Evaluation of the Groundwater Quality for Irrigation: Case Study of Hilla district, Babylon Province, Iraq

A Chabuk 1, A Al-Maliki 2, N Al-Ansari 3, J Laue 3

1 Department of Environment Engineering, College of Engineering, University of Babylon, Babylon 51001, Iraq; ali.chabuk@ubabylon.edu.iq, ali.chabuk@outlook.com
2 Ministry of Science and Technology, Baghdad 10001, Iraq; Aligeo1969@gmail.com
3 Department of Civil Environmental and Natural Resources Engineering, Lulea University of Technology, Lulea 971 87, Sweden; nadhir.alanasari@ltu.se, jan.laue@ltu.se

Abstract. A crisis of water scarcity in the world encouraged researchers, especially in the arid areas, to know the nature and quality of all its sources regardless of surface water. The groundwater evaluation for irrigation was suggested by using the model of Water Quality Index for Irrigation (WQIIR) in the ArcMap/GIS Software. This model was applied to 48 wells distributed throughout the Hilla district, Babylon, Iraq. The samples of EC, Ca++2, Mg++2, Cl-, Na+, HCO3-, and SAR for groundwater were collected from these wells during wet and dry seasons in 2016. The generated maps in GIS for the WQIIR model in both seasons were divided into categories based on restriction’s groundwater use for irrigation. These categories consisted of Severe Restriction (SR), High Restriction (HR), Moderate Restriction (MR), Low Restriction, and No Restriction. The areas values and their classification of restriction’s groundwater use for irrigation related to the five categories that resulted within the generated maps in GIS using the WQIIR model in the wet season (in km²) were: 42.79 (SR), 407.05 (HR), 377.77 (MR), 32.39 (LR) and 0.23 (NR) respectively and for the dry season were as follows: 42.79 (SR), 407.05 (HR), 377.77 (MR), 32.39 (LR) and 0.23 (NR) respectively. The areas and the classification categories of restriction groundwater for irrigation calculated based on the values resulted from the WQIIR model have shown variation in the dry and wet seasons.

1. Introduction
The shortage of main water resources represents globally anxiety factor which is related to human life and the environment. The main physio-chemical parameters are connected with the level of abundance of water and the concentrations of parameters in the water body have significant effects of evaluating the Water Quality Index (WQI). Nevertheless, studying these parameters separately doesn't give the complete vision for the Water Quality Index [1]. In any case, the parameters must meet pre-established standards for water use in a specific region or country, otherwise; treatment before use is required if the water does not meet the standard limits for water [1]. The spatial distribution maps of groundwater show well visualization of variations in the quality of water [2]. Many researchers adopted various physical and chemical parameters in the water resources to evaluate the water quality index for irrigation, where that the water quality is not restricted by one parameter or limited number parameters but should be included the most parameters in a water body as possible [3]. This process enables decision-makers to get and understand the results without complex and reduce the steps to evaluate the water quality and possible risk on a water body, depending on measured parameters [4]. Furthermore, this assists in implementing the comparison between various sampling sites and/or events [5]. The water quality for irrigation has to be evaluated to avoid or, at least, to minimize negative impacts on agriculture [5]. The water quality index for irrigation is calculated by a numerical or mathematical method that gives the scientists and specialists in the field of water resources a broad vision about the quality of groundwater in the regions that existing in them [5, 7]. the water quality index for irrigation method is a confident way contributes to decreasing the time and effort by avoiding drilling the wells of groundwater for...
agriculture purposes within the high contamination areas. Moreover, the WQI method determines the areas that have a good quality of groundwater for irrigation the agriculture lands and to establish the residential areas at the unoccupied areas within these areas. The attempts to develop water resources related to the indicators are not new. The quality of groundwater is directly related to the characteristics of the water source, which will influence its appropriateness for particular utilization. Consequently, the physical and chemical parameters in the groundwater should continuously be observed and to be under control so that the valuation of groundwater quality [8]. In the beginning, the general water quality index for irrigation has been established by [9] that used the weights of parameters separately [9]. [10] adopted the average weighting formula to assess the water quality index for irrigation. [10] was concerned that the arithmetic mean was less sensitive to the low variable value. Recently, many modifications were considered for the water quality index for the irrigation model through several researchers and experts [4, 11, 12].

The combining of the water quality index for irrigation and the Geographical Information System (GIS) was employed to produce changeability maps for water parameters. The model of water quality index for irrigation and the GIS showed high potential in the assessment of water for multi-purpose usage. The water quality index for irrigation model and spatial analysis tools in the GIS as well as remote sensing are considered excellent tools for summarizing overall water quality conditions in different regions and over the year. Moreover, they are providing relevant information for the specific water use that can be clearer for decision-makers.

Lately, the countries in the middle east suffer from a crisis of surface water shortage especially in Iraq due to many reasons such as climate change and construction of dams along the rivers outside the borders of Iraq that led to the decreasing water level in the Tigris and Euphrates rivers. The unsystematic use of the rivers' water-related to irrigation projects and wastewater and waste of war caused to change the concentrations of parameters in rivers to the worst. Thus, the population tends to invest the available groundwater in an area. This requires verifying the quality of the groundwater and its suitability for use in drinking and agriculture. This is done by creating maps in the GIS that depend on suitable parameters measured from wells separated in a specific area using a scientifically approved mathematical model. So, the objectives of the present study are to assess the quality of groundwater for irrigation in arid areas: a case study is the Hilla district, Babylon, Iraq using the model of water quality index for irrigation together with the GIS software. Producing the interpolation maps of groundwater quality for irrigation for the selected parameters which are entering into the selected mathematical model that will use to the groundwater into categories in the study area. Then, reclassifying the generated maps into categories based on restriction’s groundwater use for irrigation in the wet and dry seasons in 2016.

