Stress Relaxation of Fibroblasts Activates
A Cyclic AMP Signaling Pathway

Yajuan He and Frederick Grinnell
Department of Cell Biology and Neuroscience, University of Texas Southwestern Medical School, Dallas, Texas 75235

Abstract. Mechanical force regulates gene expression and cell proliferation in a variety of cell types, but the mechanotransducers and signaling mechanisms involved are highly speculative. We studied the fibroblast signaling mechanism that is activated when cells are switched from mechanically stressed to mechanically relaxed conditions, i.e., stress relaxation. Within 10 min after initiation of stress relaxation, we observed a transient 10-20-fold increase in cytoplasmic cyclic AMP (cAMP) and a threefold increase in protein kinase A activity. The increase in cAMP depended on stimulation of adenyl cyclase rather than inhibition of phosphodiesterase. Generation of cAMP was inhibited by indomethacin, and release of arachidonic acid was found to be an upstream step of the pathway. Activation of signaling also depended on influx of extracellular Ca²⁺ because addition of EGTA to the incubations at concentrations just sufficient to exceed Ca²⁺ in the medium inhibited the stress relaxation-dependent increase in free arachidonic acid and cAMP. This inhibition was overcome by adding CaCl₂ to the medium. On the other hand, treating fibroblasts in mechanically stressed cultures with the calcium ionophore A23187-stimulated arachidonic acid and cAMP production even without stress relaxation.

In summary, our results show that fibroblast stress relaxation results in activation of a Ca²⁺-dependent, adenyl cyclase signaling pathway. Overall, the effect of stress relaxation on cAMP and PKA levels was equivalent to that observed after treatment of cells with forskolin.
cells become quiescent and tissue remodeling begins (Grinnell, 1994).

Recently, we found that changes in cell proliferation and collagen synthesis could be detected within hours after mechanically stressed collagen matrices are released from their attachment sites, thereby allowing stress to dissipate, i.e., "stress relaxation" (strain recovery in engineering jargon) (Mochitate et al., 1991). During this time, PDGF receptors lose their signaling capacity (Lin and Grinnell, 1993). In studies on the initial events that accompany stress relaxation, we observed that cells within the matrices rapidly withdraw their pseudopodia resulting in "hypercontraction" of the matrix. Actin stress fibers shorten and disappear, surface fibronectin is released from its cell surface binding sites, and transient budding of cell surface vesicles occurs (Mochitate et al., 1991; Tomasek et al., 1992; Lee et al., 1993). Now, we have discovered that stress relaxation activates cAMP/PKA signaling in fibroblasts. This mechanoregulated pathway requires influx of extracellular Ca$^{2+}$ followed by release of arachidonic acid. Details are reported herein.

Materials and Methods

Cell Culture

Human foreskin fibroblasts were cultured in collagen matrices as described previously (Mochitate et al., 1991; Lee et al., 1993). Briefly, early passage cells (105/ml matrix) in DME medium (without serum) were mixed with neutralized collagen (Vitrogen 100; Celtrix Labs, Palo Alto, CA) (1.5 mg/ml). The mixtures were briefly warmed to 37°C, and then 0.2-ml aliquots were polymerized for 1 h in 24-well culture plates that had been inscribed previously within a 12-mm diameter circular score. The precise time of warming varied somewhat with different lots of collagen, but was always selected to insure that the cells were dispersed throughout the matrix after collagen polymerization. The attached matrices were cultured 48 h in culture medium (DME supplemented with 10% fetal bovine serum and 50 μM ascorbic acid). To initiate stress relaxation, the attached matrices were dislodged from the substratum with a thin spatula. Few if any cells were left behind on the plastic surface after collagen matrices were released.

