CHARACTERIZATIONS OF ANISOTROPIC HIGH ORDER SOBOLEV SPACES

NGUYEN LAM1, ALI MAALAOUI2, ANDREA PINAMONTI3

Abstract. We establish two types of characterizations for high order anisotropic Sobolev spaces. In particular, we prove high order anisotropic versions of Bourgain-Brezis-Mironescu’s formula and Nguyen’s formula.

1. Introduction

The celebrated Bourgain-Brezis-Mironescu formula, appeared for the first time in [6, 7], and provided a new characterization for functions in the Sobolev space $W^{1,p}(\Omega)$, with $p \geq 1$ and for $\Omega \subset \mathbb{R}^N$ being a smooth bounded domain. More precisely, they proved

Theorem A. (Bourgain, Brezis and Mironescu, [6]). Let $g \in L^p(\mathbb{R}^N)$, $1 < p < \infty$. Then $g \in W^{1,p}(\mathbb{R}^N)$ iff

$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|g(x) - g(y)|^p}{|x - y|^p} \rho(|x - y|) \, dx \, dy \leq C, \ \forall n \geq 1,$$

for some constant $C > 0$. Moreover,

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|g(x) - g(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, dx \, dy = K_{N,p} \int_{\mathbb{R}^N} |\nabla g(x)|^p \, dx.$$

Here

$$K_{N,p} = \int_{S^{N-1}} |e \cdot \sigma|^p \, d\sigma$$

for any $e \in S^{N-1}$ and $d\sigma$ is the surface measure on S^{N-1}. Here $(\rho_n)_{n \in \mathbb{N}}$ is a sequence of nonnegative radial mollifiers satisfying

$$\lim_{n \to \infty} \int_0^\infty \rho_n(r) \, r^{N-1} \, dr = 0, \ \forall r > 0,$$

$$\lim_{n \to \infty} \int_0^\infty \rho_n(r) \, r^{N-1} \, dr = 1.$$

Starting from the previous result and since the theory of Sobolev spaces is a fundamental tool in many branches of modern mathematics, such as harmonic analysis, complex...
analysis, differential geometry and geometric analysis, partial differential equations, etc, there has been a substantial effort to characterize Sobolev spaces in different settings and various ways depending on the situation where these spaces are used (see e.g., [1], [4], [12], [13], [21], [22], [24], [23]).

Theorem A has been extended to the high order case by Bojarski, Il'nyts'eva and Kinnunen [2] using the high order Taylor remainder and by Borghol [3] using high order differences.

We note here, as a consequence of Theorem A, that we can characterize the Sobolev space $W^{1,p}(\mathbb{R}^N)$ as follows: Let $g \in L^p(\mathbb{R}^N), \ 1 < p < \infty$. Then $g \in W^{1,p}(\mathbb{R}^N)$ iff

$$\sup_{0<\delta<1} \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|g(x) - g(y)|^p}{\delta^{N+p}} \, dx \, dy < \infty. \quad (1.1)$$

Recently, Nguyen [17] (see also [18]), motivated by an estimate for the topological degree for the Ginzburg-Landau equation ([5]), established some new characterizations of the Sobolev space $W^{1,p}(\mathbb{R}^N)$ which are closely related to Theorem A. More precisely, he used the dual form of (1.1) and proved the following results:

Theorem B. (H. M. Nguyen, [17]). Let $1 < p < \infty$. Then the following hold:

(a) Let $g \in W^{1,p}(\mathbb{R}^N)$. Then there exists a positive constant $C_{N,p}$ depending only on N and p such that

$$\int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{\delta^p}{|x - y|^{N+p}} \, dx \, dy \leq C_{N,p} \int_{\mathbb{R}^N} |\nabla g(x)|^p \, dx, \ \forall \delta > 0, \forall g \in W^{1,p}(\mathbb{R}^N).$$

(b) If $g \in L^p(\mathbb{R}^N)$ satisfies

$$\sup_{0<\delta<1} \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{\delta^p}{|x - y|^{N+p}} \, dx \, dy < \infty,$$

then $g \in W^{1,p}(\mathbb{R}^N)$.

(c) Moreover, for any $g \in W^{1,p}(\mathbb{R}^N)$,

$$\lim_{\delta \to 0} \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{\delta^p}{|x - y|^{N+p}} \, dx \, dy = \frac{1}{p} K_{N,p} \int_{\mathbb{R}^N} |\nabla g(x)|^p \, dx$$

The previous result has been generalized in many ways and for different spaces (see e.g. [12, 19, 20, 15]). In particular, in [20] the authors proved the following result:

Theorem C. (H. M. Nguyen, M. Squassina [20]). Let $1 < p < \infty$ and $K \subset \mathbb{R}^N$ be a convex, symmetric set containing the origin. Then, for every $g \in W^{1,p}_K(\mathbb{R}^N)$,

$$\lim_{\delta \to 0} \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{\delta^p}{\|x - y\|_K^{N+p}} \, dx \, dy = \int_{\mathbb{R}^N} \|\nabla g\|_K^p \, dx.$$
where $\| \cdot \|_K$ is the norm in \mathbb{R}^N which admits as unit ball the set K, i.e. $\| x \|_K := \inf \{ \lambda > 0 \mid \frac{x}{\lambda} \in K \}$, $\| \cdot \|_{Z^p_K}$ is the norm associated with the L_p polar body of K, namely

$$
\| v \|_{Z^p_K} = \left(\frac{N + p}{p} \int_K |v \cdot x|^p dx \right)^{1/p}, \quad v \in \mathbb{R}^N
$$

(1.2)

and $W^{1,p}_K(\mathbb{R}^N)$ is the associate Sobolev space.

The main purpose of this paper is to generalize Theorem A and Theorem C to high-order anisotropic Sobolev spaces. In order to describe our main results we recall the following notation ([3]): Let $f \in W^{k,p}(\Omega)$ and $\sigma = (\sigma_1, \ldots, \sigma_N) \in \mathbb{S}^{N-1}$, we denote

$$
D^k f(x) (\sigma, \ldots, \sigma) = \sum_{1 \leq i_1, \ldots, i_k \leq N} \sigma_{i_1} \ldots \sigma_{i_k} \frac{\partial^k f}{\partial x_{i_1} \ldots \partial x_{i_k}}(x)
$$

and, for every $m \in \mathbb{N}$

$$
R^m f(x, y) = \sum_{j=0}^{m} (-1)^j \binom{m}{j} f \left(\frac{m-j}{m} x + \frac{j}{m} y \right).
$$

(1.3)

Theorem 1.1. Let $f \in W^{m,p}(\mathbb{R}^N)$ with $m \in \mathbb{N}$ and $1 < p < \infty$. Then

$$
\lim_{\delta \to 0} \int_{|R^m f(x, y)| > \delta} \frac{\delta^p}{\| x - y \|^N_{m+\frac{p}{m}}} dx dy = \frac{N + mp}{m^{mp+1}p} \int_{\mathbb{R}^N} \int_{K} |D^m f(x)(y, \ldots, y)|^p dy dx.
$$

Notice that taking $m = 1$ in the previous theorem we get Theorem C and taking $m = 2$ and $\| \cdot \|$ the Euclidean norm we get [12, Theorem 1.1].

Our next result is the analogous of [3, Theorem 4] in our setting.

Theorem 1.2. Let $(\rho_\varepsilon)_\varepsilon$ be a family of functions such that $\rho_\varepsilon : [0, \infty) \to [0, \infty)$ such that

$$
\int_{0}^{\infty} \varepsilon^{N-1} \rho_\varepsilon(r) dr = 1 \quad \text{and} \quad \lim_{\varepsilon \to 0} \int_{\delta}^{\infty} \varepsilon^{N-1} \rho_\varepsilon(r) dr = 0 \quad \forall \delta > 0
$$

(1.4)

Let $1 < p < \infty$. If $f \in W^{m,p}(\mathbb{R}^N)$ then

$$
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\| R^m f(x, y) \|^p_{m+\frac{p}{m}}}{\| x - y \|^N_K} \rho_\varepsilon(\| x - y \|_K) dx dy = \frac{N + mp}{m^{mp}} \int_{\mathbb{R}^N} \int_{K} |D^m f(x)(y, \ldots, y)|^p dy dx.
$$

(1.5)

We also prove the following results which can be considered a generalization to high-order anisotropic spaces of [12, Theorem 1.2]. More precisely, for any $f \in W^{m,p}(\mathbb{R}^N)$ and $y \in \mathbb{R}^N$ let

$$
T_y^{m-1} f(x) = \sum_{|\alpha| \leq m-1} D^\alpha f(y) \frac{(x - y)^\alpha}{\alpha!}
$$

and

$$
R_{m-1} f(x, y) = f(x) - T_y^{m-1} f(x).
$$

Then we will prove that

Theorem 1.3. Let $f \in W^{m,p}(\mathbb{R}^N)$, $1 < p < \infty$. Then

$$
\lim_{\delta \to 0} \int_{\mathbb{R}^N} \int_{|R_{m-1} f(x, y)| > \delta} \frac{\delta^p}{\| x - y \|^N_{m+\frac{p}{m}}} dx dy = \frac{N + mp}{(m!)^p mp} \int_{\mathbb{R}^N} \int_{K} |D^m f(x)(y, \ldots, y)|^p dy dx.
$$
Theorem 1.4. Let \(f \in W^{m,p}(\mathbb{R}^N) \), \(1 < p < \infty \). Then
\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left| R_{m-1} f(x, y) \right|^p \rho_\varepsilon (\|x - y\|_K) \, dx \, dy = \frac{N + mp}{(m!)^p} \int_{\mathbb{R}^N} \int_{K} |D^m f(x, \ldots, y)|^p \, dy \, dx.
\]
Here the family \((\rho_\varepsilon)_\varepsilon \) is as in Theorem 1.2.

