MAXIMIZING THE PRODUCTIVITY OF A GAS MELTING FURNACE WITH REGARD TO THE ECOLOGICAL EFFICIENCY OF ITS OPERATION

Ľuboslav STRAKA, Ján PITEĽ, Peter MICHALÍK, Matej HRABČÁK
Technical University of Kosice

Abstract:
Due to the implementation of environmental regulations and the continual tightening up of the limits for pollutants in combustion systems, we are being forced to pay more attention to this area. A significant source of pollutants originating from the industry is, in particular, the formation of carbon dioxide (CO_2) and nitrogen oxides (NO_x) in combustion systems with air intake. The control of pollutant emissions has become a global concern due to the worldwide increase in the use of fossil fuels. Besides the fact that the insufficient combustion process has a significant share of emissions in the environment, it also reduces the overall efficiency and economy of the operation using this energy source. We encounter this problem also in the operation of gas melting furnaces. Therefore, the aim of this paper was to describe the results of experimental measurements of the amount of emissions produced during the gas melting furnace KOV 010/1998 operation, which is in practice predominantly used for the melting of Aluminium alloys. Experimental measurements were performed to design the most appropriate operating mode variant of the melting furnace with regard to maximizing its productivity and at the same time to minimizing the total amount of emissions produced during one melting cycle.

Key words: gas melting furnace, emission, power, efficiency, combustion process

INTRODUCTION
A melting furnace can be considered as the primary device used in the Aluminium casting process. First and foremost, it is used for melting and preparing Al alloys with the required mechanical and chemical characteristics that comply with the applicable standard for the respective type of Al alloy. Thermal energy \[27\] is necessary for melting and preparing the Al alloy in a melting furnace with the required characteristics. This can be obtained by converting electrical energy or a combustion process. Natural gas is a frequently used source of thermal energy obtained by the combustion process \[23\] in melting furnaces. It is predominantly composed of hydrocarbons, of which the majority is methane. The main products of its combustion are carbon dioxide (CO_2) and water vapour. Although emissions of nitrogen oxides (NO_x), sulphur dioxide (SO_2) and other particles produced by natural gas combustion are several times lower compared to other fossil fuels, they are not negligible \[20\].

In addition, many producers seek to maximize the performance of their melting furnaces. However, at the same time as maximizing the performance of the melting furnace, the increased production of pollutants that burden the environment is closely linked. These can be reduced in conventional furnaces by means of filters, but in the case of melting furnaces it is very problematic to capture these pollutants. A certain solution is to maximize the use of thermal energy of a given source while maintaining the same share of pollutants released into the air.

Therefore, the aim of the experimental research was to propose the most suitable variant of its operating mode, based on the results of measurements \[14\] of pollutant values produced during the operation of the gas melting furnace KOV 010/1998 used mainly for melting Al alloys. The proposal of the appropriate operating mode was based on maximizing the productivity \[22\] of the gas melting furnace with regard to the smallest total amount of emissions produced during one melting cycle.

LITERATURE REVIEW
Although the share of pollutants produced in the combustion of natural gas is several times lower compared to other fossil fuels, it is not negligible. The research by Niecke et al. \[16, 17\] also points to this fact. In the context of the research, they also found out that the actual concentration of pollutants produced during the combustion process is also significantly influenced by the course of combustion itself. These values can increase even several times in the case of insufficient combustion process. Furthermore, a large amount of pollutants is produced \[4, 9\] in the Al alloy melting process itself \[6, 10\] and it is very problematic to prevent it. Therefore, it is necessary to
try to reduce at least the pollutant content that is produced during its heating [5]. Pandová deals with the reduction of these pollutants in her research. It seeks to find ways to eliminate these pollutants released into the environment [20]. However, these methods are ineffective in the case of melting furnaces. Brewster also tried to achieve lower emissions in a gas melting furnace. He wanted to achieve this by increasing the proportion of oxygen. He described the results of his experimental research in detail in the work [4]. However, the results of other authors, from which Wang can be mentioned, point to the fact that by injecting oxygen into the melting furnace, the molten metal cools down. This prolongs the melting process [27]. Therefore, one of the most aqueous ways to eliminate the production of pollutants in the gas melting furnace appears to choosing the most suitable variant of the operating mode. Moreover, controlling of the combustion process in a gas melting furnace [7] has several practical meanings. These include, in particular, increasing the overall efficiency of the combustion process [2], increasing the efficiency of a melting furnace operation [1, 19], reducing the pollutants produced, reducing the maintenance costs of a melting furnace technological equipment, increasing the quality and productivity [8, 15, 21] of the production and so on [2, 12].

