Pseudotumor Cerebri Syndrome Without Headache in an Obese Male With Eight Restricted Cerebrospinal Fluid (CSF) Oligoclonal Bands: A Case Report

Muhammad Ismail Khalid Yousaf, Ping Shi, Rolando M. Cordoves Feria, Mohammad Ravi Ghani, David A. Robertson

Abstract

Pseudotumor cerebri syndrome (PTCS) is a condition caused by an abnormal elevation of intracranial pressure (ICH), which may be primary (idiopathic intracranial hypertension) or because of an identifiable secondary cause. We present a rare case of an obese male who complained of gradual bilateral visual loss for one year without headaches and tinnitus. On fundoscopy, he had high-grade bilateral papilledema and, on lumbar puncture, he had an elevated intracranial pressure of 260 mmH2O. Cerebrospinal fluid (CSF) was unique for eight restricted oligoclonal bands while extensive other demyelinating workup was negative. He was started on acetazolamide initially and subsequently proceeded with bilateral optic nerve sheath fenestration (ONSF) with mild improvement in the right eye and no improvement in the left eye. Although the causative mechanism of PTCS is a matter of debate, immune-mediated processes are one of the proposed mechanisms that may play a role in the pathophysiology of PTCS, evidenced by the presence of oligoclonal bands (OCBs) and pro-inflammatory markers in CSF. PTCS diagnosed in men and patients with OCBs poses an increased risk of vision loss as this case and literature documented. Therefore, prompt treatment through therapeutic lumbar punctures, acetazolamide therapy concurrently with weight loss, and surgical intervention in severe or refractory cases are necessary.

How to cite this article
Yousaf M, Shi P, Cordoves Feria R M, et al. (February 08, 2022) Pseudotumor Cerebri Syndrome Without Headache in an Obese Male With Eight Restricted Cerebrospinal Fluid (CSF) Oligoclonal Bands: A Case Report. Cureus 14(2): e22024. DOI 10.7759/cureus.22024
Laboratory Test	Results	Reference range
Complete blood count	Normal	Normal
Basic metabolic panel	Normal	Normal
Oligoclonal bands (common to CSF and Serum)	2 paired bands	Negative
Anti-MOG IgG	Negative	Negative
NMO/AQP4 autoantibodies IgG	Negative	Negative
CRP	29 ↑	<=10.0 mg/Lite
ESR	31 ↑	0 - 15 mm/Hr
ANCA Screen	Negative	Negative
ANA-IFA Screen	Negative	Negative
SPEP	Normal	Normal

TABLE 1: Serum laboratory tests and results

NMO: Neuromyelitis optica; MOG: Myelin oligodendrocyte glycoprotein; CRP: C-reactive protein; ESR: Erythrocyte sedimentation rate; ANCA: Antineutrophil cytoplasmic antibodies; ANA (IFA): Antinuclear antibodies (immunofluorescence assay); SPEP: Serum protein electrophoresis

He was fully alert and oriented on neurological examination and had fluent speech and intact comprehensive abilities. There were no signs of meningeal irritation. Cranial nerve (CN) testing revealed 3-5 mm pupils equal in size and reactive to light and accommodation, intact extraocular movements with no nystagmus, saccadic movement, or skew. The facial sensation was similar on both sides, with a strong jaw opening and a midline tongue. In addition, the shoulder shrug was symmetrical and hearing was intact. The rest of his neurological examination, including motor function, sensation, reflexes, coordination, and gait analysis, was within normal limits.

Fundus examination of the right eye revealed blurring of the superior margins of the optic disc corresponding with grade 2 papilledema, and the left eye exhibited paleness of optic disc correlating with grade 3 papilledema. Visual acuity was limited to finger counting in both eyes. Humphrey’s vision test was significant for near to complete vision loss in the left eye.

Magnetic resonance imaging (MRI) of the brain and orbit didn't evidence any demyelinating disease; however, bilateral optic sheaths expansion, low lying cerebellar tonsils, empty sella, and stenosed transverse and sigmoid sinus on magnetic resonance venogram (MRV) correlated with elevated intracranial pressure. MRI cervical spine and thoracic spine were negative for structural abnormalities and demyelinating lesions. No abnormal enhancement was seen in either of the scans as mentioned above.

