FLOATING DRUG DELIVERY SYSTEM: - A REVIEW

Kamini, Kaur Manjot*, Pooni Neeraj, Singh Manmohan, Verma Kamal, Dhiman Neha, Sharma Neeraj Bhandari Neeraj

Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab, India.

INTRODUCTION

The gastric emptying time and the variation in pH in different segments of gastrointestinal tract (GIT) are the major challenging task for the development of oral controlled release drug delivery system. Various attempts have been made to enhance the residence time of the dosage form within the stomach. Gastro retentive system can remain in the gastric region for several hours and hence significantly prolong the gastric residence time of the drug in the GIT. Potential drug candidates for gastro retentive drug delivery system (GRDDS) are drugs, which are locally active in the stomach eg. Misoprostol, antacids etc., and drugs that have narrow absorption window in GIT eg. L-DOPA, paraamino benzoic acid etc. In addition drugs which are unstable in the intestinal or colonic environment like captopril and metronidazole. It has been suggested that prolonged local availability of antimicrobial agents may augment their effectiveness in treating H. pylori related peptic ulcer. Moreover, it has been reported that bactericidal effect of clarithromycin and garcinol are time and concentration dependent. GRDDS however, are not suitable for drugs that may cause gastric lesions eg. Non-steroidal anti-inflammatory drugs. Also the drug substances that are unstable in the strong acidic environment of the stomach arenot the suitable candidates to be incorporated in such systems. In addition these systems do not offer significant advantage over the conventional dosage forms for drugs, which are absorbed throughout the GIT. However, it is recognized that there are many physiological constraints, which may limit development of such delivery system.
PHYSIOLOGICAL CONSIDERATIONS

Factors such as pH, enzymes, nature and volume of secretions, residence time, and effective absorbing surface area of the site of delivery play an important role in drug liberation and absorption.

The gastric pH is an important factor, which affects the performance of orally administered drug. The gastric pH is not constant rather it is influenced by various factors like diet, disease, presence of gases, fatty acids and other fermentation products. Radio telemetry has been successfully used to measure the gastrointestinal pH in humans. The reported mean value of gastric pH in fasted healthy subjects is 1.1± 0.15 and the mean gastric pH in fed state in healthy males has been reported to be 3.6±0.4. This pH returns to the basal level in about 2 to 4 hours. Age, pathological conditions and drugs may influence gastric pH. About 20% of the elderly people exhibit either diminished (hypochlorhydria) or no gastric acid secretion (achlorhydria) leading to basal pH value over 5.0. Pathological conditions such as pernicious anaemia and AIDS may be significantly reduce gastric acid secretion leading to elevated gastric pH.

The drugs like H2 receptor antagonist and proton pump inhibitors significantly reduce gastric acid secretion. The mean pH value in fasted duodenum has been reported to be 5.8±0.3 in healthy subjects, and the fasted small intestine pH is reported to be 6.0±0.14. Normal gastric time usually ranges between 5 minutes to 2 hours. Depending on the fasted and fed state of the stomach, two distinct patterns of gastrointestinal motility and secretions have been observed. In fasted state the electrical activity of the stomach is governed by some cyclic contractile events commonly known as migrating myoelectric complexes (MMC). There are four consecutive phases of activity in the MMC. Phase I – period of no contraction (30 to 60 minutes) Phase II – period of intermittent contractions (20 – 40 minutes).

Phase III – period of regular contractions at the maximal frequency that travel distally also known as housekeeper wave (10 to 20 minutes) Phase IV – period of transition between phase III and phase I(0 to 5 minutes). These cycles are disrupted by feeding, resulting in irregular contractile activity which may last for 3 to 4 hours. Thus frequent feeding may prolong gastric retention time. Another important factor that influences the gastric emptying is the caloric content of the meals. Fatty contents are emptied at slower rate than other contents. Acidity and osmolality also slows down the gastric emptying. Stress appears to cause an increase in gastric emptying rate, while depression slows it down. In general, women and
elderly have a slower emptying rate than men and young people respectively. In addition, exercise, and body posture may influence the gastric emptying. Apart from these physiological constraints there are certain other factors like density and size of the dosage form also influences the gastric emptying. Dosage forms having a density lower than that of gastric fluid experiences floating behavior and hence gastric retention. A density of <1.0 gm/cm3 is required to exhibit floating property. Dosage forms having a diameter of more than 7.5 mm shows a better gastric residence time compared with one having 9.9 mm.

