COVID-19 創薬開発研究のための評価系基盤の構築
～遺伝子改変マウスとカニクイザルモデル～

【研究成果のポイント】

- 新型コロナウイルス感染モデル動物として SARS-CoV-2 の感染の標的であるヒト ACE2 遺伝子を組み込んだ遺伝子改変マウスと、ヒトの病態を反映できるカニクイザルモデルを確立しました。
- ハムスターなどの既存のモデル動物は致死的ではないために中和抗体や既存の抗ウイルス薬の治療効果の判定が容易ではありません。遺伝子改変マウスが SARS-CoV-2 感染で致死的な経過をたどることを利用し、中和エピトープの免疫による予防効果や、抗体移入による治療効果を的確に判定することが可能となりました。
- カニクイザルでは現在まで、健常個体での感染モデルしか報告は無く、本研究では若齢個体と基礎疾患を有する個体を含む高齢個体を用いた比較解析により、ヒトの SARS-CoV-2 感染病態を反映するモデル動物として非常に有用であることが示され、本感染症の複雑な病態の理解や、予防法・治療法開発に大きく貢献することが期待されます。

概要
新型コロナウイルス感染症（COVID-19）動物モデルにおいては、治療効果などを反映する高感受性動物モデルの必要性が指摘されています。一方、ヒトと同様の病態を反映する動物モデルも病態解明には必須となっています。

国立研究開発法人医薬基盤・健康・栄養研究所霊長類医科学研究センターの保富康宏らの研究グループは、COVID-19 のウイルス感染モデル動物として、先ず、SARS-CoV-2 感染に高感受性となる遺伝子改変マウスを用いて簡便な評価系を樹立しました。

また、霊長類カニクイザルモデルを樹立し、若齢個体（ヒト換算：9-24年齢）と基礎疾患を有する個体を含む高齢個体（ヒト換算：69-90年齢）において新型コロナウイルスの増殖性や病態を比較解析しました。その結果、病態やウイルス産生はヒトと同様であり、ヒトの病態を反映することが示されました。つまり、いずれのモデル動物も創薬研究に有用であることを見出しました。

本研究成果は、遺伝子改変マウスにおいては「Journal of Clinical Investigation Insight」に 2021 年 10 月 10 日（日本時間）に掲載され、カニクイザルモデルにおいては 2021 年 10 月 10 日（日本時間）、米国科学雑誌「Proc. Natl. Acad. Sci. USA」のオンライン版で公開されました。

研究の背景
2019年に初めて感染が報告されパンデミックとなった新型コロナウイルス（SARS-CoV-2）感染は現在においても世界的に流行し、一刻も早い収束が求められています。そのために抗ウイルス薬やワクチン開発において評価系の樹立が必要と考えました。一方、高齢者や基礎疾患患者においては重症化リスクが高いことが知られていますが、この様々な重症化リスクの高い人たちは多様な病態を示すことから病態の把握等は複雑化しています。このため、ヒトの病態を反映する動物モデルによる解析が重要であると考えられます。この様な観点から遺伝子改変マウスとカニクイザルの感染系を樹立しました。
本研究の内容
マウスを用いた評価系では SARS-CoV-2 の感染の標的であるヒト ACE2 遺伝子を組み込んだ遺伝子変換マウスを用いました。このマウスは広く全身にヒト ACE2 を発現し、低量の SARS-CoV-2 感染を致死的であり、治療薬やワクチンの効果判定が極めて容易な評価系となりました。

齢長類を用いた検討では、代謝性疾患などの基礎疾患を有する個体を含む高齢のカニクイザル（23〜30 歳齢、ヒト換算 69〜90 歲齢）と若齢のカニクイザル（3〜8 歳齢、ヒト換算 9〜24 歳）を用いて、新型コロナウイルスの感染病態を比較解析し、ヒトの病態を反映する感染モデル動物となり得るか検討を行いました。

