Automotive Mechanical Vehicle Starter

M M M. A Kader¹, ², Z B Razali¹, ², W A Mustafa¹, ³, S A Saidi¹, A A Nagoor Gunny¹, S Setumin¹, M K Osman¹, M Idris³, M F Akbar⁶, M A A Sarbini¹ and N S S Mizam⁵

¹Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, Campus Pauh Putra, 02600 Arau, Perlis, Malaysia
²Center of Excellence, Sports Engineering Research Center (Electronics), Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia.
³Advanced Computing (AdvComp), Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Campus Pauh Putra, 02600 Arau, Perlis, Malaysia
⁴Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Campus Pauh Putra, 02600 Arau, Perlis, Malaysia.
⁵Faculty of Electrical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia.
⁶School of Electrical and Electronics Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia.

mohamedm@unimap.edu.my

Abstract. This research is used to crank start automotive vehicle. There are many different system used in order to start-up vehicles using electric starter, in the time of battery low-power or totally drained. The purpose of this research is to help the driver to get out of this difficulty. Nowadays there are many people that have experienced such a bad moment, where they are stranded at road side due to malfunction starter in their car because of battery problem. Most of the vehicle electric starter failure is because of battery corrosion or battery undercharged. The importance of this research is to solve this problem. Starter is a vital part of the vehicle, without it no automotive vehicles able to operate. These starters will rotate an internal-combustion engine to initiate the engine's operation under its own power. Starters also can be malfunction too due to corroded electrical connections or an undercharged battery. This system can be used to solve this problem. This system used human energy by using mechanical parts in order to produce electrical power. In order to produce electrical current, workforce will be applied by rotating the wheel that already linked by belt and from that rotations will trigger a magnetic force and it will produce an electrical current and supply it into battery. This system is divided into two development; hardware development and software development. The hardware development involved, mechanical device which is used and electrical device such as monitor. For software development, Fritzing is used to construct circuit.

1. Introduction
A starter also known as self-starter, cranking motor, or starter motor is a device used to rotate the crank, an internal-combustion engine so as to initiate the engine's operation under its own power. Starters can be electric, pneumatic, or hydraulic. In the case of very large engines, the starter can even be another internal-combustion engine.

Internal combustion engines are feedback systems, which, once started, rely on the inertia from each cycle to initiate the next cycle. In a four-stroke engine, the third stroke releases energy from the fuel, powering the exhaust stroke and also the intake, compression strokes of the next cycle, as well as powering the engine's external load. To start the first cycle at the beginning of any particular session, the first two strokes must be powered in some other way than from the engine itself. The starter motor
is used for this purpose and it is not required once the engine starts running and its feedback loop becomes self-sustaining.

2. Theoretical Framework

2.1 Concepts of vehicle starter

This research is about the design and development of an automotive mechanical vehicle starter. Starter is a vital part of automotive vehicle. Kettering’s key-operated electric self-starting ignition system, introduced on Cadillac vehicles in 1912 and patented three years later, made automobiles far easier and safer to operate than they had been previously, when the ignition process had been powered by iron hand cranks. By the 1920s, electric self-starters would come standard on nearly every new automobile [1]. These starters will rotate an internal-combustion engine to initiate the engine’s operation under its own power. Starters also can be malfunction too due to corroded electrical connections or an undercharged battery. Automotive mechanical vehicle starter can be used to solved this problem. There are some refinements based on this method [2].

This system used human energy by using mechanical parts in order to produce electrical power. In order to produce electrical current, work force applied by rotating the wheel that already linked by belt and from that rotations will trigger a magnetic force and produce an electrical current and supply it into battery. This system is divided into two development; hardware development and software development. For hardware development, mechanical device is used and electrical device such as monitor. For software development, Proteus Design Suite is used to construct circuit. Lastly, the final aim of this research is to develop the mechanical system that can produce electrical energy directly to starter.

2.2 Hardware selection

Therefore, this research on automotive mechanical vehicle starter has been created in order to make life easy. This is capable to supply sufficient amount of power to provide for engine to start. The use of mini pedal exerciser and DC motor will act as medium between DC generators is proposed in this research. This will help the user in trouble due their battery undercharged. High torque motors also will be used in this research to gain a constant and high output power. Voltmeter sensors also used as ‘display’ of this research to determine the output that has been produced.

