The Cytochrome P450 Superfamily Complement (CYPome) in the Annelid Capitella teleta

Chris A. Dejong, Joanna Y. Wilson*

Department of Biology, McMaster University, Hamilton, Ontario, Canada

Abstract

The Cytochrome P450 super family (CYP) is responsible for a wide range of functions in metazoa, having roles in both exogenous and endogenous substrate metabolism. Annelids are known to metabolize polycyclic aromatic hydrocarbons (PAHs) and produce estrogen. CYPs are postulated to be key enzymes in these processes in annelids. In this study, the CYP complement (CYPome) of the annelid Capitella teleta has been robustly identified and annotated with the genome assembly available. Phylogenetic analyses were performed to understand the evolutionary relationships between CYPs in C. teleta and other species. Predictions of which CYPs are potentially involved in both PAH metabolism and steroidogenesis were made based on phylogeny. Annotation of 84 full length and 12 partial CYP sequences predicted a total of 96 functional CYPs in C. teleta. A further 13 CYP fragments were found but these may be pseudogenes. The C. teleta CYPome contained 24 novel CYP families and seven novel CYP subfamilies within existing families. A phylogenetic analysis identified that the C. teleta sequences were found in 9 of the 11 metazoan CYP clans. Two CYPs, CYP3071A1 and CYP3072A1, did not cluster with any metazoan CYP clans. We found xenobiotic response elements (XREs) upstream of C. teleta CYPs related to vertebrate CYP1 (CYP3060A1, CYP3061A1) and from families with reported transcriptional upregulation in response to PAH exposure (CYP4, CYP331). C. teleta had a CYP51A1 with ~65% identity to vertebrate CYP51A1 sequences and has been predicted to have lanosterol 14 α-demethylase activity. CYP376A1, CYP3068A1, CYP3069A1, and CYP3070A1 were the most appropriate candidates for steroidogenesis genes based on their phylogeny and warrant further analyses, though no specific aromatase (estrogen synthesis) candidates were found. Presence of XREs upstream of C. teleta CYPs may indicate a functional aryl hydrocarbon receptor in C. teleta and candidate CYPs for studies of PAH metabolism.

Introduction

The Cytochrome P450 (CYP) superfamily of protein enzymes are found in all domains of life [1,2]. CYPs catalyze a monooxygenase reaction [3] of compounds that fall into two general categories: exogenous (i.e. xenobiotics) and endogenous (e.g. steroids and lipids) substrates. CYPs are involved in both the synthesis and catabolism of important biological signaling molecules. CYPs involved in metabolism of endogenous substrates typically act on a small number of very similar, structurally related molecules. CYPs responsible for metabolism of xenobiotics generally have more flexible active sites to allow them to act on a wider array of substrates.

All newly identified CYPs are named by the Cytochrome P450 nomenclature committee, using standard conventions for this gene superfamily. CYPs are named by amino acid sequence identity; genes with 40% and 55% identity are placed in the same family and subfamily, respectively [4]. CYPs are named by family and subfamily using a numeral and letter, respectively. The specific gene is given a number, by order of discovery [4]. For example CYP19A1 is in family 19, subfamily A and has a gene number of 1.

Since the early 2000’s there have been several studies focused on the CYP genome complements (CYPomes) in metazoa, with studies completed on vertebrates [5–7], hemichordates [8], insects [9], crustaceans [10], and Cnidaria [11]. Many more CYPomes have been partially completed and unpublished CYPomes have been made available on the Cytochrome P450 webpage [12]. The smallest number of genes in a metazoan CYPome was found in the sponge Amphimedon queenslandica (35 CYP genes) and the largest metazoan CYPome identified so far included ~235 genes in the lancelet, Branchiostoma floridae [13]. Vertebrate genomes typically contain 57–102 CYP genes [14].

Vertebrate steroidogenesis is well understood; the specific genes and proteins and the substrates and intermediates involved have been identified. CYPs and the hydroxysteroid dehydrogenases (HSDs) are the primary enzymes responsible for vertebrate steroidogenesis. The first step in the steroid pathway is the long-chain cleavage of cholesterol to pregnenolone via CYP11A1 [15]. The production of estradiol (18 carbon) from lanosterol (30...
Table 1. Subset of highly conserved motifs across the *Capitella teleta* CYPome.

CYP	K-helix	Meander Coil		
	AA	EXXR	AA	FDPER
CYP10B1	341	ETRF	393	FKPER
CYP20A1	338	ESLR	390	FDPER
CYP26D1	348	EVLR	400	FDPDR
CYP3052A1	362	ELLR	415	FEPER
CYP3052A10	365	ELLR	418	FEPER
CYP3052A2	361	ELLR	414	FEPER
CYP3052A3	361	ELLR	414	FEPER
CYP3052A4	349	ELLR	378	. . PER
CYP3062A1	359	EVYR	412	FNPON
CYP3062A2	372	EVYR	425	FNPNR
CYP3063A1	358	EMIR	411	FNPDR
CYP3064A1	335	EVLR	388	FNPDR
CYP3065A1	379	ETYR	432	FRPER
CYP3065A2	336	ETYR	389	FRPER
CYP3065A3	336	ETYR	389	FRPER
CYP3065A4	377	ECYR	430	FKPER
CYP3065B1	375	ETRF	428	FKPER
CYP3066C1	380	ESLR	432	FNPKR
CYP3067A1	344	ESFR	400	FKYDR
CYP3068A1	336	EMLR	388	FDPYR
CYP3069A1	312	ETLR	364	FNPQD
CYP3070A1	366	ETLR	418	FNPDR
CYP331A2	363	ETLR	418	FEPER
CYP371B1	403	EALR	455	FIPER
CYP372A1	346	ESFR	391	FIPER
CYP399B1	347	ESIR	398	FKPER
CYP44C1	359	EGFR	411	FIPER
CYP47A1	356	ESLR	409	YDPER
CYP48K4	304	ESMR	356	FRPDR
CYP49E1	399	ESLR	452	YPER
CYP49V5	367	ETLR	419	FIPDR
CYP51A1	364	ETLR	416	FNPDR

