THE SPATIAL DISTRIBUTION FUNCTION OF GALAXIES AT HIGH REDSHIFT

HADI RAHMANI1, WILLIAM C. SASLAW2,3, AND SAEED TAVASOLI4

1 Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India; hadi@iucaa.ernet.in
2 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA; wcs@virginia.edu
3 Institute of Astronomy, Cambridge, UK
4 Department of Physics, School of Sciences, Ferdowsi University, Mashhad, Iran; stavasoli@wali.um.ac.ir

Received 2008 February 20; accepted 2009 January 21; published 2009 April 6

ABSTRACT

This is the first exploration of the galaxy distribution function at redshifts greater than about 0.1. Redshifts are based on the North and South GOODS Catalogs. In each catalog we examine clustering in the two redshift bands $0.47 \leq z \leq 0.8$ and $0.9 \leq z \leq 1.5$. The mean redshifts of the samples in these bands are about 0.6 and 1.1. Our main result is that at these redshifts the galaxy spatial distribution function $f_{V}(N)$ has the form predicted by gravitational quasi-equilibrium dynamics for cosmological many-body systems. This constrains related processes such as galaxy merging and the role of dark matter in the range of these redshifts.

Key words: dark matter – galaxies: clusters: general – galaxies: statistics – gravitation – large-scale structure of universe

1. INTRODUCTION

At relatively low redshifts, $z \lesssim 0.1$, several surveys have determined the distribution function of galaxies and their associated dark matter. These include the Zwicky Catalog (Crane & Saslaw 1986) the UGC and ESO Catalogs (Lahav & Saslaw 1992), the SSSR Catalog in three dimensions (Fang & Zou 1994), the Pisces–Persus Supercluster (Saslaw & Haque-Copilah 1998) and most recently the Two Micron All Sky Survey (2MASS) Catalog with about 650,000 galaxies (Sivakoff & Saslaw 2005). All these catalogs have yielded the galaxy distribution function, $f_{V}(N)$, which is the probability that a volume V, or area A, placed randomly in space or on the sky contains N galaxies. This is a very powerful statistical description of the positions of galaxies both in space or on the sky. It includes information about the correlation functions to all orders, as well as characterizing voids and near-neighbor positions, filaments, the average shapes of clusters, and counts in cells (Saslaw 2000).

Under a wide range of conditions, the galaxy distribution evolves dynamically in quasi-equilibrium and its distribution function has the form (Saslaw & Hamilton 1984; Saslaw & Fang 1996; Ahmad et al. 2002)

$$f_{V}(N) = \frac{N!}{N^{N}}[\bar{N}(1-b)+NB]^{N-1}e^{-(\bar{N}(1-b)+NB)}.$$ \hspace{1cm} (1)

This result can be derived from either the thermodynamics or the statistical mechanics of the cosmological gravitational many-body system. The expected number is

$$\bar{N} = \bar{n}V,$$ \hspace{1cm} (2)

and

$$b = -\frac{W}{2K}$$ \hspace{1cm} (3)

is the ratio of average gravitational correlation energy to twice the average kinetic energy of peculiar velocities in the system. Equation (1) agrees very closely with observational results in the catalogs mentioned above (with no free parameters), and also with N-body computer simulations designed to test the theory on which it is based (reviewed in Saslaw 2000).

The fundamental reason why quasi-equilibrium statistical mechanics provides a good description of galaxy clustering is that the cosmological many-body problem is the basic system underlying this clustering and it contains two different timescales. One is the local dynamical timescale on which clustering forms and clusters interact in overdense regions. The other is the global timescale for macroscopic properties to change. These macroscopic properties such as density and pressure are averaged over regions which are large enough to contain a statistically homogeneous distribution of clusters. Consequently they initially change on about the Hubble timescale, but as they gradually virialize over larger and larger length scales, they change even more slowly. As the N-body simulations mentioned above have shown, this disparity of timescales produces quasi-equilibrium evolution of clustering. (See Saslaw 2008 for a recent review of this and related topics.)

