Gravity, Bose-Einstein Condensates and Gross-Pitaevskii Equation

Patrick Das Gupta
Department of Physics and Astrophysics, University of Delhi, Delhi - 110 007 (India)

We explore the effect of mutual gravitational interaction between ultra-cold gas atoms on the dynamics of Bose-Einstein condensates (BEC). Small amplitude oscillation of BEC is studied by applying variational technique to reduce the Gross-Pitaevskii equation, with gravity included, to the equation of motion of a particle moving in a potential. According to our analysis, if the s-wave scattering length can be tuned to zero using Feshbach resonance for future BEC with occupation numbers as high as \(\approx 10^{20} \), there exists a critical ground state occupation number above which the BEC is unstable, provided that its constituents interact with a \(1/r^3 \) gravity at short scales.

I. INTRODUCTION

Gravity is the weakest of all forces. This is essentially due to the smallness of Newton’s gravitational constant (or, equivalently, largeness of Planck mass), measured on scales larger than tens of km. However, to resolve issues pertaining to naturalness and hierarchy problems in the Standard Model of particle physics, it has been conjectured that if large extra dimensions exist, the effective gravitational coupling strength can be larger at sub-mm scales. With the advent of exciting precision experiments involving Bose-Einstein condensation of alkali atoms and molecules at ultra-low temperatures, it is but natural to study effects of enhanced gravity ensuing from large extra dimensions (LED) on such macroscopic quantum phenomena.

In this context, Dimopoulos and Geraci have proposed an interesting experiment to probe gravity at sub-micron scale through measurements of relative phase evolution rates in Bose-Einstein condensates (BEC) prepared in coherent superposition of states localized at two distinct potential wells, both situated near a moving wall of alternating gold and silver metal objects that form a periodic massive structure of gravity\(^3\). Similarly, Sigurdsson has suggested measuring fringe shifts of interfering pair of BEC falling past a long and narrow cylindrical mass in order to estimate modified transverse gravitational acceleration, provided that the LED sub-mm scale is in excess of 0.01 mm\(^2\).

Interestingly enough, the typical separation between atoms in ultra-cold gases is only about 100 nm. This induces one to explore effects of mutual gravitational interaction between individual atoms of a BEC on its quantum dynamics, and ask whether such weak but long range forces can lead to instabilities. In this paper, we carefully examine some aspects of these ideas using variational method.

II. GROSS-PITAEVSKII EQUATION AND LARGE EXTRA DIMENSIONS INDUCED GRAVITY

For \(N \) identical bosons constituting a dilute BEC at temperature \(T \approx 0^\circ K \), the many body wavefunction \(\Psi(r_1, r_2, \ldots, r_N) \) describing the condensate can be expressed up to a good approximation (assuming that the bosons interact weakly with each other) as,

\[
\Psi(r_1, r_2, \ldots, r_N) \approx \prod_{j=1}^{N} \psi(r_j)
\]

where \(\psi(r) \) is the normalized ground state wavefunction for a single boson. As each boson, in this case, is approximately in the same state, \(\psi(r) \) acts as the condensate wavefunction.

In the \(T = 0^\circ K \) mean field approximation, dynamical evolution of the condensate wavefunction \(\psi(r, t) \) (normalized to unity) is, to a good extent, governed by the Gross-Pitaevskii equation,

\[
\begin{aligned}
\hbar \frac{\partial \psi}{\partial t} &= \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}} + N \int V(|r - \bar{u}|)\psi(\bar{u}, t)|^2 d^3 u \right] \psi(r, t)
\end{aligned}
\]

where \(m, V_{\text{ext}}(r) \) and \(V(r) \) are the boson mass, the trap potential energy required to confine the BEC and the interaction potential energy between two bosons, respectively.

For the present purpose, the interaction potential energy \(V \) in eq.(1) is a combination of s-wave scattering potential and the inter-bosonic gravitational potential energy \(V_g \), so that,

\[
V(|r - \bar{u}|) = \frac{4\pi\hbar^2 a}{m} \delta^3(\bar{r} - \bar{u}) + V_g(|r - \bar{u}|). \tag{2}
\]

where \(a \) is the s-wave scattering length.

Substitution of eq.(2) in eq.(1) results in the standard Gross-Pitaevskii equation (GPE)\(^\Delta\).

\[
\begin{aligned}
\hbar \frac{\partial \psi}{\partial t} &= \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}} + Ng|\psi(r, t)|^2 + \right. \\
&\left. + N \int V_g(|r - \bar{u}|)\psi(\bar{u}, t)|^2 d^3 u \right] \psi(r, t) \tag{3}
\end{aligned}
\]

where \(g = \frac{4\pi\hbar^2 a}{m} \).

