A 40nm CMOS Ultra-Wideband Low Noise Amplifier Design

Jiaqian Wu and Zhangfa Liu*
School of Information and Engineering, Beijing Jiaotong University, Beijing China
*Corresponding author

Abstract—An ultra-wideband low noise amplifier (LNA) based on the cascode configuration with resistive feedback is presented in this paper. A shunt-shunt feedback resistor and a pre-π matching network is employed to achieve wideband input impedance matching, and to enhance gain response and reduce noise for using a post-cascode inductor L_P. In this paper, the SMIC 40nm CMOS process is used. The circuit simulation results show that S_{11} is lower than -10dB, and the gain S_{21} is around 10±2dB, and the NF is lower than 4.5dB in the 3.5-31-GHz frequency range.

Keywords—CMOS, feedback; flatness; Low Noise Amplifier (LNA); Noise Figure (NF); bandwidth

I. INTRODUCTION

Low noise amplifiers (LNAs) with multi-decade gigahertz bandwidth have been one of the most crucial components in applications of mobile communications, radar and multi-standard software-defined radios [1],[2]. And LNA is the first active circuit of the receiving link in T/R module. It amplifies the received signal with as little noise as possible to reduce the influence of the noise on the subsequent stage. At the same time, the LNA also exhibits high linearity for providing high gain to reduce the influence of nonlinear characteristics on signal quality. A dual-feedback topology is a typical choice to extend impedance matching bandwidth. And using a shunt peaking inductor to extend 3-dB bandwidth [3]. However, this structure suffers from high noise figure (NF). Using asymmetrical T-coils and gate-inductive peaking, to enhance the wideband gain and decrease noise figure [4].

In this paper, the design principles and analytical equations of an ultra-wideband LNA is presented. The rest of this paper is arranged as follows: Details of the input impedance matching, gain bandwidth, and frequency response of the NF are provided in section II; Section III describes the given wideband LNA circuit and its simulation results, and the simulation results are compared with the previous work results; Section IV gives the conclusion.

II. CIRCUITS DESIGN AND ANALYSIS

A. Wideband Input Matching Network

The resistive shunt-shunt feedback is a popular technique for enlarge the bandwidth of an amplifier. Figure 1.(a) and (b) shown the classical resistive shunt-shunt resistive feedback amplifier and its small-signal equivalent circuit. To simplify the analysis, the intrinsic gate-drain capacitance C_{gd1} is ignored.

![Figure 1](Fig1.png)

FIGURE 1. (A) SCHEMATIC OF SHUNT-SHUNT RESISTIVE FEEDBACK AMPLIFIER (B) SMALL-SIGNAL EQUIVALENT CIRCUIT

From Figure 1.(b), it can be obtained:

$$\frac{V_{out}}{R_L} + g_m V_{gs1} = \frac{V_{gs1} - V_{out}}{R_{FB}}$$ \hspace{1cm} (1)

So the current flows on R_{FB} can be written as:

$$I_s = \frac{V_{gs1} - V_{out}}{R_{FB}} \rightarrow R_f = \frac{V_{gs1} - I_s}{I_s} = \frac{R_{FB} + R_L}{1 + g_m R_L}$$ \hspace{1cm} (2)
So the input impedance of the amplifier is:

\[
Z_{in} = \left[sL_g + \left(R_f \left[\frac{1}{sC_{g_{in}}} \right] \right) \right] \frac{1}{sC_{in}}
\]

(3)

Finally the input impedance of the amplifier can be written as:

\[
|S_{11}| = \left(\frac{-s^3L_gZ_0^2C_{in}C_{g_{in}} + s^2L_gZ_0 \left(C_{g_{in}} - C_{in} \right) + s \left[L_g - Z_0^2 \left(C_{in} + C_{g_{in}} \right) \right]}{s^3L_gZ_0^2C_{in}C_{g_{in}} + s^2L_gZ_0 \left(C_{in} + C_{g_{in}} \right) + s \left[L_g + Z_0^2 \left(C_{in} + C_{g_{in}} \right) \right]} \right) 2Z_0
\]

(5)

If set \(C_{in} = C_{g_{in}} \), then from equation (5) it can be seen clearly that the response of \(|S_{11}|\) includes two zero points \(\omega_{o1} \) and \(\omega_{o2} \).

