TAU-FUNCTIONS À LA DUBÉDAT AND PROBABILITIES OF CYLINDRICAL EVENTS FOR DOUBLE-DIMERS AND CLE(4)

MIKHAIL BASOKA,C AND DMITRY CHELKAKB,C

Abstract. Building upon recent results of Dubédat \cite{7} on the convergence of topological correlators in the double-dimer model considered on Temperleyan approximations Ω^δ to a simply connected domain $\Omega \subset \mathbb{C}$ we prove the convergence of probabilities of cylindrical events for the double-dimer loop ensembles on Ω^δ as $\delta \to 0$. More precisely, let $\lambda_1, \ldots, \lambda_n \in \Omega$ and L be a macroscopic lamination on $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$, i.e., a collection of disjoint simple loops surrounding at least two punctures considered up to homotopies. We show that the probabilities P^δ_L that one obtains L after withdrawing all loops surrounding no more than one puncture from a double-dimer loop ensemble on Ω^δ converge to a conformally invariant limit P_L as $\delta \to 0$, for each L.

Though our primary motivation comes from 2D statistical mechanics and probability, the proofs are of a purely analytic nature. The key techniques are the analysis of entire functions on the representation variety $\text{Hom}(\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \to \text{SL}_2(\mathbb{C}))$ and on its (non-smooth) subvariety of locally unipotent representations. In particular, we do not use any RSW-type arguments for double-dimers.

The limits P_L of the probabilities P^δ_L are defined as coefficients of the isomonodromic tau-function studied in \cite{7} with respect to the Fock–Goncharov lamination basis on the representation variety. The fact that P_L coincides with the probability to obtain L from a sample of the nested CLE(4) in Ω requires a small additional input, namely a mild crossing estimate for this nested conformal loop ensemble.

1. Introduction and main results

Convergence of double-dimer interfaces and loop ensembles to SLE(4) and CLE(4), respectively, is a well-known prediction made by Kenyon after the introduction of SLE curves by Schramm, see \cite[Section 2.3]{23}. In particular, this provided a strong motivation to study couplings between Conformal Loop Ensembles (CLE) and the two-dimensional Gaussian Free Field (GFF), a subject which remained very active during
the last fifteen years and led to several breakthroughs in the understanding of SLEs and CLEs via the Imaginary Geometry techniques, e.g. see [17] and references therein.

Originally, this prediction was strongly supported by the convergence of dimer height functions to the GFF proved (for Temperleyan approximations on \mathbb{Z}^2) by Kenyon [12, 13] and the fact that the level lines of the GFF are SLE(4) curves, see [24] and [29]. More recently it received even more support due to the breakthrough works of Kenyon [14] and Dubédat [7] on the convergence of topological observables for double-dimer loop ensembles. Our paper should be considered as a complement to the work of Dubédat who writes (see [7, Corollary 3]) “By general principles, . . . the assumptions 1. $(\mu_\delta)_{\delta}$ is tight, and 2. a probability measure μ on loop ensembles in a simply-connected domain D is uniquely characterized by the expectations of the functionals . . . imply weak convergence of the μ_δ’s to the CLE$_4(D)$ measure as $\delta \to 0$.”

To the best of our knowledge, there are still no available results on the first assumption (tightness), thus Kenyon’s prediction should not be considered as fully proven yet. The main goal of this paper is to give a solid ground to the second assumption: we show that the topological observables treated by Dubédat in [7] do characterize the measure on loop ensembles in the sense which is described below.

It is worth noting that several approaches to the convergence of (double-)dimer height functions to the GFF are known nowadays (e.g., see [2] and [4]) besides the original one of Kenyon [12, 13], which is based on the analysis of the scaling limit of the Kasteleyn matrix by means of discrete complex analysis and is also the starting point for [14] and [7]. Also, the choice of discrete approximations Ω^δ to a simply connected domain Ω is a very delicate question, see [22] for another (not Temperleyan) special case when the discrete complex analysis machinery works well. To be able to build upon the results of [7], below we assume that Ω^δ are Temperleyan approximations on the square grids of mesh δ though this setup can be enlarged in several directions.

Recall that, given a Temperlean simply connected discrete domain $\Omega^\delta \subset \delta \mathbb{Z}^2$, a double-dimer loop ensemble on Ω^δ is obtained by superimposing two dimer configurations on Ω^δ chosen independently uniformly at random: this produces a number of loops and double-edges, the latter should be withdrawn. We denote by Ξ^δ_Ω the random collection of simple pairwise disjoint loops obtained in this way. The nested conformal loop ensemble CLE(4) in Ω is a conjectural limit of Ξ^δ_Ω as $\delta \to 0$. The CLE(4) can be defined and effectively studied purely in continuum, see [25, 20] and references therein for background. We denote by Ξ^\star_Ω a random sample of this loop ensemble. Note that Ξ^\star_Ω almost surely contains infinitely many loops but most of them are very small: almost surely, for each cut-off $\epsilon > 0$ only finitely many of the loops of Ξ^\star_Ω have diameter greater than ϵ.

Let $\lambda_1, \ldots, \lambda_n \in \Omega$ be a collection of pairwise distinct punctures in Ω. A lamination Γ is a finite collection of disjoint simple loops in $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ considered up to homotopies. We call a lamination macroscopic if each of these loops surrounds at least two of the punctures. For a random loop ensemble Ξ and a deterministic macroscopic lamination Γ, let $\Xi \sim \Gamma$ denote the event that withdrawing all loops surrounding no more than one puncture from Ξ one obtains Γ. We call the events $\Xi \sim \Gamma$ cylindrical: their probabilities (for all $n \geq 1$, all $\lambda_1, \ldots, \lambda_n \in \Omega$ and all macroscopic laminations L) determine the law of Ξ for reasonable topologies on the space of loop ensembles.
Given \(n \), put \(n_e \) points at the interior of each edge \(e \in \mathcal{E} \).

Connect these points by chords inside each triangle.

Figure 1. A triangulation \(\mathcal{T}_\Omega \) of \(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\} \) and a lamination \(\Gamma \) recovered from a multi-index \(n \in \mathbb{Z}_{\geq 0}^\mathcal{E} \). One has \(|\Gamma| = \sum_{e \in \mathcal{E}} n_e = 20 \).

An important notion that is constantly used in our paper is the complexity \(|\Gamma| \) of a lamination \(\Gamma \), let us emphasize that this is not the number of loops in \(\Gamma \), which we denote by \#loops(\(\Gamma \)). Given \(\lambda_1, \ldots, \lambda_n \) we fix a triangulation \(\mathcal{T}_\Omega \) of \(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\} \) and define \(|\Gamma| \) to be the minimal number of intersections of loops constituting \(\Gamma \) with the edges \(e \in \mathcal{E} \) of \(\mathcal{T}_\Omega \). In fact, one can parameterize laminations on \(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\} \) by multi-indices \(n = (n_e) \in \mathbb{Z}_{\geq 0}^\mathcal{E} \) satisfying certain conditions, see Fig. 1 and Section 3.2 for more details. Under this parametrization one has \(|\Gamma| = \sum_{e \in \mathcal{E}} n_e \).

We denote by

\[
X := \text{Hom}(\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \to \text{SL}_2(\mathbb{C}))
\]

the (smooth) variety of \(\text{SL}_2(\mathbb{C}) \)-representations of the free non-abelian fundamental group \(\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \). Note that one could view \(X \) as \(\text{SL}_2(\mathbb{C})^n \) by fixing generators of the fundamental group but this viewpoint is not invariant enough for the analytic tools that we use below. Let \((\lambda_i) \) denote the loop surrounding a single puncture \(\lambda_i \) and

\[
X_{\text{unip}} := \{ \rho \in X : \text{Tr}(\rho(\lambda_i)) = 2 \text{ for all } i = 1, \ldots, n \}
\]

be the (non-smooth) subvariety of locally unipotent representations \(\rho \in X \). In this paper we study entire functions \(f : X \to \mathbb{C} \) or \(f : X_{\text{unip}} \to \mathbb{C} \), in the latter case we mean that \(f \) is continuous on \(X_{\text{unip}} \) and is holomorphic on its regular part. Moreover, we are interested only in those entire functions that are invariant under the action of \(\text{SL}_2(\mathbb{C}) \) on \(X \) or \(X_{\text{unip}} \) given by the conjugation \(\rho(\cdot) \mapsto A^{-1}\rho(\cdot)A, A \in \text{SL}_2(\mathbb{C}) \). Below we use the notation \(\text{Fun}_{\text{hol}}(X)^{\text{SL}_2(\mathbb{C})} \) and \(\text{Fun}_{\text{hol}}(X_{\text{unip}})^{\text{SL}_2(\mathbb{C})} \) for these classes.

Given a lamination (not necessarily macroscopic) \(\Gamma \) on \(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\} \) we set

\[
f_\Gamma(\rho) := \prod_{\gamma \in \Gamma} \text{Tr}(\rho(\gamma)), \quad \rho \in X.
\]

Since \(\text{Tr} A = \text{Tr} A^{-1} \) for \(A \in \text{SL}_2(\mathbb{C}) \), this definition does not require to fix an orientation of the loops \(\gamma \in \Gamma \). Clearly, one has \(f_\Gamma \in \text{Fun}_{\text{hol}}(X)^{\text{SL}_2(\mathbb{C})} \) and this function can be also treated as an element of \(\text{Fun}_{\text{hol}}(X_{\text{unip}})^{\text{SL}_2(\mathbb{C})} \) by taking the restriction to locally unipotent monodromies \(\rho \in X_{\text{unip}} \). The main results of our paper can be loosely formulated as follows: each invariant entire function \(f \in \text{Fun}_{\text{hol}}(X)^{\text{SL}_2(\mathbb{C})} \) admits a unique expansion via the functions \(f_\Gamma \) and each function \(f \in \text{Fun}_{\text{hol}}(X_{\text{unip}})^{\text{SL}_2(\mathbb{C})} \) admits a unique expansion via the functions \(f_\Gamma \) indexed by macroscopic laminations \(\Gamma \), with coefficients decaying faster than exponentially.
For \(\rho \in X_{\text{unip}} \), let

\[
\tau^\delta(\rho) := \mathbb{E}_{\text{dbl-d}} \left[\prod_{\gamma \in \mathbb{Z}^2(\Omega)} \left(\frac{1}{2} \text{Tr} (\rho(\gamma)) \right) \right]
\]

(1.2)

\[
= \sum_{\Gamma - \text{macroscopic}} p^\delta_\Gamma f^\rho_\Gamma (\rho), \quad p^\delta_\Gamma := 2^{-\#\text{loops}(\Gamma)} \mathbb{P}_{\text{dbl-d}} \left[\Xi^\delta_\Omega \sim \Gamma \right],
\]

and similarly

\[
\tau^*(\rho) := \mathbb{E}_{\text{CLE(4)}} \left[\prod_{\gamma \in \mathbb{Z}^*(\Omega)} \left(\frac{1}{2} \text{Tr} (\rho(\gamma)) \right) \right]
\]

(1.3)

\[
= \sum_{\Gamma - \text{macroscopic}} p^*_\Gamma f^\rho_\Gamma (\rho), \quad p^*_\Gamma := 2^{-\#\text{loops}(\Gamma)} \mathbb{P}_{\text{CLE(4)}} \left[\Xi^*_\Omega \sim \Gamma \right].
\]

Following [7] we call the functions \(\tau^\delta \) and \(\tau^* \) topological correlators of the loop ensembles \(\Xi^\delta \) and \(\Xi^* \), respectively.

While \(\tau^\delta \) is actually a finite linear combination of \(f^\rho_\Gamma \), one should be more careful with the infinite series (1.3). It is checked in [7] that \(\mathbb{P}_{\text{dbl-d}} \left[\Xi^\delta_\Omega \sim \Gamma \right] = O(R_0^{-|\Gamma|}) \) for some \(R_0 > 1 \), therefore \(\tau^* \) is correctly defined at least in a vicinity of the trivial representation \(\text{Id} \in X_{\text{unip}} \). It seems to be known in the folklore that these probabilities actually decay super-exponentially as \(|\Gamma| \to \infty \) (e.g., see [30, Section 4] and references therein for related results) but we were unable to find an explicit reference to this fact and thus prefer to keep it as an assumption in Corollary 1.5, see also Remark 1.3.

In the paper [7] Dubédat also introduced a notion of the isomonodromic tau-function \(\tau_\Omega(\lambda_1, \ldots, \lambda_n; \rho), \rho \in X_{\text{unip}} \), on a simply connected domain \(\Omega \) which is defined as follows. For \(\Omega = \mathbb{H} \) (the upper half-plane), consider a representation of the fundamental group of the punctured Riemann sphere

\[
\rho' : \mathbb{C}P^1 \setminus \{ \lambda_1, \ldots, \lambda_n, \bar{\lambda}_n, \ldots, \bar{\lambda}_1 \} \to \text{SL}_2(\mathbb{C})
\]

constructed so that the monodromies of \(\rho' \) around the punctures \(\lambda_i \) match those of \(\rho \) while the monodromies of \(\rho' \) around \(\bar{\lambda}_i \) are their inverses, see [7] for more details. For each \(\rho \in X_{\text{unip}} \) one can check that the classical Jimbo–Miwa–Ueno [10, 18] isomonodromic tau-function \(\tau_{\mathbb{C}P^1}(\lambda_1, \ldots, \lambda_n, \bar{\lambda}_n, \ldots, \bar{\lambda}_1; \rho') \) can be normalized so that it equals to 1 when all the pairs of punctures \(\lambda_i, \bar{\lambda}_i \) collide on the real line. Moreover, the function

\[
\tau_\Omega(\rho; \lambda_1, \ldots, \lambda_n) := \tau_{\mathbb{C}P^1}(\rho'; \lambda_1, \ldots, \lambda_n, \bar{\lambda}_n, \ldots, \bar{\lambda}_1)
\]

turns out to be invariant under braid moves as well as under Möbius automorphisms of the upper half-plane \(\mathbb{H} \). This allows one to define \(\tau_\Omega(\rho; \lambda_1, \ldots, \lambda_n) \) for general simply connected domains \(\Omega \) by conformal invariance.

Although one usually considers an isomonodromic tau-function as a function of \(\lambda_1, \ldots, \lambda_n \), the one discussed above can be also viewed as a function of a locally unipotent representation \(\rho \) as its multiplicative normalization does not depend on \(\rho \). In our paper both \(\Omega \) and \(\lambda_1, \ldots, \lambda_n \) can be usually thought of as fixed once forever, thus from now onwards we use the shorthand notation

\[
\tau(\rho) := \tau_\Omega(\lambda_1, \ldots, \lambda_n; \rho), \quad \rho \in X_{\text{unip}}.
\]

(1.4)

From the above construction one can see that \(\tau \in \text{Fun}_{\text{hol}}(X_{\text{unip}})_{\text{SL}_2(\mathbb{C})} \), note that this also can be easily deduced from the following theorem, which is the main result of [7].
Recall that the functions τ^δ and τ^* are defined by (1.2) and (1.3).

Theorem 1.1 (Dubédat). Let Ω be a planar simply connected domain, Ω^δ be a sequence of Temperleyan approximations to Ω, and $\lambda_1, \ldots, \lambda_n \in \Omega$. Then, the following holds:

(i) For each locally unipotent representation $\rho \in X_{\text{unip}}$ one has

$$\tau^\delta(\rho) \to \tau(\rho) \quad \text{as} \quad \delta \to 0$$

and the convergence is uniform on compact subsets of X_{unip}.

(ii) Moreover, $\tau(\rho) = \tau^*(\rho)$ if $\rho \in X_{\text{unip}}$ is close enough to the trivial representation.

The next theorem is the main result of our paper.

Theorem 1.2. Each entire function $f \in \text{Fun}_{\text{hol}}(X_{\text{unip}})^{\text{SL}_2(\mathbb{C})}$ admits a unique expansion

$$f(\rho) = \sum_{\Gamma \text{-macroscopic}} p_\Gamma^\delta f_\Gamma(\rho), \quad \rho \in X_{\text{unip}}, \quad (1.5)$$

where the functions f_Γ are given by (1.1) and $|\Gamma|^{-1} \log |p_\Gamma| \to -\infty$ as $|\Gamma| \to \infty$. Moreover, for each $R > 0$ there exists a compact subset $K_R \subset X_{\text{unip}}$ and a constant $C_R > 0$ independent of f such that one has

$$|p_\Gamma| \leq C_R \cdot R^{-|\Gamma|} \cdot \|f\|_{L^\infty(K_R)} \quad (1.6)$$

for all macroscopic laminations Γ.

Remark 1.3. In fact, we prove a slightly stronger result as we require f to be defined only on a bounded subset of X_{unip}, see Theorem 5.11 for the precise statement. It is worth noting that our results do not guarantee the uniqueness of the expansion (1.5) for functions defined just in a small vicinity of $\text{Id} \in X_{\text{unip}}$. To illustrate a possible catch one can think about expanding entire functions of one complex variable in the basis $1, z - 1, z^2 - z, \ldots, z^n - z^{n-1}, \ldots$. In the full plane such expansions always exist and are unique but $1 + (z - 1) + (z^2 - z) + \cdots = 0$ in a vicinity of the origin. Since the functions f_Γ are far from being a Fourier basis we expect a similar (though more involved) phenomenon in our setup.

It is easy to see that a combination of Theorem 1.1 and Theorem 1.2 imply the convergence of probabilities of cylindrical events. Let

$$\tau(\rho) = \sum_{\Gamma \text{-macroscopic}} p_\Gamma^{\text{iso}} f_\Gamma(\rho), \quad \rho \in X_{\text{unip}},$$

be the expansion of the isomonodromic tau-function provided by Theorem 1.2.

Corollary 1.4. Let Ω be a planar simply connected domain, Ω^δ be a sequence of Temperleyan approximations to Ω, and $\lambda_1, \ldots, \lambda_n \in \Omega$. Then, for each macroscopic lamination Γ on $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$, one has

$$p_\Gamma^\delta = 2^{-\text{#loops}(\Gamma)} p_\Gamma^{\text{dbl-d}} \left[\Xi^\delta_{\Omega} \sim \Gamma \right] \rightarrow p_\Gamma^{\text{iso}} \quad \text{as} \quad \delta \to 0.$$

Moreover, $R^{|\Gamma|} \cdot |p_\Gamma^\delta - p_\Gamma^{\text{iso}}| \to 0$ as $\delta \to 0$ uniformly in Γ for each $R > 0$.

Proof. By definition, p_Γ^δ are nothing but the coefficients in the expansion (1.5) of the function τ^δ. Therefore, for each $R > 0$, Theorem 1.2 implies the uniform estimate

$$R^{|\Gamma|} \cdot |p_\Gamma^\delta - p_\Gamma^{\text{iso}}| \leq C_R \cdot \|\tau^\delta - \tau\|_{L^\infty(K_R)}$$

and the right-hand side vanishes as $\delta \to 0$ due to Theorem 1.1(i). \qed
Corollary 1.5. In the same setup, assume that
\[P_{\text{CLE}(4)} [\Xi_{\Omega} \sim \Gamma] = O(R^{-|\Gamma|}) \] as \(|\Gamma| \to \infty\), for all \(R > 0 \). \hspace{1cm} (1.7)
Then, \(p_{\Gamma}^{\text{iso}} = p_{\Gamma}^{\ast} = 2^{-\#\text{loops}(\Gamma)} P_{\text{CLE}(4)} [\Xi_{\Omega} \sim \Gamma] \) for all macroscopic laminations \(\Gamma \).

Proof. If the assumption (1.7) holds, then the series (1.3) converges for all \(\rho \in \mathcal{X}_{\text{unip}} \) and \(\tau^\ast \in \text{Fun}_{\text{hol}}(\mathcal{X}_{\text{unip}})^{\text{SL}_2(\mathbb{C})} \). Due to Theorem 1.1(ii) the entire functions \(\tau \) and \(\tau^\ast \) coincide in a vicinity of \(\rho = \text{Id} \) and hence everywhere on \(\mathcal{X}_{\text{unip}} \). Therefore, the uniqueness of the expansion (1.5) gives \(p_{\Gamma}^{\text{iso}} = p_{\Gamma}^{\ast} \) for all macroscopic laminations \(\Gamma \). \(\square \)

The main ideas of the proof of Theorem 1.2 are discussed in Section 2. We conclude the introduction by the following vague remark on a potential deformation of the topological observables (1.3). Though the first naive idea would be just to replace the CLE(4) measure in their definition by CLE(\(\kappa \)) with \(\kappa \neq 4 \), thus obtained functions do not look very natural. In view of the material discussed in Section 4 it actually looks more promising to simultaneously deform the functions \(f_\Gamma \) given by (1.1) by using the quantum trace functionals [3] instead of the usual traces. Having in mind the famous predictions on the scaling limits of loop \(O(n) \) and FK(\(q \)) models (e.g., see [23, Section 2.4] and [26, Section 2]), it sounds plausible that the quantization parameter should be then tuned so that the simple loop weight in the corresponding skein algebras is equal to \(\pm 2 \cos(4\pi/k) \). We believe that developing tools to analyze such deformations might be of great interest, both from CLE and lattice models perspectives.

2. Toy example \(n = 2 \) and the strategy of the proof

In this section we informally describe the main ideas of the proof of Theorem 1.2. Sometimes we use the case \(n = 2 \) as a toy example. Certainly, this is a classical and well-studied setup (e.g., see [14, Section 10] and [7, Corollary 2]): each macroscopic lamination on \(\Omega \setminus \{\lambda_1, \lambda_2\} \) is given by \(k \geq 0 \) loops homotopic to the simple loop \(l \) surrounding both punctures. Let \(z := \text{Tr}(\rho(l)) \in \mathbb{C} \) and \(p_k^\delta \) be the probability to see exactly \(k \) copies of \(l \) in the double-dimer model loop ensemble on \(\Omega^\delta \), divided by \(2^k \). In this situation our main result can be rephrased as follows: the convergence of entire functions
\[
\tau^\delta(z) = \sum_{k \geq 0} p_k^\delta z^k \to \tau(z) = \sum_{k \geq 0} p_k z^k \quad \text{as} \quad \delta \to 0
\]
on compact subsets of \(\mathbb{C} \) implies that \(p_k^\delta \to p_k \) as \(\delta \to 0 \) for each \(k \geq 0 \).

