Traditional Chinese medicine promotes bone regeneration in bone tissue engineering

Zheng-Rong Gao†, Yun-Zhi Feng†, Ya-Qiong Zhao1, Jie Zhao1, Ying-Hui Zhou2, Qin Ye1, Yun Chen1, Li Tan1, Shao-Hui Zhang1, Yao Feng1, Jing Hu1, Ze-Yue Ou-Yang1, Marie Aimee Dusenge1 and Yue Guo1*†

Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.

Keywords: Traditional Chinese medicine, Bone tissue engineering, Bone regeneration, Scaffolds, Osteogenesis

Graphical Abstract

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Traditional Chinese medicine (TCM)

Role of TCM
TCM comprises natural products and extracts derived from herbs, animals, and minerals with effective biofunctions for maintaining health and treating disease. During decades, its use has been widespread globally [1–3]. As early as the Eastern Han Dynasty, the classical text on Chinese Medicine, Shen Nong’s Materia Medica (Shen Nong Ben Cao Jing), recorded the use of TCM in the treatment of diseases. Nowadays, TCM has been shown to play a crucial role in the prevention and management of diseases, such as cardiovascular disease, cancer, and diabetes [4–6]. TCM was considered a “miracle” drug for certain major diseases, such as artemisinin in malaria and arsenic trioxide in acute promyelocytic leukemia [7, 8]. Therefore, further understanding and expanding the use of TCM is necessary for continued developments in the field.

Classification of TCM
The classification of TCM is sophisticated and complex. From the ancient books and Pharmacopoeias, such as Shen Nong’s Materia Medica [9], Compendium of Materia Medica (Ben Cao Gang Mu) [10], Yellow Emperor’s Inner Canon and Treatise on Cold Damage, to the latest Chinese Pharmacopoeia [11, 12], the classification standard of TCM are still different. And some of the scholar different from the traditional classification in China, some scholars divided TCM into Alkaloids, Terpenoids, Flavonoids, Volatile Oils etc. based on the active components (Table 1). The classification of TCM in this review is based on the active components reported for application in bone tissue engineering (BTE) that promote bone formation, including flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. And the drug component has been shown in Table 2. The classification of TCM is significant for guiding clinical application and avoiding instability and unsafety caused by improper combination [13].

BTE
Bone remodeling and regeneration are continuous and dynamic physiological processes regulated by two cellular mechanisms, namely bone formation and resorption.
Table 2 The basic information of TCM

Category	Components	Structural forms	Molecular weight	Source	Main function	References
Flavonoids	Icariin	![Icariin structure](image1)	676.67	*Epimedium* species	Treatment of fractures, joint disease, and gonadal dysfunctions	[31, 32]
	Icaritin	![Icaritin structure](image2)	386.4	*Epimedium* species	Osteoprotective effect, neuroprotective effect, cardiovascular protective effect, anti-cancer effect, anti-inflammatory effect, and immune-protective effect	[33]
	Hydroxy safflower yellow A	![Hydroxy safflower yellow A structure](image3)	612.53	*Safflower*	Cardiovascular protection, coronary heart disease treatment and capillary angiogenesis, blood circulation and dispersing blood stasis	[34–38]
	Xanthohumol	![Xanthohumol structure](image4)	354.4	*Humulus lupulus*	Stimulate osteogenic differentiation, anti-inflammatory, and inhibits osteoclastogenesis	[39–41]
	Kaempferol	![Kaempferol structure](image5)	286.23	*Kaempferia galanga*	Osteoporosis, diabetes, obesity, immune regulation, antiviral, and antidepressant treatments	[42–45]
	Cuscuta chinensis Lam.	![Cuscuta chinensis Lam. structure](image6)	Not applicable (NA)	*Kaempferia galanga*	Osteoporosis treatment	[45]
	Baicalin	![Baicalin structure](image7)	446.36	*Radix Scutellariae*	Antioxidant, antiapoptotic, and immunoregulatory activities with minimal side-effects	[46, 47]
Category	Components	Structural forms	Molecular weight	Source	Main function	References
----------	------------	------------------	------------------	--------	---	-----------
Baicalein	Baicalein	![Baicalein](image)	270.24	Radix Scutellariae	Antioxidant, antiapoptotic, and immunoregulatory activities with minimal side-effects	[46, 47]
Naringin	Naringin	![Naringin](image)	580.53	Tomatoes, grapefruits, and many other citrus fruits	Anti-inflammatory, antiapoptotic activities, and have therapeutic potential cancer, cardiovascular disease, diabetes, and oral disease	[48–50]
Hesperetin	Hesperetin	![Hesperetin](image)	302.28	Chenpi	Antioxidant, anti-inflammatory, and anti-carcinogenic effects	[51]
Quercetin	Quercetin	![Quercetin](image)	302.24	Quercetum, fruit and vegetables	Anti-inflammatory, anti-viral, anti-oxidant, anti-cancer properties, osteogenesis and angiogenesis	[52, 53]
Silymarin	Silymarin	![Silymarin](image)	482.44	Silybum marianum	Hepatoprotective effects, anti-viral, anti-Parkinson, anti-Alzheimer effects, anti-cancer and anti-inflammatory	[54, 55]
Category	Components	Structural forms	Molecular weight	Source	Main function	References
-----------	------------	------------------	------------------	-----------------	---	------------
Alkaloids	Tetrandrine	![Tetrandrine](image)	622.76	*Stephania tetrandria*	Anti-inflammatory, immunosuppressant, anti-allergic effects, anti-oxidant, anti-diabetic and anti-microbial	[56, 57]
	Berberine	![Berberine](image)	336.36	*Rhizoma coptidis*	Diabetes, anti-inflammatory, anti-cancer therapies, lowering of blood lipids and promote bone formation	[58–60]
Glycosides	Ginsenoside Rg1	![Ginsenoside Rg1](image)	801.01	Ginseng	Cell proliferation and differentiation, anti-apoptosis, and anti-inflammation	[61]
	Ginsenoside Rb1	![Ginsenoside Rb1](image)	1109.31	Ginseng	Osteogenesis	[62]
Terpenoids	Ursolic acid	![Ursolic acid](image)	456.70	Fruits and vegetables	Anticancer, antioxidant, and other pharmacological effects	[63]
The loss of bone tissue can occur following an accident, trauma, cancer, and congenital malformation. Although bone remodeling and regeneration is a lifelong process, a bone defect, especially a large one, severely affects the function of the defunct area and quality of life due to the limited self-repair capacity of bone tissue and some inevitable side effects after surgery [15, 16]. Currently, the clinical “gold standard” for bone transplantation and reconstruction is autogenous bone grafts; however, the risk of donor site morbidity, limited graft supply, and bone formation delay must be seriously considered [17, 18]. To address naturally arising difficulties, BTE has been applied to provide a cell-friendly microenvironment for defect repair and tissue regeneration. BTE is an interdisciplinary field that combines the principles of engineering and biology to develop biological substitutes for restoring, maintaining, or improving bone tissue function [19, 20]. BTE has been applied in the treatment of large sections of bone tissue are absent, including traumas, bone cancer tumor resection, congenital malformation, and debridement of infected bone tissue [21].

The ideal characteristics of BTE including non-immunogenic, biocompatibility, controllable, readily available and have the mechanical properties similar to the natural tissue material, and possess suitable structure, architecture, and pore sizes for cells survival and activity [22, 23]. The advent and development of BTE brought about promising approaches for bone regeneration by ways of including the three key factors, namely (1) cells, (2) scaffolds, and (3) growth factors [24–26].

Table 2 (continued)

Category	Components	Structural forms	Molecular weight	Source	Main function	References
Polyphenols	Resveratrol	![Resveratrol](image)	228.25	Veratrum grandiflorum O. Loes	Mediating inflammation, tumorigenesis, and cardioprotective effects	[64–66]
Curcumin	![Curcumin](image)	368.39	Curcuma long L.	Anti-oxidant, anti-inflammatory, and anti-cancer effects	[67]	
Epigallocatechin gallate	![Epigallocatechin gallate](image)	458.38	Camellia sinensis L.	Anti-oxidant and anti-inflammatory effects	[68]	

The application of TCM in BTE

The integrate TCM with BTE has a unique advantage in bone regeneration. Oral administration is the typical route for drug delivery, but the drawbacks such as first-pass metabolism would reduce the drug efficacy [69], while the topical delivery would prevention of first pass effect by liver and gut enzymes [70, 71]. To achieve successful and satisfactory therapeutic results, oral delivery requires overcoming the challenges by increasing the permeability of the intestinal epithelial membrane, inhibiting the degrading enzymes or protecting therapeutic by encapsulation [72], while the topical delivery can avoid this problem. Besides, the side effects of large doses of drugs have not been fully elucidated. At present, some drugs, such as BMP-2 and PTH, can be combined with BTE to promote bone defect healing. However, this may lead to extensive spread and subsequent accumulation in different organs, and further induce negative systemic side effects. Meanwhile, the production of these medicines are expensive [73]. Although the systemic administration of TCM shows low toxicity and side effects, it usually takes effect slowly. Therefore, regional TCM may provide a suitable alternative to TCM therapy. By integrating TCM with BTE, the BTE could act as a delivery carriers, and the topically-applied drug cannot only reach
the interior target tissue with a greater bioavailability, but also prolong residence time as well as sustain drug release [74]. At the same time, TCM combined with BTE can improve its mechanical properties, such as Young's modulus, compressive strength, hydrophilicity [75, 76].

