Adenoviruses have been associated with or related to bovine pneumonia, enteritis or pneumo-enteritis especially in young or newborn calves (Kahrs, 2001).

In this communication, we report an outbreak of PA in newborn calves from a large collective farm that resembled the WCS published 30 years ago (Cutlip and McClurkin, 1975 and McClurkin and Coria, 1975). Similar clinical cases were first noted in Israel almost a decade ago, although no conclusive results were obtained about the causative agent (Brenner et al., 1998).

Bovine adenoviruses were initially identified when a virus that was antigenically related to a human adenovirus was isolated (Klein et al., 1959, 1960).

Another group of investigators has reproduced clinical disease in susceptible young calves by infecting them with adenovirus isolated from sheep (Belák et al., 1977; Türky et al., 1978).

In this current outbreak, however, bovine adenovirus involvement was ascertained by using an indirect laboratory technique that is generally used to confirm the presence of adenovirus in the faeces of diarrhoeic children.

Materials and Methods
In cases of neonatal diarrhoea complex, faecal samples are routinely assayed at the Kimron Veterinary Institute (KVI) for the following causative agents: *Enterotoxigenic Escherichia coli (K99+/F5) (ETEC)*, *rotavirus and coronavirus, Cryptosporidium parvum* and *Coccidia* and *Salmonella* spp. The *Salmonella* assay is routinely performed up to the identification of the *Salmonella* group and is further typed serologically in the Central Laboratory for Enterobacteriaceae, Ministry of Heath (Brenner et al., 1993, 2000;). In addition, the faecal culture includes gastrointestinal fungi, such as *Candida* spp. (Elad et al., 1998, 2002;). Upon specific request, intestinal *Chlamydia* spp. are investigated by isolation, immunofluorescence or PCR (Brenner et al., 2001) as is the case when PA is suspected, where *Chlamydia*, *Mycoplasma* and other bacteria that might be involved in neonatal PA are also taken into consideration (Meirorn et al., 1996).

The newborn rearing regimen
Most farms have adopted the colostral regimen that is generally recommended in Israel (Brenner, 1991), which
Detection of Unidentified Type of Adenovirus

remains the principal source of energy until weaning. (powder) and dry cottonseeds, although the milk substitute from day 4, which includes mainly, a mixture of milk substitute. From day 4, it receives a milk substitute. Dry food is offered while the neonate continues to receive colostrum till day 3.

Case report

On May 1, 2003, four faecal samples from diarrhoeic calves between 7 and 10 days old, from a large collective dairy farm, arrived at the KVI for routine diagnosis of ruminant associated enteropathogens.

The local veterinary practitioner stated that from the first meal, immediately after birth, the newborn calves were reluctant to suckle or drink colostrum and therefore, the breeder resorted to feeding them by means of a gastric tube for several days. Improvement was seen after intravenous treatment with electrolytes and glucose but approximately 12% mortally was recorded. Five of 40 female calves died during this outbreak while the male calves were culled immediately after birth. Diarrhoea was noted from the third to fourth day after birth. Antibiotics were administered to the diarrhoeic calves at the beginning of the outbreak and were discontinued because the veterinarian noted no improvement.

The bacteriological assays were carried out on the faecal samples immediately upon arrival at the KVI and the samples were refrigerated overnight for rotavirus and corona virus tests on the following day. Twenty-four hours later, while awaiting further diagnostic procedures, a white-brown patina was noted on the surface of the faecal samples. This unusual phenomenon was of particular interest and a visit was made to the farm’s neonatal unit to investigate possible sources of contamination.

A single carcass was brought for necropsy, but because of autolysis it was not suitable for histological examination. Aqueous humour was drawn for antigenic assay.

Clinical findings on the farm

The clinical manifestations previously describe by the local veterinarian were corroborated upon the visit. The affected calves were unusually weak at birth, reluctant to suckle colostrum and milk, were unable to rise without assistance and when forced to move, walked stiffly, suggestive of painful joints. Two newly born calves and their dams were still present in the individual calving pens situated within the calving premises.

These two calves were extremely weak. Stifle, hock, carpal and tarsal joints were enlarged and on palpation of the adjacent tissues, sub cutaneous oedema and crepitations were felt. From each enlarged joint, about 10 ml of blood-tinged synovial fluid was easily aspirated, in which fibrin clots were seen shortly after withdrawal. Ecchymotic haemorrhages were noted on the sclera.