Unfortunately, such a straightforward argument does not work for \(n > 2 \) since the set of functions \(f_\Gamma : \mathcal{X}_{\text{unip}} \to \mathbb{C} \) indexed by macroscopic laminations does not have a structure of the Fourier basis. Though one can relatively easily deduce from the Fock-Goncharov theorem [8, Theorem 12.3] that \(f_\Gamma \) form an algebraic basis of the space \(\text{Fun}_{\text{alg}}(\mathcal{X}_{\text{unip}})^{\text{SL}_2(\mathbb{C})} \), even the uniqueness of expansions \(f(\rho) = \sum_{\Gamma} \langle \Gamma \rangle \text{macroscopic \rho} f_\Gamma(\rho) \) of entire functions \(f \in \text{Fun}_{\text{hol}}(\mathcal{X}_{\text{unip}})^{\text{SL}_2(\mathbb{C})} \) is not at all obvious: to see a possible difficulty, the reader can think about replacing the Fourier basis 1, \(z \), \(z^2 \), . . . by its lower-diagonal transform 1, \(z - 2 \), \(z^2 - 4z \), . . ., \(z^n - 2^n z^{n-1} \), . . . in the toy example given above.

Even if the aforementioned uniqueness issue is settled, it still might be problematic to extract the convergence of coefficients \(p_k^\delta \) from the convergence of functions \(\tau^\delta \) unless an a priori estimate similar to (1.6) is available, cf. Remark 1.3. Since, to the best
of our knowledge, no explicit analogue of the Cauchy formula (which settles the toy case $n = 2$) on X_{unip} is known if $n > 2$, we develop a set of general tools to analyze $\text{SL}_2(\mathbb{C})$-invariant entire functions on X_{unip} as sketched below.

Recall that the manifold $X = \text{Hom}(\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \to \text{SL}_2(\mathbb{C}))$ can be viewed as $\text{SL}_2(\mathbb{C})^n$ (a parametrization is given by a choice of generators of the fundamental group) and hence it carries the structure of an algebraic group whereas its subvariety X_{unip} does not. Therefore, it is easier to analyze the ring of invariant functions on X first. Following Fock and Goncharov [8, Section 12] this goes as follows:

- One encodes the laminations Γ by multi-index $n = (n_e)_{e \in E}$ where $n_e \in \mathbb{Z}_{\geq 0}$ indexed by the edges of a triangulation T_Ω of $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$, see Fig. 1. If $n = 2$, these multi-indices are just triples (n_1, n_2, n_3) of non-negative integers (see Fig. 2) satisfying the so-called lamination condition

$$n_1 + n_2 + n_3 \text{ is even, } |n_1 - n_2| \leq n_3 \leq n_1 + n_2. \quad (2.1)$$

- Flat $\text{SL}_2(\mathbb{C})$ connections on $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ can be parameterized by putting transition matrices $A_e \in \text{SL}_2(\mathbb{C})$ onto the edges of T_Ω and factorizing over the natural action (change of the bases of the rank-two vector bundle) of $\text{SL}_2(\mathbb{C})$ matrices assigned to the faces of T_Ω. This parametrization provides a natural isomorphism

$$\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})} \cong \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^E)^{\text{SL}_2(\mathbb{C})^F}.$$

- As already mentioned, the functions $f_{(n_1, n_2, n_3)} \in \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$ (for simplicity, we focus on the case $n = 2$ though the same arguments work well in the general case) do not have a Fourier basis structure. Nevertheless, there exists another collection of functions $g_{(n_1, n_2, n_3)} \in \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$ indexed by the same set of triples satisfying the lamination condition (2.1) which is an orthogonal basis in the space $L^2(\text{SU}_2(\mathbb{C})^E)^{\text{SU}_2(\mathbb{C})^F}$, we call these functions the Peter–Weyl basis. In fact, they can be constructed by the following symmetrization procedure. Let $\mathcal{C}(n_1, n_2, n_3)$ be the set of all possible collections of (not necessarily simple or disjoint) loops obtained by concatenating two collections of arcs with (n_1, n_2, n_3) endpoints drawn inside each of the two faces of T_Ω so that no arc connects two points on the same edge, see Fig. 2. Then

$$g_{(n_1, n_2, n_3)} = |\mathcal{C}(n_1, n_2, n_3)|^{-1} \cdot \sum_{C \in \mathcal{C}(n_1, n_2, n_3)} f_C,$$

where $f_C(\rho) := \prod_{\gamma \in C} \text{Tr}(\rho(\gamma))$.

Figure 2. The case $n = 2$. A lamination corresponding to the multi-index $n = (3, 4, 3)$ and one of the multi-curves from the set $\mathcal{C}(3, 4, 3)$.

The Fock–Goncharov theorem claims that the bases f_Γ and g_Γ are related by a lower-triangular transform:

$$g_\Gamma = \sum_{\Delta: \Delta \leq \Gamma} c_{\Gamma \Delta} f_\Delta,$$

where the partial order on the set of laminations is given by the partial order on the set of multi-indices $n \in \mathbb{Z}_{\geq 0}$.

By analogy with entire functions one can expect that each holomorphic function $f \in \text{Fun}_{\text{hol}}(X)^{\text{SL}_2(\mathbb{C})}$ admits a Fourier-type expansion $f = \sum_\Gamma q_\Gamma g_\Gamma$ with coefficients q_Γ decaying faster than exponentially. Formally, this implies that one can also write

$$f = \sum_\Delta p_\Delta f_\Delta, \quad \text{where} \quad p_\Delta = \sum_{\Gamma: \Delta \leq \Gamma} c_{\Gamma \Delta} q_\Gamma,$$

but there is a catch: to pass from the former series to the latter rigorously one needs an exponential upper bound for the coefficients $c_{\Gamma \Delta}$ of the Fock–Goncharov change of the bases. To the best of our knowledge, such an estimate is not available in the existing literature thus we prove the (non-optimal) upper bound $|c_{\Gamma \Delta}| \leq 4^{|\Gamma|}$ in our paper.

It is well-known that the identities between the functions f_Γ, f_C and g_Γ can be equivalently written in terms of the Kauffman skein algebras $\text{Sk}(M, \pm 1)$ of framed knots in $M := (\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \times [0,1]$. In fact, $\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})} \cong \text{Sk}(M, -1) \cong \text{Sk}(M, 1)$ and the skein relations reflect the identity $\text{Tr}(AB) + \text{Tr}(AB^{-1}) = \text{Tr}(A)\text{Tr}(B)$ for $A, B \in \text{SL}_2(\mathbb{C})$. This isomorphism suggests the idea of expanding each of the terms f_C in the definition of g_Γ as $f_C = \sum_{\Delta: \Delta \leq \Gamma} c_{\Gamma \Delta} f_\Delta$ by resolving all the crossings of C via the skein relations. Unfortunately, this is not an easy thing to do: a collection of loops C may contain about $|\Gamma|^2$ crossings, hence one must analyse highly non-trivial cancellations arising along the way in order to end up with an exponential bound for $c_{\Gamma \Delta}$.

Following the advice of Vladimir Fock we circumvent these complications by using the positivity of the so-called bracelet basis of $\text{Sk}(M, 1)$ proved by D. Thurston [28] in combination with a representation of $\text{Sk}(M, 1)$ in the space of Laurent polynomials coming from Thurston's shear coordinates of hyperbolic structures on $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ (e.g., see [3]). Remarkably enough, in this representation all functions f_C are mapped to Laurent polynomials with positive integer coefficients. Together, these positivity results imply the desired exponential estimate of coefficients as the sums contain no cancellations anymore.

The arguments briefly described above allow one to prove counterparts of our main results for holomorphic functions living on the whole manifold X and their expansions in the basis f_Γ indexed by all, not necessarily macroscopic, laminations. The last but not the least part of our analysis is devoted to the translation of these results to holomorphic functions living on the subvariety $X_{\text{unip}} \subset X$. Let (λ_i) denote the loop surrounding a single puncture λ_i. Note that each lamination admits a unique decomposition into a macroscopic lamination Γ, k_1 copies of (λ_1), k_2 copies of (λ_2) etc., we use the notation $\Gamma \sqcup (\lambda_k)$ to describe such a lamination.

The main ingredient of the proof of the existence part of Theorem 1.2 is a 'controlled' extension of holomorphic functions from X_{unip} to X provided by Manivel's Osawa-Takegoshi-type theorem [15]. Roughly speaking, given $f \in \text{Fun}_{\text{hol}}(X_{\text{unip}})^{\text{SL}_2(\mathbb{C})}$ one can first extend it to a function $F \in \text{Fun}_{\text{hol}}(X)^{\text{SL}_2(\mathbb{C})}$ and then group all the terms
The expansion of F that correspond to the laminations $\Gamma \sqcup (\lambda_k)$ with a fixed Γ:

$$\sum_{k \in \mathbb{Z}_{\geq 0}} p_{\Gamma \sqcup (\lambda_k)} f_{\Gamma \sqcup (\lambda_k)}(\rho) = \sum_{k \in \mathbb{Z}_{\geq 0}} 2^{k|} p_{\Gamma \sqcup (\lambda_k)} \cdot f_\Gamma(\rho) \quad \text{for } \rho \in X_{\text{unip}}.$$

Finally, the uniqueness part of Theorem 1.2 can be deduced from a version of Hilbert’s Nullstellensatz for invariant holomorphic functions on X as follows. Assume that a series $f := \sum_{\Gamma} -\text{macroscopic} \, p_\Gamma f_\Gamma$ vanishes on X_{unip}. Since X_{unip} is cut off from X by the equations $f_{(\lambda_i)} - 2 = 0$, one can find functions $h_i \in \text{Fun}_{\text{hol}}(X)^{\text{SL}_2(\mathbb{C})}$ such that

$$f(\rho) = h_1(\rho) \cdot (f_{(\lambda_1)}(\rho) - 2) + \cdots + h_n(\rho) \cdot (f_{(\lambda_n)}(\rho) - 2) \quad \text{for } \rho \in X.$$

Due to the existence of expansions (1.5) one has $h_i = \sum_{\Gamma \sqcup (\lambda_k)} p_{\Gamma \sqcup (\lambda_k)} f_{\Gamma \sqcup (\lambda_k)}$. Using the uniqueness of the expansion of f in $\text{Fun}_{\text{hol}}(X)^{\text{SL}_2(\mathbb{C})}$ in the basis $f_{\Gamma \sqcup (\lambda_k)}$ and the fact that the product $f_{\Gamma \sqcup (\lambda_k)} \cdot f_{(\lambda_i)}$ is again a basis function one obtains the identity

$$p_\Gamma f_\Gamma(\rho) = \sum_{k \in \mathbb{Z}_{\geq 0}} \sum_{i=1}^{n} p_{\Gamma \sqcup (\lambda_k)}^{(i)} f_{\Gamma \sqcup (\lambda_k)}(\rho) \cdot (f_{(\lambda_i)}(\rho) - 2) \quad \text{for } \rho \in X$$

by collecting all the terms corresponding to a given macroscopic lamination Γ. The right-hand side vanishes at $\rho = \text{Id}$ and hence $p_\Gamma = 0$.

Certainly, the informal discussion given in this section is far from being complete or rigorous, with many important details omitted. For instance, we actually work with functions $F \in \text{Fun}_{\text{hol}}(\mathbb{B}_R)^{\text{SL}_2(\mathbb{C})}$ defined on poly-balls $\mathbb{B}_R \subset (\mathbb{C}^2 \times \mathbb{C})^\mathcal{E}$ rather than with $F \in \text{Fun}_{\text{hol}}(\mathbb{C}^2 \times \mathbb{C})^{\text{SL}_2(\mathbb{C})}$ as sketched above. Nevertheless, we hope that this discussion might help the reader to understand the general structure of our arguments and the set of tools used in the proof.

The rest of the paper is organized as follows. We collect relevant basic facts of the representation theory of $\text{SL}_2(\mathbb{C})$ and discuss the Fock–Goncharov theorem in Section 3. Section 4 is devoted to the proof of the exponential estimate of the coefficients $c_{\Gamma \Delta}$; as explained above, the Kauffman skein algebra $\text{Sk}(M, 1)$ plays a central role here. In Section 5 we prove our main results. In particular, Section 5.2 is devoted to holomorphic extensions of functions defined on compact subsets of X_{unip} and Section 5.3 contains a precise version of the Nullstellensatz that we need. All these ingredients are used in Section 5.4 to prove Theorem 5.11 which is a slightly stronger version of Theorem 1.2.

3. Preliminaries and Fock–Goncharov theorem

Let $X = \text{Hom}(\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}) \rightarrow \text{SL}_2(\mathbb{C}))$ be the affine variety parameterizing representations of $\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\})$ in $\text{SL}_2(\mathbb{C})$, note that X can be also thought of as an algebraic variety. Let $\text{Fun}_{\text{alg}}(X)$ be the ring of algebraic functions on X. The group $\text{SL}_2(\mathbb{C})$ acts on X by conjugations and, since this action is algebraic, one can consider the ring of invariants $\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$. Clearly, all functions f_Γ belong to $\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$. A famous theorem due to Fock and Goncharov [8, Theorem 12.3] states that these functions actually form a basis in the vector space $\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$. For the sake of completeness and in order to introduce a consistent notation, we begin this section with some basic facts of the representation theory of $\text{SL}_2(\mathbb{C})$ and then repeat the proof of this theorem in Section 3.4 following [8]. In Section 3.5 we discuss extensions of the functions f_Γ and g_Γ from $\text{SL}_2(\mathbb{C})^\mathcal{E}$ to the Euclidean space $(\mathbb{C}^2 \times \mathbb{C})^\mathcal{E}$.
Finally, Section 3.6 is devoted to the lower bound for the norms of thus obtained extensions of \(g \) which play an important role in the core part of the paper.

3.1. Basics of the representation theory of \(\text{SL}_2(\mathbb{C}) \). In this section we collect basic facts of the representation theory of \(\text{SL}_2(\mathbb{C}) \). We use the well known correspondence between representations of groups and their Lie algebras, which holds for \(\text{SL}_2(\mathbb{C}) \). Due to this correspondence, one can work with the Lie algebra \(\mathfrak{sl}_2(\mathbb{C}) \) instead of \(\text{SL}_2(\mathbb{C}) \) itself. The proofs are mostly omitted, an interested reader can easily find them in the classical literature (e.g., see [9, Lecture 11] for a nice exposition).

Lemma 3.1. The Lie algebra \(\mathfrak{sl}_2(\mathbb{C}) \) of \(\text{SL}_2(\mathbb{C}) \) is given by
\[
\mathfrak{sl}_2(\mathbb{C}) = \{e, f, h \mid [f, e] = h, \ [h, e] = -2e, \ [h, f] = 2f\}.
\]

Consider now an irreducible finite-dimensional representation \(\mathfrak{sl}_2(\mathbb{C}) \to \text{End}(V) \).

Lemma 3.2. (i) If \(v \in V \) is an eigenvector of \(h \), then \(ev \) and \(fv \) are eigenvectors of \(h \). Moreover, if \(hv = \lambda v \), then \(h(ev) = (\lambda - 2)(ev) \) and \(h(fv) = (\lambda + 2)(fv) \).

(ii) There exists a non-zero vector \(v \in V \) such that the following holds:
- \(v \) is an eigenvector for \(h \);
- \(ev = 0 \);
- vectors \(v, fv, f^2v, \ldots, f^{\dim V - 1}v \) form a basis of \(V \).

(iii) Let \(hv = \lambda v \), where the vector \(v \) is introduced in (ii). Then,
\[
0 = \text{Tr} h = \sum_{k=0}^{\dim V - 1}(\lambda + 2k) = \dim V \cdot (\lambda + \dim V - 1)
\]
and hence \(\lambda = -(\dim V - 1) \).

The above considerations can be summarized as follows:

Proposition 3.3. (i) The irreducible finite-dimensional representations of \(\mathfrak{sl}_2(\mathbb{C}) \) are enumerated by non-negative integers and \(\dim V_n = n + 1 \), where \(V_n \) denotes the \(n \)-th representation. For each \(n \), the representation \(V_n \) has a basis \(v_0, v_1, \ldots, v_n \) such that
\[
\begin{align*}

hv_k &= (2k - n)v_k, \\
ev_k &= kv_{k-1}, \\
fv_k &= (n - k)v_{k+1}.
\end{align*}
\]

(ii) The representation \(V_1 \) corresponds to the standard matrix representation of \(\text{SL}_2(\mathbb{C}) \) and \(V_n \) is isomorphic (as \(\mathfrak{sl}_2(\mathbb{C}) \) module) to the space \(\text{Sym}^n V_1 \), which is in its turn isomorphic to the space of homogeneous polynomials of two variables of degree \(n \). Under this isomorphism \(v_k = x^{n-k}y^k \), where \(\{x, y\} \) is the basis of \(V_1 \).

Recall that the action of \(\mathfrak{sl}_2(\mathbb{C}) \) on the tensor product of representations is defined as \(a \mapsto a \otimes \text{Id} + \text{Id} \otimes a \).

Lemma 3.4. (i) For each \(n, m \geq 0 \), the following isomorphism of \(\mathfrak{sl}_2(\mathbb{C}) \) modules holds:
\[
V_n \otimes V_m \simeq V_{n+m} \oplus V_{n+m-2} \oplus V_{n+m-4} \oplus \cdots \oplus V_{|m-n|}.
\]
The projection onto the first component is given by the symmetrization
\[V_n \otimes V_m \simeq \text{Sym}^n V_1 \otimes \text{Sym}^m V_1 \rightarrow \text{Sym}^{n+m} V_1 \simeq V_{n+m}. \]

(ii) Furthermore, one has
\[V_i^{\otimes n} \simeq \bigoplus_{0 \leq m \leq n} V_i^{\otimes l(n,m)}, \text{ where } l(n,m) = \frac{m+1}{n+1} \left(\frac{n+1}{2} \right) \quad (3.2) \]
if \(n-m \) is even and \(l(n,m) = 0 \) if \(n-m \) is odd. The projection onto the first component is given by the symmetrization \(V_i^{\otimes n} \rightarrow \text{Sym}^n V_i \simeq V_n \), note that \(l(n,n) = 1 \).

Given a representation \(SL_2(\mathbb{C}) \rightarrow \text{End}(V) \), we denote by \(V^{SL_2(\mathbb{C})} \) the subspace of invariant (under the action of \(SL_2(\mathbb{C}) \)) vectors in \(V \).

Corollary 3.5. Let \(n, m, k \) be non-negative integers. The subspace \((V_n \otimes V_m \otimes V_k)^{SL_2(\mathbb{C})}\) is one-dimensional if
\[n + m + k \text{ is even and } |n-m| \leq k \leq n+m. \quad (3.3) \]
Otherwise, this invariant subspace is trivial.

Proof. Using (3.1) one gets
\[(V_n \otimes V_m \otimes V_k)^{SL_2(\mathbb{C})} \simeq \bigoplus_{1 \leq l \leq \text{min}(n,m)} (V_{n+m-2l} \otimes V_k)^{SL_2(\mathbb{C})}. \]
Applying (3.1) again, one sees that \((V_{n+m-2l} \otimes V_k)^{SL_2(\mathbb{C})}\) is non-zero if and only if \(n + m = k + 2l \). Moreover, in this case \(\dim \mathbb{C} (V_{n+m-2l} \otimes V_k)^{SL_2(\mathbb{C})} = 1 \) since \(V_0 \) may appear only once in the right-hand side of (3.1). The claim follows.

3.2. Parametrization of laminations by multi-indices on \(E \).
Given a collection of punctures \(\lambda_1, \ldots, \lambda_n \in \Omega \), we fix a triangulation \(\mathcal{T}_\Omega = (\{\lambda_1, \ldots, \lambda_n, \partial \Omega\}, \mathcal{E}, \mathcal{F}) \) of \(\Omega \) and an (arbitrary chosen) orientation of its edges \(\mathcal{E} \). Sometimes we also use the notation \(\mathcal{T}_\Omega^e \) for the dual graph, which have \(\mathcal{F} \) as the set of vertices. Let
\[\mathcal{L}(\mathcal{T}_\Omega) := \{ \mathbf{n} = (n_e)_{e \in \mathcal{E}} \in \mathbb{Z}_{\geq 0}^\mathcal{E} \mid (n_{e_1}, n_{e_2}, n_{e_3}) \text{ satisfy the lamination condition (3.3)} \text{ for each } \sigma \in \mathcal{F} \}. \]
Following [8], one can construct a bijection between \(\mathcal{L}(\mathcal{T}_\Omega) \) and the set of laminations as follows. Given \(\mathbf{n} \in \mathcal{L}(\mathcal{T}_\Omega) \) and an edge \(e \in \mathcal{E} \), let \(\Gamma_e \) be an arbitrary collection of \(n_e \) distinct points lying on the interior of \(e \). Consider a face \(\sigma \in \mathcal{F} \) with \(\partial \sigma = \{e_1, e_2, e_3\} \). The condition (3.3) for \((n_{e_1}, n_{e_2}, n_{e_3})\) ensures that we can draw \(\frac{1}{3}(n_{e_1} + n_{e_2} + n_{e_3}) \) non-intersecting chords inside \(\sigma \), each of them starting at some point from \(\Gamma_{e_i} \) and ending at some point from \(\Gamma_{e_j} \) with \(i \neq j \). Moreover, such a drawing is unique up to homotopies. Once all such chords in all faces \(\sigma \) are drawn and concatenated in a natural way, one obtains a collection of simple disjoint curves that represents a lamination \(\Gamma = \Gamma(\mathbf{n}) \), see Figure 1.

Conversely, given a lamination \(\Gamma \) there is a unique way to represent each of the curves \(\gamma \in \Gamma \) as a closed non-backtracking path on the dual graph \(\mathcal{T}_\Omega^e \). Set \(n_e \) to be the total number of crossing of an edge \(e \) by these paths on \(\mathcal{T}_\Omega^e \). It is easy to see that \(\mathbf{n} := (n_e)_{e \in \mathcal{E}} \in \mathcal{L}(\mathcal{T}_\Omega) \) and that the procedure explained above leads to \(\Gamma(\mathbf{n}) = \Gamma \). Thus, we have constructed a bijection between the set of all laminations and the set \(\mathcal{L}(\mathcal{T}_\Omega) \).
We also obtain a partial order: given two laminations Γ_1, Γ_2 and the corresponding multi-indices $n_1, n_2 \in \mathcal{L}(T_\Omega)$ we say that

$$\Gamma_1 \leq \Gamma_2 \text{ if and only if } n_1 \leq n_2 \text{ coordinate-wise.}$$

We define the complexity $|\Gamma|$ of a lamination Γ as the sum of all coordinates of the corresponding multi-index n, it is worth noting that this definition depends on the (arbitrary) choice of the triangulation T_Ω of Ω. Finally, given a lamination Γ and a face σ we say that c is a chord of Γ in σ if c is one of the chords drawn inside σ along the procedure explained above, see Figure 1.

