An Intelligent Approach to Elevation Profiling for LADAKH using QGIS techniques

Priyanka Singh1*, Debaroti Sammanit1, S K Singh2
1Civil Engineering Department, Amity University Uttar Pradesh, Noida, 201313, India
2Department of Civil Engineering, Chandigarh University, Mohali, India
Email address: priyanka24978@gmail.com

Abstract. With the trending technological advancement, geographic information systems are finding their supremacy in many fields of research and technology, ranging from geographical inputs to population trends to medical advancements in full spheres of work in today's progressing world. The emergence of Quantum GIS has now facilitated areas like change monitoring, forecasting. The paper aims to prove the elevation system forecast for the Ladakh region, which has lesser mobility in the present times; the paper's findings focus on opening a new gateway for the engineered constructions in the region for improved connectivity that is confined to the summer months. Thus, ESRI's GIS software helps analyse the terrain difficulties in the stipulated area via topics like raster feed, georeferencing, and mesh layer creation.

Keywords: Geographic Information Systems (GIS), Quantum GIS, Ladakh region, GCPs (Ground Control Points), land suitability analysis.

1. Introduction

One of the reasons GIS is crucial in the city making plans is the potential to recognize contemporary desires for a city, after which layout to satisfy those desires. By processing geospatial records from satellite tv for pc imaging, aerial images, and far-flung sensors, customers advantage an in-depth
attitude in terms of land and infrastructure. The importance of GIS as city populations grow and spread is based on its ability to pull together massive amounts of data [1–3]. It is critical for stability competing priorities and remedy complex problems, including devising up-to-date construction placement or figuring out the viability of a waste disposal site. The effective equipment helps in assisting experts in recognizing positive scopes from substantially populated areas; however, they take to inspecting average-sized cities or even unidentified temporary settlements [4–6]. The cap potential to iterate ample queries and analytics tools on GIS records method specialists can examine under what circumstances the creation will match the present built sector and meet uprising demands. Regulators and skilled expertise can also chalk possibilities for advanced aid use, figuring out the pleasant places to reap solar, wind, or geothermal energy. The GIS era enables city planners with superior visibility into records [7–9]. They display shifts, by examining practicality of targeted tasks, and expect the impact in the environment. GIS software programs can display to all applicable stakeholders precisely what the adjustments at the floor will appear to be to assist them in making higher decisions. For an instance, GIS software programs can also additionally generate visualizations of an area’s contemporary environmental situations and permit customers to attract comparisons among the expected consequences of proposed improvement plans [10–12].

2. Literature Review
It was retrieving the past built-up of the software revolutionized as GIS emerged as a wonderful field Roger Tomlinson’s pioneering effort for Canada's Department of Forestry and Rural Development took place during the 1960s. Tomlinson was tasked with creating a map-based inventory of the country's herbal resources. In partnership with IBM programmers, he developed automatic ways for collating data from all of Canada's provinces [13–15]. The Canada Geographic Information System, the world's first operating GIS, also gave the new discipline its name. With the evolution of GIS, this new generation constituted a significant leap forward from previous methodologies to automated mapping. The ability to convert virtual scan data into a topologically coded map format. In 1964, at Northwestern University, they developed a prototype for SYMAP [16–18], one of the first mapping software applications. In 1965, they founded the Laboratory for Computer Graphics and Spatial Analysis at Harvard Graduate School of Design. In terms of growth techniques for organising, synthesising, analysing [19], and displaying spatial records, the LCGSA set the standard, enabling an increasing number of solid packages for GIS.

3. Techniques in analysis
Each pixel of the raster is georeferenced, which assigns world coordinates to each pixel. These
coordinates are gathered using a field survey, such as using a GPS device to collect coordinates. Most GIS projects require georeferencing of some raster data. In some cases, we can obtain the coordinates from the markings on the map image itself. The image is warped and made to adjusted as raster input within the chosen coordinate system, using these sample coordinates or GCPs (Ground Control Points) [20–22].

Users may discover where every point on a georeferenced digital map is located on the Earth's surface by tying it to a known Earth coordinate system.

