A Recipe for Arbitrary Text Style Transfer with Large Language Models

Emily Reif\(^*\) Daphne Ippolito\(^{1,2}*\) Ann Yuan\(^1\) Andy Coenen\(^1\)
Chris Callison-Burch\(^2\) Jason Wei\(^1\)

\(^{1}\)Google Research \(^{2}\)University of Pennsylvania
{ereif, annyuan, andycoenen, jasonwei}@google.com
{daphnei, ccb}@seas.upenn.edu

Abstract

In this paper, we leverage large language models (LMs) to perform zero-shot text style transfer. We present a prompting method that we call \textit{augmented zero-shot learning}, which frames style transfer as a sentence rewriting task and requires only a natural language instruction, without model fine-tuning or exemplars in the target style. Augmented zero-shot learning is simple and demonstrates promising results not just on standard style transfer tasks such as sentiment, but also on natural language transformations such as “make this melodramatic” or “insert a metaphor.”

1 Introduction

Text style transfer is the task of rewriting text to incorporate additional or alternative stylistic elements while preserving the overall semantics and structure. Although style transfer has garnered increased interest due to the success of deep learning, these approaches usually require a substantial amount of labeled training examples, either as parallel text data (Zhu et al., 2010; Rao and Tetreault, 2018) or non-parallel text data of a single style. (Li et al., 2018; Jin et al., 2019; Liu et al., 2020; Krishna et al., 2020). Even bleeding-edge approaches that tackle the challenging problem of label-free style transfer are limited in that they require at least several exemplar sentences that dictate a given target style (Xu et al., 2020; Riley et al., 2021). Hence, recent survey papers have identified a need for new methods that both reduce the training data requirements and expand the scope of styles supported (Jin et al., 2020; Hu et al., 2020).

In this work, we present \textit{augmented zero-shot learning}, a prompting method that allows large language models to perform text style transfer to arbitrary styles, without any exemplars in the target style. Our method builds on prior work showing that sufficiently large LMs such as GPT-3 can perform various tasks ranging from classification to translation, simply by choosing a clever prompt to prepend to the input text for which the model is asked to continue (Brown et al., 2020; Branwen, 2020). Using a single prompt that provides several demonstrations of sentences being “rewritten” to meet a desired condition, language models can extrapolate and rewrite text in unseen styles. We are thus able to perform style transfer to arbitrary styles such as “make this sentence more comic” or “include the word balloon.”

Augmented zero-shot learning is simple and facilitates the application of style transfer to a wider
range of styles than existing work. Our contributions are the following.

1. We propose a recipe for style transfer using large LMs that is label-free, training-free, and intuitively controllable.

2. Via human evaluation, we find that our method achieves strong performance on both standard and non-standard style transfer tasks. We also compare our approach for sentiment transfer with prior methods using automatic evaluation.

3. We explore real-world desired style transfers generated from users of a text editing UI that implements our method.

2 Augmented zero-shot prompting

Although large LMs are trained only for continuation, recent work has shown that they can perform a variety of NLP tasks by expressing the task as a prompt that encourages the model to output the desired answer as the continuation (Puri and Catanzaro, 2019; Weller et al., 2020; Brown et al., 2020; Schick and Schütze, 2021, inter alia; see Liu et al. (2021a) for a survey). The simplest approach, zero-shot prompting, directly uses natural language to ask the large LM to perform a task, as shown in Figure 1a. Zero-shot prompting, however, can be prone to failure modes such as not returning well-formatted or logical outputs (see §6). Few-shot prompting, as shown in Figure 1b, has been shown to achieve higher performance, but requires exemplars for the exact task that we want the model to perform. Such few-shot examples can be easily obtained if the desired style transformation is known ahead of time, but this ultimately limits style transfer to a set of pre-specified style tasks.