3. Methodology

3.1 DC generator

DC generator is a machine that converts mechanical energy to electrical energy by using the principle of magnetic induction [3]. This principle is designated by rotation of conductor within a magnetic field. During this process the conductor will cuts magnetic lines of flux and voltage will generated within conductor [4]. The amount of voltage generated will determined by on the strength of the magnetic field, the angle of conductor during cuts the magnetic field process [5]. The polarity of the voltage depends on the direction of the magnetic lines of flux and the direction of movement of the conductor [6]. To determine the direction of current, the left-hand rule for generators used as shown in Figure 1.

![Figure 1. Left-hand rule for generators [5]](image-url)
Illustration in Figure 2, from the image A through E, shows the component parts of DC generators. The Figure 2 shows the entire generator with the component parts installed and their physical relationship among other components [5][7].

3.3 Human Force Power Generator
Nowadays energy and power are the one of the basic needs in this modern world. Energy demand is grow rapidly day by day [8]. Proposal for utilization of human energy by using foot power is very relevant in populated countries like India where roads, railway stations, bus stands, temples are overcrowded with a million of people. The design and implementation of power generator by utilizing human as a source are divided by two parts electrical and mechanical [9].

3.4 Power needed for engine
Engine vehicles are required cranking power in order to start. The power needed will depends on many factors, such as engine type, engine size and temperature. Naturally, when a temperature drop it will require more power to start the engine [10]. Cold cranking amps (CCA) is a rating that measures a battery’s cranking power [11]. It refers to the number of amps a 12 volts battery can deliver at 0°F for 30 seconds while maintaining a voltage of at least 7.2 volts [12][13]. In the last ages the automotive industry has been investigating alternatives to conventional internal combustion engine in order to improve the efficiency of fuel and to reduce emissions gas [14]. During 2002 automotive manufacturers have announced plans to improve vehicle fuel with 25% or more by year 2005 [15].

3.5 Research Development
Research plan was developed to ensure that the research can be done with ease and without any problems. This research was done to find the gaps in the existing research and possible solutions to overcome these gaps in the future [16]. The plan is divided into several stages. Each stage is related and important to ensure the next stage to proceed smoothly. The reason for the hardware development and software development to be done at same time is the software is needed to be developed as the hardware to reduce time taken for this stage. The other reason is the hardware is needed as to test the efficiency of the software during testing stage after the integrating stage. After testing stage, the result gain and can be analyse for improvement.

3.6 Circuit Diagram Software
Fritzing is software that can be used for Printed Circuit Board (PCB) design, circuit schematic design and circuit simulation. This software is used to design an automotive mechanical vehicle starter circuit. These circuits also have been simulated to test if the circuits are able to fully functional. Figure 3 shows the automotive mechanical vehicle starter circuit layout.
The generator generated voltage and voltage sensor read the value received and display it. Figure 4 is the schematic circuit diagram [12] [13].

3.7 Mechanical Design Software
In designing part, Solidworks software is used to create a Three-Dimensional (3D) drawing of the product. Solidworks is a CAD system for macro-scale parts designing and unable produce mask-layouts and process files. In this software, 3D drawing of the control system model was drawn for better understand and planning where to put microcontroller Arduino, DC generator and Liquid Crystal Display (LCD). The drawing must take account for easy troubleshooting and assembly.

3.8 Programming Software
Arduino software is used to program the circuit in this research. This programming are able to test after the hardware of this research is done. For this part, it is essential for both Arduino Uno microcontrollers are capable to communicate with each other to achieve better results in this research [17]. The idea of this research is to take an exact value for voltage output before connect it to car battery.
3.9 Hardware Development

Hardware development is stages where all hardware of these research is been assemble. This system is controlled by Arduino microcontroller [18]. The hardware components like Arduino microcontroller, Direct Current (DC) Generator, Voltage Sensor, DC Booster, Voltmeter Display, and Dimmer was used in this research. In this research, Arduino Uno will act as the voltage display for the DC motor generator.