Bone has the capacity of self-renewal; nevertheless, bone tissue regeneration remains a challenge [77]. The different types of TCM summarized here promote bone formation via multiple mechanisms and targets (Fig. 1), for instance, regulating the process of cell proliferation, osteogenesis and mineralization; chondrogenesis; angiogenesis; osteoclastogenesis; adipogenesis; and anti-inflammatory, anti-oxidant, anti-bacterial, and anti-apoptosis (Fig. 2).

Proliferation, osteogenesis and mineralization

Traditional Chinese medicine (TCM) has been praised in the world of medicine due to its effects in promoting cell proliferation, regulating bone metabolism, etc. [78], as shown in Table 3. Based on the variety of biomaterials, the use of TCM exhibits great biocompatibility and low cytotoxicity to the cells seeded on the biomaterial, even at extremely high concentrations, as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and cell counting Kit-8 (CCK-8) assay [76, 79–82]. Icariin loaded PHBV scaffold significantly promoted the proliferation of human osteoblast-like MG-63 cells and the pre-osteoblast MC3T3-E1 cells in a concentration-dependent manner, as shown by Alamar blue assay, and the enhanced cellular proliferation results were due to the upregulating expression of BMP-2, BMP-6, BMP-7 and BGN [83]. Resveratrol and Ang-2 combined with PEGDA/TCS hydrogel showed a good cytocompatibility, and cell density in the resveratrol group was significantly higher than that in the control groups in a hypoxic environment, which was verified by the proliferation marker Ki67 via WB assay [84]. In addition, in the epigallocatechin gallate loaded gelatin scaffold, the chemical modification by epigallocatechin gallate would mitigate MMP-2 and -9 expression, thus slowing down the degradation of gelatin scaffold [85].
Except the low-cytotoxicity of TCM, which provided the basic condition for the application of TCM in BTE, TCM could also directly stimulate osteogenesis. Most studies adopted the rat calvarial bone defect models, while other studies also used tibial plateau defects model, rabbit bilateral thigh muscles model, rabbit lateral femoral condyle model, rat tibial ostectomy model, etc. [86–90]. The results show that more new bone formation and mineralization was found in the center and periphery of the bone defect area after filling with icariin-loaded bioactive scaffold, which attribute to the upregulating of osteogenic-related factors, such as RUNX2, ALP, OCN, COLI, BSP and OPN [76, 86, 91–94]. Besides, other TCM combined with different scaffold materials have similar effects, for instance, icaritin [88, 95], hydroxy safflower yellow A [96], kaempferol [97, 98], naringin [99, 100], quercetin [101–103], silymarin [104, 105], berberine [58, 90, 106], ginsenoside [62, 107], resveratrol [108–110], curcumin [111], and epigallocatechin gallate [112–115]. The rat calvarial defect almost completely repaired with physiological integrity at 16 weeks in the PLGA scaffold incorporated with gelatin, alendronate, and naringin groups, and this might owing to the inhibitory impact of alendronate on osteoclasts and the positive effect of naringin on osteoblasts, the PLGA + Gelatin/ALD/NG scaffold had a high potential for bone repair, as shown by upregulating BMP-2, OSX, OPN, BSP, COLI, OCN and calcium content, and inhibiting TRAP [116]. BMP family possess diverse biological functions during osteogenic differentiation, and including the maintenance of normal bone and bone regeneration. After the treatment of TCM loaded scaffold, BMP-2 and BMP-4 were significantly increased [58, 87, 96, 107, 111, 116–118]. Some of the research has demonstrated the mechanism under the TCM promoting bone regeneration. Baicalin/baicalein loaded Ca-polyP particles rises the intracellular calcium level through activation of the phospholipase C. Meanwhile, both flavones upregulated the expression of the osteoblast calcium efflux channel, the plasma membrane Ca2+-ATPase (PMCA), and the expression of ALP, which promotes bone mineralization [119]. Naringin-inlaid composite silk fibroin/hydroxyapatite scaffold had no effect on PI3K and Akt expression but strongly promoted PI3K phosphorylation compared to the control groups, indicating that naringin increased PI3K and Akt activity for stimulating osteogenic differentiation [49]. Using a
Active components	Biomaterials	Experimental models	Efficacy	References
Icariin	SF/SBA15	Rat BMSC (rBMSC), 38.4 µM	Up-regulating RUNX2, ALP, OCN, and COLI	[94]
	SF/PLCL nanofibrous membrane	rBMSC, 10^{-5} mol/L; rat calvarial defects model	Up-regulating ALP activity	[76]
PLGA microspheres	rBMSC, 4 x 10^{-3} M; rat calvarial defects model	Up-regulating RUNX2, ALP, OCN, COLI, and OPN	[125]	
Col/PCL/HAp composite scaffolds	rBMSC; rabbit tibial plateau defects model	Up-regulating ALP, COLI, OCN, and OPN	[86]	
CS-modified halloysite nanotubes	hASCs, 10^{-5} M;	Up-regulating ALP	[79]	
CS/nHAp	Osteoblast	N/A		[80]
PCL/Gel	MC3T3-E1; 0.05 wt%	Up-regulating ALP, OCN, COLI, and calcium content	[91]	
PLGA/TCP	MC3T3-E1, 0.32%; SAON rabbit distal femur defect model;	Up-regulating BSP, OCN, and ALP	[92]	
TCP	Ros17/28, 5 x 10^{-3} M	Up-regulating ALP	[93]	
PHBV scaffolds	MC3T3-E1, MG-63, 25 mg/mL	Up-regulating BGN, BMP-2, BMP-6, and BMP-7	[83]	
BioCaP	MC3T3-E1, 5 mg/L; rat calvarial defects model	Up-regulating ALP, OCN, RUNX2, BMP-2, and COLI	[87]	
ECM-SIS	MC3T3-E1, 10^{-5} M; mouse calvarial defect model	Up-regulating ALP, BSP, OCN, and BMP-4	[117]	
Icariin	PLGA/TCP	Rabbit BMSC, 0.74 g/kg; rabbit bilateral thigh muscles model	Up-regulating ALP and calcium deposition	[88]
	PLGA/TCP	Rabbit BMSC, 1.4 x 10^{-5} M;	Up-regulating COLI, ALP, OCN and calcium deposition	[95]
Hydroxy safflower yellow A	BG	rBMSCs, HUVECs; rat calvarial defects model	Up-regulating RUNX2, OPN, OCN, ALP and BMP-2	[96]
Xanthohumol	HA-g-PLLA	MC3T3-E1, 5, 10, 20 wt%	N/A	[81]
Kaempferol	TiO₂	rBMSC; rat femur defect	Up-regulating RUNX2, OCN, ALP, OPN and ON	[97]
Zn	MG-63, 25 µM; Zebrafish model	Up-regulating RUNX2, COLI, ALP, OCN, and ON	[98]	
Baicalin and baicalein	Ca-polyP	Primary human osteoblasts, 3 µg/mL	Up-regulating calcium, calcium efflux channel, PMCA and ALP	[119]
Naringin	SF/HAp	hUCMSCs, 0.1 wt%; rabbit femoral distal bone defect	Up-regulating ALP, RUNX2, OSX and COL1A and promoting AKT and PI3K phosphorylation	[49]
	microsphere/SAIB hybrid depot	Primary osteoblasts, 4% w/w; mouse calvarial defect model	Up-regulating ALP, RUNX2 and OCN	[99]
CS	UMR106, 5 wt%;	Up-regulating ALP	[100]	
PLGA/PDLLA	MC3T3-E1, 7 wt%;	N/A	[82]	
PLGA	Rat calvarial defects model	Up-regulating BMP-2, OSX, OPN, BSN, COLI, OCN and calcium content	[116]	
Hesperetin	Gel	hMSC, 1 µM; rat tibial osteotomy model	Up-regulating RUNX2, ALP, OCN and COLI and promoting ERK and Smads-1/5/8 phosphorylation	[89]
Active components	Biomaterials	Experimental models	Efficacy	References
-------------------	--------------	---------------------	----------	------------
Quercetin	Ti	hMSCs, 64 ± 10 and 842 ± 361 nmol	Up-regulating ALP activity and calcium content	[126]
	DC/HAp	Rabbit BMSCs, 25 μM; rat calvarial defect model	Up-regulating RUNX2, OCN, and COLI	[101]
	PLLA	MC3T3-E1, 200 μM	Up-regulating RUNX2, ALP, OCN, and COLI	[102]
	MSCS/PCL	Wharton’s jelly MSC, 2%	Up-regulating calcium deposit	[127]
	Decellularized goat-lung scaffold	BMSC, 100 μM	Up-regulating ALP and calcium deposits	[128]
Ti	DC/HAp	hUCMSCs, HGF, 50 nM	Up-regulating RUNX2, COL, OCN, and ALP	[103]
	DC/HAp	rBMSCs, 100 μM; rat calvarial bone defect model	Up-regulating RUNX2, COLI, and OCN	[104]
	PLA/Carbon nanotubes	Wharton’s jelly MSCs; rat calvarial bone defect model	Up-regulating ALP	[105]
Silymarin	Zn	C3H10T1/2, MG-63, 60 μM	Up-regulating RUNX2, COLI, and COLI	[104]
	Alginate/Gel	C3H10T1/2, 20, 50, 100 μM	Up-regulating ALP and OCN	[90]
Silibinin	N/A	DC/HAp	Up-regulating RUNX2, OCN, and COLI	[115]
	N/A	DC/HAp	Up-regulating RUNX2, COLI, OCN, and COLI	[115]
	N/A	DC/HAp	Up-regulating RUNX2, OCN, and COLI	[115]
Berberine	PCL/COL	DPSCs, 50 μg/mL; rat calvaria defects model	Up-regulating ALP, BMP-2, COLI and RUNX2	[58]
	PCL/PVP-MC/CS bilayer membrane	MC3T3-E1, 10 μM; rat femur defect model	N/A	[106]
	Negatively charged O-carboxymethyl chitosan microspheres	MG-63, rBMSCs; rabbit lateral femoral condyle model	Up-regulating ALP and OCN	[90]
Ginsenoside Rg1	SF/PCL	MC3T3-E1, HUVECs, 5% w/w	Up-regulating ALP, BMP-2, RUNX2 and OCN	[107]
Ginsenoside Rb1	MSCS/PCL	hDPSCs, 5% v/v; rabbit femoral defect model	Up-regulating ALP, OPN and OCN	[62]
Ursolic acid	MBG/CS porous scaffolds	hBMSCs, MC3T3-E1, 5 μM; rat calvarial defect model	Up-regulating ALP, COLI, RUNX2 and BMP-2 and promoting Smad1/5 phosphorylation	[118]
Resveratrol	PEGDA/TCS hydrogel	rBMSCs, HUVECs, 800 μM; rat tibia defect model	Up-regulating Ki67, RUNX2, OPN, and calcium content	[84]
	PLGA microsphere	hMSCs, hTHP-1 monocytes, 25 μM	Up-regulating ALP, OCN and calcium content	[108]
	SLNs/GelMA	rBMSCs, 0.02% w/v; rat calvarial critical-size defect model	Up-regulating ALP, OCN, RUNX2 and OPN	[109]
	PLA/OMMT	hASCs, 0.1 wt%	Up-regulating ALP, OCN and OPN	[110]
Curcumin	PCL	MC3T3-E1, 1 wt%	Up-regulating RUNX2, ALP, BMP-2, OCN, and OPN	[111]
Epigallocatechin gallate	Ti-6Al-4 V	hADSCs, Raw 264.7, 0.1 0.5, 1 mg/ml; rabbit tibia defect model	Up-regulating calcium content, RUNX2, OSX, OCN, OPN	[112]
	PLLA	hADSCs, Raw 264.7, 1 mg/ml; mouse calvarial defect	Up-regulating ALP, RUNX2, and OPN	[113]
	Gel sponges	UMR106, 0.07 mg; rat calvarial defects model	Down-regulating MMP-2, and MMP-9	[85]
	POSS	MC3T3-E1, 6 wt%	Up-regulating ALP	[114]
	DC/HAp	Rabbit BMSC, 5 μM; nude mouse model	Up-regulating RUNX2, OCN, and COLI	[115]
	Gel sponges	Rat calvarial defects model	N/A	[130]
rat osteotomy model, hesperetin/gelatin sponge scaffold combined with mesenchymal stem cells resulted in accelerated fracture healing, which attributed to the activation of ERK and Smad1/5/8 signaling [89]. Similarly, Zn-silbinin complexes showed promising effects on osteoblast differentiation by regulating miR-590/Smad-7 signaling pathway [120], and ursolic acid loaded mesoporous bio-glass/chitosan porous scaffolds would promote the bone regeneration in rat calvarial defect model by stimulating Smad1/5 phosphorylation [118]. Both genipin and proanthocyanidins could act as a cross-linker, and promote the process of osteogenesis via upregulating the expression of RUNX2, OCN, OPN, and ALP [121–124].