Two motifs (K-helix, and meander coil) are represented in an aligned format to show conservation across the *C. teleta* CYPs. Bolded letters represent conserved residues. AA is the amino acid number where the motif begins in each gene. The expected motif sequence is given in each heading for comparison. The glutamic acid and arginine residues in the meander coil are conserved across the entire CYPome. doi:10.1371/journal.pone.0107728.t001

Carbon) is a six to eight enzymatic step process and involves CYPs from families 11, 17, 19, 21 [15]. The sex steroids are one of the end products of steroidogenesis. CYP19A has the aromatase function, which is responsible for estrogen production from androgen precursors. The CYP19A gene has only been found in chordates, though is predicted to have more ancestral origins [16].

Capitella teleta is a polychaete annelid found in marine environments along the Pacific and Atlantic shores around the continental United States, Japan and the Mediterranean [17]. There has been an interest in determining the identity and function of CYPs in *C. teleta*, primarily focused on deciphering their ability to metabolize xenobiotics and polycyclic aromatic hydrocarbons (PAHs; see [18,19]). This stems from research that found *C. teleta* to be the most opportunistic invertebrate after a 1969 oil spill in Massachusetts [20] and a concentration dependent increase in CYP-dependent activity with exposure to PAHs [21] in *Capitella* spp. More recently, differences in tolerance to PAHs and capacity for PAH metabolism amongst *Capitella* species have been investigated [22,23]. Two CYPs in *C. teleta*, CYP331A1 (a novel family) and CYP44AT1, have been identified and their expression was increased in response to various PAHs, suggesting a possible role of these CYPs in PAH metabolism [18].

Invertebrate endocrine systems have been much less studied that their vertebrate counterparts. Yet, data show that multiple
endocrine active agents, sometimes including steroids typical in vertebrates, are present in invertebrate lineages [24]. Annelids are one group of invertebrates thought to produce and utilize the vertebrate sex steroid estradiol. *C. teleta* and *Platynereis dumerilii*, another marine annelid, had estrogen receptors (ERs) that responded to exogenous estrogen and regulated downstream gene expression, the first species with this function identified outside the vertebrates [25]. The annelid *Nereis virens* had detectable aromatase activity, likely occurring in the gut epithelium [26]. Despite having detectable aromatase activity, the protein responsible for this function remains unknown. CYPome studies in annelid species may provide clues to the evolution of the steroidogenesis pathway in metazoa and whether annelid invertebrates utilize the same enzymes for de novo sex steroid production.

The objective of this study was to annotate the *C. teleta* CYPome. The *C. teleta* CYPome is the first detailed analysis of a lophotrochozoan CYPome, providing important information on CYP content and evolution in an understudied metazoan superphyla. This study examines the potential role of the various CYPs in exogenous metabolism, particularly PAHs, and hypothesizes which CYPs may have a role in *C. teleta* steroidogenesis.

Results

Eighty-four full length CYPs were identified and annotated from the *C. teleta* assembly [v1]; the entire list of CYPs, their genomic location, size, and nomenclature are provided in Table S1. There were twelve partial CYP sequences identified that aligned well with existing ESTs but could not be completed based on the current assembly (Table S2). There were thirteen partial

Table 2. Subset of less conserved motifs across the *Capitella teleta* CYPome.

CYP	[A/G]GX(D/E)T[T/S]	Heme Loop	AA	PFXXGXRVCXG
CYP10B1	GAVETT		415	PFGHGARMCIG
CYP20A1	AGFHTT		410	PFSGFRKCLG
CYP26D1	AGYETT		421	PFSGSRSCAG
CYP3052A1	AGTATT		440	PFAGPRVCLG
CYP3052A2	AGTATT		439	PFAGPRVCMLG
CYP3052A3	GGTATT		439	PFAGPRVCLG
CYP3052A4	AGTATT		401	PFAGPRVCLG
CYP3062A2	AGTESM		447	PFAGMRPCPG
CYP3063A1	AGTETS		437	PFAGKRCIG
CYP3064A1	GVSDGS		410	PFSMGCRSGV
CYP3065A1	DSDLTL		452	PFVGRSCPQ
CYP3065A2	DSDLTL		409	PFVGRSCPQ
CYP3065A3	DSDLTL		409	PFVGRSCPQ
CYP3065A4	DSDLTL		450	PFLGPRACAG
CYP3066C1	SGHSTV		452	PFSGRSCPQ
CYP3067A1		424	PFGS...LCPG
CYP3068A1	ASQETL		411	PFQAGNTCVG
CYP3069A1	GAQETL		383	PFGGAAVCVG
CYP3070A1	AGIDST		436	PFSGLORSCG
CYP331A2	AGIDST		438	PFAGPRNCIG
CYP371B1	GAIDDT		476	PFAGARSCG
CYP372A1	AGIDST		414	PFAGPRNCIG
CYP372B1	PNIEIDRST		421	PSHGLRACPG
CYP398I	ASLANA		419	PFSGGFRCPG
CYP44C1	DGMIIT		432	PFCGPRMCPG
CYP4AT1	BGHDTT		429	PFSAGPRNCIG
CYP4EE1	BGHDTT		472	PFSAGPRNCIG
CYP4V25	BGHDTT		439	PFSAGLRNCIG
CYP51A1	AGQHTS		437	PFQAGHRNCG

Two motifs (I-helix, and heme loop) are represented in an aligned format to show conservation across the *C. teleta* CYPs. Bolded letters represent conserved residues. AA is the amino-acid number where the motif begins in each gene. The expected motif sequence is given in each heading for comparison. The cysteine residue in the heme loop are conserved across the entire CYPome. Note the lack of conservation in CYP372B1 (I-helix) and CYP3067A1 (I-helix and heme loop).

doi:10.1371/journal.pone.0107728.t002
CYP sequences identified that lacked any EST support (Table S3); whether these were genes or pseudogenes remains unclear. Based on the names assigned by the cytochrome P450 nomenclature committee, the predicted *C. teleta* CYPs were found in 9 of the 11 known metazoan CYP clans [13] and predicted 24 novel CYP families and 7 novel CYP subfamilies.