The plan of the paper is the following: In Section 2, we will study a helpful lemma which will be used in Section 3 to prove Theorems 1.2 and 1.1. In Section 4, we establish Theorems 1.3 and 1.4 which will give characterizations of the high-order anisotropic Sobolev spaces using the Taylor reminder.

2. A useful Lemma

Lemma 2.1. Let \(N, m \in \mathbb{N} \) and \(1 < p < \infty \). There exists a constant \(C = C(N, m, p) > 0 \) such that for every \(1 \leq i \leq N \) and every \(f \in L^p(\mathbb{R}^N) \) it holds
\[
\| \partial_{x_i}^{2m} f \|_{L^p(\mathbb{R}^N)} \leq C \| (\Delta)^m f \|_{L^p(\mathbb{R}^N)} \tag{2.1}
\]
and
\[
\| \partial_{x_i}^{2m+1} f \|_{L^p(\mathbb{R}^N)} \leq C \| \nabla (\Delta)^m f \|_{L^p(\mathbb{R}^N)} \tag{2.2}
\]
where \((\Delta)^m f = (\Delta) \cdot (\Delta) \cdots (\Delta) f \).

Proof. If \(g = (\Delta)^m f \) then \(\hat{g}(\xi) = (-4\pi |\xi|^2)^m \hat{f}(\xi) \). Therefore for every \(\xi \in \mathbb{R}^N \setminus \{0\} \) we have \(\hat{f}(\xi) = \frac{\hat{g}(\xi)}{(-4\pi |\xi|^2)^m} \) and
\[
\partial_{\xi_j}^{2m} \hat{f}(\xi) = \frac{(\xi_j)^m}{(4\pi |\xi|^2)^m} \hat{g}(\xi). \tag{2.3}
\]
Since the function \(m(\xi) = \frac{(\xi_j)^m}{(4\pi |\xi|^2)^m} \) is homogeneous of order zero and smooth everywhere except at 0, it satisfies the Mikhlin multiplier theorem [11], namely there exists \(C = C(N, p) > 0 \) such that
\[
\| (m\hat{g})^\vee \|_{L^p} \leq C \|g\|_{L^p} \quad \forall g \in \mathcal{S}
\]
which together with (2.3) gives (2.1). Clearly (2.2) follows from (2.1).

Since all norms on \(\mathbb{R}^N \) are equivalent, there are \(A, B > 0 \) such that
\[
A |\cdot| \leq \| \cdot \|_K \leq B |\cdot| \tag{2.4}
\]

3. Characterizations of the higher order Sobolev spaces via m-th difference

Let \(m \geq 0 \). Set \(\Delta_h f(x) = \Delta_{\Delta_0} f(x) := f(x + h) - f(x) \), we call m-th difference the quantity \(\Delta_h^m f(x) = \Delta_h [\Delta_{\Delta_0}^{m-1} f(x)] \). By above definition, it is not difficult to show that for any positive integer \(m \), we have
\[
\Delta_h^m f(x) = \sum_{j=0}^{m} (-1)^{m+j} \binom{m}{j} f(x + jh)
\]
and, by [3, Lemma 8], we also have
\[
\Delta_h^m f(x) = \int_{[0,1]^m} D^m f \left(x + \sum_{j=1}^{m} t_j h \right) (h, \cdots, h) dt_1 \ldots dt_m \tag{3.1}
\]
where \([0,1]^m\) denotes the unit-cube in \(\mathbb{R}^m\). Finally, it is easy to see that for every \(x, h \in \mathbb{R}^N\)

\[R^m f(x, x + mh) = (-1)^m \Delta^m h f(x) \]

where \(R^m f(x, y)\) is as in (1.3).

3.1. Nguyen’s formula

The aim of this section is to prove Theorem 1.1. We start with the following:

Lemma 3.1. Let \(f \in W^{m,p}(\mathbb{R}^N)\) with \(m \in \mathbb{N}\) and \(1 < p < \infty\). There holds

\[
\int \int_{\|x-y\|_{K}^{N+mp} \leq \delta} |\nabla^m f(x, x + mh)| \, dx \, dh \leq C(m, N, p) \|\nabla^m f\|_{L^p(\mathbb{R}^N)}
\]

where

\[\nabla^m f = \begin{cases} \frac{(-\Delta)^{m/2} f}{m} & \text{if } \frac{m}{2} \text{ is even} \\ \nabla(-\Delta)^{m/2} f & \text{if } \frac{m}{2} \text{ is odd} \end{cases} \]

Proof. Using polar coordinates \((y = x + t\sigma, \sigma = \frac{y-x}{|y-x|} \text{ and } t = |x-y|)\) we write

\[
\int \int_{\|x-y\|_{K}^{N+mp} \leq \delta} |\nabla^m f(x, x + mh)| \, dx \, dh = \int_{S^{N-1}} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \int_{\|x-y\|_{K}^{N+mp} \leq \delta} |\Delta^m f(x)| \, dt \, dx \, \sigma \, d\sigma
\]

Thus, since \(A \leq \|\sigma\|_{K} \leq B\), it is enough to show that there exists a constant \(C = C(m, N, p) > 0\) such that for every \(\sigma \in \mathbb{S}^{N-1}\)

\[
\int \int_{\|x-y\|_{K}^{N+mp} \leq \delta} |\nabla^m f(x)| \, dx \, d\sigma \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^{p} \, dx.
\]

We assume, without loss of generality, that \(\sigma = e_N = (0, \ldots, 0, 1)\). By (3.1), we have for any \(x = (x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R}\)

\[
|\Delta^m_{x_N} f(x)| \leq \int_{[0,1]^m} \int_{[0,1]^m} \frac{\partial^m_{x_N} f(x', x_N)}{m} ds_1 \ldots ds_m
\]

\[
\leq \int_{x_N}^{x_N + t} |\partial^m_{x_N} f(x', s)| ds
\]

\[
\leq \int_{x_N}^{x_N + t} \mathbb{M}_{x_N}(\partial^m_{x_N} f)(x', x_N)\]

where \(\mathbb{M}_{x_N}(f)\) denotes the maximal function of \(f\) in direction \(x_N\), namely

\[
\mathbb{M}_{x_N}(f)(x) = \mathbb{M}_{x_N}(f)(x', x_N) = \sup_{t > 0} \frac{1}{t} \int_{x_N}^{x_N + t} |f(x', s)| ds.
\]
So,
\[\int_{\mathbb{R}^N} \int_{|\Delta^m f(x)| > \delta} \frac{\delta^p}{1 + mp} dtdx \leq \int_{\mathbb{R}^N} \int_0^\infty \frac{1}{m^p} \mathcal{M}_N(\partial^m f(x)) > \delta \frac{\delta^p}{1 + mp} dtdx \\ = \frac{1}{m^p} \int_{\mathbb{R}^N} \mathcal{M}_N(\partial^m f(x)) dx \\
\leq \frac{C}{m^p} \int_{\mathbb{R}^N} |\partial^m f(x)| dx \\
\leq \frac{C}{m^p} \|\nabla^m f\|_{L^p(\mathbb{R}^N)} \]

where in the last line we used Lemma 2.1 and in the line before we used (see [25])
\[\int_{\mathbb{R}^N} \int_{\mathbb{R}} |\mathcal{M}_N(\partial^m f(x'))| dx'dx \leq C \int_{\mathbb{R}^N} \int_{\mathbb{R}} |\partial^m f(x', x_N)| dx'dx. \]