Chondrogenesis

Chondrocytes and the surrounding dense layers of extracellular matrix (ECM) form the cartilage [131]. Intramembranous ossification and endochondral ossification are two major processes to form new bone during bone repair [132]. It has been reported that endochondral ossification can be supported by biomaterials, and have a great bone regeneration in clinical [133]. Some of the TCM, for instance, icariin, resveratrol and epigallocatechin, can directly upregulate the expression of chondrogenic-related genes (Table 4). Icariin conjugated hyaluronic acid/collagen (HA/Col) hydrogel showed that the expression of SOX9, AGG, COL II, and COL X was remarkably up-regulated, and the matrix synthesis of sGAG and type II collagen was significantly enhanced [134]. In the rabbit osteochondral defect model, the icariin loaded biomaterials promoting the restoration of supercritical-sized osteochondral defects, as shown by the gross morphology examination and histological analysis, such as hematoxylin and eosin (H&E) and toluidine blue (TB) stained [134, 135]. Besides, icariin has the potential to promote stable chondrogenic differentiation of BMSCs without hypertrophy, and this would further accelerate the process of chondrogenesis [136]. Except upregulating the expression of SOX9, AGG, COLII and COLI in rabbit chondrocyte and BMSCs [137], Yu et al.
found that in the resveratrol–PLA–gelatin porous nano-scaffold, the expression levels of SIRT1, AKT and type II collagen proteins was increased significantly, while the expression levels of PI3K/AKT signaling pathway-related proteins, including VEGF, PTEN, Caspase9 and MMP13, was decreased significantly compared to the PLA–gelatin nano-scaffold without resveratrol, which was detected by the immunohistochemical staining. According to the H&E, Masson, Gomori, and Picrosirius red staining, the regenerated cartilage was the thickest, and more chondrocytes were observed with distribution and moderate morphology compared to the negative control groups [138]. The expression of cartilage-specific gene expression, such as COLII, SOX9 and ACAN was detected by Real-time PCR assay, which showed similar trends as biochemical analysis that the epigallocatechin-loaded hyaluronic acid would promote chondrogenesis. COLI and COLX, which are absent in healthy articular cartilage, was also examined and showed lower expression levels of these markers in epigallocatechin-loaded hyaluronic acid group [139].

Angiogenesis

Bone is a highly vascularized structure. The formation of blood vessel can stimulate and maintain bone cells activity, deliver nutrients and oxygen, and remove metabolites [141]. Notable, a subtype of blood vessel, type H vessels, was provided to be associated with bone formation [142]. TCM would mainly upregulate the expression of angiogenic-related genes, such as VEGF, ANG1, HIF-1α and CD31, to stimulate vascularization [143]. Liu et al. constructed an osteoporosis model in rats, and the osteogenic and angiogenic differentiation of bone mesenchymal stem cells (BMSCs) treated with icariin was evaluated. Real-time PCR analysis indicated that, similar to the expression of osteogenic genes, the expression of vascular endothelial growth factor (VEGF) and angiopoietin 1 (ANG1) mRNA was promoted by icariin, especially at 20 µM. CPC could act as a suitable icariin delivery system for repairing bone defects, and after implanted into nude mice, the extent of blood vessel growth in the icariin-loaded CPC groups was markedly greater than that in the CPC group. Besides, the systemic administration of icariin has an anti-osteoporotic effect that promotes bone defect repair [143]. Icariin could also induce the osteogenic differentiation in rat ASCs and stimulate the expression of VEGF, which would further promote the process of bone formation, as shown by SEM, micro-CT imaging, H&E and immunohistochemical staining [144]. A phytomolecule icaritin was regarded as a novel osteogenic exogenous growth factor, and a bioactive composite scaffold PLGA/TCP/icaritin was developed. The PLGA/TCP/icarin scaffold was implanted into the bone defect model, and the results of histological staining indicated favorable biocompatibility, rapid bioresorption and more new vessel growth in PLGA/TCP/icarin scaffolds in contrast to PLGA/TCP scaffolds [145]. Chung BH et al. constructed a similar complex scaffold, and PLGA/TCP/rBMSC, 1 µM; SAON rabbit both distal and proximal femur defect model MEK/ERK and PI3K/Akt/eNOS-dependent signal pathways [146, 147]. In the rabbit ulnar segmental bone defect model, the blood perfusion within defect sites was detected by dynamic MRI at weeks 2 and 4 post-surgery, which verified the PLGA/TCP/icaritin scaffolds induced significant blood vessel ingrowth into the pores of the implanted scaffold in the early stages of bone regeneration compared with that of the control scaffold [148]. Hydroxy-safflower yellow A was loaded into BG

Active components	Biomaterials	Experimental model	Efficacy	References
Icariin	CPC	rBMSC, 20 µM; OVX rat calvarial defect model	Up-regulating VEGF and ANG1	[143]
	SMC-PHBHhx scaffold	BMSC, 10^{-6} mol/L; rat calvarial defects model	Up-regulating VEGF, and FGF	[20]
	455S Bioglass	rADSC, 10^{-7} mol/L; rat calvarial defects model	Up-regulating VEGF	[144]
Icaritin	PLGA/TCP	BMSC, BMC 0.052: 100 (powder weight to solution volume); rat calvarial defect model	Up-regulating OCN	[145]
	PLGA/TCP	Rabbit ulnar segmental bone defect	N/A	[148]
Hydroxy safflower yellow A	BG	rBMSCs, HUVECs; rat calvarial defects model	Up-regulating HIF-1α	[96]
Silibinin	Zn	C3H10T1/2, MG-63; 60 µM; 3, 7 d	Up-regulating VEGF and ANG1	[120]
Resveratrol	PEGDA/TCS Hydrogel	rBMSCs, HUVECs, 800 µM; rat tibia defect model	Up-regulating CD31	[84]
	PLGA microsphere	hMSCs, hTHP-1 monocytes, 25 µM	Up-regulating VEGF	[108]
scaffolds by coating chitosan/sodium alginate film, and the expression levels of HIF-1α were more pronounced in a dose-dependent manner after 10 days induction in Hydroxy-safflower yellow A loaded groups, as shown by Western blot assay. Hydroxy-safflower yellow A contribute to osteogenesis and angiogenesis definitely, as well as the promotion of repair function and both in vivo and in vitro, the results of high-concentration of Hydroxy-safflower yellow A groups showed the best performance [96]. In the large tibial defect, resveratrol combined with ANG2 could promote new bone formation, and enhance density and size of new blood vessels by increasing autophagy to decrease ANG2 and hypoxia-induced apoptosis, maintaining the growth and proliferation in the endothelial cells, and upregulating the expression of CD31 in the bone defect area [84].