All of the full length CYPs contained at least some signature CYP motifs (Tables 1 and 2; Tables S4 and S5). The I-helix motif \([\text{A/G}]\text{X}[\text{D/E}][\text{T/S}]\) [27]; had conservation of at least three of the six amino acids in all but thirteen *C. teleta* CYPs (CYP3065A1–4, CYP3065B1, CYP3066A1–3, CYP3066C1, CYP3067A1, CYP372B1, and CYP39B1). The remaining CYPs had obvious sequence homology, with a majority of the conservation at the ends in the I-helix motif, even though this is the most poorly conserved motif of the four examined. The K-helix motif was fully conserved across all of the *C. teleta* sequences with no exceptions to the E-X-X-R consensus sequence (Table 1) [27]. The meander coil was conserved across all of the annotated sequences, although CYP372B1 and CYP4EE1 has substitutions for the first two amino acids in the motif (Table 1). Lastly, the

Figure 1. Phylogenetic tree of Cytochrome P450s in metazoa. The tree was completed on RaxML using non-parametric bootstrapping with a gamma distribution. The tree was rooted with CYP51. The black names are the *Capitella teleta* sequences. The tree is colour coded by clan: clan 2 orange, clan 3 dark green, clan 4 teal, clan 7 salmon, clan 19 light blue, clan 20 dark blue, clan 26 red, clan 46 lime green, clan 51 beige, mitochondrial clan yellow, and the two sequences that do not fit into a clan (CYP3071A1 and CYP3072A1) are purple.

doi:10.1371/journal.pone.0107728.g001
CYP21 sequences.

six genes were from the mitochondrial clan (Figure 2). A single (Figure 1).

(CYP3070A1), CYP51 (CYP51A1). Interestingly, there were a (CYP20A1), CYP27s (CYP371B1), CYP39 (CYP39B1), CYP46 (CYP3067A1), CYP51 (CYP51A1). Interestingly, there were a CYP7s/CYP306s (CYP3067A1), CYP11A (CYP376A1), CYP20 (CYP20A1), CYP27s (CYP371B1), CYP39 (CYP39B1), CYP46 (CYP3070A1), CYP51 (CYP51A1). Interestingly, there were a small numbers of genes (4 sequences) that clustered with CYP26s (Figure 1).

CYPome of Capitella teleta was examined [8]. C. telata sequences that clustered with the CYP17 or (CYP7s/CYP306s) were additionally verified using the PASA output for (CYP3067A1) and (CYP3061A1), were examined. These CYP genes were either closely related to vertebrate CYP1s (CYP3060A1, and 3061A1) or genes that were upregulated in response to PAH exposure (CYP331A and CYP4 [18]). CYP331A had three XREs within 10 kb of the start site, the remaining CYP331A genes had no XREs. CYP331B1, CYP3060A1, and CYP3061A1, and CYP4AT1 each had one XRE 10 kb upstream. Multiple XREs were found upstream of CYP4V25 (two) and CYP4BK4 (four). Only CYP4EE1, of the (C. teleta) CYP4s, had zero XREs upstream of the start site. There was a p-value of 5.96e−05 and q-value of 1 for each of the sites, this was calculated using overall genome base frequencies.

Discussion

CYPome Annotation

Annotation of CYPomes can be challenging when working in species that are distantly related to those with a defined CYPome, because the searches are based on homology to known, yet distant species: (C. teleta) is the first lophotrochozoan to have its CYPome annotated and vertebrate sequences were primarily used in our initial searches. These reference vertebrate sequences were well curated, with very high confidence in their annotation, including exon boundaries, making any manual corrections from the PASA output for (C. teleta) more reliable. Annotations of (C. teleta) were additionally verified using (C. elegans) and (D. pulex) sequences for unique hits and no significant regions were found that the vertebrate sequences missed. Overall, our analysis predicted eighty-four full length CYPs, and identified twelve partial CYP sequences that aligned well with existing ESTs, and thirteen partial CYP sequences that lacked any EST support. Our analysis of the (C. teleta) CYPome has identified 24 novel families and 7 novel subfamilies. CYP26 contained two new subfamilies and CYP4, CYP10, CYP39, CYP44, CYP532 each had one new subfamily in (C. teleta). The CYPomes of non-chordate phyla often contain novel CYP families [12,14]: (C. elegans) contained 14 unique families [12] and the (D. melanogaster) CYPome contained 24 families with most families unique to arthropods [9].
During manual annotation it was important to ensure that genes had a length of ~1500 bp, the average length for a CYP. Start (ATG) and stop (TAA/TAG/TGA) codons were noted and always present, as well as appropriate splice signals (GT/AG) [29] at intron/exon boundaries. The numbers of exons were not well conserved between related CYPs in other species. Exon number was taken into consideration between related sequences within C. teleta during searches for missing exons where EST data was lacking for annotation.

All of the fully annotated C. teleta CYPs had EST support covering all or almost all of the gene. A notable exception was CYP3052C1, which was missing EST data for exons one and two. Homology searches in the expected upstream and downstream regions were able to identify the missing exons. There were 12 incompletely annotated CYPs with EST support and these were presumed to be functional, full length genes though they could not be resolved with the existing genome assembly. Thus, the total number of CYPs identified in C. teleta was 96, which fall into the range predicted by Nelson and colleagues [13] and is comparable to the 50–100 genes found in vertebrate CYPomes [5–7], 120 genes in the sea urchin S. purpuratus [8], 75 genes in the crustacean Daphnia pulex [10], 83 genes in the insect D. melanogaster [9] and 82 genes in the sea anemone N. vectensis [11]. C. teleta had an average number of CYPs for a metazoan CYPome.