3.3. Peter–Weyl basis

Following [8], in this section we discuss the application of the (algebraic) Peter–Weyl theorem to the space $\text{Fun}_\text{alg}(X)^{\text{SL}_2(\mathbb{C})}$. For this purpose we move from $\text{SL}_2(\mathbb{C})$-representations of $\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\})$ to holonomies of flat $\text{SL}_2(\mathbb{C})$ connections on $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$. These connections can be parameterized by collections $(A_e)_{e \in E}$ of matrices assigned to edges $e \in E$: one can think that there is a copy \mathbb{C}^2 of \mathbb{C}^2 assigned to each of the faces σ of the triangulation and that $A_e : \mathbb{C}^2_{\text{left}} \to \mathbb{C}^2_{\text{right}}$ encodes the change of the bases when moving across e from left to right (recall that we have fixed an orientation of all the edges $e \in E$ once forever).

This parametrization allows one to study the ring of functions $\text{Fun}_\text{alg}(X)$ as a subring of the ring $\text{Fun}_\text{alg}(\text{SL}_2(\mathbb{C})^E)$. The action of $\text{SL}_2(\mathbb{C})$ on X corresponds to an action of the bigger group $\text{SL}_2(\mathbb{C})^E$ on $\text{SL}_2(\mathbb{C})^E$, the latter is given by changes of bases in the spaces \mathbb{C}^2_σ assigned to faces of T_Ω. Namely, given $A = (A_e)_{e \in E} \in \text{SL}_2(\mathbb{C})^E$ and $C = (C_\sigma)_{\sigma \in \mathcal{F}} \in \text{SL}_2(\mathbb{C})^\mathcal{F}$, one defines

$$\left(C[A]\right)_e := C^{-1}_{\sigma_{\text{left}}} A_e C_{\sigma_{\text{right}}}, \quad C[A] := (C[A])_{e \in E} \in \text{SL}_2(\mathbb{C})^E,$$

where σ_{left} and σ_{right} stand for two faces adjacent to an edge e. Quotients under these actions of $\text{SL}_2(\mathbb{C})$ and $\text{SL}_2(\mathbb{C})^E$ coincide (see Lemma 3.7 below) and so the rings of invariants do:

$$\text{Fun}_\text{alg}(X)^{\text{SL}_2(\mathbb{C})} \simeq \text{Fun}_\text{alg}((\text{SL}_2(\mathbb{C})^E)^{\text{SL}_2(\mathbb{C})^E}).$$

Then one can use the representation theory of the group $\text{SL}_2(\mathbb{C})^E$ to analyze the ring of $\text{SL}_2(\mathbb{C})^E$-invariant functions on it. More details are given below.

Classically, given an algebraic group G and a representation $\rho : G \to \text{End}(V)$ one can construct a map $V \otimes V^\vee \to \text{Fun}_\text{alg}(G)$ by setting

$$v \otimes w \mapsto \langle \rho(\cdot) v, w \rangle.$$

The following algebraic version of the Peter–Weyl theorem asserts that any algebraic function on $\text{SL}_2(\mathbb{C})^E$ can be obtained in this way.

Theorem 3.6 (algebraic Peter–Weyl theorem). Let G be a reductive linear algebraic group, $\text{Fun}_\text{alg}(G)$ denote the space of algebraic functions on G and \hat{G} be the set of all irreducible finite-dimensional representations of G. Then the mapping (3.6) defines an isomorphism of $G \times G$-modules:

$$\bigoplus_{V \in \hat{G}} V \otimes V^\vee \xrightarrow[]{\sim} \text{Fun}_\text{alg}(G).$$

Proof. E.g., see [27, Theorem 27.3.9].
Given a path $\gamma = (\sigma_0 \sigma_1 \ldots \sigma_m)$ on the dual graph \mathcal{T}_Ω and $A \in \text{SL}_2(\mathbb{C})^\mathcal{E}$, let $e_0, e_1, \ldots, e_{m-1} \in \mathcal{E}$ be the sequence of edges of \mathcal{T}_Ω crossed when one moves along γ and A_{e_k} be the matrices assigned to these edges. The holonomy of A along γ is defined as
\[
\text{hol}(A, \gamma) := A_{e_0}^\text{sign}(\sigma_0, e_0) A_{e_1}^\text{sign}(\sigma_1, e_1) \ldots A_{e_{m-1}}^\text{sign}(\sigma_{m-1}, e_{m-1}),
\]
where $\text{sign}(\sigma, e) = +1$ if σ lies to the left of e and $\text{sign}(\sigma, e) = -1$ otherwise (recall that the orientation of all the edges $e \in \mathcal{E}$ is fixed once forever).

By definition, $\text{hol}(A, \gamma_1 \cdot \gamma_2) = \text{hol}(A, \gamma_1) \cdot \text{hol}(A, \gamma_2)$ provided γ_1 ends at the face where γ_2 and begins $\gamma_1 \cdot \gamma_2$ stands for the concatenation of γ_1 and γ_2. As the fundamental groups of the punctured domain $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ and the 1-skeleton of \mathcal{T}_Ω coincide, we see that the mapping $\text{hol}(A, \cdot)$ induces a $\text{SL}_2(\mathbb{C})$-representation of $\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\})$. In particular we obtain an algebraic mapping
\[
\phi : \text{SL}_2(\mathbb{C})^\mathcal{E} \to X, \quad A \mapsto \text{hol}(A, \cdot).
\]
Recall that the action of the group $\text{SL}_2(\mathbb{C})^\mathcal{F}$ on $\text{SL}_2(\mathbb{C})^\mathcal{E}$ is given by (3.4).

Lemma 3.7. The mapping (3.8) intertwines the action of $\text{SL}_2(\mathbb{C})^\mathcal{F}$ on $\text{SL}_2(\mathbb{C})^\mathcal{E}$ and the action of $\text{SL}_2(\mathbb{C})$ on X. The induced mapping
\[
\phi^* : \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})} \to \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\mathcal{F}}
\]
is an isomorphism.

Proof. The fact that ϕ intertwines two actions is straightforward. Let T be a spanning tree for the triangulation \mathcal{T}_Ω and a subvariety $Y \subset \text{SL}_2(\mathbb{C})^\mathcal{E}$ be defined as
\[
Y := \{ A = (A_e)_{e \in \mathcal{E}} \mid A_e = \text{Id} \text{ if } e \notin T \}.
\]
It is easy to see that ϕ restricted to Y is an isomorphism, so let $\psi : X \to Y$ be the inverse mapping. Further, for each $A \in \text{SL}_2(\mathbb{C})^\mathcal{E}$ there exists $C \in \text{SL}_2(\mathbb{C})^\mathcal{F}$ such that $C[A] \in Y$. Thus the restriction mapping $\text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{F}) \to \text{Fun}_{\text{alg}}(Y)$ sends the subring of $\text{SL}_2(\mathbb{C})^\mathcal{F}$-invariant functions on $\text{SL}_2(\mathbb{C})^\mathcal{E}$ isomorphically onto its image, which we denote by $\text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\mathcal{F}}|_Y$. Hence, the composition
\[
\text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\mathcal{F}} \xrightarrow{\phi^*} \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\mathcal{F}}|_Y \xrightarrow{\psi^*} \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}
\]
provides an inverse mapping to ϕ^*.

Recall that we denote by V_1 the standard two-dimensional representation of $\text{SL}_2(\mathbb{C})$ and that all finite-dimensional irreducible representations of $\text{SL}_2(\mathbb{C})$ are provided by $V_n \simeq \text{Sym} V_1^\otimes n$. Let x, y be the standard basis of V_1 so that $x \otimes x, \frac{1}{2}(x \otimes y + y \otimes x), y \otimes y$ is a basis of V_2 and, more generally, V_d is spanned by the vectors
\[
(x^k y^{n-k})\text{sym} := (n!)^{-1} \sum_{\pi \in \text{Sym}(d)} \pi^\ast \left(x \otimes \cdots \otimes x \otimes y \otimes \cdots \otimes y \right)_{k \text{ times}} \otimes \cdots \otimes y \otimes \cdots \otimes y_{n-k \text{ times}}, \quad 0 \leq k \leq n.
\]

We now define two pairings on V_n. To get the first we identify $V_1 \wedge V_1$ with C by setting $x \wedge y = 1$. This gives rise to a skew-symmetric bilinear form $(v, w) \mapsto v \wedge w$ on V_1. Once can extend it on $V_1^\otimes n$ and then restrict to V_n. The result is a non-degenerate (skew-symmetric if n is odd and symmetric if n is even) bilinear form on V_n, which we still denote by $v \wedge w$.

The second pairing on V_n is obtained in a similar manner from the Hermitian scalar product on V_1 (which is defined by $\langle x, y \rangle = 0$ and $\langle x, x \rangle = \langle y, y \rangle = 1$ on V_1), extended to $V^\otimes n$ and then restricted to V_n. One can easily see that
\[
(-1)^{n-k}(x^k y^{n-k})_{\text{sym}} \land (x^{n-k} y^k)_{\text{sym}} = \langle (x^k y^{n-k})_{\text{sym}}, (x^k y^{n-k})_{\text{sym}} \rangle = \binom{n}{k}^{-1}
\]
We need an additional notation. For a face $\sigma \in \mathcal{F}$ and an edge $e \in \partial \sigma$ adjacent to it, let $V_{\sigma,e,n}$ be a copy of V_n. Given a multi-index $\mathbf{n} \in \mathbb{Z}_{\geq 0}^E$ we introduce a space
\[
V_{\mathbf{n}} := \bigotimes_{e \in E} V_{\sigma_{\text{left}}(e), e, n_e} \otimes V_{\sigma_{\text{right}}(e), e, n_e},
\]
recall that $\sigma_{\text{left}}(e)$ is the face lying to the left of e and $\sigma_{\text{right}}(e)$ is the one to the right, with respect to the once forever fixed orientation of e. There is a linear mapping $\Lambda^E : V_{\mathbf{n}} \to \mathbb{C}$ given by
\[
\Lambda^E \left(\bigotimes_{e \in E} (v_{\sigma_{\text{left}}(e), e, n_e} \otimes v_{\sigma_{\text{right}}(e), e, n_e}) \right) := \prod_{e \in E} (v_{\sigma_{\text{left}}(e), e, n_e} \land v_{\sigma_{\text{right}}(e), e, n_e}).
\]
Define an action of the group $\text{SL}_2(\mathbb{C})^E$ on $V_{\mathbf{n}}$ as follows:
\[
A \left[\bigotimes_{e \in E} (v_{\sigma_{\text{left}}(e), e, n_e} \otimes v_{\sigma_{\text{right}}(e), e, n_e}) \right] := \bigotimes_{e \in E} (v_{\sigma_{\text{left}}(e), e, n_e} \otimes A_e v_{\sigma_{\text{right}}(e), e, n_e}), \quad (3.9)
\]
where $A = (A_e)_{e \in E}$. One can now construct a linear mapping
\[
\Upsilon : V := \bigoplus_{\mathbf{n} \in \mathbb{Z}_{\geq 0}^E} V_{\mathbf{n}} \to \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^E),
\]
Using this observation and (3.4) one gets
\[
\Upsilon(v) = \prod_{\sigma \in \mathcal{F}} \prod_{e \in \partial \sigma} C_{\sigma} v_{\sigma, e, n_e},
\]
where $C = (C_\sigma)_{\sigma \in \mathcal{F}}$.

Lemma 3.8. The mapping (3.10) commutes with the action of $\text{SL}_2(\mathbb{C})^E$.

Proof. Let $v = \bigotimes_{e \in E} (v_{\sigma_{\text{left}}(e), e, n_e} \otimes v_{\sigma_{\text{right}}(e), e, n_e}) \in V_{\mathbf{n}}$ and $\Upsilon(v)$ be the corresponding algebraic function on $\text{SL}_2(\mathbb{C})^E$. Note that for each $v, w \in V$ and $C \in \text{SL}_2(\mathbb{C})$ one has $C v \land w = v \land C^{-1} w$. Using this observation and (3.4) one gets
\[
(\Upsilon(v))(C[A]) = \Lambda^E \left(\bigotimes_{e \in E} (v_{\sigma_{\text{left}}(e), e, n_e} \otimes (C[A])_e v_{\sigma_{\text{right}}(e), e, n_e}) \right)
\]
\[
= \prod_{e \in E} (v_{\sigma_{\text{left}}(e), e, n_e} \land C^{-1}_{\sigma_{\text{left}}(e)} A_e C_{\sigma_{\text{right}}(e)} v_{\sigma_{\text{right}}(e), e, n_e})
\]
\[
= \prod_{e \in E} (C_{\sigma_{\text{left}}(e)} v_{\sigma_{\text{left}}(e), e, n_e} \land A_e C_{\sigma_{\text{right}}(e)} v_{\sigma_{\text{right}}(e), e, n_e})
\]
\[
= \Lambda^E(A[C[v]]) = \Upsilon(C[v]),
\]
thus the actions of $\text{SL}_2(\mathbb{C})^E$ on $\text{SL}_2(\mathbb{C})^E$ and $V_{\mathbf{n}}$ commute with Υ. \hfill \Box

One can now write
\[
V_{\mathbf{n}}^{\text{SL}_2(\mathbb{C})^E} = \bigotimes_{\sigma \in \mathcal{F}} \left(\bigotimes_{e \in \partial \sigma} V_{\sigma, e, n_e} \right)^{\text{SL}_2(\mathbb{C})}.
\]
and apply Corollary 3.5 to each of the \(SL_2(\mathbb{C}) \)-invariant subspaces corresponding to faces \(\sigma \in \mathcal{F} \). It follows that \(V_{n}^{SL_2(\mathbb{C})} \) is one-dimensional if \(n \in \mathcal{L}(\mathcal{T}_\Omega) \), i.e. if the lamination condition (3.3) holds true for all \(\sigma \), and is trivial otherwise. Due to Lemma 3.7 and Lemma 3.8, this leads to the following decomposition of \(\text{Fun}_{\text{alg}}(X) \) into a direct sum of one-dimensional spaces:

\[
\text{Fun}_{\text{alg}}(X)^{SL_2(\mathbb{C})} \simeq \bigoplus_{n \in \mathcal{L}(\mathcal{T}_\Omega)} V_{n}^{SL_2(\mathbb{C})} .
\]

(3.11)

Definition 3.9. Let \(g_\Gamma \in \text{Fun}_{\text{alg}}(X)^{SL_2(\mathbb{C})} \) be the projection of \(f_\Gamma \) onto the subspace corresponding to the space \(V_{n(\Gamma)}^{SL_2(\mathbb{C})} \) in the decomposition (3.11), where \(n(\Gamma) \in \mathcal{L}(\mathcal{T}_\Omega) \) is the multi-index corresponding to \(\Gamma \) as discussed in Section 3.2. We call functions \(g_\Gamma \) the Peter–Weyl basis of \(\text{Fun}_{\text{alg}}(X)^{SL_2(\mathbb{C})} \).

Remark 3.10. Since all the spaces in the decomposition (3.11) are one-dimensional, in order to prove that the functions \(g_\Gamma \) indeed form a basis of \(\text{Fun}_{\text{alg}}(X)^{SL_2(\mathbb{C})} \), it is enough to check that these functions do not vanish. This fact follows from Lemma 3.13.

3.4. Lamination basis \(f_\Gamma \) and Peter–Weyl basis \(g_\Gamma \) via each other.

A famous theorem due to Fock and Goncharov [8, Theorem 12.3] claims that the functions \(f_\Gamma \) also form a basis in the space \(\text{Fun}_{\text{alg}}(X) \) and that the corresponding change of bases between \(f_\Gamma \) and \(g_\Gamma \) is given by lower-triangular (with respect to the partial order on \(\mathcal{L}(\mathcal{T}_\Omega) \)) matrices:

\[
g_\Gamma = \sum_{\Delta \leq \Gamma} c_{\Gamma \Delta} f_\Delta, \quad f_\Gamma = \sum_{\Delta \leq \Gamma} \tilde{c}_{\Gamma \Delta} g_\Delta.
\]

The main goal of this section is to set up a framework for the analysis of the coefficients \(c_{\Gamma \Delta} \). While doing this we also repeat the proof of [8, Theorem 12.3].

Recall that a multi-curve is a smooth immersion \(c : \bigsqcup_{i=1}^{m} S^1 \to \Omega \setminus \{\lambda_1, \ldots, \lambda_n\} \) of the union of a number of disjoint circles (\(m \) is not fixed), considered up to homotopies in the space of immersions: in Section 4 the total winding (rotation of the tangent vector) of multi-curves will be of importance.

In particular, if some component of a multi-curve has a nugatory self-crossing (i.e., a local twist that can be removed by the first Reidemeister move, see Fig. 3), then it may be not homotopic to a multi-curve having no such twists. We call a multi-curve minimal if it has neither nugatory self-crossings nor homotopically trivial components. For a lamination \(\Gamma \), there is a unique minimal multi-curve homotopic to \(\Gamma \). Of course, not all minimal multi-curves correspond to laminations: only those in which all intersections can be removed do.

![Figure 3. Nugatory self-crossing](image)

Given a minimal multi-curve \(\mathcal{C} \) one can view its components as non-backtracking loops on \(\mathcal{T}_\Omega \) and define \(n_e \) to be the total number of intersections between an edge \(e \) and thus obtained loops on \(\mathcal{T}_\Omega \). It is easy to see that \(n = (n_e)_{e \in \mathcal{E}} \in \mathcal{L}(\mathcal{T}_\Omega) \) and hence there exists a lamination \(\Gamma(n) \). We denote \(\Gamma(\mathcal{C}) := \Gamma(n) \) and \(|\mathcal{C}| := |\Gamma(\mathcal{C})| \).
Let γ₁, ..., γₘ be components of C. Define
\[f_{C}(\rho) := \prod_{k=1}^{m} \text{Tr} (\rho(\gamma_k)), \quad f_{C} \in \text{Fun}_{alg}(X)^{\text{SL}_2(\mathbb{C})}. \]

Our next goal is to study the image of \(f_C \) under isomorphisms \((3.11)\), in particular its image \(\phi^{*}(f_{C}) \in \text{Fun}_{alg}(\text{SL}_2(\mathbb{C})^{\mathcal{E}}) \), see Lemma 3.7. Fix a multi-index \(n \in \mathcal{L}(T_{\Omega}) \) and let \(\Gamma \) be the lamination corresponding to \(n \). Minimal multi-curves \(C \) with \(\Gamma(C) = \Gamma \) can be encoded by collections of permutations \(\pi \in \prod_{\sigma \in \mathcal{F}} \text{Sym}(n_{e}) \) in the following way. Let \(\pi_{\sigma,e} \in \text{Sym}(n_{e}) \) be components of \(\pi \) and \(\Gamma_{e} = \{ p_{e,1}, \ldots, p_{e,n_{e}} \} \) denote the set of intersection points of \(\Gamma \) and a given edge \(e \in \mathcal{E} \), enumerated from the beginning of \(e \) to its endpoint according to the fixed orientation of \(e \). For each face \(\sigma \in \mathcal{F} \) and for each pair of points \(p_{e,1},k_{1}, p_{e,2},k_{2} \) connected by a chord of \(\Gamma \) draw a simple smooth arc inside \(\sigma \) from \(p_{e,1},k_{1} \) to \(p_{e,2},k_{2} \). Concatenating these arcs at the points \(p_{e,k} \) in a smooth way one obtains a minimal multi-curve which we denote by \(C(\Gamma, \pi) \).

We need even more notation. Given a multi-index \(n \in \mathcal{L}(T_{\Omega}) \), a face \(\sigma \in \mathcal{F} \), an edge \(e \in \partial \sigma \) adjacent to \(\sigma \), and a number \(k \) such that \(1 \leq k \leq n_{e} \), let \(W_{\sigma,e,k} \) be a copy of \(V_{1} \). Introduce the space
\[
W_{n} := \bigotimes_{\sigma \in \mathcal{F}} \bigotimes_{e \in \partial \sigma} \bigotimes_{1 \leq k \leq n_{e}} W_{\sigma,e,k} = \bigotimes_{e \in \mathcal{E}} \bigotimes_{1 \leq k \leq n_{e}} (W_{\text{left}(e),e,k} \otimes W_{\text{right}(e),e,k}).
\]

Note that the space \(V_{n} \) can be realized as a subspace of \(W_{n} \) if one realizes \(V_{\sigma,e,n_{e}} \) as a result of the symmetrization in the space \(\bigotimes_{1 \leq k \leq n_{e}} W_{\sigma,e,k} \approx V_{1}^{\otimes n_{e}} \) for each \(\sigma \in \mathcal{F} \) and \(e \in \partial \sigma \). One can extend the pairing \(\Lambda^{e} \) and the action \((3.9)\) of \(\text{SL}_2(\mathbb{C})^{\mathcal{E}} \) from \(V_{n} \) to \(W_{n} \) by
\[
\Lambda^{e} (\bigotimes_{e \in \mathcal{E}} \bigotimes_{1 \leq k \leq n_{e}} w_{\text{left}(e),e,k} \otimes w_{\text{right}(e),e,k}) := \prod_{e \in \mathcal{E}} \prod_{1 \leq k \leq n_{e}} (w_{\text{left}(e),e,k} \wedge w_{\text{right}(e),e,k})
\]
and
\[
\mathcal{A} [\bigotimes_{e \in \mathcal{E}} \bigotimes_{1 \leq k \leq n_{e}} w_{\text{left}(e),e,k} \otimes w_{\text{right}(e),e,k}] := \bigoplus_{e \in \mathcal{E}} \bigoplus_{1 \leq k \leq n_{e}} (w_{\text{left}(e),e,k} \otimes \mathcal{A}_{e} w_{\text{right}(e),e,k}),
\]
respectively. Moreover, one can also lift the mapping \(\Upsilon \) given by \((3.10)\) from \(V_{n} \) to \(W_{n} \) using the same definition \(\Upsilon(w) : \mathcal{A} \mapsto \Lambda^{e}(\mathcal{A}[w]) \) for \(\mathcal{A} \in \text{SL}_2(\mathbb{C})^{\mathcal{E}} \).