2. Methodology

2.1 Study area

Hilla district is considered to be the most important district in Babylon Province in terms of the administrative function. This district includes Hilla center, the administrative, political, and financial capital of Babylon Province. The district also includes Kifill and AbiGhraq. The district is situated between latitude 32° 15' 0" N and 32° 30' 0" N, and longitude 44° 15' 0" E and 44° 30' 0" E (Figure 1). The Hilla district is located in the arid area and occupies an area of 860 km², which constitutes 16.1% of the total area of Babylon Province. In 2017, the official population of Hilla district was approximately 909,000 inhabitants [13]. This district has the highest population among other districts in Babylon province. The Hilla district is located in the arid region and the climate in the district varies always with the changes of seasons and daily. The yearly wind prevails in the district blows from the northwest, with yearly mean of wind speed is 7.2 km/h. The summer season is hot and dry without rainfall and temperature can reach above 50 °C. Rainfall in the district is characterized by less than 100 mm/year, and the average annual relative humidity is 46%. Temperatures during winter are moderate (above 0 °C). The average rainfall is 102 mm/year, and the mean annual percentage of relative humidity is about 46 [14, 15, 16, 17].
For irrigation purposes, surface water was used to irrigate about 94% of the total lands in Iraq, and the remaining lands were irrigated by the groundwater in 1990 [18]. Surface water is considered the main source for irrigation purposes in Iraq, where approximately 78% of all withdrawal water is used for irrigation purposes in 2000 [18].

Figure 1. Map of study and sampling sites.

2.2 Geology and hydrology of the study area

The Hydrogeology conditions inside Babylon province are relating to the geology of Iraq. Iraqi lands are divided into seven zones according to their morphology and hydrogeological conditions. They are the Thrust zone [TZ]; High folded zone [HF]; Low folded zone [LF]; Al-Jazira zone [JZ]; Mesopotamia zone [MZ]; Western Desert zone [WD]; and Southern desert zone. The study area located in Aquifer of MZ in the middle of Iraq [19, 20, 21], in a vast flat plain. The highest elevation of MZ is about 200 m above sea level (a.m.s.l.) nearby Makhoul Mountain in the north. While the lowest point is about 1 m (a.m.s.l.) at Arabian Gulf [20].

The Quaternary sediments cover most of the Mesopotamia region, which are eroded by the fluvial system. The sedimentary plain is mostly covered by the Holocene Sequence, which is about 15–20 m of thickness, and it is composed mainly of silty clay, loamy sand, and sandy loam soil [4]. More details can be found in [22]. According to Jassim and Goff (2006) [23], the Hilla district is located within the Mesopotamia plan silt zone where they geologically divided Iraq into fourteen zones.

Despite the flatness of MZ, but this zone has a gentle slope from the northwest toward the southeast, and the groundwater flows the same trend of surface drainage in this area [19]. The groundwater level throughout the MZ depends on natural and artificial circumstances. The natural circumstances are based on rainfall distribution, and the rate of evaporation, so the groundwater level rise during the winter and spring season where the rainfall increase and the evaporation decrease. The artificial circumstances are limited especially close to an urban and rural area, where the groundwater withdrawal through wells and excess of irrigation.

The Tigris and Euphrates rivers are the main sources for groundwater in the Mesopotamia plain. The groundwater in this area is generally found within the recent alluvial deposits, and it is quantitatively promising [19, 20, 21, 22]. However, salinity is considered as a major groundwater quality issue in this region [19].

According to [19], the salinity increases generally from the recharge areas towards discharges areas (from the north and northwest towards south and southeast) within the plain. Moreover, the groundwater
type changes from sulfate to chloride type, according to groundwater variation from recharge to discharge areas, respectively [19]. However, the groundwater, which is nearby the rivers, streams, and main irrigation channels, has a better quality for exploitation, where, the seepage of freshwater exists continually.

2.3 Collection and Analytical Samples
In the study, 48 samples were collected during the wet season (from January to April and from November to December) and the dry season (May - October) in 2016 throughout Hilla district, Babylon, Iraq, as shown in Tables 1 and 2. The location of collected samples for the physical and chemical parameters can be seen in Figure 1. These samples were analyzed in the laboratory of the General Commission for Groundwater [24]. In both seasons, the accuracy of water analysis for the measured parameters at each well in the study area was computed according to [25] using the following equation:

\[
\% \text{ different} = \frac{\sqrt{\text{cation}} - \sqrt{\text{anions}}}{\sqrt{\text{cation}} + \sqrt{\text{anions}}} \times 100
\]

Table 1. Physical-chemical properties of water quality for groundwater (wet season).