若齢群と高齢群のカニクイザルに新型コロナウイルスを鼻腔内および気管内より接種し、経時に解析したところ、鼻腔、咽頭スワブ*1から検出される感染性ウイルスおよびウイルス RNA 量は高齢群の方が若齢群に比べて多く、排出期間も長いことが明らかとなりました。また、胸部 CT 撮影により感染後すべてのカニクイザルにおいて肺炎が確認され、一過性に炎症性マーカーの上昇が認められました。これらのことはヒトでの知見と一致しています。

次に、再感染について一部の若齢個体・高齢個体で検討を行いました。初感染 8〜16 週後に同じウイルス株で再感染を行ったところ、全ての個体でウイルスの増殖は検出されませんでした。これらの中には、再感染時における新型コロナウイルスに対する抗体価が感染前レベルにまで低下していた個体も含まれています。しかし、再感染直後に抗体レベルが顕著に上昇しており、初感染により免疫記憶が形成されていたことを示しています。一方で、鼻腔や咽頭スワブから検出されないにも関わらず、高齢個体の 1 頭に肺炎像が認めました。この個体では様々なサイトカイン・ケモカイン*2の上昇が再感染直後に観察され、過度な免疫反応による結果であることが考えられました。

以上のように、治療薬やワクチンの効果的確かに容易に判定できる遺伝子変換マウスの評価系と、ヒト病態を反映するカニクイザルモデルにおいて治療薬やワクチン等の開発に大きく貢献できる研究となりました。

本研究成果の意義
本研究により、治療薬などの一次評価系として有用な遺伝子変換マウスモデル、およびヒト病態を反映し、本感染症の複雑な病態の解析に適するカニクイザルが、COVID-19 感染モデル動物として非常に有用であることが示されました。これらの感染モデル動物は、今後の予防法・治療法開発および加速に大きく貢献できることが期待されます。

特記事項
本研究成果は、遺伝子変換マウスに関する成果は 2021 年 10 月 10 日（日本時間）に「JCI Insight」、カニクイザルモデルに関しては 2021 年 10 月 10 日（日本時間）、米国科学雑誌「Proc. Natl. Acad. Sci. USA」のオンライン版で公開されりました。

本研究成果は、国立研究開発法人日本医療研究開発機構（AMED）の新興・再興感染症に対する革新的医薬品等開発推進研究事業における「新型コロナウイルス感染症（COVID-19）齢長類モデルならびにヒト検体を用いた病態解明に関する研究」（研究開発代表者：保富康宏）の一環として得られました。

論文タイトル：
“High susceptible model of SARS-CoV2 in CAG promoter–driven hACE2 transgenic mice”

著者:
Masamitsu N Asaka, Daichi Utsumi, Haruhiko Kamada, Satoshi Nagata, Yutaka Nakachi, Tomokazu Yamaguchi, Yoshihiro Kawaoka, Keiji Kuba, Yasuhiro Yasutomi
掲載雑誌：
JCI Insight

論文タイトル：
“COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions”

著者：
Emiko Urano, Tomotaka Okamura, Chikako Ono, Shiori Ueno, Satoshi Nagata, Haruhiko Kamada, Mahoko Higuchi, Mugi Furuwaka, Wataru Kamitani, Yoshiharu Matsuura, Yoshihiro Kawaoka, Yasuhiro Yasutomi

掲載雑誌：
Proc. Natl. Acad. Sci. USA

用語説明：
＊1：スワブ：ぬぐい液、綿棒等で咽頭や鼻腔の粘膜表面空の採取
＊2：サイトカイン・ケモカイン：成体内の免疫機能のバランスを保つ免疫調整。

本件に関する問い合わせ先
＜研究に関すること＞
国立研究開発法人 医薬基盤・健康・栄養研究所（NIBIOHN）
霊長類医科学研究センター
センター長
保富 康宏（やすとみ やすひろ）
〒305-0843 茨城県つくば市八幡台1－1
TEL: 029－837－2054
FAX: 029－837－0218
E-mail: yasutomi※nibiohn.go.jp
（※に@を入力して送信願います。）

＜報道に関すること＞
国立研究開発法人医薬基盤・健康・栄養研究所 戦略企画部
TEL:072－641－9832
FAX:072－641－9821
E-mail: kikaku※nibiohn.go.jp
（※に@を入力して送信願います。）