It is interesting to note that the quantum dynamics of a BEC, comprised of ultra-cold bosonic atoms anchored to a planar honeycomb optical lattice and interacting weakly to one another via a contact interaction.
much like the first term of the RHS of eq.(2), is described
by a nonlinear Dirac equation. Furthermore, the pseudo-
dispin degrees of freedom associated in this case with
the two inequivalent sites of the sublattice display half
integral spin angular momentum features, stretching the
graphene analogy farther, even though the system is a
bosonic one.

The GPE of eq.(3) can easily be derived from the fol-
lowing action by demanding it to be stationary under
infinitesimal variations of ψ and ψ^*,

$$S = \int dt \int d^3r \ L$$

where the Lagrangian density L is given by,

$$L = \frac{i\hbar}{2} \left\{ \psi \frac{\partial \psi^*}{\partial t} - \psi^* \frac{\partial \psi}{\partial t} \right\} + \frac{\hbar^2}{2m} \nabla \psi^* \cdot \nabla \psi + V_{\text{ext}} |\psi|^2 +$$

$$+ \frac{gN}{2} |\psi|^4 + \frac{N}{2} |\psi|^2 \int V_g(|\vec{r} - \vec{u}|) |\psi(\vec{u},t)|^2 d^3 u$$

Now we come to the gravitational potential energy V_g
appearing in eq.(5). In the framework of LED gravity,
the hierarchy problem of the Standard Model can be
ameliorated if (a) there exists a fundamental energy
scale $M_\ast c^2$ (≈ 1-1000 TeV, orders of magnitude less than
the Planck energy $\approx 10^{19}$ GeV) for all interactions,
and (b) there are additional sub-mm scale spatial dimen-
sions, so that the perceived weakness of Newtonian gravity
on large scales in (3+1)-dimensional space-time is due to
the gravitational field lines spilling into the hidden spa-
tial dimensions. In this formalism, the gravitational
potential energy $V_g(r)$ between two point masses m_1 and
m_2 separated by a distance r is given by,

$$V_g(r) \approx -\frac{m_1 m_2 \hbar c}{r}, \quad r \gg R_\ast$$

$$\approx -\frac{(R_\ast(n))^n m_1 m_2 \hbar c}{r^{n+1}}, \quad r \ll R_\ast$$

where $m_{pl} = \sqrt{\frac{\hbar c}{G}}$ is the Planck mass corre-
sponding to the standard Newton’s gravitational constant
G and $R_\ast(n)$ is the radius of the extra dimensional
n-torus given by

$$R_\ast(n) = \left(\frac{m_{pl}}{M_\ast} \right)^{2/n} \frac{\hbar}{2\pi M_\ast c}$$

for $n = 1,2,\ldots$ According to eq.(6), closer one probes
stronger is the gravity on scales smaller than $R_\ast(n)$. In
the next section, we examine its implications on low lying
excitations of BEC.

III. VARIATIONAL METHOD, GRAVITY AND
BEC OSCILLATION MODES

Solving eq.(3) with V_g given by eq.(6) is a nontrivial
task. Instead, we take recourse to a variational method
developed to study stability and low energy excitations
of BEC. In this approach, the parameters of a trial
wavefunction ψ_{tr} is obtained by demanding that the ac-
tion is extremized by ψ_{tr}. Since attractive contact in-
teractions (i.e. $\alpha < 0$) is known to cause collapse of
BEC for sufficiently large N, stability analysis with
gravitational interactions included is worth studying.

For this purpose, we consider a spherically symmetric
trap potential,

$$V_{\text{ext}} = \frac{1}{2} m \omega_0^2 r^2$$

and choose a normalized trial wavefunction,

$$\psi_{\text{tr}}(\vec{r},t) = A(t) \exp \left(-\frac{r^2}{2\sigma^2(t)}\right) \exp \left(iB(t) r^2\right)$$

where $A(t)$, $\sigma(t)$ and $B(t)$ are amplitude, width and
phase parameters, respectively, that need to be deter-
mined from extremization of the action (eqs.(4) and (5)). As
ψ_{tr} is normalized, $A(t)$ and $\sigma(t)$ are related by,

$$|A(t)|^2 = (\sqrt{\pi} \sigma(t))^{-3}$$

so that,

$$A(t) = (\sqrt{\pi} \sigma(t))^{-3/2} \exp (i\gamma(t))$$

where $\gamma(t)$ is a time dependent phase. Substitution of
eqs.(8)-(11) in eq.(5) and carrying out the spatial integral
thereafter lead to the following Lagrangian,

$$L = \int d^3r \ L = \hbar \dot{\gamma} + L_{\text{int}} + \frac{gN}{4\sqrt{2\pi}^{3/2} \sigma^3} +$$

$$+ \frac{3}{2} \sigma^2 \left[\hbar \dot{B} + \frac{2\hbar^2}{m} B + \frac{\hbar^2}{2m \sigma^4} + \frac{1}{2} \mu w_0^2 \right]$$