To remove the need for these labeled exemplars for each style transfer task, we propose augmented zero-shot learning, a method for performing multi-task style transfer using a single set of exemplars. Instead of prompting the model with exemplars specific to the exact style transfer task we wish to perform, we prompt the model with examples of a variety of sentence rewriting operations, as shown in Figure 1c. This intuition is inspired by Reynolds and McDonell (2021)’s observation that successful prompts constrain the behavior of the large LM away from failure modes—in our case, we aim to preserve the flexibility of a zero shot prompt while encouraging the model to produce outputs of a specific template. We keep the the format of the exemplars constant and insert the desired sentence transformation into the same format. In this way, the augmented zero-shot formulation supports arbitrary sentence rewording tasks without the need to write any task-specific exemplars. Thus, it works for a wide range of styles, including modifying the text to be “more melodramatic,” “insert a metaphor,” or “include the word balloon.”

3 Experimental Setup

Style transfer tasks. We consider six style transfer tasks that we deem non-standard, listed in Table 1. These styles were chosen to be representative of most frequent style adjustments made by users of an AI-assisted text editor that employs our method (discussed further in §5). As source sentences, we use 50 sentences randomly drawn from the Reddit Writing Prompts validation set (Fan et al., 2018), excluding those that already clearly exhibited one of the styles or were ungrammatical/incoherent. We use human evaluation for these styles, since not all styles have readily available classifiers.

We also evaluate our method on two standard style transfer tasks: sentiment and formality. We use the Yelp polarity dataset (Zhang et al., 2015) for sentiment and Grammarly’s Yahoo Answers Formality Corpus (GYAFC) dataset for formality (Rao and Tetreault, 2018).1 These datasets allow us to evaluate performance of augmented zero-shot learning in the context of prior supervised methods which have been used on these tasks.

1 Hosted by Luo et al. (2019).

Table 1: Example style transfer outputs from augmented zero-shot learning for non-standard styles.

Style	Original	Prompted
More descriptive	The man’s brown trenchcoat was coated with snow, and as he leaned against the telephone booth, he cast a long shadow across the road in the late afternoon sun.	There, in the middle of the street, stood an old man whose face resembled the weatherworn bark of a gnarled tree.
Include a metaphor	There, in the middle of the street, stood an old man whose face resembled the weatherworn bark of a gnarled tree.	There, in the middle of the street, stood an old man with several colourful balloons tied to the straps of his coat.
Include the word “park”	There, in the middle of Central Park, stood an old man in a weatherbeaten brown coat.	There, in the middle of the street, stood an old man whose face resembled the weatherworn bark of a gnarled tree.
More comic	There, in the middle of the street, stood an old man in a weatherbeaten brown coat.	There, in the middle of Central Park, stood an old man in a weatherbeaten brown coat.
More melodramatic	There, in the middle of the street, stood an old man in a weatherbeaten brown coat.	There, in the middle of Central Park, stood an old man in a weatherbeaten brown coat.
Model. Augmented zero-shot learning requires a large language model. We primarily use LaMDA, a left-to-right decoder-only transformer language model (Vaswani et al., 2017) with a non-embedding parameter count of 137B (Thoppilan et al., 2022). The pre-trained LaMDA model, which we refer to as LLM, was trained on a corpus comprising 1.95B public web documents, including forum and dialog data and Wikipedia. The dataset was tokenized into 2.49T BPE tokens with a SentencePiece vocabulary size of 32K (Kudo and Richardson, 2018). We also use LLM-Dialog, the final LaMDA model which was finetuned on a curated, high-quality subset of data identified to be in a conversational format. Decoding was done with top-$k=40$. To show that the success of augmented zero-shot learning is not restricted to these two large LMs, we also perform experiments with GPT-3 (Table 8). For GPT-3, decoding was done with nucleus sampling using $p=0.6$ (Holtzman et al., 2019).

The prompts used for LLM and GPT-3 are shown in Figure 1. For LLM-Dialog, the prompt was instead formulated as a conversation between one agent who is requesting rewrites and another who is performing the rewrites. See Table 7 in the Appendix for the full non-abbreviated prompts.