Osteoclastogenesis

The proper balance of osteoblasts and osteoclasts are essential in the maintenance of bone homeostasis [149]. Of these, osteoclasts, derived from haematopoietic lineage, are multinucleated cells involved in bone resorption. Macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear kappa B ligand (RANKL) is crucial for proliferation and differentiation of osteoclasts, respectively [149]. In the early stage of bone remodeling, osteoclast can remove the dying osteocytes and osteoblasts [150]. This can accelerate the process of bone remodeling. However, the dysregulating between osteoblast and osteoclast would lead to osteoporosis or heterotopic ossification [149]. Icariin and icaritin loaded biomaterials would downregulate the ratio of RANKL/OPG in BMSC and osteoclast, thus promoting osteogenesis by inhibiting osteoclastogenesis [143, 145]. After 7 days of cell culture, osteoclastic markers were evaluated, and quercitrin implant surfaces significantly decreased the expression of osteoclast related genes, including Trap, CalcR, Ctsk, H⁺ATPase, Mmp9 compared to controls. Besides, the functional osteoclastic markers Ctsk, H⁺ATPase and Mmp9 was significantly lower for quercitrin implant surfaces as well as the expression of Rankl in vivo [151]. Ursolic acid induced dose-dependent attenuation of titanium (Ti) particle-induced mouse calvarial bone loss, and decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, which attribute to inhibited the expression of NFATc1 in mRNA and protein level, primarily via the suppression of nuclear factor-kb (NF-kb) signaling, and partly through the suppression of c-Jun N-terminal kinase (JNK) signaling [152]. These results have been shown in Table 6.

Adipogenesis

Numerous studies have indicated a reciprocal relationship between osteoblastogenesis and adipogenesis, and adipogenesis-induction factors would inhibit osteoblastogenesis [153]. However, adipose-derived stem cells (ADSCs), similar to BMSCs, is an immune-privileged cell type with low immunogenicity, and can also differentiate into osteogenic and chondrogenic lineages [154, 155]. The using of icaritin loaded PLGA/TCP scaffold would prevent femoral head collapse in a bipedal SAON model, and this might partly attribute to the inhibiting adipogenic effect of icaritin. In SAON, the expression of adipogenic differentiation regulatory genes C/EBP-β, PPAR-γ and aP2group was control group by 15, 10 and 8 times. After treated with icaritin, the C/EBP, PPAR-γ and aP2 expression was reduced by 72%, 67% and 73%. Of these, C/EBP was required for the downstream proteins involved in adipogenesis, PPAR-γ was the key transcription factor in adipocyte differentiation, and aP2 was regarded as a terminal differentiation marker [156]. Icaritin loaded PLGA/TCP also demonstrated the down-regulating effect of PPAR-γ in rat calvarial defect model [145]. Cell-infiltratable and injectable gelatin hydrogels would be likely capable of mediating sustained delivery of icaritin to maintain a high-concentration in the

Active components	Biomaterials	Experimental model	Efficacy	References
Icariin	CPC	rBMSC, 20 µM; OVX rat calvarial defect model	Down-regulating RANKL	[143]
Icaritin	PLGA/TCP	BMSC, BMC 0.052: 100 (powder weight to solution volume); rat calvarial defect model	Down-regulating RANKL/OPG	[145]
Quercetin	Ti	RAW264.7, 1 mM; rabbit tibia model	Down-regulating Trap, CalcR, Ctsk, H⁺ATPase, MMP-9 and RANKL	[151]
Ursolic acid	Ti particle	RAW264.7, BMMs, 5 µM; mouse calvarial bone defect model	Down-regulating NFATc1, NF-κb and JNK signaling	[152]
Epigallocatechin	Ti-6Al-4-V	hADSCs, Raw264.7, 0.1, 0.5, 1 mg/ml; rabbit tibia defect model	Down-regulating TRAP, CTSK, and RAW264.7 number	[112]
PLLA	ADSCs, Raw 264.7, 1 mg/ml; mouse calvarial defect	Down-regulating RAW264.7 number	[113]	
long term, and the releasing of icaritin would inhibit the expression of adipogenic markers CEBPα and PPARγ after 7 and 14 days of culture, as shown by Real-time PCR and immunohistochemical staining [157]. The curcumin-loaded silk hydrogel exhibits an interconnected porous structure, and the results of adipogenic markers including PPAR-γ, LPL, FABp4, and Glut4, and the oil red O staining shows that film-associated curcumin accelerates hBMSC adipogenesis when the concentration of curcumin was more than 0.25 mg/mL, while adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 µM [158]. Madhurakkat et al. found that Epigallocatechin gallate coating on nanofibers can serve as an anti-adipogenic platform by preventing differentiation of ADSCs into adipocytes via inhibiting the expression of LPL and PPAR-γ (Table 7) [113].

Others
Traditional Chinese medicines exhibit many biological activities, including anti-bacterial, anti-apoptotic, anti-inflammatory and antioxidant effects [159], and these could also contribute to the process of bone formation. Zinc silibinin complex exhibited antibacterial activity in a concentration-dependent manner. There was no significant change in bacterial growth with 1 g/mL of concentration whereas 10 g/mL concentration of Zn-silibinin complexes showed significant against E. coli (Gram-negative) and S. aureus (Gram-positive) strains compared to control, which would minimize the risk of bacterial infection post implantation and accelerate the augment of bone regeneration [120]. The berberine loaded negatively charged O-carboxymethyl chitosan microspheres possessed an ability to reduce the rate of infection caused by S. aureus, which can be ascribed to the burst release and diffuse of the berberine [38]. Except process the capacity of promoting osteogenesis, which was verified by the expression level of ALP and OCN, quercitrin-functionalized porous Ti-6Al-4 V implants also presented a great potential in decreasing bacterial adhesion and viability, which could decrease bacterial adhesion by 75% and produce a bactericidal effect [160]. For anti-apoptotic properties, the hBMSCs were co-cultured with ginsenoside Rg1-loaded alginate-chitosan microspheres groups. Ginsenoside Rg1 promotes hBMSC proliferation, accelerates differentiation into Nestin-, NSE- and GFAP-positive cells, and attenuates apoptosis through upregulating anti-apoptotic protein Bcl-2 and inhibiting pro-apoptotic protein Bax compare to the control groups [161]. Resveratrol–PLA–gelatin porous nano-scaffold has been shown to contribute to protect cartilage tissue. This can be attribute to the upregulating of SIRT1, which would delay the MMP13-induced decomposition of cartilage matrix, such as glycogen and II collagen, thus, the life of chondrocytes was prolonged [138].

In the bone defect model, the using of TCM, such as epigallocatechin gallate, resveratrol, ginsenoside Rb1 and baicalin, mainly attenuated the inflammation level by stimulating the expression of anti-inflammatory cytokine IL-10, and inhibiting the pro-inflammatory cytokines TNF-α, IL-1β, IL-6 [62, 108, 112, 114, 139, 162]. Resveratrol was incorporated into atelocollagen hydrogels to fabricate anti-inflammatory cell-free scaffolds, and then, the scaffolds were transplanted into the rabbit osteochondral defects. After implantation for 2, 4 and 6 weeks, the inflammatory related genes IL-1β, MMP-13, and COX-2 were remarkable decreased compared with the untreated defects, as shown by Real-time PCR. After 12 weeks, the osteochondral defects were completely repaired in scaffold groups, which was detected by immunohistochemical and glycosaminoglycan staining [137]. Tetrandrine loaded PLLA films possess sustained releasing behavior. The degree of inflammatory reaction for the implant with the tetrandrine loaded PLLA films was

Active components	Biomaterials	Experimental model	Efficacy	References
Icaritin	PLGA/TCP	Rabbit BMSC, 3T3-L1, 10−6 M; SAON emu proximal femur defect model	Down-regulating C/EBP, aP2, PPAR-γ and lipid droplet	[156]
	PLGA/TCP	BMSC, BMC 0.052: 100 (powder weight to solution volume); rat calvarial defect model	Down-regulating PPAR-γ2	[145]
	Gel hydrogels	hMSC, 100, 200 nM; SAON rat femoral head defect	Down-regulating PPAR-γ and c-Src	[157]
Curcumin	Silk hydrogel	hBMSC; 12.5 µM	Down-regulating PPAR-γ, LPL, FABp4 and Glut4	[158]
Epigallocatechin gallate	PLLA	ADSCs, Raw 264.7, 1 mg/mL; mouse calvarial defect	Down-regulating LPL and PPAR-γ	[113]
more moderate than control PLLA films in 4, 12 weeks after operation, due to tetrandrine maintained lower levels of inflammatory factors, such as NO, TNF-α, IL-6, iNOS, COX-2, which suggesting that tetrandrine could regulate the mRNA and protein expression to reduce the inflammatory response in macrophages, and accelerate tissue regeneration [163]. Huang AQ et al. combined the well-known antioxidant epigallocatechin gallate into gelatin sponges, and then, the implanted complex would decrease intracellular ROS levels in macrophage cell lines, as shown by anti-4-hydroxynonenal staining, thereby partially inhibiting the expression of MMPs, and promote bone formation (Table 8) [85].