MATERIAL AND WORKING METHODS
Technical equipment used in the experiment
The gas melting furnace marked as KOV 010/1998 was considered within the framework of an experiment aimed to maximize [25, 28] the melting furnace productivity with regard to minimizing the total amount of pollutants produced during one melting cycle of the Al alloy. It is a gas melting furnace whose construction consists [3, 13] of steel profiles and sheets [18]. Foundations consist of a supporting frame which is anchored in the basement plate. The melting furnace is mounted on two sliding bearings on one side, while on the other side it is mounted to a hydraulic cylinder. Lifting of the melting furnace is controlled by the hydraulic cylinder [26] during its emptying. The following Fig. 1 shows the melting furnace KOV 010/1998 which was used in the experiment.

[Image: Fig. 1 The gas melting furnace KOV 010/1998]

Protective sheath of the gas melting furnace, so-called the lining, is made of refractory bricks and ceramic insulation boards. The space of the spout and the exhaust gas opening, as well as the movable door of the melting furnace are protected by refractory concrete. The melting furnace space at the burner place is covered with special refractory material that resists temperatures up to 1600°C. Heating of Al alloy in the melting furnace KOV 010/1998 is realized by means of two gas burners no. 1 and no. 2 with a maximum power of 2×700 kW. These are monoblock burners with a built-in fan and an electric motor. The burners have a power control system that includes a programmable automatic flame ionisation fuse.

The measuring equipment used in the experiment
The measurement of the pollutant content produced during melting of Al alloys in the gas melting furnace KOV 010/1998 was performed by using the Testo 340 measuring equipment. It is a pollutant measuring instrument, which includes a modular sampling probe and the high-speed printer of recorded results. The following Fig. 2 shows the measuring equipment Testo 340 which has been used in the experiment to measure the pollutant content produced during melting of Al alloys in the gas melting furnace KOV 010/1998.

[Image: Fig. 2 The gas path of measuring equipment Testo 340
Source: [29].]
Table 1

Basic technical parameters of the measuring equipment Testo 340
Basic dimensions
283 × 103 × 65 mm
Total weight
0.96 kg
Operating temperature
–5 up to +45°C
Probe type
K (NiCr-Ni)
Temperature measuring range
–40 up to +1200°C
Pressure measuring range
±200 hPa
Measuring range of chimney losses (resolution)
0 up to 120% (0.1%)
Measuring range of CO (resolution)
0 up to +10000 ppm (1ppm)
Measuring range of NO (resolution)
0 up to +4000 ppm (1ppm)
Measuring range of CO₂ (resolution CO₂)
0 up to max. CO₂ max (0.01 vol. %)
Measuring range of O₂ (resolution)
0 up to 25 vol.% (0.01 vol. %)

Experiment conditions

Measurements of pollutants produced during the melting of Al alloy [24] in the gas melting furnace KOV 010/1998 were performed within the experiment. At the same time, the total times t_m to melt one batch with approximately the same amount of melt of 7900 kg were recorded. There were five separate measurements made during the experiment. Each measurement was performed in different operating mode of the melting furnace [11]. The first operating mode OM_1 corresponded to the maximum power of both burners. The second operating mode OM_2 corresponded to the burner no. 1 set to maximum power, with the burner no. 2 set to low power. The third operating mode OM_3 matched the burner no. 1. to maximum power, burner no. 2 was out of service. The fourth operating mode, OM_4, corresponded to the minimum power of both burners. The last, fifth operating mode OM_5, corresponded to burner setting no. 1 to a minimum power, with burner no. 2 being out of service. The following Fig. 3 shows the process of adjusting individual modes of burners no. 1 and no. 2 always before the first Al loading in the gas melting furnace KOV 010/1998.