This gives the conclusion. \qed

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1: By changing variables (writing \(y = x + \sqrt{\delta} h\sigma, \sigma = \frac{y - x}{|y - x|} \)), we obtain
\[\int_{\mathbb{R}^N} \int_{\mathbb{R}} \frac{\delta^p}{|x - y|^{N+mp} K} dtdy = \int_{\mathbb{R}^N} \int_{\mathbb{S}^N} \frac{1}{\|\sigma\|^{N+mp} h^{1+mp}} dhdxds \]

Following [17], we start proving that there exists \(C = C(m, N, p) > 0 \) such that for every \(\sigma \in \mathbb{S}^{N-1} \),
\[\int_{\mathbb{R}^N} \int_0^\infty \frac{1}{h^{mp+1}} dhdx \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx \] \hspace{1cm} (3.2)

and
\[\lim_{\delta \to 0} \int_{\mathbb{R}^N} \int_0^\infty \frac{1}{h^{mp+1}} dhdx = \frac{1}{m^p} \int_{\mathbb{R}^N} |D^m f(x, \sigma, ..., \sigma)|^p dx \] \hspace{1cm} (3.3)

Without loss of generality we assume \(\sigma = e_N = (0, 0, \ldots, 1) \) and by (3.1) we have
\[\Delta^m_{h e_N} f(x) = h^m \int_{[0,1]^m} \partial^m_{x_N} f(x', x_N + h \sum_{j=1}^m s_j) ds \ldots ds_m \\
= h^{m-1} \int_{x_N}^{x_N+h} \partial^m_{x_N} f(x', s) ds \]
for all \((x_N, h) \in \mathbb{R} \times (0, \infty)\) and for almost everywhere \(x' \in \mathbb{R}^{N-1}\). Now given \(x' \in \mathbb{R}^{N-1}\) and \(\delta \in (0, 1)\) we define

\[
A(x', \delta) := \left\{ (x_N, h) \in \mathbb{R} \times (0, \infty) \mid \frac{\Delta^{m_{\mathbb{R}^N}} h_{x_N} f(x', x_N)}{h^m \delta} > h^m > 1 \right\},
\]

\[
A(x') := \left\{ (x_N, h) \in \mathbb{R} \times (0, \infty) \mid \left| \partial^m_{x_N} f(x', x_N) \right| h^m > m^m \right\},
\]

and

\[
B(x') := \left\{ (x_N, h) \in \mathbb{R} \times (0, \infty) \mid \left| M_N \left(\partial^m_{x_N} f \right)(x', x_N) \right| h^m > m^m \right\}.
\]

We claim that for all \((x_N, h) \in \mathbb{R} \times (0, \infty)\) and for all \(x' \in \mathbb{R}^{N-1}, \delta \in (0, 1)\)

\[
1_{A(x', \delta)}(x_N, h) \leq 1_{B(x')(x_N, h)}.
\]

Indeed, fix \((x_N, h) \in A(x', \delta)\), that is \(h > 0\) and \(\frac{\Delta^{m_{\mathbb{R}^N}} h_{x_N} f(x)}{h^m \delta} \geq h^m > 1\). Using (3.1) we get

\[
1 \leq \left| \frac{\Delta^{m_{\mathbb{R}^N}} h_{x_N} f(x)}{h^m \delta} \right| h^m \leq \left(\frac{h}{m} \right)^m \int_{[0, 1]^m} \left| \partial^m_{x_N} f(x', x_N + \frac{\sqrt{\delta}}{m} \sum_{j=1}^m t_j) \right| dt_1 ... dt_m
\]

\[
\leq \frac{h^{m-1}}{m^m} \int_{x_N}^{x_N + \frac{\sqrt{\delta}}{m} h} |\partial^m_{x_N} f(x', s)| ds
\]

\[
\leq \frac{h^m}{m^m} M_N \left(\partial^m_{x_N} f \right)(x', x_N).
\]

which implies (3.4). Moreover,

\[
\int_{\mathbb{R}^N} \int_{0}^{\infty} 1_{B(x')(x_N, h)} \frac{1}{h^{mp+1}} dh dx_N dx' = \int_{\mathbb{R}^N} \int_{0}^{\infty} \left(\frac{m^m}{h^{mp+1}} \right) \frac{1}{h^m} dh dx_N dx'
\]

\[
= \frac{1}{m^{mp+1} p} \int_{\mathbb{R}^N} |M_N \left(\partial^m_{x_N} f \right)(x)|^p dx_N dx'
\]

\[
\leq \frac{C}{m^{mp+1} p} \int_{\mathbb{R}^N} |\partial^m_{x_N} f(x)|^p dx.
\]

Putting together (3.4) and (3.5), we get

\[
\int_{\mathbb{R}^N} \int_{0}^{\infty} 1_{A(x', \delta)}(x_N, h) \frac{1}{h^{mp+1}} dh dx_N dx' \leq \frac{C}{m^{mp+1} p} \int_{\mathbb{R}^N} |\partial^m_{x_N} f(x)|^p dx,
\]

which in turn implies (3.2). To prove (3.3), we define \(F_{\delta} : \mathbb{S}^{N-1} \rightarrow \mathbb{R}\) by

\[
F_{\delta}(\sigma) := \frac{1}{\|\sigma\|_{K}^{N+mp}} \int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{1}{h^{mp+1}} dh dx.
\]

We start by proving that there exists \(C = C(N, p, m) > 0\) such that for all \(\sigma \in \mathbb{S}^{N-1}\) and for all \(\delta > 0\):

\[
F_{\delta}(\sigma) \leq \frac{C}{A^{N+mp}} \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx.
\]

Since

\[
\frac{1}{\|\sigma\|_{K}^{N+mp}} \leq \frac{1}{A^{N+mp}},
\]

...
it is enough to show
\[
\int_{\mathbb{R}^N} \int_0^\infty \frac{1}{h^{mp+1}} dh dx \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx.
\]

Indeed, without loss of generality, we assume that \(\sigma = e_N = (0, ..., 0, 1) \). Hence, we need to verify that
\[
\int_{\mathbb{R}^N} \int_0^\infty \frac{1}{h^{mp+1}} dh dx \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx. \tag{3.7}
\]

By (3.5) we have
\[
\int_{\mathbb{R}^N} \int_0^\infty \frac{1}{h^{mp+1}} dh dx \leq C \int_{\mathbb{R}^N} |\partial_{x_N}^m f(x)|^p dx
\]
which is (3.6). Next we will show that
\[
F_\delta(\sigma) \to \frac{1}{m^{mp+1}p} \frac{1}{\|\sigma\|_K^{N+mp}} \int_{\mathbb{R}^N} |D^m f(x)(\sigma, ..., \sigma)|^p dx \text{ as } \delta \to 0 \text{ for every } \sigma \in \mathbb{S}^{N-1}. \tag{3.8}
\]

