A FAMILY OF TETRAVALENT ONE-REGULAR GRAPHS

MOHSEN GHASEMI AND REZVAN VARMAZYAR

Abstract. A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper, 4-valent one-regular graphs of order $5p^2$, where p is a prime, are classified.

1. Introduction

In this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use $V(X)$, $E(X)$, $A(X)$ and $\text{Aut}(X)$ to denote its vertex set, edge set, arc set and its full automorphism group, respectively. For $u, v \in V(X)$, $\{u, v\}$ is the edge incident to u and v in X, and $N(u)$ is the neighborhood of u in X, that is, the set of vertices adjacent to u in X. A graph X is said to be vertex-transitive and arc-transitive (or symmetric) if $\text{Aut}(X)$ acts transitively on $V(X)$ and $A(X)$, respectively. In particular, if $\text{Aut}(X)$ acts regularly on $A(X)$, then X is said to be one-regular.

Clearly, a one-regular graph is connected, and it is of valency 2 if and only if it is a cycle. In this sense the first non-trivial case is that of cubic graphs. The first example of a cubic one-regular graph was constructed by Frucht [14] and later on lot of works have been done along this line (as part of the more general investigation of cubic arc-transitive graphs) see [9, 10, 11, 12]. 4-valent one-regular graphs have also received considerable attention. In [1], 4-valent one-regular graphs of prime order were constructed. In [24], an infinite family of 4-valent one-regular Cayley graphs on alternating groups is given. 4-valent one-regular circulant graphs were classified in [34] and 4-valent one-regular Cayley graphs on abelian groups were classified in [35]. Next, one may deduce a classification of 4-valent one-regular Cayley graphs on dihedral groups from [23, 29, 31]. Let p and q be primes. Then, clearly every 4-valent one-regular graph of order p is a circulant graph. Also, by [31, 27, 28, 30, 31, 33, 35] every 4-valent one-regular graph of order pq or...
p^2 is a circulant graph. Furthermore, the classification of 4-valent one-
regular graphs of order $3p^2$, $4p^2$, $6p^2$ and $2pq$ are given in [8, 15, 17, 37].
Along this line the aim of this paper is to classify 4-valent one-regular
graphs of order $5p^2$, see Theorem 3.3.

2. Preliminaries

In this section, we introduce some notations and definitions as well
as some preliminary results which will be used later in the paper.

For a regular graph X, use $d(X)$ to represent the valency of X, and
for any subset B of $V(X)$, the subgraph of X induced by B will be
denoted by $X[B]$. Let X be a connected vertex-transitive graph, and
let $G \leq \text{Aut}(X)$ be vertex-transitive on X. For a G-invariant partition
B of $V(X)$, the quotient graph X_B is defined as the graph with vertex
set B such that, for any two vertices $B, C \in B$, B is adjacent to C if
and only if there exist $u \in B$ and $v \in C$ which are adjacent in X. Let
N be a normal subgroup of G. Then the set B of orbits of N in $V(X)$
is a G-invariant partition of $V(X)$. In this case, the symbol X_B will be
replaced by X_N. For a positive integer n, denote by \mathbb{Z}_n the cyclic group of order n as
well as the ring of integers modulo n, by \mathbb{Z}_n^* the multiplicative group
of \mathbb{Z}_n consisting of numbers coprime to n, by D_{2n} the dihedral group
of order $2n$, and by C_n and K_n the cycle and the complete graph of
order n, respectively. We call C_n an n-cycle.