Well No.	X	Y	HCO₃ (mg/L)	Cl (mg/L)	EC (µs/cm)	Na (mg/L)	SAR (meq/cm)
W1	429963.627	3600115.416	300	680	3010	72	0.885
W2	431445.296	3602549.588	1000	2600	24400	4084	28.880
W3	436793.619	3603408.950	76	230	1304	212	3.776
W4	432926.966	3598633.747	115	1010	5066	700	8.589
W5	437371.975	3600421.472	88	333	1958	211	2.688
W6	433879.468	3595458.740	406	358	1811	232	4.356
W7	440017.814	3598633.747	300	995	6415	838	7.751
W8	444784.051	3600763.112	483	132	1113	72	1.393
W9	435466.971	3592601.235	166	642	3200	436	4.600
W10	438536.144	3593977.071	228	80	728	36	0.810
W11	442366.152	3596622.909	130	172	1265	179	5.421
W12	446473.660	3597787.078	72	220	1200	207	3.837
W13	450177.834	3597998.078	214	248	2417	237	4.452
W14	436207.806	3588791.227	622	1785	19960	2966	26.108
W15	440652.815	3592072.067	215	300	3570	266	4.685
W16	443616.154	3593553.736	256	929	5578	730	7.187
W17	448726.351	3594677.683	99	240	1502	190	2.930
W18	435466.971	3584785.386	599	1950	8405	1362	14.062
W19	441922.817	3588262.059	52	180	992	172	3.567
W20	445591.980	3589059.397	159	219	1770	191	4.324
W21	449013.665	3591648.733	68	185	1111	181	3.443
W22	454199.509	3593553.736	128	132	1532	175	6.088
W23	452721.567	3590206.216	121	175	1990	220	4.305
W24	448038.433	3587639.752	188	3310	12000	3241	31.950
W25	442451.981	3584557.885	471	123	1042	70	1.343
W26	437054.474	3581594.546	1006	1159	9060	1079	10.613
W27	448378.664	3584134.551	87	260	1455	240	3.992
W28	451977.004	3582441.214	83	255	1400	232	3.931
W29	437371.975	3578631.207	302	496	3715	361	4.070
W30	444462.823	3579795.376	426	133	1362	196	4.692
W31	438536.144	3575032.866	416	136	1748	197	2.909
W32	445626.992	3576091.202	197	2596	9696	2412	23.769
W33	452400.338	3578737.000	292	80	870	77	2.115
W34	439171.145	3571011.191	74	592	3482	769	9.535
W35	444356.989	3571752.026	158	43	4448	72	0.711
Well No.	X	Y	HCO₃ (mg/L)	Cl (mg/L)	EC (μs/cm)	Na (mg/L)	SAR (meq/cm)
---------	-------	-------	-------------	-----------	------------	-----------	--------------
W1	3600115.416	280	740	3190	74	0.895	
W2	3602549.588	866	3082	26000	4196	29.129	
W3	3603408.950	70	260	1376	240	4.183	
W4	3598633.747	105	1048	5514	726	8.743	
W5	3600421.472	82	353	2122	225	2.827	
W6	3595458.740	374	382	1989	248	4.513	
W7	3598633.747	188	1135	6785	864	7.855	
W8	3600763.112	467	142	1183	78	1.483	
W9	3592601.235	154	694	3400	458	4.727	
W10	3593977.071	212	90	772	36	0.791	
W11	3596622.909	114	194	1399	193	5.666	
W12	3597787.078	64	248	1300	219	3.976	
W13	3597998.078	204	272	2583	267	4.910	
W14	3588791.227	610	1907	21240	3034	25.978	
W15	3592072.067	201	322	3690	286	4.944	
W16	3593535.736	232	989	5822	766	7.361	
W17	3594677.683	91	260	1538	208	3.172	
W18	3584875.386	581	2096	8595	1398	14.072	
W19	3588262.059	48	200	1068	188	3.821	
W20	3590590.397	145	241	1944	205	4.559	
W21	3591648.733	62	215	1249	193	3.609	
W22	3593553.736	116	152	1678	189	6.472	
W23	3590206.216	109	199	2110	232	4.416	
W24	3587639.752	172	3494	12760	3361	32.478	
W25	3584577.885	449	137	1138	70	1.306	
W26	3581594.546	894	1279	9300	1179	11.237	
W27	3584134.551	83	278	1545	254	4.140	
W28	3582441.214	77	267	1500	248	4.115	
W29	3578631.207	284	562	3765	383	4.212	
W30	3579795.376	404	143	1438	208	4.882	
W31	3575032.866	388	148	1852	203	2.910	
W32	3576091.202	183	2752	9944	2538	24.516	
W33	3578737.000	268	86	910	79	2.115	
W34	3575011.191	72	628	3578	793	9.634	

Table 2. Physical-chemical properties of water quality for groundwater (dry season).
Maps for Physical and Chemical Parameters

The interpolation method of kriging was used to generate the maps in ArcMap/GIS Software 10.5 for the selected parameters of groundwater for irrigation purposes in the Hilla district during the wet and dry seasons in 2016.

Model of Assessment the Groundwater Quality Index for Irrigation

The method of calculating the groundwater quality index for irrigation (WQIIR) was developed by Meireles et al. (2010) [27], and this method was applied in the current study area (Hilla district). The water quality index for the irrigation (WQIIR) method was computed based on the following Equation (2) as similar to [6, 26]. This equation includes two parts are: WQi and Wi:

\[
WQIIR = \sum_{i}^{m} WQi \times Wi
\]

where,

WQIIR: non-dimensional parameter variation from 0 to 100; WQi: the quality of each parameter which is representing the function of its concentration and ranging from 0 to 100; Wi: the normalized weight for each parameter that expresses on water quality in the explaining of global variability.