(12)

where the gravity term is,

$$L_{\text{int}} \equiv \frac{N}{2} \int d^3r |\psi(\vec{r},t)|^2 \int V_g(|\vec{r} - \vec{u}|) |\psi(\vec{u},t)|^2 d^3 u$$

(13)

Using eq.(6) for V_g the above integral can be evaluated
analytically for $n = 0$ and $n = 1$ cases so that,

$$L_{\text{int}} = -\frac{\alpha_0}{\sigma} \quad \text{for} \quad n = 0$$

$$= -\frac{\alpha_1}{\sigma^2} \quad \text{for} \quad n = 1$$

(14a)

(14b)

where,

$$\alpha_0 \equiv \frac{N \hbar c}{\sqrt{2\pi}} \left(\frac{m}{m_{pl}} \right)^2$$

(15a)
\[
\alpha_1 \equiv \frac{NR_s \hbar c}{2\sqrt{2}} \left(\frac{m}{m_{pl}} \right)^2 \sum_{k=0}^{\infty} \frac{1}{k!} 2^{2k}(2k+1)!!
\]

Extremizing the action entails Euler-Lagrange equations \(\frac{\partial}{\partial \dot{q}_j} (\partial \mathcal{L}/\partial q_j) - (\partial \mathcal{L}/\partial q_j) = 0 \), for \(j=1 \) and \(2 \), with \(q_1 \equiv B, q_2 \equiv \sigma \) and \(L \) given by eq.(12) \((\gamma(t) \text{ is non-dynamical as it appears only as an additive total derivative term in eq.}(12)) \). The equations of motion are,

\[
B(t) = \frac{m \dot{\sigma}}{2h \sigma} \quad (16a)
\]

and,

\[
\hbar \dot{B} + \frac{2\hbar^2}{m} B^2 - \frac{\hbar^2}{2m\sigma^4} - \frac{gN}{4\sqrt{2\pi^3/2}\sigma^5} + \frac{1}{2} m\omega_0^2 = -f_n(\sigma)
\]

where,

\[
f_n(\sigma) = \frac{\alpha_0}{3\sigma^3} \quad \text{for} \ n = 0
\]

\[
f_n(\sigma) = \frac{2\alpha_0}{3\sigma^4} \quad \text{for} \ n = 1 \quad (16b)
\]

By combining eqs.\((16a)\) and \((16b)\), one arrives at the relevant equation needed to study small amplitude oscillations in an ultra-cold cloud of bosons,

\[
m\ddot{\sigma} = -m\omega_0^2\sigma + \frac{\hbar^2}{m\sigma^4} + \frac{gN}{2\sqrt{2\pi^3/2}\sigma^4} - 2\sigma f_n(\sigma) \quad (17a)
\]

Employing the following dimensionless quantities\[11\] that make use of the BEC ground state scale \(\sqrt{\hbar/m\omega_0} \),

\[
\nu \equiv \frac{\sigma}{\sqrt{\hbar/m\omega_0}}, \quad \tau \equiv \omega_0 t, \quad P \equiv \sqrt{\frac{2}{\pi}} \sqrt{\frac{N}{\hbar/m\omega_0}}
\]

\[
\Rightarrow \frac{gN}{2\sqrt{2\pi^3/2}m} = \frac{\hbar^2}{m^2} \sqrt{\hbar/m\omega_0} P \quad (17b)
\]

along with eq.\((16c)\) in eq.\((17a)\), we obtain,

\[
\frac{d^2
u}{dt^2} = -\nu + \frac{1}{\nu^2} + \frac{P}{\nu^4} + F_n(\nu)
\]

for \(n = 0, 1 \), where the dimensionless gravitational accelerations have the forms,

\[
F_0(\nu) = -\sqrt{\frac{2}{3\pi^2}} N \left(\frac{m}{m_{pl}} \right)^2 \left(\frac{c}{\omega_0 \sqrt{\hbar/m\omega_0}} \right) \nu^2 \quad (19a)
\]

and,

\[
F_1(\nu) = -\frac{2}{3} N \left(\frac{m}{m_{pl}} \right)^2 \left(\frac{R_s}{\hbar/mc} \right) \nu^{-3} \quad (19b)
\]