For a finite group G and a subset S of G such that $1 \notin S$ and
$S = S^{-1}$, the Cayley graph $\text{Cay}(G, S)$ on G with respect to S is defined
to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$. Given a
g \in G, define the permutation $R(g)$ on G by $x \mapsto xg$, $x \in G$. The
permutation group $R(G) = \{R(g) \mid g \in G\}$ on G is called the right
regular representation of G. It is easy to see that $R(G)$ is isomor-
phic to G, and it is a regular subgroup of the automorphism group
$\text{Aut}(\text{Cay}(G, S))$. Also it is easy to see that X is connected if and only
if $G = \langle S \rangle$, that is, S is a connection set. Furthermore, the group
$\text{Aut}(G, S) = \{\alpha \in \text{Aut}(G) \mid S^\alpha = S\}$ is a subgroup of $\text{Aut}(\text{Cay}(G, S))$.
Actually, $\text{Aut}(G, S)$ is a subgroup of $\text{Aut}(\text{Cay}(G, S))_1$, the stabilizer of
the vertex 1 in $\text{Aut}(\text{Cay}(G, S))$. A Cayley graph $\text{Cay}(G, S)$ is said to be
normal if $R(G)$ is normal in $\text{Aut}(\text{Cay}(G, S))$. Xu [36], proved that
$\text{Cay}(G, S)$ is normal if and only if $\text{Aut}(\text{Cay}(G, S))_1 = \text{Aut}(G, S)$. Sup-
pose that $\alpha \in \text{Aut}(G)$. One may easily prove that $\text{Cay}(G, S)$ is normal
if and only if $\text{Cay}(G, S^\alpha)$ is normal. Also later much subsequent work
was done along this line (see [11, 13, 18, 29, 31]).
For \(\mathbf{v} \in V(X) \), denote by \(N_X(\mathbf{u}) \) the \textit{neighbourhood} of \(\mathbf{u} \) in \(X \), that is, the set of vertices adjacent to \(\mathbf{u} \) in \(X \). A graph \(\tilde{X} \) is called a \textit{covering} of a graph \(X \) with projection \(p : \tilde{X} \to X \) if there is a surjection \(p : V(\tilde{X}) \to V(X) \) such that \(p|_{N_{\tilde{X}}(\tilde{v})} : N_{\tilde{X}}(\tilde{v}) \to N_X(v) \) is a bijection for any vertex \(v \in V(X) \) and \(\tilde{v} \in p^{-1}(v) \). A covering \(\tilde{X} \) of \(X \) with a projection \(p \) is said to be \textit{regular} (or \textit{K-covering}) if there is a semiregular subgroup \(K \) of the automorphism group \(\text{Aut}(\tilde{X}) \) such that graph \(X \) is isomorphic to the quotient graph \(\tilde{X}/K \), say by \(h \), and the quotient map \(\tilde{X} \to \tilde{X}/K \) is the composition \(ph \) of \(p \) and \(h \) (for the purpose of this paper, all functions are composed from left to right). If \(K \) is cyclic or elementary abelian then \(\tilde{X} \) is called a \textit{cyclic} or an \textit{elementary abelian covering} of \(X \), and if \(\tilde{X} \) is connected \(K \) becomes the covering transformation group. In this case we also say \(p \) is a \textit{regular covering projection}. The fibre of an edge or a vertex is its preimage under \(p \). An automorphism of \(\tilde{X} \) is said to be \textit{fibre-preserving} if it maps a fibre to a fibre, while every covering transformation maps a fibre on to itself. All of fibre-preserving automorphisms form a group called the \textit{fibre-preserving group}.

Let \(\tilde{X} \) be a \(K \)-covering of \(X \) with a projection \(p \). If \(\alpha \in \text{Aut}(X) \) and \(\tilde{\alpha} \in \text{Aut}(\tilde{X}) \) satisfy \(\tilde{\alpha}p = p\alpha \), we call \(\tilde{\alpha} \) a lift of \(\alpha \), and \(\alpha \) the \textit{projection} of \(\tilde{\alpha} \). Concepts such as a lift of a subgroup of \(\text{Aut}(X) \) and the projection of a subgroup of \(\text{Aut}(\tilde{X}) \) are self-explanatory. The lifts and the projections of such subgroups are of course subgroups in \(\text{Aut}(\tilde{X}) \) and \(\text{Aut}(X) \) respectively.

For two groups \(M \) and \(N \), \(N \rtimes M \) denotes a semidirect product of \(N \) by \(M \). For a subgroup \(H \) of a group \(G \), denote by \(C_G(H) \) the centralizer of \(H \) in \(G \) and by \(N_G(H) \) the normalizer of \(H \) in \(G \). Then \(C_G(H) \) is normal in \(N_G(H) \).

Proposition 2.1. [21, Chapter I, Theorem 4.5] The quotient group \(N_G(H)/C_G(H) \) is isomorphic to a subgroup of the automorphism group \(\text{Aut}(H) \) of \(H \).

Let \(G \) be a permutation group on a set \(\Omega \) and \(\alpha \in \Omega \). Denote by \(G_\alpha \) the stabilizer of \(\alpha \) in \(G \), that is, the subgroup of \(G \) fixing the point \(\alpha \). We say that \(G \) is \textit{semiregular} on \(\Omega \) if \(G_\alpha = 1 \) for every \(\alpha \in \Omega \) and \textit{regular} if \(G \) is transitive and semiregular. For any \(g \in G \), \(g \) is said to be \textit{semiregular} if \(\langle g \rangle \) is semiregular.