APPROACHES TO PROLONG GASTRIC RESIDENCE TIME OF DRUG DELIVERY SYSTEM

Various devices such as mucoadhesive, swelling, high-density and floating systems have been developed to increase GRT of a dosage form. These delivery systems can be either in single (fluid filled floating chamber) or multiple (microspheres) unit system. Single unit formulations are associated with problems such as sticking and produce a serious problem of all or none release. Whereas multiple unit dosage forms are devoid of these disadvantages.

Floating System

The floating system is intended to float in and over the gastric contents resulting in prolonged GRT. Floating systems can be effervescent or non-effervescent in nature.

Effervescent System

Gas-generating Systems

These buoyant delivery systems utilize effervescent reactions between carbonate/bicarbonate salts and citric/tartaric acid to liberate CO2 which gets entrapped in the gellified hydrocolloid layer of the systems thus decreasing its specific gravity and making it to float over chyme. These buoyant systems utilize matrices prepared with swellable polymers like methocel, polysaccharides like chitosan, effervescent components like sodium bicarbonate, citric acid and tartaric acid. The optimal stoichiometric ratio of citric acid and sodium bicarbonate for gas generation is reported to be 0.76:1. Ichikawa prepared a multiple unit floating pill, which consisted of a core seed surrounded by two different layers. The primary layer contained sodium bicarbonate and tartaric acid, which generated carbon dioxide in aqueous media. The outer layer composed of a swell able membrane that trapped the gas resulting in flotation of the system. The system started floating within 10 minutes of immersion into the test media and remained floated over a period of 5 hours. Atyabi prepared coated ion exchange resin beads as gastro retentive delivery system. The resin had been charged with bicarbonate before
it was coated with a semi permeable membrane of eudragit- RS. In the presence of hydrochloric acid bicarbonate was liberated, which formed carbon dioxide. The later was trapped inside the membrane resulting in flotation of the resin particle. Uma maheshwari developed a prolonged gastroretentive delivery system by combining both floating and bioadhesive techniques. They used ion exchange resins loaded with bicarbonate and acetohydroxamic acid; the particles were then coated with cellulose acetate butyrate by emulsion solvent evaporation method. The system exhibited floating ability due to the carbon dioxide generation when microgranules were exposed to gastric fluid. The mucoadhesiveness of the microparticles was examined by employing fluorescent probe. Yang developed a swellable asymmetric triple layer tablet with floating ability to prolong the gastric residence time of triple drug regimen (tetracycline, metronidazole and clarithromycin) in helicobacter pylori associated peptic ulcer using HPMC and poly ethylene oxide (PEO) as the rate controlling polymeric membrane excipient. The flotation was achieved by incorporating gas-generating layer consisting of sodium bicarbonate or calcium carbonate along with polymers. The in vivo results revealed that the sustained delivery of tetracycline and metronidazole over 6-8 hours could be achieved while the tablet remains afloat.

Volatile liquid containing systems

The GRT of a drug delivery system can be sustained by incorporating an inflatable chamber, which contains a liquid e.g. ether, cyclopentane, that gasifies at body temperature to cause the inflation of the chamber in the stomach. The device may also consist of a bioerodible plug made up of PVA, Polyethylene, etc. that gradually dissolves causing the inflatable chamber to release gas and collapse after a predetermined time to permit the spontaneous ejection of the inflatable systems from the stomach.

Non Effervescent System

This type of system, after swallowing, swells unrestrained via imbitions of gastric fluid to an extent that it prevents their exit from the stomach. These systems may be referred to as the ‘plug-type systems’ since they have a tendency to remain lodged near the pyloric sphincter. One of the formulation methods of such dosage forms involves the mixing of drug with a gel, which swells in contact with gastric fluid after oral administration and maintains a relative integrity of shape and a bulk density of less than one within the outer gelatinous barrier. The air trapped by the swollen polymer confers buoyancy to this dosage forms.
The most commonly used excipient in non-effervescent floating drug delivery system are gel forming or highly swellable cellulose type hydrocolloids, polysaccharides and matrix forming polymers such as polyacrylate, polymethacrylate and polycarbonate. After oral administration these dosage form swells in contact with gastric fluid and attains a bulk density of < 1. The air entrapped within the swollen matrix imparts buoyancy to the dosage form.