Of course, there is more to galaxy clustering than the gravitational interaction of point masses. Individual galaxy dark matter haloes have been incorporated into the quasi-equilibrium theory (Ahmad et al. 2002; Leong & Saslaw 2004). Large dark matter haloes containing many galaxies have been produced in many computer simulations (e.g., Guo & White 2008). Unfortunately these simulations, usually depending on many assumptions and parameters, are seldom compared with Equation (1) or with the observed spatial and peculiar velocity distribution functions of galaxies. So it is difficult to determine their relevance, even though many detailed implications of these simulations for galaxies’ properties can be compared with observations.

Although the quasi-equilibrium theory has usually been used for galaxies of identical masses, it has also been extended to systems containing different masses and compared with N-body simulations (Ahmad et al. 2006). A mass range is a secondary effect because most galaxy clustering is produced by the mean field of many neighbors rather than by the individual field of a nearest neighbor. The mass–morphology–luminosity relation for galaxies may show some dependence of the distribution function on mass at low redshifts, but this also appears to be a secondary effect (Lahav & Saslaw 1992). At present, there is not enough morphological data for the GOODS or other high redshift catalogs to examine this segregation at higher redshifts.
At larger redshifts around $z \simeq 0.5$ and $z \simeq 1.1$, one might expect to begin to find departures from the form of Equation (1), and observations so far have not been used to determine how well this form of $f_V(N)$ applies at higher redshifts. If it does apply, then theoretical analyses can predict $b(z)$ in simple cases (Saslaw 1986; Saslaw & Edgar 2000). However several effects could modify the fundamental nature of Equation (1). Examples are: (1) galaxy mergers which could distort $f_V(N)$, (2) the distribution of dark matter that may have evolved differently from that of luminous baryonic galaxies, and (3) the initial distribution of galaxies may have been outside the range (basin of attraction) which could have evolved into the form of Equation (1).

Here we report the first observational determinations of $f_V(N)$ for redshifts greater than about 0.1, in particular for two ranges $0.47 \leq z \leq 0.80$ and $0.9 \leq z \leq 1.5$. At these redshifts, different catalogs based on different magnitude or color cutoffs will contain different numbers of galaxies. However, provided the selection effects are homogeneous over the catalog and over the sky, they can be normalized out by their value of \bar{N}. Other more subtle known biases can also be accounted for explicitly (Lahav & Saslaw 1992). To help minimize these complications it is most useful to choose samples large enough to provide meaningful statistics, but over a small enough redshift range to avoid evolutionary smearing effects. At low redshifts this is easy to do, but at large redshifts, with presently available data, it involves practical compromises.

In Section 2, we describe our samples, and in Section 3 we determine their distribution functions. In Section 4 we determine how the value of b depends on the size of the cells at these redshifts. Then Section 5 discusses some implications of the results.

2. THE OBSERVED SAMPLES

Our analysis is mainly based on the GOODS Catalogs using both its North and South components separately to check on its homogeneity and statistical uncertainty. The GOODS South Catalog has four components, the VVDS (VIMOS VLT Deep Survey; Le Fèvre et al. 2004), the ESO1 (Vanzella et al. 2005), ESO2 (Vanzella et al. 2006), and a spectroscopic redshift survey (Ravikumar et al. 2007), all having spectra taken with VIMOS on the ESO VLT. These provide 1599, 234, 501, and 961 redshift determinations for each of the catalogs, respectively. We cross correlate these with a 0.5 search radius to eliminate multiple determinations of the same redshift. This leaves 950 distinct objects in the redshift range between 0.47 and 0.8, 882 objects in the redshift range between 0.9 and 1.5. These ranges were selected to include a large enough number of galaxies for reasonable statistics in a small enough redshift range that evolution would be unlikely to dominate. This is clearly a compromise which could be improved in future larger but at least equally homogeneous catalogs. Figures 1(a) and (b) show these two redshift samples projected onto the sky.