Mechanism	Active components	Biomaterials	Experimental models	Efficacy	References
Anti-bacterial properties	Silibinin	Zn	C3H10T1/2, MG-63, 60 µM	E. coli (Gram-negative) and S. aureus (Gram-positive) strains	[120]
Anti-bacterial properties	Berberine	Negatively charged O-carboxymethyl chitosan microspheres	MG-63, rBMSCs; rabbit lateral femoral condyle model	S. aureus	[90]
Anti-bacterial properties	Quercetin	Ti-6Al-4 V	MC3T3-E1	S. epidermidis	[160]
Anti-apoptotic properties	Ginsenoside Rg1	Alginate-CS microspheres	hBMSC, 2 g	Up-regulating Nestin, NSE, GFAP and Bcl-2 and down-regulating Bax	[161]
Anti-inflammatory properties	Resveratrol	PLA–Gel porous nano-scaffold	Rat articular cartilage defect model	Up-regulating SIRT1	[138]
Anti-inflammatory and anti-apoptotic properties	Baicalin	TPGS polymeric micelles	Rat gingival fibroblasts, 20 mg/mL; rat periodontal disease model	Down-regulating TNF-α, IL-1β, and the number of inflammatory cells	[162]
Anti-inflammatory properties	Tetrandrine	PLLA	RAW 264.7, 20 mg; rat model	Down-regulating NO, TNF-α, IL-6, iNOS, and COX-2	[163]
Anti-inflammatory properties	Ginsenoside Rb1	MSCS/PCL	hDPSCs, 5% v/v; rabbit femoral defect model	Up-regulating IL-1RA and down-regulating IL-1β	[62]
Anti-inflammatory properties	Resveratrol	COL/PAA	Chondrocytes, BMSCs, 0.5%; rabbit osteochondral defects model	Down-regulating IL-1β and MMP-13 and COX-2	[137]
Anti-inflammatory properties	Resveratrol	PLGA microsphere	hMSCs, hTHP-1 monocytes, 25 µM	Up-regulating IL-10 and down-regulating TNF-α and IL-6	[108]
Anti-inflammatory properties	Epigallocatechin gallate	Ti-6Al-4 V	hADSCs, Raw264.7, 0.1, 0.5, 1 mg/mL; rabbit tibias defect model	Up-regulating IL-10 and down-regulating TNF-α and IL-6	[112]
Anti-inflammatory properties	Epigallocatechin gallate	Hyaluronic acid	Chondrocytes, 50 µM; mouse osteoarthritis model	Down-regulating IL-1β and TNF-α	[139]
Anti-oxidant and anti-inflammatory properties	Epigallocatechin gallate	POSS	MC3T3-E1, 6 wt%	Down-regulating IL-6	[114]
Anti-oxidant and anti-inflammatory properties	Epigallocatechin gallate	Gel sponges	UMR106, 0.07 mg; rat calvarial defects model	Down-regulating 4-HNE	[85]
Anti-oxidant properties	Resveratrol	PLA/OMMT	HASCs, 0.1 wt%	N/A	[110]
Anti-oxidant properties	Quercetin	CS/COL hydrogel	hPDLS; 100 µM	N/A	[164]
Anti-oxidant properties	Epigallocatechin gallate	PLLA	ADSCs, Raw 264.7, 1 mg/mL; mouse calvarial defect	N/A	[113]

Limitations, prospects, and conclusions

Although the efficacy of TCM in the treatment of bone regeneration and remodeling has been widely studied, the field is still in its infancy. First, the reliability of TCM is suspected. TCM is a unique Chinese health care system, covering a broad range of medical theories and practices. It has been used for maintaining health and disease treatment over 2000 years. In modern medicine, the use of western medicine has clear indications and contraindications, while TCM is usually applied based on experience. TCM has not be tested by modern scientific research methods, such as cohort studies, randomized controlled studies, and experimental studies. Thus, the
salvia miltiorrhiza pharmacological properties, not only mainly applied to enhance blood circulation and for cardiovascular disease treatment by inhibiting RANKL-induced ROS via the (Turcz.) Baill, is a promising medicine for osteoporosis.

catechu plant- and animal-derived, have not been thoroughly phytochemicals, while the proteins and peptides, both different from the control group [178].

was formed on the surface, which was not significantly -coated Ti sample, little apatite Salvia miltiorrhiza genesis via upregulation of the expression of VEGF [177].

because of its diovascular disease treatment [176, 177]. Because of its belongs to the via miltiorrhiza verified, as they may not play the same role in BTE. Sal -

efficiency of TCM in bone regeneration must be further promoting osteoblast development [175]. However, the by activating and translocating of β-catenin nuclei, thus promoting the process of bone remodeling and regenera -

tion. Schisandrin A, isolated from Schisandra chinensis (Turcz.) Baill, is a promising medicine for osteoporosis treatment by inhibiting RANKL-induced ROS via the overexpression of nuclear factor erythroid 2-related factor 2 (Nrf2), suppressing the differentiation of osteoclasts [173]. Gastrodin, extracted from Gastrodia elata Blume, could reduce IL-1β-induced apoptosis in chondrocytes and attenuate the release of inflammatory mediators IL-6 and TNF-α, thus ameliorating rat cartilage degeneration [174]. Morin, a flavonoid derived from old fustic and osage orange trees, stimulates the Wnt pathway by activating and translocating of β-catenin nuclei, thus promoting osteoblast development [175]. However, the efficiency of TCM in bone regeneration must be further verified, as they may not play the same role in BTE. Salvia miltiorrhiza belongs to the Lamiaceae family and is mainly applied to enhance blood circulation and for cardiovascular disease treatment [176, 177]. Because of its pharmacological properties, Salvia miltiorrhiza not only promotes bone formation by regulating ALP, OCN, OPG, and RANKL expression, but also by stimulating angiogenesis via upregulation of the expression of VEGF [177]. In the Salvia miltiorrhiza-coated Ti sample, little apatite was formed on the surface, which was not significantly different from the control group [178].

Third, most research was conducted on plant-derived phytochemicals, while the proteins and peptides, both plant- and animal-derived, have not been thoroughly researched due to large quality difference from batch to batch. Although the development of recombinant technology can solve this problem to a certain extent, few proteins and peptides have been investigated [179]. Ling Zhi-8, purified from Ganoderma lucidum, is an immunomodulatory protein consisting of 110 amino acid residues. Ling Zhi-8 is a promising anti-osteoporosis drug for both preventive and therapeutic effects, which can regulate RANK/ RANKL/OPG signaling and inhibit the level of c-Fos and NFATc1, two key target genes of the osteoclast [180, 181]. In a standardized nasal bone defect, the polyurethane (PU)-based material was filled, and a higher bone volume was observed in the Ling Zhi-8-treated sample, although it was not as strong as BMP-2-treated sample [182]. Thus, the protein and peptide related research is promising. Not only proteins, but generally animal-derived TCMs were largely neglected due to slow and expensive research procedures, unstandardized material bases, and unclear active components [12]. Some of the animal-derived TCMs have been applied in BTE, such as Colla Cornus Cervi and Colla Plastri Testudinis. Further, other animal-derived TCMs may also have potential in bone regeneration. Kangfuxin, extracted from Periplaneta americana, has been verified in the mechanism against osteoporosis, as it accelerates bone formation through stimulating osteoblasts and HUVECs activities, while decreasing bone absorption by inhibiting osteoclast activities [183]. The kangfuxin-coated alginate/carboxymethyl CS sponge exhibits excellent antibacterial, cytocompatibility, and rapid hemostasis effects, and stimulates wound healing [1]. Furthermore, there are even fewer studies on mineral-derived TCM in bone regeneration. Therefore, TCMs that we investigated are only the tip of the iceberg, and which of them may become the “artemisinin” in bone tissue engineering is subject to further research.

With the modernization of TCM and the development of analytical and detection techniques, TCM has gradually transformed from an experience-based to an evidence-based medicinal system. The combination of TCM with “-omics”, such as metabolomics [184], microbiome [185], proteomics [186], and herbgenomics [187], can elucidate the mechanism and molecular targets of TCM, and further promote the development of TCM in the direction of precision medicine. In summary, TCM is a promising therapeutic method both in bone regeneration and BTE. This review provides a reference for the research of TCM for the application in BTE.