As before, it is enough to show that
\[
\int_{\mathbb{R}^N} \int_0^\infty G_\delta(x, h) dh dx \to \frac{1}{m^{mp+1}p} \int_{\mathbb{R}^N} |D^m f(x)(\sigma, ..., \sigma)|^p dx \text{ as } \delta \to 0,
\]
where
\[
G_\delta(x, h) := \frac{1}{h^{mp+1}} \left\{ \frac{\Delta^m_{h^\sigma} f(x)}{h^\sigma} \right\}_{h^\sigma > 1}(x, h).
\]
Without loss of generality, we suppose that \(\sigma = e_N = (0, ..., 0, 1) \). Using (3.1) it is easy to see that
\[
\lim_{\delta \to 0} 1_{A(x', \delta)}(x_N, h) = 1_{A(x')}(x_N, h) \quad \text{a.e. } (x', x_N, h) \in \mathbb{R}^{N-1} \times \mathbb{R} \times [0, \infty),
\]
thus
\[
G_\delta(x, h) \to \frac{1}{h^{mp+1}} 1_{\{\partial_{x_N}^m f(x) > m^m\}}(x, h) \quad \text{as } \delta \to 0
\]
for a.e. \((x, h) \in \mathbb{R}^N \times [0, \infty)\), and using (3.5), we have
\[
G_\delta(x, h) \leq \frac{1}{h^{mp+1}} 1_{\{h^{m\sigma} (\partial_{x_N}^m f(x)) > m^m\}}(x, h) \in L^1(\mathbb{R}^N \times [0, \infty)).
\]
Hence, by the Lebesgue dominated convergence theorem, we get (3.8). Using (3.6), (3.8) and the Lebesgue dominated convergence theorem again, we can conclude that
\[
\lim_{\delta \to 0} \int_{\mathbb{R}^N} \int_{|D^m f(x, y)| > \delta} \frac{\delta^p}{m^{mp+1}} dxdy = \int_{\mathbb{S}^{N-1}} \frac{1}{m^{mp+1}p} \frac{1}{\|\sigma\|_K^{N+mp}} \int_{\mathbb{R}^N} |D^m f(x)(\sigma, ..., \sigma)|^p dx d\sigma
\]
\[
= \frac{1}{m^{mp+1}p} \int_{\mathbb{R}^N} \int_{\mathbb{S}^{N-1}} \frac{1}{\|\sigma\|_K^{N+mp}} |D^m f(x)(\sigma, ..., \sigma)|^p d\sigma dx.
\]
Now, notice that
\[
\int_{\mathbb{S}^{N-1}} \frac{1}{\| \sigma \|^N_k} |D^m f(x)(\sigma, ..., \sigma)|^p \, d\sigma
\]
\[
= (N + mp) \int_{\mathbb{S}^{N-1}} \int_0^{\frac{1}{\| \sigma \|^N_k}} |D^m f(x)(\sigma, ..., \sigma)|^p r^{N+mp-1} \, dr \, d\sigma
\]
\[
= (N + mp) \int_{\mathbb{S}^{N-1}} \int_0^{\frac{1}{\| \sigma \|^N_k}} |D^m f(x)(r\sigma, ..., r\sigma)|^p r^{N-1} \, dr \, d\sigma
\]
\[
= (N + mp) \int_K |D^m f(x)(y, ..., y)|^p \, dy.
\]
(3.9)

Hence the thesis follows.

Remark 3.1. We explicitly note that Lemma 1.1 generalizes some already known results: for example taking \(m = 1 \) and \(K = \{ x \in \mathbb{R}^n \mid |x| \leq 1 \} \) we get [17, Lemma 3] and taking \(m = 2 \) and \(K = \{ x \in \mathbb{R}^n \mid |x| \leq 1 \} \) we get [13, Theorem 1.1]. Moreover, Lemma 1.1 generalizes [20, Theorem 1.1] to the case \(A = 0 \) and \(m \geq 1 \).

3.2. BBM formula. In this Section we prove Theorem 1.2.

Let \(\rho \) be a positive real function satisfying (1.4) The following result is proved in [3, Lemma 8]

Lemma 3.2. Let \(f \in W^{m,p}(\mathbb{R}^N) \) with \(m \geq 2 \) and \(1 \leq p < \infty \) and let \(\rho \in L^1(\mathbb{R}) \). Then
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |\Delta_h^m f(x)|^p |h|^{-mp} \rho(|h|) \, dx \, dh \leq \frac{\| \rho \|_{L^1(\mathbb{R})}}{\| \mathbb{S}^{N-1} \|} \int_{\mathbb{R}^N} \left(\int_{\mathbb{S}^{N-1}} |D^m f(x)(\sigma, ..., \sigma)|^p \, d\sigma \right) \, dx.
\]

The following result is the analogous of [3, Lemma 9] in our setting.

Lemma 3.3. Fix \(m \in \mathbb{N} \) and \(1 < p < \infty \). If \(f \in C^{m+1}_{c}(\mathbb{R}^N) \) then
\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R^m f(x,y)|^p}{\|x-y\|^m_K} \rho_\varepsilon(\|x-y\|_K) \, dx \, dy = \frac{(N + mp)}{m^{mp}} \int_{\mathbb{R}^N} \int_K |D^m f(x)(y, ..., y)|^p \, dy \, dx.
\]
(3.10)

Proof. Let \(S = \| f \|_{W^{m+1,\infty}} \). Since \(t \to |t|^p \) is uniformly continuous in \([0,(m+1)S] \) then for any \(\delta > 0 \) there exists \(C = C(\delta) > 0 \) such that
\[
\|s|^p - |t|^p \leq C|s-t| + \delta \quad \forall s, t \in [0,(m+1)S].
\]
(3.11)

Using (3.11), (2.4) and proceeding as in [3] we get
\[
\left| |\Delta_h^m f(x)|^p |h|^{-mp} - |D^m f(x)\left(\frac{h}{\|h\|_K}, ..., \frac{h}{\|h\|_K}\right)|^p \right|
\]
\[
\leq C\|h\|_K^{m-1} \left| |\Delta_h^m f(x) - D^m f(x)(h, ..., h)| + \delta \right|
\]
\[
\leq CA^{-m-1}S \|h\|_K + \delta,
\]
for every \(x \in \mathbb{R}^N \) and for all \(h \in \mathbb{R}^N \setminus \{0\} \). In particular, when \(h = \frac{y-x}{m} \), we get
\[
|m^{mp} |R^m f(x,y)|^p \|y-x\|^{-mp} - |D^m f(x)\left(\frac{y-x}{\|y-x\|_K}, ..., \frac{y-x}{\|y-x\|_K}\right)|^p |
\]
\[
\leq CA^{-m-1}S \|y-x\|_K + \delta.
\]
Let \(A(x, y) = \{(x, y) : \text{at least one of } \frac{m}{m_j} x + \frac{1}{m_j} y, j = 0, \ldots, m, \text{ is in } \text{supp}(f) \} \). Then we note that
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R^m f(x, y)|^p}{\|y - x\|^p_{\mathbb{K}}} \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R^m f(x, y)|^p}{\|y - x\|^p_{\mathbb{K}}} \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy.
\]

Using the above estimate, we get
\[
\int \int \frac{m^{mp}}{\|y - x\|^p_{\mathbb{K}}} |R^m f(x, y)|^p \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy \\
\leq \int \int D^m f(x) \left(\frac{y - x}{\|y - x\|_{\mathbb{K}}}, \ldots, \frac{y - x}{\|y - x\|_{\mathbb{K}}} \right) ^p \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy \\
+ CA^{-m-1} S \int \int \|y - x\|_{\mathbb{K}} \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) + \delta \int \int \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy
\]

Note that
\[
\int \int \|y - x\|_{\mathbb{K}} \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) = \int \|h\|_{\mathbb{K}} \rho_\varepsilon(\|h\|_{\mathbb{K}}) \int A(x, x+h) \, dxdh \\
\leq \int \|h\|_{\mathbb{K}} \rho_\varepsilon(\|h\|_{\mathbb{K}}) (m + 1) |\text{supp}(f)| \, dh \\
\to 0 \text{ as } \varepsilon \to 0.
\]

Similarly,
\[
\delta \int \int \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy \leq (m + 1) |\text{supp}(f)| \delta
\]

On the other hand,
\[
\int \int \frac{m^{mp}}{\|y - x\|^p_{\mathbb{K}}} |R^m f(x, y)|^p \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy \\
\lesssim \|f\|_p \int \rho_\varepsilon(\|h\|) \, dh \to 0 \text{ as } \varepsilon \to 0.
\]

Hence, by sending \(\varepsilon \to 0 \) and then \(\delta \to 0 \), we can now conclude that
\[
\lim_{\varepsilon \to 0} \int \int \frac{|R^m f(x, y)|^p}{\|y - x\|^p_{\mathbb{K}}} \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy \\
\leq \frac{1}{m^{mp}} \lim_{\varepsilon \to 0} \int \int \frac{|D^m f(x) \left(\frac{y - x}{\|y - x\|_{\mathbb{K}}}, \ldots, \frac{y - x}{\|y - x\|_{\mathbb{K}}} \right)|^p}{\|y - x\|^p_{\mathbb{K}}} \rho_\varepsilon(\|y - x\|_{\mathbb{K}}) \, dxdy.
\]
We next compute the limit of the quantity on the right-hand side. We have

\[
\int_{\mathbb{R}^N} \left| D^m f(x) \left(\frac{x - y}{\|x - y\|_K}, \ldots, \frac{x - y}{\|x - y\|_K} \right) \right|^p \rho_\varepsilon(\|x - y\|_K) \, dy
\]

\[
= \int_{S^{N-1}} \int_0^\infty \left| D^m f(x)(\sigma, \ldots, \sigma) \right|^p \frac{1}{\|\sigma\|_K^{N-mp}} \rho_\varepsilon(r\|\sigma\|_K) r^{N-1} \, dr \, d\sigma
\]

\[
= \int_{S^{N-1}} \|\sigma\|_K^{N+mp} \left| D^m f(x)(\sigma, \ldots, \sigma) \right|^p \, d\sigma
\]

\[
= (N + mp) \int_K \left| D^m f(x)(y, \ldots, y) \right|^p \, dy,
\]

where the last equality follows from (3.9). Hence, we have that,

\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R^m f(x, y)|^p}{\|y - x\|_K^{mp}} \rho_\varepsilon(\|y - x\|_K) \, dxdy \leq \frac{N + mp}{m^{mp}} \int_{\mathbb{R}^N} \int_K \left| D^m f(x)(y, \ldots, y) \right|^p \, dydx.
\]