The GOODS North catalog contains a majority of objects from the Team Keck Treasury Redshift Survey (TKRS; Wirth et al. 2004). They measured spectroscopic redshifts of 1440 galaxies and active galactic nuclei (AGNs) (plus 96 stars) in this region. There are also 434 other redshifts in this region obtained by using the LRIS spectrograph (Oke et al. 1995) on the twin 10 m telescopes of the W. M. Keck Observatory (Cohen et al. 1996, 2000; Cowie et al. 1996; Steidel et al. 1996; Lowenthal...
et al. 1997; Phillips et al. 1997; Moustakas et al. 1997; Cohen
2001; Dawson et al. 2001) and DEIMOS spectrograph (Faber
et al. 2003) on the Keck twin telescopes (Cowie et al. 2004).
These give a total of 1970 redshifts, of which 685 are between
0.47 and 0.80 and 433 are between 0.9 and 1.5, comparable with
the four selected samples are 0.61 and 1.06 in the north, and
0.65 and 1.14 in the south.

In addition to illustrating the scales of the samples, Figure 1
shows that they contain a range of voids, filamentary structures,
underdense regions and clusters. It also shows the inhomoge-
neity of the south samples which contain four surveys. In par-
ticular, the GOODS South sample for high redshifts (Figure 1(b))
has an average density which increases systematically with in-
creasing right ascension, even in this small area. The GOODS
North sample, based mainly on one survey, is more homoge-
neous, allowing for greater fluctuations around its smaller aver-
gage density.

3. THE GALAXY DISTRIBUTION FUNCTIONS AT
z ≃ 0.63 AND z ≃ 1.1

To obtain the distribution function, we map the galaxies
onto a Hammer–Aitoff equal area projection (e.g., Calabretta
et al. 2002), divide the area into square cells of a given
angular size and count the number of galaxies in the volume
projected into each cell. The samples are not yet large enough
to examine the areas for completeness and statistical homogene-
ity in the usual ways (see Sivakoff & Saslaw 2005). However
the consistency of our results below suggests that Equation (1)
will be a good representation of the actual distribution function.

Figure 3 shows examples of the resulting histograms for
counts of galaxies in cells in the two redshift ranges of both
the North and South Catalogs. The redshifts and cell sizes are
labeled on the histograms. Other examples are similar, although
as the cells become larger or the number of cells decreases, the
fluctuations naturally increase. The solid line is the theoretical
curve of Equation (1) in which \(\bar{N} \) is determined directly from the
data. The value of \(b \) may also be determined directly from the
data using its relation to the variance of counts in cells having
volume \(V \) projected onto the sky

\[
\langle (\Delta N)^2 \rangle = \frac{\bar{N}}{(1 - b(V))^2}.
\]

Equation (4) is the variance of counts in cells and it follows
either directly from Equation (1) or from its moments, or from
its generating function (see Saslaw 2000).

In addition, we can find \(b \) using a least-squares fit of
Equation (1) to the histograms. The values of \(b \) for Figure 3
obtained by least-squares fitting are 0.17, 0.12, 0.15, 0.22 from
left to right and top to bottom. In the figures we use the values of
\(b \) from the observed variance of counts in cells. Thus the good
agreement between observations and theory is obtained without
the use of any free parameters.

Our results in Figure 3, as well as previous observations of
spatial and velocity distribution functions at low redshifts, are
a challenge for the usual computer simulations to reproduce
(without too many free parameters). For example, one of the
important consequences of Figure 3 is the role of galaxy
mergers in altering their distribution function over time. From
the viewpoint of the theory behind Equation (1), the robustness
of \(f_2(N) \) to mergers can be understood analytically (A. Yang
et al. 2009, in preparation).