We now choose an arbitrary orientation of the components of \(C(\Gamma, \pi) \) and set
\[
\text{sign}(C(\Gamma, \pi)) := (-1)^{\# \text{edges of } T_{\Omega} \subset C(\Gamma, \pi)} \text{ from right to left, counted with multiplicity}.
\]

For a chord \(c \) of \(C(\Gamma, \pi) \) running from the \(k_{1} \)-th point on \(e_{1} \) to the \(k_{2} \)-th point on \(e_{2} \) inside \(\sigma \), denote
\[
u_{\sigma,e,k} := v_{\sigma,e,k}^{(1)} \otimes v_{\sigma,e,k}^{(0)} - v_{\sigma,e,k}^{(0)} \otimes v_{\sigma,e,k}^{(1)},
\]
where \(v_{\sigma,e,k}^{(0)} \) and \(v_{\sigma,e,k}^{(1)} \) correspond to the vectors \(x \) and \(y \), respectively, under the identification of \(W_{\sigma,e,k} \) and \(V_{1} \). Finally, denote
\[
w_{C(\Gamma, \pi)} := \text{sign}(C(\Gamma, \pi)) \cdot \bigotimes_{c- \text{chord of } C(\Gamma, \pi)} u_{C(\Gamma, \pi)} \in W_{n}.
\]

It is easy to see that \(w_{C(\Gamma, \pi)} \) does not depend on the choice of the orientation of \(C(\Gamma, \pi) \): changing the orientation of some of its components one changes the signs of all vectors \(u_{C(\Gamma, \pi)} \) corresponding to these components which is compensated by the same number of changes in the signs of crossings of \(C(\Gamma, \pi) \) and oriented edges \(e \in \mathcal{E} \).
Lemma 3.11. Let $A \in \text{SL}_2(\mathbb{C})^E$ and $\rho = \phi(A) \in X$ be the corresponding $\text{SL}_2(\mathbb{C})$-representation of $\pi_1(\Omega \setminus \{\lambda_1, \ldots, \lambda_n\})$, see (3.8). Then,

$$f_{C(\Gamma, \pi)}(\rho) = \Lambda^E(A[w_{C(\Gamma, \pi)}]).$$

Proof. We begin with the special case when $C(\Gamma, \pi)$ consists of a single curve γ. This curve can be thought of as a non-backtracking loop $(\sigma_0 \ldots \sigma_m)$, $\sigma_m = \sigma_0$, on the dual graph T^π_{Ω}. Recall that in this case one has

$$f_{C(\Gamma, \pi)}(\rho) = \text{Tr}(\text{hol}(A, \gamma)) = \text{Tr}(A_{e_0}^{s_0}A_{e_1}^{s_1} \cdots A_{e_{m-1}}^{s_{m-1}}),$$

where $e_0, \ldots, e_{m-1} \in E$ is the sequence of edges of T^π_{Ω} crossed by γ and the sign s_i equals to $+1$ if γ crosses the edge e_i from left to right and to -1 otherwise.

On the other hand, expanding each of the vectors $u_{e, \Gamma, \pi}$ one obtains

$$w_{C(\Gamma, \pi)} = \text{sign}(C(\Gamma, \pi)) \cdot \sum_{j \in \{0, 1\}^m} \prod_{i=1}^m (-1)^{1-j_i} v_{e_i}^{(j_i)} \left(\prod_{i=0}^{m-1} (-1)^{1-j_i} v_{e_i}^{(j_i+1)} \right).$$

It is easy to see that the contribution of $v_{e_i}^{(j_i)} \otimes v_{e_{i+1}, e_i, k_i}^{(j_{i+1})}$ to $\Lambda^E(A[w_{C(\Gamma, \pi)}])$ is

$$v_{e_i}^{(j_i)} \otimes v_{e_{i+1}, e_i, k_i}^{(j_{i+1})} = (-1)^{j_i} (A_{e_i})_{j_i, j_{i+1}}$$

provided that γ crosses e_i from left to right. Otherwise, this contribution is given by

$$v_{e_{i+1}, e_i, k_i}^{(j_{i+1})} \otimes A_{e_i} v_{e_i}^{(j_i)} = (-1)^{j_{i+1}} (A_{e_i})_{1-j_{i+1}, 1-j_i} = (-1)^{j_i} (A_{e_i})_{j_i, j_{i+1}}.
$$

Therefore, all the signs cancel out and one gets

$$\Lambda^E(A[w_{C(\Gamma, \pi)}]) = \sum_{j \in \{0, 1\}^m} (A_{e_i}^{s_i})_{j_i, j_{i+1}} = \text{Tr}(A_{e_0}^{s_0}A_{e_1}^{s_1} \cdots A_{e_{m-1}}^{s_{m-1}}).$$

In the general case one simply repeats the same computation for each of the components $\gamma_1, \ldots, \gamma_m$ of a multi-curve $C(\Gamma, \pi)$. \hfill \square

We now apply decomposition (3.2) for each of the edges $e \in E$ and obtain

$$W_n \simeq \bigotimes_{e \in E} \left(\bigoplus_{0 \leq m_e \leq n_e} V_{\sigma_{\text{left}}(e), e, m_e}^{\oplus l(n_e, m_e)} \bigotimes_{0 \leq m_e \leq n_e} V_{\sigma_{\text{right}}(e), e, m_e}^{\oplus l(n_e, m_e)} \right),$$

recall that $l(n, n) = 1$ and $l(m, n) = 0$ if $n - m$ is odd. Let $l(n, m) := \prod_{e \in E}(l(n_e, m_e))^2$, where $m = (m_e)_{e \in E}$. Rearranging factors we get

$$W_n \simeq \bigoplus_{0 \leq m \leq n} V_m^{\oplus l(n, m)} \oplus W_n^0,$$

where $W_n^0 \simeq \bigoplus_{0 \leq m, m' \leq n: m \neq m'} V_{\sigma_{\text{left}}(e), e, m}^{\oplus l(n_e, m_e)} \otimes V_{\sigma_{\text{right}}(e), e, m_e}^{\oplus l(n_e, m_e')}$.

Lemma 3.12. The following diagram commutes:

$$\xymatrix{ W_n \ar[r]^-{\cong} & \left(\bigoplus_{0 \leq m \leq n} V_m^{\oplus l(n, m)} \right) \oplus W_n^0 \\
\text{Funalg}(\text{SL}_2(\mathbb{C})^E) \ar[u]^\gamma \ar[r]_-{(3.10)}^-{\cong} & \bigoplus_{m \in \mathbb{Z}_{\geq 0}} V_m = V, }$$

(3.14)
where Υ is defined by $\Upsilon(w): A \mapsto \Lambda^F(A[w])$ while the map on right vanishes on W^0_n and is defined on each of the components $V^{\otimes l(n,m)}_m \otimes \sum_{i=1}^{l(n,m)} v_i$.

Proof. The only non-trivial ingredient is to check that one has $\Upsilon(w) = 0$ for $w \in W^0_n$. This immediately follows from the fact that $v \wedge v' = 0$ if $v \in V_m$, $v' \in V_{m'}$ and $m \neq m'$, where both $V_m, V_{m'}$ are identified with subspaces of $V^\otimes n$ via decomposition (3.2). Clearly, it is enough to prove this fact for elements $v_k \in V_m, v_{k'} \in V_{m'}$ of the bases introduced in Proposition 3.3(i). Let $m < m'$ and assume that $k + k' \leq m$. Then $e^{k+1}v_k = 0$ while $f^{k+1}v_{k'} \neq 0$ and one can write

$$
\begin{aligned}
(m'-k')\binom{k'+k+1}{k+1}v \wedge v' = v \wedge e^{k+1}f^{k+1}v' = (-1)^{k+1}e^{k+1}v \wedge f^{k+1}v' = 0
\end{aligned}
$$

since $u \wedge u' = -eu \wedge u'$ for each $u, u' \in V^\otimes n$. The case $k + k' \geq m + 1$ can be handled in the same way starting with $f^{m-k+1}v_k = 0$ and $e^{m-k+1}v_{k'} \neq 0$. \square

Lemma 3.13. Let $n \in \mathcal{L}(\mathcal{T}_0)$, $\Gamma = \Gamma(n)$ be the corresponding lamination, and g_Γ be given by Definition 3.9. The following identity holds:

$$
g_\Gamma = \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} (n_e)!^{-1} \cdot \sum_{\pi \in \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} \text{Sym}(n_e)} \Upsilon(\pi \cdot w_{\mathcal{C}(\Gamma, \pi)}) .
$$

In particular, $g_\Gamma(\text{Id}) > 0$ and hence g_Γ does not vanish.

Proof. Recall that the $\text{SL}_2(\mathbb{C})^F$-invariant function g_Γ is defined as the component of f_Γ lying in the subspace V_n under the isomorphism (3.10). Lemma 3.11 gives

$$
f_\Gamma = \Upsilon(\mathcal{C}(\Gamma, \text{Id})) .
$$

Note that the map on the right of (3.14) acts identically on V_n and, under the isomorphism on top of (3.14), each of the factors $V_{\sigma,e,n_e} \simeq V_{n_e}$ of V_n is obtained as a symmetrization in the corresponding factor $\bigotimes_{k=1}^{n_e} W_{\sigma,e,k} \simeq V^{\otimes n_e}$ of W_n. The fact that this diagram commutes yields

$$
g_\Gamma = \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} (n_e)!^{-1} \cdot \sum_{\pi \in \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} \text{Sym}(n_e)} \Upsilon(\pi \cdot w_{\mathcal{C}(\Gamma, \text{Id})}) .
$$

The claim follows since $\Upsilon(\pi \cdot w_{\mathcal{C}(\Gamma, \text{Id})}) = \Upsilon(\mathcal{C}(\Gamma, \pi)) = f_{\mathcal{C}(\Gamma, \pi)}$ for each π. \square

Remark 3.14. Since all the maps involved into (3.14) commute with the action of $\text{SL}_2(\mathbb{C})^F$, we obtain a similar commutative diagram for the invariant subspaces:

$$
\begin{array}{c}
\text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^F)_{\text{SL}_2(\mathbb{C})^F} \xleftarrow{\simeq} \left(\bigoplus_{m \in \mathcal{L}(\mathcal{T}_0)} \left(V^\otimes l(n,m) \right) \right) \oplus (W_n)^{\otimes \text{SL}_2(\mathbb{C})^F} \\
V^\otimes n \xrightarrow{(3.11)} \bigoplus_{m \in \mathcal{L}(\mathcal{T}_0)} V^\otimes l(n,m) \xrightarrow{(3.16)} \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^F)_{\text{SL}_2(\mathbb{C})^F}
\end{array}
$$

Since each of the spaces $V^\otimes l(n,m)$, $m \in \mathcal{L}(\mathcal{T}_0)$, is one-dimensional, the functions g_Γ form a basis in the space $\text{Fun}_{\text{alg}}(\mathcal{X})_{\text{SL}_2(\mathbb{C})^F} \simeq \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^F)_{\text{SL}_2(\mathbb{C})^F} \simeq V_n$, which we call the Peter–Weyl basis. We are now in the position to show that the functions f_Γ also form a basis in this space.
Theorem 3.15 ([8, Theorem 12.3]). The functions f_T form a basis in $\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$. Moreover, the change of the bases is given by a low-triangular (with respect to the partial order on the set of laminations) matrix:

$$g_T = \sum_{\Delta \leq \Gamma} c_{T\Delta} f_\Delta, \quad \text{where} \quad c_{T\Gamma} = 1. \quad (3.17)$$

Proof. Since the functions g_T form a basis in $\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$, one can write a decomposition $f_T = \sum_{\Delta} \tilde{c}_{T\Delta} g_\Delta$, note that $\tilde{c}_{T\Gamma} = 1$ due to Definition 3.9. The diagram (3.16) is commutative, hence this decomposition must be the image of a similar decomposition of the $\text{SL}_2(\mathbb{C})^\tau$-invariant component of the vector $w_{\mathcal{C}[\Gamma, \text{id}]}$ under the isomorphism on the top of (3.16). Therefore, the coefficient $\tilde{c}_{T\Delta}$ vanishes unless $\Delta \leq \Gamma$. Thus the matrix $(\tilde{c}_{T\Delta})$ is low-triangular and hence the inverse one is low-triangular as well. \square

Remark 3.16. It is worth noting that $c_{T\Delta} = \tilde{c}_{T\Delta} = 0$ if $n_e(\Gamma) - n_e(\Delta)$ is odd for some edge $e \in \mathcal{E}$. This easily follows from the fact that m_e and n_e should have the same parity in order that V_{m_e} appears in the decomposition (3.2) of $V_1^{\otimes n_e}$.

3.5. Extension of f_T, g_T to $(\mathbb{C}^{2\times 2})^\mathcal{E}$ and orthogonality on poly-balls. In this section we discuss natural extensions of functions f_T and g_T from $\text{SL}_2(\mathbb{C})^\mathcal{E}$ to $(\mathbb{C}^{2\times 2})^\mathcal{E}$. We apply the analytic Peter–Weyl theorem for the group $\text{SU}_2(\mathbb{C})^\mathcal{E}$ in order to show that thus obtained extensions $G_{T,m}$ of g_T are orthogonal on poly-balls

$$\mathbb{B}_R := \mathbb{B}_R^C \subset (\mathbb{C}^{2\times 2})^\mathcal{E}, \quad \mathbb{B}_R := \{ A \in \mathbb{C}^{2\times 2} \mid \text{Tr} AA^* < R^2 \} \quad (3.18)$$

with respect the Euclidean measure on $(\mathbb{C}^{2\times 2})^\mathcal{E} \simeq (\mathbb{C}^4)^\mathcal{E}$. Then, using the interpretation of V_n as the spaces of homogeneous polynomials of degree n, we derive an exponential lower bound for the L^2-norms of $G_{T,d}$ on these poly-balls which is required for the further analysis performed in Section 5.

Since $\text{SL}_2(\mathbb{C})^\mathcal{E}$ is an algebraic subvariety of $(\mathbb{C}^{2\times 2})^\mathcal{E}$ one has a trivial surjection

$$\text{Fun}_{\text{alg}}((\mathbb{C}^{2\times 2})^\mathcal{E}) \twoheadrightarrow \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{E}).$$

The isomorphism (3.10) provides a way to construct a left inverse

$$\text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{E}) \hookrightarrow \text{Fun}_{\text{alg}}((\mathbb{C}^{2\times 2})^\mathcal{E}) \quad (3.19)$$

to this surjection. Namely, there is a natural extension of the action (3.9) of $\text{SL}_2(\mathbb{C})^\mathcal{E}$ on V_n to an action of $(\mathbb{C}^{2\times 2})^\mathcal{E}$: to define the latter on a factor V_{m_e} of V_n one simply extends the standard action of $\text{SL}_2(\mathbb{C})$ on V_1 to an action of $C^{2\times 2}$ and view V_{m_e} as the symmetrization of $V_1^{\otimes m_e}$. Clearly, for each $v \in V_n$, this provides a natural extension of the function $\Upsilon(v) : A \mapsto \Lambda^\mathcal{E}(A|v)|$ from $\text{SL}_2(\mathbb{C})^\mathcal{E}$ to $(\mathbb{C}^{2\times 2})^\mathcal{E}$.

Note that the action (3.4) of $\text{SL}_2(\mathbb{C})^\tau$ on $\text{SL}_2(\mathbb{C})^\mathcal{E}$ naturally extends to an action on $(\mathbb{C}^{2\times 2})^\mathcal{E}$ and that (3.19) commutes with this action. Therefore, one has an injection

$$\iota : \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})} \simeq \text{Fun}_{\text{alg}}(\text{SL}_2(\mathbb{C})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\tau} \hookrightarrow \text{Fun}_{\text{alg}}((\mathbb{C}^{2\times 2})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\tau} \quad (3.20)$$

Given a lamination Γ and a multi-index $m = (m_e)_{e \in \mathcal{E}}$ we define

$$G_{\Gamma} := \iota(g_T), \quad G_{\Gamma,m}(A) := G_{\Gamma}(A) \cdot \prod_{e \in \mathcal{E}} (\text{det} A_e)^{m_e}. \quad (3.21)$$
Remark 3.17. By construction, $G_{\Gamma,m}$ is a homogeneous polynomial of degree $|\Gamma| + 2|m|$ on $(\mathbb{C}^{2\times 2})^\mathcal{E}$, invariant under the action of $\text{SL}_2(\mathbb{C})^\mathcal{F}$ on $(\mathbb{C}^{2\times 2})^\mathcal{E}$. More precisely, $G_{\Gamma,m}$ is a homogeneous polynomial of degree $n_e + 2m_e$ in coordinates of the space $\mathbb{C}^{2\times 2}$ assigned to an edge e, for each $e \in \mathcal{E}$. Below we call such polynomials homogeneous of multi-degree d.

Lemma 3.18. For each $d \in \mathbb{Z}_{\geq 0}$, polynomials $\{G_{\Gamma,m} | |\Gamma| + 2|m| = d\}$ form a basis in the space of $\text{SL}_2(\mathbb{C})^\mathcal{F}$-invariant homogeneous polynomials on $(\mathbb{C}^{2\times 2})^\mathcal{E}$ of degree d.

Proof. Note that the action $\text{SL}_2(\mathbb{C})^\mathcal{F}$ respects the degrees of homogeneity in coordinates assigned to an edge e. Therefore, it is enough to show that, given $d \in \mathbb{Z}_{\geq 0}$, the set $\{G_{\Gamma,m} | n(\Gamma) + 2m = d\}$ is a basis in the space of homogeneous $\text{SL}_2(\mathbb{C})^\mathcal{E}$-invariant polynomials of multi-degree d, see Remark 3.17.

Let $\text{Fun}_{\text{alg}}(\mathbb{C}^{2\times 2})^\mathcal{E}$ denote the space of all homogeneous polynomials on $(\mathbb{C}^{2\times 2})^\mathcal{E}$ of multi-degree d. Let

$$\bigoplus_{m: 2m \leq d} V_{d-2m} \rightarrow \text{Fun}_{\text{alg}}(\mathbb{C}^{2\times 2})^\mathcal{E}$$

(3.22)

which sends a vector $v \in V_{d-2m}$ to a polynomial $A \mapsto \Lambda^\mathcal{E}(A[v]) \cdot \prod_{e \in \mathcal{E}} (\det A_e)^{m_e}$. Due to the algebraic Peter–Weyl theorem, the composition of this mapping with the restriction of functions from $(\mathbb{C}^{2\times 2})^\mathcal{E}$ to $\text{SL}_2(\mathbb{C})^\mathcal{E}$ is an injection, hence the mapping (3.22) itself is an injection. On the other hand we have

$$\dim C(\bigoplus_{m: 2m \leq d} V_{d-2m}) = \sum_{m: 2m \leq d} \prod_{e \in \mathcal{E}} (d_e - 2m_e + 1)^2 = \prod_{e \in \mathcal{E}} \sum_{m_e: 2m_e \leq d_e} (d_e - 2m_e + 1)^2 = \prod_{e \in \mathcal{E}} ((d_e + 1)(d_e + 2)(d_e + 3)/6) = \dim C(\text{Fun}_{\text{alg}}(\mathbb{C}^{2\times 2})^\mathcal{E}))$$

as the dimension of the space of homogeneous polynomials of degree d_e on $(\mathbb{C})^{2\times 2} \simeq \mathbb{C}^4$ is equal to $\left(\begin{array}{c} d_e + 3 \\ 3 \end{array}\right)$. Since the dimensions coincide, the mapping (3.22) is an isomorphism. Using the fact that this mapping commutes with the action of $\text{SL}_2(\mathbb{C})^\mathcal{F}$ we get

$$\bigoplus_{m: 2m \leq d} V_{d-2m}^{\text{SL}_2(\mathbb{C})^\mathcal{F}} \simeq \bigoplus_{m: 2m \leq d} V_{d-2m}^{\mathcal{F}} \simeq \text{Fun}_{\text{alg}}(\mathbb{C}^{2\times 2})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\mathcal{F}}.$$

Recall that each of the spaces $V_{d-2m}^{\text{SL}_2(\mathbb{C})^\mathcal{F}}$, where $d - 2m \in \mathcal{L}(\mathcal{T}_f)$, is one-dimensional and the image of its generating vector is the polynomial $G_{\Gamma,(d-2m),m}$. Therefore, these polynomials indeed form a basis in the space $\text{Fun}_{\text{alg}}(\mathbb{C}^{2\times 2})^\mathcal{E})^{\text{SL}_2(\mathbb{C})^\mathcal{F}}$.

We now extend each of the functions f_{γ} from $\text{SL}_2(\mathbb{C})^\mathcal{E}$ to $(\mathbb{C}^{2\times 2})^\mathcal{E}$. For this purpose we need to give a meaning to the holonomy

$$\text{hol}(A, \gamma) = A_{e_0}^{\text{sign}(\sigma_0,e_0)} A_{e_1}^{\text{sign}(\sigma_1,e_1)} \ldots A_{e_{m-1}}^{\text{sign}(\sigma_{m-1},e_{m-1})}$$

of A along a loop $\gamma = (\sigma_0 \sigma_1 \ldots \sigma_m)$ (see (3.7)) for general matrices $A_e \in \mathbb{C}^{2\times 2}$. This is done as follows: first, consider only non-backtracking loops γ on \mathcal{T}_f; second, replace each inverse matrix A_e^{-1} appearing in this product by the conjugate matrix A_e^γ. The latter matrix is defined by the identity $A_e^\gamma v \wedge w = v \wedge A_e w$, note that $A_e + A_e^\gamma = \text{Tr} A_e \cdot \text{Id}.$
Let \(\text{hol}^\mathcal{V}(\cdot, \gamma) \) be the extension of \(\text{hol}(\cdot, \gamma) \) on \((\mathbb{C}^{2\times 2})^\mathcal{E}\) defined above. It is easy to see that \(\text{Tr} \text{hol}^\mathcal{V}(A, \gamma) \) does not depend on the orientation of \(\gamma \) and a choice of the starting point. This allows one to extend the functions \(f_\Gamma \) from \(\text{SL}_2(\mathbb{C})^\mathcal{E} \) to \((\mathbb{C}^{2\times 2})^\mathcal{E}\) as
\[
F_\Gamma(A) := \prod_{\gamma \in \Gamma} \text{Tr} (\text{hol}^\mathcal{V}(A, \gamma)), \quad F_{\Gamma, \mathbf{m}}(A) := F_\Gamma(A) \cdot \prod_{e \in \mathcal{E}} (\det A_e)^{m_e},
\]
(3.23)
Note that all functions \(F_{\Gamma, \mathbf{m}} \), \(\mathbf{m} = (m_e)_{e \in \mathcal{E}} \in \mathbb{Z}_{\geq 0}^\mathcal{E} \), coincide with \(f_\Gamma \) on \(\text{SL}_2(\mathbb{C})^\mathcal{E} \).