Acknowledgements
Z.-R. Gao and Y.-Z. Feng contributed equally to this manuscript. This study was supported by the National Natural Science Foundation of China [Grants 81773339 and 81800788], the Science and Technology Department of Hunan Province, China [Grants 2017WK041 and 2018SK52511], the fund for Xiangya Clinical Medicine Database of Central South University [Grant 2014-ZDYZ-1-16], and the Open Sharing Fund for the Large-scale Instruments and Equipment of Central South University.
Authors’ contributions
YG and YZF: Conceptualization, Supervision, Funding acquisition, ZRG, YQZ and JZ: Writing—Original Draft; ZRG and YG: Writing—Review & Editing; YHZ, QY and YC: Software, LT, SHZ, MAD: Supervision; YF, JH and ZYOT: Methodology. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author details
1 Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha 410011, Hunan, China.
2 Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Received: 25 March 2022 Accepted: 30 June 2022
Published online: 20 July 2022

References
1. He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, et al. A biodegradable antibacterial alginolate/carboxymethyl chitosan/ Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol. 2021;167:188–92.
2. Luo Y, Wang CZ, Hesse-Fong J, Lin JG, Yuan CS. Application of Chinese medicine in acute and critical medical conditions. Am J Chin Med. 2019;47(6):1223–33.
3. Li H. Advances in anti hepatic fibrotic therapy with traditional Chinese medicine herbal formula. J Ethnopharmacol. 2020;251:112442.
4. Hao P, Jiang F, Cheng J, Ma L, Zhang Y, Zhao Y. Traditional Chinese medicine for cardiovascular disease: evidence and potential mechanisms. J Am Coll Cardiol. 2017;69(24):2952–66.
5. Xue T. Synergy in traditional Chinese medicine. Lancet Oncol. 2016;17(2):e39.
6. Wu TR, Lin CS, Chang CJ, Lin TL, Martel J, Ko YF, Ojcius DM, Lu CC, Young JD, Lai HC. Gut commensal Parabacteroides goldsteinii plays a predomi-
nant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 2019(68):248–62.
7. Tu Y. Artemisinin—a gift from traditional Chinese medicine to the world (Nobel Lecture). Angew Chem Int Ed Engl. 2016;55(35):10210–26.
8. Sanz MA, Fenaux P, Tallman MS, Estey EH, Lowenberg B, Naeve T, Lengfelder E, Dohner H, Burnett AK, Chen SJ, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133(15):1630–43.
9. Lee KH, Morris-Natschke S, Qian K, Dong Y, Yang X, Zhou T, Belding E, Wu SF, Wada K, Akiyama T. Recent progress of research on herbal products used in traditional Chinese medicine: the herbs belonging to the divine Husbandman’s Herbal Foundation Canon (Shen Nong Ben Cao Jing). J Tradit Complement Med. 2012;2(1):6–26.
10. Chan K. Progress in traditional Chinese medicine. Trends Pharmacol Sci. 1995;16(6):182–7.
11. Yang H, Shen Y, Xu Y, Maqueda AS, Zheng J, Wu Q, Tam JP. A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography, in tandem with orbitrap mass spectrum detection. Int J Nanomed. 2015;10:4947–55.
12. Tang XM, Guo JL, Chen L, Ho PC. Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: a review. J Pharm Biomed Anal. 2020;191:113609.
13. Li JP, Liu Y, Guo JM, Shang EX, Zhu ZH, Zhu KY, Tang YP, Zhao BC, Tang ZS, Duan JA. A comprehensive strategy to evaluate compatible stability of Chinese medicine injection and infusion solutions based on chemical analysis and bioactivity assay. Front Pharmacol. 2017;8:833.
14. Ferron M, Boudiffa M, Arsenault M, Rached M, Pata M, Giroux S, Elfasshi L, Kisseleva M, Majerus PW, Rousseau F, et al. Inositol polyphosphate 4-phosphatase B as a regulator of bone mass in mice and humans. Cell Metab. 2011;14(4):466–77.
15. Majedina M, Sadeghpour A, Yousif B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233(4):2937–48.
16. Preethi Sondarya S, Narita Menon A, Vij Chandran S, Selvarumugan N. Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol. 2018;119:228–39.
17. McNeill EP, Zeitouni S, Pan S, Haskell A, Cesarek M, Tahan D, Clough BH, Krause U, Dobson LX, Garcia M, et al. Characterization of a pluripotent stem cell‑derived matrix with powerful osteoregenerative capabilities. Nat Commun. 2020;11(1):3025.
18. Wang W, Yeung KKW. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47.
19. BaoLin G, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. 2014;57(4):490–500.
20. Liu T, Zhang X, Luo Y, Huang Y, Wu G. Slowly delivered icariin/allergeneic bone marrow‑derived mesenchymal stem cells to promote the healing of calvarial critical‑size bone defects. Stem Cells Int. 2016;2016:1416047.
21. Laird NZ, Acni TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: current progress and future direc-
tions. Adv Drug Deliv Rev. 2021;174:613–27.
22. O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic—a overview. Tissue Eng Part B Rev. 2011;17(6):389–92.
23. Wang C, Xie J, Xiao X, Chen S, Wang Y. Development of nontoxic biode-
gradable polyurethanes based on polyhydroxalkanoate and L-lysine disocyanate with improved mechanical properties as new elastomers. Polymers (Basel). 2019;11(2):1927.
24. Xia Y, Sun J, Zhao L, Zhang F, Liang XL, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano‑scaffolds with stem cells to enhance bone regeneration. Biomaterials. 2018;183:151–70.
25. Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y; He; Chen R, Ye X. Recent advances of chitosan‑based injectable hydrogels for bone and dental tissue regeneration. Front Bioeng Biotechnol. 2020;8:587658.
26. Kundu B, Rajkhova R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457–70.
27. Ung CY, Li H, Kong CY, Wang JF, Chen YZ. Usefulness of traditionally defined herbal properties for distinguishing prescriptions of traditional Chinese medicine from non‑prescription recipes. J Ethnopharmacol. 2007;109(1):21–8.
28. Shi MM, Piao JH, Xu XL, Zhu L, Yang L, Lin FL, Chen J, Jiang JG. Chinese medicines with sedative-hypnotic effects and their active components. Sleep Med Rev. 2016;29:108–18.
29. Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytocon-
stituents for renal fibrosis. Adv Drug Deliv Rev. 2021;177:113911.
30. Lu Q, Jiang JG. Chemical metabolism of medicinal compounds from natural botanicals. Curr Med Chem. 2012;19(11):1682–705.
31. Shao H, Shen J, Wang M, Cui J, Wang Y, Zhu S, Zhang W, Yang H, Xu Y, Geng D. Icariin protects against titanium particle‑induced osteolysis and inflammatory response in a mouse calvarial model. Biomaterials. 2015;6092–9.
32. Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int. 2018;29(3):535–44.
33. Gao L, Zhang SQ. Antiestrogenic effects, pharmacokinetics, and drug delivery systems of icaritin: advances and prospects. Pharmaceuticals (Basel, Switzerland). 2022;15(4):397.
34. Jiang Z, Li T, Ma L, Chen W, Yu H, Abdul Q, Hou J, Tian B. Comparison of interaction between three similar chalconoids and alpha‑lactalbumin: impact on structure and functionality of alpha‑lactalbumin. Food Res Int. 2020;131:109006.
35. Santos CMM, Silva AMS. The antioxidant activity of prenylflavonoids. Molecules. 2020;25(3):696.
37. Zhou D, Qiu Z, Wang H, Su Y, Wang Y, Zhang W, Wang Z, Xu Q. The effect of hydroxy safflower yellow A on coronary heart disease through Bcl-2/Bax and PPAR-gamma. Exp Ther Med. 2018;15(1):520–6.
38. Xi SY, Zhang Q, Liu C, Xie H, Yue LF, Gao XM. Effects of hydroxy safflower yellow A on tumor capillary angiogenesis in transplanted human gastric adenocarcinoma BGC-823 tumor nodules in nude mice. J Tradit Chin Med. 2012;32(2):243–8.
39. Suh KS, Rhee SY, Kim YS, Lee YS, Choi EM. Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells. Food Chem Toxicol. 2013;62:99–106.
40. Jeong HM, Han EH, Jin YH, Choi YH, Lee KY, Jeong HG. Xanthohumol from the hop plant stimulates osteoblast differentiation through RUNX2 activation. Biochem Biophys Res Commun. 2011;409(1):82–9.
41. Xuan NT, Shumilina E, Gulbins E, Gu S, Gotz F, Lang F. Triggering of dendritic cell apoptosis by xanthohumol. Mol Nutr Food Res. 2010;54(Suppl 2):214–24.
42. Bai L, Li X, He L, Zheng Y, Lu H, Li J, Zhong L, Tong R, Jiang Z, Shi J, et al. Antidiabetic potential of flavonoids from traditional Chinese medicine: a review. Am J Chin Med. 2019;47(5):933–57.
43. Wang YS, Shen CY, Jiang JG. Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery. Pharmazol Res. 2019;150:104520.
44. Huang YF, Bai C, He F, Cie Y, Zhou H. Review on the potential action mechanisms of Chinese medicines in treating coronavirus disease 2019 (COVID-19). Pharmazol Res. 2020;158:104939.
45. Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Qin LP, Xin XY, Ma SP. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflamm. 2019;16(1):95.
46. Tuoli HS, Aggarwal AR, Kaur J, Aggarwal D, Parashar G, Parashar NC, Tuorkey M, Kaur G, Savla R, Sak K, et al. Bacoside-a metabolite with promising antineoplastic activity. Life Sci. 2020;259:118183.
47. Bhatti S, Rani N, Krishnamurthy B, Arya DS. Prediclinical evidence for the pharmacological actions of naringin: a review. Planta Med. 2014;80(6):437–51.
48. Zhao ZH, Ma XL, Zhao B, Tian P, Kang JY, Zhao Y, Guo Y, Sun L. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Proli. 2021;54(7):e13043.
49. Ahmed S, Khan H, Aschner M, Hasan MM, Hassan STS. Therapeutic potential of naringin in neurological disorders. Cell Prolif. 2021;54(7):e13043.
50. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167.
51. Zheng Y, Wu Y, Ji X, Xu S, Liu H, Xie Y. The effect of quercetin on the osteogenic differentiation and angiogenic factor expression of bone marrow-derived mesenchymal stem cells. PLoS ONE. 2015;10(6):e0129605.
52. Niu H, Sanabria-Cabrera J, Alvarez-Alvarez J, Robles-Diaz M, Stankievicz S, Aiithal GP, Bjorndal SS, Andrade RJ, Lucena MI. Prevention and management of idiosyncratic drug-induced liver injury: systematic review and meta-analysis of randomised clinical trials. Pharmazol Res. 2021;164:105404.
53. Soleiman V, Delghandi PS, Moallem SA, Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: an updated review. Phytother Res. 2019;33(6):1627–38.
54. Xiaoyan A, Jun Y, Min W,Hayuye Z, Li C, Kangde Y, Fanglian Y. Preparation of chitosan-gelatin scaffold containing tetrandrine-loaded nano-aggregates and its controlled release behavior. Int J Pharm. 2008;350(1–2):257–64.
55. Bhagya N, Chandrashekar KR. Tetrandrine—a molecule of wide bioactivity. Phytochemistry. 2016;125:5–13.
56. MA L, Yu Y, Liu H, Sun W, Lin Z, Liu C, Miao L. Berberine-releasing electroporus scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep. 2021;11(1):1027.
57. Xin BC, Wu QS, Jin S, Luo AH, Sun DG, Wang F. Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathol Oncol Res. 2020;26(3):1677–85.
58. Cui Y, Xie J, Fu Y, Li C, Zheng L, Huang D, Zhou C, Sun J, Zhou X. Berberine mediates root remodeling in an immature tooth with apical periodontitis by regulating stem cells from apical papilla differentiation. Int J Oral Sci. 2020;12(1):18.
59. Chen J, Zhang X, Liu X, Zhang C, Shang W, Xue J, Chen R, Xing Y, Song D, Xu R. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmazol. 2019;856:172418.
60. Chen CY, Shie MY, Lee AK, CHOU YT, CHiang C, Lin CP. 3D-printed ginsenoside Rb1-loaded mesoporous calcium sulfate/calcium sulfate scaffolds for inflammation inhibition and bone regeneration. Biomedicines. 2021;9(8):907.
97. Tsuchiya S, Sugimoto K, Kamio H, Okabe K, Kuroda K, Okido M, Hibi Y. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration. Oncotarget. 2017;8(13):21031–4.

