{if } j = n + 2r, \ r \geq 0 \\0 & \text{otherwise} \end{cases}. \]
Finally notice that the canonical element \(1 \in k\) furnishes us the higher Chern characters and so the theorem is proven.

18. Concluding remarks

By the universal properties of \(U_a, U_u, \text{ and } U_l\), we obtain the following diagram:

\[\begin{array}{ccc}
\text{HO(dgcat)} & \xrightarrow{U_a} & \mathcal{M}_{dg}^{unst} \\
\downarrow & & \downarrow
\\
\mathcal{M}_{dg}^{add} & \xrightarrow{\Phi} & \mathcal{M}_{dg}^{loc}
\end{array} \]

Notice that Waldhausen’s connective \(K\)-theory is an example of an additive invariant which is NOT a derived one, see [19]. Waldhausen’s connective \(K\)-theory becomes co-representable in \(\mathcal{M}_{dg}^{add}\) by theorem [16][10].

An analogous result should be true for non-connective \(K\)-theory and the morphism
\[\Phi : \mathcal{M}_{dg}^{add} \longrightarrow \mathcal{M}_{dg}^{loc}. \]
should be thought of as co-representing ‘the passage from additivity to localization’.

References

[1] A. Bondal, D. Orlov, Semiorthogonal decomposition for algebraic varieties, preprint MPIM 95/15 (1995), preprint math. AG/9506012.
[2] A. Bousfield, E. Friedlander, Homotopy theory of \(\Gamma\)-spaces, spectra and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill. 1977, II), Lecture Notes in Mathematics, 658, 80-130, 1978.
[3] D. Cisinski, A. Neeman, Additivity for derivator \(K\)-theory, preprint available at www.math.univ-paris13.fr/~cisinski. To appear in Advances in Mathematics.
[4] D. Cisinski, Propriétés universelles et extensions de Kan dérivées, preprint available at www.math.univ-paris13.fr/~cisinski.
[5] D. Cisinski, Images directes cohomologiques dans les catégories de modèles, Ann. Math. Blaise Pascal, 10 (2003), n.2, 195-244.
[6] D. Cisinski, Catégories dérivables, preprint available at www.math.univ-paris13.fr/~cisinski.
[7] D. Cisinski, Localisation de Bousfield des dérivateurs, letter to the author, Paris, 3 March, 2007.
[8] G. Cortiñas, A. Thom, Bivariant algebraic \(K\)-theory, J. reine angew. Math, 510, 71–124.
[9] V. Drinfeld, DG quotients of DG categories, Journal of Algebra, 272, 2004, 643-691.
[10] V. Drinfeld, DG categories, Series of talks at the Geometric Langlands Seminar, Chicago, Notes taken by D. Ben-Zvi, Fall 2002.
[11] D. Dugger, Universal homotopy theories, Advances in Mathematics, 164, 144-176, 2001.
[12] G. Garkusha, Homotopy theory of associative rings, Advances in Mathematics, 213, no.2, 553-599.
[13] A. Grothendieck, Dérivateurs, manuscript, 1983–1990.
[14] A. Heller, Stable homotopy theories and stabilization, Journal of Pure and Applied Algebra, 115, 1997, 113–130.
[15] P. Hirschhorn, *Model categories and their localizations*, Mathematical Surveys and Monographs, 99, American Mathematical Society, 2003.

[16] M. Hovey, *Model categories*, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999.

[17] M. Hovey, *Spectra and symmetric spectra in general model categories*, Journal of Pure and Applied Algebra, 165, 2001, 63–127.

[18] C. Kassel, *Cyclic homology, comodules and mixed complexes*, J. Algebra, 107, (1987), 195–216.

[19] B. Keller, *On differential graded categories*, International Congress of Mathematicians, Vol I, 151–190, Eur. Math. Soc. Zürich, 2006.

[20] B. Keller, *Derived categories and universal problems*, Communications in Algebra, 19 (1991), 699–747.

[21] B. Keller, *On the cyclic homology of exact categories*, J. Pure Appl. Algebra 136 (1999), no. 1, 1–56.

[22] M. Kontsevich, *Topological field theory for triangulated categories*, Talk at the conference on K-theory and Noncommutative Geometry, Institut Henri Poincaré, Paris, June 2004.

[23] M. Kontsevich, *Triangulated categories and geometry*, Course at the École Normale Supérieure, Paris, Notes taken by J. Belluache, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, 1998.

[24] G. Maltsiniotis, *Introduction à la théorie des dérivateurs (d’après Grothendieck)*, preprint, 2001, available at the author’s homepage.

[25] G. Maltsiniotis, *Structure triangulée sur les catégories de coefficients de dérivateurs triangulés*, Series of lectures at the seminar Algèbre et topologie homotopiques, Paris (notes in preparation), 2001.

[26] B. Toen, G. Vezzosi, *Homotopical Algebraic Geometry I, Topos theory*, Advances in Mathematics, 193, 2005, 57–372.

[27] B. Toen, M. Vaquie, *Moduli of objects in dg-categories*, pre-print, arxiv:math/0503269, to appear in Annales de l’É.N.S.

[28] B. Toen, *The homotopy theory of dg-categories and derived Morita theory*, Inventiones Mathematicae, 167 (2007), 615–667.

[29] R. Thomason, T. Trobaugh, *Higher algebraic K-theory of schemes and of derived categories*, The Grothendieck Festschrift, vol. III, Progress in Mathematics, 88, 247–435.
[44] F. Waldhausen, *Algebraic K-theory of spaces*, Algebraic and geometric topology (New Brunswick, N. J., 1983), 318–419, Lecture Notes in Math., 1126, Springer, Berlin, 1985.

Université Paris 7 - Denis Diderot, UMR 7586 du CNRS, case 7012, 2 Place Jussieu, 75251 Paris cedex 05, France and Departamento de Matemática, FCT-UNL, Quinta da Torre, 2829-516 Caparica, Portugal

E-mail address: tabuada@math.jussieu.fr
tabuada@fct.unl.pt