The significant parameters that contributing to the determination of the water quality for agriculture are EC, Na\(^+\), Cl\(^-\), and HCO\(_3\)^- and SAR. For each parameter, the values of WQi were calculated according to [27] based on the following equation introduced by [28]. Limiting the range for each parameter for water quality (WQi) was computed based on the values in Table 3, using the collected data in Tables 1 and 2 during wet and dry seasons.

\[
WQi = q_{max} - \left(\frac{(X_{ij} - X_{in}) \times X^2 \times q_{imap}}{X_{amp}} \right)
\]

According to Criteria of the University of California Committee of Consultants and the relative weight for each parameter was arranged according to its importance of the water quality for irrigation [26, 28] (Table 4).

Table 3. Limiting values for each parameter for computing water quality (WQi) [27].

Parameter	Limiting Values
HCO\(_3\) (meqL\(^{-1}\))	(1.0 - 1.5)
Cl (meqL\(^{-1}\))	(1 - 4)
Na (meqL\(^{-1}\))	(2.3)
SAR (mmolL\(^{-1}\))	(2.3)
EC (uscm\(^{-1}\))	(200 - 750)
WQi	85 - 100
HCO\(_3\) > 8.5	1 > Cl = 10
Na > 9	2 > SAR = 12
EC > 3000	
WQi	0 - 35
Table 4. Weights of parameters applied in the (WQIIR) model for irrigation [27].

Wi	Parameters
0.211	Electrical Conductivity (EC)
0.204	Sodium (Na)
0.202	Bicarbonate (HCO₃⁻)
0.194	Chloride (Cl)
0.189	Sodium Adsorption Ratio (SAR)

The indexes of existing water quality were divided into categories based on the suggested water quality index. These categories were taken into consideration the salinity problems risk, reduction of water infiltration into the soil as well as toxicity to plants, where [29] presented this classification [26, 29]. Table 5 shows water use restriction and recommendation of using water for plants and soil based on ranges values of water quality index for irrigation.

Table 5. Characteristics of Water Quality Index of Irrigation [27].

WQIIR	Water usage Restrictions	Soil Restriction	Recommendation
85 - 100	No Restriction (NR)	No toxicity risk for most plants	
70 - 85	Low Restriction (LR)	Elevated risks for salt sensitive plants	
55 - 70	Moderate Restriction (MR)	Plants with moderate tolerance to salts may be grow	
40 - 55	High Restriction (HR)	Suitable for irrigation of plants with moderate to high tolerance to salts with special salinity control practices, except water with low Na, Cl and HCO₃⁻ values.	
0 - 40	Severe Restriction (SR)	Only plants with high salt tolerance, except for Waters with extremely low values of Na, Cl and HCO₃⁻	

2.6 Generating Maps of Quality Index for the measured parameters

The model of water quality index for Irrigation for the groundwater in the Hilla district was applied using the parameters in the selected wells are EC, Cl, Na, HCO₃⁻, and SAR. The values of the WQIIR of groundwater in both seasons resulted from the summation of the multiplying of water quality (WQi) by the weight (Wi) of each parameter measured.

2.7 Classified Maps of Groundwater for Irrigation Using the WQIIR Model

The maps Water Quality Index for irrigation (WQIIR) were generated in the GIS. The spatial analysis tools in the GIS were used by sum the maps of the WQiWi with their categories for each parameter (EC, Cl, HCO₃⁻, Na, and SAR) for each season (wet and dry). The prediction maps of the WQiWi for parameters generated using the interpolation method kriging in the GIS environment.
3. Results

3.1 Prediction Maps for the Selected Parameters
For the selected parameters of groundwater in the study area, the prediction maps during the wet and dry seasons in 2016 for the electrical conductivity (EC), adsorption ratio (SAR), bicarbonates (HCO$_3^-$) sodium (Na$^+$) and chloride (Cl$^-$) can be seen in Figures 2 and 3.

![Image of interpolation maps using the kriging method in the GIS of (a): EC-wet season; (b): EC-dry season; (c): SAR-wet season; (d): SAR-dry season.](image)

Figure 2. Interpolation maps using the kriging method in the GIS of (a): EC-wet season; (b): EC-dry season; (c): SAR-wet season; (d): SAR-dry season.
Figure 3. The interpolation maps using the kriging method in the GIS of (a): HCO$_3$-wet season; (b): HCO$_3$-dry season; (c): Na-wet season; (d): Na-dry season; (e): Cl-wet season; (f): Cl-dry season.
3.2 Generating Maps of Quality Index for the measured parameters

After generating the interpolation maps of multiplying WQi by Wi for each parameter, the values of the electrical conductivity (EC) were ranged from 7.426 to 16.287 (Figure 4a) and from 7.438 to 15.010 (Figure 4b) in the wet and dry seasons respectively. For chloride (Cl⁻), the values of the WQiWi during the wet season were ranged from 7.000 mg/L to 14.533 mg/L (see Figure 4c) and from 7.000 mg/L to 12.986 mg/L in the dry season (see Figure 4d). From the prediction maps of the WQiWi for the bicarbonates (HCO₃⁻), the range values in the wet season were varied from 7.612 to 18.922 mg/L (Figure 5a) and from 7.074 to 20.100 mg/L (Figure 5b) in the wet and dry seasons respectively. The range values of the WQiWi resulted from the prediction maps for sodium (Na) in the wet season were (7.262 – 7.360) mg/L (Figure 5c), while in the dry season the range values were (7.200 – 7.380) mg/L respectively (Figure 5d).

The values of the WQiWi for the Specific Absorption Rate (SAR) in the wet and dry seasons were ranged (respectively) from 6.797 to 17.896 mg/L (Figure 5e), and from 7.129 to 16.868 mg/L (Figure 5f). Summary, the values of the WQiWi and the WQIIR for each parameter measured in the selected wells are tabulated in Table 6.