4 Results

4.1 Non-Standard Styles

For our six non-standard styles, we asked six professional raters to assess <input sentence, target style, output sentence> tuples. These raters are fluent in English, live in India, and work full time labeling and evaluating data. To decrease inter-rater discrepancy and ensure that our instructions were clear, we had an initial calibration session where they test-rated a small portion of the data (around 10 datapoints which were then omitted from the results) and asked us any clarifying questions. For each style, we compare outputs from our method plus the three baselines for 50 sentences.

Each tuple was scored by three raters (3,600 ratings total) on the following three axes which are standard to textual style transfer (Mir et al., 2019): (1) transfer strength (the amount that the output actually matches the target style), (2) semantic preservation (whether the underlying meaning of the output text, aside from style, matches that of the input), and (3) fluency (whether the text is coherent and could have been written by a proficient English speaker). Following Sakaguchi and Van Durme (2018), transfer strength and semantic preservation were rated on a scale from 1–100. A screenshot of the evaluation UI is shown in Figure 5 in the Appendix. Note that the guidelines for semantic preservation are not standardized in prior literature (Briakou et al., 2021); while some evaluations are strict that the outputs cannot contain any more information than the inputs, we asked the annotators not to penalize for meaning transformations which are necessary for the specified transformation. We use dialog-LLM, and compare it with three other methods: (1) zero-shot (a baseline), (2) paraphrase (our normal augmented zero shot prompt, but with the target style of “paraphrased”, as a control) and (3) human (ground-truth transformations written by the authors).

Figure 2 shows these results. We found that the outputs of our method were rated almost as highly as the human-written ground truth for all three evaluations. The zero-shot baseline performed the worst in all categories: 25.4% of the time, it did not return a valid response at all (see §6), compared with 0.6% for augmented zero shot. The strong performance of the paraphrase baseline at fluency and semantic similarity shows that large LMs are capable of generating high quality text that remains true to the input sentence’s meaning. Overall, the average length of the input sentences was 66 characters, whereas the average length of augmented zero-shot outputs was 107 characters. For context, human paraphrase outputs were 82 characters.

For a subset of the tasks, some automatic evaluation was also possible. We found that the “balloon” and “park” transformations successfully inserted
the target word 85% of the time. For “more descriptive” and “include a metaphor” the transformed text was, as expected, longer than the original (by 252% and 146% respectively, compared with 165% and 146% for human baselines).

4.2 Standard Styles

To better contextualize the performance of our method with prior methods, we also generated outputs for two standard style transfer tasks: sentiment and formality. Figure 3 shows human evaluations (same setup as before) for our outputs as well as the outputs from two popular prior style transfer methods, Unsup MT (Prabhumoye et al., 2018) and Dual RL (Luo et al., 2019). The outputs from our method were rated comparably to both human generated responses and the two prior methods, using the same rating setup as the non-standard styles, with six outputs and baselines for four styles across 50 sentences, rated independently by three raters, totalling 3,000 total ratings.

Furthermore, following Li et al. (2018) and Sudhakar et al. (2019), we perform automatic evaluation for sentiment style transfer since there are classifiers available for these styles. We note that although automatic evaluations can diverge from human ratings, they can still be a good proxy as we could not perform human evaluation against every prior method due to time and resource constraints. We automatically evaluate (1) transfer strength using a sentiment classifier from HuggingFace Transformers (Wolf et al., 2020), (2) semantic similarity to human examples provided by Luo et al. (2019) via BLEU score, and (3) fluency via perplexity, as measured by GPT-2 (117M).

Table 2 shows these automatic evaluations, with four main takeaways. First, augmented zero-shot prompting achieves high accuracy and low perplexity compared with baselines. The BLEU scores, however, are low, which we believe is because it tends to add additional information to generated sentences (see Appendix B for a deeper analysis). Second, we apply augmented zero-shot learning to GPT-3 175B; these results indicate that augmented zero-shot learning generalizes to another large language model. Third, we vary model size for GPT-3 models, finding that larger size greatly improves style transfer. Fourth, for LLM and LLM-dialog, we find that augmented zero-shot learning substantially outperforms vanilla zero-shot learning and almost reaches the accuracy of five-shot learning.