\[
\omega_{o1} = 0
\]

(6)

\[
\omega_{o2} = \sqrt{\frac{2}{L_g C_{g_{in}}} - \frac{1}{Z_0^2 C_{g_{in}}^2}}
\]

(7)

When \(L_g \) and \(C_{in} \) are not added, \(S_{11} \) can be expressed as follows:

\[
|S_{11}| = \left(\frac{1}{\pi} \frac{Y_{in}}{\pi} \right) = \left(\frac{1}{\pi} \frac{1 - j\omega R_f C_{g_{in}}}{\pi + 1 + j\omega R_f C_{g_{in}}} \right)
\]

(8)

As expected. That is, two of the predicted frequency responses are falling. Assuming \(C_{g_{in}} = 137.075 \, fF \), \(L_g = 0.3nH \), the relationship between the calculated value of \(S_{11} \) and the frequency corresponding to the equations (5) and (8) shown in Figure 2 and the frequency can be obtained. It can be seen from equations (5), (8) and Fig.2 that when there is no series inductance and parallel capacitance at the input end, it will be greater than -10dB, and after adding \(\pi \) matching input network at the input end, \(\omega_{o2} = 26.3 \, GHz \) is obtained, the original 15.5GHz input matching bandwidth is extended to 26.3GHz.

\[
Z_{in} = \frac{s^2R_f C_{gs}L_g + sL_g + R_f}{s^2R_f \left(C_{gs} \right) L_g + s^2L_g \left(C_{in} + sR_f \left(C_{in} + C_{gs} \right) \right) + 1}
\]

(4)

Corresponding to the input impedance matching \(Z_{in} = Z_0 \), \(R_f = Z_0 \) is usually selected to achieve DC bandwidth matching. The \(|S_{11}|\) of the amplifier can be expressed as follows:

\[
B. \text{ Frequency Response of } S_{21}
\]

The cascode structure is one of the most commonly used LNA topologies due to its low power consumption, high gain, and high reverse isolation. The schematic of cascade amplifier and its small-signal equivalent circuit are shown in Figure 3.(a) and (b) respectively.

FIGURE II. CALCULATED S11 PARAMETERS AT DIFFERENT FREQUENCIES FOR RESISTIVE SHUNT–SHUNT FEEDBACK AMPLIFIER BOTH WITH AND WITHOUT SERIES INPUT INDUCTOR \(L_g \) AND PARALLEL INPUT CAPACITOR \(C_{in} \).
FIGURE III. (A) SCHEMATIC OF CASCODE AMPLIFIER WITH RESISTIVE SHUNT–SHUNT FEEDBACK (B) SMALL-SIGNAL EQUIVALENT CIRCUIT.

For simplicity, assume \(s^2 C_{gs} L_g + 1 \) \(s C_{in} \approx 0 \), in this case the \(S_{21} \) of the amplifier can be expressed as:

\[
S_{21} = 2 \cdot A_v = 2 \cdot A_{vs,in} \cdot A_{vs,core} \approx 2 \cdot \left(1 + \frac{L_g}{C_{gs} R_f} \right)
\]

(9)

Where \(A_{vs,in} \) and \(A_{vs,core} \) represent the voltage gain \(V_{gs} / V_S \) and \(V_{out} / V_{gs} \) respectively, and

\[
\omega_{0,in} = \sqrt{\left(1 + \frac{R_S}{R_f} \right) / \left(L_g \left(C_{gs} + \frac{C_{in} R_S}{R_f} \right) \right)}
\]

(10)

\[
Q_{in} = \sqrt{\frac{L_g \left(C_{gs} + \frac{C_{in} R_S}{R_f} \right) \left(1 + \frac{R_S}{R_f} \right)}{L_g R_f + R_S C_{gs}}}
\]

(11)

\[
\omega_{core} = 1 / \left[C d_2 \left(R_{FB} || R_L \right) \right]
\]

(12)

Where \(\omega_{0,in} \) and \(Q_{in} \) are the pole frequency and pole \(Q \) factor of the input network of the LNA, and \(\omega_{core} \) stands for the pole frequency of the core circuit of the LNA, respectively. Obviously, the possible method of increasing the bandwidth \(f_{3,db} \) of the amplifier is to add a shunt peak inductor \(L_p \) as shown in Figure 4(a), (b) is its small-signal equivalent circuit.