4. THE OBSERVED DEPENDENCE OF b ON SCALE AND
REDSHIFT

The value of \(b \) is known to depend on the size of the cells
for which it is measured. If cells are so small that they usually
contain only zero or one galaxy, their counts-in-cells will have a
nearly Poisson distribution for which \(b = 0 \) and \(\langle (\Delta N)^2 \rangle \approx \bar{N} \).
Greater values of \(b \) occur for larger departures from Poisson
statistics, as Equations (1) and (4) indicate. Another way of
visualizing this is by relating \(b \) to the two-galaxy correlation
function

\[
b = -\frac{W}{2K} = \frac{2\pi G m^2 \bar{n}}{3T} \int \xi(\bar{n}, T, r) \frac{1}{r^2} dr,
\]

where \(K \) is the kinetic energy and \(T \) is the temperature given by
the peculiar velocity dispersion relative to the average Hubble
expansion. (For a detailed review, see Saslaw 2000.) For larger
volumes, there is a greater contribution of the two-galaxy
correlation function \(\xi(r) \) to the integral of the gravitational
correlation energy \(W \), and \(b \) increases. On very large scales,
the correlations become small and contribute no further to
the integral in Equation (5). Thus the value of \(b \) reaches its
asymptotic limit on these large scales, provided they are initially
uncorrelated. At low redshifts, \(b(r) \) in the 2MASS catalog can be
used with Equation (5) to determine the two-galaxy correlation
function. Comparison of the result with the standard direct
determination shows excellent agreement (Sivakoff & Saslaw
2005).
The cell size \(d \) (Mpc) is related to its angular size \(\theta \) (radians) at a redshift \(z \) by (Coles & Lucchin 2002)

\[
\theta = \frac{H_0 q_0^2}{c} \left[(1 + z)^2 q_0^2 z + (q_0 - 1)(1 + 2q_0 z)^{0.5} - 1 \right]^{-1},
\]

where we take the Hubble constant \(H_0 = 70 \text{ km s}^{-1}\text{Mpc}^{-1} \) and \(q_0 = 0.5 \).

Figure 4 shows \(b(\theta) \) for cells of different angular sizes (in arc seconds) for the two redshift samples in the North and South GOODS catalogs. Table 1 gives more detailed information on these results. This information is useful for understanding the physical scales of the cells and the numbers of galaxies and cells being analyzed. It also gives the numbers for Figure 3 which are used to calculate the two-galaxy correlation function (in Figure 5) from Equation (5). Note that for the same angular size, the physical sizes of cells in the south is slightly greater than in the north, because of the slightly greater average redshift of the southern samples. We have also examined the effect of the strong redshift peak in the south at \(z = 0.74 \) by reducing the upper redshift to \(z = 0.73 \) which eliminates the peak in that nearer sample. The result is to decrease the values of \(b \) for the same size cells by between 0.01 for the smallest cells and 0.1 for cells of about 220 arcsec in length, usually an effect of about 15%–20%.

Figure 5 compares \(b(\theta) \) with values based on the two-galaxy angular correlation function, \(W(s) \). Lahav & Saslaw (1992) derived \(b(\theta) \) for square cells of size \(\omega = \theta \times \theta \) deg\(^2\)

\[
b(\theta) = 1 - \left(1 + \frac{W_0}{C_\gamma \theta^{1-\gamma}} \right)^{-1/2},
\]

where \(W(s) = (s/s_0)^{1-\gamma} \), \(N \) is the expected number of galaxies in a cell, and \(C_\gamma \) is a coefficient to be evaluated numerically.

Lahav & Saslaw (1992) calculated \(C_\gamma \)’s corresponding to four different values of \(\gamma = 1, 1.68, 1.8, \) and 2 to be 1, 1.87, 2.25, and 2.97, respectively. We used the lower redshift sample in the north (which seems the most homogeneous) and then fixed \(C_\gamma \) to each of these four values to fit Equation (7) to the data and find \(\gamma \) and \(s_0 \). As Table 2 shows by changing \(C_\gamma \) to its four numerically calculated values, the fitted values of \(\gamma \) do not change but \(s_0 \) decreases.

To determine whether cells near the edges of each region could have significant effects on the results, we omitted them and found that they did not change the trend of the values of \(b \) in the two redshift intervals.
We also tested the effects of different cross-correlation radii among the different catalogs which constitute the GOODS North and South catalogs. Increasing this cross-correlation radius from 0.5 to 0.75, 1.0, and 1.5 arcsec gave 3009, 3005, 3003, and 2994 independent objects, respectively. So cross-correlation radii in this range have negligible effects.