Colloidal gel barrier systems

Hydrodynamically balance system (HBS) was first design by Sheth and Tossounian in 1975. Such systems contains drug with gel forming hydrocolloids meant to remain buoyant on stomach contents. This system incorporate a high level of one or more gel forming highly swellable cellulose type hydrocolloids e.g. HEC, HPMC, NaCMC, Polysaccharides and matrix forming polymers such as polycarbophil, polyacrylates and polystyrene, incorporated either in tablets or in capsules. On coming in contact with gastric fluid, the hydrocolloid in the system hydrates and forms a colloidal gel barrier around the gel surface. The air trapped by the swollen polymer maintains a density less than unity and confers buoyancy to this dosage forms. Desai and Bolton developed CR floating tablet of theophylline using agar and light mineral oil. Dispersing a drug/oil mixture in a warm agar gel solution made tablet and pouring resultant mixture into tablet molds, which on cooling and air drying forms floatable CR tablets. Dennis described a buoyant CR powder formulation, which may be either filled into capsules or compressed into tablet. The formulation consisted of a drug, a pH dependent polymer, which was a water-soluble salt of alginic acid and a pH independent hydrocolloid gelling agent (such as HPMC, HPC etc.) and binder. The formulation was considered unique in a sense that it released the drug at a rate regardless of pH of the environment, being free of calcium ions and carbon dioxide producing material, and had drug release properties similar to a tablet of identical composition.

Microporous Compartment System

This technology is based on the encapsulation of drug reservoir inside a microporous compartment with aperture along its top and bottom wall. The peripheral walls of the drug reservoir compartment are completely sealed to prevent any direct contact of the gastric mucosal surface with the undissolved drug. In stomach the floatation chamber containing entrapped air causes the delivery system to float over the gastric contents. Gastric fluid enters through the apertures, dissolves the drug, and carries the dissolve drug for continuous transport across the intestine for absorption. This technology was used by Harrigan.
Hollow Microspheres

Hollow microspheres are also known as microballoons. Hollow microspheres are prepared by emulsion solvent diffusion method. In this method a solution or dispersion of drug and polymer is prepared in solvent (like dichloromethane, ethanol, isopropanol or a combination of these). This dispersion/solution is introduced into an aqueous solution of PVA (polyvinyl alcohol) forming an O/W type emulsion. This emulsion is agitated using propeller type agitator to remove the organic solvent, which produces the microballoons, size between 500-1000 mm. Prepared hollow microspheres with a drug loaded in their outer shells by an emulsion solvent diffusion method. The ethanol/dichloromethane solution of a drug and an enteric acrylic polymer was poured into an aqueous solution of PVA that was maintained at 40°C, with constant stirring. The gas phase generated in the dispersed polymer droplet by the evaporation of dichloromethane formed an internal cavity in the microsphere of the polymer with drug. Prepared floating acrylic resin microspheres with an internal hollow structure by solvent diffusion and evaporation method. Ethanol as a solvent in combination with isopropanol was used. The mechanism of formation of microsphere is reported, as ethanol a good solvent for acrylic polymer, preferentially diffuses out of dispersed droplets (organic phase) into an aqueous phase, the acrylic polymer instantly solidifies as a thin film at the interface between the aqueous phase and organic phase. It has also been reported that when the diffusion rate of solvent out of emulsion droplet was too slow, microspheres coalesced together. Conversely, when the diffusion rate of solvent was too fast, the solvent diffused into the aqueous phase before stable emulsion droplets could form, causing the aggregation of embryonic microsphere droplets.

Alginate beads

Multiple unit floating dosage forms have been developed from freeze-dried calcium alginate. Spherical beads of approximately 2.5 mm in diameter can be prepared by dropping a sodium alginate solution in to aqueous solutions of calcium chloride, causing precipitation of calcium alginate. The beads are then separated snap and frozen in liquid nitrogen and freeze dried at -40° for 24 h, leading to the formation of porous system, which can maintain a floating force over 12 h. Prepared alginate beads based on the above method for the sustained release of both hydrophobic and hydrophilic drugs. They added sunflower oil in the beads and found the beads floating for 24 hours. The hydrophobic drug ibuprofen was released from this system for 24 hours due to oil partitioning.
Evaluation of floating dosage forms