Now assume that \(\text{supp}(f) \subset B_R\), then

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left| \frac{D^m f(x)(\sigma, \ldots, \sigma)}{\|\sigma\|_K^{N-mp}} \right|^p \rho_\varepsilon(\|y - x\|_K) \, dxdy
\]

\[
= \int_{B_{R} \mathbb{R}^N} \int_{\{|y-x| \leq 1\}} \left| D^m f(x) \left(\frac{y - x}{\|y - x\|_K}, \ldots, \frac{y - x}{\|y - x\|_K} \right) \right|^p \rho_\varepsilon(\|y - x\|_K) \, dxdy
\]

\[
\leq \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{m^{mp} \left| R^m f(x, y) \right|^p}{\|y - x\|_K^{mp}} \rho_\varepsilon(\|y - x\|_K) \, dxdy
\]

\[
+ \int_{B_{R} \mathbb{R}^N} \int_{\{|y-x| \leq 1\}} C_\delta S \|y - x\|_K \rho_\varepsilon(\|y - x\|_K) \, dydx + \int_{B_{R} \mathbb{R}^N} \int_{\{|y-x| \leq 1\}} \rho_\varepsilon(\|y - x\|_K) \, dxdy
\]

As above

\[
\int_{B_{R} \mathbb{R}^N} \int_{\{|y-x| \leq 1\}} \|y - x\|_K \rho_\varepsilon(\|y - x\|_K) \, dydx \to 0 \text{ as } \varepsilon \to 0,
\]

\[
\int_{B_{R} \mathbb{R}^N} \int_{\{|y-x| \leq 1\}} \rho_\varepsilon(\|y - x\|_K) \, dxdy \lesssim \delta.
\]
We also note that

\[
\int \int_{B_{R|\mathbb{R}^N}} \left| D^m f(x) \left(\frac{y - x}{\|y - x\|_K}, \ldots, \frac{y - x}{\|y - x\|_K} \right) \right|^p \rho_\varepsilon (\|y - x\|_K) \, dy \, dx
\]

\[
= \int \int_{B_{R|\mathbb{S}^{N-1}}} \int_0^{\sigma} \left| D^m f(x) (\sigma, \ldots, \sigma) \right|^p \rho_\varepsilon (s) \left(\frac{s}{\|\sigma\|_K} \right)^{N-1} \frac{1}{\|\sigma\|_K} \, ds \, d\sigma
\]

\[
\geq \int \int_{B_{R|\mathbb{S}^{N-1}}} \int_0^A \left| D^m f(x) (\sigma, \ldots, \sigma) \right|^p \frac{1}{\|\sigma\|_K^{N+mp}} \rho_\varepsilon (s) s^{N-1} \, ds \, d\sigma
\]

\[
\to \int \int_{B_{R|\mathbb{S}^{N-1}}} \left| D^m f(x) (\sigma, \ldots, \sigma) \right|^p \frac{1}{\|\sigma\|_K^{N+mp}} \, d\sigma
\]

\[
= (N + mp) \int \int_{\mathbb{R}^N} \left| D^m f(x) (y, \ldots, y) \right|^p \, dy \, dx \text{ as } \varepsilon \to 0.
\]

Thus,

\[
\frac{N + mp}{m^{mp}} \int \int_{\mathbb{R}^N} \left| D^m f(x)(y, \ldots, y) \right|^p \, dy \, dx \leq \lim_{\varepsilon \to 0} \frac{1}{R} \int \int_{\mathbb{R}^N} \left| R^m f(x, y) \right|^p \rho_\varepsilon (\|y - x\|_K) \, dx \, dy.
\]

Hence, we now can conclude that

\[
\lim_{\varepsilon \to 0} \frac{1}{R} \int \int_{\mathbb{R}^N} \left| R^m f(x, y) \right|^p \rho_\varepsilon (\|y - x\|_K) \, dx \, dy = \frac{N + mp}{m^{mp}} \int \int_{\mathbb{R}^N} \left| D^m f(x)(y, \ldots, y) \right|^p \, dy \, dx.
\]

\[\square\]

Proof of Theorem 1.2. So now we consider \(f \in W^{m,p} (\mathbb{R}^N) \) and let \(f_n \in C^\infty_c (\mathbb{R}^N) \) such that \(f_n \to f \) in the \(W^{m,p} (\mathbb{R}^N) \) norm. Then one has

\[
\left(\int \int_{\mathbb{R}^N} \int \int_{\mathbb{R}^N} \left| R^m f(x, y) \right|^p \|x - y\|_K^{-mp} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy \right)^{\frac{1}{p}}
\]

\[
- \left(\int \int_{\mathbb{R}^N} \int \int_{\mathbb{R}^N} \left| R^m f_n(x, y) \right|^p \|x - y\|_K^{-mp} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy \right)^{\frac{1}{p}}
\]

\[
\leq \left(\int \int_{\mathbb{R}^N} \int \int_{\mathbb{R}^N} \left| R^m (f - f_n)(x, y) \right|^p \|x - y\|_K^{-mp} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy \right)^{\frac{1}{p}}
\]

\[
\leq \left(\int \int_{\mathbb{R}^N} \left(\int \int_{\mathbb{S}^{N-1}} \left| D^m (f_n - f)(x)(\sigma, \ldots, \sigma) \right|^p \, d\sigma \right) \, dx \right)^{\frac{1}{p}}.
\]

Where we used Lemma 3.2 in the last inequality. Thus

\[
\left(\int \int_{\mathbb{R}^N} \int \int_{\mathbb{R}^N} \left| R^m f(x, y) \right|^p \|x - y\|_K^{-mp} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy \right)^{\frac{1}{p}} =
\]

\[
\left(\int \int_{\mathbb{R}^N} \int \int_{\mathbb{R}^N} \left| R^m f_n(x, y) \right|^p \|x - y\|_K^{-mp} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy \right)^{\frac{1}{p}} + o(1)
\]
here \(o(1) \to 0 \) as \(n \to \infty \) uniformly on \(\varepsilon \). So fix \(\varepsilon > 0 \), then there exists \(n_0 \) big enough so that for \(n \geq n_0 \), we have \(\| f - f_n \|_{W^{m,p}} < \varepsilon \) and

\[
\left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |R^m_f(x, y)|^p \|x - y\|^{-mp} \rho \varepsilon (\|x - y\|) \, dy \, dx \right)^{\frac{1}{p}}
\]

\[
- \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |R^m f_n(x, y)|^p \|x - y\|^{-mp} \rho \varepsilon (\|x - y\|) \, dy \, dx \right)^{\frac{1}{p}} < \varepsilon.
\]

Then we have

\[
\lim_{\varepsilon \to 0} \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |R^m f(x, y)|^p \|x - y\|^{-mp} \rho \varepsilon (\|x - y\|) \, dy \, dx \right)^{\frac{1}{p}}
\]

\[
- \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |D^m f(x) (y, \cdots, y)|^p \, dy \, dx \right)^{\frac{1}{p}}
\]

\[
\leq \lim_{\varepsilon \to 0} \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |R^m f(x, y)|^p \|x - y\|^{-mp} \rho \varepsilon (\|x - y\|) \, dy \, dx \right)^{\frac{1}{p}}
\]

\[
- \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |R^m f_n(x, y)|^p \|x - y\|^{-mp} \rho \varepsilon (\|x - y\|) \, dy \, dx \right)^{\frac{1}{p}}
\]

\[
+ \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |D^m f_n(x) (y, \cdots, y)|^p \, dy \, dx \right)^{\frac{1}{p}}.
\]

\[
\leq \lim_{\varepsilon \to 0} \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |R^m f_n(x, y)|^p \|x - y\|^{-mp} \rho \varepsilon (\|x - y\|) \, dy \, dx \right)^{\frac{1}{p}}
\]

\[
- \left(\frac{1}{2} \right) \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |D^m f_n(x) (y, \cdots, y)|^p \, dy \, dx \right)^{\frac{1}{p}} + 2\varepsilon.
\]

So the conclusion follows from Theorem 3.3.

\[
\square
\]

4. CHARACTERIZATIONS OF THE HIGHER ORDER SOBOLEV SPACES VIA THE TAYLOR REMAINDER

We recall that

\[
T^{m-1}_y f(x) = \sum_{|\alpha| \leq m-1} D^\alpha f(y) \frac{(x - y)^\alpha}{\alpha!}
\]

and

\[
R_{m-1} f (x, y) = f (x) - T^{m-1}_y f (x).
\]

Proceeding as in [13] and by an easy induction we get

\[
R_{m-1} f (x, x + he_N) = h^m \int_{[0,1]^m} \partial^m_{x_N} f (x', x_N + \sum_{i=1}^{m} t_i h) \prod_{i=1}^{m} t_i^{m-i} \, dt_1 \cdots dt_m
\]

(4.1)
4.1. Nguyen’s formula.