Lemma 3.19. For each lamination \(\Gamma \) and \(\mathbf{m} \in \mathbb{Z}_{\geq 0}^\mathcal{E} \), the following identity holds:
\[
G_{\Gamma, \mathbf{m}} = \sum_{\Delta \leq \Gamma} c_{\Gamma \Delta} F_{\Delta, \mathbf{m} + \frac{1}{2}(n(\Gamma) - n(\Delta))},
\]
where the coefficients \(c_{\Gamma \Delta} \) are the same as in Theorem 3.15.

Proof. Let \(f_\Gamma = \sum_{\Delta \leq \Gamma} \tilde{c}_{\Gamma \Delta} g_\Delta \), recall that \(\tilde{c}_{\Gamma \Delta} = 0 \) if \(n_e(\Gamma) - n_e(\Delta) \) is odd for some \(e \in \mathcal{E} \). It is easy to see that
\[
F_{\Gamma, \mathbf{m}} = \sum_{\Delta \leq \Gamma} \tilde{c}_{\Gamma \Delta} G_{\Delta, \mathbf{m} + \frac{1}{2}(n(\Gamma) - n(\Delta))}.
\]
Indeed, since this identity holds on \(\text{SL}_2(\mathbb{C})^\mathcal{E} \) and both sides are homogeneous polynomials of multi-degree \(\mathbf{n} + 2 \mathbf{m} \), this also holds on the open subset \(\text{GL}_2(\mathbb{C})^\mathcal{E} \) of \((\mathbb{C}^{2\times 2})^\mathcal{E}\). The claim follows since the matrices \((c_{\Gamma \Delta})_{\Delta \leq \Gamma} \) and \((\tilde{c}_{\Gamma \Delta})_{\Gamma \leq \Delta} \) are inverse to each other. \(\square \)

We now move to the analysis of functions \(G_{\Gamma, \mathbf{m}} \) as elements of the Hilbert space \(L^2(\mathbb{B}_R) \) on poly-balls \(\mathbb{B}_R = \mathbb{B}^\mathcal{E}_R \), see (3.18). Recall that the Euclidean measure on \(\mathbb{B}_R \) is given by the scalar product defined on each of the components as
\[
\langle A_1, A_2 \rangle_{\mathbb{C}^{2\times 2}} = \text{Tr} (A_1 A_2^*).
\]
(3.24)

Below we use the analytic Peter–Weyl theorem, applied to the group \(G = \text{SU}_2(\mathbb{C})^\mathcal{E} \).

Theorem 3.20 (analytic Peter–Weyl theorem). Let \(G \) be a compact Lie group and \(\hat{G} \) denote the set of all its irreducible finite-dimensional unitary representations. For each representation \((V, \rho) \in \hat{G} \) let \(v_i^V, \ldots, v_{\dim V}^V \) be the orthonormal basis in \(V \) and
\[
u_{ij}^V(g) := \sqrt{\dim V} \cdot \langle \rho(g) v_i^V, v_j^V \rangle.
\]
Then, the set \(\{ u_{ij}^V \mid V \in \hat{G}, 1 \leq i, j \leq \dim V \} \) is an orthonormal basis in \(L^2(G) \).

Proof. E.g., see [21, Chapter 5]. \(\square \)

Classically, irreducible unitary representations of \(\text{SU}_2(\mathbb{C}) \) are given by the restrictions of irreducible representations \(\text{SL}_2(\mathbb{C}) \rightarrow \text{End}(V_n) \) provided that the scalar product on \(V_n \simeq \text{Sym}^{n} V_1^{\otimes n} \) is obtained from the standard scalar product on \(V_1 \). Let \(\Gamma_1 \neq \Gamma_2 \) be two distinct laminations and
\[
u_1 \in \bigotimes_{\sigma \in \mathcal{F}} \otimes_{e \in \partial \sigma} V_{n_e(\Gamma_1)}, \quad \nu_2 \in \bigotimes_{\sigma \in \mathcal{F}} \otimes_{e \in \partial \sigma} V_{n_e(\Gamma_2)}.
\]
Since \(n_e(\Gamma_1) \neq n_e(\Gamma_2) \) for some edge \(e \in \mathcal{E} \), it follows from Theorem 3.20 that
\[
\int_{\text{SU}_2(\mathbb{C})^\mathcal{E}} \Lambda^\mathcal{E}(U|\nu_1]) \Lambda^\mathcal{E}(U|\nu_2]) \mu_{\text{Haar}}(dU) = 0,
\]
(3.25)
where \(U = (U_e)_{e \in \mathcal{E}} \in \text{SU}_2(\mathbb{C})^\mathcal{E} \) and \(\mu_{\text{Haar}}(dU) = \prod_{e \in \mathcal{E}} \mu_{\text{Haar}}(dU_e) \). The next step is to deduce the following lemma from the orthogonality condition (3.25).
Lemma 3.21. For each $R > 0$, the polynomials $G_{\Gamma, m}$ are orthogonal in $L^2(\mathbb{B}_R)$:
\[\langle G_{\Gamma_1, m_1}, G_{\Gamma_2, m_2} \rangle_{L^2(\mathbb{B}_R)} = 0 \quad \text{if} \quad (\Gamma_1, m_1) \neq (\Gamma_2, m_2). \]

Proof. Recall that $G_{\Gamma, m}$ is a homogeneous polynomial of degree $|\Gamma| + 2|m|$. Therefore, one can assume $R = 1$ without loss of generality. Let $n(\Gamma_1) + 2m_1 \neq n(\Gamma_2) + 2m_2$.

Since the ball \mathbb{B}_1 is invariant under rotations $A = (A_e)_{e \in \mathbb{E}} \mapsto (e^{2\pi it} A_e)_{e \in \mathbb{E}} = e^{2\pi it} A$, in this case one easily gets
\[
\langle G_{\Gamma_1, m_1}, G_{\Gamma_2, m_2} \rangle_{L^2(\mathbb{B}_1)} = \int_{t \in [0, 1]^{\mathbb{E}}} \int_{\mathbb{B}_1} G_{\Gamma_1, m_1}(e^{2\pi it} A) \overline{G_{\Gamma_2, m_2}(e^{2\pi it} A)} \lambda_{\mathbb{B}_1}(dA) \\
= \int_{t \in [0, 1]^{\mathbb{E}}} e^{2\pi it(n(\Gamma_1)+2m_1)-(n(\Gamma_2)+2m_2)} dt \cdot \langle G_{\Gamma_1, m_1}, G_{\Gamma_2, m_2} \rangle_{L^2(\mathbb{B}_1)} \\
= 0.
\]

Assume now that $n(\Gamma_1) + 2m_1 = n(\Gamma_2) + 2m_2$, hence $\Gamma_1 \neq \Gamma_2$ as otherwise one would have $(\Gamma_1, m_1) = (\Gamma_2, m_2)$. Let $B_1^+ := \{H \in B_1 \mid H \geq 0\}$ be the set of non-negative Hermitian matrices $H \in \mathbb{C}^{2 \times 2}$ satisfying $\text{Tr}(HH^*) < 1$. Consider the mapping
\[A : [0, 1] \times SU_2(\mathbb{C}) \times B_1^+ \to B_1, \quad (A(\theta, U, H) := e^{\pi i \theta} U H. \quad \text{(3.26)}
\]
This mapping is a bijection modulo zero measure sets due to the existence and the uniqueness of the polar decomposition of generic matrices $A \in B_1$. Note that the scalar product (3.24) satisfies
\[
\langle A(\theta_1, U_1, H_1), A(\theta_2, U_2, H_2) \rangle_{\mathbb{C}^{2 \times 2}} = e^{\pi i (\theta_1 - \theta_2)} \text{Tr}(U_1^* U_2 H_1 H_2).
\]
Therefore, the Euclidean measure on B_1 can be factorized as
\[\lambda_{B_1}(dA(\theta, U, H)) = d\theta \cdot \mu_{\text{Haar}}(dU) \cdot \nu(dH), \quad \text{(3.27)}
\]
for some absolutely continuous measure ν on B_1^+.

Let $v_1 \in \bigotimes_{e \in \mathbb{E}} \bigotimes_{e \in \partial \sigma} V_{n_e(\Gamma_1)}$ and $v_2 \in \bigotimes_{e \in \mathbb{E}} \bigotimes_{e \in \partial \sigma} V_{n_e(\Gamma_2)}$ be such that
\[G_{\Gamma_1}(A) = \Lambda^C(A[v_1]) \quad \text{and} \quad G_{\Gamma_2}(A) = \Lambda^C(A[v_2])
\]
for $A \in (\mathbb{C}^{2 \times 2})^\mathbb{E}$. Denote $H = (H_e)_{e \in \mathbb{E}} \in B_1^+ := (B_1^+)^\mathbb{E}$ and let $\nu(dH) := \prod_{e \in \mathbb{E}} \nu(dH_e)$. Since $\Gamma_1 \neq \Gamma_2$ one gets
\[
\langle G_{\Gamma_1, m_1}, G_{\Gamma_2, m_2} \rangle_{L^2(\mathbb{B}_1^+)} = \int_{B_1^+} \nu(dH) \text{det} H^{m_1+m_2} \int_{SU_2(\mathbb{C})^\mathbb{E}} \Lambda^C(UH[v_1]) \Lambda^C(UH[v_1]) \mu_{\text{Haar}}(dU),
\]
where $\text{det} H^m := \prod_{e \in \mathbb{E}} \text{det} H_e^{n_e}$. Applying (3.25) to the vectors $u_1 := H[v_1]$ and $u_2 := H[v_2]$ one sees that the integral over $SU_2(\mathbb{C})^\mathbb{E}$ vanishes for each $H \in B_1^+$. \square

3.6. Exponential lower bound for the norms of functions $G_{\Gamma, m}$. The goal of this section is to derive the following uniform lower bound for the L^2-norms of the functions $G_{\Gamma, m}$ on poly-balls \mathbb{B}_R:
Proposition 3.22. There exists a (small) absolute constant $\eta_0 > 0$ such that for all laminations Γ and multi-indices $m \in \mathbb{Z}_{\geq 0}^{\xi}$, the following estimate holds:

$$\|G_{\Gamma,m}\|_{L^2(\mathbb{R})} \geq (\eta_0 R)^{|\Gamma|+2|m|+4|\xi|}. \quad (3.28)$$

The constant η_0 is independent of \mathcal{T}_Ω and the number of punctures $\lambda_1, \ldots, \lambda_n \in \Omega$.

Remark 3.23. The proof is postponed until the end of this section. Note that $G_{\Gamma,m}$ is a homogeneous polynomial of total degree $|\Gamma| + 2|m|$ and \mathbb{R} is a poly-ball of total dimension $8|\xi|$. Therefore, one can assume $R = 1$ without loss of generality.

We need some preliminaries. Recall that the space V_n can be thought of as the space $\mathbb{C}[z,w]^{(n)}$ of homogeneous polynomials of degree n in two variables z,w; we fix an isomorphism $V_n \simeq \mathbb{C}[z,w]^{(n)}$ by identifying the monomial z^kw^{n-k} with the basis vector $(x^k y^{n-k})^{\text{sym}} \in V_n$, see Section 3.3. For each multi-index $n \in \mathbb{Z}_{\geq 0}^{\xi}$, this isomorphism induces an isomorphism

$$V_n \simeq \bigotimes_{\sigma \in \mathcal{F}, e \in \partial \sigma} V_{\sigma,e,n_e} \simeq \mathbb{C}[z,w]^{(n)} \quad (3.29)$$

of the space V_n and the space of homogeneous polynomials of multi-degree n in variables $z = (z_{\sigma,e})_{\sigma \in \mathcal{F}, e \in \partial \sigma}$ and $w = (w_{\sigma,e})_{\sigma \in \mathcal{F}, e \in \partial \sigma}$, note that the total degree of these polynomials is $2|n|$ since V_n contains two factors V_{σ,e,n_e} per edge $e \in \mathcal{E}$.

Lemma 3.24. Given $n \in \mathcal{L}(\mathcal{T}_\Omega)$ and the lamination $\Gamma = \Gamma(n)$, let $v_\Gamma \in V_n$ be the vector corresponding to the function g_Γ under the isomorphism (3.10) and $P_\Gamma \in \mathbb{C}[z,w]^{(n)}$ be the homogeneous polynomial corresponding to v_Γ under the isomorphism (3.29). Then,

$$P_1(z,w) = \pm \prod_{\sigma \in \mathcal{F}} \prod_{i=1}^3 (w_{\sigma,e_i} z_{\sigma,e_{i+1}} - z_{\sigma,e_i} w_{\sigma,e_{i+1}}) \left(\frac{n_{e_i} + n_{e_{i+1}} - n_{e_{i+2}}}{2}\right)^{1/2},$$

where $e_1, e_2, e_3 \in \mathcal{E}$ denote the three edges adjacent to σ and $e_{i+3} := e_i$.

Proof. Due to Lemma 3.13 the vector v_Γ equals to the symmetrization of vectors $w_{\mathcal{C}(\Gamma,\pi)}$ defined in (3.13) over $\pi \in \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} \text{Sym}(n_e)$. For each face $\sigma \in \mathcal{F}$ the symmetrization of the vectors

$$\bigotimes \varepsilon - \text{chord of } \mathcal{C}(\Gamma,\pi) \text{ in } \sigma$$

over $\prod_{i=1}^3 \text{Sym}(n_e)$ corresponds to the polynomial $\pm \prod_{i=1}^3 (w_{\sigma,e_i} z_{\sigma,e_{i+1}} - z_{\sigma,e_i} w_{\sigma,e_{i+1}})^{k_{i+1}}$, where k_{i+1} stands for the number of chords of Γ connecting the edges e_i and e_{i+1} in σ. The claim follows by taking the product over all $\sigma \in \mathcal{F}$. \qed

Denote

$$S := \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} S_{\sigma,e}, \quad S_{\sigma,e} := \{(z_{\sigma,e}, w_{\sigma,e}) \in \mathbb{C}^2 \mid |z_{\sigma,e}|^2 + |w_{\sigma,e}|^2 = 1\}.$$

Lemma 3.25. Let $v_1, v_2 \in V_n$ and $P_1, P_2 \in \mathbb{C}[z,w]^{(n)}$ be the corresponding homogeneous polynomials of multi-degree n (and of total degree $2|n|$). Then,

$$\langle v_1, v_2 \rangle_{\mathcal{E}} = \frac{(n_e + 1)^2}{4\pi^3} \cdot \int_S P_1(z,w) \overline{P_2(z,w)} \, d\lambda_S,$$

where $d\lambda_S := \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} \lambda_{S_{\sigma,e}}$ is the product of the surface measures on the spheres $S_{\sigma,e}$.
Proof. It is enough to consider the case \(\nu_1 = \nu_2 =: \nu = \bigotimes_{\sigma \in F, e \in \partial \sigma} \nu_{\sigma,e} \). For such vectors the claim follows from the component-wise identity
\[
\|v\|_{V_n}^2 = \frac{n+1}{2\pi^2}\int_S |P(z,w)|^2 d\lambda_S,
\]
where \(v \in V_n \) and \(P \in \mathbb{C}[z,w]^{(m)} \) is the homogeneous polynomial corresponding to \(v \).

To prove this identity consider a mapping \(SU_2(\mathbb{C}) \to S \) given by \(g \mapsto v^{(0)}g \), where \(v^{(0)} = (1,0) \in \mathbb{C}^2 \) corresponds to the basis vector \(x \in V_1 \) in the notation of Section 3.3. This mapping is a diffeomorphism and the pushforward of the Haar measure on \(SU_2(\mathbb{C}) \) is \((2\pi)^{-1}\lambda_S \). Since \(P \) corresponds to \(v \), one has \(P(v^{(0)}g) = \langle g(x^{(n)}), \nu \rangle_{V_n} \).

Therefore,
\[
\frac{1}{2\pi^2}\int_S |P(z,w)|^2 d\lambda_S = \int_{SU_2(\mathbb{C})} |\langle g(x^{(n)}), \nu \rangle_{V_n}|^2 d\mu_{\text{Haar}} = \frac{\|v\|_{V_n}^2}{n+1},
\]
where the last equality follows from Theorem 3.20. \(\square \)

Proof of Proposition 3.22. As already mentioned above, one can assume \(R = 1 \) due to homogeneity reasons. Let \(\nu_{\Gamma} \in V_n \) and \(P_\Gamma \in \mathbb{C}[z,w]^{(m)} \) correspond to the function \(g_\Gamma \) as discussed in Lemma 3.24. Using factorization (3.26) of the Euclidean measure on \(B_1 \) in the same way as in the proof of Lemma 3.21 one gets the identity
\[
\|G_{\Gamma,m}\|_{L^2(B_1)}^2 = \int_{B_1^+} \nu(dH) |\det H^{2m}| \int_{SU_2(\mathbb{C})^\varepsilon} |\Lambda^\varepsilon(UH[\nu_{\Gamma}])|^2 d\mu_{\text{Haar}}(dU),
\]

Theorem 3.20 gives
\[
\int_{SU_2(\mathbb{C})^\varepsilon} |\Lambda^\varepsilon(UH[\nu_{\Gamma}])|^2 d\mu_{\text{Haar}}(dU) = \prod_{e \in \varepsilon} \frac{1}{(n_e+1)^2} \cdot \|H[\nu_{\Gamma}]\|_{V_n}^2.
\]

Applying Lemma 3.25 we arrive at the identity
\[
\|G_{\Gamma,m}\|_{L^2(B_1)}^2 = (4\pi^4)^{|\varepsilon|} \cdot \int_{B_1^+} \nu(dH) |\det H^{2m}| \int_S |H[P_{\Gamma}]|^2 d\lambda_S,
\]
where \(H[P_{\Gamma}] \) is obtained from \(P_{\Gamma} \) by the change of variables \((z_{\sigma,e}, w_{\sigma,e}) \mapsto (z_{\sigma,e}, w_{\sigma,e})H_e \).

Finally, using the explicit form of the polynomial \(P_{\Gamma} \) provided by Lemma 3.24 one can choose a (small) absolute constant \(\varepsilon_0 > 0 \) so that
\[
\nu(\{ H \in B_1^+ \mid \text{Tr}(H^2) \geq 1 - \varepsilon_0 \}) \geq \varepsilon_0
\]
and the following holds provided that \(\text{Tr}(H_e^2) \geq 1 - \varepsilon_0 \) for all edges \(e \in \varepsilon \):
\[
\lambda_S(\{ (z,w) \in S \mid |H[P_{\Gamma}]| \geq \varepsilon_0^{2|\mu(T)|} \}) \geq \varepsilon_0^{|\varepsilon|}.\]

The desired exponential lower bound for the norm \(\|G_{\Gamma,m}\|_{L^2(B_1)} \) follows easily. \(\square \)

Remark 3.26. Note that \(|w_1z_2 - z_1w_2| \leq 1 \) for all \((z_1, w_1), (z_2, w_2) \in S_1 \). Moreover, one easily sees from the identity (3.30) that the lower bound (3.28) cannot be true unless
\[
\eta_0 \leq \max_{(z_1, w_1), (z_2, w_2), (z_3, w_3) \in S_1} \left| (w_1z_2 - z_1w_2)(w_2z_3 - w_3z_2)(w_3z_1 - z_3w_1) \right| < 1.
\]
4. Estimate of coefficients in the Fock–Goncharov theorem

The goal of this section is to derive the estimate $|c_{\Gamma \Delta}| \leq 4|\Gamma|$ for the coefficients of the Fock–Goncharov change of the bases $g_\Gamma = \sum_{\Delta \leq \Gamma} c_{\Gamma \Delta} f_\Delta$ discussed in Section 3.4. To the best of our understanding, a similar exponential bound was implicitly used in [14, p. 483] and [11, p. 957] but we were unable to find a proof of such an estimate in the existing literature. (Note that an exponential bound for the coefficients of the inverse change of the bases $f_\Gamma = \sum_{\Delta \leq \Gamma} c_{\Gamma \Delta} g_\Delta$ trivially follows from the orthogonality of g_Δ but this fact a priori does not imply an exponential estimate of $c_{\Gamma \Delta}$.)

In order to study the coefficients $c_{\Gamma \Delta}$ we use the well-known connection between the Kauffman skein algebra with the parameter $q = -1$ and the ring of invariants $\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$ (e.g., see [16]): functions g_Γ and f_Γ correspond to some natural elements of the skein algebra and the matrix $c_{\Gamma \Delta}$ admits some combinatorial description through this correspondence. One of the key ingredients of the proof given below is a recent result due to D. Thurston [28] on the positivity of the so-called bracelet basis in the skein algebra with $q = 1$, see Section 4.4 for more details. Another input is a representation of the skein algebra in the space of Laurent polynomials via Thurston’s shear coordinates on the moduli space of hyperbolic structures on $\Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$, see Section 4.3. These ideas were kindly communicated to the authors by Vladimir Fock and we believe that a core part of the proof of Theorem 4.9 should in fact be credited to him.

Several parts of the material presented in this section are classical or well-known. As in Section 3 we collect all them together in order to introduce a consistent notation and for the sake of completeness.

4.1. Definition of the Kauffman skein algebra and Przytycki–Sikora theorem. Let $q \in \mathbb{C}^*$, $\Sigma := \Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$, and $M := [0,1] \times \Sigma$. A framed link L in M is an embedding of a disjoint union of circles $\iota : \sqcup S^1 \to M$ together with a continuous choice of a positive oriented basis in the fiber of TM at each point of $\iota(S^1)$ (i.e., a choice of everywhere linearly independent sections $v_1, v_2, v_3 : \iota(S^1) \to TM_{\iota(S^1)}$). We say that an (oriented) knot is trivially framed if v_1 is the tangent vector to the knot and v_3 is everywhere vertical, each framed knot is equivalent to a trivially framed one up to a framed isotopy. Denote by L_{unknot} the trivially framed unknot associated with a simple contractible loop in Σ.