FIGURE IV. (A) CASCODE AMPLIFIER WITH A SERIES PEAKING INDUCTOR, (B) SMALL-SIGNAL EQUIVALENT CIRCUIT LET THE VOLTAGE AT THE INTERSECTION OF \(L_p \) AND \(C_{d2} \) BE \(V_s \), THEN:
Finally the gain of the amplifier is given by:

\[
\frac{V_{in} - V_{g1}}{sL_g} = \frac{V_{g1} \cdot sC_{g1} + V_{g1} - V_{out}}{R_{FB}}
\]

(13)

\[
\frac{V_{out} - V_s}{sL_p} = g_{m1}V_{g1} + V_s \cdot sC_{d2}
\]

(14)

\[
\omega_{core, a} = \frac{1}{\left(C_{d2} \left(R_{FB} \parallel R_L \right) \right)}
\]

(15)

\[
S_{21} = 2 \cdot A_{vs, a} = 2 \cdot A_{vs, in} \cdot A_{vs, core, a} \approx 2 \cdot \frac{1}{s^2 + \left(\frac{\omega_{0, in}}{Q_{in}} \right)^2 + \omega_{0, in}^2} + 2 \cdot \frac{1}{s^2 + \left(\frac{\omega_{core, a}}{Q_{core, a}} \right)^2 + \omega_{core, a}^2} + \left(\frac{L_g \left(C_{g1} + \frac{C_{in} R_S}{R_f} \right)}{C_{d2} L_p \left(R_{FB} \parallel R_L \right) \left(\frac{1}{R_{FB}} - g_{m1} \right)} \right)
\]

(16)

\(\omega_{core, a}\) and \(Q_{core, a}\) represent the pole frequency and pole \(Q\) factor, respectively, of the core circuit of the LNA with a post-cascode series-peaking inductor \(L_p\), \(L_p = 0.306 \text{nH}\), \(C_{d2} = 31.74 \text{fF}\). Since both \(A_{vs, in}\) and \(A_{vs, core, a}\) are normal second-order low-pass filtering functions, the gain of the amplifier is depended on \(\omega_{0, in}\), \(Q_{in}\), \(\omega_{core, a}\) and \(Q_{core, a}\). Figure 5 shows different S21 values at different conditions. \(L_p^p\) is in series after resistance feedback.

\(\omega_{core, a}\) and \(Q_{core, a}\) represent the pole frequency and pole \(Q\) factor, respectively, of the core circuit of the LNA with a post-cascode series-peaking inductor \(L_p\), \(L_p = 0.306 \text{nH}\), \(C_{d2} = 31.74 \text{fF}\). Since both \(A_{vs, in}\) and \(A_{vs, core, a}\) are normal second-order low-pass filtering functions, the gain of the amplifier is depended on \(\omega_{0, in}\), \(Q_{in}\), \(\omega_{core, a}\) and \(Q_{core, a}\). Figure 5 shows different S21 values at different conditions. \(L_p^p\) is in series after resistance feedback.
This paper demonstrates the compact ultra-wideband LNA design for broadband applications in theory and experimental simulation. Adding the post-cascode shunt-peak inductor to get high and flat gain response. The simulation results are consistent with the analysis results, indicating that the proposed LNA topology is very suitable for low-cost and high-performance broadband LNA.

REFERENCES

[1] M. Okushima, J Borremans, D. Linten, and G. Groeseneken, “A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS,” in proc. IEEE RFIC Symp, Jun.2009, pp.295-298.

[2] Paria Jamshidi ad Sasan Naseh, “An 8-18 GHz Low Noise Amplifier Design in 0.18um CMOS technology,” IEEE ICUWB, 2012, pp.387-391.

[3] M. Okushima, J. Borremans, D. Linten, G. Groeseneken, “A DC-to-22 GHz 8.4mW compact dual-feedback wideband LNA in 90 nm digital CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, June 2009, pp.295-298.

[4] Jia Cao, Zhiqun Li, Jianwei Tian, Hao liu and Qin Li “A 24-48-GHz Low power Low Noise Amplifier Using Gain Peaking Techniques,” IEEE International Conference on Microwave and Millimeter Wave Technology, Vol 1, December 2016, pp.126-128.