Lumbar puncture (LP) was done once and had an elevated opening pressure of 260 mmH20 (< 200 mmH20). CSF labs were relevant for eight CSF restricted oligoclonal bands, myelin basic protein elevation at 4.4 ng/mL, elevated immunoglobulin G (IgG) synthesis rate of 53.7 mg/day, high IgG index of 2.9, four nucleated cells, four red blood cells (RBCs), protein 41 mg/dL, glucose 79 mg/dL, and negative neuromyelitis optica (NMO) antibodies. In addition, in serum, anti-myelin oligodendrocyte glycoprotein (MOG) and neuromyelitis optica antibodies were negative as well (Table 2).
Laboratory Test	Result	Reference Values
Opening pressure	26 ↑	100-200 mm H2O
Oligoclonal bands (CSF only)	8 ↑	Negative
Myelin basic protein	4.4 ↑	0.0 - 3.8 ng/mL
IgG synthesis rate	53.7 ↑	-9.9 TO +3.3 mg/day
IgG index	2.9 ↑	0.0 - 0.7
Alpha 1 Globulin	0.35 ↑	0.11 - 0.34 g/dL
Nucleated cells	4	0 - 5 /mm3
RBC	4	Negative
Protein	41	15.0 - 45.0 mg/dL
Glucose	79 ↑	40 - 70 mg/dL
CSF/Serum Albumin Index	4	< 9 is correlated with intact blood-brain barrier

TABLE 2: CSF laboratory tests and results

RBC: Red blood cell; CSF: Cerebrospinal fluid; NMO: Neuromyelitis optica; IgG: Immunoglobulin G

The patient was initially treated with acetazolamide 500 mg/twice a day, started by his primary neurologist, and titrated weekly up to 1500 mg/twice a day. Unfortunately, his visual symptoms did not subside, and on our recommendation, he first underwent right eye optic nerve sheath fenestration (ONSF), and, after one month, left eye ONSF. As a result, his peripheral vision improved in the right eye, but no improvement in the left eye so far has been reported.

Discussion

Pseudotumor cerebri syndrome (PTCS) or idiopathic intracranial hypertension (IIH) in men is rare, with a prevalence of 9% [1]. PTCS in men poses a twofold risk of developing visual loss compared to females [1]. As per the idiopathic intracranial hypertension treatment trial [2], secondary causes for increased intracranial pressure need to be ruled out comprehensively when considering PTCS in men and patients without headache and pulse synchronous tinnitus. There is a consensus regarding CSF opening pressure of ≥250 mmH2O in adults and ≥280 mmH2O in children (obese and sedated) to diagnose PTCS considering other clinical symptoms, including headache associated with PTCS [3-4]. We used Friedland’s revised standards as published in Neurology, Journal of the American Academy of Neurology, while identifying and discussing PTCS in this case (Table 3) [3].
Diagnostic criteria for PTCS

A. Papilledema

B. Normal neurologic examination except for cranial nerve abnormalities

C. Neuroimaging: Normal brain parenchyma without evidence of hydrocephalus, mass, or structural lesion and no abnormal meningeal enhancement on MRI, with and without gadolinium, for typical patients (obese women), and MRI, with and without contrast, and MRV for others; if MRI is unavailable or contraindicated, contrast-enhanced CT may be used

D. Normal CSF composition

E. Elevated lumbar puncture CSF opening pressure (≥250 mmH20 in adults and ≥280 mmH20 in children [250 mmH20 if the child is not sedated and not obese]) in a properly performed lumbar puncture

Diagnosis of pseudotumor cerebri syndrome without papilledema

In the absence of papilledema, a diagnosis of pseudotumor cerebri syndrome can be made if B–E from above are satisfied, and in addition, the patient has a unilateral or bilateral abducens nerve palsy. In the absence of papilledema or sixth nerve palsy, a diagnosis of pseudotumor cerebri syndrome can be suggested but not made if B–E from above are satisfied, and in addition at least 3 of the following neuroimaging criteria are satisfied:

1) Empty sella, 2) Flattening of the posterior aspect of the globe, 3) Distention of the perioptic subarachnoid space with or without a tortuous optic nerve, 4) Transverse venous sinus stenosis

TABLE 3: A diagnosis of pseudotumor cerebri syndrome is definite if the patient fulfills criteria A–E. The diagnosis is considered probable if criteria A–D are met but the measured CSF pressure is lower than specified for a definite diagnosis

| PTCS: Pseudotumor cerebri syndrome | ICP: Intracranial pressure | MRI: Magnetic resonance imaging | CT: Computerized tomography | CSF: Cerebrospinal fluid |