Various parameters that need to be evaluated include floating duration, dissolution profiles, particle size analysis, flow properties, surface morphology, differential scanning calorimeter (DSC), incorporation efficiency and micromeritic properties such as tapped density, true density etc. are also evaluated. Techniques such as scintigraphy, radiology, gastroscopy, ultrasonography and MRI are also used for the evaluation. The test for floating behaviour and drug release are generally performed in simulated gastric fluids 37°C. Timmermans and Andre48 characterized the buoyancy capability of floating forms and sinking of non floating dosage forms using apparatus to quantitatively measure the total floating force acting vertically on the immersed object. The apparatus operates by measuring continuously the force equivalent to F (as a function of time), which is required to maintain the submerged object. The object floats better if F is on the higher positive side.

\[F = f (\text{buoyancy}) - f (\text{gravity}) \]
\[F = (D_b - D_s) g V \]

F – Total vertical force
Ds – Object density
Db – fluid density
V- Volume of fluid
g- Acceleration due to gravity

As reported by Streubelet et al.49, a simple method for determining the floating behavior can be used. A definite no. of particles were placed into 0.1 N HCl, pH 1.2, containing 0.02% w/v tween 20(37°C) to exclude floating due to non wetted surfaces, followed by horizontal shaking. At predetermined time intervals, the flasks were allowed to stand for 5 minutes, without agitation and the no of settled particles was counted. Surface morphology was observed by SEM and with the help of particle size analyzer; particle size distribution can be evaluated.

EFFECT OF FORMULATION VARIABLES ON THE FLOATING PROPERTIES OF THE GASTRIC FLOATING DRUG DELIVERY SYSTEM

Shoufeng continuously monitored the floating kinetics of floating drug delivery system using a continuous floating monitoring system which consisted of an electric balance interfacing with a computer. They studied the effect of several formulation variables, such as different types of HPMC, HPMC/Carbopol ratio and addition of magnesium stearate. Addition of
magnesium stearate significantly improved the floating capacity of GFDDS. HPMC of higherviscosity grades exhibited a greater floating capacity. For the polymer with sameviscosity, i.e. K4M and E4M, the degree of substitution of functional group has not shownanysignificant contribution. A better floating behavior was observed at higherHPMC/Carbopol ratio. Carbopol appeared to have a negative effect on the floating behavior of theGFDDS. Patel studied the effect of varying ratio of HPMCK4M to HPMC K100LV and SLS content on t50%, Q12, release rate constant and diffusion exponent. The release rate washigher at 1% SLS concentration compared to 2% SLS concentration and without SLS condition. This finding maybe owing to the solubilization effect of SLS at 1% level, which is not observed at 2%, drug may have beenentrapped in the micelle formation causing a decrease in rate of drug release. Patel prepared floating tablets of carbamazepine by applying effervescent approach. Floating tablet of carbamazepine are prepared using polymers HPMC and ethyl cellulose. It was observed that as the amount of ethylcellulose was increased in the formulation from 0% to 25%, the Flag decreased, whereas as the amount of HPMC K4Mincreased from 20% to 45%, the Flag increased, indicating that a high amount of HPMC K4M is undesirable to achievelow Flag. Streubel studied the effect of type of polymer (PMMA, EC and Eudragit) on the floating properties of microparticle. The release rate was maximum with eudragit RS, than ethyl cellulose and minimal with PMMA, which couldbe due to the different permeabilities of the drug with in these polymers. Eudragit RS and ethyl cellulose containing microparticles showed biphasic drug release; an initialburst effect followed by slower drug release phase. In contrast PMMA containing microparticles showed more sustained drug releases, which were not biphasic prepared bilayer floating tablets of Metoprolol tartarate. Effect of formulation variables on drug release and floating time was studied. When the total polymer content-to-drug ratio increased, the drug releaserate at 8 hours decreased, whereas floating time increased. Floating time also increased by increasing HPMC: SCMC(sodium carboxy methyl cellulose) ratio. The polymer gradewas found to have no effect on floating time. Tang prepared floating alginate beads with calciumalginate, sunflower oil and drug. The alginate beads with oil addition were able to float over the medium for 24 hours under constant agitation, while non-oily beads could not. The buoyancy decreased for the beads with less oil inclusion or more drug incorporation. Thick coatings of eudragit also decreased buoyancy. Sharma prepared a multiparticulate floating drug delivery system, using porous calcium silicate (fluorite RE) and sodium alginate. Meloxicam was adsorbed on the fluorite RE was used to prepare calcium alginate beads. An increase in FLR quantity in beads resulted in an increasing in floating lagtime and decrease in
sinking rate, probably because of the number of air trapped pores in beads increased with increase in FLR quantity developed a gastric system for oral controlled delivery of calcium. Three formulation variables, HPMC loading, citric acid loading and magnesium stearate loading were studied to know their effect on drug release and floating properties. All three-formulation variables significantly affected the drug release profile, whereas floating characteristic was affected by only HPMC loading.