![Figure 4. Interpolation maps of WQiWi during the season of (a): EC-wet; (b): EC-dry; (c): Cl-wet; (d): Cl-dry.](image-url)
Figure 5. Interpolation maps of WQiWi during the season of (a): HCO₃-wet; (b): HCO₃-dry; (c): Na-wet; (d): Na-dry; (e): SAR-wet; (f): SAR-dry.
Table 6. The WQIIR values resulted from multiplying the WQi by the Wi for measured parameters in the selected wells during the wet and dry seasons in 2016.

Well No.	HCO₃	Cl	EC	Na	SAR	WQIWI-Wet	WQIWI-Dry
W1	11.59	6.79	7.39	17.12	6.62	6.62	12.00
W2	7.07	6.79	7.39	7.14	6.62	6.62	12.00
W3	18.71	12.47	14.04	7.14	14.84	6.62	12.00
W4	16.52	6.79	7.39	7.14	9.30	6.62	12.00
W5	17.52	7.77	11.05	7.14	16.95	6.62	12.00
W6	9.40	6.79	11.57	7.14	13.93	6.62	12.00
W7	11.59	6.79	7.39	7.14	9.96	6.62	12.00
W8	7.81	6.79	11.57	7.14	13.93	6.62	12.00
W9	15.11	6.79	7.39	7.14	13.55	6.62	12.00
W10	13.40	6.79	7.39	7.14	6.62	6.62	12.00
W11	16.11	15.11	14.31	7.14	12.25	6.62	12.00
W12	19.11	6.79	11.57	7.14	16.95	6.62	12.00
W13	13.79	6.79	7.39	7.14	6.62	6.62	12.00
W14	7.07	6.79	7.39	7.14	6.62	6.62	12.00
W15	13.76	9.28	7.39	7.14	13.41	6.62	12.00
W16	12.63	6.79	7.39	7.14	10.40	6.62	12.00
W17	16.96	12.00	12.65	8.4	16.26	6.62	12.00
W18	7.07	6.79	7.39	7.14	6.62	6.62	12.00
W19	7.07	14.75	16.23	9.73	15.17	6.62	12.00
W20	15.31	12.97	11.71	8.32	13.98	6.62	12.00
W21	19.51	14.52	15.4	9.06	15.37	6.62	12.00
W22	16.16	16.76	12.43	9.51	11.27	6.62	12.00
W23	16.36	6.79	7.39	7.14	6.62	6.62	12.00
W24	14.51	6.79	7.39	7.14	6.62	6.62	12.00
W25	8.05	17.00	15.88	17.27	6.62	6.62	12.00
W26	7.07	6.79	7.39	7.14	7.71	6.62	12.00
W27	17.62	11.1	12.98	7.14	14.5	6.62	12.00
W28	18.01	11.33	13.36	7.14	14.6	6.62	12.00
W29	11.55	6.79	7.39	7.14	14.38	6.62	12.00
W30	8.98	16.73	13.63	7.95	13.4	6.62	12.00
W31	9.19	16.65	11.79	7.88	16.32	6.62	12.00
W32	14.26	6.79	7.39	7.14	6.62	6.62	12.00
W33	11.76	18.18	17.09	16.75	18.58	6.62	12.00
W34	18.91	6.79	7.39	7.14	8.56	6.62	12.00
W35	15.34	19.19	7.39	11.57	6.62	6.62	12.00
W36	12.27	6.79	7.39	7.14	13.28	6.62	12.00
W37	15.56	6.79	7.39	7.14	7.06	6.62	12.00
W38	13.24	6.79	7.39	7.14	6.62	6.62	12.00
W39	16.05	18.4	19.1	17.27	18.32	6.62	12.00
W40	16.72	6.79	7.39	7.14	6.62	6.62	12.00
W41	11.69	6.79	7.39	7.14	15.04	6.62	12.00
W42	19.80	6.79	7.39	7.14	6.62	6.62	12.00
W43	19.01	12.33	14.17	7.14	14.59	6.62	12.00
W44	13.85	6.79	7.39	7.14	6.62	6.62	12.00
W45	17.72	6.79	7.39	7.14	7.38	6.62	12.00
W46	7.07	6.79	7.39	7.14	6.62	6.62	12.00
W47	16.25	6.79	11.16	7.14	14.39	6.62	12.00
W48	18.31	6.79	16.00	12.37	18.84	6.62	12.00
3.3 Classified Maps of Groundwater for Irrigation Using the WQIIR Model
The final prediction maps of the WQIIR model in the wet and dry seasons were divided into categories according to the classifications of [27] (see Figure 6).

Figure 6. Interpolation maps of water quality index for irrigation for groundwater (WQIIR) in Hilla district, Babylon, Iraq in the season of (a): wet; (b): dry.

3.4 Reclassified predicted maps of Groundwater for Irrigation
According to the classification ranges of Meireles et al. (2010) [27], each category within final maps (Figures 7a and 7b) in both seasons were given the symbol of restriction of water use in the groundwater in the study area that mentioned in Table 5.

Figure 7. Reclassified maps of groundwater quality index for irrigation in the Hilla district, Babylon, Iraq in the seasons of (a): wet; (b): dry.
4. Discussion

4.1 Prediction Maps for the selected Parameters

Electrical conductivity is associating with total dissolved solids (TDS). During the wet season, the Electrical conductivity (EC) concentration was ranged from 24400 μS/cm to 392 μS/cm with an average value of 4947 μS/cm (Figure 2a). The concentration of EC during the dry season was ranged from 26000 μS/cm to 408 μS/cm with an average value of 5173 μS/cm (Figure 2b).