Marked joint swelling was observed in other calves that were kept in individual pens, and in several cases a fluid filled swelling distal to the carpus denoted seepage of the synovia from the joint cavity. The fresh faeces on the ground were dotted with drops of frank blood. Older calves between 2 and 8 weeks showed alopecia around the joints, suggestive of a previous episode of polyarthritis.

Microbiological examinations

Tests for detecting intestinal yeast, enteric bacteria (F5+/K99 ETEC, Salmonella spp.) viruses (rotavirus, coronavirus) and protozoa (Cryptosporidium parvum) were performed on all faecal samples, as previously described (Brenner et al., 1993, 2000). Attempts to isolate and to identify Mycoplasma spp. were carried out as described by Levisohn et al. (2004). Acetone fixed synovial and faecal smears were examined by direct immunofluorescence using monoclonal fluorescein-isothiocyanate conjugated antibodies to a group specific chlamydial antigen (Cellabs, Brookvale, NSW, Australia).

Adenovirus examination

A commercial kit RidaQuick rotavirus/adenovirus-combi test (R-Biopharm, AG, Darmstadt. Geman) was used for the detection of adenovirus in faeces, in synovial fluid and in aqueous humor. The procedure was carried out as recommended by the manufacturers.

The information provided by r-biopharm states that the relevant reagent incorporated in the one step immuno chromatographic assay for identification of adenovirus is designated as 2Hx-2-, a monoclonal immunoglobulin G2a (IgG2a), directed against adenovirus group-specific antigen. The manufacturer claims that the sensitivity and specificity are 100% and 99%, respectively.

In order to corroborate the ability of RidaQuick rotavirus/ adenovirus-combi to detect bovine adenovirus antigen in pathological materials, the assay was repeated with faecal material spiked with bovine adenoviruses (serotypes 3 and 5) provided by V. Pálfí, Hungary. The faeces were tested both prior to and after spiking.

Results

Microbiological findings

The fungi, bacteria and viruses findings are summarized in Table 1. No other bacteria including Mycoplasma spp. and Chlamydia spp. were found.

Adenovirus detection

All the samples from pathological cases which included eight faecal samples, two intra-articular fluids, and one aqueous

Adenovirus detection

All the samples from pathological cases which included eight faecal samples, two intra-articular fluids, and one aqueous
Discussion

This report describes the first confirmation of adenovirus involvement in an episode of neonatal calf diarrhoea that resembled the weak calf syndrome noted elsewhere (Cutlip and McClurkin, 1975; McClurkin and Coria, 1975). Detection of bovine adenovirus was by a commercial kit (Rida® Quick rotavirus/adenovirus-combi) geared for human adenovirus diagnosis. This kit enables virus detection in few minutes.

The presence of adenovirus in the intestine as well as in the synovial fluid and aqueous humour in contrast to negative results from control animals strengthens our primary suspicion of this episode resembling the WCS published elsewhere (Cutlip and McClurkin, 1975; McClurkin and Coria, 1975; Stauber et al., 1975).

Some authors have suggested that endothelial cell damage in small capillaries may be the initial lesion leading to ischaemia and increased vascular permeability resulting in diffuse haemorrhages at anatomical sites where there is a well developed vessel-bed, such as the intestines, joints and eye (Bulmer et al., 1975; Türy et al., 1978).

Canadian authors reported that diarrhoeic calves infected with adenovirus were also heavily infected with fungi that they considered being a secondary infection in immuno compromised calves (Bulmer et al., 1975). Under certain management regimes, the presence of yeasts in the gastrointestinal tract might be associated with NCD (Elad et al., 1998). In a clinical controlled trial, Israeli authors found that dam’s milk might exert a favourable effect on diarrhoeic calves with intestinal candidiasis (Elad et al., 2002). They concluded that dam’s milk is able to reduce adhesion of C. glabrata to epithelial cells when compared with milk substitutes.

The presence of corona virus, Cryptosporidium parvum, Salmonella (anatun); S.C1, Salmonella Hadar; C.g, Candida glabrata; C.c, Candida candida; G.c Geotrichum candidum; Pos+/number of faeces samples available for testing.

humor, reacted by demonstrating a specific precipitate line as did the reference adenoviruses, while ten faecal samples from healthy neonates and ten diarrhoeic samples not related to this outbreak did not show this line.