The respective values of the pollutant content, as well as the times t_m required for melting Al and the attainment of the melting temperature of about 720°C were recorded within the individual operating modes of the melting furnace KOV 010/1998 during melting of the Al alloy. The times required for melting the Al alloy and the experimentally measured pollutant content during the individual operating modes OM_1 to OM_5 of the melting furnace KOV 010/1998 are presented in the following Table 2.

Table 2
Recorded values of pollutant content and times \(t_m \) needed for melting of Al alloy during individual operating modes OM_1 to OM_5 of the melting furnace KOV 10/1998

Operating mode of the melting furnace KOV 010/1998	Melting time \(t_m \) (hours)	Power of gas burner
No.1	No.2	
OM_1	10.0	high
OM_2	11.5	high
OM_3	13.0	OFF
OM_4	13.5	low
OM_5	14.0	OFF

Measured pollutant content (%) (g.m\(^{-3}\))
OM_1
OM_2
OM_3
OM_4
OM_5

The total amount of pollutants produced during the individual operating modes OM_1 to OM_5 of the melting furnace KOV 010/1998 was calculated based on the measured values. These values can be seen in the following Table 3.

Table 3
Values of the total amount of pollutants produced during individual operating modes OM_1 to OM_5 of the melting furnace KOV 010/1998

Operating mode of the melting furnace KOV 010/1998	Amount of pollutants produced during one melting cycle (kg)				
Nox	CO\(^2\)	CO\(^2\)	TRL		
OM_1	3.67	0.99	1846.88	0.06	1851.59
OM_2	3.59	0.99	1802.55	0.06	1807.19
OM_3	3.55	0.96	1767.15	0.05	1771.71
OM_4	4.37	1.27	2138.15	0.08	2143.86
OM_5	4.85	1.60	2410.80	0.11	2417.36

It is possible to observe significant differences from the experimentally measured and calculated data recorded in the Tables 2 and 3. These differences are not only in the total content of pollutants produced during the individual operating modes OM_1 to OM_5 of the melting furnace KOV 010/1998, but also in the total times \(t_m \) of the melting time Al and reaching the melt temperature of about 720°C. The graphical dependencies that are presented in the Figure 5 were constructed based on the experimentally measured data given in the Table 2 and empirically determined data given in the Table 3.

They describe the dependence of the total amount of pollutants produced and the total time \(t_m \) needed to melt and heat the Al alloy to a temperature of about 720°C at the individual operating modes OM_1 to OM_5 of the melting furnace KOV 010/1998.

From the graphical dependencies shown in Fig. 5 it can be observed that the lowest value of the total time \(t_m \) of melting Al alloy (\(t_m = 10 \) hours) was recorded during operation mode OM_1, while the highest (\(t_m = 14 \) hours) during operation mode OM_5.

DISCUSSION
Experimental research was focused on finding the most suitable variant of the operating mode of the gas melting furnace KOV 010/1998, which is used mainly for melting Al alloys with an orientation to maximize its productivity. Based on the results of experimental measurements, it can be concluded that OM_1 operating mode can be considered the most suitable variant of the operating mode for the gas melting furnace KOV 010/1998 in terms of its productivity. In this operating mode, one melting cycle lasts only 10 hours.

On the other hand, the operating mode OM_3, at which the lowest total amount of pollutants was produced, appears to be the most appropriate from the point of view of the production of pollutants during one melting cycle. During one melting cycle in this mode of operation of the melting furnace, 1771.71 kg amount of pollutants was produced.

In the operating mode OM_2, higher melting productivity can be achieved, but at the expense of a slight increase in the production of pollutants. Therefore, during the operation of the melting furnace, with a view to maximizing productivity, while maintaining a favourable balance of pollutants, it is recommended to apply the operating mode OM_3 resp. OM_2.