Our patient had elevated CSF pressure of 260 mmH2O with MRI brain showing pathognomonic signs of elevated intracranial pressure, i.e., enlarged bilateral optic nerve sheaths (Figure 1), empty sella turcica (Figure 2), and low-lying cerebellar tonsils (Figure 3) [5].
FIGURE 1: T2-weighted magnetic resonance (MR) image (axial view) showing bilateral expanded optic sheaths (normal range 5.17±1.34 mm to 3.55±0.82 mm) with optic nerve tortuosity (cyan arrow) and posterior globe flattening (magenta arrow), more prominent in the left eye.
MRV visualized stenosed left transverse and sigmoid sinus [5]. Anti-MOG (myelin oligodendrocyte glycoprotein) and NMO (Neuromyelitis optica) antibodies were negative. There are no demyelinating lesions or abnormal enhancements in the MRI brain, cervical, and thoracic spine. All mentioned findings ruled out secondary causes of raised intracranial pressure, including tumors, strokes, infections, multiple sclerosis.
Pseudotumor cerebri syndrome’s exact pathophysiology is unknown. However, evolving data regarding multiple inflammatory markers found in CSF also suggest immunological involvement in PTCS pathogenesis. Males with PTCS can present without headache and tinnitus and overall have a higher propensity toward visual loss, making early ophthalmological exams crucial for a better prognosis. Future trials of OCB-positive PTCS patients may help prove an association of OCB with the duration and severity of the disease.

Conclusions
Pseudotumor cerebri syndrome’s exact pathophysiology is unknown. However, evolving data regarding multiple inflammatory markers found in CSF also suggest immunological involvement in PTCS pathogenesis. Males with PTCS can present without headache and tinnitus and overall have a higher propensity toward visual loss, making early ophthalmological exams crucial for a better prognosis. Future trials of OCB-positive PTCS patients may help prove an association of OCB with the duration and severity of the disease.

Additional Information
Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.
References

1. Bruce BB, Kedar S, Van Stavern GP, et al.: Idiopathic intracranial hypertension in men. Neurology. 2009, 72:504-9. 10.1212/01.wnl.0000335254.84120.f5
2. Wall M, Kupersmith MJ, Kieburtz KD, et al.: The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol. 2014, 71:695-701. 10.1001/jamaneurol.2014.133
3. Friedman DI, Liu GT, Digre KB: Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2015, 81:1159-65. 10.1212/WNL.0b013e3182a55f17
4. Headache Classification Committee of the International Headache Society (IHS): The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013, 33:629-808. 10.1177/0333102413485658
5. Bidot S, Saindane AM, Peragallo BH, Bruce BB, Newman NJ, Biousse V: Brain imaging in idiopathic intracranial hypertension. J Neuroophthalmol. 2015, 35:400-11. 10.1097/WNO.0000000000000503
6. McGeeney BE, Friedman DI: Pseudotumor cerebri pathophysiology. Headache. 2014, 54:445-58.
7. Johnston I: Reduced C.S.F absorption syndrome. Reappraisal of benign intracranial hypertension and related conditions. Lancet. 1973, 2:418-21. 10.1016/s0140-6736(73)92277-0
8. King JO, Mitchell Pj, Thomson KB, Tress BM: Cerebral venography and manometry in idiopathic intracranial hypertension. Neurology. 1995, 45:2224-8. 10.1212/wnl.45.12.2224
9. Altokka-Uzun G, Tüzün E, Ekizoğlu E, et al.: Oligoclonal bands and increased cytokine levels in idiopathic intracranial hypertension. Cephalalgia. 2015, 35:1153-61. 10.1177/0333102415570762
10. Celebiosoy N, Gökçay F, Sirin H, Akyürekli O: Treatment of idiopathic intracranial hypertension: topiramate vs acetazolamide, an open-label study. Acta Neurol Scand. 2007, 116:522-7. 10.1111/j.1600-0404.2007.00905.x
11. El-Tamawy MS, Zaki MA, Rashid LA: Oligoclonal bands and levels of interleukin 4, interleukin 10, and tumor necrosis factor alpha in idiopathic intracranial hypertension Egyptian patients. Egypt J Neurol Psychiatry Neurosurg. 2019, 55:88. 10.1186/s41983-019-0134-3
12. Liu GT, Glaser JS, Schatz NJ: High-dose methylprednisolone and acetazolamide for visual loss in pseudotumor cerebri. Am J Ophthalmol. 1994, 118:88-96. 10.1016/s0002-9394(14)72847-8
13. Spitzte A, Malik A, Al-Zubidi N, Golnik K, Lee AG: Optic nerve sheath fenestration vs cerebrospinal diversion procedures: what is the preferred surgical procedure for the treatment of idiopathic intracranial hypertension failing maximum medical therapy? J Neuroophthalmol. 2013, 33:183-8. 10.1097/WNO.0b013e31829292d6f
14. Stoutin J, Fan J: Idiopathic intracranial hypertension and multiple sclerosis overlap. Cureus. 2021, 13:e16305. 10.7759/cureus.16305