Proposition 2.2. [33, Chapter I, Theorem 4.5] Every transitive abelian group \(G \) on a set \(\Omega \) is regular.
The following proposition is due to Praeger et al, refer to [19, Theorem 1.1].

Proposition 2.3. Let X be a connected 4-valent $(G, 1)$-arc-transitive graph. For each normal subgroup N of G, one of the following holds:

1. N is transitive on $V(X)$;
2. X is bipartite and N acts transitively on each part of the bipartition;
3. N has $r \geq 3$ orbits on $V(X)$, the quotient graph X_N is a cycle of length r, and G induces the full automorphism group D_{2r} on X_N;
4. N has $r \geq 5$ orbits on $V(X)$, N acts semiregularly on $V(X)$, the quotient graph X_N is a connected 4-valent G/N-symmetric graph, and X is a G-normal cover of X_N.

Moreover, if X is also $(G, 2)$-arc-transitive, then case (3) can not happen.

The following classical result is due to Wielandt [33, Theorem 3.4]

Proposition 2.4. Let p be a prime and let P be a Sylow p-subgroup of a permutation group G acting on a set Ω. Let $\omega \in \Omega$. If p^m divides the length of the G-orbit containing ω, then p^m also divides the length of the P-orbit containing ω.

To state the next result we need to introduce a family of 4-valent graphs that were first defined in [20]. The graph $C_{\pm 1}(p; 5p, 1)$ is defined to have the vertex set $Z_p \times Z_{5p}$ and edge set $\{(i, j)(i \pm 1, j + 1)| i \in Z_p, j \in Z_{5p}\}$. Also from [20, Definition 2.2], the graphs $C_{\pm 1}(p; 5p, 1)$ are Cayley graphs over $Z_p \times Z_{5p}$ with connection set $\{(1, 1), (-1, 1), (-1, -1), (1, -1)\}$. In the proof of Theorem 3.3 we will need $C_{\pm 1}(p; 5p, 1)$ with $p > 11$. It can be readily checked from [20, Definition 2.2] that for $p > 11$ these graphs are actually normal Cayley graphs over $Z_p \times Z_{5p}$.

Proposition 2.5. [20, Theorem 1.1] Let X be a connected, G-symmetric, 4-valent graph of order $5p^2$, and let $N = Z_p$ be a minimal normal subgroup of G with orbits of size p, where p is an odd prime. Let K denote the kernel of the action of G on $V(X_N)$. If $X_N = C_{5p}$ and $K_v \cong Z_2$ then X is isomorphic to $C_{\pm 1}(p; 5p, 1)$.

The graphs defined in [20, Lemma 8.4] are all one-regular (see [20, Section 8]) and therefore we refer to [20] for an intrinsic description of these families.

Proposition 2.6. [20, Theorem 1.2] Let X be a connected, G-symmetric, 4-valent graph of order $5p^2$, and let $N = Z_p \times Z_p$ be a minimal normal subgroup of G with orbits of size p^2, where p is an odd prime. Let
Let K denote the kernel of the action of G on $V(X_N)$. If $X_N = C_5$ and $K_v \cong \mathbb{Z}_2$ then X is isomorphic to one of the graphs in [20] Lemma 8.4.

Finally in the following example we introduce $G(5p; 2, 2, u)$, which first was defined in [27].

Example 2.7. Let 2 be a divisor of $p - 1$. Let $H(5, 2) = \langle a \rangle$, let $t \in \mathbb{Z}_p^*$ be such that $t \in -H(p, 2)$, and let u be the least common multiple of 2 and the order of t in \mathbb{Z}_p^*. Then $X = G(5p; 2, 2, u)$ is defined as the graph with vertex set

$$V(X) = \mathbb{Z}_5 \times \mathbb{Z}_p = \{(i, x)|i \in \mathbb{Z}_5, x \in \mathbb{Z}_p\}$$

such that vertices (i, x) and (j, y) are adjacent if and only if there is an integer l such that $j - i = a^l$ and $y - x \in t^lH(p, 2)$. Also X as defined above is independent of the choice of generator a of $H(5, 2)$ up to isomorphism, and X is also independent of the choice of t, such that $\text{lcm}\{o(t), 2\} = u$, up to isomorphism. Moreover, the above graph is circulant, that is, admits a cyclic group of automorphisms of order $5p$ acting regularly on vertices.

We may extract the following results from [3] pp. 76-80].

Proposition 2.8. Let p be a prime and $p > 5$. Also let G be a non-abelian group of order $5p^2$.