Measurement of cAMP

cAMP levels were measured using the two column method (Salomon, 1991). Attached collagen matrix cultures were cultured for 2 h in 0.5 ml culture medium containing 8–10 μCi/ml $[^3H]$adenine (ICN, 36 Ci/mmol). Subsequently, cultures were rinsed, 0.5 ml fresh culture medium (supplemented with 0.1 mM 3-isobutyl-1-methoxanthine [IBMX] to block cAMP degradation) was added, and stress relaxation was initiated. In the experiment described in Fig. 1, IBMX was added only to the cultures as indicated in the figure legend. To extract nucleotides from the cells at the times indicated, 0.5 ml ice-cold 10% trichloroacetic acid containing 0.2 mM cAMP as carrier was added to the cultures, and the samples were incubated on ice for 1 h. Acid extracts (800 μl) were applied to 1-ml Dowex-50w columns (mesh size 200-400) (Sigma Immunoochemicals, St. Louis, MO). The columns were washed twice with 1 ml H$_2$O and then eluted with an additional 4 ml of H$_2$O. The eluted Dowex columns were drained completely, and the eluates were applied to 0.75-g alumina columns (Sigma Immunoochemicals). $[^3H]$cAMP was eluted from the alumina columns with 3 ml of 100 mM imidazole buffer (pH = 7.3). Eluates were mixed with 10 ml of Budgetsolve (Research Products Int., Mt. Prospect, IL), and radioactivity was determined in a scintillation counter (LS3801; Beckman Instruments, Inc.). Efficiency of adenine recovery was ~50% based on OD$_{260}$ measurements of carrier cAMP, and data presented in the figures were normalized to recovery. Data presented in the figures, averages ±SD of duplicate samples, are from representative experiments.

Measurement of Protein Kinase A Activity

The general method for extracting cellular components from collagen matrices and normalizing recovery to lactic dehydrogenase (LDH) activity was described previously (Lin and Grinnell, 1993). Collagen matrix cultures (5 matrices/data point) that were attached or undergoing stress relaxation were placed in 150 μl of ice-cold PKA homogenization buffer (50 mM Tris, 5 mM EDTA, 5 μg/ml pepstatin A, 5 μg/ml leupeptin, 1 mM 4-(2-aminoethyl)-benzene-sulfonylefluoride HCI, 0.5 mM iMBM, pH 7.5). Samples were homogenized (50 strokes) with a l-ml Dounce homogenizer (Wheaton, B pestle) at 4°C, and collagen fibrils and nuclei were removed by centrifugation at 12,000 g (Microfuge; Beckman Instruments, Inc.) for 2 min. PKA activity in aliquots of the supernatants was measured using a protein kinase A assay system (GIBCO BRL, Gaithersburg, MD) according to the manufacturer's instructions. Assays contained 20 mM Tris pH 7.5, 20 mM MgCl$_2$, 1 mM CaCl$_2$, 20 μM ATP, 50 μM Ac-MBP (4-14), and ~5 μCi/ml $[^3P]$ATP (3000 Ci/mole; New England Nuclear, Boston, MA). Total activity was measured after addition of 10 μM cAMP. Aliquots of the supernatants also were used to measure LDH activity (LD diagnostic kit; Sigma Immunoochemicals), and PKA activity was normalized to LDH units, pmol/min per 105 LDH units.

Results

cAMP Elevation during Stress Relaxation

Fibroblasts were cultured in attached collagen matrices for 2 d, during which time cells reorganized collagen in the matrices and mechanical stress developed. Subsequently, stress relaxation was initiated by releasing the matrices from the culture dishes. Fig. 1 shows that cellular cyclic AMP (cAMP) levels increased >10-fold within 10 min after attached collagen matrices were released (REL). Subsequently, cAMP levels declined gradually. Control incubations showed that throughout the same time period, cAMP levels of fibroblasts in attached collagen matrices (ATT) remained constant. Although cAMP concentrations were not measured directly, the cAMP elevation observed 10 min after initiating stress relaxation was comparable to that obtained 10 min after treating cells in attached collagen matrices with 10 μM forskolin (see Table I below).

Stress relaxation–dependent cAMP elevation could have resulted from an activation of adenyl cyclase or an inhibition in phosphodiesterase activity. Fig. 1 shows that addition of the phosphodiesterase inhibitor IBMX at concentrations <2 mM (the highest tested) did not result in increased production of cAMP by fibroblasts in attached matrices. Also, IBMX did not change the overall pattern of the cAMP response after release, although with IBMX present, the response was higher and more sustained. These results indicate that stress relaxation–dependent cAMP elevation involves activation of adenyl cyclase rather than inhibition of phosphodiesterase.