There were 13 gene fragments that may be pseudogenes. These fragments lacked EST support or had identifiable early stop codons. The number of possible pseudogenes per functional gene (.14) is higher than noted in other species: Daphnia pulex has.04 [10], C. elegans has.1 [12] and D. melanogaster has.08 [9] pseudogene per gene. It is possible that a small number of these fragments were functional genes. One CYP on scaffold 342 had EST support but had an in frame stop codon in the first exon.

To provide support for the annotation process, the identified CYPs were examined for conserved CYP motifs. The heme binding region starts around amino acid 430 and has a well conserved motif of PXXGXXRXXCG (the 'X' represents a non conserved amino acid); the cysteine, until recently, was considered the only absolutely conserved amino acid in all known CYPs, although exceptions have been documented [28]. There are three other well conserved motifs: portions of the I-helix, [A/G][GX][E/ D][T/][S], located around amino acid 300; K-helix, EXXR, located around amino acid 360; and an area known as the ‘meander coil’, FDPER, located around amino acid 410 [30]. The K-helix motif is incredibly well conserved in CYPs, with only a handful of known exceptions to the two conserved amino acids [31]. These motifs are important when analyzing potential CYPs, if one or more of these regions are missing, or out of place, it is likely that the gene was constructed incorrectly, a pseudogene or not a CYP at all.

The high conservation in the motifs (Tables 1 and 2) was expected and supports our annotation of these genes as CYPs. The least conserved domain is the I-helix, and our findings in C. teleta support this; CYP3065A1–4, CYP3065B1, CYP3066A1–3, CYP3066C1, CYP3067A1, and CYP372B1, CYP39B1 all have lower conservation in the I-helix. The gaps in CYP3067A1 and the insertion in CYP372B1 are peculiar. Whether these genes are fully functional may be questioned, yet, there is EST support to show that they are expressed.

The C. teleta CYPome phylogenetic analysis (Figure 1) contains almost exclusively vertebrate sequences, along with the C. teleta sequences we identified. The arrangement of the clans was consistent with previous work, down to the family level of the known sequences [6,7]. It was difficult to add any sequences outside of vertebrates because of their divergence from vertebrate and C. teleta sequences and the lack of sequences that would help provide definitive phylogenetic relationships. When Drosophila melanogaster sequences were added to the phylogeny the bootstrap support was very weak, especially in clan 2–4 where most D. melanogaster sequences were added, and this is likely due to the evolutionary distance between vertebrates, insects and annelids. The D. melanogaster CYPome paper [9] provides a prime example of the difficulty in creating phylogenies between vertebrates and invertebrate CYP sequences. There were major branches (i.e. those that separate clans) with less than 10% bootstrap support [9]. The more recent D. pulex CYPome [10] had much better support at the clan level (support beyond the clan level was not provided), which was due to increased saturation in arthropod CYPs from available insect CYP sequences and basal chordate CYPs. As genome sequences become available from a wider array of species across the major metazoan phyla, the evolutionary distance between CYPomes will be reduced and help improve the phylogenetic analyses.

The clan phylogenies (Figures 3–5) have additional invertebrate sequences to help resolve nodes within the major clans found in the C. teleta CYPome. The phylogenies are rooted using plant and fungi CYPs, these sequences were the closest CYPs to the clans that were being rooted on the CYP webpage [12]. Using closely related clans as an outgroup, such as clan 46 for the clan 3 and 4 phylogeny, did not provide robust bootstrap support. The clan 2 phylogeny (Figure 3) included sequences from C. elegans, the clan 3 and 4 phylogeny (Figure 4) included D. pulex, D. magna, and C. elegans. sequences, and the mitochondrial phylogeny (Figure 5) incorporated sequences from D. pulex, Caenorhabditis spp., and H. robusta. The addition of these sequences in the clan phylogenies increased the support for the internal nodes (data not shown). The sequence similarity data and phylogenetic analyses have provided information to infer the placement of the C. teleta CYPs into clans and assign nomenclature.

Clan Distribution

C. teleta possesses CYPs from all the metazoan clans except for 19 and 74. Clan 19 has not been found outside chordates [32] and clan 74 had not been found outside anemone and placozoa [13], although it has been recently found in amphioxus [16]. C. teleta is the first protostome analyzed to have representation in clan 46. CYP46 is the only clan 46 CYP gene in vertebrates and functions as a cholesterol 24-hydroxylase in the brain [33]. Since C. teleta CYP3070A1 had only 35% identity with human CYP46A1, it is difficult to predict whether the function is conserved in the C. teleta ortholog. In silico molecular docking or 3D modeling of the protein may help support or refute the possibility that cholesterol is a substrate of CYP3070A1.

There are 53 full length clan 2 CYPs in C. teleta, representing ~60% of the total CYPome (Figure 2). This is the second largest in relative size for known CYPomes and is smaller only to S. purpuratus (~70%, Figure 2). Insects generally have only 5.5–10% of their CYPs in clan 2 [10]. The function of many insect
clan 2 CYPs are unknown but some are known for their role in ecdysone synthesis [10]. Clan 2 CYPs are much more important for metabolism of exogenous compounds in mammals [34].

All of the C. teleta clan 2 CYPs were located in novel CYP families; indeed the C. teleta clan 2 sequences had 14 novel CYP families made up from 20 subfamilies. It has been postulated that a large number of CYPs related to families involved in exogenous metabolism (i.e. families 1–4) may suggest evolutionary pressure towards diverse function [11]. The largest family was CYP3052 with 24 sequences; these sequences made up the majority of the large standalone cluster of 33 C. teleta CYPs on the phylogenetic tree (Figure 1). If this family of C. teleta CYPs follows the trend of other large CYP families, namely families CYP1–4, then these proteins may be involved in xenobiotic metabolism.