(i) If G has a normal subgroup of order p, say N, such that G/N is cyclic, then G is isomorphic to $\langle x, y, z|x^p = y^5 = z^p = [x, z] = [y, z] = 1, y^{-1}xy = x^i\rangle$, where $i^5 \equiv 1 \pmod{p}$ and $(i, p) = 1$;

(ii) If G has a normal subgroup of order p^2, say N, such that G/N is cyclic, then G is isomorphic to $\langle x, y|xy^2 = y^5 = 1, y^{-1}xy = x^i\rangle$, where $i^5 \equiv 1 \pmod{p^2}$.

3. One-regular graphs of order $5p^2$

For proving the main theorem we need the following two lemmas.

Lemma 3.1. Let p be a prime, $p > 5$ and $G = \langle x, y, z|x^p = y^5 = z^p = [x, z] = [y, z] = 1, y^{-1}xy = x^i\rangle$, where $i^5 \equiv 1 \pmod{p}$ and $(i, p) = 1$. Then there is no 4-valent one-regular normal Cayley graph X of order $5p^2$ on G.

Proof. Suppose to the contrary that X is a 4-valent one-regular normal Cayley graph $\text{Cay}(G, S)$ on G with respect to the generating set S. Since X is one-regular and normal, the stabilizer $A_1 = \text{Aut}(G, S)$ of the vertex $1 \in G$ is transitive on S and so that elements in S are all of the same order. The elements of G of order 5 lie in $\langle x, y \rangle$ and the elements of G of order p lie in $\langle x, z \rangle$. Since X is connected, $G = \langle S \rangle$ and
hence S consists of elements of order $5p$. Denote by S_{5p} the elements of G of order $5p$. Therefore

$$S \subseteq S_{5p} = \{x^sy^t \mid s \in \mathbb{Z}_p, t \in \mathbb{Z}_5, j \in \mathbb{Z}_p^*\}.$$

Clearly $\sigma : x \mapsto x^s, y \mapsto y, z \mapsto z^i (s,j \neq 0)$ is an automorphism of G, we may suppose that

$$S = \{xy^iz^{-1}z^{-1}, x^my^n, y^n, x^{-m}z^{-k}\}.$$

Since $\text{Aut}(G, S)$ acts transitively on S, it implies that there is $\alpha \in \text{Aut}(G, S)$ such that $(xy^iz^{-1}z^{-1})^\alpha = y^{-t}x^{-1}z^{-1}$. Since $[x, z] = 1$, and $[y, z] = 1$, the element x^α needs to commute with x^α and y^α. Thus $(x^\alpha(y^i)^\alpha = y^{-t}x^{-1}z^{-1} = x^{-i4}y^{-t}z^{-1}$. We may assume that $(y^i)^\alpha = x^t$ where $t_1 \in \mathbb{Z}_p$, and $t_2 \in \mathbb{Z}_5^*$. Thus $(x^\alpha)_1 \alpha t_2 = x^{-i4}y^{-t}z^{-1}$ and so $(xz)^\alpha = x^{-i4}x^{-t_1}x^{k(-1-t_2)}y^{-t-t_2}z^{-1}$. Since $o(xz) = p$, we have $t = -t_2$. Therefore $(xz)^\alpha = x^{-i4}z^{-t_1}z^{-1}$. Also let $z^\alpha = x^{s_1}z^{s_2}$ where $s_1, s_2 \in \mathbb{Z}_p$. So $(x)^\alpha = x^{-i4}x^{-s_1}x^{t_1}z^{1-s_2}$. Since z^α commutes with $(y^i)^\alpha$, it follows that $s_1 = 0$ or $i4t_2 = 1$.

Since $t_2 \in \mathbb{Z}_5^*$ and $i5 \equiv 1 \pmod{p}$, it follows that $i4t_2 \neq 1$. Thus we may suppose that $s_1 = 0$. Therefore $x^\alpha = x^{-i4}z^{-1-s_2}$, $(y^i)^\alpha = x^t$, $z^{1-t_1}z^{-1}z^{s_2}$. Since $x^t = x^i$, we have $(x^\alpha)^{(y^i)^\alpha} = (x^\alpha)^t$ and so $s_2 = -1$ and $(-i4-t_1)(i4t_2-i) = 0$. Since $t = -t_2$ and $t_2 \in \mathbb{Z}_5^*$, we have $(i4t_2-i) \neq 0$. Thus we may suppose that $(i4t_1 = 0$. Therefore $x^\alpha = z^{-1-s_2} = z^0 = 1$, a contradiction.