During the first 10 min of stress relaxation, fibroblast stress fibers observed by immunofluorescence or transmission electron microscopy shorten and disappear as the cells contract the collagen matrix (Mochitate et al., 1991; Tomasek et al., 1992; Lee et al., 1993). Therefore, we analyzed...
the possibility that disruption of the actin cytoskeleton resulted in cAMP elevation. Addition of cytochalasin D to fibroblasts in attached collagen matrices was found to cause disruption of stress fibers (Tomasek et al., 1992), and to partially inhibit matrix contraction as shown in Fig. 2 (see also Tomasek, 1992). Fig. 3 shows that cytochalasin D had no effect on cAMP levels of fibroblasts in attached matrices, but reduced stress relaxation–dependent cAMP elevation. These results suggest that cAMP elevation cannot be initiated simply by disruption of the actin cytoskeleton, but does require matrix contraction.

To assess whether cAMP elevation had downstream physiological consequences, we measured changes in cAMP-dependent PKA activity before and after stress relaxation. Table I shows that cellular PKA activity increased threefold within 10 min after attached matrices were released (Rel), and it was still elevated 30 min later. Total PKA (extract + added cAMP) decreased slightly in released matrices for unknown reasons. Table I also shows that the extent of PKA activation induced by stress relaxation was comparable to that observed after treatment of fibroblasts in attached matrices for 10 min with 10 μM forskolin, which directly activates adenylyl cyclase.

Arachidonic Acid Production during Stress Relaxation

Prostaglandin E2 (PGE2) is a known activator of adenylyl cyclase (Brunton et al., 1976), and arachidonic acid and PGE2 levels were reported to be higher in fibroblasts cultured in floating collagen matrices compared to cells in monolayer culture (Pentland, 1989). Therefore, we tested the possibility that cAMP elevation during stress relaxation involved the arachidonic acid–prostaglandin pathway. Indomethacin blocks conversion of arachidonic acid to prostaglandins (Vane, 1971), and Fig. 4 shows that indomethacin inhibited stress relaxation–dependent elevation of cAMP ≤65% in a dose-dependent manner. Control incubations showed that indomethacin had no effect on cAMP levels of cells in attached matrices. Also, indomethacin had no effect on collagen matrix contraction accompanying stress relaxation.

Table I. Effect of Stress Relaxation on Protein Kinase A Activity

Experiment Treatment	Time	Extract	Total (Extract + cAMP)
1 Att	—	6.0 ± 0.3	40.9 ± 2.0
Rel	10 min	17.2 ± 0.7	29.1 ± 0.3
Att + Fors	10 min	20.4 ± 1.2	29.1 ± 0.8
2 Att	—	6.3 ± 0.6	29.0 ± 2.9
Rel	30 min	10.4 ± 0.4	14.5 ± 4.9

PKA activity was measured at the times indicated in fibroblasts in collagen matrices that were mechanically stressed (Att) or undergoing stress relaxation (Rel). Forskolin (Fors, 10 μM) was added as indicated. PKA activity was normalized to LDH units extracted from the cells, i.e., pmol/min per 10⁶ LDH units. Data presented are from duplicate samples.
Figure 4. Effect of indomethacin on cellular cAMP increase after stress relaxation. Attached collagen matrix cultures were incubated in culture medium containing indomethacin as indicated for 1 h before, after which stress relaxation was initiated. cAMP levels were measured 10 min later. The culture medium contained 10 μCi/ml [3H]adenine. Data presented are from duplicate samples.

The above results were consistent with the idea that the arachidonic acid–prostaglandin pathway plays a role in stress relaxation–dependent activation of adenyl cyclase. Experiments were then carried out to measure directly the release of free arachidonic acid and its metabolites by cells in attached vs released collagen matrices. Fig. 5 shows that production of free arachidonic acid increased when attached matrices (ATT) were released (REL), and the released/attached ratio (dotted line) indicated that a peak in arachidonic acid metabolite production occurred by 10 min after release. These data provide direct evidence that stress relaxation induces elevation of free arachidonic acid and its metabolites with kinetics similar to the increase in cAMP.

In a final series of studies on the role of the arachidonic acid–prostaglandin pathway in activation of adenyl cyclase, experiments were carried out in which arachidonic acid was added to the cultures. Arachidonic acid is known to stimulate cAMP production by fibroblasts in monolayer culture, and the dose–response curve in Fig. 6 shows directly that arachidonic acid can stimulate cAMP production by fibroblasts in collagen matrices.

Figure 5. Effect of stress relaxation on release of arachidonic acid. Appearance of arachidonic acid in the culture medium was measured at the times indicated in attached collagen matrix cultures (ATT) or released cultures undergoing stress relaxation (REL). Data presented are duplicate samples.