The common chemical agent which is controlled on the water infiltration rate is the proportional concentrations for ions of sodium, calcium, and magnesium in water and it defines Sodium Adsorption Ratio (SAR) (Abdullah et al., 2016). The readings of SAR during the wet season were variated from 41.97 to 0.71 meq/L with the mean value of 8.84 meq/L (Figure 2c). In the dry season, the maximum and minimum values (in meq/L) were 42.65 and 0.72 respectively with the mean value of 9.06 meq/L (Figure 2d).

For the wet and dry seasons, the values of bicarbonates (HCO_3^{-1}) was ranged from 1010 to 52 mg/L (Figure 2e) and from 970 to 48 mg/L (Figure 2f) respectively. The mean value was 259 mg/L during the wet season and 238 mg/L during the dry season.

The concentration of Sodium ion (Na^{+1}) is used to describes the toxicity in the water (Abdullah et al., 2016). The variation of Sodium concentrations during the wet season was (36 – 4344) mg/L with a mean value of 813 mg/L (Figure 3a). The concentration of Sodium during the dry season were ranged from 40 to 4534 mg/L, and the mean value of Sodium was 850 mg/L (Figure 3b).

The mean, maximum and minimum readings of chloride concentration (Cl^{-1}) (respectively) in the groundwater in Hilla district were 748, 3310, and 43 mg/L during the wet season (Figures 3c) and 815, 3494 and 47 during the dry season (Figures 3d).

4.2 Generating Maps of multiplying the WQi by the Wi for the measured parameters

The groundwater quality index for the Irrigation model in Hilla district, Babylon, Iraq was applied using five parameters are EC, Cl, Na, HCO_3^{-1}, and SAR. This model comprises three parts. In the first part, the weights (Wi) of parameters that were listed in Table 4, where each parameter was given the weight that deserves.

In the second part, the values of water quality (WQi) for each parameter, as shown in Tables 1 and 2, were calculated using Equation 3. In this part, the unit of each parameter converted to the required unit based on the values in Table 3, where that the values of HCO_3^{-1}, Cl^{-1}, Na^{+1}, Ca^{+2}, and Mg^{+2} in mg/L were changed to equivalent values of meq/L [30]. Then, in the third part, the model of Water Quality Index for irrigation (WQIIIR) was applied on the study area (Hilla district) through multiplying the water quality (WQi) by the weights of parameters (Wi) for all samples based on Equation (2) during wet and dry seasons in 2016 (Table 6). Finally, the maps for groundwater of multiplying Wqi by Wi that resulted from using the interpolation method Kriging in the GIS environment were generated and applied in the study area (see Figures 4 and 5).

4.3 Classifying Maps of Groundwater for Irrigation using the WQIIIR Model

In the wet season, the final map of WQIIIR was divided into five categories with ranges of (34 - 55), (55 - 70), (70 - 85), and (85 – 89) (Figure 6a). The final map of WQIIIR in the dry season was divided into five categories and the ranges of this map are (35 - 40), (40 - 55), (55 – 70), (70 – 85), and (85 – 85.8) (Figure 6b).

The categories within the final maps in both seasons were reclassified based on the classification adopted by Meireles et al. (2010). In the study area, the areas of the category of severe restriction (SR) within Figures 6a and 6b were 54.12 km² and 42.79 km² in the dry and wet seasons respectively. The categories of high restriction (HR) in wet and dry seasons were occupied an area of 407.05 km² and 391.08 km² from which were represented 45.46% and 47.32 of the total of Hilla district in both seasons respectively. The moderate restriction (MR) category has defined the areas with a range of (55 – 70) of WQIIIR, where the area of the moderate restriction (MR) in the wet season was 377.77 km² (43.92%)
and 391.14 km (45.47%) in the dry season. The areas of 32.39 km² and 23.88 km² were represented the category of the low restriction (LR) of groundwater for irrigation use in the study area. The calculated areas of no restriction (NR) category of groundwater for irrigation use were very small, where the computed areas in the wet and dry seasons were 0.23 km and 0.01 km respectively (see Table 7). The area of the final produced map for each season was divided into categories according to the classifications by Meireles et al. (2010).

Table 7. Calculated area for the categories resulted from using the (WQIIR) model for Irrigation, and their symbols of restriction groundwater use for irrigation in the wet and dry seasons in 2016.

No.	Restriction symbol	Range [27]	Wet	Category's area km	Dry	Category's area km
1	SR	(0 – 40)	42.79		54.12	
2	HR	(40 – 55)	407.05		391.08	
3	MR	(55 – 70)	377.77		391.14	
4	LR	(70 – 85)	32.39		23.88	
5	NR	(85 – 100)	0.23		0.01	

In this study, the results showed wide differences in the calculated area's values in GIS between categories of restriction groundwater use for irrigation in the wet and dry seasons. The area values of categories of HR, LR, and NR in the wet season were higher the values in the dry season because the calculated values of WQIIR were bigger due to water dilution by rainfall. Otherwise, the computed areas in GIS for the categories SR and MR in the dry season were more than the areas in the wet season due to excessive usage to irrigate agricultural lands by water (see Table 7 as well as Figures 6 and 7).

Table 8 shows the WQIIR values using the model of groundwater quality index for irrigation during the wet and dry seasons in the Hilla district. Moreover, this table shows the classification symbols of restriction groundwater use for irrigation that was given for each well in the study area.