Let W be a \mathbb{C}-vector space generated by framed isotopy classes of framed links. We define a multiplication of two links L_1 and L_2 by placing L_1 under L_2 (with respect to the direction of the projection $[0,1] \times \Omega \to [0,1]$) and taking the union. This makes W into an algebra with the unit represented by the empty link. We say that three framed links L_1, L_0 and L_∞ form a Kauffman triple if they can be drawn identically except where they appear as shown in Figure 4. Let \mathcal{I} be the two-sided ideal in W generated by the relations $L_1 - qL_0 - q^{-1}L_\infty = 0$ for all Kauffman triples and $L_{\text{unknot}} + q^2 + q^{-2} = 0$. The Kauffman skein algebra with the parameter q is the quotient $\text{Sk}(M, q) := W/\mathcal{I}$.

In our paper we are interested in the particular cases $q = \pm 1$ only. Note that the relations in \mathcal{I} immediately imply that the algebras $\text{Sk}(M, \pm 1)$ are commutative. The following theorem is due to Przytylski and Sikora [19], see also [5] for a close result.
Figure 4. A Kauffman triple \((L_1, L_0, L_\infty)\). The skein algebra relations are \(L_1 = qL_0 + q^{-1}L_\infty\) (complemented by \(L_{\text{unknot}} = -q^2 - q^{-2}\)).

Theorem 4.1. Given a knot \(K\), let \(\gamma_K\) denote its projection onto \(\Sigma\). The mapping
\[
\psi : \text{Sk}(M, -1) \to \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}
\]
defined on trivially framed knots by \(\psi(K)(\rho) := -\text{Tr}(\rho(\gamma_K))\) and extended by additivity and multiplicativity is a correctly defined isomorphism of algebras.

Proof. Recall that the algebra \(\text{Sk}(M, -1)\) is commutative. The Kauffman triple relation for \(q = -1\) reflects the identity
\[
\text{Tr}(AB) + \text{Tr}(A^{-1}B) = \text{Tr}(A)\text{Tr}(B), \quad A, B \in \text{SL}_2(\mathbb{C}).
\]
These observations can be completed to a proof of the fact that the mapping \(\psi\) is a well-defined homomorphism of algebras as it is done in [5, proof of Theorem 3].

One can now use the Fock–Goncharov theorem to prove that \(\psi\) is an isomorphism. Namely, each lamination \(\Gamma\) naturally gives rise to a framed link in \(M\): represent \(\Gamma\) as a disjoint union of simple curves and attach a trivial frame to each of these curves. It is easy to see that the image of thus obtained framed link under \(\psi\) equals (up to a sign) to \(f_{\Gamma}\) and that such links span \(\text{Sk}(M, -1)\). Using the fact that \(f_{\Gamma}\) is a basis of \(\text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}\) one concludes that \(\psi\) is an isomorphism. \(\square\)

4.2. Skein algebra with \(q = 1\) and twisted representations. It is well known that the skein algebras \(\text{Sk}(M, -1)\) and \(\text{Sk}(M, 1)\) are closely related via spin structures on \(\Sigma\), below we briefly discuss this correspondence.

Recall that the unit tangent bundle \(U\Sigma\) of \(\Sigma\) is defined as
\[
U\Sigma := (T\Sigma \setminus 0) / \mathbb{R}^+, \quad \text{where 0 stands for the zero section of } T\Sigma.
\]
where 0 stands for the zero section of \(T\Sigma\). Since \(\pi_2(\Sigma) = 0\), one has a short exact sequence \(\pi_1(S^1) \to \pi_1(U\Sigma) \to \pi_1(\Sigma)\) and concludes that \(\pi_1(U\Sigma)\) is a central extension of \(\pi_1(\Sigma)\) by \(\mathbb{Z}\). Let \(z \in \pi_1(U\Sigma)\) denote the image of the generator of \(\mathbb{Z}\). A spin structure on \(\Sigma\) is an element \(\xi \in H^1(U\Sigma, \mathbb{Z}_2)\) such that \(\xi(z) = 1\). For a trivially framed knot \(K\), let \(\tilde{\gamma}_K\) be a loop in \(U\Sigma\) given by points of \(\gamma_K \subset \Sigma\) and projections of the first (tangential) vector of the framing. It is easy to see that isotopic framed knots define homotopic curves in \(U\Sigma\).
It is also well known that each spin structure ξ on a compact orientable surface Σ can be given by a vector field V_ξ on Σ with isolated zeroes of even index: if K is a trivially framed knot, then

$$s_\xi(\gamma_K) := (-1)^{\xi(\gamma_K)} = e^{i \text{wind}(\gamma_K; V_\xi)},$$

where wind$(\gamma_K; V_\xi)$ denotes the total rotation angle of the tangent vector to γ_K measured with respect to V_ξ. In fact, below one can always assume that V_ξ is constant (which corresponds to the unique spin structure on the original simply connected domain $\Omega \supset \Sigma$), so that wind$(\gamma_K; V_\xi) = \text{wind}(\gamma_K)$ is the usual total rotation angle of the tangent vector along the loop γ_K in Ω.

Lemma 4.2. For each spin structure ξ on Σ the mapping

$$\phi_\xi : \text{Sk}(M, q) \to \text{Sk}(M, -q), \quad \phi_\xi(L) := \prod_{K \subset L} (-s_\xi(\gamma_K)) \cdot L,$$

where the product is taken over all components K of a framed link L, is a correctly defined isomorphism of algebras.

Proof. See [1, Theorem 1]. Note that the value $\text{Spin}(\gamma; \xi)$ used in [1] is equal to $1 - \xi(\gamma)$ in our notation. Thus, one has $(-1)^{\text{Spin}(\gamma; \xi)} = -s_\xi(\gamma)$. \square

We now introduce an additional terminology that will be used in Section 4.3.

Definition 4.3. A representation $\tilde{\rho} : \pi_1(U\Sigma) \to \text{SL}_2(\mathbb{C})$ such that $\tilde{\rho}(z) = -\text{Id}$ is called a twisted $\text{SL}_2(\mathbb{C})$ representation on Σ. Let

$$X_{\text{twist}} := \{ \tilde{\rho} : \pi_1(U\Sigma) \to \text{SL}_2(\mathbb{C}) \mid \text{\tilde{\rho} is a twisted } \text{SL}_2(\mathbb{C})\text{ representation on } \Sigma \}.$$

Note that conjugating a twisted representation by an element of $\text{SL}_2(\mathbb{C})$ one gets another twisted representation. Furthermore, $s_\xi(z)\tilde{\rho}(z) = \text{Id}$ for each twisted representation $\tilde{\rho}$, hence one can correctly define the mapping

$$S_\xi : X_{\text{twist}} \to X, \quad \tilde{\rho} \mapsto s_\xi \cdot \tilde{\rho},$$

as $s_\xi(\gamma) \cdot \tilde{\rho}(\gamma)$ depends only on the projection of a loop $\gamma \in \pi_1(U\Sigma)$ onto $\pi_1(\Sigma)$. Let

$$S_\xi^* : \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})} \to \text{Fun}_{\text{alg}}(X_{\text{twist}})^{\text{SL}_2(\mathbb{C})}$$

be the pullback of S_ξ.

Proposition 4.4. Let ξ be a spin structure on Σ and $\psi : \text{Sk}(M, -1) \to \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(\mathbb{C})}$ be the isomorphism from Theorem 4.1. Then, the algebra homomorphism

$$\Psi := S_\xi^* \circ \psi \circ \phi_\xi : \text{Sk}(M, 1) \to \text{Fun}_{\text{alg}}(X_{\text{twist}})^{\text{SL}_2(\mathbb{C})}$$

acts on trivially framed knots as $\Psi(K)(\tilde{\rho}) := \text{Tr}(\tilde{\rho}(\gamma_K))$, $\tilde{\rho} \in X_{\text{twist}}$. In particular, Ψ does not depend on the choice of the spin structure ξ on Σ.

Proof. This is a trivial corollary of Theorem 4.1, Lemma 4.2 and definition (4.1). \square

Remark 4.5. It follows from Proposition 4.4 that each twisted representation $\tilde{\rho} \in X_{\text{twist}}$ gives rise to an algebra homomorphism (evaluation) $\Psi_{\tilde{\rho}} : \text{Sk}(M, 1) \to \mathbb{C}$ defined on trivially framed knots as $K \mapsto \text{Tr}(\tilde{\rho}(\gamma_K))$ and extended by additivity and multiplicativity.
4.3. Twisted representations associated with hyperbolic structures on Σ and the representation of $\text{Sk}(M,1)$ in the algebra of Laurent polynomials. In this section we discuss the class of twisted representations $\tilde{\rho}_x$ coming from hyperbolic structures on Σ parameterized by Thurston’s shear coordinates $x = (x_e)_{e \in E} \in \mathbb{R}^E$. In particular, we show that all functions $x \mapsto \text{Tr}(\tilde{\rho}_x(\gamma_K))$ associated with trivially framed knots $K \in \text{Sk}(M,1)$ are Laurent polynomials in the variables $\sqrt{x_e}$ with sign coherent (simultaneously positive or simultaneously negative) coefficients, the last observation was pointed out to us by Vladimir Fock. We discuss only the case when $\Sigma = \Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ is a punctured simply connected domain, see [3] for the general construction in the case of surfaces with free non-abelian fundamental group.

Let $\pi : \Sigma \to \Sigma$ be the universal cover of Σ. Classically, given a hyperbolic metric on Σ one can consider a uniformization $f : \mathbb{H} \to \Sigma$ where $\mathbb{H} := \{z \in \mathbb{C} : \text{Im} z > 0\}$ stands for the upper complex plane, note that f is defined uniquely up to Möbius automorphisms of \mathbb{H}. Provided that the edges of the triangulation T_Ω of Σ are drawn as hyperbolic geodesics and $\overline{T_\Omega} := \pi^{-1}(T_\Omega)$ denotes the corresponding triangulation of Σ, the following properties hold:

(i) the preimage under f of each triangle of $\overline{T_\Omega}$ is an ideal triangle in \mathbb{H};

(ii) deck transformations of Σ form a discrete subgroup of the group $\text{Aut}(\mathbb{H})$.

Recall that $\text{Aut}(\mathbb{H}) \cong \text{PSL}_2(\mathbb{R})$ (automorphisms of \mathbb{H} are given by Möbius transforms $z \mapsto (az + b)/(cz + d)$ with $a, b, c, d \in \mathbb{R}$ defined up to a common multiple) and that for each $(z_0, v_0), (z_1, v_1) \in U\mathbb{H}$ there exists a unique automorphism $g \in \text{Aut}(\mathbb{H})$ such that $g(z_0) = z_1$ and the vector $g'(z_0)v_0$ has the same direction as v_1.

Given a uniformization $f : \mathbb{H} \to \Sigma$ and a base point $(z_0, v_0) \in U\mathbb{H}$, one can construct a twisted representation $\tilde{\rho}_f$ as follows. For a smooth loop $\tilde{\gamma} : [0, 1] \to U\Sigma$ such that $\tilde{\gamma}(0) = \tilde{\gamma}(1) = (\pi \circ f)(z_0, v_0)$, let $\overline{\gamma} : [0, 1] \to U\Sigma$ denote its lift on $U\Sigma$ and let $g_\gamma(t) \in \text{Aut}(\mathbb{H})$ sends $(f^{-1} \circ \overline{\gamma})(0) = (z_0, v_0)$ to $(f^{-1} \circ \overline{\gamma})(t)$. One can now lift the path $g_\gamma : [0, 1] \to \text{Aut}(\mathbb{H}) \cong \text{PSL}_2(\mathbb{R})$ to $\tilde{g}_\gamma : [0, 1] \to \text{SL}_2(\mathbb{R})$ so that $\tilde{g}_\gamma(0) = \text{Id}$ and set

$$\tilde{\rho}_f(\tilde{\gamma}) := (\tilde{g}_\gamma(1))^{-1}, \quad (4.2)$$

note that this mapping is nothing but a lift to $\text{SL}_2(\mathbb{R})$ of the automorphism of \mathbb{H} corresponding to the deck transformation of Σ given by the projection of $\tilde{\gamma}$ onto Σ. In particular, $\tilde{\rho}_f$ does not depend on the choice of the lift $\overline{\gamma}$ of $\tilde{\gamma}$. It is straightforward to check that $\tilde{\rho}_f$ is a twisted representation on Σ. Moreover, the change of the base point (z_0, v_0) and/or of the uniformization f amounts to a $\text{SL}_2(\mathbb{C})$-conjugation of $\tilde{\rho}_f$.

We now introduce Thurston’s shear coordinates on the space of hyperbolic structures on Σ. Given a collection $x = (x_e)_{e \in E}$ of positive parameters associated to the edges of the triangulation T_Ω, one can construct a hyperbolic structure on Σ such that the following property holds for (any of) the corresponding uniformizations $f_x : \mathbb{H} \to \Sigma$:

(iii) for each edge e of T_Ω, the quadrilateral $\sigma_{\text{left}}(e) \cup e \cup \sigma_{\text{right}}(e)$ formed by two faces adjacent to e is conformally equivalent to the ideal quadrilateral $R(x_e) \subset \mathbb{H}$ with vertices $-1, 0, x_e, \infty$ so that the edge e corresponds to the line $\sqrt{-1} : \mathbb{R}_+ \subset R(x_e)$.

In fact, one can use property (iii) to draw a preimage of the triangulation $\overline{T_\Omega}$ in \mathbb{H}. To do this, start with two faces adjacent to an arbitrarily chosen edge and draw them so that they form the ideal rectangle $R(x_e)$ and then extend this drawing step by step.
so that each face of \mathbb{T}_γ is drawn as an ideal triangle and the property (iii) is satisfied. As a result of this procedure one obtains a diffeomorphism $f_\gamma : H \to \overline{\Sigma}$ which can be used to define the desired hyperbolic structure on $\overline{\Sigma}$ and to project it onto Σ. It can be easily shown that each hyperbolic structure on Σ can be obtained in this manner but we do not need this fact in our paper.

Below we denote by $\tilde{\rho}_x$ the twisted $SL_2(\mathbb{C})$ representation corresponding to the hyperbolic metric on Σ and the uniformization $f_\gamma : H \to \overline{\Sigma}$ constructed above. Recall that $\tilde{\rho}_x$ is defined up to a $SL_2(\mathbb{C})$-conjugation only as we do not fix neither a base point $(x_0, v_0) \in H$ nor the starting edge of the construction. Nevertheless, following Proposition 4.4 and Remark 4.5, for each $x \in \mathbb{R}^+_x$ one can correctly define the evaluation

$$\Psi_x : Sk(M, 1) \to \mathbb{C}, \quad L \mapsto (\Psi(L))(\tilde{\rho}_x),$$

which acts on trivially framed knots as $\Psi_x(K) = \text{Tr}(\tilde{\rho}_x(\gamma_K))$ and is extended to the skein algebra $Sk(M, 1)$ by linearity and multiplicativity.

The following proposition is the key result of this section. Recall that, given a minimal smooth multi-curve C on $\Sigma = \Omega \setminus \{\lambda_1, \ldots, \lambda_n\}$ (see section 3.4 for the definition) one can obtain an element $L(C) \in Sk(M, 1)$ by framing all the components of C trivially and then resolving the intersections in an arbitrary way: the resulting link depends on the choice of these resolutions but its class in $Sk(M, 1)$ does not.

Proposition 4.6. (i) For each $L \in Sk(M, 1)$ the function $\Psi_x(L)$ is given by evaluating a Laurent polynomial $P_L \in \mathbb{C}[(t, t^{-1})_{e \in E}]$ at $t_e := \sqrt{x_e}$, where \sqrt{x} denotes the positive square root of $x > 0$. The mapping $L \mapsto P_L$ is an algebra homomorphism.

(ii) If $L = L(C)$ is obtained from a minimal multi-curve as described above, then P_L has positive integer coefficients.

Proof. Since for each framed link L there exists a trivially framed link L' obtained from a minimal multi-curve such that $L = \pm 2^m L'$ in $Sk(M, 1)$ for some $m \geq 0$, one can assume that L is obtained from a minimal multi-curve. Moreover, since Ψ_x is an algebra homomorphism one can further assume that $L = L(\gamma)$ is a trivially framed knot obtained from a minimal (i.e. having no nugatory self-crossings, see Fig. 3) loop γ.

Each minimal loop γ can be combinatorially encoded by a non-backtracking path $\sigma_0 \sigma_1 \ldots \sigma_m$, $\sigma_m = \sigma_0$ on F, let $e_i \in E$ be the edge separating the faces σ_i and σ_{i+1} so that γ consecutively crosses $e_0, e_1, \ldots, e_{m-1}$. For each of these edges, let the point $a_i \in e_i$ be defined by the following condition: $a_i = \varphi_i(\sqrt{-1})$, where φ_i denotes the uniformization $\varphi_i : H \to \overline{\Sigma}$ that maps the ideal quadrilateral with vertices $-1, 0, x_{e_i}, \infty$ onto $\sigma_i \cup e_i \cup \sigma_{i+1}$ so that $\varphi_i^{-1}(\sigma_i)$ has vertices $-1, 0, \infty, \infty$ whilst $\varphi_i^{-1}(\sigma_{i+1})$ has vertices $0, x_{e_i}, \infty, \infty$, cf. condition (iii) above.

One can now replace γ by the concatenation of smooth segments $\gamma(e_i, e_{i+1})$ crossing the edges of E orthogonally and running from $a_i \in e_i$ to $a_{i+1} \in e_{i+1}$ inside the face σ_{i+1}. For each $i = 0, \ldots, m - 1$,

(a) either the preimage $\varphi_i^{-1}(e_{i+1})$ of the next edge crossed by γ connects x_{e_i} and ∞, in this case we say that γ makes a counterclockwise turn inside σ_{i+1}, see Fig. 5,

(b) or this preimage of e_{i+1} connects 0 and x_{e_i}: a clockwise turn inside σ_{i+1}.
The last ingredient we need is the estimate of Fock-Goncharov coefficients.

Let \(\gamma \) be a lamination consisting of \(m \) copies of a simple loop \(l_1, m_2 \) copies of a simple loop \(l_2, \ldots, m_k \) copies of a simple loop \(l_k \); we assume that the loops \(l_i \) are not homotopic to each other. The \textit{bracelet} of \(\Gamma \) is the multi-curve

\[\mathfrak{b}(\Gamma) := \bigcup_{i=1}^{m_1} l_i \cup \cdots \cup \bigcup_{k}^{m_k} l_k, \quad \Gamma = (m_1 \cdot l_1) \cup \cdots \cup (m_k \cdot l_k), \]

One easily sees that the composition mapping \(\varphi^{-1}_i \circ \varphi_{i+1} \) (which maps the line \(\sqrt{-1} \cdot \mathbb{R}_+ \) onto the preimage \(\varphi^{-1}_i(e_{i+1}) \)) is given by

\[z \mapsto x_{e_i} \cdot (z + 1) \text{ in the case (a), } z \mapsto \frac{x_{e_i}z}{z + 1} \text{ in the case (b)}, \]

Moreover, the lift of the corresponding path in \(\text{Aut}(\mathbb{H}) \cong \text{PSL}_2(\mathbb{R}) \) to \(\text{SL}_2(\mathbb{R}) \) leads to the following matrix \(A_i \) representing the Möbius automorphism \(\varphi^{-1}_i \circ \varphi_{i+1} \):

\[A_i = \begin{pmatrix} \sqrt{x_{e_i}} & \sqrt{x_{e_{i+1}}} \\ 0 & \sqrt{x_{e_{i+1}}} \end{pmatrix} \text{ in the case (a), } A_i = \begin{pmatrix} \sqrt{x_{e_i}} & 0 \\ \sqrt{x_{e_{i+1}}} & \sqrt{x_{e_{i+1}}} \end{pmatrix} \text{ in the case (b)}. \]

Let \(\tilde{\gamma} \) be the loop in the unit tangent bundle \(U\Sigma \) corresponding to \(\gamma \) and \(\tilde{\gamma}(e_i, e_{i+1}) \) be its segment corresponding to \(\gamma(e_i, e_{i+1}) \). From now onwards we fix the uniformization \(f := \varphi_0 : \mathbb{H} \to \Sigma \). According to the definition (4.2) we have

\[\tilde{\rho}(\tilde{\gamma}) = ((B_{m-1}^{-1}A_{m-1}B_{m-1}) \cdots (B_1^{-1}A_1B_1) \cdots A_0)^{-1} = B_{m-1}, \]

where the matrices \(B_i := (A_0 A_1 \cdots A_{i-1})^{-1} \in \text{SL}_2(\mathbb{R}) \) represent the Möbius automorphisms \(\varphi^{-1}_i \circ \varphi_0 \). Since \(\text{Tr} B_{m-1} = \text{Tr} B_{m-1}^{-1} \) we conclude that

\[\text{Tr} (\tilde{\rho}(\tilde{\gamma})) = \text{Tr} (A_0 A_1 \cdots A_{m-1}) \quad (4.4) \]

is a Laurent polynomial in the variables \((\sqrt{x_e})_{e \in \mathcal{E}} \) with positive integer coefficients. In particular, we have proved (ii).

The argument given above defines a required Laurent polynomial \(P_L \) for each element \(L = L(\gamma) \in \text{Sk}(M, 1) \) obtained from a minimal loop \(\gamma \). This definition can be then extended to the whole skein algebra \(\text{Sk}(M, 1) \) by linearity and multiplicativity. Finally, since the mapping \(L \mapsto P_L(t_e)_{e \in \mathcal{E}} \) is an algebra homomorphism for each specification \(t_e := \sqrt{x_e} \), the same is also true for formal variables \(t_e \).
where $l_i^{m_i}$ denotes the minimal loop that travels m_i times along the simple loop l_i, while $m_i \cdot l_i$ stands for the m_i copies of l_i.

Recall that we denote by $L(C)$ the element of $\text{Sk}(M,1)$ obtained from a multi-curve C. It is easy to see that, for each simple loop l, one has

$$L(l^{m+2}) = L(l)L(l^{m+1}) - 2L(l^m), \quad m \geq 0.$$

By induction in m this gives $L(l^n) = 2T_m(\frac{1}{2}L(l))$, $m \geq 0$, and hence

$$L(b(\Gamma)) = \prod_{i=1}^k (2T_m(\frac{1}{2}L(l_i))), \quad \Gamma = (m_1 \cdot l_1) \cup \cdots \cup (m_k \cdot l_k). \quad (4.5)$$

where $T_m(x) = \cos(m \arccos x)$ is the m-th Chebyshev polynomial of the first kind. The elements $L(\Gamma)$ form a basis of $\text{Sk}(M,1)$ (e.g., this follows from Theorem 3.15, Theorem 4.1 and Lemma 4.2). Therefore, the elements $L(b(\Gamma))$ also form a basis of $\text{Sk}(M,1)$. In particular, for each multi-curve C there exists a unique decomposition

$$L(C) = \sum_{\text{\Gamma-lamination}} \alpha_{\text{CT}} L(b(\Gamma)). \quad (4.6)$$

It was shown by D. Thurston that $L(b(\Gamma))$ is in fact a positive basis of $\text{Sk}(M,1)$:

Theorem 4.7. For each multi-curve C the coefficients α_{CT} are sign coherent: either $\alpha_{\text{CT}} \geq 0$ for all Γ or $\alpha_{\text{CT}} \leq 0$ for all Γ. If C is a minimal multi-curve, then all $\alpha_{\text{CT}} \geq 0$.