Figure 6. Effect of arachidonic acid on cAMP levels in mechanically stressed cultures. Attached collagen matrix cultures were incubated in culture medium with arachidonic acid at the concentrations shown. At the times indicated cAMP levels were measured. The culture medium contained 10 μCi/ml [3H]adenine. Data presented are from duplicate samples.

Initiation of Arachidonic Acid Production and cAMP Elevation by Calcium Influx

Experiments were also carried out to identify other signaling molecules that participated in stress relaxation–dependent cAMP elevation. In preliminary studies, we found that addition of EGTA to the incubation medium at 3 mM or higher inhibited cAMP elevation by >80% (see below). Since the concentration of total Ca²⁺ in 10% FBS-containing DME medium is ~3 mM, this result suggested that extracellular Ca²⁺ was required for cAMP elevation. At 3 mM, EGTA did not inhibit fibroblast contraction of collagen matrices, showing that cAMP elevation was not required for matrix contraction. At higher EGTA concentrations, inhibition of matrix contraction was observed, ~35% at 10 mM EGTA and ~50% at 20 mM EGTA, possibly resulting from sequestration of intracellular Ca²⁺.

Fig. 7 shows an experiment in which fibroblasts in at-
dependent cAMP elevation. This increase was inhibited 58% by 3 mM EGTA. Fig. 9 shows similar findings for arachidonic acid release from attached collagen matrices were treated 15 min with 3 mM EGTA, after which increasing concentrations of CaCl2 or MgCl2 were added to the incubations and half the samples were released. Attached matrices showed no changes in cAMP levels under any of the experimental conditions. Released matrices showed typical stress relaxation−dependent cAMP elevation in the absence of EGTA and marked inhibition of cAMP elevation in the presence of EGTA. EGTA inhibition was overcome by adding back CaCl2 but not MgCl2, further demonstrating that the response was Ca2+ dependent. Partial restoration of activity occurred with 0.5 mM CaCl2 added to the incubations, and complete activity occurred with 2.0 mM CaCl2, which showed that there is a close association between the level of extracellular Ca2+ ions and cAMP elevation during stress relaxation. Addition of 3 mM EGTA also inhibited release of arachidonic acid and its metabolites, and inhibition was overcome by 2 mM CaCl2 but not by 2 mM MgCl2.

The above results implicated extracellular Ca2+ in cAMP elevation. An attractive hypothesis was that stress relaxation resulted in Ca2+ influx, which triggered subsequent events. To analyze this possibility further, fibroblasts in attached cultures were treated with the calcium ionophore A23187 for 10 or 30 min, after which cAMP levels were measured. Fig. 8 shows that addition of the ionophore resulted in a dose-dependent cAMP elevation. This increase was inhibited 58% by 3 mM EGTA. Fig. 9 shows similar findings for arachidonic acid and its metabolite. That is, treating fibroblasts in attached matrices with calcium ionophore (ATT + A23187) resulted in an increase in production of arachidonic acid comparable to that obtained by stress relaxation, and in either case, addition of 3 mM EGTA inhibited arachidonic acid production. Taken together, these results indicated that Ca2+ influx alone is sufficient to activate the cAMP signaling pathway.

Discussion

The goal of our studies was to identify mechanoregulated signaling mechanisms in fibroblasts. Previous studies on mechanoregulation of cell function by other laboratories used systems in which cells were subjected to increased or intermittent stress (Erdos et al., 1991; Vandenburgh, 1992; Davies and Tripathi, 1993). The stress relaxation model is unique in that it allows studies on cells switched from mechanically stressed to relaxed conditions. Because the mechanical changes occur rapidly and synchronously in the cell population, stress relaxation can be used to determine initial cellular responses to mechanical change.

The major finding of our studies was that stress relaxation triggers a cAMP signaling pathway. The earliest step of the pathway identified was influx of extracellular Ca2+. The rise in cytosolic Ca2+ appeared to be followed by generation of free arachidonic acid. Elevated arachidonic acid was found to stimulate cAMP synthesis by an indomethacin-sensitive mechanism. Finally, increased levels of cAMP resulted in activation of PKA. Overall, the effect of stress relaxation on PKA levels was equivalent to that observed after treatment of cells with forskolin.