Lemma 3.2. Let p be a prime, $p > 5$ and $G = \langle x, y \mid x^{p^2} = y^5 = 1, y^{-1}xy = x^i \rangle$, where $i5 \equiv 1 \pmod{p^2}$. Then there is no 4-valent one-regular normal Cayley graph X of order $5p^2$ on G.

Proof. Suppose to the contrary that X is a 4-valent one-regular normal Cayley graph $\text{Cay}(G, S)$ on G with respect to the generating set S. Since X is one-regular and normal, the stabilizer $A_1 = \text{Aut}(G, S)$ of the vertex $1 \in G$ is transitive on S and so that elements in S are all of the same order. Clearly x^p is the only element of order p. Also x^r where $r \in \mathbb{Z}_p^*$ are the only elements of order p^2. The elements of G of order 5 lie in $\langle x, y \rangle$. Since X is connected, $G = \langle S \rangle$ and hence S consists of elements of order 5. Denote by S_5 the elements of G of order 5. Therefore

$$S \subseteq S_5 = \{x^sy^t \mid r \in \mathbb{Z}_p^2, s \in \mathbb{Z}_5^*\}.$$

Clearly $\sigma : x \mapsto x^r, y \mapsto y (r \neq 0)$ is an automorphism of G, we may suppose that $S = \{xy^i, y^{-x}x^{-1}, x^uy^v, y^{-v}x^{-u}\}$. Since $\text{Aut}(G, S)$ acts transitively on S, it implies that there is $\alpha \in \text{Aut}(G, S)$ such
that \((xy^s)^\alpha = y^{-s}x^{-1}\). We may assume that \(y^\alpha = x^m y^n\), where \(m \in \mathbb{Z}_{p^2}\), \(n \in \mathbb{Z}_{p^2}^*\). Also let \(x^\alpha = x^r\), where \(r \in \mathbb{Z}_{p^2}^*\). Therefore \(x^r(x^m y^n)^s = y^{-s}x^{-1}\), and so \(ns = -s\). Thus \(s = 0\) or \(n = -1\). Clearly, \(s \neq 0\), and so \(n = -1\). Now \(y^\alpha = x^m y^{-1}\). Since \(x^y = x^r\), we have \((x^\alpha)^y^\alpha = (x^\alpha)^i\) and so \(ri^4 - ri = 0\). Thus \(i^3 = 1\), a contradiction.

Let \(X\) be a tetravalent one-regular graph of order \(5p^2\). If \(p \leq 11\), then \(|V(X)| = 20, 45, 125, 245,\) or 605. Now, a complete census of the tetravalent arc-transitive graphs of order at most 640 has been recently obtained by Potočnik, Spiga and Verret \[25, 26\]. Therefore, a quick inspection through this list (with the invaluable help of \texttt{magma}\(\)) gives the number of tetravalent one-regular graphs in the case that \(p \leq 11\). Thus we may suppose that \(p > 11\).

The following result is the main result of this paper.

Theorem 3.3. Let \(p\) be a prime. A 4-valent graph \(X\) of order \(5p^2\) is 1-regular if and only if one of the following holds:

- (i): \(X\) is a Cayley graph over \(\langle x, y | x^p = y^{5p} = [x, y] = 1 \rangle\), with connection sets \(\{y, y^{-1}, xy, x^{-1}y^{-1}\}\) and \(\{y^2, xy, x^{-2}y^{-2}\}\).
- (ii): \(X\) is connected arc-transitive circulant graph with respect to every connection set \(S\).
- (iii): \(X\) is one of the graphs described in [20, Lemma 8.4].

Proof. Let \(X\) be a 4-valent one-regular graph of order \(5p^2\). If \(p \leq 11\), then \(|V(X)| = 20, 45, 125, 245,\) or 605. Now, a complete census of the 4-valent arc-transitive graphs of order at most 640 has been recently obtained by Potočnik, Spiga and Verret \[25, 26\]. Therefore, a quick inspection through this list (with the invaluable help of \texttt{magma}\(\)) gives the proof of the theorem in the case that \(p \leq 11\).