POLYMERS IN FLOATING DRUG DELIVERY SYSTEM
Polymers play an important role in Controlled drug delivery system. As we know that FDDS is an approach to achieve drug release for long duration. Polymers, which can be successfully used in floating drug delivery system, are briefly discussed here. Acrylic polymers are widely used for the preparation of floating microspheres. Lee has successfully used Eudragit S100 for the preparation. Jain also reported the same findings about Eudragit. A good floating behavior was observed, whereas dissolution rate was found to be slow, because of the low solubility of eudragit at acidic pH. Kale also reported the same findings. Sungthongjeen prepared multiple unit floating drug delivery system based on gas formation technique. The pellets were consisting of an inner effervescent layer and an outer gas entrapping polymeric membrane of aqueous colloidal polymer dispersion of eudragit RL 30D, RS30D and NE30D. Only the system, which uses eudragit RL30D, could float. The floating was reported for more than 24 hours. Nepal used eudragit E100 for the preparation of floating microspheres for fish farming. The findings were similar as reported earlier.

Floating drug delivery systems is one of the important approaches to achieve gastric retention to obtain sufficient drug bioavailability. This delivery systems is desirable for drugs with an absorption window in the stomach or in the upper small intestine. This have a bulk density less than gastric fluids and so remain buoyant in the stomach without affecting gastric emptying rate for a prolonged period and the drug is released slowly as a desired rate from the system. After release of drug, the residual system is emptied from the stomach. This result in an increased gastric retention time (GRT) and a better control of the fluctuation in plasma drug concentration. The major requirements for floating drug delivery system are

• It should release contents slowly to serve as a reservoir.
• It must maintain specific gravity lower than gastric contents (1.004 – 1.01 gm/cm3).
• It must form a cohesive gel barrier. The inherent low density can be provided by the entrapment of air (e.g. hollow chambers) or by the incorporation of low density materials.
(e.g. fatty materials or oils, or foam powder). These following approaches have been used for the design of floating dosage forms of single and multiple-unit systems. Recently a single-unit floating system was proposed consisting of polypropylene foam powder, matrix forming polymers, drug and filler. The good floating behavior of these systems could be successfully combined with accurate control of the resulting drug release patterns. Single-unit dosage forms are associated with problems such as sticking together or being obstructed in the gastrointestinal tract (GIT) which may produce irritation. On the other hand multiple-unit floating systems may be an attractive alternative since they have been shown to reduce the inter- and intra-subject availabilities in drug absorption as well as to lower the possibility of dose dumping. Various multiple-unit floating system like air compartment multiple-unit system, hollow microspheres (microballoons) prepared by the emulsion solvent diffusion method, microparticles based on low density foam powder, beads prepared by emulsion gelatin method etc. can be distributed widely throughout the GIT, providing the possibility of achieving a longer lasting and more reliable release of drugs. Based on the mechanism of buoyancy two distinctly different technologies, i.e. non-effervescent and effervescent systems have been utilized in the development of floating drug delivery system.

Floating Drug Delivery Systems (FDDS)

Floating systems, first described by Davis in 1968, have bulk density lower than that of the gastric fluid and thus remain buoyant in stomach for prolong period. Floating drug delivery systems are classified depending on the use of 2 formulation variables:

EFFERVESCENT AND NON-EFFERVESCENT SYSTEMS.

A. Effervescent Floating Dosage Forms

1) Volatile liquid containing systems

The GRT of a drug delivery system can be sustained by incorporating an inflatable chamber, which contains a liquid e.g. ether, cyclopentane, that gasifies at body temperature to cause the inflation of the chamber in the stomach. The device may also consist of a bioerodible plug made up of PVA, Polyethylene, etc. that gradually dissolves causing the inflatable chamber to release gas and collapse after predetermined time to permit the spontaneous ejection of the inflatablesystems from the stomach. (Figur_A andB) 8 developed floating capsules composed of a plurality of granules that have different residence times in the stomach and consist of an inner foamable layer of gas-generating agents.
Fig.no. 1 Multiple-unit oral floating drug delivery system. (B) Working principle of effervescent floating drug delivery system.