Lemma 4.1. Let \(f \in W^{m,p}(\mathbb{R}^N), 1 < p < \infty \). Then there exists a constant \(C = C(m, N, p) > 0 \) such that

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\delta^p}{|x-y|^{N+mp}_K} dxdy \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx, \forall \delta > 0.
\]

Proof. By (2.4), we have

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\delta^p}{|x-y|^{N+mp}_K} dxdy \leq \frac{1}{A N + mp} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\delta^p}{|x-y|^{N+mp}_K} dxdy.
\]

Hence we now will show that there exists \(C = C(m, N, p) > 0 \) such that

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\delta^p}{|x-y|^{N+mp}_K} dxdy \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx.
\]

We note that

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\delta^p}{|x-y|^{N+mp}_K} dxdy = \int_{\mathbb{S}^{N-1}} \int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{\delta^p}{h^{mp+1}} dh dx d\sigma.
\]

Hence it is enough to prove that for every \(\sigma \in \mathbb{S}^{N-1} \):

\[
\int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{\delta^p}{h^{mp+1}} dh dx \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx.
\]

Moreover, we can assume without loss of generality that \(\sigma = e_N \). In this case, by direct calculation, we have

\[
|R_{m-1} f(x, x + he_N)| = \left| h^m \int_0^1 \cdots \int_0^1 \partial_{x_N}^m f(x', x_N + s_m s_{m-1} \cdots s_1 h) s_1^{m-1} s_2^{m-2} \cdots s_{m-2} s_{m-1} ds_m \cdots ds_1 \right| \\
\leq h^m \int_0^1 \cdots \int_0^1 M_N \left(\partial_{x_N}^m f \right)(x) s_1^{m-1} s_2^{m-2} \cdots s_{m-2} s_{m-1} ds_m \cdots ds_1 \\
\leq \frac{1}{m!} h^m M_N \left(\partial_{x_N}^m f \right)(x).
\]

Hence

\[
\int_{\mathbb{R}^N} \int_0^{\infty} \frac{\delta^p}{h^{mp+1}} dh dx \leq \frac{1}{m!} h^m M_N \left(\partial_{x_N}^m f \right)(x) \\
= \frac{1}{(m!)^p m} \int_{\mathbb{R}^N} \left| M_N \left(\partial_{x_N}^m f \right)(x) \right|^p dx \\
\leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx.
\]
We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3: Using a change of variables (writing \(y = x + \sqrt{\delta} h \sigma, \sigma = \frac{y - x}{||y - x||} \)), we obtain

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\delta^p}{\|x - y\|^{|N+mp|}_K} \, dx \, dy = \int_{S^{N-1}} \int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{1}{\|\sigma\|^{|N+mp|}_K} \, h^{mp+1} \, dh \, dx \, ds.
\]

Again we define the auxiliary function \(F_\delta: S^{N-1} \rightarrow \mathbb{R} \) by

\[
F_\delta(\sigma) := \frac{1}{\|\sigma\|^{|N+mp|}_K} \int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{1}{h^{mp+1}} \, dh \, dx.
\]

We first prove that for all \(\sigma \in S^{N-1}, \forall \delta > 0 \)

\[
F_\delta(\sigma) \leq \frac{1}{A^{N+mp}} C(m, N, p) \int_{\mathbb{R}^N} |\nabla^m f(x)|^p \, dx.
\]

(4.2)

Since

\[
\frac{1}{\|\sigma\|^{|N+mp|}_K} \leq \frac{1}{A^{N+mp}},
\]

it is enough to show that

\[
\int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{1}{h^{mp+1}} \, dh \, dx \leq C(m, N, p) \int_{\mathbb{R}^N} |\nabla^m f(x)|^p \, dx.
\]

Indeed, without loss of generality, we assume that \(\sigma = e_N = (0, ..., 0, 1) \). Hence, we need to verify that

\[
\int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{1}{h^{mp+1}} \, dh \, dx \leq C(m, N, p) \int_{\mathbb{R}^N} |\nabla^m f(x)|^p \, dx.
\]

(4.3)

But one has

\[
|\frac{R_{m-1} f(x, x + \sqrt{\delta} h e_N)}{h^{m} \delta}| \leq \frac{1}{m!} M_N \left(\partial_{xN}^m f \right)(x).
\]

By (4.1) we get

\[
\int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{1}{h^{mp+1}} \, dh \, dx \leq \int_{\mathbb{R}^N} \int_{0}^{\infty} \frac{1}{h^{mp+1}} \, dh \, dx \leq \frac{(m!)^p}{mp} \int_{\mathbb{R}^N} \left| M_N \left(\partial_{xN}^m f \right)(x) \right|^p \, dx
\]

\[
\leq C(m, N, p) \int_{\mathbb{R}^N} |\nabla^m f(x)|^p \, dx.
\]
Leading to

\[F_\delta(\sigma) \leq \frac{1}{A^{N+mp}C(m, N, p)} \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx. \]

Next we will show that

\[F_\delta(\sigma) \rightarrow \frac{1}{(m!)^p m p \|\sigma\|^{N+mp}K} \int_{\mathbb{R}^N} |D^m f(x)(\sigma, \ldots, \sigma)|^p dx \quad \text{as} \quad \delta \rightarrow 0 \quad \text{for every} \quad \sigma \in \mathbb{S}^{N-1}. \quad (4.4) \]

Again, it is enough to show

\[\int_{\mathbb{R}^N} \int_0^\infty G_\delta(x, h) dh dx \rightarrow \frac{1}{(m!)^p m p} \int_{\mathbb{R}^N} |D^m f(x)(\sigma, \ldots, \sigma)|^p dx \quad \text{as} \quad \delta \rightarrow 0, \]

where

\[G_\delta(x, h) := \frac{1}{h^{mp+1}} \{ \int_{|D^m f(x)(\sigma, \ldots, \sigma)| h^m > 1} \} (x, h). \]

With loss of generality, we suppose that \(\sigma = e_N = (0, \ldots, 0, 1) \). Noting that for all \(\sigma \in \mathbb{S}^{N-1} \): \(G_\delta(x, h) \rightarrow \frac{1}{h^{mp+1}} \chi_{\{h^m M_N(\partial^m_N f) > m!\}} (x, h) \in L^1(\mathbb{R}^N \times [0, \infty)) \).

Hence, by the Lebesgue dominated convergence theorem, we get (4.4). Once again, by the Lebesgue dominated convergence theorem, we can conclude that

\[
\lim_{\delta \to 0} \int_{\mathbb{R}^N} \int_{|D^m f(x,y)| > \delta} \frac{\delta^p}{\|y\|^N_{N+mp}} dxdy = \int_{\mathbb{S}^{N-1}} \frac{1}{(m!)^p m p \|\sigma\|^{N+mp}K} \int_{\mathbb{R}^N} |D^m f(x)(\sigma, \ldots, \sigma)|^p dx d\sigma = \frac{1}{(m!)^p m p} \int_{\mathbb{R}^N} \int_{\mathbb{S}^{N-1}} \frac{1}{\|\sigma\|^{N+mp}K} |D^m f(x)(\sigma, \ldots, \sigma)|^p d\sigma dx = \frac{N + mp}{(m!)^p m p} \int_{\mathbb{R}^N} \int_{\mathbb{S}^{N-1}} |D^m f(x)(y, \ldots, y)|^p dy dx
\]

\[\square \]

4.2. BBM formula. Now we will focus on the proof of Theorem 1.4. We note that the mollifiers \(\rho \in L^1_{\text{loc}}(0, \infty) \) are a family of functions such that \(\rho \geq 0 \),

\[\int_0^\infty \rho_\varepsilon(r) r^{-N+\varepsilon} dr = 1 \quad \text{and} \quad \lim_{\varepsilon \to 0} \int_0^\infty \rho_\varepsilon(r) r^{-N+\varepsilon} dr = 0 \quad \text{for all} \quad \delta > 0. \]