Now, suppose that \(p > 11\). Let \(A = \text{Aut}(X)\) and let \(A_v\) be the stabilizer in \(A\) of the vertex \(v \in V(X)\). Let \(P\) be a Sylow \(p\)-subgroup of \(A\). Since \(A\) is one-regular, it follows that \(|A| = 20p^2\). We show that \(P\) is normal in \(A\). Since \(|A| = 20p^2\), the Sylow’s theorems show that the number of Sylow \(p\)-subgroups of \(A\) is equal to \(|A : N_A(P)| = 1 + kp\), for some \(k \geq 0\). If \(k = 0\), then \(P\) is normal in \(A\) and thus we may assume that \(k \geq 1\). Now, \(1 + kp\) divides 20 and this is possible if and only if \(k = 1\) and \(p = 19\). Now \(|A : N_A(P)| = 20\). So \(N_A(P) = P\) and \(C_A(P) = N_A(P)\). Therefore, by the Burnside’s \(p\)-complement theorem \[32, page 76\], we see that \(A\) has a normal subgroup \(N\) of order 20. In particular, \(P\) acts by conjugation as a group of automorphisms on \(N\). As a group of order 20 does not admit non-trivial automorphisms of order 19, we see that \(P\) centralizes \(A\). Thus \(A \cong N \times P\) and \(P\) is
normal in A.

Assume first that P is cyclic. Let X_P be the quotient graph of X relative to the orbits of P and let K be the kernel of A acting on $V(X_P)$. By Proposition 2.4, the orbits of P are of length p^2. Thus $|V(X_P)| = 5$, $P \leq K$ and A/K acts arc-transitively on X_P. By Proposition 2.3 either $X_P \cong C_5$ and hence $A/K \cong D_{10}$ forcing that $|K| = 2p^2$, or P acts semiregularly on $V(X)$, the quotient graph X_P is a tetravalent connected A/P-arc-transitive graph and X is a regular cover of X_P. First assume that $X_P \cong C_5$. If A/P is an abelian then, since A/K is a quotient group of A/P, also A/K is an abelian. But since A/K is vertex-transitive on X_P, Proposition 2.2 implies that it is regular on X_P, contradicting arc-transitivity of A/K on X_P. Thus A/P is non-abelian group. Clearly K is not semiregular on $V(X)$. Then $K_v \cong \mathbb{Z}_2$, where $v \in V(X)$. By Proposition 2.1 $A/C \leq \mathbb{Z}_{p(p-1)}$, where $C = C_A(P)$. Since A/P is not abelian we have that P is a proper subgroup of C. If $C \cap K \neq P$, then $C \cap K = K$ ($|K| = 2p^2$). Since K_v is a Sylow 2-subgroup of K, K_v is characteristic in K and so normal in A, implying that $K_v = 1$, a contradiction. Thus $C \cap K = P$ and $1 \neq C/P = C/C \cap K \cong CK/K \leq A/K \cong D_{10}$. If $C/P \cong \mathbb{Z}_2$, then C/P is in the center of A/P and since $A/P/C/P \cong A/C$ is cyclic, A/P is abelian, a contradiction. It follows that $|C/P| \in \{5, 10\}$, and hence C/P has a characteristic subgroup of order 5, say H/P. Thus $|H| = 5p^2$ and $H/P \leq A/P$, implies that $H \leq A$. In addition since $H \leq C = C_A(P)$, we have that H is abelian. Clearly $|H_v| \in \{1, 5\}$. If $|H_v| = 5$, then H_v is a Sylow 5-subgroup of H, implying that H_v is characteristic in H. The normality of H in A implies that $H_v \leq A$, forcing $H_v = 1$, a contradiction. If $H_v = 1$, then since $|H| = 5p^2$, H is regular on $V(X)$. It follows that X is a Cayley graph on an abelian group with a cyclic Sylow p-subgroup P. By elementary group theory, we know that up to isomorphism \mathbb{Z}_{5p^2}, where $p > 11$, is the only abelian group with a cyclic Sylow p-subgroup. Also by [34, Theorem 7], X is one-regular.

Now assume that X_P is a tetravalent connected A/P-symmetric graph. Clearly, $X_P \cong K_5$ and by [1, Theorem 2.2], X_P is non-normal Cayley graph on \mathbb{Z}_5. On the other hand A/P is isomorphic to a subgroup of index 6 in $\text{Aut}(K_5) \cong S_5$. Thus A/P is isomorphic to affine group $\text{AGL}(1, 5) = \mathbb{Z}_5 \rtimes \mathbb{Z}_4$. Therefore A/P has a normal subgroup of order 5, say PM/P. Thus $PM \leq A$ and PM is transitive on $V(X)$. Since $|PM| = 5p^2$, PM is also regular on $V(X)$, implying that X is a normal Cayley graph on PM. If PM is an abelian group, then PM
is isomorphic to \mathbb{Z}_{5p^2}. Also if PM is not abelian, then by Proposition 2.8 part (ii), PM is isomorphic to $\langle x, y | x^{p^2} = y^5 = 1, y^{-1}xy = x^i \rangle$, where $i^5 \equiv 1 \pmod{p^2}$. If $PM \cong \mathbb{Z}_{5p^2}$, then by [31, Theorem 7] X is one-regular. In the latter case, X is not one-regular, by Lemma 3.2.