The RHS of eq.\((18)\) corresponds to an effective potential \(\Phi_n(\nu) \) \((n = 0, 1)\) given by,

\[
\Phi_n(\nu) = \frac{1}{2} \left[\nu^2 + \frac{1}{\nu^2} \right] + \frac{P}{3\nu^3} + \nu F_0(\nu) \quad \text{for} \ n = 0 \quad (19c)
\]

\[
= \frac{1}{2} \left[\nu^2 + \frac{1}{\nu^2} \right] + \frac{P}{3\nu^3} + \frac{\nu F_1(\nu)}{2} \quad \text{for} \ n = 1 \quad (19d)
\]

In order to study small amplitude oscillation modes, one needs to find the minima of \(\Phi_n(\nu) \). So, from \(\Phi_n(\nu) = 0 \), the task here boils down to determining the zeroes of the quintic polynomial,

\[
\nu^5 - \nu - P - \nu^4 F_n(\nu) = 0 \quad (20)
\]

To estimate numerically the real positive roots \(\nu_0 \) of eq.\((20)\) and the excitation frequencies proportional to \(\sqrt{\Phi_n''(\nu_0)} \), we make use of typical experimental length scales,

\[
\sqrt{\hbar/m\omega_0} \approx 10^{-4} \text{ cm}; \quad (c/\omega_0)(m/m_{pl})^2 \approx 3 \times 10^{-26} \text{ cm};
\]

\[
a \approx 10^{-6} \text{ cm}; \quad R_s(1) \approx 200 \mu \text{m}; \quad \hbar/(mc) \approx 1.6 \times 10^{-16} \text{ cm},
\]

having in mind a BEC comprising of \(^{133}\)Cs for which \((m/m_{pl})^2 \approx 4.9 \times 10^{-34}\).

Since both \(P \) and \(-F_n(\nu)\) increase with \(N \) with the latter being negligibly smaller by orders of magnitude due to the smallness of \((m/m_{pl})^2\) inspite of the other factors (see eqs.\((17b),(19a, b)\) and \((21)\)), it is obvious that the s-wave scatterings completely swamp the gravitational corrections to the excitation frequencies. The oscillation modes of such a problem in the absence of gravity had already been studied by Perez-Garcia et al.\[11\]

To circumvent the dominance of binary s-wave scattering one may, along with augmenting \(N \), invoke Feshbach resonance\[14, 17\]. This effect enables experimentalists to tune the scattering length a magnetically, and reduce it to zero. Hence, with a vanishing \(P \), in the \(n = 0 \) case (i.e. pure Newtonian gravity), one finds that for \(N < 10^{21} \), the real positive root \(\nu_0 \) of eq.\((20)\) is very close to unity corresponding to a frequency of \(\nu = 2\omega_0 \), as though the presence of \(F_0(\nu) \) did not matter.

However, for macroscopically large occupation numbers \(N = 10^{22} \) and \(10^{23} \) (BECs of future), one finds significant departures: \(\nu_0 = 0.78, \omega = 2.4 \omega_0 \) and \(\nu_0 = 0.12, \omega = 66 \omega_0 \), respectively. Because of the \(3/\nu_0^4 \) term in \(\Phi_n''(\nu_0) \), one expects a higher excitation frequency as \(\nu_0 \) becomes smaller than unity. Although these results suggest that rise in self-gravity due to increase in \(N \) beyond \(10^{22} \) makes the ultra-cold gas cloud shrink drastically, caution needs to be exercised in concluding so. For, when the number density \(\approx N(\sqrt{\hbar/m\omega_0} \nu_0)^{-3} \) becomes very large, other subatomic effects will start dominating and, also, it is likely that the variational method demands more care in such circumstances. For instance, when
$N = 10^{22}$, our result $v_0 = 0.78$ implies a mean separation between atoms in the condensate to be about 10^{-11} cm! Nevertheless, the observed pathology for $N \geq 10^{22}$ situation suggests that it would be interesting to study the numerical solutions of GPE, with Newtonian gravity added, for macroscopic BEC.

There is another way of getting around the problem of high density for large occupation numbers. One could increase the length scale $\sqrt{\hbar/(mv_0)}$ by choosing a weaker trap potential. Hence, to ensure mean separation not to fall below 10 Angstroms, the trap frequency w_0 must satisfy the condition,

$$w_0 < 10^{14}v_0\left(\frac{3N}{4\pi}\right)^{-2/3}\left(\frac{\hbar/m_{\text{cgs units}}}{\text{cgs units}}\right),$$

where v_0 is the positive root of eq.(20) corresponding to the Newtonian gravity case.