4. Results and Discussions

Discussion on the results and analysis made from the achieved result of the research developed are found in this chapter. The data was taken based on the automotive mechanical vehicle starter performance in simulation. This method may seriously affect the diagnostic process and its outcome, especially if an automatic computer-based procedure is used to derive diagnostic parameters [19]. The average constant speed simulation shows the result of a better performance while the output of the product is recorded in output voltages and rotational speed of the human force. This chapter contains results that acquire during completing this research. For this research, the DC generator should be able to generate 12.6 volt. Human force also needed to be constantly operated DC generator in order to get a high voltage output. Constant rotation that produced to DC generator will supply a higher output voltage, when the higher voltage become the whole system can be operate smoothly.

4.1 Results of Voltage Generate Without DC Booster

The voltage produced by DC generator roughly maximized at 12.6V. In order to make engine start will need more than 12.6V. The DC booster will act as medium to booster the voltage to 24.6V. Therefore, with DC booster this research can produce a desired voltage. The result gained have been recorded successfully in table 1 and Figure 5.

Average Speed (RPM)	Without DC Booster (V)	With DC Booster (V)
50	23.56	11.6
70	34.64	14.7
85	23.76	18.6
120	27.9	24.6

Figure 5. Graph result shows the voltage output
4.2 Results of Voltage Generate by Rotation Speed from Human Force

Results Human force is being used as a medium for this research in order to get the result. The reason for using this method is because human energy is free and can be used anywhere and anytime. Other than that, the devices that have been used in this research in order to get desired voltage is by using DC generator. This research can ensure that the average speed can produce a desired voltage. The result has been collected and recorded in Table 2 and Figure 6.

Time Taken (minutes)	Average Speed (RPM)	Voltage (Volt)
5	70	5.6
5	85	8.7
5	111	11.3
5	120	12.6

Figure 6. Graph of voltage generated from human force

4.3 Casing durability

Casing is being used as a medium to protect device from damaged. Material selection mainly depends on how easily they can be shaped [20]. This casing has been created by acrylic box. The size diameter on side box is 8mm. This box been through drop test experiment in order to maximize the safety for automotive mechanical vehicle starter inner component. This drop test has been repeated many times.

4.4 Automotive Mechanical Vehicle Starter

Since engineering is a practicing profession; a profession devoted to harnessing and modifying the three fundamental resources humankind has available for the creation of all technology: energy, materials and information [21]. The automotive mechanical vehicle starter has been designed and developed based on the criteria needed, obtained from the tests above as shown in Figure 7.
Figure 7. Automotive mechanical vehicle starter

From the results above, the automotive mechanical vehicle starter prototype consists of a modified DC generator, voltage sensor, LCD display, potentiometer, and DC booster.

5. Conclusions
Automotive mechanical vehicle starter may sound like an easy research. However, the concept of high voltage using human force to be solved. In this research, the concept of generate a high voltage by using human force brought out an idea on integration of human energy and voltage generator. This research used the idea of using DC generator to produce voltage output before supply it to car battery. The value of rotation per minute from human energy is used to determine the value of voltage that has been generated. If the rotation value per minute is too slow, the voltage output produced low and cannot supply to car battery. After determine the ideal speed for DC generator, the output voltage can be easily achieved by using step-up transformer to amplify the output voltage. After the output voltage already amplified, step-down transformer needed. Since the car battery need 12.6 volts, step-down transformer adjust the output voltage until reached 12.6 volt before supply it to car battery.

Therefore, by completing the objectives, the research is declared as success. The objectives are creating a system which is safe, affordable and can be used by many people. Overall, the research prototype has been developed and functioning properly.

Acknowledgement
The author would like to acknowledge the support from the Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis (UnMAP) for the FTKE Research Activities Fund.