Now assume that P is an elementary abelian. Suppose first that P is a minimal normal subgroup of A, and consider the quotient graph X_P of X relative to the orbits of P. Let K be the kernel of A acting on $V(X_P)$. By Proposition 2.3 either $X_P \cong C_5$ and hence $A/K \cong D_{10}$ forcing that $|K| = 2p^2$, or P acts semiregularly on $V(X)$, the quotient graph X_P is a tetravalent connected A/K-arc-transitive graph and X is a regular cover of X_P. First assume that $X_P \cong C_5$. Thus $K_v = \mathbb{Z}_2$. Proposition 2.6 implies that X is isomorphic to one of the graphs described in [20, Lemma 8.4].

Now assume that X_P is a tetravalent connected A/P-symmetric graph. So X is a $\mathbb{Z}_p \times \mathbb{Z}_p$-regular cover of K_5. By [22, Table 1], $AGL(1, 5)$, lifts along p. Now we use the fact that the lift of an s-regular group that lifts along a regular covering projection is s-regular (see [6, 7]). We recall that $AGL(1, 5)$ is a one-regular subgroup of $Aut(K_5)$. Now by [22, Theorem 2.1, Propositions 3.4, 3.5], X is not one-regular.

Suppose now that P is not a minimal normal subgroup of A. Then a minimal normal subgroup N of A is isomorphic to \mathbb{Z}_p. Let X_N be the quotient graph of X relative to the orbits of N and let K be the kernel of A acting on $V(X_N)$. Then $N \leq K$ and A/K is transitive on $V(X_N)$, moreover we have that $|V(X_N)| = 5p$. By Proposition 2.3 X_N is a cycle of length $5p$, or N acts semiregularly on $V(X)$, the quotient graph X_N is 4-valent connected A/N-arc-transitive graph and X is a regular cover of X_N. If $X_N \cong C_{5p}$, and hence $A/K \cong D_{10p}$, then $|K| = 2p$ and thus $K_v \cong \mathbb{Z}_2$. Applying Proposition 2.5 we get that X is isomorphic to $C^{\pm 1}(p; 5p, 1)$. If, however X_N is a 4-valent connected A/N-symmetric graph, then, by Proposition 2.3 X is a covering graph of a symmetric graph of order $5p$. By [27], $G(5p; 2, 2, u)$ is the just 4-valent symmetric graph of order $5p$ (see Example 2.7). Observe that in this case a one-regular subgroup of automorphism contains a normal regular subgroup isomorphic to $\mathbb{Z}_5 \times \mathbb{Z}_p$. Let H be a one-regular subgroup of automorphism of X_N. Since X is one-regular graph, A is the lift of H. Since H contains a normal regular subgroup isomorphic to $\mathbb{Z}_5 \times \mathbb{Z}_p$ also A contains a normal regular subgroup. Therefore X is a normal Cayley graph of order $5p^2$. Since $A/\mathbb{Z}_p \cong H$ and $\mathbb{Z}_5 \times \mathbb{Z}_p \leq H$, there exists a normal subgroup G of A such that $G/\mathbb{Z}_p \cong \mathbb{Z}_p \times \mathbb{Z}_5$. If G is an abelian group, then G is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_{5p}$, or \mathbb{Z}_{5p^2}. Also
if \(G \) is not abelian, then by Proposition 2.8 part (i), \(G \) is isomorphic to \(\langle x, y, z \mid x^p = y^p = z^p = [x, z] = [y, z] = 1, y^{-1}xy = x^i \rangle \), where \(i^5 \equiv 1 \pmod{p} \) and \((i, p) = 1 \). If \(G \cong \mathbb{Z}_{5^2} \), then by [34, Theorem 7] \(X \) is one-regular. Also if \(G \cong \mathbb{Z}_p \times \mathbb{Z}_{5^2} \) then by [35, Proposition 3.3, Example 3.2] \(X \) is isomorphic to either \(\text{Cay}(\mathbb{Z}_p \times \mathbb{Z}_{5^2}, \{a, a^{-1}, ab, a^{-1}b^{-1}\}) \) or \(\text{Cay}(\mathbb{Z}_p \times \mathbb{Z}_{5^2}, \{a, a^{-2}, ab, a^{-2}b^{-2}\}) \) which are 1-regular. These graphs are in Theorem 3.3 part (ii). Finally, in the latter case, \(X \) is not one-regular, by Lemma 3.1. This complete the proof.