Georeferencing is the process of taking a digital image. It could be a scanned geologic map or a picture of a topographic map; GIS or mapping software can 'position' the image in its appropriate real-world location by adding geographic information to the image. Selecting pixels in the digital image and assigning them to geographic coordinates completes the procedure. A non-georeferenced image is georeferenced to a previously georeferenced image with embedded geographic data.

4. Methodology

The map display in the above image shows the styled data added to the QGIS project, and it takes up the majority of the space in the QGIS Desktop. The menu bar and toolbar displayed on the top provides quick access to the software's functionality. QGIS Toolbars are arranged to float independently or dock along the application's top, bottom, left, or right sides. Panels, displayed on the bottom-left corner of the image, provide various functions and can be arranged to float independently or dock above, below, right, or left of the map display, such as browser and layers.

QGIS allows users to display multiple layers containing different depictions of sources. This software allows making new layers in a variety of formats. It includes tools for creating GeoPackage, Shapefile, SpatiaLite, GPX, and Temporary Scratch layers, as well as other formats.

We can quickly supply a large amount of data in a variety of forms. The OGR library is used by QGIS to read and write vector data formats such as ESRI shapefiles, MapInfo and MicroStation file formats, AutoCAD DXF, PostGIS, SpatiaLite, Oracle Spatial and MSSQL Spatial databases, and many others.

The print layout helps in printing and growing layout capabilities. We can use the print layout to add elements like QGIS map canvas, text labels, images, legends, scale bars, basic shapes, arrows, attribute tables, and HTML frames.

The layout manager is used to keep track of the project's print layouts. It provides an overview of the project's existing print layouts and reports.

Raster data consists of discrete cell matrices. It depicts characteristics that can be found on, above, or below the Earth's surface. The raster grid's cells are of the same size, and they're usually rectangular. Remote sensing data, such as aerial photography or satellite imaging, and simulated data are common
raster datasets. Shapefile is a Vector File Format used in GIS mapping. It is used for storing the shape, location, coordinates, and geographical features of the map. It is stored in a set of related files and has one feature class. Shapefile comes with some limitations. Like it cannot store topological information. Moreover, their size cannot exceed 2 GB.

Profile Tool is a plugin for QGIS, which we need to install from the plugin menu. It generates (elevation) profiles for line features.

5. Earthwork estimation using QGIS

The earthworks involve the removal and filling of the landforms to create a surface viable for construction; the main motive is to remove the undulations of the land for creating a level of land either in cases of road construction or in cases of mining. The suitability of the soils as fills matters based on the high strength and low compressibility that makes granular fills are the most popular. The soils that have organic matter are not fit for the engineering fills. The earthwork computations involve excavating the channels, pipelines, canals, levelling the land, and smoothening them. The land levelling is done by compacting the soil by the bulldozers; the levelling is done based on the formation line. The calculation process of the excavation of the earthworks depends on the trapezoidal combination of the faces. Then, the bed slope, the mean area, and the mean depth are multiplied by the interval to get the cut and fill with the entire excavation process is calculated. Crafted by cut and fill is the first step in quite a while. So it is fundamental for any temporary worker to convey this work with full safety measures and complete the work with no mistakes in the figuring. The street works or the waste developments are significant developments as it shows the economy of a nation. It enhances the encompassing of a spot. If the development of such structures is done appropriately, at that point, it might prompt extreme mishaps and other significant misfortunes may happen. It is fundamental for all the temporary earthwork workers to ascertain the correct and exact gauge of earthwork. If the gauge of earthwork done by the temporary worker isn't exact, at that point, we will not be able to appoint the best possible development resources and can't detail a venture plan also. There are numerous questions and suspicions required for evaluating earthwork development.