98. Vimalraj S, Saravanavan S, Haripragru B, Yuvashree R, Ajijeth Kannan SK, Sujoy K, Anjali D. Kaempferol-zinc(II) complex synthesis and evaluation of bone formation using zebrafish model. Life Sci. 2020;256:117993.

99. Yang X, Almassi HHS, Zhang Q, Ma Y, Zhang D, Chen M, Wu X. Electrospayed naringin-loaded microsphere/SAI hybrid depositions enhance bone formation in a mouse calvarial defect model. Drug Deliv. 2019;26(1):137–46.

100. Li CH, Wang JW, Ho MH, Shih JH, Hsiao SW, Thien DV. Immobilization of naringin onto chitosan substrates by using ozone activation. Colloids Surf B Biointerfaces. 2014;115:1–7.

101. Song J, Tian J, Kook YJ, Thangavelu M, Choi JH, Khang G. A BMSCs-laden quercetin/duck’s feet collagen/hydroxyapatite sponge for enhanced bone regeneration. J Biomed Mater Res A. 2020;108(3):784–94.

102. Chen S, Zhu L, Wen W, Lu L, Zhou C, Luo B. Fabrication and evaluation of 3D printed poly(lyl-lactide) scaffold functionalized with quercetin-polypodalmine for bone tissue engineering. ACS Biomater Sci Eng. 2019;5(10):2506–16.

103. Cordoba A, Satue M, Gomez-Florit M, Hierro-Oliva M, Petzold C, Lyngstadaas SP, Gonzalez-Martin ML, Monjo M, Ramis JM. Flavonoid-modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Adv Healthc Mater. 2015;4(4):540–9.

104. Song J, Leon YS, Tian J, Kim WK, Choi MJ, Carlamcogno C, Khang G. Evaluation of silymarin/duck’s feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2019;97:347–55.

105. Khooob MM, Naddaf H, Hoveizi E, Mohammadi T. Silimarin effect on experimental bone defect repair in rat following implantation of the electrospun PLA/carbon nanotubes scaffold associated with Whatton’s jelly mesenchymal stem cells. J Biomed Mater Res A. 2020;108(9):1944–54.

106. Zhang Y, Wang T, Li J, Cui X, Jiang M, Zhang M, Wang X, Zhang W, Liu Z. Bilayer membrane composed of mineralized collagen and chitosan cast film coated with berberine-loaded PCL/PVP electrospun nanofiber promotes bone regeneration. Front Bioeng Biotechnol. 2021;9:643335.

107. Luo J, Zhu J, Wang L, Kang J, Wang X, Xiong J. Co-electrospun nano/microfibrous composite scaffolds with structural and chemical gradients for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;119:16122.

108. Rutledge KE, Cheng Q, Jabbarzadeh E. Modulation of inflammatory response and induction of bone formation based on combinatorial effects of resveratrol. J Nanomed Nanotechnol. 2016;7(1):350.

109. Wei B, Wang W, Liu X, Xu C, Wang X, Yang Z, Xu J, Guan J, Zhou P, Mao Y. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater. 2021;8(5):ebab044.

110. Karimi-Softouh R, Mohseni-Vadeghani E, Karkhanah A. Controlled release of resveratrol from a composite nanofibrous scaffold: effect of resveratrol on antioxidant activity and osteogenic differentiation. J Biomed Mater Res A. 2021;110:21–30.

111. Jain S, Krishna Mera SR, Chatterjee K. Curcumin eluting nanofibers augment osteogenesis toward physiochemical based bone tissue engineering. Biomed Mater. 2016;11(5):055007.

112. Lee S, Chang YY, Lee J, Madhurakkat Perikamana SK, Kim EM, Jung YH, Yun JH, Shin H. Surface engineering of titanium alloy using metal-polyphosphonate network coating with magnesium ions for improved osseointegration. Biomater Sci. 2020;8(12):3404–17.

113. Madhurakkat Perikamana SK, Lee SM, Lee J, Ahmad T, Lee MS, Yang HS, Shin H. Oxidative epigallocatechin gallate coating on polymeric substrates for bone tissue regeneration. Macromol Biol. 2019;1(19):e1803092.

114. Jeong HG, Han YS, Jung KH, Kim YJ. Poly(vinylidene fluoride) composite nanofibers containing polyhedral oligomeric silsesquioxane (POSS) epigallocatechin gallate conjugate for bone tissue regeneration. Nanomaterials (Basel). 2019;9(2):184.
hydroxyapatite composite sponges for enhanced bone tissue regeneration. J Biomater Sci Polym Ed. 2018;29(7–9):984–96.

116. Zhu B, Xu W, Liu J, Ding J, Chen X. Osteoinductive agents-incorporated three-dimensional biphase polymer scaffold for synergistic bone regeneration. ACS Biomater Sci Eng. 2019;5(2):986–95.

117. Li M, Zhang C, Zhong Y, Zhao J. A novel approach to utilize icariin as icarin-derived ECM on small intestinal submucosa scaffold for bone repair. Ann Biomed Eng. 2017;45(11):2673–82.

118. Ge YW, Lu JW, Sun ZY, Liu ZQ, Zhou J, Ke QF, Mao YQ, Guo YP, Zhu ZA. Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration. Nanomed Nanotechnol Biol Med. 2019;18:336–46.

119. Wang XH, Guo YW, Tolba E, Kokkinopoulou M, Wiens M, Schroder HC, Vimalraj S, Rajalakshmi S, Saravanan S, Raj Preeth D, R LAV, Shairam M, Wang G, Qiu J, Zheng L, Ren N, Li J, Liu H, Miao J. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng A. 2011;17(9–10):1341–9.

120. Wang G, Zhang L, Zhao H, Miao J, Sun C, Ren N, Wang J, Liu H, Tao X. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng A. 2011;17(10):1341–9.