Arachidonic acid, cAMP, and PKA were directly measured and shown to increase dramatically within 10 min after initiating stress relaxation. cAMP elevation could have resulted from activation of adenylyl cyclase or inhibition in phosphodiesterase. Since addition of IBMX to the incubations did not increase cAMP levels of fibroblasts in stressed matrices, and it did not change the overall pattern of the cAMP elevation after release of stressed matrices, it could be concluded that stress relaxation resulted in activation of adenylyl cyclase rather than inhibition of phosphodiesterase.

Inhibition of the signaling pathway by indomethacin suggested a role for prostaglandins because indomethacin blocks cyclooxygenase-mediated conversion of arachidonic acid to prostaglandin (Vane, 1971), and prostaglandins are known activators of adenylyl cyclase (Brunton et al., 1976; Kerins et al., 1991). Nevertheless, maximal inhibition of cAMP production by indomethacin only reached 65−70%, so we cannot rule out participation of a second pathway leading to cAMP synthesis, such as direct Ca2+ activation of adenylyl cyclase (Tang et al., 1991; Choi et al., 1992).

Several results suggested that extracellular Ca2+ influx
was an upstream initiator of the stress relaxation signaling pathway. On one hand, addition of EGTA to the incubations at concentrations just sufficient to exceed Ca$^{2+}$ in the medium inhibited the increases in free arachidonic acid and cAMP when stressed matrices were released. This inhibition was overcome by adding CaCl$_2$ but not MgCl$_2$ to the medium. On the other hand, treating fibroblasts in mechanically stressed cultures with the calcium ionophore A23187 stimulated arachidonic acid and cAMP production even without stress relaxation, and this stimulation also was inhibited by adding EGTA as above.

The mechanism accounting for stress relaxation–dependent influx of extracellular Ca$^{2+}$ influx has yet to be studied. One possibility is participation of stretch-activated ion channels such as those that have been described in membrane patches (Sachs, 1989), whose function in whole cells is unknown (Sadoshima et al., 1992). Another possibility is that cell surface Ca$^{2+}$ channels open in response to physical changes in plasma membrane specializations such as caveolae, which contain inositol triphosphate receptors and have been proposed to play a role in Ca$^{2+}$ signaling (Fujimoto et al., 1992). Finally, Ca$^{2+}$ entry may be regulated by changes in occupancy or organization of integrin receptors (Fujimoto et al., 1991; Ng-Sikorski et al., 1991; Schwartz, 1993). Integrin α2β1 adhesion receptors mediate binding between fibroblasts and collagen fibrils in collagen matrices (Gullberg et al., 1990; Schiro et al., 1991; Klein et al., 1991), and collagen organization changes markedly during stress relaxation (Lee et al., 1993). Also, α5β1 receptors bind to fibronectin in mechanically stressed matrices, where cells form fibronexus junctions, but when the matrices are switched to mechanically-relaxed conditions, fibronexus junctions fall apart and the cells release their surface fibronectin (Mochitate et al., 1991; Tomasek et al., 1992).

An attractive hypothesis consistent with the data is participation of Ca$^{2+}$-activated cytoplasmic phospholipase A2 (cPLA2) (Brooks et al., 1989; Kramer et al., 1991) in stress relaxation–dependent generation of free arachidonic acid. The enzyme contains a Ca$^{2+}$-dependent translocation domain, and in the presence of Ca$^{2+}$, it moves from the cytoplasm to the plasma membrane, where arachidonic acid can be released (Clark et al., 1991). It should be noted, however, that generation of free arachidonic acid is influenced by a variety of enzymes, including phospholipase C and PKC, as well as cPLA2 (Burgoyne and Morgan, 1990). Therefore, the possibility that cPLA2 plays a role in the stress relaxation response must remain speculative until further studies are carried out.

Identification of a mechanoregulated cAMP signaling pathway raises the question of whether elevated cAMP can account for the phenotypic changes that accompany stress relaxation, particularly changes in cell proliferation and matrix remodeling. In support of this possibility, a variety of studies have shown that increased levels of cAMP can inhibit proliferation of fibroblasts and other cells in monolayer culture (Pastan et al., 1975). Also, elevated cAMP has been shown to result in decreased collagen synthesis (Baum et al., 1978; Kollros et al., 1987; Perr et al., 1989) and increased collagenase synthesis (Corcoran et al., 1992). The hormone relaxin, normally associated with changes in contractility and matrix remodeling in the reproductive tract (Bryant-Greenwood, 1991), causes decreased collagen synthesis and increased collagenase synthesis by fibroblasts (Unemori and Amento, 1990; Unemori et al., 1993), and relaxin probably works through a PGE2-cAMP signaling pathway (Marshall and Kroeger, 1973; Hsu et al., 1985). Whether fibroblast collagen and collagenase genes contain stress-sensitive promoter elements remains to be determined.