Furthermore, this explains that while carrying out this responsibility, the contractual worker is at the most serious hazard. The project of waterway interlinking needs heaps of data. The choice of ways through which two waterways ought to be interlinked is lumbering and tedious. In any case, a similar procedure will take significantly less time if it is finished with the assistance of GIS in the product Quantum-GIS. The severe issue of the interlinking of two streams comes when the best possible way is to be chosen. Less the undulations more will be the appropriateness of the way. In any case, on the off chance that there is some reasonable way with more undulations, at that point, the development
work is expanded. By development, we mean crafted by a cut and fill. The task of cut and fill is done suitably to make it effective. Quantum-GIS helps in figuring the complete slice and fill through a specific equation.

The primary idea that any user must have the difference between the raster and vector data, which is the most severe concern in this GIS software. The resolution of the maps fed in is in the form of picture dots or pixels. These features let it zoom to a greater extent. It adds layers to the raster data for a particular area of work in a map that may be fed in from the websites of the ISRO in the jpg format, as shown in fig 1.

![Fig.1: Brief data about DEM development](image)

5.1 Methods of Terrain Analysis

The land surveying techniques that include estimating the excavation of earthworks over the varying terrain draws over an analogy to use tools like the QGIS to draw in calculations based on pixels and graphics from the LiDAR and UAV photogrammetry techniques only to inculcate the use of high-resolution DEM's.

The three-dimensional view of baseline elevation is visible as soon as the raster value is added to the workspace. The area under observation helps to conclude land levelling with truckloads of gravel in the stockpile. The volume calculation of that stipulated area needs an enclosed polygon to calculate the volume value from the raster data. After marking the layer, the software also facilitates creating an interpolated layer, which helps sketch the land level after a layer is removed. The interpolation technique and assigning the various parts of the fed DEM to the coordinated system helps graphically solve the automatic process. Each pixel in the raster data helps note the cell areas and summation of the different elevation values. Thus, developing a layer from the Raster Zonal Statistics with all the
values that create a table of attributes, the next task is to use the field calculator to create a new field with the achieved values, the final step towards receiving the volume of the exposed surface generation of DEM, see fig 2 and 3 as below.

![Fig.2: Marking of land under inspection.](image1)

![Fig.3: Flowchart of feed value until the](image2)

5.2 Terrain analysis using QGIS

The sloppy Ladakh region can be executed with the QGIS Bucuresti version that helps in the modelling of the DEM's. It gives an insight into the land processes to analyse the terrain profiling and the cut and fill volume aspects of the land topography that hinder allowing the mobilization and creation of road networks in that hilly region.

![Fig.4: Embedded packages in QGIS](image3)
As shown in fig 4, QGIS adds a raster value to the map background. The Earth data values accessed from NASA's earth directory allow us to get in with the region's ALOS-PALASTER type of digital format under inspection. The Ladakh region is exact at latitude 34° 12' 34.2540'' N and DMS Longitude 77° 36' 54.4032'' E. The software QGIS helps get an insight into the slope of the land in both values and percentages.

![Fig. 5: Cut and fill volume of Ladakh region.](image1)

The fig 5 above shows the Ladakh region as numerous undulations with numerous high slope points. The profile tool plugin is a boon to the QGIS users helps in the direct study of the region. The DEM that we use in the mappings via QGIS also allows for the elevation modelling. The height above means sea level 7742m is a point of discussion for road construction. The rain shadow region formed by the Himalayas over Ladakh has the disadvantage of sloping topography.

![Fig. 6: Cut and Fill volume as per the height of land.](image2)

As shown in fig 6, the undulations of land-primarily indicate a land of hills and high peaking contours that provides a difficult chore to construct a road on this hilly terrain.

The generated table goes as with the coordinates. It gives an insight into the very high reach of the rocky inundations to the hillside that is calculatable by the hillshade tool from the analysis of the feed raster value. It helps to generate the topography of the land.

Multidirectional hillshade improves landscape perception. It consolidates light from six unique headings to speak to an upgraded perception of the territory and to improve the presence of locales with low reliefs. It improves the harmony between the overexposed and shadow territories of the map.
The marking of the altitudes with different bands helps generate the hillshade view as a single process on the python console. Of a selected region under inspection, the land process develops in this structure looking at the maximality of the hilly terrain, as shown in fig 7.