Table 1. Microbiological findings in diarrhoeic faeces taken from calves between 1 to 10 days old with weak calf syndrome symptoms

	Rotav.	Cry.	S.E.	S.C1	C.g	C.c	G.c
3/8	2/5	3/7	3/7	3/8	5/7	3/7	

References

Belák, S., V. Pálfí, T. Szekerés, and E. Túry, 1977: Experimental infection of calves with an adenovirus isolated from sheep and related to type 2 adenovirus. Zbl. Vet. Med. B 24, 542–547.

Brenner, J. 1991: Passive lactogenic immunity in calves: a review. Isr. J. Vet. Med. 46, 1–12.

Brenner, J., D. Elad, A. Markovics, A. Grinberg, and Z. Trainin, 1993: Epidemiological study of neonatal calf diarrhoea in Israel – a one-year survey of faecal samples. Isr. J. Vet. Med. 48, 113–116.

Brenner, J., D. David, M. Benerenst, and D. Elad, 1998: Description on an episode of multifocal polyarthritises of unknown aetiology in newborn calves. Isr. J. Vet. Med. 53, 102–104.

Brenner, J., S. Friedman, and D. Elad, 2000: Prevalence of enteropathogenic organisms from the feces and carcasses of young cattle in Israel from 1990 to 1997. Isr. J. Vet. Med. 55, 5–9.

Brenner, J., Y. Yaakovovich, and M. Benerenst, 2001: Intestinal chlamydiosis in the progeny of imported beef cattle: first detected in Israel. Isr. J. Vet. Med. 56, 62–64.

Bulmer, V. S., K. S. Tsai, and P. B. Little, 1975: Adenovirus infection in two calves. J. Am. Vet. Med. Ass. 166, 233–238.

Cutlip, R. C., and A. W. McClurkin, 1975: Lesions and pathogenesis of disease in young calves experimentally induced by bovine adenovirus type 5 isolated from calf weak syndrome. Am. J. Vet. Res. 36, 1095–1098.

Elad, D., J. Brenner, A. Markovics, B. Yacobson, S. Shlomovitz, and J. Basan, 1998: Yeast in the gastrointestinal tract of preweaned calves and possible involvement of Candida glabrata in neonatal calf diarrhoea. Mycopathology: 141, 7–14.

Elad, D., J. Brenner, A. Markovics, S. Shlomovitz, J. Basan, and N. Schwartz, 2002: The influence of diet on the shedding of Candida glabrata by experimentally infected preweaned calves. Vet. J. 164, 265–279.

Kahrs, R. F. 2001: Adenoviruses. Viral Diseases of Cattle. pp. 81–87. Iowa State University Press, Ames.

Klein M., E. Early, and J. Zellat, 1959: Isolation from cattle of a virus related to human Adenovirus. Proc. Soc. Exp. Biol. Med. 102, 1–4.

Klein M., E. Early, and T. C. Michaelson, 1960: A new bovine adenovirus related to human adenovirus. Proc. Soc. Exp. Biol. Med. 105, 340–342.

Levisohn, S., S. Garazi, I. Gershmanand, and J. Brenner, 2004: Diagnosis of a mixed mycoplasma infection associated with a severe outbreak of bovine pinkeye in young calves. J. Vet. Diagn. Invest. 16, 579–581.

McClurkin, A. W., and M. F. Coria, 1975: Infectivity of bovine adenovirus type 5 recovered from a polyarthrititic calf with weak calf syndrome. J. Am. Vet. Med. Ass. 167, 139–141.

Meirion, R., S. Moss, M. Benerenst, and J. Brenner, 1996: The association between tumor necrosis factor-(TNF), interleukin-6 (IL-6) and microbiological findings in the synovial fluid of aborted and neonatal calves. J. Vet. Med. B 43, 439–444.
Detection of Unidentified Type of Adenovirus

Scott, P. 1995: Differential decumbency in the neonatal calf. In Practice 17, 162–165.
Stauber, E., H. W. Renshaw, C. Boro, D. Mattson, and F. W. Frank, 1975: Isolation of a subgroup two adenovirus from calf with weak calf syndrome. Can. J. Comp. Med. 40, 98–103.

Türy, E., S. Belák, V. Pálfí, and T. Szekeres, 1978: Experimental infection of calves with an adenovirus isolated from sheep and related to type 2 adenovirus. II. Pathological and histopathological studies. Zbl. Vet. Med. B 25, 45–51.