In the $n=1$ case ($1/r^3$ gravity), when $P = 0$, the non-zero roots of eq.(20) satisfy,

$$v_0^4 = 1 - (2N/3)(m/m_p)^2(R_*/(\hbar/mc))$$

implying that the roots are complex when,

$$N > N_{cr} = (3/2)(m/m_p)^{-2}R_*/(\hbar/mc))^{-1}$$

This is easily understood given that the potential Φ_1 of eq.(19d) can be expressed as,

$$\Phi_1(v) = \frac{1}{2}v^2 + \frac{1}{2v^2}\left[1 - \frac{N}{N_{cr}}\right]$$

provided a has been magnetically tuned to zero. From eq.(24), it is clear that the potential is no longer bounded from below when the occupation number exceeds N_{cr}.

This signals instability for the BEC since its size characterized by $\sigma(t)$ rolls down towards 0 as it tries to lower its potential energy. From the values provided in eq.(21), the onset of instability starts at $N_{cr} = 2.4 \times 10^{19}$. While, if $R_*(1)$ is smaller $\approx 1\mu m$, the critical occupation number for 133Cs rises to $\approx 5 \times 10^{21}$. However, when $N < N_{cr}$, there is one positive root of eq.(22), and the corresponding excitation frequency is $2w_0$, albeit independent of $n = 1$ gravity.

IV. CONCLUSION

Within the ambit of variational method, we have found that occupation numbers in excess of N_{cr} cause collapse of BEC for attractive gravity falling off as r^{-3}. This can be subjected to experimental verification only when one attains BECs with macroscopically large occupational numbers $\approx 10^{19} - 10^{22}$. For higher values of N, even Newtonian gravity appears to have significant effect on the BEC dynamics that needs to be studied more carefully. The consequences of $n \geq 2$ LED theories on BEC, though not covered in this paper, need to be studied. In particular, it would be interesting to see whether their effects could be disentangled from those arising from other atomic interactions like van der Waals force.

Acknowledgments

It is a pleasure to thank N. D. Hari Dass, Michel Devoret, Ramesh Kaul and T. R. Govindarajan for stimulating discussions.

1. Newman, R. D., Berg, E. C. and Boynton, P. E., Space Sci. Rev. 2009, 148, 175-190, for a recent review on gravity experiments.
2. Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. R., Phys. Lett. B 1998, 429, 263-272.
3. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. R., Phys. Lett. B 1998, 436, 257-263.
4. Kumar, N., Current Science 2005, 89, 2093-2100, for a historical review.
5. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S., Rev. Mod. Phys. 1999, 71, 463-512.
6. Dimopoulos, S. and Geraci, A. A., Phys. Rev. D 2003, 68, 124021.
7. Sigurdsson, S., Int. J. Mod. Phys. D 2002, 11, 1541-1544.
8. Haddad, L. H. and Carr, L. D., Physica D: Nonlinear Phenomena 2009, 238, 1413-1421.
9. Das Gupta, P., Raj, S. and Chaudhuri, D. 2010, arXiv:1012.0076 [cond-mat.mes-hall].
10. Perez-Garcia, V. M., Michinel, H., Cirac, J. I., Lewenstein, M. and Zoller, P., Phys. Rev. Lett. 1996, 77, 5320-5323.
11. Perez-Garcia, V. M., Michinel, H., Cirac, J. I., Lewenstein, M. and Zoller, P., Phys. Rev. A 1997, 56, 1424-1432.
12. Goral, K. and Santos, L. Phys. Rev. A 2002, 66, 023613, and references therein.
13. Gerton, J. M., Strekalov, D., Prodan, I. and Hulet, R. G., Nature 2000, 408, 692-695.
14. Tiesinga, E., Verhaar, B. J. and Stoof, H. T. C., Phys. Rev. A 1993, 47, 4114.
15. Inouye, S., Andrews, M. R., Stenger, J., Miesner, H. J., Stamper-Kurn, D. M., and Ketterle, W., Nature 1998, 392, 151-154.
16. Courtelle, P., Freeland, R. S., Heinzen, D. J., Van Abeelen, F. A., and Verhaar, B. J., Phys. Rev. Lett. 1998, 81, 69.
17. Roberts, J. L., Claussen, N. R., Burke Jr, J. P., Greene, C. H., Cornell, E. A., and Wieman, C. E., Phys. Rev. Lett. 1998, 81, 5109.