6. Limitations
Geographical Information Systems (GIS) is an acronym for Geographical Information Systems. It is a technology that can assemble, store, manipulate, and display geographical data. Correctly defined, a geographic information system (GIS) is an organised collection of computer software, hardware, data, and employees for capturing, storing, updating, and manipulating all types of geographically linked data. The use of a GIS system has made it a lot easier to evaluate and manipulate geographic data. However, despite its many benefits, GIS has a number of drawbacks, which are mentioned below.

1. It is costly: Due to the complicated interaction of the different components that make up a GIS system, a GIS system is not inexpensive. Aside from the technology and software, properly qualified human employees is required, which is costly to train and acquire.

2. Integrating with traditional maps is challenging: A GIS system is made up of incredibly sophisticated map patterns and info, which might be difficult to connect with traditional maps in order to obtain any useful information. This means that a GIS system can only deal with and understand information that has been gathered using the software from the beginning.

3. Data structures that are complex: The data collected and stored in GIS systems is frequently complex, requiring a lot of definition and reformation. This means that understanding and interpreting data collected in a GIS system necessitates specialised knowledge.

4. Simulating is difficult: A GIS system captures complex software arrays that necessitate specialised analysis. As a result, creating a simulation of the data or information gathered in a GIS system may be tricky.
5. Generalization might lead to the loss of essential information: there is a great deal of generalisation with the large data being processed in data analysis utilising the GIS system. Because data is generalised, the user will lose a lot of information.

6. Wide storage: due to enormous data sizes and the data types utilised, GIS data requires exceptionally high storage capacity. This also raises storage costs and the workforce necessary for the use of the data.

7. Expensive data gathering: the GIS system data collection procedure is usually expensive, because not all data gathered is usable, but storage and analysis are all essential.

8. Difficult overlay operations: GIS data demand sophisticated, difficult overlays functions, especially when the employees concerned are not adequately qualified.

9. Time consumption: the data collection, storage and analysis process by means of a GIS system is lengthy and time intensive, and consequently protracted. Because of the vastness of data available, it could take some time to gather entire information about a certain set of data.

7. Conclusion
At present, the Robust GIS equipment permits agencies to arrange and percentage detailed statistics in methods that customers can effortlessly understand. Manufacturers and outlets can use their findings to create extra green delivery chains, while fitness departments could make better-knowledgeable choices, approximately dispensing restrained resources. With open-supply mapping and web-primarily based equipment totally, absolutely everyone can get worried about producing records on visitor styles or the route of a risky storm. In the coming years, creative and innovative will continue to push the boundaries of spatiotemporal thinking. The following are some of the most promising areas for GIS-based outcome improvement: Creating different nuanced visualisations with 3D GIS Augmented reality applications that are based on geolocation Creating self-driving car navigation structures Indoor environment mapping. With prospective energy and passion, the paper will continue to investigate the topic in order to model better connections alongwith improved land suitability analysis for Ladakh and Northern India's hilly environment.
References:

[1] Bondžić J, Sremački M, Popov S, Mihajlović I, Vujić B and Petrović M 2021 Exposure to hazmat road accidents – Toxic release simulation and GIS-based assessment method J. Environ. Manage. 293

[2] Alcaras E, Parente C and Vallario A 2021 Automation of pan-sharpening methods for pléiades images using GIS basic functions Remote Sens. 13

[3] Kondasso Taïga L, Kamgang S A, Bakwo Fils E M, Samuel T C and Rduch V 2021 The status and population dynamic of Buffon’s kob (Kobus kob kob, ERXLEBEN 1777) in the Faro National Park, Northern Cameroon Afr. J. Ecol. 59 142–51

[4] Dyldaev M, Chymyrov A, Mukabaev A and Omurzak Uulu O 2021 Investigation of the population area of snow leopard in the central tian-shan mountains E3S Web of Conferences vol 227, ed A I Foldvary L. (EDP Sciences)

[5] Kovacic B, Doler D and Sever D 2021 Innovative business model for the management of airports in order to identify runway damage in time Sustain. 13 1–20

[6] Auradkar P K, Raykar A, Agarwal I, Sitaram D and Manavalan R 2021 Accuracy assessment and performance analysis of raster to vector conversions on LULC data – India J. Eng. Des. Technol.