Lemma 4.2. Let \(f \in W^{m,p}(\mathbb{R}^N) \), \(1 < p < \infty \). Then there exists a constant \(C = C(m, N, p) > 0 \) such that

\[\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f(x, y)|^p}{\|x - y\|^N_{N+mp}K} \rho_\varepsilon(\|x - y\|_K) dx dy \leq C \int_{\mathbb{R}^N} |\nabla^m f(x)|^p dx, \forall \varepsilon > 0. \]
Proof. By density we can assume that $f \in C^\infty_c(\mathbb{R}^N)$. We have

$$
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x, y)|^p}{\|x - y\|_K^{mp}} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x + h, x)|^p}{\|h\|_K^{mp}} \rho_\varepsilon (\|h\|_K) \, dx \, dh
$$

$$
= \int_{\mathbb{R}^N} \rho_\varepsilon (\|h\|_K) \int_{\mathbb{R}^N} |R_{m-1} f (x + h, x)|^p \, dx \, dh.
$$

Since by [2, (2.17)] there exists $C = C(m, N, p) > 0$ such that

$$
\int_{\mathbb{R}^N} |R_{m-1} f (x + h, x)|^p \, dx \leq C |h|^{mp} \int_{\mathbb{R}^N} |x|^{mp} \, dx,
$$

we have

$$
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x, y)|^p}{\|x - y\|_K^{mp}} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy \leq \frac{1}{A^{mp}} C \int_{\mathbb{R}^N} \rho_\varepsilon (\|h\|_K) \, dh \int_{\mathbb{R}^N} |\nabla^m f (x)|^p \, dx.
$$

But

$$
\int_{\mathbb{R}^N} \rho_\varepsilon (\|h\|_K) \, dh = \int_{S^{N-1}} \int_0^\infty \rho_\varepsilon (r \|\sigma\|_K) r^{N-1} \, dr \, d\sigma
$$

$$
= \int_{S^{N-1}} \int_0^\infty \rho_\varepsilon (s) \left(\frac{s}{\|\sigma\|_K} \right)^{N-1} \frac{1}{\|\sigma\|_K} \, ds \, d\sigma
$$

$$
\leq \frac{1}{A^{mp}}.
$$

□

Proof of Theorem 1.4: First, we assume that $f \in C^\infty_c(\mathbb{R}^N)$. We have

$$
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x, y)|^p}{\|x - y\|_K^{mp}} \rho_\varepsilon (\|x - y\|_K) \, dx \, dy = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x + h, x)|^p}{\|h\|_K^{mp}} \rho_\varepsilon (\|h\|_K) \, dx \, dh
$$

By Taylor’s formula, we have that for every $\delta > 0$, there exists $C_\delta > 0$ such that

$$
|R_{m-1} f (x + h, x)|^p \leq (1 + \delta) \frac{1}{(m!)^p} |D^m f (x)(h, ..., h)|^p + C_\delta |h|^{(m+1)p}.
$$
Hence
\[\int_{|h| \leq 1} |h|^{(m+1)p} \frac{\rho_\varepsilon (\|h\|_K)}{\|h\|_{mp}^p} \, dh \]
\[\leq \frac{1}{(m!)^p} (1 + \delta) \int_{|h| \leq 1} |D^m f(x)(h, \ldots, h)|^p \frac{\rho_\varepsilon (\|h\|_K)}{\|h\|_{mp}^p} \, dh \]
\[+ C_\delta \int_{|h| \leq 1} |h|^{(m+1)p} \frac{\rho_\varepsilon (\|h\|_K)}{\|h\|_{mp}^p} \, dh \]
\[= \frac{1}{(m!)^p} (1 + \delta) \int_{|h| \leq 1} \bigg| D^m f(x) \bigg|^{(m+1)p} \frac{\rho_\varepsilon (\|h\|_K)}{\|h\|_{mp}^p} \, dh \]
\[+ 2C_\delta |\text{supp } (f)| \int_{|h| \leq 1} |h|^{(m+1)p} \frac{\rho_\varepsilon (\|h\|_K)}{\|h\|_{mp}^p} \, dh. \]

We first note that
\[\int_{|h| \leq 1} |h|^{(m+1)p} \frac{\rho_\varepsilon (\|h\|_K)}{\|h\|_{mp}^p} \, dh \lesssim \int_{|h| \leq 1} \|h\|_K^p \, dh \]
\[= \int_{S^{N-1}} \int_0^1 r^p \|\sigma\|_K^p \rho_\varepsilon (r \|\sigma\|_K) \, r^{N-1} \, dr \, d\sigma \]
\[= \int_{S^{N-1}} \int_0^1 s^p \rho_\varepsilon (s) \left(\frac{s}{\|\sigma\|_K} \right)^{N-1} \, ds \, d\sigma \]
\[\sim \int_0^1 s^p \rho_\varepsilon (s) \, s^{N-1} \, ds \to 0 \text{ as } \varepsilon \to 0. \]