This layer was further divided into 2 sublayers, the outer containing sodium bicarbonate and the inner containing tartaric acid. This layer was surrounded by an expansive polymeric film (composed of poly vinyl acetate [PVA] and shellac), which allowed gastric juice to pass through and was found to swell by foam produced by the action between the gastric juices and the gas-generating agents. It was shown that the swellable membrane layer played an important role in maintaining the buoyancy of the pills for an extended period of time.

2) Gas-generating Systems

These buoyant delivery systems utilize effervescent reactions between carbonate/bicarbonate salts and citric/tartaric acid to liberate CO2, which gets entrapped in the gellified hydrocolloid layer of the systems thus decreasing its specific gravity and making it to float over chyme.

Fig. no – 2 The Mechanism of Floating System

B. Non-effervescent systems

1. Colloidal gel barrier systems

Hydrodynamically balance system (HBS) was first designed by Sheth and Tossounian in 1975. Such systems contain drug with gel forming hydrocolloids meant to remain buoyant on
stomach contents. This system incorporate a high level of one or more gel forming highly swellable cellulose type hydrocolloids. e.g. HEC, HPMC, NaCMC, Polysaccharides and matrix forming polymer such as polycarbophil, polyacrylates and polystyrene, incorporated either in tablets or in capsule. On coming in contact with gastric fluid, the hydrocolloid in the system hydrates and forms a colloidal gel barrier around the gel surface. The air trapped by the swollen polymer maintains a density less than unity and confers buoyancy to this dosage forms.

2. Microporous Compartment System
This technology is based on the encapsulation of drug reservoir inside a Microporous compartment with aperture along its top and bottom wall. The peripheral walls of the drug reservoir compartment are completely sealed to prevent any direct contact of the gastric mucosal surface with the undissolved drug. In stomach the floatation chamber containing entrapped air causes the delivery system to float over the gastric contents. Gastric fluid enters through the apertures, dissolves the drug and carries the dissolve drug for continuous transport across the intestine for absorption.

3. Alginate beads
Multiple unit floating dosage forms have been developed from freeze-dried calcium alginate. Spherical beads of approximately 2.5 mm in diameter can be prepared by dropping a sodium alginate solution in to aqueous solutions of calcium chloride, causing precipitation of calcium alginate. The beads are then separated snap and frozen in liquid nitrogen and freeze dried at -40°C for 24 hours, leading to the formation of porous system, which can maintain a floating fource over 12 hours.

4. Hollow microspheres
Hollow microspheres (microballons), loaded with ibuprofen in their outer polymer shells were prepared by a novel emulsion-solvent diffusion method. The ethanol: dichloromethane solution of the drug and an enteric acrylic polymer was poured in to an agitated aqueous solution of PVA that was thermally controlled at 40°C. The gas phase generated in dispersed polymer droplet by evaporation of dichloromethane formed in internal cavity in microspheres of the polymer with drug. The microballons floated continuously over the surface of acidic dissolution media containing surfactant for greater than 12 hours in vitro.
Application of Floating Drug Delivery System

Recent study indicated that the administration of Diltiazem floating tablets twice a day may be more effective compared to normal tablets compared to normal tablets in controlling the B.B of hypertensive patients. HBS containing L-Dopa and Benserazide, here the drug was absorbed over a period of 6-8 hours and maintained substantial plasma concentration for Parkinsonian patients. CytotechR- containing Misoprostol, a synthetic prostaglandin – ELanalogue, for prevention of gastric ulcer caused by non-steroidal anti-inflammatory drugs (NSAIDS).

As it provides high concentration of drug within gastric mucosa, it is used to eradicate *H. pylori* (a causative organism for chronic gastritis and peptic ulcers). 5-fluorouracil has been successfully evaluated in the patients with stomach neoplasm. Developing HBS dosage form for tacrine provide better delivery systems and reduced its GI side effects.

Merits

The delivery of drugs with narrow absorption window in the small intestinal region.

Longer residence time in stomach could be advantageous for local action in the upper part of the small intestinal. i.e. treatment of peptic ulcer.

Improved bioavailability is expected for drugs that are absorbed readily upon release in the GI tract. These drugs can be delivered ideally by slow release from the stomach.