There were five novel families with a single sequence each (CYP3060–3063 and CYP3065) that were CYP1-like. There were fewer CYP1-like genes in C. teleta than were found in S. purpuratus [11] but similar to what is typical (3–4 CYP1 genes) in vertebrates [8,12]. Of the two families that grouped with CYP2s, CYP3058 clustered more closely with C. elegans sequences than vertebrate CYP2 sequences in the clan 2 phylogeny (Figure 3). Of the other family, CYP3059, clustered with vertebrate CYP2R, although the bootstrap support in the clan 2 phylogeny was quite low (Figure 3) suggesting the placement of this family is uncertain with respect to the vertebrate CYP2 families. The function of the C. elegans CYPs are unknown but vertebrate CYP2s are well known for their role in xenobiotic metabolism [34]. CYP3057A1 and CYP3064A1 were basal in this clan and had high divergence from the remaining sequences.

The clan 3 phylogeny had sequences from across all metazoan phyla. Clan 3 contains families CYP3 and CYP5 in vertebrates, but is represented by different families in invertebrates such as families CYP6 and CYP9 [35]. Mammalian CYPs are known to have very flexible active sites that can accommodate structurally diverse substrates. CYP3A4 is the most important enzyme involved in drug metabolism in humans but other CYP3s are also important in metabolism of endogenous and exogenous compounds [33]. Clan 3 CYPs are involved in both endogenous and exogenous metabolism in arthropods [10]. C. teleta had two clan 3 families with a total of nine CYPs; both families were novel. N. vectensis had 20 clan 3 CYPs [11], S. purpuratus had 10 [8], and D. melanogaster has an expanded clan 3 with 36 CYPs [9]. Mammals appear to have a much smaller number of clan 3 genes than many invertebrate species; humans have just five clan 3 sequences from a single subfamily [5].

The C. teleta clan 3 sequences included CYP331A1, which had been previously described [18]. CYP331A1 had increased expression from exposure to benzo[2]pyrene (BaP) and fluoranthene, two PAHs [18]. The CYP331 family has been expanded in this annotation with two more CYP331A genes and the CYP331B1 gene.

The CYP4 family was expanded in D. melanogaster (32) and other insects [9], but was relatively limited in N. vectensis (5) [11]. There were five clan 4 CYPs in C. teleta and all were from the CYP4 family. CYP4V25 was an ortholog to CYP4Vs yet was below the 55% sequence identity threshold used during standard nomenclature. All of the top BLAST hits for CYP4V25 were CYP4Vs from various species (data not shown). Furthermore, CYP4Vs have been found in molluscs and crustaceans (DR Nelson, personal communication). Collectively, this information supports the placement of this sequence into the CYP4V family despite the low sequence identity to other gene members. Little is known of CYP4 function outside vertebrates. CYP4C has a role in juvenile hormone synthesis in the cockroach Blaberus discoidalis [36]. In vertebrates, CYP4s primarily metabolize endogenous compounds, specifically fatty acids, although they do metabolize some exogenous pharmaceuticals (e.g. erythromycin) [37]. Yet, even in mammals the function of CYP4V is unknown [33].

Like the CYP4Vs, the function of CYP20A1 remains unclear in vertebrates. The C. teleta CYP20A1 is ~40% identical to other CYP20A1s but is a clear ortholog (Figure 1) with no other closely related sequences. CYP20A1 has been documented in invertebrates such as S. purpuratus and H. robusta [13]. It is interesting that CYP20A1 has unknown function yet has such clear homology between annelids and vertebrates.

CYP10 has been identified in molluscs and has been suggested as the only family in the mitochondrial clan in molluscs [38]. Since orthologs have now been identified in two major phyla, the C. teleta CYP10 may suggest that CYP10 is present in all lophotrochozoans. Interestingly, CYP10 was not the only mitochondrial CYP in C. teleta. CYP44 was placed in the mitochondrial clan; a CYP44 homolog has also been found in C. elegans [12], roundworms and molluscs [13]. Thus, CYP10 and CYP44 may be expected mitochondrial CYPs in lophotrochozoans.

PAH and xenobiotic metabolism

C. teleta has been long known to metabolize PAHs in sediment, and it has been suggested that CYPs were responsible [39,40]. BaP was metabolized, likely by CYPs, in another annelid, Nereis virens [40]. There is conflicting data on whether CYPs are transcriptionally upregulated after PAH exposure in N. virens (primarily tested with BaP exposure), with some studies reporting a 2-fold increase in CYPs and others reporting no change (reviewed by [40]). In C. teleta, two CYPs (CYP4AT1 and CYP331A1) had a 1.9–2.6 fold increased expression with exposure to some PAHs, including BaP [18]. CYP4AT1 had 1.25 to 1.9 fold increase in gene expression after exposure to PAH contaminated sediments [18]. Interestingly, there were 3 genes found for Capitella teleta in the CYP331 family, two of which were in the same (CYP331A1) subfamily.

An important factor to consider is the presence of CYP coenzymes in these reactions such as cytochrome P450 reductase and cytochrome b5 [41]. The current putative JGI C. teleta transcriptome assembly predicts the presence of cytochrome P450 reductase (estExt_Genewise1Plu.C_990037) and cytochrome b5 (estExt_Genewise1C_2000018), which shows the presence of coenzymes necessary for functional CYP activity in this species.