The operating mode OM_5 can be considered the most improper variant of the operating modes for the gas melting furnace in terms of its productivity and total amount of pollutants produced. This operating mode is in no way recommended to be applied during the operation of the gas melting furnace KOV 010/1998.
CONCLUSION
As already mentioned in the introduction, the gas melting furnace generally represents the primary equipment used in the casting process. A large amount of pollutants is produced in the Al alloy melting process. They come mainly from the combustion and melting process. We cannot completely eliminate the production of these harmful substances despite the use of modern technological equipment with active reduction of polluting production. The productivity of the melting furnace is another important monitored parameter in the production of Al castings. The technical practice of operating gas melting furnaces is maximization of their productivity with the lowest amount of pollutants produced. These real requirements of the technical practice were also supported by experiments. Based on the results of measurements of pollutant values produced during the operation of the gas melting furnace KOV 010/1998 used mainly for melting Al alloys, their aim was to design the most suitable variant of the operating mode of the given melting furnace. Based on the experimental measurements carried out, the operating mode OM_1 was recommended as the most suitable variant in terms of the productivity of the gas smelting furnace KOV 010/1998 when Al alloy was melted. On the other hand, the operating mode OM_3 was recommended to minimize the total amount of pollutants produced during one melting cycle.

ACKNOWLEDGMENTS
The authors would like to thank the grant agency for supporting research work the project VEGA 1/0205/19.

REFERENCES
[1] S.H. Al-Jlibouri. “Monitoring systems and their effectiveness for project cost control in construction.” International Journal of Project Management, vol. 21, pp. 145-154, 2003.
[2] P. Baron, A. Panda, M. Pollák and T. Cmorej. “Modification of production process structure and optimization of material flow for selected types of components computer simulation means.” MM Science Journal, vol. 2017(11), pp. 1895-1900, 2017.
[3] S. Banerjee, D. Sanyal, S. Sen and I.K. Puri. “A methodology to control direct-fired furnaces.” International Journal of Heat and Mass Transfer, vol. 47, pp. 5247-5256, 2004.
[4] B.S. Brewster, B.W. Webb, M.Q. McQuay, M. D’Agostini and C.E. Baukal. “Combustion measurements and modeling in an oxygen-enriched aluminum-recycling furnace.” The International Journal of Energy, vol. 74, pp. 11-17, 2001.
[5] I. Cornoý. “Overview of progressive evaluation methods for monitoring of heat production and distribution.” Procedia Engineering, vol. 190, pp. 619-626, 2016.
[6] J. Dubják, J. Piteľ and M. Majovská. “Diagnostics of aluminum alloys melting temperature in high pressure casting.” Key Engineering Materials, vol. 669, pp. 110-117, 2016.
[7] M.W. Edward, L.S. Donald and O. Ken. “Evaluating aluminum melting furnace transient energy efficiency.” in Procedings of Symposia held during TMS 2009, Annual Meeting and Exhibition, Warrendale TMS, 2009, pp. 43-51.
[8] E. Faltinová, et al. “Reliability analysis of crane lifting mechanism.” Scientific Journal of silesian university of technology-series transport, vol. 98, pp. 15-26, 2018.
[9] B. Golchert, P. Ridenour, W. Walker, M. Gu, N.K. Selvarasu and C. Zhou. “Effect of nitrogen and oxygen concentrations on Nox emissions in an aluminum furnace.” in Proc. ASME-IMECE, IMECE2006-15693, USA, 2006, pp. 323-333.
[10] T.X. Li, M. Hassan, K. Kuwana, K. Saito and P. King. “Performance of secondary aluminum melting: Thermodynamic analysis and plant-site experiments.” Energy, vol. 31(12), pp. 1433-1443, 2006.
[11] T. Krenický, J. Růžbarský and A. Panda. “Operation and Diagnostics of Machines and Production Systems Operational States 3.” Key Engineering Materials, vol. 669, pp. 596, 2016.
[12] L. Lazic, A. Varga and J. Kizek. “Analysis of combustion characteristic in an aluminum melting furnace.” Metalurgija, vol. 44(3), pp. 192-199, 2005.
[13] J. Maščenik. “Implementation of the designed program for calculation and check of chain gears.” MM Science Journal, vol. 2019(december), pp. 3431-3434, 2019.
[14] M. Miškiv-Pavlík, J. Jurko, K. Židek, A. Hošovský and K. Monková. “Measurement of distance and displacement by non-contact confocal sensors.” Studia i Materialy, vol. 39(1), pp. 6-12, 2019.
[15] A. Mukhopadhyay, I.K. Puri, S. Zelepowa and D.M. Rue. “Numerical simulation of methane-air nozzle burners for aluminum remelt furnaces.” in Proc. ASME-IMECE, HTD-24234, USA, 2001, pp. 65-71.
[16] A.O. Niecke, M.F. Naccache and M.S.P. Gomes. “Numerical simulation of a three dimensional aluminum melting furnace.” Journal of Energy Resources, vol. 126, pp. 72-81, 2004.
[17] A.O. Niecke, M.F. Naccache and M.S.P. Gomes. “Combustion performance of an aluminum melting furnace operating with natural gas and liquid fuel.” Applied Thermal Engineering, vol. 31, pp. 841-851, 2011.
[18] A. Panda, et al. “Production by FDM method RP technology from PLA eco-materials extruded horizontally in length.” MM Science Journal, vol. 2018(3), pp. 2179-2182, 2018.
[19] A. Panda, M. Hatala, K. Dyadyura, J. Dulplák and A. Yunak. “Machinability Research by New Abrasion-Resistant Cast Irons Cutting.” Key Engineering Materials, vol. 669, pp. 118-12, 2016.
[20] I. Pandová and R. Bielousová. “Methods for the protection of the exterior air under emissions of oxides of nitrogen.” Studia i Materialy, vol. 38(6), pp. 65-68, 2018.
[21] S. Pavlenko, J. Maščenik and T. Krenický. “Worm gears: general information, calculations, dynamics and reliability.” Lüdenscheid: RAM-Verlag, 2018, pp. 167.
[22] M. Pollák and J. Tkáč. “Enterprise information data management system for small manufacturing company.” TEM Journal - Technology, Education, Management, Informatics, vol. 8(4), pp. 1169-1175, 2019.
[23] M. Rimár, M. Fedák, A. Kulikov and P. Šmeringait. “Study of gaseous flows in closed area with forced ventilation.” MM Science Journal, vol. 2018(3), pp. 2188-2191, 2018.
[24] L. Sukhodub, A. Panda, K. Dyadyura, I. Pandová and T. Krenický. “The design criteria for biodegradable magnesium alloy implants.” MM Science Journal, vol. 2018(December), pp. 2673-2679, 2018.
[25] L. Straka and S. Hašová. “The critical failure determination of the constructional parts of autonomous electroerosion equipment by applying Boolean logic.” Academic Journal of Manufacturing Engineering, vol. 14(2), pp. 80-86, 2016.
[26] S. Yan, et al. “Study on point bar residual oil distribution based on dense well pattern in Sazhong area.” *Journal of Mines, Metals and Fuels*, vol. 65(12), pp. 743-748, 2017.