References
[1] Onion A, Sullivan M and Mullen M 2020 Charles F. Kettering, inventor of electric self-starter, is born (New York: A&E Television Networks)
[2] Mustafa W A and Kader M M M. A 2019 Improved wolf algorithm on document images detection using optimum mean technique Bulletin of Electrical Engineering and Informatics Vol. 8 pp. 551-557 ISSN: 2302-9285, DOI: 10.11591/eei.v8i2.1426.
[3] Nezhad M B 2012 Study of Homopolar DC Generator PhD Thesis Fac. Of Electrical and Eng. Sciences University of Manchester
[4] Akuru U B 2018 Design Optimisation and Performance Evaluation of Flux Switching Machines for Geared Medium-Speed Wind Generator Drives IEEE PES/IAS PowerAfrica pp. 925–930 Doi: 10.1109/PowerAfrica.2018.8521009.
[5] Keream S S, Mohammed K G, and Ibrahim M S 2018 Analysis Study In Principles Of Operation Of Dc Machine J. Advance Research in Dynamical and Control Systems 10(2) pages 2323-2329
[6] Portela P, Sepúlveda J, and Esteves J S 2008 Alternating Current and Direct Current Generator Int. J. Hands-on Sci. Vol. 1 pp. 44–46
[7] Jonathan E and Rucker J E 2005 Design and analysis of a permanent magnet generator for naval applications Massachusetts Institute of Technology http://hdl.handle.net/1721.1/33569

[8] Nandan S and Trivedi R 2019 Design and Fabrication of Mechanical Footstep Power Generator Int. J. Eng. Appl. Sci. Technol. Vol. 04 pp. 214–222 Doi: 10.33564/ijeast.2019.v04i05.033.

[9] Khan H, Muhammad F and Khattak A 2012 Design and Implementation of Power Generation Utilizing Human as a Source 2 160-165 City University Research Journal Vol. 03 01 Article 19

[10] Murugesan V M et al. 2012 An overview of automobile starting system faults and fault diagnosis methods ARPN J. Eng. Appl. Sci. Vol. 7 pp. 812–819

[11] Lagunoff G 2018 Automotive hybrid technology: status, function and development tools Univ. essay from Luleå/Tillämpad Fys. Mask. och Mater. p. 175

[12] Bausch H and Hofmann H A Starter/Alternator System With Permanent Magnet Machine And Ac Power Supply Based On A Space Vector Controlled Three- And Single-Phase Converter For Mobile Applications Universität der Bundeswahr Munchen

[13] Hasanuzzaman 2015 Study of Engine Operations, Maintenance and Troubleshooting of Motor Vehicle pp. 0–117 Doi: 10.13140/RG.2.1.1544.9761

[14] Zhang Z, Huang J, Jiang Y, Geng W, and Xu Y 2020 Overview and analysis of PM starter/generator for aircraft electrical power systems CES Trans. Electr. Mach. Syst. Vol. 1 pp. 117–131 Doi: 10.23919/tems.2017.7961293.

[15] Löwenstein L, Ştet C, Viorel I-A, and Szabó L 2004 Integrated Starter-Generators for Automotive Applications 45

[16] Mustafa W A and Kader M M M. A 2018 Contrast Enhancement Based on Fusion Method: A Review J. Phys.: Conf. Ser. 1019 012025 doi:10.1088/1742-6596/1019/1/012025

[17] Louis L 2016 Working Principle of Arduino and Using It As a Tool for Study and Research Int. J. Control Vol. 1 Doi: 10.5121/ijcacs.2016.1203

[18] Razali Z B, Kader M M M A, Kadir M M A and Daud M H 2017 Reprogramming the articulated robotic arm for glass handling by using Arduino microcontroller AIP Conf. Proc.: 3rd Electronic and Green Materials International Conf. 2017 Vol. 188526 Article number 020206

[19] Mustafa W A, Yazid H and Kader M M M A 2018 Luminosity Correction Using Statistical Features on Retinal Images J. of Biomimetics, Biomaterials and Biomedical Engineering 37 74–84 https://doi.org/10.4028/www.scientific.net/jbibe.37.74.

[20] Kader M M A, Razali Z B and Daud M H 2017 Formation of Maximum Eddy Current Force by Non Ferrous Materials MUCET 2017, IOP Publishing, IOP Conf. Ser.: Materials Science and Engineering 318 012055 doi:10.1088/1757-899X/318/1/012055

[21] Daud M H, Razali Z B, and Kader M M M A 2017 Effective ways to test changes of practical intelligence in order to assess unintentional learning in laboratory classes MUCET 2017, MATEC Web of Conf. 150 05003 https://doi.org/10.1051/matecconf/201815005003.