Proof. See [28, Theorem 2].

Recall that we denote by $|C|$ the minimal number of intersections of a multi-curve homotopic to C with the edges of the triangulation T_Ω and by $\Gamma(C)$ the corresponding lamination, see Section 3.4 for more details. The next lemma is a simple combination of the positivity results provided by Proposition 4.6(ii) and Theorem 4.7.

Lemma 4.8. For each multi-curve C one has $\sum_{\text{\Gamma-lamination}} |\alpha_{\text{CT}}| \leq 2^{|C|}$.

Proof. As each multi-curve is homotopic to a minimal one up to nugatory self-crossings and homotopically trivial components one can assume that C is minimal. Let $P_{L(C)}$ be the Laurent polynomial given by Proposition 4.6 and $x = 1 \in \mathbb{R}_e^*$ be the vector consisting of units: $x_e = 1$ for all $e \in E$. It follows from the construction of $P_{L(C)}$ (see (4.4)) that $P_{L(C)}(1) \leq 2^{|C|}$. Applying the evaluation Ψ_1 to the identity (4.6) and noting that $P_{L(b(\Gamma))}(1) \geq 1$ one obtains the desired estimate.

We are now in the position to prove the main result of this Section. Recall that we are interested in an exponential upper bound for the coefficients of the Fock–Goncharov change of the bases

$$g_{\Gamma} = \sum_{\Delta \leq \Gamma} e_{\Gamma \Delta} f_{\Delta}.$$

Theorem 4.9. For each pair of laminations Γ, Δ one has $|e_{\Gamma \Delta}| \leq 4^{|\Gamma|}$.

Proof. Recall that the function $f_{\Delta} \in \text{Fun}_{\text{alg}}(X)^{\text{SL}_2(C)}$ corresponds to $\pm L(\Delta) \in \text{Sk}(M,1)$ under the isomorphisms provided by Theorem 4.1 and Lemma 4.2. Due to Lemma 3.13, the function g_{Γ} correspond to the averaging of the signed knots $\pm L(C(\Gamma, \pi))$ over permutations $\pi \in \prod_{\sigma \in \mathcal{F}, e \in \partial \sigma} \text{Sym}(n_e)$. Let

$$L(C) = \sum_{\Delta \leq \Gamma} \beta_{\Delta} L(\Delta), \quad C = C(\Gamma, \pi).$$
Then, γ_{Δ} is equal to the average of the signed coefficients $\beta_{C,\Delta}$ over the permutations π and it is enough to prove that $|\beta_{C,\Delta}| \leq 4^{|\Delta|} = 4^{|\Gamma|}$ for each multi-curve $C = C(\Gamma, \pi)$.

Using the bracelet basis of $\text{Sk}(M, 1)$ discussed above one writes

$$L(C) = \sum_{\text{bracket basis}} \alpha_{\Gamma'} L(b(\Gamma')).$$

Now one can expand each of the bracelet links $L(b(\Gamma')) \in \text{Sk}(M, 1)$ via the functions $L(\Delta)$ with $\Delta \subset \Gamma'$ using (4.5):

$$L(b(\Gamma')) = \sum_{\Delta \subset \Gamma'} \alpha'_{\Gamma', \Delta} L(\Delta),$$

where each coefficient $\alpha'_{\Gamma', \Delta}$ is the product over homotopically distinct loops of Γ' of some coefficients of the Chebyshev polynomials (corresponding to these loops)

$$2T_m(x) = \sum_{k=0}^{[\frac{m}{2}]} (-1)^k \cdot \frac{m-k}{m-k} x^{m-2k}.$$

Using the trivial upper bound 2^m for these coefficients one obtains the crude estimate $|\alpha'_{\Gamma', \Delta}| \leq 2^{1|\Gamma'|} \leq 2^{1|\Gamma|}$. Therefore,

$$|\beta_{C,\Delta}| \leq 2^{1|\Gamma|} \cdot \sum_{\Gamma', \Delta \subset \Gamma'} |\alpha_{\Gamma'}| \leq 4^{1|\Gamma|}$$

due to Lemma 4.8.

\[\square \]

Remark 4.10. It is worth noting that the constant 4 in the exponential upper bound provided by Theorem 4.9 is far from being optimal. For instance one can easily improve the constant 2 in Lemma 4.8 to $\frac{1}{2}(\sqrt{5} + 1)$, which is equal to the L^2-norm of the matrices A_i with $x_e = 1$, not speaking about a huge overkill in the estimate of coefficients $\alpha'_{\Gamma', \Delta}$ used above.

5. Proof of the main results

This section is organized as follows. In Section 5.1 we discuss the expansions of $\text{SU}_2(\mathbb{C})$-invariant functions on poly-balls $B_R \subset \text{SL}_2(\mathbb{C})^\mathcal{E}$ via the functions $F_{\Gamma, m}$ constructed in Section 3 (see (3.21)). Note that the exponential estimates provided by Proposition 3.22 and Theorem 4.9 play a crucial role in the proof of Lemma 5.3. We then pass to the analysis of holomorphic functions on the variety

$$Z_{\text{unip}} := \{ A \in \text{SL}_2(\mathbb{C})^\mathcal{E} \mid \text{Tr} (\text{hol}(A, (\lambda_i))) = 2 \text{ for all } i = 1, \ldots, n \} \quad (5.1)$$

(here and below, the holomorphicity condition is always required on the regular part of the variety only). Section 5.2 is devoted to extensions of holomorphic functions from $Z_{\text{unip}} \cap B_R$ to B_R and is based upon Manivel’s Ohsawa–Takegoshi type theorem, it is needed for the existence part of Theorem 5.11. Section 5.3 contains a version of Hilbert’s Nullstellensatz for holomorphic functions vanishing on $Z_{\text{unip}} \cap B_R$, we need this for the uniqueness part of Theorem 5.11. Finally, Section 5.4 is devoted to the proof of our main result, Theorem 5.11, on the existence and uniqueness of expansions of holomorphic functions on X_{unip} in the basis f_{Γ} indexed by macroscopic laminations Γ (i.e., those not containing any of the loops (λ_i) surrounding only one puncture).
5.1. Expansions of $SU_2(\mathbb{C})^\mathcal{F}$-invariant holomorphic functions on \mathbb{B}_R via $F_{\Gamma,m}$.

Recall that the action of the group $SL_2(\mathbb{C})^\mathcal{F}$ on the space $(\mathbb{C}^{2\times 2})^\mathcal{F}$ is given by (3.4).

We start with a simple preliminary lemma.

Lemma 5.1. Let a holomorphic function $F : (\mathbb{C}^{2\times 2})^\mathcal{F} \to \mathbb{C}$ be invariant under the action of $SU_2(\mathbb{C})^\mathcal{F} \subset SL_2(\mathbb{C})^\mathcal{F}$. Then, F is also invariant under the action of $SL_2(\mathbb{C})^\mathcal{F}$.

Proof. Given $A \in (\mathbb{C}^{2\times 2})^\mathcal{F}$ define a holomorphic function φ_A on $SL_2(\mathbb{C})^\mathcal{F}$ by

$$\varphi_A(C) := F(C[A]),$$

By our assumption, this function is constant on $SU_2(\mathbb{C})^\mathcal{F}$. Therefore, the d-th derivative of φ_A at the identity is a \mathbb{C}-linear functional on the space $\text{Sym}^d(su_2(\mathbb{C}))^\mathcal{F}$ which vanishes on the (\mathbb{R}-linear) subspace $\text{Sym}^d(su_2(\mathbb{C}))^\mathcal{F}$. Since $su_2(\mathbb{C}) \simeq \mathbb{C} \otimes_{\mathbb{R}} su_2(\mathbb{C})$ we conclude that all these derivatives vanish. Therefore, φ_A is constant on $SL_2(\mathbb{C})^\mathcal{F}$. \quad \square

Lemma 5.2. (i) Let coefficients $p_{\Gamma,m}$ (indexed by laminations Γ and tuples $m \in \mathbb{Z}_0^\mathcal{F}$) satisfy the estimate $|p_{\Gamma,m}| = O(r^{-(|\Gamma|+2|m|+4|\mathcal{F}|)})$ for some $r > 0$. Then, the series

$$F(A) := \sum_{\Gamma,m} p_{\Gamma,m} F_{\Gamma,m}(A) \quad (5.2)$$

converges absolutely and uniformly on compact subsets of \mathbb{B}_r.

(ii) Moreover, if both $p_{\Gamma,m}, \tilde{p}_{\Gamma,m}$ satisfy the exponential upper bound given above and the corresponding functions F, \tilde{F} coincide on \mathbb{B}_r, then $p_{\Gamma,m} = \tilde{p}_{\Gamma,m}$ for all Γ and m.

Proof. (i) Using simple inequalities $|\text{Tr} (A_1A_2)|^2 \leq (\text{Tr} (A_1A_1^*)^{1/2})(\text{Tr} (A_2A_2^*)^{1/2}$, where $A_1, A_2 \in \mathbb{C}^{2\times 2}$, and $|\text{Tr} (B_1B_2)| \leq \text{Tr} B_1 \text{Tr} B_2$, where $B_1 = B_1^* \geq 0$ and $B_2 = B_2^* \geq 0$, one easily sees that

$$|\text{Tr} (A_1 \ldots A_n)| \leq \prod_{i=1}^n |\text{Tr} (A_iA_i^*)|^{1/2} \quad \text{for all } n \geq 2 \text{ and } A_1, \ldots, A_n \in \mathbb{C}^{2\times 2}.$$

Together with the trivial bound $|\det A| \leq \text{Tr} (AA^*)$ this yields the following estimate:

$$|F_{\Gamma,m}(A)| \leq r^{|\Gamma|+2|m|} \quad \text{for all } A \in \mathbb{B}_r.$$

Therefore, the series (5.2) converges absolutely and uniformly on each closed poly-ball $\mathbb{B}_{r'}$ with $r' < r$ since $\sum_{\Gamma,m} |r'|^{2|m|} \leq (1-r'/r)^{-|\mathcal{F}|} \cdot (1-(r'/r)^2)^{-|\mathcal{F}|} < \infty$.

(ii) Grouping the terms in (5.2) according to their degree of homogeneity $d = |\Gamma|+2|m|$, one sees that each term in the series

$$\tilde{F}(\varepsilon A) - F(\varepsilon A) = \sum_{d \geq 0} \varepsilon^d P^{(d)}(A)$$

must vanish:

$$P^{(d)}(A) := \sum_{\Gamma,m: |\Gamma|+2|m|=d} \tilde{p}_{\Gamma,m} - p_{\Gamma,m} F_{\Gamma,m}(A) = 0$$

for all $A \in (\mathbb{C}^{2\times 2})^\mathcal{F}$. Due to Lemma 3.18 and Lemma 3.19, the polynomials $F_{\Gamma,m}$ are linearly independent. Hence all the coefficients $\tilde{p}_{\Gamma,m} - p_{\Gamma,m}$ must vanish. \quad \square

The next lemma shows that each $SU_2(\mathbb{C})^\mathcal{F}$-invariant holomorphic function defined on a poly-ball \mathbb{B}_R necessarily admits an expansion (5.2) in a smaller poly-ball $\mathbb{B}_{\tilde{\eta}_0 R}$.

Recall that the absolute constant η_0 is introduced in Proposition 3.22.
Lemma 5.3. Given $r > 0$, denote $R := 5\eta_0^{-1}r$. Let $F \in L^2(\mathbb{B}_R)$ be an $SU_2(\mathbb{C})^\mathcal{F}$-invariant holomorphic function on \mathbb{B}_R. Then, there exist coefficients $p_{\Gamma,m}$ indexed by laminations Γ and tuples $m \in \mathbb{Z}_{\geq 0}^r$ such that the following holds:

$$|p_{\Gamma,m}| \leq r^{-|\Gamma|+2|m|+4|\mathcal{F}|} \cdot \|F\|_{L^2(\mathbb{B}_R)} \quad (5.3)$$

for all Γ, m, and

$$F(A) = \sum_{\Gamma,m} p_{\Gamma,m} F_{\Gamma,m}(A) \quad \text{for all} \ A \in \mathbb{B}_r. \quad (5.4)$$

Remark 5.4. Recall that Lemma 5.2(ii) guarantees the uniqueness of the expansion (5.4) provided that $p_{\Gamma,m} = O_{\Gamma + 2|m| \to \infty}(r^{-|\Gamma|+2|m|})$.

Proof. Let $F(A) = \sum_{d \geq 0} F^{(d)}(A)$ be the Taylor expansion of the function F at the origin. Since this expansion is unique, the homogeneous polynomials $F^{(d)}$ of degree d are $SU_2(\mathbb{C})^\mathcal{F}$-invariant. Lemma 5.1 implies that these polynomials are also $SL_2(\mathbb{C})^\mathcal{F}$-invariant so one can expand them in the basis $G_{\Delta,k}$ with $|\Delta| + 2|k| = d$ due to Lemma 3.18. More precisely, Lemma 3.21 yields

$$F^{(d)} = \sum_{\Delta,k : |\Delta|+2|k|=d} q_{\Delta,k} G_{\Delta,k}, \quad \text{where} \ q_{\Delta,k} = \frac{\langle F, G_{\Delta,k} \rangle_{L^2(\mathbb{B}_R)}}{|G_{\Delta,k}|_{L^2(\mathbb{B}_R)}^2}.$$

Due to Proposition 3.22 we have the following estimate:

$$|q_{\Delta,k}| \leq \|F\|_{L^2(\mathbb{B}_R)} \cdot \|G\|_{L^2(\mathbb{B}_R)}^{-1} \leq (\eta_0 R)^{-|\mathcal{F}|} \cdot \|F\|_{L^2(\mathbb{B}_R)}. $$

We now use the expansion $G_{\Delta,k} = \sum_{\Gamma \leq \Delta} c_{\Delta,\Gamma} F_{\Gamma,k + \frac{1}{2}(n(\Delta) - n(\Gamma))}$ provided by Lemma 3.19, which leads to the following identity:

$$F^{(d)} = \sum_{\Gamma,m : |\Gamma|+2|m|=d} p_{\Gamma,m} F_{\Gamma,m}, \quad \text{where} \ p_{\Gamma,m} := \sum_{\Delta \geq \Delta \leq \Gamma + 2m} c_{\Delta,\Gamma} q_{\Delta,m - \frac{1}{2}(n(\Delta) - n(\Gamma))}.$$

One can now easily deduce (5.3) from the estimate $|c_{\Delta,\Gamma}| \leq 4^{|\Delta|}$ provided by Theorem 4.9, the estimate of coefficients $q_{\Delta,k}$ given above and the following crude bound:

$$\sum_{\Delta : |\Delta| \leq d} 4^{|\Delta|} \leq \sum_{n=0}^{d} (n+|\mathcal{F}|-1) 4^n \leq 5^{d+|\mathcal{F}|}.$$

The exponential upper bound (5.3) and Lemma 5.2(i) immediately imply (5.4). \qed

5.2. Holomorphic extensions from $Z_{\text{unip}} \cap \mathbb{B}_R$ to \mathbb{B}_R. This section relies upon the following particular case of Manivel’s Ohsawa–Takegoshi type theorem [15]; see also a very helpful introduction to this subject due to Demailly [6].

Theorem 5.5. Let $k = 4|\mathcal{F}|$, $\mathbb{B}_R \subset (\mathbb{C}^{2 \times 2})^\mathcal{F} \cong \mathbb{C}^k$ be a poly-ball defined by (3.18), and $s : \mathbb{B}_R \to \mathbb{C}^r$ be a holomorphic map such that $|s(A)| \leq e^{-1}$ for all $A \in \mathbb{B}_R$. Let $Z := s^{-1}(0)$ and assume that $ds(A)$ is of maximal rank for a generic point $A \in Z$. Then, each holomorphic function $f : Z^{\text{reg}} := Z \setminus Z^{\text{sing}} \to \mathbb{C}$ such that

$$\int_Z |f|^2 |A'| ds|^{-2} \omega^{k-r} < \infty,$$
admits a holomorphic extension $F : \mathbb{B}_R \to \mathbb{C}$ such that $F|_{Z^{unip}} = f$ and
\[\int_{\mathbb{B}_R} |F|^2(\|s\| \log |s|)^{-2} \omega^k \leq C_{r,k} \int_2 |f|^2|\Lambda' ds|^2 \omega^{k-r}, \]
where $\omega = \frac{i}{2} \sum_{c \in \mathcal{E}} \text{Tr} (dA_c \wedge dA^*_c)$ and the constant $C_{r,k} > 0$ depends only on r and k.

Proof. See [6, p. 54, Theorem 4.1], note that the poly-ball \mathbb{B}_R is a weakly pseudo-convex domain. Since in our case the holomorphic vector bundles L, E are trivial with a constant Hermitian metric, the curvature tensors $\Theta(L), \Theta(E)$ vanish and the condition (a) of [6, p. 54, Theorem 4.1] boils down to the trivial inequality
\[\partial \bar{\partial} \log |s|^2 = |\partial s|^2 \cdot |s|^{-2} - |(\partial s, s)|^2 \cdot |s|^{-4} \geq 0, \]
which holds true for all one-dimensional restrictions $z \mapsto s(A + zB)$ of s. □

We now apply Theorem 5.5 to the variety $Z^{unip} \subset (\mathbb{C}^{2\times2})^\mathcal{E}$ defined by (5.1). For our purposes it is enough to assume that the function f is bounded, we also do not need the sharp weight $(-|s|^\log |s|)^{-2} \geq 1$ in the L^2-norm of its extension F.

Proposition 5.6. Let $R > \sqrt{2}$ and $f : Z^{unip}_{\mathbb{B}_R} \to \mathbb{C}$ be a bounded holomorphic function. Then, there exists a holomorphic extension $F : \mathbb{B}_R \to \mathbb{C}$ such that $F|_{Z^{unip}_{\mathbb{B}_R}} = f$ and
\[\|F\|_{L^2(\mathbb{B}_R)} \leq \text{const}(R, T_\Omega) \cdot \|f\|_{L^\infty(Z^{unip}_{\mathbb{B}_R})}, \]
for some constant depending on R and the triangulation T_Ω but independent of f.

Proof. Denote $s := ((F_{\mathcal{E}, n^\mathcal{E}} - 1)_{e \in \mathcal{E}}, (F_{\mathcal{E}, 2})_{i=1}^n) : (\mathbb{C}^{2\times2})^\mathcal{E} \to \mathbb{C}^{|\mathcal{E}|+n}$ and fix a small positive constant $c(R, T_\Omega)$ so that $c(R, T_\Omega) \cdot |s| \leq e^{-1}$ on \mathbb{B}_R. Due to Theorem 5.5, the function f admits a holomorphic extension F from $Z^{unip}_{\mathbb{B}_R}$ to \mathbb{B}_R such that
\[\|F\|^2_{L^2(\mathbb{B}_R)} \leq C_{|\mathcal{E}|+n, 4|\mathcal{E}|} \cdot c(R, T_\Omega)^{-2(|\mathcal{E}|+n)} \cdot \int_{Z^{unip}_{\mathbb{B}_R}} |\Lambda' ds|^{-2} \omega^{k-r} \cdot \|f\|^2_{L^\infty(Z^{unip}_{\mathbb{B}_R})}. \]
Therefore, it is enough to check that $|\Lambda' ds|^{-2} \in L^1_\text{loc}(Z^{unip}_{\mathbb{B}_R})$.

Let $T \subset \mathcal{E}$, $|T| = n$, be a spanning tree (on $n + 1$ vertices $\partial \Omega, \lambda_1, \ldots, \lambda_n$) of the triangulation T_Ω such that the graph $T \setminus \{\lambda_k, \ldots, \lambda_n\}$ is connected for all $k = n, \ldots, 1$.

Note that the mapping
\[A = (A_e)_{e \in \mathcal{E}} \mapsto ((A_e)_{e \in \mathcal{E}\setminus T}, (B_i)_{i=1}^n), \quad B_i := \text{hol}^\nu(A, (\lambda_i)), \quad (5.5) \]
is a smooth bijection in a vicinity of $\text{SL}_2(\mathbb{C})^\mathcal{E} \cong \text{SL}_2(\mathbb{C})^{\mathcal{E}(\mathcal{T}) \cup \{1, \ldots, n\}}$: one can iteratively reconstruct all the missing matrices $(A_e)_{e \in T}$ from the holonomies B_i, $i = n, \ldots, 1$.

To compute $\Lambda' ds$, we can view the mapping s as acting coordinate-wise in the new coordinates $((A_e)_{e \in \mathcal{E}\setminus T}, (B_i)_{i=1}^n)$:
\[A_e \mapsto \text{det} A_e - 1, \quad B_i \mapsto s_0(B_i) := (\text{det} B_i - 1, \text{Tr} B_i - 2). \]
(More accurately, one should multiply B_i by several factors $(\text{det} A_e)^{-1}$ corresponding to the edges incident to λ_i and possibly by factors $(\text{det} B_j)^{-1}, j > i$, coming from earlier steps of the reconstruction of $(A_e)_{e \in T}$, but all these additional factors do not affect $\Lambda' ds$ on $\text{SL}_2(\mathbb{C})^\mathcal{E}$.) As the gradient of $A \mapsto \text{det} A$ does not vanish on $\text{SL}_2(\mathbb{C})$ there.
is nothing to check for the first coordinates \((A_e)_{e \in \mathcal{E} \setminus T}\). For the coordinates \((B_i)_{i=1}^n\), the only degeneracy of \(ds_0 \wedge ds_0\) on \(s_0^{-1}(0)\) is at \(B = \text{Id}\). Writing
\[
B = \begin{pmatrix}
 t - ix & y + iz \\
 -y + iz & t + ix
\end{pmatrix}, \quad t, x, y, z \in \mathbb{C},
\]
\[
\omega = \frac{1}{4}(dt \wedge d\overline{t} + d\overline{x} \wedge dx + dy \wedge d\overline{y} + dz \wedge d\overline{z}),
\]
\[
\omega = \frac{1}{4}(dt \wedge d\overline{t} + d\overline{x} \wedge dx + dy \wedge d\overline{y} + dz \wedge d\overline{z}),
\]
it remains to check that
\[
\int_{t=1, x^2 + y^2 + z^2 = 0, |x|, |y|, |z| \leq 1} \frac{\omega \wedge \omega}{|x|^2 + |y|^2 + |z|^2} < \infty,
\]
which is straightforward.