While the above studies support the idea that cAMP signaling can explain phenotypic changes by fibroblasts in floating vs attached matrices, the situation may turn out to be more complex. For instance, there have been reports of cAMP signaling after subjecting some cells to increased mechanical stress, albeit through different signaling pathways than we have observed. In one case, cAMP elevation appeared to depend on disruption of the cytoskeleton (Watson, 1990); in the other, maximal cAMP levels did not occur until 30–60 min after application of stress (Ngan et al., 1990). Also, in both studies, the magnitude of the cAMP response was much smaller than that we observed. Moreover, depending on cell type, timing of addition, and presence of particular growth factors, cAMP can stimulate rather than inhibit cell proliferation (Rozengurt et al., 1981, 1983), and cAMP also has been reported to inhibit collagenase production (Takahashi et al., 1991). These results indicate that there may be other stress-sensitive regulatory mechanisms in addition to cAMP signaling.

We are indebted to Drs. Alfred Gilman, Elliot Ross, William Snell and Ying-Chun Lin for their advice and help with these experiments.

Our studies were supported by a grant from the National Institutes of Health (GM31321).

Received for publication 23 December 1993 and in revised form 25 April 1994.

References
Baum, B. J., J. Moss, S. D. Breul, and R. G. Crystal. 1978. Association in normal human fibroblasts of elevated levels of adenine 3',5'-monophosphate with a selective decrease in collagen production. J. Biol. Chem. 253: 3391–3394.
Bell, E., B. Ivarson, and C. Merrill. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA. 76: 1274–1278.
Brooks, R. C., K. D. McCarthy, E. G. Lapetina, and P. Morell. 1989. Receptor-stimulated phospholipase A2 activation is coupled to influx of external calcium and not to mobilization of intracellular calcium in C66B glioma cells. J. Biol. Chem. 264:20147–20153.
Brunton, L. L., R. A. Winklun, P. M. Van Arsdale, and A. G. Gilman. 1976. Binding of [3H]prostaglandin E1 to putative receptors linked to adenylate cyclase of cultured cell clones. J. Biol. Chem. 251:3037–3044.
Bryant-Greenwood, G. D. 1991. The human relaxin: consensus and dissent. Mol. Cell. Endocrinol. 79: c125–c132.
Burgoyne, R. D., and A. Morgan. 1990. The control of free arachidonic acid levels. TIBS (Trends Biochem. Sci.) 15:365–366.
Cho, E.-J., S. T. Wong, T. R. Hinds, and D. R. Storm. 1992. Calcium and muscarinic agonist stimulation of type I adenylyl cyclase in whole cells. J. Biol. Chem. 267:12440–12442.
Clark, J. D., L.-L. Lin, R. W. Kie, C. S. Ramesha, L. A. Saulzbeck, A. Y. Lin, N. Milona, and J. L. Knopf. 1991. A novel arachidonic acid-selective cytosolic PL2A contains a Ca$^{2+}$-dependent translocation domain with homology to PKC and GAF. Cell. 65:1043–1051.
Corcoran, M. L., W. G. Steiger-Stevenson, P. D. Brown, and L. M. Wahl. 1992. Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes. J. Biol. Chem. 267:515–519.
Davies, F. P., and C. S. Tripathi. 1993. Mechanical stress mechanisms and the cell: an endothelial paradigm. Curr. Res. 72:239–245.
Delvoye, P., P. Willeput, J.-L. Levoque, B. V. Nusgens, and C. M. Lapierre. 1991. Measurement of mechanical forces generated by skin fibroblasts embedded in the three-dimensional collagen gel. J. Invest. Dermatol. 97:898–902.
The interactive effects of mechanical stress and interleukin-1β on prostaglandin E2 and cyclic AMP production in human periodontal ligament fibroblasts in vitro: comparison with cloned osteoblastic cells of mouse (MC3T3-E1). Arch. Oral Biol. 35:717-725.