On the other hand,
\[\frac{1}{(m!)^p} \int_{|h| \leq 1} \bigg| D^m f(x) \bigg|^{1+1p} \frac{\rho_\varepsilon (\|h\|_K)}{\|h\|_{mp}^p} \, dh \]
\[= \frac{1}{(m!)^p} \int_{|h| \leq 1} \bigg| D^m f(x)(\sigma, \ldots, \sigma) \bigg|^p \frac{\rho_\varepsilon (r \|\sigma\|_K)}{\|\sigma\|_{mp}^p} \, r^{N-1} \, dr \, d\sigma \]
\[= \frac{1}{(m!)^p} \int_{S^{N-1}} \int_0^\infty \bigg| D^m f(x)(\sigma, \ldots, \sigma) \bigg|^p \frac{\rho_\varepsilon (s)}{\|\sigma\|_{mp}^p} \, \left(\frac{s}{\|\sigma\|_K} \right)^{N-1} \frac{1}{\|\sigma\|_K} \, ds \, d\sigma \]
\[= \frac{1}{(m!)^p} \int_{S^{N-1}} \int_0^\infty \bigg| D^m f(x)(\sigma, \ldots, \sigma) \bigg|^p \frac{1}{\|\sigma\|_{K}^{N+mp}} \, d\sigma \, dx \]
\[= \frac{N + mp}{(m!)^p} \int_K \bigg| D^m f(x)(y, \ldots, y) \bigg|^p \, dy \, dx. \]
Also, since \(f \in C^\infty_c (\mathbb{R}^N) \), we have
\[
\int_{\mathbb{R}^N} \int_{|h| \geq 1} \frac{|R_{m-1} f(x + h, x)|^p}{\|h\|_{K}^{mp}} \rho_\varepsilon(\|h\|_K) \, dx \, dh \\
\lesssim \int_{\mathbb{R}^N} \rho_\varepsilon(\|h\|_K) \, dh \\
\lesssim \int_{1}^{\infty} \rho_\varepsilon(s) s^{N-1} ds \to 0 \text{ as } \varepsilon \to 0.
\]
Hence, letting \(\varepsilon \to 0 \) and \(\delta \to 0 \), we get
\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f(x, y)|^p}{\|x - y\|_{K}^{mp}} \rho_\varepsilon(\|x - y\|_K) \, dxdy \leq \frac{N + mp}{(m!)^p} \int_{\mathbb{R}^N} \int_{K} |D^m f(x, y, \ldots, y)|^p \, dydx.
\]
On the other hand, on any compact set \(B \) and \(|h| \leq 1 \) we have
\[
\frac{1}{(m!)^p} |D^m f(x)(h, \ldots, h)|^p \leq (1 + \delta) |R_{m-1} f(x + h, x)|^p + C_{\delta, B} |h|^{(m+1)p}.
\]
Hence,
\[
\frac{1}{(m!)^p} \int_{B} \int_{|h| \leq 1} \frac{|D^m f(x)(h, \ldots, h)|^p}{\|h\|_{K}^{mp}} \rho_\varepsilon(\|h\|_K) \, dx \, dh \\
\leq (1 + \delta) \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f(x + h, x)|^p}{\|h\|_{K}^{mp}} \rho_\varepsilon(\|h\|_K) \, dx \, dh + C_{\delta, B} \int_{B} \int_{|h| \leq 1} |h|^{(m+1)p} \rho_\varepsilon(\|h\|_K) \frac{1}{\|h\|_{K}^{mp}} \, dx \, dh.
\]
But one has
\[
\frac{1}{(m!)^p} \int_{B} \int_{|h| \leq 1} \frac{|D^m f(x)(h, \ldots, h)|^p}{\|h\|_{K}^{mp}} \rho_\varepsilon(\|h\|_K) \, dx \, dh \\
= \frac{1}{(m!)^p} \int_{B} \int_{S^{N-1}} \int_{0}^{1} |D^m f(x)(\sigma, \ldots, \sigma)|^p \rho_\varepsilon(r \|\sigma\|_K) \frac{1}{\|\sigma\|_{K}^{mp}} \, d\sigma \, dr \, dxd \\
= \frac{1}{(m!)^p} \int_{B} \int_{S^{N-1}} \int_{0}^{1} |D^m f(x)(\sigma, \ldots, \sigma)|^p \rho_\varepsilon(s \|\sigma\|_K) \frac{1}{\|\sigma\|_{K}^{mp}} \left(\frac{s}{\|\sigma\|_K} \right)^{N-1} \frac{1}{\|\sigma\|_K} \, ds \, d\sigma \, dxd \\
\geq \frac{1}{(m!)^p} \int_{B} \int_{S^{N-1}} |D^m f(x)(\sigma, \ldots, \sigma)|^p \frac{1}{\|\sigma\|_{K}^{N+mp}} \int_{0}^{A} \rho_\varepsilon(s) s^{N-1} ds \, d\sigma \, dxd \\
\to \frac{1}{(m!)^p} \int_{B} \int_{S^{N-1}} |D^m f(x)(\sigma, \ldots, \sigma)|^p \frac{1}{\|\sigma\|_{K}^{N+mp}} \, d\sigma \, dxd \text{ as } \varepsilon \to 0.
\]
By letting \(\varepsilon \to 0 \), and then \(\delta \to 0 \), we get
\[
\frac{1}{(m!)^p} \int_{B} \int_{S^{N-1}} |D^m f(x)(\sigma, \ldots, \sigma)|^p \frac{1}{\|\sigma\|_{K}^{N+mp}} \, d\sigma \\
\leq \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f(x + h, x)|^p}{\|h\|_{K}^{mp}} \rho_\varepsilon(\|h\|_K) \, dx \, dh.
\]
Hence,
\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f(x + h, x)|^p}{\|h\|_{K}^{mp}} \rho_\varepsilon(\|h\|_K) \, dx \, dh = \frac{N + mp}{(m!)^p} \int_{\mathbb{R}^N} \int_{K} |D^m f(x)(y, \ldots, y)|^p \, dydx.
\]
In the general case \(f \in W^{m,p}(\mathbb{R}^N) \), we fix \(\tau > 0 \) then there exists \(C(\tau) > 1 \) such that for all \(a, b \in \mathbb{R} \):
\[
|a|^p \leq (1 + \tau)|b|^p + C(\tau)|a - b|^p.
\]
Now, by density, we can choose \(g \in C^\infty_c(\mathbb{R}^N) \) such that
\[
\int_{\mathbb{R}^N} |\nabla^m (f - g)(x)|^p dx \leq \frac{\tau}{C(\tau)}
\]
and
\[
\left| \int_{\mathbb{R}^N} \int_K |D^m g(x)(y, \ldots, y)|^p dy dx - \int_{\mathbb{R}^N} \int_K |D^m f(x)(y, \ldots, y)|^p dy dx \right| \leq \tau.
\]
Then
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh
\]
\[
\leq (1 + \tau) \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} g (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh
\]
\[
+ C(\tau) \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} (f - g) (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh
\]
\[
\leq (1 + \tau) \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} g (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh
\]
\[
+ C(\tau) C(m, N, p) \int_{\mathbb{R}^N} |\nabla^m (f - g)(x)|^p dx.
\]
Letting \(\varepsilon \to 0 \), we obtain
\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh
\]
\[
\leq (1 + \tau) \frac{N + mp}{(m!)^p} \int_{\mathbb{R}^N} \int_K |D^m g(x)(y, \ldots, y)|^p dy dx + C(m, N, p) \tau
\]
\[
\leq (1 + \tau) \frac{N + mp}{(m!)^p} \left[\int_{\mathbb{R}^N} \int_K |D^m f(x)(y, \ldots, y)|^p dy dx + \tau \right] + C(m, N, p) \tau.
\]
Since \(\tau \) can be chosen arbitrarily, we deduce that
\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh
\]
\[
\leq \frac{N + mp}{(m!)^p} \int_{\mathbb{R}^N} \int_K |D^m f(x)(y, \ldots, y)|^p dy dx.
\]
Also, if we switch the role of \(f \) and \(g \) in the above argument, then we get
\[
\frac{N + mp}{(m!)^p} \int_{\mathbb{R}^N} \int_K |D^m f(x)(y, \ldots, y)|^p dy dx
\]
\[
\leq \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh.
\]
Hence,
\[
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|R_{m-1} f (x + h, x)|^p}{\|h\|^m_K} \rho_\varepsilon (\|h\|_K) dxdh
\]
\[
= \frac{N + mp}{(m!)^p} \int_{\mathbb{R}^N} \int_K |D^m f(x)(y, \ldots, y)|^p dy dx.
\]
\(\square \)
Acknowledgements. The authors would like to thank Quoc-Hung Nguyen and Professor Hoai-Minh Nguyen for their interest in our work and for stimulating discussions during the preparation of the manuscript. A.P. is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] L. Ambrosio, G. De Philippis, L. Martinazzi, Γ-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), 377–403.

[2] B. Bojarski, L. Ilnatsyeva, J. Kinnunen, How to recognize polynomials in higher order Sobolev spaces, Math. Scand. 112 (2013), no. 2, 161–181.

[3] R. Borghol, Some properties of Sobolev spaces, Asymptotic Analysis 51 (2007) 303–318.

[4] D. Barbieri, Approximations of Sobolev norms in Carnot groups, Comm. Contemp. Math. 13 (2011), 765–794.

[5] J. Bourgain, H. Brezis, H-M. Nguyen, A new estimate for the topological degree, C.R.Acad.Sci.Paris 343 (2006), 75–80.

[6] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan’s 60th Birthday (eds. J. L. Menaldi, E. Rofman and A. Sulem), IOS Press, Amsterdam, 2001, 439–455.

[7] J. Bourgain, H. Brezis, P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s \uparrow 1$ and applications, J. Anal. Math. 87 (2002), 77–101.

[8] H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, Russian Mathematical Surveys 57 (2002), 693–708.

[9] H. Brezis, New approximations of the total variation and filters in imaging, Rend Accad. Lincei 26 (2015), 223–240.

[10] H. Brezis, H.-M. Nguyen, Two subtle convex nonlocal approximations of the BV-norm, Nonlinear Anal. 137 (2016), 222–245.

[11] C. Muscalu, W. Schlag, Classical and Multilinear Harmonic Analysis Vol. 1, Cambridge University Press. 2013.

[12] X. Cui, N. Lam, G. Lu, New characterizations of Sobolev spaces in the Heisenberg group, J. Funct. Anal. 267 (2014), 2962–2994.

[13] X. Cui, N. Lam, G. Lu, Characterizations of second order Sobolev spaces, Nonlinear Anal. 121 (2015), 241–261.

[14] J. Davila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), 519–527.

[15] S. Di Marino, M. Squassina, New characterizations of Sobolev metric spaces, preprint (2018). Available at http://cvgmt.sns.it/paper/3791/.

[16] E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2001.

[17] H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006), 689–720.

[18] H.-M. Nguyen, Some inequalities related to Sobolev norms, Calculus of Variations and Partial Differential Equations 41 (2011) 483–509.

[19] H.-M. Nguyen, A. Pinamonti, M. Squassina, E. Vecchi, New characterization of magnetic Sobolev spaces, Advances in Nonlinear Analysis. DOI: 10.1515/anona-2017-0239.

[20] H-M. Nguyen, M. Squassina, On anisotropic Sobolev spaces, Commun. Contemp. Math, to appear.

[21] A. Pinamonti, M. Squassina, E. Vecchi, Magnetic BV functions and the Bourgain-Brezis-Mironescu formula, Adv. Calc. Var. (2017), https://doi.org/10.1515/acv-2017-0019

[22] A. Pinamonti, M. Squassina, E. Vecchi, The Maz’ya-Shaposhnikova limit in the magnetic setting, J. Math. Anal. Appl., 449 (2017), 1152-1159.

[23] A. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations 19 (2004), 229–255.

[24] M. Squassina, B. Volzone, Bourgain-Brezis-Mironescu formula for magnetic operators, C. R. Math. Acad. Sci. Paris 354 (2016), 825–831.

[25] E. M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N.J., 1970.

[26] W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Springer-Verlag New York, Inc. New York, NY, 1989.