[27] J.M. Wanga, H.J. Yana, J.M. Zhoua, S.X Lib and G.Ch. Guib. “Optimization of parameters for an aluminum melting furnace using the Taguchi approach.” *Applied Thermal Engineering*, vol. 33-43, pp. 33-34, 2012.

[28] W. Zhang and X. Wang. “Simulation of the inventory cost for rotatable spare with fleet size impact.” *Academic Journal of Manufacturing Engineering*, vol. 15(4), pp. 124-132, 2017.

[29] Instruction manual of flue gas analyser Testo 340.

Ľuboslav STRAKA
ORCID ID: 0000-0003-0914-2155
Technical University of Kosice with a seat in Prešov
Faculty of Manufacturing Technologies
Department of Automotive
and Manufacturing Technologies
Štúrova 31, Prešov, Slovak Republic
e-mail: luboslav.straka@tuke.sk,

Ján PITEĽ
ORCID ID: 0000-0003-1942-0438
Technical University of Kosice with a seat in Prešov
Faculty of Manufacturing Technologies
Department of Industrial Engineering and Informatics
Bayerova 1, Prešov, Slovak Republic
e-mail: jan.pitel@tuke.sk,

Peter MICHALÍK
Technical University of Kosice with a seat in Prešov
Faculty of Manufacturing Technologies
Department of Automotive
and Manufacturing Technologies
Štúrova 31, Prešov, Slovak Republic
e-mail: peter.michalik@tuke.sk

Matej HRABČÁK
Technical University of Kosice with a seat in Prešov
Faculty of Manufacturing Technologies
Department of technical systems design and monitoring
Štúrova 31, Prešov, Slovak Republic
e-mail: matej.hrabcak@tuke.sk