Nishiyama, T., M. Tsuchiyama, Y. Nakayama, E. Adachi, and T. Hayashi. 1989. Growth rate of human fibroblasts is repressed by the culture within reconstituted collagen matrix but not by the culture on the matrix. J. Cell. Biol. 19:193-199.

Nolting, M. U., S. G. Erkkin, and L. V. McIntire. 1990. Shear stress increases inositol triphosphate levels in human endothelial cells. Biochem. Biophys. Res. Commun. 170:281-287.

Nugues, B., C. Merrill, C. Lapiere, and E. Bell. 1964. Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Cell. Res. 4:351-363.

Pasante, I. H., G. S. Johnson, and W. B. Anderson. 1975. Role of cyclic nucleotides in growth control. Annu. Rev. Biochem. 44:491-512.

Paye, M., B. V. Nugues, and C. M. Lapiere. 1987. Modulation of cellular biochemistry of extracellular matrix in the retraction collagen lattice. Eur. J. Cell Biol. 44:54-50.

Pentland, A. P., 1989. Collagen lattice effects on fibroblast arachidonic acid metabolism. J. Cell Physiol. 139:392-397.

Perr, H., M. F. Graham, R. F. Diegelmann, and R. W. Downs. 1989. Cyclic nucleotides regulate collagen production by human intestinal smooth muscle cells. Gastroenterology. 96:1521-1528.

Praad, A. R., S. A. Logan, R. M. Nerem, and C. S. Schwartz, and E. A. Sprague. 1993. Flow-related response of human endothelial cells to inositol triphosphate levels in cultured aortic endothelial cells. Circ. Res. 72:827-836.

Reich, K. M., and J. A. Frangos. 1991. Effect of flow on prostaglandin E2 and inositol triphosphate levels in osteoblasts. Am. J. Physiol. 261:C428-C432.

Resnick, N. D., T. Collins, W. L. Butcher, J. R. Dewey, Jr, and M. A. Gimbrone. Jr. 1993. Platelet-derived growth factor β chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc. Natl. Acad. Sci. USA. 90:4591-4595.

Rossi, E., R. F., and B. E. Simpson. 1992. Protein kinase C is a mediator of the adaptation of vascular endothelial cells to cyclic strain in vitro. Surgery (St. Louis). 112:459-466.

Rozengurt, E., A. Legg, G. Strang, and N. Courtenay-Luck. 1981. Cyclic AMP; a mitogenic signal for Swiss 3T3 cells. Proc. Natl. Acad. Sci. USA. 78:4392-4396.

Rozengurt, E., P. Stroobant, M. D. Waterfield, T. F. Deusel, and M. Keehan. 1983. Platelet derived growth factor elicits cyclic AMP accumulation in Swiss 3T3 cells: role of prostaglandin production. C34:265-277.

Ryan, T. J. 1989. Biochemical consequences of mechanical forces generated by distention and distortion. J. Am. Acad. Dermatol. 21:115-130.

Sachs, F. 1989. Ion channels as mechanical transducers. In Cell Shape: Determinants Regulation and Regulatory Role. W. D. Stein and F. Bronner, editors. Academic Press, New York. pp. 63-92.

Sadoshima, J., I. T. Takahashi, L. Jahn, and S. Izumo. 1992. Roles of mechanosensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc. Natl. Acad. Sci. USA. 89:8005-8009.

Salomon, Y. 1991. Cellular responsiveness to hormones and neurotransmitters: Conversion of [3H]adrenaline to [3H]cAMP in cell monolayers, cell suspensions, and tissue slices. Methods Enzymol. 193:22-28.

Sandy, J. R., S. Meghji, R. W. Farndale, and M. C. Meikle. 1989. Calcium signaling capacity of the CD1 lb/CD18 integrin on human neutrophils. J. Biol. Chem. 6:23219-23315.

Hsu, C. J., S. M. McCormack, and B. M. Sanborn. 1985. The effect of relaxin on cyclic adenosine 3',5'-monophosphate concentrations in rat myometrial cells in culture. Endocrinology. 116:2025-2035.

Ingerber, D. E., and J. Folkman. 1989. Tension and compression as basic determinants of cell form and function. In Cell Shape: Determinants Regulation and Regulatory Role. W. D. Stein and F. Bronner, editors. Academic Press Inc., New York. pp. 3-31.