[7] Wellian J and Smith R L 2021 Risk awareness of black-and-gold howler monkeys living in an urban environment in south-west Paraguay J. Urban Ecol. 7

[8] Brádler K, Friedland S, Izaac J, Killoran N and Su D 2021 Graph isomorphism and Gaussian boson sampling Spec. Matrices 9 166–96

[9] Rasyidi A H, Suroiyah A and Yamani L N 2021 Evaluation of the acute flaccid paralysis surveillance system of polio free in east java, indonesia, 2019 Indian J. Forensic Med. Toxicol. 15 808–15

[10] Tabunshchik V A, Kluchkina A A, Petlukova E A, Kalinchyk I V, Galkina M V, Penno M V and Nikiforova A A 2020 Assessment of the geomorphological basis of landscapes of the Crimean Peninsula using geoinformation technologies IOP Conference Series: Materials Science and Engineering vol 905 (IOP Publishing Ltd)

[11] Gnimavo R S, Djossou P, Sopoh G E, Anagonou G E, Barogui Y T, Wadagni A A C, Houezo J-G and Johnson R C 2020 Trends of the leprosy control indicators in Benin from 2006 to 2018 BMC Public Health 20

[12] Mascitelli A, Ravanelli M, Mattoccia S, Berardocco C and Mazzoni A 2020 A complete fos approach for indoor crowdsourced mapping: Case study on Sapienza University of Rome
faculties *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives* vol 43, ed L F Z S D S S G A G A J J B P B M B M A S C C A D M R A D M G E F C C H J I U I I K Z K K K M K M L Y M M M M A N G P D R P C S A S E T W V G D V W S W H Z X G Paparoditis N. Mallet C. (International Society for Photogrammetry and Remote Sensing) pp 361–5

[13] Almeida M V and Oreta A W 2020 A Multi-Spatial Assessment Framework to Geological Hazard for High-Rise Building Project in Metro Manila, Philippines *IOP Conference Series: Earth and Environmental Science* vol 479, ed Y M A M Halim M.H.A. Anuar A.N. (Institute of Physics Publishing)

[14] Watrianthos R, Bobbi Kurniawan M, Kusmanto, Budiman S and Ulya B 2020 Mapping of Traffic Accidents in Labuhanbatu Regency using GIS Support *Journal of Physics: Conference Series* vol 1566 (Institute of Physics Publishing)

[15] Picchio R, Latterini F, Mederski P S, Tocci D, Venanzi R, Stefanoni W and Pari L 2020 Applications of GIS-based software to improve the sustainability of a forwarding operation in central Italy *Sustain.* 12 1–15

[16] Kumar S, Kumar M and Handa A 2018 Combating hot corrosion of boiler tubes – A study *Eng. Fail. Anal.* 94 379–95

[17] Singh U, Salgotra R and Rattan M 2016 A Novel Binary Spider Monkey Optimization Algorithm for Thinning of Concentric Circular Antenna Arrays *IETE J. Res.* 62 736–44

[18] Kumar R, Chohan J S, Goyal R and Chauhan P 2020 Impact of process parameters of resistance spot welding on mechanical properties and micro hardness of stainless steel 304 weldments *Int. J. Struct. Integr.* ahead-of-p

[19] Sarowa S, Singh H, Agrawal S and Sohi B S 2018 Design of a novel hybrid intercarrier interference mitigation technique through wavelet implication in an OFDM system *Digit. Commun. Networks* 4 258–63

[20] Kanoungo A, Sharma U, Goyal A, Kanoungo S and Singh S 2021 Assessment of Causes of Pothole Development on Chandigarh Roads *J. Inst. Eng. Ser. A*

[21] Sidhu B S, Sharda R and Singh S 2021 Water footprint of crop production: A review *Indian J. Ecol.* 48 358–66

[22] Singh S, Kumar R and Chohan J S 2020 Comparative analysis for natural and zycobond modified soil for green development *J. Green Eng.* 10 8251–8