Table 8. Calculated area for the categories resulted from using the (WQIIR) model for Irrigation, and their symbols of restriction groundwater use for irrigation in the wet and dry seasons in 2016.

Well No.	WQIIR dry	Restriction symbol	WQIIR wet	Restriction symbol	WQIIR dry	Restriction symbol	WQIIR wet	Restriction symbol
W1	49.77	HR	49.51	HR	W25	64.23	HR	64.82
W2	35.01	SR	35.01	SR	W26	35.61	SR	36.1
W3	65.28	MR	67.2	MR	W27	62.2	MR	63.34
W4	47.3	HR	47.14	HR	W28	63.5	MR	64.44
W5	59.14	MR	60.43	MR	W29	47.4	HR	47.25
W6	48.61	HR	48.83	HR	W30	59.15	MR	60.69
W7	45.71	HR	42.87	HR	W31	61.16	MR	61.83
W8	62.8	MR	63.69	MR	W32	42.59	HR	42.20
W9	50.11	HR	49.98	HR	W33	82.31	LR	82.35
W10	63.32	MR	63.40	MR	W34	48.91	HR	48.78
W11	63.04	MR	66.99	MR	W35	65.84	MR	60.11
W12	67.29	MR	68.69	MR	W36	47.06	HR	46.87
W13	53.67	HR	55.80	HR	W37	48.28	HR	49.29
W14	35.01	SR	35.01	SR	W38	41.95	HR	41.18
W15	49.95	HR	50.98	HR	W39	78.55	LR	89.14
W16	44.88	HR	44.35	HR	W40	45.04	HR	44.66
W17	63.72	MR	66.27	MR	W41	48.44	HR	48.10
W18	35.01	SR	35.01	SR	W42	35.01	SR	47.74
W19	59.92	MR	62.95	MR	W43	66.65	MR	67.24
W20	59.66	MR	62.29	MR	W44	42.45	HR	41.78
5. Conclusions
The Water Quality Index for Irrigation (WQIIIR) model and the ArcMap/GIS Software were combined to evaluate the groundwater for irrigation in the Hilla district, Babylon, Iraq. Six essential parameters for this model (EC, Ca$^{2+}$, Mg$^{2+}$, Cl$^{-1}$, Na$^{+1}$, HCO$_3^{-1}$, and SAR) were measured from 48 wells distributed throughout the study area during the wet and dry seasons in 2016. The interpolation maps in the GIS environment using the kriging method were generated for the selected parameters in the current study to provide a clear idea about the concentrations level for these parameters in the whole study area. The interpolation maps resulted from applying the WQIIIR model in the GIS software were generated, where that the WQIIIR values for each well were as result from multiplying the water quality indexes (WQi) by the weights (Wi) for the selected parameters. Then, these maps were classified into five categories based on restrictions groundwater use for irrigation in both seasons. These categories were defined as the following (a): Severe Restriction (SR), (b): High Restriction (HR), (c): Moderate Restriction (MR), (d): Low Restriction and (e): No Restriction. The area value for each category and its classification of restrictions groundwater use for irrigation in the Hilla district in the dry season were calculated and reclassified as follows: 42.79 (SR), 407.05 (HR), 377.77 (MR), 32.39 (LR) and 0.23 (NR) respectively, while in the wet season (in km2) were: 42.79 (SR), 407.05 (HR), 377.77 (MR), 32.39 (LR) and 0.23 (NR) respectively.

The results displayed high differences for the calculated values of categories' areas that are calculated in the GIS for the restriction groundwater use for irrigation in the wet and dry seasons in 2016. In the wet season, in the classified final maps of groundwater for irrigation, the calculated areas' categories of high restriction (HR), low restriction (LR), and no restriction (NR) were more than the values of these categories in the dry season. The concentrations of measured parameters of LR and NR categories were exposed to dilution due to reducing the discharge from the aquifer by the population for different purposes and to increase the recharges the aquifer by rainfall. The increased values of the category of high restriction (HR) in the wet season compared with the dry season this is due to original high concentrations for the measured parameters for the wells located within the HR category.

Acknowledgments: Greatest appreciations to General Commission for Groundwater, Iraqi Ministry of Water Resources, Baghdad, Iraq to provide the authors in this research by the measured readings of groundwater in the Hilla district, Babylon, Iraq.

References
[1] La Mora-Orozco D, Flores-Lopez H, Rubio-Arias H, Chavez-Duran A and Ochoa-Rivero J 2017 Developing a water quality index (WQI) for an irrigation dam. International Journal of Environmental Research and Public Health, 14, p 439.
[2] Bouderbala A 2017 Assessment of water quality index for the groundwater in the upper Cheliff plain, Algeria. Journal of Geological Society of India, 90, pp 347 - 356.
[3] Walsh P and Wheeler W 2012 Water Quality Index Aggregation and Cost Benefit Analysis. Journal of Benefit-Cost Analysis, 4, pp 81-105.
[4] Tyagi S, Sharma B, Singh P and Dobhal R 2013 Water Quality Assessment in Terms of Water Quality Index. Am J Water Resour; 1, pp 34–38.
[5] Alobaidy A M, Maulood B K and Kadhem A J 2010 Evaluating Raw and Treated Water Quality of Tigris River Within Baghdad By Index Analysis. J. Water Resource and Protection, 2, pp 629-635.

[6] Hussain H M, Al-Haidarey M, Al-Ansari N and Knutsson S 2014 Evaluation and mapping groundwater suitability for irrigation using GIS in Najaf Governorate, Iraq. Journal of Environmental Hydrology, 22, pp 1-16.