Improvement of bioavailability and therapeutic efficacy of the drugs and possible reduction of dose e.g. Furosemide.

Maintenance of constant therapeutic level over a prolonged period and thus reduction in fluctuation in therapeutic levels minimizing the risk of resistance especially in case of antibiotics. e.g. β-lactam antibiotics (penicillins and cephalosporins) Retention of drug delivery systems in the stomach prolongs overall. Gastrointestinal transit time thereby increasing bioavailability of sustained release delivery systems intended for once-a-day administration. e.g. Ofloxacin.

Demerits

There is certain situation where gastric retention is not desirable. Aspirin & NSAID are known to cause G.I. lesions & slow release of such drug in stomach is unwanted.
Those that have multiple absorption sites in the gastrointestinal tract Those that is not stable at gastric pH. Those which gets degraded due to gastric enzymes.

METHODS

1) FOR PREPARATION OF TABLET
Floating matrix tablets containing clarithromycin were prepared by wet granulation technique using varying concentrations of different grades of polymers with sodium bicarbonate. Polymers and clarithromycin were mixed homogeneously using glass mortar and pestle. Isopropyl alcohol was used as granulating agent. Granules were prepared by passing the wet coherent mass through a # 16 sieve. The granules were dried in hot air oven at a temperature of 60oC. Dried granules were sieved through # 20/44 sieves and mixed with sodium bicarbonate used as gas generating agent and lubricated with magnesium stearate and talc just 4-5 min before compression.

Lubricated granules were compressed into tablets using Krishna Minipress-I rotary tablet machine to obtain tablets of desired specifications.

2) FOR FINDING FLOATING LAG TIME
The time between introduction of dosage form and its buoyancy on the simulated gastric fluidand the time during which the dosage formremained buoyant were measured. The time taken for dosage form to emerge on surface of medium called Floating Lag Time (FLT) or Buoyancy Lag Time (BLT) and total duration of floatation i.e. as long the dosage form remains buoyant is called Total FloatingTime (TFT).

3) METHOD FOR DETERMINING THE CALIBRATION CURV OF METOPROLOL TARTRATE 14
10mg of clarithromycin tartrate was dissolved in 100ml of the solvent to obtain the working standard of 100μg/ml. aliquots of 1ml to 3.5 ml from the stock solution representing 10 to 35μg/ml of drug were transferred to 10ml volumetric flask and the volume was adjusted to 10ml with the solvent. Absorbance of the above solution were taken at λ= 288nm against the blank solution prepared in the same manner without adding the drug. A graph of absorbance V/s concentration was plotted and was found to be linear over a range of 10 to 35 μg/ml indicating, its compliance with Beer’s law.
4) Method for in vitro drug release studies

The in vitro release study for all the formulations were carried out by USP Dissolution Test Apparatus Type-II. The temperature of the dissolution medium (0.1 M HCl, 900 ml) was maintained at 37°C with a stirring rate of 50 rpm, then 5 ml of dissolution medium was taken out at intervals of 1, 2, 3 & 4 hours. Exactly 5 ml of fresh buffer was added to the dissolution vessel after each withdrawal, to maintain a constant volume. Then the withdrawal samples were analyzed by using a U.V spectrophotometer.

References

1. Lachman L, Lieberman AH, Kanig LJ. “The theory and practice of industrial pharmacy”. 3rd ed. Varghese publishing house; 1991. International Journal of Research in Pharmaceutical and Biomedical Science. 2011; 2(4).
2. Nayak K Amit, Maji Ruma, Das Biswarup. Gastroretentive drug delivery systems: a review. Asian Journal of Pharmaceutical and Clinical Research [ISSN 0974-2441]. Jan-Mar 2010; 3(1): 1-10.
3. Nadigoti Jagadeesh, Shayeda. Floating Drug Delivery Systems. International Journal of Pharmaceutical Sciences and Nanotechnology, Oct–Dec 2009; 2(3): 595-604.
4. Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery system. Expert Opin Drug Deliv 2006; IJRPBS. 2011; 3(2): 217-33.
5. Mayavanshi AV, Gajjar SS. Floating drug delivery systems to increase gastric retention of drugs: A Review. Research J. Pharm. And Tech. [ISSN No: 0974-3618]. Oct.-Dec. 2008; 1(4): 345-348.
6. Bhise SB, Aloorkar NH. Indian Journal of Pharmaceutical Sciences. 2008; 70(2): 224-227.
7. Vachhani Savan R, Patel Jatin J, Patel Dipen, Prajapati ST, Patel CN. J. Chem. Pharm. Res. [ISSN No: 0975-7384]. 2010; 2(2): 57-64.
8. Chien, Y.W., “Novel drug delivery system”, Marcel Dekker, 2nd Edi. Rev. Expand., Pharmainfo. net., 50: 139-196.
9. Chungi, V.S., Dittert, L.W., Smith, R.B., “Gastrointestinal sites of furosemide absorption in rats”, Int. J. Pharm., 1979; 4: 27-38.
10. Arora Shweta, Ali Javed, Ahuja Alka, Khar Roop K. and Baboota Sanjula. Floating Drug Delivery System: A review. AAPS Pharm Sci Tech. 2005; 06(03): E372-E390.
11. Talwar Naresh, Sen Himardi, Staniforth John N. Orally Administered controlled drug delivery system providing temporal and spatial control. 1998.
12. Singh Brahma N, Kim Kwon H. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. *Journal of Controlled release.* 2000; 63: 235-259