Vertebrates, including mammals, mediate metabolism of PAHs through CYP1A and CYP1 gene expression is increased with exposure to PAHs (reviewed in [43]), through transcriptional activation via the aryl hydrocarbon receptor (AHR) pathway [44]. In mammals, the CYP2B and CYP2C subfamilies are also important for PAH metabolism [42] but these subfamilies are not present in all vertebrates. The AHR is activated by planar PAHs and halogenated aromatic hydrocarbons; TCDD is the ligand with the highest affinity for this receptor in many species [45]. AHRs transcriptionally regulate a battery of genes through interaction with a specific sequence, the xenobiotic or dioxin
response element (XRE or DRE) [46]. Many AHR ligands, including PAHs, are also substrates for CYP1 enzymes [45]. AHRs are present in invertebrates and the amino acid sequence of the DNA binding domain is similar to that found in vertebrates. Indeed, AHRs from *Drosophila* [47], *C. elegans* [48], and *Mya arenaria* [49] are capable of binding with the mammalian XRE sequence. Therefore, we examined the upstream region of the CYP1-like (CYP3060A1 CYP3061A1), CYP331 and CYP4AT genes in *C. telata* to determine if XREs were present (Table 3). CYP331A1 had three XREs within 10 kb of the start site, but CYP4AT1 had only one. The difference in the number of XREs between these two CYPs may explain the difference in expression during BaP exposure, since there is a relationship between the number of XREs and the relative upregulation of the gene [50]. During BaP exposure, CYP4AT1 had four XREs in the 10 kb upstream region. Should the AHR have a role in regulating gene transcription in *C. telata* after exposure to PAHs, we would predict that CYP4BK4 would have the greatest transcriptional response. Considering the structural link between AHR ligands and CYP1 substrates in vertebrates, we will shed light on to role of the AHR and XREs in *C. telata* and the potential role these CYPs may play in PAH metabolism.

Steroidogenic CYPs

CYP331A1 enzymes are responsible for lanosterol-14-alpha-demethylation; the conversion of lanosterol into cholesterol [51]. Cholesterol is the precursor to steroids and this function is expected in all species with endogenous steroid production. The next step in vertebrate steroidogenesis is cholesterol-side-chain-cleavage, which is completed by CYP11A1 in vertebrates and converts cholesterol to pregnenolone [15]. There was one *C. telata* CYP (CYP376A1) that clustered with the CYP17 family in the phylogenetic tree (Figure 1) and is the best candidate for the single copy *C. telata* that will make annotating other lophotrochozoan CYPomes easier.

CYP	Number of XREs 10 kb upstream
CYP331A1*	3
CYP331A2	0
CYP331A3	0
CYP331B1	1
CYP4V25	2
CYP4AT1*	1
CYP4BK4	4
CYP4EE1	0
CYP3060A1	1
CYP3061A1	1

Each gene was searched for the consensus xenobiotic response element (XRE) sequence TNGCCTG [39], 10 kb upstream of the start site. Genes were chosen based on homology to vertebrate CYP1s and genes from clan 3 and 4. Genes were searched in the 10 kb upstream region. The asterisks mark the genes which were transcriptionally upregulated with exposure to the PAHs benzo[a]pyrene, 3-methylcholanthrene, or fluoranthene [18]. p-value of 5.96e-05 and q-value of 1 for all sites.

doi:10.1371/journal.pone.0107728.t003

Figure 5. Phylogeny of Cytochrome P450 mitochondrial clan. The sequences are identical to those in Figure 1 with added invertebrate sequences to increase internal node resolution. The tree was completed on RamL using non-parametric bootstrapping with a gamma distribution. *C. teleta* sequences are in black, all other sequences are in gray. The phylogeny was rooted using CYP19s and *Arabidopsis thaliana* CYP86s. doi:10.1371/journal.pone.0107728.g005
teleta is known to survive well in polluted environments and two CYP genes CYP331A1 and CYP4AT1 were known to be transcriptionally regulated by PAHs [18]. Indeed, several more closely related homologs were identified in this study. XRE positions close to vertebrate steroidogenic CYPs shown in this study were used in the phylogenetic analyses, although there was a focus on the CYPs with low copy number and phylogenetic analyses were retrieved from the Cytochrome P450 web-page [12]. Many vertebrate sequences were used in the phylogenetic analyses were retrieved from the Cytochrome P450 database (National Center for Biotechnology Information, July 2012) had approximately 130,000 reads. The other sequences used in phylogenetic analyses were retrieved from the Cytochrome P450 database (Joint Genome Institute, University of California); the gene assembly used for this study was version 1 of the genome assembly (r2012-06-25) [55] according to homology. Since there are no closely related candidates for 17β-hydroxylase and aromatase enzymes, which are carried out by CYP17A and CYP19A, respectively, in vertebrates. Considering that C. teleta produces de novo estradiol, these reactions are likely undertaken by other CYPs. Future studies on invertebrate steroidogenesis should focus on the CYPs with low copy number and phylogenetic positions close to vertebrate steroidogenic CYPs shown in this study. In silico protein folding and docking studies may provide important clues to narrow the number of candidates genes for steroidogenic CYPs and direct future functional studies.

Methods

The C. teleta genome used for this study was version 1 of the assembly (Joint Genome Institute, University of California); the genome assembly had approximately 7.9x coverage with 21,042 scaffolds with a total size of 333.7 Mb. The EST database (National Center for Biotechnology Information, July 2012) had approximately 130,000 reads. The other sequences used in phylogenetic analyses were retrieved from the Cytochrome P450 web-page [12]. Many vertebrate sequences were used in the analyses, although there was a focus on Danio rerio, Mus musculus, and Homo sapiens; species which have had rigorous annotation of their CYPome [7,12,33]. A select number of CYP sequences from invertebrates were included: Halobis diversicolor [12], Crassostrea gigas (NCBI), Daphnia pulex [10] and Helobdella robusta (JGI). For some phylogenies, Caenorhabditis spp. sequences were added [12].