Remark 5.7. It is easy to see that Proposition 5.6 remains true (with exactly the same proof) if one replaces the variety \(Z_{\text{unip}}\) by
\[
Z_k := \{ A \in \text{SL}_2(\mathbb{C})^\mathcal{E} \mid \text{Tr}(\text{hol}(A, (\lambda_i))) = 2 \text{ for all } i = 1, \ldots, k \} \tag{5.6}
\]
(note that \(Z_{\text{unip}} = Z_n \subset Z_{n-1} \subset \ldots \subset Z_1 \subset Z_0 = \text{SL}_2(\mathbb{C})^\mathcal{E}\)).

5.3. Nullstellensatz for holomorphic functions vanishing on \(Z_{\text{unip}} \cap \mathbb{B}_R\). The goal of this section is to prove the following analogue of Hilbert’s Nullstellensatz for holomorphic functions on \(\mathbb{B}_R\).

Proposition 5.8. Let \(R > R' > \sqrt{2}\) and a holomorphic function \(F : \mathbb{B}_R \to \mathbb{C}\) vanishes on the set \(Z_{\text{unip}} \cap \mathbb{B}_R\). Then there exist bounded holomorphic functions \(H_e : \mathbb{B}_{R'} \to \mathbb{C}, e \in \mathcal{E}\), and \(H_i : \mathbb{B}_{R'} \to \mathbb{C}, i = 1, \ldots, n\), such that
\[
F(A) = \sum_{e \in \mathcal{E}} H_e(A)(F_{e, R'}(A) - 1) + \sum_{i=1}^n H_i(A)(F_{(\lambda_i)}(A) - 2) \quad \text{for all } A \in \mathbb{B}_{R'}.
\]

Remark 5.9. (i) It is worth noting that, if \(F\) were a polynomial, then the result would follow from the classical Hilbert’s Nullstellensatz as one can easily check that the radical of the ideal \(\mathcal{I} = \langle (\det A_e - 1)_{e \in \mathcal{E}}, (\text{Tr } \text{hol}^V(A, (\lambda_i)) - 2)_{i=1}^n \rangle\) coincides with \(\mathcal{I}\).

(ii) Although one can prove Proposition 5.8 by means of algebraic geometry, below we prefer to take advantage of the analytic tools already introduced in the previous section (namely, Proposition 5.6 and Remark 5.7) and the following simple lemma.

Lemma 5.10. Let \(t(B) := \text{Tr } B - 2, Y := \{ B \in \text{SL}_2(\mathbb{C}) \mid t(B) = 0 \}\), and \(V \subset \text{SL}_2(\mathbb{C})\) be an open subset. If a holomorphic function \(f : V \to \mathbb{C}\) vanishes on \(Y \cap V\), then the ratio \(f/t\) is a locally bounded holomorphic function on \(V\).

Proof. If \(\text{Id} \notin V\), this fact easily follows from the local analysis since \(Y \cap V\) is smooth in \(V\) and \(dt\) does not vanish there. In the opposite case, let \(U \subset V\) be a small neighborhood of \(\text{Id} \in V\). The same local analysis implies that the ratio \(f/t\) can be viewed as a holomorphic function on \(V \setminus U\) and the Hartogs extension theorem guarantees the existence of its holomorphic extension in the whole \(V\). \(\square\)

Proof of Proposition 5.8. Let \(Z_{\text{unip}} = Z_n \subset Z_{n-1} \subset \ldots \subset Z_1 \subset Z_0 = \text{SL}_2(\mathbb{C})^\mathcal{E}\) be given by (5.6) and \(B_i := \text{hol}(A, (\lambda_i))\) as in the proof of Proposition 5.6; recall that each \(Z_k\) is cut off by the equations \(t_1 = \ldots = t_k = 0\), where \(t_i := \text{Tr } B_i - 2\).

Consider the meromorphic function \(F/t_n\) on \(Z_{n-1} \cap \mathbb{B}_R\) and recall the coordinates (5.5) from the proof of Proposition 5.6. If one fixes all \((A_e)_{e \in \mathcal{E} \setminus T}\) and \((B_i)_{i=1}^{n-1}\),
then Lemma 5.10 guarantees that the ratio F/t_n is a holomorphic function of the last coordinate B_n. Therefore, there exists a holomorphic function $h_n : Z_{n-1} \cap \mathbb{B}_R \to \mathbb{C}$ such that $F = t_n \cdot h_n$ on $Z_{n-1} \cap \mathbb{B}_R$. Due to Remark 5.7, for each $R_{n-1} < R$ one can find a holomorphic extension $H_n : \mathbb{B}_{R_{n-1}} \to \mathbb{C}$ of the (bounded on $Z_{n-1} \cap B_{R_{n-1}}$) function h_n. As $t(B_n) = \text{Tr} \circ \text{hol}(A, (\lambda_n)) - 2$ on $\text{SL}_2(\mathbb{C})^\mathcal{E}$, one has

$$F_{n-1}(A) := F(A) - H_n(A)(F_{\lambda_n}(A) - 2) = 0 \quad \text{for all} \quad A \in Z_{n-1} \cap \mathbb{B}_{R_{n-1}}$$

and one can iterate this procedure considering the ratio F_{n-1}/t_{n-1} on $Z_{n-2} \cap \mathbb{B}_{R_{n-2}}$ with $R_{n-2} < R_{n-1} < R_n$, etc. After n steps, one obtains the existence of holomorphic functions $H_i : \mathbb{B}_{R_0} \to \mathbb{C}$ such that

$$F_0(A) := F(A) - \sum_{i=1}^{n} H_i(A)(F_{\lambda_i}(A) - 2) = 0 \quad \text{for all} \quad A \in \text{SL}_2(\mathbb{C})^\mathcal{E} \cap \mathbb{B}_{R_0},$$

where R_0 can be chosen so that $R' < R_0 < R$.

In order to complete the proof and to construct the required functions $(H_e)_{e \in \mathcal{E}}$ in addition to $(H_i)_{i=1}^n$ one simply repeats the same arguments for the collection of functions $(\det A_e - 1)_{e \in \mathcal{E}}$ instead of $(t_i)_{i=1}^n$. Since the manifold $\text{SL}_2(\mathbb{C})^\mathcal{E} \subset (\mathbb{C}^{2 \times 2})^\mathcal{E}$ is smooth, there is even no need in an analogue of Lemma 5.10 along this procedure. □

5.4. Expansions of holomorphic functions on X_{unip} via f_Γ, Γ – macroscopic. Recall that the mapping ϕ is given by (3.8) and let

$$\mathbb{D}_R := \phi(Z_{\text{unip}} \cap \mathbb{B}_R) \subset X_{\text{unip}}.$$

Theorem 5.11. Given $r > \sqrt{2}$, denote $R := 5\eta_0^{-1}r$. Let $f : \mathbb{D}_R \to \mathbb{C}$ be a bounded holomorphic function on \mathbb{D}_R. Then, there exist coefficients p_Γ indexed by macroscopic laminations Γ such that the following holds:

$$|p_\Gamma| \leq r^{-|\Gamma|} \cdot \text{const}(r, \mathcal{T}_\Omega) \cdot \|f\|_{L^\infty(\mathbb{D}_R)} \quad (5.7)$$

for all Γ and

$$f(\rho) = \sum_{\Gamma \text{ - macroscopic}} p_\Gamma f_\Gamma(\rho) \quad \text{for all} \quad \rho \in \mathbb{D}_r. \quad (5.8)$$

Moreover, this expansion is unique provided that $\frac{1}{2}\eta_0 r > \sqrt{2}$ and $p_\Gamma = O_{|\Gamma| \to \infty}(r^{-|\Gamma|})$.

Proof. To prove the existence of coefficients p_Γ consider a holomorphic function $F : \mathbb{B}_R \to \mathbb{C}$ obtained by applying Proposition 5.6 to the function $f \circ \phi : Z_{\text{unip}} \cap \mathbb{B}_R \to \mathbb{C}$. Recall that one has

$$\|F\|_{L^2(\mathbb{B}_R)} \leq \text{const}(R, \mathcal{T}_\Omega) \cdot \|f\|_{L^\infty(\mathbb{D}_R)}.$$

Note that we can in addition assume that the function F is invariant under the action of $\text{SU}_2(\mathbb{C})^\mathcal{F}$ on $\mathbb{B}_R \subset \text{SL}_2(\mathbb{C})^\mathcal{E}$. Indeed, one can always replace F by its average $\langle F \rangle_{\text{SU}_2(\mathbb{C})^\mathcal{F}}$ over the orbits of this action: the norm of F in $L^2(\mathbb{B}_R)$ does not increase under this averaging due to (3.27) and one still has $\langle F \rangle_{\text{SU}_2(\mathbb{C})^\mathcal{F}} = f \circ \phi$ on $Z_{\text{unip}} \cap \mathbb{B}_R$ since the mapping ϕ is invariant under the action of $\text{SL}_2(\mathbb{C})^\mathcal{F}$.

Thus we can use Lemma 5.3 to expand F in \mathbb{B}_r as

$$F(A) = \sum_{\Gamma, m} p_{\Gamma, m} F_{\Gamma, m}(A), \quad A \in \mathbb{B}_r,$$
where \(|p_{\Gamma,m}| \leq r^{-(|\Gamma|+2|m|+4|\xi|)} \cdot \|F\|_{L^2(\mathbb{B}_r)} \) and the series converges absolutely and uniformly on each smaller poly-ball \(\mathbb{B}_r \), \(r' < r \).

Note that each lamination can be represented as a disjoint union of a macroscopic lamination \(\Gamma \), \(k_1 \) copies of \((\lambda_1) \), \(k_2 \) copies of \((\lambda_2) \) and so on. For shortness, below we use the notation \(\Gamma \cup (\lambda_k) \) to describe such a lamination, where \(k = (k_i)_{i=1}^n \in \mathbb{Z}^n_{\geq 0} \). By definition,

\[
F_{\Gamma \cup (\lambda_k),m}(A) = F_{\Gamma}(A) \cdot \prod_{i=1}^n (F_{(\lambda_i)}(A))^{k_i} \cdot \prod_{\lambda \in \mathcal{E}} (\det A_\lambda)^m e.
\]

Since one has \(\det A_\epsilon = 1 \) and \(F_{(\lambda_i)}(A) = 2 \) for \(A \in \mathbb{Z}_{unip} \), we get the identity

\[
F(A) = \sum_{\Gamma - \text{macroscopic}} p_\Gamma F_{\Gamma}(A), \quad A \in \mathbb{Z}_{unip} \cap \mathbb{B}_r,
\]

where \(p_\Gamma := \sum_{k \in \mathbb{Z}^n_{\geq 0}, m \in \mathbb{Z}_{\geq 0}} p_{\Gamma\cup(\lambda_k),m} \cdot 2^{k|} \). As \(n(\Gamma \cup (\lambda_k)) \geq n(\Gamma) + 2|k| \), it is easy to see that

\[
|p_{\Gamma}| \leq \sum_{k \in \mathbb{Z}^n_{\geq 0}, m \in \mathbb{Z}_{\geq 0}} 2^{k|} r^{-(|\Gamma\cup(\lambda_k)|+2|m|+4|\xi|)} \cdot \|F\|_{L^2(\mathbb{B}_r)} \leq (1-2r^{-2})^n (1-2r^{-2})^{|\xi|} r^{-(|\Gamma|+4|\xi|)} \|F\|_{L^2(\mathbb{B}_r)}.
\]

This gives the desired exponential upper bound (5.7) for \(|p_{\Gamma}| \).

We now move on to the uniqueness of expansion (5.8). Assume that two sequences of coefficients \(p_\Gamma, \tilde{p}_\Gamma \) satisfy the upper bound \(|p_{\Gamma}|, |\tilde{p}_{\Gamma}| = O(r^{-|\Gamma|}) \) as \(|\Gamma| \to \infty \) and that the corresponding series (5.8) coincide on \(\mathbb{D}_r \). Denote

\[
F(A) := \sum_{\Gamma - \text{macroscopic}} (\tilde{p}_\Gamma - p_\Gamma) F_{\Gamma}(A) \quad \text{for} \quad A \in \mathbb{B}_r \quad (5.9)
\]

Recall that this series converges absolutely and uniformly on compact subsets of \(\mathbb{B}_r \) due to Lemma 5.2(i). Therefore, \(F \) is a holomorphic function on \(\mathbb{B}_r \) which vanishes along \(\mathbb{Z}_{\text{unip}} \). Due to Proposition 5.8 one can find bounded holomorphic functions \((H_\epsilon)_{\epsilon \in \mathcal{E}} \) and \((H_{\lambda})_{1 \leq i \leq n} \), defined on \(\mathbb{B}_{r'}, r' < r \), such that

\[
F(A) = \sum_{\epsilon \in \mathcal{E}} H_\epsilon(A)(F_{\emptyset,n_\epsilon}(A) - 1) + \sum_{i=1}^n H_{\lambda_i}(A)(F_{(\lambda_i)}(A) - 2), \quad A \in \mathbb{B}_r.
\]

Moreover, since all the functions \(F, F_{\emptyset,n_\epsilon} \) and \(F_{(\lambda_i)} \) are \(SU_2(\mathbb{C})^F \)-invariant, one can assume that all the functions \(H_{\lambda}, \alpha \in \mathcal{E} \cup \{\lambda_1, \ldots, \lambda_n\} \) are invariant as well by averaging each of them over orbits of the action of the compact group \(SU_2(\mathbb{C})^F \) on \(A \in \mathbb{B}_r \).

We proceed with expanding these functions in \(F_{\Gamma,m} \) as provided by Lemma 5.3. Namely, for each \(\varrho < \frac{1}{2} hr' \) and \(\alpha \in \mathcal{E} \cup \{\lambda_1, \ldots, \lambda_n\} \) one has

\[
H_\alpha(A) = \sum_{\Gamma,m} p_{\Gamma,m}^{(\alpha)} F_{\Gamma,m}(A) \quad \text{for} \quad A \in \mathbb{B}_\varrho, \quad \text{where} \quad |p_{\Gamma,m}^{(\alpha)}| = O(\varrho^{-|\Gamma|+2|m|+4|\xi|}).
\]

We arrive at the following expansion on \(\mathbb{B}_\varrho \):

\[
F(A) = \sum_{e \in \mathcal{E}} \sum_{\Gamma,m} p_{e\Gamma,m} F_{\Gamma,m}(A)(F_{\emptyset,n_\epsilon}(A) - 1) + \sum_{i=1}^n \sum_{\Gamma,m} p_{e\Gamma,m}^{(\lambda_i)} F_{\Gamma,m}(A)(F_{(\lambda_i)}(A) - 2).
\]
As $F_{\Gamma,m}(A)F_{\emptyset,n^*}(A) = F_{\Gamma,m+n^*}(A)$ and $F_{\Gamma,m}(A)F_{(\lambda_i)}(A) = F_{\Gamma\cup(\lambda_i),m}(A)$, the last expansion must coincide with (5.9) due to the uniqueness part of Lemma 5.2. In particular, for each macroscopic lamination Γ_0 we get

$$
(\hat{p}_{\Gamma_0} - p_{\Gamma_0})F_{\Gamma_0}(A) = \sum_{e \in E} \sum_{k,m} p_{e;\Gamma_0\cup(\lambda_k),m}(e) F_{\Gamma_0\cup(\lambda_k),m}(A)(F_{\emptyset,n^*}(A) - 1) + \sum_{i=1}^n \sum_{k,m} p_{e;\Gamma_0\cup(\lambda_k),m}(e) F_{\Gamma_0\cup(\lambda_k),m}(A)(F_{\lambda_i}(A) - 2).
$$

Let ϱ be chosen so that $\varrho > \sqrt{2}$. Then one can substitute $A = \text{Id} = (\text{Id})_{e \in E}$ into the last equality. The right-hand side vanishes and hence $\hat{p}_{\Gamma_0} = p_{\Gamma_0}$.

\textbf{Proof of Theorem 1.2.} Due to the existence part of Theorem 5.11 an entire function $f \in \text{Fun}_{\text{hol}}(X_{\text{unip}}^{\text{SL}_2(\mathbb{C})})$ admits an expansion (1.5) on each bounded subset of X_{unip}. It follows from the uniqueness part of Theorem 5.11 that the coefficients of all these expansions coincide provided that the corresponding subsets of X_{unip} are big enough. Finally, the estimate (5.7) implies (1.6).

\textbf{Acknowledgements.} The authors are grateful to Vladimir Fock for several discussions of the material presented in Section 4. We would like to thank Julien Dubédat for a feedback on [7], and Adrien Kassel and Richard Kenyon for a feedback on [11, 14]. M.B. is also grateful to Jason Starr and David E. Speyer for a MathOverflow discussion of a purely algebro-geometric approach to the material of Section 5.3. This project was started in 2015/16 during the SwissMAP master class in planar statistical physics, the authors are grateful to the University of Geneva for the hospitality during the program.

\textbf{References}

[1] John W. Barrett. Skein spaces and spin structures. \textit{Math. Proc. Cambridge Philos. Soc.}, 126(2):267–275, 1999.
[2] Nathanaël Berestycki, Benoît Laslier, and Gourab Ray. Universality of fluctuations in the dimer model. \textit{ArXiv e-prints}, arXiv:1603.09740, 2016.
[3] Francis Bonahon and Helen Wong. Quantum traces for representations of surface groups in $\text{SL}_2(\mathbb{C})$. \textit{Geom. Topol.}, 15(3):1569–1615, 2011.
[4] Alexey Bufetov and Vadim Gorin. Fourier transform on high-dimensional unitary groups with applications to random tilings. \textit{ArXiv e-prints}, arXiv:1712.09925, 2017.
[5] Doug Bullock. Rings of $\text{SL}_2(\mathbb{C})$-characters and the Kauffman bracket skein module. \textit{Comment. Math. Helv.}, 72(4):521–542, 1997.
[6] Jean-Pierre Demailly. On the Ohsawa-Takegoshi-Manivel L^2 extension theorem. In \textit{Complex analysis and geometry (Paris, 1997)}, volume 188 of \textit{Progr. Math.}, pages 47–82. Birkhäuser, Basel, 2000.
[7] Julien Dubédat. Double dimers, conformal loop ensembles and isomonodromic deformations. \textit{ArXiv e-prints}, arXiv:1403.6076, 2014.
[8] Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teichmüller theory. \textit{Publ. Math. Inst. Hautes Études Sci.}, 103:1–211, 2006.
[9] William Fulton and Joe Harris. \textit{Representation theory}, volume 129 of \textit{Graduate Texts in Mathematics}. Springer-Verlag, New York, 1991.
[10] Michio Jimbo, Tetsuji Miwa, and Kimio Ueno. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function. \textit{Phys. D}, 2(2):306–352, 1981.
[11] Adrien Kassel and Richard Kenyon. Random curves on surfaces induced from the Laplacian determinant. *Ann. Probab.*, 45(2):932–964, 2017.

[12] Richard Kenyon. Conformal invariance of domino tiling. *Ann. Probab.*, 28(2):759–795, 2000.

[13] Richard Kenyon. Dominos and the Gaussian free field. *Ann. Probab.*, 29(3):1128–1137, 2001.

[14] Richard Kenyon. Conformal invariance of loops in the double-dimer model. *Comm. Math. Phys.*, 326(2):477–497, 2014.

[15] Laurent Manivel. Un théorème de prolongement L^2 de sections holomorphes d’un fibré hermitien. *Math. Z.*, 212(1):107–122, 1993.

[16] Julien Marché. Character varieties in SL_2 and Kauffman skein algebras. *ArXiv e-prints*, arXiv:1510.09107, 2015.

[17] Jason Miller, Scott Sheffield, and Wendelin Werner. CLE percolations. *Forum Math. Pi*, 5:e4, 102, 2017.

[18] John Palmer. Determinants of Cauchy-Riemann operators as τ-functions. *Acta Appl. Math.*, 18(3):199–223, 1990.

[19] Józef H. Przytycki and Adam S. Sikora. On skein algebras and $\text{SL}_2(\mathbb{C})$-character varieties. *Topology*, 39(1):115–148, 2000.

[20] Wei Qian and Wendelin Werner. Decomposition of Brownian loop-soup clusters. *ArXiv e-prints*, arXiv:1509.01180, 2015.

[21] Alain Robert. *Introduction to the representation theory of compact and locally compact groups*, volume 80 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge-New York, 1983.

[22] Marianna Russkikh. Dominos in hedgehog domains. *ArXiv e-prints*, arXiv:1803.10012, 2018.

[23] Oded Schramm. Conformally invariant scaling limits: an overview and a collection of problems. In *International Congress of Mathematicians. Vol. I*, pages 513–543. Eur. Math. Soc., Zürich, 2007.

[24] Oded Schramm and Scott Sheffield. A contour line of the continuum Gaussian free field. *Probab. Theory Related Fields*, 157(1-2):47–80, 2013.

[25] Scott Sheffield and Wendelin Werner. Conformal loop ensembles: the Markovian characterization and the loop-soup construction. *Ann. of Math. (2)*, 176(3):1827–1917, 2012.

[26] Stanislav Smirnov. Towards conformal invariance of 2D lattice models. In *International Congress of Mathematicians. Vol. II*, pages 1421–1451. Eur. Math. Soc., Zürich, 2006.

[27] Patrice Tauvel and Rupert W. T. Yu. *Lie algebras and algebraic groups*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

[28] Dylan Paul Thurston. Positive basis for surface skein algebras. *Proc. Natl. Acad. Sci. USA*, 111(27):9725–9732, 2014.

[29] Menglu Wang and Hao Wu. Level lines of Gaussian free field I: Zero-boundary GFF. *Stochastic Process. Appl.*, 127(4):1045–1124, 2017.

[30] Hao Wu. Alternating Arm Exponents for the Critical Planar Ising Model. *ArXiv e-prints*, arXiv:1605.00985, 2016.