Figure 3: Human evaluation of sentiment and formality transfer. Our method is rated comparably to human-written ground truth as well as prior methods. Error bars show Standard Error of the Mean. Unsup. MT is Prabhumoye et al. (2018); Dual RL is Luo et al. (2019).

5 Potential of Arbitrary Styles

One promising application of augmented zero-shot learning is an AI-powered writing assistant that can allow writers to transform their text in arbitrary ways that the writer defines and controls. As a qualitative case study to explore what arbitrary re-write styles may be requested, we built an AI-assisted story-writing editor with a “rewrite as” feature that uses our augmented few-shot method. Our editor has a freeform text box for users to specify how they would like a selection of their story to be rewritten (see Figure 6 in the Appendix). We asked 30 people from a creative writing group to use our UI to write a 100-300 word story, collecting 333 rewrite requests in total. Table 3 shows a subset of these, which were as diverse as asking for the text “to be about mining” or “to be less diabolical.”

6 Limitations and Failure Modes

This section details several qualitative limitations with our method.

Unparsable answers A frequent problem that arises when using large LMs for other NLP tasks is their outputs cannot be automatically parsed into usable answers. For example, when given a prompt like “Here is some text: that is an ugly dress. Here is a rewrite of the text, which is more positive” LLM-Dialog might return something like “Sounds like you are a great writer!” Similar error modes exist for LLM, which might output something like “Here are more writing tips and tricks.”
Table 2: Comparing augmented zero-shot prompting with supervised style transfer methods on the Yelp sentiment style transfer dataset using automatic evaluation. Acc: accuracy; PPL: perplexity. The inference-only table shows our method applied to 3 different sizes of GPT-3, plus our own LLM.

Table 3: Requests in the form of “Rewrite this...” made by real users to a large LM-powered text editor. For the full set of unique requests, see Table 5 in the Appendix.

7 Conclusions

We introduced augmented zero-shot learning, which we find shows strikingly promising performance considering its simplicity. This prompting paradigm moves the needle in text style transfer by expanding the range of possible styles beyond the currently limited set of styles for which annotated data exists. More broadly, we also hope that the strategy of prompting a large LM with non-task specific examples can inspire new inference-only methods for other NLP tasks.

References

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. On the dangers of stochastic parrots: Can language models...
be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623, New York, NY, USA. Association for Computing Machinery.

Gwern Branwen. 2020. GPT-3 creative fiction.

Eleftheria Briakou, Sweta Agrawal, Ke Zhang, Joel R. Tetreault, and Marine Carpuat. 2021. A review of human evaluation for style transfer. CoRR, abs/2106.04747.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. CoRR, abs/2005.14165.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing Huang. 2019. Style transformer: Unpaired text style transfer without disentangled latent representation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5997–6007, Florence, Italy. Association for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 889–898, Melbourne, Australia. Association for Computational Linguistics.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2018. Style transfer in text: Exploration and evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural text degeneration. In International Conference on Learning Representations.

Zhiqiang Hu, Roy Ka-Wei Lee, and Charu C. Aggarwal. 2020. Text style transfer: A review and experiment evaluation. CoRR, abs/2010.12742.

Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. 2020. Deep learning for text style transfer: A survey. CoRR, abs/2011.00416.

Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews, and Enrico Santus. 2019. IMaT: Unsupervised text attribute transfer via iterative matching and translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3097–3109, Hong Kong, China. Association for Computational Linguistics.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. 2020. Reformulating unsupervised style transfer as paraphrase generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 737–762, Online. Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. CoRR, abs/1808.06226.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, retrieve, generate: a simple approach to sentiment and style transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1865–1874, New Orleans, Louisiana. Association for Computational Linguistics.

Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, and Jianteng Lv. 2020. Revision in continuous space: Unsupervised text style transfer without adversarial learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 8376–8383.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021a. Pretrain, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586.

Ruibo Liu, Chenyan Jia, and Soroush Yosoughi. 2021b. A transformer-based framework for neutralizing and reversing the political polarity of news articles. Proc. ACM Hum.-Comput. Interact., 5(CSCW1).

Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao Chang, Xu Sun, and Zhifang Sui. 2019. A dual reinforcement learning framework for unsupervised text style transfer. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 5116–5122. ijcai.org.

Aman Madaan, Amrith Setlur, Tammay Parekh, Barnabas Poczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W Black, and Shrimai Prabhumoye. 2020. Politeness transfer: A tag and generate approach. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1869–1881, Online. Association for Computational Linguistics.

Remi Mir, Bjarko Felbo, Nick Obradovich, and Iyad Rahwan. 2019. Evaluating style transfer for text. CoRR, abs/1904.02295.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, and Alan W Black. 2018. Style transfer through back-translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 866–876, Melbourne, Australia. Association for Computational Linguistics.
Raul Puri and Bryan Catanzaro. 2019. Zero-shot text classification with generative language models. \textit{arXiv preprint arXiv:1912.10165}.

Sudha Rao and Joel Tetreault. 2018. Dear sir or madam, may I introduce the GY AFC dataset: Corpus, benchmarks and metrics for formality style transfer. In \textit{Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)}, pages 129–140, New Orleans, Louisiana. Association for Computational Linguistics.

Laria Reynolds and Kyle McDonell. 2021. Prompt programming for large language models: Beyond the few-shot paradigm.

Parker Riley, Noah Constant, Mandy Guo, Girish Kumar, David C. Uthus, and Zarana Parakh. 2021. Textsettr: Label-free text style extraction and tunable targeted restyling. \textit{Proceedings of the Annual Meeting of the Association of Computational Linguists (ACL)}.

Keisuke Sakaguchi and Benjamin Van Durme. 2018. Efficient online scalar annotation with bounded support. In \textit{Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages 208–218, Melbourne, Australia. Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021. It’s not just size that matters: Small language models are also few-shot learners. In \textit{Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, pages 2339–2352, Online. Association for Computational Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. In \textit{Advances in Neural Information Processing Systems}, volume 30. Curran Associates, Inc.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. 2019. “Transforming” delete, retrieve, generate approach for controlled text style transfer. In \textit{Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)}, pages 3269–3279, Hong Kong, China. Association for Computational Linguistics.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 2022. Lambda: Language models for dialog applications. \textit{arXiv preprint arXiv:2201.08239}.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Lilian Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. \textit{CoRR}, abs/1706.03762.

Orion Weller, Nicholas Lourie, Matt Gardner, and Matthew E. Peters. 2020. Learning from task descriptions. In \textit{Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, pages 1361–1375, Online. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In \textit{Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations}, pages 38–45, Online. Association for Computational Linguistics.

Jingjing Xu, Xu Sun, Qi Zeng, Xiaodong Zhang, Xuanzheng Ren, Houfeng Wang, and Wenjie Li. 2018. Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach. In \textit{Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages 979–988, Melbourne, Australia. Association for Computational Linguistics.

Peng Xu, Yanshuai Cao, and Jackie Chi Kit Cheung. 2020. On variational learning of controllable representations for text without supervision. \textit{Proceedings of the International Conference on Machine Learning (ICML)}, abs/1905.11975.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. \textit{Proceedings of the Conference on Neural Information Processing Systems}.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. 2010. A monolingual tree-based translation model for sentence simplification. In \textit{Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010)}, pages 1353–1361, Beijing, China. Coling 2010 Organizing Committee.
Appendix

A Prompt Selection

A promising new area of prompt engineering has arisen to address the failure modes discussed above, specifically the invalid or unparseable answers. Reynolds and McDonell (2021) find that prompting a model for a task is more akin to locating an already-learned task than truly learning a new one. Moreover, they emphasize that prompt engineering is mostly about avoiding various failure cases such as those described above. In this work, we use delimiters ("{" and "}") to help avoid these types of errors, giving scores of zero when there was no valid responses with such delimiters. There are other delimiters that could be used (e.g., quotes, "(" and ")", "<" and ">", newlines with a colon (as used by GPT-3), etc. We chose curly braces as they were 1) likely to occur in the training data as delimiters in other contexts and 2) not frequently part of the input sentence itself. We also use a second person prompt template for the dialog, which yielded better results as it was more similar to the training data. Exploring these options more quantitatively would be an interesting direction for future work.