Gene annotation

The Capitella teleta EST database was assembled with PASA (r2012-06-25) [55], to align and extend the ESTs to each other and to align them to the C. teleta genome. Homology searching of ESTs was performed using all CYPs from human and zebrafish using tBLASTn (v2.2.27) [56]. Hits were compiled and the regions hit were manually refined in Mesquite (v2.75) [60] at the amino acid level. The N- and C-termini of CYPs are more divergent and were hard masked from further analysis. ZORRO (r2011-12-01) [61], a soft masking tool, was used on the remainder of the alignment. The phylogenetic analysis was conducted using a total of 220 sequences on RAxML (v7.4.2) [62] with 100 bootstraps using the slower algorithm (-b) with a gamma distribution. The clan 2 phylogeny had additional C. elegans sequences, the clan 3 and 4 phylogeny included from Daphnia pulex, Daphnia magna and C. elegans sequences, and the mitochondrial clan phylogeny incorporated sequences from D. pulex, Caenorhabditis spp., and H. robusta. The maximum likelihood analyses were based on the VT substitution model with fixed base frequencies (phylogeny of all clans), MTMAM substitution model with fixed base frequencies (clan 2 phylogeny), LG substitution model with empirical base frequencies (clan 3 and 4 phylogeny), or JTT substitution model with empirical base frequencies (mitochondrial clan phylogeny). The appropriate models were determined by ProtTest (v3.2) [63]. To root the phylogenetic trees, CYPs outside the clans were chosen; the clan 2 phylogeny used CYP family 504 genes from fungus (Magnaporthe grisea), the clan 3 and 4 phylogeny used CYP72s from Arabidopsis thaliana, and the mitochondrial clan phylogeny used CYP86s from A. thaliana and vertebrate CYP19s. These roots were selected based on closely related out-groups from David Nelson’s “singlefam tree* on the Cytochrome P450 webpage [12].

All predicted C. teleta CYP genes were named by the cytochrome P450 nomenclature committee using the sequences provided, syntenys data available and the phylogenetic trees generated in this study. STRAP (r2013-02-26) [64] was used for the motif work and Figtree (v1.4.0) was used to generate the figures of the phylogenetic trees.

Searches for the xenobiotic response element (XRE, TNCCGTG) [65] in the 10 kb upstream region of the predicted start site in each gene of families CYP331, CYP4 and CYP3061 used the MEME suite (v4.9.1) [66].

Supporting Information

Table S1 Cytochrome P450 superfamily complement in Capitella teleta. Temporary names were based off the scaffold they were found on. Length is in amino acids. CYPs were named by the CYP nomenclature committee. There are a total of 84 full length CYPs. Only complete CYPs are listed. (XLSX)

Table S2 Incomplete cytochrome P450s in Capitella teleta. Temporary names are based off the scaffold they were found on. The listed CYPs are not full length and are missing exons but have EST support. (DOCX)
Table S3 Cytochrome P450 fragments in Capitella teleta. Temporary names are based off the scaffold they were found on. None of these fragments have EST support, except for p_342, suggesting they may be pseudogenes. P_342 had an early stop codon and is a pseudogene.

(DOCX)

Table S4 Highly conserved motifs across the Capitella teleta CYPome. Two motifs (K-helix, and meander coil) are represented in an aligned format to show conservation across the C. teleta CYPs. Bolded letters represent conserved residues. AA is the amino acid number where the motif begins in each gene. The expected motif sequence is given in each heading for comparison. The cysteine residue in the heme loop are conserved across the entire CYPome. Note the lack of conservation in CYP372B1 (I-helix) and CYP3067A1 (I-helix and heme loop).

(DOCX)

Acknowledgments

We thank Jed Goldstone and David Nelson for the review of the nomenclature and annotation of the sequences.

Author Contributions

Conceived and designed the experiments: JYW CAD. Performed the experiments: CAD. Analyzed the data: CAD. Contributed reagents/materials/analysis tools: CAD. Wrote the paper: JYW CAD.