[7] Ramakrishnaiah C R, Sadasiviah C and Ranganna G, 2009 Assessment of Water Quality Index for the Groundwater in TumkurTaluk, Karnataka State, India. E-Journal of Chemistry, 6, pp 523-530.

[8] Hussain H M, Al-Hasnawi S and Al-Shamma’a A 2012 Assessment of index for aquifer water quality for irrigation and livestock purposes of Dammam Aquifer in Najaf area of Iraq. Journal of Karbala, 1, pp 22-32.

[9] Brown R M, McClelland N I, Deininger R A and Tozer R G A 1970 Water Quality Index—Do we dare. Water and Sewage Works, 117, pp 339–343.

[10] McClelland N I 1974 Water Quality Index Application in The Kansas River Basin. EPA-907/9-74-001. US EPA Region VII. Kansas City, MO.

[11] Gautam S K, Sharma D, Tripathi J K, Ahirwar S and Singh S K A 2013 Study of The Effectiveness of Sewage Treatment Plants in Delhi Region. Applied Water Science, 3, pp 57–65.

[12] Rawat K S, Tripathi V K and Singh S K 2018 Groundwater Quality Evaluation Using Numerical Indices: A Case Study (Delhi, India). Sustainable Water Resources Management, 4, pp 875-885.

[13] Iraqi Ministry of Planning. Records of Directorate of Census Babylon, internal reports, Baghdad: Iraqi Ministry of Planning, 2017.

[14] Iraqi Ministry of Municipalities and Public Works 2009 Structural Plan of Babylon Governorate, The Directorate General of Urban Planning. Information Analysis Report (Revised), stage 2, pp.223.

[15] Al Khalidy K S, Chabuk A J and Kadhim M M Measurement of Lead Pollution in the Air of Babylon Governorate, Iraq during Year 2010. World Academy of Science, Engineering and Technology 2012; 6, pp 830-833.

[16] CEB (Consulting Engineering Bureau College of Engineering 2012 Hydrological Study of Ancient Babylon Site. Final Internal Report: Iraqi Ministry of Higher Education & Scientific Research, Baghdad University, Baghdad, Iraq.

[17] Iraqi Ministry of transportation constitutions: Iraqi Meteorological Organization & Seismology 2017. Internal reports Baghdad: Iraqi Ministry of Transportation constitutions.

[18] Food and Agriculture Organization of the United Nation (FAO) 2009 Irrigation in the Middle East region in Figures – AQUASTAT Survey – 2008. Rome: Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/tempref/agl/AGLW/docs/wr34_eng.pdf (accessed on 30 October 2019).

[19] Al-Jiburi H and Al-Basrawi N 2011 Hydrogeology of The Mesopotamia Plain. Iraqi Bull. Geol. Min., Geology of the Mesopotamia Plain; Special Issue, No.4, pp 83- 103.
[20] Al-Madhlom Q, Nordell B, Chabuk A, Al-Ansari N, Lindblom J, Laue J and Hussain M H 2020 Potential use of UTES in Babylon Governorate, Iraq. Groundwater for Sustainable Development; 10, 100283.

[21] Sissakian V 2013 Geological Evolution of the Iraqi Mesopotamia Foredeep, Inner Platform and Near Surroundings of The Arabian Plate. Journal of Asian Earth Sciences; 72, pp 152-163.

[22] Yacoub S Y 2011 Stratigraphy of the Mesopotamia plain. Iraqi Bull. Geol. Min.; 4, pp 47–82. Special Issue.

[23] Jassim S and Goff J 2006 Geology of Iraq. first ed. Dolin, Prague and Moravian Museum, Brno, Czech Republic.

[24] Iraqi Ministry of Water Resources: General Commission for Groundwater 2017. Internal reports, Baghdad: Iraqi Ministry of Water Resources Iraqi Ministry of Water Resources.

[25] Lenntech 2020 Home Calculators Accuracy water analysis calculation. Available online: https://www.lenntech.com/calculators/accuracy/accuracy-water-analysis.htm (accessed on 20 January 2020).

[26] Abdullah T, Ali S, Al-Ansari N and Knutsson S 2016 Classification of Groundwater Based on Irrigation Water Quality Index and GIS In Halabja Saidasadiq Basin, NE Iraq. Journal of Environmental Hydrology, p 24.

[27] Meireles A, Andrade E M, Chaves L, Frischkorn H and Crisostomo L A A 2010 New Proposal of The Classification of Irrigation Water. Revista Ciência Agronômica; 413, pp 349-357.

[28] Ayers R S and Dennis W W 1985 Water Quality for Agriculture. Vol. 29. Rome: Food and Agriculture Organization of the United Nations.

[29] Abbasnia A, Alimohammadi M, Mahvi A H, Nabizadeh R, Yousefi M, Mohammadi A A and Mirzabeigi M 2018 Assessment of Groundwater Quality and Evaluation of Scaling and Corrosiveness Potential of Drinking Water Samples in Villages of Chabahr City, Sistan and Baluchistan Province in Iran. Data in brief, 16, pp 182-192.

[30] Abbasnia A, Radfard M, Mahvi A H, Nabizadeh R, Yousefi M, Soleimani H and Alimohammadi M 2018 Groundwater Quality Assessment for Irrigation Purposes Based on Irrigation Water Quality Index and its Zoning with GIS in The Villages of Chabahar, Sistan and Baluchistan, Iran. Data in brief; 19, pp 623-631.