In the North Catalog, the majority of the data (1536 secure redshifts) come from the TKRS redshift survey, and the other 434 are from other redshift surveys. To examine possible effects of differences among these catalogs, we repeated all the analysis using only the TKRS survey. This gave small changes in the values of b but did not affect the trend of values of b between the two redshift intervals.

As the total number of cells, n, in Table 1 decreases below about 150 (conservatively) the $f(y)$ histograms become less smooth and their corresponding values of b become less reliable. The only ways to explore these regimes more accurately are with large homogeneous samples covering greater areas, and with a larger number of such samples.

5. DISCUSSION

Our most striking result is that at redshifts up to about $z = 1.5$ the form of the spatial galaxy distribution function is remarkably similar to its form at the present time. Both these forms were predicted by the gravitational statistical mechanics and thermodynamics of the cosmological many-body system. This indicates that although merging and dark matter can be important for the evolution of individual galaxies, they do not dominate the forms of the large-scale galaxy distribution. The reasons for this lack of dominance may be able to place important constraints on merging and dark matter.

To obtain these constraints, we need to determine how $b(r, z)$ depends on the scale r, and how it evolves with redshift. The theory predicts both these dependencies (e.g., Saslaw 2000; Ahmad et al. 2002). In particular, b should decrease with increasing redshift. Figure 4 and Table 1 show that this decrease holds in the North GOODS catalog, but not in the South. The simplest explanation for this difference may be that the south region is a compilation of four distinct catalogs, none of which dominates. This may encourage more inhomogeneity than in the north region which is dominated by one catalog. Indeed, Vanzella et al. (2005, 2006) and Ravikumar et al. (2007) have clearly noted the inhomogeneity of structure in the south region. This may be a region of excess clustering which would produce an unusually large apparent local value of b. (We recall that the usual value of b represents an ensemble average over many regions which cover a representative range.

![Figure 5](image-url) Points show the b values for different cell sizes in north with $0.47 < z < 0.8$. The curve is the predicted $b(\theta)$ fitted on these points according to $b(\theta) = 1-(1+N_{a}^{-1}C_{p\theta \gamma}^{1-\gamma})^{-1/\gamma}$ (Lahav & Saslaw 1992) with $a_{0} = 0.0017$ and $\gamma = 1.68$.

![Table 1](image-url) Properties of Distribution Functions from Counts in Cells

b	\bar{N}	θ (arcsec)	Phy Size (kpc)	n (Cells)
0.17	1.52	36.8	200	432
0.24	2.19	44.1	240	300
0.22	3.42	55.1	300	192
0.33	6.08	73.5	400	108
0.36	8.76	88.2	480	75
0.39	13.69	110.2	600	48
0.46	24.3	147.0	801	27
0.62	54.75	220.5	1201	12
0.06	0.82	36.7	205	864
0.11	1.18	44.1	246	600
0.17	1.85	55.1	308	384
0.20	3.30	73.5	410	216
0.25	4.70	88.2	492	150
0.36	7.40	110.2	615	96
0.41	13.10	147.0	820	54
0.54	29.60	220.5	1230	24
0.72	118.30	441.0	2460	6

![Table 2](image-url) Two-Point Correlation Function

$\bar{\gamma}$	γ	a_{0} (degree)
1	1.68	0.0017
1.87	1.68	0.0007
2.25	1.68	0.0005
2.97	1.68	0.0003
of clustering.) On the other hand, the decrease of b with z in the north region behaves qualitatively as expected. Whether it agrees quantitatively with the gravitational many-body theory is being investigated elsewhere (A. Yang et al. 2009, in preparation).