13. Xiao Qiang Xu, Minije Sun, Feng Zhi, Yiqiao Hu. Floating matrix dosage form for phenoproplamine HCL based on gas forming agent: *In vitro* and *in vivo* evaluation in healthy volunteers. *Int J Pharm.* 2006; 310: 139-145.

14. Sunthongjeen Srisagul, Sriumornsak Pornsak, Puttipipatkhachorn Satit. Design and evaluation of floating multi-layer tablets based on gas formation. *Eur. J Pharm and Biopharm* 2008; 69: 255-263.

15. Baumgartner Sasa, Kristl Julijana, Vrecer Franc, Vodopivce Polona, Zorko Bojan. Optimization of floating matrix tablets and evaluation of their gastric residence time. *Int J Pharm.* 2000; 195: 125-135.

16. Streuble A, Siepmann J, Bodmeier R. Floating matrix tablets based on low density foam powder; effects of formulation and processing parameters on drug release. *Euro. J Pharm Sci.* 2003; 18: 37-45.

17. Jaimini M, Rana A.C, Tanwar Y.S. Formulation and Evaluation of Famotidine floating tablets. *Current Drug delivery,* 2007; 4: 51-55.

18. Rajeev Garg and Ghanshyam Das gupta. Preparation and evulation of gastroretantive floating tablets of Silymarin. Chem pharma bull, 2009; 57(6): 545-549

19. N Arun Kumar, C Rani and KP Mohanraj, Formulation and *In- Vitro* Evaluation of oral floating tablets of Atorvastatin. RJPT, (4) oct-dec. 2008.

20. R Garg, GD Gupta. Process in Controlled Gastroretentive Delivery Systems, Tropical Journal Of Pharmaceutical Research sep 2008; 7(3): 1055-1066.

21. Ferdous Khan, Md. Shaikhun Millat Ibn Razzak, Md. Zaiur Rahman Khan, et.al. Preperation and *in-vitro* evaluation of Theophilline loaded gastroretantive floating tablets of Methocel K4M, Dhaka. J. Pharma sci. june 2008; 7(1): 65-70.

22. Manoj N. Gambhire, Kshitij W. Ambade, Sushma D.Kurmi, Vilasrao J.Kadam. Development And In-vitro Evaluation Of an oral Floating Matrix Tablet Formulation of Diltiazem Hydrochloride, AAPS Pharm Sci Tech 2007; 8(3): Article 73, September

23. Mahesh D. Chavanpatil, Paras Jain, Sachin Chaudhari, et al. Novel sustain release, Swellable and bioadhesive gastroretentive drug delivery system for Ofloxacin. IJP 2006.

24. Anand Kumar Srivastava, Devendra Narayanaraao Ridhurkar, Saurabh Wadhwa. Floating microspheres of Cimetidine: Formulation, Characterization and *in-vitro* evaluation Acta pharm. 2005; 55: 277-285.
25. Brijesh S. Dave, Avani F. Amin and Madhabhai M. Patel. Gastro retentive drug delivery of Ranitidine hydrochloride: Formulation and *in-vitro* evaluation AAPS pharm Sci Tech 2004; 5(2).

26. Harinder s. malhotra, et al. atorvastatin an updated review of its pharmacological properties and use in dylipidemia. Drugs 2001; 2(2): 1835-1881.