Because the performance of prompting can vary depending on the exact language of the prompt (Reynolds and McDonell, 2021), we compare four variations of prompts for sentiment: "more positive/negative," "happier/sadder," "more optimistic/pessimistic," and "more cheerful/miserable." As shown in Table 4 in the Appendix, performance differed across the four prompts, but we found them comparable.

Model / prompt wording	Acc	Bleu	PPL
LLM			
"more positive/negative"	76.3	14.8	180
"happier/sadder"	62.6	15.5	173
"more optimistic/pessimistic"	69.7	14.1	143
"more cheerful/miserable"	74.5	15.7	186

Table 4: Comparing variations of augmented zero-shot learning prompt wording for sentiment style transfer.

B Low BLEU for LLM Outputs

As we saw in Table 2, the outputs of our model had low BLEU scores with respect to human generated outputs, while simultaneously having high semantic similarity in human evaluations. Based on qualitative examination of outputs, we believe that this is because model outputs often, despite having high semantic similarity with the source sentence, used different language from human annotations. For instance, for transferring the sentiment of “ever since joes has changed hands it’s just gotten worse and worse” to positive sentiment, our augmented zero-shot learning model outputted “the establishment has continued to provide excellent service, improving steadily since its change of ownership.” This will have low BLEU with the ground truth with respect to human references, which is simply “ever since joes has changed hands it’s just gotten better and better.”

Though we do not see this as an inherent problem, increasing the BLEU for the purposes of comparison can be done in an easy way via candidate selection, as our model returns sixteen possible continuations. In applications for which we prefer model outputs to have high lexical similarity to the source sentence, we could select the candidate of the sixteen with the highest BLEU score compared with the original source sentence. We find that this candidate selection step can substantially improve the BLEU score with the ground truth target sentences, as we show in Table 8.

C Further Related Work

Style transfer has gained increasing attention in the NLP landscape, for which neural models have been trained to perform style transfer for styles including sentiment, formality, politeness, gender, and politi-
You honor me,” said Bruno. As he spoke, he began to laugh. His laugh was merry sounding and melodious. He took a deep breath. When he spoke again, his voice was low and strong. “I take this great task on and with my brothers shall lead us on to victory!"

Rewrite it to be about mining.

You honor me, said Bruno. As he spoke, he began to laugh. His laugh was deep and gravely, as if from the bowels of the earth. He took a deep breath. When he spoke again, his voice was deep and dark. ‘I take this great task on and with my brothers shall delve into the mines!'"

Rewrite it to be more interesting.

‘I reckon,’ smiled Toe, ‘you’d have to say the same for icicles, wouldn’t you?’ These words were barely out of his mouth before the others realized exactly what they meant.

Rewrite it to be more descriptive.

A mixture of sweet honeysuckles and jasmine with a hint of tobacco and warm mesquite smoke. It was his southern perfume, with a hint of a memory of simpler times.

But Sally remained unmoved—and lonely.

Rewrite it to be more emotional.

Her tears rolled and rolled down her cheek, mixing with the saltwater around her, until the water was a rich mixture of the two. She wanted her poem to be cheerful like it used to be, but couldn’t find the right words.

Table 6: Examples of users’ arbitrary style transfer requests for which the model suggestion was accepted.

Input	Model suggestion
You honor me,” said Bruno. As he spoke, he began to laugh. His laugh	You honor me, said Bruno. As he spoke, he began to laugh. His laugh was deep and
was merry sounding and melodious. He took a deep breath. When he	gravely, as if from the bowels of the earth. He took a deep breath. When he
spoke again, his voice was low and strong. “I take this great task	spoke again, his voice was deep and dark. ‘I take this great task on and with
on and with my brothers shall lead us on to victory!	my brothers shall delve into the mines!'"
I reckon,’ smiled Toe, ‘you’d have to say the same for icicles,	‘I reckon,’ smiled Toe, ‘you’d have to say the same for icicles, wouldn’t you?’
wouldn’t you?	These words were barely out of his mouth before the others realized exactly what
with its southern perfume	they meant.
But Sally remained unmoved—and lonely.	Her tears rolled and rolled down her cheek, mixing with the saltwater around her,
	until the water was a rich mixture of the two. She wanted her poem to be cheerful
	like it used to be, but couldn’t find the right words.