When $b(r)$ can be determined more accurately, using a larger number of larger homogeneous catalogs, it will also provide information on the evolution of the two-galaxy correlation function. (See Sivakoff & Saslaw 2005 for an example of the technique to accomplish this.) This, in turn, can then be related to many computer simulations of galaxy clustering which measure the two-galaxy correlations under a variety of conditions.

B.S. thanks N. Dadhich, A. Kembhavi, and their colleagues for hospitality at the Inter University Center for Astronomy and Astrophysics, as well as the Cambridge Society of Bombay in Mumbai for its invitation to India. H.R. and S.T. thank A. Kembhavi for his invitation to IUCAA and for useful discussions.

REFERENCES

Ahmad, F., Malik, M. A., & Masood, S. 2006, Int. J. Mod. Phys. D, 15, 1267
Ahmad, F., Saslaw, W. C., & Bhat, N. I. 2002, ApJ, 571, 576
Calabretta, M. R., & Greisen, E. W. 2002, A&A, 395, 1077
Cohen, J. G. 2001, AJ, 121, 2895
Cohen, J. G., Cowie, L. L., Hogg, D. W., Songaila, A., Blandford, R., Hu, E. M., & Shopbell, P. 1996, ApJ, 471, 15
Cohen, J. G., Hogg, D. W., Blandford, R., Cowie, L. L., Hu, E. M., Songaila, A., Shopbell, P., & Richberg, K. 2000, ApJ, 538, 29
Coles, P., & Lucchin, F. 2002, COSMOLOGY: The Origin and Evolution of Cosmic Structure (New York: Wiley)
Cowie, L. L., Barger, A. J., Hu, E. M., & Capak, P. 2004, AJ, 127, 3137
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Crane, P., & Saslaw, W. C. 1986, ApJ, 301, 1
Dawson, S., Stern, D., Bunker, A. J., Spinrad, H., & Dey, A. 2001, AJ, 122, 598
Faber, S. M., et al. 2003, Proc. SPIE, 4841, 1657
Fang, F., & Zou, Z. 1994, ApJ, 421, 9
Guo, Q., & White, S. D. M. 2008, MNRAS, 384, 2
Lahav, O., & Saslaw, W. C. 1992, ApJ, 396, 430
Le Fèvre, O., et al. 2004, A&A, 428, 1043
Leong, B., & Saslaw, W. C. 2004, ApJ, 608, 636
Lowenthal, J. D., et al. 1997, ApJ, 481, 673
Moustakas, L. A., Zepf, S. E., & Davis, M. 1997, in The Hubble Space Telescope and the High-Redshift Universe, ed. N. Tanvir, A. Aragon-Salamanca, & J. Wall (Singapore: World Scientific), 273
Oke, J. B., et al. 1995, PASP, 107, 135
Phillips, A. C. 1997, ApJ, 489, 543
Ravikumar, C. D., et al. 2007, A&A, 465, 1099
Saslaw, W. C. 1986, ApJ, 304, 11
Saslaw, W. C. 2000, The Distribution of the Galaxies: Gravitational Clustering in Cosmology (New York: Cambridge Univ. Press)
Saslaw, W. C. 2008, in AIP Conf. Proc. 970, Dynamics and Thermodynamics of Systems with Long-Range Interactions: Theory and Experiments, ed. A. Campa, A. Gianantis, G. Morigi, & F. Sylos Labini (New York: AIP), 222
Saslaw, W. C., & Edgar, J. H. 2000, ApJ, 534, 1
Saslaw, W. C., & Fang, F. 1996, ApJ, 460, 16
Saslaw, W. C., & Hamilton, A. J. S. 1984, ApJ, 276, 13
Saslaw, W. C., & Haque-Copilah, S. 1998, ApJ, 509, 595
Sivakoff, G. R., & Saslaw, W. C. 2005, ApJ, 626, 795
Steidel, C. C., Giavalisco, M., Dickinson, M., & Adelberger, K. L. 1996, AJ, 112, 352
Vanzella, E., et al. 2005, A&A, 434, 53
Vanzella, E., et al. 2006, A&A, 454, 423
Wirth, G. D., et al. 2004, AJ, 127, 3121