121. Wang G, Qiu J, Zheng L, Ren N, Li J, Liu H, Miao J. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAP scaffold. J Biomater Sci Polym Ed. 2014;25(16):1813–27.

122. Lewandowska‑Lancucka J, Gilarska A, Bula A, Horak W, Latkiewicz A, Yang H, Liu WC, Liu X, Li Y, Lin C, Lin YM, Wang AN, Nguyen TT, Lin YC, Muller WEG. Two‑armed activation of bone mineral deposition by the presence of quercetin‑containing 3D‑printed mesoporous calcium silicate/chitosan hydroxyapatite composite sponges for enhanced bone tissue regen‑eration. J Biomater Sci Polym Ed. 2018;29(7–9):984–96.

123. Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, Klau‑munzer A, Schrevogel S, Woloszyk A, Schmidt-Blew K, et al. A biomater‑ial with a channel-like pore architecture induces endothelial healing of bone defects. Nat Commun. 2018;9(1):4430.

124. Wang J, Liu Y, He L, Wang Q, Wang L, Yuan T, Xiao Y, Fan Y, Zhang X. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomater. 2018;74:156–67.

125. Li D, Yuan T, Zhang X, Xiao Y, Wang R, Fan Y, Zhang X. Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthr Cartil. 2012;20(12):1647–56.

126. Wang Z, Li K, Sun H, Wang J, Fu Z, Liu M. Icariin promotes stable chondrogenic differentiation of bone marrow mesenchymal stem cells in selfassembling peptide nanofiber hydrogel scaffolds. Mol Med Rep. 2018;17(6):8237–43.

127. Wang W, Sun Z, Zhang P, Song J, Liu W. An anti-inflammatory cell-free collagen/seresratol scaffold for repairing osteochondral defects in rabbits. Acta Biomater. 2014;10(12):4983–95.

128. Yu F, Li M, Yuan Z, Rao F, Fang X, Jiang B, Wen Y, Zhang P. Mechanism research on a bioactive resveratrol-PLA-gelatin porous nano‑scaffold in promoting the repair of cartilage defect. Int J Nanomed. 2018;13:7845–58.

129. Cordoba A, Tomaszewski K, Niederwizidski L, Walocha J, Niederwizidski T. The role of vascularization in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291–302.

130. Kusumbe A, Ramsamy S, Adams R. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–8.

131. Wu Y, Cao L, Xia L, Wu Q, Wang J, Wang X, Xu L, Zhou Y, Xu Y, Jiang X. Evaluation of osteogenesis and angiogenesis of icarin in local controlled‑release and systemic delivery for calvarial defect in ovariecto‑mized rats. Sci Rep. 2017;7(1):5077.

132. Cordoba A, Manzanaro‑Moreno N, Colom C, Ronold HJ, Lyngstadaas SP, Monjo M, Ramis JM. Quercitrin nanocoated implant surfaces reduce titanium particle‑induced osteolysis are mediated primarily via suppression of NF‑kappaB signaling. Biochimie. 2015;111:107–18.

133. Chen BH, Kim JD, Kim CK, Kim HJ, Won MH, Lee HS, Dong MS, Ha KS, Kwon YG, Kim YM. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/enOS-dependent signal pathways in human endothelial cells. Biochem Biophys Res Commun. 2008;367(2):404–8.

134. Chen SH, Lei Y, Liu Y, Jin JF, Sun YX, Zheng LZ, Lai XY, Li L, Fu GH, Qin L, et al. Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icarin developed for calvarial defect repair in rat model. J Orthop Transl. 2020;24:112–20.

135. Wang XL, Xie XH, Zhang G, Chen SH, Yao D, He K, Wang XH, Yao XS, Leng Y, Fung KP, et al. Exogenous pyroforogenic molecule icarin incorporated into a porous scaffold for enhancing bone defect repair. J Orthop Res. 2013;31(1):164–72.

136. Chung BH, Kim JD, Kim CK, Kim HJ, Won MH, Lee HS, Dong MS, Ha KS, Kwon YG, Kim YM. Icariin stimulates angiogenesis by activating the MEK/ERK- and P38MAPK/ERK- dependent signal pathways in human endothelial cells. Biochem Biophys Res Commun. 2008;367(2):404–8.

137. Shi GS, Li YY, Luo YP, Jin JF, Sun YX, Zheng LZ, Lai XY, Li L, Fu GH, Qin L, et al. Bioactive PLGA/tricalcium phosphate scaffolds incorporating pyrrole molecule icarin developed for calvarial defect repair in rat model. J Orthop Transl. 2020;24:112–20.

138. Cordoba A, Manzanaro‑Moreno N, Colom C, Ronoal HL, Lynstadaas SP, Monjo M, Ramis JM. Quercitrin nanoaddressed implant surfaces reduce osteoclast activity in vitro and in vivo. Int J Mol Sci. 2018;19(11):3319.

139. Jiang C, Xiao F, Gu X, Zhai Z, Liu X, Wang W, Tang T, Wang Y, Zou H, Dai K, et al. Inhibitory effects of ursolic acid on osteoclastogenesis and titanium‑particle-induced osteolysis are mediated primarily via suppression of NF‑kappaB signalling. Biochimie. 2015;111:107–18.
153. Sugimoto A, Miyazaki A, Kawai-Mabuyashi K, Shono M, Akazawa Y, Hasegawa T, Ueda-Yamaguchi K, Kimura T, Yoshizaki K, Fukumoto S, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep. 2017;7(1):17966.

154. Bacakova L, Zarubova J, Travnikova M, Musilkova J, Paprova J, Slepicka P, Kasalkova NS, Svorcik V, Koliska Z, Motaremij H, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—a review. Biotechnol Adv. 2018;36(4):1111–26.

155. Lin PC, Chiu TW, Lin ZS, Huang KC, Lin YC, Huang PC, Syu WS, Harn HJ, Lin SZ. A proposed novel stem cell therapy protocol for liver cell chimera. Cell Transpl. 2015;24(3):533–40.

156. Qin Y, Liu Q, Zheng L, Liu WC, Liu Z, Lei M, Huang J, Xie X, Wang X, Chen Y, et al. Phytomolecule iracin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis: proof-of-concept for prevention of hip joint collapse in bipoital emus and mechansic study in quadrupedal rabbits. Biomaterials. 2015;59:125–43.

157. Feng Q, Xu J, Zhang K, Yao H, Zheng N, Zheng L, Wang J, Wei K, Xiao X, Qin L, et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent Sci. 2019;5(3):440–50.

158. Li C, Luo T, Zheng M, Murphy AR, Wang X, Kaplan DL. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater. 2015;11:222–32.

159. Bai L, Zhao J, Gu D, Wang F, Song Y, Cheng L, Gao K, Wang J, Li L, Li J, et al. Protective effect of hydroxyasfofl yellow A against acute kidney injury via the TLR4/NF-κB signaling pathway. Sci Rep. 2018;8(1):19173.

160. Liopis-Grimalet MA, Arbo AG, Gil-Mir M, Mosur A, Kulkarni P, Saarlo A, Ramis JM, Monjo M. Multifunctional properties of quercetin-chromed porous Ti-6Al-4V implants for orthopaedic applications assessed in vitro. J Clin Med. 2020;9(3):855.

161. Guo YH, Zhao S, Du YX, Xing QJ, Chen BL, Yu CQ. Effects of ginsenoside Rg1-loaded alginate-chitosan microspheres on human bone marrow stromal cells. Biosci Rep. 2017;37(3):BRS20160566.

162. Liu X, Chen Y, Chen X, Su J, Huang C. Enhanced efficacy of baicalin-loaded TPSS polymer micelles compared to percollonts. Mater Sci Eng C Mater Biol Appl. 2019;101:387–95.

163. Wang QS, Cai YL, Gao LN, Guo YU, Li RX, Zhang XZ. Reduction of the pro-inflammatory response by tetrandrine-loading poly(1-lactic acid) films in vitro and in vivo. J Biomed Mater Res A. 2014;102(11):4098–107.

164. Arpornmaeklong P, Sareethammanuwat M, Apinyauppatham K, Boonyuen S. Characteristics and biologic effects of thermosensitive quercetin-chitosan/potassium titanate coprecipitated with cephradine and salviea miltiorrhiza. J Biomed Mater Res B Appl Biomater. 2021;109(10):1656–70.

165. Cyranoski D. China to roll back regulations for traditional medicine despite a proposed novel stem cell therapy protocol for liver cell chimera. Nature. 2017;551(7682):552–3.

166. Peng W, Liu YY, Wu N, Sun T, He XY, Gao YY, Wu CJ. Areca catechu L. (Arecaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Ethnopharmacol. 2015;164:340–56.

167. Mehrtash H, Duncan K, Parascandola M, David A, Grizz ER, Gupta PC, Mehrotra R, Amer Nordin AS, Pearlman PC, Wamakulawurina S, et al. Defining a global research and policy agenda for betel quid and areca nut. Lancet Oncol. 2017;18(12):e767–75.

168. Lechner M, Breeze CE, Vaz F, Lund VJ, Kotecha B. Betel nut chewing in high-income countries—lack of awareness and regulation. Lancet Oncol. 2019;20(2):181–3.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.