Most text style transfer approaches fall in two categories. Early approaches tend to require parallel text data (Zhu et al., 2010; Rao and Tetreault, 2018), where every input in the source style has a corresponding output in the target style. Though this formulation elegantly fits the standard encoder–decoder paradigm, the availability of a parallel text corpus is a stringent requirement. Hence, recent text style transfer approaches have instead used non-parallel monostyle data (no one-to-one-mapping between instances in the source and target styles). Such methods include latent representation manipulation (Li et al., 2020), prototype-based text editing (Li et al., 2020), and pseudo-parallel corpus construction (Jin et al., 2019). However, even non-parallel monostyle data can be hard to collect for arbitrary styles. As such, surveys have called for more research on approaches that expand the scope of supported styles and reduce the training data requirements for style transfer systems (Jin et al., 2020; Hu et al., 2020).

Several new methods tackle the challenging problem of label-free style transfer, which does not require a full corpus of labeled data, but rather just a few exemplars that define a style. Xu et al. (2020) use variational autoencoders for unsupervised learning of controllable representations for text. Riley et al. (2021) extract a style vector from a set of target texts and use this vector to condition the decoder to perform style transfer to a target style. These approaches have a similar goal to ours in terms of expanding the scope of possible style transfers. However, they are different in two main ways. First, they require a fully specialized model, where our method can be applied out-of-the-box with something like GPT-3. This can either be a strength or weakness, depending on the availability of such a model. Second, they require exemplars to define a style rather than a plain text description.
Augmented Zero-shot Prompt: LLM

Here is some text: {When the doctor asked Linda to take the medicine, he smiled and gave her a lollipop.}. Here is a rewrite of the text, which is more scary. {When the doctor told Linda to take the medicine, there had been a malicious gleam in her eye that Linda didn’t like at all.}

Here is some text: {they asked loudly, over the sound of the train.}. Here is a rewrite of the text, which is more intense. {they yelled aggressively, over the clanging of the train.}

Here is some text: {When Mohammed left the theatre, it was already dark out}. Here is a rewrite of the text, which is more about the movie itself. {The movie was longer than Mohammed had expected, and despite the excellent ratings he was a bit disappointed when he left the theatre.}

Here is some text: {next to the path}. Here is a rewrite of the text, which is about France. {next to la Siene}

Here is some text: {The man stood outside the grocery store, ringing the bell.}. Here is a rewrite of the text, which is about clowns. {The man stood outside the circus, holding a bunch of balloons.}

Here is some text: {The bell ringing}. Here is a rewrite of the text, which is more flowery. {the peals of the jangling bell}

Here is some text: {against the tree}. Here is a rewrite of the text, which includes the word “snow”. {against the snow-covered bark of the tree}

That is an ugly dress. Here is a rewrite of the text, which is more positive.

Augmented Zero-shot Prompt: LLM-dialog

> Here is some text: {When the doctor asked Linda to take the medicine, he smiled and gave her a lollipop.}. Rewrite it to be more scary. {When the doctor told Linda to take the medicine, there had been a malicious gleam in her eye that Linda didn’t like at all.}

> Here is some text: {they asked loudly, over the sound of the train.}. Rewrite it to be more intense. {they yelled aggressively, over the clanging of the train.}

> Here is some text: {When Mohammed left the theatre, it was already dark out}. Rewrite it to be more about the movie itself. {The movie was longer than Mohammed had expected, and despite the excellent ratings he was a bit disappointed when he left the theatre.}

> Here is some text: {next to the path}. Rewrite it to be about France. {next to la Siene}

> Here is some text: {The man stood outside the grocery store, ringing the bell.}. Rewrite it to be about clowns. {The man stood outside the circus, holding a bunch of balloons.}

> Here is some text: {The bell ringing}. Rewrite it to be more flowery. {the peals of the jangling bell}

> Here is some text: {against the tree}. Rewrite it to be include the word "snow". {against the snow-covered bark of the tree}

> Here is some text: {That is an ugly dress}. Rewrite it to be more positive.