References

[1] Y.G. Baik, Y.-Q. Feng, H.S. Sim, M.Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5 (1998) 297–304.
[2] W. Bosma, C. Cannon, C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic Comput. 24 (1997) 235–265.
[3] R. Carter, P. Fong, The Sylow s-subgroup of the finite classical groups, J. Algebra 1 (1964) 139–151.
[4] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Tran. Amer. Math. Soc. 158 (1971) 247–256.
[5] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B 42 (1987) 196–211.
[6] D.Ž. Djoković, Automorphisms of graphs and coverings, J. Combin. Theory Ser. B 16 (1974) 243–247.
[7] D.Ž. Djoković, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980) 195–230.
[8] Y.-Q. Feng, K. Kutnar, D. Marušić, C. Zhang, 4-valent one-regular graphs of order \(4p^2 \), FILOMAT, to appear.
[9] Y.-Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p^2, Science in China A 49 (2006) 300–319.
[10] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Austral. Math. Soc. 81 (2006) 153–164.
[11] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory B 97 (2007) 627–646.
[12] Y.-Q. Feng, J.H. Kwak, K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p^2, European J. Combin. 26 (2005) 1033–1052.
[13] Y.Q. Feng, M.Y. Xu, Automorphism groups of teravalent Cayley graphs on regular p-groups, Discrete Math. 305 (2005), 354–360.
[14] R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952) 240–247.
[15] M. Ghasemi, A classification of tetravalent one-regular graphs of order \(3p^2 \), Colloq. Math. 128 (2012) 15–23.
[16] M. Ghasemi, Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups, Algebra and Discrete Math. 13 (2012), 52–58.
[17] M. Ghasemi, P. Spiga, 4-valent graphs of order \(6p^2 \), admitting a group of automorphisms acting regularity on arcs, Ars Math. Contemp., 9 (2015) 1–18.
[18] M. Ghasemi, J.X. Zhou, Automorphisms of a family of cubic graphs, Algebra Colloq. 20:3 (2013), 495–506.
[19] A. Gardiner, C.E. Praeger, On 4-valent symmetric graphs, European. J. Combin. 15 (1994) 375–381.
[20] A. Gardiner, C.E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European. J. Combin. 15 (1994) 383–397.
[21] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[22] B. Kuzman, Arc-transitive elementary abelian covers of the complete graph K_5, Linear Algebra Appl. 433 (2010) 1909–1921.
[23] J.H. Kwak, J.M. Oh, One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer, Acta Math. Sin. Engl. Ser. 22 (2006) 1305–1320.
[24] D. Marušić, A family of one-regular graphs of valency 4, European J. Combin. 18 (1997) 59–64.
[25] P. Potočnik, P. Spiga, G. Verret, http://www.matapp.unimib.it/~spiga/
[26] P. Potočnik, P. Spiga, G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, Journal of Symbolic Computation 50 (2013) 465–477.
[27] C.E. Praeger, R.J. Wang, M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993) 299–318.
[28] C.E. Praeger, M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993) 245–266.
[29] C.Q. Wang, M.Y. Xu, Non-normal one-regular and 4-valent Cayley graphs of dihedral groups D_{2n}, European J. Combin. 27 (2006) 750–766.
[30] R.J. Wang, M.Y. Xu, A classification of symmetric graphs of order $3p$, J. Combin. Theory B 58 (1993) 197–216.
[31] C.Q. Wang, Z.Y. Zhou, 4-valent one-regular normal Cayley graphs of dihedral groups, Acta Math. Sinica Chinese Ser. 49 (2006) 669–678.
[32] B.A.F. Wehrfritz, Finite Groups: A second course on Group Theory, World Scientific, 1999.
[33] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
[34] M.Y. Xu, A note on one-regular graphs, Chin. Scin. Bull. 45 (2000) 2160–2162.
[35] J. Xu, M.Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups. Southeast Asian Bull. Math. 25 (2001) 355–363.
[36] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 44 (2001) 1502–1508.
[37] J.-X. Zhou, Y.-Q. Feng, 4-valent one-regular graphs of order $2pq$, J. Algebraic Combin. 29 (2009) 457–471.

MOHSEN GHASEMI, DEPARTMENT OF MATHEMATICS, URMIA UNIVERSITY, URMIA 57135, IRAN
Email address: m.ghasemi@urmia.ac.ir

REZVAN VARMAZYAR, DEPARTMENT OF MATHEMATICS, AZAD UNIVERSITY, KHAY BRANCH, KHAY, IRAN
Email address: varmazyar@iaukhoy.ac.ir