References

1. Nelson DR (2013) Progress in tracing the evolutionary paths of cytochrome P450. BBA Proteins Proteom 1814: 14–18.
2. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369: 1–10.
3. Nebert DW, Gonzalez FJ (1987) P450 genes: Structure, evolution, and regulation. Annu Rev Biochem 56: 945-999.
4. Nelson DR, Koyama I, Kamataki T, Stegeman JJ, Feyereisen R, et al. (1996) P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenet Genom 6: 1–42.
5. Lewis DPV (2000) 67 varieties: The human cytochromes P450. Pharmacogenomics 5: 305–318.
6. Nelson DR (2003) Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch Biochem Biophys 409: 18–24.
7. Goldstone J, McArthur A, Kubota A, Zanette J, Parente T, et al. (2010) Identification and developmental expression of the full complement of cytochrome P450 genes in zebrasch. BMC Genomics 11: 643.
8. Goldstone J, Handoum A, Cole B, Howard-Ashby M, Neberd D, et al. (2006) The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol 300: 366-384.
9. Tijet N, Helvig C, Feyereisen R (2001) The cytochrome P450 gene superfamily in drosophila melanogaster: Annotation, intron-exon organization and phylogeny. Gene 262: 189–196.
10. Baldwin W, Marko P, Nelson D (2008) The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genomics 10: 169-181.
11. Goldston J (2008) Environmental sensing and response genes in ciliatia: The chemical defensome in the sea anemone Neutomaovutus atalla. Cell Bioi Toxicol 24: 483-502.
12. Nelson DR (2005) The cytochrome P450 homologue. Hum Genomics 4: 59–65.
13. Nelson DR, Goldston J, Stegeman J (2013) The cytochrome P450 superfamily locus: The origin and evolution of animal cytochrome P450s. Philos Trans R Soc B Biol Sci 368: 20120474.
14. Nelson DR (2013) Progress in tracing the evolutionary paths of cytochrome P450. BBA Proteins proteom 1814: 14–18.
15. Baker ME (2011) Origin and diversification of steroids: Co-evolution of enzymes and nuclear receptors. Mol Cell Endocrinol 334: 14–20.
16. Borden WD, Tarrant AM, Novillo A, Yacci P, Ciaccia L, et al. (2011) The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol 300: 366-384.
17. Bach L, Palmqvist A, Rasmusson LJ, Forbes VE (2005) Differences in PAH tolerance between capitella species: Underlying biochemical mechanisms. Aquat Toxicol 74: 307–319.
18. Jager G, Porte C (2007) Sex steroids and potential mechnisms of non-genomic endocrine disruption in invertebrates. Environ Toxicol 16: 145–160.
19. Keel J, Thornton JW (2009) Hormone-activated estrogen receptors in anadelt invertebrates: Implications for evolution and endocrine disruption. Endocrinol 150: 1731–1738.
20. Garcia-Alonso J, Rebecchi N (2003) Estradiol signalling in Nereis virides reproduction. Invertebr Reprod Dev 48: 95–100.
21. Lee RF, Singer SC (1980) Detoxifying enzymes system in marine polychaetes: Polychaete cytochrome P450 genes, belonging to CYP4 and a new CYP331 family, in the polychaete worms. Water Air Soil Pollut 11: 339–347.
22. Bach L, Palmqvist A, Rasmusson LJ, Forbes VE (2005) Differences in PAH tolerance between capitella species: Underlying biochemical mechanisms. Aquat Toxicol 74: 307–319.
23. Gardner WS, Lee RF, Tenore KR, Smith LW (1979) Degradation of selected toxic compounds by polychaete worms. Water Air Soil Pollut 11: 339–347.
24. Reitzel AM, Tarrant AM (2010) Correlated evolution of androgen receptor and aromatase in polychaete worms. Water Air Soil Pollut 11: 339–347.
25. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
26. Neberd D, Russell DW (2002) Clinical importance of the cytochromes P450. The Lancet 360: 1153–1162.
27. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
28. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
29. Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10: 459–472.
30. Rupasinghe S, Schuler MA, Kagawa N, Yuan H, Lei L, et al. (2006) The cytochrome P450 gene family CYP137 does not contain EXNR in the Khelid reducing the absolute conserved P450 residues to a single cytochrome. FEBS Letters 580: 633–638.
31. Reitzel AM, Tarrant AM (2010) Correlated evolution of androgen receptor and aromatase revisited. Mol Biol Evol 27: 2211–2215.
32. Nelson DR, Marko P, Nelson D (2008) The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genomics 10: 169-181.
33. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369: 1–10.
34. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369: 1–10.
35. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
36. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
37. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
38. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
39. Verslycke T, Goldston J, Stegeman J (2006) Isolation and phylogeny of novel cytochrome P450 genes from Daphnia pulex. Mol Cell Endocrinol 245: 123–135.
40. Lee RF (1998) Annelid cytochrome P-450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121: 173–179.
41. Lee RF (1998) Annelid cytochrome P-450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121: 173–179.
42. Lee RF (1998) Annelid cytochrome P-450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121: 173–179.
45. Hahn M (2002) Aryl hydrocarbon receptors: Diversity and evolution. Chem Biol Interact 141: 131–160.
46. Denison MS, Fisher J, Whitlock J (1988) The DNA recognition site for the dioxin-ah receptor complex: nucleotide sequence and functional analysis. J Biol Chem 263: 17221–17224.
47. Kozu S, Tahjiri R, Tajiri T, Michiae T, Saigo K, Koijima T (2006) Temporal regulation of late expression of bar homeobox genes during drosophila leg development by spineless, a homolog of the mammalian dioxin receptor. Dev Biol 294: 497.
48. Powell-Coffman JA, Bradford CA, Wood WB (1998) Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Nat Acad Sci 95: 2844–2849.
49. Butler RA, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ (2001) An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, mya arenaria: Evidence that invertebrate AHR homologues lack 2, 3, 7, 8-tetrachlorodibenzo- p-dioxin and beta-naphthoflavone binding. Gene 278: 223–234.
50. Rushmore TH, Pickett C (1990) Transcriptional regulation of the rat glutathione S-transferase 7b subunit gene: characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem 265: 14648–14653.
51. Lamb DC, Kelly DE, Kelly SL (1998) Molecular diversity of sterol 14alpha-demethylase substrates in plants, fungi and humans. FEBS Lett 425: 263–265.
52. Baker ME (2011) Insights from the structure of estrogen receptor into the evolution of estrogen receptors: Implications for endocrine disruption. Biochem Pharmacol 82: 1–8.
53. Holland L, Albalat R, Azum K, Benito-Gutierrez E, Blow M, et al. (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18: 1100–1111.
54. Tuan W, Hwang J, Chang C (2003) Sex steroids in scleractinian coral, Euphyllia ancora: Implication in mass spawning. Biol Reprod 68: 2255–2260.
55. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith Jr RK, et al. (2003) Improving the arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31: 5654–5666.
56. Altshul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
57. Rutherford K, Parkhill J, Crook J, Hornsall T, Rice P, et al. (2000) Artemis: Sequence visualization and annotation. Bioinform 16: 944–945.
58. Pearson W, Lipman D (1988) Improved tools for biological sequence comparison. Proc Nat Acad Sci U S A 85: 2444–2448.
59. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
60. Maddison W, Maddison D (2011) Mesquite: A modular system for evolutionary analysis. Available: http://mesquiteproject.org. Accessed 2013 Oct 3.
61. Wu M, Chatterji S, Eisen JA (2012) Accounting for alignment uncertainty in phylogenomics. PLoS One 7: e30289.
62. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinform 22: 2688–2690.
63. Abascal F, Zardoya R, Posada D (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinform 21: 2104–2105.
64. Gilhe C, Frommel C (2001) STRAP: Editor for STRuctural alignments of proteins. Bioinform 17: 377–378.
65. Sun YV, Boverhof DR, Burgoon LD, Fielden MR, Zacharewski TR (2004) Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res 32: 4512–4523.
66. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36.