Table 7: In black, we show the exact augmented-zero shot prompts used in our experiments, for LLM and GPT-3 (top), and for LLM-Dialog (bottom). As shown, for LLM-Dialog, we replaced “Here is a rewrite of the text, which is” with “Rewrite it to be”. Each line starting with “>” above was passed in as an individual dialog turn. The blue shows how an input text and goal style are concatenated to the few-shot prompt in order to produce final model output. Note that we can achieve high accuracy even though the prompt formulation resulted in some minor grammatical errors for some styles (e.g., “rewrite it to be include the word ‘snow’”). Text versions of these prompts can be downloaded at https://bit.ly/3fLDuci.
Instructions: In this task, your goal is to identify whether a desired transformation has been successfully applied to a sentence, without changing the overall meaning of the sentence. Each question contains a sentence marked 'original sentence,' a desired transformation, and an output sentence where the transformation has been applied. Each of these questions relates to the same original text and desired transform, but each has a different output transformed sentence. Please rate each transformed sentence along the following three axes:

1) Transferred Style Strength: Does the transformed text have the applied style/transform compared to the original text? For example, if the original text is "I went to the store" and the style is "more angry":

example	score	reasoning
"The store is where I went"	0	The transformed text is no more angry than the original text.
"I went to the stupid store"	50	The transformed text somewhat relates to the style.
"When I went to the store, I couldn't believe how rude the storekeeper was to me!"	100	The text is clearly more angry.

2) Meaning: Does the transformed sentence still have the same overall meaning as the original? It is OK if extra information is added, as long as it doesn't change the underlying people, events, and objects described in the sentence. You should also not penalize for meaning transformations which are necessary for the specified transformation. For example, if the original text is "I love this store" and the style is "more angry":

example	score	reasoning
"It is raining today"	0	The transformed text is about something totally different. It would be hard to tell that the texts are related at all.
"they were out of chicken at the store"	50	The transformed text is mostly related to original--some modifications of the meaning have been made but they are not egregious.
"I adore the store," or "The store was really horrible, it took forever to do my shopping."	100	The text talks about the same concepts as the original, just with different or more words.

3) Fluency: Is this sentence fluent English and does it make sense?

example	score	reasoning
"who said that? I thought we were going to go together!"	Yes	This text makes sense.
"who, she said it up to me and to me together!"	No	The text is incoherent.

Original text: "Everyone in my world had different eye colours.
Desired transformation: more melodramatic
Transformed text: "Everyone in my world had the most intensely colorful eyes, and no one in this world can possibly understand how beautiful they were."

1) Transferred Style Strength: The transformed text has the applied style/transform.

2) Meaning: The meaning is preserved between the original and transformed texts (ignoring the ways that the style/transform would change the meaning).

3) Fluency: the transformed text is fluent English and it makes sense.

Yes
No

Figure 5: The rating UI used for human evaluation. The user may be shown a number of blue squares at once with the same original text and different outputs.
I first met Dean not long after my wife and I split up. I had just gotten over a serious illness that I won’t bother to talk about, except that it had something to do with the miserably weary split-up and my feeling that everything was dead.

Figure 6: Screenshot AI-assisted editor with ‘Rewrite as’ feature.

Table 9: The mean length in characters of the inputs and outputs for our six atypical styles.

Style	Inputs	Aug. Zero	Zero	Human	Paraphrase
more comic	75	116	63	97	87
more melodromatic	75	124	88	116	87
include the word “park”	75	124	72	94	87
include the word “balloon”	75	135	86	98	87
include a metaphor	75	110	74	110	87
more descriptive	75	190	105	124	87
Overall	75	133	81	107	87