Klein, C. E., D. Dressel, T. Steinmayer, C. Manch, B. Fekecs, T. Krieg, R. B. Borg, and K. Rubin. 1990. Integrin-mediated collagen gel contraction is mediated by cells in culture. Arch. Oral Biol. 35:597-601.

Kerins, D. M., R. Murray, and G. A. FitzGerald. 1991. Prostacyclin and prostaglandins as regulators of smooth muscle. Adv. Exp. Med. Biol. 268:3520-3524.

Malek, A. M., A. L. Greene, and S. Izumo. 1993. Regulation of endothelin-1 gene expression in fibroblasts by mechanical forces. Lab. Invest. 69:440-451.

Kolros, P. R., S. R. Bates, M. B. Mathews, S. L. Horwitz, and S. Glagov. 1987. Cyclic AMP inhibits increased collagen production by cyclically stretched smooth muscle cells. Lab. Invest. 56:410-417.

Kolodney, M. S., and R. B. Wyssomerski. 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117:73-82.

KRAMER, R. M., E. F. Roberts, J. Manetta, and J. E. Putnam. 1991. The Ca2+-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. J. Biol. Chem. 266:5268-5272.

Kroll, M. H., Z. Guo, W. Durant, G. Valden, J. K. Brohlick, and A. I. Schafer. 1993. Protein kinase C is activated in platelets subjected to pathological shear stress. J. Biol. Chem. 268:5350-5354.

Lambert, C. A., E. P. Soudant, B. V. Nugues, and C. M. Lapiere. 1992. Pretranslational regulation of extracellular matrix gene expression in fibroblasts by mechanical forces. Lab. Invest. 66:444-451.

Lee, T.-L., Y.-C. Lin, K. Mochitate, and F. Grinnell. 1993. Stress-relaxation of collagen in collagen matrices triggers ectocytosis of plasma membrane vesicles, annexins II and VI, and β1 integrin receptors. J. Cell Sci. 105:167-177.

Lin, Y.-C., and F. Grinnell. 1993. Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices. J. Cell Biol. 122:663-672.

Malek, A. M., A. L. Greene, and S. Izumo. 1993. Regulation of endothelin-1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Prog. Natl. Acad. Sci. USA. 90:5999-6003.

Marshall, J. M., and E. A. Kroger. 1973. Adrenergic influences on uterine smooth muscle. Phil. Trans. R. Soc. Lond. B. 265:135-148.

Mauch, C., B. Adelmann-Grill, A. Hatamouch, and T. Krieg. 1989. Collagen gene expression in fibroblasts is regulated by a three-dimensional collagen lattice. FEBS Lett. 250:301-305.

Mochitate, K., F. Pawecek, and F. Grinnell. 1991. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and downregulation of DNA and protein synthesis. Exp. Cell Res. 195:504-506.

Nakawaga, S., F. Pawecek, and F. Grinnell. 1989. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness. Exp. Cell Res. 182:572-582.

Ng-St. John, J., A. Varliouvar, M. Patarroyo, and T. Andersson. 1991. Calcium signaling capacity of the CD11b/CD18 integrin on human neutrophils. Exp. Cell Res. 195:504-506.

Nag, P., S. Saito, M. Saito, R. Lanese, J. Shanfield, and Z. Davidovich. 1990. The interaction effects of mechanical stress and interleukin-1β on prostaglandin E2 and cyclic AMP production in human periodontal ligament fibroblasts in vitro: comparison with cloned osteoblastic cells of mouse (MC3T3-E1). Arch. Oral Biol. 35:717-725.
Unemori, E. N., and Z. Werb. 1986. Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels. *J. Cell Biol.* 103:1021-1031.

Vandenburgh, H. H. 1992. Mechanical forces and their second messengers in stimulating cell growth in vitro. *Am. J. Physiol.* 262:R350-R355.

Vane, J. R. 1971. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. *Nature New Biology.* 231:232-235.

von Harsdorf, R., R. E. Lang, M. Fullerton, and E. A. Woodcock. 1989. Myocardial stretch stimulates phosphoinositol turnover. *Circ. Res.* 65:494-501.

Watson, P. 1990. Direct stimulation of adenylate cyclase by mechanical forces in 549 mouse lymphoma cells during hyposmotic swelling. *J. Biol. Chem.* 265:6569-6575.

Watson, P. A. 1991. Function follows form: generation of intracellular signals by cell deformation. *FASEB (Fed. Am. Soc. Exp. Biol.) J.* 5:2013-2019.